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Overview
SAS/STAT 13.2 includes three new procedures, two new high-performance procedures, and many enhance-
ments.
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New Procedures

GEE Procedure (Experimental)

The experimental GEE procedure fits generalized linear models for longitudinal data by using the generalized
estimating equations (GEE) estimation method of Liang and Zeger (1986). The GEE method fits a marginal
model to longitudinal data and is commonly used to analyze longitudinal data when the population-average
effect is of interest. The GEE procedure’s syntax is similar to that of the GENMOD procedure. You specify
the response variable and the explanatory variables in a MODEL statement, and you specify the correlation
structure of multivariate responses in a REPEATED statement.

Because missing data are common in longitudinal studies and can lead to biased parameter estimates when
missing responses depend on previous responses, PROC GEE also implements observation-specific and
subject-specific weighted estimating equations. Both weighted estimators provide unbiased and consistent
estimates when data are missing at random.

ICPHREG Procedure

The ICPHREG procedure fits proportional hazards regression models to interval-censored data. You can
fit models that have a variety of configurations with respect to the baseline hazard function, including the
piecewise constant model and the cubic spline model. PROC ICPHREG maximizes the full likelihood instead
of the Cox partial likelihood to estimate the regression coefficients. Standard errors of the estimates are
obtained by inverting the observed information matrix that is derived from the full likelihood.

The ICPHREG procedure compares most closely to the PHREG and LIFEREG procedures. All three
procedures can fit proportional hazards models. The distinction lies in the types of data that they are designed
to handle and whether the baseline hazard function is parameterized. PROC PHREG deals exclusively
with right-censored data, and it adopts a semiparametric approach by leaving the baseline hazard function
unspecified. Both PROC LIFEREG and PROC ICPHREG can handle interval-censored data, which is a
generalization of right-censored data. PROC LIFEREG focuses on parametric analysis by using accelerated
failure time models, and it fits proportional hazards models only by assuming a Weibull baseline hazard
function. PROC ICPHREG offers several options to parameterize the baseline hazard function. PROC
ICPHREG generalizes PROC LIFEREG to fit more flexible parametric models and also generalizes PROC
PHREG to handle interval-censored data.

SPP Procedure

The SPP procedure analyzes spatial point patterns. The broad goal of spatial point pattern analysis is to
describe the occurrence of events (observations) that compose the pattern. The event locations are a discrete
realization of a random spatial process. Therefore, the analysis goal is to investigate and characterize the
original spatial process that generated the events in the spatial point pattern.

The SPP procedure enables you to specify the study area as a window, or you can rely on the input data
coordinates to automatically compute a suitable study area by using the Ripley-Rasson window estimator.
You can perform exploratory analysis of spatial point patterns by using the F, G, J, K, L, and PCF distance
functions, which compare the empirical function distributions to the theoretical homogeneous Poisson process.
PROC SPP enables you to perform nonparametric intensity estimation by using different types of kernels, and
it supports adaptive kernel estimation. In addition, PROC SPP enables you to fit parametric inhomogeneous
Poisson process models to perform model validation by using goodness-of-fit testing and a variety of residual
diagnostics.
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Highlights of Enhancements
Following are highlights of the enhancements in SAS/STAT 13.2:

• The FACTOR procedure generates path diagrams.

• The FMM procedure fits multinomial models.

• The IRT procedure generates polychoric correlation matrices, item characteristic curves, and test
information curve plots.

• The MCMC procedure supports a categorical distribution in the MODEL, RANDOM, and PRIOR
statements.

• The NLMIXED procedure enables you to specify more than one RANDOM statement in order to fit
hierarchical nonlinear mixed models.

• The SEQDESIGN procedure enables you to create a ceiling-adjusted design that corresponds to
integer-valued sample sizes at the stages for nonsurvival data.

• The LOGISTIC procedure enables you to add or relax constraints on parameters in nominal response
and partial proportional odds models.

• The FREQ procedure now provides score confidence limits for the odds ratio and the relative risk.

• The GLMSELECT procedure enables you to apply safe screening and sure independence screening
methods to reduce a large number of regressors to a smaller subset from which model selection is
performed.

More information about the changes and enhancements follows. Details can be found in the documentation
for the individual procedures in SAS/STAT User’s Guide.

Highlights of Enhancements in SAS/STAT 13.1
Some users might be unfamiliar with updates made in the previous releases. SAS/STAT 13.1 introduced
the BCHOICE, ICLIFETEST, and IRT procedures. Following are highlights of the other enhancements in
SAS/STAT 13.1:

• The MI procedure added the MNAR statement to facilitate sensitivity analysis.

• The Tweedie distribution is supported by the GENMOD procedure.

• The competing-risks model of Fine and Gray (1999) is available in the PHREG procedure.

• The NLIN procedure enables you to generate both bootstrap estimates of confidence intervals for the
parameters and bootstrap estimates of the covariance matrix and correlation matrix of the parameter
estimates.

• The MCMC procedure is multithreaded.
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• Path diagrams are available in the CALIS procedure.

• You can compute power for PROC GLM–type MANOVA and repeated measurements in the GLM-
POWER procedure.

• The SURVEYMEANS procedure produces domain quantile estimates.

Enhancements

BCHOICE Procedure
The BCHOICE procedure is production in SAS/STAT 13.2. The Gamerman sampling algorithm is improved
and now runs up to 30% faster for some models.

CALIS Procedure
All output tables for parameter estimates now show the p-values of the estimates. The new CI option in the
PROC CALIS statement adds confidence intervals in these tables. The new ALPHA=˛ option enables you to
request that interval estimation of parameters be performed at the (1–˛)100% confidence level instead of the
default 95% confidence level.

FACTOR Procedure
The new PATHDIAGRAM statement enables you to generate and fine-tune path diagrams. You can also
use the new PLOTS=PATHDIAGRAM option in the PROC FACTOR statement to request the default path
diagrams, which show the links between factors and variables, the factor correlations, and the error variances
in the model.

FMM Procedure
The DIST=MULTINOMIAL option in the MODEL statement enables you to specify the multinomial
distribution to model a discrete response that has multiple levels. The DIST=MULTINOMIALCLUSTER
option enables you to fit a multinomial cluster model to address overdispersion in multinomial models.

FREQ Procedure
The following types of binomial confidence limits are now available: Blaker, exact mid-p, likelihood ratio,
and logit. (You can request binomial confidence limits in the BINOMIAL(CL=) option.)
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The new RELRISK(CL=SCORE) option provides score confidence limits for the relative risk. Score
confidence limits can be displayed in the relative risk plot.

The RISKDIFF(COMMON) option provides stratified Newcombe confidence limits for the common risk
(proportion) difference. Stratified Newcombe confidence limits can be displayed in the risk difference plot.

GLMPOWER Procedure
PROC GLMPOWER now supports multiple factors in the REPEATED statement.

GLMSELECT Procedure
The SCREEN= option in the MODEL statement enables you to apply either a safe screening method or a
sure independence screening method to reduce a large number of regressors to a smaller subset from which
model selection is performed.

IRT Procedure
The IRT procedure is at production status in this release.

The POLYCHORIC option in the PROC IRT statement displays the polychoric correlation matrix.

The PLOTS=POLYCHORIC option in the PROC IRT statement displays a heat map for the polychoric
correlation matrix.

The PLOTS=IIC option in the PROC IRT statement displays item characteristic curves.

The PLOTS=TIC in the PROC IRT statement displays a test information curve plot.

LOGISTIC Procedure
The EQUALSLOPES and UNEQUALSLOPES options in the MODEL statement enable you to add or relax
constraints on parameters in nominal response models and partial proportional odds models.

The INCLUDE=EQUALSLOPES specification in the MODEL statement facilitates model selection by
enabling you to include all the equal slope effects in every model and perform the selection process on the
unequal slope effects.

The START=EQUALSLOPES specification in the MODEL statement facilitates model selection by enabling
you to begin the model selection process with all the equal slope effects in the model.

MCMC Procedure
The PRIOR, RANDOM, and MODEL statements now support a categorical distribution.
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The RANDOM statement now supports a uniform prior distribution.

All conjugate sampling algorithms are now multithreaded.

NLMIXED Procedure
PROC NLMIXED now enables you to specify more than one RANDOM statement in order to fit hierarchical
nonlinear mixed models.

The OUTR= option in the PROC NLMIXED statement requests an output data set that contains all the
random-effects variable estimates from all RANDOM statements.

The default degrees of freedom for the fixed parameters is calculated for random-effects models as the total
number of subjects minus the number of random-effects variables that are specified in a RANDOM statement.
If this calculation produces a nonpositive number, the default degrees of freedom is replaced by the total
number of observations.

PHREG Procedure
PROC PHREG now supports the following features for the competing-risks analysis of Fine and Gray (1999):

• survival times with left truncation or start/stop syntax

• a WEIGHT statement

PLS Procedure
You can now display correlation loading plots for all pairs of factors, not just the first two.

POWER Procedure
The TEST=FM option in the TWOSAMPLEFREQ statement specifies the score test of Farrington and
Manning (1990).

REG Procedure
The SRT option in the MODEL statement displays a column in the “Output Statistics” table that shows the
magnitude of studentized residuals by using a series of asterisks.
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SEQDESIGN Procedure
The CEILADJDESIGN=INCLUDE suboption of the MODEL= option in the SAMPLESIZE statement
creates a ceiling-adjusted design that corresponds to integer-valued sample sizes at the stages for nonsurvival
data, and to integer-valued times or sample sizes at the stages for survival data.

SEQTEST Procedure
The INFOVAR= suboption of the DATA= option in the PROC SEQTEST statement enables you to specify
the information variable in the DATA= data set.

The INFOVAR= suboption of the PARMS= option in the PROC SEQTEST statement enables you to specify
the information variable in the PARMS= data set.

SURVEYFREQ Procedure
The COV option in the TABLES statement displays the covariance matrix of the total frequency estimates.

The COVP option in the TABLES statement displays the covariance matrix of the proportion estimates.

SURVEYLOGISTIC Procedure
The default hypothesis tests are changed from chi-square tests to F tests.

The default confidence limits for parameter estimates and odds ratio estimates are changed from Wald
confidence limits to t confidence limits.

A new DF= option in the MODEL statement specifies the denominator degrees of freedom for F statistics in
hypothesis testing, and the degrees of freedom in t tests for parameter estimates, odds ratio estimates, and
their t percentiles for confidence limits.

The score test for the global null hypothesis now takes survey design information into account.

Enhancements to the High-Performance Procedures
The high-performance procedures that are available in SAS High-Performance Statistics software for dis-
tributed computing are also available in SAS/STAT software for use in single-machine mode. These
procedures are documented in SAS/STAT User’s Guide: High-Performance Procedures.
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New Procedures

HPPLS Procedure

The new HPPLS procedure fits models by using any of several linear predictive methods, including partial
least squares (PLS), to optimally address one or both of these two goals: explaining response variation and
explaining predictor variation.

HPQUANTSELECT Procedure

The new HPQUANTSELECT procedure performs high-performance quantile regression analysis. PROC
HPQUANTSELECT not only fits quantile regression models but also offers extensive capabilities for
quantile regression model selection, and it supports statistical inferences with or without the assumption of
independently and identically distributed (iid) errors.

Procedure Enhancements

HPGENSELECT Procedure

The PARTITION statement specifies how observations in the input data set are to be logically partitioned
into disjoint subsets for model training, validation, and testing. Models are fit and selected based on the
training data. After you fit a model, you can use the validation and test sets to assess how the selected model
generalizes on data that played no role in selecting the model.

HPLOGISTIC Procedure

• The PARTITION statement divides the observations in the input data set into disjoint subsets for model
training, validation, and testing. Various fit statistics are displayed in the new “Partition Fit Statistics”
table.

• The new CUTPOINT= option in the MODEL statement enables you to control the classification of
events and nonevents.

• The new CHOOSE=VALIDATE and STOP=VALIDATE options in the SELECTION statement use
the validation data set during the selection process.

• The AIC, BIC, and AICC criteria are added to the SELECT= option in the SELECTION statement.

• The INEST= option in the PROC statement enables you to input your own starting values for the
optimization. The OUTEST option adds a column that contains the parameter names to the “Parameter
Estimates” ODS OUTPUT data.

• The CTABLE option in the MODEL statement creates data for receiver operating characteristic (ROC)
curves. The PRIOR= option in the MODEL statement specifies population prevalences that are used to
adjust statistics displayed by the CTABLE option and by the PARTITION statement.

• The POST keyword in the OUTPUT statement outputs the posterior probabilities that are specified in
the PRIOR= option, and the ROLE keyword outputs the partition to which the observation is assigned.
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What’s Changed
The following sections describe changes in software behavior from SAS/STAT 13.1 to SAS/STAT 13.2.

The NLMIXED Procedure

The default degrees of freedom for the fixed parameters is calculated for random-effects models as the total
number of subjects minus the number of random-effects variables that are specified in a RANDOM statement.
If this calculation produces a nonpositive number, the default degrees of freedom is replaced by the total
number of observations.

The SURVEYLOGISTIC Procedure

The default hypothesis tests are changed from chi-square tests to F tests.

The default confidence limits for parameter estimates and odds ratio estimates are changed from Wald
confidence limits to t confidence limits.
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Overview of SAS/STAT Software
SAS/STAT software provides comprehensive statistical tools for a wide range of statistical analyses, including
analysis of variance, categorical data analysis, cluster analysis, multiple imputation, multivariate analysis,
nonparametric analysis, power and sample size computations, psychometric analysis, regression, survey
data analysis, and survival analysis. A few examples include nonlinear mixed models, generalized linear
models, correspondence analysis, and robust regression. The software is constantly being updated to reflect
new methodology. In addition to more than 80 procedures for statistical analysis, SAS/STAT software also
includes the Power and Sample Size Application (PSS), an interface to power and sample size computations.
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Experimental Software
Experimental software is sometimes included as part of a production-release product. It is provided to
(sometimes targeted) customers in order to obtain feedback. All experimental uses are marked Experimental
in this document. Whenever an experimental procedure, statement, or option is used, a message is printed to
the SAS log to indicate that it is experimental.

The design and syntax of experimental software might change before any production release. Experimental
software has been tested prior to release, but it has not necessarily been tested to production-quality standards,
and so should be used with care.

About This Book
Since SAS/STAT software is a part of the SAS System, this book assumes that you are familiar with Base
SAS software and with the books SAS Language Reference: Concepts and the Base SAS Procedures Guide.
It also assumes that you are familiar with basic SAS System concepts such as creating SAS data sets with
the DATA step and manipulating SAS data sets with the procedures in Base SAS software (for example, the
PRINT and SORT procedures).

Chapter Organization
This book is organized as follows.

Chapter 1, “What’s New in SAS/STAT 13.2,” provides information about the changes and enhancements to
SAS/STAT software in SAS 9.3.

Chapter 2, this chapter, provides an overview of SAS/STAT software and summarizes related information,
products, and services. The remaining introductory chapters (Chapter 3, “Introduction to Statistical Modeling
with SAS/STAT Software,” through Chapter 17, “Introduction to Structural Equation Modeling with Latent
Variables”) provide an introduction to the broad areas covered by SAS/STAT software.

Chapter 18, “Introduction to Power and Sample Size Analysis,” provides documentation for the Power and
Sample Size Application (PSS).

Chapter 19, “Shared Concepts and Topics,” provides information about topics that are common to multiple
procedures. Topics include parameterization of model effects, the EFFECT statement, and the NLOPTIONS
statement. Starting in SAS/STAT 9.22, this chapter also documents the following statements that are used
for postfitting analysis and are common across many modeling procedures: EFFECTPLOT, ESTIMATE,
LSMEANS, LSMESTIMATE, SLICE, STORE, and TEST.

Chapter 20, “Using the Output Delivery System,” explains the fundamentals of using the Output Delivery
System (ODS) to manage your SAS output.

Chapter 21, “Statistical Graphics Using ODS”; Chapter 22, “ODS Graphics Template Modification”; and
Chapter 23, “Customizing the Kaplan-Meier Survival Plot” describe the extension to ODS that enables many
statistical procedures to create statistical graphics as easily as they create tables.
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Subsequent chapters describe the SAS procedures that make up SAS/STAT software. These chapters appear
in alphabetical order by procedure name and are organized as follows:

• The “Overview” section provides a brief description of the analysis provided by the procedure.

• The “Getting Started” section provides a quick introduction to the procedure through a simple example.

• The “Syntax” section describes the SAS statements and options that control the procedure.

• The “Details” section discusses methodology and miscellaneous details, such as ODS tables and ODS
graphics.

• The “Examples” section contains examples that use the procedure.

• The “References” section contains references for the methodology and for examples of the procedure.

Following the chapters on the SAS/STAT procedures, Chapter A, “Special SAS Data Sets,” documents the
special SAS data sets that are associated with SAS/STAT procedures and Chapter B, “Sashelp Data Sets,”
documents Sashelp data sets that are used in this book.

Typographical Conventions
This book uses several type styles for presenting information. The following list explains the meaning of the
typographical conventions used in this book:

roman is the standard type style used for most text.

UPPERCASE ROMAN is used for SAS statements, options, and other SAS language elements when
they appear in the text. However, you can enter these elements in your own SAS
programs in lowercase, uppercase, or a mixture of the two.

UPPERCASE BOLD is used in the “Syntax” sections’ initial lists of SAS statements and options.

oblique is used for user-supplied values for options in the syntax definitions. In the text,
these values are written in italic.

VariableName is used for the names of variables and data sets when they appear in the text.

bold is used to refer to matrices and vectors.

italic is used for terms that are defined in the text, for emphasis, and for references to
publications.

monospace is used for example code. In most cases, this book uses lowercase type for SAS
code.
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Options Used in Examples
The HTMLBLUE style is used to create the graphs and the HTML tables that appear in the online documen-
tation. The PEARLJ style is used to create the PDF tables that appear in the documentation. A style template
controls stylistic elements such as colors, fonts, and presentation attributes. You can specify a style template
in an ODS destination statement as follows:

ods html style=HTMLBlue;
. . .
ods html close;

ods pdf style=PearlJ;
. . .
ods pdf close;

For more information about styles, see Chapter 21, “Statistical Graphics Using ODS.”

Most of the PDF tables are produced by using the following SAS System option:

options papersize=(6.5in 9in);

If you run the examples, you might get slightly different output. This is a function of the SAS System options
that are used and the precision that your computer uses for floating-point calculations.

Where to Turn for More Information
This section describes other sources of information about SAS/STAT software.

Accessing the SAS/STAT Sample Library
The SAS/STAT sample library includes many examples that illustrate the use of SAS/STAT software,
including the examples used in this documentation. To access these sample programs from the SAS
windowing environment, select Help from the main menu and then select Getting Started with SAS
Software. On the Contents tab, expand the Learning to Use SAS, Sample SAS Programs, and SAS/STAT
items. Then click Samples.

You can instead access the SAS/STAT sample library at http://support.sas.com/documentation/
onlinedoc/stat/ex_code/132/.

Sashelp Data Sets
SAS provides over 200 data sets in the Sashelp library. These data sets are available for you to use for
examples and for testing code. For example, the following step uses the Sashelp.Class data set:

http://support.sas.com/documentation/onlinedoc/stat/ex_code/132/
http://support.sas.com/documentation/onlinedoc/stat/ex_code/132/
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proc reg data=sashelp.class;
model weight = height;

run; quit;

You do not need to provide a DATA step to use Sashelp data sets.

The following steps list all of the data sets that are available in Sashelp:

ods listing close;
proc contents data=sashelp._all_;

ods output members=m;
run;
ods listing;

proc print;
where memtype = 'DATA';

run;

The results of these steps (over 200 data set names) are not displayed.

The following steps provide detailed information about the Sashelp data sets:

proc contents data=sashelp._all_;
run;

The results of this step (hundreds of pages of PROC CONTENTS information) are not displayed. See
Chapter B, “Sashelp Data Sets,” for more information about Sashelp data sets.

Online Documentation
This documentation is available online with the SAS System. To access SAS/STAT documentation from the
SAS windowing environment, select Help from the main menu and then select SAS Help and Documenta-
tion. (Alternatively, you can type help STAT in the command line.) On the Contents tab, expand the SAS
Products, SAS/STAT, and SAS/STAT User’s Guide items. Then expand chapters and click on sections.
You can search the documentation by using the Search tab.

You can also access the documentation by going to http://support.sas.com/documentation.

SAS Technical Support Services
As with all SAS products, the SAS Technical Support staff is available to respond to problems and answer tech-
nical questions regarding the use of SAS/STAT software. Go to http://support.sas.com/techsup
for more information.

http://support.sas.com/documentation
http://support.sas.com/techsup
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Related SAS Software
Many features not found in SAS/STAT software are available in other parts of the SAS System. If you do not
find something you need in SAS/STAT software, try looking for the feature in the following SAS software
products.

SAS/IML Software
SAS/IML software gives you access to a powerful and flexible programming language (Interactive Matrix
Language) in a dynamic, interactive environment. The fundamental object of the language is a data matrix.
You can use SAS/IML software interactively (at the statement level) to see results immediately, or you
can store statements in a module and execute them later. The programming is dynamic because necessary
activities such as memory allocation and dimensioning of matrices are done automatically. SAS/IML software
is of interest to users of SAS/STAT software because it enables you to program your methods in the SAS
System.

Base SAS Software
The features provided by SAS/STAT software are in addition to the features provided by Base SAS software.
Many data management and reporting capabilities you will need are part of Base SAS software. See SAS
Language Reference: Concepts, SAS Language Reference: Dictionary, and the Base SAS Procedures Guide
for documentation of Base SAS software.

ODS Graphics
Base SAS software provides the following:

• The SG family of procedures provides a simple syntax for creating stand-alone statistical graphics.
These procedures include SGPLOT, SGSCATTER, and SGPANEL, which provide a simple and
convenient syntax for producing many types of displays. They are particularly convenient for exploring
and presenting data. See the SAS ODS Graphics: Procedures Guide for more information.

• The GTL (Graph Template Language) and the SGRENDER procedure provide a powerful syntax
for creating customized graphs. See the SAS Graph Template Language: User’s Guide and the SAS
Graph Template Language: Reference for more information. You can also use the GTL to modify the
SAS templates that are provided for use with SAS/STAT procedures. See Chapter 22, “ODS Graphics
Template Modification,” for more information about template modification.

• The ODS Graphics Editor enables you to make immediate changes to ODS Graphics by using a
point-and-click interface. See the SAS 9.4 ODS Graphics Editor: User’s Guide for more information.

See Chapter 21, “Statistical Graphics Using ODS,” for more information about ODS Graphics.
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SAS DATA Step

The DATA step is your primary tool for reading and processing data in the SAS System. The DATA step
provides a powerful general purpose programming language that enables you to perform all kinds of data
processing tasks. The DATA step is documented in SAS Language Reference: Concepts.

Base SAS Procedures

Base SAS software includes many useful SAS procedures. Base SAS procedures are documented in the Base
SAS Procedures Guide. The following is a list of Base SAS procedures you might find useful:

CORR computes correlations.

RANK computes rankings or order statistics.

STANDARD standardizes variables to a fixed mean and variance.

MEANS computes descriptive statistics and summarizes or collapses data over cross sections.

TABULATE prints descriptive statistics in tabular format.

UNIVARIATE computes descriptive statistics.

SAS/ETS Software
SAS/ETS software provides SAS procedures for econometrics and time series analysis. It includes capabilities
for forecasting, systems modeling and simulation, seasonal adjustment, and financial analysis and reporting.
In addition, SAS/ETS software includes an interactive time series forecasting system.

SAS/GRAPH Software
SAS/GRAPH software includes procedures that create two- and three-dimensional plots and charts.

SAS/OR Software
SAS/OR software provides SAS procedures for operations research and project planning and includes a
point-and-click interface to project management. Its capabilities include the following:

• solving transportation problems

• linear, integer, and mixed-integer programming

• nonlinear programming

• scheduling projects

• plotting Gantt charts

• drawing network diagrams
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• solving optimal assignment problems

• network flow programming

SAS/OR software might be of interest to users of SAS/STAT software for its mathematical programming
features. In particular, the NLP procedure in SAS/OR software solves nonlinear programming problems, and
it can be used for constrained and unconstrained maximization of user-defined likelihood functions.

SAS/QC Software
SAS/QC software provides a variety of procedures for statistical quality control and quality improvement.
SAS/QC software includes procedures for the following:

• Shewhart control charts

• cumulative sum control charts

• moving average control charts

• process capability analysis

• Ishikawa diagrams

• Pareto charts

• experimental design

SAS/QC software also includes the ADX interface for experimental design.

SAS/IML Studio
Many users of SAS/STAT software will be interested in SAS/IML Studio, which is new in SAS 9.2 software.
Formerly known as SAS Stat Studio, SAS/IML Studio is a tool for data exploration and analysis; it provides
a highly flexible programming environment in which you can run SAS/STAT or SAS/IML analyses and
display the results with dynamically linked graphics and data tables. You can also move seamlessly between
interactive analysis and programatically driven analysis. SAS/IML Studio is intended for data analysts who
write SAS programs to solve statistical problems but need more versatility for data exploration and model
building.

The programming language in SAS/IML Studio, which is called IMLPlus, is an enhanced version of the
SAS/IML programming language. IMLPlus extends SAS/IML by providing features such as the ability to
create and manipulate dynamically linked graphs and the ability to call SAS procedures.

SAS/IML Studio also includes an interface to the R language. The IMLPlus language provides functions that
transfer data between SAS data sets and R data frames, and between SAS/IML matrices and R matrices.

SAS/IML Studio runs on a PC in the Microsoft Windows operating environment. For more information about
SAS/IML Studio, see the SAS/IML Studio User’s Guide and SAS/IML Studio for SAS/STAT Users.
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Overview: Statistical Modeling
There are more than 70 procedures in SAS/STAT software, and the majority of them are dedicated to solving
problems in statistical modeling. The goal of this chapter is to provide a roadmap to statistical models and to
modeling tasks, enabling you to make informed choices about the appropriate modeling context and tool. This
chapter also introduces important terminology, notation, and concepts used throughout this documentation.
Subsequent introductory chapters discuss model families and related procedures.

It is difficult to capture the complexity of statistical models in a simple scheme, so the classification used
here is necessarily incomplete. It is most practical to classify models in terms of simple criteria, such as the
presence of random effects, the presence of nonlinearity, characteristics of the data, and so on. That is the
approach used here. After a brief introduction to statistical modeling in general terms, the chapter describes a
number of model classifications and relates them to modeling tools in SAS/STAT software.

Statistical Models

Deterministic and Stochastic Models

Purely mathematical models, in which the relationships between inputs and outputs are captured entirely
in deterministic fashion, can be important theoretical tools but are impractical for describing observational,
experimental, or survey data. For such phenomena, researchers usually allow the model to draw on stochastic
as well as deterministic elements. When the uncertainty of realizations leads to the inclusion of random
components, the resulting models are called stochastic models. A statistical model, finally, is a stochastic
model that contains parameters, which are unknown constants that need to be estimated based on assumptions
about the model and the observed data.

There are many reasons why statistical models are preferred over deterministic models. For example:

• Randomness is often introduced into a system in order to achieve a certain balance or representativeness.
For example, random assignment of treatments to experimental units allows unbiased inferences about
treatment effects. As another example, selecting individuals for a survey sample by random mechanisms
ensures a representative sample.

• Even if a deterministic model can be formulated for the phenomenon under study, a stochastic model
can provide a more parsimonious and more easily comprehended description. For example, it is
possible in principle to capture the result of a coin toss with a deterministic model, taking into account
the properties of the coin, the method of tossing, conditions of the medium through which the coin
travels and of the surface on which it lands, and so on. A very complex model is required to describe
the simple outcome—heads or tails. Alternatively, you can describe the outcome quite simply as the
result of a stochastic process, a Bernoulli variable that results in heads with a certain probability.

• It is often sufficient to describe the average behavior of a process, rather than each particular realization.
For example, a regression model might be developed to relate plant growth to nutrient availability.
The explicit aim of the model might be to describe how the average growth changes with nutrient
availability, not to predict the growth of an individual plant. The support for the notion of averaging in
a model lies in the nature of expected values, describing typical behavior in the presence of randomness.
This, in turn, requires that the model contain stochastic components.
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The defining characteristic of statistical models is their dependence on parameters and the incorporation of
stochastic terms. The properties of the model and the properties of quantities derived from it must be studied
in a long-run, average sense through expectations, variances, and covariances. The fact that the parameters of
the model must be estimated from the data introduces a stochastic element in applying a statistical model:
because the model is not deterministic but includes randomness, parameters and related quantities derived
from the model are likewise random. The properties of parameter estimators can often be described only
in an asymptotic sense, imagining that some aspect of the data increases without bound (for example, the
number of observations or the number of groups).

The process of estimating the parameters in a statistical model based on your data is called fitting the model.
For many classes of statistical models there are a number of procedures in SAS/STAT software that can
perform the fitting. In many cases, different procedures solve identical estimation problems—that is, their
parameter estimates are identical. In some cases, the same model parameters are estimated by different
statistical principles, such as least squares versus maximum likelihood estimation. Parameter estimates
obtained by different methods typically have different statistical properties—distribution, variance, bias, and
so on. The choice between competing estimation principles is often made on the basis of properties of the
estimators. Distinguishing properties might include (but are not necessarily limited to) computational ease,
interpretive ease, bias, variance, mean squared error, and consistency.

Model-Based and Design-Based Randomness

A statistical model is a description of the data-generating mechanism, not a description of the specific data to
which it is applied. The aim of a model is to capture those aspects of a phenomenon that are relevant to inquiry
and to explain how the data could have come about as a realization of a random experiment. These relevant
aspects might include the genesis of the randomness and the stochastic effects in the phenomenon under
study. Different schools of thought can lead to different model formulations, different analytic strategies,
and different results. Coarsely, you can distinguish between a viewpoint of innate randomness and one of
induced randomness. This distinction leads to model-based and design-based inference approaches.

In a design-based inference framework, the random variation in the observed data is induced by random
selection or random assignment. Consider the case of a survey sample from a finite population of size
N; suppose that FN D fyi W i 2 UN g denotes the finite set of possible values and UN is the index set
UN D f1; 2; : : : ; N g. Then a sample S, a subset of UN , is selected by probability rules. The realization
of the random experiment is the selection of a particular set S; the associated values selected from FN are
considered fixed. If properties of a design-based sampling estimator are evaluated, such as bias, variance, and
mean squared error, they are evaluated with respect to the distribution induced by the sampling mechanism.

Design-based approaches also play an important role in the analysis of data from controlled experiments by
randomization tests. Suppose that k treatments are to be assigned to kr homogeneous experimental units. If
you form k sets of r units with equal probability, and you assign the jth treatment to the tth set, a completely
randomized experimental design (CRD) results. A design-based view treats the potential response of a
particular treatment for a particular experimental unit as a constant. The stochastic nature of the error-control
design is induced by randomly selecting one of the potential responses.

Statistical models are often used in the design-based framework. In a survey sample the model is used to
motivate the choice of the finite population parameters and their sample-based estimators. In an experimental
design, an assumption of additivity of the contributions from treatments, experimental units, observational
errors, and experimental errors leads to a linear statistical model. The approach to statistical inference
where statistical models are used to construct estimators and their properties are evaluated with respect to
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the distribution induced by the sample selection mechanism is known as model-assisted inference (Särndal,
Swensson, and Wretman 1992).

In a purely model-based framework, the only source of random variation for inference comes from the un-
known variation in the responses. Finite population values are thought of as a realization of a superpopulation
model that describes random variables Y1; Y2; � � � . The observed values y1; y2; � � � are realizations of these
random variables. A model-based framework does not imply that there is only one source of random variation
in the data. For example, mixed models might contain random terms that represent selection of effects from
hierarchical (super-) populations at different granularity. The analysis takes into account the hierarchical
structure of the random variation, but it continues to be model based.

A design-based approach is implicit in SAS/STAT procedures whose name commences with SURVEY, such
as the SURVEYFREQ, SURVEYMEANS, SURVEYREG, SURVEYLOGISTIC, and SURVEYPHREG
procedures. Inferential approaches are model based in other SAS/STAT procedures. For more information
about analyzing survey data with SAS/STAT software, see Chapter 14, “Introduction to Survey Procedures.”

Model Specification

If the model is accepted as a description of the data-generating mechanism, then its parameters are estimated
using the data at hand. Once the parameter estimates are available, you can apply the model to answer
questions of interest about the study population. In other words, the model becomes the lens through which
you view the problem itself, in order to ask and answer questions of interest. For example, you might use the
estimated model to derive new predictions or forecasts, to test hypotheses, to derive confidence intervals, and
so on.

Obviously, the model must be “correct” to the extent that it sufficiently describes the data-generating
mechanism. Model selection, diagnosis, and discrimination are important steps in the model-building process.
This is typically an iterative process, starting with an initial model and refining it. The first important step
is thus to formulate your knowledge about the data-generating process and to express the real observed
phenomenon in terms of a statistical model. A statistical model describes the distributional properties of one
or more variables, the response variables. The extent of the required distributional specification depends on
the model, estimation technique, and inferential goals. This description often takes the simple form of a
model with additive error structure:

response = mean + error

In mathematical notation this simple model equation becomes

Y D f .x1; � � � ; xkIˇ1; � � � ; ˇp/C �

In this equation Y is the response variable, often also called the dependent variable or the outcome variable.
The terms x1; � � � ; xk denote the values of k regressor variables, often termed the covariates or the “indepen-
dent” variables. The terms ˇ1; � � � ; ˇp denote parameters of the model, unknown constants that are to be
estimated. The term � denotes the random disturbance of the model; it is also called the residual term or the
error term of the model.

In this simple model formulation, stochastic properties are usually associated only with the � term. The
covariates x1; � � � ; xk are usually known values, not subject to random variation. Even if the covariates are
measured with error, so that their values are in principle random, they are considered fixed in most models fit
by SAS/STAT software. In other words, stochastic properties under the model are derived conditional on the
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xs. If � is the only stochastic term in the model, and if the errors have a mean of zero, then the function f .�/
is the mean function of the statistical model. More formally,

EŒY � D f .x1; � � � ; xkIˇ1; � � � ; ˇp/

where EŒ�� denotes the expectation operator.

In many applications, a simple model formulation is inadequate. It might be necessary to specify not only the
stochastic properties of a single error term, but also how model errors associated with different observations
relate to each other. A simple additive error model is typically inappropriate to describe the data-generating
mechanism if the errors do not have zero mean or if the variance of observations depends on their means.
For example, if Y is a Bernoulli random variable that takes on the values 0 and 1 only, a regression model
with additive error is not meaningful. Models for such data require more elaborate formulations involving
probability distributions.

Classes of Statistical Models

Linear and Nonlinear Models

A statistical estimation problem is nonlinear if the estimating equations—the equations whose solution
yields the parameter estimates—depend on the parameters in a nonlinear fashion. Such estimation problems
typically have no closed-form solution and must be solved by iterative, numerical techniques.

Nonlinearity in the mean function is often used to distinguish between linear and nonlinear models. A model
has a nonlinear mean function if the derivative of the mean function with respect to the parameters depends
on at least one other parameter. Consider, for example, the following models that relate a response variable Y
to a single regressor variable x:

EŒY jx� D ˇ0 C ˇ1x

EŒY jx� D ˇ0 C ˇ1x C ˇ2x2

EŒY jx� D ˇ C x=˛

In these expressions, EŒY jx� denotes the expected value of the response variable Y at the fixed value of
x. (The conditioning on x simply indicates that the predictor variables are assumed to be non-random.
Conditioning is often omitted for brevity in this and subsequent chapters.)

The first model in the previous list is a simple linear regression (SLR) model. It is linear in the parameters ˇ0
and ˇ1 since the model derivatives do not depend on unknowns:

@

ˇ0
.ˇ0 C ˇ1x/ D 1

@

ˇ1
.ˇ0 C ˇ1x/ D x
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The model is also linear in its relationship with x (a straight line). The second model is also linear in the
parameters, since

@

ˇ0

�
ˇ0 C ˇ1x C ˇ2x

2
�
D 1

@

ˇ1

�
ˇ0 C ˇ1x C ˇ2x

2
�
D x

@

ˇ2

�
ˇ0 C ˇ1x C ˇ2x

2
�
D x2

However, this second model is curvilinear, since it exhibits a curved relationship when plotted against x. The
third model, finally, is a nonlinear model since

@

ˇ
.ˇ C x=˛/ D 1

@

˛
.ˇ C x=˛/ D �

x

˛2

The second of these derivatives depends on a parameter ˛. A model is nonlinear if it is not linear in at least
one parameter. Only the third model is a nonlinear model. A graph of EŒY � versus the regressor variable thus
does not indicate whether a model is nonlinear. A curvilinear relationship in this graph can be achieved by a
model that is linear in the parameters.

Nonlinear mean functions lead to nonlinear estimation. It is important to note, however, that nonlinear
estimation arises also because of the estimation principle or because the model structure contains nonlinearity
in other parts, such as the covariance structure. For example, fitting a simple linear regression model by
minimizing the sum of the absolute residuals leads to a nonlinear estimation problem despite the fact that the
mean function is linear.

Regression Models and Models with Classification Effects

A linear regression model in the broad sense has the form

Y D Xˇ C �

where Y is the vector of response values, X is the matrix of regressor effects, ˇ is the vector of regression
parameters, and � is the vector of errors or residuals. A regression model in the narrow sense—as compared
to a classification model—is a linear model in which all regressor effects are continuous variables. In other
words, each effect in the model contributes a single column to the X matrix and a single parameter to the
overall model. For example, a regression of subjects’ weight (Y) on the regressors age (x1) and body mass
index (bmi, x2) is a regression model in this narrow sense. In symbolic notation you can write this regression
model as

weight = age + bmi + error

This symbolic notation expands into the statistical model

Yi D ˇ0 C ˇ1xi1 C ˇ2xi2 C �i
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Single parameters are used to model the effects of age .ˇ1/ and bmi .ˇ2/, respectively.

A classification effect, on the other hand, is associated with possibly more than one column of the X matrix.
Classification with respect to a variable is the process by which each observation is associated with one of k
levels; the process of determining these k levels is referred to as levelization of the variable. Classification
variables are used in models to identify experimental conditions, group membership, treatments, and so
on. The actual values of the classification variable are not important, and the variable can be a numeric or
a character variable. What is important is the association of discrete values or levels of the classification
variable with groups of observations. For example, in the previous illustration, if the regression also takes into
account the subjects’ gender, this can be incorporated in the model with a two-level classification variable.
Suppose that the values of the gender variable are coded as ‘F’ and ‘M’, respectively. In symbolic notation
the model

weight = age + bmi + gender + error

expands into the statistical model

Yi D ˇ0 C ˇ1xi1 C ˇ2xi2 C �1I.gender D 0F0/C �2I.gender D 0M0/C �i

where I(gender=‘F’) is the indicator function that returns 1 if the value of the gender variable is ‘F’ and
0 otherwise. Parameters �1 and �2 are associated with the gender classification effect. This form of
parameterizing the gender effect in the model is only one of several different methods of incorporating
the levels of a classification variable in the model. This form, the so-called singular parameterization, is
the most general approach, and it is used in the GLM, MIXED, and GLIMMIX procedures. Alternatively,
classification effects with various forms of nonsingular parameterizations are available in such procedures
as GENMOD and LOGISTIC. See the documentation for the individual SAS/STAT procedures on their
respective facilities for parameterizing classification variables and the section “Parameterization of Model
Effects” on page 387 in Chapter 19, “Shared Concepts and Topics,” for general details.

Models that contain only classification effects are often identified with analysis of variance (ANOVA) models,
because ANOVA methods are frequently used in their analysis. This is particularly true for experimental data
where the model effects comprise effects of the treatment and error-control design. However, classification
effects appear more widely than in models to which analysis of variance methods are applied. For example,
many mixed models, where parameters are estimated by restricted maximum likelihood, consist entirely of
classification effects but do not permit the sum of squares decomposition typical for ANOVA techniques.

Many models contain both continuous and classification effects. For example, a continuous-by-class
effect consists of at least one continuous variable and at least one classification variable. Such effects are
convenient, for example, to vary slopes in a regression model by the levels of a classification variable. Also,
recent enhancements to linear modeling syntax in some SAS/STAT procedures (including GLIMMIX and
GLMSELECT) enable you to construct sets of columns in X matrices from a single continuous variable. An
example is modeling with splines where the values of a continuous variable x are expanded into a spline basis
that occupies multiple columns in the X matrix. For purposes of the analysis you can treat these columns as a
single unit or as individual, unrelated columns. For more details, see the section “EFFECT Statement” on
page 397 in Chapter 19, “Shared Concepts and Topics.”
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Univariate and Multivariate Models

A multivariate statistical model is a model in which multiple response variables are modeled jointly. Suppose,
for example, that your data consist of heights .hi / and weights .wi / of children, collected over several years
.ti /. The following separate regressions represent two univariate models:

wi D ˇw0 C ˇw1ti C �wi

hi D ˇh0 C ˇh1ti C �hi

In the univariate setting, no information about the children’s heights “flows” to the model about their weights
and vice versa. In a multivariate setting, the heights and weights would be modeled jointly. For example:

Yi D
�
wi
hi

�
D Xˇ C

�
�wi
�hi

�
D Xˇ C �i

�i �

�
0;
�
�21 �12
�12 �22

��
The vectors Yi and �i collect the responses and errors for the two observation that belong to the same subject.
The errors from the same child now have the correlation

CorrŒ�wi ; �hi � D
�12q
�21 �

2
2

and it is through this correlation that information about heights “flows” to the weights and vice versa. This
simple example shows only one approach to modeling multivariate data, through the use of covariance
structures. Other techniques involve seemingly unrelated regressions, systems of linear equations, and so on.

Multivariate data can be coarsely classified into three types. The response vectors of homogeneous mul-
tivariate data consist of observations of the same attribute. Such data are common in repeated measures
experiments and longitudinal studies, where the same attribute is measured repeatedly over time. Homo-
geneous multivariate data also arise in spatial statistics where a set of geostatistical data is the incomplete
observation of a single realization of a random experiment that generates a two-dimensional surface. One
hundred measurements of soil electrical conductivity collected in a forest stand compose a single observation
of a 100-dimensional homogeneous multivariate vector. Heterogeneous multivariate observations arise
when the responses that are modeled jointly refer to different attributes, such as in the previous example of
children’s weights and heights. There are two important subtypes of heterogeneous multivariate data. In
homocatanomic multivariate data the observations come from the same distributional family. For example,
the weights and heights might both be assumed to be normally distributed. With heterocatanomic multivari-
ate data the observations can come from different distributional families. The following are examples of
heterocatanomic multivariate data:

• For each patient you observe blood pressure (a continuous outcome), the number of prior episodes of
an illness (a count variable), and whether the patient has a history of diabetes in the family (a binary
outcome). A multivariate model that models the three attributes jointly might assume a lognormal
distribution for the blood pressure measurements, a Poisson distribution for the count variable and a
Bernoulli distribution for the family history.

• In a study of HIV/AIDS survival, you model jointly a patient’s CD4 cell count over time—itself a
homogeneous multivariate outcome—and the survival of the patient (event-time data).
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Fixed, Random, and Mixed Models

Each term in a statistical model represents either a fixed effect or a random effect. Models in which all effects
are fixed are called fixed-effects models. Similarly, models in which all effects are random—apart from
possibly an overall intercept term—are called random-effects models. Mixed models, then, are those models
that have fixed-effects and random-effects terms. In matrix notation, the linear fixed, linear random, and
linear mixed model are represented by the following model equations, respectively:

Y D Xˇ C �

Y D Z C �
Y D Xˇ C Z C �

In these expressions, X and Z are design or regressor matrices associated with the fixed and random effects,
respectively. The vector ˇ is a vector of fixed-effects parameters, and the vector  represents the random
effects. The mixed modeling procedures in SAS/STAT software assume that the random effects  follow a
normal distribution with variance-covariance matrix G and, in most cases, that the random effects have mean
zero.

Random effects are often associated with classification effects, but this is not necessary. As an example
of random regression effects, you might want to model the slopes in a growth model as consisting of two
components: an overall (fixed-effects) slope that represents the slope of the average individual, and individual-
specific random deviations from the overall slope. The X and Z matrix would then have column entries for
the regressor variable associated with the slope. You are modeling fixed and randomly varying regression
coefficients.

Having random effects in your model has a number of important consequences:

• Some observations are no longer uncorrelated but instead have a covariance that depends on the
variance of the random effects.

• You can and should distinguish between the inference spaces; inferences can be drawn in a broad,
intermediate, and narrow inference space. In the narrow inference space, conclusions are drawn about
the particular values of the random effects selected in the study. The broad inference space applies
if inferences are drawn with respect to all possible levels of the random effects. The intermediate
inference space can be applied for effects consisting of more than one random term, when inferences
are broad with respect to some factors and narrow with respect to others. In fixed-effects models, there
is no corresponding concept to the broad and intermediate inference spaces.

• Depending on the structure of G and VarŒ�� and also subject to the balance in your data, there might
be no closed-form solution for the parameter estimates. Although the model is linear in ˇ, iterative
estimation methods might be required to estimate all parameters of the model.

• Certain concepts, such as least squares means and Type III estimable functions, are meaningful only
for fixed effects.

• By using random effects, you are modeling variation through variance. Variation in data simply implies
that things are not equal. Variance, on the other hand, describes a feature of a random variable. Random
effects in your model are random variables: they model variation through variance.

It is important to properly determine the nature of the model effects as fixed or random. An effect is either
fixed or random by its very nature; it is improper to consider it fixed in one analysis and random in another
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depending on what type of results you want to produce. If, for example, a treatment effect is random and
you are interested in comparing treatment means, and only the levels selected in the study are of interest,
then it is not appropriate to model the treatment effect as fixed so that you can draw on least squares mean
analysis. The appropriate strategy is to model the treatment effect as random and to compare the solutions for
the treatment effects in the narrow inference space.

In determining whether an effect is fixed or random, it is helpful to inquire about the genesis of the effect. If
the levels of an effect are randomly sampled, then the effect is a random effect. The following are examples:

• In a large clinical trial, drugs A, B, and C are applied to patients in various clinical centers. If the
clinical centers are selected at random from a population of possible clinics, their effect on the response
is modeled with a random effect.

• In repeated measures experiments with people or animals as subjects, subjects are declared to be
random because they are selected from the larger population to which you want to generalize.

• Fertilizers could be applied at a number of levels. Three levels are randomly selected for an experiment
to represent the population of possible levels. The fertilizer effects are random effects.

Quite often it is not possible to select effects at random, or it is not known how the values in the data became
part of the study. For example, suppose you are presented with a data set consisting of student scores in three
school districts, with four to ten schools in each district and two to three classrooms in each school. How do
you decide which effects are fixed and which are random? As another example, in an agricultural experiment
conducted in successive years at two locations, how do you decide whether location and year effects are
fixed or random? In these situations, the fixed or random nature of the effect might be debatable, bearing out
the adage that “one modeler’s fixed effect is another modeler’s random effect.” However, this fact does not
constitute license to treat as random those effects that are clearly fixed, or vice versa.

When an effect cannot be randomized or it is not known whether its levels have been randomly selected, it
can be a random effect if its impact on the outcome variable is of a stochastic nature—that is, if it is the
realization of a random process. Again, this line of thinking relates to the genesis of the effect. A random
year, location, or school district effect is a placeholder for different environments that cannot be selected
at random but whose effects are the cumulative result of many individual random processes. Note that this
argument does not imply that effects are random because the experimenter does not know much about them.
The key notion is that effects represent something, whether or not that something is known to the modeler.
Broadening the inference space beyond the observed levels is thus possible, although you might not be able
to articulate what the realizations of the random effects represent.

A consequence of having random effects in your model is that some observations are no longer uncorrelated
but instead have a covariance that depends on the variance of the random effect. In fact, in some modeling
applications random effects might be used not only to model heterogeneity in the parameters of a model, but
also to induce correlations among observations. The typical assumption about random effects in SAS/STAT
software is that the effects are normally distributed.

For more information about mixed modeling tools in SAS/STAT software, see Chapter 6, “Introduction to
Mixed Modeling Procedures.”
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Generalized Linear Models

A class of models that has gained increasing importance in the past several decades is the class of generalized
linear models. The theory of generalized linear models originated with Nelder and Wedderburn (1972);
Wedderburn (1974), and was subsequently made popular in the monograph by McCullagh and Nelder (1989).
This class of models extends the theory and methods of linear models to data with nonnormal responses.
Before this theory was developed, modeling of nonnormal data typically relied on transformations of the data,
and the transformations were chosen to improve symmetry, homogeneity of variance, or normality. Such
transformations have to be performed with care because they also have implications for the error structure of
the model, Also, back-transforming estimates or predicted values can introduce bias.

Generalized linear models also apply a transformation, known as the link function, but it is applied to a
deterministic component, the mean of the data. Furthermore, generalized linear models take the distribution
of the data into account, rather than assuming that a transformation of the data leads to normally distributed
data to which standard linear modeling techniques can be applied.

To put this generalization in place requires a slightly more sophisticated model setup than that required for
linear models for normal data:

• The systematic component is a linear predictor similar to that in linear models, � D x0ˇ. The linear
predictor is a linear function in the parameters. In contrast to the linear model, � does not represent the
mean function of the data.

• The link function g. � / relates the linear predictor to the mean, g.�/ D �. The link function is a
monotonic, invertible function. The mean can thus be expressed as the inversely linked linear predictor,
� D g�1.�/. For example, a common link function for binary and binomial data is the logit link,
g.t/ D logft=.1 � t /g. The mean function of a generalized linear model with logit link and a single
regressor can thus be written as

log
�

�

1 � �

�
D ˇ0 C ˇ1x

� D
1

1C expf�ˇ0 � ˇ1xg

This is known as a logistic regression model.

• The random component of a generalized linear model is the distribution of the data, assumed to be
a member of the exponential family of distributions. Discrete members of this family include the
Bernoulli (binary), binomial, Poisson, geometric, and negative binomial (for a given value of the scale
parameter) distribution. Continuous members include the normal (Gaussian), beta, gamma, inverse
Gaussian, and exponential distribution.

The standard linear model with normally distributed error is a special case of a generalized linear model; the
link function is the identity function and the distribution is normal.

Latent Variable Models

Latent variable modeling involves variables that are not observed directly in your research. It has a relatively
long history, dating back from the measure of general intelligence by common factor analysis (Spearman
1904) to the emergence of modern-day structural equation modeling (Jöreskog 1973; Keesling 1972; Wiley
1973).
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Latent variables are involved in almost all kinds of regression models. In a broad sense, all additive error
terms in regression models are latent variables simply because they are not measured in research. Hereafter,
however, a narrower sense of latent variables is used when referring to latent variable models. Latent variables
are systematic unmeasured variables that are also referred to as factors. For example, in the following diagram
a simple relation between Emotional Intelligence and Career Achievement is shown:

Emotional Intelligence Career Achievementˇ
ı

In the diagram, both Emotional Intelligence and Career Achievement are treated as latent factors. They
are hypothetical constructs in your model. You hypothesize that Emotional Intelligence is a “causal factor”
or predictor of Career Achievement. The symbol ˇ represents the regression coefficient or the effect of
Emotional Intelligence on Career Achievement. However, the “causal relationship” or prediction is not
perfect. There is an error term ı, which accounts for the unsystematic part of the prediction. You can
represent the preceding diagram by using the following linear equation:

CA D ˇEIC ı

where CA represents Career Achievement and EI represents Emotional Intelligence. The means of the latent
factors in the linear model are arbitrary, and so they are assumed to be zero. The error variable ı also has a
zero mean with an unknown variance. This equation represents the so-called “structural model,” where the
“true” relationships among latent factors are theorized.

In order to model this theoretical model with latent factors, some observed variables must somehow relate to
these factors. This calls for the measurement models for latent factors. For example, Emotional Intelligence
could be measured by some established tests. In these tests, individuals are asked to respond to certain special
situations that involve stressful decision making, personal confrontations, and so on. Their responses to these
situations are then rated by experts or a standardized scoring system. Suppose there are three such tests
and the test scores are labeled as X1, X2 and X3, respectively. The measurement model for the latent factor
Emotional Intelligence is specified as follows:

X1 D a1EIC e1
X2 D a2EIC e2
X3 D a3EIC e3

where a1, a2, and a3 are regression coefficients and e1, e2, and e3 are measurement errors. Measurement
errors are assumed to be independent of the latent factors EI and CA. In the measurement model, X1, X2, and
X3 are called the indicators of the latent variable EI. These observed variables are assumed to be centered in
the model, and therefore no intercept terms are needed. Each of the indicators is a scaled measurement of the
latent factor EI plus a unique error term.

Similarly, you need to have a measurement model for the latent factor CA. Suppose that there are four
observed indicators Y1, Y2, Y3, and Y4 (for example, Job Status) for this latent factor. The measurement
model for CA is specified as follows:

Y1 D a4CAC e4
Y2 D a5CAC e5
Y3 D a6CAC e6
Y4 D a7CAC e7
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where a4, a5, a6, and a7 are regression coefficients and e4, e5, e6, and e7 are error terms. Again, the error
terms are assumed to be independent of the latent variables EI and CA, and Y1, Y2, Y3, and Y4 are centered
in the equations.

Given the data for the measured variables, you analyze the structural and measurement models simultaneously
by the structural equation modeling techniques. In other words, estimation of ˇ, a1–a7, and other parameters
in the model are carried out simultaneously in the modeling.

Modeling involving the use of latent factors is quite common in social and behavioral sciences, personality
assessment, and marketing research. Hypothetical constructs, although not observable, are very important in
building theories in these areas.

Another use of latent factors in modeling is to “purify” the predictors in regression analysis. A common
assumption in linear regression models is that predictors are measured without errors. That is, in the following
linear equation x is assumed to have been measured without errors:

y D ˛ C ˇx C �

However, if x has been contaminated with measurement errors that cannot be ignored, the estimate of ˇ
might be biased severely so that the true relationship between x and y would be masked.

A measurement model for x provides a solution to such a problem. Let Fx be a “purified” version of x. That
is, Fx is the “true” measure of x without measurement errors, as described in the following equation:

x D Fx C ı

where ı represents a random measurement error term. Now, the linear relationship of interest is specified in
the following new linear regression equation:

y D ˛ C ˇFx C �

In this equation, Fx , which is now free from measurement errors, replaces x in the original equation. With
measurement errors taken into account in the simultaneous fitting of the measurement and the new regression
equations, estimation of ˇ is unbiased; hence it reflects the true relationship much better.

Certainly, introducing latent factors in models is not a “free lunch.” You must pay attention to the identification
issues induced by the latent variable methodology. That is, in order to estimate the parameters in structural
equation models with latent variables, you must set some identification constraints in these models. There
are some established rules or conventions that would lead to proper model identification and estimation. See
Chapter 17, “Introduction to Structural Equation Modeling with Latent Variables,” for examples and general
details.

In addition, because of the nature of latent variables, estimation in structural equation modeling with latent
variables does not follow the same form as that of linear regression analysis. Instead of defining the estimators
in terms of the data matrices, most estimation methods in structural equation modeling use the fitting of the
first- and second- order moments. Hence, estimation principles described in the section “Classical Estimation
Principles” on page 33 do not apply to structural equation modeling. However, you can see the section
“Estimation Criteria” on page 1463 in Chapter 29, “The CALIS Procedure,” for details about estimation in
structural equation modeling with latent variables.
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Bayesian Models

Statistical models based on the classical (or frequentist) paradigm treat the parameters of the model as fixed,
unknown constants. They are not random variables, and the notion of probability is derived in an objective
sense as a limiting relative frequency. The Bayesian paradigm takes a different approach. Model parameters
are random variables, and the probability of an event is defined in a subjective sense as the degree to which
you believe that the event is true. This fundamental difference in philosophy leads to profound differences
in the statistical content of estimation and inference. In the frequentist framework, you use the data to best
estimate the unknown value of a parameter; you are trying to pinpoint a value in the parameter space as well
as possible. In the Bayesian framework, you use the data to update your beliefs about the behavior of the
parameter to assess its distributional properties as well as possible.

Suppose you are interested in estimating � from data Y D ŒY1; � � � ; Yn� by using a statistical model described
by a density p.yj�/. Bayesian philosophy states that � cannot be determined exactly, and uncertainty about
the parameter is expressed through probability statements and distributions. You can say, for example, that �
follows a normal distribution with mean 0 and variance 1, if you believe that this distribution best describes
the uncertainty associated with the parameter.

The following steps describe the essential elements of Bayesian inference:

1. A probability distribution for � is formulated as �.�/, which is known as the prior distribution, or
just the prior. The prior distribution expresses your beliefs, for example, on the mean, the spread, the
skewness, and so forth, about the parameter prior to examining the data.

2. Given the observed data Y, you choose a statistical model p.yj�/ to describe the distribution of Y
given � .

3. You update your beliefs about � by combining information from the prior distribution and the data
through the calculation of the posterior distribution, p.� jy/.

The third step is carried out by using Bayes’ theorem, from which this branch of statistical philosophy derives
its name. The theorem enables you to combine the prior distribution and the model in the following way:

p.� jy/ D
p.�; y/
p.y/

D
p.yj�/�.�/

p.y/
D

p.yj�/�.�/R
p.yj�/�.�/d�

The quantity p.y/ D
R
p.yj�/�.�/ d� is the normalizing constant of the posterior distribution. It is also the

marginal distribution of Y, and it is sometimes called the marginal distribution of the data.

The likelihood function of � is any function proportional to p.yj�/—that is, L.�/ / p.yj�/. Another way
of writing Bayes’ theorem is

p.� jy/ D
L.�/�.�/R
L.�/�.�/ d�

The marginal distribution p.y/ is an integral; therefore, provided that it is finite, the particular value of the
integral does not yield any additional information about the posterior distribution. Hence, p.� jy/ can be
written up to an arbitrary constant, presented here in proportional form, as

p.� jy/ / L.�/�.�/
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Bayes’ theorem instructs you how to update existing knowledge with new information. You start from a prior
belief �.�/, and, after learning information from data y, you change or update the belief on � and obtain
p.� jy/. These are the essential elements of the Bayesian approach to data analysis.

In theory, Bayesian methods offer a very simple alternative to statistical inference—all inferences follow
from the posterior distribution p.� jy/. However, in practice, only the most elementary problems enable you
to obtain the posterior distribution analytically. Most Bayesian analyses require sophisticated computations,
including the use of simulation methods. You generate samples from the posterior distribution and use these
samples to estimate the quantities of interest.

Both Bayesian and classical analysis methods have their advantages and disadvantages. Your choice of
method might depend on the goals of your data analysis. If prior information is available, such as in the form
of expert opinion or historical knowledge, and you want to incorporate this information into the analysis,
then you might consider Bayesian methods. In addition, if you want to communicate your findings in terms
of probability notions that can be more easily understood by nonstatisticians, Bayesian methods might be
appropriate. The Bayesian paradigm can provide a framework for answering specific scientific questions
that a single point estimate cannot sufficiently address. On the other hand, if you are interested in estimating
parameters and in formulating inferences based on the properties of the parameter estimators, then there is no
need to use Bayesian analysis. When the sample size is large, Bayesian inference often provides results for
parametric models that are very similar to the results produced by classical, frequentist methods.

For more information, see Chapter 7, “Introduction to Bayesian Analysis Procedures.”

Classical Estimation Principles
An estimation principle captures the set of rules and procedures by which parameter estimates are derived.
When an estimation principle “meets” a statistical model, the result is an estimation problem, the solution of
which are the parameter estimates. For example, if you apply the estimation principle of least squares to the
SLR model Yi D ˇ0 C ˇ1xi C �i , the estimation problem is to find those values b̌0 and b̌1 that minimize

nX
iD1

.yi � ˇ0 � ˇ1xi /
2

The solutions are the least squares estimators.

The two most important classes of estimation principles in statistical modeling are the least squares principle
and the likelihood principle. All principles have in common that they provide a metric by which you measure
the distance between the data and the model. They differ in the nature of the metric; least squares relies on a
geometric measure of distance, while likelihood inference is based on a distance that measures plausibility.

Least Squares

The idea of the ordinary least squares (OLS) principle is to choose parameter estimates that minimize the
squared distance between the data and the model. In terms of the general, additive model,

Yi D f .xi1; � � � ; xikIˇ1; � � � ; ˇp/C �i

the OLS principle minimizes

SSE D
nX
iD1

�
yi � f .xi1; � � � ; xikIˇ1; � � � ; ˇp/

�2
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The least squares principle is sometimes called “nonparametric” in the sense that it does not require the
distributional specification of the response or the error term, but it might be better termed “distributionally
agnostic.” In an additive-error model it is only required that the model errors have zero mean. For example,
the specification

Yi D ˇ0 C ˇ1xi C �i

EŒ�i � D 0

is sufficient to derive ordinary least squares (OLS) estimators for ˇ0 and ˇ1 and to study a number of their
properties. It is easy to show that the OLS estimators in this SLR model are

b̌
1 D

 
nX
iD1

�
Yi � Y

� nX
iD1

.xi � x/

!. nX
iD1

.xi � x/
2

b̌
0 D Y � b̌1x

Based on the assumption of a zero mean of the model errors, you can show that these estimators are unbiased,
EŒb̌1� D ˇ1, EŒb̌0� D ˇ0. However, without further assumptions about the distribution of the �i , you cannot
derive the variability of the least squares estimators or perform statistical inferences such as hypothesis tests
or confidence intervals. In addition, depending on the distribution of the �i , other forms of least squares
estimation can be more efficient than OLS estimation.

The conditions for which ordinary least squares estimation is efficient are zero mean, homoscedastic,
uncorrelated model errors. Mathematically,

EŒ�i � D 0

VarŒ�i � D �2

CovŒ�i ; �j � D 0 if i 6D j

The second and third assumption are met if the errors have an iid distribution—that is, if they are independent
and identically distributed. Note, however, that the notion of stochastic independence is stronger than that of
absence of correlation. Only if the data are normally distributed does the latter implies the former.

The various other forms of the least squares principle are motivated by different extensions of these assump-
tions in order to find more efficient estimators.

Weighted Least Squares
The objective function in weighted least squares (WLS) estimation is

SSEw D
nX
iD1

wi
�
Yi � f .xi1; � � � ; xikIˇ1; � � � ; ˇp/

�2
where wi is a weight associated with the ith observation. A situation where WLS estimation is appropriate is
when the errors are uncorrelated but not homoscedastic. If the weights for the observations are proportional
to the reciprocals of the error variances, VarŒ�i � D �2=wi , then the weighted least squares estimates are best
linear unbiased estimators (BLUE). Suppose that the weights wi are collected in the diagonal matrix W and
that the mean function has the form of a linear model. The weighted sum of squares criterion then can be
written as

SSEw D .Y � Xˇ/0W .Y � Xˇ/
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which gives rise to the weighted normal equations

.X0WX/ˇ D X0WY

The resulting WLS estimator of ˇ is

b̌
w D

�
X0WX

��X0WY

Iteratively Reweighted Least Squares
If the weights in a least squares problem depend on the parameters, then a change in the parameters also
changes the weight structure of the model. Iteratively reweighted least squares (IRLS) estimation is an
iterative technique that solves a series of weighted least squares problems, where the weights are recomputed
between iterations. IRLS estimation can be used, for example, to derive maximum likelihood estimates in
generalized linear models.

Generalized Least Squares
The previously discussed least squares methods have in common that the observations are assumed to be
uncorrelated—that is, CovŒ�i ; �j � D 0, whenever i 6D j . The weighted least squares estimation problem is
a special case of a more general least squares problem, where the model errors have a general covariance
matrix, VarŒ�� D †. Suppose again that the mean function is linear, so that the model becomes

Y D Xˇ C � � � .0;†/

The generalized least squares (GLS) principle is to minimize the generalized error sum of squares

SSEg D .Y � Xˇ/0†�1 .Y � Xˇ/

This leads to the generalized normal equations

.X0†�1X/ˇ D X0†�1Y

and the GLS estimator

b̌
g D

�
X0†�1X

��X0†�1Y

Obviously, WLS estimation is a special case of GLS estimation, where † D �2W�1—that is, the model is

Y D Xˇ C � � �
�
0; �2W�1

�
Likelihood

There are several forms of likelihood estimation and a large number of offshoot principles derived from
it, such as pseudo-likelihood, quasi-likelihood, composite likelihood, etc. The basic likelihood principle is
maximum likelihood, which asks to estimate the model parameters by those quantities that maximize the
likelihood function of the data. The likelihood function is the joint distribution of the data, but in contrast
to a probability mass or density function, it is thought of as a function of the parameters, given the data.
The heuristic appeal of the maximum likelihood estimates (MLE) is that these are the values that make the
observed data “most likely.” Especially for discrete response data, the value of the likelihood function is the
ordinate of a probability mass function, even if the likelihood is not a probability function. Since a statistical
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model is thought of as a representation of the data-generating mechanism, what could be more preferable as
parameter estimates than those values that make it most likely that the data at hand will be observed?

Maximum likelihood estimates, if they exist, have appealing statistical properties. Under fairly mild
conditions, they are best-asymptotic-normal (BAN) estimates—that is, their asymptotic distribution is normal,
and no other estimator has a smaller asymptotic variance. However, their statistical behavior in finite samples
is often difficult to establish, and you have to appeal to the asymptotic results that hold as the sample size tends
to infinity. For example, maximum likelihood estimates are often biased estimates and the bias disappears as
the sample size grows. A famous example is random sampling from a normal distribution. The corresponding
statistical model is

Yi D �C �i

�i � iidN.0; �2/

where the symbol � is read as “is distributed as” and iid is read as “independent and identically distributed.”
Under the normality assumption, the density function of yi is

f .yi I�; �
2/ D

1
p
2��2

exp
�
�
1

2

�yi � �
�

�2�
and the likelihood for a random sample of size n is

L.�; �2I y/ D
nY
iD1

1
p
2��2

exp
�
�
1

2

�yi � �
�

�2�

Maximizing the likelihood function L.�; �2I y/ is equivalent to maximizing the log-likelihood function
logL D l.�; �2I y/,

l.�; �2I y/ D
nX
iD1

�
1

2

�
logf2�g C

.yi � �/
2

�2
C logf�2g

�

D �
1

2

 
n logf2�g C n logf�2g C

nX
iD1

.yi � �/
2 =�2

!

The maximum likelihood estimators of � and �2 are thus

b� D 1

n

nX
iD1

Yi D Y b�2 D 1

n

nX
iD1

.Yi �b�/2
The MLE of the mean � is the sample mean, and it is an unbiased estimator of �. However, the MLE of the
variance �2 is not an unbiased estimator. It has bias

E
�b�2 � �2� D �1

n
�2

As the sample size n increases, the bias vanishes.

For certain classes of models, special forms of likelihood estimation have been developed to maintain the
appeal of likelihood-based statistical inference and to address specific properties that are believed to be
shortcomings:



Classical Estimation Principles F 37

• The bias in maximum likelihood parameter estimators of variances and covariances has led to the
development of restricted (or residual) maximum likelihood (REML) estimators that play an important
role in mixed models.

• Quasi-likelihood methods do not require that the joint distribution of the data be specified. These
methods derive estimators based on only the first two moments (mean and variance) of the joint
distributions and play an important role in the analysis of correlated data.

• The idea of composite likelihood is applied in situations where the likelihood of the vector of responses
is intractable but the likelihood of components or functions of the full-data likelihood are tractable.
For example, instead of the likelihood of Y, you might consider the likelihood of pairwise differences
Yi � Yj .

• The pseudo-likelihood concept is also applied when the likelihood function is intractable, but the
likelihood of a related, simpler model is available. An important difference between quasi-likelihood
and pseudo-likelihood techniques is that the latter make distributional assumptions to obtain a likelihood
function in the pseudo-model. Quasi-likelihood methods do not specify the distributional family.

• The penalized likelihood principle is applied when additional constraints and conditions need to be
imposed on the parameter estimates or the resulting model fit. For example, you might augment the
likelihood with conditions that govern the smoothness of the predictions or that prevent overfitting of
the model.

Least Squares or Likelihood
For many statistical modeling problems, you have a choice between a least squares principle and the maximum
likelihood principle. Table 3.1 compares these two basic principles.

Table 3.1 Least Squares and Maximum Likelihood

Criterion Least Squares Maximum Likelihood

Requires speci-
fication of joint
distribution of
data

No, but in order to perform confirmatory
inference (tests, confidence intervals), a
distributional assumption is needed, or an
appeal to asymptotics.

Yes, no progress can be made with the gen-
uine likelihood principle without knowing
the distribution of the data.

All parameters
of the model are
estimated

No. In the additive-error type models,
least squares provides estimates of only
the parameters in the mean function. The
residual variance, for example, must be es-
timated by some other method—typically
by using the mean squared error of the
model.

Yes

Estimates
always exist

Yes, but they might not be unique, such as
when the X matrix is singular.

No, maximum likelihood estimates do not
exist for all estimation problems.

Estimators are
biased

Unbiased, provided that the model is
correct—that is, the errors have zero
mean.

Often biased, but asymptotically unbiased
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Table 3.1 continued

Criterion Least Squares Maximum Likelihood

Estimators are
consistent

Not necessarily, but often true. Sometimes
estimators are consistent even in a mis-
specified model, such as when misspecifi-
cation is in the covariance structure.

Almost always

Estimators are
best linear unbi-
ased estimates
(BLUE)

Typically, if the least squares assumptions
are met.

Not necessarily: estimators are often non-
linear in the data and are often biased.

Asymptotically
most efficient

Not necessarily Typically

Easy to compute Yes No

Inference Principles for Survey Data

Design-based and model-assisted statistical inference for survey data requires that the randomness due to the
selection mechanism be taken into account. This can require special estimation principles and techniques.

The SURVEYMEANS, SURVEYFREQ, SURVEYREG, SURVEYLOGISTIC, and SURVEYPHREG proce-
dures support design-based and/or model-assisted inference for sample surveys. Suppose �i is the selection
probability for unit i in sample S. The inverse of the inclusion probability is known as sampling weight and is
denoted by wi . Briefly, the idea is to apply a relationship that exists in the population to the sample and to
take into account the sampling weights. For example, to estimate the finite population total TN D

P
i2UNyi

based on the sample S, you can accumulate the sampled values while properly weighting: bT � DPi2S wiyi .
It is easy to verify that bT � is design-unbiased in the sense that EŒbT � jFN � D TN (see Cochran 1977).

When a statistical model is present, similar ideas apply. For example, if ˇN0 and ˇN1 are finite population
quantities for a simple linear regression working model that minimize the sum of squaresX

i2UN

.yi � ˇ0N � ˇ1Nxi /
2

in the population, then the sample-based estimators b̌0S and b̌1S are obtained by minimizing the weighted
sum of squaresX

i2S

wi .yi � Ǒ0S � Ǒ1Sxi /
2

in the sample, taking into account the inclusion probabilities.

In model-assisted inference, weighted least squares or pseudo-maximum likelihood estimators are commonly
used to solve such estimation problems. Maximum pseudo-likelihood or weighted maximum likelihood
estimators for survey data maximize a sample-based estimator of the population likelihood. Assume a
working model with uncorrelated responses such that the finite population log-likelihood isX

i2UN

l.�1N ; : : : ; �pN Iyi /;
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where �1N ; : : : ; �pN are finite population quantities. For independent sampling, one possible sample-based
estimator of the population log likelihood isX

i2S

wi l.�1N ; : : : ; �pN Iyi /

Sample-based estimatorsb�1S ; : : : ;b�pS are obtained by maximizing this expression.

Design-based and model-based statistical analysis might employ the same statistical model (for example, a
linear regression) and the same estimation principle (for example, weighted least squares), and arrive at the
same estimates. The design-based estimation of the precision of the estimators differs from the model-based
estimation, however. For complex surveys, design-based variance estimates are in general different from their
model-based counterpart. The SAS/STAT procedures for survey data (SURVEYMEANS, SURVEYFREQ,
SURVEYREG, SURVEYLOGISTIC, and SURVEYPHREG procedures) compute design-based variance
estimates for complex survey data. See the section “Variance Estimation” on page 248, in Chapter 14,
“Introduction to Survey Procedures,” for details about design-based variance estimation.

Statistical Background

Hypothesis Testing and Power
In statistical hypothesis testing, you typically express the belief that some effect exists in a population by
specifying an alternative hypothesis H1. You state a null hypothesis H0 as the assertion that the effect does
not exist and attempt to gather evidence to reject H0 in favor of H1. Evidence is gathered in the form of
sample data, and a statistical test is used to assess H0. If H0 is rejected but there really is no effect, this is
called a Type I error. The probability of a Type I error is usually designated “alpha” or ˛, and statistical tests
are designed to ensure that ˛ is suitably small (for example, less than 0.05).

If there is an effect in the population but H0 is not rejected in the statistical test, then a Type II error has been
committed. The probability of a Type II error is usually designated “beta” or ˇ. The probability 1 � ˇ of
avoiding a Type II error—that is, correctly rejecting H0 and achieving statistical significance, is called the
power of the test.

An important goal in study planning is to ensure an acceptably high level of power. Sample size plays a
prominent role in power computations because the focus is often on determining a sufficient sample size to
achieve a certain power, or assessing the power for a range of different sample sizes.

There are several tools available in SAS/STAT software for power and sample size analysis. PROC POWER
covers a variety of analyses such as t tests, equivalence tests, confidence intervals, binomial proportions,
multiple regression, one-way ANOVA, survival analysis, logistic regression, and the Wilcoxon rank-sum
test. PROC GLMPOWER supports more complex linear models. The Power and Sample Size application
provides a user interface and implements many of the analyses supported in the procedures.
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Important Linear Algebra Concepts
A matrix A is a rectangular array of numbers. The order of a matrix with n rows and k columns is .n � k/.
The element in row i, column j of A is denoted as aij , and the notation

�
aij
�

is sometimes used to refer to the
two-dimensional row-column array

A D

2666664
a11 a12 a13 � � � a1k
a21 a22 a23 � � � a2k
a31 a32 a33 � � � a3k
:::

:::
:::

: : :
:::

an1 an2 an3 � � � ank

3777775 D
�
aij
�

A vector is a one-dimensional array of numbers. A column vector has a single column (k D 1). A row vector
has a single row (n D 1). A scalar is a matrix of order .1� 1/—that is, a single number. A square matrix has
the same row and column order, n D k. A diagonal matrix is a square matrix where all off-diagonal elements
are zero, aij D 0 if i 6D j . The identity matrix I is a diagonal matrix with ai i D 1 for all i. The unit vector 1
is a vector where all elements are 1. The unit matrix J is a matrix of all 1s. Similarly, the elements of the null
vector and the null matrix are all 0.

Basic matrix operations are as follows:

Addition If A and B are of the same order, then AC B is the matrix of elementwise sums,

AC B D
�
aij C bij

�
Subtraction If A and B are of the same order, then A � B is the matrix of elementwise differences,

A � B D
�
aij � bij

�
Dot product The dot product of two n-vectors a and b is the sum of their elementwise products,

a � b D
nX
iD1

aibi

The dot product is also known as the inner product of a and b. Two vectors are said to be
orthogonal if their dot product is zero.

Multiplication Matrices A and B are said to be conformable for AB multiplication if the number of
columns in A equals the number of rows in B. Suppose that A is of order .n� k/ and that
B is of order .k � p/. The product AB is then defined as the .n � p/ matrix of the dot
products of the ith row of A and the jth column of B,

AB D
�
ai � bj

�
n�p

Transposition The transpose of the .n � k/ matrix A is denoted as A0 and is obtained by interchanging
the rows and columns,

A0 D

2666664
a11 a21 a31 � � � an1
a12 a22 a23 � � � an2
a13 a23 a33 � � � an3
:::

:::
:::

: : :
:::

a1k a2k a3k � � � ank

3777775 D
�
aj i
�
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A symmetric matrix is equal to its transpose, A D A0. The inner product of two .n � 1/
column vectors a and b is a � b D a0b.

Matrix Inversion

Regular Inverses
The right inverse of a matrix A is the matrix that yields the identity when A is postmultiplied by it. Similarly,
the left inverse of A yields the identity if A is premultiplied by it. A is said to be invertible and B is said
to be the inverse of A, if B is its right and left inverse, BA D AB D I. This requires A to be square and
nonsingular. The inverse of a matrix A is commonly denoted as A�1. The following results are useful in
manipulating inverse matrices (assuming both A and C are invertible):

AA�1 D A�1A D I�
A0
��1
D
�
A�1

�0�
A�1

��1
D A

.AC/�1 D C�1A�1

rank.A/ D rank
�
A�1

�
If D is a diagonal matrix with nonzero entries on the diagonal—that is, D D diag .d1; � � � ; dn/—then
D�1 D diag .1=d1; � � � ; 1=dn/. If D is a block-diagonal matrix whose blocks are invertible, then

D D

2666664
D1 0 0 � � � 0
0 D2 0 � � � 0
0 0 D3 � � � 0
:::

:::
:::

: : :
:::

0 0 0 � � � Dn

3777775 D�1 D

2666664
D�11 0 0 � � � 0
0 D�12 0 � � � 0
0 0 D�13 � � � 0
:::

:::
:::

: : :
:::

0 0 0 � � � D�1n

3777775
In statistical applications the following two results are particularly important, because they can significantly
reduce the computational burden in working with inverse matrices.

Partitioned Matrix Suppose A is a nonsingular matrix that is partitioned as

A D
�

A11 A12
A21 A22

�
Then, provided that all the inverses exist, the inverse of A is given by

A�1 D
�

B11 B12
B21 B22

�
where B11 D

�
A11 � A12A�122A21

��1
, B12 D �B11A12A�122 , B21 D �A�122A21B11,

and B22 D
�
A22 � A21A�111A12

��1
.

Patterned Sum Suppose R is .n� n/ nonsingular, G is .k � k/ nonsingular, and B and C are .n� k/ and
.k � n/ matrices, respectively. Then the inverse of RC BGC is given by

.RC BGC/�1 D R�1 � R�1B
�
G�1 C CR�1B

��1 CR�1
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This formula is particularly useful if k << n and R has a simple form that is easy to
invert. This case arises, for example, in mixed models where R might be a diagonal or
block-diagonal matrix, and B D C0.
Another situation where this formula plays a critical role is in the computation of regression
diagnostics, such as in determining the effect of removing an observation from the analysis.
Suppose that A D X0X represents the crossproduct matrix in the linear model EŒY� D Xˇ.
If x0i is the ith row of the X matrix, then .X0X � xix0i / is the crossproduct matrix in the
same model with the ith observation removed. Identifying B D �xi , C D x0i , and G D I
in the preceding inversion formula, you can obtain the expression for the inverse of the
crossproduct matrix:

�
X0X � xix0i

��1
D X0XC

�
X0X

��1 xix0i �X0X��1
1 � x0i

�
X0X

��1 xi
This expression for the inverse of the reduced data crossproduct matrix enables you to
compute “leave-one-out” deletion diagnostics in linear models without refitting the model.

Generalized Inverse Matrices
If A is rectangular (not square) or singular, then it is not invertible and the matrix A�1 does not exist. Suppose
you want to find a solution to simultaneous linear equations of the form

Ab D c

If A is square and nonsingular, then the unique solution is b D A�1c. In statistical applications, the case
where A is .n � k/ rectangular is less important than the case where A is a .k � k/ square matrix of rank
less than k. For example, the normal equations in ordinary least squares (OLS) estimation in the model
Y D Xˇ C � are�

X0X
�
ˇ D X0Y

A generalized inverse matrix is a matrix A� such that A�c is a solution to the linear system. In the OLS
example, a solution can be found as

�
X0X

��X0Y, where
�
X0X

�� is a generalized inverse of X0X.

The following four conditions are often associated with generalized inverses. For the square or rectangular
matrix A there exist matrices G that satisfy

.i/ AGA D A

.ii/ GAG D G

.iii/ .AG/0 D AG

.iv/ .GA/0 D GA

The matrix G that satisfies all four conditions is unique and is called the Moore-Penrose inverse, after the first
published work on generalized inverses by Moore (1920) and the subsequent definition by Penrose (1955).
Only the first condition is required, however, to provide a solution to the linear system above.
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Pringle and Rayner (1971) introduced a numbering system to distinguish between different types of general-
ized inverses. A matrix that satisfies only condition (i) is a g1-inverse. The g2-inverse satisfies conditions (i)
and (ii). It is also called a reflexive generalized inverse. Matrices satisfying conditions (i)–(iii) or conditions
(i), (ii), and (iv) are g3-inverses. Note that a matrix that satisfies the first three conditions is a right generalized
inverse, and a matrix that satisfies conditions (i), (ii), and (iv) is a left generalized inverse. For example, if
B is .n � k/ of rank k, then

�
B0B

��1 B0 is a left generalized inverse of B. The notation g4-inverse for the
Moore-Penrose inverse, satisfying conditions (i)–(iv), is often used by extension, but note that Pringle and
Rayner (1971) do not use it; rather, they call such a matrix “the” generalized inverse.

If the .n � k/ matrix X is rank-deficient—that is, rank.X/ < minfn; kg—then the system of equations�
X0X

�
ˇ D X0Y

does not have a unique solution. A particular solution depends on the choice of the generalized inverse.
However, some aspects of the statistical inference are invariant to the choice of the generalized inverse. If
G is a generalized inverse of X0X, then XGX0 is invariant to the choice of G. This result comes into play,
for example, when you are computing predictions in an OLS model with a rank-deficient X matrix, since it
implies that the predicted values

Xb̌D X
�
X0X

��X0y

are invariant to the choice of
�
X0X

��.

Matrix Differentiation

Taking the derivative of expressions involving matrices is a frequent task in statistical estimation. Objective
functions that are to be minimized or maximized are usually written in terms of model matrices and/or vectors
whose elements depend on the unknowns of the estimation problem. Suppose that A and B are real matrices
whose elements depend on the scalar quantities ˇ and �—that is, A D

�
aij .ˇ; �/

�
, and similarly for B.

The following are useful results in finding the derivative of elements of a matrix and of functions involving a
matrix. For more in-depth discussion of matrix differentiation and matrix calculus, see, for example, Magnus
and Neudecker (1999) and Harville (1997).

The derivative of A with respect to ˇ is denoted PAˇ and is the matrix of the first derivatives of the elements
of A:

PAˇ D
@

@ˇ
A D

�
@aij .ˇ; �/

@ˇ

�
Similarly, the second derivative of A with respect to ˇ and � is the matrix of the second derivatives

RAˇ� D
@2

@ˇ@�
A D

�
@2aij .ˇ; �/

@ˇ@�

�
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The following are some basic results involving sums, products, and traces of matrices:

@

@ˇ
c1A D c1 PAˇ

@

@ˇ
.AC B/ D PAˇ C PBˇ

@

@ˇ
.c1AC c2B/ D c1 PAˇ C c2 PBˇ

@

@ˇ
AB D A PBˇ C PAˇB

@

@ˇ
trace.A/ D trace

�
PAˇ
�

@

@ˇ
trace.AB/ D trace

�
A PBˇ

�
C trace

�
PAˇB

�

The next set of results is useful in finding the derivative of elements of A and of functions of A, if A is a
nonsingular matrix:

@

@ˇ
x0A�1x D� x0A�1 PAˇA�1x

@

@ˇ
A�1 D� A�1 PAˇA�1

@

@ˇ
jAj D jAj trace

�
A�1 PAˇ

�
@

@ˇ
log fjAjg D

1

jAj
@

@ˇ
A D trace

�
A�1 PAˇ

�
@2

@ˇ@�
A�1 D� A�1 RAˇ�A�1 C A�1 PAˇA�1 PA�A�1 C A�1 PA�A�1 PAˇA�1

@2

@ˇ@�
log fjAjg D trace

�
A�1 RAˇ�

�
� trace

�
A�1 PAˇA�1 PA�

�
Now suppose that a and b are column vectors that depend on ˇ and/or � and that x is a vector of constants.
The following results are useful for manipulating derivatives of linear and quadratic forms:

@

@x
a0x D a

@

@x0
Bx D B

@

@x
x0Bx D

�
BC B0

�
x

@2

@x@x0
x0Bx D BC B0
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Matrix Decompositions

To decompose a matrix is to express it as a function—typically a product—of other matrices that have partic-
ular properties such as orthogonality, diagonality, triangularity. For example, the Cholesky decomposition
of a symmetric positive definite matrix A is CC0 D A, where C is a lower-triangular matrix. The spectral
decomposition of a symmetric matrix is A D PDP0, where D is a diagonal matrix and P is an orthogonal
matrix.

Matrix decomposition play an important role in statistical theory as well as in statistical computations. Calcu-
lations in terms of decompositions can have greater numerical stability. Decompositions are often necessary
to extract information about matrices, such as matrix rank, eigenvalues, or eigenvectors. Decompositions are
also used to form special transformations of matrices, such as to form a “square-root” matrix. This section
briefly mentions several decompositions that are particularly prevalent and important.

LDU, LU, and Cholesky Decomposition
Every square matrix A, whether it is positive definite or not, can be expressed in the form A D LDU,
where L is a unit lower-triangular matrix, D is a diagonal matrix, and U is a unit upper-triangular matrix.
(The diagonal elements of a unit triangular matrix are 1.) Because of the arrangement of the matrices, the
decomposition is called the LDU decomposition. Since you can absorb the diagonal matrix into the triangular
matrices, the decomposition

A D LD1=2D1=2U D L�U�

is also referred to as the LU decomposition of A.

If the matrix A is positive definite, then the diagonal elements of D are positive and the LDU decomposition
is unique. If A is also symmetric, then the unique decomposition takes the form A D U0DU, where U
is unit upper-triangular and D is diagonal with positive elements. Absorbing the square root of D into U,
C D D1=2U, the decomposition is known as the Cholesky decomposition of a positive-definite matrix:

A D U0D1=2 D1=2U D C0C

where C is upper triangular.

If A is symmetric but only nonnegative definite of rank k, rather than being positive definite of full rank, then
it has an extended Cholesky decomposition as follows. Let C� denote the lower-triangular matrix such that

C� D
�

Ck�k 0
0 0

�
Then A D CC0.

Spectral Decomposition
Suppose that A is an .n � n/ symmetric matrix. Then there exists an orthogonal matrix Q and a diagonal
matrix D such that A D QDQ0. Of particular importance is the case where the orthogonal matrix is also
orthonormal—that is, its column vectors have unit norm. Denote this orthonormal matrix as P. Then the
corresponding diagonal matrix—ƒ D diag.�i ; � � � ; �n/, say—contains the eigenvalues of A. The spectral
decomposition of A can be written as

A D PƒP0 D
nX
iD1

�ipip0i
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where pi denotes the ith column vector of P. The right-side expression decomposes A into a sum of rank-1
matrices, and the weight of each contribution is equal to the eigenvalue associated with the ith eigenvector.
The sum furthermore emphasizes that the rank of A is equal to the number of nonzero eigenvalues.

Harville (1997, p. 538) refers to the spectral decomposition of A as the decomposition that takes the previous
sum one step further and accumulates contributions associated with the distinct eigenvalues. If ��i ; � � � ; �

�
k

are the distinct eigenvalues and Ej D
P

pip0i , where the sum is taken over the set of columns for which
�i D �

�
j , then

A D
kX
iD1

��jEj

You can employ the spectral decomposition of a nonnegative definite symmetric matrix to form a “square-
root” matrix of A. Suppose that ƒ1=2 is the diagonal matrix containing the square roots of the �i . Then
B D Pƒ1=2P0 is a square-root matrix of A in the sense that BB D A, because

BB D Pƒ1=2P0Pƒ1=2P0 D Pƒ1=2ƒ1=2P0 D PƒP0

Generating the Moore-Penrose inverse of a matrix based on the spectral decomposition is also simple. Denote
as� the diagonal matrix with typical element

ıi D

�
1=�i �i 6D 0

0 �i D 0

Then the matrix P�P0 D
P
ıipip0i is the Moore-Penrose (g4-generalized) inverse of A.

Singular-Value Decomposition
The singular-value decomposition is related to the spectral decomposition of a matrix, but it is more general.
The singular-value decomposition can be applied to any matrix. Let B be an .n � p/ matrix of rank k. Then
there exist orthogonal matrices P and Q of order .n � n/ and .p � p/, respectively, and a diagonal matrix D
such that

P0BQ D D D
�

D1 0
0 0

�
where D1 is a diagonal matrix of order k. The diagonal elements of D1 are strictly positive. As with the
spectral decomposition, this result can be written as a decomposition of B into a weighted sum of rank-1
matrices

B D �PDQ0 D
nX
iD1

dipiq0i

The scalars d1; � � � ; dk are called the singular values of the matrix B. They are the positive square roots of
the nonzero eigenvalues of the matrix B0B. If the singular-value decomposition is applied to a symmetric,
nonnegative definite matrix A, then the singular values d1; � � � ; dn are the nonzero eigenvalues of A and the
singular-value decomposition is the same as the spectral decomposition.

As with the spectral decomposition, you can use the results of the singular-value decomposition to generate
the Moore-Penrose inverse of a matrix. If B is .n � p/ with singular-value decomposition PDQ0, and if� is
a diagonal matrix with typical element

ıi D

�
1=di jdi j 6D 0

0 di D 0

then Q�P0 is the g4-generalized inverse of B.
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Expectations of Random Variables and Vectors
If Y is a discrete random variable with mass function p.y/ and support (possible values) y1; y2; � � � , then the
expectation (expected value) of Y is defined as

EŒY � D
1X
jD1

yj p.yj /

provided that
P
jyj jp.yj / <1, otherwise the sum in the definition is not well-defined. The expected value

of a function h.y/ is similarly defined: provided that
P
jh.yj /jp.yj / <1,

EŒh.Y /� D
1X
jD1

h.yj / p.yj /

For continuous random variables, similar definitions apply, but summation is replaced by integration over
the support of the random variable. If X is a continuous random variable with density function f .x/, andR
jxjf .x/dx <1, then the expectation of X is defined as

EŒX� D
Z 1
�1

xf .x/ dx

The expected value of a random variable is also called its mean or its first moment. A particularly important
function of a random variable is h.Y / D .Y � EŒY �/2. The expectation of h.Y / is called the variance of Y
or the second central moment of Y. When you study the properties of multiple random variables, then you
might be interested in aspects of their joint distribution. The covariance between random variables Y and X is
defined as the expected value of the function .Y � EŒY �/.X � EŒX�/, where the expectation is taken under
the bivariate joint distribution of Y and X:

CovŒY; X� D EŒ.Y �EŒY �/.X �EŒX�/� D EŒYX��EŒY �EŒX� D
Z Z

x yf .x; y/ dxdy�EŒY �EŒX�

The covariance between a random variable and itself is the variance, CovŒY; Y � D VarŒY �.

In statistical applications and formulas, random variables are often collected into vectors. For example, a
random sample of size n from the distribution of Y generates a random vector of order .n � 1/,

Y D

26664
Y1
Y2
:::

Yn

37775
The expected value of the .n � 1/ random vector Y is the vector of the means of the elements of Y:

EŒY� D ŒE ŒYi �� D

26664
EŒY1�
EŒY2�
:::

EŒYn�

37775
It is often useful to directly apply rules about working with means, variances, and covariances of random
vectors. To develop these rules, suppose that Y and U denote two random vectors with typical elements
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Y1; � � � ; Yn and U1; � � � ; Uk . Further suppose that A and B are constant (nonstochastic) matrices, that a is a
constant vector, and that the ci are scalar constants.

The following rules enable you to derive the mean of a linear function of a random vector:

EŒA� D A
EŒYC a� D EŒY�

EŒAYC a� D AEŒY�C a
EŒYC U� D EŒY�C EŒU�

The covariance matrix of Y and U is the .n � k/ matrix whose typical element in row i, column j is the
covariance between Yi and Uj . The covariance matrix between two random vectors is frequently denoted
with the Cov “operator.”

CovŒY;U� D
�
CovŒYi ; Uj �

�
D E

�
.Y � EŒY�/ .U � EŒU�/0

�
D E

�
YU0

�
� EŒY�EŒU�0

D

2666664
CovŒY1; U1� CovŒY1; U2� CovŒY1; U3� � � � CovŒY1; Uk�
CovŒY2; U1� CovŒY2; U2� CovŒY2; U3� � � � CovŒY2; Uk�
CovŒY3; U1� CovŒY3; U2� CovŒY3; U3� � � � CovŒY3; Uk�
:::

:::
:::

: : :
:::

CovŒYn; U1� CovŒYn; U2� CovŒYn; U3� � � � CovŒYn; Uk�

3777775

The variance matrix of a random vector Y is the covariance matrix between Y and itself. The variance matrix
is frequently denoted with the Var “operator.”

VarŒY� D CovŒY;Y� D
�
CovŒYi ; Yj �

�
D E

�
.Y � EŒY�/ .Y � EŒY�/0

�
D E

�
YY0

�
� EŒY�EŒY�0

D

2666664
CovŒY1; Y1� CovŒY1; Y2� CovŒY1; Y3� � � � CovŒY1; Yn�
CovŒY2; Y1� CovŒY2; Y2� CovŒY2; Y3� � � � CovŒY2; Yn�
CovŒY3; Y1� CovŒY3; Y2� CovŒY3; Y3� � � � CovŒY3; Yn�
:::

:::
:::

: : :
:::

CovŒYn; Y1� CovŒYn; Y2� CovŒYn; Y3� � � � CovŒYn; Yn�

3777775

D

2666664
VarŒY1� CovŒY1; Y2� CovŒY1; Y3� � � � CovŒY1; Yn�
CovŒY2; Y1� VarŒY2� CovŒY2; Y3� � � � CovŒY2; Yn�
CovŒY3; Y1� CovŒY3; Y2� VarŒY3� � � � CovŒY3; Yn�
:::

:::
:::

: : :
:::

CovŒYn; Y1� CovŒYn; Y2� CovŒYn; Y3� � � � VarŒYn�

3777775

Because the variance matrix contains variances on the diagonal and covariances in the off-diagonal positions,
it is also referred to as the variance-covariance matrix of the random vector Y.
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If the elements of the covariance matrix CovŒY;U� are zero, the random vectors are uncorrelated. If Y and U
are normally distributed, then a zero covariance matrix implies that the vectors are stochastically independent.
If the off-diagonal elements of the variance matrix VarŒY� are zero, the elements of the random vector Y
are uncorrelated. If Y is normally distributed, then a diagonal variance matrix implies that its elements are
stochastically independent.

Suppose that A and B are constant (nonstochastic) matrices and that ci denotes a scalar constant. The
following results are useful in manipulating covariance matrices:

CovŒAY;U� D ACovŒY;U�
CovŒY;BU� D CovŒY;U�B0

CovŒAY;BU� D ACovŒY;U�B0

CovŒc1Y1 C c2U1; c3Y2 C c4U2� D c1c3CovŒY1;Y2�C c1c4CovŒY1;U2�
C c2c3CovŒU1;Y2�C c2c4CovŒU1;U2�

Since CovŒY;Y� D VarŒY�, these results can be applied to produce the following results, useful in manipu-
lating variances of random vectors:

VarŒA� D 0
VarŒAY� D AVarŒY�A0

VarŒYC x� D VarŒY�
VarŒx0Y� D x0VarŒY�x

VarŒc1Y� D c21VarŒY�

VarŒc1YC c2U� D c21VarŒY�C c
2
2VarŒU�C 2c1c2CovŒY;U�

Another area where expectation rules are helpful is quadratic forms in random variables. These forms arise
particularly in the study of linear statistical models and in linear statistical inference. Linear inference is
statistical inference about linear function of random variables, even if those random variables are defined
through nonlinear models. For example, the parameter estimatorb� might be derived in a nonlinear model,
but this does not prevent statistical questions from being raised that can be expressed through linear functions
of �; for example,

H0W

�
�1 � 2�2 D 0

�2 � �3 D 0

if A is a matrix of constants and Y is a random vector, then

EŒY0AY� D trace.AVarŒY�/C EŒY�0AEŒY�

Mean Squared Error
The mean squared error is arguably the most important criterion used to evaluate the performance of a
predictor or an estimator. (The subtle distinction between predictors and estimators is that random variables
are predicted and constants are estimated.) The mean squared error is also useful to relay the concepts of
bias, precision, and accuracy in statistical estimation. In order to examine a mean squared error, you need a
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target of estimation or prediction, and a predictor or estimator that is a function of the data. Suppose that the
target, whether a constant or a random variable, is denoted as U. The mean squared error of the estimator or
predictor T .Y/ for U is

MSE ŒT .Y/IU � D E
h
.T .Y/ � U/2

i
The reason for using a squared difference to measure the “loss” between T .Y/ and U is mostly convenience;
properties of squared differences involving random variables are more easily examined than, say, absolute
differences. The reason for taking an expectation is to remove the randomness of the squared difference by
averaging over the distribution of the data.

Consider first the case where the target U is a constant—say, the parameter ˇ—and denote the mean of the
estimator T .Y/ as �T . The mean squared error can then be decomposed as

MSEŒT .Y/Iˇ� D E
h
.T .Y/ � ˇ/2

i
D E

h
.T .Y/ � �T /2

i
� E

h
.ˇ � �T /

2
i

D VarŒT .Y/�C .ˇ � �T /2

The mean squared error thus comprises the variance of the estimator and the squared bias. The two
components can be associated with an estimator’s precision (small variance) and its accuracy (small bias).

If T .Y/ is an unbiased estimator of ˇ—that is, if EŒT .Y/� D ˇ—then the mean squared error is simply the
variance of the estimator. By choosing an estimator that has minimum variance, you also choose an estimator
that has minimum mean squared error among all unbiased estimators. However, as you can see from the
previous expression, bias is also an “average” property; it is defined as an expectation. It is quite possible to
find estimators in some statistical modeling problems that have smaller mean squared error than a minimum
variance unbiased estimator; these are estimators that permit a certain amount of bias but improve on the
variance. For example, in models where regressors are highly collinear, the ordinary least squares estimator
continues to be unbiased. However, the presence of collinearity can induce poor precision and lead to an
erratic estimator. Ridge regression stabilizes the regression estimates in this situation, and the coefficient
estimates are somewhat biased, but the bias is more than offset by the gains in precision.

When the target U is a random variable, you need to carefully define what an unbiased prediction means. If
the statistic and the target have the same expectation, EŒU � D EŒT .Y/�, then

MSE ŒT .Y/IU � D VarŒT .Y/�CVarŒU � � 2CovŒT .Y/; U �

In many instances the target U is a new observation that was not part of the analysis. If the data are
uncorrelated, then it is reasonable to assume in that instance that the new observation is also not correlated
with the data. The mean squared error then reduces to the sum of the two variances. For example, in a linear
regression model where U is a new observation Y0 and T .Y/ is the regression estimatorbY 0 D x00

�
X0X

��1 X0Y

with variance VarŒY0� D �2x00
�
X0X

��1 x0, the mean squared prediction error for Y0 is

MSE
hbY IY0i D �2 �x00 �X0X��1 x0 C 1�

and the mean squared prediction error for predicting the mean EŒY0� is

MSE
hbY IEŒY0�i D �2x00 �X0X��1 x0
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Linear Model Theory
This section presents some basic statistical concepts and results for the linear model with homoscedastic,
uncorrelated errors in which the parameters are estimated by ordinary least squares. The model can be written
as

Y D Xˇ C � � � .0; �2I/

where Y is an .n � 1/ vector and X is an .n � k/ matrix of known constants. The model equation implies the
following expected values:

EŒY� D Xˇ

VarŒY� D �2I, CovŒYi ; Yj � D
�
�2 i D j

0 otherwise

Finding the Least Squares Estimators

Finding the least squares estimator of ˇ can be motivated as a calculus problem or by considering the
geometry of least squares. The former approach simply states that the OLS estimator is the vector b̌ that
minimizes the objective function

SSE D .Y � Xˇ/0 .Y � Xˇ/

Applying the differentiation rules from the section “Matrix Differentiation” on page 43 leads to

@

@ˇ
SSE D

@

@ˇ
.Y0Y � 2Y0Xˇ C ˇ0X0Xˇ/

D 0 � 2X0YC 2X0Xˇ
@2

@ˇ@ˇ
SSE D X0X

Consequently, the solution to the normal equations, X0Xˇ D X0Y, solves @
@ˇ

SSE D 0, and the fact that
the second derivative is nonnegative definite guarantees that this solution minimizes SSE. The geometric
argument to motivate ordinary least squares estimation is as follows. Assume that X is of rank k. For any
value of ˇ, such as Q̌, the following identity holds:

Y D X Q̌ C
�

Y � X Q̌
�

The vector X Q̌ is a point in a k-dimensional subspace of Rn, and the residual .Y � X Q̌/ is a point in an
.n � k/-dimensional subspace. The OLS estimator is the value b̌ that minimizes the distance of X Q̌ from Y,
implying that Xb̌ and .Y � Xb̌/ are orthogonal to each other; that is,

.Y � Xb̌/0Xb̌D 0. This in turn implies that b̌ satisfies the normal equations, since

b̌0X0Y D b̌0X0Xb̌, X0Xb̌D X0Y
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Full-Rank Case
If X is of full column rank, the OLS estimator is unique and given byb̌D �X0X��1 X0Y

The OLS estimator is an unbiased estimator of ˇ—that is,

EŒb̌� DE h�X0X��1 X0Y
i

D
�
X0X

��1 X0EŒY� D
�
X0X

��1 X0Xˇ D ˇ

Note that this result holds if EŒY� D Xˇ; in other words, the condition that the model errors have mean zero
is sufficient for the OLS estimator to be unbiased. If the errors are homoscedastic and uncorrelated, the OLS
estimator is indeed the best linear unbiased estimator (BLUE) of ˇ—that is, no other estimator that is a linear
function of Y has a smaller mean squared error. The fact that the estimator is unbiased implies that no other
linear estimator has a smaller variance. If, furthermore, the model errors are normally distributed, then the
OLS estimator has minimum variance among all unbiased estimators of ˇ, whether they are linear or not.
Such an estimator is called a uniformly minimum variance unbiased estimator, or UMVUE.

Rank-Deficient Case
In the case of a rank-deficient X matrix, a generalized inverse is used to solve the normal equations:b̌D �X0X��X0Y

Although a g1-inverse is sufficient to solve a linear system, computational expedience and interpretation of
the results often dictate the use of a generalized inverse with reflexive properties (that is, a g2-inverse; see the
section “Generalized Inverse Matrices” on page 42 for details). Suppose, for example, that the X matrix is
partitioned as X D ŒX1 X2�, where X1 is of full column rank and each column in X2 is a linear combination
of the columns of X1. The matrix

G1 D

" �
X01X1

��1 �
X01X1

��1 X01X2
�X02X1

�
X01X1

��1 0

#
is a g1-inverse of X0X and

G2 D

" �
X01X1

��1 0
0 0

#
is a g2-inverse. If the least squares solution is computed with the g1-inverse, then computing the variance
of the estimator requires additional matrix operations and storage. On the other hand, the variance of the
solution that uses a g2-inverse is proportional to G2.

Var
�
G1X0Y

�
D �2G1X0XG1

Var
�
G2X0Y

�
D �2G2X0XG2 D �2G2

If a generalized inverse G of X0X is used to solve the normal equations, then the resulting solution is a biased
estimator of ˇ (unless X0X is of full rank, in which case the generalized inverse is “the” inverse), since
E
hb̌i D GX0Xˇ, which is not in general equal to ˇ.

If you think of estimation as “estimation without bias,” then b̌ is the estimator of something, namely GXˇ.
Since this is not a quantity of interest and since it is not unique—it depends on your choice of G—Searle
(1971, p. 169) cautions that in the less-than-full-rank case, b̌ is a solution to the normal equations and
“nothing more.”
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Analysis of Variance

The identity

Y D X Q̌ C
�

Y � X Q̌
�

holds for all vectors Q̌, but only for the least squares solution is the residual .Y � Xb̌/ orthogonal to the
predicted value Xb̌. Because of this orthogonality, the additive identity holds not only for the vectors
themselves, but also for their lengths (Pythagorean theorem):

jjYjj2 D jjXb̌jj2 C jj.Y � Xb̌/jj2
Note that Xb̌ D X

�
X0X

��1 X0Y = HY and note that Y � Xb̌ D .I � H/Y D MY. The matrices H and
M D I �H play an important role in the theory of linear models and in statistical computations. Both are
projection matrices—that is, they are symmetric and idempotent. (An idempotent matrix A is a square matrix
that satisfies AA D A. The eigenvalues of an idempotent matrix take on the values 1 and 0 only.) The matrix
H projects onto the subspace of Rn that is spanned by the columns of X. The matrix M projects onto the
orthogonal complement of that space. Because of these properties you have H0 D H, HH D H, M0 D M,
MM DM, HM D 0.

The Pythagorean relationship now can be written in terms of H and M as follows:

jjYjj2 D Y0Y D jjHYjj2 C jjMYjj2 D Y0H0HYC Y0M0MY D Y0HYC Y0MY

If X0X is deficient in rank and a generalized inverse is used to solve the normal equations, then you work
instead with the projection matrices H D X

�
X0X

��X0. Note that if G is a generalized inverse of X0X, then
XGX0, and hence also H and M, are invariant to the choice of G.

The matrix H is sometimes referred to as the “hat” matrix because when you premultiply the vector of
observations with H, you produce the fitted values, which are commonly denoted by placing a “hat” over the
Y vector, bY D HY.

The term Y0Y is the uncorrected total sum of squares (SST) of the linear model, Y0MY is the error (residual)
sum of squares (SSR), and Y0HY is the uncorrected model sum of squares. This leads to the analysis of
variance table shown in Table 3.2.

Table 3.2 Analysis of Variance with Uncorrected Sums of
Squares

Source df Sum of Squares

Model rank.X/ SSM D Y0HY D b̌0X0Y
Residual n � rank.X/ SSR D Y0MY D Y0Y � b̌X0Y DPn

iD1

�
Yi � bY i�2

Uncorr. Total n SST D Y0Y D
Pn
iD1 Y

2
i

When the model contains an intercept term, then the analysis of variance is usually corrected for the mean, as
shown in Table 3.3.
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Table 3.3 Analysis of Variance with Corrected Sums of Squares

Source df Sum of Squares

Model rank.X/ � 1 SSMc D
b̌0X0Y � nY 2 DPn

iD1

�bY i � Y i�2
Residual n � rank.X/ SSR D Y0MY D Y0Y � b̌X0Y DPn

iD1

�
Yi � bY i�2

Corrected Total n � 1 SSTc D Y0Y � nY 2 D
Pn
iD1

�
Yi � Y

�2
The coefficient of determination, also called the R-square statistic, measures the proportion of the total
variation explained by the linear model. In models with intercept, it is defined as the ratio

R2 D 1 �
SSR
SSTc

D 1 �

Pn
iD1

�
Yi � bY i�2Pn

iD1

�
Yi � Y

�2
In models without intercept, the R-square statistic is a ratio of the uncorrected sums of squares

R2 D 1 �
SSR
SST

D 1 �

Pn
iD1

�
Yi � bY i�2Pn
iD1 Y

2
i

Estimating the Error Variance

The least squares principle does not provide for a parameter estimator for �2. The usual approach is to use a
method-of-moments estimator that is based on the sum of squared residuals. If the model is correct, then the
mean square for error, defined to be SSR divided by its degrees of freedom,

b�2 D 1

n � rank.X/

�
Y � Xb̌�0 �Y � Xb̌�

D SSR=.n � rank.X//

is an unbiased estimator of �2.

Maximum Likelihood Estimation

To estimate the parameters in a linear model with mean function EŒY� D Xˇ by maximum likelihood, you
need to specify the distribution of the response vector Y. In the linear model with a continuous response
variable, it is commonly assumed that the response is normally distributed. In that case, the estimation problem
is completely defined by specifying the mean and variance of Y in addition to the normality assumption.
The model can be written as Y � N.Xˇ; �2I/, where the notation N.a;V/ indicates a multivariate normal
distribution with mean vector a and variance matrix V. The log likelihood for Y then can be written as

l.ˇ; �2I y/ D �
n

2
logf2�g �

n

2
logf�2g �

1

2�2
.y � Xˇ/0 .y � Xˇ/

This function is maximized in ˇ when the sum of squares .y � Xˇ/0.y � Xˇ/ is minimized. The maximum
likelihood estimator of ˇ is thus identical to the ordinary least squares estimator. To maximize l.ˇ; �2I y/
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with respect to �2, note that

@l.ˇ; �2I y/
@�2

D �
n

2�2
C

1

2�4
.y � Xˇ/0 .y � Xˇ/

Hence the MLE of �2 is the estimator

b�2M D 1

n

�
Y � Xb̌�0 �Y � Xb̌�

D SSR=n

This is a biased estimator of �2, with a bias that decreases with n.

Estimable Functions

A function Lˇ is said to be estimable if there exists a linear combination of the expected value of Y, such
as KEŒY�, that equals Lˇ. Since EŒY� D Xˇ, the definition of estimability implies that Lˇ is estimable if
there is a matrix K such that L D KX. Another way of looking at this result is that the rows of X form a
generating set from which all estimable functions can be constructed.

The concept of estimability of functions is important in the theory and application of linear models because
hypotheses of interest are often expressed as linear combinations of the parameter estimates (for example,
hypotheses of equality between parameters, ˇ1 D ˇ2, ˇ1 � ˇ2 D 0). Since estimability is not related to
the particular value of the parameter estimate, but to the row space of X, you can test only hypotheses that
consist of estimable functions. Further, because estimability is not related to the value of ˇ (Searle 1971, p.
181), the choice of the generalized inverse in a situation with rank-deficient X0X matrix is immaterial, since

Lb̌D KXb̌D KX
�
X0X

��X0Y

where X
�
X0X

��X is invariant to the choice of generalized inverse.

Lˇ is estimable if and only if L.X0X/�.X0X/ D L (see, for example, Searle 1971, p. 185). If X is of
full rank, then the Hermite matrix .X0X/�.X0X/ is the identity, which implies that all linear functions are
estimable in the full-rank case.

See Chapter 15, “The Four Types of Estimable Functions,” for many details about the various forms of
estimable functions in SAS/STAT.

Test of Hypotheses

Consider a general linear hypothesis of the form H WLˇ D d, where L is a .k � p/ matrix. It is assumed that
d is such that this hypothesis is linearly consistent—that is, that there exists some ˇ for which Lˇ D d. This
is always the case if d is in the column space of L, if L has full row rank, or if d D 0; the latter is the most
common case. Since many linear models have a rank-deficient X matrix, the question arises whether the
hypothesis is testable. The idea of testability of a hypothesis is—not surprisingly—connected to the concept
of estimability as introduced previously. The hypothesis H WLˇ D d is testable if it consists of estimable
functions.

There are two important approaches to testing hypotheses in statistical applications—the reduction principle
and the linear inference approach. The reduction principle states that the validity of the hypothesis can be
inferred by comparing a suitably chosen summary statistic between the model at hand and a reduced model
in which the constraint Lˇ D d is imposed. The linear inference approach relies on the fact that b̌ is an
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estimator of ˇ and its stochastic properties are known, at least approximately. A test statistic can then be
formed using b̌, and its behavior under the restriction Lˇ D d can be ascertained.

The two principles lead to identical results in certain—for example, least squares estimation in the classical
linear model. In more complex situations the two approaches lead to similar but not identical results. This is
the case, for example, when weights or unequal variances are involved, or when b̌ is a nonlinear estimator.

Reduction Tests
The two main reduction principles are the sum of squares reduction test and the likelihood ratio test. The test
statistic in the former is proportional to the difference of the residual sum of squares between the reduced
model and the full model. The test statistic in the likelihood ratio test is proportional to the difference of
the log likelihoods between the full and reduced models. To fix these ideas, suppose that you are fitting the
model Y D Xˇ C �, where � � N.0; �2I/. Suppose that SSR denotes the residual sum of squares in this
model and that SSRH is the residual sum of squares in the model for which Lˇ D d holds. Then under the
hypothesis the ratio

.SSRH � SSR/=�2

follows a chi-square distribution with degrees of freedom equal to the rank of L. Maybe surprisingly, the
residual sum of squares in the full model is distributed independently of this quantity, so that under the
hypothesis,

F D
.SSRH � SSR/=rank.L/

SSR=.n � rank.X//

follows an F distribution with rank.L/ numerator and n � rank.X/ denominator degrees of freedom. Note
that the quantity in the denominator of the F statistic is a particular estimator of �2—namely, the unbiased
moment-based estimator that is customarily associated with least squares estimation. It is also the restricted
maximum likelihood estimator of �2 if Y is normally distributed.

In the case of the likelihood ratio test, suppose that l.b̌;b�2I y/ denotes the log likelihood evaluated at the ML
estimators. Also suppose that l.b̌H ;b�2H I y/ denotes the log likelihood in the model for which Lˇ D d holds.
Then under the hypothesis the statistic

� D 2
�
l.b̌;b�2I y/ � l.b̌H ;b�2H I y/�

follows approximately a chi-square distribution with degrees of freedom equal to the rank of L. In the case of
a normally distributed response, the log-likelihood function can be profiled with respect to ˇ. The resulting
profile log likelihood is

l.b�2I y/ D �n
2
logf2�g �

n

2

�
logfb�2g�

and the likelihood ratio test statistic becomes

� D n
�
log

˚b�2H 	 � log
˚b�2	� D n .log fSSRH g � log fSSRg/ D n .log fSSRH=SSRg/

The preceding expressions show that, in the case of normally distributed data, both reduction principles lead
to simple functions of the residual sums of squares in two models. As Pawitan (2001, p. 151) puts it, there
is, however, an important difference not in the computations but in the statistical content. The least squares
principle, where sum of squares reduction tests are widely used, does not require a distributional specification.
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Assumptions about the distribution of the data are added to provide a framework for confirmatory inferences,
such as the testing of hypotheses. This framework stems directly from the assumption about the data’s
distribution, or from the sampling distribution of the least squares estimators. The likelihood principle, on
the other hand, requires a distributional specification at the outset. Inference about the parameters is implicit
in the model; it is the result of further computations following the estimation of the parameters. In the least
squares framework, inference about the parameters is the result of further assumptions.

Linear Inference
The principle of linear inference is to formulate a test statistic for H WLˇ D d that builds on the linearity of
the hypothesis about ˇ. For many models that have linear components, the estimator Lb̌ is also linear in Y.
It is then simple to establish the distributional properties of Lb̌ based on the distributional assumptions about
Y or based on large-sample arguments. For example, b̌might be a nonlinear estimator, but it is known to
asymptotically follow a normal distribution; this is the case in many nonlinear and generalized linear models.

If the sampling distribution or the asymptotic distribution of b̌ is normal, then one can easily derive quadratic
forms with known distributional properties. For example, if the random vector U is distributed as N.�;†/,
then U0AU follows a chi-square distribution with rank.A/ degrees of freedom and noncentrality parameter
1=2�0A�, provided that A†A† D A†.

In the classical linear model, suppose that X is deficient in rank and that b̌D �X0X��X0Y is a solution to
the normal equations. Then, if the errors are normally distributed,

b̌ � N ��
X0X

��X0Xˇ; �2
�
X0X

��X0X
�
X0X

���
Because H WLˇ D d is testable, Lˇ is estimable, and thus L.X0X/�X0X D L, as established in the previous
section. Hence,

Lb̌ � N �
Lˇ; �2L

�
X0X

�� L0
�

The conditions for a chi-square distribution of the quadratic form

.Lb̌� d/0
�
L.X0X/�L0

��
.Lb̌� d/

are thus met, provided that

.L.X0X/�L0/�L.X0X/�L0.L.X0X/�L0/�L.X0X/�L0 D .L.X0X/�L0/�L.X0X/�L0

This condition is obviously met if L.X0X/�L0 is of full rank. The condition is also met if L.X0X/�L0� is a
reflexive inverse (a g2-inverse) of L.X0X/�L.

The test statistic to test the linear hypothesis H WLˇ D d is thus

F D
.Lb̌� d/0

�
L.X0X/�L0

��
.Lb̌� d/=rank.L/

SSR=.n � rank.X//

and it follows an F distribution with rank.L/ numerator and n � rank.X/ denominator degrees of freedom
under the hypothesis.

This test statistic looks very similar to the F statistic for the sum of squares reduction test. This is no accident.
If the model is linear and parameters are estimated by ordinary least squares, then you can show that the
quadratic form .Lb̌� d/0

�
L.X0X/�L0

��
.Lb̌� d/ equals the differences in the residual sum of squares,

SSRH � SSR, where SSRH is obtained as the residual sum of squares from OLS estimation in a model that
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satisfies Lˇ D d. However, this correspondence between the two test formulations does not apply when
a different estimation principle is used. For example, assume that � � N.0;V/ and that ˇ is estimated by
generalized least squares:

b̌
g D

�
X0V�1X

��X0V�1Y

The construction of L matrices associated with hypotheses in SAS/STAT software is frequently based on
the properties of the X matrix, not of X0V�X. In other words, the construction of the L matrix is governed
only by the design. A sum of squares reduction test for H WLˇ D 0 that uses the generalized residual sum of
squares .Y � b̌g/0V�1.Y � b̌g/ is not identical to a linear hypothesis test with the statistic

F � D
b̌0
gL0

�
L
�
X0V�1X

�� L0
�� Lb̌g

rank.L/

Furthermore, V is usually unknown and must be estimated as well. The estimate for V depends on the
model, and imposing a constraint on the model would change the estimate. The asymptotic distribution of the
statistic F � is a chi-square distribution. However, in practical applications the F distribution with rank.L/
numerator and � denominator degrees of freedom is often used because it provides a better approximation to
the sampling distribution of F � in finite samples. The computation of the denominator degrees of freedom
�, however, is a matter of considerable discussion. A number of methods have been proposed and are
implemented in various forms in SAS/STAT (see, for example, the degrees-of-freedom methods in the
MIXED and GLIMMIX procedures).

Residual Analysis

The model errors � D Y�Xˇ are unobservable. Yet important features of the statistical model are connected
to them, such as the distribution of the data, the correlation among observations, and the constancy of
variance. It is customary to diagnose and investigate features of the model errors through the fitted residualsb� D Y �bY D Y �HY DMY. These residuals are projections of the data onto the null space of X and are
also referred to as the “raw” residuals to contrast them with other forms of residuals that are transformations
ofb�. For the classical linear model, the statistical properties ofb� are affected by the features of that projection
and can be summarized as follows:

EŒb�� D 0

VarŒb�� D �2M
rank.M/ D n � rank.X/

Furthermore, if � � N.0; �2I/, thenb� � N.0; �2M/.

Because M D I �H, and the “hat” matrix H satisfies @bY=@Y, the hat matrix is also the leverage matrix of
the model. If hi i denotes the ith diagonal element of H (the leverage of observation i), then the leverages
are bounded in a model with intercept, 1=n � hi i � 1. Consequently, the variance of a raw residual is less
than that of an observation: VarŒb�i � D �2.1 � hi i / < �2. In applications where the variability of the data is
estimated from fitted residuals, the estimate is invariably biased low. An example is the computation of an
empirical semivariogram based on fitted (detrended) residuals.

More important, the diagonal entries of H are not necessarily identical; the residuals are heteroscedastic. The
“hat” matrix is also not a diagonal matrix; the residuals are correlated. In summary, the only property that the
fitted residualsb� share with the model errors is a zero mean. It is thus commonplace to use transformations
of the fitted residuals for diagnostic purposes.
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Raw and Studentized Residuals
A standardized residual is a raw residual that is divided by its standard deviation:

b��i D Yi � bY iq
VarŒYi � bY i � D

b�ip
�2.1 � hi i /

Because �2 is unknown, residual standardization is usually not practical. A studentized residual is a raw
residual that is divided by its estimated standard deviation. If the estimate of the standard deviation is based
on the same data that were used in fitting the model, the residual is also called an internally studentized
residual:

b�is D Yi � bY iq
bVarŒYi � bY i � D

b�ipb�2.1 � hi i /
If the estimate of the residual’s variance does not involve the ith observation, it is called an externally
studentized residual. Suppose thatb�2

�i denotes the estimate of the residual variance obtained without the ith
observation; then the externally studentized residual is

b�ir D b�iqb�2
�i .1 � hi i /

Scaled Residuals
A scaled residual is simply a raw residual divided by a scalar quantity that is not an estimate of the variance
of the residual. For example, residuals divided by the standard deviation of the response variable are scaled
and referred to as Pearson or Pearson-type residuals:

b�ic D Yi � bY iq
bVarŒYi �

In generalized linear models, where the variance of an observation is a function of the mean � and possibly
of an extra scale parameter, VarŒY � D a.�/�, the Pearson residual is

b�iP D Yi �b�ip
a.b�/

because the sum of the squared Pearson residuals equals the Pearson X2 statistic:

X2 D

nX
iD1

b�2iP
When the scale parameter � participates in the scaling, the residual is also referred to as a Pearson-type
residual:

b�iP D Yi �b�ip
a.b�/�
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Other Residuals
You might encounter other residuals in SAS/STAT software. A “leave-one-out” residual is the difference
between the observed value and the residual obtained from fitting a model in which the observation in
question did not participate. If bY i is the predicted value of the ith observation and bY i;�i is the predicted
value if Yi is removed from the analysis, then the “leave-one-out” residual is

b�i;�i D Yi � bY i;�i
Since the sum of the squared “leave-one-out” residuals is the PRESS statistic (prediction sum of squares;
Allen 1974),b�i;�i is also called the PRESS residual. The concept of the PRESS residual can be generalized
if the deletion residual can be based on the removal of sets of observations. In the classical linear model, the
PRESS residual for case deletion has a particularly simple form:

b�i;�i D Yi � bY i;�i D b�i
1 � hi i

That is, the PRESS residual is simply a scaled form of the raw residual, where the scaling factor is a function
of the leverage of the observation.

When data are correlated, VarŒY� D V, you can scale the vector of residuals rather than scale each residual
separately. This takes the covariances among the observations into account. This form of scaling is
accomplished by forming the Cholesky root C0C D V, where C0 is a lower-triangular matrix. Then C0�1Y is
a vector of uncorrelated variables with unit variance. The Cholesky residuals in the model Y D Xˇ C � are

b�C D C0�1
�

Y � Xb̌�
In generalized linear models, the fit of a model can be measured by the scaled deviance statistic D�. It
measures the difference between the log likelihood under the model and the maximum log likelihood that is
achievable. In models with a scale parameter �, the deviance is D D � �D� D

Pn
iD1 di . The deviance

residuals are the signed square roots of the contributions to the deviance statistic:

b�id D signfyi �b�igpdi
Sweep Operator

The sweep operator (Goodnight 1979) is closely related to Gauss-Jordan elimination and the Forward
Doolittle procedure. The fact that a sweep operation can produce a generalized inverse by in-place mapping
with minimal storage and that its application invariably leads to some form of matrix inversion is important,
but this observation does not do justice to the pervasive relevance of sweeping to statistical computing. In this
section the sweep operator is discussed as a conceptual tool for further insight into linear model operations.
Consider the nonnegative definite, symmetric, partitioned matrix

A D
�

A11 A12
A012 A22

�
Sweeping a matrix consists of performing a series of row operations akin to Gauss-Jordan elimination. Basic
row operations are the multiplication of a row by a constant and the addition of a multiple of one row to
another. The sweep operator restricts row operations to pivots on the diagonal elements of a matrix; further
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details about the elementary operations can be found in Goodnight (1979). The process of sweeping the
matrix A on its leading partition is denoted as Sweep.A;A11/ and leads to

Sweep.A;A11/ D
�

A�11 A�11A12
�A012A�11 A22 � A012A�11A12

�
If the kth row and column are set to zero when the pivot is zero (or in practice, less than some singularity
tolerance), the generalized inverse in the leading position of the swept matrix is a reflexive, g2-inverse.
Suppose that the crossproduct matrix of the linear model is augmented with a “Y-border” as follows:

C D
�

X0X X0Y
Y0X Y0Y

�
Then the result of sweeping on the rows of X is

Sweep.C;X/ D
� �

X0X
�� �

X0X
��X0Y

�Y0X
�
X0X

�� Y0Y � Y0X
�
X0X

��X0Y

�

D

" �
X0X

�� b̌
�b̌ Y0MY

#
D

" �
X0X

�� b̌
�b̌ SSR

#
The “Y-border” has been transformed into the least squares solution and the residual sum of squares.

Partial sweeps are common in model selection. Suppose that the X matrix is partitioned as ŒX1 X2�, and
consider the augmented crossproduct matrix

C D

24 X01X1 X01X2 X01Y
X02X1 X02X2 X02Y
Y0X1 Y0X2 Y0Y

35
Sweeping on the X1 partition yields

Sweep.C;X1/ D

24 �
X01X1

�� �
X01X1

��X01X2
�
X01X1

��X01Y
�X02X1

�
X01X1

�� X02M1X2 X02M1Y
�Y0X1

�
X01X1

��
�Y0M1X2 Y0M1Y

35
where M1 D I � X1

�
X01X1

��X01. The entries in the first row of this partition are the generalized inverse
of X0X, the coefficients for regressing X2 on X1, and the coefficients for regressing Y on X1. The diagonal
entries X02M1X2 and Y0M1Y are the sum of squares and crossproduct matrices for regressing X2 on X1
and for regressing Y on X1, respectively. As you continue to sweep the matrix, the last cell in the partition
contains the residual sum of square of a model in which Y is regressed on all columns swept up to that point.

The sweep operator is not only useful to conceptualize the computation of least squares solutions, Type I and
Type II sums of squares, and generalized inverses. It can also be used to obtain other statistical information.
For example, adding the logarithms of the pivots of the rows that are swept yields the log determinant of the
matrix.
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Overview: Regression Procedures
This chapter provides an overview of SAS/STAT procedures that perform regression analysis. The REG
procedure provides extensive capabilities for fitting linear regression models that involve individual numeric
independent variables. Many other procedures can also fit regression models, but they focus on more
specialized forms of regression, such as robust regression, generalized linear regression, nonlinear regression,
nonparametric regression, quantile regression, regression modeling of survey data, regression modeling of
survival data, and regression modeling of transformed variables. The SAS/STAT procedures that can fit
regression models include the ADAPTIVEREG, CATMOD, GAM, GENMOD, GLIMMIX, GLM, GLMSE-
LECT, LIFEREG, LOESS, LOGISTIC, MIXED, NLIN, NLMIXED, ORTHOREG, PHREG, PLS, PROBIT,
QUANTREG, QUANTSELECT, REG, ROBUSTREG, RSREG, SURVEYLOGISTIC, SURVEYPHREG,
SURVEYREG, TPSPLINE, and TRANSREG procedures. Several procedures in SAS/ETS software also fit
regression models.

Introduction
In a linear regression model, the mean of a response variable Y is a function of parameters and covariates in a
statistical model. The many forms of regression models have their origin in the characteristics of the response
variable (discrete or continuous, normally or nonnormally distributed), assumptions about the form of the
model (linear, nonlinear, or generalized linear), assumptions about the data-generating mechanism (survey,
observational, or experimental data), and estimation principles. Some models contain classification (or
CLASS) variables that enter the model not through their values but through their levels. For an introduction
to linear regression models, see Chapter 3, “Introduction to Statistical Modeling with SAS/STAT Software.”
For information that is common to many of the regression procedures, see Chapter 19, “Shared Concepts
and Topics.” The following procedures, listed in alphabetical order, perform at least one type of regression
analysis.

ADAPTIVEREG fits multivariate adaptive regression spline models. This is a nonparametric regression
technique that combines both regression splines and model selection methods. PROC
ADAPTIVEREG produces parsimonious models that do not overfit the data and thus
have good predictive power. PROC ADAPTIVEREG supports CLASS variables.
For more information, see Chapter 25, “The ADAPTIVEREG Procedure.”

CATMOD analyzes data that can be represented by a contingency table. PROC CATMOD fits
linear models to functions of response frequencies, and it can be used for linear
and logistic regression. PROC CATMOD supports CLASS variables. For more
information, see Chapter 8, “Introduction to Categorical Data Analysis Procedures,”
and Chapter 32, “The CATMOD Procedure.”

GAM fits generalized additive models. Generalized additive models are nonparametric in
that the usual assumption of linear predictors is relaxed. Generalized additive models
consist of additive, smooth functions of the regression variables. PROC GAM can
fit additive models to nonnormal data. PROC GAM supports CLASS variables. For
more information, see Chapter 41, “The GAM Procedure.”

GENMOD fits generalized linear models. PROC GENMOD is especially suited for responses
that have discrete outcomes, and it performs logistic regression and Poisson regres-
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sion in addition to fitting generalized estimating equations for repeated measures
data. PROC GENMOD supports CLASS variables and provides Bayesian analysis
capabilities. For more information, see Chapter 8, “Introduction to Categorical Data
Analysis Procedures,” and Chapter 43, “The GENMOD Procedure.”

GLIMMIX uses likelihood-based methods to fit generalized linear mixed models. PROC GLIM-
MIX can perform simple, multiple, polynomial, and weighted regression, in addition
to many other analyses. PROC GLIMMIX can fit linear mixed models, which have
random effects, and models that do not have random effects. PROC GLIMMIX
supports CLASS variables. For more information, see Chapter 44, “The GLIMMIX
Procedure.”

GLM uses the method of least squares to fit general linear models. PROC GLM can
perform simple, multiple, polynomial, and weighted regression in addition to many
other analyses. PROC GLM has many of the same input/output capabilities as PROC
REG, but it does not provide as many diagnostic tools or allow interactive changes
in the model or data. PROC GLM supports CLASS variables. For more information,
see Chapter 5, “Introduction to Analysis of Variance Procedures,” and Chapter 45,
“The GLM Procedure.”

GLMSELECT performs variable selection in the framework of general linear models. PROC
GLMSELECT supports CLASS variables (like PROC GLM) and model selection
(like PROC REG). A variety of model selection methods are available, including for-
ward, backward, stepwise, LASSO, and least angle regression. PROC GLMSELECT
provides a variety of selection and stopping criteria. For more information, see
Chapter 48, “The GLMSELECT Procedure.”

LIFEREG fits parametric models to failure-time data that might be right-censored. These
types of models are commonly used in survival analysis. PROC LIFEREG supports
CLASS variables and provides Bayesian analysis capabilities. For more information,
see Chapter 13, “Introduction to Survival Analysis Procedures,” and Chapter 57,
“The LIFEREG Procedure.”

LOESS uses a local regression method to fit nonparametric models. PROC LOESS is
suitable for modeling regression surfaces in which the underlying parametric form is
unknown and for which robustness in the presence of outliers is required. For more
information, see Chapter 59, “The LOESS Procedure.”

LOGISTIC fits logistic models for binomial and ordinal outcomes. PROC LOGISTIC provides
a wide variety of model selection methods and computes numerous regression diag-
nostics. PROC LOGISTIC supports CLASS variables. For more information, see
Chapter 8, “Introduction to Categorical Data Analysis Procedures,” and Chapter 60,
“The LOGISTIC Procedure.”

MIXED uses likelihood-based techniques to fit linear mixed models. PROC MIXED can
perform simple, multiple, polynomial, and weighted regression, in addition to many
other analyses. PROC MIXED can fit linear mixed models, which have random
effects, and models that do not have random effects. PROC MIXED supports CLASS
variables. For more information, see Chapter 65, “The MIXED Procedure.”

NLIN uses the method of nonlinear least squares to fit general nonlinear regression mod-
els. Several different iterative methods are available. For more information, see
Chapter 69, “The NLIN Procedure.”
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NLMIXED uses the method of maximum likelihood to fit general nonlinear mixed regression
models. PROC NLMIXED enables you to specify a custom objective function for
parameter estimation and to fit models with or without random effects. For more
information, see Chapter 70, “The NLMIXED Procedure.”

ORTHOREG uses the Gentleman-Givens computational method to perform regression. For ill-
conditioned data, PROC ORTHOREG can produce more-accurate parameter esti-
mates than procedures such as PROC GLM and PROC REG. PROC ORTHOREG
supports CLASS variables. For more information, see Chapter 72, “The OR-
THOREG Procedure.”

PHREG fits Cox proportional hazards regression models to survival data. PROC PHREG
supports CLASS variables and provides Bayesian analysis capabilities. For more
information, see Chapter 13, “Introduction to Survival Analysis Procedures,” and
Chapter 73, “The PHREG Procedure.”

PLS performs partial least squares regression, principal component regression, and re-
duced rank regression, along with cross validation for the number of components.
PROC PLS supports CLASS variables. For more information, see Chapter 76, “The
PLS Procedure.”

PROBIT performs probit regression in addition to logistic regression and ordinal logistic
regression. PROC PROBIT is useful when the dependent variable is either di-
chotomous or polychotomous and the independent variables are continuous. PROC
PROBIT supports CLASS variables. For more information, see Chapter 81, “The
PROBIT Procedure.”

QUANTREG uses quantile regression to model the effects of covariates on the conditional quantiles
of a response variable. PROC QUANTREG supports CLASS variables. For more
information, see Chapter 83, “The QUANTREG Procedure.”

QUANTSELECT provides variable selection for quantile regression models. Selection methods include
forward, backward, stepwise, and LASSO. The procedure provides a variety of
selection and stopping criteria. PROC QUANTSELECT supports CLASS variables.
For more information, see Chapter 84, “The QUANTSELECT Procedure.”

REG performs linear regression with many diagnostic capabilities. PROC REG produces
fit, residual, and diagnostic plots; heat maps; and many other types of graphs. PROC
REG enables you to select models by using any one of nine methods, and you can
interactively change both the regression model and the data that are used to fit the
model. For more information, see Chapter 85, “The REG Procedure.”

ROBUSTREG uses Huber M estimation and high breakdown value estimation to perform robust
regression. PROC ROBUSTREG is suitable for detecting outliers and providing
resistant (stable) results in the presence of outliers. PROC ROBUSTREG supports
CLASS variables. For more information, see Chapter 86, “The ROBUSTREG
Procedure.”

RSREG builds quadratic response-surface regression models. PROC RSREG analyzes the
fitted response surface to determine the factor levels of optimum response and
performs a ridge analysis to search for the region of optimum response. For more
information, see Chapter 87, “The RSREG Procedure.”

SURVEYLOGISTIC uses the method of maximum likelihood to fit logistic models for binary and ordinal
outcomes to survey data. PROC SURVEYLOGISTIC supports CLASS variables.
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For more information, see Chapter 14, “Introduction to Survey Procedures,” and
Chapter 98, “The SURVEYLOGISTIC Procedure.”

SURVEYPHREG fits proportional hazards models for survey data by maximizing a partial pseudo-
likelihood function that incorporates the sampling weights. The SURVEYPHREG
procedure provides design-based variance estimates, confidence intervals, and
tests for the estimated proportional hazards regression coefficients. PROC SUR-
VEYPHREG supports CLASS variables. For more information, see Chapter 14,
“Introduction to Survey Procedures,” Chapter 13, “Introduction to Survival Analysis
Procedures,” and Chapter 100, “The SURVEYPHREG Procedure.”

SURVEYREG uses elementwise regression to fit linear regression models to survey data by gen-
eralized least squares. PROC SURVEYREG supports CLASS variables. For more
information, see Chapter 14, “Introduction to Survey Procedures,” and Chapter 101,
“The SURVEYREG Procedure.”

TPSPLINE uses penalized least squares to fit nonparametric regression models. PROC TP-
SPLINE makes no assumptions of a parametric form for the model. For more
information, see Chapter 103, “The TPSPLINE Procedure.”

TRANSREG fits univariate and multivariate linear models, optionally with spline, Box-Cox, and
other nonlinear transformations. Models include regression and ANOVA, conjoint
analysis, preference mapping, redundancy analysis, canonical correlation, and penal-
ized B-spline regression. PROC TRANSREG supports CLASS variables. For more
information, see Chapter 104, “The TRANSREG Procedure.”

Several SAS/ETS procedures also perform regression. The following procedures are documented in the
SAS/ETS User’s Guide:

ARIMA uses autoregressive moving-average errors to perform multiple regression analysis.
For more information, see Chapter 7, “The ARIMA Procedure” (SAS/ETS User’s
Guide).

AUTOREG implements regression models that use time series data in which the errors are
autocorrelated. For more information, see Chapter 8, “The AUTOREG Procedure”
(SAS/ETS User’s Guide).

COUNTREG analyzes regression models in which the dependent variable takes nonnegative
integer or count values. For more information, see Chapter 11, “The COUNTREG
Procedure” (SAS/ETS User’s Guide).

MDC fits conditional logit, mixed logit, heteroscedastic extreme value, nested logit, and
multinomial probit models to discrete choice data. For more information, see
Chapter 18, “The MDC Procedure” (SAS/ETS User’s Guide).

MODEL handles nonlinear simultaneous systems of equations, such as econometric models.
For more information, see Chapter 19, “The MODEL Procedure” (SAS/ETS User’s
Guide).

PANEL analyzes a class of linear econometric models that commonly arise when time series
and cross-sectional data are combined. For more information, see Chapter 20, “The
PANEL Procedure” (SAS/ETS User’s Guide).

PDLREG fits polynomial distributed lag regression models. For more information, see Chap-
ter 21, “The PDLREG Procedure” (SAS/ETS User’s Guide).
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QLIM analyzes limited dependent variable models in which dependent variables take dis-
crete values or are observed only in a limited range of values. For more information,
see Chapter 22, “The QLIM Procedure” (SAS/ETS User’s Guide).

SYSLIN handles linear simultaneous systems of equations, such as econometric models.
For more information, see Chapter 29, “The SYSLIN Procedure” (SAS/ETS User’s
Guide).

VARMAX performs multiple regression analysis for multivariate time series dependent vari-
ables by using current and past vectors of dependent and independent variables as
predictors, with vector autoregressive moving-average errors, and with modeling
of time-varying heteroscedasticity. For more information, see Chapter 35, “The
VARMAX Procedure” (SAS/ETS User’s Guide).

Introductory Example: Linear Regression
Regression analysis models the relationship between a response or outcome variable and another set of
variables. This relationship is expressed through a statistical model equation that predicts a response variable
(also called a dependent variable or criterion) from a function of regressor variables (also called independent
variables, predictors, explanatory variables, factors, or carriers) and parameters. In a linear regression
model, the predictor function is linear in the parameters (but not necessarily linear in the regressor variables).
The parameters are estimated so that a measure of fit is optimized. For example, the equation for the ith
observation might be

Yi D ˇ0 C ˇ1xi C �i

where Yi is the response variable, xi is a regressor variable, ˇ0 and ˇ1 are unknown parameters to be
estimated, and �i is an error term. This model is called the simple linear regression (SLR) model, because it
is linear in ˇ0 and ˇ1 and contains only a single regressor variable.

Suppose you are using regression analysis to relate a child’s weight to the child’s height. One application
of a regression model that contains the response variable Weight is to predict a child’s weight for a known
height. Suppose you collect data by measuring heights and weights of 19 randomly selected schoolchildren.
A simple linear regression model that contains the response variable Weight and the regressor variable Height
can be written as

Weighti D ˇ0 C ˇ1Heighti C �i

where

Weighti is the response variable for the ith child

Heighti is the regressor variable for the ith child

ˇ0, ˇ1 are the unknown regression parameters

�i is the unobservable random error associated with the ith observation

The data set Sashelp.class, which is available in the Sashelp library, identifies the children and their observed
heights (the variable Height) and weights (the variable Weight). The following statements perform the
regression analysis:
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ods graphics on;
proc reg data=sashelp.class;

model Weight = Height;
run;

Figure 4.1 displays the default tabular output of PROC REG for this model. Nineteen observations are read
from the data set, and all observations are used in the analysis. The estimates of the two regression parameters
are b̌0 D �143:02692 and č1 D 3:89903. These estimates are obtained by the least squares principle. For
more information about the principle of least squares estimation and its role in linear model analysis, see
the sections “Classical Estimation Principles” and “Linear Model Theory” in Chapter 3, “Introduction to
Statistical Modeling with SAS/STAT Software.” Also see an applied regression text such as Draper and
Smith (1998); Daniel and Wood (1999); Johnston and DiNardo (1997); Weisberg (2005).

Figure 4.1 Regression for Weight and Height Data

The REG Procedure
Model: MODEL1

Dependent Variable: Weight

The REG Procedure
Model: MODEL1

Dependent Variable: Weight

Number of Observations Read 19

Number of Observations Used 19

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 1 7193.24912 7193.24912 57.08 <.0001

Error 17 2142.48772 126.02869

Corrected Total 18 9335.73684

Root MSE 11.22625 R-Square 0.7705

Dependent Mean 100.02632 Adj R-Sq 0.7570

Coeff Var 11.22330

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 -143.02692 32.27459 -4.43 0.0004

Height 1 3.89903 0.51609 7.55 <.0001

Based on the least squares estimates shown in Figure 4.1, the fitted regression line that relates height to
weight is described by the equation

2Weight D �143:02692C 3:89903 �Height

The “hat” notation is used to emphasize that 2Weight is not one of the original observations but a value
predicted under the regression model that has been fit to the data. In the least squares solution, the following
residual sum of squares is minimized and the achieved criterion value is displayed in the analysis of variance
table as the error sum of squares (2142.48772):

SSE D
19X
iD1

.Weighti � ˇ0 � ˇ1Heighti /
2
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Figure 4.2 displays the fit plot that is produced by ODS Graphics. The fit plot shows the positive slope of the
fitted line. The average weight of a child changes by b̌1 D 3:89903 units for each unit change in height. The
95% confidence limits in the fit plot are pointwise limits that cover the mean weight for a particular height
with probability 0.95. The prediction limits, which are wider than the confidence limits, show the pointwise
limits that cover a new observation for a given height with probability 0.95.

Figure 4.2 Fit Plot for Regression of Weight on Height

Regression is often used in an exploratory fashion to look for empirical relationships, such as the relationship
between Height and Weight. In this example, Height is not the cause of Weight. You would need a controlled
experiment to confirm the relationship scientifically. For more information, see the section “Comments on
Interpreting Regression Statistics” on page 95. A separate question from whether there is a cause-and-effect
relationship between the two variables that are involved in this regression is whether the simple linear
regression model adequately describes the relationship among these data. If the SLR model makes the usual
assumptions about the model errors �i , then the errors should have zero mean and equal variance and be
uncorrelated. Because the children were randomly selected, the observations from different children are not
correlated. If the mean function of the model is correctly specified, the fitted residuals Weighti �2Weighti
should scatter around the zero reference line without discernible structure. The residual plot in Figure 4.3
confirms this.
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Figure 4.3 Residual Plot for Regression of Weight on Height

The panel of regression diagnostics in Figure 4.4 provides an even more detailed look at the model-data
agreement. The graph in the upper left panel repeats the raw residual plot in Figure 4.3. The plot of the
RSTUDENT residuals shows externally studentized residuals that take into account heterogeneity in the
variability of the residuals. RSTUDENT residuals that exceed the threshold values of ˙2 often indicate
outlying observations. The residual-by-leverage plot shows that two observations have high leverage—that is,
they are unusual in their height values relative to the other children. The normal-probability Q-Q plot in the
second row of the panel shows that the normality assumption for the residuals is reasonable. The plot of the
Cook’s D statistic shows that observation 15 exceeds the threshold value, indicating that the observation for
this child has a strong influence on the regression parameter estimates.
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Figure 4.4 Panel of Regression Diagnostics

For more information about the interpretation of regression diagnostics and about ODS statistical graphics
with PROC REG, see Chapter 85, “The REG Procedure.”

SAS/STAT regression procedures produce the following information for a typical regression analysis:

• parameter estimates that are derived by using the least squares criterion
• estimates of the variance of the error term
• estimates of the variance or standard deviation of the sampling distribution of the parameter estimates
• tests of hypotheses about the parameters
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SAS/STAT regression procedures can produce many other specialized diagnostic statistics, including the
following:

• collinearity diagnostics to measure how strongly regressors are related to other regressors and how this
relationship affects the stability and variance of the estimates (REG procedure)

• influence diagnostics to measure how each individual observation contributes to determining the
parameter estimates, the SSE, and the fitted values (GENMOD, GLM, LOGISTIC, MIXED, NLIN,
PHREG, REG, and RSREG procedures)

• lack-of-fit diagnostics that measure the lack of fit of the regression model by comparing the error
variance estimate to another pure error variance that does not depend on the form of the model
(CATMOD, LOGISTIC, PROBIT, and RSREG procedures)

• diagnostic plots that check the fit of the model (GLM, LOESS, PLS, REG, RSREG, and TPSPLINE
procedures)

• predicted and residual values, and confidence intervals for the mean and for an individual value
(GLIMMIX, GLM, LOESS, LOGISTIC, NLIN, PLS, REG, RSREG, TPSPLINE, and TRANSREG
procedures)

• time series diagnostics for equally spaced time series data that measure how closely errors might be
related across neighboring observations. These diagnostics can also measure functional goodness of fit
for data that are sorted by regressor or response variables (REG and SAS/ETS procedures).

Many SAS/STAT procedures produce general and specialized statistical graphics through ODS Graphics
to diagnose the fit of the model and the model-data agreement, and to highlight observations that strongly
influence the analysis. Figure 4.2, Figure 4.3, and Figure 4.4, for example, show three of the ODS statistical
graphs that are produced by PROC REG by default for the simple linear regression model. For general
information about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.” For specific information
about the ODS statistical graphs available with a SAS/STAT procedure, see the PLOTS option in the “Syntax”
section for the PROC statement and the “ODS Graphics” section in the “Details” section of the individual
procedure documentation.

Model Selection Methods
Statistical model selection (or model building) involves forming a model from a set of regressor variables
that fits the data well but without overfitting. Models are overfit when they contain too many unimportant
regressor variables. Overfit models are too closely molded to a particular data set. As a result, overfit models
have unstable regression coefficients and are quite likely to have poor predictive power. Guided, numerical
variable selection methods offer one approach to building models in situations where many potential regressor
variables are available for inclusion in a regression model.

Both the REG and GLMSELECT procedures provide extensive options for model selection in ordinary
linear regression models.1 PROC GLMSELECT provides the most modern and flexible options for model
selection. PROC GLMSELECT provides more selection options and criteria than PROC REG, and PROC

1The QUANTSELECT, PHREG, and LOGISTIC procedures provide model selection for quantile, proportional hazards, and
logistic regression, respectively.
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GLMSELECT also supports CLASS variables. For more information about PROC GLMSELECT, see
Chapter 48, “The GLMSELECT Procedure.” For more information about PROC REG, see Chapter 85, “The
REG Procedure.”

SAS/STAT procedures provide the following model selection options for regression models:

NONE performs no model selection. This method uses the full model given in the MODEL
statement to fit the model. This selection method is available in the GLMSELECT,
LOGISTIC, PHREG, QUANTSELECT, and REG procedures.

FORWARD uses a forward-selection algorithm to select variables. This method starts with no variables
in the model and adds variables one by one to the model. At each step, the variable that
is added is the one that most improves the fit of the model. You can also specify groups
of variables to treat as a unit during the selection process. An option enables you to
specify the criterion for inclusion. This selection method is available in the GLMSELECT,
LOGISTIC, PHREG, QUANTSELECT, and REG procedures.

BACKWARD uses a backward-elimination algorithm to select variables. This method starts with a full
model and eliminates variables one by one from the model. At each step, the variable that
makes the smallest contribution to the model is deleted. You can also specify groups of
variables to treat as a unit during the selection process. An option enables you to specify
the criterion for exclusion. This selection method is available in the GLMSELECT,
LOGISTIC, PHREG, QUANTSELECT, and REG procedures.

STEPWISE uses a stepwise-regression algorithm to select variables; it combines the forward-selection
and backward-elimination steps. This method is a modification of the forward-selection
method in that variables already in the model do not necessarily stay there. You can
also specify groups of variables to treat as a unit during the selection process. Again,
options enable you to specify criteria for entering the model and for remaining in the
model. This selection method is available in the GLMSELECT, LOGISTIC, PHREG,
QUANTSELECT, and REG procedures.

LASSO adds and deletes parameters by using a version of ordinary least squares in which the
sum of the absolute regression coefficients is constrained. If the model contains CLASS
variables, then these CLASS variables are split. This selection method is available in the
GLMSELECT and QUANTSELECT procedures.

LAR uses least angle regression to select variables. Like forward selection, this method starts
with no effects in the model and adds effects. The parameter estimates at any step are
“shrunk” when compared to the corresponding least squares estimates. If the model
contains CLASS variables, then these CLASS variables are split. This selection method
is available in PROC GLMSELECT.

MAXR uses maximum R-square improvement to select models. This method tries to find the best
one-variable model, the best two-variable model, and so on. The MAXR method differs
from the STEPWISE method in that it evaluates many more models. The MAXR method
considers all possible variable exchanges before making any exchange. The STEPWISE
method might remove the “worst” variable without considering what the “best” remaining
variable might accomplish, whereas MAXR considers what the “best” remaining variable
might accomplish. Consequently, model building based on the maximum R-square
improvement usually takes much longer than stepwise model building. This selection
method is available in PROC REG.
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MINR uses minimum R-square improvement to select models. This method closely resembles
MAXR, but the switch that is chosen is the one that produces the smallest increase in R
square. This selection method is available in PROC REG.

RSQUARE selects a specified number of models that have the highest R square in each of a range of
model sizes. This selection method is available in PROC REG.

CP selects a specified number of models that have the lowest Cp within a range of model
sizes. This selection method is available in PROC REG.

ADJRSQ selects a specified number of models that have the highest adjusted R square within a
range of model sizes. This selection method is available in PROC REG.

SCORE selects models based on a branch-and-bound algorithm that finds a specified number of
models that have the highest likelihood score for all possible model sizes, from one up to
a model that contains all the explanatory effects. This selection method is available in
PROC LOGISTIC and PROC PHREG.

Linear Regression: The REG Procedure
PROC REG is a general-purpose procedure for linear regression that does the following:

• handles simple and multiple regression models
• provides nine model selection methods
• allows interactive changes both in the model and in the data that are used to fit the model
• allows linear equality restrictions on parameters
• tests linear hypotheses and multivariate hypotheses
• produces collinearity diagnostics, influence diagnostics, and partial regression leverage plots
• saves estimates, predicted values, residuals, confidence limits, and other diagnostic statistics in output

SAS data sets
• generates plots of fit, of data, and of various statistics
• uses data, correlations, or crossproducts for input

Regression with the REG and GLM Procedures

The REG and GLM procedures are closely related; they make the same assumptions about the basic model
and use the same estimation principles. Both procedures estimate parameters by ordinary or weighted least
squares and assume homoscedastic, uncorrelated model errors with zero mean. An assumption of normality
of the model errors is not necessary for parameter estimation, but it is implied in confirmatory inference
based on the parameter estimates—that is, the computation of tests, p-values, and confidence and prediction
intervals.

PROC GLM provides a CLASS statement for the levelization of classification variables; see the section
“Parameterization of Model Effects” on page 387 in Chapter 19, “Shared Concepts and Topics,” on the
parameterization of classification variables in statistical models. In most cases, you should directly use PROC
GLM, PROC GLMSELECT, or some other procedure when you fit models that have classification variables.
However, you can fit models that have classification variables in PROC REG by first coding the classification
variables by using PROC GLMSELECT, PROC TRANSREG, PROC GLMMOD, or some other method,
and then including the coded variables in the MODEL statement in PROC REG.
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Most of the statistics based on predicted and residual values that are available in PROC REG are also available
in PROC GLM. However, PROC REG provides more diagnostic information. In addition, PROC GLM
allows only one model and does not provide model selection.

Both PROC REG and PROC GLM are interactive, in that they do not stop after processing a RUN statement.
Both procedures accept statements until a QUIT statement is submitted. For more information about
interactive procedures, see the section “Interactive Features in the CATMOD, GLM, and REG Procedures”
on page 83.

Model Selection: The GLMSELECT Procedure
PROC GLMSELECT performs model selection in the framework of general linear models. A variety of
model selection methods are available, including forward, backward, stepwise, the LASSO method of
Tibshirani (1996), and the related least angle regression method of Efron et al. (2004). The GLMSELECT
procedure offers extensive capabilities for customizing the selection by providing a wide variety of selection
and stopping criteria, including significance level–based and validation-based criteria. The procedure also
provides graphical summaries of the selection process.

PROC GLMSELECT compares most closely with PROC REG and PROC GLM. PROC REG supports
a variety of model selection methods but does not provide a CLASS statement. PROC GLM provides a
CLASS statement but does not provide model selection methods. PROC GLMSELECT fills this gap. PROC
GLMSELECT focuses on the standard general linear model for univariate responses with independently
and identically distributed errors. PROC GLMSELECT provides results (tables, output data sets, and macro
variables) that make it easy to explore the selected model in more detail in a subsequent procedure such as
PROC REG or PROC GLM.

Response Surface Regression: The RSREG Procedure
PROC RSREG fits a quadratic response-surface model, which is useful in searching for factor values
that optimize a response. The following features in PROC RSREG make it preferable to other regression
procedures for analyzing response surfaces:

• automatic generation of quadratic effects
• a lack-of-fit test
• solutions for critical values of the surface
• eigenvalues of the associated quadratic form
• a ridge analysis to search for the direction of optimum response

Partial Least Squares Regression: The PLS Procedure
PROC PLS fits models by using any of a number of linear predictive methods, including partial least squares
(PLS). Ordinary least squares regression, as implemented in the GLM or REG procedure, has the single goal
of minimizing sample response prediction error by seeking linear functions of the predictors that explain
as much variation in each response as possible. The techniques that are implemented in PROC PLS have
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the additional goal of accounting for variation in the predictors under the assumption that directions in
the predictor space that are well sampled should provide better prediction for new observations when the
predictors are highly correlated. All the techniques that are implemented in PROC PLS work by extracting
successive linear combinations of the predictors, called factors (also called components or latent vectors),
which optimally address one or both of these two goals—explaining response variation and explaining
predictor variation. In particular, the method of partial least squares balances the two objectives, seeking
factors that explain both response variation and predictor variation.

Generalized Linear Regression
As outlined in the section “Generalized Linear Models” on page 29 in Chapter 3, “Introduction to Statistical
Modeling with SAS/STAT Software,” the class of generalized linear models generalizes the linear regression
models in two ways:

• by allowing the data to come from a distribution that is a member of the exponential family of
distributions

• by introducing a link function, g.�/, that provides a mapping between the linear predictor � D x0ˇ and
the mean of the data, g.EŒY �/ D �. The link function is monotonic, so that EŒY � D g�1.�/; g�1.�/ is
called the inverse link function.

One of the most commonly used generalized linear regression models is the logistic model for binary or
binomial data. Suppose that Y denotes a binary outcome variable that takes on the values 1 and 0 with the
probabilities � and 1 � � , respectively. The probability � is also referred to as the “success probability,”
supposing that the coding Y D 1 corresponds to a success in a Bernoulli experiment. The success probability
is also the mean of Y, and one of the aims of logistic regression analysis is to study how regressor variables
affect the outcome probabilities or functions thereof, such as odds ratios.

The logistic regression model for � is defined by the linear predictor � D x0ˇ and the logit link function:

logit.Pr.Y D 0// D log
� �

1 � �

�
D x0ˇ

The inversely linked linear predictor function in this model is

Pr.Y D 0/ D
1

1C exp.��/

The dichotomous logistic regression model can be extended to multinomial (polychotomous) data. Two
classes of models for multinomial data can be fit by using procedures in SAS/STAT software: models for
ordinal data that rely on cumulative link functions, and models for nominal (unordered) outcomes that rely on
generalized logits. The next sections briefly discuss SAS/STAT procedures for logistic regression. For more
information about the comparison of the procedures mentioned there with respect to analysis of categorical
responses, see Chapter 8, “Introduction to Categorical Data Analysis Procedures.”

The SAS/STAT procedures CATMOD, GENMOD, GLIMMIX, LOGISTIC, and PROBIT can fit generalized
linear models for binary, binomial, and multinomial outcomes.
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Contingency Table Data: The CATMOD Procedure

PROC CATMOD fits models to data that are represented by a contingency table by using weighted least
squares and a variety of link functions. Although PROC CATMOD also provides maximum likelihood
estimation for logistic regression, PROC LOGISTIC is more efficient for most analyses.

Generalized Linear Models: The GENMOD Procedure

PROC GENMOD is a generalized linear modeling procedure that estimates parameters by maximum
likelihood. It uses CLASS and MODEL statements to form the statistical model and can fit models to binary
and ordinal outcomes. The GENMOD procedure does not fit generalized logit models for nominal outcomes.
However, PROC GENMOD can solve generalized estimating equations (GEE) to model correlated data and
can perform a Bayesian analysis.

Generalized Linear Mixed Models: The GLIMMIX Procedure

PROC GLIMMIX fits generalized linear mixed models. If the model does not contain random effects, PROC
GLIMMIX fits generalized linear models by using the method of maximum likelihood. In the class of logistic
regression models, PROC GLIMMIX can fit models to binary, binomial, ordinal, and nominal outcomes.

Logistic Regression: The LOGISTIC Procedure

PROC LOGISTIC fits logistic regression models and estimates parameters by maximum likelihood. The
procedure fits the usual logistic regression model for binary data in addition to models with the cumulative
link function for ordinal data (such as the proportional odds model) and the generalized logit model for
nominal data. PROC LOGISTIC offers a number of variable selection methods and can perform conditional
and exact conditional logistic regression analysis.

Discrete Event Data: The PROBIT Procedure

PROC PROBIT calculates maximum likelihood estimates of regression parameters and the natural (or
threshold) response rate for quantal response data from biological assays or other discrete event data. PROC
PROBIT fits probit, logit, ordinal logistic, and extreme value (or gompit) regression models.

Correlated Data: The GENMOD and GLIMMIX Procedures

When a generalized linear model is formed by using distributions other than the binary, binomial, or
multinomial distribution, you can use the GENMOD and GLIMMIX procedures for parameter estimation
and inference.

Both PROC GENMOD and PROC GLIMMIX can accommodate correlated observations, but they use
different techniques. PROC GENMOD fits correlated data models by using generalized estimating equations
that rely on a first- and second-moment specification for the response data and a working correlation
assumption. With PROC GLIMMIX, you can model correlations between the observations either by
specifying random effects in the conditional distribution that induce a marginal correlation structure or by
direct modeling of the marginal dependence. PROC GLIMMIX uses likelihood-based techniques to estimate
parameters.

PROC GENMOD supports a Bayesian analysis through its BAYES statement.

With PROC GLIMMIX, you can vary the distribution or link function from one observation to the next.
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To fit a generalized linear model by using a distribution that is not available in the GENMOD or GLIMMIX
procedure, you can use PROC NLMIXED and use SAS programming statements to code the log-likelihood
function of an observation.

Ill-Conditioned Data: The ORTHOREG Procedure
PROC ORTHOREG performs linear least squares regression by using the Gentleman-Givens computational
method (Gentleman 1972, 1973), and it can produce more accurate parameter estimates for ill-conditioned
data. PROC GLM and PROC REG produce very accurate estimates for most problems. However, if you have
very ill-conditioned data, consider using PROC ORTHOREG. The collinearity diagnostics in PROC REG
can help you determine whether PROC ORTHOREG would be useful.

Quantile Regression: The QUANTREG and QUANTSELECT Procedures
PROC QUANTREG models the effects of covariates on the conditional quantiles of a response variable by
using quantile regression. PROC QUANTSELECT performs quantile regression with model selection.

Ordinary least squares regression models the relationship between one or more covariates X and the con-
ditional mean of the response variable EŒY jX D x�. Quantile regression extends the regression model to
conditional quantiles of the response variable, such as the 90th percentile. Quantile regression is particularly
useful when the rate of change in the conditional quantile, expressed by the regression coefficients, depends
on the quantile. An advantage of quantile regression over least squares regression is its flexibility in modeling
data that have heterogeneous conditional distributions. Data of this type occur in many fields, including
biomedicine, econometrics, and ecology.

Features of PROC QUANTREG include the following:

• simplex, interior point, and smoothing algorithms for estimation
• sparsity, rank, and resampling methods for confidence intervals
• asymptotic and bootstrap methods to estimate covariance and correlation matrices of the parameter

estimates
• Wald and likelihood ratio tests for the regression parameter estimates
• regression quantile spline fits

The QUANTSELECT procedure shares most of its syntax and output format with PROC GLMSELECT and
PROC QUANTREG. Features of PROC QUANTSELECT include the following:

• a variety of selection methods, including forward, backward, stepwise, and LASSO
• a variety of criteria, including AIC, AICC, ADJR1, SBC, significance level, testing ACL, and validation

ACL
• effect selection both for individual quantile levels and for the entire quantile process
• a SAS data set that contains the design matrix
• macro variables that enable you to easily specify the selected model by using a subsequent PROC

QUANTREG step
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Nonlinear Regression: The NLIN and NLMIXED Procedures
Recall from Chapter 3, “Introduction to Statistical Modeling with SAS/STAT Software,” that a nonlinear
regression model is a statistical model in which the mean function depends on the model parameters in a
nonlinear function. The SAS/STAT procedures that can fit general, nonlinear models are the NLIN and
NLMIXED procedures. These procedures have the following similarities:

• Nonlinear models are fit by iterative methods.
• You must provide an expression for the model by using SAS programming statements.
• Analytic derivatives of the objective function with respect to the parameters are calculated automati-

cally.
• A grid search is available to select the best starting values for the parameters from a set of starting

points that you provide.

The procedures have the following differences:

• PROC NLIN estimates parameters by using nonlinear least squares; PROC NLMIXED estimates
parameters by using maximum likelihood.

• PROC NLMIXED enables you to construct nonlinear models that contain normally distributed random
effects.

• PROC NLIN requires that you declare all model parameters in the PARAMETERS statement and assign
starting values. PROC NLMIXED determines the parameters in your model from the PARAMETER
statement and the other modeling statements. It is not necessary to supply starting values for all
parameters in PROC NLMIXED, but it is highly recommended.

• The residual variance is not a parameter in models that are fit by using PROC NLIN, but it is a
parameter in models that are fit by using PROC NLMIXED.

• The default iterative optimization method in PROC NLIN is the Gauss-Newton method; the default
method in PROC NLMIXED is the quasi-Newton method. Other optimization techniques are available
in both procedures.

Nonlinear models are fit by using iterative techniques that begin from starting values and attempt to iteratively
improve on the estimates. There is no guarantee that the solution that is achieved when the iterative algorithm
converges will correspond to a global optimum.

Nonparametric Regression
Parametric regression models express the mean of an observation as a function of the regressor variables
x1; : : : ; xk and the parameters ˇ1; : : : ; ˇp:

EŒY � D f .x1; : : : ; xkIˇ1; : : : ; ˇp/

Not only do nonparametric regression techniques relax the assumption of linearity in the regression parameters,
but they also do not require that you specify a precise functional form for the relationship between response
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and regressor variables. Consider a regression problem in which the relationship between response Y and
regressor X is to be modeled. It is assumed that EŒYi � D g.xi /C �i , where g.�/ is an unspecified regression
function. Two primary approaches in nonparametric regression modeling are as follows:

• Approximate g.xi / locally by a parametric function that is constructed from information in a local
neighborhood of xi .

• Approximate the unknown function g.xi / by a smooth, flexible function and determine the necessary
smoothness and continuity properties from the data.

The SAS/STAT procedures ADAPTIVEREG, LOESS, TPSPLINE, and GAM fit nonparametric regression
models by one of these methods.

Adaptive Regression: The ADAPTIVEREG Procedure

PROC ADAPTIVEREG fits multivariate adaptive regression splines as defined by Friedman (1991). The
method is a nonparametric regression technique that combines regression splines and model selection methods.
It does not assume parametric model forms and does not require specification of knot values for constructing
regression spline terms. Instead, it constructs spline basis functions in an adaptive way by automatically
selecting appropriate knot values for different variables and obtains reduced models by applying model
selection techniques. PROC ADAPTIVEREG supports models that contain classification variables.

Local Regression: The LOESS Procedure

PROC LOESS implements a local regression approach for estimating regression surfaces that was pioneered
by Cleveland, Devlin, and Grosse (1988). No assumptions about the parametric form of the entire regression
surface are made by PROC LOESS. Only a parametric form of the local approximation is specified by the
user. Furthermore, PROC LOESS is suitable when there are outliers in the data and a robust fitting method is
necessary.

Thin Plate Smoothing Splines: The TPSPLINE Procedure

PROC TPSPLINE decomposes the regressor contributions to the mean function into parametric components
and into smooth functional components. Suppose that the regressor variables are collected into the vector x
and that this vector is partitioned as x D Œx01 x02�

0. The relationship between Y and x2 is linear (parametric),
and the relationship between Y and x1 is nonparametric. PROC TPSPLINE fits models of the form

EŒY � D g.x1/C x02ˇ

The function g.�/ can be represented as a sequence of spline basis functions.

The parameters are estimated by a penalized least squares method. The penalty is applied to the usual least
squares criterion to obtain a regression estimate that fits the data well and to prevent the fit from attempting
to interpolate the data (fit the data too closely).

Generalized Additive Models: The GAM Procedure

Generalized additive models are nonparametric models in which one or more regressor variables are present
and can make different smooth contributions to the mean function. For example, if xi D Œxi1; xi2; : : : ; xik�
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is a vector of k regressor for the ith observation, then an additive model represents the mean function as

EŒY � D f0 C f1.xi1/C f2.xi2/C � � � C f3.xi3/

The individual functions fj can have a parametric or nonparametric form. If all fj are parametric, PROC
GAM fits a fully parametric model. If some fj are nonparametric, PROC GAM fits a semiparametric model.
Otherwise, the models are fully nonparametric.

The generalization of additive models is akin to the generalization for linear models: nonnormal data are
accommodated by explicitly modeling the distribution of the data as a member of the exponential family and
by applying a monotonic link function that provides a mapping between the predictor and the mean of the
data.

Robust Regression: The ROBUSTREG Procedure
PROC ROBUSTREG implements algorithms to detect outliers and provide resistant (stable) results in
the presence of outliers. The ROBUSTREG procedure provides four such methods: M estimation, LTS
estimation, S estimation, and MM estimation.

• M estimation, which was introduced by Huber (1973), is the simplest approach both computationally
and theoretically. Although it is not robust with respect to leverage points, it is still used extensively in
analyzing data for which it can be assumed that the contamination is mainly in the response direction.

• Least trimmed squares (LTS) estimation is a high breakdown value method that was introduced by
Rousseeuw (1984). The breakdown value is a measure of the proportion of observations that are
contaminated by outliers that an estimation method can withstand and still maintain its robustness.

• S estimation is a high breakdown value method that was introduced by Rousseeuw and Yohai (1984).
When the breakdown value is the same, it has a higher statistical efficiency than LTS estimation.

• MM estimation, which was introduced by Yohai (1987), combines high breakdown value estimation
and M estimation. It has the high breakdown property of S estimation but a higher statistical efficiency.

For diagnostic purposes, PROC ROBUSTREG also implements robust leverage-point detection based on the
robust Mahalanobis distance. The robust distance is computed by using a generalized minimum covariance
determinant (MCD) algorithm.

Regression with Transformations: The TRANSREG Procedure
PROC TRANSREG fits linear models to data. In addition, PROC TRANSREG can find nonlinear transfor-
mations of the data and fit a linear model to the transformed data. This is in contrast to PROC REG and
PROC GLM, which fit linear models to data, and PROC NLIN, which fits nonlinear models to data. PROC
TRANSREG fits a variety of models, including the following:

• ordinary regression and ANOVA
• metric and nonmetric conjoint analysis
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• metric and nonmetric vector and ideal point preference mapping
• simple, multiple, and multivariate regression with optional variable transformations
• redundancy analysis with optional variable transformations
• canonical correlation analysis with optional variable transformations
• simple and multiple regression models with a Box-Cox (1964) transformation of the dependent variable
• regression models with penalized B-splines (Eilers and Marx 1996)

Interactive Features in the CATMOD, GLM, and REG Procedures
The CATMOD, GLM, and REG procedures are interactive: they do not stop after processing a RUN statement.
You can submit more statements to continue the analysis that was started by the previous statements. Both
interactive and noninteractive procedures stop if a DATA step, a new procedure step, or a QUIT or ENDSAS
statement is submitted. Noninteractive SAS procedures also stop if a RUN statement is submitted.

Placement of statements is critical in interactive procedures, particularly for ODS statements. For example, if
you submit the following steps, no ODS OUTPUT data set is created:

proc reg data=sashelp.class;
model weight = height;

run;

ods output parameterestimates=pm;
proc glm data=sashelp.class;

class sex;
model weight = sex | height / solution;

run;

You can cause the PROC GLM step to create an output data set by adding a QUIT statement to the PROC
REG step or by moving the ODS OUTPUT statement so that it follows the PROC GLM statement. For
more information about the placement of RUN, QUIT, and ODS statements in interactive procedures, see
Example 20.6 in Chapter 20, “Using the Output Delivery System.”

Statistical Background in Linear Regression
The remainder of this chapter outlines the way in which many SAS/STAT regression procedures calculate
various regression quantities. The discussion focuses on the linear regression models. For general statistical
background about linear statistical models, see the section “Linear Model Theory” in Chapter 3, “Introduction
to Statistical Modeling with SAS/STAT Software.”

Exceptions and further details are documented for individual procedures.

Linear Regression Models
In matrix notation, a linear model is written as

Y D Xˇ C �
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where X is the .n� k/ design matrix (rows are observations and columns are the regressors), ˇ is the .k � 1/
vector of unknown parameters, and � is the .n � 1/ vector of unobservable model errors. The first column of
X is usually a vector of 1s and is used to estimate the intercept term.

The statistical theory of linear models is based on strict classical assumptions. Ideally, you measure the
response after controlling all factors in an experimentally determined environment. If you cannot control the
factors experimentally, some tests must be interpreted as being conditional on the observed values of the
regressors.

Other assumptions are as follows:

• The form of the model is correct (all important explanatory variables have been included). This
assumption is reflected mathematically in the assumption of a zero mean of the model errors, EŒ�� D 0.

• Regressor variables are measured without error.

• The expected value of the errors is 0.

• The variance of the error (and thus the dependent variable) for the ith observation is �2=wi , where wi
is a known weight factor. Usually, wi D 1 for all i and thus �2 is the common, constant variance.

• The errors are uncorrelated across observations.

When hypotheses are tested, or when confidence and prediction intervals are computed, an additional
assumption is made that the errors are normally distributed.

Parameter Estimates and Associated Statistics

Least Squares Estimators

Least squares estimators of the regression parameters are found by solving the normal equations�
X0WX

�
ˇ D X0WY

for the vector ˇ, where W is a diagonal matrix of observed weights. The resulting estimator of the parameter
vector is

b̌D �X0WX
��1 X0WY

This is an unbiased estimator, because

E
hb̌i D �X0WX

��1 X0WEŒY�

D
�
X0WX

��1 X0WXˇ D ˇ

Notice that the only assumption necessary in order for the least squares estimators to be unbiased is that of a
zero mean of the model errors. If the estimator is evaluated at the observed data, it is referred to as the least
squares estimate,

b̌D �X0WX
��1 X0WY
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If the standard classical assumptions are met, the least squares estimators of the regression parameters are the
best linear unbiased estimators (BLUE). In other words, the estimators have minimum variance in the class
of estimators that are unbiased and that are linear functions of the responses. If the additional assumption of
normally distributed errors is satisfied, then the following are true:

• The statistics that are computed have the proper sampling distributions for hypothesis testing.

• Parameter estimators are normally distributed.

• Various sums of squares are distributed proportional to chi-square, at least under proper hypotheses.

• Ratios of estimators to standard errors follow the Student’s t distribution under certain hypotheses.

• Appropriate ratios of sums of squares follow an F distribution for certain hypotheses.

When regression analysis is used to model data that do not meet the assumptions, you should interpret
the results in a cautious, exploratory fashion. The significance probabilities under these circumstances are
unreliable.

Box (1966) and Mosteller and Tukey (1977, Chapters 12 and 13) discuss the problems that are encountered
in regression data, especially when the data are not under experimental control.

Estimating the Precision

Assume for the present that X0WX has full column rank k (this assumption is relaxed later). The variance of
the error terms, VarŒ�i � D �2, is then estimated by the mean square error,

s2 D MSE D
SSE
n � k

D
1

n � k

nX
iD1

wi
�
yi � x0iˇ

�2
where x0i is the ith row of the design matrix X. The residual variance estimate is also unbiased: EŒs2� D �2.

The covariance matrix of the least squares estimators is

Var
hb̌i D �2 �X0WX

��1
An estimate of the covariance matrix is obtained by replacing �2 with its estimate, s2 in the preceding
formula. This estimate is often referred to as COVB in SAS/STAT modeling procedures:

COVB DbVar
hb̌i D s2 �X0WX

��1
The correlation matrix of the estimates, often referred to as CORRB, is derived by scaling the covariance

matrix: Let S D diag
��

X0WX
��1�� 12 . Then the correlation matrix of the estimates is

CORRB D S
�
X0WX

��1 S

The estimated standard error of the ith parameter estimator is obtained as the square root of the ith diagonal
element of the COVB matrix. Formally,

STDERR
�b̌

i

�
D

q�
s2.X0WX/�1

�
i i
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The ratio

t D
b̌
i

STDERR
�b̌

i

�
follows a Student’s t distribution with .n � k/ degrees of freedom under the hypothesis that ˇi is zero and
provided that the model errors are normally distributed.

Regression procedures display the t ratio and the significance probability, which is the probability under the
hypothesis H Wˇi D 0 of a larger absolute t value than was actually obtained. When the probability is less
than some small level, the event is considered so unlikely that the hypothesis is rejected.

Type I SS and Type II SS measure the contribution of a variable to the reduction in SSE. Type I SS measure
the reduction in SSE as that variable is entered into the model in sequence. Type II SS are the increment
in SSE that results from removing the variable from the full model. Type II SS are equivalent to the Type
III and Type IV SS that are reported in PROC GLM. If Type II SS are used in the numerator of an F test,
the test is equivalent to the t test for the hypothesis that the parameter is zero. In polynomial models, Type I
SS measure the contribution of each polynomial term after it is orthogonalized to the previous terms in the
model. The four types of SS are described in Chapter 15, “The Four Types of Estimable Functions.”

Coefficient of Determination

The coefficient of determination in a regression model, also known as the R-square statistic, measures the
proportion of variability in the response that is explained by the regressor variables. In a linear regression
model with intercept, R square is defined as

R2 D 1 �
SSE
SST

where SSE is the residual (error) sum of squares and SST is the total sum of squares corrected for the mean.
The adjusted R-square statistic is an alternative to R square that takes into account the number of parameters
in the model. The adjusted R-square statistic is calculated as

ADJRSQ D 1 �
n � i

n � p

�
1 �R2

�
where n is the number of observations that are used to fit the model, p is the number of parameters in the
model (including the intercept), and i is 1 if the model includes an intercept term, and 0 otherwise.

R-square statistics also play an important indirect role in regression calculations. For example, the proportion
of variability that is explained by regressing all other variables in a model on a particular regressor can
provide insights into the interrelationship among the regressors.

Tolerances and variance inflation factors measure the strength of interrelationships among the regressor
variables in the model. If all variables are orthogonal to each other, both tolerance and variance inflation
are 1. If a variable is very closely related to other variables, the tolerance approaches 0 and the variance
inflation gets very large. Tolerance (TOL) is 1 minus the R square that results from the regression of the other
variables in the model on that regressor. Variance inflation (VIF) is the diagonal of .X0WX/�1, if .X0WX/ is
scaled to correlation form. The statistics are related as

VIF D
1

TOL
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Explicit and Implicit Intercepts

A linear model contains an explicit intercept if the X matrix contains a column whose nonzero values do not
vary, usually a column of ones. Many SAS/STAT procedures automatically add this column of ones as the
first column in the X matrix. Procedures that support a NOINT option in the MODEL statement provide the
capability to suppress the automatic addition of the intercept column.

In general, models without an intercept should be the exception, especially if your model does not contain
classification (CLASS) variables. An overall intercept is provided in many models to adjust for the grand
total or overall mean in your data. A simple linear regression without intercept, such as

EŒYi � D ˇ1xi C �i

assumes that Y has mean zero if X takes on the value zero. This might not be a reasonable assumption.

If you explicitly suppress the intercept in a statistical model, the calculation and interpretation of your results
can change. For example, the exclusion of the intercept in the following PROC REG statements leads to
a different calculation of the R-square statistic. It also affects the calculation of the sum of squares in the
analysis of variance for the model. For example, the model and error sum of squares add up to the uncorrected
total sum of squares in the absence of an intercept.

proc reg;
model y = x / noint;

quit;

Many statistical models contain an implicit intercept, which occurs when a linear function of one or more
columns in the X matrix produces a column of constant, nonzero values. For example, the presence of a
CLASS variable in the GLM parameterization always implies an intercept in the model. If a model contains
an implicit intercept, then adding an intercept to the model does not alter the quality of the model fit, but it
changes the interpretation (and number) of the parameter estimates.

The way in which the implicit intercept is detected and accounted for in the analysis depends on the procedure.
For example, the following statements in PROC GLM lead to an implied intercept:

proc glm;
class a;
model y = a / solution noint;

run;

Whereas the analysis of variance table uses the uncorrected total sum of squares (because of the NOINT
option), the implied intercept does not lead to a redefinition or recalculation of the R-square statistic
(compared to the model without the NOINT option). Also, because the intercept is implied by the presence
of the CLASS variable a in the model, the same error sum of squares results whether the NOINT option is
specified or not.

A different approach is taken, for example, by PROC TRANSREG. The ZERO=NONE option in the CLASS
parameterization of the following statements leads to an implicit intercept model:

proc transreg;
model ide(y) = class(a / zero=none) / ss2;

run;

The analysis of variance table or the regression fit statistics are not affected in PROC TRANSREG. Only the
interpretation of the parameter estimates changes because of the way in which the intercept is accounted for
in the model.
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Implied intercepts not only occur when classification effects are present in the model. They also occur with
B-splines and other sets of constructed columns.

Models Not of Full Rank

If the X matrix is not of full rank, then a generalized inverse can be used to solve the normal equations to
minimize the SSE:

b̌D �X0WX
��X0WY

However, these estimates are not unique, because there are an infinite number of solutions that correspond to
different generalized inverses. PROC REG and other regression procedures choose a nonzero solution for
all variables that are linearly independent of previous variables and a zero solution for other variables. This
approach corresponds to using a generalized inverse in the normal equations, and the expected values of the
estimates are the Hermite normal form of X0WX multiplied by the true parameters:

E
hb̌i D �X0WX

��
.X0WX/ˇ

Degrees of freedom for the estimates that correspond to singularities are not counted (reported as zero). The
hypotheses that are not testable have t tests displayed as missing. The message that the model is not of full
rank includes a display of the relations that exist in the matrix.

For information about generalized inverses and their importance for statistical inference in linear models,
see the sections “Generalized Inverse Matrices” and “Linear Model Theory” in Chapter 3, “Introduction to
Statistical Modeling with SAS/STAT Software.”

Predicted and Residual Values
After the model has been fit, predicted and residual values are usually calculated, graphed, and output. The
predicted values are calculated from the estimated regression equation; the raw residuals are calculated
as the observed value minus the predicted value. Often other forms of residuals, such as studentized or
cumulative residuals, are used for model diagnostics. Some procedures can calculate standard errors of
residuals, predicted mean values, and individual predicted values.

Consider the ith observation, where x0i is the row of regressors, b̌ is the vector of parameter estimates, and s2

is the estimate of the residual variance (the mean squared error). The leverage value of the ith observation is
defined as

hi D wix0i .X
0WX/�1xi

where X is the design matrix for the observed data, x0i is an arbitrary regressor vector (possibly but not
necessarily a row of X), W is a diagonal matrix of observed weights, and wi is the weight corresponding to
x0i .

Then the predicted mean and the standard error of the predicted mean are

byi D x0ib̌
STDERR.byi / Dqs2hi=wi
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The standard error of the individual (future) predicted value yi is

STDERR.yi / D
q
s2.1C hi /=wi

If the predictor vector xi corresponds to an observation in the analysis data, then the raw residual for that
observation and the standard error of the raw residual are defined as

RESIDi D yi � x0ib̌
STDERR.RESIDi / D

q
s2.1 � hi /=wi

The studentized residual is the ratio of the raw residual and its estimated standard error. Symbolically,

STUDENTi D
RESIDi

STDERR.RESIDi /

Two types of intervals provide a measure of confidence for prediction: the confidence interval for the mean
value of the response, and the prediction (or forecasting) interval for an individual observation. As discussed
in the section “Mean Squared Error” in Chapter 3, “Introduction to Statistical Modeling with SAS/STAT
Software,” both intervals are based on the mean squared error of predicting a target based on the result
of the model fit. The difference in the expressions for the confidence interval and the prediction interval
occurs because the target of estimation is a constant in the case of the confidence interval (the mean of an
observation) and the target is a random variable in the case of the prediction interval (a new observation).

For example, you can construct a confidence interval for the ith observation that contains the true mean value
of the response with probability 1 � ˛. The upper and lower limits of the confidence interval for the mean
value are

LowerM D x0ib̌� t˛=2;�qs2hi=wi
UpperM D x0ib̌C t˛=2;�qs2hi=wi

where t˛=2;� is the tabulated t quantile with degrees of freedom equal to the degrees of freedom for the mean
squared error, � D n � rank.X/.

The limits for the prediction interval for an individual response are

LowerI D x0ib̌� t˛=2;�qs2.1C hi /=wi
UpperI D x0ib̌C t˛=2;�qs2.1C hi /=wi

Influential observations are those that, according to various criteria, appear to have a large influence on the
analysis. One measure of influence, Cook’s D, measures the change to the estimates that results from deleting
an observation,

COOKDi D
1

k
STUDENT2i

�
STDERR.byi /

STDERR.RESIDi /

�2
where k is the number of parameters in the model (including the intercept). For more information, see Cook
(1977, 1979).
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The predicted residual for observation i is defined as the residual for the ith observation that results from
dropping the ith observation from the parameter estimates. The sum of squares of predicted residual errors is
called the PRESS statistic:

PRESIDi D
RESIDi
1 � hi

PRESS D
nX
iD1

wiPRESID2i

Testing Linear Hypotheses
Testing of linear hypotheses based on estimable functions is discussed in the section “Test of Hypotheses” on
page 55 in Chapter 3, “Introduction to Statistical Modeling with SAS/STAT Software,” and the construction
of special sets of estimable functions corresponding to Type I–Type IV hypotheses is discussed in Chapter 15,
“The Four Types of Estimable Functions.” In linear regression models, testing of general linear hypotheses
follows along the same lines. Test statistics are usually formed based on sums of squares that are associated
with the hypothesis in question. Furthermore, when X is of full rank—as is the case in many regression
models—the consistency of the linear hypothesis is guaranteed.

Recall from Chapter 3, “Introduction to Statistical Modeling with SAS/STAT Software,” that the general
form of a linear hypothesis for the parameters is H WLˇ D d, where L is q � k, ˇ is k � 1, and d is q � 1. To
test this hypothesis, you take the linear function with respect to the parameter estimates: Lb̌� d. This linear
function in b̌ has variance

Var
h
Lb̌i D LVarŒb̌�L0 D �2L

�
X0WX

�� L0

The sum of squares due to the hypothesis is a simple quadratic form:

SS.H/ D SS.Lb̌� d/ D
�

Lb̌� d
�0 �

L
�
X0WX

�� L0
��1 �Lb̌� d

�
If this hypothesis is testable, then SS.H/ can be used in the numerator of an F statistic:

F D
SS.H/=q

s2
D

SS.Lb � d/=q
s2

If b̌ is normally distributed, which follows as a consequence of normally distributed model errors, then this
statistic follows an F distribution with q numerator degrees of freedom and n� rank.X/ denominator degrees
of freedom. Note that it was assumed in this derivation that L is of full row rank q.

Multivariate Tests
Multivariate hypotheses involve several dependent variables in the form

H WLˇM D d
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where L is a linear function on the regressor side, ˇ is a matrix of parameters, M is a linear function on
the dependent side, and d is a matrix of constants. The special case (handled by PROC REG) in which the
constants are the same for each dependent variable is expressed as

.Lˇ � cj/M D 0

where c is a column vector of constants and j is a row vector of 1s. The special case in which the constants
are 0 is then

LˇM D 0

These multivariate tests are covered in detail in Morrison (2004); Timm (2002); Mardia, Kent, and Bibby
(1979); Bock (1975); and other works cited in Chapter 9, “Introduction to Multivariate Procedures.”

Notice that in contrast to the tests discussed in the preceding section, ˇ here is a matrix of parameter estimates.
Suppose that the matrix of estimates is denoted as B. To test the multivariate hypothesis, construct two
matrices, H and E, that correspond to the numerator and denominator of a univariate F test:

H DM0.LB � cj/0.L.X0WX/�L0/�1.LB � cj/M
E DM0

�
Y0WY � B0.X0WX/B

�
M

Four test statistics, based on the eigenvalues of E�1H or .ECH/�1H, are formed. Let �i be the ordered
eigenvalues of E�1H (if the inverse exists), and let �i be the ordered eigenvalues of .ECH/�1H. It happens
that �i D �i=.1C �i / and �i D �i=.1 � �i /, and it turns out that �i D

p
�i is the ith canonical correlation.

Let p be the rank of .HC E/, which is less than or equal to the number of columns of M. Let q be the rank
of L.X0WX/�L0. Let v be the error degrees of freedom, and let s D min.p; q/. Let m D .jp � qj � 1/=2,
and let n D .v � p � 1/=2. Then the following statistics test the multivariate hypothesis in various ways, and
their p-values can be approximated by F distributions. Note that in the special case that the rank of H is 1, all
these F statistics are the same and the corresponding p-values are exact, because in this case the hypothesis is
really univariate.

Wilks’ Lambda

If

ƒ D
det.E/

det.HC E/
D

nY
iD1

1

1C �i
D

nY
iD1

.1 � �i /

then

F D
1 �ƒ1=t

ƒ1=t
�
rt � 2u

pq

is approximately F distributed, where

r Dv �
p � q C 1

2

u D
pq � 2

4

t D

( q
p2q2�4

p2Cq2�5
ifp2 C q2 � 5 > 0

1 otherwise

The degrees of freedom are pq and rt � 2u. The distribution is exact if min.p; q/ � 2. (See Rao 1973, p.
556.)
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Pillai’s Trace

If

V D trace
�
H.HC E/�1

�
D

nX
iD1

�i

1C �i
D

nX
iD1

�i

then

F D
2nC s C 1

2mC s C 1
�
V

s � V

is approximately F distributed with s.2mC s C 1/ and s.2nC s C 1/ degrees of freedom.

Hotelling-Lawley Trace

If

U D trace
�
E�1H

�
D

nX
iD1

�i D

nX
iD1

�i

1 � �i

then for n > 0

F D .U=c/..4C .pq C 2/=.b � 1//=.pq//

is approximately F distributed with pq and 4C .pq C 2/=.b � 1/ degrees of freedom, where b D .p C

2n/.q C 2n/=.2.2nC 1/.n � 1// and c D .2C .pq C 2/=.b � 1//=.2n/; while for n � 0

F D
2.snC 1/U

s2.2mC s C 1/

is approximately F with s.2mC s C 1/ and 2.snC 1/ degrees of freedom.

Roy’s Maximum Root

If ‚ D �1, then

F D ‚
v � r C q

r

where r D max.p; q/ is an upper bound on F that yields a lower bound on the significance level. Degrees of
freedom are r for the numerator and v � r C q for the denominator.

Tables of critical values for these statistics are found in Pillai (1960).

Exact Multivariate Tests

If you specify the MSTAT=EXACT option in the appropriate statement, p-values for three of the four tests
(Wilks’ lambda, the Hotelling-Lawley trace, and Roy’s greatest root) are computed exactly, and the p-values
for the fourth test (Pillai’s trace) are based on an F approximation that is more accurate (but occasionally
slightly more liberal) than the default. The exact p-values for Roy’s greatest root benefit the most, because in
this case the F approximation provides only a lower bound for the p-value. If you use the F-based p-value for
this test in the usual way, declaring a test significant if p < 0.05, then your decisions might be very liberal. For
example, instead of the nominal 5% Type I error rate, such a procedure can easily have an actual Type I error
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rate in excess of 30%. By contrast, basing such a procedure on the exact p-values results in the appropriate
5% Type I error rate, under the usual regression assumptions.

The MSTAT=EXACT option is supported in the ANOVA, CANCORR, CANDISC, GLM, and REG proce-
dures.

The exact p-values are based on the following sources:

• Wilks’ lambda: Lee (1972); Davis (1979)

• Pillai’s trace: Muller (1998)

• Hotelling-Lawley trace: Davis (1970, 1980)

• Roy’s greatest root: Davis (1972); Pillai and Flury (1984)

Note that, although the MSTAT=EXACT p-value for Pillai’s trace is still approximate, it has “substantially
greater accuracy” than the default approximation (Muller 1998).

Because most of the MSTAT=EXACT p-values are not based on the F distribution, the columns in the
multivariate tests table that correspond to this approximation—in particular, the F value and the numerator
and denominator degrees of freedom—are no longer displayed, and the column that contains the p-values
is labeled “P Value” instead of “Pr > F.” Suppose, for example, that you use the following PROC ANOVA
statements to perform a multivariate analysis of an archaeological data set:

data Skulls;
input Loc $20. Basal Occ Max;
datalines;

Minas Graes, Brazil 2.068 2.070 1.580
Minas Graes, Brazil 2.068 2.074 1.602
Minas Graes, Brazil 2.090 2.090 1.613
Minas Graes, Brazil 2.097 2.093 1.613
Minas Graes, Brazil 2.117 2.125 1.663
Minas Graes, Brazil 2.140 2.146 1.681
Matto Grosso, Brazil 2.045 2.054 1.580
Matto Grosso, Brazil 2.076 2.088 1.602
Matto Grosso, Brazil 2.090 2.093 1.643
Matto Grosso, Brazil 2.111 2.114 1.643
Santa Cruz, Bolivia 2.093 2.098 1.653
Santa Cruz, Bolivia 2.100 2.106 1.623
Santa Cruz, Bolivia 2.104 2.101 1.653
;

proc anova data=Skulls;
class Loc;
model Basal Occ Max = Loc / nouni;
manova h=Loc;
ods select MultStat;

run;

The default multivariate tests, based on the F approximations, are shown in Figure 4.5
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Figure 4.5 Default Multivariate Tests

The ANOVA Procedure
Multivariate Analysis of Variance

The ANOVA Procedure
Multivariate Analysis of Variance

MANOVATest Criteria and F Approximations for the Hypothesis of No Overall Loc Effect
H = Anova SSCP Matrix for Loc

E = Error SSCP Matrix

S=2 M=0 N=3

Statistic Value F Value Num DF Den DF Pr > F

Wilks' Lambda 0.60143661 0.77 6 16 0.6032

Pillai's Trace 0.44702843 0.86 6 18 0.5397

Hotelling-Lawley Trace 0.58210348 0.75 6 9.0909 0.6272

Roy's Greatest Root 0.35530890 1.07 3 9 0.4109

NOTE: F Statistic for Roy's Greatest Root is an upper bound.

NOTE: F Statistic for Wilks' Lambda is exact.

If you specify MSTAT=EXACT in the MANOVA statement, as in the following statements, then the displayed
output is the much simpler table shown in Figure 4.6:

proc anova data=Skulls;
class Loc;
model Basal Occ Max = Loc / nouni;
manova h=Loc / mstat=exact;
ods select MultStat;

run;

Figure 4.6 Multivariate Tests with MSTAT=EXACT

The ANOVA Procedure
Multivariate Analysis of Variance

The ANOVA Procedure
Multivariate Analysis of Variance

MANOVATests for the Hypothesis of No Overall Loc Effect
H = Anova SSCP Matrix for Loc

E = Error SSCP Matrix

S=2 M=0 N=3

Statistic Value P-Value

Wilks' Lambda 0.60143661 0.6032

Pillai's Trace 0.44702843 0.5521

Hotelling-Lawley Trace 0.58210348 0.6337

Roy's Greatest Root 0.35530890 0.7641

Notice that the p-value for Roy’s greatest root is substantially larger in the new table and correspondingly
more in line with the p-values for the other tests.

If you reference the underlying ODS output object for the table of multivariate statistics, it is important to
note that its structure does not depend on the value of the MSTAT= option. In particular, it always contains
columns that correspond to both the default MSTAT=FAPPROX and the MSTAT=EXACT tests. Moreover,
because the MSTAT=FAPPROX tests are relatively cheap to compute, the columns that correspond to them
are always filled in, even though they are not displayed when you specify MSTAT=EXACT. On the other
hand, for MSTAT=FAPPROX (which is the default), the column of exact p-values contains missing values
and is not displayed.
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Comments on Interpreting Regression Statistics
In most applications, regression models are merely useful approximations. Reality is often so complicated
that you cannot know what the true model is. You might have to choose a model more on the basis of what
variables can be measured and what kinds of models can be estimated than on a rigorous theory that explains
how the universe really works. However, even in cases where theory is lacking, a regression model can
be an excellent predictor of the response if the model is carefully formulated from a large sample. The
interpretation of statistics such as parameter estimates might nevertheless be highly problematic.

Statisticians usually use the word “prediction” in a technical sense. Prediction in this sense does not refer
to “predicting the future” (statisticians call that forecasting) but rather to guessing the response from the
values of the regressors in an observation taken under the same circumstances as the sample from which the
regression equation was estimated. If you developed a regression model for predicting consumer preferences
in 1997, it might not give very good predictions in 2017 no matter how well it did in 1997. If you want
to predict the future, your model must include whatever relevant factors might change over time. If the
process that you are studying does in fact change over time, you must take observations at several, perhaps
many, different times. Analysis of such data is the province of SAS/STAT procedures such as MIXED and
GLIMMIX and SAS/ETS procedures such as AUTOREG and STATESPACE. For more information about
modeling serial correlation in longitudinal, repeated measures, or time series data with SAS/STAT mixed
modeling procedures, see Chapter 44, “The GLIMMIX Procedure,” and Chapter 65, “The MIXED Procedure.”
For more information about the AUTOREG and STATESPACE procedures, see the SAS/ETS User’s Guide.

The comments in the rest of this section are directed toward linear least squares regression. For more detailed
discussions of the interpretation of regression statistics, see Darlington (1968); Mosteller and Tukey (1977);
Weisberg (1985); Younger (1979).

Interpreting Parameter Estimates from a Controlled Experiment

Parameter estimates are easiest to interpret in a controlled experiment in which the regressors are manipulated
independently of one another. In a well-designed experiment, such as a randomized factorial design with
replications in each cell, you can use lack-of-fit tests and estimates of the standard error of prediction to
determine whether the model describes the experimental process with adequate precision. If so, a regression
coefficient estimates the amount by which the mean response changes when the regressor is changed by one
unit while all the other regressors are unchanged. However, if the model involves interactions or polynomial
terms, it might not be possible to interpret individual regression coefficients. For example, if the equation
includes both linear and quadratic terms for a given variable, you cannot change the value of the linear
term without also changing the value of the quadratic term. Sometimes it might be possible to recode the
regressors, such as by using orthogonal polynomials, to simplify the interpretation.

If the nonstatistical aspects of the experiment are also treated with sufficient care (such as by using placebos
and double-blind procedures), then you can state conclusions in causal terms; that is, this change in a regressor
causes that change in the response. Causality can never be inferred from statistical results alone or from an
observational study.

If the model that you fit is not the true model, then the parameter estimates can depend strongly on the
particular values of the regressors that are used in the experiment. For example, if the response is actually a
quadratic function of a regressor but you fit a linear function, then the estimated slope can be a large negative
value if you use only small values of the regressor, a large positive value if you use only large values of the
regressor, or near zero if you use both large and small regressor values. When you report the results of an
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experiment, it is important to include the values of the regressors. It is also important to avoid extrapolating
the regression equation outside the range of regressors in the sample.

Interpreting Parameter Estimates from an Observational Study

In an observational study, parameter estimates can be interpreted as the expected difference in response of
two observations that differ by one unit on the regressor in question and that have the same values for all other
regressors. You cannot make inferences about “changes” in an observational study because you have not
actually changed anything. It might not be possible even in principle to change one regressor independently
of all the others. Nor can you draw conclusions about causality without experimental manipulation.

If you conduct an observational study and you do not know the true form of the model, interpretation of
parameter estimates becomes even more convoluted. A coefficient must then be interpreted as an average
over the sampled population of expected differences in response of observations that differ by one unit on
only one regressor. The considerations that are discussed under controlled experiments for which the true
model is not known also apply.

Comparing Parameter Estimates

Two coefficients in the same model can be directly compared only if the regressors are measured in the same
units. You can make any coefficient large or small just by changing the units. For example, if you convert a
regressor from feet to miles, the parameter estimate is multiplied by 5,280.

Sometimes standardized regression coefficients are used to compare the effects of regressors that are
measured in different units. Standardized estimates are defined as the estimates that result when all variables
are standardized to a mean of 0 and a variance of 1. Standardized estimates are computed by multiplying
the original estimates by the sample standard deviation of the regressor variable and dividing by the sample
standard deviation of the dependent variable.

Standardizing the variables makes the standard deviation the unit of measurement. This makes sense only if
the standard deviation is a meaningful quantity, which usually is the case only if the observations are sampled
from a well-defined population. In a controlled experiment, the standard deviation of a regressor depends
on the values of the regressor that are selected by the experimenter. Thus, you can make a standardized
regression coefficient large by using a large range of values for the regressor.

In some applications you might be able to compare regression coefficients in terms of the practical range of
variation of a regressor. Suppose that each independent variable in an industrial process can be set to values
only within a certain range. You can rescale the variables so that the smallest possible value is 0 and the
largest possible value is 1. Then the unit of measurement for each regressor is the maximum possible range
of the regressor, and the parameter estimates are comparable in that sense. Another possibility is to scale the
regressors in terms of the cost of setting a regressor to a particular value so that comparisons can be made in
monetary terms.

Correlated Regressors

In an experiment, you can often select values for the regressors such that the regressors are orthogonal
(not correlated with one another). Orthogonal designs have enormous advantages in interpretation. With
orthogonal regressors, the parameter estimate for a given regressor does not depend on which other regressors
are included in the model, although other statistics such as standard errors and p-values might change.

If the regressors are correlated, it becomes difficult to disentangle the effects of one regressor from another,
and the parameter estimates can be highly dependent on which regressors are used in the model. Two
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correlated regressors might be nonsignificant when tested separately but highly significant when considered
together. If two regressors have a correlation of 1.0, it is impossible to separate their effects.

It might be possible to recode correlated regressors to make interpretation easier. For example, if X and Y are
highly correlated, they could be replaced in a linear regression by X C Y and X � Y without changing the
fit of the model or statistics for other regressors.

Errors in the Regressors

If the measurements of the regressors contain errors, the parameter estimates must be interpreted with respect
to the measured values of the regressors, not the true values. A regressor might be statistically nonsignificant
when measured with errors even though it would have been highly significant if measured accurately.

Probability Values (p-Values)

Probability values (p-values) do not necessarily measure the importance of a regressor. An important regressor
can have a large (nonsignificant) p-value if the sample is small, if the regressor is measured over a narrow
range, if there are large measurement errors, or if another closely related regressor is included in the equation.
An unimportant regressor can have a very small p-value in a large sample. Computing a confidence interval
for a parameter estimate gives you more useful information than just looking at the p-value, but confidence
intervals do not solve problems of measurement errors in the regressors or highly correlated regressors.

Interpreting R Square

R square is usually defined as the proportion of variance of the response that is predictable from (can be
explained by) the regressor variables. It might be easier to interpret

p
1 �R2, which is approximately the

factor by which the standard error of prediction is reduced by the introduction of the regressor variables.

R square is easiest to interpret when the observations, including the values of both the regressors and the
response, are randomly sampled from a well-defined population. Nonrandom sampling can greatly distort the
R square. For example, excessively large values of R square can be obtained by omitting from the sample
any observations that have regressor values near the mean.

In a controlled experiment, the R square depends on the values that are chosen for the regressors. A wide
range of regressor values generally yields a larger R square than a narrow range. In comparing the results of
two experiments on the same variables but with different ranges for the regressors, you should look at the
standard error of prediction (root mean square error) rather than the R square.

Whether a given R-square value is considered to be large or small depends on the context of the particular
study. A social scientist might consider an R square of 0.30 to be large, whereas a physicist might consider
an R square of 0.98 to be small.

You can always get an R square arbitrarily close to 1.0 by including a large number of completely unrelated
regressors in the equation. If the number of regressors is close to the sample size, the R square is very biased.
In such cases, the adjusted R square and related statistics discussed by Darlington (1968) are less misleading.

If you fit many different models and choose the model that has the largest R square, all the statistics are
biased and the p-values for the parameter estimates are not valid. You must use caution in interpreting the R
square for models that have no intercept term. As a general rule, no-intercept models should be fit only when
theoretical justification exists and the data appear to fit a no-intercept framework. R square in those cases is
measuring something different (see Kvalseth 1985).
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Incorrect Data Values

All regression statistics can be seriously distorted by a single incorrect data value. A decimal point in the
wrong place can completely change the parameter estimates, the R square, and other statistics. It is important
to check your data for outliers and influential observations. Residual and influence diagnostics are particularly
useful in this regard.

When a data point is declared as influential or as an outlier as measured by a particular model diagnostic,
this does not imply that the case should be excluded from the analysis. The label “outlier” does not have
a negative connotation. It means that the data point is unusual with respect to the model at hand. If your
data follow a strong curved trend and you fit a linear regression, then many data points might be labeled as
outliers not because they are “bad” or incorrect data values but because your model is not appropriate.

References

Allen, D. M. (1971), “Mean Square Error of Prediction as a Criterion for Selecting Variables,” Technometrics,
13, 469–475.

Allen, D. M. and Cady, F. B. (1982), Analyzing Experimental Data by Regression, Belmont, CA: Lifetime
Learning Publications.

Belsley, D. A., Kuh, E., and Welsch, R. E. (1980), Regression Diagnostics: Identifying Influential Data and
Sources of Collinearity, New York: John Wiley & Sons.

Bock, R. D. (1975), Multivariate Statistical Methods in Behavioral Research, New York: McGraw-Hill.

Box, G. E. P. (1966), “The Use and Abuse of Regression,” Technometrics, 8, 625–629.

Box, G. E. P. and Cox, D. R. (1964), “An Analysis of Transformations,” Journal of the Royal Statistical
Society, Series B, 26, 211–234.

Cleveland, W. S., Devlin, S. J., and Grosse, E. (1988), “Regression by Local Fitting,” Journal of Econometrics,
37, 87–114.

Cook, R. D. (1977), “Detection of Influential Observations in Linear Regression,” Technometrics, 19, 15–18.

Cook, R. D. (1979), “Influential Observations in Linear Regression,” Journal of the American Statistical
Association, 74, 169–174.

Daniel, C. and Wood, F. S. (1999), Fitting Equations to Data: Computer Analysis of Multifactor Data, 2nd
Edition, New York: John Wiley & Sons.

Darlington, R. B. (1968), “Multiple Regression in Psychological Research and Practice,” Psychological
Bulletin, 69, 161–182.

Davis, A. W. (1970), “Differential Equation of Hotelling’s Generalized T 2,” Annals of Statistics, 39, 815–832.

Davis, A. W. (1972), “On the Marginal Distributions of the Latent Roots of the Multivariate Beta Matrix,”
Biometrika, 43, 1664–1670.



References F 99

Davis, A. W. (1979), “On the Differential Equation for Meijer’sGp;0p;p Function, and Further Tables of Wilks’s
Likelihood Ratio Criterion,” Biometrika, 66, 519–531.

Davis, A. W. (1980), “Further Tabulation of Hotelling’s Generalized T 2,” Communications in Statistics—
Simulation and Computation, 9, 321–336.

Draper, N. R. and Smith, H. (1998), Applied Regression Analysis, 3rd Edition, New York: John Wiley &
Sons.

Durbin, J. and Watson, G. S. (1951), “Testing for Serial Correlation in Least Squares Regression,” Biometrika,
37, 409–428.

Efron, B., Hastie, T. J., Johnstone, I. M., and Tibshirani, R. (2004), “Least Angle Regression (with Discus-
sion),” Annals of Statistics, 32, 407–499.

Eilers, P. H. C. and Marx, B. D. (1996), “Flexible Smoothing with B-Splines and Penalties,” Statistical
Science, 11, 89–121, with discussion.

Freund, R. J. and Littell, R. C. (1986), SAS System for Regression, 1986 Edition, Cary, NC: SAS Institute Inc.

Freund, R. J., Littell, R. C., and Spector, P. C. (1991), SAS System for Linear Models, Cary, NC: SAS Institute
Inc.

Friedman, J. H. (1991), “Multivariate Adaptive Regression Splines,” Annals of Statistics, 19, 1–67.

Gentleman, W. M. (1972), Basic Procedures for Large, Sparse, or Weighted Least Squares Problems,
Technical Report CSRR-2068, University of Waterloo, Ontario.

Gentleman, W. M. (1973), “Least Squares Computations by Givens Transformations without Square Roots,”
Journal of the Institute of Mathematics and Its Applications, 12, 329–336.

Goodnight, J. H. (1979), “A Tutorial on the Sweep Operator,” American Statistician, 33, 149–158.

Hawkins, D. M. (1980), “A Note on Fitting a Regression with No Intercept Term,” American Statistician, 34,
233.

Hosmer, D. W., Jr. and Lemeshow, S. (1989), Applied Logistic Regression, New York: John Wiley & Sons.

Huber, P. J. (1973), “Robust Regression: Asymptotics, Conjectures, and Monte Carlo,” Annals of Statistics, 1,
799–821.

Johnston, J. and DiNardo, J. (1997), Econometric Methods, 4th Edition, New York: McGraw-Hill.

Kennedy, W. J., Jr. and Gentle, J. E. (1980), Statistical Computing, New York: Marcel Dekker.

Kvalseth, T. O. (1985), “Cautionary Note about R2,” American Statistician, 39, 279–285.

Lee, Y. (1972), “Some Results on the Distribution of Wilks’ Likelihood Ratio Criterion,” Biometrika, 95,
649.

Mallows, C. L. (1973), “Some Comments on Cp,” Technometrics, 15, 661–675.

Mardia, K. V., Kent, J. T., and Bibby, J. M. (1979), Multivariate Analysis, London: Academic Press.

Morrison, D. F. (2004), Multivariate Statistical Methods, 4th Edition, New York: Duxbury Press.



100 F Chapter 4: Introduction to Regression Procedures

Mosteller, F. and Tukey, J. W. (1977), Data Analysis and Regression, Reading, MA: Addison-Wesley.

Muller, K. E. (1998), “A New F Approximation for the Pillai-Bartlett Trace under H0,” Journal of Computa-
tional and Graphical Statistics, 7, 131–137.

Neter, J. and Wasserman, W. (1974), Applied Linear Statistical Models, Homewood, IL: Irwin.

Pillai, K. C. S. (1960), Statistical Table for Tests of Multivariate Hypotheses, Manila: Statistical Center,
University of Philippines.

Pillai, K. C. S. and Flury, B. N. (1984), “Percentage Points of the Largest Characteristic Root of the
Multivariate Beta Matrix,” Communications in Statistics—Theory and Methods, 13, 2199–2237.

Pindyck, R. S. and Rubinfeld, D. L. (1981), Econometric Models and Econometric Forecasts, 2nd Edition,
New York: McGraw-Hill.

Rao, C. R. (1973), Linear Statistical Inference and Its Applications, 2nd Edition, New York: John Wiley &
Sons.

Rawlings, J. O. (1988), Applied Regression Analysis: A Research Tool, Pacific Grove, CA: Wadsworth &
Brooks/Cole Advanced Books & Software.

Rousseeuw, P. J. (1984), “Least Median of Squares Regression,” Journal of the American Statistical Associa-
tion, 79, 871–880.

Rousseeuw, P. J. and Yohai, V. (1984), “Robust Regression by Means of S-Estimators,” in J. Franke,
W. Härdle, and R. D. Martin, eds., Robust and Nonlinear Time Series Analysis, number 26 in Lecture
Notes in Statistics, 256–274, Berlin: Springer-Verlag.

Tibshirani, R. (1996), “Regression Shrinkage and Selection via the Lasso,” Journal of the Royal Statistical
Society, Series B, 58, 267–288.

Timm, N. H. (2002), Applied Multivariate Analysis, New York: Springer.

Weisberg, S. (1985), Applied Linear Regression, 2nd Edition, New York: John Wiley & Sons.

Weisberg, S. (2005), Applied Linear Regression, 3rd Edition, New York: John Wiley & Sons.

Yohai, V. J. (1987), “High Breakdown Point and High Efficiency Robust Estimates for Regression,” Annals
of Statistics, 15, 642–656.

Younger, M. S. (1979), Handbook for Linear Regression, North Scituate, MA: Duxbury Press.



Chapter 5

Introduction to Analysis of Variance
Procedures

Contents
Overview: Analysis of Variance Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Procedures That Perform Sum of Squares Analysis of Variance . . . . . . . . . . . . 102
Procedures That Perform General Analysis of Variance . . . . . . . . . . . . . . . . . 103

Statistical Details for Analysis of Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
From Sums of Squares to Linear Hypotheses . . . . . . . . . . . . . . . . . . . . . . 104
Tests of Effects Based on Expected Mean Squares . . . . . . . . . . . . . . . . . . . 105

Analysis of Variance for Fixed-Effect Models . . . . . . . . . . . . . . . . . . . . . . . . . 106
PROC GLM for General Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . 106
PROC ANOVA for Balanced Designs . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Comparing Group Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
PROC TTEST for Comparing Two Groups . . . . . . . . . . . . . . . . . . . . . . . 108

Analysis of Variance for Categorical Data and Generalized Linear Models . . . . . . . . . . 108
Nonparametric Analysis of Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Constructing Analysis of Variance Designs . . . . . . . . . . . . . . . . . . . . . . . . . . 109
For More Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Overview: Analysis of Variance Procedures
The statistical term “analysis of variance” is used in a variety of circumstances in statistical theory and
applications. In the narrowest sense, and the original sense of the phrase, it signifies a decomposition of a
variance into contributing components. This was the sense used by R. A. Fisher when he defined the term to
mean the expression of genetic variance as a sum of variance components due to environment, heredity, and
so forth:

�2 D �21 C �
2
2 C � � � C �

2
p

In this sense of the term, the SAS/STAT procedures that fit variance component models, such as the
GLIMMIX, HPMIXED, MIXED, NESTED, and VARCOMP procedures, are “true” analysis of variance
procedures.

Analysis of variance methodology in a slightly broader sense—and the sense most frequently understood
today—applies the idea of an additive decomposition of variance to an additive decomposition of sums of
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squares, whose expected values are functionally related to components of variation. A collection of sums
of squares that measure and can be used for inference about meaningful features of a model is called a
sum of squares analysis of variance, whether or not such a collection is an additive decomposition. In a
linear model, the decomposition of sums of squares can be expressed in terms of projections onto orthogonal
subspaces spanned by the columns of the design matrix X. This is the general approach followed in the
section “Analysis of Variance” on page 53 in Chapter 3, “Introduction to Statistical Modeling with SAS/STAT
Software.” Depending on the statistical question at hand, the projections can be formulated based on estimable
functions, with different types of estimable functions giving rise to different types of sums of squares. Note
that not all sum of squares analyses necessarily correspond to additive decompositions. For example, the Type
III sums of squares often test hypotheses about the model that are more meaningful than those corresponding
to the Type I sums of squares. But while the Type I sums of squares additively decompose the sum of squares
due to all model contributions, the Type III sums of squares do not necessarily add up to any useful quantity.
The four types of estimable functions in SAS/STAT software, their interpretation, and their construction
are discussed in Chapter 15, “The Four Types of Estimable Functions.” The application of sum of squares
analyses is not necessarily limited to models with classification effects (factors). The methodology also
applies to linear regression models that contain only continuous regressor variables.

An even broader sense of the term “analysis of variance” pertains to statistical models that contain classifi-
cation effects (factors), and in particular, to models that contain only classification effects. Any statistical
approach that measures features of such a model and can be used for inference is called a general analysis
of variance. Thus the procedures for general analysis of variance in SAS/STAT are considered to be those
that can fit statistical models containing factors, whether the data are experimental or observational. Some
procedures for general analysis of variance have a statistical estimation principle that gives rise to a sum
of squares analysis as discussed previously; others express a factor’s contribution to the model fit in some
other form. Note that this view of analysis of variance includes, for example, maximum likelihood estimation
in generalized linear models with the GENMOD procedure, restricted maximum likelihood estimation in
linear mixed models with the MIXED procedure, the estimation of variance components with the VARCOMP
procedure, the comparison of means of groups with the TTEST procedure, and the nonparametric analysis of
rank scores with the NPAR1WAY procedure, and so on.

In summary, analysis of variance in the contemporary sense of statistical modeling and analysis is more aptly
described as analysis of variation, the study of the influences on the variation of a phenomenon. This can
take, for example, the following forms:

• an analysis of variance table based on sums of squares followed by more specific inquiries into the
relationship among factors and their levels

• a deviance decomposition in a generalized linear model

• a series of Type III tests followed by comparisons of least squares means in a mixed model

Procedures That Perform Sum of Squares Analysis of Variance
The flagship procedure in SAS/STAT software for linear modeling with sum of squares analysis techniques is
the GLM procedure. It handles most standard analysis of variance problems. The following list provides
descriptions of PROC GLM and other procedures that are used for more specialized situations:
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ANOVA performs analysis of variance, multivariate analysis of variance, and repeated measures
analysis of variance for balanced designs. PROC ANOVA also performs multiple com-
parison tests on arithmetic means.

GLM performs analysis of variance, regression, analysis of covariance, repeated measures
analysis, and multivariate analysis of variance. PROC GLM produces several diagnostic
measures, performs tests for random effects, provides contrasts and estimates for cus-
tomized hypothesis tests, provides tests for means adjusted for covariates, and performs
multiple-comparison tests on both arithmetic and adjusted means.

LATTICE computes the analysis of variance and analysis of simple covariance for data from an
experiment with a lattice design. PROC LATTICE analyzes balanced square lattices,
partially balanced square lattices, and some rectangular lattices.

MIXED performs mixed model analysis of variance and repeated measures analysis of variance
via covariance structure modeling. When you choose one of the method-of-moment
estimation techniques, the MIXED procedure produces an analysis of variance table with
sums of squares, mean squares, and expected mean squares. PROC MIXED constructs
statistical tests and intervals, enables customized contrasts and estimates, and computes
empirical Bayes predictions.

NESTED performs analysis of variance and analysis of covariance for purely nested random models.

ORTHOREG performs regression by using the Gentleman-Givens computational method. For ill-
conditioned data, PROC ORTHOREG can produce more accurate parameter estimates
than other procedures, such as PROC GLM. See Chapter 72, “The ORTHOREG Proce-
dure,” for more information.

VARCOMP estimates variance components for random or mixed models. If you choose the
METHOD=TYPE1 or METHOD=GRR option, the VARCOMP procedure produces
an analysis of variance table with sums of squares that correspond to the random effects
in your models.

TRANSREG fits univariate and multivariate linear models, optionally with spline and other nonlinear
transformations. Models include ordinary regression and ANOVA, multiple and multi-
variate regression, metric and nonmetric conjoint analysis, metric and nonmetric vector
and ideal point preference mapping, redundancy analysis, canonical correlation, and
response surface regression. See Chapter 104, “The TRANSREG Procedure,” for more
information.

Procedures That Perform General Analysis of Variance
Many procedures in SAS/STAT enable you to incorporate classification effects into your model and to perform
statistical inferences for experimental factors and their interactions. These procedures do not necessarily
rely on sums of squares decompositions to perform these inferences. Examples of such procedures are the
CATMOD, GENMOD, GLIMMIX, LOGISTIC, NPAR1WAY, and TTEST procedures. In fact, any one of
the more than two dozen SAS/STAT modeling procedures that include a CLASS statement can be said to
perform analysis of variance in this general sense. For more information about individual procedures, refer to
their corresponding chapters in this documentation.
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The following section discusses procedures in SAS/STAT that compute analysis of variance in models with
classification factors in the narrow sense—that is, they produce analysis of variance tables and form F tests
based on sums of squares, mean squares, and expected mean squares.

The subsequent sections discuss procedures that perform statistical inference in models with classification
effects in the broader sense.

The following section also presents an overview of some of the fundamental features of analysis of variance.
Subsequent sections describe how this analysis is performed with procedures in SAS/STAT software. For
more detail, see the chapters for the individual procedures. Additional sources are described in the section
References.

Statistical Details for Analysis of Variance

From Sums of Squares to Linear Hypotheses
Analysis of variance (ANOVA) is a technique for analyzing data in which one or more response (or dependent
or simply Y) variables are measured under various conditions identified by one or more classification
variables. The combinations of levels for the classification variables form the cells of the design for the
data. This design can be the result of a controlled experiment or the result of an observational study in
which you observe factors and factor level combinations in an uncontrolled environment. For example, an
experiment might measure weight change (the dependent variable) for men and women who participated
in three different weight-loss programs. The six cells of the design are formed by the six combinations of
gender (men, women) and program (A, B, C).

In an analysis of variance, the variation in the response is separated into variation attributable to differences
between the classification variables and variation attributable to random error. An analysis of variance
constructs tests to determine the significance of the classification effects. A typical goal in such an analysis is
to compare means of the response variable for various combinations of the classification variables.

The least squares principle is central to computing sums of squares in analysis of variance models. Suppose
that you are fitting the linear model Y D Xˇ C � and that the error terms satisfy the usual assumptions
(uncorrelated, zero mean, homogeneous variance). Further, suppose that X is partitioned according to several
model effects, X D ŒX1 X2 � � � Xk�. If b̌ denotes the ordinary least squares solution for this model, then the
sum of squares attributable to the overall model can be written as

SSM D b̌0X0Y D Y0HY

where H is the “hat” matrix H D X.X0X/�X0. (This model sum of squares is not yet corrected for the
presence of an explicit or implied intercept. This adjustment would consist of subtracting nY

2
from SSM.)

Because of the properties of the hat matrix H, you can write X0 D X0H and HX D X. The (uncorrected)
model sum of squares thus can also be written as

SSM D b̌0.X0X/b̌
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This step is significant, because it demonstrates that sums of squares can be identified with quadratic functions
in the least squares coefficients. The generalization of this idea is to do the following:

• consider hypotheses of interest in an analysis of variance model

• express the hypotheses in terms of linear estimable functions of the parameters

• compute the sums of squares associated with the estimable function

• construct statistical tests based on the sums of squares

Decomposing a model sum of squares into sequential, additive components, testing the significance of
experimental factors, comparing factor levels, and performing other statistical inferences fall within this
generalization. Suppose that Lˇ is an estimable function (see the section “Estimable Functions” on page 55
in Chapter 3, “Introduction to Statistical Modeling with SAS/STAT Software,” and Chapter 15, “The Four
Types of Estimable Functions,” for details). The sum of squares associated with the hypothesis H WLˇ D 0 is

SS.H/ D SS.Lˇ D 0/ D b̌0L0 �L.X0X/�L0
��1 Lb̌

One application would be to form sums of squares associated with the different components of X. For
example, you can form a matrix L2 matrix such that L2ˇ D 0 tests the effect of adding the columns for X2
to an empty model or to test the effect of adding X2 to a model that already contains X1.

These sums of squares can also be expressed as the difference between two residual sums of squares, since
Lˇ D 0 can be thought of as a (linear) restriction on the parameter estimates in the model:

SS.H/ D SSR.constrained model/ � SSR.full model/

If, in addition to the usual assumptions mentioned previously, the model errors are assumed to be normally
distributed, then SS.H/ follows a distribution that is proportional to a chi-square distribution. This fact, and
the independence of SS.H/ from the residual sum of squares, enables you to construct F tests based on sums
of squares in least squares models.

The extension of sum of squares analysis of variance to general analysis of variance for classification effects
depends on the fact that the distributional properties of quadratic forms in normal random variables are well
understood. It is not necessary to first formulate a sum of squares to arrive at an exact or even approximate F
test. The generalization of the expression for SS.H/ is to form test statistics based on quadratic forms

b̌0L0Var hLb̌i�1 Lb̌
that follow a chi-square distribution if b̌ is normally distributed.

Tests of Effects Based on Expected Mean Squares
Statistical tests in analysis of variance models can be constructed by comparing independent mean squares.
To test a particular null hypothesis, you compute the ratio of two mean squares that have the same expected
value under that hypothesis; if the ratio is much larger than 1, then that constitutes significant evidence
against the null. In particular, in an analysis of variance model with fixed effects only, the expected value of
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each mean square has two components: quadratic functions of fixed parameters and random variation. For
example, for a fixed effect called A, the expected value of its mean square is

EŒMS.A/� D Q.ˇ/C �2

where �2 is the common variance of the �i .

Under the null hypothesis of no A effect, the fixed portion Q(ˇ) of the expected mean square is zero. This
mean square is then compared to another mean square—say, MS(E)—that is independent of the first and has
the expected value �2. The ratio of the two mean squares

F D
MS.A/
MS.E/

has an F distribution under the null hypothesis.

When the null hypothesis is false, the numerator term has a larger expected value, but the expected value
of the denominator remains the same. Thus, large F values lead to rejection of the null hypothesis. The
probability of getting an F value at least as large as the one observed given that the null hypothesis is true is
called the significance probability value (or the p-value). A p-value of less than 0.05, for example, indicates
that data with no A effect will yield F values as large as the one observed less than 5% of the time. This is
usually considered moderate evidence that there is a real A effect. Smaller p-values constitute even stronger
evidence. Larger p-values indicate that the effect of interest is less than random noise. In this case, you can
conclude either that there is no effect at all or that you do not have enough data to detect the differences being
tested.

The actual pattern in expected mean squares of terms related to fixed quantities (Q(ˇ)) and functions of
variance components depends on which terms in your model are fixed effects and which terms are random
effects. This has bearing on how F statistics can be constructed. In some instances, exact tests are not
available, such as when a linear combination of expected mean squares is necessary to form a proper
denominator for an F test and a Satterthwaite approximation is used to determine the degrees of freedom of
the approximation. The GLM and MIXED procedures can generate tables of expected mean squares and
compute degrees of freedom by Satterthwaite’s method. The MIXED and GLIMMIX procedures can apply
Satterthwaite approximations and other degrees-of-freedom computations more widely than in analysis of
variance models. See the section “Fixed, Random, and Mixed Models” on page 27 in Chapter 3, “Introduction
to Statistical Modeling with SAS/STAT Software,” for a discussion of fixed versus random effects in statistical
models.

Analysis of Variance for Fixed-Effect Models

PROC GLM for General Linear Models
The GLM procedure is the flagship tool for classical analysis of variance in SAS/STAT software. It performs
analysis of variance by using least squares regression to fit general linear models. Among the statistical
methods available in PROC GLM are regression, analysis of variance, analysis of covariance, multivariate
analysis of variance, repeated measures analysis, and partial correlation analysis.

While PROC GLM can handle most common analysis of variance problems, other procedures are more
efficient or have more features than PROC GLM for certain specialized analyses, or they can handle
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specialized models that PROC GLM cannot. Much of the rest of this chapter is concerned with comparing
PROC GLM to other procedures.

PROC ANOVA for Balanced Designs
When you design an experiment, you choose how many experimental units to assign to each combination
of levels (or cells) in the classification. In order to achieve good statistical properties and simplify the
computations, you typically attempt to assign the same number of units to every cell in the design. Such
designs are called balanced designs.

In SAS/STAT software, you can use the ANOVA procedure to perform analysis of variance for balanced data.
The ANOVA procedure performs computations for analysis of variance that assume the balanced nature of
the data. These computations are simpler and more efficient than the corresponding general computations
performed by PROC GLM. Note that PROC ANOVA can be applied to certain designs that are not balanced
in the strict sense of equal numbers of observations for all cells. These additional designs include all one-way
models, regardless of how unbalanced the cell counts are, as well as Latin squares, which do not have data
in all cells. In general, however, the ANOVA procedure is recommended only for balanced data. If you
use ANOVA to analyze a design that is not balanced, you must assume responsibility for the validity
of the output. You are responsible for recognizing incorrect results, which might include negative values
reported for the sums of squares. If you are not certain that your data fit into a balanced design, then you
probably need the framework of general linear models in the GLM procedure.

Comparing Group Means
The F test for a classification factor that has more than two levels tells you whether the level effects are
significantly different from each other, but it does not tell you which levels differ from which other levels.

If the level comparisons are expressed through differences of the arithmetic cell means, you can use the
MEANS statement in the GLM and ANOVA procedures for comparison. If arithmetic means are not
appropriate for comparison, for example, because your data are unbalanced or means need to be adjusted
for other model effects, then you can use the LSMEANS statement in the GLIMMIX, GLM, and MIXED
procedures for level comparisons.

If you have specific comparisons in mind, you can use the CONTRAST statement in these procedures to
make these comparisons. However, if you make many comparisons that use some given significance level
(0.05, for example), you are more likely to make a type 1 error (incorrectly rejecting a hypothesis that the
means are equal) simply because you have more chances to make the error.

Multiple-comparison methods give you more detailed information about the differences among the means
and enable you to control error rates for a multitude of comparisons. A variety of multiple-comparison
methods are available with the MEANS statement in both the ANOVA and GLM procedures, as well as the
LSMEANS statement in the GLIMMIX, GLM, and MIXED procedures. These are described in detail in the
section “Multiple Comparisons” on page 3475 in Chapter 45, “The GLM Procedure,” and in Chapter 44,
“The GLIMMIX Procedure,” and Chapter 65, “The MIXED Procedure.”
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PROC TTEST for Comparing Two Groups
If you want to perform an analysis of variance and have only one classification variable with two levels, you
can use PROC TTEST. In this special case, the results generated by PROC TTEST are equivalent to the
results generated by PROC ANOVA or PROC GLM.

You can use PROC TTEST with balanced or unbalanced groups. In addition to the test assuming equal
variances, PROC TTEST also performs a Satterthwaite test assuming unequal variances.

The TTEST procedure also performs equivalence tests, computes confidence limits, and supports both normal
and lognormal data. If you have an AB/BA crossover design with no carryover effects, then you can use the
TTEST procedure to analyze the treatment and period effects.

The PROC NPAR1WAY procedure performs nonparametric analogues to t tests. See Chapter 16, “Introduction
to Nonparametric Analysis,” for an overview and Chapter 71, “The NPAR1WAY Procedure,” for details on
PROC NPAR1WAY.

Analysis of Variance for Categorical Data and Generalized
Linear Models
A categorical variable is defined as one that can assume only a limited number of values. For example, a
person’s gender is a categorical variable that can assume one of two values. Variables with levels that simply
name a group are said to be measured on a nominal scale. Categorical variables can also be measured using
an ordinal scale, which means that the levels of the variable are ordered in some way. For example, responses
to an opinion poll are usually measured on an ordinal scale, with levels ranging from “strongly disagree” to
“no opinion” to “strongly agree.”

For two categorical variables, one measured on an ordinal scale and one measured on a nominal scale, you
can assign scores to the levels of the ordinal variable and test whether the mean scores for the different levels
of the nominal variable are significantly different. This process is analogous to performing an analysis of
variance on continuous data, which can be performed by PROC CATMOD. If there are n nominal variables,
rather than 1, then PROC CATMOD can perform an n-way analysis of variance of the mean scores.

For two categorical variables measured on a nominal scale, you can test whether the distribution of the first
variable is significantly different for the levels of the second variable. This process is an analysis of variance
of proportions, rather than means, and can be performed by PROC CATMOD. The corresponding n-way
analysis of variance can also be performed by PROC CATMOD.

See Chapter 8, “Introduction to Categorical Data Analysis Procedures,” and Chapter 32, “The CATMOD
Procedure,” for more information.

The GENMOD procedure uses maximum likelihood estimation to fit generalized linear models. This family
includes models for categorical data such as logistic, probit, and complementary log-log regression for
binomial data and Poisson regression for count data, as well as continuous models such as ordinary linear
regression, gamma, and inverse Gaussian regression models. PROC GENMOD performs analysis of variance
through likelihood ratio and Wald tests of fixed effects in generalized linear models, and provides contrasts
and estimates for customized hypothesis tests. It performs analysis of repeated measures data with generalized
estimating equation (GEE) methods.
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See Chapter 8, “Introduction to Categorical Data Analysis Procedures,” and Chapter 43, “The GENMOD
Procedure,” for more information.

Nonparametric Analysis of Variance
Analysis of variance is sensitive to the distribution of the error term. If the error term is not normally
distributed, the statistics based on normality can be misleading. The traditional test statistics are called
parametric tests because they depend on the specification of a certain probability distribution except for a set
of free parameters. Parametric tests are said to depend on distributional assumptions. Nonparametric methods
perform the tests without making any strict distributional assumptions. Even if the data are distributed
normally, nonparametric methods are often almost as powerful as parametric methods.

Most nonparametric methods are based on taking the ranks of a variable and analyzing these ranks (or
transformations of them) instead of the original values. The NPAR1WAY procedure performs a nonparametric
one-way analysis of variance. Other nonparametric tests can be performed by taking ranks of the data (using
the RANK procedure) and using a regular parametric procedure (such as GLM or ANOVA) to perform
the analysis. Some of these techniques are outlined in the description of PROC RANK in SAS Language
Reference: Concepts and in Conover and Iman (1981).

Constructing Analysis of Variance Designs
Analysis of variance is most often used for data from designed experiments. You can use the PLAN
procedure to construct designs for many experiments. For example, PROC PLAN constructs designs
for completely randomized experiments, randomized blocks, Latin squares, factorial experiments, certain
balanced incomplete block designs, and balanced crossover designs.

Randomization, or randomly assigning experimental units to cells in a design and to treatments within a cell,
is another important aspect of experimental design. For either a new or an existing design, you can use PROC
PLAN to randomize the experimental plan.

Additional features for design of experiments are available in SAS/QC software. The FACTEX and OPTEX
procedures can construct a wide variety of designs, including factorials, fractional factorials, and D-optimal
or A-optimal designs. These procedures, as well as the ADX Interface, provide features for randomizing and
replicating designs; saving the design in an output data set; and interactively changing the design by changing
its size, use of blocking, or the search strategies used. For more information, see the SAS/QC User’s Guide.

For More Information
Analysis of variance was pioneered by Fisher (1925). For a general introduction to analysis of variance, see
an intermediate statistical methods textbook such as Steel and Torrie (1980); Snedecor and Cochran (1980);
Milliken and Johnson (1984); Mendenhall (1968); John (1971); Ott (1977); Kirk (1968). A classic source is
Scheffé (1959). Freund, Littell, and Spector (1991) bring together a treatment of these statistical methods and
SAS/STAT software procedures. Schlotzhauer and Littell (1997) cover how to perform t tests and one-way
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analysis of variance with SAS/STAT procedures. Texts on linear models include Searle (1971); Graybill
(1976); Hocking (1985). Kennedy and Gentle (1980) survey the computing aspects. Other references appear
in the reference section.
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Introduction to Mixed Modeling Procedures
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Overview: Mixed Modeling Procedures
A mixed model is a model that contains fixed and random effects. Since all statistical models contain some
stochastic component and many models contain a residual error term, the preceding sentence deserves some
clarification. The classical linear model Y D Xˇ C � contains the parameters ˇ and the random vector �.
The vector ˇ is a vector of fixed-effects parameters; its elements are unknown constants to be estimated from
the data. A mixed model in the narrow sense also contains random effects, which are unobservable random
variables. If the vector of random effects is denoted by  , then a linear mixed model can be written as

Y D Xˇ C Z C �

In a broader sense, mixed modeling and mixed model software is applied to special cases and generalizations
of this model. For example, a purely random effects model, Y D Z C �, or a correlated-error model,
Y D Xˇ C �, is subsumed by mixed modeling methodology.

Over the last few decades virtually every form of classical statistical model has been enhanced to accommodate
random effects. The linear model has been extended to the linear mixed model, generalized linear models
have been extended to generalized linear mixed models, and so on. In parallel with this trend, SAS/STAT
software offers a number of classical and contemporary mixed modeling tools. The aim of this chapter is
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to provide a brief introduction and comparison of the procedures for mixed model analysis (in the broad
sense) in SAS/STAT software. The theory and application of mixed models are discussed at length in
many monographs, including Milliken and Johnson (1992); Diggle, Liang, and Zeger (1994); Davidian and
Giltinan (1995); Verbeke and Molenberghs (1997, 2000); Vonesh and Chinchilli (1997); Demidenko (2004);
Molenberghs and Verbeke (2005); and Littell et al. (2006).

The following procedures in SAS/STAT software can perform mixed and random effects analysis to various
degrees:

GLM is primarily a tool for fitting linear models by least squares. The GLM procedure has
some capabilities for including random effects in a statistical model and for performing
statistical tests in mixed models. Repeated measures analysis is also possible with the
GLM procedure, assuming unstructured covariance modeling. Estimation methods for
covariance parameters in PROC GLM are based on the method of moments, and a portion
of its output applies only to the fixed-effects model.

GLIMMIX fits generalized linear mixed models by likelihood-based techniques. As in the MIXED
procedure, covariance structures are modeled parametrically. The GLIMMIX proce-
dure also has built-in capabilities for mixed model smoothing and joint modeling of
heterocatanomic multivariate data.

HPMIXED fits linear mixed models by sparse-matrix techniques. The HPMIXED procedure is
designed to handle large mixed model problems, such as the solution of mixed model
equations with thousands of fixed-effects parameters and random-effects solutions.

LATTICE computes the analysis of variance and analysis of simple covariance for data from an
experiment with a lattice design. PROC LATTICE analyzes balanced square lattices,
partially balanced square lattices, and some rectangular lattices. Analyses performed
with the LATTICE procedure can also be performed as mixed models for complete or
incomplete block designs with the MIXED procedure.

MIXED performs mixed model analysis and repeated measures analysis by way of structured
covariance models. The MIXED procedure estimates parameters by likelihood or moment-
based techniques. You can compute mixed model diagnostics and influence analysis for
observations and groups of observations. The default fitting method maximizes the
restricted likelihood of the data under the assumption that the data are normally distributed
and any missing data are missing at random. This general framework accommodates many
common correlated-data methods, including variance component models and repeated
measures analyses.

NESTED performs analysis of variance and analysis of covariance for purely nested random-effects
models. Because of its customized algorithms, PROC NESTED can be useful for large
data sets with nested random effects.

NLMIXED fits mixed models in which the fixed or random effects enter nonlinearly. The NLMIXED
procedure requires that you specify components of your mixed model via programming
statements. Some built-in distributions enable you to easily specify the conditional
distribution of the data, given the random effects.

VARCOMP estimates variance components for random or mixed models.

The focus in the remainder of this chapter is on procedures designed for random effects and mixed model
analysis: the GLIMMIX, HPMIXED, MIXED, NESTED, NLMIXED, and VARCOMP procedures. The
important distinction between fixed and random effects in statistical models is addressed in the section “Fixed,



Types of Mixed Models F 113

Random, and Mixed Models” on page 27, in Chapter 3, “Introduction to Statistical Modeling with SAS/STAT
Software.”

Types of Mixed Models

Linear, Generalized Linear, and Nonlinear Mixed Models
The linear model shown at the beginning of this chapter was incomplete because the distributional properties
of the random variables and their relationship were not specified. In this section the specification of the
models is completed and the three model classes, linear mixed models (LMM), generalized linear mixed
models (GLMM), and nonlinear mixed models (NLMM), are delineated.

Linear Mixed Model

It is a defining characteristic of the class of linear mixed models (LMM), the class of generalized linear
mixed models (GLMM), and the class of nonlinear mixed models (NLMM) that the random effects are
normally distributed. In the linear mixed model, this also applies to the error term; furthermore, the errors
and random effects are uncorrelated. The standard linear mixed model (LMM) is thus represented by the
following assumptions:

Y D Xˇ C Z C �
 � N.0;G/
� � N.0;R/

CovŒ; �� D 0

The matrices G and R are covariance matrices for the random effects and the random errors, respectively.
A G-side random effect in a linear mixed model is an element of  , and its variance is expressed through
an element in G. An R-side random variable is an element of �, and its variance is an element of R. The
GLIMMIX, HPMIXED, and MIXED procedures express the G and R matrices in parametric form—that
is, you structure the covariance matrix, and its elements are expressed as functions of some parameters,
known as the covariance parameters of the mixed models. The NLMIXED procedure also parameterizes
the covariance structure, but you accomplish this with programming statements rather than with predefined
syntax.

Since the right side of the model equation contains multiple random variables, the stochastic properties of Y
can be examined by conditioning on the random effects, or through the marginal distribution. Because of
the linearity of the G-side random effects and the normality of the random variables, the conditional and the
marginal distribution of the data are also normal with the following mean and variance matrices:

Yj � N.Xˇ C Z;R/
Y � N.Xˇ;V/
V D ZGZ0 C R

Parameter estimation in linear mixed models is based on likelihood or method-of-moment techniques. The
default estimation method in PROC MIXED, and the only method available in PROC HPMIXED, is restricted
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(residual) maximum likelihood, a form of likelihood estimation that accounts for the parameters in the fixed-
effects structure of the model to reduce the bias in the covariance parameter estimates. Moment-based
estimation of the covariance parameters is available in the MIXED procedure through the METHOD= option
in the PROC MIXED statement. The moment-based estimators are associated with sums of squares, expected
mean squares (EMS), and the solution of EMS equations.

Parameter estimation by likelihood-based techniques in linear mixed models maximizes the marginal (re-
stricted) log likelihood of the data—that is, the log likelihood is formed from Y � N.Xˇ;V/. This is a model
for Y with mean Xˇ and covariance matrix V, a correlated-error model. Such marginal models arise, for
example, in the analysis of time series data, repeated measures, or spatial data, and are naturally subsumed
into the linear mixed model family. Furthermore, some mixed models have an equivalent formulation
as a correlated-error model, when both give rise to the same marginal mean and covariance matrix. For
example, a mixed model with a single variance component is identical to a correlated-error model with
compound-symmetric covariance structure, provided that the common correlation is positive.

Generalized Linear Mixed Model

In a generalized linear mixed model (GLMM) the G-side random effects are part of the linear predictor,
� D Xˇ C Z , and the predictor is related nonlinearly to the conditional mean of the data

EŒYj� D g�1.�/ D g�1.Xˇ C Z/

where g�1.�/ is the inverse link function. The conditional distribution of the data, given the random effects,
is a member of the exponential family of distributions, such as the binary, binomial, Poisson, gamma, beta, or
chi-square distribution. Because the normal distribution is also a member of the exponential family, the class
of the linear mixed models is a subset of the generalized linear mixed models. In order to completely specify
a GLMM, you need to do the following:

1. Formulate the linear predictor, including fixed and random effects.

2. Choose a link function.

3. Choose the distribution of the response, conditional on the random effects, from the exponential family.

As an example, suppose that s pairs of twins are randomly selected in a matched-pair design. One of the
twins in each pair receives a treatment and the outcome variable is some binary measure. This is a study
with s clusters (subjects) and each cluster is of size 2. If Yij denotes the binary response of twin j D 1; 2 in
cluster i, then a linear predictor for this experiment could be

�ij D ˇ0 C �xij C i

where xij denotes a regressor variable that takes on the value 1 for the treated observation in each pair, and
0 otherwise. The i are pair-specific random effects that model heterogeneity across sets of twins and that
induce a correlation between the members of each pair. By virtue of random sampling the sets of twins, it is
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reasonable to assume that the i are independent and have equal variance. This leads to a diagonal G matrix,

VarŒ� D Var

2666664
1
2
3
:::

s

3777775 D
2666664
�2 0 0 � � � 0

0 �2 0 � � � 0

0 0 �2 � � � 0
:::

:::
:::

: : :
:::

0 0 0 � � � �2

3777775
A common link function for binary data is the logit link, which leads in the second step of model formulation
to

E
�
Yij ji

�
D �ij ji D

1

1C expf��ij g

logit
�

�ij ji

1 � �ij ji

�
D�ij

The final step, choosing a distribution from the exponential family, is automatic in this example; only the
binary distribution comes into play to model the distribution of Yij ji .

As for the linear mixed model, there is a marginal model in the case of a generalized linear mixed model that
results from integrating the joint distribution over the random effects. This marginal distribution is elusive for
many GLMMs, and parameter estimation proceeds by either approximating the model or by approximating
the marginal integral. Details of these approaches are described in the section “Generalized Linear Mixed
Models Theory” on page 3186, in Chapter 44, “The GLIMMIX Procedure.”

A marginal model, one that models correlation through the R matrix and does not involve G-side random
effects, can also be formulated in the GLMM family; such models are the extension of the correlated-error
models in the linear mixed model family. Because nonnormal distributions in the exponential family exhibit
a functional mean-variance relationship, fully parametric estimation is not possible in such models. Instead,
estimating equations are formed based on first-moment (mean) and second-moment (covariance) assumptions
for the marginal data. The approaches for modeling correlated nonnormal data via generalized estimating
equations (GEE) fall into this category (see, for example, Liang and Zeger 1986; Zeger and Liang 1986).

Nonlinear Mixed Model

In a nonlinear mixed model (NLMM), the fixed and/or random effects enter the conditional mean function
nonlinearly. If the mean function is a general, nonlinear function, then it is customary to assume that the
conditional distribution is normal, such as in modeling growth curves or pharmacokinetic response. This is
not a requirement, however.
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An example of a nonlinear mixed model is the following logistic growth curve model for the jth observation
of the ith subject (cluster):

f .ˇ;i ; xij / D
ˇ1 C i1

1C expŒ�.xij � ˇ2/=.ˇ3 C i2/�

Yij Df .ˇ;i ; xij /C �ij�
i1
i2

�
�N

��
0

0

�
;

�
�21 �12
�21 �22

��
Yij ji1; i2 �N.0; �

2
� /

The inclusion of R-side covariance structures in GLMM and NLMM models is not as straightforward as in
linear mixed models for the following reasons:

• The normality of the conditional distribution in the LMM enables straightforward modeling of the
covariance structure because the mean structure and covariance structure are not functionally related.

• The linearity of the random effects in the LMM leads to a marginal distribution that incorporates the R
matrix in a natural and meaningful way.

To incorporate R-side covariance structures when random effects enter nonlinearly or when the data are not
normally distributed requires estimation approaches that rely on linearizations of the mixed model. Among
such estimation methods are the pseudo-likelihood methods that are available with the GLIMMIX procedure.
Generalized estimating equations also solve this marginal estimation problem for nonnormal data; these are
available with the GENMOD procedure.

Models for Clustered and Hierarchical Data
Mixed models are often applied in situations where data are clustered, grouped, or otherwise hierarchically
organized. For example, observations might be collected by randomly selecting schools in a school district,
then randomly selecting classrooms within schools, and then randomly selecting students within the classroom.
A longitudinal study might randomly select individuals and then repeatedly take measurements on them. In
the first example, a school is a cluster of observations, which consists of smaller clusters (classrooms) and so
on. In the longitudinal example the observations for a particular individual form a cluster. Mixed models are
popular analysis tools for hierarchically organized data for the following reasons:

• The selection of groups is often performed randomly, so that the associated effects are random effects.

• The data from different clusters are independent by virtue of the random selection or by assumption.

• The observations from the same cluster are often correlated, such as the repeated observations in a
repeated measures or longitudinal study.

• It is often believed that there is heterogeneity in model parameters across subjects; for example, slopes
and intercepts might differ across individuals in a longitudinal growth study. This heterogeneity, if due
to stochastic sources, can be modeled with random effects.
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A linear mixed models with clustered, hierarchical structure can be written as a special case of the general
linear mixed model by introducing appropriate subscripts. For example, a mixed model with one type of
clustering and s clusters can be written as

Yi D Xiˇ C Zii C �i i D 1; � � � ; s

In SAS/STAT software, the clusters are referred to as subjects, and the effects that define clusters in your
data can be specified with the SUBJECT= option in the GLIMMIX, HPMIXED, MIXED, and NLMIXED
procedures. The vector Yi collects the ni observations for the ith subject. In certain disciplines, the
organization of a hierarchical model is viewed in a bottom-up form, where the measured observations
represent the first level, these are collected into units at the second level, and so forth. In the school data
example, the bottom-up approach considers a student’s score as the level-1 observation, the classroom as
the level-2 unit, and the school district as the level-3 unit (if these were also selected from a population of
districts).

The following points are noteworthy about mixed models with SUBJECT= specification:

• A SUBJECT= option is available in the RANDOM statements of the GLIMMIX, HPMIXED, MIXED,
and NLMIXED procedures and in the REPEATED statement of the MIXED and HPMIXED proce-
dures.

• A SUBJECT= specification is required in the NLMIXED and HPMIXED procedures. It is not required
with any other mixed modeling procedure in SAS/STAT software.

• Specifying models with subjects is usually more computationally efficient in the MIXED and GLIM-
MIX procedures, especially if the SUBJECT= effects are identical or contained within each other. The
computational efficiency of the HPMIXED procedure is not dependent on SUBJECT= effects in the
manner in which the MIXED and GLIMMIX procedures are affected.

• There is no limit to the number of SUBJECT= effects with the MIXED, HPMIXED, and GLIMMIX
procedures—that is, you can achieve an arbitrary depth of the nesting.

Models with Subjects and Groups
The concept of a subject as a unit of clustering observations in a mixed model has been described in
the preceding section. This concept is important for mixed modeling with the GLIMMIX, HPMIXED,
MIXED, and NLMIXED procedures. Observations from two subjects are considered uncorrelated in the
analysis. Observations from the same subject are potentially correlated, depending on your specification
of the covariance structure. Random effects at the subject level always lead to correlation in the marginal
distribution of the observations that belong to the subject.

The GLIMMIX, HPMIXED, and MIXED procedures also support the notion of a GROUP= effect in the
specification of the covariance structure. Like a subject effect, a G-side group effect identifies independent
random effects. In addition to a subject effect, the group effect assumes that the realizations of the random
effects correspond to draws from different distributions; in other words, each level of the group effect is
associated with a different set of covariance parameters. For example, the following statements in any of
these procedures fit a random coefficient model with fixed intercept and slope and subject-specific random
intercept and slope:
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class id;
model y = x;
random intercept x / subject=id;

The interpretation of the RANDOM statement is that for each ID an independent draw is made from a
bivariate normal distribution with zero mean and a diagonal covariance matrix. In the following statements
(in any of these procedures) these independent draws come from different bivariate normal distributions
depending on the value of the grp variable.

class id grp;
model y = x;
random intercept x / subject=id group=grp;

Adding GROUP= effects in your model increases the flexibility to model heterogeneity in the covariance
parameters, but it can add numerical complexity to the estimation process.

Linear Mixed Models
You can fit linear mixed models in SAS/STAT software with the GLM, GLIMMIX, HPMIXED, LATTICE,
MIXED, NESTED, and VARCOMP procedures.

The procedure specifically designed for statistical estimation in linear mixed models is the MIXED procedure.
To fit the linear mixed model

Y D Xˇ C Z C �
 � N.0;G/
� � N.0;R/

CovŒ; �� D 0

with the MIXED procedure, you specify the fixed-effects design matrix X in the MODEL statement, the
random-effects design matrix Z in the RANDOM statement, the covariance matrix of the random effects
G with options (SUBJECT=, GROUP=, TYPE=) in the RANDOM statement, and the R matrix in the
REPEATED statement.

By default, covariance parameters are estimated by restricted (residual) maximum likelihood. In supported
models, the METHOD=TYPE1, METHOD=TYPE2, and METHOD=TYPE3 options lead to method-of-
moment-based estimators and analysis of variance. The MIXED procedure provides an extensive list of
diagnostics for mixed models, from various residual graphics to observationwise and groupwise influence
diagnostics.

The NESTED procedure performs an analysis of variance in nested random effects models. The VARCOMP
procedure can be used to estimate variance components associated with random effects in random and mixed
models. The LATTICE procedure computes analysis of variance for balanced and partially balanced square
lattices. You can fit the random and mixed models supported by these procedures with the MIXED procedure
as well. Some specific analyses, such as the analysis of Gauge R & R studies in the VARCOMP procedure
(Burdick, Borror, and Montgomery 2005), are unique to the specialized procedures.

The GLIMMIX procedure can fit most of the models that you can fit with the MIXED procedure, but it does
not offer method-of-moment-based estimation and analysis of variance in the narrow sense. Also, PROC
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GLIMMIX does not support the same array of covariance structures as the MIXED procedure and does
not support a sampling-based Bayesian analysis. An in-depth comparison of the GLIMMIX and MIXED
procedures can be found in the section “Comparing the GLIMMIX and MIXED Procedures” on page 3236,
in Chapter 44, “The GLIMMIX Procedure.”

Comparing the MIXED and GLM Procedures
Random- and mixed-effects models can also be fitted with the GLM procedure, but the philosophy is different
from that of PROC MIXED and other dedicated mixed modeling procedures. The following lists important
differences between the GLM and MIXED procedures in fitting random and mixed models:

• The default estimation method for covariance parameters in the MIXED procedure is restricted
maximum likelihood. Covariance parameters are estimated by the method of moments by solving
expressions for expected mean squares.

• In the GLM procedure, fixed and random effects are listed in the MODEL statement. Only fixed effects
are listed in the MODEL statement of the MIXED procedure. In the GLM procedure, random effects
must be repeated in the RANDOM statement.

• You can request tests for model effects by adding the TEST option in the RANDOM statement of the
GLM procedure. PROC GLM then constructs exact tests for random effects if possible and constructs
approximate tests if exact tests are not possible. For details on how the GLM procedure constructs
tests for random effects, see the section “Computation of Expected Mean Squares for Random Effects”
on page 3502, in Chapter 45, “The GLM Procedure.” Tests for fixed effects are constructed by the
MIXED procedure as Wald-type F tests, and the degrees of freedom for these tests can be determined
by a variety of methods.

• Some of the output of the GLM procedure applies only to the fixed effects part of the model, whether a
RANDOM statement is specified or not.

• Variance components are independent in the GLM procedure and covariance matrices are generally
unstructured. The default covariance structure for variance components in the MIXED procedure is
also a variance component structure, but the procedure offers a large number of parametric structures
to model covariation among random effects and observations.

Comparing the MIXED and HPMIXED Procedures
The HPMIXED procedure is designed to solve large mixed model problems by using sparse matrix techniques.
The largeness of a mixed model can take many forms: a large number of observations, large number of
columns in the X matrix, a large number of random effects, or a large number of covariance parameters. The
province of the HPMIXED procedure is parameter estimation, inference, and prediction in mixed models
with large X and/or Z matrices, many observations, but relatively few covariance parameters.

The models that you can fit with the HPMIXED procedure are a subset of the models available with the
MIXED procedure. The HPMIXED procedure supports only a limited number of types of covariance
structure in the RANDOM and REPEATED statements in order to balance performance and generality.
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To some extent, the generality of the MIXED procedure precludes it from serving as a high-performance
computing tool for all the model-data scenarios that the procedure can potentially estimate parameters for. For
example, although efficient sparse algorithms are available to estimate variance components in large mixed
models, the computational configuration changes profoundly when, for example, standard error adjustments
and degrees of freedom by the Kenward-Roger method are requested.

Generalized Linear Mixed Models
Generalized linear mixed models can be fit with the GLIMMIX and NLMIXED procedures in SAS/STAT
software. The GLIMMIX procedure is specifically designed to fit this class of models and offers syntax
very similar to the syntax of other linear modeling procedures, such as the MIXED procedure. Consider a
generalized linear model with linear predictor and link function

EŒYj� D g�1.�/ D g�1.Xˇ C Z/

and distribution in the exponential family. The fixed-effects design matrix X is specified in the MODEL
statement of the GLIMMIX procedure, and the random-effects design matrix Z is specified in the RANDOM
statement, along with the covariance matrix of the random effects and the covariance matrix of R-side random
variables. The link function and (conditional) distribution are determined by defaults or through options in
the MODEL statement.

The GLIMMIX procedure can fit heterocatanomic multivariate data—that is, data that stem from different
distributions. For example, one measurement taken on a patient might be a continuous, normally distributed
outcome, whereas another measurement might be a binary indicator of medical history. The GLIMMIX
procedure also provides capabilities for mixed model smoothing and mixed model splines.

The GLIMMIX procedure offers an extensive array of postprocessing features to produce output statistics and
to perform linear inference. The ESTIMATE and LSMESTIMATE statements support multiplicity-adjusted
p-values for the protection of the familywise Type-I error rate. The LSMEANS statement supports the slicing
of interactions, simple effect differences, and ODS statistical graphs for group comparisons.

The default estimation technique in the GLIMMIX procedure depends on the class of models fit. For linear
mixed models, the default technique is restricted maximum likelihood, as in the MIXED procedure. For
generalized linear mixed models, the estimation is based on linearization methods (pseudo-likelihood) or on
integral approximation by adaptive quadrature or Laplace methods.

The NLMIXED procedure facilitates the fitting of generalized linear mixed models through several built-in
distributions from the exponential family (binary, binomial, gamma, negative binomial, and Poisson). You
have to code the linear predictor and link function with SAS programming statements and assign starting
values to all parameters, including the covariance parameters. Although you are not required to specify
starting values with the NLMIXED procedure (because the procedure assigns a default value of 1.0 to every
parameter not explicitly given a starting value), it is highly recommended that you specify good starting
values. The default estimation technique of the NLMIXED procedure, an adaptive Gauss-Hermite quadrature,
is also available in the GLIMMIX procedure through the METHOD=QUAD option in the PROC GLIMMIX
statement. The Laplace approximation that is available in the NLMIXED procedure by setting QPOINTS=1
is available in the GLIMMIX procedure through the METHOD=LAPLACE option.
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Comparing the GENMOD and GLIMMIX Procedures
The GENMOD and GLIMMIX procedures can fit generalized linear models and estimate the parameters by
maximum likelihood. For multinomial data, the GENMOD procedure fits cumulative link models for ordinal
data. The GLIMMIX procedure fits these models and generalized logit models for nominal data.

When data are correlated, you can use the REPEATED statement in the GENMOD procedure to fit marginal
models via generalized estimating equations. A working covariance structure is assumed, and the standard
errors of the parameter estimates are computed according to an empirical (“sandwich”) estimator that is
robust to the misspecification of the covariance structure. Marginal generalized linear models for correlated
data can also be fit with the GLIMMIX procedure by specifying the random effects as R-side effects. The
empirical covariance estimators are available through the EMPIRICAL= option in the PROC GLIMMIX
statement. The essential difference between the estimation approaches taken by the GLIMMIX procedure
and generalized estimating equations is that the latter approach estimates the covariance parameters by the
method of moments, whereas the GLIMMIX procedure uses likelihood-based techniques.

The GENMOD procedure supports nonsingular parameterizations of classification variables through its
CLASS statement. The GLIMMIX procedure supports only the standard, GLM-type singular param-
eterization of CLASS variables. For the differences between these parameterizations, see the section
“Parameterization of Model Effects” on page 387, in Chapter 19, “Shared Concepts and Topics.”

Nonlinear Mixed Models: The NLMIXED Procedure
PROC NLMIXED handles models in which the fixed or random effects enter nonlinearly. It requires that you
specify a conditional distribution of the data given the random effects, with available distributions including
the normal, binomial, and Poisson. You can alternatively code your own distribution with SAS programming
statements. Under a normality assumption for the random effects, PROC NLMIXED performs maximum
likelihood estimation via adaptive Gaussian quadrature and a dual quasi-Newton optimization algorithm.
Besides standard maximum likelihood results, you can obtain empirical Bayes predictions of the random
effects and estimates of arbitrary functions of the parameters with delta-method standard errors. PROC
NLMIXED has a wide variety of applications; two of the most common applications are nonlinear growth
curves and overdispersed binomial data.
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Overview
SAS/STAT software provides Bayesian capabilities in six procedures: BCHOICE, FMM, GENMOD, LIF-
EREG, MCMC, and PHREG. The FMM, GENMOD, LIFEREG, and PHREG procedures provide Bayesian
analysis in addition to the standard frequentist analyses they have always performed. Thus, these procedures
provide convenient access to Bayesian modeling and inference for finite mixture models, generalized linear
models, accelerated life failure models, Cox regression models, and piecewise constant baseline hazard
models (also known as piecewise exponential models). The BCHOICE procedure provides Bayesian analysis
for discrete choice models. The MCMC procedure is a general procedure that fits Bayesian models with
arbitrary priors and likelihood functions.

This chapter provides an overview of Bayesian statistics; describes specific sampling algorithms used in
these four procedures; and discusses posterior inference and convergence diagnostics computations. Sources
that provide in-depth treatment of Bayesian statistics can be found at the end of this chapter, in the section
“A Bayesian Reading List” on page 154. Additional chapters contain syntax, details, and examples for the
individual procedures BCHOICE(see Chapter 27, “The BCHOICE Procedure”), FMM (see Chapter 39, “The
FMM Procedure”), GENMOD (see Chapter 43, “The GENMOD Procedure”), LIFEREG (see Chapter 57,
“The LIFEREG Procedure”), MCMC (see Chapter 61, “The MCMC Procedure”), and PHREG (see Chapter 73,
“The PHREG Procedure”).
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Introduction
The most frequently used statistical methods are known as frequentist (or classical) methods. These methods
assume that unknown parameters are fixed constants, and they define probability by using limiting relative
frequencies. It follows from these assumptions that probabilities are objective and that you cannot make
probabilistic statements about parameters because they are fixed. Bayesian methods offer an alternative
approach; they treat parameters as random variables and define probability as “degrees of belief” (that is, the
probability of an event is the degree to which you believe the event is true). It follows from these postulates
that probabilities are subjective and that you can make probability statements about parameters. The term
“Bayesian” comes from the prevalent usage of Bayes’ theorem, which was named after the Reverend Thomas
Bayes, an eighteenth century Presbyterian minister. Bayes was interested in solving the question of inverse
probability: after observing a collection of events, what is the probability of one event?

Suppose you are interested in estimating � from data y D fy1; : : : ; yng by using a statistical model described
by a density p.yj�/. Bayesian philosophy states that � cannot be determined exactly, and uncertainty about
the parameter is expressed through probability statements and distributions. You can say that � follows
a normal distribution with mean 0 and variance 1, if it is believed that this distribution best describes the
uncertainty associated with the parameter. The following steps describe the essential elements of Bayesian
inference:

1. A probability distribution for � is formulated as �.�/, which is known as the prior distribution, or just
the prior. The prior distribution expresses your beliefs (for example, on the mean, the spread, the
skewness, and so forth) about the parameter before you examine the data.

2. Given the observed data y, you choose a statistical model p.yj�/ to describe the distribution of y given
� .

3. You update your beliefs about � by combining information from the prior distribution and the data
through the calculation of the posterior distribution, p.� jy/.

The third step is carried out by using Bayes’ theorem, which enables you to combine the prior distribution
and the model in the following way:

p.� jy/ D
p.�; y/
p.y/

D
p.yj�/�.�/

p.y/
D

p.yj�/�.�/R
p.yj�/�.�/d�

The quantity

p.y/ D
Z
p.yj�/�.�/d�

is the normalizing constant of the posterior distribution. This quantity p.y/ is also the marginal distribution
of y, and it is sometimes called the marginal distribution of the data. The likelihood function of � is any
function proportional to p.yj�/; that is, L.�/ / p.yj�/. Another way of writing Bayes’ theorem is as
follows:
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p.� jy/ D
L.�/�.�/R
L.�/�.�/d�

The marginal distribution p.y/ is an integral. As long as the integral is finite, the particular value of the
integral does not provide any additional information about the posterior distribution. Hence, p.� jy/ can be
written up to an arbitrary constant, presented here in proportional form as:

p.� jy/ / L.�/�.�/

Simply put, Bayes’ theorem tells you how to update existing knowledge with new information. You begin
with a prior belief �.�/, and after learning information from data y, you change or update your belief about
� and obtain p.� jy/. These are the essential elements of the Bayesian approach to data analysis.

In theory, Bayesian methods offer simple alternatives to statistical inference—all inferences follow from
the posterior distribution p.� jy/. In practice, however, you can obtain the posterior distribution with
straightforward analytical solutions only in the most rudimentary problems. Most Bayesian analyses require
sophisticated computations, including the use of simulation methods. You generate samples from the posterior
distribution and use these samples to estimate the quantities of interest. PROC MCMC uses a self-tuning
Metropolis algorithm (see the section “Metropolis and Metropolis-Hastings Algorithms” on page 132). The
GENMOD, LIFEREG, and PHREG procedures use the Gibbs sampler (see the section “Gibbs Sampler” on
page 133). The BCHOICE and FMM procedure use a combination of Gibbs sampler and latent variable
sampler. An important aspect of any analysis is assessing the convergence of the Markov chains. Inferences
based on nonconverged Markov chains can be both inaccurate and misleading.

Both Bayesian and classical methods have their advantages and disadvantages. From a practical point of
view, your choice of method depends on what you want to accomplish with your data analysis. If you
have prior information (either expert opinion or historical knowledge) that you want to incorporate into
the analysis, then you should consider Bayesian methods. In addition, if you want to communicate your
findings in terms of probability notions that can be more easily understood by nonstatisticians, Bayesian
methods might be appropriate. The Bayesian paradigm can often provide a framework for answering specific
scientific questions that a single point estimate cannot sufficiently address. Alternatively, if you are interested
only in estimating parameters based on the likelihood, then numerical optimization methods, such as the
Newton-Raphson method, can give you very precise estimates and there is no need to use a Bayesian analysis.
For further discussions of the relative advantages and disadvantages of Bayesian analysis, see the section
“Bayesian Analysis: Advantages and Disadvantages” on page 130.

Background in Bayesian Statistics

Prior Distributions
A prior distribution of a parameter is the probability distribution that represents your uncertainty about the
parameter before the current data are examined. Multiplying the prior distribution and the likelihood function
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together leads to the posterior distribution of the parameter. You use the posterior distribution to carry out
all inferences. You cannot carry out any Bayesian inference or perform any modeling without using a prior
distribution.

Objective Priors versus Subjective Priors

Bayesian probability measures the degree of belief that you have in a random event. By this definition,
probability is highly subjective. It follows that all priors are subjective priors. Not everyone agrees with
this notion of subjectivity when it comes to specifying prior distributions. There has long been a desire to
obtain results that are objectively valid. Within the Bayesian paradigm, this can be somewhat achieved by
using prior distributions that are “objective” (that is, that have a minimal impact on the posterior distribution).
Such distributions are called objective or noninformative priors (see the next section). However, while
noninformative priors are very popular in some applications, they are not always easy to construct. See
DeGroot and Schervish (2002, Section 1.2) and Press (2003, Section 2.2) for more information about
interpretations of probability. See Berger (2006) and Goldstein (2006) for discussions about objective
Bayesian versus subjective Bayesian analysis.

Noninformative Priors

Roughly speaking, a prior distribution is noninformative if the prior is “flat” relative to the likelihood function.
Thus, a prior �.�/ is noninformative if it has minimal impact on the posterior distribution of � . Other names
for the noninformative prior are vague, diffuse, and flat prior. Many statisticians favor noninformative priors
because they appear to be more objective. However, it is unrealistic to expect that noninformative priors
represent total ignorance about the parameter of interest. In some cases, noninformative priors can lead to
improper posteriors (nonintegrable posterior density). You cannot make inferences with improper posterior
distributions. In addition, noninformative priors are often not invariant under transformation; that is, a prior
might be noninformative in one parameterization but not necessarily noninformative if a transformation is
applied.

See Box and Tiao (1973) for a more formal development of noninformative priors. See Kass and Wasserman
(1996) for techniques for deriving noninformative priors.

Improper Priors

A prior �.�/ is said to be improper if

Z
�.�/d� D1

For example, a uniform prior distribution on the real line, �.�/ / 1, for �1 < � < 1, is an improper
prior. Improper priors are often used in Bayesian inference since they usually yield noninformative priors
and proper posterior distributions. Improper prior distributions can lead to posterior impropriety (improper
posterior distribution). To determine whether a posterior distribution is proper, you need to make sure that
the normalizing constant

R
p.yj�/p.�/d� is finite for all y. If an improper prior distribution leads to an

improper posterior distribution, inference based on the improper posterior distribution is invalid.

The GENMOD, LIFEREG, and PHREG procedures allow the use of improper priors—that is, the flat prior
on the real line—for regression coefficients. These improper priors do not lead to any improper posterior
distributions in the models that these procedures fit. PROC MCMC allows the use of any prior, as long as the
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distribution is programmable using DATA step functions. However, the procedure does not verify whether
the posterior distribution is integrable. You must ensure this yourself.

Informative Priors

An informative prior is a prior that is not dominated by the likelihood and that has an impact on the posterior
distribution. If a prior distribution dominates the likelihood, it is clearly an informative prior. These types
of distributions must be specified with care in actual practice. On the other hand, the proper use of prior
distributions illustrates the power of the Bayesian method: information gathered from the previous study, past
experience, or expert opinion can be combined with current information in a natural way. See the “Examples”
sections of the GENMOD and PHREG procedure chapters for instructions about constructing informative
prior distributions.

Conjugate Priors

A prior is said to be a conjugate prior for a family of distributions if the prior and posterior distributions are
from the same family, which means that the form of the posterior has the same distributional form as the prior
distribution. For example, if the likelihood is binomial, y Ï Bin.n; �/, a conjugate prior on � is the beta
distribution; it follows that the posterior distribution of � is also a beta distribution. Other commonly used
conjugate prior/likelihood combinations include the normal/normal, gamma/Poisson, gamma/gamma, and
gamma/beta cases. The development of conjugate priors was partially driven by a desire for computational
convenience—conjugacy provides a practical way to obtain the posterior distributions. The Bayesian
procedures do not use conjugacy in posterior sampling.

Jeffreys’ Prior

A very useful prior is Jeffreys’ prior (Jeffreys 1961). It satisfies the local uniformity property: a prior that
does not change much over the region in which the likelihood is significant and does not assume large values
outside that range. It is based on the Fisher information matrix. Jeffreys’ prior is defined as

�.�/ / jI.�/j1=2

where j j denotes the determinant and I.�/ is the Fisher information matrix based on the likelihood function
p.yj�/:

I.�/ D �E

�
@2 logp.yj�/

@�2

�

Jeffreys’ prior is locally uniform and hence noninformative. It provides an automated scheme for finding a
noninformative prior for any parametric model p.yj�/. Another appealing property of Jeffreys’ prior is that
it is invariant with respect to one-to-one transformations. The invariance property means that if you have
a locally uniform prior on � and �.�/ is a one-to-one function of � , then p.�.�// D �.�/ � j�0.�/j�1 is a
locally uniform prior for �.�/. This invariance principle carries through to multidimensional parameters
as well. While Jeffreys’ prior provides a general recipe for obtaining noninformative priors, it has some
shortcomings: the prior is improper for many models, and it can lead to improper posterior in some cases;
and the prior can be cumbersome to use in high dimensions. PROC GENMOD calculates Jeffreys’ prior
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automatically for any generalized linear model. You can set it as your prior density for the coefficient
parameters, and it does not lead to improper posteriors. You can construct Jeffreys’ prior for a variety of
statistical models in the MCMC procedure. See the section “Example 61.4: Logistic Regression Model with
Jeffreys’ Prior” on page 4887 in Chapter 61, “The MCMC Procedure,” for an example. PROC MCMC does
not guarantee that the corresponding posterior distribution is proper, and you need to exercise extra caution
in this case.

Bayesian Inference
Bayesian inference about � is primarily based on the posterior distribution of � . There are various ways
in which you can summarize this distribution. For example, you can report your findings through point
estimates. You can also use the posterior distribution to construct hypothesis tests or probability statements.

Point Estimation and Estimation Error

Classical methods often report the maximum likelihood estimator (MLE) or the method of moments estimator
(MOME) of a parameter. In contrast, Bayesian approaches often use the posterior mean. The definition of the
posterior mean is given by

E.� jy/ D
Z
� p.� jy/ d�

Other commonly used posterior estimators include the posterior median, defined as

� WP.� � medianjy/ D P.median � � jy/ D
1

2

and the posterior mode, defined as the value of � that maximizes p.� jy/.

The variance of the posterior density (simply referred to as the posterior variance) describes the uncertainty
in the parameter, which is a random variable in the Bayesian paradigm. A Bayesian analysis typically uses
the posterior variance, or the posterior standard deviation, to characterize the dispersion of the parameter. In
multidimensional models, covariance or correlation matrices are used.

If you know the distributional form of the posterior density of interest, you can report the exact posterior
point estimates. When models become too difficult to analyze analytically, you have to use simulation
algorithms, such as the Markov chain Monte Carlo (MCMC) method to obtain posterior estimates (see the
section “Markov Chain Monte Carlo Method” on page 131). All of the Bayesian procedures rely on MCMC
to obtain all posterior estimates. Using only a finite number of samples, simulations introduce an additional
level of uncertainty to the accuracy of the estimates. Monte Carlo standard error (MCSE), which is the
standard error of the posterior mean estimate, measures the simulation accuracy. See the section “Standard
Error of the Mean Estimate” on page 151 for more information.

The posterior standard deviation and the MCSE are two completely different concepts: the posterior standard
deviation describes the uncertainty in the parameter, while the MCSE describes only the uncertainty in the
parameter estimate as a result of MCMC simulation. The posterior standard deviation is a function of the
sample size in the data set, and the MCSE is a function of the number of iterations in the simulation.
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Hypothesis Testing

Suppose you have the following null and alternative hypotheses: H0 is � 2 ‚0 and H1 is � 2 ‚c0, where
‚0 is a subset of the parameter space and ‚c0 is its complement. Using the posterior distribution �.� jy/,
you can compute the posterior probabilities P.� 2 ‚0jy/ and P.� 2 ‚c0jy/, or the probabilities that H0 and
H1 are true, respectively. One way to perform a Bayesian hypothesis test is to accept the null hypothesis
if P.� 2 ‚0jy/ � P.� 2 ‚c0jy/ and vice versa, or to accept the null hypothesis if P.� 2 ‚0jy/ is greater
than a predefined threshold, such as 0.75, to guard against falsely accepted null distribution.

It is more difficult to carry out a point null hypothesis test in a Bayesian analysis. A point null hypothesis
is a test of H0W � D �0 versus H1W � ¤ �0. If the prior distribution �.�/ is a continuous density, then the
posterior probability of the null hypothesis being true is 0, and there is no point in carrying out the test. One
alternative is to restate the null to be a small interval hypothesis: � 2 ‚0 D .�0 � a; �0 C a/, where a is
a very small constant. The Bayesian paradigm can deal with an interval hypothesis more easily. Another
approach is to give a mixture prior distribution to � with a positive probability of p0 on �0 and the density
.1 � p0/�.�/ on � ¤ �0. This prior ensures a nonzero posterior probability on �0, and you can then make
realistic probabilistic comparisons. For more detailed treatment of Bayesian hypothesis testing, see Berger
(1985).

Interval Estimation

The Bayesian set estimates are called credible sets, which are also known as credible intervals. This is
analogous to the concept of confidence intervals used in classical statistics. Given a posterior distribution
p.� jy/, A is a credible set for � if

P.� 2 Ajy/ D
Z
A

p.� jy/d�

For example, you can construct a 95% credible set for � by finding an interval, A, over which
R
A p.� jy/ D

0:95.

You can construct credible sets that have equal tails. A 100.1 � ˛/% equal-tail interval corresponds to the
100.˛=2/ and 100.1 � ˛=2/ percentiles of the posterior distribution. Some statisticians prefer this interval
because it is invariant under transformations. Another frequently used Bayesian credible set is called the
highest posterior density (HPD) interval.

A 100.1 � ˛/% HPD interval is a region that satisfies the following two conditions:

1. The posterior probability of that region is 100.1 � ˛/%.

2. The minimum density of any point within that region is equal to or larger than the density of any point
outside that region.

The HPD is an interval in which most of the distribution lies. Some statisticians prefer this interval because it
is the smallest interval.

One major distinction between Bayesian and classical sets is their interpretation. The Bayesian probability
reflects a person’s subjective beliefs. Following this approach, a statistician can make the claim that � is
inside a credible interval with measurable probability. This property is appealing because it enables you to
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make a direct probability statement about parameters. Many people find this concept to be a more natural
way of understanding a probability interval, which is also easier to explain to nonstatisticians. A confidence
interval, on the other hand, enables you to make a claim that the interval covers the true parameter. The
interpretation reflects the uncertainty in the sampling procedure; a confidence interval of 100.1�˛/% asserts
that, in the long run, 100.1 � ˛/% of the realized confidence intervals cover the true parameter.

Bayesian Analysis: Advantages and Disadvantages
Bayesian methods and classical methods both have advantages and disadvantages, and there are some
similarities. When the sample size is large, Bayesian inference often provides results for parametric models
that are very similar to the results produced by frequentist methods. Some advantages to using Bayesian
analysis include the following:

• It provides a natural and principled way of combining prior information with data, within a solid
decision theoretical framework. You can incorporate past information about a parameter and form a
prior distribution for future analysis. When new observations become available, the previous posterior
distribution can be used as a prior. All inferences logically follow from Bayes’ theorem.

• It provides inferences that are conditional on the data and are exact, without reliance on asymptotic
approximation. Small sample inference proceeds in the same manner as if one had a large sample.
Bayesian analysis also can estimate any functions of parameters directly, without using the “plug-in”
method (a way to estimate functionals by plugging the estimated parameters in the functionals).

• It obeys the likelihood principle. If two distinct sampling designs yield proportional likelihood
functions for � , then all inferences about � should be identical from these two designs. Classical
inference does not in general obey the likelihood principle.

• It provides interpretable answers, such as “the true parameter � has a probability of 0.95 of falling in a
95% credible interval.”

• It provides a convenient setting for a wide range of models, such as hierarchical models and missing
data problems. MCMC, along with other numerical methods, makes computations tractable for
virtually all parametric models.

There are also disadvantages to using Bayesian analysis:

• It does not tell you how to select a prior. There is no correct way to choose a prior. Bayesian inferences
require skills to translate subjective prior beliefs into a mathematically formulated prior. If you do not
proceed with caution, you can generate misleading results.

• It can produce posterior distributions that are heavily influenced by the priors. From a practical point
of view, it might sometimes be difficult to convince subject matter experts who do not agree with the
validity of the chosen prior.

• It often comes with a high computational cost, especially in models with a large number of parameters.
In addition, simulations provide slightly different answers unless the same random seed is used. Note
that slight variations in simulation results do not contradict the early claim that Bayesian inferences are
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exact. The posterior distribution of a parameter is exact, given the likelihood function and the priors,
while simulation-based estimates of posterior quantities can vary due to the random number generator
used in the procedures.

For more in-depth treatments of the pros and cons of Bayesian analysis, see Berger (1985, Sections 4.1 and
4.12), Berger and Wolpert (1988), Bernardo and Smith (1994, with a new edition coming out), Carlin and
Louis (2000, Section 1.4), Robert (2001, Chapter 11), and Wasserman (2004, Section 11.9).

The following sections provide detailed information about the Bayesian methods provided in SAS.

Markov Chain Monte Carlo Method
The Markov chain Monte Carlo (MCMC) method is a general simulation method for sampling from posterior
distributions and computing posterior quantities of interest. MCMC methods sample successively from a
target distribution. Each sample depends on the previous one, hence the notion of the Markov chain. A
Markov chain is a sequence of random variables, �1, �2, � � � , for which the random variable � t depends on
all previous �s only through its immediate predecessor � t�1. You can think of a Markov chain applied to
sampling as a mechanism that traverses randomly through a target distribution without having any memory
of where it has been. Where it moves next is entirely dependent on where it is now.

Monte Carlo, as in Monte Carlo integration, is mainly used to approximate an expectation by using the
Markov chain samples. In the simplest version

Z
S

g.�/p.�/d� Š
1

n

nX
tD1

g.� t /

where g.�/ is a function of interest and � t are samples from p.�/ on its support S. This approximates
the expected value of g.�/. The earliest reference to MCMC simulation occurs in the physics literature.
Metropolis and Ulam (1949) and Metropolis et al. (1953) describe what is known as the Metropolis algorithm
(see the section “Metropolis and Metropolis-Hastings Algorithms” on page 132). The algorithm can be used

to generate sequences of samples from the joint distribution of multiple variables, and it is the foundation of
MCMC. Hastings (1970) generalized their work, resulting in the Metropolis-Hastings algorithm. Geman
and Geman (1984) analyzed image data by using what is now called Gibbs sampling (see the section “Gibbs
Sampler” on page 133). These MCMC methods first appeared in the mainstream statistical literature in
Tanner and Wong (1987).

The Markov chain method has been quite successful in modern Bayesian computing. Only in the simplest
Bayesian models can you recognize the analytical forms of the posterior distributions and summarize
inferences directly. In moderately complex models, posterior densities are too difficult to work with directly.
With the MCMC method, it is possible to generate samples from an arbitrary posterior density p.� jy/ and to
use these samples to approximate expectations of quantities of interest. Several other aspects of the Markov
chain method also contributed to its success. Most importantly, if the simulation algorithm is implemented
correctly, the Markov chain is guaranteed to converge to the target distribution p.� jy/ under rather broad
conditions, regardless of where the chain was initialized. In other words, a Markov chain is able to improve
its approximation to the true distribution at each step in the simulation. Furthermore, if the chain is run for a
very long time (often required), you can recover p.� jy/ to any precision. Also, the simulation algorithm is
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easily extensible to models with a large number of parameters or high complexity, although the “curse of
dimensionality” often causes problems in practice.

Properties of Markov chains are discussed in Feller (1968), Breiman (1968), and Meyn and Tweedie (1993).
Ross (1997) and Karlin and Taylor (1975) give a non-measure-theoretic treatment of stochastic processes,
including Markov chains. For conditions that govern Markov chain convergence and rates of convergence,
see Amit (1991), Applegate, Kannan, and Polson (1990), Chan (1993), Geman and Geman (1984), Liu,
Wong, and Kong (1991a, b), Rosenthal (1991a, b), Tierney (1994), and Schervish and Carlin (1992). Besag
(1974) describes conditions under which a set of conditional distributions gives a unique joint distribution.
Tanner (1993), Gilks, Richardson, and Spiegelhalter (1996), Chen, Shao, and Ibrahim (2000), Liu (2001),
Gelman et al. (2004), Robert and Casella (2004), and Congdon (2001, 2003, 2005) provide both theoretical
and applied treatments of MCMC methods. You can also see the section “A Bayesian Reading List” on
page 154 for a list of books with varying levels of difficulty of treatment of the subject and its application to
Bayesian statistics.

Metropolis and Metropolis-Hastings Algorithms

The Metropolis algorithm is named after its inventor, the American physicist and computer scientist Nicholas
C. Metropolis. The algorithm is simple but practical, and it can be used to obtain random samples from any
arbitrarily complicated target distribution of any dimension that is known up to a normalizing constant.

Suppose you want to obtain T samples from a univariate distribution with probability density function f .� jy/.
Suppose � t is the tth sample from f. To use the Metropolis algorithm, you need to have an initial value �0

and a symmetric proposal density q.� tC1j� t /. For the (t + 1) iteration, the algorithm generates a sample
from q.�j�/ based on the current sample � t , and it makes a decision to either accept or reject the new sample.
If the new sample is accepted, the algorithm repeats itself by starting at the new sample. If the new sample is
rejected, the algorithm starts at the current point and repeats. The algorithm is self-repeating, so it can be
carried out as long as required. In practice, you have to decide the total number of samples needed in advance
and stop the sampler after that many iterations have been completed.

Suppose q.�newj� t / is a symmetric distribution. The proposal distribution should be an easy distribution from
which to sample, and it must be such that q.�newj� t / D q.� t j�new/, meaning that the likelihood of jumping
to �new from � t is the same as the likelihood of jumping back to � t from �new. The most common choice of
the proposal distribution is the normal distribution N .� t ; �/ with a fixed � . The Metropolis algorithm can be
summarized as follows:

1. Set t D 0. Choose a starting point �0. This can be an arbitrary point as long as f .�0jy/ > 0.

2. Generate a new sample, �new, by using the proposal distribution q.�j� t /.

3. Calculate the following quantity:

r D min
�
f .�newjy/
f .� t jy/

; 1

�
4. Sample u from the uniform distribution U .0; 1/.

5. Set � tC1 D �new if u < r ; otherwise set � tC1 D � t .

6. Set t D t C 1. If t < T , the number of desired samples, return to step 2. Otherwise, stop.
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Note that the number of iteration keeps increasing regardless of whether a proposed sample is accepted.

This algorithm defines a chain of random variates whose distribution will converge to the desired distribution
f .� jy/, and so from some point forward, the chain of samples is a sample from the distribution of interest. In
Markov chain terminology, this distribution is called the stationary distribution of the chain, and in Bayesian
statistics, it is the posterior distribution of the model parameters. The reason that the Metropolis algorithm
works is beyond the scope of this documentation, but you can find more detailed descriptions and proofs in
many standard textbooks, including Roberts (1996) and Liu (2001). The random-walk Metropolis algorithm
is used in the MCMC procedure.

You are not limited to a symmetric random-walk proposal distribution in establishing a valid sampling
algorithm. A more general form, the Metropolis-Hastings (MH) algorithm, was proposed by Hastings (1970).
The MH algorithm uses an asymmetric proposal distribution: q.�newj� t / ¤ q.� t j�new/. The difference in
its implementation comes in calculating the ratio of densities:

r D min
�
f .�newjy/q.� t j�new/
f .� t jy/q.�newj� t /

; 1

�

Other steps remain the same.

The extension of the Metropolis algorithm to a higher-dimensional � is straightforward. Suppose � D
.�1; �2; � � � ; �k/

0 is the parameter vector. To start the Metropolis algorithm, select an initial value for each �k
and use a multivariate version of proposal distribution q.�j�/, such as a multivariate normal distribution, to
select a k-dimensional new parameter. Other steps remain the same as those previously described, and this
Markov chain eventually converges to the target distribution of f .�jy/. Chib and Greenberg (1995) provide
a useful tutorial on the algorithm.

Gibbs Sampler

The Gibbs sampler, named by Geman and Geman (1984) after the American physicist Josiah W. Gibbs, is a
special case of the “Metropolis and Metropolis-Hastings Algorithms” on page 132 in which the proposal
distributions exactly match the posterior conditional distributions and proposals are accepted 100% of
the time. Gibbs sampling requires you to decompose the joint posterior distribution into full conditional
distributions for each parameter in the model and then sample from them. The sampler can be efficient when
the parameters are not highly dependent on each other and the full conditional distributions are easy to sample
from. Some researchers favor this algorithm because it does not require an instrumental proposal distribution
as Metropolis methods do. However, while deriving the conditional distributions can be relatively easy, it is
not always possible to find an efficient way to sample from these conditional distributions.

Suppose � D .�1; : : : ; �k/0 is the parameter vector, p.yj�/ is the likelihood, and �.�/ is the prior distribution.
The full posterior conditional distribution of �.�i j�j ; i ¤ j; y/ is proportional to the joint posterior density;
that is,

�.�i j�j ; i ¤ j; y/ / p.yj�/�.�/

For instance, the one-dimensional conditional distribution of �1 given �j D ��j ; 2 � j � k, is computed as
the following:
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�.�1j�j D �
�
j ; 2 � j � k; y/ D p.yj.� D .�1; �

�
2 ; : : : ; �

�
k /
0/�.� D .�1; �

�
2 ; : : : ; �

�
k /
0/

The Gibbs sampler works as follows:

1. Set t D 0, and choose an arbitrary initial value of �.0/ D f� .0/1 ; : : : ; �
.0/

k
g.

2. Generate each component of � as follows:

• draw �
.tC1/
1 from �.�1j�

.t/
2 ; : : : ; �

.t/

k
; y/

• draw �
.tC1/
2 from �.�2j�

.tC1/
1 ; �

.t/
3 ; : : : ; �

.t/

k
; y/

• . . .

• draw �
.tC1/

k
from �.�kj�

.tC1/
1 ; : : : ; �

.tC1/

k�1
; y/

3. Set t D t C 1. If t < T , the number of desired samples, return to step 2. Otherwise, stop.

The name “Gibbs” was introduced by Geman and Geman (1984). Gelfand et al. (1990) first used Gibbs
sampling to solve problems in Bayesian inference. See Casella and George (1992) for a tutorial on the
sampler. The GENMOD, LIFEREG, and PHREG procedures update parameters using the Gibbs sampler.

Adaptive Rejection Sampling Algorithm

The GENMOD, LIFEREG, and PHREG procedures use the adaptive rejection sampling (ARS) algorithm to
sample parameters sequentially from their univariate full conditional distributions. The ARS algorithm is a
rejection algorithm that was originally proposed by Gilks and Wild (1992). Given a log-concave density (the
log of the density is concave), you can construct an envelope for the density by using linear segments. You
then use the linear segment envelope as a proposal density (it becomes a piecewise exponential density on
the original scale and is easy to generate samplers from) in the rejection sampling.

The log-concavity condition is met in some of the models that are fit by the procedures. For example, the
posterior densities for the regression parameters in the generalized linear models are log-concave under
flat priors. When this condition fails, the ARS algorithm calls for an additional Metropolis-Hastings step
(Gilks, Best, and Tan 1995), and the modified algorithm becomes the adaptive rejection Metropolis sampling
(ARMS) algorithm. The GENMOD, LIFEREG, and PHREG procedures can recognize whether a model is
log-concave and select the appropriate sampler for the problem at hand.

Although samples obtained from the ARMS algorithm often exhibit less dependence with lower autocorre-
lations, the algorithm could have a high computational cost because it requires repeated evaluations of the
objective function (usually five to seven repetitions) at each iteration for each univariate parameter.1

Implementation the ARMS algorithm in the GENMOD, LIFEREG, and PHREG procedures is based on
code that is provided by Walter R. Gilks, University of Leeds (Gilks 2003). For a detailed description and
explanation of the algorithm, see Gilks and Wild (1992); Gilks, Best, and Tan (1995).

1The extension to the multivariate ARMS algorithm is possible in theory but problematic in practice because the computational
cost associated with constructing a multidimensional hyperbola envelop is often prohibitive.
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Slice Sampler

The slice sampler (Neal 2003), like the ARMS algorithm, is a general algorithm that can be used to sample
parameters from their target distribution. As with the ARMS algorithm, the only requirement of the slice
sampler is the ability to evaluate the objective function (the unnormalized conditional distribution in a Gibbs
step, for example) at a given parameter value. In theory, you can draw a random number from any given
distribution as long as you can first obtain a random number uniformly under the curve of that distribution.
Treat the area under the curve of p.�/ as a two-dimensional space that is defined by the � -axis and the Y-axis,
the latter being the axis for the density function. You draw uniformly in that area, obtain a two-dimensional
vector of .�i ; yi /, ignore the yi , and keep the �i . The �i ’s are distributed according to the right density.

To solve the problem of sampling uniformly under the curve, Neal (2003) proposed the idea of slices (hence
the name of the sampler), which can be explained as follows:

1. Start the algorithm at �0.

2. Calculate the objective function p.�0/ and draw a line between y D 0 and y D p.�0/, which defines
a vertical slice. You draw a uniform number, y1, on this slice, between .0; p.�0//.

3. Draw a horizontal line at y1 and find the two points where the line intercepts with the curve, .L1; R1/.
These two points define a horizontal slice. Draw a uniform number, x1, on this slice, between .L1; R1/.

4. Repeat steps 2 and 3 many times.

The challenging part of the algorithm is finding the horizontal slice .Li ; Ri / at each iteration. The closed
form expressions of p�1L .yi / and p�1R .yi / are virtually impossible to obtain analytically in most problems.
Neal (2003) proved that although exact solutions would be nice, devising a search algorithm that finds
portions of this horizontal slice is sufficient for the sampler to work. The search algorithm is based on the
rejection method to expand and contract, when needed.

The sampler is implemented as an optional algorithm in the MCMC procedure, where you can use it to draw
either model parameters or random-effects parameters. As with the ARMS algorithm, only the univariate
version of the slice sampler is implemented. The slice sampler requires repeated evaluations of the objective
function; this happens in the search algorithm to identify each horizontal slice at every iteration. Hence, the
computational cost could be high if each evaluation of the objective function requires one pass through the
entire data set.

Independence Sampler

Another type of Metropolis algorithm is the “independence” sampler. It is called the independence sampler
because the proposal distribution in the algorithm does not depend on the current point as it does with the
random-walk Metropolis algorithm. For this sampler to work well, you want to have a proposal distribution
that mimics the target distribution and have the acceptance rate be as high as possible.

1. Set t D 0. Choose a starting point �0. This can be an arbitrary point as long as f .�0jy/ > 0.

2. Generate a new sample, �new, by using the proposal distribution q.�/. The proposal distribution does
not depend on the current value of � t .
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3. Calculate the following quantity:

r D min
�
f .�newjy/=q.�new/
f .� t jy/=q.� t /

; 1

�
4. Sample u from the uniform distribution U .0; 1/.

5. Set � tC1 D �new if u < r ; otherwise set � tC1 D � t .

6. Set t D t C 1. If t < T , the number of desired samples, return to step 2. Otherwise, stop.

A good proposal density should have thicker tails than those of the target distribution. This requirement
sometimes can be difficult to satisfy especially in cases where you do not know what the target posterior
distributions are like. In addition, this sampler does not produce independent samples as the name seems to
imply, and sample chains from independence samplers can get stuck in the tails of the posterior distribution
if the proposal distribution is not chosen carefully. The MCMC procedure uses the independence sampler.

Gamerman Algorithm

The Gamerman algorithm, named after the inventor Dani Gamerman is a special case of the “Metropolis and
Metropolis-Hastings Algorithms” on page 132 in which the proposal distribution is derived from one iteration
of the iterative weighted least squares (IWLS) algorithm. As the name suggests, a weighted least squares
algorithm is carried out inside an iteration loop. For each iteration, a set of weights for the observations
is used in the least squares fit. The weights are constructed by applying a weight function to the current
residuals. The proposal distribution uses the current iteration’s values of the parameters to form the proposal
distribution from which to generate a proposed random value (Gamerman 1997).

The multivariate sampling algorithm is simple but practical, and can be used to obtain random samples from
the posterior distribution of the regression parameters in a generalized linear model (GLM). See “Generalized
Linear Regression” on page 77 in Chapter 4, “Introduction to Regression Procedures,” for further details
on generalized linear regression models. See McCullagh and Nelder (1989) for a discussion of transformed
observations and diagonal matrix of weights pertaining to IWLS.

The GENMOD procedure uses the Gamerman algorithm to sample parameters from their multivariate
posterior conditional distributions. For a detailed description and explanation of the algorithm, see Gamerman
(1997).

Burn-in, Thinning, and Markov Chain Samples

Burn-in refers to the practice of discarding an initial portion of a Markov chain sample so that the effect of
initial values on the posterior inference is minimized. For example, suppose the target distribution is N .0; 1/
and the Markov chain was started at the value 106. The chain might quickly travel to regions around 0 in
a few iterations. However, including samples around the value 106 in the posterior mean calculation can
produce substantial bias in the mean estimate. In theory, if the Markov chain is run for an infinite amount
of time, the effect of the initial values decreases to zero. In practice, you do not have the luxury of infinite
samples. In practice, you assume that after t iterations, the chain has reached its target distribution and you
can throw away the early portion and use the good samples for posterior inference. The value of t is the
burn-in number.
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With some models you might experience poor mixing (or slow convergence) of the Markov chain. This
can happen, for example, when parameters are highly correlated with each other. Poor mixing means
that the Markov chain slowly traverses the parameter space (see the section “Visual Analysis via Trace
Plots” on page 137 for examples of poorly mixed chains) and the chain has high dependence. High sample
autocorrelation can result in biased Monte Carlo standard errors. A common strategy is to thin the Markov
chain in order to reduce sample autocorrelations. You thin a chain by keeping every kth simulated draw
from each sequence. You can safely use a thinned Markov chain for posterior inference as long as the chain
converges. It is important to note that thinning a Markov chain can be wasteful because you are throwing
away a k�1

k
fraction of all the posterior samples generated. MacEachern and Berliner (1994) show that you

always get more precise posterior estimates if the entire Markov chain is used. However, other factors, such
as computer storage or plotting time, might prevent you from keeping all samples.

To use the BCHOICE, FMM, GENMOD, LIFEREG, MCMC, and PHREG procedures, you need to determine
the total number of samples to keep ahead of time. This number is not obvious and often depends on the
type of inference you want to make. Mean estimates do not require nearly as many samples as small-tail
percentile estimates. In most applications, you might find that keeping a few thousand iterations is sufficient
for reasonably accurate posterior inference. In all four procedures, the relationship between the number of
iterations requested, the number of iterations kept, and the amount of thinning is as follows:

kept D
�
requested
thinning

�

where Œ � is the rounding operator.

Assessing Markov Chain Convergence
Simulation-based Bayesian inference requires using simulated draws to summarize the posterior distribution
or calculate any relevant quantities of interest. You need to treat the simulation draws with care. There are
usually two issues. First, you have to decide whether the Markov chain has reached its stationary, or the
desired posterior, distribution. Second, you have to determine the number of iterations to keep after the
Markov chain has reached stationarity. Convergence diagnostics help to resolve these issues. Note that many
diagnostic tools are designed to verify a necessary but not sufficient condition for convergence. There are no
conclusive tests that can tell you when the Markov chain has converged to its stationary distribution. You
should proceed with caution. Also, note that you should check the convergence of all parameters, and not
just those of interest, before proceeding to make any inference. With some models, certain parameters can
appear to have very good convergence behavior, but that could be misleading due to the slow convergence of
other parameters. If some of the parameters have bad mixing, you cannot get accurate posterior inference for
parameters that appear to have good mixing. See Cowles and Carlin (1996) and Brooks and Roberts (1998)
for discussions about convergence diagnostics.

Visual Analysis via Trace Plots

Trace plots of samples versus the simulation index can be very useful in assessing convergence. The trace
tells you if the chain has not yet converged to its stationary distribution—that is, if it needs a longer burn-in
period. A trace can also tell you whether the chain is mixing well. A chain might have reached stationarity if
the distribution of points is not changing as the chain progresses. The aspects of stationarity that are most
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recognizable from a trace plot are a relatively constant mean and variance. A chain that mixes well traverses
its posterior space rapidly, and it can jump from one remote region of the posterior to another in relatively
few steps. Figure 7.1 through Figure 7.4 display some typical features that you might see in trace plots. The
traces are for a parameter called  .

Figure 7.1 Essentially Perfect Trace for 

Figure 7.1 displays a “perfect” trace plot. Note that the center of the chain appears to be around the value
3, with very small fluctuations. This indicates that the chain could have reached the right distribution. The
chain is mixing well; it is exploring the distribution by traversing to areas where its density is very low. You
can conclude that the mixing is quite good here.
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Figure 7.2 Initial Samples of  Need to be Discarded

Figure 7.2 displays a trace plot for a chain that starts at a very remote initial value and makes its way to the
targeting distribution. The first few hundred observations should be discarded. This chain appears to be
mixing very well locally. It travels relatively quickly to the target distribution, reaching it in a few hundred
iterations. If you have a chain that looks like this, you would want to increase the burn-in sample size. If you
need to use this sample to make inferences, you would want to use only the samples toward the end of the
chain.
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Figure 7.3 Marginal Mixing for 

Figure 7.3 demonstrates marginal mixing. The chain is taking only small steps and does not traverse its
distribution quickly. This type of trace plot is typically associated with high autocorrelation among the
samples. To obtain a few thousand independent samples, you need to run the chain for much longer.



Assessing Markov Chain Convergence F 141

Figure 7.4 Bad Mixing, Nonconvergence of 

The trace plot shown in Figure 7.4 depicts a chain with serious problems. It is mixing very slowly, and it
offers no evidence of convergence. You would want to try to improve the mixing of this chain. For example,
you might consider reparameterizing your model on the log scale. Run the Markov chain for a long time to
see where it goes. This type of chain is entirely unsuitable for making parameter inferences.
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Statistical Diagnostic Tests

The Bayesian procedures include several statistical diagnostic tests that can help you assess Markov chain
convergence. For a detailed description of each of the diagnostic tests, see the following subsections. Table 7.1
provides a summary of the diagnostic tests and their interpretations.

Table 7.1 Convergence Diagnostic Tests Available in the
Bayesian Procedures

Name Description Interpretation of the Test
Gelman-Rubin Uses parallel chains with dispersed initial

values to test whether they all converge to
the same target distribution. Failure could
indicate the presence of a multi-mode pos-
terior distribution (different chains con-
verge to different local modes) or the need
to run a longer chain (burn-in is yet to be
completed).

One-sided test based on a
variance ratio test statistic.
LargebRc values indicate re-
jection.

Geweke Tests whether the mean estimates have
converged by comparing means from the
early and latter part of the Markov chain.

Two-sided test based on a z-
score statistic. Large abso-
lute z values indicate rejec-
tion.

Heidelberger-Welch
(stationarity test)

Tests whether the Markov chain is a
covariance (or weakly) stationary pro-
cess. Failure could indicate that a longer
Markov chain is needed.

One-sided test based on a
Cramer–von Mises statistic.
Small p-values indicate re-
jection.

Heidelberger-Welch
(half-width test)

Reports whether the sample size is ade-
quate to meet the required accuracy for
the mean estimate. Failure could indicate
that a longer Markov chain is needed.

If a relative half-width statis-
tic is greater than a prede-
termined accuracy measure,
this indicates rejection.

Raftery-Lewis Evaluates the accuracy of the estimated
(desired) percentiles by reporting the num-
ber of samples needed to reach the de-
sired accuracy of the percentiles. Failure
could indicate that a longer Markov chain
is needed.

If the total samples needed
are fewer than the Markov
chain sample, this indicates
rejection.

autocorrelation Measures dependency among Markov
chain samples.

High correlations between
long lags indicate poor mix-
ing.

effective sample size Relates to autocorrelation; measures mix-
ing of the Markov chain.

Large discrepancy between
the effective sample size and
the simulation sample size
indicates poor mixing.
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Gelman and Rubin Diagnostics
Gelman and Rubin diagnostics (Gelman and Rubin 1992; Brooks and Gelman 1997) are based on analyzing
multiple simulated MCMC chains by comparing the variances within each chain and the variance between
chains. Large deviation between these two variances indicates nonconvergence.

Define f� tg, where t D 1; : : : ; n, to be the collection of a single Markov chain output. The parameter � t is
the tth sample of the Markov chain. For notational simplicity, � is assumed to be single dimensional in this
section.

Suppose you have M parallel MCMC chains that were initialized from various parts of the target distribu-
tion. Each chain is of length n (after discarding the burn-in). For each � t , the simulations are labeled as
� tm; where t D 1; : : : ; n and m D 1; : : : ;M . The between-chain variance B and the within-chain variance W
are calculated as

B D
n

M � 1

MX
mD1

. N� �m �
N� �� /
2; where N� �m D

1

n

nX
tD1

� tm;
N� �� D

1

M

MX
mD1

N� �m

W D
1

M

MX
mD1

s2m; where s2m D
1

n � 1

nX
tD1

.� tm �
N� �m/

2

The posterior marginal variance, var.� jy/, is a weighted average of W and B. The estimate of the variance is

bV D n � 1

n
W C

M C 1

nM
B

If all M chains have reached the target distribution, this posterior variance estimate should be very close to
the within-chain variance W. Therefore, you would expect to see the ratio bV =W be close to 1. The square
root of this ratio is referred to as the potential scale reduction factor (PSRF). A large PSRF indicates that the
between-chain variance is substantially greater than the within-chain variance, so that longer simulation is
needed. If the PSRF is close to 1, you can conclude that each of the M chains has stabilized, and they are
likely to have reached the target distribution.

A refined version of PSRF is calculated, as suggested by Brooks and Gelman (1997), as

bRc D
s
Od C 3

Od C 1
�
bV
W
D

s
Od C 3

Od C 1

�
n � 1

n
C
M C 1

nM

B

W

�

where

Od D
2bV 2

bVar.bV /
and
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cVar.bV / D �
n � 1

n

�2 1

M
cVar.s2m/C

�
M C 1

nM

�2 2

M � 1
B2

C 2
.M C 1/.n � 1/

n2M

n

M

�bcov.s2m; . N�
�
m/
2/ � 2 N� ��bcov.s2m; N�

�
m/
�

All the Bayesian procedures also produce an upper 100.1 � ˛=2/% confidence limit of bRc . Gelman and
Rubin (1992) showed that the ratio B=W in bRc has an F distribution with degrees of freedom M � 1

and 2W 2M=bVar.s2m/. Because you are concerned only if the scale is large, not small, only the upper
100.1 � ˛=2/% confidence limit is reported. This is written as

vuut 
n � 1

n
C
M C 1

nM
� F1�˛=2

 
M � 1;

2W 2

bVar.s2m/=M

!!
�

Od C 3

Od C 1

In the Bayesian procedures, you can specify the number of chains that you want to run. Typically three
chains are sufficient. The first chain is used for posterior inference, such as mean and standard deviation; the
other M � 1 chains are used for computing the diagnostics and are discarded afterward. This test can be
computationally costly, because it prolongs the simulation M-fold.

It is best to choose different initial values for all M chains. The initial values should be as dispersed from
each other as possible so that the Markov chains can fully explore different parts of the distribution before
they converge to the target. Similar initial values can be risky because all of the chains can get stuck in a
local maximum; that is something this convergence test cannot detect. If you do not supply initial values for
all the different chains, the procedures generate them for you.

Geweke Diagnostics
The Geweke test (Geweke 1992) compares values in the early part of the Markov chain to those in the latter
part of the chain in order to detect failure of convergence. The statistic is constructed as follows. Two
subsequences of the Markov chain f� tg are taken out, with f� t1 W t D 1; : : : ; n1g and f� t2 W t D na; : : : ; ng,
where 1 < n1 < na < n. Let n2 D n � na C 1, and define

N�1 D
1

n1

n1X
tD1

� t and N�2 D
1

n2

nX
tDna

� t

Let Os1.0/ and Os2.0/ denote consistent spectral density estimates at zero frequency (see the subsection
“Spectral Density Estimate at Zero Frequency” on page 145 for estimation details) for the two MCMC chains,
respectively. If the ratios n1=n and n2=n are fixed, .n1 C n2/=n < 1, and the chain is stationary, then the
following statistic converges to a standard normal distribution as n!1 :

Zn D
N�1 � N�2q
Os1.0/
n1
C
Os2.0/
n2

This is a two-sided test, and large absolute z-scores indicate rejection.
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Spectral Density Estimate at Zero Frequency
For one sequence of the Markov chain f�tg, the relationship between the h-lag covariance sequence of a time
series and the spectral density, f, is

sh D
1

2�

Z �

��

exp.i!h/f .!/d!

where i indicates that !h is the complex argument. Inverting this Fourier integral,

f .!/ D

1X
hD�1

sh exp.�i!h/ D s0

 
1C 2

1X
hD1

�h cos.!h/

!

It follows that

f .0/ D �2

 
1C 2

1X
hD1

�h

!

which gives an autocorrelation adjusted estimate of the variance. In this equation, �2 is the naive variance
estimate of the sequence f�tg and �h is the lag h autocorrelation. Due to obvious computational difficulties,
such as calculation of autocorrelation at infinity, you cannot effectively estimate f .0/ by using the preceding
formula. The usual route is to first obtain the periodogram p.!/ of the sequence, and then estimate f .0/ by
smoothing the estimated periodogram. The periodogram is defined to be

p.!/ D
1

n

24 nX
tD1

�t sin.!t/

!2
C

 
nX
tD1

�t cos.!t/

!235
The procedures use the following way to estimate Of .0/ from p (Heidelberger and Welch 1981). In p.!/, let
! D !k D 2�k=n and k D 1; : : : ; Œn

2
�.2 A smooth spectral density in the domain of .0; �� is obtained by

fitting a gamma model with the log link function, using p.!k/ as response and x1.!k/ D
p
3.4!k=.2�/�1/

as the only regressor. The predicted value Of .0/ is given by

Of .0/ D exp. Ǒ0 �
p
3 Ǒ1/

where Ǒ0 and Ǒ1 are the estimates of the intercept and slope parameters, respectively.

2This is equivalent to the fast Fourier transformation of the original time series �t .
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Heidelberger and Welch Diagnostics
The Heidelberger and Welch test (Heidelberger and Welch 1981, 1983) consists of two parts: a stationary
portion test and a half-width test. The stationarity test assesses the stationarity of a Markov chain by testing
the hypothesis that the chain comes from a covariance stationary process. The half-width test checks whether
the Markov chain sample size is adequate to estimate the mean values accurately.

Given f� tg, set S0 D 0, Sn D
Pn
tD1 �

t , and N� D .1=n/
Pn
tD1 �

t . You can construct the following sequence
with s coordinates on values from 1

n
; 2
n
; � � � ; 1:

Bn.s/ D .SŒns� � Œns� N�/=.n Op.0//
1=2

where Œ � is the rounding operator, and Op.0/ is an estimate of the spectral density at zero frequency that uses
the second half of the sequence (see the section “Spectral Density Estimate at Zero Frequency” on page 145
for estimation details). For large n, Bn converges in distribution to a Brownian bridge (Billingsley 1986). So
you can construct a test statistic by using Bn. The statistic used in these procedures is the Cramer–von Mises
statistic3; that is

R 1
0 Bn.s/

2ds D CVM.Bn/. As n!1, the statistic converges in distribution to a standard
Cramer–von Mises distribution. The integral

R 1
0 Bn.s/

2ds is numerically approximated using Simpson’s
rule.

Let yi D Bn.s/
2, where s D 0; 1

n
; � � � ; n�1

n
; 1, and i D ns D 0; 1; � � � ; n. If n is even, let m D n=2;

otherwise, let m D .n � 1/=2. The Simpson’s approximation to the integral is

Z 1

0

Bn.s/
2ds �

1

3n
Œy0 C 4.y1 C � � � C y2m�1/C 2.y2 C � � � C y2m�2/C y2m�

Note that Simpson’s rule requires an even number of intervals. When n is odd, yn is set to be 0 and the value
does not contribute to the approximation.

This test can be performed repeatedly on the same chain, and it helps you identify a time t when the chain
has reached stationarity. The whole chain, f� tg, is first used to construct the Cramer–von Mises statistic. If it
passes the test, you can conclude that the entire chain is stationary. If it fails the test, you drop the initial 10%
of the chain and redo the test by using the remaining 90%. This process is repeated until either a time t is
selected or it reaches a point where there are not enough data remaining to construct a confidence interval
(the cutoff proportion is set to be 50%).

The part of the chain that is deemed stationary is put through a half-width test, which reports whether the
sample size is adequate to meet certain accuracy requirements for the mean estimates. Running the simulation
less than this length of time would not meet the requirement, while running it longer would not provide any
additional information that is needed. The statistic calculated here is the relative half-width (RHW) of the
confidence interval. The RHW for a confidence interval of level 1 � ˛ is

RHW D
z.1�˛=2/ � .Osn=n/

1=2

O�
3 The von Mises distribution was first introduced by von Mises (1918). The density function is p.� j��/ Ï M.�; �/ D

Œ2�I0.�/�
�1 exp.� cos.� � �// .0 � � � 2�/, where the function I0.�/ is the modified Bessel function of the first kind and order

zero, defined by I0.�/ D .2�/�1
R 2�
0 exp.� cos.� � �//d� .



Assessing Markov Chain Convergence F 147

where z.1�˛=2/ is the z-score of the 100.1 � ˛=2/ percentile (for example, z.1�˛=2/ D 1:96 if ˛ D 0:05),
Osn is the variance of the chain estimated using the spectral density method (see explanation in the section
“Spectral Density Estimate at Zero Frequency” on page 145), n is the length, and O� is the estimated mean.
The RHW quantifies accuracy of the 1 � ˛ level confidence interval of the mean estimate by measuring the
ratio between the sample standard error of the mean and the mean itself. In other words, you can stop the
Markov chain if the variability of the mean stabilizes with respect to the mean. An implicit assumption is
that large means are often accompanied by large variances. If this assumption is not met, then this test can
produce false rejections (such as a small mean around 0 and large standard deviation) or false acceptance
(such as a very large mean with relative small variance). As with any other convergence diagnostics, you
might want to exercise caution in interpreting the results.

The stationarity test is one-sided; rejection occurs when the p-value is greater than 1 � ˛. To perform the
half-width test, you need to select an ˛ level (the default of which is 0.05) and a predetermined tolerance
value � (the default of which is 0.1). If the calculated RHW is greater than �, you conclude that there are not
enough data to accurately estimate the mean with 1 � ˛ confidence under tolerance of �.

Raftery and Lewis Diagnostics
If your interest lies in posterior percentiles, you want a diagnostic test that evaluates the accuracy of the
estimated percentiles. The Raftery-Lewis test (Raftery and Lewis 1992, 1995) is designed for this purpose.
Notation and deductions here closely resemble those in Raftery and Lewis (1995).

Suppose you are interested in a quantity �q such that P.� � �qjy/ D q, where q can be an arbitrary
cumulative probability, such as 0.025. This �q can be empirically estimated by finding the Œn � 100 � q�th
number of the sorted f� tg. Let O�q denote the estimand, which corresponds to an estimated probability
P.� � O�q/ D OPq . Because the simulated posterior distribution converges to the true distribution as the
simulation sample size grows, O�q can achieve any degree of accuracy if the simulator is run for a very long
time. However, running too long a simulation can be wasteful. Alternatively, you can use coverage probability
to measure accuracy and stop the chain when a certain accuracy is reached.

A stopping criterion is reached when the estimated probability is within˙r of the true cumulative probability
q, with probability s, such as P. OPq 2 .q � r; q C r// D s. For example, suppose you want the coverage
probability s to be 0.95 and the amount of tolerance r to be 0.005. This corresponds to requiring that the
estimate of the cumulative distribution function of the 2.5th percentile be estimated to within˙0:5 percentage
points with probability 0.95.

The Raftery-Lewis diagnostics test finds the number of iterations, M, that need to be discarded (burn-ins) and
the number of iterations needed, N, to achieve a desired precision. Given a predefined cumulative probability
q, these procedures first find O�q , and then they construct a binary 0 � 1 process fZtg by setting Zt D 1 if
� t � O�q and 0 otherwise for all t. The sequence fZtg is itself not a Markov chain, but you can construct
a subsequence of fZtg that is approximately Markovian if it is sufficiently k-thinned. When k becomes
reasonably large, fZ.k/t g starts to behave like a Markov chain.

Next, the procedures find this thinning parameter k. The number k is estimated by comparing the Bayesian
information criterion (BIC) between two Markov models: a first-order and a second-order Markov model. A
jth-order Markov model is one in which the current value of fZ.k/t g depends on the previous j values. For
example, in a second-order Markov model,
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p
�
Z
.k/
t D zt jZ

.k/
t�1 D zt�1; Z

.k/
t�2 D zt�2; � � � ; Z

.k/
0 D z0

�
D p

�
Z
.k/
t D zt jZ

.k/
t�1 D zt�1; Z

.k/
t�2 D zt�2

�

where zi D f0; 1g; i D 0; � � � ; t . Given fZ.k/t g, you can construct two transition count matrices for a
second-order Markov model:

zt D 0 zt D 1

zt�1 D 0 zt�1 D 1 zt�1 D 0 zt�1 D 1

zt�2 D 0 w000 w010 zt�2 D 0 w001 w011
zt�2 D 1 w100 w110 zt�2 D 1 w101 w111

For each k, the procedures calculate the BIC that compares the two Markov models. The BIC is based on a
likelihood ratio test statistic that is defined as

G2k D 2

1X
iD0

1X
jD0

1X
lD0

wijl log
wijl

Owijl

where Owijl is the expected cell count of wijl under the null model, the first-order Markov model, where the
assumption .Z.k/t ? Z

.k/
t�2/jZ

.k/
t�1 holds. The formula for the expected cell count is

Owijl D

P
i wijl �

P
l wijlP

i

P
l wijl

The BIC is G2
k
� 2 log.nk � 2/, where nk is the k-thinned sample size (every kth sample starting with the

first), with the last two data points discarded due to the construction of the second-order Markov model. The
thinning parameter k is the smallest k for which the BIC is negative. When k is found, you can estimate a
transition probability matrix between state 0 and state 1 for fZ.k/t g:

Q D

�
1 � ˛ ˛

ˇ 1 � ˇ

�

Because fZ.k/t g is a Markov chain, its equilibrium distribution exists and is estimated by

� D .�0; �1/ D
.ˇ; ˛/

˛ C ˇ
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where �0 D P.� � �qjy/ and �1 D 1��0. The goal is to find an iteration number m such that after m steps,
the estimated transition probability P.Z.k/m D i jZ

.k/
0 D j / is within � of equilibrium �i for i; j D 0; 1. Let

e0 D .1; 0/ and e1 D 1 � e0. The estimated transition probability after step m is

P.Z.k/m D i jZ
.k/
0 D j / D ej

��
�0 �1
�0 �1

�
C
.1 � ˛ � ˇ/m

˛ C ˇ

�
˛ �˛

�ˇ ˇ

��
e0j

which holds when

m D
log

�
.˛Cˇ/�
max.˛;ˇ/

�
log.1 � ˛ � ˇ/

assuming 1 � ˛ � ˇ > 0.

Therefore, by time m, fZ.k/t g is sufficiently close to its equilibrium distribution, and you know that a total
size of M D mk should be discarded as the burn-in.

Next, the procedures estimate N, the number of simulations needed to achieve desired accuracy on percentile
estimation. The estimate of P.� � �qjy/ is NZ.k/n D

1
n

Pn
tD1Z

.k/
t . For large n, NZ.k/n is normally distributed

with mean q, the true cumulative probability, and variance

1

n

.2 � ˛ � ˇ/˛ˇ

.˛ C ˇ/3

P.q � r � NZ
.k/
n � q C r/ D s is satisfied if

n D
.2 � ˛ � ˇ/˛ˇ

.˛ C ˇ/3

(
ˆ�1

�
sC1
2

�
r

)2

Therefore, N D nk.

By using similar reasoning, the procedures first calculate the minimal number of iterations needed to achieve
the desired accuracy, assuming the samples are independent:

Nmin D

�
ˆ�1

�
s C 1

2

��2 q.1 � q/
r2

If f� tg does not have that required sample size, the Raftery-Lewis test is not carried out. If you still want to
carry out the test, increase the number of Markov chain iterations.

The ratio N=Nmin is sometimes referred to as the dependence factor. It measures deviation from posterior
sample independence: the closer it is to 1, the less correlated are the samples. There are a few things to keep
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in mind when you use this test. This diagnostic tool is specifically designed for the percentile of interest
and does not provide information about convergence of the chain as a whole (Brooks and Roberts 1999). In
addition, the test can be very sensitive to small changes. Both N and Nmin are inversely proportional to r2,
so you can expect to see large variations in these numbers with small changes to input variables, such as the
desired coverage probability or the cumulative probability of interest. Last, the time until convergence for a
parameter can differ substantially for different cumulative probabilities.

Autocorrelations
The sample autocorrelation of lag h for a parameter � is defined in terms of the sample autocovariance
function:

O�h .�/ D
Oh .�/

O0 .�/
; jhj < n

The sample autocovariance function of lag h of � is defined by

Oh .�/ D
1

n � h

n�hX
tD1

�
� tCh � N�

� �
� t � N�

�
; 0 � h < n

Effective Sample Size
You can use autocorrelation and trace plots to examine the mixing of a Markov chain. A closely related
measure of mixing is the effective sample size (ESS) (Kass et al. 1998).

ESS is defined as follows:

ESS D
n

�
D

n

1C 2
P1
kD1 �k.�/

where n is the total sample size and �k.�/ is the autocorrelation of lag k for � . The quantity � is referred to
as the autocorrelation time. To estimate � , the Bayesian procedures first find a cutoff point k after which the
autocorrelations are very close to zero, and then sum all the �k up to that point. The cutoff point k is such
that j�kj < min f0:01; 2skg, where sk is the estimated standard deviation:

sk D

vuuut
0@1
n

0@1C 2 k�1X
jD1

O�2j .�/

1A1A
ESS and � are inversely proportional to each other, and low ESS or high � indicates bad mixing of the Markov
chain.



Summary Statistics F 151

Summary Statistics
Let � be a p-dimensional parameter vector of interest: � D

˚
�1; : : : ; �p

	
. For each i 2 f1; : : : ; pg , there are

n observations: �i D
˚
� ti ; t D 1; : : : ; n

	
.

Mean

The posterior mean is calculated by using the following formula:

E .�i jy/ � N�i D
1

n

nX
tD1

� ti ; for i D 1; : : : ; n

Standard Deviation

Sample standard deviation (expressed in variance term) is calculated by using the following formula:

Var.�i jy/ � s2i D
1

n � 1

nX
tD1

�
� ti �

N�i
�2

Standard Error of the Mean Estimate

Suppose you have n iid samples, the mean estimate is N�i , and the sample standard deviation is si . The
standard error of the estimate is O�i=

p
n. However, positive autocorrelation (see the section “Autocorrelations”

on page 150 for a definition) in the MCMC samples makes this an underestimate. To take account of the
autocorrelation, the Bayesian procedures correct the standard error by using effective sample size (see the
section “Effective Sample Size” on page 150).

Given an effective sample size of m, the standard error for N�i is O�i=
p
m. The procedures use the following

formula (expressed in variance term):

bVar. N�i / D 1C 2
P1
kD1 �k.�i /

n
�

Pn
tD1

�
� ti �

N�i
�2

.n � 1/

The standard error of the mean is also known as the Monte Carlo standard error (MCSE). The MCSE provides
a measurement of the accuracy of the posterior estimates, and small values do not necessarily indicate that
you have recovered the true posterior mean.

Percentiles

Sample percentiles are calculated using Definition 5 (see Chapter 4, “The UNIVARIATE Procedure” (Base
SAS Procedures Guide: Statistical Procedures),).
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Correlation

Correlation between �i and �j is calculated as

rij D

Pn
tD1

�
� ti �

N�i
� �
� tj �

N�j

�
rP

t

�
� ti �

N�i
�2P

t

�
� tj �

N�j

�2

Covariance

Covariance �i and �j is calculated as

sij D

nX
tD1

�
� ti �

N�i
� �
� tj �

N�j

�
=.n � 1/

Equal-Tail Credible Interval

Let � .�i jy/ denote the marginal posterior cumulative distribution function of �i . A 100 .1 � ˛/% Bayesian
equal-tail credible interval for �i is

�
�
˛=2
i ; �

1�˛=2
i

�
, where �

�
�
˛=2
i jy

�
D

˛
2

, and �
�
�
1�˛=2
i jy

�
D 1 � ˛

2
.

The interval is obtained using the empirical ˛
2

and .1 � ˛
2
/ percentiles of

˚
� ti
	
.

Highest Posterior Density (HPD) Interval

For a definition of an HPD interval, see the section “Interval Estimation” on page 129. The procedures use
the Chen-Shao algorithm (Chen and Shao 1999; Chen, Shao, and Ibrahim 2000) to estimate an empirical
HPD interval of �i :

1. Sort
˚
� ti
	

to obtain the ordered values:

�i.1/ � �i.2/ � � � � � �i.n/

2. Compute the 100 .1 � ˛/% credible intervals:

Rj .n/ D
�
�i.j /; �i.jCŒ.1�˛/n�/

�
for j D 1; 2; : : : ; n � Œ.1 � ˛/ n�.

3. The 100 .1 � ˛/% HPD interval, denoted by Rj� .n/, is the one with the smallest interval width
among all credible intervals.
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Deviance Information Criterion (DIC)

The deviance information criterion (DIC) (Spiegelhalter et al. 2002) is a model assessment tool, and it is a
Bayesian alternative to Akaike’s information criterion (AIC) and the Bayesian information criterion (BIC,
also known as the Schwarz criterion). The DIC uses the posterior densities, which means that it takes the prior
information into account. The criterion can be applied to nonnested models and models that have non-iid
data. Calculation of the DIC in MCMC is trivial—it does not require maximization over the parameter space,
like the AIC and BIC. A smaller DIC indicates a better fit to the data set.

Letting � be the parameters of the model, the deviance information formula is

DIC D D.�/C pD D D.�/C 2pD

where

D.�/D 2 .log.f .y// � log.p.yj�/// : deviance

where

p.yj�/: likelihood function with the normalizing constants.

f .y/: a standardizing term that is a function of the data alone. This term is constant with respect to
the parameter and is irrelevant when you compare different models that have the same likelihood
function. Since the term cancels out in DIC comparisons, its calculation is often omitted.

NOTE: You can think of the deviance as the difference in twice the log likelihood between the saturated,
f .y/, and fitted, p.yj�/, models.

�: posterior mean, approximated by 1
n

Pn
tD1 �

t

D.�/: posterior mean of the deviance, approximated by 1
n

Pn
tD1D.�

t /. The expected deviation measures
how well the model fits the data.

D.�/: deviance evaluated at N� , equal to�2 log.p.yj N�//. It is the deviance evaluated at your “best” posterior
estimate.

pD: effective number of parameters. It is the difference between the measure of fit and the deviance at
the estimates: D.�/ � D.�/. This term describes the complexity of the model, and it serves as a
penalization term that corrects deviance’s propensity toward models with more parameters.
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A Bayesian Reading List
This section lists a number of Bayesian textbooks of varying difficulty degrees and a few tutorial/review
papers.

Textbooks

Introductory Books

Berry, D. A. (1996), Statistics: A Bayesian Perspective, London: Duxbury Press.

Bolstad, W. M. (2007), Introduction to Bayesian Statistics, 2nd ed. New York: John Wiley & Sons.

DeGroot, M. H. and Schervish, M. J. (2002), Probability and Statistics, Reading, MA: Addison Wesley.

Gamerman, D. and Lopes, H. F. (2006), Markov Chain Monte Carlo: Stochastic Simulation for Bayesian
Inference, 2nd ed. London: Chapman & Hall/CRC.

Ghosh, J. K., Delampady, M., and Samanta, T. (2006), An Introduction to Bayesian Analysis, New York:
Springer-Verlag.

Lee, P. M. (2004), Bayesian Statistics: An Introduction, 3rd ed. London: Arnold.

Sivia, D. S. (1996), Data Analysis: A Bayesian Tutorial, Oxford: Oxford University Press.

Intermediate-Level Books

Box, G. E. P., and Tiao, G. C. (1992), Bayesian Inference in Statistical Analysis, New York: John Wiley &
Sons.

Chen, M. H., Shao Q. M., and Ibrahim, J. G. (2000), Monte Carlo Methods in Bayesian Computation, New
York: Springer-Verlag.

Gelman, A. and Hill, J. (2006), Data Analysis Using Regression and Multilevel/Hierarchical Models,
Cambridge: Cambridge University Press.

Goldstein, M. and Wooff, D. A. (2007), Bayes Linear Statistics: Theory and Methods, New York: John Wiley
& Sons.

Harney, H. L. (2003), Bayesian Inference: Parameter Estimation and Decisions, New York: Springer-Verlag.
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Overview: Categorical Data Analysis Procedures
There are two approaches to performing categorical data analyses. The first computes statistics based on
tables defined by categorical variables (variables that assume only a limited number of discrete values),
performs hypothesis tests about the association between these variables, and requires the assumption of a
randomized process; following Stokes, Davis, and Koch (2000), call these methods randomization procedures.
The other approach investigates the association by modeling a categorical response variable, regardless of
whether the explanatory variables are continuous or categorical; call these methods modeling procedures.
Several procedures in SAS/STAT software can be used for the analysis of categorical data.

The randomization procedures are:

FREQ builds frequency tables or contingency tables and can produce numerous statistics. For one-
way frequency tables, it can perform tests for equal proportions, specified proportions, or
the binomial proportion. For contingency tables, it can compute various tests and measures
of association and agreement including chi-square statistics, odds ratios, correlation
statistics, Fisher’s exact test for any size two-way table, kappa, and trend tests. In
addition, it performs stratified analysis, computing Cochran-Mantel-Haenszel statistics
and estimates of the common relative risk. Exact p-values and confidence intervals are
available for various test statistics and measures. See Chapter 40, “The FREQ Procedure,”
for more information.
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SURVEYFREQ incorporates complex sample designs to analyze one-way, two-way, and multiway crosstab-
ulation tables. Estimates population totals and proportions and performs tests of goodness-
of-fit and independence. See Chapter 14, “Introduction to Survey Procedures,” and
Chapter 97, “The SURVEYFREQ Procedure,” for more information.

The modeling procedures, which require a categorical response variable, are:

CATMOD fits linear models to functions of categorical data, facilitating such analyses as regres-
sion, analysis of variance, linear modeling, log-linear modeling, logistic regression, and
repeated measures analysis. Maximum likelihood estimation is used for the analysis of
logits and generalized logits, and weighted least squares analysis is used for fitting models
to other response functions. Iterative proportional fitting (IPF), which avoids the need for
parameter estimation, is available for fitting hierarchical log-linear models when there is a
single population. See Chapter 32, “The CATMOD Procedure,” for more information.

GENMOD fits generalized linear models with maximum-likelihood methods. This family includes
logistic, probit, and complementary log-log regression models for binomial data, Poisson
and negative binomial regression models for count data, and multinomial models for
ordinal response data. It performs likelihood ratio and Wald tests for Type I, Type III, and
user-defined contrasts. It analyzes repeated measures data with generalized estimating
equation (GEE) methods. Bayesian analysis capabilities for generalized linear models are
also available. See Chapter 43, “The GENMOD Procedure,” for more information.

GLIMMIX fits generalized linear mixed models with maximum-likelihood methods. If the model does
not contain random effects, the GLIMMIX procedure fits generalized linear models by the
method of maximum likelihood. This family includes logistic, probit, and complementary
log-log regression models for binomial data, Poisson and negative binomial regression
models for count data, and multinomial models for ordinal response data. See Chapter 44,
“The GLIMMIX Procedure,” for more information.

LOGISTIC fits linear logistic regression models for discrete response data with maximum-likelihood
methods. It provides four variable selection methods, computes regression diagnostics,
and compares and outputs receiver operating characteristic curves. It can also perform
stratified conditional logistic regression analysis for binary response data and exact
conditional regression analysis for binary and nominal response data. The logit link
function in the logistic regression models can be replaced by the probit function or the
complementary log-log function. See Chapter 60, “The LOGISTIC Procedure,” for more
information.

PROBIT fits models with probit, logit, or complementary log-log links for quantal assay or other
discrete event data. It is mainly designed for dose-response analysis with a natural
response rate. It computes the fiducial limits for the dose variable and provides various
graphical displays for the analysis. See Chapter 81, “The PROBIT Procedure,” for more
information.

SURVEYLOGISTIC fits logistic models for binary and ordinal outcomes to survey data by maximum
likelihood, incorporating complex survey sample designs. See Chapter 98, “The SUR-
VEYLOGISTIC Procedure,” for more information.

Also see Chapter 3, “Introduction to Statistical Modeling with SAS/STAT Software,” and Chapter 4, “Intro-
duction to Regression Procedures,” for more information about all the modeling and regression procedures.
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Other procedures that can be used for categorical data analysis and modeling are:

CORRESP performs simple and multiple correspondence analyses, using a contingency table, Burt
table, binary table, or raw categorical data as input. See Chapter 9, “Introduction to Multi-
variate Procedures,” and Chapter 34, “The CORRESP Procedure,” for more information.

PRINQUAL performs a principal component analysis of qualitative and/or quantitative data, and
multidimensional preference analysis. See Chapter 9, “Introduction to Multivariate
Procedures,” and Chapter 80, “The PRINQUAL Procedure,” for more information.

TRANSREG fits univariate and multivariate linear models, optionally with spline and other nonlinear
transformations. Models include ordinary regression and ANOVA, multiple and multi-
variate regression, metric and nonmetric conjoint analysis, metric and nonmetric vector
and ideal point preference mapping, redundancy analysis, canonical correlation, and
response surface regression. See Chapter 4, “Introduction to Regression Procedures,” and
Chapter 104, “The TRANSREG Procedure,” for more information.

Introduction
A categorical variable is a variable that assumes only a limited number of discrete values. The measurement
scale for a categorical variable is unrestricted. It can be nominal, which means that the observed levels are
not ordered. It can be ordinal, which means that the observed levels are ordered in some way. Or it can be
interval, which means that the observed levels are ordered and numeric and that any interval of one unit on
the scale of measurement represents the same amount, regardless of its location on the scale. One example of
a categorical variable is litter size; another is the number of times a subject has been married. A variable that
lies on a nominal scale is sometimes called a qualitative or classification variable.

Categorical data result from observations on multiple subjects where one or more categorical variables are
observed for each subject. If there is only one categorical variable, then the data are generally represented by
a frequency table, which lists each observed value of the variable and its frequency of occurrence.

If there are two or more categorical variables, then a subject’s profile is defined as the subject’s observed
values for each of the variables. Such categorical data can be represented by a frequency table that lists each
observed profile and its frequency of occurrence.

If there are exactly two categorical variables, then the data are often represented by a two-dimensional
contingency table, which has one row for each level of variable 1 and one column for each level of variable 2.
The intersections of rows and columns, called cells, correspond to variable profiles, and each cell contains
the frequency of occurrence of the corresponding profile.

If there are more than two categorical variables, then the data can be represented by a multidimensional
contingency table. There are two commonly used methods for displaying such tables, and both require that
the variables be divided into two sets.

• In the first method, one set contains a row variable and a column variable for a two-dimensional
contingency table, and the second set contains all of the other variables. The variables in the second
set are used to form a set of profiles. Thus, the data are represented as a series of two-dimensional
contingency tables, one for each profile. This is the data representation used by PROC FREQ. For
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example, if you request tables for RACE*SEX*AGE*INCOME, the FREQ procedure represents the
data as a series of contingency tables: the row variable is AGE, the column variable is INCOME, and
the combinations of levels of RACE and SEX form a set of profiles.

• In the second method, one set contains the independent variables, and the other set contains the
dependent variables. Profiles based on the independent variables are called population profiles,
whereas those based on the dependent variables are called response profiles. A two-dimensional
contingency table is then formed, with one row for each population profile and one column for each
response profile. Since any subject can have only one population profile and one response profile, the
contingency table is uniquely defined. This is the data representation used by the modeling procedures.

NOTE: Modeling procedures for categorical data analysis only require that the response variable be
categorical—the explanatory variables are allowed to be continuous or categorical. However, note that
PROC CATMOD was designed to handle contingency table data, and it does not efficiently handle continuous
covariates.

Sampling Frameworks and Distribution Assumptions
This section discusses the sampling frameworks and distribution assumptions for the modeling and random-
ization procedures.

Simple Random Sampling: One Population
Suppose you take a simple random sample of 100 people and ask each person the following question, “Of the
three colors red, blue, and green, which is your favorite?” You then tabulate the results in a frequency table
as shown in Table 8.1.

Table 8.1 One-Way Frequency Table

Favorite Color
Red Blue Green Total

Frequency 52 31 17 100
Proportion 0.52 0.31 0.17 1.00

In the population you are sampling, you assume there is an unknown probability that a population member,
selected at random, would choose any given color. In order to estimate that probability, you use the sample
proportion

pj D
nj

n

where nj is the frequency of the jth response and n is the total frequency.

Because of the random variation inherent in any random sample, the frequencies have a probability distribution
representing their relative frequency of occurrence in a hypothetical series of samples. For a simple random
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sample, the distribution of frequencies for a frequency table with three levels is as follows. The probability
that the first frequency is n1, the second frequency is n2, and the third is n3 D n � n1 � n2, is given by

Pr.n1; n2; n3/ D
nŠ

n1Šn2Šn3Š
�
n1
1 �

n2
2 �

n3
3

where �j is the true probability of observing the jth response level in the population.

This distribution, called the multinomial distribution, can be generalized to any number of response levels.
The special case of two response levels is called the binomial distribution.

Simple random sampling is the type of sampling required by the (non-survey) modeling procedures when there
is one population. The modeling procedures use the multinomial distribution to estimate a probability vector
and its covariance matrix. If the sample size is sufficiently large, then the probability vector is approximately
normally distributed as a result of central limit theory. This result is used to compute appropriate test statistics
for the specified statistical model.

Stratified Simple Random Sampling: Multiple Populations
Suppose you take two simple random samples, 50 men and 50 women, and ask the same question as before.
You are now sampling two different populations that may have different response probabilities. The data can
be tabulated as shown in Table 8.2.

Table 8.2 Two-Way Contingency Table: Sex by Color

Favorite Color
Sex Red Blue Green Total

Male 30 10 10 50
Female 20 10 20 50
Total 50 20 30 100

Note that the row marginal totals (50, 50) of the contingency table are fixed by the sampling design, but the
column marginal totals (50, 20, 30) are random. There are six probabilities of interest for this table, and they
are estimated by the sample proportions

pij D
nij

ni

where nij denotes the frequency for the ith population and the jth response and ni is the total frequency for
the ith population. For this contingency table, the sample proportions are shown in Table 8.3.

Table 8.3 Table of Sample Proportions by Sex

Favorite Color
Sex Red Blue Green Total

Male 0.60 0.20 0.20 1.00
Female 0.40 0.20 0.40 1.00
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The probability distribution of the six frequencies is the product multinomial distribution

Pr.n11; n12; n13; n21; n22; n23/ D
n1Šn2Š�

n11
11 �

n12
12 �

n13
13 �

n21
21 �

n22
22 �

n23
23

n11Šn12Šn13Šn21Šn22Šn23Š

where �ij is the true probability of observing the jth response level in the ith population. The product
multinomial distribution is simply the product of two or more individual multinomial distributions since the
populations are independent. This distribution can be generalized to any number of populations and response
levels.

Stratified simple random sampling is the type of sampling required by the modeling procedures when
there is more than one population. The product multinomial distribution is used to estimate a probability
vector and its covariance matrix. If the sample sizes are sufficiently large, then the probability vector is
approximately normally distributed as a result of central limit theory, and this result is used to compute
appropriate test statistics for the specified statistical model. The statistics are known as Wald statistics, and
they are approximately distributed as chi-square when the null hypothesis is true.

Observational Data: Analyzing the Entire Population
Sometimes the observed data do not come from a random sample but instead represent a complete set of
observations on some population. For example, suppose a class of 100 students is classified according to sex
and favorite color. The results are shown in Table 8.4.

In this case, you could argue that all of the frequencies are fixed since the entire population is observed;
therefore, there is no sampling error. On the other hand, you could hypothesize that the observed table
has only fixed marginals and that the cell frequencies represent one realization of a conceptual process of
assigning color preferences to individuals. The assignment process is open to hypothesis, which means that
you can hypothesize restrictions on the joint probabilities.

Table 8.4 Two-Way Contingency Table: Sex by Color

Favorite Color
Sex Red Blue Green Total

Male 16 21 20 57
Female 12 20 11 43
Total 28 41 31 100

The usual hypothesis (sometimes called randomness) is that the distribution of the column variable (Favorite
Color) does not depend on the row variable (Sex). This implies that, for each row of the table, the assignment
process corresponds to a simple random sample (without replacement) from the finite population represented
by the column marginal totals (or by the column marginal subtotals that remain after sampling other rows).
The hypothesis of randomness implies that the probability distribution on the frequencies in the table is the
hypergeometric distribution.

If the same row and column variables are observed for each of several populations, then the probability
distribution of all the frequencies can be called the multiple hypergeometric distribution. Each population
is called a stratum, and an analysis that draws information from each stratum and then summarizes across
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them is called a stratified analysis (or a blocked analysis or a matched analysis). PROC FREQ does such a
stratified analysis, computing test statistics and measures of association.

In general, the populations are formed on the basis of cross-classifications of independent variables. Stratified
analysis is a method of adjusting for the effect of these variables without being forced to estimate parameters
for them. Note that PROC LOGISTIC can perform analyses on stratified tables as well, using the usual
modeling procedure assumptions, by using conditional or exact conditional logistic regression.

The multiple hypergeometric distribution is the one used by PROC FREQ for the computation of Cochran-
Mantel-Haenszel statistics. These statistics are in the class of randomization model test statistics, which
require minimal assumptions for their validity. PROC FREQ uses the multiple hypergeometric distribution to
compute the mean and the covariance matrix of a function vector in order to measure the deviation between
the observed and expected frequencies with respect to a particular type of alternative hypothesis. If the cell
frequencies are sufficiently large, then the function vector is approximately normally distributed as a result
of central limit theory, and PROC FREQ uses this result to compute a quadratic form that has a chi-square
distribution when the null hypothesis is true.

Randomized Experiments
Consider a randomized experiment in which patients are assigned to one of two treatment groups according
to a randomization process that allocates 50 patients to each group. After a specified period of time, each
patient’s status (cured or not cured) is recorded. Suppose the data shown in Table 8.5 give the results of
the experiment. The null hypothesis is that the two treatments are equally effective. Under this hypothesis,
treatment is a randomly assigned label that has no effect on the cure rate of the patients. But this implies
that each row of the table represents a simple random sample from the finite population whose cure rate
is described by the column marginal totals. Therefore, the column marginals (58, 42) are fixed under
the hypothesis. Since the row marginals (50, 50) are fixed by the allocation process, the hypergeometric
distribution is induced on the cell frequencies. Randomized experiments can also be specified in a stratified
framework, and Cochran-Mantel-Haenszel statistics can be computed relative to the corresponding multiple
hypergeometric distribution.

Table 8.5 Two-Way Contingency Table: Treatment by Status

Status
Treatment Cured Not Cured Total

1 36 14 50
2 22 28 50
Total 58 42 100

Relaxation of Sampling Assumptions
As indicated previously, the modeling procedures assume that the data are from a stratified simple random
sample, so they use the product multinomial distribution. If the data are not from such a sample, then in many
cases it is still possible to use a modeling procedure by arguing that each row of the contingency table does
represent a simple random sample from some hypothetical population. The extent to which the inferences are
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generalizable depends on the extent to which the hypothetical population is perceived to resemble the target
population.

Similarly, the Cochran-Mantel-Haenszel statistics use the multiple hypergeometric distribution, which
requires fixed row and column marginal totals in each contingency table. If the sampling process does not
yield a table with fixed margins, then it is usually possible to fix the margins through conditioning arguments
similar to the ones used by Fisher when he developed the Exact Test for 2 � 2 tables. In other words, if you
want fixed marginal totals, you can generally make your analysis conditional on those observed totals.

For more information on sampling models for categorical data, see Bishop, Fienberg, and Holland (1975,
Chapter 13) and Agresti (2002, Chapter 1.2).

Comparison of PROC FREQ and the Modeling Procedures
PROC FREQ is used primarily to investigate the relationship between two variables; any confounding
variables are taken into account by stratification rather than by parameter estimation. Modeling procedures
are used to investigate the relationship among many variables, all of which are integrated into a parametric
model.

When a modeling procedure estimates the covariance matrix of the frequencies, it assumes that the frequencies
were obtained by a stratified simple random-sampling procedure. However, some modeling procedures can
handle different sampling methods. PROC CATMOD can analyze input data that consists of a function vector
and a covariance matrix, so you can estimate the covariance matrix of the frequencies in the appropriate
manner before modeling the data. PROC SURVEYLOGISTIC can analyze data from a completely different,
but known, sampling scheme.

For the FREQ procedure, Fisher’s Exact Test and Cochran-Mantel-Haenszel (CMH) statistics are based
on the hypergeometric distribution, which corresponds to fixed marginal totals. However, by conditioning
arguments, these tests are generally applicable to a wide range of sampling procedures. Similarly, the Pearson
and likelihood-ratio chi-square statistics can be derived under a variety of sampling situations.

PROC FREQ can do some traditional nonparametric analysis (such as the Kruskal-Wallis test and Spearman’s
correlation) since it can generate rank scores internally. Fisher’s Exact Test and the CMH statistics are also
inherently nonparametric. However, the main vehicle for nonparametric analyses in the SAS System is the
NPAR1WAY procedure.

A large sample size is required for the validity of the chi-square distributions, the standard errors, and the
covariance matrices for PROC FREQ and the modeling procedures. If sample size is a problem, then PROC
FREQ has the advantage with its CMH statistics because it does not use any degrees of freedom to estimate
parameters for confounding variables. In addition, PROC FREQ can compute exact p-values for any two-way
table, provided that the sample size is sufficiently small in relation to the size of the table. It can also produce
exact p-values for many tests, including the test of binomial proportions, the Cochran-Armitage test for trend,
and the Jonckheere-Terpstra test for ordered differences among classes. PROC LOGISTIC can perform exact
conditional logistic regression and Firth’s penalized-likelihood regression to compensate for small sample
sizes.

See the procedure chapters for more information. In addition, some well-known texts that deal with analyzing
categorical data are listed in the “References” section of this chapter.
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Comparison of Modeling Procedures
The CATMOD, GENMOD, GLIMMIX, LOGISTIC, PROBIT, and SURVEYLOGISTIC procedures can all
be used for statistical modeling of categorical data.

The CATMOD procedure treats all explanatory (independent) variables as classification variables by default,
and you specify continuous covariates in the DIRECT statement. The other procedures treat covariates as
continuous by default, and you specify the classification variables in the CLASS statement.

The CATMOD procedure provides weighted least squares estimation of many response functions, such as
means, cumulative logits, and proportions, and you can also compute and analyze other response functions
that can be formed from the proportions corresponding to the rows of a contingency table. In addition, a user
can input and analyze a set of response functions and user-supplied covariance matrix with weighted least
squares. PROC CATMOD also provides maximum likelihood estimation for binary and polytomous logistic
regression.

The GENMOD procedure is also a general statistical modeling tool which fits generalized linear models
to data; it fits several useful models to categorical data including logistic regression, the proportional odds
model, and Poisson and negative binomial regression for count data. The GENMOD procedure also provides
a facility for fitting generalized estimating equations to correlated response data that are categorical, such as
repeated dichotomous outcomes. The GENMOD procedure fits models using maximum likelihood estimation.
PROC GENMOD can perform Type I and Type III tests, and it provides predicted values and residuals.
Bayesian analysis capabilities for generalized linear models are also available.

The GLIMMIX procedure fits many of the same models as the GENMOD procedure but also allows the
inclusion of random effects. The GLIMMIX procedure fits models using maximum likelihood estimation.

The LOGISTIC procedure is specifically designed for logistic regression. It performs the usual logistic
regression analysis for dichotomous outcomes and it fits the proportional odds model and the generalized
logit model for ordinal and nominal outcomes, respectively, by the method of maximum likelihood. This
procedure has capabilities for a variety of model-building techniques, including stepwise, forward, and
backward selection. It computes predicted values, the receiver operating characteristics (ROC) curve and
the area beneath the curve, and a number of regression diagnostics. It can create output data sets containing
these values and other statistics. PROC LOGISTIC can perform a conditional logistic regression analysis
(matched-set and case-controlled) for binary response data. For small data sets, PROC LOGISTIC can
perform exact conditional logistic regression. Firth’s bias-reducing penalized-likelihood method can also be
used in place of conditional and exact conditional logistic regression.

The PROBIT procedure is designed for quantal assay or other discrete event data. In additional to performing
the logistic regression analysis, it can estimate the threshold response rate. PROC PROBIT can also estimate
the values of independent variables that yield a desired response.

The SURVEYLOGISTIC procedure performs logistic regression for binary, ordinal, and nominal responses
under a specified complex sampling scheme, instead of the usual stratified simple random sampling.

Stokes, Davis, and Koch (2012) provide substantial discussion of these procedures, particularly the use of the
FREQ, LOGISTIC, GENMOD, and CATMOD procedures for statistical modeling.
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Logistic Regression

Dichotomous Response

You have many choices of performing logistic regression in the SAS System. The CATMOD, GENMOD,
GLIMMIX, LOGISTIC, PROBIT, and SURVEYLOGISTIC procedures fit the usual logistic regression
model.

PROC CATMOD might not be efficient when there are continuous independent variables with large numbers
of different values. For a continuous variable with a very limited number of values, PROC CATMOD might
still be useful.

PROC GLIMMIX enables you to specify random effects in the models; in particular, you can fit a random-
intercept logistic regression model.

PROC LOGISTIC provides the capability of model-building and performs conditional and exact conditional
logistic regression. It can also use Firth’s bias-reducing penalized likelihood method.

PROC PROBIT enables you to estimate the natural response rate and compute fiducial limits for the dose
variable.

The LOGISTIC, GENMOD, GLIMMIX, PROBIT, and SURVEYLOGISTIC procedures can analyze sum-
marized data by enabling you to input the numbers of events and trials; the ratio of events to trials must be
between 0 and 1.

Ordinal Response

PROC LOGISTIC fits the proportional odds model to the ordinal response data by default, PROC PROBIT
fits this model if you specify the logistic distribution, and PROC GENMOD and PROC GLIMMIX fit this
model if you specify the CLOGIT link and the multinomial distribution. PROC CATMOD fits the cumulative
logit or adjacent-category logit response functions.

Nominal Response

When the response variable is nominal, there is no concept of ordering of the response values. Response
functions called generalized logits can be fit by the CATMOD, GLIMMIX, and LOGISTIC procedures.
PROC CATMOD fits this model by default; PROC GLIMMIX and PROC LOGISTIC require you to specify
the GLOGIT link.

Numerical Differences

Differences in the way the models are parameterized and fit might result in different parameter estimates if
you perform logistic regression in each of these procedures.

• Parameter estimates from the procedures can differ in sign depending on the ordering of response
levels, which you can change if you want.

• The parameter estimates associated with a categorical independent variable might differ among the
procedures, since the estimates depend on the coding of the indicator variables in the design matrix.
By default, the design matrix column produced by PROC CATMOD and PROC LOGISTIC for a
binary independent variable is coded using the values 1 and –1 (deviation from the mean coding,
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which is a full-rank parameterization). The same column produced by the CLASS statement of PROC
GENMOD, PROC GLIMMIX, and PROC PROBIT is coded using 1 and 0 (GLM coding, which is less-
than-full-rank parameterization). As a result, the parameter estimate printed by PROC LOGISTIC is
one-half of the estimate produced by PROC GENMOD. Both PROC GENMOD and PROC LOGISTIC
allow you to select either a full-rank parameterization or the less-than-full-rank parameterization. The
GLIMMIX and PROBIT procedures allow only the less-than-full-rank parameterization for the CLASS
variables. The CATMOD procedure allows only full-rank parameterizations. See the “Details” sections
in the chapters on the CATMOD, GENMOD, GLIMMIX, LOGISTIC, and PROBIT procedures for
more information on the generation of the design matrices used by these procedures. See Chapter 19,
“Shared Concepts and Topics,” for a general discussion of the various parameterizations.

• The maximum-likelihood algorithm used differs among the procedures. PROC LOGISTIC uses the
Fisher’s scoring method by default, while PROC PROBIT, PROC GENMOD, PROC GLIMMIX, and
PROC CATMOD use the Newton-Raphson method. The parameter estimates should be the same for
all three procedures, and the standard errors should be the same for the logistic model. For the normal
and extreme-value (Gompertz) distributions in PROC PROBIT, which correspond to the probit and
cloglog links, respectively, in PROC GENMOD and PROC LOGISTIC, the standard errors might
differ. In general, tests computed using the standard errors from the Newton-Raphson method are more
conservative.

• The LOGISTIC, GENMOD, GLIMMIX, and PROBIT procedures can fit a cumulative regression
model for ordinal response data by using maximum-likelihood estimation. PROC LOGISTIC and
PROC GENMOD use a different parameterization from that of PROC PROBIT, which results in
different intercept parameters. Estimates of the slope parameters, however, should be the same for
both procedures. The estimated standard errors of the slope estimates are slightly different between the
procedures because of the different computational algorithms used as default.
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Overview: Multivariate Procedures
The procedures discussed in this chapter investigate relationships among variables without designating some
as independent and others as dependent. Principal component analysis and common factor analysis examine
relationships within a single set of variables, whereas canonical correlation looks at the relationship between
two sets of variables. The following is a brief description of SAS/STAT multivariate procedures:

CORRESP performs simple and multiple correspondence analyses, with a contingency table, Burt
table, binary table, or raw categorical data as input. Correspondence analysis is a weighted
form of principal component analysis that is appropriate for frequency data. The results
are displayed in plots and tables and are also available in output data sets.

PRINCOMP performs a principal component analysis and outputs standardized or unstandardized
principal component scores. The results are displayed in plots and tables and are also
available in output data sets.

PRINQUAL performs a principal component analysis of qualitative data and multidimensional pref-
erence analysis. The results are displayed in plots and are also available in output data
sets.

FACTOR performs principal component and common factor analyses with rotations and outputs
component scores or estimates of common factor scores. The results are displayed in
plots and tables and are also available in output data sets.

CANCORR performs a canonical correlation analysis and outputs canonical variable scores. The
results are displayed in tables and are also available in output data sets for plotting.

Many other SAS/STAT procedures can also analyze multivariate data—for example, the CATMOD, GLM,
REG, CALIS, and TRANSREG procedures as well as the procedures for clustering and discriminant analysis.
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The purpose of principal component analysis (Rao 1964) is to derive a small number of linear combinations
(principal components) of a set of variables that retain as much of the information in the original variables as
possible. Often a small number of principal components can be used in place of the original variables for
plotting, regression, clustering, and so on. Principal component analysis can also be viewed as an attempt to
uncover approximate linear dependencies among variables.

The purpose of common factor analysis (Mulaik 1972) is to explain the correlations or covariances among
a set of variables in terms of a limited number of unobservable, latent variables. The latent variables are
not generally computable as linear combinations of the original variables. In common factor analysis, it is
assumed that the variables are linearly related if not for uncorrelated random error or unique variation in
each variable; both the linear relations and the amount of unique variation can be estimated.

Principal component and common factor analysis are often followed by rotation of the components or factors.
Rotation is the application of a nonsingular linear transformation to components or common factors to aid
interpretation.

The purpose of canonical correlation analysis (Mardia, Kent, and Bibby 1979) is to explain or summarize
the relationship between two sets of variables by finding a small number of linear combinations from each set
of variables that have the highest possible between-set correlations. Plots of the canonical variables can be
useful in examining multivariate dependencies. If one of the two sets of variables consists of dummy variables
generated from a classification variable, the canonical correlation is equivalent to canonical discriminant
analysis (see Chapter 31, “The CANDISC Procedure”). If both sets of variables are dummy variables,
canonical correlation is equivalent to simple correspondence analysis.

The purpose of correspondence analysis (Lebart, Morineau, and Warwick 1984; Greenacre 1984; Nishisato
1980) is to summarize the associations between a set of categorical variables in a small number of dimensions.
Correspondence analysis computes scores on each dimension for each row and column category in a
contingency table. Plots of these scores show the relationships among the categories.

The PRINQUAL procedure obtains linear and nonlinear transformations of variables by using the method of
alternating least squares (Young 1981) to optimize properties of the transformed variables’ covariance or
correlation matrix. PROC PRINQUAL nonlinearly transforms variables, improving their fit to a principal
component model. The name, PRINQUAL, for principal components of qualitative data, comes from the
special case analysis of fitting a principal component model to nominal and ordinal scale of measurement
variables (Young, Takane, and de Leeuw 1978). However, PROC PRINQUAL also has facilities for smoothly
transforming continuous variables. All of PROC PRINQUAL’s transformations are also available in the
TRANSREG procedure, which fits regression models with nonlinear transformations. PROC PRINQUAL
can also perform metric and nonmetric multidimensional preference (MDPREF) analyses (Carroll 1972) and
produce plots of the results.

Comparison of the PRINCOMP and FACTOR Procedures
Although PROC FACTOR can be used for common factor analysis, the default method is principal compo-
nents. PROC FACTOR produces the same results as PROC PRINCOMP except that scoring coefficients
from PROC FACTOR are normalized to give principal component scores with unit variance, whereas PROC
PRINCOMP by default produces principal component scores with variance equal to the corresponding
eigenvalue. PROC PRINCOMP can also compute scores standardized to unit variance. Both procedures
produce graphical results through ODS Graphics.
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PROC PRINCOMP has the following advantages over PROC FACTOR:

• PROC PRINCOMP is slightly faster if a small number of components is requested.

• PROC PRINCOMP can analyze somewhat larger problems in a fixed amount of memory.

• PROC PRINCOMP can output scores from an analysis of a partial correlation or covariance matrix.

• PROC PRINCOMP is simpler to use.

PROC FACTOR has the following advantages over PROC PRINCOMP for principal component analysis:

• PROC FACTOR produces more output.

• PROC FACTOR does rotations.

If you want to perform a common factor analysis, you must use PROC FACTOR instead of PROC PRINCOMP.
Principal component analysis should never be used if a common factor solution is desired (Dziuban and
Harris 1973; Lee and Comrey 1979).

Comparison of the PRINCOMP and PRINQUAL Procedures
The PRINCOMP procedure performs principal component analysis. The PRINQUAL procedure finds linear
and nonlinear transformations of variables to optimize properties of the transformed variables’ covariance
or correlation matrix. One property is the sum of the first n eigenvalues, which is a measure of the fit of a
principal component model with n components. Use PROC PRINQUAL to find nonlinear transformations
of your variables or to perform a multidimensional preference analysis. Use PROC PRINCOMP to fit a
principal component model to your data or to PROC PRINQUAL’s output data set. PROC PRINCOMP
produces a report of the principal component analysis, a number of graphical displays, and output data sets.
PROC PRINQUAL produces only a few graphs and an output data set.

Comparison of the PRINCOMP and CORRESP Procedures
As summarized previously, PROC PRINCOMP performs a principal component analysis of interval-scaled
data. PROC CORRESP performs correspondence analysis, which is a weighted form of principal component
analysis that is appropriate for frequency data. If your data are categorical, use PROC CORRESP instead
of PROC PRINCOMP. Both procedures produce graphical displays of the results with ODS Graphics. The
plots produced by PROC CORRESP graphically show relationships among the categories of the categorical
variables.
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Comparison of the PRINQUAL and CORRESP Procedures
Both PROC PRINQUAL and PROC CORRESP can be used to summarize associations among variables
measured on a nominal scale. PROC PRINQUAL searches for a single nonlinear transformation of the original
scoring of each nominal variable that optimizes some aspect of the covariance matrix of the transformed
variables. For example, PROC PRINQUAL could be used to find scorings that maximize the fit of a principal
component model with one component. PROC CORRESP uses the crosstabulations of nominal variables, not
covariances, and produces multiple scores for each category of each nominal variable. The main conceptual
difference between PROC PRINQUAL and PROC CORRESP is that PROC PRINQUAL assumes that
the categories of a nominal variable correspond to values of a single underlying interval variable, whereas
PROC CORRESP assumes that there are multiple underlying interval variables and therefore uses different
category scores for each dimension of the correspondence analysis. Scores from PROC CORRESP on the
first dimension match the single set of PROC PRINQUAL scores (with appropriate standardizations for both
analyses).

Comparison of the TRANSREG and PRINQUAL Procedures
Both the TRANSREG and PRINQUAL procedures are data transformation procedures that have many of
the same transformations. These procedures can either directly perform the specified transformation (such
as taking the logarithm of the variable) or search for an optimal transformation (such as a spline with a
specified number of knots). Both procedures can use an iterative, alternating least squares analysis. Both
procedures create an output data set that can be used as input to other procedures. PROC PRINQUAL displays
relatively little output, whereas PROC TRANSREG displays many results. PROC TRANSREG has two sets
of variables, usually dependent and independent, and it fits linear models such as ordinary regression and
ANOVA, multiple and multivariate regression, metric and nonmetric conjoint analysis, metric and nonmetric
vector and ideal point preference mapping, redundancy analysis, canonical correlation, and response surface
regression. In contrast, PROC PRINQUAL has one set of variables, fits a principal component model or
multidimensional preference analysis, and can also optimize other properties of a correlation or covariance
matrix. PROC TRANSREG performs hypothesis testing and can be used to code experimental designs prior
to their use in other analyses. PROC TRANSREG can also perform Box-Cox transformations and fit models
with smoothing spline and penalized B-spline transformations.

See Chapter 4, “Introduction to Regression Procedures,” for comparisons of the TRANSREG and REG
procedures.
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Overview: Discriminant Procedures
The SAS procedures for discriminant analysis fit data with one classification variable and several quantitative
variables. The purpose of discriminant analysis can be to find one or more of the following:

• a mathematical rule, or discriminant function, for guessing to which class an observation belongs,
based on knowledge of the quantitative variables only

• a set of linear combinations of the quantitative variables that best reveals the differences among the
classes

• a subset of the quantitative variables that best reveals the differences among the classes

The SAS discriminant procedures are as follows:

DISCRIM computes various discriminant functions for classifying observations. Linear or quadratic
discriminant functions can be used for data with approximately multivariate normal within-
class distributions. Nonparametric methods can be used without making any assumptions
about these distributions.

CANDISC performs a canonical analysis to find linear combinations of the quantitative variables that
best summarize the differences among the classes.

STEPDISC uses forward selection, backward elimination, or stepwise selection to try to find a subset
of quantitative variables that best reveals differences among the classes.
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Background: Discriminant Procedures
The term discriminant analysis (Fisher 1936; Cooley and Lohnes 1971; Tatsuoka 1971; Kshirsagar 1972;
Lachenbruch 1975, 1979; Gnanadesikan 1977; Klecka 1980; Hand 1981, 1982; Silverman 1986) refers
to several different types of analyses. Classificatory discriminant analysis is used to classify observations
into two or more known groups on the basis of one or more quantitative variables. Classification can be
done by either a parametric method or a nonparametric method in the DISCRIM procedure. A parametric
method is appropriate only for approximately normal within-class distributions. The method generates either
a linear discriminant function (the within-class covariance matrices are assumed to be equal) or a quadratic
discriminant function (the within-class covariance matrices are assumed to be unequal).

When the distribution within each group is not assumed to have any specific distribution or is assumed to
have a distribution different from the multivariate normal distribution, nonparametric methods can be used
to derive classification criteria. These methods include the kernel method and nearest-neighbor methods.
The kernel method uses uniform, normal, Epanechnikov, biweight, or triweight kernels in estimating the
group-specific density at each observation. The within-group covariance matrices or the pooled covariance
matrix can be used to scale the data.

The performance of a discriminant function can be evaluated by estimating error rates (probabilities of
misclassification). Error count estimates and posterior probability error rate estimates can be evaluated with
PROC DISCRIM. When the input data set is an ordinary SAS data set, the error rates can also be estimated
by cross validation.

In multivariate statistical applications, the data collected are largely from distributions different from the
normal distribution. Various forms of nonnormality can arise, such as qualitative variables or variables with
underlying continuous but nonnormal distributions. If the multivariate normality assumption is violated, the
use of parametric discriminant analysis might not be appropriate. When a parametric classification criterion
(linear or quadratic discriminant function) is derived from a nonnormal population, the resulting error rate
estimates might be biased.

If your quantitative variables are not normally distributed, or if you want to classify observations on the
basis of categorical variables, you should consider using the CATMOD or LOGISTIC procedure to fit a
categorical linear model with the classification variable as the dependent variable. Press and Wilson (1978)
compare logistic regression and parametric discriminant analysis and conclude that logistic regression is
preferable to parametric discriminant analysis in cases for which the variables do not have multivariate normal
distributions within classes. However, if you do have normal within-class distributions, logistic regression is
less efficient than parametric discriminant analysis. Efron (1975) shows that with two normal populations
having a common covariance matrix, logistic regression is between one-half and two-thirds as effective as
the linear discriminant function in achieving asymptotically the same error rate.

Do not confuse discriminant analysis with cluster analysis. All varieties of discriminant analysis require prior
knowledge of the classes, usually in the form of a sample from each class. In cluster analysis, the data do not
include information about class membership; the purpose is to construct a classification. See Chapter 11,
“Introduction to Clustering Procedures.”
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Canonical discriminant analysis is a dimension-reduction technique related to principal components and
canonical correlation, and it can be performed by both the CANDISC and DISCRIM procedures. A
discriminant criterion is always derived in PROC DISCRIM. If you want canonical discriminant analysis
without the use of a discriminant criterion, you should use PROC CANDISC. Stepwise discriminant analysis
is a variable-selection technique implemented by the STEPDISC procedure. After selecting a subset of
variables with PROC STEPDISC, use any of the other discriminant procedures to obtain more detailed
analyses. PROC CANDISC and PROC STEPDISC perform hypothesis tests that require the within-class
distributions to be approximately normal, but these procedures can be used descriptively with nonnormal
data.

Another alternative to discriminant analysis is to perform a series of univariate one-way ANOVAs. All three
discriminant procedures provide summaries of the univariate ANOVAs. The advantage of the multivariate
approach is that two or more classes that overlap considerably when each variable is viewed separately might
be more distinct when examined from a multivariate point of view.

Example: Contrasting Univariate and Multivariate Analyses
Consider an artificial data set with two classes of observations indicated by 'H' and 'O'. The following
statements generate and plot the data:

data random;
drop n;

Group = 'H';
do n = 1 to 20;

x = 4.5 + 2 * normal(57391);
y = x + .5 + normal(57391);
output;

end;

Group = 'O';
do n = 1 to 20;

x = 6.25 + 2 * normal(57391);
y = x - 1 + normal(57391);
output;

end;

run;

proc sgplot noautolegend;
scatter y=y x=x / markerchar=group group=group;

run;

The plot is shown in Figure 10.1.
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Figure 10.1 Groups for Contrasting Univariate and Multivariate Analyses

The following statements perform a canonical discriminant analysis and display the results in Figure 10.2:

proc candisc anova;
class Group;
var x y;

run;

Figure 10.2 Contrasting Univariate and Multivariate Analyses

The CANDISC ProcedureThe CANDISC Procedure

Total Sample Size 40 DF Total 39

Variables 2 DF Within Classes 38

Classes 2 DF Between Classes 1

Number of Observations Read 40

Number of Observations Used 40
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Figure 10.2 continued

Class Level Information

Group
Variable
Name Frequency Weight Proportion

H H 20 20.0000 0.500000

O O 20 20.0000 0.500000

The CANDISC ProcedureThe CANDISC Procedure

Univariate Test Statistics

F Statistics,    Num DF=1,   Den DF=38

Variable

Total
Standard
Deviation

Pooled
Standard
Deviation

Between
Standard
Deviation R-Square

R-Square
/ (1-RSq) F Value Pr > F

x 2.1776 2.1498 0.6820 0.0503 0.0530 2.01 0.1641

y 2.4215 2.4486 0.2047 0.0037 0.0037 0.14 0.7105

Average R-Square

Unweighted 0.0269868

Weighted by Variance 0.0245201

Multivariate Statistics and Exact F Statistics

S=1    M=0    N=17.5

Statistic Value F Value Num DF Den DF Pr > F

Wilks' Lambda 0.64203704 10.31 2 37 0.0003

Pillai's Trace 0.35796296 10.31 2 37 0.0003

Hotelling-Lawley Trace 0.55754252 10.31 2 37 0.0003

Roy's Greatest Root 0.55754252 10.31 2 37 0.0003

The CANDISC ProcedureThe CANDISC Procedure

Eigenvalues of Inv(E)*H
= CanRsq/(1-CanRsq)

Canonical
Correlation

Adjusted
Canonical

Correlation

Approximate
Standard

Error

Squared
Canonical

Correlation Eigenvalue Difference Proportion Cumulative

1 0.598300 0.589467 0.102808 0.357963 0.5575 1.0000 1.0000

Test of H0: The canonical correlations in the current row and all that follow are zero

Likelihood
Ratio

Approximate
F Value Num DF Den DF Pr > F

1 0.64203704 10.31 2 37 0.0003

Note: The F statistic is exact.

The CANDISC ProcedureThe CANDISC Procedure

Total Canonical
Structure

Variable Can1

x -0.374883

y 0.101206
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Figure 10.2 continued

Between
Canonical
Structure

Variable Can1

x -1.000000

y 1.000000

Pooled Within
Canonical
Structure

Variable Can1

x -0.308237

y 0.081243

The CANDISC ProcedureThe CANDISC Procedure

Total-Sample
Standardized

Canonical
Coefficients

Variable Can1

x -2.625596855

y 2.446680169

Pooled Within-Class
Standardized

Canonical
Coefficients

Variable Can1

x -2.592150014

y 2.474116072

Raw Canonical
Coefficients

Variable Can1

x -1.205756217

y 1.010412967

Class Means on
Canonical Variables

Group Can1

H 0.7277811475

O -.7277811475

The univariate R squares are very small, 0.0503 for x and 0.0037 for y, and neither variable shows a significant
difference between the classes at the 0.10 level.

The multivariate test for differences between the classes is significant at the 0.0003 level. Thus, the
multivariate analysis has found a highly significant difference, whereas the univariate analyses failed to
achieve even the 0.10 level. The raw canonical coefficients for the first canonical variable, Can1, show that
the classes differ most widely on the linear combination -1.205756217 x + 1.010412967 y or approximately y
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- 1.2 x. The R square between Can1 and the CLASS variable is 0.357963 as given by the squared canonical
correlation, which is much higher than either univariate R square.

In this example, the variables are highly correlated within classes. If the within-class correlation were smaller,
there would be greater agreement between the univariate and multivariate analyses.
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Chapter 11

Introduction to Clustering Procedures
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Overview: Clustering Procedures
You can use SAS clustering procedures to cluster the observations or the variables in a SAS data set. Both
hierarchical and disjoint clusters can be obtained. Only numeric variables can be analyzed directly by the
procedures, although the DISTANCE procedure can compute a distance matrix that uses character or numeric
variables.

The purpose of cluster analysis is to place objects into groups, or clusters, suggested by the data, not defined
a priori, such that objects in a given cluster tend to be similar to each other in some sense, and objects in
different clusters tend to be dissimilar. You can also use cluster analysis to summarize data rather than to find
“natural” or “real” clusters; this use of clustering is sometimes called dissection (Everitt 1980).

Any generalization about cluster analysis must be vague because a vast number of clustering methods
have been developed in several different fields, with different definitions of clusters and similarity among
objects. The variety of clustering techniques is reflected by the variety of terms used for cluster analysis:
botryology, classification, clumping, competitive learning, morphometrics, nosography, nosology, numerical
taxonomy, partitioning, Q-analysis, systematics, taximetrics, taxonorics, typology, unsupervised pattern
recognition, vector quantization, and winner-take-all learning. Good (1977) has also suggested aciniformics
and agminatics.
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Several types of clusters are possible:

• Disjoint clusters place each object in one and only one cluster.

• Hierarchical clusters are organized so that one cluster can be entirely contained within another cluster,
but no other kind of overlap between clusters is allowed.

• Overlapping clusters can be constrained to limit the number of objects that belong simultaneously to
two clusters, or they can be unconstrained, allowing any degree of overlap in cluster membership.

• Fuzzy clusters are defined by a probability or grade of membership of each object in each cluster.
Fuzzy clusters can be disjoint, hierarchical, or overlapping.

The data representations of objects to be clustered also take many forms. The most common are as follows:

• a square distance or similarity matrix, in which both rows and columns correspond to the objects to be
clustered. A correlation matrix is an example of a similarity matrix.

• a coordinate matrix, in which the rows are observations and the columns are variables, as in the usual
SAS multivariate data set. The observations, the variables, or both can be clustered.

The SAS procedures for clustering are oriented toward disjoint or hierarchical clusters from coordinate data,
distance data, or a correlation or covariance matrix. The following procedures are used for clustering:

CLUSTER performs hierarchical clustering of observations by using eleven agglomerative methods
applied to coordinate data or distance data and draws tree diagrams, which are also called
dendrograms or phenograms.

FASTCLUS finds disjoint clusters of observations by using a k-means method applied to coordinate
data. PROC FASTCLUS is especially suitable for large data sets.

MODECLUS finds disjoint clusters of observations with coordinate or distance data by using nonpara-
metric density estimation. It can also perform approximate nonparametric significance
tests for the number of clusters.

VARCLUS performs both hierarchical and disjoint clustering of variables by using oblique multiple-
group component analysis and draws tree diagrams, which are also called dendrograms or
phenograms.

TREE draws tree diagrams, also called dendrograms or phenograms, by using output from the
CLUSTER or VARCLUS procedure. PROC TREE can also create a data set indicating
cluster membership at any specified level of the cluster tree.

The following procedures are useful for processing data prior to the actual cluster analysis:

ACECLUS attempts to estimate the pooled within-cluster covariance matrix from coordinate data
without knowledge of the number or the membership of the clusters (Art, Gnanadesikan,
and Kettenring 1982). PROC ACECLUS outputs a data set containing canonical variable
scores to be used in the cluster analysis proper.
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DISTANCE computes various measures of distance, dissimilarity, or similarity between the observa-
tions (rows) of a SAS data set. PROC DISTANCE also provides various nonparametric
and parametric methods for standardizing variables. Different variables can be standard-
ized with different methods.

PRINCOMP performs a principal component analysis and outputs principal component scores.

STDIZE standardizes variables by using any of a variety of location and scale measures, including
mean and standard deviation, minimum and range, median and absolute deviation from
the median, various M-estimators and A-estimators, and some scale estimators designed
specifically for cluster analysis.

Massart and Kaufman (1983) is the best elementary introduction to cluster analysis. Other important texts
are Anderberg (1973); Sneath and Sokal (1973); Duran and Odell (1974); Hartigan (1975); Titterington,
Smith, and Makov (1985); McLachlan and Basford (1988); Kaufman and Rousseeuw (1990). Hartigan
(1975); Spath (1980) give numerous FORTRAN programs for clustering. Any prospective user of cluster
analysis should study the Monte Carlo results of Milligan (1980); Milligan and Cooper (1985); Cooper and
Milligan (1988). Important references on the statistical aspects of clustering include MacQueen (1967);
Wolfe (1970); Scott and Symons (1971); Hartigan (1977, 1978, 1981, 1985a); Symons (1981); Everitt (1981);
Sarle (1983); Bock (1985); Thode, Mendell, and Finch (1988). Bayesian methods have important advantages
over maximum likelihood; see Binder (1978, 1981); Banfield and Raftery (1993); Bensmail et al. (1997). For
fuzzy clustering, see Bezdek (1981); Bezdek and Pal (1992). The signal-processing perspective is provided
by Gersho and Gray (1992). For a discussion of the fragmented state of the literature on cluster analysis, see
Blashfield and Aldenderfer (1978).

Clustering Variables
Factor rotation is often used to cluster variables, but the resulting clusters are fuzzy. It is preferable to use
PROC VARCLUS if you want hard (nonfuzzy), disjoint clusters. Factor rotation is better if you want to be
able to find overlapping clusters. It is often a good idea to try both PROC VARCLUS and PROC FACTOR
with an oblique rotation, compare the amount of variance explained by each, and see how fuzzy the factor
loadings are and whether there seem to be overlapping clusters.

You can use PROC VARCLUS to harden a fuzzy factor rotation; use PROC FACTOR to create an output
data set containing scoring coefficients and initialize PROC VARCLUS with this data set as follows:

proc factor rotate=promax score outstat=fact;
run;

proc varclus initial=input proportion=0;
run;

You can use any rotation method instead of the PROMAX method. The SCORE and OUTSTAT= options are
necessary in the PROC FACTOR statement. PROC VARCLUS reads the correlation matrix from the data
set created by PROC FACTOR. The INITIAL=INPUT option tells PROC VARCLUS to read initial scoring
coefficients from the data set. The option PROPORTION=0 keeps PROC VARCLUS from splitting any of
the clusters.
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Clustering Observations
PROC CLUSTER is easier to use than PROC FASTCLUS because one run produces results from one cluster
up to as many as you like. You must run PROC FASTCLUS once for each number of clusters.

The time required by PROC FASTCLUS is roughly proportional to the number of observations, whereas
the time required by PROC CLUSTER with most methods varies with the square or cube of the number of
observations. Therefore, you can use PROC FASTCLUS with much larger data sets than PROC CLUSTER.

If you want to hierarchically cluster a data set that is too large to use with PROC CLUSTER directly, you
can have PROC FASTCLUS produce, for example, 50 clusters, and let PROC CLUSTER analyze these 50
clusters instead of the entire data set. The MEAN= data set produced by PROC FASTCLUS contains two
special variables:

• The variable _FREQ_ gives the number of observations in the cluster.

• The variable _RMSSTD_ gives the root mean square across variables of the cluster standard deviations.

These variables are automatically used by PROC CLUSTER to give the correct results when clustering
clusters. For example, you could specify Ward’s minimum variance method Ward (1963):

proc fastclus maxclusters=50 mean=temp;
var x y z;

run;

ods graphics on;
proc cluster method=ward outtree=tree;

var x y z;
run;

Or you could specify Wong’s hybrid method (Wong 1982):

proc fastclus maxclusters=50 mean=temp;
var x y z;

run;

ods graphics on;
proc cluster method=density hybrid outtree=tree;

var x y z;
run;

More detailed examples are given in Chapter 33, “The CLUSTER Procedure.”
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Characteristics of Methods for Clustering Observations
Many simulation studies comparing various methods of cluster analysis have been performed. In these studies,
artificial data sets containing known clusters are produced using pseudo-random-number generators. The data
sets are analyzed by a variety of clustering methods, and the degree to which each clustering method recovers
the known cluster structure is evaluated. See Milligan (1981) for a review of such studies. In most of these
studies, the clustering method with the best overall performance has been either average linkage or Ward’s
minimum variance method. The method with the poorest overall performance has almost invariably been
single linkage. However, in many respects, the results of simulation studies are inconsistent and confusing.

When you attempt to evaluate clustering methods, it is essential to realize that most methods are biased toward
finding clusters possessing certain characteristics related to size (number of members), shape, or dispersion.
Methods based on the least squares criterion (Sarle 1982), such as k-means and Ward’s minimum variance
method, tend to find clusters with roughly the same number of observations in each cluster. Average linkage
is somewhat biased toward finding clusters of equal variance. Many clustering methods tend to produce
compact, roughly hyperspherical clusters and are incapable of detecting clusters with highly elongated or
irregular shapes. The methods with the least bias are those based on nonparametric density estimation such
as single linkage and density linkage.

Most simulation studies have generated compact (often multivariate normal) clusters of roughly equal size or
dispersion. Such studies naturally favor average linkage and Ward’s method over most other hierarchical
methods, especially single linkage. It would be easy, however, to design a study that uses elongated or
irregular clusters in which single linkage would perform much better than average linkage or Ward’s method
(see some of the following examples). Even studies that compare clustering methods that use “realistic” data
might unfairly favor particular methods. For example, in all the data sets used by Mezzich and Solomon
(1980), the clusters established by field experts are of equal size. When interpreting simulation or other
comparative studies, you must, therefore, decide whether the artificially generated clusters in the study
resemble the clusters you suspect might exist in your data in terms of size, shape, and dispersion. If, like
many people doing exploratory cluster analysis, you have no idea what kinds of clusters to expect, you should
include at least one of the relatively unbiased methods, such as density linkage, in your analysis.

The rest of this section consists of a series of examples that illustrate the performance of various clustering
methods under various conditions. The first, and simplest, example shows a case of well-separated clusters.
The other examples show cases of poorly separated clusters, clusters of unequal size, parallel elongated
clusters, and nonconvex clusters.
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Well-Separated Clusters
If the population clusters are sufficiently well separated, almost any clustering method performs well, as
demonstrated in the following example, which uses single linkage. In this and subsequent examples, the
output from the clustering procedures is not shown, but cluster membership is displayed in scatter plots. The
SAS autocall macro MODSTYLE is specified to change the default marker symbols for the plot. For more
information about autocall libraries, see SAS Macro Language: Reference. The following SAS statements
produce Figure 11.1:

data compact;
keep x y;
n=50; scale=1;
mx=0; my=0; link generate;
mx=8; my=0; link generate;
mx=4; my=8; link generate;
stop;

generate:
do i=1 to n;

x=rannor(1)*scale+mx;
y=rannor(1)*scale+my;
output;

end;
return;

run;

proc cluster data=compact outtree=tree method=single noprint;
run;

proc tree noprint out=out n=3;
copy x y;

run;

%modstyle(name=ClusterStyle,parent=Statistical,type=CLM,
markers=Circle Triangle Square circlefilled);
ods listing style=ClusterStyle;

proc sgplot;
scatter y=y x=x / group=cluster;
title 'Single Linkage Cluster Analysis: '

'Well-Separated, Compact Clusters';
run;
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Figure 11.1 Well-Separated, Compact Clusters: PROC CLUSTER METHOD=SINGLE

Poorly Separated Clusters
To see how various clustering methods differ, you must examine a more difficult problem than that of the
previous example.

The following data set is similar to the first except that the three clusters are much closer together. This
example demonstrates the use of PROC FASTCLUS and five hierarchical methods available in PROC
CLUSTER. To help you compare methods, this example plots true, generated clusters. Also included is
a bubble plot of the density estimates obtained in conjunction with two-stage density linkage in PROC
CLUSTER.
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The following SAS statements produce Figure 11.2:

data closer;
keep x y c;
n=50; scale=1;
mx=0; my=0; c=3; link generate;
mx=3; my=0; c=1; link generate;
mx=1; my=2; c=2; link generate;
stop;

generate:
do i=1 to n;

x=rannor(9)*scale+mx;
y=rannor(9)*scale+my;
output;

end;
return;

run;

title 'True Clusters for Data Containing Poorly Separated, Compact Clusters';
proc sgplot;

scatter y=y x=x / group=c ;
run;

Figure 11.2 Poorly Separated, Compact Clusters: Plot of True Clusters
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The following statements use the FASTCLUS procedure to find three clusters and then use the SGPLOT
procedure to plot the clusters. The following statements produce Figure 11.3:

proc fastclus data=closer out=out maxc=3 noprint;
var x y;
title 'FASTCLUS Analysis: '

'Poorly Separated, Compact Clusters';
run;

proc sgplot;
scatter y=y x=x / group=cluster;

run;

Figure 11.3 Poorly Separated, Compact Clusters: PROC FASTCLUS
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The following SAS statements produce Figure 11.4:

proc cluster data=closer outtree=tree method=ward noprint;
var x y;

run;

proc tree noprint out=out n=3;
copy x y;
title 'Ward''s Minimum Variance Cluster Analysis: '

'Poorly Separated, Compact Clusters';
run;

proc sgplot;
scatter y=y x=x / group=cluster;

run;

Figure 11.4 Poorly Separated, Compact Clusters: PROC CLUSTER METHOD=WARD
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The following SAS statements produce Figure 11.5:

proc cluster data=closer outtree=tree method=average noprint;
var x y;

run;

proc tree noprint out=out n=3 dock=5;
copy x y;
title 'Average Linkage Cluster Analysis: '

'Poorly Separated, Compact Clusters';
run;

proc sgplot;
scatter y=y x=x / group=cluster;

run;

Figure 11.5 Poorly Separated, Compact Clusters: PROC CLUSTER METHOD=AVERAGE
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The following SAS statements produce Figure 11.6:

proc cluster data=closer outtree=tree method=centroid noprint;
var x y;

run;

proc tree noprint out=out n=3 dock=5;
copy x y;
title 'Centroid Cluster Analysis: '

'Poorly Separated, Compact Clusters';
run;

proc sgplot;
scatter y=y x=x / group=cluster;

run;

Figure 11.6 Poorly Separated, Compact Clusters: PROC CLUSTER METHOD=CENTROID



Poorly Separated Clusters F 199

The following SAS statements produce Figure 11.7 and Figure 11.8:

proc cluster data=closer outtree=tree method=twostage k=10 noprint;
var x y;

run;

proc tree noprint out=out n=3;
copy x y _dens_;
title 'Two-Stage Density Linkage Cluster Analysis: '

'Poorly Separated, Compact Clusters';
run;

proc sgplot;
scatter y=y x=x / group=cluster;

run;

proc sgplot;
bubble y=y x=x size=_dens_ / nofill lineattrs=graphdatadefault;
title 'Estimated Densities for Data Containing Poorly Separated, '

'Compact Clusters';
run;

Figure 11.7 Poorly Separated, Compact Clusters: PROC CLUSTER METHOD=TWOSTAGE
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Figure 11.8 Poorly Separated, Compact Clusters: PROC CLUSTER METHOD=TWOSTAGE

In two-stage density linkage, each cluster is a region surrounding a local maximum of the estimated probability
density function. If you think of the estimated density function as a landscape with mountains and valleys,
each mountain is a cluster, and the boundaries between clusters are placed near the bottoms of the valleys.

The following SAS statements produce Figure 11.9:

proc cluster data=closer outtree=tree method=single noprint;
var x y;

run;

proc tree data=tree noprint out=out n=3 dock=5;
copy x y;
title 'Single Linkage Cluster Analysis: '

'Poorly Separated, Compact Clusters';
run;

proc sgplot;
scatter y=y x=x / group=cluster;

run;
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Figure 11.9 Poorly Separated, Compact Clusters: PROC CLUSTER METHOD=SINGLE

The two least squares methods, PROC FASTCLUS and Ward’s, yield the most uniform cluster sizes and
the best recovery of the true clusters. This result is expected since these two methods are biased toward
recovering compact clusters of equal size. With average linkage, the lower-left cluster is too large; with the
centroid method, the lower-right cluster is too large; and with two-stage density linkage, the top cluster is too
large. The single linkage analysis resembles average linkage except for the large number of outliers resulting
from the DOCK= option in the PROC TREE statement; the outliers are plotted as filled circles (missing
values).

Multinormal Clusters of Unequal Size and Dispersion
In this example, there are three multinormal clusters that differ in size and dispersion. PROC FASTCLUS
and five of the hierarchical methods available in PROC CLUSTER are used. To help you compare methods,
the true, generated clusters are plotted.
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The following SAS statements produce Figure 11.10:

data unequal;
keep x y c;
mx=1; my=0; n=20; scale=.5; c=1; link generate;
mx=6; my=0; n=80; scale=2.; c=3; link generate;
mx=3; my=4; n=40; scale=1.; c=2; link generate;
stop;

generate:
do i=1 to n;

x=rannor(1)*scale+mx;
y=rannor(1)*scale+my;
output;

end;
return;

run;

title 'True Clusters for Data Containing Multinormal Clusters of Unequal Size';
proc sgplot;

scatter y=y x=x / group=c;
run;

Figure 11.10 Generated Clusters of Unequal Size
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The following statements use the FASTCLUS procedure to find three clusters and then use the SGPLOT
procedure to plot the clusters. The following statements produce Figure 11.11:

proc fastclus data=unequal out=out maxc=3 noprint;
var x y;
title 'FASTCLUS Analysis: Compact Clusters of Unequal Size';

run;

proc sgplot;
scatter y=y x=x / group=cluster;

run;

Figure 11.11 Compact Clusters of Unequal Size: PROC FASTCLUS
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The following SAS statements produce Figure 11.12:

proc cluster data=unequal outtree=tree method=ward noprint;
var x y;

run;

proc tree noprint out=out n=3;
copy x y;
title 'Ward''s Minimum Variance Cluster Analysis: '

'Compact Clusters of Unequal Size';
run;

proc sgplot;
scatter y=y x=x / group=cluster;

run;

Figure 11.12 Compact Clusters of Unequal Size: PROC CLUSTER METHOD=WARD
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The following SAS statements produce Figure 11.13:

proc cluster data=unequal outtree=tree method=average noprint;
var x y;

run;

proc tree noprint out=out n=3 dock=5;
copy x y;
title 'Average Linkage Cluster Analysis: '

'Compact Clusters of Unequal Size';
run;

proc sgplot;
scatter y=y x=x / group=cluster;

run;

Figure 11.13 Compact Clusters of Unequal Size: PROC CLUSTER METHOD=AVERAGE
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The following SAS statements produce Figure 11.14:

proc cluster data=unequal outtree=tree method=centroid noprint;
var x y;

run;

proc tree noprint out=out n=3 dock=5;
copy x y;
title 'Centroid Cluster Analysis: '

'Compact Clusters of Unequal Size';
run;

proc sgplot;
scatter y=y x=x / group=cluster;

run;

Figure 11.14 Compact Clusters of Unequal Size: PROC CLUSTER METHOD=CENTROID
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The following SAS statements produce Figure 11.15 and Figure 11.16:

proc cluster data=unequal outtree=tree method=twostage k=10 noprint;
var x y;

run;

proc tree noprint out=out n=3;
copy x y _dens_;
title 'Two-Stage Density Linkage Cluster Analysis: '

'Compact Clusters of Unequal Size';
run;

proc sgplot;
scatter y=y x=x / group=cluster;

run;

proc sgplot;
bubble y=y x=x size=_dens_ / nofill lineattrs=graphdatadefault;
title 'Estimated Densities for Data Containing '

'Compact Clusters of Unequal Size';
run;

Figure 11.15 Compact Clusters of Unequal Size: PROC CLUSTER METHOD=TWOSTAGE
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Figure 11.16 Compact Clusters of Unequal Size: PROC CLUSTER METHOD=TWOSTAGE
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The following SAS statements produce Figure 11.17:

proc cluster data=unequal outtree=tree method=single noprint;
var x y;

run;

proc tree data=tree noprint out=out n=3 dock=5;
copy x y;
title 'Single Linkage Cluster Analysis: '

'Compact Clusters of Unequal Size';
run;

proc sgplot;
scatter y=y x=x / group=cluster;

run;

Figure 11.17 Compact Clusters of Unequal Size: PROC CLUSTER METHOD=SINGLE
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In the PROC FASTCLUS analysis, the smallest cluster, in the bottom-left portion of the plot, has stolen
members from the other two clusters, and the upper-left cluster has also acquired some observations that
rightfully belong to the larger, lower-right cluster. With Ward’s method, the upper-left cluster is separated
correctly, but the lower-left cluster has taken a large bite out of the lower-right cluster. For both of these
methods, the clustering errors are in accord with the biases of the methods to produce clusters of equal size.
In the average linkage analysis, both the upper-left and lower-left clusters have encroached on the lower-right
cluster, thereby making the variances more nearly equal than in the true clusters. The centroid method, which
lacks the size and dispersion biases of the previous methods, obtains an essentially correct partition.

Two-stage density linkage does almost as well, even though the compact shapes of these clusters favor the
traditional methods. Single linkage also produces excellent results.

Elongated Multinormal Clusters
In this example, the data are sampled from two highly elongated multinormal distributions with equal
covariance matrices. The following SAS statements produce Figure 11.18:

data elongate;
keep x y;
ma=8; mb=0; link generate;
ma=6; mb=8; link generate;
stop;

generate:
do i=1 to 50;

a=rannor(7)*6+ma;
b=rannor(7)+mb;
x=a-b;
y=a+b;
output;

end;
return;

run;

proc fastclus data=elongate out=out maxc=2 noprint;
run;

%modstyle(name=ClusterStyle2,parent=Statistical,type=CLM,
markers=Circle Triangle circlefilled);
ods listing style=ClusterStyle2;

proc sgplot;
scatter y=y x=x / group=cluster;
title 'FASTCLUS Analysis: Parallel Elongated Clusters';

run;

Notice that PROC FASTCLUS found two clusters, as requested by the MAXC= option. However, it attempted
to form spherical clusters, which are obviously inappropriate for these data.
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Figure 11.18 Parallel Elongated Clusters: PROC FASTCLUS
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The following SAS statements produce Figure 11.19:

proc cluster data=elongate outtree=tree method=average noprint;
run;

proc tree noprint out=out n=2 dock=5;
copy x y;

run;

proc sgplot;
scatter y=y x=x / group=cluster;
title 'Average Linkage Cluster Analysis: '

'Parallel Elongated Clusters';
run;

Figure 11.19 Parallel Elongated Clusters: PROC CLUSTER METHOD=AVERAGE
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The following SAS statements produce Figure 11.20:

proc cluster data=elongate outtree=tree method=twostage k=10 noprint;
run;

proc tree noprint out=out n=2;
copy x y;

run;

proc sgplot;
scatter y=y x=x / group=cluster;
title 'Two-Stage Density Linkage Cluster Analysis: '

'Parallel Elongated Clusters';
run;

Figure 11.20 Parallel Elongated Clusters: PROC CLUSTER METHOD=TWOSTAGE

PROC FASTCLUS and average linkage fail miserably. Ward’s method and the centroid method (not shown)
produce almost the same results. Two-stage density linkage, however, recovers the correct clusters. Single
linkage (not shown) finds the same clusters as two-stage density linkage except for some outliers.
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In this example, the population clusters have equal covariance matrices. If the within-cluster covariances are
known, the data can be transformed to make the clusters spherical so that any of the clustering methods can
find the correct clusters. But when you are doing a cluster analysis, you do not know what the true clusters
are, so you cannot calculate the within-cluster covariance matrix. Nevertheless, it is sometimes possible to
estimate the within-cluster covariance matrix without knowing the cluster membership or even the number of
clusters, using an approach invented by Art, Gnanadesikan, and Kettenring (1982). A method for obtaining
such an estimate is available in the ACECLUS procedure.

In the following analysis, PROC ACECLUS transforms the variables X and Y into the canonical variables
Can1 and Can2. The latter are plotted and then used in a cluster analysis by Ward’s method. The clusters are
then plotted with the original variables X and Y.

The following SAS statements produce Figure 11.21 and Figure 11.22:

proc aceclus data=elongate out=ace p=.1;
var x y;
title 'ACECLUS Analysis: Parallel Elongated Clusters';

run;

proc sgplot;
scatter y=can2 x=can1;
title 'Data Containing Parallel Elongated Clusters';
title2 'After Transformation by PROC ACECLUS';

run;

Figure 11.21 Parallel Elongated Clusters: PROC ACECLUS

ACECLUS Analysis: Parallel Elongated Clusters

The ACECLUS Procedure

Approximate Covariance Estimation for Cluster Analysis

ACECLUS Analysis: Parallel Elongated Clusters

The ACECLUS Procedure

Approximate Covariance Estimation for Cluster Analysis

Observations 100 Proportion 0.1000

Variables 2 Converge 0.00100

Means and Standard
Deviations

Variable Mean
Standard
Deviation

x 2.6406 8.3494

y 10.6488 6.8420

COV:
Total Sample Covariances

x y

x 69.71314819 24.24268934

y 24.24268934 46.81324861

Initial Within-Cluster Covariance Estimate = Full Covariance Matrix

Threshold = 0.328478
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Figure 11.21 continued

Iteration History

Iteration
RMS

Distance
Distance

Cutoff

Pairs
Within
Cutoff

Convergence
Measure

1 2.000 0.657 672.0 0.673685

2 9.382 3.082 716.0 0.006963

3 9.339 3.068 760.0 0.008362

4 9.437 3.100 824.0 0.009656

5 9.359 3.074 889.0 0.010269

6 9.267 3.044 955.0 0.011276

7 9.208 3.025 999.0 0.009230

8 9.230 3.032 1052.0 0.011394

9 9.226 3.030 1091.0 0.007924

10 9.173 3.013 1121.0 0.007993

WARNING: Iteration limit exceeded.

ACE:
Approximate Covariance
Estimate Within Clusters

x y

x 9.299329632 8.215362614

y 8.215362614 8.937753936

Eigenvalues of Inv(ACE)*(COV-ACE)

Eigenvalue Difference Proportion Cumulative

1 36.7091 33.1672 0.9120 0.9120

2 3.5420 0.0880 1.0000

Eigenvectors
(Raw Canonical

Coefficients)

Can1 Can2

x -.748392 0.109547

y 0.736349 0.230272

Standardized
Canonical Coefficients

Can1 Can2

x -6.24866 0.91466

y 5.03812 1.57553
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Figure 11.22 Parallel Elongated Clusters after Transformation by PROC ACECLUS
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The following SAS statements produce Figure 11.23:

proc cluster data=ace outtree=tree method=ward noprint;
var can1 can2;
copy x y;

run;

proc tree noprint out=out n=2;
copy x y;

run;

proc sgplot;
scatter y=y x=x / group=cluster;
title 'Ward''s Minimum Variance Cluster Analysis: '

'Parallel Elongated Clusters';
title2 'After Transformation by PROC ACECLUS';

run;

Figure 11.23 Transformed Data Containing Parallel Elongated Clusters: PROC CLUSTER
METHOD=WARD



218 F Chapter 11: Introduction to Clustering Procedures

Nonconvex Clusters
If the population clusters have very different covariance matrices, using PROC ACECLUS is of no avail.
Although methods exist for estimating multinormal clusters with unequal covariance matrices (Wolfe 1970;
Symons 1981; Everitt and Hand 1981; Titterington, Smith, and Makov 1985; McLachlan and Basford 1988),
these methods tend to have serious problems with initialization and might converge to degenerate solutions.
For unequal covariance matrices or radically nonnormal distributions, the best approach to cluster analysis is
through nonparametric density estimation, as in density linkage. The next example illustrates population
clusters with nonconvex density contours. The following SAS statements produce Figure 11.24:

data noncon;
keep x y;
do i=1 to 100;

a=i*.0628319;
x=cos(a)+(i>50)+rannor(7)*.1;
y=sin(a)+(i>50)*.3+rannor(7)*.1;
output;

end;
run;

proc fastclus data=noncon out=out maxc=2 noprint;
run;

proc sgplot;
scatter y=y x=x / group=cluster;
title 'FASTCLUS Analysis: Nonconvex Clusters';

run;
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Figure 11.24 Nonconvex Clusters: PROC FASTCLUS
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The following SAS statements produce Figure 11.25:

proc cluster data=noncon outtree=tree method=centroid noprint;
run;

proc tree noprint out=out n=2 dock=5;
copy x y;

run;

proc sgplot;
scatter y=y x=x / group=cluster;
title 'Centroid Cluster Analysis: Nonconvex Clusters';

run;

Figure 11.25 Nonconvex Clusters: PROC CLUSTER METHOD=CENTROID
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The following SAS statements produce Figure 11.26:

proc cluster data=noncon outtree=tree method=twostage k=10 noprint;
run;

proc tree noprint out=out n=2;
copy x y;

run;

proc sgplot;
scatter y=y x=x / group=cluster;
title 'Two-Stage Density Linkage Cluster Analysis: Nonconvex Clusters';

run;

Figure 11.26 Nonconvex Clusters: PROC CLUSTER METHOD=TWOSTAGE
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Ward’s method and average linkage (not shown) do better than PROC FASTCLUS but not as well as the
centroid method. Two-stage density linkage recovers the correct clusters, as does single linkage (not shown).

The preceding examples are intended merely to illustrate some of the properties of clustering methods in
common use. If you intend to perform a cluster analysis, you should consult more systematic and rigorous
studies of the properties of clustering methods, such as Milligan (1980).

The Number of Clusters
There are no completely satisfactory methods that can be used for determining the number of population
clusters for any type of cluster analysis (Everitt 1979; Hartigan 1985a; Bock 1985).

If your purpose in clustering is dissection—that is, to summarize the data without trying to uncover real
clusters—it might suffice to look at R square for each variable and pooled over all variables. Plots of R
square against the number of clusters are useful.

It is always a good idea to look at your data graphically. If you have only two or three variables, use PROC
SGPLOT to make scatter plots identifying the clusters. With more variables, use PROC CANDISC to
compute canonical variables for plotting.

Ordinary significance tests, such as analysis of variance F tests, are not valid for testing differences between
clusters. Since clustering methods attempt to maximize the separation between clusters, the assumptions of
the usual significance tests, parametric or nonparametric, are drastically violated. For example, if you take a
sample of 100 observations from a single univariate normal distribution, have PROC FASTCLUS divide it
into two clusters, and run a t test between the clusters, you usually obtain a p-value of less than 0.0001. For
the same reason, methods that purport to test for clusters against the null hypothesis that objects are assigned
randomly to clusters (such as McClain and Rao 1975 and Klastorin 1983) are useless.

Most valid tests for clusters either have intractable sampling distributions or involve null hypotheses for which
rejection is uninformative. For clustering methods based on distance matrices, a popular null hypothesis is
that all permutations of the values in the distance matrix are equally likely (Ling 1973; Hubert 1974). Using
this null hypothesis, you can do a permutation test or a rank test. The trouble with the permutation hypothesis
is that, with any real data, the null hypothesis is implausible even if the data do not contain clusters. Rejecting
the null hypothesis does not provide any useful information (Hubert and Baker 1977).

Another common null hypothesis is that the data are a random sample from a multivariate normal distribution
(Wolfe 1970, 1978; Duda and Hart 1973; Lee 1979). The multivariate normal null hypothesis arises
naturally in normal mixture models (Titterington, Smith, and Makov 1985; McLachlan and Basford 1988).
Unfortunately, the likelihood ratio test statistic does not have the usual asymptotic �2 distribution because the
regularity conditions do not hold. Approximations to the asymptotic distribution of the likelihood ratio have
been suggested Wolfe (1978), but the adequacy of these approximations is debatable (Everitt 1981; Thode,
Mendell, and Finch 1988). For small samples, bootstrapping seems preferable (McLachlan and Basford
1988). Bayesian inference provides a promising alternative to likelihood ratio tests for the number of mixture
components for both normal mixtures and other types of distributions (Binder 1978, 1981; Banfield and
Raftery 1993; Bensmail et al. 1997).
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The multivariate normal null hypothesis is better than the permutation null hypothesis, but it is not satisfactory
because there is typically a high probability of rejection if the data are sampled from a distribution with lower
kurtosis than a normal distribution, such as a uniform distribution. The tables in Englemann and Hartigan
(1969), for example, generally lead to rejection of the null hypothesis when the data are sampled from a
uniform distribution. Hawkins, Muller, and ten Krooden (1982, pp. 337–340) discuss a highly conservative
Bonferroni method for the use of hypothesis testing. The conservativeness of this approach might compensate
to some extent for the liberalness exhibited by tests based on normal distributions when the population is
uniform.

Perhaps a better null hypothesis is that the data are sampled from a uniform distribution (Hartigan 1978;
Arnold 1979; Sarle 1983) The uniform null hypothesis leads to conservative error rates when the data are
sampled from a strongly unimodal distribution such as the normal. However, in two or more dimensions and
depending on the test statistic, the results can be very sensitive to the shape of the region of support of the
uniform distribution. Sarle (1983) suggests using a hyperbox with sides proportional in length to the singular
values of the centered coordinate matrix.

Given that the uniform distribution provides an appropriate null hypothesis, there are still serious difficulties
in obtaining sampling distributions. Some asymptotic results are available (Hartigan 1978, 1985a; Pollard
1981; Bock 1985) for the within-cluster sum of squares, the criterion that PROC FASTCLUS and Ward’s
minimum variance method attempt to optimize. No distributional theory for finite sample sizes has yet
appeared. Currently, the only practical way to obtain sampling distributions for realistic sample sizes is by
computer simulation.

Arnold (1979) used simulation to derive tables of the distribution of a criterion based on the determinant
of the within-cluster sum of squares matrix jWj. Both normal and uniform null distributions were used.
Having obtained clusters with either PROC FASTCLUS or PROC CLUSTER, you can compute Arnold’s
criterion with the ANOVA or CANDISC procedure. Arnold’s tables provide a conservative test because
PROC FASTCLUS and PROC CLUSTER attempt to minimize the trace of W rather than the determinant.
Marriott (1971, 1975) also provides useful information about jWj as a criterion for the number of clusters.

Sarle (1983) used extensive simulations to develop the cubic clustering criterion (CCC), which can be used
for crude hypothesis testing and estimating the number of population clusters. The CCC is based on the
assumption that a uniform distribution on a hyperrectangle will be divided into clusters shaped roughly like
hypercubes. In large samples that can be divided into the appropriate number of hypercubes, this assumption
gives very accurate results. In other cases the approximation is generally conservative. For details about the
interpretation of the CCC, consult Sarle (1983).

Milligan and Cooper (1985) and Cooper and Milligan (1988) compared 30 methods of estimating the number
of population clusters by using four hierarchical clustering methods. The three criteria that performed best
in these simulation studies with a high degree of error in the data were a pseudo F statistic developed by
Caliński and Harabasz (1974), a statistic referred to as Je.2/=Je.1/ by Duda and Hart (1973) that can be
transformed into a pseudo t2 statistic, and the cubic clustering criterion. The pseudo F statistic and the CCC
are displayed by PROC FASTCLUS; these two statistics and the pseudo t2 statistic, which can be applied
only to hierarchical methods, are displayed by PROC CLUSTER. It might be advisable to look for consensus
among the three statistics—that is, local peaks of the CCC and pseudo F statistic combined with a small
value of the pseudo t2 statistic and a larger pseudo t2 for the next cluster fusion. It must be emphasized
that these criteria are appropriate only for compact or slightly elongated clusters, preferably clusters that are
roughly multivariate normal.
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Recent research has tended to deemphasize mixture models in favor of nonparametric models in which
clusters correspond to modes in the probability density function. Hartigan and Hartigan (1985) and Hartigan
(1985b) developed a test of unimodality versus bimodality in the univariate case.

Nonparametric tests for the number of clusters can also be based on nonparametric density estimates. This
approach requires much weaker assumptions than mixture models, namely, that the observations are sampled
independently and that the distribution can be estimated nonparametrically. Silverman (1986) describes a
bootstrap test for the number of modes using a Gaussian kernel density estimate, but problems have been
reported with this method under the uniform null distribution. Further developments in nonparametric
methods are given by Müller and Sawitzki (1991); Minnotte (1992); Polonik (1993). All of these methods
suffer from heavy computational requirements.

One useful descriptive approach to the number-of-clusters problem is provided by Wong and Schaack (1982)
based on a kth-nearest-neighbor density estimate. The kth-nearest-neighbor clustering method developed by
Wong and Lane (1983) is applied with varying values of k. Each value of k yields an estimate of the number
of modal clusters. If the estimated number of modal clusters is constant for a wide range of k values, there
is strong evidence of at least that many modes in the population. A plot of the estimated number of modes
against k can be highly informative. Attempts to derive a formal hypothesis test from this diagnostic plot
have met with difficulties, but a simulation approach similar to Silverman (1986) does seem to work Girman
(1994). The simulation, of course, requires considerable computer time.

PROC MODECLUS uses a less expensive approximate nonparametric test for the number of clusters. This
test sacrifices statistical efficiency for computational efficiency. The method for conducting significance tests
is described in the chapter on the MODECLUS procedure. This method has the following useful features:

• No distributional assumptions are required.

• The choice of smoothing parameter is not critical since you can try any number of different values.

• The data can be coordinates or distances.

• Time and space requirements for the significance tests are no worse than those for obtaining the
clusters.

• The power is high enough to be useful for practical purposes.

The method for computing the p-values is based on a series of plausible approximations. There are as yet no
rigorous proofs that the method is infallible. Neither are there any asymptotic results. However, simulations
for sample sizes ranging from 20 to 2000 indicate that the p-values are almost always conservative. The only
case discovered so far in which the p-values are liberal is a uniform distribution in one dimension for which
the simulated error rates exceed the nominal significance level only slightly for a limited range of sample
sizes.
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Overview: Scoring, Standardization, and Ranking Procedures
Several SAS/STAT procedures are utilities that produce an output data set with new variables that are
transformations of data in the input data set. SAS/STAT software includes four of these procedures. The
RANK procedure produces rank scores across observations, the SCORE procedure constructs functions
across the variables, and the STANDARD and STDIZE procedures transform each variable individually.

RANK ranks the observations of each numeric variable and outputs ranks or rank scores. For
a complete discussion of the RANK procedure, see the Base SAS Procedures Guide:
Statistical Procedures.

SCORE constructs new variables that are linear combinations of old variables according to a
scoring data set. This procedure is used with the FACTOR procedure and other procedures
that output scoring coefficients.

STANDARD standardizes variables to a given mean and standard deviation. For a complete discussion
of PROC STANDARD, see the Base SAS Procedures Guide: Statistical Procedures.

STDIZE standardizes variables by subtracting a location measure and dividing by a scale measure.
A variety of location and scale measures are provided. Such measures include the mean,
median, Huber’s estimate, Tukey’s biweight estimate, and Andrew’s wave estimate.
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Overview
Data that measure lifetime, or the length of time until the occurrence of an event, are called lifetime, failure
time, or survival data. For example, a variable of interest might be the lifetime of diesel engines, the length
of time a person stays at a job, or the survival time for heart transplant patients. Such data have special
considerations that must be incorporated into any analysis.

Survival data consist of a response (event time, failure time, or survival time) variable that measures the
duration of time until a specified event occurs and possibly a set of independent variables that are thought to
be associated with the failure time variable. These independent variables (concomitant variables, covariates,
or prognostic factors) can be either discrete, such as sex or race, or continuous, such as age or temperature.
The system that gives rise to the event of interest can be biological (as with most medical data) or physical
(as with engineering data). The purpose of survival analysis is to model the underlying distribution of the
failure time variable and to assess the dependence of the failure time variable on the independent variables.

An intrinsic characteristic of survival data is the possibility of censoring of observations (that is, the actual
time until the event is not observed). Such censoring can arise from withdrawal by a subject from the
experiment or termination of the experiment. Because the response is usually a duration, some of the possible
events might not yet have occurred when the period of data collection ends. For example, clinical trials are
conducted over a finite period of time, with staggered entry of patients. That is, patients enter a clinical
trial over time, and thus the length of follow-up varies by patient; consequently, the time to the event for all
patients in the study might not be ascertained. In addition, some of the responses might be lost to follow-up
(for example, a participant might move or refuse to continue to participate) before data collection ends. In
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either case, only a lower bound on the failure time of the censored observations is known. Such observations
are said to be right-censored. Thus, an additional variable is incorporated into the analysis to indicate
which failure times are observed event times and which are censored times. More generally, the failure time
might be known only to be smaller than a given value (left-censored) or known only to be within a given
interval (interval-censored). Many possible censoring schemes arise in survival analysis. Maddala (1983)
discusses several related types of censoring situations, and Kalbfleisch and Prentice (1980) also discuss
several censoring schemes. Data that contains censored observations cannot be analyzed by ignoring the
censored observations because, among other considerations, the longer-lived individuals are usually more
likely to be right-censored. The method of analysis must take the censoring into account and correctly use
both the censored observations and the uncensored observations.

Another characteristic of survival data is that the response cannot be negative. This suggests that a transfor-
mation of the survival time, such as a log transformation, might be necessary or that specialized methods
might be more appropriate than those that assume a normal distribution of the error term. It is especially
important to check any underlying assumptions as part of the analysis, because some of the models that are
used are very sensitive to these assumptions.

Survival Analysis Procedures
The following SAS/STAT procedures are specifically designed for analyzing survival data:

ICLIFETEST computes nonparametric estimates of survivor functions for interval-censored data.
You can use this procedure to compare the underlying survival distributions of two
or more samples of interval-censored data.

ICPHREG fits proportional hazards regression models to interval-censored data. You can select
a piecewise constant function as the baseline hazard function, or you can model the
cumulative baseline hazard function by cubic splines.

LIFEREG fits parametric models to failure time data that can be left-censored, right-censored,
or interval-censored. The log of the survival time is modeled as a linear effect of
covariates and a random disturbance term, the distribution of which includes the
Weibull, log-normal, and log-logistic distributions.

LIFETEST computes the Kaplan-Meier estimate of a survivor function and provides the log-rank
test to compare the underlying hazards of two or more samples of right-censored
data. You can also use this procedure to study the association between the failure
time and a number of concomitant variables.

PHREG fits the Cox proportional hazards model and its extensions, which include the mul-
tiplicative intensity model, the shared frailty model, and the Fine-Gray model for
competing-risks data.

QUANTLIFE performs quantile regression for survival data by modeling the quantiles of the
lifetime variable as a function of the covariates. Because lifetime distributions are
usually more skewed, the quantiles of the lifetime are more informative than the
mean for summarizing the lifetime distribution.

SURVEYPHREG is a Cox modeling procedure similar to PROC PHREG, appropriate for analyzing
data that are collected from a survey sample.
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The SEVERITY procedure in SAS/ETS software is also a survival analysis procedure.

Parametric Accelerated Failure Time Models: The LIFEREG Procedure
The LIFEREG procedure fits parametric accelerated failure time models to survival data that can be left-,
right-, or interval-censored. The parametric model is of the form

y D x0ˇ C ��

where y is usually the log of the failure time variable, x is a vector of covariate values, ˇ is a vector of
unknown regression parameters, � is an unknown scale parameter, and � is an error term. The baseline
distribution of the error term can be specified as one of several possible distributions, including (but not
limited to) the log-normal, log-logistic, and Weibull distributions. Texts that discuss these parametric models
include Kalbfleisch and Prentice (1980); Lawless (1982); Nelson (1990); Meeker and Escobar (1998). For
more information about PROC LIFEREG, see Chapter 57, “The LIFEREG Procedure.”

Nonparametric Methods for Right-Censored Data: The LIFETEST
Procedure
The LIFETEST procedure computes nonparametric estimates of the survival distribution function. You
can request either the product-limit (Kaplan and Meier 1958) or the life-table (actuarial) estimate of the
distribution. Cox and Oakes (1984) and Kalbfleisch and Prentice (1980) provide good discussions of the
product-limit estimator, and Lee (1992) and Elandt-Johnson and Johnson (1980) include detailed discussions
of the life-table estimator. PROC LIFETEST computes nonparametric tests to compare the survival curves
of two or more groups. The procedure also computes rank tests of association between the survival time
variable and other concomitant variables, as given in Kalbfleisch and Prentice (1980, Chapter 6). For more
information about PROC LIFETEST, see Chapter 58, “The LIFETEST Procedure.”

Nonparametric Methods for Interval-Censored Data: The ICLIFETEST
Procedure
The ICLIFETEST procedure computes nonparametric estimates of the survival functions and examines the
equality of the survival functions via statistical tests. PROC ICLIFETEST is intended primarily for handling
interval-censored data, whereas the LIFETEST procedure deals exclusively with right-censored data. You
can use PROC ICLIFETEST to analyze data that are left-censored, interval-censored, or right-censored.
However, if the data to be analyzed contain only exact or right-censored observations, it is recommended that
PROC LIFETEST be used because it provides specialized methods for dealing with right-censored data. For
more information about PROC ICLIFETEST, see Chapter 50, “The ICLIFETEST Procedure.”
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Proportional Hazards Regression for Interval-Censored Data: The
ICPHREG Procedure
The ICPHREG procedure fits proportional hazards regression model to interval-censored data, including
left-censored data and right-censored data as special cases. You can select a piecewise constant function as
the baseline hazard, or you can model the cumulative baseline hazard function by cubic splines (Royston
and Parmar 2002). PROC ICPHREG estimates the regression coefficients and the hazard parameters by
maximizing the full likelihood function. For more information about PROC ICPHREG, see Chapter 51, “The
ICPHREG Procedure.”

Quantile Regression: The QUANTLIFE Procedure
The QUANTLIFE procedure explores how the conditional quantile of the failure time variable depends on
covariates. Quantile regression provides a flexible way to capture heterogeneous effects, in the sense that the
tails and the central location of the conditional distributions can vary differently with the covariates. Thus,
quantile regression offers a powerful tool in survival analysis, where the lifetimes are skewed and extreme
survival times can be of special interest (Koenker and Geling 2001; Huang 2010). For more information
about PROC QUANTLIFE, see Chapter 82, “The QUANTLIFE Procedure.”

Cox Regression and Extensions: The PHREG Procedure
The PHREG procedure fits the proportional hazards model of Cox (1972, 1975) to survival data that might
be right-censored. The Cox model is a semiparametric model in which the hazard function of the survival
time is given by

�.t I x/ D �0.t/eˇ
0x.t/

where �0.t/ is an unspecified baseline hazard function, x.t/ is a vector of covariate values (possibly time-
dependent), and ˇ is a vector of unknown regression parameters. The model is referred to as a semiparametric
model, because part of the model involves the unspecified baseline function over time (which has an infinite
dimension) and the other part involves a finite number of regression parameters. Texts that discuss the Cox
regression models include Collett (1994); Cox and Oakes (1984); Kalbfleisch and Prentice (1980); Lawless
(1982). Extensions of the Cox model are discussed in Therneau and Grambsch (2000); Andersen et al. (1992);
Fleming and Harrington (1991); Fine and Gray (1999). For more information about PROC PHREG, see
Chapter 73, “The PHREG Procedure.”

Cox Regression for Survey Data: The SURVEYPHREG Procedure
The SURVEYPHREG procedure fits the Cox proportional hazards model to sample survey data. The
procedure is similar to the PHREG procedure, except that it incorporates complex sample design information
in the analysis. The proportional hazards regression coefficients are estimated by maximizing a partial
pseudo-log-likelihood function that incorporates the sampling weights. PROC SURVEYPHREG provides
design-based variance estimates, confidence intervals, and tests for the estimated regression coefficients. For
more information about PROC SURVEYPHREG, see Chapter 100, “The SURVEYPHREG Procedure.”
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Survival Analysis with SAS/STAT Procedures
The typical goal in survival analysis is to characterize the distribution of the survival time for a given
population, to compare the survival distributions among different groups, or to study the relationship between
the survival time and some concomitant variables.

A first step in analyzing of a set of survival data is to use the LIFETEST or ICLIFETEST procedure to
compute and plot the estimate of the distribution of the survival time. In many applications, you often have
several survival curves to compare. For example, you might want to compare the survival experiences of
patients who receive different treatments for their disease. You can investigate the relationship between
covariates and the survival time by computing estimates of the survival distribution function within strata that
are defined by the covariates. In particular, if the proportional hazards model is appropriate, the estimates
of the log(-log(SURVIVAL)) plotted against the log(TIME) should give approximately parallel lines, where
SURVIVAL is the survival distribution estimate and TIME is the failure time variable. In addition, these lines
should be approximately straight if the Weibull model is appropriate.

You can use knowledge of the association between failure time and the concomitant variables to select
covariates for further investigation. The LIFETEST procedure computes linear rank statistics by using
Wilcoxon or log-rank scores. These statistics and their estimated covariance matrix can be used with the
REG procedure and the METHOD=RSQUARE option to find the subset of variables that produce the largest
joint test statistic for association. An illustration of this methodology is given in Example 58.1 of Chapter 58,
“The LIFETEST Procedure.”

Another approach to examining the relationship between survival time and the concomitant variables is
through a regression model in which the survival time has a distribution that depends on the concomitant
variables. The regression coefficients can be interpreted as describing the direction and strength of the effect
of each explanatory variable on the survival time.

In many biological systems, the Cox model might be a reasonable description of the relationship between the
distribution of the survival time and the prognostic factors. You use PROC PHREG to fit the Cox regression
model. The regression coefficient is interpreted as the increase of the log-hazard ratio that results in the
increase of one unit in the covariate. However, the underlying hazard function is left unspecified, and, as in
any other model, the results can be misleading if the proportional hazards assumptions do not hold.

When you have interval-censored data, it is difficult to fit the semiparametric Cox regression models. But you
can use the ICPHREG procedure to fit a different proportional hazards model, and the regression coefficients
of such a model can still be interpreted as log-hazard ratios.

Accelerated failure time models are popular for fitting survival data from physical systems. In many cases,
the underlying survival distribution is known empirically. You use PROC LIFEREG to fit these parametric
models. Also, PROC LIFEREG can accommodate data that contain left-censored or interval-censored
observations, which PROC PHREG does not allow.

A common technique for checking the validity of a regression model is to embed it in a larger model and use
the likelihood ratio test to check whether the reduction to the actual model is valid. Other techniques include
examining the residuals. Both PROC LIFEREG and PROC PHREG produce predicted values, residuals, and
other computed values that can be used to assess the model’s adequacy.
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Bayesian Survival Analysis with SAS/STAT Procedures
You can request Bayesian analysis of survival models in the LIFEREG and PHREG procedures. In addition
to enabling you to fit the Cox model, PROC PHREG also enables you to fit a piecewise exponential model.
In Bayesian analysis, the model parameters are treated as random variables, and inference about parameters
is based on the posterior distribution of the parameters. A posterior distribution is a weighted likelihood
function of the data with a prior distribution of the parameters by using the Bayes theorem. The prior
distribution enables you to incorporate into your analysis knowledge or experience of the likely range of
values of the parameters of interest. You can specify normal or uniform prior distributions for the model
regression coefficients in both the LIFEREG and PHREG procedures. In addition, you can specify a gamma
or improper prior distribution for the scale or variance parameter in PROC LIFEREG. For the piecewise
exponential model in PROC PHREG, you can specify normal or uniform prior distributions for the log-hazard
parameters; alternatively, you can specify gamma or improper prior distributions for the hazard parameters.
If you have no prior knowledge of the parameter values, you can use a noninformative prior distribution,
and the results of a Bayesian analysis are very similar to those of a classical analysis based on maximum
likelihood.

A closed form of the posterior distribution is often not feasible, and a Markov chain Monte Carlo method is
used to simulate samples from the posterior distribution. You can perform inference by using the simulated
samples, for example, to estimate the probability that a function of the parameters of interest lies within a
specified range of values.

For an introduction to the basic concepts of Bayesian statistics, see Chapter 7, “Introduction to Bayesian
Analysis Procedures.” For a discussion of the advantages and disadvantages of Bayesian analysis, see
“Bayesian Analysis: Advantages and Disadvantages” on page 130 in Chapter 7, “Introduction to Bayesian
Analysis Procedures.” For more information about Bayesian analysis, including guidance about choosing
prior distributions, see Ibrahim, Chen, and Sinha (2001); Gelman et al. (2004); Gilks, Richardson, and
Spiegelhalter (1996).
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Overview: Survey Sampling and Analysis Procedures
This chapter introduces the SAS/STAT procedures for survey sampling and describes how you can use these
procedures to analyze survey data.

Researchers often use sample survey methodology to obtain information about a large population by select-
ing and measuring a sample from that population. Because of variability among items, researchers apply
probability-based scientific designs to select the sample. This reduces the risk of a distorted view of the
population and enables statistically valid inferences to be made from the sample. For more information about
statistical sampling and analysis of complex survey data, see Lohr (2010); Kalton (1983); Cochran (1977);
Kish (1965). To select probability-based random samples from a study population, you can use the SUR-
VEYSELECT procedure, which provides a variety of methods for probability sampling. To analyze sample
survey data, you can use the SURVEYMEANS, SURVEYFREQ, SURVEYREG, SURVEYLOGISTIC, and
SURVEYPHREG procedures, which incorporate the sample design into the analyses.
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Many SAS/STAT procedures, such as the MEANS, FREQ, GLM, LOGISTIC, and PHREG procedures, can
compute sample means, produce crosstabulation tables, and estimate regression relationships. However, in
most of these procedures, statistical inference is based on the assumption that the sample is drawn from an
infinite population by simple random sampling. If the sample is in fact selected from a finite population by
using a complex survey design, these procedures generally do not calculate the estimates and their variances
according to the design actually used. Using analyses that are not appropriate for your sample design can
lead to incorrect statistical inferences.

The SURVEYMEANS, SURVEYFREQ, SURVEYREG, SURVEYLOGISTIC, and SURVEYPHREG proce-
dures properly analyze complex survey data by taking into account the sample design. These procedures can
be used for multistage or single-stage designs, with or without stratification, and with or without unequal
weighting. The survey analysis procedures provide a choice of variance estimation methods, which include
Taylor series linearization, balanced repeated replication (BRR), and the jackknife.

Table 14.1 briefly describes the SAS/STAT sampling and analysis procedures.

Table 14.1 Survey Sampling and Analysis Procedures in
SAS/STAT Software

PROC SURVEYSELECT

Selection Methods Simple random sampling (without replacement)
Unrestricted random sampling (with replacement)
Systematic
Sequential
Bernoulli
Poisson
Probability proportional to size (PPS) sampling,

with and without replacement
PPS systematic
PPS for two units per stratum
PPS sequential with minimum replacement

Allocation Methods Proportional
Optimal
Neyman

Sampling Tools Stratified sampling
Cluster sampling
Replicated sampling
Serpentine sorting
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Table 14.1 continued

PROC SURVEYMEANS

Statistics Means and totals
Proportions
Quantiles
Geometric means
Ratios
Standard errors
Confidence limits

Analyses Hypothesis tests
Domain analysis
Poststratification

Graphics Histograms
Box plots
Summary panel plots
Domain box plots

PROC SURVEYFREQ

Tables One-way frequency tables
Two-way and multiway crosstabulation tables
Estimates of population totals and proportions
Standard errors
Confidence limits

Analyses Tests of goodness of fit
Tests of independence
Risks and risk differences
Odds ratios and relative risks
Kappa coefficients

Graphics Weighted frequency and percent plots
Mosaic plots
Odds ratio, relative risk, and risk difference plots
Kappa plots

PROC SURVEYREG

Analyses Linear regression model fitting
Regression coefficients
Covariance matrices
Confidence limits
Hypothesis tests
Estimable functions
Contrasts
Least squares means (LS-means) of effects
Custom hypothesis tests among LS-means
Regression with constructed effects
Predicted values and residuals
Domain analysis

Graphics Fit plots
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Table 14.1 continued

PROC SURVEYLOGISTIC

Analyses Cumulative logit regression model fitting
Logit, probit, and complementary log-log link functions
Generalized logit regression model fitting
Regression coefficients
Covariance matrices
Confidence limits
Hypothesis tests
Odds ratios
Estimable functions
Contrasts
Least squares means (LS-means) of effects
Custom hypothesis tests among LS-means
Regression with constructed effects
Model diagnostics
Domain analysis

PROC SURVEYPHREG

Analyses Proportional hazards regression model fitting
Breslow and Efron likelihoods
Regression coefficients
Covariance matrices
Confidence limits
Hypothesis tests
Hazard ratios
Contrasts
Predicted values and standard errors
Martingale, Schoenfeld, score, and deviance residuals
Domain analysis

The Survey Procedures
The SURVEYSELECT procedure provides methods for probability sample selection. The SURVEYMEANS,
SURVEYFREQ, SURVEYREG, SURVEYLOGISTIC, and SURVEYPHREG procedures provide statistical
analyses for survey data. The following sections contain brief descriptions of these procedures. For more
information, see the chapters for the individual procedures.

PROC SURVEYSELECT
The SURVEYSELECT procedure provides a variety of methods for selecting probability-based random
samples. The procedure can select a simple random sample or can sample according to a complex multistage
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sample design that includes stratification, clustering, and unequal probabilities of selection. With probability
sampling, each unit in the survey population has a known, positive probability of selection. This property of
probability sampling avoids selection bias and enables you to use statistical theory to make valid inferences
from the sample to the survey population.

PROC SURVEYSELECT provides methods for both equal-probability sampling and probability proportional
to size (PPS) sampling. Equal-probability sampling methods include simple random sampling (without
replacement), unrestricted sampling (with replacement), systematic sampling, and sequential sampling.

In PPS sampling, a unit’s selection probability is proportional to its size measure. PPS sampling is often
used in cluster sampling, where you select clusters (groups of sampling units) of varying size in the first
stage of selection. Available PPS methods include without replacement, with replacement, systematic, and
sequential with minimum replacement. PROC SURVEYSELECT can apply these selection methods for
stratified, clustered, and replicated sample designs.

For stratified sampling, PROC SURVEYSELECT provides survey design methods to allocate the total
sample size among the strata. Available allocation methods include proportional, Neyman, and optimal
allocation. Optimal allocation maximizes the estimation precision within the available resources, taking into
account stratum sizes, costs, and variances.

For more information, see Chapter 102, “The SURVEYSELECT Procedure.”

PROC SURVEYMEANS
The SURVEYMEANS procedure produces estimates of population means and totals from sample survey data.
The procedure also computes estimates of proportions for categorical variables, estimates of quantiles for
continuous variables, estimates of geometric means for positive continuous variables, and ratio estimates of
means and proportions. For all these statistics, PROC SURVEYMEANS provides standard errors, confidence
limits, and t tests when appropriate.

PROC SURVEYMEANS provides domain analysis, which computes estimates for domains (subpopulations),
in addition to analysis for the entire study population. Formation of subpopulations can be unrelated to the
sample design, and so the domain sample sizes can actually be random variables. Domain analysis takes this
variability into account by using the entire sample to estimate the variance of domain estimates. Domain
analysis is also known as subgroup analysis, subpopulation analysis, and subdomain analysis.

PROC SURVEYMEANS also performs poststratification, which adjusts the sampling weights so that their
distribution matches known auxiliary information. Poststratification is often used to improve the efficiency of
the analysis and adjust for nonresponse. PROC SURVEYMEANS provides poststratified analyses and also
produces poststratified weights that can be used in the other survey analysis procedures. For more information
about poststratification, see Fuller (2009); Lohr (2010); Wolter (2007); Rao, Yung, and Hidiroglou (2002).

PROC SURVEYMEANS uses ODS Graphics to create graphs as part of its output. Available statistical
graphics include histograms and summary panel plots for continuous variables, box plots, and domain box
plots.

For more information, see Chapter 99, “The SURVEYMEANS Procedure.”
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PROC SURVEYFREQ
The SURVEYFREQ procedure produces one-way to n-way frequency and crosstabulation tables from sample
survey data. These tables include estimates of population totals, population proportions (overall proportions,
and also row and column proportions), and corresponding standard errors. Confidence limits, coefficients of
variation, and design effects are also available. The procedure provides the following types of design-adjusted
confidence limits for proportions: Wald, logit, modified Wilson (score), and modified Clopper-Pearson
(exact).

For one-way frequency tables, PROC SURVEYFREQ provides Rao-Scott chi-square goodness-of-fit tests,
which are adjusted for the sample design. You can test a null hypothesis of equal proportions for a one-way
frequency table, or you can input custom null hypothesis proportions for the test. For two-way frequency
tables, PROC SURVEYFREQ provides design-adjusted tests of independence, or no association, between
the row and column variables. These tests include the Rao-Scott chi-square test, the Rao-Scott likelihood
ratio test, the Wald chi-square test, and the Wald log-linear chi-square test.

For 2 � 2 tables, PROC SURVEYFREQ computes estimates and confidence limits for risks (or row pro-
portions), the risk difference, the odds ratio, and relative risks. For square tables, PROC SURVEYFREQ
computes simple and weighted kappa coefficients.

PROC SURVEYFREQ uses ODS Graphics to create graphs as part of its output. Available statistical graphics
include weighted frequency and percent plots, which can be displayed as bar charts or dot plots in various
formats. For two-way tables, PROC SURVEYFREQ also produces mosaic plots. For multiway tables, PROC
SURVEYFREQ also produces odds ratio, relative risk, risk difference, and kappa coefficient plots.

For more information, see Chapter 97, “The SURVEYFREQ Procedure.”

PROC SURVEYREG
The SURVEYREG procedure performs regression analysis for sample survey data. The procedure fits linear
models and computes regression coefficients and their variance-covariance matrices. PROC SURVEYREG
enables you to specify classification effects by using the same syntax that the GLM procedure uses.

PROC SURVEYREG provides hypothesis tests for the model effects. The procedure also provides custom
hypothesis tests for linear combinations of the regression parameters. The procedure computes confidence
limits for the parameter estimates and also for any specified linear functions of the regression parameters.
The procedure can produce an output data set that contains the predicted values from the linear regression,
their standard errors and confidence limits, and the residuals.

PROC SURVEYREG also performs regression analysis for domains.

PROC SURVEYREG uses ODS Graphics to create graphs as part of its output. For models that depend on
at most one regressor excluding the intercept, the procedure produces fit plots, which can be displayed as
bubble plots or heat maps. In bubble plots, the bubble area is proportional to the observation’s weight. In
heat maps, the heat color represents the sum of the weights at the corresponding location.

For more information, see Chapter 101, “The SURVEYREG Procedure.”
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PROC SURVEYLOGISTIC
The SURVEYLOGISTIC procedure provides logistic regression analysis for sample survey data. Logistic
regression analysis investigates the relationship between discrete responses and a set of explanatory variables.
PROC SURVEYLOGISTIC fits linear logistic regression models for discrete response survey data by the
method of maximum likelihood and incorporates the sample design into the analysis. The SURVEYLOGIS-
TIC procedure enables you to specify categorical classification variables (also known as CLASS variables) as
explanatory variables in the model by using the same syntax for main effects and interactions as in the GLM
and LOGISTIC procedures.

The following link functions are available for regression in PROC SURVEYLOGISTIC: the cumulative
logit function (CLOGIT), the generalized logit function (GLOGIT), the probit function (PROBIT), and the
complementary log-log function (CLOGLOG). The procedure performs maximum likelihood estimation of
the regression coefficients with either the Fisher scoring algorithm or the Newton-Raphson algorithm.

PROC SURVEYLOGISTIC also performs logistic regression analysis for domains.

For more information, see Chapter 98, “The SURVEYLOGISTIC Procedure.”

PROC SURVEYPHREG
The SURVEYPHREG procedure performs regression analysis based on the Cox proportional hazards model
for sample survey data. Cox’s semiparametric model is widely used in the analysis of survival data to estimate
hazard rates when explanatory variables are available. The regression coefficients are estimated by maxi-
mizing a pseudo-partial-likelihood function that incorporates the sampling weights. The procedure provides
design-based variance estimates, confidence intervals, and tests for the estimated regression coefficients.

PROC SURVEYPHREG provides hypothesis tests for the model effects. The procedure also provides custom
hypothesis tests for linear combinations of the regression parameters. The procedure computes hazard ratios
and their confidence limits. The procedure can produce several observation-level output statistics, such as
predicted values and their standard errors, martingale residuals, Schoenfeld residuals, score residuals, and
deviance residuals.

PROC SURVEYPHREG also performs proportional hazards regressions for domains.

For more information, see Chapter 100, “The SURVEYPHREG Procedure.”

Survey Design Specification
Survey sampling is the process of selecting a probability-based sample from a finite population according to
a sample design. You then collect data from these selected units and use them to estimate characteristics of
the entire population.

A sample design encompasses the rules and operations by which you select sampling units from the population
and the computation of sample statistics, which are estimates of the population values of interest. The
objective of your survey often determines appropriate sample designs and valid data collection methodology.
A complex sample design can include stratification, clustering, multiple stages of selection, and unequal
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weighting. The survey procedures can be used for single-stage designs or for multistage designs, with or
without stratification, and with or without unequal weighting.

To analyze your survey data with the SURVEYMEANS, SURVEYFREQ, SURVEYREG,
SURVEYLOGISTIC, and SURVEYPHREG procedures, you need to specify sample design informa-
tion for the procedures. This information can include design strata, clusters, and sampling weights. All the
survey analysis procedures use the same syntax for specifying sample design information. You provide
sample design information with the STRATA, CLUSTER, and WEIGHT statements, and with the RATE= or
TOTAL= option in the PROC statement.

If you provide replicate weights for BRR or jackknife variance estimation, you do not need to specify a
STRATA or CLUSTER statement. Otherwise, you should specify STRATA and CLUSTER statements
whenever your design includes stratification and clustering.

When there are clusters (PSUs) in the sample design, the procedures estimate variance by using the PSUs, as
described in the section “Variance Estimation” on page 248. For a multistage sample design, the procedures
use only the first stage of the sample design for variance estimation. Therefore, the required input includes only
first-stage cluster (PSU) and first-stage stratum identification. You do not need to input design information
about any additional stages of sampling.

The following sections provide brief descriptions of basic sample design concepts and terminology used in
the survey procedures. For more information, see Lohr (2010); Kalton (1983); Cochran (1977); Kish (1965).

Population
Population refers to the target population, which is the group of units (individuals or elements) of interest for
study. Often, the primary objective is to estimate certain characteristics of this population, which are called
population values. A sampling unit is an individual or element in the target population. A sample is a subset
of the population that is selected for the study.

Before you use the survey procedures, you should have a well-defined target population, sampling units, and
an appropriate sample design.

In order to select a sample according to your sample design, you need to have a list of sampling units in
the population. This is called a sampling frame. PROC SURVEYSELECT uses probability-based selection
methods to select a sample from a sampling frame.

Stratification
Stratified sampling involves selecting samples independently within strata, which are nonoverlapping sub-
groups of the survey population. Stratification controls the distribution of the sample size in the strata. It is
widely used to meet a variety of survey objectives. For example, with stratification you can ensure adequate
sample sizes for subgroups of interest, including small subgroups, or you can use stratification to improve
the precision of overall estimates. To improve precision, units within strata should be as homogeneous as
possible for the characteristics of interest.
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Clustering
Cluster sampling involves selecting clusters, which are groups of sampling units. For example, clusters
might be schools, hospitals, or geographical areas, and sampling units might be students, patients, or citizens.
Cluster sampling can provide efficiency in frame construction and other survey operations. However, it can
also result in a loss in precision of your estimates, compared to a nonclustered sample of the same size. To
minimize this effect, units within clusters should be as heterogeneous as possible for the characteristics of
interest.

Multistage Sampling
In multistage sampling, you select an initial (first-stage) sample that is based on groups of elements in the
population, which are called primary sampling units (PSUs).

Then you create a second-stage sample by drawing a subsample from each selected PSU in the first-stage
sample. By repeating this operation, you can select a higher-stage sample. If you include all the elements
from the selected primary sampling units, then the two-stage sample is a cluster sample.

Sampling Weights
Sampling weights, which are also known as survey weights, are positive values associated with the units
in your sample. Ideally, the weight of a sampling unit should be the “frequency” that the sampling unit
represents in the target population.

Often, sampling weights are the reciprocals of the selection probabilities for the sampling units. When you
use PROC SURVEYSELECT, the procedure generates the sampling weight component for each stage of the
design, and you can multiply these sampling weight components to obtain the final sampling weights. Some-
times, sampling weights also include nonresponse adjustments, poststratification, or regression adjustments
by using supplemental information.

When the sampling units have unequal weights, you must provide the weights to the survey analysis
procedures. If you do not specify sampling weights, the procedures use equal weights in the analyses.

Population Totals and Sampling Rates
If you use Taylor series variance estimation, the survey procedures include a finite population correction
factor in the analysis if you input either the sampling rate or the population total.

The sampling rate is the ratio of the sample size (the number of sampling units in the sample) n to the
population size (the total number of sampling units in the target population) N, f D n=N . This ratio is also
called the sampling fraction. If you select a sample without replacement, the extra efficiency compared to
selecting a sample with replacement can be measured by the finite population correction (fpc) factor, (1-f ).

To include a finite population correction factor in your analysis, you can input either the sampling rate or
the population total. Otherwise, the procedures do not use the fpc in computing variance estimates. For
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fairly small sampling fractions, it is appropriate to ignore this correction. For more information, see Cochran
(1977) and Kish (1965).

As discussed in the section “Variance Estimation” on page 248, for a multistage sample design, the procedures
use only the first stage of the sample design for variance estimation. Therefore, if you are specifying the
sampling rate, you should input the first-stage sampling rate, which is the ratio of the number of PSUs in the
sample to the total number of PSUs in the target population.

If you use BRR or jackknife variance estimate, the procedures do not include a finite population correction in
the analysis, and you do not need to input the sampling rate or the population total.

Variance Estimation
The survey analysis procedures provide a choice of variance estimation methods for complex survey designs.
In addition to the Taylor series linearization method, the procedures offer two replication-based (resampling)
methods—balanced repeated replication (BRR) and the delete-1 jackknife. These variance estimation
methods usually give similar, satisfactory results (Lohr 2010; Särndal, Swensson, and Wretman 1992; Wolter
2007). The choice of a variance estimation method can depend on the sample design used, the sample design
information available, the parameters to be estimated, and computational issues. For more information, see
Lohr (2010).

The Taylor series linearization method is appropriate for all designs where the first-stage sample is selected
with replacement, or where the first-stage sampling fraction is small, as it often is in practice. The Taylor
series method obtains a linear approximation for the estimator and then uses the variance estimate for this
approximation to estimate the variance of the estimate itself (Fuller 1975; Woodruff 1971). When there are
clusters (PSUs) in the sample design, the procedures estimate the variance from the variation among the
PSUs. When the design is stratified, the procedures pool stratum variance estimates to compute the overall
variance estimate.

For a multistage sample design, the Taylor series method uses only the first stage of the sample design.
Therefore, the required input includes only first-stage cluster (PSU) and first-stage stratum identification.
You do not need to input design information about any additional stages of sampling.

Replication methods for variance estimation draw multiple replicates (or subsamples) from the full sample
by following a specific resampling scheme. Commonly used resampling schemes include balanced repeated
replication (BRR) and the jackknife. The parameter of interest is estimated from each replicate, and the
variability among the replicate estimates is used to estimate the overall variance of the parameter estimate.

The BRR variance estimation method requires a stratified sample design with two PSUs in each stratum.
Each replicate is obtained by deleting one PSU per stratum according to the corresponding Hadamard matrix
and adjusting the original weights for the remaining PSUs. The adjusted weights are called replicate weights.
The survey procedures also provide Fay’s method, which is a modification of the BRR method.

The jackknife method deletes one PSU at a time from the full sample to create replicates, and modifies the
original weights to obtain replicate weights. The total number of replicates equals the number of PSUs. If
the sample design is stratified, each stratum must contain at least two PSUs, and the jackknife is applied
separately within each stratum.
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Instead of having the survey procedures generate replicate weights for the analysis, you can directly input
your own replicate weights. This can be useful if you need to do multiple analyses with the same set of
replicate weights, or if you have access to replicate weights without complete design information.

See the chapters on the survey procedures for complete details. For more information about variance
estimation for sample survey data, see Lohr (2010); Wolter (2007); Särndal, Swensson, and Wretman (1992);
Lee, Forthofer, and Lorimor (1989); Cochran (1977); Kish (1965); Hansen, Hurwitz, and Madow (1953).

Example: Survey Sampling and Analysis Procedures
This section demonstrates how you can use the survey procedures to select a probability-based sample and
then analyze the survey data to make inferences about the population. The analyses include descriptive
statistics and regression analysis. This example is a survey of income and expenditures for a group of
households in North Carolina and South Carolina. The goals of the survey are as follows:

• Estimate total income and total living expenses

• Estimate the median income and the median living expenses

• Investigate the linear relationship between income and living expenses

Sample Selection
To select a sample with PROC SURVEYSELECT, you input a SAS data set that contains the sampling
frame (the list of units from which the sample is to be selected). You also specify the selection method, the
desired sample size or sampling rate, and other selection parameters. PROC SURVEYSELECT selects the
sample and produces an output data set that contains the selected units, their selection probabilities, and their
sampling weights. For more information, see Chapter 102, “The SURVEYSELECT Procedure.”

In this example, the sample design is a stratified sample design, with households as the sampling units and
selection by simple random sampling. The SAS data set HHFrame contains the sampling frame, which is the
list of households in the survey population. The sampling frame is stratified by the variables State and Region.
Within strata, households are selected by simple random sampling. The following PROC SURVEYSELECT
statements select a probability sample of households according to this sample design:

proc surveyselect data=HHFrame out=HHSample
method=srs n=(3, 5, 3, 6, 2);

strata State Region;
run;

The STRATA statement names the stratification variables State and Region. In the PROC SURVEYSELECT
statement, the DATA= option names the SAS data set HHFrame as the input data set (or sampling frame)
from which to select the sample. The OUT= option stores the sample in the SAS data set named HHSample.
The METHOD=SRS option specifies simple random sampling as the sample selection method. The N=
option specifies the stratum sample sizes.
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The SURVEYSELECT procedure then selects a stratified random sample of households and produces the
output data set HHSample, which contains the selected households together with their selection probabilities
and sampling weights. The data set HHSample also contains the sampling unit identification variable Id and
the stratification variables State and Region from the input data set HHFrame.

Survey Data Analysis
You can use the SURVEYMEANS and SURVEYREG procedures to estimate population values and perform
regression analyses for survey data. The following example briefly shows the capabilities of these proce-
dures. For more information, see Chapter 99, “The SURVEYMEANS Procedure,” and Chapter 101, “The
SURVEYREG Procedure.”

The following PROC SURVEYMEANS statements estimate the total income and living expenses for the
survey population based on the data from the stratified sample design:

proc surveymeans data=HHSample sum median;
var Income Expense;
strata State Region;
weight Weight;

run;

The PROC SURVEYMEANS statement invokes the procedure, and the DATA= option names the SAS data
set HHSample as the input data set to be analyzed. The keywords SUM and MEDIAN request estimates of
population totals and medians.

The VAR statement specifies the two analysis variables Income and Expense. The STRATA statement names
the stratification variables State and Region. The WEIGHT statement specifies the sampling weight variable
Weight.

You can use PROC SURVEYREG to perform regression analysis for survey data. Suppose that, in order to
explore the relationship between household income and living expenses in the survey population, you choose
the following linear model:

Expense D ˛ C ˇ � IncomeC error

The following PROC SURVEYREG statements fit this linear model for the survey population based on the
data from the stratified sample design:

proc surveyreg data=HHSample;
strata State Region ;
model Expense = Income;
weight Weight;

run;

The STRATA statement names the stratification variables State and Region. The MODEL statement specifies
the model, with Expense as the dependent variable and Income as the independent variable. The WEIGHT
statement specifies the sampling weight variable Weight.
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The Four Types of Estimable Functions
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Overview
Many regression and analysis of variance procedures in SAS/STAT label tests for various effects in the model
as Type I, Type II, Type III, or Type IV. These four types of hypotheses might not always be sufficient for a
statistician to perform all desired inferences, but they should suffice for the vast majority of analyses. This
chapter explains the hypotheses involved in each of the four test types. For additional discussion, see Freund,
Littell, and Spector (1991) or Milliken and Johnson (1984).

The primary context of the discussion is testing linear hypotheses in least squares regression and analysis of
variance, such as with PROC GLM. In this context, tests correspond to hypotheses about linear functions of
the true parameters and are evaluated using sums of squares of the estimated parameters. Thus, there will be
frequent references to Type I, II, III, and IV (estimable) functions and corresponding Type I, II, III, and IV
sums of squares, or simply SS.

Estimability
Given a response or dependent variable Y, predictors or independent variables X, and a linear expectation
model EŒY� D Xˇ relating the two, a primary analytical goal is to estimate or test for the significance of
certain linear combinations of the elements of ˇ. For least squares regression and analysis of variance, this
is accomplished by computing linear combinations of the observed Ys. An unbiased linear estimate of a
specific linear function of the individual ˇs, say Lˇ, is a linear combination of the Ys that has an expected
value of Lˇ. Hence, the following definition:



254 F Chapter 15: The Four Types of Estimable Functions

A linear combination of the parameters Lˇ is estimable if and only if a linear combination of the
Ys exists that has expected value Lˇ.

Any linear combination of the Ys, for instance KY, will have expectation EŒKY� D KXˇ. Thus, the
expected value of any linear combination of the Ys is equal to that same linear combination of the rows of X
multiplied by ˇ. Therefore,

Lˇ is estimable if and only if there is a linear combination of the rows of X that is equal to
L—that is, if and only if there is a K such that L D KX.

Thus, the rows of X form a generating set from which any estimable L can be constructed. Since the row
space of X is the same as the row space of X0X, the rows of X0X also form a generating set from which all
estimable Ls can be constructed. Similarly, the rows of .X0X/�X0X also form a generating set for L.

Therefore, if L can be written as a linear combination of the rows of X, X0X, or .X0X/�X0X, then Lˇ is
estimable.

In the context of least squares regression and analysis of variance, an estimable linear function Lˇ can be
estimated by Lb̌, where b̌D .X0X/�X0Y. From the general theory of linear models, the unbiased estimator
Lb̌ is, in fact, the best linear unbiased estimator of Lˇ, in the sense of having minimum variance as well as
maximum likelihood when the residuals are normal. To test the hypothesis that Lˇ D 0, compute the sum of
squares

SS.H0W Lˇ D 0/ D .Lb̌/0.L.X0X/�L0/�1Lb̌
and form an F test with the appropriate error term. Note that in contexts more general than least squares
regression (for example, generalized and/or mixed linear models), linear hypotheses are often tested by
analogous sums of squares of the estimated linear parameters .Lb̌/0.VarŒLb̌�/�1Lb̌.

General Form of an Estimable Function
This section demonstrates a shorthand technique for displaying the generating set for any estimable L.
Suppose

X D

26666664

1 1 0 0

1 1 0 0

1 0 1 0

1 0 1 0

1 0 0 1

1 0 0 1

37777775 and ˇ D

2664
�

A1
A2
A3

3775

X is a generating set for L, but so is the smaller set

X� D

24 1 1 0 0

1 0 1 0

1 0 0 1

35
X� is formed from X by deleting duplicate rows.
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Since all estimable Ls must be linear functions of the rows of X� for Lˇ to be estimable, an L for a
single-degree-of-freedom estimate can be represented symbolically as

L1 � .1 1 0 0/C L2 � .1 0 1 0/C L3 � .1 0 0 1/

or

L D .L1 C L2 C L3 ; L1 ; L2 ; L3 /

For this example, Lˇ is estimable if and only if the first element of L is equal to the sum of the other elements
of L or if

Lˇ D .L1 C L2 C L3 / � �C L1 � A1 C L2 � A2 C L3 � A3

is estimable for any values of L1, L2, and L3.

If other generating sets for L are represented symbolically, the symbolic notation looks different. However,
the inherent nature of the rules is the same. For example, if row operations are performed on X� to produce
an identity matrix in the first 3 � 3 submatrix of the resulting matrix

X�� D

24 1 0 0 1

0 1 0 �1

0 0 1 �1

35
then X�� is also a generating set for L. An estimable L generated from X�� can be represented symbolically
as

L D .L1 ; L2 ; L3 ; L1 � L2 � L3 /

Note that, again, the first element of L is equal to the sum of the other elements.

With multiple generating sets available, the question arises as to which one is the best to represent L
symbolically. Clearly, a generating set containing a minimum of rows (of full row rank) and a maximum of
zero elements is desirable.

The generalized g2-inverse .X0X/� of X0X computed by the modified sweep operation (Goodnight 1979) has
the property that .X0X/�X0X usually contains numerous zeros. For this reason, in PROC GLM the nonzero
rows of .X0X/�X0X are used to represent L symbolically.

If the generating set represented symbolically is of full row rank, the number of symbols .L1 ;L2 ; : : :/
represents the maximum rank of any testable hypothesis (in other words, the maximum number of linearly
independent rows for any L matrix that can be constructed). By letting each symbol in turn take on the value
of 1 while the others are set to 0, the original generating set can be reconstructed.

Introduction to Reduction Notation
Reduction notation can be used to represent differences in sums of squares (SS) for two models. The notation
R.�;A;B; C / denotes the complete main-effects model for effects A, B, and C. The notation

R.A j �;B;C /

denotes the difference between the model SS for the complete main-effects model containing A, B, and C and
the model SS for the reduced model containing only B and C.

In other words, this notation represents the differences in model SS produced by
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proc glm;
class a b c;
model y = a b c;

run;

and

proc glm;
class b c;
model y = b c;

run;

As another example, consider a regression equation with four independent variables. The notation
R.ˇ3; ˇ4 j ˇ1; ˇ2/ denotes the differences in model SS between

y D ˇ0 C ˇ1x1 C ˇ2x2 C ˇ3x3 C ˇ4x4 C �

and

y D ˇ0 C ˇ1x1 C ˇ2x2 C �

This is the difference in the model SS for the models produced, respectively, by

model y = x1 x2 x3 x4;

and

model y = x1 x2;

The following examples demonstrate the ability to manipulate the symbolic representation of a generating set.
Note that any operations performed on the symbolic notation have corresponding row operations that are
performed on the generating set itself.

Examples

A One-Way Classification Model

For the model

Y D �C Ai C � i D 1; 2; 3

the general form of estimable functions Lˇ is (from the previous example)

Lˇ D L1 � �C L2 � A1 C L3 � A2 C .L1 � L2 � L3 / � A3

Thus,

L D .L1 ;L2 ;L3 ;L1 � L2 � L3 /

Tests involving only the parameters A1, A2, and A3 must have an L of the form

L D .0;L2 ;L3 ;�L2 � L3 /
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Since this L for the A parameters involves only two symbols, hypotheses with at most two degrees of freedom
can be constructed. For example, letting .L2;L3/ be .1; 0/ and .0; 1/, respectively, yields

L D
�
0 1 0 �1

0 0 1 �1

�
The preceding L can be used to test the hypothesis that A1 D A2 D A3. For this example, any L with two
linearly independent rows with column 1 equal to zero produces the same sum of squares. For example, a
joint test for linear and quadratic effects of A

L D
�
0 1 0 �1

0 1 �2 1

�
gives the same SS. In fact, for any L of full row rank and any nonsingular matrix K of conformable
dimensions,

SS.H0W Lˇ D 0/ D SS.H0W KLˇ D 0/

A Three-Factor Main-Effects Model

Consider a three-factor main-effects model involving the CLASS variables A, B, and C, as shown in Table 15.1.

Table 15.1 Three-Factor Main-Effects Model

Obs A B C

1 1 2 1
2 1 1 2
3 2 1 3
4 2 2 2
5 2 2 2

The general form of an estimable function is shown in Table 15.2.

Table 15.2 General Form of an Estimable Function for Three-Factor Main-Effects Model

Parameter Coefficient

� (Intercept) L1
A1 L2
A2 L1 – L2
B1 L4
B2 L1 – L4
C1 L6
C2 L1 + L2 – L4 – 2 � L6
C3 –L2 + L4 + L6

Since only four symbols (L1, L2, L4, and L6) are involved, any testable hypothesis will have at most four
degrees of freedom. If you form an L matrix with four linearly independent rows according to the preceding
rules, then testing Lˇ D 0 is equivalent to testing that EŒY� is uniformly 0. Symbolically,

SS.H0W Lˇ D 0/ D R.�;A;B; C /
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In a main-effects model, the usual hypothesis of interest for a main effect is the equality of all the parameters.
In this example, it is not possible to unambiguously test such a hypothesis because of confounding: any test
for the equality of the parameters for any one of A, B, or C will necessarily involve the parameters for the
other two effects. One way to proceed is to construct a maximum rank hypothesis (MRH) involving only the
parameters of the main effect in question. This can be done using the general form of estimable functions.
Note the following:

• To get an MRH involving only the parameters of A, the coefficients of L associated with �, B1, B2,
C1, C2, and C3 must be equated to zero. Starting at the top of the general form, let L1 = 0, then L4 =
0, then L6 = 0. If C2 and C3 are not to be involved, then L2 must also be zero. Thus, A1 – A2 is not
estimable; that is, the MRH involving only the A parameters has zero rank and R.A j �;B;C / D 0.

• To obtain the MRH involving only the B parameters, let L1 = L2 = L6 = 0. But then to remove
C2 and C3 from the comparison, L4 must also be set to 0. Thus, B1 – B2 is not estimable and
R.B j �;A;C / D 0.

• To obtain the MRH involving only the C parameters, let L1 = L2 = L4 =0. Thus, the MRH involving
only C parameters is

C1 � 2 � C2 C C3 D K (for any K)

or any multiple of the left-hand side equal to K. Furthermore,

SS.H0W C1 � 2 � C2 C C3 D 0/ D R.C j �;A;B/

A Multiple Regression Model

Suppose

EŒY � D ˇ0 C ˇ1x1 C ˇ2x2 C ˇ3x3

where the X0X matrix has full rank. The general form of estimable functions is as shown in Table 15.3.

Table 15.3 General Form of Estimable Functions for a Multiple Regression Model When X0X Matrix Is of
Full Rank

Parameter Coefficient

ˇ0 L1
ˇ1 L2
ˇ2 L3
ˇ3 L4

For example, to test the hypothesis that ˇ2 D 0, let L1 = L2 = L4 = 0 and let L3 = 1. Then SS.Lˇ D 0/ D
R.ˇ2 j ˇ0; ˇ1; ˇ3/. In this full-rank case, all parameters, as well as any linear combination of parameters,
are estimable.

Suppose, however, that X3 D 2x1 C 3x2. The general form of estimable functions is shown in Table 15.4.
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Table 15.4 General Form of Estimable Functions for a Multiple Regression Model When X0X Matrix Is
Not of Full Rank

Parameter Coefficient

ˇ0 L1
ˇ1 L2
ˇ2 L3
ˇ3 2 � L2 C 3 � L3

For this example, it is possible to test H0Wˇ0 D 0. However, ˇ1, ˇ2, and ˇ3 are not jointly estimable; that is,

R.ˇ1 j ˇ0; ˇ2; ˇ3/ D 0

R.ˇ2 j ˇ0; ˇ1; ˇ3/ D 0

R.ˇ3 j ˇ0; ˇ1; ˇ2/ D 0

Estimable Functions

Type I SS and Estimable Functions
In PROC GLM, the Type I SS and the associated hypotheses they test are byproducts of the modified sweep
operator used to compute a generalized g2-inverse of X0X and a solution to the normal equations. For the
model EŒY � D x1ˇ1 C x2ˇ2 C x3ˇ3, the Type I SS for each effect are as follows:

Effect Type I SS

x1 R.ˇ1/

x2 R.ˇ2 j ˇ1/

x3 R.ˇ3 j ˇ1; ˇ2/

Note that some other SAS/STAT procedures compute Type I hypotheses by sweeping X0X (for example,
PROC MIXED and PROC GLIMMIX), but their test statistics are not necessarily equivalent to the results of
using those procedures to fit models that contain successively more effects.

The Type I SS are model-order dependent; each effect is adjusted only for the preceding effects in the
model.

There are numerous ways to obtain a Type I hypothesis matrix L for each effect. One way is to form the X0X
matrix and then reduce X0X to an upper triangular matrix by row operations, skipping over any rows with a
zero diagonal. The nonzero rows of the resulting matrix associated with x1 provide an L such that

SS.H0W Lˇ D 0/ D R.ˇ1/
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The nonzero rows of the resulting matrix associated with x2 provide an L such that

SS.H0W Lˇ D 0/ D R.ˇ2 j ˇ1/

The last set of nonzero rows (associated with x3) provide an L such that

SS.H0W Lˇ D 0/ D R.ˇ3 j ˇ1; ˇ2/

Another more formalized representation of Type I generating sets for x1, x2, and x3, respectively, is

G1 D . X01X1 j X01X2 j X01X3 /

G2 D . 0 j X02M1X2 j X02M1X3 /

G3 D . 0 j 0 j X03M2X3 /

where

M1 D I � X1.X01X1/�X01

and

M2 DM1 �M1X2.X02M1X2/�X02M1

Using the Type I generating set G2 (for example), if an L is formed from linear combinations of the rows of
G2 such that L is of full row rank and of the same row rank as G2, then SS.H0W Lˇ D 0/ D R.ˇ2 j ˇ1/.

In the GLM procedure, the Type I estimable functions displayed symbolically when the E1 option is requested
are

G�1 D .X01X1/�G1

G�2 D .X02M1X2/�G2

G�3 D .X03M2X3/�G3

As can be seen from the nature of the generating sets G1, G2, and G3, only the Type I estimable functions
for ˇ3 are guaranteed not to involve the ˇ1 and ˇ2 parameters. The Type I hypothesis for ˇ2 can (and often
does) involve ˇ3 parameters, and likewise the Type I hypothesis for ˇ1 often involves ˇ2 and ˇ3 parameters.

There are, however, a number of models for which the Type I hypotheses are considered appropriate. These
are as follows:

• balanced ANOVA models specified in proper sequence (that is, interactions do not precede main effects
in the MODEL statement and so forth)

• purely nested models (specified in the proper sequence)

• polynomial regression models (in the proper sequence)
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Type II SS and Estimable Functions
For main-effects models and regression models, the general form of estimable functions can be manipulated
to provide tests of hypotheses involving only the parameters of the effect in question. The same result can
also be obtained by entering each effect in turn as the last effect in the model and obtaining the Type I SS for
that effect. These are the Type II SS. Using a modified reversible sweep operator, it is possible to obtain the
Type II SS without actually refitting the model.

Thus, the Type II SS correspond to the R notation in which each effect is adjusted for all other appro-
priate effects. For a regression model such as

EŒY � D x1ˇ1 C x2ˇ2 C x3ˇ3

the Type II SS correspond to

Effect Type II SS

x1 R.ˇ1 j ˇ2; ˇ3/

x2 R.ˇ2 j ˇ1; ˇ3/

x3 R.ˇ3 j ˇ1; ˇ2/

For a main-effects model (A, B, and C as classification variables), the Type II SS correspond to

Effect Type II SS

A R.A j B;C /

B R.B j A;C /

C R.C j A;B/

As the discussion in the section “A Three-Factor Main-Effects Model” on page 257 indicates, for regression
and main-effects models the Type II SS provide an MRH for each effect that does not involve the parameters
of the other effects.

In order to see what effects are appropriate to adjust for in computing Type II estimable functions, note that
for models involving interactions and nested effects, in the absence of a priori parametric restrictions, it is
not possible to obtain a test of a hypothesis for a main effect free of parameters of higher-level interactions
effects with which the main effect is involved. It is reasonable to assume, then, that any test of a hypothesis
concerning an effect should involve the parameters of that effect and only those other parameters with which
that effect is involved. The concept of effect containment helps to define this involvement.

Contained Effect
Given two effects F1 and F2, F1 is said to be contained in F2 provided that the following two conditions are
met:

• Both effects involve the same continuous variables (if any).

• F2 has more CLASS variables than F1 does, and if F1 has CLASS variables, they all appear in F2.
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Note that the intercept effect � is contained in all pure CLASS effects, but it is not contained in any effect
involving a continuous variable. No effect is contained by �.

Type II, Type III, and Type IV estimable functions rely on this definition, and they all have one thing in
common: the estimable functions involving an effect F1 also involve the parameters of all effects that contain
F1, and they do not involve the parameters of effects that do not contain F1 (other than F1).

Hypothesis Matrix for Type II Estimable Functions
The Type II estimable functions for an effect F1 have an L (before reduction to full row rank) of the following
form:

• All columns of L associated with effects not containing F1 (except F1) are zero.

• The submatrix of L associated with effect F1 is .X01MX1/�.X01MX1/.

• Each of the remaining submatrices of L associated with an effect F2 that contains F1 is
.X01MX1/�.X01MX2/.

In these submatrices,

X0 D the columns of X whose associated effects do not contain F1

X1 D the columns of X associated with F1

X2 D the columns of X associated with an F2 effect that containsF1

M D I � X0.X00X0/�X00

For the model

class A B;
model Y = A B A*B;

the Type II SS correspond to

R.A j �;B/; R.B j �;A/; R.A � B j �;A;B/

for effects A, B, and A * B, respectively. For the model

class A B C;
model Y = A B(A) C(A B);

the Type II SS correspond to

R.A j �/; R.B.A/ j �;A/; R.C.AB/ j �;A;B.A//

for effects A, B.A/ and C.AB/, respectively. For the model

model Y = x x*x;
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the Type II SS correspond to

R.X j �;X �X/ and R.X �X j �;X/

for x and x � x, respectively.

Note that, as in the situation for Type I tests, PROC MIXED and PROC GLIMMIX compute Type I hypotheses
by sweeping X0X, but their test statistics are not necessarily equivalent to the results of sequentially fitting
with those procedures models that contain successively more effects; while PROC TRANSREG computes
tests labeled as being Type II by leaving out each effect in turn, but the specific linear hypotheses associated
with these tests might not be precisely the same as the ones derived from successively sweeping X0X.

Example of Type II Estimable Functions

For a 2 � 2 factorial with w observations per cell, the general form of estimable functions is shown in
Table 15.5. Any nonzero values for L2, L4, and L6 can be used to construct L vectors for computing the Type
II SS for A, B, and A * B, respectively.

Table 15.5 General Form of Estimable Functions for 2 � 2 Factorial

Effect Coefficient

� L1
A1 L2
A2 L1 – L2
B1 L4
B2 L1 – L4
AB11 L6
AB12 L2 – L6
AB21 L4 – L6
AB22 L1 – L2 – L4 + L6

For a balanced 2 � 2 factorial with the same number of observations in every cell, the Type II estimable
functions are shown in Table 15.6.

Table 15.6 Type II Estimable Functions for Balanced 2 � 2 Factorial

Coefficients for Effect
Effect A B A * B

� 0 0 0
A1 L2 0 0
A2 –L2 0 0
B1 0 L4 0
B2 0 –L4 0
AB11 0.5 � L2 0.5 � L4 L6
AB12 0.5 � L2 –0.5 � L4 –L6
AB21 –0.5 � L2 0.5 � L4 –L6
AB22 –0.5 � L2 –0.5 � L4 L6
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Now consider an unbalanced 2 � 2 factorial with two observations in every cell except the AB22 cell, which
contains only one observation. The general form of estimable functions is the same as if it were balanced,
since the same effects are still estimable. However, the Type II estimable functions for A and B are not the
same as they were for the balanced design. The Type II estimable functions for this unbalanced 2� 2 factorial
are shown in Table 15.7.

Table 15.7 Type II Estimable Functions for Unbalanced 2 � 2 Factorial

Coefficients for Effect
Effect A B A * B

� 0 0 0
A1 L2 0 0
A2 –L2 0 0
B1 0 L4 0
B2 0 –L4 0
AB11 0.6 � L2 0.6 � L4 L6
AB12 0.4 � L2 –0.6 � L4 –L6
AB21 –0.6 � L2 0.4 � L4 –L6
AB22 –0.4 � L2 –0.4 � L4 L6

By comparing the hypothesis being tested in the balanced case to the hypothesis being tested in the unbalanced
case for effects A and B, you can note that the Type II hypotheses for A and B are dependent on the cell
frequencies in the design. For unbalanced designs in which the cell frequencies are not proportional to
the background population, the Type II hypotheses for effects that are contained in other effects are of
questionable value.

However, if an effect is not contained in any other effect, the Type II hypothesis for that effect is an MRH
that does not involve any parameters except those associated with the effect in question.

Thus, Type II SS are appropriate for the following models:

• any balanced model

• any main-effects model

• any pure regression model

• an effect not contained in any other effect (regardless of the model)

In addition to the preceding models, Type II SS are generally accepted by most statisticians for purely nested
models.

Type III and IV SS and Estimable Functions
When an effect is contained in another effect, the Type II hypotheses for that effect are dependent on the cell
frequencies. The philosophy behind both the Type III and Type IV hypotheses is that the hypotheses tested
for any given effect should be the same for all designs with the same general form of estimable functions.
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To demonstrate this concept, recall the hypotheses being tested by the Type II SS in the balanced 2�2 factorial
shown in Table 15.6. Those hypotheses are precisely the ones that the Type III and Type IV hypotheses
employ for all 2�2 factorials that have at least one observation per cell. The Type III and Type IV hypotheses
for a design without missing cells usually differ from the hypothesis employed for the same design with
missing cells since the general form of estimable functions usually differs.

Many SAS/STAT procedures can perform tests of Type III hypotheses, but only PROC GLM offers Type IV
tests as well.

Type III Estimable Functions

Type III hypotheses are constructed by working directly with the general form of estimable functions. The
following steps are used to construct a hypothesis for an effect F1:

1. For every effect in the model except F1 and those effects that contain F1, equate the coefficients in the
general form of estimable functions to zero.

If F1 is not contained in any other effect, this step defines the Type III hypothesis (as well as the Type
II and Type IV hypotheses). If F1 is contained in other effects, go on to step 2. (See the section “Type
II SS and Estimable Functions” on page 261 for a definition of when effect F1 is contained in another
effect.)

2. If necessary, equate new symbols to compound expressions in the F1 block in order to obtain the
simplest form for the F1 coefficients.

3. Equate all symbolic coefficients outside the F1 block to a linear function of the symbols in the F1
block in order to make the F1 hypothesis orthogonal to hypotheses associated with effects that contain
F1.

By once again observing the Type II hypotheses being tested in the balanced 2 � 2 factorial, it is possible to
verify that the A and A * B hypotheses are orthogonal and also that the B and A * B hypotheses are orthogonal.
This principle of orthogonality between an effect and any effect that contains it holds for all balanced designs.
Thus, construction of Type III hypotheses for any design is a logical extension of a process that is used for
balanced designs.

The Type III hypotheses are precisely the hypotheses being tested by programs that reparameterize using the
usual assumptions (for example, constraining all parameters for an effect to sum to zero). When no missing
cells exist in a factorial model, Type III SS coincide with Yates’ weighted squares-of-means technique. When
cells are missing in factorial models, the Type III SS coincide with those discussed in Harvey (1960) and
Henderson (1953).

The following discussion illustrates the construction of Type III estimable functions for a 2 � 2 factorial with
no missing cells.

To obtain the A * B interaction hypothesis, start with the general form and equate the coefficients for effects
�, A, and B to zero, as shown in Table 15.8.
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Table 15.8 Type III Hypothesis for A * B Interaction

Effect General Form L1 = L2 = L4 = 0

� L1 0
A1 L2 0
A2 L1 – L2 0
B1 L4 0
B2 L1 – L4 0
AB11 L6 L6
AB12 L2 – L6 –L6
AB21 L4 – L6 –L6
AB22 L1 – L2 – L4 + L6 L6

The last column in Table 15.8 represents the form of the MRH for A * B.

To obtain the Type III hypothesis for A, first start with the general form and equate the coefficients for effects
� and B to zero (let L1 = L4 = 0). Next let L6 = K � L2, and find the value of K that makes the A hypothesis
orthogonal to the A * B hypothesis. In this case, K = 0.5. Each of these steps is shown in Table 15.9.

In Table 15.9, the fourth column (under L6 = K � L2) represents the form of all estimable functions not
involving �, B1, or B2. The prime difference between the Type II and Type III hypotheses for A is the way K
is determined. Type II chooses K as a function of the cell frequencies, whereas Type III chooses K such that
the estimable functions for A are orthogonal to the estimable functions for A * B.

Table 15.9 Type III Hypothesis for A

Effect General Form L1 = L4 = 0 L6 = K � L2 K= 0.5

� L1 0 0 0
A1 L2 L2 L2 L2
A2 L1 – L2 –L2 –L2 –L2
B1 L4 0 0 0
B2 L1 – L4 0 0 0
AB11 L6 L6 K � L2 0.5 � L2
AB12 L2 – L6 L2 – L6 (1 – K) � L2 0.5 � L2
AB21 L4 – L6 –L6 –K � L2 –0.5 � L2
AB22 L1 – L2 – L4 + L6 –L2 + L6 –(1 – K) � L2 –0.5 � L2

An example of Type III estimable functions in a 3 � 3 factorial with unequal cell frequencies and missing
diagonals is given in Table 15.10 (N1 through N6 represent the nonzero cell frequencies).

Table 15.10 3 � 3 Factorial Design with Unequal Cell Frequencies and Missing Diagonals

B
1 2 3

1 N1 N2
A 2 N3 N4

3 N5 N6
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For any nonzero values of N1 through N6, the Type III estimable functions for each effect are shown in
Table 15.11.

Table 15.11 Type III Estimable Functions for 3 � 3 Factorial Design with Unequal Cell Frequencies and
Missing Diagonals

Effect A B A * B

� 0 0 0
A1 L2 0 0
A2 L3 0 0
A3 –L2 – L3 0 0
B1 0 L5 0
B2 0 L6 0
B3 0 –L5 – L6 0
AB12 0.667 � L2 + 0.333 � L3 0.333 � L5 + 0.667 � L6 L8
AB13 0.333 � L2 – 0.333 � L3 –0.333 � L5 – 0.667 � L6 –L8
AB21 0.333 � L2 + 0.667 � L3 0.667 � L5 + 0.333 � L6 –L8
AB23 –0.333 � L2 + 0.333 � L3 –0.667 � L5 – 0.333 � L6 L8
AB31 –0.333 � L2 – 0.667 � L3 0.333 � L5 – 0.333 � L6 L8
AB32 –0.667 � L2 – 0.333 � L3 –0.333 � L5 + 0.333 � L6 –L8

Type IV Estimable Functions

By once again looking at the Type II hypotheses being tested in the balanced 2 � 2 factorial (see Table 15.6),
you can see another characteristic of the hypotheses employed for balanced designs: the coefficients of
lower-order effects are averaged across each higher-level effect involving the same subscripts. For example,
in the A hypothesis, the coefficients of AB11 and AB12 are equal to one-half the coefficient of A1, and the
coefficients of AB21 and AB22 are equal to one-half the coefficient of A2. With this in mind, the basic
concept used to construct Type IV hypotheses is that the coefficients of any effect, say F1, are distributed
equitably across higher-level effects that contain F1. When missing cells occur, this same general philosophy
is adhered to, but care must be taken in the way the distributive concept is applied.

Construction of Type IV hypotheses begins as does the construction of the Type III hypotheses. That is, for
an effect F1, equate to zero all coefficients in the general form that do not belong to F1 or to any other effect
containing F1. If F1 is not contained in any other effect, then the Type IV hypothesis (and Type II and III)
has been found. If F1 is contained in other effects, then simplify, if necessary, the coefficients associated
with F1 so that they are all free coefficients or functions of other free coefficients in the F1 block.

To illustrate the method of resolving the free coefficients outside the F1 block, suppose that you are interested
in the estimable functions for an effect A and that A is contained in AB, AC, and ABC. (In other words, the
main effects in the model are A, B, and C.)

With missing cells, the coefficients of intermediate effects (here they are AB and AC) do not always have
an equal distribution of the lower-order coefficients, so the coefficients of the highest-order effects are
determined first (here it is ABC). Once the highest-order coefficients are determined, the coefficients of
intermediate effects are automatically determined.

The following process is performed for each free coefficient of A in turn. The resulting symbolic vectors are
then added together to give the Type IV estimable functions for A.
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1. Select a free coefficient of A, and set all other free coefficients of A to zero.

2. If any of the levels of A have zero as a coefficient, equate all of the coefficients of higher-level effects
involving that level of A to zero. This step alone usually resolves most of the free coefficients remaining.

3. Check to see if any higher-level coefficients are now zero when the coefficient of the associated level
of A is not zero. If this situation occurs, the Type IV estimable functions for A are not unique.

4. For each level of A in turn, if the A coefficient for that level is nonzero, count the number of times
that level occurs in the higher-level effect. Then equate each of the higher-level coefficients to the
coefficient of that level of A divided by the count.

An example of a 3� 3 factorial with four missing cells (N1 through N5 represent positive cell frequencies) is
shown in Table 15.12.

Table 15.12 3 � 3 Factorial Design with Four Missing Cells

B
1 2 3

1 N1 N2
A 2 N3 N4

3 N5

The Type IV estimable functions are shown in Table 15.13.

Table 15.13 Type IV Estimable Functions for 3 � 3 Factorial Design with Four Missing Cells

Effect A B A * B

� 0 0 0
A1 –L3 0 0
A2 L3 0 0
A3 0 0 0
B1 0 L5 0
B2 0 –L5 0
B3 0 0 0
AB11 –0.5 � L3 0.5 � L5 L8
AB12 –0.5 � L3 –0.5 � L5 –L8
AB21 0.5 � L3 0.5 � L5 –L8
AB22 0.5 � L3 –0.5 � L5 L8
AB33 0 0 0

A Comparison of Type III and Type IV Hypotheses

For the vast majority of designs, Type III and Type IV hypotheses for a given effect are the same. Specifically,
they are the same for any effect F1 that is not contained in other effects for any design (with or without
missing cells). For factorial designs with no missing cells, the Type III and Type IV hypotheses coincide
for all effects. When there are missing cells, the hypotheses can differ. By using the GLM procedure, you
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can study the differences in the hypotheses and then decide on the appropriateness of the hypotheses for a
particular model.

The Type III hypotheses for three-factor and higher completely nested designs with unequal Ns in the lowest
level differ from the Type II hypotheses; however, the Type IV hypotheses do correspond to the Type II
hypotheses in this case.

When missing cells occur in a design, the Type IV hypotheses might not be unique. If this occurs in PROC
GLM, you are notified, and you might need to consider defining your own specific comparisons.
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Overview: Nonparametric Analysis
In statistical inference, or hypothesis testing, the traditional tests are called parametric tests because they
depend on the specification of a probability distribution (such as the normal) except for a set of free parameters.
Parametric tests are said to depend on distributional assumptions. Nonparametric tests, on the other hand, do
not require any strict distributional assumptions. Even if the data are distributed normally, nonparametric
methods are often almost as powerful as parametric methods.

Many nonparametric methods analyze the ranks of a variable rather than the original values. Procedures
such as PROC NPAR1WAY calculate the ranks for you and then perform appropriate nonparametric tests.
However, there are some situations in which you use a procedure such as PROC RANK to calculate ranks and
then use another procedure to perform the appropriate test. See the section “Obtaining Ranks” on page 276
for details.

Although the NPAR1WAY procedure is specifically targeted for nonparametric analysis, many other proce-
dures also perform nonparametric analyses. Some general references on nonparametrics include Hollander
and Wolfe (1999); Conover (1999); Gibbons and Chakraborti (2010); Hettmansperger (1984); Randles and
Wolfe (1979); Lehmann and D’Abrera (2006).
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Testing for Normality
Many parametric tests assume an underlying normal distribution for the population. If your data do not meet
this assumption, you might prefer to use a nonparametric analysis.

Base SAS software provides several tests for normality in the UNIVARIATE procedure. Depending on your
sample size, PROC UNIVARIATE performs the Kolmogorov-Smirnov, Shapiro-Wilk, Anderson-Darling,
and Cramér-von Mises tests. For more information, see the chapter “The UNIVARIATE Procedure” in the
Base SAS Procedures Guide.

Comparing Distributions
To test the hypothesis that two or more groups of observations have identical distributions, use the
NPAR1WAY procedure, which provides empirical distribution function (EDF) statistics. The procedure
calculates the Kolmogorov-Smirnov test, the Cramér-von Mises test, and, when the data are classified into
only two samples, the Kuiper test. Exact p-values are available for the two-sample Kolmogorov-Smirnov
test. To obtain these tests, use the EDF option in the PROC NPAR1WAY statement. See Chapter 71, “The
NPAR1WAY Procedure,” for details.

One-Sample Tests
Base SAS software provides two one-sample tests in the UNIVARIATE procedure: a sign test and the
Wilcoxon signed rank test. Both tests are designed for situations where you want to make an inference about
the location (median) of a population. For example, suppose you want to test whether the median resting
pulse rate of marathon runners differs from a specified value.

By default, both of these tests examine the hypothesis that the median of the population from which the
sample is drawn is equal to a specified value, which is zero by default. The Wilcoxon signed rank test requires
that the distribution be symmetric; the sign test does not require this assumption. These tests can also be used
for the case of two related samples; see the section “Comparing Two Independent Samples” on page 273 for
more information.

These two tests are automatically provided by the UNIVARIATE procedure. For details, formulas, and
examples, see the chapter “The UNIVARIATE Procedure” in the Base SAS Procedures Guide.

Two-Sample Tests
This section describes tests appropriate for two independent samples (for example, two groups of subjects
given different treatments) and for two related samples (for example, before-and-after measurements on a
single group of subjects). Related samples are also referred to as paired samples or matched pairs.
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Comparing Two Independent Samples
SAS/STAT software provides several nonparametric tests for location and scale differences for two indepen-
dent samples.

When you perform these tests, your data should consist of a random sample of observations from two different
populations. Your goal is to compare either the location parameters (medians) or the scale parameters of the
two populations. For example, suppose your data consist of the number of days in the hospital for two groups
of patients: those who received a standard surgical procedure and those who received a new, experimental
surgical procedure. These patients are a random sample from the population of patients who have received the
two types of surgery. Your goal is to decide whether the median hospital stays differ for the two populations.

Tests in the NPAR1WAY Procedure

The NPAR1WAY procedure provides the following location tests: Wilcoxon rank sum test (Mann-Whitney
U test), median test, Savage test, and Van der Waerden (normal scores) test. Note that the Wilcoxon rank
sum test can also be obtained from the FREQ procedure. PROC NPAR1WAY provides Hodges-Lehmann
estimation of the location shift between two samples, including asymptotic (Moses) and exact confidence
limits.

In addition, PROC NPAR1WAY produces the following tests for scale differences: Siegel-Tukey test, Ansari-
Bradley test, Klotz test, and Mood test. PROC NPAR1WAY also provides the Conover test, which can be
used to test for differences in both location and scale.

Additionally, PROC NPAR1WAY provides tests that use the input data observations as scores, enabling you
to produce a wide variety of tests. You can construct any scores for your data with the DATA step, and then
PROC NPAR1WAY computes the corresponding linear rank test. You can directly analyze the raw data this
way, producing the permutation test known as Pitman’s test.

When data are sparse, skewed, or heavily tied, the usual asymptotic tests might not be appropriate. In these
situations, exact tests might be suitable for analyzing your data. The NPAR1WAY procedure can produce
exact p-values for all of the two-sample tests for location and scale differences.

See Chapter 71, “The NPAR1WAY Procedure,” for details, formulas, and examples of these tests.

Tests in the FREQ Procedure

The FREQ procedure provides nonparametric tests that compare the location of two groups and that test for
independence between two variables.

The situation in which you want to compare the location of two groups of observations corresponds to
a table with two rows. In this case, the asymptotic Wilcoxon rank sum test can be obtained by using
SCORES=RANK in the TABLES statement and by looking at either of the following:

• the Mantel-Haenszel statistic in the list of tests for no association. This is labeled as “Mantel Haenszel
Chi-Square,” and PROC FREQ displays the statistic, the degrees of freedom, and the p-value. To
obtain this statistic, specify the CHISQ option in the TABLES statement.

• the CMH statistic 2 in the section on Cochran-Mantel-Haenszel statistics. PROC FREQ displays the
statistic, the degrees of freedom, and the p-value. To obtain this statistic, specify the CMH2 option in
the TABLES statement.
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When you test for independence, the question being answered is whether the two variables of interest are
related in some way. For example, you might want to know if student scores on a standard test are related to
whether students attended a public or private school. One way to think of this situation is to consider the
data as a two-way table; the hypothesis of interest is whether the rows and columns are independent. In the
preceding example, the groups of students would form the two rows, and the scores would form the columns.
The special case of a two-category response (Pass/Fail) leads to a 2 � 2 table; the case of more than two
categories for the response (A/B/C/D/F) leads to a 2 � c table, where c is the number of response categories.

For testing whether two variables are independent, PROC FREQ provides Fisher’s exact test. For a 2 � 2
table, PROC FREQ automatically provides Fisher’s exact test when you specify the CHISQ option in the
TABLES statement. For a 2 � c table, use the FISHER option in the EXACT statement to obtain the test.

See Chapter 40, “The FREQ Procedure,” for details, formulas, and examples of these tests.

Comparing Two Related Samples
SAS/STAT software provides the following nonparametric tests for comparing the locations of two related
samples:

• Wilcoxon signed rank test

• sign test

• McNemar’s test

The first two tests are available in the UNIVARIATE procedure, and the last test is available in the FREQ
procedure. When you perform these tests, your data should consist of pairs of measurements for a random
sample from a single population. For example, suppose your data consist of SAT scores for students before
and after attending a course on how to prepare for the SAT. The pairs of measurements are the scores before
and after the course, and the students should be a random sample of students who attended the course. Your
goal in analysis is to decide whether the median change in scores is significantly different from zero.

Tests in the UNIVARIATE Procedure

By default, PROC UNIVARIATE performs a Wilcoxon signed rank test and a sign test. To use these tests on
two related samples, perform the following steps:

1. In the DATA step, create a new variable that contains the differences between the two related variables.

2. Run PROC UNIVARIATE, using the new variable in the VAR statement.

See the chapter “The UNIVARIATE Procedure” in the Base SAS Procedures Guide for details and examples
of these tests.

Tests in the FREQ Procedure

The FREQ procedure can be used to obtain McNemar’s test, which is simply another special case of a
Cochran-Mantel-Haenszel statistic (and also of the sign test). The AGREE option in the TABLES statement
produces this test for 2 � 2 tables, and exact p-values are also available for this test. See Chapter 40, “The
FREQ Procedure,” for more information.
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Tests for k Samples

Comparing k Independent Samples
One goal in comparing k independent samples is to determine whether the location parameters (medians) of
the populations are different. Another goal is to determine whether the scale parameters for the populations
are different. For example, suppose new employees are randomly assigned to one of three training programs.
At the end of the program, the employees are given a standard test that provides a rating score of their job
ability. The goal of analysis is to compare the median scores for the three groups and decide whether the
differences are real or due to chance alone.

To compare k independent samples, either the NPAR1WAY or the FREQ procedure provides a Kruskal-
Wallis test. PROC NPAR1WAY also provides the Savage, median, and Van der Waerden (normal scores)
tests. In addition, PROC NPAR1WAY produces the following tests for scale differences: Siegel-Tukey test,
Ansari-Bradley test, Klotz test, and Mood test. PROC NPAR1WAY also provides the Conover test, which
can be used to test for differences in both location and scale. Note that you can obtain exact p-values for all
of these tests.

Additionally, you can specify the SCORES=DATA option to use the input data observations as scores. This
enables you to produce a very wide variety of tests. You can construct any scores for your data with the
DATA step, and then PROC NPAR1WAY computes the corresponding linear rank and one-way ANOVA tests.
You can also analyze the raw data with the SCORES=DATA option; for two-sample data, this permutation
test is known as Pitman’s test.

See Chapter 71, “The NPAR1WAY Procedure,” for details, formulas, and examples.

To produce a Kruskal-Wallis test in the FREQ procedure, use SCORES=RANK and the CMH2 option in the
TABLES statement. Then, look at the second Cochran-Mantel-Haenszel statistic (labeled “Row Mean Scores
Differ”) to obtain the Kruskal-Wallis test. The FREQ procedure also provides the Jonckheere-Terpstra test,
which is more powerful than the Kruskal-Wallis test for comparing k samples against ordered alternatives.
The exact test is also available. In addition, you can obtain a ridit analysis, developed by Bross (1958), by
specifying SCORES=RIDIT or SCORES=MODRIDIT in the TABLES statement in the FREQ procedure.
See Chapter 40, “The FREQ Procedure,” for more information.

Comparing k Dependent Samples
Friedman’s test enables you to compare the locations of three or more dependent samples. You can obtain
Friedman’s chi-square with the FREQ procedure by using the CMH2 option with SCORES=RANK and by
looking at the second CMH statistic in the output. For an example, see Chapter 40, “The FREQ Procedure,”
which also contains formulas and other details about the CMH statistics. For a discussion of how to use the
RANK and GLM procedures to obtain Friedman’s test, see Ipe (1987).
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Measures of Correlation and Associated Tests
The CORR procedure in Base SAS software provides several nonparametric measures of association and
associated tests. It computes Spearman’s rank-order correlation, Kendall’s tau-b, and Hoeffding’s measure of
dependence, and it provides tests for each of these statistics. PROC CORR also computes Spearman’s partial
rank-order correlation and Kendall’s partial tau-b. Finally, PROC CORR computes Cronbach’s coefficient
alpha for raw and standardized variables. This statistic can be used to estimate the reliability coefficient. For
a general discussion of correlations, formulas, interpretation, and examples, see the chapter “The CORR
Procedure” in the Base SAS Procedures Guide.

The FREQ procedure also provides some nonparametric measures of association: gamma, Kendall’s tau-
b, Stuart’s tau-c, Somers’ D, and the Spearman rank correlation. The output includes the measure, the
asymptotic standard error, confidence limits, and the asymptotic test that the measure equals zero. Exact tests
are also available for some of these measures. For more information, see Chapter 40, “The FREQ Procedure.”

Obtaining Ranks
The primary procedure for obtaining ranks is the RANK procedure in Base SAS software. Note that
the PRINQUAL and TRANSREG procedures also provide rank transformations. With all three of these
procedures, you can create an output data set and use it as input to another SAS/STAT procedure or to the
IML procedure. For more information, see the chapter “The RANK Procedure” in the Base SAS Procedures
Guide. Also see Chapter 80, “The PRINQUAL Procedure,” and Chapter 104, “The TRANSREG Procedure.”

In addition, you can specify SCORES=RANK in the TABLES statement in the FREQ procedure. PROC
FREQ then uses ranks to perform the analyses requested and generates nonparametric analyses.

For more discussion of the rank transform, see Iman and Conover (1979); Conover and Iman (1981); Hora
and Conover (1984); Iman, Hora, and Conover (1984); Hora and Iman (1988); Iman (1988).

Kernel Density Estimation
The KDE procedure performs either univariate or bivariate kernel density estimation. Statistical density
estimation involves approximating a hypothesized probability density function from observed data. Kernel
density estimation is a nonparametric technique for density estimation in which a known density function
(the kernel) is averaged across the observed data points to create a smooth approximation.

PROC KDE uses a Gaussian density as the kernel, and its assumed variance determines the smoothness of
the resulting estimate. PROC KDE outputs the kernel density estimate to a SAS data set, which you can then
use with other procedures for plotting or analysis. PROC KDE also computes a variety of common statistics,
including estimates of the percentiles of the hypothesized probability density function.

For more information, see Chapter 54, “The KDE Procedure.”
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Overview of Structural Equation Modeling with Latent
Variables
Structural equation modeling includes analysis of covariance structures and mean structures, fitting systems
of linear structural equations, factor analysis, and path analysis. In terms of the mathematical and statistical
techniques involved, these various types of analyses are more or less interchangeable because the underlying
methodology is based on analyzing the mean and covariance structures. However, the different analysis types
emphasize different aspects of the analysis.

The analysis of covariance structures refers to the formulation of a model for the observed variances and
covariances among a set of variables. The model expresses the variances and covariances as functions of
some basic parameters. Similarly, the analysis of mean structures refers to the formulation of a model
for the observed means. The model expresses the means as functions of some basic parameters. Usually,
the covariance structures are of primary interest. However, sometimes the mean structures are analyzed
simultaneously with the covariance structures in a model.

Corresponding to this kind of abstract formulation of mean and covariance structure analysis, PROC CALIS
offers you two matrix-based modeling languages for specifying your model:

• MSTRUCT: a matrix-based model specification language that enables you to directly specify the
parameters in the covariance and mean model matrices

• COSAN: a general matrix-based model specification language that enables you to specify a very wide
class of mean and covariance structure models in terms of matrix expressions
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Instead of focusing directly on the mean and covariance structures, other generic types of structural equation
modeling emphasize more about the functional relationships among variables. Mean and covariance structures
are still the means of these analyses, but they are usually implied from the structural relationships, rather than
being directly specified as in the COSAN or MSTRUCT modeling languages.

In linear structural equations, the model is formulated as a system of equations that relates several random
variables with assumptions about the variances and covariances of the random variables. The variables in-
volved in the system of linear structural equations could be observed (manifest) or latent. Causal relationships
between variables are hypothesized in the model.

When all observed variables in the model are hypothesized as indicator measures of underlying latent factors
and the main interest is about studying the structural relations among the latent factors, it is a modeling
scenario for factor-analysis or LISREL (Keesling 1972; Wiley 1973; Jöreskog 1973). PROC CALIS provides
you two modeling languages that are closely related to this type of modeling scenario:

• FACTOR: a non-matrix-based model specification language that supports both exploratory and confir-
matory factor analysis, including orthogonal and oblique factor rotations

• LISMOD: a matrix-based model specification language that enables you to specify the parameters in
the LISREL model matrices

When causal relationships among observed and latent variables are freely hypothesized so that the observed
variables are not limited to the roles of being measured indicators of latent factors, it is a modeling scenario
for general path modeling (path analysis). In general path modeling, the model is formulated as a path
diagram, in which arrows that connect variables represent variances, covariances, and path coefficients
(effects). Depending on the way you represent the path diagram, you can use any of the following three
different modeling languages in PROC CALIS:

• PATH: a non-matrix-based language that enables you to specify path-like relationships among variables

• RAM: a matrix-based language that enables you to specify the paths, variances, and covariance
parameters in terms of the RAM model matrices (McArdle and McDonald 1984)

• LINEQS: an equation-based language that uses linear equations to specify functional or path relation-
ships among variables (for example, the EQS model by Bentler 1995)

Although various types of analyses are put into distinct classes (with distinct modeling languages), with
careful parameterization and model specification, it is possible to apply any of these modeling languages
to the same analysis. For example, you can use the PATH modeling language to specify a confirmatory
factor-analysis model, or you can use the LISMOD modeling language to specify a general path model.
However, for some situations some modeling languages are easier to use than others. See the section “Which
Modeling Language?” on page 1194 in Chapter 29, “The CALIS Procedure,” for a detailed discussion of the
modeling languages supported in PROC CALIS.

Loehlin (1987) provides an excellent introduction to latent variable models by using path diagrams and
structural equations. A more advanced treatment of structural equation models with latent variables is given
by Bollen (1989). Fuller (1987) provides a highly technical statistical treatment of measurement-error models.

This chapter illustrates applications of PROC CALIS, describes some of the main modeling features of PROC
CALIS, and compares the CALIS procedure with the FACTOR and the SYSLIN procedures.
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Testing Covariance Patterns
The most basic use of PROC CALIS is testing covariance patterns. Consider a repeated-measures experiment
where individuals are tested for their motor skills at three different time points. No treatments are introduced
between these tests. The three test scores are denoted as X1, X2, and X3, respectively. These test scores are
likely correlated because the same set of individuals has been used. More specifically, the researcher wants to
test the following pattern of the population covariance matrix †:

† D

0@ � � �

� � �

� � �

1A
Because there are no treatments between the tests, this pattern assumes that the distribution of motor skills
stays more or less the same over time, as represented by the same � for the diagonal elements of †. The
covariances between the test scores for motor skills also stay the same, as represented by the same � for all
the off-diagonal elements of †.

Suppose you summarize your data in a covariance matrix, which is stored in the following SAS data set:

data motor(type=cov);
input _type_ $ _name_ $ x1 x2 x3;
datalines;

COV x1 3.566 1.342 1.114
COV x2 1.342 4.012 1.056
COV x3 1.114 1.056 3.776
N . 36 36 36
;

The diagonal elements are somewhat close to each other but are not the same. The off-diagonal elements are
also very close to each other but are not the same. Could these observed differences be due to chance? Given
the sample covariance matrix, can you test the hypothesized patterned covariance matrix in the population?

Setting up this patterned covariance model in PROC CALIS is straightforward with the MSTRUCT modeling
language:

proc calis data=motor;
mstruct var = x1-x3;
matrix _cov_ = phi

theta phi
theta theta phi;

run;

In the VAR= option in the MSTRUCT statement, you specify that x1–x3 are the variables in the covariance
matrix. Next, you specify the elements of the patterned covariance matrix in the MATRIX statement with the
_COV_ keyword. Because the covariance matrix is symmetric, you need to specify only the lower triangular
elements in the MATRIX statement. You use phi for the parameters of all diagonal elements and theta for
the parameters of all off-diagonal elements. Matrix elements with the same parameter name are implicitly
constrained to be equal. Hence, this is the patterned covariance matrix that you want to test. Some output
results from PROC CALIS are shown in Figure 17.1.
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Figure 17.1 Fit Summary

Fit Summary

Chi-Square 0.3656

Chi-Square DF 4

Pr > Chi-Square 0.9852

MSTRUCT _COV_ Matrix:
Estimate/StdErr/t-value/p-value

x1 x2 x3

x1 3.7847
0.5701
6.6383
<.0001
[phi]

1.1707
0.5099
2.2960
0.0217
[theta]

1.1707
0.5099
2.2960
0.0217
[theta]

x2 1.1707
0.5099
2.2960
0.0217
[theta]

3.7847
0.5701
6.6383
<.0001
[phi]

1.1707
0.5099
2.2960
0.0217
[theta]

x3 1.1707
0.5099
2.2960
0.0217
[theta]

1.1707
0.5099
2.2960
0.0217
[theta]

3.7847
0.5701
6.6383
<.0001
[phi]

First, PROC CALIS shows that the chi-square test for the model fit is 0.3656 (df = 4, p=0.9852). Because
the chi-square test is not significant, it supports the hypothesized patterned covariance model. Next, PROC
CALIS shows the estimates in the covariance matrix under the hypothesized model. The estimates for the
diagonal elements are all 3.7847, and the estimates for off-diagonal elements are all 1.1707. Estimates of
standard errors and t values for these covariance and variance parameters are also shown.

The MSTRUCT modeling language in PROC CALIS enables you to test various kinds of covariance and
mean patterns, including matrices with fixed or constrained values. For example, consider a population
covariance model in which correlations among the motor test scores are hypothesized to be zero. In other
words, the covariance pattern is:

† D

0@ �1 0 0

0 �2 0

0 0 �3

1A
Essentially, this diagonally-patterned covariance model means that the data are randomly and independently
generated for x1–x3 under the multivariate normal distribution. Only the variances of the variables are
parameters in the model, and the variables are not correlated at all.

You can use the MSTRUCT modeling language of PROC CALIS to fit this diagonally-patterned covariance
matrix to the data for motor skills, as shown in the following statements:

proc calis data=motor;
mstruct var = x1-x3;
matrix _cov_ = phi1

0. phi2
0. 0. phi3;

run;
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Some of the output is shown in Figure 17.2.

Figure 17.2 Fit Summary: Testing Uncorrelatedness

Fit Summary

Chi-Square 9.2939

Chi-Square DF 3

Pr > Chi-Square 0.0256

MSTRUCT _COV_ Matrix:
Estimate/StdErr/t-value/p-value

x1 x2 x3

x1 3.5660
0.8524
4.1833
<.0001
[phi1]

0 0

x2 0 4.0120
0.9591
4.1833
<.0001
[phi2]

0

x3 0 0 3.7760
0.9026
4.1833
<.0001
[phi3]

PROC CALIS shows that the chi-square test for the model fit is 9.2939 (df =3, p=0.0256). Because the chi-
square test is significant, it does not support the patterned covariance model that postulates zero correlations
among the variables. This conclusion is consistent with what is already known—the motor test scores should
be somewhat correlated because they are measurements over time for the same group of individuals.

The output also shows the estimates of variances under the model. Each diagonal element of the covariance
matrix has a distinct estimate because different parameters have been hypothesized under the patterned
covariance model.

Testing Built-In Covariance Patterns in PROC CALIS
Some covariance patterns are well-known in multivariate statistics. For example, testing the diagonal pattern
for a covariance matrix in the preceding section is a test of uncorrelatedness between the observed variables.
Under the multivariate normal assumption, this test is also a test of independence between the observed
variables. This test of independence is routinely applied in maximum likelihood factor analysis for testing the
zero common factor hypothesis for the observed variables. For testing such a well-known covariance pattern,
PROC CALIS provides an efficient way of specifying a model. With the COVPATTERN= option, you can
invoke the built-in covariance patterns in PROC CALIS without the MSTRUCT model specifications, which
could become laborious when the number of variables are large.
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For example, to test the diagonal pattern (uncorrelatedness) of the motor skills, you can simply use the
following specification:

proc calis data=motor covpattern=uncorr;
run;

The COVPATTERN=UNCORR option in the PROC CALIS statement invokes the diagonally patterned
covariance matrix for the motor skills. PROC CALIS then generates the appropriate free parameters for
this built-in covariance pattern. As a result, the MATRIX statement is not needed for specifying the free
parameters, as it is if you use explicit MSTRUCT model specifications. Some of the output for using the
COVPATTERN= option is shown in Figure 17.3.

Figure 17.3 Fit Summary: Testing Uncorrelatedness with the COVPATTERN= Option

Fit Summary

Chi-Square 8.8071

Chi-Square DF 3

Pr > Chi-Square 0.0320

MSTRUCT _COV_ Matrix:
Estimate/StdErr/t-value/p-value

x1 x2 x3

x1 3.5660
0.8524
4.1833
<.0001

[_varparm_1]

0 0

x2 0 4.0120
0.9591
4.1833
<.0001

[_varparm_2]

0

x3 0 0 3.7760
0.9026
4.1833
<.0001

[_varparm_3]

In the second table of Figure 17.3, the estimates of variances and their standard errors are the same as those
shown in Figure 17.2. The only difference is that the parameter names (for example, _varparm_1) for the
variances in Figure 17.3 are generated by PROC CALIS, instead of being specified as those in Figure 17.2.

However, the current chi-square test for the model fit is 8.8071 (df =3, p=0.0320), which is different from that
in Figure 17.2 for testing the same covariance pattern. The reason is that the chi-square correction due to
Bartlett (1950) has been applied automatically to the current built-in covariance pattern testing. Theoretically,
this corrected chi-square value is more accurate. Therefore, in addition to its efficiency in specification,
the built-in covariance pattern with the COVPATTERN= option offers an extra advantage in the automatic
chi-square correction.

The COVPATTERN= option supports many other built-in covariance patterns. For details, see the
COVPATTERN= option. See also the MEANPATTERN= option for testing built-in mean patterns.
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Direct and Implied Covariance Patterns
You have seen how you can use PROC CALIS to test covariance patterns directly. Basically, you can specify
the parameters in the covariance and mean matrices directly by using the MSTRUCT modeling language,
which is invoked by the MSTRUCT statement. You can also use the COVPATTERN= option to test some
built-in covariance patterns in PROC CALIS. To handle more complicated covariance and mean structures
that are products of several model matrices, you can use the COSAN modeling language. The COSAN
modeling language is too powerful to consider in this introductory chapter, but see the COSAN statement
and the section “The COSAN Model” on page 1390 in Chapter 29, “The CALIS Procedure.”

This section considers the fitting of patterned covariances matrix directly by using the MSTRUCT and
the MATRIX statements or by the COVPATTERN= option. However, in most applications of structural
equation modeling, the covariance patterns are not specified directly but are implied from the linear structural
relationships among variables. The next few sections show how you can use other modeling languages in
PROC CALIS to specify structural equation models with implied mean and covariance structures.

Regression with Measurement Errors
In this section, you start with a linear regression model and learn how the regression equation can be specified
in PROC CALIS. The regression model is then extended to include measurement errors in the predictors and
in the outcome variables. Problems with model identification are introduced.

Simple Linear Regression
Consider fitting a linear equation to two observed variables, Y and X. Simple linear regression uses the
following model form:

Y D ˛ C ˇX CEY

The model makes the following assumption:

Cov.X;EY / D 0

The parameters ˛ and ˇ are the intercept and regression coefficient, respectively, and EY is an error term.
If the values of X are fixed, the values of EY are assumed to be independent and identically distributed
realizations of a normally distributed random variable with mean zero and variance Var(EY ). If X is a
random variable, X and EY are assumed to have a bivariate normal distribution with zero correlation and
variances Var(X) and Var(EY ), respectively. Under either set of assumptions, the usual formulas hold for the
estimates of the intercept and regression coefficient and their standard errors. (See Chapter 4, “Introduction
to Regression Procedures.”)



Simple Linear Regression F 287

In the REG procedure, you can fit a simple linear regression model with a MODEL statement that lists only
the names of the manifest variables, as shown in the following statements:

proc reg;
model Y = X;

run;

You can also fit this model with PROC CALIS, but the syntax is different. You can specify the simple linear
regression model in PROC CALIS by using the LINEQS modeling language, as shown in the following
statements:

proc calis;
lineqs

Y = beta * X + Ey;
run;

LINEQS stands for “LINear EQuationS.” You invoke the LINEQS modeling language by using the LINEQS
statement in PROC CALIS. In the LINEQS statement, you specify the linear equations of your model. The
LINEQS statement syntax is similar to the mathematical equation that you would write for the model. An
obvious difference between the LINEQS and the PROC REG model specification is that in LINEQS you can
name the parameter involved (for example, beta) and you also specify the error term explicitly. The additional
syntax required by the LINEQS statement seems to make the model specification more time-consuming and
cumbersome. However, this inconvenience is minor and is offset by the modeling flexibility of the LINEQS
modeling language (and of PROC CALIS, generally). As you proceed to more examples in this chapter, you
will find the benefits of specifying parameter names for more complicated models with constraints. You will
also find that specifying parameter names for unconstrained parameters is optional. Using parameter names
in the current example is for the ease of reference in the current discussion.

You might wonder whether an intercept term is missing in the LINEQS statement and where you should
put the intercept term if you want to specify it. The intercept term, which is considered as a mean structure
parameter in the context of structural equation modeling, is usually omitted when statistical inferences can
be drawn from analyzing the covariance structures alone. However, this does not mean that the regression
equation has a default fixed-zero intercept in the LINEQS specification. Rather, it means only that the mean
structures are saturated and are not estimated in the covariance structure model. Therefore, in the preceding
LINEQS specification, the intercept term ˛ is implicitly assumed in the model. It is not of primary interest
and is not estimated.

However, if you want to estimate the intercept, you can specify it in the LINEQS equations, as shown in the
following specification:

proc calis;
lineqs

Y = alpha * Intercept + beta * X + Ey;
run;

In this LINEQS statement, alpha represents the intercept parameter ˛ and intercept represents an internal
“variable” that has a fixed value of 1 for each observation. With this specification, an estimate of ˛ is displayed
in the PROC CALIS output results. However, estimation results for other parameters are the same as those
from the specification without the intercept term. For this reason the intercept term is not specified in the
examples of this section.
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Errors-in-Variables Regression
For ordinary unconstrained regression models, there is no reason to use PROC CALIS instead of PROC REG.
But suppose that the predictor variable X is a random variable that is contaminated by errors (especially
measurement errors), and you want to estimate the linear relationship between the true, error-free scores. The
following model takes this kind of measurement errors into account:

Y D ˛ C ˇFX CEY

X D FX CEX

The model assumes the following:

Cov.FX ; EY / D Cov.FX ; EX / D Cov.EX ; EY / D 0

There are two equations in the model. The first one is the so-called structural model, which describes the
relationships between Y and the true score predictor FX . This equation is your main interest. However, FX
is a latent variable that has not been observed. Instead, what you have observed for this predictor is X, which
is the contaminated version of FX with measurement error or other errors, denoted by EX , added. This
measurement process is described in the second equation, or the so-called measurement model. By analyzing
the structural and measurement models (or the two linear equations) simultaneously, you want to estimate the
true score effect ˇ.

The assumption that the error terms EX and EY and the latent variable FX are jointly uncorrelated is of
critical importance in the model. This assumption must be justified on substantive grounds such as the
physical properties of the measurement process. If this assumption is violated, the estimators might be
severely biased and inconsistent.

You can express the current errors-in-variables model by the LINEQS modeling language as shown in the
following statements:

proc calis;
lineqs

Y = beta * Fx + Ey,
X = 1. * Fx + Ex;

run;

In this specification, you need to specify only the equations involved without specifying the assumptions
about the correlations among Fx, Ey, and Ex. In the LINEQS modeling language, you should always name
latent factors with the ‘F’ or ‘f’ prefix (for example, Fx) and error terms with the ‘E’ or ‘e’ prefix (for example,
Ey and Ex). Given this LINEQS notation, latent factors and error terms, by default, are uncorrelated in the
model.

Consider an example of an errors-in-variables regression model. Fuller (1987, pp. 18–19) analyzes a data
set from Voss (1969) that involves corn yields (Y) and available soil nitrogen (X) for which there is a prior
estimate of the measurement error for soil nitrogen Var(EX ) of 57. The scientific question is: how does
nitrogen affect corn yields? The linear prediction of corn yields by nitrogen should be based on a measure of
nitrogen that is not contaminated with measurement error. Hence, the errors-in-variables model is applied.
FX in the model represents the “true” nitrogen measure, X represents the observed measure of nitrogen,
which has a true score component FX and an error component EX . Given that the measurement error for
soil nitrogen Var(EX ) is 57, you can specify the errors-in-variables regression model with the following
statements in PROC CALIS:



Errors-in-Variables Regression F 289

data corn(type=cov);
input _type_ $ _name_ $ y x;
datalines;

cov y 87.6727 .
cov x 104.8818 304.8545
mean . 97.4545 70.6364
n . 11 11
;

proc calis data=corn;
lineqs

Y = beta * Fx + Ey,
X = 1. * Fx + Ex;

variance
Ex = 57.;

run;

In the VARIANCE statement, the variance of Ex (measurement error for X) is given as the constant value 57.
PROC CALIS produces the estimates shown in Figure 17.4.

Figure 17.4 Errors-in-Variables Model for Corn Data

Linear Equations

y = 0.4232 (**) Fx + 1.0000 Ey

x = 1.0000 Fx + 1.0000 Ex

Effects in Linear Equations

Variable Predictor Parameter Estimate
Standard

Error t Value Pr > |t|

y Fx beta 0.42316 0.16582 2.5520 0.0107

x Fx 1.00000

Estimates for Variances of Exogenous Variables

Variable
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Error Ex 57.00000

Latent Fx _Add1 247.85450 136.33508 1.8180 0.0691

Error Ey _Add2 43.29105 23.92488 1.8095 0.0704

In Figure 17.4, the estimate of beta is 0.4232 with a standard error estimate of 0.1658. The t value is 2.552.
It is significant at the 0.05 ˛-level when compared to the critical value of the standard normal variate (that is,
the z table). Also shown in Figure 17.4 are the estimated variances of Fx, Ey, and their estimated standard
errors. The names of these parameters have the prefix ‘_Add’. They are added by PROC CALIS as default
parameters. By employing some conventional rules for setting default parameters, PROC CALIS makes your
model specification much easier and concise. For example, you do not need to specify each error variance
parameter manually if it is not constrained in the model. However, you can specify these parameters explicitly
if you desire. Note that in Figure 17.4, the variance of Ex is shown to be 57 without a standard error estimate
because it is a fixed constant in the model.
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What if you did not model the measurement error in the predictor X? That is, what is the estimate of beta if
you use ordinary regression of Y on X, as described by the equation in the section “Simple Linear Regression”
on page 286? You can specify such a linear regression model easily by the LINEQS modeling language.
Here, you specify this linear regression model as a special case of the errors-in-variables model. That is, you
constrain the variance of measurement error Ex to 0 in the preceding LINEQS model specification to form
the linear regression model, as shown in the following statements:

proc calis data=corn;
lineqs

Y = beta * Fx + Ey,
X = 1. * Fx + Ex;

variance
Ex = 0.;

run;

Fixing the variance of Ex to zero forces the equality of X and FX in the measurement model so that this “new”
errors-in-variables model is in fact an ordinary regression model. PROC CALIS produces the estimation
results in Figure 17.5.

Figure 17.5 Ordinary Regression Model for Corn Data: Zero Measurement Error in X

Linear Equations

y = 0.3440 (**) Fx + 1.0000 Ey

x = 1.0000 Fx + 1.0000 Ex

Effects in Linear Equations

Variable Predictor Parameter Estimate
Standard

Error t Value Pr > |t|

y Fx beta 0.34404 0.13009 2.6447 0.0082

x Fx 1.00000

Estimates for Variances of Exogenous Variables

Variable
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Error Ex 0

Latent Fx _Add1 304.85450 136.33508 2.2361 0.0253

Error Ey _Add2 51.58928 23.07143 2.2361 0.0253

The estimate of beta is now 0.3440, which is an underestimate of the effect of nitrogen on corn yields given
the presence of nonzero measurement error in X, where the estimate of beta is 0.4232.

Regression with Measurement Errors in X and Y
What if there are also measurement errors in the outcome variable Y? How can you write such an extended
model? The following model would take measurement errors in both X and Y into account:

FY D ˛ C ˇFX CDFy

Y D FY CEY

X D FX CEX
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with the following assumption:

Cov.FX ;DFy/ D Cov.FX ; EY / D Cov.FX ; EX / D Cov.FY ; EY /

D Cov.FY ; EX / D Cov.EX ; EY / D Cov.EX ;DFy/

D Cov.EY ;DFy/ D 0

Again, the first equation, expressing the relationship between two latent true-score variables, defines the
structural or causal model. The next two equations express the observed variables in terms of a true score plus
error; these two equations define the measurement model. This is essentially the same form as the so-called
LISREL model (Keesling 1972; Wiley 1973; Jöreskog 1973), which has been popularized by the LISREL
program (Jöreskog and Sörbom 1988). Typically, there are several X and Y variables in a LISREL model.
For the moment, however, the focus is on the current regression form in which there is only a single predictor
and a single outcome variable. The LISREL model is considered in the section “Fitting LISREL Models by
the LISMOD Modeling Language” on page 341.

With the intercept term left out for modeling, you can use the following statements for fitting the regression
model with measurement errors in both X and Y:

proc calis data=corn;
lineqs

Fy = beta * Fx + DFy,
Y = 1. * Fy + Ey,
X = 1. * Fx + Ex;

run;

Again, you do not need to specify the zero-correlation assumptions in the LINEQS model because they are
set by default given the latent factors and errors in the LINEQS modeling language. When you run this
model, PROC CALIS issues the following warning:

WARNING: Estimation problem not identified: More parameters to
estimate ( 5 ) than the total number of mean and
covariance elements ( 3 ).

The five parameters in the model include beta and the variances for the exogenous variables: Fx, DFy,
Ey, and Ex. These variance parameters are treated as free parameters by default in PROC CALIS. You
have five parameters to estimate, but the information for estimating these five parameters comes from
the three unique elements in the sample covariance matrix for X and Y. Hence, your model is in the so-
called underidentification situation. Model identification is discussed in more detail in the section “Model
Identification” on page 293.

To make the current model identified, you can put constraints on some parameters. This reduces the number
of independent parameters to estimate in the model. In the errors-in-variables model for the corn data, the
variance of Ex (measurement error for X) is given as the constant value 57, which was obtained from a
previous study. This could still be applied in the current model with measurement errors in both X and
Y. In addition, if you are willing to accept the assumption that the structural equation model is (almost)
deterministic, then the variance of Dfy could be set to 0. With these two parameter constraints, the current
model is just-identified. That is, you can now estimate three free parameters from three distinct covariance
elements in the data. The following statements show the LINEQS model specification for this just-identified
model:
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proc calis data=corn;
lineqs

Fy = beta * Fx + Dfy,
Y = 1. * Fy + Ey,
X = 1. * Fx + Ex;

variance
Ex = 57.,
Dfy = 0.;

run;

Figure 17.6 shows the estimation results.

Figure 17.6 Regression Model With Measurement Errors in X and Y for Corn Data

Linear Equations

Fy = 0.4232 (**) Fx + 1.0000 Dfy

y = 1.0000 Fy + 1.0000 Ey

x = 1.0000 Fx + 1.0000 Ex

Effects in Linear Equations

Variable Predictor Parameter Estimate
Standard

Error t Value Pr > |t|

Fy Fx beta 0.42316 0.16582 2.5520 0.0107

y Fy 1.00000

x Fx 1.00000

Estimates for Variances of Exogenous Variables

Variable
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Error Ex 57.00000

Disturbance Dfy 0

Latent Fx _Add1 247.85450 136.33508 1.8180 0.0691

Error Ey _Add2 43.29105 23.92488 1.8095 0.0704

In Figure 17.6, the estimate of beta is 0.4232, which is basically the same as the estimate for beta in
the errors-in-variables model shown in Figure 17.4. The estimated variances for Fx and Ey match for the
two models too. In fact, it is not difficult to show mathematically that the current constrained model with
measurements errors in both Y and X is equivalent to the errors-in-variables model for the corn data. The
numerical results merely confirm this fact.

It is important to emphasize that the equivalence shown here is not a general statement about the current
model with measurement errors in X and Y and the errors-in-variables model. Essentially, the equivalence
of the two models as applied to the corn data is due to those constraints imposed on the measurement error
variances for DFy and Ex. The more important implication from these two analyses is that for the model with
measurement errors in both X and Y, you need to set more parameter constraints to make the model identified.
Some constraints might be substantively meaningful, while others might need strong or risky assumptions.

For example, setting the variance of Ex to 57 is substantively meaningful because it is based on a prior study.
However, setting the variance of Dfy to 0 implies the acceptance of the deterministic structural model, which
could be a rather risky assumption in most practical situations. It turns out that using these two constraints
together for the model identification of the regression with measurement errors in both X and Y does not
give you more substantively important information than what the errors-in-variables model has already given
you (compare Figure 17.6 with Figure 17.4). Therefore, the set of identification constraints you use might
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be important in at least two aspects. First, it might lead to an identified model if you set them properly.
Second, given that the model is identified, the meaningfulness of your model depends on how reasonable
your identification constraints are.

The two identification constraints set on the regression model with measurement errors in both X and Y make
the model identified. But they do not lead to model estimates that are more informative than that of the
errors-in-variables regression. Some other sets of identification constraints, if available, might have been
more informative. For example, if there were a prior study about the measurement error variance of corn
yields (Y), a fixed constant for the variance of Ey could have been set, instead of the unrealistic zero variance
constraint of Dfy. This way the estimation results of the regression model with measurement errors in both X
and Y would offer you something different from the errors-in-variables regression.

Setting identification constraints could be based on convention or other arguments. See the section “Illustra-
tion of Model Identification: Spleen Data” on page 294 for an example where model identification is attained
by setting constant error variances for X and Y in the model. For the corn data, you have seen that fixing
the error variance of the predictor variable led to model identification of the errors-in-variables model. In
this case, prior knowledge about the measurement error variance is necessary. This necessity is partly due to
the fact that each latent true score variable has only one observed variable as its indicator measure. When
you have more measurement indicators for the same latent factor, fixing the measurement error variances to
constants for model identification would not be necessary. This is the modeling scenario assumed by the
LISREL model (see the section “Fitting LISREL Models by the LISMOD Modeling Language” on page 341),
of which the confirmatory factor model is a special case. The confirmatory factor model is described and
illustrated in the section “The FACTOR and RAM Modeling Languages” on page 318.

Model Identification
As discussed in the preceding section, if you try to fit the errors-in-variables model with measurement errors
in both X and Y without applying certain constraints, the model is not identified and you cannot obtain unique
estimates of the parameters. For example, the errors-in-variables model with measurement errors in both
X and Y has five parameters (one coefficient ˇ and four variances). The covariance matrix of the observed
variables Y and X has only three elements that are free to vary, since Cov(Y,X)=Cov(X,Y). Therefore, the
covariance structure can be expressed as three equations in five unknown parameters. Since there are fewer
equations than unknowns, there are many different sets of values for the parameters that provide a solution
for the equations. Such a model is said to be underidentified.

If the number of parameters equals the number of free elements in the covariance matrix, then there might
exist a unique set of parameter estimates that exactly reproduce the observed covariance matrix. In this case,
the model is said to be just-identified or saturated.

If the number of parameters is less than the number of free elements in the covariance matrix, there might
exist no set of parameter estimates that reproduces the observed covariance matrix exactly. In this case, the
model is said to be overidentified. Various statistical criteria, such as maximum likelihood, can be used to
choose parameter estimates that approximately reproduce the observed covariance matrix. If you use ML,
FIML, GLS, or WLS estimation, PROC CALIS can perform a statistical test of the goodness of fit of the
model under the certain statistical assumptions.

If the model is just-identified or overidentified, it is said to be identified. If you use ML, FIML, GLS, or
WLS estimation for an identified model, PROC CALIS can compute approximate standard errors for the
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parameter estimates. For underidentified models, PROC CALIS obtains approximate standard errors by
imposing additional constraints resulting from the use of a generalized inverse of the Hessian matrix.

You cannot guarantee that a model is identified simply by counting the parameters. For example, for any latent
variable, you must specify a numeric value for the variance, or for some covariance involving the variable, or
for a coefficient of an indicator variable. Otherwise, the scale of the latent variable is indeterminate, and the
model is underidentified regardless of the number of parameters and the size of the covariance matrix. As
another example, an exploratory factor analysis with two or more common factors is always underidentified
because you can rotate the common factors without affecting the fit of the model.

PROC CALIS can usually detect an underidentified model by computing the approximate covariance matrix
of the parameter estimates and checking whether any estimate is linearly related to other estimates (Bollen
1989, pp. 248–250), in which case PROC CALIS displays equations showing the linear relationships among
the estimates. Another way to obtain empirical evidence regarding the identification of a model is to run the
analysis several times with different initial estimates to see whether the same final estimates are obtained.
Bollen (1989) provides detailed discussions of conditions for identification in a variety of models.

Illustration of Model Identification: Spleen Data
When your model involves measurement errors in variables and you need to use latent true scores in the
regression or structural equation, you might encounter some model identification problems in estimation if
you do not put certain identification constraints in the model. An example is shown in the section “Regression
with Measurement Errors in X and Y” on page 290 for the corn data. You “solved” the problem by assuming
a deterministic model with perfect prediction in the structural model. However, this assumption could be very
risky and does not lead to estimation results that are substantively different from the model with measurement
error only in X.

This section shows how you can apply another set of constraints to make the measurement model with errors
in both X and Y identified without assuming the deterministic structural model. First, the identification
problem is illustrated here again in light of the PROC CALIS diagnostics.

The following example is inspired by Fuller (1987, pp. 40–41). The hypothetical data are counts of two
types of cells in spleen samples: cells that form rosettes and nucleated cells. It is reasonable to assume that
counts have a Poisson distribution; hence, the square roots of the counts should have a constant error variance
of 0.25. You can use PROC CALIS to fit this regression model with measurement errors in X and Y to the
data. (See the section “Regression with Measurement Errors in X and Y” on page 290 for model definitions.)
However, before fitting this target model, it is illustrative to see what would happen if you do not assume the
constant error variance.

The following statements show the LINEQS specification of an errors-in-variables regression model for the
square roots of the counts without constraints on the parameters:

data spleen;
input rosette nucleate;
sqrtrose=sqrt(rosette);
sqrtnucl=sqrt(nucleate);
datalines;

4 62
5 87
5 117
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6 142
8 212
9 120
12 254
13 179
15 125
19 182
28 301
51 357
;

proc calis data=spleen;
lineqs factrose = beta * factnucl + disturb,

sqrtrose = factrose + err_rose,
sqrtnucl = factnucl + err_nucl;

variance
factnucl = v_factnucl,
disturb = v_disturb,
err_rose = v_rose,
err_nucl = v_nucl;

run;

This model is underidentified. You have five parameters to estimate in the model, but the number of distinct
covariance elements is only three.

In the LINEQS statement, you specify the structural equation and then two measurement equations. In
the structural equation, the variables factrose and factnucl are latent true scores for the corresponding
measurements in sqrtrose and sqrtnucl, respectively. The structural equation represents the true variable
relationship of interest. You name the regression coefficient parameter as beta and the error term as disturb
in the structural model. (For structural equations, you can use names with prefix ‘D’ or ‘d’ to denote error
terms.) The variance of factnucl and the variance of disturb are also parameters in the model. You name these
variance parameters as v_factnucl and v_disturb in the VARIANCE statement. Therefore, you have three
parameters in the structural equation.

In the measurement equations, the observed variables sqrtrose and sqrtnucl are specified as the sums of their
corresponding true latent scores and error terms, respectively. The error variances are also parameters in the
model. You name them as v_rose and v_nucl in the VARIANCE statement. Now, together with the three
parameters in the structural equation, you have a total of five parameters in your model.

All variance specifications in the VARIANCE statement are actually optional in PROC CALIS. They are free
parameters by default. In this example, it is useful to name these parameters so that explicit references to
these parameters can be made in the following discussion.

PROC CALIS displays the following warning when you fit this underidentified model:

WARNING: Estimation problem not identified: More parameters to
estimate ( 5 ) than the total number of mean and
covariance elements ( 3 ).

In this warning, the three covariance elements refer to the sample variances of sqrtrose and sqrtnucl and their
covariance. PROC CALIS diagnoses the parameter indeterminacy as follows:

NOTE: Covariance matrix for the estimates is not full rank.
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NOTE: The variance of some parameter estimates is zero or
some parameter estimates are linearly related to other
parameter estimates as shown in the following equations:

v_rose = -0.147856 + 0.447307 * v_disturb

v_nucl = -110.923690 - 0.374367 * beta +
10.353896 * v_factnucl + 1.536613 * v_disturb

With the warning and the notes, you are now certain that the model is underidentified and you cannot interpret
your parameter estimates meaningfully.

Now, to make the model identified, you set the error variances to 0.25 in the VARIANCE statement, as shown
in the following specification:

proc calis data=spleen residual;
lineqs factrose = beta * factnucl + disturb,

sqrtrose = factrose + err_rose,
sqrtnucl = factnucl + err_nucl;

variance
factnucl = v_factnucl,
disturb = v_disturb,
err_rose = 0.25,
err_nucl = 0.25;

run;

In the specification, you use the RESIDUAL option in the PROC CALIS statement to request the residual
analysis. An annotated fit summary is shown in Figure 17.7.

Figure 17.7 Spleen Data: Annotated Fit Summary for the Just-Identified Model

Fit Summary

Chi-Square 0.0000

Chi-Square DF 0

Pr > Chi-Square .

You notice that the model fit chi-square is 0 and the corresponding degrees of freedom is also 0. This indicates
that your model is “just” identified, or your model is saturated—you have three distinct elements in the
sample covariance matrix for the estimation of three parameters in the model. In the PROC CALIS results,
you no longer see the warning message about underidentification or any notes about linear dependence in
parameters.

For just-identified or saturated models like the current case, you expect to get zero residuals in the covariance
matrix, as shown in Figure 17.8:

Figure 17.8 Spleen Data: Residuals for the Just-identified Model

Raw Residual Matrix

sqrtrose sqrtnucl

sqrtrose 0.00000 0.00000

sqrtnucl 0.00000 0.00000
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Residuals are the differences between the fitted covariance matrix and the sample covariance matrix. When
the residuals are all zero, the fitted covariance matrix matches the sample covariance matrix perfectly (the
parameter estimates reproduce the sample covariance matrix exactly).

You can now interpret the estimation results of this just-identified model, as shown in Figure 17.9:

Figure 17.9 Spleen Data: Parameter Estimated for the Just-Identified Model

Linear Equations

factrose = 0.3907 (**) factnucl + 1.0000 disturb

sqrtrose = 1.0000 factrose + 1.0000 err_rose

sqrtnucl = 1.0000 factnucl + 1.0000 err_nucl

Effects in Linear Equations

Variable Predictor Parameter Estimate
Standard

Error t Value Pr > |t|

factrose factnucl beta 0.39074 0.07708 5.0692 <.0001

sqrtrose factrose 1.00000

sqrtnucl factnucl 1.00000

Estimates for Variances of Exogenous Variables

Variable
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Latent factnucl v_factnucl 10.50458 4.58577 2.2907 0.0220

Disturbance disturb v_disturb 0.38153 0.28556 1.3361 0.1815

Error err_rose 0.25000

err_nucl 0.25000

Notice that because the error variance parameters for variables err_rose and err_nucl are fixed constants
in the model, there are no standard error estimates for them in Figure 17.9. For the current application,
the estimation results of the just-identified model are those you would interpret and report. However, to
completely illustrate model identification, an additional constraint is imposed to show an overidentified model.
In the section “Regression with Measurement Errors in X and Y” on page 290, you impose a zero-variance
constraint on the disturbance variable Dfy for the model identification. Would this constraint be necessary
here for the spleen data too? The answer is no because with the two constraints on the variances of err_rose
and err_nucl, the model has already been meaningfully specified and identified. Adding more constraints such
as a zero variance for disturb would make the model overidentified unnecessarily. The following statements
show the specification of such an overidentified model for the spleen data:

proc calis data=spleen residual;
lineqs factrose = beta * factnucl + disturb,

sqrtrose = factrose + err_rose,
sqrtnucl = factnucl + err_nucl;

variance
factnucl = v_factnucl,
disturb = 0.,
err_rose = 0.25,
err_nucl = 0.25;

run;

An annotated fit summary table for the overidentified model is shown in Figure 17.10.
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Figure 17.10 Spleen Data: Annotated Fit Summary for the Overidentified Model

Fit Summary

Chi-Square 5.2522

Chi-Square DF 1

Pr > Chi-Square 0.0219

Standardized RMR (SRMR) 0.0745

Adjusted GFI (AGFI) 0.1821

RMSEA Estimate 0.6217

Bentler Comparative Fit Index 0.6535

The chi-square is 5.2522 (df =1, p=0.0219). Overall, the model does not provide a good fit. The sample size
is so small that the p-value of the chi-square test should not be taken to be accurate, but to get a small p-value
with such a small sample indicates that it is possible that the model is seriously deficient.

This same conclusion can be drawn by looking at other fit indices in the table. In Figure 17.10, several fit
indices are computed for the model. For example, the standardized root mean square residual (SRMSR)
is 0.0745 and the adjusted goodness of fit (AGFI) is 0.1821. By conventions, a good model should have
an SRMSR smaller than 0.05 and an AGFI larger than 0.90. The root mean square error of approximation
(RMSEA) (Steiger and Lind 1980) is 0.6217, but an RMSEA below 0.05 is recommended for a good model
fit (Browne and Cudeck 1993). The comparative fit index (CFI) is 0.6535, which is also low as compared to
the acceptable level at 0.90.

When you fit an overidentified model, usually you do not find estimates that match the sample covariance
matrix exactly. The discrepancies between the fitted covariance matrix and the sample covariance matrix are
shown as residuals in the covariance matrix, as shown in Figure 17.11.

Figure 17.11 Spleen Data: Residuals for the Overidentified Model

Raw Residual Matrix

sqrtrose sqrtnucl

sqrtrose 0.28345 -0.11434

sqrtnucl -0.11434 0.04613

As you can see in Figure 17.11, the residuals are nonzero. This indicates that the parameter estimates do not
reproduce the sample covariance matrix exactly. For overidentified models, nonzero residuals would be the
norm rather than exception, but the general goal is to find the “best” set of estimates so that the residuals are
as small as possible.

The parameter estimates are shown in Figure 17.12.

Figure 17.12 Spleen Data: Parameter Estimated for the Overidentified Model

Linear Equations

factrose = 0.4034 (**) factnucl + 1.0000 disturb

sqrtrose = 1.0000 factrose + 1.0000 err_rose

sqrtnucl = 1.0000 factnucl + 1.0000 err_nucl
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Figure 17.12 continued

Effects in Linear Equations

Variable Predictor Parameter Estimate
Standard

Error t Value Pr > |t|

factrose factnucl beta 0.40340 0.05078 7.9439 <.0001

sqrtrose factrose 1.00000

sqrtnucl factnucl 1.00000

Estimates for Variances of Exogenous Variables

Variable
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Latent factnucl v_factnucl 10.45846 4.56608 2.2905 0.0220

Disturbance disturb 0

Error err_rose 0.25000

err_nucl 0.25000

The estimate of beta in this model is 0.4034. Given that the model fit is bad and the zero variance for the
error term disturb is unreasonable, beta could have been overestimated in the current overidentified model, as
compared with the just-identified model, where the estimate of beta is only 0.3907. In summary, both the fit
summary and the estimation results indicate that the zero variance for disturb in the overidentified model for
the spleen data has been imposed unreasonably.

The purpose of the current illustration is not that you should not consider an overidentified model for your
data in general. Quite the opposite, in practical structural equation modeling it is usually the overidentified
models that are of the paramount interest. You can test or gauge the model fit of overidentified models. Good
overidentified models enable you to establish scientific theories that are precise and general. However, most
fit indices are not meaningful when applied to just-identified saturated models. Also, even though you always
get zero residuals for just-identified saturated models, those models usually are not precise enough to be a
scientific theory.

The overidentified model for the spleen data highlights the importance of setting meaningful identification
constraints. Whether your resulting model is just-identified or overidentified, it is recommended that you do
the following:

• Give priorities to those identification constraints that are derived from prior studies, substantive grounds,
or mathematical basis.

• Avoid making unnecessary identification constraints that might bias your model estimation.

Path Diagrams and Path Analysis
Sections “Errors-in-Variables Regression” on page 288, “Regression with Measurement Errors in X and Y”
on page 290, and “Illustration of Model Identification: Spleen Data” on page 294 show how you can specify
models by means of equations in the LINEQS modeling language. This section shows you how to specify
models that are represented by path diagrams. The PATH modeling language of PROC CALIS is the main
tool for this purpose.
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Complicated models are often easier to understand when they are expressed as path diagrams. One advantage
of path diagrams over equations is that variances and covariances can be shown directly in the path diagram.
Loehlin (1987) provides a detailed discussion of path diagrams. Another advantage is that the path diagram
can be transcribed easily into the PATH modeling language supported by PROC CALIS.

A path diagram for the spleen data is shown in Figure 17.13. It explicitly shows all latent variables (including
error terms) and variances of exogenous variables.

Figure 17.13 Path Diagram: Spleen Data

0.25 0.25

err_rose err_nucl

1.0 1.0

sqrtrose sqrtnucl

1.0 1.0

factrose factnucl
beta

v_factnucl1.0

disturb

v_disturb

The path diagram shown in Figure 17.13 is essentially a graphical representation of the same just-identified
model for the spleen data that is described in the section “Illustration of Model Identification: Spleen Data” on
page 294. In path diagrams, it is customary to write the names of manifest or observed variables in rectangles
and the names of latent variables in ovals. For example, sqrtrose and sqrtnucl are observed variables in the
path diagram, while all others are latent variables.

The effects (the regression coefficients) in each equation are indicated by drawing arrows from the predictor
variables to the outcome variable. For example, the path from factnucl to factrose is labeled with the
regression coefficient beta in the path diagram shown in Figure 17.13. Other paths are labeled with fixed
coefficients (or effects) of 1.

Variances of exogenous variables are drawn as double-headed arrows in Figure 17.13. For example, the
variance of disturb is shown as a double-headed arrow pointing to the variable itself and is named v_disturb.
Variances of the err_nucl and err_rose are also drawn as double-headed arrows but are labeled with fixed
constants 0.25.

The path diagram shown in Figure 17.13 matches the features in the LINEQS model closely. For example,
the error terms are depicted explicitly and their paths (regression coefficients) that connect to the associated
endogenous variables are marked with fixed constants 1, reflecting the same specification in the equations of
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the LINEQS model. However, you can simplify the path diagram by using McArdle’s RAM (reticular action
model) notation (McArdle and McDonald 1984), as described in the following section.

A Simplified Path Diagram for the Spleen Data
The main simplification in the path diagram is to drop all the error terms in the model. Instead, error variances
are treated as residual (or partial) variances for the endogenous variables in the model or path diagram. Hence,
in the path diagrams for RAM models, error variances are also represented by double-headed arrows directly
attached to the endogenous variables, which is the same way you represent variances for the exogenous
variables. The RAM model convention leads to a simplified representation of the path diagram for the spleen
data, as shown in Figure 17.14.

Figure 17.14 Simplified Path Diagram: Spleen

0.25 0.25

sqrtrose sqrtnucl

1.0 1.0

factrose factnucl

Another simplification done in Figure 17.14 is the omission of the parameter labeling in the path diagram.
This simplification is not a part of the RAM notation. It is just a convention in PROC CALIS that you can
omit the unconstrained parameter names without affecting the meaning of the model. Hence, the parameter
names beta, v_disturb, and v_factnucl are no longer necessary in the simplified path diagram Figure 17.14.
As you can see, this convention makes the task of model specification considerably simpler and easier.

The following statements show the specification of the simplified path diagram in Figure 17.14:

proc calis data=spleen;
path

sqrtrose <=== factrose = 1.0,
sqrtnucl <=== factnucl = 1.0,
factrose <=== factnucl ;

pvar
sqrtrose = 0.25, /* error variance for sqrtrose */
sqrtnucl = 0.25, /* error variance for sqrtnucl */
factrose, /* disturbance/error variance for factrose */
factnucl; /* variance of factnucl */

run;

The PATH statement invokes the PATH modeling language of PROC CALIS. In the PATH modeling language,
each entry of specification corresponds to either a single- or double- headed arrow specification in the path
diagram shown in Figure 17.14, as explained in the following:
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• The PATH statement enables you to specify each of the single-headed arrows (paths) as path entries,
which are separated by commas. You have three single-headed arrows in the path diagram and therefore
you have three path entries in the PATH statement. The path entries “sqrtrose <=== factrose” and
“sqrtnucl <=== factnucl” are followed by the constant 1, indicating fixed path coefficients. The path
“factrose <=== factnucl” is also specified, but without giving a fixed value or a parameter name. By
default, this path entry is associated with a free parameter for the effect or path coefficient.

• The PVAR statement enables you to specify each of the double-headed arrows with both heads pointing
to the same variable, exogenous or endogenous. This type of arrows represents variances or error
variances. You have four such double-headed arrows in the path diagram, and therefore there are
four corresponding entries under the PVAR statement. Two of them are assigned with fixed constants
(0.25), and the remaining two (error variance of factrose and variance of factnucl) are free variance
parameters.

• The PCOV statement enables you to specify each of the double-headed arrows with its heads pointing
to different variables, exogenous or endogenous. This type of arrows represents covariances between
variables or their error terms. You do not have this type of double-headed arrows in the current path
diagram, and therefore you do not need a PCOV statement for the corresponding model specification.

The estimation results are shown in Figure 17.15. Essentially, these are exactly the same estimation results as
those that result from the LINEQS modeling language for the just-identified model in section “Illustration of
Model Identification: Spleen Data” on page 294.

Figure 17.15 Spleen Data: RAM Model

PATH List

Path Parameter Estimate
Standard

Error t Value Pr > |t|

sqrtrose <=== factrose 1.00000

sqrtnucl <=== factnucl 1.00000

factrose <=== factnucl beta 0.39074 0.07708 5.0692 <.0001

Variance Parameters

Variance
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Error sqrtrose 0.25000

sqrtnucl 0.25000

factrose v_disturb 0.38153 0.28556 1.3361 0.1815

Exogenous factnucl v_factnucl 10.50458 4.58577 2.2907 0.0220

Notice in Figure 17.15 that the path coefficient for path “factrose <=== factnucl” is given a parameter
name _Parm1, which is generated automatically by PROC CALIS. This is the same beta parameter of the
LINEQS model in the section “Illustration of Model Identification: Spleen Data” on page 294. Also, the
variance parameters _Parm2 and _Parm3 in Figure 17.15 are the same v_disturb and v_factnucl parameters,
respectively, in the preceding LINEQS model.

In PROC CALIS, using parameter names to specify free parameters is optional. Parameter names are
generated for free parameters by default. Or, if you choose parameter names for your own convenience,
you can do so without changing the model specification. For example, you can specify the preceding PATH
model equivalently by adding the desired parameter names, as shown in the following statements:
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proc calis data=spleen;
path

sqrtrose <=== factrose = 1.0,
sqrtnucl <=== factnucl = 1.0,
factrose <=== factnucl = beta;

pvar
sqrtrose = 0.25, /* error variance for sqrtrose */
sqrtnucl = 0.25, /* error variance for sqrtnucl */
factrose = v_disturb, /* disturbance/error variance for factrose */
factnucl = v_factnucl; /* variance of factnucl */

run;

A path diagram provides you an easy and conceptual way to represent your model, while the PATH modeling
language in PROC CALIS offers you an easy way to input your path diagram in a non-graphical fashion.
This is especially useful for models with more complicated path structures. See the section “A Combined
Measurement-Structural Model” on page 325 for a more elaborated example of the PATH model application.

The section “Some Measurement Models” on page 306 provides examples of the PATH model applied to
classical test theory.

Producing Path Diagrams from the CALIS Procedure
This section shows how you can produce high-quality graphical output for path diagrams from the CALIS
procedure. Using the spleen data and the model that is represented by the path diagram in Figure 17.13 or
Figure 17.14, the following statements produce the default path diagram in the output:

ods graphics on;

proc calis data=spleen plots=pathdiagram;
path

sqrtrose <=== factrose = 1.0,
sqrtnucl <=== factnucl = 1.0,
factrose <=== factnucl ;

pvar
sqrtrose = 0.25, /* error variance for sqrtrose */
sqrtnucl = 0.25, /* error variance for sqrtnucl */
factrose, /* disturbance/error variance for factrose */
factnucl; /* variance of factnucl */

run;

ods graphics off;

The ODS GRAPHICS ON statement enables the ODS Graphics, and the PLOTS=PATHDIAGRAM requests
that the default path diagram of the unstandardized solution, which is shown in Figure 17.16, be output.
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Figure 17.16 Default Path Diagram for the Spleen Data

The output path diagram in Figure 17.16 uses a similar representation scheme as the simplified path diagram
that is shown in Figure 17.14, except that the output path diagram in Figure 17.16 is for the unstandardized
solution rather than the initial specification. The output path diagram in Figure 17.16 shows the final
parameter estimates and indicates their statistical significance. Estimates that are significant at the 0.05
˛-level are flagged with a single asterisk, and estimates that are significant at the 0.01 ˛-level are flagged with
two asterisks. Hence, the path diagram shows that factnucl has a significant effect on factrose. In addition to
showing the free parameter estimates, the path diagram shows the fixed parameter values and marks them as
“fixed.” The path diagram also includes a fit summary table to show the model fit statistics. However, because
the model in Figure 17.16 is a saturated model, interpretations of the fit statistics are not meaningful.

PROC CALIS provides a wide range of options in the PATHDIAGRAM statement that you can use to
customize the output path diagrams. This section illustrates some simple customization options. For example,
because the fit summary statistics are not meaningful in the preceding model for the Spleen data, you can
omit the fit summary table in the path diagram output by adding the following PATHDIAGRAM statement to
the preceding CALIS run:

pathdiagram nofittable title='No Fit Summary';

The NOFITTABLE option suppresses the printing of the fit summary table, and the TITLE= option specifies
the customized title. The resulting path diagram is shown in Figure 17.17.
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Figure 17.17 Path Diagram for the Spleen Data: Fit Summary Table Omitted

You can also change the styles of the path diagrams by using options in the PATHDIAGRAM statement. For
example, to produce a path diagram for the initial specification that has the same style as the one shown in
Figure 17.13, you can use the following PATHDIAGRAM statement:

proc calis data=spleen;
path

sqrtrose <=== factrose = 1.0,
sqrtnucl <=== factnucl = 1.0,
factrose <=== factnucl = beta;

pvar
sqrtrose = 0.25, /* error variance for sqrtrose */
sqrtnucl = 0.25, /* error variance for sqrtnucl */
factrose = v_disturb, /* disturbance/error variance for factrose */
factnucl = v_factnucl; /* variance of factnucl */

pathdiagram diagram=initial useerr;
run;

In the PATHDIAGRAM statement, the DIAGRAM=INITIAL option requests the path diagram for the initial
model specification, and the USEERR option requests that the error variables be included in the path diagram.
The resulting path diagram is shown in Figure 17.18.



306 F Chapter 17: Introduction to Structural Equation Modeling with Latent Variables

Figure 17.18 Initial Path Diagram for the Spleen Data: Error Terms Included

All error terms in Figure 17.18 are labeled by “e.” Except for the orientation and the omission of the fixed unit
constants in the paths from the error variables, this path diagram matches the style that is used in Figure 17.13.

For more information about path diagram customizations, see the PATHDIAGRAM statement and the section
“Path Diagrams: Layout Algorithms, Default Settings, and Customization” on page 1440 in Chapter 29,
“The CALIS Procedure.” For introductory examples of creating and editing path diagrams from the CALIS
procedure, see Yung (2014).

Some Measurement Models
In the section “Regression with Measurement Errors in X and Y” on page 290, outcome variables and
predictor variables are assumed to have been measured with errors. In order to study the true relationships
among the true scores variables, models for measurement errors are also incorporated into the estimation.
The context of applications is that of regression or econometric analysis.

In the social and behavioral sciences, the same kind of model is developed in the context of test theory
or item construction for measuring cognitive abilities, personality traits, or other latent variables. This
kind of modeling is better-known as measurement models or confirmatory factor analysis (these two terms
are interchangeable) in the psychometric field. Usually, applications in the social and behavioral sciences
involve a much larger number of observed variables. This section considers some of these measurement or
confirmatory factor-analytic models. For illustration purposes, only a handful of variables are used in the
examples. Applications that use the PATH modeling language in PROC CALIS are described.
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H4: Full Measurement Model for Lord Data
Psychometric test theory involves many kinds of models that relate scores on psychological and educational
tests to latent variables that represent intelligence or various underlying abilities. The following example uses
data on four vocabulary tests from Lord (1957). Tests W and X have 15 items each and are administered
with very liberal time limits. Tests Y and Z have 75 items and are administered under time pressure. The
covariance matrix is read by the following DATA step:

data lord(type=cov);
input _type_ $ _name_ $ W X Y Z;
datalines;

n . 649 . . .
cov W 86.3979 . . .
cov X 57.7751 86.2632 . .
cov Y 56.8651 59.3177 97.2850 .
cov Z 58.8986 59.6683 73.8201 97.8192
;

The psychometric model of interest states that W and X are determined by a single common factor F1, and Y
and Z are determined by a single common factor F2. The two common factors are expected to have a positive
correlation, and it is desired to estimate this correlation. It is convenient to assume that the common factors
have unit variance, so their correlation will be equal to their covariance. The error terms for all the manifest
variables are assumed to be uncorrelated with each other and with the common factors. The model equations
are

W D ˇW F1 CEW

X D ˇXF1 CEX

Y D ˇYF2 CEY

Z D ˇZF2 CEZ

with the following assumptions:

Var.F1/ D Var.F2/ D 1

Cov.F1; F2/ D �

Cov.EW ; EX / D Cov.EW ; EY / D Cov.EW ; EZ/ D Cov.EX ; EY /

D Cov.EX ; EZ/ D Cov.EY ; EZ/ D Cov.EW ; F1/

D Cov.EW ; F2/ D Cov.EX ; F1/ D Cov.EX ; F2/

D Cov.EY ; F1/ D Cov.EY ; F2/ D Cov.EZ ; F1/

D Cov.EZ ; F2/ D 0

The corresponding path diagram is shown in Figure 17.19.
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Figure 17.19 Path Diagram: Lord Data

W X

�W �X

Y Z

�Y �Z

F1 F2

1.0 1.0

ˇW ˇX ˇY ˇZ

�

In Figure 17.19, error terms are not explicitly represented, but error variances for the observed variables are
represented by double-headed arrows that point to the variables. The error variance parameters in the model
are labeled with �W , �X , �Y , and �Z , respectively, for the four observed variables. In the terminology of
confirmatory factor analysis, these four variables are called indicators of the corresponding latent factors F1
and F2.

Figure 17.19 represents the model equations clearly. It includes all the variables and the parameters in the
diagram. However, sometimes researchers represent the same model with a simplified path diagram in which
unconstrained parameters are not labeled, as shown in Figure 17.20.

Figure 17.20 Simplified Path Diagram: Lord Data

W X Y Z

F1 F2

1.0 1.0

This simplified representation is also compatible with the PATH modeling language of PROC CALIS. In fact,
this might be an easier starting point for modelers. With the following rules, the conversion from the path
diagram to the PATH model specification is very straightforward:

• Each single-headed arrow in the path diagram is specified in the PATH statement.

• Each double-headed arrow that points to a single variable is specified in the PVAR statement.

• Each double-headed arrow that points to two distinct variables is specified in the PCOV statement.
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Hence, you can convert the simplified path diagram in Figure 17.20 easily to the following PATH model
specification:

proc calis data=lord;
path

W <=== F1,
X <=== F1,
Y <=== F2,
Z <=== F2;

pvar
F1 = 1.0,
F2 = 1.0,
W X Y Z;

pcov
F1 F2;

run;

In this specification, you do not need to specify the parameter names. However, you do need to specify fixed
values specified in the path diagram. For example, the variances of F1 and F2 are both fixed at 1 in the PVAR
statement.

These fixed variances are applied solely for the purpose of model identification. Because F1 and F2 are latent
variables and their scales are arbitrary, fixing their scales are necessary for model identification. Beyond
these two identification constraints, none of the parameters in the model is constrained. Therefore, this is
referred to as the “full” measurement model for the Lord data.

An annotated fit summary is displayed in Figure 17.21.

Figure 17.21 Fit Summary, H4: Full Model With Two Factors for Lord Data

Fit Summary

Chi-Square 0.7030

Chi-Square DF 1

Pr > Chi-Square 0.4018

Standardized RMR (SRMR) 0.0030

Adjusted GFI (AGFI) 0.9946

RMSEA Estimate 0.0000

Bentler Comparative Fit Index 1.0000

The chi-square value is 0.7030 (df =1, p=0.4018). This indicates that you cannot reject the hypothesized model.
The standardized root mean square error (SRMSR) is 0.003, which is much smaller than the conventional
0.05 value for accepting good model fit. Similarly, the RMSEA value is virtually zero, indicating an excellent
fit. The adjusted GFI (AGFI) and Bentler comparative fit index are close to 1, which also indicate an excellent
model fit.

The estimation results are displayed in Figure 17.22.
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Figure 17.22 Estimation Results, H4: Full Model With Two Factors for Lord Data

PATH List

Path Parameter Estimate
Standard

Error t Value Pr > |t|

W <=== F1 _Parm1 7.50066 0.32339 23.1939 <.0001

X <=== F1 _Parm2 7.70266 0.32063 24.0235 <.0001

Y <=== F2 _Parm3 8.50947 0.32694 26.0273 <.0001

Z <=== F2 _Parm4 8.67505 0.32560 26.6430 <.0001

Variance Parameters

Variance
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Exogenous F1 1.00000

F2 1.00000

Error W _Parm5 30.13796 2.47037 12.1998 <.0001

X _Parm6 26.93217 2.43065 11.0802 <.0001

Y _Parm7 24.87396 2.35986 10.5404 <.0001

Z _Parm8 22.56264 2.35028 9.6000 <.0001

Covariances Among Exogenous Variables

Var1 Var2 Parameter Estimate
Standard

Error t Value Pr > |t|

F1 F2 _Parm9 0.89855 0.01865 48.1800 <.0001

All estimates are shown with estimates of standard errors in Figure 17.22. They are all statistically significant,
supporting nontrivial relationships between the observed variables and the latent factors. Notice that each
free parameter in the model has been named automatically in the output. For example, the path coefficient
from F1 to W is named _Parm1.

Two results in Figure 17.22 are particularly interesting. First, in the table for estimates of the path coefficients,
_Parm1 and _Parm2 values form one cluster, while _Parm3 and _Parm4 values from another cluster. This
seems to indicate that the effects from F1 on the indicators W and X could have been the same in the
population and the effects from F2 on the indicators Y and Z could also have been the same in the population.
Another interesting result is the estimate for the correlation between F1 and F2 (both were set to have variance
1). The correlation estimate (_Parm9 in the Figure 17.22) is 0.8986. It is so close to 1 that you wonder
whether F1 and F2 could have been the same factor in the population. These estimation results can be used to
motivate additional analyses for testing the suggested constrained models against new data sets. However, for
illustration purposes, the same data set is used to demonstrate the additional model fitting in the subsequent
sections.
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In an analysis of these data by Jöreskog and Sörbom (1979, pp. 54–56) (see also Loehlin 1987, pp. 84–87),
four hypotheses are considered:

H1W One-factor model with parallel tests

� D 1

ˇW D ˇX and Var.EW / D Var.EX /

ˇY D ˇZ and Var.EY / D Var.EZ/

H2W Two-factor model with parallel tests

ˇW D ˇX and Var.EW / D Var.EX /

ˇY D ˇZ and Var.EY / D Var.EZ/

H3W Congeneric model: One factor without assuming parallel tests

� D 1

H4W Full model: Two factors without assuming parallel tests

These hypotheses are ordered such that the latter models are less constrained. The hypothesis H4 is the
full model that has been considered in this section. The hypothesis H3 specifies that there is really just one
common factor instead of two; in the terminology of test theory, W, X, Y, and Z are said to be congeneric.
Setting the correlation � between F1 and F2 to 1 makes the two factors indistinguishable. The hypothesis
H2 specifies that W and X have the same true scores and have equal error variance; such tests are said to be
parallel. The hypothesis H2 also requires Y and Z to be parallel. Because � is not constrained to 1 in H2,
two factors are assumed for this model. The hypothesis H1 says that W and X are parallel tests, Y and Z are
parallel tests, and all four tests are congeneric (with � also set to 1).

H3: Congeneric (One-Factor) Model for Lord Data
The path diagram for this congeneric (one-factor) model is shown in Figure 17.23.

Figure 17.23 H3: Congeneric (One-Factor) Model for Lord Data

W X Y Z

F1 F2

1.0 1.01:0
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The only difference between the current path diagram in Figure 17.23 for the congeneric (one-factor) model
and the preceding path diagram in Figure 17.20 for the full (two-factor) model is that the double-headed
path that connects F1 and F2 is fixed to 1 in the current path diagram. Accordingly, you need to modify
only slightly the preceding PROC CALIS specification to form the new model specification, as shown in the
following statements:

proc calis data=lord;
path

W <=== F1,
X <=== F1,
Y <=== F2,
Z <=== F2;

pvar
F1 = 1.0,
F2 = 1.0,
W X Y Z;

pcov
F1 F2 = 1.0;

run;

This specification sets the covariance between F1 and F2 to 1.0 in the PCOV statement. An annotated fit
summary is displayed in Figure 17.24.

Figure 17.24 Fit Summary, H3: Congeneric (One-Factor) Model for Lord Data

Fit Summary

Chi-Square 36.2095

Chi-Square DF 2

Pr > Chi-Square <.0001

Standardized RMR (SRMR) 0.0277

Adjusted GFI (AGFI) 0.8570

RMSEA Estimate 0.1625

Bentler Comparative Fit Index 0.9766

The chi-square value is 36.2095 (df = 2, p < 0.0001). This indicates that you can reject the hypothesized
model at the 0.01 ˛-level. The standardized root mean square error (SRMSR) is 0.0277, which indicates a
good fit. Bentler’s comparative fit index is 0.9766, which is also a good model fit. However, the adjusted GFI
(AGFI) is 0.8570, which is not very impressive. Also, the RMSEA value is 0.1625, which is too large to be
an acceptable model. Therefore, the congeneric model might not be the one you want to use.
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The estimation results are displayed in Figure 17.25. Because the model does not fit well, the corresponding
estimation results are not interpreted.

Figure 17.25 Estimation Results, H3: Congeneric (One-Factor) Model for Lord Data

PATH List

Path Parameter Estimate
Standard

Error t Value Pr > |t|

W <=== F1 _Parm1 7.10470 0.32177 22.0801 <.0001

X <=== F1 _Parm2 7.26908 0.31826 22.8397 <.0001

Y <=== F2 _Parm3 8.37344 0.32542 25.7314 <.0001

Z <=== F2 _Parm4 8.51060 0.32409 26.2600 <.0001

Variance Parameters

Variance
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Exogenous F1 1.00000

F2 1.00000

Error W _Parm5 35.92111 2.41467 14.8762 <.0001

X _Parm6 33.42373 2.31037 14.4668 <.0001

Y _Parm7 27.17043 2.24621 12.0961 <.0001

Z _Parm8 25.38887 2.20837 11.4966 <.0001

Covariances Among Exogenous Variables

Var1 Var2 Estimate
Standard

Error t Value Pr > |t|

F1 F2 1.00000

Perhaps a more natural way to specify the model under hypothesis H3 is to use only one factor in the PATH
model, as shown in the following statements:

proc calis data=lord;
path

W <=== F1,
X <=== F1,
Y <=== F1,
Z <=== F1;

pvar
F1 = 1.0,
W X Y Z;

run;

This produces essentially the same results as the specification with two factors that have perfect correlation.
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H2: Two-Factor Model with Parallel Tests for Lord Data
The path diagram for the two-factor model with parallel tests is shown in Figure 17.26.

Figure 17.26 H2: Two-Factor Model with Parallel Tests for Lord Data

W X

�1 �1

Y Z

�2 �2

F1 F2

1.0 1.0

ˇ1 ˇ1 ˇ2 ˇ2

The hypothesis H2 requires that variables or tests under each factor are “interchangeable.” In terms of the
measurement model, several pairs of parameters must be constrained to have equal estimates. That is, under
the parallel-test model W and X should have the same effect or path coefficient ˇ1 from their common factor
F1, and they should also have the same measurement error variance �1. Similarly, Y and Z should have
the same effect or path coefficient ˇ2 from their common factor F2, and they should also have the same
measurement error variance �2. These constraints are labeled in Figure 17.26.

You can impose each of these equality constraints by giving the same name for the parameters involved in the
PATH model specification. The following statements specify the path diagram in Figure 17.26:

proc calis data=lord;
path

W <=== F1 = beta1,
X <=== F1 = beta1,
Y <=== F2 = beta2,
Z <=== F2 = beta2;

pvar
F1 = 1.0,
F2 = 1.0,
W X = 2 * theta1,
Y Z = 2 * theta2;

pcov
F1 F2;

run;

Note that the specification 2*theta1 in the PVAR statement means that theta1 is specified twice for the
error variances of the two variables W and X. Similarly for the specification 2*theta2. An annotated fit
summary is displayed in Figure 17.27.
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Figure 17.27 Fit Summary, H2: Two-Factor Model with Parallel Tests for Lord Data

Fit Summary

Chi-Square 1.9335

Chi-Square DF 5

Pr > Chi-Square 0.8583

Standardized RMR (SRMR) 0.0076

Adjusted GFI (AGFI) 0.9970

RMSEA Estimate 0.0000

Bentler Comparative Fit Index 1.0000

The chi-square value is 1.9335 (df =5, p=0.8583). This indicates that you cannot reject the hypothesized
model H2. The standardized root mean square error (SRMSR) is 0.0076, which indicates a very good fit.
Bentler’s comparative fit index is 1.0000. The adjusted GFI (AGFI) is 0.9970, and the RMSEA is close to
zero. All results indicate that this is a good model for the data.

The estimation results are displayed in Figure 17.28.

Figure 17.28 Estimation Results, H2: Two-Factor Model with Parallel Tests for Lord Data

PATH List

Path Parameter Estimate
Standard

Error t Value Pr > |t|

W <=== F1 beta1 7.60099 0.26844 28.3158 <.0001

X <=== F1 beta1 7.60099 0.26844 28.3158 <.0001

Y <=== F2 beta2 8.59186 0.27967 30.7215 <.0001

Z <=== F2 beta2 8.59186 0.27967 30.7215 <.0001

Variance Parameters

Variance
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Exogenous F1 1.00000

F2 1.00000

Error W theta1 28.55545 1.58641 18.0000 <.0001

X theta1 28.55545 1.58641 18.0000 <.0001

Y theta2 23.73200 1.31844 18.0000 <.0001

Z theta2 23.73200 1.31844 18.0000 <.0001

Covariances Among Exogenous Variables

Var1 Var2 Parameter Estimate
Standard

Error t Value Pr > |t|

F1 F2 _Parm1 0.89864 0.01865 48.1801 <.0001

Notice that because you explicitly specify the parameter names for the path coefficients (that is, beta1 and
beta2), they are used in the output shown in Figure 17.28. The correlation between F1 and F2 is 0.8987,
which is a very high correlation that suggests F1 and F2 might have been the same factor in the population.
The next section sets this value to one so that the current model becomes a one-factor model with parallel
tests.
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H1: One-Factor Model with Parallel Tests for Lord Data
The path diagram for the one-factor model with parallel tests is shown in Figure 17.29.

Figure 17.29 H1: One-Factor Model with Parallel Tests for Lord Data

W X

�1 �1

Y Z

�2 �2

F1 F2

1.0 1.0

ˇ1 ˇ1 ˇ2 ˇ2

1:0

The hypothesis H1 differs from H2 in that F1 and F2 have a perfect correlation in H1. This is indicated by
the fixed value 1.0 for the double-headed path that connects F1 and F2 in Figure 17.29. Again, you need only
minimal modification of the preceding specification for H2 to specify the path diagram in Figure 17.29, as
shown in the following statements:

proc calis data=lord;
path

W <=== F1 = beta1,
X <=== F1 = beta1,
Y <=== F2 = beta2,
Z <=== F2 = beta2;

pvar
F1 = 1.0,
F2 = 1.0,
W X = 2 * theta1,
Y Z = 2 * theta2;

pcov
F1 F2 = 1.0;

run;

The only modification of the preceding specification is in the PCOV statement, where you put a constant 1
for the covariance between F1 and F2. An annotated fit summary is displayed in Figure 17.30.
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Figure 17.30 Fit Summary, H1: One-Factor Model with Parallel Tests for Lord Data

Fit Summary

Chi-Square 37.3337

Chi-Square DF 6

Pr > Chi-Square <.0001

Standardized RMR (SRMR) 0.0286

Adjusted GFI (AGFI) 0.9509

RMSEA Estimate 0.0898

Bentler Comparative Fit Index 0.9785

The chi-square value is 37.3337 (df =6, p<0.0001). This indicates that you can reject the hypothesized model
H1 at the 0.01 ˛-level. The standardized root mean square error (SRMSR) is 0.0286, the adjusted GFI (AGFI)
is 0.9509, and Bentler’s comparative fit index is 0.9785. All these indicate good model fit. However, the
RMSEA is 0.0898, which does not support an acceptable model for the data.

The estimation results are displayed in Figure 17.31.

Figure 17.31 Estimation Results, H1: One-Factor Model with Parallel Tests for Lord Data

PATH List

Path Parameter Estimate
Standard

Error t Value Pr > |t|

W <=== F1 beta1 7.18623 0.26598 27.0180 <.0001

X <=== F1 beta1 7.18623 0.26598 27.0180 <.0001

Y <=== F2 beta2 8.44198 0.28000 30.1494 <.0001

Z <=== F2 beta2 8.44198 0.28000 30.1494 <.0001

Variance Parameters

Variance
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Exogenous F1 1.00000

F2 1.00000

Error W theta1 34.68865 1.64634 21.0701 <.0001

X theta1 34.68865 1.64634 21.0701 <.0001

Y theta2 26.28513 1.39955 18.7812 <.0001

Z theta2 26.28513 1.39955 18.7812 <.0001

Covariances Among Exogenous Variables

Var1 Var2 Estimate
Standard

Error t Value Pr > |t|

F1 F2 1.00000

The goodness-of-fit tests for the four hypotheses are summarized in the following table.

Number of Degrees of
Hypothesis Parameters �2 Freedom p-value O�

H1 4 37.33 6 < .0001 1.0
H2 5 1.93 5 0.8583 0.8986
H3 8 36.21 2 < .0001 1.0
H4 9 0.70 1 0.4018 0.8986
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Recall that the estimates of � for H2 and H4 are almost identical, about 0.90, indicating that the speeded and
unspeeded tests are measuring almost the same latent variable. However, when � was set to 1 in H1 and H3
(both one-factor models), both hypotheses were rejected. Hypotheses H2 and H4 (both two-factor models)
seem to be consistent with the data. Since H2 is obtained by adding four constraints (for the requirement
of parallel tests) to H4 (the full model), you can test H2 versus H4 by computing the differences of the
chi-square statistics and their degrees of freedom, yielding a chi-square of 1.23 with four degrees of freedom,
which is obviously not significant. In a sense, the chi-square difference test means that representing the data
by H2 would not be significantly worse than representing the data by H4. In addition, because H2 offers
a more precise description of the data (with the assumption of parallel tests) than H4, it should be chosen
because of its simplicity. In conclusion, the two-factor model with parallel tests provides the best explanation
of the data.

The FACTOR and RAM Modeling Languages
In the section “Some Measurement Models” on page 306, you use the path diagram to represent the
measurement models for data with cognitive tests and then you use the PATH modeling language to specify
the model in PROC CALIS. You could have used other types of modeling languages for specifying the same
model. In this section, the FACTOR and the RAM modeling languages are illustrated.

Specifying the Full Measurement Model (H4) by the FACTOR Modeling
Language: Lord Data
The measurement models described in the section “Some Measurement Models” on page 306 are also
known as confirmatory factor models. PROC CALIS has a specific modeling language, called FACTOR,
for confirmatory factor models. You can use this modeling language for both exploratory and confirmatory
factor analysis.

For example, the full measurement model H4 in the section “H4: Full Measurement Model for Lord Data”
on page 307 can be specified equivalently by the FACTOR modeling language with the following statements:

proc calis data=lord;
factor

F1 ===> W X,
F2 ===> Y Z;

pvar
F1 = 1.0,
F2 = 1.0,
W X Y Z;

cov
F1 F2;

run;

In the specification, you use the FACTOR statement to invoke the FACTOR modeling language. In the
FACTOR statement, you specify the paths from the latent factors to the measurement indicators. For example,
F1 has two paths to its indicators, W and X. Similarly, F2 has two paths to its indicators, Y and Z. Next, you
use the PVAR statement to specify the variances, which is exactly the same way you use the PATH model
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specification in the section “H4: Full Measurement Model for Lord Data” on page 307. Lastly, you use
the COV statement to specify the covariance among the factors, much like you use the PCOV statement to
specify the same covariance in the PATH model specification.

Given the same confirmatory factor model, there is a major difference between the paths specified by the
PATH statement and the paths specified by the FACTOR statement. In the FACTOR statement, each path
must start with a latent factor followed by a right arrow and the variable list. In the PATH statement, each
path can start or end with an observed or latent variable, and the direction of the arrow can be left or right.

The fit summary table for the FACTOR model is shown in Figure 17.32:

Figure 17.32 Fit Summary of the Full Confirmatory Factor Model for Lord Data

Fit Summary

Chi-Square 0.7030

Chi-Square DF 1

Pr > Chi-Square 0.4018

Standardized RMR (SRMR) 0.0030

Adjusted GFI (AGFI) 0.9946

RMSEA Estimate 0.0000

Bentler Comparative Fit Index 1.0000

This is exactly the same fit summary as shown in Figure 17.21, which is for the PATH model specification.
Therefore, this confirms that the same model is being fit by the FACTOR model specification.

The estimation results are shown in Figure 17.33.

Figure 17.33 Estimation Results of Full Confirmatory Factor Model for Lord Data

Factor Loading Matrix:
Estimate/StdErr/t-value/p-value

F1 F2

W 7.5007
0.3234
23.1939
<.0001

[_Parm1]

0

X 7.7027
0.3206
24.0235
<.0001

[_Parm2]

0

Y 0 8.5095
0.3269
26.0273
<.0001

[_Parm3]

Z 0 8.6751
0.3256
26.6430
<.0001

[_Parm4]
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Figure 17.33 continued

Factor Covariance Matrix:
Estimate/StdErr/t-value/p-value

F1 F2

F1 1.0000 0.8986
0.0186
48.1800
<.0001

[_Parm9]

F2 0.8986
0.0186
48.1800
<.0001

[_Parm9]

1.0000

Error Variances

Variable Parameter Estimate
Standard

Error t Value Pr > |t|

W _Parm5 30.13796 2.47037 12.1998 <.0001

X _Parm6 26.93217 2.43065 11.0802 <.0001

Y _Parm7 24.87396 2.35986 10.5404 <.0001

Z _Parm8 22.56264 2.35028 9.6000 <.0001

Again, these are the same estimates as those shown in Figure 17.22, which is for the PATH model specification.
The FACTOR results displayed in Figure 17.33 are arranged differently though. No paths are shown there.
The relationships between the latent factors and its indicators are shown in matrix form. The factor variance
and covariances are also shown in matrix form.

Specifying the Parallel Tests Model (H2) by the FACTOR Modeling
Language: Lord Data
In the section “H2: Two-Factor Model with Parallel Tests for Lord Data” on page 314, you fit a two-factor
model with parallel tests for the Lord data by the PATH modeling language in PROC CALIS. Some paths
and error variance are constrained under the PATH model. You can also specify this parallel tests model by
the FACTOR modeling language, as shown in the following statements:

proc calis data=lord;
factor

F1 ===> W X = 2 * beta1,
F2 ===> Y Z = 2 * beta2;

pvar
F1 = 1.0,
F2 = 1.0,
W X = 2 * theta1,
Y Z = 2 * theta2;

cov
F1 F2;

run;
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In this specification, you specify some parameters explicitly. You apply the parameter beta1 to the loadings
of both W and X on F1. This means that F1 has the same amount of effect on W and X. Similarly, you apply
the parameter beta2 to the loadings of Y and Z on F2. The constraints on the error variances for W, X, Y, and
Z in this FACTOR model specification are done in the same way as in the PATH model specification in the
section “H2: Two-Factor Model with Parallel Tests for Lord Data” on page 314.

The fit summary table for this parallel tests model is shown in Figure 17.34.

Figure 17.34 Fit Summary of the Confirmatory Factor Model with Parallel Tests for Lord Data

Fit Summary

Chi-Square 1.9335

Chi-Square DF 5

Pr > Chi-Square 0.8583

Standardized RMR (SRMR) 0.0076

Adjusted GFI (AGFI) 0.9970

RMSEA Estimate 0.0000

Bentler Comparative Fit Index 1.0000

All the fit indices shown in Figure 17.34 for the FACTOR model match the corresponding PATH model
results displayed in Figure 17.27. All the estimation results in Figure 17.35 for the FACTOR model are the
same as those for the corresponding PATH model in Figure 17.28.

Figure 17.35 Estimation Results of the Confirmatory Factor Model with Parallel Tests for Lord Data

Factor Loading Matrix:
Estimate/StdErr/t-value/p-value

F1 F2

W 7.6010
0.2684
28.3158
<.0001
[beta1]

0

X 7.6010
0.2684
28.3158
<.0001
[beta1]

0

Y 0 8.5919
0.2797
30.7215
<.0001
[beta2]

Z 0 8.5919
0.2797
30.7215
<.0001
[beta2]



322 F Chapter 17: Introduction to Structural Equation Modeling with Latent Variables

Figure 17.35 continued

Factor Covariance Matrix:
Estimate/StdErr/t-value/p-value

F1 F2

F1 1.0000 0.8986
0.0187
48.1801
<.0001

[_Parm1]

F2 0.8986
0.0187
48.1801
<.0001

[_Parm1]

1.0000

Error Variances

Variable Parameter Estimate
Standard

Error t Value Pr > |t|

W theta1 28.55545 1.58641 18.0000 <.0001

X theta1 28.55545 1.58641 18.0000 <.0001

Y theta2 23.73200 1.31844 18.0000 <.0001

Z theta2 23.73200 1.31844 18.0000 <.0001

Specifying the Parallel Tests Model (H2) by the RAM Modeling Language:
Lord Data
In the preceding section, you use the FACTOR modeling language of PROC CALIS to specify the parallel
tests model. This model has also been specified by the PATH modeling language in the section “H2: Two-
Factor Model with Parallel Tests for Lord Data” on page 314. The two specifications are equivalent; they
lead to the same model fitting and estimation results. The main reason for providing two different types of
modeling languages in PROC CALIS is that different researchers come from different fields of applications.
Some researchers might be more comfortable with the confirmatory factor tradition, and some might equate
structural equation models with path diagrams for variables.

PROC CALIS has still another modeling language that is closely related to the path diagram representation:
the RAM model specification. In this section, the parallel tests model (H2) described in “H2: Two-Factor
Model with Parallel Tests for Lord Data” on page 314 is used to illustrate the RAM model specification in
PROC CALIS.

The path diagram for this model is reproduced in Figure 17.36.
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Figure 17.36 H2: Two-Factor Model with Parallel Tests for Lord Data
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The path diagram in Figure 17.36 can be readily transcribed into the RAM model specification by following
these simple rules:

• Each single- or double- headed path corresponds to an entry in the RAM model specification.

• The single-headed paths are specified with the _A_ path type or matrix keyword.

• The double-headed paths are specified with the _P_ path type or matrix keyword.

At this point, you do not need to define the RAM model matrices _A_ and _P_, as long as you recognize that
they are used as keywords to distinguish different path types. There are 11 single- or double- headed paths
in Figure 17.36, and therefore you expect to specify these 11 elements in the RAM model, as shown in the
following statements:

proc calis data=lord;
ram var = W X Y Z F1 F2, /* W=1, X=2, Y=3, Z=4, F1=5, F2=6*/

_A_ 1 5 beta1,
_A_ 2 5 beta1,
_A_ 3 6 beta2,
_A_ 4 6 beta2,
_P_ 5 5 1.0,
_P_ 6 6 1.0,
_P_ 1 1 theta1,
_P_ 2 2 theta1,
_P_ 3 3 theta2,
_P_ 4 4 theta2,
_P_ 5 6 ;

run;

In this specification, the RAM statement invokes the RAM modeling language. The first option is the VAR=
option where you specify the variables, observed and latent, in the model. The order in the VAR= variable
list represents the order of these variables in the RAM model matrices. For this example, W is 1, X is 2, and
so on. Next, you specify 11 RAM entries for the 11 path elements in the path diagram shown in Figure 17.36.
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The first four entries are for the single-headed paths. They all begin with the _A_ keyword. In each of these
_A_ entries, you specify the variable number of the outcome variable (being pointed at), and then the variable
number of the predictor variable. At the end of the entry, you can specify a parameter name, a fixed value,
an initial value, or nothing. In this example, all the _A_ entries are specified with parameter names. The
first two paths are constrained because they use the same parameter name beta1. The next two paths are
constrained because they use the same parameter name beta2.

The rest of the RAM entries in the example are of the _P_ type, which is for the specification of variances or
covariances in the RAM model (the double-headed arrows in the path diagram). The _P_ entry with [5,5] is
for the variance of the fifth variable, F1, on the VAR= list. This variance is fixed at 1.0 in the model, and so is
the variance of the sixth variable, F2, in the next _P_ entry.

The next four _P_ entries are for the specification of error variances of the observed variables W, X, Y, and Z.
You use the desired parameter names for constraining these parameters, as required in the parallel test model.

The last _P_ entry in the RAM statement is for the covariance between the fifth variable (F1) and the sixth
variable (F2). You specify neither a parameter name nor a fixed value at the end of this entry. By default, this
empty parameter specification is treated as a free parameter in the model. A parameter name for this entry is
generated by PROC CALIS.

The fit summary for this RAM model is shown in Figure 17.37, and the estimation results are shown in
Figure 17.38.

Figure 17.37 Fit Summary of RAM Model with Parallel Tests for Lord Data

Fit Summary

Chi-Square 1.9335

Chi-Square DF 5

Pr > Chi-Square 0.8583

Standardized RMR (SRMR) 0.0076

Adjusted GFI (AGFI) 0.9970

RMSEA Estimate 0.0000

Bentler Comparative Fit Index 1.0000

Figure 17.38 Estimation Results of RAM Model with Parallel Tests for Lord Data

RAM Pattern and Estimates

Matrix Row Column Parameter Estimate
Standard

Error t Value Pr > |t|

_A_ (1) W 1 F1 5 beta1 7.60099 0.26844 28.3158 <.0001

X 2 F1 5 beta1 7.60099 0.26844 28.3158 <.0001

Y 3 F2 6 beta2 8.59186 0.27967 30.7215 <.0001

Z 4 F2 6 beta2 8.59186 0.27967 30.7215 <.0001

_P_ (2) F1 5 F1 5 1.00000

F2 6 F2 6 1.00000

W 1 W 1 theta1 28.55545 1.58641 18.0000 <.0001

X 2 X 2 theta1 28.55545 1.58641 18.0000 <.0001

Y 3 Y 3 theta2 23.73200 1.31844 18.0000 <.0001

Z 4 Z 4 theta2 23.73200 1.31844 18.0000 <.0001

F1 5 F2 6 _Parm1 0.89864 0.01865 48.1801 <.0001
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Again, the model fit and the estimation results match those from the PATH model specification in Figure 17.27
and Figure 17.28, and those from the FACTOR model specification in Figure 17.34 and Figure 17.35.

A Combined Measurement-Structural Model
To illustrate a more complex model, this example uses some well-known data from Haller and Butterworth
(1960). Various models and analyses of these data are given by Duncan, Haller, and Portes (1968); Jöreskog
and Sörbom (1988); Loehlin (1987).

The study concerns the career aspirations of high school students and how these aspirations are affected by
close friends. The data are collected from 442 seventeen-year-old boys in Michigan. There are 329 boys in
the sample who named another boy in the sample as a best friend. The data from these 329 boys paired with
the data from their best friends are analyzed.

The method of data collection introduces two statistical problems. First, restricting the analysis to boys
whose best friends are in the original sample causes the reduced sample to be biased. Second, since the data
from a given boy might appear in two or more observations, the observations are not independent. Therefore,
any statistical conclusions should be considered tentative. It is difficult to accurately assess the effects of the
dependence of the observations on the analysis, but it could be argued on intuitive grounds that since each
observation has data from two boys and since it seems likely that many of the boys appear in the data set at
least twice, the effective sample size might be as small as half of the reported 329 observations.

The correlation matrix, taken from Jöreskog and Sörbom (1988), is shown in the following DATA step:

title 'Peer Influences on Aspiration: Haller & Butterworth (1960)';
data aspire(type=corr);

_type_='corr';
input _name_ $ riq rpa rses roa rea fiq fpa fses foa fea;
label riq='Respondent: Intelligence'

rpa='Respondent: Parental Aspiration'
rses='Respondent: Family SES'
roa='Respondent: Occupational Aspiration'
rea='Respondent: Educational Aspiration'
fiq='Friend: Intelligence'
fpa='Friend: Parental Aspiration'
fses='Friend: Family SES'
foa='Friend: Occupational Aspiration'
fea='Friend: Educational Aspiration';

datalines;
riq 1. . . . . . . . . .
rpa .1839 1. . . . . . . . .
rses .2220 .0489 1. . . . . . . .
roa .4105 .2137 .3240 1. . . . . . .
rea .4043 .2742 .4047 .6247 1. . . . . .
fiq .3355 .0782 .2302 .2995 .2863 1. . . . .
fpa .1021 .1147 .0931 .0760 .0702 .2087 1. . . .
fses .1861 .0186 .2707 .2930 .2407 .2950 -.0438 1. . .
foa .2598 .0839 .2786 .4216 .3275 .5007 .1988 .3607 1. .
fea .2903 .1124 .3054 .3269 .3669 .5191 .2784 .4105 .6404 1.
;
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Career Aspiration: Analysis 1
The model analyzed by Jöreskog and Sörbom (1988) is displayed in the path diagram in Figure 17.39.

Figure 17.39 Path Diagram: Career Aspiration – Jöreskog and Sörbom (1988)
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Two latent variables, R_Amb and F_Amb, represent the respondent’s level of ambition and his best friend’s
level of ambition, respectively. The model states that the respondent’s ambition (R_Amb) is determined
by his intelligence (riq) and socioeconomic status (rses), his perception of his parents’ aspiration for him
(rpa), and his friend’s socioeconomic status (fses) and ambition (F_Amb). It is assumed that his friend’s
intelligence (fiq) and parental aspiration (fpa) affect the respondent’s ambition only indirectly through the
friend’s ambition (F_Amb). Ambition is indicated by the manifest variables of occupational (roa) and
educational aspiration (rea), which are assumed to have uncorrelated residuals. The path coefficient from
ambition to occupational aspiration is set to 1.0 to determine the scale of the ambition latent variable.
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The path diagram shown in Figure 17.39 appears to be very complicated. Sometimes when researchers draw
their path diagram with a lot of variables, they omit the covariances among exogenous variables for overall
clarity. For example, the double-headed paths that represent cov01–cov15 in Figure 17.39 can be omitted. In
addition, unconstrained variance and error variance parameters in the path diagram could be omitted without
losing the pertinent information in the path diagram. For example, variance parameters v1–v6 and error
variance parameters theta1–theta4 in Figure 17.39 detract from the main focus on the functional relationships
of the model.

These omissions in the path diagram are in fact inconsequential when you transcribe them into the PATH
model in PROC CALIS. The reason is that PROC CALIS employs several useful default parameterization
rules that make the model specification process much easier and more intuitive. Here are the sets of default
covariance structure parameters in the PATH modeling language:

• variances for all exogenous (observed or latent) variables

• error variances of all endogenous (observed or latent) variables

• covariances among all exogenous (observed or latent, excluding error) variables

For example, these rules for setting default covariance structure parameters mean that the following sets of
parameters in Figure 17.39 are optional in the path diagram representation and in the corresponding PATH
model specification:

• v1–v6

• theta1–theta4, psi11, and psi22

• cov01–cov15

Note that the double-headed path labeled with psi12, which is a covariance parameter among error terms for
R_Amb and F_Amb, is not a default parameter. As a result, it must be represented in the path diagram and in
the PATH model specification.

Another simplification is to omit the unconstrained parameter names in the path diagram. In the PATH model
specification, an “unnamed” parameter is a free parameter by default—there is no need to give unique names
to denote free parameters. With all the mentioned simplifications, you can depict your path diagram simply
as the one in Figure 17.40.
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Figure 17.40 Simplified Path Diagram for Career Aspiration : Analysis 1
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The simplified path diagram in Figure 17.40 is readily transcribed into the PATH model as shown in the
following statements:

proc calis data=aspire nobs=329;
path

/* structural model of influences */
R_Amb <=== rpa ,
R_Amb <=== riq ,
R_Amb <=== rses ,
R_Amb <=== fses ,
F_Amb <=== rses ,
F_Amb <=== fses ,
F_Amb <=== fiq ,
F_Amb <=== fpa ,
R_Amb <=== F_Amb ,
F_Amb <=== R_Amb ,

/* measurement model for aspiration */
rea <=== R_Amb ,
roa <=== R_Amb = 1.,
foa <=== F_Amb = 1.,
fea <=== F_Amb ;

pcov
R_Amb F_Amb;

run;
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Again, because you have 15 paths (single- or double- headed) in the path diagram, you expect that there are
15 entries in the PATH and the PCOV statements. Essentially, in this PATH model specification you specify
all the functional relationships (single-headed arrows) in the path diagram and the covariance of error terms
(double-headed arrows) for R_Amb and F_Amb.

Since this TYPE=CORR data set does not contain an observation with _TYPE_=N giving the sample size, it
is necessary to specify the NOBS= option in the PROC CALIS statement.

The fit summary is displayed in Figure 17.41, and the estimation results are displayed in Figure 17.42.

Figure 17.41 Career Aspiration Data: Fit Summary for Analysis 1

Fit Summary

Chi-Square 26.6972

Chi-Square DF 15

Pr > Chi-Square 0.0313

Standardized RMR (SRMR) 0.0202

Adjusted GFI (AGFI) 0.9428

RMSEA Estimate 0.0488

Akaike Information Criterion 106.6972

Schwarz Bayesian Criterion 258.5395

Bentler Comparative Fit Index 0.9859

The model fit chi-square value is 26.6972 (df =15, p=0.0313). From the hypothesis testing point of view, this
result says that this is an extreme sample given the model is true; therefore, the model should be rejected. But
in social and behavioral sciences, you rarely abandon a model purely on the ground of chi-square significance
test. The main reason is that you might only need to find a model that is approximately true, but the hypothesis
testing framework is for testing exact model representation in the population. To determine whether a model
is good or bad, you usually consult other fit indices. Several fit indices are shown in Figure 17.41.

The standardized RMSR is 0.0202. The RMSEA value is 0.0488. Both of these indices are smaller than 0.05,
which indicate good model fit by convention. The adjusted GFI is 0.9428, and the comparative fit index is
0.9859. Again, values greater than 0.9 for these indices indicate good model fit by convention. Therefore, you
can conclude that this is a good model for the data. Akaike’s information criterion (AIC) and the Schwarz
Bayesian criterion are also shown. You cannot interpret these values directly, but they are useful for model
comparison given the same data, as shown in later sections.
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Figure 17.42 Career Aspiration Data: Estimation Results for Analysis 1

PATH List

Path Parameter Estimate
Standard

Error t Value Pr > |t|

R_Amb <=== rpa _Parm01 0.16122 0.03879 4.1560 <.0001

R_Amb <=== riq _Parm02 0.24965 0.04398 5.6763 <.0001

R_Amb <=== rses _Parm03 0.21840 0.04420 4.9415 <.0001

R_Amb <=== fses _Parm04 0.07184 0.04971 1.4453 0.1484

F_Amb <=== rses _Parm05 0.05754 0.04812 1.1956 0.2318

F_Amb <=== fses _Parm06 0.21278 0.04169 5.1042 <.0001

F_Amb <=== fiq _Parm07 0.32451 0.04352 7.4562 <.0001

F_Amb <=== fpa _Parm08 0.14832 0.03645 4.0696 <.0001

R_Amb <=== F_Amb _Parm09 0.19816 0.10228 1.9374 0.0527

F_Amb <=== R_Amb _Parm10 0.21893 0.11125 1.9680 0.0491

rea <=== R_Amb _Parm11 1.06268 0.09014 11.7894 <.0001

roa <=== R_Amb 1.00000

foa <=== F_Amb 1.00000

fea <=== F_Amb _Parm12 1.07558 0.08131 13.2287 <.0001

Variance Parameters

Variance
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Exogenous riq _Add01 1.00000 0.07809 12.8062 <.0001

rpa _Add02 1.00000 0.07809 12.8062 <.0001

rses _Add03 1.00000 0.07809 12.8062 <.0001

fiq _Add04 1.00000 0.07809 12.8062 <.0001

fpa _Add05 1.00000 0.07809 12.8062 <.0001

fses _Add06 1.00000 0.07809 12.8062 <.0001

Error roa _Add07 0.41215 0.05122 8.0458 <.0001

rea _Add08 0.33614 0.05210 6.4519 <.0001

foa _Add09 0.40460 0.04618 8.7606 <.0001

fea _Add10 0.31120 0.04593 6.7759 <.0001

R_Amb _Add11 0.28099 0.04623 6.0778 <.0001

F_Amb _Add12 0.22806 0.03850 5.9233 <.0001
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Figure 17.42 continued

Covariances Among Exogenous Variables

Var1 Var2 Parameter Estimate
Standard

Error t Value Pr > |t|

rpa riq _Add13 0.18390 0.05614 3.2756 0.0011

rses riq _Add14 0.22200 0.05656 3.9250 <.0001

rses rpa _Add15 0.04890 0.05528 0.8846 0.3764

fiq riq _Add16 0.33550 0.05824 5.7606 <.0001

fiq rpa _Add17 0.07820 0.05538 1.4120 0.1580

fiq rses _Add18 0.23020 0.05666 4.0628 <.0001

fpa riq _Add19 0.10210 0.05550 1.8395 0.0658

fpa rpa _Add20 0.11470 0.05558 2.0638 0.0390

fpa rses _Add21 0.09310 0.05545 1.6789 0.0932

fpa fiq _Add22 0.20870 0.05641 3.7000 0.0002

fses riq _Add23 0.18610 0.05616 3.3135 0.0009

fses rpa _Add24 0.01860 0.05523 0.3368 0.7363

fses rses _Add25 0.27070 0.05720 4.7323 <.0001

fses fiq _Add26 0.29500 0.05757 5.1244 <.0001

fses fpa _Add27 -0.04380 0.05527 -0.7925 0.4281

In Figure 17.42, some of the paths do not show significance. That is, fses does not seem to be a good
indicator of a respondent’s ambition R_Amb and rses does not seem to be a good indicator of a friend’s
ambition F_Amb. The t values are 1.445 and 1.195, respectively, which are much smaller than the nominal
1.96 value at the 0.05 ˛-level of significance. Other paths are either significant or marginally significant.

You should be very cautious about interpreting the current analysis results for two reasons. First, as mentioned
previously the data consist of dependent observations, and it was not certain how the issue could have been
addressed beyond setting the sample size to half of the actual size. Second, structural equation modeling
methodology is mainly applicable when you analyze covariance structures. When you input a correlation
matrix for analysis, there is no guarantee that the statistical tests and standard error estimates are applicable.
You should view the interpretations made here just as an exercise of applying structural equation modeling.

In Output 17.42, all parameter names are generated by PROC CALIS. Alternatively, you can also name
these parameters in your PATH model specification. The following shows a PATH model specification that
corresponds to the complete path diagram shown in Figure 17.39:

proc calis data=aspire nobs=329;
path

/* structural model of influences */
rpa ===> R_Amb = gam1,
riq ===> R_Amb = gam2,
rses ===> R_Amb = gam3,
fses ===> R_Amb = gam4,
rses ===> F_Amb = gam5,
fses ===> F_Amb = gam6,
fiq ===> F_Amb = gam7,
fpa ===> F_Amb = gam8,
F_Amb ===> R_Amb = beta1,
R_Amb ===> F_Amb = beta2,

/* measurement model for aspiration */
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R_Amb ===> rea = lambda2,
R_Amb ===> roa = 1.,
F_Amb ===> foa = 1.,
F_Amb ===> fea = lambda3;

pvar
R_Amb = psi11,
F_Amb = psi22,
rpa riq rses fpa fiq fses = v1-v6,
rea roa fea foa = theta1-theta4;

pcov
R_Amb F_Amb = psi12,
rpa riq rses fpa fiq fses = cov01-cov15;

run;

In this specification, the names of the parameters correspond to those used by Jöreskog and Sörbom (1988).
Compared with the simplified version of the same model specification, you name 27 more parameters in the
current specification. You have to be careful with this many parameters. If you inadvertently repeat the use
of some parameter names, you will have unexpected constraints in the model.

The results from this analysis are displayed in Figure 17.43.

Figure 17.43 Career Aspiration Data: Estimation Results with Designated Parameter Names (Analysis 1)

PATH List

Path Parameter Estimate
Standard

Error t Value Pr > |t|

rpa ===> R_Amb gam1 0.16122 0.03879 4.1560 <.0001

riq ===> R_Amb gam2 0.24965 0.04398 5.6763 <.0001

rses ===> R_Amb gam3 0.21840 0.04420 4.9415 <.0001

fses ===> R_Amb gam4 0.07184 0.04971 1.4453 0.1484

rses ===> F_Amb gam5 0.05754 0.04812 1.1956 0.2318

fses ===> F_Amb gam6 0.21278 0.04169 5.1042 <.0001

fiq ===> F_Amb gam7 0.32451 0.04352 7.4562 <.0001

fpa ===> F_Amb gam8 0.14832 0.03645 4.0696 <.0001

F_Amb ===> R_Amb beta1 0.19816 0.10228 1.9374 0.0527

R_Amb ===> F_Amb beta2 0.21893 0.11125 1.9680 0.0491

R_Amb ===> rea lambda2 1.06268 0.09014 11.7894 <.0001

R_Amb ===> roa 1.00000

F_Amb ===> foa 1.00000

F_Amb ===> fea lambda3 1.07558 0.08131 13.2287 <.0001
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Figure 17.43 continued

Variance Parameters

Variance
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Error R_Amb psi11 0.28099 0.04623 6.0778 <.0001

F_Amb psi22 0.22806 0.03850 5.9233 <.0001

Exogenous rpa v1 1.00000 0.07809 12.8062 <.0001

riq v2 1.00000 0.07809 12.8062 <.0001

rses v3 1.00000 0.07809 12.8062 <.0001

fpa v4 1.00000 0.07809 12.8062 <.0001

fiq v5 1.00000 0.07809 12.8062 <.0001

fses v6 1.00000 0.07809 12.8062 <.0001

Error rea theta1 0.33614 0.05210 6.4519 <.0001

roa theta2 0.41215 0.05122 8.0458 <.0001

fea theta3 0.31120 0.04593 6.7759 <.0001

foa theta4 0.40460 0.04618 8.7606 <.0001

Covariances Among Exogenous Variables

Var1 Var2 Parameter Estimate
Standard

Error t Value Pr > |t|

rpa riq cov01 0.18390 0.05614 3.2756 0.0011

rpa rses cov02 0.04890 0.05528 0.8846 0.3764

riq rses cov03 0.22200 0.05656 3.9250 <.0001

rpa fpa cov04 0.11470 0.05558 2.0638 0.0390

riq fpa cov05 0.10210 0.05550 1.8395 0.0658

rses fpa cov06 0.09310 0.05545 1.6789 0.0932

rpa fiq cov07 0.07820 0.05538 1.4120 0.1580

riq fiq cov08 0.33550 0.05824 5.7606 <.0001

rses fiq cov09 0.23020 0.05666 4.0628 <.0001

fpa fiq cov10 0.20870 0.05641 3.7000 0.0002

rpa fses cov11 0.01860 0.05523 0.3368 0.7363

riq fses cov12 0.18610 0.05616 3.3135 0.0009

rses fses cov13 0.27070 0.05720 4.7323 <.0001

fpa fses cov14 -0.04380 0.05527 -0.7925 0.4281

fiq fses cov15 0.29500 0.05757 5.1244 <.0001

These are the same results as displayed in Figure 17.42 for the simplified PATH model specification. The
only differences are the arrangement of estimation results and the naming of the parameters.

Career Aspiration: Analysis 2
Jöreskog and Sörbom (1988) present more detailed results from a second analysis in which two constraints
are imposed:

• The coefficients that connect the latent ambition variables are equal.

• The covariance of the disturbances of the ambition variables is zero.
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Applying these constraints to Figure 17.40, you get the path diagram displayed in Figure 17.44.

Figure 17.44 Path Diagram for Career Aspiration : Analysis 2
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In Figure 17.44, the double-headed path that connected R_Amb and F_Amb no longer exists. Also, the single-
headed paths between R_Amb and F_Amb are both labeled with beta, indicating the required constrained
effects in the model. The path diagram in Figure 17.44 is transcribed into the PATH model in the following
statements:

proc calis data=aspire nobs=329;
path

/* structural model of influences */
rpa ===> R_Amb ,
riq ===> R_Amb ,
rses ===> R_Amb ,
fses ===> R_Amb ,
rses ===> F_Amb ,
fses ===> F_Amb ,
fiq ===> F_Amb ,
fpa ===> F_Amb ,
F_Amb ===> R_Amb = beta,
R_Amb ===> F_Amb = beta,

/* measurement model for aspiration */
R_Amb ===> rea ,
R_Amb ===> roa = 1.,
F_Amb ===> foa = 1.,
F_Amb ===> fea ;

run;
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The only differences between the current specification and the preceding specification for Analysis 1 are the
labeling of two paths with the same parameter beta and the deletion of PCOV statement where the covariance
of R_Amb and F_Amb was specified in Analysis 1. The fit summary of the current model is displayed in
Figure 17.45, and the estimation results are displayed in Figure 17.46.

Figure 17.45 Career Aspiration Data: Fit Summary for Analysis 2

Fit Summary

Chi-Square 26.8987

Chi-Square DF 17

Pr > Chi-Square 0.0596

Standardized RMR (SRMR) 0.0203

Adjusted GFI (AGFI) 0.9492

RMSEA Estimate 0.0421

Akaike Information Criterion 102.8987

Schwarz Bayesian Criterion 247.1489

Bentler Comparative Fit Index 0.9880

The model fit chi-square value is 26.8987 (df =17, p=0.0596). The standardized RMSR and the RMSEA are
both less than 0.05, while the adjusted GFI and comparative fit index are both bigger than 0.9. All these
indicate a good model fit, but how does this model (Analysis 2) compare with that in Analysis 1?

The difference between the chi-square values for Analyses 1 and 2 is 26:8987 � 26:6972 D 0:2015 with two
degrees of freedom, which is far from significant. This indicates that the restricted model (Analysis 2) fits as
well as the unrestricted model (Analysis 1). The AIC is 102.8987, and the SBC is 247.149. Both of these
values are smaller than that of Analysis 1 (106.697 for AIC and 258.540 for SBC), and hence they indicate
that the current model is a better one.

Figure 17.46 Career Aspiration Data: Estimation Results for Analysis 2

PATH List

Path Parameter Estimate
Standard

Error t Value Pr > |t|

rpa ===> R_Amb _Parm01 0.16367 0.03872 4.2274 <.0001

riq ===> R_Amb _Parm02 0.25395 0.04186 6.0673 <.0001

rses ===> R_Amb _Parm03 0.22115 0.04187 5.2822 <.0001

fses ===> R_Amb _Parm04 0.07728 0.04149 1.8626 0.0625

rses ===> F_Amb _Parm05 0.06840 0.03868 1.7681 0.0770

fses ===> F_Amb _Parm06 0.21839 0.03948 5.5320 <.0001

fiq ===> F_Amb _Parm07 0.33063 0.04116 8.0331 <.0001

fpa ===> F_Amb _Parm08 0.15204 0.03636 4.1817 <.0001

F_Amb ===> R_Amb beta 0.18007 0.03912 4.6031 <.0001

R_Amb ===> F_Amb beta 0.18007 0.03912 4.6031 <.0001

R_Amb ===> rea _Parm09 1.06097 0.08921 11.8923 <.0001

R_Amb ===> roa 1.00000

F_Amb ===> foa 1.00000

F_Amb ===> fea _Parm10 1.07359 0.08063 13.3150 <.0001
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Figure 17.46 continued

Variance Parameters

Variance
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Exogenous riq _Add01 1.00000 0.07809 12.8062 <.0001

rpa _Add02 1.00000 0.07809 12.8062 <.0001

rses _Add03 1.00000 0.07809 12.8062 <.0001

fiq _Add04 1.00000 0.07809 12.8062 <.0001

fpa _Add05 1.00000 0.07809 12.8062 <.0001

fses _Add06 1.00000 0.07809 12.8062 <.0001

Error roa _Add07 0.41205 0.05103 8.0740 <.0001

rea _Add08 0.33764 0.05178 6.5204 <.0001

foa _Add09 0.40381 0.04608 8.7643 <.0001

fea _Add10 0.31337 0.04574 6.8517 <.0001

R_Amb _Add11 0.28113 0.04640 6.0587 <.0001

F_Amb _Add12 0.22924 0.03889 5.8939 <.0001

Covariances Among Exogenous Variables

Var1 Var2 Parameter Estimate
Standard

Error t Value Pr > |t|

rpa riq _Add13 0.18390 0.05614 3.2756 0.0011

rses riq _Add14 0.22200 0.05656 3.9250 <.0001

rses rpa _Add15 0.04890 0.05528 0.8846 0.3764

fiq riq _Add16 0.33550 0.05824 5.7606 <.0001

fiq rpa _Add17 0.07820 0.05538 1.4120 0.1580

fiq rses _Add18 0.23020 0.05666 4.0628 <.0001

fpa riq _Add19 0.10210 0.05550 1.8395 0.0658

fpa rpa _Add20 0.11470 0.05558 2.0638 0.0390

fpa rses _Add21 0.09310 0.05545 1.6789 0.0932

fpa fiq _Add22 0.20870 0.05641 3.7000 0.0002

fses riq _Add23 0.18610 0.05616 3.3135 0.0009

fses rpa _Add24 0.01860 0.05523 0.3368 0.7363

fses rses _Add25 0.27070 0.05720 4.7323 <.0001

fses fiq _Add26 0.29500 0.05757 5.1244 <.0001

fses fpa _Add27 -0.04380 0.05527 -0.7925 0.4281

Like Analysis 1, the same two paths in the current analysis are not significant. That is, fses does not seem to
be a good indicator of a respondent’s ambition R_Amb, and rses does not seem to be a good indicator of a
friend’s ambition F_Amb. The t values are 1.862 and 1.768, respectively.

Career Aspiration: Analysis 3
Loehlin (1987) points out that the models considered are unrealistic in at least two respects. First, the
variables of parental aspiration, intelligence, and socioeconomic status are assumed to be measured without
error. Loehlin adds uncorrelated measurement errors to the model and assumes, for illustrative purposes,
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that the reliabilities of these variables are known to be 0.7, 0.8, and 0.9, respectively. In practice, these
reliabilities would need to be obtained from a separate study of the same or a very similar population. If these
constraints are omitted, the model is not identified. However, constraining parameters to a constant in an
analysis of a correlation matrix might make the chi-square goodness-of-fit test inaccurate, so there is more
reason to be skeptical of the p-values. Second, the error terms for the respondent’s aspiration are assumed to
be uncorrelated with the corresponding terms for his friend. Loehlin introduces a correlation between the two
educational aspiration error terms and between the two occupational aspiration error terms. These additions
produce the path diagram for Loehlin’s model shown in Figure 17.47.

Figure 17.47 Path Diagram for Career Aspiration: Analysis 3
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0.837
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In Figure 17.47, the observed variables rpa, riq, rses, fses, fiq, and fpa are all measured with measurement
errors. Their true scores counterparts f_rpa, f_riq, f_rses, f_fses, f_fiq, and f_fpa are latent variables in the
model. Path coefficients from these latent variables to the observed variables are fixed coefficients, indicating
the square roots of the theoretical reliabilities in the model. These latent variables, rather than the observed
counterparts, serve as predictors of the ambition factors R_Amb and F_Amb in the current model (Analysis
3). The error terms for these two latent factors are correlated, as indicated by a double-headed path (arrow)
that connects the two factors. Correlated errors for the occupational aspiration variables (roa and foa) and the
educational aspiration variables (rea and fea) are also shown in Figure 17.47. Again, these correlated errors
are represented by two double-headed paths (arrows) in the path diagram.
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You use the following statements to specify the path model for Analysis 3:

proc calis data=aspire nobs=329;
path

/* measurement model for intelligence and environment */
rpa <=== f_rpa = 0.837,
riq <=== f_riq = 0.894,
rses <=== f_rses = 0.949,
fses <=== f_fses = 0.949,
fiq <=== f_fiq = 0.894,
fpa <=== f_fpa = 0.837,

/* structural model of influences */
f_rpa ===> R_Amb,
f_riq ===> R_Amb,
f_rses ===> R_Amb,
f_fses ===> R_Amb,
f_rses ===> F_Amb,
f_fses ===> F_Amb,
f_fiq ===> F_Amb,
f_fpa ===> F_Amb,
F_Amb ===> R_Amb,
R_Amb ===> F_Amb,

/* measurement model for aspiration */
R_Amb ===> rea ,
R_Amb ===> roa = 1.,
F_Amb ===> foa = 1.,
F_Amb ===> fea ;

pvar
f_rpa f_riq f_rses f_fses f_fiq f_fpa = 6 * 1.0;

pcov
R_Amb F_Amb ,
rea fea ,
roa foa ;

run;

In this specification, the measurement model for the six intelligence and environment variables are added.
They are the first six paths in the PATH statement. Fixed constants are set for these path coefficients so as to
make the measurement model identified and to set the required reliabilities of these measurement indicators.
The structural model of influences and the measurement model for aspiration are the same as specified in
Analysis 1. (See the section “Career Aspiration: Analysis 1” on page 326.) All the correlated errors are
specified in the PCOV statement.

The fit summary of the current model is displayed in Figure 17.48.
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Figure 17.48 Career Aspiration Data: Fit Summary for Analysis 3

Fit Summary

Chi-Square 12.0132

Chi-Square DF 13

Pr > Chi-Square 0.5266

Standardized RMR (SRMR) 0.0149

Adjusted GFI (AGFI) 0.9692

RMSEA Estimate 0.0000

Akaike Information Criterion 96.0132

Schwarz Bayesian Criterion 255.4476

Bentler Comparative Fit Index 1.0000

Since the p-value for the chi-square test is 0.5266, this model clearly cannot be rejected. Both the standardized
RMSR and the RMSEA are very small, and both the adjusted GFI and the comparative fit index are high. All
these point to an excellent model fit. However, Schwarz’s Bayesian criterion for this model (SBC = 255.4476)
is somewhat larger than for Jöreskog and Sörbom (1988) Analysis 2 in Figure 17.45 (SBC = 247.1489),
suggesting that a more parsimonious model would be desirable.

The estimation results are displayed in Figure 17.49.

Figure 17.49 Career Aspiration Data: Estimation Results for Analysis 3

PATH List

Path Parameter Estimate
Standard

Error t Value Pr > |t|

rpa <=== f_rpa 0.83700

riq <=== f_riq 0.89400

rses <=== f_rses 0.94900

fses <=== f_fses 0.94900

fiq <=== f_fiq 0.89400

fpa <=== f_fpa 0.83700

f_rpa ===> R_Amb _Parm01 0.18370 0.05044 3.6420 0.0003

f_riq ===> R_Amb _Parm02 0.28004 0.06139 4.5618 <.0001

f_rses ===> R_Amb _Parm03 0.22616 0.05223 4.3300 <.0001

f_fses ===> R_Amb _Parm04 0.08698 0.05476 1.5883 0.1122

f_rses ===> F_Amb _Parm05 0.06327 0.05219 1.2124 0.2254

f_fses ===> F_Amb _Parm06 0.21539 0.05121 4.2060 <.0001

f_fiq ===> F_Amb _Parm07 0.35387 0.06741 5.2497 <.0001

f_fpa ===> F_Amb _Parm08 0.16876 0.04934 3.4205 0.0006

F_Amb ===> R_Amb _Parm09 0.11898 0.11396 1.0441 0.2964

R_Amb ===> F_Amb _Parm10 0.13022 0.12067 1.0791 0.2805

R_Amb ===> rea _Parm11 1.08399 0.09417 11.5105 <.0001

R_Amb ===> roa 1.00000

F_Amb ===> foa 1.00000

F_Amb ===> fea _Parm12 1.11630 0.08627 12.9394 <.0001
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Figure 17.49 continued

Variance Parameters

Variance
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Exogenous f_rpa 1.00000

f_riq 1.00000

f_rses 1.00000

f_fses 1.00000

f_fiq 1.00000

f_fpa 1.00000

Error riq _Add01 0.20874 0.07832 2.6652 0.0077

rpa _Add02 0.29584 0.07774 3.8057 0.0001

rses _Add03 0.09887 0.07803 1.2671 0.2051

roa _Add04 0.42307 0.05243 8.0695 <.0001

rea _Add05 0.32707 0.05452 5.9988 <.0001

fiq _Add06 0.19989 0.07674 2.6048 0.0092

fpa _Add07 0.29988 0.07807 3.8409 0.0001

fses _Add08 0.10324 0.07824 1.3195 0.1870

foa _Add09 0.42240 0.04730 8.9310 <.0001

fea _Add10 0.28716 0.04804 5.9776 <.0001

R_Amb _Add11 0.25418 0.04469 5.6874 <.0001

F_Amb _Add12 0.19698 0.03814 5.1653 <.0001

Covariances Among Exogenous Variables

Var1 Var2 Parameter Estimate
Standard

Error t Value Pr > |t|

f_riq f_rpa _Add13 0.24677 0.07519 3.2820 0.0010

f_rses f_rpa _Add14 0.06183 0.06945 0.8903 0.3733

f_rses f_riq _Add15 0.26351 0.06687 3.9408 <.0001

f_fses f_rpa _Add16 0.02382 0.06952 0.3427 0.7318

f_fses f_riq _Add17 0.22136 0.06648 3.3298 0.0009

f_fses f_rses _Add18 0.30156 0.06359 4.7421 <.0001

f_fiq f_rpa _Add19 0.10853 0.07362 1.4742 0.1404

f_fiq f_riq _Add20 0.42476 0.07219 5.8837 <.0001

f_fiq f_rses _Add21 0.27250 0.06660 4.0914 <.0001

f_fiq f_fses _Add22 0.34922 0.06771 5.1576 <.0001

f_fpa f_rpa _Add23 0.15789 0.07873 2.0056 0.0449

f_fpa f_riq _Add24 0.13084 0.07418 1.7639 0.0778

f_fpa f_rses _Add25 0.11516 0.06978 1.6505 0.0988

f_fpa f_fses _Add26 -0.05622 0.06971 -0.8065 0.4200

f_fpa f_fiq _Add27 0.27867 0.07530 3.7008 0.0002

Covariances Among Errors

Error of Error of Parameter Estimate
Standard

Error t Value Pr > |t|

R_Amb F_Amb _Parm13 -0.00936 0.05010 -0.1867 0.8519

rea fea _Parm14 0.02308 0.03139 0.7355 0.4621

roa foa _Parm15 0.11206 0.03258 3.4399 0.0006
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Like Analyses 1 and 2, two paths that concern the validity of the indicators in the current analysis do not
show significance. That is, f_fses does not seem to be a good indicator of a respondent’s ambition R_Amb,
and f_rses does not seem to be a good indicator of a friend’s ambition F_Amb. The t values are 1.588 and
1.212, respectively. In addition, in the current model (Analysis 3), the structural relationships between the
ambition factors do not show significance. The t value for the path from the friend’s ambition factor F_Amb
on the respondent’s ambition factor R_Amb is only 1.044, while the t value for the path from the respondent’s
ambition factor R_Amb on the friend’s ambition factor F_Amb is only 1.079. These cast doubts on the
validity of the structural model and perhaps even the entire model.

Fitting LISREL Models by the LISMOD Modeling Language
The model described in the section “Career Aspiration: Analysis 3” on page 336 provides a good example of
the LISREL model. In PROC CALIS, the LISREL model specifications are supported by a matrix-based
language called LISMOD (LISREL model). In this section, the path diagram in Figure 17.47 is specified
by the LISMOD modeling language of PROC CALIS. See the section “Career Aspiration: Analysis 3” on
page 336 for detailed descriptions of the model.

In order to understand the LISMOD modeling language of PROC CALIS, some basic understanding of the
LISREL model is necessary. In a LISREL model, variables are classified into four distinct classes:

• � is a vector of exogenous (independent) latent variables in the model. They are specified in XI=
variable list in the LISMOD statement.

• � is a vector of endogenous (dependent) latent variables in the model. They are specified in ETA=
variable list in the LISMOD statement.

• x is a vector of observed indicator variables for � in the model. They are specified in XVAR= variable
list in the LISMOD statement.

• y is a vector of observed indicator variables for � in the model. They are specified in YVAR= variable
list in the LISMOD statement.

For detailed descriptions of the LISMOD modeling language, see the LISMOD statement and the section
“The LISMOD Model and Submodels” on page 1408 in Chapter 29, “The CALIS Procedure.” To successfully
set up a LISMOD model in PROC CALIS, you first need to recognize these classes of variables in your
model. For the path diagram in Figure 17.47, it is not difficult to see the following:

• � is the vector of the intelligence and environmental factors: f_rpa, f_riq, f_rses, f_fses, f_fiq, and f_fpa.
These variables are exogenous because no single-headed arrows point to them.

• � is the vector of the ambition factors: R_Amb, and F_Amb. They are endogenous because each of
them has at least one single-headed arrow pointing to it.

• x is the vector of the observed indicator variables for the intelligence and environmental factors �.
These indicators are rpa, riq, rses, fses, fiq, and fpa.

• y is the vector of observed indicator variables for the ambition factors �. These indicators are rea, roa,
foa, and fea.
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In LISMOD, you do not need to define error terms explicitly as latent variables. The parameters in LISMOD
are defined as entries in various model matrices. The following statements specify the LISMOD model for
the diagram in Figure 17.47:

proc calis data=aspire nobs=329;
lismod

xi = f_rpa f_riq f_rses f_fses f_fiq f_fpa,
eta = R_Amb F_Amb,
xvar = rpa riq rses fses fiq fpa,
yvar = rea roa foa fea;

/* measurement model for aspiration */
matrix _lambday_ [1,1], [2,1] = 1.0, [3,2] = 1.0, [4,2];
matrix _thetay_ [4,1], [3,2];

/* measurement model for intelligence and environment */
matrix _lambdax_ [1,1] = 0.837 0.894 0.949 0.949 0.894 0.837;

/* structural model of influences */
matrix _beta_ [2,1],[1,2];
matrix _gamma_ [1,1 to 4], [2,3 to 6];

/* Covariances among Eta-variables */
matrix _psi_ [2,1];

/* Fixed variances for Xi-variables */
matrix _phi_ [1,1] = 6 * 1.0;

run;

The LISMOD statement invokes the LISMOD modeling language of PROC CALIS. In the LISMOD
statement, you list the four classes of variables in the model in the XI=, ETA=, XVAR=, and YVAR= variable
lists, respectively. After you define the four classes of variables, you use several MATRIX statements to
specify the model matrices and the parameters in the model.

Basically, there are three model components in the LISMOD specification: two measurement models and
one structural model. The first measurement model specifies the functional relationships between observed
variables y (YVAR= variables) and the endogenous (dependent) latent factors � (ETA= variables). The
second measurement model specifies the functional relationships between observed variables x and (XVAR=
variables) and the exogenous (independent) latent factors � (XI= variables). The structural model specifies
the relationships between the endogenous and exogenous latent variables � and � . To facilitate the discussion
of these model components and the corresponding LISMOD model specification, some initial model output
from PROC CALIS are shown.

The Measurement Model for y
The first component of the LISMOD specification is the measurement model for y, as shown in the following
equation:

y D ƒy�C �

In the context of covariance structure analysis, without loss of generality, it is assumed that y and � are
centered so that there is no intercept term in the equation. This equation essentially states that y is a function
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of the true scores vector � plus the error term �, which is independent of �. The model matrices involved in
this measurement model are ƒy (effects of � on y) and‚y, which is the covariance matrix of �.

For the career aspiration data, you specify the following two MATRIX statements for this measurement
model:

matrix _lambday_ [1,1], [2,1] = 1.0, [3,2] = 1.0, [4,2];
matrix _thetay_ [4,1], [3,2];

The first matrix statement is for matrix ƒy. You specify four parameters in this matrix. The [1,1] and [4,2]
elements are free parameters, and the [2,1] and [3,2] elements have fixed values of 1. You do not specify other
elements in this matrix. By default, unspecified elements in the ƒy matrix are fixed zeros. You can check
your initial model specification of this matrix, as shown in the Figure 17.50.

Figure 17.50 Career Aspiration Analysis 3: Initial Measurement Model for y

Initial _LAMBDAY_ Matrix

R_Amb F_Amb

rea .
[_Parm01]

0

roa 1.0000 0

foa 0 1.0000

fea 0 .
[_Parm02]

Initial _THETAY_ Matrix

rea roa foa fea

rea .
[_Add07]

0 0 .
[_Parm13]

roa 0 .
[_Add08]

.
[_Parm14]

0

foa 0 .
[_Parm14]

.
[_Add09]

0

fea .
[_Parm13]

0 0 .
[_Add10]

NOTE: Parameters with prefix '_Add'
are added by PROC CALIS.

In Figure 17.50, the initial _LAMBDAY_ matrix is a 4 � 2 matrix. The _LAMBDAY_ matrix contains
information about the relationships between the row indicator variables y (YVAR= variables) and the column
factors � (ETA= variables). As specified in the MATRIX statement for _LAMBDAY_, the [1,1] and [4,2] are
free parameters named _Parm01 and _Parm02, respectively. These parameter names are generated by PROC
CALIS. Fixed values 1.0 appear in the [2,1] and [3,2] elements. These fixed values are used to identify the
scales of the latent variables R_Amb and F_Amb.

The _THETAY_ matrix in Figure 17.50 is the covariance matrix among the error terms for the y-variables
(YVAR= variables). This is a 4 � 4 matrix for the four measured indicators. As specified in the MATRIX
statement for _THETAY_, the [4,1] and [3,2] elements are free parameters named _Parm13 and _Parm14,
respectively. Because _THETAY_ is a symmetric matrix, elements [1,4] and [2,3] are also implicitly specified
as parameters in this model matrix.



344 F Chapter 17: Introduction to Structural Equation Modeling with Latent Variables

As shown in Figure 17.50, PROC CALIS adds four default free parameters to the _THETAY_ matrix. On the
diagonal of the _THETAY_ matrix, parameters _Add07, _Add08, _Add09, and _Add10 are added as default
free parameters by PROC CALIS automatically. In general, error variances are default free parameters in
PROC CALIS. You do not have to specify them but you can specify them if you want to, especially when
you need to set fixed values or other constraints on them.

The Measurement Model for x
The second component of the LISMOD specification is the measurement model for x, as shown in the
following equation:

x D ƒx� C ı

The measurement model for x is similar to that for y. Assuming that x and � are centered, this equation states
that x is a function of the true scores vector � plus the error term ı, which is independent of �. The model
matrices involved in this measurement model are ƒx (effects of � on x) and ‚x, which is the covariance
matrix of ı.

For the career aspiration data, you specify the following MATRIX statement for this measurement model:

matrix _lambdax_ [1,1] = 0.837 0.894 0.949 0.949 0.894 0.837;

Figure 17.51 shows the output related to the specification of the measurement model for x.

Figure 17.51 Career Aspiration Analysis 3: Initial Measurement Model for x

Initial _LAMBDAX_ Matrix

f_rpa f_riq f_rses f_fses f_fiq f_fpa

rpa 0.8370 0 0 0 0 0

riq 0 0.8940 0 0 0 0

rses 0 0 0.9490 0 0 0

fses 0 0 0 0.9490 0 0

fiq 0 0 0 0 0.8940 0

fpa 0 0 0 0 0 0.8370

Initial _THETAX_ Matrix

rpa riq rses fses fiq fpa

rpa .
[_Add01]

0 0 0 0 0

riq 0 .
[_Add02]

0 0 0 0

rses 0 0 .
[_Add03]

0 0 0

fses 0 0 0 .
[_Add04]

0 0

fiq 0 0 0 0 .
[_Add05]

0

fpa 0 0 0 0 0 .
[_Add06]

NOTE: Parameters with prefix '_Add'
are added by PROC CALIS.
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In Figure 17.51, the initial _LAMBDAX_ matrix is a 6 � 6 matrix. The _LAMBDAX_ matrix contains
information about the relationships between the row indicator variables x (XVAR= variables) and the column
factors � (XI= variables). As specified in the MATRIX statement for _LAMBDAX_, the diagonal elements
are filled with the fixed values provided. The [1,1] specification in the MATRIX statement for _LAMBDAX_
provides the starting element for the subsequent parameter list to fill in. In this case, the list contains six fixed
values, and PROC CALIS proceeds from [1,1] to [2,2], [3,3] and so on until the entire list of parameters is
consumed. This kind of notation is a shortcut of the following equivalent specification:

matrix _lambdax_ [1,1]=0.837, [2,2]=0.894, [3,3]=0.949,
[4,4]=0.949, [5,5]=0.894, [6,6]=0.837;

PROC CALIS provides many different kinds of shortcuts in specifying matrix elements. See the MATRIX
statement of Chapter 29, “The CALIS Procedure,” for details.

At the bottom of Figure 17.51, the initial _THETAX_ matrix is shown. Even though you did not specify any
elements of this matrix in any MATRIX statements, the diagonal elements of this matrix are set as default
parameters by PROC CALIS. Default parameters added by PROC CALIS are all denoted by names with the
prefix ‘_Add’.

The Structural Model
The last component of the LISMOD specification is the structural model that describes the relationship
between � and �, as shown in the following equation:

� D ˇ�C �� C �

In this equation, � is endogenous (dependent) and � is exogenous (independent). Variables in � can have
effects among themselves. Their effects are specified in the ˇ matrix. The effects of � on � are specified in
the � matrix. Finally, the error term for the structural relationships is denoted by �, which is independent of
�.

There are four model matrices assumed in the structural model. ˇ and � are matrices for the effects of
variables. In addition, matrix ‰ denotes the covariance matrix for the error term �, and matrix ˆ denotes the
covariance matrix of �.

For the career aspiration data, you use the following MATRIX statements for the structural model:

matrix _beta_ [2,1],[1,2];
matrix _gamma_ [1,1 to 4], [2,3 to 6];
matrix _psi_ [2,1];
matrix _phi_ [1,1] = 6 * 1.0;

In Figure 17.52, initial _BETA_ and _GAMMA_ matrices are shown.

Figure 17.52 Career Aspiration Analysis 3: Initial Structural Equations

Initial _BETA_ Matrix

R_Amb F_Amb

R_Amb 0 .
[_Parm12]

F_Amb .
[_Parm11]

0
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Figure 17.52 continued

Initial _GAMMA_ Matrix

f_rpa f_riq f_rses f_fses f_fiq f_fpa

R_Amb .
[_Parm03]

.
[_Parm04]

.
[_Parm05]

.
[_Parm06]

0 0

F_Amb 0 0 .
[_Parm07]

.
[_Parm08]

.
[_Parm09]

.
[_Parm10]

In Figure 17.52, the _BETA_ matrix contains information about the relationships among the �-variables
(ETA= variables). Both the row and column variables of the _BETA_ matrix refer to the list of �-variables.
The row variables receive effects from the column variables. You specify two parameters in the _BETA_
matrix: element [2,1] is the effect of R_Amb on F_Amb, and element [2,1] is the effect of F_Amb on R_Amb.
Other effects are fixed zeros in this matrix.

The _GAMMA_ matrix contains information about the relationships between the �-variables (ETA= variables)
and the �-variables (XI= variables). The row variables are the �-variables, which receive effects from the
column �-variables. You specify eight free parameters in this matrix. These eight parameters represent the
eight path coefficients from � (the intelligence and environment factors) to the � variables (the ambition
factors), as shown in the path diagram in Figure 17.47. A shortcut in the MATRIX statement syntax for the
_GAMMA_ matrix has been used. That is, [1, 1 to 4] means the [1,1], [1,2], [1,3], and [1,4] elements,
and [2, 3 to 6] means the [2,3], [2,4], [2,5], and [2,6] elements. All these elements are free parameters in
the model and free parameter names are generated for these elements.

Figure 17.53 shows the initial _PSI_ and _PHI_ matrices.

Figure 17.53 Career Aspiration Analysis 3: Initial Variances and Covariances

Initial _PSI_ Matrix

R_Amb F_Amb

R_Amb .
[_Add11]

.
[_Parm15]

F_Amb .
[_Parm15]

.
[_Add12]

NOTE:
Parameters with prefix
'_Add'
are added by PROC CALIS.

Initial _PHI_ Matrix

f_rpa f_riq f_rses f_fses f_fiq f_fpa

f_rpa 1.0000 .
[_Add13]

.
[_Add14]

.
[_Add16]

.
[_Add19]

.
[_Add23]

f_riq .
[_Add13]

1.0000 .
[_Add15]

.
[_Add17]

.
[_Add20]

.
[_Add24]

f_rses .
[_Add14]

.
[_Add15]

1.0000 .
[_Add18]

.
[_Add21]

.
[_Add25]

f_fses .
[_Add16]

.
[_Add17]

.
[_Add18]

1.0000 .
[_Add22]

.
[_Add26]

f_fiq .
[_Add19]

.
[_Add20]

.
[_Add21]

.
[_Add22]

1.0000 .
[_Add27]

f_fpa .
[_Add23]

.
[_Add24]

.
[_Add25]

.
[_Add26]

.
[_Add27]

1.0000

NOTE: Parameters with prefix '_Add'
are added by PROC CALIS.
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The _PSI_ matrix contains information about the covariances of error terms for the �-variables, which are
endogenous in the structural model. There are two �-variables in the model—the two ambition factors
R_Amb and F_Amb. You specify the [2,1] element as a free parameter in the MATRIX statement for _PSI_.
This means that the error covariance between R_Amb and F_Amb is a free parameter to estimate in the model.
In Figure 17.53, both [2,1] and [1,2] elements are named as _Parm15 because _PSI_ is a symmetric matrix.
Again, the diagonal elements of this covariance matrix, which are for the error variances of the ambition
factors, are default free parameters in PROC CALIS. These parameters are named with the prefix _Add.

Finally, the _PHI_ matrix contains information about the covariances among the exogenous latent factors in
the structural model. For the _PHI_ matrix, you fix all the diagonal elements to 1 in the MATRIX statement
for _PHI_. This makes the latent variable scales identified. These fixed values are echoed in the output of the
initial _PHI_ matrix shown in Figure 17.53. In addition, all covariances among latent exogenous variables
are set to be free parameters by default.

Fit Summary of the LISMOD Model for Career Aspiration Analysis 3
Figure 17.54 shows the fit summary of the LISMOD model. All these fit index values match those from using
the PATH model specification of the same model, as shown in Figure 17.48. Therefore, you are confident
that the current LISMOD model specification is equivalent to the PATH model specification shown in the
section “Career Aspiration: Analysis 3” on page 336.

Figure 17.54 Career Aspiration Analysis 3: Fit Summary of the LISMOD Model

Fit Summary

Chi-Square 12.0132

Chi-Square DF 13

Pr > Chi-Square 0.5266

Standardized RMR (SRMR) 0.0149

Adjusted GFI (AGFI) 0.9692

RMSEA Estimate 0.0000

Akaike Information Criterion 96.0132

Schwarz Bayesian Criterion 255.4476

Bentler Comparative Fit Index 1.0000

Estimation results are shown in Figure 17.55, Figure 17.56, and Figure 17.57, respectively for the measure-
ment model for y, measurement model for x, and the structural model. These are the same estimation results
as those from the equivalent PATH model specification in Figure 17.49. However, estimates in the LISMOD
model are now arranged in the matrix form, with standard error estimates and t values shown.
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Figure 17.55 Career Aspiration Analysis 3: Estimation of Measurement Model for y

_LAMBDAY_ Matrix:
Estimate/StdErr/t-value/p-value

R_Amb F_Amb

rea 1.0840
0.0942
11.5105
<.0001

[_Parm01]

0

roa 1.0000 0

foa 0 1.0000

fea 0 1.1163
0.0863
12.9394
<.0001

[_Parm02]

_THETAY_ Matrix:
Estimate/StdErr/t-value/p-value

rea roa foa fea

rea 0.3271
0.0545
5.9988
<.0001

[_Add07]

0 0 0.0231
0.0314
0.7355
0.4621

[_Parm13]

roa 0 0.4231
0.0524
8.0695
<.0001

[_Add08]

0.1121
0.0326
3.4399

0.000582
[_Parm14]

0

foa 0 0.1121
0.0326
3.4399

0.000582
[_Parm14]

0.4224
0.0473
8.9310
<.0001

[_Add09]

0

fea 0.0231
0.0314
0.7355
0.4621

[_Parm13]

0 0 0.2872
0.0480
5.9776
<.0001

[_Add10]
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Figure 17.56 Career Aspiration Analysis 3: Estimation of Measurement Model for x

_LAMBDAX_ Matrix:
Estimate/StdErr/t-value/p-value

f_rpa f_riq f_rses f_fses f_fiq f_fpa

rpa 0.8370 0 0 0 0 0

riq 0 0.8940 0 0 0 0

rses 0 0 0.9490 0 0 0

fses 0 0 0 0.9490 0 0

fiq 0 0 0 0 0.8940 0

fpa 0 0 0 0 0 0.8370
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Figure 17.56 continued

_THETAX_ Matrix: Estimate/StdErr/t-value/p-value

rpa riq rses fses fiq fpa

rpa 0.2958
0.0777
3.8057

0.000141
[_Add01]

0 0 0 0 0

riq 0 0.2087
0.0783
2.6652

0.007695
[_Add02]

0 0 0 0

rses 0 0 0.0989
0.0780
1.2671
0.2051

[_Add03]

0 0 0

fses 0 0 0 0.1032
0.0782
1.3195
0.1870

[_Add04]

0 0

fiq 0 0 0 0 0.1999
0.0767
2.6048

0.009192
[_Add05]

0

fpa 0 0 0 0 0 0.2999
0.0781
3.8409

0.000123
[_Add06]
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Figure 17.57 Career Aspiration Analysis 3: Estimation of Structural Model

_BETA_ Matrix:
Estimate/StdErr/t-value/p-value

R_Amb F_Amb

R_Amb 0 0.1190
0.1140
1.0441
0.2964

[_Parm12]

F_Amb 0.1302
0.1207
1.0791
0.2805

[_Parm11]

0

_GAMMA_ Matrix: Estimate/StdErr/t-value/p-value

f_rpa f_riq f_rses f_fses f_fiq f_fpa

R_Amb 0.1837
0.0504
3.6420

0.000271
[_Parm03]

0.2800
0.0614
4.5618
<.0001

[_Parm04]

0.2262
0.0522
4.3300
<.0001

[_Parm05]

0.0870
0.0548
1.5883
0.1122

[_Parm06]

0 0

F_Amb 0 0 0.0633
0.0522
1.2124
0.2254

[_Parm07]

0.2154
0.0512
4.2060
<.0001

[_Parm08]

0.3539
0.0674
5.2497
<.0001

[_Parm09]

0.1688
0.0493
3.4205

0.000625
[_Parm10]

_PSI_ Matrix:
Estimate/StdErr/t-value/p-value

R_Amb F_Amb

R_Amb 0.2542
0.0447
5.6874
<.0001

[_Add11]

-0.009355
0.0501
-0.1867
0.8519

[_Parm15]

F_Amb -0.009355
0.0501
-0.1867
0.8519

[_Parm15]

0.1970
0.0381
5.1653
<.0001

[_Add12]
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Figure 17.57 continued

_PHI_ Matrix: Estimate/StdErr/t-value/p-value

f_rpa f_riq f_rses f_fses f_fiq f_fpa

f_rpa 1.0000 0.2468
0.0752
3.2820

0.001031
[_Add13]

0.0618
0.0695
0.8903
0.3733

[_Add14]

0.0238
0.0695
0.3427
0.7318

[_Add16]

0.1085
0.0736
1.4742
0.1404

[_Add19]

0.1579
0.0787
2.0056
0.0449

[_Add23]

f_riq 0.2468
0.0752
3.2820

0.001031
[_Add13]

1.0000 0.2635
0.0669
3.9408
<.0001

[_Add15]

0.2214
0.0665
3.3298

0.000869
[_Add17]

0.4248
0.0722
5.8837
<.0001

[_Add20]

0.1308
0.0742
1.7639
0.0778

[_Add24]

f_rses 0.0618
0.0695
0.8903
0.3733

[_Add14]

0.2635
0.0669
3.9408
<.0001

[_Add15]

1.0000 0.3016
0.0636
4.7421
<.0001

[_Add18]

0.2725
0.0666
4.0914
<.0001

[_Add21]

0.1152
0.0698
1.6505
0.0988

[_Add25]

f_fses 0.0238
0.0695
0.3427
0.7318

[_Add16]

0.2214
0.0665
3.3298

0.000869
[_Add17]

0.3016
0.0636
4.7421
<.0001

[_Add18]

1.0000 0.3492
0.0677
5.1576
<.0001

[_Add22]

-0.0562
0.0697
-0.8065
0.4200

[_Add26]

f_fiq 0.1085
0.0736
1.4742
0.1404

[_Add19]

0.4248
0.0722
5.8837
<.0001

[_Add20]

0.2725
0.0666
4.0914
<.0001

[_Add21]

0.3492
0.0677
5.1576
<.0001

[_Add22]

1.0000 0.2787
0.0753
3.7008

0.000215
[_Add27]

f_fpa 0.1579
0.0787
2.0056
0.0449

[_Add23]

0.1308
0.0742
1.7639
0.0778

[_Add24]

0.1152
0.0698
1.6505
0.0988

[_Add25]

-0.0562
0.0697
-0.8065
0.4200

[_Add26]

0.2787
0.0753
3.7008

0.000215
[_Add27]

1.0000

Some Important PROC CALIS Features
In this section, some of the main features of PROC CALIS are introduced. Emphasis is placed on showing
how these features are useful in practical structural equation modeling.

Modeling Languages for Specifying Models
PROC CALIS provides several modeling languages to specify a model. Different modeling languages
in PROC CALIS are signified by the main model specification statement used. In this chapter, you have
seen examples of the FACTOR, LINEQS, LISMOD, MSTRUCT, PATH, and RAM modeling languages.
Depending on your modeling philosophy and the type of the model, you can choose a modeling language
that is most suitable for your application. For example, models specified using structural equations can be
transcribed directly into the LINEQS statement. Models that are hypothesized using path diagrams can be
described easily in the PATH or RAM statement. First-order confirmatory or exploratory factor models are
most conveniently specified by using the FACTOR and MATRIX statements. Traditional LISREL models
are supported through the LISMOD and MATRIX statements. Finally, patterned covariance and mean
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models can be specified directly by the MSTRUCT and MATRIX statements, or by the COVPATTERN= and
MEANPATTERN= options.

For most applications in structural equation modeling, the PATH and LINEQS statements are the easiest to use.
For testing the built-in covariance and mean patterns of PROC CALIS, the use of the COVPATTERN= and
the MEANPATTERN= options are the most efficient. In other cases, the FACTOR, LISMOD, MSTRUCT,
or RAM statement might be more suitable. For very general matrix model specifications, you can use the
COSAN modeling language. See the COSAN statement and the section “The COSAN Model” on page 1390
in Chapter 29, “The CALIS Procedure,” for details about the COSAN modeling language. See also the
section “Which Modeling Language?” on page 1194 in Chapter 29, “The CALIS Procedure,” for a more
detailed discussion about the use of different modeling languages.

Estimation Methods
The CALIS procedure provides six methods of estimation specified by the METHOD= option:

DWLS diagonally weighted least squares
FIML full-information maximum likelihood
GLS normal theory generalized least squares
ML maximum likelihood for multivariate normal distributions
ULS unweighted least squares
WLS weighted least squares for arbitrary distributions

Each estimation method is based on finding parameter estimates that minimize a discrepancy (badness-of-fit)
function, which measures the difference between the observed sample covariance matrix and the fitted
(predicted) covariance matrix, given the model and the parameter estimates. The difference between the
observed sample mean vector and the fitted (predicted) mean vector is also taken into account when the mean
structures are modeled. See the section “Estimation Criteria” on page 1463 in Chapter 29, “The CALIS
Procedure,” for formulas, or see Loehlin (1987, pp. 54–62) and Bollen (1989, pp. 104–123) for further
discussion. For the ML method, robust estimation with the ROBUST option is also available.

The default estimation is METHOD=ML, which is the most popular method for applications. The option
METHOD=GLS usually produces very similar results to those produced by METHOD=ML. If your data
contain random missing values and it is important to use the information from those incomplete observations,
you might want to use the FIML method, which provides a sound treatment of missing values in data.
METHOD=ML and METHOD=FIML are essentially the same method when you do not have missing values
(see Example 29.16 of Chapter 29, “The CALIS Procedure,”). Asymptotically, ML and GLS are the same.
Both methods assume a multivariate normal distribution in the population. The WLS method with the default
weight matrix is equivalent to the asymptotically distribution free (ADF) method, which yields asymptotically
normal estimates regardless of the distribution in the population. When the multivariate normal assumption
is in doubt, especially if the variables have high kurtosis, you should seriously consider the WLS method.
When a correlation matrix is analyzed, only WLS can produce correct standard error estimates. However, in
order to use the WLS method with the expected statistical properties, the sample size must be large. Several
thousand might be a minimum requirement.

The ULS and DWLS methods yield reasonable estimates under less restrictive assumptions. You can apply
these methods to normal or nonnormal situations or to covariance or correlation matrices. The drawback is
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that the statistical qualities of the estimates seem to be unknown. For this reason, PROC CALIS does not
provide standard errors or test statistics with these two methods.

You cannot use METHOD=ML or METHOD=GLS if the observed covariance matrix is singular. You can
either remove variables involved in the linear dependencies or use less restrictive estimation methods such as
ULS. Specifying METHOD=ML assumes that the predicted covariance matrix is nonsingular. If ML fails
because of a singular predicted covariance matrix, you need to examine whether the model specification
leads to the singularity. If so, modify the model specification to eliminate the problem. If not, you probably
need to use other estimation methods.

You should remove outliers and try to transform variables that are skewed or heavy-tailed. This applies to
all estimation methods, since all the estimation methods depend on the sample covariance matrix, and the
sample covariance matrix is a poor estimator for distributions with high kurtosis (Bollen 1989, pp. 415–418;
Huber 1981; Hampel et al. 1986). PROC CALIS displays estimates of univariate and multivariate kurtosis
(Bollen 1989, pp. 418–425) if you specify the KURTOSIS option in the PROC CALIS statement.

If you analyze raw data, you can use the RESIDUAL option to detect outliers and leverage observations. You
can also use the PLOTS=CASERESID option to display various high-quality graphical plots for case-level
residuals, outliers, and leverage observations. If outliers are present, you can either remove them from the
analysis or consider using robust estimation that downweights the outliers during estimation.

See the section “Estimation Criteria” on page 1463 in Chapter 29, “The CALIS Procedure,” for details about
the estimation criteria. See the section “Case-Level Residuals, Outliers, Leverage Observations, and Residual
Diagnostics” on page 1494 of the same Chapter for details about case-level residual diagnostics.

Statistical Inference
When you specify the ML, FIML, GLS, or WLS estimation with appropriate models, PROC CALIS can
compute the following:

• a chi-square goodness-of-fit test of the specified model versus the alternative that the data are from a
population with unconstrained covariance matrix (Loehlin 1987, pp. 62–64; Bollen 1989, pp. 110,
115, 263–269)

• approximate standard errors of the parameter estimates (Bollen 1989, pp. 109, 114, 286), displayed
with the STDERR option

• various modification indices, requested via the MODIFICATION or MOD option, that give the
approximate change in the chi-square statistic that would result from removing constraints on the
parameters or constraining additional parameters to zero (Bollen 1989, pp. 293–303)

If you have two models such that one model results from imposing constraints on the parameters of the other,
you can test the constrained model against the more general model by fitting both models with PROC CALIS.
If the constrained model is correct, the difference between the chi-square goodness of fit statistics for the two
models has an approximate chi-square distribution with degrees of freedom equal to the difference between
the degrees of freedom for the two models (Loehlin 1987, pp. 62–67; Bollen 1989, pp. 291–292).

All of the test statistics and standard errors computed under ML and GLS depend on the assumption of
multivariate normality. Normality is a much more important requirement for data with random independent
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variables than it is for fixed independent variables. If the independent variables are random, distributions
with high kurtosis tend to give liberal tests and excessively small standard errors, while low kurtosis tends to
produce the opposite effects (Bollen 1989, pp. 266–267, 415–432).

All test statistics and standard errors computed by PROC CALIS are based on asymptotic theory and should
not be trusted in small samples. There are no firm guidelines on how large a sample must be for the asymptotic
theory to apply with reasonable accuracy. Some simulation studies have indicated that problems are likely to
occur with sample sizes less than 100 (Loehlin 1987, pp. 60–61; Bollen 1989, pp. 267–268). Extrapolating
from experience with multiple regression would suggest that the sample size should be at least 5 to 20 times
the number of parameters to be estimated in order to get reliable and interpretable results. The WLS method
might even require that the sample size be over several thousand.

The asymptotic theory requires the parameter estimates to be in the interior of the parameter space. If you do
an analysis with inequality constraints and one or more constraints are active at the solution (for example,
if you constrain a variance to be nonnegative and the estimate turns out to be zero), the chi-square test and
standard errors might not provide good approximations to the actual sampling distributions.

For modeling correlation structures, the only theoretically correct method is the WLS method with the default
ASYCOV=CORR option. For other methods, standard error estimates for modeling correlation structures
might be inaccurate even for sample sizes as large as 400. The chi-square statistic is generally the same
regardless of which matrix is analyzed, provided that the model involves no scale-dependent constraints.
However, if the purpose is to obtain reasonable parameter estimates for the correlation structures only, then
you might also find other estimation methods useful.

If you fit a model to a correlation matrix and the model constrains one or more elements of the predicted
matrix to equal 1.0, the degrees of freedom of the chi-square statistic must be reduced by the number of such
constraints. PROC CALIS attempts to determine which diagonal elements of the predicted correlation matrix
are constrained to a constant, but it might fail to detect such constraints in complicated models, particularly
when programming statements are used. If this happens, you should add parameters to the model to release
the constraints on the diagonal elements.

Multiple-Group Analysis
PROC CALIS supports multiple-group multiple-model analysis. You can fit the same covariance (and mean)
structure model to several independent groups (data sets). Or, you can fit several different but constrained
models to the independent groups (data sets). In PROC CALIS, you can use the GROUP statements to define
several independent groups and the MODEL statements to define several different models. For example, the
following statements show a multiple-group analysis by PROC CALIS:

proc calis;
group 1 / data=set1;
group 2 / data=set2;
group 3 / data=set3;
model 1 / group=1,2;

path
y <=== x = beta ,
x <=== z = gamma;

model 2 / group=3;
path

y <=== x = beta,
x <=== z = alpha;

run;
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In this specification, you conduct a three-group analysis. You define two PATH models. You fit Model 1 to
Groups 1 and 2 and Model 2 to Group 3. The two models are constrained for the y <=== x path because
they use the same path coefficient parameter beta. Other parameters in the models are not constrained.

To facilitate model specification by model referencing, you can use the REFMODEL statement to specify
models based on model referencing. For example, the previous example can be specified equivalently as the
following statements:

proc calis;
group 1 / data=set1;
group 2 / data=set2;
group 3 / data=set3;
model 1 / group=1,2;

path
y <=== x = beta ,
x <=== z = gamma;

model 2 / group=3;
refmodel 1;
renameparm gamma=alpha;

run;

The current specification differs from the preceding specification in the definition of Model 2. In the current
specification, Model 2 is making reference to Model 1. Basically, this means that the explicit specification in
Model 1 is transferred to Model 2. However, the RENAMEPARM statement requests a name change for
gamma, which becomes a new parameter named alpha in Model 2. Hence, Model 2 and Model 1 are not the
same. They are constrained by the same path coefficient beta for the y <=== x path, but they have different
path coefficients for the x <=== z path.

Model referencing by the REFMODEL statement offers you an efficient and concise way to define models
based on the similarities and differences between models. The advantages become more obvious when you
have several large models in multiple-group analysis and each model differs just a little bit from each other.

Goodness-of-Fit Statistics
In addition to the chi-square test, there are many other statistics for assessing the goodness of fit of the
predicted correlation or covariance matrix to the observed matrix.

Akaike’s information criterion (AIC, Akaike 1987) and Schwarz’s Bayesian criterion (SBC, Schwarz 1978)
are useful for comparing models with different numbers of parameters—the model with the smallest value
of AIC or SBC is considered best. Based on both theoretical considerations and various simulation studies,
SBC seems to work better, since AIC tends to select models with too many parameters when the sample size
is large.

There are many descriptive measures of goodness of fit that are scaled to range approximately from zero to
one: the goodness-of-fit index (GFI) and GFI adjusted for degrees of freedom (AGFI) (Jöreskog and Sörbom
1988), centrality (McDonald 1989), and the parsimonious fit index (James, Mulaik, and Brett 1982). Bentler
and Bonett (1980) and Bollen (1986) have proposed measures for comparing the goodness of fit of one model
with another in a descriptive rather than inferential sense.

The root mean squared error approximation (RMSEA) proposed by Steiger and Lind (1980) does not assume
a true model being fitted to the data. It measures the discrepancy between the fitted model and the covariance
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matrix in the population. For samples, RMSEA and confidence intervals can be estimated. Statistical tests
for determining whether the population RMSEAs fall below certain specified values are available (Browne
and Cudeck 1993). In the same vein, Browne and Cudeck (1993) propose the expected cross validation index
(ECVI), which measures how good a model is for predicting future sample covariances. Point estimate and
confidence intervals for ECVI are also developed.

None of these measures of goodness of fit are related to the goodness of prediction of the structural equations.
Goodness of fit is assessed by comparing the observed correlation or covariance and mean matrices with
the matrices computed from the model and parameter estimates. Goodness of prediction is assessed by
comparing the actual values of the endogenous variables with their predicted values, usually in terms of root
mean squared error or proportion of variance accounted for (R square). For latent endogenous variables, root
mean squared error and R square can be estimated from the fitted model.

Customizable Fit Summary Table
Because there are so many fit indices that PROC CALIS can display and researchers prefer certain sets of fit
indices, PROC CALIS enables you to customize the set of fit indices to display. For example, you can use
the following statement to limit the set of fit indices to display:

fitindex on(only) = [chisq SRMSR RMSEA AIC];

With this statement, only the model-fit chi-square, standardized root mean square residual, root mean square
error of approximation, and Akaiki’s information criterion are displayed in your output. You can also save all
your fit index values in an output data file by adding the OUTFIT= option in the FITINDEX statement. This
output data file contains all available fit index values even if you have limited the set of fit indices to display
in the listing output.

Standardized Solution
In many applications in social and behavioral sciences, measurement scales of variables are arbitrary.
Although it should not be viewed as a universal solution, some researchers resort to the standardized solution
for interpreting estimation results. PROC CALIS computes the standardized solutions for all models (except
for COSAN) automatically. Standard error estimates are also produced for standardized solutions so that you
can examine the statistical significance of the standardized estimates too.

However, equality or linear constraints on parameters are almost always set on the unstandardized variables.
These parameter constraints are not preserved when the estimation solution is standardized. This would add
difficulties in interpreting standardized estimates when your model is defined meaningfully with constraints
on the unstandardized variables.

A general recommendation is to make sure your variables are measured on “comparable” scales (it does not
necessarily mean that they are mean- and variance-standardized) for the analysis. But what makes different
kinds of variables “comparable” is an ongoing philosophical issue.

Some researchers might totally abandon the concept of standardized solutions in structural equation modeling.
If you prefer to turn off the standardized solutions in PROC CALIS, you can use the NOSTAND option in
the PROC CALIS statement.
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Statistical Graphics
PROC CALIS provides the following high-quality statistical graphics:

• Customizable path diagrams by using the PLOTS=PATHDIAGRAM option in the PROC CALIS
statement or options in the PATHDIAGRAM statement. Path diagrams provide intuitive representations
of your models and estimation results.

• Various case-level residual diagnostic plots and outlier-by-leverage plots by using the RESIDUAL and
PLOTS=CASERESID options. You can use these plots to locate data points that are considered to be
model outliers or influential observations.

• Residual distributions of sample moments by using the RESIDUAL and PLOTS=RESIDUAL options.
You can use these plots to check whether moment residuals are distributed approximately like a normal
variate. You can also use these plots to locate problematic variables that do not fit well.

Testing Parametric Functions
Oftentimes, researchers might have a priori hypotheses about the parameters in their models. After knowing
the model fit is satisfactory, they want to test those hypotheses under the model. PROC CALIS provides
two statements for testing these kinds of hypotheses. The TESTFUNC statement enables you to test each
parametric function separately, and the SIMTESTS statement enables you to test parametric functions jointly
(and separately). For example, assuming that effect1, effect2, effect3, and effect4 are parameters in your
model, the following SIMTESTS statement tests the joint hypothesis test1, which consists of two component
hypotheses diff_effect and sum_effect:

SIMTESTS test1 = (diff_effect sum_ffect);
diff_effect = effect1 - effect2;
sum_effect = effect3 + effect4;

To make test1 well-defined, each of the component hypotheses diff_effect and sum_effect is assumed to be
defined as a parametric function by some SAS programming statements. In the specification, diff_effect
represents the difference between effect1 and effect2, and sum_effect represents the sum of effect3 and
effect4. Hence, the component hypotheses being tested are:

H1W diff_effect D effect1 � effect2 D 0

H2W sum_effect D effect3C effect4 D 0

Effect Analysis
In structural equation modeling, effects from one variable to other variables can be direct or indirect. For
example, in the following path diagram x has a direct effect on z in addition to an indirect effect on z via y:
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x y

z

However, y has only a direct effect (but no indirect effect) on z. In cases like this, researchers are interested
in computing the total, direct, and indirect effects from x and y to z. You can use the EFFPART option in the
PROC CALIS statement to request this kind of effect partitioning in your model. Total, direct, and indirect
effects are displayed, together with their standard error estimates. If your output contains standardized
results (default), the standardized total, direct, and indirect effects and their standard error estimates are also
displayed. With the EFFPART option, effects analysis is applied to all variables (excluding error terms) in
your model.

In large models with many variables, researchers might want to analyze the effects only for a handful of
variables. In this regard, PROC CALIS provides you a way to do a customized version of effect analysis. For
example, the following EFFPART statement requests the effect partitioning of x1 and x2 on y1 and y2, even
though there might be many more variables in the model:

effpart x1 x2 ===> y1 y2;

See the EFFPART statement of Chapter 29, “The CALIS Procedure,” for details.

Model Modifications
When you fit a model and the model fit is not satisfactory, you might want to know what you could do
to improve the model. The LM (Lagrange multiplier) tests in PROC CALIS can help you improve the
model fit by testing the potential free parameters in the model. To request the LM tests, you can use the
MODIFICATION option in the PROC CALIS statement.

The LM test results contain lists of parameters, organized according to their types. In each list, the potential
parameter with the greatest model improvement is shown first. Adding these new parameters improves the
model fit approximately by the amount of the corresponding LM statistic.

Sometimes, researchers might have a target set of parameters they want to test in the LM tests. PROC CALIS
offers a flexible way that you can customize the set the parameters for the LM tests. See the LMTESTS
statement for details.

In addition, the Wald statistics produced by PROC CALIS suggest whether any parameters in your model can
be dropped (or fixed to zero) without significantly affecting the model fit. You can request the Wald statistics
with the MODIFICATION option in the PROC CALIS statement.

Optimization Methods
PROC CALIS uses a variety of nonlinear optimization algorithms for computing parameter estimates. These
algorithms are very complicated and do not always work for every data set. PROC CALIS generally informs
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you when the computations fail, usually by displaying an error message about the iteration limit being
exceeded. When this happens, you might be able to correct the problem simply by increasing the iteration
limit (MAXITER= and MAXFUNC=). However, it is often more effective to change the optimization method
(OMETHOD=) or initial values. For more details, see the section “Use of Optimization Techniques” on
page 1507 in Chapter 29, “The CALIS Procedure,” and see Bollen (1989, pp. 254–256).

PROC CALIS might sometimes converge to a local optimum rather than the global optimum. To gain some
protection against local optima, you can run the analysis several times with different initial estimates. The
RANDOM= option in the PROC CALIS statement is useful for generating a variety of initial estimates.

Other Commonly Used Options
Other commonly used options in the PROC CALIS statement include the following:

• INMODEL= to input model specification from a data set, usually created by the OUTMODEL= option

• MEANSTR to analyze the mean structures

• NOBS to specify the number of observations

• NOPARMNAME to suppress the printing of parameter names

• NOSE to suppress the display of approximate standard errors

• OUTMODEL= to output model specification and estimation results to an external file for later use (for
example, fitting the same model to other data sets)

• RESIDUAL to display residual correlations or covariances

Comparison of the CALIS and FACTOR Procedures for
Exploratory Factor Analysis
Both the CALIS and the FACTOR procedures can fit exploratory factor models. However, there are several
notable differences:

• By default, PROC FACTOR analyzes the correlation matrix, while PROC CALIS analyzes the
covariance matrix.

• PROC FACTOR and PROC CALIS use different parameterizations in the initial factor solution. PROC
CALIS uses a lower triangle pattern on the factor loading matrix (a confirmatory factor pattern) in the
initial unrotated solution, while PROC FACTOR use certain matrix constraints in the initial unrotated
solution. All other things being equal, PROC CALIS and PROC FACTOR might give the same solution
after the same factor rotation.

• Because of the way it parameterizes, PROC FACTOR is usually more efficient computationally. PROC
CALIS uses a more general algorithm that might not be computationally optimal for exploratory factor
analysis.
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Comparison of the CALIS and SYSLIN Procedures
The SYSLIN procedure in SAS/ETS software can fit certain kinds of path models and linear structural
equation models. PROC CALIS differs from PROC SYSLIN in that PROC CALIS is more general in the use
of latent variables in the models. Latent variables are unobserved, hypothetical variables, as distinct from
manifest variables, which are the observed data. PROC SYSLIN allows at most one latent variable, the error
term, in each equation. PROC CALIS allows several latent variables to appear in an equation—in fact, all the
variables in an equation can be latent as long as there are other equations that relate the latent variables to
manifest variables.

Both the CALIS and SYSLIN procedures enable you to specify a model as a system of linear equations. When
there are several equations, a given variable might be a dependent variable in one equation and an independent
variable in other equations. Therefore, additional terminology is needed to describe unambiguously the
roles of variables in the system. Variables with values that are determined jointly and simultaneously by the
system of equations are called endogenous variables. Variables with values that are determined outside the
system—that is, in a manner separate from the process described by the system of equations—are called
exogenous variables. The purpose of the system of equations is to explain the variation of each endogenous
variable in terms of exogenous variables or other endogenous variables or both. See Loehlin (1987, p. 4)
for further discussion of endogenous and exogenous variables. In the econometric literature, error and
disturbance terms are usually distinguished from exogenous variables, but in systems with more than one
latent variable in an equation, the distinction is not always clear.

In PROC SYSLIN, endogenous variables are identified by the ENDOGENOUS statement. In PROC CALIS,
endogenous variables are identified by the procedure automatically after you specify the model. With different
modeling languages, the identification of endogenous variables by PROC CALIS is done by different sets of
rules. For example, when you specify structural equations by using the LINEQS modeling language in PROC
CALIS, endogenous variables are assumed to be those that appear on the left-hand sides of the equations; a
given variable can appear on the left-hand side of at most one equation. When you specify your model by
using the PATH modeling language in PROC CALIS, endogenous variables are those variables pointed to by
arrows at least once in the path specifications.

PROC SYSLIN provides many methods of estimation, some of which are applicable only in special cases.
For example, ordinary least squares estimates are suitable in certain kinds of systems but might be statistically
biased and inconsistent in other kinds. PROC CALIS provides three major methods of estimation that can be
used with most models. Both the CALIS and SYSLIN procedures can do maximum likelihood estimation,
which PROC CALIS calls ML and PROC SYSLIN calls FIML. PROC SYSLIN can be much faster than
PROC CALIS in those special cases for which it provides computationally efficient estimation methods.
However, PROC CALIS has a variety of sophisticated algorithms for maximum likelihood estimation that
might be much faster than FIML in PROC SYSLIN.

PROC CALIS can impose a wider variety of constraints on the parameters, including nonlinear constraints,
than can PROC SYSLIN. For example, PROC CALIS can constrain error variances or covariances to equal
specified constants, or it can constrain two error variances to have a specified ratio.
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Overview
Power and sample size analysis optimizes the resource usage and design of a study, improving chances of
conclusive results with maximum efficiency. The standard statistical testing paradigm implicitly assumes that
Type I errors (mistakenly concluding significance when there is no true effect) are more costly than Type II
errors (missing a truly significant result). This may be appropriate for your situation, or the relative costs
of the two types of error may be reversed. For example, in screening experiments for drug development,
it is often less damaging to carry a few false positives forward for follow-up testing than to miss potential
leads. Power and sample size analysis can help you achieve your desired balance between Type I and Type II
errors. With optimal designs and sample sizes, you can improve your chances of detecting effects that might
otherwise have been ignored, save money and time, and perhaps minimize risks to subjects.
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Relevant tools in SAS/STAT software for power and sample size analysis include the following:

• the GLMPOWER procedure

• the POWER procedure

• the Power and Sample Size application

• the %POWTABLE macro

• various procedures, statements, and functions in Base SAS and SAS/STAT for developing customized
formulas and simulations

These tools, discussed in detail in the section “SAS/STAT Tools for Power and Sample Size Analysis” on
page 371, deal exclusively with prospective analysis—that is, planning for a future study. This is in contrast
to retrospective analysis for a past study, which is not supported by the main tools. Although retrospective
analysis is more convenient to perform, it is often uninformative or misleading, especially when power is
computed directly based on observed data.

The goals of prospective power and sample size analysis include the following:

• determining the sample size required to get a significant result with adequate probability (power)

• characterizing the power of a study to detect a meaningful effect

• computing the probability of achieving the desired precision of a confidence interval, or the sample
size required to ensure this probability

• conducting what-if analyses to assess how sensitive the power or required sample size is to other factors

The phrase power analysis is used for the remainder of this document as a shorthand to represent any or all
of these goals. For more information about the GLMPOWER procedure, see Chapter 47, “The GLMPOWER
Procedure.” For more information about the POWER procedure, see Chapter 77, “The POWER Procedure.”
For more information about the Power and Sample Size application, see Chapter 78, “The Power and Sample
Size Application.”

Coverage of Statistical Analyses
The GLMPOWER procedure covers power analysis for Type III F tests and contrasts of fixed effects in
univariate and multivariate linear models. For univariate models, you can specify covariates, which can
be continuous or categorical. For multivariate models, you can choose among Wilks’ likelihood ratio,
Hotelling-Lawley trace, and Pillai’s trace F tests for multivariate analysis of variance (MANOVA) and among
uncorrected, Greenhouse-Geisser, Huynh-Feldt, and Box conservative F tests for the univariate approach to
repeated measures. Tests and contrasts that involve random effects are not supported.

The POWER procedure covers power analysis for the following:

• t tests, equivalence tests, and confidence intervals for means

• tests, equivalence tests, and confidence intervals for binomial proportions
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• multiple regression

• tests of correlation and partial correlation

• one-way analysis of variance

• rank tests for comparing two survival curves

• logistic regression with binary response

• Wilcoxon Mann-Whitney rank-sum test

The Power and Sample Size application covers a large subset of the analyses in the GLMPOWER and
POWER procedures.

Statistical Background

Hypothesis Testing, Power, and Confidence Interval Precision

Standard Hypothesis Tests

In statistical hypothesis testing, you typically express the belief that some effect exists in a population by
specifying an alternative hypothesis H1. You state a null hypothesis H0 as the assertion that the effect does
not exist and attempt to gather evidence to reject H0 in favor of H1. Evidence is gathered in the form of
sample data, and a statistical test is used to assess H0. If H0 is rejected but there really is no effect, this is
called a Type I error. The probability of a Type I error is usually designated “alpha” or ˛, and statistical tests
are designed to ensure that ˛ is suitably small (for example, less than 0.05).

If there is an effect in the population but H0 is not rejected in the statistical test, then a Type II error has been
committed. The probability of a Type II error is usually designated “beta” or ˇ. The probability 1 – ˇ of
avoiding a Type II error (that is, correctly rejecting H0 and achieving statistical significance) is called the
power of the test.

Most, but not all, of the power analyses in the GLMPOWER and POWER procedures are based on such
standard hypothesis tests.

Equivalence and Noninferiority

Whereas the standard two-sided hypothesis test for a parameter � (such as a mean difference) aims to
demonstrate that it is significantly different than a null value �0:

H0W� D �0

H1W� ¤ �0

an equivalence test instead aims to demonstrate that it is significantly similar to some value, expressed in
terms of a range �L; �U around that value:

H0W� < �L or � > �U

H1W�L � � � �U
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Whereas the standard one-sided hypothesis test for � (say, the upper one-sided test) aims to demonstrate that
it is significantly greater than �0:

H0W� � �0

H1W� > �0

a corresponding noninferiority test aims to demonstrate that it is not significantly less than �0, expressed in
terms of a margin ı > 0:

H0W� � �0 � ı

H1W� > �0 � ı

Corresponding forms of these hypotheses with the inequalities reversed apply to lower one-sided noninferior-
ity tests (sometimes called nonsuperiority tests).

The POWER procedure performs power analyses for equivalence tests for one-sample, paired, and two-
sample tests of normal and lognormal mean differences and ratios. It also supports noninferiority tests
for a variety of analyses of means, proportions, and correlation, both directly (with a MARGIN= option
representing ı) and indirectly (with an option for a custom null value representing the sum or difference of
�0 and ı).

Confidence Interval Precision

An analysis of confidence interval precision is analogous to a traditional power analysis, with CI Half-Width
taking the place of effect size and Prob(Width) taking the place of power. The CI Half-Width is the margin of
error associated with the confidence interval, the distance between the point estimate and an endpoint. The
Prob(Width) is the probability of obtaining a confidence interval with at most a target half-width.

The POWER procedure performs confidence interval precision analyses for t-based confidence intervals for
one-sample, paired, and two-sample designs, and for several varieties of confidence intervals for a binomial
proportion.

Computing Power and Sample Size
For some statistical models and tests, power analysis calculations are exact—that is, they are based on a
mathematically accurate formula that expresses power in terms of the other components. Such formulas
typically involve either enumeration or noncentral versions of the distribution of the test statistic.

When a power computation is based on a noncentral t, F, or chi-square distribution, the noncentrality
parameter generally has the same form as the test statistic, with the conjectured population parameters in
place of their corresponding estimators.

For example, the test statistic for a two-sample t test is computed as follows:

t D N
1
2 .w1w2/

1
2

�
Nx2 � Nx1 � �0

sp

�
where N is the total sample size, w1 and w2 are the group allocation weights, Nx1 and Nx2 are the sample
means, �0 is the null mean difference, and sp is the pooled standard deviation. Under the null hypothesis, the
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statistic F D t2 is distributed as F.1;N � 2/. In general, F has a noncentral F distribution F.1;N � 2; ı2/
where

ı D N
1
2 .w1w2/

1
2

��diff � �0

�

�
and �diff and � are the (unknown) true mean difference and common group standard deviation, respectively.
Note that the square-root noncentrality ı is exactly the same as the t statistic except that the estimators of
mean difference and standard deviation are replaced by their corresponding true population values.

The power for the two-sided two-sample t test with significance level ˛ is computed as

P .F � F1�˛.1;N � 2//

where F is distributed as F.1;N � 2; ı2/ and F1�˛.1;N � 2/ is the 100.1 � ˛/% quantile of the central
F distribution with 1 and N – 2 degrees of freedom. See the section “Customized Power Formulas (DATA
Step)” on page 379 for an example of the implementation of this formula in the DATA step.

In the absence of exact mathematical results, approximate formulas can sometimes be used. When neither
exact power computations nor reasonable approximations are possible, simulation provides an increasingly
viable alternative. You specify values for model parameters and use them to randomly generate a large
number of hypothetical data sets. Applying the statistical test to each data set, you estimate power with
the percentage of times the null hypothesis is rejected. While the simulation approach is computationally
intensive, faster computing makes this less of an issue. A simulation-based power analysis is always a valid
option, and, with a large number of data set replications, it can often be more accurate than approximations.
See the section “Empirical Power Simulation (DATA Step, SAS/STAT Software)” on page 380 for an example
of an empirical power simulation.

Sample size is usually computed by iterative numerical methods because it often cannot be expressed in
closed form as a function of the other parameters. Sample size tends to appear in both a noncentrality
parameter and a degrees of freedom term for the critical value.

Power and Study Planning
Power analysis is most effective when performed at the study planning stage, and as such it encourages early
collaboration between researcher and statistician. It also focuses attention on effect sizes and variability in
the underlying scientific process, concepts that both researcher and statistician should consider carefully at
this stage.

There are many factors involved in a power analysis, such as the research objective, design, data analysis
method, power, sample size, Type I error, variability, and effect size. By performing a power analysis, you
can learn about the relationships between these factors, optimizing those that are under your control and
exploring the implications of those that are fixed or unknown.

Components of Study Planning
Even when the research questions and study design seem straightforward, the ensuing power analysis can
seem technically daunting. It is often helpful to break the process down into five components:
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• Study Design: What is the structure of the planned design? This must be clearly and completely
specified. What groups and treatments (“cells” and “factors” of the design) are going to be assessed,
and what will be the relative sizes of those cells? How is each case going to be studied—that is, what
is the primary outcome measure (“dependent variable”)? Will covariates be measured and included in
the statistical model?

• Scenario Model: What are your beliefs about patterns in the data? Imagine that you had unlimited time
and resources to execute the study design, so that you could gather an “infinite data set.” Characterize
that infinite data set as best you can using a mathematical model, realizing that it will be a simplification
of reality. Alternatively, as is common with complex linear models, you may decide to construct an
“exemplary” data set that mimics the infinite data set. However you do this, your scenario model should
capture the key features of the study design and the main relationships among the primary outcome
variables and study factors.

• Effects and Variability: What exactly are the “signals and noises” in the patterns you suspect? Set
specific values for the parameters of your scenario model, keeping at most one unspecified. It is often
enlightening to consider a variety of realistic possibilities for the key values by performing a sensitivity
analysis, to explore the consequences of competing views on what the infinite data set might look like.

• Statistical Method: How will you cast your model in statistical terms and conduct the eventual data
analysis? Define the statistical models and procedures that will be used to embody the study design
and estimate and/or test the effects central to the research question. What significance levels will be
used? Will one- or two-sided tests be used?

• Aim of Assessment: Finally, what needs to be determined in the power analysis? Most often you want
to examine the statistical powers obtained across the various scenarios for the effects, variability, alter-
native varieties of the statistical procedures to be used, and the feasible total sample sizes. Sometimes
the goal is to find sample size values that provide given levels of power, say 85%, 90%, or 95%.

Effect Size
There is some confusion in practice about how to postulate the effect size. One alternative is to specify the
effect size that represents minimal clinical significance; then the result of the power analysis reveals the
chances of detecting a minimally meaningful effect size. Often this minimal effect size is so small that it
requires excessive resources to detect. Another alternative is to make an educated guess of the true underlying
effect size. Then the power analysis determines the chance of detecting the effect size that is believed to
be true. The choice is ultimately determined by the research goals. Finally, you can specify a collection
of possible values, perhaps spanning the range between minimally meaningful effects and larger surmised
effects.

You can arrive at values for required quantities in a power analysis, such as effect sizes and measures of
variability, in many different ways. For example, you can use pilot data, results of previous studies reported
in literature, educated guesses derived from theory, or educated guesses derived from partial data (a small
sample or even just quantiles).
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Uncertainty and Sensitivity Analysis
Uncertainty is a fact of life in any power analysis, because at least some of the numbers used are best guesses
of unknown values. The result of a power calculation, whether it be achieved power or required sample
size or something else, serves only as a point estimate, conditional on the conjectured values of the other
components. It is not feasible in general to quantify the variability involved in using educated guesses or
undocumented results to specify these components. If observed data are used, relevant adjustments for
variability in the data tend to be problematic in the sense of producing confidence intervals for power that are
too wide for practical use. But there is a useful way for you to characterize the uncertainty in your power
analysis, and also discover the extent to which statistical power is affected by each component. You can
posit a reasonable range for each input component, vary each one within its range, and observe the variety of
results in the form of tables or graphs.

SAS/STAT Tools for Power and Sample Size Analysis
This section demonstrates how you can use the different SAS power analysis tools mentioned in the section
“Overview” on page 365 to generate graphs, tables, and narratives; implement your own power formulas; and
simulate empirical power.

Suppose you want to compute the power of a two-sample t test. You conjecture that the mean difference
is between 5 and 6 and that the common group standard deviation is between 12 and 18. You plan to use
a significance level between 0.05 and 0.1 and a sample size between 100 and 200. The following SAS
statements use the POWER procedure to compute the power for these scenarios:

proc power;
twosamplemeans test=diff

meandiff = 5 6
stddev = 12 18
alpha = 0.05 0.1
ntotal = 100 200
power = .;

run;

Figure 18.1 shows the results. Depending on the plausibility of the various combinations of input parameter
values, the power ranges between 0.379 and 0.970.
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Figure 18.1 PROC POWER Tabular Output

The POWER Procedure
Two-Sample t Test for Mean Difference

The POWER Procedure
Two-Sample t Test for Mean Difference

Computed Power

Index Alpha
Mean

Diff
Std
Dev

N
Total Power

1 0.05 5 12 100 0.541

2 0.05 5 12 200 0.834

3 0.05 5 18 100 0.280

4 0.05 5 18 200 0.498

5 0.05 6 12 100 0.697

6 0.05 6 12 200 0.940

7 0.05 6 18 100 0.379

8 0.05 6 18 200 0.650

9 0.10 5 12 100 0.664

10 0.10 5 12 200 0.902

11 0.10 5 18 100 0.397

12 0.10 5 18 200 0.623

13 0.10 6 12 100 0.799

14 0.10 6 12 200 0.970

15 0.10 6 18 100 0.505

16 0.10 6 18 200 0.759

The following seven sections illustrate additional ways of displaying these results using the different SAS
tools.

Basic Graphs (POWER, GLMPOWER, Power and Sample Size Application)
If you include a PLOT statement, the GLMPOWER and POWER procedures produce standard power curves,
which represent any multivalued input parameters with varying line styles, symbols, colors, and/or panels.
The Power and Sample Size application also has an option to produce power curves. If ODS Graphics is
enabled, then graphs are created using ODS Graphics; otherwise, traditional graphs are produced.

To display default power curves for the preceding PROC POWER call, add the PLOT statement with no
arguments as follows:

ods graphics on;

proc power plotonly;
twosamplemeans test=diff

meandiff = 5 6
stddev = 12 18
alpha = 0.05 0.1
ntotal = 100 200
power = .;

plot;
run;

ods graphics off;
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The ODS GRAPHICS ON statement enables ODS Graphics.

Figure 18.2 shows the results. Note that the line style varies by the significance level ˛, the symbol varies by
the mean difference, and the panel varies by standard deviation.

Figure 18.2 PROC POWER Default Graphical Output
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Figure 18.2 continued

Highly Customized Graphs (POWER, GLMPOWER)
Example 77.8 of Chapter 77, “The POWER Procedure,” demonstrates various ways you can modify and
enhance plots created in the GLMPOWER or POWER procedures:

• assigning analysis parameters to axes

• fine-tuning a sample size axis

• adding reference lines

• linking plot features to analysis parameters

• choosing key (legend) styles

• modifying symbol locations

For example, replace the default PLOT statement with the following statement to modify the graphical
results in Figure 18.2 to lower the minimum sample size to 60, show a reference line at power=0.9 with
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corresponding sample size values, distinguish standard deviation by color instead of panel, and swap the
roles of ˛ and mean difference:

plot
min=60
yopts=(ref=0.9 crossref=yes)
vary(color by stddev, linestyle by meandiff, symbol by alpha);

Figure 18.3 shows the results. The plot reveals that only the scenarios with the largest mean difference and
smallest standard deviation achieve a power of at least 0.9 for this sample size range.

Figure 18.3 PROC POWER Customized Graphical Output

Formatted Tables (%POWTABLE Macro)
The %POWTABLE macro renders the output of the POWER and GLMPOWER procedures in rectangular
form, and it optionally produces simplified results using weighted means across chosen variables. PROC
REPORT and the Output Delivery System (ODS) are used to generate the tables. Base SAS and SAS/STAT
9.1 or higher versions are required.
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You can run the %POWTABLE macro for the output in Figure 18.1 to display the results in a form more
suitable for quickly discerning relationships among parameters. First use the ODS OUTPUT statement to
assign the “Output” table produced by the POWER procedure to a data set as follows:

ods output output=powdata;

Next, specify the same PROC POWER statements that generate Figure 18.1. Finally, use the %POWTABLE
macro to assign analysis parameters to table dimensions. To create a table of computed power values with
mean difference assigned to rows, sample size and ˛ assigned to columns, and standard deviation assigned to
“panels” (rendered by default as rows separated by blank lines), specify the following statements:

%powtable ( Data = powdata,
Entries = power,
Rows = meandiff,
Cols = ntotal alpha,
Panels = stddev )

Figure 18.4 shows the results.

Figure 18.4 %POWTABLE Macro Output

The POWTABLEMacro

Entries are Power

N Total

100 200

Alpha Alpha

0.05 0.10 0.05 0.10

Std
Dev

--

Mean
Diff
-- -- -- -- --

12 5 0.541 0.664 0.834 0.902

6 0.697 0.799 0.940 0.970

18 5 0.280 0.397 0.498 0.623

6 0.379 0.505 0.650 0.759
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Narratives and Graphical User Interface (Power and Sample Size
Application)
The Power and Sample Size application produces narratives for the results. Narratives are descriptions of the
input parameters and a statement about the computed power or sample size.

For example, the Power and Sample Size application creates the following narrative for the scenario corre-
sponding to the first row in Figure 18.1:

“For a two-sample pooled t test of a normal mean difference with a two-sided significance level of 0.05,
assuming a common standard deviation of 12, a total sample size of 100 assuming a balanced design has a
power of 0.541 to detect a mean difference of 5.”

The Power and Sample Size application also provides multiple input parameter options, stores the results in a
project format, displays power curves, and shows the SAS log and SAS code. You can access each project to
review the results or to edit your input parameters and produce another analysis.

Where appropriate, several alternate ways of entering values for certain parameters are offered. For example,
in the two-sample t test analysis, sample sizes can be entered in any of several parameterizations:

• total sample size in a balanced design

• sample size per group in a balanced design

• total sample size and group allocation weights

• groupwise sample sizes

See Figure 18.5 for an illustration of the application, showing the sample size input page for a two-sample t
test.
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Figure 18.5 Power and Sample Size Application
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Customized Power Formulas (DATA Step)
If you want to perform a power computation for an analysis that is not currently supported directly in
SAS/STAT tools, and you have a power formula, then you can program the formula in the DATA step.

For purposes of illustration, here is the power formula in the section “Computing Power and Sample Size” on
page 368 implemented in the DATA step to compute power for the t test example:

data tpow;
do meandiff = 5, 6;

do stddev = 12, 18;
do alpha = 0.05, 0.1;

do ntotal = 100, 200;
ncp = ntotal * 0.5 * 0.5 * meandiff**2 / stddev**2;
critval = finv(1-alpha, 1, ntotal-2, 0);
power = sdf('f', critval, 1, ntotal-2, ncp);
output;

end;
end;

end;
end;

run;

proc print data=tpow;
run;

The output is shown in Figure 18.6.

Figure 18.6 Customized Power Formula (DATA Step)

Obs meandiff stddev alpha ntotal ncp critval power

1 5 12 0.05 100 4.3403 3.93811 0.54102

2 5 12 0.05 200 8.6806 3.88885 0.83447

3 5 12 0.10 100 4.3403 2.75743 0.66434

4 5 12 0.10 200 8.6806 2.73104 0.90171

5 5 18 0.05 100 1.9290 3.93811 0.27981

6 5 18 0.05 200 3.8580 3.88885 0.49793

7 5 18 0.10 100 1.9290 2.75743 0.39654

8 5 18 0.10 200 3.8580 2.73104 0.62287

9 6 12 0.05 100 6.2500 3.93811 0.69689

10 6 12 0.05 200 12.5000 3.88885 0.94043

11 6 12 0.10 100 6.2500 2.75743 0.79895

12 6 12 0.10 200 12.5000 2.73104 0.96985

13 6 18 0.05 100 2.7778 3.93811 0.37857

14 6 18 0.05 200 5.5556 3.88885 0.65012

15 6 18 0.10 100 2.7778 2.75743 0.50459

16 6 18 0.10 200 5.5556 2.73104 0.75935
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Empirical Power Simulation (DATA Step, SAS/STAT Software)
You can obtain a highly accurate power estimate by simulating the power empirically. You need to use this
approach for analyses that are not supported directly in SAS/STAT tools and for which you lack a power
formula. But the simulation approach is also a viable alternative to existing power approximations. A high
number of simulations will yield a more accurate estimate than a non-exact power approximation.

Although exact power computations for the two-sample t test are supported in several of the SAS/STAT tools,
suppose for purposes of illustration that you want to simulate power for the continuing t test example. This
section describes how you can use the DATA step and SAS/STAT software to do this.

The simulation involves generating a large number of data sets according to the distributions defined by the
power analysis input parameters, computing the relevant p-value for each data set, and then estimating the
power as the proportion of times that the p-value is significant.

The following statements compute a power estimate along with a 95% confidence interval for power for the
first scenario in the two-sample t test example, with 10,000 simulations:

%let meandiff = 5;
%let stddev = 12;
%let alpha = 0.05;
%let ntotal = 100;
%let nsim = 10000;

data simdata;
call streaminit(123);
do isim = 1 to &nsim;

do i = 1 to floor(&ntotal/2);
group = 1;
y = rand('normal', 0 , &stddev);
output;
group = 2;
y = rand('normal', &meandiff, &stddev);
output;

end;
end;

run;

ods listing close;
proc ttest data=simdata;

ods output ttests=tests;
by isim;
class group;
var y;

run;
ods listing;

data tests;
set tests;
where method="Pooled";
issig = probt < &alpha;

run;
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proc freq data=tests;
ods select binomial;
tables issig / binomial(level='1');

run;

First the DATA step is used to randomly generate nsim = 10,000 data sets based on the meandiff , stddev , and
ntotal parameters and the normal distribution, consistent with the assumptions underlying the two-sample t
test. These data sets are contained in a large SAS data set called simdata indexed by the variable isim.

The CALL STREAMINIT(123) statement initializes the random number generator with a specific sequence
and ensures repeatable results for purposes of this example. (NOTE: Skip this step when you are performing
actual power simulations.)

The TTEST procedure is run using isim as a BY variable, with the ODS LISTING CLOSE statement to
suppress output. The ODS OUTPUT statement saves the “TTests” table to a data set called tests. The
p-values are contained in a column called probt.

The subsequent DATA step defines a variable called issig to flag the significant p-values.

Finally, the FREQ procedure computes the empirical power estimate as the estimate of P(issig = 1) and
provides approximate and exact confidence intervals for this estimate.

Figure 18.7 shows the results. The estimated power is 0.5388 with 95% confidence interval (0.5290, 0.5486).
Note that the exact power of 0.541 shown in the first row in Figure 18.1 is contained within this tight
confidence interval.

Figure 18.7 Simulated Power (DATA Step, SAS/STAT Software)

The FREQ ProcedureThe FREQ Procedure

Binomial Proportion

issig = 1

Proportion 0.5388

ASE 0.0050

95% Lower Conf Limit 0.5290

95% Upper Conf Limit 0.5486

Exact Conf Limits

95% Lower Conf Limit 0.5290

95% Upper Conf Limit 0.5486

References

Castelloe, J. M. (2000), “Sample Size Computations and Power Analysis with the SAS System,” in Pro-
ceedings of the Twenty-Fifth Annual SAS Users Group International Conference, Cary, NC: SAS Institute
Inc.

Castelloe, J. M. and O’Brien, R. G. (2001), “Power and Sample Size Determination for Linear Models,”
in Proceedings of the Twenty-Sixth Annual SAS Users Group International Conference, Cary, NC: SAS
Institute Inc.



382 F Chapter 18: Introduction to Power and Sample Size Analysis

Lenth, R. V. (2001), “Some Practical Guidelines for Effective Sample Size Determination,” American
Statistician, 55, 187–193.

Muller, K. E. and Benignus, V. A. (1992), “Increasing Scientific Power with Statistical Power,” Neurotoxicol-
ogy and Teratology, 14, 211–219.

O’Brien, R. G. and Castelloe, J. M. (2007), “Sample-Size Analysis for Traditional Hypothesis Testing:
Concepts and Issues,” in A. Dmitrienko, C. Chuang-Stein, and R. D’Agostino, eds., Pharmaceutical
Statistics Using SAS: A Practical Guide, 237–271, Cary, NC: SAS Institute Inc.

O’Brien, R. G. and Muller, K. E. (1993), “Unified Power Analysis for t-Tests through Multivariate Hypothe-
ses,” in L. K. Edwards, ed., Applied Analysis of Variance in Behavioral Science, 297–344, New York:
Marcel Dekker.



Chapter 19

Shared Concepts and Topics

Contents
Levelization of Classification Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
Parameterization of Model Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

GLM Parameterization of Classification Variables and Effects . . . . . . . . . . . . . 387
Intercept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
Regression Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
Main Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
Interaction Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
Nested Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
Continuous-Nesting-Class Effects . . . . . . . . . . . . . . . . . . . . . . . 389
Continuous-by-Class Effects . . . . . . . . . . . . . . . . . . . . . . . . . . 390
General Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

Other Parameterizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
CODE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

Syntax: CODE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
EFFECT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

Collection Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
Lag Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
Multimember Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
Polynomial Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
Spline Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
Splines and Spline Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

Truncated Power Function Basis . . . . . . . . . . . . . . . . . . . . . . . . 412
B-Spline Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
Natural Cubic Spline Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . 415

EFFECTPLOT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
Syntax: EFFECTPLOT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416

Dictionary of Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
ODS Graphics: EFFECTPLOT Statement . . . . . . . . . . . . . . . . . . . . . . . . 427
Examples: EFFECTPLOT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 428
Example 19.1: A Saddle Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
Example 19.2: Unbalanced Two-Way ANOVA . . . . . . . . . . . . . . . . . . . . . 432
Example 19.3: Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

ESTIMATE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
Syntax: ESTIMATE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
Positional and Nonpositional Syntax for Coefficients in Linear Functions . . . . . . . 455



384 F Chapter 19: Shared Concepts and Topics

Joint Hypothesis Tests with Complex Alternatives, the Chi-Bar-Square Statistic . . . . 457
ODS Table Names: ESTIMATE Statement . . . . . . . . . . . . . . . . . . . . . . . 458
ODS Graphics: ESTIMATE Statement . . . . . . . . . . . . . . . . . . . . . . . . . 459

LSMEANS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
Syntax: LSMEANS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
ODS Table Names: LSMEANS Statement . . . . . . . . . . . . . . . . . . . . . . . 474
ODS Graphics: LSMEANS Statement . . . . . . . . . . . . . . . . . . . . . . . . . 475

LSMESTIMATE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
Syntax: LSMESTIMATE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
ODS Table Names: LSMESTIMATE Statement . . . . . . . . . . . . . . . . . . . . 487
ODS Graphics: LSMESTIMATE Statement . . . . . . . . . . . . . . . . . . . . . . . 487

NLOPTIONS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
Syntax: NLOPTIONS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
Choosing an Optimization Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 501

First- or Second-Order Algorithms . . . . . . . . . . . . . . . . . . . . . . . 501
Algorithm Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502

SLICE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
Syntax: SLICE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
ODS Table Names: SLICE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 507

STORE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
Syntax: STORE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508

TEST Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
Syntax: TEST Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
ODS Table Names: TEST Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 511

Programming Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514

This chapter introduces a number of concepts that are common to two or more SAS/STAT procedures. Most
sections display a listing of the procedures for which the shared topic is relevant.

Levelization of Classification Variables
A classification variable is a variable that enters the statistical analysis or model not through its values, but
through its levels. The process of associating values of a variable with levels is termed levelization.

This section covers in particular procedures that support a CLASS statement for specifying classification
variables. Some of the concepts discussed also apply to procedures that use different syntax to request
levelization of variables (for example, the CLASS() transformation in the TRANSREG procedure).

During the process of levelization, observations that share the same value are assigned to the same level. The
manner in which values are grouped can be affected by the inclusion of formats. The sort order of the levels
can be determined with the ORDER= option in the procedure statement. With the GENMOD, GLMSELECT,
and LOGISTIC procedures, you can also control the sort order separately for each variable in the CLASS
statement.
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Consider the data on nine observations in Table 19.1. The variable A is integer valued, and the variable X
is a continuous variable with a missing value for the fourth observations. The fourth and fifth columns of
Table 19.1 apply two different formats to the variable X.

Table 19.1 Example Data for Levelization

Obs A x FORMAT
x 3.0

FORMAT
x 3.1

1 2 1.09 1 1.1
2 2 1.13 1 1.1
3 2 1.27 1 1.3
4 3 . . .
5 3 2.26 2 2.3
6 3 2.48 2 2.5
7 4 3.34 3 3.3
8 4 3.34 3 3.3
9 4 3.14 3 3.1

By default, levelization of the variables groups observations by the formatted value of the variable, except
for numerical variables for which no explicit format is provided. Numerical variables for which no explicit
format is provided are sorted by their internal value. The levelization of the four columns in table Table 19.1
leads to the level assignment in Table 19.2.

Table 19.2 Values and Levels

A X FORMAT x 3.0 FORMAT x 3.1
Obs Value Level Value Level Value Level Value Level

1 2 1 1.09 1 1 1 1.1 1
2 2 1 1.13 2 1 1 1.1 1
3 2 1 1.27 3 1 1 1.3 2
4 3 2 . . . . . .
5 3 2 2.26 4 2 2 2.3 3
6 3 2 2.48 5 2 2 2.5 4
7 4 3 3.34 7 3 3 3.3 6
8 4 3 3.34 7 3 3 3.3 6
9 4 3 3.14 6 3 3 3.1 5

The ORDER= option in the PROC statement specifies the sort order for the levels of CLASS variables. When
ORDER=FORMATTED (which is the default) is in effect for numeric variables for which you have supplied
no explicit format, the levels are ordered by their internal values. To order numeric class levels with no
explicit format by their BEST12. formatted values, you can specify the BEST12. format explicitly for the
CLASS variables.

The following table shows how values of the ORDER= option are interpreted.
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Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set

FORMATTED External formatted value, except for numeric variables with
no explicit format, which are sorted by their unformatted
(internal) value

FREQ Descending frequency count; levels with the most observa-
tions come first in the order

INTERNAL Unformatted value

For FORMATTED and INTERNAL values, the sort order is machine dependent. For more information about
sort order, see the chapter on the SORT procedure in the Base SAS Procedures Guide and the discussion of
BY-group processing in SAS Language Reference: Concepts.

The GLMSELECT, LOGISTIC, and GENMOD procedures support a MISSING option in the CLASS
statement. When this option is in effect, missing values (. for a numeric variable and blanks for a character
variable) are included in the levelization and are assigned a level. Table 19.3 displays the results of levelizing
the values in Table 19.1 when the MISSING option is in effect.

Table 19.3 Values and Levels with MISSING Option

A X FORMAT x 3.0 FORMAT x 3.1
Obs Value Level Value Level Value Level Value Level

1 2 1 1.09 2 1 2 1.1 2
2 2 1 1.13 3 1 2 1.1 2
3 2 1 1.27 4 1 2 1.3 3
4 3 2 . 1 . 1 . 1
5 3 2 2.26 5 2 3 2.3 4
6 3 2 2.48 6 2 3 2.5 5
7 4 3 3.34 8 3 4 3.3 7
8 4 3 3.34 8 3 4 3.3 7
9 4 3 3.14 7 3 4 3.1 6

When the MISSING option is not specified, or for procedures whose CLASS statement does not support this
option, it is important to understand the implications of missing values for your statistical analysis. When
a SAS/STAT procedure levelizes the CLASS variables, an observation for which a CLASS variable has a
missing value is excluded from the analysis. This is true regardless of whether the variable is used to form
the statistical model. Consider, for example, the case where some observations contain missing values for
variable A but the records for these observations are otherwise complete with respect to all other variables in
the statistical models. The analysis results from the following statements do not include any observations for
which variable A contains missing values, even though A is not specified in the MODEL statement:

class A B;
model y = B x B*x;



Parameterization of Model Effects F 387

Many statistical procedures print a “Number of Observations” table that shows the number of observations
read from the data set and the number of observations used in the analysis. Pay careful attention to this table—
especially when your data set contains missing values—to ensure that no observations are unintentionally
excluded from the analysis.

Parameterization of Model Effects
The general form of a linear regression model is defined in Chapter 3, “Regression Models and Models with
Classification Effects” as

Y D Xˇ C �

This section describes how matrices of regressor effects such as X are constructed in SAS/STAT software.
These constructions (parameterization rules) apply to regression models, models with classification effects,
generalized linear models, and mixed models. The simplest and most general parameterization rules
are the ones used in the GLM procedure, and they are discussed first. Several procedures also support
alternate parameterizations of classification variables, including the CATMOD, GENMOD, GLMSELECT,
LOGISTIC, PHREG, SURVEYLOGISTIC, and SURVEYPHREG procedures. These are discussed after the
GLM parameterization of classification variables and model effects.

All modeling procedures that have a CLASS statement support classification variables and effects, and those
procedures that additionally support the supplemental parameterizations have a PARAM= option in the
CLASS statement.

GLM Parameterization of Classification Variables and Effects

This section applies to the following procedures:
GAM, GENMOD, GLIMMIX, GLM, GLMPOWER, GLMSELECT, LIFEREG, LOGISTIC, MI, MIXED,
MULLTEST, ORTHOREG, PHREG, PLS, QUANTREG, ROBUSTREG, SURVEYLOGISTIC, and SUR-
VEYPHREG.

Intercept

By default, SAS/STAT linear models automatically include a column of 1s in X which corresponds to an
intercept parameter. In many procedures you can use the NOINT option in the MODEL statement to suppress
this intercept. For example, the NOINT option is useful when the MODEL statement contains a classification
effect and you want the parameter estimates to be in terms of the mean response for each level of that effect.

Regression Effects

Numeric variables or polynomial terms that involve them can be included in the model as regression effects
(covariates). The actual values of such terms are included as columns of the relevant model matrices. You
can use the bar operator with a regression effect to generate polynomial effects. For example, X|X|X expands
to X X*X X*X*X, which is a cubic model.
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Main Effects

If a classification variable has m levels, the GLM parameterization generates m columns for its main effect in
the model matrix. Each column is an indicator variable for a given level. The order of the columns is the sort
order of the values of their levels and frequently can be controlled with the ORDER= option in the procedure
or CLASS statement.

Table 19.4 is an example where ˇ0 denotes the intercept and A and B are classification variables with two
and three levels, respectively.

Table 19.4 Example of Main Effects

Data I A B

A B ˇ0 A1 A2 B1 B2 B3
1 1 1 1 0 1 0 0
1 2 1 1 0 0 1 0
1 3 1 1 0 0 0 1
2 1 1 0 1 1 0 0
2 2 1 0 1 0 1 0
2 3 1 0 1 0 0 1

Typically, there are more columns for these effects than there are degrees of freedom to estimate them. In
other words, the GLM parameterization of main effects is singular.

Interaction Effects

Often a model includes interaction (crossed) effects to account for how the effect of a variable changes
with the values of other variables. With an interaction, the terms are first reordered to correspond to the
order of the variables in the CLASS statement. Thus, B*A becomes A*B if A precedes B in the CLASS
statement. Then, the GLM parameterization generates columns for all combinations of levels that occur in
the data. The order of the columns is such that the rightmost variables in the interaction change faster than
the leftmost variables (Table 19.5). In the MIXED and GLIMMIX procedures, which support both fixed-
and random-effects models, empty columns (that is, columns that would contain all 0s) are not generated for
fixed effects, but they are generated for random effects.

Table 19.5 Example of Interaction Effects

Data I A B A*B

A B ˇ0 A1 A2 B1 B2 B3 A1B1 A1B2 A1B3 A2B1 A2B2 A2B3
1 1 1 1 0 1 0 0 1 0 0 0 0 0
1 2 1 1 0 0 1 0 0 1 0 0 0 0
1 3 1 1 0 0 0 1 0 0 1 0 0 0
2 1 1 0 1 1 0 0 0 0 0 1 0 0
2 2 1 0 1 0 1 0 0 0 0 0 1 0
2 3 1 0 1 0 0 1 0 0 0 0 0 1

In the preceding matrix, main-effects columns are not linearly independent of crossed-effects columns; in
fact, the column space for the crossed effects contains the space of the main effect.
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When your model contains many interaction effects, you might be able to code them more parsimoniously by
using the bar operator ( | ). The bar operator generates all possible interaction effects. For example, A|B|C
expands to A B A*B C A*C B*C A*B*C. To eliminate higher-order interaction effects, use the at sign (@) in
conjunction with the bar operator. For instance, A|B|C|D@2 expands to A B A*B C A*C B*C D A*D B*D
C*D.

Nested Effects

Nested effects are generated in the same manner as crossed effects. Hence, the design columns generated by
the following two statements are the same (but the ordering of the columns is different):

model Y=A B(A);
model Y=A A*B;

The nesting operator in SAS/STAT software is more of a notational convenience than an operation distinct
from crossing. Nested effects are typically characterized by the property that the nested variables never
appear as main effects. The order of the variables within nesting parentheses is made to correspond to the
order of these variables in the CLASS statement. The order of the columns is such that variables outside the
parentheses index faster than those inside the parentheses, and the rightmost nested variables index faster
than the leftmost variables (Table 19.6).

Table 19.6 Example of Nested Effects

Data I A B(A)

A B ˇ0 A1 A2 B1A1 B2A1 B3A1 B1A2 B2A2 B3A2
1 1 1 1 0 1 0 0 0 0 0
1 2 1 1 0 0 1 0 0 0 0
1 3 1 1 0 0 0 1 0 0 0
2 1 1 0 1 0 0 0 1 0 0
2 2 1 0 1 0 0 0 0 1 0
2 3 1 0 1 0 0 0 0 0 1

Continuous-Nesting-Class Effects

When a continuous variable nests or crosses with a classification variable, the design columns are constructed
by multiplying the continuous values into the design columns for the classification effect (Table 19.7).

Table 19.7 Example of Continuous-Nesting-Class Effects

Data I A X(A)

X A ˇ0 A1 A2 X(A1) X(A2)
21 1 1 1 0 21 0
24 1 1 1 0 24 0
22 1 1 1 0 22 0
28 2 1 0 1 0 28
19 2 1 0 1 0 19
23 2 1 0 1 0 23

This model estimates a separate intercept and a separate slope for X within each level of A.
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Continuous-by-Class Effects

Continuous-by-class effects generate the same design columns as continuous-nesting-class effects. Table 19.8
shows the construction of the X*A effect. The two columns for this effect are the same as the columns for the
X(A) effect in Table 19.7.

Table 19.8 Example of Continuous-by-Class Effects

Data I X A X*A

X A ˇ0 X A1 A2 X*A1 X*A2
21 1 1 21 1 0 21 0
24 1 1 24 1 0 24 0
22 1 1 22 1 0 22 0
28 2 1 28 0 1 0 28
19 2 1 19 0 1 0 19
23 2 1 23 0 1 0 23

You can use continuous-by-class effects together with pure continuous effects to test for homogeneity of
slopes.

General Effects

An example that combines all the effects is X1*X2*A*B*C(D E). The continuous list comes first, followed
by the crossed list, followed by the nested list in parentheses. You should be aware of the sequencing of
parameters when you use statements that depend on the ordering of parameters. Such statements include
CONTRAST and ESTIMATE statements, which are used in a number of procedures to estimate and test
functions of the parameters.

Effects might be renamed by the procedure to correspond to ordering rules. For example, B*A(E D) might be
renamed A*B(D E) to satisfy the following:

• Classification variables that occur outside parentheses (crossed effects) are sorted in the order in which
they appear in the CLASS statement.

• Variables within parentheses (nested effects) are sorted in the order in which they appear in the CLASS
statement.

The sequencing of the parameters generated by an effect can be described by which variables have their
levels indexed faster:

• Variables in the crossed list index faster than variables in the nested list.

• Within a crossed or nested list, variables to the right index faster than variables to the left.

For example, suppose a model includes four effects—A, B, C, and D—each having two levels, 1 and 2. If the
CLASS statement is
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class A B C D;

then the order of the parameters for the effect B*A(C D), which is renamed
A*B(C D), is

A1B1C1D1 ! A1B2C1D1 ! A2B1C1D1 ! A2B2C1D1 !

A1B1C1D2 ! A1B2C1D2 ! A2B1C1D2 ! A2B2C1D2 !

A1B1C2D1 ! A1B2C2D1 ! A2B1C2D1 ! A2B2C2D1 !

A1B1C2D2 ! A1B2C2D2 ! A2B1C2D2 ! A2B2C2D2

Note that first the crossed effects B and A are sorted in the order in which they appear in the CLASS
statement so that A precedes B in the parameter list. Then, for each combination of the nested effects in turn,
combinations of A and B appear. The B effect changes fastest because it is rightmost in the cross list. Then A
changes next fastest, and D changes next fastest. The C effect changes most slowly because it is leftmost in
the nested list.

Other Parameterizations

This section applies to the following procedures:
CATMOD, GENMOD, GLMSELECT, LOGISTIC, PHREG, and SURVEYPHREG.

Some SAS/STAT procedures, including GENMOD, GLMSELECT, and LOGISTIC, support nonsingular
parameterizations for classification effects. A variety of these nonsingular parameterizations are avail-
able. In most of these procedures you use the PARAM= option in the CLASS statement to specify the
parameterization.

Consider a model with one CLASS variable A that has four levels, 1, 2, 5, and 7. Details of the possible
choices for the PARAM= option follow.

EFFECT Three columns are created to indicate group membership of the nonreference levels.
For the reference level, all three dummy variables have a value of –1. For example, if
the reference level is 7 (REF=7), the design matrix columns for A are as follows.

Effect Coding
Design Matrix

A A1 A2 A5

1 1 0 0
2 0 1 0
5 0 0 1
7 –1 –1 –1

Parameter estimates of CLASS main effects that use the effect coding scheme estimate
the difference in the effect of each nonreference level compared to the average effect
over all four levels.
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The EFFECT parameterization is the default parameterization in the CATMOD
procedure. See the section “Generation of the Design Matrix” on page 1939, in
Chapter 32, “The CATMOD Procedure,” for further details about parameterization of
model effects with the CATMOD procedure.

GLM As in the GLM procedure, four columns are created to indicate group membership.
The design matrix columns for A are as follows.

GLM Coding
Design Matrix

A A1 A2 A5 A7

1 1 0 0 0
2 0 1 0 0
5 0 0 1 0
7 0 0 0 1

Parameter estimates of CLASS main effects that use the GLM coding scheme estimate
the difference in the effects of each level compared to the last level. See the previous
section for details about the GLM parameterization of model effects.

ORDINAL | THERMOMETER Three columns are created to indicate group membership of the higher
levels of the effect. For the first level of the effect (which for A is 1), all three dummy
variables have a value of 0. The design matrix columns for A are as follows.

Ordinal Coding
Design Matrix

A A2 A5 A7

1 0 0 0
2 1 0 0
5 1 1 0
7 1 1 1

The first level of the effect is a control or baseline level. Parameter estimates of
CLASS main effects, using the ORDINAL coding scheme, estimate the differences
between effects of successive levels. When the parameters have the same sign, the
effect is monotonic across the levels.

POLYNOMIAL | POLY Three columns are created. The first represents the linear term .x/, the second
represents the quadratic term

�
x2
�
, and the third represents the cubic term

�
x3
�
, where

x is the level value. If the CLASS levels are not numeric, they are translated into 1, 2,
3, : : : according to their sort order. The design matrix columns for A are as follows.
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Polynomial Coding
Design Matrix

A APOLY1 APOLY2 APOLY3

1 1 1 1
2 2 4 8
5 5 25 125
7 7 49 343

REFERENCE | REF Three columns are created to indicate group membership of the nonreference levels.
For the reference level, all three dummy variables have a value of 0. For example, if
the reference level is 7 (REF=7), the design matrix columns for A are as follows.

Reference Coding
Design Matrix

A A1 A2 A5

1 1 0 0
2 0 1 0
5 0 0 1
7 0 0 0

Parameter estimates of CLASS main effects that use the reference coding scheme
estimate the difference in the effect of each nonreference level compared to the effect
of the reference level.

The REFERENCE parameterization is also available through the MODEL statement
in the CATMOD procedure. See the section “Generation of the Design Matrix” on
page 1939, in Chapter 32, “The CATMOD Procedure,” for further details about
parameterization of model effects with the CATMOD procedure.

ORTHEFFECT The columns are obtained by applying the Gram-Schmidt orthogonalization to the
columns for PARAM=EFFECT. The design matrix columns for A are as follows.

Orthogonal Effect Coding
Design Matrix

A AOEFF1 AOEFF2 AOEFF3

1 1.41421 –0.81650 –0.57735
2 0 1.63299 –0.57735
5 0 0 1.73205
7 –1.41421 –0.81649 –0.57735
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ORTHORDINAL | ORTHOTHERM The columns are obtained by applying the Gram-Schmidt orthogonal-
ization to the columns for PARAM=ORDINAL. The design matrix columns for A are
as follows.

Orthogonal Ordinal Coding
Design Matrix

A AOORD1 AOORD2 AOORD3

1 –1.73205 0 0
2 0.57735 –1.63299 0
5 0.57735 0.81650 –1.41421
7 0.57735 0.81650 1.41421

ORTHPOLY The columns are obtained by applying the Gram-Schmidt orthogonalization to the
columns for PARAM=POLY. The design matrix columns for A are as follows.

Orthogonal Polynomial Coding
Design Matrix

A AOPOLY1 AOPOLY2 AOPOLY5

1 –1.15311 0.90712 –0.92058
2 –0.73380 –0.54041 1.47292
5 0.52414 –1.37034 –0.92058
7 1.36277 1.00363 0.36823

ORTHREF The columns are obtained by applying the Gram-Schmidt orthogonalization to the
columns for PARAM=REFERENCE. The design matrix columns for A are as follows.

Orthogonal Reference Coding
Design Matrix

A AOREF1 AOREF2 AOREF3

1 1.73205 0 0
2 –0.57735 1.63299 0
5 –0.57735 –0.81650 1.41421
7 –0.57735 –0.81650 –1.41421
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CODE Statement

This statement documentation applies to the following procedures:
GENMOD, GLIMMIX, GLM, GLMSELECT, LOGISTIC, MIXED, PLM, and REG. It also applies to the
HPLOGISTIC and HPREG procedures in SAS High-Performance Analytics software.

The CODE statement enables you to write SAS DATA step code to a file or catalog entry for computing
predicted values of the fitted model. This code can then be included in a DATA step to score new data.
For example, in the following program, the CODE statement writes the code for predicting the outcome
of a logistic model to the file mycode.sas. The file is subsequently included in a DATA step to score the
sashelp.Bmt data.

proc logistic data=sashelp.Bmt;
class Group;
model Status=Group;
code file='mycode.sas';

run;

data Score;
set sashelp.Bmt;
%include mycode;

run;

Syntax: CODE Statement
CODE < options > ;

Table 19.9 summarizes the options you can specify in the CODE statement.

Table 19.9 CODE Statement Options

Option Description

CATALOG= Names the catalog entry where the generated code is saved
DUMMIES Retains the dummy variables in the data set
ERROR Computes the error function
FILE= Names the file where the generated code is saved
FORMAT= Specifies the numeric format for the regression coefficients
GROUP= Specifies the group identifier for array names and statement labels
IMPUTE Imputes predicted values for observations with missing or invalid

covariates
LINESIZE= Specifies the line size of the generated code
LOOKUP= Specifies the algorithm for looking up CLASS levels
RESIDUAL Computes residuals
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You cannot specify both the FILE= and CATALOG= options. If you specify neither, the SAS scoring code is
written to the SAS log. You can specify the following options in the CODE statement.

CATALOG=library.catalog.entry.type

CAT=library.catalog.entry.type
specifies where to write the generated code in the form of library.catalog.entry.type. The compound
name can have from one to four levels. The default library is determined by the USER= SAS system
option, which by default is WORK. The default entry is SASCODE, and the default type is SOURCE.

DUMMIES | NODUMMIES
specifies whether to keep dummy variables that represent the CLASS levels in the data set. The default
is NODUMMIES, which specifies that dummy variables not be retained.

ERROR | NOERROR
specifies whether to generate code to compute the error function. The default is NOERROR, which
specifies that the error function not be generated.

FILE=filename
names the external file that saves the generated code. When enclosed in a quoted string (for example,
FILE="c:nmydirnscorecode.sas"), this option specifies the path for writing the code to an external
file. You can also specify unquoted SAS filenames of no more than eight characters for filename. If
the filename is assigned as a fileref in a Base SAS FILENAME statement, the file specified in the
FILENAME statement is opened. The special filerefs LOG and PRINT are always assigned. If the
specified filename is not an assigned fileref , the specified value for filename is concatenated with a .txt
extension before the file is opened. For example, if FOO is not an assigned fileref , FILE=FOO causes
FOO.txt to be opened. If filename has more than eight characters, an error message is printed.

FORMAT=format
specifies the format for the regression coefficients and other numerical values that do not have a format
from the input data set. The default format is BEST20.

GROUP=group-name
specifies the group identifier for group processing. The group-name should be a valid SAS name of no
more than 16 characters. It is used to construct array names and statement labels in the generated code.

IMPUTE
imputes the predicted values according to an intercept-only model for observations with missing or
invalid covariate values. For a continuous response, the predicted value is the mean of the response
variable; for a categorical response, the predicted values are the proportions of the response categories.
When the IMPUTE option is specified, the scoring code also creates a variable named _WARN_ that
contains one or more single-character codes that indicate problems in computing predicted values. The
character codes used in _WARN_ go in the following positions:

Table 19.10 _WARN_ Variable Codes

Code Column Meaning
M 1 Missing covariate value
U 2 Unrecognized covariate category
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LINESIZE=value

LS=value
specifies the line size for the generated code. The default is 78. The permissible range is 78 to 254.

LOOKUP=lookup-method
specifies the algorithm for looking up CLASS levels. You can specify the following lookup-methods:

AUTO
selects the LINEAR algorithm if a CLASS variable has fewer than five categories; otherwise, the
BINARY algorithm is used. This is the default.

BINARY
uses a binary search. This method is fast, but might produce incorrect results and the normalized
category values might contain characters that collate in different orders in ASCII and EBCDIC,
if you generate the code on an ASCII machine and execute the code on an EBCDIC machine or
vice versa.

LINEAR
uses a linear search with IF statements that have categories in the order of the class levels. This
method is slow if there are many categories.

SELECT
uses a SELECT statement.

The default is LOOKUP=AUTO.

RESIDUAL | NORESIDUAL
specifies whether to generate code to compute residual values. If you request code for residuals and
then score a data set that does not contain target values, the residuals will have missing values. The
default is NORESIDUAL, which specifies that the code for residuals not be generated.

EFFECT Statement

This section applies to the following procedures:
GLIMMIX, GLMSELECT, HPMIXED, LOGISTIC, ORTHOREG, PHREG, PLS, QUANTLIFE,
QUANTREG, QUANTSELECT, ROBUSTREG, SURVEYLOGISTIC, and SURVEYREG.

The EFFECT statement enables you to construct special collections of columns for design matrices. These
collections are referred to as constructed effects to distinguish them from the usual model effects that are
formed from continuous or classification variables, as discussed in the section “GLM Parameterization of
Classification Variables and Effects” on page 387. For example, the terms A, B, x, A*x, A*B, and sub in the
following statements define fixed, random, and subject effects of the usual type in a mixed model:
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proc glimmix;
class A B sub;
model y = A B x A*x;
random A*B / subject=sub;

run;

A constructed effect, on the other hand, is assigned through the EFFECT statement. For example, in the
following program, the EFFECT statement defines a constructed effect named spl:

proc glimmix;
class A B SUB;
effect spl = spline(x);
model y = A B A*spl;
random A*B / subject=sub;

run;

The columns of spl are formed from the data set variable x as a cubic B-spline basis with three equally spaced
interior knots.

Each constructed effect corresponds to a collection of columns that are referred to by using the name you
supply. You can specify multiple EFFECT statements, and all EFFECT statements must precede the MODEL
statement.

The general syntax for the EFFECT statement with effect-specification is

EFFECT effect-name = effect-type (var-list < / effect-options >) ;

The name of the effect is specified after the EFFECT keyword. This name can appear in only one EFFECT
statement and cannot be the name of a variable in the input data set. The effect-type is specified after an
equal sign, followed by a list of variables within parentheses which are used in constructing the effect.
Effect-options that are specific to an effect-type can be specified after a slash (/) following the variable list.
The following effect-types are available and are discussed in the following sections:

COLLECTION is a collection effect that defines one or more variables as a single effect with
multiple degrees of freedom. The variables in a collection are considered as
a unit for estimation and inference.

LAG is a classification effect in which the level that is used for a given period
corresponds to the level in the preceding period.

MULTIMEMBER | MM is a multimember classification effect whose levels are determined by one or
more variables that appear in a CLASS statement.

POLYNOMIAL | POLY is a multivariate polynomial effect in the specified numeric variables.

SPLINE is a regression spline effect whose columns are univariate spline expansions
of one or more variables. A spline expansion replaces the original variable
with an expanded or larger set of new variables.

Table 19.11 summarizes the options available in the EFFECT statement.
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Table 19.11 EFFECT Statement Options

Option Description

Collection Effects Options
DETAILS Displays the constituents of the collection effect

Lag Effects Options
DESIGNROLE= Names a variable that controls to which lag design an observation

is assigned

DETAILS Displays the lag design of the lag effect

NLAG= Specifies the number of periods in the lag

PERIOD= Names the variable that defines the period

WITHIN= Names the variable or variables that define the group within which
each period is defined

Multimember Effects Options
NOEFFECT Specifies that observations with all missing levels for the multi-

member variables should have zero values in the corresponding
design matrix columns

WEIGHT= Specifies the weight variable for the contributions of each of the
classification effects

Polynomial Effects Options
DEGREE= Specifies the degree of the polynomial
MDEGREE= Specifies the maximum degree of any variable in a term of the

polynomial
STANDARDIZE= Specifies centering and scaling suboptions for the variables that

define the polynomial

Spline Effects Options
BASIS= Specifies the type of basis (B-spline basis or truncated power func-

tion basis) for the spline effect
DEGREE= Specifies the degree of the spline effect
KNOTMETHOD= Specifies how to construct the knots for the spline effect

Collection Effects
EFFECT name=COLLECTION (var-list < / DETAILS >) ;

You use a collection effect to define a set of variables that are treated as a single effect with multiple degrees
of freedom. The variables in var-list can be continuous or classification variables. The columns in the design
matrix that are contributed by a collection effect are the design columns of its constituent variables in the
order in which they appear in the definition of the collection effect. If you specify the DETAILS option, then
a table that shows the constituents of the collection effect is displayed.
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Lag Effects
EFFECT name=LAG (variable / lag-options) ;

A lag effect is a classification effect for the CLASS variable that is given after the keyword LAG. A lag
effect is used to represent the effect of a previous value of the lagged variable when there is some inherent
ordering of the observations of this variable. A typical example where lag effects are useful is a study in
which different subjects are given sequences of treatments and you want to investigate whether the treatment
in the previous period is important in understanding the outcome in the current period. You can do this by
including a lagged treatment effect in your model.

The precise definition of a LAG effect depends on a subdivision of the data into disjoint subsets, often
referred to as “subjects,” and an ordering into units called “periods” of the observations within a subject. For
an observation that belongs to a given subject and at a given period, the design matrix columns of the lagged
variable are the usual design matrix columns of that variable except for the observation at the preceding
period for that subject. Observations at the initial period do not have a preceding value, and so the design
matrix columns of the lag effect for these observations are set to zero. You can also define lag effects where
the number of periods that are lagged is greater than one. If the number of periods that are lagged is n, then
the design matrix columns of observations in periods less than or equal to n are set to zero. The design matrix
columns that correspond to a subject at period p, where p > n, are the usual design matrix columns of the
lagged variable for that subject at period p – n.

A convenient way to represent the organization of observations into subjects and periods is to form the lag
design matrix. The rows and columns of this matrix correspond to the subjects and periods respectively. The
lag design matrix entry is the treatment for the corresponding subject and period. In a valid lag design there
is at most one observation for a given period and subject. For example, the following set of treatments by
subject and period form a valid lag design:

Subject Period Treatment
Sheila 1 B
Joey 1 A
Athena 1 A
Gelindo 1 A
Sheila 2 C
Joey 2 A
Athena 2 .
Gelindo 2 B
Sheila 3 B
Joey 3 C
Athena 3 A
Gelindo 3 B
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The associated lag design matrix is

Period
Subject 1 2 3
Athena A A
Gelindo A B B
Joey A A C
Sheila B C B

Note that the subject Athena did not receive a treatment at period 2, and so the corresponding entry in the lag
design matrix is missing. You can define a lag effect for this lag design with the following statements:

CLASS treatment;
EFFECT Lag = LAG( treatment / WITHIN=subject PERIOD=period);

When GLM coding is used for the CLASS variable treatment, the design matrix columns Lag_A, Lag_B, and
Lag_C for the constructed effect Lag are as follows:

Subject Period Treatment Lag_A Lag_B Lag_C
Athena 1 A 0 0 0
Athena 2 1 0 0
Athena 3 A . . .
Gelindo 1 A 0 0 0
Gelindo 2 B 1 0 0
Gelindo 3 B 0 1 0
Joey 1 A 0 0 0
Joey 2 A 1 0 0
Joey 3 C 1 0 0
Sheila 1 B 0 0 0
Sheila 2 C 0 1 0
Sheila 3 B 0 0 1

The design matrix columns for each subject at period 1 are all zero because there are no lagged observations
for period 1. You can also see that the design matrix columns at period 3 for subject Athena are missing
because Athena did not receive a treatment at period 2. Nevertheless, the design matrix columns for Athena
at period 2 are nonmissing and correspond to the treatment “A” that she received in period 1.

The following lag-options are required:

PERIOD=variable
specifies the period variable of the LAG design. The number of periods is the number of unique
formatted values of the PERIOD= variable, and the ordering of the period is formed by sorting these
formatted values in ascending order. You must specify a PERIOD= variable.
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WITHIN=(variables)

WITHIN=variable
specifies a variable (or a list of variables within parentheses) that defines the subject grouping of the
lag design. If there is only one WITHIN= variable, then the parentheses are not required. Each subject
is defined by the unique set of formatted values of the variables in the WITHIN= list. The subjects are
sorted in ascending lexicographic order. You must specify a WITHIN= variable.

You can also specify the following lag-options:

DESIGNROLE=variable
specifies a numeric variable that is used to subset observations into a fitting group in which the value
of the DESIGNROLE= variable is nonzero and a second group in which the value of the specified
variable is zero. The observations in the fitting group are used to form the LAG design matrix that
is used in fitting the model. The LAG design that corresponds to the non-fitting group is used when
scoring observations in the input data set that do not belong to the fitting group. This option is useful
when you want to obtain predicted values in an output data set for observations that are not used in
fitting the model. If you do not specify a DESIGNROLE= variable, then all observations are assigned
to the fitting group.

DETAILS
requests a table that shows the lag design matrix of the lag effect.

NLAG= n
specifies the number of lags. By default NLAG=1.

Multimember Effects
EFFECT name=MULTIMEMBER (var-list < / mm-options >) ;

EFFECT name=MM (var-list < / mm-options >) ;

A multimember effect is formed from one or more classification variables in such a way that each observation
can be associated with one or more levels of the union of the levels of the classification variables. In other
words, a multimember effect is a classification-type effect with possibly more than one nonzero column entry
for each observation. Multimember effects are useful, for example, in modeling the following:

• nurses’ effects on patient recovery in hospitals

• teachers’ effects on student scores

• lineage effects in genetic studies. See Example 44.16 in Chapter 44, “The GLIMMIX Procedure,” for
an application with random multimember effects in a genetic diallel experiment.

The levels of a multimember effect consist of the union of formatted values of the variables that define this
effect. Each such level contributes one column to the design matrix. For each observation, the value that
corresponds to each level of the multimember effect in the design matrix is the number of times that this level
occurs for the observation.

For example, the following data provide teacher information and end-of-year test scores for students after
two semesters:
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Student Score Teacher1 Teacher2
Mary 87 Tobias Cohen
Tom 89 Rodriguez Tobias
Fred 82 Cohen Cohen
Jane 88 Tobias .
Jack 99 . .

For example, Mary had different teachers in the two semesters, Fred had the same teacher in both semesters,
and Jane received instruction only in the first semester.

You can model the effect of the teachers on student performance by using a multimember effect specified as
follows:

CLASS teacher1 teacher2;
EFFECT teacher = MM(teacher1 teacher2);

The levels of the teacher effect are Cohen, Rodriguez, and Tobias, and the associated design matrix columns
are as follows:

Student Cohen Rodriguez Tobias
Mary 1 0 1
Tom 0 1 1
Fred 2 0 0
Jane 0 0 1
Jack . . .

You can specify the following mm-options after a slash (/):

DETAILS
requests a table that shows the levels of the multimember effect.

NOEFFECT
specifies that, for observations with all missing levels of the multimember variables, the values in the
corresponding design matrix columns be set to zero. If, in the preceding example, the teacher effect is
defined by

EFFECT teacher = MM(teacher1 teacher2 / noeffect);

then the associated design matrix columns’ values for Jack are all zero. This enables you to include
Jack in the analysis even though there is no effect of teachers on his performance.

A situation where it is important to designate observations as having no effect due to a classification
variable is the analysis of crossover designs, where lagged treatment levels are used to model the
carryover effects of treatments between periods. Since there is no carryover effect for the first period,
the treatment lag effect in a crossover design can be modeled with a multimember effect that consists
of a single classification variable and the NOEFFECT option, as in the following statements:
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CLASS Treatment lagTreatment;
EFFECT Carryover = MM(lagTreatment / noeffect);

The lagTreatment variable contains a missing value for the first period. Otherwise, it contains the value
of the treatment variable for the preceding period.

STDIZE
specifies that for each observation, the entries in the design matrix that corresponds to the multimember
effect be scaled to have a sum of one.

WEIGHT=wght-list
specifies numeric variables used to weigh the contributions of each of the classification effects that
define the constructed multimember effect. The number of variables in wght-list must match the
number of classification variables that define the effect.

Polynomial Effects
EFFECT name=POLYNOMIAL (var-list < / polynomial-options >) ;

EFFECT name=POLY (var-list < / polynomial-options >) ;

The variables in var-list must be numeric. A design matrix column is generated for each term of the specified
polynomial. By default, each of these terms is treated as a separate effect for the purpose of model building.
For example, the statements

proc glmselect;
effect MyPoly = polynomial(x1-x3/degree=2);
model y = MyPoly;

run;

yield the identical analysis to the statements

proc glmselect;
model y = x1 x2 x3 x1*x1 x1*x2 x1*x3 x2*x2 x2*x3 x3*x3;

run;

You can specify the following polynomial-options after a slash (/):

DEGREE=n
specifies the degree of the polynomial. The degree must be a positive integer. The degree is typically a
small integer, such as 1, 2, or 3. The default is DEGREE=1.

DETAILS
requests a table that shows the details of the specified polynomial, including the number of terms
generated. If you also specify the STANDARDIZE option, then a table that shows the standardization
details is also produced.

LABELSTYLE=(style-opts)
LABELSTYLE=style-opt

specifies how the terms in the polynomial are labeled. By default, powers are shown with ˆ as the
exponentiation operator and * as the multiplication operator. For example, a polynomial term such as
x31x2x

2
3 is labeled x1ˆ3*x2*x3ˆ2. You can change the style of the label by using the following style-opts

within parentheses. If you specify a single style-opt , then you can omit the enclosing parentheses.
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EXPAND
specifies that each variable with an exponent greater than 1 be written as products of that variable.
For example, the term x31x2x

2
3 receives the label x1*x1*x1*x2*x3*x3.

EXPONENT < =quoted string >
specifies that each variable with an exponent greater than 1 be written using exponential notation.
By default, the symbol ˆ is used as the exponentiation operator. If you supply the optional quoted
string after an equal sign, then that string is used as the exponentiation operator. For example, if
you specify

LABELSTYLE=(EXPONENT="**")

then the term x31x2x
2
3 receives the label x1**3*x2*x3**2.

INCLUDENAME
specifies that the name of the effect followed by an underscore be used as a prefix for term labels.
For example, the following statement generates terms with labels MyPoly_x1 and MyPoly_x1ˆ2:

EFFECT MyPoly=POLYNOMIAL(x1/degree=2 labelstyle=INCLUDENAME)

The INCLUDENAME option is ignored if you also specify the NOSEPARATE option in the
EFFECT=POLYNOMIAL statement.

PRODUCTSYMBOL=NONE | quoted string
specifies that the supplied string be used as the product symbol. For example, the following
statement generates terms with labels x1, x2, and x1 x2:

EFFECT MyPoly=POLYNOMIAL(x1 x2 / degree=2 mdegree=1
labelstyle=(PRODUCTSYMBOL=" "))

If you specify PRODUCTSYMBOL=NONE, then the labels are formed by juxtaposing the
constituent variable names.

MDEGREE=n
specifies the maximum degree of any variable in a term of the polynomial. This degree must be a
positive integer. The default is the degree of the specified polynomial. For example, the following
statement generates the terms x1, x2, x21 , x1x2, x22 , x21x2, x1x22 and x21x

2
2 :

EFFECT MyPoly=POLYNOMIAL(x1 x2/degree=4 MDEGREE=2);

NOSEPARATE
specifies that the polynomial be treated as a single effect with multiple degrees of freedom. The effect
name that you specify is used as the constructed effect name, and the labels of the terms are used as
labels of the corresponding parameters.
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STANDARDIZE < (centerscale-opts) > < = standardize-opt >
specifies that the variables that define the polynomial be standardized. By default, the standardized
variables receive prefix “s_” in the variable names.

You can use the following centerscale-opts to specify how the center and scale are estimated:

METHOD=MOMENTS
specifies that the center be estimated by the variable mean and the scale be estimated by the
standard deviation. If a weight variable is specified using a WEIGHT statement, the observations
with invalid weights are ignored when forming the mean and standard deviation, but the weights
are otherwise not used. Only observations that are used in performing the analysis are used for
the standardization.

METHOD=RANGE
specifies that the center be estimated by the midpoint of the variable range and the scale be
estimated as half the variable range. Any observation that has a missing value for any regressor
used in the model is ignored when computing the range of variables in a polynomial effect.
Observations with valid regressor values but missing or invalid values of frequency variables,
weight variables, or dependent variables are used in computing variable ranges. The default (if
you do not specify the METHOD= suboption) is METHOD=RANGE.

METHOD=WMOMENTS
is the same as METHOD=MOMENTS except that weighted means and weighted standard
deviations are used.

Let

n D number of observations used in the analysis
w D weight variable
f D frequency variable
x D variable to be standardized

x.n/ D MaxniD1.xi /

x.1/ D MinniD1.xi /

F D sum of frequencies
D †niD1fi

WF D sum of weighted frequencies
D †niD1wifi

Table 19.12 shows how the center and scale are computed for each of the supported methods.
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Table 19.12 Center and Scale Estimates by Method

Method Center Scale

Range .x.n/ C x.1//=2 .x.n/ � x.1//=2

Moments Nx D †niD1fixi=F
q
†niD1fi .xi � Nx/

2=.F � 1/

WMoments Nxw D †
n
iD1wifixi=WF

q
†niD1wifi .xi � Nxw/

2=.F � 1/

PREFIX=NONE | quoted-string
specifies the prefix that is appended to standardized variables when forming the term labels. If
you omit this option, the default prefix is “s_”. If you specify PREFIX=NONE, then standardized
variables are not prefixed.

You can control whether the standardization is to center, scale, or both center and scale by specifying a
standardize-opt:

CENTER
specifies that variables be centered but not scaled. For a variable x,

s_x D x � center

CENTERSCALE
specifies that variables be centered and scaled. This is the default if you do not specify a
standardization-opt. For a variable x,

s_x D
x � center

scale

NONE
specifies that no standardization be performed.

SCALE
specifies that variables be scaled but not centered. For a variable x,

s_x D
x

scale

Spline Effects
This section discusses the construction of spline effects through the EFFECT statement. You can also include
spline effects in statistical models by other means. The TRANSREG procedure has dedicated facilities for
including regression splines in your model and controlling the construction of the splines. For example, you
can use the TRANSREG procedure to fit a spline function but restrict the function to be always increasing
or decreasing (monotone). See the section “Using Splines and Knots” on page 8614 in Chapter 104, “The
TRANSREG Procedure,” for more information about using splines with the TRANSREG procedure. The
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GAM and TPSPLINE procedures also can model the effects of regressor variables in terms of smooth
functions that are generated from spline bases. For more information see Chapter 41, “The GAM Procedure,”
and Chapter 103, “The TPSPLINE Procedure.”

A spline effect expands variables into spline bases whose form depends on the options that you specify.
You can find details about regression splines and spline bases in the section “Splines and Spline Bases” on
page 411. You request a spline effect with the syntax

EFFECT name=SPLINE (var-list < / spline-options >) ;

The variables in var-list must be numeric. Design matrix columns are generated separately for each of these
variables, and the set of columns is collectively referred to with the specified name. By default, the spline
basis that is generated for each variable is a cubic B-spline basis with three equally spaced knots positioned
between the minimum and maximum values of that variable. This yields by default seven design matrix
columns for each of the variables in the SPLINE effect.

You can specify the following spline-options after a slash (/):

BASIS=BSPLINE
specifies a B-spline basis for the spline expansion. For splines of degree d defined with n knots,
this basis consists of n + d + 1 columns. In order to completely specify the B-spline basis, d left-
side boundary knots and maxfd; 1g right-side boundary knots are also required. See the suboptions
KNOTMETHOD=, DATABOUNDARY, KNOTMIN=, and KNOTMAX= for details about how to
specify the positions of both the internal and boundary knots. This is the default if you do not specify
the BASIS= suboption.

BASIS=TPF(options)
specifies a truncated power function basis for the spline expansion. For splines of degree d defined
with n knots for a variable x, this basis consists of an intercept, polynomials x, x2; : : : ; xd and one
truncated power function for each of the n knots. Unlike the B-spline basis, no boundary knots are
required. See the suboption KNOTMETHOD= for details about how you can specify the position of
the internal knots.

You can modify the number of columns when you request BASIS=TPF with the following options:

NOINT
excludes the intercept column.

NOPOWERS
excludes the intercept and polynomial columns.

DATABOUNDARY
specifies that the extremes of the data be used as boundary knots when building a B-spline basis.

DEGREE=n
specifies the degree of the spline transformation. The degree must be a nonnegative integer. The degree
is typically a small integer, such as 0, 1, 2, or 3. The default is DEGREE=3.

DETAILS
requests tables that show the knot locations and the knots associated with each spline basis function.
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KNOTMAX=value
specifies that, for each variable in the EFFECT statement, the right-side boundary knots be equally
spaced starting at the maximum of the variable and ending at the specified value. This option is ignored
for variables whose maximum value is greater than the specified value or if the DATABOUNDARY
option is also specified.

KNOTMETHOD=knot-method< (knot-options) >
specifies how to construct the knots for spline effects. You can choose from the following knot-methods
and affect the knot construction further with the method-specific knot-options:

EQUAL< (n) >
specifies that n equally spaced knots be positioned between the extremes of the data. The default
is n = 3. For a B-spline basis, any needed boundary knots continue to be equally spaced unless
the DATABOUNDARY option has also been specified. KNOTMETHOD=EQUAL is the default
if no knot-method is specified.

LIST(number-list)
specifies the list of internal knots to be used in forming the spline basis columns. For a B-spline
basis, the data extremes are used as boundary knots.

LISTWITHBOUNDARY(number-list)
specifies the list of all knots that are used in forming the spline basis columns. When you use a
truncated power function basis, this list is interpreted as the list of internal knots. When you use
a B-spline basis of degree d, then the first d entries are used as left-side boundary knots and the
last MAX.d; 1/ entries in the list are used as right-side boundary knots.

MULTISCALE< (multiscale-options) >
specifies that multiple B-spline bases be generated, corresponding to sets with an increasing
number of internal knots. As you increase the number of internal knots, the spline basis you
generate is able to approximate features of the data at finer scales. So, by generating bases at
multiple scales, you facilitate the modeling of both coarse- and fine-grained features of the data.
For scale i, the spline basis corresponds to 2i equally spaced internal knots. By default, the bases
for scales 0–7 are generated. For each scale, a separate spline effect is generated. The name of
the constructed spline effect at scale i is formed by appending _Si to the effect name that you
specify in the EFFECT statement. If you specify multiple variables in the EFFECT statement,
then spline bases are generated separately for each variable at each scale and the name of the
corresponding effect is obtained by appending the variable name followed by _Si to the name in
the EFFECT statement. For example, the following statement generates effects named spl_x1_S0,
spl_x1_S1, spl_x1_S2, : : :, spl_x1_S7 and spl_x2_S1, spl_x2_S2, : : :, spl_x2_S7:

EFFECT spl = spline(x1 x2 / knotmethod=multiscale);

The MULTISCALE option is ignored if you specify the BASIS=TPF spline-option. The MULTI-
SCALE option is not available for spline effects that are specified in the RANDOM statement of
the GLIMMIX procedure.

You can control which scales are included with the following multiscale-options:
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STARTSCALE=n
specifies the start scale, where n is a positive integer. The default is STARTSCALE=0.

ENDSCALE=n
specifies the end scale, where n is a positive integer. The default is ENDSCALE=7.

PERCENTILES(n)
requests that internal knots be placed at n equally spaced percentiles of the variable or variables
named in the EFFECT statement. For example, the following statement positions internal knots
at the deciles of the variable x. For a B-spline basis, the extremes of the data are used as boundary
knots:

EFFECT spl = spline(x / knotmethod=percentiles(9));

RANGEFRACTIONS(fraction-list)
requests that internal knots be placed at each fraction of the ranges of the variables in the EFFECT
statement. For example, if variable x1 ranges between 1 and 3, and variable x2 ranges between 0
and 20, then the following EFFECT statement uses internal knots 1.2, 2, and 2.5 for variable x1
and internal knots 2, 10, and 15 for variable x2:

EFFECT spl = spline(x1 x2 / knotmethod=rangefractions(.1 .5 .75));

For a B-spline basis, the data extremes are used as boundary knots.

KNOTMIN=value
specifies that for each variable in the EFFECT statement, the left-side boundary knots be equally
spaced starting at the specified value and ending at the minimum of the variable. This option is ignored
for variables whose minimum value is less than the specified value or if the DATABOUNDARY option
is also specified.

NATURALCUBIC
specifies a natural cubic spline basis for the spline expansion. Natural cubic splines, also known as
restricted cubic splines, are cubic splines that are constrained to be linear beyond the extreme knots. The
natural cubic spline basis that is produced by the EFFECT statement is obtained by starting from the
unrestricted truncated power function cubic spline basis that is defined with n distinct knots and imposes
the linearity constraints beyond the extreme knots. This basis consists of an intercept, the polynomial
x, and n – 2 functions that are all linear beyond the largest knot. The ith function, i D 1; 2; : : : ; n � 2,
is zero to the left of the ith knot, which is called the “break knot.” See the section “Splines and
Spline Bases” on page 411 for details of this basis. You can use the NOINT and NOPOWERS
suboptions of the BASIS=TPF option to suppress the intercept and polynomial x when forming the
columns of the natural cubic spline basis. When you specify the NATURALCUBIC option, the options
BASIS=BSPLINE, DATABOUNDARY, DEGREE=, and KNOTMETHOD=MULTISCALE are not
applicable.

SEPARATE
specifies that when multiple variables are specified in the EFFECT statement, the spline basis for
each variable be treated as a separate effect. The names of these separated effects are formed by
appending an underscore followed by the name of the variable to the name that you specify in the
EFFECT statement. For example, the effect names generated with the following statement are spl_x1
and spl_x2:



Splines and Spline Bases F 411

EFFECT spl = spline(x1 x2 / separate);

In procedures that support variable selection, such as the GLMSELECT procedure, these two effects
can enter or leave the model independently during the selection process. Separated effects are not
supported in the RANDOM statement of the GLIMMIX procedure.

SPLIT
specifies that each individual column in the design matrix that corresponds to the spline effect be
treated as a separate effect that can enter or leave the model independently. Names for these split
effects are generated by appending the variable name and an index for each column to the name that
you specify in the EFFECT statement. For example, the effects generated for the spline effect in the
following statement are spl_x1:1, spl_x1:2, . . . , spl_x1:7 and spl_x2:1, spl_x2:2, . . . , spl_x2:7:

EFFECT spl = spline(x1 x2 / split);

The SPLIT option is not supported in the GLIMMIX procedure.

Splines and Spline Bases
This section provides details about the construction of spline bases with the EFFECT statement. A spline
function is a piecewise polynomial function in which the individual polynomials have the same degree and
connect smoothly at join points whose abscissa values, referred to as knots, are prespecified. You can use
spline functions to fit curves to a wide variety of data.

A spline of degree 0 is a step function with steps located at the knots. A spline of degree 1 is a piecewise
linear function where the lines connect at the knots. A spline of degree 2 is a piecewise quadratic curve
whose values and slopes coincide at the knots. A spline of degree 3 is a piecewise cubic curve whose values,
slopes, and curvature coincide at the knots. Visually, a cubic spline is a smooth curve, and it is the most
commonly used spline when a smooth fit is desired. Note that when no knots are used, splines of degree d
are simply polynomials of degree d.

More formally, suppose you specify knots k1 < k2 < k3 < � � � < kn. Then a spline of degree d � 0 is a
function S.x/ with d – 1 continuous derivatives such that

S.x/ D

8<:
P0.x/ x < k1
Pi .x/ ki � x < kiC1I i D 1; 2; : : : ; n � 1

Pn.x/ x � kn

where each Pi .x/ is a polynomial of degree d. The requirement that S.x/ has d – 1continuous derivatives is
satisfied by requiring that the function values and all derivatives up to order d – 1 of the adjacent polynomials
at each knot match.

A counting argument yields the number of parameters that define a spline with n knots. There are n + 1
polynomials of degree d, giving .nC 1/.d C 1/ coefficients. However, there are d restrictions at each of the
n knots, so the number of free parameters is .nC 1/.d C 1/ � nd = n + d + 1. In mathematical terminology
this says that the dimension of the vector space of splines of degree d on n distinct knots is n + d + 1. If you
have n + d + 1 basis vectors, then you can fit a curve to your data by regressing your dependent variable by
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using this basis for the corresponding design matrix columns. In this context, such a spline is known as a
regression spline. The EFFECT statement provides a simple mechanism for obtaining such a basis.

If you remove the restriction that the knots of a spline must be distinct and allow repeated knots, then you
can obtain functions with less smoothness and even discontinuities at the repeated knot location. For a spline
of degree d and a repeated knot with multiplicity m � d , the piecewise polynomials that join such a knot are
required to have only d – m matching derivatives. Note that this increases the number of free parameters by
m – 1 but also decreases the number of distinct knots by m – 1. Hence the dimension of the vector space of
splines of degree d with n knots is still n + d + 1, provided that any repeated knot has a multiplicity less than
or equal to d.

The EFFECT statement provides support for the commonly used truncated power function basis and B-spline
basis. With exact arithmetic and by using the complete basis, you obtain the same fit with either of these
bases. The following sections provide details about constructing spline bases for the space of splines of
degree d with n knots that satisfies k1 � k2 � k3 < � � � � kn.

Truncated Power Function Basis

A truncated power function for a knot ki is a function defined by

ti .x/ D

�
0 x < ki
.x � ki /

d x � ki

Figure 19.1 shows such functions for d = 1 and d = 3 with a knot at x = 1.

Figure 19.1 Truncated Power Functions with Knot at x = 1

The name is derived from the fact that these functions are shifted power functions that get truncated to zero
to the left of the knot. These functions are piecewise polynomial functions with two pieces whose function
values and derivatives of all orders up to d � 1 are zero at the defining knot. Hence these functions are
splines of degree d. It is easy to see that these n functions are linearly independent. However, they do not
form a basis, because such a basis requires nC d C 1 functions. The usual way to add d C 1 additional basis
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functions is to use the polynomials 1; x; x2; : : : ; xd . These d C 1 functions together with the n truncated
power functions ti .x/; i D 1; 2; : : : ; n form the truncated power basis.

Note that each time a knot is repeated, the associated exponent used in the corresponding basis function
is reduced by 1. For example, for splines of degree d with three repeated knots ki D kiC1 D kiC2 the
corresponding basis functions are ti .x/ D .x � ki /dC, tiC1.x/ D .x � ki /d�1C , and tiC2.x/ D .x � ki /d�2C .
Provided that the multiplicity of each repeated knot is less than or equal to the degree, this construction
continues to yield a basis for the associated space of splines.

The main advantage of the truncated power function basis is the simplicity of its construction and the ease
of interpreting the parameters in a model that corresponds to these basis functions. However, there are
two weaknesses when you use this basis for regression. These functions grow rapidly without bound as x
increases, resulting in numerical precision problems when the x data span a wide range. Furthermore, many
or even all of these basis functions can be nonzero when evaluated at some x value, resulting in a design
matrix with few zeros that precludes the use of sparse matrix technology to speed up computation. This
weakness can be addressed by using a B-spline basis.

B-Spline Basis

A B-spline basis can be built by starting with a set of Haar basis functions, which are functions that are 1
between adjacent knots and 0 elsewhere, and then applying a simple linear recursion relationship d times,
yielding the n C d C 1 needed basis functions. For the purpose of building the B-spline basis, the n
prespecified knots are referred to as internal knots. This construction requires d additional knots, known
as boundary knots, to be positioned to the left of the internal knots, and MAX.d; 1/ boundary knots to be
positioned to the right of the internal knots. The actual values of these boundary knots can be arbitrary. The
EFFECT statement provides several methods for placing the needed boundary knots, including the common
method of using repeated values of the data extremes as the boundary knots. The boundary knot placement
affects the precise form of the basis functions that are generated, but it does not affect the following two
desirable properties:

1. The B-spline basis functions are nonzero over an interval that spans at most d C 2 knots. This yields
design matrix columns each of whose rows contain at most d C 2 adjacent nonzero entries.

2. The computation of the basis functions at any x value is numerically stable and does not require
evaluating powers of this value.

The following figures show the B-spline bases defined on Œ0; 1� with four equally spaced internal knots at 0.2,
0.4, 0.6, and 0.8.

Figure 19.2 shows a linear B-spline basis. Note that this basis consists of six functions each of which is
nonzero over an interval that spans at most three knots.
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Figure 19.2 Linear B-Spline Basis with Four Equally Spaced Interior Knots

Figure 19.3 shows a cubic B-spline basis where the needed boundary knots are positioned at x = 0 and x = 1.
Note that this basis consists of eight functions, each of which is nonzero over an interval spanning at most
five knots.

Figure 19.3 Cubic B-Spline Basis with Four Equally Spaced Interior Knots

Figure 19.4 shows a different cubic B-spline basis where the needed left-side boundary knots are positioned
at –0.6, –0.4, –0.2, and 0. The right-side boundary knots are positioned at 1, 1.2, 1.4, and 1.6. Note that, as
in the basis shown in Figure 19.3, this basis consists of eight functions, each of which is nonzero over an
interval spanning at most five knots. The different positioning of the boundary knots has merely changed the
shape of the individual basis functions.
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Figure 19.4 Cubic B-Spline Basis with Equally Spaced Boundary and Interior Knots

You can find details about this construction in Hastie, Tibshirani, and Friedman (2001).

Natural Cubic Spline Basis

Natural cubic splines are cubic splines with the additional restriction that the splines are required to be linear
beyond the extreme knots. Some authors prefer the terminology “restricted cubic splines” to “natural cubic
splines.” The space of unrestricted cubic splines on n knots has the dimension nC4. Imposing the restrictions
that the cubic polynomials beyond the first and last knot reduce to linear polynomials reduces the number of
degrees of freedom by 4, and so a basis for the natural cubic splines consists of n functions. Starting from the
truncated power function basis for the unrestricted cubic splines, you can obtain a reduced basis by imposing
linearity constraints. You can find details about this construction in Hastie, Tibshirani, and Friedman (2001).
Figure 19.5 shows this natural cubic spline basis defined on Œ0; 1� with four equally spaced internal knots
at 0.2, 0.4, 0.6, and 0.8. Note that this basis consists of four basis functions that are all linear beyond the
extreme knots at 0.2 and 0.8.

Figure 19.5 Natural Cubic Spline Basis with Four Equally Spaced Knots
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EFFECTPLOT Statement

This statement applies to the following SAS/STAT procedures: GENMOD, LOGISTIC, ORTHOREG, and
PLM. It also applies to the RELIABILITY procedure in SAS/QC software.

The EFFECTPLOT statement produces a display (effect plot) of a complex fitted model and provides options
for changing and enhancing the display. One simple effect plot is the display for a linear regression of the
response Y on a single predictor X: the regression line is drawn with the predicted response on the Y axis
and the covariate on the X axis. The regression line can be enhanced by displaying the observations and
adding confidence and prediction limits. When your model is more complicated—with more continuous and
categorical covariates, nestings and interactions, and link functions—the effect plots display the behavior of
some covariates over their ranges while holding other covariates at some fixed values; this can enable easier
interpretation and explanation of the resulting model.

By default, a single plot is produced based on the type of response variable and the number of continuous
and classification covariates in the model. You can also specify options to do the following:

• select the variables to display in the plots

• produce multiple plots based on the following: the levels of classification covariates; the minimum,
maximum, mean, or middle (midrange) value of continuous covariates; and specified values of the
covariates

• specify different fixed values for continuous and classification covariates that are not displayed in the
plot

• panel and unpanel plots

• select variables to slice or group by

• display (or remove from display) observations and confidence limits

Syntax: EFFECTPLOT Statement
EFFECTPLOT < plot-type < (plot-definition-options) > > < / options > ;

The available plot-types and their plot-definition-options are described in Table 19.13. Table 19.15 lists the
options that can be specified after a slash (/) for any plot-type, and Table 19.16 lists additional options that
enhance specific plot-types. Full descriptions of the plot-definition-options and the other options are provided
in the section “Dictionary of Options” on page 418.
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Table 19.13 Plot-Types and Plot-Definition-Options

Plot-Type and Description Plot-Definition-Options

BOX
Displays a box plot of continuous response data at each
level of a CLASS effect, with predicted values
superimposed and connected by a line. This is an
alternative to the INTERACTION plot-type.

PLOTBY= variable or CLASS effect
X= CLASS variable or effect

CONTOUR
Displays a contour plot of predicted values against two
continuous covariates

PLOTBY= variable or CLASS effect
X= continuous variable
Y= continuous variable

FIT
Displays a curve of predicted values versus a
continuous variable

PLOTBY= variable or CLASS effect
X= continuous variable

INTERACTION
Displays a plot of predicted values (possibly with error
bars) versus the levels of a CLASS effect. The
predicted values are connected with lines and can be
grouped by the levels of another CLASS effect.

PLOTBY= variable or CLASS effect
SLICEBY= variable or CLASS effect
X= CLASS variable or effect

MOSAIC
Displays a mosaic plot of predicted values by using up
to three CLASS effects

PLOTBY= variable or CLASS effect
X= CLASS effects

SLICEFIT
Displays a curve of predicted values versus a
continuous variable, grouped by the levels of a
CLASS effect

PLOTBY= variable or CLASS effect
SLICEBY= variable or CLASS effect
X= continuous variable

By default, a single plot is produced based on the type of response variable and the number of continuous
and classification covariates in the model, as shown in Table 19.14. If you have a polytomous response
model, then the response variable is treated as the grouping classification variable in this table. If your model
does not fit into Table 19.14, then a default plot is not produced; however, specifying the plot-type argument
displays a plot with the extra continuous covariates fixed at their mean values and the extra classification
covariates fixed at their reference levels.

Table 19.14 Default Plot-Types

Number of Covariates Type of Response Variable
Classification Continuous Continuous or Binary Polytomous

1 0 INTERACTION INTERACTION with groups
2 0 INTERACTION with groups None
0 1 FIT SLICEFIT
0 2 CONTOUR None
1 1 SLICEFIT None



418 F Chapter 19: Shared Concepts and Topics

Table 19.15 and Table 19.16 list the options that can be specified after a slash (/) to enhance the effect plots.

Table 19.15 Available Options for All Plot-Types

AT< args > ILINK MOFF NROWS=ab PREDLABEL=
ATLEN= INDIVIDUALa NCOLS=ab OBS< (options) > UNPACK
ATORDER= LINKb NOOBSab PLOTBYLEN=
a Not available for the BOX plot-type.
b Not available for the MOSAIC plot-type.

NOTE: If your model contains an offset variable and the MOFF option is not specified or not valid, then
the predicted values are computed only at the observations. In this case, the FIT and SLICEFIT plot-types
display scatter plots of the predicted values, the CONTOUR plot-type displays the residuals against two
continuous covariates but with no fitted surface, the INTERACTION plot-type does not connect the predicted
values with lines, and the BOX plot-type is unchanged.

Table 19.16 Additional Options for Each Plot-Type

Plot-Type Options

BOX CLUSTER, CONNECT, NOCLUSTER, NOCONNECT,
YRANGE=

CONTOUR EXTEND=, GRIDSIZE=

FIT ALPHA=, EXTEND=, GRIDSIZE=, NOCLI, NOCLM,
NOLIMITS, SMOOTH, YRANGE=

INTERACTION ALPHA=, CLI, CLM, CLUSTER, CONNECT, LIMITS,
NOCLUSTER, NOCONNECT, POLYBAR, YRANGE=

MOSAIC ADDCELL, BIN, EQUAL, NOBORDER, TYPE=

SLICEFIT ALPHA=, CLI, CLM, EXTEND=, GRIDSIZE=, LIMITS,
YRANGE=

Dictionary of Options

You can specify the following EFFECTPLOT options.

ADDCELL<=value>
adds value to the weight of every cell in the MOSAIC plot-type. You can specify value as any
nonnegative number. If you do not specify a value, then value=0.5. This enables you to add some
dimension to zero frequency cells.

ALPHA=value
specifies the significance level, 0 � value � 1, for producing 100.1 � value=2/% prediction and
confidence limits. By default, value=0.05.
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AT < contopt > < classopt > < variable1< (CODED) >=varopt < variable2< (CODED) >=varopt . . . > >

where contopt= MEAN | MIN | MAX | MIDRANGE

classopt= ALL | REF

varopt= contopts | number-list | classopts | ’class-level’. . . ’class-level’
specifies values at which to fix continuous and CLASS variables when they are not used in X=, Y=,
SLICEBY=, or PLOTBY= effects. The contopt keyword fixes continuous variables at their mean,
minimum, maximum, or midrangeD 1

2
.minimumCmaximum/; the default is to use the mean. The

classopt keyword either fixes a CLASS variable at its reference (last) level or indicates that all levels
of the CLASS variable should be processed; the default is to use the reference level. The varopt values
enable you to specify contopt and classopt keywords or to specify lists of numbers or class levels.
You can specify a CLASS variable only once in the AT specification, but you can specify a continuous
variable multiple times; for example, the following syntax is valid when X is a continuous variable:

effectplot / at(x=min max x=0 to 2 by 1 x=2 5 7);

Duplicate AT values are suppressed, so the last X=2 value is ignored.

You can also specify coded plug-in values for CLASS variable levels when computing the predicted
values x0ˇ. For example, suppose a CLASS variable A with two levels={0,1} is in the model. Then
instead of using the coding for A in the x vector by specifying AT(A=all), AT(A=ref) or AT(A=’0’
’1’), you can specify a numeric list to plug in. For example, if the proportion of A’s that equal 0
in the data set is 0.3, then you can input the proportions for all levels of the variable by specifying
AT(A(CODED)=0.3 0.7). Under GLM coding, A=0 is coded as “1 0” and A=1 is coded as “0 1”, so
the plug-in specification replaces both of these codings with “0.3 0.7”. Under REFERENCE coding,
A=0 is coded as “1” and A=1 is coded as “0”, so this specification replaces both of these codings with
“0.3” followed by “0.7”; however, if another variable is nested within A, then only “0.3” is used. To
plug in values, you must specify a multiple of the number of parameters used for the CLASS variable
or, if a variable is nested within the CLASS variable, a multiple of the number of levels of the CLASS
variable.

The coded plug-in values are distributed through the rest of the model effects in the following fashion.
If a variable is nested within a plug-in variable, then its coding is multiplied by the plug-in value for
the level it is nested in. If a variable interacts with a plug-in variable, its coding is multiplied by the
appropriate plug-in value for the level it is interacting with. Lag, multimember, polynomial, and spline
constructed effects are affected only by interactions and nestings. If the plug-in variable is part of a
collection effect, then its values are replaced by the plug-in values; collection effects are also affected
by interactions and nestings.

The AT levels are used for computing the predicted values. If the OBS option is also specified, then all
observations are still displayed in all the plots. For example, if you specify the options AT(A=’1’)
OBS, then the fitted values are computed by using A=1, but all the observations are displayed with their
predicted values computed at their observed level of A. If you want to display only a subset of the
observations based on the levels of a CLASS variable, then you must specify either the PLOTBY=
option or the OBS(BYAT) option.

ATLEN=n
specifies the maximum length (1� n �256) of the levels of the AT variables that are displayed in
footnotes and headers. By default, up to 256 characters of the CLASS levels are displayed, and the
continuous AT levels are displayed with a BEST format that has a width greater than or equal to 5,
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which distinguishes each level. CAUTION: If the levels of your AT variables are not unique when the
first n characters are displayed, then the levels are combined in the plots but not in the underlying
computations. Also, at most n characters for continuous AT variables are displayed.

ATORDER=ASCENDING | DESCENDING
uses the AT values for continuous variables in ascending or descending order as specified. By default,
values are used in the order of their first appearance in the AT option.

BIN
displays the statistic for the MOSAIC plot-type with a discrete coloring scheme.

CLI
displays normal (Wald) prediction limits. This option is available only for normal distributions with
identity links. If your model is from a Bayesian analysis, then sampling-based intervals are computed;
for more information, see the section “Analysis Based on Posterior Estimates” on page 6180 in
Chapter 75, “The PLM Procedure.”

CLM
displays confidence limits. These are computed as the normal (Wald) confidence limits for the linear
predictor, and if the ILINK option is specified, the limits are also back-transformed by the inverse link
function. If your model is from a Bayesian analysis, then sampling-based intervals are computed; for
more information, see the section “Analysis Based on Posterior Estimates” on page 6180 in Chapter 75,
“The PLM Procedure.”

CLUSTER< =percent >
modifies the BOX and INTERACTION plot-types by displaying the levels of the SLICEBY= effect
side by side. You can specify percent as a percentage of half the distance between X levels. The
percent value must be between 0.1 and 1; the default percent depends on the number of X levels, the
number of SLICEBY levels, and the number of PLOTBY levels for INTERACTION plot-types. You
can remove default clustering by specifying the NOCLUSTER option.

CONNECT
modifies the BOX and INTERACTION plot-types by connecting the predicted values with a line. You
can remove default connecting lines by specifying the NOCONNECT option.

EQUAL
causes every cell in the MOSAIC plot-type to have the same dimensions.

EXTEND=DATA | value
extends continuous covariate axes by value � 1

2
range in both directions, where range is the range

of the X axis. Specifying the DATA keyword displays curves to the range of the data within the
appropriate SLICEBY=, PLOTBY=, and AT level. For the CONTOUR plot-type, value=0.05 by
default; other plot-types set the default value to 0. When constructed effects are present, only the
EXTEND=DATA option is available.

GRIDSIZE=n
specifies the resolution of curves by computing the predicted values at n equally spaced values on the
X axis and specifies the resolution of surfaces by computing the predicted values on an n�n grid of
points. Default values are n = 200 for curves and bands, n = 50 for surfaces, and n = 2 for lines. If
results of a Bayesian or bootstrap analysis are being displayed, then the defaults are n = 500000/B,
where B is the number of samples, the upper limit is equal to the usual defaults, and the lower limit is
equal to 20.
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ILINK
displays the fit on the scale of the inverse link function. In particular, the results are displayed on the
probability scale for logistic regression. By default, a procedure displays the fit on either the link or
inverse link scale.

INDIVIDUAL
displays individual probabilities for polytomous response models with cumulative links on the scale
of the inverse link function. This option is not available when the LINK option is specified, and
confidence limits are not available when you specify this option.

LIMITS
invokes the CLI and CLM options.

LINK
displays the fit on the scale of the link function—that is, the linear predictor. Probabilities or observed
proportions near 0 and 1 are transformed to˙20. By default, a procedure displays the fit on either the
link or inverse link scale.

MOFF
moves the offset for a Poisson regression model to the response side of the equation. If the ILINK
option is also specified, then the rate is displayed on the Y axis; if the LINK option is also specified,
then the log of the rate is displayed on the Y axis. Without the MOFF option, the predicted values are
computed and displayed only for the observations.

NCOLS=n
specifies the maximum number of columns in a paneled plot. This option is not available with the
BOX plot-type.

The default choice of NROWS= and NCOLS= is based on the number of PLOTBY= and AT levels. If
only one plot is displayed in a panel, then NROWS=1 and NCOLS=1 and the plots are produced as if
you specified only the UNPACK option. If only two plots are displayed in a panel, then NROWS=1
and NCOLS=2. For all other cases, a 2�2, 2�3, or 3�3 panel is chosen based on how much of the last
panel is used, with ties going to the larger panels. For example, if 14 plots are being created, then this
requires either four 2�2 panels with 50% of the last panel filled, three 2�3 panels with 33% of the
last panel filled, or two 3�3 panels with 55% of the last panel filled; in this case, the 3�3 panels are
chosen.

If you specify both the NROWS= and NCOLS= options, then those are the values used. However, if
you specify only one of the options but have fewer plots, then the panel size is reduced; for example,
if you specify NROWS=6 but have only four plots, then a plot that has four rows and one column is
produced.

NOBORDER
removes the border from the cells in the MOSAIC plot-type. Otherwise, the color of the cells that were
not observed in the data set is hidden by the border.

NOCLI
suppresses the prediction limits.
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NOCLM
suppresses the confidence limits.

NOCLUSTER
modifies the BOX and INTERACTION plot-types by preventing the side-by-side display of the levels
of the SLICEBY= effect.

NOCONNECT
modifies the BOX and INTERACTION plot-types by suppressing the line that connects the predicted
values.

NOLIMITS
invokes the NOCLI and NOCLM options.

NOOBS
suppresses the display of observations and overrides the specification of the OBS= option.

NROWS=n
specifies the maximum number of rows in a paneled plot. This option is not available with the BOX
plot-type. For more information, see the NCOLS= option.

OBS< (obs-options) >
displays observations in the effect plots. An input data set is required; hence the OBS option is not
available with PROC PLM. The OBS option is overridden by the NOOBS option. When the ILINK
option is specified with binary response variables, then either the observed proportions or a coded value
of the response is displayed. For polytomous response variables, the observed values are overlaid onto
the fitted curves unless the LOCATION= option is specified. Whether or not observations are displayed
by default depends on the procedure. If the PLOTBY= option is specified, then the observations that
are displayed in each plot are from the corresponding PLOTBY= level for classification effects; for
continuous effects, all observations are displayed in every plot.

You can specify the following obs-options:

BYAT
subsets the observations by AT level and by the PLOTBY= level. If you specify the PLOTBY=
option without specifying this option, the observations are displayed in the plots that correspond
to their PLOTBY= level without regard to any classification variables specified in the AT option.
However, for FIT plot-types a distance can be computed and displayed (for more information,
see the DISTANCE option). This option is ignored when there are no AT variables.

CDISPLAY=NONE | OUTLINE | GRADIENT | OUTLINEGRADIENT
controls the display of observations in contour plots. The keyword OUTLINE displays the
observations as circles, GRADIENT displays gradient-colored dots, OUTLINEGRADIENT
displays gradient-filled-circles, and NONE suppresses the display of the observations. The
default is CDISPLAY=OUTLINEGRADIENT.

CGRADIENT=RESIDUAL | DEPENDENT
specifies what the gradient shading of the observed values in the CONTOUR plot-type represents.
The RESIDUAL keyword shades the observations by the raw residual value and displays the
fitted surface as a line contour plot. The DEPENDENT keyword shades the observations by the
response variable value and displays the fitted surface as a contour shaded on the same scale. The
default is CGRADIENT=DEPENDENT.
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DEPTH=depth
specifies the number of overlapping observations that can be distinguished by adjusting their
transparency; you can specify 1 � depth � 100. By default, DEPTH=1. The DEPTH= option is
available with the FIT, SLICEFIT, and INTERACTION plot-types.

DISTANCE
displays observations in FIT plot-types with a color gradient that indicates how far the observation
is from the AT and PLOTBY= level. This option is ignored unless an AT or PLOTBY= option is
specified.

The distance is computed as the square root of the following number: for each continuous AT
and PLOTBY= variable, add the square of the difference from the observed value divided by
the range of the variable; for each CLASS AT and PLOTBY= variable, add 1 if the CLASS
levels are different. Thus the largest possible distance is the square root of the number of AT and
PLOTBY= variables. Observations at zero distance are displayed by using the darkest color, and
the color fades as the distance increases.

The unpacked panels compute the maximum distance within each panel and hence do not use the
same gradient across all panels. Also, the PANELS panel-type computes the maximum distance
within each PLOTBY= level, so a different gradient is used for each PLOTBY= level. All other
panel-types compute the maximum distance across all observations and therefore use the same
gradient in every plot.

FITATCLASS
computes fitted values only for class levels that are observed in the data set. This option is ignored
when the GLM parameterization is used.

FRINGE
displays observations in a fringe (rug) plot at the bottom of the plot. This option is available only
with the FIT and SLICEFIT plot-types.

JITTER< (jitter-options) >
shifts (jitters) the observations. By default, the jittering in the X direction is achieved by adding a
random number that is generated according to a normal distribution with mean=0 and standard
deviationD x-jitter=2 and truncating at˙x-jitter , where x-jitter=0.01 times the range of the X axis;
the jittering in the Y direction is performed independently but in the same fashion. The JITTER
option is not available with the BOX plot-type. You can specify the following jitter-options:

FACTOR=factor sets the jitter to factor times the range of the axis, and jitters in both the X and
Y directions. You can specify 0 � factor � 1.

SEED=seed specifies an integer to use as the initial seed for the random number generator. If
you do not specify a seed, or if you specify a value less than or equal to zero, then the
time of day from the computer clock is used to generate an initial seed.

X=x-jitter sets the jitter to x-jitter for the X direction; the jitter in the Y direction is assumed
to be 0 unless the Y= option is also specified. You can specify x-jitter � 0. The X=
option is not available for the INTERACTION plot-type. This option is ignored if the
FACTOR= option is also specified.

Y=y-jitter sets the jitter to y-jitter for the Y direction; the jitter in the X direction is assumed to
be 0 unless the X= option is also specified. You can specify y-jitter � 0. This option
is ignored if the FACTOR= option is also specified.
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LABEL< =OBS >
labels markers with their observation number.

LOCATION=location
specifies where the observed values for polytomous response models are displayed when the
SLICEBY= variable is the response. This option is available only with the SLICEFIT and
INTERACTION plot-types. The observations are always displayed at their appropriate X-axis
value, but their Y-axis location can depend on the specification of the YRANGE= option or on
the minimum and maximum computed predicted values in addition to the specified location. You
can specify the following locations:

BOTTOM< =factor > displays the first response level at the minimum predicted value, and
displays succeeding response levels above the first level at factor � range intervals,
where range is the range of the predicted values. You can specify 0 � factor � 1, but
the largest usable value, which corresponds to LOCATION=SPREAD, is factor= 1

k
,

where kC1 is the number of response levels that are displayed. By default, factor=0.03.

CURVE displays the observations for polytomous response models at their predicted values.
For displays on the LINK scale, the reference level is displayed at the maximum value.
This method is the default.

FIRST displays the observations for a response level at the first displayed predicted value for
that response level.

MAX displays the observations for a response level at the maximum displayed predicted
value for that response level.

MIDDLE displays the observations for a response level at the middle of the displayed predicted
values for that response level.

MIN displays the observations for a response level at the minimum displayed predicted
value for that response level.

SPREAD displays the observations with the response levels evenly spread across the Y axis.

TOP< =factor > displays the last response level at the maximum predicted value, and displays
preceding response levels below the last level at factor �range intervals, where range
is the range of the predicted values. You can specify 0 � factor � 1, but the largest
usable value, which corresponds to LOCATION=SPREAD, is factor= 1

k
, where k+1 is

the number of response levels that are displayed. By default, factor=0.03.

PLOTBY< (panel-type) >=effect< =numeric-list >
specifies a variable or CLASS effect at whose levels the predicted values are computed and the plots
are displayed. You can specify the response variable as the effect for polytomous response models.
The panel-type argument specifies the method in which the plots are grouped for the display. You can
specify the following panel-types:

COLUMNS
specifies that the columns within each panel correspond to different levels of the PLOTBY=
effect and hence the rows correspond to different AT levels.
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PACK
specifies that plots be displayed in the panels as they are produced, with no control over the
placement of the PLOTBY= and AT levels.

PANELS | LEVELS
specifies that each level of the PLOTBY= effect begin a new panel of plots and the AT levels
define the plots within the panels.

ROWS
specifies that the rows within each panel correspond to different levels of the PLOTBY= effect
and hence the columns correspond to different AT levels.

This option is ignored with the BOX plot-type; box plots are always displayed in an unpacked fashion,
grouped by the PLOTBY= and AT levels. If you specify a continuous variable as the effect , then either
you can specify a numeric-list of values at which to display that variable or, by default, five equally
spaced values from the minimum variable value to its maximum are displayed.

The default panel-type is based on the number of PLOTBY= and AT levels, as shown in the following
table.

Number of
PLOTBY= Levels

Number of
AT Levels

Resulting
panel-type

1 1 (UNPACK)
>1 1 PACK

1 >1 PACK
2 >1 ROWS
3 >1 COLUMNS

>3 >1 PANELS

The default dimensions of the panels are also based on the number of PLOTBY= and AT levels; for
more information, see the NCOLS= option.

Specification of the panel-type is honored except in the following cases. If you specify a panel-type
but produce only one plot, specify the NROWS=1 and NCOLS=1 options, or specify the UNPACK
option, then the plots are produced as if you specified only the UNPACK option. If you specify the
PANELS panel-type with only one AT level, then the plots are produced with the UNPACK option.
However, if you specify the PANELS panel-type but the PLOTBY= effect has only one level, then the
panel-type is changed to PACK.

PLOTBYLEN=n
specifies the maximum length (1 � n � 256) of the levels of the PLOTBY= variables, which are
displayed in footnotes and headers. By default, up to 256 characters of the CLASS levels are displayed.
CAUTION: If the levels of your PLOTBY= variables are not unique when the first n characters are
displayed, then the levels are combined in the plots but not in the underlying computations.

POLYBAR
displays polytomous response data as a stacked histogram whose bar heights are defined by the
individual predicted value. Your response variable must be the effect that is specified in the SLICEBY=
option. If you specify the INDIVIDUAL option, then the histogram bars are displayed side by side. If
you specify the CLM option, then error bars are displayed on the side-by-side histogram bars.
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PREDLABEL=‘label ’
specifies a label to be displayed on the Y axis. The default Y-axis label is determined by your model.
For the CONTOUR plot-type, this option changes the title to “label for Y.”

SHOWCLEGEND
displays the gradient legend for the CONTOUR plot-type. This option has no effect when the
OBS(CGRADIENT=RESIDUAL) option is also specified.

SLICEBY=NONE | effect< =numeric-list >
displays the fitted values at the different levels of the specified variable or CLASS effect. You can
specify the response variable as the effect for polytomous response models. Use this option to modify
the SLICEFIT, INTERACTION, and BOX plot-types. If you specify a continuous variable as the
effect , then either you can specify a numeric-list of values at which to display that variable or, by
default, five equally spaced values from the minimum variable value to its maximum are displayed.
The NONE keyword is available for preventing the INTERACTION plot-type from slicing by a second
classification covariate. The SLICEBY=NONE option is not available for the SLICEFIT plot-type,
because that is the same as the FIT plot-type. The BOX plot-type accepts only classification effects.

SMOOTH
overlays a loess smooth on the FIT plot-type for models that have only one continuous predictor. This
option is not available for binary or polytomous response models.

TYPE=PREDICTED | PARQUET | GOF
specifies the type of display for the MOSAIC plot-types. For effects that are specified as in the X=
option, the TYPE=PREDICTED and TYPE=GOF mosaic plots create cells by dividing the X axis
proportional to the total weight in each level of the x-effect , then dividing the Y axis according to the
weight in each level of the y-effect within the x-effect levels, and dividing the X2 axis according to the
weight in each level of the x2-effect within the x-effect and y-effect levels. The TYPE=PARQUET
plot uses the predicted probabilities instead of the weights to determine the dimensions of the cells.

The default TYPE=PREDICTED mosaic plot colors the cells according to their predicted values
(probabilities for binary and polytomous response models) computed at the AT and PLOTBY levels.
The TYPE=GOF plot displays the Pearson goodness-of-fit statistic as in Friendly (2000), with the
expected value computed at the AT and PLOTBY levels. For a cell iy defined by the axis levels,
the PLOTBY and AT levels, and the response level y, let Wiy be the sum of all the weights of the
observations in that cell, let Wi D

P
y Wiy be the sum of the weights across all response levels, and

let OYy be the predicted response for that cell, where y is the event level for binary response models, and
OYy D Pr.Y D yjiy/ for binary and multinomial models. Then the Pearson goodness-of-fit statistic is

computed as

Wiy �Wi
OYq

Wi OY

The TYPE=GOF plot is not available when you have continuous covariates in the model. The
TYPE=PARQUET plot shades the cells with their observed weights and is available only with binary
or polytomous response data.
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UNPACK
suppresses paneling. By default, multiple plots can appear in some output panels. Specify UNPACK
to display each plot separately.

X=effect | (x-effect < y-effect < x2-effect > >)
specifies values to display on the X axis. For the BOX and INTERACTION plot-types, effect can be a
CLASS effect in the MODEL statement. For the FIT, SLICEFIT, and CONTOUR plot-types, effect
can be any continuous variable in the model. For the MOSAIC plot-types, you can specify CLASS
effects (or the response variable if you have a multinomial model) as the effect or x-effect to display
on the X axis, as the y-effect to display on the Y axis, and as the x2-effect to display on the X2 (upper)
axis.

Y=args
specifies values to display on the Y axis for the CONTOUR plot-type. The Y= argument can be any
continuous variable in the model.

YRANGE=CLIP | (< min >< ,max >)
displays the predicted values on the Y axis in the range [min,max]. The YRANGE=CLIP option
has the same effect as specifying the minimum predicted value as min and the maximum predicted
value as max . The axis might extend beyond your specified values. By default, when the Y axis
displays predicted probabilities, the entire Y axis, [0,1], is displayed. This option is useful if your
predicted probabilities are all contained in some subset of this range. This option is not available with
the CONTOUR plot-type.

ODS Graphics: EFFECTPLOT Statement
To produce the EFFECTPLOT displays, ODS Graphics must be enabled. For more information about ODS
Graphics, see Chapter 21, “Statistical Graphics Using ODS.” The available graph names are provided in
Table 19.17.

Table 19.17 Graphs Produced by the EFFECTPLOT Statement

ODS Graph Name Plot Description

BoxFitPlot A box plot of the responses at each level of one classification effect, overlaid
with a plot of the predicted values

ContourFitPlot A contour plot of the fitted surface against two continuous covariates
ContourFitPanel A panel of ContourFitPlots
FitPlot A curve of the predicted values plotted against one continuous covariate
FitPanel A panel of FitPlots
InteractionPlot A plot of the predicted values (connected by a line) against one classification

effect, possibly for each level of a second classification effect
InteractionPanel A panel of InteractionPlots
MosaicFitPlot A mosaic plot of the predicted values categorized by one to three classifica-

tion effects
SliceFitPlot A curve of the predicted values against one continuous covariate for each

level of a second classification covariate
SliceFitPanel A panel of SliceFitPlots
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Examples: EFFECTPLOT Statement

Example 19.1: A Saddle Surface
Myers (1976) analyzes an experiment reported by Frankel (1961) that is aimed at maximizing the yield of
mercaptobenzothiazole (MBT) by varying processing time and temperature. Myers uses a two-factor model
in which the estimated surface does not have a unique optimum. The objective is to find the settings of time
and temperature in the processing of the chemical that maximize the yield. The following statements create
the data set d:

data d;
input Time Temp MBT @@;
label Time = "Reaction Time (Hours)"

Temp = "Temperature (Degrees Centigrade)"
MBT = "Percent Yield Mercaptobenzothiazole";

datalines;
4.0 250 83.8 20.0 250 81.7 12.0 250 82.4

12.0 250 82.9 12.0 220 84.7 12.0 280 57.9
12.0 250 81.2 6.3 229 81.3 6.3 271 83.1
17.7 229 85.3 17.7 271 72.7 4.0 250 82.0
;

In the following statements, the ORTHOREG procedure fits a response surface regression model to the
data and uses the EFFECTPLOT statement to create a slice of the response surface. The FIT plot-type
requests plots of the predicted yield against the Time variable, and the PLOTBY= option specifies that the
Temp variable is fixed at five equally spaced values so that five fitted regression curves are displayed in
Output 19.1.1.

ods graphics on;
proc orthoreg data=d;

model MBT=Time|Time|Temp|Temp@2;
effectplot fit(x=time plotby=temp);

run;
ods graphics off;

The displays in Output 19.1.1 show that the slope of the surface changes as the temperature increases.
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Output 19.1.1 Panel of Fit Plots

It might be more informative to see these results in one graphic, so the following statements specify the
SLICEFIT plot-type to overlay plots of the predicted yield versus time, fixed at several values of temperature.
In this case, the SLICEBY= option is specified to explicitly use the same four temperatures as used in the
experiment.

ods graphics on;
proc orthoreg data=d;

model MBT=Time|Time|Temp|Temp@2;
effectplot slicefit(x=time sliceby=temp=229 250 271 280);

run;
ods graphics off;
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Output 19.1.2 shows that to optimize the yield you should choose either low temperatures and long times or
high temperatures and short times.

Output 19.1.2 Fit Plot Grouped (Sliced) by Temp

Another plot might explain the reason for these conflicting results more clearly. The following statements
produce the default EFFECTPLOT statement display, enhanced by the OBS(JITTER) option to jitter the
observations so that you can see the replicated points:

ods graphics on;
proc orthoreg data=d;

model MBT=Time|Time|Temp|Temp@2;
effectplot / obs(jitter(seed=39393));

run;
ods graphics off;
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Output 19.1.3 shows that the reason for the changing slopes is that the surface is at a saddle point. This
surface does not have an optimum point.

Output 19.1.3 Contour Fit Plot with Jittered Observations
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Example 19.2: Unbalanced Two-Way ANOVA
This example uses data from Kutner (1974, p. 98) to illustrate a two-way analysis of variance. The original
data source is Afifi and Azen (1972, p. 166). The following statements create the data set a:

data a;
input drug disease @;
do i=1 to 6;

input y @;
output;

end;
datalines;

1 1 42 44 36 13 19 22
1 2 33 . 26 . 33 21
1 3 31 -3 . 25 25 24
2 1 28 . 23 34 42 13
2 2 . 34 33 31 . 36
2 3 3 26 28 32 4 16
3 1 . . 1 29 . 19
3 2 . 11 9 7 1 -6
3 3 21 1 . 9 3 .
4 1 24 . 9 22 -2 15
4 2 27 12 12 -5 16 15
4 3 22 7 25 5 12 .
;

In the following statements, PROC GENMOD fits two classification variables and their interaction to Y. The
first EFFECTPLOT statement displays the default graphic, which plots the predicted values against Disease
for each of the three Drug levels. The OBS option also displays the observations in the plot. The second
EFFECTPLOT statement modifies the default to plot the predicted values against Drug for each of the three
Disease levels. The CLM option is specified to produce 95% confidence bars for the means.

ods graphics on;
proc genmod data=a;

class drug disease;
model y=disease drug disease*drug / d=n;
effectplot / obs;
effectplot interaction(sliceby=disease) / clm;

run;
ods graphics off;
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In Output 19.2.1, the default interaction plot is produced, and the observations are also displayed. From this
plot, you can compare the performance of the drugs for a given disease. The predicted values are connected
with a line to provide something for your eye to follow; obviously a line has no intrinsic meaning in this
graphic. Drugs 3 and 4 are consistently outperformed by the first two drugs.

Output 19.2.1 Interaction Plot: Default with Observations

By default, the first classification variable is displayed on the X axis and the second classification variable is
used for grouping. Specifying the SLICEBY=DISEASE option in the second EFFECTPLOT statement does
the reverse: it displays the classification variable that has the most levels on the X axis, and slices by fewer
levels, resulting in a more readable display. Output 19.2.2 shows how well a given drug performs for each
disease.
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Output 19.2.2 Interaction Plot with Specified SLICEBY= Effect

In the following statements, the BOX plot-type is requested to display box plots of the predictions by each
combination of drug and disease. The second EFFECTPLOT statement displays the same information by
using an INTERACTION plot-type and specifies the OBS option to display the individual observations.
The third EFFECTPLOT statement displays the predictions in a MOSAIC plot. The fourth EFFECTPLOT
statement creates an interaction plot of predictions versus drug for each of the Disease levels and displays
them in a panel.

ods graphics on;
proc genmod data=a;

class drug disease;
model y=drug disease drug*disease / d=n;
effectplot box;
effectplot interaction(x=drug*disease) / obs;
effectplot mosaic;
effectplot interaction(plotby=disease);

run;
ods graphics off;
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In the box plot in Output 19.2.3, the predicted values are displayed as circles; they coincide with the mean of
the data at each level, all of which are displayed as diamonds. The predicted values are again connected by
lines. It is difficult to draw any conclusions from this graphic.

Output 19.2.3 Box Fit Plot
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Output 19.2.4 shows the interaction plot at every combination of Drug and Disease. This plot is identical to
the box plot in Output 19.2.3, except the boxes are replaced by the actual observations. Again, it is difficult
to see any pattern in the plot.

Output 19.2.4 Interaction Plot with Specified X= Effect
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Output 19.2.5 displays the mosaic plot. You can see that drugs 1 and 2 consistently outperform the other two
drugs.

Output 19.2.5 Mosaic Plot
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Output 19.2.6 groups the observations by Disease, and for each disease displays the effectiveness of the four
drugs in a panel of plots.

Output 19.2.6 Interaction Plot with Specified PLOTBY= Effect
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Example 19.3: Logistic Regression
Consider a study of the analgesic effects of treatments on elderly patients with neuralgia. Two test treatments
and a placebo are compared. The response variable is whether the patient reported pain or not. Researchers
recorded the age and gender of 60 patients and the duration of complaint before the treatment began. The
following DATA step creates the data set Neuralgia:

data Neuralgia;
input Treatment $ Sex $ Age Duration Pain $ @@;
datalines;

P F 68 1 No B M 74 16 No P F 67 30 No
P M 66 26 Yes B F 67 28 No B F 77 16 No
A F 71 12 No B F 72 50 No B F 76 9 Yes
A M 71 17 Yes A F 63 27 No A F 69 18 Yes
B F 66 12 No A M 62 42 No P F 64 1 Yes
A F 64 17 No P M 74 4 No A F 72 25 No
P M 70 1 Yes B M 66 19 No B M 59 29 No
A F 64 30 No A M 70 28 No A M 69 1 No
B F 78 1 No P M 83 1 Yes B F 69 42 No
B M 75 30 Yes P M 77 29 Yes P F 79 20 Yes
A M 70 12 No A F 69 12 No B F 65 14 No
B M 70 1 No B M 67 23 No A M 76 25 Yes
P M 78 12 Yes B M 77 1 Yes B F 69 24 No
P M 66 4 Yes P F 65 29 No P M 60 26 Yes
A M 78 15 Yes B M 75 21 Yes A F 67 11 No
P F 72 27 No P F 70 13 Yes A M 75 6 Yes
B F 65 7 No P F 68 27 Yes P M 68 11 Yes
P M 67 17 Yes B M 70 22 No A M 65 15 No
P F 67 1 Yes A M 67 10 No P F 72 11 Yes
A F 74 1 No B M 80 21 Yes A F 69 3 No
;

The Neuralgia data set contains five variables. The Pain variable is the response. A specification of Pain=Yes
indicates that the patient felt pain, and Pain=No indicates that the patient did not feel pain. The variable
Treatment is a categorical variable with three levels: A and B represent the two test treatments, and P
represents the placebo treatment. The gender of the patients is given by the categorical variable Sex. The
variable Age is the age of the patients, in years, when treatment began. The duration of complaint, in months,
before the treatment began is given by the variable Duration.

In the following statements, a complex model that includes classification and continuous covariates and an
interaction term is fit to the Neuralgia data. When you try to create a default effect plot from this model,
computations stop because the best type of plot cannot easily be determined.

ods graphics on;
proc logistic data=Neuralgia;

class Treatment Sex / param=ref;
model Pain= Treatment|Sex Age Duration;
effectplot;

run;
ods graphics off;

To produce an effect plot for this model, you need to first choose the type of plot to be created. In this case,
since there are both classification and continuous covariates on the model, a SLICEFIT plot-type displays the
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first continuous covariate (Age) on the X axis and displays fit curves that correspond to each level of the first
classification covariate (Treatment). The following statements produce Output 19.3.1.

ods graphics on;
proc logistic data=Neuralgia;

class Treatment Sex / param=ref;
model Pain= Treatment|Sex Age Duration;
effectplot slicefit;

run;
ods graphics off;

By default, effect plots from PROC LOGISTIC are displayed on the probability scale. The predicted values
are computed at the mean of the Duration variable, 16.73, and at the reference level of the Sex variable, M.
Observations are also displayed on the sliced-fit plot in Output 19.3.1. While the display of binary responses
can give you a feel for the spread of the data, it does not enable you to evaluate the fit of the model.

Output 19.3.1 Default Fit Plot Sliced by Treatment

In the following statements, an INTERACTION plot-type is specified for the Treatment variable, with the Sex
effect chosen for grouping the fits. The Age and Duration variables are set to their mean values for computing
the predicted values. The NOOBS option suppresses the display of the binary observations on this plot. The
LINK option is specified to display the fit on the LOGIT scale; if there is no interaction between Treatment
and Sex, then the resulting curves shown in Output 19.3.2 will have similar slopes across the treatments.



Example 19.3: Logistic Regression F 441

ods graphics on;
proc logistic data=Neuralgia;

class Treatment Sex / param=ref;
model Pain= Treatment|Sex Age Duration;
effectplot interaction(x=Treatment sliceby=Sex) / noobs link;

run;
ods graphics off;

In Output 19.3.2, the slopes of the lines seem “parallel” across the treatments, corroborating the nonsignifi-
cance of the interaction terms.

Output 19.3.2 Interaction Plot of an Interaction Effect

In the following statements, the interaction effect is removed, and the Duration variable is investigated
further. The PLOTBY(ROWS)= option displays the Sex levels in the rows of a panel of plots, and the AT
option computes the fits for several values of the Duration main effect in the columns of the panel. The
OBS(FRINGE) option moves the observations to a fringe (rug) plot at the bottom of the plot, the observations
are subsetted and displayed according to the value of the PLOTBY= variable, and the JITTER option makes
overlaid fringes more visible. A STORE statement is also specified to save the model information for a later
display. These statements produce Output 19.3.3.
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ods graphics on;
proc logistic data=Neuralgia;

class Treatment Sex / param=ref;
model Pain= Treatment Sex Age Duration;
effectplot slicefit(sliceby=Treatment plotby(rows)=Sex)

/ at(Duration=min midrange max) obs(fringe jitter(seed=39393));
store logimodel;

run;
ods graphics off;

The predicted probability curves in Output 19.3.3 look very similar across the different values of the Duration
variable, which agrees with the nonsignificance of Duration in this model. The fringe plot displays only
female patients in the SEX=F row of the panel and displays only male patients in the SEX=M row, because
the PLOTBY=SEX option subsets the observations.

Output 19.3.3 Sliced-Fit Plot with AT Option
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The following statements use the stored model and the PLM procedure to display a panel of contour plots:

ods graphics on;
proc plm restore=logimodel;

effectplot contour(plotby=Treatment) / at(Sex=all);
run;
ods graphics off;

Output 19.3.4 again confirms that Duration is not significant.

Output 19.3.4 Contour Fit Panel
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ESTIMATE Statement

This statement documentation applies to the following SAS/STAT procedures:
LIFEREG, LOGISTIC, ORTHOREG, PHREG, PLM, PROBIT, QUANTREG, SURVEYLOGISTIC, SUR-
VEYPHREG, and SURVEYREG. It also applies to the RELIABILITY procedure in SAS/QC software.
The ESTIMATE statement in the GENMOD, GLIMMIX, GLM, and MIXED procedures are documented in
the respective procedure chapters.

The ESTIMATE statement provides a mechanism for obtaining custom hypothesis tests. Estimates are
formed as linear estimable functions of the form Lˇ. You can perform hypothesis tests for the estimable
functions, construct confidence limits, and obtain specific nonlinear transformations.

Syntax: ESTIMATE Statement
ESTIMATE < 'label ' > estimate-specification < (divisor=n) >

< , < 'label ' > estimate-specification < (divisor=n) > > < , . . . >
< / options > ;

The basic element of the ESTIMATE statement is the estimate-specification, which consists of model effects
and their coefficients. An estimate-specification takes the general form

effect name < effect values . . . >

The following variables can appear in the ESTIMATE statement:

label is an optional label that identifies the particular row of the estimate in the output.

effect identifies an effect that appears in the MODEL statement. The keyword INTERCEPT can
be used as an effect when an intercept is fitted in the model. You do not need to include
all effects that are in the MODEL statement.

values are constants that are elements of the L matrix and are associated with the fixed and
random effects. There are two basic methods of specifying the entries of the L matrix.
The traditional representation—also known as the positional syntax—relies on entering
coefficients in the position they assume in the L matrix. For example, in the following
statements the elements of L that are associated with the b main effect receive a 1 in the
first position and a –1 in the second position:

class a b;
model y = a b a*b;
estimate 'B at A2' b 1 -1 a*b 0 0 1 -1;



Syntax: ESTIMATE Statement F 445

The elements that are associated with the interaction receive a 1 in the third position and a
–1 in the fourth position. In order to specify coefficients correctly for the interaction term,
you need to know how the levels of a and b vary in the interaction, which is governed by
the order of the variables in the CLASS statement. The nonpositional syntax is designed
to make it easier to enter coefficients for interactions and is necessary to enter coefficients
for effects that are constructed with the EFFECT statement. In square brackets you enter
the coefficient followed by the associated levels of the CLASS variables. If B has two
levels and A has three levels, the previous ESTIMATE statement, by using nonpositional
syntax for the interaction term, becomes the following statement:

estimate 'B at A2' b 1 -1 a*b [1, 2 1] [-1, 2 2];

The previous statement assigns value 1 to the interaction where A is at level 2 and B is at
level 1, and it assigns –1 to the interaction where both classification variables are at level 2.
The comma that separates the entry for the L matrix from the level indicators is optional.
Further details about the nonpositional contrast syntax and its use with constructed effects
can be found in the section “Positional and Nonpositional Syntax for Coefficients in
Linear Functions” on page 455.

Based on the estimate-specifications in your ESTIMATE statement, the procedure constructs the matrix L to
test the hypothesis H WLˇ D 0. The procedure supports nonpositional syntax for the coefficients of model
effects in the ESTIMATE statement. For details see the section “Positional and Nonpositional Syntax for
Coefficients in Linear Functions” on page 455.

The procedure then produces for each row l of L an approximate t test of the hypothesis H W lˇ D 0. You can
also obtain multiplicity-adjusted p-values and confidence limits for multirow estimates with the ADJUST=
option.

Note that multirow estimates are permitted. Unlike releases prior to SAS 9.22, you do not need to specify a
‘label’ for every row of the estimate; the procedure constructs a default label if a label is not specified.

If the procedure finds the estimate to be nonestimable, then it displays “Non-est” for the estimate entry.

Table 19.18 summarizes important options in the ESTIMATE statement. All ESTIMATE options are
subsequently discussed in alphabetical order.

Table 19.18 ESTIMATE Statement Options

Option Description

Construction and Computation of Estimable Functions
DIVISOR= Specifies a list of values to divide the coefficients
NOFILL Suppresses the automatic fill-in of coefficients for higher-order

effects
SINGULAR= Tunes the estimability checking difference
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Table 19.18 continued

Option Description

Degrees of Freedom and p-values
ADJUST= Determines the method for multiple comparison adjustment of

estimates
ALPHA=˛ Determines the confidence level (1 � ˛)
LOWER Performs one-sided, lower-tailed inference
STEPDOWN Adjusts multiplicity-corrected p-values further in a step-down fash-

ion
TESTVALUE= Specifies values under the null hypothesis for tests
UPPER Performs one-sided, upper-tailed inference

Statistical Output
CL Constructs confidence limits
CORR Displays the correlation matrix of estimates
COV Displays the covariance matrix of estimates
E Prints the L matrix
JOINT Produces a joint F or chi-square test for the estimable functions
PLOTS= Requests ODS statistical graphics if the analysis is sampling-based
SEED= Specifies the seed for computations that depend on random numbers

Generalized Linear Modeling
CATEGORY= Specifies how to construct estimable functions with multinomial

data
EXP Exponentiates and displays estimates
ILINK Computes and displays estimates and standard errors on the inverse

linked scale

You can specify the following options in the ESTIMATE statement after a slash (/).

ADJDFE=SOURCE

ADJDFE=ROW
specifies how denominator degrees of freedom are determined when p-values and confidence limits
are adjusted for multiple comparisons with the ADJUST= option. When you do not specify the
ADJDFE= option, or when you specify ADJDFE=SOURCE, the denominator degrees of freedom for
multiplicity-adjusted results are the denominator degrees of freedom for the final effect that is listed in
the ESTIMATE statement from the “Type III” table.

The ADJDFE=ROW setting is useful if you want multiplicity adjustments to take into account that
denominator degrees of freedom are not constant across estimates. For example, this can be the case
when the denominator degrees of freedom are computed by the Satterthwaite method or according to
Kenward and Roger (1997).

The ADJDFE= option has an effect only in mixed models that use these degree-of-freedom methods.
It is not supported by the procedures that perform chi-square-based inference (LOGISTIC, PHREG,
and SURVEYLOGISTIC).
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ADJUST=BON

ADJUST=SCHEFFE

ADJUST=SIDAK

ADJUST=SIMULATE< (simoptions) >

ADJUST=T
requests a multiple comparison adjustment for the p-values and confidence limits for the estimates. The
adjusted quantities are produced in addition to the unadjusted quantities. Adjusted confidence limits are
produced if the CL or ALPHA= option is in effect. For a description of the adjustments, see Chapter 45,
“The GLM Procedure,” and Chapter 67, “The MULTTEST Procedure,” and the documentation for the
ADJUST= option in the LSMEANS statement.

If the STEPDOWN option is in effect, the p-values are further adjusted in a step-down fashion.

ALPHA=number
requests that a t type confidence interval be constructed with confidence level 1 – number . The value
of number must be between 0 and 1; the default is 0.05. If the “Estimates” table shows infinite degrees
of freedom, then the confidence interval is a z type interval.

CATEGORY=category-options
specifies how to construct estimates and multiplicity corrections for models with multinomial data
(ordinal or nominal). This option is also important for constructing sets of estimable functions for F or
chi-square tests with the JOINT option.

The category-options are used to indicate how response variable levels are treated in constructing the
estimable functions. Possible values for the category-options are the following:

JOINT
computes the estimable functions for every nonredundant category and treats them as a set. For
example, a three-row ESTIMATE statement in a model with three response categories leads to
six estimable functions.

SEPARATE
computes the estimable functions for every nonredundant category in turn. For example, a
three-row ESTIMATE statement in a model with three response categories leads to two sets of
three estimable functions.

quoted-value-list
computes the estimable functions only for the specified list of values. The list must consist of
formatted values of the response categories, and you must specify an estimate-specification for
each response category in the list.

Consider the following ESTIMATE statements in the LOGISTIC procedure for an ordinal model with
response categories ‘vg’, ‘g’, ‘m’, ‘b’, and ‘vb’. Because there are five response categories, there are
four nonredundant categories for the cumulative link model.
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proc logistic data=icecream;
class brand / param=glm;
model taste(order=data) = brand / link=logit;
freq count;

estimate brand 1 -1,
intercept 1 brand 0 1 / category='m','vg';

estimate intercept 1 brand 1 / category=joint
adjust=simulate(seed=1);

estimate brand 1 -1,
brand 1 1 -2 / category=separate

adjust=bon;
run;

The first ESTIMATE statement requests a two-row estimable function. The result is produced for
two of the four nonredundant response categories. The second ESTIMATE statement produces four t
tests, one for each nonredundant category. The multiplicity adjustment with p-value computation by
simulation treats the four estimable functions as a unit for family-wise Type I error protection. The
third ESTIMATE statement computes a two-row estimable function and reports its results separately
for all nonredundant categories. The Bonferroni adjustment in this statement applies to a family of two
tests that correspond to the two-row estimable function. Four Bonferroni adjustments for sets of size
two are performed.

The CATEGORY= option is supported only by the procedures that support generalized linear modeling
(LOGISTIC and SURVEYLOGISTIC) and by PROC PLM when it is used to perform statistical
analyses on item stores created by these procedures.

CHISQ
requests that chi-square tests be performed in addition to F tests, when you request an F test with the
JOINT option. This option has no effect in procedures that produce chi-square statistics by default.

CL
requests that t type confidence limits be constructed. If the procedure shows the degrees of freedom in
the “Estimates” table as infinite, then the confidence limits are z intervals. The confidence level is 0.95
by default, and you can change the confidence level with the ALPHA= option. The confidence intervals
are adjusted for multiplicity when you specify the ADJUST= option. However, if a step-down p-value
adjustment is requested with the STEPDOWN option, only the p-values are adjusted for multiplicity.

CORR
displays the estimated correlation matrix of the linear combination of the parameter estimates.

COV
displays the estimated covariance matrix of the linear combination of the parameter estimates.

DF=number
specifies the degrees of freedom for the t test and confidence limits. This option is not supported by the
procedures that perform chi-square-based inference (LOGISTIC, PHREG, and SUVEYLOGISTIC).
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DIVISOR=value-list
specifies a list of values by which to divide the coefficients so that fractional coefficients can be entered
as integer numerators. If you do not specify value-list , a default value of 1.0 is assumed. Missing
values in the value-list are converted to 1.0.

If the number of elements in value-list exceeds the number of rows of the estimate, the extra values are
ignored. If the number of elements in value-list is less than the number of rows of the estimate, the last
value in value-list is copied forward.

If you specify a row-specific divisor as part of the specification of the estimate row, this value multiplies
the corresponding divisor that is implied by the value-list . For example, the following statement divides
the coefficients in the first row by 8, and the coefficients in the third and fourth row by 3:

estimate 'One vs. two' A 2 -2 (divisor=2),
'One vs. three' A 1 0 -1 ,
'One vs. four' A 3 0 0 -3 ,
'One vs. five' A 1 0 0 0 -1 / divisor=4,.,3;

Coefficients in the second row are not altered.

E
requests that the L matrix coefficients be displayed.

EXP
requests exponentiation of the estimate. When you model data with the logit, cumulative logit, or
generalized logit link functions, and the estimate represents a log odds ratio or log cumulative odds
ratio, the EXP option produces an odds ratio. In proportional hazards model, this option produces
estimates of hazard ratios. If you specify the CL or ALPHA= option, the (adjusted) confidence bounds
are also exponentiated.

The EXP option is supported only by PROC PHREG, PROC SURVEYPHREG, the procedures that
support generalized linear modeling (LOGISTIC and SURVEYLOGISTIC), and by PROC PLM when
it is used to perform statistical analyses on item stores created by these procedures.

ILINK
requests that the estimate and its standard error also be reported on the scale of the mean (the inverse
linked scale). The computation of the inverse linked estimate depends on the estimation mode. For
example, if the analysis is based on a posterior sample when a BAYES statement is present, the
inversely linked estimate is the average of the inversely linked values across the sample of posterior
parameter estimates. If the analysis is not based on a sample of parameter estimates, the procedure
computes the value on the mean scale by applying the inverse link to the estimate. The interpretation
of this quantity depends on the effect values specified in your ESTIMATE statement and on the link
function. For example, in a model for binary data with logit link the following statements compute

1

1C expf�.˛1 � ˛2/g

where ˛1 and ˛2 are the fixed-effects solutions that are associated with the first two levels of the
classification effect A:
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class A;
model y = A / dist=binary link=logit;
estimate 'A one vs. two' A 1 -1 / ilink;

This quantity is not the difference of the probabilities that are associated with the two levels,

�1 � �2 D
1

1C expf�ˇ0 � ˛1g
�

1

1C expf�ˇ0 � ˛2g

The standard error of the inversely linked estimate is based on the delta method. If you also specify
the CL option, the procedure computes confidence limits for the estimate on the mean scale. In
multinomial models for nominal data, the limits are obtained by the delta method. In other models they
are obtained from the inverse link transformation of the confidence limits for the estimate. The ILINK
option is specific to an ESTIMATE statement.

The ILINK option is supported only by the procedures that support generalized linear modeling
(LOGISTIC and SURVEYLOGISTIC) and by PROC PLM when it is used to perform statistical
analyses on item stores created by these procedures.

JOINT< (joint-test-options) >
requests that a joint F or chi-square test be produced for the rows of the estimate. The JOINT option in
the ESTIMATE statement essentially replaces the CONTRAST statement.

When the LOWERTAILED or the UPPERTAILED options are in effect, or if the BOUNDS option
described below is in effect, the JOINT option produces the chi-bar-square statistic according to
Silvapulle and Sen (2004). This statistic uses a simulation-based approach to compute p-values
in situations where the alternative hypotheses of the estimable functions are not simple two-sided
hypotheses. See the section “Joint Hypothesis Tests with Complex Alternatives, the Chi-Bar-Square
Statistic” on page 457 for more information about this test statistic.

You can specify the following joint-test-options in parentheses:

ACC=
specifies the accuracy radius for determining the necessary sample size in the simulation-based
approach of Silvapulle and Sen (2004) for tests with order restrictions. The value of  must be
strictly between 0 and 1; the default value is 0.005.

EPS=�
specifies the accuracy confidence level for determining the necessary sample size in the simulation-
based approach of Silvapulle and Sen (2004) for tests with order restrictions. The value of � must
be strictly between 0 and 1; the default value is 0.01.

LABEL=‘label ’
assigns an identifying label to the joint test. If you do not specify a label, the first non-default
label for the ESTIMATE rows is used to label the joint test.

NOEST

ONLY
performs only the F or chi-square test and suppresses other results from the ESTIMATE statement.
This option is useful for emulating the CONTRAST statement that is available in other procedures.
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NSAMP=n
specifies the number of samples for the simulation-based method of Silvapulle and Sen (2004).
If n is not specified, it is constructed from the values of the ALPHA=˛, the ACC= , and the
EPS=� options. With the default values for  , �, and ˛ (0.005, 0.01, and 0.05, respectively),
NSAMP=12,604 by default.

CHISQ
adds a chi-square test if the procedure produces an F test by default.

BOUNDS=value-list
specifies boundary values for the estimable linear function. The null value of the hypothesis
is always zero. If you specify a positive boundary value z, the hypotheses are H W � D 0,
HaW W � > 0 with the added constraint that � < z. The same is true for negative boundary values.
The alternative hypothesis is then HaW � < 0 subject to the constraint � > �jzj. If you specify a
missing value, the hypothesis is assumed to be two-sided. The BOUNDS option enables you to
specify sets of one- and two-sided joint hypotheses. If all values in value-list are set to missing,
the procedure performs a simulation-based p-value calculation for a two-sided test.

LOWER

LOWERTAILED
requests that the p-value for the t test be based only on values that are less than the test statistic. A
two-tailed test is the default. A lower-tailed confidence limit is also produced if you specify the CL or
ALPHA= option.

Note that for ADJUST=SCHEFFE the one-sided adjusted confidence intervals and one-sided adjusted
p-values are the same as the corresponding two-sided statistics, because this adjustment is based on
only the right tail of the F distribution.

If you request a joint test with the JOINT option, then a one-sided left-tailed order restriction is applied
to all estimable functions, and the corresponding chi-bar-square statistic of Silvapulle and Sen (2004)
is computed in addition to the two-sided, standard, F or chi-square statistic. See the JOINT option for
how to control the computation of the simulation-based chi-bar-square statistic.

NOFILL
suppresses the automatic fill-in of coefficients of higher-order effects.

PLOTS=plot-options
produces ODS statistical graphics of the distribution of estimable functions if the procedure performs
the analysis in a sampling-based mode. For example, this is the case when procedures support a BAYES
statement and perform a Bayesian analysis. The estimable functions are then computed for each of the
posterior parameter estimates, and the “Estimates” table reports simple descriptive statistics for the
evaluated functions. The PLOTS= option enables you in this situation to visualize the distribution of
the estimable function. The following plot-options are available:

ALL
produces all possible plots with their default settings.

BOXPLOT< (boxplot-options) >
produces box plots of the distribution of the estimable function across the posterior sample. A
separate box is generated for each estimable function, and all boxes appear on a single graph by
default. You can affect the appearance of the box plot graph with the following options:
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ORIENTATION=VERTICAL | HORIZONTAL

ORIENT=VERT | HORIZ
specifies the orientation of the boxes. The default is vertical orientation of the box plots.

NPANELPOS=number
specifies how to break the series of box plots across multiple panels. If the NPANELPOS
option is not specified, or if number equals zero, then all box plots are displayed in a single
graph; this is the default. If a negative number is specified, then exactly up to jnumber j of
box plots are displayed per panel. If number is positive, then the number of boxes per panel
is balanced to achieve small variation in the number of box plots per graph.

DISTPLOT< (distplot-options) >

DIST< (distplot-options) >
generates panels of histograms with a kernel density overlaid. A separate plot in each panel
contains the results for each estimable function. You can specify the following distplot-options in
parentheses:

BOX | NOBOX
controls the display of a horizontal box plot of the estimable function’s distribution across
the posterior sample below the graph. The BOX option is enabled by default.

HIST | NOHIST
controls the display of the histogram of the estimable function’s distribution across the
posterior sample. The HIST option is enabled by default.

NORMAL | NONORMAL
controls the display of a normal density estimate on the graph. The NONORMAL option is
enabled by default.

KERNEL | NOKERNEL
controls the display of a kernel density estimate on the graph. The KERNEL option is
enabled by default.

NROWS=number
specifies the highest number of rows in a panel. The default is 3.

NCOLS=number
specifies the highest number of columns in a panel. The default is 3.

UNPACK
unpacks the panel into separate graphics.

NONE
does not produce any plots.

SEED=number
specifies the seed for the sampling-based components of the computations for the ESTIMATE statement
(for example, chi-bar-square statistics and simulated p-values). The value of number must be an integer.
The seed is used to start the pseudo-random number generator for the simulation. If you do not specify
a seed, or if you specify a value less than or equal to zero, the seed is generated from reading the
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time of day from the computer clock. There could be multiple ESTIMATE statements with SEED=
specifications and there could be other statements that can supply a random number seed. Since the
procedure has only one random number stream, the initial seed is shown in the SAS log.

SINGULAR=number
tunes the estimability checking. If v is a vector, define ABS(v) to be the largest absolute value of the
elements of v. If ABS(L � LT) is greater than c*number for any row of L in the contrast, then Lˇ
is declared nonestimable. Here, T is the Hermite form matrix .X0X/�X0X, and c is ABS(L), except
when it equals 0, and then c is 1. The value for number must be between 0 and 1; the default is 1E–4.

STEPDOWN< (step-down-options) >
requests that multiplicity adjustments for the p-values of estimates be further adjusted in a step-down
fashion. Step-down methods increase the power of multiple testing procedures by taking advantage
of the fact that a p-value is never declared significant unless all smaller p-values are also declared
significant. The STEPDOWN adjustment combined with ADJUST=BON corresponds to the methods
of Holm (1979) and “Method 2” of Shaffer (1986); this is the default. Using step-down-adjusted
p-values combined with ADJUST=SIMULATE corresponds to the method of Westfall (1997).

If the ESTIMATE statement is applied with a STEPDOWN option in a mixed model where the degrees-
of-freedom method is that of Kenward and Roger (1997) or of Satterthwaite, then step-down-adjusted
p-values are produced only if the ADJDFE=ROW option is in effect.

Also, the STEPDOWN option affects only p-values, not confidence limits. For ADJUST=SIMULATE,
the generalized least squares hybrid approach of Westfall (1997) is used to increase Monte Carlo
accuracy. You can specify the following step-down-options in parentheses after the STEPDOWN
option:

MAXTIME=n
specifies the time (in seconds) to be spent computing the maximal logically consistent sequential
subsets of equality hypotheses for TYPE=LOGICAL. The default is MAXTIME=60. If the
MAXTIME value is exceeded, the adjusted tests are not computed. When this occurs, you can
try increasing the MAXTIME value. However, note that there are common multiple comparisons
problems for which this computation requires a huge amount of time—for example, all pairwise
comparisons between more than 10 groups. In such cases, try to use TYPE=FREE (the default)
or TYPE=LOGICAL(n) for small n.

ORDER=PVALUE

ORDER=ROWS
specifies the order in which the step-down tests to be performed. ORDER=PVALUE is the
default, with estimates being declared significant only if all estimates with smaller (unadjusted)
p-values are significant. If you specify ORDER=ROWS, then significances are evaluated in the
order in which they are specified in the syntax.

REPORT
specifies that a report on the step-down adjustment be displayed, including a listing of the
sequential subsets (Westfall 1997) and, for ADJUST=SIMULATE, the step-down simulation
results.
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TYPE=LOGICAL< (n) >

TYPE=FREE
specifies how step-down adjustment are made. If you specify TYPE=LOGICAL, the step-down
adjustments are computed by using maximal logically consistent sequential subsets of equality
hypotheses (Shaffer 1986; Westfall 1997). Alternatively, for TYPE=FREE, sequential subsets
are computed ignoring logical constraints. The TYPE=FREE results are more conservative than
those for TYPE=LOGICAL, but they can be much more efficient to produce for many estimates.
For example, it is not feasible to take logical constraints between all pairwise comparisons of
more than about 10 groups. For this reason, TYPE=FREE is the default.

However, you can reduce the computational complexity of taking logical constraints into account
by limiting the depth of the search tree used to compute them, specifying the optional depth
parameter as a number n in parentheses after TYPE=LOGICAL. As with TYPE=FREE, results
for TYPE=LOGICAL(n) are conservative relative to the true TYPE=LOGICAL results. But even
for TYPE=LOGICAL(0) they can be appreciably less conservative than TYPE=FREE, and they
are computationally feasible for much larger numbers of estimates. If you do not specify n or if n
= –1, the full search tree is used.

TESTVALUE=value-list

TESTMEAN=value-list
specifies the value under the null hypothesis for testing the estimable functions in the ESTIMATE
statement. The rules for specifying the value-list are very similar to those for specifying the divisor
list in the DIVISOR= option. If no TESTVALUE= is specified, all tests are performed as H WLˇ D 0.
Missing values in the value-list also are translated to zeros. If you specify fewer values than rows in
the ESTIMATE statement, the last value in value-list is carried forward.

The TESTVALUE= option affects only p-values from individual, joint, and multiplicity-adjusted tests.
It does not affect confidence intervals.

The TESTVALUE option is not available for the multinomial distribution, and the values are ignored
when you perform a sampling-based (Bayesian) analysis.

UPPER

UPPERTAILED
requests that the p-value for the t test be based only on values that are greater than the test statistic. A
two-tailed test is the default. An upper-tailed confidence limit is also produced if you specify the CL or
ALPHA= option.

Note that for ADJUST=SCHEFFE the one-sided adjusted confidence intervals and one-sided adjusted
p-values are the same as the corresponding two-sided statistics, because this adjustment is based on
only the right tail of the F distribution.

If you request a joint test with the JOINT option, then a one-sided right-tailed order restriction is applied
to all estimable functions, and the corresponding chi-bar-square statistic of Silvapulle and Sen (2004)
is computed in addition to the two-sided, standard, F or chi-square statistic. See the JOINT option for
how to control the computation of the simulation-based chi-bar-square statistic.
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Positional and Nonpositional Syntax for Coefficients in Linear Functions
When you define custom linear hypotheses with the ESTIMATE statement, the procedure sets up an L vector
or matrix that conforms to the model effect solutions. (Note that the following remarks also apply to the
LSMESTIMATE statement, where you specify coefficients of the matrix K which is then converted into a
coefficient matrix that conforms to the model effects solutions.)

There are two methods for specifying the entries in a coefficient matrix (hereafter simply referred to as the
L matrix); they are called the positional and nonpositional methods. In the positional form, which is the
traditional method, you provide a list of values that occupy the elements of the L matrix that is associated
with the effect in question in the order in which the values are listed. For traditional model effects that consist
of continuous and classification variables, the positional syntax is simpler in some cases (main effects) and
more cumbersome in others (interactions). When you work with effects that are constructed through the
EFFECT statement, the nonpositional syntax is essential.

For example, consider the following two-way model with interactions where factors A and B have three and
two levels, respectively:

proc logistic;
class a b;
model y = a b a*b;

run;

To test the difference of the B levels at the second level of A with an ESTIMATE statement (a slice), you need
to assign coefficients 1 and –1 to the levels of B and to the levels of the interaction where A is at the second
level. Two examples of equivalent ESTIMATE statements that use positional and nonpositional syntax are as
follows:

estimate 'B at A2' b 1 -1 a*b 0 0 1 -1 ;
estimate 'B at A2' b 1 -1 a*b [1 2 1] [-1 2 2];

Because A precedes B in the CLASS statement, the levels of the interaction are formed as
˛1ˇ1; ˛1ˇ2; ˛2ˇ1; ˛2ˇ2; � � � . If B precedes A in the CLASS statement, you need to modify the coef-
ficients accordingly:

proc logistic;
class b a;
model y = a b a*b;
estimate 'B at A2' b 1 -1 a*b 0 1 0 0 -1 ;
estimate 'B at A2' b 1 -1 a*b [1 1 2] [-1 2 2];
estimate 'B at A2' b 1 -1 a*b [1, 1 2] [-1, 2 2];

run;

You can optionally separate the L value entry from the level indicators with a comma, as in the last ESTIMATE
statement.

The general syntax for defining coefficients with the nonpositional syntax is as follows:

effect-name [multiplier < , > level-values] . . . < [multiplier < , > level-values] >

The first entry in square brackets is the multiplier that is applied to the elements of L for the effect after the
level-values have been resolved and any necessary action that forms L has been taken.
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The level-values are organized in a specific form:

• The number of entries should equal the number of terms that are needed to construct the effect. For
effects that do not contain any constructed effects, this number is simply the number of terms in the
name of the effect.

• Values of continuous variables that are needed for the construction of the L matrix precede the level
indicators of CLASS variables.

• If the effect involves constructed effects, then you need to provide as many continuous and classification
variables as are needed for the effect formation. For example, if a collection effect is defined as

class c;
effect v = collection(x1 x2 c);

then a proper nonpositional syntax would be

v [0.5, 0.2 0.3 3]

• If an effect contains both regular terms (old-style effects) and constructed effects, then the order of the
coefficients is as follows: continuous values for old-style effects, class levels for classification variables
in old-style effects, continuous values for constructed effects, and finally class levels that are needed
for constructed effects. Assume that C has four levels so that effect v contributes six elements to the L
matrix. When the procedure resolves this syntax, the values 0.2 and 0.3 are assigned to the positions
for x1 and x2 and a 1 is associated with the third level of C. The resulting vector is then multiplied by
0.5 to produce

Œ0:1 0:15 0 0 0:5 0�

Note that you enter the levels of the classification variables in the square brackets, not their formatted values.
The ordering of the levels of classification variables can be gleaned from the “Class Level Information” table.

To specify values for continuous variables, simply give their value as one of the terms in the effect. The
nonpositional syntax in the following ESTIMATE statement is read as “1 times the value 0.4 in the column
that is associated with level 2 of A”

proc phreg;
class a / param=glm;
model y = a a*x / s;
lsmeans a / e at x=0.4;
estimate 'A2 at x=0.4' intercept 1 a 0 1 a*x [1,0.4 2] / e;

run;

Because the value before the comma serves as a multiplier, the same estimable function could also be
constructed with the following statements:

estimate 'A2 at x=0.4' intercept 1 a 0 1 a*x [ 4, 0.1 2];
estimate 'A2 at x=0.4' intercept 1 a 0 1 a*x [ 2, 0.2 2];
estimate 'A2 at x=0.4' intercept 1 a 0 1 a*x [-1, -0.4 2];
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Note that continuous variables that are needed to construct an effect are always listed before any CLASS
variables.

When you work with constructed effects, the nonpositional syntax works in the same way. For example, the
following model contains a classification effect and a B-spline. The first two ESTIMATE statements produce
predicted values for level 1 of C when the continuous variable x takes on the values 20 and 10, respectively.

proc orthoreg;
class c;
effect spl = spline(x / knotmethod=equal(5));
model y = c spl;
estimate 'C = 1 @ x=20' intercept 1 c 1 spl [1,20],

'C = 1 @ x=10' intercept 1 c 1 spl [1,10];
estimate 'Difference' spl [1,20] [-1,10];

run;

In this example, the ORTHOREG procedure computes the spline coefficients for the first ESTIMATE
statement based on x = 20, and similarly in the second statement for x = 10. The third ESTIMATE statement
computes the difference of the predicted values. Because the spline effect does not interact with the
classification variable, this difference does not depend on the level of C. If such an interaction is present,
you can estimate the difference in predicted values for a given level of C by using the nonpositional syntax.
Because the effect C*spl contains both old-style terms (C) and a constructed effect, you specify the values
for the old-style terms before assigning values to constructed effects.

proc orthoreg;
class c;
effect spl = spline(x / knotmethod=equal(5));
model y = spl*c;
estimate 'C2 = 1, x=20' intercept 1 c*spl [1,1 20];
estimate 'C2 = 2, x=20' intercept 1 c*spl [1,2 20];
estimate 'C diff at x=20' c*spl [1,1 20] [-1,2 20];

run;

It is recommended that you add the E option to the ESTIMATE or LSMESTIMATE statement to verify that
the L matrix is formed according to your expectations.

In any row of an ESTIMATE statement you can choose positional and nonpositional syntax separately for
each effect. However, you cannot mix the two forms of syntax for coefficients of a single effect. For example,
the following statement is not proper because both forms of syntax are used for the interaction effect:

estimate 'A1B1 - A1B2' b 1 -1 a*b 0 1 [-1, 1 2];

Joint Hypothesis Tests with Complex Alternatives, the Chi-Bar-Square
Statistic

Silvapulle and Sen (2004) propose a test statistic for testing hypotheses where the null or the alternative
hypothesis or both involve inequalities. You can test special cases of these hypotheses with the JOINT
option in the ESTIMATE and the LSMESTIMATE statement. Consider the k estimable functions Lˇ and
the hypotheses H0WLˇ D 0 and HaWLˇ � 0. The alternative hypothesis defines a convex cone C at the
origin. Suppose that under the null hypothesis Lb̌ follows a multivariate normal distribution with mean 0
and variance V. The restricted alternative prevents you from using the usual F or chi-square test machinery,
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since the distribution of the test statistic under the alternative might not follow the usual rules. Silvapulle and
Sen (2004) coined a statistic that takes into account the projection of the observed estimate onto the convex
cone formed by the alternative parameter space. This test statistic is called the chi-bar-square statistic, and
p-values are obtained by simulation; see, in particular, Chapter 3.4 in Silvapulle and Sen (2004).

Briefly, let U be a multivariate normal random variable with mean 0 and variance matrix V. The chi-bar-square
statistic is the random variable

�2 D U0V�1U �Q
Q D min

�2C
.U � �/0V�1.U � �/

and it can be motivated by a geometric argument. The quadratic form in Q is the V-projection of U onto
the cone C. Suppose that this projected point is QU. If U 2 C, then Q = 0 and QU D U. If U is completely
outside of the cone C, then QU is a point on the surface of the cone. Similarly, U0V�1U is the length of the
segment from the origin to U in the V-space with norm jjxjj D .x0V�1x/1=2. If you apply the Pythagorean
theorem, you can see that the chi-bar-square statistic measures the length of the segment from the origin to
the projected point QU in C.

To calculate p-values for chi-bar-square statistics, a simulation-based approach is taken. Consider again the
set of k estimable functions Lˇ with estimate Lb̌D U and variance LVarŒ Ǒ�L0 D V.

First, the observed value of the statistic is computed as

�2obs D U0V�1U �Q

Then, n independent random samples Z1; � � � ;Zn are drawn from an N.0;V/ distribution and the following
chi-bar-statistics are computed for the sample:

�21 D Z01V�1Z1 �min
�2C

.Z1 � �/0V�1.Z1 � �/

:::

�2n D Z0nV�1Zn �min
�2C

.Zn � �/0V�1.Zn � �/

The p-value is estimated by the fraction of simulated statistics that are greater than or equal to the observed
value �2obs .

Notice that unless U is interior to the cone C, finding the value of Q requires the solution to a quadratic
optimization problem. When k is large, or when many simulations are requested, the computation of p-values
for chi-bar-square statistics might require considerable computing time.

ODS Table Names: ESTIMATE Statement
Each table created by the ESTIMATE statement has a name associated with it, and you can use this name to
refer to the table when you use the Output Delivery System (ODS) to select tables and create output data sets.
These names are listed in Table 19.19. For more information about ODS, see Chapter 20, “Using the Output
Delivery System.”
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Table 19.19 ODS Tables Produced by the ESTIMATE statement

Table Name Description Required Option

Coef L matrix coefficients E
Estimates ESTIMATE statement results Default
Contrasts Joint test results JOINT

ODS Graphics: ESTIMATE Statement
This section describes the use of ODS Graphics for creating statistical graphs of the distribution of estimable
functions with the ESTIMATE statement. The plots can be produced only in association with the LIFEREG
and PHREG procedures, which can perform Bayesian analysis. The plots are available via these procedures
directly, and also via PROC PLM when it is run using an item store that was created by these procedures.

To request these graphs you must do the following:

• ensure that ODS Graphics is enabled

• use a BAYES statement with PROC LIFEREG or PROC PHREG, or use PROC PLM to perform
statistical analysis on an item store that was saved from a Bayesian analysis

• request plots with the PLOTS= option in the ESTIMATE statement

For more information about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.” The available
graphs are summarized in Table 19.20.

Table 19.20 Graphs Produced by the ESTIMATE statement

ODS Graph Name Plot Description Required Option

BoxPlot Displays box plots of estimable func-
tions across a posterior sample.

PLOTS=BOXPLOT

DistPanel Displays panels of histograms with ker-
nel density curves overlaid. Each plot
contains the results for the posterior
sample of each estimable function.

PLOTS=DISTPLOT

DistPlot Displays a histogram with a kernel den-
sity curve overlaid. The plot contains
the results for the posterior sample of
the estimable function.

PLOTS=DISTPLOT(UNPACK)

For details about the plot-options of the ESTIMATE statement, see the PLOTS= option in the section
“ESTIMATE Statement” on page 444.
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LSMEANS Statement

This statement documentation applies to the following procedures:
GENMOD, LIFEREG, LOGISTIC, ORTHOREG, PHREG, PLM, PROBIT, SURVEYLOGISTIC, SUR-
VEYPHREG, and SURVEYREG. It also applies to the RELIABILITY procedure in SAS/QC software.
The GLIMMIX, GLM, and MIXED procedures also support LSMEANS statements. The relevant statement
documentation for these procedures can be found in the specific procedure chapter.

The LSMEANS statement computes least squares means (LS-means) of fixed effects. In the GLM, MIXED,
and GLIMMIX procedures, LS-means are predicted population margins—that is, they estimate the marginal
means over a balanced population. In a sense, LS-means are to unbalanced designs as class and subclass
arithmetic means are to balanced designs.

Thus it is important not to interpret the name with a strict association with least squares estimation. Least
squares is the predominant estimation technique for the type of models in which LS-means were first applied.
Their interpretation and importance reaches beyond the least squares principle, however. A more appropriate
approach to LS-means views them as linear combinations of the parameter estimates that are constructed in
such a way that they correspond to average predicted values in a population where the levels of classification
variables are balanced.

This contemporary—and historically correct—interpretation of the concept of least squares means underlines
their importance in all classes of models where predicted values are reasonably formed as linear combinations
of the parameter estimates. LS-means distinguish themselves from general estimable functions in that they
take the structure for the model and data into account through the structure of the X and X0X matrix in your
model. For example, in a generalized linear model the structure of the X matrix informs the analysis about
the possible levels of classification variables and predictions on the linear (the linked) scale are computed
as x0ˇ. LS-means are thus meaningful quantities in such models when the linear estimable function that
corresponds to an averaged prediction is constructed on the linked scale. For example, in a binomial model
with logit link, the least squares means are predicted population margins of the logits. You can then transform
the least squares means to the data scale with the ILINK option, and you can display differences of least
squares means in terms of odds ratios with the ODDSRATIO option. The underlying principle—unless you
perform a Bayesian analysis—is to construct the estimates or their differences on the linked scale and to
apply appropriate transformations in a second step.

Least squares means computations are also supported for multinomial models.

LS-means are computed as Lˇ where the L matrix that is constructed to compute the predicted values is the
same as the L matrix that is formed in PROC GLM.

Each LS-mean is computed as Lb̌, where L is the coefficient matrix that is associated with the least squares
mean and b̌ is the estimate of the fixed-effects parameter vector. The approximate standard error for the
LS-mean is computed as the square root of LbVarŒb̌�L0. The approximate variance matrix of the fixed-effects
estimates depends on the estimation method.
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Syntax: LSMEANS Statement
LSMEANS < model-effects > < / options > ;

LS-means can be computed for any effect in the statistical model that involves only CLASS variables. You
can specify multiple effects in one LSMEANS statement or in multiple LSMEANS statements, and all
LSMEANS statements must appear after the MODEL statement. If you do not specify model-effects, the
options in the LSMEANS statement are applied to all suitable model effects.

As in the ESTIMATE statement, the L matrix is tested for estimability; if this test fails, the procedure displays
“Non-est” for the LS-means entries. Note that linear functions of LS-means, such as differences, can be
estimable, even if the means themselves are not estimable. Estimability checks for differences are thus
applied separately from checks for the means.

Assuming the LS-mean is estimable, the procedure constructs an approximate t test to test the null hypothesis
that the associated population quantity equals zero.

Table 19.21 summarizes important options in the LSMEANS statement. All LSMEANS options are subse-
quently discussed in alphabetical order.

Table 19.21 LSMEANS Statement Options

Option Description

Construction and Computation of LS-Means
AT Modifies the covariate value in computing LS-means
BYLEVEL Computes separate margins
DIFF Requests differences of LS-means
OM= Specifies the weighting scheme for LS-means computation as de-

termined by the input data set
SINGULAR= Tunes estimability checking

Degrees of Freedom and p-values
ADJUST= Determines the method for multiple-comparison adjustment of LS-

means differences
ALPHA=˛ Determines the confidence level (1 � ˛)
STEPDOWN Adjusts multiple-comparison p-values further in a step-down

fashion

Statistical Output
CL Constructs confidence limits for means and mean differences
CORR Displays the correlation matrix of LS-means
COV Displays the covariance matrix of LS-means
E Prints the L matrix
LINES Produces a “Lines” display for pairwise LS-means differences
MEANS Prints the LS-means
PLOTS= Requests graphs of means and mean comparisons
SEED= Specifies the seed for computations that depend on random numbers
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Table 19.21 continued

Option Description

Generalized Linear Modeling
EXP Exponentiates and displays estimates of LS-means or LS-means

differences
ILINK Computes and displays estimates and standard errors of LS-means

(but not differences) on the inverse linked scale
ODDSRATIO Reports (simple) differences of least squares means in terms of

odds ratios if permitted by the link function

You can specify the following options in the LSMEANS statement after a slash (/):

ADJDFE=ROW
ADJDFE=SOURCE

specifies how denominator degrees of freedom are determined when p-values and confidence limits
are adjusted for multiple comparisons with the ADJUST= option. When you do not specify the
ADJDFE= option or when you specify ADJDFE=SOURCE, the denominator degrees of freedom for
multiplicity-adjusted results are the denominator degrees of freedom for the LS-mean effect in the
“Type III Tests of Fixed Effects” table. When you specify ADJDFE=ROW, the denominator degrees of
freedom for multiplicity-adjusted results correspond to the degrees of freedom that are displayed in the
DF column of the “Differences of Least Squares Means” table.

The ADJDFE=ROW setting is particularly useful if you want multiplicity adjustments to take into
account that denominator degrees of freedom are not constant across LS-mean differences.

In one-way models with heterogeneous variance, combining certain ADJUST= options with the
ADJDFE=ROW option corresponds to particular methods of performing multiplicity adjustments in
the presence of heteroscedasticity. For example, the following statements fit a heteroscedastic one-way
model and perform Dunnett’s T3 method (Dunnett 1980), which is based on the studentized maximum
modulus (ADJUST=SMM):

proc glimmix;
class A;
model y = A / ddfm=satterth;
random _residual_ / group=A;
lsmeans A / adjust=smm adjdfe=row;

run;

If you combine the ADJDFE=ROW option with ADJUST=SIDAK, the multiplicity adjustment corre-
sponds to the T2 method of Tamhane (1979), and ADJUST=TUKEY corresponds to the method of
Games-Howell (Games and Howell 1976). Note that ADJUST=TUKEY gives the exact results for the
case of fractional degrees of freedom in the one-way model, but it does not take into account that the
degrees of freedom are subject to variability. A more conservative method, such as ADJUST=SMM,
might protect the overall error rate better.

Unless the ADJUST= option is specified in the LSMEANS statement, the ADJDFE= option has
no effect. The option is not supported by the procedures that perform chi-square-based inference
(GENMOD, LOGISTIC, PHREG, and SURVEYLOGISTIC).
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ADJUST=BON

ADJUST=DUNNETT

ADJUST=NELSON

ADJUST=SCHEFFE

ADJUST=SIDAK

ADJUST=SIMULATE< (simoptions) >

ADJUST=SMM | GT2

ADJUST=TUKEY
requests a multiple comparison adjustment for the p-values and confidence limits for the differences of
LS-means. The adjusted quantities are produced in addition to the unadjusted quantities. By default,
the procedure performs all pairwise differences. If you specify ADJUST=DUNNETT, the procedure
analyzes all differences with a control level. If you specify ADJUST=NELSON, ANOM differences
are taken. The ADJUST= option implies the DIFF option.

The BON (Bonferroni) and SIDAK adjustments involve correction factors described in Chapter 45,
“The GLM Procedure,” and Chapter 67, “The MULTTEST Procedure”; also see Westfall and Young
(1993) and Westfall et al. (1999). When you specify ADJUST=TUKEY and your data are un-
balanced, the procedure uses the approximation described in Kramer (1956) and identifies the ad-
justment as “Tukey-Kramer” in the results. Similarly, when you specify ADJUST=DUNNETT or
ADJUST=NELSON and the LS-means are correlated, the procedure uses the factor-analytic covariance
approximation described in Hsu (1992) and identifies the adjustment in the results as “Dunnett-Hsu”
or “Nelson-Hsu,” respectively. The approximation derives an approximate “effective sample sizes” for
which exact critical values are computed. Computing the exact adjusted p-values and critical values
for unbalanced designs can be computationally intensive, in particular for ADJUST=NELSON. A
simulation-based approach, as specified by the ADJUST=SIM option, while nondeterministic, can
provide inferences that are sufficiently accurate in much less time. The preceding references also
describe the SCHEFFE and SMM adjustments.

Nelson’s adjustment applies only to the analysis of means (Ott 1967; Nelson 1982, 1991, 1993), where
LS-means are compared against an average LS-mean. It does not apply to all pairwise differences of
least squares means. See the DIFF=ANOM option for more details regarding the analysis of means
with the procedure.

The SIMULATE adjustment computes adjusted p-values and confidence limits from the simulated
distribution of the maximum or maximum absolute value of a multivariate t random vector. All covari-
ance parameters, except the residual scale parameter, are fixed at their estimated values throughout the
simulation, potentially resulting in some underdispersion. The simulation estimates q, the true .1 � ˛/
quantile, where 1 � ˛ is the confidence coefficient. The default ˛ is 0.05, and you can change this
value with the ALPHA= option in the LSMEANS statement.

The number of samples is set so that the tail area for the simulated q is within  of 1 � ˛ with
100.1 � �/% confidence. In equation form,

Pr.jF.bq/ � .1 � ˛/j � / D 1 � �
where Oq is the simulated q and F is the true distribution function of the maximum; see Edwards and
Berry (1987) for details. By default,  = 0.005 and � = 0.01, placing the tail area of Oq within 0.005
of 0.95 with 99% confidence. You can specify the following simoptions in parentheses after the
ADJUST=SIMULATE option:
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ACC=value
specifies the target accuracy radius  of a 100.1� �/% confidence interval for the true probability
content of the estimated .1 � ˛/ quantile. The default value is ACC=0.005.

EPS=value
specifies the value � for a 100 � .1 � �/% confidence interval for the true probability content
of the estimated .1 � ˛/ quantile. The default value for the accuracy confidence is 99%, which
corresponds to EPS=0.01.

NSAMP=n
specifies the sample size for the simulation. By default, n is set based on the values of the target
accuracy radius  and accuracy confidence 100� .1� �/% for an interval for the true probability
content of the estimated .1 � ˛/ quantile. With the default values for  , �, and ˛ (0.005, 0.01,
and 0.05, respectively), NSAMP=12,604 by default.

SEED=number
specifies an integer that is used to start the pseudo-random number generator for the simulation.
If you do not specify a seed, or specify a value less than or equal to zero, the seed is by default
generated from reading the time of day from the computer’s clock.

THREADS
specifies that the computational work for the simulation be divided into parallel threads, where
the number of threads is the value of the SAS system option CPUCOUNT=. For large simulations
(as specified directly using the NSAMP= simoption or indirectly using the ACC= or EPS=
simoptions), parallel processing can markedly speed up the computation of adjusted p-values and
confidence intervals. However, because the parallel processing has different pseudo-random num-
ber streams, the precise results are different from the default ones, which are computed in sequence
rather than in parallel. This option overrides the SAS system option THREADS | NOTHREADS.

NOTHREADS
specifies that the computational work for the simulation be performed in sequence rather
than in parallel. NOTHREADS is the default. This option overrides the SAS system option
THREADS | NOTHREADS.

If the STEPDOWN option is in effect, the p-values are further adjusted in a step-down fashion. For
certain options and data, this adjustment is exact under an iid N.0; �2/ model for the dependent
variable, in particular for the following:

• for ADJUST=DUNNETT when the means are uncorrelated

• for ADJUST=TUKEY with STEPDOWN(TYPE=LOGICAL) when the means are balanced and
uncorrelated.

The first case is a consequence of the nature of the successive step-down hypotheses for comparisons
with a control; the second uses an extension of the maximum studentized range distribution appropriate
for partition hypotheses (Royen 1989). Finally, for STEPDOWN(TYPE=FREE), ADJUST=TUKEY
employs the Royen (1989) extension in such a way that the resulting p-values are conservative.
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ALPHA=number
requests that a t type confidence interval be constructed for each of the LS-means with confidence level
1 – number . The value of number must be between 0 and 1; the default is 0.05.

AT variable=value

AT (variable-list)=(value-list)

AT MEANS
modifies the values of the covariates that are used in computing LS-means. By default, all covariate
effects are set equal to their mean values for computation of standard LS-means. The AT option enables
you to assign arbitrary values to the covariates. Additional columns in the output table indicate the
values of the covariates.

If there is an effect that contains two or more covariates, the AT option sets the effect equal to the
product of the individual means rather than the mean of the product (as with standard LS-means
calculations). The AT MEANS option sets covariates equal to their mean values (as with standard
LS-means) and incorporates this adjustment to crossproducts of covariates.

As an example, consider the following statements:

class A;
model Y = A x1 x2 x1*x2;
lsmeans A;
lsmeans A / at means;
lsmeans A / at x1=1.2;
lsmeans A / at (x1 x2)=(1.2 0.3);

For the first two LSMEANS statements, the LS-means coefficient for x1 is x1 (the mean of x1) and
for x2 is x2 (the mean of x2). However, for the first LSMEANS statement, the coefficient for x1*x2
is x1x2, but for the second LSMEANS statement, the coefficient is x1 � x2. The third LSMEANS
statement sets the coefficient for x1 equal to 1.2 and leaves it at x2 for x2, and the final LSMEANS
statement sets these values to 1.2 and 0.3, respectively.

Even if you specify a WEIGHT variable, the unweighted covariate means are used for the covariate
coefficients if there is no AT specification. If you specify the AT option, WEIGHT or FREQ variables
are taken into account as follows. The weighted covariate means are then used for the covariate
coefficients for which no explicit AT values are given, or if you specify AT MEANS. Observations that
do not contribute to the analysis because of a missing dependent variable are included in computing
the covariate means. Use the E option in conjunction with the AT option to check that the modified
LS-means coefficients are the ones you want.

The AT option is disabled if you specify the BYLEVEL option.

BYLEVEL
requests that separate margins be computed for each level of the LSMEANS effect.

The standard LS-means have equal coefficients across classification effects. The BYLEVEL option
changes these coefficients to be proportional to the observed margins. This adjustment is reasonable
when you want your inferences to apply to a population that is not necessarily balanced but has the
margins observed in the input data set. In this case, the resulting LS-means are actually equal to
raw means for fixed-effects models and certain balanced random-effects models, but their estimated
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standard errors account for the covariance structure that you have specified. If a WEIGHT statement is
specified, the procedure uses weighted margins to construct the LS-means coefficients.

If the AT option is specified, the BYLEVEL option disables it.

CL
requests that t type confidence limits be constructed for each of the LS-means. The confidence level is
0.95 by default; this can be changed with the ALPHA= option. If you specify an ADJUST= option,
then the confidence limits are adjusted for multiplicity. But if you also specify STEPDOWN, then only
p-values are step-down adjusted, not the confidence limits.

CORR
displays the estimated correlation matrix of the least squares means as part of the “Least Squares
Means” table.

COV
displays the estimated covariance matrix of the least squares means as part of the “Least Squares
Means” table.

DF=number
specifies the degrees of freedom for the t test and confidence limits. The default is the denominator
degrees of freedom taken from the “Type III Tests” table that corresponds to the LS-means effect.
The option is not supported by the procedures that perform chi-square-based inference (GENMOD,
LOGISTIC, PHREG and SURVEYLOGISTIC).

DIFF< =difftype >

PDIFF< =difftype >
requests that differences of the LS-means be displayed. You can use one of the following optional
difftype values to specify which differences to produce:

ALL
requests all pairwise differences; this is the default.

ANOM
requests differences between each LS-mean and the average LS-mean, as in the analysis of
means (Ott 1967). The average is computed as a weighted mean of the LS-means, the weights
being inversely proportional to the diagonal entries of the L

�
X0X

�� L0 matrix. If LS-means are
nonestimable, this design-based weighted mean is replaced with an equally weighted mean. Note
that the ANOM procedure in SAS/QC software implements both tables and graphics for the
analysis of means with a variety of response types. For one-way designs and normal data with
identity link, the DIFF=ANOM computations are equivalent to the results of PROC ANOM. If
the LS-means being compared are uncorrelated, exact adjusted p-values and critical values for
confidence limits can be computed in the analysis of means; see Nelson (1982, 1991, 1993) and
Guirguis and Tobias (2004) in addition to the documentation for the ADJUST=NELSON option.

CONTROL
requests differences with a control, which, by default, is the first valid level of each of the specified
LSMEANS effects. For example, suppose the effects A and B are classification variables, both of
them have two levels 1 and 2, and the A=1, B=1 cell is missing. Unless the procedure supports a
MISSING option in the CLASS statement and the option is in effect, the following LSMEANS
statement uses the level (1,2) of A*B as the control:
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lsmeans A*B / diff=control;

Nevertheless, you can still specify a valid level as the control—for example, (2,1) of A*B. To
specify which levels of the effects are the controls, list the quoted formatted values in parentheses
after the CONTROL keyword. For example, if the effects A, B, and C are classification variables,
each having two levels, 1 and 2, the following LSMEANS statement specifies the (1,2) level of
A*B and the (2,1) level of B*C as controls:

lsmeans A*B B*C / diff=control('1' '2' '2' '1');

For multiple effects, the results depend upon the order of the list, and so you should check the
output to make sure that the controls are correct.

Two-tailed tests and confidence limits are associated with the CONTROL difftype. For one-tailed
results, use either the CONTROLL or CONTROLU difftype.

CONTROLL
tests whether the noncontrol levels are significantly smaller than the control; the upper confidence
limits for the control minus the noncontrol levels are considered to be infinity and are displayed
as missing.

CONTROLU
tests whether the noncontrol levels are significantly larger than the control; the upper confidence
limits for the noncontrol levels minus the control are considered to be infinity and are displayed
as missing.

If you want to perform multiple comparison adjustments on the differences of LS-means, you must
specify the ADJUST= option.

The differences of the LS-means are displayed in a table titled “Differences of Least Squares Means.”

E
requests that the L matrix coefficients for the LSMEANS effects be displayed.

EXP
requests exponentiation of the LS-means or LS-mean differences. When you model data with the logit,
cumulative logit, or generalized logit link functions, and the estimate represents a log odds ratio or
log cumulative odds ratio, the EXP option produces an odds ratio. In proportional hazards model, the
exponentiation of the LS-mean differences produces estimates of hazard ratios. If you specify the CL
or ALPHA= option, the (adjusted) confidence bounds are also exponentiated.

The EXP option is supported only by PROC PHREG, PROC SURVEYPHREG, the procedures that
support generalized linear modeling (GENMOD, LOGISTIC, and SURVEYLOGISTIC), and PROC
PLM when it is used to perform statistical analyses on item stores that are created by these procedures.

ILINK
requests that estimates and their standard errors in the “Least Squares Means” table also be reported
on the scale of the mean (the inverse linked scale). This enables you to obtain estimates of predicted
probabilities and their standard errors in logistic models, for example. The option is specific to an
LSMEANS statement. If you also specify the CL option, the procedure computes confidence intervals
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for the predicted means by applying the inverse link transform to the confidence limits on the linked
(linear) scale. Standard errors on the inverse linked scale are computed by the delta method.

The ILINK option is supported only by the procedures that support generalized linear modeling
(GENMOD, LOGISTIC and SURVEYLOGISTIC) and by PROC PLM when it is used to perform
statistical analyses on item stores that are created by these procedures.

LINES
presents results of comparisons between all pairs of least squares means by listing the means in
descending order and indicating nonsignificant subsets by line segments beside the corresponding
LS-means. When all differences have the same variance, these comparison lines are guaranteed to
accurately reflect the inferences that are based on the corresponding tests, which are made by comparing
the respective p-values to the value of the ALPHA= option (0.05 by default). However, equal variances
might not be the case for differences between LS-means. If the variances are not all the same, then the
comparison lines might be conservative, in the sense that if you base your inferences on the lines alone,
you will detect fewer significant differences than the tests indicate. If there are any such differences,
the procedure lists the pairs of means that are inferred to be significantly different by the tests but not
by the comparison lines. However, even though the variances in many cases are unequal, they are
similar enough that the comparison lines accurately reflect the test inferences.

MEANS | NOMEANS
determines whether to print the least squares means themselves. For most procedure, MEANS is the
default behavior. For example, the NOMEANS option is the default for the PHREG procedure. You
can then use the MEANS option to produce the table of least squares means, if desired.

ODDSRATIO

OR
requests that LS-mean differences (DIFF, ADJUST= options) are also reported in terms of odds ratios.
The ODDSRATIO option is ignored unless you use either the logit, cumulative logit, or generalized
logit link function. If you specify the CL or ALPHA= option, confidence intervals for the odds ratios
are also computed. These intervals are adjusted for multiplicity when you specify the ADJUST=
option.

The ODDSRATIO option is supported only by the procedures that support generalized linear modeling
(GENMOD, LOGISTIC and SURVEYLOGISTIC) and by PROC PLM when it is used to perform
statistical analyses on item stores created by these procedures.

OBSMARGINS< =OM-data-set >

OM< =OM-data-set >
specifies a potentially different weighting scheme for the computation of LS-means coefficients. The
standard LS-means have equal coefficients across classification effects; however, the OM option
changes these coefficients to be proportional to those found in the OM-data-set . This adjustment is
reasonable when you want your inferences to apply to a population that is not necessarily balanced but
has the margins that are observed in OM-data-set .

By default, OM-data-set is the same as the analysis data set. You can optionally specify another data
set that describes the population for which you want to make inferences. This data set must contain
all model variables except for the dependent variable (which is ignored if it is present). In addition,
the levels of all CLASS variables must be the same as those that occur in the analysis data set. If a
level of a classification effect in the original data set is not present in the OM-data-set , the LS-means
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for that level are undefined. The corresponding rows of the LSMeans table are displayed as missing.
Specifying an OM-data-set enables you to construct arbitrarily weighted LS-means.

In computing the observed margins, the procedure uses all observations for which there are no missing
or invalid independent variables, including those for which there are missing dependent variables. Also,
if you use a WEIGHT statement, the procedure computes weighted margins to construct the LS-means
coefficients. If your data are balanced, the LS-means are unchanged by the OM option.

The BYLEVEL option modifies the observed-margins LS-means. Instead of computing the margins
across all of the OM-data-set , the procedure computes separate margins for each level of the LSMEANS
effect in question. In this case the resulting LS-means are actually equal to raw means for fixed-effects
models and certain balanced random-effects models, but their estimated standard errors account for the
covariance structure that you have specified.

You can use the E option in conjunction with either the OM or BYLEVEL option to verify that the
modified LS-means coefficients are the ones you want. It is possible that the modified LS-means are
not estimable when the standard ones are estimable, or vice versa.

PDIFF
is the same as the DIFF option.

PLOT | PLOTS< =plot-request< (options) > >

PLOT | PLOTS< =(plot-request< (options) > < . . . plot-request< (options) > >) >
requests that graphics related to least squares means be produced via ODS Graphics, provided that
ODS Graphics is enabled and the plot-request does not conflict with other options in the LSMEANS
statement. For general information about ODS Graphics, see Chapter 21, “Statistical Graphics Using
ODS.”

The available options and suboptions are as follows:

ALL
requests that the default plots that correspond to this LSMEANS statement be produced. The
default plot depends on the options in the statement.

ANOMPLOT

ANOM
requests an analysis-of-means display in which least squares means are compared to an average
least squares mean. Least squares mean ANOM plots are produced only for those model effects
that are listed in LSMEANS statements and have options that do not contradict with the display.
For example, the following statements produce analysis-of-mean plots for effects A and C:

lsmeans A / diff=anom plot=anom;
lsmeans B / diff plot=anom;
lsmeans C / plot=anom;

The DIFF option in the second LSMEANS statement implies all pairwise differences.

BOXPLOT< boxplot-options >
produces box plots of the distribution of the least squares mean or least squares mean differences
across a posterior sample. For example, this plot is available in procedures that support a Bayesian
analysis through the BAYES statement.



470 F Chapter 19: Shared Concepts and Topics

A separate box is generated for each estimable function, and all boxes appear on a single graph
by default. You can affect the appearance of the box plot graph with the following options:

ORIENTATION=VERTICAL | HORIZONTAL

ORIENT=VERT | HORIZ
specifies the orientation of the boxes. The default is vertical orientation of the box plots.

NPANELPOS=number
specifies how to break the series of box plots across multiple panels. If the NPANELPOS
option is not specified, or if number equals zero, then all box plots are displayed in a single
graph; this is the default. If a negative number is specified, then exactly up to jnumber j of
box plots are displayed per panel. If number is positive, then the number of boxes per panel
is balanced to achieve small variation in the number of box plots per graph.

CONTROLPLOT

CONTROL
requests a display in which least squares means are visually compared against a reference level.
These plots are produced only for statements with options that are compatible with control
differences. For example, the following statements produce control plots for effects A and C:

lsmeans A / diff=control('1') plot=control;
lsmeans B / diff plot=control;
lsmeans C plot=control;

The DIFF option in the second LSMEANS statement implies all pairwise differences.

DIFFPLOT< (diffplot-options) >

DIFFOGRAM< (diffplot-options) >

DIFF< (diffplot-options) >
requests a display of all pairwise least squares mean differences and their significance. The
display is also known as a “mean-mean scatter plot” when it is based on arithmetic means (Hsu
1996; Hsu and Peruggia 1994). For each comparison a line segment, centered at the LS-means in
the pair, is drawn. The length of the segment corresponds to the projected width of a confidence
interval for the least squares mean difference. Segments that fail to cross the 45-degree reference
line correspond to significant least squares mean differences.

LS-mean difference plots are produced only for statements with options that are compatible with
the display. For example, the following statements request differences against a control level for
the A effect, all pairwise differences for the B effect, and the least squares means for the C effect:

lsmeans A / diff=control('1') plot=diff;
lsmeans B / diff plot=diff;
lsmeans C plot=diff;

The DIFF= type in the first statement is incompatible with a display of all pairwise differences.

You can specify the following diffplot-options:
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ABS
determines the positioning of the line segments in the plot. This is the default diffplot-options.
When the ABS option is in effect, all line segments are shown on the same side of the
reference line.

NOABS
determines the positioning of the line segments in the plot. The NOABS option separates
comparisons according to the sign of the difference.

CENTER
marks the center point for each comparison. This point corresponds to the intersection of
two least squares means.

NOLINES
suppresses the display of the line segments that represent the confidence bounds for the
differences of the least squares means. The NOLINES option implies the CENTER option.
The default is to draw line segments in the upper portion of the plot area without marking
the center point.

DISTPLOT< distplot-options >

DIST< distplot-options >
generates panels of histograms with a kernel density overlaid if the analysis has access to a set
of posterior parameter estimates. For example, this plot is available in procedures that support
a Bayesian analysis through the BAYES statement. A separate plot in each panel contains the
results for each least squares mean or least squares mean differences. You can specify the
following distplot-options in parentheses:

BOX | NOBOX
controls the display of a horizontal box plot of the estimable function’s distribution across
the posterior sample below the graph. The BOX option is enabled by default.

HIST | NOHIST
controls the display of the histogram of the estimable function’s distribution across the
posterior sample. The HIST option is enabled by default.

NORMAL | NONORMAL
controls the display of a normal density estimate on the graph. The NONORMAL option is
enabled by default.

KERNEL | NOKERNEL
controls the display of a kernel density estimate on the graph. The KERNEL option is
enabled by default.

NROWS=number
specifies the highest number of rows in a panel. The default is 3.

NCOLS=number
specifies the highest number of columns in a panel. The default is 3.
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UNPACK
unpacks the panel into separate graphics.

MEANPLOT< (meanplot-options) >
requests displays of the least squares means.

The following meanplot-options control the display of the least squares means.

ASCENDING
displays the least squares means in ascending order. This option has no effect if means are
displayed in separate plots.

CL
displays upper and lower confidence limits for the least squares means. By default, 95%
limits are drawn. You can change the confidence level with the ALPHA= option. Confidence
limits are drawn by default if the CL option is specified in the LSMEANS statement.

CLBAND
displays confidence limits as bands. This option implies the JOIN option.

DESCENDING
displays the least squares means in descending order. This option has no effect if means are
displayed in separate plots.

ILINK
requests that means (and confidence limits) be displayed on the inverse linked scale.

JOIN

CONNECT
connects the least squares means with lines. This option is implied by the CLBAND
option. If the effect contains nested variables and a SLICEBY= effect contains classification
variables that appear as crossed effects, this option is ignored.

SLICEBY=fixed-effect
specifies an effect by which to group the means in a single plot. For example, the following
statement requests a plot in which the levels of A are placed on the horizontal axis and the
means that belong to the same level of B are joined by lines:

lsmeans A*B / plot=meanplot(sliceby=b join);

Unless the LS-mean effect contains at least two classification variables, the SLICEBY=
option has no effect. The fixed-effect does not have to be an effect in your MODEL statement,
but it must consist entirely of classification variables and it must be contained in the LS-mean
effect.

PLOTBY=fixed-effect
specifies an effect by which to break interaction plots into separate displays. For example,
the following statement requests for each level of C one plot of the A*B cell means that are
associated with that level of C:
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lsmeans A*B*C / plot=meanplot(sliceby=b plotby=c clband);

In each plot, levels of A are displayed on the horizontal axis, and confidence bands are drawn
around the means that share the same level of B.

The PLOTBY= option has no effect unless the LS-mean effect contains at least three
classification variables. The fixed-effect does not have to be an effect in the MODEL
statement, but it must consist entirely of classification variables and it must be contained in
the LS-mean effect.

NONE
requests that no plots be produced.

When LS-mean calculations are adjusted for multiplicity by using the ADJUST= option, the plots are
adjusted accordingly.

SEED=number
specifies the seed for the sampling-based components of the computations for the LSMEANS statement
(for example, chi-bar-square statistics and simulated p-values). The value of number must be an integer.
The seed is used to start the pseudo-random-number generator for the simulation. If you do not specify
a seed, or if you specify a value less than or equal to zero, the seed is generated from reading the time
of day from the computer clock. Note that there could be multiple LSMEANS statements with SEED=
specifications and there could be other statements that can supply a random number seed. Since the
procedure has only one random number stream, the initial seed is shown in the SAS log.

SINGULAR=number
tunes the estimability checking. If v is a vector, define ABS(v) to be the largest absolute value of the
elements of v. If ABS(K0 �K0T) is greater than c*number for any row of K0 in the contrast, then K0ˇ
is declared nonestimable. Here, T is the Hermite form matrix .X0X/�X0X, and c is ABS(K0), except
when it equals 0, and then c is 1. The value for number must be between 0 and 1; the default is 1E–4.

STEPDOWN< (step-down-options) >
requests that multiple comparison adjustments for the p-values of LS-mean differences be further
adjusted in a step-down fashion. Step-down methods increase the power of multiple comparisons by
taking advantage of the fact that a p-value is never declared significant unless all smaller p-values are
also declared significant. The STEPDOWN adjustment combined with ADJUST=BON corresponds
to the methods of Holm (1979) “Method 2” of Shaffer (1986); this is the default. Using step-down-
adjusted p-values combined with ADJUST=SIMULATE corresponds to the method of Westfall (1997).

If the denominator degrees of freedom are computed by the Kenward-Roger (Kenward and Roger
1997) or Satterthwaite method in a mixed model, then step-down-adjusted p-values are produced only
if the ADJDFE=ROW option is in effect.

Also, STEPDOWN affects only p-values, not confidence limits. For ADJUST=SIMULATE, the
generalized least squares hybrid approach of Westfall (1997) is used to increase Monte Carlo accuracy.

You can specify the following step-down-options in parentheses:
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MAXTIME=n
specifies the time (in seconds) to be spent computing the maximal logically consistent sequential
subsets of equality hypotheses for TYPE=LOGICAL. The default is MAXTIME=60. If the
MAXTIME value is exceeded, the adjusted tests are not computed. When this occurs, you can
try increasing the MAXTIME value. However, note that there are common multiple comparisons
problems for which this computation requires a huge amount of time—for example, all pairwise
comparisons between more than 10 groups. In such cases, try to use TYPE=FREE (the default)
or TYPE=LOGICAL(n) for small n.

REPORT
specifies that a report on the step-down adjustment be displayed, including a listing of the
sequential subsets (Westfall 1997) and, for ADJUST=SIMULATE, the step-down simulation
results.

TYPE=LOGICAL< (n) >

TYPE=FREE
specifies how step-down adjustment are made. If you specify TYPE=LOGICAL, the step-down
adjustments are computed by using maximal logically consistent sequential subsets of equality
hypotheses (Shaffer 1986; Westfall 1997). Alternatively, for TYPE=FREE, sequential subsets are
computed ignoring logical constraints. The TYPE=FREE results are more conservative than those
for TYPE=LOGICAL, but they can be much more efficient to produce for many comparisons.
For example, it is not feasible to take logical constraints between all pairwise comparisons of
more than 10 groups. For this reason, TYPE=FREE is the default.

However, you can reduce the computational complexity of taking logical constraints into account
by limiting the depth of the search tree used to compute them, specifying the optional depth
parameter as a number n in parentheses after TYPE=LOGICAL. As with TYPE=FREE, results
for TYPE=LOGICAL(n) are conservative relative to the true TYPE=LOGICAL results. But even
for TYPE=LOGICAL(0) they can be appreciably less conservative than TYPE=FREE, and they
are computationally feasible for much larger numbers of comparisons. If you do not specify n or
if n = –1, the full search tree is used.

ODS Table Names: LSMEANS Statement
Each table created by the LSMEANS statement has a name associated with it, and you can use this name to
refer to the table when using the Output Delivery System (ODS) to select tables and create output data sets.
These names are listed in Table 19.22. For more information about ODS, see Chapter 20, “Using the Output
Delivery System.”

Table 19.22 ODS Tables Produced by the LSMEANS statement

Table Name Description Required Option

Coef L matrix coefficients E
Diffs Differences of LS-means DIFF or ADJUST= or

STEPDOWN
LSMeans LS-means Default
LSMLines Lines display for LS-means LINES
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ODS Graphics: LSMEANS Statement
This section describes the use of ODS Graphics for creating graphics that are related to LS-means in
procedures that support the common LSMEANS or SLICE statement. There are two groups of available
plots: those that can be produced by all procedures that support these two statements, and those that can be
produced only in association with the three procedures that can perform Bayesian analysis (PROC GENMOD,
PROC LIFEREG, and PROC PHREG). Plots that are associated with the Bayesian analysis are available
via these procedures directly, and also by using PROC PLM with an item store that was created by these
procedures.

Plots in the first group depict the LS-means and their differences; when LS-mean comparisons are adjusted
for multiplicity by using the ADJUST= option, the plots are adjusted accordingly. To request plots in this
group, ODS Graphics must be enabled and you must request plots with the appropriate PLOTS= option in
the LSMEANS or SLICE statement. Plots in the second group depict the posterior sample distribution of
LS-means and their differences. To request plots in this group, you must also use a BAYES statement with
PROC GENMOD, PROC PHREG, or PROC LIFEREG, or you must use PROC PLM to perform statistical
analysis on an item store that was saved from a Bayesian analysis.

For more information about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.” The available
graphs are summarized in Table 19.23 and Table 19.24.

Table 19.23 Graphs Produced by All Procedures That Support
the Common LSMEANS or SLICE Statement

ODS Graph Name Plot Description Required Option

AnomPlot Requests an analysis of means display
in which least squares means are com-
pared to an average least squares mean.

PLOTS=ANOM

ControlPlot Requests a display in which least
squares means are compared to a refer-
ence level.

PLOTS=CONTROL

DiffPlot Displays all pairwise least squares
mean differences and their significance.
This plot is also known as a “mean-
mean scatter plot” when based on arith-
metic means.

PLOTS=DIFF

MeanPlot Displays least squares means. PLOTS=MEANPLOT

Table 19.24 Graphs Produced by Procedures That Support the
LSMEANS or SLICE Statement and Bayesian
Analysis

ODS Graph Name Plot Description Required Option

BoxPlot Displays box plots of LS-means or
LS-mean differences across a posterior
sample.

PLOTS=BOXPLOT
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Table 19.24 continued

ODS Graph Name Plot Description Required Option

DistPanel Displays panels of histograms with ker-
nel density curves overlaid. Each plot
contains the results for the posterior
sample of each LS-mean or LS-mean
difference.

PLOTS=DISTPLOT

DistPlot Displays a histogram with a kernel den-
sity curve overlaid. The plot contains
the results for the posterior sample of
the LS-mean or LS-mean difference.

PLOTS=DISTPLOT(UNPACK)

You can supply the same plot-options to the SLICE statement to produce these graphs. For details about
the plot-options of the LSMEANS or SLICE statement, see the PLOTS= option in the section “LSMEANS
Statement” on page 460. For more details about the DIFFPLOT in particular, see the section “Graphics for
LS-Mean Comparisons” on page 3256 in Chapter 44, “The GLIMMIX Procedure.”

LSMESTIMATE Statement

This statement documentation applies to the following SAS/STAT procedures:
GENMOD, LIFEREG, LOGISTIC, MIXED, ORTHOREG, PHREG, PLM, PROBIT, SURVEYLOGISTIC,
SURVEYPHREG, and SURVEYREG. It also applies to the RELIABILITY procedure in SAS/QC software.
The LSMESTIMATE statement in the GLIMMIX procedure is documented in Chapter 44, “The GLIMMIX
Procedure.”

The LSMESTIMATE statement provides a mechanism for obtaining custom hypothesis tests among least
squares means. In contrast to the LSMEANS statement, the LSMESTIMATE statement does not produce the
least squares means or their differences; instead, you can estimate any linear function of the least squares
means (including the means themselves or their differences). In contrast to the linear functions that are
constructed with the ESTIMATE statement, you do not specify coefficients for the individual parameter
estimates. Instead, with the LSMESTIMATE statement you specify coefficients for the least squares means;
these are then converted for you into estimable functions for the parameter estimates.

The LSMESTIMATE statement thus combines important and convenient features of the LSMEANS and the
ESTIMATE statement. As with the LSMEANS statement, the following conditions are true:

• You need to specify only a single effect; the mapping into linear estimable functions in terms of the
parameter estimates is performed by the procedure.

• You can use the AT=, BYLEVEL, and OBSMARGINS options to affect the computation of the
underlying least squares means.

As with the ESTIMATE statement you can do the following:
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• specify multiple-row linear combinations.

• perform multiplicity corrections to control the familywise Type I error probability with the ADJUST=
option.

• construct general linear functions of the least squares means.

• perform joint F or chi-square tests with or without order restrictions through the JOINT option.

• rely on positional or nonpositional syntax to specify coefficients for linear functions. For details about
using nonpositional syntax, see the section “Positional and Nonpositional Syntax for Coefficients in
Linear Functions” on page 455.

The computation of an LSMESTIMATE involves two coefficient matrices. Suppose that there are nl levels
for a valid least squares means effect (an effect that is part of your model and consists of classification
variables only). Then the LS-means are formed as L1b̌, where L1 is a .nl � p/ coefficient matrix. The
.k � nl/ coefficient matrix K is formed from the values that you supply in the k rows of the LSMESTIMATE
statement. The least squares means estimates then represent the .k � 1/ vector

KL1ˇ D Lˇ

Because the analytic features and capabilities of the LSMESTIMATE statement are an amalgam of the
LSMEANS and the ESTIMATE statement, the syntax of the statement follows the same pattern.

Syntax: LSMESTIMATE Statement
LSMESTIMATE model-effect < 'label ' > values < divisor=n >

< , < 'label ' > values < divisor=n > > < , . . . >
< / options > ;

In contrast to a multirow estimate in the ESTIMATE statement, you specify only a single effect in the
LSMESTIMATE statement. The row labels are optional and follow the model-effect specification. For
example, the following statements fit a split-split-plot design and compare the average of the third and fourth
LS-mean of the whole-plot factor A to the first LS-mean of the factor:

proc glimmix;
class a b block;
model y = a b a*b / s;
random int a / sub=block;
lsmestimate A 'a1 vs avg(a3,a4)' 2 0 -1 -1 divisor=2;

run;

The order in which coefficients are assigned to the least squares means corresponds to the order in which
they are displayed in the “Least Squares Means” table. You can use the ELSM option to see how coefficients
are matched to levels of the fixed effect.

The optional divisor=n specification enables you to assign a separate divisor to each row of the LSMES-
TIMATE. You can also assign divisor values through the DIVISOR= option. See the description of the
DIVISOR= option that follows for the interaction between the two ways of specifying divisors.

Table 19.25 summarizes important options in the LSMESTIMATE statement. All LSMESTIMATE options
are subsequently discussed in alphabetical order.
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Table 19.25 LSMESTIMATE Statement Options

Option Description

Construction and Computation of LS-Means
AT Modifies covariate values in computing LS-means
BYLEVEL Computes separate margins
DIVISOR= Specifies a list of values to divide the coefficients
OM= Specifies the weighting scheme for LS-means computation as de-

termined by a data set
SINGULAR= Tunes estimability checking

Degrees of Freedom and p-values
ADJUST= Determines the method for multiple-comparison adjustment of LS-

means differences
ALPHA=˛ Determines the confidence level (1 � ˛)
LOWER Performs one-sided, lower-tailed inference
STEPDOWN Adjusts multiple-comparison p-values further in a step-down fash-

ion
TESTVALUE= Specifies values under the null hypothesis for tests
UPPER Performs one-sided, upper-tailed inference

Statistical Output
CL Constructs confidence limits for means and mean differences
CORR Displays the correlation matrix of LS-means
COV Displays the covariance matrix of LS-means
E Prints the L matrix
ELSM Prints the K matrix
JOINT Produces a joint F or chi-square test for the LS-means and LS-

means differences
PLOTS= Requests graphs of means and mean comparisons
SEED= Specifies the seed for computations that depend on random numbers

Generalized Linear Modeling
CATEGORY= Specifies how to construct estimable functions with multinomial

data
EXP Exponentiates and displays LS-means estimates
ILINK Computes and displays estimates and standard errors of LS-means

(but not differences) on the inverse linked scale

You can specify the following options in the LSMESTIMATE statement after a slash (/):

ADJDFE=SOURCE

ADJDFE=ROW
specifies how denominator degrees of freedom are determined when p-values and confidence limits
are adjusted for multiple comparisons with the ADJUST= option. When you do not specify the
ADJDFE= option or when you specify ADJDFE=SOURCE, the denominator degrees of freedom for
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multiplicity-adjusted results are the denominator degrees of freedom for the LS-mean effect in the
“Type III Tests of Fixed Effects” table.

The ADJDFE=ROW setting is useful if you want multiplicity adjustments to take into account that
denominator degrees of freedom are not constant across estimates. For example, this can be the
case when the denominator degrees of freedom are computed by the Satterthwaite or Kenward-Roger
method (Kenward and Roger 1997) in a mixed model.

The ADJDFE= option is not supported by the procedures that perform chi-square-based inference
(GENMOD, LOGISTIC, PHREG and SURVEYLOGISTIC).

ADJUST=BON

ADJUST=SCHEFFE

ADJUST=SIDAK

ADJUST=SIMULATE< (simoptions) >

ADJUST=T
requests a multiple comparison adjustment for the p-values and confidence limits for the LS-mean
estimates. The adjusted quantities are produced in addition to the unadjusted p-values and confidence
limits. Adjusted confidence limits are produced if the CL or ALPHA= option is in effect. For
a description of the adjustments, see Chapter 45, “The GLM Procedure,” and Chapter 67, “The
MULTTEST Procedure,” in addition to the documentation for the ADJUST= option in the LSMEANS
statement.

Not all adjustment methods of the LSMEANS statement are available for the LSMESTIMATE state-
ment. Multiplicity adjustments in the LSMEANS statement are designed specifically for differences of
least squares means.

If you specify the STEPDOWN option, the p-values are further adjusted in a step-down fashion.

ALPHA=number
requests that a t type confidence interval be constructed for each of the LS-means with confidence level
1 – number . The value of number must be between 0 and 1; the default is 0.05.

AT variable=value

AT (variable-list)=(value-list)

AT MEANS
modifies the values of the covariates used in computing LS-means. See the AT option in the LSMEANS
statement for details.

BYLEVEL
requests that the procedure compute separate margins for each level of the LSMEANS effect.

The standard LS-means have equal coefficients across classification effects. The BYLEVEL option
changes these coefficients to be proportional to the observed margins. This adjustment is reasonable
when you want your inferences to apply to a population that is not necessarily balanced but has the
margins observed in the input data set. In this case, the resulting LS-means are actually equal to
raw means for fixed-effects models and certain balanced random-effects models, but their estimated
standard errors account for the covariance structure that you have specified. If a WEIGHT statement is
specified, the procedure uses weighted margins to construct the LS-means coefficients.

If the AT option is specified, the BYLEVEL option disables it.
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CATEGORY=category-options
specifies how to construct estimates and multiplicity corrections for models with multinomial data
(ordinal or nominal). This option is also important for constructing sets of estimable functions for F
tests with the JOINT option.

The category-options indicate how response variable levels are treated in constructing the estimable
functions. Possible value for the category-options are the following:

JOINT
computes the estimable functions for every nonredundant category and treats them as a set. For
example, a three-row LSMESTIMATE statement in a model with three response categories leads
to six estimable functions.

SEPARATE
computes the estimable functions for every nonredundant category in turn. For example, a
three-row LSMESTIMATE statement in a model with three response categories leads to two sets
of three estimable functions.

quoted-value-list
computes the estimable functions only for the specified list of values. The list must consist of
formatted values of the response categories.

For further details about using the CATEGORY= option in models for multinomial data, see the
documentation for the CATEGORY= option in the ESTIMATE statement.

The CATEGORY= option is supported only by the procedures that support generalized linear modeling
(GENMOD, LOGISTIC, and SURVEYLOGISTIC) and by PROC PLM when it is used to perform
statistical analyses on item stores that were created by these procedures.

CHISQ
requests that chi-square tests be performed in addition to F tests, when you request an F test with the
JOINT option. This option has no effect in procedures that produce chi-square statistics by default.

CL
requests that t type confidence limits be constructed for each of the LS-means. The confidence level is
0.95 by default; this can be changed with the ALPHA= option. If you specify an ADJUST= option,
then the confidence limits are adjusted for multiplicity. But if you also specify STEPDOWN, then only
p-values are step-down adjusted, not the confidence limits.

CORR
displays the estimated correlation matrix of the linear combination of the least squares means.

COV
displays the estimated covariance matrix of the linear combination of the least squares means.

DF=number
specifies the degrees of freedom for the tests and confidence limits. The option is not supported
by the procedures that perform chi-square-based inference (GENMOD, LOGISTIC, PHREG, and
SURVEYLOGISTIC).
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DIVISOR=value-list
specifies a list of values by which to divide the coefficients so that fractional coefficients can be entered
as integer numerators. If you do not specify value-list , a default value of 1.0 is assumed. Missing
values in the value-list are converted to 1.0.

If the number of elements in value-list exceeds the number of rows of the estimate, the extra values are
ignored. If the number of elements in value-list is less than the number of rows of the estimate, the last
value in value-list is carried forward.

If you specify a row-specific divisor as part of the specification of the estimate row, this value multiplies
the corresponding value in the value-list . For example, the following statement divides the coefficients
in the first row by 8, and the coefficients in the third and fourth row by 3:

lsmestimate A 'One vs. two' 8 -8 divisor=2,
'One vs. three' 1 0 -1 ,
'One vs. four' 3 0 0 -3 ,
'One vs. five' 3 0 0 0 -3 / divisor=4,.,3;

Coefficients in the second row are not altered.

E
requests that the L coefficients of the estimable function be displayed. These are the coefficients that
apply to the fixed-effect parameter estimates. The E option displays the coefficients that you would
need to enter in an equivalent ESTIMATE statement.

ELSM
requests that the K matrix coefficients be displayed. These are the coefficients that apply to the
LS-means. This option is useful to ensure that you assigned the coefficients correctly to the LS-means.

EXP
requests exponentiation of the least squares means estimate. When you model data with the logit
link function and the estimate represents a log odds ratio, the EXP option produces an odds ratio.
If you specify the CL or ALPHA= option, the (adjusted) confidence limits for the estimate are also
exponentiated.

The EXP option is supported only by PROC PHREG, PROC SURVEYPHREG, the procedures that
support generalized linear modeling (GENMOD, LOGISTIC, and SURVEYLOGISTIC), and by
PROC PLM when it is used to perform statistical analyses on item stores that were created by these
procedures.

ILINK
requests that the estimate and its standard error also be reported on the scale of the mean (the inverse
linked scale). The computation of the inverse linked estimate depends on the estimation mode. For
example, if the analysis is based on a posterior sample when a BAYES statement is present, the
inversely linked estimate is the average of the inversely linked values across the sample of posterior
parameter estimates. If the analysis is not based on a sample of parameter estimates, the procedure
computes the value on the mean scale by applying the inverse link to the estimate.

The interpretation of the inversely linked quantity depends on the coefficients that are specified in your
LSMESTIMATE statement and the link function. For example, in a model for binary data with logit
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link the following LSMESTIMATE statement computes

q D
1

1C expf�.�1 � �2/g

where �1 and �2 are the least squares means that are associated with the first two levels of the
classification effect A:

proc logistic;
class A / param=glm;
model y = A / dist=binary link=logit;
lsmestimate A 1 -1 / ilink;

run;

The quantity q is not the difference of the probabilities associated with the two levels,

�1 � �2 D
1

1C expf��1g
�

1

1C expf��2g

The standard error of the inversely linked estimate is based on the delta method. If you also specify the
CL or ALPHA= option, the procedure computes confidence intervals for the inversely linked estimate.
These intervals are obtained by applying the inverse link to the confidence intervals on the linked scale.

The ILINK option is supported only by the procedures that support generalized linear modeling
(GENMOD, LOGISTIC, and SURVEYLOGISTIC) and by PROC PLM when it is used to perform
statistical analyses on item stores that were created by these procedures.

JOINT< (joint-test-options) >
requests that a joint F or chi-square test be produced for the rows of the estimate. For more information
about the simulation-based p-value calculation, see the section “Joint Hypothesis Tests with Complex
Alternatives, the Chi-Bar-Square Statistic” on page 457. You can specify the following joint-test-options
in parentheses:

ACC=
specifies the accuracy radius for determining the necessary sample size in the simulation-based
approach of Silvapulle and Sen (2004) for tests with order restrictions. The value of  must be
strictly between 0 and 1; the default value is 0.005.

EPS=�
specifies the accuracy confidence level for determining the necessary sample size in the simulation-
based approach of Silvapulle and Sen (2004) for F tests with order restrictions. The value of �
must be strictly between 0 and 1; the default value is 0.01.

LABEL=‘label ’
assigns an identifying label to the joint test. If you do not specify a label, the first non-default
label for the ESTIMATE rows is used to label the joint test.

NOEST

ONLY
performs only the joint test and suppresses other results from the ESTIMATE statement. This
option is useful for emulating the CONTRAST statement that is available in other procedures.
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NSAMP=n
specifies the number of samples for the simulation-based method of Silvapulle and Sen (2004).
If n is not specified, it is constructed from the values of the ALPHA=˛, the ACC= , and the
EPS=� options. With the default values for  , �, and ˛ (0.005, 0.01, and 0.05, respectively),
NSAMP=12,604 by default.

CHISQ
adds a chi-square test if the procedure produces an F test by default.

BOUNDS=value-list
specifies boundary values for the estimable linear function. The null value of the hypothesis
is always zero. If you specify a positive boundary value z, the hypotheses are H W � D 0,
HaW W � > 0 with the added constraint that � < z. The same is true for negative boundary values.
The alternative hypothesis is then HaW � < 0 subject to the constraint � > �jzj. If you specify a
missing value, the hypothesis is assumed to be two-sided. The BOUNDS option enables you to
specify sets of one- and two-sided joint hypotheses. If all values in value-list are set to missing,
the procedure performs a simulation-based p-value calculation for a two-sided test.

LOWER

LOWERTAILED
requests that the p-value for the t test be based only on values that are less than the test statistic. A
two-tailed test is the default. A lower-tailed confidence limit is also produced if you specify the CL or
ALPHA= option.

Note that for ADJUST=SCHEFFE the one-sided adjusted confidence intervals and one-sided adjusted
p-values are the same as the corresponding two-sided statistics, because this adjustment is based on
only the right tail of the F distribution.

If you request an F test with the JOINT option, then a one-sided left-tailed order restriction is applied
to all estimable functions, and the corresponding chi-bar-square statistic of Silvapulle and Sen (2004)
is computed in addition to the two-sided, standard, F or chi-square statistic. See the JOINT option for
how to control the computation of the simulation-based chi-bar-square statistic.

OBSMARGINS< =OM-data-set >

OM< =OM-data-set >
specifies a potentially different weighting scheme for the computation of LS-means coefficients. The
standard LS-means have equal coefficients across classification effects; however, the OM option
changes these coefficients to be proportional to those found in the OM-data-set . This adjustment is
reasonable when you want your inferences to apply to a population that is not necessarily balanced but
has the margins observed in OM-data-set . See the OBSMARGINS option in the LSMEANS statement
for further details.

PLOTS=plot-options
produces ODS statistical graphics of the distribution of estimable functions if the procedure performs
the analysis in a sampling-based mode. For example, this is the case when procedures support a
BAYES statement and perform a Bayesian analysis. The estimable functions are then computed for
each of the posterior parameter estimates, and the “Least Squares Means Estimates” table reports
simple descriptive statistics for the evaluated functions. In this situation, the PLOTS= option enables
you to visualize the distribution of the estimable function. The following plot-options are available:
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ALL
produces all possible plots with their default settings.

BOXPLOT< (boxplot-options) >
produces box plots of the distribution of the estimable function across the posterior sample. A
separate box plot is generated for each estimable function and all box plots appear on a single
graph by default. You can affect the appearance of the box plot graph with the following options:

ORIENTATION=VERTICAL | HORIZONTAL

ORIENT=VERT | HORIZ
specifies the orientation of the boxes. The default is vertical orientation of the box plots.

NPANELPOS=number
specifies how to break the series of box plots across multiple panels. If the NPANELPOS
option is not specified, or if number equals zero, then all box plots are displayed in a single
graph; this is the default. If a negative number is specified, then exactly up to jnumber j of
box plots are displayed per panel. If number is positive, then the number of boxes per panel
is balanced to achieve small variation in the number of box plots per graph.

DISTPLOT< (distplot-options) >

DIST< (distplot-options) >
generates panels of histograms with a kernel density overlaid. A separate plot in each panel
contains the results for each estimable function. You can specify the following distplot-options in
parentheses:

BOX | NOBOX
controls the display of a horizontal box plot below the histogram. The BOX option is enabled
by default.

HIST | NOHIST
controls the display of the histogram of the estimable function’s distribution across the
posterior sample. The HIST option is enabled by default.

NORMAL | NONORMAL
controls the display of a normal density estimate on the graph. The NONORMAL option is
enabled by default.

KERNEL | NOKERNEL
controls the display of a kernel density estimate on the graph. The KERNEL option is
enabled by default.

NROWS=number
specifies the highest number of rows in a panel. The default is 3.

NCOLS=number
specifies the highest number of columns in a panel. The default is 3.

UNPACK
unpacks the panel into separate graphics.
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NONE
does not produce any plots.

SEED=number
specifies the seed for the sampling-based components of the computations for the LSMESTIMATE
statement (for example, chi-bar-square statistics and simulated p-values). The value of number must
be an integer. The seed is used to start the pseudo-random-number generator for the simulation. If you
do not specify a seed, or if you specify a value less than or equal to zero, the seed is generated from
reading the time of day from the computer clock. Note that there could be multiple LSMESTIMATE
statements with SEED= specifications and there could be other statements that can supply a random
number seed. Since the procedure has only one random number stream, the initial seed is shown in the
SAS log.

SINGULAR=number
tunes the estimability checking as documented for the SINGULAR= option in the ESTIMATE state-
ment.

STEPDOWN< (step-down-options) >
requests that multiplicity adjustments for the p-values of estimable functions be further adjusted
in a step-down fashion. Step-down methods increase the power of multiple testing procedures by
taking advantage of the fact that a p-value is never declared significant unless all smaller p-values are
also declared significant. The STEPDOWN adjustment combined with ADJUST=BON corresponds
to the methods of Holm (1979) and “Method 2” of Shaffer (1986); this is the default. Using step-
down-adjusted p-values combined with ADJUST=SIMULATE corresponds to the method of Westfall
(1997).

If the ESTIMATE statement is applied with a STEPDOWN option in a mixed model where the degrees-
of-freedom method is that of Kenward and Roger (1997) or of Satterthwaite, then step-down-adjusted
p-values are produced only if the ADJDFE=ROW option is in effect.

Also, the STEPDOWN option affects only p-values, not confidence limits. For ADJUST=SIMULATE,
the generalized least squares hybrid approach of Westfall (1997) is used to increase Monte Carlo
accuracy.

You can specify the following step-down-options in parentheses:

MAXTIME=n
specifies the time (in seconds) to be spent computing the maximal logically consistent sequential
subsets of equality hypotheses for TYPE=LOGICAL. The default is MAXTIME=60. If the
MAXTIME value is exceeded, the adjusted tests are not computed. When this occurs, you can
try increasing the MAXTIME value. However, note that there are common multiple comparisons
problems for which this computation requires a huge amount of time—for example, all pairwise
comparisons between more than 10 groups. In such cases, try to use TYPE=FREE (the default)
or TYPE=LOGICAL(n) for small n.

ORDER=PVALUE

ORDER=ROWS
specifies the order in which the step-down tests are performed. ORDER=PVALUE is the default,
with LS-mean estimates being declared significant only if all LS-mean estimates with smaller
(unadjusted) p-values are significant. If you specify ORDER=ROWS, then significances are
evaluated in the order in which they are specified.
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REPORT
specifies that a report on the step-down adjustment be displayed, including a listing of the
sequential subsets (Westfall 1997) and, for ADJUST=SIMULATE, the step-down simulation
results.

TYPE=LOGICAL< (n) >
TYPE=FREE

specifies how step-down adjustment are made. If you specify TYPE=LOGICAL, the step-down
adjustments are computed by using maximal logically consistent sequential subsets of equality
hypotheses (Shaffer 1986; Westfall 1997). Alternatively, for TYPE=FREE, sequential subsets
are computed ignoring logical constraints. The TYPE=FREE results are more conservative than
those for TYPE=LOGICAL, but they can be much more efficient to produce for many estimates.
For example, it is not feasible to take logical constraints between all pairwise comparisons of
more than about 10 groups. For this reason, TYPE=FREE is the default.

However, you can reduce the computational complexity of taking logical constraints into account
by limiting the depth of the search tree used to compute them, specifying the optional depth
parameter as a number n in parentheses after TYPE=LOGICAL. As with TYPE=FREE, results
for TYPE=LOGICAL(n) are conservative relative to the true TYPE=LOGICAL results. But even
for TYPE=LOGICAL(0), they can be appreciably less conservative than TYPE=FREE, and they
are computationally feasible for much larger numbers of estimates. If you do not specify n or if n
= –1, the full search tree is used.

TESTVALUE=value-list

TESTMEAN=value-list
specifies the value under the null hypothesis for testing the estimable functions in the LSMESTIMATE
statement. The rules for specifying the value-list are very similar to those for specifying the divisor
list in the DIVISOR= option. If no TESTVALUE= is specified, all tests are performed as H WLˇ D 0.
Missing values in the value-list also are translated to zeros. If you specify fewer values than rows in
the LSMESTIMATE statement, the last value in value-list is carried forward.

The TESTVALUE= option affects only p-values from individual, joint, and multiplicity-adjusted tests.
It does not affect confidence intervals.

The TESTVALUE option is not available for the multinomial distribution, and the values are ignored
when you perform a sampling-based (Bayesian) analysis.

UPPER
UPPERTAILED

requests that the p-value for the t test be based only on values that are greater than the test statistic. A
two-tailed test is the default. An upper-tailed confidence limit is also produced if you specify the CL or
ALPHA= option.

Note that for ADJUST=SCHEFFE the one-sided adjusted confidence intervals and one-sided adjusted
p-values are the same as the corresponding two-sided statistics, because this adjustment is based on
only the right tail of the F distribution.

If you request a joint test with the JOINT option, then a one-sided right-tailed order restriction is
applied to all estimable functions, and the corresponding chi-bar-square statistic of Silvapulle and Sen
(2004) is computed in addition to the two-sided, standard, F or chi-square statistic. See the JOINT
option for how to control the computation of the simulation-based chi-bar-square statistic.
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ODS Table Names: LSMESTIMATE Statement
Each table created by the LSMESTIMATE statement has a name associated with it, and you can use this
name to refer to the table when using the Output Delivery System (ODS) to select tables and create output
data sets. These names are listed in Table 19.26. For more information about ODS, see Chapter 20, “Using
the Output Delivery System.”

Table 19.26 ODS Tables Produced by the LSMESTIMATE
statement

Table Name Description Required Option

Coef L matrix coefficients or K matrix coef-
ficients

E or ELSM

LSMEstimates Estimates among LS-means Default
Contrasts Joint test results for LS-means esti-

mates
JOINT

ODS Graphics: LSMESTIMATE Statement
This section describes the use of ODS for creating statistical graphs of the distribution of LS-means and
LS-mean differences with the LSMESTIMATE statement. The plots can be produced only in association
with the three procedures that can perform Bayesian analysis (PROC GENMOD, PROC LIFEREG, and
PROC PHREG). The plots are available via these procedures directly, and also via PROC PLM when run
using an item store that was created by these procedures. To request these graphs, you must do the following:

• ensure that ODS Graphics is enabled

• use a BAYES statement with PROC GENMOD, PROC LIFEREG, or PROC PHREG, or use PROC
PLM to perform statistical analysis on an item store that was saved from a Bayesian analysis

• request plots with the PLOTS= option in the LSMESTIMATE statement

For more information about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.” The available
graphs are summarized in Table 19.27.

Table 19.27 Graphs Produced by the LSMESTIMATE statement

ODS Graph Name Plot Description Required Option

BoxPlot Displays box plots of LS-means or
LS-mean differences across a posterior
sample.

PLOTS=BOXPLOT
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Table 19.27 continued

ODS Graph Name Plot Description Required Option

DistPanel Displays panels of histograms with ker-
nel density curves overlaid. Each plot
contains the results for the posterior
sample of each LS-mean or LS-mean
difference.

PLOTS=DISTPLOT

DistPlot Displays a histogram with a kernel den-
sity curve overlaid. The plot contains
the results for the posterior sample of
the LS-mean or LS-mean difference.

PLOTS=DISTPLOT(UNPACK)

For details about the plot-options of the LSMESTIMATE statement, see the PLOTS= option in the section
“LSMESTIMATE Statement” on page 476.

NLOPTIONS Statement

This section applies to the following procedures:
CALIS, GLIMMIX, HPMIXED, PHREG, SURVEYPHREG, and VARIOGRAM. See the individual proce-
dure chapters for deviations from the common syntax and defaults shown here.

Syntax: NLOPTIONS Statement
The NLOPTIONS statement provides you with syntax to control aspects of the nonlinear optimizations in the
CALIS, GLIMMIX, HPMIXED, PHREG, SURVEYPHREG, and VARIOGRAM procedures.

NLOPTIONS < options > ;

The nonlinear optimization options are described in alphabetical order after Table 19.28, which summarizes
the options by category. The notation used in describing the options is generic in the sense that  denotes
the p � 1 vector of parameters for the optimization and  i is its ith element. The objective function being
minimized, its p � 1 gradient vector, and its p � p Hessian matrix are denoted as f . /, g. /, and H. /,
respectively. The gradient with respect to the ith parameter is denoted as gi . /. Superscripts in parentheses
denote the iteration count; for example, f . /.k/ is the value of the objective function at iteration k. In the
mixed model procedures, the parameter vector  might consist of fixed effects only, covariance parameters
only, or fixed effects and covariance parameters. In the CALIS procedure,  consists of all independent
parameters that are defined in the models and in the PARAMETERS statement.
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Table 19.28 Options to Control Aspects of the Optimization

Option Description

Optimization
HESCAL= Determines the type of Hessian scaling
INHESSIAN= Specifies the start for approximated Hessian
LINESEARCH= Specifies the line-search method
LSPRECISION= Specifies the line-search precision
RESTART= Specifies the iteration number for update restart
TECHNIQUE= Determines the minimization technique
UPDATE= Determines the update technique

Termination Criteria
ABSCONV= Tunes an absolute function convergence criterion
ABSFCONV= Tunes an absolute function difference convergence criterion
ABSGCONV= Tunes the absolute gradient convergence criterion
ABSXCONV= Tunes the absolute parameter convergence criterion
FCONV= Tunes the relative function convergence criterion
FCONV2= Tunes another relative function convergence criterion
FSIZE= Specifies the value used in the FCONV and GCONV criteria
GCONV= Tunes the relative gradient convergence criterion
GCONV2= Tunes another relative gradient convergence criterion
MAXFUNC= Specifies the maximum number of function calls
MAXITER= Specifies the maximum number of iterations
MAXTIME= Specifies the upper limit for seconds of CPU time
MINITER= Specifies the minimum number of iterations
XCONV= Specifies the relative parameter convergence criterion
XSIZE= Specifies the value used in the XCONV criterion

Step Length
DAMPSTEP= Dampens steps in a line search
INSTEP= Specifies the initial trust region radius
MAXSTEP= Specifies the maximum trust region radius

Printed Output
PALL Displays (almost) all printed output
PHISTORY Displays optimization history
NOPRINT Suppresses all printed output

Covariance Matrix Tolerances
ASINGULAR= Specifies the absolute singularity for inertia
MSINGULAR= Specifies the relative M singularity for inertia
VSINGULAR= Specifies the relative V singularity for inertia
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Table 19.28 continued

Option Description

Constraint Specifications
LCEPSILON= Specifies the range for active constraints
LCDEACT= Specifies the LM tolerance for deactivating
LCSINGULAR= Specifies the tolerance for dependent constraints

Remote Monitoring
SOCKET= Specifies the fileref for remote monitoring

ABSCONV=r

ABSTOL=r
specifies an absolute function convergence criterion: for minimization, termination requires f . .k// �
r . The default value of r is the negative square root of the largest double-precision value, which serves
only as a protection against overflows.

ABSFCONV=r < n >

ABSFTOL=r< n >
specifies an absolute function difference convergence criterion:

• For all techniques except NMSIMP (specified by the TECHNIQUE= option), termination requires
a small change of the function value in successive iterations,

jf . .k�1// � f . .k//j � r

• The same formula is used for the NMSIMP technique, but  .k/ is defined as the vertex with the
lowest function value, and  .k�1/ is defined as the vertex with the highest function value in the
simplex.

The default value is r = 0. The optional integer value n specifies the number of successive iterations for
which the criterion must be satisfied before the process can be terminated.

ABSGCONV=r < n >

ABSGTOL=r< n >
specifies an absolute gradient convergence criterion:

• For all techniques except NMSIMP (specified by the TECHNIQUE= option), termination requires
the maximum absolute gradient element to be small:

max
j
jgj . 

.k//j � r

• This criterion is not used by the NMSIMP technique.

The default value is r = 1E–5. The optional integer value n specifies the number of successive iterations
for which the criterion must be satisfied before the process can be terminated.
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ABSXCONV=r < n >

ABSXTOL=r< n >
specifies an absolute parameter convergence criterion:

• For all techniques except NMSIMP, termination requires a small Euclidean distance between
successive parameter vectors,

k  .k/ � .k�1/ k2� r

• For the NMSIMP technique, termination requires either a small length ˛.k/ of the vertices of a
restart simplex,

˛.k/ � r

or a small simplex size,

ı.k/ � r

where the simplex size ı.k/ is defined as the L1 distance from the simplex vertex �.k/ with the
smallest function value to the other p simplex points  .k/

l
¤ �.k/:

ı.k/ D
X
 l¤y

k  
.k/

l
� �.k/ k1

The default is r = 1E–8 for the NMSIMP technique and r = 0 otherwise. The optional integer value n
specifies the number of successive iterations for which the criterion must be satisfied before the process
can terminate.

ASINGULAR=r

ASING=r
specifies an absolute singularity criterion for the computation of the inertia (number of positive,
negative, and zero eigenvalues) of the Hessian and its projected forms. The default value is the square
root of the smallest positive double-precision value.

DAMPSTEP< =r >
specifies that the initial step length value ˛.0/ for each line search (used by the QUANEW, CONGRA,
or NEWRAP technique) cannot be larger than r times the step length value used in the former
iteration. If the DAMPSTEP option is specified but r is not specified, the default is r = 2. The
DAMPSTEP= option can prevent the line-search algorithm from repeatedly stepping into regions
where some objective functions are difficult to compute or where they could lead to floating-point
overflows during the computation of objective functions and their derivatives. The DAMPSTEP=
option can save time-consuming function calls during the line searches of objective functions that
result in very small steps.

FCONV=r< n >

FTOL=r< n >
specifies a relative function convergence criterion:
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• For all techniques except NMSIMP, termination requires a small relative change of the function
value in successive iterations,

jf . .k// � f . .k�1//j

max.jf . .k�1//j;FSIZE/
� r

where FSIZE is defined by the FSIZE= option.

• The same formula is used for the NMSIMP technique, but  .k/ is defined as the vertex with the
lowest function value and  .k�1/ is defined as the vertex with the highest function value in the
simplex.

The default is r D 10�FDIGITS, where FDIGITS is by default � log10f�g and � is the machine
precision. Some procedures, such as the GLIMMIX procedure, enable you to change the value with
the FDIGITS= option in the PROC statement. The optional integer value n specifies the number of
successive iterations for which the criterion must be satisfied before the process can terminate.

FCONV2=r< n >

FTOL2=r< n >
specifies a second function convergence criterion:

• For all techniques except NMSIMP, termination requires a small predicted reduction,

df .k/ � f . .k// � f . .k/ C s.k//

of the objective function. The predicted reduction

df .k/ D �g.k/
0

s.k/ �
1

2
s.k/
0

H.k/s.k/

D �
1

2
s.k/
0

g.k/ � r

is computed by approximating the objective function f by the first two terms of the Taylor series
and substituting the Newton step,

s.k/ D �ŒH.k/��1g.k/

• For the NMSIMP technique, termination requires a small standard deviation of the function
values of the p C 1 simplex vertices  .k/

l
, l D 0; : : : ; p,s

1

nC 1

X
l

h
f . 

.k/

l
/ � f . .k//

i2
� r

where f . .k// D 1
pC1

P
l f . 

.k/

l
/. If there are pact boundary constraints active at  .k/, the

mean and standard deviation are computed only for the nC 1 � pact unconstrained vertices.

The default value is r = 1E–6 for the NMSIMP technique and r= 0 otherwise. The optional integer
value n specifies the number of successive iterations for which the criterion must be satisfied before
the process can terminate.
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FSIZE=r
specifies the FSIZE parameter of the relative function and relative gradient termination criteria. The
default value is r = 0. For more details, see the FCONV= and GCONV= options.

GCONV=r< n >
GTOL=r< n >

specifies a relative gradient convergence criterion:

• For all techniques except CONGRA and NMSIMP, termination requires that the normalized
predicted function reduction be small,

g. .k//0ŒH.k/��1g. .k//
max.jf . .k//j;FSIZE/

� r

where FSIZE is defined by the FSIZE= option. For the CONGRA technique (where a reliable
Hessian estimate H is not available), the following criterion is used:

k g. .k// k22 k s. .k// k2
k g. .k// � g. .k�1// k2 max.jf . .k//j;FSIZE/

� r

• This criterion is not used by the NMSIMP technique.

The default value is r = 1E–8. The optional integer value n specifies the number of successive iterations
for which the criterion must be satisfied before the process can terminate.

GCONV2=r< n >
GTOL2=r< n >

specifies another relative gradient convergence criterion:

• For least squares problems and the TRUREG, LEVMAR, NRRIDG, and NEWRAP techniques,
the following criterion of Browne (1982) is used:

max
j

jgj . .k//jq
f . .k//H.k/j;j

� r

• This criterion is not used by the other techniques.

The default value is r = 0. The optional integer value n specifies the number of successive iterations
for which the criterion must be satisfied before the process can terminate.

HESCAL=0 | 1 | 2 | 3
HS=0 | 1 | 2 | 3

specifies the scaling version of the Hessian (or crossproduct Jacobian) matrix used in NRRIDG,
TRUREG, LEVMAR, NEWRAP, or DBLDOG optimization.

If HS is not equal to 0, the first iteration and each restart iteration set the diagonal scaling matrix
D.0/ D diag.d .0/i /:

d
.0/
i D

q
max.jH .0/

i;i j; �/

where H .0/
i;i are the diagonal elements of the Hessian (or crossproduct Jacobian). In every other

iteration, the diagonal scaling matrix D.0/ D diag.d .0/i / is updated depending on the HS option:
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0 specifies that no scaling be done.

1 specifies the Moré (1978) scaling update:

d
.kC1/
i D max

�
d
.k/
i ;

q
max.jH .k/

i;i j; �/

�
2 specifies the Dennis, Gay, and Welsch (1981) scaling update:

d
.kC1/
i D max

�
0:6 � d

.k/
i ;

q
max.jH .k/

i;i j; �/

�
3 specifies that di be reset in each iteration:

d
.kC1/
i D

q
max.jH .k/

i;i j; �/

In each scaling update, � is the relative machine precision. The default value is HS=0. Scaling of the
Hessian can be time-consuming in the case where general linear constraints are active.

INHESSIAN< =r >

INHESS< =r >
specifies how the initial estimate of the approximate Hessian is defined for the quasi-Newton techniques
QUANEW and DBLDOG. There are two alternatives:

• If you do not use the r specification, the initial estimate of the approximate Hessian is set to the
Hessian at  .0/.

• If you do use the r specification, the initial estimate of the approximate Hessian is set to the
multiple of the identity matrix rI.

By default (if you do not specify the option INHESSIAN=r ), the initial estimate of the approximate
Hessian is set to the multiple of the identity matrix rI, where the scalar r is computed from the
magnitude of the initial gradient.

INSTEP=r

SALPHA=r

RADIUS=r
reduces the length of the first trial step during the line search of the first iterations. For highly nonlinear
objective functions, such as the EXP function, the default initial radius of the trust-region algorithm
TRUREG or DBLDOG or the default step length of the line-search algorithms can result in arithmetic
overflows. If this occurs, you should specify decreasing values of 0 < r < 1 such as INSTEP=1E–1,
INSTEP=1E–2, INSTEP=1E–4, and so on, until the iteration starts successfully.

• For trust-region algorithms (TRUREG or DBLDOG), the INSTEP= option specifies a factor r >
0 for the initial radius �.0/ of the trust region. The default initial trust-region radius is the length
of the scaled gradient. This step corresponds to the default radius factor of r = 1.

• For line-search algorithms (NEWRAP, CONGRA, or QUANEW), the INSTEP= option specifies
an upper bound for the initial step length for the line search during the first five iterations. The
default initial step length is r = 1.

• For the Nelder-Mead simplex algorithm, by using TECH=NMSIMP, the INSTEP=r option defines
the size of the start simplex.
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LCDEACT=r

LCD=r
specifies a threshold r for the Lagrange multiplier that determines whether an active inequality
constraint remains active or can be deactivated. For maximization, r must be greater than zero; for
minimization, r must be smaller than zero. An active inequality constraint can be deactivated only if
its Lagrange multiplier is less than the threshold value. The default value is

r D ˙min.0:01;max.0:1 �ABSGCONV; 0:001 � gmax.k///

where “+” is for maximization, “–” is for minimization, ABSGCONV is the value of the absolute
gradient criterion, and gmax.k/ is the maximum absolute element of the gradient or the projected
gradient.

LCEPSILON=r

LCEPS=r

LCE=r
specifies the range r for active and violated boundary constraints, where r � 0. If the point  .k/

satisfies the following condition, the constraint i is recognized as an active constraint:

j

kX
jD1

aij 
.k/
j � bi j � r � .jbi j C 1/

Otherwise, the constraint i is either an inactive inequality or a violated inequality or equality constraint.
The default value is r = 1E–8. During the optimization process, the introduction of rounding errors can
force the optimization to increase the value of r by a factor of 10k for some k > 0. If this happens, it is
indicated by a message displayed in the log.

LCSINGULAR=r

LCSING=r

LCS=r
specifies a criterion r , where r � 0, that is used in the update of the QR decomposition and that
determines whether an active constraint is linearly dependent on a set of other active constraints. The
default value is r = 1E–8. The larger r becomes, the more the active constraints are recognized as being
linearly dependent. If the value of r is larger than 0.1, it is reset to 0.1.

LINESEARCH=i

LIS=i
specifies the line-search method for the CONGRA, QUANEW, and NEWRAP optimization techniques.
See Fletcher (1987) for an introduction to line-search techniques. The value of i can be 1; : : : ; 8 as
follows. The default is LIS=2.

1 specifies a line-search method that needs the same number of function and gradient
calls for cubic interpolation and cubic extrapolation; this method is similar to one
used by the Harwell subroutine library.

2 specifies a line-search method that needs more function than gradient calls for
quadratic and cubic interpolation and cubic extrapolation; this method is imple-
mented as shown in Fletcher (1987) and can be modified to an exact line search by
using the LSPRECISION= option. This is the default.
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3 specifies a line-search method that needs the same number of function and gradient
calls for cubic interpolation and cubic extrapolation; this method is implemented as
shown in Fletcher (1987) and can be modified to an exact line search by using the
LSPRECISION= option.

4 specifies a line-search method that needs the same number of function and gradient
calls for stepwise extrapolation and cubic interpolation.

5 specifies a line-search method that is a modified version of LIS=4.

6 specifies a golden-section line search (Polak 1971), which uses only function values
for linear approximation.

7 specifies a bisection line search (Polak 1971), which uses only function values for
linear approximation.

8 specifies the Armijo line-search technique (Polak 1971), which uses only function
values for linear approximation.

LSPRECISION=r

LSP=r
specifies the degree of accuracy that should be obtained by the line-search algorithms LIS=2 and
LIS=3. Usually an imprecise line search is inexpensive and successful. For more difficult optimization
problems, a more precise and expensive line search might be necessary (Fletcher 1987). The LIS=2
line-search method (which is the default for the NEWRAP, QUANEW, and CONGRA techniques)
and the LIS=3 line-search method approach exact line search for small LSPRECISION= values. If
you have numerical problems, try to decrease the LSPRECISION= value to obtain a more precise line
search. The default values are shown in Table 19.29.

Table 19.29 Default Values for Line-Search Precision

TECH= UPDATE= LSP Default

QUANEW DBFGS, BFGS r = 0.4
QUANEW DDFP, DFP r = 0.06
CONGRA All r = 0.1
NEWRAP No update r = 0.9

For more details, see Fletcher (1987).

MAXFUNC=i

MAXFU=i
specifies the maximum number i of function calls in the optimization process. The default values are
as follows:

• 125 for the TRUREG, NRRIDG, NEWRAP, and LEVMAR techniques

• 500 for the QUANEW and DBLDOG techniques

• 1000 for the CONGRA technique

• 3000 for the NMSIMP technique
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Optimization can terminate only after completing a full iteration. Therefore, the number of function
calls that are actually performed can exceed the number that is specified by the MAXFUNC= option.

MAXITER=i

MAXIT=i
specifies the maximum number i of iterations in the optimization process. The default values are as
follows:

• 50 for the TRUREG, NRRIDG, NEWRAP, and LEVMAR techniques

• 200 for the QUANEW and DBLDOG techniques

• 400 for the CONGRA technique

• 1000 for the NMSIMP technique

These default values are also valid when i is specified as a missing value.

MAXSTEP=r< n >
specifies an upper bound for the step length of the line-search algorithms during the first n iterations.
By default, r is the largest double-precision value and n is the largest integer available. Setting this
option can improve the speed of convergence for the CONGRA, QUANEW, and NEWRAP techniques.

MAXTIME=r
specifies an upper limit of r seconds of CPU time for the optimization process. The time specified
by the MAXTIME= option is checked only once at the end of each iteration. Therefore, the actual
running time can be much longer than that specified by the MAXTIME= option. The actual running
time includes the rest of the time needed to finish the iteration and the time needed to generate the
output of the results. By default, CPU time is not limited.

MINITER=i

MINIT=i
specifies the minimum number of iterations. The default value is 0. If you request more iterations
than are actually needed for convergence to a stationary point, the optimization algorithms can behave
strangely. For example, the effect of rounding errors can prevent the algorithm from continuing for the
required number of iterations.

MSINGULAR=r

MSING=r
specifies a relative singularity criterion r , where r > 0, for the computation of the inertia (number of
positive, negative, and zero eigenvalues) of the Hessian and its projected forms. The default value is
1E–12.

NOPRINT
suppresses output that is related to optimization, such as the iteration history. This option, along with
all NLOPTIONS statement options for displayed output, are ignored by the GLIMMIX and HPMIXED
procedures.

PALL
displays all optional output for optimization. This option is supported only by the CALIS and
SURVEYPHREG procedures.
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PHISTORY

PHIST
displays the optimization history. The PHISTORY option is implied if the PALL option is specified.
The PHISTORY option is supported only by the CALIS and SURVEYPHREG procedures.

RESTART=i

REST=i
specifies that the QUANEW or CONGRA technique is restarted with a steepest search direction after
at most i iterations, where i > 0. Default values are as follows:

• When TECHNIQUE=CONGRA and UPDATE=PB, restart is performed automatically; so i is
not used.

• When TECHNIQUE=CONGRA and UPDATE¤PB, i D min.10p; 80/, where p is the number
of parameters.

• When TECHNIQUE=QUANEW, i is the largest integer available.

SINGULAR=r

SING=r
specifies the singularity criterion r , 0r � 1, that is used for the inversion of the Hessian matrix. The
default value is 1E–8.

SOCKET=fileref
specifies the fileref that contains the information needed for remote monitoring.

TECHNIQUE=value

TECH=value

OMETHOD=value

OM=value
specifies the optimization technique. You can find additional information about choosing an optimiza-
tion technique in the section “Choosing an Optimization Algorithm” on page 501. Valid values for the
TECHNIQUE= option are as follows:

• CONGRA
performs a conjugate-gradient optimization, which can be more precisely specified with the
UPDATE= option and modified with the LINESEARCH= option. When you specify this option,
UPDATE=PB by default.

• DBLDOG
performs a version of double-dogleg optimization, which can be more precisely specified with
the UPDATE= option. When you specify this option, UPDATE=DBFGS by default.

• LEVMAR
performs a highly stable, but for large problems memory- and time-consuming, Levenberg-
Marquardt optimization technique, a slightly improved variant of the Moré (1978) implementation.
You can also specify this technique with the alias LM or MARQUARDT. In the CALIS procedure,
this is the default optimization technique if there are fewer than 40 parameters to estimate. The
GLIMMIX and HPMIXED procedures do not support this optimization technique.
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• NMSIMP
performs a Nelder-Mead simplex optimization. The CALIS procedure does not support this
optimization technique.

• NONE
does not perform any optimization. This option can be used for the following:

– to perform a grid search without optimization
– to compute estimates and predictions that cannot be obtained efficiently with any of the

optimization techniques
– to obtain inferences for known values of the covariance parameters

• NEWRAP
performs a Newton-Raphson optimization that combines a line-search algorithm with ridging.
The line-search algorithm LIS=2 is the default method.

• NRRIDG
performs a Newton-Raphson optimization with ridging. This is the default optimization technique
in the SURVEYPHREG procedure.

• QUANEW
performs a quasi-Newton optimization, which can be defined more precisely with the UPDATE=
option and modified with the LINESEARCH= option.

• TRUREG
performs a trust-region optimization.

UPDATE=method

UPD=method
specifies the update method for the quasi-Newton, double-dogleg, or conjugate-gradient optimization
technique. Not every update method can be used with each optimizer.

The following are the valid methods for the UPDATE= option:

• BFGS
performs the original Broyden, Fletcher, Goldfarb, and Shanno (BFGS) update of the inverse
Hessian matrix.

• DBFGS
performs the dual BFGS update of the Cholesky factor of the Hessian matrix. This is the default
update method.

• DDFP
performs the dual Davidon, Fletcher, and Powell (DFP) update of the Cholesky factor of the
Hessian matrix.

• DFP
performs the original DFP update of the inverse Hessian matrix.

• PB
performs the automatic restart update method of Powell (1977) and Beale (1972).

• FR
performs the Fletcher-Reeves update (Fletcher 1987).
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• PR
performs the Polak-Ribiere update (Fletcher 1987).

• CD
performs a conjugate-descent update of Fletcher (1987).

VERSION=1 | 2

VS=1 | 2
specifies the version of the quasi-Newton optimization technique with nonlinear constraints.

VS=1 specifies the update of the � vector as in Powell (1978b, a) (update like VF02AD).

VS=2 specifies the update of the � vector as in Powell (1982b, a) (update like VMCWD).

The default is VERSION=2.

VSINGULAR=r

VSING=r
specifies a relative singularity criterion r , where r > 0, for the computation of the inertia (number of
positive, negative, and zero eigenvalues) of the Hessian and its projected forms. The default value is r
= 1E–8.

XCONV=r< n >

XTOL=r< n >
specifies the relative parameter convergence criterion:

• For all techniques except NMSIMP, termination requires a small relative parameter change in
subsequent iterations:

maxj j 
.k/
j �  

.k�1/
j j

max.j .k/j j; j 
.k�1/
j j;XSIZE/

� r

• For the NMSIMP technique, the same formula is used, but  .k/j is defined as the vertex with the

lowest function value and  .k�1/j is defined as the vertex with the highest function value in the
simplex.

The default value is r = 1E–8 for the NMSIMP technique and r = 0 otherwise. The optional integer
value n specifies the number of successive iterations for which the criterion must be satisfied before the
process can be terminated.

XSIZE=r
specifies the XSIZE parameter r of the relative parameter termination criterion, where r � 0. The
default value is r = 0. For more details, see the XCONV= option.



Choosing an Optimization Algorithm F 501

Choosing an Optimization Algorithm

First- or Second-Order Algorithms

The factors that go into choosing a particular optimization technique for a particular problem are complex.
Trial and error can be involved.

For many optimization problems, computing the gradient takes more computer time than computing the
function value. Computing the Hessian sometimes takes much more computer time and memory than
computing the gradient, especially when there are many decision variables. Unfortunately, optimization
techniques that do not use some kind of Hessian approximation usually require many more iterations than
techniques that do use a Hessian matrix, and, as a result, the total run time of these techniques is often longer.
Techniques that do not use the Hessian also tend to be less reliable. For example, they can terminate more
easily at stationary points than at global optima.

Table 19.30 shows which derivatives are required for each optimization technique.

Table 19.30 Derivatives Required

Algorithm First-Order Second-Order

LEVMAR x x
TRUREG x x
NEWRAP x x
NRRIDG x x
QUANEW x -
DBLDOG x -
CONGRA x -
NMSIMP - -

The second-derivative methods TRUREG, NEWRAP, and NRRIDG are best for small problems where the
Hessian matrix is not expensive to compute. Sometimes the NRRIDG algorithm can be faster than the
TRUREG algorithm, but TRUREG can be more stable. The NRRIDG algorithm requires only one matrix
with p.p C 1/=2 double words; TRUREG and NEWRAP require two such matrices. Here, p denotes the
number of parameters in the optimization.

The first-derivative methods QUANEW and DBLDOG are best for medium-sized problems where the
objective function and the gradient are much faster to evaluate than the Hessian. In general, the QUANEW
and DBLDOG algorithms require more iterations than TRUREG, NRRIDG, and NEWRAP, but each iteration
can be much faster. The QUANEW and DBLDOG algorithms require only the gradient to update an
approximate Hessian, and they require slightly less memory than TRUREG or NEWRAP (essentially one
matrix with p.p C 1/=2 double words).

The first-derivative method CONGRA is best for large problems where the objective function and the
gradient can be computed much faster than the Hessian and where too much memory is required to store
the (approximate) Hessian. In general, the CONGRA algorithm requires more iterations than QUANEW or
DBLDOG, but each iteration can be much faster. Because CONGRA requires only a factor of p double-word
memory, many large applications can be solved only by CONGRA.
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The no-derivative method NMSIMP is best for small problems where derivatives are not continuous or are
very difficult to compute.

Each optimization method uses one or more convergence criteria that determine when it has converged.
An algorithm is considered to have converged when any one of the convergence criteria is satisfied. For
example, under the default settings, the QUANEW algorithm will converge if ABSGCONV < 1E–5, FCONV
< 10�FDIGITS, or GCONV < 1E–8.

Algorithm Descriptions

Trust Region Optimization (TRUREG)
The trust region method uses the gradient g. .k// and the Hessian matrix H. .k//; thus, it requires that the
objective function f . / have continuous first- and second-order derivatives inside the feasible region.

The trust region method iteratively optimizes a quadratic approximation to the nonlinear objective function
within a hyperelliptic trust region with radius � that constrains the step size that corresponds to the quality of
the quadratic approximation. The trust region method is implemented based on Dennis, Gay, and Welsch
(1981); Gay (1983) and Moré and Sorensen (1983).

The trust region method performs well for small- to medium-sized problems, and it does not need many
function, gradient, and Hessian calls. However, if the computation of the Hessian matrix is computationally
expensive, one of the (dual) quasi-Newton or conjugate gradient algorithms might be more efficient.

Newton-Raphson Optimization with Line Search (NEWRAP)
The NEWRAP technique uses the gradient g. .k// and the Hessian matrix H. .k//; thus, it requires that
the objective function have continuous first- and second-order derivatives inside the feasible region. If
second-order derivatives are computed efficiently and precisely, the NEWRAP method can perform well for
medium-sized to large problems, and it does not need many function, gradient, and Hessian calls.

This algorithm uses a pure Newton step when the Hessian is positive definite and when the Newton step
reduces the value of the objective function successfully. Otherwise, a combination of ridging and line search
is performed to compute successful steps. If the Hessian is not positive definite, a multiple of the identity
matrix is added to the Hessian matrix to make it positive definite (Eskow and Schnabel 1991).

In each iteration, a line search is performed along the search direction to find an approximate optimum of
the objective function. The default line-search method uses quadratic interpolation and cubic extrapolation
(LIS=2).

Newton-Raphson Ridge Optimization (NRRIDG)
The NRRIDG technique uses the gradient g. .k// and the Hessian matrix H. .k//; thus, it requires that the
objective function have continuous first- and second-order derivatives inside the feasible region.

This algorithm uses a pure Newton step when the Hessian is positive definite and when the Newton step
reduces the value of the objective function successfully. If at least one of these two conditions is not satisfied,
a multiple of the identity matrix is added to the Hessian matrix.

The NRRIDG method performs well for small- to medium-sized problems, and it does not require many
function, gradient, and Hessian calls. However, if the computation of the Hessian matrix is computationally
expensive, one of the (dual) quasi-Newton or conjugate gradient algorithms might be more efficient.

Because the NRRIDG technique uses an orthogonal decomposition of the approximate Hessian, each iteration
of NRRIDG can be slower than that of the NEWRAP technique, which works with a Cholesky decomposition.
Usually, however, NRRIDG requires fewer iterations than NEWRAP.
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Quasi-Newton Optimization (QUANEW)
The (dual) quasi-Newton method uses the gradient g. .k//, and it does not need to compute second-order
derivatives because they are approximated. It works well for medium-sized to moderately large optimization
problems, where the objective function and the gradient are much faster to compute than the Hessian.
However, in general, it requires more iterations than the TRUREG, NEWRAP, and NRRIDG techniques,
which compute second-order derivatives. QUANEW is the default optimization algorithm because it provides
an appropriate balance between the speed and stability required for most nonlinear mixed model applications.

The QUANEW technique is one of the following, depending upon the value of the UPDATE= option:

• the original quasi-Newton algorithm, which updates an approximation of the inverse Hessian

• the dual quasi-Newton algorithm, which updates the Cholesky factor of an approximate Hessian (this
is the default)

You can specify four update formulas with the UPDATE= option:

• DBFGS performs the dual Broyden, Fletcher, Goldfarb, and Shanno (BFGS) update of the Cholesky
factor of the Hessian matrix. This is the default.

• DDFP performs the dual Davidon, Fletcher, and Powell (DFP) update of the Cholesky factor of the
Hessian matrix.

• BFGS performs the original BFGS update of the inverse Hessian matrix.

• DFP performs the original DFP update of the inverse Hessian matrix.

In each iteration, a line search is performed along the search direction to find an approximate optimum.
The default line-search method uses quadratic interpolation and cubic extrapolation to obtain a step size
˛ that satisfies the Goldstein conditions. One of the Goldstein conditions can be violated if the feasible
region defines an upper limit of the step size. Violating the left-side Goldstein condition can affect the
positive definiteness of the quasi-Newton update. In that case, either the update is skipped or the iterations
are restarted with an identity matrix, resulting in the steepest descent or ascent search direction. You can
specify line-search algorithms other than the default with the LIS= option.

The QUANEW algorithm uses its own line-search technique. Of the options and parameters that control the
line search for other algorithms, only the INSTEP= option applies here. In several applications, large steps
in the first iterations are troublesome. You can use the INSTEP= option to impose an upper bound for the
step size ˛ during the first five iterations. You can also use the INHESSIAN= option to specify a different
starting approximation for the Hessian. If you specify only the INHESSIAN option, the Cholesky factor of a
(possibly ridged) finite-difference approximation of the Hessian is used to initialize the quasi-Newton update
process.

Double-Dogleg Optimization (DBLDOG)
The double-dogleg optimization method combines the ideas of the quasi-Newton and trust region methods.
In each iteration, the double-dogleg algorithm computes the step s.k/ as the linear combination of the steepest
descent or ascent search direction s.k/1 and a quasi-Newton search direction s.k/2 ,

s.k/ D ˛1s
.k/
1 C ˛2s

.k/
2
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The step is requested to remain within a prespecified trust region radius; see Fletcher (1987, p, 107). Thus,
the DBLDOG subroutine uses the dual quasi-Newton update but does not perform a line search. You can
specify two update formulas with the UPDATE= option:

• DBFGS performs the dual Broyden, Fletcher, Goldfarb, and Shanno update of the Cholesky factor of
the Hessian matrix. This is the default.

• DDFP performs the dual Davidon, Fletcher, and Powell update of the Cholesky factor of the Hessian
matrix.

The double-dogleg optimization technique works well for medium-sized to moderately large optimization
problems, where the objective function and the gradient are much faster to compute than the Hessian. The
implementation is based on Dennis and Mei (1979); Gay (1983), but it is extended for dealing with boundary
and linear constraints. The DBLDOG technique generally requires more iterations than the TRUREG,
NEWRAP, and NRRIDG techniques, which require second-order derivatives; however, each of the DBLDOG
iterations is computationally cheap. Furthermore, the DBLDOG technique requires only gradient calls for
the update of the Cholesky factor of an approximate Hessian.

Conjugate Gradient Optimization (CONGRA)
Second-order derivatives are not required by the CONGRA algorithm and are not even approximated. The
CONGRA algorithm can be expensive in function and gradient calls, but it requires only O.p/ memory for
unconstrained optimization. In general, many iterations are required to obtain a precise solution, but each
of the CONGRA iterations is computationally cheap. You can specify four different update formulas for
generating the conjugate directions by using the UPDATE= option:

• PB performs the automatic restart update method of Powell (1977) and Beale (1972). This is the
default.

• FR performs the Fletcher-Reeves update (Fletcher 1987).

• PR performs the Polak-Ribiere update (Fletcher 1987).

• CD performs a conjugate-descent update of Fletcher (1987).

The default often behaves best for typical examples, whereas UPDATE=CD can perform poorly.

The CONGRA subroutine should be used for optimization problems with large p. For the unconstrained
or boundary-constrained case, CONGRA requires only O.p/ bytes of working memory, whereas all other
optimization methods require order O.p2/ bytes of working memory. During p successive iterations,
uninterrupted by restarts or changes in the working set, the conjugate gradient algorithm computes a cycle
of p conjugate search directions. In each iteration, a line search is performed along the search direction
to find an approximate optimum of the objective function. The default line-search method uses quadratic
interpolation and cubic extrapolation to obtain a step size ˛ that satisfies the Goldstein conditions. One of
the Goldstein conditions can be violated if the feasible region defines an upper limit for the step size. Other
line-search algorithms can be specified with the LIS= option.



SLICE Statement F 505

Nelder-Mead Simplex Optimization (NMSIMP)
The Nelder-Mead simplex method does not use any derivatives and does not assume that the objective
function has continuous derivatives. The objective function itself needs to be continuous. This technique is
quite expensive in the number of function calls, and it might be unable to generate precise results for p � 40.

The original Nelder-Mead simplex algorithm is implemented and extended to boundary constraints. This
algorithm does not compute the objective for infeasible points, but it changes the shape of the simplex adapting
to the nonlinearities of the objective function, which contributes to an increased speed of convergence. It
uses a special termination criterion.

SLICE Statement

This statement applies to the following SAS/STAT procedures:
GENMOD, GLIMMIX, LIFEREG, LOGISTIC, MIXED, ORTHOREG, PHREG, PLM, PROBIT, SUR-
VEYLOGISTIC, SURVEYPHREG, and SURVEYREG. It also applies to the RELIABILITY procedure in
SAS/QC software.

The SLICE statement is similar to the LSMEANS statement. You use it to perform inferences on model
effects that consist entirely of classification variables. With the SLICE statement, these effects must be higher-
order effects of at least two classification variables. The effect is then partitioned into subsets that correspond
to variables used in forming the effect. You can use the same options as you use for the LSMEANS statement
to perform an analysis for the partitions. This analysis is also known as an analysis of simple effects (Winer
1971).

By default, the interaction effect is partitioned by all main effects. For example, the following statements
produce simple-effect differences among the A levels for each level of B and simple-effect differences among
the B levels for each level of A:

class a b;
model y = a b a*b;
slice a*b / diff nof;

For example, if the model-effect is a three-way interaction effect, the default output includes comparisons of
the two-way interaction means.

Suppose, for example, that the interaction effect A*B is significant in your analysis and that you want to test
the effect of A for each level of B. The appropriate statement is

slice A*B / sliceBy = B;

This produces an F test for each level of B that compares the equality of the levels of A.

For example, assume that in a balanced design factors A and B have a = 4 and b = 3 levels, respectively.
Consider the following statements:
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class a b;
model y = a b a*b;
slice a*b / sliceby=a diff;

The SLICE statement produces four F tests, one per level of A. The first of these tests is constructed by
extracting the three rows that correspond to the first level of A from the coefficient matrix for the A*B
interaction. Call this matrix La1 and its rows l.1/a1 , l.2/a1 , and l.3/a1 . The slice tests the two-degrees-of-freedom
hypothesis

H W

8<:
�
l.1/a1 � l.2/a1

�
ˇ D 0�

l.1/a1 � l.3/a1
�
ˇ D 0

In a balanced design, where �ij denotes the mean response if A is at level i and B is at level j, this hypothesis
is equivalent toH W�11 D �12 D �13. The DIFF option considers the three rows of La1 in turn and performs
tests of the difference between pairs of rows. By default, all pairwise differences within the subset of L are
considered; in the example this corresponds to tests of the form

H W
�
l.1/a1 � l.2/a1

�
ˇ D 0

H W
�
l.1/a1 � l.3/a1

�
ˇ D 0

H W
�
l.2/a1 � l.3/a1

�
ˇ D 0

In the example, with a = 4 and b = 3, this produces four sets of least squares means differences. Within each
set, factor A is held fixed at a particular level and each set consists of three comparisons.

Syntax: SLICE Statement
SLICE model-effect < / options > ;

You can specify all options of the LSMEANS statement in the SLICE statement. The philosophy of the SLICE
statement is to apply the analysis according to the options to the subsets of the L matrix that correspond to
chosen partitions.

The following behavior differences between the SLICE and the LSMEANS statement are noteworthy:

• The specification of the model-effect is optional in the LSMEANS statement and required in the SLICE
statement.

• Only a single SLICE model-effect can be specified before the option slash (/). However, you can
specify multiple partitioning rules with the SLICEBY option.

• The MEANS option is the default for most procedures in the LSMEANS statement. For the SLICE
statement, the default is the NOMEANS option.

Also, the three generalized linear modeling options: EXP, ILINK, and ODDSRATIO in the SLICE statement
are additionally supported by PROC GLIMMIX and by PROC PLM when it is used to perform statistical
analyses on item stores that were created by PROC GLIMMIX.

In addition to the options in the LSMEANS statement, you can specify the following options in the SLICE
statement after the slash (/):
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SLICEBY < = > slice-specification

SIMPLE < = > slice-specification

SLICEBY(slice-specification < , slice-specification < , : : :> >)

SIMPLE(slice-specification < , slice-specification < , : : :> >)
determines how to construct the partition of the least squares means for the model-effect. A slice-
specification consists of an effect name followed by an optional list of formatted values. For example,
the following statements creates partitions of the A*B interaction effect for all levels of variable A:

class a b;
model y = a b a*b;
slice a*b / sliceby=a;

The following statements produces two partitions of the interaction:

class a b;
model y = a b a*b;
slice a*b / sliceby(b='2' a='1') diff;

In the first partition the variable B takes on formatted value ‘2’. In the second partition the variable A
takes on the formatted value ‘1’.

NOF
suppresses the F test for testing the mutual equality of the estimable functions in the partition.

ODS Table Names: SLICE Statement
Each table created by the SLICE statement has a name associated with it, and you can use this name to
refer to the table when using the Output Delivery System (ODS) to select tables and create output data sets.
These names are listed in Table 19.31. For more information about ODS, see Chapter 20, “Using the Output
Delivery System.”

Table 19.31 ODS Tables Produced by the SLICE statement

Table Name Description Required Option

Coef L matrix coefficients E
Slices LS-means slices MEANS
SliceDiffs Simple differences of LS-means slices DIFF or ADJUST= or

STEPDOWN or NOF
SliceLines Lines display for LS-means slices LINES
SliceTests Tests for LS-means slices Default
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STORE Statement

This statement applies to the following SAS/STAT procedures:
GENMOD, GLIMMIX, GLM, GLMSELECT, LIFEREG, LOGISTIC, MIXED, ORTHOREG, PHREG,
PROBIT, SURVEYLOGISTIC, SURVEYPHREG, and SURVEYREG. It also applies to the RELIABILITY
procedure in SAS/QC software.

The STORE statement requests that the procedure save the context and results of the statistical analysis into
an item store. An item store is a binary file format that cannot be modified by the user. The contents of the
item store can be processed with the PLM procedure. One example of item store technology is to perform a
time-consuming analysis and to store its results by using the STORE statement. At a later time you can then
perform specific statistical analysis tasks based on the saved results of the previous analysis, without having
to fit the model again. The following statements show an example in which a mixed model is fit with the
MIXED procedure and the postprocessing analysis is performed with the PLM procedure:

proc mixed data=MyBigDataSet;
class Env A B sub;
model y = A B x / ddfm=KenwardRoger;
random int A*B / sub=Env;
repeated / subject=Env*A*B type=AR(1);
store sasuser.mixed;

run;

proc plm restore=sasuser.mixed;
show cov Parms;
lsmeans A B / diff;
score data=NewData out=ScoreResults;

run;

The STORE statement in the PROC MIXED step requests that the MIXED procedure save those results that
are needed to perform statistical tasks with the PLM procedure. For example, the MIXED procedure saves
the necessary pieces of information that relate to the Kenward-Roger degree-of-freedom method. The results
from the LSMEANS statement in the PROC PLM step thus apply this technique for calculating denominator
degrees of freedom. The SHOW statement in the PLM procedure reveals the contents of the item store in
terms of ODS tables, and the SCORE statement computes predicted values in a new data set. For more
information about postprocessing tasks based on item stores, see the documentation for the PLM procedure.

Syntax: STORE Statement
STORE < OUT= >item-store-name < / LABEL='label ' > ;

The item-store-name is a usual one- or two-level SAS name, like the names that are used for SAS data sets.
If you specify a one-level name, then the item store resides in the WORK library and is deleted at the end of
the SAS session. Since item stores usually are used to perform postprocessing tasks, typical usage specifies a
two-level name of the form libname.membername.
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If an item store by the same name as specified in the STORE statement already exists, the existing store is
replaced.

You can add a custom label with the LABEL= option in the STORE statement after the slash (/). When
the PLM procedure processes an item store, the label appears in the PROC PLM output along with other
identifying information.

TEST Statement

This statement documentation applies to the following procedures:
ICPHREG, LIFEREG, ORTHOREG, PLM, PROBIT, SURVEYPHREG, and SURVEYREG. It also applies
to the RELIABILITY procedure in SAS/QC software.

The TEST statement enables you to perform F tests for model effects that test Type I, II, or Type III
hypotheses. See Chapter 15, “The Four Types of Estimable Functions,” for details about the construction of
Type I, II, and III estimable functions.

Syntax: TEST Statement
TEST < model-effects > < / options > ;

Table 19.32 summarizes options in the TEST statement.

Table 19.32 TEST Statement Options

Option Description

CHISQ Requests chi-square tests
DDF= Specifies denominator degrees of freedom for fixed effects
E Requests Type I, Type II, and Type III coefficients
E1 Requests Type I coefficients
E2 Requests Type II coefficients
E3 Requests Type III coefficients
HTYPE= Indicates the type of hypothesis test to perform
INTERCEPT Adds a row that corresponds to the overall intercept

You can specify the following options in the TEST statement after the slash (/):

CHISQ
requests that chi-square tests be performed for the relevant effects in addition to the F tests. Type III
tests are the default; you can produce the Type I and Type II tests by using the HTYPE= option. This
option has no effect when the procedure produces chi-square statistics by default.
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DDF=value-list

DF=value-list
specifies the denominator degrees of freedom for the fixed effects. The value-list specification is a list
of numbers or missing values (.) separated by commas. The order of degrees of freedom should match
the order of the fixed effects that are specified in the TEST statement; otherwise it should match the
order in which the effects appear in the “Type III Tests of Fixed Effects” table. If you want to retain
the default degrees of freedom for a particular effect, use a missing value for its location in the list. In
the following example, the first TEST statement assigns 3 denominator degrees of freedom to A and
4.7 to A*B, while those for B remain the same, and the second TEST statement assigns 5 denominator
degrees of freedom to A and uses the default degrees of freedom for B.

model Y = A B A*B;
test / ddf=3,.,4.7;
test B A / ddf=.,5;

E
requests that Type I, Type II, and Type III L matrix coefficients be displayed for all relevant effects.

E1 | EI
requests that Type I L matrix coefficients be displayed for all relevant effects.

E2 | EII
requests that Type II L matrix coefficients be displayed for all relevant effects.

E3 | EIII
requests that Type III L matrix coefficients be displayed for all relevant effects.

HTYPE=value-list
indicates the type of hypothesis test to perform on the fixed effects. Valid entries for values in the
value-list are 1, 2, and 3, which correspond to Type I, Type II, and Type III tests, respectively. The
default value is 3.

INTERCEPT

INT
adds a row to the tables for Type I, II, and III tests that correspond to the overall intercept.
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ODS Table Names: TEST Statement
Each table created by the TEST statement has a name associated with it, and you can use this name to
refer to the table when using the Output Delivery System (ODS) to select tables and create output data sets.
These names are listed in Table 19.33. For more information about ODS, see Chapter 20, “Using the Output
Delivery System.”

Table 19.33 ODS Tables Produced by the TEST statement

Table Name Description Required Option

Coef L matrix coefficients E
Tests1 Type I tests of fixed effects HTYPE=1
Tests2 Type II tests of fixed effects HTYPE=2
Tests3 Type III tests of fixed effects Default

Programming Statements

This section applies to the following procedures:
CALIS, GLIMMIX, MCMC, NLIN, NLMIXED, PHREG, and SURVEYPHREG.

The majority of the SAS/STAT modeling procedures can take advantage of the fact that the statistical model
can easily be translated into programming syntax (statements and options). However, several procedures
require additional flexibility in specifying models—for example, when the model contains general nonlinear
functions, when it is necessary to specify complicated restrictions, or when user-supplied expressions need
to be evaluated. Procedures that are listed at the beginning of the section support—in addition to the usual
procedure statements and options—programming statements that can be used in the SAS DATA step.

The following are valid statements:
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ABORT;
ARRAY arrayname < [ dimensions ] > < $ > < variables-and-constants >;
CALL name < (expression < , expression . . . >) >;
DELETE;
DO < variable = expression < TO expression > < BY expression > >

< , expression < TO expression > < BY expression > > . . .
< WHILE expression > < UNTIL expression >;

END;
GOTO statement-label;
IF expression;
IF expression THEN program-statement;

ELSE program-statement;
variable = expression;
variable + expression;
LINK statement-label;
PUT < variable > < = > . . . ;
RETURN;
SELECT < (expression) >;
STOP;
SUBSTR(variable, index , length)= expression;
WHEN (expression)program-statement;

OTHERWISE program-statement;

For the most part, these programming statements work the same as they do in the SAS DATA step, as
documented in SAS Language Reference: Concepts. However, there are several differences:

• The ABORT statement does not allow any arguments.

• The DO statement does not allow a character index variable. Thus

do i = 1,2,3;

is supported, whereas the following statement is not supported:

do i = 'A','B','C';

• Not all procedures support LAG functionality. For example, the GLIMMIX procedure does not support
lags.
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• The PUT statement, used mostly for program debugging, supports only some of the features of the
DATA step PUT statement, and it has some features that are not available with the DATA step PUT
statement:

– The PUT statement does not support line pointers, factored lists, iteration factors, overprinting,
_INFILE_, the colon (:) format modifier, or “$”.

– The PUT statement does support expressions, but the expression must be enclosed in parentheses.
For example, the following statement displays the square root of x:

put (sqrt(x));

– The PUT statement supports the item _PDV_ to display a formatted listing of all variables in the
program. For example:

put _pdv_;

• The WHEN and OTHERWISE statements enable you to specify more than one target statement. That
is, DO/END groups are not necessary for multiple-statement WHENs. For example, the following
syntax is valid:

select;
when (exp1) stmt1;

stmt2;
when (exp2) stmt3;

stmt4;
end;

• The LINK statement is used in a program to jump immediately to the label statement_label and to
continue program execution at that point. It is not used to specify a link function in a generalized linear
model.

Please consult the individual chapters for other, procedure-specific differences between programming
statements and the SAS DATA step and for procedure-specific details, limitations, and rules.

When coding your programming statements, avoid defining variables that begin with an underscore (_),
because they might conflict with internal variables that are created by procedures that support programming
statements.
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Overview: Using the Output Delivery System
Most SAS procedures use the Output Delivery System (ODS) to manage their output. ODS enables you to
do the following:

• display your output in hypertext markup language (HTML), rich text format (RTF), portable document
format (PDF), PostScript, SAS listing, or other formats

• create SAS data sets directly from tables or graphs

• select or exclude individual pieces of output

• customize the layout, format, headers, and style of your output

• produce graphs with ODS Graphics (see Chapter 21, “Statistical Graphics Using ODS”)

This chapter discusses some typical applications of ODS with SAS software. For complete documentation
about the Output Delivery System, see the SAS Output Delivery System: User’s Guide. For more information
about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS,” and Chapter 22, “ODS Graphics
Template Modification.”

Output Defaults
HTML output with ODS Graphics enabled is the default in the SAS windowing environment for Microsoft
Windows and UNIX. LISTING output with ODS Graphics disabled is the default when you run SAS in batch
mode or on the mainframe. Your actual defaults might be different due to your registry, system option, or
configuration file settings. The following sections explain these defaults and how to change them.

HTML Output in the SAS Windowing Environment

The default destination in the SAS windowing environment is HTML and ODS Graphics is enabled by
default.1 These defaults have several advantages. Graphs are integrated with tables, and all output is displayed
in the same HTML file. The HTML destination uses the HTMLBLUE style, which is an all-color style, that
is designed to integrate tables and modern statistical graphics.

You can view and modify the default settings by selecting Tools I Options I Preferences from the menu
at the top of the main SAS window. Then click the Results tab. You can remember this sequence using the
mnemonic TOPR (pronounced “topper”). See Figure 20.1.

1HTML output with ODS Graphics enabled is the default in the SAS windowing environment for Microsoft Windows and
UNIX, but not on the mainframe.
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Figure 20.1 SAS Results Tab with the Default Settings

The default settings are as follows:

• HTML output is created when Create HTML is selected, and all output is viewed in the Results
Viewer window.

• ODS Graphics is enabled when Use ODS Graphics is selected.
• The default style, HTMLBLUE, is selected from the Style list.
• Results are viewed in an internal SAS browser when Internal browser is selected.
• Graph image files are saved in the Work folder (not in your current folder) when Use WORK folder is

selected.
• LISTING output is not created when the Create listing box is cleared.

In many cases, graphs are an integral part of a data analysis. However, when you run large computational
programs (such as when you use procedures with many BY groups), you might not want to create graphs. In
those cases, you should disable ODS Graphics, which will improve the performance of your program. You
can disable and re-enable ODS Graphics in your SAS programs with the ODS GRAPHICS OFF and ODS
GRAPHICS ON statements. You can also change the ODS Graphics default in the Results tab.

In the SAS windowing environment, the current folder is displayed in the status line at the bottom of the
main SAS window. When Use WORK folder is cleared, graph image files are saved in the current folder
and are available after your SAS session ends. They can accumulate with time and take up a great deal of
space. When Use WORK folder is selected, graph image files are stored in the Work folder and are not
available after your SAS session ends.

LISTING Output in the SAS Windowing Environment

In the LISTING destination, tables are displayed in monospace, and graphs are not integrated with tables.
You can create LISTING output by selecting Tools I Options I Preferences from the menu at the top of
the main SAS window. Then click the Results tab. Select Create listing, and clear Create HTML. See
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Figure 20.2. Tabular results are viewed in the Output window. Graphical results are viewed by selecting
graphs in the Results window.

You can enable or disable ODS Graphics by default by using the Use ODS Graphics check box, and you can
use the ODS GRAPHICS ON and ODS GRAPHICS OFF statements to enable and disable ODS Graphics in
your SAS programs.

Figure 20.2 SAS Results Tab for LISTING Output

Assumptions about ODS Defaults in this Chapter

Default settings such as destinations and whether ODS Graphics is enabled vary depending on your operating
system, registry settings, configuration file settings, system options, and whether you are using the SAS
windowing environment or batch mode. For this reason, this chapter makes no assumptions about these
defaults. Instead, all destinations are explicitly closed before some steps without assuming which destination
(usually LISTING or HTML) is open, destinations are explicitly opened when needed, and ODS Graphics is
explicitly enabled and disabled as needed. In some examples, when all destinations are closed, the LISTING
destination is opened at the end of the step so that some destination is available for subsequent output. If you
know the defaults for your environment, you do not need to use many of the ODS statements that are used in
this chapter.

The HTMLBLUE Style

In the SAS windowing environment, the default ODS style for HTML output is the HTMLBLUE style. You
can see examples of the HTMLBLUE style in this chapter in Output 20.1.1, Output 20.8.2, and Output 20.8.3.
The HTMLBLUE style inherits most of its attributes from the STATISTICAL style, but it has a brighter
appearance and color coordination between the tables and graphs. In the HTMLBLUE style, the dominant
color is blue; in the DEFAULT style, the dominant color is gray. See Chapter 21, “Statistical Graphics Using
ODS,” for a comparison of the HTMLBLUE style and other styles.
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Default Open Destination
By default, either the LISTING or the HTML destination is open. You can change the default destination
three ways, which are described in the next three subsections. The fourth subsection of this section explains
how to use ODS statements to open and close destinations.

Setting the Default Destination in the Results Tab

You can change the default destination in the SAS windowing environment by selecting Tools I Options I
Preferences from the menu at the top of the main SAS window. Then select the Results tab. See sections
“HTML Output in the SAS Windowing Environment” on page 518 and “LISTING Output in the SAS
Windowing Environment” on page 519. Changing defaults in the SAS windowing environment affects only
the SAS windowing environment; it does not affect batch jobs.

Setting the Default Destination in the SAS Registry

You can change the default destination by editing the SAS registry (see Figure 20.3) or by changing system
options in your SAS configuration file.

Figure 20.3 SAS Registry Window

Registry customization is generally performed by more advanced users who have experience and knowledge
about the SAS System and their operating environment. Incorrect registry entries can corrupt your SAS
registry. For more information about SAS configuration files and the SAS registry, see the SAS Companion
for your operating system.
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Setting the Default Destination in SAS System Options

The ODSDEST system option controls the default destination. This option is specified only at SAS start-up
time. Other relevant system options that correspond to entries in the Results tab in Figure 20.1 include
ODSGRAPHICS (which specifies whether ODS Graphics is enabled by default) and ODSSTYLE (which
specifies the default style for the HTML destination in the SAS windowing environment). See the SAS System
Options: Reference for more information.

Setting the Destination in ODS Statements

You can use ODS destination statements to explicitly set destinations. These statements are described in this
chapter and in detail in the SAS Output Delivery System: User’s Guide. When you open a new destination,
you should close all other open destinations unless you really need multiple destinations to be open. When
multiple destinations are open, each piece of output is created multiple times, once per destination. Closing
unneeded destinations increases efficiency.

You can create HTML output in any environment by using the ODS HTML statement as in the following
example:

ods _all_ close;
ods html file='MyFile.html';

proc reg data=sashelp.class;
model height=weight;

run; quit;

ods html close;
ods listing;

The first statement closes all open destinations. The second statement opens the HTML destination and
specifies the HTML output file MyFile.html. The last two statements close the HTML destination and open the
LISTING destination for subsequent output.

You can create LISTING output in any environment by using the ODS LISTING statement as in the following
example:

ods _all_ close;
ods listing;

proc reg data=sashelp.class;
model height=weight;

run; quit;

The first statement closes all open destinations. The second statement opens the LISTING destination which
sends output to the SAS listing. In this example, the LISTING destination is not closed so that subsequent
steps can append more information to the listing.
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If the LISTING destination is open, then you can simultaneously create LISTING and HTML output as
follows:

* The ODS LISTING destination is not closed,
which is not recommended for efficiency reasons;

ods html file='Reg.htm';

proc reg data=sashelp.class;
model height=weight;

run; quit;

ods html close;

Sometimes you see ODS Graphics notes or warnings multiple times when multiple destinations are open.
The messages appear once for each affected graph for each destination.

Output Objects and ODS Destinations
All SAS procedures produce output objects that ODS delivers to various ODS destinations, according to the
default specifications for the procedure or according to your own specifications. Typically, you see the output
objects displayed as tables, data sets, or graphs. Underlying all output (for example, a table of parameter
estimates) are two component parts:

• the data component, which consists of the results computed by a SAS procedure
• the template, which contains the instructions for formatting and displaying the results

Each output object has an associated template, provided by the SAS System, that defines its presentation
format. You can use the TEMPLATE procedure to view or alter these templates or to create new templates by
changing the headers, formats, column order, and so on. For more information, see the chapter titled “The
Template Procedure” in the SAS Output Delivery System: User’s Guide.

You define the form that the output should take by specifying an ODS destination. Some supported destina-
tions are as follows:

• LISTING, the standard SAS monospace listing
• HTML, for viewing in a browser
• RTF, for inclusion in Microsoft Word
• PDF, PostScript, and PCL, for high-fidelity printers
• OUTPUT, for saving results to SAS data sets
• DOCUMENT, for saving, modifying, and replaying your output

You can open multiple ODS destinations at the same time so that a single procedure step can produce output
for multiple destinations. If you do not supply any ODS statements, ODS delivers all output to the default
destination (which is usually LISTING or HTML). See the section “Output Defaults” on page 518 for more
information about default destinations. You can specify an output style for each ODS destination. The style
controls the foreground, background, colors, lines, fonts, and so on.
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The following statements provide an example of temporarily closing all open destinations for PROC REG
and then opening the LISTING destination for PROC PRINT. PROC REG with the ODS OUTPUT statement
makes an output data set, Parms, from the parameter estimates table. Closing unneeded open destinations
is not required, but it is done in many examples in this chapter for efficiency. Closing the superfluous
destinations suppresses the generation of output that is not needed or used. This is particularly beneficial
with graphics. This example uses the Sashelp.Class data set, one of the sample data sets in the Sashelp
library that are automatically available for your use. The following statements produce Figure 20.4:

title 'Getting Started with ODS';

ods _all_ close;

proc reg data=sashelp.class;
model height=weight;
ods output ParameterEstimates=parms;

run; quit;

ods listing;

proc print noobs data=parms;
run;

The ODS OUTPUT statement contains an object name, an equal sign, and the name of the output SAS data
set to create. You can use the ODS TRACE statement to find the object names. The ODS TRACE statement
is described in the section “Paths and Selection” on page 525. Also see Example 20.4 for more information.

Figure 20.4 PROC REG Parameter Estimates Table

Getting Started with ODSGetting Started with ODS

Model Dependent Variable DF Estimate StdErr tValue Probt

MODEL1 Height Intercept 1 42.57014 2.67989 15.89 <.0001

MODEL1 Height Weight 1 0.19761 0.02616 7.55 <.0001

You could accomplish the same thing using ODS SELECT statements as follows:

ods select none;

proc reg data=sashelp.class;
model height=weight;
ods output ParameterEstimates=parms;

run; quit;

ods select all;

proc print noobs data=parms;
run;

You can specify ODS EXCLUDE ALL instead of ODS SELECT NONE and ODS EXCLUDE NONE instead
of ODS SELECT ALL. These statements remain in effect until a new ODS SELECT or ODS EXCLUDE
statement changes the selection list.
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The ODS Statement
You use the ODS statement to provide instructions to ODS. You can use the ODS statement to specify options
for different destinations, specify the output style, and select and exclude output. Here are some examples:

/* open the HTML destination with the HTMLBlue style */
ods html style=HTMLBlue;

/* select only the parameter estimates table */
ods select ParameterEstimates;

/* output the parameter estimates table to a SAS data set*/
ods output ParameterEstimates=Parms;

/* exclude the number of observations, ANOVA, and fit statistics tables */
ods exclude NObs ANOVA FitStatistics;

Paths and Selection
Each output object (tables, graphs, notes, and so on) produced by a SAS procedure has a name
and a label. Each name is part of a name path. For example, PROC GLM has a table called Er-
rorSSCP, and the name path (fully qualified name) is GLM.Repeated.MANOVA.Model.Error.ErrorSSCP.
Each level in the name path corresponds to a part of the PROC GLM hierarchy of output. Each
piece of output also has a label and a label path. For example, the PROC GLM ErrorSSCP ta-
ble is labeled 'SSCP Matrix', and the label path is ’The GLM Procedure’.’Repeated Measures

Analysis’.’MANOVA’.’Model’.’Error’.’SSCP Matrix’.

You need to know the name or label to select, exclude, or modify a table or graph. You can obtain this
information in several ways:

• You can obtain names from the individual procedure documentation chapter or from the individual
procedure section of the SAS online Help system. See the sections “ODS Table Names” and “ODS
Graphics” from within the “Details” section of the procedure documentation chapter.

• You can use the SAS Results window to view the name of each piece of output that is created in your
SAS session (see the section “The SAS Results Window” on page 529 for more information).

• You can use the ODS TRACE statement to find the name and label of each piece of output that is
created in your SAS session. The ODS TRACE statement writes identifying information to the SAS
log or listing for each generated output object.

If you are working interactively with reasonably small data sets, then the ODS TRACE statement is usually
the most convenient way to find the names. Specify the ODS TRACE ON statement prior to the procedure
statements that create the output for which you want information. For example, the following statements
write the trace record for the output created in the REG procedure step:
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ods trace on;
ods graphics on;
proc reg data=sashelp.class;

model weight=height;
model age=height;

run; quit;
ods trace off;

By default, the trace output is written to the SAS log. Some of the trace output from the previous step is as
follows:

Output Added:
-------------
Name: NObs
Label: Number of Observations
Template: Stat.Reg.NObs
Path: Reg.MODEL1.Fit.Weight.NObs
-------------

Output Added:
-------------
Name: ANOVA
Label: Analysis of Variance
Template: Stat.REG.ANOVA
Path: Reg.MODEL1.Fit.Weight.ANOVA
-------------

Output Added:
-------------
Name: FitStatistics
Label: Fit Statistics
Template: Stat.REG.FitStatistics
Path: Reg.MODEL1.Fit.Weight.FitStatistics
-------------

Output Added:
-------------
Name: ParameterEstimates
Label: Parameter Estimates
Template: Stat.REG.ParameterEstimates
Path: Reg.MODEL1.Fit.Weight.ParameterEstimates
-------------

Output Added:
-------------
Name: DiagnosticsPanel
Label: Fit Diagnostics
Template: Stat.REG.Graphics.DiagnosticsPanel
Path: Reg.MODEL1.ObswiseStats.Weight.DiagnosticPlots.DiagnosticsPanel
-------------
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Output Added:
-------------
Name: ResidualPlot
Label: Height
Template: Stat.REG.Graphics.ResidualPlot
Path: Reg.MODEL1.ObswiseStats.Weight.ResidualPlots.ResidualPlot
-------------

Output Added:
-------------
Name: FitPlot
Label: Fit Plot
Template: Stat.REG.Graphics.Fit
Path: Reg.MODEL1.ObswiseStats.Weight.FitPlot
-------------

Output Added:
-------------
Name: NObs
Label: Number of Observations
Template: Stat.Reg.NObs
Path: Reg.MODEL2.Fit.Age.NObs
-------------

.

.

.

Output Added:
-------------
Name: FitPlot
Label: Fit Plot
Template: Stat.REG.Graphics.Fit
Path: Reg.MODEL2.ObswiseStats.Age.FitPlot
-------------

Alternatively, you can specify the LISTING option (ods trace on / listing;), which writes the trace
record, interleaved with the procedure output, to the LISTING destination (if it is open).

The trace record contains the name of each output object created and its associated label, template, and fully
qualified name path. The label provides a description of the table or graph. The fully qualified name path
shows the output hierarchy. (An example of the hierarchy is shown in Figure 20.5. The SAS Results window
displays the labels, rather than the names of objects, but the hierarchy is the same for both names and labels.)
The hierarchy has a level for the REG procedure, a level for the model (MODEL1 or MODEL2), a level
for the fit results, a level for the dependent variable (Weight or Age), and a level for the name (for example,
NObs, ANOVA, FitStatistics, ParameterEstimates).

When you specify ODS objects in an ODS statement, you can often omit the first few levels and instead use
a partially qualified name path. A partially qualified name path consists of any part of the fully qualified
name path that begins immediately after a period and continues to the end of the fully qualified name path.
For example, the table Reg.Model1.Fit.Weight.ParameterEstimates can be referenced in any of the
following ways:
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ParameterEstimates name
Weight.ParameterEstimates partially qualified name path

Fit.Weight.ParameterEstimates partially qualified name path
Model1.Fit.Weight.ParameterEstimates partially qualified name path

Reg.Model1.Fit.Weight.ParameterEstimates fully qualified name path

When a procedure creates multiple output objects that have the same name, as shown in the preceding trace
output, you have several selection options for referring to the object. You can specify the name, a fully
qualified name path, or a partially qualified name path in ODS statements such as ODS SELECT, ODS
EXCLUDE, or ODS OUTPUT. You can also specify a WHERE clause. For example, you can specify any of
the following statements (in addition to other possibilities) to display both tables of parameter estimates:

ods select ParameterEstimates;

ods select Weight.ParameterEstimates Age.ParameterEstimates;

ods select Reg.Model1.Fit.Weight.ParameterEstimates
Reg.Model2.Fit.Age.ParameterEstimates;

ods select where = (_path_ ? 'Parameter');

The first ODS SELECT statement specifies the object name, which is shared by both tables. The second
statement specifies a partially qualified name path for both tables. The third statement specifies the fully
qualified name path for each table. The fourth statement selects every object that contains the string
'Parameter' anywhere in its path.

In the first three statements, selection is case insensitive. Any combination of uppercase and lowercase letters
works. This is not true in the fourth statement, which uses an ordinary SAS comparison of character strings.
For case insensitivity in WHERE clause selection, use the LOWCASE function as in the following example:

ods select where = (lowcase(_path_) ? 'parameter');

You can also select objects based on a WHERE clause and the label path. The following statements turn on
the trace record, display a label path in addition to the name path, and select all objects that have the string
'var' in the label:

ods trace on / label;
ods select where = (lowcase(_label_) ? 'var');

A subset of the trace record for PROC REG with this ODS SELECT list, showing just the name path and
label path, is as follows:

Path: Reg.MODEL1.Fit.Weight.ANOVA
Label Path: 'The Reg Procedure'.'MODEL1'.'Fit'.Weight.'Analysis of Variance'
Path: Reg.MODEL2.Fit.Age.ANOVA
Label Path: 'The Reg Procedure'.'MODEL2'.'Fit'.Age.'Analysis of Variance'
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The ODS SELECT statement selects the ANOVA tables, because they have the string 'Analysis of

Variance' (which when lowercased contains 'var') in their labels. WHERE clause selection is also useful
for selecting all of the objects within a group or level of the path hierarchy (the group 'MODEL2' or 'Fit').
You can specify any part of the name path or label path—for example, '.Age.' matches the variable Age
and ignores any 'Age' that might be in the middle of a word, '2.F' matches Model 2 fit tables and any
other object that has the string '2.F' in its path, and so on.

ODS records the specified object names in its internal selection or exclusion list, and then it processes the
output it receives. ODS maintains an overall selection or exclusion list that pertains to all ODS destinations,
and it maintains a separate selection or exclusion list for each ODS destination. The list for a specific
destination provides the primary filtering step. The restrictions that you specify in the overall list are added to
the destination-specific lists.

Suppose, for example, that your LISTING exclusion list (that is, the list of objects you want to exclude from
the LISTING destination) contains the FitStatistics table, which you specify with the following statement:

ods listing exclude FitStatistics;

Suppose also that your overall selection list (that is, the list of objects you want to select for all destinations)
contains the tables ParameterEstimates and FitStatistics, which you specify with the following statement:

ods select ParameterEstimates FitStatistics;

ODS then sends only the ParameterEstimates and FitStatistics tables to all open destinations except the
LISTING destination. It sends only the ParameterEstimates table to the LISTING destination because the
table FitStatistics is excluded from that destination.

RUN-Group Processing
Some SAS procedures, such as PROC REG and PROC GLM, support RUN-group processing, which means
that a RUN statement does not end the procedure. A QUIT statement explicitly ends such procedures. If
you omit the QUIT statement, a PROC or a DATA statement implicitly ends such procedures. When you
use ODS with procedures that support RUN-group processing, it is good programming practice to specify a
QUIT statement at the end of the procedure. This causes ODS to clear the selection or exclusion list, and you
are less likely to encounter unexpected results. See Example 20.6 for more information about RUN-group
processing with interactive procedures.

The SAS Results Window
The SAS Results window contains a running record of the output from your SAS session. In the SAS
windowing environment, select View I Results to open the Results window. Figure 20.5 displays the
Results window from the PROC REG step shown previously.
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Figure 20.5 The Results Window from the SAS Explorer

When you click the output names in the Results window, you link directly to the output in the Output Results
window (for the HTML destination) or the Output window or graph viewer window (for the LISTING
destination). The Results window contains an entry for each level of the label path and for each object.
You can also use the Results window to determine the names of the templates associated with each object.
Right-click the name, and then select Properties. You can see all of the templates from the Results window
by selecting View I Templates I Sashelp.Tmplmst. Then click a product such as Stat, a procedure such
as REG, and a template such as ParameterEstimates.

The ODS PATH Statement
The ODS PATH statement controls where ODS stores new templates that you create and where ODS finds
the templates that your programs use.2 Compiled templates are stored in a template store, which is a type of
item store. (An item store is a special type of SAS file.)

By default, the templates that you write are stored in Sasuser.Templat, and the templates that the SAS System
provides are stored in Sashelp.Tmplmst. Templates are found in Sashelp.Tmplmst unless you compile and
store them in Sasuser.Templat.

2Other types of paths include the name path and label path, which are discussed in the section “Paths and Selection” on page 525.
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You can see the list of active template stores by submitting the following statement:

ods path show;

By default, the results are as follows:

Current ODS PATH list is:

1. SASUSER.TEMPLAT(UPDATE)
2. SASHELP.TMPLMST(READ)

You can see a list of all of the templates in a template store as follows:

proc template;
list / store=sasuser.templat;

run;

See the sections “The Master Template Store” on page 531 and “Controlling Output Appearance with
Templates” on page 532 for more information about the template search path and template stores.

The Master Template Store
By default, the ODS path includes the name of the template store that provides the templates that are shipped
with the SAS system. You can use the ODS PATH SHOW statement to see the list of active template stores:

ods path show;

By default, the results are as follows:

Current ODS PATH list is:

1. SASUSER.TEMPLAT(UPDATE)
2. SASHELP.TMPLMST(READ)

The ODS PATH statement template search path name Sashelp.Tmplmst refers to the template stores that are
shipped with the SAS System. More precisely, the ODS PATH name Sashelp.Tmplmst refers to multiple
template store files including Sashelp.Tmplmst, Sashelp.Tmplstat, Sashelp.Tmplets, Sashelp.Tmplqc,
Sashelp.Tmpliml, and others. The name Sashelp.Tmplmst refers to both the entire template store that
is shipped with the SAS System and one particular file in that template store. In earlier releases of the
SAS System, there was just one template store file, namely Sashelp.Tmplmst, and there was a one-to-one
correspondence between the ODS PATH statement name and the template store file name. Now there are
multiple files (because certain products have their own template store files), but the ODS PATH statement
syntax for selecting all of them is unchanged. You do not need to be concerned about this, and you should
not specify any of these template stores individually. You simply specify Sashelp.Tmplmst to get the item
stores that are shipped with the SAS System. However, you will see these other names sometimes in the SAS
log and output when you are working with templates, so you need to know what that means.
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If you see a template store name of the form Sashelp followed by a period and a name, it refers to part of
the overall template store that you can reference with the name Sashelp.Tmplmst. For example, submit the
following step:

proc template;
source Stat.REG.ANOVA;

run;

The following is displayed in the SAS log file:

NOTE: Path 'Stat.Reg.ANOVA' is in: SASHELP.TMPLSTAT.

Submit the following step:

proc template;
list Stat.REG;
list ETS.ARIMA;
list QC.Shewhart;

run;

The names Sashelp.Tmplstat, Sashelp.Tmplets, and Sashelp.Tmplqc are displayed in the headers of the
tables that list the procedure templates.

Controlling Output Appearance with Templates
A template is a description of how output should appear when it is formatted. Templates describe several
characteristics of the output, including headers, column ordering, style information, justification, and formats.
Each object in the output has a template, and all SAS templates are stored in the Sashelp library. You can find
the template associated with a particular output object or table column by using the ODS TRACE statement
or the SAS Results window. You can create or modify a template with the TEMPLATE procedure. For
example, you can specify different column headings or different orders of columns in a table.

There are a number of different types of templates including column and table templates, graphical templates,
and style templates. A column or table template applies to the specific columns or tables that refer to the
template. Graphical templates are discussed in more detail in Chapter 21, “Statistical Graphics Using ODS.”
A style template applies to an entire SAS program, including all tables and graphs, and can be specified with
the STYLE= option in a valid ODS destination, such as HTML, RTF, or PDF. You can specify a style as
follows:

ods html style=HTMLBlue;

A style template controls stylistic elements such as colors, fonts, and presentation attributes. You can change
the style to give your output different looks and color schemes. You can also refer to style information in
table templates for individual headers and data cells. You can modify all types of templates with PROC
TEMPLATE. For information about creating your own styles, see the SAS Output Delivery System: User’s
Guide.

You can display the contents of a template by running PROC TEMPLATE with a SOURCE statement and a
template name, as in the following example:

proc template;
source Stat.REG.ANOVA;
source Stat.GLM.OverallANOVA;

run;
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In many cases, a template definition is based at least in part on another template. When you see the
PARENT=template option in a template definition, you need to look at the specified template to learn more
about the rest of the template definition. To illustrate, consider the following PROC GLM step:

proc glm data=sashelp.class;
model height=weight;

run; quit;

The ANOVA table from this step is displayed in Figure 20.6.

Figure 20.6 PROC GLM ANOVA Table with the Default Template

Getting Started with ODS

The GLM Procedure

Dependent Variable: Height

Getting Started with ODS

The GLM Procedure

Dependent Variable: Height

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 1 364.5762619 364.5762619 57.08 <.0001

Error 17 108.5879486 6.3875264

Corrected Total 18 473.1642105

The sums of squares and mean squares are presented with eight decimal places. You can change the templates
to change the formats of those columns to use fewer decimal places. First, you can use the ODS TRACE
statement when you run PROC GLM to determine the name of the template:

ods trace output;
proc glm data=sashelp.class;

model height=weight;
run; quit;
ods trace off;

The trace output results include the following:

Output Added:
-------------
Name: OverallANOVA
Label: Overall ANOVA
Template: stat.GLM.OverallANOVA
Path: GLM.ANOVA.Height.OverallANOVA
-------------

From this, you can see that the template for the overall ANOVA table is stat.GLM.OverallANOVA. You can
submit the following statements to see the overall ANOVA table template:

proc template;
source stat.glm.overallanova;

run;



534 F Chapter 20: Using the Output Delivery System

The results are as follows:

define table Stat.GLM.Overallanova;
notes "Over-all ANOVA";
top_space = 1;
parent = Stat.GLM.ANOVA;
double_space;

end;

The results show that this template inherits its definition from a parent template named Stat.GLM.ANOVA.
Submit the following statements to see the parent template:

proc template;
source stat.glm.anova;

run;

Some of the results are as follows:

define SS;
parent = Stat.GLM.SS;

end;

define MS;
parent = Stat.GLM.MS;

end;

These columns inherit their definitions from the parent columns named Stat.GLM.SS and Stat.GLM.MS.
This is all of the information that you need to redefine these columns, but you can run PROC TEMPLATE
again as follows to see more information about how these templates are defined:

proc template;
source Stat.GLM.SS;
source Stat.GLM.MS;

run;

The results are as follows:

define column Stat.GLM.Ss;
notes "Parent for GLM ANOVA Sums of Squares columns";
parent = Common.ANOVA.SS;

end;
define column Stat.GLM.Ms;

notes "Parent for GLM ANOVA Mean Squares columns";
parent = Common.ANOVA.MS;

end;

These columns inherit their definitions from the columns named Common.ANOVA.SS and Common.ANOVA.MS.
You can run PROC TEMPLATE as follows to see their definitions:

proc template;
source Common.ANOVA.SS;
source Common.ANOVA.MS;

run;

The results are as follows:

define column Common.ANOVA.Ss;
notes "Default ANOVA Sum of squares column";
header = "Sum of Squares";
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translate _val_=._ into "";
end;
define column Common.ANOVA.Ms;

notes "Default ANOVA Mean square column";
header = "Mean Square";
translate _val_=._ into "";

end;

You can redefine Common.ANOVA.SS and Common.ANOVA.MS to change all SS and MS columns in ANOVA
tables. This would be the most general redefinition. More specifically, you can redefine Stat.GLM.SS and
Stat.GLM.MS to change SS and MS columns in ANOVA tables produced by PROC GLM. Finally, and most
specifically, you can change the SS and MS columns in just the overall ANOVA table template.

In this example, the Stat.GLM.SS and Stat.GLM.MS columns are redefined as follows, so that results are
displayed with fewer decimal places:

proc template;
edit Stat.GLM.SS;

choose_format=max format_width=8;
end;
edit Stat.GLM.MS;

choose_format=max format_width=8;
end;

run;

The CHOOSE_FORMAT=MAX option along with the FORMAT_WIDTH=8 option chooses the format for
each column based on the maximum value in that column and an overall width of eight. You are editing and
not replacing the definition, so the column header and other information in the definition is not lost. The
following step uses the new templates:

proc glm data=sashelp.class;
model height=weight;

run; quit;

The new ANOVA results, using the edited templates, are shown in Figure 20.7. You can see that the original
results in Figure 20.6 have eight decimal places, whereas the new results in Figure 20.7 have only five decimal
places and an overall format width of eight.

Figure 20.7 PROC GLM ANOVA Table after Template Customization

Getting Started with ODS

The GLM Procedure

Dependent Variable: Height

Getting Started with ODS

The GLM Procedure

Dependent Variable: Height

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 1 364.5763 364.5763 57.08 <.0001

Error 17 108.5879 6.3875

Corrected Total 18 473.1642
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The preceding PROC TEMPLATE step produces the following notes:

NOTE: Overwriting existing template/link: Stat.GLM.Ss
NOTE: COLUMN 'Stat.GLM.Ss' has been saved to: SASUSER.TEMPLAT
NOTE: Overwriting existing template/link: Stat.GLM.Ms
NOTE: COLUMN 'Stat.GLM.Ms' has been saved to: SASUSER.TEMPLAT

When you run PROC TEMPLATE to modify or edit a template, the template is stored by default in your
Sasuser library. You can delete your custom template and restore the default template as follows:

proc template;
delete Stat.GLM.SS / store=sasuser.templat;
delete Stat.GLM.MS / store=sasuser.templat;

run;

The preceding PROC TEMPLATE step produces the following notes:

NOTE: 'Stat.GLM.SS' has been deleted from: SASUSER.TEMPLAT
NOTE: 'Stat.GLM.MS' has been deleted from: SASUSER.TEMPLAT

It is good practice to delete any template redefinitions that you do not want to be permanent, because
otherwise they persist beyond the duration of your SAS session. The option STORE=SASUSER.TEMPLAT
is not required. However, if you have administrator privileges on your computer, this option helps you ensure
that you do not accidentally delete templates from Sashelp.Tmplmst.

You can modify the template search path with the ODS PATH statement—for example, so you can access
these new templates in a later SAS session. This enables you to create a new default set of templates to
modify the display format for all of your SAS output. You can specify the SHOW option in the ODS PATH
statement to determine the current template search path. The following statements illustrate the template
search path:

ods path show;
libname mytpls '.';
ods path (prepend) mytpls.template(update);
ods path show;

proc template;
edit Stat.GLM.SS;

choose_format=max format_width=8;
end;
edit Stat.GLM.MS;

choose_format=max format_width=8;
end;

run;

The results of the first statement are as follows:

Current ODS PATH list is:

1. SASUSER.TEMPLAT(UPDATE)
2. SASHELP.TMPLMST(READ)
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This shows that the Sasuser.Templat template store is open for storing new templates and retrieving templates
for use. After that, the Sashelp.Tmplmst template store is used, but it is open only for read access.3 The
LIBNAME and second ODS PATH statements add a template store to the front of this list in the current
directory. The final ODS PATH SHOW statement shows the new template search path, which is as follows:

Current ODS PATH list is:

1. MYTPLS.TEMPLATE(UPDATE)
2. SASUSER.TEMPLAT(UPDATE)
3. SASHELP.TMPLMST(READ)

The PROC TEMPLATE step produces the following notes, which show that the templates are now stored in
MYTPLS.TEMPLATE:

NOTE: Overwriting existing template/link: Stat.GLM.Ss
NOTE: COLUMN 'Stat.GLM.Ss' has been saved to: MYTPLS.TEMPLATE
NOTE: Overwriting existing template/link: Stat.GLM.Ms
NOTE: COLUMN 'Stat.GLM.Ms' has been saved to: MYTPLS.TEMPLATE

In all cases, the original template definitions in Sashelp.Tmplmst are not changed. You can delete your
custom template and restore the default template as follows:

proc template;
delete Stat.GLM.SS / store=mytpls.template;
delete Stat.GLM.MS / store=mytpls.template;

run;

If you would like all template modifications to be automatically deleted at the end or your SAS session, you
can modify the template search path so that an updatable template store is placed in the Work directory in the
front of the current path in either of the two equivalent ways:

ods path (prepend) work.templat(update);
ods path work.templat(update) sasuser.templat(update) sashelp.tmplmst(read);

Alternatively, you can replace Sasuser.Templat with Sashelp.Templat as follows:

ods path work.templat(update) sashelp.tmplmst(read);

When you are done, you can reset the default template search path as follows:

ods path reset;

ODS and the NOPRINT Option
Many SAS procedures support a NOPRINT option that you can use when you want to create an output
data set without displaying any output. You use an option (such as the OUTEST= option or an OUTPUT
statement with an OUT= option) in addition to the procedure’s NOPRINT option to create a data set and
suppress displayed output.

3Most SAS users cannot modify templates in Sashelp. However, if you have computer administrator privileges, you might be
able to modify templates in Sashelp, so you should be careful to not do so.
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You can also use the ODS OUTPUT statement to create output data sets. However, if you specify the
NOPRINT option, the procedure might not send any output to ODS. In most procedures that support a
NOPRINT option, NOPRINT means no ODS. (However, there are a few procedures that for historical reasons
still might produce some output even when NOPRINT is specified.) When you want to create output data
sets through the ODS OUTPUT statement and you want to suppress the display of all output, specify the
following statement instead of using the NOPRINT option:

ods select none;

Alternatively, you can close the active ODS destinations like this:

ods _all_ close;

ODS statements do not instruct a procedure to generate output. Instead, they specify how ODS should
manage output after it is created. You must ensure that the proper procedure options are in effect, or the
output is not generated. For example, the following statements do not create the requested data set Parms
because the SOLUTION option is not specified in the MODEL statement:

proc glm data=sashelp.class;
ods output ParameterEstimates=Parms;
class sex;
model height=sex;

run; quit;

Since PROC GLM did not create the table, ODS cannot make the output data set. When you execute these
statements, the following message is displayed in the log:

WARNING: Output 'ParameterEstimates' was not created.

The following step creates the output data set:

proc glm data=sashelp.class;
ods output ParameterEstimates=Parms;
class sex;
model height=sex / solution;

run; quit;

Examples: Using the Output Delivery System
This section provides examples of creating HTML output, selecting and excluding output, tracing ODS
output, using the Results window, creating ODS output data sets, modifying templates, creating hyperlinks,
and using ODS Graphics.

Example 20.1: Creating HTML Output with ODS
This example demonstrates how you can use the ODS HTML statement to display your output in HTML.
The following statements create the data set Scores, which contains the golf scores of boys and girls in a
physical education class:



Example 20.1: Creating HTML Output with ODS F 539

title 'Comparing Group Means';

data Scores;
input Gender $ Score @@;
datalines;

f 75 f 76 f 80 f 77 f 80 f 77 f 73
m 82 m 80 m 85 m 85 m 78 m 87 m 82
;

The TTEST procedure is used to compare the scores. The ODS HTML statement specifies the name of the
file to contain the HTML output. The following statements create the HTML file ttest.htm:

ods html body='ttest.htm' style=HTMLBlue;

proc ttest;
class Gender;
var Score;

run;

ods html close;

In many cases, the LISTING destination is open by default. See the section “Output Defaults” on page 518
for more information about default destinations. When the LISTING destination is open, the LISTING
destination receives all output generated during your SAS session. In this example, the ODS HTML statement
also opens the HTML destination, and both destinations receive the generated output. If you are in the SAS
windowing environment and are using the internal browser, you do not need to close the HTML destination
before viewing your output. However, when you write to an HTML file, you must specify the following
statement before you can view your output in an external browser:

ods html close;

If you do not close the HTML destination, your HTML file might contain no output or incomplete output, or
you might experience other unexpected results.

The following statements use ODS to display the output in HTML with a table of contents:

ods _all_ close;
ods html body='ttest.htm' contents='ttestc.htm' frame='ttestf.htm'

style=HTMLBlue;
ods graphics on;

proc ttest;
class Gender;
var Score;

run;

ods html close;
ods listing;

The ODS _ALL_ CLOSE statement closes all open destinations. The ODS HTML statement specifies three
files and the HTMLBLUE style of output. The BODY= option specifies the file that contains the SAS output.
The CONTENTS= option specifies the file that contains the table of contents. The FRAME= option specifies
the file that displays both the table of contents and the output. You can open the FRAME= file (ttestf.htm) in
your browser to view the table of contents together with the generated output (see Output 20.1.1). By default,



540 F Chapter 20: Using the Output Delivery System

the HTML files are generated in your current working directory. You can instead specify a path, such as
frame=’html/ttestf.htm’, to store a file in a subdirectory.

If you specify the ODS HTML statement with only the BODY= argument, no table of contents is created.
The table of contents contains the descriptive label for each output object produced in the PROC TTEST step.
You can select any label in the table of contents, and the corresponding output is displayed on the right side
of the browser window.

The ODS GRAPHICS ON statement enables ODS Graphics, which creates the graph displayed in Out-
put 20.1.1. For general information about ODS Graphics, see Chapter 21, “Statistical Graphics Using
ODS.”

Output 20.1.1 HTML Output with a Table of Contents and a Frame

Example 20.2: Selecting ODS Tables for Display
You can use the ODS SELECT statement to deliver only a subset of the tables or graphs to ODS destinations.
The following statements create an input SAS data set and use PROC GLM to perform an analysis of an
unbalanced two-way experimental design:

title 'Unbalanced Two-way Design';
data twoway;

input Treatment Block y @@;
datalines;

1 1 17 1 1 28 1 1 19 1 1 21 1 1 19 1 2 43
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1 2 30 1 2 39 1 2 44 1 2 44 1 3 16
2 1 21 2 1 21 2 1 24 2 1 25 2 2 39 2 2 45
2 2 42 2 2 47 2 3 19 2 3 22 2 3 16
3 1 22 3 1 30 3 1 33 3 1 31 3 2 46 3 3 26
3 3 31 3 3 26 3 3 33 3 3 29 3 3 25
;

proc glm data=twoway;
class Treatment Block;
model y = Treatment | Block;
means Treatment;
lsmeans Treatment;
ods select ModelANOVA Means;
ods trace on;
ods show;

run;

The ODS SELECT statement selects only two tables (ModelANOVA and Means) for display in the ODS
destinations. In this example, no ODS destinations are explicitly opened. Therefore, only the default
destination (usually LISTING or HTML) receives the procedure output. See the section “Output Defaults”
on page 518 for more information about default destinations. The ODS SHOW statement displays the current
overall selection list in the SAS log. The ODS SHOW statement is not required; it is used here simply to
show the effects of the ODS SELECT statement. The results of the ODS SHOW statement are as follows:

Current OVERALL select list is:
1. ModelANOVA
2. Means

The ODS TRACE statement writes the trace record of the ODS output objects to the SAS log. The trace
record is as follows:

Output Added:
-------------
Name: ModelANOVA
Label: Type I Model ANOVA
Template: stat.GLM.Tests
Path: GLM.ANOVA.y.ModelANOVA
-------------

Output Added:
-------------
Name: ModelANOVA
Label: Type III Model ANOVA
Template: stat.GLM.Tests
Path: GLM.ANOVA.y.ModelANOVA
-------------

Output Added:
-------------
Name: Means
Label: Means
Template: stat.GLM.Means
Path: GLM.Means.Treatment.Means
-------------
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There are two tables with the name ModelANOVA. One contains the “Type I Model ANOVA” table, and the
other contains the “Type III Model ANOVA” table. If you want to select only one of them, you can specify
either of the labels in the ODS SELECT statement instead of the name. You specify one of the following:

ods select 'Type I Model ANOVA' Means;
ods select 'Type III Model ANOVA' Means;

In the following statements, the ODS SHOW statement writes the current overall selection list to the SAS log,
the QUIT statement ends the PROC GLM step, and the second ODS SHOW statement writes the selection
list to the log after PROC GLM terminates:

ods show;
quit;
ods show;

The results of these statements are as follows:

ods show;

Current OVERALL select list is:
1. ModelANOVA
2. Means

quit;
ods show;

Current OVERALL select list is: ALL

PROC GLM supports interactive RUN-group processing. Before the QUIT statement is executed, PROC
GLM is active and the ODS selection list remains at its previous setting. The list includes only the two
tables, ModelANOVA and Means. After the QUIT statement, when PROC GLM is no longer active, the
selection list is reset to ALL. The displayed output, shown in Output 20.2.1, consists of the three selected
tables (two ModelANOVA tables and the Means table). The LS-means results are not displayed even though
an LSMEANS statement was specified. This is because the LS-means table, named LSMeans, is not specified
in the ODS SELECT statement. Other tables are suppressed as well.

Output 20.2.1 Selected Tables from PROC GLM

Unbalanced Two-way Design

The GLM Procedure

Dependent Variable: y

Unbalanced Two-way Design

The GLM Procedure

Dependent Variable: y

Source DF Type I SS Mean Square F Value Pr > F

Treatment 2 8.060606 4.030303 0.24 0.7888

Block 2 2621.864124 1310.932062 77.95 <.0001

Treatment*Block 4 32.684361 8.171090 0.49 0.7460
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Output 20.2.1 continued

Source DF Type III SS Mean Square F Value Pr > F

Treatment 2 266.130682 133.065341 7.91 0.0023

Block 2 1883.729465 941.864732 56.00 <.0001

Treatment*Block 4 32.684361 8.171090 0.49 0.7460

Unbalanced Two-way Design

The GLM Procedure

Unbalanced Two-way Design

The GLM Procedure

y

Level of
Treatment N Mean Std Dev

1 11 29.0909091 11.5104695

2 11 29.1818182 11.5569735

3 11 30.1818182 6.3058414

For more information about ODS exclusion and selection lists, see the section “The ODS Statement” on
page 525.

Example 20.3: Excluding ODS Tables from Display
The following example demonstrates how you can use the ODS EXCLUDE statement to exclude particular
objects from ODS destinations. This example also creates a SAS data set from the excluded table and uses it
to create a specialized plot.

The data are from Hemmerle and Hartley (1973). The response variable consists of measurements from
an oven experiment, and the model contains a fixed effect a and random effects b and a*b. The following
statements create the input SAS data set:

title 'Oven Measurements';

data hh;
input a b y @@;
datalines;

1 1 237 1 1 254 1 1 246
1 2 178 1 2 179
2 1 208 2 1 178 2 1 187
2 2 146 2 2 145 2 2 141
3 1 186 3 1 183
3 2 142 3 2 125 3 2 136
;

The following ODS statements are submitted before the analysis, which will be done with the MIXED
procedure:

ods _all_ close;
ods html body='mixed.htm' contents='mixedc.htm' frame='mixedf.htm'

style=HTMLBlue;
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ods exclude ParmSearch(persist);
ods show;

The ODS HTML statement specifies the filenames to contain the output generated from the statements that
follow. The ODS EXCLUDE statement excludes the table ParmSearch from display. Although the table
is excluded from the displayed output, the information contained in the ParmSearch table is graphically
summarized in a later step.

The PERSIST option in the ODS EXCLUDE statement excludes the object for the entire SAS session or until
you execute an ODS SELECT statement or an ODS EXCLUDE NONE statement. If you omit the PERSIST
option, the exclusion list is cleared when the procedure terminates. The resulting exclusion list is displayed
next:

Current OVERALL exclude list is:
1. ParmSearch(PERSIST)

The MIXED procedure is run to fit the model:

proc mixed data=hh;
class a b;
model y = a;
random b a*b;
parms (17 to 20 by 0.1) (.3 to .4 by .005) (1.0);
ods output ParmSearch=parms;

run;

ods show;

All output from PROC MIXED, except the ParmSearch table, is delivered to the HTML destination. The
ODS OUTPUT statement outputs the table ParmSearch to a SAS data set called Parms.

The ODS SHOW statement again displays the overall current exclusion list after PROC MIXED has
terminated. The results of the ODS SHOW statement are displayed next:

Current OVERALL exclude list is:
1. ParmSearch(PERSIST)

The ParmSearch table is saved in the Parms data set (as specified in the ODS OUTPUT statement). The
following steps plot the surface of the residual log likelihood as a function of the covariance parameters and
produce Output 20.3.1:

proc template;
define statgraph surface;

begingraph;
layout overlay3d;

surfaceplotparm x=CovP1 y=CovP2 z=ResLogLike;
endlayout;

endgraph;
end;

run;

proc sgrender data=parms template=surface;



Example 20.4: Creating an Output Data Set from an ODS Table F 545

run;

ods html close;

PROC TEMPLATE is used to create a template for displaying the data as a three-dimensional surface plot.
The plot is displayed with the ODS Graphics procedure SGRENDER. For more information about ODS
Graphics, see Chapter 21, “Statistical Graphics Using ODS.”

Output 20.3.1 HTML Output from PROC MIXED

Example 20.4: Creating an Output Data Set from an ODS Table
In this example, the GENMOD procedure is used to perform Poisson regression, and part of the resulting
procedure output is written to a SAS data set with the ODS OUTPUT statement. Insurance claims data
are classified by two factors: age group (with two levels) and car type (with three levels). The following
statements create the data set Insure:

title 'Insurance Claims';

data Insure;
input n c Car $ Age;
ln = log(n);
datalines;

500 42 Small 1
1200 37 Medium 1
100 1 Large 1
400 101 Small 2
500 73 Medium 2
300 14 Large 2

;
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The variable n represents the number of insurance policyholders, and the variable c represents the number of
insurance claims. The variable Car represents the type of car involved (classified into three groups), and the
variable Age is the age of a policyholder (classified into two groups).

You can use PROC GENMOD to perform a Poisson regression analysis of these data with a log link function.
Assume that the number-of-claims variable, c, has a Poisson probability distribution and the log of its mean,
�i , is related to the factors Car and Age.

The following statements obtain the names of the objects produced by this PROC GENMOD run. The ODS
TRACE statement lists the trace record. If you already know the names, such as by looking them up in the
procedure documentation, you do not have to run this step. The following step displays the trace information:

ods trace on;

proc genmod data=insure;
class car age;
model c = car age / dist=poisson link=log offset=ln obstats;

run;

ods trace off;

The trace record from the SAS log is displayed next:

Output Added:
-------------
Name: ModelInfo
Label: Model Information
Template: Stat.Genmod.ModelInfo
Path: Genmod.ModelInfo
-------------

Output Added:
-------------
Name: NObs
Label: Number of observations summary
Template: Stat.Genmod.NObs
Path: Genmod.NObs
-------------

Output Added:
-------------
Name: ClassLevels
Label: Class Level Information
Template: Stat.Genmod.Classlevels
Path: Genmod.ClassLevels
-------------
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Output Added:
-------------
Name: ParmInfo
Label: Parameter Information
Template: Stat.Genmod.Parminfo
Path: Genmod.ParmInfo
-------------

Output Added:
-------------
Name: ModelFit
Label: Criteria For Assessing Goodness Of Fit
Template: stat.genmod.ModelFit
Path: Genmod.ModelFit
-------------

Output Added:
-------------
Name: ConvergenceStatus
Label: Convergence Status
Template: Stat.Genmod.ConvergenceStatus
Path: Genmod.ConvergenceStatus
-------------

Output Added:
-------------
Name: ParameterEstimates
Label: Analysis Of Parameter Estimates
Template: stat.genmod.parameterestimates
Path: Genmod.ParameterEstimates
-------------

Output Added:
-------------
Name: ObStats
Label: Observation Statistics
Template: Stat.Genmod.Obstats
Path: Genmod.ObStats
-------------

In the following step, no output is displayed because the ODS SELECT NONE statement is included. The
ODS OUTPUT statement writes the ODS table ObStats to a SAS data set named myObStats. All of the usual
data set options, such as the KEEP= or RENAME= option, can be used in the ODS OUTPUT statement.
Thus, to create the myObStats data set so that it contains only certain columns from the ObStats table, you
can use the data set options as follows:

ods select none;
proc genmod data=insure;

class car age;
model c = car age / dist=poisson link=log offset=ln obstats;
ods output ObStats=myObStats(keep=car age pred

rename=(pred=PredictedValue));
run;
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The KEEP= data set option in the ODS OUTPUT statement specifies that only the variables Car, Age, and
Pred are written to the data set. The RENAME= data set option changes the name of variable Pred to
PredictedValue. The following statements sort the output data set myObStats, select all output, and produce
Output 20.4.1:

proc sort data=myObStats;
by descending PredictedValue;

run;

ods select all;
proc print data=myObStats noobs;

title2 'Values of Car, Age, and the Predicted Values';
run;

The ODS SELECT NONE statement remains in effect until it is explicitly canceled (for example, with the
ODS SELECT ALL statement).

Output 20.4.1 The ObStats Table Created as a SAS Data Set

Insurance Claims
Values of Car, Age, and the Predicted Values

Insurance Claims
Values of Car, Age, and the Predicted Values

Car Age PredictedValue

Small 2 107.2011

Medium 2 67.025444

Medium 1 42.974556

Small 1 35.798902

Large 2 13.773459

Large 1 1.2265414

Example 20.5: Creating an Output Data Set: Subsetting the Data
This example demonstrates how you can create an output data set with the ODS OUTPUT statement and also
use data set selection keywords to limit the output that ODS writes to a SAS data set. The data set, called
Color, contains the eye color and hair color of children from two different regions of Europe. The data are
recorded as cell counts, where the variable Count contains the number of children who exhibit each of the 15
combinations of eye and hair color. The following statements create the SAS data set:

title 'Hair Color of European Children';

data Color;
input Region Eyes $ Hair $ Count @@;
label Eyes ='Eye Color'

Hair ='Hair Color'
Region='Geographic Region';

datalines;
1 blue fair 23 1 blue red 7 1 blue medium 24
1 blue dark 11 1 green fair 19 1 green red 7
1 green medium 18 1 green dark 14 1 brown fair 34
1 brown red 5 1 brown medium 41 1 brown dark 40
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1 brown black 3 2 blue fair 46 2 blue red 21
2 blue medium 44 2 blue dark 40 2 blue black 6
2 green fair 50 2 green red 31 2 green medium 37
2 green dark 23 2 brown fair 56 2 brown red 42
2 brown medium 53 2 brown dark 54 2 brown black 13
;

The following statements exclude all output and sort the observations in the Color data set by the Region
variable:

ods select none;

proc sort data=Color;
by Region;

run;

The following ODS OUTPUT statement creates the ChiSq table as a SAS data set named myStats:

ods output ChiSq=myStats(drop=Table
where=(Statistic =: 'Chi' or

Statistic =: 'Like'));

You specify the table name in the ODS OUTPUT statement.4 The DROP= data set option excludes variables
from the new data set. The WHERE= data set option selects observations for output to the new data set
myStats—specifically, those that begin with 'Chi' or 'Like'.

The following statements create Output 20.5.1:

proc freq data=Color order=data;
weight Count;
tables Eyes*Hair / testp=(30 12 30 25 3);
by Region;

run;

ods select all;
proc print data=myStats noobs;
run;

The FREQ procedure is used to create and analyze a crosstabulation table from the two categorical variables
Eyes and Hair, for each value of the variable Region.

Output 20.5.1 Output Data Set from PROC FREQ and ODS

Hair Color of European ChildrenHair Color of European Children

Region Statistic DF Value Prob

1 Chi-Square 8 12.6331 0.1251

1 Likelihood Ratio Chi-Square 8 14.1503 0.0779

2 Chi-Square 8 18.2839 0.0192

2 Likelihood Ratio Chi-Square 8 23.3021 0.0030

4You can obtain the names of the objects created by any procedure in the individual procedure documentation chapter or from
the individual procedure section of the SAS online Help system. (See the “ODS Table Names” section in the “Details” section
of the documentation.) You can also determine the names of objects with the ODS TRACE statement (see Example 20.4 and
Example 20.2).
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Example 20.6: RUN-Group Processing
Some SAS procedures, such as PROC REG and PROC GLM, are interactive. They enable you to submit a
group of statements that end with a RUN statement, and then submit more statement groups, each of which
ends with a RUN statement. Each group of statements with its RUN statement is called a RUN group. For
example, the following PROC REG step has two RUN groups:

proc reg data=sashelp.class;
var Age;
model Weight = Height;

run;

model Weight = Height Age;
run;
quit;

Interactive procedures can produce several blocks of output for each of several RUN groups. The procedure
stays active until it processes a QUIT statement, it encounters a DATA or PROC statement, or the SAS
session ends. However, ODS settings are cleared by default at RUN-group boundaries. You can specify the
PERSIST= option to maintain ODS settings across RUN statements for procedures that support RUN-group
processing.

Consider a data set that contains US population growth trends:

title1 'US Population Study';
title2 'Concatenating Two Tables into One Data Set';

data USPopulation;
input Population @@;
retain Year 1780;
Year=Year+10;
YearSq=Year*Year;
Population=Population/1000;
datalines;

3929 5308 7239 9638 12866 17069 23191 31443 39818 50155
62947 75994 91972 105710 122775 131669 151325 179323 203211
;

In the following analysis, which has two RUN groups, PROC REG is used to compute the covariance matrix
of the estimates for two different models, and the covariance matrices are saved in a single SAS data set.
The PERSIST=RUN option in the ODS OUTPUT statement is required to make this happen. The first RUN
group creates a data set that contains the CovB table (the covariance matrix of the estimates):

proc reg data=USPopulation;
ods output covb(persist=run)=Bmatrix;
var YearSq;
model Population = Year / covb;

run;

The MODEL statement defines the regression model and requests the CovB table. The RUN statement
executes PROC REG and the model is fit, producing a covariance matrix of the estimates. The covariance
matrix has two rows and two columns and is shown in Output 20.6.1.
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Output 20.6.1 CovB Table for the First Model

US Population Study
Concatenating Two Tables into One Data Set

The REG Procedure
Model: MODEL1

Dependent Variable: Population

US Population Study
Concatenating Two Tables into One Data Set

The REG Procedure
Model: MODEL1

Dependent Variable: Population

Covariance of Estimates

Variable Intercept Year

Intercept 20393.138485 -10.83821461

Year -10.83821461 0.0057650078

In the next RUN group, the YearSq variable is added to the model and the model is fit again, producing a
covariance matrix of the estimates that has three rows and three columns:

add YearSq;
print;

run; quit;

The CovB table for the second RUN group is displayed in Output 20.6.2.

Output 20.6.2 CovB Table for the Second Model

Covariance of Estimates

Variable Intercept Year YearSq

Intercept 711450.62602 -757.2493826 0.2013282694

Year -757.2493826 0.8061328943 -0.000214361

YearSq 0.2013282694 -0.000214361 5.7010894E-8

If the PERSIST=RUN option is omitted, the selection list is cleared when the RUN statement is encountered,
and only the first CovB table is selected. But because the PERSIST=RUN option is specified, the selection
list remains in effect throughout the PROC REG step. This ensures that each of the CovB tables is selected
and output. The following statements display the ODS OUTPUT data set and create Output 20.6.3:

proc print;
id _run_;
by _run_;

run;

Output 20.6.3 Results of the ODS OUTPUT Statement When the PERSIST Option Is Specified

US Population Study
Concatenating Two Tables into One Data Set

US Population Study
Concatenating Two Tables into One Data Set

Run Group Number=1

_Run_ Model Dependent Variable Intercept Year YearSq

1 MODEL1 Population Intercept 20393.138485 -10.83821461 .

MODEL1 Population Year -10.83821461 0.0057650078 .
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Output 20.6.3 continued

_Run_ Model Dependent Variable Intercept Year YearSq

2 MODEL1.1 Population Intercept 711450.62602 -757.2493826 0.2013282694

MODEL1.1 Population Year -757.2493826 0.8061328943 -0.000214361

MODEL1.1 Population YearSq 0.2013282694 -0.000214361 5.7010894E-8

Even though the two CovB tables do not have the same rows or columns, ODS automatically combines the
two tables into one data set.

ODS Statement Placement with Interactive Procedures

Where you place a statement in an interactive procedure is critical. The following examples demonstrate the
results of various placements of statements:

• If you submit the following steps to a new SAS session, to an existing SAS session after a QUIT
statement, or to an existing SAS session after a noninteractive procedure has completed, the ODS
OUTPUT statement creates a SAS data set that contains the PROC GLM parameter estimates:

ods output parameterestimates=pm;
proc glm data=sashelp.class;

class sex;
model weight = sex | height / solution;

run;

• If you submit the following steps, no ODS OUTPUT SAS data set is created:

proc reg data=sashelp.class;
model weight = height;

run;

ods output parameterestimates=pm;
proc glm data=sashelp.class;

class sex;
model weight = sex | height / solution;

run;

The preceding steps work as follows:

– The first three statements (PROC REG, MODEL, and RUN) perform a simple regression analysis
and display the parameter estimates table. This completes one RUN group.

– PROC REG is still active when it encounters the ODS OUTPUT statement. But the first RUN
group has completed, so the first parameter estimates table is no longer available for ODS to
output.
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– PROC REG terminates because of the PROC GLM statement.

– The ODS OUTPUT statement has not created an output data set when PROC REG terminates
because no model was fit after the first RUN group.

– SAS prints warning messages because the ODS OUTPUT statement could not output a parameter
estimates table.

– The ODS OUTPUT statement corresponds to the PROC REG step because PROC REG is still
active when the statement is encountered. If PROC REG had ended first, then the ODS OUTPUT
statement would apply to the following PROC GLM step.

• The ODS OUTPUT statement in the following example outputs the PROC GLM parameter estimates
because the QUIT statement ends the PROC REG step:

proc reg data=sashelp.class;
model weight = height;

run; quit;

ods output parameterestimates=pm;
proc glm data=sashelp.class;

class sex;
model weight = sex | height / solution;

run;

• The ODS OUTPUT statement in the following example outputs the PROC GLM parameter estimates
because the ODS OUTPUT statement appears within the PROC GLM step:

proc reg data=sashelp.class;
model weight = height;

run;

proc glm data=sashelp.class;
ods output parameterestimates=pm;
class sex;
model weight = sex | height / solution;

run;

Explicitly Ending an Interactive Procedure

You can end interactive procedures such as PROC GLM and PROC REG by submitting a RUN statement and
then a QUIT statement:

proc reg data=sashelp.class;
model weight = height;

run; quit;
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Alternatively, you can end PROC GLM and PROC REG by submitting only a QUIT statement:

proc reg data=sashelp.class;
model weight = height;

quit;

Some interactive procedures behave differently from PROC GLM and PROC REG. The GPLOT procedure
does not produce results when you submit a QUIT statement but no RUN statement. You should end the IML
procedure by submitting only a QUIT statement, because a RUN statement in PROC IML runs a module.

Example 20.7: ODS Output Data Sets and Using PROC TEMPLATE to
Customize Output

You can use ODS statements, the DATA step, and PROC TEMPLATE to modify the appearance of your
displayed tables or to display results in forms that are not directly produced by any procedure. The following
example, similar to that given in Olinger and Tobias (1998), runs an analysis with PROC GLM. This example
has several parts. It creates output data sets with the ODS OUTPUT statement, combines and manipulates
those data sets, displays the results by using a standard SAS template, modifies a template by using PROC
TEMPLATE, and displays the output data sets by using the modified template. Each step works toward the
final goal of taking multiple tables and creating a custom display of those tables in a way that cannot be done
directly by PROC GLM.

The following statements create a SAS data set named Histamine that contains the experimental data:

title1 'Histamine Study';

data Histamine;
input Drug $12. Depleted $ hist0 hist1 hist3 hist5;
logHist0 = log(hist0); logHist1 = log(Hist1);
logHist3 = log(hist3); logHist5 = log(Hist5);
datalines;

Morphine N .04 .20 .10 .08
Morphine N .02 .06 .02 .02
Morphine N .07 1.40 .48 .24
Morphine N .17 .57 .35 .24
Morphine Y .10 .09 .13 .14
Morphine Y .07 .07 .06 .07
Morphine Y .05 .07 .06 .07
Trimethaphan N .03 .62 .31 .22
Trimethaphan N .03 1.05 .73 .60
Trimethaphan N .07 .83 1.07 .80
Trimethaphan N .09 3.13 2.06 1.23
Trimethaphan Y .10 .09 .09 .08
Trimethaphan Y .08 .09 .09 .10
Trimethaphan Y .13 .10 .12 .12
Trimethaphan Y .06 .05 .05 .05
;
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The data set comes from a preclinical drug experiment (Cole and Grizzle 1966). In order to study the effect
of two different drugs on histamine levels in the blood, researchers administer the drugs to 13 animals and
measure the levels of histamine in the animals’ blood after 0, 1, 3, and 5 minutes. The response variable is
the logarithm of the histamine level.

In the analysis that follows, PROC GLM is used to perform a repeated measures analysis, naming the drug
and depletion status as between-subject factors in the MODEL statement and naming post-administration
measurement time as the within-subject factor. For more information about this study and its analysis, see
Example 45.7 in Chapter 45, “The GLM Procedure.”

The following PROC GLM statements begin the analysis:

ods graphics off;
ods trace output;

proc glm data=Histamine;
class Drug Depleted;
model LogHist0--LogHist5 = Drug Depleted Drug*Depleted / nouni;
repeated Time 4 (0 1 3 5) polynomial / summary printe;

run; quit;

The portion of the trace output that contains the fully qualified name paths is shown next:
Path: GLM.Data.ClassLevels
Path: GLM.Data.NObs
Path: GLM.Repeated.RepeatedLevelInfo
Path: GLM.Repeated.PartialCorr
Path: GLM.Repeated.MANOVA.Model.Error.ErrorSSCP
Path: GLM.Repeated.MANOVA.Model.Error.PartialCorr
Path: GLM.Repeated.MANOVA.Model.Error.Sphericity
Path: GLM.Repeated.MANOVA.Model.Time.MultStat
Path: GLM.Repeated.MANOVA.Model.Time_Drug.MultStat
Path: GLM.Repeated.MANOVA.Model.Time_Depleted.MultStat
Path: GLM.Repeated.MANOVA.Model.Time_Drug_Depleted.MultStat
Path: GLM.Repeated.BetweenSubjects.ModelANOVA
Path: GLM.Repeated.WithinSubject.ModelANOVA
Path: GLM.Repeated.WithinSubject.Epsilons
Path: GLM.Repeated.Summary.Time_1.ModelANOVA
Path: GLM.Repeated.Summary.Time_2.ModelANOVA
Path: GLM.Repeated.Summary.Time_3.ModelANOVA

The goal here is to output the within-subjects multivariate statistics and the between-subjects ANOVA table
to SAS data sets for use in subsequent steps. The following statements run the analysis and save the desired
results to output data sets:

ods select none;

proc glm data=Histamine;
class Drug Depleted;
model LogHist0--LogHist5 = Drug Depleted Drug*Depleted / nouni;
repeated Time 4 (0 1 3 5) polynomial / summary printe;
ods output MultStat = HistWithin

BetweenSubjects.ModelANOVA = HistBetween;
run; quit;

ods select all;
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No output is displayed due to the ODS SELECT statements. The ODS OUTPUT statement creates two SAS
data sets, named HistWithin and HistBetween, from the two ODS tables. This analysis creates the following
tables:

Path: GLM.Repeated.MANOVA.Model.Time.MultStat
Path: GLM.Repeated.MANOVA.Model.Time_Drug.MultStat
Path: GLM.Repeated.MANOVA.Model.Time_Depleted.MultStat
Path: GLM.Repeated.MANOVA.Model.Time_Drug_Depleted.MultStat
Path: GLM.Repeated.BetweenSubjects.ModelANOVA

Here is the full trace output for the model ANOVA table:

Output Added:
-------------
Name: ModelANOVA
Label: Type III Model ANOVA
Template: stat.GLM.Tests
Path: GLM.Repeated.BetweenSubjects.ModelANOVA
-------------

All of the multivariate test results are routed to the HistWithin data set because all multivariate test tables
are named MultStat, even though they occur in different directories in the output directory hierarchy. Only
the between-subject ANOVA table appears in the HistBetween data set, even though there are also other
tables named ModelANOVA. ODS selects just the one specific table for the HistBetween data set because of
the partial name path (BetweenSubjects.ModelANOVA) in the second specification. For more information
about names and qualified path names, see the discussion in the section “The ODS Statement” on page 525.

The following statements show the names and the variable labels for the two data sets and produce Out-
put 20.7.1:

proc contents data=HistBetween varnum;
ods select position;

run;

proc contents data=HistWithin varnum;
ods select position;

run;
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Output 20.7.1 Variable Names and Labels for the Two Data Sets

Histamine Study

The CONTENTS Procedure

Histamine Study

The CONTENTS Procedure

Variables in Creation Order

# Variable Type Len Format Label

1 Dependent Char 15

2 HypothesisType Num 8 BEST8.

3 Source Char 20

4 DF Num 8 BEST6.

5 SS Num 8 12.8 Type III SS

6 MS Num 8 12.8 Mean Square

7 FValue Num 8 7.2 F Value

8 ProbF Num 8 PVALUE6.4 Pr > F

Histamine Study

The CONTENTS Procedure

Histamine Study

The CONTENTS Procedure

Variables in Creation Order

# Variable Type Len Format Label

1 Hypothesis Char 32

2 Error Char 55

3 Statistic Char 22

4 Value Num 8 12.8

5 FValue Num 8 7.2 F Value

6 NumDF Num 8 BEST6. Num DF

7 DenDF Num 8 BEST6. Den DF

8 ProbF Num 8 PVALUE6.4 Pr > F

9 PValue Num 8 PVALUE6.4 P-Value

The following statements create a new data set that contains the two data sets created in the preceding PROC
GLM step and display the results in Output 20.7.2:

title2 'The Combined Data Set';

data temp1;
set HistBetween HistWithin;

run;

proc print label;
run;
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Output 20.7.2 Listing of the Combined Data Set: Histamine Study

Histamine Study
The Combined Data Set

Histamine Study
The Combined Data Set

Obs Dependent HypothesisType Source DF

1 BetweenSubjects 3 Drug 1

2 BetweenSubjects 3 Depleted 1

3 BetweenSubjects 3 Drug*Depleted 1

4 BetweenSubjects 3 Error 11

5 . .

6 . .

7 . .

8 . .

9 . .

10 . .

11 . .

12 . .

13 . .

14 . .

15 . .

16 . .

17 . .

18 . .

19 . .

20 . .
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Output 20.7.2 continued

Histamine Study
The Combined Data Set

Histamine Study
The Combined Data Set

Obs Type III SS Mean Square F Value Pr > F Hypothesis Error

1 5.99336243 5.99336243 2.71 0.1281

2 15.44840703 15.44840703 6.98 0.0229

3 4.69087508 4.69087508 2.12 0.1734

4 24.34683348 2.21334850 _ _

5 . . 24.03 0.0001 Time Error SSCP Matrix

6 . . 24.03 0.0001 Time Error SSCP Matrix

7 . . 24.03 0.0001 Time Error SSCP Matrix

8 . . 24.03 0.0001 Time Error SSCP Matrix

9 . . 5.78 0.0175 Time_Drug Error SSCP Matrix

10 . . 5.78 0.0175 Time_Drug Error SSCP Matrix

11 . . 5.78 0.0175 Time_Drug Error SSCP Matrix

12 . . 5.78 0.0175 Time_Drug Error SSCP Matrix

13 . . 21.31 0.0002 Time_Depleted Error SSCP Matrix

14 . . 21.31 0.0002 Time_Depleted Error SSCP Matrix

15 . . 21.31 0.0002 Time_Depleted Error SSCP Matrix

16 . . 21.31 0.0002 Time_Depleted Error SSCP Matrix

17 . . 12.48 0.0015 Time_Drug_Depleted Error SSCP Matrix

18 . . 12.48 0.0015 Time_Drug_Depleted Error SSCP Matrix

19 . . 12.48 0.0015 Time_Drug_Depleted Error SSCP Matrix

20 . . 12.48 0.0015 Time_Drug_Depleted Error SSCP Matrix
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Output 20.7.2 continued

Histamine Study
The Combined Data Set

Histamine Study
The Combined Data Set

Obs Statistic Value Num DF Den DF P-Value

1 . . . .

2 . . . .

3 . . . .

4 . . . .

5 Wilks' Lambda 0.11097706 3 9 .

6 Pillai's Trace 0.88902294 3 9 .

7 Hotelling-Lawley Trace 8.01087137 3 9 .

8 Roy's Greatest Root 8.01087137 3 9 .

9 Wilks' Lambda 0.34155984 3 9 .

10 Pillai's Trace 0.65844016 3 9 .

11 Hotelling-Lawley Trace 1.92774470 3 9 .

12 Roy's Greatest Root 1.92774470 3 9 .

13 Wilks' Lambda 0.12339988 3 9 .

14 Pillai's Trace 0.87660012 3 9 .

15 Hotelling-Lawley Trace 7.10373567 3 9 .

16 Roy's Greatest Root 7.10373567 3 9 .

17 Wilks' Lambda 0.19383010 3 9 .

18 Pillai's Trace 0.80616990 3 9 .

19 Hotelling-Lawley Trace 4.15915732 3 9 .

20 Roy's Greatest Root 4.15915732 3 9 .

The next steps are designed to produce a more parsimonious display of the most important information in
Output 20.7.2. The next step creates a data set named HistTests. Only the observations from the input data
sets that are needed for interpretation are included. The variable Hypothesis in the HistWithin data set is
renamed Source, and the NumDF variable is renamed DF. The renamed variables correspond to the variable
names found in the HistBetween data set. These names are chosen since the template for the ModelANOVA
table is used in subsequent steps. An explicit length for the new variable Source is provided since the input
variables, Hypothesis and Source, have different lengths. The following statements produce Output 20.7.3:

data HistTests;
length Source $ 20;
set HistBetween(where =(Source ^= 'Error'))

HistWithin (rename=(Hypothesis = Source NumDF=DF)
where =(Statistic = 'Hotelling-Lawley Trace'));

run;

proc print label;
title2 'Listing of the Combined Data Set';

run;
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Output 20.7.3 Listing of the HistTests Data Set: Histamine Study

Histamine Study
Listing of the Combined Data Set

Histamine Study
Listing of the Combined Data Set

Obs Source Dependent HypothesisType Num DF Type III SS

1 Drug BetweenSubjects 3 1 5.99336243

2 Depleted BetweenSubjects 3 1 15.44840703

3 Drug*Depleted BetweenSubjects 3 1 4.69087508

4 Time . 3 .

5 Time_Drug . 3 .

6 Time_Depleted . 3 .

7 Time_Drug_Depleted . 3 .

Obs Mean Square F Value Pr > F Error Statistic Value Den DF P-Value

1 5.99336243 2.71 0.1281 . . .

2 15.44840703 6.98 0.0229 . . .

3 4.69087508 2.12 0.1734 . . .

4 . 24.03 0.0001 Error SSCP Matrix Hotelling-Lawley Trace 8.01087137 9 .

5 . 5.78 0.0175 Error SSCP Matrix Hotelling-Lawley Trace 1.92774470 9 .

6 . 21.31 0.0002 Error SSCP Matrix Hotelling-Lawley Trace 7.10373567 9 .

7 . 12.48 0.0015 Error SSCP Matrix Hotelling-Lawley Trace 4.15915732 9 .

The amount of information contained in the HistTests data set is appropriate for interpreting the analysis;
however, there is still extra information, and the information of interest is not being displayed in a compact
or useful form. This data set consists of multiple tables, an ANOVA table with between-subjects information,
and multivariate statistics tables with the variables renamed to match the names in the ANOVA table. This
form was chosen so that the data set could be displayed using PROC GLM’s ANOVA template. A template
specifies how the data set should be displayed and which columns should be displayed. The output from
the ODS TRACE statements shows that the template associated with PROC GLM’s ANOVA table is named
Stat.GLM.Tests. You can use the Stat.GLM.Tests template to display the SAS data set HistTests, as
follows:

title2 'Listing of the Selections, Using a Standard Template';
proc sgrender data=histtests template=Stat.GLM.Tests;
run;

The SGRENDER procedure displays the DATA= data set with the specified TEMPLATE= template. (You
can use PROC SGRENDER to display both graphs and tables.) The results are displayed in Output 20.7.4.
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Output 20.7.4 Listing of the Data Set Using a Standard PROC GLM ANOVA Template

Histamine Study
Listing of the Selections, Using a Standard Template

Histamine Study
Listing of the Selections, Using a Standard Template

Source DF SS Mean Square F Value Pr > F

Drug 1 5.99336243 5.99336243 2.71 0.1281

Depleted 1 15.44840703 15.44840703 6.98 0.0229

Drug*Depleted 1 4.69087508 4.69087508 2.12 0.1734

Time 3 . . 24.03 0.0001

Time_Drug 3 . . 5.78 0.0175

Time_Depleted 3 . . 21.31 0.0002

Time_Drug_Depleted 3 . . 12.48 0.0015

Alternatively, you could display the results by using a DATA step as follows:

title2 'Listing of the Selections, Using a Standard Template';

data _null_;
set histtests;
file print ods=(template='Stat.GLM.Tests');
put _ods_;

run;

The next steps create a final display of these results, this time by using a custom template. This example
shows you how to use PROC TEMPLATE to do the following:

• redefine the format for the SS and Mean Square columns
• include the table title and footnote in the body of the table
• translate the missing values for SS and Mean Square in the rows that correspond to multivariate tests

to asterisks
• add a footnote to a table
• add a column that depicts the level of significance of each effect

The following statements create a custom template:

proc template;
define table CombinedTests;

parent=Stat.GLM.Tests;

header '#Histamine Study##';
footer '#* - Test computed using Hotelling-Lawley trace';

column Source DF SS MS FValue ProbF Star;

define Source; width=20; end;
define DF; format=bestd3.; end;
define SS;

parent=Stat.GLM.SS
choose_format=max format_width=7;
translate _val_ = . into ' *';

end;
define MS;
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parent=Stat.GLM.MS
choose_format=max format_width=7;
translate _val_ = . into ' *';

end;
define Star;

compute as ProbF;
translate _val_ <= 0.001 into 'xxx',

_val_ <= 0.01 into 'xx',
_val_ <= 0.05 into 'x',
_val_ > 0.05 into '';

pre_space=1 width=3 just=l;
end;

end;
run;

The CHOOSE_FORMAT=MAX option along with FORMAT_WIDTH=7 chooses the format for each
column based on the maximum value and an overall width of 7. Alternatively, you could have specified a
format directly by specifying, for example, FORMAT=7.2 or FORMAT=D8.3. The TRANSLATE statements
provide values to display in place of the original values. The first two TRANSLATE statements display
missing values as an asterisk with leading blanks added to ensure alignment with the decimal place. The third
TRANSLATE statement displays p-values greater than 0.05 as a blank, values greater than 0.01 but less than
or equal to 0.05 as a single 'x', and so on. The ProbF column is printed twice—once in the usual way as a
numeric column with a PVALUE format and once with a column of blanks or x’s. For detailed information
about PROC TEMPLATE, see the section “The Template Procedure” in the SAS Output Delivery System:
User’s Guide. The following statements use the customized template to display the HistTests data set:

title2 'Listing of the Selections, Using a Customized Template';

proc sgrender data=HistTests template=CombinedTests;
run;

The results are displayed in Output 20.7.5.

Output 20.7.5 Display of the Data Sets Using a Customized Template: Histamine Study

Histamine Study
Listing of the Selections, Using a Customized Template

Histamine Study
Listing of the Selections, Using a Customized Template

Histamine Study

Source
Num

DF
Sum of

Squares
Mean

Square F Value Pr > F

Drug 1 5.9934 5.9934 2.71 0.1281

Depleted 1 15.4484 15.4484 6.98 0.0229 x

Drug*Depleted 1 4.6909 4.6909 2.12 0.1734

Time 3 * * 24.03 0.0001 xxx

Time_Drug 3 * * 5.78 0.0175 x

Time_Depleted 3 * * 21.31 0.0002 xxx

Time_Drug_Depleted 3 * * 12.48 0.0015 xx

* - Test computed using Hotelling-Lawley trace

These next steps display the same table, but this time changing the background color for the entire row to
highlight effects with p-values less than 0.001 and also those with p-values less than 0.01. The table is
displayed three times. Output 20.7.6 displays the results by using bold green and yellow backgrounds and a
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bold font. Output 20.7.7 displays the results by using subtler cyan and yellow backgrounds and a bold font.
Output 20.7.8 displays the results by using very subtle cyan and gray backgrounds and a normal font. This
control is provided by the CELLSTYLE statement in PROC TEMPLATE. You can do many things with the
CELLSTYLE statement to enhance your output. Several more are shown in other examples in this chapter.
These next steps create the custom template with varying colors and fonts and display the results by using
PROC SGRENDER:

%macro hilight(c1,c2);
proc template;

define table CombinedTests;
parent=Stat.GLM.Tests;

header '#Histamine Study##';
footer '#* - Test computed using Hotelling-Lawley trace';

column Source DF SS MS FValue ProbF;

cellstyle probf <= 0.001 as {background=&c1},
probf <= 0.01 as {background=&c2};

define DF; format=bestd3.; end;
define SS;

parent=Stat.GLM.SS
choose_format=max format_width=7;
translate _val_ = . into ' *';

end;
define MS;

parent=Stat.GLM.MS
choose_format=max format_width=7;
translate _val_ = . into ' *';

end;
end;

run;

proc sgrender data=HistTests template=CombinedTests;
run;

%mend;

title2;
ods _all_ close;
ods html style=HTMLBlue;

%hilight(CX22FF22 fontweight=bold, CXFFFF22 fontweight=bold)
%hilight(CXAAFFFF fontweight=bold, CXFFFFDD fontweight=bold)
%hilight(CXEEFAFA, CXEEEEEE)

ods html close;
ods listing;
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Output 20.7.6 Rows Boldly Highlighted: Histamine Study

Output 20.7.7 Rows Subtly Highlighted: Histamine Study

Output 20.7.8 Rows Very Subtly Highlighted: Histamine Study

All colors are specified in values of the form CXrrggbb, where the last six characters specify RGB (red,
green, blue) values on the hexadecimal scale of 00 to FF (or 0 to 255 base 10). You can run the following
step to see the correspondence between the integer and HEX formatting of values in the range 0 to 255:
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data _null_;
do color = 0 to 255;

put color 3. +1 color hex2.;
end;

run;

The results of this step are not shown. Hexadecimal values 0 through F represent the numbers 0 to 15. A
hex value xy can be converted to an integer as follows: 16x C y. For example, BC is 16 � 11C 12 D 188.
Common colors are CXFF0000 (red), CX00FF00 (green), CX0000FF (blue), CXFFFF00 (yellow, a mix of
red and green), CXFF00FF (magenta, a mix of red and blue), CX00FFFF (cyan, a mix of green and blue),
CXFFFFFF (white, a mix of red, green, and blue), CX000000 (black, no color), CXDDDDDD (very light
gray), CX222222 (very dark gray), and so on. Colors become lighter as the RGB values increase and darker
as they decrease. For example, cyan (CX00FFFF) can be lightened by increasing the red component from 00
to FF until eventually it becomes indistinguishable from white. It can be darkened by jointly decreasing the
green and blue values until it becomes indistinguishable from black.

The three CELLSTYLE statements that set the colors after the macro variables are substituted are as follows:

cellstyle probf <= 0.001 as {background=CX22FF22 fontweight=bold},
probf <= 0.01 as {background=CXFFFF22 fontweight=bold};

cellstyle probf <= 0.001 as {background=CXAAFFFF fontweight=bold},
probf <= 0.01 as {background=CXFFFFDD fontweight=bold};

cellstyle probf <= 0.001 as {background=CXEEFAFA},
probf <= 0.01 as {background=CXEEEEEE};

The first color, CX22FF22, for the smallest p-values in the first table is a bold green color. The first table
uses almost pure green and pure yellow, but a little red and blue are added to slightly lighten the colors. The
second table uses a cyan and yellow that are very light due to the addition of AA (170) red and DD (221)
blue, respectively. The third table uses a cyan that is not much different from light gray, and a light gray that
is not much different from white.

Example 20.8: HTML Output with Hyperlinks between Tables
This example demonstrates how you can use ODS to provide links between different parts of your HTML
procedure output. This example creates a table where each row contains a link to another table with more
information about that row.

Suppose that you are analyzing a 4 � 4 factorial experiment for an industrial process, testing for differences
in the number of defective products that are manufactured by different machines and use different sources of
raw material. The data set Experiment is created as follows:

title 'Product Defects Experiment';

data Experiment;
do Supplier = 'A', 'B', 'C', 'D';

do Machine = 1 to 4;
do rep = 1 to 5;

input Defects @@;
output;

end;
end;

end;
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datalines;
2 6 3 3 6 8 6 6 4 4 4 2 4 0 4 5 5 7 8 5

13 12 12 11 12 16 15 14 14 13 11 10 12 12 10 13 13 14 15 12
2 6 3 6 6 6 4 4 6 6 0 3 2 0 2 4 6 7 6 4

20 19 18 21 22 22 24 23 20 20 17 19 18 16 17 23 20 20 22 21
;

Suppose that you are interested in fitting a model to determine the effect that the supplier of raw material
and machine type have on the number of defects in the products. If the F test for a factor is significant,
you might want to follow up with a multiple-comparison test for the levels of that factor. The tables of
interest are the model ANOVA and the multiple-comparison output. Since this is a balanced experiment, the
ANOVA procedure computes the appropriate analysis. The following statements produce these tables and
Figure 20.8.1:

ods _all_ close;
ods html body='anovab.htm' style=HTMLBlue anchor='anova1';
ods trace output;

proc anova data=Experiment;
ods select ModelANOVA MCLines;
class Supplier Machine;
model Defects = Supplier Machine;
means Supplier Machine / tukey;

run; quit;

ods html close;
ods listing;

All destinations are first closed to avoid generating the output multiple times. ODS writes the HTML output
to the file anovab.htm. The ANCHOR= option specifies anova1 as the root name for the HTML anchor tags.
This means that within the HTML document, the URL for the first table will be anova1, the URL for the
second table will be anova2, and so on.

Output 20.8.1 ANOVA and Multiple-Comparison Results: Histamine Study

Product Defects Experiment

The ANOVA Procedure

Dependent Variable: Defects

Product Defects Experiment

The ANOVA Procedure

Dependent Variable: Defects

Source DF Anova SS Mean Square F Value Pr > F

Supplier 3 3441.637500 1147.212500 580.72 <.0001

Machine 3 163.137500 54.379167 27.53 <.0001
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Output 20.8.1 continued

Product Defects Experiment

The ANOVA Procedure

Tukey's Studentized Range (HSD) Test for Defects

Product Defects Experiment

The ANOVA Procedure

Tukey's Studentized Range (HSD) Test for Defects

Means with the same letter are not
significantly different.

Tukey Grouping Mean N Supplier

A 20.1000 20 D

B 12.7000 20 B

C 4.6000 20 A

C

C 4.1500 20 C

Product Defects Experiment

The ANOVA Procedure

Tukey's Studentized Range (HSD) Test for Defects

Product Defects Experiment

The ANOVA Procedure

Tukey's Studentized Range (HSD) Test for Defects

Means with the same letter are not
significantly different.

Tukey Grouping Mean N Machine

A 11.7500 20 2

A

A 11.5000 20 4

B 10.1500 20 1

C 8.1500 20 3
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The ODS trace output (not shown) shows that PROC ANOVA uses the Stat.GLM.Tests template to format
the ANOVA table. The following statements demonstrate how you can link a row of the ANOVA table to the
corresponding multiple-comparison table by modifying the table template, using the original values and the
URLs for the second and third tables (anova2 and anova3):

proc template;
edit Stat.GLM.Tests;

edit Source;
cellstyle _val_ = 'Supplier' as {url="#ANOVA2"},

_val_ = 'Machine' as {url="#ANOVA3"};
end;

end;
run;

This template uses the CELLSTYLE statement to alter the values in the Source column ('Supplier'
and 'Machine') of the ANOVA tests table. The values of 'Supplier' and 'Machine' are displayed
as hyperlinks in the HTML, and clicking them takes you to the links anova2 and anova3, which are the
multiple-comparison tables.

You can find the value to use in the URL by viewing the HTML source file, anovab.htm. You can either
open the HTML file in a text editor or view it in a browser window and select View I Source. Search for
'<a name=' to find the URL names. The first table is anova1, the second is anova2, the third is anova3, and
so on. If the ANCHOR= option had not been used in the ODS HTML statement, the names would have
been IDX, IDX1, IDX2, and so on. If you do not use the ODS SELECT statement or if you do anything to
change the tables that are produced, the names will be different. The statements create the Supplier label as
a link that enables you to open the table of means from the “Tukey’s Studentized Range Test for Defects”
associated with the Supplier variable. Similarly, Machine provides a link to the table of means from the
“Tukey’s Studentized Range Test for Defects” associated with the Machine variable.

Next, the analysis is run again, this time using the modified template. The following statements produce the
results:

ods _all_ close;
ods html body='anovab.htm' style=HTMLBlue anchor='anova1';

proc anova data=Experiment;
ods select ModelANOVA MCLines;
class Supplier Machine;
model Defects = Supplier Machine;
means Supplier Machine / tukey;

run; quit;

ods html close;
ods listing;

The ANOVA table is displayed in Output 20.8.2.
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Output 20.8.2 HTML Output from PROC ANOVA: Linked Output

The underlined text displayed in Output 20.8.2 shows the links, Supplier and Machine, that you created with
the modified template. When you click a link, the appropriate multiple-comparison table opens in your
browser. Output 20.8.3 shows the table from the Supplier link.

Output 20.8.3 Linked Output: Multiple-Comparison Table from PROC ANOVA

When you run the PROC TEMPLATE step shown previously, the following note is printed in the SAS log:

NOTE: TABLE 'Stat.GLM.Tests' has been saved to: SASUSER.TEMPLAT
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You can see that there is a version of the template in Sasuser by running the following statements:

proc template;
list Stat.GLM.Tests;

run;

These statements produce Output 20.8.4.

Output 20.8.4 Templates

Product Defects ExperimentProduct Defects Experiment

Listing of: SASUSER.TEMPLAT

Path Filter is: Stat.GLM.Tests

Sort by: PATH/ASCENDING

Obs Path Type

1 Stat.GLM.Tests Table

Listing of:
SASHELP.TMPLSTAT

Path Filter is: Stat.GLM.Tests

Sort by: PATH/ASCENDING

Obs Path Type

1 Stat.GLM.Tests Table

You can delete your custom template and restore the default template as follows:

proc template;
delete Stat.GLM.Tests / store=sasuser.templat;

run;

The following note is printed in the SAS log:

NOTE: 'Stat.GLM.Tests' has been deleted from: SASUSER.TEMPLAT

Example 20.9: HTML Output with Graphics and Hyperlinks
This example demonstrates how you can use ODS to create links between each bar in a bar chart (Out-
put 20.9.1) and other parts of the analysis (Output 20.9.2). The data in this example are selected from a larger
experiment on the use of drugs in the treatment of leprosy (Snedecor and Cochran 1967, p. 422). Variables in
the study are as follows:

Drug two antibiotics (‘a’ and ‘d’) and a control (‘f’)
PreTreatment a pretreatment score of leprosy bacilli
PostTreatment a posttreatment score of leprosy bacilli
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The data set is created as follows:

title 'Treatment of Leprosy';

data drugtest;
input Drug $ PreTreatment PostTreatment @@;
datalines;

a 11 6 a 8 0 a 5 2 a 14 8 a 19 11
a 6 4 a 10 13 a 6 1 a 11 8 a 3 0
d 6 0 d 6 2 d 7 3 d 8 1 d 18 18
d 8 4 d 19 14 d 8 9 d 5 1 d 15 9
f 16 13 f 13 10 f 11 18 f 9 5 f 21 23
f 16 12 f 12 5 f 12 16 f 7 1 f 12 20
;

The following statement opens the HTML destination:

ods _all_ close;
ods html body='glmb.htm' contents='glmc.htm' frame='glmf.htm' style=HTMLBlue;

The ODS HTML statement specifies the body filename, generates a table of contents for the output, and
generates a frame to contain the body and table of contents. The following statements perform the analysis:

proc glm data=drugtest;
class drug;
model PostTreatment = drug | PreTreatment / solution;
lsmeans drug / stderr pdiff;
ods output LSMeans=lsmeans;

run; quit;

The ODS OUTPUT statement writes the table of LS-means to the data set named lsmeans. PROC GLM
performs an analysis of covariance and computes LS-means for the variable Drug.

The following steps demonstrate how you can create links to connect the results of different analyses. In
this example, the table of LS-means is graphically summarized in a horizontal bar chart. Each bar is linked
to a plot that displays the relationship between the PostTreatment response variable and the PreTreatment
variable for the drug that corresponds to the bar.

NOTE: PROC GLM can use ODS Graphics to create LS-means graphs that are different from the one
constructed here. You do not have to run the following steps to get PROC GLM’s standard LS-means plots.

The following DATA step creates a new variable named DrugClick that matches each drug value with an
HTML file:

data lsmeans;
set lsmeans;
if drug='a' then DrugClick='drug1.htm';
if drug='d' then DrugClick='drug2.htm';
if drug='f' then DrugClick='drug3.htm';

run;

The variable DrugClick is used in the chart. The variable provides the connection information for linking the
two parts of the analysis together. The files referred to in these statements are created in a later step. The
following statements create the chart:
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ods graphics / imagemap=yes height=2in width=6.4in;

proc sgplot data=lsmeans;
title 'Chart of LS-Means for Drug Type';
hbar drug / response=lsmean stat=mean

url=drugclick;
footnote j=l 'Click on the bar to see a plot of PostTreatment '

'versus PreTreatment for the corresponding drug.';
format lsmean 6.3;

run;

ods graphics off;
footnote;
ods html close;

The chart is created with the ODS Graphics procedure SGPLOT. For more information about ODS Graphics,
see Chapter 21, “Statistical Graphics Using ODS.” The ODS GRAPHICS statement is not required before
you run SG procedures. However, in this case, it is necessary to specify IMAGEMAP=YES so that the URL=
option works properly. The size of the graph is also specified with the HEIGHT= and WIDTH= options.
PROC SGPLOT is used, and the HBAR statement requests a horizontal bar chart for the variable Drug. The
lengths of the bars represent the values of the LSMean variable. The URL= option specifies the variable
DrugClick as the HTML linking variable. The FOOTNOTE statement provides text that indicates how to use
the links in the graph.

The following statements provide the second analysis. The three files referred to by the DrugClick variable
are created as follows:

ods html body='drug1.htm' newfile=page style=HTMLBlue;

proc sgplot data=drugtest;
title 'Plot of PostTreatment versus PreTreatment';
scatter y=PostTreatment x=PreTreatment;
by drug notsorted;

run;
ods html close;

The NEWFILE= option in the ODS HTML statement creates a new HTML file for each page of output. (Page
breaks occur only when a procedure explicitly starts a new page.) The NEWFILE= option also increments
the filename numeric suffix for each new HTML file created, with the first filename corresponding to that
given in the BODY= option, drug1.htm.

PROC SGPLOT is used, producing a plot of the variable PostTreatment versus the variable PreTreatment for
each value of the Drug variable. Three plots are created, and each plot is contained in a separate HTML file.
The files are named drug1.htm, drug2.htm, and drug3.htm. The filenames match those filenames specified as
values of the DrugClick variable. By default, the HTML files are generated in your current working directory.
You can instead specify a path, such as frame=’html/drug2.htm’, to put a file in a subdirectory. The
chart in Output 20.9.1 displays the difference in LS-means for each drug type. When you click on a bar that
represents a value of the variable Drug, the browser opens the plot of PostTreatment versus PostTreatment
variables that corresponds to that value of the variable Drug. Output 20.9.2 displays the plots for each drug
type.
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Output 20.9.1 Bar Chart of LS-Means by Drug Type with Links to Plots

Output 20.9.2 Plots by Drug Type
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Output 20.9.2 continued
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Example 20.10: Correlation and Covariance Matrices
This example demonstrates how you can use ODS to set the background color of individual cells in a table.
The color is set to reflect the magnitude of the value in the cell. You can use color to call attention to larger
values and to see the pattern in the data in a way that is hard to visualize just by looking at the numbers. This
is illustrated with correlation and covariance matrices. The data for this first part of this example are ratings
of automobiles. The following statements create the data set:

title 'Rating of Automobiles';

data cars;
input Origin $ 1-8 Make $ 10-19 Model $ 21-36

(MPG Reliability Acceleration Braking Handling Ride
Visibility Comfort Quiet Cargo) (1.);

datalines;
GMC Buick Century 3334444544
GMC Buick Electra 2434453555
GMC Buick Lesabre 2354353545

... more lines ...

GMC Pontiac Sunbird 3134533234
;

The following steps edit the template that PROC CORR uses to display the correlation matrix. The CELL-
STYLE statement sets the background color to light gray for correlations equal to 1 or –1. Values less
than –0.75 or greater than 0.75 are set to red. Values less than –0.50 or greater than 0.50 are set to blue.
Values less than –0.25 or greater than 0.25 are set to cyan. Values in the range –0.25 to 0.25 are set to white.
PROC CORR is then run using the custom template. Finally, the default template is restored. The following
statements produce Output 20.10.1:

proc template;
edit Base.Corr.StackedMatrix;

column (RowName RowLabel) (Matrix) * (Matrix2);
edit matrix;

cellstyle _val_ = -1.00 as {backgroundcolor=CXEEEEEE},
_val_ <= -0.75 as {backgroundcolor=red},
_val_ <= -0.50 as {backgroundcolor=blue},
_val_ <= -0.25 as {backgroundcolor=cyan},
_val_ <= 0.25 as {backgroundcolor=white},
_val_ <= 0.50 as {backgroundcolor=cyan},
_val_ <= 0.75 as {backgroundcolor=blue},
_val_ < 1.00 as {backgroundcolor=red},
_val_ = 1.00 as {backgroundcolor=CXEEEEEE};

end;
end;

run;

ods _all_ close;
ods html body='corr.html' style=HTMLBlue;
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proc corr data=cars noprob;
ods select PearsonCorr;

run;

ods html close;
ods listing;

proc template;
delete Base.Corr.StackedMatrix / store=sasuser.templat;

run;

Output 20.10.1 Correlation Matrix from PROC CORR

The preceding statements used a small number of discrete colors to show the range of values. In contrast,
the following statements use a color gradient. The SAS autocall macro Paint is available for generating
the CELLSTYLE colors list with a list of interpolated colors. If your site has installed the autocall libraries
supplied by the SAS System and uses the standard configuration of software supplied by the SAS System,
you need to ensure that the SAS System option MAUTOSOURCE is in effect before you begin using autocall
macros. The macros do not have to be included (for example, with a %INCLUDE statement). They can be
called directly once they are properly installed. For more information about autocall libraries, see SAS Macro
Language: Reference.

Usually, you can use the Paint macro by specifying a list of values and a list of colors. Here is an example
for values that range from 0 to 10:

%paint(values=0 to 10 by 0.5,
colors=white cyan blue magenta red)

proc print data=colors;
run;
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The Paint macro prints the following information to the SAS log:

Legend:
0 = White

2.5 = Cyan
5 = Blue

7.5 = Magenta
10 = Red

A value of 0 maps to white, a value of 2.5 maps to cyan, values in the range 0 to 2.5 map to colors in the
range from white to cyan, and so on. The Paint macro for this step creates an output data set, Colors, which
is shown in Output 20.10.2.

Output 20.10.2 Color Interpolation

Rating of AutomobilesRating of Automobiles

Obs Start _RGB_

1 0.0 CXFFFFFF

2 0.5 CXCBFFFF

3 1.0 CX97FFFF

4 1.5 CX63FFFF

5 2.0 CX2FFFFF

6 2.5 CX05FFFF

7 3.0 CX00D1FF

8 3.5 CX009CFF

9 4.0 CX0068FF

10 4.5 CX0034FF

11 5.0 CX0000FF

12 5.5 CX3400FF

13 6.0 CX6800FF

14 6.5 CX9C00FF

15 7.0 CXD100FF

16 7.5 CXFA00FF

17 8.0 CXFF00D1

18 8.5 CXFF009C

19 9.0 CXFF0068

20 9.5 CXFF0034

21 10.0 CXFF0000

This shows the color interpolation for a series of points. You could use a smaller BY value in the Paint

macro to get more points along the color gradient. However, a few dozen colors are usually sufficient for
most purposes.

The following steps use the Paint macro to create a color gradient for a correlation matrix, edit the template,
display the results, and restore the default template:
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%paint(values=-1 to 1 by 0.05, macro=setstyle,
colors=CXEEEEEE red magenta blue cyan white

cyan blue magenta red CXEEEEEE
-1 -0.99 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 0.99 1)

proc template;
edit Base.Corr.StackedMatrix;

column (RowName RowLabel) (Matrix) * (Matrix2);
edit matrix;

%setstyle(backgroundcolor)
end;

end;
run;

ods _all_ close;
ods html body='corr.html' style=HTMLBlue;
proc corr data=cars noprob;

ods select PearsonCorr;
run;
ods html close;
ods listing;

proc template;
delete Base.Corr.StackedMatrix / store=sasuser.templat;

run;

The VALUES= option creates a range of values from –1 to 1 with an increment of 0.05. The Paint macro
generates a CELLSTYLE _val_ <= value as {backgroundcolor= color}, line for each value in the list.
Specifically, it generates a macro named SETSTYLE (from the MACRO= option) that contains the entire
CELLSTYLE statement for use in PROC TEMPLATE. The argument to the macro is the option that you
want to set. In this case, it is the background color. You could specify foreground instead to set the color of
the numbers themselves. The first part of the generated statement is as follows:

cellstyle _val_<=-1 as {backgroundcolor=CXEFEEEE},
_val_<=-0.95 as {backgroundcolor=CXFF0020},
_val_<=-0.9 as {backgroundcolor=CXFF0062},
_val_<=-0.85 as {backgroundcolor=CXFF008D},
_val_<=-0.8 as {backgroundcolor=CXFF00CF},

The color mapping for a correlation matrix can be a bit more involved than it is for most tables. This is
because you might want the maximum correlations, 1 and –1, to be displayed using colors outside the gradient
that is used for other values. Usually, you specify the color list, and the Paint macro maps the first color to
the minimum value, the last color to the maximum value, and colors in between using equal increments and
values based on the minimum and maximum. Alternatively, you can provide these values, as shown in this
example. The legend, displayed in the SAS log, is as follows for the Paint macro step:

Legend:
-1 = CXEEEEEE

-0.99 = Red
-0.75 = Magenta
-0.5 = Blue

-0.25 = Cyan
0 = White

0.25 = Cyan
0.5 = Blue



580 F Chapter 20: Using the Output Delivery System

0.75 = Magenta
0.99 = Red

1 = CXEEEEEE

Values in the range –0.99 to 0.99 follow the interpolation red to magenta to blue to cyan to white to cyan to
blue to magenta to red. Of course, the actual correlations for these data do not span this entire range, so a
pure red background does not appear in the matrix. Correlations of 1 and –1 are displayed as light gray. The
resulting correlation matrix is displayed in Output 20.10.3. Notice that there are now a number of shades of
colors, particularly shades of blues, not just a few discrete colors. The largest values are displayed in shades
of purple and magenta.

Output 20.10.3 Correlation Matrix from PROC CORR with a Color Gradient

Next, the same technique is used to display the covariance and correlation matrices of a heteroscedastic
autoregressive model. The data are based on the famous growth measurement data of Pothoff and Roy (1964),
but are modified here to illustrate the technique of painting the entries of a matrix. The data consist of four
repeated growth measurements of 11 girls and 16 boys. The measurements from two adjacent children in
the original data were combined and rearranged here to emulate a repeated measures sequence with eight
observations. The following statements create the data set:

title 'Analysis of Repeated Growth Measures';

data pr;
input Person Gender $ y1 y2 y3 y4 y5 y6 y7 y8;
array y{8};
do time=5,7,8,4,3,2,1;

Response = y{time};
Age = time+7;
output;

end;
datalines;

1 F 21.0 20.0 21.5 23.0 21.0 21.5 24.0 25.5
2 F 20.5 24.0 24.5 26.0 23.5 24.5 25.0 26.5
3 F 21.5 23.0 22.5 23.5 20.0 21.0 21.0 22.5
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4 F 21.5 22.5 23.0 25.0 23.0 23.0 23.5 24.0
5 F 20.0 21.0 22.0 21.5 16.5 19.0 19.0 19.5
6 F 24.5 25.0 28.0 28.0 26.0 25.0 29.0 31.0
7 M 21.5 22.5 23.0 26.5 23.0 22.5 24.0 27.5
8 M 25.5 27.5 26.5 27.0 20.0 23.5 22.5 26.0
9 M 24.5 25.5 27.0 28.5 22.0 22.0 24.5 26.5

10 M 24.0 21.5 24.5 25.5 23.0 20.5 31.0 26.0
11 M 27.5 28.0 31.0 31.5 23.0 23.0 23.5 25.0
12 M 21.5 23.5 24.0 28.0 17.0 24.5 26.0 29.5
13 M 22.5 25.5 25.5 26.0 23.0 24.5 26.0 30.0
;

The following statements create a macro that sets colors for the covariance matrix (SETSTYLE1), create a
macro that sets colors for the correlation matrix (SETSTYLE2), edit the templates, run the analysis with
PROC GLIMMIX, and restore the default templates:

* You need to run the analysis once to know that 20 is a good maximum;
%paint(values=0 to 20 by 0.25,

colors=cyan blue magenta red, macro=setstyle1)

%paint(values=0 to 1 by 0.05,
colors=cyan blue magenta red, macro=setstyle2)

proc template;
edit Stat.Glimmix.V;

column Subject Index Row Col;
edit Col;

%setstyle1(backgroundcolor)
end;

end;
edit Stat.Glimmix.VCorr;

column Subject Index Row Col;
edit Col;

%setstyle2(backgroundcolor)
end;

end;
run;

ods _all_ close;
ods html body='ar1.html' style=HTMLBlue;
proc glimmix data=pr;

class person gender time;
model response = gender age gender*age;
random _residual_ / sub=person type=arh(1) v residual vcorr;
ods select v vcorr;

run;
ods html close;
ods listing;

proc template;
delete Stat.Glimmix.V / store=sasuser.templat;
delete Stat.Glimmix.VCorr / store=sasuser.templat;

run;
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The results are displayed in Output 20.10.4 and Output 20.10.5. Both the covariance and correlation matrices
have a structure that is more obvious when colors are added to the display. In particular, the colors clearly
show the banded structure of the correlation matrix.

Output 20.10.4 Heteroscedastic AR(1) Covariance Matrix

Output 20.10.5 Heteroscedastic AR(1) Correlation Matrix

Alternatively, you could just use the Paint macro to do the color interpolation and use its output data set to
create other types of style effects. The following statements show one way to set the font to bold and set the
foreground color based on the values of the covariances:
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%let inc = 0.25;

%paint(values=0 to 20 by &inc, colors=blue magenta red)

data cntlin;
set colors;
fmtname = 'paintfmt';
label = _rgb_;
end = start + &inc;
keep start end label fmtname;

run;

proc format cntlin=cntlin;
run;

proc template;
edit Stat.Glimmix.V;

column Subject Index Row Col;
edit Col;

style = {foreground=paintfmt8. font_weight=bold};
end;

end;
run;

ods _all_ close;
ods html body='ar1.html' style=HTMLBlue;
proc glimmix data=pr;

class person gender time;
model response = gender age gender*age;
random _residual_ / sub=person type=arh(1) v residual;
ods select v;

run;
ods html close;
ods listing;

proc template;
delete Stat.Glimmix.V / store=sasuser.templat;

run;

The Paint macro creates the SAS data set Colors with the result of the interpolation. This data set can
be processed to create a format. The DATA step creates a range of values from Start to End and assigns a
color to Label based on the color computed by the Paint macro. This data set is input to PROC FORMAT
to create the format PAINTFMT. PROC TEMPLATE uses this format to set the color of the values in the
table. The cell value is evaluated using the specified FOREGROUND= format for every cell in the table,
and the appropriate color is assigned. PROC GLIMMIX does the analysis, and the results are displayed in
Output 20.10.6.
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Output 20.10.6 Heteroscedastic AR(1) Covariance Matrix

Many other effects could be achieved by using this approach and different options in the STYLE= specifica-
tion.
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Introduction
Effective graphics are indispensable for modern statistical analysis. They reveal patterns, differences, and
uncertainty that are not readily apparent in tabular output. Graphics provoke questions that stimulate deeper
investigation, and they add visual clarity and rich content to reports and presentations.

In earlier SAS releases, creating graphs with statistical procedures typically required additional programming
steps such as creating output data sets with the values to plot, modifying these data sets with a DATA step
program, and using traditional SAS/GRAPH procedures to produce the plots.

ODS Graphics eliminates the need for additional programming. ODS Graphics is an extension of ODS (the
Output Delivery System). ODS manages procedure output and lets you display it in a variety of destinations,
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such as HTML and RTF. With ODS Graphics, statistical procedures produce graphs as automatically as
they produce tables, and graphs are integrated with tables in the ODS output. ODS Graphics is available in
procedures in SAS/STAT, Base SAS, SAS/ETS, SAS/QC, and other products (see the section “Procedures
That Support ODS Graphics” on page 615). Note that ODS Graphics is automatically provided with Base
SAS software.

ODS Graphics might or might not be enabled by default depending on your operating system, whether you
are in the SAS windowing environment, your registry, system options, and configuration file settings. For
more information about default settings and enabling and disabling ODS Graphics, see the section “Enabling
and Disabling ODS Graphics” on page 606.

You can enable ODS Graphics with the following statement:

ods graphics on;

When ODS Graphics is enabled, procedures that support ODS Graphics create appropriate graphs, either by
default or when you specify procedure options for requesting specific graphs. These options are documented
in the “Syntax” section of each procedure chapter, and the “Details” section of each chapter provides an
“ODS Graphics” subsection that lists the graphs that are available. Once ODS Graphics is enabled, it stays
enabled for the duration of your SAS session unless you disable it.

You can disable ODS Graphics with the following statement:

ods graphics off;

You might consider disabling ODS Graphics if your goal is solely to produce computational results. Often
though, you can enable ODS Graphics and then leave it enabled. Throughout this chapter, ODS Graphics is
enabled only once per section.

Chapter Reading Guide
This chapter provides a basic introduction to ODS Graphics along with more detailed information. The
following list provides a guide to reading this chapter:

• If you want to see a few of the many graphs that are produced by statistical procedures by using ODS
Graphics, see the section “Getting Started with ODS Statistical Graphics” on page 588.

• If you are using ODS Graphics for the first time, read the section “A Primer on ODS Statistical
Graphics” on page 605, which provides the minimum information that you need to get started.

• If you need to create plots of raw data or your own customized plots of statistical results, see the
section “Statistical Graphics Procedures” on page 688, which describes SAS procedures that use ODS
Graphics.

• If you need information about specialized topics such as accessing your graphs, making changes
to your graphs, and working with ODS styles, see the detailed discussions starting with the section
“Syntax” on page 616 and including the section “Examples of ODS Statistical Graphics” on page 698.

If you are unfamiliar with ODS, see Chapter 20, “Using the Output Delivery System.” For complete
documentation about the Output Delivery System, see the SAS Output Delivery System: User’s Guide. For an
introduction to graph template modification, see Chapter 22, “ODS Graphics Template Modification.” For
an introduction to ODS Graphics, ODS styles, the graph template language, the style template language,
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the statistical graphics procedures, and graph template modification, see Kuhfeld (2010). For complete
documentation about ODS graph templates, see the SAS Graph Template Language: User’s Guide and the
SAS Graph Template Language: Reference. For complete documentation about the ODS Graphics Editor, see
the SAS 9.4 ODS Graphics Editor: User’s Guide. Also see the SAS ODS Graphics: Procedures Guide for
information about the statistical graphics procedures.

Assumptions about ODS Defaults in This Chapter
Default settings such as destinations and whether or not ODS Graphics is enabled vary depending on your
operating system, registry settings, configuration file settings, system options, and whether you are using
the SAS windowing environment or batch mode. For this reason, this chapter makes no assumptions about
these defaults. Instead, destinations are often explicitly closed without assuming which destination (usually
LISTING or HTML) is open, destinations are explicitly opened when needed, and ODS Graphics is explicitly
enabled and disabled as needed. In some examples, when all destinations are closed, the LISTING destination
is opened at the end of the step so that some destination is available for subsequent output. If you know
the defaults for your environment, you do not need to use many of the ODS statements that are used in this
chapter.

Getting Started with ODS Statistical Graphics
This section provides examples that illustrate the most basic uses of ODS Graphics with a few of the many
plots that are produced by statistical procedures.

Default Plots for Simple Linear Regression with PROC REG
This example is based on the section “Getting Started: REG Procedure” on page 6980 in Chapter 85, “The
REG Procedure.” The Class data set used in this example is available in the Sashelp library. The following
statements use PROC REG to fit a simple linear regression model in which Weight is the response variable
and Height is the independent variable:

ods graphics on;

proc reg data=sashelp.class;
model Weight = Height;

run; quit;

The ODS GRAPHICS ON statement requests ODS Graphics in addition to the usual tabular output. The
statement ODS GRAPHICS OFF is not used here, but it can be specified to disable ODS Graphics.

The graphical output consists of a fit diagnostics panel, a residual plot, and a fit plot. These plots are integrated
with the tabular output and are shown in Figure 21.1, Figure 21.2, and Figure 21.3, respectively. The results
are displayed in the HTMLBLUE style.
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Figure 21.1 Fit Diagnostics Panel
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Figure 21.2 Residual Plot

Figure 21.3 Fit Plot
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ODS styles control the colors and general appearance of all graphs and tables, and the SAS System provides
several styles that are recommended for use with statistical graphics. The default style that you see when you
run SAS depends on the ODS destination, system options, and SAS registry settings. For more information
about styles, see the section “Graph Styles” on page 607 and the section “Styles” on page 641.

Survival Estimate Plot with PROC LIFETEST
This example is taken from Example 58.2 of Chapter 58, “The LIFETEST Procedure.” It shows how to
construct a product-limit survival estimate plot. Both the ODS GRAPHICS statement and procedure options
are used to request the plot. This examples uses the bone marrow transplant data set, which is available from
the Sashelp library. The data set contains disease-free times for three risk categories.

The following statements use PROC LIFETEST to compute the product-limit estimate of the survivor function
for each risk category:

ods graphics on;

proc lifetest data=sashelp.BMT plots=survival(cb=hw test);
time T * Status(0);
strata Group / test=logrank;

run;

The ODS GRAPHICS ON statement enables ODS Graphics, and the PLOTS=SURVIVAL option requests a
plot of the estimated survival curves. The CB=HW suboption requests Hall-Wellner confidence bands, and
the TEST suboption displays the p-value for the log-rank test in a plot inset.

Figure 21.4 displays the plot; note that tabular output is not shown. Patients in the AML-Low Risk group are
disease-free longer than those in the ALL group, who in turn fare better than those in the AML-High Risk
group.
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Figure 21.4 Survival Plot

Contour and Surface Plots with PROC KDE
This example is taken from the section “Getting Started: KDE Procedure” on page 4080 in Chapter 54, “The
KDE Procedure.” Here, in addition to the ODS GRAPHICS statement, procedure options are used to request
plots. The following statements simulate 1,000 observations from a bivariate normal density with means
(0,0), variances (10,10), and covariance 9:

data bivnormal;
do i = 1 to 1000;

z1 = rannor(104);
z2 = rannor(104);
z3 = rannor(104);
x = 3*z1+z2;
y = 3*z1+z3;
output;

end;
run;
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The following statements request a bivariate kernel density estimate for the variables x and y:

ods graphics on;

proc kde data=bivnormal;
bivar x y / plots=contour surface;

run;

The PLOTS= option requests a contour plot and a surface plot of the estimate (displayed in Figure 21.5 and
Figure 21.6, respectively). For more information about the graphs available in PROC KDE, see the section
“ODS Graphics” on page 4099 in Chapter 54, “The KDE Procedure.”

Figure 21.5 Contour Plot of Estimated Density
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Figure 21.6 Surface Plot of Estimated Density

Contour Plots with PROC KRIGE2D
This example is taken from Example 55.2 of Chapter 55, “The KRIGE2D Procedure.” The coal seam
thickness data set is available from the Sashelp library. The following statements create a SAS data set that
contains a copy of these data along with some artificially added missing data:

data thick;
set sashelp.thick;
if _n_ in (41, 42, 73) then thick = .;

run;
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The following statements run PROC KRIGE2D:

ods graphics on;

proc krige2d data=thick outest=predictions
plots=(observ(showmissing)

pred(fill=pred line=pred obs=linegrad)
pred(fill=se line=se obs=linegrad));

coordinates xc=East yc=North;
predict var=Thick r=60;
model scale=7.2881 range=30.6239 form=gauss;
grid x=0 to 100 by 2.5 y=0 to 100 by 2.5;

run;

The PLOTS=OBSERV(SHOWMISSING) option produces a scatter plot of the data along with the locations
of any missing data. The PLOTS=PRED option produces maps of the kriging predictions and standard errors.
Two instances of the PLOTS=PRED option are specified with suboptions that customize the plots. The results
are shown in Figure 21.7.

Figure 21.7 Spatial Distribution
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Figure 21.7 continued
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Partial Least Squares Plots with PROC PLS
This example is taken from the section “Getting Started: PLS Procedure” on page 6211 in Chapter 76, “The
PLS Procedure.” The following statements create a SAS data set that contains measurements of biological
activity in the Baltic Sea:

data Sample;
input obsnam $ v1-v27 ls ha dt @@;
datalines;

EM1 2766 2610 3306 3630 3600 3438 3213 3051 2907 2844 2796
2787 2760 2754 2670 2520 2310 2100 1917 1755 1602 1467
1353 1260 1167 1101 1017 3.0110 0.0000 0.00

EM2 1492 1419 1369 1158 958 887 905 929 920 887 800

... more lines ...

;

The following statements run PROC PLS:

ods graphics on;

proc pls data=sample cv=split cvtest(seed=104);
model ls ha dt = v1-v27;

run;

By default, the procedure produces a plot for the cross validation analysis and a correlation loading plot (see
Figure 21.8).
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Figure 21.8 Partial Least Squares
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Box-Cox Transformation Plot with PROC TRANSREG
This example is taken from Example 104.2 of Chapter 104, “The TRANSREG Procedure.” The following
statements create a SAS data set that contains failure times for yarn:

proc format;
value a -1 = 8 0 = 9 1 = 10;
value l -1 = 250 0 = 300 1 = 350;
value o -1 = 40 0 = 45 1 = 50;

run;

data yarn;
input Fail Amplitude Length Load @@;
format amplitude a. length l. load o.;
label fail = 'Time in Cycles until Failure';
datalines;

674 -1 -1 -1 370 -1 -1 0 292 -1 -1 1 338 0 -1 -1
266 0 -1 0 210 0 -1 1 170 1 -1 -1 118 1 -1 0

... more lines ...

;

The following statements run PROC TRANSREG:

ods graphics on;

proc transreg data=yarn;
model BoxCox(fail / convenient lambda=-2 to 2 by 0.05) =

qpoint(length amplitude load);
run;

The log-likelihood plot in Figure 21.9 suggests a Box-Cox transformation with � D 0.
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Figure 21.9 Box-Cox “Significant Effects”

LS-Means Diffogram with PROC GLIMMIX
This example is taken from the section “Graphics for LS-Mean Comparisons” on page 3256 in Chapter 44,
“The GLIMMIX Procedure.” The following statements create a SAS data set that contains measurements
from an experiment that investigates how snapdragons grow in various soils:

data plants;
input Type $ @;
do Block = 1 to 3;

input StemLength @;
output;

end;
datalines;

Clarion 32.7 32.3 31.5
Clinton 32.1 29.7 29.1

... more lines ...

;
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The following statements run PROC GLIMMIX:

ods graphics on;

proc glimmix data=plants order=data plots=diffogram;
class Block Type;
model StemLength = Block Type;
lsmeans Type;

run;

The PLOTS=DIFFOGRAM option produces a diffogram, shown in Figure 21.10, that displays all of the
pairwise least squares mean differences and indicates which are significant.

Figure 21.10 LS-Means Diffogram

Principal Component Analysis Plots with PROC PRINCOMP
This example is taken from Example 79.3 of Chapter 79, “The PRINCOMP Procedure.” The following
statements create a SAS data set that contains ratings of job performance of police officers:

options validvarname=any;

data Jobratings;
input ('Communication Skills'n

'Problem Solving'n
'Learning Ability'n
'Judgment Under Pressure'n
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'Observational Skills'n
'Willingness to Confront Problems'n
'Interest in People'n
'Interpersonal Sensitivity'n
'Desire for Self-Improvement'n
'Appearance'n
'Dependability'n
'Physical Ability'n
'Integrity'n
'Overall Rating'n) (1.);

datalines;
26838853879867
74758876857667

... more lines ...

;

The following statements run PROC PRINCOMP:

ods graphics on;

proc princomp data=Jobratings(drop='Overall Rating'n) n=2
plots=(Matrix PatternProfile);

run;

The plots are requested by the PLOTS=(MATRIX PATTERNPROFILE) option. The results, shown in
Figure 21.11, contain the default scree and variance-explained plots, along with a scatter plot matrix of
component scores and a pattern profile plot.

Figure 21.11 Principal Component Analysis
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Figure 21.11 continued
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Figure 21.11 continued

Grouped Scatter Plot with PROC SGPLOT
This example is taken from Example 35.1 of Chapter 35, “The DISCRIM Procedure.” It uses the Fisher iris
data set, which is available from the Sashelp library.

The following statements run PROC SGPLOT to make a scatter plot, grouped by iris species:

proc sgplot data=sashelp.iris;
title 'Fisher (1936) Iris Data';
scatter x=petallength y=petalwidth / group=species;

run;

The results are shown in Figure 21.12.
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Figure 21.12 Iris Data

See the section “Statistical Graphics Procedures” on page 688 and the SAS ODS Graphics: Procedures Guide
for more information about PROC SGPLOT (statistical graphics plot) and other SG procedures. You do not
need to enable ODS Graphics in order to use SG procedures (because making plots with ODS Graphics is
their sole function).

A Primer on ODS Statistical Graphics
You can enable ODS Graphics by specifying the following statement:

ods graphics on;

ODS Graphics remains enabled for all procedure steps until you disable it with the following statement:

ods graphics off;

Once ODS Graphics is enabled, creating graphical output with procedures is as simple as creating tabular
output. For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606. See the section “Syntax” on page 616 for details about the more
commonly used ODS GRAPHICS statement options.
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You can control your output in the following ways:

• ODS destination statements (such as ODS HTML or ODS RTF) specify where you want your graphs
displayed. See Figure 21.20 for an example of HTML output. See the section “ODS Destination
Statements” on page 619 for a list of the supported destinations. See the section “Syntax” on page 616
for details about the more commonly used ODS destination statement options.

• ODS SELECT and ODS EXCLUDE statements select and exclude graphs from your output. See the
section “Selecting and Excluding Graphs” on page 626 for an example of how to select graphs.

• ODS OUTPUT statements create SAS data sets from the data object used to make the plot. See the
section “Specifying an ODS Destination for Graphics” on page 622 for an example.

• Procedure options specify which graphs to create. For each procedure, these options are described in
the “Syntax” section of the procedure chapter. Typically, you use the PLOTS= option to control all
graphs. The available graphs are listed in the “ODS Graphics” section, which is found in the “Details”
section of each procedure chapter. Many graphs are produced by default.

• ODS styles control the general appearance and consistency of all graphs and tables. See the sections
“Graph Styles” on page 607 and “Styles” on page 641 for more information about styles.

• ODS templates modify the layout and details of each graph. See the section “Graph Templates” on
page 712 in Chapter 22, “ODS Graphics Template Modification,” for more information about templates.

NOTE: A default template is provided by SAS for each graph, so you do not need to know
anything about templates to create statistical graphics.

You can also access individual graphs, control the resolution and size of graphs, and modify your graphs (as
explained in the sections beginning with “Selecting and Viewing Graphs” on page 622). Alternatively, you
can use special statistical graphics procedures to create custom graphs directly (see the section “Statistical
Graphics Procedures” on page 688).

Enabling and Disabling ODS Graphics
You can enable ODS Graphics by specifying the following statement:

ods graphics on;

ODS Graphics remains enabled for all procedure steps until you disable it with the following statement:

ods graphics off;

ODS Graphics might or might not be enabled by default. This depends on a number of factors. ODS Graphics
is typically enabled by default in the SAS windowing environment; ODS Graphics is typically disabled
by default when you invoke SAS in other ways. However, these defaults can be changed in a number of
ways. You can enable or disable ODS Graphics by default in an autoexec.sas file, a configuration file such
as SASV9.CFG, or in the SAS registry. You can change the default in the SAS windowing environment by
selecting Tools I Options I Preferences from the menu at the top of the main SAS window. Then on
the Results tab, select the Use ODS Graphics check box to enable ODS Graphics by default or clear the
check box to disable ODS Graphics by default. You can also change the default output destination (HTML
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or LISTING) on the Results tab. See the section “HTML Output in the SAS Windowing Environment” on
page 518 in Chapter 20, “Using the Output Delivery System,” for more information about default ODS
Graphics settings and default destinations.

When ODS Graphics is enabled, procedures that support ODS Graphics create graphs, either by default or
when you specify procedure options for requesting specific graphs. Often, you can leave ODS Graphics
enabled for the duration of your SAS session. However, you might consider disabling ODS Graphics if your
goal is solely to produce computational results, particularly for large data sets or with many BY groups.

Graph Styles
ODS styles control the overall appearance of graphs and tables. They specify colors, fonts, line styles, symbol
markers, and other attributes of graph elements. There are many more ODS styles than are listed here. Most
styles are not designed for statistical work. The following styles are used most often for statistical work:

• The HTMLBLUE style is a modern color style that is recommended for use in Web pages or color
print media. See Figure 21.20 for an example. The HTMLBLUE style inherits most of its attributes
from the STATISTICAL style, which inherits from the DEFAULT style. The HTMLBLUE style has a
brighter appearance than its parents, and it has color coordination between the tables and graphs. The
dominant color is blue.

The HTMLBLUE style is one of the default styles for the HTML destination (depending on SAS option
and registry settings). It is also the default style in SAS/STAT documentation. It is an all-color style;
groups of observations are distinguished by color instead of by line style or symbol changes.1 Most
other styles simultaneously vary colors, line styles, and marker symbols to show group membership.
Output that is created with the HTMLBLUE style does not print well on black-and-white devices.
If you need an alternative to the HTMLBLUE style that varies colors, lines, and markers, use the
HTMLBLUECML style or some other style. If you need an alternative to the HTMLBLUE style
that is designed for printer destinations such as PRINTER, PDF, PS, and RTF, see the PEARL and
SAPPHIRE styles.

• The HTMLBLUECML style is a modern color style that is recommended for use in Web pages or color
print media. See Figure 21.21 for an example. It inherits most of its attributes from the HTMLBLUE
style. The dominant color is blue. Groups of observations are distinguished by simultaneous color, line
style, and symbol changes. If you need an alternative to the HTMLBLUECML style that is all-color,
use the HTMLBLUE style instead.

• The SAPPHIRE style is a modern color style that is recommended for use in documents that are created
with printer destinations such as PRINTER, PDF, PS, and RTF. See Figure 21.28 for an example.
The SAPPHIRE style shares most of its attributes with the PEARL style. Both styles inherit most
of their attributes from the HTMLBLUE style; hence the dominant color is blue. However, unlike
HTMLBLUE (which has a very light blue background), SAPPHIRE has a white background. The
SAPPHIRE style has a light blue background for row and column table headers, whereas the PEARL
style has a white background. The SAPPHIRE and PEARL styles use fonts that are appropriate for
printer destinations. Groups of observations are distinguished by color. Output that is created with the
SAPPHIRE style might not print well on black-and-white devices.

1More precisely, the HTMLBLUE style is an all-color style for the first 12 groups of observations, which are more than are
shown in most analyses. Markers and lines change for groups 13–24 and then again for groups 25–36. Figure 21.40 shows how
colors, markers, and line styles change in the HTMLBLUE style, and Figure 21.39 shows how these change in most other styles.
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• The PEARL style is a modern color style that is recommended for use in documents that are created
with printer destinations such as PRINTER, PDF, PS, and RTF. See Figure 21.27 for an example.
The PEARL style shares most of its attributes with the SAPPHIRE style. Both styles inherit most
of their attributes from the HTMLBLUE style; hence the dominant color is blue. However, unlike
HTMLBLUE (which has a very light blue background), PEARL has a white background. The PEARL
style also has a white background for row and column table headers, whereas the SAPPHIRE style has
a light blue background. The PEARL and SAPPHIRE styles use fonts that are appropriate for printer
destinations. Groups of observations are distinguished by color. Output that is created with the PEARL
style might not print well on black-and-white devices.

• The JOURNAL family of styles (JOURNAL, JOURNAL2, and JOURNAL3) consists of black-and-
white or gray-scale styles that are recommended for graphs that appear in journals and in other
black-and-white publications. See Figure 21.24 for an example of the JOURNAL style, see Figure 21.9
for an example of the JOURNAL2 style, and see Example 21.3 for a comparison of the three styles.
See the PEARL and SAPPHIRE styles for color alternatives to the JOURNAL family of styles.

• The DEFAULT style is a legacy color style. See Figure 21.19 for an example. Most other styles inherit
some of their elements from this style. The DEFAULT style is one of the default styles for the HTML
destination (depending on SAS registry and option settings). The dominant color is gray. Groups of
observations are distinguished by simultaneous color, line style, and symbol changes. Output that is
created with the DEFAULT style might not print well on black-and-white devices.

• The STATISTICAL style is a legacy color style. See Figure 21.22 for an example. The STATISTICAL
style inherits elements from the DEFAULT style, and it is similar in some ways (other than color) to
the ANALYSIS style. The dominant colors are blue and gray. Groups of observations are distinguished
by simultaneous color, line style, and symbol changes. Output that is created with the STATISTICAL
style might not print well on black-and-white devices.

• The ANALYSIS style is a legacy color style. See Figure 21.23 for an example. The ANALYSIS
style inherits elements from the DEFAULT style, and it is similar in some ways (other than color)
to the STATISTICAL style. The dominant colors are green and yellow. Groups of observations are
distinguished by simultaneous color, line style, and symbol changes. Output that is created with the
ANALYSIS style might not print well on black-and-white devices.

• The RTF style is a legacy color style designed for graphs that will be inserted into a Microsoft Word
document or a Microsoft PowerPoint slide. See Figure 21.26 for an example of the RTF style, which is
the default style for the RTF destination. The RTF style inherits elements from the DEFAULT style.
The dominant color is gray. Groups of observations are distinguished by simultaneous color, line style,
and symbol changes. Output that is created with the RTF style might not print well on black-and-white
devices. See the PEARL and SAPPHIRE styles for alternatives to the RTF style that are brighter and
less gray.

• The LISTING style is a legacy color style that is similar to the DEFAULT style, but with a lighter
background. See Figure 21.25 for an example. It is the default style for the LISTING destination.
The LISTING style inherits elements from the DEFAULT style. The dominant colors are black and
white. Groups of observations are distinguished by simultaneous color, line style, and symbol changes.
Output that is created with the LISTING style might not print well on black-and-white devices.
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You specify a style with the STYLE= option in the ODS destination statement. For example, the following
statement creates RTF output with the JOURNAL style:

ods rtf style=Journal;

The following statement sets the style for the LISTING destination:

ods listing style=HTMLBlue;

The style specified with the STYLE= option in the ODS LISTING statement applies only to graphs. SAS
monospace format is used for tables.

Most color styles (except the HTMLBLUE, PEARL, and SAPPHIRE styles) are compromise styles in the
sense that some graph elements are intentionally overdistinguished to facilitate black-and-white printing.
For example, fit lines that correspond to different classification levels are distinguished by both colors and
line patterns. You can use the HTMLBLUE, PEARL, and SAPPHIRE styles when you want groups to be
distinguished only by color. You can easily modify any style to be an all-color style. For example:

proc template;
define style styles.Default2;

parent = default;
style Graph from Graph / attrpriority = "Color";

end;
run;

The AttrPriority = "Color" option makes a style an all-color style.

To modify some other style so that it relies only on color for distinguishability, you can use the %MODSTYLE
SAS autocall macro instead (see the sections “Creating an All-Color Style” on page 675 and “Style Template
Modification Macro” on page 673). More generally, you can modify the colors, fonts, and other attributes of
graph elements in a style by editing the style template. More information is provided in the section “Styles”
on page 641, and detailed information is in the SAS Output Delivery System: User’s Guide.

ODS Destinations
ODS can send your graphs and tables to a number of different destinations including RTF (rich text format),
HTML (hypertext markup language), LISTING (the SAS LISTING destination), DOCUMENT (the ODS
document), and PDF (portable document format). You use an ODS statement to open a destination, as in the
following examples:

ods html body='b.htm';
ods rtf;
ods listing;
ods document name=MyDoc(write);
ods pdf file="contour.pdf";

You can close destinations individually or all at once, as in the following examples:

ods html close;
ods rtf close;
ods listing close;
ods document close;
ods pdf close;
ods _all_ close;
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For most ODS destinations (for example, HTML, RTF, and PDF), graphs and tables are integrated in the
output, and you view your output with an appropriate viewer, such as a web browser for HTML. However,
the LISTING destination is different. If you are using the LISTING destination in the SAS windowing
environment, you view your graphs individually by clicking the graph icons in the Results window, shown in
Figure 21.13. This action invokes a host-dependent graph viewer (for example, Microsoft Photo Editor on
Windows). The graphs produced with ODS Graphics are not displayed with traditional graphs in the Graph
window.

Figure 21.13 SAS Results Window

If you are using the SAS windowing environment and you prefer to view integrated output, you should use a
destination such as HTML or RTF. In many cases, HTML is the default destination in the SAS windowing
environment (see the section “HTML Output in the SAS Windowing Environment” on page 518 in Chapter 20,
“Using the Output Delivery System”). You can change destinations in the SAS windowing environment
by selecting Tools I Options I Preferences from the menu at the top of the main SAS window and then
selecting the Results tab.

Instead, you can prevent the Output window from appearing by using ODS statements to close the LISTING
destination, as follows:

ods listing close;
ods html;

A graph is created for every open destination. When you open a new destination, you should close all
destinations that you do not need. Closing destinations makes your jobs run faster and with fewer resources,
because fewer tables and graphs are produced.
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Accessing Individual Graphs
If you are writing a paper or creating a presentation, you need to access your graphs individually. There are
various ways to do this, depending on the ODS destination. Three particularly useful methods are as follows:

• If you are viewing RTF output, you can simply copy and paste your graphs from the viewer into a
Microsoft Word document or a Microsoft PowerPoint slide.

• If you are viewing HTML output, you can copy and paste your graphs from the viewer, or you can
right-click the graph and save it to a file. Copying and pasting from RTF is preferable because the
default resolution is higher than with HTML. See the section “Specifying the Size and Resolution of
Graphs” on page 611 for details.

• You can save your graphs in image files and then include them into a paper or presentation. For
example, you can save your graphs as PNG files and include them into a paper that you are writing
with LATEX or into an HTML document.

You can specify the graphics image format and the filename in the ODS GRAPHICS statement. For example,
the following statements, when submitted before a procedure step that produces multiple graphs, save the
graphs in PostScript files named myname.ps, myname1.ps, and so on:

ods _all_ close;
ods latex;
ods graphics on / outputfmt=ps imagename='myname';

See the section “Image File Types” on page 628 for details about the file types available with various
destinations, how they are named, and how they are saved.

If you are using the LISTING destination and the SAS windowing environment, you can also copy from the
viewer into a Microsoft Word document or a Microsoft PowerPoint slide.

Specifying the Size and Resolution of Graphs
Two factors to consider when you are creating graphs for a paper or presentation are the size of the graph
and its resolution. You can specify the size of a graph in the ODS GRAPHICS statement. The following
examples show typical ways to change the size of your graphs:

ods graphics on / width=6in;
ods graphics on / height=4in;
ods graphics on / width=4.5in height=3.5in;

You can change the resolution with the IMAGE_DPI= option in any ODS destination statement, as in the
following example:

ods html image_dpi=300;

The default resolution of graphs created with the HTML and LISTING destinations is 96 DPI (dots per inch),
whereas the default with the RTF destination is 200 DPI. An increase in resolution often improves the quality
of the graphs, but it also increases the size of the image file. See the section “Graph Size and Resolution” on
page 634 for more information about graph size and resolution.
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Modifying Your Graphs
Although ODS Graphics is designed to automate the creation of high-quality statistical graphics, on occasion
you might need to modify your graphs. There are two ways you can make modifications, depending on
whether the changes you want to make are data-dependent and immediate (for a specific graph you are
preparing for a paper or presentation), or whether they are persistent (applied to a graph each time you run
the procedure). You can make immediate, ad hoc changes by using the ODS Graphics Editor, which provides
a point-and-click interface. You can make persistent changes by modifying the ODS graph template for a
particular plot. For an introduction to graph template modification, see Chapter 22, “ODS Graphics Template
Modification.” A graph template is a program, written in the Graph Template Language (GTL), that specifies
the layout and details of a graph.

NOTE: The SAS system provides a template for each graph it creates, so you do not need to know
anything about templates to create statistical graphics.

You can use the ODS Graphics Editor to customize titles and labels, annotate data points, add text, and
change the properties of graph elements. After you have modified your graph, you can save it as a PNG
image file or as an SGE file, which preserves the editing context. You can open SGE files with the ODS
Graphics Editor and resume editing.

You can invoke the ODS Graphics Editor in the SAS windowing environment, provided that you have enabled
ODS Graphics to create editable graphs. The steps for doing this are described in the section “ODS Graphics
Editor” on page 636. Also see SAS 9.4 ODS Graphics Editor: User’s Guide.

Figure 21.14 shows the ODS Graphics Editor window for a fit plot created by PROC REG. Figure 21.15
shows modifications made with tools in the ODS Graphics Editor. The title has been changed, and the legend
has been repositioned.
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Figure 21.14 ODS Graphics Editor Invoked with a Fit Plot
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Figure 21.15 Point-and-Click Modifications Made with the ODS Graphics Editor
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Procedures That Support ODS Graphics
SAS procedures that support ODS Graphics include the following:

SAS/STAT SAS/QC SAS/ETS
ADAPTIVEREG NLIN ANOM ARIMA
ANOVA NPAR1WAY CAPABILITY AUTOREG
BCHOICE ORTHOREG CUSUM COPULA
BOXPLOT PHREG MACONTROL COUNTREG
CALIS PLM MVPDIAGNOSE ENTROPY
CLUSTER PLS MVPMONITOR ESM
CORRESP POWER MVPMODEL EXPAND
FACTOR PRINCOMP PARETO HPCDM
FMM PRINQUAL RELIABILITY HPQLIM
FREQ PROBIT SHEWHART HPSEVERITY
GAM QUANTLIFE MODEL
GEE QUANTREG Base SAS PANEL
GENMOD QUANTSELECT CORR PDLREG
GLIMMIX REG FREQ QLIM
GLM ROBUSTREG UNIVARIATE SEVERITY
GLMPOWER RSREG SIMILARITY
GLMSELECT SEQDESIGN SSM
ICLIFETEST SEQTEST Other SYSLIN
ICPHREG SIM2D HPF TIMEDATA
IRT SPP HPFENGINE TIMEID
KDE STDRATE HPFMM TIMESERIES
KRIGE2D SURVEYFREQ UCM
LIFEREG SURVEYLOGISTIC SAS Risk VARMAX
LIFETEST SURVEYMEANS Dimensions X12
LOESS SURVEYPHREG
LOGISTIC SURVEYREG
MCMC TPSPLINE
MDS TRANSREG
MI TTEST
MIXED VARCLUS
MULTTEST VARIOGRAM

For details about the specific graphs available with a particular procedure, see the PLOTS= option syntax
and the “ODS Graphics” section in the corresponding procedure chapter. For the SAS/STAT procedures, the
procedure names in the preceding table are links to the “ODS Graphics” section.

Procedures That Support ODS Graphics and Traditional Graphics
A number of procedures that support ODS Graphics produced traditional graphics in previous releases of
SAS. These include the UNIVARIATE procedure in Base SAS software; the LIFEREG, LIFETEST, and REG
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procedures in SAS/STAT software; and the ANOM, CAPABILITY, CUSUM, MACONTROL, PARETO,
RELIABILITY, and SHEWHART procedures in SAS/QC software. All of these procedures continue to
produce traditional graphics, but in some cases, they do so only when ODS Graphics is not enabled. For
more information about the interaction between traditional graphics and ODS graphics in other procedures,
see the documentation for that procedure.

Traditional graphs are saved in SAS graphics catalogs and are controlled by the GOPTIONS statement. In
contrast, ODS Graphics produces graphs in standard image file formats (not graphics catalogs), and their
appearance and layout are controlled by ODS styles and templates.

Syntax
The following sections document some of the most commonly used options in the ODS GRAPHICS statement
(section “ODS GRAPHICS Statement” on page 616) and other statements used with ODS Graphics (section
“ODS Destination Statements” on page 619). You can find the complete syntax in the SAS Output Delivery
System: User’s Guide. In addition, information about the PLOTS= option is provided in the section “PLOTS=
Option” on page 620. Statistical procedures that produce ODS Graphics all have a PLOTS= option that is
used to select graphs and control some aspects of the graphs.

ODS GRAPHICS Statement
ODS GRAPHICS < OFF | ON > < / options > ;

The ODS GRAPHICS statement enables ODS to create graphs. You can enable ODS Graphics by using
either of the following equivalent statements:

ods graphics on;
ods graphics;

You specify one of these statements prior to your procedure invocation, as illustrated in the examples
beginning with “Default Plots for Simple Linear Regression with PROC REG” on page 588. Any procedure
that supports ODS Graphics then produces graphs, either by default or when you specify procedure options
for requesting particular graphs.

To disable ODS Graphics, specify the following statement:

ods graphics off;

ODS Graphics might or might not be enabled by default depending on your operating system, whether you
are in the SAS windowing environment, your registry, system options, and configuration file settings. For
more information about default settings and enabling and disabling ODS Graphics, see the section “Enabling
and Disabling ODS Graphics” on page 606.

The following is a subset of the options, syntax, and capabilities available in the ODS GRAPHICS statement.
See the SAS Output Delivery System: User’s Guide for more information.

ANTIALIAS=ON | OFF
controls the use of antialiasing to smooth the components of a graph. Without antialiasing, pixels
are simply set or not set. With antialiasing, pixels at the edge of a line or other object are set
to an intermediate color, which makes smoother and more professional looking graphics. Text
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displayed in a graph is always antialiased. Antialiasing is very time-consuming for larger graphical
displays, and its benefits decrease as the number of points increases, so it is disabled by default
for plots with many points. If the number of observations in the ODS output object exceeds the
ANTIALIASMAX= threshold (10,000 by default), then antialiasing is not used, even if you specify
the option ANTIALIAS=ON. The default is ANTIALIAS=ON.

ANTIALIASMAX=n
specifies the maximum number of markers or lines to be antialiased before antialiasing is disabled. For
example, if there are more than 10,000 point markers and ANTIALIASMAX=10,000 (the default),
then no markers are antialiased.

BORDER=ON | OFF
specifies whether to draw the graph with a border. BORDER=ON is the default.

BYLINE=FOOTNOTE | TITLE | NOBYLINE
specifies how the BY group line is displayed in graphs when the analysis is run with a BY statement.
By default, a BY line is not displayed. Specify BYLINE=FOOTNOTE (recommended) to display the
BY line as a left-justified graph footnote or BYLINE=TITLE (not recommended) to display the BY
line as a centered graph title. The placement of the BY line is controlled in each graph template as
follows:

if (_BYTITLE_)
entrytitle _BYLINE_ / textattrs=GraphValueText;

else
if (_BYFOOTNOTE_)

entryfootnote halign=left _BYLINE_;
endif;

endif;

You can modify the graph template if you want the BY line to be displayed in some other way. Since
most graphs have titles and few graphs have footnotes, the BY line looks better when it is displayed as
a footnote.

HEIGHT=dimension
specifies the height of the graph. The default is HEIGHT=480PX (480 pixels). You can also specify
height in inches (for example, HEIGHT=5IN) or centimeters (for example, HEIGHT=12CM).

IMAGEMAP=ON | OFF
controls tooltip generation in the HTML destination. The default is IMAGEMAP=OFF, which means
that no tooltips are generated. Tooltips are text boxes that appear in HTML output when you rest your
mouse pointer over a part of the plot (see Example 21.1).

IMAGENAME=< base-file-name >
specifies the base image filename. The default is the name of the output object. You can determine
the name of the output object by using the ODS TRACE statement (see the section “Determining
Graph Names and Labels” on page 624). The base image name should not include an extension. ODS
automatically adds the increment value and the appropriate extension (which is specific to the output
destination). See the section “Specifying Base Filenames” on page 631 for an example.
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LABELMAX=n
specifies the maximum number of labeled areas before labeling is disabled. For example, if LABEL-
MAX=50, and there are more than 50 points with labels, then no points are labeled. The default is
LABELMAX=200.

MAXLEGENDAREA=n
specifies the maximum percentage of the overall graph area that a legend can occupy. The default is
MAXLEGENDAREA=20. Larger legends are dropped from the display.

OUTPUTFMT=< image-file-type | STATIC >
specifies the image format for graphs. The OUTPUTFMT= option was previously named the IM-
AGEFMT= option. By default, OUTPUTFMT=STATIC and ODS dynamically uses the best quality
static image format for the active output destination. The available image formats include: BMP (Mi-
crosoft Windows device-independent bitmap), DIB (Microsoft Windows device-independent bitmap),
EMF (Microsoft NT enhanced metafile), EPSI (Adobe encapsulated PostScript interchange), GIF
(graphic interchange format), JFIF (JPEG file interchange format), JPEG (Joint Photographic Experts
Group), PBM (portable bitmap), PCD (Photo CD), PCL (Printer Command Language), PDF (portable
document format), PICT (the QuickDraw picture format), PNG (Portable Network Graphics), PS
(PostScript image file format), SVG (Scalable Vector Graphics), TIFF (Tagged Image File Format),
WMF (Microsoft Windows Metafile format), XBM (X Bitmap), and XPM (X-Windows Pixelmap). If
the specified image format is not valid for the active output destination, the device is automatically
remapped to the default image format.

RESET< =option >
resets one or more ODS GRAPHICS options to their default settings. The RESET and RESET=ALL
options are equivalent. If you want to reset more than one option, but not all of the options, then
you must specify RESET= separately for each option you reset (for example, ods graphics on /

reset=antialias reset=index;). The RESET= options include the following:

ALL
resets all of the resettable options to their defaults.

ANTIALIAS
resets the ANTIALIAS= option to its default.

ANTIALIASMAX
resets the ANTIALIASMAX= option to its default.

BORDER
resets the BORDER= option to its default.

INDEX
resets the index counter that is appended to static image files.

HEIGHT
resets the HEIGHT= option to its default.

IMAGEMAP
resets the IMAGEMAP= option to its default.
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LABELMAX
resets the LABELMAX= option to its default.

SCALE
resets the SCALE= option to its default.

TIPMAX
resets the TIPMAX= option to its default.

WIDTH
resets the WIDTH= option to its default.

SCALE=ON | OFF
specifies whether the fonts and symbol markers are scaled proportionally with the size of the graph.
The default is SCALE=ON. For examples, see Figure 21.58 and Figure 21.59.

SCALEMARKERS=ON | OFF
specifies whether markers are scaled in nested layouts. The default is SCALE=ON.

TIPMAX=n
specifies the maximum number of distinct tooltips permitted before tooltips are disabled. Tooltips
are text boxes that appear when you rest your mouse pointer over a part of the plot. For example, if
TIPMAX=400, and there are more than 400 points in a scatter plot, then no tooltips appear. The default
is TIPMAX=500.

WIDTH=dimension
specifies the width of the graph. The default is WIDTH=640PX (640 pixels). You can also specify
widths in inches (for example, WIDTH=5in) or centimeters (for example, WIDTH=12cm).

ODS Destination Statements
ODS has a number of statements that control the destination of ODS output. The ODS destination statements
that are most commonly used with ODS Graphics are: ODS DOCUMENT, ODS HTML, ODS LISTING,
ODS PCL, ODS PDF, ODS PS, and ODS RTF. Specifying a statement opens a destination, unless the CLOSE
option is specified. Each of the following statements opens an ODS destination:

ods html;
ods rtf;
ods html image_dpi=300;
ods listing style=HTMLBlue;

Each of the following statements closes an ODS destination:

ods html close;
ods rtf close;
ods listing close;

The following statement closes all open destinations:

ods _all_ close;
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The following two options are commonly used in ODS destination statements to control aspects of ODS
Graphics:

IMAGE_DPI=dpi
specifies the dots per inch (DPI), which is the image resolution for graphical output. The default varies
depending on the destination. For example, the default is 96 for HTML and 200 for RTF.

STYLE=style-name
specifies the output style. Commonly used styles include HTMLBLUE, HTMLBLUECML, PEARL,
SAPPHIRE, DEFAULT, LISTING, STATISTICAL, JOURNAL, JOURNAL2, JOURNAL3, RTF, and
ANALYSIS.

Other options provide you with ways to control the files that are created. For example, the following statement
opens the HTML destination:

ods html body='b.html' contents='c.html' frame='a.html';

This statement also writes the body of the output to the file b.html, the table of contents to the file c.html,
and an overall frame that contains both the contents and the output to the file a.html. Alternatively, you can
specify FILE= instead of BODY=.

If you are using a destination for which individual graphs are created (for example, LISTING or HTML), you
can use the GPATH= option to specify the directory where your graphics files are saved, as in the following
example:

ods html gpath="C:\figures";

See the sections “Image File Types” on page 628, “Saving Graphics Image Files” on page 632, “LISTING
Destination” on page 632, and “HTML Destination” on page 633 for more information about individual
image files and options specified in the ODS Destination statements. For complete details about the ODS
destination statements, see the SAS Output Delivery System: User’s Guide.

PLOTS= Option
Each statistical procedure that supports ODS Graphics has a PLOTS= option that is used to select graphs and
specify some options. The syntax of the PLOTS= option is as follows:

PLOTS < (global-plot-options) > < = plot-request< (options) > > ;

PLOTS < (global-plot-options) > < =(plot-request< (options) > < ... plot-request< (options) > >) > ;

The PLOTS= option has a common overall syntax for all statistical procedures, but the specific global-plot-
options, plot-requests, and plot-options vary across procedures. This section discusses only a few of the
options available in the PLOTS= option. For more information about the PLOTS= option, see the “Syntax”
section for each procedure that produces ODS Graphics. There are only a limited number of things that you
can control with the PLOTS= option. Most graphical details are controlled either by graph templates (see the
section “Graph Templates” on page 712 in Chapter 22, “ODS Graphics Template Modification,”) or by styles
(see the section “Styles” on page 641).

The PLOTS= option is usually specified in the PROC statement. However, for some procedures, certain
analyses and hence certain plots can appear only if an additional statement is specified. These procedures
might have a PLOTS= option in that other statement. For example, the PHREG procedure has a PLOTS=
option in the BAYES statement, which is used to perform a Bayesian analysis. See the “Syntax” section of
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each procedure chapter for more information. The following examples illustrate the syntax of the PLOTS=
option:

plots=all
plots=none
plots=residuals
plots=residuals(smooth)
plots=(trace autocorr)
plots(unpack)
plots(unpack)=diagnostics
plots=diagnostics(unpack)
plots(only)=freqplot
plots=(scree(unpack) loadings(plotref) preloadings(flip))
plots(unpack maxparmlabel=0 stepaxis=number)=coefficients
plots(sigonly)=(rawprob adjusted(unpack))

Also see the “Getting Started” sections “Survival Estimate Plot with PROC LIFETEST” on page 591,
“Contour and Surface Plots with PROC KDE” on page 592, “Contour Plots with PROC KRIGE2D” on
page 594, “LS-Means Diffogram with PROC GLIMMIX” on page 600, and “Principal Component Analysis
Plots with PROC PRINCOMP” on page 601 for examples of the PLOTS= option.

The simplest PLOTS= specifications are of the form PLOTS=plot-request or PLOTS=(plot-requests). When
there is more than one plot-request , the plot-request list must appear in parentheses. Each plot-request either
requests a plot (for example, RESIDUALS) or provides you with a place to specify plot-specific options (for
example, DIAGNOSTICS(UNPACK)). Some simple and typical plot-requests are explained next:

• PLOTS=ALL requests all plots that are relevant to the analysis. This does not mean that all plots that
the procedure can produce are produced. Plots that are produced for one set of options might not
appear with PLOTS=ALL and a different set of options. In some cases, certain plots are not produced
unless certain options or statements outside the PLOTS= option are specified.

• PLOTS=NONE disables ODS Graphics for just that step. You can use this option instead of specifying
ODS GRAPHICS OFF before a procedure step and ODS GRAPHICS ON after the step when you
want to suppress graphics for only that step.

• PLOTS=RESIDUALS requests a plot of residuals in a modeling procedure such as PROC REG.

• PLOTS=RESIDUALS(SMOOTH) requests the residuals plot along with a smooth fit function.

• PLOTS=(TRACE AUTOCORR) requests trace and autocorrelation plots in procedures with Bayesian
analysis options.

Global-plot-options appear in parentheses after the option name and before the equal sign. These options
affect many or all of the plots. The UNPACK option is a commonly used global-plot-option. It specifies
that plots that are normally produced with multiple plots per panel (or “packed”) should be unpacked and
appear in multiple panels with one plot in each panel. The specification PLOTS(UNPACK)=(plot-requests)
unpacks all paneled plots. The UNPACK option is also used as an option in a plot-request when you want
to unpack only certain panels. For example, the option PLOTS=(DIAGNOSTICS(UNPACK) PARTIAL
PREDICTIONS) unpacks only the diagnostics panel. In some cases, unpacked plots contain additional
information that is not found in the smaller packed versions. The UNPACK option is not available for all
plot-requests; it is available only with plots that have multiple panels by default.
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Another commonly used global-plot-option is the ONLY option. Many procedures produce default plots, and
additional plots can be requested in the PLOTS= option. Specifying PLOTS=(plot-requests) while omitting
the default plots does not prevent the default plots from being produced. The ONLY option is used when you
want to see only the plots specifically listed in the plot-request list. Procedures that produce no default plots
typically do not provide an ONLY option. You can use ODS SELECT and ODS EXCLUDE (see the section
“Selecting and Excluding Graphs” on page 626) to select and exclude graphs, but in some situations the ONLY
option is more convenient. It is typically more efficient to select plots by using the PLOTS(ONLY)= option,
because the procedure does not do extra work to generate a plot that is excluded by the PLOTS(ONLY)=
option. In contrast, ODS SELECT and ODS EXCLUDE have their effect after the procedure has done the
work to generate the plot.

Selecting and Viewing Graphs
This section describes techniques for selecting and viewing your graphs. Topics include:

• specifying an ODS destination for graphics

• viewing your graphs in the SAS windowing environment

• referring to graphs by name when using ODS

• selecting and excluding graphs from your output

Specifying an ODS Destination for Graphics
If you do not specify an ODS destination, then either the LISTING or the HTML destination is used by
default. Here is an example of how you can explicitly specify the HTML destination:

ods graphics on;
ods html;

proc reg data=sashelp.class;
model Weight = Height;

run; quit;

ods html close;

This ODS HTML statement creates an HTML file with a default name. See the section “Specifying a File for
ODS Output” on page 623 to see how to specify a filename. Other destinations are specified in a similar way.
For example, you can specify an RTF destination with the following statements:

ods graphics on;
ods rtf;

. . .

ods rtf close;
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The destinations that ODS supports for graphics are as follows:

Destination Destination Family
DOCUMENT
HTML MARKUP
LATEX� MARKUP
LISTING
PCL PRINTER
PDF PRINTER
PS PRINTER
RTF

* The LATEX destination is experimental.

You can close all open destinations if you are interested only in displaying your output in a nondefault
destination. For example, if you want to see your output only in the RTF destination, you can specify the
following statements:

ods graphics on;
ods _all_ close;
ods rtf;

. . .

ods rtf close;
ods listing;

Closing unneeded destinations makes your jobs run faster and creates fewer files. More generally, it makes
your jobs consume fewer resources, because a graph is created for every open destination. The last statement
opens the LISTING destination after you are finished using the RTF destination.

You can also use the ODS OUTPUT destination to create an output data set from the data object used to
make a plot. Here is an example:

ods graphics on;

proc reg data=sashelp.class;
ods output fitplot=myfitplot;
model Weight = Height;

run; quit;

Specifying a File for ODS Output

You can specify a filename for your output with the FILE= option in the ODS destination statement, as in the
following example:

ods html file="test.htm";

The output is written to the file test.htm, which is saved in the SAS current folder. At start-up, the SAS current
folder is the same directory in which you started your SAS session. If you are using the SAS windowing
environment, then the current folder is displayed in the status line at the bottom of the main SAS window.
If you do not specify a filename for your output, then the SAS System provides a default filename, which
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depends on the ODS destination. This file is saved in the SAS current folder. You can always check the
SAS log to verify the name of the file in which your output is saved. For example, suppose you specify the
following statement:

ods html;

Then the following message is displayed in the SAS log:

NOTE: Writing HTML Body file: sashtml.htm

The default filenames for each destination are specified in the SAS Registry. For example, Figure 21.60
shows that the default filename in the SAS Registry for the RTF destination is sasrtf.rtf. For more information,
see the SAS Companion for your operating system.

Viewing Your Graphs in the SAS Windowing Environment
The mechanism for viewing graphs created with ODS can vary depending on your operating system, which
viewers are installed on your computer, and the ODS destination you have selected. If you do not specify an
ODS destination, then the default destination is either HTML or LISTING.

If you are using the SAS windowing environment and the HTML destination, then the results are displayed
by default in the SAS Results Viewer unless you chose to use an external browser. To use an external viewer,
select Tools I Options I Preferences from the menu at the top of the main SAS window. Then select the
Results and Web tabs to make your selection.

If you are using the PS destination, you must use a PostScript viewer, such as GSview. For information
about the windowing environment in a different operating system, see the SAS Companion for that operating
system.

If you do not want to view the results as they are being generated, then select Tools I Options I Preferences
from the menu at the top of the main SAS window. Then on the Results tab, clear the View results as they
are generated checkbox.

If you are using the SAS windowing environment and the LISTING destination, go to the Results window
and find the icon for the corresponding graph. You can double-click the graph icon to display the graph in the
default viewer that is configured on your computer for the corresponding image file type (see Figure 21.13).

Determining Graph Names and Labels
Procedures assign a name to each graph they create with ODS Graphics. This enables you to refer to ODS
graphs in the same way that you refer to ODS tables (see the section “The ODS Statement” on page 525 in
Chapter 20, “Using the Output Delivery System”). You can determine the names of graphs in several ways:

• You can look up graph names in the “ODS Graphics” section of chapters for procedures that use ODS
Graphics. For example, see the section “ODS Graphics” on page 7106 in Chapter 85, “The REG
Procedure.”

• You can use the Results window to view the names of ODS graphs created in your SAS session. See the
section “The SAS Results Window” on page 529 in Chapter 20, “Using the Output Delivery System,”
for more information.
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• You can use the ODS TRACE ON statement to list the names of graphs created by your SAS session.
This statement adds identifying information in the SAS log (or optionally in the SAS LISTING) for
each graph that is produced. See the section “The ODS Statement” on page 525 in Chapter 20, “Using
the Output Delivery System,” for more information.

The graph name is not the same as the name of the image file that contains the graph (see the section “Naming
Graphics Image Files” on page 630).

This example revisits the analysis described in the section “Contour and Surface Plots with PROC KDE”
on page 592. To determine which output objects are created by ODS, you specify the ODS TRACE ON
statement prior to the procedure statements as follows:

ods graphics on;
ods trace on;

proc kde data=bivnormal;
bivar x y / plots=contour surface;

run;

ods trace off;

The trace record from the SAS log is as follows:

Output Added:
-------------
Name: Inputs
Template: Stat.KDE.Inputs
Path: KDE.Bivar1.x_y.Inputs
-------------

Output Added:
-------------
Name: Controls
Template: Stat.KDE.Controls
Path: KDE.Bivar1.x_y.Controls
-------------

Output Added:
-------------
Name: ContourPlot
Label: Contour Plot
Template: Stat.KDE.Graphics.Contour
Path: KDE.Bivar1.x_y.ContourPlot
-------------

Output Added:
-------------
Name: SurfacePlot
Label: Density Surface
Template: Stat.KDE.Graphics.Surface
Path: KDE.Bivar1.x_y.SurfacePlot
-------------
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By default, PROC KDE creates table objects named Inputs and Controls, and it creates graph objects named
ContourPlot and SurfacePlot. In addition to the name, the trace record provides the label, template, and path
for each output object. Graph templates are distinguished from table templates by a naming convention that
uses the procedure name in the second level and Graphics in the third level. For example, the fully qualified
template name for the surface plot created by PROC KDE is Stat.KDE.Graphics.SurfacePlot.

You can specify the LISTING option in the ODS TRACE ON statement to write the trace record to the
LISTING destination as follows:

ods trace on / listing;

Each table and graph has a path (or name path), which was previously shown in the trace output. The path
consists of the plot name preceded by the names of one or more output groups. Each table and graph also has
a label path, which can be seen by adding the LABEL option to the ODS TRACE ON statement, after a slash,
as follows:

ods trace on / label;

proc kde data=bivnormal;
bivar x y / plots=contour surface;

run;

ods trace off;

A portion of the trace output is shown next:

Path: KDE.Bivar1.x_y.Inputs
Label Path: 'The KDE Procedure'.'Bivariate Analysis'.'x and y'.'KDE.Bivar1.x_y'

Path: KDE.Bivar1.x_y.Controls
Label Path: 'The KDE Procedure'.'Bivariate Analysis'.'x and y'.'KDE.Bivar1.x_y'

Path: KDE.Bivar1.x_y.ContourPlot
Label Path: 'The KDE Procedure'.'Bivariate Analysis'.'x and y'.'Contour Plot'

Path: KDE.Bivar1.x_y.SurfacePlot
Label Path: 'The KDE Procedure'.'Bivariate Analysis'.'x and y'.'Density Surface'

The label path contains the information that you see in the HTML table of contents. Names are fixed,
they do not vary, and they are not data- or context-dependent. In contrast, labels often reflect data- or
context-dependent information.

Selecting and Excluding Graphs
You can use the ODS SELECT and ODS EXCLUDE statements along with graph and table names to specify
which ODS outputs are displayed. See the section “The ODS Statement” on page 525 in Chapter 20, “Using
the Output Delivery System,” for more information about how to use these statements.
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This section shows several examples of selecting and excluding graphs by using the data set and trace output
that are created in the section “Determining Graph Names and Labels” on page 624. The following statements
use the ODS SELECT statement to select only two graphs, ContourPlot and SurfacePlot, for display in the
output:

proc kde data=bivnormal;
ods select ContourPlot SurfacePlot;
bivar x y / plots=contour surface;

run;

Equivalently, the following statements use the ODS EXCLUDE statement to exclude the two tables:

proc kde data=bivnormal;
ods exclude Inputs Controls;
bivar x y / plots=contour surface;

run;

You can select or exclude graphs by using either the name or the label. Labels must be specified in quotes. In
the context of this example, the following two statements are equivalent:

ods select contourplot;
ods select 'Contour Plot';

You can also specify multiple levels of the path, as in the following example:

ods select x_y.contourplot;
ods select 'x and y'.'Contour Plot';
ods select 'x and y'.contourplot;
ods select x_y.'Contour Plot';

Name and label paths can be mixed, as in the last two statements. All four of the preceding statements
select the same plot. Furthermore, selection based directly on the names and labels is case-insensitive. The
following statements all select the same plot:

ods select x_y.contourplot;
ods select 'x and y'.'Contour Plot';
ods select X_Y.CONTOURPLOT;
ods select 'X AND Y'.'CONTOUR PLOT';

It is sometimes useful to specify a WHERE clause in an ODS SELECT or ODS EXCLUDE statement.
This enables you to specify expressions based on either the name path or the label path. You can base your
selection on two automatic variables _path_ and _label_. The following two statements select every object
whose path contains the string ‘plot’ and every object whose label path contains the string ‘plot’, respectively,
ignoring the case in the name and label:

ods select where = (lowcase(_path_) ? 'plot');
ods select where = (lowcase(_label_) ? 'plot');

The question mark operator means that the second expression (the string ‘plot’) is contained in the first
expression (the lowercase version of the name or label). For example, all of the following names match ‘plot’
in the WHERE clause: plot, SurfacePlot, SURFACEPLOT, FitPlot, pLoTtInG, Splotch, and so on. Since
WHERE clause selection is based on SAS string comparisons, selection is case-sensitive. The LOWCASE
function is used to ensure a match even when the specified string does not match the case of the actual name
or label.
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WHERE clauses are particularly useful when you want to select all of the objects in a group. A group is a
level of the name path or label path hierarchy before the last level. In the following step, all of the objects
whose name path contains ‘DiagnosticPlots’ are selected:

proc reg data=sashelp.class plots(unpack);
ods select where = (_path_ ? 'DiagnosticPlots');
model Weight = Height;

run; quit;

These are the plots that come from unpacking the PROC REG diagnostics panel of plots. All are in a group
named ‘DiagnosticPlots’.

Graphics Image Files
Accessing your graphs as individual image files is useful when you want to include them in various types of
documents. The default image file type depends on the ODS destination, but there are other supported image
file types that you can specify. You can also specify the names for your graphics image files and the directory
in which you want to save them. This section describes the image file types supported by ODS Graphics, and
it explains how to name and save graphics image files.

Image File Types
If you are using the LISTING or HTML destinations, your graphs are individually produced in a specific
image file type, such as PNG (Portable Network Graphics). If you are using a destination in the PRINTER
family or the RTF destination, the graphs are contained in the ODS output file and cannot be accessed as
individual image files. However, you can open an RTF output file in Microsoft Word and then copy and
paste the graphs into another document, such as a Microsoft PowerPoint presentation. This is illustrated in
Example 21.2.

Table 21.1 shows the various ODS destinations supported by ODS Graphics, the viewer that is appropriate
for displaying graphs in each destination, and the image file types supported for each destination.
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Table 21.1 Destinations and Image File Types Supported by ODS Graphics

Destination Destination
Family

Recommended Viewer Image File Types

DOCUMENT Not applicable Not applicable
HTML MARKUP Web browser PNG (default), GIF, JPEG,
LATEX MARKUP PostScript or PDF viewer after

compiling the LATEX file
PostScript (default), EPSI, GIF,
JPEG, PDF, PNG

LISTING Default viewer in your system
for the specified file type

PNG (default), GIF, BMP, DIB,
EMF, EPSI, GIF, JFIF, JPEG,
PBM, PS, TIFF, WMF

PCL PRINTER Not applicable Contained in PRN file
PDF PRINTER PDF viewer, such as Adobe

Reader
Contained in PDF file

PS PRINTER PostScript viewer, such as
GSview

Contained in PostScript file

RTF Word processor, such as Mi-
crosoft Word

Contained in RTF file

For destinations such as PDF and RTF, you can control the types of the images that are contained in the file
even though individual files are not made for each image. The default image file type is PNG, and other
image types are available. See the SAS Output Delivery System: User’s Guide for more information.

Scalable Vector Graphics
Scalable vector graphics output is now supported in ODS Graphics. The output type support varies based
on the ODS destination that you use. You can specify the OUTPUTFMT= option in the ODS GRAPHICS
statement to specify the output type for any destination. For destinations that generate vector graphics by
default, you can get image output by specifying the option OUTPUTFMT=STATIC.

Vector graphics are not supported for all graph types. When vector graphics are requested but not supported,
the graph automatically changes to image output. Vector graphics are not supported for the following graph
types:

• three-dimensional graph

• contour plots with smooth gradient fills

• graphs with continuous legends

• graphs with data skins

• graphs with rotated annotation images

• graphs with transparency (EMF and PS only)

The LISTING destination can generate all of the supported forms of vector-based output: PDF, PS, EMF,
SVG, and PCL. Each graph is generated in a separate file that can be included into a larger report. The default
output format is a PNG image.



630 F Chapter 21: Statistical Graphics Using ODS

Like the LISTING destination, the ODS PRINTER destination can generate all of the supported vector output
types. The output format depends on the type of printer you select. If you select the PDF, SVG, or PCL5C
printers, vector-based output is automatically produced. However, if you select PS or EMF printers, you need
to set the OUTPUTFMT= option in the ODS GRAPHICS statement to PS or EMF, respectively, to create
vector-based output. By default, the output from this destination is in one file instead of individual files for
each graph.

The PDF destination renders PDF vector output by default, except for the exceptions noted. You can specify
the OUTPUTFMT=STATIC option in the ODS GRAPHICS statement to produce an embedded image in the
PDF file.

The experimental LATEX destination renders PS vector output by default, except for the exceptions noted.
You can specify the OUTPUTFMT=STATIC option in the ODS GRAPHICS statement to produce an
embedded image in the postscript file.

The RTF destination renders PNG image output by default. Vector-based EMF output is also supported for
this destination. You can specify the OUTPUTFMT=EMF option in the ODS GRAPHICS statement to select
this output type. If one of the noted exceptions occurs, the output type for that graph changes to a PNG
image.

The HTML destination renders PNG image output by default. Vector-based SVG output is also supported
for this destination. You can specify the OUTPUTFMT=SVG option in the ODS GRAPHICS statement to
select this output type. If one of the noted exceptions occurs, the output type for that graph changes to a PNG
image.

In most cases, the file size with vector graphics is much smaller than a comparable static image file. However,
in some cases, the vector graphics file size is larger than the image version. This is likely for scatter plots of
data sets with a large number of observations.

Naming Graphics Image Files
The following discussion applies to the destinations where ODS graphs are created as individual image files
(for example, HTML, and LISTING). The names of graphics image files are determined by a base filename,
an index counter, and an extension. By default, the base filename is the ODS graph name (see the section
“Determining Graph Names and Labels” on page 624). There is an index counter for each base filename. The
extension indicates the image file type. The first time a graph object with a given base filename is created,
the filename consists only of the base filename and the extension. If a graph with the same base filename is
created multiple times, then an index counter is appended to the base filename to avoid overwriting previously
created images.

To illustrate, consider the following statements:

proc kde data=bivnormal;
ods select ContourPlot SurfacePlot;
bivar x y / plots=contour surface;

run;

If you run this step at the beginning of a SAS session, the two graphics image files created are ContourPlot.png
and SurfacePlot.png. If you immediately rerun these statements, then ODS creates the same graphs in
different image files named ContourPlot1.png and SurfacePlot1.png. The next time, the image files are named
ContourPlot2.png and SurfacePlot2.png. The index starts at zero, and one is added each time the same name is
used. Note, however, that when the index is at zero, 0 is not added to the filename.
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Resetting the Index Counter

You can specify the RESET=INDEX option in the ODS GRAPHICS statement to reset the index counter.
This is useful when you need to have predictable names. It is particularly useful when you are running a SAS
program multiple times in the same session. The following statement resets the index:

ods graphics on / reset=index;

The index counter is reinitialized at the beginning of your SAS session or if you specify the RESET=INDEX
option in the ODS GRAPHICS statement. Graphics image files with the same name are overwritten.

Specifying Base Filenames

You can specify a base filename for all your graphics image files with the IMAGENAME= option in the ODS
GRAPHICS statement as follows:

ods graphics on / imagename="MyName";

You can also specify the RESET=INDEX option as follows:

ods graphics on / reset=index imagename="MyName";

The IMAGENAME= option overrides the default base filename. With the preceding statement, the graphics
image files are named MyName, MyName1, MyName2, and so on.

Specifying Image File Types

You can specify the image file type for the LISTING, HTML, or LATEX destinations with the OUTPUTFMT=
option in the ODS GRAPHICS statement as follows:

ods graphics on / outputfmts=gif;

For more information, see the section “ODS GRAPHICS Statement” on page 616.

Naming Graphics Image Files with Multiple Destinations

Since the index counter depends only on the base filename, if you specify multiple ODS destinations for
your output, then the index counter is increased independently of the destination. For example, the following
statements create image files named ContourPlot.png and SurfacePlot.png that correspond to the LISTING
destination, and ContourPlot1.png and SurfacePlot1.png that correspond to the HTML destination:

ods listing;
ods html;
ods graphics on / reset;

proc kde data=bivnormal;
ods select ContourPlot SurfacePlot;
bivar x y / plots=contour surface;

run;

ods _all_ close;
ods listing;
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When you specify one of the destinations in the PRINTER family or the RTF destination, your ODS graphs
are embedded in the document, so the index counter is not affected. For example, the following statements
create image files ContourPlot.png and SurfacePlot.png for the LISTING destinations, but no image files for
the RTF destination:

ods listing;
ods rtf;
ods graphics on / reset;

proc kde data=bivnormal;
ods select ContourPlot SurfacePlot;
bivar x y / plots=contour surface;

run;

ods _all_ close;

Saving Graphics Image Files
Knowing where your graphics image files are saved and how they are named is particularly important if you
are running in batch mode, if you have disabled the SAS Results window (see the section “Viewing Your
Graphs in the SAS Windowing Environment” on page 624), or if you plan to access the files for inclusion in a
paper or presentation. The following discussion assumes you are running SAS under the Windows operating
system. If you are running on a different operating system, see the SAS Companion for your operating system.

In the SAS windowing environment, the current folder is displayed in the status line at the bottom of the
main SAS window. When Use WORK folder is cleared in the Tools I Options I Preferences I Results
tab, graph image files are saved in the current folder and are available after your SAS session ends. They can
accumulate with time and take up a great deal of space. When Use WORK folder is selected, graph image
files are stored in the Work folder and are not available after your SAS session ends.

If you are running your SAS programs in batch mode, the graphs are saved by default in the same directory
where you started your SAS session. For example, suppose the SAS current folder is C:\myfiles. If ODS
Graphics is enabled, then your graphics image files are saved in the directory C:\myfiles. Traditional graphics
are always saved in a catalog in your Work directory.

With the LISTING, HTML, and LATEX destinations, you can specify a directory for saving your graphics
image files. With a destination in the PRINTER family and with the RTF destination, you can specify a
directory only for your output file. The remainder of this discussion provides details for each destination
type.

LISTING Destination

If you are using the LISTING destination, the individual graphs are created as PNG files by default. You can
use the GPATH= option in the ODS LISTING statement to specify the directory where your graphics files
are saved. For example, if you want to save your graphics image files in C:\figures, then you can specify the
following:

ods listing gpath="C:\figures";

It is important to note that the GPATH= option applies only to ODS Graphics. It does not affect the behavior
of graphs created with traditional SAS/GRAPH procedures.
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HTML Destination

If you are using the HTML destination, the individual graphs are created as PNG files by default. You can use
the PATH= and GPATH= options in the ODS HTML statement to specify the directory where your HTML
and graphics files are saved, respectively. This also gives you more control over your graphs. For example,
if you want to save your HTML file named test.htm in the C:\myfiles directory, but you want to save your
graphics image files in C:\myfiles\png, then you can specify the following:

ods html path = "C:\myfiles"
gpath = "C:\myfiles\png"
file = "test.htm";

When you specify the URL= suboption with the GPATH= option, SAS creates relative paths for the links and
references to the graphics image files in the HTML file. This is useful for building output files that are easily
moved from one location to another. For example, the following statements create a relative path to the png
directory in all the links and references contained in test.htm:

ods html path = "C:\myfiles"
gpath = "C:\myfiles\png" (url="png/")
file = "test.htm";

If you do not specify the URL= suboption, SAS creates absolute paths that are hard-coded in the HTML file.
These can cause broken links if you move the files. For more information, see the ODS HTML statement in
the SAS Output Delivery System: User’s Guide.

LATEX Destination

LATEX is a document preparation system for high-quality typesetting. The ODS LATEX statement produces
output in the form of a LATEX source file that is ready to compile in LATEX. When you request ODS Graphics
for a LATEX destination2, ODS creates the requested graphs as PostScript files by default, and the LATEX
source file includes references to these image graphics files. You can compile the LATEX file, or you can ignore
this file and simply access the individual PostScript files to include your graphs in a different LATEX document,
such as a paper that you are writing. You can specify the PATH= and GPATH= options in the ODS LATEX
statement, as explained previously for the ODS HTML statement. See Example 21.3 for an illustration. The
ODS LATEX statement is an alias for the ODS MARKUP statement with the TAGSET=LATEX option. For
more information, see the SAS Output Delivery System: User’s Guide.

The default image file type for the LATEX destination is PostScript. When you use LATEX to compile your
document, the graphics format for included images is Postscript. However, if you prefer to use pdfLATEX,
you can specify a different format such as JPEG, PDF, or PNG, any of which can be directly included into
your pdfLATEXdocument. To specify one of these formats, you use the OUTPUTFMT= option in the ODS
GRAPHICS statement. For more information, see the LATEX documentation for the graphicx package.

Creating Graphs in Multiple Destinations
This section illustrates how to send your output to more than one destination with a single execution of
your SAS statements. For example, to create LISTING, HTML, and RTF output, you can specify the ODS
LISTING, ODS HTML, and the ODS RTF statements before your procedure statements. The ODS _ALL_
CLOSE statement closes all open destinations before and after the other statements are run.

2The LATEX destination is experimental.
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ods _all_ close;
ods listing;
ods html;
ods rtf;

. . .

ods _all_ close;

You can also specify multiple instances of the same destination. For example, using the data in the section
“Contour and Surface Plots with PROC KDE” on page 592, the following statements save the contour plot to
the file contour.pdf and the surface plot to the file surface.pdf :

ods _all_ close;
ods pdf file="contour.pdf";
ods pdf select ContourPlot;
ods pdf(id=srf) file="surface.pdf";
ods pdf(id=srf) select SurfacePlot;
ods graphics on;

proc kde data=bivnormal;
ods select ContourPlot SurfacePlot;
bivar x y / plots=contour surface;

run;

ods _all_ close;

The ID= option assigns the name srf to the second instance of the PDF destination. Without the ID= option,
the second ODS PDF statement closes the destination that was opened by the previous ODS PDF statement,
and it opens a new instance of the PDF destination. In that case, the file contour.pdf is not created. For more
information, see the ODS PDF statement in the SAS Output Delivery System: User’s Guide.

Graph Size and Resolution
ODS provides options for specifying the size and resolution of graphs. You can specify the size of a graph in
the ODS GRAPHICS statement and the resolution in an ODS destination statement. There are two other
ways to change the size of a graph, but they are rarely needed. The three methods are as follows:

• Usually, you specify the WIDTH= or HEIGHT= option (or both) in the ODS GRAPHICS statement to
change the size of a graph.

• To modify the size of a particular graph, specify the dimensions with the DESIGNHEIGHT= and
DESIGNWIDTH= options in the BEGINGRAPH statement in the template. Some templates contain
the specification DESIGNWIDTH=DEFAULTDESIGNHEIGHT, which sets the width of the graph
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to the default height, or DESIGNHEIGHT=DEFAULTDESIGNWIDTH, which sets the height of the
graph to the default width.

• To modify the size of all of your ODS graphs, specify the dimensions with the OUTPUTHEIGHT=
and OUTPUTWIDTH= options in the style template.

The following examples show typical ways to change the size of your graphs:

ods graphics on / width=6in;
ods graphics on / height=4in;
ods graphics on / width=4.5in height=3.5in;

The dimensions of the graph can be specified in pixels (for example, 200PX), inches (for example, 3IN),
or centimeters (for example, 8CM). The default dimensions of ODS Graphics are 640 pixels wide and 480
pixels high, and these values determine the default aspect ratio. The actual size of the graph in inches depends
on your printer or display device. For example, if the resolution of your printer is 100 dots per inch and you
want a graph that is 4 inches wide, you should set the width to 400 pixels.

If you specify only one dimension, the other is determined by the default aspect ratio—that is, height=0.75
� width. For best results, you should create your graphs by using the exact size that is used to display the
graphs in your paper or presentation. In other words, avoid generating them at one size and then expanding
or shrinking them for inclusion into the your document.

By default, fonts and symbol markers are automatically scaled with the size of the graph. You can suppress
this scaling with the SCALE= option, as in the following example:

ods graphics on / scale=off;

The default resolution of graphs created with HTML and LISTING is 96 DPI (dots per inch), whereas the
default with RTF is 200 DPI. The 200 DPI value is recommended if you are copying and pasting graphs
into a Microsoft PowerPoint presentation or a Microsoft Word document. Graphs shown in SAS/STAT
documentation are typically generated at 300 DPI for display in PDF and 96 DPI for display in HTML.

You can change the resolution with the IMAGE_DPI= option in any ODS destination statement, as in the
following example:

ods html image_dpi=300;

An increase in resolution often improves the quality of the graphs, but it also greatly increases the size of
the image file. Going from 96 DPI to 300 DPI increases the size of the image file by roughly a factor of
.300=96/2 D 9:77. Even when you are using a higher DPI for most of your graphs, you should consider
using a lower DPI for some, such as contour plots, that create large files even at a lower DPI.

If you increase the resolution, you might need to compensate by reducing the size of the graph, as in the
following example:

ods graphics on / width=4.5in height=3.5in;
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Increasing DPI also increases the amount of memory needed for your program to complete. You can increase
the amount of memory available to ODS Graphics with an option when you invoke SAS, as in the following
example:

-jreoptions '(-Xmx256m)'

You can modify the default amount of memory available to ODS Graphics by changing JREOPTIONS in
your SAS configuration file to the settings –Xmxnnnm –Xmsnnnm, where nnn is the amount of memory in
megabytes. An example is –Xmx256m –Xms256m. In either case, the exact syntax varies depending on
your operating system and the amount of memory that you can allocate varies from system to system. For
more information, see the SAS Companion for your operating system.

ODS Graphics Editor
The ODS Graphics Editor is a point-and-click interface that you can use to modify a specific graph created
by ODS Graphics. For example, if you need to enhance a graph for a paper or presentation, you can use
the ODS Graphics Editor to customize the title, modify the axis labels, annotate particular data points, and
change graph element properties such as fonts, colors, and line styles.

This section explains how to enable ODS Graphics to create editable graphs and how to invoke the ODS
Graphics Editor. You can use the ODS Graphics Editor in the SAS windowing environment, provided that
the LISTING destination is open and that you have first enabled ODS Graphics to create editable graphs.
NOTE: The LISTING destination is typically open by default. There are three steps you must take to edit a
graph:

1 You must first enable the creation of editable graphs in one of three ways:
� use an ODS statement to temporarily enable this feature
� use a SAS command to temporarily enable this feature
� use the SAS Registry Editor to permanently enable this feature

Creating editable graphs takes additional resources, so you might not want to permanently enable this
feature.

2 You submit your SAS code and create editable graphs.

3 You invoke the ODS Graphics Editor and edit the plot.

Step 2 involves submitting SAS code in the usual way, and no special instructions are needed for creating
graphs that can be edited. Steps 1 and 3 are explained in more detail in the following sections.

Enabling the Creation of Editable Graphs

Temporarily Enable Creation of Editable Graphs by Using an ODS Statement

You can enable the creation of editable graphs within a SAS session by submitting one of the following
statements:
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ods listing sge=on;
ods html sge=on;

You can disable the creation of editable graphs by submitting one of the following statements:

ods listing sge=off;
ods html sge=off;

Permanently Enable Creation of Editable Graphs across SAS Sessions

You can create a default setting that enables or disables the creation of editable graphs across SAS sessions
via the ‘ODS Graphics Editor’ setting in the SAS Registry. You can change this setting in the SAS windowing
environment as follows:

1 Open the Registry Editor by entering regedit on the command line.

2 Select SAS_REGISTRY I ODS I GUI I RESULTS.

3 In the Value Data field, click ODS Graphics Editor to open the Edit String Value window, and type On
to enable the creation of editable graphs or type Off to disable it.

4 Click OK.

Editing a Graph with the ODS Graphics Editor
The ODS Graphics Editor is illustrated using the following example:

data sasuser.growth;
input country $ GDP LFG EQP NEQ GAP;
datalines;

Argentin 0.0089 0.0118 0.0214 0.2286 0.6079
Austria 0.0332 0.0014 0.0991 0.1349 0.5809
Belgium 0.0256 0.0061 0.0684 0.1653 0.4109

... more lines ...

Zambia -0.0110 0.0275 0.0702 0.2012 0.8695
Zimbabwe 0.0110 0.0309 0.0843 0.1257 0.8875
;

ods graphics on;
ods html style=Statistical sge=on;

proc robustreg data=sasuser.growth plots=(ddplot histogram);
model GDP = LFG GAP EQP NEQ / diagnostics leverage;
output out=robout r=resid sr=stdres;

run;

ods _all_ close;
ods listing;
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The DATA and the PROC ROBUSTREG steps are submitted to the SAS System, in this case from the
SAS windowing environment, as shown in Figure 21.16. Two versions of the graph are created: one in an
uneditable PNG file (for example, DDPlot.png) and one in an editable SGE file (for example, DDPlot.sge).
Both are saved in the SAS current folder. You can edit the graph in one of three ways:

• In the Results window, double-click the second graph icon for the graph you want to edit (see
Figure 21.16). The second icon corresponds to the SGE file, and the first icon corresponds to the
PNG file. Clicking the first graph icon invokes a host-dependent graph viewer (for example, Microsoft
Photo Editor on Windows), not the ODS Graphics Editor. NOTE: The Editor window might be hidden
behind other windows in the SAS windowing environment.

• You can edit the graph by selecting it in the SAS Explorer window. You must first navigate to the SAS
current folder and to the SGE files.

• You can open the graph from outside of the SAS System. For example, if you are running the SAS
System under the Windows operating system, you can click on the graph’s SGE file to open it with the
ODS Graphics Editor.

Figure 21.16 Results Window with Icons for Editable Plots



Editing a Graph with the ODS Graphics Editor F 639

Figure 21.17 shows the ODS Graphics Editor window for the editable diagnostic plot created by PROC
ROBUSTREG. In Figure 21.18, various tools in the ODS Graphics Editor are used to modify the title and
annotate a particular point. The edited plot can be saved as a PNG file or as an SGE file by selecting File I
Save As. After saving the plot, you can edit it again through the SAS Explorer window or by selecting File
I Open from the ODS Graphics Editor window. Alternatively, you can reopen the saved plot for editing
without first invoking the SAS System. For example, if you are running the SAS System under the Windows
operating system, you can click on the plot to open it with the ODS Graphics Editor.

The ODS Graphics Editor does not permit you to make structural changes to a graph (such as moving
the positions of data points). The ODS Graphics Editor provides you with a point-and-click way to make
one-time changes to a specific graph, whereas the template language (see the section “Graph Templates” on
page 712 in Chapter 22, “ODS Graphics Template Modification,”) provides you with a programmatic way to
make template changes that persist every time you run the procedure. For complete details about the tools
available in the ODS Graphics Editor, see SAS 9.4 ODS Graphics Editor: User’s Guide.

Figure 21.17 Diagnostic Plot before Editing
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Figure 21.18 Diagnostic Plot after Editing

The Default Template Stores and the Template Search Path
Compiled templates are stored in a template store, which is a type of item store. (An item store is a special
type of SAS file.) You can see the list of template stores by submitting the following statement:

ods path show;

The results are as follows:

Current ODS PATH list is:

1. SASUSER.TEMPLAT(UPDATE)
2. SASHELP.TMPLMST(READ)

These results show that the default template search path consists of Sasuser.Templat followed by
Sashelp.Tmplmst. You can add template stores that you create or change the order in which the tem-
plate stores are searched. This is discussed in detail in the sections “Saving Customized Templates” on
page 721, “Using Customized Templates” on page 721, and “Reverting to the Default Templates” on page 722
in Chapter 22, “ODS Graphics Template Modification,” and in the sections “The ODS PATH Statement”
on page 530 and “Controlling Output Appearance with Templates” on page 532 in Chapter 20, “Using the
Output Delivery System.”
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This section discusses the default template stores that you use when you have not modified the template search
path with the ODS PATH statement. By default, templates that you write are stored in Sasuser.Templat. If
you stored a modified template in Sasuser.Templat, ODS finds and uses your modified template. Otherwise,
ODS finds the templates it provides in Sashelp.Tmplmst. You can see a list of all of the templates that you
have modified as follows:

proc template;
list / store=sasuser.templat;

run;

You can delete any template that you modified (so that ODS finds the default SAS template) by specifying it
in a DELETE statement, as in the following statement:

proc template;
delete Stat.REG.Graphics.ResidualPlot / store=sasuser.templat;

run;

The option STORE=SASUSER.TEMPLAT is not required. However, if you have administrator priv-
ileges on your computer, this option helps you ensure that you do not accidentally delete templates
from Sashelp.Tmplmst. Unless you have administrator privileges, ODS never deletes a template in
Sashelp.Tmplmst, so you can safely run the preceding step without the STORE= option, even if the
template you specify does not exist in Sasuser.Templat. You can run the following step to delete the entire
Sasuser.Templat template store of customized templates so that ODS uses only the templates supplied by the
SAS System:

ods path sashelp.tmplmst(read);
proc datasets library=sasuser nolist;

delete templat(memtype=itemstor);
run;
ods path sasuser.templat(update) sashelp.tmplmst(read);

It is good practice to delete templates that you have customized when you are done with them, so that they are
not unexpectedly used later. See the section “Reverting to the Default Templates” on page 722 in Chapter 22,
“ODS Graphics Template Modification,” for more information.

Styles
ODS styles control the overall appearance of your output. Usually, the only thing you need to do with styles
is specify them in an ODS destination statement, as in the following example:

ods html body='b.html' style=HTMLBlue;

However, you can also modify existing styles and even write your own styles. You can also specify style
elements in custom templates that you write, or you can modify which style elements are used in templates
supplied by SAS. This section provides an overview of styles and style elements, which are the components
of a style. It also describes how to customize a style template and how to specify a default style for your
output. Only the most commonly used styles, style elements, and style changes are discussed here. For
complete details about styles, see the SAS Output Delivery System: User’s Guide.
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An Overview of Styles
An ODS style template provides formatting information for specific visual aspects of your SAS output (see
the section “Style Elements and Attributes” on page 644). The appearance of tables and graphs is coordinated
within a particular style. For tables, this information includes a list of fonts and a list of colors. Each font
definition specifies a family, size, weight, and style. Colors are associated with common areas of output,
including titles, footnotes, BY groups, table headers, and table cells. For graphs, styles also control the
appearance of graph elements including lines, markers, fonts and colors. ODS styles also include elements
specific to statistical graphics, such as the style of fitted lines, confidence bands, and prediction limits. For
more information about styles, see Kuhfeld (2010) and the SAS Output Delivery System: User’s Guide.

You can specify a style by using the STYLE= option in an ODS destination statement such as HTML, PDF,
RTF, or PRINTER. You can also specify a style in the LISTING destination; however, it affects graphs but
not tables. Output produced with different styles has the same content, but a different visual appearance. For
example, the following statement requests output produced with the JOURNAL style:

ods rtf style=Journal;

You can use any SAS style or any style that you define yourself. The following statements list the names of
all of the styles and then display five of them:

proc template;
list styles;
source Styles.Default;
source Styles.Statistical;
source Styles.Journal;
source Styles.RTF;
source Styles.HTMLBlue;

run;

The results of this step (not shown) are a list of over fifty styles in the SAS listing and five style templates in
the SAS log. Style templates are often hundreds of lines long. See the section “Style Templates and Colors”
on page 645 for more information about style templates. Although you can use any style, only a few styles
are typically used with ODS Graphics. They are described in Table 21.2.
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Table 21.2 Styles

Style Default in Description
HTMLBLUE HTML and

SAS/STAT
documentation

An all-color style whose dominant colors are shades of
blue with sans-serif fonts. See Figure 21.20.

HTMLBLUECML A color style whose dominant colors are shades of blue
with sans-serif fonts. See Figure 21.21.

PEARL A color style with a white background whose dominant
colors are shades of blue with sans-serif fonts. See Fig-
ure 21.27.

SAPPHIRE A color style with a white background and light blue table
header background whose dominant colors are shades of
blue with sans-serif fonts. See Figure 21.28.

DEFAULT HTML A color style whose dominant colors are gray, blue, and
white, with bold sans-serif fonts. See Figure 21.19.

STATISTICAL A color style whose dominant colors are blue, creamy gray,
and white, with sans-serif fonts. See Figure 21.22.

LISTING LISTING A color style, similar to DEFAULT but with a white back-
ground. See Figure 21.25.

JOURNAL A black-and-white style with filled areas, with sans-serif
fonts. See Figure 21.24.

JOURNAL2 A black-and-white style, similar to JOURNAL but with
empty areas. Grouped bar charts use crosshatching to show
groups. See Output 21.3.2.

JOURNAL3 A black-and-white style, similar to JOURNAL2 but with a
mix of filled areas and crosshatching in grouped bar charts.
See Output 21.3.3.

RTF RTF A color style whose dominant colors are blue, white, and
black, with Times Roman fonts. See Figure 21.26.

ANALYSIS A color style, similar to STATISTICAL, whose dominant
color is tan. See Figure 21.23.
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Each ODS destination has its own default style, as shown in Table 21.2. Most output in SAS/STAT
documentation uses the HTMLBLUE style. However, throughout this chapter, you can see examples of other
styles. For more information about styles, see the SAS Output Delivery System: User’s Guide.

Style Elements and Attributes
An ODS style template is composed of a set of style elements. A style element is a collection of style
attributes that applies to a particular feature or aspect of the output. A value is specified for each attribute
in a style template. For example, GraphFit is the style element used for fit lines, and its attributes include:
LineThickness, LineStyle, MarkerSize, MarkerSymbol, ContrastColor, and Color.

In general, style templates control the overall appearance of ODS tables and graphs. For tables, style
templates specify features such as background color, table borders, and color scheme, and they specify the
fonts, sizes, and color for the text and values in a table and its headers. For graphs, style templates specify
the following features:

• background color

• graph dimensions (height and width)

• borders

• line styles for axes and grid lines

• fonts, sizes, and colors for titles, footnotes, axis labels, axis values, and data labels (see the section
“Modifying Graph Fonts in Styles” on page 681 for an illustration)

• marker symbols, colors, and sizes for data points and outliers

• line styles for needles

• line and curve styles for fitted models and predicted values (see the section “Modifying Other Graph
Elements in Styles” on page 684 for an illustration)

• line and curve styles for confidence and prediction limits

• fill colors for histogram bars, confidence bands, and confidence ellipses

• colors for box plot features

• colors for surfaces

• color ramps for contour plots

The SAS System supplies a graph template for each graph that is created by statistical procedures. A graph
template is a program that specifies the layout and details of a graph. See the section “Graph Templates”
on page 712 in Chapter 22, “ODS Graphics Template Modification,” for more information about templates.
Some template options are specified with a style reference of the form style-element, or occasionally
style-element:attribute. For example, the symbol, color, and size of markers for basic scatter plots are
specified in a template SCATTERPLOT statement as follows:
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scatterplot x=x y=y / markerattrs=GraphDataDefault;

The preceding statement specifies that the appearance for markers is controlled by the GraphDataDefault
element. Consistent use of this element guarantees a common appearance of markers across all scatter plots,
based on the style template that you are using.

In general, ODS Graphics features are determined by style element attributes unless they are overridden by a
statement or option in the graph template. For example, suppose that a classification variable is specified
with the GROUP= option in a SCATTERPLOT template statement as follows:

scatterplot x=X y=Y / group=GroupVar;

Then the colors for markers that correspond to the classification levels are assigned by using the style element
attributes GraphData1:ContrastColor through GraphData12:ContrastColor.

Style templates are created and modified with PROC TEMPLATE. For more information, see the SAS Output
Delivery System: User’s Guide. You need to understand the relationships between style elements and graph
features if you want to create your own style template or modify a style template. These relationships are
explained in the following sections.

Style Templates and Colors
The default style templates that the SAS System provides are stored in the Styles directory of Sashelp.Tmplmst.
You can display, edit, and save style templates by using the same methods available for modifying graph
and table templates, as explained in the section “The Default Template Stores and the Template Search Path”
on page 640 and the series of sections beginning with the section “Displaying Templates” on page 718 in
Chapter 22, “ODS Graphics Template Modification.” In particular, you can display a style template by using
one of these methods:

• From the Templates window in the SAS windowing environment, expand the Sashelp.Tmplmst node
under Templates, and then select Styles to display the contents of this folder. To open the Templates
window, type odst on the command line.

• Use the SOURCE statement in PROC TEMPLATE.

For example, the following statements display the DEFAULT style template in the SAS log:

proc template;
source Styles.Default;

run;
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Some of the results are as follows:

define style Styles.Default;
. . .
class GraphColors

"Abstract colors used in graph styles" /
. . .
'gconramp3cend' = cxFF0000
'gconramp3cneutral' = cxFF00FF
'gconramp3cstart' = cx0000FF
. . .
'gdata12' = cxDDD17E
'gdata11' = cxB7AEF1
'gdata10' = cx87C873
'gdata9' = cxCF974B
'gdata8' = cxCD7BA1
'gdata6' = cxBABC5C
'gdata7' = cx94BDE1
'gdata4' = cxA9865B
'gdata5' = cxB689CD
'gdata3' = cx66A5A0
'gdata2' = cxDE7E6F
'gdata1' = cx7C95CA;

. . .

The first part of this list shows that the shading for certain filled plots, such as some contour plots goes
from blue (’gconramp3cstart’ = cx0000FF) to magenta (’gconramp3cneutral’ = cxFF00FF) to red
(’gconramp3cend’ = cxFF0000). All colors are specified in values of the form CXrrggbb, where the last
six characters specify RGB (red, green, blue) values on the hexadecimal scale of 00 to FF (or 0 to 255
base 10). The second part of the list (’gdata1’ = cx7C95CA) shows that the dominant component of the
GraphData1 color is blue because the blue component of the color (CA, which corresponds to 202 base 10)
is greater than both the green component (95, which corresponds to 149 base 10) and the red component (7C,
which corresponds to 124 base 10).

You can change any part of the style and then submit the style back into the SAS System, after first submitting
a PROC TEMPLATE statement. See the sections “Saving Customized Templates” on page 721, “Using
Customized Templates” on page 721, and “Reverting to the Default Templates” on page 722 in Chapter 22,
“ODS Graphics Template Modification,” for more information about modifying, using, and restoring templates.
The principles discussed in those sections apply to all templates—table, style, and graph.

Some Common Style Elements
This section explains some common style elements and produces most of the graphs displayed in the section
“Style Comparisons” on page 652.

The DEFAULT style is the parent for the styles used for statistical graphics work. You can see all of the
elements of the DEFAULT style by running the following step:

proc template;
source styles.default;

run;
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The source listing of the definition of the DEFAULT style is hundreds of lines long. If you run PROC
TEMPLATE with the SOURCE statement for most other styles, you see parent = styles.default (or
in the case of the HTMLBLUE style, you see parent = styles.statistical, which inherits from the
DEFAULT style), and you do not see all of the elements in the style unless you also run the preceding step
with a SOURCE statement for all parent styles.

Only a few of the style elements are referenced in the templates that the SAS System provides for statistical
procedures. The most commonly used style elements, along with the defaults for the noncolor attributes of
the DEFAULT style, are shown next (Color applies to filled areas, and ContrastColor applies to markers
and lines):

Graph graph size, outer border appearance, and background color
Padding = 0

BackgroundColor

GraphConfidence primary fit confidence interval
LineThickness = 1px

LineStyle = 1

MarkerSize = 7px

MarkerSymbol = "triangle"

ContrastColor

Color

GraphData1 attributes related to first grouped data items
MarkerSymbol = "circle"

LineStyle = 1

ContrastColor

Color

GraphData2 attributes related to second grouped data items
MarkerSymbol = "plus"

LineStyle = 4

ContrastColor

Color

GraphData3 attributes related to third grouped data items
MarkerSymbol = "X"

LineStyle = 8

ContrastColor

Color

GraphData4 attributes related to fourth grouped data items
MarkerSymbol = "triangle"

LineStyle = 5

ContrastColor

Color

GraphDatan attributes related to nth grouped data items
MarkerSymbol

LineStyle

ContrastColor

Color
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GraphDataDefault attributes related to data items that are not grouped
EndColor

NeutralColor

StartColor

MarkerSize = 7px

MarkerSymbol = "circle"

LineThickness = 1px

LineStyle = 1

ContrastColor

Color

GraphFit primary fit line, such as a normal density curve
LineThickness = 2px

LineStyle = 1

MarkerSize = 7px

MarkerSymbol = "circle"

ContrastColor

Color

GraphFit2 secondary fit line, such as a kernel density curve
LineThickness = 2px

LineStyle = 4

MarkerSize = 7px

MarkerSymbol = "X"

ContrastColor

Color

GraphGridLines horizontal and vertical grid lines drawn at major tick marks
Displayopts = "auto"

LineThickness = 1px

LineStyle = 1

ContrastColor

Color

GraphOutlier outlier data for the graph
LineThickness = 2px

LineStyle = 42

MarkerSize = 7px

MarkerSymbol = "circle"

ContrastColor

Color

GraphPredictionLimits fills for prediction limits
LineThickness = 1px

LineStyle = 2

MarkerSize = 7px

MarkerSymbol = "chain"

ContrastColor

Color
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GraphReference horizontal and vertical reference lines and drop lines
LineThickness = 1px

LineStyle = 1

ContrastColor

GraphDataText text font and color for point and line labels
Font = GraphFonts(’GraphDataFont’)

(where ’GraphDataFont’ =

("<sans-serif>, <MTsans-serif>",7pt))

Color

GraphValueText text font and color for axis tick values and legend values
Font = GraphFonts(’GraphValueFont’)

(where ’GraphValueFont’ =

("<sans-serif>, <MTsans-serif>",9pt))
Color

GraphLabelText text font and color for axis labels and legend title
Font = GraphFonts(’GraphLabelFont’)

(where ’GraphLabelFont’ =

("<sans-serif>, <MTsans-serif>",10pt,bold))
Color

GraphFootnoteText text font and color for footnotes
Font = GraphFonts(’GraphFootnoteFont’)

(where ’GraphFootnoteFont’ =

("<sans-serif>, <MTsans-serif>",10pt))
Color

GraphTitleText text font and color for titles
Font = GraphFonts(’GraphTitleFont’)

(where ’GraphTitleFont’ = ("<sans-serif>,

<MTsans-serif>",11pt,bold))
Color

GraphWalls vertical walls bounded by axes
LineThickness = 1px

LineStyle = 1

FrameBorder = on

ContrastColor

BackgroundColor

Color
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You refer to these elements in graph templates as style-element or as style-element:attribute (for
example GraphDataDefault:ContrastColor). The default values are not shown for the color attributes
since they are typically defined indirectly. For example, Graph:BackgroundColor (the color that fills
the box outside the graph) is defined elsewhere in the style as colors(’docbg’). The style also defines
’docbg’ = color_list(’bgA’) and ’bgA’ = cxE0E0E0. This shows that the background is a shade of
gray that is much closer to white (CXFFFFFF) than to black (CX000000). You can see the background color
in Figure 21.29. This shade of gray might seem darker (closer to CX000000) than you might expect based on
just the RGB values. Your perception of a color change is not a linear function of the change in RGB values.

You can use the following program to see the color and other attributes for a number of style elements:

proc format;
value vf 5 = 'GraphValueText';

run;

data x1;
array y[20] y0 - y19;
do x = 1 to 20; y[x] = x - 0.5; end;
do x = 0 to 10 by 5; output; end;
label y0 = 'GraphLabelText' x = 'GraphLabelText';
format x y0 vf.;

run;

%macro d;
%do i = 1 %to 12;

reg y=y%eval(19-&i) x=x / lineattrs=GraphData&i markerattrs=GraphData&i
curvelabel=" GraphData&i" curvelabelpos=max;

%end;
%mend;

%macro l(i, l);
reg y=y&i x=x / lineattrs=&l markerattrs=&l curvelabel=" &l"

curvelabelpos=max;
%mend;

ods listing style=default;

proc sgplot noautolegend data=x1;
title 'GraphTitleText';
%d
%l(19, GraphDataDefault)
%l( 6, GraphFit)
%l( 5, GraphFit2)
%l( 4, GraphPredictionLimits)
%l( 3, GraphConfidence)
%l( 2, GraphGridLines)
%l( 1, GraphOutlier)
%l( 0, GraphReference)
xaxis values=(0 5 10);

run;
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The results in Figure 21.29 display the attributes for a number of the elements of the DEFAULT style.

When there is a group or classification variable, the colors, markers, and lines that distinguish the groups
are derived from the GraphDatan elements that are defined with the style. In the DEFAULT style, these
are elements GraphData1 through GraphData12. There can be any number of groups even though only 12
GraphDatan style elements are defined in the DEFAULT style. The following steps create a data set with 40
groups, display one line per group, and produce Figure 21.39:

data x2;
do y = 40 to 1 by -1;

group = 'Group' || put(41 - y, 2. -L);
do x = 0 to 10 by 5;

if x = 10 then do; z = 11; l = group; end;
else do; z = .; l = ' '; end;
output;

end;
end;

run;

proc sgplot data=x2;
title 'Colors, Markers, Lines Patterns for Groups';
series y=y x=x / group=group markers;
scatter y=y x=z / group=group markerchar=l;

run;

The colors, markers, and line patterns in Figure 21.39 repeat in cycles. The GraphData1 – GraphData8 lines
in Figure 21.29 exactly match the Group1 – Group8 lines in Figure 21.39. After that, there are differences
due to the cyclic construction of the grouped style. This is explained next.

The DEFAULT style defines a marker symbol only in GraphData1 through GraphData7. The seven markers
are: circle, plus, X, triangle, square, asterisk, and diamond. With the explicit style reference in Figure 21.29,
the actual symbol, when no symbol is specified, is the circle. This is what you see for GraphData8 through
GraphData12. With the group variable in Figure 21.39, the symbols repeat in cycles. Hence, Group1,
Group8, Group15, and so on, are all circles. Similarly, Group2, Group9, Group16, and so on, are all pluses.
The DEFAULT style defines 11 different line styles for GraphData1 through GraphData11. You specify
line styles by specifying an integer. The default lines styles are: 1, 4, 8, 5, 14, 26, 15, 20, 41, 42, and 2.
Hence, Group1, Group12, Group23, and so on, all have the same line style, which is a solid line (line style
1). Similarly, Group2, Group13, Group24, and so on, all have line style 4. There are twelve different colors,
so Group1, Group13, Group25, and so on, all have the same colors. Overall, there are 12 � 11 � 7 D 924
color/line/marker combinations that appear before any combination repeats. You can use the %MODSTYLE
SAS autocall macro (see the sections “Creating an All-Color Style” on page 675 and “Style Template
Modification Macro” on page 673) to conveniently change these style attributes.

The HTMLBLUE style is an all-color style for the first 12 groups of observations. Most analyses have fewer
than 12 groups. Markers and lines change for groups 13–24 and then again for groups 25–36. Figure 21.40
shows how colors, markers, and line styles change in the HTMLBLUE style. Figure 21.39 and Figure 21.40
through Figure 21.48 show how these elements change in other styles.
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Style Comparisons
In this section, some of the most commonly used styles are compared with a series of figures, most of which
were generated in the preceding section. Figure 21.19 through Figure 21.28 show tables and graphs in each
of eight styles, for the following analysis:

proc reg data=sashelp.class;
model Weight = Height;

run; quit;

Figure 21.29 through Figure 21.38 show some of the more common style elements. Figure 21.39 through
Figure 21.46 show how groups of observations are displayed in the graph.

The style comparisons are as follows:

� Figure 21.19, Figure 21.29, and Figure 21.39 show the DEFAULT style.
� Figure 21.20, Figure 21.30, and Figure 21.40 show the HTMLBLUE style.
� Figure 21.21, Figure 21.31, and Figure 21.41 show the HTMLBLUECML style.
� Figure 21.22, Figure 21.32, and Figure 21.42 show the STATISTICAL style.
� Figure 21.23, Figure 21.33, and Figure 21.43 show the ANALYSIS style.
� Figure 21.24, Figure 21.34, and Figure 21.44 show the JOURNAL style.
� Figure 21.25, Figure 21.35, and Figure 21.45 show the LISTING style.
� Figure 21.26, Figure 21.36, and Figure 21.46 show the RTF style.
� Figure 21.27, Figure 21.37, and Figure 21.47 show the SAPPHIRE style.
� Figure 21.28, Figure 21.38, and Figure 21.48 show the SAPPHIRE style.
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Figure 21.19 Statistical Output with the DEFAULT Style

Figure 21.20 Statistical Output with the HTMLBLUE Style
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Figure 21.21 Statistical Output with the HTMLBLUECML Style

Figure 21.22 Statistical Output with the STATISTICAL Style
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Figure 21.23 Statistical Output with the ANALYSIS Style

Figure 21.24 Statistical Output with the JOURNAL Style
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Figure 21.25 Statistical Output with the LISTING Style

Figure 21.26 Statistical Output with the RTF Style
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Figure 21.27 Statistical Output with the PEARL Style

Figure 21.28 Statistical Output with the SAPPHIRE Style
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Figure 21.29 Attributes of Style Elements in the DEFAULT Style

Figure 21.30 Attributes of Style Elements in the HTMLBLUE Style
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Figure 21.31 Attributes of Style Elements in the HTMLBLUECML Style

Figure 21.32 Attributes of Style Elements in the STATISTICAL Style
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Figure 21.33 Attributes of Style Elements in the ANALYSIS Style

Figure 21.34 Attributes of Style Elements in the JOURNAL Style
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Figure 21.35 Attributes of Style Elements in the LISTING Style

Figure 21.36 Attributes of Style Elements in the RTF Style



662 F Chapter 21: Statistical Graphics Using ODS

Figure 21.37 Attributes of Style Elements in the PEARL Style

Figure 21.38 Attributes of Style Elements in the SAPPHIRE Style
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Figure 21.39 Markers, Lines, and Colors with Groups in the DEFAULT Style

Figure 21.40 Markers, Lines, and Colors with Groups in the HTMLBLUE Style
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Figure 21.41 Markers, Lines, and Colors with Groups in the HTMLBLUECML Style

Figure 21.42 Markers, Lines, and Colors with Groups in the STATISTICAL Style
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Figure 21.43 Markers, Lines, and Colors with Groups in the ANALYSIS Style

Figure 21.44 Markers, Lines, and Colors with Groups in the JOURNAL Style
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Figure 21.45 Markers, Lines, and Colors with Groups in the LISTING Style

Figure 21.46 Markers, Lines, and Colors with Groups in the RTF Style
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Figure 21.47 Markers, Lines, and Colors with Groups in the PEARL Style

Figure 21.48 Markers, Lines, and Colors with Groups in the SAPPHIRE Style



668 F Chapter 21: Statistical Graphics Using ODS

Modifying the HTMLBLUE Style
The HTMLBLUE style is an all-color style for the first 12 groups of observations. After each set of 12
groups, the line style and marker change for the next 12 groups. See Figure 21.40. The HTMLBLUECML
style is a color style in which groups of observations are distinguished by simultaneous color, line style, and
symbol changes. See Figure 21.41. For some graphs, you might want more differentiation than you get in an
all-color style like HTMLBLUE but without the overkill differentiation of the HTMLBLUECML style and
other styles. This section defines four new styles for this purpose:

HTMLBLUEL – line styles and colors vary together with fixed markers for each set of 11 groups
HTMLBLUEM – markers and colors vary together with fixed line styles for each set of 11 groups
HTMLBLUEFL – line styles and colors vary together with fixed filled markers for each set of 11 groups
HTMLBLUEFM – filled markers and colors vary together with fixed line styles for each set of 5 groups

The following statements show part of the style template for each of these styles:

define style Styles.HTMLBlueL; parent = styles.htmlbluecml;
style GraphFit2 from GraphFit2 / linestyle = 1;
style GraphData1 from GraphData1 / markersymbol = "circle" linestyle = 1;
style GraphData2 from GraphData2 / markersymbol = "circle" linestyle = 4;
style GraphData3 from GraphData3 / markersymbol = "circle" linestyle = 8;
style GraphData4 from GraphData4 / markersymbol = "circle" linestyle = 5;
style GraphData5 from GraphData5 / markersymbol = "circle" linestyle = 14;
style GraphData6 from GraphData6 / markersymbol = "circle" linestyle = 26;
style GraphData7 from GraphData7 / markersymbol = "circle" linestyle = 15;
style GraphData8 from GraphData8 / markersymbol = "circle" linestyle = 20;
style GraphData9 from GraphData9 / markersymbol = "circle" linestyle = 41;
style GraphData10 from GraphData10 / markersymbol = "circle" linestyle = 42;
style GraphData11 from GraphData11 / markersymbol = "circle" linestyle = 2;
style GraphData12 from GraphData12 / markersymbol = "square" linestyle = 1;
style GraphData13 from GraphData1 / markersymbol = "square" linestyle = 4;
style GraphData14 from GraphData2 / markersymbol = "square" linestyle = 8;
style GraphData15 from GraphData3 / markersymbol = "square" linestyle = 5;
. . .

end;
define style Styles.HTMLBlueM; parent = styles.htmlbluecml;

style GraphFit2 from GraphFit2 / linestyle = 1;
style GraphData1 from GraphData1 / markersymbol = "circle" linestyle = 1;
style GraphData2 from GraphData2 / markersymbol = "square" linestyle = 1;
style GraphData3 from GraphData3 / markersymbol = "diamond" linestyle = 1;
style GraphData4 from GraphData4 / markersymbol = "asterisk" linestyle = 1;
style GraphData5 from GraphData5 / markersymbol = "plus" linestyle = 1;
style GraphData6 from GraphData6 / markersymbol = "triangle" linestyle = 1;
style GraphData7 from GraphData7 / markersymbol = "circlefilled" linestyle = 1;
style GraphData8 from GraphData8 / markersymbol = "starfilled" linestyle = 1;
style GraphData9 from GraphData9 / markersymbol = "squarefilled" linestyle = 1;
style GraphData10 from GraphData10 / markersymbol = "diamondfilled" linestyle = 1;
style GraphData11 from GraphData11 / markersymbol = "trianglefilled" linestyle = 1;
style GraphData12 from GraphData12 / markersymbol = "circle" linestyle = 4;
style GraphData13 from GraphData1 / markersymbol = "square" linestyle = 4;
style GraphData14 from GraphData2 / markersymbol = "diamond" linestyle = 4;
style GraphData15 from GraphData3 / markersymbol = "asterisk" linestyle = 4;
. . .

end;
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define style Styles.HTMLBlueFL; parent = styles.htmlbluecml;
style GraphFit2 from GraphFit2 / linestyle = 1;
style GraphData1 from GraphData1 / markersymbol = "circlefilled" linestyle = 1;
style GraphData2 from GraphData2 / markersymbol = "circlefilled" linestyle = 4;
style GraphData3 from GraphData3 / markersymbol = "circlefilled" linestyle = 8;
style GraphData4 from GraphData4 / markersymbol = "circlefilled" linestyle = 5;
style GraphData5 from GraphData5 / markersymbol = "circlefilled" linestyle = 14;
style GraphData6 from GraphData6 / markersymbol = "circlefilled" linestyle = 26;
style GraphData7 from GraphData7 / markersymbol = "circlefilled" linestyle = 15;
style GraphData8 from GraphData8 / markersymbol = "circlefilled" linestyle = 20;
style GraphData9 from GraphData9 / markersymbol = "circlefilled" linestyle = 41;
style GraphData10 from GraphData10 / markersymbol = "circlefilled" linestyle = 42;
style GraphData11 from GraphData11 / markersymbol = "circlefilled" linestyle = 2;
style GraphData12 from GraphData12 / markersymbol = "starfilled" linestyle = 1;
style GraphData13 from GraphData1 / markersymbol = "starfilled" linestyle = 4;
style GraphData14 from GraphData2 / markersymbol = "starfilled" linestyle = 8;
style GraphData15 from GraphData3 / markersymbol = "starfilled" linestyle = 5;
. . .

end;
define style Styles.HTMLBlueFM; parent = styles.htmlbluecml;

style GraphFit2 from GraphFit2 / linestyle = 1;
style GraphData1 from GraphData1 / markersymbol = "circlefilled" linestyle = 1;
style GraphData2 from GraphData2 / markersymbol = "starfilled" linestyle = 1;
style GraphData3 from GraphData3 / markersymbol = "squarefilled" linestyle = 1;
style GraphData4 from GraphData4 / markersymbol = "diamondfilled" linestyle = 1;
style GraphData5 from GraphData5 / markersymbol = "trianglefilled" linestyle = 1;
style GraphData6 from GraphData6 / markersymbol = "circlefilled" linestyle = 4;
style GraphData7 from GraphData7 / markersymbol = "starfilled" linestyle = 4;
style GraphData8 from GraphData8 / markersymbol = "squarefilled" linestyle = 4;
style GraphData9 from GraphData9 / markersymbol = "diamondfilled" linestyle = 4;
style GraphData10 from GraphData10 / markersymbol = "trianglefilled" linestyle = 4;
style GraphData11 from GraphData11 / markersymbol = "circlefilled" linestyle = 8;
style GraphData12 from GraphData12 / markersymbol = "starfilled" linestyle = 8;
style GraphData13 from GraphData1 / markersymbol = "squarefilled" linestyle = 8;
style GraphData14 from GraphData2 / markersymbol = "diamondfilled" linestyle = 8;
style GraphData15 from GraphData3 / markersymbol = "trianglefilled" linestyle = 8;
. . .

end;

New GraphDatan style elements are created that inherit colors from the GraphData1 through GraphData12

style elements. The line styles and markers are explicitly set in the new style templates. The style

GraphFit2 from GraphFit2 / linestyle = 1 statement creates a solid second fit line. You can remove
that statement if you prefer a dashed second fit line.

The following statements use SAS macros to generate these four new styles:

proc template;
%let m = circle square diamond asterisk plus triangle circlefilled

starfilled squarefilled diamondfilled trianglefilled;
%let ls = 1 4 8 5 14 26 15 20 41 42 2;
%macro makestyle;

%let l = %eval(%sysfunc(mod(&k,12))+1);
%let k = %eval(&k+1);
style GraphData&k from GraphData&l /

linestyle=%scan(&ls, &j) markersymbol="%scan(&m, &i)";
%mend;

define style styles.HTMLBlueL;
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parent=styles.htmlbluecml;
style GraphFit2 from GraphFit2 / linestyle = 1;
%macro htmlbluel;

%let k = 0;
%do i = 1 %to 11; %do j = 1 %to 11; %makestyle %end; %end;
%mend;

%htmlbluel
end;

define style styles.HTMLBlueM;
parent=styles.htmlbluecml;
style GraphFit2 from GraphFit2 / linestyle = 1;
%macro htmlbluem;

%let k = 0;
%do j = 1 %to 11; %do i = 1 %to 11; %makestyle %end; %end;
%mend;

%htmlbluem
end;

%let m = circlefilled starfilled squarefilled diamondfilled trianglefilled;
define style styles.HTMLBlueFL;

parent=styles.htmlbluecml;
style GraphFit2 from GraphFit2 / linestyle = 1;
%macro htmlbluel;

%let k = 0;
%do i = 1 %to 5; %do j = 1 %to 11; %makestyle %end; %end;
%mend;

%htmlbluel
end;

define style styles.HTMLBlueFM;
parent=styles.htmlbluecml;
style GraphFit2 from GraphFit2 / linestyle = 1;
%macro htmlbluem;

%let k = 0;
%do j = 1 %to 11; %do i = 1 %to 5; %makestyle %end; %end;
%mend;

%htmlbluem
end;

run;

The %LET m statement provides the list of markers. The %LET ls statement provides the list of line styles.
The MAKESTYLE macro makes the kth style element from the GraphDatan style element for n = mod(k -
1, 12) + 1. The remaining macros vary markers and line styles in the appropriate order over the elements in
each list.

The following step that was used in the section “Style Comparisons” on page 652 is used with the different
styles to produce Figure 21.49 through Figure 21.52:

proc sgplot data=x2;
title 'Colors, Markers, Lines Patterns for Groups';
series y=y x=x / group=group markers;
scatter y=y x=z / group=group markerchar=l;

run;
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Figure 21.49 Markers, Lines, and Colors with Groups in the HTMLBLUEL Style

Figure 21.50 Markers, Lines, and Colors with Groups in the HTMLBLUEM Style
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Figure 21.51 Markers, Lines, and Colors with Groups in the HTMLBLUEFL Style

Figure 21.52 Markers, Lines, and Colors with Groups in the HTMLBLUEFM Style
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Style Template Modification Macro
The %ModStyle macro provides easy ways to customize the style elements (GraphData1–GraphDatan) that
control how groups of observations are distinguished. Examples of using the %ModStyle macro can be found
in the sections “Creating an All-Color Style” on page 675 and “Changing the Default Markers and Lines” on
page 677. Also see Kuhfeld (2009) for more information about this macro.

You do not need to include autocall macros (for example, with a %include statement). You can call them
directly once they are properly installed. If your site has installed the autocall libraries supplied by the SAS
System and uses the standard configuration of SAS software, you need to ensure that the SAS system option
MAUTOSOURCE is in effect to begin using the autocall macros. For more information about autocall
libraries, see the SAS Macro Language: Reference. For details about installing autocall macros, consult your
host documentation.

The %ModStyle macro has the following options:

COLORS=color-list
specifies a space-delimited list of colors for markers and lines. If you do not specify this option, then
the colors from the parent style are used. You can specify the colors using any SAS color notation such
as CXrrggbb.

COLORS=GRAYS generates seven distinguishable grayscale colors from blackest to whitest. The
colors should be mixed up to be more easily distinguished when you need fewer colors, but you can
do that with your own COLORS= list. The HLS (hue/light/saturation) coding generates colors by
setting hue and saturation to 0 and incrementing the lightness for each gray. You can also use the
keywords BLUES, PURPLES, MAGENTAS, REDS, ORANGES, YELLOWS, GREENS, and CYANS
to generate seven colors with a fixed hue and a saturation of AA (hex).

COLORS=SHADES INT generates seven colors as described previously, except that you specify an
integer 0 � INT < 360. See SAS/GRAPH: Reference. The available hues include: GRAY, GREY,
BLUE=0, PURPLE=30, MAGENTA=60, RED=120, ORANGE=150, YELLOW=180, GREEN=240,
and CYAN=300.

DISPLAY=n
specifies whether to display the generated template. By default, the template is not displayed. Specify
DISPLAY=1 to display the generated template.

FILLCOLORS=color-list
specifies a space-delimited list of colors for bands and fills. If you do not specify this option, then the
colors from the parent style are used.

Fill colors from the parent style are designed to work well with the colors from the parent style. If you
specify a COLORS= list, then you might want to redefine the FILLCOLORS= list as well. You need
to have at least as many fill colors as you have colors (any extra fill colors are ignored). Two shortcuts
are available: FILLCOLORS=COLORS uses the COLORS= colors for the fills (your confidence
bands should have transparency for this to be useful) and FILLCOLORS=LIGHTCOLORS modifies
the lightness associated with each color generated by COLORS=SHADES (this is allowed only with
COLORS=SHADES).
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LINESTYLES=line-style-list
specifies a space-delimited list of line styles. The default is:

LineStyles=Solid MediumDash MediumDashShortDash LongDash
DashDashDot LongDashShortDash DashDotDot Dash
ShortDashDot MediumDashDotDot ShortDash

Line style numbers can range from 1 to 46. Some line styles have names associated with them. You
can specify either the name or the number for the following number/name pairs: 1 Solid, 2 ShortDash,
4 MediumDash, 5 LongDash, 8 MediumDashShortDash, 14 DashDashDot, 15 DashDotDot, 20 Dash,
26 LongDashShortDash, 34 Dot, 35 ThinDot, 41 ShortDashDot, and 42 MediumDashDotDot.

MARKERS=marker-list
specifies a space-delimited list of marker symbols. By default, Markers=Circle Plus X Triangle

Square Asterisk Diamond. The available marker symbols are listed in SAS Graph Template
Language: Reference. Two shortcuts are available: MARKERS=FILLED is an alias for the specifica-
tion Markers=CircleFilled TriangleFilled SquareFilled DiamondFilled StarFilled

HomeDownFilled, and MARKERS=EMPTY is an alias for the specification Markers=Circle

Triangle Square Diamond Star HomeDown.

NAME=style-name
specifies the name of the new style that you are creating. This name is used when you specify the
style in an ODS destination statement (for example, ODS HTML STYLE=style-name). The default is
NAME=NEWSTYLE.

NUMBEROFGROUPS=n
specifies n, the number of GraphDatan style elements to create. The GraphData1–GraphDatan style
elements contain n combinations of colors, markers, and line styles. By default, 32 combinations are
created.

PARENT=style-name
specifies the parent style. The new style inherits most of its attributes from the parent style. The default
is PARENT=DEFAULT (which is one of the default styles for HTML and the parent style for all of the
styles that are recommended for statistical graphics). If your goals are to change colors or create an
all-color style, you can use any style as the parent style. However, if your goal is to change markers
or line styles without creating an all-color style, do not use the HTMLBLUE style as a parent. The
HTMLBLUE style is an all-color style that is different from most other styles due to its use of the
ATTRPRIORITY= style option.

TYPE=type-specification
specifies how your new style cycles through colors, markers, and line styles. The default is
TYPE=LMbyC.

These first three methods work well with all plots, because cycling line styles and markers together
ensures that both scatterplot markers and series plot lines are distinguishable:

CLM
cycles through colors, line styles, and markers simultaneously. The first group uses the first color,
line style, and marker; the second group uses the second color, line style, and marker; and so on.
This is the method used by the ODS Graphics styles.
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LMbyC
fixes line style and marker, cycles through colors, and then moves to the next line style and
marker. This is the default and creates a style where the first groups are distinguished entirely by
color.

CbyLM
fixes color, cycles through line style and marker, and then moves to the next color. This option
uses the smaller of the number of line styles or the number of markers when cycling within a
color.

The following two methods might not work well with all plots:

CbyLbyM
fixes color and line style, then cycles through markers, increments line style, and then cycles
through markers. After all line styles have been used, then this option moves to the next color
and continues.

LbyMbyC
fixes line style and marker, then cycles through colors, increments marker, and then cycles
through colors. After all markers have been used, then this option moves to the next line style
and continues. This is closest to the legacy SAS/GRAPH method.

Creating an All-Color Style
Many styles are designed to make color plots where lines, functions, and groups of observations can be
distinguished even when the plot is sent to a black-and-white printer. Hence, lines differ not only in color but
also in pattern. Similarly, markers differ in both color and symbol. This is not true with the HTMLBLUE,
PEARL, and SAPPHIRE styles, which are all-color styles.

You can easily modify any style to be an all-color style by using the ATTRPRIORITY= option. For example:

proc template;
define style styles.StatColor;

parent = statistical;
style Graph from Graph / attrpriority = "Color";

end;
run;

Alternatively, you can make an all-color style with the %MODSTYLE autocall macro. It creates a new style
by modifying a parent style and reordering the colors, line patterns, and marker symbols in the GraphDatan
style elements (see the section “Some Common Style Elements” on page 646). By default, the macro creates
a new style that distinguishes lines and groups only by color. The macro is documented in the section “Style
Template Modification Macro” on page 673.

The following example illustrates the default use of the macro and is taken from the section “Fitting a Curve
through a Scatter Plot” on page 8538 in Chapter 104, “The TRANSREG Procedure.” The data come from
an experiment in which nitrogen oxide emissions from a single cylinder engine are measured for various
combinations of fuel and equivalence ratio. This gas data set is available from the Sashelp library.
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The following statements fit separate curves for each group and produce Figure 21.53 and Figure 21.54:

ods graphics on;
ods listing style=statistical;

proc transreg data=sashelp.Gas ss2 plots=transformation lprefix=0;
model identity(nox) = class(Fuel / zero=none) * pbspline(EqRatio);

run;

%modstyle(parent=statistical, name=StatColor)
ods listing style=StatColor;

proc transreg data=sashelp.Gas ss2 plots=transformation lprefix=0;
model identity(nox) = class(Fuel / zero=none) * pbspline(EqRatio);

run;

The first PROC TRANSREG step uses the STATISTICAL style to create the fit plot in Figure 21.53, which
uses different colors, line patterns, and markers for each group. Then the macro creates a new style, called
STATCOLOR, that inherits its characteristics from the STATISTICAL style. Only the attributes of the
lines and markers are changed. In Figure 21.54, which is created with the modified style, the groups are
differentiated only by color. This is the easiest and most common way for you to use this macro. However,
you can use it to perform other style modifications as illustrated in the section “Changing the Default Markers
and Lines” on page 677. The macro is documented in the section “Style Template Modification Macro” on
page 673.

Figure 21.53 Fit Plot with the STATISTICAL Style
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Figure 21.54 Fit Plot with the Modified Style

Changing the Default Markers and Lines
The preceding section shows how to use the %MODSTYLE autocall macro to create an all-color style. You
can also use the %MODSTYLE macro to change markers and line styles. This example creates a new style
called MARKSTYLE that inherits from the STATISTICAL style but uses a different set of markers. The
following statements create artificial data, change the marker list, and display the results:

data x;
do g = 1 to 12;

do x = 1 to 10;
y = 13 - g + sin(x * 0.1 * g);
output;

end;
end;

run;

%modstyle(name=markstyle, parent=statistical, type=CLM,
markers=star plus circle square diamond starfilled

circlefilled squarefilled diamondfilled)

ods listing style=markstyle;
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proc sgplot;
title 'Modified Marker List';
loess y=y x=x / group=g;

run;

The NAME= option specifies the new style name, and the PARENT= option specifies the parent style. The
TYPE= option controls the method of cycling through colors, lines, and markers. The default, TYPE=LMbyC,
fixes (holds constant) the line styles and markers, while cycling through the color list. This is illustrated in
the section “Creating an All-Color Style” on page 675. This example uses TYPE=CLM to cycle through
colors, line styles, and markers (holding none of them fixed). Other TYPE= values are described in the
section “Style Template Modification Macro” on page 673. The values specified with the TYPE= option are
case-sensitive (‘by’ is lower case and the ‘L’, ‘C’, and ‘M’ are upper case). The new marker list is specified
with the MARKERS= option. The results are displayed in Figure 21.55. The marker list is reused in the tenth
and subsequent groups since only nine markers are defined.

Figure 21.55 A Modified Style with a New List of Markers
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The following statements create a new style called LINESTYLE that inherits from the STATISTICAL style
and changes the line list:

%modstyle(name=linestyle, parent=statistical, type=CLM,
linestyles=Solid LongDash MediumDash Dash ShortDash Dot ThinDot)

ods listing style=linestyle;

proc sgplot;
title 'Modified Line Style List';
loess y=y x=x / group=g;

run;

The new line list is specified with the LINESTYLES= option. The results are displayed in Figure 21.56. In
this example, each of the first seven groups uses a dash pattern that is shorter than the previous group. The
line list is reused in the eighth and subsequent groups since only seven line patterns are defined.

Figure 21.56 Modified Style with a New List of Line Styles
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You can learn more about style modification by examining the new styles, as in the following example:

proc template;
source styles.markstyle;
source styles.linestyle;

run;

The results show the definitions of GraphData1 through GraphData32 that the macro created. An abridged
listing of the results follows:

define style Styles.Markstyle;
parent = Styles.statistical;
. . .
style GraphData1 /

markersymbol = "star"
linestyle = 1
contrastcolor = ColorStyles('c1')
color = FillStyles('f1');

. . .
style GraphData32 /

markersymbol = "diamond"
linestyle = 42
contrastcolor = ColorStyles('c8')
color = FillStyles('f8');

end;

define style Styles.Linestyle;
parent = Styles.statistical;
. . .
style GraphData1 /

markersymbol = "circle"
linestyle = 1
contrastcolor = ColorStyles('c1')
color = FillStyles('f1');

. . .
style GraphData32 /

markersymbol = "triangle"
linestyle = 20
contrastcolor = ColorStyles('c8')
color = FillStyles('f8');

end;

You can use the NUMBEROFGROUPS= option in the %MODSTYLE macro to control the number of
GraphDatan style elements created in the new style.
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Modifying Graph Fonts in Styles

You can modify an ODS style to customize the general appearance of plots produced with ODS Graphics,
just as you can modify a style to customize the general appearance of ODS tables. This section shows you
how to customize fonts used in graphs. The following step displays the HTMLBLUE style and its parent
styles, STATISTICAL and DEFAULT:

proc template;
source Styles.HTMLBlue;
source Styles.Statistical;
source Styles.Default;

run;

If you search for ‘font’, you find the style elements that control graph fonts:

style GraphFonts /
'GraphDataFont' = ("<sans-serif>, <MTsans-serif>",7pt)
'GraphUnicodeFont' = ("<MTsans-serif-unicode>",9pt)
'GraphValueFont' = ("<sans-serif>, <MTsans-serif>",9pt)
'GraphLabel2Font' = ("<sans-serif>, <MTsans-serif>",10pt)
'GraphLabelFont' = ("<sans-serif>, <MTsans-serif>",10pt)
'GraphFootnoteFont' = ("<sans-serif>, <MTsans-serif>",10pt)
'GraphTitleFont' = ("<sans-serif>, <MTsans-serif>",11pt,bold)
'GraphTitle1Font' = ("<sans-serif>, <MTsans-serif>",14pt,bold)
'GraphAnnoFont' = ("<sans-serif>, <MTsans-serif>",10pt);

The fonts GraphTitle1Font and GraphLabel2Font are not used with ODS Graphics. The following fonts
are the ones typically used for the text in most graphs:

• GraphDataFont is the smallest font. It is used for text that needs to be small (labels for points in
scatter plots, labels for contours, and so on)

• GraphValueFont is the next largest font. It is used for axis value (tick marks) labels and legend entry
labels.

• GraphLabelFont is the next largest font. It is used for axis labels and legend titles.

• GraphFootnoteFont is the next largest font. It is used for all footnotes.

• GraphTitleFont is the largest font. It is used for all titles.

• GraphUnicodeFont is used for special characters. See the section “Unicode and Special Characters”
on page 748 in Chapter 22, “ODS Graphics Template Modification.”
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The following statements define a style named NEWSTYLE that replaces the graph fonts in the DEFAULT
style with italic Times New Roman fonts, which are available with the Windows operating system:

proc template;
define style Styles.NewStyle;

parent=Styles.Statistical;
replace GraphFonts /

'GraphDataFont' = ("<MTserif>, Times New Roman",7pt)
'GraphUnicodeFont' = ("<MTserif>, Times New Roman",9pt)
'GraphValueFont' = ("<MTserif>, Times New Roman",9pt)
'GraphLabel2Font' = ("<MTserif>, Times New Roman",10pt)
'GraphLabelFont' = ("<MTserif>, Times New Roman",10pt)
'GraphFootnoteFont' = ("<MTserif>, Times New Roman",10pt)
'GraphTitleFont' = ("<MTserif>, Times New Roman",11pt)
'GraphTitle1Font' = ("<MTserif>, Times New Roman",14pt)
'GraphAnnoFont' = ("<MTserif>, Times New Roman",10pt);

end;
run;

For more information about the DEFINE, PARENT, and REPLACE statements, see the SAS Graph Template
Language: Reference.

The “Getting Started” section of Chapter 86, “The ROBUSTREG Procedure,” creates the following data set
to illustrate the use of the PROC ROBUSTREG for robust regression:

data stack;
input x1 x2 x3 y @@;
datalines;

80 27 89 42 80 27 88 37 75 25 90 37 62 24 87 28 62 22 87 18
62 23 87 18 62 24 93 19 62 24 93 20 58 23 87 15 58 18 80 14
58 18 89 14 58 17 88 13 58 18 82 11 58 19 93 12 50 18 89 8
50 18 86 7 50 19 72 8 50 19 79 8 50 20 80 9 56 20 82 15
70 20 91 15
;

The following statements create a Q-Q plot that uses the HTMLBLUE style (see Figure 21.57) and the
NEWSTYLE style (see Figure 21.58):

ods listing style=HTMLBlue;
ods graphics on;

proc robustreg data=stack plots=qqplot;
ods select QQPlot;
model y = x1 x2 x3;

run;

ods listing close;
ods listing style=NewStyle;

proc robustreg data=stack plots=qqplot;
ods select QQPlot;
model y = x1 x2 x3;

run;
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Figure 21.57 Q-Q Plot That Uses the HTMLBLUE Style

Figure 21.58 Q-Q Plot That Uses the NEWSTYLE Style
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Although this example illustrates the use of a style with graphical output from a particular procedure, a style
is applied to all of your output (graphs and tables) in the destination for which you specify the style. See the
section “Changing the Default Style” on page 686 for information about specifying a default style for all
your output.

Modifying Other Graph Elements in Styles

This section illustrates how to modify other style elements for graphics, specifically the style element
GraphReference, which controls the attributes of reference lines. You can run the following statements to
learn more about the GraphReference style element:

proc template;
source styles.HTMLBlue;

run;

The following are the first two lines of the source listing:

define style Styles.HTMLBlue;
parent = styles.statistical;

There is no mention of GraphReference in the complete listing of the source because GraphReference is
inherited from a parent style. Most styles inherit many of their attributes from other styles. To find out more,
you must list the parent style, as in the following example:

proc template;
source styles.statistical;

run;

Most styles that you typically use with ODS Graphics inherit most of their attributes from only one style,
the DEFAULT style. The HTMLBLUE style inherits from the STATISTICAL style, which inherits from
the DEFAULT style. A few of the other styles inherit from several parents. You might have to repeat this
process multiple times to find the first parent. The following step displays the HTMLBLUE style and its
parent styles, STATISTICAL and DEFAULT:

proc template;
source Styles.HTMLBlue;
source Styles.Statistical;
source Styles.Default;

run;
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Styles are listed in the order: style of interest, then its parent, and then its grandparent. If you search the
results from the top, you will find the most recent specification of a style element first. The GraphReference
style element is defined as follows:

class GraphReference /
linethickness = 1px
linestyle = 1
contrastcolor = GraphColors('greferencelines');

To specify a line thickness of 4 pixels for all reference lines, add the following statement to the definition of
the NEWSTYLE style in the section “Modifying Graph Fonts in Styles” on page 681:

replace GraphReference / linethickness=4px;

The following statements modify the style and produce the Q-Q plot shown in Figure 21.59:

proc template;
define style Styles.NewStyle;

parent=Styles.Statistical;
replace GraphFonts /

'GraphDataFont' = ("<MTserif>, Times New Roman",7pt)
'GraphUnicodeFont' = ("<MTserif>, Times New Roman",9pt)
'GraphValueFont' = ("<MTserif>, Times New Roman",9pt)
'GraphLabel2Font' = ("<MTserif>, Times New Roman",10pt)
'GraphLabelFont' = ("<MTserif>, Times New Roman",10pt)
'GraphFootnoteFont' = ("<MTserif>, Times New Roman",10pt)
'GraphTitleFont' = ("<MTserif>, Times New Roman",11pt)
'GraphTitle1Font' = ("<MTserif>, Times New Roman",14pt)
'GraphAnnoFont' = ("<MTserif>, Times New Roman",10pt);

replace GraphReference / linethickness=4px;
end;

run;

ods listing style=NewStyle;
ods graphics on;

proc robustreg data=stack plots=qqplot;
ods select QQPlot;
model y = x1 x2 x3;

run;
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Figure 21.59 Q-Q Plot That Uses the NEWSTYLE Style with a Thicker Line

You can use this approach to modify other attributes of the line, such as LineStyle and ContrastColor.
These style modifications apply to all graphs that display reference lines, and not just to Q-Q plots produced
by PROC ROBUSTREG. You can control the attributes of specific graphs by modifying the graph template,
as discussed in the section “Graph Templates” on page 712 in Chapter 22, “ODS Graphics Template
Modification.” Values specified directly in a graph template override style attributes.

When you are done with the NEWSTYLE style, you do not need to restore the HTMLBLUE style template
since you did not modify it. Rather, you inherited from the HTMLBLUE style.

Changing the Default Style
The default style for each ODS destination is specified in the SAS Registry. For example, the default style for
the HTML destination is DEFAULT (or HTMLBLUE in the SAS windowing environment) and the default
style for the RTF destination is RTF. You can specify a default style for all of your output in a particular
ODS destination. This is useful if you want to use a different SAS style, if you have modified one of the
styles supplied by the SAS System (see the section “Style Templates and Colors” on page 645), or if you
have defined your own style. For example, you can specify the JOURNAL style as the default style for RTF
output.

The recommended approach for specifying a default style is as follows. Open the SAS Registry Editor by
typing regedit on the command line. Expand the node ODS I DESTINATIONS and select a destination
(for example, select RTF). Double-click the Selected Style item, shown in Figure 21.60, and specify a style.
This can be any style supplied by the SAS System or a user-defined style, as long as it can be found with the
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current template search path (for example, specify Journal). You can specify a default style for the other
destinations in a similar way.

In a few cases the default style is specified in more than one place. Assume that you are using the SAS
windowing environment and Microsoft Windows or UNIX in the following;

• If you expand the node ODS I DESTINATIONS I HTML, you see that the Selected Style is
DEFAULT.

• If you expand the node ODS I MARKUP I HTML4, you see that the Selected Style is DEFAULT.

• If you expand the node ODS I DMS I DESTINATIONS I MARKUP I HTML4, you see that
the Selected Style is HTMLBLUE.

The HTMLBLUE style is the default style for HTML output in the SAS windowing environment, yet the
DEFAULT style is the default style for HTML output in other contexts.

Figure 21.60 SAS Registry Editor

ODS searches sequentially through each element of the template search path for the first style template that
matches the name of the style specified in the SAS Registry. The first style template found is used. (See the
sections “Saving Customized Templates” on page 721, “Using Customized Templates” on page 721, and
“Reverting to the Default Templates” on page 722 in Chapter 22, “ODS Graphics Template Modification,” for
more information about the template search path.) If you are specifying a customized style as your default
style, the following are useful suggestions:

• If you save your style in Sasuser.Templat, verify that the name of your default style matches the name
of the style specified in the SAS Registry. For example, suppose the RTF style is specified for the RTF
destination in the SAS Registry. You can name your style RTF and save it in Sasuser.Templat. This
blocks the RTF style in Sashelp.Tmplmst (provided that you did not alter the default template search
path).
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• If you save your style in a user-defined template store, verify that this template store is the first in the
current template search path. Include the ODS PATH statement in your SAS autoexec file so that it is
executed at start-up.

For the HTML destination, an alternative approach for specifying a default style is as follows. From the menu
at the top of the main SAS window, select Tools I Options I Preferences. On the Results tab, select the
Create HTML check box and select a style from the Style list.

Statistical Graphics Procedures
Three Base SAS statistical graphics procedures use ODS Graphics and provide a convenient syntax for
creating a variety of graphs from raw data or from procedure output.

SGSCATTER creates single-cell and multi-cell scatter plots and scatter plot matrices with optional fits
and ellipses.

SGPLOT creates single-cell plots with a variety of plot and chart types.

SGPANEL creates single-page or multi-page panels of plots and charts conditional on classification
variables.

You do not need to enable ODS Graphics in order to use these procedures, which are called SG (statistical
graphics) procedures. In addition, the Base SAS SGRENDER procedure provides a way to create plots from
graph templates that you have modified or written yourself. See the SAS ODS Graphics: Procedures Guide
and Kuhfeld (2010) for more information about the SG procedures and PROC SGRENDER.

These procedures do much more than make scatter plots. They can produce density plots, dot plots, needle
plots, series plots, horizontal and vertical bar charts, histograms, and box plots. They can also compute
and display loess fits, polynomial fits, penalized B-spline fits, reference lines, bands, and ellipses. PROC
SGRENDER is the most flexible because it uses the Graph Template Language. The syntax for the other SG
procedures is much simpler than that of the GTL, and so these procedures are recommended for creating
most plots commonly required in statistical work.

The SGPLOT Procedure
PROC SGPLOT provides a simple way to make a variety of scatter plots. This example is taken from
Example 59.4 of Chapter 59, “The LOESS Procedure.” The ENSO data set, which contains information
about differences in ocean pressure over time, is available from the Sashelp library.

The following statements create a scatter plot of points along with a penalized B-spline fit to the data and
produce Figure 21.61:

proc sgplot data=sashelp.enso noautolegend;
title 'Atmospheric Pressure Differences between '

'Easter Island and Darwin, Australia';
pbspline y=pressure x=year;

run;
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Figure 21.61 Penalized B-Spline Fit with PROC SGPLOT

See Chapter 104, “The TRANSREG Procedure,” for more information about penalized B-splines. Also see
the section “Grouped Scatter Plot with PROC SGPLOT” on page 604 and Figure 21.12 for an example of a
scatter plot with groups of observations.

The SGSCATTER Procedure
You can use the SGSCATTER procedure to produce scatter plot matrices. The following step creates a scatter
plot matrix from all of the numeric variables in the Class data set (available in the Sashelp library) and
produces Figure 21.62:

proc sgscatter data=sashelp.class;
matrix _numeric_ / diagonal=(kernel histogram);

run;

The diagonal cells of Figure 21.62 contain a histogram and a kernel density fit. The off-diagonal cells contain
all pairs of scatter plots.
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Figure 21.62 Scatter Plot Matrix with PROC SGSCATTER

The MATRIX statement creates a symmetric n � n scatter plot matrix. Other statements are also available.
The PLOT statement creates a panel that contains one or more individual scatter plots. The COMPARE
statement creates a rectangular m � n scatter plot matrix. Linear and nonlinear fits can be added, and many
graphical features can be requested with options.

The SGPANEL Procedure
The SGPANEL procedure creates paneled plots and charts with one or more classification variables. Clas-
sification variables can be designated as row or column variables, or there can be multiple classifications.
Graphs are drawn for each combination of the levels of classification variables, showing a subset of the data
in each cell.

This example is taken from Example 44.6 of Chapter 44, “The GLIMMIX Procedure.” The following
statements create the input SAS data sets:
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data times;
input time1-time23;
datalines;

122 150 166 179 219 247 276 296 324 354 380 445
478 508 536 569 599 627 655 668 723 751 781
;

data cows;
if _n_ = 1 then merge times;
array t{23} time1 - time23;
array w{23} weight1 - weight23;
input cow iron infection weight1-weight23 @@;
do i=1 to 23;

weight = w{i};
tpoint = (t{i}-t{1})/10;
output;

end;
keep cow iron infection tpoint weight;
datalines;

1 0 0 4.7 4.905 5.011 5.075 5.136 5.165 5.298 5.323
5.416 5.438 5.541 5.652 5.687 5.737 5.814 5.799
5.784 5.844 5.886 5.914 5.979 5.927 5.94

2 0 0 4.868 5.075 5.193 5.22 5.298 5.416 5.481 5.521

... more lines ...

;

First, PROC GLIMMIX is run to fit the model, and then the results are prepared for plotting:

proc glimmix data=cows;
t2 = tpoint / 100;
class cow iron infection;
model weight = iron infection iron*infection tpoint;
random t2 / type=rsmooth subject=cow

knotmethod=kdtree(bucket=100 knotinfo);
output out=gmxout pred(blup)=pred;
nloptions tech=newrap;

run;

data plot;
set gmxout;
length Group $ 26;
if (iron=0) and (infection=0) then group='Control Group (n=4)';
else if (iron=1) and (infection=0) then group='Iron - No Infection (n=3)';
else if (iron=0) and (infection=1) then group='No Iron - Infection (n=9)';
else group = 'Iron - Infection (n=10)';

run;

proc sort data=plot; by group cow;
run;

The following statements produce graphs of the observed data and fitted profiles in the four groups:
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proc sgpanel data=plot noautolegend;
title 'Radial Smoothing with Cow-Specific Trends';
label tpoint='Time' weight='log(Weight)';
panelby group / columns=2 rows=2;
scatter x=tpoint y=weight;
series x=tpoint y=pred / group=cow lineattrs=GraphFit;

run;

The results are shown in Figure 21.63.

Figure 21.63 Fit Using PROC SGPANEL

The SGRENDER Procedure
The SGRENDER procedure produces a graph from an input SAS data set and an ODS graph template. With
PROC SGRENDER and the Graph Template Language (GTL), you can create highly customized graphs.
The following steps create a simple scatter plot of the Class data set (available in the Sashelp library) and
produce Figure 21.64:
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proc template;
define statgraph Scatter;

begingraph;
entrytitle "Simple Scatter Plot of the Class Data Set";
layout overlay;

scatterplot y=weight x=height / datalabel=name;
endlayout;

endgraph;
end;

run;

proc sgrender data=sashelp.class template=scatter;
run;

The template definition consists of an outer block that begins with a DEFINE statement and ends with an
END statement. Inside of that is a BEGINGRAPH/ENDGRAPH block. Inside that block, the ENTRYTITLE
statement provides the plot title, and the LAYOUT OVERLAY block contains the statement or statements
that define the graph. In this case, there is just a single SCATTERPLOT statement that names the Y-axis
(vertical) variable, the X-axis (horizontal) variable, and an optional variable that contains labels for the points.
The PROC SGRENDER statement simply specifies the input data set and the template. The real work in
using PROC SGRENDER is writing the template.

Figure 21.64 Scatter Plot of Labeled Points with PROC SGRENDER

The following steps add a series of fit functions to the scatter plot and create a legend by adding statements to
the Scatter template:



694 F Chapter 21: Statistical Graphics Using ODS

proc template;
define statgraph Scatter;

begingraph;
entrytitle "Scatter Plot of the Class Data Set with Fit Functions";
layout overlay;

scatterplot y=weight x=height / datalabel=name;
pbsplineplot y=weight x=height / name='pbs'

legendlabel='Penalized B-Spline'
lineattrs=GraphData1;

regressionplot y=weight x=height / degree=1 name='line'
legendlabel='Linear Fit'
lineattrs=GraphData2;

regressionplot y=weight x=height / degree=3 name='cubic'
legendlabel='Cubic Fit'
lineattrs=GraphData3;

loessplot y=weight x=height / name='loess'
legendlabel='Loess Fit'
lineattrs=GraphData4;

discretelegend 'pbs' 'line' 'cubic' 'loess';
endlayout;

endgraph;
end;

run;

proc sgrender data=sashelp.class template=scatter;
run;

The line attributes for each function are specified with different style elements, GraphData1 through
GraphData4, so that the functions are adequately identified in the legend. The preceding statements create
Figure 21.65.
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Figure 21.65 Scatter Plot and Fit Functions with PROC SGRENDER



696 F Chapter 21: Statistical Graphics Using ODS

The following statements create a four-panel display of the Class data set and produce Figure 21.66:

proc template;
define statgraph Panel;

begingraph;
entrytitle "Paneled Display of the Class Data Set";

layout lattice / rows=2 columns=2 rowgutter=10 columngutter=10;

layout overlay;
scatterplot y=weight x=height;
pbsplineplot y=weight x=height;

endlayout;

layout overlay / xaxisopts=(label='Weight');
histogram weight;

endlayout;

layout overlay / yaxisopts=(label='Height');
boxplot y=height;

endlayout;

layout overlay / xaxisopts=(offsetmin=0.1 offsetmax=0.1)
yaxisopts=(offsetmin=0.1 offsetmax=0.1);

scatterplot y=weight x=height / markercharacter=sex
name='color' markercolorgradient=age;

continuouslegend 'color'/ title='Age';
endlayout;

endlayout;
endgraph;

end;
run;

proc sgrender data=sashelp.class template=panel;
run;

In this template, the outermost layout is a LAYOUT LATTICE. It creates a 2�2 panel of plots with a 10-pixel
separation (or gutter) between each plot. Inside the lattice are four LAYOUT OVERLAY blocks—each
defining one of the graphs. The first is a simple scatter plot with a nonlinear penalized B-spline fit. The
second is a histogram of the dependent variable Weight. The third is a box plot of the independent variable
Height. The fourth simultaneously shows height, weight, age, and sex for the students in the class. Each axis
has an offset added at both the maximum and minimum. This provides padding between the axes and the
data.
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Figure 21.66 Multiple Panels Using PROC SGRENDER

Many other types of graphs are available with the SG procedures. However, even the few examples provided
here show the power and flexibility available for making professional-quality statistical graphics. See the
SAS Graph Template Language: User’s Guide and the SAS ODS Graphics: Procedures Guide for more
information.
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Examples of ODS Statistical Graphics

Example 21.1: Creating Graphs with Tool Tips in HTML
This example demonstrates how to request graphs in HTML that are enhanced with tooltip displays, which
appear when you move a mouse over certain features of the graph. When you specify the HTML destination
and the IMAGEMAP=ON option in the ODS GRAPHICS statement, an image map of coordinates for tooltips
is generated along with the HTML output file. Individual graphs are saved as PNG files.

Example 65.2 and Example 65.8 of Chapter 65, “The MIXED Procedure,” analyze a data set with repeated
growth measurements for 27 children. The following step creates the data set:

data pr;
input Person Gender $ y1 y2 y3 y4 @@;
y=y1; Age=8; output;
y=y2; Age=10; output;
y=y3; Age=12; output;
y=y4; Age=14; output;
drop y1-y4;
datalines;

1 F 21.0 20.0 21.5 23.0 2 F 21.0 21.5 24.0 25.5
3 F 20.5 24.0 24.5 26.0 4 F 23.5 24.5 25.0 26.5

... more lines ...

;

The following statements fit a mixed model with random intercepts and slopes for each child:

ods _all_ close;
ods html body='b.html' style=HTMLBlue;
ods graphics on / imagemap=on;

proc mixed data=pr method=ml plots=boxplot;
ods select 'Conditional Residuals by Gender';
class Person Gender;
model y = Gender Age Gender*Age;
random intercept Age / type=un subject=Person;

run;

ods html close;

The PLOTS=BOXPLOT option in the PROC MIXED statement requests box plots of observed values and
residuals for each classification main effect in the model (Gender and Person). Only the by-gender box
plots are actually created due to the ODS SELECT statement, which uses the plot label to select the plot.
Output 21.1.1 displays the results. Moving the mouse over a box plot displays a tooltip with summary
statistics for the class level. Graphics with tooltips are supported for only the HTML destination.
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Output 21.1.1 Box Plot with Tool Tips

Example 21.2: Creating Graphs for a Presentation
The RTF destination provides an easy way to create graphs for inclusion into a paper or presentation. You
can specify the ODS RTF statement to create a file that is easily imported into a document (such as Microsoft
Word or WordPerfect) or a presentation (such as Microsoft PowerPoint).

The following statements request a loess fit and save the output in the file loess.rtf :

ods _all_ close;
ods rtf file="loess.rtf" style=HTMLBlue;
ods graphics on;

proc loess data=sashelp.enso;
model pressure = year / clm residual;

run;

ods rtf close;
ods listing;
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The output file includes various tables and the following plots: a plot of the selection criterion versus
smoothing parameter, a fit plot with 95% confidence bands, a plot of residual by regressors, and a diagnostics
panel. The fit plot is produced with the HTMLBLUE style and is shown in Output 21.2.1.

Output 21.2.1 Loess Fit Plot with the HTMLBLUE Style

If you are running the SAS System in the Microsoft Windows operating system, you can open the RTF file in
Microsoft Word and simply copy and paste the graphs into Microsoft PowerPoint. In general, RTF output is
convenient for exchange of graphical results between Microsoft Windows applications through the clipboard.

Alternatively, if you use the LISTING or HTML destinations, then your individual graphs are created as
PNG files by default. You can insert these files into a Microsoft PowerPoint presentation. See the sections
“Naming Graphics Image Files” on page 630 and “Saving Graphics Image Files” on page 632 for information
about how the image files are named and saved.

Example 21.3: Creating Graphs in PostScript Files
This example illustrates how to create individual graphs in PostScript files. This is particularly useful when
you want to include them in a LATEX document.

The following statements close all open destinations, open the LATEX3 destination with the JOURNAL style,
and request a grouped bar chart for the Sashelp.Class data set:

3The LATEX destination is experimental.
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ods graphics on / reset=index;
ods _all_ close;
ods latex style=Journal;

proc sgplot data=sashelp.class;
vbar age / group=sex;

run;

ods latex close;
ods listing;

The JOURNAL style displays gray-scale graphs that are suitable for a journal. When you specify the ODS
LATEX destination, ODS creates a PostScript file for each individual graph in addition to a LATEX source file
that includes the tabular output and references to the PostScript files. By default, these files are saved in the
SAS current folder. The bar chart shown in Output 21.3.1 is saved by default in a file named SGPlot.ps. See
the section “Naming Graphics Image Files” on page 630 for details about how graphics image files are named.
If both the default destination (LISTING or HTML) and the LATEX destination are open, then two files are
created: SGPlot.png and SGPlot1.ps. If the RESET=INDEX option is not specified in the ODS GRAPHICS
statement and you run the step again, the next names are based on an incremented index (SGPlot2.png and
SGPlot3.ps).

Output 21.3.1 Bar Chart Using the JOURNAL Style

You can use the JOURNAL2 style for a different appearance—the bars are not shaded. Crosshatching is used
to indicate group membership. The following step produces Output 21.3.2:
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ods graphics on / reset=index;
ods _all_ close;
ods latex style=Journal2;

proc sgplot data=sashelp.class;
vbar age / group=sex;

run;

ods latex close;
ods listing;

Output 21.3.2 Bar Chart Using the JOURNAL2 Style

You can use the JOURNAL3 style for a different kind of appearance from the JOURNAL style. A mix of
filled areas and crosshatching is used in grouped bar charts. The following step produces Output 21.3.3:

ods graphics on / reset=index;
ods _all_ close;
ods latex style=Journal3;

proc sgplot data=sashelp.class;
vbar age / group=sex;

run;

ods latex close;
ods listing;
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Output 21.3.3 Bar Chart Using the JOURNAL3 Style

If you are writing a paper, you can include the graphs in your own LATEX source file by referencing the names
of the individual PostScript graphics files. In this situation, you might not find it necessary to use the LATEX
source file created by the SAS System. Alternatively, you can include PNG files into a LATEX document, after
using some other ODS destination (such as HTML) to create the PNG files.

Example 21.4: Displaying Graphs Using the DOCUMENT Procedure
This example illustrates the use of the ODS DOCUMENT destination and the DOCUMENT procedure to
display your ODS graphs. You can use this approach whenever you want to generate and save your output
(both tables and graphs) and then display or replay it later, potentially in subsets or more than once. This
approach is particularly useful when you want to display your output in multiple ODS destinations, or when
you want to use different styles without rerunning your SAS program. This approach is also useful when you
want to break your output into separate parts for inclusion into different parts of a document such as a LATEX
file.
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Consider again the data set Stack created by the following statements:

data stack;
input x1 x2 x3 y @@;
datalines;

80 27 89 42 80 27 88 37 75 25 90 37 62 24 87 28 62 22 87 18
62 23 87 18 62 24 93 19 62 24 93 20 58 23 87 15 58 18 80 14
58 18 89 14 58 17 88 13 58 18 82 11 58 19 93 12 50 18 89 8
50 18 86 7 50 19 72 8 50 19 79 8 50 20 80 9 56 20 82 15
70 20 91 15
;

The following statements request a Q-Q plot from PROC ROBUSTREG with the Stack data:

ods graphics on;
ods _all_ close;
ods document name=QQDoc(write);

proc robustreg data=stack plots=qqplot;
model y = x1 x2 x3;

run; quit;

ods document close;
ods listing;

The ODS DOCUMENT statement opens an ODS document named QQDoc. All of the results—tables, graphs,
titles, notes, footnotes, headers—are stored in the ODS document. None of them are displayed since no other
destination is open. In order to display the Q-Q plot with PROC DOCUMENT, you first need to determine
its name. You can do this by specifying the ODS TRACE ON statement prior to the procedure statements
(see the section “Determining Graph Names and Labels” on page 624 for more information). Alternatively,
you can type odsdocuments (or odsd for short) on the command line to open the Documents window, which
you can then use to manage your ODS documents.

The following statements specify an HTML destination and display the residual Q-Q plot by using the
REPLAY statement in PROC DOCUMENT:

ods html body='b.htm';

proc document name=QQDoc;
ods select QQPlot;
replay;

run; quit;

ods html close;

Subsequent steps can replay one or more objects from the same ODS document. By default, the REPLAY
statement attempts to display every output object stored in the ODS document, but here only the Q-Q plot is
displayed because it is specified by the ODS SELECT statement. The plot is displayed in Output 21.4.1.
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Output 21.4.1 Q-Q Plot Displayed by PROC DOCUMENT

As an alternative to running PROC DOCUMENT with an ODS SELECT statement, you can run PROC
DOCUMENT with a document path for the Q-Q plot in the REPLAY statement. This approach is preferable
when the ODS document contains a large volume of output, so that PROC DOCUMENT does not attempt to
process every piece of output stored in the ODS document.

You can determine the ODS document path for the Q-Q plot by specifying the LIST statement with the
LEVELS=ALL option in PROC DOCUMENT as follows:

proc document name=QQDoc;
list / levels=all;

run; quit;

The contents of the ODS document QQDoc are shown in Output 21.4.2.
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Output 21.4.2 Contents of the ODS Document QQDoc

Listing of: \Work.Qqdoc\

Order by: Insertion

Number of levels: All

Obs Path Type

1 \Robustreg#1 Dir

2 \Robustreg#1\ModelInfo#1 Table

3 \Robustreg#1\NObs#1 Table

4 \Robustreg#1\ParmInfo#1 Table

5 \Robustreg#1\SummaryStatistics#1 Table

6 \Robustreg#1\ParameterEstimates#1 Table

7 \Robustreg#1\DiagSummary#1 Table

8 \Robustreg#1\DiagnosticPlots#1 Dir

9 \Robustreg#1\DiagnosticPlots#1\QQPlot#1 Graph

10 \Robustreg#1\GoodFit#1 Table

The ODS document path of the QQPlot entry in the QQDoc ODS document, as shown in Output 21.4.2, is
\Robustreg#1\DiagnosticPlots#1\QQPlot#1.

You can use this path to display the residual Q-Q plot with PROC DOCUMENT as follows:

proc document name=QQDoc;
replay \Robustreg#1\DiagnosticPlots#1\QQPlot#1;

run; quit;

You can also determine the ODS document path from the Results window or the Documents window.
Right-click the object icon and select Properties.

The SAS/STAT documentation preparation process uses the ODS document. SAS output is saved into an
ODS document that is then replayed into sections of the documentation, which is prepared using LATEX. In
general, when you send your output to the DOCUMENT destination, you can use PROC DOCUMENT
to rearrange, duplicate, or remove output from the results of a procedure or a database query. For more
information, see the ODS DOCUMENT statement in the section “Dictionary of ODS Language Statements”
and the chapter “The DOCUMENT Procedure” in the SAS Output Delivery System: User’s Guide.
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Example 21.5: Customizing the Style for Box Plots
This example demonstrates how to modify the style for box plots. This example is taken from Example 21.1.
The following step creates the data set:

data pr;
input Person Gender $ y1 y2 y3 y4 @@;
y=y1; Age=8; output;
y=y2; Age=10; output;
y=y3; Age=12; output;
y=y4; Age=14; output;
drop y1-y4;
datalines;

1 F 21.0 20.0 21.5 23.0 2 F 21.0 21.5 24.0 25.5
3 F 20.5 24.0 24.5 26.0 4 F 23.5 24.5 25.0 26.5

... more lines ...

;

The following step displays the HTMLBLUE style and its parent styles, STATISTICAL and DEFAULT:

proc template;
source Styles.HTMLBlue;
source Styles.Statistical;
source Styles.Default;

run;

If you search for ‘box’, you find the style element that controls some aspects of the box plot:

class GraphBox /
capstyle = "serif"
connect = "mean"
displayopts = "fill caps median mean outliers";

You can learn more about the GraphBox style element and its attributes in the section on the BOXPLOT
statement in the SAS Graph Template Language: Reference and in the section on “ODS Style Elements” in
the SAS Output Delivery System: User’s Guide.

The following statements create two new styles by modifying attributes of the GraphBox style element. The
first style is a sparse style; the box is outlined (not filled), and the median is shown but not the mean. In
contrast, the second style produces a filled box, with caps on the whiskers that shows the mean, median, and
outliers. In addition, the box is notched.
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The following statements create the two styles:

proc template;
define style BoxStyleSparse;

parent=styles.HTMLBlue;
style GraphBox / capstyle = "line" displayopts = "median";

end;
define style BoxStyleRich;

parent=styles.HTMLBlue;
style GraphBox / capstyle = "bracket"

displayopts = "fill caps median mean outliers notches";
end;

run;

The following steps run PROC MIXED and create box plots that use the two styles:

ods graphics on;
ods listing style=boxstylesparse;

proc mixed data=pr method=ml plots=boxplot;
ods select 'Conditional Residuals by Gender';
class Person Gender;
model y = Gender Age Gender*Age;
random intercept Age / type=un subject=Person;

run;

ods listing style=boxstylerich;

proc mixed data=pr method=ml plots=boxplot;
ods select 'Conditional Residuals by Gender';
class Person Gender;
model y = Gender Age Gender*Age;
random intercept Age / type=un subject=Person;

run;

The results with the sparse style are displayed in Output 21.5.1, and the results with the richer style are
displayed in Output 21.5.2. See Output 21.1.1 in Example 21.1 to see the results of using the HTMLBLUE
style.
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Output 21.5.1 Box Plot with the Sparse Style

Output 21.5.2 Box Plot with the Richer Style
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Graph Templates
This chapter discusses the graph template language and graph template modification in ODS Graphics. Be
sure that you are familiar with Chapter 21, “Statistical Graphics Using ODS,” before reading this chapter.

Graph templates control the layout and details of graphs produced with ODS Graphics. The SAS System
provides a template for every graph produced by statistical procedures. Graph template definitions are written
in the Graph Template Language (GTL). This powerful language includes statements for specifying plot
layouts (such as lattices or overlays), plot types (such as scatter plots and histograms), and text elements
(such as titles, footnotes, and insets). It also provides support for built-in computations (such as histogram
binning) and the evaluation of expressions. Options are available for specifying colors, marker symbols, and
other attributes of plot features.

Graphs, like all SAS output, are constructed from two underlying components, a data component (or data
object) and a template. Procedures supply a table of data values and statistical results to plot. Together, the
data object and the template form an output object that ODS displays in one or more output destinations. You
can control this display in two ways. You can use the ODS Graphics Editor (discussed in the section “ODS
Graphics Editor” on page 636 in Chapter 21, “Statistical Graphics Using ODS,”) to modify the output object
(but not the underlying data object or template), and you can use the GTL to modify the template. With just a
little knowledge of the GTL, you can modify or edit templates, even when you do not understand most of the
syntax used in the template definition. See examples starting with Example 22.1.

NOTE: You do not need to know anything about the GTL to create statistical graphics.

This section provides an overview of the Graph Template Language. It also describes how to locate, display,
edit, and save templates. A template definition is a set of SAS statements that is used together with PROC
TEMPLATE to create a compiled template. In addition to graph templates, two other common types of
templates are table templates and style templates. A table template describes how to display the output for an
output object that is rendered as a table. A style template provides formatting information for visual aspects
of your SAS output, including both tables and graphs. In most applications, you do not have to modify the
templates that are supplied by SAS. However, when customization is necessary, you can modify the default
template with the template language and PROC TEMPLATE.

Compiled templates are stored in a template store, which is a type of item store. (An item store is a special
type of SAS file.) The default templates supplied by SAS are stored in the Sashelp.Tmplmst template store.
If you are using the SAS windowing environment, an easy way to display, edit, and save your templates is by
using the Templates window. For an introduction to the graph template language, see Kuhfeld (2010).

For detailed information about managing templates, see the SAS Output Delivery System: User’s Guide
and the SAS Graph Template Language: User’s Guide. For details about the syntax of the graph template
language, see the SAS Graph Template Language: Reference.
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The Graph Template Language
Graph template definitions begin with a DEFINE STATGRAPH statement in PROC TEMPLATE, and they
end with an END statement. Embedded in every graph template is a BEGINGRAPH/ENDGRAPH block,
and embedded in that block are one or more LAYOUT blocks. You can specify the DYNAMIC statement to
define dynamic variables (which the procedure uses to pass values to the template definition), the MVAR and
NMVAR statements to define macro variables (which you can use to pass values to the template definition),
and the NOTES statement to provide descriptive information about the graph. The default templates supplied
by SAS for statistical procedures are often lengthy and complex, because they provide ODS Graphics with
comprehensive and detailed information about graph construction. Here is one of the simpler graph templates
for a statistical procedure:

define statgraph Stat.MDS.Graphics.Fit;
notes "MDS Fit Plot";
dynamic head;
begingraph / designwidth=defaultdesignheight;

entrytitle HEAD;
layout overlayequated / equatetype=square;

scatterplot y=FITDATA x=FITDIST / markerattrs=(size=5px);
lineparm slope=1 x=0 y=0 / extend=true lineattrs=GRAPHREFERENCE;

endlayout;
endgraph;

end;

This template, supplied for the MDS procedure, creates a scatter plot of two variables, FitData and FitDist,
along with a diagonal reference line that passes through the origin. The plot is square and the axes are equated
so that a centimeter on one axis represents the same data range as a centimeter on the other axis. The plot title
is provided by the evaluation of the dynamic variable Head, which is set by the procedure. It is not unusual
for this plot to contain hundreds or even thousands of points, so a five-pixel marker is specified, which is
smaller than the seven-pixel marker used by default in most styles.

The statements available in the graph template language can be classified as follows:

• Control statements specify the conditional or iterative flow of control. By default, flow of control is
sequential. In other words, each statement is used in the order in which it appears.

• Layout statements specify the arrangement of the components of the graph. Layout statements are
arranged in blocks that begin with a LAYOUT statement and end with an ENDLAYOUT statement.
The blocks can be nested. Within a layout block, there can be plot, text, and other statements that define
one or more graph components. Options provide control for attributes of layouts and components.
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• Plot statements specify a number of commonly used displays, including scatter plots, histograms,
contour plots, surface plots, and box plots. Plot statements are always provided within a layout block.
The plot statements include options to specify the data columns from the data object that is used in the
graph. For example, in the SCATTERPLOT statement, there are mandatory X= and Y= arguments that
specify which data columns are used for the X (horizontal) and Y (vertical) axes in the plot. (In the
preceding example, FitData and FitDist are the names of columns int the data object that PROC MDS
creates for this graph.) There is also a GROUP= option that specifies a data column as an optional
classification variable.

• Text statements specify the descriptions that accompany graphs. An entry is any textual description,
including titles, footnotes, and legends; it can include symbols to identify graph elements.

The following statements display another of the simpler template definitions—the definition of the scatter
plot available in PROC KDE (see Figure 54.6.1 in Chapter 54, “The KDE Procedure,”):

proc template;
define statgraph Stat.KDE.Graphics.ScatterPlot;

dynamic _TITLE _DEPLABEL _DEPLABEL2;
BeginGraph;

EntryTitle _TITLE;
layout Overlay;

scatterplot x=X y=Y / markerattrs=GRAPHDATADEFAULT;
EndLayout;

EndGraph;
end;

run;

Here, the PROC TEMPLATE and RUN statements have been added to show how you would compile the
template if you wanted to modify it. The DEFINE STATGRAPH statement in PROC TEMPLATE begins the
graph template definition, and the END statement ends the definition. The DYNAMIC statement defines
three dynamic variables that PROC KDE sets at run time. The variable _Title provides the title of the graph.
The variables _DepLabel and _DepLabel2 contain the names of the X- and Y-variables, respectively. If you
were to modify this template, you could use these dynamic text variables in any text element of the graph
template.

The overall display is specified with the LAYOUT OVERLAY statement inside the BEGIN-
GRAPH/ENDGRAPH block. The title of the graph is specified with the ENTRYTITLE statement.
The main plot is a scatter plot specified with the SCATTERPLOT statement. The options in the SCATTER-
PLOT statement are given after the slash and specify display options such as marker attributes (symbol, color,
and size). These attributes can be specified directly, as in the PROC MDS template, or more typically by
using indirect references to style attributes, as in the PROC KDE template. The values of these attributes
are specified in the definition of the style you are using and are automatically set to different values if you
specify a different style. For more information about style references, see the section “Styles” on page 641 in
Chapter 21, “Statistical Graphics Using ODS.” The ENDLAYOUT statement ends the main layout block. For
details about the syntax of the graph template language, see the SAS Graph Template Language: Reference.
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You can write your own templates and use them to display raw data or output from procedures. For example,
consider the iris data from Example 35.1 of Chapter 35, “The DISCRIM Procedure.” The iris data set is
available from the Sashelp library.

The following statements create a template for a scatter plot of the variables PetalLength and PetalWidth with
a legend:

proc template;
define statgraph scatter;

begingraph;
entrytitle 'Fisher (1936) Iris Data';
layout overlayequated / equatetype=fit;

scatterplot x=petallength y=petalwidth /
group=species name='iris';

layout gridded / autoalign=(topleft);
discretelegend 'iris' / border=false opaque=false;

endlayout;
endlayout;

endgraph;
end;

run;

The layout is OVERLAYEQUATED, which equates the axes in the plot. However, unlike the PROC MDS
template, which used EQUATETYPE=SQUARE to make a square plot, the EQUATETYPE=FIT option
specifies that the lengths of the axes in this plot should fill the entire plotting area. A legend is placed
internally in the top-left portion of the plot. There are three groups of observations, indicated by the three
species, and each group is plotted with a separate color and symbol that depends on the ODS style. The
legend identifies each group. The NAME= option provides the link between the SCATTERPLOT statement
and the DISCRETELEGEND statement. An explicit link is needed since some graphical displays are based
on multiple plotting statements.

The following step creates the plot by using the SGRENDER procedure, the Sashelp.Iris data set, and the
custom template scatter:

proc sgrender data=sashelp.iris template=scatter;
run;

The syntax of PROC SGRENDER is very simple, because all of the graphical options appear in the template.
The scatter plot in Figure 22.1 shows the results.
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Figure 22.1 Petal Width and Petal Length in Three Iris Species

The intent of this example is to illustrate how you can write a template to create a scatterplot. PROC
TEMPLATE and PROC SGRENDER provide you with the power to create highly customized displays.
However, usually you can use the SGPLOT, SGSCATTER or SGPANEL procedures instead, which are
much simpler to use. These procedures are discussed in the section “Statistical Graphics Procedures” on
page 688 in Chapter 21, “Statistical Graphics Using ODS.” See the section “Grouped Scatter Plot with PROC
SGPLOT” on page 604 and Figure 21.12 in Chapter 21, “Statistical Graphics Using ODS,” for an example
that plots these data with PROC SGPLOT.

Locating Templates
Before you can customize a graph, you must determine which template is used to create the original graph.
You can do this by submitting the ODS TRACE ON statement before the procedure statements that create the
graph. The fully qualified template name is displayed in the SAS log. Here is an example:

ods trace on;
ods graphics on;

proc reg data=sashelp.class;
model Weight = Height;

run; quit;

The preceding statements create the following trace output, which provides information about both the graphs
and tables produced by PROC REG:
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Output Added:
-------------
Name: NObs
Label: Number of Observations
Template: Stat.Reg.NObs
Path: Reg.MODEL1.Fit.Weight.NObs
-------------

Output Added:
-------------
Name: ANOVA
Label: Analysis of Variance
Template: Stat.REG.ANOVA
Path: Reg.MODEL1.Fit.Weight.ANOVA
-------------

Output Added:
-------------
Name: FitStatistics
Label: Fit Statistics
Template: Stat.REG.FitStatistics
Path: Reg.MODEL1.Fit.Weight.FitStatistics
-------------

Output Added:
-------------
Name: ParameterEstimates
Label: Parameter Estimates
Template: Stat.REG.ParameterEstimates
Path: Reg.MODEL1.Fit.Weight.ParameterEstimates
-------------

Output Added:
-------------
Name: DiagnosticsPanel
Label: Fit Diagnostics
Template: Stat.REG.Graphics.DiagnosticsPanel
Path: Reg.MODEL1.ObswiseStats.Weight.DiagnosticPlots.DiagnosticsPanel
-------------

Output Added:
-------------
Name: ResidualPlot
Label: Height
Template: Stat.REG.Graphics.ResidualPlot
Path: Reg.MODEL1.ObswiseStats.Weight.ResidualPlots.ResidualPlot
-------------

Output Added:
-------------
Name: FitPlot
Label: Fit Plot
Template: Stat.REG.Graphics.Fit
Path: Reg.MODEL1.ObswiseStats.Weight.FitPlot
-------------
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This is also illustrated in Example 22.1 and the section “The ODS Statement” on page 525 in Chapter 20,
“Using the Output Delivery System.”

Displaying Templates
Once you have found the fully qualified name of a template, you can display its definition (source program)
by using one of these methods:

• Open the Templates window by issuing the command odstemplates (odst for short) in the command
line of the SAS windowing environment. The template window is shown in Figure 22.2. If you expand
the Sashelp.Tmplmst node, you can view all the available templates and double-click any template
icon to display its definition. This is illustrated in Example 22.1.

• Use the SOURCE statement in PROC TEMPLATE to display a template definition in the SAS log or
write the definition to a file.

For example, the following statements display the template for the PROC REG residual plot:

proc template;
source Stat.REG.Graphics.ResidualPlot;

run;

Figure 22.2 Requesting the Templates Window in the Command Line
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The template is displayed as follows:

define statgraph Stat.Reg.Graphics.ResidualPlot;
notes "Residual Plot";
dynamic _XVAR _SHORTXLABEL _TITLE _LOESSLABEL _DEPNAME

_MODELLABEL _SMOOTH;
BeginGraph;

entrytitle halign=left textattrs=GRAPHVALUETEXT
_MODELLABEL halign=center
textattrs=GRAPHTITLETEXT _TITLE " for " _DEPNAME;

entrytitle textattrs=GRAPHVALUETEXT _LOESSLABEL;
layout overlay / xaxisopts=(shortlabel=_SHORTXLABEL);

referenceline y=0;
scatterplot y=RESIDUAL x=_XVAR / primary=true

rolename=(_tip1=OBSERVATION _id1=ID1 _id2=ID2
_id3=ID3 _id4=ID4 _id5=ID5) tip=(y x
_tip1 _id1 _id2 _id3 _id4 _id5);

if (EXISTS(_SMOOTH))
loessplot y=_SMOOTH x=_XVAR /

tiplabel=(y="Smoothed Residual");
endif;

endlayout;
EndGraph;

end;

PROC TEMPLATE also tells you where the template is located. In this case, it prints the following note:

NOTE: Path 'Stat.Reg.Graphics.ResidualPlot' is in: SASHELP.TMPLMST.

The word “Path” in ODS has several meanings. In this context, it refers to any name or label hierarchy. In
the note, the levels of the template name form a path. In the trace output, the levels of the plot name form a
different path.

Editing Templates
You can modify the format and appearance of a particular graph by doing the following:

• Modify its template definition (source program).

• Submit the revised template to create a new compiled template, which is stored in a template store.

• Ensure that the ODS template search path includes the template store that contains your new template.

Template stores are designated read-only (such as Sashelp.Tmplmst) or updatable (such as Sasuser.Templat).

If you view the templates in an updatable template store from the Templates window, you can select Open or
Edit from the pop-up menu. Either the Template Browser or Template Editor window opens. In the Template
Editor window, you can make changes and submit the code directly. For read-only templates or when you
select Open, the Template Browser window opens and you must copy the definition to an editor window to
make changes. Since templates supplied by SAS are in the read-only Sashelp library, an easy way to obtain
an editable program file is to use the SOURCE statement with the FILE= option in PROC TEMPLATE to
write the template definition to a file as follows:
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proc template;
source Stat.REG.Graphics.ResidualPlot / file="residtpl.sas";

run;

By default, the file is saved in the SAS current folder. Alternatively, you can omit the slash and the FILE=
option and copy and paste the source from the SAS log into an editor. Either way, you must add a PROC
TEMPLATE statement before the generated source statements and optionally a RUN statement after the END
statement before you submit your modified definition.

Graph templates are self-contained and do not support inheritance (via the PARENT= option) as do table
templates. Consequently, the EDIT statement in PROC TEMPLATE is not supported for graph templates.

Here are some important points about what you can and cannot change in a template supplied by SAS while
preserving its overall functionality:

• Do not change the template name. A statistical procedure can access only a predefined list of templates.
If you change the name, the procedure cannot find your template. You must keep the original name
and make sure that it is in a template store that is searched before Sashelp.Tmplmst. You control this
with the ODS PATH statement (see the section “The Default Template Stores and the Template Search
Path” on page 640 in Chapter 21, “Statistical Graphics Using ODS,” the section “Saving Customized
Templates” on page 721, and subsequent sections for more information about the template search path
and the ODS PATH statement).

• Do not change the names of columns. The underlying data object contains predefined column names
that you must use. Be very careful if you change how a column is used in a template. Usually, columns
are not interchangeable.

• Do not change the names of DYNAMIC variables. Procedures set values only for a predefined list of
dynamic variables. Changing dynamic variable names can lead to runtime errors. Do not add dynamic
variables, because the procedure cannot set their values. A few procedures document additional
dynamic variables that can be defined in the template if you want to add more information to the output,
such additional statistics in an inset table.

• Do not change the names of statements (for example, from a SCATTERPLOT to a NEEDLEPLOT or
other type of plot).

You can change any of the following:

• You can add macro variables that behave like dynamic variables. They are resolved at the time that the
statistical procedure is run, and not at the time that the template is compiled. They are defined with
an MVAR or NMVAR statement at the beginning the template. You can set the value of each macro
variable with a %LET statement before the statistical procedure is run. See Example 22.5. You can
also move a variable from a DYNAMIC statement to an MVAR or NMVAR statement if you want to
set it yourself rather than letting the procedure set it.

• You can change the graph size.

• You can change graph titles, footnotes, axis labels, and any other text that appears in the graph.

• You can change which plot features are displayed.

• You can change axis features, such as grid lines, offsets, view ports, tick value formatting, and so on.
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• You can change the content and arrangement of insets (small tables of statistics embedded in some
graphs).

• You can change the legend location, contents, border, background, title, and so on.

See the SAS Graph Template Language: Reference for information about the syntax of the statements in the
Graph Template Language.

Saving Customized Templates
After you edit the template definition, you can submit your PROC TEMPLATE statements as you would any
other SAS program. If you are using the Template Editor window, select Submit from the Run menu. See
Example 22.1. Alternatively, submit your PROC TEMPLATE statements from the Program Editor. ODS
automatically saves the compiled template in the first template store that it can update, according to the
currently defined template search path. If you have not changed the template search path, then the modified
template is saved in the Sasuser.Templat template store. You can display the current template search path
with the following statement:

ods path show;

The log messages for the default template search path are as follows:

Current ODS PATH list is:

1. SASUSER.TEMPLAT(UPDATE)
2. SASHELP.TMPLMST(READ)

If you want to store modified templates in another template store, you can use the ODS PATH statement to
add that template store to the front of the list. To use these templates, you must make sure the template search
path is set correctly before you attempt to access them in the other SAS sessions. See the section “Using
Customized Templates” on page 721.

Using Customized Templates
When you create ODS output (either graphs or tables), ODS searches sequentially through each template
store in the template search path for a template that matches the one requested. If you have not changed
the default template search path, then ODS searches the Sasuser.Templat store first, then Sashelp.Tmplmst.
ODS uses the first template that it finds with the requested name. NOTE: Templates with the same name can
exist in more than one template store.

The ODS PATH statement specifies the template stores to search, as well as the order in which to search
them. You can change the default template search path by using the ODS PATH statement. For example, the
following statement sets the template search path so that the template store Work.Mystore is searched first,
followed by Sashelp.Tmplmst:
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ods path work.mystore(update) sashelp.tmplmst(read);

The UPDATE option provides update access as well as read access to Work.Mystore. The READ option
provides read-only access to Sashelp.Tmplmst. With this path, the template store Sasuser.Templat is no
longer searched. You can verify this with the following statement:

ods path show;

The log messages generated by the preceding statement are as follows:

Current ODS PATH list is:

1. WORK.MYSTORE(UPDATE)
2. SASHELP.TMPLMST(READ)

For more information, see the SAS Output Delivery System: User’s Guide and the SAS Graph Template
Language: User’s Guide. Example 22.1 illustrates all the steps of displaying, editing, saving, and using
customized templates.

Reverting to the Default Templates
Customized templates are stored in Sasuser.Templat or in some other template store that you create. The
templates supplied by SAS are in the read-only template store Sashelp.Tmplmst. If you have modified any
of the supplied templates and you want to use the original default templates, you can change your template
search path as follows:

ods path sashelp.tmplmst(read) sasuser.templat(update);

This way the default templates are found first. Alternatively, you can save all of your customized templates
in a user-defined template store (for example Mylib.Mystore). To access these templates, you submit the
following statement before running your analysis:

libname mylib '.';
ods path mylib.mystore(update) sashelp.tmplmst(read);

When you are done, you can reset the default template search path as follows:

ods path reset;

This restores the template search path to its original state (sasuser.templat(update) sashelp.tmplmst(read)).
You can also save your customized template as part of your SAS program. You can delete your customized
template from the Sasuser.Templat template store when you are done, as in the following statements:

proc template;
delete Stat.REG.Graphics.ResidualPlot / store=sasuser.templat;

run;

The option STORE=SASUSER.TEMPLAT is not required. However, if you have administrator privi-
leges on your computer, this option helps you ensure that you do not accidentally delete templates from
Sashelp.Tmplmst.
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The following note is printed in the SAS log:

NOTE: 'Stat.REG.Graphics.ResidualPlot' has been deleted from: SASUSER.TEMPLAT

You can run the following step to delete the entire Sasuser.Templat store of customized templates:

ods path sashelp.tmplmst(read);
proc datasets library=sasuser nolist;

delete templat(memtype=itemstor);
run;
ods path sasuser.templat(update) sashelp.tmplmst(read);

Graph Template Modification Macro
You can use the %ModTmplt autocall macro to insert BY line information, titles, and footnotes in ODS
Graphics. You can also use it to remove titles and perform other template modifications. See Kuhfeld (2009)
for more information about this macro.

You do not have to include autocall macros (for example, with a %include statement). You can call them
directly once they are properly installed. If your site has installed the autocall libraries supplied by SAS and
uses the standard configuration of SAS supplied software, you need to ensure that the SAS system option
MAUTOSOURCE is in effect to begin using the autocall macros. For more information about autocall
libraries, see the SAS Macro Language: Reference. For details about installing autocall macros, consult your
host documentation.

The %ModTmplt macro has the following options:

BY=by-variable-list
specifies the list of BY variables. Also see BYLIST=. When graphs are produced (by default or when
the STEPS= value contains ‘G’), you must specify the BY= option. Otherwise, when you are only
modifying the template, you do not need to specify the BY= option. NOTE: This option has been
rendered obsolete by the BYLINE= option in the ODS GRAPHICS statement.

BYLIST=by-statement-list
specifies the full syntax of the BY statement. You can specify a full BY statement syntax including the
DESCENDING or NOTSORTED options. If only BY variables are needed, specify only BY=. If you
also need options, then specify the BY variables in the BY= option and the full syntax in the BYLIST=
option (for example, specify BY=A B and BYLIST=A DESCENDING B). NOTE: This option has
been rendered obsolete by the BYLINE= option in the ODS GRAPHICS statement.

DATA=SAS-data-set
specifies the input SAS data set. If you do not specify the DATA= option, the macro uses the most
recently created SAS data set.

FILE=filename
specifies the file in which to store the original templates. This is a temporary file. You can specify
either a quoted file name or the name from a FILENAME statement that you provide before you call
the macro. The default is "template.txt".
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OPTIONS=options
specifies one or more of the following options (case is ignored):

LOG
displays a note in the SAS log when each BY group has finished.

FIRST
adds the ENTRYTITLE or ENTRYFOOTNOTE statements as the first titles or footnotes. By
default, the statements are added after the last titles or footnotes. Most graph templates provided
by SAS do not use footnotes; so this option usually affects only entry titles.

NOQUOTES
specifies that the values of the system titles and footnotes are to be moved to the ENTRY-
TITLE or ENTRYFOOTNOTE statements without the outer quotation marks. With OP-
TIONS=NOQUOTES, you can specify options in the titles or footnotes in addition to the text.
However, you must ensure that you quote the text that provides the actual title or footnote.

The following is an example of an ordinary footnote:

footnote "My Footer";

With this FOOTNOTE statement and without OPTIONS=NOQUOTES, the macro creates the
following ENTRYFOOTNOTE statement:

entryfootnote "My Footer";

The following footnotes are used with OPTIONS=NOQUOTES:

footnote 'halign=left "My Footer"';
footnote2 '"My Second Footer"';

With these FOOTNOTE statements and OPTIONS=NOQUOTES, the macro creates the following
ENTRYFOOTNOTE statements:

entryfootnote halign=left "My Footer";
entryfootnote "My Second Footer";

REPLACE
replaces the unconditionally added entry titles and entry footnotes in the templates (those that
are not part of IF or ELSE statements) with the system titles and footnotes. The system titles
and footnotes are those that are specified in the TITLE or FOOTNOTE statements. You can
instead use the TITLES=SAS-data-set option to specify titles and footnotes with a data set. If
OPTIONS=REPLACE is specified, then OPTIONS=TITLES is ignored.

SOURCE
displays the generated source code. By default, the template source code is not displayed.

TITLES
displays the system titles and footnotes with the graphs. The system titles and footnotes are
those that are specified in the TITLE or FOOTNOTE statements. You can instead use the
TITLES=SAS-data-set option to specify titles and footnotes with a data set. If you also specify
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OPTIONS=FIRST, the system titles and footnotes are inserted before the previously existing
entry titles and entry footnotes in the templates. Otherwise, they are inserted at the end.

You can specify OPTIONS=TITLES or OPTIONS=REPLACE, or insert BY lines, or do both. If
you do both, and you do not like where the BY line is inserted relative to your titles and footnotes,
just specify OPTIONS=NOQUOTES and _ByLine0 to place the BY line wherever you choose. The
following TITLE statements illustrate:

title1 '"My First Title"';
title2 '_byline0';
title3 '"My Last Title"';

Also, you can embed BY information in a title or a footnote, again with OPTIONS=NOQUOTES. For
example:

title '"Spline Fit By Sex, " _byline0';

When _ByLine0 is specified in any of the titles or footnotes, then the usual BY line is not added.

The following example removes all titles and footnotes:

footnote;
title;
%modtmplt(options=replace, template=Stat.Transreg.Graphics, steps=t)

STATEMENT=entry-statement-fragment
specifies the statement that contains the BY line that gets added to the template along with any statement
options. The default is Statement=EntryFootNote halign=left TextAttrs=GraphValueText.
Other examples include:

Statement=EntryTitle
Statement=EntryFootNote halign=left TextAttrs=GraphLabelText

STEPS=steps
specifies the macro steps to run. Case and white space are ignored. the macro modifies the templates
(when ‘T’ is specified), produces the graphs for each BY group (when ‘G’ is specified), and deletes
the modified templates (when ‘D’ is specified). The default is STEPS=TGD. You can instead have it
perform a subset of these three tasks by specifying a subset of terms in the STEPS= option.

When you use the %ModTmplt macro to add BY lines, you usually do not need to delete the templates
before you run your procedure again in the normal way. The template modification inserts the BY line
through a macro variable and an MVAR statement. When the macro variable _ByLine0 is undefined,
the ENTRYTITLE or ENTRYFOOTNOTE statement drops out as if it were not there at all.
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STMTOPTS1= n ADD | REPLACE | DELETE | BEFORE | AFTER statement-name < options >

STMTOPTS2= n ADD | REPLACE | DELETE | BEFORE | AFTER statement-name < options >

STMTOPTS3= n ADD | REPLACE | DELETE | BEFORE | AFTER statement-name < options >

STMTOPTS4= n ADD | REPLACE | DELETE | BEFORE | AFTER statement-name < options >

STMTOPTS5= n ADD | REPLACE | DELETE | BEFORE | AFTER statement-name < options >

STMTOPTS6= n ADD | REPLACE | DELETE | BEFORE | AFTER statement-name < options >

STMTOPTS7= n ADD | REPLACE | DELETE | BEFORE | AFTER statement-name < options >

STMTOPTS8= n ADD | REPLACE | DELETE | BEFORE | AFTER statement-name < options >

STMTOPTS9= n ADD | REPLACE | DELETE | BEFORE | AFTER statement-name < options >

STMTOPTS10= n ADD | REPLACE | DELETE | BEFORE | AFTER statement-name < options >
These ten options add or replace options in up to 10 selected statements. The following example
illustrates:

%modtmplt(template=Stat.glm.graphics.residualhistogram, steps=t,
stmtopts1=. add discretelegend autoalign=(topleft),
stmtopts2=1 add densityplot legendlabel='Normal Density',
stmtopts3=2 add densityplot legendlabel='Kernel Density',
stmtopts4=1 add overlay yaxisopts=(griddisplay=on)

yaxisopts=(label='Normal and Kernel Density'))

proc glm plots=diagnostics(unpack) data=sashelp.class;
model weight = height;

run;

%modtmplt(template=Stat.glm.graphics.residualhistogram, steps=d)

These options require you to specify a series of values. The first value is the statement number (or
missing to modify options on all statements that match the statement name). The second value is:
ADD, REPLACE, DELETE, BEFORE, or AFTER. When the second value is ADD or REPLACE,
it controls whether you add new options or replace existing options. Alternatively, the second value
can be BEFORE or AFTER to add a new statement before or after the named statement. When the
value is DELETE, the corresponding statement is deleted. The third value is a statement name. All
remaining options are options for the statement named by the third value (with ADD and REPLACE)
or for a new statement (with BEFORE and AFTER). In the STMTOPTS1= example, an option is
added to all DISCRETELEGEND statements. In the STMTOPTS2= example, an option is added to
the first DensityPlot statement. In the STMTOPTS4= example, an option is added to the LAYOUT
OVERLAY statement. In most cases, the statement name is the first name that begins the statement.
The LAYOUT statement is an exception. In the case of layouts, specify the second name (OVERLAY,
GRIDDED, LATTICE, and so on) for the third value. Note that a statement such as if (expression)

EntryTitle...; is an IF statement not an ENTRYTITLE statement.

If an option is specified multiple times on a GTL statement, the last specification overrides previous
specifications. Hence, you do not need to know and respecify all of the options. You can just add
an option to the end, and it overrides the previous value. You can use these options only to modify
statements that contain a slash, and only to modify the options that come after the slash. Note that in
STMTOPTS4=, the YAXISOPTS= option is specified twice. It could have been equivalently specified
once as follows:
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yaxisopts=(griddisplay=on label='Normal and Kernel Density'))

The actual specification adds the GRIDDISPLAY=ON to the Y axis options (which by default has only
a label specification). The old label is unchanged until the LABEL= option in the second YAXISOPTS=
specification overrides it. In other words, YAXISOPTS=(GRIDDISPLAY=ON) augments the old
YAXISOPTS= option; it does not replace it.

The following steps delete the legend and instead provide a footnote:

%modtmplt(template=Stat.glm.graphics.residualhistogram, steps=t,
stmtopts1=. delete discretelegend,
stmtopts2=1 after begingraph entryfootnote

textattrs=GraphLabelText(color=cx445694) 'Normal '
textattrs=GraphLabelText(color=cxA23A2E) 'Kernel')

proc glm plots=diagnostics(unpack) data=sashelp.class;
model weight = height;

run;

%modtmplt(template=Stat.glm.graphics.residualhistogram, steps=d)

TEMPLATE=SAS-template
specifies the name of the template to modify. You can specify just the first few levels to modify
a series of templates. For example, to modify all of PROC REG’s graph templates, specify TEM-
PLATE=Stat.Reg.Graphics. This option is required.

TITLES=SAS-data-set
specifies a data set that contains titles or footnotes or both. By default, when the system titles or
footnotes are used (when OPTIONS=TITLES or OPTIONS=REPLACE is specified), PROC SQL is
used to determine the titles and footnotes. You can instead create this data set yourself so that you can
set the graph titles independently from the system titles and footnotes. The data set must contain two
variables: Type (Type=‘T’ for titles and Type=‘F’ for footnotes), and Text, which contains the titles and
footnotes. Other variables are ignored. Specify the titles and footnotes in the order in which you want
them to appear.

TITLEOPTS=entry-statement-options
specifies the options for system titles and footnotes. For example, you can specify the HALIGN= and
TEXTATTRS= options as in the STATEMENT= option. By default, no title options are used. With
OPTIONS=NOQUOTES, you can specify options individually.
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Examples of ODS Graphics Template Modification

Example 22.1: Customizing Graphs Through Template Changes
This example shows how to use PROC TEMPLATE to customize the appearance and content of an ODS
graph. It is divided into several parts; each part illustrates a different aspect of the template that you can easily
change. You are never required to change a template, but you can if you want to change aspects of the plot.

Modifying Graph Titles and Axis Labels

This section illustrates the discussion in the section “Graph Templates” on page 712 in the context of changing
the default title and Y-axis label for a Q-Q plot created with PROC ROBUSTREG. The data set Stack is
created by the following statements:

data stack;
input x1 x2 x3 y @@;
datalines;

80 27 89 42 80 27 88 37 75 25 90 37
62 24 87 28 62 22 87 18 62 23 87 18

... more lines ...

;

The following statements request a Q-Q plot for robust residuals created by PROC ROBUSTREG:

ods trace on;
ods graphics on;

proc robustreg data=stack plots=qqplot;
ods select QQPlot;
model y = x1 x2 x3;

run;

ods trace off;

The Q-Q plot is shown in Output 22.1.1.
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Output 22.1.1 Default Q-Q Plot from PROC ROBUSTREG

The ODS TRACE ON statement requests a record of all the ODS output objects created by PROC ROBUS-
TREG. The trace output is as follows:

Output Added:
-------------
Name: QQPlot
Label: Residual Q-Q Plot
Template: Stat.Robustreg.Graphics.QQPlot
Path: Robustreg.DiagnosticPlots.QQPlot
-------------

ODS Graphics creates the Q-Q plot from an ODS data object named QQPlot and a graph template named
Stat.Robustreg.Graphics.QQPlot, which is the default template provided by SAS. Default templates
supplied by SAS are saved in the Sashelp.Tmplmst template store (see the section “Graph Templates” on
page 712).

To display the default template definition, open the Templates window by typing odstemplates (or odst for
short) in the command line. Expand Sashelp.Tmplmst and click the Stat folder. Output 22.1.2 shows the
contents of the Stat folder.
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Output 22.1.2 The Template Window

Next, open the Robustreg folder and then open the Graphics folder. Then right-click the QQPlot template
icon and select Open. This opens the Template Browser window shown in Output 22.1.3. You can copy this
template to an editor to edit it.

Output 22.1.3 Default Template Definition for Q-Q Plot
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Alternatively, you can submit the following statements to display the QQPlot template definition in the SAS
log:

proc template;
source Stat.Robustreg.Graphics.QQPlot;

run;

The SOURCE statement specifies the fully qualified template name. You can copy and paste the template
source into the Program Editor and modify it. The template, with a PROC TEMPLATE and RUN statement
added, is shown next:

proc template;
define statgraph Stat.Robustreg.Graphics.QQPlot;

notes "Q-Q Plot for Standardized Robust Residuals";
dynamic _DEPLABEL Residual;
BeginGraph;

ENTRYTITLE "Q-Q Plot of Residuals for " _DEPLABEL;
layout Overlay / yaxisopts=(label="Standardized Robust Residual")

xaxisopts=(label="Quantile");
SCATTERPLOT y=eval (SORT(DROPMISSING(RESIDUAL))) x=eval (

PROBIT((NUMERATE(SORT(DROPMISSING(RESIDUAL))) -0.375)/(0.25
+ N(RESIDUAL)))) / primary=true markerattrs=GRAPHDATADEFAULT
rolename=(q=eval (
PROBIT((NUMERATE(SORT(DROPMISSING(RESIDUAL))) -0.375)/(0.25
+ N(RESIDUAL)))) s=eval (SORT(DROPMISSING(RESIDUAL))))
tip=(q s) tiplabel=(q="Quantile" s="Residual");

lineparm slope=eval (STDDEV(RESIDUAL)) Y=eval (MEAN(RESIDUAL))
X=0 / lineattrs=GRAPHREFERENCE extend=true;

EndLayout;
EndGraph;

end;
run;

In the template, the default title of the Q-Q plot is specified by the ENTRYTITLE statement. The variable
_DepLabel is a dynamic variable that provides the name of the dependent variable in the regression analysis.
In this case, the name is y. In this template, the label for the axes are specified by the LABEL= suboption of
the YAXISOPTS= option for the LAYOUT OVERLAY statement. In other templates, the axis labels come
from the column labels of the X-axis and Y-axis columns of the data object. You can see these labels by
specifying ODS OUTPUT with the plot data object and running PROC CONTENTS with the resulting SAS
data set.

Suppose you want to change the default title to “Analysis of Residuals”, and you want the Y-axis label to
display the name of the dependent variable. First, replace the ENTRYTITLE statement with the following
statement:

entrytitle "Analysis of Residuals";

Next, replace the LABEL= suboption with the following:

label=("Standardized Robust Residual for " _DEPLABEL)

You can use dynamic text variables such as _DepLabel in any text element.
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You can then submit the modified template definition as you would any SAS program, for example, by
selecting Submit from the Run menu. After submitting the PROC TEMPLATE statements, you should see
the following message in the SAS log:

NOTE: STATGRAPH 'Stat.Robustreg.Graphics.QQPlot' has been
saved to: SASUSER.TEMPLAT

For more information about graph templates and the graph template language, see the section “Graph
Templates” on page 712.

Finally, resubmit the PROC ROBUSTREG statements to display the Q-Q plot created with your modified
template. The following statements create Output 22.1.4:

proc template;
define statgraph Stat.Robustreg.Graphics.QQPlot;

notes "Q-Q Plot for Standardized Robust Residuals";
dynamic _DEPLABEL Residual;
BeginGraph;

entrytitle "Analysis of Residuals";
layout Overlay /

yaxisopts=(label=("Standardized Robust Residual for " _DEPLABEL))
xaxisopts=(label="Quantile");
SCATTERPLOT y=eval (SORT(DROPMISSING(RESIDUAL))) x=eval (

PROBIT((NUMERATE(SORT(DROPMISSING(RESIDUAL))) -0.375)/(0.25
+ N(RESIDUAL)))) / primary=true markerattrs=GRAPHDATADEFAULT
rolename=(q=eval (
PROBIT((NUMERATE(SORT(DROPMISSING(RESIDUAL))) -0.375)/(0.25
+ N(RESIDUAL)))) s=eval (SORT(DROPMISSING(RESIDUAL))))
tip=(q s) tiplabel=(q="Quantile" s="Residual");

lineparm slope=eval (STDDEV(RESIDUAL)) Y=eval (MEAN(RESIDUAL))
X=0 / lineattrs=GRAPHREFERENCE extend=true;

EndLayout;
EndGraph;

end;
run;

proc robustreg data=stack plots=qqplot;
ods select QQPlot;
model y = x1 x2 x3;

run;
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Output 22.1.4 Q-Q Plot with Modified Title and Y-Axis Label

If you have not changed the default template search path, the modified template QQPlot is used automatically
because Sasuser.Templat occurs before Sashelp.Tmplmst in the ODS search path. See the sections “Saving
Customized Templates” on page 721, “Using Customized Templates” on page 721, and “Reverting to the
Default Templates” on page 722 for more information about the template search path and the ODS PATH
statement.

You do not need to rerun the PROC ROBUSTREG analysis after you modify a graph template if you
have stored the plot in an ODS document. After you modify your template, you can submit the PROC
DOCUMENT statements in Example 21.4 in Chapter 21, “Statistical Graphics Using ODS,” to replay the
Q-Q plot with the modified template. You can run the following statements to revert to the default template:

proc template;
delete Stat.Robustreg.Graphics.QQPlot / store=sasuser.templat;

run;

Modifying Colors, Line Styles, and Markers

This section shows you how to customize colors, line attributes, and marker symbol attributes by modifying a
graph template. In the QQPlot template definition shown in Output 22.1.3, the SCATTERPLOT statement
specifies a scatter plot of normal quantiles versus ordered standardized residuals. The attributes of the
marker symbol in the scatter plot are specified by: MarkerAttrs=GraphDataDefault. This is a reference
to the style element GraphDataDefault. See the section “Style Elements and Attributes” on page 644 in
Chapter 21, “Statistical Graphics Using ODS,” for more information.

The actual value of the marker symbol depends on the style that you are using. In this case,
since the HTMLBLUE style is used, the marker symbol is a circle. You can specify a filled cir-
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cle as the marker symbol by overriding the symbol portion of the style specification as follows:
MarkerAttrs=GraphDataDefault(symbol=CircleFilled).

The value of the SYMBOL= option can be any valid marker symbol or a reference to a style attribute of the
form style-element:attribute. It is recommended that you use style attributes because they are chosen
to provide consistency and appropriate emphasis based on display principles for statistical graphics. If you
specify values directly in a template, you are overriding the style and you run the risk of creating a graph
that is inconsistent with the style template. For more information about the syntax of the Graph Template
Language and style elements for graphics, see the SAS Graph Template Language: Reference and the SAS
Output Delivery System: User’s Guide.

Similarly, you can change the line color and pattern with the LINEATTRS= option in the LINEPARM
statement. The LINEPARM statement displays a straight line specified by slope and intercept parameters.
The following option changes the color of the line to red and the line pattern to dashed, by overriding those
aspects of the style specification: LineAttrs=GraphReference(color=red pattern=dash). To see the
results, submit the modified template definition and the PROC ROBUSTREG statements as follows to create
Output 22.1.5:

proc template;
define statgraph Stat.Robustreg.Graphics.QQPlot;

notes "Q-Q Plot for Standardized Robust Residuals";
dynamic _DEPLABEL Residual;
BeginGraph;

entrytitle "Analysis of Residuals";
layout Overlay /

yaxisopts=(label=("Standardized Robust Residual for " _DEPLABEL))
xaxisopts=(label="Quantile");
SCATTERPLOT y=eval (SORT(DROPMISSING(RESIDUAL))) x=eval(

PROBIT((NUMERATE(SORT(DROPMISSING(RESIDUAL))) -0.375)/(0.25
+ N(RESIDUAL)))) / primary=true
markerattrs=GraphDataDefault(symbol=CircleFilled)
rolename=(q=eval (
PROBIT((NUMERATE(SORT(DROPMISSING(RESIDUAL))) -0.375)/(0.25
+ N(RESIDUAL)))) s=eval (SORT(DROPMISSING(RESIDUAL))))
tip=(q s) tiplabel=(q="Quantile" s="Residual");

lineparm slope=eval (STDDEV(RESIDUAL)) Y=eval (MEAN(RESIDUAL))
X=0 / lineattrs=GraphReference(color=red pattern=dash)

extend=true;
EndLayout;

EndGraph;
end;

run;

ods graphics on;

proc robustreg data=stack plots=qqplot;
ods select QQPlot;
model y = x1 x2 x3;

run;
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Output 22.1.5 Q-Q Plot with Modified Marker Symbols and Line

Alternatively, you can replay the plot with PROC DOCUMENT, as in Example 21.4 in Chapter 21, “Statistical
Graphics Using ODS.”
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Modifying Tick Marks and Grid Lines

This section illustrates how to modify axis tick marks and control grid lines. For example, you can specify
the following statement to request tick marks ranging from –4 to 2 in the Y-axis:

layout Overlay / yaxisopts=(linearopts=(tickvaluelist=(-4 -3 -2 -1 0 1 2)));

The LINEAROPTS= option is used for standard linearly scaled axes (as opposed to log-scaled axes). You
use the TICKVALUELIST= to specify the tick marks.

You can control the grid lines by using the GRIDDISPLAY= suboption in the YAXISOPTS= option. Typically,
you specify either GRIDDISPLAY=AUTO_OFF (grid lines are not displayed unless the GraphGridLines
element in the current style contains DisplayOpts="ON") or GRIDDISPLAY=AUTO_ON (grid lines are
displayed unless the GraphGridLines element in the current style contains DisplayOpts="OFF"). Here,
the template is modified by specifying GRIDDISPLAY=AUTO_ON for both axes. The following statements
produce Output 22.1.6:

proc template;
define statgraph Stat.Robustreg.Graphics.QQPlot;

notes "Q-Q Plot for Standardized Robust Residuals";
dynamic _DEPLABEL Residual;
BeginGraph;

entrytitle "Analysis of Residuals";
layout Overlay / yaxisopts=(gridDisplay=Auto_On

linearopts=(tickvaluelist=(-4 -3 -2 -1 0 1 2))
label=("Standardized Robust Residual for " _DEPLABEL))
xaxisopts=(gridDisplay=Auto_On label="Quantile");
SCATTERPLOT y=eval (SORT(DROPMISSING(RESIDUAL))) x=eval(

PROBIT((NUMERATE(SORT(DROPMISSING(RESIDUAL))) -0.375)/(0.25
+ N(RESIDUAL)))) / primary=true
markerattrs=GraphDataDefault(symbol=CircleFilled)
rolename=(q=eval (
PROBIT((NUMERATE(SORT(DROPMISSING(RESIDUAL))) -0.375)/(0.25
+ N(RESIDUAL)))) s=eval (SORT(DROPMISSING(RESIDUAL))))
tip=(q s) tiplabel=(q="Quantile" s="Residual");

lineparm slope=eval (STDDEV(RESIDUAL)) Y=eval (MEAN(RESIDUAL))
X=0 / lineattrs=GraphReference(color=red pattern=dash)

extend=true;
EndLayout;

EndGraph;
end;

run;

ods graphics on;

proc robustreg data=stack plots=qqplot;
ods select QQPlot;
model y = x1 x2 x3;

run;
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Output 22.1.6 Q-Q Plot with Modified Y-Axis Tick Marks and Grids

You can restore the default template by running the following step:

proc template;
delete Stat.Robustreg.Graphics.QQPlot / store=sasuser.templat;

run;

See the section “Modifying the Style to Show Grid Lines” on page 737 for more information about grid lines.

Modifying the Style to Show Grid Lines

The section “Modifying Tick Marks and Grid Lines” on page 736 explains that grid lines in graphs are
controlled both by template options and by the style. Some graphs never display grid lines because they
would interfere with the display. Some graphs always display grid lines because they are a critical part of
the display. In both cases, grid control is so important that the template writer is not willing to give control
to the style. If you want to change the grid display setting for these graphs, you must edit their templates.
Most templates, however, let the style control the grid lines. They either do not display grid lines unless
the style forces them on, or they display grid lines unless the style forces them off. The HTMLBLUE,
STATISTICAL, DEFAULT, and most other styles use the setting DisplayOpts = "Auto". Then templates
that specify GRIDDISPLAY=AUTO_OFF (the default) do not display grid lines, and templates that specify
GRIDDISPLAY=AUTO_ON do display grid lines. You can easily make a new style with DisplayOpts

= "On" or DisplayOpts = "Off" if you would prefer to see grid lines more or less often. This example
shows how to set DisplayOpts = "On".

First, you need to find the style source for setting grid lines. The following step displays the HTMLBLUE
style and its parent styles, STATISTICAL and DEFAULT:
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proc template;
source Styles.HTMLBlue;
source Styles.Statistical;
source Styles.Default;

run;

The advantage of displaying all three styles together is that you can do one search of the results. If grids are
defined in the HTMLBLUE style, you will find that first. Otherwise, you will first find the definition in one
of the parent styles. An abridged version of the results follows:

. . .
class GraphGridLines /

displayopts = "auto"
linethickness = 1px
linestyle = 1
contrastcolor = GraphColors('ggrid')
color = GraphColors('ggrid');

. . .

You can use this to create a new style that inherits from the HTMLBLUE style, but sets the display options
for grids to ON, as in the following example:

proc template;
define style Styles.MyGrids;

parent=styles.HTMLBlue;
class GraphGridLines /

displayopts = "on"
linethickness = 1px
linestyle = 1
contrastcolor = GraphColors('ggrid')
color = GraphColors('ggrid');

end;
run;
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You can use this new style as in the following example:

ods graphics on;
ods listing style=mygrids;

proc robustreg data=stack plots=qqplot;
ods select QQPlot;
model y = x1 x2 x3;

run;

The preceding statements produce Output 22.1.7, which shows the Q-Q plot with grid lines displayed.
The default graph template, supplied by SAS, is used because the custom template created in the section
“Modifying Tick Marks and Grid Lines” on page 736 is deleted at the end of that section.

Output 22.1.7 A Style that Makes Grid Lines the Typical Default
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Example 22.2: Adding Equations and Special Characters to Fit Plots
This example shows how to run the REG and TRANSREG procedures to get fit plots. The R square, mean,
and equation for the regression model are output to data sets, and the results are processed and then displayed
in subsequent fit plots. This example also illustrates Unicode and how to add special characters to graphs (for
example, O� and R2). The Unicode Consortium http://unicode.org/ provides a list of character codes
at http://www.unicode.org/charts/charindex.html.

Simple Linear Regression

The following step runs PROC REG to fit a simple regression model and creates Output 22.2.2 and Out-
put 22.2.1:

ods graphics on;
ods trace on;

proc reg data=sashelp.class;
model weight = height;

run;

Output 22.2.1 PROC REG Output

The REG Procedure
Model: MODEL1

Dependent Variable: Weight

The REG Procedure
Model: MODEL1

Dependent Variable: Weight

Number of Observations Read 19

Number of Observations Used 19

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 1 7193.24912 7193.24912 57.08 <.0001

Error 17 2142.48772 126.02869

Corrected Total 18 9335.73684

Root MSE 11.22625 R-Square 0.7705

Dependent Mean 100.02632 Adj R-Sq 0.7570

Coeff Var 11.22330

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 -143.02692 32.27459 -4.43 0.0004

Height 1 3.89903 0.51609 7.55 <.0001

http://unicode.org/
http://www.unicode.org/charts/charindex.html
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Output 22.2.2 PROC REG Fit Plot

The fit statistics table following the “Analysis of Variance” table displays the R square and the mean. The last
table displays the parameter estimates. This information is produced and processed for inclusion in the fit
plot as follows:

proc reg data=sashelp.class;
ods output fitstatistics=fs ParameterEstimates=c;
model weight = height;

run;

data _null_;
set fs;
if _n_ = 1 then call symputx('R2' , put(nvalue2, 4.2) , 'G');
if _n_ = 2 then call symputx('mean', put(nvalue1, best6.), 'G');

run;
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data _null_;
set c;
length s $ 200;
retain s ' ';
if _n_ = 1 then

s = trim(dependent) || ' = ' || /* dependent = */
put(estimate, best5. -L); /* intercept */

else if abs(estimate) > 1e-8 then do; /* skip zero coefficients */
s = trim(s) || ' ' || /* string so far */

scan('+ -', 1 + (estimate < 0), ' ') /* + (add) or - (subtract) */
|| ' ' ||
trim(put(abs(estimate), best5. -L)) /* abs(coefficient) */
|| ' ' || variable; /* variable name */

end; /* e for error added next */
call symputx('formula', trim(s) || ' + e', 'G');

run;

Two SAS data sets are made from the tabular output, and the R square, mean, and equation for the regression
model are stored in macro variables. The following step uses PROC SGPLOT with an INSET statement to
display the linear fit plot along with the R square, mean, and equation for the regression model:

proc sgplot data=sashelp.class;
title 'Simple Linear Regression';
inset "&formula"

"R(*ESC*){sup '2'} = &r2"
"(*ESC*){unicode mu}(*ESC*){unicode hat} = &mean" / position=topleft;

reg y=weight x=height / clm cli;
run;

The results are displayed in Output 22.2.3.

Each separate string in the INSET statement is displayed in a separate line. The first string is the formula,
which is generated in the second DATA step. The next string is the R square, and it consists of an ‘R’, an
escaped superscript 2, and the value of R square (which is stored in a macro variable). The string for the
mean consists of two Unicode specifications, one for the Greek letter �, and one to put a hat over it. These
special character specifications appear in quotes and are escaped with (*ESC*) so that they are processed as
special characters rather than as literal text. Typically, you must escape special characters in quotes, and not
escape them when they are not in quotes. See the section “Unicode and Special Characters” on page 748 for
a list of a few of the more commonly used Unicode characters.
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Output 22.2.3 Fit Plot from PROC SGPLOT with Equation

The same information can be added to the graph that PROC REG produces by adding the following statements
to the PROC REG template for a fit plot:

mvar formula;

layout gridded / autoalign=(topleft topright bottomleft
bottomright);

entry halign=left formula;
entry halign=left "R"{sup '2'} " = " eval(put(_rsquare, 4.2));
entry halign=left "(*ESC*){unicode mu}(*ESC*){unicode hat} = "

eval(put(_depmean, best6.))
/ textattrs=GraphValueText

(family=GraphUnicodeText:FontFamily);
endlayout;

The MVAR statement names macro variables whose values are added to the graph. The MVAR statement is
added to the PROC REG fit plot template near the top. The LAYOUT GRIDDED block creates a table that
consists of the equation, R square, and mean. The LAYOUT GRIDDED block is added to the PROC REG fit
plot template inside the LAYOUT OVERLAY. The option autoalign=(topleft topright bottomleft

bottomright) is used to position the table in a part of the graph that is open, first trying the top left corner.

In this example, in the LAYOUT GRIDDED block, two dynamic variables for R square, and the mean are used
instead of the macro variables that were made in previous steps. The origin of the names of the two dynamic
variables that are used in this example are revealed in the next step when the source code for the PROC REG
fit plot is displayed. The first ENTRY statement creates a text line for the formula and left-justifies it. The
second ENTRY statement creates the R square line. It consists of a literal ‘R’, a specification for a superscript
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of 2 (fsup 2g), an equal sign surrounded by spaces, and the formatted value of the dynamic variable with the
R square. The third ENTRY statement creates the mean line. It consists of two Unicode specifications, one
for the Greek letter �, and one to put a hat over it. These special character specifications appear in quotes
(unlike the fsup 2g) and are escaped with (*ESC*) so that they are processed as special characters rather
than as literal text. Typically, you must escape special characters in quotes, and not escape them when they
are not in quotes. Note that sup along with sub (subscript) must not appear in quotes in the GTL, but they can
appear in quotes in PROC SGPLOT (as was previously shown). The option textattrs=GraphValueText

(family=GraphUnicodeText:FontFamily) is specified to ensure that a font that recognizes Unicode
characters is used. See the section “Unicode and Special Characters” on page 748 for a list of a few of the
more commonly used Unicode characters.

You can use the trace information from the PROC REG step (not shown) and the following step to display
the template for the fit plot:

proc template;
source Stat.Reg.Graphics.Fit;

run;

Some of the results are as follows:

define statgraph Stat.Reg.Graphics.Fit;
notes "Fit Plot";
dynamic _DEPLABEL _DEPNAME _MODELLABEL _SHOWSTATS _NSTATSCOLS _SHOWNObs

_SHOWTOTFREQ _SHOWNParm _SHOWEDF _SHOWMSE _SHOWRSquare _SHOWAdjRSq
_SHOWSSE _SHOWDepMean _SHOWCV _SHOWAIC _SHOWBIC _SHOWCP _SHOWGMSEP
_SHOWJP _SHOWPC _SHOWSBC _SHOWSP _NObs _NParm _EDF _MSE _RSquare
_AdjRSq _SSE _DepMean _CV _AIC _BIC _CP _GMSEP _JP _PC _SBC _SP
_PREDLIMITS _CONFLIMITS _XVAR _SHOWCLM _SHOWCLI _WEIGHT _SHORTXLABEL
_SHORTYLABEL _TITLE _TOTFreq;

BeginGraph;
entrytitle halign=left textattrs=GRAPHVALUETEXT _MODELLABEL

halign=center textattrs=GRAPHTITLETEXT _TITLE " for " _DEPNAME;
layout Overlay / yaxisopts=(label=_DEPLABEL shortlabel=_SHORTYLABEL)

xaxisopts=(shortlabel=_SHORTXLABEL);
.
.
.
if (_SHOWRSQUARE^=0)

entry halign=left "R-Square" / valign=top;
entry halign=right eval (PUT(_RSQUARE,BEST6.)) / valign=top;

endif;
.
.
.
if (_SHOWDEPMEAN^=0)

entry halign=left "Dependent Mean" / valign=top;
entry halign=right eval (PUT(_DEPMEAN,BEST6.)) / valign=top;

endif;
.
.
.

endif;
endlayout;

EndGraph;
end;
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The preceding results show that the dynamic variables _RSquare and _DepMean contain the R square and
the mean of the dependent variable. The MVAR statement and the LAYOUT GRIDDED block can be added
to the template, and in the interest of maximizing graph size, the table of statistics can be removed, creating
the following template:

proc template;
define statgraph Stat.Reg.Graphics.Fit;

notes "Fit Plot";
mvar formula;
dynamic _DEPLABEL _DEPNAME _MODELLABEL _SHOWSTATS _NSTATSCOLS _SHOWNObs

_SHOWTOTFREQ _SHOWNParm _SHOWEDF _SHOWMSE _SHOWRSquare _SHOWAdjRSq
_SHOWSSE _SHOWDepMean _SHOWCV _SHOWAIC _SHOWBIC _SHOWCP _SHOWGMSEP
_SHOWJP _SHOWPC _SHOWSBC _SHOWSP _NObs _NParm _EDF _MSE _RSquare
_AdjRSq _SSE _DepMean _CV _AIC _BIC _CP _GMSEP _JP _PC _SBC _SP
_PREDLIMITS _CONFLIMITS _XVAR _SHOWCLM _SHOWCLI _WEIGHT _SHORTXLABEL
_SHORTYLABEL _TITLE _TOTFreq;

BeginGraph;
entrytitle halign=left textattrs=GRAPHVALUETEXT _MODELLABEL

halign=center textattrs=GRAPHTITLETEXT _TITLE " for " _DEPNAME;
layout Overlay / yaxisopts=(label=_DEPLABEL shortlabel=_SHORTYLABEL)

xaxisopts=(shortlabel=_SHORTXLABEL);
if (_SHOWCLM=1)

BANDPLOT limitupper=UPPERCLMEAN limitlower=LOWERCLMEAN x=_XVAR /
fillattrs=GRAPHCONFIDENCE connectorder=axis name="Confidence"
LegendLabel=_CONFLIMITS;

endif;
layout gridded / autoalign=(topleft topright bottomleft

bottomright);
entry halign=left formula;
entry halign=left "R"{sup '2'} " = " eval(put(_rsquare, 4.2));
entry halign=left "(*ESC*){unicode mu}(*ESC*){unicode hat} = "

eval(put(_depmean, best6.))
/ textattrs=GraphValueText

(family=GraphUnicodeText:FontFamily);
endlayout;

if (_SHOWCLI=1)
if (_WEIGHT=1)

SCATTERPLOT y=PREDICTEDVALUE x=_XVAR / markerattrs=(size=0)
datatransparency=.6 yerrorupper=UPPERCL yerrorlower=LOWERCL
name="Prediction" LegendLabel=_PREDLIMITS;

else
BANDPLOT limitupper=UPPERCL limitlower=LOWERCL x=_XVAR /

display=(outline) outlineattrs=GRAPHPREDICTIONLIMITS
connectorder=axis name="Prediction"
LegendLabel=_PREDLIMITS;

endif;
endif;
SCATTERPLOT y=DEPVAR x=_XVAR / markerattrs=GRAPHDATADEFAULT primary=

true rolename=(_tip1=OBSERVATION _id1=ID1 _id2=ID2 _id3=ID3 _id4=
ID4 _id5=ID5) tip=(y x _tip1 _id1 _id2 _id3 _id4 _id5);

SERIESPLOT y=PREDICTEDVALUE x=_XVAR / lineattrs=GRAPHFIT
connectorder=xaxis name="Fit" LegendLabel="Fit";

if (_SHOWCLI=1 OR _SHOWCLM=1)
DISCRETELEGEND "Fit" "Confidence" "Prediction" / across=3 HALIGN=

CENTER VALIGN=BOTTOM;
endif;

endlayout;



746 F Chapter 22: ODS Graphics Template Modification

EndGraph;
end;

run;

The following step uses the modified template to create Output 22.2.4:

proc reg data=sashelp.class;
model weight = height;

run;

Output 22.2.4 PROC REG Fit Plot with the Equation

You can restore the default template by running the following step:

proc template;
delete Stat.Reg.Graphics.Fit / store=sasuser.templat;

run;

Cubic Fit Function

The following steps run PROC TRANSREG to find a cubic fit function and display the equation in a plot
generated by PROC SGPLOT:

proc transreg data=sashelp.class ss2;
ods output fitstatistics=fs coef=c;
model identity(weight) = pspline(height);

run;

data _null_;
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set fs;
if _n_ = 1 then call symputx('R2' , put(value2, 4.2) , 'G');
if _n_ = 2 then call symputx('mean', put(value1, best6.), 'G');

run;

data _null_;
set c end=eof;
length s $ 200 c $ 1;
retain s ' ';
if _n_ = 1 then

s = scan(dependent, 2, '()') || ' = ' || /* dependent = */
put(coefficient, best5. -L); /* intercept */

else if abs(coefficient) > 1e-8 then do; /* skip zero coefficients */
s = trim(s) || ' ' || /* string so far */

scan('+ -', 1 + (coefficient < 0), ' ') /* + (add) or - (subtract) */
|| ' ' ||
trim(put(abs(coefficient), best5. -L )) /* abs(coefficient) */
|| ' ' || scan(variable, 2, '._'); /* variable name */

c = scan(variable, 2, '_'); /* grab power */
if c ne '1' then /* skip power for linear */

s = trim(s) || /* string so far */
"(*ESC*){sup '" || c || "'}"; /* add superscript */

end; /* e for error added next */
if eof then call symputx('formula', trim(s) || ' + e', 'G');

run;

proc sgplot data=sashelp.class;
title 'Cubic Fit Function';
inset "&formula"

"R(*ESC*){sup '2'} = &r2"
"(*ESC*){unicode mu}(*ESC*){unicode hat} = &mean" / position=topleft;

reg y=weight x=height / degree=3 cli clm;
run;

These steps create Output 22.2.5.

The PROC TRANSREG MODEL statement fits a model with an untransformed dependent variable and a
cubic polynomial function of the independent variable. By default, PSPLINE fits a cubic polynomial spline
with no knots, which is simply a cubic polynomial. The fit statistics and parameter estimates are output to data
sets, and their values are stored in macro variables. There are three independent variables plus the intercept.
Variable names and exponents are extracted from the TRANSREG parameter names of Pspline.Height_1,
Pspline.Height_2, and Pspline.Height_3 by using the SCAN function. Exponents are added by using the
specifications "(*ESC*)fsup ’2’g" and "(*ESC*)fsup ’3’g", which are explained in more detail with
the INSET statement.

PROC SGPLOT with an INSET statement makes the plot. Each separate string is displayed in a separate
line. The first string is the formula, which is generated in the second DATA step. The next string is the
R square: it consists of an ‘R’, an escaped superscript 2, and the value of R square (which is stored in a
macro variable). The string for the mean consists of two Unicode specifications, one for the Greek letter
�, and one to put a hat over it. These special character specifications appear in quotes and are escaped
with (*ESC*) so that they are processed as special characters rather than as literal text. Typically, you
must escape special characters in quotes, and not escape them when they are not in quotes. See section
“Simple Linear Regression” on page 740 for more information about Unicode characters. See the section
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“Unicode and Special Characters” on page 748 for a list of a few of the more commonly used Unicode
characters.

Output 22.2.5 Cubic Fit Function with the Equation

Unicode and Special Characters

The following steps illustrate Unicode specifications for a number of commonly used characters and create
Output 22.2.6 and Output 22.2.7, which are charts of Unicode characters:

%let l = halign=left;
proc template;

define statgraph class;
begingraph / designheight=550px designwidth=520px;

layout overlay / xaxisopts=(display=none) yaxisopts=(display=none);
layout gridded / columns=3 autoalign=(topleft);

entry &l textattrs=(weight=bold) 'Description';
entry &l textattrs=(weight=bold) 'Displayed';
entry &l textattrs=(weight=bold) "Unicode";
entry &l 'R Square';
entry &l 'R' {sup '2'};
entry &l "'R' {sup '2'}";
entry &l 'y hat sub i';
entry &l 'y' {unicode hat}{sub 'i'};
entry &l "'y' {unicode hat}{sub 'i'}";
entry &l 'less than or equal ';
entry &l 'a ' {unicode '2264'x} ' b';
entry &l "'a ' {unicode '2264'x} ' b'";



Example 22.2: Adding Equations and Special Characters to Fit Plots F 749

entry &l 'greater than or equal ';
entry &l 'b ' {unicode '2265'x} ' a';
entry &l "'b ' {unicode '2265'x} ' a'";
entry &l 'infinity';
entry &l {unicode '221e'x};
entry &l "{unicode '221e'x}";
entry &l 'almost equal';
entry &l 'a ' {unicode '2248'x} ' b';
entry &l "'a ' {unicode '2248'x} ' b'";
entry &l 'combining tilde';
entry &l 'El nin' {unicode tilde} 'o';
entry &l "'El nin' {unicode tilde} 'o'";
entry &l 'grave accent';
entry &l 'cre' {unicode '0300'x} 'me';
entry &l "'cre' {unicode '0300'x} 'me'";
entry &l 'circumflex, acute accent ';
entry &l 'bru' {unicode '0302'x} 'le' {unicode '0301'x} 'e';
entry &l "'bru' {unicode '0302'x} 'le' {unicode '0301'x} 'e'";
entry &l 'alpha';
entry &l {unicode alpha} ' ' {unicode alpha_u};
entry &l "{unicode alpha} ' ' {unicode alpha_u}";
entry &l 'beta';
entry &l {unicode beta} ' ' {unicode beta_u};
entry &l "{unicode beta} ' ' {unicode beta_u}";
entry &l 'gamma';
entry &l {unicode gamma} ' ' {unicode gamma_u};
entry &l "{unicode gamma} ' ' {unicode gamma_u}";
entry &l 'delta';
entry &l {unicode delta} ' ' {unicode delta_u};
entry &l "{unicode delta} ' ' {unicode delta_u}";
entry &l 'epsilon';
entry &l {unicode epsilon} ' ' {unicode epsilon_u};
entry &l "{unicode epsilon} ' ' {unicode epsilon_u}";
entry &l 'zeta';
entry &l {unicode zeta} ' ' {unicode zeta_u};
entry &l "{unicode zeta} ' ' {unicode zeta_u}";
entry &l 'eta';
entry &l {unicode eta} ' ' {unicode eta_u};
entry &l "{unicode eta} ' ' {unicode eta_u}";
entry &l 'theta';
entry &l {unicode theta} ' ' {unicode theta_u};
entry &l "{unicode theta} ' ' {unicode theta_u}";
entry &l 'iota';
entry &l {unicode iota} ' ' {unicode iota_u};
entry &l "{unicode iota} ' ' {unicode iota_u}";
entry &l 'kappa';
entry &l {unicode kappa} ' ' {unicode kappa_u};
entry &l "{unicode kappa} ' ' {unicode kappa_u}";
entry &l 'lambda';
entry &l {unicode lambda} ' ' {unicode lambda_u};
entry &l "{unicode lambda} ' ' {unicode lambda_u}";
entry &l 'mu';
entry &l {unicode mu} ' ' {unicode mu_u};
entry &l "{unicode mu} ' ' {unicode mu_u}";



750 F Chapter 22: ODS Graphics Template Modification

entry &l 'nu';
entry &l {unicode nu} ' ' {unicode nu_u};
entry &l "{unicode nu} ' ' {unicode nu_u}";
entry &l 'xi';
entry &l {unicode xi} ' ' {unicode xi_u};
entry &l "{unicode xi} ' ' {unicode xi_u}";
entry &l 'omicron';
entry &l {unicode omicron} ' ' {unicode omicron_u};
entry &l "{unicode omicron} ' ' {unicode omicron_u}";
entry &l 'pi';
entry &l {unicode pi} ' ' {unicode pi_u};
entry &l "{unicode pi} ' ' {unicode pi_u}";
entry &l 'rho';
entry &l {unicode rho} ' ' {unicode rho_u};
entry &l "{unicode rho} ' ' {unicode rho_u}";
entry &l 'sigma';
entry &l {unicode sigma} ' ' {unicode sigma_u};
entry &l "{unicode sigma} ' ' {unicode sigma_u}";
entry &l 'tau';
entry &l {unicode tau} ' ' {unicode tau_u};
entry &l "{unicode tau} ' ' {unicode tau_u}";
entry &l 'upsilon';
entry &l {unicode upsilon} ' ' {unicode upsilon_u};
entry &l "{unicode upsilon} ' ' {unicode upsilon_u}";
entry &l 'phi';
entry &l {unicode phi} ' ' {unicode phi_u};
entry &l "{unicode phi} ' ' {unicode phi_u}";
entry &l 'chi';
entry &l {unicode chi} ' ' {unicode chi_u};
entry &l "{unicode chi} ' ' {unicode chi_u}";
entry &l 'psi';
entry &l {unicode psi} ' ' {unicode psi_u};
entry &l "{unicode psi} ' ' {unicode psi_u}";
entry &l 'omega';
entry &l {unicode omega} ' ' {unicode omega_u};
entry &l "{unicode omega} ' ' {unicode omega_u}";

endlayout;
scatterplot y=weight x=height / markerattrs=(size=0);

endlayout;
endgraph;

end;
run;
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proc sgrender data=sashelp.class template=class;
run;

%macro m(u);
entry halign=left "(*ESC*){unicode &u.x} {unicode &u.x}" /

textattrs=GraphValueText (family=GraphUnicodeText:FontFamily);
%mend;

proc template;
define statgraph markers;

begingraph / designheight=510px designwidth=350px;
layout overlay / xaxisopts=(display=none) yaxisopts=(display=none);

layout gridded / columns=1 autoalign=(topright);
entry " ";
%m('2193') %m('002A') %m('25cb') %m('25cf')
%m('25c7') %m('2666') %m('003e') %m('0023')
%m('2336') %m('002b') %m('25a1') %m('25a0')
%m('2606') %m('2605') %m('22a4') %m('223c')
%m('25b3') %m('25b2') %m('222a') %m('0058')
%m('0059') %m('005a')

endlayout;
scatterplot x=x1 y=y / group=m;
scatterplot x=x2 y=y / markercharacter=m;
scatterplot x=x3 y=y / markerattrs=(size=0);
endlayout;

endgraph;
end;

run;

%modstyle(name=mark, parent=statistical, markers=
ArrowDown Asterisk Circle CircleFilled Diamond DiamondFilled GreaterThan
Hash IBeam Plus Square SquareFilled Star StarFilled Tack Tilde Triangle
TriangleFilled Union X Y Z, linestyles=1, colors=black)

data x;
retain x1 1 x2 2 x3 3;
length m $ 20;
input m @@;
y = -_n_;
datalines;

ArrowDown Asterisk Circle CircleFilled Diamond DiamondFilled GreaterThan
Hash IBeam Plus Square SquareFilled Star StarFilled Tack Tilde Triangle
TriangleFilled Union X Y Z
;

ods listing style=mark;
proc sgrender data=x template=markers;
run;
ods listing;
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Output 22.2.6 Commonly Used Unicode and Special Characters
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Output 22.2.7 Markers, Marker Names, Unicode Characters, Unicode Specifications

The Unicode Consortium http://unicode.org/ provides a list of character codes at
http://www.unicode.org/charts/charindex.html.

http://unicode.org/
http://www.unicode.org/charts/charindex.html
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The following rules apply to Unicode and special character specifications in ODS graphics:

• Each character can be specified by looking up its code and specifying it as a hexadecimal constant.
Example: funicode ’221e’xg.

• Lower case Greek letters can be specified by using names instead of hexadecimal constants. Example:
f unicode alphag.

• Upper case Greek letters can be specified by using names followed by _u instead of a hexadecimal
constants. Example: f unicode alpha_ug.

• Superscript and subscript have special abbreviations. Examples: fsup 2g and fsub 2g.

• The sup and sub specifications must not appear escaped and in quotes in the GTL. They must appear
outside of quotes.

• Some characters overprint the character that comes before. Example: ’El nin’ ftildeg ’o’, which
is equivalent to ’El nin’ funicode ’0303’xg ’o’ creates ‘El niño’.

• Specifications inside quotes are escaped. Example: "(*ESC*)funicode betag".

• Specifications outside quotes are not escaped. Example: funicode betag.

Example 22.3: Customizing Panels
This example illustrates how to modify the regression fit diagnostics panel shown in Figure 21.1 in Chapter 21,
“Statistical Graphics Using ODS,” so that it displays a subset of the component plots. The original panel
consists of eight plots and a summary statistics box. The ODS trace output from PROC REG shown
previously shows that the template for the diagnostics panel is Stat.REG.Graphics.DiagnosticsPanel.
The following statements display the template:

proc template;
source Stat.REG.Graphics.DiagnosticsPanel;

run;
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An abridged version of the results is shown next:

define statgraph Stat.Reg.Graphics.DiagnosticsPanel;
notes "Diagnostics Panel";
dynamic . . .;
BeginGraph / designheight=defaultDesignWidth;

entrytitle halign=left textattrs=GRAPHVALUETEXT _MODELLABEL
halign=center textattrs=GRAPHTITLETEXT "Fit Diagnostics"
" for " _DEPNAME;

layout lattice / columns=3 rowgutter=10 columngutter=10
shrinkfonts=true rows=3;
layout overlay / xaxisopts=(shortlabel='Predicted');

. . .
endlayout;
layout overlay / xaxisopts=(shortlabel='Predicted');

. . .
endlayout;
layout overlay / xaxisopts=(label='Leverage' offsetmax=0.05)

. . .
endlayout;
layout overlay / yaxisopts=(label="Residual" shortlabel=

"Resid") xaxisopts=(label="Quantile");
. . .

endlayout;
layout overlayequated / xaxisopts=(shortlabel='Predicted')

. . .
endlayout;
layout overlay / xaxisopts=(linearopts=(integer=true) label=

"Observation" shortlabel="Obs" offsetmax=0.05) yaxisopts=(
offsetmin=0.05 offsetmax=0.05);
. . .

endlayout;
layout overlay / xaxisopts=(label="Residual") yaxisopts=(label

="Percent");
. . .

endlayout;
layout lattice / columns=2 rows=1 rowdatarange=unionall

columngutter=0;
. . .

endlayout;
if (_SHOWSTATS =1)

layout overlay;
. . .

endLayout;
endif;
if (_SHOWSTATS = 2)

layout overlay / yaxisopts=(gridDisplay=auto_off label=
"Residual");
. . .

endlayout;
endif;

endlayout;
EndGraph;

end;
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The outermost components of the template are a BEGINGRAPH/ENDGRAPH block with a lattice layout
with ROWS=3 and COLUMNS=3 that defines the 3 � 3 panel of plots. Inside that are nine layouts, one for
each cell, the last of which is conditionally defined. The LAYOUT statements define the components of the
panel from left to right and top to bottom. You can eliminate some of the panels and produce a 2� 2 panel as
follows:

proc template;
define statgraph Stat.Reg.Graphics.DiagnosticsPanel;

notes "Diagnostics Panel";
dynamic _DEPLABEL _DEPNAME _MODELLABEL _OUTLEVLABEL _TOTFREQ _NPARM

_NOBS _OUTCOOKSDLABEL _SHOWSTATS _NSTATSCOLS _DATALABEL _SHOWNObs
_SHOWTOTFREQ _SHOWNParm _SHOWEDF _SHOWMSE _SHOWRSquare
_SHOWAdjRSq _SHOWSSE _SHOWDepMean _SHOWCV _SHOWAIC _SHOWBIC
_SHOWCP _SHOWGMSEP _SHOWJP _SHOWPC _SHOWSBC _SHOWSP _EDF _MSE
_RSquare _AdjRSq _SSE _DepMean _CV _AIC _BIC _CP _GMSEP _JP _PC
_SBC _SP;

BeginGraph / designheight=defaultDesignWidth;
entrytitle halign=left textattrs=GRAPHVALUETEXT _MODELLABEL

halign=center textattrs=GRAPHTITLETEXT "Fit Diagnostics"
" for " _DEPNAME;

layout lattice / columns=2 rowgutter=10 columngutter=10
shrinkfonts=true rows=2;
layout overlay / xaxisopts=(shortlabel='Predicted');

referenceline y=-2;
referenceline y=2;
scatterplot y=RSTUDENT x=PREDICTEDVALUE / primary=true

datalabel=_OUTLEVLABEL rolename=(_tip1=OBSERVATION _id1=
ID1 _id2=ID2 _id3=ID3 _id4=ID4 _id5=ID5) tip=(y x _tip1
_id1 _id2 _id3 _id4 _id5);

endlayout;
layout overlay / yaxisopts=(label="Residual" shortlabel=

"Resid") xaxisopts=(label="Quantile");
lineparm slope=eval (STDDEV(RESIDUAL)) y=eval (

MEAN(RESIDUAL)) x=0 / extend=true lineattrs=
GRAPHREFERENCE;

scatterplot y=eval (SORT(DROPMISSING(RESIDUAL))) x=eval (
PROBIT((NUMERATE(SORT(DROPMISSING(RESIDUAL))) -0.375)/
(0.25 + N(RESIDUAL)))) / markerattrs=GRAPHDATADEFAULT
primary=true
rolename=(s=eval (SORT(DROPMISSING(RESIDUAL))) nq=eval (
PROBIT((NUMERATE(SORT(DROPMISSING(RESIDUAL))) -0.375)
/(0.25 + N(RESIDUAL))))) tiplabel=(nq="Quantile"
s="Residual")
tip=(nq s);

endlayout;
layout overlayequated / xaxisopts=(shortlabel='Predicted')

yaxisopts=(label=_DEPLABEL shortlabel="Observed")
equatetype=square;
lineparm slope=1 x=0 y=0 / extend=true lineattrs=

GRAPHREFERENCE;
scatterplot y=DEPVAR x=PREDICTEDVALUE / primary=true

datalabel=_OUTLEVLABEL rolename=(_tip1=OBSERVATION _id1=
ID1 _id2=ID2 _id3=ID3 _id4=ID4 _id5=ID5) tip=(y x _tip1
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_id1 _id2 _id3 _id4 _id5);
endlayout;
layout overlay / xaxisopts=(label="Residual") yaxisopts=(label

="Percent");
histogram RESIDUAL / primary=true;
densityplot RESIDUAL / name="Normal" legendlabel="Normal"

lineattrs=GRAPHFIT;
endlayout;

endlayout;
EndGraph;

end;
run;

ods graphics on;

proc reg data=sashelp.class;
model Weight = Height;

run; quit;

This template plots the residuals by predicted values, the Q-Q plot, the actual by predicted plot, and the
residual histogram. The results are shown in Output 22.3.1.
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Output 22.3.1 Diagnostics Panel with Four Plots

This new template is a straightforward modification of the original template. The COLUMNS=2 and
ROWS=2 options in the LAYOUT LATTICE statement request a 2 � 2 lattice. The LAYOUT statement
blocks for components 1, 3, 6, 8, and 9 are deleted. NOTE: You do not need to understand every aspect of a
template to modify it if you can recognize the overall structure and a few key options.

You can restore the original template as follows:

proc template;
delete Stat.REG.Graphics.DiagnosticsPanel / store=sasuser.templat;

run;
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Example 22.4: Customizing Axes and Reference Lines
This example illustrates several ways that you can change the plot axes in a scatter plot. The example
uses PROC CORRESP to perform a correspondence analysis. It is taken from the section “Getting Started:
CORRESP Procedure” on page 2094 in Chapter 34, “The CORRESP Procedure.” It uses the following data:

title "Number of Ph.D.'s Awarded from 1973 to 1978";

data PhD;
input Science $ 1-19 y1973-y1978;
label y1973 = '1973'

y1974 = '1974'
y1975 = '1975'
y1976 = '1976'
y1977 = '1977'
y1978 = '1978';

datalines;
Life Sciences 4489 4303 4402 4350 4266 4361
Physical Sciences 4101 3800 3749 3572 3410 3234
Social Sciences 3354 3286 3344 3278 3137 3008
Behavioral Sciences 2444 2587 2749 2878 2960 3049
Engineering 3338 3144 2959 2791 2641 2432
Mathematics 1222 1196 1149 1003 959 959
;

The following steps perform the correspondence analysis and create Output 22.4.1:

ods graphics on;
ods trace on;

proc corresp data=PhD short;
ods select configplot;
var y1973-y1978;
id Science;

run;

The trace output for this step (not shown) shows that the template for this plot is Stat.Corresp.Graphics.
Configuration. The following step displays this template:

proc template;
source Stat.Corresp.Graphics.Configuration;

run;
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Output 22.4.1 Default Scatter Plot

The results are as follows:

define statgraph Stat.Corresp.Graphics.Configuration;
dynamic xVar yVar head legend;
begingraph;

entrytitle HEAD;
layout overlayequated / equatetype=fit xaxisopts=(offsetmin=0.1

offsetmax=0.1) yaxisopts=(offsetmin=0.1 offsetmax=0.1);
scatterplot y=YVAR x=XVAR / group=GROUP index=INDEX

datalabel=LABEL datalabelattrs=GRAPHVALUETEXT
name="Type" tip=(y x datalabel group)
tiplabel=(group="Point");

if (LEGEND)
discretelegend "Type";

endif;
endlayout;

endgraph;
end;
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You can add reference lines to the scatter plot at specified X and Y values by using the REFERENCELINE
statement, as in the following example:

proc template;
define statgraph Stat.Corresp.Graphics.Configuration;

dynamic xVar yVar head legend;
begingraph;

entrytitle HEAD;
layout overlayequated / equatetype=fit xaxisopts=(offsetmin=0.1

offsetmax=0.1) yaxisopts=(offsetmin=0.1 offsetmax=0.1);

referenceline x=0;
referenceline y=0;

scatterplot y=YVAR x=XVAR / group=GROUP index=INDEX
datalabel=LABEL datalabelattrs=GRAPHVALUETEXT
name="Type" tip=(y x datalabel group)
tiplabel=(group="Point");

if (LEGEND)
discretelegend "Type";

endif;
endlayout;

endgraph;
end;

run;

proc corresp data=PhD short;
ods select configplot;
var y1973-y1978;
id Science;

run;

When you modify templates, it is important to note that the order of the statements within the LAYOUT
OVERLAYEQUATED (or more typically, the LAYOUT OVERLAY) is significant. Here, the reference lines
are added before the scatter plot so that the reference lines are drawn before the scatter plot. Consequently,
labels and markers that coincide with the reference lines are drawn over the reference lines. The results, with
reference lines, are displayed in Output 22.4.2.
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Output 22.4.2 Scatter Plot with Reference Lines Added

You can restore the default graph template as follows:

proc template;
delete Stat.Corresp.Graphics.Configuration / store=sasuser.templat;

run;

The next steps show how you can change the style so that a frame is not shown:

proc template;
define style noframe;

parent=styles.htmlblue;
style graphwalls from graphwalls / frameborder=off;

end;
run;

ods listing style=noframe;

proc corresp data=PhD short;
ods select configplot;
var y1973-y1978;
id Science;

run;

The results, shown in Output 22.4.3, display an X-axis and a Y-axis without a frame. Unlike the previous
change, which affects only the ConfigPlot display, this change affects all plots created with the NOFRAME
style.
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Output 22.4.3 Scatter Plot with No Axis Frame

Alternatively, you can also add reference lines and delete the entire axis frame using the WALLDIS-
PLAY=NONE and the DISPLAY= option in the graph template, as in the following example:

proc template;
define statgraph Stat.Corresp.Graphics.Configuration;

dynamic xVar yVar head legend;
begingraph;

entrytitle HEAD;

layout overlayequated / equatetype=fit walldisplay=none
xaxisopts=(display=(tickvalues) offsetmin=0.1 offsetmax=0.1)
yaxisopts=(display=(tickvalues) offsetmin=0.1 offsetmax=0.1);

referenceline x=0;
referenceline y=0;

scatterplot y=YVAR x=XVAR / group=GROUP index=INDEX
datalabel=LABEL datalabelattrs=GRAPHVALUETEXT
name="Type" tip=(y x datalabel group)
tiplabel=(group="Point");

if (LEGEND)
discretelegend "Type";

endif;
endlayout;

endgraph;
end;

run;



764 F Chapter 22: ODS Graphics Template Modification

ods listing style=htmlblue;

proc corresp data=PhD short;
ods select configplot;
var y1973-y1978;
id Science;

run;

The results are shown in Output 22.4.4.

Output 22.4.4 Scatter Plot with Internal Axes
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Instead of DISPLAY=(TICKVALUES), you can use DISPLAY=NONE (not shown) to remove the tick values
from the display as well. You can change the tick values, as in the following example:

proc template;
define statgraph Stat.Corresp.Graphics.Configuration;

dynamic xVar yVar head legend;
begingraph;

entrytitle HEAD;

layout overlayequated / equatetype=fit
commonaxisopts=(tickvaluelist=(0))
xaxisopts=(offsetmin=0.1 offsetmax=0.1)
yaxisopts=(offsetmin=0.1 offsetmax=0.1);

referenceline x=0;
referenceline y=0;

scatterplot y=YVAR x=XVAR / group=GROUP index=INDEX
datalabel=LABEL datalabelattrs=GRAPHVALUETEXT
name="Type" tip=(y x datalabel group)
tiplabel=(group="Point");

if (LEGEND)
discretelegend "Type";

endif;
endlayout;

endgraph;
end;

run;

proc corresp data=PhD short;
ods select configplot;
var y1973-y1978;
id Science;

run;

Since the axes in this plot are equated, the ticks are specified using the option commonaxisopts =

(tickvaluelist = (tick-value-list)). This example only shows ticks at zero, but you can spec-
ify lists of values instead. The results are shown in Output 22.4.5.
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Output 22.4.5 Scatter Plot with Tick Marks Specified

If the axes are not equated, then the tick value list is specified with the LINEAROPTS= option, as in the
following statement:

layout overlay / xaxisopts=(linearopts=(viewmin=-0.1 viewmax=0.1
tickvaluelist=(-0.1 0 0.1))

offsetmin=0.1 offsetmax=0.1)
yaxisopts=(linearopts=(viewmin=-0.1 viewmax=0.1

tickvaluelist=(-0.1 0 0.1))
offsetmin=0.1 offsetmax=0.1);
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The preceding statement uses the VIEWMIN= and VIEWMAX= options to specify the beginning and end of
the data range that is shown. Specifying a tick value list does not extend or restrict the range of data shown
in the plot. When axes share common options, it might be more convenient to use a macro to specify the
options. The following two statements are equivalent to the preceding statement:

%let opts = linearopts=(viewmin=-0.1 viewmax=0.1
tickvaluelist=(-0.1 0 0.1)) offsetmin=0.1 offsetmax=0.1;

layout overlay / xaxisopts=(&opts) yaxisopts=(&opts);

You can restore the default graph template as follows:

proc template;
delete Stat.Corresp.Graphics.Configuration / store=sasuser.templat;

run;

Example 22.5: Adding Text to Every Graph
This example shows how to add text to one or more graphs. For example, you can create a macro variable,
with project and date information, as follows:

%let date = Project 17.104, &sysdate;

In order to add this information to a set of graphs, you need to first know the names of their templates. You
can list the names of every graph template for SAS/STAT procedures or for a particular procedure as follows:

proc template;
list stat / where=(type='Statgraph');
list stat.reg / where=(type='Statgraph');

run;

The results for PROC REG are shown in Output 22.5.1.
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Output 22.5.1 PROC REG Templates

Listing of: SASHELP.TMPLSTAT

Path Filter is: Stat.Reg

Sort by: PATH/ASCENDING

Obs Path Type

1 Stat.Reg.Graphics.CooksD Statgraph

2 Stat.Reg.Graphics.CooksDChart Statgraph

3 Stat.Reg.Graphics.DFBETASPanel Statgraph

4 Stat.Reg.Graphics.DFBETASPlot Statgraph

5 Stat.Reg.Graphics.DFFITSPlot Statgraph

6 Stat.Reg.Graphics.DiagnosticsPanel Statgraph

7 Stat.Reg.Graphics.Fit Statgraph

8 Stat.Reg.Graphics.FitHeatMap Statgraph

9 Stat.Reg.Graphics.ObservedByPredicted Statgraph

10 Stat.Reg.Graphics.PartialPanel Statgraph

11 Stat.Reg.Graphics.PartialPlot Statgraph

12 Stat.Reg.Graphics.PredictionPanel Statgraph

13 Stat.Reg.Graphics.QQPlot Statgraph

14 Stat.Reg.Graphics.RFPlot Statgraph

15 Stat.Reg.Graphics.RStudentByPredicted Statgraph

16 Stat.Reg.Graphics.ResidualBoxPlot Statgraph

17 Stat.Reg.Graphics.ResidualByPredicted Statgraph

18 Stat.Reg.Graphics.ResidualHeatMap Statgraph

19 Stat.Reg.Graphics.ResidualHeatPanel Statgraph

20 Stat.Reg.Graphics.ResidualHistogram Statgraph

21 Stat.Reg.Graphics.ResidualPanel Statgraph

22 Stat.Reg.Graphics.ResidualPlot Statgraph

23 Stat.Reg.Graphics.RidgePanel Statgraph

24 Stat.Reg.Graphics.RidgePlot Statgraph

25 Stat.Reg.Graphics.SelectionCriterionPanel Statgraph

26 Stat.Reg.Graphics.SelectionCriterionPlot Statgraph

27 Stat.Reg.Graphics.StepSelectionCriterionPanel Statgraph

28 Stat.Reg.Graphics.StepSelectionCriterionPlot Statgraph

29 Stat.Reg.Graphics.StudResCooksDChart Statgraph

30 Stat.Reg.Graphics.StudentResChart Statgraph

31 Stat.Reg.Graphics.VIFPlot Statgraph

32 Stat.Reg.Graphics.rstudentByLeverage Statgraph

You can show the source for the graph templates for SAS/STAT procedures or for a particular procedure as
follows:

options ls=96;
proc template;

source stat / where=(type='Statgraph');
source stat.reg / where=(type='Statgraph');

options ls=80;

The results of this step are not shown. However, Example 22.3 shows a portion of the template for the PROC
REG diagnostics panel. Here, the OPTIONS statement is used to set a line size of 96, which sometimes
works better than the smaller default line size when showing the source for large and complicated templates.
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An abridged version of the first few lines of the diagnostics panel template is displayed next:

define statgraph Stat.Reg.Graphics.DiagnosticsPanel;
notes "Diagnostics Panel";
dynamic . . .;
BeginGraph / designheight=defaultDesignWidth;

entrytitle halign=left textattrs=GRAPHVALUETEXT _MODELLABEL
halign=center textattrs=GRAPHTITLETEXT "Fit Diagnostics"
" for " _DEPNAME;

. . .

Adding a Date and Project Stamp to a Few Graphs

You can add the project and date to the bottom of all graphs produced with PROC REG by putting a PROC
TEMPLATE statement in front of the template source code, and adding an MVAR and ENTRYFOOTNOTE
statement after every BEGINGRAPH statement, as in the following example:

proc template;
define statgraph Stat.Reg.Graphics.DiagnosticsPanel;

notes "Diagnostics Panel";
dynamic . . .;
BeginGraph / designheight=defaultDesignWidth;

mvar date;
entryfootnote halign=left textattrs=GraphValueText date;

entrytitle halign=left textattrs=GRAPHVALUETEXT _MODELLABEL
halign=center textattrs=GRAPHTITLETEXT "Fit Diagnostics"
" for " _DEPNAME;

. . .

The MVAR statement enables you to dynamically customize the template and graph at procedure run time,
just as the DYNAMIC statement enables the procedure to dynamically customize the template and graph.
With the MVAR statement, you can modify the template once and reuse that modification as the macro
changes over time: Alternatively, you can modify the templates as follows:

entryfootnote halign=left textattrs=GRAPHVALUETEXT "&date";

However, you would then have to resubmit your templates every time the macro variable changed. The
substitution for the macro variable date occurs at different times in the two preceding cases. In the former
case, ODS looks for the value of the macro variable date at the time the template is used, and then the current
date variable is used to set the text in the ENTRYFOOTNOTE statement, every time the template is used. In
the latter case, SAS substitutes the value of the macro variable once, at the time that the PROC TEMPLATE
step is executed.

The following steps use the Class data set and produce Output 22.5.2:

ods graphics on;

proc reg data=sashelp.class plots=fit(stats=none);
model weight = height;

run; quit;
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Output 22.5.2 PROC REG Plots with Project and Date Stamp
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Output 22.5.2 continued
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You can restore all of the default templates for PROC REG by running the following step:

proc template;
delete stat.reg / store=sasuser.templat;

run;

Alternatively, you can specify delete stat to restore all SAS/STAT templates to their default definitions.

You can add text to the top or the bottom of a graph by using the ENTRYTITLE or the ENTRYFOOTNOTE
statement, respectively. With both statements, you can put the text in the HALIGN=RIGHT, HALIGN=LEFT,
or HALIGN=CENTER positions. You can add text to titles even if they already have a centered title. For
example, the ENTRYTITLE statement in the diagnostic panel has text on the left (which is conditionally
displayed) and a centered title:

entrytitle halign=left textattrs=GraphValueText _MODELLABEL
halign=center textattrs=GraphTitleText "Fit Diagnostics"
" for " _DEPNAME;

The current title can be followed by HALIGN=RIGHT and more text.

Adding Data Set Information to a Graph

You might, for example, want to add text to a set of graphs that indicates the most recently created data set.
The following example shows you how you can do this with the syslast macro variable:

%let data = &syslast;

. . .

mvar data;
entrytitle halign=left textattrs=GraphValueText "Data: " data

halign=center textattrs=GraphTitleText "Fit Diagnostics"
" for " _DEPNAME;

. . .

Of course, this only makes sense when you are analyzing the last data set created. Alternatively, you can
incorporate the name of the data set in the title, as in the following example:

%let data = &syslast;

. . .

mvar data;
entrytitle halign=center textattrs=GraphTitleText

"Fit Diagnostics for Data Set " data;

. . .
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Adding a Date and Project Stamp to All Graphs

Sometimes, you can automate the process of template modification. For example, you can automatically add
an MVAR and ENTRYFOOTNOTE statement to every graph template, as in the following example:

ods path sashelp.tmplmst(read);
proc datasets library=sasuser nolist;

delete templat(memtype=itemstor);
run;
ods path sasuser.templat(update) sashelp.tmplmst(read);

options ls=256;

proc template;
source / where=(type='Statgraph') file="tpls.sas";

run;

options ls=80;

data _null_;
infile 'tpls.sas' lrecl=256 pad;
input line $ 1-256;
file 'newtpls.sas';
put line;
line = left(lowcase(line));
if line =: 'begingraph' then

put 'mvar __date;' /
'entryfootnote halign=left textattrs=GraphValueText __date;';

file log;
if index(line, '__date') then

put 'ERROR: Name __date already used.' / line;
if index(line, 'entryfootnote') then put line;

run;

proc template;
%include 'newtpls.sas' / nosource;

run;

These statements write all ODS graph templates to a file, read that file, and write out a new file with an
MVAR and ENTRYFOOTNOTE statement added after every BEGINGRAPH statement. Then these new
templates are compiled with PROC TEMPLATE. These steps assume that no BEGINGRAPH statement
is longer than 256 characters. Most graphs do not have footnotes. Those that do will now have multiple
footnotes. You might want to manually combine them or write a more complicated program to handle them.
These steps also assume that the name __date is not used anywhere. However, the program does check
this and also lists all ENTRYFOOTNOTE statements. Be careful to check the SAS log to ensure that all
templates compile without error. Also, before using templates that are automatically modified, make sure
your modifications are reasonable.
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You can delete Sasuser.Templat and hence all modified templates (assuming the default template search
path) as follows:

ods path sashelp.tmplmst(read);
proc datasets library=sasuser nolist;

delete templat(memtype=itemstor);
run;
ods path sasuser.templat(update) sashelp.tmplmst(read);

Example 22.6: PROC TEMPLATE Statement Order and Primary Plots
This example uses artificial data to illustrate two basic principles of template writing: that statement order
matters and that one of the plotting statements is the primary statement. The data are a sample from a
bivariate normal distribution. A custom graph template and PROC SGRENDER are used to plot the data
along with vectors and ellipses. The plot consists of four components: a scatterplot of the data; vectors whose
end points come from other variables in the data set; ellipses whose parameters are specified in the template;
and reference lines whose locations are specified in the template. Initially, thick lines are used to show what
happens at the places where the lines and points intersect.

The following steps create the input SAS data set:

data x;
input x y;
label x = 'Normal(0, 4)' y = 'Normal(0, 1)';
datalines;

-4 0
4 0
0 -2
0 2

;

data y(drop=i);
do i = 1 to 2500;

r1 = normal( 104 );
r2 = normal( 104 ) * 2;
output;

end;
run;

data all;
merge x y;

run;
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The data set All contains four variables. The variables r1 and r2 contain the random data. These variables
contain 2500 nonmissing observations. The data set also contains the variables x and y, which contain the
end points for the vectors. These variables contain four nonmissing observations and 2496 observations that
are all missing. A data set like this is not unusual when creating overlaid plots. Different overlays often
require input data with very different sizes. First, the data are plotted by using a template that is deliberately
constructed to demonstrate a number of problems that can occur with statement order.

The following steps create Output 22.6.1:

proc template;
define statgraph Plot;

begingraph;
entrytitle 'Statement Order and the PRIMARY= Option';
layout overlayequated / equatetype=fit;

ellipseparm semimajor=eval(sqrt(4)) semiminor=1
slope=0 xorigin=0 yorigin=0 /
outlineattrs=GraphData2(pattern=solid thickness=5);

ellipseparm semimajor=eval(2 * sqrt(4)) semiminor=2
slope=0 xorigin=0 yorigin=0 /
outlineattrs=GraphData5(pattern=solid thickness=5);

vectorplot y=y x=x xorigin=0 yorigin=0 /
arrowheads=false lineattrs=GraphFit(thickness=5);

scatterplot y=r1 x=r2 /
markerattrs=(symbol=circlefilled size=3);

referenceline x=0 / lineattrs=(thickness=3);
referenceline y=0 / lineattrs=(thickness=3);

endlayout;
endgraph;

end;
run;

ods listing style=listing;

proc sgrender data=all template=plot;
run;
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Output 22.6.1 Statements Specified in a Nonoptimal Order

There are a number of problems with the plot in Output 22.6.1. The reference lines obliterate the vectors, and
the data are on top of everything but the reference lines. It might be more reasonable to plot the reference
lines first, the data next, the vectors next, and the ellipses last. The following steps do this and produce
Output 22.6.2:

proc template;
define statgraph Plot;

begingraph;
entrytitle 'Statement Order and the PRIMARY= Option';
layout overlayequated / equatetype=fit;

referenceline x=0 / lineattrs=(thickness=3);
referenceline y=0 / lineattrs=(thickness=3);
scatterplot y=r1 x=r2 /

markerattrs=(symbol=circlefilled size=3);
vectorplot y=y x=x xorigin=0 yorigin=0 /

arrowheads=false lineattrs=GraphFit(thickness=5);
ellipseparm semimajor=eval(sqrt(4)) semiminor=1

slope=0 xorigin=0 yorigin=0 /
outlineattrs=GraphData2(pattern=solid thickness=5);

ellipseparm semimajor=eval(2 * sqrt(4)) semiminor=2
slope=0 xorigin=0 yorigin=0 /
outlineattrs=GraphData5(pattern=solid thickness=5);

endlayout;
endgraph;

end;
run;
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ods listing style=listing;

proc sgrender data=all template=plot;
run;

Output 22.6.2 Statement Order Fixed

Output 22.6.2 looks better than Output 22.6.1, but the labels for the axes have changed. Output 22.6.1 has the
labels of the variables x and y as axis labels, whereas Output 22.6.2 uses the names of the variables r1 and r2.
This is because in the Output 22.6.1, the first plot is the vector plot of x and y (which have labels), and in
Output 22.6.2, the first plot is the scatter plot of r1 and r2 (which do not have labels). By default, the first plot
is the primary plot, and the primary plot is used to determine the axis type and labels. You can designate the
vector plot as the primary plot with the PRIMARY=TRUE option.
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The following statements make the final plot, this time with default line thicknesses, and produce Out-
put 22.6.3:

proc template;
define statgraph Plot;

begingraph;
entrytitle 'Statement Order and the PRIMARY= Option';
layout overlayequated / equatetype=fit;

referenceline x=0;
referenceline y=0;
scatterplot y=r1 x=r2 / markerattrs=(symbol=circlefilled size=3);

vectorplot y=y x=x xorigin=0 yorigin=0 / primary=true
arrowheads=false lineattrs=GraphFit;

ellipseparm semimajor=eval(sqrt(4)) semiminor=1
slope=0 xorigin=0 yorigin=0 /
outlineattrs=GraphData2(pattern=solid);

ellipseparm semimajor=eval(2 * sqrt(4)) semiminor=2
slope=0 xorigin=0 yorigin=0 /
outlineattrs=GraphData5(pattern=solid);

endlayout;
endgraph;

end;
run;

ods listing style=listing;

proc sgrender data=all template=plot;
run;

Output 22.6.3 Statement Order Fixed and Primary Plot Specified
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The axis labels in Output 22.6.3 and the overprinting of plot elements look better than in the previous plots.
You can further adjust the line thicknesses if you want to emphasize or deemphasize components of this plot.
The following list discusses the syntax of the GTL statements used in this example.

• The template has an ENTRYTITLE statement that specifies the title.

• The template has an equated overlay. This means that a centimeter on one axis represents the same
data range as a centimeter on the other axis. This is done instead of the more common LAYOUT
OVERLAY since with these data, the shape and geometry of the data have meaning even though the
ranges of the two axis variables are different. The option EQUATETYPE=SQUARE is used to make
a square plot, but since the X-axis variable has a larger range than the Y-axis variable, and since the
default plot size is wider than high, EQUATETYPE=FIT is specified. The axes are equated but use the
available space.

• A vertical reference line is drawn at X=0, and a horizontal reference line is drawn at Y=0.

• The scatter plot is based on the Y-axis variable r2 and the X-axis variable r1. The markers are filled
circles with a size of three pixels. This is smaller than the default size and works well with a plot that
displays many points.

• The vector plot is based on the Y-axis variable y and the X-axis variable x. The vectors are solid lines
with no heads emanating from the origin (X=0 and Y=0). The color and other line attributes such as
thickness come from the attributes of the GraphFit style element. This is the primary plot, so the
default axis labels are the variable labels for the X= and Y= variables if they exist or the variable names
if the variables do not have labels.

• The plot also displays two ellipses with X=0 and Y=0 at their center. Their widths are expressions, and
their heights are constant. The expressions are not needed in this example; they are used to illustrate
the syntax. The SEMIMAJOR= option specifies half the length of the major axis for the ellipse, and
the SEMIMINOR= option specifies half the length of the minor axis for the ellipse. The SLOPE=
option specifies the slope of the major axis for the ellipse. The colors of the ellipses and other line
properties are based on the GraphData2 and GraphData5 style elements, but the line pattern attribute
from the style is overridden.
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Customizing the Kaplan-Meier Survival Plot
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Overview
The LIFETEST procedure is a nonparametric procedure for analyzing survival data. You can use PROC
LIFETEST to compute the Kaplan-Meier curve (1958), which is a nonparametric maximum likelihood
estimate of the survivor function. The Kaplan-Meier plot (also called the product-limit survival plot) is a
popular tool in medical, pharmaceutical, and life sciences research. The Kaplan-Meier plot contains step
functions that represent the Kaplan-Meier curves of different samples (strata). The Kaplan-Meier plot has
many other features that you can add or change through procedure options, graph templates, and style
templates. This chapter explores these features in detail but does not explain how to interpret the graphs
or the underlying analysis. For more information about PROC LIFETEST and the Kaplan-Meier plot, see
Chapter 58, “The LIFETEST Procedure.”

This chapter shows you how to modify the Kaplan-Meier plot through a series of examples. It discusses
four types of examples: specifying procedure options, modifying graph templates by using macro variables,
modifying graph templates by using macros, and changing styles. Most examples do not go into detail about
the tools that underlie the template changes. Each example is designed to be small, simple, self-contained,
and easy to copy and use “as is” or with minor modifications. Subsequent sections provide more details
about the macro variables and macros that are used to modify the graph templates. You can use the simple
examples to make a wide variety of changes without reading or understanding the detailed descriptions at the
end of this chapter.

Statistical procedures produce tables by using the Output Delivery System (ODS) and produce graphs by
using ODS Graphics. Procedures produce graphs as automatically as they produce tables, and graphs and
tables are integrated in the ODS output. Graphs that are produced by ODS Graphics are controlled by options,
the data object (the matrix of information that is graphed), a style template, and a graph template. A style
template is a SAS program that controls the overall appearance of graphs, including colors, line and marker
styles, sizes, fonts, and so on. A graph template is a SAS program, written in the Graph Template Language
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(GTL), that provides a detailed specification of the layout and contents of each graph. Each graph that is
created when ODS Graphics is enabled is controlled by a graph template.1

If you want to modify a graph template, you usually use the TEMPLATE procedure to display the template
of interest, and then you copy it into your editor, modify it, and submit it to SAS to compile. Then, when you
run your procedure, it uses the new template. The PROC LIFETEST survival plot is the only plot in SAS
for which you have another alternative available for template modification. SAS provides the survival plot
templates in a series of macros and macro variables that are modular and easier to modify than the original
templates. This chapter provides numerous examples of using these macros and macro variables.

The data that are used in this chapter come from 137 bone marrow transplant patients in a study by Klein and
Moeschberger (1997) and are available in the BMT data set in the Sashelp library. At the time of transplant,
each patient is classified in one of three risk categories: ALL (acute lymphoblastic leukemia), AML (acute
myelocytic leukemia)–Low Risk, and AML–High Risk. The endpoint of interest is the disease-free survival
time, which is the time in days until death, relapse, or the end of the study. The variable Group represents the
patient’s risk category, the variable T represents the disease-free survival time, and the variable Status is the
censoring indicator. A status of 1 indicates an event time, and a status of 0 indicates a censored time.

Controlling the Survival Plot by Specifying Procedure Options
This section provides a series of examples that use ODS Graphics and the PLOTS= option in the PROC
LIFETEST statement to control the appearance of the survival plot. Other examples use formats and the
ORDER= option to control the order of the groups.

Enabling ODS Graphics and the Default Kaplan-Meier Plot
You can use the following statements to enable ODS Graphics and run PROC LIFETEST:

ods graphics on;

proc lifetest data=sashelp.BMT;
time T * Status(0);
strata Group;

run;

ODS Graphics is enabled for this step and all subsequent steps until it is disabled. ODS Graphics remains
enabled throughout the examples in this chapter.

You specify in the TIME statement that the disease-free survival time is recorded in the variable T. You
further specify that the variable Status indicates censoring and 0 indicates a censored time. Separate survivor
functions are displayed for each group in the Group variable, which you specify in the STRATA statement.

The plot in Figure 23.1 consists of three step functions, one for each of the three groups of patients. The plot
shows that patients in the AML–Low Risk group have longer disease-free survival than patients in the ALL
and AML–High Risk groups.

1ODS Graphics might or might not be enabled by default. ODS Graphics is usually enabled by default in the SAS windowing
environment and disabled when you invoke SAS in other ways. However, these defaults can be changed in a number of ways. ODS
Graphics is enabled in the first example in this chapter by the ODS GRAPHICS ON statement and remains enabled throughout the
chapter.
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Figure 23.1 Default Kaplan-Meier Plot

The following step, which explicitly specifies the default PLOTS=SURVIVAL option, is equivalent to the
preceding step:

proc lifetest data=sashelp.BMT plots=survival;
time T * Status(0);
strata Group;

run;

The PLOTS= option enables you to control the graphs that a procedure produces. You can use it to request
nondefault graphs and specify options for some graphs. You can specify graph names (PLOTS=SURVIVAL),
graph options (PLOTS=SURVIVAL(ATRISK OUTSIDE)), and suboptions (PLOTS=SURVIVAL(ATRISK
OUTSIDE(0.15))). The PLOTS= option is described in the section “PROC LIFETEST Statement” on
page 4337 in Chapter 58, “The LIFETEST Procedure.”
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Individual Survival Plots
You can use the STRATA=INDIVIDUAL option to request individual survival plots. By default, the
STRATA=OVERLAY option produces the plot of overlaid step functions displayed in Figure 23.1. You can
run the same analysis but request the results in three separate graphs, one per patient group, as follows:

proc lifetest data=sashelp.BMT plots=survival(strata=individual);
time T * Status(0);
strata Group;

run;

The first of the three survival plots is displayed in Figure 23.2. To conserve space, the other graphs are not
displayed.

Figure 23.2 One of Three Individual Plots

You can use the STRATA=PANEL option as follows to display the results in separate panels of a single
graphical display:

proc lifetest data=sashelp.BMT plots=survival(strata=panel);
time T * Status(0);
strata Group;

run;

The results are displayed in Figure 23.3.
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Figure 23.3 Individual Plots Displayed in a Panel

The rest of this chapter discusses overlaid plots such as the one displayed in Figure 23.1.
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Hall-Wellner Confidence Bands and Homogeneity Test
You can use the following statements to add Hall-Wellner confidence bands (Hall and Wellner 1980) to
Figure 23.1 and display the p-value from a test that the strata are homogeneous:

proc lifetest data=sashelp.BMT plots=survival(cb=hw test);
time T * Status(0);
strata Group;

run;

The results are displayed in Figure 23.4. The Hall-Wellner confidence bands extend to the last event times.
The small p-value supports rejecting the hypothesis that the groups are homogeneous.

Figure 23.4 Confidence Bands and Homogeneity Test
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Equal-Precision Bands
You can use the following statements to add equal-precision bands to the plot:

proc lifetest data=sashelp.BMT plots=survival(cb=ep test);
time T * Status(0);
strata Group;

run;

The results are displayed in Figure 23.5.

Figure 23.5 Equal-Precision Bands

You can use the following statements to add both Hall-Wellner and equal-precision bands to the plot:

proc lifetest data=sashelp.BMT plots=survival(cb=all test);
time T * Status(0);
strata Group;

run;

The results are displayed in Figure 23.6.
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Figure 23.6 Hall-Wellner and Equal-Precision Bands
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Displaying the Patients-at-Risk Table inside the Plot
You can add the patients-at-risk table to the Kaplan-Meier plot as follows:

proc lifetest data=sashelp.BMT plots=survival(cb=hw test atrisk);
time T * Status(0);
strata Group;

run;

The results are displayed in Figure 23.7. By default, the at-risk table is displayed inside the body of the plot.
This table shows the number of patients who are at risk for each group for each of the different times. For
these data, the default survival times at which at-risk values are displayed are 0 to 2500 by 500. You will see
how to specify other values in subsequent examples.

Figure 23.7 At-Risk Table inside the Plot
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The group labels for the at-risk table are group numbers, and these numbers appear in the legend. Numbers
are used rather than the actual labels because the length of the longest label (13) is greater than the default
that is set by the maximum label length option (MAXLEN=12). You can display labels rather than the group
numbers by specifying a MAXLEN= value equal to the maximum group label length as follows:

proc lifetest data=sashelp.BMT plots=survival(cb=hw test atrisk(maxlen=13));
time T * Status(0);
strata Group;

run;

The results are displayed in Figure 23.8. The legend entries and the order of the rows in the at-risk table
correspond to the sort order of the values of the Group variable.

Figure 23.8 At-Risk Table with Labels
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Displaying the Patients-at-Risk Table outside the Plot
You can use the PLOTS=SURVIVAL(OUTSIDE) option to display the at-risk table outside the body of the
plot. The option OUTSIDE(0.15) reserves 15% of the vertical graph window for the at-risk table. This
example illustrates that the PLOTS= option has options nested within options and options nested within those
nested options. The following step produces the plot in Figure 23.9:

proc lifetest data=sashelp.BMT
plots=survival(atrisk(maxlen=13 outside(0.15)));

time T * Status(0);
strata Group;

run;

Figure 23.9 Moving the At-Risk Table outside the Plot
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Modifying At-Risk Table Times
The following step explicitly controls the time values at which the at-risk values are displayed by using the
PLOTS=SURVIVAL(ATRISK=0 TO 3000 BY 1000) option:

proc lifetest data=sashelp.BMT
plots=survival(atrisk(maxlen=13 outside)=0 to 3000 by 1000);

time T * Status(0);
strata Group;

run;

The results are displayed in Figure 23.10.

Figure 23.10 Specifying At-Risk Values
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You can specify at-risk values that do not correspond to the original time axis tick marks. You can use the
PLOTS=SURVIVAL(ATRISK(ATRISKTICK)) option to add tick marks that correspond to the specified
at-risk values:

proc lifetest data=sashelp.BMT plots=survival(atrisk
(atrisktick maxlen=13 outside)=0 500 750 1000 1250 1500 1750 2000 2500);
time T * Status(0);
strata Group;

run;

The results are displayed in Figure 23.11.

Figure 23.11 Controlling At-Risk Tick Marks
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You can display tick values only at those times that are given in the ATRISK= list:

proc lifetest data=sashelp.BMT plots=survival(atrisk
(atrisktickonly maxlen=13 outside)=0 1250 2500);
time T * Status(0);
strata Group;

run;

The results are displayed in Figure 23.12.

Figure 23.12 Controlling At-Risk Tick Marks
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Reordering the Groups
You can change the order of the legend entries by first changing each original group value to a new value in
the desired order and then running the analysis with a FORMAT statement to provide the original values.
In this example, the order is changed to AML–Low Risk (the top function), followed by ALL (the middle
function), followed by AML–High Risk. With this ordering, there is a clearer correspondence between the
functions, the at-risk table, and the legend. The following steps illustrate this reordering:

proc format;
invalue bmtnum 'AML-Low Risk' = 1 'ALL' = 2 'AML-High Risk' = 3;
value bmtfmt 1 = 'AML-Low Risk' 2 = 'ALL' 3 = 'AML-High Risk';

run;

data BMT(drop=g);
set sashelp.BMT(rename=(group=g));
Group = input(g, bmtnum.);

run;

proc lifetest data=BMT plots=survival(cl test atrisk(maxlen=13));
time T * Status(0);
strata Group / order=internal;
format group bmtfmt.;

run;

The PROC FORMAT step has two statements. The INVALUE statement creates an informat that maps the
values of the original Group variable into integers that have the correct order. The VALUE statement creates
a format that maps the integers back to the original values. The informat is used with the INPUT function
in the DATA step to create a new integer Group variable. The FORMAT statement assigns the BMTFMT
format to the Group variable so that the actual risk groups are displayed in the analysis. You specify the
ORDER=INTERNAL option in the STRATA statement to sort the Group values based on internal order (the
order specified by the integers, which are the internal unformatted values). This example also illustrates the
CL option, which displays pointwise confidence limits for the survival curve (instead of the Hall-Wellner
confidence bands). The results are displayed in Figure 23.13.
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Figure 23.13 Controlling Legend Order
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You can submit the following steps to display ALL first, followed by AML–Low Risk and then AML–High
Risk:

proc format;
invalue bmtnum 'ALL' = 1 'AML-Low Risk' = 2 'AML-High Risk' = 3;
value bmtfmt 1 = 'ALL' 2 = 'AML-Low Risk' 3 = 'AML-High Risk';

run;

data BMT(drop=g);
set sashelp.BMT(rename=(group=g));
Group = input(g, bmtnum.);

run;

proc lifetest data=BMT plots=survival(cl test atrisk(maxlen=13));
time T * Status(0);
strata Group / order=internal;
format group bmtfmt.;

run;

The results are displayed in Figure 23.14.

Figure 23.14 Controlling Legend Order
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Suppressing the Censored Observations
You can use the PLOTS=SURVIVAL(NOCENSOR) option to suppress the display of censored observations
as follows:

proc lifetest data=sashelp.BMT
plots=survival(nocensor test atrisk(maxlen=13));

time T * Status(0);
strata Group;

run;

The results are displayed in Figure 23.15.

Figure 23.15 Censored Values Not Displayed
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Failure Plots
All the discussion up to this point has been about survival plots. You can instead plot failure probabilities by
using the PLOTS=SURVIVAL(FAILURE) option as follows:

proc lifetest data=sashelp.BMT
plots=survival(cb=hw failure test atrisk(maxlen=13));

time T * Status(0);
strata Group;

run;

The results are displayed in Figure 23.16.

Figure 23.16 Failure Plot
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Controlling the Survival Plot by Modifying Graph Templates
The preceding section illustrates the PLOTS= options for controlling the survival plot. If you need to make
modifications that are not shown in that section, this section shows how to modify the survival plot by using
macros and macro variables to modify graph templates.

The Modularized Templates
SAS provides the two templates that are used to make the survival plot in a modularized form.2 The
modularized version of the two survival plot templates is available in the SAS sample library and is
on the Web at http://support.sas.com/documentation/onlinedoc/stat/ex_code/132/
templft.html.

The file defines the macro %ProvideSurvivalMacros, which defines a series of macros and macro variables.
The %ProvideSurvivalMacros macro contains a %GLOBAL statement, a series of %LET statements, and
several macro definitions. It ends with a call to the %CompileSurvivalTemplates macro (which is defined
inside the %ProvideSurvivalMacros macro), which compiles the two survival plot templates.3 By using
these macros and macro variables, you can easily specify single changes that modify both templates. All the
statements in this file are displayed and explained in more detail in the section “Graph Templates, Macros,
and Macro Variables” on page 827.

The %ProvideSurvivalMacros macro provides a way to provide (and in subsequent steps restore) the default
macros and macro variables. The macros and macro variables are designed so that you can make most
changes by submitting just a few lines of SAS code. Hence, you should not modify any of the statements
while they are inside the %ProvideSurvivalMacros macro. Rather, you should use this macro only to provide
all the default macros and macro variables. You should modify the individual macros and macro variables
outside the context of the %ProvideSurvivalMacros macro.4 The reasons for this will become clearer as you
work through the examples. Before you modify anything, you must submit the %ProvideSurvivalMacros
macro definition from the sample library to SAS. You can both store the macros in a temporary file and
submit them to SAS by submitting the following statements:

data _null_;
%let url = //support.sas.com/documentation/onlinedoc/stat/ex_code/132;
infile "http:&url/templft.html" device=url;
file 'macros.tmp';
retain pre 0;
input;
if index(_infile_, '</pre>') then pre = 0;
if pre then put _infile_;
if index(_infile_, '<pre>') then pre = 1;

run;

%inc 'macros.tmp' / nosource;
2The two templates that PROC LIFETEST uses are named Stat.Lifetest.Graphics.ProductLimitSurvival

and Stat.Lifetest.Graphics.ProductLimitSurvival2.
3You might wonder why these macros are not simply made available in the SAS autocall library. The autocall library provides

macros that you can run. In this context, you do not need to simply run a macro. You need to copy it, extract parts of it, modify those
parts, and submit the modified statements. That is not convenient with the autocall library.

4However, there might be something that you always want to change. For example, if you always want the survival plot to be
entitled ‘Kaplan-Meier Plot’, then you can modify the title once inside the %ProvideSurvivalMacros macro. This is not illustrated in
this chapter. All examples illustrate ad hoc changes that are made outside the context of the %ProvideSurvivalMacros macro.

http://support.sas.com/documentation/onlinedoc/stat/ex_code/132/templft.html
http://support.sas.com/documentation/onlinedoc/stat/ex_code/132/templft.html
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Submitting these statements only defines the %ProvideSurvivalMacros macro. It does not make any of its
component macros and macro variables available. The URL macro variable is used to avoid an overly long
INFILE statement.

You can provide the default macros and macro variables by running the following macro:

%ProvideSurvivalMacros

Running this macro provides the default macros and macro variables (or restores them if you have previously
submitted the %ProvideSurvivalMacros macro).5 The %ProvideSurvivalMacrosmacro also runs the %Com-
pileSurvivalTemplates macro and hence replaces any compiled survival plot templates that you might have
created in the past. You can recompile the templates by submitting the following macro:

%CompileSurvivalTemplates

This macro runs PROC TEMPLATE and compiles the templates from all the macros and macro variables in
the %ProvideSurvivalMacros macro along with any that you modified. Running this macro produces two
compiled templates that are stored in a special SAS data file called an item store. For more information about
SAS item stores, see the section “SAS Item Stores” on page 853. Assuming that you have not modified your
ODS path by using an ODS PATH statement, compiled templates are stored in an item store in the Sasuser
library. Files in the Sasuser library persist across SAS sessions until they are deleted. When you are done
with a modified template, it is wise to clean up all remnants of it by restoring the default macros and by
deleting the modified templates from the Sasuser template item store. You can delete the modified templates
(so that SAS can only find the original templates) by running the following step:

proc template;
delete Stat.Lifetest.Graphics.ProductLimitSurvival /

store=sasuser.templat;
delete Stat.Lifetest.Graphics.ProductLimitSurvival2 /

store=sasuser.templat;
run;

This step deletes the compiled templates from the item store sasuser.templat. You can omit the STORE=
option if you are using the default ODS path, but it is good practice to explicitly control which templates are
deleted. Deleting the compiled templates does not change any of the macros or macro variables. Only the
compiled templates (not the macros or macro variables) affect the graph when you run PROC LIFETEST.
For more information about compiled templates, item stores, and cleanup, see the section “SAS Item Stores”
on page 853.

5Semicolons are not needed after a macro call like this one, so they are not used in these examples.
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Changing the Plot Title
Here is a simple, complete program (except for retrieving the %ProvideSurvivalMacros macro from the
sample library) with setup, macro variable modifications to change the title, and cleanup:

/*-- Original Macro Variable Definitions ----------------------------------
%let TitleText0 = METHOD " Survival Estimate";
%let TitleText1 = &titletext0 " for " STRATUMID;
%let TitleText2 = &titletext0 "s";
-------------------------------------------------------------------------*/

/* Make the macros and macro */
%ProvideSurvivalMacros /* variables available. */

%let TitleText0 = "Kaplan-Meier Plot"; /* Change the title. */
%let TitleText1 = &titletext0 " for " STRATUMID;
%let TitleText2 = &titletext0;

%CompileSurvivalTemplates /* Compile the templates with */
/* the new title. */

proc lifetest data=sashelp.BMT /* Perform the analysis and make */
plots=survival(cb=hw test); /* the graph. */

time T * Status(0);
strata Group;

run;

%ProvideSurvivalMacros /* Optionally restore the default */
/* macros and macro variables. */

proc template; /* Delete the modified templates. */
delete Stat.Lifetest.Graphics.ProductLimitSurvival / store=sasuser.templat;
delete Stat.Lifetest.Graphics.ProductLimitSurvival2 / store=sasuser.templat;

run;

The results are displayed in Figure 23.17. You can see that the graph title is now ‘Kaplan-Meier Plot’.

There are multiple title macro variables because two different types of plots are defined in the survival plot
templates. The first macro variable, TitleText0, contains the text that is the same for both types of plots. The
second macro variable, TitleText1, contains the title for the single-stratum case. The third macro variable,
TitleText2, contains the title for the multiple-strata case. Both TitleText1 and TitleText2 use the common
text defined in TitleText0. Both TitleText0 and TitleText2 were changed from their original definition; the
definition of TitleText1 was copied from the %ProvideSurvivalMacros macro. You must provide all relevant
%LET statements when you modify TitleText0. In this case it is TitleText0 and TitleText2, but it is easy to
copy all three and then just modify what you need. Alternatively, when you know the number of strata, you
can modify only TitleText1 or TitleText2.
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Figure 23.17 Kaplan-Meier Plot Title Modification
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Modifying the Axis
The following statements modify the default tick value list for the Y axis from the default increment of 0.2 to
have an increment of 0.25 and also change the Y-axis label to ‘Survival’:

/*-- Original Macro Variable Definitions ----------------------------------
%let yOptions = label="Survival Probability" shortlabel="Survival"

linearopts=(viewmin=0 viewmax=1
tickvaluelist=(0 .2 .4 .6 .8 1.0));

-------------------------------------------------------------------------*/

%ProvideSurvivalMacros

%let yOptions = label="Survival"
linearopts=(viewmin=0 viewmax=1

tickvaluelist=(0 .25 .5 .75 1));

%CompileSurvivalTemplates

proc lifetest data=sashelp.BMT plots=survival(cb=hw test);
time T * Status(0);
strata Group;

run;

The results are displayed in Figure 23.18.

Figure 23.18 Y-Axis Modification
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The following statements modify the Y axis so that tick marks start at 0.2:

%ProvideSurvivalMacros

%let yOptions = label="Survival"
linearopts=(viewmin=0.2 viewmax=1

tickvaluelist=(0 .2 .4 .6 .8 1.0));

%CompileSurvivalTemplates

proc lifetest data=sashelp.BMT plots=survival(cb=hw test);
time T * Status(0);
strata Group;

run;

You only need to change the value of the VIEWMIN= option, in this case from 0 to 0.2. You do not need to
modify the tick value list. The VIEWMIN= option (not the tick value list) controls the smallest value shown
on the axis. The results are displayed in Figure 23.19.

Figure 23.19 Y Axis, First Tick Change
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Changing the Line Thickness
The following steps modify the line thickness for the step functions in the survival plot:

%ProvideSurvivalMacros

%let StepOpts = lineattrs=(thickness=2.5);

%CompileSurvivalTemplates

proc lifetest data=sashelp.BMT plots=survival(cb=hw test);
time T * Status(0);
strata Group;

run;

The results are displayed in Figure 23.20.

Figure 23.20 Changing Line Thickness

By default, the StepOpts macro variable is null.
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Changing the Group Color
SAS styles control the colors displayed in graphs. The style elements GraphData1, GraphData2, ...,
GraphData12 control the appearance of groups of observations such as the survival step plots in the Kaplan-
Meier plot. You can override these colors by using the GraphOpts macro variable (which is null by default).
By default, the colors for the first three groups in the HMTLBlue style are shades of blue, red, and green.
You can change them to a pure green, red, and blue as follows:

%ProvideSurvivalMacros

%let GraphOpts = DataContrastColors=(green red blue)
DataColors=(green red blue);

%CompileSurvivalTemplates

proc lifetest data=sashelp.BMT
plots=survival(cb=hw test atrisk(outside maxlen=13));

time T * Status(0);
strata Group;

run;

The results are displayed in Figure 23.21. The DATACONTRASTCOLORS= option specifies the contrast
colors, which are used for markers and lines. The DATACOLORS= option specifies the colors, which are
used for shaded areas such as confidence bands.

Figure 23.21 Named Color Specifications
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The original colors (as shown in Figure 23.33) are more subtle than those shown in Figure 23.21. If you want
to change the order of the original colors by using this approach, then you need to know what they are so that
you can specify them. The graph colors for the HTMLBlue and Statistical styles are extracted from the style
in the section “Displaying a Style and Extracting Color Lists” on page 844 and displayed in Figure 23.36.
The section “Modifying Color Lists” on page 847 shows you how to change the graph template to specify
the original colors in a different order. The section “Swapping Colors among Style Elements” on page 848
shows you how to use a macro to change a style template to specify the original colors in a different order
(without having to extract and specify the color names).

Changing the Line Pattern
You can change the line patterns as follows:

%ProvideSurvivalMacros

%let GraphOpts = attrpriority=none
DataLinePatterns=(ShortDash MediumDash LongDash);

%CompileSurvivalTemplates

proc lifetest data=sashelp.BMT
plots=survival(cb=hw test atrisk(outside maxlen=13));

time T * Status(0);
strata Group;

run;

The results are displayed in Figure 23.22.

Figure 23.22 Changing the Line Patterns
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Other values for the DATALINEPATTERNS= option are provided in the section “The Macro Variables” on
page 829. You must use the option ATTRPRIORITY=NONE when you want to have varying line patterns in
an ATTRPRIORITY=COLOR style like HTMLBlue or Pearl. In an ATTRPRIORITY=COLOR style, groups
are not distinguished by line patterns, and the line patterns for second and subsequent groups match the line
pattern for the first group.

Changing the Font
You can change the Y-axis, X-axis, and title fonts as follows:

%ProvideSurvivalMacros

/*-- Original Macro Variable Definitions ----------------------------------
%let TitleText0 = METHOD " Survival Estimate";
%let TitleText1 = &titletext0 " for " STRATUMID;
%let TitleText2 = &titletext0 "s";
%let yOptions = label="Survival Probability"

shortlabel="Survival"
linearopts=(viewmin=0 viewmax=1

tickvaluelist=(0 .2 .4 .6 .8 1.0));
%let xOptions = shortlabel=XNAME

offsetmin=.05
linearopts=(viewmax=MAXTIME tickvaluelist=XTICKVALS

tickvaluefitpolicy=XTICKVALFITPOL);
-------------------------------------------------------------------------*/

%let tatters = textattrs=(size=12pt weight=bold family='arial');
%let TitleText0 = METHOD " Survival Estimate";
%let TitleText1 = &titletext0 " for " STRATUMID / &tatters;
%let TitleText2 = &titletext0 "s" / &tatters;

%let yOptions = label="Survival Probability"
shortlabel="Survival"
labelattrs=(size=10pt weight=bold)
tickvalueattrs=(size=8pt)
linearopts=(viewmin=0 viewmax=1

tickvaluelist=(0 .2 .4 .6 .8 1.0));

%let xOptions = shortlabel=XNAME
offsetmin=.05
labelattrs=(size=10pt weight=bold)
tickvalueattrs=(size=8pt)
linearopts=(viewmax=MAXTIME tickvaluelist=XTICKVALS

tickvaluefitpolicy=XTICKVALFITPOL);

%CompileSurvivalTemplates

proc lifetest data=sashelp.BMT plots=survival(cb=hw test);
time T * Status(0);
strata Group;

run;
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The results are displayed in Figure 23.23.

Figure 23.23 Changing the Fonts

Font options include the following:

COLOR=style-reference | color
FAMILY=style-reference | ‘string’
SIZE=style-reference | dimension
STYLE=style-reference | NORMAL | ITALIC
WEIGHT=style-reference | NORMAL | BOLD

Fonts vary from installation to installation. Sample font strings include: ‘Times New Roman’, ‘Courier New’,
‘Arial’, and ‘Calibri’. For more information about text and label attribute options, see SAS Graph Template
Language: Reference. For information about changing fonts in ODS styles, see the section “Displaying a
Style and Extracting Font Information” on page 850. ODS Graphics can use a single style element in more
than one place in a graph; this example shows how to change individual graph components.
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Changing the Legend and Inset Position
This example shows you how to move the legend inside the plot (to the top right) and move the homogeneity
test and censored value legend to the bottom right of the plot:

%ProvideSurvivalMacros

/*-- Original Macro Variable Definitions ----------------------------------
%let InsetOpts = autoalign=(TOPRIGHT BOTTOMLEFT TOP BOTTOM)

border=true BackgroundColor=GraphWalls:Color Opaque=true;
%let LegendOpts = title=GROUPNAME location=outside;
-------------------------------------------------------------------------*/

%let InsetOpts = autoalign=(BottomRight)
border=true BackgroundColor=GraphWalls:Color Opaque=true;

%let LegendOpts = title=GROUPNAME location=inside across=1 autoalign=(TopRight);

%CompileSurvivalTemplates

proc lifetest data=sashelp.BMT
plots=survival(cb=hw test atrisk(outside maxlen=13));

time T * Status(0);
strata Group;

run;

This example shows you how to replace the AUTOALIGN=(TOPRIGHT BOTTOMLEFT TOP BOT-
TOM) option in the macro variable InsetOpts with AUTOALIGN=(BOTTOMRIGHT) and add the AU-
TOALIGN=(TOPRIGHT) option to the LegendOpts macro variable. You can also add the option ACROSS=1
to the LegendOpts macro variable to stack all legend entries vertically (with just one element in each row).

The results are displayed in Figure 23.24.
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Figure 23.24 Controlling Legend Placement
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Changing How the Censored Points Are Displayed
By default, PROC LIFETEST displays a plus sign to indicate censoring. This example illustrates how to
change the plus sign to a small filled circle in both the step plots and the inset box. The following steps
change the template and create Output 23.25:

/*-- Original Macro Variable Definitions ----------------------------------
%let Censored = markerattrs=(symbol=plus);
%let CensorStr = "+ Censored";
-------------------------------------------------------------------------*/

%ProvideSurvivalMacros

%let censored = markerattrs=(symbol=circlefilled size=3px);
%let censorstr = "(*ESC*){Unicode '25cf'x} Censored"

/ textattrs=GraphValueText(family=GraphUnicodeText:FontFamily);

%CompileSurvivalTemplates

proc lifetest data=sashelp.BMT plots=survival(cb=hw atrisk(outside maxlen=13));
time T * Status(0);
strata Group;

run;

Figure 23.25 Survival Plot with a Modified Display of Censoring



Adding a Y-Axis Reference Line F 815

The Unicode Consortium (http://unicode.org/) provides a list of character codes. Also see Fig-
ure 22.2.7 in Chapter 22, “ODS Graphics Template Modification,” for information about the Unicode
specification for other markers. Although some Unicode characters are supported in some fonts, you should
always specify a Unicode font when using special characters.

Adding a Y-Axis Reference Line
You can add a horizontal reference line to the survival plot by adding the following statement to the template:

referenceline y=0.5;

You can do this by using the %StmtsTop macro. By default, this macro is empty. You can use the %StmtsTop
macro to add new statements to the beginning of the block of statements that define the appearance of the
graph. In contrast, you can use the %StmtsBottom macro to provide statements at the end of the statement
block. ODS Graphics draws statements in the order in which they appear; therefore, reference lines should
be drawn first so they do not obscure other parts of the graph.

The following step creates the plot in Figure 23.26:

%ProvideSurvivalMacros

%macro StmtsTop;
referenceline y=0.5;

%mend;

%CompileSurvivalTemplates

proc lifetest data=sashelp.BMT plots=survival(cb=hw test);
time T * Status(0);
strata Group;

run;

http://unicode.org/
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Figure 23.26 Horizontal Reference Line
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Changing the Homogeneity Test Inset
This example modifies the contents of the %pValue macro. The original %pValue macro definition is as
follows:

%macro pValue;
if (PVALUE < .0001)

entry TESTNAME " p " eval (PUT(PVALUE, PVALUE6.4));
else

entry TESTNAME " p=" eval (PUT(PVALUE, PVALUE6.4));
endif;

%mend;

The following example directly specifies the test name (replacing the internal name ‘Logrank’ with ‘Log
Rank’) and adds blank spaces around the equal sign:

%ProvideSurvivalMacros

%macro pValue;
if (PVALUE < .0001)

entry "Log Rank p " eval (PUT(PVALUE, PVALUE6.4));
else

entry "Log Rank p = " eval (PUT(PVALUE, PVALUE6.4));
endif;

%mend;

%CompileSurvivalTemplates

proc lifetest data=sashelp.BMT plots=survival(cb=hw test);
time T * Status(0);
strata Group;

run;

The results are displayed in Figure 23.27.
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Figure 23.27 Cosmetic Inset Entry Change

Because this template modification replaces a character string that is more appropriately set by PROC
LIFETEST, you should clean up afterward as follows:

%ProvideSurvivalMacros

proc template;
delete Stat.Lifetest.Graphics.ProductLimitSurvival /

store=sasuser.templat;
delete Stat.Lifetest.Graphics.ProductLimitSurvival2 /

store=sasuser.templat;
run;
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Suppressing the Second Title and Adding a Footnote
The following steps add an ENTRYFOOTNOTE statement to the %StmtsBeginGraph macro and suppress
the second title:

%ProvideSurvivalMacros

%let ntitles = 1;
%macro StmtsBeginGraph;

entryfootnote halign=left "Acme Company %sysfunc(date(),worddate.)" /
textattrs=GraphDataText;

%mend;

%CompileSurvivalTemplates

proc lifetest data=sashelp.BMT
plots=survival(cb=hw test);

time T * Status(0);
strata Group;

run;

The results are displayed in Figure 23.28.

Figure 23.28 Footnote but No Second Title
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By default, the nTitles macro variable is 2, and all titles are displayed. Setting nTitles to 1 suppresses the
second title. You can add titles or footnotes to the plot by adding them to the %StmtsBeginGraph macro.
This example adds a footnote that consists of a company name followed by the current date, formatted by
using the WORDDATE format. The GraphDataText style element is used; it has a smaller font than the
default style element, GraphFootnoteText.

Adding a Small Inset Table with Event Information
This example shows you how to modify the template to produce the plot displayed in Output 23.29. This new
plot has an inset table in the top right corner that shows the number of observations and the number of events
in each stratum. The legend has been moved inside the plot and combined with the old inset table that shows
the marker for censored observations.6 Also, the title is changed to ‘Kaplan-Meier Plot’.

%ProvideSurvivalMacros

%let TitleText2 = "Kaplan-Meier Plot";
%let LegendOpts = title="+ Censored"

location=inside autoalign=(Bottom);
%let InsetOpts = ;

%macro StmtsBottom;
dynamic %do i = 1 %to 3; StrVal&i NObs&i NEvent&i %end;;
layout gridded / columns=3 border=TRUE autoalign=(TopRight);

entry ""; entry "Event"; entry "Total";
%do i = 1 %to 3;

%let t = / textattrs=GraphData&i;
entry halign=right Strval&i &t; entry NEvent&i &t; entry NObs&i &t;

%end;
endlayout;

%mend;

%CompileSurvivalTemplates

proc lifetest data=sashelp.BMT plots=survival(cb=hw atrisk(outside maxlen=13));
time T * Status(0);
strata Group;

run;

The results are displayed in Figure 23.29.

6This legend is wide and might not be displayed if your graph is small. If the legend is not displayed, try increasing the size of
the graph by specifying the WIDTH= or HEIGHT= option in the ODS GRAPHICS statement.
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Figure 23.29 New Inset Table with Event Information

The macro variable TitleText2, which controls the title for the multiple-strata plot, is changed. You can
change all three title macro variables, as is done in the construction of Figure 23.17, or you can change only
TitleText2 when you have multiple overlaid strata, as in this example. The LegendOpts macro variable value
was changed from TITLE=GROUPNAME LOCATION=OUTSIDE to display the censored value legend in
place of the legend title and to display the legend inside the bottom of the plot. When the InsetOpts macro
variable is null, the usual inset that contains the censored value and p-value is not displayed.

The %StmtsBottom macro (null by default) is replaced with a macro that creates the new inset table. This
macro adds statements to the bottom of the templates. If you ignore for a moment most of the options, the
core of the generated statements is as follows:

dynamic StrVal1 NObs1 NEvent1 StrVal2 NObs2 NEvent2 StrVal3 NObs3 NEvent3;
layout gridded / columns=3;

entry ""; entry "Event"; entry "Total";
entry Strval1; entry NEvent1; entry NObs1;
entry Strval2; entry NEvent2; entry NObs2;
entry Strval3; entry NEvent3; entry NObs3;

endlayout;

The macro first constructs a DYNAMIC statement that includes the names of the dynamic variables that
contain some of the results. PROC LIFETEST creates these dynamic variables and sets them to values,
but you must declare them in your template before using them. For more information about these dynamic
variables, see the section “Additional Dynamic Variables” on page 840. The macro then constructs a 4 � 3
grid that contains a table consisting of a title line and a row for each stratum (which consists of the stratum
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label, the number of events, and the total number of subjects). The full layout that the %StmtsBottom macro
generates, with all the options, is as follows:

dynamic StrVal1 NObs1 NEvent1 StrVal2 NObs2 NEvent2 StrVal3 NObs3 NEvent3;
layout gridded / columns=3 border=TRUE autoalign=(TopRight);

entry "";
entry "Event";
entry "Total";
entry halign=right Strval1 / textattrs=GraphData1;
entry NEvent1 / textattrs=GraphData1;
entry NObs1 / textattrs=GraphData1;
entry halign=right Strval2 / textattrs=GraphData2;
entry NEvent2 / textattrs=GraphData2;
entry NObs2 / textattrs=GraphData2;
entry halign=right Strval3 / textattrs=GraphData3;
entry NEvent3 / textattrs=GraphData3;
entry NObs3 / textattrs=GraphData3;

endlayout;

Adding an External Table with Event Information
This example adds a table to the plot that displays a summary of event information. The following statements
create Figure 23.30:

%ProvideSurvivalMacros

%let GraphOpts = DesignHeight=DefaultDesignWidth;

%SurvivalSummaryTable

%CompileSurvivalTemplates

proc lifetest data=sashelp.BMT
plots=survival(cb=hw atrisk(outside maxlen=13));

time T * Status(0);
strata Group;

run;
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Figure 23.30 External Event Table

The GraphOpts macro variable specifies the option DESIGNHEIGHT=DEFAULTDESIGNWIDTH. At
the default graph size (the size at which the graph is designed), this option sets the graph height to the
default graph width of 640 pixels. The macro %SurvivalSummaryTable adds new statements to the graph
templates that display the number of subjects, number of events, number of censored observations, median
survival time, and 95% confidence limits for the median survival time. For more information about the
%SurvivalSummaryTable macro, see the section “Event Table Macros” on page 837.
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Suppressing the Legend
The plot in Figure 23.30 has a legend. However, the plot displays values in the tables by using colors that
match the colors of the step functions, so you do not need the legend. The next statements show how to
remove the legend:

%ProvideSurvivalMacros

%let GraphOpts = DesignHeight=500px;
%let LegendOpts = ;

%SurvivalSummaryTable

%CompileSurvivalTemplates

proc lifetest data=sashelp.BMT
plots=survival(cb=hw atrisk(maxlen=13));

time T * Status(0);
strata Group;

run;

Figure 23.31 Plot with Legend Removed

The legend is suppressed when the LegendOpts macro variable is null. This example also illustrates changing
the design height to 500 pixels and moving the at-risk table back inside the body of the plot.
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Kaplan-Meier Plot with Event Table and Other Customizations
This example combines a number of features from previous examples. The order of the strata levels in the
tables is ALL, AML–Low Risk, and AML–High Risk (see the section “Reordering the Groups” on page 796).
The title is set to ‘Kaplan-Meier Plot’ (see the section “Changing the Plot Title” on page 803). The second
title line is suppressed (see the section “Suppressing the Second Title and Adding a Footnote” on page 819).
The graph height is set to 500 pixels (see the section “Suppressing the Legend” on page 824). The legend and
the inset box that contains the legend for censored values are both suppressed (see the sections “Suppressing
the Legend” on page 824 and “Adding a Small Inset Table with Event Information” on page 820). The event
table is displayed outside the plot (see the section “Adding an External Table with Event Information” on
page 822) and the at-risk table is displayed inside the plot (see the section “Displaying the Patients-at-Risk
Table inside the Plot” on page 790).

proc format;
invalue bmtnum 'ALL' = 1 'AML-Low Risk' = 2 'AML-High Risk' = 3;
value bmtfmt 1 = 'ALL' 2 = 'AML-Low Risk' 3 = 'AML-High Risk';

run;

data BMT(drop=g);
set sashelp.BMT(rename=(group=g));
Group = input(g, bmtnum.);

run;

%ProvideSurvivalMacros

%let TitleText2 = "Kaplan-Meier Plot";
%let nTitles = 1;
%let GraphOpts = DesignHeight=500px;
%let LegendOpts = ;
%let InsetOpts = ;

%SurvivalSummaryTable

%CompileSurvivalTemplates

proc lifetest data=BMT plots=survival(cb=hw atrisk(maxlen=13));
time T * Status(0);
strata Group / order=internal;
format group bmtfmt.;

run;

The results are displayed in Figure 23.32.
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Figure 23.32 Kaplan-Meier Plot with Extensive Customizations

Compiled Template Cleanup
The following step restores all the default macros and macro variables and deletes the modified templates:

%ProvideSurvivalMacros

proc template;
delete Stat.Lifetest.Graphics.ProductLimitSurvival /

store=sasuser.templat;
delete Stat.Lifetest.Graphics.ProductLimitSurvival2 /

store=sasuser.templat;
run;

For more information about deleting compiled templates, see the section “SAS Item Stores” on page 853.
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Graph Templates, Macros, and Macro Variables
The %ProvideSurvivalMacros macro and the macros and macro variables that it provides have the following
properties:

• Many options, including most of the options that are specified in multiple places in the templates, are
extracted to macro variables.

• The %CompileSurvivalTemplates macro provides the main body of the two templates. You can call it
to compile the templates after making changes.

- The template Stat.Lifetest.Graphics.ProductLimitSurvival provides the survival tem-
plate when the at-risk table is inside the body of the plot.

- The template Stat.Lifetest.Graphics.ProductLimitSurvival2 provides the survival
template when the at-risk table is outside the body of the plot.7

The two templates share many statements, and a macro %DO loop creates both versions.

• The portion of the templates for the table for the p-values is stored in the macro %pValue.

• The portion of the templates for the single-stratum case is stored in the macro %SingleStratum.

• The portion of the templates for the multiple-strata case is stored in the macro %MultipleStrata.

• The macro %AtRiskLatticeStart begins the two-cell lattice that contains the plot above the table when
the at-risk table is outside the body of the plot.

• The macro %AtRiskLatticeEnd ends the two-cell lattice that contains the plot and the table when the
at-risk table is outside the body of the plot.

• Some empty macros (%StmtsBeginGraph, %StmtsTop, and %StmtsBottom) are provided to enable
you to add statements and options to strategic places in the templates.

• The %SurvTabHeader, %SurvivalTable, and %SurvivalSummaryTable macros enable you to easily
add more GTL statements to the Kaplan-Meier plot templates to display event information for each
stratum.

7The macros do not affect any graph that uses graph templates other than the two templates that are modified here. The macros
do not affect the STRATA=PANEL plot that uses the templateStat.Lifetest.Graphics.ProductLimitSurvivalPanel
or the failure plot that uses the template Stat.Lifetest.Graphics.ProductLimitFailure.
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This organization makes it easy to identify the relevant parts of the templates, modify these parts, and
recompile the templates. A small portion of the %ProvideSurvivalMacros macro follows:

%macro ProvideSurvivalMacros;

%global atriskopts bandopts censored censorstr classopts
graphopts groups insetopts legendopts ntitles stepopts tiplabel
tips titletext0 titletext1 titletext2 xoptions yoptions;

%let TitleText0 = METHOD " Survival Estimate";
%let TitleText1 = &titletext0 " for " STRATUMID;
%let TitleText2 = &titletext0 "s"; /* plural: Survival Estimates */

%let yOptions = label="Survival Probability" shortlabel="Survival"
linearopts=(viewmin=0 viewmax=1

tickvaluelist=(0 .2 .4 .6 .8 1.0));

%let xOptions = shortlabel=XNAME offsetmin=.05
linearopts=(viewmax=MAXTIME tickvaluelist=XTICKVALS

tickvaluefitpolicy=XTICKVALFITPOL);
. . .

%macro CompileSurvivalTemplates; . . . %mend;
%macro pValue; . . . %mend;
%macro SingleStratum; . . . %mend;
%macro MultipleStrata; . . . %mend;
. . .

%CompileSurvivalTemplates
%mend;
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The Macro Variables
The macros and macro variables are designed so that most of the time you need to modify only the macro
variables and not the larger macros. However, you have the full flexibility to modify both. You can modify
any of the following macro variables:

%let TitleText0 = METHOD " Survival Estimate";
%let TitleText1 = &titletext0 " for " STRATUMID;
%let TitleText2 = &titletext0 "s"; /* plural: Survival Estimates */
%let nTitles = 2;

%let yOptions = label="Survival Probability" shortlabel="Survival"
linearopts=(viewmin=0 viewmax=1

tickvaluelist=(0 .2 .4 .6 .8 1.0));

%let xOptions = shortlabel=XNAME offsetmin=.05
linearopts=(viewmax=MAXTIME tickvaluelist=XTICKVALS

tickvaluefitpolicy=XTICKVALFITPOL);

%let Tips = rolename=(_tip1= ATRISK _tip2=EVENT)
tiplabel=(_tip1="Number at Risk" _tip2="Observed Events")
tip=(x y _tip1 _tip2);

%let TipLabel = tiplabel=(y="Survival Probability");
%let StepOpts = ;

%let Groups = group=STRATUM index=STRATUMNUM;

%let BandOpts = &groups modelname="Survival";

%let InsetOpts = autoalign=(TOPRIGHT BOTTOMLEFT TOP BOTTOM)
border=true BackgroundColor=GraphWalls:Color Opaque=true;

%let LegendOpts = title=GROUPNAME location=outside;

%let AtRiskOpts = display=(label) valueattrs=(size=7pt);
%let ClassOpts = class=CLASSATRISK colorgroup=CLASSATRISK;

%let Censored = markerattrs=(symbol=plus);
%let CensorStr = "+ Censored";

%let GraphOpts = ;
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The %ProvideSurvivalMacros macro declares that these macro variables are global in scope, so you can
assign values to them in your programs and have them affect the internal macros. These macro variables
specify a variety of GTL options; for more information, see SAS Graph Template Language: Reference. The
macro variables are as follows.

TitleText0 provides the common text that is used in the title for the single-stratum and multiple-strata
cases. METHOD is a dynamic variable that PROC LIFETEST sets. In these examples,
the value of METHOD is ‘Product-Limit’; the product-limit method is also known as the
Kaplan-Meier (1958) method.

TitleText1 provides the title text for the single-stratum title (relying on TitleText0).

TitleText2 provides the title text for the multiple-strata title (relying on TitleText0).

nTitles specifies the number of titles. Set the macro variable nTitles to 1 to suppress the second title
line or 0 to suppress all title lines. You can add titles to the plot by adding ENTRYTITLE
statements to the top of the %StmtsBeginGraph macro even when you suppress the usual titles
by setting the nTitles macro variable to 0 or 1. By default, nTitles equals 2.

yOptions provides the Y-axis options. The LABEL= option provides the axis label. The SHORTLA-
BEL= option provides the axis label for small plots when the LABEL= option label is too
long. The LINEAROPTS= option specifies linear axis options. This and most other axes are
linear axes; alternatives include log-scale axes. The VIEWMIN=0 and VIEWMAX=1 options
ensure that the axis goes from 0 to 1 even when the actual results have a more restricted
range. The TICKVALUELIST= option provides the tick values. Standard SAS number list
abbreviations like 0 TO 1 BY 0.2 are not valid in the GTL.

xOptions provides the X-axis options. The LABEL= option is not provided, so the axis label comes
from the column label in the ODS data object. You can add a LABEL= option or other
axis options if you want. The SHORTLABEL= option provides the axis label for small
plots when the label is too long. The short label comes from a dynamic variable that PROC
LIFETEST provides. The OFFSETMIN= option ensures that there is extra space between the
axis and the minimum tick mark. The LINEAROPTS= option specifies linear axis options.
The VIEWMAX= option ensures that the axis goes to the value in the MAXTIME dynamic
variable set by PROC LIFETEST. The TICKVALUELIST= option provides the tick values in
a dynamic variable. The TICKVALUEFITPOLICY= option provides, in a dynamic variable,
the approach for handling dense tick marks. Approaches include rotation, staggering, and
thinning.

Tips provides options for tooltips for the step plots. Tooltips are text boxes that appear in HTML
output when you rest your mouse pointer over part of the plot when the IMAGEMAP=ON
option is specified in the ODS GRAPHICS statement. Tooltips are provided for the X- and
Y-axis columns. Additional columns that are assigned roles (and hence are eligible to use as
tooltips) include the at-risk and event columns. These columns are given the tooltip labels
‘Number at Risk’ and ‘Observed Events’. Unless you are specifically interested in tooltips,
you probably do not need to modify this macro variable.

TipLabel provides a label for the Y-axis tooltip. Unless you are specifically interested in tooltips, you
do not need to modify this macro variable.

StepOpts provides options for the step functions. This macro variable is null by default. You can use
this option to control the line thickness (for example, LINEATTRS=(THICKNESS=2.5)) and
other aspects of the step functions.
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Groups provides the name of the data object columns that provide group names and the index that
provides the order of the group names. You will probably never need to modify this macro
variable.

BandOpts provides the group information for band plots. You will probably never need to modify this
macro variable.

InsetOpts provides options for the inset table that provides the censored value legend and the homogene-
ity test p-value. The AUTOALIGN= option specifies the places in the plot where the inset table
can be positioned. If your preferred placement is somewhere other than the top right corner,
you can modify the automatic placement list. The BORDER= option displays a border around
this table. The BACKGROUNDCOLOR= option controls the table background. By default, it
matches the background color for the rest of the plot by using the GraphWalls:Color style
reference. The OPAQUE=TRUE option specifies an opaque table that hides any graphical
elements that are behind the table. You can set the InsetOpts macro variable to null to suppress
the usual inset that contains the censored value and p-value.

LegendOpts provides options for the external legend that identifies the strata. The title comes from a
dynamic variable GroupName that the procedure sets. By default, the legend is outside the
plot. Specify LOCATION=INSIDE and an AUTOALIGN= option such as the one provided
in the InsetOpts macro variable if you want the legend to appear inside the plot. You can set
the LegendOpts macro variable to null to suppress the legend.

AtRiskOpts provides options for the at-risk table. The option DISPLAY=(LABEL) limits the display to
labels. VALUEATTRS=(SIZE=7PT) specifies a font size of seven points.

ClassOpts provides the options that are used in the at-risk table to distinguish groups of observations.

Censored provides the marker (a plus sign) that is displayed in the plot to indicate censored observations.

CensorStr provides the character for the inset table that shows how censored observations appear in the
plot.

GraphOpts provides options for the template BEGINGRAPH statement. By default, the GraphOpts
macro variable is null. The following options are particularly useful:

• ATTRPRIORITY=AUTO | NONE | COLOR specifies the priority for varying the at-
tributes that distinguish groups of observations. AUTO honors the setting that is other-
wise in effect. COLOR varies only the color attribute. NONE simultaneously varies
colors, markers, and lines. Styles such as HMTLBlue and Pearl are ATTRPRIOR-
ITY=COLOR styles, whereas styles such as DEFAULT, Statistical, Listing, and RTF are
ATTRPRIORITY=NONE styles.

• DATACOLORS=(color-list) specifies the list of colors (which control confidence bands)
to replace the graph data colors from the GraphData1–GraphDataN style elements.

• DATACONTRASTCOLORS=(color-list) specifies the list of contrast colors (which con-
trol markers and lines) to replace the graph data contrast colors from the GraphData1–
GraphDataN style elements.

• DATALINEPATTERNS=(line-pattern-list) specifies the list of line patterns to replace the
graph data line patterns from the GraphData1–GraphDataN style elements. There are
46 line patterns, and you can specify each pattern by using an integer in the range 1
to 46. Some patterns have names associated with them. You can specify either the
name or the number for the following number/name pairs: 1 Solid, 2 ShortDash, 4
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MediumDash, 5 LongDash, 8 MediumDashShortDash, 14 DashDashDot, 15 DashDot-
Dot, 20 Dash, 26 LongDashShortDash, 34 Dot, 35 ThinDot, 41 ShortDashDot, and 42
MediumDashDotDot.

• DESIGNHEIGHT=height sets the graph height. You can set the graph height
to the default graph width of 640 pixels by specifying the option DESIGN-
HEIGHT=DEFAULTDESIGNWIDTH. Or you can specify a size in pixels, such as
DESIGNHEIGHT=500PX. Although the graph is designed at the specified height, you
can resize it for the actual display by using the WIDTH= and HEIGHT= options in the
ODS GRAPHICS statement. By default, DESIGNHEIGHT=480PX.

• DESIGNWIDTH=width sets the graph width. You can set the graph width
to the default graph height of 480 pixels by specifying the option DESIGN-
WIDTH=DEFAULTDESIGNHEIGHT. Or you can specify a size in pixels, such
as DESIGNWIDTH=600PX. Although the graph is designed at the specified width, you
can resize it for the actual display by using the WIDTH= and HEIGHT= options in the
ODS GRAPHICS statement. By default, DESIGNWIDTH=640PX.

The Smaller Macros
The %ProvideSurvivalMacros macro provides four small macros that are easy for you to modify:

%macro StmtsBeginGraph; %mend;
%macro StmtsTop; %mend;
%macro StmtsBottom; %mend;

%macro pValue;
if (PVALUE < .0001)

entry TESTNAME " p " eval (PUT(PVALUE, PVALUE6.4));
else

entry TESTNAME " p=" eval (PUT(PVALUE, PVALUE6.4));
endif;

%mend;

By default, the %StmtsBeginGraph, %StmtsTop, and %StmtsBottom macros are empty. You can use them to
add new statements to the BEGINGRAPH block or to the beginning or end of the block of statements that
define the appearance of the graph.

The %pValue macro is used to control the display of the p-value from the homogeneity test.

The Larger Macros
The examples and information up to this point have illustrated how you can make simple changes to the
survival plot. It is unlikely that you will ever have to do more than that. If you need to make changes to the
overall layout of the graph, then you must modify one of the other macros. The %CompileSurvivalTemplates
macro, which is the macro that compiles all the pieces that you modified, is as follows:
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%macro CompileSurvivalTemplates;
%local outside;
proc template;

%do outside = 0 %to 1;
define statgraph

Stat.Lifetest.Graphics.ProductLimitSurvival%scan(2,2-&outside);
dynamic NStrata xName plotAtRisk

%if %nrbquote(&censored) ne %then plotCensored;
plotCL plotHW plotEP labelCL labelHW labelEP maxTime xtickVals
xtickValFitPol rowWeights method StratumID classAtRisk
plotTest GroupName Transparency SecondTitle TestName pValue
_byline_ _bytitle_ _byfootnote_;

BeginGraph %if %nrbquote(&graphopts) ne %then / &graphopts;;

if (NSTRATA=1)
%if &ntitles %then %do;

if (EXISTS(STRATUMID)) entrytitle &titletext1;
else entrytitle &titletext0;
endif;

%end;

%if &ntitles gt 1 %then %do;
%if not &outside %then if (PLOTATRISK=1);

entrytitle "With Number of Subjects at Risk" /
textattrs=GRAPHVALUETEXT;

%if not &outside %then %do; endif; %end;
%end;

%StmtsBeginGraph
%AtRiskLatticeStart
layout overlay / xaxisopts=(&xoptions) yaxisopts=(&yoptions);

%StmtsTop
%SingleStratum
%StmtsBottom

endlayout;
%AtRiskLatticeEnd

else
%if &ntitles %then %do; entrytitle &titletext2; %end;
%if &ntitles gt 1 %then %do;

if (EXISTS(SECONDTITLE))
entrytitle SECONDTITLE / textattrs=GRAPHVALUETEXT;

endif;
%end;

%StmtsBeginGraph
%AtRiskLatticeStart
layout overlay / xaxisopts=(&xoptions) yaxisopts=(&yoptions);

%StmtsTop
%MultipleStrata
%StmtsBottom

endlayout;
%AtRiskLatticeEnd(class)

endif;
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if (_BYTITLE_) entrytitle _BYLINE_ / textattrs=GRAPHVALUETEXT;
else if (_BYFOOTNOTE_) entryfootnote halign=left _BYLINE_; endif;
endif;
EndGraph;

end;
%end;

run;
%mend;

The macro %DO loop compiles the following two templates:

• Stat.Lifetest.Graphics.ProductLimitSurvival when the macro variable Outside is 0 and
%SCAN(2,2-&OUTSIDE) is null

• Stat.Lifetest.Graphics.ProductLimitSurvival2 when the macro variable Outside is 1 and
%SCAN(2,2-&OUTSIDE) is 2

The primary difference between these templates is that when the macro variable Outside is 1, a LAYOUT
LATTICE statement block is used to place the at-risk table outside the graph. When Outside is 1, the macros
%AtRiskLatticeStart and %AtRiskLatticeEnd provide the LAYOUT LATTICE statement block (two cells,
plot above and at-risk table below) and the LAYOUT OVERLAY statement block for the at-risk table. The
%AtRiskLatticeStart and %AtRiskLatticeEnd macros are defined as follows:

%macro AtRiskLatticeStart;
%if &outside %then %do;

layout lattice / rows=2 rowweights=ROWWEIGHTS
columndatarange=union rowgutter=10;

cell;
%end;

%mend;

%macro AtRiskLatticeEnd(useclassopts);
%if &outside %then %do;

endcell;
cell;

layout overlay / walldisplay=none xaxisopts=(display=none);
axistable x=TATRISK value=ATRISK / &atriskopts

%if &useclassopts ne %then &classopts;;
endlayout;

endcell;
endlayout;
%end;

%mend;

The %CompileSurvivalTemplates macro relies on two other macros: %SingleStratum for the single-stratum
case and %MultipleStrata for the multiple-strata case. The %SingleStratum macro is as follows:
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%macro SingleStratum;
if (PLOTHW=1 AND PLOTEP=0)

bandplot LimitUpper=HW_UCL LimitLower=HW_LCL x=TIME /
modelname="Survival" fillattrs=GRAPHCONFIDENCE
name="HW" legendlabel=LABELHW;

endif;
if (PLOTHW=0 AND PLOTEP=1)

bandplot LimitUpper=EP_UCL LimitLower=EP_LCL x=TIME /
modelname="Survival" fillattrs=GRAPHCONFIDENCE
name="EP" legendlabel=LABELEP;

endif;
if (PLOTHW=1 AND PLOTEP=1)

bandplot LimitUpper=HW_UCL LimitLower=HW_LCL x=TIME /
modelname="Survival" fillattrs=GRAPHDATA1 datatransparency=.55
name="HW" legendlabel=LABELHW;

bandplot LimitUpper=EP_UCL LimitLower=EP_LCL x=TIME /
modelname="Survival" fillattrs=GRAPHDATA2
datatransparency=.55 name="EP" legendlabel=LABELEP;

endif;
if (PLOTCL=1)

if (PLOTHW=1 OR PLOTEP=1)
bandplot LimitUpper=SDF_UCL LimitLower=SDF_LCL x=TIME /

modelname="Survival" display=(outline)
outlineattrs=GRAPHPREDICTIONLIMITS name="CL" legendlabel=LABELCL;

else
bandplot LimitUpper=SDF_UCL LimitLower=SDF_LCL x=TIME /

modelname="Survival" fillattrs=GRAPHCONFIDENCE name="CL"
legendlabel=LABELCL;

endif;
endif;

stepplot y=SURVIVAL x=TIME / name="Survival" &tips legendlabel="Survival"
&stepopts;

if (PLOTCENSORED=1)
scatterplot y=CENSORED x=TIME / &censored &tiplabel

name="Censored" legendlabel="Censored";
endif;

if (PLOTCL=1 OR PLOTHW=1 OR PLOTEP=1)
discretelegend "Censored" "CL" "HW" "EP" / location=outside

halign=center;
else

if (PLOTCENSORED=1)
discretelegend "Censored" / location=inside

autoalign=(topright bottomleft);
endif;

endif;
%if not &outside %then %do;

if (PLOTATRISK=1)
innermargin / align=bottom;

axistable x=TATRISK value=ATRISK / &atriskopts;
endinnermargin;

endif;
%end;

%mend;
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The %MultipleStrata macro is as follows:

%macro MultipleStrata;
if (PLOTHW=1)

bandplot LimitUpper=HW_UCL LimitLower=HW_LCL x=TIME / &bandopts
datatransparency=Transparency;

endif;
if (PLOTEP=1)

bandplot LimitUpper=EP_UCL LimitLower=EP_LCL x=TIME / &bandopts
datatransparency=Transparency;

endif;
if (PLOTCL=1)

if (PLOTHW=1 OR PLOTEP=1)
bandplot LimitUpper=SDF_UCL LimitLower=SDF_LCL x=TIME / &bandopts

display=(outline) outlineattrs=(pattern=ShortDash);
else

bandplot LimitUpper=SDF_UCL LimitLower=SDF_LCL x=TIME / &bandopts
datatransparency=Transparency;

endif;
endif;

stepplot y=SURVIVAL x=TIME / &groups name="Survival" &tips &stepopts;

if (PLOTCENSORED=1)
scatterplot y=CENSORED x=TIME / &groups &tiplabel &censored;

endif;

%if not &outside %then %do;
if (PLOTATRISK=1)

innermargin / align=bottom;
axistable x=TATRISK value=ATRISK / &atriskopts &classopts;

endinnermargin;
endif;

%end;

%if %nrbquote(&legendopts) ne %then %do;
DiscreteLegend "Survival" / &legendopts;

%end;

%if %nrbquote(&insetopts) ne %then %do;
if (PLOTCENSORED=1)

if (PLOTTEST=1)
layout gridded / rows=2 &insetopts;

entry &censorstr;
%pValue

endlayout;
else

layout gridded / rows=1 &insetopts;
entry &censorstr;

endlayout;
endif;

else
if (PLOTTEST=1)
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layout gridded / rows=1 &insetopts;
%pValue

endlayout;
endif;

endif;
%end;

%mend;

Event Table Macros
All the macros and macro variables that have been described up to this point are used in defining the two
survival plot graph templates. Some macros (%StmtsTop and %StmtsBottom) and macro variables (StepOpts
and GraphOpts) are null and do not affect the generated template code, but all are resolved somewhere in
the process of producing the templates. In contrast, the macros %SurvTabHeader, %SurvivalTable, and
%SurvivalSummaryTable are not used by default. They are available for you to use to add more statements to
the templates.

The %SurvTabHeader macro provides the headings for the event table:

%macro SurvTabHeader(multiple);
%if &multiple %then %do; entry ""; %end;
entry "";
entry &r "Median";
entry "";

%if &multiple %then %do; entry ""; %end;
entry &r "Subjects";
entry &r "Event";
entry &r "Censored";
entry &r "Survival";
entry &r PctMedianConfid;
entry halign=left "CL";

%mend;

This table is not displayed by default. There are two types of headings: one for multiple strata and one for a
single stratum.

The %SurvivalTable macro provides the body of the event table:

%macro SurvivalTable;
%local fmt r i t;
%let fmt = bestd6.;
%let r = halign = right;
columnheaders;

layout overlay / pad=(top=5);
if(NSTRATA=1)

layout gridded / columns=6 border=TRUE;
dynamic PctMedianConfid NObs NEvent Median

LowerMedian UpperMedian;
%SurvTabHeader(0)
entry &r NObs;
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entry &r NEvent;
entry &r eval(NObs-NEvent);
entry &r eval(put(Median,&fmt));
entry &r eval(put(LowerMedian,&fmt));
entry &r eval(put(UpperMedian,&fmt));

endlayout;
else

layout gridded / columns=7 border=TRUE;
dynamic PctMedianConfid;
%SurvTabHeader(1)
%do i = 1 %to 10;

%let t = / textattrs=GraphData&i;
dynamic StrVal&i NObs&i NEvent&i Median&i

LowerMedian&i UpperMedian&i;
if (&i <= nstrata)

entry &r StrVal&i &t;
entry &r NObs&i &t;
entry &r NEvent&i &t;
entry &r eval(NObs&i-NEvent&i) &t;
entry &r eval(put(Median&i,&fmt)) &t;
entry &r eval(put(LowerMedian&i,&fmt)) &t;
entry &r eval(put(UpperMedian&i,&fmt)) &t;

endif;
%end;

endlayout;
endif;

endlayout;
endcolumnheaders;

%mend;

The %SurvivalSummaryTable macro redefines the %AtRiskLatticeStart and %AtRiskLatticeEnd macros so
that they provide the body of the event table:

%macro SurvivalSummaryTable;
%macro AtRiskLatticeStart;

layout lattice / columndatarange=union rowgutter=10
rows=%if &outside %then 2 rowweights=ROWWEIGHTS;

%else 1;;
%if &outside %then %do; cell; %end;

%mend;

%macro AtRiskLatticeEnd(useclassopts);
%if &outside %then %do;

endcell;
cell;

layout overlay / walldisplay=none xaxisopts=(display=none);
axistable x=TATRISK value=ATRISK / &atriskopts

%if &useclassopts ne %then &classopts;;
endlayout;

endcell;
%end;
%SurvivalTable
endlayout;

%mend;
%mend;
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If you want to create an event table like the one displayed in Figure 23.30, you only need to call the %Sur-
vivalSummaryTable macro. If you want to modify the table, then you need to modify the %SurvTabHeader
and %SurvivalTable macros.

Dynamic Variables
Graph templates consist of instructions, written by SAS developers, in conjunction with SAS procedure
code. However, SAS developers cannot fully provide some instructions when the template is written, because
some elements of some graphs cannot be known until the procedure runs. For example, the legend title in a
graph that has multiple strata corresponds to the label or name of the stratification variable, and the procedure
calculates the p-value for the homogeneity test. SAS procedures create dynamic variables to provide some
run-time information to graphs.8 Some dynamic variables are set by the procedure and are declared in the
template. Other dynamic variables are also set by the procedure, but you must declare them directly or
through the template modification macros before you can use them.

Dynamic Variables That Are Automatically Declared
The primary dynamic variables are as follows:

_ByFootNote_ is a binary variable that, when true, displays the BY-group BY line as a footnote.

_ByLine_ is a character variable that provides the BY-group BY line.

_ByTitle_ is a binary variable that, when true, displays the BY-group BY line as a title.

ClassAtRisk is a character variable that names the data object column that contains the classification
(stratification) values.

GroupName is a character variable that contains the stratification legend title.

LabelCL is a character variable that contains the label for the confidence limits legend entry
(including the percent sign).

LabelEP is a character variable that contains the label for the equal-precision band legend entry
(including the percent sign).

LabelHW is a character variable that contains the label for the Hall-Wellner band legend entry
(including the percent sign).

MaxTime is a numeric variable that contains the maximum value to display on the X axis.

Method is a character variable that contains the method for the plot title.

NStrata is an integer variable that contains the number of strata.

PValue is a numeric variable that contains the p-value for the homogeneity test.

PlotAtRisk is a binary variable that, when true, is used to display the at-risk table.

PlotCensored is a binary variable that, when true, displays the censored values on the step functions.

8Axis labels can be set directly in the template or at run time through dynamic variables or through data object column labels.
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PlotCL is a binary variable that, when true, displays the pointwise confidence limits.

PlotEP is a binary variable that, when true, displays the equal-precision band.

PlotHW is a binary variable that, when true, displays the Hall-Wellner confidence band.

PlotTest is a binary variable that, when true, displays the p-value for the homogeneity test.

RowWeights is a pair of relative heights of the plot and the external at-risk table.

SecondTitle is a character variable that provides the second title line.

StratumID is a character variable that provides the value of the stratification variable for the single
stratum case.

TestName is a character variable that provides the name of the homogeneity test (for example,
‘logrank’).

Transparency is a numeric variable that provides the transparency for the confidence bands in the
multiple strata case.

XName is a character variable that contains a short label for the X axis, which might be used in
place of the ordinary X-axis label when the ordinary label is long or the plot is small.

XtickValFitPol is a character variable that contains the option for handling dense tick values on the X
axis.

XtickVals is a list of X-axis tick values.

Additional Dynamic Variables
PROC LIFETEST passes to the survival plots a number of dynamic variables that contain summary statistics.
Some of these dynamic variables are used when you call the %SurvivalSummaryTable macro. Table 23.1
and Table 23.2 list these additional dynamic variables for the Kaplan-Meier curves and the life-table curves,
respectively. These dynamic variables are not declared in the templates for the survival curves, but you can
declare them and use them to enhance the default plots.9 The names of the dynamic variables depend on the
STRATA= suboption of the PLOTS=SURVIVAL option: STRATA=INDIVIDUAL produces a separate plot
for each stratum, and STRATA=OVERALL produces one plot that has overlaid curves.

Table 23.1 Additional Dynamic Variables for
Stat.Graphics.ProductLimitSurvival

STRATA= Dynamic Description

OVERLAY StrValj Label for the jth stratum
NObsj Number of observations in the jth stratum
NEventj Number of events in the jth stratum
Medianj Median survival time of the jth stratum
LowerMedianj Lower median survival time of the jth stratum
UpperMedianj Upper median survival time of the jth stratum
PctMedianConfid Confidence of the median intervals, in percentage

9Because the number of dynamic variables is a function of the number of strata, the template definition cannot automatically
contain the correct number of dynamic variables.
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Table 23.1 continued

STRATA= Dynamic Description

INDIVIDUAL NObs Number of observations
NEvent Number of events
Median Median survival time
LowerMedian Lower median survival time
UpperMedian Upper median survival time
PctMedianConfid Confidence of the median intervals, in percentage

Table 23.2 Additional Dynamic Variables for
Stat.Graphics.LifetableSurvival

STRATA= Dynamic Description

OVERLAY StrValj Label for the jth stratum
NObsj Number of observations in the jth stratum
NEventj Number of events in the jth stratum

INDIVIDUAL NObs Number of observations
NEvent Number of events

Style Templates
Graphs that are produced by ODS Graphics are controlled by the data object (the matrix of information that
is graphed), the graph template (the program that controls how a specific graph is constructed), and a style
template (a program that controls the overall appearance of graphs, including colors, line and marker styles,
sizes, fonts, and so on). Although it is rarely necessary, you can use different styles or modify styles to change
the appearance of all graphs, including the survival plot. In the past, you could make certain Kaplan-Meier
plot modifications only through style modifications. However, with the addition of the DATACOLORS=,
DATACONTRASTCOLORS=, and DATALINEPATTERNS= options in the GTL, you no longer have to
modify styles in order to modify how groups of observations are displayed. This section shows you how to
change styles, extract group color and other information from styles, and modify styles.
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Changing the Style
The graphs that have been displayed up to this point were all produced by using the HTMLBlue style, which
is the default style for the HTML destination in the SAS windowing environment. This is an all-color
style (because of the ATTRPRIORITY=‘Color’ option); it does not rely on line style or marker changes
to differentiate groups. You can switch to a style that varies colors, markers, and lines by specifying the
STYLE= option in an ODS destination statement. You can use the HTMLBlueCML style as follows to make
a graph whose line patterns differ:

ods html style=htmlbluecml image_dpi=300;
proc lifetest data=sashelp.BMT

plots=survival(cb=hw test atrisk(outside maxlen=13));
time T * Status(0);
strata Group;

run;
ods html close;

The results are displayed in Figure 23.33. This example also illustrates specifying the IMAGE_DPI= option
to control the resolution (measured in dots per inch, or DPI) of the image. All images in this chapter are
created at 300 DPI. The default setting for the HTML destination is 100 DPI. Images that are created at 300
DPI are clearer than images created at 100 DPI, but they require about nine times as much disk space.

Figure 23.33 Line and Color Group Differentiation
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Color Priority Styles
You can use the HTMLBlue or Pearl style when you want to distinguish groups only by color. Alterna-
tively, you can easily modify any other style to be an all-color style like HTMLBlue or Pearl by using the
ATTRPRIORITY=‘Color’ option:10

proc template;
define style styles.ListingColor;

parent = styles.Listing;
style Graph from Graph / attrpriority = "Color";

end;
run;

You need to specify the new style name in an ODS destination statement, as in the following:

ods html style=ListingColor image_dpi=300;
proc lifetest data=sashelp.BMT

plots=survival(cb=hw test atrisk(outside maxlen=13));
time T * Status(0);
strata Group;

run;
ods html close;

The results are displayed in Figure 23.34.

Figure 23.34 ATTRPRIORITY=‘Color’ Style

10The style option is ATTRPRIORITY=quoted-string, whereas the GTL option is ATTRPRIORITY=keyword .
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Displaying a Style and Extracting Color Lists
You can use PROC TEMPLATE with the SOURCE statement to display a style as follows:

proc template;
source styles.htmlblue;

run;

The results of this step, which are not shown, include the option PARENT=STYLES.STATISTICAL and do
not include definitions of the colors (gData1, gData2, ..., gData12) and contrast colors (gcData1, gcData2,
..., gcData12). These are the color definitions that are used in the style elements GraphData1, GraphData2,
..., GraphData12. You can examine the parent Statistical style as follows:

proc template;
source styles.statistical;

run;

The results of this step are not shown because they are hard to interpret in their raw form, but the desired
color definitions are included. You can submit the following statements to display the colors for the Statistical
(and hence HTMLBlue) style in a more understandable form:

proc template;
source styles.statistical / file='style.tmp';

run;

data colors;
length element Color $ 20;
infile 'style.tmp';
input;
if index(_infile_, 'data') then do;

element = scan(_infile_, 1, ' ');
Color = scan(_infile_, 3, ' ;');
Type = ifc(index(element, 'gc'), 'Line', 'Fill') || ' Colors';
i = input(compress(element, 'gcdat'';'), ?? 2.);
if i then output;

end;
run;

proc sort; by descending type i; run;

proc print; id type; by descending type; var color; run;

The results are displayed in Figure 23.35. All colors are specified in values of the form CXrrggbb, where the
last six characters specify RGB (red, green, blue) values on the hexadecimal scale of 00 to FF (0 to 255, base
10).
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Figure 23.35 HMTLBlue Style Colors List

Type=Line Colors

Type Color

Line Colors cx445694

cxA23A2E

cx01665E

cx543005

cx9D3CDB

cx7F8E1F

cx2597FA

cxB26084

cxD17800

cx47A82A

cxB38EF3

cxF9DA04

Type Color

Fill Colors cx6F7EB3

cxD05B5B

cx66A5A0

cxA9865B

cxB689CD

cxBABC5C

cx94BDE1

cxCD7BA1

cxCF974B

cx87C873

cxB7AEF1

cxDDD17E

You can use the following steps to display the GraphData1 – GraphData12 line and fill colors (contrast
colors and colors, respectively):

data display;
array y[12] y1 - y12;
do i = 1 to 12; y[i] = i; end;
do x = 1 to 10; output; end;
do i = 1 to 12; y[i] = i + .5; end;
do x = 1 to 10; output; end;

run;

data _null_;
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set colors;
call symputx(compress(type || put(i, 2.)), color);

run;

proc sgplot noautolegend data=display;
%macro reg;

title 'Line and Fill Colors, Respectively';
%do i = 1 %to 12;

reg y=y%eval(13-&i) x=x / lineattrs=GraphData&i clmattrs=GraphData&i
nomarkers clm curvelabelpos=max
curvelabel=" GraphData&i &&LineColors&i &&FillColors&i";

%end;
%mend;
%reg
xaxis display=none;
yaxis display=none;

run;

title;

The results are displayed in Figure 23.36. The colors in Figure 23.36 are richer than the colors in the bands
in the survival plots because of the DATATRANSPARENCY= options in the BANDPLOT statements.

Figure 23.36 HTMLBlue Style Colors Display
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Modifying Color Lists
You can use the information in Figure 23.36 to specify the desired colors in the graph template. You can copy
the third, second, and first colors from each list and switch the colors as follows:

%ProvideSurvivalMacros

%let GraphOpts = DataContrastColors=(cx01665E cxA23A2E cx445694)
DataColors=(cx66A5A0 cxD05B5B cx6F7EB3);

%CompileSurvivalTemplates

proc lifetest data=sashelp.BMT
plots=survival(cb=hw test atrisk(outside maxlen=13));

time T * Status(0);
strata Group;

run;

The results are displayed in Figure 23.37. The familiar colors are used, but they are now in a different order.
The next section shows you how to modify a style template to change the color order without having to
extract the original color names.

Figure 23.37 Swapping Colors from the Style

You can use the information in Figure 23.36 to modify the style template, but the next example shows an
easier way.
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Swapping Colors among Style Elements
You can modify the colors in a style as follows:

%macro reorder(from, to, list);

proc template;
define style styles.&to;

parent=styles.&from;
%do i = 1 %to 12;

%let s = %scan(&list, &i);
%if &s ne %then %do;

style GraphData&i from GraphData&i /
contrastcolor = GraphColors("gcdata&s")
color = GraphColors("gdata&s");

%end;
%end;

end;
run;

%mend;

%reorder(htmlblue, /* Parent style. */
MyStyle, /* New style to create. Specify it in an ODS */

/* destination statement. */
3 2 1) /* Replace the first few GraphData colors */

/* (1 2 3) with the colors from the specified */
/* GraphData style elements (3 2 1). */
/* You can specify up to 12 integers in the */
/* range 1 - 12. */

The %Reorder macro creates a new style called MyStyle that inherits most of its attributes from the
HTMLBlue style. However, in the new style, the colors for groups 1, 2, and 3 have been replaced by
the colors for groups 3, 2, and 1. In other words, the colors for GraphData1 and GraphData3 have been
switched.

The following step creates the plot:

ods html style=mystyle;
proc lifetest data=sashelp.BMT

plots=survival(cb=hw test atrisk(outside maxlen=13));
time T * Status(0);
strata Group;

run;
ods html close;

The survival plot is not shown, but it matches the plot in Figure 23.37.

The rest of this section is optional. It explains how you can directly modify colors in a style template when
the %Reorder macro or the technique illustrated in the section “Changing the Group Color” on page 808 is
not sufficient.
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The source code for the MyStyle style (as generated by the %Reorder macro) is as follows:

proc template;
define style Styles.MyStyle;

parent = styles.htmlblue;
style GraphData1 from GraphData1 /

color = GraphColors('gdata3')
contrastcolor = GraphColors('gcdata3');

style GraphData2 from GraphData2 /
color = GraphColors('gdata2')
contrastcolor = GraphColors('gcdata2');

style GraphData3 from GraphData3 /
color = GraphColors('gdata1')
contrastcolor = GraphColors('gcdata1');

end;
run;

You can create a modified style that has direct color specifications by using the colors in Figure 23.35 as
follows:

proc template;
define style Styles.MyStyle;

parent = styles.htmlblue;
style GraphData1 from GraphData1 /

color = cx66A5A0
contrastcolor = cx01665E;

style GraphData2 from GraphData2 /
color = cxD05B5B
contrastcolor = cxA23A2E;

style GraphData3 from GraphData3 /
color = cx6F7EB3
contrastcolor = cx445694;

end;
run;

You can define additional GraphDataN style elements as well. For more information about how to define
style elements, see the section “Displaying Other Style Elements” on page 852.

You can delete the new style template as follows:

proc template;
delete Styles.MyStyle / store=sasuser.templat;

run;



850 F Chapter 23: Customizing the Kaplan-Meier Survival Plot

Displaying a Style and Extracting Font Information
You can use PROC TEMPLATE with the SOURCE statement to display a style and its parent styles in the
SAS log:

proc template;
source styles.htmlblue / expand;

run;

The results of this step are long and are not shown. You can write a copy of the style templates to a file as
follows:

proc template;
source styles.htmlblue / expand file='style.tmp';

run;

The EXPAND option writes the specified style (HTMLBlue), followed by its parent (Statistical), and followed
by the parent’s parent (DEFAULT) to the file. The following step extracts and displays the first place in the
file that the graph fonts are defined (which make the final decision in the style template):

data _null_;
infile 'style.tmp' pad;
input line $char80.;
file print;
if index(lowcase(line), ' graphfonts ') then y + 1;
if y then put line $char80.;
if y and index(line, ';') then stop;

run;

The results are displayed in Figure 23.38.

Figure 23.38 Graph Font Definition

   style GraphFonts /                                                           
      'NodeDetailFont' = ("<sans-serif>, <MTsans-serif>",7pt)                   
      'NodeInputLabelFont' = ("<sans-serif>, <MTsans-serif>",9pt)               
      'NodeLabelFont' = ("<sans-serif>, <MTsans-serif>",9pt)                    
      'NodeTitleFont' = ("<sans-serif>, <MTsans-serif>",9pt)                    
      'GraphDataFont' = ("<sans-serif>, <MTsans-serif>",7pt)                    
      'GraphUnicodeFont' = ("<MTsans-serif-unicode>",9pt)                       
      'GraphValueFont' = ("<sans-serif>, <MTsans-serif>",9pt)                   
      'GraphLabel2Font' = ("<sans-serif>, <MTsans-serif>",10pt)                 
      'GraphLabelFont' = ("<sans-serif>, <MTsans-serif>",10pt)                  
      'GraphFootnoteFont' = ("<sans-serif>, <MTsans-serif>",10pt)               
      'GraphTitleFont' = ("<sans-serif>, <MTsans-serif>",11pt,bold)             
      'GraphTitle1Font' = ("<sans-serif>, <MTsans-serif>",14pt,bold)            
      'GraphAnnoFont' = ("<sans-serif>, <MTsans-serif>",10pt);                  

If the GraphFonts style element is defined in the HTMLBlue style, then it will appear first in the file, followed
by the definitions from the Statistical style and then the DEFAULT style. In this case, the GraphFonts style
element is defined in the DEFAULT style (last in the file), which is overridden by a definition in the Statistical
style (closer to the top of the file); that is the definition that is inherited by the HTMLBlue style and displayed
in Figure 23.38.
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The following step creates a new style, BigFont, that changes the GraphLabelFont style element from a
regular 10-point font to a bold 12-point font and changes the GraphValueFont style element from a regular
9-point font to a bold 8-point font:

proc template;
define style Styles.BigFont;

parent = Styles.HTMLBlue;
style graphfonts from graphfonts /

'GraphLabelFont' = ("<sans-serif>, <MTsans-serif>",12pt,bold)
'GraphValueFont' = ("<sans-serif>, <MTsans-serif>",8pt,bold);

end;
run;

The following step creates the plot that is displayed in Output 23.39:

ods html style=BigFont;
proc lifetest data=sashelp.BMT plots=survival(maxlen=13 atrisk);

time T * Status(0);
strata Group;

run;
ods html close;

Figure 23.39 Font Modifications
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You can delete the new style template as follows:

proc template;
delete Styles.BigFont / store=sasuser.templat;

run;

For information about making ad hoc font changes in the graph templates rather than making more global
font changes in style templates, see the section “Changing the Font” on page 810.

Displaying Other Style Elements
You can use the approach from the previous example to display other style elements:

proc template;
source styles.htmlblue / expand file='style.tmp';

run;

data _null_;
infile 'style.tmp' pad;
input line $char80.;
file print;
if index(lowcase(line), ' graphdata1 ') then y + 1;
if y then put line $char80.;
if y and index(line, ';') then stop;

run;

This example displays the GraphData1 style element. The results are displayed in Figure 23.40.

Figure 23.40 GraphData1 Style Element

   class GraphData1 /                                                           
      markersymbol = "circle"                                                   
      linestyle = 1                                                             
      contrastcolor = GraphColors('gcdata1')                                    
      color = GraphColors('gdata1');                                            

The following steps display all the GraphFonts style elements from all the styles:

proc template;
source styles / file='style.tmp';

run;

data _null_;
infile 'style.tmp' pad;
length style $ 80;
retain style;
input line $char80.;
file print;
if index(lowcase(line), 'define style') then style = line;
if index(lowcase(line), ' graphfonts ') then do;
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y + 1;
put style $char80.;

end;
if y then put line $char80.;
if index(line, ';') then y = 0;;

run;

The results of this step are not displayed. You can use this approach to help you better understand the
options that are available for modifying styles. The SOURCE statement specifies a single-level value of
STYLES rather than a specific style name such as STYLES.HTMLBLUE, so all templates that begin with
STYLES as the first level (all style templates) are written to the file. The DATA step displays all definitions
of GraphFonts and the names of all styles that define the GraphFonts style element.

You can insert the name of another style element (in lowercase with a leading and trailing blank) in the
preceding programs in place of ‘graphdata1’ or ‘graphfonts’. After you display a style element, you can
modify the definition and create a new style that uses the modified definition, as in the example in the section
“Displaying a Style and Extracting Font Information” on page 850. Some of the style elements that you might
want to display and modify are listed in Table 23.3.

SAS Item Stores
In other sections of this chapter, you submit PROC TEMPLATE statements (either directly or through
macros) to compile and save graph and style templates. Compiled templates are stored in special SAS files
called item stores. Assuming that you have not modified your ODS path with an ODS PATH statement, the
templates that you compile are stored in an item store in the Sasuser library. By default, all templates that
SAS provides are stored in an item store in the Sashelp library. By default, the Sashelp item store has read
access only; you cannot write to it. By default, the Sasuser item store has update access; you can both read
and write to it. CAUTION: Never set the Sashelp item store to update or write access. If you do, and if you
have administrator privileges on your computer, you could corrupt the Sashelp item store.

Assuming that the default ODS path is used, ODS first looks for a template in the Sasuser item store. If
it does not find the template there, ODS next looks for the template in the Sashelp item store. Files in the
Sasuser library persist across SAS sessions until you delete them. You can run the following step to delete
the entire Sasuser item store (including all compiled graph and style templates that you added or modified)
so that ODS uses only the templates the SAS System supplies:

ods path sashelp.tmplmst(read);
proc datasets library=sasuser nolist;

delete templat(memtype=itemstor);
run;
ods path reset;

For more information about the ODS path and SAS item stores, see Chapter 21, “Statistical Graphics Using
ODS.”
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Table 23.3 Style Elements
AfterCaption GraphAnnoText GraphHeaderBackground List3
Batch GraphAxisLines GraphHistogram ListItem
Body GraphBackground GraphInitial Note
BodyDate GraphBand GraphLabel2Text NoteBanner
ByContentFolder GraphBar GraphLabelText NoteContentFixed
Byline GraphBlock GraphLegendBackground Output
BylineContainer GraphBlockHeader GraphMissing PageNo
Caption GraphBorderLines GraphOther Pages
Color_list GraphBox GraphOutlier PagesProcLabel
Colors GraphBoxMean GraphOutlines PagesTitle
Container GraphBoxMedian GraphOverflow Paragraph
ContentFolder GraphBoxWhisker GraphPhaseBox Parskip
ContentProcLabel GraphClipping GraphPrediction PrePage
ContentTitle GraphColors GraphPredictionLimits ProcTitle
Contents GraphConfidence GraphReference ProcTitleFixed
Continued GraphConfidence2 GraphRunTest RowFooter
Data GraphConnectLine GraphSelection RowFooterEmphasis
DataEmphasis GraphContour GraphStars RowFooterEmphasisFixed
DataEmphasisFixed GraphControlLimits GraphTitle1Text RowFooterFixed
DataFixed GraphData1 GraphTitleText RowFooterStrong
DataStrong GraphData2 GraphUnderflow RowFooterStrongFixed
DataStrongFixed GraphData3 GraphUnicodeText RowHeader
Date GraphData4 GraphValueText RowHeaderEmphasis
Document GraphData5 GraphWalls RowHeaderEmphasisFixed
DropShadowStyle GraphData6 GraphZoneA RowHeaderFixed
ErrorBanner GraphData7 GraphZoneB RowHeaderStrong
ErrorContentFixed GraphData8 GraphZoneC RowHeaderStrongFixed
ExtendedPage GraphData9 Header SysTitleAndFooterContainer
FatalBanner GraphData10 HeaderEmphasis SystemFooter
FatalContentFixed GraphData11 HeaderEmphasisFixed SystemTitle
Fonts GraphData12 HeaderFixed Table
Footer GraphDataDefault HeaderStrong ThreeColorAltRamp
FooterEmphasis GraphDataText HeaderStrongFixed ThreeColorRamp
FooterEmphasisFixed GraphEllipse HeadersAndFooters TitleAndNoteContainer
FooterFixed GraphError Index TitlesAndFooters
FooterStrong GraphFinal IndexItem TwoColorAltRamp
FooterStrongFixed GraphFit IndexProcName TwoColorRamp
Frame GraphFit2 IndexTitle UserText
Graph GraphFloor LayoutContainer WarnBanner
GraphAltBlock GraphFonts LineContent WarnContentFixed
GraphAnnoLine GraphFootnoteText List
GraphAnnoShape GraphGridLines List2
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Overview: ACECLUS Procedure
The ACECLUS (approximate covariance estimation for clustering) procedure obtains approximate estimates
of the pooled within-cluster covariance matrix when the clusters are assumed to be multivariate normal with
equal covariance matrices. Neither cluster membership nor the number of clusters needs to be known. PROC
ACECLUS is useful for preprocessing data to be subsequently clustered by the CLUSTER or FASTCLUS
procedure.

Many clustering methods perform well with spherical clusters but poorly with elongated elliptical clusters
(Everitt 1980, pp. 77–97). If the elliptical clusters have roughly the same orientation and eccentricity, you
can apply a linear transformation to the data to yield a spherical within-cluster covariance matrix—that
is, a covariance matrix proportional to the identity. Equivalently, the distance between observations can
be measured in the metric of the inverse of the pooled within-cluster covariance matrix. The remedy is
difficult to apply, however, because you need to know what the clusters are in order to compute the sample
within-cluster covariance matrix. One approach is to estimate iteratively both cluster membership and
within-cluster covariance (Wolfe 1970; Hartigan 1975). Another approach is provided by Art, Gnanadesikan,
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and Kettenring (1982). They have devised an ingenious method for estimating the within-cluster covariance
matrix without knowledge of the clusters. The method can be applied before any of the usual clustering
techniques, including hierarchical clustering methods.

First, Art, Gnanadesikan, and Kettenring (1982) obtain a decomposition of the total-sample sum-of-squares-
and-crossproducts (SSCP) matrix into within-cluster and between-cluster SSCP matrices computed from
pairwise differences between observations, rather than differences between observations and means. Then,
they show how the within-cluster SSCP matrix based on pairwise differences can be approximated without
knowing the number or the membership of the clusters. The approximate within-cluster SSCP matrix can be
used to compute distances for cluster analysis, or it can be used in a canonical analysis similar to canonical
discriminant analysis. For more information, see Chapter 31, “The CANDISC Procedure.”

Art, Gnanadesikan, and Kettenring demonstrate by Monte Carlo calculations that their method can produce
better clusters than the Euclidean metric even when the approximation to the within-cluster SSCP matrix is
poor or the within-cluster covariances are moderately heterogeneous. The algorithm used by the ACECLUS
procedure differs slightly from the algorithm used by Art, Gnanadesikan, and Kettenring. In the following
sections, the PROC ACECLUS algorithm is described first; then, differences between PROC ACECLUS and
the method used by Art, Gnanadesikan, and Kettenring are summarized.

Background
It is well known from the literature on nonparametric statistics that variances and, hence, covariances can be
computed from pairwise differences instead of deviations from means. (For example, Puri and Sen (1971,
pp. 51–52) show that the variance is a U statistic of degree 2.) Let X D .xij / be the data matrix with
n observations (rows) and v variables (columns), and let Nxj be the mean of the jth variable. The sample
covariance matrix S D .sjk/ is usually defined as

sjk D
1

n � 1

nX
iD1

.xij � Nxj /.xik � Nxk/

The matrix S can also be computed as

sjk D
1

n.n � 1/

nX
iD2

i�1X
hD1

.xij � xhj /.xik � xhk/

Let W D .wjk/ be the pooled within-cluster covariance matrix, q be the number of clusters, nc be the
number of observations in the cth cluster, and

d 00ic D

�
1 if observation i is in cluster c
0 otherwise

The matrix W is normally defined as

wjk D
1

n � q

qX
cD1

nX
iD1

d 00ic.xij � Nxcj /.xik � Nxck/

where Nxcj is the mean of the jth variable in cluster c. Let

d 0ih D

� 1
nc

if observations i and hare in cluster c
0 otherwise
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The matrix W can also be computed as

wjk D
1

n � q

nX
iD2

i�1X
hD1

d 0ih.xij � xhj /.xik � xhk/

If the clusters are not known, d 0
ih

cannot be determined. However, an approximation to W can be obtained
by using instead

dih D

�
1 if

Pv
jD1

Pv
kD1mjk.xij � xhj /.xik � xhk/ � u

2

0 otherwise

where u is an appropriately chosen value and M D .mjk/ is an appropriate metric. Let A D .ajk/ be defined
as

ajk D

Pn
iD2

Pi�1
hD1 dih.xij � xhj /.xik � xhk/

2
Pn
iD2

Pi�1
hD1 dih

If all of the following conditions hold, A equals W:

• All within-cluster distances in the metric M are less than or equal to u.

• All between-cluster distances in the metric M are greater than u.

• All clusters have the same number of members nc .

If the clusters are of unequal size, A gives more weight to large clusters than W does, but this discrepancy
should be of little importance if the population within-cluster covariance matrices are equal. There might be
large differences between A and W if the cutoff u does not discriminate between pairs in the same cluster
and pairs in different clusters. Lack of discrimination might occur for one of the following reasons:

• The clusters are not well separated.

• The metric M or the cutoff u is not chosen appropriately.

In the former case, little can be done to remedy the problem. The remaining question concerns how to choose
M and u. Consider M first. The best choice for M is W�1, but W is not known. The solution is to use an
iterative algorithm:

1. Obtain an initial estimate of A, such as the identity or the total-sample covariance matrix. See the
INITIAL= option in the PROC ACECLUS statement for more information.

2. Let M equal A�1.

3. Recompute A by using the preceding formula.

4. Repeat steps 2 and 3 until the estimate stabilizes.
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Convergence is assessed by comparing values of A on successive iterations. Let Ai be the value of A on the
ith iteration and A0 be the initial estimate of A. Let Z be a user-specified v � v matrix. See the METRIC=
option in the PROC ACECLUS statement for more information. The convergence measure is

ei D
1

v
k Z0.Ai �Ai�1/Z k

where k � � � k indicates the Euclidean norm—that is, the square root of the sum of the squares of the elements
of the matrix. In PROC ACECLUS, Z can be the identity or an inverse factor of S or diag(S). Iteration stops
when ei falls below a user-specified value. See the CONVERGE= option or the MAXITER= option in the
PROC ACECLUS statement for more information.

The remaining question of how to choose u has no simple answer. In practice, you must try several different
values. PROC ACECLUS provides four different ways of specifying u:

• You can specify a constant value for u. This method is useful if the initial estimate of A is quite good.
See the ABSOLUTE option and the THRESHOLD= option in the PROC ACECLUS statement for
more information.

• You can specify a threshold value t > 0 that is multiplied by the root mean square distance between
observations in the current metric on each iteration to give u. Thus, the value of u changes from iteration
to iteration. This method is appropriate if the initial estimate of A is poor. See the THRESHOLD=
option in the PROC ACECLUS statement for more information.

• You can specify a value p, 0 < p < 1, to be transformed into a distance u such that approximately a
proportion p of the pairwise Mahalanobis distances between observations in a random sample from a
multivariate normal distribution will be less than u in repeated sampling. The transformation can be
computed only if the number of observations exceeds the number of variables, preferably by at least 10
percent. This method also requires a good initial estimate of A. See the PROPORTION= option and
the ABSOLUTE option in the PROC ACECLUS statement for more information.

• You can specify a value p, 0 < p < 1, to be transformed into a value t that is then multiplied by 1=
p
2v

times the root mean square distance between observations in the current metric on each iteration to
yield u. The value of u changes from iteration to iteration. This method can be used with a poor
initial estimate of A. See the PROPORTION= option in the PROC ACECLUS statement for more
information.

In most cases, the analysis should begin with the last method, using values of p between 0.5 and 0.01 and
using the full covariance matrix as the initial estimate of A.

Proportions p are transformed to distances t by using the formula

t2 D 2v
n�
F�1v;n�v.p/

�n�v
n�1

o
where F�1v;n�v is the quantile (inverse cumulative distribution) function of an F random variable with v and
n � v degrees of freedom. The squared Mahalanobis distance between a single pair of observations sampled
from a multivariate normal distribution is distributed as 2v times an F random variable with v and n � v
degrees of freedom. The distances between two pairs of observations are correlated if the pairs have an
observation in common. The quantile function is raised to the power given in the preceding formula to
compensate approximately for the correlations among distances between pairs of observations that share a
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member. Monte Carlo studies indicate that the approximation is acceptable if the number of observations
exceeds the number of variables by at least 10 percent.

If A becomes singular, step 2 in the iterative algorithm cannot be performed because A cannot be inverted.
In this case, let Z be the matrix as defined in discussing the convergence measure, and let Z0AZ D R0ƒR,
where R0R D RR0 D I and ƒ D .�jk/ is diagonal. Let ƒ� D .��

jk
/ be a diagonal matrix, where

��jj D max.�jj ; g trace.ƒ//, and 0 < g < 1 is a user-specified singularity criterion (see the SINGULAR=
option in the PROC ACECLUS statement for more information). Then M is computed as ZR0.ƒ�/�1RZ0.

The ACECLUS procedure differs from the method used by Art, Gnanadesikan, and Kettenring (1982) in
several respects:

• The Art, Gnanadesikan, and Kettenring method uses the identity matrix as the initial estimate, whereas
the ACECLUS procedure enables you to specify any symmetric matrix as the initial estimate and
defaults to the total-sample covariance matrix. The default initial estimate in PROC ACECLUS is
chosen to yield invariance under nonsingular linear transformations of the data but might sometimes
obscure clusters that become apparent if the identity matrix is used.

• The Art, Gnanadesikan, and Kettenring method carries out all computations with SSCP matrices,
whereas the ACECLUS procedure uses estimated covariance matrices because covariances are easier
to interpret than crossproducts.

• The Art, Gnanadesikan, and Kettenring method uses the m pairs with the smallest distances to form the
new estimate at each iteration, where m is specified by the user, whereas the ACECLUS procedure uses
all pairs closer than a given cutoff value. Kettenring (1984) says that the m-closest-pairs method seems
to give the user more direct control. PROC ACECLUS uses a distance cutoff because it yields a slight
decrease in computer time and because in some cases, such as widely separated spherical clusters,
the results are less sensitive to the choice of distance cutoff than to the choice of m. Much research
remains to be done on this issue.

• The Art, Gnanadesikan, and Kettenring method uses a different convergence measure. Let Ai be
computed on each iteration by using the m-closest-pairs method, and let Bi D A�1i�1Ai � I, where I is
the identity matrix. The convergence measure is equivalent to trace.B2i /.

Analyses of the Fisher (1936) iris data, consisting of measurements of petal and sepal length and width for
50 specimens from each of three iris species, are summarized in Table 24.1. The number of misclassified
observations out of 150 is given for four clustering methods:

• k-means as implemented in PROC FASTCLUS with MAXC=3, MAXITER=99, and CONV=0

• Ward’s minimum variance method as implemented in PROC CLUSTER

• average linkage on Euclidean distances as implemented in PROC CLUSTER

• the centroid method as implemented in PROC CLUSTER

Each hierarchical analysis is followed by the TREE procedure with NCL=3 to determine cluster assignments
at the three-cluster level. Clusters with 20 or fewer observations are discarded by using the DOCK=20 option.
The observations in a discarded cluster are considered unclassified.
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Each method is applied to the following data:

• the raw data
• the data standardized to unit variance by the STANDARD procedure
• two standardized principal components accounting for 95 percent of the standardized variance and

having an identity total-sample covariance matrix, computed by the PRINCOMP procedure with the
STD option

• four standardized principal components having an identity total-sample covariance matrix, computed
by PROC PRINCOMP with the STD option

• the data transformed by PROC ACECLUS, using seven different settings of the PROPORTION= (P=)
option

• four canonical variables having an identity pooled within-species covariance matrix, computed using
the CANDISC procedure

Theoretically, the best results should be obtained by using the canonical variables from PROC CANDISC.
PROC ACECLUS yields results comparable to those from PROC CANDISC for values of the PROPOR-
TION= option ranging from 0.005 to 0.02. At PROPORTION=0.04, average linkage and the centroid method
show some deterioration, but k-means and Ward’s method continue to produce excellent classifications. At
larger values of the PROPORTION= option, all methods perform poorly, although no worse than with four
standardized principal components.

Table 24.1 Number of Misclassified and Unclassified Observations Using the Fisher (1936) Iris Data

Clustering Method
Data k-means Ward’s Average Linkage Centroid

Raw Data 16 16 25+12 14
Standardized Data 25 26 33+4 33+4
Two Standardized Principal Components 29 31 30+9 27+32
Four Standardized Principal Components 39 27 32+7 45+11
Transformed by ACECLUS, P=0.32 39 10+9 7+25
Transformed by ACECLUS, P=0.16 39 18+9 7+19 7+26
Transformed by ACECLUS, P=0.08 19 9 3+13 5+16
Transformed by ACECLUS, P=0.04 4 5 1+19 3+12
Transformed by ACECLUS, P=0.02 4 3 3 3
Transformed by ACECLUS, P=0.01 4 4 3 4
Transformed by ACECLUS, P=0.005 4 4 4 4
Canonical Variables 3 5 4 4+1

— A single number represents misclassified observations with no unclassified observations.

— Where two numbers are separated by a plus sign, the first is the number of observations;

the second is the number of unclassified observations.
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This example demonstrates the following:

• PROC ACECLUS can produce results as good as those from the optimal transformation.
• PROC ACECLUS can be useful even when the within-cluster covariance matrices are moderately

heterogeneous.
• The choice of the distance cutoff as specified by the PROPORTION= or the THRESHOLD= option is

important, and several values should be tried.
• Commonly used transformations such as standardization and principal components can produce poor

classifications.

Although experience with the Art, Gnanadesikan, and Kettenring and PROC ACECLUS methods is limited,
the results so far suggest that these methods help considerably more often than they hinder the subsequent
cluster analysis, especially with normal-mixture techniques such as k-means and Ward’s minimum variance
method.

Getting Started: ACECLUS Procedure
The following example demonstrates how you can use the ACECLUS procedure to obtain approximate
estimates of the pooled within-cluster covariance matrix and to compute canonical variables for subsequent
analysis. You use PROC ACECLUS to preprocess data before you cluster it by using the FASTCLUS or
CLUSTER procedure.

Suppose you want to determine whether national figures for birth rates, death rates, and infant death rates
can be used to determine certain types or categories of countries. You want to perform a cluster analysis
to determine whether the observations can be formed into groups suggested by the data. Previous studies
indicate that the clusters computed from this type of data can be elongated and elliptical. Thus, you need to
perform a linear transformation on the raw data before the cluster analysis.

The following data1 from Rouncefield (1995) are the birth rates, death rates, and infant death rates for 97
countries. The following statements create the SAS data set Poverty:

data poverty;
input Birth Death InfantDeath Country &$20. @@;
datalines;

24.7 5.7 30.8 Albania 12.5 11.9 14.4 Bulgaria
13.4 11.7 11.3 Czechoslovakia 12 12.4 7.6 Former E. Germany

... more lines ...

41.7 10.3 66 Zimbabwe
;

The data set Poverty contains the character variable Country and the numeric variables Birth, Death, and
InfantDeath, which represent the birth rate per thousand, death rate per thousand, and infant death rate per
thousand, respectively. The $20. format in the INPUT statement specifies that the variable Country is a

1 These data have been compiled from the United Nations Demographic Yearbook 1990 (United Nations publications, Sales No.
E/F.91.XII.1, copyright 1991, United Nations, New York) and are reproduced with the permission of the United Nations.
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character variable with a length of 20. The preceding & enables the reading of blanks in the middle of the
country names. The double trailing at sign (@@) in the INPUT statement specifies that observations are
input from each line until all values have been read.

It is often useful when beginning a cluster analysis to look at the data graphically. The following statements
use the SGPLOT procedure to make a scatter plot of the variables Birth and Death.

proc sgplot data=poverty;
scatter y=Death x=Birth;

run;

The plot, displayed in Figure 24.1, indicates the difficulty of dividing the points into clusters. Plots of the
other variable pairs (not shown) display similar characteristics. The clusters that comprise these data might
be poorly separated and elongated. Data with poorly separated or elongated clusters must be transformed.

Figure 24.1 Scatter Plot of Original Poverty Data: Birth Rate versus Death Rate

If you know the within-cluster covariances, you can transform the data to make the clusters spherical.
However, since you do not know what the clusters are, you cannot calculate exactly the within-cluster
covariance matrix. The ACECLUS procedure estimates the within-cluster covariance matrix to transform the
data, even when you have no knowledge of cluster membership or the number of clusters.
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The following statements perform the ACECLUS procedure transformation by using the SAS data set
Poverty:

proc aceclus data=poverty out=ace proportion=.03;
var Birth Death InfantDeath;

run;

The OUT= option creates an output data set called Ace to contain the canonical variable scores. The
PROPORTION= option specifies that approximately 3 percent of the pairs are included in the estimation
of the within-cluster covariance matrix. The VAR statement specifies that the variables Birth, Death, and
InfantDeath are used in computing the canonical variables.

The results of this analysis are displayed in Figure 24.2 through Figure 24.5.

Figure 24.2 displays the number of observations, the number of variables, and the settings for the PRO-
PORTION and CONVERGE options. The PROPORTION option is set at 0.03, as specified in the previous
statements. The CONVERGE parameter is set at its default value of 0.001. Figure 24.2 next displays the
means, standard deviations, and sample covariance matrix of the analytical variables.

Figure 24.2 Means, Standard Deviations, and Covariance Matrix from the ACECLUS Procedure

The ACECLUS Procedure

Approximate Covariance Estimation for Cluster Analysis

The ACECLUS Procedure

Approximate Covariance Estimation for Cluster Analysis

Observations 97 Proportion 0.0300

Variables 3 Converge 0.00100

Means and Standard
Deviations

Variable Mean
Standard
Deviation

Birth 29.2299 13.5467

Death 10.8361 4.6475

InfantDeath 54.9010 45.9926

COV: Total Sample Covariances

Birth Death InfantDeath

Birth 183.512951 30.610056 534.794969

Death 30.610056 21.599205 139.925900

InfantDeath 534.794969 139.925900 2115.317811

The type of matrix used for the initial within-cluster covariance estimate is displayed in Figure 24.3. In
this example, that initial estimate is the full covariance matrix. The threshold value that corresponds to the
PROPORTION=0.03 setting is given as 0.292815.

Figure 24.3 Table of Iteration History from the ACECLUS Procedure

Initial Within-Cluster Covariance Estimate = Full Covariance Matrix

Threshold = 0.292815
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Figure 24.3 continued

Iteration History

Iteration
RMS

Distance
Distance

Cutoff

Pairs
Within
Cutoff

Convergence
Measure

1 2.449 0.717 385.0 0.552025

2 12.534 3.670 446.0 0.008406

3 12.851 3.763 521.0 0.009655

4 12.882 3.772 591.0 0.011193

5 12.716 3.723 628.0 0.008784

6 12.821 3.754 658.0 0.005553

7 12.774 3.740 680.0 0.003010

8 12.631 3.699 683.0 0.000676

Algorithm converged.

Figure 24.3 displays the iteration history. For each iteration, PROC ACECLUS displays the following
measures:

• root mean square distance between all pairs of observations

• distance cutoff for including pairs of observations in the estimate of within-cluster covariances (equal
to RMS*Threshold)

• number of pairs within the cutoff

• convergence measure

Figure 24.4 displays the approximate within-cluster covariance matrix and the table of eigenvalues from the
canonical analysis. The first column of the eigenvalues table contains numbers for the eigenvectors. The next
column of the table lists the eigenvalues of Inv(ACE)*(COV-ACE).

Figure 24.4 Approximate Within-Cluster Covariance Estimates

ACE:
Approximate Covariance Estimate Within Clusters

Birth Death InfantDeath

Birth 5.94644949 -0.63235725 6.28151537

Death -0.63235725 2.33464129 1.59005857

InfantDeath 6.28151537 1.59005857 35.10327233

Eigenvalues of Inv(ACE)*(COV-ACE)

Eigenvalue Difference Proportion Cumulative

1 63.5500 54.7313 0.8277 0.8277

2 8.8187 4.4038 0.1149 0.9425

3 4.4149 0.0575 1.0000

The next three columns of the eigenvalue table (Figure 24.4) display measures of the relative size and
importance of the eigenvalues. The first column lists the difference between each eigenvalue and its successor.
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The last two columns display the individual and cumulative proportions that each eigenvalue contributes to
the total sum of eigenvalues.

The raw and standardized canonical coefficients are displayed in Figure 24.5. The coefficients are standardized
by multiplying the raw coefficients with the standard deviation of the associated variable. The ACECLUS
procedure uses these standardized canonical coefficients to create the transformed canonical variables, which
are the linear transformations of the original input variables, Birth, Death, and InfantDeath.

Figure 24.5 Raw and Standardized Canonical Coefficients from the ACECLUS Procedure

Eigenvectors
(Raw Canonical Coefficients)

Can1 Can2 Can3

Birth 0.125610 0.457037 0.003875

Death 0.108402 0.163792 0.663538

InfantDeath 0.134704 -.133620 -.046266

Standardized Canonical Coefficients

Can1 Can2 Can3

Birth 1.70160 6.19134 0.05249

Death 0.50380 0.76122 3.08379

InfantDeath 6.19540 -6.14553 -2.12790

The following statements invoke the CLUSTER procedure, using the SAS data set Ace created in the previous
ACECLUS procedure:

proc cluster data=ace outtree=tree noprint method=ward;
var can1 can2 can3 ;
copy Birth--Country;

run;

The OUTTREE= option creates the output SAS data set Tree that is used in a subsequent step to display
cluster membership. The NOPRINT option suppresses the display of the output. The METHOD= option
specifies Ward’s minimum-variance clustering method.

The VAR statement specifies that the canonical variables computed in the ACECLUS procedure are used
in the cluster analysis. The COPY statement specifies that all the variables from the SAS data set Poverty
(Birth—Country) are added to the output data set Tree.

The following statements use PROC TREE to create an output SAS data set called New. The NCLUSTERS=
option specifies the number of clusters desired in the SAS data set New. The NOPRINT option suppresses
the display of the output.

proc tree data=tree out=new nclusters=3 noprint;
copy Birth Death InfantDeath can1 can2 ;
id Country;

run;

The COPY statement copies the canonical variables Can1 and Can2 (computed in the preceding ACECLUS
procedure) and the original analytical variables Birth, Death, and InfantDeath into the output SAS data set
New.
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The following statements invoke the SGPLOT procedure, using the SAS data set created by PROC TREE:

proc sgplot data=new;
scatter y=Death x=Birth / group=cluster;
keylegend / title="Cluster Membership";

run;

proc sgplot data=new;
scatter y=can2 x=can1 / group=cluster;
keylegend / title="Cluster Membership";

run;

The first PROC SGPLOT statement requests a scatter plot of the two variables Birth and Death, using the
variable CLUSTER as the identification variable.

The second PROC SGPLOT statement requests a plot of the two canonical variables, using the value of the
variable CLUSTER as the identification variable.

Figure 24.6 and Figure 24.7 display the separation of the clusters when three clusters are calculated.

Figure 24.6 Scatter Plot of Poverty Data, Identified by Cluster
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Figure 24.7 Scatter Plot of Canonical Variables

Syntax: ACECLUS Procedure
The following statements are available in the ACECLUS procedure:

PROC ACECLUS PROPORTION=p | THRESHOLD=t < options > ;
BY variables ;
FREQ variable ;
VAR variables ;
WEIGHT variable ;

Usually you need only the VAR statement in addition to the required PROC ACECLUS statement. The
optional BY, FREQ, VAR, and WEIGHT statements are described in alphabetical order after the PROC
ACECLUS statement.

PROC ACECLUS Statement
PROC ACECLUS PROPORTION=p | THRESHOLD=t < options > ;

The PROC ACECLUS statement invokes the ACECLUS procedure. Table 24.2 summarizes the options
available in the PROC ACECLUS statement. These options are also discussed in the following sections.
Note that, if you specify the METHOD=COUNT option, you must specify either the PROPORTION= or the
MPAIRS= option. Otherwise, you must specify either the PROPORTION= or THRESHOLD= option.
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Table 24.2 Summary of PROC ACECLUS Statement Options

Options Description

Specify clustering options
METHOD= Specifies the clustering method
MPAIRS= Specifies number of pairs for estimating within-cluster covariance (when

you specify the option METHOD=COUNT)
PROPORTION= Specifies proportion of pairs for estimating within-cluster covariance
THRESHOLD= Specifies the threshold for including pairs in the estimation of the

within-cluster covariance

Specify input and output data sets
DATA= Specifies input data set name
OUT= Specifies output data set name
OUTSTAT= Specifies output data set name containing various statistics

Specify iteration options
ABSOLUTE Uses absolute instead of relative threshold
CONVERGE= Specifies convergence criterion
INITIAL= Specifies initial estimate of within-cluster covariance matrix
MAXITER= Specifies maximum number of iterations
METRIC= Specifies metric in which computations are performed
SINGULAR= Specifies singularity criterion

Specify canonical analysis options
N= Specifies number of canonical variables
PREFIX= Specifies prefix for naming canonical variables

Control displayed output
NOPRINT Suppresses the display of the output
PP Produces PP-plot of distances between pairs from last iteration
QQ Produces QQ-plot of power transformation of distances between pairs from

last iteration
SHORT Omits all output except for iteration history and eigenvalue table

The following list provides details about the options.

ABSOLUTE
causes the THRESHOLD= value or the threshold computed from the PROPORTION= option to be
treated absolutely rather than relative to the root mean square distance between observations. Use
the ABSOLUTE option only when you are confident that the initial estimate of the within-cluster
covariance matrix is close to the final estimate, such as when the INITIAL= option specifies a data set
created by a previous execution of PROC ACECLUS by using the OUTSTAT= option.

CONVERGE=c
specifies the convergence criterion. By default, CONVERGE= 0.001. Iteration stops when the
convergence measure falls below the value specified by the CONVERGE= option or when the iteration
limit as specified by the MAXITER= option is exceeded, whichever happens first.
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DATA=SAS-data-set
specifies the SAS data set to be analyzed. By default, PROC ACECLUS uses the most recently created
SAS data set.

INITIAL=name
specifies the matrix for the initial estimate of the within-cluster covariance matrix. Valid values for
name are as follows:

DIAGONAL | D uses the diagonal matrix of sample variances as the initial estimate of the
within-cluster covariance matrix.

FULL | F uses the total-sample covariance matrix as the initial estimate of the within-
cluster covariance matrix.

IDENTITY | I uses the identity matrix as the initial estimate of the within-cluster covari-
ance matrix.

INPUT=SAS-data-set specifies a SAS data set from which to obtain the initial estimate of the
within-cluster covariance matrix. The data set can be TYPE=CORR, COV,
UCORR, UCOV, SSCP, or ACE, or it can be an ordinary SAS data set. See
Appendix A, “Special SAS Data Sets,” for descriptions of CORR, COV,
UCORR, UCOV, and SSCP data sets. See the section “Output Data Sets”
on page 875 for a description of ACE data sets.

If you do not specify the INITIAL= option, the default is the matrix specified by the METRIC=
option. If neither the INITIAL= nor the METRIC= option is specified, INITIAL=FULL is used if
there are enough observations to obtain a nonsingular total-sample covariance matrix; otherwise,
INITIAL=DIAGONAL is used.

MAXITER=n
specifies the maximum number of iterations. By default, MAXITER=10.

METHOD=COUNT | C | THRESHOLD | T
specifies the clustering method. The METHOD=THRESHOLD option requests a method (also the
default) that uses all pairs closer than a given cutoff value to form the estimate at each iteration.
The METHOD=COUNT option requests a method that uses a number of pairs, m, with the smallest
distances to form the estimate at each iteration.

METRIC=name
specifies the metric in which the computations are performed, implies the default value for the
INITIAL= option, and specifies the matrix Z used in the formula for the convergence measure ei and
for checking singularity of the A matrix. Valid values for name are as follows:

DIAGONAL | D uses the diagonal matrix of sample variances diag.S/ and sets Z D diag.S/�
1
2 ,

where the superscript �1
2

indicates an inverse factor.

FULL | F uses the total-sample covariance matrix S and sets Z D S�
1
2 .

IDENTITY | I uses the identity matrix I and sets Z D I.

If you do not specify the METRIC= option, METRIC=FULL is used if there are enough observations
to obtain a nonsingular total-sample covariance matrix; otherwise, METRIC=DIAGONAL is used.
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The option METRIC= is rather technical. It affects the computations in a variety of ways, but for
well-conditioned data the effects are subtle. For most data sets, the METRIC= option is not needed.

MPAIRS=m
specifies the number of pairs to be included in the estimation of the within-cluster covariance matrix
when METHOD=COUNT is requested. The values of m must be greater than 0 but less than or equal
to (totfq�(totfq –1)) / 2, where totfq is the sum of nonmissing frequencies specified in the FREQ
statement. If there is no FREQ statement, totfq equals the number of total nonmissing observations.

N=n
specifies the number of canonical variables to be computed. The default is the number of variables
analyzed. N=0 suppresses the canonical analysis.

NOPRINT
suppresses the display of all output. Note that this option temporarily disables the Output Delivery
System (ODS). For more information, see Chapter 20, “Using the Output Delivery System.”

OUT=SAS-data-set
creates an output SAS data set that contains all the original data as well as the canonical variables
having an estimated within-cluster covariance matrix equal to the identity matrix. If you want to create
a SAS data set in a permanent library, you must specify a two-level name. For more information about
permanent libraries and SAS data sets, see SAS Language Reference: Concepts.

OUTSTAT=SAS-data-set
specifies a TYPE=ACE output SAS data set that contains means, standard deviations, number of
observations, covariances, estimated within-cluster covariances, eigenvalues, and canonical coefficients.
If you want to create a SAS data set in a permanent library, you must specify a two-level name. For
more information about permanent libraries and SAS data sets, see SAS Language Reference: Concepts.

PROPORTION=p

PERCENT=p

P=p
specifies the percentage of pairs to be included in the estimation of the within-cluster covariance matrix.
The value of p must be greater than 0. If p is greater than or equal to 1, it is interpreted as a percentage
and divided by 100; PROPORTION=0.02 and PROPORTION=2 are equivalent. When you specify
METHOD=THRESHOLD, a threshold value is computed from the PROPORTION= option under the
assumption that the observations are sampled from a multivariate normal distribution.

When you specify METHOD=COUNT, the number of pairs, m, is computed from PROPORTION=p
as

m D floor
�p
2
� totfq � .totfq � 1/

�
where totfq is the number of total nonmissing observations.

PP
produces a PP probability plot of distances between pairs of observations computed in the last iteration.
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PREFIX=name
specifies a prefix for naming the canonical variables. By default the names are Can1, Can2, . . . , CANN.
If you specify PREFIX=ABC, the variables are named ABC1, ABC2, ABC3, and so on. The number of
characters in the prefix plus the number of digits required to designate the variables should not exceed
the name length defined by the VALIDVARNAME= system option. For more information about the
VALIDVARNAME= system option, see SAS System Options: Reference.

QQ
produces a QQ probability plot of a power transformation of the distances between pairs of observations
computed in the last iteration. CAUTION: The QQ plot can require an enormous amount of computer
time.

SHORT
omits all items from the standard output except for the iteration history and the eigenvalue table.

SINGULAR=g
SING=g

specifies a singularity criterion 0 < g < 1 for the total-sample covariance matrix S and the approximate
within-cluster covariance estimate A. The default is SINGULAR=1E–4.

THRESHOLD=t
T=t

specifies the threshold for including pairs of observations in the estimation of the within-cluster
covariance matrix. A pair of observations is included if the Euclidean distance between them is less
than or equal to t times the root mean square distance computed over all pairs of observations.

BY Statement
BY variables ;

You can specify a BY statement with PROC ACECLUS to obtain separate analyses of observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the ACECLUS procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).
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If you specify the INITIAL=INPUT= option and the INITIAL=INPUT= data set does not contain any of the
BY variables, the entire INITIAL=INPUT= data set provides the initial value for the matrix A for each BY
group in the DATA= data set.

If the INITIAL=INPUT= data set contains some but not all of the BY variables, or if some BY variables do
not have the same type or length in the INITIAL=INPUT= data set as in the DATA= data set, then PROC
ACECLUS displays an error message and stops.

If all the BY variables appear in the INITIAL=INPUT= data set with the same type and length as in the
DATA= data set, then each BY group in the INITIAL=INPUT= data set provides the initial value for A for
the corresponding BY group in the DATA= data set. All BY groups in the DATA= data set must also appear
in the INITIAL= INPUT= data set. The BY groups in the INITIAL=INPUT= data set must be in the same
order as in the DATA= data set. If you specify NOTSORTED in the BY statement, identical BY groups must
occur in the same order in both data sets. If you do not specify NOTSORTED, some BY groups can appear in
the INITIAL= INPUT= data set, but not in the DATA= data set; such BY groups are not used in the analysis.

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

FREQ Statement
FREQ variable ;

If a variable in your data set represents the frequency of occurrence for the observation, include the name of
that variable in the FREQ statement. The procedure then treats the data set as if each observation appears n
times, where n is the value of the FREQ variable for the observation. If a value of the FREQ variable is not
integral, it is truncated to the largest integer not exceeding the given value. Observations with FREQ values
less than one are not included in the analysis. The total number of observations is considered equal to the
sum of the FREQ variable.

VAR Statement
VAR variables ;

The VAR statement specifies the numeric variables to be analyzed. If the VAR statement is omitted, all
numeric variables not specified in other statements are analyzed.

WEIGHT Statement
WEIGHT variable ;

If you want to specify relative weights for each observation in the input data set, place the weights in a
variable in the data set and specify that variable name in a WEIGHT statement. This is often done when the
variance associated with each observation is different and the values of the weight variable are proportional to
the reciprocals of the variances. The values of the WEIGHT variable can be nonintegral and are not truncated.
An observation is used in the analysis only if the value of the WEIGHT variable is greater than zero.

The WEIGHT and FREQ statements have a similar effect, except in calculating the divisor of the A matrix.
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Details: ACECLUS Procedure

Missing Values
Observations with missing values are omitted from the analysis and are given missing values for canonical
variable scores in the OUT= data set.

Output Data Sets

OUT= Data Set

The OUT= data set contains all the variables in the original data set plus new variables containing the
canonical variable scores. The N= option determines the number of new variables. The OUT= data set is not
created if N=0. The names of the new variables are formed by concatenating the value given by the PREFIX=
option (or the prefix CAN if the PREFIX= option is not specified) and the numbers 1, 2, 3, and so on. The
OUT= data set can be used as input to PROC CLUSTER or PROC FASTCLUS. The cluster analysis should
be performed on the canonical variables, not on the original variables.

OUTSTAT= Data Set

The OUTSTAT= data set is a TYPE=ACE data set containing the following variables:

• the BY variables, if any

• the two new character variables, _TYPE_ and _NAME_

• the variables analyzed—that is, those in the VAR statement, or, if there is no VAR statement, all
numeric variables not listed in any other statement

Each observation in the new data set contains some type of statistic as indicated by the _TYPE_ variable.
The values of the _TYPE_ variable are as follows:

MEAN mean of each variable

STD standard deviation of each variable

N number of observations on which the analysis is based. This value is the same for each
variable.

SUMWGT sum of the weights if a WEIGHT statement is used. This value is the same for each
variable.

COV covariances between each variable and the variable named by the _NAME_ variable. The
number of observations with _TYPE_=COV is equal to the number of variables being
analyzed.

ACE estimated within-cluster covariances between each variable and the variable named by
the _NAME_ variable. The number of observations with _TYPE_=ACE is equal to the
number of variables being analyzed.
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EIGENVAL eigenvalues of INV(ACE)*(COV–ACE). If the N= option requests fewer than the max-
imum number of canonical variables, only the specified number of eigenvalues are
produced, with missing values filling out the observation.

RAWSCORE raw canonical coefficients.

To obtain the canonical variable scores, these coefficients should be multiplied by the raw
data centered by means obtained from the observation with _TYPE_=’MEAN’.

SCORE standardized canonical coefficients. The _NAME_ variable contains the name of the
corresponding canonical variable as constructed from the PREFIX= option. The number of
observations with _TYPE_=SCORE equals the number of canonical variables computed.

To obtain the canonical variable scores, these coefficients should be multiplied by the
standardized data, using means obtained from the observation with _TYPE_=’MEAN’
and standard deviations obtained from the observation with _TYPE_=’STD’.

The OUTSTAT= data set can be used in the following conditions:

• to initialize another execution of PROC ACECLUS

• to compute canonical variable scores with the SCORE procedure

• as input to the FACTOR procedure, specifying METHOD=SCORE, to rotate the canonical variables

Computational Resources
Let

n D number of observations

v D number of variables

i D number of iterations

Memory

The memory in bytes required by PROC ACECLUS is approximately

8.2n.v C 1/C 21v C 5v2/

bytes. If you request the PP or QQ option, an additional 4n.n � 1/ bytes are needed.

Time

The time required by PROC ACECLUS is roughly proportional to

2nv2 C 10v3 C i

�
n2v

2
C nv2 C 5v3

�
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Displayed Output
Unless the SHORT option is specified, the ACECLUS procedure displays the following items:

• Means and Standard Deviations of the input variables

• the S matrix, labeled COV: Total Sample Covariances

• the name or value of the matrix used for the Initial Within-Cluster Covariance Estimate

• the Threshold value if the PROPORTION= option is specified

For each iteration, PROC ACECLUS displays the following items:

• the Iteration number

• RMS Distance, the root mean square distance between all pairs of observations

• the Distance Cutoff .u/ for including pairs of observations in the estimate of the within-cluster
covariances, which equals the RMS distance times the threshold

• the number of Pairs Within Cutoff

• the Convergence Measure .ei / as specified by the METRIC= option

If the SHORT option is not specified, PROC ACECLUS also displays the A matrix, labeled ACE: Approxi-
mate Covariance Estimate Within Clusters.

The ACECLUS procedure displays a table of eigenvalues from the canonical analysis containing the following
items:

• Eigenvalues of Inv(ACE)*(COV–ACE)

• the Difference between successive eigenvalues

• the Proportion of variance explained by each eigenvalue

• the Cumulative proportion of variance explained

If the SHORT option is not specified, PROC ACECLUS displays the following items:

• the Eigenvectors or raw canonical coefficients

• the standardized eigenvectors or standard canonical coefficients
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ODS Table Names
PROC ACECLUS assigns a name to each table it creates. You can use these names to reference the table
when using the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed in the following table. For more information about ODS, see Chapter 20, “Using the Output Delivery
System.”

Table 24.3 ODS Tables Produced by PROC ACECLUS

ODS Table Name Description Statement Option

ConvergenceStatus Convergence status PROC default
DataOptionInfo Data and option information PROC default
Eigenvalues Eigenvalues of

Inv(ACE)*(COV–ACE)
PROC default

Eigenvectors Eigenvectors (raw canonical
coefficients)

PROC default

InitWithin Initial within-cluster
covariance estimate

PROC INITIAL=INPUT

IterHistory Iteration history PROC default
SimpleStatistics Simple statistics PROC default
StdCanCoef Standardized canonical

coefficients
PROC default

Threshold Threshold value PROC PROPORTION=
TotSampleCov Total sample covariances PROC default
Within Approximate covariance

estimate within clusters
PROC default

Example: ACECLUS Procedure

Example 24.1: Transformation and Cluster Analysis of Fisher Iris Data
The iris data published by Fisher (1936) have been widely used for examples in discriminant analysis and
cluster analysis. The sepal length, sepal width, petal length, and petal width are measured in millimeters on
50 iris specimens from each of three species, Iris setosa, I. versicolor, and I. virginica. Mezzich and Solomon
(1980) discuss a variety of cluster analyses of the iris data.

In this example PROC ACECLUS is used to transform the iris data, which is available from the Sashelp
library, and the clustering is performed by PROC FASTCLUS. Compare this with the example in Chapter 38,
“The FASTCLUS Procedure.” The results from the FREQ procedure display fewer misclassifications when
PROC ACECLUS is used.

The following statements produce Output 24.1.1 through Output 24.1.5:
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title 'Fisher (1936) Iris Data';

proc aceclus data=sashelp.iris out=ace p=.02 outstat=score;
var SepalLength SepalWidth PetalLength PetalWidth ;

run;

proc sgplot data=ace;
scatter y=can2 x=can1 / group=Species;
keylegend / title="Species";

run;

proc fastclus data=ace maxc=3 maxiter=10 conv=0 out=clus;
var can:;

run;

proc freq;
tables cluster*Species;

run;

Output 24.1.1 Using PROC ACECLUS to Transform Fisher’s Iris Data

Fisher (1936) Iris Data

The ACECLUS Procedure

Approximate Covariance Estimation for Cluster Analysis

Fisher (1936) Iris Data

The ACECLUS Procedure

Approximate Covariance Estimation for Cluster Analysis

Observations 150 Proportion 0.0200

Variables 4 Converge 0.00100

Means and Standard Deviations

Variable Mean
Standard
Deviation Label

SepalLength 58.4333 8.2807 Sepal Length (mm)

SepalWidth 30.5733 4.3587 Sepal Width (mm)

PetalLength 37.5800 17.6530 Petal Length (mm)

PetalWidth 11.9933 7.6224 Petal Width (mm)

COV: Total Sample Covariances

SepalLength SepalWidth PetalLength PetalWidth

SepalLength 68.5693512 -4.2434004 127.4315436 51.6270694

SepalWidth -4.2434004 18.9979418 -32.9656376 -12.1639374

PetalLength 127.4315436 -32.9656376 311.6277852 129.5609396

PetalWidth 51.6270694 -12.1639374 129.5609396 58.1006264

Initial Within-Cluster Covariance Estimate = Full Covariance Matrix

Threshold = 0.334211
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Output 24.1.1 continued

Iteration History

Iteration
RMS

Distance
Distance

Cutoff

Pairs
Within
Cutoff

Convergence
Measure

1 2.828 0.945 408.0 0.465775

2 11.905 3.979 559.0 0.013487

3 13.152 4.396 940.0 0.029499

4 13.439 4.491 1506.0 0.046846

5 13.271 4.435 2036.0 0.046859

6 12.591 4.208 2285.0 0.025027

7 12.199 4.077 2366.0 0.009559

8 12.121 4.051 2402.0 0.003895

9 12.064 4.032 2417.0 0.002051

10 12.047 4.026 2429.0 0.000971

Algorithm converged.

Output 24.1.2 Eigenvalues, Raw Canonical Coefficients, and Standardized Canonical Coefficients

ACE: Approximate Covariance Estimate Within Clusters

SepalLength SepalWidth PetalLength PetalWidth

SepalLength 11.73342939 5.47550432 4.95389049 2.02902429

SepalWidth 5.47550432 6.91992590 2.42177851 1.74125154

PetalLength 4.95389049 2.42177851 6.53746398 2.35302594

PetalWidth 2.02902429 1.74125154 2.35302594 2.05166735

Eigenvalues of Inv(ACE)*(COV-ACE)

Eigenvalue Difference Proportion Cumulative

1 63.7716 61.1593 0.9367 0.9367

2 2.6123 1.5561 0.0384 0.9751

3 1.0562 0.4167 0.0155 0.9906

4 0.6395 0.00939 1.0000

Eigenvectors (Raw Canonical Coefficients)

Can1 Can2 Can3 Can4

SepalLength Sepal Length (mm) -.012009 -.098074 -.059852 0.402352

SepalWidth Sepal Width (mm) -.211068 -.000072 0.402391 -.225993

PetalLength Petal Length (mm) 0.324705 -.328583 0.110383 -.321069

PetalWidth Petal Width (mm) 0.266239 0.870434 -.085215 0.320286

Standardized Canonical Coefficients

Can1 Can2 Can3 Can4

SepalLength Sepal Length (mm) -0.09944 -0.81211 -0.49562 3.33174

SepalWidth Sepal Width (mm) -0.91998 -0.00031 1.75389 -0.98503

PetalLength Petal Length (mm) 5.73200 -5.80047 1.94859 -5.66782

PetalWidth Petal Width (mm) 2.02937 6.63478 -0.64954 2.44134
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Output 24.1.3 Plot of Transformed Iris Data: PROC SGPLOT

Output 24.1.4 Clustering of Transformed Iris Data: Partial Output from PROC FASTCLUS

Fisher (1936) Iris Data

The FASTCLUS Procedure
Replace=FULL  Radius=0  Maxclusters=3 Maxiter=10  Converge=0

Fisher (1936) Iris Data

The FASTCLUS Procedure
Replace=FULL  Radius=0  Maxclusters=3 Maxiter=10  Converge=0

Cluster Summary

Cluster Frequency
RMS Std

Deviation

MaximumDistance
from Seed

to Observation
Radius

Exceeded
Nearest
Cluster

Distance Between
Cluster Centroids

1 50 1.4138 5.3152 2 5.8580

2 50 1.8880 6.8298 1 5.8580

3 50 1.1016 5.2768 1 13.2845

Statistics for Variables

Variable Total STD Within STD R-Square RSQ/(1-RSQ)

Can1 8.04808 1.48537 0.966394 28.756658

Can2 1.90061 1.85646 0.058725 0.062389

Can3 1.43395 1.32518 0.157417 0.186826

Can4 1.28044 1.27550 0.021025 0.021477

OVER-ALL 4.24499 1.50298 0.876324 7.085666

Pseudo F Statistic = 520.80
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Output 24.1.4 continued

Approximate Expected Over-All R-Squared = 0.80391

Cubic Clustering Criterion = 5.179

WARNING: The two values above are invalid for correlated variables.

Cluster Means

Cluster Can1 Can2 Can3 Can4

1 2.54528754 -0.59273569 -0.78905317 -0.26079612

2 8.12988211 0.52566663 0.51836499 0.14915404

3 -10.67516964 0.06706906 0.27068819 0.11164209

Cluster Standard Deviations

Cluster Can1 Can2 Can3 Can4

1 1.572366584 1.393565864 1.303411851 1.372050319

2 1.799159552 2.743869556 1.270344142 1.370523175

3 0.953761025 0.931943571 1.398456061 1.058217627

Output 24.1.5 Crosstabulation of Cluster by Species for Fisher’s Iris Data: PROC FREQ

Fisher (1936) Iris Data

The FREQ Procedure

Fisher (1936) Iris Data

The FREQ Procedure

Frequency
Percent
Row Pct
Col Pct

Table of CLUSTER by Species

CLUSTER(Cluster)

Species(Iris Species)

Setosa Versicolor Virginica Total

1 0
0.00
0.00
0.00

48
32.00
96.00
96.00

2
1.33
4.00
4.00

50
33.33

2 0
0.00
0.00
0.00

2
1.33
4.00
4.00

48
32.00
96.00
96.00

50
33.33

3 50
33.33
100.00
100.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

50
33.33

Total 50
33.33

50
33.33

50
33.33

150
100.00
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Overview: ADAPTIVEREG Procedure
The ADAPTIVEREG procedure fits multivariate adaptive regression splines as defined by Friedman (1991b).
The method is a nonparametric regression technique that combines both regression splines and model
selection methods. It does not assume parametric model forms and does not require specification of knot
values for constructing regression spline terms. Instead, it constructs spline basis functions in an adaptive
way by automatically selecting appropriate knot values for different variables and obtains reduced models by
applying model selection techniques.
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PROC ADAPTIVEREG supports models with classification variables (Friedman 1991a) and offers options
for improving modeling speed (Friedman 1993). PROC ADAPTIVEREG also extends the method to data
with response variables that are distributed in the exponential family as suggested in Buja et al. (1991). The
procedure can take advantage of multicore processors to distribute the computation to multiple threads.

SAS/STAT software offers various tools for nonparametric regression, including the GAM, LOESS, and
TPSPLINE procedures. Typical nonparametric regression methods involve a large number of parameters in
order to capture nonlinear trends in data; thus the model space is much larger than it is in more restricted
parametric models. The fitting algorithms for nonparametric regression models are usually more complicated
than for parametric regression models. Also, the sparsity of data in high dimensions often causes slow
convergence or failure in many nonparametric regression methods. As the number of predictors increases,
the model variance increases rapidly because of the sparsity. This phenomenon is referred as the “curse of
dimensionality” (Bellman 1961). Hence, the LOESS and TPSPLINE procedures are limited to problems
in low dimensions. PROC GAM fits generalized additive models with the additivity assumption. By using
the local scoring algorithm (Hastie and Tibshirani 1990), PROC GAM can handle larger data sets than the
other two procedures. However, the computation time for the local scoring algorithm to converge increases
rapidly as data size grows, and the convergence for nonnormal distributions is not guaranteed. PROC
ADAPTIVEREG uses the multivariate adaptive regression splines method, which is similar to the method
used for the recursive partitioning models (Breiman et al. 1984). It creates an overfitted model first with the
fast-update algorithm (Friedman 1991b); then prunes it back with the backward selection technique.

The main features of the ADAPTIVEREG procedure are as follows:

• supports classification variables with ordering options

• enables you to force effects in the final model or restrict variables in linear forms

• supports options for fast forward selection

• supports data with response variables that are distributed in the exponential family

• supports partitioning of data into training, validation, and testing roles

• provides leave-one-out and k-fold cross validation

• produces a graphical representation of the selection process, model fit, functional components, and fit
diagnostics

• produces an output data set that contains predicted values and residuals

• produces an output data set that contains the design matrix of formed basis functions

• supports multiple SCORE statements

Getting Started: ADAPTIVEREG Procedure
This example concerns city-cycle fuel efficiency and automobile characteristics for 361 vehicle models made
from year 1970 to 1982. The data can be downloaded from the UCI Machine Learning Repository (Asuncion
and Newman 2007). The following DATA step creates the data set autompg:
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title 'Automobile MPG Study';
data Autompg;

input MPG Cylinders Displacement Horsepower Weight
Acceleration Year Origin Name $35.;

datalines;
18.0 8 307.0 130.0 3504 12.0 70 1 Chevrolet Chevelle Malibu
15.0 8 350.0 165.0 3693 11.5 70 1 Buick Skylark 320
18.0 8 318.0 150.0 3436 11.0 70 1 Plymouth Satellite
16.0 8 304.0 150.0 3433 12.0 70 1 AMC Rebel SST

... more lines ...

44.0 4 97.00 52.00 2130 24.6 82 2 VW Pickup
32.0 4 135.0 84.00 2295 11.6 82 1 Dodge Rampage
28.0 4 120.0 79.00 2625 18.6 82 1 Ford Ranger
31.0 4 119.0 82.00 2720 19.4 82 1 Chevy S-10
;

There are nine variables in the data set. The response variable MPG is city-cycle mileage per gallon (MPG).
Seven predictor variables (Cylinders, Displacement, HorsePower, Weight, Acceleration, Year, and Origin)
provide vehicle attributes. Among them, Cylinders, Year, and Origin are categorical variables. The last
variable, Name, contains the specific name of each vehicle model.

The dependency of vehicle fuel efficiency on various factors might be nonlinear. There might also be
redundant predictor variables as a result of dependency structures within predictors. For example, a vehicle
model with more cylinders is likely to have more horsepower. The objective of this example is to explore the
nonlinear dependency structure and also to produce a parsimonious model that does not overfit and thus has
good predictive power. The following invocation of the ADAPTIVEREG procedure fits an additive model
with linear spline terms of continuous predictors. By default, PROC ADAPTIVEREG fits a nonparametric
regression model that includes two-way interaction between spline basis functions. You can try models
with even higher interaction orders by specifying the MAXORDER= option in the MODEL statement. For
this particular data set, the sample size is relatively small. Restricting model complexity by specifying an
additive model can both improve model interpretability and reduce model variance without sacrificing much
predictive power. The additive model consists of terms of nonparametric transformations of variables. The
transformation of each variable and the selection of transformed terms are performed in an adaptive and
automatic way.

ods graphics on;

proc adaptivereg data=autompg plots=all;
class cylinders year origin;
model mpg = cylinders displacement horsepower

weight acceleration year origin / additive;
run;

PROC ADAPTIVEREG summarizes important information about the model that you are fitting in Figure 25.1.
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Figure 25.1 Model Information and Fit Controls

Automobile MPG Study

The ADAPTIVEREG Procedure

Automobile MPG Study

The ADAPTIVEREG Procedure

Model Information

Data Set WORK.AUTOMPG

Response Variable MPG

Class Variables Cylinders Year Origin

Distribution Normal

Link Function Identity

Fit Controls

Maximum Number of Bases 21

Maximum Order of Interaction 1

Degrees of Freedom per Knot 2

Knot Separation Parameter 0.05

Variable Parsimony Parameter 0

Missing Value Handling Include

In addition to listing classification variables in the “Model Information” table, PROC ADAPTIVEREG
displays level information about the classification variables that are specified in the CLASS statement. The
table in Figure 25.2 lists the levels of the classification variables Cylinders, Year, and Origin. Although the
values of Cylinders and Year are naturally ordered, they are treated as ordinary classification variables.

Figure 25.2 Class Level Information

Class Level Information

Class Levels Values

Cylinders 5 3 4 5 6 8

Year 13 70 71 72 73 74 75 76 77 78 79 80 81 82

Origin 3 1 2 3

The “Fit Statistics” table (Figure 25.3) lists summary statistics of the fitted regression spline model. Because
the final model is essentially a linear model, several fit statistics are reported as if the model were fitted with
basis functions as predetermined effects. However, because the model selection process and the determination
of basis functions are highly nonlinear, additional statistics that incorporate the extra source of degrees
of freedom are also displayed. The statistics include effective degrees of freedom, the generalized cross
validation (GCV) criterion, and the GCV R-square value.
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Figure 25.3 Fit Statistics

Fit Statistics

GCV 12.64769

GCV R-Square 0.79349

Effective Degrees of Freedom 25

R-Square 0.81770

Adjusted R-Square 0.81202

Mean Square Error 11.48378

Average Square Error 11.10869

The “Parameter Estimates” table (Figure 25.4) displays both parameter estimates for constructed basis
functions and each function’s construction components. The basis functions are constructed as two-way
interaction terms from parent basis functions and transformations of variables. For continuous variables, the
transformations are linear spline functions with knot values specified in the Knot column. For classification
variables, the transformations are formed by dichotomizing the variables based on levels specified in the
Levels column.

Figure 25.4 Parameter Estimates

Regression Spline Model after Backward Selection

Name Coefficient Parent Variable Knot Levels

Basis0 29.3788 Intercept

Basis2 0.003577 Basis0 Weight 3139.00

Basis3 -4.0349 Basis0 Horsepower .

Basis5 -0.05079 Basis3 Horsepower 102.00

Basis6 0.1925 Basis3 Horsepower 102.00

Basis7 2.6665 Basis0 Year 10 12 11 9 8 7 3 2

Basis9 -0.6600 Basis0 Displacement 85.0000

Basis11 0.6394 Basis0 Displacement 97.0000

Basis13 1.6047 Basis0 Acceleration 21.0000

Basis14 0.5071 Basis0 Acceleration 21.0000

Basis16 -0.2960 Basis3 Displacement 105.00

Basis17 1.7761 Basis0 Origin 2

Basis19 -7.0066 Basis0 Cylinders 0

During the model construction and selection process, some basis function terms are removed. You can view
the backward elimination process in the selection plot (Figure 25.5). The plot displays how the model sum of
squared error and the corresponding GCV criterion change along with the backward elimination process. The
sum of squared error increases as more basis functions are removed from the full model. The GCV criterion
decreases at first when two basis functions are dropped and increases afterward. The vertical line indicates
the selected model that has the minimum GCV value.



890 F Chapter 25: The ADAPTIVEREG Procedure

Figure 25.5 Selection Plot

The formed model is an additive model. Basis functions of same variables can be grouped together to form
functional components. The “ANOVA Decomposition” table (Figure 25.6) shows functional components and
their contribution to the final model.
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Figure 25.6 ANOVA Decomposition

ANOVA Decomposition

Change If
Omitted

Functional
Component

Number of
Bases DF Lack of Fit GCV

Weight 1 2 122.85 0.2131

Horsepower 2 4 746.28 1.8228

Year 1 2 620.89 1.6227

Displacement 3 6 463.12 0.8859

Acceleration 2 4 312.83 0.6090

Origin 1 2 133.52 0.2433

Cylinders 1 2 114.56 0.1897

Another criterion that focuses on the contribution of each individual variable is variable importance. It is
defined to be the square root of the GCV value of a submodel from which all basis functions that involve a
variable have been removed, minus the square root of the GCV value of the selected model, then scaled to
have the largest importance value, 100. The table in Figure 25.7 lists importance values, sorted in descending
order, for the variables that compose the selected model.

Figure 25.7 Variable Importance

Variable Importance

Variable
Number of

Bases Importance

Horsepower 2 100.00

Year 1 89.34

Displacement 3 49.44

Acceleration 2 34.17

Origin 1 13.75

Weight 1 12.05

Cylinders 1 10.73
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The component panels (Figure 25.8 and Figure 25.9) display the fitted functional components against their
forming variables.

Figure 25.8 Component Panel 1
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Figure 25.9 Component Panel 2

Figure 25.10 shows a panel of fit diagnostics for the selected model that indicate a reasonable fit.

PROC ADAPTIVEREG provides an adaptive way to fit parsimonious regression spline models. The
nonparametric transformation of variables is automatically determined, and model selection methods are
used to reduce model complexity. The final model based on piecewise linear splines is easy to interpret and
highly portable. It can also be used to suggest parametric forms based on the nonlinear trend.
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Figure 25.10 Diagnostics Panel

Syntax: ADAPTIVEREG Procedure
The following statements are available in the ADAPTIVEREG procedure:

PROC ADAPTIVEREG < options > ;
BY variables ;
CLASS variables < / options > ;
FREQ variable ;
MODEL dependent < (options) > = < effects >< / options > ;
OUTPUT < OUT=SAS-data-set > < keyword < (keyword-options ) > < =name > > . . .

< keyword < (keyword-options ) > < =name > > ;
PARTITION < options > ;
SCORE < DATA=SAS-data-set > < OUT=SAS-data-set >

< keyword < =name > >. . . < keyword < =name > > ;
WEIGHT variable ;
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The syntax of the ADAPTIVEREG procedure is similar to that of other regression procedures in the SAS
System. The PROC ADAPTIVEREG and MODEL statements are required, and the MODEL statement must
appear after the CLASS statement if a CLASS statement is included. The SCORE statement can appear
multiple times; all other statements can appear only once.

The following sections describe the PROC ADAPTIVEREG statement and then describe the other statements
in alphabetical order.

PROC ADAPTIVEREG Statement
PROC ADAPTIVEREG < options > ;

The PROC ADAPTIVEREG statement invokes the procedure.

Table 25.1 summarizes the options available in the PROC ADAPTIVEREG statement.

Table 25.1 PROC ADAPTIVEREG Statement Options

Option Description

Data Set Options
DATA= Specifies the input SAS data set
TESTDATA= Names a data set that contains test data
VALDATA= Names a data set that contains validation data

Computational Options
NLOPTIONS Sets optimization parameters for fitting generalized linear models
SELFUZZ= Sets the fuzzy comparison criterion in selection
SINGULAR= Sets the singularity tolerance

Display Options
NAMELEN= Sets the length of effect names in tables and output data sets
PLOTS= Controls plots produced through ODS Graphics
DETAILS= Displays detailed modeling information

Other Options
NOTHREADS Requests the computation in single-threaded mode
OUTDESIGN= Requests a data set that contains the design matrix
SEED= Sets the seed used for pseudo-random number generation
NTHREADS= Specifies the number of threads for the computation

You can specify the following options.

DATA=SAS-data-set
specifies the SAS data set to be read by PROC ADAPTIVEREG. If you do not specify the DATA=
option, PROC ADAPTIVEREG uses the most recently created SAS data set.
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DETAILS< =(detail-options) >
requests detailed model fitting information. You can specify the following detail-options:

BASES
displays the “Bases Information” table.

BWDSUMMARY
displays the “Backward Selection Summary” table.

FWDSUMMARY
displays the “Forward Selection Summary” table.

FWDPARAMS
displays the “Forward Selection Parameter Estimates” table.

If you do not specify a detail-option, PROC ADAPTIVEREG produces all the preceding tables by
default.

NAMELEN=number
specifies the length to which long effect names are shortened. The default and minimum value is 20.

NLOPTIONS(options)
specifies options for the nonlinear optimization methods if you are applying the multivariate adaptive
regression splines algorithm to generalized linear models. You can specify the following options:

ABSCONV=r
ABSTOL=r

specifies an absolute function convergence criterion by which minimization stops when
f . .k// � r , where  is the vector of parameters in the optimization and f .�/ is the ob-
jective function. The default value of r is the negative square root of the largest double-precision
value, which serves only as a protection against overflows.

ABSFCONV=r
ABSFTOL=r

specifies an absolute function difference convergence criterion. For all techniques except NM-
SIMP, termination requires a small change of the function value in successive iterations,

jf . .k�1// � f . .k//j � r

where  denotes the vector of parameters that participate in the optimization and f .�/ is the
objective function. The same formula is used for the NMSIMP technique, but  .k/ is defined as
the vertex with the lowest function value, and  .k�1/ is defined as the vertex with the highest
function value in the simplex. The default value is r=0.

ABSGCONV=r
ABSGTOL=r

specifies an absolute gradient convergence criterion. Termination requires the maximum absolute
gradient element to be small,

max
j
jgj . 

.k//j � r

where  denotes the vector of parameters that participate in the optimization and gj .�/ is the
gradient of the objective function with respect to the jth parameter. This criterion is not used by
the NMSIMP technique. The default value is r = 1E–5.
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FCONV=r

FTOL=r
specifies a relative function convergence criterion. For all techniques except NMSIMP, termina-
tion requires a small relative change of the function value in successive iterations,

jf . .k// � f . .k�1//j

jf . .k�1//j
� r

where  denotes the vector of parameters that participate in the optimization and f .�/ is the
objective function. The same formula is used for the NMSIMP technique, but  .k/ is defined as
the vertex with the lowest function value, and  .k�1/ is defined as the vertex with the highest
function value in the simplex. The default is r D 10�FDIGITS, where FDIGITS is by default
� log10f�g and � is the machine precision.

GCONV=r

GTOL=r
specifies a relative gradient convergence criterion. For all techniques except CONGRA and
NMSIMP, termination requires the normalized predicted function reduction to be small,

g. .k//0ŒH.k/��1g. .k//
jf . .k//j

� r

where denotes the vector of parameters that participate in the optimization, f .�/ is the objective
function, and g.�/ is the gradient. For the CONGRA technique (where a reliable Hessian estimate
H is not available), the following criterion is used:

k g. .k// k22 k s. .k// k2
k g. .k// � g. .k�1// k2 jf . .k//j

� r

This criterion is not used by the NMSIMP technique. The default value is r = 1E–8.

HESSIAN=hessian-options
specifies the Hessian matrix type used in the optimization of likelihood functions, if the Newton-
Raphson technique is used. You can specify the following hessian-options:

EXPECTED
requests that the Hessian matrix in optimization be computed as the negative of the expected
information matrix.

OBSERVED
requests that the Hessian matrix in optimization be computed as the negative of the observed
information matrix. For many specified distribution families and link functions, the observed
information matrix is equal to the expected information matrix.

The default is HESSIAN=EXPECTED.
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MAXFUNC=n

MAXFU=n
specifies the maximum number of function calls in the optimization process. The default values
are as follows, depending on the optimization technique:

• TRUREG, NRRIDG, and NEWRAP: 125
• QUANEW and DBLDOG: 500
• CONGRA: 1000
• NMSIMP: 3000

The optimization can terminate only after completing a full iteration. Therefore, the number of
function calls that are actually performed can exceed the number that is specified by this option.
You can select the optimization technique by specifying the TECHNIQUE= option.

MAXITER=n

MAXIT=n
specifies the maximum number of iterations in the optimization process. The default values are
as follows, depending on the optimization technique:

• TRUREG, NRRIDG, and NEWRAP: 50
• QUANEW and DBLDOG: 200
• CONGRA: 400
• NMSIMP: 1000

These default values also apply when n is specified as a missing value. You can select the
optimization technique by specifying the TECHNIQUE= option.

MAXTIME=r
specifies an upper limit of r seconds of CPU time for the optimization process. The time is
checked only at the end of each iteration. Therefore, the actual run time might be longer than the
specified time. By default, CPU time is not limited.

MINITER=n

MINIT=n
specifies the minimum number of iterations. The default value is 0. If you request more iterations
than are actually needed for convergence to a stationary point, the optimization algorithms can
behave strangely. For example, the effect of rounding errors can prevent the algorithm from
continuing for the required number of iterations.

TECHNIQUE=keyword
specifies the optimization technique to obtain maximum likelihood estimates for nonnormal
distributions. You can choose from the following techniques by specifying the appropriate
keyword :

CONGRA performs a conjugate-gradient optimization.

DBLDOG performs a version of double-dogleg optimization.

NEWRAP performs a Newton-Raphson optimization that combines a line-search algo-
rithm with ridging.
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NMSIMP performs a Nelder-Mead simplex optimization.

NONE performs no optimization.

NRRIDG performs a Newton-Raphson optimization with ridging.

QUANEW performs a dual quasi-Newton optimization.

TRUREG performs a trust-region optimization.

The default is TECHNIQUE=NEWRAP.

For more information about these optimization methods, see the section “Choosing an Optimiza-
tion Algorithm” on page 501 in Chapter 19, “Shared Concepts and Topics.”

NOTHREADS
forces single-threaded execution of the analytic computations. This overrides the SAS system option
THREADS | NOTHREADS. Specifying this option is equivalent to specifying the NTHREADS=1
option.

OUTDESIGN< (options) >=SAS-data-set
creates a data set that contains the design matrix of constructed basis functions. The design matrix
column names consist of a prefix followed by an index. The default naming prefix is _X. The default
output is the design matrix of basis functions after backward selection.

You can specify the following options in parentheses to control the content of the OUTDESIGN= data
set:

BACKWARDMODEL | BACKWARD
produces the design matrix for the selected model after the backward selection.

FORWARDMODEL | FORWARD
produces the design matrix for the selected model after the forward selection.

PREFIX=prefix
requests that the design matrix column names consist of a prefix followed by an index.

STARTMODEL
produces the design matrix for the initial model specified in the MODEL statement.

PLOTS < (global-plot-options) > < = plot-request < (options) > >

PLOTS < (global-plot-options) > < = (plot-request < (options) > < ... plot-request < (options) > >) >
controls the plots produced through ODS Graphics. When you specify only one plot-request , you can
omit the parentheses around the plot-request . For example:

plots=all
plots=components(unpack)
plots(unpack)=(components diagnostics)
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ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;

proc adaptivereg plots=all;
model y=x1 x2;

run;

ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

You can specify the following global-plot-option, which applies to all plots that the ADAPTIVEREG
procedure generates:

UNPACK | UNPACKPANEL
suppresses paneling. By default, multiple plots can appear in some output panels. Specify
UNPACK to get each plot individually. You can also specify UNPACK as a suboption with
COMPONENTS and DIAGNOSTICS.

You can specify the following plot-requests and their options:

ALL
requests that all default plots be produced.

COMPONENTS < (component-options) >
plots a panel of functional components of the fitted model. You can specify the following
component-options:

COMMONAXES
specifies that the functional component plots use a common vertical axis except for contour
plots. This enables you to visually judge relative effect size.

UNPACK | UNPACKPANEL
displays the component plots individually.

DIAGNOSTICS < (UNPACK | UNPACKPANEL) >
produces a summary panel of fit diagnostics that consists of the following:

• residuals versus the predicted values
• a histogram of the residuals
• a normal quantile plot of the residuals
• a residual-fit (RF) plot that consists of side-by-side quantile plots of the centered fit and the

residuals
• response values versus the predicted values

You can request the five plots in this panel as individual plots by specifying the UNPACK
suboption. The fit diagnostics panel is not produced for dependent variable with nonnormal
distributions.
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FIT < (NODATA | NOOBS) >
produces a plot of the predicted values against the variables that form the selected model. By
default, a scatter plot of the input data is overlaid. You can suppress the scatter plot by specifying
the NODATA | NOOBS option.

The plot is not produced if the number of variables in the selected model exceeds two. The plot
is not produced for dependent variables with nonnormal distributions.

NONE
suppresses all plots.

SELECTION< (selection-panel-options) >
plots a panel of model fit criteria. The panel consists of two plots. The upper plot shows the
progression of the model lack-of-fit criterion as the selection process proceeds. The lower plot
shows the progression of the model validation criterion as the selection process proceeds. By
default, the selection panel shows the progression for the backward selection process. You can
specify the following selection-panel-options:

BACKWARDMODEL | BACKWARD
displays the progression of model fit criteria for the backward selection process.

FORWARDMODEL | FORWARD
displays the progression of model fit criteria for the forward selection process.

SEED=number
specifies an integer used to start the pseudorandom number generator for random cross validation and
random partitioning of data for training, testing, and validation. If you do not specify a seed, or if you
specify a value less than or equal to 0, the seed is generated from the time of day, which is read from
the computer’s clock.

SELFUZZ=number

SELECTFUZZ=number
sets the fuzzy comparison criterion when PROC ADAPTIVEREG examines candidate basis functions
in forward and backward selection stages. The fuzzy comparison criterion is also used in stepwise
selection for CLASS variables. A candidate is considered to be the best one only when its improvement
is better than the current optimum with the extra amount number . By default, number is 104 times the
machine epsilon. The default number is approximately 10�11 on most machines.

SINGULAR=number

EPSILON=number
sets the tolerance for testing singularity of the X0WX matrix that is formed from the design matrix X.
Roughly, the test requires that a pivot be at least this number times the original diagonal value. By
default, number is 107 times the machine epsilon. The default number is approximately 10�9 on most
machines.

TESTDATA=SAS-data-set
names a SAS data set that contains test data. This data set must contain all the variables specified in the
MODEL statement. Furthermore, when a BY statement is used and the TESTDATA=data set contains
any of the BY variables, then the TESTDATA= data set must also contain all the BY variables sorted
in the order of the BY variables. In this case, only the test data for a specific BY group are used with
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the corresponding BY group in the analysis data. If the TESTDATA= data set contains none of the BY
variables, then the entire TESTDATA = data set is used with each BY group of the analysis data.

If you specify a TESTDATA= data set, then you cannot also specify a PARTITION statement to reserve
observations for testing.

NTHREADS=n
specifies the number of threads for analytic computations and overrides the SAS system option
THREADS | NOTHREADS. If you do not specify the NTHREADS= option or if you specify
NTHREADS=0, the number of threads is determined based on the data size and the number of
CPUs on the host on which the analytic computations execute. If the specified number of threads is
more than the number of actual CPUs, PROC ADAPTIVEREG by default sets the value to the number
of actual CPUs.

VALDATA=SAS-data-set
names a SAS data set that contains validation data. This data set must contain all the variables specified
in the MODEL statement. Furthermore, when a BY statement is used and the VALDATA= data set
contains any of the BY variables, then the VALDATA= data set must also contain all the BY variables
sorted in the order of the BY variables. In this case, only the validation data for a specific BY group are
used with the corresponding BY group in the analysis data. If the VALDATA= data set contains none
of the BY variables, then the entire VALDATA = data set is used with each BY group of the analysis
data.

If you specify a VALDATA= data set, then you cannot also specify a PARTITION statement to reserve
observations for validation.

BY Statement
BY variables ;

You can specify a BY statement with PROC ADAPTIVEREG to obtain separate analyses of observations in
groups that are defined by the BY variables. When a BY statement appears, the procedure expects the input
data set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last
one specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the ADAPTIVEREG
procedure. The NOTSORTED option does not mean that the data are unsorted but rather that the
data are arranged in groups (according to values of the BY variables) and that these groups are not
necessarily in alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.
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CLASS Statement
CLASS variables < / options > ;

The CLASS statement names the classification variables to be used in the analysis. Typical CLASS variables
are Treatment, Sex, Race, Group, and Replication. If the CLASS statement is used, it must appear before the
MODEL statement.

Classification variables can be either character or numeric. Class levels are determined from the formatted
values of the variables. Thus, you can use formats to group values into levels. See the discussion of the
FORMAT procedure in the Base SAS Procedures Guide and the discussions of the FORMAT statement and
SAS formats in SAS Formats and Informats: Reference.

You can specify the following options for classification variables:

DESCENDING
DESC

reverses the sort order of the classification variable. If you specify both the DESCENDING and
ORDER= options, PROC ADAPTIVEREG orders the categories according to the ORDER= option
and then reverses that order.

ORDER=order-type
specifies the sort order for the categories of categorical variables. This ordering determines which
parameters in the model correspond to each level in the data. When the default ORDER=FORMATTED
is in effect for numeric variables for which you have supplied no explicit format, the levels are ordered
by their internal values. Table 25.2 shows how PROC ADAPTIVEREG interprets values of the
ORDER= option.

Table 25.2 Sort Order for Categorical Variables

order-type Levels Sorted By

DATA Order of appearance in the input data set
FORMATTED External formatted value, except for numeric variables with no explicit

format, which are sorted by their unformatted (internal) value
FREQ Descending frequency count; levels with the most observations come

first in the order
FREQDATA Order of descending frequency count, and within counts by order of

appearance in the input data set when counts are tied
FREQFORMATTED Order of descending frequency count, and within counts by formatted

value (as above) when counts are tied
FREQINTERNAL Order of descending frequency count, and within counts by unformat-

ted value when counts are tied
INTERNAL Unformatted value

For the FORMATTED and INTERNAL values, the sort order is machine-dependent. If you specify
the ORDER= option in the MODEL statement and the ORDER= option in the CLASS statement, the
former takes precedence.

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.
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FREQ Statement
FREQ variable ;

The FREQ statement names a variable that provides frequencies for each observation in the DATA= data set.
Specifically, if n is the value of the FREQ variable for a given observation, then that observation is used n
times.

The analysis produced using a FREQ statement reflects the expanded number of observations. You can
produce the same analysis without the FREQ statement by first creating a new data set that contains the
expanded number of observations. For example, if the value of the FREQ variable is 5 for the first observation,
the first five observations in the new data set are identical. Each observation in the old data set is replicated
ni times in the new data set, where ni is the value of the FREQ variable for that observation.

If the value of the FREQ variable is missing or is less than 1, the observation is not used in the analysis. If
the value is not an integer, only the integer portion is used.

MODEL Statement
MODEL dependent < (options) >=< effects > < / options > ;

MODEL events/trials = < effects > < / options > ;

The MODEL statement names the response variable and the explanatory effects, including covariates, main
effects, interactions, and nested effects; see the section “Specification of Effects” on page 3453 in Chapter 45,
“The GLM Procedure,” for more information. If you omit the explanatory effects, the procedure fits an
intercept-only model. You must specify exactly one MODEL statement.

You can specify two forms of the MODEL statement. The first form, referred to as single-trial syntax, is
applicable to binary, ordinal, and nominal response data. The second form, referred to as events/trials syntax,
is restricted to binary response data. You use the single-trial syntax when each observation in the DATA=
data set contains information about only a single trial, such as a single subject in an experiment. When each
observation contains information about multiple binary response trials, such as the counts of the number of
observed subjects and the number of subjects who respond, then you can use the events/trials syntax.

In the events/trials syntax, you specify two variables that contain count data for a binomial experiment.
These two variables are separated by a slash. The value of the first variable, events, is the number of positive
responses (or events). The value of the second variable, trials, is the number of trials. The values of both
events and (trials–events) must be nonnegative and the value of trials must be positive for the response to be
valid.

In the single-trial syntax, you specify one variable (on the left side of the equal sign) as the response variable.
This variable can be character or numeric. You can specify variable options specific to the response variable
immediately after the response variable with parentheses around them.

For both forms of the MODEL statement, explanatory effects follow the equal sign. Variables can be either
continuous or classification variables. Classification variables can be character or numeric, and they must be
declared in the CLASS statement. When an effect is a classification variable, the procedure inserts a set of
coded columns into the design matrix instead of directly entering a single column that contains the values of
the variable.
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Table 25.3 summarizes the options available in the MODEL statement.

Table 25.3 MODEL Statement Options

Option Description

Response Variable Options
DESCENDING Reverses the order of the response categories
EVENT= Specifies the event category for the binary response
ORDER= Specifies the sort order for the binary response
REFERENCE= Specifies the reference category for the binary response

Statistical Modeling Options
ADDITIVE Requests an additive model
ALPHA Controls the knot selection
CVMETHOD= Specifies how subsets for cross validation are formed
DFPERBASIS Specifies degrees of freedom per basis function
DIST= Specifies the distribution family
FAST Controls the fast-forward selection algorithm
FORWARDONLY Requests that the backward selection process be skipped
KEEP= Specifies effects to be included in the final model
LINEAR= Specifies linear effects to be examined in model selection
LINK= Specifies the link function
MAXBASIS= Specifies the maximum number of basis functions allowed
MAXORDER= Specifies the maximum order of interactions allowed
NOMISS Requests removal of missing values from modeling
OFFSET= Specifies an offset for the linear predictor
VARPENALTY= Specifies the penalty for variable reentry

You can specify the following options in the MODEL statement.

Response Variable Options

Response variable options determine how the ADAPTIVEREG procedure models probabilities for binary
data. You can specify the following response variable options by enclosing them in parentheses after the
response variable.

DESCENDING

DESC
reverses the order of the response categories. If both the DESCENDING and ORDER= options are
specified, PROC ADAPTIVEREG orders the response categories according to the ORDER= option
and then reverses that order.

EVENT=‘category ’ | FIRST | LAST
specifies the event category for the binary response model. PROC ADAPTIVEREG models the
probability of the event category. You can specify one of the following values for this option:

‘category’ specifies the formatted value of the reference category.

FIRST designates the first ordered category as the event.
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LAST designates the last ordered category as the event.

The default is EVENT=FIRST.

One of the most common sets of response levels is f0; 1g, with 1 representing the event for which
the probability is to be modeled. Consider the example where Y takes the value 1 for event and 0
for nonevent, and X is the explanatory variable. To specify the value 1 as the event category, use the
following MODEL statement:

model Y (event='1') = X;

ORDER=order-type
specifies the sort order for the categories of categorical variables. This ordering determines which
parameters in the model correspond to each level in the data. When the default ORDER=FORMATTED
is in effect for numeric variables for which you have supplied no explicit format, the levels are ordered
by their internal values. Table 25.4 shows how PROC ADAPTIVEREG interprets values of the
ORDER= option.

Table 25.4 Sort Order for Categorical Variables

order-type Levels Sorted By

DATA Order of appearance in the input data set
FORMATTED External formatted value, except for numeric variables with no explicit

format, which are sorted by their unformatted (internal) value
FREQ Descending frequency count; levels with the most observations come

first in the order
FREQDATA Order of descending frequency count, and within counts by order of

appearance in the input data set when counts are tied
FREQFORMATTED Order of descending frequency count, and within counts by formatted

value (as above) when counts are tied
FREQINTERNAL Order of descending frequency count, and within counts by unformat-

ted value when counts are tied
INTERNAL Unformatted value

For the FORMATTED and INTERNAL values, the sort order is machine-dependent. If you specify
the ORDER= option in the MODEL statement and the ORDER= option in the CLASS statement, the
former takes precedence.

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

REFERENCE=‘category ’ | FIRST | LAST

REF=‘category ’ | FIRST | LAST
specifies the reference category for the binary or multinomial response model. For the binary response
model, specifying one response category as the reference is the same as specifying the other response
category as the event category. You can specify one of the following values for this option:
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‘category’ specifies the formatted value of the reference category.

FIRST designates the first ordered category as the reference.

LAST designates the last ordered category as the reference.

The default is REFERENCE=LAST.

Model Options

You can specify the following model options.

ADDITIVE
requests an additive model for which only main effects are included in the fitted model. If you do not
specify the ADDITIVE option, PROC ADAPTIVEREG fits a model that has both main effects and
two-way interaction terms.

ALPHA=number
specifies the parameter that controls the number of knots considered for each variable. Friedman
(1991b) uses the following as the number of observations between interior knots:

�
2

5
log2

�
�
log.1 � ˛/
pnm

�
Friedman also uses the following as the number of observations between extreme knots and the
corresponding variable boundary values,

3 � log2
˛

p

where p is the number of variables and nm is the number of observations for which a parent basis
Bm > 0. The value of ˛ should be greater than 0 and less than 1. The default is ALPHA=0.05.

CVMETHOD=RANDOM < (n) >

CVMETHOD=INDEX (variable)
specifies the method for subdividing the training data into n parts when you request n-fold cross valida-
tion when you do backward selection. CVMETHOD=RANDOM assigns each training observation
randomly to one of the n parts. CVMETHOD=INDEX(variable) assigns observations to parts based
on the formatted value of the named variable. This input data set variable is treated as a classification
variable, and the number of parts n is the number of distinct levels of this variable. By optionally
naming this variable in a CLASS statement, you can use the ORDER= option in the CLASS statement
to control how this variable is levelized.

The value of n defaults to 5 with CVMETHOD=RANDOM.

DFPERBASIS=d

DF=d
specifies the degrees of freedom (d) that are “charged” for each basis function that is used in the
lack-of-fit function for backward selection. Larger values of d lead to fewer spline knots and thus
smoother function estimates. The default is DFPERBASIS=2.
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DIST=distribution-id
specifies the distribution family used in the model.

If you do not specify a distribution-id , the ADAPTIVEREG procedure defaults to the normal distribution
for continuous response variables and to the binary distribution for classification or character variables,
unless the events/trial syntax is used in the MODEL statement. If you choose the events/trial syntax,
the ADAPTIVEREG procedure defaults to the binomial distribution.

Table 25.5 lists the values of the DIST= option and the corresponding default link functions. For
generalized linear models with these distributions, you can find expressions for the log-likelihood
functions in the section “Log-Likelihood Functions” on page 2939 in Chapter 43, “The GENMOD
Procedure.”

Table 25.5 Values of the DIST= Option

distribution-id Aliases Distribution Default Link Function

BINOMIAL Binomial Logit
GAMMA GAM, G Gamma Reciprocal
GAUSSIAN NORMAL, N, NOR Normal Identity
IGAUSSIAN IG Inverse Gaussian Inverse squared

(power(–2))
NEGBIN NB Negative binomial Log
POISSON POI Poisson Log

FAST< (fast-options) >
improves the speed of the modeling. Because of the computation complexity in the original multivariate
adaptive regression splines algorithm, Friedman (1993) proposes modifications to improve the speed
by tuning several parameters. See the section “Fast Algorithm” on page 917 for more information
about the improvement of the multivariate adaptive regression splines algorithm. You can specify the
following fast-options:

BETA=beta
specifies the “aging” factor in the priority queue of candidate parent bases. Larger values of beta
result in low-improvement parents rising fast into top list of candidates. The default value is
BETA=1.

H=h
specifies the parameter that controls how often the improvement is recomputed for a parent basis
Bm over all candidate variables. Larger values of h cause fewer computations of improvement.
The default value is H=1.

K=k
specifies the number of top candidates in the priority queue of parent bases for selecting new
bases. Larger values of k cause more parent bases to be considered. The default is to use half of
eligible parent bases at every iteration.
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FORWARDONLY
skips the backward selection step after forward selection is finished.

KEEP=effects
specifies a list of variables to be included in the final model.

LINEAR=effects
specifies a list of variables to be considered without nonparametric transformation. They should appear
in the linear form if they are selected.

LINK=keyword
specifies the link function in the model. Not all link functions are available for all distribution families.
The keywords and expressions for the associated link functions are shown in Table 25.6.

Table 25.6 Link Functions in MODEL Statement of the
ADAPTIVEREG Procedure

keyword Alias Link Function g.�/ D � D

IDENTITY ID Identity �

LOG Log log.�/
LOGIT Logit log.�=.1 � �//
POWERMINUS2 Power with exponent –2 1=�2

PROBIT NORMIT Probit ˆ�1.�/

RECIPROCAL INVERSE Reciprocal 1=�

MAXBASIS=number
specifies the maximum number of basis functions .Mmax/ that can be used in the final model. The
default value is the larger value between 21 and one plus two times the number of nonintercept effects
specified in the MODEL statement.

MAXORDER=number
specifies the maximum interaction levels for effects that could potentially enter the model. The default
value is MAXORDER=2.

NOMISS
excludes all observations with missing values from the model fitting. By default, the ADAPTIVEREG
procedure takes the missingness into account when an explanatory variable has missing values. For
more information about how PROC ADAPTIVEREG handles missing values, see the section “Missing
Values” on page 918.

OFFSET=variable
specifies an offset for the linear predictor. An offset plays the role of a predictor whose coefficient is
known to be 1. For example, you can use an offset in a Poisson model when counts have been obtained
in time intervals of different lengths. With a log link function, you can model the counts as Poisson
variables with the logarithm of the time interval as the offset variable. The offset variable cannot appear
in the CLASS statement or elsewhere in the MODEL statement.
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VARPENALTY= 
specifies the incremental penalty  for increasing the number of variables in the adaptive regression
model. To discourage a model with too many variables, at each iteration of the forward selection the
model improvement is reduced by a factor of .1 � / for any new variable that is introduced.

For highly collinear designs, the VARPENALTY= option helps PROC ADAPTIVEREG produce
models that are nearly equivalent in terms of residual sum of squares but have fewer independent
variables. Friedman (1991b) suggests the following values for  :

0.0 no penalty (default value)

0.05 moderate penalty

0.1 heavy penalty

The best value depends on the specific situation. Some experimenting with different values is usually
required. You should use this option with care.

OUTPUT Statement
OUTPUT < OUT=SAS-data-set > < keyword < (keyword-options ) > < =name > > . . .

< keyword < (keyword-options ) > < =name > > ;

The OUTPUT statement creates a new SAS data set to contain diagnostic measures that are calculated for the
selected model. If you do not specify a keyword , then the only diagnostic included is the predicted response.

All the variables in the original data set are included by the new data set, along with variables created in the
OUTPUT statement. These new variables contain the values of a variety of statistics and diagnostic measures
that are calculated for each observation in the data set. If you specify a BY statement, then a variable _BY_
that indexes the BY groups is included. For each observation, the value of _BY_ is the index of the BY group
to which this observation belongs.

If you have requested n-fold cross validation, then a variable _CVINDEX_ is included in the output data
set. For each observation that is used for model training, the value of _CVINDEX_ is i if that observation
is omitted in forming the ith subset of the training data. See the CVMETHOD= for additional details. The
value of _CVINDEX_ is 0 for all observations in the input data set that are not used for model training.

If you have partitioned the input data by using a PARTITION statement, then a character variable _ROLE_ is
included in the output data set. For each observation the value of _ROLE_ is as follows:

_ROLE_ Observation Role
TEST Testing
TRAIN Training
VALIDATE Validation

If you want to create a permanent SAS data set, you must specify a two-level name. For more information
about permanent SAS data sets, see SAS Language Reference: Concepts.

Details about the specifications in the OUTPUT statement follow.
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keyword < (keyword-options) >< =name >
specifies the statistics to include in the output data set and optionally names the new variables that
contain the statistics. You can use the keyword-options to control which type of a particular statistic to
compute for generalized linear models. You can specify the following keyword-options for associated
statistics:

ILINK computes the prediction on the scale of the data O� D g�1. O�/.

RAW requests the raw residual value r D y � O�.

PEARSON requests the Pearson residual value r D .y � O�/=
p
V. O�/.

DEVIANCE requests the deviance residual value r D sign.y � O�/
p
Od2.

You can specify a keyword for each desired statistic (see the following list of keywords), followed
optionally by an equal sign, and a variable to contain the statistic.

If you specify keyword=name, the new variable that contains the requested statistic has the specified
name. If you omit the optional =name after a keyword , then the new variable name is formed by
default names.

You can specify the following keywords for the corresponding statistics:

PREDICTED | PRED | P requests predicted values. The default name is Pred.

RESIDUAL | RESID | R requests residuals, calculated as ACTUAL – PREDICTED. The default
name is Resid.

OUT=SAS-data-set
specifies the name of the new data set to contain the diagnostic measures. If the OUT= option is
omitted, the procedure uses the DATAn convention to name the output data set.

PARTITION Statement
PARTITION < options > ;

The PARTITION statement specifies how observations in the input data set are logically partitioned into
disjoint subsets for model training, validation, and testing. Either you can designate a variable in the input
data set and a set of formatted values of that variable to determine the role of each observation, or you can
specify proportions to use for random assignment of observations for each role.

An alternative to using a PARTITION statement is to provide a variable named _ROLE_ in the input data set
to define roles of observations in the input data. If you specify a PARTITION statement, then the _ROLE_
variable is ignored if it is present in the input data set. If you do not specify a PARTITION statement and the
input data do not contain a variable named _ROLE_, then all observations in the input data set are assigned to
model training.

You can specify the following mutually exclusive options:
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ROLEVAR=variable (< TEST=‘value’ > < TRAIN=‘value’ > < VALIDATE=‘value’ >)

ROLE=variable (< TEST=‘value’ > < TRAIN=‘value’ > < VALIDATE=‘value’ >)
names the variable in the input data set whose values are used to assign roles to each observation.
The formatted values of this variable that are used to assign observations roles are specified in the
TEST=, TRAIN=, and VALIDATE= suboptions. If you do not specify the TRAIN= suboption, then all
observations whose role is not determined by the TEST= or VALIDATE= suboptions are assigned to
training. If you specify a TESTDATA= data set in the PROC ADAPTIVEREG statement, then you
cannot also specify the TEST= suboption in the PARTITION statement. If you specify a VALDATA=
data set in the PROC ADAPTIVEREG statement, then you cannot also specify the VALIDATE=
suboption in the PARTITION statement.

FRACTION(< TEST=fraction > < VALIDATE=fraction >)
randomly assigns training and validation roles to the observations in the input data according to the
proportions that are specified by the fraction values in the TEST= and VALIDATE= suboptions. If
you specify both the TEST= and VALIDATE= suboptions, then the sum of the specified fractions
must be less than 1 and the remaining fraction of the observations are assigned to the training role. If
you specify a TESTDATA= data set in the PROC ADAPTIVEREG statement, then you cannot also
specify the TEST= suboption in the PARTITION statement. If you specify a VALDATA= data set in
the PROC ADAPTIVEREG statement, then you cannot also specify the VALIDATE= suboption in the
PARTITION statement.

SCORE Statement
SCORE < DATA=SAS-data-set > < OUT=SAS-data-set >

< keyword < =name > >. . . < keyword < =name > > ;

The SCORE statement creates a new SAS data set to contain predicted values and optionally residuals for
data in a new data set that you name. If you do not specify a DATA= data set, then the input data are scored.
If you want to predict multiple data sets, you can specify multiple SCORE statements. If you want to create
a SAS data set in a permanent library, you must specify a two-level name. For more information about
permanent libraries and SAS data sets, see SAS Language Reference: Concepts.

When you specify a BY statement, the DATA= data set must either contain all the BY variables sorted in the
order of the BY variables or contain none of the BY variables. If the DATA= data set contains all the BY
variables, then the model that is selected for a given BY group is used to score just the matching observations
in that data set. If the DATA= set contains none of the BY variables, then the entire data set is scored for each
BY group.

All observations in the DATA= data set are retained in the output data set. All the variables in the input
data set are included in the output data set, along with variables that contain predicted values and optionally
residuals.

You can specify the following arguments in the SCORE statement:

DATA=SAS data set
names the data set to be scored. If you omit this option, then the input data set that is named in the
DATA= option in the PROC ADAPTIVEREG statement is scored.
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keyword < =name >
specifies the statistics to include in the output data set and optionally names the new variables that
contain the statistics. Specify one of the following keyword for each desired statistic, followed
optionally by an equal sign, and a variable to contain the statistic.

If you specify keyword=name, the new variable that contains the requested statistic has the specified
name. If you omit the optional =name after a keyword , then the new variable name is formed by using
a prefix of one or more characters that identify the statistic, followed by an underscore (_), followed by
the dependent variable name.

You can specify the following keywords, which represent the statistics shown:

PREDICTED | PRED | P includes predicted values in the output data set. The prefix for the
default name is Pred.

RESIDUAL | RESID | R includes residuals (which are calculated as ACTUAL – PRE-
DICTED), in the output data set. The prefix for the default name
is Resid.

OUT=SAS data set
specifies the name of the new output data set. By default, PROC ADAPTIVEREG uses the DATAn
convention to name the new data set.

WEIGHT Statement
WEIGHT variable ;

When you specify a WEIGHT statement, each observation in the input data set is weighted by the value of
variable. The value of variable can be nonintegral. Observations that have a negative, zero, or missing value
for the WEIGHT variable are not used in model fitting.

Details: ADAPTIVEREG Procedure

Fitting Algorithms
The multivariate adaptive regression splines algorithm (Friedman 1991b) is a predictive modeling algorithm
that combines nonparametric variable transformations with a recursive partitioning scheme.

The algorithm originates with Smith (1982), who proposes a nonparametric method that applies the model
selection method (stepwise regression) to a large number of truncated power spline functions, which are
evaluated at different knot values. This method constructs spline functions and selects relevant knot values
automatically with the model selection method. However, the method is applicable only to problems in low
dimensions. For multiple variables, the number of tensor products between spline basis functions is too large
to fit even a single model. The multivariate adaptive regression splines algorithm avoids this situation by
using forward selection to build the model gradually instead of using the full set of tensor products of spline
basis functions.
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Like the recursive partitioning algorithm, which has “growing” and “pruning” steps, the multivariate adaptive
regression splines algorithm contains two stages: forward selection and backward selection. During the for-
ward selection process, bases are created from interactions between existing parent bases and nonparametric
transformations of continuous or classification variables as candidate effects. After the model grows to a
certain size, the backward selection process begins by deleting selected bases. The deletion continues until the
null model is reached, and then an overall best model is chosen based on some goodness-of-fit criterion. The
next three subsections give details about the selection process and methods of nonparametric transformation
of variables. The fourth subsection describes how the multivariate adaptive regression splines algorithm is
applied to fit generalized linear models. The fifth subsection describes the fast algorithm (Friedman 1993) for
speeding up the fitting process.

Forward Selection

The forward selection process in the multivariate adaptive regression splines algorithm is as follows:

1. Initialize by setting B0 D 1 and M D 1.

2. Repeat the following steps until the maximum number of bases Mmax has been reached or the model
cannot be improved by any combination of Bm, v, and t.

a) Set the lack-of-fit criterion LOF� D1.

b) For each selected basis: Bm; m 2 f0; : : : ;M � 1g do the following for each variable v that Bm
does not consist of v … fv.k;m/j1 � k � Kmg

i. For each knot value (or a subset of categories) t of v W t 2 fvg, form a model with all
currently selected bases

PM�1
iD0 Bi and two new bases: BmT1.v; t / and BmT2.v; t /.

ii. Compute the lack-of-fit criterion for the new model LOF.
iii. If LOF < LOF�, then update LOF� D LOF, m� D m, v� D v, and t� D t .

c) Update the model by adding two bases that improve the most Bm�T1.v�; t�/ and Bm�T2.v�; t�/.

d) Set M DM C 2.

The essential part of each iteration is to search a combination of Bm, v, and t such that adding two
corresponding bases most improve the model. The objective of the forward selection step is to build a model
that overfits the data. The lack-of-fit criterion for linear models is usually the residual sum of squares (RSS).

Backward Selection

The backward selection process in the multivariate adaptive regression splines algorithm is as follows:

1. Initialize by setting the overall lack-of-fit criterion: LOF� D1.

2. Repeat the following steps until the null model is reached. The final model is the best one that is found
during the backward deletion process.

a) For a selected basis Bm; m 2 f1; : : : ;M g:

i. Compute the lack-of-fit criterion, LOF, for a model that excludes Bm.
ii. If LOF < LOF�, save the model as the best one. Let m� D m.
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iii. Delete Bm� from the current model.
b) Set M DM � 1.

The objective of the backward selection is to “prune” back the overfitted model to find the best model that
has good predictive performance. So the lack-of-fit criteria that characterize model loyalty to original data
are not appropriate. Instead, the multivariate adaptive regression splines algorithm uses a quantity similar to
the generalized cross validation criterion. See the section “Goodness-of-Fit Criteria” on page 916 for more
information.

Variable Transformations

The type of transformation depends on the variable type:

• For a continuous variable, the transformation is a linear truncated power spline,

T1.v; t / D .v � t /C D

(
v � t; if v > t
0; otherwise

T2.v; t / D Œ�.v � t /�C D

(
0; if v > t
t � v; otherwise

where t is a knot value for variable v and v is an observed value for v. Instead of examining every
unique value of v, a series of knot values with a minimum span are used by assuming the smoothness
of the underlying function. Friedman (1991b) uses the following formula to determine a reasonable
number of counts between knots (span size). For interior knots, the span size is determined by

�
2

5
log2

�
�
log.1 � ˛/
pnm

�
For boundary knots, the span size is determined by

3 � log2
˛

p

where ˛ is the parameter that controls the knot density, p is the number of variables, and nm is the
number of observations that a parent basis Bm > 0.

• For a classification variable, the transformation is an indicator function,

T1.v; t / D

(
1; if v 2 fc1; : : : ; ctg
0; otherwise

T2.v; t / D

(
0; if v 2 fc1; : : : ; ctg
1; otherwise

where fc1; : : : ; ctg is a subset of all categories of variable v. The smoothing is applied to categorical
variables by assuming that subsets of categories tend to have similar properties, analogous to the
assumption that a local neighborhood has close predictions for continuous variables.

If a categorical variable has k distinct categories, then there are a total of 2k�1 � 1 possible subsets
to consider. The computation cost is equal to all-subsets selection in regression, which is expensive
for large k values. The multivariate adaptive regression splines algorithm use the stepwise selection
method to select categories to form the subset fc1; : : : ; ctg. The method is still greedy, but it reduces
computation and still yields reasonable final models.
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Goodness-of-Fit Criteria

Like other nonparametric regression procedures, the multivariate adaptive regression splines algorithm can
yield complicated models that involve high-order interactions in which many knot values or subsets are
considered. Besides the basis functions, both the forward selection and backward selection processes are also
highly nonlinear. Because of the trade-off between bias and variance, the complicated models that contain
many parameters tend to have low bias but high variance. To select models that achieve good prediction
performance, Craven and Wahba (1979) propose the widely used generalized cross validation criterion
(GCV),

GCV D
1

n

nX
iD1

 
yi � Ofi

1 � trace.S/=n

!2
D

RSS
n.1 � trace.S/=n/2

where y is the response, Of is an estimate of the underlying smooth function, and S is the smoothing matrix
such that Oy D Sy. The effective degrees of freedom for the smoothing spline can be defined as trace.S/.
In the multivariate adaptive regression splines algorithm, Friedman (1991b) uses a similar quantity as the
lack-of-fit criterion,

LOF D
RSS

n.1 � .M C d.M � 1/=2/=n/2

where d is the degrees-of-freedom cost for each nonlinear basis function and M is total number of linearly
independent bases in the model. Because any candidate model that is evaluated at each step of the multivariate
adaptive regression splines algorithm is a linear model, M is actually the trace of the hat matrix. The only
difference between the GCV criterion and the LOF criterion is the extra term d.M � 1/. The corresponding
effective degrees of freedom is defined as M C d.M � 1/=2. The quantity d takes into account the extra
nonlinearity in forming new bases, and it operates as a smoothing parameter. Larger values of d tend to
result in smoother function estimates. Based on many practical experiments and some theoretic work (Owen
1991), Friedman suggests that the value of d is typically in the range of Œ2; 4�. For data that have complicated
structures, the value of d could be much larger.

Alternatively, you can use the cross validation as the goodness-of-fit criterion or use a separate validation
data set to select models and a separate testing data set to evaluate selected models.

Generalized Linear Models

Friedman (1991b) applies the multivariate adaptive regression splines algorithm to a logistic model by using
the squared error loss between the response and inversely linked values in the goodness-of-fit criterion:

nX
iD1

�
yi �

1

1C exp.x0ˇ/

�2
When a final model is obtained, the ordinary logistic model is fitted on selected bases. Some realizations of
the multivariate adaptive regression splines algorithm ignore the distributional properties and derive model
bases that are based on the least squares criterion. The reason to ignore the distributional properties or use
least squares approximations is that examining the lack-of-fit criterion for each combination of Bm; v, and t
is computationally formidable, because one generalized linear model fit involves multiple steps of weighted
least squares. The ADAPTIVEREG procedure extends the multivariate adaptive regression splines algorithm
to generalized linear models as suggested by Buja et al. (1991).
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In the forward selection process, the ADAPTIVEREG procedure extends the algorithm in the following way.
Suppose there are .2k C 1/ bases after the kth iteration. Then a generalized linear model is fitted against
the data by using the selected bases. Then the weighted least squares method uses the working weights
and working response in the last step of the iterative reweighted least squares algorithm as the weight and
response for selecting new bases in the .k C 1/th iteration. Then the residual chi-square statistic is used to
select two new bases. This is similar to the forward selection scheme that the LOGISTIC procedure uses. For
more information about the score chi-square statistic, see the section “Testing Individual Effects Not in the
Model” on page 4574 in Chapter 60, “The LOGISTIC Procedure.”

In the backward selection process, the ADAPTIVEREG procedure extends the algorithm in the following
way. Suppose there are M bases in the selected model. The Wald chi-square statistic is used to determine
which basis to delete. After one basis is selected for deletion, a generalized linear model is refitted with the
remaining bases. This is similar to the backward deletion scheme that the LOGISTIC procedure uses. For
more information about the Wald chi-square statistic, see the section “Testing Linear Hypotheses about the
Regression Coefficients” on page 4589 in Chapter 60, “The LOGISTIC Procedure.”

Accordingly, the lack-of-fit criterion in the forward selection for generalized linear models is the score
chi-square statistic. For the lack-of-fit criterion in the backward selection process for generalized linear
models, the residual sum of squares term is replaced by the model deviance.

Fast Algorithm

The original multivariate adaptive regression splines algorithm is computationally expensive. To improve the
computation speed, Friedman (1993) proposes the fast algorithm. The essential idea of the fast algorithm is
to reduce the number of combinations of B; v, and t that are examined at each step of forward selection.

Suppose there are .2k C 1/ bases that are formed after the kth iteration, where a parent basis Bm is selected
to construct two new bases. Consider a queue with bases as its elements. At the top of the queue are the
selected parent Bm and two newly constructed bases, B2k and B2kC1. The rest of the queue is sorted based
on the minimum lack-of-fit criterion for each basis:

J.Bi / D min
for all eligible v
for all knot t

LOF.v; t jBi /; i D 1; : : : ; 2k � 1

When k is not small, there are a relatively large number of bases in the model, and adding more bases is
unlikely to dramatically improve the fit. Thus the ranking of the bases in the priority queue is not likely to
change much during adjacent iterations. So the candidate parent bases can be restricted to the top K ones in
the queue for .k C 1/th iteration. After the kth iteration, the top bases have new J.Bi / values, whereas the
values of the bottom bases are unchanged. The queue is reordered based on J.Bi / values. This corresponds
to the K= option value for the FAST option in the MODEL statement.

To avoid losing the candidate bases that are ranked at the bottom of the queue and to allow them to rise back
to the top, a natural “aging” factor is introduced into each basis. This is accomplished by defining the priority
for each basis function to be

P.Bi / D R.Bi /C ˇ.kc � kr/

where R.Bi / is the rank of ith basis in the queue, kc is the current iteration number, and kr is the number
of the iteration where the J.Bi / value was last computed. The top K candidate bases are then sorted again
based on this priority. Large ˇ values cause bases that have low improvement during previous iterations to
rise faster to the top of the list. This corresponds to the BETA= value for the FAST option in the MODEL
statement.
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For a candidate basis in the top of the priority queue, the minimum lack-of-fit criterion J.Bi / is recomputed
for all eligible variables v for the .k C 1/ iteration. An optimal variable is likely to be the same as the one
that was found during the previous iteration. So the fast multivariate adaptive regression splines algorithm
introduces another factor H to save the computation cost. The factor specifies how often J.Bi / should be
recomputed for all eligible variables. If H = 1, then optimization over all variables is done at each iteration
when a parent basis is considered. If H = 5, the complete optimization is done after five iterations. For an
iteration count less than the specified H, the optimization is done only for the optimal variable found in the
last complete optimization. The only exceptions are the top three candidates, B2k�1 (which is the parent
basis Bm used to construct two new bases) and two new ones, B2k and B2kC1. The complete optimization
for them is performed at each iteration. This corresponds to the H= option value for the FAST option in the
MODEL statement.

Missing Values
When fitting a model, the ADAPTIVEREG procedure excludes observations that have missing values for the
response variable, weight variable, or frequency variable. It also excludes observations with invalid response,
weight, or frequency values. For observations that have valid response, weight, and frequency values but
missing predictor values, the ADAPTIVEREG procedure can either include them in model fitting or exclude
them.

By default, observations with missing values in the predictor variables are included in the model fitting.
Suppose a variable v contains missing values. The ADAPTIVEREG procedure automatically forms two
candidate bases, Bm and BmC1, in the forward selection step when variable v is considered. When v is
missing, BmC1 D I.v is missing/. When v is not missing, Bm D I.v is not missing/. I.�/ is a scalar-valued
indicator function that returns a 1 when the argument is true and a 0 when the argument is false.

If the transformation of v with a parent basis Bi and a knot (or a subset) t turns out to be the best one during
this iteration, then two more bases are added to the model:

BmC2 D BiBmT1.v � t /

BmC3 D BiBmC1T2.v � t /

The indicator function does not contribute to the interaction order of the constructed bases. This approach
assumes that the missingness in the training data is representative of missingness in future data to be predicted.

Alternatively, you can specify the NOMISS option in the MODEL statement to exclude from the model
fitting all observations that have missing values in the predictor variables.

ANOVA Decomposition
The model that is produced by the multivariate adaptive regression splines algorithm can be formed as

Of .x/ D ˇ0 C
MX
mD1

ˇmBm

D ˇ0 C

MX
mD1

ˇm

KmY
kD1

Tm.xk;m; tk;m/
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Here Of is the nonparametric estimate of the response variable in linear models and of the linked response
variable in generalized linear models. M is the number of nonconstant bases. For each formed basis, Km is
the order of interaction, Tm is the variable transformation function that depends on the variable type, xk;m is
variable for the kth component of the basis, and tk;m is the corresponding knot value or subset categories for
the variable.

The function estimate can be recast into the form

Of .x/ D ˇ0 C
X

i WKmD1

fi .xi /C
X

i;j WKmD2

fij .xi ; xj /C
X

i;j;kWKmD3

fijk.xi ; xj ; xk/C � � �

where fi represents the sum of bases that involve a single variable xi , fij represents the sum of bases that
involve two-way interactions between transformations of two variables, and so on. The univariate function fi
is a linear regression spline for variable xi , which represent the univariate contribution of xi to the model. Let

f �ij D fi .xi /C fj .xj /C fij .xi ; xj /

Then this bivariate function is a tensor product regression spline that represents the joint contribution by both
xi and xj . Multivariate functions can be formed similarly if higher-order interaction terms are present in
the model. Because of its similarity to the analysis of variance for contingency tables, this is referred as the
ANOVA decomposition of the multivariate adaptive regression splines model.

Computational Resources
The multivariate adaptive regression splines algorithm is computationally intensive and requires a significant
amount of memory for large data sets. However, the core algorithm is fairly scalable, so you might expect
performance improvement if you use multicore machines. You can even further improve the fitting speed by
carefully tuning the parameters of the FAST option in the MODEL statement.

A general formula does not exist for predicting amount of memory that is required for PROC ADAPTIVEREG.
The procedure uses logical utility files to store values that are associated with observations. If sufficient
random access memory (RAM) is available, the utility files reside in RAM to allow fast access. Otherwise,
the utility files are stored on hard drives, which have slower read/write speed.

Because of the model selection nature, the multivariate adaptive regression splines algorithm essentially fits
a large number of candidate models with different sets of basis functions. The original prototype requires
computation that is proportional to pNM 4

max. The implemented algorithm takes advantage of the special
structure of linear truncated power functions to reduce the computation to be proportional to pNM 3

max. With
the fast algorithm, the computations can be reduced even further.

To provide a feel for how the number of variables and the number of observations affect the fitting performance,
a series of simulations are carried out on a server with a 12-way 2.6GHz AMD Opteron processor and 32GB
of RAM. Data sets are created in different sizes with the number of variables ranging from 10 to 50 and the
number of observations ranging from 100 to 5,000. For each data set, the true model is the same as the one
used in Example 25.1. At each data size, the experiment is repeated three times to measure minimum running
times and corresponding memory consumption. PROC ADAPTIVEREG sets the maximum number of basis
function to 50 and uses all other default options. Figure 25.11 displays the results of the simulations.
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Figure 25.11 Time and Memory Used

The graphs in Figure 25.11 show that computational times grow with respect to the number of observations
at a speed that is slightly faster than linear. The growth of the memory consumption is close to linear. Also,
the increment with respect to number of variables is approximately in fixed ratios.

To show how PROC ADAPTIVEREG scales as the number of CPUs grows, another series of experiments is
performed with the following settings. SAS DATA steps use the same mechanism as in previous simulations
to generate data sets. The number of observations range from 100 to 5,000, and the number of variables is 10.
PROC ADAPTIVEREG fits models to these data sets with the maximum number of basis functions set to 50.
Each fitting uses four threading settings with 1, 2, 4, and 8 CPUs.

Figure 25.12 displays the simulation results. The computation times scale well with the number of CPUs.
The more CPUs you have, the less time you need to fit a model by using PROC ADAPTIVEREG.
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Figure 25.12 Time Used with Different Number of Threads

ODS Table Names
PROC ADAPTIVEREG assigns a name to each table that it creates. You can use these names to refer to the
table when you use the Output Delivery System (ODS) to select tables and create output data sets. These
names are listed in Table 25.7. For more information about ODS, see Chapter 20, “Using the Output Delivery
System.”

Table 25.7 ODS Tables Produced by PROC ADAPTIVEREG

ODS Table Name Description Statement Option

ANOVA ANOVA functional decomposition PROC Default
Bases Bases transformation information PROC DETAILS=BASES
BWDParams Parameter estimates after backward

selection
PROC Default

ClassInfo Classification variable levels infor-
mation

CLASS Default

FitControls Fit control parameters PROC Default
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Table 25.7 continued

ODS Table Name Description Statement Option

FitStatistics Model fit statistics PROC Default
FWDParams Parameter estimates after forward se-

lection
PROC DETAILS=FWDPARAMS

FWDSummary Forward selection summary PROC DETAILS=FWDSUMMARY
ModelInfo Model information PROC Default
NObs Number of observations PROC Default
SelectionSummary Backward selection summary PROC DETAILS=BWDSUMMARY
VarImp Variable importance information PROC Default

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

You must also specify the PLOTS= option in the PROC ADAPTIVEREG statement.

PROC ADAPTIVEREG assigns a name to each graph that it creates using ODS. You can use these names to
refer to the graphs when using ODS. The names are listed in Table 25.8.

Table 25.8 Graphs Produced by PROC ADAPTIVEREG

ODS Graph Name Plot Description PLOTS Option

BoxPlot Box plot of the response at each level of one cate-
gorical predictor, overlaid with a plot of predicted
values

FIT

ComponentPanel Panel of partial prediction curves for components
that contain up to two predictors

COMPONENTS

ContourPlot Contour plot of the fitted surface by two continu-
ous predictors overlaid on scatter plot of data

FIT

DiagnosticsPanel Panel of fit diagnostics DIAGNOSTICS
FitPlot Plot of fitted values by single continuous predic-

tor (or with one categorical variable) overlaid on
scatter plot of data

FIT

IntPlot Plot of fitted values by two categorical predictors
overlaid on scatter plot of data

FIT
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Table 25.8 continued

ODS Graph Name Plot Description PLOTS Option

ObservedByPredicted Dependent variable versus fitted values DIAGNOSTICS(UNPACK)
QQPlot Normal quantile plot of residuals DIAGNOSTICS(UNPACK)
ResidualByPredicted Residuals versus fitted values DIAGNOSTICS(UNPACK)
ResidualHistogram Histogram of fit residuals DIAGNOSTICS(UNPACK)
RFPlot Side-by-side plots of quantiles of centered fit and

residuals
DIAGNOSTICS(UNPACK)

SelectionPlot Model fit criteria by step SELECTION

Examples: ADAPTIVEREG Procedure

Example 25.1: Surface Fitting with Many Noisy Variables
This example shows how you can use PROC ADAPTIVEREG to fit a surface model from a data set that
contains many nuisance variables.

Consider a simulated data set that contains a response variable and 10 continuous predictors. Each continuous
predictor is sampled independently from the uniform distribution U.0; 1/. The true model is formed by x1
and x2:

y D
40 exp

�
8
�
.x1 � 0:5/

2 C .x2 � 0:5/
2
��

exp
�
8
�
.x1 � 0:2/2 C .x2 � 0:7/2

��
C exp

�
8
�
.x1 � 0:7/2 C .x2 � 0:2/2

��
The values of the response variable are generated by adding errors from the standard normal distribution
N.0; 1/ to the true model. The generating mechanism is adapted from Gu et al. (1990). There are 400
generated observations in all. The following statements create an artificial data set:

data artificial;
drop i;
array X{10};
do i=1 to 400;

do j=1 to 10;
X{j} = ranuni(1);

end;
Y = 40*exp(8*((X1-0.5)**2+(X2-0.5)**2))/

(exp(8*((X1-0.2)**2+(X2-0.7)**2))+
exp(8*((X1-0.7)**2+(X2-0.2)**2)))+rannor(1);

output;
end;

run;
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The standard deviation for the response without noise is 3, whereas the standard deviation for the error term
is 1. So the response variable Y has a signal-to-noise ratio of 3. When eight more variables are introduced,
it is harder to search for the true model because of the extra variability that the nuisance variables create.
The objective is to fit a nonparametric surface model that can well approximate the true model without
experiencing much interference from the nuisance variables.

The following statements invoke the ADAPTIVEREG procedure to fit the model:

ods graphics on;

proc adaptivereg data=artificial plots=fit;
model y=x1-x10;

run;

The PLOTS=FIT option in the PROC ADAPTIVEREG statement requests a fit plot. PROC ADAPTIVEREG
might not produce the fit plot because the number of predictors in the final model is unknown. If the final
model has no more than two variables, then the fit can be graphically presented.

PROC ADAPTIVEREG selects the two variables that form the true model (X1, X2) and does not include
other nuisance variables. The “Fit Statistics” table (Output 25.1.1) lists summary statistics of the fitted surface
model. The model has 27 effective degrees of freedom and 14 basis functions formed by X1 or X2 or both.
The fit statistics suggest that this is a reasonable fit.

Output 25.1.1 Fit Statistics

The ADAPTIVEREG ProcedureThe ADAPTIVEREG Procedure

Fit Statistics

GCV 1.55656

GCV R-Square 0.86166

Effective Degrees of Freedom 27

R-Square 0.87910

Adjusted R-Square 0.87503

Mean Square Error 1.40260

Average Square Error 1.35351

Output 25.1.2 lists both parameter estimates and construction components (parent basis function, new variable,
and optimal knot for the new variable) for the basis functions.
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Output 25.1.2 Parameter Estimates

Regression Spline Model after Backward
Selection

Name Coefficient Parent Variable Knot

Basis0 12.3031 Intercept

Basis1 13.1804 Basis0 X1 0.05982

Basis3 -23.4892 Basis0 X2 0.1387

Basis4 -171.03 Basis0 X2 0.1387

Basis5 -86.1867 Basis3 X1 0.6333

Basis7 -436.86 Basis4 X1 0.5488

Basis8 397.18 Basis4 X1 0.5488

Basis9 11.4682 Basis1 X2 0.6755

Basis10 -19.1796 Basis1 X2 0.6755

Basis13 126.84 Basis11 X1 0.6018

Basis14 40.8134 Basis11 X1 0.6018

Basis15 22.2884 Basis0 X1 0.7170

Basis17 -53.8746 Basis12 X1 0.2269

Basis19 598.89 Basis4 X1 0.2558

Output 25.1.3 shows all the ANOVA functional components that form the final model. The function estimate
consists of two basis functions for each of X1 and X2 and nine bivariate functions of both variables. Because
the true model contains the interaction between X1 and X2, PROC ADAPTIVEREG automatically selects
many interaction terms.

Output 25.1.3 ANOVA Decomposition

ANOVA Decomposition

Change If
Omitted

Functional
Component

Number of
Bases DF Lack of Fit GCV

X1 2 4 405.18 1.1075

X2 2 4 947.87 2.6348

X2 X1 9 18 2583.21 6.6187
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To compute predictions for the contour plot of the fitted model, you can use the SCORE statement. The
following statements produce the graph that shows both the true model and the fitted model:

data score;
do X1=0 to 1 by 0.01;

do X2=0 to 1 by 0.01;
Y=40*exp(8*((X1-0.5)**2+(X2-0.5)**2))/

(exp(8*((X1-0.2)**2+(X2-0.7)**2))+
exp(8*((X1-0.7)**2+(X2-0.2)**2)));

output;
end;

end;
run;

proc adaptivereg data=artificial;
model y=x1-x10;
score data=score out=scoreout;

run;

%let off0 = offsetmin=0 offsetmax=0;
%let off0 = xaxisopts=(&off0) yaxisopts=(&off0);
%let eopt = location=outside valign=top textattrs=graphlabeltext;
proc template;

define statgraph surfaces;
begingraph / designheight=360px;

layout lattice/columns=2;
layout overlay / &off0;

entry "True Model" / &eopt;
contourplotparm z=y y=x2 x=x1;

endlayout;
layout overlay / &off0;

entry "Fitted Model" / &eopt;
contourplotparm z=pred y=x2 x=x1;

endlayout;
endlayout;

endgraph;
end;

run;

proc sgrender data=scoreout template=surfaces;
run;

Output 25.1.4 displays surfaces for both the true model and the fitted model. The fitted model approximates
the underlying true model well.
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Output 25.1.4 True Model and Fitted Model

For high-dimensional data sets with complex underlying data-generating mechanisms, many different models
can almost equally approximate the true mechanisms. Because of the sequential nature of the selection
mechanism, any change in intermediate steps due to perturbations from local structures might yield completely
different models. Therefore, PROC ADAPTIVEREG might find models that contain noisy variables. For
example, if you change the random number seed in generating the data (as in the following statements),
PROC ADAPTIVEREG might return different models with more variables. You can use the information
from the variable importance table (Output 25.1.5) to aid further analysis.

data artificial;
drop i;
array x{10};
do i=1 to 400;

do j=1 to 10;
x{j} = ranuni(12345);

end;
y = 40*exp(8*((x1-0.5)**2+(x2-0.5)**2))/

(exp(8*((x1-0.2)**2+(x2-0.7)**2))+
exp(8*((x1-0.7)**2+(x2-0.2)**2)))+rannor(1);

output;
end;

run;

proc adaptivereg data=artificial;
model y=x1-x10;

run;
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Output 25.1.5 shows that the variables X1 and X2 are two dominating factors for predicting the response,
whereas the relative importance of the variable X8 compared to the other two is negligible. You might want
to remove the variable if you fit a new model.

Output 25.1.5 Variable Importance

The ADAPTIVEREG ProcedureThe ADAPTIVEREG Procedure

Variable Importance

Variable
Number of

Bases Importance

x1 13 100.00

x2 12 98.58

x8 2 0.22

Example 25.2: Fitting Data with Mixture Structures
This example shows how you can use PROC ADAPTIVEREG to fit a model from a data set that contains
mixture structures. It also demonstrates how to use the CLASS statement.

Consider a simulated data set that contains a response variable and two predictors, one continuous and
the other categorical. The continuous predictor is sampled from the uniform distribution U.0; 1/, and the
classification variable is sampled from U.0; 3/ and then rounded to integers. The response variable is
constructed from three different models that depend on the CLASS variable levels, with error sampled from
the standard normal distribution.

y D

8̂<̂
:
exp.5.x � 0:3/2/; if c D 0
log.x � x2/; if c D 1
7x; if c D 2

The following statements create the artificial data set Mixture:

data Mixture;
drop i;
do i=1 to 1000;

X1 = ranuni(1);
C1 = int(3*ranuni(1));
if C1=0 then Y=exp(5*(X1-0.3)**2)+rannor(1);
else if C1=1 then Y=log(X1*(1-X1))+rannor(1);
else Y=7*X1+rannor(1);
output;

end;
run;
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The standard deviation for the response without noise is 3.14. So the response variable Y in the data set
Mixture has a signal-to-noise ratio of 3.14. With a classification variable and a continuous variable in the data
set, the objective is to fit a nonparametric model that can reveal the underlying three different data-generating
processes. The following statements use the ADAPTIVEREG procedure to fit the data:

ods graphics on;
proc adaptivereg data=Mixture plots=fit;

class c1;
model y=c1 x1;

run;

Because the data contain two explanatory variables, graphical presentation of the fitted model is possible.
The PLOTS=FIT option in the PROC ADAPTIVEREG statement requests the fit plot. The CLASS statement
specifies that C1 is a classification variable.

Output 25.2.1 displays the parameter estimates for the 13 selected basis functions after backward selection.
For Basis1, the coefficient estimate is -4.3871. It is constructed from the intercept and the classification
variable C1 at levels 0 and 1.

Output 25.2.1 Parameter Estimates

The ADAPTIVEREG ProcedureThe ADAPTIVEREG Procedure

Regression Spline Model after Backward Selection

Name Coefficient Parent Variable Knot Levels

Basis0 5.1794 Intercept

Basis1 60.2517 Basis0 C1 1 0

Basis3 1.5768 Basis0 C1 0

Basis5 101.33 Basis3 X1 0.7665

Basis6 -88.9774 Basis3 X1 0.7665

Basis7 -76.9359 Basis2 X1 0.7480

Basis8 88.0913 Basis2 X1 0.7480

Basis9 87.5864 Basis4 X1 0.7480

Basis10 -95.0232 Basis4 X1 0.7480

Basis11 -89.5813 Basis1 X1 0.02653

Basis13 11.3393 Basis3 X1 0.3829

Basis15 31.1335 Basis3 X1 0.8687

Basis17 -56.5339 Basis4 X1 0.9624

Basis19 -5.0676 Basis1 X1 0.3060

Output 25.2.2 displays the fitted linear splines overlaid with the original data. PROC ADAPTIVEREG
captures the three underlying data-generating processes. For observations with C1 at level 0, the shape of the
fitted splines is quite similar to the exponential function. For observations with C1 at level 1, the shape of the
fitted spline suggests a symmetric function along X1 with a symmetry point approximately equal to 0.5. The
function at each side of the symmetry point is analogous to the logarithmic transformation. For the rest of the
observations with C1 at level 2, PROC ADAPTIVEREG suggests a strict linear model. The fitted model is
very close to the true model. PROC ADAPTIVEREG fits the model in an automatic and adaptive way, except
that it needs the CLASS statement to name the classification variable.
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Output 25.2.2 Raw Data and Fitted Model

You might notice that some basis functions have their parent basis functions not listed in the parameter
estimates table (Output 25.2.1). This is because their parent basis functions are dropped during the model
selection process. You can view the complete set of basis functions used in the model selection by specifying
the DETAILS=BASES option in the PROC ADAPTIVEREG statement, as in the following statements:

proc adaptivereg data=Mixture details=bases;
class c1;
model y=c1 x1;

run;
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Output 25.2.3 Basis Function Information

The ADAPTIVEREG ProcedureThe ADAPTIVEREG Procedure

Basis Information

Name Transformation

Basis0 1

Basis1 Basis0*(C1 = 1 OR C1 = 0)

Basis2 Basis0*NOT(C1 = 1 OR C1 = 0)

Basis3 Basis0*(C1 = 0)

Basis4 Basis0*NOT(C1 = 0)

Basis5 Basis3*MAX(X1 - 0.7665019053,0)

Basis6 Basis3*MAX(0.7665019053 - X1,0)

Basis7 Basis2*MAX(X1 - 0.7480032624,0)

Basis8 Basis2*MAX(0.7480032624 - X1,0)

Basis9 Basis4*MAX(X1 - 0.7480032624,0)

Basis10 Basis4*MAX(0.7480032624 - X1,0)

Basis11 Basis1*MAX(X1 - 0.0265261848,0)

Basis12 Basis1*MAX(0.0265261848 - X1,0)

Basis13 Basis3*MAX(X1 - 0.3829118905,0)

Basis14 Basis3*MAX(0.3829118905 - X1,0)

Basis15 Basis3*MAX(X1 - 0.8686795225,0)

Basis16 Basis3*MAX(0.8686795225 - X1,0)

Basis17 Basis4*MAX(X1 -  0.962359583,0)

Basis18 Basis4*MAX( 0.962359583 - X1,0)

Basis19 Basis1*MAX(X1 - 0.3060246363,0)

Basis20 Basis1*MAX(0.3060246363 - X1,0)

You can produce a SAS DATA step for scoring new observations by using the information provided in the
parameter estimate table and the basis information table, as shown in the following statements:

data New;
basis1 = (c1=1 OR c1=0);
basis3 = (c1=1);
basis5 = NOT(c1=1)*MAX(x1-0.7665019053,0);
basis7 = NOT(c1=1 OR c1=0)*MAX(x1-0.7665019053,0);
basis8 = NOT(c1=1 OR c1=0)*MAX(0.7665019053-x1,0);
basis9 = (c1=1)*MAX(x1-0.5530566455,0);
basis10 = (c1=1)*MAX(0.5530566455-x1,0);
basis11 = (c1=1)*MAX(x1-0.045800759,0);
basis13 = (c1=1)*MAX(x1-0.9526330293,0);
basis15 = (c1=1 OR c1=0)*MAX(x1-0.9499325226,0);
basis17 = (c1=1 OR c1=0)*MAX(x1-0.5142821095,0);
basis19 = (c1=1 OR c1=0)*MAX(x1-0.9889635476,0);
pred = 5.3829 - 4.3871*basis1 + 32.7761*basis3 +

20.2859*basis5 - 11.4183*basis7 - 7.0758*basis8 +
58.4911*basis9 - 71.6388*basis10 - 69.0764*basis11 -
119.71*basis13 + 66.5733*basis15 + 6.6681*basis17 -
185.21*basis19;

run;
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Example 25.3: Predicting E-Mail Spam
This example shows how you can use PROC ADAPTIVEREG to fit a classification model for a data set
with a binary response. It illustrates how you can use the PARTITION statement to create subsets of data for
training and testing purposes. It also demonstrates how to use the OUTPUT statement. Finally, it shows how
you can improve the modeling speed by changing some default settings.

This example concerns a study on classifying whether an e-mail is junk e-mail (coded as 1) or not (coded as
0). The data were collected in Hewlett-Packard labs and donated by George Forman. The data set contains
4,601 observations with 58 variables. The response variable is a binary indicator of whether an e-mail is
considered spam or not. The 57 variables are continuous variables that record frequencies of some common
words and characters in e-mails and lengths of uninterrupted sequences of capital letters. The data set is
publicly available at the UCI Machine Learning repository (Asuncion and Newman 2007).

This example shows how you can use PROC ADAPTIVEREG to build a model with good predictive power
and then use it to classify observations in independent data sets. PROC ADAPTIVEREG enables you
to partition your data into subsets for training, validation, and testing. The training set is used to build
models, the validation set is used to estimate prediction errors and select models, and the testing set is
used independently to evaluate the final model. When the sample size is not large enough, sample reusing
approaches are used instead, such as bootstrap and cross validation. For this data set, the sample size is
sufficient to support a random partitioning. Because the GCV model selection criterion itself serves as an
estimate of prediction error, this data set is split into two separate subsets. The training set is used to build
the classification model, and the test set is used to evaluate the model. The PARTITION statement performs
the random partitioning for you, as shown in the following statements:

proc adaptivereg data=sashelp.junkmail seed=10359;
model class = Address Addresses All Bracket Business

CS CapAvg CapLong CapTotal Conference
Credit Data Direct Dollar Edu
Email Exclamation Font Free George
HP HPL Internet Lab Labs
Mail Make Meeting Money Order
Original Our Over PM Paren
Parts People Pound Project RE
Receive Remove Report Semicolon Table
Technology Telnet Will You Your
_000 _85 _415 _650 _857
_1999 _3D / additive dist=binomial;

partition fraction(test=0.333);
output out=spamout p(ilink);

run;

The FRACTION option in the PARTITION statement specifies that 33.3% of observations in the
sashelp.junkmail data set are randomly selected to form the testing set while the rest of the data form
the training set. If you want to use the same partitioning for further analysis, you can specify the seed for
the random number generator so that the exact same random number stream can be duplicated. For the
preceding statements, the seed is 10359, which is specified in the PROC ADAPTIVEREG statement. The
response variable is a two-level variable. The ADDITIVE option specifies that this is an additive model
without interactions between spline basis functions; this option makes the predictive model more interpretable.
The DIST=BINOMIAL option specifies the distribution of the response variable. The ILINK option in the
OUTPUT statement requests predicted probabilities for each observation.
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The “Model Information” table in Output 25.3.1 includes the distribution, link function, and the random
number seed.

Output 25.3.1 Model Information

The ADAPTIVEREG ProcedureThe ADAPTIVEREG Procedure

Model Information

Data Set SASHELP.JUNKMAIL

Response Variable Class

Distribution Binomial

Link Function Logit

Random Number Seed 10359

The “Number of Observations” table in Output 25.3.2 lists the total number of observations used. It also lists
number of observations for the training set and the test set.

Output 25.3.2 Number of Observations

Number of Observations Read 4601

Number of Observations Used 4601

Number of Observations Used for Training 3028

Number of Observations Used for Testing 1573

The response variable is a binary classification variable. PROC ADAPTIVEREG produces the “Response
Profile” table in Output 25.3.3. The table shows the response level frequencies for the training set and the
probability that PROC ADAPTIVEREG models.

Output 25.3.3 Response Profile

Response Profile

Ordered
Value Class

Total
Frequency

1 0 1844

2 1 1184

Probability modeled is Class='0'.

The “Fit Statistics” table in Output 25.3.3 shows that the final model for the training set contains large
effective degrees freedom.

Output 25.3.4 Fit Statistics

Fit Statistics

GCV 0.23427

GCV R-Square 0.82508

Effective Degrees of Freedom 173

Log Likelihood -315.30998

Deviance (Train) 630.61996

Deviance (Test) 806.74112
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To classify e-mails from the test set, the following rule is used. For each observation, the e-mail is classified
as spam if the predicted probability of Class = ‘0’ is greater than the predicted probability of Class = ‘1’, and
ham (a good e-mail) otherwise. Because the response is binary, you can classify an e-mail as spam if the
predicted probability of Class = ‘0’ is less than 0.5. The following statements evaluate classification errors:

data test;
set spamout(where=(_ROLE_='TEST'));
if ((pred>0.5 & class=0) | (pred<0.5 & class=1))
then Error=0;
else error=1;

run;

proc freq data=test;
tables class*error/nocol;

run;

Output 25.3.5 shows the misclassification errors for all observations and observations of each response
category. Compared to the results from other statistical learning algorithms that use different training subsets
(Hastie, Tibshirani, and Friedman 2001), these results from PROC ADAPTIVEREG are competitive.

Output 25.3.5 Crosstabulation Table for Test Set Prediction

The FREQ ProcedureThe FREQ Procedure

Frequency
Percent
Row Pct

Table of Class by Error

Class(0 - Not
Junk,

1 - Junk)

Error

0 1 Total

0 885
56.26
93.75

59
3.75
6.25

944
60.01

1 592
37.64
94.12

37
2.35
5.88

629
39.99

Total 1477
93.90

96
6.10

1573
100.00

It takes approximately 300MB of memory and about 102 seconds to fit the model on a workstation with
a 12-way 2.6GHz AMD Opteron processor. The following analyses illustrate how you can change some
default settings to improve the modeling speed without sacrificing much predictive capability. As discussed
in the section “Computational Resources” on page 919, the computation cost for PROC ADAPTIVEREG
is proportional to pNM 3

max. For the same data set, you can significantly increase the modeling speed by
reducing the maximum number of basis functions that are allowed for the forward selection.
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PROC ADAPTIVEREG uses 115 as the maximum number of basis functions. Suppose you want to set
the maximum number to 61, which is approximately half the default value. The following program fits a
multivariate adaptive regression splines model with MAXBASIS= set to 61. The same random number seed
is used to get the exact same data partitioning.

proc adaptivereg data=sashelp.junkmail seed=10359;
model class = Address Addresses All Bracket Business

CS CapAvg CapLong CapTotal Conference
Credit Data Direct Dollar Edu
Email Exclamation Font Free George
HP HPL Internet Lab Labs
Mail Make Meeting Money Order
Original Our Over PM Paren
Parts People Pound Project RE
Receive Remove Report Semicolon Table
Technology Telnet Will You Your
_000 _85 _415 _650 _857
_1999 _3D / maxbasis=61 additive dist=binomial;

partition fraction(test=0.333);
output out=spamout2 p(ilink);

run;

The “Fit Statistics” table in Output 25.3.6 displays summary statistics for the second model. The log
likelihood of the second model is smaller than that of the first model, which is expected because the effective
degrees of freedom is 95, much smaller than the effective degrees of freedom of the first model. This means
that the fitted model is much simpler than the first model. Both the GCV and GCV R-square values show that
the estimated prediction capability of the second model is slightly less than the first model.

Output 25.3.6 Fit Statistics

The ADAPTIVEREG ProcedureThe ADAPTIVEREG Procedure

Fit Statistics

GCV 0.27971

GCV R-Square 0.79115

Effective Degrees of Freedom 95

Log Likelihood -397.32916

Deviance (Train) 794.65833

Deviance (Test) 682.79427

By predicting observations in the test set, the second model has an overall misclassification error of 5.28%,
which is slightly lower that that of the first model. This shows that the predictive power of the second model
is actually greater than of the first model due to reduced model complexity. The computation takes around
21 seconds on the same workstation and consumes approximately 170MB of memory. This is a significant
improvement in both computation speed and memory cost.
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You can further improve the modeling speed by using the FAST option in the MODEL statement. The FAST
option avoids evaluating certain combinations of parent basis functions and variables. For example, you can
specify the FAST(K=20) option so that in each forward selection iteration, PROC ADAPTIVEREG uses
only the top 20 parent basis functions (based on their maximum improvement from the previous iteration) to
construct and evaluate new basis functions. The underlying assumption, as discussed in the section “Fast
Algorithm” on page 917, is that parent basis functions that offer low improvement at previous steps are less
likely to yield new basis functions that offer large improvement at the current step. The following statements
illustrate the FAST option:

proc adaptivereg data=sashelp.junkmail seed=10359;
model class = Address Addresses All Bracket Business

CS CapAvg CapLong CapTotal Conference
Credit Data Direct Dollar Edu
Email Exclamation Font Free George
HP HPL Internet Lab Labs
Mail Make Meeting Money Order
Original Our Over PM Paren
Parts People Pound Project RE
Receive Remove Report Semicolon Table
Technology Telnet Will You Your
_000 _85 _415 _650 _857
_1999 _3D / maxbasis=61 fast(k=20) additive dist=binomial;

partition fraction(test=0.333);
output out=spamout3 p(ilink);

run;

The fitted model is the same as the second model. The computation time on the same workstation is even
less at 19 seconds. You should tune the parameters for the FAST option with care because the underlying
assumption does not always hold.

With this investigation, the second model can serve as a good classifier. It contains 26 variables. The
“Variable Importance” table (Output 25.3.7) lists all variables and their importance values in descending
order. Two variables in the model, George and Hp, are important factors in classifying e-mails as not spam.
George Forman, the donor of the original data set, collected e-mails from filed work and personal e-mails
at Hewlett-Packard labs. Thus these two variables are strong indicators of e-mails that are not spam. This
confirms the results from the fitted multivariate adaptive regression splines model by PROC ADAPTIVEREG.
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Output 25.3.7 Variable Importance

Variable Importance

Variable
Number of

Bases Importance

George 1 100.00

HP 1 78.35

Edu 3 61.25

Remove 2 49.21

Exclamation 3 44.14

Free 2 34.18

Meeting 3 32.57

_1999 2 29.71

Dollar 2 28.30

Money 3 26.39

CapLong 3 24.41

Our 2 19.46

Semicolon 2 14.98

RE 2 13.52

Business 3 13.48

Over 3 12.63

CapTotal 3 12.50

Will 1 10.81

Pound 2 9.73

Internet 1 5.88

_000 1 4.57

You 2 3.17

Example 25.4: Nonparametric Poisson Model for Mackerel Egg Density
This example demonstrates how you can use PROC ADAPTIVEREG to fit a nonparametric Poisson regression
model.

The example concerns a study of mackerel egg density. The data are a subset of the 1992 mackerel egg
survey conducted over the Porcupine Bank west of Ireland. The survey took place in the peak spawning area.
Scientists took samples by hauling a net up from deep sea to the sea surface. Then they counted the number
of spawned mackerel eggs and used other geographic information to estimate the sizes and distributions of
spawning stocks. The data set is used as an example in Bowman and Azzalini (1997).

The following SAS DATA step creates the data set Mackerel. This data set contains 634 observations and five
variables. The response variable Egg_Count is the number of mackerel eggs collected from each sampling
net. Longitude and Latitude are the location values in degrees east and north, respectively, of each sample
station. Net_Area is the area of the sampling net in square meters. Depth records the sea bed depth in meters
at the sampling location. And Distance is the distance in geographic degrees from the sample location to the
continental shelf edge.

title 'Mackerel Egg Density Study';
data Mackerel;

input Egg_Count Longitude Latitude Net_Area Depth Distance;
datalines;
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0 -4.65 44.57 0.242 4342 0.8395141177
0 -4.48 44.57 0.242 4334 0.8591926336
0 -4.3 44.57 0.242 4286 0.8930152895
1 -2.87 44.02 0.242 1438 0.3956408691
4 -2.07 44.02 0.242 166 0.0400088237
3 -2.13 44.02 0.242 460 0.0974234463
0 -2.27 44.02 0.242 810 0.2362566569

... more lines ...

22 -4.22 46.25 0.19 205 0.1181120828
21 -4.28 46.25 0.19 237 0.129990854
0 -4.73 46.25 0.19 2500 0.3346500536
5 -4.25 47.23 0.19 114 0.718192582
3 -3.72 47.25 0.19 100 0.9944669778
0 -3.25 47.25 0.19 64 1.2639918431

;

The response values are counts, so the Poisson distribution might be a reasonable model. The study of interest
is the mackerel egg density, which can be formed as

density D E.count/=net_area

This is equivalent to a Poisson regression with the response variable Egg_Count and an offset variable
log.net_area/ and other covariates.

The following statements produce the plot of the mackerel egg density with respect to the sampling station
location:

data temp;
set mackerel;
density = egg_count/net_area;

run;

%let off0 = offsetmin=0 offsetmax=0 linearopts=(thresholdmin=0 thresholdmax=0);
proc template;

define statgraph surface;
dynamic _title _z;
begingraph / designwidth=defaultDesignHeight;

entrytitle _title;
layout overlay / xaxisopts=(&off0) yaxisopts=(&off0);

contourplotparm z=_z y=latitude x=longitude / gridded=FALSE;
endlayout;

endgraph;
end;

run;

proc sgrender data=temp template=surface;
dynamic _title='Mackerel Egg Density' _z='density';

run;

Output 25.4.1 displays the mackerel egg density in the sampling area. The black hole in the upper right
corner is due to missing values in that area.
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Output 25.4.1 Mackerel Egg Density

In this example, the dependent variable is the mackerel egg counts, the independent variables are the
geographical information about each of the sampling stations, and the logarithm of the sampling area is the
offset variable. The following statements fit the nonparametric Poisson regression model:

data mackerel;
set mackerel;
log_net_area = log(net_area);

run;

proc adaptivereg data=mackerel;
model egg_count = longitude latitude depth distance

/ offset=log_net_area dist=poisson;
output out=mackerelout p(ilink);

run;
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Output 25.4.2 lists basic model information such as the offset variable, distribution, and link function.

Output 25.4.2 Model Information

Mackerel Egg Density Study

The ADAPTIVEREG Procedure

Mackerel Egg Density Study

The ADAPTIVEREG Procedure

Model Information

Data Set WORK.MACKEREL

Response Variable Egg_Count

Offset Variable log_net_area

Distribution Poisson

Link Function Log

Output 25.4.3 lists fit statistics for the final model.

Output 25.4.3 Fit Statistics

Fit Statistics

GCV 6.94340

GCV R-Square 0.79204

Effective Degrees of Freedom 29

Log Likelihood -2777.21279

Deviance 4008.60601

The final model consists of basis functions and interactions between basis functions of three geographic
variables. Output 25.4.4 lists seven functional components of the final model, including three one-way spline
transformations and four two-way spline interactions.

Output 25.4.4 ANOVA Decomposition

ANOVA Decomposition

Change If
Omitted

Functional
Component

Number of
Bases DF Lack of Fit GCV

Longitude 3 6 2035.77 3.3216

Depth 1 2 420.59 0.6780

Latitude 1 2 265.05 0.4104

Longitude Latitude 2 4 199.17 0.2496

Depth Distance 3 6 552.75 0.8030

Depth Latitude 2 4 680.45 1.0723

Depth Longitude 2 4 415.77 0.6198
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The “Variable Importance” table in Output 25.4.5 displays the relative variable importance among the four
variables. Longitude is the most important one.

Output 25.4.5 Variable Importance

Variable Importance

Variable
Number of

Bases Importance

Longitude 7 100.00

Depth 8 30.26

Latitude 5 18.93

Distance 3 8.56

The following steps create and display in Output 25.4.6 the predicted mackerel egg density over the spawning
area.

data mackplot;
set mackerelout;
density = pred / net_area;

run;

proc sgrender data=mackplot template=surface;
dynamic _title='Predicted Mackerel Egg Density'

_z='density';
run;
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Output 25.4.6 Predicted Mackerel Egg Density
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Overview: ANOVA Procedure
The ANOVA procedure performs analysis of variance (ANOVA) for balanced data from a wide variety of
experimental designs. In analysis of variance, a continuous response variable, known as a dependent variable,
is measured under experimental conditions identified by classification variables, known as independent
variables. The variation in the response is assumed to be due to effects in the classification, with random
error accounting for the remaining variation.

The ANOVA procedure is one of several procedures available in SAS/STAT software for analysis of variance.
The ANOVA procedure is designed to handle balanced data (that is, data with equal numbers of observations
for every combination of the classification factors), whereas the GLM procedure can analyze both balanced
and unbalanced data. Because PROC ANOVA takes into account the special structure of a balanced design, it
is faster and uses less storage than PROC GLM for balanced data.

Use PROC ANOVA for the analysis of balanced data only, with the following exceptions: one-way analysis
of variance, Latin square designs, certain partially balanced incomplete block designs, completely nested
(hierarchical) designs, and designs with cell frequencies that are proportional to each other and are also
proportional to the background population. These exceptions have designs in which the factors are all
orthogonal to each other.

For further discussion, see Searle (1971, p. 138). PROC ANOVA works for designs with block diagonal
X0X matrices where the elements of each block all have the same value. The procedure partially tests this
requirement by checking for equal cell means. However, this test is imperfect: some designs that cannot be
analyzed correctly might pass the test, and designs that can be analyzed correctly might not pass. If your
design does not pass the test, PROC ANOVA produces a warning message to tell you that the design is
unbalanced and that the ANOVA analyses might not be valid; if your design is not one of the special cases
described here, then you should use PROC GLM instead. Complete validation of designs is not performed in
PROC ANOVA since this would require the whole X0X matrix; if you are unsure about the validity of PROC
ANOVA for your design, you should use PROC GLM.

CAUTION: If you use PROC ANOVA for analysis of unbalanced data, you must assume responsibility for
the validity of the results.

The ANOVA procedure automatically produces graphics as part of its ODS output. For general information
about ODS graphics, see the section “ODS Graphics” on page 982 and Chapter 21, “Statistical Graphics
Using ODS.”

Getting Started: ANOVA Procedure
The following examples demonstrate how you can use the ANOVA procedure to perform analyses of variance
for a one-way layout and a randomized complete block design.

One-Way Layout with Means Comparisons
A one-way analysis of variance considers one treatment factor with two or more treatment levels. The goal of
the analysis is to test for differences among the means of the levels and to quantify these differences. If there
are two treatment levels, this analysis is equivalent to a t test comparing two group means.
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The assumptions of analysis of variance (Steel and Torrie 1980) are that treatment effects are additive and
experimental errors are independently random with a normal distribution that has mean zero and constant
variance.

The following example studies the effect of bacteria on the nitrogen content of red clover plants. The treatment
factor is bacteria strain, and it has six levels. Five of the six levels consist of five different Rhizobium trifolii
bacteria cultures combined with a composite of five Rhizobium meliloti strains. The sixth level is a composite
of the five Rhizobium trifolii strains with the composite of the Rhizobium meliloti. Red clover plants are
inoculated with the treatments, and nitrogen content is later measured in milligrams. The data are derived
from an experiment by Erdman (1946) and are analyzed in Chapters 7 and 8 of Steel and Torrie (1980). The
following DATA step creates the SAS data set Clover:

title1 'Nitrogen Content of Red Clover Plants';
data Clover;

input Strain $ Nitrogen @@;
datalines;

3DOK1 19.4 3DOK1 32.6 3DOK1 27.0 3DOK1 32.1 3DOK1 33.0
3DOK5 17.7 3DOK5 24.8 3DOK5 27.9 3DOK5 25.2 3DOK5 24.3
3DOK4 17.0 3DOK4 19.4 3DOK4 9.1 3DOK4 11.9 3DOK4 15.8
3DOK7 20.7 3DOK7 21.0 3DOK7 20.5 3DOK7 18.8 3DOK7 18.6
3DOK13 14.3 3DOK13 14.4 3DOK13 11.8 3DOK13 11.6 3DOK13 14.2
COMPOS 17.3 COMPOS 19.4 COMPOS 19.1 COMPOS 16.9 COMPOS 20.8
;

The variable Strain contains the treatment levels, and the variable Nitrogen contains the response. The
following statements produce the analysis.

proc anova data = Clover;
class strain;
model Nitrogen = Strain;

run;

The classification variable is specified in the CLASS statement. Note that, unlike the GLM procedure, PROC
ANOVA does not allow continuous variables on the right-hand side of the model. Figure 26.1 and Figure 26.2
display the output produced by these statements.

Figure 26.1 Class Level Information

Nitrogen Content of Red Clover Plants

The ANOVA Procedure

Nitrogen Content of Red Clover Plants

The ANOVA Procedure

Class Level Information

Class Levels Values

Strain 6 3DOK1 3DOK13 3DOK4 3DOK5 3DOK7 COMPOS

Number of Observations Read 30

Number of Observations Used 30

The “Class Level Information” table shown in Figure 26.1 lists the variables that appear in the CLASS
statement, their levels, and the number of observations in the data set.
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Figure 26.2 displays the ANOVA table, followed by some simple statistics and tests of effects.

Figure 26.2 ANOVA Table

Nitrogen Content of Red Clover Plants

The ANOVA Procedure

Dependent Variable: Nitrogen

Nitrogen Content of Red Clover Plants

The ANOVA Procedure

Dependent Variable: Nitrogen

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 5 847.046667 169.409333 14.37 <.0001

Error 24 282.928000 11.788667

Corrected Total 29 1129.974667

R-Square Coeff Var Root MSE Nitrogen Mean

0.749616 17.26515 3.433463 19.88667

Source DF Anova SS Mean Square F Value Pr > F

Strain 5 847.0466667 169.4093333 14.37 <.0001

The degrees of freedom (DF) column should be used to check the analysis results. The model degrees of
freedom for a one-way analysis of variance are the number of levels minus 1; in this case, 6 – 1 = 5. The
Corrected Total degrees of freedom are always the total number of observations minus one; in this case 30 –
1 = 29. The sum of Model and Error degrees of freedom equals the Corrected Total.

The overall F test is significant .F D 14:37; p < 0:0001/, indicating that the model as a whole accounts for
a significant portion of the variability in the dependent variable. The F test for Strain is significant, indicating
that some contrast between the means for the different strains is different from zero. Notice that the Model
and Strain F tests are identical, since Strain is the only term in the model.

The F test for Strain .F D 14:37; p < 0:0001/ suggests that there are differences among the bacterial strains,
but it does not reveal any information about the nature of the differences. Mean comparison methods can
be used to gather further information. The interactivity of PROC ANOVA enables you to do this without
re-running the entire analysis. After you specify a model with a MODEL statement and execute the ANOVA
procedure with a RUN statement, you can execute a variety of statements (such as MEANS, MANOVA,
TEST, and REPEATED) without PROC ANOVA recalculating the model sum of squares.

The following additional statements request means of the Strain levels with Tukey’s studentized range
procedure.

means strain / tukey;
run;

Results of Tukey’s procedure are shown in Figure 26.3.
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Figure 26.3 Tukey’s Multiple Comparisons Procedure

Nitrogen Content of Red Clover Plants

The ANOVA Procedure

Tukey's Studentized Range (HSD) Test for Nitrogen

Nitrogen Content of Red Clover Plants

The ANOVA Procedure

Tukey's Studentized Range (HSD) Test for Nitrogen

Alpha 0.05

Error Degrees of Freedom 24

Error Mean Square 11.78867

Critical Value of Studentized Range 4.37265

Minimum Significant Difference 6.7142

Means with the same letter are not
significantly different.

Tukey Grouping Mean N Strain

A 28.820 5 3DOK1

A

B A 23.980 5 3DOK5

B

B C 19.920 5 3DOK7

B C

B C 18.700 5 COMPOS

C

C 14.640 5 3DOK4

C

C 13.260 5 3DOK13

Examples of implications of the multiple comparisons results are as follows:

• Strain 3DOK1 fixes significantly more nitrogen than all but 3DOK5.

• While 3DOK5 is not significantly different from 3DOK1, it is also not significantly better than all the
rest, though it is better than the bottom two groups.

Although the experiment has succeeded in separating the best strains from the worst, more experimentation
is required in order to clearly distinguish the very best strain.

If ODS Graphics is enabled, ANOVA also displays by default a plot that enables you to visualize the
distribution of nitrogen content for each treatment. The following statements, which are the same as the
previous analysis but with ODS graphics enabled, additionally produce Figure 26.4.
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ods graphics on;
proc anova data = Clover;

class strain;
model Nitrogen = Strain;

run;
ods graphics off;

When ODS Graphics is enabled and you fit a one-way analysis of variance model, the ANOVA procedure
output includes a box plot of the dependent variable values within each classification level of the independent
variable. For general information about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.” For
specific information about the graphics available in the ANOVA procedure, see the section “ODS Graphics”
on page 982.

Figure 26.4 Box Plot of Nitrogen Content for each Treatment

Randomized Complete Block with One Factor
This example illustrates the use of PROC ANOVA in analyzing a randomized complete block design.
Researchers are interested in whether three treatments have different effects on the yield and worth of a
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particular crop. They believe that the experimental units are not homogeneous. So, a blocking factor is
introduced that allows the experimental units to be homogeneous within each block. The three treatments are
then randomly assigned within each block.

The data from this study are input into the SAS data set RCB:

title1 'Randomized Complete Block';
data RCB;

input Block Treatment $ Yield Worth @@;
datalines;

1 A 32.6 112 1 B 36.4 130 1 C 29.5 106
2 A 42.7 139 2 B 47.1 143 2 C 32.9 112
3 A 35.3 124 3 B 40.1 134 3 C 33.6 116
;

The variables Yield and Worth are continuous response variables, and the variables Block and Treatment are
the classification variables. Because the data for the analysis are balanced, you can use PROC ANOVA to run
the analysis.

The statements for the analysis are

proc anova data=RCB;
class Block Treatment;
model Yield Worth=Block Treatment;

run;

The Block and Treatment effects appear in the CLASS statement. The MODEL statement requests an analysis
for each of the two dependent variables, Yield and Worth.

Figure 26.5 shows the “Class Level Information” table.

Figure 26.5 Class Level Information

Randomized Complete Block

The ANOVA Procedure

Randomized Complete Block

The ANOVA Procedure

Class Level Information

Class Levels Values

Block 3 1 2 3

Treatment 3 A B C

Number of Observations Read 9

Number of Observations Used 9

The “Class Level Information” table lists the number of levels and their values for all effects specified in the
CLASS statement. The number of observations in the data set are also displayed. Use this information to
make sure that the data have been read correctly.
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The overall ANOVA table for Yield in Figure 26.6 appears first in the output because it is the first response
variable listed on the left side in the MODEL statement.

Figure 26.6 Overall ANOVA Table for Yield

Randomized Complete Block

The ANOVA Procedure

Dependent Variable: Yield

Randomized Complete Block

The ANOVA Procedure

Dependent Variable: Yield

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 4 225.2777778 56.3194444 8.94 0.0283

Error 4 25.1911111 6.2977778

Corrected Total 8 250.4688889

R-Square Coeff Var Root MSE Yield Mean

0.899424 6.840047 2.509537 36.68889

The overall F statistic is significant .F D 8:94; p D 0:0283/, indicating that the model as a whole accounts
for a significant portion of the variation in Yield and that you can proceed to evaluate the tests of effects.

The degrees of freedom (DF) are used to ensure correctness of the data and model. The Corrected Total
degrees of freedom are one less than the total number of observations in the data set; in this case, 9 – 1 = 8.
The Model degrees of freedom for a randomized complete block are .b � 1/C .t � 1/, where b = number of
block levels and t = number of treatment levels. In this case, this formula leads to .3 � 1/C .3 � 1/ D 4

model degrees of freedom.

Several simple statistics follow the ANOVA table. The R-Square indicates that the model accounts for nearly
90% of the variation in the variable Yield. The coefficient of variation (C.V.) is listed along with the Root
MSE and the mean of the dependent variable. The Root MSE is an estimate of the standard deviation of the
dependent variable. The C.V. is a unitless measure of variability.

The tests of the effects shown in Figure 26.7 are displayed after the simple statistics.

Figure 26.7 Tests of Effects for Yield

Source DF Anova SS Mean Square F Value Pr > F

Block 2 98.1755556 49.0877778 7.79 0.0417

Treatment 2 127.1022222 63.5511111 10.09 0.0274

For Yield, both the Block and Treatment effects are significant .F D 7:79; p D 0:0417 and F D 10:09; p D
0:0274, respectively) at the 95% level. From this you can conclude that blocking is useful for this variable
and that some contrast between the treatment means is significantly different from zero.
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Figure 26.8 shows the ANOVA table, simple statistics, and tests of effects for the variable Worth.

Figure 26.8 ANOVA Table for Worth

Randomized Complete Block

The ANOVA Procedure

Dependent Variable: Worth

Randomized Complete Block

The ANOVA Procedure

Dependent Variable: Worth

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 4 1247.333333 311.833333 8.28 0.0323

Error 4 150.666667 37.666667

Corrected Total 8 1398.000000

R-Square Coeff Var Root MSE Worth Mean

0.892227 4.949450 6.137318 124.0000

Source DF Anova SS Mean Square F Value Pr > F

Block 2 354.6666667 177.3333333 4.71 0.0889

Treatment 2 892.6666667 446.3333333 11.85 0.0209

The overall F test is significant .F D 8:28; p D 0:0323/ at the 95% level for the variable Worth. The Block
effect is not significant at the 0.05 level but is significant at the 0.10 confidence level .F D 4:71; p D 0:0889/.
Generally, the usefulness of blocking should be determined before the analysis. However, since there are
two dependent variables of interest, and Block is significant for one of them (Yield), blocking appears to be
generally useful. For Worth, as with Yield, the effect of Treatment is significant .F D 11:85; p D 0:0209/.

Issuing the following command produces the Treatment means.

means Treatment;
run;

Figure 26.9 displays the treatment means and their standard deviations for both dependent variables.

Figure 26.9 Means of Yield and Worth

Randomized Complete Block

The ANOVA Procedure

Randomized Complete Block

The ANOVA Procedure

Yield Worth

Level of
Treatment N Mean Std Dev Mean Std Dev

A 3 36.8666667 5.22908532 125.000000 13.5277493

B 3 41.2000000 5.43415127 135.666667 6.6583281

C 3 32.0000000 2.19317122 111.333333 5.0332230
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Syntax: ANOVA Procedure
The following statements are available in the ANOVA procedure:

PROC ANOVA < options > ;
CLASS variables < / option > ;
MODEL dependents = effects < / options > ;
ABSORB variables ;
BY variables ;
FREQ variable ;
MANOVA < test-options > < / detail-options > ;
MEANS effects < / options > ;
REPEATED factor-specification < / options > ;
TEST < H=effects > E=effect ;

The PROC ANOVA, CLASS, and MODEL statements are required, and they must precede the first RUN
statement. The CLASS statement must precede the MODEL statement. If you use the ABSORB, FREQ, or
BY statement, it must precede the first RUN statement. The MANOVA, MEANS, REPEATED, and TEST
statements must follow the MODEL statement, and they can be specified in any order. These four statements
can also appear after the first RUN statement.

Table 26.1 summarizes the function of each statement (other than the PROC statement) in the ANOVA
procedure:

Table 26.1 Statements in the ANOVA Procedure
Statement Description
ABSORB Absorbs classification effects in a model
BY Specifies variables to define subgroups for the analysis
CLASS Declares classification variables
FREQ Specifies a frequency variable
MANOVA Performs a multivariate analysis of variance
MEANS Computes and compares means
MODEL Defines the model to be fit
REPEATED Performs multivariate and univariate repeated measures analysis of

variance
TEST Constructs tests that use the sums of squares for effects and the

error term you specify

PROC ANOVA Statement
PROC ANOVA < options > ;

The PROC ANOVA statement invokes the ANOVA procedure. Table 26.2 summarizes the options available
in the PROC ANOVA statement.
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Table 26.2 PROC ANOVA Statement Options

Option Description

Specify input and output data sets
DATA= Specifies input SAS data set
MANOVA Requests the multivariate mode of eliminating observations with missing

values
MULTIPASS Requests that the input data set be reread when necessary, instead of using a

utility file
NAMELEN= Specifies the length of effect names
NOPRINT Suppresses the normal display of results
ORDER= Specifies the sort order for the levels of the classification variables
OUTSTAT= Names an output data set for information and statistics on each model effect
PLOTS Controls the plots produced through ODS Graphics.

You can specify the following options in the PROC ANOVA statement:

DATA=SAS-data-set
names the SAS data set used by the ANOVA procedure. By default, PROC ANOVA uses the most
recently created SAS data set.

MANOVA
requests the multivariate mode of eliminating observations with missing values. If any of the dependent
variables have missing values, the procedure eliminates that observation from the analysis. The
MANOVA option is useful if you use PROC ANOVA in interactive mode and plan to perform a
multivariate analysis.

MULTIPASS
requests that PROC ANOVA reread the input data set, when necessary, instead of writing the values of
dependent variables to a utility file. This option decreases disk space usage at the expense of increased
execution times and is useful only in rare situations where disk space is at an absolute premium.

NAMELEN=n
specifies the length of effect names to be n characters long, where n is a value between 20 and 200
characters. The default length is 20 characters.

NOPRINT
suppresses the normal display of results. The NOPRINT option is useful when you want to create only
the output data set with the procedure. Note that this option temporarily disables the Output Delivery
System (ODS); see Chapter 20, “Using the Output Delivery System,” for more information.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of the classification variables (which are specified in the CLASS
statement).

This option applies to the levels for all classification variables, except when you use the (default)
ORDER=FORMATTED option with numeric classification variables that have no explicit format. In
that case, the levels of such variables are ordered by their internal value.

The ORDER= option can take the following values:
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Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set

FORMATTED External formatted value, except for numeric variables with
no explicit format, which are sorted by their unformatted
(internal) value

FREQ Descending frequency count; levels with the most observa-
tions come first in the order

INTERNAL Unformatted value

By default, ORDER=FORMATTED. For ORDER=FORMATTED and ORDER=INTERNAL, the sort
order is machine-dependent.

OUTSTAT=SAS-data-set
names an output data set that contains sums of squares, degrees of freedom, F statistics, and probability
levels for each effect in the model. If you use the CANONICAL option in the MANOVA statement
and do not use an M= specification in the MANOVA statement, the data set also contains results of the
canonical analysis. See the section “Output Data Set” on page 977 for more information.

PLOTS < (MAXPOINTS=NONE | number ) > < =NONE >

PLOTS=NONE
controls the plots produced through ODS Graphics. When ODS Graphics is enabled, the ANOVA
procedure can display a grouped box plot of the input data with groups defined by an effect in the
model. Such a plot is produced by default if you have a one-way model, with only a single classification
variable, or if you use a MEANS statement. Specify the PLOTS=NONE option to prevent these plots
from being produced when ODS Graphics is enabled.

ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;
proc anova data = Clover;

class strain;
model Nitrogen = Strain;

run;
ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The following option can be specified in parentheses after PLOTS.

MAXPOINTS=NONE | number
specifies that plots with elements that require processing of more than number points be
suppressed. The default is MAXPOINTS=5000. This limit is ignored if you specify MAX-
POINTS=NONE.
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ABSORB Statement
ABSORB variables ;

Absorption is a computational technique that provides a large reduction in time and memory requirements for
certain types of models. The variables are one or more variables in the input data set.

For a main effect variable that does not participate in interactions, you can absorb the effect by naming it in
an ABSORB statement. This means that the effect can be adjusted out before the construction and solution
of the rest of the model. This is particularly useful when the effect has a large number of levels.

Several variables can be specified, in which case each one is assumed to be nested in the preceding variable
in the ABSORB statement.

NOTE: When you use the ABSORB statement, the data set (or each BY group, if a BY statement appears)
must be sorted by the variables in the ABSORB statement. Including an absorbed variable in the CLASS list
or in the MODEL statement might produce erroneous sums of squares. If the ABSORB statement is used, it
must appear before the first RUN statement or it is ignored.

When you use an ABSORB statement and also use the INT option in the MODEL statement, the procedure
ignores the option but produces the uncorrected total sum of squares (SS) instead of the corrected total SS.

See the section “Absorption” on page 3469 in Chapter 45, “The GLM Procedure,” for more information.

BY Statement
BY variables ;

You can specify a BY statement with PROC ANOVA to obtain separate analyses of observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the ANOVA procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

Since sorting the data changes the order in which PROC ANOVA reads observations, the sort order for the
levels of the classification variables might be affected if you have also specified the ORDER=DATA option
in the PROC ANOVA statement.

If the BY statement is used, it must appear before the first RUN statement, or it is ignored. When you use a
BY statement, the interactive features of PROC ANOVA are disabled.
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When both a BY and an ABSORB statement are used, observations must be sorted first by the variables in
the BY statement, and then by the variables in the ABSORB statement.

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

CLASS Statement
CLASS variable < (REF= option) > . . . < variable < (REF= option) > > < / global-options > ;

The CLASS statement names the classification variables to be used in the model. Typical classification
variables are Treatment, Sex, Race, Group, and Replication. If you use the CLASS statement, it must appear
before the MODEL statement.

Classification variables can be either character or numeric. By default, class levels are determined from the
entire set of formatted values of the CLASS variables.

NOTE: Prior to SAS 9, class levels were determined by using no more than the first 16 characters of the
formatted values. To revert to this previous behavior, you can use the TRUNCATE option in the CLASS
statement.

In any case, you can use formats to group values into levels. See the discussion of the FORMAT procedure
in the Base SAS Procedures Guide and the discussions of the FORMAT statement and SAS formats in SAS
Formats and Informats: Reference. You can adjust the order of CLASS variable levels with the ORDER=
option in the PROC ANOVA statement.

You can specify the following REF= option to indicate how the levels of an individual classification variable
are to be ordered by enclosing it in parentheses after the variable name:

REF=’level’ | FIRST | LAST
specifies a level of the classification variable to be put at the end of the list of levels. This level thus
corresponds to the reference level in the usual interpretation of the estimates with PROC ANOVA’s
singular parameterization. You can specify the level of the variable to use as the reference level; specify
a value that corresponds to the formatted value of the variable if a format is assigned. Alternatively, you
can specify REF=FIRST to designate that the first ordered level serve as the reference, or REF=LAST to
designate that the last ordered level serve as the reference. To specify that REF=FIRST or REF=LAST
be used for all classification variables, use the REF= global-option after the slash (/) in the CLASS
statement.

You can specify the following global-options in the CLASS statement after a slash (/):

REF=FIRST | LAST
specifies a level of all classification variables to be put at the end of the list of levels. This level thus
corresponds to the reference level in the usual interpretation of the estimates with PROC ANOVA’s
singular parameterization. Specify REF=FIRST to designate that the first ordered level for each
classification variable serve as the reference. Specify REF=LAST to designate that the last ordered
level serve as the reference. This option applies to all the variables specified in the CLASS statement. To
specify different reference levels for different classification variables, use REF= options for individual
variables.
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TRUNCATE
specifies that class levels be determined by using only up to the first 16 characters of the formatted
values of CLASS variables. When formatted values are longer than 16 characters, you can use this
option to revert to the levels as determined in releases prior to SAS 9.

FREQ Statement
FREQ variable ;

The FREQ statement names a variable that provides frequencies for each observation in the DATA= data set.
Specifically, if n is the value of the FREQ variable for a given observation, then that observation is used n
times.

The analysis produced by using a FREQ statement reflects the expanded number of observations. For
example, means and total degrees of freedom reflect the expanded number of observations. You can produce
the same analysis (without the FREQ statement) by first creating a new data set that contains the expanded
number of observations. For example, if the value of the FREQ variable is 5 for the first observation, the
first 5 observations in the new data set would be identical. Each observation in the old data set would be
replicated ni times in the new data set, where ni is the value of the FREQ variable for that observation.

If the value of the FREQ variable is missing or is less than 1, the observation is not used in the analysis. If
the value is not an integer, only the integer portion is used.

If the FREQ statement is used, it must appear before the first RUN statement or it is ignored.

MANOVA Statement
MANOVA < test-options > < detail-options > ;

If the MODEL statement includes more than one dependent variable, you can perform multivariate analysis of
variance with the MANOVA statement. The test-options define which effects to test, while the detail-options
specify how to execute the tests and what results to display.

When a MANOVA statement appears before the first RUN statement, PROC ANOVA enters a multivariate
mode with respect to the handling of missing values; in addition to observations with missing independent
variables, observations with any missing dependent variables are excluded from the analysis. If you want to
use this mode of handling missing values but do not need any multivariate analyses, specify the MANOVA
option in the PROC ANOVA statement.

Table 26.3 summarizes the options available in the MANOVA statement.

Table 26.3 MANOVA Statement Options

Option Description

Test Options
H= Specifies hypothesis effects
E= Specifies the error effect
M= Specifies a transformation matrix for the dependent variables
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Table 26.3 continued

Option Description

MNAMES= Provides names for the transformed variables
PREFIX= Alternatively identifies the transformed variables

Detail Options
CANONICAL Displays a canonical analysis of the H and E matrices
MSTAT= Specifies the method of evaluating the multivariate test statistics
ORTH Orthogonalizes the rows of the transformation matrix
PRINTE Displays the error SSCP matrix E
PRINTH Displays the hypothesis SSCP matrix H
SUMMARY Produces analysis-of-variance tables for each dependent variable

Test Options

You can specify the following options in the MANOVA statement as test-options in order to define which
multivariate tests to perform.

H=effects | INTERCEPT | _ALL_
specifies effects in the preceding model to use as hypothesis matrices. For each SSCP matrix H
associated with an effect, the H= specification computes an analysis based on the characteristic roots
of E�1H, where E is the matrix associated with the error effect. The characteristic roots and vectors
are displayed, along with the Hotelling-Lawley trace, Pillai’s trace, Wilks’ lambda, and Roy’s greatest
root. By default, these statistics are tested with approximations based on the F distribution. To test
them with exact (but computationally intensive) calculations, use the MSTAT=EXACT option.

Use the keyword INTERCEPT to produce tests for the intercept. To produce tests for all effects listed
in the MODEL statement, use the keyword _ALL_ in place of a list of effects.

For background and further details, see the section “Multivariate Analysis of Variance” on page 3492
in Chapter 45, “The GLM Procedure.”

E=effect
specifies the error effect. If you omit the E= specification, the ANOVA procedure uses the error SSCP
(residual) matrix from the analysis.

M=equation,. . . ,equation | (row-of-matrix,. . . ,row-of-matrix)

specifies a transformation matrix for the dependent variables listed in the MODEL statement. The
equations in the M= specification are of the form

c1 � dependent � variable ˙ c2 � dependent � variable

� � � ˙ cn � dependent � variable

where the ci values are coefficients for the various dependent-variables. If the value of a given ci is
1, it can be omitted; in other words 1 � Y is the same as Y. Equations should involve two or more
dependent variables. For sample syntax, see the section “Examples” on page 962.
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Alternatively, you can input the transformation matrix directly by entering the elements of the matrix
with commas separating the rows, and parentheses surrounding the matrix. When this alternate form
of input is used, the number of elements in each row must equal the number of dependent variables.
Although these combinations actually represent the columns of the M matrix, they are displayed by
rows.

When you include an M= specification, the analysis requested in the MANOVA statement is carried out
for the variables defined by the equations in the specification, not the original dependent variables. If
you omit the M= option, the analysis is performed for the original dependent variables in the MODEL
statement.

If an M= specification is included without either the MNAMES= or the PREFIX= option, the variables
are labeled MVAR1, MVAR2, and so forth by default.

For further information, see the section “Multivariate Analysis of Variance” on page 3492 in Chapter 45,
“The GLM Procedure.”

MNAMES=names
provides names for the variables defined by the equations in the M= specification. Names in the list
correspond to the M= equations or the rows of the M matrix (as it is entered).

PREFIX=name
is an alternative means of identifying the transformed variables defined by the M= specification. For
example, if you specify PREFIX=DIFF, the transformed variables are labeled DIFF1, DIFF2, and so
forth.

Detail Options

You can specify the following options in the MANOVA statement after a slash as detail-options:

CANONICAL
produces a canonical analysis of the H and E matrices (transformed by the M matrix, if specified)
instead of the default display of characteristic roots and vectors.

MSTAT=FAPPROX | EXACT
specifies the method of evaluating the multivariate test statistics. The default is MSTAT=FAPPROX,
which specifies that the multivariate tests are evaluated by using the usual approximations based on
the F distribution, as discussed in the “Multivariate Tests” section in Chapter 4, “Introduction to
Regression Procedures.” Alternatively, you can specify MSTAT=EXACT to compute exact p-values
for three of the four tests (Wilks’ lambda, the Hotelling-Lawley trace, and Roy’s greatest root) and
an improved F-approximation for the fourth (Pillai’s trace). While MSTAT=EXACT provides better
control of the significance probability for the tests, especially for Roy’s Greatest Root, computations
for the exact p-values can be appreciably more demanding, and are in fact infeasible for large problems
(many dependent variables). Thus, although MSTAT=EXACT is more accurate for most data, it is
not the default method. For more information about the results of MSTAT=EXACT, see the section
“Multivariate Analysis of Variance” on page 3492 in Chapter 45, “The GLM Procedure.”

ORTH
requests that the transformation matrix in the M= specification of the MANOVA statement be orthonor-
malized by rows before the analysis.
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PRINTE
displays the error SSCP matrix E. If the E matrix is the error SSCP (residual) matrix from the analysis,
the partial correlations of the dependent variables given the independent variables are also produced.

For example, the statement

manova / printe;

displays the error SSCP matrix and the partial correlation matrix computed from the error SSCP matrix.

PRINTH
displays the hypothesis SSCP matrix H associated with each effect specified by the H= specification.

SUMMARY
produces analysis-of-variance tables for each dependent variable. When no M matrix is specified, a
table is produced for each original dependent variable from the MODEL statement; with an M matrix
other than the identity, a table is produced for each transformed variable defined by the M matrix.

Examples

The following statements give several examples of using a MANOVA statement.

proc anova;
class A B;
model Y1-Y5=A B(A);
manova h=A e=B(A) / printh printe;
manova h=B(A) / printe;
manova h=A e=B(A) m=Y1-Y2,Y2-Y3,Y3-Y4,Y4-Y5

prefix=diff;

manova h=A e=B(A) m=(1 -1 0 0 0,
0 1 -1 0 0,
0 0 1 -1 0,
0 0 0 1 -1) prefix=diff;

run;

The first MANOVA statement specifies A as the hypothesis effect and B(A) as the error effect. As a result of
the PRINTH option, the procedure displays the hypothesis SSCP matrix associated with the A effect; and, as
a result of the PRINTE option, the procedure displays the error SSCP matrix associated with the B(A) effect.

The second MANOVA statement specifies B(A) as the hypothesis effect. Since no error effect is specified,
PROC ANOVA uses the error SSCP matrix from the analysis as the E matrix. The PRINTE option displays
this E matrix. Since the E matrix is the error SSCP matrix from the analysis, the partial correlation matrix
computed from this matrix is also produced.

The third MANOVA statement requests the same analysis as the first MANOVA statement, but the analysis is
carried out for variables transformed to be successive differences between the original dependent variables.
The PREFIX=DIFF specification labels the transformed variables as DIFF1, DIFF2, DIFF3, and DIFF4.

Finally, the fourth MANOVA statement has the identical effect as the third, but it uses an alternative form of
the M= specification. Instead of specifying a set of equations, the fourth MANOVA statement specifies rows
of a matrix of coefficients for the five dependent variables.
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As a second example of the use of the M= specification, consider the following:

proc anova;
class group;
model dose1-dose4=group / nouni;
manova h = group

m = -3*dose1 - dose2 + dose3 + 3*dose4,
dose1 - dose2 - dose3 + dose4,

-dose1 + 3*dose2 - 3*dose3 + dose4
mnames = Linear Quadratic Cubic
/ printe;

run;

The M= specification gives a transformation of the dependent variables dose1 through dose4 into orthog-
onal polynomial components, and the MNAMES= option labels the transformed variables as LINEAR,
QUADRATIC, and CUBIC, respectively. Since the PRINTE option is specified and the default residual
matrix is used as an error term, the partial correlation matrix of the orthogonal polynomial components is
also produced.

For further information, see the section “Multivariate Analysis of Variance” on page 3492 in Chapter 45,
“The GLM Procedure.”

MEANS Statement
MEANS effects < / options > ;

PROC ANOVA can compute means of the dependent variables for any effect that appears on the right-hand
side in the MODEL statement.

You can use any number of MEANS statements, provided that they appear after the MODEL statement. For
example, suppose A and B each have two levels. Then, if you use the following statements

proc anova;
class A B;
model Y=A B A*B;
means A B / tukey;
means A*B;

run;

means, standard deviations, and Tukey’s multiple comparison tests are produced for each level of the main
effects A and B, and just the means and standard deviations for each of the four combinations of levels for
A*B. Since multiple comparisons options apply only to main effects, the single MEANS statement

means A B A*B / tukey;

produces the same results.

Options are provided to perform multiple comparison tests for only main effects in the model. PROC ANOVA
does not perform multiple comparison tests for interaction terms in the model; for multiple comparisons of
interaction terms, see the LSMEANS statement in Chapter 45, “The GLM Procedure.”

Table 26.4 summarizes the options available in the MEANS statement.
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Table 26.4 Options Available in the MEANS Statement

Option Description

Perform multiple comparison tests
BON Performs Bonferroni t tests of differences between means for all main effect means
DUNCAN Performs Duncan’s multiple range test on all main effect means
DUNNETT Performs Dunnett’s two-tailed t test
DUNNETTL Performs Dunnett’s one-tailed t test, testing if any treatment is significantly less than

the control
DUNNETTU Performs Dunnett’s one-tailed t test, testing if any treatment is significantly greater

than the control
GABRIEL Performs Gabriel’s multiple-comparison procedure on all main effect means
REGWQ Performs the Ryan-Einot-Gabriel-Welsch multiple range test
SCHEFFE Performs Scheffé’s multiple-comparison procedure
SIDAK Performs pairwise t tests on differences between means with levels adjusted accord-

ing to Sidak’s inequality
SMM or GT2 Performs pairwise comparisons based on the studentized maximum modulus and

Sidak’s uncorrelated-t inequality

SNK Performs the Student-Newman-Keuls multiple range test
T or LSD Performs pairwise t tests
TUKEY Performs Tukey’s studentized range test (HSD)
WALLER Performs the Waller-Duncan k-ratio t test

Specify additional details for multiple comparison tests
ALPHA= Specifies the level of significance for comparisons among the means.
CLDIFF Presents results from options as confidence intervals
CLM Options as intervals for the mean of each level of the variables specified
E= Specifies the error mean square used in the multiple comparisons
KRATIO= Specifies the Type 1/Type 2 error seriousness ratio for the Waller-Duncan test
LINES Presents results of options by listing the means in descending order and indicating

nonsignificant subsets by line segments

NOSORT Prevents the means from being sorted into descending order

Test for homogeneity of variances
HOVTEST Requests a homogeneity of variance test

Compensate for heterogeneous variances
WELCH Requests the Welch (1951) variance-weighted one-way ANOVA

Descriptions of these options follow. For a further discussion of these options, see the section “Multiple
Comparisons” on page 3475 in Chapter 45, “The GLM Procedure.”

ALPHA=p
specifies the level of significance for comparisons among the means. By default, ALPHA=0.05. You
can specify any value greater than 0 and less than 1.
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BON
performs Bonferroni t tests of differences between means for all main effect means in the MEANS
statement. See the CLDIFF and LINES options, which follow, for a discussion of how the procedure
displays results.

CLDIFF
presents results of the BON, GABRIEL, SCHEFFE, SIDAK, SMM, GT2, T, LSD, and TUKEY options
as confidence intervals for all pairwise differences between means, and the results of the DUNNETT,
DUNNETTU, and DUNNETTL options as confidence intervals for differences with the control. The
CLDIFF option is the default for unequal cell sizes unless the DUNCAN, REGWQ, SNK, or WALLER
option is specified.

CLM
presents results of the BON, GABRIEL, SCHEFFE, SIDAK,SMM, T, and LSD options as intervals
for the mean of each level of the variables specified in the MEANS statement. For all options except
GABRIEL, the intervals are confidence intervals for the true means. For the GABRIEL option, they
are comparison intervals for comparing means pairwise: in this case, if the intervals corresponding to
two means overlap, the difference between them is insignificant according to Gabriel’s method.

DUNCAN
performs Duncan’s multiple range test on all main effect means given in the MEANS statement. See
the LINES option for a discussion of how the procedure displays results.

DUNNETT < (formatted-control-values) >
performs Dunnett’s two-tailed t test, testing if any treatments are significantly different from a single
control for all main effects means in the MEANS statement.

To specify which level of the effect is the control, enclose the formatted value in quotes in parentheses
after the keyword . If more than one effect is specified in the MEANS statement, you can use a list of
control values within the parentheses. By default, the first level of the effect is used as the control. For
example,

means a / dunnett('CONTROL');

where CONTROL is the formatted control value of A. As another example,

means a b c / dunnett('CNTLA' 'CNTLB' 'CNTLC');

where CNTLA, CNTLB, and CNTLC are the formatted control values for A, B, and C, respectively.

DUNNETTL < (formatted-control-value) >
performs Dunnett’s one-tailed t test, testing if any treatment is significantly less than the control.
Control level information is specified as described previously for the DUNNETT option.

DUNNETTU < (formatted-control-value) >
performs Dunnett’s one-tailed t test, testing if any treatment is significantly greater than the control.
Control level information is specified as described previously for the DUNNETT option.
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E=effect
specifies the error mean square used in the multiple comparisons. By default, PROC ANOVA uses
the residual Mean Square (MS). The effect specified with the E= option must be a term in the model;
otherwise, the procedure uses the residual MS.

GABRIEL
performs Gabriel’s multiple-comparison procedure on all main effect means in the MEANS statement.
See the CLDIFF and LINES options for discussions of how the procedure displays results.

GT2
see the SMM option.

HOVTEST

HOVTEST=BARTLETT

HOVTEST=BF

HOVTEST=LEVENE < (TYPE=ABS | SQUARE) >

HOVTEST=OBRIEN < (W=number ) >
requests a homogeneity of variance test for the groups defined by the MEANS effect. You can
optionally specify a particular test; if you do not specify a test, Levene’s test (Levene 1960) with
TYPE=SQUARE is computed. Note that this option is ignored unless your MODEL statement specifies
a simple one-way model.

The HOVTEST=BARTLETT option specifies Bartlett’s test (Bartlett 1937), a modification of the
normal-theory likelihood ratio test.

The HOVTEST=BF option specifies Brown and Forsythe’s variation of Levene’s test (Brown and
Forsythe 1974).

The HOVTEST=LEVENE option specifies Levene’s test (Levene 1960), which is widely considered to
be the standard homogeneity of variance test. You can use the TYPE= option in parentheses to specify
whether to use the absolute residuals (TYPE=ABS) or the squared residuals (TYPE=SQUARE) in
Levene’s test. The default is TYPE=SQUARE.

The HOVTEST=OBRIEN option specifies O’Brien’s test (O’Brien 1979), which is basically a mod-
ification of HOVTEST=LEVENE(TYPE=SQUARE). You can use the W= option in parentheses to
tune the variable to match the suspected kurtosis of the underlying distribution. By default, W=0.5, as
suggested by O’Brien (1979, 1981).

See the section “Homogeneity of Variance in One-Way Models” on page 3488 in Chapter 45, “The
GLM Procedure,” for more details on these methods. Example 45.10 in the same chapter illustrates
the use of the HOVTEST and WELCH options in the MEANS statement in testing for equal group
variances.

KRATIO=value
specifies the Type 1/Type 2 error seriousness ratio for the Waller-Duncan test. Reasonable values for
KRATIO are 50, 100, and 500, which roughly correspond for the two-level case to ALPHA levels of
0.1, 0.05, and 0.01. By default, the procedure uses the default value of 100.
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LINES
presents results of the BON, DUNCAN, GABRIEL, REGWQ, SCHEFFE, SIDAK,SMM, GT2, SNK,
T, LSD TUKEY, and WALLER options by listing the means in descending order and indicating
nonsignificant subsets by line segments beside the corresponding means. The LINES option is
appropriate for equal cell sizes, for which it is the default. The LINES option is also the default if the
DUNCAN, REGWQ, SNK, or WALLER option is specified, or if there are only two cells of unequal
size. If the cell sizes are unequal, the harmonic mean of the cell sizes is used, which might lead to
somewhat liberal tests if the cell sizes are highly disparate. The LINES option cannot be used in
combination with the DUNNETT, DUNNETTL, or DUNNETTU option. In addition, the procedure
has a restriction that no more than 24 overlapping groups of means can exist. If a mean belongs to
more than 24 groups, the procedure issues an error message. You can either reduce the number of
levels of the variable or use a multiple comparison test that allows the CLDIFF option rather than the
LINES option.

LSD
see the T option.

NOSORT
prevents the means from being sorted into descending order when the CLDIFF or CLM option is
specified.

REGWQ
performs the Ryan-Einot-Gabriel-Welsch multiple range test on all main effect means in the MEANS
statement. See the LINES option for a discussion of how the procedure displays results.

SCHEFFE
performs Scheffé’s multiple-comparison procedure on all main effect means in the MEANS statement.
See the CLDIFF and LINES options for discussions of how the procedure displays results.

SIDAK
performs pairwise t tests on differences between means with levels adjusted according to Sidak’s
inequality for all main effect means in the MEANS statement. See the CLDIFF and LINES options for
discussions of how the procedure displays results.

SMM

GT2
performs pairwise comparisons based on the studentized maximum modulus and Sidak’s uncorrelated-t
inequality, yielding Hochberg’s GT2 method when sample sizes are unequal, for all main effect means
in the MEANS statement. See the CLDIFF and LINES options for discussions of how the procedure
displays results.

SNK
performs the Student-Newman-Keuls multiple range test on all main effect means in the MEANS
statement. See the LINES option for a discussion of how the procedure displays results.

T

LSD
performs pairwise t tests, equivalent to Fisher’s least-significant-difference test in the case of equal cell
sizes, for all main effect means in the MEANS statement. See the CLDIFF and LINES options for
discussions of how the procedure displays results.
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TUKEY
performs Tukey’s studentized range test (HSD) on all main effect means in the MEANS statement.
(When the group sizes are different, this is the Tukey-Kramer test.) See the CLDIFF and LINES
options for discussions of how the procedure displays results.

WALLER
performs the Waller-Duncan k-ratio t test on all main effect means in the MEANS statement. See the
KRATIO= option for information about controlling details of the test, and see the LINES option for a
discussion of how the procedure displays results.

WELCH
requests Welch’s (1951) variance-weighted one-way ANOVA. This alternative to the usual analysis of
variance for a one-way model is robust to the assumption of equal within-group variances. This option
is ignored unless your MODEL statement specifies a simple one-way model.

Note that using the WELCH option merely produces one additional table consisting of Welch’s
ANOVA. It does not affect all of the other tests displayed by the ANOVA procedure, which still require
the assumption of equal variance for exact validity.

See the section “Homogeneity of Variance in One-Way Models” on page 3488 in Chapter 45, “The
GLM Procedure,” for more details on Welch’s ANOVA. Example 45.10 in the same chapter illustrates
the use of the HOVTEST and WELCH options in the MEANS statement in testing for equal group
variances.

MODEL Statement
MODEL dependents = effects < / options > ;

The MODEL statement names the dependent variables and independent effects. The syntax of effects is
described in the section “Specification of Effects” on page 974. For any model effect involving classification
variables (interactions as well as main effects), the number of levels cannot exceed 32,767. If no independent
effects are specified, only an intercept term is fit. This tests the hypothesis that the mean of the dependent
variable is zero. All variables in effects that you specify in the MODEL statement must appear in the CLASS
statement because PROC ANOVA does not allow for continuous effects.

You can specify the following options in the MODEL statement; they must be separated from the list of
independent effects by a slash.

INTERCEPT
INT

displays the hypothesis tests associated with the intercept as an effect in the model. By default, the
procedure includes the intercept in the model but does not display associated tests of hypotheses.
Except for producing the uncorrected total SS instead of the corrected total SS, the INT option is
ignored when you use an ABSORB statement.

NOUNI
suppresses the display of univariate statistics. You typically use the NOUNI option with a multivariate
or repeated measures analysis of variance when you do not need the standard univariate output.
The NOUNI option in a MODEL statement does not affect the univariate output produced by the
REPEATED statement.



REPEATED Statement F 969

REPEATED Statement
REPEATED factor-specification < / options > ;

When values of the dependent variables in the MODEL statement represent repeated measurements on the
same experimental unit, the REPEATED statement enables you to test hypotheses about the measurement
factors (often called within-subject factors), as well as the interactions of within-subject factors with indepen-
dent variables in the MODEL statement (often called between-subject factors). The REPEATED statement
provides multivariate and univariate tests as well as hypothesis tests for a variety of single-degree-of-freedom
contrasts. There is no limit to the number of within-subject factors that can be specified. For more details, see
the section “Repeated Measures Analysis of Variance” on page 3493 in Chapter 45, “The GLM Procedure.”

The REPEATED statement is typically used for handling repeated measures designs with one repeated
response variable. Usually, the variables on the left-hand side of the equation in the MODEL statement
represent one repeated response variable.

This does not mean that only one factor can be listed in the REPEATED statement. For example, one
repeated response variable (hemoglobin count) might be measured 12 times (implying variables Y1 to Y12
on the left-hand side of the equal sign in the MODEL statement), with the associated within-subject factors
treatment and time (implying two factors listed in the REPEATED statement). See the section “Examples”
on page 972 for an example of how PROC ANOVA handles this case.

Designs with two or more repeated response variables can, however, be handled with the IDENTITY
transformation; see Example 45.9 in Chapter 45, “The GLM Procedure,” for an example of analyzing a
doubly-multivariate repeated measures design.

When a REPEATED statement appears, the ANOVA procedure enters a multivariate mode of handling
missing values. If any values for variables corresponding to each combination of the within-subject factors
are missing, the observation is excluded from the analysis.

The simplest form of the REPEATED statement requires only a factor-name. With two repeated factors, you
must specify the factor-name and number of levels (levels) for each factor. Optionally, you can specify the
actual values for the levels (level-values), a transformation that defines single-degree-of freedom contrasts,
and options for additional analyses and output. When more than one within-subject factor is specified,
factor-names (and associated level and transformation information) must be separated by a comma in the
REPEATED statement. These terms are described in the following section, “Syntax Details.”

Syntax Details

Table 26.5 summarizes the options available in the REPEATED statement.

Table 26.5 PROC REPEATED Statement Options

Option Description

CANONICAL Performs a canonical analysis of the H and E matrices
MSTAT=FAPPROX Specifies the method of evaluating the multivariate test statistics
NOM Displays only the results of the univariate analyses
NOU Displays only the results of the multivariate analyses
PRINTE Displays the E matrix
PRINTH Displays the H (SSCP) matrix
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Table 26.5 continued

Option Description

PRINTM Displays the transformation matrices that define the contrasts
PRINTRV Produces the characteristic roots and vectors
SUMMARY Produces analysis-of-variance tables for each contrast
UEPSDEF= Specifies the univariate F test adjustment

You can specify the following terms in the REPEATED statement.

factor-specification

The factor-specification for the REPEATED statement can include any number of individual factor
specifications, separated by commas, of the following form:

factor-name levels < (level-values) > < transformation >

where

factor-name names a factor to be associated with the dependent variables. The name should not
be the same as any variable name that already exists in the data set being analyzed
and should conform to the usual conventions of SAS variable names.

When specifying more than one factor, list the dependent variables in the MODEL
statement so that the within-subject factors defined in the REPEATED statement
are nested; that is, the first factor defined in the REPEATED statement should be
the one with values that change least frequently.

levels specifies the number of levels associated with the factor being defined. When there
is only one within-subject factor, the number of levels is equal to the number of
dependent variables. In this case, levels is optional. When more than one within-
subject factor is defined, however, levels is required, and the product of the number
of levels of all the factors must equal the number of dependent variables in the
MODEL statement.

(level-values) specifies values that correspond to levels of a repeated-measures factor. These
values are used to label output; they are also used as spacings for constructing
orthogonal polynomial contrasts if you specify a POLYNOMIAL transformation.
The number of level values specified must correspond to the number of levels for
that factor in the REPEATED statement. Enclose the level-values in parentheses.

The following transformation keywords define single-degree-of-freedom contrasts for factors specified
in the REPEATED statement. Since the number of contrasts generated is always one less than the
number of levels of the factor, you have some control over which contrast is omitted from the analysis
by which transformation you select. The only exception is the IDENTITY transformation; this
transformation is not composed of contrasts, and it has the same degrees of freedom as the factor has
levels. By default, the procedure uses the CONTRAST transformation.
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CONTRAST< (ordinal-reference-level) >

generates contrasts between levels of the factor and a reference level. By default, the proce-
dure uses the last level; you can optionally specify a reference level in parentheses after the keyword
CONTRAST. The reference level corresponds to the ordinal value of the level rather than the level
value specified. For example, to generate contrasts between the first level of a factor and the other
levels, use

contrast(1)

HELMERT
generates contrasts between each level of the factor and the mean of subsequent levels.

IDENTITY
generates an identity transformation corresponding to the associated factor. This transformation is not
composed of contrasts; it has n degrees of freedom for an n-level factor, instead of n – 1. This can be
used for doubly-multivariate repeated measures.

MEAN< (ordinal-reference-level) >

generates contrasts between levels of the factor and the mean of all other levels of the factor.
Specifying a reference level eliminates the contrast between that level and the mean. Without a
reference level, the contrast involving the last level is omitted. See the CONTRAST transformation for
an example.

POLYNOMIAL
generates orthogonal polynomial contrasts. Level values, if provided, are used as spacings in the
construction of the polynomials; otherwise, equal spacing is assumed.

PROFILE
generates contrasts between adjacent levels of the factor.

For examples of the transformation matrices generated by these contrast transformations, see the section
“Repeated Measures Analysis of Variance” on page 3493 in Chapter 45, “The GLM Procedure.”

You can specify the following options in the REPEATED statement after a slash:

CANONICAL
performs a canonical analysis of the H and E matrices corresponding to the transformed variables
specified in the REPEATED statement.

MSTAT=FAPPROX | EXACT
specifies the method of evaluating the multivariate test statistics. The default is MSTAT=FAPPROX,
which specifies that the multivariate tests are evaluated by using the usual approximations based on
the F distribution, as discussed in the “Multivariate Tests” section in Chapter 4, “Introduction to
Regression Procedures.” Alternatively, you can specify MSTAT=EXACT to compute exact p-values
for three of the four tests (Wilks’ lambda, the Hotelling-Lawley trace, and Roy’s greatest root) and
an improved F-approximation for the fourth (Pillai’s trace). While MSTAT=EXACT provides better
control of the significance probability for the tests, especially for Roy’s Greatest Root, computations
for the exact p-values can be appreciably more demanding, and are in fact infeasible for large problems
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(many dependent variables). Thus, although MSTAT=EXACT is more accurate for most data, it is
not the default method. For more information about the results of MSTAT=EXACT, see the section
“Multivariate Analysis of Variance” on page 3492 in Chapter 45, “The GLM Procedure.”

NOM
displays only the results of the univariate analyses.

NOU
displays only the results of the multivariate analyses.

PRINTE
displays the E matrix for each combination of within-subject factors, as well as partial correlation
matrices for both the original dependent variables and the variables defined by the transformations
specified in the REPEATED statement. In addition, the PRINTE option provides sphericity tests for
each set of transformed variables. If the requested transformations are not orthogonal, the PRINTE
option also provides a sphericity test for a set of orthogonal contrasts.

PRINTH
displays the H (SSCP) matrix associated with each multivariate test.

PRINTM
displays the transformation matrices that define the contrasts in the analysis. PROC ANOVA always
displays the M matrix so that the transformed variables are defined by the rows, not the columns, of
the displayed M matrix. In other words, PROC ANOVA actually displays M0.

PRINTRV
produces the characteristic roots and vectors for each multivariate test.

SUMMARY
produces analysis-of-variance tables for each contrast defined by the within-subjects factors. Along
with tests for the effects of the independent variables specified in the MODEL statement, a term labeled
MEAN tests the hypothesis that the overall mean of the contrast is zero.

UEPSDEF=unbiased-epsilon-definition
specifies the type of adjustment for the univariate F test that is displayed in addition to the Greenhouse-
Geisser adjustment. The default is UEPSDEF=HFL, corresponding to the corrected form of the Huynh-
Feldt adjustment (Huynh and Feldt 1976; Lecoutre 1991). Other alternatives are UEPSDEF=HF, the
uncorrected Huynh-Feldt adjustment (the only available method in previous releases of SAS/STAT
software), and UEPSDEF=CM, the adjustment of Chi et al. (2012). See the section “Hypothesis
Testing in Repeated Measures Analysis” on page 3496 in Chapter 45, “The GLM Procedure,” for
details about these adjustments.

Examples

When specifying more than one factor, list the dependent variables in the MODEL statement so that the
within-subject factors defined in the REPEATED statement are nested; that is, the first factor defined in the
REPEATED statement should be the one with values that change least frequently. For example, assume that
three treatments are administered at each of four times, for a total of twelve dependent variables on each
experimental unit. If the variables are listed in the MODEL statement as Y1 through Y12, then the following
REPEATED statement
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repeated trt 3, time 4;

implies the following structure:

Dependent Variables
Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12

Value of trt 1 1 1 1 2 2 2 2 3 3 3 3

Value of time 1 2 3 4 1 2 3 4 1 2 3 4

The REPEATED statement always produces a table like the preceding one.

For more information about repeated measures analysis and about using the REPEATED statement, see the
section “Repeated Measures Analysis of Variance” on page 3493 in Chapter 45, “The GLM Procedure.”

TEST Statement
TEST < H= effects > E= effect ;

Although an F value is computed for all SS in the analysis by using the residual MS as an error term, you
can request additional F tests that use other effects as error terms. You need a TEST statement when a
nonstandard error structure (as in a split plot) exists.

CAUTION: The ANOVA procedure does not check any of the assumptions underlying the F statistic. When
you specify a TEST statement, you assume sole responsibility for the validity of the F statistic produced. To
help validate a test, you might want to use the GLM procedure with the RANDOM statement and inspect
the expected mean squares. In the GLM procedure, you can also use the TEST option in the RANDOM
statement.

You can use as many TEST statements as you want, provided that they appear after the MODEL statement.

You can specify the following terms in the TEST statement.

H=effects
specifies which effects in the preceding model are to be used as hypothesis (numerator) effects.

E=effect
specifies one, and only one, effect to use as the error (denominator) term. The E= specification is
required.

The following example uses two TEST statements and is appropriate for analyzing a split-plot design.

proc anova;
class a b c;
model y=a|b(a)|c;
test h=a e=b(a);
test h=c a*c e=b*c(a);

run;
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Details: ANOVA Procedure

Specification of Effects
In SAS analysis-of-variance procedures, the variables that identify levels of the classifications are called
classification variables, and they are declared in the CLASS statement. Classification variables are also
called categorical, qualitative, discrete, or nominal variables. The values of a classification variable are
called levels. Classification variables can be either numeric or character. This is in contrast to the response
(or dependent) variables, which are continuous. Response variables must be numeric.

The analysis-of-variance model specifies effects, which are combinations of classification variables used to
explain the variability of the dependent variables in the following manner:

• Main effects are specified by writing the variables by themselves in the CLASS statement: A B C.
Main effects used as independent variables test the hypothesis that the mean of the dependent variable
is the same for each level of the factor in question, ignoring the other independent variables in the
model.

• Crossed effects (interactions) are specified by joining the CLASS variables with asterisks in the
MODEL statement: A*B A*C A*B*C. Interaction terms in a model test the hypothesis that the effect
of a factor does not depend on the levels of the other factors in the interaction.

• Nested effects are specified by following a main effect or crossed effect with a CLASS variable or list
of CLASS variables enclosed in parentheses in the MODEL statement. The main effect or crossed
effect is nested within the effects listed in parentheses: B(A) C*D(A B). Nested effects test hypotheses
similar to interactions, but the levels of the nested variables are not the same for every combination
within which they are nested.

The general form of an effect can be illustrated by using the CLASS variables A, B, C, D, E, and F:

A � B � C.D E F/

The crossed list should come first, followed by the nested list in parentheses. Note that no asterisks appear
within the nested list or immediately before the left parenthesis.

Main Effects Models

For a three-factor main effects model with A, B, and C as the factors and Y as the dependent variable, the
necessary statements are

proc anova;
class A B C;
model Y=A B C;

run;
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Models with Crossed Factors

To specify interactions in a factorial model, join effects with asterisks as described previously. For example,
these statements specify a complete factorial model, which includes all the interactions:

proc anova;
class A B C;
model Y=A B C A*B A*C B*C A*B*C;

run;

Bar Notation

You can shorten the specifications of a full factorial model by using bar notation. For example, the preceding
statements can also be written

proc anova;
class A B C;
model Y=A|B|C;

run;

When the bar (|) is used, the expression on the right side of the equal sign is expanded from left to right by
using the equivalents of rules 2–4 given in Searle (1971, p. 390). The variables on the right- and left-hand
sides of the bar become effects, and the cross of them becomes an effect. Multiple bars are permitted. For
instance, A | B | C is evaluated as follows:

A | B | C ! f A | B g | C

! f A B A*B g | C

! A B A*B C A*C B*C A*B*C

You can also specify the maximum number of variables involved in any effect that results from bar evaluation
by specifying that maximum number, preceded by an @ sign, at the end of the bar effect. For example,
the specification A | B | C@2 results in only those effects that contain two or fewer variables; in this case,
A B A*B C A*C and B*C.

The following table gives more examples of using the bar and at operators.

A | C(B) is equivalent to A C(B) A*C(B)
A(B) | C(B) is equivalent to A(B) C(B) A*C(B)
A(B) | B(D E) is equivalent to A(B) B(D E)
A | B(A) | C is equivalent to A B(A) C A*C B*C(A)
A | B(A) | C@2 is equivalent to A B(A) C A*C
A | B | C | D@2 is equivalent to A B A*B C A*C B*C D A*D B*D C*D

Consult the section “Specification of Effects” on page 3453 in Chapter 45, “The GLM Procedure,” for further
details on bar notation.
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Nested Models

Write the effect that is nested within another effect first, followed by the other effect in parentheses. For
example, if A and B are main effects and C is nested within A and B (that is, the levels of C that are observed
are not the same for each combination of A and B), the statements for PROC ANOVA are

proc anova;
class A B C;
model y=A B C(A B);

run;

The identity of a level is viewed within the context of the level of the containing effects. For example, if City
is nested within State, then the identity of City is viewed within the context of State.

The distinguishing feature of a nested specification is that nested effects never appear as main effects. Another
way of viewing nested effects is that they are effects that pool the main effect with the interaction of the
nesting variable.

See the “Automatic Pooling” section, which follows.

Models Involving Nested, Crossed, and Main Effects

Asterisks and parentheses can be combined in the MODEL statement for models involving nested and crossed
effects:

proc anova;
class A B C;
model Y=A B(A) C(A) B*C(A);

run;

Automatic Pooling

In line with the general philosophy of the GLM procedure, there is no difference between the statements

model Y=A B(A);

and

model Y=A A*B;

The effect B becomes a nested effect by virtue of the fact that it does not occur as a main effect. If B is not
written as a main effect in addition to participating in A*B, then the sum of squares that is associated with B
is pooled into A*B.

This feature allows the automatic pooling of sums of squares. If an effect is omitted from the model, it is
automatically pooled with all the higher-level effects containing the CLASS variables in the omitted effect
(or within-error). This feature is most useful in split-plot designs.

Using PROC ANOVA Interactively
PROC ANOVA can be used interactively. After you specify a model in a MODEL statement and run
PROC ANOVA with a RUN statement, a variety of statements (such as MEANS, MANOVA, TEST, and
REPEATED) can be executed without PROC ANOVA recalculating the model sum of squares.
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The section “Syntax: ANOVA Procedure” on page 954 describes which statements can be used interactively.
You can execute these interactive statements individually or in groups by following the single statement or
group of statements with a RUN statement. Note that the MODEL statement cannot be repeated; the ANOVA
procedure allows only one MODEL statement.

If you use PROC ANOVA interactively, you can end the procedure with a DATA step, another PROC step, an
ENDSAS statement, or a QUIT statement. The syntax of the QUIT statement is

quit;

When you use PROC ANOVA interactively, additional RUN statements do not end the procedure but tell
PROC ANOVA to execute additional statements.

When a WHERE statement is used with PROC ANOVA, it should appear before the first RUN statement.
The WHERE statement enables you to select only certain observations for analysis without using a subsetting
DATA step. For example, the statement where group ne 5 omits observations with GROUP=5 from the
analysis. See SAS Statements: Reference for details about this statement.

When a BY statement is used with PROC ANOVA, interactive processing is not possible; that is, once the
first RUN statement is encountered, processing proceeds for each BY group in the data set, and no further
statements are accepted by the procedure.

Interactivity is also disabled when there are different patterns of missing values among the dependent
variables. For details, see the section “Missing Values,” which follows.

Missing Values
For an analysis involving one dependent variable, PROC ANOVA uses an observation if values are nonmissing
for that dependent variable and for all the variables used in independent effects.

For an analysis involving multiple dependent variables without the MANOVA or REPEATED statement, or
without the MANOVA option in the PROC ANOVA statement, a missing value in one dependent variable
does not eliminate the observation from the analysis of other nonmissing dependent variables. For an analysis
with the MANOVA or REPEATED statement, or with the MANOVA option in the PROC ANOVA statement,
the ANOVA procedure requires values for all dependent variables to be nonmissing for an observation before
the observation can be used in the analysis.

During processing, PROC ANOVA groups the dependent variables by their pattern of missing values across
observations so that sums and cross products can be collected in the most efficient manner.

If your data have different patterns of missing values among the dependent variables, interactivity is disabled.
This could occur when some of the variables in your data set have missing values and either of the following
conditions obtain:

• You do not use the MANOVA option in the PROC ANOVA statement.

• You do not use a MANOVA or REPEATED statement before the first RUN statement.

Output Data Set
The OUTSTAT= option in the PROC ANOVA statement produces an output data set that contains the
following:
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• the BY variables, if any

• _TYPE_, a new character variable. This variable has the value ‘ANOVA’ for observations corresponding
to sums of squares; it has the value ‘CANCORR’, ‘STRUCTUR’, or ‘SCORE’ if a canonical analysis
is performed through the MANOVA statement and no M= matrix is specified.

• _SOURCE_, a new character variable. For each observation in the data set, _SOURCE_ contains the
name of the model effect from which the corresponding statistics are generated.

• _NAME_, a new character variable. The variable _NAME_ contains the name of one of the dependent
variables in the model or, in the case of canonical statistics, the name of one of the canonical variables
(CAN1, CAN2, and so on).

• four new numeric variables, SS, DF, F, and PROB, containing sums of squares, degrees of freedom,
F values, and probabilities, respectively, for each model or contrast sum of squares generated in the
analysis. For observations resulting from canonical analyses, these variables have missing values.

• if there is more than one dependent variable, then variables with the same names as the dependent
variables represent

– for _TYPE_=‘ANOVA’, the crossproducts of the hypothesis matrices

– for _TYPE_=‘CANCORR’, canonical correlations for each variable

– for _TYPE_=‘STRUCTUR’, coefficients of the total structure matrix

– for _TYPE_=‘SCORE’, raw canonical score coefficients

The output data set can be used to perform special hypothesis tests (for example, with the IML procedure in
SAS/IML software), to reformat output, to produce canonical variates (through the SCORE procedure), or to
rotate structure matrices (through the FACTOR procedure).

Computational Method
Let X represent the n�p design matrix. The columns of X contain only 0s and 1s. Let Y represent the n� 1
vector of dependent variables.

In the GLM procedure, X0X, X0Y, and Y0Y are formed in main storage. However, in the ANOVA procedure,
only the diagonals of X0X are computed, along with X0Y and Y0Y. Thus, PROC ANOVA saves a considerable
amount of storage as well as time. The memory requirements for PROC ANOVA are asymptotically linear
functions of n2 and nr , where n is the number of dependent variables and r the number of independent
parameters.

The elements of X0Y are cell totals, and the diagonal elements of X0X are cell frequencies. Since PROC
ANOVA automatically pools omitted effects into the next higher-level effect containing the names of the
omitted effect (or within-error), a slight modification to the rules given by Searle (1971, p. 389) is used.

1. PROC ANOVA computes the sum of squares for each effect as if it is a main effect. In other words, for
each effect, PROC ANOVA squares each cell total and divides by its cell frequency. The procedure
then adds these quantities together and subtracts the correction factor for the mean (total squared over
N).
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2. For each effect involving two CLASS variable names, PROC ANOVA subtracts the SS for any main
effect with a name that is contained in the two-factor effect.

3. For each effect involving three CLASS variable names, PROC ANOVA subtracts the SS for all main
effects and two-factor effects with names that are contained in the three-factor effect. If effects
involving four or more CLASS variable names are present, the procedure continues this process.

Displayed Output
PROC ANOVA first displays a table that includes the following:

• the name of each variable in the CLASS statement

• the number of different values or Levels of the CLASS variables

• the Values of the CLASS variables

• the Number of observations in the data set and the number of observations excluded from the analysis
because of missing values, if any

PROC ANOVA then displays an analysis-of-variance table for each dependent variable in the MODEL
statement. This table breaks down the Total Sum of Squares for the dependent variable into the portion
attributed to the Model and the portion attributed to Error. It also breaks down the Mean Square term, which
is the Sum of Squares divided by the degrees of freedom (DF). The analysis-of-variance table also lists the
following:

• the Mean Square for Error (MSE), which is an estimate of �2, the variance of the true errors

• the F Value, which is the ratio produced by dividing the Mean Square for the Model by the Mean
Square for Error. It tests how well the model as a whole (adjusted for the mean) accounts for the
dependent variable’s behavior. This F test is a test of the null hypothesis that all parameters except the
intercept are zero.

• the significance probability associated with the F statistic, labeled “Pr > F”

• R-Square, R2, which measures how much variation in the dependent variable can be accounted for by
the model. The R square statistic, which can range from 0 to 1, is the ratio of the sum of squares for
the model divided by the sum of squares for the corrected total. In general, the larger the R square
value, the better the model fits the data.

• C.V., the coefficient of variation, which is often used to describe the amount of variation in the
population. The C.V. is 100 times the standard deviation of the dependent variable divided by the
Mean. The coefficient of variation is often a preferred measure because it is unitless.

• Root MSE, which estimates the standard deviation of the dependent variable. Root MSE is computed
as the square root of Mean Square for Error, the mean square of the error term.

• the Mean of the dependent variable
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For each effect (or source of variation) in the model, PROC ANOVA then displays the following:

• DF, degrees of freedom

• Anova SS, the sum of squares, and the associated Mean Square

• the F Value for testing the hypothesis that the group means for that effect are equal

• Pr > F, the significance probability value associated with the F Value

When you specify a TEST statement, PROC ANOVA displays the results of the requested tests. When you
specify a MANOVA statement and the model includes more than one dependent variable, PROC ANOVA
produces these additional statistics:

• the characteristic roots and vectors of E�1H for each H matrix

• the Hotelling-Lawley trace

• Pillai’s trace

• Wilks’ lambda

• Roy’s greatest root

See Example 45.6 in Chapter 45, “The GLM Procedure,” for an example of the MANOVA results. These
MANOVA tests are discussed in Chapter 4, “Introduction to Regression Procedures.”

ODS Table Names
PROC ANOVA assigns a name to each table it creates. You can use these names to reference the table when
using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed
in Table 26.6. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

Table 26.6 ODS Tables Produced by PROC ANOVA
ODS Table Name Description Statement / Option
AltErrTests Anova tests with error other than

MSE
TEST E=

Bartlett Bartlett’s homogeneity of vari-
ance test

MEANS / HOVTEST=BARTLETT

CLDiffs Multiple comparisons of pairwise
differences

MEANS / CLDIFF or DUNNETT or (Un-
equal cells and not LINES)

CLDiffsInfo Information for multiple compar-
isons of pairwise differences

MEANS / CLDIFF or DUNNETT or (Un-
equal cells and not LINES)

CLMeans Multiple comparisons of means
with confidence/comparison
interval

MEANS / CLM with (BON or GABRIEL
or SCHEFFE or SIDAK or SMM or T or
LSD)
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Table 26.6 continued
ODS Table Name Description Statement / Option
CLMeansInfo Information for multiple com-

parisons of means with confi-
dence/comparison interval

MEANS / CLM

CanAnalysis Canonical analysis (MANOVA or REPEATED) /
CANONICAL

CanCoef Canonical coefficients (MANOVA or REPEATED) /
CANONICAL

CanStructure Canonical structure (MANOVA or REPEATED) /
CANONICAL

CharStruct Characteristic roots and vectors (MANOVA / not CANONICAL)
or (REPEATED / PRINTRV)

ClassLevels Classification variable levels CLASS statement
DependentInfo Simultaneously analyzed depen-

dent variables
default when there are multiple dependent
variables with different patterns of missing
values

Epsilons Greenhouse-Geisser and Huynh-
Feldt epsilons

REPEATED statement

ErrorSSCP Error SSCP matrix (MANOVA or REPEATED) / PRINTE
FitStatistics R-Square, C.V., Root MSE, and

dependent mean
default

HOVFTest Homogeneity of variance
ANOVA

MEANS / HOVTEST

HypothesisSSCP Hypothesis SSCP matrix (MANOVA or REPEATED) / PRINTE
MANOVATransform Multivariate transformation ma-

trix
MANOVA / M=

MCLines Multiple comparisons LINES out-
put

MEANS / LINES or
((DUNCAN or WALLER or SNK or
REGWQ) and not (CLDIFF or CLM)) or
(Equal cells and not CLDIFF)

MCLinesInfo Information for multiple compari-
son LINES output

MEANS / LINES or
((DUNCAN or WALLER or SNK or
REGWQ) and not (CLDIFF or CLM)) or
(Equal cells and not CLDIFF)

MCLinesRange Ranges for multiple range MC
tests

MEANS / LINES or
((DUNCAN or WALLER or SNK or
REGWQ) and not (CLDIFF or CLM)) or
(Equal cells and not CLDIFF)

Means Group means MEANS statement
ModelANOVA ANOVA for model terms default
MultStat Multivariate tests MANOVA statement
NObs Number of observations default
OverallANOVA Over-all ANOVA default
PartialCorr Partial correlation matrix (MANOVA or REPEATED) / PRINTE
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Table 26.6 continued
ODS Table Name Description Statement / Option
RepeatedTransform Repeated transformation matrix REPEATED (CONTRAST or

HELMERT or MEAN or
POLYNOMIAL or PROFILE)

RepeatedLevelInfo Correspondence between depen-
dents and repeated measures lev-
els

REPEATED statement

Sphericity Sphericity tests REPEATED / PRINTE
Tests Summary ANOVA for specified

MANOVA H= effects
MANOVA / H= SUMMARY

Welch Welch’s ANOVA MEANS / WELCH

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

When ODS Graphics is enabled, if you specify a one-way analysis of variance model, with just one
independent classification variable, or if you use a MEANS statement, then the ANOVA procedure will
produce a grouped box plot of the response values versus the classification levels. For an example of the box
plot, see the section “One-Way Layout with Means Comparisons” on page 946.

ODS Graph Names

PROC ANOVA produces a single graph, the name of which you can use for referencing it in ODS. The name
is listed in Table 26.7.

Table 26.7 ODS Graphic Produced by PROC ANOVA
ODS Graph Name Plot Description
BoxPlot Box plot of observed response values

by classification levels
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Examples: ANOVA Procedure

Example 26.1: Randomized Complete Block With Factorial Treatment
Structure

This example uses statements for the analysis of a randomized block with two treatment factors occurring in
a factorial structure. The data, from Neter, Wasserman, and Kutner (1990, p. 941), are from an experiment
examining the effects of codeine and acupuncture on post-operative dental pain in male subjects. Both
treatment factors have two levels. The codeine levels are a codeine capsule or a sugar capsule. The
acupuncture levels are two inactive acupuncture points or two active acupuncture points. There are four
distinct treatment combinations due to the factorial treatment structure. The 32 subjects are assigned to eight
blocks of four subjects each based on an assessment of pain tolerance.

The data for the analysis are balanced, so PROC ANOVA is used. The data are as follows:

title1 'Randomized Complete Block With Two Factors';
data PainRelief;

input PainLevel Codeine Acupuncture Relief @@;
datalines;

1 1 1 0.0 1 2 1 0.5 1 1 2 0.6 1 2 2 1.2
2 1 1 0.3 2 2 1 0.6 2 1 2 0.7 2 2 2 1.3
3 1 1 0.4 3 2 1 0.8 3 1 2 0.8 3 2 2 1.6
4 1 1 0.4 4 2 1 0.7 4 1 2 0.9 4 2 2 1.5
5 1 1 0.6 5 2 1 1.0 5 1 2 1.5 5 2 2 1.9
6 1 1 0.9 6 2 1 1.4 6 1 2 1.6 6 2 2 2.3
7 1 1 1.0 7 2 1 1.8 7 1 2 1.7 7 2 2 2.1
8 1 1 1.2 8 2 1 1.7 8 1 2 1.6 8 2 2 2.4
;

The variable PainLevel is the blocking variable, and Codeine and Acupuncture represent the levels of the two
treatment factors. The variable Relief is the pain relief score (the higher the score, the more relief the patient
has).

The following statements invokes PROC ANOVA. The blocking variable and treatment factors appear in the
CLASS statement. The bar between the treatment factors Codeine and Acupuncture adds their main effects
as well as their interaction Codeine*Acupuncture to the model.

proc anova data=PainRelief;
class PainLevel Codeine Acupuncture;
model Relief = PainLevel Codeine|Acupuncture;

run;

The results from the analysis are shown in Output 26.1.1, Output 26.1.2, and Output 26.1.3.
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Output 26.1.1 Class Level Information

Randomized Complete Block With Two Factors

The ANOVA Procedure

Randomized Complete Block With Two Factors

The ANOVA Procedure

Class Level Information

Class Levels Values

PainLevel 8 1 2 3 4 5 6 7 8

Codeine 2 1 2

Acupuncture 2 1 2

Number of Observations Read 32

Number of Observations Used 32

Output 26.1.2 ANOVA Table

Randomized Complete Block With Two Factors

The ANOVA Procedure

Dependent Variable: Relief

Randomized Complete Block With Two Factors

The ANOVA Procedure

Dependent Variable: Relief

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 10 11.33500000 1.13350000 78.37 <.0001

Error 21 0.30375000 0.01446429

Corrected Total 31 11.63875000

R-Square Coeff Var Root MSE Relief Mean

0.973902 10.40152 0.120268 1.156250

The Class Level Information and ANOVA table are shown in Output 26.1.1 and Output 26.1.2. The
classification level information summarizes the structure of the design. It is good to check these consistently
in search of errors in the DATA step. The overall F test is significant, indicating that the model accounts for a
significant amount of variation in the dependent variable.

Output 26.1.3 Tests of Effects

Source DF Anova SS Mean Square F Value Pr > F

PainLevel 7 5.59875000 0.79982143 55.30 <.0001

Codeine 1 2.31125000 2.31125000 159.79 <.0001

Acupuncture 1 3.38000000 3.38000000 233.68 <.0001

Codeine*Acupuncture 1 0.04500000 0.04500000 3.11 0.0923

Output 26.1.3 shows tests of the effects. The blocking effect is significant; hence, it is useful. The interaction
between codeine and acupuncture is significant at the 90% level but not at the 95% level. The significance
level of this test should be determined before the analysis. The main effects of both treatment factors are
highly significant.
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Example 26.2: Alternative Multiple Comparison Procedures
The following is a continuation of the first example in the section “One-Way Layout with Means Comparisons”
on page 946. You are studying the effect of bacteria on the nitrogen content of red clover plants, and the
analysis of variance shows a highly significant effect. The following statements create the data set and
compute the analysis of variance as well as Tukey’s multiple comparisons test for pairwise differences
between bacteria strains; the results are shown in Figure 26.1, Figure 26.2, and Figure 26.3

title1 'Nitrogen Content of Red Clover Plants';
data Clover;

input Strain $ Nitrogen @@;
datalines;

3DOK1 19.4 3DOK1 32.6 3DOK1 27.0 3DOK1 32.1 3DOK1 33.0
3DOK5 17.7 3DOK5 24.8 3DOK5 27.9 3DOK5 25.2 3DOK5 24.3
3DOK4 17.0 3DOK4 19.4 3DOK4 9.1 3DOK4 11.9 3DOK4 15.8
3DOK7 20.7 3DOK7 21.0 3DOK7 20.5 3DOK7 18.8 3DOK7 18.6
3DOK13 14.3 3DOK13 14.4 3DOK13 11.8 3DOK13 11.6 3DOK13 14.2
COMPOS 17.3 COMPOS 19.4 COMPOS 19.1 COMPOS 16.9 COMPOS 20.8
;

proc anova data=Clover;
class Strain;
model Nitrogen = Strain;
means Strain / tukey;

run;

The interactivity of PROC ANOVA enables you to submit further MEANS statements without re-running
the entire analysis. For example, the following command requests means of the Strain levels with Duncan’s
multiple range test and the Waller-Duncan k-ratio t test.

means Strain / duncan waller;
run;

Results of the Waller-Duncan k-ratio t test are shown in Output 26.2.1.

Output 26.2.1 Waller-Duncan K-ratio t Test

Nitrogen Content of Red Clover Plants

The ANOVA Procedure

Waller-Duncan K-ratio t Test for Nitrogen

Nitrogen Content of Red Clover Plants

The ANOVA Procedure

Waller-Duncan K-ratio t Test for Nitrogen

Kratio 100

Error Degrees of Freedom 24

Error Mean Square 11.78867

F Value 14.37

Critical Value of t 1.91873

Minimum Significant Difference 4.1665
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Output 26.2.1 continued

Means with the same letter are not
significantly different.

Waller Grouping Mean N Strain

A 28.820 5 3DOK1

B 23.980 5 3DOK5

B

C B 19.920 5 3DOK7

C

C D 18.700 5 COMPOS

D

E D 14.640 5 3DOK4

E

E 13.260 5 3DOK13

The Waller-Duncan k-ratio t test is a multiple range test. Unlike Tukey’s test, this test does not operate on
the principle of controlling Type I error. Instead, it compares the Type I and Type II error rates based on
Bayesian principles (Steel and Torrie 1980).

The Waller Grouping column in Output 26.2.1 shows which means are significantly different. From this test,
you can conclude the following:

• The mean nitrogen content for strain 3DOK1 is higher than the means for all other strains.

• The mean nitrogen content for strain 3DOK5 is higher than the means for COMPOS, 3DOK4, and
3DOK13.

• The mean nitrogen content for strain 3DOK7 is higher than the means for 3DOK4 and 3DOK13.

• The mean nitrogen content for strain COMPOS is higher than the mean for 3DOK13.

• Differences between all other means are not significant based on this sample size.

Output 26.2.2 shows the results of Duncan’s multiple range test. Duncan’s test is a result-guided test that
compares the treatment means while controlling the comparison-wise error rate. You should use this test for
planned comparisons only (Steel and Torrie 1980). The results and conclusions for this example are the same
as for the Waller-Duncan k-ratio t test. This is not always the case.
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Output 26.2.2 Duncan’s Multiple Range Test

Alpha 0.05

Error Degrees of Freedom 24

Error Mean Square 11.78867

Number of Means 2 3 4 5 6

Critical Range 4.482 4.707 4.852 4.954 5.031

Means with the same letter are not
significantly different.

Duncan Grouping Mean N Strain

A 28.820 5 3DOK1

B 23.980 5 3DOK5

B

C B 19.920 5 3DOK7

C

C D 18.700 5 COMPOS

D

E D 14.640 5 3DOK4

E

E 13.260 5 3DOK13

Tukey and Least Significant Difference (LSD) tests are requested with the following MEANS statement. The
CLDIFF option requests confidence intervals for both tests.

means Strain/ lsd tukey cldiff ;
run;

The LSD tests for this example are shown in Output 26.2.3, and they give the same results as the previous
two multiple comparison tests. Again, this is not always the case.

Output 26.2.3 T Tests (LSD)

Nitrogen Content of Red Clover Plants

The ANOVA Procedure

t Tests (LSD) for Nitrogen

Nitrogen Content of Red Clover Plants

The ANOVA Procedure

t Tests (LSD) for Nitrogen

Alpha 0.05

Error Degrees of Freedom 24

Error Mean Square 11.78867

Critical Value of t 2.06390

Least Significant Difference 4.4818



988 F Chapter 26: The ANOVA Procedure

Output 26.2.3 continued

Comparisons significant at the 0.05 level are
indicated by ***.

Strain
Comparison

Difference
Between

Means

95%
Confidence

Limits

3DOK1  - 3DOK5 4.840 0.358 9.322 ***

3DOK1  - 3DOK7 8.900 4.418 13.382 ***

3DOK1  - COMPOS 10.120 5.638 14.602 ***

3DOK1  - 3DOK4 14.180 9.698 18.662 ***

3DOK1  - 3DOK13 15.560 11.078 20.042 ***

3DOK5  - 3DOK1 -4.840 -9.322 -0.358 ***

3DOK5  - 3DOK7 4.060 -0.422 8.542

3DOK5  - COMPOS 5.280 0.798 9.762 ***

3DOK5  - 3DOK4 9.340 4.858 13.822 ***

3DOK5  - 3DOK13 10.720 6.238 15.202 ***

3DOK7  - 3DOK1 -8.900 -13.382 -4.418 ***

3DOK7  - 3DOK5 -4.060 -8.542 0.422

3DOK7  - COMPOS 1.220 -3.262 5.702

3DOK7  - 3DOK4 5.280 0.798 9.762 ***

3DOK7  - 3DOK13 6.660 2.178 11.142 ***

COMPOS - 3DOK1 -10.120 -14.602 -5.638 ***

COMPOS - 3DOK5 -5.280 -9.762 -0.798 ***

COMPOS - 3DOK7 -1.220 -5.702 3.262

COMPOS - 3DOK4 4.060 -0.422 8.542

COMPOS - 3DOK13 5.440 0.958 9.922 ***

3DOK4  - 3DOK1 -14.180 -18.662 -9.698 ***

3DOK4  - 3DOK5 -9.340 -13.822 -4.858 ***

3DOK4  - 3DOK7 -5.280 -9.762 -0.798 ***

3DOK4  - COMPOS -4.060 -8.542 0.422

3DOK4  - 3DOK13 1.380 -3.102 5.862

3DOK13 - 3DOK1 -15.560 -20.042 -11.078 ***

3DOK13 - 3DOK5 -10.720 -15.202 -6.238 ***

3DOK13 - 3DOK7 -6.660 -11.142 -2.178 ***

3DOK13 - COMPOS -5.440 -9.922 -0.958 ***

3DOK13 - 3DOK4 -1.380 -5.862 3.102

If you only perform the LSD tests when the overall model F test is significant, then this is called Fisher’s
protected LSD test. Note that the LSD tests should be used for planned comparisons.

The TUKEY tests shown in Output 26.2.4 find fewer significant differences than the other three tests. This is
not unexpected, as the TUKEY test controls the Type I experimentwise error rate. For a complete discussion
of multiple comparison methods, see the section “Multiple Comparisons” on page 3475 in Chapter 45, “The
GLM Procedure.”
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Output 26.2.4 Tukey’s Studentized Range Test

Alpha 0.05

Error Degrees of Freedom 24

Error Mean Square 11.78867

Critical Value of Studentized Range 4.37265

Minimum Significant Difference 6.7142

Comparisons significant at the 0.05 level are
indicated by ***.

Strain
Comparison

Difference
Between

Means

Simultaneous
95%

Confidence
Limits

3DOK1  - 3DOK5 4.840 -1.874 11.554

3DOK1  - 3DOK7 8.900 2.186 15.614 ***

3DOK1  - COMPOS 10.120 3.406 16.834 ***

3DOK1  - 3DOK4 14.180 7.466 20.894 ***

3DOK1  - 3DOK13 15.560 8.846 22.274 ***

3DOK5  - 3DOK1 -4.840 -11.554 1.874

3DOK5  - 3DOK7 4.060 -2.654 10.774

3DOK5  - COMPOS 5.280 -1.434 11.994

3DOK5  - 3DOK4 9.340 2.626 16.054 ***

3DOK5  - 3DOK13 10.720 4.006 17.434 ***

3DOK7  - 3DOK1 -8.900 -15.614 -2.186 ***

3DOK7  - 3DOK5 -4.060 -10.774 2.654

3DOK7  - COMPOS 1.220 -5.494 7.934

3DOK7  - 3DOK4 5.280 -1.434 11.994

3DOK7  - 3DOK13 6.660 -0.054 13.374

COMPOS - 3DOK1 -10.120 -16.834 -3.406 ***

COMPOS - 3DOK5 -5.280 -11.994 1.434

COMPOS - 3DOK7 -1.220 -7.934 5.494

COMPOS - 3DOK4 4.060 -2.654 10.774

COMPOS - 3DOK13 5.440 -1.274 12.154

3DOK4  - 3DOK1 -14.180 -20.894 -7.466 ***

3DOK4  - 3DOK5 -9.340 -16.054 -2.626 ***

3DOK4  - 3DOK7 -5.280 -11.994 1.434

3DOK4  - COMPOS -4.060 -10.774 2.654

3DOK4  - 3DOK13 1.380 -5.334 8.094

3DOK13 - 3DOK1 -15.560 -22.274 -8.846 ***

3DOK13 - 3DOK5 -10.720 -17.434 -4.006 ***

3DOK13 - 3DOK7 -6.660 -13.374 0.054

3DOK13 - COMPOS -5.440 -12.154 1.274

3DOK13 - 3DOK4 -1.380 -8.094 5.334

Example 26.3: Split Plot
In some experiments, treatments can be applied only to groups of experimental observations rather than
separately to each observation. When there are two nested groupings of the observations on the basis of
treatment application, this is known as a split plot design. For example, in integrated circuit fabrication it is



990 F Chapter 26: The ANOVA Procedure

of interest to see how different manufacturing methods affect the characteristics of individual chips. However,
much of the manufacturing process is applied to a relatively large wafer of material, from which many chips
are made. Additionally, a chip’s position within a wafer might also affect chip performance. These two
groupings of chips—by wafer and by position-within-wafer—might form the whole plots and the subplots,
respectively, of a split plot design for integrated circuits.

The following statements produce an analysis for a split-plot design. The CLASS statement includes the
variables Block, A, and B, where B defines subplots within BLOCK*A whole plots. The MODEL statement
includes the independent effects Block, A, Block*A, B, and A*B. The TEST statement asks for an F test of the
A effect that uses the Block*A effect as the error term. The following statements produce Output 26.3.1 and
Output 26.3.2:

title1 'Split Plot Design';
data Split;

input Block 1 A 2 B 3 Response;
datalines;

142 40.0
141 39.5
112 37.9
111 35.4
121 36.7
122 38.2
132 36.4
131 34.8
221 42.7
222 41.6
212 40.3
211 41.6
241 44.5
242 47.6
231 43.6
232 42.8
;

proc anova data=Split;
class Block A B;
model Response = Block A Block*A B A*B;
test h=A e=Block*A;

run;

Output 26.3.1 Class Level Information and ANOVA Table

Split Plot Design

The ANOVA Procedure

Split Plot Design

The ANOVA Procedure

Class Level
Information

Class Levels Values

Block 2 1 2

A 4 1 2 3 4

B 2 1 2
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Output 26.3.1 continued

Number of Observations Read 16

Number of Observations Used 16

Split Plot Design

The ANOVA Procedure

Dependent Variable: Response

Split Plot Design

The ANOVA Procedure

Dependent Variable: Response

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 11 182.0200000 16.5472727 7.85 0.0306

Error 4 8.4300000 2.1075000

Corrected Total 15 190.4500000

R-Square Coeff Var Root MSE Response Mean

0.955736 3.609007 1.451723 40.22500

First, notice that the overall F test for the model is significant.

Output 26.3.2 Tests of Effects

Source DF Anova SS Mean Square F Value Pr > F

Block 1 131.1025000 131.1025000 62.21 0.0014

A 3 40.1900000 13.3966667 6.36 0.0530

Block*A 3 6.9275000 2.3091667 1.10 0.4476

B 1 2.2500000 2.2500000 1.07 0.3599

A*B 3 1.5500000 0.5166667 0.25 0.8612

Tests of Hypotheses Using the Anova MS for Block*A
as an Error Term

Source DF Anova SS Mean Square F Value Pr > F

A 3 40.19000000 13.39666667 5.80 0.0914

The effect of Block is significant. The effect of A is not significant: look at the F test produced by the TEST
statement, not at the F test produced by default. Neither the B nor A*B effects are significant. The test for
Block*A is irrelevant, as this is simply the main-plot error.

Example 26.4: Latin Square Split Plot
The data for this example is taken from Smith (1951). A Latin square design is used to evaluate six different
sugar beet varieties arranged in a six-row (Rep) by six-column (Column) square. The data are collected over
two harvests. The variable Harvest then becomes a split plot on the original Latin square design for whole
plots. The following statements produce Output 26.4.1, Output 26.4.2, and Output 26.4.3:
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title1 'Sugar Beet Varieties';
title3 'Latin Square Split-Plot Design';
data Beets;

do Harvest=1 to 2;
do Rep=1 to 6;

do Column=1 to 6;
input Variety Y @;
output;

end;
end;

end;
datalines;

3 19.1 6 18.3 5 19.6 1 18.6 2 18.2 4 18.5
6 18.1 2 19.5 4 17.6 3 18.7 1 18.7 5 19.9
1 18.1 5 20.2 6 18.5 4 20.1 3 18.6 2 19.2
2 19.1 3 18.8 1 18.7 5 20.2 4 18.6 6 18.5
4 17.5 1 18.1 2 18.7 6 18.2 5 20.4 3 18.5
5 17.7 4 17.8 3 17.4 2 17.0 6 17.6 1 17.6
3 16.2 6 17.0 5 18.1 1 16.6 2 17.7 4 16.3
6 16.0 2 15.3 4 16.0 3 17.1 1 16.5 5 17.6
1 16.5 5 18.1 6 16.7 4 16.2 3 16.7 2 17.3
2 17.5 3 16.0 1 16.4 5 18.0 4 16.6 6 16.1
4 15.7 1 16.1 2 16.7 6 16.3 5 17.8 3 16.2
5 18.3 4 16.6 3 16.4 2 17.6 6 17.1 1 16.5
;

proc anova data=Beets;
class Column Rep Variety Harvest;
model Y=Rep Column Variety Rep*Column*Variety

Harvest Harvest*Rep
Harvest*Variety;

test h=Rep Column Variety e=Rep*Column*Variety;
test h=Harvest e=Harvest*Rep;

run;

Output 26.4.1 Class Level Information

Sugar Beet Varieties

Latin Square Split-Plot Design

The ANOVA Procedure

Sugar Beet Varieties

Latin Square Split-Plot Design

The ANOVA Procedure

Class Level Information

Class Levels Values

Column 6 1 2 3 4 5 6

Rep 6 1 2 3 4 5 6

Variety 6 1 2 3 4 5 6

Harvest 2 1 2

Number of Observations Read 72

Number of Observations Used 72
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Output 26.4.2 ANOVA Table

Sugar Beet Varieties

Latin Square Split-Plot Design

The ANOVA Procedure

Dependent Variable: Y

Sugar Beet Varieties

Latin Square Split-Plot Design

The ANOVA Procedure

Dependent Variable: Y

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 46 98.9147222 2.1503200 7.22 <.0001

Error 25 7.4484722 0.2979389

Corrected Total 71 106.3631944

R-Square Coeff Var Root MSE Y Mean

0.929971 3.085524 0.545838 17.69028

Source DF Anova SS Mean Square F Value Pr > F

Rep 5 4.32069444 0.86413889 2.90 0.0337

Column 5 1.57402778 0.31480556 1.06 0.4075

Variety 5 20.61902778 4.12380556 13.84 <.0001

Column*Rep*Variety 20 3.25444444 0.16272222 0.55 0.9144

Harvest 1 60.68347222 60.68347222 203.68 <.0001

Rep*Harvest 5 7.71736111 1.54347222 5.18 0.0021

Variety*Harvest 5 0.74569444 0.14913889 0.50 0.7729

First, note from Output 26.4.2 that the overall model is significant.

Output 26.4.3 Tests of Effects

Tests of Hypotheses Using the Anova MS for
Column*Rep*Variety as an Error Term

Source DF Anova SS Mean Square F Value Pr > F

Rep 5 4.32069444 0.86413889 5.31 0.0029

Column 5 1.57402778 0.31480556 1.93 0.1333

Variety 5 20.61902778 4.12380556 25.34 <.0001

Tests of Hypotheses Using the Anova MS for
Rep*Harvest as an Error Term

Source DF Anova SS Mean Square F Value Pr > F

Harvest 1 60.68347222 60.68347222 39.32 0.0015

Output 26.4.3 shows that the effects for Rep and Harvest are significant, while the Column effect is not. The
average Ys for the six different Varietys are significantly different. For these four tests, look at the output
produced by the two TEST statements, not at the usual ANOVA procedure output. The Variety*Harvest
interaction is not significant. All other effects in the default output should either be tested by using the results
from the TEST statements or are irrelevant as they are only error terms for portions of the model.
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Example 26.5: Strip-Split Plot
In this example, four different fertilizer treatments are laid out in vertical strips, which are then split into
subplots with different levels of calcium. Soil type is stripped across the split-plot experiment, and the entire
experiment is then replicated three times. The dependent variable is the yield of winter barley. The data come
from the notes of G. Cox and A. Rotti.

The input data are the 96 values of Y, arranged so that the calcium value (Calcium) changes most rapidly,
then the fertilizer value (Fertilizer), then the Soil value, and, finally, the Rep value. Values are shown for
Calcium (0 and 1); Fertilizer (0, 1, 2, 3); Soil (1, 2, 3); and Rep (1, 2, 3, 4). The following example produces
Output 26.5.1, Output 26.5.2, Output 26.5.3, and Output 26.5.4.

title1 'Strip-split Plot';
data Barley;

do Rep=1 to 4;
do Soil=1 to 3; /* 1=d 2=h 3=p */

do Fertilizer=0 to 3;
do Calcium=0,1;

input Yield @;
output;

end;
end;

end;
end;
datalines;

4.91 4.63 4.76 5.04 5.38 6.21 5.60 5.08
4.94 3.98 4.64 5.26 5.28 5.01 5.45 5.62
5.20 4.45 5.05 5.03 5.01 4.63 5.80 5.90
6.00 5.39 4.95 5.39 6.18 5.94 6.58 6.25
5.86 5.41 5.54 5.41 5.28 6.67 6.65 5.94
5.45 5.12 4.73 4.62 5.06 5.75 6.39 5.62
4.96 5.63 5.47 5.31 6.18 6.31 5.95 6.14
5.71 5.37 6.21 5.83 6.28 6.55 6.39 5.57
4.60 4.90 4.88 4.73 5.89 6.20 5.68 5.72
5.79 5.33 5.13 5.18 5.86 5.98 5.55 4.32
5.61 5.15 4.82 5.06 5.67 5.54 5.19 4.46
5.13 4.90 4.88 5.18 5.45 5.80 5.12 4.42
;

proc anova data=Barley;
class Rep Soil Calcium Fertilizer;
model Yield =

Rep
Fertilizer Fertilizer*Rep
Calcium Calcium*Fertilizer Calcium*Rep(Fertilizer)
Soil Soil*Rep
Soil*Fertilizer Soil*Rep*Fertilizer
Soil*Calcium Soil*Fertilizer*Calcium
Soil*Calcium*Rep(Fertilizer);
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test h=Fertilizer e=Fertilizer*Rep;
test h=Calcium calcium*fertilizer e=Calcium*Rep(Fertilizer);
test h=Soil e=Soil*Rep;
test h=Soil*Fertilizer e=Soil*Rep*Fertilizer;
test h=Soil*Calcium

Soil*Fertilizer*Calcium e=Soil*Calcium*Rep(Fertilizer);
means Fertilizer Calcium Soil Calcium*Fertilizer;

run;

Output 26.5.1 Class Level Information

Strip-split Plot

The ANOVA Procedure

Strip-split Plot

The ANOVA Procedure

Class Level Information

Class Levels Values

Rep 4 1 2 3 4

Soil 3 1 2 3

Calcium 2 0 1

Fertilizer 4 0 1 2 3

Number of Observations Read 96

Number of Observations Used 96

Output 26.5.2 ANOVA Table

Strip-split Plot

The ANOVA Procedure

Dependent Variable: Yield

Strip-split Plot

The ANOVA Procedure

Dependent Variable: Yield

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 95 31.89149583 0.33569996 . .

Error 0 0.00000000 .

Corrected Total 95 31.89149583

R-Square Coeff Var Root MSE Yield Mean

1.000000 . . 5.427292



996 F Chapter 26: The ANOVA Procedure

Output 26.5.2 continued

Source DF Anova SS Mean Square F Value Pr > F

Rep 3 6.27974583 2.09324861 . .

Fertilizer 3 7.22127083 2.40709028 . .

Rep*Fertilizer 9 6.08211250 0.67579028 . .

Calcium 1 0.27735000 0.27735000 . .

Calcium*Fertilizer 3 1.96395833 0.65465278 . .

Rep*Calcium(Fertili) 12 1.76705833 0.14725486 . .

Soil 2 1.92658958 0.96329479 . .

Rep*Soil 6 1.66761042 0.27793507 . .

Soil*Fertilizer 6 0.68828542 0.11471424 . .

Rep*Soil*Fertilizer 18 1.58698125 0.08816563 . .

Soil*Calcium 2 0.04493125 0.02246562 . .

Soil*Calcium*Fertili 6 0.18936042 0.03156007 . .

Rep*Soil*Calc(Ferti) 24 2.19624167 0.09151007 . .

Notice in Output 26.5.2 that the default tests against the residual error rate are all unavailable. This is because
the Soil*Calcium*Rep(Fertilizer) term in the model takes up all the degrees of freedom, leaving none for
estimating the residual error rate. This is appropriate in this case since the TEST statements give the specific
error terms appropriate for testing each effect. Output 26.5.3 displays the output produced by the various
TEST statements. The only significant effect is the Calcium*Fertilizer interaction.

Output 26.5.3 Tests of Effects

Tests of Hypotheses Using the Anova MS for
Rep*Fertilizer as an Error Term

Source DF Anova SS Mean Square F Value Pr > F

Fertilizer 3 7.22127083 2.40709028 3.56 0.0604

Tests of Hypotheses Using the Anova MS for
Rep*Calcium(Fertili) as an Error Term

Source DF Anova SS Mean Square F Value Pr > F

Calcium 1 0.27735000 0.27735000 1.88 0.1950

Calcium*Fertilizer 3 1.96395833 0.65465278 4.45 0.0255

Tests of Hypotheses Using the Anova MS for
Rep*Soil as an Error Term

Source DF Anova SS Mean Square F Value Pr > F

Soil 2 1.92658958 0.96329479 3.47 0.0999

Tests of Hypotheses Using the Anova MS for
Rep*Soil*Fertilizer as an Error Term

Source DF Anova SS Mean Square F Value Pr > F

Soil*Fertilizer 6 0.68828542 0.11471424 1.30 0.3063

Tests of Hypotheses Using the Anova MS for Rep*Soil*Calc(Ferti)
as an Error Term

Source DF Anova SS Mean Square F Value Pr > F

Soil*Calcium 2 0.04493125 0.02246562 0.25 0.7843

Soil*Calcium*Fertili 6 0.18936042 0.03156007 0.34 0.9059
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Output 26.5.4 Results of MEANS statement

Yield

Level of
Fertilizer N Mean Std Dev

0 24 5.18416667 0.48266395

1 24 5.12916667 0.38337082

2 24 5.75458333 0.53293265

3 24 5.64125000 0.63926801

Yield

Level of
Calcium N Mean Std Dev

0 48 5.48104167 0.54186141

1 48 5.37354167 0.61565219

Yield

Level of
Soil N Mean Std Dev

1 32 5.54312500 0.55806369

2 32 5.51093750 0.62176315

3 32 5.22781250 0.51825224

Yield

Level of
Calcium

Level of
Fertilizer N Mean Std Dev

0 0 12 5.34666667 0.45029956

0 1 12 5.08833333 0.44986530

0 2 12 5.62666667 0.44707806

0 3 12 5.86250000 0.52886027

1 0 12 5.02166667 0.47615569

1 1 12 5.17000000 0.31826233

1 2 12 5.88250000 0.59856077

1 3 12 5.42000000 0.68409197

Output 26.5.4 shows the results of the MEANS statement, displaying for various effects and combinations of
effects, as requested. You can examine the Calcium*Fertilizer means to understand the interaction better.

In this example, you could reduce memory requirements by omitting the
Soil*Calcium*Rep(Fertilizer) effect from the model in the MODEL statement. This effect then be-
comes the ERROR effect, and you can omit the last TEST statement in the statements shown earlier. The
test for the Soil*Calcium effect is then given in the Analysis of Variance table in the top portion of output.
However, for all other tests, you should look at the results from the TEST statement. In large models, this
method might lead to significant reductions in memory requirements.
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Overview: BCHOICE Procedure
The BCHOICE (Bayesian choice) procedure performs Bayesian analysis for discrete choice models. Discrete
choice models are used in marketing research to model decision makers’ choices among alternative products
and services. The decision maker might be people, households, companies and so on, and the alternatives
might be products, services, actions, or any other options or items about which choices must be made (Train
2009). The collection of alternatives that are available to the decision makers is called a choice set.

Discrete choice models are derived under the assumption of utility-maximizing behavior by decision makers.
When individuals are asked to make one choice among a set of alternatives, they usually determine the
level of utility that each alternative offers. The utility that individual i obtains from alternative j among J
alternatives is denoted as

uij D vij C �ij ; i D 1; : : : ; N and j D 1; : : : ; J

where the subscript i is an index for the individuals, the subscript j is an index for the alternatives in a choice
set, vij is a nonstochastic utility function that relates observed factors to the utility, and �ij is the error
component that captures the unobserved characteristics of the utility. In discrete choice models, the observed
part of the utility function is assumed to be linear in the parameters,

vij D x0ijˇ

where xij is a p-dimensional design vector of observed attribute levels that relate to alternative j and ˇ is the
corresponding vector of fixed regression coefficients that indicate the utilities or part-worths of the attribute
levels.

Decision makers choose the alternative that gives them the greatest utility. Let yi be the multinomial response
vector for the ith individual. The value yij takes 1 if the jth component of ui D .ui1; : : : ; uiJ / is the largest,
and 0 otherwise:

uij D x0ijˇ C �ij

yij D

�
1 if uij � max.ui /
0 otherwise

Different specifications about the density of the error vector �i D .�i1; : : : ; �iJ / result in different types
of choice models: logit, nested logit, and probit, as detailed in the section “Types of Choice Models” on
page 1036. Logit and nested logit models have closed-form likelihood, whereas a probit model does not.

The past 15 years have seen a dramatic increase in using a Bayesian approach to develop new methods of
analysis and models of consumer behavior. The milestone breakthroughs are Albert and Chib (1993) and
McCulloch and Rossi (1994) for choice probit models, and Allenby and Lenk (1994) and Allenby (1997)
for logit models that have normally distributed random effects (these models are called mixed logit models).
Train (2009) extends the Bayesian procedure for mixed logit models to include nonnormal distributions, such
as lognormal, uniform, and triangular distributions.

An issue in choice models is that the quantity of relevant data at the individual level is very limited.
Respondents frequently become fatigued after answering 15 to 20 questions in a survey. Rossi, McCulloch,
and Allenby (1996) and Allenby and Rossi (1999) show how to obtain information about individual-level
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parameters within a model by using random taste variation. The lack of data at the individual level, combined
with the desire to account for individual differences instead of treating all respondents alike, presents
challenges in marketing research. Bayesian methods are ideally suited for analyzing limited data.

Bayesian methods have several advantages. First, Bayesian methods do not require optimization of any
function. For probit models and logit models that have random effects, optimization of the likelihood
function can be numerically difficult. Different starting values might lead to different maximization results.
The problem of a local maximum versus a global maximum is another issue, because convergence is not
guaranteed to find the global maximum. Second, Bayesian procedures enable consistency and efficiency to
be achieved under more relaxed conditions. When the likelihood function does not have a closed form or
there are too many parameters (as in models with random effects), simulation can be used to estimate the
likelihood function. Maximization that is based on such a simulated likelihood function is consistent only if
the number of draws in simulation rises with the sample size, and it is efficient only if the number of draws in
simulation increases faster than the square root of the sample size. On the other hand, Bayesian methods are
consistent for a fixed number of draws and are efficient if the number of draws goes up at any rate with the
sample size.

For a short introduction to Bayesian analysis and related basic concepts, see Chapter 7, “Introduction to
Bayesian Analysis Procedures.” Also see the section “A Bayesian Reading List” on page 154 for a guide
to Bayesian textbooks of varying degrees of difficulty. It follows from Bayes’ theorem that a posterior
distribution is proportional to the product of the likelihood function and the prior distribution of the parameter.
When it is difficult to obtain the posterior distribution analytically, Bayesian methods often rely on simulations
to generate samples from the posterior distribution, and they use the simulated draws to approximate the
distribution and to make the inferences.

To use the BCHOICE procedure, you need to specify the type of model for the data. You can also supply
a prior distribution for the parameters if you want something other than the default noninformative prior.
PROC BCHOICE obtains samples from the corresponding posterior distributions, produces summary and
diagnostic statistics, and saves the posterior samples in an output data set that can be used for further analysis.
The procedure derives inferences from simulation rather than through analytic or numerical methods. You
should expect slightly different answers from each run for the same problem, unless you use the same random
number seed.

PROC BCHOICE Compared with Other SAS Procedures
The underlying structure of PROC BCHOICE is similar to the structure of PROC MCMC in that both
procedures obtain samples from the posterior distributions and produce summary and diagnostic statistics
when you specify the model or the priors or both. However, they differ in that PROC MCMC is a general-
purpose Markov chain Monte Carlo (MCMC) simulation procedure that is designed to fit a wide range of
Bayesian models, whereas PROC BCHOICE is designed specifically for discrete choice models. You can
call PROC MCMC to analyze data that have any likelihood, prior, or hyperprior, as long as these functions
can be programmed by using the SAS DATA step functions. For example, you can fit choice logit and nested
logit models in PROC MCMC by using some SAS coding to specify the likelihood. PROC BCHOICE works
only with choice models, but it is customized to fit special characteristics and features in a choice model. The
syntax is quite different from PROC MCMC’s syntax. PROC BCHOICE provides a CLASS statement to
handle categorical variables, and it requires less complicated SAS coding for choice models. The default
sampling method for choice logit models when direct sampling is not available is the Metropolis-Hastings
method, which is based on the Gamerman approach, which in turn has proved to be often more efficient than
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the random walk Metropolis algorithm that PROC MCMC uses. In addition, it is difficult to fit choice probit
models in PROC MCMC.

For a standard logit choice model, you can use the TIES=BRESLOW option in the PHREG procedure. The
approach has the same likelihood as PROC BCHOICE of fitting the data. You use the STRATA statement in
PROC PHREG to specify how to define the choice set. However, this is a frequentist approach, and it does
not work for a choice model with random effects.

Getting Started: BCHOICE Procedure
The first example in this section is a simple logit conjoint analysis that illustrates some basic features of
PROC BCHOICE. The second example discusses a mixed logit model with individual-level random effects,
which has become increasingly popular.

A Simple Logit Model
This example uses a standard logit model in which the error component, �ij .j D 1; : : : ; J /, is indepen-
dently and identically distributed (iid) with the Type I extreme-value distribution, exp.� exp.��ij //. This
assumption provides a convenient form for the choice probability (McFadden 1974):

P.yij D 1/ D
exp.x0ijˇ/PJ
kD1 exp.x

0
ik
ˇ/
; i D 1; : : : ; N and j D 1; : : : ; J

The likelihood is formed by the product of the N independent multinomial distributions:

p.Yjˇ/ D
NY
iD1

JY
jD1

P.yij D 1/
yij

Suppose you want a normal prior on ˇ

�.ˇ/ D N.0; cI/

where I is the identity matrix and c is a scalar. c is often set to be large for a noninformative prior.

The posterior density of the parameter ˇ is

p.ˇjY/ / p.Yjˇ/�.ˇ/

PROC BCHOICE obtains samples from the posterior distribution, produces summary and diagnostic statistics,
and saves the posterior samples in an output data set that can be used for further analysis.

In this example (Kuhfeld 2010), each of 10 subjects is presented with eight different chocolate candies and
asked to choose one. The eight candies consist of the 23 combinations of dark or milk chocolate, soft or
chewy center, and nuts or no nuts. Each subject sees all eight alternatives and makes one choice. Experimental
choice data such as these are usually analyzed by using a multinomial logit model.
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The following statements read the data:

title 'Conjoint Analysis of Chocolate Candies';

data Chocs;
input Subj Choice Dark Soft Nuts;
datalines;

1 0 0 0 0
1 0 0 0 1
1 0 0 1 0
1 0 0 1 1
1 1 1 0 0
1 0 1 0 1

... more lines ...

10 0 1 0 0
10 1 1 0 1
10 0 1 1 0
10 0 1 1 1
;

proc print data=Chocs (obs=16);
run;

The data for the first two subjects are shown in Figure 27.1.

Figure 27.1 Data for the First Two Subjects

Conjoint Analysis of Chocolate CandiesConjoint Analysis of Chocolate Candies

Obs Subj Choice Dark Soft Nuts

1 1 0 0 0 0

2 1 0 0 0 1

3 1 0 0 1 0

4 1 0 0 1 1

5 1 1 1 0 0

6 1 0 1 0 1

7 1 0 1 1 0

8 1 0 1 1 1

9 2 0 0 0 0

10 2 0 0 0 1

11 2 0 0 1 0

12 2 0 0 1 1

13 2 0 1 0 0

14 2 1 1 0 1

15 2 0 1 1 0

16 2 0 1 1 1

The data set contains 10 subjects and 80 observation lines. Each line of the data represents one alternative
in the choice set for each subject. It is required that the response variable, which is Choice in this study,
indicate the chosen alternative by the value 1 and the unchosen alternatives by the value 0. Dark is 1 for dark
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chocolate and 0 for milk chocolate; Soft is 1 for soft center and 0 for chewy center; Nuts is 1 if the candy
contains nuts and 0 if it does not contain nuts. In this example, subject 1 chose the fifth alternative (Choice=1,
which is Dark/Chewy/No Nuts) among the eight alternatives in the choice set. All the chosen and unchosen
alternatives must appear in the data set. If you have choice data in which all alternatives appear on one line,
then you must rearrange the data in the correct form (that is, the data must contain one observation line for
each alternative of each choice set for each subject).

The following statements fit a multinomial logit model:

ods graphics on;
proc bchoice data=Chocs outpost=Bsamp nmc=10000 thin=2 diag=(AutoCorr

ESS MCSE) seed=124;
class Dark(ref='0') Soft(ref='0') Nuts(ref='0') Subj;
model Choice = Dark Soft Nuts / choiceset=(Subj) cprior=normal(var=1000);

run;

The ODS GRAPHICS ON statement invokes the ODS Graphics environment and displays the diagnostic
plots, such as the trace and autocorrelation function plots of the posterior samples. For more information
about ODS, see Chapter 21, “Statistical Graphics Using ODS.”

The PROC BCHOICE statement invokes the procedure, and the DATA= option specifies the input data set
Chocs. The OUTPOST= requests an output data set called Bsamp to contain all the posterior samples.
The NMC= option specifies the number of posterior simulation iterations. The THIN= option controls the
thinning of the Markov chain and specifies that one of every two samples be kept. Thinning is often used to
reduce correlation among posterior sample draws. In this example, 5,000 simulated values are saved in the
Bsamp data set. The DIAG=(AUTOCORR ESS MCSE) option requests that three convergence diagnostics
be output to help determine whether the chain has converged: the autocorrelations, effective sample sizes,
and Monte Carlo standard errors. The SEED= option specifies a seed for the random number generator,
which guarantees the reproducibility of the random stream.

The CLASS statement names the classification variables to be used in the model. The CLASS statement
must precede the MODEL statement (as it must in most other SAS procedures). The REF= option specifies
the reference level.

The MODEL statement is required; it defines the dependent variable (yij ) and independent variables (xij ).
To the left of the equal sign in the MODEL statement, you specify the dependent variable that indicates
which alternatives are chosen and which ones are not chosen. The dependent variable Choice has values 1
(chosen) and 0 (unchosen). You specify the independent variables after the equal sign. The independent
variables often indicate attributes or characteristics of the alternatives in the choice set, such as Dark, Soft,
and Nuts in this example. The CHOICESET= option specifies how a choice set is defined. In this example,
CHOICESET=(Subj) because there is one and only one choice set per subject. The variable that you specify
in the CHOICESET= option must be a classification variable that appears in the CLASS statement. You
should always use the CHOICESET= option to define the choice set.

The first table that PROC BCHOICE produces is the “Model Information” table, as shown in Figure 27.2.
This table displays basic information about the analysis, such as the name of the input data set, response
variable, model type, sampling algorithm, burn-in size, simulation size, thinning number, and random number
seed. The random number seed initializes the random number generators. If you repeat the analysis and use
the same seed, you get an identical stream of random numbers.
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Figure 27.2 Model Information

The BCHOICE ProcedureThe BCHOICE Procedure

Model Information

Data Set WORK.CHOCS

Response Variable Choice

Type of Model Logit

Fixed Effects Included Yes

Random Effects Included No

Sampling Algorithm Gamerman Metropolis

Burn-In Size 500

Simulation Size 10000

Thinning 2

Random Number Seed 124

Number of Threads 1

The “Choice Sets Summary” table is displayed by default and should be used to check the data entry. In
this case, there are 10 choice sets, one for each subject. All 10 choice sets display the same pattern: they
have eight total alternatives, one of which is chosen and seven of which are unchosen. PROC BCHOICE
requires that all choice sets have a pattern of the same number of total alternatives, one of which is the chosen
alternative. If there is more than one pattern among the choice sets (for example, some choice sets have nine
alternatives or some subjects chose two alternatives), a warning message appears in the SAS log and those
invalid choice sets are excluded from analysis.

Figure 27.3 Choice Sets Summary

Choice Sets Summary

Pattern
Choice

Sets
Total

Alternatives
Chosen

Alternatives
Not

Chosen

1 10 8 1 7

The next table is the “Number of Observations” table, as shown in Figure 27.4. This table lists the number of
observations that are read from the DATA= data set and the number of nonmissing and valid observations
that are used in the analysis. PROC BCHOICE does not impute missing values. If any missing value is
encountered in a row of the DATA= data set, PROC BCHOICE skips that row and moves on to read the next
row. If the missing value causes the corresponding choice set to have a pattern different from that of the rest
of the choice sets, the entire choice set is discarded from analysis. In this example, all 80 observations are
used.

Figure 27.4 Number of Observations

Number of Observations

Number of Observations Read 80

Number of Observations Used 80

PROC BCHOICE reports posterior summary statistics (posterior means, standard deviations, and HPD
intervals) for each parameter, as shown in Figure 27.5. For more information about posterior statistics, see
the section “Summary Statistics” on page 151.
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Figure 27.5 PROC BCHOICE Posterior Summary Statistics

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

Dark 1 5000 1.5308 0.7943 0.1848 3.2412

Soft 1 5000 -2.4312 0.9792 -4.4882 -0.8125

Nuts 1 5000 0.9671 0.7454 -0.3255 2.6675

Before you examine the posterior summary statistics and try to draw any conclusions, you might want to
verify that the simulation has converged. Convergence diagnostics are essential to inferring from simulations
that are based on Markov chains. If the Markov chain has not converged, all conclusions that are based on
the samples might be misleading. PROC BCHOICE computes the effective sample size by default. There
are a number of other convergence diagnostics to help you determine whether the chain has converged: the
Monte Carlo standard errors, the autocorrelations at selected lags, and so on. These statistics are shown in
Figure 27.6. For details and interpretations of these diagnostics, see the section “Assessing Markov Chain
Convergence” on page 137.

The “Posterior Autocorrelations” table shows that the autocorrelations among posterior samples reduce
quickly. The “Effective Sample Sizes” table reports the number of effective sample sizes of the Markov
chain. The “Monte Carlo Standard Errors” table indicates that the standard errors of the mean estimates for
each of the variables are relatively small with respect to the posterior standard deviations. The values in the
MCSE/SD column (ratios of the standard errors and the standard deviations) are small. This means that only
a fraction of the posterior variability is caused by the simulation.

Figure 27.6 PROC BCHOICE Convergence Diagnostics

Posterior Autocorrelations

Parameter Lag 1 Lag 5 Lag 10 Lag 50

Dark 1 0.4495 0.1427 0.0603 -0.0095

Soft 1 0.5389 0.1518 0.0730 0.0449

Nuts 1 0.4136 0.1473 0.0259 -0.0264

Effective Sample Sizes

Parameter ESS
Autocorrelation

Time Efficiency

Dark 1 1078.4 4.6365 0.2157

Soft 1 904.9 5.5253 0.1810

Nuts 1 1161.6 4.3043 0.2323

Monte Carlo Standard Errors

Parameter MCSE
Standard
Deviation MCSE/SD

Dark 1 0.0242 0.7943 0.0305

Soft 1 0.0326 0.9792 0.0332

Nuts 1 0.0219 0.7454 0.0293
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PROC BCHOICE produces a number of graphs, shown in Figure 27.7, which also aid convergence diagnostic
checks. The trace plots have two important aspects to examine. First, you want to check whether the mean of
the Markov chain has stabilized and appears constant over the graph. Second, you want to check whether the
chain has good mixing and is “dense,” in the sense that it quickly traverses the support of the distribution to
explore both the tails and the mode areas efficiently. The plots show that the chains appear to have reached
their stationary distributions.

Next, you want to examine the autocorrelation plots, which indicate the degree of autocorrelation for each of
the posterior samples. High correlations usually imply slow mixing. Finally, the kernel density plots estimate
the posterior marginal distributions for each parameter.

Figure 27.7 PROC BCHOICE Diagnostic Plots
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Figure 27.7 continued
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Because the chains seem to have reached their stationary distributions, you can go back to the posterior
summary table for results and conclusions. As seen in Figure 27.5, the part-worth for dark chocolate is 1.5
and the part-worth for milk chocolate (base category) is structural 0; the part-worth for soft center is –2.4 and
the part-worth for chewy center is structural 0; the part-worth for containing nuts is 1.0 and the part-worth
for no nuts is structural 0. A positive part-worth implies being more favorable. Hence, dark chocolate is
preferred over milk chocolate, soft centers are less popular than chewy centers, and candies with nuts are
more popular than candies without nuts.

A Logit Model with Random Effects
Choice models that have random effects (or random coefficients) provide solutions to create individual-level
or group-specific utilities. Because people have different preferences, it can be misleading to roll the whole
sample together into a single set of utilities. The desire to account for individual differences, instead of
treating all respondents alike, provides challenges in marketing research. For logit models that have random
effects, using frequentist methods to optimize of the likelihood function can be numerically difficult. Bayesian
methods are ideally suited for analysis with random effects.

Choice models that have random effects generalize the standard choice models to incorporate individual-level
effects. Let the utility that individual i obtains from alternative j in choice situation t (t D 1; : : : ; T ) be

uijt D x0ijtˇ C z0ijti C �ijt
yijt D 1 if uijt � max.ui1t ; ui2t ; : : : ; uiJ t /

D 0 otherwise

where yijt is the observed choice for individual i and alternative j in choice situation t; xijt is the fixed design
vector for individual i and alternative j in choice situation t; ˇ are the fixed coefficients; zijt is the random
design vector for individual i and alternative j in choice situation t; and i are the random coefficients for
individual i corresponding to zijt .

It is assumed that each i is drawn from a superpopulation and that this superpopulation is normal, i �
iid N.0;�/. An additional stage is added to the model in which a prior for� is specified:

�.i / D N.0;�/
�.�/ D inverse Wishart.�0;V0/

The covariance matrix � characterizes the extent of heterogeneity among individuals. Large diagonal
elements of� indicate substantial heterogeneity in part-worths. Off-diagonal elements indicate patterns in
the evaluation of attribute levels.

Consider a study that estimates the market demand for kitchen trash cans (Rossi 2013). There are four
attributes, and each has two levels: touchless opening (Yes/No), material (Steel/Plastic), automatic trash
bag replacement (Yes/No), and price (80=40). The number of all possible hypothetical types of trash cans
is 24 D 16. Including more attributes and more levels can easily become unmanageable. The study uses a
fractional factorial design, in which the first three factors are set up to be a full factorial design and the fourth
is generated as the product of the first three. This design confounds the three-way interaction with the effect
of the fourth factor, shown in Table 27.1.
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Table 27.1 Design for the Trash Can Study

Obs Touchless Steel AutoBag Price80
1 –1 –1 –1 –1
2 –1 –1 1 1
3 –1 1 –1 1
4 –1 1 1 –1
5 1 –1 –1 1
6 1 –1 1 –1
7 1 1 –1 –1
8 1 1 1 1

In Table 27.1, 1 means “Yes” and –1 means “No.” This is a balanced design, in which each level appears the
same number of times. This study assigns only two alternatives to a choice set by randomly sampling two
rows from the previous table and giving each individual 10 choice sets (or choice tasks) to pick from. For
more information about how to design a choice model efficiently, see Kuhfeld (2010).

Data were obtained by enrolling 104 people and assigning 10 choice tasks to each of them: for each task, the
participants stated their preference between two types of trash cans. The following steps read in the data:

data Trashcan;
input ID Task Choice Index Touchless Steel AutoBag Price80 @@;
datalines;

1 1 1 1 0 1 1 0 1 1 0 2 1 1 0 0 1 2 0 1 0 0 0 0 1 2 1 2 1 1 1 1 1 3 0 1
0 0 0 0 1 3 1 2 1 1 0 0 1 4 0 1 0 1 0 1 1 4 1 2 1 0 0 1 1 5 1 1 0 1 1 0
1 5 0 2 1 0 0 1 1 6 0 1 0 0 1 1 1 6 1 2 1 1 1 1 1 7 0 1 1 0 0 1 1 7 1 2
1 1 0 0 1 8 0 1 0 0 1 1 1 8 1 2 0 1 1 0 1 9 1 1 0 0 1 1 1 9 0 2 1 0 0 1
1 10 0 1 0 1 1 0 1 10 1 2 1 0 1 0 2 1 1 1 0 1 1 0 2 1 0 2 1 1 0 0 2 2 0
1 0 0 0 0 2 2 1 2 1 1 1 1 2 3 0 1 0 0 0 0 2 3 1 2 1 1 0 0 2 4 0 1 0 1 0
1 2 4 1 2 1 0 0 1 2 5 1 1 0 1 1 0 2 5 0 2 1 0 0 1 2 6 1 1 0 0 1 1 2 6 0
2 1 1 1 1 2 7 1 1 1 0 0 1 2 7 0 2 1 1 0 0 2 8 1 1 0 0 1 1 2 8 0 2 0 1 1
0 2 9 1 1 0 0 1 1 2 9 0 2 1 0 0 1 2 10 1 1 0 1 1 0 2 10 0 2 1 0 1 0 3 1

... more lines ...

2 1 2 1 1 1 1 104 3 0 1 0 0 0 0 104 3 1 2 1 1 0 0 104 4 0 1 0 1 0 1 104
4 1 2 1 0 0 1 104 5 1 1 0 1 1 0 104 5 0 2 1 0 0 1 104 6 0 1 0 0 1 1 104
6 1 2 1 1 1 1 104 7 0 1 1 0 0 1 104 7 1 2 1 1 0 0 104 8 0 1 0 0 1 1 104
8 1 2 0 1 1 0 104 9 0 1 0 0 1 1 104 9 1 2 1 0 0 1 104 10 0 1 0 1 1 0 104
10 1 2 1 0 1 0
;

proc print data=Trashcan (obs=8);
run;

The data for the first four choice tasks are shown in Figure 27.8.
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Figure 27.8 Data for the First Four Choice Tasks

Obs ID Task Choice Index Touchless Steel AutoBag Price80

1 1 1 1 1 0 1 1 0

2 1 1 0 2 1 1 0 0

3 1 2 0 1 0 0 0 0

4 1 2 1 2 1 1 1 1

5 1 3 0 1 0 0 0 0

6 1 3 1 2 1 1 0 0

7 1 4 0 1 0 1 0 1

8 1 4 1 2 1 0 0 1

In the data, ID is the individual’s ID number, and Task indexes the number of choice tasks. The response is
Choice, which states each individual’s choice for each choice task. Touchless, Steel, AutoBag, and Price80
are the attribute variables; for each of them, 1 means “Yes” and 0 means “No.” In the data, 0 replaces the –1
values that are shown in the design matrix in Table 27.1.

The following statements fit a logit model with random effects:

proc bchoice data=Trashcan seed=123 nmc=30000 thin=2 nthreads=4;
class ID Task;
model Choice = Touchless Steel AutoBag Price80 / choiceset=(ID Task);
random Touchless Steel AutoBag Price80 / sub=ID monitor=(1 to 5) type=un;

run;

The NTHREADS option in the PROC BCHOICE statement specifies the number of threads to be used for
analytic computations and sampling. Using four threads at the same time enhances the efficiency and reduces
the run time. If you do not specify the NTHREADS option, the default number is 1. The maximum number
of threads should not exceed the total number of CPUs on the host where the analytic computations execute.

The choice set is specified by ID (which identifies the participants) and by Task (which identifies each of the
10 choice tasks that are assigned to each participant). The variables ID and Task are needed in the CLASS
statement because they define the choice set in the MODEL statement.

In addition to the MODEL statement for fixed effects, the RANDOM statement is added for random effects.
Note that Touchless, Steel, AutoBag, and Price80 are listed as both fixed and random effects, so that their
average part-worth values in the population are estimated via fixed effects and the deviation from the overall
mean for each individual is presented through random effects. The SUB=ID argument in the RANDOM
statement defines ID as a subject index for the random effects grouping, so that each person with a different
ID has his or her own random effects. The MONITOR option requests the production of the individual-
level random-effects parameter estimates, and the MONITOR=(1 to 5) option requests the random-effects
parameter estimates for the first five subjects, (By default, PROC BCHOICE does not output results for any
individual-level random-effects parameters.) The TYPE=UN option in the RANDOM statement specifies
an unstructured covariance matrix for the random effects. The unstructured type provides a mechanism for
estimating the correlation between the random effects. The TYPE=VC (variance components) option, which
is the default structure, models a different variance component for each random effect.

Summary statistics for the fixed coefficients (ˇ), the covariance of the random coefficients (� ), and the
random coefficients (i ) for the first five individuals are shown in Figure 27.9.
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Figure 27.9 Posterior Summary Statistics

The BCHOICE ProcedureThe BCHOICE Procedure

Posterior Summaries and Intervals

Parameter Subject N Mean
Standard
Deviation

95%
HPD Interval

Touchless 15000 1.7081 0.2679 1.2053 2.2581

Steel 15000 1.0433 0.2526 0.5499 1.5478

AutoBag 15000 2.1593 0.3463 1.4962 2.8520

Price80 15000 -4.6163 0.6317 -5.8642 -3.4235

RECov Touchless, Touchless 15000 3.0062 0.9900 1.3471 4.9893

RECov Steel, Touchless 15000 -0.4443 0.8014 -2.0999 1.0894

RECov Steel, Steel 15000 2.5606 0.9148 1.0161 4.3751

RECov AutoBag, Touchless 15000 -0.6839 0.8485 -2.3454 1.0370

RECov AutoBag, Steel 15000 0.0501 0.6696 -1.3860 1.2717

RECov AutoBag, AutoBag 15000 3.5241 1.5374 1.0363 6.5421

RECov Price80, Touchless 15000 -1.2238 1.1181 -3.4774 0.7575

RECov Price80, Steel 15000 -1.5802 1.1229 -3.8779 0.5613

RECov Price80, AutoBag 15000 -2.1971 1.6354 -5.5615 0.7227

RECov Price80, Price80 15000 7.5585 3.1071 2.4740 13.8806

Touchless ID 1 15000 0.5149 1.0161 -1.4304 2.5541

Steel ID 1 15000 -0.3185 1.0738 -2.4518 1.7835

AutoBag ID 1 15000 1.6236 1.4019 -0.7959 4.7049

Price80 ID 1 15000 -0.5927 2.1788 -4.9792 3.4309

Touchless ID 2 15000 -1.7297 0.9174 -3.4325 0.1308

Steel ID 2 15000 -1.4287 0.8517 -3.0397 0.2828

AutoBag ID 2 15000 0.4463 1.3149 -2.0657 3.0433

Price80 ID 2 15000 4.6565 1.5015 1.5290 7.4524

Touchless ID 3 15000 -0.5857 0.9883 -2.5030 1.3642

Steel ID 3 15000 0.5854 0.9766 -1.2045 2.6450

AutoBag ID 3 15000 -1.8484 1.2446 -4.4333 0.4567

Price80 ID 3 15000 3.6182 1.7028 0.3880 6.9603

Touchless ID 4 15000 -0.5922 0.9599 -2.4904 1.2913

Steel ID 4 15000 0.3505 1.0201 -1.6013 2.4416

AutoBag ID 4 15000 0.9801 1.3792 -1.6352 3.8147

Price80 ID 4 15000 -1.9014 2.2739 -6.6483 2.1584

Touchless ID 5 15000 -1.2820 1.1807 -3.5653 1.0154

Steel ID 5 15000 1.6341 1.1977 -0.5354 4.1211

AutoBag ID 5 15000 1.2724 1.5373 -1.5898 4.5012

Price80 ID 5 15000 -0.3725 2.3928 -5.1457 4.2140
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The fixed effects (Touchless, Steel, AutoBag, and Price80) are shown in the first four rows. Across all the
respondents in the data, the average part-worths for touchless opening, steel material, and automatic trash
bag replacement are all positive, indicating that most people favor those features; the average part-worth for
having to pay USD80 for a trash can instead of USD40 is negative (–4.6), which is very intuitive, because
spending more money is usually unfavorable.

The covariance estimate of the random coefficients (� ) is displayed by the parameters whose label begins
with “RECov”:

O� D

0BB@
3:01 : : :

�0:44 2:56 : :

�0:68 0:05 3:52 :

�1:22 �1:58 �2:20 7:56

1CCA
where the dots refer to the corresponding elements in the lower part of the symmetric covariance matrix.
The covariance estimate of the random coefficients (� ) characterizes the variability of part-worths across
respondents. Some of the diagonal elements of the matrix are large. For example, the variance for price
(labeled “RECov Price80, Price80”) is quite large, indicating substantial unexplained difference in response
to price. Off-diagonal elements of the matrix illustrate attribute levels that tend to be evaluated similarly
(positive covariance) or differently (negative covariance) across all the respondents. The covariances between
each of the attributes (Touchless, Steel, and AutoBag) and Price80 are all negative, implying that the
respondents who prefer some of the new features are those who are also unwilling to pay a higher price for
the trash can. Therefore, offering a discounted price might be a particularly effective method of introducing
the new features to customers.

The next set of parameters that are displayed are the estimates for the individual-level random effects for the
first five respondents (see Figure 27.9). These estimates are the deviation from the overall means (which are
estimated via the fixed effects). The part-worth for touchless opening for the first respondent (who is labeled
“ID 1” in the Subject column) is 1.7 + 0.5 = 2.2.

Allenby and Rossi (1999) and Rossi, Allenby, and McCulloch (2005) propose a hierarchical Bayesian
random-effects model that is set up in a different way such that there are no fixed effects but only random
effects. For more information about this type of model, see the section “Random Effects” on page 1041 and a
follow-up example in “Example 27.4: A Random-Effects-Only Logit Model” on page 1066.
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Syntax: BCHOICE Procedure
The following statements are available in the BCHOICE procedure. Items within < > are optional.

PROC BCHOICE < options > ;
BY variables ;
CLASS variable < (options) > < . . . variable < (options) > > < / options > ;
MODEL response< (response-options) > = < fixed-effects >< / model-options > ;
RANDOM random-effects < / options > ;
PREDDIST OUTPRED=SAS-data-set < options > ;

The PROC BCHOICE and MODEL statements are required. The CLASS statement, if present, must precede
the MODEL statement.

The rest of this section provides detailed syntax information for each statement, beginning with the PROC
BCHOICE statement. The remaining statements are presented in alphabetical order.

PROC BCHOICE Statement
PROC BCHOICE <options> ;

The PROC BCHOICE statement invokes the BCHOICE procedure.

Table 27.2 summarizes the options available in the PROC BCHOICE statement.

Table 27.2 PROC BCHOICE Statement Options

Option Description

Basic Options
DATA= Names the input data set
NBI= Specifies the number of burn-in iterations
NMC= Specifies the number of iterations, excluding the burn-in iterations
NTHREADS= Specifies the number of threads for the computation
NTU= Specifies the number of tuning iterations for the random walk sampler
OUTPOST= Names the output data set to contain posterior samples of parameters
SEED= Specifies the random seed for simulation
THIN= Specifies the thinning rate

Sampling, Summary, Diagnostics, and Plotting options
ALGORITHM= Specifies the algorithm to use to sample the posterior distribution
DIAGNOSTICS= Controls the convergence diagnostics
DIC Computes the deviance information criterion (DIC)
HITPROB Outputs the average of estimated probabilities of chosen alternatives in the

input data
PLOTS= Controls plotting
STATISTICS= Controls posterior statistics

Other Options
ACCEPTTOL= Specifies the acceptance rate tolerance for the random walk sampler
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Table 27.2 (continued)

Option Description

INF= Specifies the machine numerical limit for infinity
LOGPOST Calculates the logarithm of the posterior density and likelihood
MAXTUNE= Specifies the maximum number of tuning loops for the random walk sampler
MCHISTORY= Displays Markov chain sampling history
MINTUNE= Specifies the minimum number of tuning loops for the random walk sampler
NOCLPRINT Suppresses the “Class Level Information” table completely or partially
SCALE= Specifies the initial scale applied to the proposal distribution for the random

walk sampler
TARGACCEPT= Specifies the target acceptance rate for the random walk sampler
TUNEWT= Specifies the weight used in covariance updating for the random walk

sampler

You can specify the following options.

ACCEPTTOL=n
specifies a tolerance for acceptance probabilities for the random walk sampler. By default, ACCEPT-
TOL=0.075. You can specify this option for logit models.

ALGORITHM=GAMERMAN | RWM | LATENT

ALG=GAMERMAN | RWM | LATENT
specifies the algorithm to use to sample the posterior distribution for the regression coefficients. You
can specify the following algorithms:

GAMERMAN
uses the Metropolis-Hastings approach of Gamerman (1997). This is the default for logit models.

RWM
uses the random walk Metropolis algorithm along with the normal proposal, as suggested in
Rossi, Allenby, and McCulloch (2005).

LATENT
uses the latent variables via the data augmentation method. This is the default for probit models.
This option is ignored for logit models.

When possible, PROC BCHOICE samples directly from the full conditional distribution. Otherwise,
the default sampling algorithm is the Gamerman algorithm for standard logit models, the random
walk Metropolis algorithm for nested logit models, and the latent variables via the data augmentation
method for probit models. Standard logit models can also use random walk Metropolis sampling
algorithm if specified, while the other two types of models, nested logit models and probit models,
have only their own default sampling algorithm.

DATA=SAS-data-set
specifies the input data set.
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DIAGNOSTICS=NONE | (keyword-list)

DIAG=NONE | (keyword-list)
specifies options for convergence diagnostics. By default, PROC BCHOICE computes the effective
sample sizes. The sample autocorrelations, Monte Carlo errors, Geweke test, Raftery-Lewis test, and
Heidelberger-Welch test are also available. For more information about convergence diagnostics, see
the section “Assessing Markov Chain Convergence” on page 137. You can request all the diagnostic
tests by specifying DIAGNOSTICS=ALL. You can suppress all the diagnostic tests by specifying
DIAGNOSTICS=NONE.

You can specify one or more of the following keyword-list options:

ALL
computes all diagnostic tests and statistics. You can combine the option ALL with any other spe-
cific tests to modify test options. For example, DIAGNOSTICS=(ALL AUTOCORR(LAGS=(1
5 35))) computes all tests by using default settings and autocorrelations at lags 1, 5, and 35.

AUTOCORR < (autocorrelation-options) >

AC < (autocorrelation-options) >
computes default autocorrelations at lags 1, 5, 10, and 50 for each variable. You can choose other
lags by using the following autocorrelation-option:

LAGS=(numeric-list)
specifies autocorrelation lags. The numeric-list must take positive integer values.

ESS
computes the effective sample sizes (Kass et al. 1998) of the posterior samples of each parameter.
It also computes the correlation time and the efficiency of the chain for each parameter. Small
values of ESS might indicate a lack of convergence. For more information, see the section
“Effective Sample Size” on page 150.

GEWEKE < (Geweke-options) >
computes the Geweke spectral density diagnostics; this is a two-sample t-test between the first
f1 portion (as specified by the FRAC1= option) and the last f2 portion (as specified by the
FRAC2= option) of the chain. For more information, see the section “Geweke Diagnostics” on
page 144. By default, FRAC1=0.1 and FRAC2=0.5, but you can choose other fractions by using
the following Geweke-options:

FRAC1=value

F1=value
specifies the beginning proportion of the Markov chain. By default, FRAC1=0.1.

FRAC2=value

F2=value
specifies the end proportion of the Markov chain. By default, FRAC2=0.5.
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HEIDELBERGER < (Heidel-options) >

HEIDEL < (Heidel-options) >
computes the Heidelberger-Welch diagnostic (which consists of a stationarity test and a half-width
test) for each variable. The stationary diagnostic test tests the null hypothesis that the posterior
samples are generated from a stationary process. If the stationarity test is passed, a half-width test
is then carried out. For more information, see the section “Heidelberger and Welch Diagnostics”
on page 146.

You can also specify suboptions, such as DIAGNOSTICS=HEIDELBERGER(EPS=0.05), as
follows:

EPS=value
specifies a small positive number � such that if the half-width is less than � times the sample
mean of the retaining iterations, the half-width test is passed. By default, EPS=0.1.

HALPHA=value
specifies the ˛ level .0 < ˛ < 1/ for the half-width test. By default, HALPHA=0.05.

SALPHA=value
specifies the ˛ level .0 < ˛ < 1/ for the stationarity test. By default, SALPHA=0.05.

MAXLAG=n
specifies the maximum number of autocorrelation lags to use to compute the effective sample
size; for more information, see the section “Effective Sample Size” on page 150. The value of
n is also used in the calculation of the Monte Carlo standard error; see the section “Standard
Error of the Mean Estimate” on page 151. By default, MAXLAG=MIN(500, MCsample/4),
where MCsample is the Markov chain sample size that is kept after thinning—that is, MCsample
D

h
NMC

NTHIN

i
. If n is too low, you might observe significant lags and the effective sample size

cannot be calculated accurately. A warning message appears in the SAS log, and you can increase
either the MAXLAG= option or the NMC= option, accordingly. Specifying this option implies
the ESS and MCSE options.

MCSE

MCERROR
computes the Monte Carlo standard error for the posterior samples of each parameter.

NONE
suppresses all the diagnostic tests and statistics. This option is not recommended.

RAFTERY < (Raftery-options) >

RL < (Raftery-options) >
computes the Raftery-Lewis diagnostic, which evaluates the accuracy of the estimated quantile
( O�Q for a given Q 2 .0; 1/) of a chain. O�Q can achieve any degree of accuracy when the chain is
allowed to run for a long time. The algorithm stops when the estimated probability OPQ D Pr.� �
O�Q/ reaches within˙R of the value Q with probability S; that is, Pr.Q�R � OPQ � QCR/ D S.
For more information, see the section “Raftery and Lewis Diagnostics” on page 147.

You can specify Q, R, S, and a precision level � for a stationary test by specifying the following
Raftery-options—for example, DIAGNOSTICS=RAFTERY(QUANTILE=0.05):
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ACCURACY=value

R=value
specifies a small positive number as the margin of error for measuring the accuracy of
estimation of the quantile. By default, ACCURACY=0.005.

EPS=value
specifies the tolerance level (a small positive number) for the stationary test. By default,
EPS=0.001.

PROB=value

S=value
specifies the probability of attaining the accuracy of the estimation of the quantile. By
default, PROB=0.95.

QUANTILE=value

Q=value
specifies the order (a value between 0 and 1) of the quantile of interest. By default, QUAN-
TILE=0.025.

DIC
computes the deviance information criterion (DIC). DIC is calculated by using the posterior mean
estimates of the parameters. For more information, see the section “Deviance Information Criterion
(DIC)” on page 153.

HITPROB

HITPROBABILITY
calculates the average of estimated probabilities of all chosen alternatives in the input data set. You can
use this average as a measure of goodness of fit.

INF=value
specifies the numerical definition of infinity in PROC BCHOICE. By default, INF=1E15. For example,
PROC BCHOICE considers 1E16 to be outside the support of the normal distribution and assigns
a missing value to the log density evaluation. The minimum value that is allowed is 1E10, and the
maximum value that is allowed is 1E27.

LOGPOST
calculates the logarithm of the posterior density of the parameters and the likelihood at each iteration.
As a result, the OUTPOST= data set will contain the LOGLIKE and LOGPOST variables. You can
specify this option for logit models and nested logit models, but not probit models.

MAXTUNE=n
specifies an upper limit for the number of proposal tuning loops for the random walk sampler. You can
specify this option for logit models; it is ignored for other models. By default, MAXTUNE=6.

MCHISTORY=BRIEF | DETAILED | NONE

MCHIST=BRIEF | DETAILED | NONE
controls the display of the Metropolis sampling history. This option is ignored for nested logit and
probit models. You can specify the following values:
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BRIEF
produces a summary output for the tuning, burn-in, and sampling history tables. No tuning history
table is produced if there is no tuning stage. The tables show the following when applicable:

• Scale shows the scale, or the range of the scales, that is used in each random walk Metropolis
block that has a normal distribution.

• Acceptance Rate shows the acceptance rate, or the range of the acceptance rates, for each
Metropolis block.

DETAILED
produces detailed output of the tuning, burn-in, and sampling history tables, including scale
values, acceptance probabilities, and blocking information. No tuning history table is produced if
there is no tuning stage. Use this option with caution, especially in random-effects models that
have a large number of random-effects groups, because it can produce copious output.

NONE
produces none of the tuning history, burn-in history, and sampling history tables.

By default, MCHISTORY=NONE.

MINTUNE=n
specifies a lower limit for the number of proposal tuning loops for the random walk sampler. You can
specify this option for logit models; it is ignored for other models. By default, MINTUNE=2.

NBI=n
specifies the number of burn-in iterations to perform before beginning to save parameter estimate
chains. By default, NBI=500. For more information, see the section “Burn-in, Thinning, and Markov
Chain Samples” on page 136.

NMC=n
specifies the number of iterations in the main simulation loop. This is the MCMC sample size if
THIN=1. By default, NMC=5000.

NOCLPRINT< =n >
suppresses the display of the “Class Level Information” table if you do not specify n. If you specify
n, the values of the classification variables are displayed for only those variables whose number of
levels is less than n. Specifying n helps reduce the size of the “Class Level Information” table if some
classification variables have a large number of levels.

NTHREADS=n

NTHREAD=n
specifies the number of threads for analytic computations and overrides the SAS system option
THREADS | NOTHREADS. If you do not specify the NTHREADS= option or if you specify
NTHREADS=0, the default number of threads is 1.

NTU=n
specifies the number of iterations to use in each proposal tuning phase for the random walk sampler.
You can specify this option for logit models; it is ignored for other models. By default, NTU=500.
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OUTPOST=SAS-data-set

OUT=SAS-data-set
specifies an output data set to contain the posterior samples of all parameters and the iteration numbers.
It contains the log of the posterior density (LOGPOST) and the log likelihood (LOGLIKE) if you
specify the LOGPOST option. By default, no OUTPOST= data set is created.

PLOTS < (global-plot-options) > < = plot-request < (options) > >

PLOTS < (global-plot-options) > < = (plot-request < (options) > < ... plot-request < (options) > >) >
controls the display of diagnostic plots. You can request three types of plots: trace plots, autocorrelation
function plots, and kernel density plots. By default, the plots are displayed in panels unless you specify
the global-plot-option UNPACK. Also, when you specify more than one type of plot, the plots are
grouped by parameter unless you specify the global-plot-option GROUPBY=TYPE. When you specify
only one plot-request , you can omit the parentheses around it, as shown in the following example:

plots=none
plots(unpack)=trace
plots=(trace density)

If ODS Graphics is enabled but you do not specify the PLOTS= option, then PROC BCHOICE
produces, for each parameter, a panel that contains the trace plot, the autocorrelation function plot, and
the density plot. This is equivalent to specifying PLOTS=(TRACE AUTOCORR DENSITY).

You can specify the following global-plot-options:

FRINGE
adds a fringe plot to the horizontal axis of the density plot.

GROUPBY=PARAMETER | TYPE

GROUP=PARAMETER | TYPE
specifies how the plots are grouped when there is more than one type of plot. By default,
GROUPBY=PARAMETER. You can specify the following values:

TYPE
groups the plots by type.

PARAMETER
groups the plots by parameter.

LAGS=n
specifies the number of autocorrelation lags that are used in plotting the ACF graph. By default,
LAGS=50.

SMOOTH
smooths the trace plot by using a fitted penalized B-spline curve (Eilers and Marx 1996).

UNPACKPANEL

UNPACK
unpacks all paneled plots, so that each plot in a panel is displayed separately.
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You can specify the following plot-requests:

ALL
requests all types of plots. PLOTS=ALL is equivalent to specifying PLOTS=(TRACE AUTO-
CORR DENSITY).

AUTOCORR

ACF
displays the autocorrelation function plots for the parameters.

DENSITY

D

KERNEL

K
displays the kernel density plots for the parameters.

NONE
suppresses the display of all plots.

TRACE

T
displays the trace plots for the parameters.

Consider a model that has four parameters, X1–X4. The following list shows which plots are produced
for various option settings:

• PLOTS=(TRACE AUTOCORR) displays the trace and autocorrelation plots for each parameter
side by side, with two parameters per panel:

Display 1 Trace(X1) Autocorr(X1)
Trace(X2) Autocorr(X2)

Display 2 Trace(X3) Autocorr(X3)
Trace(X4) Autocorr(X4)

• PLOTS(GROUPBY=TYPE)=(TRACE AUTOCORR) displays all the paneled trace plots, fol-
lowed by panels of autocorrelation plots:

Display 1 Trace(X1)
Trace(X2)

Display 2 Trace(X3)
Trace(X4)

Display 3 Autocorr(X1) Autocorr(X2)
Autocorr(X3) Autocorr(X4)

• PLOTS(UNPACK)=(TRACE AUTOCORR) displays a separate trace plot and a separate correla-
tion plot, parameter by parameter:
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Display 1 Trace(X1)

Display 2 Autocorr(X1)

Display 3 Trace(X2)

Display 4 Autocorr(X2)

Display 5 Trace(X3)

Display 6 Autocorr(X3)

Display 7 Trace(X4)

Display 8 Autocorr(X4)

• PLOTS(UNPACK GROUPBY=TYPE)=(TRACE AUTOCORR) displays all the separate trace
plots, followed by the separate autocorrelation plots:

Display 1 Trace(X1)

Display 2 Trace(X2)

Display 3 Trace(X3)

Display 4 Trace(X4)

Display 5 Autocorr(X1)

Display 6 Autocorr(X2)

Display 7 Autocorr(X3)

Display 8 Autocorr(X4)

SCALE=value
controls the initial multiplicative scale to the covariance matrix of the proposal distribution for the
random walk–based Metropolis algorithm for logit models. By default, SCALE=2.93. For more
information, see the section “Scale Tuning” on page 1049.

SEED=n
specifies the random number seed. By default, SEED=0, and PROC BCHOICE gets a random number
seed from the system clock. Negative seed values are treated as the default. The largest possible value
for the seed is 231 � 1. Analyses that use the same nonzero seed are reproducible. The seed value is
reported in the “Model Information” table.
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STATISTICS< (global-stats-options) > = NONE | ALL |stats-request

STATS< (global-stats-options) > = NONE | ALL |stats-request
specifies options for posterior statistics. By default, PROC BCHOICE computes the posterior mean,
standard deviation, quantiles, and two 95% credible intervals: equal-tail and highest posterior density
(HPD). Other available statistics include the posterior correlation and covariance. For more information,
see the section “Summary Statistics” on page 151. You can request all the posterior statistics by
specifying STATS=ALL. You can suppress all the calculations by specifying STATS=NONE.

You can specify the following global-stats-options:

ALPHA=numeric-list
specifies the ˛ level for the equal-tail and HPD intervals. The value of ˛ must be between 0 and
0.5. By default, ALPHA=0.05.

PERCENT=numeric-list

PERCENTAGE=numeric-list
calculates the posterior percentages. The numeric-list contains values between 0 and 100. By
default, PERCENTAGE=(25 50 75).

You can specify the following stats-requests:

ALL
computes all posterior statistics. You can combine the ALL option with any other options. For
example, STATS(ALPHA=(0.02 0.05 0.1))=ALL computes all statistics by using the default
settings and intervals at ˛ levels of 0.02, 0.05, and 0.1.

BRIEF
computes the posterior means, standard deviations, and 100.1 � ˛/% HPD credible interval for
each variable. By default, ALPHA=0.05, but you can use the global ALPHA= option to request
other values. This is the default output for posterior statistics.

CORR
computes the posterior correlation matrix.

COV
computes the posterior covariance matrix.

INTERVAL

INT
computes the 100.1 � ˛/% equal-tail and HPD credible intervals for each variable. For more
information, see the sections “Equal-Tail Credible Interval” on page 152 and “Highest Posterior
Density (HPD) Interval” on page 152. By default, ALPHA=0.05, but you can use the global
ALPHA= option to request other intervals of any probabilities.

NONE
suppresses all the statistics.
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SUMMARY

SUM
computes the posterior means, standard deviations, and percentile points for each variable. By
default, the 25th, 50th, and 75th percentile points are produced, but you can use the global
PERCENT= option to request specific percentile points.

TARGACCEPT=value
specifies the target acceptance rate for the random walk–based Metropolis algorithm for logit models.
For more information, see the section “Metropolis and Metropolis-Hastings Algorithms” on page 132
in Chapter 7, “Introduction to Bayesian Analysis Procedures.” The numeric value must be between
0.01 and 0.99. By default, TARGACCEPT=0.45 for one parameter; TARGACCEPT=0.35 for two,
three, or four parameters; and TARGACCEPT=0.234 for more than four parameters (Roberts, Gelman,
and Gilks 1997; Roberts and Rosenthal 2001).

THIN=n

NTHIN=n
controls the thinning rate of the simulation. PROC BCHOICE keeps every nth simulation sample and
discards the rest. All posterior statistics and diagnostics are calculated by using the thinned samples.
By default, THIN=1. For more information, see the section “Burn-in, Thinning, and Markov Chain
Samples” on page 136.

TUNEWT=value
specifies the multiplicative weight used in updating the covariance matrix of the proposal distribution
for the random walk sampler for logit models. The numeric value must be between 0 and 1. By default,
TUNEWT=0.75. For more information, see the section “Covariance Tuning” on page 1050.

BY Statement
BY variables ;

You can specify a BY statement with PROC BCHOICE to obtain separate analyses of observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the BCHOICE procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.
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CLASS Statement
CLASS variable < (options) > . . . < variable < (options) > > < / global-options > ;

The CLASS statement names the classification variables to be used as explanatory variables in the analysis.

The CLASS statement must precede the MODEL statement. Most options can be specified either as individual
variable options or as global-options. You can specify options for each variable by enclosing the options in
parentheses after the variable name. You can also specify global-options for the CLASS statement by placing
them after a slash (/). Global-options are applied to all the variables specified in the CLASS statement. If you
specify more than one CLASS statement, the global-options specified in any one CLASS statement apply to
all CLASS statements. However, individual CLASS variable options override the global-options. You can
specify the following values for either an option or a global-option:

CPREFIX=n
specifies that, at most, the first n characters of a CLASS variable name be used in creating names for
the corresponding design variables. The default is 32 �min.32;max.2; f //, where f is the formatted
length of the CLASS variable.

DESCENDING

DESC
reverses the sort order of the classification variable. If both the DESCENDING and ORDER= options
are specified, PROC BCHOICE orders the categories according to the ORDER= option and then
reverses that order.

LPREFIX=n
specifies that, at most, the first n characters of a CLASS variable label be used in creating labels for the
corresponding design variables. The default is 256 �min.256;max.2; f //, where f is the formatted
length of the CLASS variable.

MISSING
treats missing values (., ._, .A, . . . , .Z for numeric variables and blanks for character variables) as valid
values for the CLASS variable.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of classification variables. This ordering determines which
parameters in the model correspond to each level in the data, so the ORDER= option can be useful when
you use the CONTRAST statement. By default, ORDER=FORMATTED. For ORDER=FORMATTED
and ORDER=INTERNAL, the sort order is machine-dependent. When ORDER=FORMATTED is in
effect for numeric variables for which you have supplied no explicit format, the levels are ordered by
their internal values.

The following table shows how PROC BCHOICE interprets values of the ORDER= option.
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Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set
FORMATTED External formatted values, except for numeric

variables with no explicit format, which are sorted
by their unformatted (internal) values

FREQ Descending frequency count; levels with more
observations come earlier in the order

INTERNAL Unformatted value

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

PARAM=keyword
specifies the parameterization method for the classification variable or variables. You can specify any
of the keywords shown in the following table; ; the default is PARAM=REF. Design matrix columns
are created from CLASS variables according to the corresponding coding schemes:

Value of PARAM= Coding

EFFECT Effect coding

GLM Less-than-full-rank reference cell coding (this
keyword can be used only in a global option)

REFERENCE
REF

Reference cell coding

All parameterizations are full rank, except for the GLM parameterization. The REF= option in the
CLASS statement determines the reference level for EFFECT and REFERENCE coding and for their
orthogonal parameterizations. It also indirectly determines the reference level for a singular GLM
parameterization through the order of levels.

REF=’level’ | keyword
specifies the reference level for PARAM=EFFECT, PARAM=REFERENCE, and their orthogonaliza-
tions. For PARAM=GLM, the REF= option specifies a level of the classification variable to be put at
the end of the list of levels. This level thus corresponds to the reference level in the usual interpretation
of the linear estimates with a singular parameterization.

For an individual variable REF= option (but not for a global REF= option), you can specify the level
of the variable to use as the reference level. Specify the formatted value of the variable if a format is
assigned. For a global or individual variable REF= option, you can use one of the following keywords.
The default is REF=LAST.

FIRST designates the first ordered level as reference.

LAST designates the last ordered level as reference.

TRUNCATE< =n >
specifies the length n of CLASS variable values to use in determining CLASS variable levels. The
default is to use the full formatted length of the CLASS variable. If you specify TRUNCATE without
the length n, the first 16 characters of the formatted values are used. When formatted values are longer
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than 16 characters, you can use this option to revert to the levels as determined in releases before SAS
9. The TRUNCATE option is available only as a global option.

MODEL Statement
MODEL response < (response-options) > = < fixed-effects > < / model-options > ;

The MODEL statement is required; it defines the dependent variable and the fixed effects. The fixed-effects
determine the X matrix of the model. The specification of effects is the same as in the GLIMMIX and
MIXED procedures, where you do not specify random effects in the MODEL statement.

Table 27.3 summarizes the options available in the MODEL statement. These are subsequently discussed in
detail in alphabetical order by option category.

Table 27.3 MODEL Statement Options

Option Description

CHOICESET= Specifies the variables for defining a choice set
COEFFPRIOR= Specifies the prior of the regression coefficients
COVPRIOR= Specifies the prior of the covariance parameter for a probit model
COVTYPE= Specifies the structure of the covariance matrix of the error difference for a

probit model
INIT= Controls the generation of initial values of the regression coefficients
LAMBDAPRIOR= Specifies the prior of the log-sum coefficients for a nested logit model
NEST= Defines the nonoverlapping nests for a nested logit model
SAMELAMBDA Constrains the log-sum coefficients to be the same for all the nests in a

nested logit model
TYPE= Specifies the type of the model

CHOICESET=(variables)
specifies one or more variables for defining the choice sets. You must specify how the choice sets are
constructed, and you can use more than one variable. PROC BCHOICE does not sort by the values of
the choice set variable; rather, it considers the data to be from a new choice set whenever the value of
the choice set variable changes from the previous observation.

COEFFPRIOR=NORMAL < (options) >

CPRIOR=NORMAL < (options) >
specifies the prior distribution for the regression coefficients. The default is the normal prior N.0; 102I/,
where I is the identity matrix. You can specify the following options, enclosed in parentheses:

INPUT=SAS-data-set
specifies a SAS data set that contains the mean and covariance information of the normal prior.
The data set must have a _TYPE_ variable to represent the type of each observation and a
variable for each regression coefficient. If the data set also contains a _NAME_ variable, the
values of this variable are used to identify the covariances for the _TYPE_=’COV’ observa-
tions; otherwise, the _TYPE_=’COV’ observations are assumed to be in the same order as the
explanatory variables in the MODEL statement. PROC BCHOICE reads the mean vector from
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the observation for which _TYPE_=’MEAN’ and reads the covariance matrix from observations
for which _TYPE_=’COV’. For an independent normal prior, the variances can be specified with
_TYPE_=’VAR’; alternatively, the precisions (inverse of the variances) can be specified with
_TYPE_=’PRECISION’.

VAR< =c >
specifies the normal prior N.0; cI/, where I is the identity matrix and c is a scalar.

COVPRIOR=IWISHART< (options) >
specifies an inverse Wishart prior distribution, IWISHART(a,b), for the covariance matrix for the vector
of error differences. For models that do not have a covariance matrix for the error differences (the logit
and nested logit models), this option is ignored.

You can specify the following options, enclosed in parentheses:

DF=a
specifies the degrees of freedom of the inverse Wishart distribution. The default is the number
of alternatives in the choice set plus 2, which is equivalent to the dimension of the covariance
matrix of the error differences plus 3.

SCALE=b
specifies bI for the scale parameter of the inverse Wishart distribution, where I is the identity
matrix. The default is the number of alternatives in the choice set plus 2.

COVTYPE=UN | VC
specifies the covariance structure of the error difference vector for a probit model. Although a variety
of structures are available, most applications call for either COVTYPE=VC or COVTYPE=UN for
the error difference vector. The COVTYPE=VC (variance components) models a different variance
component for each error term. The TYPE=UN (unstructured) specifies a full structured covariance
matrix. The unstructured form accommodates any pattern of correlation in addition to fitting a different
variance component for each error difference term.

INIT=keyword-list | (numeric-list)

INITIAL=keyword-list | (numeric-list)
specifies options for generating the initial values for the coefficients parameters that are specified
as fixed-effects in the MODEL statement. By default, INIT=POSTMODE for logit models and
INIT=PRIORMODE for probit models. You can specify the following keywords:

LIST=numeric-list
assigns the numbers to be the initial values of the fixed effects in the corresponding list order.
The length of the list must be the same as the number of fixed effects. For example, the following
statement assigns the values 1, 2, and 3 to the first, second, and third coefficients in the model
and prints the table of initial values:

model y = x / choiceset=(ID Index) init=(list=(1 2 3) pinit);

If the length of the list is less than the number of fixed effects, the initial value of each remaining
parameter will be replaced by the corresponding default initial value. For example, the corre-
sponding mode of the posterior density is used for a logit model. If the length of the list is greater
than the number of fixed effects, the extra ones are ignored.
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PINIT
tabulates initial values for the fixed effects. (By default, PROC BCHOICE does not display the
initial values.)

POSTMODE
uses the mode of the posterior density as the initial value of the parameter, if you do not provide
one. If the mode does not exist or if it is on the boundary of the support of the density, the mean
value is used. If you specify POSTMODE for a probit model, where the posterior density is
difficult to obtain, PROC BCHOICE resets it to PRIORMODE.

PRIORMODE
uses the mode of the prior density as the initial value of the parameter.

LAMBDAPRIOR=SEMIFLAT< (options) >

LPRIOR=SEMIFLAT< (options) >
specifies a semi-flat prior distribution (Lahiri and Gao 2002) for the log-sum coefficient, �, for each
nest in a nested logit model. For models that are not nested logit, this option is ignored.

You can specify the following option, enclosed in parentheses:

PHI=a
specifies the parameter � of the semi-flat prior. By default, � D 0:8.

NEST=(numeric-list)
defines the nonoverlapping nests for a nested logit model. For a nested logit model, you must specify
the nests for all the alternatives in the choice set. Otherwise, the standard logit model is assumed. The
number of values in the list should match the number of alternatives in the choice sets, and each of the
actual values represents the nest that the particular alternative goes to. For example, NEST=(1 2 1 1 2)
arranges the first, third, and fourth alternatives in the first nest and the second and fifth alternatives in
the second nest. Currently, this option can accommodate only two-level nested logit models.

SAMELAMBDA
constrains the log-sum coefficients to be the same for all the nests in a nested logit model.

TYPE=keyword
specifies the type of the model. You can specify the following keywords:

LOGIT
specifies a standard logit model.

NLOGIT
specifies a nested logit model. If you do not also specify the NEST= option to define the nests,
this option is ignored, and a standard logit model is fit.

PROBIT
specifies a probit model.
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PREDDIST Statement
PREDDIST OUTPRED=SAS-data-set < COVARIATES=SAS-data-set > ;

The PREDDIST statement creates a new SAS data set that contains random samples from the posterior
predictive distribution of the choice probabilities. The posterior predictive distribution is the distribution of
unobserved observations (prediction) conditional on the observed data. Let Y be the observed data, X be the
covariates, � be the parameter, and Ypred be the unobserved data. The posterior predictive distribution is
defined as follows:

p.YpredjY;X/ D
Z
p.Ypred;�jY;X/d�

D

Z
p.Ypredj�;Y;X/p.�jY;X/d�

Assuming that the observed and unobserved data are conditionally independent given � , the posterior
predictive distribution can be further simplified as follows:

p.YpredjY;X/ D
Z
p.Ypredj�/p.�jY;X/d�

The posterior predictive distribution is an integral of the likelihood function p.Ypredj�/ with respect to
the posterior distribution p.�jY/. The PREDDIST statement generates samples from a posterior predictive
distribution based on draws from the posterior distribution of � .

You can specify the following options:

COVARIATES=SAS-data-set
names the SAS data set to contain the sets of explanatory variable values for which the predictions are
established. This data set must contain data that has the same variables used in the model. If you omit
the COVARIATES= option, the DATA= data set that is specified in the PROC BCHOICE statement is
used instead.

NALTER=n

NALTERNATIVE=n
specifies the number of alternatives in a choice set in the COVARIATES= data set. All choice sets in
the data must have the same number of alternatives. You must specify this option if a COVARIATES=
data set is given.

OUTPRED=SAS-data-set
creates an output data set to contain the samples from the posterior predictive distribution.

RANDOM Statement
RANDOM random-effects < / options > ;

The RANDOM statement defines the random effects in the choice model. You can use this statement to
specify traditional variance component models and to specify random coefficients, which can be classification
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or continuous. You can specify only one RANDOM statement. Include the TYPE= option to define the
covariance structure. PROC BCHOICE does not include the intercept in the RANDOM statement.

Table 27.4 summarizes the options available in the RANDOM statement. All options are subsequently
discussed in alphabetical order.

Table 27.4 Summary of RANDOM Statement Options

Option Description

COVPRIOR= Specifies the prior distribution for the covariance of the random
effects

MONITOR Displays solutions of the random effects
NOOUTPOST Suppresses the output of the posterior samples of random effects to

the OUTPOST= data set
REMEAN Models the prior mean of the random effects
SUBJECT= Identifies the subjects in the model
TYPE= Specifies the covariance structure

You can specify the following options in the RANDOM statement after a slash (/).

COVPRIOR=IWISHART< (options) >
specifies an inverse Wishart prior distribution, IWISHART(a,b), for the covariance matrix of the random
effects.

You can specify the following options, enclosed in parentheses:

DF=a
specifies the degrees of freedom of the inverse Wishart distribution. The default is the dimension
of the covariance matrix of the random effects plus 3.

SCALE=b
specifies bI for the scale parameter of the inverse Wishart distribution, where I is the identity
matrix. The default is the dimension of the covariance matrix of the random effects plus 3.

MONITOR
MONITOR=(numeric-list)
MONITOR=RANDOM (number )

outputs results for the individual-level random-effects parameters. (By default, PROC BCHOICE
does not output results for individual-level random-effects parameters.) You can monitor a subset of
the random-effects parameters. You can provide a numeric list of the SUBJECT indexes, or PROC
BCHOICE can randomly choose a subset of all subjects for you.

To monitor a list of random-effects parameters for certain subjects, you can provide their indexes as
follows:

random x / subject=index monitor=(1 to 5 by 2 23 57);

PROC BCHOICE outputs results of random effects for subjects 1, 3, 5, 23, and 57. PROC BCHOICE
can also randomly choose a subset of all the subjects to monitor, if you submit a statement such as the
following:
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random x / subject=index monitor=(random(12));

PROC BCHOICE outputs results of random effects for 12 randomly selected subjects. You control the
sequence of the random indexes by specifying the SEED= option in the PROC BCHOICE statement.

When you specify the MONITOR option, it uses the specification of the STATISTICS= and PLOTS=
options in the PROC BCHOICE statement. By default, PROC BCHOICE outputs all the poste-
rior samples of all random-effects parameters to the OUTPOST= output data set. You can use the
NOOUTPOST option to suppress the saving of the random-effects parameters.

NOOUTPOST
suppresses the output of the posterior samples of random-effects parameters to the OUTPOST= data
set. In models that have a large number of random-effects parameters (for example, tens of thousands),
PROC BCHOICE can run faster if it does not save the posterior samples of the random-effects
parameters.

When you specify both the NOOUTPOST option and the MONITOR option, PROC BCHOICE outputs
the list of variables that are monitored.

The maximum number of variables that can be saved to an OUTPOST= data set is 32,767. If you
run a large-scale random-effects model in which the number of parameters exceeds this limit, the
NOOUTPOST option is invoked automatically and PROC BCHOICE does not save the random-effects
draws to the posterior output data set. You can use the MONITOR option to select a subset of the
parameters to store in the OUTPOST= data set.

REMEAN
models the mean of the random effects, so that N is estimated. You can also model the prior mean of
the random effects as a function of individual demographic variables. Rossi, McCulloch, and Allenby
(1996) and Rossi, Allenby, and McCulloch (2005) propose adding another layer of flexibility to the
random-effects-only model by allowing heterogeneity that is driven by observable (demographic)
characteristics of the individuals. The following REMEAN=(AGE GENDER) option in the RANDOM
statement estimates the mean of the random effect, X, and models the mean as a function of Age and
Gender:

random X / subject=Index remean=(Age Gender);

SUBJECT=effect

SUB=effect
identifies the subjects in the model. PROC BCHOICE assumes complete independence across subjects;
thus, for the RANDOM statement, the SUBJECT= option produces a block-diagonal structure that has
identical blocks. Specifying a subject effect is equivalent to nesting all other effects in the RANDOM
statement within the subject effect.

The effect can be continuous variables. PROC BCHOICE does not sort by the values of the continuous
variable; rather, it considers the data to be from a new subject or group whenever the value of the
continuous variable changes from the previous observation.
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TYPE=UN | VC
specifies the covariance structure. Although a variety of structures are available, most applications
call for either TYPE=VC or TYPE=UN. The TYPE=VC (variance components) option, which is the
default structure, models a different variance component for each random effect. The TYPE=UN
(unstructured) specifies a full structured covariance matrix for the random effects. The unstructured
form accommodates any pattern of correlation between the random effects in addition to fitting a
different variance component for each random effect.

Details: BCHOICE Procedure

Discrete Choice Models
Discrete choice models are used in marketing research to model decision makers’ choices among alternative
products and services. The decision makers might be people, households, companies and so on, and the
alternatives might be products, services, actions, or any other options or items about which choices must be
made (Train 2009). The collection of alternatives that are available to the decision makers is called a choice
set.

Discrete choice models are derived under the assumption of utility-maximizing behavior by the decision
maker. When individuals are asked to make one choice among a set of alternatives, they usually determine
the level of utility that each alternative offers. The utility that individual i obtains from alternative j among J
alternatives is denoted as

uij D vij C �ij ; i D 1; : : : ; N; and j D 1; : : : ; J

where the subscript i is an index for the individuals, the subscript j is an index for the alternatives in a choice
set, vij is a nonstochastic utility function that relates those observed factors to the utility, and �ij is the error
component that captures the unobserved characteristics of the utility. In discrete choice models, the observed
part of the utility function is assumed to be linear in the parameters,

vij D x0ijˇ

where xij is a p-dimensional design vector of observed attribute levels that relate to alternative j and ˇ is the
corresponding vector of fixed regression coefficients that indicate the utilities or part-worths of the attribute
levels.

Decision makers choose the alternative that gives them the greatest utility. Let yi be the multinomial response
vector for the ith individual. The value yij takes 1 if the jth component of ui D .ui1; : : : ; uiJ / is the largest,
and 0 otherwise:

uij D x0ijˇ C �ij

yij D

�
1 if uij � max.ui /
0 otherwise
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The probability that the individual i chooses alternative j is

P.yij D 1/ D Pr .uij > uik for all k ¤ j /

D Pr .vij C �ij > vik C �ik for all k ¤ j /

D Pr .�ik � �ij < vij � vik for all k ¤ j /

D

Z
�

I.�ik � �ij < vij � vik for all k ¤ j /f .�i /d�i

where I(.) is the indicator function and f .�i / denotes the joint density of the error vector �i D .�i1; : : : ; �iJ /.
Different specifications about the density result in different types of choice models, as detailed in the next
section. Logit and nested logit models have a closed form for this integral, whereas a probit model does not.

Types of Choice Models

Logit

In the multinomial logit (MNL) model, each �ij .j D 1; : : : ; J / is independently and identically distributed
(iid) with the Type I extreme-value distribution, exp.� exp.��ij //, which is also known as the Gumbel
distribution. The essential part of the model is that the unobserved parts of utility are uncorrelated among all
alternatives, in addition to having the same variance. This assumption provides a convenient form for the
choice probability (McFadden 1974):

P.yij D 1/ D
exp.x0ijˇ/PJ
kD1 exp.x

0
ik
ˇ/
; i D 1; : : : ; N and j D 1; : : : ; J

The MNL likelihood is formed by the product of the N independent multinomial distributions:

p.Yjˇ/ D
NY
iD1

JY
jD1

P.yij D 1/
yij

The MNL model is by far the easiest and most widely used discrete choice model. It is popular because
the formula for the choice probability has a closed form and is readily interpretable. In his Nobel lecture,
McFadden (2001) tells a history of the development of this path-breaking model.

Bayesian analysis for the MNL model requires the specification of a prior over the coefficient parameters
ˇ and computation of the posterior density. It is convenient to use a normal prior on ˇ, �.ˇ/ D N. Ň;�ˇ/.
When the investigator has no strong prior beliefs about the location of the parameters, it is recommended that
diffuse, but proper, priors be used.

The posterior density of the parameter ˇ is

p.ˇjY/ / p.Yjˇ/�.ˇ/

Because discrete choice logit models fall under the framework of a generalized linear model (GLM) with
a logit link, you can use Metropolis-Hastings sampling with the Gamerman approach for the sampling
procedure. This approach extends the usual iterative weighted least squares method to include a sampling step
based on the Metropolis-Hastings algorithm for GLMs. For more information about the Gamerman approach,
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see the section “Gamerman Algorithm” on page 1047. You can also incorporate this methodology for a
hierarchical structure that has random effects. For more information, see the section “Logit with Random
Effects” on page 1042. The Gamerman approach is the default sampling method when a direct sampling that
uses a closed-form posterior distribution cannot be attained. The random walk Metropolis is also available
when you specify ALGORITHM=RWM in the PROC BCHOICE statement.

The iid assumption about the error terms of the utilities of the different alternatives imposes the independence
from irrelevant alternatives (IIA) property, which implies proportional substitution across alternatives.
Sometimes this property might seem restrictive or unrealistic, prompting the need for more flexible models to
overcome it.

Nested Logit

You derive the nested logit model by allowing the error components to be identical but nonindependent.
Instead of being independent Type I extreme-value errors, the errors are assumed to have a generalized
extreme-value (GEV) distribution. This model generalizes the standard logit model to allow for particular
patterns of correlation in unobserved utility (McFadden 1978).

In a nested logit model, all the alternatives in a choice set can be partitioned into nests in such a way that the
following conditions are true:

• The probability ratio of any two alternatives that are in the same nest is independent of the existence of
all other alternatives. Hence, the IIA assumption holds within each nest.

• The probability ratio of any two alternatives that are in different nests is not independent of the
existence of other alternatives in the two nests. Hence, the IIA assumption does not hold between
different nests.

A nested logit example from Train (2009) best explains how a nested logit model works. Suppose the
alternatives for commuting to work are driving an auto alone, carpooling, taking the bus, and taking the train.
If you remove any alternative, the probabilities of the other alternatives increase. But by what percentage
would each probability increase? Suppose the changes in probabilities occur as shown in Table 27.5.

Table 27.5 Example of IIA Holding within Nests of Alternatives

Probabilities with One Alternative Removed
Alternative Original Prob. Auto Alone Carpool Bus Train
Auto alone 0.40 – 0.45(+12.5%) 0.52(+30.0%) 0.48(+20.0%)
Carpool 0.10 0.20(+100%) – 0.13(+30.0%) 0.12(+20.0%)
Bus 0.30 0.48(+60.0%) 0.33(+10.0%) – 0.40(+33.0%)
Train 0.20 0.32(+60.0%) 0.22(+10.0%) 0.35(+70.0%) –

In Table 27.5, the probabilities for bus and train increase by the same proportion whenever you remove one
of the other alternatives. Therefore, IIA is valid between bus and train, so they can be placed in the same nest
called “transit.” Similarly, auto alone and carpool are placed in one nest called “auto.” IIA does not hold
between these two nests.

A convenient way to represent the model and substitution patterns is to draw a tree diagram, where each
branch denotes a subset of alternatives within which IIA holds and where each leaf on each branch denotes
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an alternative. The tree diagram for the commuting-to-work example is shown in Figure 27.10.

Figure 27.10 Two-Level Decision Tree

Although decision trees in nested logit analyses, such as the one shown in Figure 27.10, are often interpreted
as implying that the higher-level decisions are made first, followed by decisions at lower levels, no such
temporal ordering is necessarily required. A good way to think about nested logit models is that they are
appropriate when there are groups of alternatives that are similar to each other in unobserved ways. In other
words, nested logit models are appropriate when there is correlation between the alternatives in each nest
but no correlation between the alternatives in different nests. Currently, PROC BCHOICE considers only
two-level nested logit models.

In mathematical notation, let the set of alternatives be partitioned into K nonoverlapping subsets (nests)
that are denoted by S1; S2; : : : ; SK . The nested logit model is derived by assuming that the vector of the
unobserved part of the utility, �i D .�i1; : : : ; �iJ /, has a cumulative distribution

exp.�
KX
kD1

.
X
j2Sk

exp.��ij =�k//�k /

This is a type of generalized extreme value (GEV) distribution. For a standard logit model, each �ij is iid
with an extreme-value distribution, whereas for a nested logit model, the marginal distribution of �ij is an
extreme-value distribution. The �ij are correlated within nests. If alternatives j and m belong to the same
nest, then �ij is correlated with �im. But if any two alternatives are in different nests, their unobserved part of
utility is still independent. The parameter �k measures the degree of independence among alternatives in
nest k. The higher the value of �k is, the less correlation there is. However, the correlation is actually more
complicated than the parameter �k . The equation �k D 1 represents no correlation in nest k. If �k D 1 for
all nests, the nested logit model reduces to the standard logit model.

The choice probability for alternative j 2 Sk has a closed form:

P.yij D 1/ D
exp.x0ijˇ=�k/.

P
m2Sk

exp.x0imˇ=�k//
�k�1PK

lD1.
P
m2Sl

exp.x0imˇ=�l//�l

From this form, the nested logit likelihood is derived as the product of the N multinomial distributions:

p.Yjˇ;�/ D
NY
iD1

JY
jD1

P.yij D 1/
yij
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A prior for � D .�1; : : : ; �K/ is needed in addition to a prior for the coefficient parameters ˇ. The �k in nest
k is often called the log-sum coefficient. The value of �k must be positive for the model to be consistent with
utility-maximizing behavior. If �k 2 Œ0; 1� for all k, the model is consistent with utility maximization for
all possible values of the explanatory covariates, whereas the model is consistent only for some range of the
covariates but not for all values if �k > 1. Kling and Herriges (1995) and Herriges and Kling (1996) suggest
tests of consistency of nested logit with utility maximization when �k > 1. Train, McFadden, and Ben-Akiva
(1987) show an example of models for which �k > 1. A negative value of �k should be avoided because the
model will be inconsistent and imply that consumers are choosing the alternative to minimize their utilities.

For the nested logit model, noninformative priors are not ideal for �. Flat priors on different versions of the
parameter space can yield different posterior distributions.

Lahiri and Gao (2002) suggest the following semi-flat priors by using the parameter � for each �:

�.�/ D

8<:
0 if � � 0
� if 0 < � < 1
� expŒ �

1��
.1 � �/� if � � 1

PROC BCHOICE uses this prior with a default value of 0.8 for �. You can specify other values for �. Sims’
priors are also attractive with various s values as follows:

�.�/ D

�
0 if � � 0
s�s�1 exp.��s/ if � > 0

In addition, a gamma or beta distribution is a good choice for the prior of �. However, PROC BCHOICE
supports only semi-flat priors in this release.

When the priors for the parameters .ˇ;�/ are specified, the posterior density is as follows:

p.ˇ;�jY/ / p.Yjˇ;�/�.ˇ/�.�/

Another generalization of the conditional logit model, the heteroscedastic extreme-value (HEV) model, is
obtained by allowing independent but nonidentical errors that are distributed with a Type I extreme-value
distribution (Bhat 1995). The HEV model permits different variances on the error components of utility
across the alternatives. Currently, PROC BCHOICE does not consider this type of model.

Probit

The multinomial probit (MNP) model is derived when the errors, �0i D .�i1; �i2; : : : ; �iJ /, have a multivariate
normal (MVN) distribution with a mean vector of 0 and a covariance matrix †.

uij D x0ijˇ C �ij ; �i � N.0;†/; i D 1; : : : ; N and j D 1; : : : ; J

yij D

�
1 if uij � max.ui /
0 otherwise

where † is the J � J covariance matrix of the error vector. For a full covariance matrix, any pattern of
correlation and heteroscedasticity can be accommodated. Thus, this model fits a very general error structure.

However, the choice probability, from which the likelihood is derived, does not have a closed form. McCulloch
and Rossi (1994) propose an algorithm that is a multivariate version of the probit regression algorithm of
Albert and Chib (1993) and construct a Gibbs sampler that is based on a Markov chain to draw directly from
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the exact posteriors of the MNP model. This approach avoids direct evaluation of the likelihood. Hence,
it avoids problems that are associated with calculating choice probabilities that affect both the standard
likelihood and the method of simulated moments approaches.

To avoid the parameter identification problems, a usual practice is to take differences against one partic-
ular alternative, because only differences in utility matter. Suppose you take differences against the last
alternative in the choice set and you define wij D uij � uiJ ; Qxij D xij � xiJ , Q�ij D �ij � �iJ , and
Q�0i D .Q�i1; Q�i2; : : : ; Q�iJ�1/.

wij D Qx0ijˇ C Q�ij ; Q�i � N.0; Q†/; i D 1; : : : ; N and j D 1; : : : ; J � 1

yij D

�
1 if wij � max.0;wi;�j /
0 otherwise

where Q† is the .J � 1/ � .J � 1/ covariance matrix of the vector of error differences, Q�i , and wi;�j D
.wi1; : : : ; wi.j�1/; wi.jC1/; : : : ; wi.J�1//. The dimension has been reduced to J � 1. McCulloch and Rossi
(1994) call wij the latent variable. The introduction of the latent variables in what is known as the data
augmentation step makes the application of a Gibbs sampler feasible. The order in which the alternatives
appear in a choice set is important, so you should arrange the alternatives to appear in the same order in all
choice sets.

A normal prior is used for ˇ and an inverse Wishart prior on Q†:

�.ˇ/ D N. Ň;�ˇ/

�. Q†/ D inverse Wishart.�;V/

Then sampling is carried out consecutively from the following three groups of conditional posterior distribu-
tions:

.1/ .wij jwi;�j ;ˇ; Q†;Y/; i D 1; : : : ; N and j D 1; : : : ; J � 1

.2/ .ˇjW; Q†;Y/

.3/ . Q†jW;ˇ;Y/

where W is obtained by stacking all wi . All three groups of conditional distributions have closed forms that
are easily drawn from. Conditional (1) is truncated normals, (2) is a regular normal, and (3) is an inverse
Wishart distribution. This sampling avoids the tuning stage that is required by most Metropolis-Hastings
algorithms, and its analytically tractable complete data likelihood also makes it easy to embed probit models
into more elaborate hierarchical structures, such as random-effects models. For more information, see
McCulloch and Rossi (1994).

Originally, the multinomial probit model required burdensome computation compared to a family of multino-
mial choice models that are derived from the Gumbel distributed utility function, because the computation
involves multidimensional integration (with dimension J � 1) in the estimation process. In addition, the
multinomial probit model requires more parameters than other multinomial choice models. However, it fully
relaxes the restrictive IIA assumption that is imposed in logit models and allows any pattern of substitution
among alternatives. Because of the breakthrough Bayesian methods that Albert and Chib (1993) and McCul-
loch and Rossi (1994) introduced, the probit model can be estimated without the need to compute the choice
probabilities. This advantage has greatly increased the popularity of the probit model.
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Random Effects
Choice models that have random effects (or random coefficients) provide solutions to create individual-
level or group-specific utilities. They are also referred as “mixed models” or “hybrid models.” One of the
greatest challenges in marketing research is to account for the diversity of preferences and sensitivities in
the marketplace. Heterogeneity in individual preferences is the reason for differentiated product programs
and market segmentation. As individual preferences become more diverse, it becomes less appropriate to
consider the analyses in an aggregated way. Individual utilities are useful because they make segmentation
easy and provide a way to detect groups. Because people have different preferences, it can be misleading to
roll the whole sample together into a single set of utilities.

For example, imagine studying the popularity of a new brand. Some participants in the study who are
interviewed love the new brand, whereas others dislike it. If you simply aggregate the data and look at the
average, the conclusion is that the sample is ambivalent toward the new brand. This would be the least helpful
conclusion that could be drawn, because it does not fit for anyone.

Choice models that have random effects generalize the standard choice models to incorporate individual-level
effects. Let the utility that individual i obtains from alternative j in choice situation t (t D 1; : : : ; T ) be

uijt D x0ijtˇ C z0ijti C �ijt

yijt D

�
1 if uijt � max.ui1t ; ui2t ; : : : ; uiJ t /
0 otherwise

where yijt is the observed choice for individual i and alternative j in choice situation t; xijt is the fixed design
vector for individual i and alternative j in choice situation t; ˇ is the vector of fixed coefficients; zijt is the
random design vector for individual i and alternative j in choice situation t; and i is the vector of random
coefficients for individual i that correspond to zijt . Sometimes the random coefficients might be at a level
different from the individual level. For example, it is common to assume that there are random coefficients
at the household level or group level of participants. For the convenience of notation, random effects are
assumed to be at the individual level.

In the random-effects model, it is assumed that each i is drawn from a superpopulation and this superpop-
ulation is normal, i � iid N.0;�/. An additional stage is added to the model where a prior for � is
specified:

�.i / D N.0;�/
�.�/ D inverse Wishart.�0;V0/

The covariance matrix � characterizes the extent of heterogeneity among individuals. Large diagonal
elements of� indicate substantial heterogeneity in part-worths. Off-diagonal elements indicate patterns in
the evaluation of attribute levels. For example, positive covariances specify pairs of attribute levels that tend
to be evaluated similarly across respondents. Product offerings that consist of these attribute levels are more
strongly preferred or disliked by certain individuals.

In this setup, the prior mean is 0 for the random effects, meaning that the random effects either are truly
around 0 or have been centered by the fixed effects. For random effects whose mean is not around 0, you
can follow the usual practice of specifying them in the fixed effects. For example, if one random effect is
price and you do not think that the population mean of price is around 0, then you should add price as a fixed
effect as follows:
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proc bchoice data=randeffdata;
class subj set;
model y = price / choiceset=(subj set);
random price / subject=subj;

run;

Thus, you obtain the estimate for the population mean of the price effect through the fixed effect, and you
obtain the deviation from the population mean for each individual through random effects.

Allenby and Rossi (1999) and Rossi, Allenby, and McCulloch (2005) propose a hierarchical Bayesian
random-effects model that is set up in a different way. In their model, there are no fixed effects but only
random effects. This model, which is referred to as the random-effects-only model in the rest of this chapter,
is as follows:

uijt D z0ijti C �ijt

yijt D

�
1 if uijt � max.ui1t ; ui2t ; : : : ; uiJ t /
0 otherwise

�.i / D N. N;�/

�.�/ D inverse Wishart.�0;V0/

where N is a mean vector of regression coefficients, which models the central location of distribution of the
random coefficients; N represents the average part-worths across the respondents in the data. If you want to
use this setup, specify the REMEAN option in the RANDOM statement to request estimation on N and do
not specify any fixed effects in the MODEL statement.

Rossi, McCulloch, and Allenby (1996) and Rossi, Allenby, and McCulloch (2005) add another layer
of flexibility to the random-effects-only model by allowing heterogeneity that is driven by observable
(demographic) characteristics of the individuals. They model the prior mean of the random coefficients as a
function of the individual’s demographic variables (such as age and gender),

�.i / D N.�di ;�/

�.�/ D inverse Wishart.�0;V0/

where di is a vector that consists of an intercept and some observable demographic variables. � is a matrix
of regression coefficients, which affects the location of distribution of the random coefficients. � should
be useful for identifying respondents who have part-worths that are different from those in the rest of the
sample if some individual-level characteristics are included in di . This specification allows the preferences
or intercepts to vary by both demographic variables and the slopes. If di consists of only an intercept, this
model reduces to the previous one. For more information about how to sample � , see Rossi, McCulloch, and
Allenby (1996), Rossi, Allenby, and McCulloch (2005) (Section 2.12 in Chapter 2), and Rossi (2012).

Logit with Random Effects

The logit model with random effects consists of the fixed-coefficients parameters ˇ, the random-coefficients
parameters i , and the covariance parameters for the random coefficients� . You can use the Metropolis-
Hastings sampling with Gamerman approach to draw samples through the following three conditional
posterior distributions:

.1/ .ˇji ;Y/

.2/ .i jˇ;� ;Y/ i D 1; : : : ; N

.3/ .� ji ;Y/
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All chains are initialized with random effects that are set to 0 and a covariance matrix that is set to an identity
matrix. Updating is done first for the fixed effects, ˇ, as a block to position the chain in the correct region of
the parameter space. Then the random effects are updated, and finally the covariance of the random effects is
updated. For more information, see Gamerman (1997) and the section “Gamerman Algorithm” on page 1047.

The hierarchical Bayesian random-effects-only model as proposed in Allenby and Rossi (1999) and Rossi,
Allenby, and McCulloch (2005) contains the random-coefficients parameters i , the population mean of
the random-coefficients parameters N , and the covariance parameters for the random coefficients� . The
sampling can be carried out by the following conditional posteriors:

.1/ .i j N;� ;Y/ i D 1; : : : ; N

.2/ . Nji ;�/

.3/ .� ji ; N/

The second and third conditional posteriors are easy to draw because they have direct sampling distributions:
the second has a normal distribution with a mean of

PN
iD1 i=N and a covariance of �=N ; the third is

an inverse Wishart.�0 CN;V0 C S/, where S D
PN
iD1.i � N/.i � N/

0=N . There is no closed form for
the first conditional posterior. The Metropolis-Hastings sampling with Gamerman approach is the default
sampling algorithm for it.

You can also use random walk Metropolis sampling when direct sampling is not an option, such as for the fixed-
coefficients parameters ˇ and random-coefficients parameters i . You can specify ALGORITHM=RWM to
choose random walk Metropolis sampling. For the random-coefficients parameters i , Rossi, McCulloch,
and Allenby (1996) and Rossi, Allenby, and McCulloch (2005) suggest random walk Metropolis sampling
in which increments have covariance s2�t , where s is a scaling constant whose value is usually set at

2:93p
dim.i /

and�t is the current draw of� .

The sampling for the random-effects-only setup is often faster, because the first conditional posterior for each
i involves only the data for individual i and because the second and third conditional posteriors depend not on
the data directly but only on the draws of i .

Probit with Random Effects

The probit model with random effects has the following parameters: the fixed-coefficients parameters ˇ, the
covariance parameters for the error differences Q†, the random-coefficients parameters i , and the covariance
parameters for the random coefficients � . It has extra parameters .i ;�/ in addition to .ˇ; Q†/ in a
fixed-effects-only model. You can conveniently adapt the Gibbs sampler proposed in McCulloch and Rossi
(1994) to handle the model by appending the new parameters to the set of parameters that would be drawn
for a probit model without random coefficients. The sampling can be carried out by the following conditional
posteriors:

.1/ .wij jwi;�j ;ˇ; Q†;i ;Y/ i D 1; : : : ; N and j D 1; : : : ; J � 1

.2/ .ˇjW; Q†;i ;Y/

.3/ .i jW;ˇ; Q†;� ;Y/ i D 1; : : : ; N

.4/ . Q†jW;ˇ;Y/

.5/ .� jW;ˇ; Q†;i ;Y/
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All the groups of conditional distributions have closed forms that are easily drawn from. Conditional (1)
is truncated normal, (2) and (3) are normal, and (4) and (5) are inverse Wishart distribution. For more
information, see McCulloch and Rossi (1994).

Identification and Specification
Two aspects of identification in choice models play an important role in model specification: location shift
and scale shift. For more detailed information, see Chapter 2 in Train (2009).

Location Shift

Decision makers choose the alternative that gives them the greatest utility. If a constant is added to the
utilities of all alternatives, the location of the utilities will change, but the decision maker will choose the
same alternative.

The probability that the individual i chooses alternative j is

P.yij D 1/ D Pr .uij > uik for all k ¤ j /

D Pr .uij � uik > 0 for all k ¤ j /

Only the difference in utilities matters, not the absolute values (Train 2009). This explains why there is no
overall intercept term in a choice model.

Alternative-Specific Main Effects
People often want to observe the main effect that is related to each of the alternatives. For example,

uij D ˛j C x0ijˇ C �ij for all j

where ˛j is the main effect that is related to alternative j, xij is the design variable vector that is specific to
alternative j, and ˇ are the corresponding coefficients of xij . The main effect ˛j implies the average effect
for alternative j on utility of all factors that are not included in the model.

Consider a person who can take either a car or a bus to work. The form of utilities for taking a car or bus can
be specified as follows:

ucar D ˛1car C x0carˇ C �car
ubus D ˛1bus C x0busˇ C �bus

The preceding form is equivalent to the form

ucar D ˛2car C x0carˇ C �car
ubus D ˛2bus C x0busˇ C �bus

as long as ˛1car � ˛
1
bus D ˛

2
car � ˛

2
bus. There are infinitely many values that will result in the same choice

probabilities. The two main effects are not estimable.
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To avoid this problem, you must normalize one of the main effects to 0. If you set ˛car to 0, then ˛bus
is interpreted as the average effect on the utility of bus relative to car. PROC BCHOICE automatically
normalizes for you by setting one of the main effects to 0 if you specify the alternative specific main effects
in the CLASS statement. If you want to designate which alternative to set to 0, use the REF= option in the
CLASS statement.

Individual-Specific Effects
Attributes of the alternatives vary, so they are also called alternative-specific effects. However, demographic
variables, such as age, gender, and race, do not change among alternatives for an individual. These are
individual-specific effects. They can enter the model only if they are specified in ways that create differences
in utilities among alternatives.

Suppose you want to examine the effect of an individual’s age on choosing car or bus:

ucar D x0carˇ C �carAgeC �car
ubus D ˛bus C x0busˇ C �busAgeC �bus

Because only differences in utility matter, you cannot estimate both �car and �bus. You need to set one of
them to 0. You can do this by interacting Age with the alternative-specific main effects, one of which has
been normalized to 0:

ucar D x0carˇ C �car
ubus D ˛bus C x0busˇ C �busAgeC �bus

where �bus is interpreted as the differential effect of age on the utility of bus versus car.

You need to make sure that individual-specific effects have interacted with some alternative-specific effects,
so that there is no identification problem. PROC BCHOICE checks whether there is any variable that does
not change among alternatives; it issues a warning message if any such variable is found.

Scale Shift

The scale of utility is also irrelevant for choice models. The alternative that has the largest utility is the largest,
regardless of how the utilities are scaled. Multiplying the utilities by a constant does not change the choice
probabilities.

Scale Normalization for Logit Models
Consider the utility function

u1ij D x0ijˇ C �
1
ij for all j

where Var.�1ij / D 1. There is another utility function

u2ij D x0ij .ˇ � �/C �
2
ij for all j

where Var.�2ij / D �
2. These two utility functions are equivalent. The coefficients .ˇ � �/ reflect the effect of

the observed variables relative to the standard deviation of the unobserved factors (Train 2009).

In both standard and nested logit models, the error variance is equal to �2=6, which is around 1.6. So the
coefficients are larger by a factor of

p
1:6 than the coefficients of a model that has an error variance of 1.
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Scale Normalization for Probit Models
Parameters in logit models are automatically normalized because of the specific variance assumption on the
error term. In probit models, the covariance matrix of the error is estimated together with the ˇ coefficients;
therefore, the normalization is not done automatically. The researcher has to be careful in interpreting the
results.

For notational convenience, use a four-alternative model. The error vector is �0 D .�1; �2; �3; �4/, which is
assumed to have a normal distribution with 0 mean and a covariance matrix

† D

0BB@
�11 �12 �13 �14
: �22 �23 �24
: : �33 �34
: : : �44

1CCA
where the dots refer to the corresponding elements in the upper part of the symmetric matrix. There are
J(J+1)/2 elements in the covariance matrix, but not all of them are estimable, because only the difference in
the utilities matters.

A typical way of normalizing the covariance matrix is to reduce it by differencing the utilities with respect to
the last alternative; some prefer the first alternative (Train 2009). You can choose which alternative to subtract
by rearranging the data in the right order. Define the error differences as .Q�14; Q�24; Q�34/; the subscripts mean
that the error difference is taken against the fourth one. The covariance matrix for the transformed new vector
of error differences is of the form

Q† D

0@ Q�11 Q�12 Q�13
: Q�22 Q�23
: : Q�33

1A
where

Q�11 D �11 C �44 � 2�14

Q�22 D �22 C �44 � 2�24

Q�33 D �33 C �44 � 2�34

Q�12 D �12 C �44 � �14 � �24

Q�13 D �13 C �44 � �14 � �34

Q�23 D �23 C �44 � �24 � �34

Furthermore, the top left entry on the diagonal is set to 1:

QQ† D

0@1 Q�12= Q�11 Q�13= Q�11
: Q�22= Q�11 Q�23= Q�11
: : Q�33= Q�11

1A
PROC BCHOICE outputs estimates of QQ†.

In the multinomial logit (MNL) model, each �ij is independently and identically distributed (iid) with the
Type I extreme-value distribution, and the covariance matrix is �2=6I . The normalized covariance matrix of
the vector of error differences would be0@1 0:5 :5

: 1 :5

: : 1

1A
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This provides a method of model selection: you might want to fit a probit model first, check the normalized
covariance matrix estimation to see how close it is to the preceding matrix, and then decide whether a simpler
logit model would be appropriate.

Gamerman Algorithm
Discrete choice logit models fall in the framework of a generalized linear model (GLM) with a logit link.
The Metropolis-Hastings sampling approach of Gamerman (1997) is well suited to this type of model.

In the GLM setting, the data are assumed to be independent with exponential family density

f .yi j�i / D exp Œ.yi�i � b.�i //=�i �c.yi ; �i /

The means that �i D E.yi j�i / are related to the canonical parameters �i via �i D b0.�i / and to the
regression coefficients via the link function

g.�i / D �i D Xiˇ

The maximum likelihood (ML) estimator in a GLM and the asymptotic variance are obtained by iterative
application of weighted least squares (IWLS) to transformed observations. Following McCullagh and Nelder
(1989), define the transformed response as

Qyi .ˇ/ D �i C .yi � �i /g0.�i /

and define the corresponding weights as

W�1i .ˇ/ D b00.�i /Œg
0.�i /�

2

Suppose a normal prior is specified on ˇ, �.ˇ/ D N. Ň;�ˇ/. The posterior density is as follows:

p.ˇjY/ / p.Yjˇ/�.ˇ/

/ exp f
NX
iD1

yi�i � b.�i /
�i

�
1

2
.ˇ � Ň/0��1ˇ .ˇ � Ň/g

Gamerman (1997) proposes that Metropolis-Hastings sampling be combined with iterative weighted least
squares as follows:

1. Start with ˇ.0/ and t D 1.

2. Sample ˇ� from the proposal density N.m.t/;C.t//, where

m.t/ D f��1ˇ CX0W.ˇ.t�1//Xg�1f��1ˇ Ň CX0W.ˇ.t�1// QY.ˇ.t�1//g

C.t/ D f��1ˇ CX0W.ˇ.t�1//Xg�1
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3. Accept ˇ� with probability

˛.ˇ.t�1/;ˇ
�/ D minŒ1;

p.ˇ�jY/q.ˇ�;ˇ.t�1//
p.ˇ.t�1/jY/q.ˇ.t�1/;ˇ�/

�

where p.ˇjY/ is the posterior density and q.ˇ�;ˇ.t�1// and q.ˇ.t�1/;ˇ�/ are the transitional prob-
abilities that are based on the proposal density N.m.:/;C.://. More specifically, q.ˇ�;ˇ.t�1// is an
N.m�;C�/ density that is evaluated at ˇ.t�1/, whereas m� and C� have the same expression as m.t/

and C.t/ but depend on ˇ� instead of ˇ.t�1/. If ˇ� is not accepted, the chain stays with ˇ.t�1/.

4. Set t D t C 1 and return to step 1.

You can extend this methodology to logit models that have random effects. If there are random effects, the
link function is extended to

g.�i / D �i D Xiˇ C Zii

where the random effects are assumed to have a normal distribution, �.i / D N.0;�/, and �.�/ D
inverse Wishart.�0;V0/. The posterior density is

p.ˇ;1; : : : ;N ;� jY/ / p.Yjˇ;1; : : : ;N ;�/�.ˇ/
NY
iD1

�.i /�.�/

The parameters are divided into blocks, ˇ;1; : : : ;N , and� . For the fixed-effects ˇ block, the conditional
posterior has the same form, but the link changes to include Zii ; i D 1; : : : ; N , which are taken as known
constants (offsets) at each iteration. The only change that is needed is to replace the transformed response
Qyi .ˇ.t�1// with Qyi .ˇ.t�1// � Zii in step 2 of the previous Gamerman procedure.

For the random-effects i block, the same Metropolis-Hastings sampling with the least square proposal can
apply. The conditional posterior is

p.i jY;ˇ;�/ / exp f
yi�i � b.�i /

�i
�
1

2
 0i�

�1
 ig

The transformed response is now Qyi .
.t�1/
i /, and the proposal density is N.m.t/i ;C

.t/
i /, where

m.t/i D f��1 C Z0W.
.t�1/
i /Zg�1Z0W.

.t�1/
i /f QY..t�1/i / �Xiˇg

C.t/ D f��1 C Z0W.
.t�1/
i /Xig�1

Finally, for the covariance matrix� block, direct sampling from an inverse Wishart.�0 CN;V0 C S/ is
used, where S D

PN
iD1 i

0
i=N .

The chain is initialized with random effects set to 0 and the covariance set to the identity matrix. Updating is
done first for the fixed effects, ˇ, as a block to position the chain in the correct region of the parameter space.
Then the random effects are updated, and finally the covariance of the random effects is updated. For more
information about this algorithm, see Gamerman (1997).
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Tuning the Random Walk Metropolis in Logit Models
When you use a random walk Metropolis for a logit model, you want to find a good proposal distribution for
each sampling block (for a fixed-effects block or for each individual random-effects block). This process is
called tuning. The tuning phase consists of a number of loops. The minimum number of loops is controlled
by the MINTUNE= option, which has a default value of 2. The MAXTUNE= option controls the maximum
number of tuning loops, and it has a default value of 6. The number of iterations in each loop is controlled by
the NTU= option, which has a default value of 500. At the end of every loop, PROC BCHOICE examines
the acceptance probability for each block. The acceptance probability is the percentage of proposals (one
from each iteration) that have been accepted. If the probability falls within the acceptance tolerance range
(see the section “Scale Tuning” on page 1049), the current configuration of the scale and covariance matrix is
kept. Otherwise, the scale and covariance matrix are modified before the next tuning loop.

A good proposal distribution should resemble the actual posterior distribution of the parameters. Large-sample
theory states that the posterior distribution of the parameters approaches a multivariate normal distribution
(Gelman et al. 2004, Appendix B; Schervish 1995, Section 7.4). That is why a normal proposal distribution
often works well in practice. The default proposal distribution in PROC BCHOICE is the normal distribution:

qj .�newj� t / D MVN.�newj� t ; c2†/

Scale Tuning

The acceptance rate is closely related to the sampling efficiency of a Metropolis chain. For a random
walk Metropolis, a high acceptance rate means that most new samples occur very close to the current data
point. Their frequent acceptance means that the Markov chain is moving rather slowly and not exploring
the parameter space fully. On the other hand, a low acceptance rate means that the proposed samples are
often rejected; hence the chain is not moving much. An efficient Metropolis sampler has an acceptance
rate that is neither too high nor too low. The scale c in the proposal distribution q.�j�/ effectively controls
this acceptance probability. Roberts, Gelman, and Gilks (1997) showed that if both the target and proposal
densities are normal, the optimal acceptance probability for the Markov chain should be around 0.45 in a
single-dimensional problem, and asymptotically approaches 0.234 in higher dimensions.

The nature of stochastic simulations makes it impossible to fine-tune a set of variables such that the Metropolis
chain has the exact desired acceptance rate. In addition, Roberts and Rosenthal (2001) empirically demonstrate
that an acceptance rate between 0.15 and 0.5 is at least 80% efficient, so there is really no need to fine-tune
the algorithms to reach an acceptance probability that is within small tolerance of the optimal values. PROC
BCHOICE works with a probability range, which is a˙b, where a and b are the values of the TARGACCEPT
and ACCEPTTOL options, respectively, in the BCHOICE statement. The default value of TARGACCEPT
is a function of the number of parameters in the model, as outlined in Roberts, Gelman, and Gilks (1997).
By default, ACCEPTTOL=0.075. If the observed acceptance rate in a particular tuning loop is less than the
lower bound of the range, the scale is reduced; if the observed acceptance rate is greater than the upper bound
of the range, the scale is increased. During the tuning phase, a scale parameter in the normal distribution is
adjusted as a function of the observed acceptance rate and the target acceptance rate. PROC BCHOICE uses
the updating scheme

cnew D
ccur �ˆ�1.popt=2/

ˆ�1.pcur=2/
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where ccur is the current scale, pcur is the current acceptance rate, and popt is the optimal acceptance
probability.1

Covariance Tuning

To tune a covariance matrix, PROC BCHOICE takes a weighted average of the old proposal covariance
matrix and the recently observed covariance matrix, based on a number of samples in the current loop that
is specified in NTU= option. The TUNEWT=w option determines how much weight is put on the recently
observed covariance matrix. The following formula is used to update the covariance matrix:

COVnew D w COVcur C .1 � w/COVold

For fixed effects:

• By default, PROC BCHOICE uses the mode of the posterior density as the initial value of the fixed
parameter and uses a numerical optimization routine (such as the quasi-Newton method) to find a
starting covariance matrix. The optimization is performed on the joint posterior distribution, and the
covariance matrix is a quadratic approximation at the posterior mode. In some cases, this is a better
and more efficient way of initializing the covariance matrix. However, there are cases (such as when
the number of parameters is large) where the optimization could fail to find a matrix that is positive
definite. In that case, the tuning covariance matrix is reset to the identity matrix.

• If you specify INIT=PRIORMODE or INIT=(LIST=numeric-list) to assign some initial values for
the fixed effects in the MODEL statement, no numerical optimization is carried out and the proposal
covariance matrix is set to the identity matrix divided by the number of parameters in the fixed effects
sampling block. It can take a number of tuning phases before the proposal distribution is tuned to its
optimal stage, because the Markov chain needs to spend time learning about the posterior covariance
structure. If the posterior variances of your parameters vary by more than a few orders of magnitude,
if the variances of your parameters are much different from 1, or if the posterior correlations are
high, then the proposal tuning algorithm might have difficulty with forming an acceptable proposal
distribution.

For random effects, the initial values are set to 0 and the proposal covariance matrix is set to the identity
matrix divided by the number of parameters in each individual-level random-effects sampling block.

Autocall Macros for Postprocessing
Although PROC BCHOICE provides a number of convergence diagnostic tests and posterior summary
statistics, it performs the calculations only for the default tests and statistics or only if you specify the
options in advance. If you want to analyze the posterior draws of unmonitored parameters or functions of
the parameters that are calculated in later DATA step calls, you can use the autocall macros that are listed in
Table 27.6.

1 Roberts, Gelman, and Gilks (1997) and Roberts and Rosenthal (2001) demonstrate that the relationship between acceptance
probability and scale in a random walk Metropolis is p D 2ˆ

�
�
p
Ic=2

�
, where c is the scale, p is the acceptance rate, ˆ is the

CDF of a standard normal, and I � Ef Œ.f 0.x/=f .x//2�, f .x/ is the density function of samples. This relationship determines the
updating scheme, with I being replaced by the identity matrix to simplify calculation.
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Table 27.6 Postprocessing Autocall Macros

Macro Description

%ESS Effective sample sizes
%GEWEKE* Geweke diagnostic
%HEIDEL* Heidelberger-Welch diagnostic
%MCSE Monte Carlo standard errors
%POSTACF Autocorrelation
%POSTCOR Correlation matrix
%POSTCOV Covariance matrix
%POSTINT Equal-tail and HPD intervals
%POSTSUM Summary statistics
%RAFTERY Raftery diagnostic
*The %GEWEKE and %HEIDEL macros use a different optimization routine
than that used in PROC BCHOICE. As a result, there might be numerical
differences in some cases, especially when the sample size is small.

Table 27.7 lists options that are shared by all postprocessing autocall macros. For macro-specific options, see
Table 27.8.

Table 27.7 Shared Options

Option Description

DATA=SAS-data-set Names the input data set that contains posterior samples
OUT=SAS-data-set Specifies a name for the output SAS data set to contain the results
PRINT=YES | NO Displays the results (the default is YES)
VAR=variable-list Specifies the variables on which to perform the calculation

Suppose the data set that contains posterior samples is called Post and the variables of interest are defined in
the macro variable &PARMS. The following statements call the %ESS macro and calculate the effective
sample sizes for each variable:

%ESS(data=Post, var=Alpha Beta U_1-U_17)

By default, the ESS estimates are displayed. You can choose not to display the result and instead use the
following statement to save the output to a data set:

%ESS(data=Post, var=&parms, print=NO, out=eout)

Some of the macros can take additional options, which are listed in Table 27.8.

Table 27.8 Macro-Specific Options

Macro Option Description

%ESS AUTOCORLAG=numeric Specifies the maximum number of autocorrelation lags used in
computing the ESS estimates. By default,
AUTOCORLAG=MIN(500, NOBS/4), where NOBS is the
sample size of the input data set.
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Table 27.8 (continued)

Option Description

HIST=YES | NO Displays a histogram of all ESS estimates. By default,
HIST=NO.

%GEWEKE FRAC1=numeric Specifies the earlier portion of the Markov chain used in the
test. By default, FRAC1=0.1.

FRAC2=numeric Specifies the latter portion of the Markov chain used in the test.
By default, FRAC2=0.5.

%HEIDEL SALPHA=numeric Specifies the ˛ level for the stationarity test. By default,
SALPHA=0.05.

HALPHA=numeric Specifies the ˛ level for the halfwidth test. By default,
HALPHA=0.05.

EPS=numeric Specifies a small positive number � such that if the halfwidth is
less than � times the sample mean of the remaining iterations,
the halfwidth test is passed. By default, EPS=0.1.

%MCSE AUTOCORLAG=numeric Specifies the maximum number of autocorrelation lags used in
computing the Monte Carlo standard error estimates. By
default, AUTOCORLAG=MIN(500, NOBS/4), where NOBS is
the sample size of the input data set.

%POSTACF LAGS=%str(numeric-list) Specifies which autocorrelation lags to calculate. The default
values are 1, 5, 10, and 50.

%POSTINT ALPHA=value Specifies the ˛ level .0 < ˛ < 1/ for the interval estimates. By
default, ALPHA=0.05.

%RAFTERY Q=numeric Specifies the order of the quantile of interest. By default,
Q=0.025.

R=numeric Specifies the margin of error for measuring the accuracy of
estimation of the quantile. By default, R=0.005.

S=numeric Specifies the probability of attaining the accuracy of the
estimation of the quantile. By default, S=0.95.

EPS=numeric Specifies the tolerance level for the stationary test. By default,
EPS=0.001.

For example, the following statement calculates and displays autocorrelation at lags 1, 6, 11, 50, and 100.
Note that the lags in the numeric-list must be separated by commas.

%PostACF(data=Post, var=&parms, lags=%str(1 to 15 by 5, 50, 100))

Regenerating Diagnostics Plots
By default, PROC BCHOICE generates three plots: the trace plot, the autocorrelation plot, and the kernel
density plot. Unless ODS Graphics is enabled before the procedure is called, it is hard to generate the
same graph afterward. Directly using the Stat.BCHOICE.Graphics.TraceAutocorrDensity template
is not feasible. The easiest way to regenerate the same graph is to use the %TADPlot autocall macro. The
%TADPlot macro requires you to specify an input data set (which is the output data set from a previous
PROC BCHOICE call) and a list of variables that you want to plot.
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Suppose that the output data set Postsamp contains posterior draws for the regression coefficients of Mode1,
Mode2, and Mode3. If you want to examine these parameters graphically, you can use the following
statements to regenerate the graphs:

ods graphics on;
%tadplot(data=Postsamp, var=Mode1 Mode2 Mode3)
ods graphics off;

Displayed Output
This section describes the displayed output from PROC BCHOICE. For a quick reference of all ODS table
names, see the section “ODS Table Names” on page 1056. ODS tables are arranged in four groups, listed
in the following sections: “Model- and Data-Related ODS Tables” on page 1053, “Sampling-Related ODS
Tables” on page 1054, “ODS Tables Related to Posterior Statistics” on page 1054, and “ODS Tables Related
to Convergence Diagnostics” on page 1055.

Model- and Data-Related ODS Tables

Model Information
The “Model Information” table (ODS table name ModelInfo) displays basic information about the model,
such as the name of the input data set, response variable, model type, sampling algorithm, burn-in size,
simulation size, thinning, and random number seed. The “Model Information” table is produced irrespective
of the sampling technique.

The “Model Information” table also displays the random number seed that is used to initialize the random
number generators. If you repeat the analysis and specify this seed value in the SEED= option in the PROC
BCHOICE statement, you get an identical stream of random numbers. This table is displayed by default.

Class Level Information
The “Class Level Information” table (ODS table name ClassLevels) lists the levels of every variable that is
specified in both the CLASS statement and the MODEL statement. You should check this information to
make sure that the data are correct. You can adjust the order of the CLASS variable levels by specifying the
ORDER= option in the CLASS statement. You can suppress the “Class Level Information” table completely
or partially by specifying the NOCLPRINT option in the PROC BCHOICE statement.

Choice Sets Summary
The “Choice Sets Summary” table (ODS table name ChoiceSummary) is displayed by default and should be
used to check the data entry. It shows the numbers of choice sets, the number of alternatives, and the number
of chosen and unchosen alternatives. You should always check this summary table to ensure that the data are
arrayed correctly. This table is displayed by default.

Number of Observations
The “NObs” table (ODS table name NOBS) shows the number of observations in the data set and the number
of observations that are used in the analysis. By default, observations that have missing values are not used.
This table is displayed by default.
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Sampling-Related ODS Tables

Burn-In History
The “Burn-In History” table (ODS table name BurnInHistory) shows the scales and acceptance rates for
each parameter block in the burn-in phase for logit models. The table is not displayed by default, but you
can request it by specifying MCHISTORY=BRIEF or MCHISTORY=DETAILED in the PROC BCHOICE
statement.

Parameters Initial Value
The “Parameters Initial” table (ODS table name ParametersInit) shows the initial value of each fixed regression
coefficient. This table is not displayed by default, but you can request it by specifying the option INIT=PINIT
in the MODEL statement.

Prior for Fixed Effects
The “Prior for Fixed Effects” table (ODS table name CoeffPrior) shows the prior distribution for the regression
coefficients. The table is displayed by default for a model with fixed effects.

Sampling History
The “Sampling History” table (ODS table name SamplingHistory) shows the scales and acceptance rates for
each parameter block in the main sampling phase for logit models. The table is not displayed by default,
but you can request it by specifying MCHISTORY=BRIEF or MCHISTORY=DETAILED in the PROC
BCHOICE statement.

Tuning History
The “Tuning History” table (ODS table name TuningHistory) shows the number of tuning phases used
in establishing the proposal distribution. The table also displays the scales and acceptance rates for each
parameter block at each of the tuning phases for logit models using random walk Metropolis algorithm. For
more information about the self-adapting proposal tuning algorithm, see the section “Tuning the Random
Walk Metropolis in Logit Models” on page 1049. The table is not displayed by default, but you can request it
by specifying MCHISTORY=BRIEF or MCHISTORY=DETAILED in the PROC BCHOICE statement.

ODS Tables Related to Posterior Statistics

PROC BCHOICE calculates some essential posterior statistics and outputs them to a number of ODS tables.
Some of the ODS tables are produced by default, and you can request others by specifying an option in
the PROC BCHOICE statement. For more information about the calculations, see the section “Summary
Statistics” on page 151.

Summary and Interval Statistics
The “Posterior Summaries and Intervals” table (ODS table name PostSumInt) contains basic summary and
interval statistics for each parameter. The table lists the number of posterior samples, the posterior mean
and standard deviation estimates, and the highest posterior density (HPD) interval estimates. This table is
displayed by default.

Summary Statistics
The “Posterior Summaries” table (ODS table name PostSummaries) contains basic statistics for each
parameter. The table lists the number of posterior samples, the posterior mean and standard deviation
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estimates, and the percentile estimates. This table is not displayed by default, but you can request it by
specifying the option STATISTICS=SUM.

Correlation Matrix
The “Posterior Correlation Matrix” table (ODS table name Corr) contains the posterior correlation of
model parameters. This table is not displayed by default, but you can request it by specifying the option
STATISTICS=CORR.

Covariance Matrix
The “Posterior Covariance Matrix” table (ODS table name Cov) contains the posterior covariance of model
parameters. This table is not displayed by default, but you can request it by specifying the option STATIS-
TICS=COV.

Deviance Information Criterion
The “Deviance Information Criterion” table (ODS table name DIC) contains the deviance information
criterion (DIC) of the model. This table is not displayed by default, but you can request it by specifying the
option DIC. For more information about the calculations, see the section “Deviance Information Criterion
(DIC)” on page 153.

Interval Statistics
The “Posterior Intervals” table (ODS table name PostIntervals) contains the equal-tail and highest posterior
density (HPD) interval estimates for each parameter. The default ˛ value is 0.05, and you can change it to
other levels by using the STATISTICS= option. This table is not displayed by default, but you can request it
by specifying the option STATISTICS=INT.

ODS Tables Related to Convergence Diagnostics

PROC BCHOICE provides convergence diagnostic tests that check for Markov chain convergence. The
procedure produces a number of ODS tables that you can request and save individually. For information
about calculation, see the section “Statistical Diagnostic Tests” on page 142.

Autocorrelation
The “Autocorrelations” table (ODS table name AUTOCORR) contains the first-order autocorrelations of the
posterior samples for each parameter. The Parameter column states the name of the parameter. By default,
PROC BCHOICE displays lag 1, 5, 10, and 50 estimates of the autocorrelations. You can request different
autocorrelations by using the DIAGNOSTICS=AUTOCORR(LAGS=) option. This table is displayed by
default.

Effective Sample Size
The “Effective Sample Sizes” table (ODS table name ESS) calculates the effective sample size of each
parameter. For more information, see the section “Effective Sample Size” on page 150. This table is displayed
by default.

Monte Carlo Standard Errors
The “Monte Carlo Standard Errors” table (ODS table name MCSE) calculates the standard errors of the
posterior mean estimate. For more information, see the section “Standard Error of the Mean Estimate”
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on page 151. This table is not displayed by default, but you can request it by specifying the option
DIAGNOSTICS=MCSE.

Geweke Diagnostics
The “Geweke Diagnostics” table (ODS table name Geweke) lists the results of the Geweke diagnostic test.
For more information, see the section “Geweke Diagnostics” on page 144. This table is not displayed by
default, but you can request it by specifying DIAGNOSTICS=GEWEKE.

Heidelberger-Welch Diagnostics
The “Heidelberger-Welch Diagnostics” table (ODS table name Heidelberger) lists the results of the
Heidelberger-Welch diagnostic test. The test consists of two parts: a stationary test and a half-width
test. For more information, see the section “Heidelberger and Welch Diagnostics” on page 146. This table is
not displayed by default, but you can request it by specifying DIAGNOSTICS=HEIDEL.

Raftery-Lewis Diagnostics
The “Raftery-Lewis Diagnostics” table (ODS table name Raftery) lists the results of the Raftery-Lewis
diagnostic test. For more information, see the section “Raftery and Lewis Diagnostics” on page 147. This
table is not displayed by default, but you can request it by specifying DIAGNOSTICS=RAFTERY.

ODS Table Names
PROC BCHOICE assigns a name to each table that it creates. You can use these names to refer to the tables
when you use the output delivery system (ODS) to select tables and create output data sets. These names are
listed in Table 27.9. For more information about ODS, see Chapter 21, “Statistical Graphics Using ODS.”

Table 27.9 ODS Tables Produced in PROC BCHOICE

ODS Table Name Description Statement or Option

AutoCorr Autocorrelation statistics for each
parameter

DIAG=AUTOCORR

BurnInHistory History of burn-in phase sam-
pling

MCHISTORY=BRIEF | DETAILED

ChoiceSummary Choice sets summary Default
ClassLevels Class level information Default
CoeffPrior Prior information for fixed effects Default
Corr Correlation matrix of the poste-

rior samples
STATS=CORR

Cov Covariance matrix of the poste-
rior samples

STATS=COV

DIC Deviance information criterion DIC
ESS Effective sample size for each pa-

rameter
Default

Geweke Geweke diagnostics for each pa-
rameter

DIAG=GEWEKE

Heidelberger Heidelberger-Welch diagnostics
for each parameter

DIAG=HEIDEL
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Table 27.9 (continued)

ODS Table Name Description Statement or Option

MCSE Monte Carlo standard error for
each parameter

STATS=MCSE

ModelInfo Model information Default
NObs Number of observations Default
ParametersInit Parameter initial values INIT=PINIT
PostSumInt Brief posterior statistics for each

parameter, including sample size,
mean, standard deviation, and
HPD intervals

Default

PostIntervals Equal-tail and HPD intervals for
each parameter

STATS=INT

PostSummaries Basic posterior statistics for each
parameter, including sample size,
mean, standard deviation, and per-
centiles

STATS=SUM

Raftery Raftery-Lewis diagnostics for
each parameter

DIAG=RAFTERY

SamplingHistory History of main phase sampling MCHISTORY=BRIEF | DETAILED
TuningHistory History of proposal distribution

tuning
MCHISTORY=BRIEF | DETAILED

ODS Graphics
You can refer by name to every graph that is produced through ODS Graphics. The names of the graphs that
PROC BCHOICE generates are listed in Table 27.10.

Table 27.10 Graphs Produced by PROC BCHOICE

ODS Graph Name Plot Description Statement and Option

ADPanel Autocorrelation function
and density panel

PLOTS=(AUTOCORR DENSITY)

AutocorrPanel Autocorrelation function
panel

PLOTS=AUTOCORR

AutocorrPlot Autocorrelation function
plot

PLOTS(UNPACK)=AUTOCORR

DensityPanel Density panel PLOTS=DENSITY
DensityPlot Density plot PLOTS(UNPACK)=DENSITY
TAPanel Trace and autocorrelation

function panel
PLOTS=(TRACE AUTOCORR)

TADPanel Trace, density, and
autocorrelation function
panel

PLOTS=(TRACE AUTOCORR DENSITY)
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Table 27.10 continued

ODS Graph Name Plot Description Statement and Option

TDPanel Trace and density panel PLOTS=(TRACE DENSITY)
TracePanel Trace panel PLOTS=TRACE
TracePlot Trace plot PLOTS(UNPACK)=TRACE

Examples: BCHOICE Procedure

Example 27.1: Alternative-Specific and Individual-Specific Effects
In many situations, a choice model that includes characteristics of both the alternatives and the individuals is
needed for investigating consumer choice.

Consider an example of travel demand. People are asked to choose among travel by auto, plane, or public
transit (bus or train). The following SAS statements create the data set Travel. The variables AutoTime,
PlanTime, and TranTime represent the total travel time that is required to get to a destination by using auto,
plane, or public transit, respectively. The variable Age represents the age of each individual who is surveyed,
and the variable Chosen contains each individual’s choice of travel mode.

data Travel;
input AutoTime PlanTime TranTime Age Chosen $;
AgeCtr=Age-34;
datalines;

10.0 4.5 10.5 32 Plane
5.5 4.0 7.5 13 Auto
4.5 6.0 5.5 41 Transit
3.5 2.0 5.0 41 Transit
1.5 4.5 4.0 47 Auto
10.5 3.0 10.5 24 Plane
7.0 3.0 9.0 27 Auto
9.0 3.5 9.0 21 Plane
4.0 5.0 5.5 23 Auto
22.0 4.5 22.5 30 Plane
7.5 5.5 10.0 58 Plane
11.5 3.5 11.5 36 Transit
3.5 4.5 4.5 43 Auto
12.0 3.0 11.0 33 Plane
18.0 5.5 20.0 30 Plane
23.0 5.5 21.5 28 Plane
4.0 3.0 4.5 44 Plane
5.0 2.5 7.0 37 Transit
3.5 2.0 7.0 45 Auto
12.5 3.5 15.5 35 Plane
1.5 4.0 2.0 22 Auto
;
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In this example, the AutoTime, PlanTime, and TranTime variables apply to the alternatives, whereas Age is a
characteristic of the individuals. AgeCtr, a centered version of Age, is created by subtracting the sample’s
mean age from each individual’s age. To study how the choice depends on both the travel time and age of the
individuals, you need to incorporate both types of variables.

Before you invoke PROC BCHOICE to fit a choice logit model, you must arrange your data in such a way
that there is one observation for each combination of individual and alternative. In this example, let Subject
identify the individuals, let TravTime represent the travel time for each mode of transportation, and let Choice
have the value 1 if the alternative is chosen and 0 otherwise. The following SAS statements rearrange the
data set Travel into a new data set, Travel2, and display the first nine observations:

data Travel2(keep=Subject Mode TravTime Age AgeCtr Choice);
array Times[3] AutoTime PlanTime TranTime;
array Allmodes[3] $ _temporary_ ('Auto' 'Plane' 'Transit');
set Travel;
Subject = _n_;
do i = 1 to 3;

Mode = Allmodes[i];
TravTime = Times[i];
Choice = (Chosen eq Mode);
output;

end;
run;

proc print data=Travel2 (obs=20);
by Subject;
id Subject;

run;

The data for the first nine observations is shown in Output 27.1.1.

Output 27.1.1 Data for the First Nine Observations

Subject Age AgeCtr Mode TravTime Choice

1 32 -2 Auto 10.0 0

32 -2 Plane 4.5 1

32 -2 Transit 10.5 0

Subject Age AgeCtr Mode TravTime Choice

2 13 -21 Auto 5.5 1

13 -21 Plane 4.0 0

13 -21 Transit 7.5 0

Subject Age AgeCtr Mode TravTime Choice

3 41 7 Auto 4.5 0

41 7 Plane 6.0 0

41 7 Transit 5.5 1

Notice that each subject in the data set Travel corresponds to a block of three observations in the data set
Travel2, one for each travel alternative. The response variable Choice indicates the chosen alternative by the
value 1 and the unchosen alternative by the value 0; exactly one alternative is chosen. The following SAS
statements invoke PROC BCHOICE to fit the choice logit model:
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proc bchoice data=Travel2 seed=124;
class Mode Subject / param=ref order=data;
model Choice = Mode TravTime / choiceset=(Subject);

run;

The “Choice Sets Summary” table shows that there are 21 choice sets and that each consists of three
alternatives and one chosen alternative (each subject chooses one out of the three travel modes). It seems that
the data are arrayed correctly.

Output 27.1.2 Choice Sets Summary

The BCHOICE ProcedureThe BCHOICE Procedure

Choice Sets Summary

Pattern
Choice

Sets
Total

Alternatives
Chosen

Alternatives
Not

Chosen

1 21 3 1 2

Summary statistics are shown in Output 27.1.3.

Output 27.1.3 PROC BCHOICE Posterior Summary Statistics

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

Mode Auto 5000 -0.1678 0.7440 -1.7017 1.2396

Mode Plane 5000 -1.8794 1.2683 -4.6055 0.3801

TravTime 5000 -0.5695 0.2047 -0.9943 -0.2328

When Transit is the reference mode (normalized to 0), the part-worth (posterior mean) of Auto, which is
negative, might reflect that driving is more inconvenient than traveling by bus or train, and the negative
part-worth of Plane might reflect that traveling by plane is more expensive than traveling by bus or train.
However, both are only suggestive, because the 95% HPD intervals have 0 in them. The posterior mean of
TravTime is negative, which makes sense because having to spend more time en route is often unfavorable.

To study the relationship between the choice of transportation and the age of people who make the choice,
you need to create an interaction between AgeCtr and Mode. AgeCtr is not estimable by itself, because it is
the same throughout a choice set for an individual. The following statements request the interaction between
AgeCtr and Mode:

proc bchoice data=Travel2 seed=124;
class Mode Subject / param=ref order=data;
model Choice = Mode Mode*AgeCtr TravTime / choiceset=(Subject);

run;
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Output 27.1.4 PROC BCHOICE Posterior Summary Statistics

The BCHOICE ProcedureThe BCHOICE Procedure

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

Mode Auto 5000 -0.2634 0.7883 -1.8072 1.1395

Mode Plane 5000 -2.8210 1.5370 -5.9228 -0.0686

AgeCtr*Mode Auto 5000 -0.0986 0.0678 -0.2182 0.0350

AgeCtr*Mode Plane 5000 0.0251 0.0775 -0.1268 0.1618

TravTime 5000 -0.7608 0.2564 -1.2943 -0.3473

The parameter estimate for Mode Auto reflects the part-worth of Auto for an individual of mean age (34 years
old), whereas the parameter estimate for Mode Plane is the part-worth of Plane for an individual of mean
age. There are two interaction effects: the first corresponds to the effect of a one-unit change in age on the
probability of choosing Auto over Transit, and the second corresponds to the effect of a one-unit change in
age on the probability of choosing Plane over Transit.

Example 27.2: Nested Logit Modeling
The standard logit model imposes the restriction of the independence from irrelevant alternatives (IIA)
property, which implies proportional substitution across alternatives. When the IIA assumption does not hold,
models with more flexibility are needed.

One of the most widely used models is called the nested logit. In a nested logit model, all the alternatives in a
choice set can be partitioned into nests in such a way that the following conditions are true:

• The ratio of any two alternatives that are in the same nest is independent of the existence of all other
alternatives. Hence, the IIA assumption holds within each nest.

• The ratio of any two alternatives that are in different nests is not independent of the existence of other
alternatives in the two nests. Hence, the IIA assumption does not hold between different nests.

For more information about nested logit models, see the section “Nested Logit” on page 1037.

In the previous example of travel demand data, people are asked to choose among travel by auto, plane, or
public transit. It seems that auto and public transit are more similar to each other than either of them are to
plane, because the probability of choosing auto and public transit might rise by about the same proportion
whenever the option of taking a plane is unavailable. A nested logit model that places auto and public transit
in one nest and plane in another nest might seem more reasonable than the standard logit model.

You specify a nested logit model by using the TYPE=NLOGIT option, and you allocate the nests by using
the NEST= option. In the following code, NEST=(1 2 1) implies that travel alternatives 1 (auto) and 3 (public
transit) are in the first nest and travel alternative 2 (plane) is in the second nest. There are two nests in total.

The deviance information criterion (DIC) is used to select the model. The “Deviance Information Criterion”
table (ODS table name DIC) contains the DIC of the model. The table is not displayed by default, but you can
request it by specifying the DIC option in the PROC BCHOICE statement. For more information about the
calculations, see the section “Deviance Information Criterion (DIC)” on page 153. The DIC option requests
the calculation of DIC.
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proc bchoice data=Travel2 seed=124 nmc=20000 nthin=2 dic;
class Mode Subject / param=ref order=data;
model Choice = Mode TravTime / choiceset=(Subject) type=nlogit nest=(1 2 1);

run;

Output 27.2.1 PROC BCHOICE Posterior Summary Statistics and DIC

The BCHOICE ProcedureThe BCHOICE Procedure

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

Mode Auto 10000 -0.2398 0.6574 -1.5032 1.1475

Mode Plane 10000 -2.0295 1.1816 -4.2724 0.3157

TravTime 10000 -0.5638 0.2042 -0.9638 -0.1872

Lambda 1 10000 0.8884 0.3540 0.2338 1.5334

Deviance Information Criterion

Dbar (Posterior Mean of Deviance) 32.946

Dmean (Deviance Evaluated at Posterior Mean) 30.311

pD (Effective Number of Parameters) 2.635

DIC (Smaller is Better) 35.581

There are two alternatives in the first nest and one alternative in the second nest. A nest that has only one
alternative is degenerate; therefore its � is not estimable. This explains why there is only one � estimate in
the output.

The following statements revisit the standard logit model (the default type) that is discussed in the previous
example and request that the calculation of DIC be displayed:

proc bchoice data=Travel2 seed=124 nmc=20000 nthin=2 dic;
class Mode Subject / param=ref order=data;
model Choice = Mode TravTime / choiceset=(Subject);

run;

Output 27.2.2 PROC BCHOICE Posterior Summary Statistics and DIC

The BCHOICE ProcedureThe BCHOICE Procedure

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

Mode Auto 10000 -0.1999 0.7341 -1.6891 1.1612

Mode Plane 10000 -2.0470 1.3376 -4.6183 0.5479

TravTime 10000 -0.6000 0.2333 -1.0716 -0.1986

Deviance Information Criterion

Dbar (Posterior Mean of Deviance) 33.356

Dmean (Deviance Evaluated at Posterior Mean) 30.550

pD (Effective Number of Parameters) 2.806

DIC (Smaller is Better) 36.161
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The DIC values are very close. A smaller DIC value indicates a better fit to the data; hence, the nested logit
model might be a little better.

Example 27.3: Probit Modeling
A more general model is the probit model, which is derived under the assumption of jointly normal random
utility components, where the error vector has a multivariate normal distribution with a mean vector of 0
and a covariance matrix †. For a full covariance matrix, PROC BCHOICE can accommodate any pattern of
correlation and heteroscedasticity. Thus, this model fits a very general error structure. For more information
about probit models, see the section “Probit” on page 1039.

In Train (2009), a project team collected the following data from commuters about four available travel
modes for their trips to work: car alone, carpool, bus, and railway. The time and cost of travel for each mode
were determined for each commuter, based on the location of the commuter’s home and workplace.

data Commuter;
input Subject Mode Choice Cost Time @@;
datalines;

1 1 1 1.51 18.5 1 2 0 2.34 26.34 1 3 0 1.8 20.87 1 4 0 2.36 30.03 2 1 0
6.06 31.31 2 2 0 2.9 34.26 2 3 0 2.24 67.18 2 4 1 1.86 60.29 3 1 1 5.79
22.55 3 2 0 2.14 23.26 3 3 0 2.58 63.31 3 4 0 2.75 49.17 4 1 1 1.87
26.09 4 2 0 2.57 29.9 4 3 0 1.9 19.75 4 4 0 2.27 13.47 5 1 1 2.5 4.7 5 2
0 1.72 12.41 5 3 0 2.69 43.09 5 4 0 2.97 39.74 6 1 1 4.73 3.07 6 2 0
0.62 9.22 6 3 0 1.85 12.83 6 4 0 2.31 43.54 7 1 1 4.73 13.14 7 2 0 0.6
17.77 7 3 0 2.43 54.09 7 4 0 2 42.22 8 1 1 5.35 52.9 8 2 0 2.91 48.78 8
3 0 2.61 69.16 8 4 0 2.78 53.25 9 1 0 4.41 61.06 9 2 0 1.59 62.13 9 3 1

... more lines ...

450 1 1 4.59 29.44 450 2 0 2.89 33.73 450 3 0 1.9 66.12 450 4 0 1.79
39.84 451 1 1 3.24 16.35 451 2 0 1.21 18.98 451 3 0 1.75 23.39 451 4 0
2.02 43.3 452 1 0 6.93 65.42 452 2 0 1.17 60.48 452 3 1 2.46 52.4 452 4
0 2.61 48.37 453 1 0 6.53 59.57 453 2 1 1.41 55.14 453 3 0 2.21 67.82
453 4 0 1.86 73.45
;

proc print data=Commuter(obs=20);
run;

The variable Mode has the value 1 for car alone, 2 for carpool, 3 for bus, and 4 for railway. The variable
Choice is the response variable that represents the decision among the four travel modes for each commuter.
The order in which the alternatives appear in a choice set is important: the variable Mode should have the
value 1 in the first alternative, 2 in the second alternative, then 3 in the third alternative, and finally 4 in the
last alternative. The data for the first five commuters are shown in Output 27.3.1.
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Output 27.3.1 Data for the First Five Commuters

Obs Subject Mode Choice Cost Time

1 1 1 1 1.51 18.50

2 1 2 0 2.34 26.34

3 1 3 0 1.80 20.87

4 1 4 0 2.36 30.03

5 2 1 0 6.06 31.31

6 2 2 0 2.90 34.26

7 2 3 0 2.24 67.18

8 2 4 1 1.86 60.29

9 3 1 1 5.79 22.55

10 3 2 0 2.14 23.26

11 3 3 0 2.58 63.31

12 3 4 0 2.75 49.17

13 4 1 1 1.87 26.09

14 4 2 0 2.57 29.90

15 4 3 0 1.90 19.75

16 4 4 0 2.27 13.47

17 5 1 1 2.50 4.70

18 5 2 0 1.72 12.41

19 5 3 0 2.69 43.09

20 5 4 0 2.97 39.74

The following statements fit a probit model by specifying TYPE=PROBIT. The BCHOICE procedure’s
implementation of the Gibbs sampler for the probit model exhibits a higher autocorrelation than that for the
logit model. High autocorrelation is created by introducing the latent variable via data augmentation because
of the dependence between the latent variable and the regression parameters. You might want to control
the thinning rate of the simulation. For example, THIN=10 keeps every 10th sample in the simulation and
discards the rest.

proc bchoice data=Commuter outpost=Commupostsamp thin=10 nmc=100000 seed=123;
class Mode(ref='1') Subject;
model Choice = Cost Time Mode / choiceset=(Subject) type=probit;

run;

Output 27.3.2 shows the summary statistics for the part-worth (ˇ) of each of the attributes (Cost, Time,
Mode 2, Mode 3, and Mode 4) and the covariance of the error difference vector ( Q†), which is displayed by
parameters labeled “Sigma 1 1,” “Sigma 2 1,” and so on.
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Output 27.3.2 Posterior Summary Statistics

The BCHOICE ProcedureThe BCHOICE Procedure

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

Cost 10000 -0.4643 0.0753 -0.6206 -0.3280

Time 10000 -0.0495 0.00569 -0.0610 -0.0386

Mode 2 10000 -3.4074 0.7458 -4.8666 -2.0469

Mode 3 10000 -2.0063 0.2904 -2.5885 -1.4614

Mode 4 10000 -1.6257 0.2123 -2.0489 -1.2241

Sigma 1 1 10000 1.0000 0 1.0000 1.0000

Sigma 2 1 10000 1.1620 0.5604 0.0427 2.2958

Sigma 2 2 10000 4.4616 2.2789 1.2285 8.7152

Sigma 3 1 10000 0.5645 0.2149 0.1426 0.9928

Sigma 3 2 10000 1.5985 0.9345 -0.0286 3.6894

Sigma 3 3 10000 1.3834 0.4737 0.5985 2.3179

It is well known that an identification problem exists in probit models, because location and scale transforma-
tions do not change the choices that are made. The solution to the location shift is differencing with respect
to the last alternative in each choice set. (See the section “Probit” on page 1039.) After that, a scale shift
problem remains, because the parameters .cˇ; c2 Q†/ for any constant c > 0 are equivalent to .ˇ; Q†/. A
solution to the scaling problem is to normalize the parameters with respect to one of the diagonal elements of
the covariance of the error difference vector, Q†. PROC BCHOICE reports .ˇ=

p
�11; Q†=�11/ at each draw,

where �11 is the first diagonal entry of Q†. This explains why “Sigma 1 1” is always 1 in Output 27.3.2.

By the IIA property in a logit model, it is assumed that all alternatives are independent and have the same
variance. Therefore, the normalized covariance matrix after differencing with respect to one of the alternatives
is of the form

Q† D

0@ 1 0:5 0:5

0:5 1 0:5

0:5 0:5 1

1A
Obviously, this matrix is quite different from the estimated normalized covariance matrix for this data set.
Fitting a standard logit model would be inappropriate.
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Example 27.4: A Random-Effects-Only Logit Model
This example revisits the trash can study that is described earlier in this chapter in the getting-started section
“A Logit Model with Random Effects” on page 1011.

If you want to create a random-effects-only model using the random walk Metropolis sampling as suggested
in Rossi, Allenby, and McCulloch (2005), you can add the ALG=RWM option to the PROC BCHOICE
statement to specify the random walk Metropolis sampling algorithm, add the REMEAN option to the
RANDOM statement to request estimation of the nonzero mean of the random effects, and not specify any
fixed effects in the MODEL statement as follows:

proc bchoice data=Trashcan outpost=Postsamp seed=123 nmc=50000 thin=2
alg=rwm nthreads=4;

class ID Task;
model Choice = / choiceset=(ID Task);
random Touchless Steel AutoBag Price80 / sub=ID remean

monitor=(1 to 5) type=un;
run;

Summary statistics for the mean of the random coefficients ( N), the covariance of the random coefficients
(� ), and the random coefficients (i ) for the first five individuals are shown in Output 27.4.1.
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Output 27.4.1 Posterior Summary Statistics

The BCHOICE ProcedureThe BCHOICE Procedure

Posterior Summaries and Intervals

Parameter Subject N Mean
Standard
Deviation

95%
HPD Interval

REMean Touchless 25000 1.7281 0.2711 1.1983 2.2651

REMean Steel 25000 1.0663 0.2661 0.5577 1.5998

REMean AutoBag 25000 2.2014 0.3520 1.5394 2.9100

REMean Price80 25000 -4.7018 0.6545 -6.0553 -3.4883

RECov Touchless, Touchless 25000 3.1178 1.1462 1.3552 5.3414

RECov Steel, Touchless 25000 -0.4517 0.9922 -2.1999 1.2156

RECov Steel, Steel 25000 2.6809 1.0342 1.0335 4.6468

RECov AutoBag, Touchless 25000 -0.7233 0.9521 -2.6063 1.0850

RECov AutoBag, Steel 25000 0.0301 0.8003 -1.4271 1.5548

RECov AutoBag, AutoBag 25000 3.6804 1.5597 1.1236 6.7726

RECov Price80, Touchless 25000 -1.3032 1.2372 -3.8305 0.8279

RECov Price80, Steel 25000 -1.6533 1.2926 -4.4595 0.5892

RECov Price80, AutoBag 25000 -2.3293 1.7191 -5.7326 0.6730

RECov Price80, Price80 25000 7.8969 3.3306 2.1101 14.3416

Touchless ID 1 25000 2.2223 1.0613 0.1295 4.2930

Steel ID 1 25000 0.7433 1.0823 -1.3053 2.9046

AutoBag ID 1 25000 3.7970 1.4406 1.1535 6.7240

Price80 ID 1 25000 -5.2465 2.3491 -10.0027 -0.9522

Touchless ID 2 25000 -0.0612 0.8563 -1.6726 1.6508

Steel ID 2 25000 -0.3962 0.8279 -2.1014 1.1849

AutoBag ID 2 25000 2.7067 1.3353 0.1149 5.3223

Price80 ID 2 25000 0.0271 1.3024 -2.5173 2.6137

Touchless ID 3 25000 1.1029 0.9627 -0.7106 3.1099

Steel ID 3 25000 1.6602 0.9599 -0.1585 3.5981

AutoBag ID 3 25000 0.2961 1.1676 -2.0028 2.5169

Price80 ID 3 25000 -0.9568 1.5615 -4.0940 2.0521

Touchless ID 4 25000 1.1556 0.9722 -0.7835 3.0279

Steel ID 4 25000 1.3922 1.0206 -0.5989 3.4310

AutoBag ID 4 25000 3.2143 1.4620 0.4988 6.1835

Price80 ID 4 25000 -6.6490 2.5043 -11.7925 -2.0763

Touchless ID 5 25000 0.4804 1.1831 -1.7839 2.8515

Steel ID 5 25000 2.7119 1.2432 0.4436 5.2051

AutoBag ID 5 25000 3.4736 1.6239 0.5679 6.8042

Price80 ID 5 25000 -5.1156 2.5674 -10.0957 -0.0400

The average part-worths ( N) for touchless opening, steel material, automatic trash bag replacement, and price,
which are shown as “REMean Touchless,” “REMean Steel,” “REMean AutoBag,” and “REMean Price80,”
are very similar to the estimates of the fixed effects in the previous model as shown in Figure 27.9, indicating
the equivalence of these two setups. The covariance estimates of the random coefficients (� ) are also very
similar.

The next set of parameters show the estimates for the random effects for the first five respondents (see
Output 27.4.1). However, these estimates are no longer the deviation from the overall means but are their
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own effects. The part-worth for touchless opening for the first respondent (ID 1) is 2.2, which is close to the
part-worth that is estimated in the model as shown in Figure 27.9.

A caterpillar plot is a side-by-side bar plot of the 95% intervals for multiple variables. A caterpillar plot is
usually used to visualize and compare random-effects parameters, which can exist in large numbers in certain
models. You can use the %CATER autocall macro to create a caterpillar plot. The %CATER macro requires
you to specify an input data set and a list of variables that you want to plot.

In this example, the output data set Postsamp contains posterior draws for all the random-effects parameters.
The following statements generate a caterpillar plot for Touchless:

ods graphics on;
%CATER(data=Postsamp, var=Touchless_ID_:)

Output 27.4.2 is a caterpillar plot of the random effects of touchless opening for the 104 participants in this
study. It displays the heterogeneity in preferences for touchless opening among the sample. As shown, the
individuals have diverse preferences for the feature of touchless opening for a trash can. Heterogeneity of
preferences is an important aspect of the model, and ignoring its presence can lead to incorrect inferences.

Output 27.4.2 Caterpillar Plot of the Random-Effects Parameters

If you want to change the display of the caterpillar plot (for example, to use a different line pattern, color, or
size of the markers), you must first modify the Stat.MCMC.Graphics.Caterpillar template and then call
the %CATER macro again.
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Example 27.5: Heterogeneity Affected by Individual Characteristics
Rossi, Allenby, and McCulloch (2005) studied a scanner panel data about purchases of margarine. The data
were first analyzed in Allenby and Rossi (1991) and are about purchases of ten brands of margarine. This
example considers a subset of data about six margarine brands: Parkay stick, Blue Bonnet stick, Fleischmann’s
stick, a house brand stick, a generic stick, and Shedd’s Spread tub. There are 313 households, which made a
total of 3,405 purchases. Information about a few demographic characteristics of these households (income
and family size) is expected to have effects on the central location of the distribution of heterogeneity.

The data set, which is called Sashelp.Margarin, comes from the SASHELP library.

proc print data=Sashelp.Margarin (obs=24);
by HouseID Set;
id HouseID Set;

run;

The data for the first four choice sets are shown in Figure 27.5.1.

Output 27.5.1 Data for the First Four Choice Sets

HouseID Set Choice Brand LogPrice LogInc FamSize

2100016 1 1 PPk -0.41552 3.48124 2

0 PBB -0.40048 3.48124 2

0 PFl 0.08618 3.48124 2

0 PHse -0.56212 3.48124 2

0 PGen -1.02165 3.48124 2

0 PSS -0.16252 3.48124 2

HouseID Set Choice Brand LogPrice LogInc FamSize

2100016 2 1 PPk -0.46204 3.48124 2

0 PBB -0.40048 3.48124 2

0 PFl -0.01005 3.48124 2

0 PHse -0.56212 3.48124 2

0 PGen -1.02165 3.48124 2

0 PSS -0.16252 3.48124 2

HouseID Set Choice Brand LogPrice LogInc FamSize

2100016 3 1 PPk -1.23787 3.48124 2

0 PBB -0.69315 3.48124 2

0 PFl -0.01005 3.48124 2

0 PHse -0.56212 3.48124 2

0 PGen -1.02165 3.48124 2

0 PSS -0.23572 3.48124 2

HouseID Set Choice Brand LogPrice LogInc FamSize

2100016 4 1 PPk -0.47804 3.48124 2

0 PBB -0.49430 3.48124 2

0 PFl -0.01005 3.48124 2

0 PHse -0.56212 3.48124 2

0 PGen -1.02165 3.48124 2

0 PSS -0.16252 3.48124 2
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The variable HouseID represents the household ID, and each household made at least five purchases, which
are defined by Set. The variable Choice represents the choice made among the six margarine brands for each
purchase or choice set. The variable Brand has the value PPK for Parkay stick, PBB for Blue Bonnet stick,
PFL for Fleischmann’s stick, PHse for the house brand stick, PGen for the generic stick, and PSS for Shedd’s
Spread tub. The variable LogPrice is the logarithm of the product price. The variables LogInc and variable
FamSize provide information about household income and family size, respectively.

The following statements fit a random-effects-only logit model using Gamerman Metropolis sampling

proc bchoice data=Sashelp.Margarin seed=123 nmc=40000 thin=2 nthreads=4;
class Brand(ref='PPk') HouseID Set;
model Choice = / choiceset=(HouseID Set);
random Brand LogPrice / subject=HouseID remean=(LogInc FamSize)

type=un monitor=(1);
run;

The REMEAN=(LOGINC FAMSIZE) option in the RANDOM statement requests estimation of the nonzero
mean of the random effects, which is a function of household income and family size. No fixed effects are
specified in the MODEL statement. Summary statistics for the mean matrix of the random coefficients (�),
the covariance of the random coefficients (� ), and the random coefficients (i ) for the first household are
shown in Output 27.5.2.
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Output 27.5.2 Posterior Summary Statistics

The BCHOICE ProcedureThe BCHOICE Procedure

Posterior Summaries and Intervals

Parameter Subject N Mean
Standard
Deviation

95%
HPD Interval

REMean Brand PBB 20000 -1.2079 0.6384 -2.4293 0.0686

REMean Brand PFl 20000 -3.2484 1.9276 -7.0351 0.5201

REMean Brand PGen 20000 -5.1130 1.2332 -7.6390 -2.8030

REMean Brand PHse 20000 -3.2595 0.9194 -5.0725 -1.4761

REMean Brand PSS 20000 0.0915 1.2127 -2.3015 2.4981

REMean LogPrice 20000 -3.4148 0.8359 -5.0397 -1.7620

REMean Brand PBB LogInc 20000 0.0529 0.2114 -0.3485 0.4811

REMean Brand PFl LogInc 20000 0.7596 0.6208 -0.4726 1.9749

REMean Brand PGen LogInc 20000 -0.5079 0.4019 -1.2977 0.2698

REMean Brand PHse LogInc 20000 0.0315 0.3029 -0.5949 0.5931

REMean Brand PSS LogInc 20000 -0.6315 0.4131 -1.4645 0.1555

REMean LogPrice LogInc 20000 -0.2837 0.2817 -0.8434 0.2631

REMean Brand PBB FamSize 20000 -0.0274 0.0959 -0.2180 0.1572

REMean Brand PFl FamSize 20000 -0.7357 0.3059 -1.3283 -0.1267

REMean Brand PGen FamSize 20000 0.5775 0.1824 0.2269 0.9428

REMean Brand PHse FamSize 20000 0.2365 0.1357 -0.0291 0.4997

REMean Brand PSS FamSize 20000 0.0528 0.1974 -0.3347 0.4425

REMean LogPrice FamSize 20000 0.1010 0.1273 -0.1542 0.3424

RECov Brand PBB, Brand PBB 20000 2.2081 0.3730 1.5261 2.9615

RECov Brand PFl, Brand PBB 20000 1.8598 0.9106 0.1374 3.6776

RECov Brand PFl, Brand PFl 20000 12.0894 3.9050 5.5544 20.0864

RECov Brand PGen, Brand PBB 20000 1.9842 0.5697 0.8563 3.0829

RECov Brand PGen, Brand PFl 20000 1.3300 1.9065 -2.4622 5.1401

RECov Brand PGen, Brand PGen 20000 8.3897 1.4835 5.5924 11.3433

RECov Brand PHse, Brand PBB 20000 1.5148 0.4402 0.6799 2.3928

RECov Brand PHse, Brand PFl 20000 2.1554 1.3869 -0.5797 4.9030

RECov Brand PHse, Brand PGen 20000 5.7576 0.9570 3.8799 7.6015

RECov Brand PHse, Brand PHse 20000 5.4834 0.8441 3.9355 7.1970

RECov Brand PSS, Brand PBB 20000 1.1860 0.6287 -0.0412 2.4223

RECov Brand PSS, Brand PFl 20000 0.6096 1.9471 -3.0709 4.6460

RECov Brand PSS, Brand PGen 20000 4.8189 1.1738 2.5960 7.1020

RECov Brand PSS, Brand PHse 20000 3.4484 0.8805 1.7068 5.1649

RECov Brand PSS, Brand PSS 20000 8.7098 1.8047 5.4222 12.2276

RECov LogPrice, Brand PBB 20000 -0.2260 0.3462 -0.8764 0.4813

RECov LogPrice, Brand PFl 20000 2.1909 0.9010 0.5220 4.0796

RECov LogPrice, Brand PGen 20000 -0.9989 0.6371 -2.2175 0.2793

RECov LogPrice, Brand PHse 20000 -0.4254 0.5043 -1.3751 0.6150

RECov LogPrice, Brand PSS 20000 0.1734 0.6757 -1.1897 1.4765

RECov LogPrice, LogPrice 20000 2.1279 0.5373 1.1697 3.2261

Brand PBB HouseID 2100016 20000 -2.3546 1.0548 -4.4528 -0.3948

Brand PFl HouseID 2100016 20000 -3.9792 2.7840 -9.4491 0.9694

Brand PGen HouseID 2100016 20000 -6.5984 1.6472 -9.8601 -3.4056

Brand PHse HouseID 2100016 20000 -2.9722 1.2014 -5.5148 -0.8522

Brand PSS HouseID 2100016 20000 -3.3807 2.1701 -7.4577 0.7600

LogPrice HouseID 2100016 20000 -4.6129 1.2361 -6.9996 -2.1437
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Table 27.11 collects the posterior means and standard deviations of N� that are shown in Output 27.5.2. The
first column corresponds to the parameters that are specified in the model, namely the brands and price. The
second column shows the average part-worths of each brand (versus the brand, Parkay stick) and the price at
LogInc=0 and FamSize=0. The LogInc and FamSize columns list the modifying effects on the preference
for each brand and price by household income and family size, respectively. Larger families show more
interest in the generic and house brands and tend to stay away from the Fleischmann’s brand. For example,
consider the part-worth estimates for Fleischmann’s. The posterior mean for REMean Brand PFI FamSize
(the Fleischmann’s row and the Famsize column) is –0.74 with a standard deviation of 0.31, meaning that an
additional unit increase in family size is associated with a reduction of 0.74 in the estimated part-worth for
Fleischmann’s. In general, the demographics of households are only weakly associated with preference for
brand and price. These results are in good agreement with those of Rossi, Allenby, and McCulloch (2005).

Table 27.11 Posterior Mean and Standard Deviation of �

Parameter Intercept LogInc FamSize
Blue Name REMean Brand PBB REMean Brand PBB LogInc REMean Brand PBB FamSize

Bonnet Mean –1.21 0.05 –0.03
Std 0.64 0.21 0.10

Fleisch- Name REMean Brand PFI REMean Brand PFI LogInc REMean Brand PFI FamSize
mann’s Mean –3.25 0.76 –0.74

Std 1.93 0.62 0.31
Name REMean Brand PGen REMean Brand PGen LogInc REMean Brand PGen FamSize

Generic Mean –5.11 –0.51 0.58
Std 1.23 0.40 0.18

Name REMean Brand PHse REMean Brand PHse LogInc REMean Brand PHse FamSize
House Mean –3.26 0.03 0.24

Std 0.92 0.30 0.14
Shedd’s Name REMean Brand PSS REMean Brand PSS LogInc REMean Brand PSS FamSize
Spread Mean 0.09 –0.63 –0.05

Std 1.21 0.41 0.20
Name REMean LogPrice REMean LogPrice LogInc REMean LogPrice FamSize

LogPrice Mean –3.41 –0.28 0.10
Std 0.84 0.28 0.13

Because the demographic variables are not zero-centered, the Intercept column shows the average part-worths
of each brand and price for households with LogInc=0 and FamSize=0, which are not very meaningful. It
is better to center demographic variables by their means, so that the posterior means listed in the Intercept
column can be interpreted as the part-worths of a household that has an average income and average size.

Nevertheless, you can obtain the utilities of households that have any income levels and sizes. For example,
the average part-worth of the Fleischmann’s brand for a household with average income (LogInc=3.1) and
family size (FamSize=3) would be as follows, because the estimated LogInc coefficient is 0.76 and the
estimated FamSize coefficient is –0.74 for Fleischmann’s:

�3:25C 0:76 � 3:1 � 0:74 � 3 D �3:11

You can obtain part-worths for all other brands and compare their popularity among average households.

The posterior means and standard deviations of the covariance matrix of the random coefficients (� ) are
displayed by parameters that are labeled “RECov Brand PBB, Brand PBB,” “RECov Brand PFI, Brand PBB,”
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and so on. Some of the diagonal terms are fairly large, indicating that there is quite a bit of heterogeneity
between households in margarine brand preference and price sensitivity. The covariance between the generic
and house brands, “RECov Brand PHse, Brand PGen,” is fairly large, suggesting that household preferences
for these two brands are highly correlated.

The next set of parameters, which are displayed in Output 27.5.2, contain the estimates for the random effects
for the first household.

Example 27.6: Inference on Quantities of Interest
It is easy to give a model an interpretation in terms of a probability ratio (PR). The PR of choosing alternative
a instead of alternative b while holding all other attributes or conditions the same are

PRab D
Pa

Pb
D

exp .ˇa/
exp .ˇb/

D exp .ˇa � ˇb/

where Pa and Pb are the probabilities of choosing alternative a and b, respectively.

In “Example 27.1: Alternative-Specific and Individual-Specific Effects” on page 1058, a study for travel
demand was considered. Summary statistics of that study are displayed again in Output 27.6.1 for the purpose
of illustration.

Output 27.6.1 PROC BCHOICE Posterior Summary Statistics

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

Mode Auto 5000 -0.1678 0.7440 -1.7017 1.2396

Mode Plane 5000 -1.8794 1.2683 -4.6055 0.3801

TravTime 5000 -0.5695 0.2047 -0.9943 -0.2328

The PR of choosing airplane as opposed to public transit (which is the reference category) simplifies to

PR(Plane vs. Transit) D
P.Plane/
P.Transit/

D
exp .�1:88/

exp .0/
D 0:15

This ratio indicates that the likelihood of choosing planes as means of travel is 0.15 times that of choosing
public transit. Public transit is a lot more favorable than planes.

The PR of choosing a plane instead of an automobile is

PR(Plane vs. Auto) D
P.Plane/
P.Transit/

D
exp .�1:88/
exp .�0:17/

D 0:18

You can derive the probabilities for any alternatives and any combinations of attributes, even imaginary ones,
after you obtain the parameter estimates.

Although it is easy to obtain the point estimates, sometimes you might want to estimate other quantities,
such as the standard deviations or various quantiles. If you are interested in making inference based on any
quantities that are transformations of the random variables, you can do it either directly in PROC BCHOICE
or by using the DATA step after you run the simulation.
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Suppose you want to set the reference category as Plane so that you can directly compare the other two
modes with it. You can specify REF=’PLANE’ in the CLASS statement and rerun the PROC BCHOICE
simulation. You can also use the DATA step to calculate the quantities of interest. The following DATA step
uses the simulated values of Mode_Auto and Mode_Plane from the output data set Bsamp to create a new
series of posterior samples for Auto_Plane, a new variable that is created to directly compare airplane with
automobile:

data Transout;
set Bsamp;
Auto_Plane=Mode_Auto -Mode_Plane;

run;

Then you can use some autocall macros to analyze the posterior samples of Auto_Plane. For example, the
%POSTSUM macro provides summary statistics, and the %POSTINT macro provides equal-tail and HPD
intervals as described in the section “Autocall Macros for Postprocessing” on page 1050.

%postsum(data=Transout, var=Auto_Plane)
%postint(data=Transout, var=Auto_Plane)

You can also generate some ODS graphs of those posterior samples for diagnostic purposes, as described in
the section “Regenerating Diagnostics Plots” on page 1052.

Example 27.7: Predict the Choice Probabilities
This example shows how to obtain the posterior predictive distribution of the choice probability that each
alternative is chosen from a choice set. The posterior predictive distribution enables you to get the expected
choice probabilities of all the alternatives in the data, or even to predict market share for simulated or
hypothetical products or marketplaces that do not directly reflect the choice set in the data.

Suppose you have a data set that contains all the attribute variables (the design matrix) for all the alternatives
in a choice set. For example, in the candy study earlier in the chapter, in the section “A Simple Logit Model”
on page 1004, you can use the same eight alternatives: Dark is 1 for dark chocolate and 0 for soft chocolate;
Soft is 1 for soft center and 0 for chewy center; Nuts is 1 if the candy contains nuts and 0 if it contains no
nuts. The following data set contains the eight alternatives:

data DesignMatrix;
input Dark Soft Nuts;
datalines;

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
;

You can use the PREDDIST statement, which obtains samples from the posterior predictive distribution of
each of the choice probabilities by using the posterior samples of parameters in the model:
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proc bchoice data=Chocs outpost=Bsamp nmc=10000 thin=2 seed=124;
class Dark(ref='0') Soft(ref='0') Nuts(ref='0') Subj;
model Choice = Dark Soft Nuts / choiceset=(Subj);
preddist covariates=DesignMatrix nalter=8 outpred=Predout;

run;

%POSTSUM(data=Predout, var=Prob_1_:);

In the PREDDIST statement, the COVARIATES= option names the data set to contain the explanatory
variable values for which the predictions are established. This data set must contain data that have the same
variables that are used in the model. The NALTER= option specifies the number of alternatives in each choice
set in the COVARIATES= data set. All choice sets in the data must have the same number of alternatives. If
you omit the COVARIATES= option, the DATA= data set that you specify in the PROC BCHOICE statement
is used instead. The OUTPRED= option creates an output data set to contain the samples from the posterior
predictive distribution of the choice probabilities. Then you can use SAS autocall macros to analyze the
posterior samples. For example, the %POSTSUM macro provides summary statistics.

You can predict the choice probabilities by using the means of the posterior distributions. The results from
using the %POSTSUM macro are shown in Output 27.7.1. There is only one choice set for choice probability
prediction, in which there are a total of eight alternatives. This explains the parameter names in the first
column of the output, where the first number indexes the choice sets and the second number indexes the
alternatives in each choice set. The most preferred chocolate candy is the sixth one, Dark/Chewy/Nuts, which
takes about half the market.

Output 27.7.1 Choice of Chocolate Candies

Summary StatisticsSummary Statistics

Parameter N Mean StdDev P25 P50 P75

Prob_1_1 5000 0.05541 0.04252 0.02396 0.04529 0.07282

Prob_1_2 5000 0.13093 0.08009 0.06949 0.11487 0.17965

Prob_1_3 5000 0.00686 0.00896 0.00137 0.00366 0.00853

Prob_1_4 5000 0.01578 0.01786 0.00389 0.00966 0.02061

Prob_1_5 5000 0.21016 0.10328 0.13431 0.19301 0.27497

Prob_1_6 5000 0.49462 0.13152 0.40465 0.49734 0.58797

Prob_1_7 5000 0.02617 0.02793 0.00717 0.01683 0.03550

Prob_1_8 5000 0.06008 0.05261 0.02032 0.04571 0.08514
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Overview: BOXPLOT Procedure
The BOXPLOT procedure creates side-by-side box-and-whiskers plots of measurements organized in groups.
A box-and-whiskers plot displays the mean, quartiles, and minimum and maximum observations for a group.
Throughout this chapter, this type of plot, which can contain one or more box-and-whiskers plots, is referred
to as a box plot.

The PLOT statement of the BOXPLOT procedure produces a box plot. You can specify more than one PLOT
statement to produce multiple box plots. You can use options in the PLOT statement to do the following:

• control the style of the box-and-whiskers plots

• specify one of several methods for calculating quantile statistics (percentiles)

• add block legends and symbol markers to reveal stratification in data

• display vertical and horizontal reference lines

• control axis values and labels

• overlay the box plot with plots of additional variables

• control the layout and appearance of the plot

The INSET and INSETGROUP statements produce boxes or tables (referred to as insets) of summary
statistics or other data on a box plot. An INSET statement produces an inset of statistics pertaining to the
entire box plot. An INSETGROUP statement produces an inset containing statistics calculated separately for
each group. An INSET or INSETGROUP statement by itself does not produce a display; it must be used
with a PLOT statement.

You can use options in an INSET or INSETGROUP statement to control insets in these ways:

• specify the position of the inset

• specify a header for the inset

• specify graphical enhancements, such as background colors, text colors, text height, text font, and drop
shadows

Traditional Graphics and ODS Graphics
The BOXPLOT procedure can produce two kinds of graphical output:

• traditional graphics

• ODS Statistical Graphics output
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Traditional graphics are saved in graphics catalogs with entry type GRSEG. Their appearance is controlled by
global statements such as the GOPTIONS, AXIS, and SYMBOL statements (as described in SAS/GRAPH:
Reference) and numerous specialized PLOT statement options. You must have a SAS/GRAPH® license to
produce traditional graphics.

ODS Statistical Graphics (or ODS Graphics for short) is an extension to the Output Delivery System (ODS).
Graphs are produced in standard image file formats (such as PNG) instead of graphics catalogs, and the
details of their appearance and layout are controlled by ODS styles and templates. When ODS Graphics is
enabled (for example, with the ODS GRAPHICS ON statement) PROC BOXPLOT produces ODS Graphics
output. Otherwise, it produces traditional graphics. See Chapter 21, “Statistical Graphics Using ODS,” for a
thorough discussion of ODS Graphics.

Global graphics statements (GOPTIONS, AXIS, and SYMBOL, for example) and PLOT statement options
that specify details of graph appearance (such as CBOXFILL= and FONT=) are ignored when ODS Graphics
is enabled. Some PLOT statement options do affect ODS Graphics output, as indicated in the section “PLOT
Statement Options” on page 1097.

See the section “Getting Started: BOXPLOT Procedure” on page 1081 for examples producing box plots via
the traditional graphics system and ODS Graphics.

NOTE: Prior to SAS 9.2, traditional graphics produced by PROC BOXPLOT were extremely basic by default.
Producing attractive graphical output required the careful selection of colors, fonts, and other elements,
which were specified via SAS/GRAPH statements and PLOT statement options. Beginning with SAS 9.2,
the default appearance of traditional box plots is governed by the prevailing ODS style, which automatically
produces attractive, consistent output. You can specify the NOGSTYLE system option to prevent the ODS
style from affecting the appearance of traditional graphs.

Getting Started: BOXPLOT Procedure
This section introduces the BOXPLOT procedure with simple examples demonstrating commonly used
options. Complete syntax for the BOXPLOT procedure is presented in the section “Syntax: BOXPLOT
Procedure” on page 1089, and advanced examples are presented in the section “Examples: BOXPLOT
Procedure” on page 1141.

Creating Box Plots from Raw Data
A petroleum company uses a turbine to heat water into steam that is pumped into the ground to make oil
less viscous and easier to extract. This process occurs 20 times daily, and the amount of power (in kilowatts)
used to heat the water to the desired temperature is recorded. The following statements create a SAS data set
called Turbine that contains the power output measurements for 10 nonconsecutive days:

data Turbine;
informat Day date7.;
format Day date5.;
label KWatts='Average Power Output';
input Day @;
do i=1 to 10;
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input KWatts @;
output;

end;
drop i;
datalines;

05JUL94 3196 3507 4050 3215 3583 3617 3789 3180 3505 3454
05JUL94 3417 3199 3613 3384 3475 3316 3556 3607 3364 3721
06JUL94 3390 3562 3413 3193 3635 3179 3348 3199 3413 3562
06JUL94 3428 3320 3745 3426 3849 3256 3841 3575 3752 3347
07JUL94 3478 3465 3445 3383 3684 3304 3398 3578 3348 3369
07JUL94 3670 3614 3307 3595 3448 3304 3385 3499 3781 3711
08JUL94 3448 3045 3446 3620 3466 3533 3590 3070 3499 3457
08JUL94 3411 3350 3417 3629 3400 3381 3309 3608 3438 3567
11JUL94 3568 2968 3514 3465 3175 3358 3460 3851 3845 2983
11JUL94 3410 3274 3590 3527 3509 3284 3457 3729 3916 3633
12JUL94 3153 3408 3741 3203 3047 3580 3571 3579 3602 3335
12JUL94 3494 3662 3586 3628 3881 3443 3456 3593 3827 3573
13JUL94 3594 3711 3369 3341 3611 3496 3554 3400 3295 3002
13JUL94 3495 3368 3726 3738 3250 3632 3415 3591 3787 3478
14JUL94 3482 3546 3196 3379 3559 3235 3549 3445 3413 3859
14JUL94 3330 3465 3994 3362 3309 3781 3211 3550 3637 3626
15JUL94 3152 3269 3431 3438 3575 3476 3115 3146 3731 3171
15JUL94 3206 3140 3562 3592 3722 3421 3471 3621 3361 3370
18JUL94 3421 3381 4040 3467 3475 3285 3619 3325 3317 3472
18JUL94 3296 3501 3366 3492 3367 3619 3550 3263 3355 3510
;

In the data set Turbine, each observation contains the date and the power output for a single heating. The first
20 observations contain the outputs for the first day, the second 20 observations contain the outputs for the
second day, and so on. Because the variable Day classifies the observations into groups, it is referred to as
the group variable. The variable KWatts contains the output measurements and is referred to as the analysis
variable.

The following statements create a box plot showing the distribution of power output for each day:

ods graphics off;
title 'Box Plot for Power Output';
proc boxplot data=Turbine;

plot KWatts*Day;
run;

The input data set Turbine is specified with the DATA= option in the PROC BOXPLOT statement. The PLOT
statement requests a box-and-whiskers plot for each group of data. After the keyword PLOT, you specify
the analysis variable (in this case, KWatts), followed by an asterisk and the group variable (Day). The ODS
GRAPHICS OFF statement specified before the PROC BOXPLOT statement disables ODS Graphics, so the
box plot is produced using traditional graphics. The box plot is shown in Figure 28.1.
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Figure 28.1 Box Plot for Power Output Data

The box plot displayed in Figure 28.1 represents summary statistics for the analysis variable KWatts. Each of
the 10 box-and-whiskers plots describes the variable KWatts for a particular day. The plot elements and the
statistics they represent are as follows:

• The length of the box represents the interquartile range (the distance between the 25th and 75th
percentiles).

• The symbol in the box interior represents the group mean.

• The horizontal line in the box interior represents the group median.

• The vertical lines (called whiskers) issuing from the box extend to the group minimum and maximum
values.

Creating Box Plots from Summary Data
The previous example illustrates how you can create box plots from raw data. However, in some applications
the data are provided as summary statistics. This example illustrates how you can use the BOXPLOT
procedure with data of this type.
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The following statements create the data set Oilsum, which provides the data from the preceding example in
summarized form:

data Oilsum;
input Day KWattsL KWatts1 KWattsX KWattsM

KWatts3 KWattsH KWattsS KWattsN;
informat Day date7. ;
format Day date5. ;
label Day ='Date of Measurement'

KWattsL='Minimum Power Output'
KWatts1='25th Percentile'
KWattsX='Average Power Output'
KWattsM='Median Power Output'
KWatts3='75th Percentile'
KWattsH='Maximum Power Output'
KWattsS='Standard Deviation of Power Output'
KWattsN='Group Sample Size';

datalines;
05JUL94 3180 3340.0 3487.40 3490.0 3610.0 4050 220.3 20
06JUL94 3179 3333.5 3471.65 3419.5 3605.0 3849 210.4 20
07JUL94 3304 3376.0 3488.30 3456.5 3604.5 3781 147.0 20
08JUL94 3045 3390.5 3434.20 3447.0 3550.0 3629 157.6 20
11JUL94 2968 3321.0 3475.80 3487.0 3611.5 3916 258.9 20
12JUL94 3047 3425.5 3518.10 3576.0 3615.0 3881 211.6 20
13JUL94 3002 3368.5 3492.65 3495.5 3621.5 3787 193.8 20
14JUL94 3196 3346.0 3496.40 3473.5 3592.5 3994 212.0 20
15JUL94 3115 3188.5 3398.50 3426.0 3568.5 3731 199.2 20
18JUL94 3263 3340.0 3456.05 3444.0 3505.5 4040 173.5 20
;

Oilsum contains exactly one observation for each group. Note that, as in the previous example, the groups are
indexed by the variable Day. A listing of Oilsum is shown in Figure 28.2.

Figure 28.2 The Summary Data Set Oilsum

Box Plot for Power OutputBox Plot for Power Output

Day KWattsL KWatts1 KWattsX KWattsM KWatts3 KWattsH KWattsS KWattsN

05JUL 3180 3340.0 3487.40 3490.0 3610.0 4050 220.3 20

06JUL 3179 3333.5 3471.65 3419.5 3605.0 3849 210.4 20

07JUL 3304 3376.0 3488.30 3456.5 3604.5 3781 147.0 20

08JUL 3045 3390.5 3434.20 3447.0 3550.0 3629 157.6 20

11JUL 2968 3321.0 3475.80 3487.0 3611.5 3916 258.9 20

12JUL 3047 3425.5 3518.10 3576.0 3615.0 3881 211.6 20

13JUL 3002 3368.5 3492.65 3495.5 3621.5 3787 193.8 20

14JUL 3196 3346.0 3496.40 3473.5 3592.5 3994 212.0 20

15JUL 3115 3188.5 3398.50 3426.0 3568.5 3731 199.2 20

18JUL 3263 3340.0 3456.05 3444.0 3505.5 4040 173.5 20
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There are eight summary variables in Oilsum:

• KWattsL contains the group minima (low values).

• KWatts1 contains the 25th percentile (first quartile) for each group.

• KWattsX contains the group means.

• KWattsM contains the group medians.

• KWatts3 contains the 75th percentile (third quartile) for each group.

• KWattsH contains the group maxima (high values).

• KWattsS contains the group standard deviations.

• KWattsN contains the group sizes.

You can use this data set as input to the BOXPLOT procedure by specifying it with the HISTORY= option in
the PROC BOXPLOT statement. Detailed requirements for HISTORY= data sets are presented in the section
“HISTORY= Data Set” on page 1125.

The following statements produce a box plot of the summary data from the Oilsum data set:

options nogstyle;
title 'Box Plot for Power Output';
symbol value=dot color=salmon;
proc boxplot history=Oilsum;

plot KWatts*Day / cframe = vligb
cboxes = dagr
cboxfill = ywh;

run;
options gstyle;
goptions reset=symbol;

The NOGSTYLE system option causes PROC BOXPLOT not to use ODS style information when it produces
a traditional graphics box plot. Instead, the SYMBOL statement and options specified after the slash (/) in
the PLOT statement control its appearance. The CFRAME= option specifies the background color of the
graph frame, the CBOXES= option specifies the color of the box outlines and whiskers, and the CBOXFILL=
option specifies the color of the box interiors. The GSTYLE system option restores the use of ODS styles
for subsequent traditional graphics output. For more information about SYMBOL statements and the colors
specified in the PLOT statement options, see SAS/GRAPH: Reference. The resulting box plot is shown in
Figure 28.3.
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Figure 28.3 Traditional Graphics Box Plot with NOGSTYLE

Saving Summary Data with Outliers
In a schematic box plot, outlier values within a group are plotted as separate points beyond the whiskers of
the box-and-whiskers plot. See the section “Styles of Box Plots” on page 1126 and the description of the
BOXSTYLE= option for a complete description of schematic box plots.

The following statements use the BOXSTYLE= option to produce a schematic box plot of the data from
the Turbine data set. The OUTBOX= option creates a summary data set named OilSchematic. The ODS
GRAPHICS ON statement specified before the PROC BOXPLOT statement enables ODS Graphics, so the
box plot is created using ODS Graphics instead of traditional graphics.

title 'Schematic Box Plot for Power Output';
ods graphics on;
proc boxplot data=Turbine;

plot KWatts*Day / boxstyle = schematic
outbox = OilSchematic;

run;

The schematic box plot is shown in Figure 28.4. Note the outliers plotted for several of the groups.
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Figure 28.4 Schematic Box Plot of Power Output

Whereas the Oilsum data set from the section “Creating Box Plots from Summary Data” on page 1083
contains a variable for each summary statistic and one observation per group, the OUTBOX= data set
OilSchematic contains one observation for each summary statistic in each group. The _TYPE_ variable
identifies the statistic and the _VALUE_ variable contains its value. In addition, the OilSchematic data set
contains an observation recording each outlier value for each group. Figure 28.5 shows a partial listing of the
OilSchematic data set.
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Figure 28.5 The Summary Data Set OilSchematic

Schematic Box Plot for Power OutputSchematic Box Plot for Power Output

Day _VAR_ _TYPE_ _VALUE_

05JUL KWatts N 20.00

05JUL KWatts MIN 3180.00

05JUL KWatts Q1 3340.00

05JUL KWatts MEAN 3487.40

05JUL KWatts MEDIAN 3490.00

05JUL KWatts Q3 3610.00

05JUL KWatts MAX 4050.00

05JUL KWatts STDDEV 220.26

05JUL KWatts HIWHISKR 3789.00

05JUL KWatts HIGH 4050.00

06JUL KWatts N 20.00

06JUL KWatts MIN 3179.00

06JUL KWatts Q1 3333.50

06JUL KWatts MEAN 3471.65

06JUL KWatts MEDIAN 3419.50

06JUL KWatts Q3 3605.00

06JUL KWatts MAX 3849.00

06JUL KWatts STDDEV 210.43

07JUL KWatts N 20.00

07JUL KWatts MIN 3304.00

07JUL KWatts Q1 3376.00

07JUL KWatts MEAN 3488.30

07JUL KWatts MEDIAN 3456.50

07JUL KWatts Q3 3604.50

07JUL KWatts MAX 3781.00

07JUL KWatts STDDEV 147.02

08JUL KWatts N 20.00

08JUL KWatts MIN 3045.00

08JUL KWatts Q1 3390.50

08JUL KWatts MEAN 3434.20

08JUL KWatts MEDIAN 3447.00

08JUL KWatts Q3 3550.00

08JUL KWatts MAX 3629.00

08JUL KWatts STDDEV 157.64

08JUL KWatts LOWHISKR 3309.00

08JUL KWatts LOW 3070.00

08JUL KWatts LOW 3045.00

11JUL KWatts N 20.00

11JUL KWatts MIN 2968.00

11JUL KWatts Q1 3321.00

Observations with the _TYPE_ variable values “HIGH” and “LOW” contain outlier values. If you want to
use a summary data set to re-create a schematic box plot, you must create an OUTBOX= data set in order to
save the outlier data.
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Syntax: BOXPLOT Procedure
The following statements are available in the BOXPLOT procedure:

PROC BOXPLOT options ;
BY variables ;
ID variables ;
INSET keywords < / options > ;
INSETGROUP keywords < / options > ;
PLOT analysis-variable � group-variable < (block-variables) > < =symbol-variable > < / options > ;

Both the PROC BOXPLOT and PLOT statements are required. You can specify any number of PLOT
statements within a single PROC BOXPLOT invocation.

PROC BOXPLOT Statement
PROC BOXPLOT options ;

The PROC BOXPLOT statement invokes the BOXPLOT procedure. Table 28.1 summarizes the options
available in the PROC BOXPLOT statement.

Table 28.1 PROC BOXPLOT Statement Options
Statement Description
ANNOTATE= Enhances traditional graphics box plots
BOX= Names an input data set containing group summary statistics and outlier

values
DATA= Names an input data set containing raw data to be analyzed
GOUT= Specifies the SAS catalog in which to save traditional graphics output
HISTORY= Names an input data set containing group summary statistics

The following options can appear in the PROC BOXPLOT statement.

ANNOTATE=SAS-data-set

ANNO=SAS-data-set
specifies an ANNOTATE= type data set, as described in SAS/GRAPH: Reference, which enhances
traditional graphics box plots requested in subsequent PLOT statements. NOTE: The ANNOTATE=
option is ignored when ODS Graphics is enabled.

BOX=SAS-data-set
names an input data set containing group summary statistics and outlier values. Typically, this data
set is created as an OUTBOX= data set in a previous run of PROC BOXPLOT. Each group summary
statistic or outlier value is recorded in a separate observation in a BOX= data set, so there are multiple
observations per group. You cannot use a BOX= data set together with a DATA= or HISTORY= data
set. If you do not specify one of these input data sets, the procedure uses the most recently created
SAS data set as a DATA= data set.
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DATA=SAS-data-set
names an input data set containing raw data to be analyzed. You cannot use a DATA= data set together
with a BOX= or HISTORY= data set. If you do not specify one of these input data sets, the procedure
uses the most recently created SAS data set as a DATA= data set.

GOUT=< libref. >output catalog
specifies the SAS catalog in which to save traditional graphics output that is produced by the BOXPLOT
procedure. If you omit the libref, PROC BOXPLOT looks for the catalog in the temporary library
called WORK and creates the catalog if it does not exist. NOTE: The GOUT= option is ignored when
ODS Graphics is enabled.

HISTORY=SAS-data-set

HIST=SAS-data-set
names an input data set containing group summary statistics. Typically, this data set is created as an
OUTHISTORY= data set in a previous run of PROC BOXPLOT, but it can also be created using a
SAS summarization procedure such as the MEANS procedure. The HISTORY= data set can contain
only one observation for each value of the group variable. You cannot use a HISTORY= data set with
a DATA= or BOX= data set. If you do not specify one of these three input data sets, PROC BOXPLOT
uses the most recently created data set as a DATA= data set.

BY Statement
BY variables ;

You can specify a BY statement with PROC BOXPLOT to obtain separate analyses of observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the BOXPLOT procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.
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ID Statement
ID variables ;

The ID statement specifies variables used to identify observations. The ID variables must be variables in the
input data set.

If you specify the keyword SCHEMATICID or SCHEMATICIDFAR with the BOXSTYLE= option, the
value of an ID variable is used to label each extreme observation. When you specify a BOX= data set, the
label values come from the variable _ID_, if it is present in the data set. When you specify a DATA= or
HISTORY= input data set, or a BOX= data set that does not contain the variable _ID_, the labels come from
the first variable listed in the ID statement. If ID statement is specified, the outliers are not labeled.

INSET Statement
INSET keywords < / options > ;

A PLOT statement in the BOXPLOT procedure can be followed by a series of INSET and INSETGROUP
statements. Each INSET statement in that series produces one inset in the box plot produced by the preceding
PLOT statement. If the box plot occupies multiple panels, the inset appears on each panel.

The data requested using the keywords are displayed in the order in which they are specified. Summary
statistics requested with an INSET statement are calculated using the observations in all groups.

keywords identify summary statistics or other data to be displayed in the inset. By default, inset
statistics are identified with appropriate labels, and numeric values are printed using
appropriate formats. However, you can provide customized labels and formats. You
provide the customized label by specifying the keyword for that statistic followed by an
equal sign (=) and the label in quotes. Labels can have up to 24 characters. You provide
the numeric format in parentheses after the keyword . Note that if you specify both a label
and a format for a statistic, the label must appear before the format.

The available keywords are listed in Table 28.2.

options control the appearance of the inset. Most of these options apply only to traditional
graphics and are ignored when ODS Graphics is enabled. Table 28.3 summarizes the
options available in the INSET statement. It also lists options and identifies those that are
valid when ODS Graphics is enabled. Complete descriptions for each option follow.
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Table 28.2 INSET Statement Keywords

Keyword Description

DATA= (label, value) pairs from SAS-data-set
MEAN mean of all observations
MIN minimum observed value
MAX maximum observed value
NMIN minimum group size
NMAX maximum group size
NOBS number of observations in box plot
STDDEV pooled standard deviation

The DATA= keyword specifies a SAS data set containing (label, value) pairs to be displayed in an inset. The
data set must contain the variables _LABEL_ and _VALUE_. _LABEL_ is a character variable of up to 24
characters whose values provide labels for inset entries. _VALUE_ can be character or numeric, and provides
values displayed in the inset. The label and value from each observation in the DATA= data set occupy one
line in the inset.

The pooled standard deviation requested with the STDDEV keyword is defined as

sp D

vuutPN
iD1 s

2
i .ni � 1/PN

iD1 .ni � 1/

where N is the number of groups, ni is the size of the ith group, and s2i is the variance of the ith group.

Table 28.3 INSET Statement Options

Option Description ODS Graphics

CFILL= Specifies color of inset background
CFILLH= Specifies color of inset header background
CFRAME= Specifies color of inset frame
CHEADER= Specifies color of inset header text
CSHADOW= Specifies color of inset drop shadow
CTEXT= Specifies color of inset text
DATA Specifies data units for POSITION=.x; y/ co-

ordinates
FONT= Specifies font of inset text
FORMAT= Specifies format of values in inset X
HEADER= Specifies inset header text X
HEIGHT= Specifies height of inset and header text
NOFRAME Suppresses frame around inset X
POSITION= Specifies position of inset X
REFPOINT= Specifies reference point of inset positioned

with POSITION=.x; y/ coordinates
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Following are descriptions of the options that you can specify in the INSET statement after a slash (/). Only
those options marked with † are applicable when ODS Graphics is enabled.

CFILL=color | BLANK
specifies the color of the inset background (including the header background if you do not specify the
CFILLH= option).

If you do not specify the CFILL= option, then by default the background is empty. This means that
items that overlap the inset (such as box-and-whiskers plots or reference lines) show through the inset.
If you specify any value for the CFILL= option, then overlapping items no longer show through the
inset. Specify CFILL=BLANK to leave the background uncolored and also to prevent items from
showing through the inset.

CFILLH=color
specifies the color of the header background. By default, if you do not specify a CFILLH= color, the
CFILL= color is used.

CFRAME=color
specifies the color of the frame around the inset. By default, the frame is the same color as the axis of
the plot.

CHEADER=color
specifies the color of the header text. By default, if you do not specify a CHEADER= color, the INSET
statement CTEXT= color is used.

CSHADOW=color

CS=color
specifies the color of the drop shadow. If you do not specify the CSHADOW= option, a drop shadow
is not displayed.

CTEXT=color

CT=color
specifies the color of the text in the inset. By default, the inset text color is the same as the other text in
the box plot.

DATA
specifies that data coordinates be used in positioning the inset with the POSITION= option. The DATA
option is available only when you specify POSITIOND .x; y/, and it must be placed immediately
after the coordinates .x; y/. See the entry for the POSITION= option.

FONT=font
specifies the font of the text.

† FORMAT=format
specifies a format for all the values displayed in an inset. If you specify a format for a particular
statistic, then this format overrides the format you specified with the FORMAT= option.

† HEADER=‘string’
specifies the header text. The string can be up to 40 characters. If you do not specify the HEADER=
option, no header line appears in the inset.
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HEIGHT=value
specifies the height of the inset and header text.

† NOFRAME
suppresses the frame drawn around the inset.

† POSITION=position

† POS=position
determines the position of the inset. The position can be a compass point keyword, a margin keyword,
or (for traditional graphics) a pair of coordinates .x; y/. You can specify coordinates in axis percent
units or axis data units. For more information, see the section “Positioning Insets” on page 1130. By
default, POSITION=NW, which positions the inset in the upper-left (northwest) corner of the plot.

REFPOINT=BR | BL | TR | TL

RP=BR | BL | TR | TL
specifies the reference point for an inset that is positioned by a pair of coordinates with the POSITION=
option. Use the REFPOINT= option with POSITION= coordinates. The REFPOINT= option specifies
which corner of the inset frame you want positioned at coordinates .x; y/. The keywords BL, BR,
TL, and TR represent bottom left, bottom right, top left, and top right, respectively. The default is
REFPOINT=BL.

If you specify the position of the inset as a compass point or margin keyword, the REFPOINT= option
is ignored.

INSETGROUP Statement
INSETGROUP keywords < / options > ;

A PLOT statement in the BOXPLOT procedure can be followed by a series of INSET and INSETGROUP
statements. Each INSETGROUP statement in that series displays statistics associated with individual groups
in the box plot produced by the preceding PLOT statement. No more than two INSETGROUP statements
can be associated with a given PLOT statement: one that displays group statistics above the box plot and one
that displays group statistics below it. The data requested using the keywords are displayed in the order in
which they are specified.

keywords identify summary statistics to be displayed in the insets. By default, inset statistics
are identified with appropriate labels, and numeric values are printed using appropriate
formats. However, you can provide customized labels and formats. You provide the
customized label by specifying the keyword for that statistic followed by an equal sign
(=) and the label in quotes. Labels can have up to 24 characters. You provide the numeric
format in parentheses after the keyword . Note that if you specify both a label and a
format for a statistic, the label must appear before the format. The keywords are listed in
Table 28.4.

options control the appearance of the insets. Table 28.5 lists all the options in the INSETGROUP
statement. Complete descriptions for each option follow.
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Table 28.4 INSETGROUP Statement Keywords

Keyword Description

MEAN group mean
MIN group minimum value or low whisker value
MAX group maximum value or high whisker value
N number of observations in group
NHIGH number of outliers above upper fence
NLOW number of outliers below lower fence
NOUT total number of outliers in group
Q1 first quartile of group values
Q2 second quartile of group values
Q3 third quartile of group values
RANGE range of group values
STDDEV group standard deviation

NOTE: When ODS Graphics is enabled, the MIN and MAX keywords display the low whisker and high
whisker values, respectively. Otherwise, the group minimum and maximum data values are displayed.

Table 28.5 summarizes the options available in the INSETGROUP statement. All of these options apply to
traditional graphics only. They are ignored when ODS Graphics is enabled.

Table 28.5 INSETGROUP Statement Options

Option Description

CFILL= Specifies color of inset background
CFILLH= Specifies color of inset header background
CFRAME= Specifies color of inset frame
CHEADER= Specifies color of inset header text
CTEXT= Specifies color of inset text
FONT= Specifies font of inset text
FORMAT= Specifies format of values in inset
HEADER= Specifies inset header text
HEIGHT= Specifies height of inset and header text
NOFRAME Suppresses frame around inset
POSITION= Specifies position of inset

Following are descriptions of the options that you can specify in the INSETGROUP statement after a slash
(/).

CFILL=color
specifies the color of the inset background (including the header background if you do not specify the
CFILLH= option). If you do not specify the CFILL= option, then by default the background is empty.
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CFILLH=color
specifies the color of the header background. By default, if you do not specify a CFILLH= color, the
CFILL= color is used.

CFRAME=color
specifies the color of the frame around the inset. By default, the frame is the same color as the axis of
the plot.

CHEADER=color
specifies the color of the header text. By default, if you do not specify a CHEADER= color, the
CTEXT= color is used.

CTEXT=color

CT=color
specifies the color of the inset text. By default, the inset text color is the same as the other text in the
plot.

FONT=font
specifies the font of the inset text. By default, the font is SIMPLEX.

FORMAT=format
specifies a format for all the values displayed in an inset. If you specify a format for a particular
statistic, then this format overrides the format you specified with the FORMAT= option.

HEADER=‘string’
specifies the header text. The string can be up to 40 characters. If you do not specify the HEADER=
option, no header line appears in the inset.

HEIGHT=value
specifies the height of the inset and header text.

NOFRAME
suppresses the frame drawn around the inset.

POSITION=position

POS=position
determines the position of the inset. Valid positions are TOP, TOPOFF, AXIS, and BOTTOM. By
default, POSITION=TOP.

Position Keyword Description

TOP top of plot, immediately above axis frame
TOPOFF top of plot, offset from axis frame
AXIS bottom of plot, immediately above horizontal axis
BOTTOM bottom of plot, below horizontal axis label
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PLOT Statement
PLOT (analysis-variables)� group-variable < (block-variables) > < =symbol-variable >

< / options > ;

You can specify multiple PLOT statements after the PROC BOXPLOT statement. The components of the
PLOT statement are as follows:

analysis-variables identify one or more variables to be analyzed. An analysis variable is required. If you
specify more than one analysis variable, enclose the list in parentheses. For example,
the following statements request distinct box plots for the variables Weight, Length, and
Width:

proc boxplot data=Summary;
plot (Weight Length Width)*Day;

run;

group-variable specifies the variable that identifies groups in the data. The group variable is required. In
the preceding PLOT statement, Day is the group variable.

block-variables specify optional variables that group the data into blocks of consecutive groups. These
blocks are labeled in a legend, and each block variable provides one level of labels in the
legend.

symbol-variable specifies an optional variable whose levels (unique values) determine the symbol marker
used to plot the means. Distinct symbol markers are displayed for points corresponding
to the various levels of the symbol variable. You can specify the symbol markers with
SYMBOLn statements (see SAS/GRAPH: Reference for complete details).

options enhance the appearance of the box plot, request additional analyses, save results in data
sets, and so on. Complete descriptions of each option follow.

PLOT Statement Options

Many PLOT statement options apply only to traditional graphics and are ignored when ODS Graphics is
enabled. Table 28.6 summarizes the options available in the PLOT statement. It also lists options by function
and indicates which are applicable with ODS Graphics.

Table 28.6 PLOT Statement Options

Option Description ODS Graphics

Options for Controlling Box Appearance
BOXCONNECT= Connects features of adjacent box-and-whiskers plots with

line segments
X

BOXSTYLE= Specifies style of box-and-whiskers plots X
BOXWIDTH= Specifies width of box-and-whiskers plots
BOXWIDTHSCALE= Specifies that widths of box-and-whiskers plots vary pro-

portionately to group size
X

CBOXES= Specifies color for outlines of box-and-whiskers plots
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Table 28.6 continued

Option Description ODS Graphics

CBOXFILL= Specifies fill color for interior of box-and-whiskers plots
IDCOLOR= Specifies outlier symbol color in schematic box-and-

whiskers plots
IDCTEXT= Specifies outlier label color in schematic box-and-whiskers

plots
IDFONT= Specifies outlier label font in schematic box-and-whiskers

plots
IDHEIGHT= Specifies outlier label height in schematic box-and-

whiskers plots
IDSYMBOL= Specifies outlier symbol in schematic box-and-whiskers

plots
IDSYMBOLHEIGHT= Specifies outlier symbol height in schematic box-and-

whiskers plots
LBOXES= Specifies line types for outlines of box-and-whiskers plots
NOSERIFS Eliminates serifs from whiskers of box-and-whiskers plots X
NOTCHES Specifies that box-and-whiskers plots be notched X
PCTLDEF= Specifies percentile definition used for box-and-whiskers

plots
X

WHISKERPERCENTILE= Specifies that box whiskers be drawn to percentile values X

Options for Plotting and Labeling Points
ALLLABEL= Labels means of box-and-whiskers plots
CLABEL= Specifies color for labels requested with ALLLABEL=

option
CCONNECT= Specifies color for line segments requested with BOXCON-

NECT= option
LABELANGLE= Specifies angle for labels requested with ALLLABEL=

option
SYMBOLLEGEND= Specifies LEGEND statement for levels of symbol variable
SYMBOLORDER= Specifies order in which symbols are assigned for levels of

symbol variable
Reference Line Options
CHREF= Specifies color for lines requested by HREF= option
CVREF= Specifies color for lines requested by VREF= option
FRONTREF Draws reference lines in front of boxes
HREF= Requests reference lines perpendicular to horizontal axis X
HREFLABELS= Specifies labels for HREF= lines X
HREFLABPOS= Specifies position of HREFLABELS= labels
LHREF= Specifies line type for HREF= lines
LVREF= Specifies line type for VREF= lines
NOBYREF Specifies that reference line information in a data set be

applied uniformly to plots created for all BY groups
X

VREF= Requests reference lines perpendicular to vertical axis X
VREFLABELS= Specifies labels for VREF= lines X
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Table 28.6 continued

Option Description ODS Graphics

VREFLABPOS= Specifies position of VREFLABELS= labels

Block Variable Legend Options
BLOCKLABELPOS= Specifies position of label for block variable legend
BLOCKLABTYPE= Specifies text size of block variable legend
BLOCKPOS= Specifies vertical position of block variable legend X
BLOCKREP Repeats identical consecutive labels in block variable leg-

end
X

CBLOCKLAB= Specifies colors for filling frames enclosing block variable
labels

CBLOCKVAR= Specifies colors for filling background of block variable
legend

Axis and Axis Label Options
CAXIS= Specifies color for axis lines and tick marks
CFRAME= Specifies fill color for frame for plot area
CONTINUOUS Produces horizontal axis for continuous group variable

values (traditional graphics only)
CTEXT= Specifies color for tick mark values and axis labels
HAXIS= Specifies major tick mark values for horizontal axis
HEIGHT= Specifies height of axis label and axis legend text
HMINOR= Specifies number of minor tick marks between major tick

marks on horizontal axis
HOFFSET= Specifies length of offset at both ends of horizontal axis
NOHLABEL Suppresses horizontal axis label X
NOTICKREP Specifies that only first occurrence of repeated, adjacent

character group values be labeled on horizontal axis
NOVANGLE Requests vertical axis labels that are strung out vertically
SKIPHLABELS= Specifies thinning factor for tick mark labels on horizontal

axis
TURNHLABELS Requests horizontal tick labels that are strung out vertically
VAXIS= Specifies major tick mark values for vertical axis X
VFORMAT= Specifies format for vertical axis tick marks X
VMINOR= Specifies number of minor tick marks between major tick

marks on vertical axis
VOFFSET= Specifies length of offset at both ends of vertical axis
VZERO Forces origin to be included in vertical axis
WAXIS= Specifies width of axis lines

Input Data Set Options
MISSBREAK Specifies that a missing value between identical character

group values signify the start of a new group
X

Output Data Set Options
OUTBOX= Produces an output data set containing group summary

statistics and outlier values
X
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Table 28.6 continued

Option Description ODS Graphics

OUTHISTORY= Produces an output data set containing group summary
statistics

X

Graphical Enhancement Options
ANNOTATE= Specifies annotate data set that adds features to box plot
BWSLEGEND Displays a legend identifying the function of group size

specified with BOXWIDTHSCALE= option
DESCRIPTION= Specifies string that appears in description field of PROC

GREPLAY master menu for traditional graphics box plot
FONT= Specifies font for labels and legends on plots
HORIZONTAL Requests a horizontal box plot with ODS Graphics X
HTML= Specifies URLs to be associated with box-and-whiskers

plots
NAME= Specifies name that appears in name field of PROC

GREPLAY master menu for traditional graphics box plot
NLEGEND Requests legend displaying group sizes
OUTHIGHHTML= Specifies URLs to be associated with high outliers on box-

and-whiskers plots
OUTLOWHTML= Specifies URLs to be associated with low outliers on box-

and-whiskers plots
PAGENUM= Specifies form of label used in pagination
PAGENUMPOS= Specifies position of page number requested with

PAGENUM= option
Grid Options
CGRID= Specifies color for grid requested with ENDGRID or GRID

option
ENDGRID Adds grid after last box-and-whiskers plot
GRID Adds grid to box plot X
LENDGRID= Specifies line type for grid requested with ENDGRID op-

tion
LGRID= Specifies line type for grid requested with GRID option
WGRID= Specifies width of grid lines

Plot Layout Options
INTERVAL= Specifies natural time interval between consecutive group

positions when time, date, or datetime format is associated
with numeric group variable

INTSTART= Specifies first major tick mark value on horizontal axis
when date, time, or datetime format is associated with
numeric group variable

MAXPANELS= Specifies maximum number of panels used for box plot X
NOCHART Suppresses creation of box plot X
NOFRAME Suppresses frame for plot area
NPANELPOS= Specifies number of group positions per panel X
REPEAT Repeats last group position on panel as first group position

of next panel
X
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Table 28.6 continued

Option Description ODS Graphics

TOTPANELS= Specifies number of panels to be used to display box plot X

Overlay Options
CCOVERLAY= Specifies colors for line segments connecting points on

overlays
COVERLAY= Specifies colors for points on overlays
LOVERLAY= Specifies line types for line segments connecting points on

overlays
NOOVERLAYLEGEND Suppresses overlay legend X
OVERLAY= Specifies variables to be plotted on overlays X
OVERLAYHTML= Specifies URLs to be associated with overlay plot points
OVERLAYID= Specifies labels for overlay plot points
OVERLAYLEGLAB= Specifies label for overlay legend X
OVERLAYSYM= Specifies symbols used for overlays
OVERLAYSYMHT= Specifies heights for overlay symbols
WOVERLAY= Specifies widths for line segments connecting points on

overlays
Clipping Options
CCLIP= Specifies color for plot symbol for clipped points
CLIPFACTOR= Determines extent to which extreme values are clipped X
CLIPLEGEND= Specifies text for clipping legend X
CLIPLEGPOS= Specifies position of clipping legend
CLIPSUBCHAR= Specifies substitution character for CLIPLEGEND= text X
CLIPSYMBOL= Specifies plot symbol for clipped points
CLIPSYMBOLHT= Specifies symbol marker height for clipped points
COVERLAYCLIP= Specifies color for clipped points on overlays
OVERLAYCLIPSYM= Specifies symbol for clipped points on overlays
OVERLAYCLIPSYMHT= Specifies symbol height for clipped points on overlays

Options for Box Plots Produced Using Styles
BLOCKVAR= Groups block legends whose backgrounds are filled with

colors from style
X

BOXES= Groups boxes whose outlines are drawn with colors from
style

BOXFILL= Groups boxes that are filled with colors from style

Options for ODS Graphics Output
ODSFOOTNOTE= Specifies a footnote displayed in ODS Graphics output X
ODSFOOTNOTE2= Specifies a secondary footnote displayed in ODS Graphics

output
X

ODSTITLE= Specifies a title displayed in ODS Graphics output X
ODSTITLE2= Specifies a secondary title displayed in ODS Graphics out-

put
X
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Following are explanations of the options you can specify in the PLOT statement after a slash (/). Only those
options marked with † are applicable when ODS Graphics is enabled.

ALLLABEL=VALUE | (variable)
labels the point plotted for the mean of each box-and-whiskers plot with the mean (when ALLLA-
BEL=VALUE) or with the value of the ALLLABEL=variable from the input data set.

ANNOTATE=SAS-data-set
specifies an ANNOTATE= type data set, as described in SAS/GRAPH: Reference.

BLOCKLABELPOS=ABOVE | LEFT
specifies the position of a block variable label in the block legend. The keyword ABOVE places the
label immediately above the legend, and LEFT places the label to the left of the legend. Use the
keyword LEFT with labels that are short enough to fit in the margin of the plot; otherwise, they are
truncated. The default keyword is ABOVE.

BLOCKLABTYPE=SCALED | TRUNCATED | height
specifies how lengthy block variable values are treated when there is insufficient space to display them
in the block legend. If you specify BLOCKLABTYPE=SCALED, the values are uniformly reduced in
height so that they fit. If you specify BLOCKLABTYPE=TRUNCATED, lengthy values are truncated
on the right until they fit. You can also specify a text height in vertical percent screen units for the
values. By default, lengthy values are not displayed. For more information, see the section “Displaying
Blocks of Data” on page 1135.

† BLOCKPOS=n
specifies the vertical position of the legend for the values of the block variables. Values of n and the
corresponding positions are as follows. By default, BLOCKPOS=1.

n Legend Position

1 top of plot, offset from axis frame
2 top of plot, immediately above axis frame
3 bottom of plot, immediately above horizontal axis
4 bottom of plot, below horizontal axis label

† BLOCKREP
specifies that block variable values for all groups be displayed. By default, only the first block variable
value in any block is displayed, and repeated block variable values are not displayed.

† BLOCKVAR=variable | (variable-list)
specifies variables whose values are used to assign colors for filling the background of the legend
associated with block variables. A list of BLOCKVAR= variables must be enclosed in parentheses.
BLOCKVAR= variables are matched with block variables by their order in the respective variable lists.
While the values of a CBLOCKVAR= variable are color names, values of a BLOCKVAR= variable are
used to group block legends for assigning fill colors from the ODS style. Block legends with the same
BLOCKVAR= variable value are filled with the same color.
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† BOXCONNECT=MEAN | MEDIAN | MAX | MIN | Q1 | Q3

† BOXCONNECT
specifies that the points in adjacent box-and-whiskers plots representing group means, medians,
maximum values, minimum values, first quartiles, or third quartiles be connected with line segments.
If the BOXCONNECT option is specified without a keyword identifying the points to be connected,
group means are connected. By default, no points are connected.

BOXES=(variable)
specifies a variable whose values are used to assign colors for the outlines of box-and-whiskers plots.
While the values of a CBOXES= variable are color names, values of the BOXES= variable are used
to group box-and-whiskers plots for assigning outline colors from the ODS style. The outlines of
box-and-whiskers plots of groups with the same BOXES= variable value are drawn using the same
color.

BOXFILL=(variable)
specifies a variable whose values are used to assign fill colors for box-and-whiskers plots. While the
values of a CBOXFILL= variable are color names, values of the BOXFILL= variable are used to group
box-and-whiskers plots for assigning fill colors from the ODS style. Box-and-whiskers plots of groups
with the same BOXFILL= variable value are filled with the same color.

† BOXSTYLE=keyword
specifies the style of the box-and-whiskers plots displayed. If you specify BOXSTYLE=SKELETAL,
the whiskers are drawn from the edges of the box to the extreme values of the group. This plot is
sometimes referred to as a skeletal box-and-whiskers plot. By default, the whiskers are drawn with
serifs. You can specify the NOSERIFS option to draw the whiskers without serifs.

In the following descriptions, the terms fence and far fence refer to the distance from the first and third
quartiles (25th and 75th percentiles, respectively), expressed in terms of the interquartile range (IQR).
For example, the lower fence is located at 1:5 � IQR below the 25th percentile; the upper fence is
located at 1:5 � IQR above the 75th percentile. Similarly, the lower far fence is located at 3 � IQR
below the 25th percentile; the upper far fence is located at 3 � IQR above the 75th percentile.

If you specify BOXSTYLE=SCHEMATIC, a whisker is drawn from the upper edge of the box to the
largest observed value less than or equal to the upper fence, and another is drawn from the lower edge
of the box to the smallest observed value greater than or equal to the lower fence. Serifs are added
to the whiskers by default. Observations outside the fences are identified with a special symbol. For
traditional graphics you can specify the shape and color for this symbol with the IDSYMBOL= and
IDCOLOR= options. The default symbol is a square. This type of plot corresponds to the schematic
box-and-whiskers plot described in Chapter 2 of Tukey (1977). See Figure 28.8 and the discussion in
the section “Styles of Box Plots” on page 1126 for more information.

If you specify BOXSTYLE=SCHEMATICID, a schematic box-and-whiskers plot is displayed in which
an ID variable value is used to label the symbol marking each observation outside the upper and lower
fences. A BOX= data set can contain a variable named _ID_ that is used as the ID variable. Otherwise,
the first variable listed in the ID statement provides the labels.

If you specify BOXSTYLE=SCHEMATICIDFAR, a schematic box-and-whiskers plot is displayed in
which the value of the ID variable is used to label the symbol marking each observation outside the
lower and upper far fences. Observations between the fences and the far fences are identified with a
symbol but are not labeled with the ID variable.
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Figure 28.6 illustrates the elements of a skeletal box-and-whiskers plot.

Figure 28.6 Skeletal Box-and-Whiskers Plot

The skeletal style of the box-and-whiskers plot shown in Figure 28.6 is the default.

BOXWIDTH=value
specifies the width (in horizontal percent screen units) of the box-and-whiskers plots.

† BOXWIDTHSCALE=value
specifies that the box-and-whiskers plot width is to vary proportionately to a particular function of the
group size n. The function is determined by the value.

If you specify a positive value, the widths are proportional to nvalue . In particular, if you specify
BOXWIDTHSCALE=1, the widths are proportional to the group size. If you specify BOXWIDTH-
SCALE=0.5, the widths are proportional to

p
n, as described by McGill, Tukey, and Larsen (1978). If

you specify BOXWIDTHSCALE=0, the widths are proportional to log.n/. See Example 28.4 for an
illustration of the BOXWIDTHSCALE= option.

You can specify the BWSLEGEND option to display a legend identifying the function of n used to
determine the box-and-whiskers plot widths.

By default, the box widths are constant.

BWSLEGEND
displays a legend identifying the function of group size n specified with the BOXWIDTHSCALE=
option. No legend is displayed if all group sizes are equal. The BWSLEGEND option is not applicable
unless you also specify the BOXWIDTHSCALE= option.
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CAXIS=color

CAXES=color

CA=color
specifies the color for the axes and tick marks. This option overrides any COLOR= specifications in an
AXIS statement.

CBLOCKLAB=color | (color-list)
specifies fill colors for the frames that enclose the block variable labels in a block legend. By default,
these areas are not filled. Colors in the CBLOCKLAB= list are matched with block variables in the
order in which they appear in the PLOT statement.

CBLOCKVAR=variable | (variable-list)
specifies variables whose values are colors for filling the background of the legend associated with
block variables. CBLOCKVAR= variables are matched with block variables by their order in the
respective variable lists. Each CBLOCKVAR= variable must be a character variable of no more than
eight characters in the input data set, and its values must be valid SAS/GRAPH color names (see
SAS/GRAPH: Reference for complete details). A list of CBLOCKVAR= variables must be enclosed in
parentheses.

The procedure matches the CBLOCKVAR= variables with block variables in the order specified.
That is, each block legend is filled with the color value of the CBLOCKVAR= variable of the first
observation in each block. In general, values of the ith CBLOCKVAR= variable are used to fill the
block of the legend corresponding to the ith block variable.

By default, fill colors are not used for the block variable legend. The CBLOCKVAR= option is
available only when block variables are used in the PLOT statement.

CBOXES=color | (variable)
specifies the colors for the outlines of the box-and-whiskers plots created with the PLOT statement.
You can use one of the following approaches:

• You can specify CBOXES=color to provide a single outline color for all the box-and-whiskers
plots.

• You can specify CBOXES=(variable) to provide a distinct outline color for each box-and-whiskers
plot as the value of the variable. The variable must be a character variable of up to eight characters
in the input data set, and its values must be valid SAS/GRAPH color names (see SAS/GRAPH:
Reference for complete details). The outline color of the plot displayed for a particular group
is the value of the variable in the observations corresponding to this group. Note that if there
are multiple observations per group in the input data set, the values of the variable should be
identical for all the observations in a given group.

CBOXFILL=color | (variable)
specifies the interior fill colors for the box-and-whiskers plots. You can use one of the following
approaches:

• You can specify CBOXFILL=color to provide a single color for all of the box-and-whiskers plots.

• You can specify CBOXFILL=(variable) to provide a distinct color for each box-and-whiskers plot
as the value of the variable. The variable must be a character variable of up to eight characters in
the input data set, and its values must be valid SAS/GRAPH color names (or the value EMPTY,



1106 F Chapter 28: The BOXPLOT Procedure

which you can use to suppress color filling). See SAS/GRAPH: Reference for complete details.
The interior color of the box displayed for a particular group is the value of the variable in the
observations corresponding to this group. Note that if there are multiple observations per group
in the input data set, the values of the variable should be identical for all the observations in a
given group.

By default, the interiors are not filled.

CCLIP=color
specifies a color for the plotting symbol that is specified with the CLIPSYMBOL= option to mark
clipped values. The default color is the color specified in the COLOR= option in the SYMBOL1
statement.

CCONNECT=color
specifies the color for line segments connecting points on the plot. The default color is the color
specified in the COLOR= option in the SYMBOL1 statement. This option is not applicable unless you
also specify the BOXCONNECT= option.

CCOVERLAY=(color-list)
specifies the colors for line segments connecting points on overlay plots. Colors in the CCOVERLAY=
list are matched with variables in the corresponding positions in the OVERLAY= list. By default,
points are connected by line segments of the same color as the plotted points. You can specify the
value NONE to suppress the line segments connecting points of an overlay plot.

CFRAME=color
specifies the color for filling the rectangle enclosed by the axes and the frame. By default, this area is
not filled. The CFRAME= option cannot be used in conjunction with the NOFRAME option.

CGRID=color
specifies the color for the grid requested by the ENDGRID or GRID option. By default, the grid is the
same color as the axes.

CHREF=color
specifies the color for the lines requested by the HREF= option.

CLABEL=color
specifies the color for labels produced by the ALLLABEL= option. The default color is the CTEXT=
color.

† CLIPFACTOR=factor
requests clipping of extreme values on the box plot. The factor that you specify determines the extent
to which these values are clipped, and it must be greater than 1.

For examples of the CLIPFACTOR= option, see Figure 28.17 and Figure 28.18. Related clipping
options are CCLIP=, CLIPLEGEND=, CLIPLEGPOS=, CLIPSUBCHAR=, and CLIPSYMBOL=.

† CLIPLEGEND=‘label ’
specifies the label for the legend that indicates the number of clipped boxes when the CLIPFACTOR=
option is used. The label must be no more than 16 characters and must be enclosed in quotes. For an
example, see Figure 28.18.
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CLIPLEGPOS= TOP | BOTTOM
specifies the position for the legend that indicates the number of clipped boxes when the CLIPFAC-
TOR= option is used. The keyword TOP or BOTTOM positions the legend at the top or bottom
of the chart, respectively. Do not specify CLIPLEGPOS=TOP together with the BLOCKPOS=1 or
BLOCKPOS=2 option. By default, CLIPLEGPOS=BOTTOM.

† CLIPSUBCHAR=‘character ’
specifies a substitution character (such as ‘#’) for the label provided with the CLIPLEGEND= option.
The substitution character is replaced with the number of boxes that are clipped. For example, suppose
that the following statements produce a chart in which three boxes are clipped:

proc boxplot data=Pistons;
plot Diameter*Hour /

clipfactor = 1.5
cliplegend = 'Boxes clipped=#'
clipsubchar = '#' ;

run;

Then the clipping legend displayed on the chart will be “Boxes clipped=3”.

CLIPSYMBOL=symbol
specifies a plot symbol used to identify clipped points on the chart and in the legend when the
CLIPFACTOR= option is used. You should use this option in conjunction with the CLIPFACTOR=
option. The default symbol is CLIPSYMBOL=SQUARE.

CLIPSYMBOLHT=value
specifies the height for the symbol marker used to identify clipped points on the chart when the
CLIPFACTOR= option is used. The default is the height specified with the H= option in the SYMBOL
statement.

For general information about clipping options, see the section “Clipping Extreme Values” on
page 1137.

CONTINUOUS
specifies that numeric group variable values be treated as continuous values. By default, the values
of a numeric group variable are considered discrete values unless the HAXIS= option is specified.
NOTE: The CONTINUOUS option is not supported for ODS Graphics output. For more information,
see the discussion in the section “Continuous Group Variables” on page 1128.

COVERLAY=(color-list)
specifies the colors used to plot overlay variables. Colors in the COVERLAY= list are matched with
variables in the corresponding positions in the OVERLAY= list.

COVERLAYCLIP=color
specifies the color used to plot clipped values on overlay plots when the CLIPFACTOR= option is
used.

CTEXT=color
specifies the color for tick mark values and axis labels. The default color is the color specified in the
CTEXT= option in the most recent GOPTIONS statement.
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CVREF=color
specifies the color for the lines requested by the VREF= option.

DESCRIPTION=‘string’

DES=‘string’
specifies a description of a box plot produced with traditional graphics. The description appears in the
PROC GREPLAY master menu and can be no longer than 256 characters. The default description is
the analysis variable name.

ENDGRID
adds a grid to the rightmost portion of the plot, beginning with the first labeled major tick mark position
that follows the last box-and-whiskers plot. You can use the HAXIS= option to force space to be added
to the horizontal axis.

FONT=font
specifies a font for labels and legends. You can also specify fonts for axis labels in an AXIS statement.
The FONT= font takes precedence over the FTEXT= font specified in the GOPTIONS statement. See
SAS/GRAPH: Reference for more information about the GOPTIONS statement.

FRONTREF
draws reference lines specified with the HREF= and VREF= options in front of box-and-whiskers
plots. By default, reference lines are drawn behind the box-and-whiskers plots and can be obscured by
filled boxes.

† GRID
adds a grid to the box plot. Grid lines are horizontal lines positioned at labeled major tick marks, and
they cover the length and height of the plotting area.

HAXIS=value-list | AXISn
specifies tick mark values for the horizontal (group) axis. If the group variable is numeric, the values
must be numeric and equally spaced. If the group variable is character, values must be quoted strings
of up to 16 characters. Optionally, you can specify an axis name defined in a previous AXIS statement.
See SAS/GRAPH: Reference for more information about the AXIS statement.

If you are producing traditional graphics, specifying the HAXIS= option with a numeric group variable
causes the group variable values to be treated as continuous values. For more information, see
the description of the CONTINUOUS option and the discussion in the section “Continuous Group
Variables” on page 1128. Numeric values can be given in an explicit or implicit list. If a date, time,
or datetime format is associated with a numeric group variable, SAS datetime literals can be used.
Examples of HAXIS= lists follow:

• haxis=0 2 4 6 8 10

• haxis=0 to 10 by 2

• haxis=’LT12A’ ’LT12B’ ’LT12C’ ’LT15A’ ’LT15B’ ’LT15C’

• haxis=’20MAY88’D to ’20AUG88’D by 7

• haxis=’01JAN88’D to ’31DEC88’D by 30

If the group variable is numeric, the HAXIS= list must span the group variable values. If the group
variable is character, the HAXIS= list must include all of the group variable values. You can add group
positions to the box plot by specifying HAXIS= values that are not group variable values.
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If you specify a large number of HAXIS= values, some of these can be thinned to avoid collisions
between tick mark labels. To avoid thinning, use one of the following methods.

• Shorten values of the group variable by eliminating redundant characters. For example, if your
group variable has values LOT1, LOT2, LOT3, and so on, you can use the SUBSTR function in a
DATA step to eliminate LOT from each value, and you can modify the horizontal axis label to
indicate that the values refer to lots.

• Use the TURNHLABELS option to turn the labels vertically.

• Use the NPANELPOS= option to force fewer group positions per panel.

HEIGHT=value
specifies the height (in vertical screen percent units) of the text for axis labels and legends. This
value takes precedence over the HTEXT= value specified in the GOPTIONS statement. This option is
recommended for use with fonts specified with the FONT= option or with the FTEXT= option in the
GOPTIONS statement. See SAS/GRAPH: Reference for complete information about the GOPTIONS
statement.

HMINOR=n

HM=n
specifies the number of minor tick marks between major tick marks on the horizontal axis. Minor tick
marks are not labeled. The default is HMINOR=0.

HOFFSET=value
specifies the length (in percent screen units) of the offset at both ends of the horizontal axis. You can
eliminate the offset by specifying HOFFSET=0.

† HORIZONTAL
produces a horizontal box plot, with group variable values on the vertical axis and analysis variable
values on the horizontal axis. The HORIZONTAL option is supported only with ODS Graphics.

† HREF=value-list

HREF=SAS-data-set
draws reference lines perpendicular to the horizontal (group) axis on the box plot. You can use this
option in the following ways:

• You can specify the values for the lines with an HREF= list. If the group variable is numeric, the
values must be numeric. If the group variable is character, the values must be quoted strings of
up to 16 characters. If the group variable is formatted, the values must be given as internal values.
Examples of HREF= values follow:

href=5
href=5 10 15 20 25 30
href='Shift 1' 'Shift 2' 'Shift 3'

• You can specify reference line values as the values of a variable named _REF_ in an HREF=
data set. The type and length of _REF_ must match those of the group variable specified in the
PLOT statement. Optionally, you can provide labels for the lines as values of a variable named
_REFLAB_, which must be a character variable of up to 16 characters. If you want distinct
reference lines to be displayed in plots for different analysis variables specified in the PLOT
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statement, you must include a character variable named _VAR_, whose values are the analysis
variable names. If you do not include the variable _VAR_, all of the lines are displayed in all of
the plots. Each observation in an HREF= data set corresponds to a reference line. If BY variables
are used in the input data set, the same BY variable structure must be used in the reference line
data set unless you specify the NOBYREF option.

Unless the CONTINUOUS or HAXIS= option is specified, numeric group variable values are treated
as discrete values, and only HREF= values matching these discrete values are valid. Other values are
ignored.

† HREFLABELS=‘label1’ . . . ‘labeln’

† HREFLABEL=‘label1’ . . . ‘labeln’

† HREFLAB=‘label1’ . . . ‘labeln’
specifies labels for the reference lines requested by the HREF= option. The number of labels must
equal the number of lines. Enclose each label in quotes. Labels can be up to 16 characters.

HREFLABPOS=n
specifies the vertical position of the HREFLABELS= label, as described in the following table. By
default, n=2.

HREFLABPOS= Label Position

1 along top of plot area
2 staggered from top to bottom of plot area
3 along bottom of plot area
4 staggered from bottom to top of plot area

HTML=variable
specifies uniform resource locators (URLs) as values of the specified character variable (or formatted
values of a numeric variable). These URLs are associated with box-and-whiskers plots when graphics
output is directed into HTML. The value of the HTML= variable should be the same for each
observation with a given value of the group variable.

IDCOLOR=color
specifies the color of the symbol marker used to identify outliers in schematic box-and-whiskers plots
(that is, when you specify the keyword SCHEMATIC, SCHEMATICID, or SCHEMATICIDFAR with
the BOXSTYLE= option). The default color is the color specified with the CBOXES= option.

IDCTEXT=color
specifies the color for the text used to label outliers when you specify the keyword SCHEMATICID or
SCHEMATICIDFAR with the BOXSTYLE= option. The default value is the color specified with the
CTEXT= option.

IDFONT=font
specifies the font for the text used to label outliers when you specify the keyword SCHEMATICID or
SCHEMATICIDFAR with the BOXSTYLE= option. The default font is SIMPLEX.
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IDHEIGHT=value
specifies the height for the text used to label outliers when you specify the keyword SCHEMATICID or
SCHEMATICIDFAR with the BOXSTYLE= option. The default value is the height specified with the
HTEXT= option in the GOPTIONS statement. See SAS/GRAPH: Reference for complete information
about the GOPTIONS statement.

IDSYMBOL=symbol
specifies the symbol marker used to identify outliers in schematic box plots. The default symbol is
SQUARE.

IDSYMBOLHEIGHT=value
specifies the height of the symbol marker used to identify outliers in schematic box plots.

INTERVAL=DAY | DTDAY | HOUR | MINUTE | MONTH | QTR | SECOND
specifies the natural time interval between consecutive group positions when a time, date, or datetime
format is associated with a numeric group variable. By default, the INTERVAL= option uses the
number of group positions per panel (screen or page) that you specify with the NPANELPOS= option.
The default time interval keywords for various time formats are shown in the following table.

Format Default Keyword Format Default Keyword

DATE DAY MONYY MONTH
DATETIME DTDAY TIME SECOND
DDMMYY DAY TOD SECOND
HHMM HOUR WEEKDATE DAY
HOUR HOUR WORDDATE DAY
MMDDYY DAY YYMMDD DAY
MMSS MINUTE YYQ QTR

You can use the INTERVAL= option to modify the effect of the NPANELPOS= option, which specifies
the number of group positions per panel. The INTERVAL= option enables you to match the scale of
the horizontal axis to the scale of the group variable without having to associate a different format with
the group variable.

For example, suppose that your formatted group values span an overall time interval of 100 days and a
DATETIME format is associated with the group variable. Since the default interval for the DATETIME
format is DTDAY and since NPANELPOS=25 by default, the plot is displayed with four panels.

Now, suppose that your data span an overall time interval of 100 hours and a DATETIME format is
associated with the group variable. The plot for these data is created in a single panel, but the data
occupy only a small fraction of the plot since the scale of the data (hours) does not match that of the
horizontal axis (days). If you specify INTERVAL=HOUR, the horizontal axis is scaled for 25 hours,
matching the scale of the data, and the plot is displayed with four panels.

You should use the INTERVAL= option only in conjunction with the CONTINUOUS or HAXIS=
option, which produces a horizontal axis of continuous group variable values. For more information,
see the descriptions of the CONTINUOUS and HAXIS= options, and the discussion in the section
“Continuous Group Variables” on page 1128.
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INTSTART=value
specifies the starting value for a numeric horizontal axis when a date, time, or datetime format is
associated with the group variable. If the value specified is greater than the first group variable value,
this option has no effect.

LABELANGLE=angle
specifies the angle at which labels requested with the ALLLABEL= option are drawn. A positive angle
rotates the labels counterclockwise; a negative angle rotates them clockwise. By default, labels are
oriented horizontally.

LBOXES=linetype | (variable)
specifies the line types for the outlines of the box-and-whiskers plots. You can use one of the following
approaches:

• You can specify LBOXES=linetype to provide a single linetype for all of the box-and-whiskers
plots.

• You can specify LBOXES=(variable) to provide a distinct line type for each box-and-whiskers
plot. The variable must be a numeric variable in the input data set, and its values must be valid
SAS/GRAPH linetype values (numbers ranging from 1 to 46). The line type for the plot displayed
for a particular group is the value of the variable in the observations corresponding to this group.
Note that if there are multiple observations per group in the input data set, the values of the
variable should be identical for all of the observations in a given group.

The default value is 1, which produces solid lines. See the description of the SYMBOL statement in
SAS/GRAPH: Reference for more information about valid linetypes.

LENDGRID=linetype
specifies the line type for the grid requested with the ENDGRID option. The default value is 1, which
produces a solid line. If you use the LENDGRID= option, you do not need to specify the ENDGRID
option. See the description of the SYMBOL statement in SAS/GRAPH: Reference for more information
about valid linetypes.

LGRID=linetype
specifies the line type for the grid requested with the GRID option. The default value is 1, which
produces a solid line. If you use the LGRID= option, you do not need to specify the GRID option.
See the description of the SYMBOL statement in SAS/GRAPH: Reference for more information about
valid linetypes.

LHREF=linetype

LH=linetype
specifies the line type for reference lines requested with the HREF= option. The default value is
2, which produces a dashed line. See the description of the SYMBOL statement in SAS/GRAPH:
Reference for more information about valid linetypes.

LOVERLAY=(linetypes)
specifies line types for the line segments connecting points on overlay plots. Line types in the
LOVERLAY= list are matched with variables in the corresponding positions in the OVERLAY= list.
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LVREF=linetype

LV=linetype
specifies the line type for reference lines requested by the VREF= option. The default value is 2, which
produces a dashed line. See the description of the SYMBOL statement in SAS/GRAPH: Reference for
more information about valid linetypes.

† MAXPANELS=n
specifies the maximum number of panels used to display a box plot. By default, n = 20.

† MISSBREAK
determines how groups are formed when observations are read from a DATA= data set and a character
group variable is provided. When you specify the MISSBREAK option, observations with missing
values of the group variable are not processed. Furthermore, the next observation with a nonmissing
value of the group variable is treated as the beginning observation of a new group even if this value
is identical to the most recent nonmissing group value. In other words, by specifying the option
MISSBREAK and by inserting an observation with a missing group variable value into a group of
consecutive observations with the same group variable value, you can split the group into two distinct
groups of observations.

By default (that is, when you omit the MISSBREAK option), observations with missing values of the
group variable are not processed, and all remaining observations with the same consecutive value of
the group variable are treated as a single group.

NAME=‘string’
specifies a name, not more than eight characters long, for a traditional graphics box plot. The name
appears in the PROC GREPLAY master menu.

NLEGEND
requests a legend displaying group sizes. If the size is the same for each group, that number is displayed.
Otherwise, the minimum and maximum group sizes are displayed.

† NOBYREF
specifies that the reference line information in an HREF= or VREF= data set be applied uniformly to
box plots created for all the BY groups in the input data set. If you specify the NOBYREF option, you
do not need to provide BY variables in the reference line data set. By default, you must provide BY
variables.

† NOCHART
suppresses the creation of the box plot. You typically specify the NOCHART option when you are
using the procedure to compute group summary statistics and save them in an output data set.

NOFRAME
suppresses the default frame drawn around the plot.

† NOHLABEL
suppresses the label for the horizontal (group) axis. Use the NOHLABEL option when the meaning of
the axis is evident from the tick mark labels, such as when a date format is associated with the group
variable.
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† NOOVERLAYLEGEND
suppresses the legend for overlay plots that is displayed by default when the OVERLAY= option is
specified.

† NOSERIFS
eliminates serifs from the whiskers of box-and-whiskers plots.

† NOTCHES
specifies that box-and-whiskers plots be notched. The endpoints of the notches are located at the
median plus and minus 1:58.IQR=

p
n/, where IQR is the interquartile range and n is the group size.

The medians (central lines) of two box-and-whiskers plots are significantly different at approximately
the 0.95 confidence level if the corresponding notches do not overlap.

See McGill, Tukey, and Larsen (1978) for more information. Figure 28.7 illustrates the NOTCHES
option. Notice the folding effect at the bottom, which happens when the endpoint of a notch is beyond
its corresponding quartile. This situation typically occurs when the group size is small.

Figure 28.7 Box Plot: The NOTCHES Option

NOTICKREP
applies to character-valued group variables and specifies that only the first occurrence of repeated,
adjacent group values be labeled on the horizontal axis.

NOVANGLE
requests that the vertical axis label be strung out vertically.
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† NPANELPOS=n

NPANEL=n
specifies the number of group positions per panel. You typically specify the NPANELPOS= option to
display more box-and-whiskers plots on a panel than the default number, which is n = 25.

You can specify a positive or negative number for n. The absolute value of n must be at least 5. If n
is positive, the number of positions is adjusted so that it is approximately equal to n and so that all
panels display approximately the same number of group positions. If n is negative, no balancing is
done, and each panel (except possibly the last) displays approximately jnj positions. In this case, the
approximation is due only to axis scaling.

You can use the INTERVAL= option to change the effect of the NPANELPOS= option when a date or
time format is associated with the group variable. The INTERVAL= option enables you to match the
scale of the horizontal axis to the scale of the group variable without having to associate a different
format with the group variable.

† ODSFOOTNOTE=FOOTNOTE | FOOTNOTE1 | ‘string’
adds a footnote to ODS Graphics output. If you specify the FOOTNOTE (or FOOTNOTE1) keyword,
the value of SAS FOOTNOTE statement is used the as the graph footnote. If you specify a quoted
string, that is used as the footnote. The quoted string can contain any of the following escaped
characters, which are replaced with the appropriate values from the analysis:

nn analysis variable name

nl analysis variable label (or name if the analysis variable has no label)

nx group variable name

ns group variable label (or name if the group variable has no label)

† ODSFOOTNOTE2=FOOTNOTE2 | ‘string’
adds a secondary footnote to ODS Graphics output. If you specify the FOOTNOTE2 keyword, the
value of SAS FOOTNOTE2 statement is used as the secondary graph footnote. If you specify a quoted
string, that is used as the secondary footnote. The quoted string can contain any of the following
escaped characters, which are replaced with the appropriate values from the analysis:

nn analysis variable name

nl analysis variable label (or name if the analysis variable has no label)

nx group variable name

ns group variable label (or name if the group variable has no label)

† ODSTITLE=TITLE | TITLE1 | NONE | DEFAULT | LABELFMT | ‘string’
specifies a title for ODS Graphics output.

TITLE (or TITLE1) uses the value of SAS TITLE statement as the graph title.

NONE suppresses all titles from the graph.

DEFAULT uses the default ODS Graphics title (a descriptive title consisting of the plot type
and the process variable name.)
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LABELFMT uses the default ODS Graphics title with the variable label instead of the variable
name.

If you specify a quoted string, that is used as the graph title. The quoted string can contain any of the
following escaped characters, which are replaced with the appropriate values from the analysis:

nn analysis variable name

nl analysis variable label (or name if the analysis variable has no label)

nx group variable name

ns group variable label (or name if the group variable has no label)

† ODSTITLE2=TITLE2 | ‘string’
specifies a secondary title for ODS Graphics output. If you specify the TITLE2 keyword, the value of
SAS TITLE2 statement is used as the secondary graph title. If you specify a quoted string, that is used
as the secondary title. The quoted string can contain any of the following escaped characters, which
are replaced with the appropriate values from the analysis:

nn analysis variable name

nl analysis variable label (or name if the analysis variable has no label)

nx group variable name

ns group variable label (or name if the group variable has no label)

† OUTBOX=SAS-data-set
creates an output data set that contains group summary statistics and outlier values for a box plot. You
can use an OUTBOX= data set as a BOX= input data set in a subsequent run of the procedure. See the
section “OUTBOX= Data Set” on page 1121 for details.

OUTHIGHHTML=variable
specifies a variable whose values are URLs to be associated with outlier points above the upper fence
on a schematic box plot when graphics output is directed into HTML.

† OUTHISTORY=SAS-data-set
creates an output data set that contains the group summary statistics. You can use an OUTHIS-
TORY= data set as a HISTORY= input data set in a subsequent run of the procedure. See the section
“OUTHISTORY= Data Set” on page 1122 for details.

OUTLOWHTML=variable
specifies a variable whose values are URLs to be associated with outlier points below the lower fence
on a schematic box plot when graphics output is directed into HTML.

† OVERLAY=(variable-list)
specifies variables to be plotted as overlays on the box plot. One value for each overlay variable is
plotted at each group position. If there are multiple observations with the same group variable value in
the input data set, the overlay variable values from the first observation in each group are plotted. By
default, the points in an overlay plot are connected with line segments.
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OVERLAYCLIPSYM=symbol
specifies the symbol used to plot clipped values on overlay plots when the CLIPFACTOR= option is
used.

OVERLAYCLIPSYMHT=value
specifies the height for the symbol used to plot clipped values on overlay plots when the CLIPFACTOR=
option is used.

OVERLAYHTML=(variable-list)
specifies variables whose values are URLs to be associated with points on overlay plots when graphics
output is directed into HTML. Variables in the OVERLAYHTML= list are matched with variables in
the corresponding positions in the OVERLAY= list.

OVERLAYID=(variable-list)
specifies variables whose formatted values are used to label points on overlays. Variables in the
OVERLAYID= list are matched with variables in the corresponding positions in the OVERLAY= list.
The value of the OVERLAYID= variable should be the same for each observation with a given value
of the group variable.

† OVERLAYLEGLAB=‘label ’
specifies the label displayed to the left of the overlay legend produced by the OVERLAY= option. The
label can be up to 16 characters and must be enclosed in quotes. The default label is “Overlays:”.

OVERLAYSYM=(symbol-list)
specifies symbols used to plot overlay variables. Symbols in the OVERLAYSYM= list are matched
with variables in the corresponding positions in the OVERLAY= list.

OVERLAYSYMHT=(value-list)
specifies the heights of symbols used to plot overlay variables. Symbol heights in the OVER-
LAYSYMHT= list are matched with variables in the corresponding positions in the OVERLAY=
list.

PAGENUM=‘string’
specifies the form of the label used for pagination. The string can be up to 16 characters, and it must
include one or two occurrences of the substitution character ‘#’. The first ‘#’ is replaced with the page
number, and the optional second ‘#’ is replaced with the total number of pages.

The PAGENUM= option is useful when you are working with a large number of groups, resulting in
multiple pages of output. For example, suppose that each of the following PLOT statements produces
multiple pages:

proc boxplot data=Pistons;
plot Diameter*Hour / pagenum='Page #';
plot Diameter*Hour / pagenum='Page # of #';
plot Diameter*Hour / pagenum='#/#';

run;

The third page produced by the first statement would be labeled “Page 3”. The third page produced by
the second statement would be labeled “Page 3 of 5”. The third page produced by the third statement
would be labeled “3/5”.

By default, no page number is displayed.
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PAGENUMPOS=TL | TR | BL | BR | TL100 | TR100 | BL0 | BR0
specifies where to position the page number requested with the PAGENUM= option. The keywords
TL, TR, BL, and BR correspond to the positions top left, top right, bottom left, and bottom right,
respectively. You can use the TL100 and TR100 keywords to ensure that the page number appears
at the very top of a page when a title is displayed. The BL0 and BR0 keywords ensure that the page
number appears at the very bottom of a page when footnotes are displayed.

The default value is BR.

† PCTLDEF=index
specifies one of five definitions used to calculate percentiles in the construction of box-and-whiskers
plots. The index can be 1, 2, 3, 4, or 5. The five corresponding percentile definitions are discussed in
the section “Percentile Definitions” on page 1127. The default index is 5.

† REPEAT

† REP
specifies that the horizontal axis of a plot that spans multiple panels be arranged so that the last group
position on a panel is repeated as the first group position on the next panel. The REPEAT option
facilitates cutting and pasting panels together. When a SAS DATETIME format is associated with the
group variable, the REPEAT option is the default.

SKIPHLABELS=n

SKIPHLABEL=n
specifies the number n of consecutive tick mark labels, beginning with the second tick mark label, that
are thinned (not displayed) on the horizontal (group) axis. For example, specifying SKIPHLABEL=1
causes every other label to be skipped. Specifying SKIPHLABEL=2 causes the second and third labels
to be skipped, the fifth and sixth labels to be skipped, and so forth.

The default value of the SKIPHLABELS= option is the smallest value n for which tick mark labels do
not collide. A specified n will be overridden to avoid collision. To reduce thinning, you can use the
TURNHLABELS option.

SYMBOLLEGEND=LEGENDn | NONE
controls the legend for the levels of a symbol variable (see Example 28.2). You can specify SYMBOL-
LEGEND=LEGENDn, where n is the number of a LEGEND statement defined previously. You can
specify SYMBOLLEGEND=NONE to suppress the default legend. See SAS/GRAPH: Reference for
more information about the LEGEND statement.

SYMBOLORDER=DATA | INTERNAL | FORMATTED

SYMORD=DATA | INTERNAL | FORMATTED
specifies the order in which symbols are assigned for levels of the symbol variable. The DATA
keyword assigns symbols to values in the order in which values appear in the input data set. The
INTERNAL keyword assigns symbols based on sorted order of internal values of the symbol variable,
and the FORMATTED keyword assigns them based on sorted formatted values. The default value is
FORMATTED.

† TOTPANELS=n
specifies the total number of panels to be used to display the plot. This option overrides the NPANEL-
POS= option.



PLOT Statement F 1119

TURNHLABELS

TURNHLABEL
turns the major tick mark labels for the horizontal (group) axis so that they are arranged vertically. By
default, labels are arranged horizontally.

Note that arranging the labels vertically might leave insufficient vertical space on the panel for a plot.

† VAXIS=value-list

VAXIS=AXISn
specifies major tick mark values for the vertical axis of a box plot. The values must be listed in
increasing order, must be evenly spaced, and must span the range of values displayed in the plot. You
can specify the values with an explicit list or with an implicit list, as shown in the following example:

proc boxplot;
plot Width*Hour / vaxis=0 2 4 6 8;
plot Width*Hour / vaxis=0 to 8 by 2;

run;

You can also specify a previously defined AXIS statement with the VAXIS= option.

† VFORMAT=format
specifies a format to be used for displaying tick mark labels on the vertical axis of the box plot.

VMINOR=n

VM=n
specifies the number of minor tick marks between major tick marks on the vertical axis. Minor tick
marks are not labeled. By default, VMINOR=0.

VOFFSET=value
specifies the length in percent screen units of the offset at the ends of the vertical axis.

† VREF=value-list | SAS-data-set
draws reference lines perpendicular to the vertical axis. You can use this option in the following ways:

• Specify the values for the lines with a VREF= list:

vref=20
vref=20 40 80

• Specify the values for the lines as the values of a numeric variable named _REF_ in a VREF=
data set. Optionally, you can provide labels for the lines as values of a variable named _REFLAB_,
which must be a character variable of up to 16 characters. If you want distinct reference lines to
be displayed in plots for different analysis variables specified in the PLOT statement, you must
include a character variable named _VAR_, whose values are the names of the analysis variables.
If you do not include the variable _VAR_, all of the lines are displayed in all of the plots. Each
observation in the VREF= data set corresponds to a reference line. If BY variables are used in
the input data set, the same BY-variable structure must be used in the VREF= data set unless you
specify the NOBYREF option.
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† VREFLABELS=‘label1’ . . . ‘labeln’

† VREFLABEL=‘label1’ . . . ‘labeln’

† VREFLAB=‘label1’ . . . ‘labeln’
specifies labels for the reference lines requested by the VREF= option. The number of labels must
equal the number of lines. Enclose each label in quotes. Labels can be up to 16 characters.

VREFLABPOS=n
specifies the horizontal position of the VREFLABELS= label, as described in the following table. By
default, n = 1.

n Label Position

1 left-justified in plot area
2 right-justified in plot area
3 left-justified in right margin

VZERO
forces the origin to be included in the vertical axis for a box plot.

WAXIS=n
specifies the width in pixels for the axis and frame lines. By default, n = 1.

WGRID=n
specifies the width in pixels for grid lines requested with the ENDGRID and GRID options. By default,
n = 1.

† WHISKERPERCENTILE=pctl
specifies that the whiskers of the box-and-whisker plots be drawn to the pctl and 100� pctl percentiles.
For example, if you specify WHISKERPERCENTILE=10 the whiskers are drawn to the 10th and 90th
percentiles. Observations lying beyond the whiskers are outliers and there are no far outliers.

By default, whiskers are drawn to the minimum and maximum data values if the BOXSTYLE= value
is SKELETAL (the default), and to the most extreme values within or equal to the lower and upper
fences otherwise.

WOVERLAY=(value-list)
specifies the widths in pixels for the line segments connecting points on overlay plots. Widths in the
WOVERLAY= list are matched with variables in the corresponding positions in the OVERLAY= list.
By default, all overlay widths are 1.
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Details: BOXPLOT Procedure

Summary Statistics Represented by Box Plots
Table 28.7 lists the summary statistics represented in each box-and-whiskers plot.

Table 28.7 Summary Statistics Represented by Box Plots

Group Summary Statistic Feature of Box-and-Whiskers Plot

maximum endpoint of upper whisker
third quartile (75th percentile) upper edge of box
median (50th percentile) line inside box
mean symbol marker
first quartile (25th percentile) lower edge of box
minimum endpoint of lower whisker

Note that you can request different box plot styles, as discussed in the section “Styles of Box Plots” on
page 1126, and as illustrated in Example 28.2.

Output Data Sets

OUTBOX= Data Set

The OUTBOX= data set saves group summary statistics and outlier values. The following variables can be
saved:

• the group variable

• the variable _VAR_, containing the analysis variable name

• the variable _TYPE_, identifying features of box-and-whiskers plots

• the variable _VALUE_, containing values of box-and-whiskers plot features

• the variable _ID_, containing labels for outliers

• the variable _HTML_, containing URLs associated with plot features

_ID_ is included in the OUTBOX= data set only if the keyword SCHEMATICID or SCHEMATICID-
FAR is specified with the BOXSTYLE= option. _HTML_ is present only if one or more of the HTML=,
OUTHIGHHTML=, and OUTLOWHTML= options are specified.

Each observation in an OUTBOX= data set records the value of a single feature of one group’s box-and-
whiskers plot, such as its mean. The _TYPE_ variable identifies the feature whose value is recorded in
_VALUE_. Table 28.8 lists valid _TYPE_ variable values.
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Table 28.8 Valid _TYPE_ Values in an OUTBOX= Data Set

_TYPE_ Description

N group size
MIN minimum group value
Q1 group first quartile
MEDIAN group median
MEAN group mean
Q3 group third quartile
MAX group maximum value
STDDEV group standard deviation
LOW low outlier value
HIGH high outlier value
LOWHISKR low whisker value, if different from MIN
HIWHISKR high whisker value, if different from MAX
FARLOW low far outlier value
FARHIGH high far outlier value

Additionally, the following variables, if specified, are included:

• block variables

• symbol variable

• BY variables

• ID variables

OUTHISTORY= Data Set

The OUTHISTORY= data set saves group summary statistics. The following variables are saved:

• the group variable

• group minimum variables named by analysis-variable suffixed with L

• group first-quartile variables named by analysis-variable suffixed with 1

• group mean variables named by analysis-variable suffixed with X

• group median variables named by analysis-variable suffixed with M

• group third-quartile variables named by analysis-variable suffixed with 3

• group maximum variables named by analysis-variable suffixed with H

• group standard deviation variables named by analysis-variable suffixed with S

• group size variables named by analysis-variable suffixed with N
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If an analysis variable name has the maximum length of 32 characters, PROC BOXPLOT forms summary
statistic names from its first 16 characters, its last 15 characters, and the appropriate suffix.

Group summary variables are created for each analysis variable specified in the PLOT statement. For example,
consider the following statements:

proc boxplot data=Steel;
plot (Width Diameter)*Lot / outhistory=Summary;

run;

The data set Summary contains variables named Lot, WidthL, Width1, WidthM, WidthX, Width3, WidthH,
WidthS, WidthN, DiameterL, Diameter1, DiameterM, DiameterX, Diameter3, DiameterH, DiameterS, and
DiameterN.

Additionally, the following variables, if specified, are included:

• BY variables

• block variables

• symbol variable

• ID variables

Note that an OUTHISTORY= data set does not contain outlier values, and therefore cannot be used, in
general, to save a schematic box plot. You can use an OUTBOX= data set to save a schematic box plot
summary.

Input Data Sets

DATA= Data Set

You can read analysis variable measurements from a data set specified with the DATA= option in the PROC
BOXPLOT statement. Each analysis variable specified in the PLOT statement must be a SAS variable in the
data set. This variable provides measurements that are organized into groups indexed by the group variable.
The group variable, specified in the PLOT statement, must also be a SAS variable in the DATA= data set.
Each observation in a DATA= data set must contain a value for each analysis variable and a value for the
group variable. If the ith group contains ni measurements, there should be ni consecutive observations for
which the value of the group variable is the index of the ith group. For example, if each group contains 20
items and there are 30 groups, the DATA= data set should contain 600 observations. Other variables that can
be read from a DATA= data set include the following:

• block variables

• symbol variable

• BY variables

• ID variables
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BOX= Data Set

You can read group summary statistics and outlier information from a BOX= data set specified in the PROC
BOXPLOT statement. This enables you to reuse OUTBOX= data sets that have been created in previous runs
of the BOXPLOT procedure to reproduce schematic box plots.

A BOX= data set must contain the following variables:

• the group variable

• _VAR_, containing the analysis variable name

• _TYPE_, identifying features of box-and-whiskers plots

• _VALUE_, containing values of those features

Each observation in a BOX= data set records the value of a single feature of one group’s box-and-whiskers
plot, such as its mean. Consequently, a BOX= data set contains multiple observations per group. These must
appear consecutively in the BOX= data set.

The _TYPE_ variable identifies the feature whose value is recorded in a given observation. The following
table lists valid _TYPE_ variable values.

Table 28.9 Valid _TYPE_ Values in a BOX= Data Set

_TYPE_ Description

N group size
MIN group minimum value
Q1 group first quartile
MEDIAN group median
MEAN group mean
Q3 group third quartile
MAX group maximum value
STDDEV group standard deviation
LOW low outlier value
HIGH high outlier value
LOWHISKR low whisker value, if different from MIN
HIWHISKR high whisker value, if different from MAX
FARLOW low far outlier value
FARHIGH high far outlier value

The features identified by _TYPE_ values N, MIN, Q1, MEDIAN, MEAN, Q3, and MAX are required for
each group.

Other variables that can be read from a BOX= data set include the following:

• the variable _ID_, containing labels for outliers

• the variable _HTML_, containing URLs to be associated with features on box plots
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• block variables

• symbol variable

• BY variables

• ID variables

When you specify the keyword SCHEMATICID or SCHEMATICIDFAR with the BOXSTYLE= option,
values of _ID_ are used as outlier labels. If _ID_ does not exist in the BOX= data set, the values of the first
variable listed in the ID statement are used.

HISTORY= Data Set

You can read group summary statistics from a HISTORY= data set specified in the PROC BOXPLOT
statement. This enables you to reuse OUTHISTORY= data sets that have been created in previous runs of the
BOXPLOT procedure or to read output data sets created with SAS summarization procedures, such as PROC
UNIVARIATE.

Note that a HISTORY= data set does not contain outlier information. Therefore, in general you cannot
reproduce a schematic box plot from summary statistics saved in an OUTHISTORY= data set. To save and
reproduce schematic box plots, use OUTBOX= and BOX= data sets.

A HISTORY= data set must contain the following:

• the group variable

• a group minimum variable for each analysis variable

• a group first-quartile variable for each analysis variable

• a group median variable for each analysis variable

• a group mean variable for each analysis variable

• a group third-quartile variable for each analysis variable

• a group maximum variable for each analysis variable

• a group standard deviation variable for each analysis variable

• a group size variable for each analysis variable

The names of the group summary statistics variables must be the analysis variable name concatenated with
the following special suffix characters.
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Group Summary Statistic Suffix Character

group minimum L
group first quartile 1
group median M
group mean X
group third quartile 3
group maximum H
group standard deviation S
group size N

For example, consider the following statements:

proc boxplot history=Summary;
plot (Weight Yieldstrength) * Batch;

run;

The data set Summary must include the variables Batch, WeightL, Weight1, WeightM, WeightX, Weight3,
WeightH, WeightS, WeightN, YieldstrengthL, Yieldstrength1, YieldstrengthM, YieldstrengthX, Yieldstrength3,
YieldstrengthH, YieldstrengthS, and YieldstrengthN.

Note that if you specify an analysis variable whose name contains the maximum of 32 characters, the
summary variable names must be formed from the first 16 characters and the last 15 characters of the analysis
variable name, suffixed with the appropriate character.

These other variables can be read from a HISTORY= data set:

• block variables

• symbol variable

• BY variables

• ID variables

Styles of Box Plots
A box-and-whiskers plot is displayed for the measurements in each group on the box plot. The skeletal
style of the box-and-whiskers plot shown in Figure 28.6 is the default. You can produce a schematic box
plot by specifying the BOXSTYLE=SCHEMATIC option in the PLOT statement. Figure 28.8 illustrates a
typical schematic box plot and the locations of the fences (which are not displayed in actual output). See the
description of the BOXSTYLE= option for complete details.
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Figure 28.8 Schematic Box-and-Whiskers Plot

You can draw connecting lines between adjacent box-and-whiskers plots by using the BOXCON-
NECT=keyword option. For example, BOXCONNECT=MEAN connects the points representing the
means of adjacent groups. Other available keywords are MIN, Q1, MEDIAN, Q3, and MAX. Specifying
BOXCONNECT without a keyword is equivalent to specifying BOXCONNECT=MEAN. You can specify
the color for the connecting lines with the CCONNECT= option.

Percentile Definitions
You can use the PCTLDEF= option to specify one of five definitions for computing quantile statistics
(percentiles). Suppose that n is the number of nonmissing values for a variable and that x1; x2; : : : ; xn
represent the ordered values of the analysis variable. For the tth percentile, set p D t=100.

For the following definitions numbered 1, 2, 3, and 5, express np as

np D j C g

where j is the integer part of np, and g is the fractional part of np. For definition 4, let

.nC 1/p D j C g
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The tth percentile (call it y) can be defined as follows:

PCTLDEF=1 weighted average at xnp

y D .1 � g/xj C gxjC1

where x0 is taken to be x1.

PCTLDEF=2 observation numbered closest to np

y D xi

where i is the integer part of np C 1=2 if g ¤ 1=2. If g D 1=2, then
y D xj if j is even, or y D xjC1 if j is odd.

PCTLDEF=3 empirical distribution function

y D xj if g D 0

y D xjC1 if g > 0

PCTLDEF=4 weighted average aimed at xp.nC1/

y D .1 � g/xj C gxjC1

where xnC1 is taken to be xn.

PCTLDEF=5 empirical distribution function with averaging

y D .xj C xjC1/=2 if g D 0

y D xjC1 if g > 0

Missing Values
An observation read from an input data set is not analyzed if the value of the group variable is missing. For a
particular analysis variable, an observation read from a DATA= data set is not analyzed if the value of the
analysis variable is missing.

Continuous Group Variables
By default, the PLOT statement treats numerical group variable values as discrete values and spaces the
boxes evenly on the plot. The following statements produce the box plot in Figure 28.9:

ods graphics off;
title 'Box Plot for Power Output';
proc boxplot data=Turbine;

plot KWatts*Day;
run;



Continuous Group Variables F 1129

Figure 28.9 Box Plot with Discrete Group Variable

The labels on the horizontal axis in Figure 28.9 do not represent 10 consecutive days, but the box-and-whiskers
plots are evenly spaced.

In order to treat the group variable as continuous, you can specify the CONTINUOUS or HAXIS= option
when producing traditional graphics. Either option produces a box plot with a horizontal axis scaled for
continuous group variable values. (ODS Graphics does not support a continuous group axis.)

The following statements produce the plot shown in Figure 28.10. The TURNHLABELS option orients the
horizontal axis labels vertically so there is room to display them all.

title 'Box Plot for Power Output';
proc boxplot data=Turbine;

plot KWatts*Day / turnhlabels
continuous;

run;
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Figure 28.10 Box Plot with Continuous Group Variable

Note that the tick values on the horizontal axis represent consecutive days and that no box-and-whiskers plots
are displayed for days when no turbine data were collected.

Positioning Insets
This section provides details on three different methods of positioning INSET boxes by using the POSITION=
option. With the POSITION= option, you can specify the following:

• compass points

• keywords for margin positions

• coordinates in data units or percent axis units



Positioning Insets F 1131

Positioning the Inset Using Compass Points

You can specify the eight compass points (N, NE, E, SE, S, SW, W, and NW) as keywords for the POSITION=
option. The default inset position is NW. The following statements create the display in Figure 28.11, which
illustrates all eight compass positions:

title 'Box Plot for Power Output';
proc boxplot data=Turbine;

plot KWatts*Day;
inset nobs / height=2.5 cfill=blank header='NW' pos=nw;
inset nobs / height=2.5 cfill=blank header='N ' pos=n ;
inset nobs / height=2.5 cfill=blank header='NE' pos=ne;
inset nobs / height=2.5 cfill=blank header='E ' pos=e ;
inset nobs / height=2.5 cfill=blank header='SE' pos=se;
inset nobs / height=2.5 cfill=blank header='S ' pos=s ;
inset nobs / height=2.5 cfill=blank header='SW' pos=sw;
inset nobs / height=2.5 cfill=blank header='W ' pos=w ;

run;

Figure 28.11 Insets Positioned Using Compass Points
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Positioning the Inset in the Margins

You can also use the INSET statement to position an inset in one of the four margins surrounding the plot
area by using the margin keyword LM, RM, TM, or BM, as illustrated in Figure 28.12.

Figure 28.12 Positioning Insets in the Margins

For an example of an inset placed in the top margin, see Output 28.1.1. Margin positions are recommended
for insets containing a large number of statistics. If you attempt to display a lengthy inset in the interior of
the plot, it is likely that the inset will collide with the data display.

Positioning the Inset Using Coordinates

You can also specify the position of an inset with coordinates by using the POSITIOND .x; y/ option. You
can specify coordinates in axis percent units (the default) or in axis data units.

Data Unit Coordinates
If you specify the DATA option immediately following the coordinates, the inset is positioned using axis
data units. For example, the following statements place the bottom-left corner of the inset at 07JUL on the
horizontal axis and 3950 on the vertical axis:
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title 'Box Plot for Power Output';
proc boxplot data=Turbine;

plot KWatts*Day;
inset nobs /

header = 'Position=(07JUL,3950)'
position = ('07JUL94'd, 3950) data;

run;

The box plot is displayed in Figure 28.13. By default, the specified coordinates determine the position of the
bottom-left corner of the inset. You can change this reference point with the REFPOINT= option, as in the
next example.

Figure 28.13 Inset Positioned Using Data Unit Coordinates

Axis Percent Unit Coordinates
If you do not use the DATA option, the inset is positioned using axis percent units. The coordinates of the
bottom-left corner of the display are .0; 0/, while the coordinates of the top-right corner are .100; 100/. For
example, the following statements create a box plot with two insets, both positioned using coordinates in axis
percent units:
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title 'Box Plot for Power Output';
proc boxplot data=Turbine;

plot KWatts*Day;
inset nmin / position = (5,25)

header = 'Position=(5,25)'
height = 3
cfill = ywh
refpoint = tl;

inset nmax / position = (95,95)
header = 'Position=(95,95)'
height = 3
cfill = ywh
refpoint = tr;

run;

The display is shown in Figure 28.14. Notice that the REFPOINT= option is used to determine which
corner of the inset is placed at the coordinates specified with the POSITION= option. The first inset has
REFPOINT=TL, so the top-left corner of the inset is positioned 5% of the way across the horizontal axis and
25% of the way up the vertical axis. The second inset has REFPOINT=TR, so the top-right corner of the
inset is positioned 95% of the way across the horizontal axis and 95% of the way up the vertical axis. Note
also that coordinates in axis percent units must be between 0 and 100.

Figure 28.14 Inset Positioned Using Axis Percent Unit Coordinates



Displaying Blocks of Data F 1135

Displaying Blocks of Data
To display data organized in blocks of consecutive observations, specify one or more block variables in
parentheses after the group variable in the PLOT statement. The block variables must be variables in the
input data set. The BOXPLOT procedure displays a legend identifying blocks of consecutive observations
with identical values of the block variables. The legend displays one track of values for each block variable
containing formatted values of the block variable.

The values of a block variable must be the same for all observations with the same value of the group variable.
In other words, groups must be nested within blocks determined by block variables.

The following statements create a SAS data set containing diameter measurements for a part produced on
three different machines:

data Parts;
length Machine $ 4;
input Sample Machine $ @;
do i= 1 to 4;

input Diam @;
output;

end;
drop i;
datalines;

1 A386 4.32 4.55 4.16 4.44
2 A386 4.49 4.30 4.52 4.61
3 A386 4.44 4.32 4.25 4.50
4 A386 4.55 4.15 4.42 4.49
5 A386 4.21 4.30 4.29 4.63
6 A386 4.56 4.61 4.29 4.56
7 A386 4.63 4.30 4.41 4.58
8 A386 4.38 4.65 4.43 4.44
9 A386 4.12 4.49 4.30 4.36

10 A455 4.45 4.56 4.38 4.51
11 A455 4.62 4.67 4.70 4.58
12 A455 4.33 4.23 4.34 4.58
13 A455 4.29 4.38 4.28 4.41
14 A455 4.15 4.35 4.28 4.23
15 A455 4.21 4.30 4.32 4.38
16 C334 4.16 4.28 4.31 4.59
17 C334 4.14 4.18 4.08 4.21
18 C334 4.51 4.20 4.28 4.19
19 C334 4.10 4.33 4.37 4.47
20 C334 3.99 4.09 4.47 4.25
21 C334 4.24 4.54 4.43 4.38
22 C334 4.23 4.48 4.31 4.57
23 C334 4.27 4.40 4.32 4.56
24 C334 4.70 4.65 4.49 4.38
;

The following statements create a box plot for the measurements in the Parts data set grouped into blocks by
the block variable Machine:
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ods graphics on;
title 'Box Plot for Diameter Grouped By Machine';
proc boxplot data=Parts;

plot Diam*Sample (Machine) / odstitle = title;
label Sample = 'Sample Number'

Machine = 'Machine'
Diam = 'Diameter';

run;

The ODSTITLE= option uses the title specified in the SAS title as the graph title. Note the LABEL statement
used to provide labels for the axes and for the block legend. The plot is shown in Figure 28.15.

Figure 28.15 Box Plot Using a Block Variable

The unique consecutive values of Machine (A386, A455, and C334) are displayed in a legend above the plot.
That is the default location of the block legend. You can control the position of the block legend with the
BLOCKPOS= option. See the BLOCKPOS= option for details.

By default, block variable values that are too long to fit into the available space in a block legend
are not displayed. You can specify the BLOCKLABTYPE= option to display lengthy labels. Specify
BLOCKLABTYPE=SCALED to scale down the text size of the values so they all fit. Use BLOCKLAB-
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TYPE=TRUNCATED to truncate lengthy values. You can also use BLOCKLABTYPE=height to specify a
text height in vertical percent screen units for the values.

You can control the position of legend labels with the BLOCKLABELPOS= option. Valid BLOCKLABEL-
POS= values are ABOVE (the default, as shown in Figure 28.15) and LEFT.

Clipping Extreme Values
By default a box plot’s vertical axis is scaled to accommodate all the values in all groups. If the variation
between groups is large with respect to the variation within groups, or if some groups contain extreme
outlier values, the vertical axis scale can become so large that the box-and-whiskers plots are compressed. In
such cases, you can clip the extreme values to produce a more readable plot, as illustrated in the following
example.

A company produces copper tubing. The diameter measurements (in millimeters) for 15 batches of five tubes
each are provided in the data set Newtubes:

data Newtubes;
label Diameter='Diameter in mm';
do Batch = 1 to 15;

do i = 1 to 5;
input Diameter @@;
output;

end;
end;
datalines;

69.13 69.83 70.76 69.13 70.81
85.06 82.82 84.79 84.89 86.53
67.67 70.37 68.80 70.65 68.20
71.71 70.46 71.43 69.53 69.28
71.04 71.04 70.29 70.51 71.29
69.01 68.87 69.87 70.05 69.85
50.72 50.49 49.78 50.49 49.69
69.28 71.80 69.80 70.99 70.50
70.76 69.19 70.51 70.59 70.40
70.16 70.07 71.52 70.72 70.31
68.67 70.54 69.50 69.79 70.76
68.78 68.55 69.72 69.62 71.53
70.61 70.75 70.90 71.01 71.53
74.62 56.95 72.29 82.41 57.64
70.54 69.82 70.71 71.05 69.24
;

The following statements create a box plot of the tube diameters:

ods graphics on;
title 'Box Plot for New Copper Tubes' ;
proc boxplot data=Newtubes;

plot Diameter*Batch / odstitle = title;
run;

The box plot is shown in Figure 28.16.
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Figure 28.16 Compressed Box Plots

Note that the diameters in batch 2 are significantly larger, and those in batch 7 significantly smaller, than
those in most of the other batches. The default vertical axis scaling causes the box-and-whiskers plots to be
compressed.

You can produce a more useful box plot by specifying the CLIPFACTOR=factor option, where factor is a
value greater than one. Clipping is applied as follows:

1. The mean of the first quartile values (Q1) and the mean of the third quartile values (Q3) are computed
across all groups.

2. The following values define the clipping range:

ymax D Q1C .Q3 �Q1/ � factor

and

ymin D Q3 � .Q3 �Q1/ � factor

Any statistic greater than ymax or less than ymin is ignored during vertical axis scaling.
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NOTE:

• Clipping is applied only to the plotted statistics and not to the statistics saved in an output data set.

• A special symbol is used for clipped points (the default symbol is a square), and a legend is added to
the chart indicating the number of boxes that were clipped.

The following statements use a clipping factor of 1.5 to create a box plot of the same data plotted in
Figure 28.16:

title 'Box Plot for New Copper Tubes' ;
proc boxplot data=Newtubes;

plot Diameter*Batch /
odstitle = title
clipfactor = 1.5;

run;

The clipped box plot is shown in Figure 28.17.

Figure 28.17 Box Plot with Clip Factor of 1.5
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In Figure 28.17 the extreme values are clipped, making the box plot more readable. The box-and-whiskers
plots for batches 2 and 7 are clipped completely, while the plot for batch 14 is clipped at both the top and
bottom. Clipped points are marked with a square, and a clipping legend is added at the lower right of the
display.

Other clipping options are available, as illustrated by the following statements:

title 'Box Plot for New Copper Tubes' ;
proc boxplot data=Newtubes;

plot Diameter*Batch /
odstitle = title
clipfactor = 1.5
cliplegend = '# Clipped Boxes'
clipsubchar = '#';

run;

The CLIPLEGEND= option requests a user-specified legend for the number of clipped boxes. Each occurrence
in the legend of the character specified in the CLIPSUBCHAR= option is replaced by the number of clipped
boxes.

Figure 28.18 shows the box plot with the modified clipping legend.

Figure 28.18 Box Plot with Clipping Options



ODS Graphics F 1141

For more information about clipping options, see the appropriate entries in the section “PLOT Statement
Options” on page 1097.

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

The appearance of a box plot produced using ODS Graphics is determined by the style associated with the
ODS destination where the graph is produced. PLOT statement options used to control the appearance of
traditional graphs are ignored for ODS Graphics output.

When producing ODS graphical displays, the PLOT statement assigns a name to each graph it creates. You
can use this name to reference the graph when using ODS. The name is listed in Table 28.10.

Table 28.10 Graphs Produced by PROC BOXPLOT

ODS Graph Name Plot Description

Boxplot box-and-whiskers plots for groups

Examples: BOXPLOT Procedure
This section provides advanced examples of the PLOT statement.

Example 28.1: Displaying Summary Statistics in a Box Plot
This example demonstrates how you can use the INSET and INSETGROUP statements to include tables of
summary statistics in your box plots. The following statements produce a box plot of the Turbine data set
from the section “Getting Started: BOXPLOT Procedure” on page 1081, augmented with insets containing
summary statistics:

ods graphics off;
title 'Box Plot for Power Output';
proc boxplot data=Turbine;

plot KWatts*Day;
inset min mean max stddev /

header = 'Overall Statistics'
pos = tm;
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insetgroup min max /
header = 'Extremes by Day';

run;

The INSET statement produces an inset of overall summary statistics. The keywords listed before the slash
(/) request the minimum, mean, maximum, and standard deviation computed over all days. The POS=TM
option places the inset in the top margin of the plot.

The INSETGROUP statement produces an inset containing statistics calculated for each group separately.
The MIN and MAX keywords request the minimum and maximum observations from each day, respectively.

The resulting plot is shown in Output 28.1.1.

Output 28.1.1 Box Plot with Insets

Example 28.2: Using Box Plots to Compare Groups
In this example a box plot is used to compare the delay times of airline flights during the Christmas holidays
with the delay times prior to the holiday period. The following statements create a data set named Times
with the delay times in minutes for 25 flights each day. When a flight is canceled, the delay is recorded as a
missing value.
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data Times;
informat Day date7. ;
format Day date7. ;
input Day @ ;
do Flight=1 to 25;

input Delay @ ;
output;

end;
datalines;

16DEC88 4 12 2 2 18 5 6 21 0 0
0 14 3 . 2 3 5 0 6 19
7 4 9 5 10

17DEC88 1 10 3 3 0 1 5 0 . .
1 5 7 1 7 2 2 16 2 1
3 1 31 5 0

18DEC88 7 8 4 2 3 2 7 6 11 3
2 7 0 1 10 2 3 12 8 6
2 7 2 4 5

19DEC88 15 6 9 0 15 7 1 1 0 2
5 6 5 14 7 20 8 1 14 3

10 0 1 11 7
20DEC88 2 1 0 4 4 6 2 2 1 4

1 11 . 1 0 6 5 5 4 2
2 6 6 4 0

21DEC88 2 6 6 2 7 7 5 2 5 0
9 2 4 2 5 1 4 7 5 6
5 0 4 36 28

22DEC88 3 7 22 1 11 11 39 46 7 33
19 21 1 3 43 23 9 0 17 35
50 0 2 1 0

23DEC88 6 11 8 35 36 19 21 . . 4
6 63 35 3 12 34 9 0 46 0
0 36 3 0 14

24DEC88 13 2 10 4 5 22 21 44 66 13
8 3 4 27 2 12 17 22 19 36
9 72 2 4 4

25DEC88 4 33 35 0 11 11 10 28 34 3
24 6 17 0 8 5 7 19 9 7
21 17 17 2 6

26DEC88 3 8 8 2 7 7 8 2 5 9
2 8 2 10 16 9 5 14 15 1

12 2 2 14 18
;

In the following statements, the MEANS procedure is used to count the number of canceled flights for each
day. This information is then added to the data set Times.

proc means data=Times noprint;
var Delay;
by Day;
output out=Cancel nmiss=ncancel;

run;
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data Times;
merge Times Cancel;
by Day;

run;

The following statements create a data set named Weather containing information about possible causes for
delays, and then merge this data set with the data set Times:

data Weather;
informat Day date7. ;
format Day date7. ;
length Reason $ 16 ;
input Day Flight Reason & ;
datalines;

16DEC88 8 Fog
17DEC88 18 Snow Storm
17DEC88 23 Sleet
21DEC88 24 Rain
21DEC88 25 Rain
22DEC88 7 Mechanical
22DEC88 15 Late Arrival
24DEC88 9 Late Arrival
24DEC88 22 Late Arrival
;

data Times;
merge Times Weather;
by Day Flight;

run;

The following statements create a box plot for the complete set of data:

ods graphics off;
symbol1 value=dot c=salmon h=2.0 pct;
symbol2 value=squarefilled c=vigb h=2.0 pct;
symbol3 value=trianglefilled c=vig h=2.0 pct;
title 'Box Plot for Airline Delays';
proc boxplot data=Times;

plot Delay*Day = ncancel /
nohlabel
symbollegend = legend1;

legend1 label = ('Cancellations:');
label Delay = 'Delay in Minutes';

run;
goptions reset=symbol;

The level of the symbol variable ncancel determines the symbol marker for each group mean, and the
SYMBOLLEGEND= option controls the appearance of the legend for the symbols. The NOHLABEL option
suppresses the horizontal axis label. The resulting box plot is shown in Output 28.2.1.
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Output 28.2.1 Box Plot for Airline Data

The delay distributions from December 22 through December 25 are drastically different from the delay
distributions during the pre-holiday period. Both the mean delay and the variability of the delays are much
greater during the holiday period.

Example 28.3: Creating Various Styles of Box-and-Whiskers Plots
This example uses the flight delay data of the preceding example to illustrate how you can create box plots
with various styles of box-and-whiskers plots. The following statements create a plot that displays skeletal
box-and-whiskers plots:

ods graphics on;
title 'Analysis of Airline Departure Delays';
title2 'BOXSTYLE=SKELETAL';
proc boxplot data=Times;

plot Delay*Day /
boxstyle = skeletal
odstitle = title
nohlabel;

label Delay = 'Delay in Minutes';
run;
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In a skeletal box-and-whiskers plot, the whiskers are drawn from the quartiles to the extreme values of the
group. The skeletal box plot is the default style, so you can also produce a skeletal box plot by omitting the
BOXSTYLE= option. Output 28.3.1 shows the skeletal box plot.

Output 28.3.1 BOXSTYLE=SKELETAL

The following statements request a schematic box:

title 'Analysis of Airline Departure Delays';
title2 'BOXSTYLE=SCHEMATIC';
proc boxplot data=Times;

plot Delay*Day /
boxstyle = schematic
odstitle = title
nohlabel;

label Delay = 'Delay in Minutes';
run;

When you specify BOXSTYLE=SCHEMATIC, the whiskers are drawn to the most extreme points in the
group that lie within or equal to the fences. The upper fence is defined as the third quartile (represented by
the upper edge of the box) plus 1.5 times the interquartile range (IQR). The lower fence is defined as the first
quartile (represented by the lower edge of the box) minus 1.5 times the interquartile range. Observations
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outside the fences are identified with a special symbol. The default symbol is a square, and you can specify
the shape and color for this symbol with the IDSYMBOL= and IDCOLOR= options. Serifs are added to
the whiskers by default. For further details, see the entry for the BOXSTYLE= option. The plot is shown in
Output 28.3.2.

Output 28.3.2 BOXSTYLE=SCHEMATIC

The following statements create a schematic box plot in which the observations outside the fences are labeled:

title 'Analysis of Airline Departure Delays';
title2 'BOXSTYLE=SCHEMATICID';
proc boxplot data=Times;

plot Delay*Day /
boxstyle = schematicid
odstitle = title
odstitle2 = title2
nohlabel;

id Reason;
label Delay = 'Delay in Minutes';

run;
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If you specify BOXSTYLE=SCHEMATICID, schematic box-and-whiskers plots are created and the value of
the first ID variable (in this case, Reason) is used to label each observation outside the fences. The box plot
is shown in Output 28.3.3.

Output 28.3.3 BOXSTYLE=SCHEMATICID

The following statements create a box plot with schematic box-and-whiskers plots in which only the extreme
observations outside the fences are labeled:

title 'Analysis of Airline Departure Delays';
title2 'BOXSTYLE=SCHEMATICIDFAR';
proc boxplot data=Times;

plot Delay*Day /
boxstyle = schematicidfar
odstitle = title
odstitle2 = title2
nohlabel;

id Reason;
label Delay = 'Delay in Minutes';

run;

If you specify BOXSTYLE=SCHEMATICIDFAR, the value of the first ID variable is used to label each
observation outside the lower and upper far fences. The lower and upper far fences are located 3�IQR below
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the 25th percentile and 3�IQR above the 75th percentile, respectively. Observations between the fences and
the far fences are identified with a symbol but are not labeled. The box plot is shown in Output 28.3.4.

Output 28.3.4 BOXSTYLE=SCHEMATICIDFAR

Example 28.4: Creating Notched Box-and-Whiskers Plots
The following statements use the flight delay data of Example 28.2 to create box-and-whiskers plots with
notches:

proc boxplot data=Times;
plot Delay*Day /

boxstyle = schematicid
odstitle = title
odstitle2 = title2
nohlabel
notches;

id Reason;
label Delay = 'Delay in Minutes';

run;
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The notches, requested with the NOTCHES option, measure the significance of the difference between two
medians. The medians of two box plots are significantly different at approximately the 0.95 confidence level
if the corresponding notches do not overlap. For example, in Output 28.4.1, the median for December 20 is
significantly different from the median for December 24.

Output 28.4.1 Notched Side-by-Side Box-and-Whiskers Plots

Example 28.5: Creating Box-and-Whiskers Plots with Varying Widths
This example shows how to create a box plot with box-and-whiskers plots whose widths vary proportionately
with the group size. The following statements create a SAS data set named Times2 that contains flight
departure delays (in minutes) recorded daily for eight consecutive days:

data Times2;
label Delay = 'Delay in Minutes';
informat Day date7. ;
format Day date7. ;
input Day @ ;
do Flight=1 to 25;

input Delay @ ;
output;
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end;
datalines;

01MAR90 12 4 2 2 15 8 0 11 0 0
0 12 3 . 2 3 5 0 6 25
7 4 9 5 10

02MAR90 1 . 3 . 0 1 5 0 . .
1 5 7 . 7 2 2 16 2 1
3 1 31 . 0

03MAR90 6 8 4 2 3 2 7 6 11 3
2 7 0 1 10 2 5 12 8 6
2 7 2 4 5

04MAR90 12 6 9 0 15 7 1 1 0 2
5 6 5 14 7 21 8 1 14 3

11 0 1 11 7
05MAR90 2 1 0 4 . 6 2 2 1 4

1 11 . 1 0 . 5 5 . 2
3 6 6 4 0

06MAR90 8 6 5 2 9 7 4 2 5 1
2 2 4 2 5 1 3 9 7 8
1 0 4 26 27

07MAR90 9 6 6 2 7 8 . . 10 8
0 2 4 3 . . . 7 . 6
4 0 . . .

08MAR90 1 6 6 2 8 8 5 3 5 0
8 2 4 2 5 1 6 4 5 10
2 0 4 1 1

;

The following statements create a box plot with varying box widths:

title 'Analysis of Airline Departure Delays';
title2 'Using the BOXWIDTHSCALE= Option';
proc boxplot data=Times2;

plot Delay*Day /
boxstyle = schematic
odstitle = title
odstitle2 = title2
boxwidthscale = 1
nohlabel
bwslegend;

run;

The BOXWIDTHSCALE=value option specifies that the widths of the box-and-whiskers plots vary in
proportion to a particular function of the group size n. The function is determined by value and is identified
on the box plot with a legend if the BWSLEGEND option is specified. The BOXWIDTHSCALE= option is
useful in situations where the group sizes vary widely.

Output 28.5.1 shows the resulting box plot.
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Output 28.5.1 Box Plot with Box-and-Whiskers Plots of Varying Widths

Example 28.6: Creating Horizontal Box-and-Whiskers Plots
The following statements use the HORIZONTAL option, which is supported only for ODS Graphics output,
to produce a horizontal box plot:

proc boxplot data=Times;
plot Delay*Day /

boxstyle = schematic
horizontal;

label Delay = 'Delay in Minutes';
run;

The horizontal box plot is shown in Output 28.6.1.
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Output 28.6.1 Horizontal Box Plot
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Overview: CALIS Procedure
Structural equation modeling is an important statistical tool in social and behavioral sciences. Structural
equations express relationships among a system of variables that can be either observed variables (manifest
variables) or unobserved hypothetical variables (latent variables). For an introduction to latent variable
models, see Loehlin (2004); Bollen (1989b); Everitt (1984), or Long (1983); and for manifest variables with
measurement errors, see Fuller (1987).

In structural models, as opposed to functional models, all variables are taken to be random rather than having
fixed levels. For maximum likelihood (default) and generalized least squares estimation in PROC CALIS,
the random variables are assumed to have an approximately multivariate normal distribution. Nonnormality,
especially high kurtosis, can produce poor estimates and grossly incorrect standard errors and hypothesis
tests, even in large samples. Consequently, the assumption of normality is much more important than in
models with nonstochastic exogenous variables. You should remove outliers and consider transformations
of nonnormal variables before using PROC CALIS with maximum likelihood (default) or generalized least
squares estimation. Alternatively, model outliers can be downweighted during model estimation with robust
methods. If the number of observations is sufficiently large, Browne’s asymptotically distribution-free (ADF)
estimation method can be used. If your data sets contain random missing data, the full information maximum
likelihood (FIML) method can be used.

You can use the CALIS procedure to estimate parameters and test hypotheses for constrained and uncon-
strained problems in various situations, including but not limited to the following:

• exploratory and confirmatory factor analysis of any order

• linear measurement-error models or regression with errors in variables

• multiple and multivariate linear regression

• multiple-group structural equation modeling with mean and covariance structures

• path analysis and causal modeling

• simultaneous equation models with reciprocal causation

• structured covariance and mean matrices in various forms

To specify models in PROC CALIS, you can use a variety of modeling languages:

• COSAN—a generalized version of the COSAN program (McDonald 1978, 1980), uses general mean
and covariance structures to define models

• FACTOR—supports the input of latent factor and observed variable relations

• LINEQS—like the EQS program (Bentler 1995), uses equations to describe variable relationships

• LISMOD—utilizes LISREL (Jöreskog and Sörbom 1985) model matrices to define models

• MSTRUCT—supports direct parameterizations in the mean and covariance matrices



Overview: CALIS Procedure F 1159

• PATH—provides an intuitive causal path specification interface

• RAM—utilizes the formulation of the reticular action model (McArdle and McDonald 1984) to define
models

• REFMODEL—provides a quick way for model referencing and respecification

Various modeling languages are provided to suit a wide range of researchers’ background and modeling
philosophy. However, statistical situations might arise where one modeling language is more convenient than
the others. This will be discussed in the section “Which Modeling Language?” on page 1194.

In addition to basic model specification, you can set various parameter constraints in PROC CALIS. Equality
constraints on parameters can be achieved by simply giving the same parameter names in different parts of
the model. Boundary, linear, and nonlinear constraints are supported as well. If parameters in the model are
dependent on additional parameters, you can define the dependence by using the PARAMETERS and the
SAS programming statements.

Before the data are analyzed, researchers might be interested in studying some statistical properties of the
data. PROC CALIS can provide the following statistical summary of the data:

• covariance and mean matrices and their properties

• descriptive statistics like means, standard deviations, univariate skewness, and kurtosis measures

• multivariate measures of kurtosis

• coverage of covariances and means, missing patterns summary, and means of the missing patterns
when the FIML estimation is used

• weight matrix and its descriptive properties

• robust covariance and mean matrices with the robust methods

After a model is fitted and accepted by the researcher, PROC CALIS can provide the following supplementary
statistical analysis:

• computing squared multiple correlations and determination coefficients

• direct and indirect effects partitioning with standard error estimates

• model modification tests such as Lagrange multiplier and Wald tests

• computing fit summary indices

• computing predicted moments of the model

• residual analysis on the covariances and means

• case-level residual diagnostics with graphical plots

• factor rotations

• standardized solutions with standard errors

• testing parametric functions, individually or simultaneously
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When fitting a model, you need to choose an estimation method. The following estimation methods are
supported in the CALIS procedure:

• diagonally weighted least squares (DWLS, with optional weight matrix input)

• full information maximum likelihood (FIML, which can treat observations with random missing
values)

• generalized least squares (GLS, with optional weight matrix input)

• maximum likelihood (ML, for multivariate normal data); this is the default method

• robust estimation with maximum likelihood model evaluation (ROBUST option)

• unweighted least squares (ULS)

• weighted least squares or asymptotically distribution-free method (WLS or ADF, with optional weight
matrix input)

Estimation methods implemented in PROC CALIS do not exhaust all alternatives in the field. For example,
the partial least squares (PLS) method is not implemented. See the section “Estimation Criteria” on page 1463
for details about estimation criteria used in PROC CALIS. Note that there is a SAS/STAT procedure called
PROC PLS, which employs the partial least squares technique but for a different class of models than those
of PROC CALIS. For general path analysis with latent variables, consider using PROC CALIS.

All estimation methods need some starting values for the parameter estimates. You can provide starting values
for any parameters. If there is any estimate without a starting value provided, PROC CALIS determines the
starting value by using one or any combination of the following methods:

• approximate factor analysis

• default initial values

• instrumental variable method

• matching observed moments of exogenous variables

• McDonald’s method (McDonald and Hartmann 1992) method

• ordinary least squares estimation

• random number generation, if a seed is provided

• two-stage least squares estimation

Although no methods for initial estimates are completely foolproof, the initial estimation methods provided
by PROC CALIS behave reasonably well in most common applications.

With initial estimates, PROC CALIS will iterate the solutions so as to achieve the optimum solution as
defined by the estimation criterion. This is a process known as optimization. Because numerical problems
can occur in any optimization process, the CALIS procedure offers several optimization algorithms so that
you can choose alternative algorithms when the one being used fails. The following optimization algorithms
are supported in PROC CALIS:
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• Levenberg-Marquardt algorithm (Moré 1978)

• trust-region algorithm (Gay 1983)

• Newton-Raphson algorithm with line search

• ridge-stabilized Newton-Raphson algorithm

• various quasi-Newton and dual quasi-Newton algorithms: Broyden-Fletcher-Goldfarb-Shanno and
Davidon-Fletcher-Powell, including a sequential quadratic programming algorithm for processing
nonlinear equality and inequality constraints

• various conjugate gradient algorithms: automatic restart algorithm of Powell (1977), Fletcher-Reeves,
Polak-Ribiere, and conjugate descent algorithm of Fletcher (1980)

• iteratively reweighted least squares for robust estimation

In addition to the ability to save output tables as data sets by using the ODS OUTPUT statement, PROC
CALIS supports the following types of output data sets so that you can save your analysis results for later use:

• OUTEST= data sets for storing parameter estimates and their covariance estimates

• OUTFIT= data sets for storing fit indices and some pertinent modeling information

• OUTMODEL= data sets for storing model specifications and final estimates

• OUTSTAT= data sets for storing descriptive statistics, robust covariances and means, residuals,
predicted moments, and latent variable scores regression coefficients

• OUTWGT= data sets for storing the weight matrices used in the modeling

The OUTEST=, OUTMODEL=, and OUTWGT= data sets can be used as input data sets for subsequent
analyses. That is, in addition to the input data provided by the DATA= option, PROC CALIS supports the
following input data sets for various purposes in the analysis:

• INEST= data sets for providing initial parameter estimates. An INEST= data set could be an OUTEST=
data set created from a previous analysis.

• INMODEL= data sets for providing model specifications and initial estimates. An INMODEL= data
set could be an OUTMODEL= data set created from a previous analysis.

• INWGT= data sets for providing the weight matrices. An INWGT= data set could be an OUTWGT=
data set created from a previous analysis.

The CALIS procedure uses ODS Graphics to create high-quality graphs as part of its output. You can produce
the following graphical output by specifying the PLOTS= option or the PATHDIAGRAM statement:

• histogram for mean, covariance, or correlation residuals

• histogram for case-level residual M-distances
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• case-level residual diagnostic plots such as residual by leverage plot, residual by predicted plot, PP-plot,
and QQ-plot

• path diagram for initial model specification, unstandardized solution, or standardized solution

See Chapter 21, “Statistical Graphics Using ODS,” for general information about ODS Graphics. See the
section “ODS Graphics” on page 1538 and the PLOTS= option on page 1232 for specific information
about the statistical graphics available with the CALIS procedure. For more information about producing
customized path diagrams, see the options of the PATHDIAGRAM statement.

Compatibility with the CALIS Procedure in SAS/STAT 9.2 or Earlier
In addition to the many important feature enhancements of the CALIS procedure since SAS/STAT 9.22, there
have also been some rudimentary changes in the procedure. To help users make a smoother transition from
earlier versions (SAS/STAT 9.2 or earlier), this section describes some of the major changes of the CALIS
procedure since SAS/STAT 9.22.

Changes in Default Analysis Type and Parameterization

Table 29.1 lists some important changes in the default analysis type and parameterization since SAS/STAT
9.22. Some items that did not change are also included to make the scope of the changes clear. Notice that the
part of this table about default parameterization applies only to models that have functional relations between
variables. This class of functional models includes the following types of models: FACTOR, LINEQS,
LISMOD, PATH, and RAM, although LISMOD and PATH models did not exist prior to SAS/STAT 9.22.
This table does not apply to the default parameterization of the COSAN and MSTRUCT models. For these
models, see the descriptions in the COSAN and MSTRUCT statements, or see the sections “The MSTRUCT
Model” on page 1416 and “The COSAN Model” on page 1390.

Table 29.1 Default Analysis Type and Parameterization

Default Setting SAS/STAT 9.22 or
Later

Prior to SAS/STAT
9.22

Analysis type Covariance analysis Correlation analysis
Variances of independent factors and errors Free parameters Zero variances
Variances of independent observed variables Free parameters Free parameters
Covariances between independent factors Free parameters1 Fixed zeros
Covariances between error variables Fixed zeros Fixed zeros
Covariances between independent
observed variables

Free parameters Free parameters

1. The exploratory FACTOR model is an exception. Covariances between unrotated factors are set to zeros by default.



Compatibility with the CALIS Procedure in SAS/STAT 9.2 or Earlier F 1163

• Covariance structure analysis is the default analysis type in SAS/STAT 9.22 or later.

Covariance structure analysis has been the default since SAS/STAT 9.22. The statistical theory
for structural equation modeling has been developed largely for covariance structures rather than
correlation structures. Also, most practical structural equation models nowadays are concerned with
covariance structures. Therefore, the default analysis type with covariance structure analysis is more
reasonable. You must now use the CORR option for correlation structure analysis.

• Variances of any types of variables are free parameters by default in SAS/STAT 9.22 or later.

Variances of any types of variables are assumed to be free parameters in almost all applications for
functional models. Prior to SAS/STAT 9.22, default variances of independent factors and errors were
set to fixed zeros. This default has changed since SAS/STAT 9.22. Variances of any types of variables
in functional models are now free parameters by default. This eliminates the need to specify these
commonly assumed variance parameters.

• Covariances between all exogenous variables (factors or observed variables), except for error variables,
are free parameters by default in functional models in SAS/STAT 9.22 or later.

Since SAS/STAT 9.22, covariances between all exogenous variables, except for error variables, are free
parameters by default in functional models such as LINEQS, LISMOD, PATH, RAM, and confirmatory
FACTOR models. In exploratory FACTOR models, covariances between unrotated factors are set
to zeros by default. This change of default setting reflects the structural equation modeling practice
much better. The default covariances between error variables, or between errors and other exogenous
variables, are fixed at zero in all versions. Also, the default covariances between independent observed
variables are free parameters in all versions.

Certainly, you can override all default parameters by specifying various statements in SAS/STAT 9.22 or
later. You can use the PVAR, RAM, VARIANCE, or specific MATRIX statement to override default fixed or
free variance parameters. You can use the COV, PCOV, RAM, or specific MATRIX statement to override
default fixed or free covariance parameters.

Changes in the Role of the VAR Statement in Model Specification

Like many other SAS procedures, PROC CALIS enables you to use the VAR statement to define the set of
observed variables in the data set for analysis. Unlike many other SAS procedures, PROC CALIS has other
statements for more flexible model specifications. Because you can specify observed variables in these model
specification statements and in the VAR statement with PROC CALIS, a question might arise when the set of
observed variables specified in the VAR statement is not exactly the same as the set of observed variables
specified in the model specification statements. Which set of observed variables does PROC CALIS use for
analysis? The answer might depend on which version of PROC CALIS you use.

For observed variables that are specified in both the VAR statement and at least one of the model specification
statements (such as the LINEQS, PATH, RAM, COV, PCOV, PVAR, STD, and VARIANCE statements),
PROC CALIS recognizes the observed variables without any difficulty (that is, if they actually exist in the
data set) no matter which SAS version you are using.
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For observed variables that are specified only in the model specification statements and not in the VAR
statement specifications (if the VAR statement is used at all), PROC CALIS does not recognize the observed
variables as they are because the VAR statement has been used to preselect the legitimate set of observed
variables to analyze. In most models, these observed variables are instead treated as latent variables. Again,
this behavior is the same for all versions of PROC CALIS. If mistreating observed variables as latent variables
is a major concern, a simple solution is not to use the VAR statement at all. This ensures that PROC CALIS
uses all the observed variable as they are if they are specified in the model specification statements.

Finally, for observed variables that are specified only in the VAR statement and not in any of the model
specification statements, the behavior depends on which SAS version you are using. Prior to SAS/STAT 9.22,
PROC CALIS simply ignored these observed variables. For SAS/STAT 9.22 or later, PROC CALIS still
includes these observed variables for analysis. In this case, PROC CALIS treats these “extra” variables as
exogenous variables in the model so that some default parameterization applies. See the section “Default
Analysis Type and Default Parameterization” on page 1388 for explanations of why this could be useful.

Changes in the LINEQS Model Specifications

Prior to SAS/STAT 9.22, LINEQS was the most popular modeling language supported by PROC CALIS.
Since then, PROC CALIS has implemented a new syntax system that does not require the use of parameter
names. Together with the change in default parameterization and some basic modeling methods, the
specification of LINEQS models becomes much simpler and intuitive in SAS/STAT 9.22 or later. Table 29.2
lists the major syntax changes in LINEQS model specifications, followed by some notes.

Table 29.2 Changes in the LINEQS Model Syntax

Syntax SAS/STAT 9.22 or Later Prior to SAS/STAT 9.22

Free parameter specifications Parameter names optional Parameter names required
Error terms in equations Required Not required
Mean structure analysis With the MEANSTR option With the UCOV and AUG

options
Intercept parameter specifications With the Intercept or Intercep

variable
With the INTERCEP variable

Mean parameter specifications With the MEAN statement
specifications

As covariances between
variables and the INTERCEP
variable

Treatment of short parameter lists Free parameters after the last
parameter specification

Replicating the last parameter
specification

Parameter-prefix notation With two trailing underscores
(__) as suffix

With the suffix ‘:’
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The explanations of these changes are as follows:

• The use of parameter names for free parameters is optional in SAS/STAT 9.22 or later.

Prior to SAS/STAT 9.22, you must use parameter names to specify free parameters. In SAS/STAT 9.22
or later, the use of parameter names is optional. For example, prior to SAS/STAT 9.22, you might use
the following LINEQS model specifications:

lineqs
A = x1 * B + x2(.5) * C + E1;

std
B = var_b, C = var_c(1.2);

cov
B C = cov_b_c;

In SAS/STAT 9.22 or later, you can simply use the following:

lineqs
A = * B + (.5) * C + E1;

variance
B, C = (1.2);

cov
B C;

This example shows that the parameter names x1, x2, var_b, var_c, and cov_b_c for free parameters
are not necessary in SAS/STAT 9.22 or later. PROC CALIS generates names for these unnamed
free parameters automatically. Also, you can specify initial estimates in parentheses without using
parameter names. Certainly, you can still use parameter names wherever you want to, especially when
you need to constrain parameters by referring to their names. Notice that the STD statement prior to
SAS/STAT 9.22 has a more meaningful alias, VARIANCE, in SAS/STAT 9.22 or later.

• An error term is required in each equation in the LINEQS statement in SAS/STAT 9.22 or later.

Prior to SAS/STAT 9.22, you can set an equation in the LINEQS statement without providing an error
term such as the following:

lineqs
A = x1 * F1;

This means that A is perfectly predicted from F1 without an error. In SAS/STAT 9.22 or later, you need
to provide an error term in each question, and the preceding specification is not syntactically valid. If
a perfect relationship is indeed desirable, you can equivalently set the corresponding error variance
to zero. For example, the following specification in SAS/STAT 9.22 or later achieves the purpose of
specifying a perfect relationship between A and F1:
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lineqs
A = x1 * F1 + E1;

variance
E1 = 0.;

In the VARIANCE statement, the error variance of E1 is fixed at zero, resulting in a perfect relationship
between A and F1.

• Mean structure analysis is invoked by the MEANSTR option in SAS/STAT 9.22 or later.

Prior to SAS/STAT 9.22, you use the AUG and UCOV options together in the PROC CALIS statement
to invoke the analysis of mean structures. These two options became obsolete in SAS/STAT 9.22.
This change actually reflects more than a name change. Prior to SAS/STAT 9.22, mean structures are
analyzed as augmented covariance structures in the uncorrected covariance matrix (hence the AUG
and UCOV options). There are many problems with this “augmented” matrix approach. In SAS/STAT
9.22 or later, the augmented matrix was abandoned in favor of the direct parameterization approach
for the mean structures. Now you must use the MEANSTR option in the PROC CALIS statement to
invoke the analysis of mean structures. Alternatively, you can specify the intercepts directly in the
LINEQS statement or specify the means directly in the MEAN statement. See the next two items for
more information.

• Intercept parameters are set as the coefficient effects of the Intercept variable in SAS/STAT 9.22 or later.

Prior to SAS/STAT 9.22, you specify the intercept variable in the equations of the LINEQS statement
by using the special “variable” named ‘INTERCEP’. For example, in the following specification, a1 is
the intercept parameter for the equation with dependent variable A:

proc calis ucov aug;
lineqs

A = a1 * INTERCEP + b1 * B + E1;

In SAS/STAT 9.22 or later, although ‘INTERCEP’ is still accepted by PROC CALIS, a more meaningful
alias ‘Intercept’ is also supported, as shown in the following:

proc calis;
lineqs

A = a1 * Intercept + b1 * B + E1;

Intercept or INTERCEP can be typed in uppercase, lowercase, or mixed case in all versions. In addition,
with the use of the Intercept variable in the LINEQS statement specification, mean structure analysis is
automatically invoked for all parts of the model without the need to use the MEANSTR option in the
PROC CALIS statement in SAS/STAT 9.22 or later.

• Mean parameters are specified directly in the MEAN statement in SAS/STAT 9.22 or later.

Prior to SAS/STAT 9.22, you need to specify mean parameters as covariances between the correspond-
ing variables and the INTERCEP variable. For example, the following statements specify the mean
parameters, mean_b and mean_c, of variables B and C, respectively:
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proc calis ucov aug;
lineqs

A = a1 * INTERCEP + b1 * B + b2 * C + E1;
cov

B INTERCEP = mean_b (3),
C INTERCEP = mean_c;

In SAS/STAT 9.22 or later, you can specify these mean parameters directly in the MEAN statement, as
in the following example:

proc calis;
lineqs

A = a1 * Intercept + b1 * B + b2 * C + E1;
mean

B = mean_b (3),
C = mean_c;

This way, the types of parameters that are being specified are clearer.

• Short parameter lists do not generate constrained parameters in SAS/STAT 9.22 or later.

Prior to SAS/STAT 9.22, if you provide a shorter parameter list than expected, the last parameter
specified is replicated automatically. For example, the following specification results in replicating
varx as the variance parameters for variables x2–x10:

std
x1-x10 = var0 varx;

This means that all variances for the last nine variables in the list are constrained to be the same. In
SAS/STAT 9.22 or later, this is not the case. That is, var0 and varx are the variance parameters for x1
and x2, respectively, while the variances for x3–x10 are treated as unconstrained free parameters.

If you want to constrain the remaining parameters to be the same in the current version of PROC
CALIS, you can use the following continuation syntax [...] at the end of the parameter list:

std
x1-x10 = var0 varx [...];

The continuation syntax [...] repeats the specification of varx for all the remaining variance
parameters for x3–x10.

• The parameter-prefix uses a new notation in SAS/STAT 9.22 or later.

Prior to SAS/STAT 9.22, you can use the parameter-prefix to generate parameter names as in the
following example:
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lineqs
A = x: * B + x: * C + E1;

std
B = var:, C = var: ;

In SAS/STAT 9.22 or later, you must replace the ‘:’ notation with two trailing underscores, ‘__’, as in
the following:

lineqs
A = x__ * B + x__ * C + E1;

variance
B = var__, C = var__;

Both versions generate parameter names by appending unique integers to the prefix, as if the following
has been specified:

lineqs
A = x1 * B + x2 * C + E1;

variance
B = var1, C = var2;

In SAS/STAT 9.22 or later, you can even omit the parameter-prefix altogether. For example, you can
specify the following with a null parameter-prefix:

lineqs
A = __ * B + __ * C + E1;

variance
B = __, C = __;

In this case, PROC CALIS uses the internal prefix ‘_Parm’ to generate names, as if the following has
been specified:

lineqs
A = _Parm1 * B + _Parm2 * C + E1;

variance
B = _Parm3, C = _Parm4;
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Compatibility with the TCALIS Procedure in SAS/STAT 9.2
Prior to the extensive changes and feature enhancements of the CALIS procedure in SAS/STAT 9.22, an
experimental version of the CALIS procedure, called PROC TCALIS, was made available in SAS/STAT 9.2.
In fact, the CALIS procedure in SAS/STAT 9.22 or later builds on the foundations of the TCALIS procedure.
Although the experimental TCALIS procedure and the current CALIS procedure have some similar features,
they also have some major differences. This section describes these major differences so that users who have
experience in using the TCALIS procedure can adapt better to the current version of the CALIS procedure.
In this section, whenever the CALIS procedure is mentioned without version reference, it is assumed to be
the PROC CALIS version in SAS/STAT 9.22 or later.

Naming Parameters Is Optional in PROC CALIS

In essence, the CALIS procedure does not require the use of parameter names in specifications, whereas
the TCALIS procedure (like the PROC CALIS versions prior to SAS/STAT 9.22) does require the use of
parameter names. For example, in the TCALIS procedure you might specify the following LINEQS model:

proc tcalis;
lineqs

X1 = 1. * F1 + E1,
X2 = l2 * F1 + E2,
X3 = l3 (.2) * F1 + E3;

cov
E1 E2 = cv12;

run;

Two parameters for factor loadings are used in the specification: l1 and l2. The initial value of l2 is set to 0.2.
The covariance between the error terms E1 and E2 is named cv12. These parameters are not constrained,
and therefore names for these parameters are not required in PROC CALIS, as shown in the following
specifications:

proc calis;
lineqs

X1 = 1. * F1 + E1,
X2 = * F1 + E2,
X3 = (0.2) * F1 + E3;

cov
E1 E2;

run;

Parameter names for the two loadings in the second and the third equations are automatically generated by
PROC CALIS. So is the error covariance parameter between E1 and E2. Except for the names of these
parameters, the preceding PROC TCALIS and PROC CALIS specifications generate the same model.

Names for parameters are only optional in PROC CALIS, but they are not prohibited. PROC CALIS enables
you to specify models efficiently without the burden of having to create parameter names unnecessarily. But
you can still use parameter names and the corresponding syntax in PROC CALIS wherever you want to,
much as you do in PROC TCALIS.
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Another example is the following PATH model specification in PROC TCALIS:

proc tcalis;
path

X1 <--- F1 1. ,
X2 <--- F1 l2 ,
X3 <--- F1 l3 (0.2);

pcov
X1 X2 = cv12;

run;

Again, naming the unconstrained parameters l1, l2, and cv12 is not required with the CALIS procedure, as
shown in the following specification:

proc calis;
path

X1 <--- F1 = 1. , /* path entry 1 */
X2 <--- F1 , /* path entry 2 */
X3 <--- F1 = (0.2); /* path entry 3 */

pcov
X1 X2;

run;

Without any parameter specification (that is, neither a name nor a value), the second path entry specifies
a free parameter for the path effect (or coefficient) of F1 on X2. The corresponding parameter name for
the effect is generated by PROC CALIS internally. In the third path entry, only an initial value is specified.
Again, a parameter name is not necessary there. Similarly, PROC CALIS treats this as a free path effect
parameter with a generated parameter name. Lastly, the error covariance between X1 and X2 is also a free
parameter with a generated parameter name.

Although in PROC CALIS naming unconstrained free parameters in the PATH model is optional, PROC
CALIS requires the use of equal signs before the specifications of parameters, fixed values, or initial values.
The TCALIS procedure does not enforce this rule. Essentially, this stricter syntax rule in PROC CALIS
makes the parameter specifications distinguishable from path specifications in path entries and therefore is
necessary for the development of the multiple-path syntax, which is explained in the next section.

Changes in the PATH Statement Syntax

The PATH statement syntax was first available in the TCALIS procedure and was also a major addition to
the CALIS procedure in SAS/STAT 9.22. This statement is essential to the PATH modeling language for
specifying general structural equation models. Table 29.3 summarizes the major differences between the two
versions.

Table 29.3 Changes in the PATH Statement Syntax

Syntax PROC CALIS PROC TCALIS

Naming unconstrained free parameters Optional Required
Equal signs before parameter specifications Required Not used
Treatment of unspecified path parameters Free parameters Fixed constants at 1
Multiple-path syntax Supported Not supported
Extended path syntax Supported Not supported
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The following example shows how to specify a PATH model in PROC TCALIS:

proc tcalis;
path

F1 ---> X1 ,
F1 ---> X2 a2 (.3),
F1 ---> X3 a3 ,
F2 ---> X4 1. ,
F2 ---> X5 a5 ,
F2 ---> X6 a6 ;

pvar
F1 F2 = fvar1 fvar2,
X1-X6 = evar1-evar6;

pcov
F1 F2 = covF1F2;

run;

The following statements show to specify the preceding PATH model in PROC CALIS equivalently:

proc calis;
path

F1 ---> X1 = 1. , /* path entry 1 */
F1 ---> X2 = (.3) , /* path entry 2 */
F1 ---> X3 , /* path entry 3 */
F2 ---> X4-X6 = 1. a5 a6 , /* path entry 4 */
F1 <--> F1 , /* path entry 5 */
F2 <--> F2 , /* path entry 6 */
F1 <--> F2 = covF1F2 , /* path entry 7 */
<--> X1-X6 = evar1-evar6; /* path entry 8 */

run;

The differences in specifications between the two versions are as follows:

• In PROC CALIS, naming unconstrained free parameters in the PATH statement is optional.

For example, in the PROC TCALIS specification, the parameter names a2 and a3 have been
used for path entries 2 and 3, respectively. They can be omitted with the PROC CALIS specification.

• In PROC CALIS, you must use equal signs before parameter specifications in all path entries.

For example, equal signs are necessary in path entries 1, 2, 4, 7, and 8 to separate the parame-
ter specifications from the path specifications. However, because equal signs are not part of the syntax
in PROC TCALIS, the TCALIS procedure cannot distinguish parameter specifications from path
specifications in path entries. Consequently, PROC TCALIS is incapable of handling multiple-path
syntax such as path entry 4 and extended path syntax such as path entry 8.

• In PROC CALIS, unspecified parameters are treated as free parameters.

For example, path entries 3, 5, and 6 are free parameters for the path effect of F1 on X3, the
variance of F1, and the variance of F2, respectively. In contrast, these unspecified parameters are
treated as fixed constants 1 in PROC TCALIS. That is also why path entry 1 must specify a fixed
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value of 1 explicitly with the PROC CALIS specification. Otherwise, PROC CALIS treats it as a free
parameter for the path effect.

• In PROC CALIS, you can use the multiple-path syntax.

For example, path entry 4 specifies three different paths from F2 in a single entry. The param-
eter specifications after the equal sign are distributed to the multiple paths specified in order (that is, to
X4, X5, and X6, respectively). However, in PROC TCALIS you must specify these paths separately in
three path entries.

• In PROC CALIS, you can use the extended path syntax to specify all kinds of parameters in the PATH
statement.

For example, path entries 5 and 6 specify the variance parameters for F1 and F2, respectively.
Because these variances are unconstrained free parameters, you do not need to use parameter names
(but you can use them if you want). In PROC TCALIS, however, you must specify these variance
parameters in the PVAR statement. Path entries 7 and 8 in the PROC CALIS specification provide
other examples of the extended path syntax available only in PROC CALIS. Path entry 7 specifies the
covariance parameter between F1 and F2 as CovF1F2 (although the name for this free parameter could
have been omitted). You must specify this covariance parameter in the PCOV statement if you use
PROC TCALIS. Path entry 8 specifies the error variances for X1–X6 as evar1–evar6, respectively.
You must specify these error variance parameters in the PVAR statement if you use PROC TCALIS.
Essentially, in PROC CALIS you can specify all types of parameters in the PATH model as path entries
in the PATH statement. See the PATH statement for details about the extended path syntax.

Changes in the Automatic Free Parameters in Functional Models

The CALIS and the TCALIS procedures differ in their treatment of automatic free parameters in functional
models. Functional models refer to those models that can (but do not necessarily have to) analyze predictor-
outcome or exogenous-endogenous relationships. In general, models that use the following statements are
functional models: FACTOR, LINEQS, LISMOD, PATH, and RAM. Automatic free parameters in these
functional models are those parameters that are free to estimate by default even if you do not specify them
explicitly in the syntax. Table 29.4 indicates which types of parameters are automatic free parameters in
PROC CALIS and PROC TCALIS.

Table 29.4 Automatic Free Parameters in PROC CALIS and
PROC TCALIS

Automatic Free Parameters PROC CALIS PROC TCALIS

Variances
Exogenous observed variables Yes Yes
Exogenous latent factors Yes Yes
Error variables Yes Yes

Covariances
Between exogenous observed variables Yes Yes
Between exogenous latent factors Yes1 No
Between exogenous observed variables and exogenous latent factors Yes No
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Table 29.4 continued

Automatic Free Parameters PROC CALIS PROC TCALIS

Between error variables No No

Means
Exogenous observed variables Yes Yes
Exogenous latent factors No No

Intercepts
Endogenous observed variables Yes No
Endogenous latent factors No No

1. This does not apply to exploratory FACTOR models, where covariances between latent factors in the unrotated factor solution are

fixed zeros.

Regarding the treatment of automatic free parameters, this table shows that unlike the CALIS procedure,
PROC TCALIS does not set default free parameters in (1) the covariances between exogenous latent factors
themselves and between any pairs of exogenous latent factors and observed variables, and (2) the intercepts
for the endogenous observed variables.

You can compare these two schemes of setting automatic free parameters in the following three scenarios.

First, when no functional relationships are specified in the model (and hence no latent factors and no intercept
parameters), the treatment of automatic free parameters by either PROC CALIS or PROC TCALIS leads
to just-identified or saturated covariance and mean structures, which is certainly a reasonable “baseline”
parameterization that saturates the relationships among observed variables.

Second, when there are functional relationships between observed variables in the model and no latent factors
are involved, the treatment by PROC CALIS is more reasonable because it leads to a parameterization similar
to that of linear regression models. That is, PROC CALIS sets the intercepts to free parameters. However,
the treatment by PROC TCALIS would lead to restrictive linear regression models with zero intercepts.

Finally, when latent factors are involved, the treatment by PROC CALIS is more “natural” in the sense that
the covariances among all exogenous variables are saturated in the model, rather than being restricted to
zeros for the parts pertaining to latent factors, as in PROC TCALIS. Saturating the covariances between
latent factors is seen to be more natural because all variables in empirical research are usually believed to be
correlated, no matter how small the correlation.

Therefore, in general the PROC CALIS treatment of automatic free parameters is recommended. The
treatment by PROC TCALIS might be more compatible to models that assume independent or uncorrelated
latent factors such as the unrotated exploratory factor model. In this situation, to use PROC CALIS you must
use the PATH, PVAR, RAM, VARIANCE, or specific MATRIX statements to set the covariances between
factors to fixed zeros.
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A Guide to the PROC CALIS Documentation
The CALIS procedure uses a variety of modeling languages to fit structural equation models. This chapter
provides documentation for all of them. Additionally, some sections provide introductions to the model
specification, the theory behind the software, and other technical details. While some introductory material
and examples are provided, this chapter is not a textbook for structural equation modeling and related topics.
For didactic treatment of structural equation models with latent variables, see Bollen (1989b) and Loehlin
(2004).

Reading this chapter sequentially is not a good strategy for learning about PROC CALIS. This section
provides a guide or “road map” to the rest of the PROC CALIS chapter, starting with the basics and
continuing through more advanced topics. Many sections assume that you already have a basic understanding
of structural equation modeling.

The following table shows three different skill levels of using the CALIS procedure (basic, intermediate, and
advanced) and their milestones.

Level Milestone Starting Section

Basic You are able to specify simple models, but
might make mistakes.

“Guide to the Basic Skill
Level” on page 1174

Intermediate You are able to specify more sophisticated
models with few syntactic and semantic
mistakes.

“Guide to the Intermediate
Skill Level” on page 1180

Advanced You are able to use the advanced options
provided by PROC CALIS.

“Guide to the Advanced
Skill Level” on page 1181

In the next three sections, each skill level is discussed, followed by an introductory section of the reference
topics that are not covered in any of the skill levels.

Guide to the Basic Skill Level

Overview of PROC CALIS

Basic Model Specification

Syntax Overview

Details about Various Types of Models
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Overview of PROC CALIS
The section “Overview: CALIS Procedure” on page 1158 gives you an overall picture of the CALIS procedure
but without the details.

Basic Model Specification
The structural equation example in the section “Getting Started: CALIS Procedure” on page 1184 provides
the starting point to learn the basic model specification. You learn how to represent your theory by using a
path diagram and then translate the diagram into the PATH model for PROC CALIS to analyze. Because the
PATH modeling language is new, this example is useful whether or not you have previous experience with
PROC CALIS. The PATH model is specified in the section “PATH Model” on page 1186. The corresponding
results are shown and discussed in Example 29.17.

After you learn about the PATH modeling language and an example of its application, you can do either of
the following:

• You can continue to learn more modeling languages in the section “Getting Started: CALIS Procedure”
on page 1184.

• You can skip to the section “Syntax Overview” on page 1179 for an overview of the PROC CALIS
syntax and learn other modeling languages at a later time.

You do not need to learn all of the modeling languages in PROC CALIS. Any one of the modeling languages
(LINEQS, LISMOD, PATH, or RAM) is sufficient for specifying a very wide class of structural equation
models. PROC CALIS provides different kinds of modeling languages because different researchers might
have previously learned different modeling languages or approaches. To get a general idea about different
kinds of modeling languages, the following subsections in the “Getting Started: CALIS Procedure” section
are useful:

• LINEQS: Section “LINEQS Model” on page 1188

• RAM: Section “RAM Model” on page 1187

• LISMOD: Section “LISMOD Model” on page 1189

• FACTOR: Section “A Factor Model Example” on page 1190

• MSTRUCT: Section “Direct Covariance Structures Analysis” on page 1192

After studying the examples in the “Getting Started: CALIS Procedure” section, you can strengthen your
understanding of the various modeling languages by studying more examples such as those in section
“Examples: CALIS Procedure” on page 1539. Unlike the examples in the “Getting Started: CALIS Procedure”
section, the examples in the “Examples: CALIS Procedure” section include the analysis results in addition to
the explanations of the model specifications.

You can start with the following two sets of basic examples:

• MSTRUCT model examples
The basic MSTRUCT model examples demonstrate the testing of covariance structures directly
on the covariance matrices. Although the MSTRUCT model is not the most common structural
equation models in applications, these MSTRUCT examples can help you understand the basic form
of covariance structures and the corresponding specifications in PROC CALIS.
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• PATH model examples
The basic PATH model examples demonstrate how you can represent your model by path diagrams and
by the PATH modeling language. These examples show the most common applications of structural
equation modeling.

The following is a summary of the basic MSTRUCT model examples:

• “Example 29.1: Estimating Covariances and Correlations” on page 1539 shows how you can estimate
the covariances and correlations with standard error estimates for the variables in your model. The
model you fit is a saturated covariance structure model.

• “Example 29.2: Estimating Covariances and Means Simultaneously” on page 1544 extends Exam-
ple 29.1 to include the mean structures in the model. The model you fit is a saturated mean and
covariance structure model.

• “Example 29.3: Testing Uncorrelatedness of Variables” on page 1545 shows a very basic covariance
structure model, in which the covariance structures can be specified directly. The variables in this
model are uncorrelated. You learn how to specify the covariance pattern directly.

• “Example 29.4: Testing Covariance Patterns” on page 1547 extends Example 29.3 to include other
covariance structures that you can specify directly.

• “Example 29.5: Testing Some Standard Covariance Pattern Hypotheses” on page 1550 illustrates the
use of built-in covariance patterns supported by PROC CALIS.

The following is a summary of the basic PATH model examples:

• “Example 29.6: Linear Regression Model” on page 1553 shows how you can fit a linear regression
model with the PATH modeling language of PROC CALIS. This example also introduces the path
diagram representation of “causal” models. You compare results obtained from PROC CALIS and
from the REG procedure, which is designed specifically for regression analysis.

• “Example 29.7: Multivariate Regression Models” on page 1557 extends Example 29.6 in several
different ways. You fit covariance structure models with more than one predictor, with direct and
indirect effects. This example also discusses how you can choose the “best” model for your data.

• “Example 29.8: Measurement Error Models” on page 1574 explores the case where the predictor in
simple linear regression is measured with error. The concept of latent true score variable is introduced.
You use PROC CALIS to fit a simple measurement error model.

• “Example 29.9: Testing Specific Measurement Error Models” on page 1580 extends Example 29.8 to
test special measurement error models with constraints. By using PROC CALIS, you can constrain
your measurement error models in many different ways. For example, you can constrain the error
variances or the intercepts to test specific hypotheses.

• “Example 29.10: Measurement Error Models with Multiple Predictors” on page 1586 extends Exam-
ple 29.8 to include more predictors in the measurement error models. The measurement errors in the
predictors can be correlated in the model.

More elaborate examples about the MSTRUCT and PATH models are listed as follows:
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• “Example 29.17: Path Analysis: Stability of Alienation” on page 1644 shows you how to specify a
simple PATH model and interpret the basic estimation results. The results are shown in considerable
detail. The output and analyses include: a model summary, an initial model specification, an initial
estimation method, an optimization history and results, residual analyses, residual graphics, estimation
results, squared multiple correlations, and standardized results.

• “Example 29.19: Fitting Direct Covariance Structures” on page 1665 shows you how to fit your
covariance structures directly on the covariance matrix by using the MSTRUCT modeling language.
You also learn how to use the FITINDEX statement to create a customized model fit summary and how
to save the fit summary statistics into an external file.

• “Example 29.21: Testing Equality of Two Covariance Matrices Using a Multiple-Group Analysis” on
page 1680 uses the MSTRUCT modeling language to illustrate a simple multiple-group analysis. You
also learn how to use the ODS SELECT statement to customize your printed output.

• “Example 29.22: Testing Equality of Covariance and Mean Matrices between Independent Groups”
on page 1685 uses the COVPATTERN= and MEANPATTERN= options to show some tests of equality
of covariance and mean matrices between independent groups. It also illustrates how you can improve
your model fit by the exploratory use of the Lagrange multiplier statistics for releasing equality
constraints.

• “Example 29.24: Testing Competing Path Models for the Career Aspiration Data” on page 1718
illustrates how you can fit competing models by using the OUTMODEL= and INMODEL= data sets
for transferring and modifying model information from one analysis to another. This example also
demonstrates how you can choose the best model among several competing models for the same data.

After studying the PATH and MSTRUCT modeling languages, you are able to specify most commonly used
structural equation models by using PROC CALIS. To broaden your scope of structural equation modeling,
you can study some basic examples that use the FACTOR and LINEQS modeling languages. These basic
examples are listed as follows:

• “Example 29.11: Measurement Error Models Specified As Linear Equations” on page 1591 explores
another way to specify measurement error models in PROC CALIS. The LINEQS modeling language
is introduced. You learn how to specify linear equations of the measurement error model by using the
LINEQS statement. Unlike the PATH modeling language, in the LINEQS modeling language, you
need to specify the error terms explicitly in the model specification.

• “Example 29.12: Confirmatory Factor Models” on page 1597 introduces a basic confirmatory fac-
tor model for test items. You use the FACTOR modeling language to specify the factor-variable
relationships.

• “Example 29.13: Confirmatory Factor Models: Some Variations” on page 1608 extends Example 29.12
to include some variants of the confirmatory factor model. With the flexibility of the FACTOR modeling
language, this example shows how you fit models with parallel items, tau-equivalent items, or partially
parallel items.

More advanced examples that use the PATH, LINEQS, and FACTOR modeling languages are listed as
follows:
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• “Example 29.14: Residual Diagnostics and Robust Estimation” on page 1616 illustrates the use
of several graphical residual plots to detect model outliers and leverage observations, to study the
departures from the theoretical case-level residual distribution, and to examine the linearity and
homoscedasticity of variance. In addition, this example illustrates the use of robust estimation
technique to downweight the outliers and to estimate the model parameters.

• “Example 29.15: The Full Information Maximum Likelihood Method” on page 1629 shows how you
can use the full information maximum likelihood (FIML) method to estimate your model when your
data contain missing values. It illustrates the analysis of the data coverage of the sample variances,
covariances, and means and the analysis of missing patterns and the mean profile. It also shows that
the full information maximum likelihood method makes the maximum use of the available information
from the data, as compared with the default ML (maximum likelihood) methods.

• “Example 29.16: Comparing the ML and FIML Estimation” on page 1639 discusses the similarities
and differences between the ML and FIML estimation methods as implemented in PROC CALIS. It
uses an empirical example to show how ML and FIML obtain the same estimation results when the
data do not contain missing values.

• “Example 29.18: Simultaneous Equations with Mean Structures and Reciprocal Paths” on page 1658
is an econometric example that shows you how to specify models using the LINEQS modeling
language. This example also illustrates the specification of reciprocal effects, the simultaneous analysis
of the mean and covariance structures, the setting of bounds for parameters, and the definitions of
metaparameters by using the PARAMETERS statement and SAS programming statements. You also
learn how to shorten your output results by using some global display options such as the PSHORT
and NOSTAND options in the PROC CALIS statement.

• “Example 29.20: Confirmatory Factor Analysis: Cognitive Abilities” on page 1668 uses the FACTOR
modeling language to illustrate confirmatory factor analysis. In addition, you use the MODIFICATION
option in the PROC CALIS statement to compute LM test indices for model modifications.

• “Example 29.25: Fitting a Latent Growth Curve Model” on page 1730 is an advanced example that
illustrates the use of structural equation modeling techniques for fitting latent growth curve models. You
learn how to specify random intercepts and random slopes by using the LINEQS modeling language. In
addition to the modeling of the covariance structures, you also learn how to specify the mean structure
parameters.

If you are familiar with the traditional Keesling-Wiley-Jöreskog measurement and structural models (Keesling
1972; Wiley 1973; Jöreskog 1973) or the RAM model (McArdle 1980), you can use the LISMOD or RAM
modeling languages to specify structural equation models. The following example shows how to specify
these types of models:

• “Example 29.23: Illustrating Various General Modeling Languages” on page 1708 extends Exam-
ple 29.17, which uses the PATH modeling language, and shows how to use the other general modeling
languages: RAM, LINEQS, and LISMOD. These modeling languages enable you to specify the
same path model as in Example 29.17 and get equivalent results. This example shows the connec-
tions between the general modeling languages supported in PROC CALIS. A good understanding of
Example 29.17 is a prerequisite for this example.
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Once you are familiar with various modeling languages, you might wonder which modeling language should
be used in a given situation. The section “Which Modeling Language?” on page 1194 provides some
guidelines and suggestions.

Syntax Overview
The section “Syntax: CALIS Procedure” on page 1195 shows the syntactic structure of PROC CALIS.
However, reading the “Syntax: CALIS Procedure” section sequentially might not be a good strategy. The
statements used in PROC CALIS are classified in the section “Classes of Statements in PROC CALIS” on
page 1196. Understanding this section is a prerequisite for understanding single-group and multiple-group
analyses in PROC CALIS. Syntax for single-group analyses is described in the section “Single-Group
Analysis Syntax” on page 1199, and syntax for multiple-group analyses is described in the section “Multiple-
Group Multiple-Model Analysis Syntax” on page 1199.

You might also want to get an overview of the options in the PROC CALIS statement. However, you can skip
the detailed listing of the available options in the PROC CALIS statement. Most of these details serve as
references, so you can consult them only when you need to. You can just read the summary tables for the
available options in the PROC CALIS statement in the following subsections:

• “Data Set Options” on page 1200

• “Model and Estimation Options” on page 1201

• “Options for Fit Statistics” on page 1201

• “Options for Statistical Analysis” on page 1202

• “Global Display Options” on page 1203

• “Optimization Options” on page 1204

Details about Various Types of Models
Several subsections in the section “Details: CALIS Procedure” on page 1367 can help you gain a deeper
understanding of the various types of modeling languages, as shown in the following table:

Language Section

COSAN “The COSAN Model” on page 1390
FACTOR “The FACTOR Model” on page 1394
LINEQS “The LINEQS Model” on page 1401
LISMOD “The LISMOD Model and Submodels” on page 1408
MSTRUCT “The MSTRUCT Model” on page 1416
PATH “The PATH Model” on page 1419
RAM “The RAM Model” on page 1425

The specification techniques you learn from the examples cover only parts of the modeling language. A more
complete treatment of the modeling languages is covered in these subsections. In addition, you can also
learn the mathematical models, model restrictions, and default parameterization of all supported modeling
languages in these subsections. To get an overall idea about the default parameterization rules used in PROC
CALIS, the section “Default Analysis Type and Default Parameterization” on page 1388 would be very
useful. Understanding how PROC CALIS set default parameters would help you specify your models more
efficiently and accurately.
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Guide to the Intermediate Skill Level

At the intermediate level, you learn to minimize your mistakes in model specification and to establish more
sophisticated modeling techniques. The following topics in the “Details: CALIS Procedure” section or
elsewhere can help:

• The section “Naming Variables and Parameters” on page 1433 summarizes the naming rules and
conventions for variable and parameter names in specifying models.

• The section “Setting Constraints on Parameters” on page 1434 covers various techniques of constraining
parameters in model specifications.

• The section “Automatic Variable Selection” on page 1439 discusses how PROC CALIS treats variables
in the models and variables in the data sets. It also discusses situations where the VAR statement
specification is deemed necessary.

• The section “Computational Problems” on page 1515 discusses computational problems that occur
quite commonly in structural equation modeling. It also discusses some possible remedies of the
computational problem.

• The section “Missing Values and the Analysis of Missing Patterns” on page 1503 describes the default
treatment of missing values.

• The statements REFMODEL on page 1354 and RENAMEPARM on page 1356 are useful when you
need to make references to well-defined models when specifying a “new” model. See Example 29.28
for an application.

Revisit topics and examples covered at the basic level, as needed, to help you better understand the topics at
the intermediate level.

You can also study the following more advanced examples:

• “Example 29.26: Higher-Order and Hierarchical Factor Models” on page 1736 is an advanced example
for confirmatory factor analysis. It involves the specifications of higher-order and hierarchical factor
models. Because higher-order factor models cannot be specified by the FACTOR modeling language,
you need to use the LINEQS model specification instead. A second-order factor model and a bifactor
model are fit. Linear constraints on parameters are illustrated by using the PARAMETERS statement
and SAS programming statements. Relationships between the second-order factor model and the
bifactor model are numerically illustrated.

• “Example 29.27: Linear Relations among Factor Loadings” on page 1750 is an advanced example of a
first-order confirmatory factor analysis that uses the FACTOR modeling language. In this example, you
learn how to use the PARAMETERS statement and SAS programming statements to set up dependent
parameters in your model. You also learn how to specify the correlation structures for a specific
confirmatory factor model.

• “Example 29.28: Multiple-Group Model for Purchasing Behavior” on page 1759 is a sophisticated ex-
ample of analyzing a path model. The PATH modeling language is used. In this example, a two-group
analysis of mean and covariance structures is conducted. You learn how to use the REFMODEL state-
ment to reference properly defined models and the SIMTESTS statement to test a priori simultaneous
hypotheses.
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• “Example 29.29: Fitting the RAM and EQS Models by the COSAN Modeling Language” on page 1784
introduces the COSAN modeling language by connecting it with general RAM and EQS models. The
model matrices of the RAM or EQS model are described. You specify these model matrices and the
associated parameters in the COSAN modeling language.

• “Example 29.30: Second-Order Confirmatory Factor Analysis” on page 1799 constructs the covariance
structure model of the second-order confirmatory factor model. You define the model matrices by
using the COSAN modeling language.

• “Example 29.31: Linear Relations among Factor Loadings: COSAN Model Specification” on
page 1804 shows how you can set linear constraints among model parameters under the COSAN
model.

• “Example 29.32: Ordinal Relations among Factor Loadings” on page 1809 shows how you can set
ordinal constraints among model parameters under the COSAN model.

• “Example 29.33: Longitudinal Factor Analysis” on page 1812 defines the covariance structures of
a longitudinal factor model and shows how you can specify the covariance structure model with the
COSAN modeling language.

Guide to the Advanced Skill Level

At the advanced level, you learn to use the advanced data analysis and output control tools supported by
PROC CALIS.

Advanced Data Analysis Tools
The following advanced data analysis topics are discussed:

• Assessment of fit

The section “Assessment of Fit” on page 1481 presents the fit indices used in PROC CALIS. However,
the more important topics covered in this section are about how model fit indices are organized and
used, how residuals can be used to gauge the fitting of individual parts of the model, and how the
coefficients of determination are defined for equations.

To customize your fit summary table, you can use the options on the FITINDEX statement.

• Case-level residual diagnostics

The section “Case-Level Residuals, Outliers, Leverage Observations, and Residual Diagnostics”
on page 1494 describes details about how the residual diagnostics at the individual data level are
accomplished in general structural equation modeling, and how they lead to the graphical techniques
for detecting outliers and leverage observations, studying residual distributions, and examining linear
relationships and heteroscedasticity of error variances.

• Control and customization of path diagrams

The section “Path Diagrams: Layout Algorithms, Default Settings, and Customization” on page 1440
discusses the path diagram layout algorithms that the CALIS procedure uses. It also illustrates useful
options that control and customize path diagrams.
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• Effect partitioning

The section “Total, Direct, and Indirect Effects” on page 1498 discusses the total, direct, and indirect
effects and their computations. The stability coefficient of reciprocal causation is also defined.

To customize the effect analysis, you can use the EFFPART statement.

• Counting and adjusting degrees of freedom

The section “Counting the Degrees of Freedom” on page 1478 describes how PROC CALIS computes
model fit degrees of freedom and how you can use some options on the PROC CALIS statement to
make degrees-of-freedom adjustments.

To adjust the model fit degrees of freedom, you can use the DFREDUCE= and NOADJDF options in
the PROC CALIS statement.

• Standardized solutions

Standardization schemes used in PROC CALIS are described and discussed in the section “Standardized
Solutions” on page 1500.

Standardized solutions are displayed by default. You can turn them off by using the NOSTAND option
of the PROC CALIS statement.

• Model modifications

In the section “Modification Indices” on page 1501, modification indices such as Lagrange multiplier
test indices and Wald statistics are defined and discussed. These indices can be used either to enhance
your model fit or to make your model more precise.

To limit the modification process only to those parameters of interest, you can use the LMTESTS
statement to customize the sets of LM tests conducted on potential parameters.

• A Priori Parametric Function Testing

You can use the TESTFUNC statement to test a priori hypotheses individually. You can use the
SIMTESTS statement to test a priori hypotheses simultaneously.

Advanced Output Control Tools
To be more effective in presenting your analysis results, you need to be more sophisticated in controlling your
output. Some customization tools have been discussed in the previous section “Advanced Data Analysis Tools”
on page 1181 and might have been mentioned in the examples included in the basic and the intermediate
levels. In the following topics, these output control tools are presented in a more organized way so that you
can have a systematic study scheme of these tools.

• Global output control tools in PROC CALIS

You can control output displays in PROC CALIS either by the global display options or by the
individual output printing options. Each global display option typically controls more than one output
display, while each individual output display controls only one output display. The global display
options can both enable and suppress output displays, and they can also alter the format of the output.

See the ALL, PRINT, PSHORT, PSUMMARY, and NOPRINT options for ways to control the
appearances of the output. See the section “Global Display Options” on page 1203 for details about
the global display options and their relationships with the individual output display options. Also see
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the ORDERALL, ORDERGROUPS, ORDERMODELS, ORDERSPEC, PARMNAME, PRIMAT,
NOORDERSPEC, NOPARMNAME, NOSTAND, and NOSE options which control the output formats.

• Customized analysis tools in PROC CALIS

Many individual output displays in PROC CALIS can be customized via specific options or statements.
If you do not use these customization tools, the default output will usually contain a large number of
displays or displays with very large dimensions. These customized analysis tools are as follows:

– The ON=, OFF=, ON(ONLY)= options in the FITINDEX statement enable you to select indi-
vidual or groups of model fit indices or modeling information to display. You can still save the
information of all fit indices in an external file by using the OUTFIT= option.

– The EFFPART statement enables you to customize the effect analysis. You display only those
effects of substantive interest.

– The LMTESTS statement enables you to customize the sets of LM tests of interest. You test only
those potential parameters that are theoretically and substantively possible.

• Output selection and destinations by the ODS system

This kind of output control is used not only for PROC CALIS, but is used for all procedures that
support the ODS system. The most common uses include output selection and output destinations
assignment. You use the ODS SELECT statement together with the ODS table names or graph names
to select particular output displays. See the section “ODS Table Names” on page 1523 for these names
in PROC CALIS.

The default output destination of PROC CALIS is the listing destination. You can add or change the
destinations by using statements such as ods html (for html output), ods rtf (for rich text output),
and so on. For details, see Chapter 20, “Using the Output Delivery System.”

Reference Topics

Some topics in the “Details: CALIS Procedure” section are intended primarily for references—you consult
them only when you encounter specific problems in the PROC CALIS modeling or when you need to know
the very fine technical details in certain special situations. Many of these reference topics in the “Details:
CALIS Procedure” section are not required for practical applications of structural equation modeling. The
following technical topics are discussed:

• Measures of multivariate kurtosis and skewness

This is covered in the section “Measures of Multivariate Kurtosis” on page 1504.

• Estimation criteria and the mathematical functions for estimation

The section “Estimation Criteria” on page 1463 presents formulas for various estimation criteria. The
relationships among these criteria are shown in the section “Relationships among Estimation Criteria”
on page 1473. To optimize an estimation criterion, you usually need its gradient and Hessian functions.
These functions are detailed in the section “Gradient, Hessian, Information Matrix, and Approximate
Standard Errors” on page 1475, where you can also find information about the computation of the
standard error estimates in PROC CALIS. Unlike other estimation methods, the robust estimation
methods do not optimize a discrepancy function themselves. The robust estimation methods that are
implemented in PROC CALIS use the iteratively reweighted least squares (IRLS) method to obtain
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parameter convergence. The robust estimation technique is detailed in the section “Robust Estimation”
on page 1470.

• Initial estimation

Initial estimates are necessary for all kinds of iterative optimization techniques. They are described in
section “Initial Estimates” on page 1506.

• Use of optimization techniques

Optimization techniques are covered in section “Use of Optimization Techniques” on page 1507. See
this section if you need to fine-tune the optimization.

• Output displays and control

The output displays in PROC CALIS are listed in the section “Displayed Output” on page 1518.
General requirements for the displays are also shown.

With the ODS system, each table and graph has a name, which can be used on the ODS OUTPUT or
ODS SELECT statement. See the section “ODS Table Names” on page 1523 for the ODS table and
graph names.

• Input and output files

PROC CALIS supports several input and output data files for data, model information, weight matrices,
estimates, fit indices, and estimation and descriptive statistics. The uses and the structures of these
input and output data files are described in the sections “Input Data Sets” on page 1367 and “Output
Data Sets” on page 1371.

Getting Started: CALIS Procedure

A Structural Equation Example
This example from Wheaton et al. (1977) illustrates the basic uses of the CALIS procedure and the relation-
ships among the LINEQS, LISMOD, PATH, and RAM modeling languages. Different structural models for
these data are analyzed in Jöreskog and Sörbom (1985) and in (Bentler 1995, p. 28). The data contain the
following six (manifest) variables collected from 932 people in rural regions of Illinois:

Anomie67: Anomie 1967

Powerless67: Powerlessness 1967

Anomie71: Anomie 1971

Powerless71: Powerlessness 1971

Education: Education level (years of schooling)

SEI: Duncan’s socioeconomic index (SEI)
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The covariance matrix of these six variables is stored in the data set named Wheaton.

It is assumed that anomie and powerlessness are indicators of an alienation factor and that education and SEI
are indicators for a socioeconomic status (SES) factor. Hence, the analysis contains three latent variables
(factors):

Alien67: Alienation 1967

Alien71: Alienation 1971

SES: Socioeconomic status (SES)

The following path diagram shows the structural model used in Bentler (1985, p. 29) and slightly modified in
Jöreskog and Sörbom (1985, p. 56):

Figure 29.1 Path Diagram of Stability and Alienation Example

Anomie67 Powerless67 Anomie71 Powerless71‚1 ‚2 ‚1 ‚2

‚5

‚5

1.0 .833 1.0 .833

Alien67 Alien71

SES

‰1 ‰2

ˆ

1 2

1.0 �

ˇ

Education SEI

‚3 ‚4

In the path diagram shown in Figure 29.1, regressions of variables are represented by one-headed arrows.
Regression coefficients are indicated along these one-headed arrows. Variances and covariances among the
variables are represented by two-headed arrows. Error variances and covariances are also represented by
two-headed arrows. This scheme of representing paths, variances and covariances, and error variances and
covariances (McArdle 1988; McDonald 1985) is helpful in translating the path diagram to the PATH or RAM
model input in the CALIS procedure.



1186 F Chapter 29: The CALIS Procedure

PATH Model

Specification by using the PATH modeling language is direct and intuitive in PROC CALIS once a path
diagram is drawn. The following statements specify the path diagram almost intuitively:

proc calis nobs=932 data=Wheaton;
path

Anomie67 <=== Alien67 = 1.0,
Powerless67 <=== Alien67 = 0.833,
Anomie71 <=== Alien71 = 1.0,
Powerless71 <=== Alien71 = 0.833,
Education <=== SES = 1.0,
SEI <=== SES = lambda,
Alien67 <=== SES = gamma1,
Alien71 <=== SES = gamma2,
Alien71 <=== Alien67 = beta;

pvar
Anomie67 = theta1,
Powerless67 = theta2,
Anomie71 = theta1,
Powerless71 = theta2,
Education = theta3,
SEI = theta4,
Alien67 = psi1,
Alien71 = psi2,
SES = phi;

pcov
Anomie67 Anomie71 = theta5,
Powerless67 Powerless71 = theta5;

run;

In the PROC CALIS statement, you specify Wheaton as the input data set, which contains the covariance
matrix of the variables.

In the PATH model specification, all the one-headed arrows in the path diagram are represented as path
entries in the PATH statement, with entries separated by commas. In each path entry, you specify a pair of
variables and the direction of the path (either <=== or ===>), followed by a path coefficient, which is either a
fixed constant or a parameter with a name in the specification.

All the two-headed arrows each with the same source and destination are represented as entries in the PVAR
statement, with entries separated by commas. In the PVAR statement, you specify the variance or error (or
partial) variance parameters. In each entry, you specify a variable and then a parameter name or a fixed
parameter value. If the variable involved is exogenous in the model (serves only as a predictor; never being
pointed at by one-headed arrows), you are specifying a variance parameter for an exogenous variable in the
PVAR statement. Otherwise, you are specifying an error variance (or a partial variance) parameter for an
endogenous variable.

All other two-headed arrows are represented as entries in the PCOV statement, with entries separated by
commas. In the PCOV statement, you specify the covariance or error (or partial) covariance parameters. In
each entry, you specify a pair of variables and then a parameter name or a fixed parameter value. If both
variables involved in an entry are exogenous, you are specifying a covariance parameter. If both variables
involved in an entry are endogenous, you are specifying an error (or partial) covariance parameter. When
one variable is exogenous and the other is endogenous in an entry, you are specifying a partial covariance



A Structural Equation Example F 1187

parameter that can be interpreted as the covariance between the exogenous variable and the error of the
endogenous variable.

See Example 29.17 for the results of the current PATH model analysis. For more information about the PATH
modeling language, see the section “The PATH Model” on page 1419 and the PATH statement on page 1322.

RAM Model

The PATH modeling language is not the only specification method that you can use to represent the path
diagram. You can also use the RAM, LINEQS or LISMOD modeling language to represent the diagram
equivalently.

The RAM model specification in PROC CALIS resembles that of the PATH model, as shown in the following
statements:

proc calis nobs=932 data=Wheaton;
ram

var = Anomie67 /* 1 */
Powerless67 /* 2 */
Anomie71 /* 3 */
Powerless71 /* 4 */
Education /* 5 */
SEI /* 6 */
Alien67 /* 7 */
Alien71 /* 8 */
SES, /* 9 */

_A_ 1 7 1.0,
_A_ 2 7 0.833,
_A_ 3 8 1.0,
_A_ 4 8 0.833,
_A_ 5 9 1.0,
_A_ 6 9 lambda,
_A_ 7 9 gamma1,
_A_ 8 9 gamma2,
_A_ 8 7 beta,
_P_ 1 1 theta1,
_P_ 2 2 theta2,
_P_ 3 3 theta1,
_P_ 4 4 theta2,
_P_ 5 5 theta3,
_P_ 6 6 theta4,
_P_ 7 7 psi1,
_P_ 8 8 psi2,
_P_ 9 9 phi,
_P_ 1 3 theta5,
_P_ 2 4 theta5;

run;

In the RAM statement, you specify a list of entries for parameters, with entries separated by commas. In each
entry, you specify the type of parameter (PATH, PVAR, or PCOV in the code), the associated variable or pair
of variables and the path direction if applicable, and then a parameter name or a fixed parameter value. The
types of parameters you specify in this RAM model are for path coefficients, variances or partial variances,
and covariances or partial covariances. They bear the same meanings as those in the PATH model specified
previously. The RAM model specification is therefore quite similar to the PATH model specification—except
that in the RAM model you put all parameter specification in the same list under the RAM statement, whereas
you specify different types of parameters separately under different statements in the PATH model.
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See Example 29.23 for partial results of the current RAM model analysis. For more information about the
RAM modeling language, see the section “The RAM Model” on page 1425 and the RAM statement on
page 1348.

LINEQS Model

The LINEQS modeling language uses equations to specify functional relationships among variables, as
shown in the following statements:

proc calis nobs=932 data=Wheaton;
lineqs

Anomie67 = 1.0 * f_Alien67 + E1,
Powerless67 = 0.833 * f_Alien67 + E2,
Anomie71 = 1.0 * f_Alien71 + E3,
Powerless71 = 0.833 * f_Alien71 + E4,
Education = 1.0 * f_SES + E5,
SEI = lambda * f_SES + E6,
f_Alien67 = gamma1 * f_SES + D1,
f_Alien71 = gamma2 * f_SES + beta * Alien67 + D2;

std
E1 = theta1,
E2 = theta2,
E3 = theta1,
E4 = theta2,
E5 = theta3,
E6 = theta4,
D1 = psi1,
D2 = psi2,
f_SES = phi;

cov
E1 E3 = theta5,
E2 E4 = theta5;

run;

In the LINEQS statement, equations are separated by commas. In each equation, you specify an endogenous
variable on the left-hand side, and then predictors and path coefficients on the right-hand side of the equal
side. The set of equations specified in this LINEQS model is equivalent to the system of paths specified in
the preceding PATH (or RAM) model. However, there are some notable differences between the LINEQS
and the PATH specifications.

First, in the LINEQS modeling language you must specify the error terms explicitly as exogenous variables.
For example, E1, E2, and D1 are error terms in the specification. In the PATH (or RAM) modeling language,
you do not need to specify error terms explicitly.

Second, equations specified in the LINEQS modeling language are oriented by the endogenous variables.
Each endogenous variable can appear on the left-hand side of an equation only once in the LINEQS statement.
All the corresponding predictor variables must then be specified on the right-hand side of the equation. For
example, f_Alien71 is predicted from f_Alien67 and f_SES in the last equation of the LINEQS statement. In
the PATH or RAM modeling language, however, you would specify the same functional relationships in two
separate paths.

Third, you must follow some naming conventions for latent variables when using the LINEQS modeling
language. The names of latent variables that are not errors or disturbances must start with an ‘f’ or ‘F’.
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Also, the names of the error variables must start with ‘e’ or ‘E’ and the names of the disturbance variables
must start with ‘d’ or ‘D’. For example, variables Alien67, Alien71, and SES serve as latent factors in the
previous PATH or RAM model specification. To comply with the naming conventions, these variables are
named with an extra prefix ‘f_’ in the LINEQS model specification—that is, f_Alien67, f_Alien71, and f_SES,
respectively. In addition, because of the naming conventions of the LINEQS modeling language, E1–E6
serve as error terms and D1–D1 serve as disturbances in the specification.

A consequence of explicit specification of error terms in the LINEQS statement is that the partial variance
and partial covariance concepts used in the PATH and RAM modeling languages are no longer needed. They
are replaced by the variances or covariances of the error terms or disturbances. Errors and disturbances
are exogenous variables by nature. Hence, in terms of variance and covariance specification, they are
treated exactly the same way as other non-error exogenous variables in the LINEQS modeling language.
That is, variance parameters for all exogenous variables, including errors and disturbances, are specified
in the VARIANCE statement, and covariance parameters among exogenous variables, including errors and
disturbances, are specified in COV statement.

See Example 29.23 for partial results of the current LINEQS model analysis. For more information about the
LINEQS modeling language, see the section “The LINEQS Model” on page 1401 and the LINEQS statement
on page 1275.

LISMOD Model

The LISMOD language is quite different from the LINEQS, PATH, and RAM modeling languages. In
the LISMOD specification, you define parameters as entries in model matrices, as shown in the following
statements:

proc calis nobs=932 data=Wheaton;
lismod

yvar = Anomie67 Powerless67 Anomie71 Powerless71,
xvar = Education SEI,
etav = Alien67 Alien71,
xiv = SES;

matrix _LAMBDAY_ [1,1] = 1.0,
[2,1] = 0.833,
[3,2] = 1.0,
[4,2] = 0.833;

matrix _LAMBDAX_ [1,1] = 1.0,
[2,1] = lambda;

matrix _GAMMA_ [1,1] = gamma1,
[2,1] = gamma2;

matrix _BETA_ [2,1] = beta;
matrix _THETAY_ [1,1] = theta1,

[2,2] = theta2,
[3,3] = theta1,
[4,4] = theta2,
[3,1] = theta5,
[4,2] = theta5;

matrix _THETAX_ [1,1] = theta3,
[2,2] = theta4;

matrix _PSI_ [1,1] = psi1,
[2,2] = psi2;

matrix _PHI_ [1,1] = phi;
run;
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In the LISMOD statement, you specify the lists of variables in the model. In the MATRIX statements, you
specify the parameters in the LISMOD model matrices. Each MATRIX statement contains the matrix name
of interest and then locations of the parameters, followed by the parameter names or fixed parameter values. It
would be difficult to explain the LISMOD specification here without better knowledge about the formulation
of the mathematical model. For this purpose, see the section “The LISMOD Model and Submodels” on
page 1408 and the LISMOD statement on page 1282. See also Example 29.23 for partial results of the current
LISMOD model analysis.

COSAN Model

The COSAN model specification is even more abstract than all of the modeling languages considered. Like the
LISMOD model specification, to specify a COSAN model you need to define parameters as entries in model
matrices. In addition, you must also provide the definitions of the model matrices and the matrix formula for
the covariance structures in the COSAN model specification. Therefore, the COSAN model specification
requires sophisticated knowledge about the formulation of the mathematical model. For this reason, the
COSAN model specification of the preceding path model is not discussed here (but see Example 29.29). For
more details about the COSAN model specification, see the section “The COSAN Model” on page 1390 and
the COSAN statement on page 1242.

A Factor Model Example
In addition to the general modeling languages such as PATH, RAM, LINEQS, and LISMOD, the CALIS
procedure provides a specialized language for factor analysis. In the FACTOR modeling language, you can
specify either exploratory or confirmatory factor models. For exploratory factor models, you can specify
the number of factors, factor extraction method, and rotation algorithm, among many other options. For
confirmatory factor models, you can specify the variable-factor relationships, factor variances and covariances,
and the error variances.

For example, the following is an exploratory factor model fitted to the Wheaton et al. (1977) data by using
PROC CALIS:

proc calis nobs=932 data=Wheaton corr;
factor n=2 rotate=varimax;

run;

In this model, you want to get the varimax-rotated solution with two factors by analyzing the correlation matrix
(with the CORR option). By default, the factor extraction method is maximum likelihood (METHOD=ML).
Maximum likelihood exploratory factor analysis by PROC CALIS can also be done equivalently by the
FACTOR procedure, as shown in the following statements for the Wheaton et al. (1977) data:

proc factor nobs=932 data=Wheaton n=2 rotate=varimax method=ml;
run;

Note that METHOD=ML is necessary because maximum likelihood is not the default method in PROC
FACTOR.
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Whereas you can use either the CALIS or FACTOR procedure to fit certain exploratory factor models for
correlations, you can only use the CALIS procedure to fit confirmatory factor models. In a confirmatory
factor model, you are assumed to have some prior knowledge about the variable-factor relations. For example,
in your substantive theory, some observed variables are not related to certain factors in the model. The
following statements illustrate the specification of a confirmatory factor model for Wheaton et al. (1977)
data:

proc calis nobs=932 data=Wheaton;
factor

Alien67 ===> Anomie67 Powerless67 = 1.0 load1,
Alien71 ===> Anomie71 Powerless71 = 1.0 load2,
SES ===> Education SEI = 1.0 load3;

pvar
Alien67 = phi11,
Alien71 = phi22,
SES = phi33,
Anomie67 = theta1,
Powerless67 = theta2,
Anomie71 = theta3,
Powerless71 = theta4,
Education = theta5,
SEI = theta6;

cov
Alien71 Alien67 = phi21,
SES Alien67 = phi31,
SES Alien71 = phi32;

run;

Unlike the model fitted by the PATH, RAM, LINEQS, or LISMOD modeling language in previous sections,
the confirmatory factor model considered here is purely a measurement model—that is, there are no functional
relationships among factors in the model (beyond the covariances among factors) and hence it is a different
model. In the FACTOR statement, you specify factors on the left-hand side of the entries, followed by arrows
and the manifest variables that are related to the factors. On the right-hand side of the entries, you specify
either parameter names or fixed parameter values for the corresponding factor loadings. In this example,
there are three factors with three loadings to estimate. In the PVAR statement, you specify the parameters
for factor variances and error variances of manifest variables. In the COV statement, you specify the factor
covariances. As compared with the PATH, RAM, LINEQS, or LISMOD, the factor modeling language has
more restrictions on parameters. These restrictions are listed as follows:

• factor-factor paths and variable-to-factor paths are not allowed

• error covariances and factor-error covariances are not allowed

For more information about exploratory and confirmatory factor models and the FACTOR modeling language,
see the section “The FACTOR Model” on page 1394 or the FACTOR statement on page 1258.
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Direct Covariance Structures Analysis
Previous examples are concerned with the implied covariance structures from the functional relationships
among manifest and latent variables. In some cases, direct modeling of the covariance structures is not only
possible, but indeed more convenient. The MSTRUCT modeling language in PROC CALIS is designed for
this purpose. Consider the following four variables from the Wheaton et al. (1977) data:

Anomie67: Anomie 1967

Powerless67: Powerlessness 1967

Anomie71: Anomie 1971

Powerless71: Powerlessness 1971

The covariance structures are hypothesized as follows:

† D
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1CCA
where:

�1: Variance of Anomie

�2: Variance of Powerlessness

�1: Covariance between Anomie and Powerlessness

�2: Covariance between Anomie measures

�3: Covariance between Powerlessness measures

In the hypothesized covariance structures, the variances of Anomie and Powerlessness measures are assumed
to stay constant over the two time points. Their covariances are also independent of the time of measurements.
To test the tenability of this covariance structure model, you can use the following statements of the
MSTRUCT modeling language:

proc calis nobs=932 data=Wheaton;
mstruct

var = Anomie67 Powerless67 Anomie71 Powerless71;
matrix _COV_ [1,1] = phi1,

[2,2] = phi2,
[3,3] = phi1,
[4,4] = phi2,
[2,1] = theta1,
[3,1] = theta2,
[3,2] = theta1,
[4,1] = theta1,
[4,2] = theta3,
[4,3] = theta1;

run;
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In the MSTRUCT statement, you specify the list of variables of interest with the VAR= option. The order of
the variables in the list will be the order in the hypothesized covariance matrix. Next, you use the MATRIX
_COV_ statement to specify the parameters in the covariance matrix. The specification is a direct translation
from the hypothesized covariance matrix. For example, the [1,1] element of the covariance matrix is fitted
by the free parameter phi1. Depending on the hypothesized model, you can also specify fixed constants for
the elements in the covariance matrix. If an element in the covariance matrix is not specified by either a
parameter name or a constant, it is assumed to be a fixed zero.

The analysis of this model is carried out in Example 29.19.

The MSTRUCT modeling language appears to be more restrictive than any of the other modeling languages
discussed, in regard to the following limitations:

• It does not explicitly support latent variables in modeling.

• It does not explicitly support modeling of linear functional relations among variables (for example,
paths).

However, these limitations are more apparent than real. In PROC CALIS, the parameters defined in models
can be dependent. These dependent parameters can be defined further as functions of other parameters
in the PARAMETERS and the SAS programming statements. With these capabilities, it is possible to fit
structural models with latent variables and with linear functional relations by using the MSTRUCT modeling
language. However, this requires a certain level of sophistication in statistical knowledge and in programming.
Therefore, it is recommended that the MSTRUCT modeling language be used only when the covariance and
mean structures are modeled directly.

For more information about the MSTRUCT modeling language, see the section “The MSTRUCT Model” on
page 1416 and the MSTRUCT statement on page 1313.
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Which Modeling Language?
Various modeling languages are supported in PROC CALIS because researchers are trained in or adhere
to different schools of modeling. Different modeling languages reflect different modeling terminology and
philosophies. The statistical and mathematical consequences by using these various modeling languages,
however, might indeed be the same. In other words, you can use more than one modeling languages for
certain types of models without affecting the statistical analysis. Given the choices, which modeling language
is preferred? There are two guidelines for this:

• Use the modeling language that you are most familiar with.

• Use the most specialized modeling language whenever it is possible.

The first guideline calls for researchers’ knowledge about a particular modeling language. Use the language
you know the best. For example, some researchers might find equation input language like LINEQS the most
suitable, while others might feel more comfortable using matrix input language like LISMOD.

The second guideline depends on the nature of the model at hand. For example, to specify a factor analysis
model in the CALIS procedure, the specialized FACTOR language, instead of the LISMOD language, is
recommended. Using a more specialized the modeling language is less error-prone. In addition, using
a specialized language like FACTOR in this case amounts to giving the CALIS procedure additional
information about the specific mathematical properties of the model. This additional information is used
to enhance computational efficiency and to provide more specialized results. Another example is fitting
an equi-covariance model. You can simply use the MSTRUCT model specification, in which you specify
the same parameter for all off-diagonal elements of the covariance elements. This is direct and intuitive.
Alternatively, you could tweak a LINEQS model that would predict the same covariance for all variables.
However, this is indirect and error-prone, especially for novice modelers.

In PROC CALIS, the FACTOR and MSTRUCT modeling languages are considered more specialized, while
other languages are more general in applications. Whenever possible, you should use the more specialized
languages. However, if your model involves some novel covariance or mean structures that are not covered
by the more specialized modeling languages, you can consider the more generalized modeling languages.
See Example 29.33 for an application of the generalized COSAN model.
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Syntax: CALIS Procedure
The following statements are available in the CALIS procedure:

PROC CALIS < options > ;
BOUNDS boundary-constraints ;
BY variables ;
COSAN model-specifications ;
COV covariance-parameters ;
DETERM variables ;
EFFPART effects ;
FACTOR model-specifications ;
FITINDEX fit-options ;
FREQ variable ;
GROUP group-number < / options > ;
LINCON linear-constraints ;
LINEQS equations ;
LISMOD variable-lists ;
LMTESTS test-options ;
MATRIX parameter-specifications ;
MEAN mean-parameters ;
MODEL model-number < / options > ;
MSTRUCT variable-list ;
NLINCON nonlinear-constraints ;
NLOPTIONS optimization-options ;
OUTFILES file-options ;
PARAMETERS parameter-specifications ;
PARTIAL variables ;
PATH paths ;
PATHDIAGRAM < options > ;
PCOV covariance-parameters ;
PVAR variance-parameters ;
RAM model-specifications ;
REFMODEL model-number < / options > ;
RENAMEPARM parameter-assignments ;
SIMTESTS simultaneous-tests ;
STD variance-parameters ;
STRUCTEQ variables < label > ;
TESTFUNC parametric-functions ;
VAR variables ;
VARIANCE variance-parameters ;
VARNAMES name-assignments ;
WEIGHT variable ;
Programming statements ;
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Classes of Statements in PROC CALIS
To better understand the syntax of PROC CALIS, it is useful to classify the statements into classes. These
classes of statements are described in the following sections.

PROC CALIS Statement

is the main statement that invokes the CALIS procedure. You can specify options for input and output data
sets, printing, statistical analysis, and computations in this statement. The options specified in the PROC
CALIS statement will propagate to all groups and models, but are superseded by the options specified in the
individual GROUP or MODEL statements.

GROUP Statement

signifies the beginning of a group specification. A group in the CALIS procedure is an independent sample of
observations. You can specify options for input and output data sets, printing, and statistical computations in
this statement. Some of these group options in the GROUP statement can also be specified in the MODEL or
PROC CALIS statement, but the options specified in the GROUP statement supersede those specified in the
MODEL or PROC CALIS statement for the group designated in the GROUP statement. For group options
that are available in both of the GROUP and PROC CALIS statements, see the section “Options Available
in the GROUP and PROC CALIS Statements” on page 1273. For group options that are available in the
GROUP, MODEL, and PROC CALIS statements, see the section “Options Available in GROUP, MODEL,
and PROC CALIS Statements” on page 1273. If no GROUP statement is used, a single-group analysis is
assumed. The group options for a single-group analysis are specified in the PROC CALIS statement.

The GROUP statement can be followed by subsidiary group specification statements, which specify further
data processing procedures for the group designated in the GROUP statement.

Subsidiary Group Specification Statements

are for specifying additional data processing attributes for the input data. These statements are summarized
in the following table:

Statement Description

FREQ on page 1271 Specifies the frequency variable for the input observations
PARTIAL on page 1322 Specifies the partial variables
VAR on page 1359 Specifies the set of variables in analysis
WEIGHT on page 1367 Specifies the weight variable for the input observations

These statements can be used after the PROC CALIS statement or each GROUP statement. Again, the
specifications within the scope of the GROUP statement supersede those specified after the PROC CALIS
statement for the group designated in the GROUP statement.

MODEL Statement

signifies the beginning of a model specification. In the MODEL statement, you can specify the fitted groups,
input and output data sets for model specification or estimates, printing options, statistical analysis, and
computational options. Some of the options in the MODEL statement can also be specified in the PROC
CALIS statement. These options are called model options. Model options specified in the MODEL statement
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supersede those specified in the PROC CALIS statement. For model options that are available in both of
the MODEL and PROC CALIS statements, see the section “Options Available in the MODEL and PROC
CALIS Statements” on page 1312. If no MODEL statement is used, a single model is assumed and the model
options are specified in the PROC CALIS statement.

Some of the options in the MODEL statement can also be specified in the GROUP statement. These options
are called group options. The group options in the MODEL statement are transferred to the groups being
fitted, but they are superseded by the group options specified in the associated GROUP statement. For group
options that are available in the GROUP and the MODEL statements, see the section “Options Available in
GROUP, MODEL, and PROC CALIS Statements” on page 1273.

The MODEL statement itself does not define the model being fitted to the data; the main and subsidiary
model specification statements that follow immediately after the MODEL statement do. These statements are
described in the next two sections.

Main Model Specification Statements

are for specifying the type of the modeling language and the main features of the model. These statements
are summarized in the following table:

Statement Description

COSAN on page 1242 Specifies general mean and covariance structures in matrix terms
FACTOR on page 1258 Specifies confirmatory or exploratory factor models
LINEQS on page 1275 Specifies models by using linear equations
LISMOD on page 1282 Specifies models in terms of LISREL-like model matrices
MSTRUCT on page 1313 Specifies parameters directly in the mean and covariance matrices
PATH on page 1322 Specifies models by using the causal paths of variables
RAM on page 1348 Specifies models by using RAM-like lists of parameters
REFMODEL on page 1354 Specifies a base model from which the target model is modified

You can use one of these statements for specifying one model. Each statement in the list represents a particular
type of modeling language. After the main model specification statement, you might need to add subsidiary
model specification statements, as described in the following section, to complete the model specification.

Subsidiary Model Specification Statements

are used to supplement the model specification. They are specific to the types of the modeling languages
invoked by the main model specification statements, as shown in the following table:

Statement Specification Modeling Languages

COV on page 1252 Covariance parameters FACTOR, LINEQS
MATRIX on page 1295 Parameters in matrices COSAN, LISMOD, MSTRUCT
MEAN on page 1309 Mean or intercept parameters FACTOR, LINEQS, PATH
PCOV on page 1343 (Partial) covariance parameters PATH
PVAR on page 1345 (Partial) variance parameters FACTOR, PATH
RENAMEPARM on page 1356 New parameters by renaming REFMODEL
VARIANCE on page 1362 Variance parameters LINEQS

Notice that the RAM modeling language does not have any subsidiary model specification statements,
because all model specification can be done in the RAM statement.
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Model Analysis Statements

are used to request specific statistical analysis, as shown in the following table:

Statement Analysis

DETERM on page 1256 Sets variable groups for computing the determination coefficients;
same as the STRUCTEQ statement

EFFPART on page 1215 Displays and partitions the effects in the model
FITINDEX on page 1268 Controls the fit summary output
LMTESTS on page 1285 Defines the Lagrange multiplier test regions
SIMTESTS on page 1357 Defines simultaneous parametric function tests
STRUCTEQ on page 1256 Sets variable groups for computing the determination coefficients;

same as the DETERM statement
TESTFUNC on page 1358 Tests individual parametric functions

Notice that the DETERM and the STRUCTEQ statements function exactly the same way.

Optimization Statements

are used to define additional parameters and parameter constraints, to fine-tune the optimization techniques,
or to set the printing options in optimization, as shown in the following table:

Statement Description

BOUNDS on page 1241 Defines the bounds of parameters
LINCON on page 1274 Defines the linear constraints of parameters
NLINCON on page 1316 Defines the nonlinear constraints of parameters
NLOPTIONS on page 1316 Sets the optimization techniques and printing options

Other Statements

that are not listed in preceding sections are summarized in the following table:

Statement Description

BY on page 1241 Fits a model to different groups separately
OUTFILES on page 1317 Controls multiple output data sets
PARAMETERS on page 1319 Defines additional parameters or superparameters
SAS programming statements on page 1357 Define parameters or functions

Note that SAS programming statements include the ARRAY statement and the mathematical statements for
defining parameter interdependence.
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Single-Group Analysis Syntax
PROC CALIS < options > ;

subsidiary group specification statements ;
main model specification statement ;

subsidiary model specification statements ;
model analysis statements ;
optimization statements ;
other statements ;

In a single-group analysis, there is only one group and one model. Because all model or group specifications
are unambiguous, the MODEL and GROUP statements are not necessary. The order of the statements is
not important for parsing purposes, although you might still like to order them in a particular way to aid
understanding. Notice that the OUTFILES statement is not necessary in single-group analyses, as it is
designed for multiple-group situations. Output file options in a single-group analysis can be specified in the
PROC CALIS statement.

Multiple-Group Multiple-Model Analysis Syntax
PROC CALIS < options > ;

subsidiary group specification statements ;
model analysis statements ;
GROUP 1 < / group options > ;

subsidiary group specification statements ;
GROUP 2 < / group options > ;

subsidiary group specification statements ;
MODEL 1 < / model options > ;

main model specification statement ;
subsidiary model specification statements ;
model analysis statements ;

MODEL 2 < / model options > ;
main model specification statement ;
subsidiary model specification statements ;
model analysis statements ;

optimization statements ;
other statements ;

The multiple uses of the GROUP and the MODEL statements characterize the multiple-group multiple-model
analysis. Unlike the single-group analysis, the order of some statements in a multiple-group multiple-model
syntax is important for parsing purposes.

A GROUP statement signifies the beginning of a group specification block and designates a group number
for the group. The scope of a GROUP statement extends to the subsequent subsidiary group specification
statements until another MODEL or GROUP statement is encountered. In the preceding syntax, GROUP
1 and GROUP 2 have separate blocks of subsidiary group specification statements. By using additional
GROUP statements, you can add as many groups as your situation calls for. Subsidiary group specification
statements declared before the first GROUP statement are in the scope of the PROC CALIS statement. This
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means that these subsidiary group specification statements are applied globally to all groups unless they are
respecified locally within the scopes of individual GROUP statements.

A MODEL statement signifies the beginning of a model specification block and designates a model number
for the model. The scope of a MODEL statement extends to the subsequent main and subsidiary model
specification statements until another MODEL or GROUP statement is encountered. In the preceding syntax,
MODEL 1 and MODEL 2 have separate blocks of main and subsidiary model specification statements. By
using additional MODEL statements, you can add as many models as your situation calls for. If you use at
least one MODEL statement, any main and subsidiary model specification statements declared before the
first MODEL statement are ignored.

Some model analysis statements are also bounded by the scope of the MODEL statements. These statements
are: DETERM, EFFPART, LMTESTS, and STRUCTEQ. These statements are applied only locally to the
model in which they belong. To apply these statements globally to all models, put these statements before the
first MODEL statement.

Other model analysis statements are not bounded by the scope of the MODEL statements. These statements
are: FITINDEX, SIMTESTS, and TESTFUNC. Because these statements are not model-specific, you can
put these statements anywhere in a PROC CALIS run.

Optimization and other statements are not bounded by the scope of either the GROUP or MODEL statements.
You can specify them anywhere between the PROC CALIS and the run statements without affecting the
parsing of the models and the groups. For clarity of presentation, they are shown as last statement block in
the syntax. Notice that the BY statement is not supported in a multiple-group setting.

PROC CALIS Statement
PROC CALIS < options > ;

The PROC CALIS statement invokes the CALIS procedure. There are many options in the PROC CALIS
statement. These options, together with brief descriptions, are classified into different categories in the next
few sections. An alphabetical listing of these options with more details then follows.

Data Set Options

You can use the following options to specify input and output data sets:

Option Description

BASEFIT= Inputs the fit information of the customized baseline model
DATA= Inputs the data
INEST= Inputs the initial values and constraints
INMODEL= Inputs the model specifications
INWGT= Inputs the weight matrix
OUTEST= Outputs the estimates and their covariance matrix
OUTFIT= Outputs the fit indices
OUTMODEL= Outputs the model specifications
OUTSTAT= Outputs the statistical results
OUTWGT= Outputs the weight matrix
READADDPARM Inputs the generated default parameters in the INMODEL= data set
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Model and Estimation Options

You can use these options to specify details about estimation, models, and computations:

Option Description

CORRELATION Analyzes correlation matrix
COVARIANCE Analyzes covariance matrix
COVPATTERN= Specifies one of the built-in covariance structures
DEMPHAS= Emphasizes the diagonal entries
EDF= Defines number of observations by the number of error degrees of freedom
INWGTINV Specifies that the INWGT= data set contains the inverse of the weight matrix
MEANPATTERN= Specifies one of the built-in mean patterns
MEANSTR Analyzes the mean structures
METHOD= Specifies the estimation method
NOBS= Defines the number of observations
NOMEANSTR Deactivates the inherited MEANSTR option
RANDOM= Specifies the seed for randomly generated initial values
RDF= Defines nobs by the number of regression df
RIDGE= Specifies the ridge factor for the covariance matrix
ROBPHI= Specifies the tuning parameter for robust methods
ROBUST= Specifies the type of robust method
START= Specifies a constant for initial values
VARDEF= Specifies the variance divisor
WPENALTY= Specifies the penalty weight to fit correlations
WRIDGE= Specifies the ridge factor for the weight matrix

Options for Fit Statistics

You can use these options to modify the default behavior of fit index computations, to control the display of
fit indices, and specify output file for fit indices:

Option Description

ALPHAECV= Specifies the ˛ level for computing the confidence interval of ECV
(Browne and Cudeck 1993)

ALPHARMS= Specifies the ˛ level for computing the confidence interval of RMSEA
(Steiger and Lind 1980)

BASEFUNC= Specifies the function value and the degrees of freedom of the customized
baseline model

CHICORRECT= Specifies the chi-square correction factor
CLOSEFIT= Defines the close fit value
DFREDUCE= Reduces the degrees of freedom for model fit chi-square test
NOADJDF Requests no degrees-of-freedom adjustment be made for active constraints
NOINDEXTYPE Suppresses the printing of fit index types
OUTFIT= Specifies the output data set for storing fit indices

These options can also be specified in the FITINDEX statement. However, to control the display of individual
fit indices, you must use the ON= and OFF= options of the FITINDEX statement.
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Options for Statistical Analysis

You can use these options to request specific statistical analysis and display and to set the parameters for
statistical analysis:

Option Description

ALPHA= Specifies the ˛-level for confidence intervals
ALPHALEV= Specifies the ˛-level criterion for detecting leverage points
ALPHAOUT= Specifies the ˛-level criterion for detecting outliers
ASYCOV= Specifies the formula for computing asymptotic covariances
BIASKUR Computes the skewness and kurtosis without bias corrections
CI Prints the confidence limits
EFFPART | TOTEFF Displays total, direct, and indirect effects
EXTENDPATH Displays the extended path estimates
G4= Specifies the algorithm for computing standard errors
KURTOSIS Computes and displays kurtosis
MAXLEVERAGE= Specifies the maximum number of leverage observations to display
MAXMISSPAT= Specifies the maximum number of missing patterns to display
MAXOUTLIER= Specifies the maximum number of outliers to display
MODIFICATION Computes modification indices
NOMISSPAT Suppresses the display of missing pattern analysis
NOMOD Suppresses modification indices
NOSTAND Suppresses the standardized output
NOSTDERR Suppresses standard error computations
PCORR Displays analyzed and estimated moment matrix
PCOVES Displays the covariance matrix of estimates
PDETERM Computes the determination coefficients
PESTIM Prints parameter estimates
PINITIAL Prints initial pattern and values
PLATCOV Computes the latent variable covariances and score coefficients
PLOTS= Specifies ODS Graphics selection
PWEIGHT Displays the weight matrix
RESIDUAL= Specifies the type of residuals being computed
SIMPLE Prints univariate statistics
SLMW= Specifies the probability limit for Wald tests
STDERR Computes the standard errors
TMISSPAT= Specifies the data proportion threshold for displaying the missing patterns
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Global Display Options

There are two different kinds of global display options: one is for selecting output; the other is for controlling
the format or order of output.

You can use the following options to select printed output:

Option Description

NOPRINT Suppresses the displayed output
PALL Displays all displayed output (ALL)
PRINT Adds default displayed output
PSHORT Reduces default output (SHORT)
PSUMMARY Displays fit summary only (SUMMARY)

In contrast to individual output printing options described in the section “Options for Statistical Analysis”
on page 1202, the global display options typically control more than one output or analysis. The relations
between these two types of options are summarized in the following table:

Options PALL PRINT default PSHORT PSUMMARY

fit indices * * * * *
linear dependencies * * * * *

PESTIM * * * *
iteration history * * * *

PINITIAL * * *
SIMPLE * * *
STDERR * * *

RESIDUAL * *
KURTOSIS * *
PLATCOV * *
TOTEFF * *

PCORR *
MODIFICATION *
PWEIGHT *

PCOVES
PDETERM
PRIMAT

Each column in the table represents a global display option. An “*” in the column means that the individual
output or analysis option listed in the corresponding row turns on when the global display option in the
corresponding column is specified.

Note that the column labeled with “default” is for default printing. If the NOPRINT option is not specified, a
default set of output is displayed. The PRINT and PALL options add to the default output, while the PSHORT
and PSUMMARY options reduce from the default output.

Note also that the PCOVES, PDETERM, and PRIMAT options cannot be turned on by any global display
options. They must be specified individually.
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The following global display options are for controlling formats and order of the output:

Option Description

NOORDERSPEC Displays model specifications and results according to the input
order

NOPARMNAME Suppresses the printing of parameter names in results
ORDERALL Orders all output displays according to the model numbers, group

numbers, and parameter types
ORDERGROUPS Orders the group output displays according to the group numbers
ORDERMODELS Orders the model output displays according to the model numbers
ORDERSPEC Orders the model output displays according to the parameter types

within each model
PARMNAME Displays parameter names in model specifications and results
PRIMAT Displays estimation results in matrix form

Optimization Options

You can use the following options to control the behavior of the optimization. Most of these options are also
available in the NLOPTIONS statement.

Option Description

ASINGULAR= Specifies the absolute singularity criterion for inverting the
information matrix

COVSING= Specifies the singularity tolerance of the information matrix
FCONV= Specifies the relative function convergence criterion
GCONV= Specifies the gradient convergence criterion
INSTEP= Specifies the initial step length (RADIUS=, SALPHA=)
LINESEARCH= Specifies the line-search method
LSPRECISION= Specifies the line-search precision (SPRECISION=)
MAXFUNC= Specifies the maximum number of function calls
MAXITER= Specifies the maximum number of iterations
MSINGULAR= Specifies the relative M singularity of the information matrix
OMETHOD | TECHNIQUE= Specifies the minimization method
ROBITER= Specifies the maximum number of iterations for estimating robust

covariance and mean matrices
SINGULAR= Specifies the singularity criterion for matrix inversion
UPDATE= Specifies the update method for some optimization techniques
VSINGULAR= Specifies the relative V singularity of information matrix
XCONV= Specifies the relative parameter convergence criterion
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PROC CALIS Statement Options

ALPHA=˛
specifies that interval estimation of parameters be done at the .1 � ˛/100% confidence level. The
smaller the ˛ value, the higher the confidence level. By default, ˛ D 0:05, which corresponds to a
95% confidence interval.

ALPHAECV=˛
specifies a .1 � ˛/100% confidence interval (0 � ˛ � 1) for the Browne and Cudeck (1993) expected
cross-validation index (ECVI). By default, ˛ D 0:1, which corresponds to a 90% confidence interval
for the ECVI.

ALPHALEV=˛

ALPHALEVERAGE=˛
specifies the ˛-level criterion for detecting leverage observations (or leverage points) in case-level
(observation-level) residual diagnostics. The default ALPHALEV= value is 0.01. An observation is a
leverage observation if the p-value of its squared Mahalanobis distance (M-distance) for its predictor
variables (including observed and latent variables) is smaller than the specified ˛-level, where the
p-value is computed according to an appropriate theoretical chi-square distribution. The larger the
ALPHALEV= value, the more liberal the criterion for detecting leverage observations.

In addition to displaying the leverage observations as defined by the ALPHALEV= criterion, PROC
CALIS also displays the next 5 observations with the largest leverage M-distances for reference.
However, the total number of observations in the displayed output cannot exceed 30 or the number of
original observations, whichever is smaller.

This option is relevant only when residual analysis is requested with the RESIDUAL option and with
raw data input.

ALPHAOUT=˛

ALPHAOUTLIER=˛
specifies the ˛-level criterion for detecting outliers in case-level (observation-level) residual diagnostics.
The default ALPHAOUT= value is 0.01. An observation is an outlier if the p-value of its squared
residual M-distance is smaller than the specified ˛-level, where the p-value is computed according to
an appropriate theoretical chi-square distribution. The larger the ALPHAOUT= value, the more liberal
the criterion for detecting outliers.

In addition to displaying the outliers as defined by the ALPHAOUT= criterion, PROC CALIS also
displays the next 5 observations with the largest residual M-distances for reference. However, the total
number of observations in the displayed output in the displayed output cannot exceed 30 or the number
of original observations, whichever is smaller.

This option is relevant only when residual analysis is requested with the RESIDUAL option and with
raw data input.

ALPHARMS=˛

ALPHARMSEA=˛
specifies a .1 � ˛/100% confidence interval (0 � ˛ � 1) for the Steiger and Lind (1980) root mean
square error of approximation (RMSEA) coefficient (see Browne and Du Toit 1992). The default value
is ˛ D 0:1, which corresponds to a 90% confidence interval for the RMSEA.
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ASINGULAR=r

ASING=r
specifies an absolute singularity criterion r (r > 0), for the inversion of the information matrix, which
is needed to compute the covariance matrix. The default value for r or ASING= is the square root of
the smallest positive double precision value.

When inverting the information matrix, the following singularity criterion is used for the diagonal pivot
dj;j of the matrix:

jdj;j j � max.ASING;VSING � jHj;j j;MSING �max.jH1;1j; : : : ; jHn;nj//

where VSING and MSING are the specified values in the VSINGULAR= and MSINGULAR= options,
respectively, and Hj;j is the jth diagonal element of the information matrix. Note that in many cases a
normalized matrix D�1HD�1 is decomposed (where D2 D diag.H/), and the singularity criteria are
modified correspondingly.

ASYCOV=name

ASC=name
specifies the formula for asymptotic covariances used in the weight matrix W for WLS and DWLS
estimation. The ASYCOV option is effective only if METHOD= WLS or METHOD=DWLS and no
INWGT= input data set is specified. The following formulas are implemented:

BIASED: Browne (1984) formula (3.4)
biased asymptotic covariance estimates; the resulting weight matrix is at least
positive semidefinite. This is the default for analyzing a covariance matrix.

UNBIASED: Browne (1984) formula (3.8)
asymptotic covariance estimates corrected for bias; the resulting weight matrix can
be indefinite (that is, can have negative eigenvalues), especially for small N.

CORR: Browne and Shapiro (1986) formula (3.2)
(identical to De Leeuw (1983) formulas (2,3,4)) the asymptotic variances of the diag-
onal elements are set to the reciprocal of the value r specified by the WPENALTY=
option (default: r=100). This formula is the default for analyzing a correlation
matrix.

By default, AYSCOV=BIASED is used for covariance analyses and ASYCOV=CORR is used for
correlation analyses. Therefore, in almost all cases you do not need to set the ASYCOV= option once
you specify the covariance or correlation analysis by the COV or CORR option.

BASEFIT=SAS-data-set

INBASEFIT=SAS-data-set
inputs the SAS-data-set that contains the fit information of the baseline model of your choice. This
customized baseline model replaces the default uncorrelatedness model for computing several fit
indices of your target model. Typically, you create the BASEFIT= data set by using the OUTFIT=
option in a previous PROC CALIS fitting of your customized baseline model. Using the BASEFIT=
option assumes that you fit your customized baseline model and your target model with the same
data, number of groups (for multiple-group analysis), and estimation method. Typically, your baseline
model should be more restrictive (or have fewer parameters) than your target model.

For example, the following statements use the compound symmetry model (COVPATTERN=COMPSYM)
as the customized baseline model for the subsequent factor model with two factors:
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proc calis data=abc outfit=outf method=gls covpattern=compsym;
var=x1-x10;

run;

proc calis data=abc method=gls basefit=outf;
factor n=2;
var=x1-x10;

run;

The fit information of the customized baseline model is saved as an OUTFIT= data set called outf,
which is then read as a BASEFIT= data set in the next PROC CALIS run for fitting the target factor
model. Notice that in this example the baseline model and the target factor model use the same data
set, abc, and the same GLS estimation method.

Alternatively, you can use the BASEFUNC= option to input the function value and the degrees of
freedom of your customized baseline model. See the BASEFUNC= option for details. The BASEFIT=
option is ignored if you also specify the BASEFUNC= option.

Notice that the fit information in the BASEFIT= data set does not affect the computation of all fit indices.
Mainly, it affects the incremental fit indices, because these indices are defined as the incremental fit
of a target model over a baseline model. Among all absolute and parsimonious fit indices, only the
parsimonious goodness-of-fit (PGFI) index (Mulaik et al. 1989) is affected by the input fit information
provided in the BASEFIT= data set.

If you specify METHOD=LSDWLS, LSFIML, LSGLS, or LSML for your target model, the fit
information in the BASEFIT= data set is assumed to have been obtained from the DWLS, FIML, GLS,
or ML estimation of your customized baseline model. Hence, the fit information in the BASEFIT=
data set applies only to the second estimation of your target model. The unweighted least squares
(ULS) estimation of the target model still uses the uncorrelatedness model as the baseline model for
computing fit indices.

If you use a BASEFIT= data set to input the fit information of your customized baseline model in a
multiple-group analysis, then the baseline model function values, chi-squares, and degrees of freedom
for individual groups are not known and hence not displayed in the multiple-group fit summary table.
The Bentler-Bonett normed fit index (NFI) is also not displayed in the multiple-group fit summary
table, because the baseline model function values for individual groups are not saved in the BASEFIT=
data set.

BASEFUNC=r (< DF= >i)
BASEFUNC(< DF= >i)=r

inputs the fit function value r and the degrees of freedom i of the baseline model of your choice.
This customized baseline model replaces the default uncorrelatedness model for computing several fit
indices of your target model. To use this option, you must first fit your customized baseline model and
then use this option to input the baseline model fit information when you fit your target model.

Using the BASEFUNC= option assumes that you fit your customized baseline model and your target
model with the same data, number of groups (for multiple-group analysis), and estimation method.
Typically, your baseline model should be more restrictive (or have fewer parameters) than your target
model.

For example, assume that after fitting a customized baseline model you find that the function value of
the baseline model is 20.54 and the model degrees of freedom are 15. The following code inputs the
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function value and the degrees of freedom of the customized baseline model by using the BASEFUNC=
option:

proc calis data=abc basefunc(df=15)=20.54;
path

f1 ===> x1-x5 = 1.,
f2 ===> x6-x10 = 1.,
f1 ===> f2;

run;

You can use the following equivalent syntax to provide the same baseline model fit information:

basefunc(df=15)=20.54
basefunc(15)=20.54
basefunc=20.54(df=15)
basefunc=20.54(15)

It is emphasized here that you should input the fit function value, but not the model fit chi-square
value, of the baseline model in the BASEFUNC= option. For all estimation methods except the full
information maximum likelihood (FIML) method in PROC CALIS, the model fit chi-square values are
some multiples of the fit function values. See the section “Estimation Criteria” on page 1463 for the
definitions of the various fit functions that are assumed by the BASEFUNC= option.

Alternatively, it might be easier to use the BASEFIT= option to specify the SAS data set that contains
the baseline model fit information. Such a SAS data set is typically created by using the OUTFIT=
option in the PROC CALIS fitting of your customized baseline model. See the BASEFIT= option for
details. However, the BASEFIT= option is ignored if you also specify the BASEFUNC= option.

Notice that the specified values in the BASEFUNC= option do not affect the computation of all
fit indices. Mainly, they affect the incremental fit indices, because these indices are defined as the
incremental fit of a target model over a baseline model. Among all absolute and parsimonious fit
indices, only the parsimonious goodness-of-fit (PGFI) index (Mulaik et al. 1989) is affected by the
values provided in the BASEFUNC= option.

If you specify METHOD=LSDWLS, LSFIML, LSGLS, or LSML for your target model, the fit
information provided by the BASEFUNC= option is assumed to have been obtained from the DWLS,
FIML, GLS, or ML estimation of your customized baseline model. Hence, the fit information provided
by the BASEFUNC= option applies only to the second estimation of your target model. The unweighted
least squares (ULS) estimation of the target model still uses the uncorrelatedness model as the baseline
model for computing fit indices.

If you use the BASEFUNC= option to input the fit information of your customized baseline model in a
multiple-group analysis, then the baseline model function values, chi-squares, and degrees of freedom
for individual groups are not known and hence not displayed in the multiple-group fit summary table.
The Bentler-Bonett NFI is also not displayed in the multiple-group fit summary table, because the
baseline model function values for individual groups are not provided with the BASEFUNC= option.
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CI

CL
prints the confidence intervals or limits for parameters. By default, PROC CALIS estimates the lower
and upper confidence limits at the 95% confidence level, which corresponds to the default value of the
ALPHA= option (0.05). You can change the default level of confidence by specifying the ALPHA=
option.

BIASKUR
computes univariate skewness and kurtosis by formulas uncorrected for bias.

See the section “Measures of Multivariate Kurtosis” on page 1504 for more information.

CHICORRECT= name | c

CHICORR= name | c
specifies a correction factor c for the chi-square statistics for model fit. You can specify a name for
a built-in correction factor or a value between 0 and 1 as the CHICORRECT= value. The model fit
chi-square statistic is computed as:

�2 D .1 � c/.N � k/F

where N is the total number of observations, k is the number of independent groups, and F is the
optimized function value. Application of these correction factors requires appropriate specification of
the covariance structural model suitable for the chi-square correction. For example, using CHICOR-
RECT=UNCORR assumes that you are fitting a covariance structure with free parameters on the
diagonal elements and fixed zeros off-diagonal elements of the covariance matrix. Because all the
built-in correction factors assume multivariate normality in their derivations, the appropriateness of
applying these built-in chi-square corrections to estimation methods other than METHOD=ML is not
known.

Valid names for the CHICORRECT= value are as follows:

COMPSYM | EQVARCOV specifies the correction factor due to Box (1949) for testing equal vari-
ances and equal covariances in a covariance matrix. The correction factor is:

c D
p.p C 1/2.2p � 3/

6n.p � 1/.p2 C p � 4/

where p (p > 1) represents the number of variables and n D .N � 1/, with N
denoting the number of observations in a single group analysis. This option is not
applied when you also analyze the mean structures or when you fit multiple-group
models.

EQCOVMAT specifies the correction factor due to Box (1949) for testing equality of covariance
matrices. The correction factor is:

c D
2p2 C 3p � 1
6.p C 1/.k � 1/

.

kX
iD1

1

ni
�

1Pk
iD1 ni

/

where p represents the number of variables, k (k > 1) represents the number of
groups, and ni D .Ni � 1/, with Ni denoting the number of observations in the
ith group. This option is not applied when you also analyze the mean structures or
when you fit single-group models.
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FIXCOV specifies the correction factor due to Bartlett (1954) for testing a covariance matrix
against a hypothetical fixed covariance matrix. The correction factor is:

c D
1

6n
.2p C 1 �

2

p C 1
/

where p represents the number of variables and n D .N � 1/, with N denoting the
number of observations in a single group analysis. This option is not applied when
you also analyze the mean structures or when you fit multiple-group models.

SPHERICITY specifies the correction factor due to Box (1949) for testing a spherical covariance
matrix (Mauchly 1940). The correction factor is:

c D
2p2 C p C 2

6np

where p represents the number of variables and n D .N � 1/, with N denoting the
number of observations in a single group analysis. This option is not applied when
you also analyze the mean structures or when you fit multiple-group models.

TYPEH specifies the correction factor for testing the H pattern (Huynh and Feldt 1970)
directly. The correction factor is:

c D
2p2 � 3p C 3
6n.p � 1/

where p (p > 1) represents the number of variables and n D .N � 1/, with N
denoting the number of observations in a single group analysis. This option is not
applied when you also analyze the mean structures or when you fit multiple-group
models.

This correction factor is derived by substituting p with p – 1 in the correction
formula applied to Mauchly’s sphericity test. The reason is that testing the H
pattern of p variables is equivalent to testing the sphericity of the (p – 1) orthogonal
contrasts of the same set of variables (Huynh and Feldt 1970). See pp. 295–296 of
Morrison (1990) for more details.

UNCORR specifies the correction factor due to Bartlett (1950) and Box (1949) for testing a
diagonal pattern of a covariance matrix, while the diagonal elements (variances)
are unconstrained. This test is sometimes called Bartlett’s test of sphericity—not
to be confused with the sphericity test dues to Mauchly (1940), which requires all
variances in the covariance matrix to be equal. The correction factor is:

c D
2p C 5
6n

where p represents the number of variables and n D .N � 1/, with N denoting the
number of observations in a single group analysis. This option is not applied when
you also analyze the mean structures or when you fit multiple-group models.
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CLOSEFIT=p
defines the criterion value p for indicating a close fit. The smaller the better fit. The default value for
close fit is .05.

CORRELATION

CORR
analyzes the correlation matrix, instead of the default covariance matrix. See the COVARIANCE
option for more details.

COVARIANCE

COV
analyzes the covariance matrix. Because this is also the default analysis in PROC CALIS, you can
simply omit this option when you analyze covariance rather than correlation matrices. If the DATA=
input data set is a TYPE=CORR data set (containing a correlation matrix and standard deviations), the
default COV option means that the covariance matrix is computed and analyzed.

Unlike many other SAS/STAT procedures (for example, the FACTOR procedure) that analyze correla-
tion matrices by default, PROC CALIS uses a different default because statistical theories of structural
equation modeling or covariance structure analysis are mostly developed for covariance matrices. You
must use the CORR option if correlation matrices are analyzed.

COVPATTERN=name

COVPAT=name
specifies one of the built-in covariance structures for the data. The purpose of this option is to fit some
commonly-used direct covariance structures efficiently without the explicit use of the MSTRUCT
model specifications. With this option, the covariance structures are defined internally in PROC CALIS.
The following names for the built-in covariance structures are supported:

COMPSYM | EQVARCOV specifies the compound symmetry pattern for the covariance matrix. That
is, a covariance matrix with equal variances for all variables and equal covariance
between any pairs of variables (EQVARCOV). For example, if there are four
variables in the analysis, the covariance pattern generated by PROC CALIS has the
following form:

† D

0BB@
v c c c

c v c c

c c v c

c c c v

1CCA
PROC CALIS denotes the common variance parameter, v, by _varparm, and the
common covariance parameter, v, by _covparm.

If you request a single-group maximum likelihood (METHOD=ML) covariance
structure analysis by specifying the COVPATTERN=COMPSYM or COVPAT-
TERN=EQVARCOV option and the mean structures are not modeled, the chi-
square correction due to Box (1949) is applied automatically when the number of
variables is greater than or equal to 2. See the CHICORRECT=COMPSYM option
for the definition of the correction factor.
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EQCOVMAT specifies the equality of covariance matrices between multiple groups. That is, this
option tests the null hypothesis that

H0 W †1 D †2 D : : : D †k D †

where† is a common covariance matrix for the k †j ’s (j D 1; : : : ; kI k > 1). The
elements of † are named _cov_xx_yy automatically by PROC CALIS, where xx
and yy represents the row and column numbers such that xx is at least as large as yy.
For example, if there are four variables in the analysis, the (1,1) element of † is
denoted by _cov_1_1, the (4,3) or (3,4) element of † is denoted by _cov_4_3, and
so on.

If you request a multiple-group maximum likelihood (METHOD=ML) covariance
structure analysis by specifying the COVPATTERN=EQCOVMAT and the mean
structures are not modeled, the chi-square correction due to Box (1949) is applied
automatically. See the CHICORRECT=EQCOVMAT option for the definition of
the correction factor.

SATURATED specifies a saturated covariance structure model. This is the default option when you
specify the MEANPATTERN= option without using the COVPATTERN= option.
The elements of † are named _cov_xx_yy automatically by PROC CALIS, where
xx represents the row number and yy represents the column number. For example,
if there are three variables in the analysis, the (1,1) element in † is denoted by
_cov_1_1, the (3,2) or (2,3) element in † is denoted by _cov_3_2, and so on.

SPHERICITY | SIGSQI specifies the spheric pattern of the covariance matrix (Mauchly 1940). That
is, this option tests the null hypothesis that

H0 W † D �
2I

where �2 is a common variance parameter and I is an identity matrix. For example,
if there are three variables in the analysis, the covariance pattern generated by
PROC CALIS is:

† D

0@ v 0 0

0 v 0

0 0 v

1A
PROC CALIS denotes the common variance parameter, v, by _varparm.

If you request a single-group maximum likelihood (METHOD=ML) covariance
structure analysis by specifying the COVPATTERN=SPHERICITY or COV-
PATTERN=SIGSQI option and the mean structures are not modeled, the chi-
square correction due to Box (1949) is applied automatically. See the CHICOR-
RECT=SPHERICITY option for the definition of the correction factor.

UNCORR | DIAG specifies the diagonal pattern of the covariance matrix. That is, this option tests
the null hypothesis of uncorrelatedness—all correlations (or covariances) between
variables are zero and the variances are unconstrained. For example, if there are
three variables in the analysis, the covariance pattern generated by PROC CALIS
is:

† D

0@ v1 0 0

0 v2 0

0 0 v3

1A
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PROC CALIS denotes the variance parameters v1, v2, and v3 by _varparm_1,
_varparm_2, and _varparm_3, respectively.

If you request a single-group maximum likelihood (METHOD=ML) co-
variance structure analysis by specifying the COVPATTERN=UNCORR or
COVPATTERN=DIAG option and the mean structures are not modeled, the
chi-square correction due to Bartlett (1950) is applied automatically. See the
CHICORRECT=UNCORR option for the definition of the correction factor. Under
the multivariate normal assumption, COVPATTERN=UNCORR is also a test of
independence of the variables in the analysis.

When you specify the covariance structure model by means of the COVPATTERN= option, you can
define the set of variables in the analysis by the VAR statement (either within the scope of the PROC
CALIS statement or the GROUP statements). If the VAR statement is not used, PROC CALIS uses all
numerical variables in the data sets.

Except for the EQCOVMAT pattern, all other built-in covariance patterns are primarily designed for
single-group analysis. However, you can still use these covariance pattern options for multiple-group
situations. For example, consider the following three-group analysis:

proc calis covpattern=compsym;
group 1 / data=set1;
group 2 / data=set2;
group 3 / data=set3;

run;

In this specification, all three groups are fitted by the compound symmetry pattern. However, there
would be no constraints across these groups. PROC CALIS generates two distinct parameters for
each group: _varparm_mdl1 and _covparm_mdl1 for Group 1, _varparm_mdl2 and _covparm_mdl2
for Group 2, and _varparm_mdl3 and _covparm_mdl3 for Group 3. Similarly, the _mdlxx suffix,
where xx represents the model number, is applied to the parameters defined by the SATURATED,
SPHERICITY (or SIGSQI), and UNCORR (or DIAG) covariance patterns in multiple-group situations.
However, chi-square correction, whenever it is applicable to single-group analysis, is not applied to
such multiple-group analyses.

You can also apply the COVPATTERN= option partially to the groups in the analysis. For example,
the following statements apply the spheric pattern to Group 1 and Group 2 only:

proc calis covpattern=sphericity;
group 1 / data=set1;
group 2 / data=set2;
group 3 / data=set3;
model 3 / group=3;

path x1 ===> y3;
run;

Group 3 is fitted by Model 3, which is specified explicitly by a PATH model with distinct covariance
structures.

If the EQCOVMAT pattern is specified instead, as shown in the following statements, the equality of
covariance matrices still holds for Groups 1 and 2:
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proc calis covpattern=eqcovmat;
group 1 / data=set1;
group 2 / data=set2;
group 3 / data=set3;
model 3 / group=3;

path x1 ===> y3;
run;

However, Group 3 has it own covariances structures as specified in Model 3. In this case, the chi-square
correction due to Box (1949) is not applied because the null hypothesis is no longer testing the equality
of covariance matrices among the groups in the analysis.

Use the MEANPATTERN= option if you also want to analyze some built-in mean structures along
with the covariance structures.

COVSING=r
specifies a nonnegative threshold r , which determines whether the eigenvalues of the information
matrix are considered to be zero. If the inverse of the information matrix is found to be singular
(depending on the VSINGULAR=, MSINGULAR=, ASINGULAR=, or SINGULAR= option), a
generalized inverse is computed using the eigenvalue decomposition of the singular matrix. Those
eigenvalues smaller than r are considered to be zero. If a generalized inverse is computed and you do
not specify the NOPRINT option, the distribution of eigenvalues is displayed.

DATA=SAS-data-set
specifies an input data set that can be an ordinary SAS data set or a specially structured TYPE=CORR,
TYPE=COV, TYPE=UCORR, TYPE=UCOV, TYPE=SSCP, or TYPE=FACTOR SAS data set, as
described in the section “Input Data Sets” on page 1367. If the DATA= option is omitted, the most
recently created SAS data set is used.

DEMPHAS=r

DE=r
changes the initial values of all variance parameters by the relationship:

snew D r.jsold j C 1/

where snew is the new initial value and sold is the original initial value. The value of r must be positive.
If you specify an r value less than 1E–8, it is replaced with 1E–8.

The initial values of all variance parameters should always be nonnegative to generate positive definite
predicted model matrices in the first iteration. By using values of r > 1, for example, r = 2, r = 10,
and so on, you can increase these initial values to produce predicted model matrices with high positive
eigenvalues in the first iteration. The DEMPHAS= option is effective independent of the way the initial
values are set; that is, it changes the initial values set in the model specification as well as those set
by an INMODEL= data set and those automatically generated for the FACTOR, LINEQS, LISMOD,
PATH, or RAM models. It also affects the initial values set by the START= option, which uses, by
default, DEMPHAS=100 if a covariance matrix is analyzed and DEMPHAS=10 for a correlation
matrix.



PROC CALIS Statement F 1215

DFREDUCE=i

DFRED=i
reduces the degrees of freedom of the model fit �2 test by i . In general, the number of degrees of
freedom is the total number of nonredundant elements in all moment matrices minus the number of
parameters, t. Because negative values of i are allowed, you can also increase the number of degrees of
freedom by using this option.

EDF=n

DFE=n
makes the effective number of observations n + 1. You can also use the NOBS= option to specify the
number of observations.

EFFPART

TOTEFF

TE
computes and displays total, direct, and indirect effects for the unstandardized and standardized
estimation results. Standard errors for the effects are also computed. Note that this displayed output is
not automatically included in the output generated by the PALL option.

Note also that in some situations computations of total effects and their partitioning are not appropriate.
While total and indirect effects must converge in recursive models (models with no cyclic paths among
variables), they do not always converge in nonrecursive models. When total or indirect effects do
not converge, it is not appropriate to partition the effects. Therefore, before partitioning the total
effects, the convergence criterion must be met. To check the convergence of the effects, PROC CALIS
computes and displays the “stability coefficient of reciprocal causation”— that is, the largest modulus
of the eigenvalues of the ˇ matrix, which is the square matrix that contains the path coefficients of
all endogenous variables in the model. Stability coefficients less than one provide a necessary and
sufficient condition for the convergence of the total and the indirect effects. Otherwise, PROC CALIS
does not show results for total effects and their partitioning. See the section “Stability Coefficient
of Reciprocal Causation” on page 1500 for more information about the computation of the stability
coefficient.

EXTENDPATH

GENPATH
displays the extended path estimates such as the variances, covariances, means, and intercepts in the
table that contains the ordinary path effect (coefficient) estimates. This option applies to the PATH
model only.

FCONV=r

FTOL=r
specifies the relative function convergence criterion. The optimization process is terminated when the
relative difference of the function values of two consecutive iterations is smaller than the specified
value of r ; that is,

jf .x.k// � f .x.k�1//j

max.jf .x.k�1//j;FSIZE/
� r

where FSIZE can be defined by the FSIZE= option in the NLOPTIONS statement. The default value is
r D 10�FDIGITS, where FDIGITS either can be specified in the NLOPTIONS statement or is set by
default to � < log10.�/, where � is the machine precision.
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G4=i
instructs that the algorithm to compute the approximate covariance matrix of parameter estimates used
for computing the approximate standard errors and modification indices when the information matrix
is singular. If the number of parameters t used in the model you analyze is smaller than the value of i ,
the time-expensive Moore-Penrose (G4) inverse of the singular information matrix is computed by
eigenvalue decomposition. Otherwise, an inexpensive pseudo (G1) inverse is computed by sweeping.
By default, i = 60.

See the section “Estimation Criteria” on page 1463 for more details.

GCONV=r

GTOL=r
specifies the relative gradient convergence criterion.

Termination of all techniques (except the CONGRA technique) requires the following normalized
predicted function reduction to be smaller than r . That is,

Œg.x.k//�0ŒG.k/��1g.x.k//
max.jf .x.k//j;FSIZE/

� r

where FSIZE can be defined by the FSIZE= option in the NLOPTIONS statement. For the CONGRA
technique (where a reliable Hessian estimate G is not available),

k g.x.k// k22 k s.x.k// k2

k g.x.k// � g.x.k�1// k2 max.jf .x.k//j;FSIZE/
� r

is used. The default value is r D 10�8.

INEST=SAS-data-set

INVAR=SAS-data-set

ESTDATA=SAS-data-set
specifies an input data set that contains initial estimates for the parameters used in the optimization
process and can also contain boundary and general linear constraints on the parameters. Typical
applications of this option are to specify an OUTEST= data set from a previous PROC CALIS analysis.
The initial estimates are taken from the values of the PARMS observation in the INEST= data set.

INMODEL=SAS-data-set

INRAM=SAS-data-set
specifies an input data set that contains information about the analysis model. A typical use of the
INMODEL= option is when you run an analysis with its model specifications saved as an OUT-
MODEL= data set from a previous PROC CALIS run. Instead of specifying the main or subsidiary
model specification statements in the new run, you use the INMODEL= option to input the model
specification saved from the previous run.

Sometimes, you might create an INMODEL= data set from modifying an existing OUTMODEL=
data set. However, editing and modifying OUTMODEL= data sets requires good understanding of the
formats and contents of the OUTMODEL= data sets. This process could be error-prone for novice
users. For details about the format of INMODEL= or OUTMODEL= data sets, see the section“Input
Data Sets” on page 1367.

It is important to realize that INMODEL= or OUTMODEL= data sets contain only the information
about the specification of the model. These data sets do not store any information about the bounds on
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parameters, linear and nonlinear parametric constraints, and programming statements for computing
dependent parameters. If required, these types of information must be provided in the corresponding
statement specifications (for example, BOUNDS, LINCON, and so on) in addition to the INMODEL =
data set.

An OUTMODEL= data set might also contain default parameters added automatically by PROC
CALIS from a previous run (for example, observations with _TYPE_=ADDPCOV, ADDMEAN, or
ADDPVAR). When reading the OUTMODEL= model specification as an INMODEL= data set in a
new run, PROC CALIS ignores these added parameters so that the model being read is exactly like the
previous PROC CALIS specification (that is, before default parameters were added automatically).
After interpreting the specification in the INMODEL= data set, PROC CALIS will then add default
parameters appropriate to the new run. The purpose of doing this is to avoid inadvertent parameter
constraints in the new run, where another set of automatic default parameters might have the same
generated names as those of the generated parameter names in the INMODEL= data set.

If you want the default parameters in the INMODEL= data set to be read as a part of model specification,
you must also specify the READADDPARM option. However, using the READADDPARM option
should be rare.

INSTEP=r
For highly nonlinear objective functions, such as the EXP function, the default initial radius of the trust-
region algorithms (TRUREG, DBLDOG, and LEVMAR) or the default step length of the line-search
algorithms can produce arithmetic overflows. If an arithmetic overflow occurs, specify decreasing
values of 0 < r < 1 such as INSTEP=1E–1, INSTEP=1E–2, INSTEP=1E–4, and so on, until the
iteration starts successfully.

• For trust-region algorithms (TRUREG, DBLDOG, and LEVMAR), the INSTEP option specifies
a positive factor for the initial radius of the trust region. The default initial trust-region radius is
the length of the scaled gradient, and it corresponds to the default radius factor of r = 1.

• For line-search algorithms (NEWRAP, CONGRA, and QUANEW), INSTEP specifies an upper
bound for the initial step length for the line search during the first five iterations. The default
initial step length is r = 1.

For more details, see the section “Computational Problems” on page 1515.

INWGT< (INV) >=SAS-data-set

INWEIGHT< (INV) >=SAS-data-set
specifies an input data set that contains the weight matrix W used in generalized least squares (GLS),
weighted least squares (WLS, ADF), or diagonally weighted least squares (DWLS) estimation, if you
do not specify the INV option at the same time. The weight matrix must be positive definite because its
inverse must be defined in the computation of the objective function. If the weight matrix W defined
by an INWGT= data set is not positive definite, it can be ridged using the WRIDGE= option. See the
section “Estimation Criteria” on page 1463 for more information. If you specify the INWGT(INV)=
option, the INWGT= data set contains the inverse of the weight matrix, rather than the weight matrix
itself. Specifying the INWGT(INV)= option is equivalent to specifying the INWGT= and INWGTINV
options simultaneously. With the INWGT(INV)= specification, the input matrix is not required to be
positive definite. See the INWGTINV option for more details. If no INWGT= data set is specified,
default settings for the weight matrices are used in the estimation process. The INWGT= data set is
described in the section “Input Data Sets” on page 1367. Typically, this input data set is an OUTWGT=
data set from a previous PROC CALIS analysis.
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INWGTINV
specifies that the INWGT= data set contains the inverse of the weight matrix, rather than the weight
matrix itself. This option is effective only with an input weight matrix specified in the INWGT= data
set and with the generalized least squares (GLS), weighted least squares (WLS or ADF), or diagonally
weighted least squares (DWLS) estimation. With this option, the input matrix provided in the INWGT=
data set is not required to be positive definite. Also, the ridging requested by the WRIDGE= option is
ignored when you specify the INWGTINV option.

KURTOSIS

KU
computes and displays univariate kurtosis and skewness, various coefficients of multivariate kurtosis,
and the numbers of observations that contribute most to the normalized multivariate kurtosis. See the
section “Measures of Multivariate Kurtosis” on page 1504 for more information. Using the KURTOSIS
option implies the SIMPLE display option. This information is computed only if the DATA= data set
is a raw data set, and it is displayed by default if the PRINT option is specified. The multivariate least
squares kappa and the multivariate mean kappa are displayed only if you specify METHOD=WLS and
the weight matrix is computed from an input raw data set. All measures of skewness and kurtosis are
corrected for the mean. Using the BIASKUR option displays the biased values of univariate skewness
and kurtosis.

LINESEARCH | LIS | SMETHOD | SM=i

LIS=i

SMETHOD=i

SM=i
specifies the line-search method for the CONGRA, QUANEW, and NEWRAP optimization techniques.
See Fletcher (1980) for an introduction to line-search techniques. The value of i can be any integer
between 1 and 8, inclusively; the default is i=2.

1 specifies a line-search method that needs the same number of function and gradient calls
for cubic interpolation and cubic extrapolation; this method is similar to one used by the
Harwell subroutine library.

2 specifies a line-search method that needs more function calls than gradient calls for
quadratic and cubic interpolation and cubic extrapolation; this method is implemented
as shown in Fletcher (1987) and can be modified to an exact line search by using the
LSPRECISION= option.

3 specifies a line-search method that needs the same number of function and gradient calls
for cubic interpolation and cubic extrapolation; this method is implemented as shown in
Fletcher (1987) and can be modified to an exact line search by using the LSPRECISION=
option.

4 specifies a line-search method that needs the same number of function and gradient calls
for stepwise extrapolation and cubic interpolation.

5 specifies a line-search method that is a modified version of LIS=4.
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LSPRECISION | LSP=r

LSP=r

SPRECISION=r

SP=r
specifies the degree of accuracy that should be obtained by the line-search algorithms LIS=2 and
LIS=3. Usually an imprecise line search is inexpensive and successful. For more difficult optimization
problems, a more precise and more expensive line search might be necessary (Fletcher 1980, p. 22).
The second (default for NEWRAP, QUANEW, and CONGRA) and third line-search methods approach
exact line search for small LSPRECISION= values. If you have numerical problems, you should
decrease the LSPRECISION= value to obtain a more precise line search. The default LSPRECISION=
values are displayed in the following table.

OMETHOD= UPDATE= LSP default

QUANEW DBFGS, BFGS r = 0.4
QUANEW DDFP, DFP r = 0.06
CONGRA all r = 0.1
NEWRAP no update r = 0.9

For more details, see Fletcher (1980, pp. 25–29).

MAXFUNC | MAXFU=i
specifies the maximum number i of function calls in the optimization process. The default values are
displayed in the following table.

OMETHOD= MAXFUNC default

LEVMAR, NEWRAP, NRRIDG, TRUREG i = 125
DBLDOG, QUANEW i = 500
CONGRA i = 1000

The default is used if you specify MAXFUNC=0. The optimization can be terminated only after
completing a full iteration. Therefore, the number of function calls that is actually performed can
exceed the number that is specified by the MAXFUNC= option.

MAXITER=i < n >

MAXIT=i < n >
specifies the maximum number i of iterations in the optimization process. Except for the iteratively
reweighted least squares (IRLS) algorithm for the robust estimation of model parameters, the default
values are displayed in the following table.

OMETHOD= MAXITER default

LEVMAR, NEWRAP, NRRIDG, TRUREG i = 50
DBLDOG, QUANEW i = 200
CONGRA i = 400

The default maximum number of iterations for IRLS is 5000. The default value is used if you specify
MAXITER=0 or if you omit the MAXITER option.
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The optional second value n is valid only for OMETHOD=QUANEW with nonlinear constraints. It
specifies an upper bound n for the number of iterations of an algorithm and reduces the violation of
nonlinear constraints at a starting point. The default is n = 20. For example, specifying

maxiter= . 0

means that you do not want to exceed the default number of iterations during the main optimization
process and that you want to suppress the feasible point algorithm for nonlinear constraints.

MAXLEVERAGE=n

MAXLEV=n
specifies the maximum number of leverage observations to display in the output, where n is between 1
and 9,999. The default MAXLEVERAGE= value is 30. The actual numbers of leverage observations
in the output could be smaller than the maximum. In general, PROC CALIS finds the number leverage
points m and then adds the next 5 most leveraged observations in the output. The actual number of
leverage observations shown in the output is either m+5, the MAXLEVERAGE= value, or the number
of observations in the data set, whichever is smaller.

MAXMISSPAT=n
specifies the maximum number of missing patterns to display in the output, where n is between 1
and 9,999. The default MAXMISSPAT= value is 10 or the number of missing patterns in the data,
whichever is smaller. The number of missing patterns to display cannot exceed this MAXMISSPAT=
value. This option is relevant only when there are incomplete observations (with some missing
values in the analysis variables) in the input raw data set and when you use METHOD=FIML or
METHOD=LSFIML for estimation.

Because the number of missing patterns could be quite large, PROC CALIS displays a limited number
of the most frequent missing patterns in the output. The MAXMISSPAT= and the TMISSPAT= options
are used in determining the number of missing patterns to display. The missing patterns are ordered
according to the data proportions they account for, from the largest to the smallest. PROC CALIS
displays a minimum number of the highest-frequency missing patterns. This minimum number is the
smallest among five, the actual number of missing patterns, and the MAXMISSPAT= value. Then,
PROC CALIS displays the subsequent high-frequency missing patterns if the data proportion accounted
for by each of these patterns is at least as large as the proportion threshold set by the TMISSPAT=
value (default at 0.05) until the total number of missing patterns displayed reaches the maximum set by
the MAXMISSPAT= option.

MAXOUTLIER=n

MAXOUT=n
specifies the maximum number of outliers to display in the output, where n is between 1 and 9,999.
The default MAXOUTLIER= value is 30. The actual numbers of outliers displayed in the output could
be smaller than the maximum. In general, PROC CALIS finds the number outliers m and then adds the
next 5 most outlying observations in the output. The actual number of outliers shown in the output is
either m+5, the MAXOUTLIER= value, or the number of observations in the data set, whichever is
smaller.
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MEANPATTERN=name

MEANPAT=name
specifies one of the built-in mean structures for the data. The purpose of this option is to fit some
commonly-used direct mean structures efficiently without the explicit use of the MSTRUCT model
specifications. With this option, the mean structures are defined internally in PROC CALIS. The
following names for the built-in mean structures are supported:

EQMEANVEC specifies the equality of mean vectors between multiple groups. That is, this option
tests the null hypothesis that

H0 W �1 D �2 D : : : D �k D �

where � is a common mean vector for the k �j ’s (j D 1; : : : ; k). For example, if
there are four variables in the analysis, the common � is defined as

� D

0BB@
m1
m2
m3
m4

1CCA
PROC CALIS denotes m1, m2, m3, and m4 by _mean_1, _mean_2, _mean_3,
and _mean_4, respectively.

If you use the COVPATTERN=EQCOVMAT and MEANPATTERN=
EQMEANVEC together in a maximum likelihood (METHOD=ML) analysis,
you are testing a null hypothesis of the same multivariate normal distribution for
the groups.

If you use the MEANPATTERN=EQMEANVEC option for a single-group analysis,
the parameters for the single group are still created accordingly. However, the mean
model for the single group contains only unconstrained parameters that would result
in saturated mean structures for the model.

SATURATED specifies a saturated mean structure model. This is the default mean structure
pattern when the covariance structures are specified by the COVPATTERN= pattern
and the mean structure analysis is invoked by MEANSTR option. For example, if
there are three variables in the analysis, � is defined as

� D

0@ m1
m2
m3

1A
PROC CALIS denotes m1, m2, and m3 by _mean_1, _mean_2, and _mean_3,
respectively.

UNIFORM specifies a mean vector with a uniform mean parameter. For example, if there are
three variables in the analysis, the mean pattern is:

� D

0@ m

m

m

1A
PROC CALIS denotes the common mean parameter by _meanparm.
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ZERO specifies a zero vector for the mean structures. For example, if there are four
variables in the analysis, the mean pattern generated by PROC CALIS is:

� D

0BB@
0

0

0

0

1CCA
When you specify the mean structure model by means of the MEANPATTERN= option, you can
define the set of variables in the analysis by the VAR statement (either within the scope of the PROC
CALIS statement or the GROUP statements). If the VAR statement is not used, PROC CALIS uses all
numerical variables in the data sets.

Except for the EQMEANVEC pattern, all other built-in mean patterns are primarily designed for
single-group analysis. However, you can still use these mean pattern options for multiple-group
situations. For example, consider the following three-group analysis:

proc calis meanpattern=uniform;
group 1 / data=set1;
group 2 / data=set2;
group 3 / data=set3;

run;

In this specification, all three groups are fitted by the uniform mean pattern. However, there would be
no constraints across these groups. PROC CALIS generates a distinct mean parameter for each group:
_meanparm_mdl1 for Group 1, _meanparm_mdl2 for Group 2, and _meanparm_mdl3 for Group
3. Similarly, the _mdlxx suffix, where xx represents the model number, is applied to the parameters
defined by the SATURATED mean pattern in multiple-group situations.

You can also apply the MEANPATTERN= option partially to the groups in the analysis. For example,
the following statements apply the ZERO mean pattern to Group 1 and Group 2 only:

proc calis meanpattern=zero;
group 1 / data=set1;
group 2 / data=set2;
group 3 / data=set3;
model 3 / group=3;

path x1 ===> y3;
means x1 = mean_x1;

run;

Group 3 is fitted by Model 3, which is specified explicitly by a PATH model with a distinct mean
parameter mean_x1.



PROC CALIS Statement F 1223

If the EQMEANVEC pattern is specified instead, as shown in the following statements, the equality of
mean vectors still holds for Groups 1 and 2:

proc calis meanpattern=eqmeanvec;
group 1 / data=set1;
group 2 / data=set2;
group 3 / data=set3;
model 3 / group=3;

path x1 ===> y3;
means x1 = mean_x1;

run;

However, Group 3 has it own mean structures as specified in Model 3.

Use the COVPATTERN= option if you also want to analyze some built-in covariance structures along
with the mean structures. If you use the MEANPATTERN= option but do not specify the COVPAT-
TERN= option, a saturated covariance structure model (that is, COVPATTERN=SATURATED) is
assumed by default.

MEANSTR
invokes the analysis of mean structures. By default, no mean structures are analyzed. You can
specify the MEANSTR option in both the PROC CALIS and the MODEL statements. When this
option is specified in the PROC CALIS statement, it propagates to all models. When this option
is specified in the MODEL statement, it applies only to the local model. Except for the COSAN
model, the MEANSTR option adds default mean parameters to the model. For the COSAN model, the
MEANSTR option adds null mean vectors to the model. Instead of using the MEANSTR option to
analyze the mean structures, you can specify the mean and the intercept parameters explicitly in the
model by some model specification statements. That is, you can specify the intercepts in the LINEQS
statement, the intercepts and means in the PATH or the MEAN statement, the _MEAN_ matrix in
the MATRIX statement, or the mean structure formula in the COSAN statement. The explicit mean
structure parameter specifications are useful when you need to constrain the mean parameters or to
create your own references of the parameters.

METHOD=name

MET=name

M=name
specifies the method of parameter estimation. The default is METHOD=ML. Valid values for name
are as follows:

FIML performs full information maximum-likelihood (FIML) or direct maximum
likelihood parameter estimation for data with missing values. This method
assumes raw input data sets. When there are no missing values in the
analysis, the FIML method yields the same estimates as those by using the
regular maximum likelihood (METHOD=ML) method with VARDEF=N.

Because the FIML method recomputes the mean estimates iteratively dur-
ing estimation, it must intrinsically analyze the mean structures of models.
If you do not specify the MEANSTR option or any mean parameters for
your models (which is not required for using the FIML method), PROC
CALIS assumes saturated mean structures for models. However, when
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computing fit statistics, these saturated mean structures would be ignored
as if they were never modeled. If you do specify the MEANSTR option
or any mean parameters for your models, these mean structures would be
taken into account when computing fit statistics.

ML | M | MAX performs normal-theory maximum-likelihood parameter estimation. The
ML method requires a nonsingular covariance or correlation matrix.

GLS | G performs generalized least squares parameter estimation. If no INWGT=
data set is specified, the GLS method uses the inverse sample covariance
or correlation matrix as the weight matrix W. Therefore, METHOD=GLS
requires a nonsingular covariance or correlation matrix.

WLS | W | ADF performs weighted least squares parameter estimation. If no INWGT=
data set is specified, the WLS method uses the inverse matrix of estimated
asymptotic covariances of the sample covariance or correlation matrix as the
weight matrix W. In this case, the WLS estimation method is equivalent to
Browne’s asymptotically distribution-free estimation (Browne 1982, 1984).
The WLS method requires a nonsingular weight matrix.

DWLS | D performs diagonally weighted least squares parameter estimation. If no
INWGT= data set is specified, the DWLS method uses the inverse diagonal
matrix of asymptotic variances of the input sample covariance or correlation
matrix as the weight matrix W. The DWLS method requires a nonsingular
diagonal weight matrix.

ULS | LS | U performs unweighted least squares parameter estimation.

LSFIML performs unweighted least squares followed by full information maximum-
likelihood parameter estimation.

LSML | LSM | LSMAX performs unweighted least squares followed by normal-theory maximum-
likelihood parameter estimation.

LSGLS | LSG performs unweighted least squares followed by generalized least squares
parameter estimation.

LSWLS | LSW | LSADF performs unweighted least squares followed by weighted least squares
parameter estimation.

LSDWLS | LSD performs unweighted least squares followed by diagonally weighted least
squares parameter estimation.

NONE | NO uses no estimation method. This option is suitable for checking the validity
of the input information and for displaying the model matrices and initial
values.

MODIFICATION
MOD

computes and displays Lagrange multiplier (LM) test indices for constant parameter constraints,
equality parameter constraints, and active boundary constraints, as well as univariate and multivariate
Wald test indices. The modification indices are not computed in the case of unweighted or diagonally
weighted least squares estimation.

The Lagrange multiplier test (Bentler 1986; Lee 1985; Buse 1982) provides an estimate of the �2

reduction that results from dropping the constraint. For constant parameter constraints and active



PROC CALIS Statement F 1225

boundary constraints, the approximate change of the parameter value is displayed also. You can use
this value to obtain an initial value if the parameter is allowed to vary in a modified model. See the
section “Modification Indices” on page 1501 for more information.

Relying solely on the LM tests to modify your model can lead to unreliable models that capitalize
purely on sampling errors. See MacCallum, Roznowski, and Necowitz (1992) for the use of LM tests.

MSINGULAR=r

MSING=r
specifies a relative singularity criterion r (r > 0) for the inversion of the information matrix, which is
needed to compute the covariance matrix. If you do not specify the SINGULAR= option, the default
value for r or MSING= is 1E–12; otherwise, the default value is 1E–4 � SING, where SING is the
specified SINGULAR= value.

When inverting the information matrix, the following singularity criterion is used for the diagonal pivot
dj;j of the matrix:

jdj;j j � max.ASING;VSING � jHj;j j;MSING �max.jH1;1j; : : : ; jHn;nj//

where ASING and VSING are the specified values of the ASINGULAR= and VSINGULAR= options,
respectively, and Hj;j is the jth diagonal element of the information matrix. Note that in many cases a
normalized matrix D�1HD�1 is decomposed (where D2 D diag.H/), and the singularity criteria are
modified correspondingly.

NOADJDF
turns off the automatic adjustment of degrees of freedom when there are active constraints in the
analysis. When the adjustment is in effect, most fit statistics and the associated probability levels will
be affected. This option should be used when you believe that the active constraints observed in the
current sample will have little chance to occur in repeated sampling. See the section “Adjustment of
Degrees of Freedom” on page 1479 for more discussion on the issue.

NOBS=nobs
specifies the number of observations. If the DATA= input data set is a raw data set, nobs is defined by
default to be the number of observations in the raw data set. The NOBS= and EDF= options override
this default definition. You can use the RDF= option to modify the nobs specification. If the DATA=
input data set contains a covariance, correlation, or scalar product matrix, you can specify the number
of observations either by using the NOBS=, EDF=, and RDF= options in the PROC CALIS statement
or by including a _TYPE_=‘N’ observation in the DATA= input data set.

NOINDEXTYPE
disables the display of index types in the fit summary table.

NOMEANSTR
deactivates the inherited MEANSTR option for the analysis of mean structures. You can specify the
NOMEANSTR option in both the PROC CALIS and the MODEL statements. When this option is
specified in the PROC CALIS statement, it does not have any apparent effect because by default the
mean structures are not analyzed. When this option is specified in the MODEL statement, it deactivates
the inherited MEANSTR option from the PROC CALIS statement. In other words, this option is
mainly used for resetting the default behavior in the local model that is specified within the scope of a
particular MODEL statement. If you specify both the MEANSTR and NOMEANSTR options in the
same statement, the NOMEANSTR option is ignored.
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CAUTION: This option does not remove the mean structure specifications from the model. It only
deactivates the MEANSTR option inherited from the PROC CALIS statement. The mean structures of
the model are analyzed as long as there are mean structure specifications in the model (for example,
when you specify the means or intercepts in any of the main or subsidiary model specification
statements).

NOMISSPAT
suppresses the display of the analytic results of the missing patterns. This option is relevant only when
there are incomplete observations (with some missing values in the analysis variables) in the input raw
data set and when you use METHOD=FIML or METHOD=LSFIML for estimation.

NOMOD
suppresses the computation of modification indices. The NOMOD option is useful in connection with
the PALL option because it saves computing time.

NOORDERSPEC
prints the model results in the order they appear in the input specifications. This is the default printing
behavior. In contrast, the ORDERSPEC option arranges the model results by the types of parameters.
You can specify the NOORDERSPEC option in both the PROC CALIS and the MODEL statements.
When this option is specified in the PROC CALIS statement, it does not have any apparent effect
because by default the model results display in the same order as that in the input specifications.
When this option is specified in the MODEL statement, it deactivates the inherited ORDERSPEC
option from the PROC CALIS statement. In other words, this option is mainly used for resetting
the default behavior in the local model that is specified within the scope of a particular MODEL
statement. If you specify both the ORDERSPEC and NOORDERSPEC options in the same statement,
the NOORDERSPEC option is ignored.

NOPARMNAME
suppresses the printing of parameter names in the model results. The default is to print the parameter
names. You can specify the NOPARMNAME option in both the PROC CALIS and the MODEL
statements. When this option is specified in the PROC CALIS statement, it propagates to all models.
When this option is specified in the MODEL statement, it applies only to the local model.

NOPRINT

NOP
suppresses the displayed output. Note that this option temporarily disables the Output Delivery System
(ODS). See Chapter 20, “Using the Output Delivery System,” for more information.

NOSTAND
suppresses the printing of standardized results. The default is to print the standardized results.

NOSTDERR

NOSE
suppresses the printing of the standard error estimates. Standard errors are not computed for unweighted
least squares (ULS) or diagonally weighted least squares (DWLS) estimation. In general, standard
errors are computed even if the STDERR display option is not used (for file output). You can specify
the NOSTDERR option in both the PROC CALIS and the MODEL statements. When this option is
specified in the PROC CALIS statement, it propagates to all models. When this option is specified in
the MODEL statement, it applies only to the local model.



PROC CALIS Statement F 1227

OMETHOD=name

OM=name

TECHNIQUE=name

TECH=name
specifies the optimization method or technique. Because there is no single nonlinear optimization
algorithm available that is clearly superior (in terms of stability, speed, and memory) for all applications,
different types of optimization methods or techniques are provided in the CALIS procedure. The
optimization method or technique is specified by using one of the following names in the OMETHOD=
option:

CONGRA | CG chooses one of four different conjugate-gradient optimization algorithms, which
can be more precisely defined with the UPDATE= option and modified with
the LINESEARCH= option. The conjugate-gradient techniques need only O.t/
memory compared to theO.t2/memory for the other three techniques, where t is
the number of parameters. On the other hand, the conjugate-gradient techniques
are significantly slower than other optimization techniques and should be used
only when memory is insufficient for more efficient techniques. When you
choose this option, UPDATE=PB by default. This is the default optimization
technique if there are more than 999 parameters to estimate.

DBLDOG | DD performs a version of double dogleg optimization, which uses the gradient to
update an approximation of the Cholesky factor of the Hessian. This technique
is, in many aspects, very similar to the dual quasi-Newton method, but it does
not use line search. The implementation is based on Dennis and Mei (1979) and
(Gay 1983).

LEVMAR | LM | MARQUARDT performs a highly stable (but for large problems, memory- and time-
consuming) Levenberg-Marquardt optimization technique, a slightly improved
variant of the (Moré 1978) implementation. This is the default optimization
technique for estimation methods other than the FIML if there are fewer than
500 parameters to estimate.

NEWRAP | NRA performs a usually stable (but for large problems, memory- and time-consuming)
Newton-Raphson optimization technique. The algorithm combines a line-search
algorithm with ridging, and it can be modified with the LINESEARCH= option.

NRRIDG | NRR | NR | NEWTON performs a usually stable (but for large problems, memory-
and time-consuming) Newton-Raphson optimization technique. This algo-
rithm does not perform a line search. Since OMETHOD=NRRIDG uses
an orthogonal decomposition of the approximate Hessian, each iteration of
OMETHOD=NRRIDG can be slower than that of OMETHOD=NEWRAP,
which works with Cholesky decomposition. However, usually
OMETHOD=NRRIDG needs fewer iterations than OMETHOD=NEWRAP.
The NRRIDG technique is the default optimization for the FIML estimation if
there are fewer than 500 parameters to estimate.

QUANEW | QN chooses one of four different quasi-Newton optimization algorithms that can
be more precisely defined with the UPDATE= option and modified with the
LINESEARCH= option. If boundary constraints are used, these techniques
sometimes converge slowly. When you choose this option, UPDATE=DBFGS
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by default. If nonlinear constraints are specified in the NLINCON statement, a
modification of Powell’s VMCWD algorithm (Powell 1982a, b) is used, which
is a sequential quadratic programming (SQP) method. This algorithm can be
modified by specifying VERSION=1, which replaces the update of the Lagrange
multiplier estimate vector � to the original update of Powell (1978b, a) that
is used in the VF02AD algorithm. This can be helpful for applications with
linearly dependent active constraints. The QUANEW technique is the default
optimization technique if there are nonlinear constraints specified or if there are
more than 499 and fewer than 1,000 parameters to estimate. The QUANEW
algorithm uses only first-order derivatives of the objective function and, if
available, of the nonlinear constraint functions.

TRUREG | TR performs a usually very stable (but for large problems, memory- and time-
consuming) trust-region optimization technique. The algorithm is implemented
similar to Gay (1983) and Moré and Sorensen (1983).

NONE | NO does not perform any optimization. This option is similar to
METHOD=NONE, but OMETHOD=NONE also computes and displays
residuals and goodness-of-fit statistics. If you specify METHOD=ML,
METHOD=LSML, METHOD=GLS, METHOD=LSGLS, METHOD=WLS,
or METHOD=LSWLS, this option enables computing and displaying (if the
display options are specified) of the standard error estimates and modification
indices corresponding to the input parameter estimates.

For fewer than 500 parameters (t < 500), OMETHOD=NRRIDG (Newton-Raphson Ridge) is the
default optimization technique for the FIML estimation, and OMETHOD=LEVMAR (Levenberg-
Marquardt) is the default optimization technique for the all other estimation methods. For 500 �
t < 1; 000, OMETHOD=QUANEW (quasi-Newton) is the default method, and for t � 1; 000,
OMETHOD=CONGRA (conjugate gradient) is the default method. Each optimization method or
technique can be modified in various ways. See the section “Use of Optimization Techniques” on
page 1507 for more details.

ORDERALL
prints the model and group results in the order of the model or group numbers, starting from the
smallest number. It also arrange some model results by the parameter types. In effect, this option turns
on the ORDERGROUPS, ORDERMODELS, and ORDERSPEC options. The ORDERALL is not a
default option. By default, the printing of the results follow the order of the input specifications.

ORDERGROUPS

ORDERG
prints the group results in the order of the group numbers, starting from the smallest number. The default
behavior, however, is to print the group results in the order they appear in the input specifications.

ORDERMODELS

ORDERMO
prints the model results in the order of the model numbers, starting from the smallest number. The de-
fault behavior, however, is to print the model results in the order they appear in the input specifications.
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ORDERSPEC
arranges some model results by the types of parameters. The default behavior, however, is to print the
results in the order they appear in the input specifications. You can specify the ORDERSPEC option
in both the PROC CALIS and the MODEL statements. When this option is specified in the PROC
CALIS statement, it propagates to all models. When this option is specified in the MODEL statement,
it applies only to the local model.

OUTEST=SAS-data-set
creates an output data set that contains the parameter estimates, their gradient, Hessian matrix, and
boundary and linear constraints. For METHOD=ML, METHOD=GLS, and METHOD=WLS, the
OUTEST= data set also contains the information matrix, the approximate covariance matrix of the
parameter estimates ((generalized) inverse of information matrix), and approximate standard errors.
If linear or nonlinear equality or active inequality constraints are present, the Lagrange multiplier
estimates of the active constraints, the projected Hessian, and the Hessian of the Lagrange function are
written to the data set.

See the section “OUTEST= Data Set” on page 1371 for a description of the OUTEST= data set. If you
want to create a SAS data set in a permanent library, you must specify a two-level name. For more
information about permanent libraries and SAS data sets, see SAS Language Reference: Concepts.

OUTFIT=SAS-data-set
creates an output data set that contains the values of the fit indices. See the section “OUTFIT= Data
Set” on page 1385 for details.

OUTMODEL=SAS-data-set

OUTRAM=SAS-data-set
creates an output data set that contains the model information for the analysis, the parameter estimates,
and their standard errors. An OUTMODEL= data set can be used as an input INMODEL= data set in a
subsequent analysis by PROC CALIS. If you want to create a SAS data set in a permanent library, you
must specify a two-level name. For more information about permanent libraries and SAS data sets, see
SAS Language Reference: Concepts.

OUTSTAT=SAS-data-set
creates an output data set that contains the BY group variables, the analyzed covariance or correlation
matrices, and the predicted and residual covariance or correlation matrices of the analysis. You can
specify the correlation or covariance matrix in an OUTSTAT= data set as an input DATA= data set
in a subsequent analysis by PROC CALIS. See the section “OUTSTAT= Data Set” on page 1381 for
a description of the OUTSTAT= data set. If the model contains latent variables, this data set also
contains the predicted covariances between latent and manifest variables and the latent variable score
regression coefficients (see the PLATCOV option on page 1231). If the FACTOR statement is used, the
OUTSTAT= data set also contains the rotated and unrotated factor loadings, the unique variances, the
matrix of factor correlations, the transformation matrix of the rotation, and the matrix of standardized
factor loadings.

You can use the latent variable score regression coefficients with PROC SCORE to compute factor
scores.

If you want to create a SAS data set in a permanent library, you must specify a two-level name.
For more information about permanent libraries and SAS data sets, see SAS Language Reference:
Concepts.
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OUTWGT=SAS-data-set

OUTWEIGHT=SAS-data-set
creates an output data set that contains the elements of the weight matrix W or the its inverse W�1

used in the estimation process. The inverse of the weight matrix is output only when you specify
an INWGT= data set with the INWGT= and INWGTINV options (or the INWGT(INV)= option
alone) in the same analysis. As a result, the entries in the INWGT= and OUTWGT= data sets are
consistent. In other situations where the weight matrix is computed by the procedure or obtained from
the OUTWGT= data set without the INWGTINV option, the weight matrix is output in the OUTWGT=
data set. Furthermore, if the weight matrix is computed by the procedure, the OUTWGT= data set
contains the elements of the weight matrix on which the WRIDGE= and the WPENALTY= options
are applied.

You cannot create an OUTWGT= data set with an unweighted least squares or maximum likelihood
estimation. The weight matrix is defined only in the GLS, WLS (ADF), or DWLS fit function. An
OUTWGT= data set can be used as an input INWGT= data set in a subsequent analysis by PROC
CALIS. See the section “OUTWGT= Data Set” on page 1385 for the description of the OUTWGT=
data set. If you want to create a SAS data set in a permanent library, you must specify a two-level name.
For more information about permanent libraries and SAS data sets, see SAS Language Reference:
Concepts.

PALL

ALL
displays all optional output except the output generated by the PCOVES and PDETERM options.

CAUTION: The PALL option includes the very expensive computation of the modification indices. If
you do not really need modification indices, you can save computing time by specifying the NOMOD
option in addition to the PALL option.

PARMNAME
prints the parameter names in the model results. This is the default printing behavior. In contrast, the
NOPARMNAME option suppresses the printing of the parameter names in the model results. You
can specify the PARMNAME option in both the PROC CALIS and the MODEL statements. When
this option is specified in the PROC CALIS statement, it does not have any apparent effect because
by default model results show the parameter names. When this option is specified in the MODEL
statement, it deactivates the inherited NOPARMNAME option from the PROC CALIS statement. In
other words, this option is mainly used for resetting the default behavior in the local model that is
specified within the scope of a particular MODEL statement. If you specify both the PARMNAME
and NOPARMNAME options in the same statement, the PARMNAME option is ignored.

PCORR

CORR
displays the covariance or correlation matrix that is analyzed and the predicted model covariance or
correlation matrix.

PCOVES

PCE
displays the following:

• the information matrix
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• the approximate covariance matrix of the parameter estimates (generalized inverse of the infor-
mation matrix)

• the approximate correlation matrix of the parameter estimates

The covariance matrix of the parameter estimates is not computed for estimation methods ULS and
DWLS. This displayed output is not included in the output generated by the PALL option.

PDETERM

PDE
displays three coefficients of determination: the determination of all equations (DETAE), the determi-
nation of the structural equations (DETSE), and the determination of the manifest variable equations
(DETMV). These determination coefficients are intended to be global means of the squared multiple
correlations for different subsets of model equations and variables. The coefficients are displayed only
when you specify a FACTOR, LINEQS, LISMOD, PATH, or RAM model, but they are displayed for
all five estimation methods: ULS, GLS, ML, WLS, and DWLS.

You can use the STRUCTEQ statement to define which equations are structural equations. If you do
not use the STRUCTEQ statement, PROC CALIS uses its own default definition to identify structural
equations.

The term “structural equation” is not defined in a unique way. The LISREL program defines the
structural equations by the user-defined BETA matrix. In PROC CALIS, the default definition of a
structural equation is an equation that has a dependent left-side variable that appears at least once on
the right side of another equation, or an equation that has at least one right-side variable that appears at
the left side of another equation. Therefore, PROC CALIS sometimes identifies more equations as
structural equations than the LISREL program does.

PESTIM

PES
displays the parameter estimates. In some cases, this includes displaying the standard errors and t
values.

PIN

PIN
displays the model specification with initial estimates and the vector of initial values.

PLATCOV

PLATMOM

PLC
displays the following:

• the estimates of the covariances among the latent variables

• the estimates of the covariances between latent and manifest variables

• the estimates of the latent variable means for mean structure analysis

• the latent variable score regression coefficients

The estimated covariances between latent and manifest variables and the latent variable score regression
coefficients are written to the OUTSTAT= data set. You can use the score coefficients with PROC
SCORE to compute factor scores.
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PLOTS< =plot-request >

PLOT< =(plot-request < . . . plot-request >) >
specifies the ODS Graphics plots. When you specify only one plot-request , you can omit the parenthe-
ses around the plot-request . For example:

PLOTS=ALL
PLOTS=RESIDUALS
PLOTS=(PP RESBYPRED QQ)

ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;
proc calis plots;

path y <=== x,
y <=== z;

run;
ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

You can specify the following plot-requests:

ALL displays all plots.

CASERESID | CASERESIDUAL | CASERESIDUALS displays all the case-level ODS Graphics
plots enabled by the following plot-requests: CRESHIST, PP, QQ, RESBYLEV,
and RESBYPRED. This option requires raw data input.

CRESHIST | CRESIDUALHISTOGRAM produces the ODS Graphics plot CaseResidualHistogram,
which displays the distribution of the case-level (observation-level) residuals in the
form of a histogram, where residuals are measured in terms of M-distances. This
option requires raw data input.

NONE suppresses ODS Graphics plots.

PATHDIAGRAM produces the ODS Graphics plot PathDiagram, which display the path diagram for
the unstandardized solution. For options that control and customize path diagrams,
see the PATHDIAGRAM statement.

PP | PPPLOT produces the ODS Graphics plot ResPercentileByExpPercentile, which plots the
observed percentiles of the residual M-distances against the theoretical percentiles.
This plot is useful for showing departures from the theoretical distribution in terms
of percentiles, and it is especially sensitive to departures in the middle region of the
distribution. This option requires raw data input.

QQ | QQPLOT produces the ODS Graphics plot ResidualByQuantile, which plots the residual
M-distances (observed quantiles) against the theoretical quantiles. This plot is
useful for showing departures from the theoretical distribution in terms of quantiles,
and it is especially sensitive to departures at the upper tail of the distribution. This
option requires raw data input.

RESBYLEV | RESIDUALBYLEVERAGE produces the ODS Graphics plot ResidualByLeverage,
which plots the residual M-distances against the leverage M-distances. This plot
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is useful for showing outliers and leverage observations graphically. See the
ALPHAOUT= and ALPHALEV= options for detection criteria of outliers and
leverage observations. This option requires raw data input.

RESBYPRED | RESONFIT | RESIDUALBYPREDICTED | RESIDUALONFIT< (VAR= var-list) >
produces the ODS Graphics plot ResidualByPredicted, which plots the residuals
against the predicted values of the dependent observed variables in the model. You
can restrict the set of dependent variables to display by specifying var-list in the
VAR= option. If var-list is not specified in the VAR= option, plots for all dependent
observed variables are displayed. The residual on fit plots are useful for detecting
nonlinear relationships in the model. If the relationships are linear and the residual
variance is homoscedastic, the residuals should not show systematic pattern with
the predicted values. This option requires raw data input.

RESIDUAL | RESIDUALS produces the ODS Graphics plot for the histogram of residuals in covari-
ances and means rather than the case-level residuals. With this ODS Graphics plot,
the nongraphical (legacy) output for the bar chart of residual tallies is redundant and
therefore is suppressed. To display this bar chart together with the ODS Graphics
for residual histogram, you must use the RESIDUAL(TALLY) option in the PROC
CALIS statement. This option does not require raw data input.

PRIMAT

PMAT
displays parameter estimates, approximate standard errors, and t values in matrix form if you specify
the analysis model using the RAM or LINEQS statement.

PRINT

PRI
adds the options KURTOSIS, RESIDUAL, PLATCOV, and TOTEFF to the default output.

PSHORT

SHORT

PSH
excludes the output produced by the PINITIAL, SIMPLE, and STDERR options from the default
output.

PSUMMARY | SUMMARY | PSUM

SUMMARY

PSUM
displays the fit assessment table only.

PWEIGHT

PW
displays the weight matrix W used in the estimation. The weight matrix is displayed after the
WRIDGE= and the WPENALTY= options are applied to it. However, if you specify an INWGT=
data set by the INWGT= and INWGTINV options (or the INWGT(INV)= option alone) in the same
analysis, this option displays the elements of the inverse of the weight matrix.
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RADIUS=r
is an alias for the INSTEP= option for Levenberg-Marquardt minimization.

RANDOM=i
specifies a positive integer as a seed value for the pseudo-random number generator to generate initial
values for the parameter estimates for which no other initial value assignments in the model definitions
are made. Except for the parameters in the diagonal locations of the central matrices in the model,
the initial values are set to random numbers in the range 0 � r � 1. The values for parameters in the
diagonals of the central matrices are random numbers multiplied by 10 or 100. See the section “Initial
Estimates” on page 1506 for more information.

RDF=n

DFR=n
makes the effective number of observations the actual number of observations minus the RDF= value.
The degree of freedom for the intercept should not be included in the RDF= option. If you use PROC
CALIS to compute a regression model, you can specify RDF= number-of-regressor-variables to get
approximate standard errors equal to those computed by PROC REG.

READADDPARM

READADD
inputs the generated default parameters (for example, observations with _TYPE_=ADDPCOV, AD-
DMEAN, or ADDPVAR) in the INMODEL= data set as if they were part of the original model
specification. Typically, these default parameters in the INMODEL= data set were generated automati-
cally by PROC CALIS in a previous analysis and stored in an OUTMODEL= data set, which is then
used as the INMODEL= data set in a new run of PROC CALIS. By default, PROC CALIS does not
input the observations for default parameters in the INMODEL= data set. In most applications, you do
not need to specify this option because PROC CALIS is able to generate a new set of default parameters
that are appropriate to the new situation after it reads in the INMODEL= data set. Undistinguished
uses of the READADDPARM option might lead to unintended constraints on the default parameters.

RESIDUAL < (TALLY | TALLIES) > < = NORM | VARSTAND | ASYSTAND >

RES < (TALLY | TALLIES) > < = NORM | VARSTAND | ASYSTAND >
displays the raw and normalized residual covariance matrix, the rank order of the largest residuals, and
a bar chart of the residual tallies. If mean structures are modeled, mean residuals are also displayed
and ranked.

For raw data input, this option also displays tables for case-level (observation-level) residual analysis,
including outlier and leverage detections and departures of residuals from the theoretical residual
distributions. To set the criterion for detecting outliers, use the ALPHAOUT= option. To set the
criterion for leverage observations, use the ALPHALEV= option. Case-level residual analysis is not
available when you specify METHOD=FIML.

For the covariance and mean residuals, three types of normalized or standardized residual matrices can
be chosen with the RESIDUAL= specification.

NORM normalized residuals

VARSTAND variance standardized residuals

ASYSTAND asymptotically standardized residuals
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When ODS Graphics plots of covariance and mean residuals are also requested, the bar charts of residual
tallies are suppressed. They are replaced with high quality graphical histograms showing residual
distributions. If you still want to display the bar charts in this situation, use the RESIDUAL(TALLY)
or RESIDUAL(TALLY)= option.

The RESIDUAL option is also enabled by the PRINT option. See the section “Assessment of Fit” on
page 1481 for more details about the definitions of residuals.

RIDGE< =r >
defines a ridge factor r for the diagonal of the covariance or correlation matrix S that is analyzed. The
matrix S is transformed to:

S �! QS D SC r.diag.S//

If you do not specify r in the RIDGE option, PROC CALIS tries to ridge the covariance or correlation
matrix S so that the smallest eigenvalue is about 10�3. Because the weight matrix in the GLS method
is the same as the observed covariance or correlation matrix, the RIDGE= option also applies to the
weight matrix for the GLS estimation, unless you input the weight matrix by the INWGT= option.

CAUTION: The covariance or correlation matrix in the OUTSTAT= output data set does not contain
the ridged diagonal.

ROBITER=i

ROBUSTITER=i
specifies the maximum number i of iterations for the iteratively reweighted least squares (IRLS) method
to compute the robust mean and covariance matrices with the two-stage robust estimation. This option
is relevant only with the use of the ROBUST= option and with raw data input. The default value is
5,000.

You can also specify this option in the GROUP statement so that different groups can use different
ROBITER= values. Notice that the ROBITER= option does not specify the maximum number of
iterations for the IRLS algorithm used in the direct robust estimation or in the second stage of the
two-stage robust estimation. You can specify the MAXITER= option for this purpose.

ROBPHI=r

ROBUSTPHI=r
sets the tuning parameter r (0 < r < 1) for the robust estimation method that you specify using
the ROBUST= option. The ROBPHI= value controls the criterion for downweighting observations.
This value indicates approximately the proportion of observations that would receive weights less
than 1 (that is, would be downweighted) according to certain theoretical distributions. The larger the
ROBPHI= value, the more observations are downweighted (that is, with weights less than 1). The
default value is 0.05.

You can also specify this option in the GROUP statement so that different groups can use different
ROBPHI= values for the tuning parameters.

ROBUST < =name >

ROB < =name >
invokes the robust estimation method that downweights the outliers in estimation. You can use the
ROBUST option only in conjunction with the ML method (METHOD=ML). More accurately, the
robust estimation is done by using the iteratively reweighted least squares (IRLS) method under
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the normal distribution assumption. The model fit of robust estimation is evaluated with the ML
discrepancy function.

You must provide raw data input for the robust estimation method to work. With the robust method,
the Huber weights are applied to the observations so that outliers are downweighted during estimation.
See the section “Robust Estimation” on page 1470 for details.

You can request the three different types of robust methods by using one of the following names:

RESIDUAL | DIRECT | RESID | RES < (E) > specifies a direct robust method that downweights ob-
servations with large residuals during the iterative estimation of the model. This
method treats the disturbances (the error terms of endogenous latent factors) as
errors or residuals (hence the keyword E) in the associated factor model when
computing residual M-distances and factor scores during the robust estimation. The
(E)specification is irrelevant if there are no endogenous latent factors in the model.
This is the default robust method.

RESIDUAL | DIRECT | RESID | RES (F) specifies a direct robust method that downweights obser-
vations with large estimated residuals during the iterative estimation of the model.
Unlike the (E)method, this method treats the disturbances (the error terms of en-
dogenous latent factors) as factors (hence the keyword F) in the associated factor
model when computing residual M-distances and factor scores during the robust
estimation. The (F)specification is irrelevant if there are no endogenous latent
factors in the model.

SAT | TWOSTAGE | UNSTRUCT | UNS specifies a two-stage robust method that downweights the
observations with large M-distances in all observed variable dimensions when
computing the covariance matrix and mean vector from the input raw data. As
a results, this option produces a robust covariance matrix and a mean vector for
a subsequent model estimation where no reweighting would be applied at the
observational level. Hence, this is a two-stage method that applies weights only in
the first stage for computing the robust covariance and mean matrices. This is in
contrast with the RES(E) or RES(F) option, where weighting and reweighting of
observations are applied directly during model estimation.

For details about these robust methods, see the section “Robust Estimation” on page 1470.

To control the proportion of the observations that are downweighted during the robust estimation, you
can specify the value of the tuning parameter ', which is between 0 and 1, by using the ROBPHI=
option. Approximately, ' � 100% of observations would receive weights less than 1 according to
certain theoretical distributions. By default, the value of the tuning parameter ' is set to 0.05 for all
robust methods in PROC CALIS.

By default, the robust method uses a maximum of 5,000 iterations to obtain parameter convergence
through the IRLS algorithm. You can override this default maximum number of iterations by specifying
the ROBITER= option. The default relative parameter convergence criterion for the robust method is
1E–8. See the XCONV= option for the mathematical definition of this criterion and for information
about overriding the default convergence criterion.

Because all robust methods reweight the observations iteratively, the observed variable means are
always implicitly updated with the robust weights. Therefore, in a sense all robust methods intrinsically
analyze the mean structures of models. If you do not specify the MEANSTR option or any mean
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parameters for your models, PROC CALIS assumes appropriate saturated mean structures for the
models. However, when you are computing fit statistics, these saturated mean structures are ignored as
if they were never modeled. If you do specify the MEANSTR option or any mean parameters for your
models, these mean structures are taken into account in computing fit statistics.

In this release, robust estimation with the IRLS method is not supported when you specify the BOUNDS,
LINCON, or NLINCON statement. However, you can still set parameter constraints by using the same
parameter names or by specifying the PARAMETERS statement and the SAS programming statements.
See the section “Setting Constraints on Parameters” on page 1434 for techniques to set up implicit
parameter constraints by using the PARAMETERS statement and SAS programming statements.

SALPHA=r
is an alias for the INSTEP= option for line-search algorithms.

SIMPLE

S
displays means, standard deviations, skewness, and univariate kurtosis if available. This information is
displayed when you specify the PRINT option. If the KURTOSIS option is specified, the SIMPLE
option is set by default.

SINGULAR=r

SING=r
specifies the singularity criterion r (0 < r < 1) used, for example, for matrix inversion. The default
value is the square root of the relative machine precision or, equivalently, the square root of the largest
double precision value that, when added to 1, results in 1.

SLMW=r
specifies the probability limit used for computing the stepwise multivariate Wald test. The process
stops when the univariate probability is smaller than r . The default value is r=0.05.

SPRECISION=r

SP=r
is an alias for the LSPRECISION= option.

START=r
specifies initial estimates for parameters as multiples of the r value. In all CALIS models, you can
supply initial estimates individually as parenthesized values after each parameter name. Unspecified
initial estimates are usually computed by various reasonable initial estimation methods in PROC
CALIS. If none of the initialization methods is able to compute all the unspecified initial estimates,
then the remaining unspecified initial estimates are set to r , 10 jr j, or 100 jr j. For variance parameters,
100 jr j is used for covariance structure analyses and 10 jr j is used for correlation structure analyses.
For other types of parameters, r is used. The default value is r = 0.5. If the DEMPHAS= option is used,
the initial values of the variance parameters are multiplied by the value specified in the DEMPHAS=
option. See the section “Initial Estimates” on page 1506 for more information.

STDERR

SE
displays approximate standard errors if estimation methods other than unweighted least squares (ULS)
or diagonally weighted least squares (DWLS) are used (and the NOSTDERR option is not specified).
In contrast, the NOSTDERR option suppresses the printing of the standard error estimates. If you
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specify neither the STDERR nor the NOSTDERR option, the standard errors are computed for the
OUTMODEL= data set. This information is displayed by default when you specify the PRINT option.

You can specify the STDERR option in both the PROC CALIS and the MODEL statements. When
this option is specified in the PROC CALIS statement, it does not have any apparent effect because
by default the model results display the standard error estimates (for estimation methods other than
ULS and DWLS). When this option is specified in the MODEL statement, it deactivates the inherited
NOSTDERR or NOSE option from the PROC CALIS statement. In other words, this option is mainly
used for resetting the default behavior in the local model that is specified within the scope of a particular
MODEL statement. If you specify both the STDERR and NOSTDERR options in the same statement,
the STDERR option is ignored.

TMISSPAT | THRESHOLDMISSPAT | THRESMISSPAT=n

THRESHOLDMISSPAT=n

THRESMISSPAT=n
specifies the proportion threshold for the missing patterns to display in the output, where n is between
0 and 1. The default TMISSPAT= value is 0.05. This option is relevant only when there are incomplete
observations (with some missing values in the analysis variables) in the input raw data set and when
you use METHOD=FIML or METHOD=LSFIML for estimation.

Because the number of missing patterns could be quite large, PROC CALIS displays a limited number
of the most frequent missing patterns in the output. Together with the MAXMISSPAT= option, this
option controls the number of missing patterns to display in the output. See the MAXMISSPAT=
option for a detailed description about how the number of missing patterns to display is determined.

UPDATE=name

UPD=name
specifies the update method for the quasi-Newton or conjugate-gradient optimization technique.

For OMETHOD=CONGRA, the following updates can be used:

PB performs the automatic restart update method of Powell (1977) and Beale (1972). This is
the default.

FR performs the Fletcher-Reeves update (Fletcher 1980, p. 63).

PR performs the Polak-Ribiere update (Fletcher 1980, p. 66).

CD performs a conjugate-descent update of Fletcher (1987).

For OMETHOD=DBLDOG, the following updates (Fletcher 1987) can be used:

DBFGS performs the dual Broyden, Fletcher, Goldfarb, and Shanno (BFGS) update of the Cholesky
factor of the Hessian matrix. This is the default.

DDFP performs the dual Davidon, Fletcher, and Powell (DFP) update of the Cholesky factor of
the Hessian matrix.

For OMETHOD=QUANEW, the following updates (Fletcher 1987) can be used:

BFGS performs original BFGS update of the inverse Hessian matrix. This is the default for
earlier releases.
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DFP performs the original DFP update of the inverse Hessian matrix.

DBFGS performs the dual BFGS update of the Cholesky factor of the Hessian matrix. This is the
default.

DDFP performs the dual DFP update of the Cholesky factor of the Hessian matrix.

VARDEF= DF | N | WDF | WEIGHT | WGT
specifies the divisor used in the calculation of covariances and standard deviations. The default value
is VARDEF=N for the METHOD=FIML, and VARDEF=DF for other estimation methods. The values
and associated divisors are displayed in the following table, where k is the number of partial variables
specified in the PARTIAL statement. When a WEIGHT statement is used, wj is the value of the
WEIGHT variable in the jth observation, and the summation is performed only over observations with
positive weight.

Value Description Divisor

DF Degrees of freedom N � k � 1

N Number of observations N
WDF Sum of weights DF

PN
j wj � k � 1

WEIGHT | WGT Sum of weights
PN
j wj

VSINGULAR=r

VSING=r
specifies a relative singularity criterion r (r > 0) for the inversion of the information matrix, which
is needed to compute the covariance matrix. If you do not specify the SINGULAR= option, the
default value for r or VSING= is 1E–8; otherwise, the default value is SING, which is the specified
SINGULAR= value.

When inverting the information matrix, the following singularity criterion is used for the diagonal pivot
dj;j of the matrix:

jdj;j j � max.ASING;VSING � jHj;j j;MSING �max.jH1;1j; : : : ; jHn;nj//

where ASING and MSING are the specified values of the ASINGULAR= and MSINGULAR= options,
respectively, and Hj;j is the jth diagonal element of the information matrix. Note that in many cases a
normalized matrix D�1HD�1 is decomposed (where D2 D diag.H/), and the singularity criteria are
modified correspondingly.

WPENALTY=r

WPEN=r
specifies the penalty weight r � 0 for the WLS and DWLS fit of the diagonal elements of a correlation
matrix (constant 1s). The criterion for weighted least squares estimation of a correlation structure is

FWLS D

nX
iD2

i�1X
jD1

nX
kD2

k�1X
lD1

wij;kl.sij � cij /.skl � ckl/C r

nX
i

.si i � ci i /
2

where r is the penalty weight specified by the WPENALTY=r option and the wij;kl are the elements of
the inverse of the reduced .n.n � 1/=2/ � .n.n � 1/=2/ weight matrix that contains only the nonzero
rows and columns of the full weight matrix W. The second term is a penalty term to fit the diagonal
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elements of the correlation matrix. The default value is 100. The reciprocal of this value replaces
the asymptotic variance corresponding to the diagonal elements of a correlation matrix in the weight
matrix W, and it is effective only with the ASYCOV=CORR option, which is the default for correlation
analyses. The often used value r = 1 seems to be too small in many cases to fit the diagonal elements
of a correlation matrix properly. The default WPENALTY= value emphasizes the importance of the fit
of the diagonal elements in the correlation matrix. You can decrease or increase the value of r if you
want to decrease or increase the importance of the diagonal elements fit. This option is effective only
with the WLS or DWLS estimation method and the analysis of a correlation matrix.

See the section “Estimation Criteria” on page 1463 for more details.

CAUTION: If you input the weight matrix by the INWGT= option, the WPENALTY= option is
ignored.

WRIDGE=r
defines a ridge factor r for the diagonal of the weight matrix W used in GLS, WLS, or DWLS
estimation. The weight matrix W is transformed to

W �! QW DWC r.diag.W//

The WRIDGE= option is applied on the weight matrix before the following actions occur:

• the WPENALTY= option is applied on it

• the weight matrix is written to the OUTWGT= data set

• the weight matrix is displayed

CAUTION: If you input the weight matrix by the INWGT= option, the OUTWGT= data set will
contain the same weight matrix without the ridging requested by the WRIDGE= option. This ensures
that the entries in the INWGT= and OUTWGT= data sets are consistent. The WRIDGE= option is
ignored if you input the inverse of the weight matrix by the INWGT= and INWGTINV options (or the
INWGT(INV)= option alone).

XCONV=r

XTOL=r
specifies the relative parameter convergence criterion. Termination requires a small relative parameter
(x) change in subsequent iterations, that is,

maxj jx
.k/
j � x

.k�1/
j j

max.jx.k/j j; jx
.k�1/
j j;XSIZE/

� r

The default value for r is 1E–8 for robust estimation (see the ROBUST option) with the iteratively
reweighted least squares method, and it is 0 for other estimation methods. The default value for
XSIZE is 0. You can change this default value by specifying the XSIZE= option in the NLOPTIONS
statement.
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BOUNDS Statement
BOUNDS constraint < , constraint . . . > ;

where constraint represents

< number operator > parameter-list < operator number >

You can use the BOUNDS statement to define boundary constraints for any independent parameter that has
its name specified in the main or subsidiary model specification statements, the PARAMETERS statement,
or the INMODEL= data set. You cannot define boundary constraints for dependent parameters created in
SAS programming statements or elsewhere.

Valid operators are <=, <, >=, >, and = (or, equivalently, LE, LT, GE, GT, and EQ). The following is an
example of the BOUNDS statement:

bounds 0. <= a1-a9 x <= 1. ,
-1. <= c2-c5 ,

b1-b10 y >= 0. ;

You must separate boundary constraints with a comma, and you can specify more than one BOUNDS
statement. The feasible region for a parameter is the intersection of all boundary constraints specified for that
parameter; if a parameter has a maximum lower boundary constraint greater than its minimum upper bound,
the parameter is set equal to the minimum of the upper bounds.

The active set strategies made available in PROC CALIS treat strict inequality constraints < or > as if they
were just inequality constraints <= or >=. For example, if you require x be strictly greater than zero so as to
prevent an undefined value for y D log.x/, specifying the following statement is insufficient:

BOUNDS x > 0;

Specify the following statement instead:

BOUNDS x > 1E-8;

If the CALIS procedure encounters negative variance estimates during the minimization process, serious
convergence problems can occur. You can use the BOUNDS statement to constrain these parameters to
nonnegative values. Although allowing negative values for variances might lead to a better model fit with
smaller �2 value, it adds difficulties in interpretation.

BY Statement
BY variables ;

You can specify a BY statement with PROC CALIS to obtain separate analyses of observations in groups that
are defined by the BY variables. When a BY statement appears, the procedure expects the input data set to be
sorted in order of the BY variables. If you specify more than one BY statement, only the last one specified is
used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.
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• Specify the NOTSORTED or DESCENDING option in the BY statement for the CALIS procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

The BY statement is not supported if you define more than one group by using the GROUP statements.

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

COSAN Statement
COSAN < VAR=variable-list, > term < + term . . . > ;

where variable-list is a list of observed variables and term represents either one of the following forms:

matrix-definition < * matrix-definition . . . > < mean-definition >
or

mean-definition

where matrix-definition is of the following form:

matrix-name < ( number-of-columns < , matrix-type < ,transformation > >) >

and mean-definition is one of the following forms:

[ / mean-vector ]
or

[ MEAN=mean-vector ]

where mean-vector is a vector name.

COSAN stands for covariance structure analysis (McDonald 1978, 1980). The COSAN model in PROC
CALIS is a generalized version of the original COSAN model. See the section “The COSAN Model” on
page 1390 for details of the generalized COSAN model. You can analyze a very wide class of mean and
covariance structures with the COSAN modeling language, which consists of the COSAN statement as
the main model specification statement and the MATRIX statement as the subsidiary model specification
statement. Use the following syntax to specify a COSAN model:

COSAN < VAR=variable-list, > term < + term . . . > ;
MATRIX matrix-name parameters-in-matrix ;
/* Repeat the MATRIX statement as needed */ ;
VARNAMES name-assignments ;

The PROC CALIS statement invokes the COSAN modeling language. You can specify at most one COSAN
statement in a model within the scope of either the PROC CALIS statement or a MODEL statement. To
complete the COSAN model specification, you might need to add as many MATRIX statements as needed.
Optionally, you can provide the variable names for the COSAN model matrices in the VARNAMES statement.
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In the COSAN statement, you specify the list of observed variables for analysis in the VAR= option and
the formulas for covariance and mean structures in the terms. If specified at all, the VAR= option must be
specified at the very beginning of the COSAN statement. The order of the variables in the VAR= option
is important. It is the same order assumed for the row and column variables in the mean and covariance
structures defined in the terms. If you do not specify the VAR= option, PROC CALIS selects all the numerical
variables in the associated groups for analysis. To avoid confusion about the variables being analyzed in the
model, it is recommended that you set the VAR= list explicitly in the COSAN statement.

To define the matrix formulas for the covariance and mean structures, you specify the terms, matrix-
definitions, and mean-vector in the COSAN statement. The forms of the covariance and mean structures that
are supported in PROC CALIS are mentioned in the section “The COSAN Model” on page 1390. In each
term, you specify the covariance structures by listing the matrices in the matrix-definitions. These matrices
must be in the proper order such that their matrix product produces the intended covariance structures. If you
want to analyze the corresponding mean structures, specify the trailing mean-vectors in the terms whenever
needed.

To illustrate the COSAN statement syntax, consider a factor-analytic model with six variables (var1–var6)
and two factors. The covariance structures of the six variables are described by the matrix formula

† D FPF0 CU

where † is a 6 � 6 symmetric matrix for the covariance matrix, F is a 6 � 2 factor loading matrix, P is a
2 � 2 (symmetric) factor covariance matrix, and U is a 6 � 6 diagonal matrix of unique variances. You can
use the following COSAN statement to specify the covariance structures of this factor model:

cosan var = var1-var6,
F(2,GEN) * P(2,SYM) + U(6,DIA);

In the VAR= option of the COSAN statement, you define a list of six observed variables in the covariance
structures. The order of the variables in the VAR= list determines the order of the row variables in the first
matrix of each term in the model. That is, both matrices F and U have these six observed variables as their
row variables, which are ordered the same way as in the VAR= list.

Next, you define the formula for the covariance structures by listing the matrices in the desired order up to the
central covariance matrix in each term. In the first term of this example, you need to specify only FP instead
of the complete covariance structure formula FPF0. The reason is that the latter part of the term (that is, after
the central covariance matrix) contains only the transpose of the matrices that have already been defined.
Hence, PROC CALIS can easily generate the complete term with the nonredundant information given.

In each of the matrix-definitions, you can provide the number of columns in the first argument (that is, the
number-of-columns field) inside a pair of parentheses. You do not need to provide the number of rows
because this information can be deduced from the given covariance structure formula. By using some
keywords, you can optionally provide the matrix type in the second argument (that is, the matrix-type field)
and the matrix transformation in the third argument (that is, the transformation field).

In the current example, F(2,GEN) represents a general rectangular (GEN) matrix F with two columns.
Implicitly, it has six rows because it is the first matrix of the first term in the covariance structure formula.
P(2,SYM) represents a symmetric (SYM) matrix P with two columns. Implicitly, it has two rows because
it is premultiplied with F, which has two columns. In the second term, U(6,DIA) represents a diagonal
(DIA) matrix U with six rows and six columns. Because you do not specify the third argument in these
matrix-definitions, no transformation is applied to any of the matrices in the covariance structure formula.
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PROC CALIS supports the following keywords for matrix-type:

IDE specifies an identity matrix. If the matrix is not square, this specification describes an identity
submatrix followed by a rectangular zero submatrix.

ZID specifies an identity matrix. If the matrix is not square, this specification describes a rectangular
zero submatrix followed by an identity submatrix.

DIA specifies a diagonal matrix. If the matrix is not square, this specification describes a diagonal
submatrix followed by a rectangular zero submatrix.

ZDI specifies a diagonal matrix. If the matrix is not square, this specification describes a rectangular
zero submatrix followed by a diagonal submatrix.

LOW specifies a lower triangular matrix. The matrix can be rectangular.

UPP specifies an upper triangular matrix. The matrix can be rectangular.

SYM specifies a symmetric matrix. The matrix cannot be rectangular.

GEN specifies a general rectangular matrix (default).

If you omit the matrix-type argument, PROC CALIS sets the type of matrix by default. For central covariance
matrices, the default for matrix-type is SYM. For all other matrices, the default for matrix-type is GEN.
For example, if A is not a central covariance matrix in the covariance structure formula, the following
specifications are equivalent for a general matrix A with three columns:

A(3,GEN)

A(3)

A(3,)

A(3, ,)

PROC CALIS supports the following two keywords for transformation:

INV uses the inverse of the matrix.

IMI uses the inverse of the difference between the identity and the matrix. For example, A(3,GEN,IMI)
represents .I � A/�1.

Both INV or IMI require square (but not necessarily symmetric) matrices to transform. If you omit the
transformation argument, no transformation is applied.

CAUTION: You can specify the same matrix by using the same matrix-name in different locations of the
matrix formula in the COSAN statement. The number-of-columns and the matrix-type fields for matrices
with identical matrix-names must be consistent. This consistency can be maintained easily by specifying
each of these two fields only once in any of the locations of the same matrix. However, there is no restriction
on the transformation for the same matrix in different locations. For example, while R must be the same
3 � 3 symmetric matrix throughout the formula in the following specification, the INV transformation of R
applies only to the R matrix in the second term, but not to the same R matrix in the first term:

cosan var = var1-var6,
B(3,GEN) * R(3,SYM) + H(3,DIA) * R(3,SYM,INV);

Mean and Covariance Structures

Suppose now you want to analyze the mean structures in addition to the covariance structures of the preceding
factor model. The mean structure formula for � of the observed variables is

� D FvC a
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where � is a 6 � 1 vector for the observed variable means, v is a 2 � 1 vector for the factor means, and a is
a 6 � 1 vector for the intercepts of the observed variables. To include the mean structures in the COSAN
model, you need to specify the mean vector at the end of the terms, as shown in the following statement:

cosan var = var1-var6,
F(2,GEN) * P(2,SYM) [/ v] + U(6,DIA) [/ a];

If you take the mean vectors within the brackets away from each of the terms, the formula for the covariance
structures is generated as

† D FPF0 CU

which is exactly the same covariance structure as described in a preceding example. Now, with the mean
vectors specified at the end of each term, you analyze the corresponding mean structures simultaneously with
the covariance structures.

To generate the mean structure formula, PROC CALIS replaces the central covariance matrices with the
mean vectors in the terms. In the current example the mean structure formula is formed by replacing P and
U with v and a, respectively. Hence, the first term of the mean structure formula is F � v, and the second
term of the mean structure formula is simply a. Adding these two terms yields the desired mean structure
formula for the model.

To make the mean vector specification more explicit, you can use the following equivalent syntax with the
MEAN= option:

cosan var = var1-var6,
F(2,GEN) * P(2,SYM) [mean=v] + U(6,DIA) [mean=a];

If a term in the specification does not have a mean vector (covariance matrix) specification, a zero mean
vector (null covariance matrix) is assumed. For example, the following specification generates the same mean
and covariance structures as the preceding example:

cosan var = var1-var6,
F(2,GEN) * P(2,SYM) [/ v] + U(6,DIA) + [/ a];

The covariance structure formula for this specification is

† D FPF0 CUC 0

where 0 in the last term represents a null matrix. The corresponding mean structure formula is

� D FvC 0C a

where 0 in the second term represents a zero vector.

Specifying Models with No Explicit Central Covariance Matrices

In some situations, the central covariance matrices in the covariance structure formula are not defined
explicitly. For example, the covariance structure formula for an orthogonal factor model is:

† D FF0 CU

Again, assuming that F is a 6� 2 factor loading matrix and U is a 6� 6 diagonal matrix for unique variances,
you can specify the covariance structure formula as in the following COSAN statement:
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cosan var = var1-var6,
F(2,GEN) + U(6,DIA);

In determining the proper formula for the covariance structures, PROC CALIS detects whether the last matrix
specified in each term is symmetric. If you specify this last matrix explicitly with the SYM, IDE (with the
same number of rows and columns), or DIA type, it is certainly a symmetric matrix. If you specify this last
matrix without an explicit matrix-type and it has the same number of rows and columns, it is also treated as a
symmetric matrix for the central covariance matrix of the term. Otherwise, this last matrix is not symmetric
and PROC CALIS treats the term as if an identity matrix has been inserted for the central covariance matrix.
For example, for the orthogonal factor model specified in the preceding statement, PROC CALIS correctly
generates the first term as FF0 D FIF0 and the second term as U.

Certainly, you might also specify your own central covariance matrix explicitly for the orthogonal factor
model. That is, you add an identity matrix into the COSAN model specification as shown in the following
statement:

cosan var = var1-var6,
F(2,GEN) * I(2,IDE) + U(6,DIA);

Specifying Mean Structures for Models with No Central Covariance Matrices

When you specify covariance structures with central covariance matrices explicitly defined in the terms,
the corresponding mean structure formula is formed by replacing the central covariance matrices with
the mean-vectors that are specified in the brackets. However, when there is no central covariance matrix
explicitly specified in a term, the last matrix of the term in the covariance structure formula is replaced with
the mean-vector to generate the mean structure formula. Consider the following specification where there is
no central covariance matrix defined explicitly in the first term of the COSAN model:

cosan var = var1-var6,
A(6,GEN) [ / v];

The generated formulas for the covariance and mean structures are

† D AA0

� D v

If, instead, you intend to fit the following covariance and mean structures

† D AA0

� D Av

you must put an explicit identity matrix for the central covariance matrix in the first term. That is, you can
use the following specification:

cosan var = var1-var6,
A(6,GEN) * I(6,IDE) [ / v];

Specifying Parameters in Matrices

By specifying the COSAN statement, you define the covariance and mean structures in matrix formulas
for the observed variables. To specify the parameters in the model matrices, you need to use the MATRIX
statements.
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For example, for an orthogonal factor model with six variables (var1–var6) and two factors, the 6 � 2 factor
loading matrix F might take the following form:

F D

0BBBBBB@

x 0

x 0

x 0

0 x

0 x

0 x

1CCCCCCA
The 6 � 6 unique variance matrix U might take the following form:

U D

0BBBBBB@

x 0 0 0 0 0

0 x 0 0 0 0

0 0 x 0 0 0

0 0 0 x 0 0

0 0 0 0 x 0

0 0 0 0 0 x

1CCCCCCA
where each x in the matrices represents a free parameter to estimate and 0 represents a fixed zero value. The
covariance structures for the observed variables are described by the following formula:

† D FF0 CU

To specify the entire model, you use the following statements to define the covariance structure formula and
the free parameters in the model matrices:

cosan var = var1-var6,
F(2,GEN) + U(6,DIA);

matrix F [1 to 3,@1],[4 to 6,@2];
matrix U [1,1],[2,2],[3,3],[4,4],[5,5],[6,6];

In the MATRIX statements, you specify the free parameters in the matrices. For the factor loading matrix F,
you specify that rows 1, 2, and 3 in column 1 and rows 4, 5, and 6 in column 2 are free parameters. For the
unique variance matrix U, you specify that all diagonal elements are free parameters. All other unspecified
entries in the matrices are fixed zeros by default. Certainly, you can also specify fixed zeros explicitly. For
the current example, you can specify matrix F equivalently as:

matrix F [1 to 3,@1],[4 to 6,@2],
[4 to 6,@1] = 0. 0. 0.,
[1 to 3,@2] = 0. 0. 0.;

See the MATRIX statement on page 1295 for various ways to specify the parameters in matrices.

Matrix Names versus Parameter Names

Although parameter names and matrix names in PROC CALIS are both arbitrary SAS names for denoting
mathematical entities in the model, their usages are very different in one aspect. That is, parameter names are
globally defined in the procedure, while matrix names are only locally defined in models.

Consider the following two-group analysis example:
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proc calis;
group 1 / data=g1;
group 2 / data=g2;
model 1 / group=1;

cosan var = var1-var6,
F(2,GEN) * I(2,IDE) + U(6,DIA);

matrix F [1 to 3,@1],[4 to 6,@2];
matrix U [1,1] = u1-u6;

model 2 / group=2;
cosan var = var1-var6,

F(1,GEN) * I(1,IDE) + D(6,DIA);
matrix F [1 to 6,@1];
matrix D [1,1] = u1-u6;

run;

In this example, you fit Model 1 to Group 1 and Model 2 to Group 2. You specify a matrix called F in each
of the models. However, the two models are not constrained by this “same” matrix F. In fact, matrix F in
Model 1 is a 6 � 2 matrix but matrix F in Model 2 is a 6 � 1 matrix. In addition, none of the parameters in
the F matrices are constrained by the parameter names (simply because no parameter names are used). This
illustrates that matrix names in PROC CALIS are defined only locally within models.

In contrast, in this example you use different matrix names for the second terms of the two models. In Model
1, you define a 6 � 6 diagonal matrix U for the second term; and in Model 2, you define a 6 � 6 diagonal
matrix D for the second term. Are these two matrices necessarily different? The answer depends on how
you define the parameters in these matrices. In the MATRIX statement for U, all diagonal elements of U are
specified as free parameters u1–u6. Similarly, in the MATRIX statement for D, all diagonal elements of D as
also specified free parameters u1–u6. Because you use the same sets of parameter names in both of these
MATRIX statements, matrices U and D are essentially constrained to be the same even though their names
are different. This illustrates that parameter names are defined globally in PROC CALIS.

The following points summarize how PROC CALIS treats matrix and parameter names differently:

• Matrices with the same name in the same model are treated as identical.

• Matrices with the same name in different models are not treated as identical.

• Parameters with the same name are identical throughout the entire PROC CALIS specification.

• Cross-model constraints on matrix elements are set by using the same parameter names, but not the
same matrix names.

Row and Column Variable Names for Matrices

You can use the VARNAMES statement to define the column variable names for the model matrices of
a COSAN model. However, you do not specify the row variable names for the model matrices directly
because they are determined by the column variable names of the related matrices in the covariance and mean
structure formulas. For example, the following specification names the column variables of matrices F and I:
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cosan var = var1-var6,
F(2,GEN) * I(2,IDE) + U(6,DIA);

varnames
F = [Factor1 Factor2],
I = F;

The column names for matrix F are Factor1 and Factor2. The row names of matrix F are var1–var6 because
it is the first matrix in the first term. Matrix I has the same column variable names as those for matrix F, as
specified in the last specification of the VARNAMES statement. Because matrix I is a central covariance
matrix, its row variable names are the same as its column variable names: Factor1 and Factor2. You do
not specify the column variables names for matrix U in the VARNAMES statement. However, because it
is the first matrix in the second term, its row variable names are the same as that of the VAR= list in the
COSAN statement. Because matrix U is also the central covariance matrix in the second term, its column
variable names are the same its row variable names, which has been determined to be var1–var6. See the
VARNAMES statement for more details.

Default Parameters

Unlike other modeling languages in PROC CALIS, the COSAN modeling language does not set any default
free parameters for the model matrices. There is only one type of default parameters in the COSAN model:
fixed values for matrix elements. These fixed values can be 0 or 1. For matrices with the IDE or ZID type, all
elements are predetermined with either 0 or 1. They are fixed matrices in the sense that you cannot override
these default fixed values. For all other matrix types, PROC CALIS sets their elements to fixed zeros by
default. You can override these default zeros by specifying them explicitly in the MATRIX statements.

Modifying a COSAN Model from a Reference Model

In this section, it is assumed that you use a REFMODEL statement within the scope of a MODEL statement
and the reference model (or base model) is also a COSAN model. The reference model is referred to as the
old model, while the model that makes reference to this old model is referred to as the new model. If the new
model is not intended to be an exact copy of the old model, you can use the following extended COSAN
modeling language to make modifications within the scope of the MODEL statement for the new model. The
syntax is similar to, but not exactly the same as, the ordinary COSAN modeling language. (See the section
“COSAN Statement” on page 1242.) The respecification syntax for a COSAN model is as follows:

COSAN ;
MATRIX matrix-name parameters-in-matrix ;
/* Repeat the MATRIX statement as needed */ ;
VARNAMES name-assignments ;

In the respecification, the COSAN statement is optional. In fact, the purpose of using the COSAN statement
at all is to remind yourself that a COSAN model is used in the model definition. If you use the COSAN
statement, you cannot specify the VAR= option or the covariance and mean structure formula. This means
that the model form and the observed variable references of the new model must be the same as the old
(reference) model. The reason for enforcing these model structures is to ensure that the MATRIX statement
respecifications are consistently interpreted.

You can optionally use the VARNAMES statement in the respecification. If the variable names for a COSAN
matrix are defined in the old model but not redefined the new model, all variable names for that matrix are
duplicated in the new model. However, specification of variable names for a COSAN matrix in the new
model overrides the corresponding specification in the old model.
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You can respecify or modify the elements of the COSAN model matrices by using the MATRIX matrix-name
statements. The syntax of the MATRIX statements for respecifications is the same as that in the ordinary
COSAN modeling language, but with one more feature. In the respecification syntax, you can use the missing
value ‘.’ to drop a parameter specification from the old model.

The new model is formed by integrating with the old model in the following ways:

Duplication: If you do not specify in the new model a parameter location that exists in the old model,
the old parameter specification is duplicated in the new model.

Addition: If you specify in the new model a parameter location that does not exist in the old model,
the new parameter specification is used in the new model.

Deletion: If you specify in the new model a parameter location that also exists in the old model and
the new parameter is denoted by the missing value ‘.’, the old parameter specification is
not copied into the new model.

Replacement: If you specify in the new model a parameter location that also exists in the old model and
the new parameter is not denoted by the missing value ‘.’, the new parameter specification
replaces the old one in the new model.

For example, the following two-group analysis specifies Model 2 by referring to Model 1 in the REFMODEL
statement:

proc calis;
group 1 / data=d1;
group 2 / data=d2;
model 1 / group=1;

cosan
var = x1-x6,
F(2,GEN) * PHI(2,SYM) + PSI(6,SYM);

matrix F [1,1] = 1.,
[2,1] = load2,
[3,1] = load3,
[4,2] = 1.,
[5,2] = load5,
[6,2] = load6;

matrix PHI [1,1] = phi1,
[2,2] = phi2,
[2,1] = phi21;

matrix PSI [1,1] = psi1,
[2,2] = psi2,
[3,3] = psi3,
[4,4] = psi4,
[5,5] = psi5,
[6,6] = psi6;

varnames F = [Factor1 Factor2],
PHI = F;

model 2 / group=2;
refmodel 1;
matrix F [3,1] = load2; /* replacement */
matrix PHI [2,1] = .; /* deletion */
matrix PSI [3,1] = psi31; /* addition */
varnames F = [FF1 FF2],

run;
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In this example, Model 2 is the new model which refers to the old model, Model 1. It illustrates the four
types of model integration by using the MATRIX statements:

• Duplication: Except for the FŒ3; 1� and PHIŒ2; 1� elements, all parameter specifications in the old
model are duplicated in the new model.

• Addition: The PSIŒ3; 1� element is added with a new parameter psi31 in the new model. This indicates
the presence of a correlated error in Model 2, but not in Model 1.

• Deletion: The PHIŒ2; 1� element is no longer a free parameter in the new model. This means that the
two latent factors are correlated in Model 1, but not in Model 2.

• Replacement: The FŒ3; 1� element defined in Model 2 replaces the definition in the old model. This
element is now a free parameter named load2. Because the FŒ2; 1� element (via duplication from the
old model) is also a free parameter with this same name, FŒ3; 1� and FŒ2; 1� are constrained to be the
same in Model 2, but not in Model 1.

With the VARNAMES statement specification in Model 1, the two columns of matrix F are labeled with
Factor1 and Factor2, respectively. In addition, because PHI=F is specified in the VARNAMES statement of
Model 1, the row and column of matrix PHI in Model 1 also contain Factor1 and Factor2 as the variable
names. In Model 2, with the explicit VARNAMES specifications the two columns of matrix F are labeled
with FF1 and FF2, respectively. These names are not the same as those for matrix F in the old (reference)
model. However, because PHI=F is not specified in the VARNAMES statement of Model 2, the row and
column of matrix PHI in Model 2 contain Factor1 and Factor2 as the variable names, which are duplicated
from the old (reference) model.

COSAN Models and Other Models

Because the COSAN model is a more general model than any other model considered in PROC CALIS, you
can virtually fit any other type of model in PROC CALIS by using the COSAN modeling language. See the
section “Special Cases of the Generalized COSAN Model” on page 1392, Example 29.29, and Example 29.30
for illustrations and discussions.

In general, it is recommended that you use the more specific modeling languages such as FACTOR, LINEQS,
LISMOD, MSTRUCT, PATH, and RAM. Because the COSAN model is very general in its formulation,
PROC CALIS cannot exploit the specific model structures to generate reasonable initial estimates the way
it does with other specific models such as FACTOR and PATH. If you do not provide initial estimates for
a COSAN model, PROC CALIS uses some default starting values such as 0.5. See the START= option
for controlling the starting value. See the RANDOM= option for setting random starting values. There are
other reasons for preferring specific modeling languages whenever possible. The section “Which Modeling
Language?” on page 1194 discusses these various reasons. However, when the covariance structures are
complicated and are difficult to specify otherwise, the COSAN modeling language is a very useful tool. See
Example 29.31 and Example 29.33 for illustrations.
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COV Statement
COV assignment < , assignment . . . > ;

where assignment represents

var-list < � var-list2 > < = parameter-spec >

The COV statement is a subsidiary model specification statement for the confirmatory FACTOR and LINEQS
models. In the LINEQS model, the COV statement defines the covariances among the exogenous variables,
including errors and disturbances. In the confirmatory FACTOR model, the COV statement defines the
factor covariances. In each assignment of the COV statement, you specify variables in the var-list and the
var-list2 lists, followed by the covariance parameter specification in the parameter-spec list. The latter two
specifications are optional.

You can specify the following five types of the parameters for the covariances:

• an unnamed free parameter

• an initial value

• a fixed value

• a free parameter with a name provided

• a free parameter with a name and initial value provided

Consider a LINEQS model with exogenous variables V1, V2, V3, and V4. The following COV statement
shows the five types of specifications in five assignments:

cov V2 V1 ,
V3 V1 = (0.3),
V3 V2 = 1.0,
V4 V1 = phi1,
V4 V2 = phi2(0.2);

In this statement, cov(V2,V1) is specified as an unnamed free parameter. For this covariance, PROC CALIS
generates a parameter name with the _Parm prefix and appended with a unique integer (for example, _Parm1).
cov(V3,V1) is an unnamed free parameter but with an initial value of 0.3. PROC CALIS also generates a
parameter name for this covariance. cov(V3,V2) is a fixed value of 1.0. This value stays the same in the
estimation. cov(V4,V1) is a free parameter named phi1. cov(V4,V2) is a free parameter named phi2 with
an initial value of 0.2.

Note that the var-list and var-list2 lists on the left-hand side of the equal sign of the COV statement should
contain only names of exogenous variables. Hence, the COV statement is different from the PCOV statement
in which you can list both exogenous and endogenous variables, although the COV and PCOV statements
share the same syntax.

You can use the COV statement for specifying covariance parameters in the FACTOR and LINEQS models.
In the FACTOR model, the COV statement specifies the covariances among latent factors. In the LINEQS
model, the COV statement specifies the covariances among all observed or latent exogenous variables,
including error and disturbance terms.
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If you specify only the var-list list, then you are specifying the so-called within-list covariances. If you
specify both of the var-list and var-list2 lists, then you are specifying the so-called between-list covariances.
An asterisk is used to separate the two variable lists. You can use one of these two alternatives to specify the
covariance parameters. Figure 29.2 illustrates the within-list and between-list covariance specifications.

Figure 29.2 Within-List and Between-List Covariances

E1

E2

E3

E4

E1 E2 E3 E4

phi1

phi2 phi3

phi4 phi5 phi6

Within-List Covariances

E1

E2

E3 E4

phi1 phi2

phi3 phi4

Between-List Covariances

Within-List Covariances

The left panel of the figure shows that the same set of four variables are used in both the rows and columns.
This yields six nonredundant covariances to specify. In general, with a var-list list with k variables in the
COV statement, there are k.k � 1/=2 distinct covariance parameters you can specify. The variable order of
the var-list list is important. For example, the left panel of Figure 29.2 corresponds to the following COV
statement specification:

cov E1-E4 = phi1-phi6;

This specification is equivalent to the following specification:

cov E2 E1 = phi1,
E3 E1 = phi2, E3 E2 = phi3,
E4 E1 = phi4, E4 E2 = phi5, E4 E3 = phi6;

Another way to assign distinct parameter names with the same prefix is to use the so-called prefix-name. For
example, the following COV statement specification is exactly the same as the preceding specification:

cov E1-E4 = 6*phi__; /* phi with two trailing underscores */

In the COV statement, phi_ _ is a prefix-name with the root phi. The notation 6* means this prefix-name
is applied six times, resulting in a generation of the six parameter names phi1, phi2, . . . , phi6 for the six
covariance parameters.

The root of the prefix-name should have few characters so that the generated parameter name is not longer
than 32 characters. To avoid unintentional equality constraints, the prefix-names should not coincide with
other parameter names.
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You can also specify the within-list covariances as unnamed free parameters, as shown in the following
statement:

cov E1-E4;

This specification is equivalent to the following specification:

cov E2 E1,
E3 E1, E3 E2,
E4 E1, E4 E2, E4 E3;

Between-List Covariances

The right panel of Figure 29.2 illustrates the application of the between-list covariance specification. The set
of row variables is different from the set of column variables. You intend to specify the cross covariances of
the two sets of variables. There are four of these covariances in the figure. In general, with k1 and k2 variable
names in the two variable lists (separated by an asterisk) in a COV statement, there are k1 � k2 distinct
covariances to specify. Again, variable order is very important. For example, the right panel of Figure 29.2
corresponds to the following between-list covariance specification:

cov E1 E2 * E3 E4 = phi1-phi4;

This is equivalent to the following specification:

cov E1 E3 = phi1, E1 E4 = phi2,
E2 E3 = phi3, E2 E4 = phi4;

You can also use the prefix-name specification for the same specification, as shown in the following statement:

cov E1 E2 * E3 E4 = 4*phi__ ; /* phi with two trailing underscores */

Mixed Parameter Lists

You can specify different types of parameters for the list of covariances. For example, you use a list of
parameters with mixed types in the following statement:

cov E1-E4 = phi1(0.1) 0.2 phi3 phi4(0.4) (0.5) phi6;

This specification is equivalent to the following specification:

cov E2 E1 = phi1(0.1) ,
E3 E1 = 0.2 , E3 E2 = phi3,
E4 E1 = phi4(0.4) , E4 E2 = (0.5), E4 E3 = phi6;

Notice that an initial value that follows a parameter name is associated with the free parameter. Therefore, in
the original mixed list specification, 0.1 is interpreted as the initial value for the parameter phi1, but not as
the initial estimate for the covariance between E3 and E1. Similarly, 0.4 is the initial value for the parameter
phi4, but not the initial estimate for the covariance between E4 and E2.

However, if you indeed want to specify that phi1 is a free parameter without an initial value and 0.1 is an
initial estimate for the covariance between E3 and E1 (while keeping all other things the same), you can use
a null initial value specification for the parameter phi1, as shown in the following statement:
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cov E1-E4 = phi1() (0.1) phi3 phi4(0.4) (0.5) phi6;

This way 0.1 becomes the initial estimate for the covariance between E3 and E1. Because a parameter list
with mixed types might be confusing, you can break down the specifications into separate assignments to
remove ambiguities. For example, you can use the following equivalent specification:

cov E2 E1 = phi1 ,
E3 E1 = (0.1) , E3 E2 = phi3,
E4 E1 = phi4(0.4) , E4 E2 = (0.5), E4 E3 = phi6;

Shorter and Longer Parameter Lists

If you provide fewer parameters than the number of covariances in the variable lists, all the remaining
parameters are treated as unnamed free parameters. For example, the following specification assigns a fixed
value to cov(E1,E3) while treating all the other three covariances as unnamed free parameters:

cov E1 E2 * E3 E4 = 1.0;

This specification is equivalent to the following specification:

cov E1 E3 = 1.0, E1 E4, E2 E3, E2 E4;

If you intend to fill up all values by the last parameter specification in the list, you can use the continuation
syntax [...], [..], or [.], as shown in the following example:

cov E1 E2 * E3 E4 = 1.0 phi [...];

This means that cov(E1,E3) is a fixed value of 1 and all the remaining three covariances are free parameter
named phi. The last three covariances are thus constrained to be equal by using the same parameter name.

However, you must be careful not to provide too many parameters. For example, the following specification
results in an error:

cov E1 E2 * E3 E4 = 1.0 phi2(2.0) phi3 phi4 phi5 phi6;

The parameters after phi4 are excessive.

Default Covariance Parameters

In the confirmatory FACTOR model, by default all factor covariances are free parameters. In the LINEQS
model, by default all covariances among exogenous manifest and latent variables (excluding error or
disturbance variables) are also free parameters. For these default free parameters, PROC CALIS generate the
parameter names with the _Add prefix and appended with unique integer suffixes. You can also use the COV
statement specification to override these default covariance parameters in situations where you want to set
parameter constraints, provide initial or fixed values, or make parameter references.

Another type of default covariances are fixed zeros. In the LINEQS model, covariances among errors or
disturbances are all fixed zeros by default. Again, you can override the default fixed values by providing
explicit specification of these covariances in the COV statement.
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Modifying a Covariance Parameter Specification from a Reference Model

If you define a new model by using a reference (old) model in the REFMODEL statement, you might want to
modify some parameter specifications from the COV statement of the reference model before transferring the
specifications to the new model. To change a particular covariance specification from the reference model,
you can simply respecify the same covariance with the desired parameter specification in the COV statement
of the new model. To delete a particular covariance parameter from the reference model, you can specify the
desired covariance with a missing value specification in the COV statement of the new model.

For example, suppose that the covariance between variables V1 and V2 is specified in the reference model but
you do not want this covariance specification be transferred to the new model. You can use the following
COV statement specification in the new model:

cov V1 V2 = .;

Note that the missing value syntax is valid only when you use it with the REFMODEL statement. See
the section “Modifying a LINEQS Model from a Reference Model” on page 1280 for a more detailed
example of the LINEQS model respecification with the REFMODEL statement. See the section “Modifying
a FACTOR Model from a Reference Model” on page 1266 for a more detailed example of the FACTOR
model respecification with the REFMODEL statement.

As discussed in a preceding section, PROC CALIS generates some default free covariance parameters for the
LINEQS and FACTOR models if you do not specify them explicitly in the COV statement. When you use
the REFMODEL statement for defining a reference model, these default free covariance parameters in the
old (reference) model are not transferred to the new model. Instead, the new model generates its own set of
default free covariance parameters after it is resolved from the reference model, the REFMODEL statement
options, the RENAMEPARM statement, and the COV statement specifications in the new model. This also
implies that if you want any of the covariance parameters to be constrained across the models by means
of the REFMODEL specification, you must specify them explicitly in the COV statement of the reference
model so that the same covariance specification is transferred to the new model.

DETERM Statement
DETERM | STRUCTEQ variables < / option > ;

where option represents:

LABEL | NAME= name

The DETERM statement is used to compute the determination coefficient of the listed dependent variables in
the model. The precursor of the DETERM statement is the STRUCTEQ statement, which enables you to
define the list of the dependent variables of the structural equations. Because the term structural equation is
not defined in a unique way, a more generic concept of determination coefficients is revealed by the DETERM
statement.

You can specify the DETERM statement as many times as you want for computing determination coefficients
for the sets of dependent variables of interest. You can label each set of dependent variables by using the
LABEL= option. Note that you cannot use the DETERM statement in an MSTRUCT model because there
are no dependent variables in this type of model.
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EFFPART Statement
EFFPART effect < , effect . . . > ;

where effect represents:

var-list < direction var-list2 >

and direction is the direction of the effect, as indicated by one of the following:
===>, --->, ==>, -->, =>, ->, >, <===, <---, <==, <--, <=, <-, or <.

In the EFFPART statement, you select those effects you want to analyze by partitioning the total effects into
direct and indirect effects, with estimated standard errors. The EFFPART or TOTEFF option of the PROC
CALIS statement also enables you to analyze effects. The difference is that the EFFPART or TOTEFF option
displays effects on all endogenous variables, while the EFFPART statement shows only the effects of interest.
In addition, the EFFPART statement enables you to arrange the effects in any way you like. Hence, the
EFFPART statement offers a more precise and organized way to present various results of effects.

The EFFPART statement supports the following three types of effect specifications:

• >, =>, ->, ==>, -->, ===>, or ---> direction

Example:

effpart X1 X3-X5 ===> Y1 Y2;

This will display four separate tables, respectively for the effects of X1, X3, X4, and X5 on Y1 and Y2.
Each table contains the total, direct, and indirect effects of an X-variable on the two Y-variables.

• <, <=, <-, <==, <--, <===, or <--- direction

Example:

effpart Y1 Y2 <=== X1 X3-X5;

This will display two separate tables, respectively for the effects on Y1 and Y2, by X1, X3, X4, and
X5. Each table contains the total, direct, and indirect effects of the four X-variables on a Y-variable.
Certainly, the results produced from this statement are essentially the same as the previous statement.
The difference is about the organization of the effects in the tables.

• no direction

Example:

effpart Y1 Y2 X1-X3;

In this case, variables on the list are analyzed one by one to determine the nature of the effects. If a
variable has nonzero effects on any other variables in the model, a table of the total, direct, and indirect
effects of the variable on those variables is displayed. If a variable is endogenous, a table of total,
direct, and indirect effects of those variables that have nonzero effects on the variable is displayed.
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Note that an endogenous variable in a model might also have effects on other endogenous variables.
Therefore, the two cases mentioned are not mutually exclusive—a variable listed in the EFFPART
statement might yield two tables for effect analysis.

FACTOR Statement
FACTOR < EFA-options | CFA-spec > ;

where EFA-options are options for the exploratory factor analysis that are described in the section “Exploratory
Factor Analysis” on page 1258 and CFA-spec is a specification of confirmatory factor analysis that is described
in the section “Confirmatory Factor Analysis” on page 1262.

In the FACTOR statement, you can specify either EFA-options, CFA-spec, or neither of these. However,
you cannot specify both EFA-options and CFA-spec at the same time. If no option is specified or there is at
least one EFA-option (exploratory factor analysis option) specified in the FACTOR statement, an exploratory
factor model is analyzed. Otherwise, a confirmatory factor model is analyzed with the CFA-spec. These two
types of models are discussed in the next two sections.

Exploratory Factor Analysis

FACTOR < EFA-options > ;

For the exploratory factor model with orthogonal factors, PROC CALIS assumes the following model
structures for the population covariance or correlation matrix †:

† D FF0 CU

where F is the factor loading matrix and U is a diagonal matrix of error variances. In this section, p denotes
the number of manifest variables corresponding to the rows and columns of matrix †, and n denotes the
number of factors (or components, if the COMPONENT option is specified in the FACTOR statement)
corresponding to the columns of the factor loading matrix F. While the number of manifest variables is set
automatically by the number of variables in the VAR statement or in the input data set, the number of factors
can be set by the N= option in the FACTOR statement.

The unrestricted exploratory factor model is not identified because any orthogonal rotated factor loading
matrix QF D F‚ satisfies the same model structures as F does, where ‚ is any orthogonal matrix so that
‚0‚ D ‚‚0 D I. Mathematically, the covariance or correlation structures can be expressed as:

† D QF QF0 CU D F‚‚0F0 CU D FF0 CU

To obtain an identified orthogonal factor solution as a starting point, the n.n � 1/=2 elements in the upper
triangle of F are constrained to zeros in PROC CALIS. Initial estimates for factor loadings and unique
variances are computed by an algebraic method of approximate factor analysis. Given the initial estimates,
final estimates are obtained through the iterative optimization of an objective function, which depends on
the estimation method specified in the METHOD= option (default with ML—maximum likelihood) of the
PROC CALIS statement.

To make the factor solution more interpretable, you can use the ROTATE= option in the FACTOR statement
to obtain a rotated factor loading matrix with a “simple” pattern. Rotation can be orthogonal or oblique.
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The rotated factors remain uncorrelated after an orthogonal rotation but would be correlated after an oblique
rotation. The model structures of an oblique solution are expressed in the following equation:

† D QFP QF0 CU

where QF is the rotated factor loading matrix and P is a symmetric matrix for factor correlations. See the
sections “The FACTOR Model” on page 1394 and “Exploratory Factor Analysis Models” on page 1395 for
more details about exploratory factor models.

You can also do exploratory factor analysis by the more dedicated FACTOR procedure. Even though
extensive comparisons of the factor analysis capabilities between the FACTOR and CALIS procedures are
not attempted here, some general points can be made here. In general, the FACTOR procedure provides more
factor analysis options than the CALIS procedure does, although both procedures have some unique factor
analysis features that are not shared by the other. PROC CALIS requires more computing time and memory
than PROC FACTOR because it is designed for more general structural estimation problems and is not able
to exploit all the special properties of the unconstrained factor analysis model. For maximum likelihood
analysis, you can use either PROC FACTOR (with METHOD=ML, which is not the default method in PROC
FACTOR) or PROC CALIS. Because the initial unrotated factor solution obtained by PROC FACTOR uses
a different set of identification constraints than that of PROC CALIS, you would observe different initial
ML factor solutions for the procedures. Nonetheless, the initial solutions by both procedures are statistically
equivalent.

The following EFA-options are available in the FACTOR statement:

COMPONENT

COMP
computes a component analysis instead of a factor analysis (the diagonal matrix U in the model is set
to 0). Note that the rank of FF0 is equal to the number n of components in F. If n is smaller than the
number of variables in the moment matrix †, the matrix of predicted model values is singular and
maximum likelihood estimates for F cannot be computed. You should compute ULS estimates in this
case.

HEYWOOD

HEY
constrains the diagonal elements of U to be nonnegative. Equivalently, you can constrain these elements
to positive values by the BOUNDS statement.

GAMMA=p
specifies the orthomax weight used with the option ROTATE=ORTHOMAX. Alternatively, you can
use ROTATE=ORTHOMAX(p) with p representing the orthomax weight. There is no restriction on
valid values for the orthomax weight, although the most common values are between 0 and the number
of variables. The default GAMMA= value is one, resulting in the varimax rotation.

N=n
specifies the number of first-order factors or components. The number of factors (n) should not exceed
the number of manifest variables (p) in the analysis. For the saturated model with n = p, the COMP
option should generally be specified for U D 0; otherwise, df < 0. For n = 0 no factor loadings are
estimated, and the model is † D U, with a diagonal U matrix. By default, n = 1.
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NORM< = KAISER | NONE >
Kaiser-normalizes the rows of the factor pattern for rotation. NORM=KAISER, which is the default,
has exactly the same effect as NORM. You can turn off the normalization by NORM=NONE.

RCONVERGE=p

RCONV=p
specifies the convergence criterion for rotation cycles. Rotation stops when the scaled change of the
simplicity function value is less than the RCONVERGE= value. The default convergence criterion is:

jfnew � fold j=K < �

where fnew and fold are simplicity function values of the current cycle and the previous cycle,
respectively, K D max.1; jfold j/ is a scaling factor, and � is 1E–9 by default and is modified by the
RCONVERGE= value.

RITER=i
specifies the maximum number of cycles i for factor rotation. The default i is the greater of 10 times
the number of variables and 100.

ROTATE=name

R=name
specifies an orthogonal or oblique rotation of the initial factor solution. Although
ROTATE=PRINCIPAL is actually not a rotation method, it is put here for convenience. By de-
fault, ROTATE=NONE.

Valid names for orthogonal rotations are as follows:

BIQUARTIMAX | BIQMAX specifies orthogonal biquartimax rotation. This corresponds to the speci-
fication ROTATE=ORTHOMAX(0.5).

EQUAMAX | E specifies orthogonal equamax rotation. This corresponds to the specification
ROTATE=ORTHOMAX with GAMMA=n/2.

FACTORPARSIMAX | FPA specifies orthogonal factor parsimax rotation. This corresponds to the
specification ROTATE=ORTHOMAX with GAMMA=n.

NONE | N specifies that no rotation be performed, leaving the original orthogonal solution.

ORTHCF(p1,p2) | ORCF(p1,p2) specifies the orthogonal Crawford-Ferguson rotation (Crawford
and Ferguson 1970) with the weights p1 and p2 for variable parsimony and fac-
tor parsimony, respectively. See the definitions of weights in Chapter 37, “The
FACTOR Procedure.”

ORTHGENCF(p1,p2,p3,p4) | ORGENCF(p1,p2,p3,p4) specifies the orthogonal generalized
Crawford-Ferguson rotation (Jennrich 1973), with the four weights p1, p2,
p3, and p4. For the definitions of these weights, see the section “Simplicity
Functions for Rotations” on page 2337 in Chapter 37, “The FACTOR Procedure.”

ORTHOMAX< (p1) > | ORMAX< (p1) > specifies the orthomax rotation (see Harman 1976) with
orthomax weight p1. If ROTATE=ORTHOMAX is used, the default p1
value is 1 unless specified otherwise in the GAMMA= option. Alternatively,
ROTATE=ORTHOMAX(p1) specifies p1 as the orthomax weight or the GAMMA=
value. For the definitions of the orthomax weight, see the section “Simplicity Func-
tions for Rotations” on page 2337 in Chapter 37, “The FACTOR Procedure.”
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PARSIMAX | PA specifies orthogonal parsimax rotation. This corresponds to the specification
ROTATE=ORTHOMAX with

GAMMA D
p � .n � 1/

p C n � 2

PRINCIPAL | PC specifies a principal axis rotation. If ROTATE=PRINCIPAL is used with a factor
rather than a component model, the following rotation is performed:

Fnew D FoldT; with F0oldFold D TƒT0

where the columns of matrix T contain the eigenvectors of F0oldFold .

QUARTIMAX | QMAX | Q specifies orthogonal quartimax rotation. This corresponds to the specifi-
cation ROTATE=ORTHOMAX(0).

VARIMAX | V specifies orthogonal varimax rotation. This corresponds to the specification
ROTATE=ORTHOMAX with GAMMA=1.

Valid names for oblique rotations are as follows:

BIQUARTIMIN | BIQMIN specifies biquartimin rotation. It corresponds to the specification
ROTATE=OBLIMIN(.5) or ROTATE=OBLIMIN with TAU=.5.

COVARIMIN | CVMIN specifies covarimin rotation. It corresponds to the specification
ROTATE=OBLIMIN(1) or ROTATE=OBLIMIN with TAU=1.

OBBIQUARTIMAX | OBIQMAX specifies oblique biquartimax rotation.

OBEQUAMAX | OE specifies oblique equamax rotation.

OBFACTORPARSIMAX | OFPA specifies oblique factor parsimax rotation.

OBLICF(p1,p2) | OBCF(p1,p2) specifies the oblique Crawford-Ferguson rotation (Crawford and
Ferguson 1970) with the weights p1 and p2 for variable parsimony and factor
parsimony, respectively. For the definitions of these weights, see the section
“Simplicity Functions for Rotations” on page 2337 in Chapter 37, “The FACTOR
Procedure.”

OBLIGENCF(p1,p2,p3,p4) | OBGENCF(p1,p2,p3,p4) specifies the oblique generalized Crawford-
Ferguson rotation (Jennrich 1973) with the four weights p1, p2, p3, and p4. For the
definitions of these weights, see the section “Simplicity Functions for Rotations”
on page 2337 in Chapter 37, “The FACTOR Procedure.”

OBLIMIN< (p1) > | OBMIN< (p1) > specifies the oblimin rotation with oblimin weight p1. If
ROTATE=OBLIMIN is used, the default p1 value is zero unless specified oth-
erwise in the TAU= option. Alternatively, ROTATE=OBLIMIN(p1) specifies p1 as
the oblimin weight or the TAU= value. For the definitions of the oblimin weight,
see the section “Simplicity Functions for Rotations” on page 2337 in Chapter 37,
“The FACTOR Procedure.”

OBPARSIMAX | OPA specifies oblique parsimax rotation.

OBQUARTIMAX | OQMAX specifies oblique quartimax rotation. This is the same as the QUAR-
TIMIN method.

OBVARIMAX | OV specifies oblique varimax rotation.
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QUARTIMIN | QMIN specifies quartimin rotation. It is the same as the oblique quartimax
method. It also corresponds to the specification ROTATE=OBLIMIN(0) or
ROTATE=OBLIMIN with TAU=0.

TAU=p
specifies the oblimin weight used with the option ROTATE=OBLIMIN. Alternatively, you can use
ROTATE=OBLIMIN(p) with p representing the oblimin weight. There is no restriction on valid values
for the oblimin weight, although for practical purposes a negative or zero value is recommended. The
default TAU= value is 0, resulting in the quartimin rotation.

Confirmatory Factor Analysis

FACTOR factor-variables-relation < , factor-variables-relation . . . > ;

where each factor-variables-relation is defined as

factor right-arrow var-list < = parameter-spec >

where right-arrow is one of the following: ===>, --->, ==>, -->, =>, ->, or >.
To complete the specification of a confirmatory factor model, you might need to use the PVAR, COV, and
MEAN statements to specify the variance, partial variance, covariance, and mean parameters in the model, as
shown in the following syntax:

FACTOR factor-variable-relation < , factor-variables-relation . . . > ;
PVAR partial-variance-parameters ;
COV covariance-parameters ;
MEAN mean-parameters ;

The model structures for the covariance matrix † of the confirmatory factor model are described in the
equation

† D FPF0 CU

where F is the factor loading matrix, P is a symmetric matrix for factor correlations, and U is a diagonal
matrix of error variances.

If the mean structures are also analyzed, the model structures for the mean vector � of the confirmatory
factor model are described in the equation

� D ˛C F�

where ˛ is the intercept vector for the observed variables and � is the vector for factor means. See the sections
“The FACTOR Model” on page 1394 and “Confirmatory Factor Analysis Models” on page 1397 for more
details about confirmatory factor models.

The FACTOR statement is the main model specification statement for the confirmatory factor model. The
specifications in the FACTOR statement concern the factor loading pattern in the F matrix. More details
follow after a brief description of the subsidiary model specification statements: PVAR, COV, and MEAN.

By default, the factor variance parameters in the diagonal of matrix P and the error variances in the diagonal
of matrix U are free parameters in the confirmatory factor model. However, you can override these default
parameters by specifying them explicitly in the PVAR statement. For example, in some confirmatory factor
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models, you might want to set some of these variances to fixed constants, or you might want to set equality
constraints by using the same parameter name at different parameter locations in your model.

By default, factor covariances, which are the off-diagonal elements of matrix P, are free parameters in the
confirmatory factor model. However, you can override these default covariance parameters by specifying
them explicitly in the COV statement. Note that you cannot use the COV statement to specify the error
covariances—they are always fixed zeros in the confirmatory factor analysis model.

By default, all factor means are fixed zeros and all intercepts are free parameters if the mean structures are
analyzed. You can override these defaults by explicitly specifying the means of the factors in vector � and
the intercepts of the manifest variables in vector ˛ in the MEAN statement.

Because the default parameterization of the confirmatory FACTOR model already covers most commonly
used parameters in matrices P, U, ˛, and �, the specifications in the PVAR, COV, and MEAN statements are
secondary to the specifications in the FACTOR statement, which specifies the factor pattern of the F matrix.
The following example statement introduces the syntax of the confirmatory FACTOR statement. Suppose
that there are nine manifest variables V1–V9 in your sample and you want to fit a model with four factors, as
shown in the following FACTOR statement:

factor
g_factor ===> V1-V9 ,
factor_a ===> V1-V3 ,
factor_b ===> V4-V6 ,
factor_c ===> V7-V9 ;

In this factor model, you assume a general factor g_factor and three group-factors: factor_a, factor_b, and
factor_c. The general factor g_factor is related to all manifest variables in the sample, while each group-factor
is related only to three manifest variables. This example fits the following pattern of factor pattern of F:

g_factor factor_a factor_b factor_c

V1 x x
V2 x x
V3 x x
V4 x x
V5 x x
V6 x x
V7 x x
V8 x x
V9 x x

where an x represents an unnamed free parameter and all other cells that are blank are fixed zeros. For each of
these unnamed parameters, PROC CALIS generates a parameter name with the _Parm prefix and appended
with a unique integer (for example, _Parm1, _Parm2 and so on).

An unnamed free parameter is only one of the following five types of parameters (parameter-spec) you can
specify at the end of each factor-variables-relation:

• an unnamed free parameter

• an initial value
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• a fixed value

• a free parameter with a name provided

• a free parameter with a name and initial value provided

To illustrate these different types of parameter specifications, consider the following factor pattern for F:

g_factor factor_a factor_b factor_c

V1 g_load1 1.
V2 g_load2 x
V3 g_load3 x
V4 g_load4 1.
V5 g_load5 load_a
V6 g_load6 load_b
V7 g_load7 1.
V8 g_load8 load_c
V9 g_load9 load_c

where an x represents an unnamed free parameter, a constant 1 represents a fixed value, and each name in
a cell represents a name for a free parameter. You can specify this factor pattern by using the following
FACTOR statement:

factor
g_factor ===> V1-V9 = g_load1-g_load9 (9*0.6),
factor_a ===> V1-V3 = 1. (.7 .8),
factor_b ===> V4-V6 = 1. load_a (.9) load_b,
factor_c ===> V7-V9 = 1. 2*load_c ;

In the first entry of the FACTOR statement, you specify that the loadings of V1–V9 on g_factor are free
parameters g_load1–g_load9 with all given an initial estimate of 0.6. The syntax 9*0.6 means that 0.6 is
repeated nine times. Because they are enclosed in a pair parentheses, all these values are treated as initial
estimates, but not fixed values.

The second entry of the FACTOR statement can be split into the following specification:

factor_a ===> V1 = 1. ,
factor_a ===> V2 = (.7),
factor_a ===> V3 = (.8),

This means that the first loading is a fixed value of 1, while the other loadings are unnamed free parameters
with initial estimates 0.7 and 0.8, respectively. For each of these unnamed parameters with initial values,
PROC CALIS also generates a parameter name with the _Parm prefix and appended with a unique integer.

The third entry of the FACTOR statement can be split into the following specification:

factor_b ===> V4 = 1. ,
factor_b ===> V5 = load_a (.9),
factor_b ===> V6 = load_b,

This means that the first loading is a fixed value of 1, the second loading is a free parameter named load_a
with an initial estimate of 0.9, and the third loading is a free parameter named load_b without an initial
estimate. PROC CALIS generates the initial value for this free parameter.
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The fourth entry of the FACTOR statement states that the first loading is a fixed 1 and the remaining two
loadings are free parameters named load_c. No initial estimate is given. But because the two loadings have
the same parameter name, they are constrained to be equal in the estimation.

Notice that an initial value that follows after a parameter name is associated with the free parameter. For
example, in the third entry of the FACTOR statement, the specification (.9) after load_a is interpreted as
the initial value for the parameter load_a, but not as the initial estimate for the next loading for V6.

However, if you indeed want to specify that load_a is a free parameter without an initial value and (0.9)

is an initial estimate for the loading for V6, you can use a null initial value specification for the parameter
load_a, as shown in the following specification:

factor_b ===> V4-V6 = 1. load_a() (.9),

This way 0.9 becomes the initial estimate of the loading for V6. Because a parameter list with mixed parameter
types might be confusing, you can split the specification into separate entries to remove ambiguities. For
example, you can use the following equivalent specification:

factor_b ===> V4 = 1.,
factor_b ===> V5 = load_a,
factor_b ===> V6 = (.9),

Shorter and Longer Parameter Lists

If you provide fewer parameters than the number of loadings that are specified in the corresponding factor-
variable-relation, all the remaining parameters are treated as unnamed free parameters. For example, the
following specification assigns a fixed value of 1.0 to the first loading, while treating the remaining two
loadings as unnamed free parameters:

factor
factor_a ===> V1-V3 = 1.;

This specification is equivalent to the following specification:

factor
factor_a ===> V1 = 1.,
factor_a ===> V2 V3 ;

If you intend to fill up all values with the last parameter specification in the list, you can use the continuation
syntax [...], [..], or [.], as shown in the following example:

factor
g_factor ===> V1-V30 = 1. (.5) [...];

This means that the loading of V1 on g_factor is a fixed value of 1.0, while the remaining 29 loadings are
unnamed free parameters with all given an initial estimate of 0.5.

However, you must be careful not to provide too many parameters. For example, the following specification
results in an error:

factor
g_factor ===> V1-V3 = load1-load6;

The parameter list has six parameters for three loadings. Parameters after load3 are excessive.
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Default Parameters

It is important to understand the default parameters in the FACTOR model. First, if you know which
parameters are default free parameters, you can make your specification more efficient by omitting the
specifications of those parameters that can be set by default. For example, because all error variances in
the confirmatory FACTOR model are free parameters by default, you do not need to specify them with the
PVAR statement if these error variances are not constrained. Second, if you know which parameters are
default free parameters, you can specify your model accurately. For example, because all factor variance
and covariances in the confirmatory FACTOR model are free parameters by default, you must use the COV
statement to restrict the covariances among the factors if you want to fit an orthogonal factor model. See the
section “Default Parameters in the FACTOR Model” on page 1401 for details about the default parameters of
the FACTOR model.

Modifying a FACTOR Model from a Reference Model

This section assumes that you use a REFMODEL statement within the scope of a MODEL statement and
that the reference model (or base model) is a factor model, either exploratory or confirmatory. The reference
model is called the old model, and the model that refers to the old model is called the new model. If the new
model is not intended to be an exact copy of the old FACTOR model, you can use the extended FACTOR
modeling language described in this section to make modifications from the old model before transferring
the specifications to the new model.

Using the REFMODEL statement for defining new factor models is not recommended in the following cases:

• If your old model is an exploratory factor analysis model, then specification by using the FACTOR
modeling language in the new model replaces the old model completely. In this case, the use of the
REFMODEL statement is superfluous and should be avoided.

• If your old model is a confirmatory factor analysis model, then specification of an exploratory factor
model by using the FACTOR statement in the new model also replaces the old model completely.
Again, the use of the REFMODEL statement is superfluous and should be avoided.

The nontrivial case where you might find the REFMODEL statement useful is when you modify an old
confirmatory factor model to form a new confirmatory factor model. This nontrivial case is the focus of
discussion in the remaining of the section.

The extended FACTOR modeling language for modifying model specification bears the same syntax as that
of the ordinary FACTOR modeling language (see the section “Confirmatory Factor Analysis” on page 1262).
The syntax is:

FACTOR factor-variable-relation ;
PVAR partial-variance-parameters ;
COV covariance-parameters ;
MEAN mean-parameters ;

The new model is formed by integrating with the old model in the following ways:

Duplication: If you do not specify in the new model a parameter location that exists in the old model,
the old parameter specification is duplicated in the new model.

Addition: If you specify in the new model a parameter location that does not exist in the old model,
the new parameter specification is added in the new model.
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Deletion: If you specify in the new model a parameter location that also exists in the old model and
the new parameter is denoted by the missing value ‘.’, the old parameter specification is
not copied into the new model.

Replacement: If you specify in the new model a parameter location that also exists in the old model and
the new parameter is not denoted by the missing value ‘.’, the new parameter specification
replaces the old one in the new model.

For example, consider the following two-group analysis:

proc calis;
group 1 / data=d1;
group 2 / data=d2;
model 1 / group=1;

factor
F1 ===> V1-V3 = 1. load1 load2,
F2 ===> V4-V6 = 1. load3 load4,
F3 ===> V7-V9 = 1. load5 load6;

cov
F1 F2 = c12,
F2 F3 = c23;

pvar
F1-F3 = c1-c3,
V1-V9 = ev1-ev9;

model 2 / group=2;
refmodel 1;
factor

F1 ===> V1 = loada,
F2 ===> V4 = loadb,
F3 ===> V7 = loadc;

cov
F1 F2 = .,
F1 F3 = c13;

run;

In this specification, you specify Model 2 by referring to Model 1 in the REFMODEL statement; Model 2
is the new model which refers to the old model, Model 1. Because the PVAR statement is not used in new
model, all variance and partial variance parameter specifications in the PVAR statement of the old model are
duplicated in the new model. The covariance parameter c23 for covariance between F2 and F3 in the COV
statement of the old model is also duplicated in the new model. Similarly, loading parameters load1–load6
for some specific factor matrix locations are duplicated from the old model to the new model.

The new model has an additional parameter specification that the old model does not have. In the COV
statement of the new model, covariance parameter c13 for the covariance between F1 and F3 is added.

In the same statement, the covariance between F1 and F2 is denoted by the missing value ‘.’. The missing
value indicates that this parameter location in the old model should not be included in the new model. The
consequence of this deletion from the old model is that the covariance between F1 and F2 is a fixed zero in
the new model.

Finally, the three new loading specifications in the FACTOR statement of the new model replace the fixed
ones in the old model. They are now free parameters loada, loadb, and loadc in the new model.
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FITINDEX Statement
FITINDEX option < option . . . > ;

You can use the FITINDEX statement to set the options for computing and displaying the fit indices, or to
output the fit indices. All but the OFF= and ON= options of the FITINDEX statement are also available in
the PROC CALIS statement. The options set in the FITINDEX statement will overwrite those set in the
PROC CALIS statement.

For the listing of fit indices and their definitions, see the section “Overall Model Fit Indices” on page 1484.
Note that not all fit indices are available with all estimation methods, which is specified by the METHOD=
option of the PROC CALIS statement. See the section “Fit Indices and Estimation Methods” on page 1491
for more details.

The options of the FITINDEX statement are as follows:

ALPHAECV=˛
specifies a .1 � ˛/100% confidence interval (0 � ˛ � 1) for the Browne and Cudeck (1993) expected
cross validation index (ECVI). See the ALPHAECV= option of the PROC CALIS statement on
page 1205.

ALPHARMS=˛
specifies a .1 � ˛/100% confidence interval (0 � ˛ � 1) for the Steiger and Lind (1980) root mean
square error of approximation (RMSEA) coefficient. See the ALPHARMS= option of the PROC
CALIS statement on page 1205.

BASEFIT=SAS-data-set

INBASEFIT=SAS-data-set
inputs the SAS-data-set that contains the fit information of the baseline model of your choice. See the
BASEFIT= option of the PROC CALIS statement on page 1206.

BASEFUNC=r (< DF= >i)

BASEFUNC(< DF= >i)=r
inputs the fit function value r and the degrees of freedom i of the baseline model of your choice. See
the BASEFUNC= option of the PROC CALIS statement on page 1207.

CHICORRECT= name | c

CHICORR= name | c
specifies a correction factor c for the chi-square statistics for model fit. See the CHICORRECT= option
of the PROC CALIS statement on page 1209.

CLOSEFIT=p
defines the criterion value p for indicating a close fit. See the CLOSEFIT= option of the PROC CALIS
statement on page 1211.

DFREDUCE=i
reduces the degrees of freedom of the �2 test by i . See the DFREDUCE= option of the PROC CALIS
statement on page 1215.
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NOADJDF
turns off the automatic adjustment of degrees of freedom when there are active constraints in the
analysis. See the NOADJDF option of the PROC CALIS statement on page 1225.

NOINDEXTYPE
disables the display of index types in the fit summary table. See the NOINDEXTYPE option of the
PROC CALIS statement on page 1225.

OFF= [names] | {names}

OFFLIST= [names] | {names}
turns off the printing of one or more fit indices or modeling information as indicated by names, where
a name represents a fit index, a group of fit indices, or modeling information. Names must be specified
inside a pair of parentheses and separated by spaces. By default, all fit indices are printed. See the
ON= option for the value of names.

ON < (ONLY) > = [names] | {names}

ONLIST < (ONLY) > = [names] | {names}
turns on the printing of one or more fit indices or modeling information as indicated by names, where
a name represents a fit index, a group of fit indices, or modeling information. Names must be specified
inside a pair of parentheses and separated by spaces. Because all fit indices and modeling information
are printed by default, using an ON= list alone is redundant. When both ON= and OFF= lists are
specified, the ON= list will override the OFF= list for those fit indices or modeling information that
appear on both lists. If an ON(ONLY)= list is used, only those fit indices or modeling information
specified in the list will be printed. Effectively, an ON(ONLY)= list is the same as the specification
with an ON= list with the same selections and an OFF=ALL list in the FITINDEX statement.

Output Control of Fit Index Groups and Modeling Information Group
You can use the following names to refer to the groups of fit indices or modeling information available
in PROC CALIS:

ABSOLUTE Absolute or stand-alone fit indices that measures the model fit without using a
baseline model.

ALL All fit indices available in PROC CALIS.

INCREMENTAL Incremental fit indices that measure model fit by comparing with a baseline model.

MODELINFO General modeling information including sample size, number of variables, number
of variables, and so on.

PARSIMONY Fit indices that take model parsimony into account.

Output Control of Modeling Information
You can use the following names to refer to the individual modeling information available in PROC
CALIS:

BASECHISQ Chi-square statistic for the baseline model.

BASEDF Degrees of freedom of the chi-square statistic for the baseline model.

BASEFUNC Baseline model function value.

BASELOGLIKE Baseline model –2 log-likelihood function value for METHOD=FIML.
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BASEPROBCHI p-value of the chi-square statistic for the baseline model fit.

BASESTATUS Status of the baseline model fitting for METHOD=FIML.

NACTCON Number of active constraints.

NIOBS Number of incomplete observations for METHOD=FIML.

NMOMENTS Number of elements in the moment matrices being modeled.

NOBS Number of observations assumed in the analysis.

NPARM | NPARMS Number of independent parameters.

NVAR Number of variables.

SATFUNC Saturated model function value for METHOD=FIML.

SATLOGLIKE Saturated model –2 log-likelihood function value for METHOD=FIML.

SATSTATUS Status of the saturated model fitting for METHOD=FIML.

Output Control of Absolute Fit Indices
You can use the following names to refer to the individual absolute fit indices available in PROC
CALIS:

CHISQ Chi-square statistic for model fit.

CN | CRITICAL_N Hoelter’s critical N.

CONTLIKE Percentage contribution to the Log-likelihood function value of each group in
multiple-group analyses with METHOD=FIML.

CONTRIBUTION | CONTCHI Percentage contribution to the chi-square value for multiple-group
analyses.

DF Degrees of freedom for the chi-square test for model fit.

ELLIPTIC Elliptical chi-square statistic for ML and GLS methods in single-group analyses
without mean structures. This index is computed only when you input the raw data
with the KURTOSIS option specified.

FUNCVAL Optimized function value.

GFI Goodness-of-fit index by Jöreskog and Sörbom.

LOGLIKE Fitted model –2 log-likelihood function value for METHOD=FIML.

PROBCHI P-value of the chi-square statistic for model fit.

PROBELLIPTIC P-value of the elliptical chi-square statistic.

RMR Root mean square residual.

SRMR Standardized root mean square residual.

ZTEST Z-test of Wilson and Hilferty.

Output Control of Parsimonious Fit Indices
You can use the following names to refer to the individual parsimonious fit indices available in PROC
CALIS:
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AGFI Adjusted GFI.

AIC Akaike information criterion.

CAIC Bozdogan corrected AIC.

CENTRALITY McDonald centrality measure.

ECVI Expected cross-validation index.

ECVI_LL | LL_ECVI Lower confidence limit for ECVI.

ECVI_UL | UL_ECVI Upper confidence limit for ECVI.

PGFI Parsimonious GFI.

PROBCLFIT Probability of close fit.

RMSEA Root mean square error of approximation.

RMSEA_LL | LL_RMSEA Lower confidence limit for RMSEA.

RMSEA_UL | UL_RMSEA Upper confidence limit for RMSEA.

SBC Schwarz Bayesian criterion.

Output Control of Incremental Fit Indices
You can use the following names to refer to the individual incremental fit indices available in PROC
CALIS:

BENTLERCFI | CFI Bentler comparative fit index.

BENTLERNFI Bentler-Bonett normed fit index.

BENTLERNNFI Bentler-Bonett nonnormed fit index.

BOLLENNFI Bollen normed fit index (Rho1).

BOLLENNNFI Bollen nonnormed fit index (Delta2).

PNFI James et al. parsimonious normed fit index.

OUTFIT=SAS-data-set
creates an output data set containing the values of the fit indices. This is the same as the OUTFIT=
option of the PROC CALIS statement on page 1229. See the section “OUTFIT= Data Set” on
page 1385 for details.

FREQ Statement
FREQ variable ;

If one variable in your data set represents the frequency of occurrence for the other values in the observation,
specify the variable’s name in a FREQ statement. PROC CALIS then treats the data set as if each observation
appears ni times, where ni is the value of the FREQ variable for observation i. Only the integer portion
of the value is used. If the value of the FREQ variable is less than 1 or is missing, that observation is not
included in the analysis. The total number of observations is considered to be the sum of the FREQ values.
You can use only one FREQ statement within the scope of each GROUP or the PROC CALIS statement.



1272 F Chapter 29: The CALIS Procedure

GROUP Statement
GROUP i < / options > ;

where i is an assigned group number between 1 and 9999, inclusively.

The GROUP statement signifies the beginning of a group specification block and designates a group number
for the group. All subsidiary group specification statements after a GROUP statement belong in that group
until another MODEL or GROUP statement is used. The subsidiary group specification statements refer to
one of the following four statements:

• FREQ statement on page 1271

• PARTIAL statement on page 1322

• VAR statement on page 1359

• WEIGHT statement on page 1367

For example, consider the following statements:

proc calis;
var X1-X4;
group 1 / label='Women' data=women_data;

freq Z;
group 2 / label='Men' data=men_data;

partial P;
model 1 / group = 1-2;

factor N=1; /* One factor exploratory factor analysis */
run;

In the GROUP statements, two groups are defined. Group 1, labeled as ‘Women’, refers to the data set
women_data. Group 2, labeled as ‘Men’, refers to the data set men_data. Both groups are fitted by an
exploratory factor model defined in Model 1, as indicated in the GROUP= option of the MODEL statement.
While the frequency variable Z defined in the FREQ statement is applicable only to Group 1, the partial
variable P defined in the PARTIAL statement is applicable only to Group 2. However, the VAR statement,
which appears before the definitions of both groups, applies globally to both Group 1 and Group 2. Therefore,
variables X1–X4 are the analysis variables in the two groups.

You can set group-specific options in each GROUP statement. All but one (that is, the LABEL= option) of
these options are also available in the MODEL and PROC CALIS statements. If you set these group-specific
options in the PROC CALIS statement, they will apply to all groups unless you respecify them in the GROUP
statement. If you set these group-specific options in the MODEL statement, they will apply to all groups
that are fitted by the associated model. In general, the group-specific options are transferred from the PROC
CALIS statement to the MODEL statements (if present) and then to the fitted groups. In the transferring
process, options are overwritten by the newer ones. If you want to apply some group-specific options to a
particular group only, you should set those options in the GROUP statement corresponding to that group.
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Option Available in the GROUP Statement Only

LABEL=name

NAME=name
specifies a label for the current group. You can use any valid SAS names up to 256 characters for
labels. You can also use quote strings for the labels. This option can be specified only in the GROUP
statement, not the PROC CALIS statement.

Options Available in the GROUP and PROC CALIS Statements

These options are available in the GROUP and PROC CALIS statements:

Option Description

DATA= on page 1214 Specifies the input data set
INWGT= on page 1217 Specifies the data set that contains the weight matrix
OUTSTAT= on page 1229 Specifies the data set for storing the statistical results
OUTWGT= on page 1230 Specifies the data set for storing the weight matrix
ROBITER= on page 1235 Specifies the maximum number of iterations for estimating robust

covariance and mean matrices
ROBPHI= on page 1235 Specifies the tuning parameter for robust methods

See the section “PROC CALIS Statement Options” on page 1205 for more details about these options. If you
specify these options in the PROC CALIS statement, they are transferred to all GROUP statements. They
might be overwritten by the respecifications in the individual GROUP statements.

Options Available in GROUP, MODEL, and PROC CALIS Statements

These options are available in the GROUP, MODEL, and PROC CALIS statements:

Option Description

ALPHALEV= on page 1205 Specifies the ˛-level criterion for detecting leverage points
ALPHAOUT= on page 1205 Specifies the ˛-level criterion for detecting outliers
BIASKUR on page 1209 Computes the skewness and kurtosis without bias

corrections
EDF= on page 1215 Defines nobs by the number of error df
INWGTINV on page 1218 Specifies that the INWGT= data set contains the inverse of

the weight matrix
KURTOSIS on page 1218 Computes and displays kurtosis
MAXMISSPAT= on page 1220 Specifies the maximum number of missing patterns to

display
NOBS= on page 1225 Defines the number of observations (nobs)
NOMISSPAT on page 1226 Suppresses the display of missing pattern analysis
PCORR on page 1230 Displays analyzed and estimated moment matrix
PLOTS= on page 1232 Specifies ODS Graphics selection
PWEIGHT on page 1367 Displays the weight matrix
RDF | DFR= on page 1234 Defines nobs by the number of regression df
RESIDUAL | RES on page 1234 Computes the default residuals
RESIDUAL | RES= on page 1234 Specifies the type of residuals
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Option Description

RIDGE on page 1235 Specifies the ridge factor for covariance matrix
SIMPLE on page 1237 Prints univariate statistics
TMISSPAT= on page 1238 Specifies the data proportion threshold for displaying the

missing patterns
VARDEF= on page 1239 Specifies variance divisor
WPENALTY= on page 1239 Specifies the penalty weight to fit correlations
WRIDGE= on page 1240 Specifies the ridge factor for the weight matrix

If you specify these options in the PROC CALIS statement, they are transferred to all MODEL statements.
These options are overwritten by the respecifications in the individual MODEL statements. After these
options are resolved in a given MODEL statement, they are transferred further to the GROUP statements
of which the associated groups are fitted by the model. Again, these options might be overwritten by the
respecifications in the individual GROUP statements.

LINCON Statement
LINCON constraint < , constraint . . . > ;

where constraint represents one of the following:

� number operator linear-term
� linear-term operator number

and linear-term is

< +|- > < coefficient * > parameter < < +|- > < coefficient * > parameter . . . >

The LINCON statement specifies a set of linear equality or inequality constraints of the following form:

nX
jD1

aijxj � bi ; i D 1; : : : ; m

The constraints must be separated by commas. Each linear constraint i in the statement consists of a linear
combination

P
j aijxj of a subset of the n parameters xj ; j D 1; : : : ; n; and a constant value bi separated

by a comparison operator. Valid operators are <=, <, >=, >, and = or, equivalently, LE, LT, GE, GT, and
EQ. PROC CALIS cannot enforce the strict inequalities < or >. Note that the coefficients aij in the linear
combination must be constant numbers and must be followed by an asterisk and the name of a parameter (that
is, listed in the PARMS, main, or subsidiary model specification statements). The following is an example of
the LINCON statement that sets a linear constraint on parameters x1 and x2:

lincon x1 + 3 * x2 <= 1;

Although you can express boundary constraints of individual parameters in LINCON statements, it is much
more convenient to specify these boundary constraints with the BOUNDS statement. For example, the
following LINCON statement essentially specifies boundary constraints on four parameters:
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lincon x1 <= 1,
x2 <= 1,
v1 > 0,
v2 > 0;

Instead of using the LINCON statement, you can specify the following BOUNDS statement:

bounds x1 x2 <= 1,
v1 v2 > 0;

Another advantage of using the BOUNDS statement for setting bounds for individual parameters is that when
a boundary constraint becomes active in the solution (that is, when the final estimate is on the boundary), a
Lagrange multiplier test on releasing the boundary constraint would be conducted when you also specify
the MOD option. However, no Lagrange multiplier test would be conducted if you specified the boundary
constraint with the LINCON statement.

LINEQS Statement
LINEQS < equation < , equation . . . > > ;

where equation represents:

dependent = term < + term . . . >

and each term represents one of the following:

� coefficient-name < (number ) > < * > variable-name
� prefix-name < (number ) > < * > variable-name
� < number > < * > variable-name

The LINEQS statement is a main model specification statement that invokes the LINEQS modeling language.
You can specify at most one LINEQS statement in a model, within the scope of either the PROC CALIS
statement or a MODEL statement. To completely specify a LINEQS model, you might need to add some
subsidiary model specification statements such as the VARIANCE, COV, and MEAN statements. The syntax
for the LINEQS modeling language is as follows:

LINEQS < equation < , equation . . . > > ;
VARIANCE partial-variance-parameters ;
COV covariance-parameters ;
MEAN mean-parameters ;

In the LINEQS statement, you use equations to specify the linear functional relations among manifest and
latent variables. Equations in the LINEQS statement are separated by commas.

In the VARIANCE statement, you specify the variance parameters. In the COV statement, you specify the
covariance parameters. In the MEAN statement, you specify the mean parameters. For details of these
subsidiary model specification statements, see the syntax of these statements.
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In the LINEQS statement, in addition to the functional relations among variables, you specify the coefficient
parameters of interest in the equations. There are five types of parameters you can specify in equations, as
shown in the following example:

lineqs
V1 = * F1 + E1,
V2 = (.5) * F1 + E2,
V3 = 1. * F1 + E3,
V4 = b4 * F1 + E4;
V5 = b5 (.4) * F1 + E5;

In this example, you have manifest variables V1–V5, which are related to a latent factor, denoted by F1,
as specified in the equations. In each equation, you have one outcome variable (V-variable), one predictor
variable (F1, which is assumed to be a latent factor, the so-called F-variable), and one error variable
(E-variable). The following four types of parameters have been specified:

• an unnamed free parameter

The effect of F1 on V1 in the first equation is an unnamed free parameter. Although you specify
nothing before the asterisk sign, the effect parameter is effectively specified. For an unnamed free
parameter, PROC CALIS generates a parameter name with the _Parm prefix and appended with a
unique integer (for example, _Parm1, _Parm2, and so on).

• an initial value

The effect of F1 on V2 in the second equation is an unnamed free parameter with an initial estimate of
0.5. PROC CALIS also generates a parameter name for this specification. Notice that you must use a
pair of parentheses for the initial value specification because it is interpreted as a fixed value otherwise,
as described in the next case.

• a fixed value

The effect of F1 on V3 in the third equation is an unnamed free parameter with a fixed value of 0.5. A
fixed value remains the same in the estimation. There is no parameter name for a fixed constant in the
model.

• a free parameter with a name

The effect of F1 on V4 in the fourth equation is a free parameter named b4. You do not provide an
initial estimate for this free parameter.

• a free parameter with a name and an initial estimate

The effect of F1 on V5 in the fifth equation is a free parameter named b5 with an initial estimate of 0.4.
Parameters with no starting values are initialized by various heuristic and effective methods in PROC
CALIS. See the section “Initial Estimates” on page 1506 for details.

Notice that there must be an error term in each equation. The error terms in equation must start with the prefix
‘E’, ‘e’, ‘D’, or ‘d’. See the section “Representing Latent Variables in the LINEQS Model” on page 1278 for
details about naming the factors and error terms. The effect or the path coefficient attached to an error term
must be 1.0. This is implicitly specified as in the preceding example. For example, there is no parameter
specification nor an asterisk sign before the error term E1 in the first equation, as shown in the following:
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V1 = * F1 + E1,

This specification is the same as the following explicit specification with a fixed constant 1.0 for the effect of
the error term E1:

V1 = * F1 + 1. * E1,

The equivalence shown here implies that you can also specify the third equation in the following equivalent
way:

V3 = F1 + E3,

This implicitly specifies a constant 1.0 for the effect of F1 on V3. You must be very careful about the
distinction between this specification and the following one with an asterisk before F1:

V3 = * F1 + E3,

With an asterisk sign, the effect of F1 on V3 becomes an unnamed free parameter in the current specification.
This interpretation is very different from the preceding one without an asterisk sign before F1, which assumes
a fixed constant of 1.0.

Except for the unnamed free parameter specification, you can omit the asterisk signs in all other types of
parameter specifications. That is, you can use the following equivalent statement for the preceding LINEQS
specification:

lineqs
V1 = * F1 + E1,
V2 = (.5) F1 + E2,
V3 = 1. F1 + E3,
V4 = b4 F1 + E4;
V5 = b5 (.4) F1 + E5;

Again, you cannot omit the asterisk in the first equation because it is intended to denote an unnamed free
parameter.

If your model contains many unconstrained parameters and it is too cumbersome to find different parameter
names, you can specify all those parameters by the same prefix-name. A prefix name is a short name called
“root” followed by two underscores __. Whenever a prefix-name is encountered, the CALIS procedure
generates a parameter name by appending a unique integer to the root. Hence, the prefix-name should have
few characters so that the generated parameter name is not longer than thirty-two characters. To avoid
unintentional equality constraints, the prefix names should not coincide with explicitly defined parameter
names. The following statement illustrates the uses prefix-names:

lineqs
V1 = 1. * F1 + E1,
V2 = b__ * F1 + E2,
V3 = b__ * F1 + E3,
V4 = b__ * F1 + E4;
V5 = b__ * F1 + E5;

In the five equations, only the first equation has a fixed constant 1.0 for the effect of F1 on V1. For all the
remaining equations, the effects of F1 on the variables are all free parameters with the prefix b. The generated
parameter names for these effects have unique integers appended to this prefix. For example, b1, b2, b3, and
b4 are the parameter names for these effects.
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Representing Latent Variables in the LINEQS Model

Because latent variables are widely used in structural equation modeling, PROC CALIS needs a way to
identify different types of latent variables that are specified in the LINEQS model. This is accomplished
by following some naming conventions for the latent variables. See the section “Naming Variables in the
LINEQS Model” on page 1403 for details about these naming rules. Essentially, latent factors (systematic
sources) must start with the letter ‘F’ or ‘f’. Error terms must start with the letter ‘E’, ‘e’, ‘D’, or ‘d’. Prefix ‘E’
or ‘e’ represents the error term of an endogenous manifest variable. Prefix ‘D’ or ‘d’ represents the disturbance
(or error) term of an endogenous latent variable. Although D- and E- variables are conceptually different, for
modeling purposes ‘D’ and ‘E’ prefixes are interchangeable in the LINEQS modeling language. Essentially,
only the distinction between latent factors (systematic sources) and errors or disturbances (unsystematic
sources) is critical in specifying a proper LINEQS model. Manifest variables in the LINEQS model do
not need to follow additional naming rules beyond those required by the general SAS System—they are
recognized by PROC CALIS by referring to the variables in the input data sets.

Types of Variables and Semantic Rules of Equations

Depending on their roles in the system of equations, variables in a LINEQS model can be classified into
endogenous or exogenous. An endogenous variable is a variable that serves as an outcome variable (left-hand
side of an equation) in one of the equations. All other variables are exogenous variables, including those
manifest variables that do not appear in any equations but are included in the model because they are specified
in the VAR statement for the analysis.

Merely following the syntactic rules described so far is not sufficient to define a proper system of equations
that PROC CALIS can analyze. You also need to observe the following semantic rules:

• Only manifest or latent variables can be endogenous. This means that you cannot specify any error or
disturbances variables on the left-hand side of the equations. This also means that error and disturbance
variables are always exogenous in the LINEQS model.

• An endogenous variable that appears on the left-hand side of an equation cannot appear on the left-hand
side of another equation. In other words, you have to specify all the predictors for an endogenous
variable in a single equation.

• An endogenous variable that appears on the left-hand side of an equation cannot appear on the right-
hand side of the same equation. This prevents a variable to have a direct effect on itself (but indirect
effect on itself is possible).

• Each equation must contain one and only one unique error term, be it an E-variable for a manifest
outcome variable or a D-variable for a latent outcome variable. If, indeed, you want to specify an
equation without an error term, you can equivalently set the variance of the error term to a fixed zero in
the VARIANCE statement.

Mean Structures in Equations

To fit a LINEQS model with mean structures, you can specify the MEANSTR option in the PROC CALIS or
the associated MODEL statement. This generates the default mean and intercept parameters for the model
(see the section “Default Parameters” on page 1279). Alternatively, you can specify the intercept parameters
with the Intercept variable in the equations or the mean parameters in the MEAN statement. The Intercept
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variable in the LINEQS model is a special “variable” that contains the value 1 for each observation. You do
not need to have this variable in your input data set, nor do you need to generate it in the DATA step. It serves
as a notational convenience in the LINEQS modeling language. The actual intercept parameter is expressed
as a coefficient parameter with the intercept variable. For example, consider the following LINEQS model
specification:

lineqs
V1 = a1 (10) * Intercept + 1.0 * F1 + E1,
V2 = * Intercept + * F1 + E2,
V3 = + b2 * F1 + E3,
V4 = a2 * Intercept + b2 * F1 + E4,
V5 = a2 * Intercept + b4 (.4) * F1 + E5;

In the first equation, a1, with a starting value at 10, is the intercept parameter of V1. In the second equation,
the intercept parameter of V2 is an unnamed free parameter. In the third equation, although you do not specify
the Intercept variable, the intercept parameter of manifest variable V3 is assumed to be a free parameter by
default. See the section “Default Parameters” on page 1279 for more details about default parameters. In the
fourth and the fifth equations, the intercept parameters are both named a2. This means that these intercepts
are constrained to be the same in the estimation.

In some cases, you might need to set the intercepts to fixed constants such as zeros. You can use the following
syntax:

lineqs
V1 = 0 * Intercept + F_intercept + a2 * F_slope + E1;

This sets the intercept parameter of V1 to a fixed zero. An example of this application is the analysis of latent
growth curve model in which you define the intercept as a random variable represented by a latent factor (for
example, F_intercept in the specification). See Example 29.25 for a detailed example.

To complete the specification of the mean structures in the LINEQS model, you might want to use the MEAN
statement to specify the mean parameters. For example, the following statements specify the means of
F_intercept and F_slope as unnamed free parameters in the LINEQS model:

lineqs
V1 = 0 * Intercept + F_intercept + 1 * F_slope + E1;

mean
F_intercept F_slope;

See the MEAN statement for details.

Default Parameters

It is important to understand the default parameters in the LINEQS model. First, if you know which parameters
are default free parameters, you can make your specification more efficient by omitting the specifications
of those parameters that can be set by default. For example, because all variances and covariances among
exogenous variables (excluding error terms) are free parameters by default, you do not need to specify them
with the COV and VARIANCE statements if these variances and covariances are not constrained. Second,
if you know which parameters are default fixed zero parameters, you can specify your model accurately.
For example, because all error covariances in the LINEQS model are fixed zeros by default, you must use
the COV statement to specify the covariances among the errors if you want to fit a model with correlated
errors. See the section “Default Parameters in the LINEQS Model” on page 1407 for details about the default
parameters of the LINEQS model.
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Modifying a LINEQS Model from a Reference Model

This section assumes that you use a REFMODEL statement within the scope of a MODEL statement and
that the reference model (or base model) is a LINEQS model. The reference model is called the old model,
and the model being defined is called the new model. If the new model is not intended to be an exact copy
of the old model, you can use the extended LINEQS modeling language described in this section to make
modifications within the scope of the MODEL statement for the new model.

The syntax of the extended LINEQS modeling language is the same as that of the ordinary LINEQS modeling
language (see the section “LINEQS Statement” on page 1275):

LINEQS < equation < , equation . . . > > ;
VARIANCE partial-variance-parameters ;
COV covariance-parameters ;
MEAN mean-parameters ;

The new model is formed by integrating with the old model in the following ways:

Duplication: If you do not specify in the new model an equation with an outcome variable (that is, a
variable on the left side of the equal sign) that exists in the old model, the equation with
that outcome variable in the old model is duplicated in the new model. For specifications
other than the LINEQS statement, if you do not specify in the new model a parameter
location that exists in the old model, the old parameter specification is duplicated in the
new model.

Addition: If you specify in the new model an equation with an outcome variable that does not exist
as an outcome variable in the equations of the old model, the equation is added in the
new model. For specifications other than the LINEQS statement, if you specify in the
new model a parameter location that does not exist in the old model, the new parameter
specification is added in the new model.

Deletion: If you specify in the new model an equation with an outcome variable that also exists
as an outcome variable in an equation of the old model and you specify the missing
value ‘.’ as the only term on the right-hand side of the equation in the new model, the
equation with the same outcome variable in the old model is not copied into the new
model. For specifications other than the LINEQS statement, if you specify in the new
model a parameter location that also exists in the old model and the new parameter is
denoted by the missing value ‘.’, the old parameter specification is not copied into the new
model.

Replacement: If you specify in the new model an equation with an outcome variable that also exists as
an outcome variable in an equation of the model and the right-hand side of the equation in
the new model is not denoted by the missing value ‘.’, the new equation replaces the old
equation with the same outcome variable in the new model. For specifications other than
the LINEQS statement, if you specify in the new model a parameter location that also
exists in the old model and the new parameter is not denoted by the missing value ‘.’, the
new parameter specification replaces the old one in the new model.
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For example, the following two-group analysis specifies Model 2 by referring to Model 1 in the REFMODEL
statement:

proc calis;
group 1 / data=d1;
group 2 / data=d2;
model 1 / group=1;

lineqs
V1 = 1 * F1 + E1,
V2 = load1 * F1 + E2,
V3 = load2 * F1 + E3,
F1 = b1 * V4 + b2 * V5 + b3 * V6 + D1;

variance
E1-E3 = ve1-ve3,
D1 = vd1,
V4-V6 = phi4-phi6;

cov
E1 E2 = cve12;

model 2 / group=2;
refmodel 1;
lineqs

V3 = load1 * F1 + E3;
cov

E1 E2 = .,
E2 E3 = cve23;

run;

Model 2 is the new model which refers to the old model, Model 1. This example illustrates the four types of
model integration:

• Duplication: All equations, except the one with outcome variable V3, in the old model are duplicated
in the new model. All specifications in the VARIANCE and COV statements, except the covariance
between E1 and E2, in the old model are also duplicated in the new model.

• Addition: The parameter cve23 for the covariance between E2 and E3 is added in the new model.

• Deletion: The specification of covariance between E1 and E2 in the old model is not copied into the
new model, as indicated by the missing value ‘.’ specified in the new model.

• Replacement: The equation with V3 as the outcome variable in the old model is replaced with a new
equation in the model. The new equation uses parameter load1 so that it is now constrained to be the
same as the regression coefficient in the equation with V2 as the outcome variable.
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LISMOD Statement
LISMOD < var-lists > ;

where var-lists represent one or more of the following:

• YVAR | YV | Y = var-list

• XVAR | XV | X = var-list

• ETAVAR | ETAV | ETA = var-list

• XIVAR | XIV | XI | KSIVAR | KSIV | KSI = var-list

LISMOD stands for LISREL modeling, where LISREL is the program developed by Jöreskog and Sörbom
(1988). Like the original implementation of LISREL, LISMOD uses a matrix specification interface. To
complete the LISMOD specification, you might need to add as many MATRIX statements as needed, as
shown in the following statement structure for the LISMOD model:

LISMOD var-lists ;
MATRIX matrix-name parameters-in-matrix ;
Repeat the MATRIX statement as needed ;

The matrix-name in the MATRIX statement should be one of the twelve model matrices in LISMOD, as
listed in the following:

• Matrices in the structural model: _ALPHA_, _KAPPA_, _BETA_, _GAMMA_, _PHI_, or _PSI_

• Matrices in the measurement model for y-variables: _NUY_, _LAMBDAY_, or _THETAY_

• Matrices in the measurement model for x-variables: _NUX_, _LAMBDAX_, or _THETAX_

See the section “Model Matrices in the LISMOD Model” on page 1410 for definitions of these matrices and
their roles in the LISMOD modeling language. See the MATRIX statement on page 1295 for the details of
parameter specification.

In the LISMOD statement, you can specify the following four lists of variables:

• YVAR= list is for manifest variables y that are directly related to the endogenous latent variables �
(eta). Variables in the list are called y-variables.

• XVAR= list is for manifest variables x that are directly related to the exogenous latent variables � (xi
or ksi). Variables in the list are called x-variables.

• ETAVAR= list is for endogenous latent variables �. Variables in the list are called �-variables.

• XIVAR= list is for exogenous latent variables �. Variables in the list are called �-variables.

The order of variables in the lists of the LISMOD statement is used to define the variable order in rows and
columns of the LISMOD model matrices.
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Depending on the model of interest, you might not need to specify all the lists of variables. When some
variable lists are not specified, the full model reduces to specialized submodels. However, to be a proper
submodel in the LISMOD modeling language, it is necessary (but not sufficient) that at least one of the
YVAR= or XVAR= lists is defined. See the section “LISMOD Submodels” on page 1413 for the details about
LISMOD submodels that PROC CALIS can handle.

An example of a LISMOD model specification is shown as follows:

proc calis;
lismod xvar=x1-x3 yvar=y1-y6 xivar=xi etavar=eta1-eta2;
matrix _LAMBDAY_ [,1] = 1. load3 load4,

[,2] = 0. 0. 0. 1. load5 load6;
matrix _THETAY_ [1,1] = ey1-ey3,

[2,1] = cey;
matrix _LAMBDAX_ [,] = 1. load1 load2;
matrix _THETAX_ [1,1] = 3*ex;
matrix _GAMMA_ [,1] = beta1 beta2;
matrix _PHI_ [1,1] = phi;
matrix _PSI_ [1,1] = psi1-psi2;

run;

In this example, you have three x-variables x1–x3, six y-variables y1–y6, one �-variable xi, and two �-
variables eta1–eta2. The numbers of variables in these lists define the dimensions of the LISMOD model
matrices. For example, matrix _LAMBDAY_ is 6 � 2, with y1–y6 as the row variables and eta1–eta2 as the
column variables. Matrix _THETAX_ is 3 � 3, with x1–x3 as the row and column variables. In the MATRIX
statements, you specify parameters in the elements of the matrices. After the matrix name, you specify in
square brackets ‘[’ and ‘]’ the starting row and column numbers of the first element to be parameterized.
After the equal sign, you specify fixed or free parameters for the matrix elements.

Depending on how you specify the starting row and column numbers, the parameter specification might
proceed differently. See the MATRIX statement on page 1295 for a detailed description. In this example,
the first specification of the parameters in the _LAMBDAY_ matrix starts from [,1]—meaning that it starts
from the first column and proceeds downwards. As a result, the [1,1] element is a fixed constant 1.0, the [2,1]
element is a free parameter called load3, and the [3,1] element is a free parameter called load4. Similarly, in
the second specification in the _LAMBDAY_ matrix, the [1,2], [2,2], [3,2], and [4,2] elements take constant
values 0, 0, 0, and 1, respectively, and the [5,2] and [6,2] elements are free parameters load5 and load6,
respectively.

You can also use similar notation to specify the parameters of a row. For example, with the notation [2,] for
the starting row and column numbers, specification proceeds to the left with the same second row in the
matrix.

If you have specified both starting row and column numbers, such as those in the first specification in
matrix _THETAY_, the parameter specification starts from [1,1] and proceeds to the next row and column
numbers—that is [2,2], [3,3], and so on. This results in specifying the diagonal elements of matrix _THETAY_
as free parameters ey1, ey2, and ey3.

With the notation [,], no starting row and column numbers are specified. Specification starts from the first
valid element in the matrix and proceeds row-wise for all valid elements in the matrix. For example, in the
matrix _LAMBDAX_ statement, the [1,1] element of matrix _LAMBDAX_ is a fixed constant 1, and the [1,2]
and [1,3] elements are free parameters load1 and load2, respectively.
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Default Parameters

It is important to understand the default parameters in the LISMOD model. First, if you know which
parameters are default free parameters, you can make your specification more efficient by omitting some
specifications. For example, because all variances and covariances among the exogenous �-variables
(excluding error terms) are free parameters by default, you do not need to specify them with MATRIX
statement if these variances and covariances are not constrained. Second, if you know which parameters are
default fixed zero parameters, you can specify your model accurately. For example, because all measurement
errors in the LISMOD model are fixed zeros by default, you must use the MATRIX statement to specify
the covariances among the errors in the‚x (_THETAX_) or‚y (_THETAY_) matrices if you want to fit a
model with some correlated measurement errors. See the section “Default Parameters in the LISMOD Model”
on page 1416 for details about the default parameters of the LISMOD model.

Modifying a LISMOD Model from a Reference Model

This section assumes that you use a REFMODEL statement within the scope of a MODEL statement and that
the reference model (or base model) is also a LISMOD model. The reference model is called the old model,
and the model that refers to this old model is called the new model. If the new model is not intended to be an
exact copy of the old model, you can use the extended LISMOD modeling language described in this section
to make modifications within the scope of the MODEL statement for the new model. The syntax is similar to,
but not exactly the same as, the ordinary LISMOD modeling language (see the section “LISMOD Statement”
on page 1282). The respecification syntax for a LISMOD model is shown as follows:

LISMOD ;
MATRIX matrix-name parameters-in-matrix ;
Repeat the MATRIX statement as needed ;

First, in the respecification you should not put any variable lists in the LISMOD statement. The reason is
that the parameter respecifications in the new model refer to the variable lists of the old model. Therefore,
the variable lists in the new model are implicitly assumed to be exactly the same as those in the old model.
Because of this, the LISMOD statement is entirely optional for the respecification in the new model.

Second, you can use MATRIX matrix-name statements to modify the old model by using the same syntax as
in the LISMOD modeling language. The matrix-name can be one of the twelve possible LISMOD matrices.
In addition, in the respecification syntax you can use the missing value ‘.’ to drop a parameter specification
from the old model.

The new model is formed by integrating with the old model in the following ways:

Duplication: If you do not specify in the new model a parameter location that exists in the old model,
the old parameter specification is duplicated in the new model.

Addition: If you specify in the new model a parameter location that does not exist in the old model,
the new parameter specification is used in the new model.

Deletion: If you specify in the new model a parameter location that also exists in the old model and
the new parameter is denoted by the missing value ‘.’, the old parameter specification is
not copied into the new model.

Replacement: If you specify in the new model a parameter location that also exists in the old model and
the new parameter is not denoted by the missing value ‘.’, the new parameter specification
replaces the old one in the new model.
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For example, the following two-group analysis specifies Model 2 by referring to Model 1 in the REFMODEL
statement:

proc calis;
group 1 / data=d1;
group 2 / data=d2;
model 1 / group=1;

lismod xvar=X1-X3 yvar=Y1-Y6 xivar=xi etavar=eta1-eta2;
matrix _LAMBDAY_ [,1] = 1. load3 load4,

[,2] = 0. 0. 0. 1. load5 load6;
matrix _THETAY_ [1,1] = ey1-ey3,

[2,1] = cey;
matrix _LAMBDAX_ [,] = 1. load1 load2;
matrix _THETAX_ [1,1] = 3*ex;
matrix _GAMMA_ [,1] = beta1 beta2;
matrix _PHI_ [1,1] = phi;
matrix _PSI_ [1,1] = psi1-psi2;

model 2 / group=2;
refmodel 1;
matrix _THETAY_ [2,1] = .;
matrix _THETAX_ [1,1] = ex1-ex3;
matrix _BETA_ [2,1] = beta;

run;

In this example, Model 2 is the new model which refers to the old model, Model 1. It illustrates the four
types of model integration:

• Duplication: All parameter locations and specifications in the old model are duplicated in the new
model, except for the [2,1] element in matrix _THETAY_ and the diagonal of matrix _THETAX_,
which are modified in the new model.

• Addition: The _BETA_[2,1] parameter location is added with a new parameter beta in the new model.
This indicates that eta1 is a predictor variable of eta2 in the new model, but not in the old model.

• Deletion: Because the missing value ‘.’ is used for the parameter value, the _THETAY_[2,1] parameter
location is no longer defined as a free parameter in the new model. In the old model, the same location
is defined by the free parameter cey.

• Replacement: The diagonal elements of the _THETAX_ matrix in the new model are now defined
by three distinct parameters ex1–ex3. This replaces the old specification where a single constrained
parameter ex is applied to all the diagonal elements in the _THETAX_ matrix.

LMTESTS Statement
LMTESTS | LMTEST option < option . . . > ;

where option represents one of the following:

� display-option
� test-set
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and test-set represents one of the following:

� set-name = [ regions ]
� set-name = f regions g

where set-name is the name of the set of Lagrange multiplier (LM) tests defined by the regions that
follow after the equal sign and regions are keywords denoting specific sets of parameters in the model.

You can use the LMTESTS statement to set display-options or to customize the test-sets for the LM tests.
The LMTESTS statement is one of the model analysis statements. It can be used within the scope of the
CALIS statement so that the options will apply to all models. It can also be used within the scope of each
MODEL statement so that the options will apply only locally. Therefore, different models within a CALIS
run can have very different LMTESTS options.

The LM Tests Display Options

The following are the display-options for the LM tests:

DEFAULT
conducts the default sets of LM tests for freeing fixed parameters in the model. This option is used
when you need to reset the default sets of LM tests in the local model. For example, you might have
turned off the default LM tests by using the NODEFAULT option in the LMTESTS statement within
the scope of PROC CALIS statement. However, for the model under the scope of a particular MODEL
statement, you can use this DEFAULT option in the local LMTESTS statement to turn on the default
LM tests again.

MAXRANK
sets the maximum number of rankings within a set of LM tests. The actual number of test rankings
might be smaller because the number of possible LM tests within a set might be smaller than the
maximum number requested.

NODEFAULT
turns off the default sets of LM tests for freeing fixed parameters in the model. As a result, only the
customized LM tests defined in the test-sets of the LMTESTS statement are conducted and displayed.
Note that the LM tests for equality and active boundary constraints are not turned off by this option. If
you specify this option in the LMTESTS statement within the scope of the PROC CALIS statement, it
will propagate to all models.

NORANK
turns off the ranking of the LM tests. Ranking of the LM tests is done automatically when the model
modification indices are requested. The NORANK option is ignored if you also set the MAXRANK
option.

LMMAT
prints the sets of LM tests in matrix form, in addition to the normal LM test results.
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The Customized Sets of LM Tests: Syntax of the Test-sets

In addition to the display-options, you can define customized sets of LM tests as test-sets in the LMTESTS
statement. You can define as many test-sets as you like. Ranking of the LM tests will be done individually
for each test-set . For example, the following LMTESTS statement requests that the default sets of LM tests
not be conducted by the NODEFAULT option. Instead, two customized test-sets are defined.

lmtests nodefault MyFirstSet=[ALL] MySecondSet=[COVEXOG COVERR];

The first customized set MyFirstSet pulls all possible parameter locations together for the LM test ranking
(ALL keyword). The second customized set MySecondSet pulls only the covariances among exogenous
variables (COVEXOG keyword) and among errors (COVERR keyword) together for the LM test ranking.

Two different kinds of regions for LM tests are supported in PROC CALIS: matrix-based or non-matrix-based.

The matrix-based regions can be used if you are familiar with the matrix representations of various types of
models. Note that defining test-sets by using matrix-based regions does not mean that LM tests are printed
in matrix format. It means only that the parameter locations within the specified matrices are included into
the specific test-sets for LM test ranking. For matrix output of LM tests, use the LMMAT option in the
LMTESTS statement.

Non-matrix-based regions do not assume the knowledge of the model matrices. They are easier to use in most
situations. In addition, non-matrix-based regions can cover special subsets of parameter locations that cannot
be defined by model matrices and submatrices. For example, because of the compartmentalization according
to independent and dependent variables in the LINEQS model matrices, the sets of LM tests defined by the
LINEQS matrix-based regions are limited. For example, you cannot use any matrix-based regions to request
LM tests for new paths to existing independent variables in the LINEQS model. Such a matrix does not exist
in the original specification. However, you can use the non-matrix based region NEWENDO to refer to these
new paths.

The regions for parameter locations are specified by keywords in the LMTESTS statement. Because the
regions are specific to the types of models, they are described separately for each model type in the following.

The LM Test Regions for COSAN Models

ALLMAT
specifies all parameter locations in all matrices.

CENTRAL
specifies all parameter locations in the central covariance matrices in all terms.

MATRIX= [set-of-matrices] | {set-of-matrices}

MAT= [set-of-matrices] | {set-of-matrices}

MATSET= [set-of-matrices] | {set-of-matrices}
specifies the parameter locations in the matrices specified in set-of-matrices.

MEANVEC
specifies all parameter locations in the central mean vectors in all terms.

OUTER
specifies all parameter locations in all matrices except for the central covariance matrices and central
mean vectors in all terms.
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The LM Test Regions for FACTOR Models

The keywords for the matrix-based regions are associated with the FACTOR model matrices. See the section
“Summary of Matrices in the FACTOR Model” on page 1399 for the definitions and properties of these
matrices.

Keywords for Matrix-Based Regions
_FACTERRV_ | FACTERRV

specifies the error variances.

_FACTFCOV_ | FACTFCOV
specifies the covariances among factors.

_FACTINTE_ | FACTINTE
specifies the intercepts.

_FACTLOAD_ | FACTLOAD
specifies the factor loadings.

_FACTMEAN_ | FACTMEAN
specifies the factor means.

Keywords for Non-Matrix-Based Regions
ALL

specifies all parameter locations.

COV
specifies the covariances among factors.

COVERR
specifies the covariances among errors.

COVFACT | COVLV
specifies the covariances among factors.

FIRSTMOMENTS
specifies the means of factors and the intercepts.

INTERCEPTS
specifies the intercepts.

LOADINGS
specifies the factor loadings.

MEANS | MEAN
specifies the means of factors.
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The LM Test Regions for LINEQS Models

Keywords for Matrix-Based Regions
The keywords for the matrix-based regions are associated with the LINEQS model matrices. See the section
“Matrix Representation of the LINEQS Model” on page 1403 for definitions of these model matrices and see
the section “Summary of Matrices and Submatrices in the LINEQS Model” on page 1405 for the names and
properties and the model matrices and submatrices.

_EQSALPHA_ | EQSALPHA
specifies the intercepts of dependent variables.

_EQSBETA_ | EQSBETA
specifies effects of dependent variables on dependent variables.

_EQSGAMMA_ | _EQSGAMMA_SUB_ | EQSGAMMA | EQSGAMMASUB
specifies the effects of independent variables (excluding errors) on dependent variables. Because
effects of errors on dependent variables are restricted to ones in the LINEQS model, LM tests on
_EQSGAMMA_ and _EQSGAMMA_SUB_ (submatrix of _EQSGAMMA_) are the same.

_EQSNU_ | _EQSNU_SUB_ | EQSNU | EQSNUSUB
specifies the means of independent variables (excluding errors). Because means of errors are restricted
to zero in the LINEQS model, LM tests on _EQSNU_ and _EQSNU_SUB_ (submatrix of _EQSNU_)
are the same.

_EQSPHI_ | EQSPHI
specifies variances and covariances among all independent variables, including errors.

_EQSPHI11_ | EQSPHI11
specifies variances and covariances among independent variables, excluding errors.

_EQSPHI21_ | EQSPHI21
specifies covariances between errors and disturbances with other independent variables.

_EQSPHI22_ | EQSPHI22
specifies variances and covariances among errors and disturbances.

Keywords for Non-Matrix-Based Regions
ALL

specifies all possible parameter locations.

COV
specifies all covariances among independent variables, including errors and disturbances.

COVERR
specifies covariances among errors or disturbances.

COVEXOG
specifies covariances among independent variables, excluding errors and disturbances.



1290 F Chapter 29: The CALIS Procedure

COVEXOGERR
specifies covariances of errors and disturbances with other independent variables.

COVLV | COVFACT
specifies covariances among latent variables (excluding errors and disturbances).

COVMV | COVOV
specifies covariance among independent manifest variables.

EQUATION | EQUATIONS
specifies all possible linear relationships among variables.

FIRSTMOMENTS
specifies means and intercepts.

INTERCEPTS | INTERCEPT
specifies intercepts of dependent variables.

LV==->LV | LV–>LV
specifies all possible effects of latent factors on latent factors.

LV==>MV | LV–>MV | MV<==LV | MV<–LV
specifies all possible effects of latent factors on manifest variables.

LV<==MV | LV<–MV | MV==>LV | MV–>LV
specifies all possible effects of manifest variables on latent factors.

MEANS | MEAN
specifies the means of independent factors.

MV==>MV | MV–>MV
specifies all possible effects of manifest variables on manifest variables.

NEWDEP | NEWENDO
specifies effects of other variables on the independent variables in the original model.

PATHS | PATH
specifies all possible linear relationships among variables.

The LM Test Regions for LISMOD Models

The keywords for the matrix-based regions are associated with the LISMOD model matrices. See the section
“Model Matrices in the LISMOD Model” on page 1410 for the definitions and properties of these matrices.

Keywords for Matrix-Based Regions
_ALPHA_ | ALPHA

specifies the _ALPHA_ matrix.

_BETA_ | BETA
specifies the _BETA_ matrix.
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_GAMMA_ | GAMMA
specifies the _GAMMA_ matrix.

_KAPPA_ | KAPPA
specifies the _KAPPA_ matrix.

_LAMBDA_ | LAMBDA
specifies the _LAMBDAX_ and _LAMBDAY_ matrices.

_LAMBDAX_ | LAMBDAX
specifies the _LAMBDAX_ matrix.

_LAMBDAY_ | LAMBDAY
specifies the _LAMBDAY_ matrix.

_NU_ | NU
specifies the _NUX_ and _NUY_ matrices.

_NUX_ | NUX
specifies the _NUX_ matrix.

_NUY_ | NUY
specifies the _NUY_ matrix.

_PHI_ | PHI
specifies the _PHI_ matrix.

_PSI_ | PSI
specifies the _PSI_ matrix.

_THETA_ | THETA
specifies the _THETAX_ and _THETAY_ matrices.

_THETAX_ | THETAX
specifies the _THETAX_ matrix.

_THETAY_ | THETAY
specifies the _THETAY_ matrix.

Keywords for Non-Matrix-Based Regions
ALL

specifies all model matrices.

COV
specifies all covariance parameters in _THETAY_, _THETAX_, _PHI_, and _PSI_.

COVERR
specifies all covariances for errors or disturbances in _THETAY_, _THETAX_, and _PSI_.
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COVFACT | COVLV
specifies all covariances among latent factors in _PHI_ when the �-variables exist, and in _PSI_ when
the �-variables exist without the presence of the �-variables.

FIRSTMOMENTS
specifies all intercepts and means in _NUY_, _NUX_, _ALPHA_, and _KAPPA_.

INTERCEPTS | INTERCEPT
specifies all intercepts in _NUY_, _NUX_, and _ALPHA_.

LOADING | LOADINGS
specifies the coefficients in _LAMBDAY_ and _LAMBDAX_.

LV==>LV | LV–>LV
specifies the effects of latent variables on latent variables. Depending on the type of LISMOD model,
the _BETA_ and _GAMMA_ might be involved.

LV==>MV | LV–>MV | MV<==LV | MV<–LV
specifies the effects of latent variables on manifest variables. Depending on the type of LISMOD
model, the _LAMBDAY_, _LAMBDAX_, and _GAMMA_ matrices might be involved.

MEANS | MEAN
specifies the mean parameters. Depending on the type of LISMOD model, the _ALPHA_ and
_KAPPA_ matrices might be involved.

MV==>MV | MV–>MV
specifies effects of manifest variables on manifest variables. Depending on the type of LISMOD model,
the _BETA_ and _GAMMA_ matrices might be involved.

PATHS | PATH
specifies all path coefficients. Depending on the type of LISMOD model, the _LAMBDAY_, _LAMB-
DAX_, _BETA_, and _GAMMA_ matrices might be involved.

The LM Test Regions for MSTRUCT Models

The keywords for the matrix-based regions are associated with the MSTRUCT model matrices. See the
section “Model Matrices in the MSTRUCT Model” on page 1417 for the definitions and properties of these
matrices.

Keywords for Matrix-Based Regions
_MSTRUCTCOV_ | _COV_ | MSTRUCTCOV

specifies the _MSTRUCTCOV_ or _COV_ matrix.

_MSTRUCTMEAN_ | _MEAN_ | MSTRUCTMEAN
specifies the _MSTRUCTMEAN_ or _MEAN_ vector.
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Keywords for Non-Matrix-Based Regions
ALL

specifies the _MSTRUCTCOV_ (or _COV_) and _MSTRUCTMEAN_ (or _MEAN_) matrices.

COV
specifies the _MSTRUCTCOV_ or _COV_ matrix.

MEANS | MEAN
specifies the _MSTRUCTMEAN_ or _MEAN_ matrix.

The LM Test Regions for PATH and RAM Models

The keywords for the matrix-based regions are associated with the submatrices of the RAM model matrices.
See the section “Partitions of the RAM Model Matrices and Some Restrictions” on page 1427 for the
definitions of these submatrices and the section “Summary of Matrices and Submatrices in the RAM Model”
on page 1428 for the summary of the names and properties of these submatrices.

Keywords for Matrix-Based Regions
_RAMA_ | _A_ | RAMA

specifies the _RAMA_ matrix.

_RAMA_LEFT_ | _A_LEFT_ | RAMALEFT
specifies the left portion of the _RAMA_ matrix.

_RAMA_LL_ | _A_LL_ | RAMALL
specifies the lower left portion of the _RAMA_ matrix.

_RAMA_LR_ | _A_LR_ | RAMALR
specifies the lower right portion of the _RAMA_ matrix.

_RAMA_LOWER_ | _A_LOWER_ | RAMALOWER
specifies the lower portion of the _RAMA_ matrix. This is equivalent to the region specified by the
NEWENDO keyword.

_RAMA_RIGHT_ | _A_RIGHT_ | RAMARIGHT
specifies the right portion of the _RAMA_ matrix.

_RAMA_UPPER_ | _A_UPPER_ | RAMAUPPER
specifies the upper portion of the _RAMA_ matrix.

_RAMALPHA_ | RAMALPHA
specifies the _RAMALPHA_ matrix.

_RAMBETA_ | RAMBETA
specifies the _RAMBETA_ matrix.

_RAMGAMMA_ | RAMGAMMA
specifies the _RAMGAMMA_ matrix.
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_RAMNU_ | RAMNU
specifies the _RAMNU_ matrix.

_RAMP_ | _P_ | RAMP
specifies the _RAMP_ matrix.

_RAMP11_ | RAMP11
specifies the _RAMP11_ matrix.

_RAMP21_ | RAMP21
specifies the _RAMP21_ matrix.

_RAMP22_ | RAMP22
specifies the _RAMP22_ matrix.

_RAMW_ | _W_ | RAMW
specifies the _RAMW_ vector.

Keywords for Non-Matrix-Based Regions
ALL

specifies all possible parameter locations.

ARROWS | ARROW
specifies all possible paths (that is, the entries in the _RAMA_ matrix).

COV
specifies all covariances and partial covariances (that is, the entries in the _RAMP_ matrix).

COVERR
specifies partial covariances among endogenous variables (that is, the entries in the _RAMP11_ matrix).

COVEXOG
specifies covariances among exogenous variables (that is, the entries in the _RAMP22_ matrix).

COVEXOGERR
specifies partial covariances of endogenous variables with exogenous variables (that is, the entries in
the _RAM21_ matrix).

COVLV | COVFACT
specifies covariance among latent factors (that is, entries in _RAMP11_ pertaining to latent variables).

COVMV | COVOV
specifies covariance among manifest variables (that is, entries in _RAMP11_ pertaining to manifest
variables).

FIRSTMOMENTS
specifies means or intercepts (that is, entries in _RAMW_ vector).

INTERCEPTS | INTERCEPT
specifies intercepts for endogenous variables (that is, entries in _RAMALPHA_ vector).
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LV==>LV | LV–>LV
specifies effects of latent variables on latent variables.

LV==>MV | LV–>MV | MV<==LV | MV<–LV
specifies effects of latent variables on manifest variables.

LV<==MV | LV<–MV | MV==>LV | MV–>LV
specifies effects of manifest variables on latent variables.

MEANS | MEAN
specifies the means of exogenous variables (that is, entries in the _RAMNU_ vector).

MV==>MV | MV–>MV
specifies effects of manifest variables on manifest variables.

NEWENDO
specifies new paths to the exogenous variables in the original model.

PATHS | PATH
specifies all possible paths (that is, the entries in the _RAMA_ matrix).

MATRIX Statement
MATRIX matrix-name < location < = parameter-spec > < , location < = parameter-spec . . . > > > ;

MATRIX statement specifies the matrix elements (locations) and their parameters. Parameters can be fixed
or free, with or without initial estimates. The matrix-name indicates the matrix to specify in the MATRIX
statement. The location indicates the starting row and column numbers of the matrix being specified and the
parameter-spec is a list of free or fixed parameters for the elements that are indicated by the location.

The MATRIX statement is a subsidiary model specification statement of the COSAN, LISMOD, and
MSTRUCT modeling languages. You might need to use the MATRIX statements as many times as needed
for specifying your model. However, you can use the MATRIX statement at most once for each distinct
model matrix.

Valid Matrix Names for the COSAN Model

The valid matrix-names depend on the your specification in the COSAN statement in which you define the
COSAN model matrices and their properties. Except for those fixed matrices with the IDE or ZID type, you
can use the MATRIX statement to specify any COSAN model matrices you define in the COSAN statement.

Valid Matrix Names for the LISMOD Model

There are 12 model matrices in the LISMOD model, and they correspond to the following valid matrix-names:

• matrices and their types in the measurement model for the y-variables

_LAMBDAY_ the matrix of regression coefficients of the y-variables on the �-variables (general,
GEN)
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_NUY_ the vector of intercept terms of the y-variables (general, GEN)

_THETAY_ the error covariance matrix for the y-variables (symmetric, SYM)

• matrices and their types in the measurement model for the x-variables

_LAMBDAX_ the matrix of regression coefficients of the x-variables on the �-variables (general,
GEN)

_NUX_ the vector of intercept terms of the x-variables (general, GEN)

_THETAX_ the error covariance matrix for the x-variables (symmetric, SYM)

• matrices and their types in the structural model

_ALPHA_ the vector of intercept terms of the �-variables (general, GEN)

_BETA_ the matrix of regression coefficients of the �-variables on the �-variables (general,
GEN)

_GAMMA_ the matrix of regression coefficients of the �-variables on the �-variables (general,
GEN)

_KAPPA_ the mean vector for the �-variables (general, GEN)

_PHI_ the covariance matrix for the �-variables (symmetric, SYM)

_PSI_ the error covariance matrix for the �-variables (symmetric, SYM)

Valid Matrix Names for the MSTRUCT Modeling Language

The following matrix-names are valid for the MSTRUCT modeling language:

_COV_ the covariance matrix (symmetric, SYM)

_MEAN_ the mean vector (general, GEN)

Specifying Locations in Model Matrices

The five main types of matrix locations (elements) specification in the MATRIX statement are briefly
described in the following:

• Unspecified location: Blank or [ , ]

Use this notation to specify the [1,1] element of the matrix, and to specify the remaining valid
elements of the matrix in a prescribed order until all the parameters in the parameter-spec list are
assigned.

• Row-and-column location: [i,j], [@i,j], [i,@j], or [@i,@j]
Use this notation to specify the [i,j] element of a matrix, and to specify the remaining elements of
the matrix in the order indicated by the location notation until all the parameters in the parameter-spec
list are assigned.
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• Row location only: [i,], [@i,], or [iset,]
Use this notation to specify the first valid matrix element in the [i]-th row (for the first two notations)
or the [i1]-th row (for the [iset,] notation, where iset=(i1, i2, . . . ) is a set of row numbers), and to
specify the remaining elements of the matrix in the order indicated by the location notation until all the
parameters in the parameter-spec list are assigned.

• Column location only: [,j], [,@j], or [,jset]
Use this notation to specify the first valid matrix element in the [j]-th column (for the first two
notations) or the [j1]-th column (for the [,jset] notation, where jset=(j1, j2, . . . ) is a set of
columns), and to specify the remaining elements of the matrix in the order indicated by the location
notation until all the parameters in the parameter-spec list are assigned.

• Row-and-column-sets location: [iset,jset], [iset,j], or [i,jset]
Use this notation to specify the [i1,j1] element of the matrix, where i1 is either the same as i or the
first row number specified in iset , and j1 is either the same as j or the first column number specified in
jset , and to specify the remaining elements of the matrix in the order indicated by the location notation
until all the parameters in the parameter-spec list are assigned.

Consider the following points about the location specifications:

• In the description of the various location specifications, the starting matrix element for parameter
assignment is relatively well-defined. However, if the parameter-spec list has more than one parameter,
there are more matrix elements to assign with the parameters in the parameter-spec list. If there is
no parameter-spec list, a set of matrix elements are specified as unnamed free parameters. Hence,
the actual number of elements specified by these location specifications depends on the length of the
parameter-spec list.

• Because more than one matrix element could be specified in any of these location specifications, it is
important to understand the order that PROC CALIS uses to assign the matrix elements.

• In some of the location specifications, either the row or column is unspecified and the assignment of
the matrix element starts with the first valid element given the column or the row number. This first
valid element depends on the type of the matrix in question.

The next few sections describe the parameter assignments in more detail for each of these location specifica-
tions in the MATRIX statement.

Unspecified Location: Blank or [ , ]

This notation means that all valid elements started with the [1,1] element of the matrix specified in the
model. If no parameter-spec list is specified, all valid elements in the matrix are unnamed free parameters.
For these elements, PROC CALIS generates parameter names with the _Parm prefix followed by a unique
integer (for example, _Parm1, _Parm2, and so on). If a parameter-spec list is specified, the assignment
of parameters starts with the [1,1] element and proceeds to the next valid elements in the same row. If
the entire row of valid elements is assigned with parameters, it proceeds to the next row and so on, until all
the parameters in the parameter-spec list are assigned. The valid element given the row or column number
depends on the type of matrix in question. The following examples illustrate the usage of the unspecified
location notation.

Suppose that _GAMMA_ is a general 3 � 3 matrix. The following statement specifies four elements of this
matrix:
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matrix _GAMMA_ [,] = gg1-gg4;

Equivalently, you can use the following blank location specification:

matrix _GAMMA_ = gg1-gg4;

Both specifications are equivalent to the following elementwise specification:

matrix _GAMMA_ [1,1] = gg1,
[1,2] = gg2,
[1,3] = gg3,
[2,1] = gg4;

With the unspecified location for the matrix _GAMMA_, the first row is filled up with the parameters first.
Then it proceeds to the next row and so on until all parameters in the parameter-spec list are assigned.
Because there are four parameters and _GAMMA_ has three columns, the parameter gg4 is assigned to the
_GAMMA_Œ2; 1� element.

However, if the preceding specification is for a 3 � 3 matrix symmetric matrix _PHI_, the parameters are
assigned differently. That is, the following specification has different matrix elements assigned with the
parameters:

matrix _PHI_ = gg1-gg4;

Because symmetric matrices contain redundant elements, parameters are assigned only to the lower triangular
elements (including the diagonal elements). As a result, the following elementwise specification reflects the
preceding specification of matrix _PHI_:

matrix _PHI_ [1,1] = gg1,
[2,1] = gg2,
[2,2] = gg3,
[3,1] = gg4;

The case for lower triangular matrices is the same as the case for symmetric matrices. That is, only the lower
triangular elements are valid elements for the parameter assignments.

For upper triangular matrices, only the upper triangular elements (including the diagonal elements) are valid
for the parameter assignments. For example, consider the following specification of a 3 � 3 upper triangular
matrix UPP:

matrix UPP = gg1-gg4;

The matrix elements assigned with the parameters are the same as the following elementwise specification:

matrix UPP [1,1] = gg1,
[1,2] = gg2,
[1,3] = gg3,
[2,2] = gg4;

If a 4 � 4 diagonal matrix is specified by the preceding MATRIX statement, the parameters are assigned to
the following elements: [1,1], [2,2], [3,3], and [4,4].

Lastly, if there is no parameter-spec list for the unspecified location notation, all valid parameters in the
matrix being specified are unnamed free parameters. For example, if A is a 4 � 4 general rectangular matrix,
the following specification assigns 16 unnamed free parameters to all of the elements in A:
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matrix A [,];

PROC CALIS generates parameters _Parm1, _Parm2, . . . , _Parm16 to the elements [1,1], [1,2], [1,3],
. . . , [4,3], [4,4], respectively.

However, if S is a 4 � 4 symmetric matrix, the following specification assigns only 10 unnamed free
parameters to the lower triangular elements of S:

matrix S;

PROC CALIS generates parameters _Parm1, _Parm2, . . . , _Parm10 to the elements [1,1], [2,1], [2,2],
. . . , [4,3], [4,4], respectively.

Row-and-Column Location: [i,j], [@i,j], [i,@j], or [@i,@j]
All these notations provide the starting row (i) and column (j numbers for the assignment of the parameters
in the parameter-spec list. The notations are different in the way they proceed to the next element in the
matrix. If no parameter-spec list is specified, only the single element [i,j] is an unnamed free parameter.
For this [i,j] element, PROC CALIS generates a parameter name with the _Parm prefix followed by a
unique integer (for example, _Parm1). If a parameter-spec list is specified, the assignment of parameters
starts with the [i,j] element and proceeds to next element until all the parameters in the parameter-spec
list are assigned. The following summarizes how the assignment of parameter proceeds, depending on the
uses of the @ sign before the starting row or column number:

• [i,j] specifies the [i,j] element, and proceeds to [i+1,j+1], [i+2,j+2], and so on.

• [@i,j] specifies the [i,j] element, and proceeds to [i,j+1], [i,j+2], [i,j+3], and so on.

• [i,@j] specifies the [i,j] element, and proceeds to [i+1,j], [i+2,j], [i+3,j], and so on.

• [@i,@j] specifies the [i,j] element only.

The following examples illustrates the usage of the row-and-column location notation.

The simplest case is the specification of a single element as an unnamed free parameter. For example, the
following statement specifies that [1,4] in matrix A is an unnamed free parameter:

matrix A [1,4];

PROC CALIS generates a parameter name with the _Parm prefix for this element. In this case, using the
@ sign before the row or column number is optional. That is, the following statements are all the same
specification:

matrix A [1,4];
matrix A [@1,4];
matrix A [1,@4];
matrix A [@1,@4];

You can specify more than one unnamed free parameter by using multiple location specifications, as shown
in the following example:
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matrix A [1,4],[3,5];

Elements [1,4] and [3,5] of matrix A are both unnamed free parameters. However, when a parameter-spec
list is specified after the location, more than one parameters might be specified. The use of the @ determines
how the elements in the matrix are assigned with the parameters in the parameter-spec list. The following
examples illustrate this under various situations.

For example, consider the following specification of a 4 � 4 matrix general matrix A:

matrix A
[1,1] = a b c;

The three parameters a, b, and c, are assigned to the matrix elements [1,1], [2,2], and [3,3], respectively.
That is, this specification is equivalent to the following elementwise specification:

matrix A
[1,1] = a ,
[2,2] = b ,
[3,3] = c ;

However, with the @ sign, the assignment is different. For example, consider the @ sign attached to the row
number in the following specification:

matrix A
[@1,1] = a b c;

The @ sign fixes the row number to 1. As a result, this specification is equivalent to the following elementwise
specification:

matrix A
[1,1] = a ,
[1,2] = b ,
[1,3] = c ;

Using the @ sign before the column number fixes the column number. For example, consider the following
specification of matrix A:

matrix A
[2,@2] = a b c;

The @ sign fixes the column number to 2. As a result, this specification is equivalent to the following
elementwise specification:

matrix A
[2,2] = a ,
[3,2] = b ,
[4,2] = c ;

If you put the @ sign in both of the row and column numbers, only one element is intended to be assigned.
For example, the following specification means that only AŒ2; 3� is assigned with the parameter a:

matrix A
[@2,@3] = a;

But you could specify this simply as the statement without the @ sign:
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matrix A
[2,3] = a;

Notice that the matrix type does not play a role in determining the elements for the parameter assignments in
the row-and-column location specification. You have to make sure that the parameters are assigned in the
valid elements of the matrix. For example, suppose that S is a 4 � 4 symmetric matrix and you specify the
following statement for its elements:

matrix A
[@3,2] = a b c;

The elements to be assigned with the parameters a, b, and c, are [3,2], [3,3], and [3,4], respectively.
However, because S is symmetric, you can specify only the nonredundant elements in the lower triangular of
S. Hence, the specification of the [3,4] element is not valid and it generates an error.

Row Location Only: [i,], [@i,], or [iset,]
All these notations provide the starting row [i1,] for the assignment of the parameters in parameter-spec,
where i1 is i for the first two location notations or i1 is the first row specified in iset , where iset = (i1, i2,
. . . ) is a set of row numbers. Because no column location is specified, the starting element is the first valid
element in the i1-th row of the matrix.

If no parameter-spec list is specified, all the valid elements in the entire i1-th row of the matrix are unnamed
free parameters. If a set of row numbers is specified in iset , all the valid elements in the all the rows specified
in iset are unnamed free parameters.

If a parameter-spec list is specified, the assignment of parameters starts with the first valid elements of
the i1-th row. The assignment proceeds to next valid elements in the same row. The [i,] specification
proceeds row by row for parameter assignment while the [@i,] specification stays at the same i-th row.
The [iset,] specification indicates and limits the sequence of rows to be assigned with the parameter in the
parameter-spec list. The assignment stops when all the parameters in the parameter-spec list are assigned.
The following summarizes how the assignment of parameters proceeds in more precise terms:

• [i,] specifies the first valid element in row i and proceeds to the valid elements in rows i, i+1, i+2,
. . . , until all parameters in the parameter-spec list are assigned.

• [@i,] specifies the first valid elements in row i and proceeds to the valid elements in the same row
until all parameters in the parameter-spec list are assigned.

• [iset,] specifies the first valid elements in row i1, where i1, i2, . . . are the rows specified in iset. It
proceeds to the valid elements in rows i1, i2, . . . , until all parameters in the parameter-spec list are
assigned.

The following examples illustrates the usage of the row locations.

The simplest case is the specification of all valid elements of a single row as unnamed free parameters. For
example, the following specification of a 3 � 3 rectangular matrix A assigns unnamed free parameters to all
the elements in the second row of matrix A:
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matrix A [2,];

PROC CALIS generates parameter names with the _Parm prefix for these elements. For example, the [2,1],
[2,2], and [2,3] elements are named with _Parm1, _Parm2, and _Parm3, respectively.

Using the @ sign before the row number in this case is optional. That is, the following statement is the same
specification:

matrix A [@2,];

If you specify a set of row numbers without the parameter-spec list, all valid elements of the specified rows
are unnamed free parameters. For example, consider the following specification of a 6 � 6 symmetric matrix
S:

matrix S [1 3 5,];

This specification specifies unnamed free parameters for the lower triangular elements in the first, third, and
fifth rows of matrix S. It is equivalent to the following specification:

matrix S [1,],
[3,],
[5,];

As a result, this means that the following elements in matrix S are free parameters: [1,1], [3,1], [3,2],
[3,3], [5,1], [5,2], [5,3], [5,4], and [5,5]. Notice that only the elements in the lower triangular of
those specified rows in S are free parameters. This shows that parameter assignment with the row location
notation depends on the matrix type.

With the use of the parameter-spec list, the parameter assignment with the row location notation stops
when all the parameters are assigned. For example, consider the following specification of a 4 � 4 general
(rectangular) matrix A:

matrix A
[2,] = a b c;

The three parameters a, b, and c, are assigned to the matrix elements [2,1], [2,2], and [2,3], respectively.
However, a different assignment of the parameters applies if you use the same specification for a 4 � 4
symmetric matrix S, as shown in the following statement:

matrix S
[2,] = a b c;

Because there are redundant elements in a symmetric matrix, you can specify only the lower triangular
elements. Therefore, the row location specification is equivalent to the following elementwise specification:

matrix S
[2,1] = a ,
[2,2] = b ,
[3,1] = c ;

When all the valid row elements are assigned with the parameters, the assignment proceeds to the next row.
This is why the last parameter assignment is for SŒ3; 1�. The same assignment sequence applies to matrices
with the lower triangular type (LOW).

For matrices with the upper triangular matrix type (UPP), only the elements in the upper triangular are
assigned. For example, consider a 4 � 4 upper triangular matrix U with the following row location specifica-
tion:
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matrix U
[2,] = a b c d;

The assignment of parameters is the same as the following elementwise specification:

matrix U
[2,2] = a ,
[2,3] = b ,
[2,4] = c ,
[3,3] = d;

The first valid element in the second row of the U matrix is UŒ2; 2�. Because all the valid elements in the
second row are assigned with parameters, the last element has to go to the valid element in the next row.
Hence, the parameter d is assigned to UŒ3; 3�.

For matrices with the diagonal matrix type (DIA), only the diagonal elements are assigned. For example,
consider a 4 � 4 upper diagonal matrix D with the following row location specification:

matrix D
[2,] = a b c;

The assignment of parameters is the same as the following elementwise specification:

matrix D
[2,2] = a ,
[3,3] = b ,
[4,4] = c ;

If you use an @ sign before the row number in the row location specification, the row number cannot move—it
cannot proceed to the next row even if the valid elements in that row are already filled with the parameters in
parameter-spec. All other behavior of the [@i,] specification is the same as that of the [i,] specification.
For example, consider the following specification of a 4 � 4 general (rectangular) matrix A:

matrix A
[@2,] = a b c d;

The four parameters a, b, c, and d, are assigned to the matrix elements [2,1], [2,2], [2,3], and [2,4],
respectively. This is exactly the same result as the following specification without the @ sign:

matrix A
[2,] = a b c d;

Here, all the elements of the second row of matrix A are assigned with elements. However, if one more
parameter is specified in the parameter-spec list, the behavior for the two types of row location specifications
are different. The following specification without the @ sign proceeds to the next row for the last parameter:

matrix A
[2,] = a b c d e;

That is, the parameter e is assigned to the AŒ3; 1� element. However, the following specification with the @
sign results in an out-of-bound error:
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matrix A
[@2,] = a b c d e;

The out-of-bound error is due to the fact that the row number must be fixed so that the parameter e is forced
to be assigned to AŒ2; 5�, which does not exist.

However, the distinction between the row location specifications with and without the @ sign is not very
important in common practice because in most cases you do not want the parameter assignment to proceed
row after row automatically with a long list of parameters. For example, consider the following specification
of a 4 � 4 symmetric matrix S:

matrix S
[2,] = s21 s22 s31 s32 s33 s41 s42 s43;

This specification is equivalent to the following specification:

matrix S
[2,] = s21 s22,
[3,] = s31 s32 s33,
[4,] = s41 s42 s43;

Although this specification is not as concise as the preceding one, it specifies more clearly about how
parameters are assigned to each of the three rows of the S matrix. In this specification, you make sure that
each of the three row location specifications has just enough parameters for the given row without proceeding
to the next row for additional parameter assignments. With this kind of “careful” row location specifications,
you do not need to use the @ sign before the row numbers at all.

The last type of row location specification is the [iset,] notation, where iset means a set of row numbers. This
specification type provides the set of row numbers for the assignment of the parameters in the parameter-spec
list. For example, consider the following specification of a 4 � 4 general matrix A:

matrix A
[2 4,] = a21 a22 a23 a24 a41 a42 a43 a44;

This specification is equivalent to the following statement with two row location specifications:

matrix A
[2,] = a21 a22 a23 a24,
[4,] = a41 a42 a43 a44;

In other words, the assignment of parameters follows the order of rows provided in the iset . Notice that the
iset notation merely provides the order of rows to be assigned with the parameters in the parameter-spec list;
it is not an error if you provide a shorter parameter list than that of the total number of elements in the rows.
For example, the following specification of a 4 � 4 general matrix A is valid:

matrix A
[2 4,] = a21 a22 a23 a24;

This specification has the same results as the following statement with one row location:

matrix A
[2,] = a21 a22 a23 a24;

However, a valid specification does not mean it is a good representation of the problem. Providing more rows
in the iset specification than intended is simply not a good practice.
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Although a shorter parameter-spec list is acceptable, a longer list results in an error. For example, the
following specification of a 4 � 4 symmetric matrix S results in an error:

matrix S
[2 to 3,] = s21 s22 s31 s32 s33 extra1 extra2;

The [2 to 3,] not only gives the sequence of the rows for the parameter assignment, it also limits the set of
rows to assign. Because matrix S is symmetric and because only the second and the third rows are supposed
to be assigned with the iset specification, the parameters extra1 and extra2 are excessive.

Column Location Only: [,j], [,@j], or [,jset]
These notations mirror that of the row location notations. Instead of the rows being specified, the columns
are specified by these notations. Therefore, you can understand the column location notations the same way
as the row location notations.

All these column location notations provide the starting column [,j1] for the assignment of the parameters
in parameter-spec, where j1 is j for the first two location notations or j1 is the first column specified in
jset , where jset = (j1, j2, . . . ) is a set of column numbers. Because no row location is specified, the starting
element is the first valid element in the j1-th column of the matrix.

If no parameter-spec list is specified, all the valid elements in the entire j1-th column of the matrix are
unnamed free parameters. If a set of column numbers is specified in jset , all the valid elements in the all the
columns specified in jset are unnamed free parameters.

If a parameter-spec list is specified, the assignment of parameters starts with the first valid elements of the
j1-th column. The assignment proceeds to next valid elements in the same column. The [,j] specification
proceeds column by column for parameter assignment while the [,@j] specification stays at the same j-th
column. The [,jset] specification indicates and limits the sequence of columns to be assigned with the
parameter in the parameter-spec list. The assignment stops when all the parameters in the parameter-spec
list are assigned. The following list summarizes how the assignment of parameters proceeds:

• [,j] specifies the first valid element in column j and proceeds to the valid elements in columns j,
j+1, j+2, . . . , until all parameters in the parameter-spec list are assigned.

• [,@j] specifies the first valid elements in column j and proceeds to the valid elements in the same
column until all parameters in the parameter-spec list are assigned.

• [,jset] specifies the first valid elements in column j1, where j1, j2, . . . are the columns specified in
jset . It proceeds to the valid elements in columns j1, j2, . . . , until all parameters in the parameter-spec
list are assigned.

See the section “Row Location Only: [i,], [@i,], or [iset,]” on page 1301 for examples, which are
applicable to the usage of the column locations.

Row-and-Column-Sets Location: [iset,jset], [iset,j], or [i,jset]
These notations specify the sets of row and column elements for the assignment of the parameters in the
parameter-spec list. In the first notation, you specify the set of row numbers in iset = (i1, i2, . . . ), and the
set of column numbers in jset = (j1, j2, . . . ). The last two notations are special cases of the first notation.
The [iset,j] notation specifies only one column with jset = j1 = j. The [i,jset] notation specifies only
one row with iset = i1 = i. For the last two notations, adding the @ sign before j or i is optional. In general,
the row-and-column-sets locations specify the matrix elements in the following order:
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[i1,j1], [i1,j2], . . . ,
[i2,j1], [i2,j2], . . . ,
[i3,j1], [i3,j2], . . . ,
. . . , . . . , . . . ,
[ir,j1], [ir,j2], . . . , [ir,js]

where r represents the number of rows in the iset and s represents the number of columns in the
jset . Note that this ordering of elements does not necessarily mean that all these elements are specified. The
number of elements specified depends on the length of the parameter-spec list.

If no parameter-spec list is specified after the location notation, all the r � s elements specified in the iset
and jset are unnamed free parameters. PROC CALIS generates parameter names with the _Parm prefix for
these elements.

If a parameter-spec list is specified after the location notation, the total number of matrix elements that are
assigned with the parameters is the same as the number of parameter specifications in the parameter-spec
list.

The following examples illustrates the usage of the row-and-column-sets locations.

The simplest case is the specification of all elements in the iset and jset as free parameters, as shown in the
following statement:

matrix _Gamma_ [2 3,4 1];

This means that _Gamma_Œ2; 4�, _Gamma_Œ2; 1�, _Gamma_Œ3; 4�, and _Gamma_Œ3; 1� are all free parameters
in the matrix. For these elements, PROC CALIS generates parameter names with the _Parm prefix followed
by a unique integer (for example, _Parm1, _Parm2, . . . ). This row-and-column-sets location specification is
the same as the following specification:

matrix _Gamma_ [2,4 1],[3,4 1];

It is also equivalent to the following elementwise specification:

matrix _Gamma_ [2,4],[2,1],[3,4],[3,1];

If you provide a parameter-spec list after the row-and-column-sets location, the parameters in the list are
assigned to the matrix elements. For example, consider the following specification:

matrix _Gamma_ [2 3,4 1] = gamma1-gamma4;

This specification is equivalent to the following elementwise specification:

matrix _Gamma_ [2,4] = gamma1,
[2,1] = gamma2,
[3,4] = gamma3,
[3,1] = gamma4;

It is not necessary for all the elements specified in the row-and-column-sets location to be assigned with the
parameters in the parameter-spec list. For example, the following iset and jset specify a maximum of six
elements, but only five parameters are assigned as a result of a shorter parameter-spec list:
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matrix _Gamma_ [2 to 4,1 5] = gamma1-gamma4;

This specification is equivalent to the following elementwise specification:

matrix _Gamma_ [2,1] = gamma1,
[2,5] = gamma2,
[3,1] = gamma3,
[3,5] = gamma4,
[4,1] = gamma5;

In this case, _Gamma_Œ4; 5� is not specified and is fixed at zero by default.

With the row-and-column-sets location specifications, you need to be aware of the matrix type being specified.
For example, the following specification of the symmetric matrix S results in an out-of-bounds error:

matrix S [1 2,1 2] = s1-s4;

This specification is equivalent to the following elementwise specification:

matrix S [1,1] = s1,
[1,2] = s2,
[2,1] = s3,
[2,2] = s4;

The specification of the SŒ1; 2� element is not valid because you can specify only the lower triangular elements
of a symmetric matrix in PROC CALIS. The upper triangular elements are redundant and are taken into
account by PROC CALIS during computations.

Specifying Fixed and Free Parameters in Model Matrices

For clarity in describing various location notations, the parameter-spec list contains only free parameters in
the examples. In general, you can specify fixed values, free parameters, and initial values in the parameter-
spec list. The syntax for the parameter-spec list is the same as the parameter-spec list for the VARIANCE
statement. You can specify the following five types of the parameters in the MATRIX statement:

• an unnamed free parameter

• an initial value

• a fixed value

• a free parameter with a name provided

• a free parameter with a name and initial value provided

The following example demonstrates these five types of specifications:

matrix A [1,2],
[1,3] = (.2),
[1,4] = .3,
[2,3] = a1,
[2,4] = a2(.5);
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In this statement, AŒ1; 2� is an unnamed free parameter. For this element, PROC CALIS generates a
parameter name with the _Parm prefix and appended with a unique integer (for example, _Parm1). AŒ1; 3� is
an unnamed free parameter with an initial value of 0.2. PROC CALIS also generates a parameter name for
this element. AŒ1; 4� is fixed at 0.3. This value does not change in estimation. AŒ2; 3� is a free parameter
named a1. No initial value is given for this element. AŒ2; 4� is a free parameter named a2 with an initial
value of 0.5.

You can also specify different types of parameters in the parameter-spec list. The preceding specification is
equivalent to the following specification:

matrix A [1,2],
[1 2,3 4] = (.2) .3 a1-a2 (.5);

Notice that 0.5 is the initial value for a2 but not for a1 because this specification is the same as:

matrix A [1,2],
[1 2,3 4] = (.2) .3 a1 a2(.5);

When you use parameter-spec lists with mixed parameters, you must be careful about how the initial value
syntax is interpreted with and without a parameter name before it. With a parameter before the initial value,
the initial value is for the parameter, as shown in the following statement:

matrix S [1,1] = s1 s2 (.2);

This specification is the same as the following elementwise specification:

matrix S [1,1] = s1,
[2,2] = s2(.2);

This means that 0.2 is the initial value of parameter s2, but not interpreted as an unnamed free parameter
for SŒ3; 3�. If you do intend to set the free parameter s2 for SŒ2; 2� without an initial value and set the initial
value 0.2 for SŒ3; 3�, you can use a null initial value for the s2 parameter, as shown in the following:

matrix S [1,1] = s1 s2() (.2);

This specification is the same as the following elementwise specification:

matrix S [1,1] = s1,
[2,2] = s2,
[3,3] = (.2);

Modifying a Parameter Specification from a Reference Model

If you define a new COSAN, LISMOD, or MSTRUCT model by using a reference (old) model in the
REFMODEL statement, you might want to modify some parameter specifications from the MATRIX
statement of the reference model before transferring the specifications to the new model. To change a
particular matrix element specification from the reference model, you can simply respecify the same matrix
element with the desired parameter specification in the MATRIX statement of the new model. To delete a
particular matrix parameter from the reference model, you can specify the desired matrix element with a
missing value specification in the MATRIX statement of the new model.
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For example, suppose that _PHI_Œ1; 2� is a free parameter in the reference model but you do not want this
matrix element be a free parameter in the new model, you can use the following specification in the new
model:

matrix _PHI_ [1,2] = .;

Notice that the missing value syntax is valid only when you use the REFMODEL statement. See the section
“Modifying a COSAN Model from a Reference Model” on page 1249 for a more detailed example of
COSAN model respecification. See the section “Modifying a LISMOD Model from a Reference Model”
on page 1284 for a more detailed example of LISMOD model respecification. See the section “Modifying
an MSTRUCT Model from a Reference Model” on page 1314 for a more detailed example of MSTRUCT
model respecification.

MEAN Statement
MEAN assignment < , assignment . . . > ;

where assignment represents:

var-list < = parameter-spec >

The MEAN statement specifies the mean or intercept parameters in connection with the FACTOR, LINEQS,
and PATH modeling languages. With the MEAN statement specification, PROC CALIS analyzes the mean
structures in addition to the covariance structures.

In each assignment of the MEAN statement, you list the var-list that you want to specify for their means or
intercepts. Optionally, you can provide a list of parameter specifications in a parameter-spec after an equal
sign for each var-list . The syntax of the MEAN statement is exactly the same as that of the VARIANCE
statement. See the VARIANCE statement on page 1362 for details about the syntax.

For the confirmatory FACTOR or PATH model, the variables in a var-list can be exogenous or endogenous.
You specify the mean of a variable if the variable is exogenous. You specify the intercept of a variable if
the variable is endogenous. However, for the LINEQS model, you can specify only the means of exogenous
variables whose type is not error (that is, not the E- or D- variables) in the MEAN statement. You cannot
specify the intercept parameters in the MEAN statement for the LINEQS model. Instead, you must specify
the intercepts in the equations of the LINEQS statement. For the exploratory FACTOR model, the MEAN
statement is used merely to include the mean structures into analysis. In this case, the parameter specification
by the assignment syntax is not interpreted. Instead, the intercept parameters for the exploratory factor
model are automatically generated by PROC CALIS.

You can specify the following five types of the parameters for the means or intercepts in the MEAN statement:

• an unnamed free parameter

• an initial value

• a fixed value

• a free parameter with a name provided

• a free parameter with a name and initial value provided
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For example, consider a PATH model with exogenous variables x1, x2, and x3 and endogenous variables y4
and y5. The following MEAN statement illustrates the five types of specifications in five assignments:

mean x1 ,
x2 = (3.0),
x3 = 1.5,
y4 = intercept1,
y5 = intercept2(0.6);

In this statement, the mean of x1 is specified as an unnamed free parameter. For this mean, PROC CALIS
generates a parameter name with the _Parm prefix and appended with a unique integer (for example, _Parm1).
The mean of x2 is an unnamed free parameter with an initial value of 3.0. PROC CALIS also generates a
parameter name for this mean. The mean of x3 is a fixed value of 1.5. This value stays the same during the
estimation. The intercept of endogenous variable y4 is a free parameter named intercept1. The intercept of
endogenous variable y5 is a free parameter named intercept2 with an initial value of 0.6.

The syntax of the MEAN statement is the same as the syntax of the VARIANCE statement. See the
VARIANCE statement for more illustrations about the usage.

Default Mean and Intercept Parameters

If the mean structures are analyzed, either the means or intercepts of the manifest variables in the FACTOR,
LINEQS, or PATH model are free parameters by default. If a manifest variable is exogenous, then its mean
is a free parameter by default. If a manifest variable is endogenous, then its intercept is a free parameter
by default. Except for the exploratory FACTOR model, PROC CALIS generates parameter names for
these default free mean or intercept parameters that include the _Add prefix and are appended with unique
integer suffixes. The default intercepts of the exploratory FACTOR model use the _a prefix instead. For
the confirmatory FACTOR model and the PATH model, you can use the MEAN statement to override these
default mean or intercept parameters in situations where you want to set parameter constraints, provide
initial or fixed values, or make parameter references. However, you cannot override any default intercept
parameters for the exploratory FACTOR model. For the LINEQS model, you can use the MEAN statement
specification to override only the default mean parameters. The intercept parameters of the LINEQS model
must be specified in the equations of the LINEQS statement.

Fixed zero is another type of default mean or intercept parameters for the FACTOR, LINEQS, or PATH
model. All the intercepts and means of the latent variables in these models are fixed zeros by default. For the
confirmatory FACTOR and PATH models, you can override these default fixed zeros by using the MEAN
statement specifications. However, you cannot override the fixed zero factor means for the exploratory
FACTOR model, For the LINEQS model, you can override only the default fixed zeros of latent variables
whose type is not error. That is, you can use the MEAN statement to override the default zero mean for
the exogenous latent factors (excluding the error or disturbance variables) or use the LINEQS statement to
override the default zero intercept for the endogenous latent factors. The fixed zero means for the error or
disturbance variables in the LINEQS model reflects model restrictions—there is no way you can override
these default zero means.

Modifying a Mean or Intercept Parameter Specification from a Reference Model

If you define a new FACTOR (confirmatory factor model only), LINEQS, or PATH model by using a reference
(old) model in the REFMODEL statement, you might want to modify some parameter specifications from the
MEAN statement of the reference model before transferring the specifications to the new model. To change
a particular mean or intercept specification from the reference model, you can simply respecify the same
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mean or intercept with the desired parameter specification in the MEAN statement of the new model. To
delete a particular mean or intercept parameter from the reference model, you can specify the desired mean
or intercept with a missing value specification in the MEAN statement of the new model.

For example, suppose that the mean of F1 is specified in the reference model, but you do not want this mean
specification be transferred to the new model. You can use the following MEAN statement specification in
the new model:

mean F1 = .;

Note that the missing value syntax is valid only when you use with the REFMODEL statement. See the
section “Modifying a FACTOR Model from a Reference Model” on page 1266 for a more detailed example of
FACTOR model respecification. See the section “Modifying a LINEQS Model from a Reference Model” on
page 1280 for a more detailed example of LINEQS model respecification. See the section “Modifying a PATH
Model from a Reference Model” on page 1330 for a more detailed example of PATH model respecification.

As discussed in a preceding section, PROC CALIS generates default free mean or intercept parameters for
manifest variables in the FACTOR, LINEQS, or PATH model if you do not specify them explicitly in the
MEAN statement (and the LINEQS statement for the LINEQS model). When you use the REFMODEL
statement for defining a reference model, these default free mean or intercept parameters in the old (reference)
model are not transferred to the new model. Instead, the new model generates its own set of default free
mean or intercept parameters after the new model is resolved from the reference model, the REFMODEL
statement options, the RENAMEPARM statement, and the MEAN statement (and the LINEQS statement for
the LINEQS model) specifications in the new model. This also implies that if you want any of the mean or
intercept parameters to be constrained across the models by means of the REFMODEL specification, you
must specify them explicitly in the MEAN statement (or the LINEQS statement for the LINEQS model) of
the reference model so that the same mean or intercept specification is transferred to the new model.

MODEL Statement
MODEL i < / options > ;

where i is an assigned model number between 1 and 9999, inclusively.

A MODEL statement signifies the beginning of a model specification block and designates a model number
for the model. All main and subsidiary model specification statements after a MODEL statement belong in
that model until another MODEL or GROUP statement is encountered.

The MODEL statement itself does not serve the purpose of model specification, which is actually done by
the main and subsidiary model specification statements that follow it. The MODEL statement serves as
a “place-holder” of specification of a single model. It also makes the reference to a model easier with an
assigned model number. For example, consider the following statements:

proc calis;
group 1 / data=women_data;
group 2 / data=men_data;
model 1 / group=1 label='Women Model';

{model 1 specification here}
model 2 / group=2 label='Men Model';

{model 2 specification here}
run;
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This example illustrates a two-group analysis with two models. One is model 1 labeled as ‘Women Model’
in a MODEL statement. Another is model 2 labeled as ‘Men Model’ in another MODEL statement. The
two groups, group 1 and group 2, as defined in two separate GROUP statements, are fitted by model 1

and model 2, respectively, as indicated by the GROUP= option of the MODEL statements. Within the
scope of model 1, you provide model specification statements by using the main and subsidiary model
specification statements. Usually, one of the following main model specification statements is used: FACTOR,
LINEQS, LISMOD, MSTRUCT, PATH, RAM, or REFMODEL. Similarly, you provide another set of model
specification statements within the scope of model 2.

Hence, for an analysis with a single group, the use of the MODEL statement is not necessary because the
model that fits the group is unambiguous.

You can set model-specific options in each MODEL statement. All but two of these options are also available
in the PROC CALIS statement. If you set these options in the PROC CALIS statement, they apply to all
models, unless you respecify them in the local MODEL statements. If you want to apply some options only
to a particular model, specify these options in the MODEL statement that corresponds to that model.

You can also set group-specific options in the MODEL statement. These group options apply to the groups
that are specified in GROUP= option of the MODEL statement. See the section “Options Available in the
GROUP and PROC CALIS Statements” on page 1273 for a detailed descriptions of these group options.

Options Available Only in the MODEL Statement

LABEL=name

NAME=name
specifies a label for the model. You can use any valid SAS names up to 256 characters for labels. You
can also use quoted strings for labels.

GROUP= [int-list] | {int-list}

GROUPS= [int-list] | {int-list}
specifies a list of integers which represent the groups to be fitted by the model.

Options Available in the MODEL and PROC CALIS Statements

The following options are available in the MODEL and PROC CALIS statements. If you specify these
options in the PROC CALIS statement, they are transferred to all MODEL statements. These options might
be overwritten by the respecifications in the local MODEL statements.

Option Description

DEMPHAS= on page 1214 Emphasizes the diagonal entries
EFFPART | TOTEFF on page 1215 Displays total, direct, and indirect effects
EXTENDPATH | GENPATH on page 1215 Displays the extended path estimates that include

variances and covariances
INEST= on page 1216 Specifies the data set that contains the initial values

and constraints
INMODEL | INRAM= on page 1216 Specifies the data set that contains the model

specifications
MEANSTR on page 1223 Analyzes the mean structures
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Option Description

MODIFICATION on page 1224 Computes modification indices
NOMEANSTR on page 1225 Deactivates the inherited MEANSTR option
NOMOD on page 1226 Suppresses modification indices
NOORDERSPEC on page 1226 Displays model specifications and results according

to the input order
NOPARMNAME on page 1226 Suppresses the printing of parameter names in results
NOSTAND on page 1226 Suppresses the standardized output
NOSTDERR on page 1226 Suppresses standard error computations
ORDERSPEC on page 1229 Orders the model output displays according to the

parameter types within each model
OUTEST= on page 1229 Specifies the data set that outputs the estimates and

their covariance matrix
OUTMODEL | OUTRAM= on page 1229 Specifies the output data set for storing the model

specification and results
PARMNAME on page 1230 Displays parameter names in model specifications

and results
PDETERM on page 1231 Computes the determination coefficients
PESTIM on page 1231 Prints parameter estimates
PINITIAL on page 1231 Prints initial pattern and values
PLATCOV on page 1231 Computes the latent variable covariances and scoring

coefficients
PRIMAT on page 1233 Displays results in matrix forms
READADDPARM on page 1234 Instructs generated default parameters be read in the

INMODEL= data set
STDERR on page 1237 Computes the standard errors

Options Available in MODEL, GROUP, and PROC CALIS Statements

Some options in the GROUP statement can also be specified in the MODEL statements. Group options
that are specified the MODEL statements are transferred to the GROUP statements that define the groups
that are fitted by the associated models in the MODEL statements. This is a little more convenient than
setting the common group options individually in the GROUP statements for all fitted groups by a model.
See the section “Options Available in GROUP, MODEL, and PROC CALIS Statements” on page 1273 for a
reference of these options.

MSTRUCT Statement
MSTRUCT < VAR=var-list > ;

MSTRUCT stands for matrix structures. As opposed to other modeling languages, in which the mean and
covariance structures are implied from paths, equations, or complicated model matrix computations, the
MSTRUCT language is for direct structured mean and covariance models.

In the MSTRUCT statement, you define the list of variables. You can use MATRIX statements to specify the
parameters in the mean and covariance structures:
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MSTRUCT < VAR=var-list > ;
MATRIX _COV_ parameters-in-matrix ;
MATRIX _MEAN_ parameters-in-matrix ;

You use the MATRIX _COV_ statement to specify the covariance and variance parameters in the structured
covariance matrix. When applicable, you use the MATRIX _MEAN_ statement to specify the parameters in
the structured mean vector. Each of these matrices can be specified no more than once within a model. See
the MATRIX statement on page 1295 for details. If you do not use any MATRIX statement for specifying
parameters, a saturated model is assumed. This means that all elements in the covariance and mean (if
modeled) matrices are free parameters in the model.

The order of variables in the var-list of the MSTRUCT statement is important; it is used to refer to the row
and column variables of the _COV_ and the _MEAN_ matrices. The variables specified in the list should be
present in the input data set that is intended for the MSTRUCT model. With direct mean and covariance
structures on the observed variables, no latent variables are explicitly involved in the MSTRUCT modeling
language. However, this does not mean that the MSTRUCT modeling language cannot handle latent variable
models. With additional specifications in the PARAMETERS and the SAS programming statements, it
is possible to fit certain latent variable models by using the MSTRUCT modeling language. Despite this,
the code might get too complicated and error-prone. Hence, using the MSTRUCT modeling language for
latent variable modeling is not recommended for novice users. The LINEQS, LISMOD, PATH, or RAM
modeling language should be considered first for latent variable modeling. For applications of the MSTRUCT
modeling, see Yung, Browne, and Zhang (2014).

Default Parameters

It is important to understand the default parameters in the MSTRUCT model. If you know which parameters
are default free parameters, you can make your specification more efficient by omitting the specifications of
those parameters that can be set by default. For example, you do not need to specify any elements of the
_COV_ matrix if all elements are supposed to free parameters. See the section “Default Parameters in the
MSTRUCT Model” on page 1418 for details about the default parameters of the FACTOR model.

Modifying an MSTRUCT Model from a Reference Model

This section assumes that you use a REFMODEL statement within the scope of a MODEL statement and
that the reference model (or base model) is also an MSTRUCT model. The reference model is called the old
model, and the model that refers to the old model is called the new model. If the new model is not intended
to be an exact copy of the old model, you can use the following extended MSTRUCT modeling language
to make modifications within the scope of the MODEL statement for the new model. The syntax is similar
to, but not exactly the same as, the ordinary MSTRUCT modeling language, as described in the section
“MSTRUCT Statement” on page 1313. The syntax for respecifying or modifying an MSTRUCT model takes
the following form:

MSTRUCT ;
MATRIX _COV_ parameters-in-matrix ;
MATRIX _MEAN_ parameters-in-matrix ;

In the respecification, you should not put any VAR= list in the MSTRUCT statement, as you would do for
specifying the original base model. The reason is that parameter respecifications in the new model refer to
the variables in the VAR= list of the old model. Therefore, the VAR= list in the new model is implicitly
assumed to be exactly the same as that in the old model. This renders the specification of a VAR= list of the
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MSTRUCT statement of the new model unnecessary. Because the VAR= option is the only possible option in
the MSTRUCT statement, it also implies that the entire MSTRUCT statement is optional for the new model.

You can use the MATRIX _COV_ and MATRIX _MEAN_ statements to modify from the old model by using
the same syntax as in ordinary MSTRUCT modeling language. In addition, in the respecification syntax, you
can use the missing value ‘.’ to drop a parameter location from the old model.

The new model is formed by integrating with the old model in the following ways:

Duplication: If you do not specify in the new model a parameter location that exists in the old model,
the old parameter specification is duplicated in the new model.

Addition: If you specify in the new model a parameter location that does not exist in the old model,
the new parameter specification is used in the new model.

Deletion: If you specify in the new model a parameter location that also exists in the old model and
the new parameter is denoted by the missing value ‘.’, the old parameter specification is
not copied into the new model.

Replacement: If you specify in the new model a parameter location that also exists in the old model and
the new parameter is not denoted by the missing value ‘.’, the new parameter specification
replaces the old one in the new model.

For example, consider the following statements for a two-group analysis:

proc calis;
group 1 / data=d1;
group 2 / data=d2;
model 1 / group=1;

mstruct var=V1-V6;
matrix _COV_ [1,1] = 6*vparm (8.),

[2,] = cv21,
[3,] = cv31,
[4,] = cv41 cv42 cv43,
[5,] = cv51 cv52 cv53 cv54,
[6,] = cv61 cv62 cv63 cv64 cv65;

model 2 / group=2;
refmodel 1;
matrix _COV_ [2,] = 3.,

[3,2] = cv32,
[4,] = . . . ,
[5,] = . . . ,
[6,] = . . . ;

run;

In these statements, you specify Model 2 by referring to Model 1 in the REFMODEL statement. Hence,
Model 2 is called the new model that refers to the old model, Model 1. Because they are not respecified in
the new model, all parameters on the diagonal of the covariance matrix are duplicated from the old model for
the new model. Similarly, parameter locations associated with the cv54, cv64, and cv65 parameters are also
duplicated in the new model.

An added parameter in the new model is cv32 for the covariance between V3 and V2. This parameter location
is not specified in the old model.

In the new model, parameters for the covariances between the variable sets {V1 V2 V3} and {V4 V5 V6}
are all deleted from the old model. The corresponding parameter locations for these covariances are given
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missing values ‘.’ in the new model, indicating that they are no longer free parameters as in the old model.
Deleting these parameters amounts to setting the corresponding covariances to fixed zeros in the new model.

Finally, covariance between V2 and V1 is changed from a free parameter cv21 in the old model to a fixed
constant 3 in the new model. This illustrates the replacement rule of the respecification syntax.

NLINCON Statement
NLINCON | NLC constraint < , constraint . . . > ;

where constraint represents one of the following:

� number operator variable-list number operator
� variable-list number operator
� number operator variable-list

You can specify nonlinear equality and inequality constraints with the NLINCON or NLC statement. The
QUANEW optimization subroutine is used when you specify nonlinear constraints by using the NLINCON
statement.

The syntax of the NLINCON statement is similar to that of the BOUNDS statement, except that the NLINCON
statement must contain the names of variables that are defined in the program statements and are defined as
continuous functions of parameters in the model. They must not be confused with the variables in the data
set.

As with the BOUNDS statement, one- or two-sided constraints are allowed in the NLINCON statement;
equality constraints must be one sided. Valid operators are <=, <, >=, >, and = (or, equivalently, LE, LT, GE,
GT, and EQ).

PROC CALIS cannot enforce the strict inequalities < or > but instead treats them as <= and >=, respectively.
The listed nonlinear constraints must be separated by commas. The following is an example of the NLINCON
statement that constrains the nonlinear parametric function x1 � x1 C u1 to a fixed value of 1:

nlincon xx = 1;
xx = x1 * x1 + u1;

Note that x1 and u1 are parameters defined in the model. The following three NLINCON statements, which
require xx1, xx2, and xx3 to be between zero and ten, are equivalent:

nlincon 0. <= xx1-xx3,
xx1-xx3 <= 10;

nlincon 0. <= xx1-xx3 <= 10.;
nlincon 10. >= xx1-xx3 >= 0.;

NLOPTIONS Statement
NLOPTIONS options ;

Many options that are available in SAS/OR PROC NLP can be specified for the optimization subroutines in
PROC CALIS by using the NLOPTIONS statement. The NLOPTIONS statement provides more displayed
and file output control on the results of the optimization process, and it permits the same set of termination
criteria as in PROC NLP. These are more technical options that you might not need to specify in most cases.
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Several statistical procedures support the use of NLOPTIONS statement. The syntax of NLOPTIONS
statement is common to all these procedures and can be found in the section “NLOPTIONS Statement” on
page 488 in Chapter 19, “Shared Concepts and Topics.”

See the section “Use of Optimization Techniques” on page 1507 for more information about the use of
optimization techniques in PROC CALIS.

OUTFILES Statement
OUTFILES | OUTFILE file-option < file-option . . . > ;

where file-option represents one of the following:

� OUTMODEL | OUTRAM= file-name [ MODEL= int-list < , int-list > ]

� OUTSTAT= file-name [ GROUP= int-list < , int-list > ]

� OUTWGT= file-name [ GROUP= int-list < , int-list > ]

with file-name representing an output file name and int-list representing list of model or group numbers

Use the OUTFILES statement when you need to output multiple-group or multiple-model information to
output files in a complex way. In each OUTFILES statement, each possible file-option should appear no
more than once. However, as needed, you can use the OUTFILES statement more than once. For example,
suppose you want to create two OUTWGT= files for different sets of groups. You can specify the OUTFILES
statement twice, as shown in the following specification:

outfiles outwgt=file1 [group=1,2];
outfiles outwgt=file2 [group=3,4];

In the first OUTFILES statement, the weights for groups 1 and 2 are output to the file file1. In the second
OUTFILES statement, the weights for groups 3 and 4 are output to the file file2.

When the OUTMODEL=, OUTSTAT=, or OUTWGT= option is intended for all groups or models, you can
simply specify the option in the PROC CALIS statement. Only when you need to output the group (model)
information from more than one group (model), but not all groups (models), to a single output file does the
use the OUTFILES statement become necessary. For example, consider the following specification:

proc calis method=gls;
outfiles outmodel=outmodel [model=1,3]

outwgt=outwgt [group=1,2]
outstat=outstat [group=2,3];

group 1 / data=g1;
group 2 / data=g2;
group 3 / data=g3 outwgt=outwgt3;
model 1 / group=1;

factor N=3;
model 2 / group=2;

factor N=2;
model 3 / group=3;

factor N=3;
run;
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You fit three different factor models to three groups: Model 1 for Group 1, Model 2 for Group 2, and Model
3 for group 3. In the OUTFILES statement, you output model information from models 1 and 3 to an output
file named outmodel, weight matrices from groups 1 and 2 to outwgt, and statistics from groups 2 and 3 to
outstat. In each of these output files, you have information from more than one (but not all) groups or models.
In the GROUP statement for group 3, you have another OUTWGT= file named outwgt3 for group 3 alone.

Note that you cannot specify the preceding output file organization by using the following statements:

proc calis method=gls;
group 1 / data=g1 outwgt=outwgt;
group 2 / data=g2 outwgt=outwgt outstat=outstat;
group 3 / data=g3 outwgt=outwgt3 outstat=outstat;
model 1 / group=1 outmodel=outmodel;

factor N=3;
model 2 / group=2;

factor N=2;
model 3 / group=3 outmodel=outmodel;

factor N=3;
run;

This specification will not work because SAS forbids the repeated specification of the same output file
in the same PROC CALIS run. That is, you cannot specify OUTWGT=outwgt, OUTSTAT=outstat, or
OUTMODEL=outmodel more than once in the PROC CALIS run without causing file invocation problems
(however, multiple specification of the same input file is not a problem).

If you specify any of the output files for a group (or a model) in both of the OUTFILES and the GROUP (or
MODEL) statements, the destination specified in the more specific GROUP (or MODEL) statement will be
used. For example, for the following specification PROC CALIS will save the Model 2 information in the
OUTMODEL=outmodel2 data set, but not in the OUTMODEL=outfile1 data set:

proc calis method=gls;
outfiles outmodel=outfile1 [model=1,2];
group 1 / data=g1;
group 2 / data=g2;
model 1 / group=1;

factor N=3;
model 2 / group=2 outmodel=outmodel2;

factor N=2;
run;

The OUTFILES statement is intended for arranging output files in a complex way. The use of the OUTFILES
statement is unnecessary in the following situations:

• If you have a single-sample analysis, you do not need to use the GROUP statement. As a result, you
can simply use the OUTSTAT= or OUTWGT= options in the PROC CALIS statement for specifying
the output destinations. Therefore, the OUTFILES statement is not needed.

• If you have a single model in your analysis, you do not need to use the MODEL statement. As a result,
you can simply use the OUTMODEL= options in the PROC CALIS statement for specifying the output
destination. Therefore, the OUTFILES statement is not needed.

• If you have multiple groups or multiple models in your analysis and information for all groups or
models is output to the same file, you do not need to use the OUTFILES statement. You can simply
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use the OUTSTAT=, OUTWGT=, or OUTMODEL= options in the PROC CALIS statement because
the output file information is automatically propagated from the PROC CALIS statement to the groups
or models.

• If you have multiple groups or multiple models in your analysis and each group or model has a unique
output data file destination (including cases where some groups or models might not have any output
files), you do not need to use the OUTFILES statement. You can simply specify the OUTSTAT=,
OUTWGT=, or OUTMODEL= options in the GROUP or MODEL statements.

PARAMETERS Statement
PARAMETERS | PARMS parameters < < = > numbers | (numbers) >

< < , > parameters < < = > numbers | (numbers) > . . . > ;

The PARAMETERS statement defines parameters that are useful in the modeling. You can specify more than
one PARAMETERS statement.

The three main uses of the PARAMETERS statement are as follows:

• Define independent parameters that are not specified in your model. In some modeling situations, it
is more convenient (practically or conceptually) to define the model parameters as functions of these
independent parameters. PROC CALIS computes the estimates and their standard errors for these
independent parameters.

• Define dependent parameters of interest. These dependent parameters are then defined as functions of
the model parameters in the SAS programming statements. PROC CALIS computes the estimates and
their standard errors for these dependent parameters.

• Provide initial values for the free parameters in the model if they have not been specified in the model
specification statements.

For example, the following statements illustrate the three main uses of the PARAMETERS statement:

proc calis;
path

V1 <=== V2 = b1,
V1 <=== V3 = b2,
V2 <=== V4 = b3 (0.9),
V3 <=== V5 = b4;

parameters a1 (0.1) a2 (0.2) b3 (0.3) b4 (0.4) b5;
b1 = -a1 / a2;
b2 = 1 / a2;
b5 = b3 - b4;

run;

In the PARAMETERS statement, you specify five parameters that take different roles in the modeling.
Parameters a1 and a2 are independent parameters that are not specified in the PATH statement, which
specifies four paths with four parameters for the path coefficients b1, b2, b3, and b4. The two SAS
programming statements immediately after the PARAMETERS statement define parameters b1 and b2 as
functions of parameters a1 and a2. Because a1 and a2 appear only on the right side of the programming
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statements, they are independent parameters of the model. In addition, b1 and b2 are dependent parameters
because they appear on the left side of the first two programming statements. Independent parameters a1 and
a2 are provided with initial values 0.1 and 0.2, respectively, in the PARAMETERS statement. Because the
initial values these two independent parameters are used, dependent parameters b1 and b2 are also initialized
with values –0.5 and 5, respectively.

Parameters b3 and b4 appear in both the PATH and PARAMETERS statements. Because these two parameters
are already specified in the PATH statement, their initial values might have been defined in the model. For
example, parameter b3 in the PATH statement has an initial value of 0.9. This initial value is not replaced by
the initial value of 0.3 specified in the PARAMETERS statement. However, because you do not specify an
initial value for parameter b4 in the PATH statement, the initial value of 0.4 specified in the PARAMETERS
statement is used. In general, the initial values that are specified in the PARAMETERS statement do not
replace the initial values that have already been specified for the same parameters in the model.

Parameter b5 in the PARAMETERS statement is a dependent parameter, which is defined as the difference
between the model parameters b3 and b4 in the last SAS programming statement. No initial value for this
dependent parameter is provided (nor is it needed). By definition, dependent parameters are functions of
other parameters, so their initial values are computed. In this example, parameter b5 takes an initial value of
0.5, the difference between the initial values of b3 and b4.

It is not necessary to provide initial values for the parameters in the PARAMETERS statement. For the
independent parameters without initial values specified, PROC CALIS generates the initial values from
the START= value in the PROC CALIS statement. The default START= value is 0.5. If you specify the
RANDOM= option in the PROC CALIS statement, random numbers are generated for the initial values of
the independent parameters. For the dependent parameters, PROC CALIS computes the initial values by
using the SAS programming statements.

In general, the number of parameters and the number of initial values do not have to match. When you
specify fewer initial values than parameter names, PROC CALIS either generates or computes the initial
values. When you specify more values than parameter names, the extra values are ignored.

For example, consider the following statements:

parameters c1 c2 c3 c4 (0.2 0.3 0.4);
parameters d1 d2 d3 d4 (0.1 0.2 0.3 0.4 0.5);
run;

The first PARAMETERS statement has a shorter initial value list than the parameter list. The initial values
0.2, 0.3, and 0.4 are assigned to c2, c3, and c4, respectively. PROC CALIS generates the initial value for c1.
The second PARAMETERS statement has a longer initial value list than the parameter list. The initial values
0.1, 0.2, 0.3, and 0.4 are assigned to d1, d2, d3, and d4, respectively. The extra initial value 0.5 is ignored.

When the lengths of the parameter list and the initial value list match, you can use an equal sign between
the lists freely without affecting the assignments of the initial values. For example, each of the following
PARAMETERS statements assigns the initial values alpha=0.5 and beta=–0.5:

parameters alfa 0.5 beta -0.5;
parameters alfa = 0.5 beta = -0.5;
parameters alfa (0.5) beta (-0.5);
parameters alfa = (0.5) beta = (-0.5);
parameters alfa beta 0.5 -0.5;
parameters alfa beta = 0.5 -0.5;
parameters alfa beta (0.5 -0.5);
parameters alfa beta = (0.5 -0.5);
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However, when the parameter list is longer than the initial value list, the equal sign affects the assignments of
the initial values. For example, the following statement assigns the initial values to the last three parameters,
c2, c3, and c4:

parameters c1 c2 c3 c4 (0.2 0.3 0.4);

But with an equal sign between the lists, the following statement assigns the initial values to the first three
parameters, c1, c2, and c3:

parameters c1 c2 c3 c4 = (0.2 0.3 0.4);

To make initial value assignments less ambiguous, you can use commas to separate parameter lists. For
example, the following statement clearly assigns the initial values to c2, c3, and c4:

parameters c1, c2 c3 c4 (0.2 0.3 0.4);

This specification is equivalent to the same specification without the comma. But the specification is certainly
less ambiguous with the comma.

Proper grouping of the parameter and initial value lists with the use of commas helps make the specification
in the PARAMETERS statement clear. For example, consider the following specification:

parameters c1 c2 c3 c4 = (0.1 0.2 0.3) c5 c6 (0.6);

Initial values 0.1, 0.2, 0.3, and 0.6 are assigned to parameters c1, c2, c3, and c6, respectively. Initial values
for other parameters are either generated or computed by PROC CALIS. A much better practice is to use the
following equivalent specification:

parameters c1 c2 c3 (0.1 0.2 0.3), c4 c5, c6 (0.6);

Matching the number of parameters and the number of initial values (if provided) in entries separated by
commas in the PARAMETERS statement is highly recommended. It reduces ambiguities and makes your
code more interpretable.

It is important to notice that PROC CALIS does not have better alternatives to generate initial values (such as
those for setting the initial values of the model parameters) for the independent parameters specified in the
PARAMETERS statement other than using either the START= value or random values generated by using
the RANDOM= option. These ad hoc initial values are arbitrary and might not always lead to converged
solutions. Therefore, you should try to provide good initial values for those independent parameters that are
defined only in the PARAMETERS statement.

Do not confuse the PARAMETERS statement with the VAR statement. While you specify the parameters of
the model in the PARAMETERS statement, you specify analysis variables in the VAR statement. See the
VAR statement on page 1359 for more details.

CAUTION: The OUTMODEL= and OUTRAM= data sets do not contain any information about the PARAM-
ETERS statement or the SAS programming statements.
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PARTIAL Statement
PARTIAL variables ;

If you want the analysis to be based on a partial correlation or covariance matrix, use the PARTIAL statement
to list the variables used to partial out the variables in the analysis. You can specify only one PARTIAL
statement within the scope of each GROUP or PROC CALIS statement.

PATH Statement
PATH path < , path . . . > ;

where path represents any of the following specifications:

• single-headed path for defining functional relationship

• double-headed path for specifying variances or covariances

• 1-path for specifying means or intercepts

For example, the following PATH statement contains only the single-headed paths:

path
v1 <=== v2,
v2 <=== v4 v5, /* same as: v2 <=== v4 and v2 <=== v5 */
v3 ===> v5, /* same as: v5 <=== v3 */
v4 v5 <=== v6 v7; /* same as: v4 <=== v6, v4 <=== v7,

v5 <=== v6, and v5 <=== v7 */

Although the most common definition of paths refer to these single-headed paths, PROC CALIS extends
the definition of paths to include the so-called “variance-paths,” “covariance-paths,” and “1-paths” that
refer to the variance, covariance, and the mean or intercept parameters, respectively. Corresponding to
these extended path definitions, PROC CALIS provides the double-headed path and 1-path syntax. For
example, the following PATH statement contains single-headed paths for specifying functional relationships
and double-headed paths for specifying variances and covariances:

path
v1 <=== v3-v5, /* same as: v1 <=== v3, v1 <=== v4, and v1 <=== v5 */
v2 <=== v4 v5,
v3 <=== v5,
v1 <==> v1, /* error variance of v1 */
<==> v2 v3, /* error variances of v2 and v3 */
v2 <==> v3, /* error covariance between v2 and v3 */
<==> [v4 v5]; /* variances and covariance for v4 and v5 */
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The following PATH statement contains single-headed paths for specifying functional relationships and
1-paths for specifying means and intercepts:

path
v1 <=== v3-v5,
v2 <=== v4 v5,
v3 <=== v5,
1 ===> v1, /* intercepts for v1 */
1 ===> v2-v3, /* intercepts for v2 and v3 */
1 ===> v4 v5; /* means of v4 and v5 */

Details about the syntax of these three different types of paths are described later. Instead of using double-
headed paths and 1-paths, you can also specify these parameters by the subsidiary model specification
statements such as the PVAR, PCOV, and the MEAN statements, as shown in the following syntactic structure
of the PATH modeling language:

PATH path < , path . . . > ;
PVAR partial-variance-parameters ;
PCOV partial-covariance-parameters ;
MEAN mean-parameters ;

Typically, in this syntactic structure the paths contains only single-headed paths for representing the functional
relationships among variables, which could be observed or latent. The paths are separated by commas. You
can specify at most one PATH statement in a model within the scope of either the PROC CALIS statement or
a MODEL statement.

Next, the PVAR statement specifies the parameters for the variances or error (partial) variances. The PCOV
statement specifies the parameters for the covariances or error (partial) covariances. The MEAN statement
specifies the parameters for the means or intercepts. For details about these subsidiary model specification
statements, see the syntax of the individual statements.

A natural question now arises. For the specification of variances, covariances, intercepts, and means, should
you use the extended path syntax that includes double-headed paths and 1-paths or the subsidiary model
specification statements such as the PVAR, PCOV, and MEAN statements? If you want to specify all
parameters in a single statement and hence output and view all the parameter estimates in a single output
table, then the extended path syntax would be your choice. If you want to use more common language for
specifying and viewing the parameters or the estimates of variances, covariances, means, and intercepts, then
the subsidiary model specification statements serve the purpose better.

You are not restricted to using extended path syntax or the subsidiary model statements exclusively in a PATH
model specification. For example, you might specify the variance of v1 by using the double-headed path
syntax and the variance of v2 by using the PVAR statement. The only restriction is that you cannot specify
the same parameter twice. In addition, even if you specify your PATH model without using double-headed
paths or 1-paths, you can include the estimation results associated with these extended paths in the same
output table for the single-headed paths by using the EXTENDPATH or GENPATH option. This way all the
estimates of the PATH model can be shown in a single output table.
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The Single-Headed Path Syntax for Specifying Functional Relationships

var-list arrow var-list2 < = parameter-spec >

where var-list and var-list2 are lists of variables, parameter-spec is an optional specification of parameters,
and arrow represents either a left-arrow is one of the following forms:

<===, <---, <==, <--, <=, <-, or <
or a right-arrow is one of the following forms:

===>, --->, ==>, -->, =>, ->, or >

In each single-headed path, you specify two lists of variables: var-list and var-list2. Depending on the
direction of the arrow specification, one group of variables contains the outcome variables and the other
group contains the predictor variables. Optionally, you can specify the parameter-spec at the end of each
path entry. You can specify the following five types of the parameters for the path entries:

• unnamed free parameters

• initial values

• fixed values

• free parameters with names provided

• free parameters with names and initial values provided

For example, in the following statement you specify a model with five paths:

path
v1 <=== f1 ,
v2 <=== f1 = (0.5),
v3 <=== f1 = 1.,
v4 <=== f1 = b1,
v5 <=== f1 = b2 (.4);

The first path entry specifies a path from f1 to v1. The effect of f1 (or the path coefficient) on v1 is an
unnamed free parameter. For this path effect parameter, PROC CALIS generates a parameter name with the
_Parm prefix and appended with a unique integer (for example, _Parm1). The second path entry specifies a
path from f1 to v2. The effect of f1 is also an unnamed free parameter with an initial estimate of 0.5. PROC
CALIS also generates a parameter name for effect parameter. The third path entry specifies a path from f1 to
v3. The effect of f1 is also a fixed value of 1.0. This value stays the same in the model estimation. The fourth
path entry specifies a path from f1 to v4. The effect of f1 is a free parameter named b1. The fifth path entry
specifies a path from f1 to v5. The effect of f1 is a free parameter named b2, with an initial value of 0.4.

You can specify multiple variables in the var-list and var-list2 lists. For example, the following statement
specifies five paths from f1 to v1–v5:

path
f1 ===> v1-v5;

All the five effects of f1 on the five variables are unnamed free parameters. If both var-list and var-list2
lists contain multiple variables, you must be careful about the order of the variables when you also specify
parameters at the end of the path entry. For example, the following statement specifies the paths from the
predictor variables x1–x2 to the outcome variables y1–y3:
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path
y1-y3 <=== x1-x2 = a1-a6;

The PATH statement specifies six paths in the path entry. These six paths have effect parameters a1–a6. This
specification is equivalent to the following specification:

path
y1 <=== x1 = a1;
y1 <=== x2 = a2;
y2 <=== x1 = a3;
y2 <=== x2 = a4;
y3 <=== x1 = a5;
y3 <=== x2 = a6;

The following statement shows another example of multiple-path specification:

path
x1-x2 ===> y1-y3 = b1-b6;

This specification is equivalent to the following specification with separate path specifications:

path
x1 ===> y1 = b1;
x1 ===> y2 = b2;
x2 ===> y3 = b3;
x2 ===> y1 = b4;
x2 ===> y2 = b5;
x2 ===> y3 = b6;

You can also specify parameter with mixed types in any path entry, as shown in the following specification:

path
f1 ===> y1-y3 = 1. b1(.5) (.3),
f2 ===> y4-y6 = 1. b2 b3(.7);

This specification is equivalent to the following expanded version:

path
f1 ===> y1 = 1.,
f1 ===> y2 = b1(.5),
f1 ===> y3 = (.3),
f2 ===> y4 = 1.,
f2 ===> y5 = b2,
f2 ===> y6 = b3(.7);

Notice that in the original specification with multiple-path entries, 0.5 is interpreted as the initial value for
the parameter b1, but not as the initial estimate for the path from f1 to y3. In general, an initial value that
follows a parameter name is associated with the free parameter.

If you indeed want to specify that b1 is a free parameter without an initial estimate and 0.5 is the initial
estimate for the path from f1 to y3 (while keeping all other specification the same), you can use a null initial
value specification, as shown in the following statement:
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path
f1 ===> y1-y3 = 1. b1() (.5) ,
f2 ===> y4-y6 = 1. b2 b3(.7);

This way 0.5 becomes the initial value for the path from f1 to y3. Because a parameter list with mixed types
might be confusing, you can break down the specifications into separate path entries to remove ambiguities.
For example, you can use the following specification equivalently:

path
f1 ===> y1 = 1.,
f1 ===> y2 = b1,
f1 ===> y3 = (.5) ,
f2 ===> y4-y6 = 1. b2 b3(.7);

The equal signs in the path entries are optional when the parameter lists do not start with a parameter name.
For example, the preceding specification is the same as the following specification:

path
f1 ===> y1 1.,
f1 ===> y2 = b1,
f1 ===> y3 (.5) ,
f2 ===> y4-y6 1. b2 b3(.7);

Notice that in the second path entry, you must retain the equal sign because b1 is a parameter name. Omitting
the equal sign makes the specification erroneous because b1 is treated as a variable. This might cause serious
estimation problems. Omitting the equal signs might be cosmetically appealing in specifying fixed values or
initial values (for example, the first and the third path entries). However, the gain of doing that is not much as
compared to the clarity of specification that results from using the equal signs consistently.

NOTE: You do not need to specify single-headed paths from the errors or disturbances (that is, error terms) in
the PATH model specification, even though the functional relationships between variables are not assumed to
be perfect. Essentially, the roles of error terms in the PATH model are in effect represented by the associated
default error variances of the endogenous variables, making it unnecessary to specify any single-headed paths
from error or disturbance variables.

The Double-Headed Path Syntax That Uses Two Variable Lists for Specifying Variances and
Covariances

var-list two-headed-arrow var-list2 < = parameter-spec >

where a two-headed-arrow is one of the following forms:
<==>, <-->, <=>, <->, or <>

This syntax enables you to specify covariances between the variables in var-list and the variables in var-list2.
Consider the following example:

path
v1 <==> v2,
v3 v4 <==> v5 v6 v7 = cv1-cv6;

The first double-headed path specifies the covariance between v1 and v2 as an unnamed free parameter.
PROC CALIS generates a name for this unnamed free parameter. The second double-headed path specifies
six covariances with parameters named cv1–cv6. This multiple-covariance specification is equivalent to the
following elementwise covariance specification:
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path
v3 <==> v5 = cv1,
v3 <==> v6 = cv2,
v3 <==> v7 = cv3,
v4 <==> v5 = cv4,
v4 <==> v6 = cv5,
v4 <==> v7 = cv6;

Note that the order of variables in the list is important for determining the assignment of the parameters in
the parameter-spec list.

If the same variable appears in both of the var-list and var-list2 lists, the “covariance” specification becomes a
variance specification for that variable. For example, the following statement specifies two variances:

path
v1 <==> v1 = 1.0,
v2 <==> v2 v3 = sigma2 cv23;

The first double-headed path entry specifies the variance of v1 as a fixed value of 1.0. The second double-
headed path entry specifies the variance of v2 as a free parameter named sigma2, and then the covariance
between v2 and v3 as a free parameter named cv23.

It results in an error if you attempt to use this syntax to specify the variance and covariances among a set
of variables. For example, suppose you intend to specify the variances and covariances among v1–v3 as
unnamed free parameters by the following statement:

path
v1-v3 <==> v1-v3 ;

This specification expands to the following elementwise specification:

path
v1 <==> v1 ,
v1 <==> v2 ,
v1 <==> v3 ,
v2 <==> v1 ,
v2 <==> v2 ,
v2 <==> v3 ,
v3 <==> v1 ,
v3 <==> v2 ,
v3 <==> v3 ;

There are nine variance or covariance specifications, but all of the covariances are specified twice. This is
treated as a duplication error. The correct way is to specify only the nonredundant covariances, as shown in
the following elementwise specification:

path
v1 <==> v1 ,
v2 <==> v1 ,
v2 <==> v2 ,
v3 <==> v1 ,
v3 <==> v2 ,
v3 <==> v3 ;
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However, the elementwise specification is quite tedious when the number of variables is large. Fortunately,
there is another syntax for double-headed paths to deal with this situation. This syntax is discussed next.

The Double-Headed Path Syntax That Uses a Single Variable List for Specifying Variances

two-headed-arrow var-list < = parameter-spec >

This syntax enables you to specify variances among the variables in var-list . Consider the following example:

path
<==> v1 = (0.8),
<==> v2-v4 ;

The first double-headed path entry specifies the variance of v1 as an unnamed free parameter with an initial
estimate of 0.8. The second double-headed path entry specifies the variances of v2–v4 as unnamed free
parameters. No initial values are given for these three variances. PROC CALIS generates names for all
these variance parameters. You can specify these variances equivalently by the elementwise covariance
specification syntax, as shown in the following, but former syntax is much more efficient.

path
v1 <==> v1 = (0.8),
v2 <==> v2 ,
v3 <==> v3 ,
v4 <==> v4 ;

The Double-Headed Path Syntax That Uses a Single Variable List for Specifying Variances
and Covariances

two-headed-arrow [var-list] < = parameter-spec >

This syntax enables you to specify all the variances and covariances among the variables in var-list . For
example,the following statement specifies all the variances and covariances among v2–v4:

path
<==> [v2-v4] = 1.0 cv32 cv33(0.5) cv42 .7 cv44;

This specification is more efficient as compared with the following equivalent specification with elementwise
variance or covariance definitions:

path
v2 <==> v2 = 1.0,
v3 <==> v2 = cv32 ,
v3 <==> v3 = cv33(0.5),
v4 <==> v2 = cv42,
v4 <==> v3 = .7,
v4 <==> v2 = cv44;

The double-headed path Syntax for Specifying Nonredundant Covariances

two-headed-arrow (var-list)< = parameter-spec >

This syntax enables you to specify all the nonredundant covariances among the variables in var-list . For
example, the following statement specifies all the nonredundant covariances between v2–v4:
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path
<==> (v2-v5) = cv1-cv6;

This specification is equivalent to the following elementwise specification:

path
v3 <==> v2 = cv1 ,
v4 <==> v2 = cv2 ,
v4 <==> v3 = cv3 ,
v5 <==> v2 = cv4 ,
v5 <==> v3 = cv5 ,
v5 <==> v4 = cv6 ;

The 1-path Syntax for Specifying Means and Intercepts

1 right-arrow var-list < = parameter-spec >

where a right-arrow is one of the following forms:
===>, --->, ==>, -->, =>, ->, or >

This syntax enables you to specify the means or intercepts of the variables in var-list as paths from the
constant 1. Consider the following example:

path
v1 <=== v2-v4,
1 ===> v1 = alpha,
1 ===> v2-v4 = 3*kappa;

The first single-headed path specifies that v1 is predicted by variables v2, v3, and v4. Next, the first 1-path
entry specifies either the intercept of v1 as a free parameter named alpha. It is the intercept, rather than
the mean, of v1 because endogenous in the PATH model. The second 1-path entry specifies the means of
v2–v4 as constrained parameters. All these means or intercepts are named kappa so that they have the same
estimate.

Therefore, whether the parameter is a mean or an intercept specified with the 1-path syntax depends on
whether the associated variable is endogenous or exogenous in the model. The intercept is specified if the
variable is endogenous. Otherwise, the mean of the variable is specified. Fortunately, any variable in the
model can have either a mean or intercept (but not both) to specify. Therefore, the 1-path syntax is applicable
to either the mean or intercept specification without causing conflicts.

Shorter and Longer Parameter Lists

If you provide fewer parameters in parameter-spec than the number of paths in a path entry, all the remaining
parameters are treated as unnamed free parameters. For example, the following specification specifies the
free parameter beta to the first path and assigns unnamed free parameters to the remaining four paths:

path
f1 ===> y1 z1 z2 z3 z4 = beta;
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This specification is equivalent to the following specification:

path
f1 ===> y1 = beta,
f1 ===> z1 z2 z3 z4;

If you intend to fill up all values with the last parameter specification in the list, you can use the continuation
syntax [...], [..], or [.], as shown in the following example:

path
f1 ===> y1 z1 z2 z3 z4 = beta gamma [...];

This specification is equivalent to the following specification:

path
f1 ===> y1 z1 z2 z3 z4 = beta 4*gamma;

The repetition factor 4* means that gamma repeats 4 times.

However, you must be careful not to provide too many parameters. For example, the following specification
results in an error:

path
SES_Factor ===> y1 z1 z2 z3 z4 = beta gamma1-gamma6;

Because there are only five paths in the specification, parameters gamma5 and gamma6 are excessive.

Default Parameters

It is important to understand the default parameters in the PATH model. First, knowing which parameters
are default free parameters makes your specification more efficient by omitting the specifications of those
parameters that can be set by default. For example, because all variances and covariances among exogenous
variables (excluding error terms) are free parameters by default, you do not need to specify them in the
PATH model if these variances and covariances are not constrained. Second, knowing which parameters
are default fixed zero parameters enables you to specify your model accurately. For example, because all
error covariances in the PATH model are fixed zeros by default, you must use the PCOV statement or the
double-headed path syntax to specify the partial (error) covariances among the endogenous variables if you
want to fit a model with correlated errors. See the section “Default Parameters in the PATH Model” on
page 1424 for details about the default parameters of the PATH model.

Modifying a PATH Model from a Reference Model

If you define a new model by using a reference (old) model in the REFMODEL statement, you might want to
modify some path specifications from the PATH statement of the reference model before transferring the
specifications to the new model. To change a particular path specification from the reference model, you can
simply respecify the same path with the desired parameter specification in the PATH statement of the new
model. To delete a particular path and its associated parameter from the reference model, you can specify the
desired path with a missing value specification in the PATH statement of the new model.

PATH path < , path . . . > ;
PVAR partial-variance-parameters ;
PCOV partial-covariance-parameters ;
MEAN mean-parameters ;
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The new model is formed by integrating with the old model in the following ways:

Duplication: If you do not specify in the new model a parameter location that exists in the old model,
the old parameter specification is duplicated in the new model.

Addition: If you specify in the new model a parameter location that does not exist in the old model,
the new parameter specification is used in the new model.

Deletion: If you specify in the new model a parameter location that also exists in the old model and
the new parameter is denoted by the missing value ‘.’, the old parameter specification is
not copied into the new model.

Replacement: If you specify in the new model a parameter location that also exists in the old model and
the new parameter is not denoted by the missing value ‘.’, the new parameter specification
replaces the old one in the new model.

For example, consider the following specification of a two-group analysis:

proc calis;
group 1 / data=d1;
group 2 / data=d2;
model 1 / group=1;

path
v1 <=== f1 = 1.,
v2 <=== f1 = load1,
v3 <=== f1 = load2,
f1 <=== v4 = b1,
f1 <=== v5 = b2,
f1 <=== v6 = b3;

pvar
E1-E3 = ve1-ve3,
f1 = vd1,
v5-v6 = phi4-phi6;

pcov
v1 v2 = cve12;

model 2 / group=2;
refmodel 1;
path

v3 <=== f1 = load1,
pcov

v1 v2 = .,
v2 v3 = cve23;

run;

You specify Model 2 by referring to Model 1 in the REFMODEL statement. Model 2 is the new model that
refers to the old model, Model 1. This example illustrates the four types of model integration rules for the
new model:

• Duplication: All parameter specifications, except for the partial covariance between v1 and v2 and the
v3 <=== f1 path in the old model, are duplicated in the new model.

• Addition: The parameter cve23 for the partial covariance between v2 and v3 is added in the new model
because there is no corresponding specification in the old model.
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• Deletion: The specification of partial covariance between v1 and v2 in the old model is not copied into
the new model, as indicated by the missing value ‘.’ specified in the new model.

• Replacement: The new path v3 <=== f1 replaces the same path in the old model with parameter
load1 for the path coefficient. Thus, in the new model paths v3 <=== f1 and v2 <=== f1 are now
constrained to have the same path coefficient parameter load1.

PATHDIAGRAM Statement
PATHDIAGRAM < options > ;

You can use the PATHDIAGRAM statement to select particular path diagrams for output, to specify and
modify the layout algorithm, to select variables and paths in path diagrams, to control the formatting of
parameter labels, and to fine-tune many graphical and nongraphical features of path diagrams. You can use
multiple PATHDIAGRAM statements to control different path diagrams or to produce path diagrams from
the same model that have different styles and graphical features.

If you specify a PATHDIAGRAM statement without any options, this has the same effect as specifying
the PLOTS=PATHDIAGRAM option in the PROC CALIS statement. Both produce a path diagram for the
unstandardized solution if you do not specify the METHOD=NONE option in the PROC CALIS statement.
By default, the path diagram for the unstandardized solution shows the paths, variables, unstandardized
estimates and their significance, and fit summary table. For more information about these default settings, see
the section “Default Path Diagram Settings” on page 1454. If you specify METHOD=NONE in the PROC
CALIS statement, PROC CALIS produces a path diagram for the initial specifications, which shows the
paths, the variables, and the input fixed values and parameter names. For introductory examples of creating
and editing path diagrams, see Yung (2014).

The options of the PATHDIAGRAM statement can be classified into five categories. The following five
tables summarize these options. An alphabetical listing of these options that includes more details follows
the tables.

Options for Selecting Different Types of Path Diagrams

You can use the options in the following table to request various types of path diagrams. If you use more than
one of these options, PROC CALIS outputs a combination of the specified types of path diagrams.

Option Description

DIAGRAM= Specifies the solution types for the output path diagrams
MODEL= Specifies the models for the output path diagrams
STRUCTURAL Requests the path diagrams for the structural components of models

Options for Controlling the Layout of Paths and Variables

You can use the following options to specify the path diagram layout algorithm, to define paths and variables
that you want to include in or exclude from path diagrams, and to provide useful information that might
improve the graphical presentation of the output path diagrams.
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Option Description

ARRANGE= Specifies the graphical algorithm for laying out variables
DESTROYER= Specifies paths that should not be considered in laying out variables
EMPHSTRUCT Emphasizes the structural components in path diagrams
ERRORSIZE= Specifies the size of error variables relative to observed variables
FACTORSIZE= Specifies the size of latent factors relative to observed variables
MEANPARM= Specifies mean parameters to be displayed as either paths or labels
OMITPATH= Omits specified paths from the output path diagram
STRUCTADD= Adds observed variables to the definition of the structural component
USEERROR Requests the use of explicit error variables
VARPARM= Specifies variance parameters to be displayed as either paths or labels

Options for Selecting the Parameters to Display in the Output Path Diagram

You can use the following options to select the parameters to display in output path diagrams.

Option Description

EXOGCOV Enables the display of covariances between exogenous non-error variables
NOCOV Disables the display of covariance parameters
NOERRCOV Disables the display of covariances between error variables
NOERRVAR Disables the display of variances of error variables
NOEXOGCOV Disables the display of covariances between exogenous non-error variables
NOEXOGVAR Disables the display of variances between exogenous non-error variables
NOINITPARM Disables the display of parameters in the path diagram for the initial specification
NOMEANS Disables the display of means or intercepts of all variables
NOVARIANCE Disables the display of variances of all variables

Options for Formatting the Parameters in the Output Path Diagram

You can use the following options to control the formats of the parameters that are displayed in path diagrams.

Option Description

DECP= Specifies number of the decimal places in the estimates
NOESTIM Disables the display of numerical estimates
NOFLAG Disables the display of flags for statistical significance
PARMNAMES Enables the display of parameter names or labels

Miscellaneous Options for Controlling the Output Path Diagram

You can use the following options to control the displays of the title, the fit table, and the labels of the
variables.
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Option Description

DECPFIT= Specifies the number of decimal places in the fit statistics
DIAGRAMLABEL= Specifies the label of the diagram in the ODS
FITINDEX= Selects fit information to display in the fit summary table
LABEL= Specifies labels of the variables shown in the path diagram
NOFITTABLE Suppresses the display of fit statistics
NOTITLE Suppresses the display of the title
TITLE= Specifies the title to display in the output path diagram

In order to customize your path diagram output effectively by using these options, it is useful to know the
default settings of the graphical and nongraphical elements in the output path diagram. For information about
these default settings and the corresponding overriding or modifying options, see the section “Default Path
Diagram Settings” on page 1454.

PATHDIAGRAM Statement Options

ARRANGE=name

ARRANGEMENT=name

METHOD=name
specifies the algorithm for laying out the variables in the path diagram. You can specify the following
names:

AUTOMATIC requests the “best” algorithm. PROC CALIS analyzes the interrelationships among
variables (excluding error variables) in the model and selects the most appropriate
algorithm from those that you can explicitly request by specifying the FLOW,
GRIP, and GROUPEDFLOW options. PROC CALIS first checks whether the ideal
conditions for the process-flow algorithm are met; if so, the process-flow algorithm
is used. If not, PROC CALIS checks whether the ideal conditions for the grouped-
flow algorithm are met; if so, the grouped-flow algorithm is used. Otherwise, the
more general GRIP algorithm is used.

FLOW requests the process-flow algorithm, which is most appropriate when all variables
(not including the error variables) exhibit hierarchical functional relationships in
the model. That is, all variables in the model can be ordered hierarchically such
that functional relationships (or directional paths) can occur only between variables
at adjacent levels (that is, no cross-level, within-level, or reciprocal functional
relationships). For example, the process-flow algorithm is ideal for confirmatory
factor models and higher-order factor models in their pure forms (no cross-level or
within-level paths in the model).

GRIP requests the GRIP (Graph dRawing with Intelligent Placement) algorithm. This
algorithm is more general than the process-flow and grouped-flow algorithms.
Hence, the GRIP algorithm should be used when the ideal conditions for the
process-flow and grouped-flow algorithms are not met.

GROUPEDFLOW requests the grouped-flow algorithm, which is most appropriate when all latent
factors exhibit hierarchical functional relationships in the model. That is, all latent
factors can be ordered hierarchically such that their functional relationships (or
directional paths) occur only between factors at adjacent levels (no cross-level,
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within-level, or reciprocal functional relationships). The ideal conditions for the
grouped-flow algorithm are the same as those for the process-flow algorithm, except
that the grouped-flow algorithm considers only the latent factors that have an ideal
process-flow pattern. Because each latent factor is usually clustered with a group of
measured variables, this pattern can be described as an ideal “grouped” process-flow
pattern (hence the name grouped-flow algorithm).

By default, ARRANGE=AUTOMATIC.

For more information and for illustrations of these methods, see the section “The Process-Flow,
Grouped-Flow, and GRIP Layout Algorithms” on page 1440.

DECP=i
sets the decimal places of the estimates that are displayed in the path diagram, where i is between 0
and 4. The default value is 2. The displayed estimates are at most seven digits long, including the
decimal point for the nonzero value of i .

DECPFIT=i
sets the decimal places of the fit statistics or information that is shown in the fit summary table of the
path diagram, where i is between 0 and 4. The default value is 2. The displayed numerical values are
at most 10 digits long, including the decimal point for the nonzero value of i .

DESTROYER=[path < , path . . . >] | {path < , path . . . >}

DESTROYERPATH=[path < , path . . . >] | {path < , path . . . >}
specifies a list of paths that are considered to be “destroyer” paths to the layout algorithm that is used
(or specified using the ARRANGE= option), where path represents

var-list direction var-list2

and direction is the direction of the path, as indicated by one of the following:
===>, --->, ==>, -->, =>, ->, >, <===, <---, <==, <--, <=, <-, <, <==>, <-->, <=>, <->, or <>

For example:

pathdiagram destroyer=[x1 ===> x2, x2 <=== x5];
pathdiagram destroyer=[x1 x5 ===> x2];

Note that the two preceding statements specify the same set of destroyer paths: “x1 ===> x2” and
“x5 ===> x2.”

Destroyer paths are shown in the path diagram, but they are not used in determining the layout of
variables. Destroyer paths are paths that violate the ideal conditions for a particular layout algorithm so
that the placement of variables in the path diagram cannot take advantage of that algorithm (especially
for the process-flow or grouped-flow algorithm). To counter the violations, PROC CALIS ignores the
destroyer paths when laying out the variables. After determining the locations of all variables, PROC
CALIS adds the destroyer paths back to the path diagram. If you can identify these destroyer paths and
you have only a few of them (for example, fewer than five), specifying these destroyer paths in the
DESTROYER= option can significantly improve the path diagram. However, if you have too many
destroyer paths, this option might not be effective.
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For more information and for illustrations, see the section “Handling Destroyers in Path Diagrams” on
page 1448.

NOTE: If a path in the model serves as the only directed path that connects to a particular variable, it
is generally not advisable to apply the DESTROYER= option to that path. During the layout process,
the DESTROYER= option disconnects this variable from the rest of the variables in the model, so the
location of this disconnected variable in the path diagram is arbitrary. This might lead to undesirable
graphical results when PROC CALIS adds the destroyer paths back to the path diagram.

DIAGRAM=name | [names] | {names}

SOLUTION=name | [names] | {names}
specifies the solution types for the path diagram output. You can specify the following names:

ALL requests separate path diagrams for the initial, unstandardized, and standardized
solutions.

INITIAL | INIT requests a path diagram for the initial solution. This diagram displays the fixed
values and the parameters that you specify for the model. However, it does not
display generated parameter names or initial estimates. To produce a “bare-bones”
path diagram that shows only the variables and their interrelationships, use the
NOINITPARM option, which suppresses the display of fixed values and the param-
eters.

STANDARD | STAND requests a path diagram for the standardized solution. This diagram displays
the standardized parameter estimates and their significance in paths or as labels of
variables. By default, it also displays the fit summary table.

UNSTANDARD | UNSTAND requests a path diagram for the unstandardized solution. This diagram
displays the unstandardized parameter estimates and their significance in paths or
as labels of variables. By default, it also displays the fit summary table.

For example, to display only the path diagram for the standardized solutions, you can use the following
statement:

pathdiagram diagram=standard;

To display the path diagrams for the initial and unstandardized solution, you can use the following
statement:

pathdiagram diagram=[initial unstandard];

DIAGRAMLABEL=name

DLABEL=name
specifies the label of the path diagram. You can use any valid SAS names or quoted strings up to 256
characters for name. However, only up to 40 characters of the label are used by ODS. If you do not
specify this option, PROC CALIS uses the name provided in the TITLE= option. If you specify neither
the DIAGRAMLABEL= nor TITLE= option, PROC CALIS generates a label for the path diagram.
The generated label reflects the model number (if provided in the MODEL statement), the solution
type (initial, unstandardized, or standardized), and whether the structural model is being shown. For
example:
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pathdiagram diagramlabel=MySpecialModel;
pathdiagram diagramlabel="The best Model";

Note that if you specify multiple path diagrams in the same PATHDIAGRAM statement, PROC CALIS
applies the same label to all requested path diagrams. If unique labels are preferred, you can use
separate PATHDIAGRAM statements to specify labels for different path diagrams.

EMPHSTRUCT< =i >
requests that the structural component of the model be emphasized in the path diagram, where i is any
number between 0.2 and 5. The variables in the structural component are called structural variables.
Usually, only latent factors are considered as structural variables. For this option, the structural
variables have relatively larger sizes than other variables (approximately four times as large as the
observed variables in each dimension). You can control the relative size by providing a suitable value
for i , which is 4 by default. The corresponding path diagram displays and labels only the structural
variables. Nonstructural variables are displayed but not labeled. In addition, the diagram displays and
labels paths among structural variables. The diagram displays but does not label paths among structural
and nonstructural variables. Finally, the diagram does not display or label paths among nonstructural
variables.

If you consider some observed variables as structural variables in your model, use the STRUCTADD=
option to include these observed variables in the structural component. This option is not applicable to
the path diagram for the structural model that you request by specifying the STRUCTURAL option,
which displays only the structural component of the model. In contrast, the EMPHSTRUCT option
produces the complete model but emphasizes the structural component.

For more information and for illustrations, see the section “Showing or Emphasizing the Structural
Components” on page 1456.

ERRORSIZE=size

ERRSIZE=size
specifies the size of error variables relative to that of observed variables, where size is between 0.2
and 5. The default value is 0.5, meaning that the size of error variables is about half that of observed
variables.

EXOGCOV

EXOGCOVARIANCE
requests that the path diagram show the double-headed paths that represent the covariances among
exogenous non-error variables. By default, these double-headed paths are displayed only for exploratory
or confirmatory factor models, which you specify by using the FACTOR statement for other types of
models.

FACTORSIZE=size

FACTSIZE=size
specifies the size of latent factors relative to that of observed variables, where size is between 0.2 and
5. The default value is 1.5, meaning that the size ratio of factors to observed variables is about 3 to 2.
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FITINDEX=[names] | {names}
defines fit statistics or information in names to display in the fit summary table, which is shown along
with the path diagrams for unstandardized and standardized solutions. PROC CALIS uses the order of
the fit statistics or information specified in the FITINDEX= option to display the information in the fit
summary table.

For example:

pathdiagram fitindex=[chisq df probchi srmr rmsea];
pathdiagram fitindex=all;
pathdiagram fitindex=[default aic sbc caic];

For the default list of fit statistics and information, see the FITINDEX=DEFAULT option.

You can use the following names to refer to all or individual fit statistics or information available in
the fit summary table.

ALL displays all available fit statistics or information. If you specify the ALL option
along with other specific options for individual fit statistics or information, PROC
CALIS displays the specific fit statistics or information in the fit summary table
first, followed by the remaining available fit statistics or information.

DEFAULT displays a default set of fit statistics or information, which is the same as specifying
the following in the FITINDEX= option: AGFI, CFI, CHISQ, DF, LL_RMSEA,
LOGLIKE, PROBCHI, PROBCLFIT, RMSEA, SRMR, and UL_RMSEA.

If you specify the DEFAULT option along with other specific options for individual
fit statistics or information, PROC CALIS displays the specific fit statistics or
information in the fit summary table first, followed by the remaining available
default fit statistics or information.

AGFI displays the adjusted GFI.

AIC displays the Akaike information criterion.

CAIC displays Bozdogan’s corrected AIC.

CFI | BENTLERCFI displays Bentler’s comparative fit index.

CHISQ displays the chi-square statistic for model fit.

CN | CRITICAL_N displays Hoelter’s critical N.

DF displays the degrees of freedom for the chi-square test for model fit.

ECVI displays the expected cross-validation index.

GFI displays the goodness-of-fit index by Jöreskog and Sörbom.

LL_ECVI | ECVI_LL displays the lower confidence limit for RMSEA.

LL_RMSEA | RMSEA_LL displays the lower confidence limit for RMSEA.

LOGLIKE displays the fitted model –2 log-likelihood function value for METHOD=FIML
only.

NIOBS displays the number of incomplete observations for METHOD=FIML.

NOBS displays the number of observations that are used in the analysis.
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NPARMS | NPARM displays the number of independent parameters.

PGFI displays the parsimonious GFI.

PROBCHI displays the p-value of the chi-square statistic for model fit.

PROBCLFIT displays the probability of close fit.

RMR displays the root mean square residual.

RMSEA displays the root mean square error of approximation.

SBC displays the Schwarz Bayesian criterion.

SRMR displays the standardized root mean square residual.

UL_ECVI | ECVI_UL displays the upper confidence limit for ECVI.

UL_RMSEA | RMSEA_UL displays the upper confidence limit for RMSEA.

LABEL= [varlabel < , varlabel . . . >] | {varlabel < , varlabel . . . >}
specifies the labels of variables to be displayed in path diagrams, where each varlabel is in the form

variable = label

You can use any valid SAS names or quoted strings up to 256 characters for labels. The labels are
used to label the corresponding variables in output path diagrams. If you do not specify labels, the
original variable names are used as labels.

For example, instead of using x1 and y1 to label the variables in the path diagram, the following
statement specifies more meaningful labels:

pathdiagram label=[x1="Start Use" y1="Spending"];

Note that PROC CALIS does not currently use the variable labels from the LABEL statement for the
path diagram.

MEANPARM=PATH | LABEL
MEAN=PATH | LABEL

specifies whether mean parameters are displayed as paths (PATH) or as labels that are attached to
variables (LABEL). The default MEANPARM= value is LABEL when you model mean structures.
This option does not apply when you model only covariance structures.

MODEL=[int-list] | {int-list}
MODELS=[int-list] | {int-list}

requests path diagrams for a list of models, which are specified by their associated model numbers. By
default, the output shows path diagrams of all models in the analysis. This option is useful if you want
to restrict the path diagram output to a particular set of models. For example:

pathdiagram model=[1 to 3];
pathdiagram model=[2 4 5];

The first PATHDIAGRAM statement requests path diagrams for models 1, 2, and 3. The second
PATHDIAGRAM statement requests path diagrams for models 2, 4, and 5.
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NOCOV

NOCOVARIANCE
suppresses the display of covariances between variables.

NOERRCOV

NOERRORCOVARIANCE
suppresses the default display of covariances among error variables.

NOERRVAR

NOERRORVARIANCE
suppresses the default display of error variances, which are represented as either double-headed paths
or labels that are attached to error variables.

NOESTIM

NOEST
suppresses the default display of all numerical estimates (including fixed estimates) in path diagrams
for unstandardized and standardized solutions.

NOEXOGCOV

NOEXOGCOVARIANCE
suppresses the display of covariances between exogenous non-error variables. By default, only the
exploratory or confirmatory factor models, which you specify using the FACTOR statement, show the
covariances between exogenous non-error variables. For other models, NOEXOGCOV is the default.

NOEXOGVARIANCE

NOEXOGVARIANCE
suppresses the default display of variances of exogenous non-error variables. This applies to variance
parameters that are represented as either double-headed paths or labels that are attached to the
exogenous variables.

NOFITTABLE

NOFIT
suppresses the default display of fit summary tables in path diagrams for standardized or unstandardized
solutions.

NOFLAG
suppresses the default flagging of significant estimates in path diagrams. By default, estimates that are
significant at the 0.05 ˛-level are flagged with “*”, and estimates that are also significant at the 0.01
˛-level are flagged with “**”. Fixed estimates are marked with “(fixed)”.

NOINITPARM
suppresses the default display of user-specified parameter names and fixed values in path diagrams
for initial specifications, which you request by specifying the DIAGRAM=INITIAL option in the
PATHDIAGRAM statement. This option is not applicable to path diagrams for unstandardized or
standardized solutions.
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NOMEAN
suppresses the default display of the mean or intercept parameters and their estimates in models that
contain mean structures. These mean parameters and estimates can be in the form of either paths or
labels that are attached to variables.

NOTITLE
suppresses the display of the default title. You can use the TITLE= option to provide your own title.

NOVARIANCE
suppresses the default display of all variances. This applies to variance parameters that are represented
as either double-headed paths or labels that are attached to nodes.

OMITPATHS=[path < , path . . . >] | {path < , path . . . >}

OMIT=[path < , path . . . >] | {path < , path . . . >}
specifies a list of paths to be omitted from the output path diagram, where path represents

var-list direction var-list2

and direction is the direction of the path, as indicated by one of the following:
===>, --->, ==>, -->, =>, ->, >, <===, <---, <==, <--, <=, <-, <, <==>, <-->, <=>, <->, or <>

For example:

pathdiagram omitpath=[y1 ===> y4, y4 <=== y3];
pathdiagram omitpath=[y3 y1 ===> y4];

Note that the two preceding statements specify the same set of paths that are omitted: “y1 ===> y4”
and “y3 ===> y4.”

The omitted paths are not shown in the path diagram, nor are they used in determining the layout of
the variables. The OMITPATHS= option is useful when you want to see how a particular set of paths
affects the display of a path diagram. If omitting a certain set of paths improves the display, the omitted
paths can be considered as destroyer paths. You might then specify these paths in the DESTROYER=
option to get an improved diagram.

NOTE: If a path in the model serves as the only directed path that connects to a particular variable, it
is generally not advisable to apply the OMITPATHS= option to that path. The OMITPATHS= option
disconnects this variable from the rest of the variables in the model, so the location of the disconnected
variable in the path diagram is arbitrary. This might lead to undesirable graphical results.

PARMNAMES

PARM
requests the display of parameter names or labels. By default, path diagrams for unstandardized or
standardized solutions do not show any parameter names or labels, whereas path diagrams for initial
specifications show only user-specified parameter names or labels (but not the generated parameter
names or labels) and fixed values.
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STRUCTADD=[variables] | {variables}
specifies a list of observed variables that should be added to the structural component of a model.
Traditionally, the structural component of a complete model includes only the latent factors and their
interrelationships. However, this definition might be too restrictive in many applications. For the
purpose of showing structural components in path diagrams, you can use the STRUCTADD= option
to add observed variables to the definition of the structural component. The resulting path diagram
for the structural component contains all latent factors, the additional observed variables, and their
functional relationships.

For example, the following statement adds the observed variables x1 and x2 to the path diagram for
displaying the structural component:

pathdiagram struct structadd=[x1 x2];

The following statement adds the observed variables x3 and x5 to the structural component for
displaying the path diagram that emphasizes the structural component:

pathdiagram emphstruct structadd=[x3 x5];

For more information and for illustrations, see the section “Expanding the Definition of the Structural
Variables” on page 1460.

STRUCTURAL < (ONLY) >
STRUCT < (ONLY) >

requests the path diagram for the so-called structural component of the model, or simply the component
model. By default, the output shows this path diagram for the entire model, not just the structural
component.

Traditionally, all structural equation models are considered to have two main components. One compo-
nent is the so-called structural model, which involves latent factors and their functional relationships
only. The other is the so-called measurement model, which involves observed variables and latent
variables and the functional relationships that connect the observed variables to the latent factors.
By specifying the STRUCTURAL option, you request the path diagram for the structural model in
addition to the path diagram for the complete model. To display a path diagram for the structural model
only, use the STRUCTURAL(ONLY) option.

For example, the following statement produces two path diagrams, one for the complete model and
one for the structural component:

pathdiagram struct;

However, the following statement produces one path diagram for the structural component:

pathdiagram struct(only);

If you consider some observed variables as structural variables in your model, you can use the
STRUCTADD= option to include these observed variables in the structural component.

For more information and for illustrations, see the section “Showing or Emphasizing the Structural
Components” on page 1456.
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TITLE=name
specifies the title of the path diagram. You can use any valid SAS name or a quoted string of up to 256
characters for name. If you do not specify this option, PROC CALIS generates titles for path diagrams.
The generated title reflects the model number (if provided in the MODEL statement), the model label
(if provided in the MODEL statement), the solution type (initial, unstandardized, or standardized), and
whether the structural model is being shown. For example:

pathdiagram title=ThisTitleDoesNotUseQuotations;
pathdiagram title="Title looks better with the use of quoted strings";

Note that if you specify multiple path diagrams in the same PATHDIAGRAM statement, PROC CALIS
applies the same title to all requested path diagrams. If unique titles are preferred, you can use separate
PATHDIAGRAM statements to specify titles for different path diagrams.

USEERROR

USEERR
requests that error variables be displayed in the path diagram. By default, PROC CALIS does not
display error variables in path diagrams, because showing errors in path diagrams usually creates more
clutter. If you prefer to show the error variables explicitly in path diagrams, specify this option.

VARPARM=PATH | LABEL

VARIANCE=PATH | LABEL
specifies whether the variance parameters are displayed as paths (PATH) or as labels that are attached to
variables (LABEL). The default VARPARM= value is PATH if your model does not fit mean structures.
When you fit a model that contains mean structures, VARPARM= value is set to be the same as the
MEANPARM= value.

PCOV Statement
PCOV assignment < , assignment . . . > ;

where assignment represents:

var-list < � var-list2 > < = parameter-spec >

The PCOV statement is a subsidiary model specification statement for the PATH model. You can use the
PCOV statement only with the PATH modeling language. The PCOV statement specifies the covariances of
exogenous variables, or the error covariances of endogenous variables in the PATH model. It can also specify
the covariance between an exogenous variable and the error term of an endogenous variables, although this
usage is rare in practice.

In each assignment of the COV statement, you specify variables in the var-list and the var-list2 lists, followed
by the covariance parameter specification in the parameter-spec list. The latter two specifications are optional.
The syntax of the PCOV statement is the same as that of the COV statement. See the COV statement on
page 1252 for details about specifying within- and between-list (partial) covariances.

The concept behind the PCOV statement is broader than that of the COV statement. The PCOV statement
supports the partial covariance parameter specification in addition to the covariance parameter specification,
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which is the only type of parameter that the COV statement supports. This difference is also reflected from
the sets of var-list and var-list2 that you can use in the PCOV statement. In the COV statement, variables
on the left-hand side of an assignment must be exogenous. However, in the PCOV statement, you can
specify both exogenous and endogenous variables. If a pair of variables are both exogenous in a specification,
you are defining a covariance parameter between the variables. If a pair of variables are both endogenous
in a specification, you are defining a partial covariance parameter between of the variables. This partial
covariance is usually interpreted as the error covariance between the two endogenous variables. If one
variable is exogenous while the other is endogenous, you are defining a covariance parameter between the
exogenous variable and the error term for the endogenous variable.

You can specify the following five types of the parameters for the partial covariances in the PCOV statement:

• an unnamed free parameter

• an initial value

• a fixed value

• a free parameter with a name provided

• a free parameter with a name and initial value provided

For example, consider a PATH model with exogenous variables x1, x2, and x3 and endogenous variables y4,
y5 and y6. The following PCOV statement shows the five types of specifications in five assignments:

pcov x1 x2 ,
x1 x3 = (0.5),
x2 x3 = 2.0,
y4 y5 = psi1,
y5 y6 = psi2(0.4);

In this statement, the covariance between x1 and x2 is specified as an unnamed free parameter. For this
covariance, PROC CALIS generates a parameter name with the _Parm prefix and appended with a unique
integer (for example, _Parm1). The covariance between x1 and x3 is an unnamed free parameter with an
initial value of 0.5. PROC CALIS also generates a parameter name for this covariance. The covariance
between x2 and x3 is a fixed value of 2.0. This value stays the same during the estimation. The error
covariance between endogenous variables y4 and y5 is a free parameter named psi1. The error covariance
between endogenous variables y5 and y6 is a free parameter named psi2 with an initial value of 0.4.

The syntax of the PCOV statement is the same as the syntax of the COV statement. See the COV statement
for more illustrations about the usage.

Default Covariance Parameters

Although the PCOV statement specification is conceptually broader than the COV statement specification,
their related default set of covariance parameters is the same—that is, all covariances among exogenous
manifest and latent variables (excluding error or disturbance variables) are free parameters. Because the
PCOV statement applies only to the PATH model, it is easy to understand why the covariances do not apply
to the error or disturbance terms. The PATH model, as implemented in PROC CALIS, simply does not use
any explicit error or disturbance terms. For the default free covariance parameters, PROC CALIS generate
the parameter names with the _Add prefix and appended with unique integer suffixes. You can also use the
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PCOV statement specification to override these default covariance parameters in situations where you want
to set parameter constraints, provide initial or fixed values, or make parameter references.

Another type of default partial covariances are fixed zeros. This default applies to the partial (error)
covariances among all endogenous variables, and to the partial covariances between all exogenous variables
and all endogenous variables in the path model. Again, you can override the default fixed values by providing
explicit specification of these partial or error covariances in the PCOV statement.

Modifying a Covariance or Partial Covariance Parameter Specification from a Reference
Model

If you define a new PATH model by using a reference (old) model in the REFMODEL statement, you might
want to modify some parameter specifications from the PCOV statement of the reference model before
transferring the specifications to the new model. To change a particular partial covariance specification from
the reference model, you can simply respecify the same covariance with the desired parameter specification
in the PCOV statement of the new model. To delete a particular partial covariance parameter from the
reference model, you can specify the desired partial covariance with a missing value specification in the
PCOV statement of the new model.

For example, suppose that you are defining a new PATH model by using the REFMODEL statement and that
the covariance between variables f1 and v2 is defined as a fixed or free parameter in the reference model.
If you do not want this fixed parameter specification to be copied into your new model, you can use the
following specification in the new model:

pcov f1 v2 = .;

Note that the missing value syntax is valid only when you use it with the REFMODEL statement. See the
section “Modifying a PATH Model from a Reference Model” on page 1330 for a more detailed example of
the PATH model respecification.

As discussed in the section “Default Covariance Parameters” on page 1344, PROC CALIS generates some
default free covariance parameters for the PATH model if you do not specify them explicitly in the PCOV
statement. When you use the REFMODEL statement for defining a reference model, these default free
covariance parameters in the old (reference) model are not transferred to the new model. Instead, the new
model generates its own set of default free covariance parameters after the new model is resolved from
the reference model, the REFMODEL statement options, the RENAMEPARM statement, and the PCOV
statement specifications in the new model. This also implies that if you want any of the (partial) covariance
parameters to be constrained across the models by means of the REFMODEL specification, you must
specify them explicitly in the PCOV statement of the reference model so that the same (partial) covariance
specification is transferred to the new model.

PVAR Statement
PVAR assignment < , assignment . . . > ;

where assignment represents:

var-list < = parameter-spec >

The PVAR statement specifies the variance or error (partial) variance parameters in connection with the
confirmatory FACTOR and PATH models.
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In each assignment of the PVAR statement, you list the var-list that you want to specify for their variances
or error (partial) variances. Optionally, you can provide a list of parameter specifications (parameter-spec)
after an equal sign for each var-list list. The syntax of the PVAR statement is exactly the same as that of the
VARIANCE statement. See the VARIANCE statement on page 1362 for details about the syntax.

The concept behind the PVAR statement is broader than that of the VARIANCE statement. The PVAR state-
ment supports the partial variance parameter specification in addition to the variance parameter specification,
which is the only type of parameters that the VARIANCE statement supports. This difference is reflected
from the set of var-list you can use in the PVAR statement. You can specify both exogenous variables and
endogenous variables in the var-list list of the PVAR statement, but you can specify only exogenous variables
in the var-list list of the VARIANCE statement. This conceptualization of the PVAR statement is needed
in the FACTOR and PATH modeling languages because error variables are not explicitly defined in these
models. You specify the variance of a variable if the variable in the var-list list of the PVAR statement is an
exogenous (independent) variable in the FACTOR or PATH model. You specify the error (partial) variance of
a variable if the variable in the var-list list of the PVAR statement is an endogenous (dependent) variable in
the FACTOR or PATH model.

You can specify the following five types of the parameters for the partial variances in the PVAR statement:

• an unnamed free parameter

• an initial value

• a fixed value

• a free parameter with a name provided

• a free parameter with a name and initial value provided

For example, consider a PATH model with exogenous variables x1, x2, and x3 and endogenous variables y4
and y5. The following PVAR statement illustrates the five types of specifications in five assignments:

pvar x1 ,
x2 = (2.0),
x3 = 1.0,
y4 = psi1,
y5 = psi2(0.6);

In this statement, the variance of x1 is specified as an unnamed free parameter. For this variance, PROC
CALIS generates a parameter name with the _Parm prefix and appended with a unique integer (for example,
_Parm1). The variance of x2 is an unnamed free parameter with an initial value of 2.0. PROC CALIS also
generates a parameter name for this variance. The variance of x3 is a fixed value of 1.0. This value stays the
same during the estimation. The error variance of endogenous variable y4 is a free parameter named psi1.
The error variance of endogenous variable y5 is a free parameter named psi2 with an initial value of 0.6.

The syntax of the PVAR statement is the same as the syntax of the VARIANCE statement. See the VARIANCE
statement for more illustrations about the usage.
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Default Partial Variance Parameters

By default, all variances of the exogenous manifest and latent variables and all error (partial) variances of the
endogenous manifest and latent variables are free parameters in the FACTOR or PATH model. For these
default free variance parameters, PROC CALIS generates the parameter names with the _Add prefix and
appended with unique integer suffixes. You can also use the PVAR statement specification to override these
default variance parameters in situations where you want to specify parameter constraints, provide initial or
fixed values, or make parameter references.

In the FACTOR or PATH model, a variable can either be exogenous or endogenous. Therefore, the default
free parameters covers all the possible variance or partial variance parameters in the model. There are no
default fixed zeros for any variances or partial variances in the model.

Modifying a Variance or Partial Variance Parameter Specification from a Reference Model

If you define a new FACTOR or PATH model by using a reference (old) model in the REFMODEL statement,
you might want to modify some parameter specifications from the PVAR statement of the reference model
before transferring the specifications to the new model. To change a particular variance or partial variance
specification from the reference model, you can simply respecify the same variance or partial variance with
the desired parameter specification in the PVAR statement of the new model. To delete a particular variance
parameter from the reference model, you can specify the desired variance or partial variance with a missing
value specification in the PVAR statement of the new model.

For example, suppose that the variance of V1 is specified in the reference PATH model but you do not want
this variance specification to be transferred to the new model. You can use the following PVAR statement
specification in the new model:

pvar
v2 = .;

Note that the missing value syntax is valid only when you use the REFMODEL statement. See the section
“Modifying a FACTOR Model from a Reference Model” on page 1266 for a more detailed example of
FACTOR model respecification. See the section “Modifying a PATH Model from a Reference Model” on
page 1330 for a more detailed example of PATH model respecification.

As discussed the section “Default Partial Variance Parameters” on page 1347, PROC CALIS generates
default free variance parameters for the exogenous variables and default free error variance parameters for
the endogenous variables in the confirmatory FACTOR or PATH model. When you use the REFMODEL
statement for defining a reference model, these default free variance parameters in the old (reference) model
are not transferred to the new model. Instead, the new model generates its own set of default free variance
parameters after the new model is resolved from the reference model, the REFMODEL statement options,
the RENAMEPARM statement, and the PVAR statement specifications in the new model. If you want any
of the variance or error (partial) variance parameters to be constrained across the models by means of the
REFMODEL specification, you must specify them explicitly in the PVAR statement of the reference model
so that the same variance or error (partial) variance specification is transferred to the new model.
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RAM Statement
RAM < VAR=variable-list | [ variable-list=number-list < , variable-list=number-list . . . > ], > < ram-entry

< , ram-entry . . . > > ;

where variable-list is a list of variables for the rows and columns of the _A_ and _P_ matrices and the rows
of the _W_ vector of the RAM model, number-list is a list of positive integers that denote the order of the
specified variables, and ram-entry is a parameter specification for an element in one of the three RAM model
matrices. You can specify latent variables in addition to observed variables in the VAR= option.

RAM stands for the reticular action model developed by McArdle (1980). The RAM model implemented in
PROC CALIS extends the original RAM model with the specification of the mean vector in the _W_ vector.
See the section “The RAM Model” on page 1425 for details about the model.

The RAM statement specification consists of the list of the variables in the model and the parameters and their
locations the RAM model matrices. For example, consider the following simple RAM model specification:

ram var= x1-x2 y3,
_A_ 3 1,
_A_ 3 2;

In this statement,variables x1, x2, and y3 are specified in the VAR= option. The variable order in the VAR=
option is important. The same variable order applies to the rows and columns of the _A_ matrix. Next, there
are two ram-entries. The first ram-entry specifies that the third variable (y3) has a path from the first variable
(x1). Similarly, the second ram-entry specifies that y3 has a path from x2.

Specifying the VAR= Option

In the VAR= option, you specify the list of observed and latent variables in the RAM model. There are two
ways to specify the VAR= list. The first way is a simple listing of variables. For example, you specify a total
of 18 variables in the RAM model in the following statement:

ram var= a b c x1-x5 y1-y10;

The order of the variables in this VAR= list is important. The same variable order applies to the rows and
columns of the _A_ and _P_ matrices and the rows of the _W_ matrices. Although it is not required to
arrange the variables according to whether they are observed or latent in the VAR= list, you can do so for
your own convenience. PROC CALIS checks each variable in the VAR= list against the associated data sets
to determine whether the variable is observed or latent.

When you specify the parameters in the ram-entries, you represent variables by the variable numbers that
refer to the VAR= list. Therefore, it is important to make correct association of the variables and their order
on the VAR= list. To this end, you can add some comments in your VAR= list to make the variable numbers
explicit. For example,

ram var= a /* 1 */
b /* 2 */
c /* 3 */
x1-x5 /* 4-8 */
y1-y10 /* 9-18 */;
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Another way to specify VAR= list is to provide the variable-lists together with explicit ordering indicated in
the number-lists. For example, in the following statement you specify exactly the same variable list as that in
the preceding example:

ram var= [x1-x5 = 4 to 8, c = 3, y1-y10 = 9 to 18, a = 1, b = 2];

Apart from showing how you can construct the VAR= list in a very general way with the number-lists, there
is no particular reason why the variable-lists in the preceding specification are not in either an ascending or a
descending order. Perhaps a more natural and useful way to use this type of explicit ordering specification
is to place variables in exactly the same order as intended. For example, the following VAR= specification
serves as a “key” of the variable numbers in the subsequent ram-entries:

ram var= [x1 = 1, x2 = 2, y1 = 3, y2 = 4, y3 = 5],
_A_ 1 2 ,
_P_ 2 2 ;

With reference to the explicit variable numbers in the VAR= list, you can interpret the _A_[1,2] specification
immediately as the effect from x2 to x1, and the _P_[2,2] specification as the variance of x2.

If the VAR= option is not specified in the RAM statement, the n observed variables in the VAR statement are
used as the first n variables in the VAR= list. If you specify neither the VAR= option in the RAM statement
nor the VAR statement, all n numerical variables in the associated data sets serve as the first n variables in the
RAM model matrices. If there are more than n variables used in the ram-entries, the extra variables are all
treated as latent variables in the RAM model.

Latent variables generated by PROC CALIS for the RAM model are named in two different ways, depending
on whether your RAM model is specified under a MODEL statement. If you do not use the MODEL statement
(for example, in situations with single-group analyses), latent variables are named _Factor1, _Factor2, and
so on. If your RAM model is define within the scope of a MODEL statement, latent variables are named
_Mdlk_F1, _Mdlk_F2, and so on, where k is substituted with the model number that is specified in the
MODEL statement. For example, _Mdl2_F1 is a latent factor that is specified under a RAM model within the
scope of the MODEL statement with 2 as its model number.

Because data sets might contain nonnumerical variables, implicit variable ordering deduced from the data
sets is sometimes obscured. Therefore, it is highly recommended that you use the VAR= option to list all the
variables in the RAM model.

Specifying a ram-entry

matrix-name | matrix-number row-number column-number < parameter-spec >

A ram-entry is a parameter specification of a matrix element of the RAM model. In each ram-entry , you first
specify the matrix by using either the matrix-name or the matrix-number . Then you specify the row-number
and the column-number of the element of the matrix. At the end of the ram-entry , you can optionally specify
various kinds of parameters in parameter-spec. You can specify as many ram-entries as needed in your
RAM model. Ram-entries are separated by commas. For example, consider the following specification:

ram var= x1-x2 y3,
_A_ 3 1 1.,
_A_ 3 2;

You specify three variables in the VAR= option of the RAM statement. In the first ram-entry , variable y3 has
a path from variable x1 with a fixed path coefficient 1. In the second ram-entry , variable y3 has a path from
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variable x2. Because the parameter-spec is blank, the corresponding path coefficient (or the effect from x2
on y3) is a free parameter by default.

Specifying the matrix-name or matrix-number
The three model matrices in the RAM model are: _A_, _P_, and _W_. See the section “The RAM Model”
on page 1425 for the mathematical formulation of the RAM model. The matrix-name or matrix-number
specifications in the ram-entries refer to these model matrices. You can use the following keywords for
matrix-name or matrix-number :

_A_, _RAMA_, or 1 for the elements in the A matrix, which is for path coefficients or effects

_P_, _RAMP_, or 2 for the elements in the P matrix, which is for variances and covariances

_W_, _RAMW_, or 3 for the elements in the W vector, which is for intercepts and means

Specifying the row-number and column-number
After you specify the matrix-name or matrix-number in a ram-entry , you need to specify the row-number
and column-number that correspond to the intended element of the matrix being specified.

Specifying the parameter-spec
You can specify three types of parameters in parameter-spec:

• A free parameter without an initial estimate: blank or parameter-name

You can specify a free parameter for the matrix element in a ram-entry by either omitting the parameter-
spec (that is, leaving it blank) or specifying a parameter-name. For example, both of the following
ram-entries specify that _A_[3,1] is a free parameter in the RAM model:

_A_ 3 1

and

_A_ 3 1 beta

The difference is that in the latter you name the effect (path coefficient) for the _A_[3,1] element as
beta, while in the former PROC CALIS generates a free parameter name (prefixed with _Parm and
followed by a unique parameter number) for the specified element. Leaving the parameter-spec blank
is handy if you do not need to refer to this parameter in your code. But when you need to specify
parameter constraints by referring to parameter names, the parameter-name syntax becomes necessary.
For example, the following specification constrains the _A_[3,1] and _A_[3,2] paths to have equal
effects (path coefficients) because they have the same parameter-name beta:

ram var= x1-x2 y3,
_A_ 3 1 beta,
_A_ 3 2 beta;
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• A free parameter with an initial estimate: (number ) or parameter-name (number )

You can specify a free parameter with an initial estimate in a ram-entry by either specifying the initial
estimate within parentheses or specifying a parameter-name followed by the parenthesized initial
estimate. For example, both of the following ram-entries specify that _A_[3,1] is a free parameter
with an initial estimate of 0.3 in the RAM model:

_A_ 3 1 (0.3)

and

_A_ 3 1 beta (0.3)

In the latter you name the effect (path coefficient) for the _A_[3,1] element as beta, while in the
former PROC CALIS generates a free parameter name (prefixed with _Parm and followed by a unique
parameter number). The latter syntax is necessary when you need to specify parameter constraints by
referring to the parameter name beta. The former syntax is more convenient when you do not need to
refer to this parameter in other specifications.

For the latter syntax with a parameter-name specified, you can omit the pair of parentheses or exchange
the position of parameter-name and number (or both) without changing the nature of the parameter.
That is, you can use the following equivalent specifications for a named free parameter with initial
values:

_A_ 3 1 beta 0.3

and

_A_ 3 1 .3 beta

• A fixed parameter value: number

You can specify a fixed value by simply providing it as the parameter-spec in a ram-entry . For
example, in the following syntax you specify that _A_[3,1] is a fixed value of 0.3:

_A_ 3 1 0.3

The fixed value for _A_[3,1] does not change during the estimation. To distinguish this syntax from
the initial value specification, notice that you do not put 0.3 inside parentheses, nor do you put a
parameter-name before or after the provided value.
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Notes and Cautions about Specifying ram-entries

• Older versions of PROC CALIS treat a blank parameter-spec in the ram-entry as a fixed constant 1.
This is no longer the case in this version of PROC CALIS. Fixed values such as 1.0 must be specified
explicitly.

• The row-number and column-number in the ram-entries refer to the VAR= variable list of the RAM
statement. An exception is for the _W_ vector, of which the column-number should always be 1 and
does not refer to any particular variable.

• When a row-number or column-number in a ram-entry (except for the column-number of _W_) does
not have any reference in the VAR= variable list (or is greater than the number of default observed
variables when the VAR= option is not specified), PROC CALIS treats the corresponding row or
column variable as a latent variable and generates variable names for it.

• The largest row or column number used in any ram-entry should not exceed the sum of observed and
latent variables intended in the RAM model. Otherwise, some extraneous latent variables might be
created.

Default Parameters

It is important to understand the default parameters in the RAM model. First, if you know which parameters
are default free parameters, you can make your specification more efficient by omitting the specifications of
those parameters that can be set by default. For example, because all exogenous variances and error variances
in the RAM model are free parameters by default, you do not need to specify the diagonal elements of the
_P_ matrix if they are not constrained in the model. Second, if you know which parameters are default free
parameters, you can specify your model accurately. For example, because all the error covariances in the
RAM model are fixed zeros by default, you must specify the corresponding off-diagonal elements of the _P_
matrix in the ram-entries. See the section “Default Parameters in the RAM Model” on page 1432 for details
about the default parameters of the RAM model.

Modifying a RAM Model from a Reference Model

This section assumes that you use a REFMODEL statement within the scope of a MODEL statement and that
the reference model (or base model) is also a RAM model. The reference model is called the old model, and
the model that refers to this old model is called the new model. If the new model is not intended to be an exact
copy of the old model, you can use the following extended RAM modeling language to make modifications
on the model specification. The syntax for modifications is very much the same as the ordinary RAM
modeling language (see the section “RAM Statement” on page 1348), except that you cannot specify the
VAR= option in the RAM statement. The reason is that the VAR= variable list in the new RAM model should
be exactly the same as the old model; otherwise, the row-number and column-number in the ram-entries
would not have the same references and thus would make model referencing meaningless. Hence, the syntax
for respecifying (modifying) the RAM model contains only the ram-entries:

RAM ram-entry < , ram-entry . . . > ;

The syntax of the ram-entry is the same as that of the original RAM statement, with an addition of the
missing value specification for the parameter-spec, which denotes the deletion of a parameter location.

The new model is formed by integrating with the old model in the following ways:
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Duplication: If you do not specify in the new model a parameter location (matrix element) that exists
in the old model, the old parameter specification is duplicated in the new model.

Addition: If you specify in the new model a parameter location (matrix element) that does not exist
in the old model, the new parameter specification is added to the new model.

Deletion: If you specify in the new model a parameter location (matrix element) that also exists in
the old model and the new parameter-spec is denoted by the missing value ‘.’, the old
parameter specification is not copied into the new model.

Replacement: If you specify in the new model a parameter location (matrix element) that also exists
in the old model and the new parameter is not denoted by the missing value ‘.’, the new
parameter specification replaces the old one in the new model.

For example, consider the following two-group analysis:

proc calis;
group 1 / data=d1;
group 2 / data=d2;
model 1 / group=1;

ram
var = [V1-V6 = 1 to 6, F1 = 7],
_A_ 1 7 1.,
_A_ 2 7 load1,
_A_ 3 7 load2,
_A_ 7 4 ,
_A_ 7 5 ,
_A_ 7 6 ,
_P_ 1 1 ,
_P_ 2 2 ,
_P_ 3 3 ,
_P_ 7 7 ,
_P_ 4 4 ,
_P_ 5 5 ,
_P_ 6 6 ,
_P_ 1 2 cve12;

model 2 / group=2;
refmodel 1;
ram

_A_ 3 7 load1,
_P_ 1 2 .,
_P_ 2 3 cve23;

run;

In this example, you specify Model 2 by referring to Model 1 in the REFMODEL statement. Model 2 is
the new model which refers to the old model, Model 1. This example illustrates the four types of model
integration process by PROC CALIS:

• Duplication: All parameter specifications, except for _A_[3,7] and _P_[1,2], in the old model are
duplicated in the new model.

• Addition: The new parameter cve23 is added for the matrix element _P_[2,3] in the new model.

• Deletion: The parameter location _P_[1,2] and associated parameter cve12 are not copied into the
new model, as indicated by the missing value ‘.’ in the new model specification.
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• Replacement: The _A_[3,7] path in the new model replaces the same path in the old model with
another parameter for the path coefficient. As a results, in the new model paths specified by _A_[3,7]

and _A_[2,7] are constrained to have the same path coefficient parameter load1.

PROC CALIS might have generated some default parameters (named with the ‘_Add’ prefix) for the old
(reference) model. These default parameters in the old (reference) model do not transfer to the new model.
Only after the new model is resolved from the reference model, the REFMODEL statement options, the
RENAMEPARM statement, and the model respecification are the default parameters of the new RAM model
generated. In this way, the generated parameters in the new model are not constrained to be the same as the
corresponding parameters in the old (reference) model. If you want any of these default parameters to be
constrained across the models, you must specify them explicitly in the ram-entries of the RAM statement
of the reference model so that these specifications are duplicated to the new model via the REFMODEL
statement.

REFMODEL Statement
REFMODEL model-number < / options > ;

The REFMODEL statement is not a modeling language itself. It is a tool for referencing and modifying
models. It is classified into one of the modeling languages because its role is similar to other modeling
languages.

REFMODEL model-number < / options > ;
RENAMEPARM parameter renaming ;
main model specification statement ;
subsidiary model specification statements ;

In the REFMODEL statement, you specify the model-number (between 1 and 9,999, inclusive) of the model
you are making reference to. The reference model must be well-defined in the same PROC CALIS run.
In the options, you can rename all the parameters in the reference model by adding a prefix or suffix so
that the current model has a new set of parameters. The RENAMEPARM statement renames individual
parameters in the reference model to new names. In the main model specification statement and the subsidiary
model specification statements, you can respecify or modify the specific parts of the reference model. The
specification of these statements must be compatible with the model type of the reference model.

NOTE: The REFMODEL statement does not simply copy model specifications from a reference model. If
you do not change any of the parameter names of the reference model by any of the REFMODEL statement
options, the REFMODEL statement copies only the explicit specifications from the reference model to the
new model. However, the REFMODEL statement does not copy the default parameters from the reference
model to the new model. For example, consider the following statements:

proc calis;
group 1 / data=a1;
group 2 / data=a2;
model 1 / group=1;

path x1 ===> x2;
model 2 / group=2;

refmodel 1;
run;
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In this example, Model 2 makes reference to Model 1. This means that the path relationship between x1
and x2 as specified in Model 1 is exactly the same path relationship you want Model 2 to have. The path
coefficients in these two models are constrained to be the same. However, the variance parameter of x1 and
the error variance parameter for x2 are not constrained in these models. Rather, these two parameters are set
by default in these models separately. If you intend to constrain all parameters in the two models, you can
specify all the parameters in Model 1 explicitly and use the REFMODEL statement for Model 2, as shown in
the following statements:

proc calis;
group 1 / data=a1;
group 2 / data=a2;
model 1 / group=1;

path x1 ===> x2;
pvar x1 x2;

model 2 / group=2;
refmodel 1;

run;

This way Model 2 makes reference to all the explicitly specified parameters in Model 1. Hence the two
models are completely constrained. However, a simpler way to fit exactly the same model to two groups is to
use a single model definition, as shown in the following statements:

proc calis;
group 1 / data=a1;
group 2 / data=a2;
model 1 / group=1,2;

path x1 ===> x2;
run;

This specification has the same estimation results as those for the preceding specification.

When you also use one of the REFMODEL statement options, the REFMODEL statement is no longer a
simple copy of explicit parameter specifications from the reference model. All parameters are renamed in
the new model in the model referencing process. The following options are available in the REFMODEL
statement:

ALLNEWPARMS
appends to the parameter names in the reference model with _mdl and then an integer suffix denoting
the model number of the current model. For example, if qq is a parameter in the reference model for a
current model with model number 3, then this option creates qq_mdl3 as a new parameter name.

PARM_PREFIX=prefix
inserts to all parameter names in the reference model with the prefix provided. For example, if qq is a
parameter in the reference model for a current model, then PARM_PREFIX=pre_ creates pre_qq as a
new parameter name.

PARM_SUFFIX=suffix
appends to all parameter names in the reference model with the suffix provided. For example, if qq is a
parameter in the reference model for a current model, then PARM_SUFFIX=_suf creates qq_suf as a
new parameter name.

Instead of renaming all parameters, you can also rename parameters individually by using the RE-
NAMEPARM statement within the scope of the REFMODEL statement.
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You can also add the main and subsidiary model specification statements to modify a particular part
from the reference model. For example, you might like to add or delete some equations or paths, or
to change a fixed parameter to a free parameter or vice versa in the new model. All can be done in
the respecification in the main and subsidiary model specification statements within the scope of the
MODEL statement to which the REFMODEL statement belongs. Naturally, the modeling language
used in respecification must be the same as that of the reference model. See the individual statements
for modeling languages for the syntax of respecification. Note that when you respecify models by using
the main and subsidiary model specification statements together with the RENAMEPARM statement
or the REFMODEL options for changing parameter names, the parameter name changes occur after
respecifications.

RENAMEPARM Statement
RENAMEPARM assignment < , assignment . . . > ;

where assignment represents:

old_parameters = parameter-spec

You can use the RENAMEPARM statement to rename parameters or to change the types of parameters of a
reference model so that new parameters are transferred to the new model in question. The RENAMEPARM
statement is a subsidiary model specification statement that should be used together with the REFMODEL
statement. The syntax of the RENAMEPARM statement is similar to that of the VARIANCE statement—
except that in the RENAMEPARM statement, you put parameter names on the left-hand side of equal signs,
whereas you put variable names on the left-hand side in the VARIANCE statement. You can use no more
than one RENAMEPARM statement within the scope of each REFMODEL statement.

In the REFMODEL statement, you transfer all the model specification information from a base model to the
new model being specified. The RENAMEPARM statement enables you to modify the parameter names or
types in the base model before transferring them to the new model. For example, in the following example,
you define Model 2, which is a new model, by referring it to Model 1, the base model, in the REFMODEL
statement.

model 1;
lineqs

V1 = F1 + E1,
V2 = b2 F1 + E2,
V3 = b3 F1 + E3,
V4 = b4 F1 + E4;

variance F1 = vF1,
E1-E4 = ve1-ve4;

model 2;
refmodel 1;
renameparm ve1-ve4=new1-new4, b2=newb2(.2), b4=.3;

Basically, the LINEQS model specification in Model 1 is transferred to Model 2. In addition, you redefine
some parameters in the base model by using the RENAMEPARM statement. This example illustrates two
kinds of modifications that the RENAMEPARM statement can do:
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• creating new parameters in the new model

The error variances for E1–E4 in Model 2 are different from those defined in Model 1 because new
parameters new1–new4 are now used. Parameter b2 is renamed as newb2 with a starting value at 0.2
in Model 2. So the two models have distinct path coefficients for the F1-to-V2 path.

• changing free parameters into fixed constants

By using the specification b4=.3 in the RENAMEPARM statement, b4 is no longer a free parameter
in Model 2. The path coefficient for the F1-to-V4 path in Model 2 is now fixed at 0.3.

The RENAMEPARM statement is handy when you have just few parameters to change in the reference
model defined by the REFMODEL statement. However, when there are a lot of parameters to modify, the
RENAMEPARM statement might not be very efficient. For example, to make all parameters unique to the
current model, you might consider using the ALLNEWPARMS, PARM_PREFIX=, or PARM_SUFFIX=
option in the REFMODEL statement.

SAS Programming Statements
You can use SAS programming statements to define dependent parameters, parametric functions, and equality
constraints among parameters.

Several statistical procedures support the use of SAS programming statements. The syntax of SAS pro-
gramming statements are common to all these procedures and can be found in the section “Programming
Statements” on page 511 in Chapter 19, “Shared Concepts and Topics.”

SIMTESTS Statement
SIMTESTS | SIMTEST sim-test < sim-test . . . > ;

where sim-test represents one of the following:

� test-name = [ functions ]
� test-name = { functions }

and functions are either parameters in the model or parametric functions computed in the SAS pro-
gramming statements.

When the estimates in a model are asymptotically multivariate-normal, continuous and differentiable functions
of the estimates are also multivariate-normally distributed. In the SIMTESTS statement, you can test these
parametric functions simultaneously. The null hypothesis for the simultaneous tests is assumed to have the
following form:

H0 : h1.�/ D 0, h2.�/ D 0, . . .

where � is the set of model parameters (independent or dependent) in the analysis and each hi ./ is a
continuous and differentiable function of the model parameters.

To test parametric functions simultaneously in the SIMTESTS statement, you first assign a name for the
simultaneously test in test-name. Then you put the parametric functions for the simultaneous test inside
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a pair of parentheses: either the ‘{’ and ‘}’ pair, or the ‘[’ and ‘]’ pair. For example, if �1, �2, �3, and �4
are parameters in the model and you want to test the equality of �1 and �2 and the equality of �3 and �4
simultaneously, you can use the following statements:

simtests
Equality_test = [t1_t2_diff t3_t4_diff];

t1_t2_diff = theta1 - theta2;
t3_t4_diff = theta3 - theta4;

In the SIMTESTS statement, you test two functions t1_t2_diff and t3_t4_diff simultaneously in the test named
Equality_test. The two parametric functions t1_t2_diff and t3_t4_diff are computed in the SAS programming
statements as differences of some parameters in the model.

See also the TESTFUNC statement on page 1358 for testing parametric functions individually.

STD Statement
STD assignment < , assignment . . . > ;

where assignment represents:

var-list = parameter-spec

The STD statement functions exactly the same as the VARIANCE statement. The STD statement is obsolete
and might not be supported in future versions of PROC CALIS. Use the VARIANCE statement instead.

STRUCTEQ Statement
STRUCTEQ variables < / label > ;

where label represents:

LABEL | NAME = name

The STRUCTEQ statement functions exactly the same as the DETERM statement.

TESTFUNC Statement
TESTFUNC functions ;

where functions are either parameters in the model or parametric functions computed in the SAS programming
statements.

When the estimates in a model are asymptotically multivariate-normal, any continuous and differentiable
function of the estimates is also normally distributed. In the TESTFUNC statement, you can test these
parametric functions using z-tests. The form of the null hypothesis is as follows:

H0 : h.�/ D 0

where � is the set of model parameters (independent or dependent) in the analysis and h./ is a continuous
and differentiable function of the model parameters.
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For example, if �1, �2, and �3 are parameters in the model, and you want to test whether �1 and �2 are the
same and whether �3 is the same as the average of �1 and �2, you can use the following statements:

testfunc t1_t2_diff t3_t1t2_diff;
t1_t2_diff = theta1 - theta2;
t3_t1t2_diff = theta3 - (theta1 + theta2)/2;

In the TESTFUNC statement, you test two functions: t1_t2_diff and t3_t1t2_diff. These two functions are
defined in the SAS programming statements that follow after the TESTFUNC statement. Thus, t1_t2_diff
represents the difference between �1 and �2, and t3_t1t2_diff represents the difference between �3 and the
average of �1 and �2.

See the SIMTESTS statement if you want to test several null hypotheses simultaneously.

VAR Statement
VAR variables ;

The VAR statement defines and limits the set of observed variables that are available for the corresponding
model analysis. It is one of the subsidiary group specification statements. You can use the VAR statement no
more than once within the scope of each GROUP or the PROC CALIS statement. The set of variables in
the VAR statement must be present in the data set specified in the associated GROUP or the PROC CALIS
statement.

The following example shows the specification of 16 variables (x1, x2, . . . , x9, x10, y, z1,z2, . . . , z5) in the
VAR statement:

var x1-x10 y z1-z5;

The VAR statement in PROC CALIS does not support the specification of variable lists with syntax that
refers to consecutive variables in the data set. For example, if QQ, RR, SS, and TT are consecutive variables
in a data set, the following specification of these four variables in the VAR statement is not supported by
PROC CALIS:

var QQ-TT;

The VAR statement should not be confused with the PARAMETERS statement. In the PARAMETERS
statement, you specify additional parameters in the model. Parameters are population quantities that char-
acterize the functional relationships, variations, or covariation among variables. Unfortunately, parameters
are sometimes referred to as var-list in the optimization context. You have to make sure that all variables
specified in the VAR statement refer to the variables in the input data set, while the parameters specified in
the PARAMETERS statement are population quantities that characterize distributions of the variables and
their relationships.

In some modeling languages of PROC CALIS, you can also specify the observed variables either directly
(for example, through the VAR= or similar option in some main model specification statements) or indirectly
(for example, through the specification of functional relationships between observed variables). How does
the VAR statement specifications interplay with the observed variables specified in the model? This depends
on the types of models specified. Four different cases are considered in the following.

Case 1. Exploratory Factor Models With No VAR= option in the FACTOR statement. For exploratory factor
models specified using the FACTOR statement, it is important for you to use the VAR statement to select and
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limit the set of the observed variables for analysis. The reason is simply that there is no other options in the
FACTOR statement that will serve the same purpose. For example, you analyze only v1–v3 in the following
exploratory factor model even though there might be more observed variables available in the data set:

proc calis;
var v1-v3;
factor n=1;

If you do not specify the VAR statement, PROC CALIS simply selects all numerical variables for analysis.
However, to avoid confusions it is a good practice to specify the observed variables explicitly in the VAR
statement.

Case 2. Models With a VAR= or Similar Option for Defining the Set of Observed Variables for Analysis. The
classes of models considered here are: COSAN, LISMOD, MSTRUCT, and RAM. Except for the LISMOD
models, in all other three classes of models you can specify the observed variables in the model by using
the a VAR= option in the respective main model specification statement. For the LISMOD models, you can
specify all observed variables that should be included in the model in the XVAR= and YVAR= options of the
LISMOD statement. Therefore, the use of the VAR statement for these models might become unnecessary.
For example, the following MSTRUCT statement specifies the observed variables v1–v6 in the VAR= option:

proc calis;
mstruct var=v1-v6;

It would have been redundant to use a VAR statement to specify v1–v6 additionally. The same conclusion
applies to the COSAN and the RAM models.

Another example is when you specify a LISMOD model. In the following LISMOD specification, variables
v1–v8 would be the set of observed variables for analysis:

proc calis;
var v1-v8;
lismod xvar = v1-v4,

yvar = v5-v8,
eta = factor1,
xi = factor2;

Again, there is no need to add a VAR statement merely repeating the specification of variables v1–v8.

If you do specify the VAR statement in addition to the specification of variable lists in these models, PROC
CALIS will check the consistency between the lists. Conflicts arise if the two lists do not match.

For example, the following statements will generate an error in model specification because v6 specified in
the MSTRUCT model is not defined as an observed variable available for analysis in the VAR statement
(even if v6 might indeed be present in the data set):

proc calis;
var v1-v5;
mstruct var=v1-v6;

So it is an error when you specify fewer observed variables in the VAR statement than in the VAR= option in
the model. How about if you specify more variables in the VAR statement? PROC CALIS will also general
an error because the extra variables in VAR statement will not be well-undefined in the model. For example,
v7–v10 specified in the VAR statement are supposed to be included into the model, but they not listed on
either the XVAR= or YVAR= list in the following LISMOD statement:
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proc calis;
var v1-v10;
lismod xvar = v1-v3,

yvar = v4-v6,
eta = factor1,
xi = factor2;

Therefore, if you must specify the VAR statement for these models, the specifications of the observed
variables must be consistent in the VAR statement and in the relevant model options. However, to avoid
potential conflicts in these situations, you are recommended to specify the observed variables in the VAR=,
XVAR=, or YVAR= lists only.

When the VAR= option is not specified in the COSAN, MSTRUCT, or RAM statement, the VAR statement
specification will be used as the list of observed variables in the model. If both of the VAR= option and VAR
statement specification are lacking, then all numerical variables in the associated data set will be used in
the model. However, to avoid confusions the preferred method is to specify the list of observed variables
explicitly on the VAR=, XVAR=, or YVAR= option of the main model specification statements.

Case 3. Models With Indirect Ways to Include the Set of Observed Variables for Analysis. Two types of
models are considered here: LINEQS and PATH. For these models, the main use of the VAR statement is to
include those observed variables that are not mentioned in model specifications.

For example, in the following statements for a LINEQS model variable v3 is not mentioned in the LINEQS
statement:

proc calis;
var v1-v3;
lineqs v1 = a1 * v2 + e1;

With the specification in the VAR statement, however, variable v3 is included into the model as an exogenous
manifest variable. Similarly, the same applies to the following PATH model specification:

proc calis;
var v1-v3;
path v1 <=== v2;

Again, variable v3 is included into the PATH model because it is specified in the VAR statement.

The two preceding examples also suggest that you do not need to use the VAR statement when your already
mentions all observed variables in the model specification. For example, if your target set of observed
variables are v1–v3, the use of the VAR statement in the following specification is unnecessary:

proc calis;
var v1-v3;
path v1 <=== v2;

pvar v3;

For the two types of models considered here, you can also use the VAR statement to define and limit the
set of observed variables for analysis. For example, you might have v1, v2, v3 in your data set as observed
variables for analysis; but somehow in your model v2 should be treated as a latent variable. You might use
the following code to exclude v2 as an observed variable in the model:



1362 F Chapter 29: The CALIS Procedure

proc calis;
var v1 v3;
path v1 <=== v2;

pvar v3;

The role of the VAR statement here is to define and limit the set of observed variables available for the model.
Hence, only variables v1 and v3 are supposed to be observed variables in the model while variable v2 in the
PATH model is treated as latent.

In sum, in the current situation the use of the VAR statement should depend on whether a variable should or
should not be included as an observed variable in your theoretical model.

Case 4. Confirmatory Factor Model With the FACTOR statement. In this case, the VAR statement still
limits the set of observed variables being analyzed in the confirmatory factor model. However, because all
observed variables in a confirmatory factor analysis must be loaded on (or related to) some factors through
the specification of factor-variable-relations in the FACTOR statement, all observed variables in the model
should have been specified (or mentioned) in the FACTOR statement already, making it redundant to use the
VAR statement for the same purpose.

VARIANCE Statement
VARIANCE assignment < , assignment . . . > ;

where assignment represents:

var-list < =parameter-spec >

The VARIANCE statement specifies the variance parameters in connection with the LINEQS model. Notice
that the VARIANCE statement is different from the VAR statement, which specifies variables for analysis. In
previous versions of PROC CALIS, the STD statement name was used instead of the VARIANCE statement
name. Although these two names result in the same functionalities, the VARIANCE statement name reflects
the intended usages better.

In the LINEQS model, variance parameters are defined only for exogenous manifest and latent variables
(including error and disturbance variables) in the model. Therefore, you cannot list any endogenous variables
in the var-list list of the VARIANCE statement. You can specify no more than one VARIANCE statement for
each LINEQS model.

In each assignment of the VARIANCE statement, you list the var-list whose variances you want to specify.
Optionally, you can provide a list of parameter specifications (parameter-spec) after an equal sign for each
var-list list.

You can specify the following five types of the parameters for the variances of the exogenous variables in the
VARIANCE statement:

• an unnamed free parameter

• an initial value

• a fixed value
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• a free parameter with a name provided

• a free parameter with a name and initial value provided

Consider a LINEQS model with exogenous variables V1, V2, F1, D2, and E3. The following VARIANCE
statement illustrates the five types of parameter specifications in five assignments:

variance
V1 ,
V2 = (.5),
F1 = 1.0,
D2 = dvar,
E3 = evar(0.7);

In this statement, the variance of V1 is specified as an unnamed free parameter. For this variance, PROC
CALIS generates a parameter name with the _Parm prefix and appended with a unique integer (for example,
_Parm1). The variance of V2 is an unnamed free parameter with an initial value of 0.5. PROC CALIS also
generates a parameter name for this variance. The variance of F1 is a fixed value of 1.0. This value stays the
same during the estimation. The variance of D2 is a free parameter named dvar. The variance of E3 is a free
parameter named evar with an initial value of 0.7.

When you need to specify a long parameter name list, you can consider using the prefix-name specification
for the parameter list. For example, the following statement specifies 100 unique parameter names for the
variances of E1–E100:

variance
E1-E100 = 100 * evar__; /* evar with two trailing underscores */

In the VARIANCE statement, evar_ _ is a prefix-name with the root evar. The notation 100* means this
prefix-name is applied 100 times, resulting in a generation of the 100 unique parameter names evar001,
evar002, . . . , evar100.

The root of the prefix-name should have few characters so that the generated parameter name is not longer
than 32 characters. To avoid unintentional equality constraints, the prefix-names should not coincide with
other parameter names.

Mixed Parameter Lists

You can specify different types of parameters for the list of variances. For example, the following statement
uses a list of parameters with mixed types:

variance
E1-E6 = vp1 vp2(2.0) vp3 4. (.3) vp6(.4);

This is equivalent to the following specification:

variance
E1 = vp1
E2 = vp2(2.0),
E3 = vp3,
E4 = 4. ,
E5 = (.3),
E6 = vp6(.4);
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Notice that an initial value followed after a parameter name is associated with the free parameter. For
example, in the original mixed list specification, the specification (2.0) after vp2 is interpreted as the initial
value for the parameter vp2, but not as the initial estimate for the variance of E3.

However, if you indeed want to specify that vp2 is a free parameter without an initial value and 2.0 is an
initial estimate for the variance of E3 (while keeping all other things the same), you can use a null initial
value specification for the parameter vp2, as shown in the following statement:

variance
E1-E6 = vp1 vp2() (2.0) 4. (.3) vp6(.4);

This way 2.0 becomes the initial estimate for the variance of E3. Because a parameter list with mixed types
might be confusing, you can break down the specifications into separate assignments to remove ambiguities.
For example, you can use the following equivalent specification:

variance
E1 = vp1
E2 = vp2,
E3 = (2.),
E4 = 4. ,
E5 = (.3),
E6 = vp6(.4);

Shorter and Longer Parameter Lists

If you provide fewer parameters than the number of variances in the var-list list, all the remaining parameters
are treated as unnamed free parameters. For example, the following specification assigns a fixed value of 1.0
to the variance of F1 while treating the other three variances as unnamed free parameters:

variance
F1-F4 = 1.0;

This specification is equivalent to the following specification:

variance
F1 = 1.0, F2-F4;

If you intend to fill up all values with the last parameter specification in the list, you can use the continuation
syntax [...], [..], or [.], as shown in the following example:

variance
E1-E100 = 1.0 psi [...];

This means that the variance of E1 is fixed at 1.0, while the variances of E1–E100 are all free parameter
named psi. All variances except that for E1 are thus constrained to be equal by using the same parameter
name.

However, you must be careful not to provide too many parameters. For example, the following specification
results in an error:

variance
E1-E6 = 1.0 psi2-psi6 extra;

The parameters after psi6 are excessive.
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Default Variance Parameters

In the LINEQS model, by default all variances of exogenous manifest and latent variables (including error
and disturbance variables) are free parameters. For these default free parameters, PROC CALIS generates
the parameter names with the _Add prefix and appended with unique integer suffixes. You can also use the
VARIANCE statement specification to override these default variance parameters in situations where you
want to specify parameter constraints, provide initial or fixed values, or make parameter references.

Because only exogenous variables can have variance parameters in the LINEQS model and all these exogenous
variances are free parameters by default, there are no default fixed zeros for any variances in the LINEQS
model.

Modifying a Variance Parameter Specification from a Reference Model

If you define a new LINEQS model by using a reference (old) model in the REFMODEL statement, you
might want to modify some parameter specifications from the VARIANCE statement of the reference model
before transferring the specifications to the new model. To change a particular variance specification from
the reference model, you can simply respecify the same variance with the desired parameter specification in
the VARIANCE statement of the new model. To delete a particular variance parameter from the reference
model, you can specify the desired variance with a missing value specification in the VARIANCE statement
of the new model.

For example, suppose that the variance of V1 is specified in the reference model but you do not want this
variance specification to be transferred to the new model, you can use the following VARIANCE statement
specification in the new model:

variance V1 = .;

Note that the missing value syntax is valid only when you use the REFMODEL statement. See the section
“Modifying a LINEQS Model from a Reference Model” on page 1280 for a more detailed example of the
LINEQS model respecification.

As discussed in a preceding section, PROC CALIS generates default free variance parameters for the LINEQS
model if you do not specify them explicitly in the VARIANCE statement. When you use the REFMODEL
statement for defining a reference model, these default free variance parameters in the old (reference) model
are not transferred to the new model. Instead, the new model generates its own set of default free variance
parameters after the new model is resolved from the reference model, the REFMODEL statement options,
the RENAMEPARM statement, and the VARIANCE statement specifications in the new model. This also
implies that if you want any of the variance parameters to be constrained across the models by means of the
REFMODEL specification, you must specify them explicitly in the VARIANCE statement of the reference
model so that the same variance specification is transferred to the new model.
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VARNAMES Statement
VARNAMES name-assignment < , name-assignment . . . > ;

VARNAME name-assignment < , name-assignment . . . > ;

VNAMES name-assignment < , name-assignment . . . > ;

where name-assignment represents one of the following forms:

matrix-name variable-names
matrix-name = [variable-names]
matrix-name = matrix-name

You can use the VARNAMES statement in connection with the COSAN modeling language to assign variable
names for matrices. The matrix-name refers to any matrix you define in the COSAN statement. The
variable-names that follow the matrix-name are assigned to the column variables of the matrix of interest.
This applies to the first two types of VARNAMES specifications. For example,

varnames F f1-f3;

is exactly the same as

varnames F = [ f1-f3 ];

Both of these assign f1, f2, and f3 as the names for the first three column variables of matrix F.

You can also use another kind of name-assignment in connection with a COSAN statement. Two matrix
names equated by an equal sign assign the column names of the matrix on the right-hand side to the column
names of the matrix on the left-hand side. This assignment assumes that the column names of at least one of
the two matrices are already defined. For example, assuming that J and A are model matrices defined in a
COSAN statement, the following VARNAMES statement specification specifies that both J and A have the
same set of column variable names V1–V6 and F1–F3:

varnames J = [ V1-V6 F1-F3 ] ,
A = J ;

This is the same as the following specification:

varnames J = [ V1-V6 F1-F3 ] ,
A = [ V1-V6 F1-F3 ] ;

The VARNAMES statement appears to enable you to specify only the column variable names for matrices.
However, PROC CALIS also uses these column variable names to assign row variable names of the related
matrices in the covariance and mean structure formulas for the COSAN model. PROC CALIS uses the
following rules to determine the row variable names of a matrix in the model:

• If a matrix is the first matrix of any term in the covariance or mean structure formula, the row variable
names are the names of the manifest variables.

• If a matrix is the central covariance matrix of any term in the covariance structure formula, the row
variable names are the same as the column variable names.
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• For any other matrices, the row variable names are the same as the column variable names of the
preceding matrix in the multiplicative formula for the covariance or mean structures.

WEIGHT Statement
WEIGHT variable ;

The WEIGHT statement specifies the weight variable for the observations. It is one of the subsidiary group
specification statements. You can use the WEIGHT statement no more than once within the scope of each
GROUP statement or the PROC CALIS statement.

Weighting is often done when the error variance associated with each observation is different and the values of
the weight variable are proportional to the reciprocals of the variances. The WEIGHT and FREQ statements
have a similar effect, except the WEIGHT statement does not alter the number of observations unless
VARDEF=WGT or VARDEF=WDF. An observation is used in the analysis only if the WEIGHT variable is
greater than 0 and is not missing.

Details: CALIS Procedure

Input Data Sets
You can use four different kinds of input data sets in the CALIS procedure, and you can use them simul-
taneously. The DATA= data set contains the data to be analyzed, and it can be an ordinary SAS data set
containing raw data or a special TYPE=COV, TYPE=UCOV, TYPE=CORR, TYPE=UCORR, TYPE=SSCP,
or TYPE=FACTOR data set containing previously computed statistics. The INEST= data set specifies an
input data set that contains initial estimates for the parameters used in the optimization process, and it can
also contain boundary and general linear constraints on the parameters. If the model does not change too
much, you can use an OUTEST= data set from a previous PROC CALIS analysis; the initial estimates
are taken from the values of the _TYPE_=PARMS observation. The INMODEL= or INRAM= data set
contains information of the analysis models (except for user-written programming statements). Often the
INMODEL= data set is created as the OUTMODEL= data set from a previous PROC CALIS analysis. See
the section “OUTMODEL= or OUTRAM= Data Set” on page 1374 for the structure of both OUTMODEL=
and INMODEL= data sets. Using the INWGT= data set enables you to read in the weight matrix W that can
be used in generalized least squares, weighted least squares, or diagonally weighted least squares estimation.

BASEFIT= or INBASEFIT= Data Set

The BASEFIT= or INBASEFIT= data set saves the fit function value and the degrees of freedom of a baseline
model for computing various fit indices, especially the incremental fit indices. Typically, the BASEFIT=
data set is created as an OUTFIT= data set from a previous PROC CALIS fitting of a customized baseline
model. See the section “OUTFIT= Data Set” on page 1385 for details about the format of the OUTFIT= and
BASEFIT= data sets.
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DATA= Data Set

A TYPE=COV, TYPE=UCOV, TYPE=CORR, or TYPE=UCORR data set can be created by the CORR
procedure or various other procedures. It contains means, standard deviations, the sample size, the covariance
or correlation matrix, and possibly other statistics depending on which procedure is used.

If your data set has many observations and you plan to run PROC CALIS several times, you can save
computer time by first creating a TYPE=COV, TYPE=UCOV, TYPE=CORR, or TYPE=UCORR data set
and using it as input to PROC CALIS.

For example, assuming that PROC CALIS is first run with an OUTMODEL=MODEL option, you can run
the following statements in subsequent analyses with the same model in the first run:

/* create TYPE=COV data set */
proc corr cov nocorr data=raw outp=cov(type=cov);
run;
/* analysis using correlations */
proc calis corr data=cov inmodel=model;
run;
/* analysis using covariances */
proc calis data=cov inmodel=model;
run;

Most procedures automatically set the TYPE= option of an output data set appropriately. However, the CORR
procedure sets TYPE=CORR unless an explicit TYPE= option is used. Thus, (TYPE=COV) is needed in the
preceding PROC CORR request, since the output data set is a covariance matrix. If you use a DATA step with
a SET statement to modify this data set, you must declare the TYPE=COV, TYPE=UCOV, TYPE=CORR, or
TYPE=UCORR attribute in the new data set.

You can use a VAR statement with PROC CALIS when reading a TYPE=COV, TYPE=UCOV, TYPE=CORR,
TYPE=UCORR, or TYPE=SSCP data set to select a subset of the variables or change the order of the
variables.

CAUTION: Problems can arise from using the CORR procedure when there are missing data. By default,
PROC CORR computes each covariance or correlation from all observations that have values present for
the pair of variables involved (“pairwise deletion”). The resulting covariance or correlation matrix can
have negative eigenvalues. A correlation or covariance matrix with negative eigenvalues is recognized as a
singular matrix in PROC CALIS, and you cannot compute (default) generalized least squares or maximum
likelihood estimates. You can specify the RIDGE option to ridge the diagonal of such a matrix to obtain a
positive definite data matrix. If the NOMISS option is used with the CORR procedure, observations with any
missing values are completely omitted from the calculations (“listwise deletion”), and there is no possibility
of negative eigenvalues (but there is still a chance for a singular matrix).

PROC CALIS can also create a TYPE=COV, TYPE=UCOV, TYPE=CORR, or TYPE=UCORR data set that
includes all the information needed for repeated analyses.

If the data set DATA=RAW does not contain missing values, the following statements should give the same
PROC CALIS results as the previous example:

/* using correlations */
proc calis corr data=raw outstat=cov inmodel=model;
run;
/* using covariances */
proc calis data=cov inmodel=model;
run;
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You can create a TYPE=COV, TYPE=UCOV, TYPE=CORR, TYPE=UCORR, or TYPE=SSCP data set
in a DATA step. Be sure to specify the TYPE= option in parentheses after the data set name in the DATA
statement and include the _TYPE_ and _NAME_ variables. If you want to analyze the covariance matrix
but your DATA= data set is a TYPE=CORR or TYPE=UCORR data set, you should include an observation
with _TYPE_=STD giving the standard deviation of each variable. By default, PROC CALIS analyzes the
recomputed covariance matrix even when a TYPE=CORR data set is provided, as shown in the following
statements:

data correl(type=corr);
input _type_ $ _name_ $ X1-X3;
datalines;

std . 4. 2. 8.
corr X1 1.0 . .
corr X2 .7 1.0 .
corr X3 .5 .4 1.0
;
proc calis inmodel=model;
run;

INEST= Data Set

You can use the INEST= (or INVAR=) input data set to specify the initial values of the parameters used in the
optimization and to specify boundary constraints and the more general linear constraints that can be imposed
on these parameters.

The variables of the INEST= data set must correspond to the following:

• a character variable _TYPE_ that indicates the type of the observation

• n numeric variables with the parameter names used in the specified PROC CALIS model

• the BY variables that are used in a DATA= input data set

• a numeric variable _RHS_ (right-hand side); needed only if linear constraints are used

• additional variables with names corresponding to constants used in the programming statements

The content of the _TYPE_ variable defines the meaning of the observation of the INEST= data set. PROC
CALIS recognizes observations with the following _TYPE_ specifications.

PARMS specifies initial values for parameters that are defined in the model statements of PROC
CALIS. The _RHS_ variable is not used. Additional variables can contain the values of
constants that are referred to in programming statements. At the beginning of each run
of PROC CALIS, the values of the constants are read from the PARMS observation for
initializing the constants in the SAS programming statements.

UPPERBD | UB specifies upper bounds with nonmissing values. The use of a missing value indicates
that no upper bound is specified for the parameter. The _RHS_ variable is not used.

LOWERBD | LB specifies lower bounds with nonmissing values. The use of a missing value indicates
that no lower bound is specified for the parameter. The _RHS_ variable is not used.
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LE | <= | < specifies the linear constraint
P
j aijxj � bi . The n parameter values contain the

coefficients aij , and the _RHS_ variable contains the right-hand-side bi . The use of a
missing value indicates a zero coefficient aij .

GE | >= | > specifies the linear constraint
P
j aijxj � bi . The n parameter values contain the

coefficients aij , and the _RHS_ variable contains the right-hand-side bi . The use of a
missing value indicates a zero coefficient aij .

EQ | = specifies the linear constraint
P
j aijxj D bi . The n parameter values contain the

coefficients aij , and the _RHS_ variable contains the right-hand-side bi . The use of a
missing value indicates a zero coefficient aij .

The constraints specified in the INEST=, INVAR=, or ESTDATA= data set are added to the constraints
specified in BOUNDS and LINCON statements.

You can use an OUTEST= data set from a PROC CALIS run as an INEST= data set in a new run. However,
be aware that the OUTEST= data set also contains the boundary and general linear constraints specified in the
previous run of PROC CALIS. When you are using this OUTEST= data set without changes as an INEST=
data set, PROC CALIS adds the constraints from the data set to the constraints specified by a BOUNDS and
LINCON statement. Although PROC CALIS automatically eliminates multiple identical constraints, you
should avoid specifying the same constraint a second time.

INMODEL= or INRAM= Data Set

This data set is usually created in a previous run of PROC CALIS. It is useful if you want to reanalyze
a problem in a different way such as using a different estimation method. You can alter an existing
OUTMODEL= data set in the DATA step to create the INMODEL= data set that describes a modified
model. See the section “OUTMODEL= or OUTRAM= Data Set” on page 1374 for more details about the
INMODEL= data set.

INWGT= Data Set

This data set enables you to specify a weight matrix other than the default matrix for the generalized, weighted,
and diagonally weighted least squares estimation methods. If you also specify the INWGTINV option (or
use the INWGT(INV)=option), the INWGT= data set is assumed to contain the inverse of the weight matrix,
rather than the weight matrix itself. The specification of any INWGT= data set for unweighted least squares or
maximum likelihood estimation is ignored. For generalized and diagonally weighted least squares estimation,
the INWGT= data set must contain a _TYPE_ and a _NAME_ variable as well as the manifest variables used
in the analysis. The value of the _NAME_ variable indicates the row index i of the weight wij . For weighted
least squares, the INWGT= data set must contain _TYPE_, _NAME_, _NAM2_, and _NAM3_ variables as
well as the manifest variables used in the analysis. The values of the _NAME_, _NAM2_, and _NAM3_
variables indicate the three indices i; j; k of the weight wij;kl . You can store information other than the
weight matrix in the INWGT= data set, but only observations with _TYPE_=WEIGHT are used to specify the
weight matrix W. This property enables you to store more than one weight matrix in the INWGT= data set.
You can then run PROC CALIS with each of the weight matrices by changing only the _TYPE_ observation
in the INWGT= data set with an intermediate DATA step.

See the section “OUTWGT= Data Set” on page 1385 for more details about the INWGT= data set.
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Output Data Sets

OUTEST= Data Set

The OUTEST= (or OUTVAR=) data set is of TYPE=EST and contains the final parameter estimates, the
gradient, the Hessian, and boundary and linear constraints. For METHOD=ML (with or without the ROBUST
option), METHOD=FIML, METHOD=GLS, and METHOD=WLS, the OUTEST= data set also contains the
approximate standard errors, the information matrix (crossproduct Jacobian), and the approximate covariance
matrix of the parameter estimates ((generalized) inverse of the information matrix). If there are linear or
nonlinear equality or active inequality constraints at the solution, the OUTEST= data set also contains
Lagrange multipliers, the projected Hessian matrix, and the Hessian matrix of the Lagrange function.

The OUTEST= data set can be used to save the results of an optimization by PROC CALIS for another
analysis with either PROC CALIS or another SAS procedure. Saving results to an OUTEST= data set is
advised for expensive applications that cannot be repeated without considerable effort.

The OUTEST= data set contains the BY variables, two character variables _TYPE_ and _NAME_, t numeric
variables corresponding to the parameters used in the model, a numeric variable _RHS_ (right-hand side)
that is used for the right-hand-side value bi of a linear constraint or for the value f D f .x/ of the objective
function at the final point x� of the parameter space, and a numeric variable _ITER_ that is set to zero for
initial values, set to the iteration number for the OUTITER output, and set to missing for the result output.

The _TYPE_ observations in Table 29.7 are available in the OUTEST= data set, depending on the request.

Table 29.7 _TYPE_ Observations in the OUTEST= Data Set

_TYPE_ Description

ACTBC If there are active boundary constraints at the solution x�, three
observations indicate which of the parameters are actively
constrained, as follows:

_NAME_ Description

GE indicates the active lower bounds
LE indicates the active upper bounds
EQ indicates the active masks

COV Contains the approximate covariance matrix of the parameter
estimates; used in computing the approximate standard errors.

COVRANK contains the rank of the covariance matrix of the parameter
estimates.

CRPJ_LF Contains the Hessian matrix of the Lagrange function (based on
CRPJAC).

CRPJAC Contains the approximate Hessian matrix used in the
optimization process. This is the inverse of the information
matrix.
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Table 29.7 continued

_TYPE_ Description

EQ If linear constraints are used, this observation contains the ith
linear constraint

P
j aijxj D bi . The parameter variables

contain the coefficients aij , j D 1; : : : ; n, the _RHS_ variable
contains bi , and _NAME_=ACTLC or _NAME_=LDACTLC.

GE If linear constraints are used, this observation contains the ith
linear constraint

P
j aijxj � bi . The parameter variables

contain the coefficients aij , j D 1; : : : ; n, and the _RHS_
variable contains bi . If the constraint i is active at the solution
x�, then _NAME_=ACTLC or _NAME_=LDACTLC.

GRAD Contains the gradient of the estimates.

GRAD_LF Contains the gradient of the Lagrange function. The _RHS_
variable contains the value of the Lagrange function.

HESSIAN Contains the Hessian matrix.

HESS_LF Contains the Hessian matrix of the Lagrange function (based on
HESSIAN).

INFORMAT Contains the information matrix of the parameter estimates
(only for METHOD=ML, METHOD=GLS, or
METHOD=WLS).

INITGRAD Contains the gradient of the starting estimates.

INITIAL Contains the starting values of the parameter estimates.

JACNLC Contains the Jacobian of the nonlinear constraints evaluated at
the final estimates.

LAGM BC Contains Lagrange multipliers for masks and active boundary
constraints.

_NAME_ Description

GE Indicates the active lower bounds
LE Indicates the active upper bounds
EQ Indicates the active masks

LAGM LC Contains Lagrange multipliers for linear equality and active
inequality constraints in pairs of observations containing the
constraint number and the value of the Lagrange multiplier.

_NAME_ Description

LEC_NUM Number of the linear equality constraint
LEC_VAL Corresponding Lagrange multiplier value
LIC_NUM Number of the linear inequality constraint
LIC_VAL Corresponding Lagrange multiplier value
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Table 29.7 continued

_TYPE_ Description

LAGM NLC contains Lagrange multipliers for nonlinear equality and active
inequality constraints in pairs of observations that contain the
constraint number and the value of the Lagrange multiplier.

_NAME_ Description

NLEC_NUM Number of the nonlinear equality constraint
NLEC_VAL Corresponding Lagrange multiplier value
NLIC_NUM Number of the linear inequality constraint
NLIC_VAL Corresponding Lagrange multiplier value

LE If linear constraints are used, this observation contains the ith
linear constraint

P
j aijxj � bi . The parameter variables

contain the coefficients aij , j D 1; : : : ; n, and the _RHS_
variable contains bi . If the constraint i is active at the solution
x�, then _NAME_=ACTLC or _NAME_=LDACTLC.

LOWERBD
| LB

If boundary constraints are used, this observation contains the
lower bounds. Those parameters not subjected to lower bounds
contain missing values. The _RHS_ variable contains a missing
value, and the _NAME_ variable is blank.

NACTBC All parameter variables contain the number nabc of active
boundary constraints at the solution x�. The _RHS_ variable
contains a missing value, and the _NAME_ variable is blank.

NACTLC All parameter variables contain the number nalc of active linear
constraints at the solution x� that are recognized as linearly
independent. The _RHS_ variable contains a missing value,
and the _NAME_ variable is blank.

NLC_EQ
NLC_GE
NLC_LE

Contains values and residuals of nonlinear constraints. The
_NAME_ variable is described as follows:

_NAME_ Description

NLC Inactive nonlinear constraint
NLCACT Linear independent active nonlinear constraint
NLCACTLD Linear dependent active nonlinear constraint

NLDACTBC Contains the number of active boundary constraints at the
solution x� that are recognized as linearly dependent. The
_RHS_ variable contains a missing value, and the _NAME_
variable is blank.
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Table 29.7 continued

_TYPE_ Description

NLDACTLC Contains the number of active linear constraints at the solution
x� that are recognized as linearly dependent. The _RHS_
variable contains a missing value, and the _NAME_ variable is
blank.

_NOBS_ Contains the number of observations.

PARMS Contains the final parameter estimates. The _RHS_ variable
contains the value of the objective function.

PCRPJ_LF Contains the projected Hessian matrix of the Lagrange function
(based on CRPJAC).

PHESS_LF Contains the projected Hessian matrix of the Lagrange function
(based on HESSIAN).

PROJCRPJ Contains the projected Hessian matrix (based on CRPJAC).

PROJGRAD If linear constraints are used in the estimation, this observation
contains the n � nact values of the projected gradient gz D Z0g
in the variables corresponding to the first n � nact parameters.
The _RHS_ variable contains a missing value, and the _NAME_
variable is blank.

PROJHESS Contains the projected Hessian matrix (based on HESSIAN).

STDERR Contains approximate standard errors (only for METHOD=ML,
METHOD=GLS, or METHOD=WLS).

TERMINAT The _NAME_ variable contains the name of the termination
criterion.

UPPERBD
| UB

If boundary constraints are used, this observation contains the
upper bounds. Those parameters not subjected to upper bounds
contain missing values. The _RHS_ variable contains a missing
value, and the _NAME_ variable is blank.

If the technique specified by the OMETHOD= option cannot be performed (for example, no feasible initial
values can be computed or the function value or derivatives cannot be evaluated at the starting point),
the OUTEST= data set can contain only some of the observations (usually only the PARMS and GRAD
observations).

OUTMODEL= or OUTRAM= Data Set

The OUTMODEL= (or OUTRAM=) data set is of TYPE=CALISMDL and contains the model specification,
the computed parameter estimates, and the standard error estimates. This data set is intended to be reused as
an INMODEL= data set to specify good initial values in a subsequent analysis by PROC CALIS.
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The OUTMODEL= data set contains the following variables:

• the BY variables, if any

• an _MDLNUM_ variable for model numbers, if used

• a character variable _TYPE_, which takes various values that indicate the type of model specification

• a character variable _NAME_, which indicates the model type, parameter name, or variable name

• a character variable _MATNR_, which indicates the matrix number (COSAN models only)

• a character variable _VAR1_, which is the name or number of the first variable in the specification

• a character variable _VAR2_, which is the name or number of the second variable in the specification

• a numerical variable _ESTIM_ for the final estimate of the parameter location

• a numerical variable _STDERR_ for the standard error estimate of the parameter location

• a numerical variable _SDEST_ for the final standardized estimate of the parameter location

• a numerical variable _SDSE_ for the standard error of the standardized estimate of the parameter
location

Although the _SDEST_ and _SDSE_ variables are created for COSAN models, the values for these two
variables are always missing because there are no rules to carry out the standardization of COSAN models.

Each observation (record) of the OUTMODEL= data set contains a piece of information regarding the model
specification. Depending on the type of the specification indicated by the value of the _TYPE_ variable, the
meanings of _NAME_, _VAR1_, and _VAR2_ differ. The following tables summarize the meanings of the
_NAME_, _MATNR_ (COSAN models only), _VAR1_, and _VAR2_ variables for each value of the _TYPE_
variable, given the type of the model.

COSAN Models
_TYPE_= Description _NAME_ _MATNR_ _VAR1_ _VAR2_

MDLTYPE Model type COSAN
VAR Variable Variable name Matrix number Column

location
MATRIX Matrix Matrix name Matrix number Number of

rows
Number of
columns

MODEL Model formula COV or MEAN Matrix number Term number Location in
term

ESTIM Parameters Parameter name Matrix number Row number Column
number

The value of the _NAME_ variable is COSAN for the _TYPE_=MDLTYPE observation.

The _TYPE_=VAR observations store the information about the column variables in matrices. The _NAME_
variable stores the variable names. The value of _VAR1_ indicates the column location of the variable in the
matrix with the matrix number stored in _MATNR_.
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The _TYPE_=MATRIX observations store the information about the model matrices. The _NAME_ variable
stores the matrix names. The value of _MATNR_ indicates the corresponding matrix number. The values
of_VAR1_ and _VAR2_ indicates the numbers of rows and columns, respectively, of the matrix.

The _TYPE_=MODEL observations store the covariance and mean structure formulas. The _NAME_ variable
indicates whether the mean (MEAN) or covariance (COV) structure information is stored. The value of
_MATNR_ indicates the matrix number in the mean or covariance structure formula. The _VAR1_ variable
indicates the term number, and the _VAR2_ variable indicates the location of the matrix in the term.

The _TYPE_=ESTIM observations store the information about the parameters and their estimates. The
_NAME_ variable stores the parameter names. The value of _MATNR_ indicates the matrix number. The
values of _VAR1_ and _VAR2_ indicate the associated row and column numbers, respectively, of the
parameter.

FACTOR Models
_TYPE_= Description _NAME_ _VAR1_ _VAR2_

MDLTYPE Model type Model type
FACTVAR Variable Variable name Variable number Variable type
LOADING Factor loading Parameter name Manifest variable Factor variable
COV Covariance Parameter name First variable Second variable
PVAR (Partial) variance Parameter name Variable
MEAN Mean or intercept Parameter name Variable
ADDCOV Added covariance Parameter name First variable Second variable
ADDPVAR Added (partial) variance Parameter name Variable
ADDMEAN Added mean or intercept Parameter name Variable

For factor models, the value of the _NAME_ variable is either EFACTOR (exploratory factor model) or
CFACTOR (confirmatory factor model) for the _TYPE_=MDLTYPE observation.

The _TYPE_=FACTVAR observations store the information about the variables in the model. The _NAME_
variable stores the variable names. The value of _VAR1_ indicates the variable number. The value of _VAR2_
indicates the type of the variable: either DEPV for dependent observed variables or INDF for latent factors.

Other observations specify the parameters and their estimates in the model. The _NAME_ values for
these observations are the parameter names. Observation with _TYPE_=LOADING, _TYPE_=COV, or
_TYPE_=ADDCOV are for parameters that are associated with two variables. The _VAR1_ and _VAR2_
values of these two types of observations indicate the variables involved.

Observations with _TYPE_=PVAR, _TYPE_=MEAN, _TYPE_=ADDPVAR, or _TYPE_=ADDMEAN are for
parameters that are associated with a single variable. The value of _VAR1_ indicates the variable involved.
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LINEQS Models
_TYPE_= Description _NAME_ _VAR1_ _VAR2_

MDLTYPE Model type LINEQS
EQSVAR Variable Variable name Variable number Variable type
EQUATION Path coefficient Parameter Outcome variable Predictor variable
COV Covariance Parameter First variable Second variable
VARIANCE Variance Parameter Variable
MEAN Mean Parameter Variable
ADDCOV Added covariance Parameter First variable Second variable
ADDVARIA Added variance Parameter Variable
ADDINTE Added intercept Parameter Variable
ADDMEAN Added mean Parameter Variable

The value of the _NAME_ variable is LINEQS for the _TYPE_=MDLTYPE observation.

The _TYPE_=EQSVAR observations store the information about the variables in the model. The _NAME_
variable stores the variable names. The value of _VAR1_ indicates the variable number. The value of _VAR2_
indicates the type of the variable. There are six types of variables in the LINEQS model:

• DEPV for dependent observed variables

• INDV for independent observed variables

• DEPF for dependent latent factors

• INDF for independent latent factors

• INDD for independent error terms

• INDE for independent disturbance terms

Other observations specify the parameters and their estimates in the model. The _NAME_ values for
these observations are the parameter names. Observation with _TYPE_=EQUATION, _TYPE_=COV, or
_TYPE_=ADDCOV are for parameters that are associated with two variables. The _VAR1_ and _VAR2_
values of these two types of observations indicate the variables involved.

Observations with _TYPE_=VARIANCE, _TYPE_=MEAN, _TYPE_=ADDVARIA, _TYPE_=ADDINTE, or
_TYPE_=ADDMEAN are for parameters associated with a single variable. The value of _VAR1_ indicates the
variable involved.
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LISMOD Models
_TYPE_= Description _NAME_ _VAR1_ _VAR2_

MDLTYPE model type LISMOD
XVAR x-variable Variable Variable number
YVAR y-variable Variable Variable number
ETAVAR �-variable Variable Variable number
XIVAR �-variable Variable Variable number
ALPHA _ALPHA_ entry Parameter Row number
BETA _BETA_ entry Parameter Row number Column number
GAMMA _BETA_ entry Parameter Row number Column number
KAPPA _KAPPA_ entry Parameter Row number
LAMBDAX _LAMBDAX_ entry Parameter Row number Column number
LAMBDAY _LAMBDAY_ entry Parameter Row number Column number
NUX _NUX_ entry Parameter Row number
NUY _NUY_ entry Parameter Row number
PHI _PHI_ entry Parameter Row number Column number
PSI _PSI_ entry Parameter Row number Column number
THETAX _THETAX_ entry Parameter Row number Column number
THETAY _THETAY_ entry Parameter Row number Column number
ADDALPHA Added _ALPHA_ entry Parameter Row number
ADDKAPPA Added _KAPPA_ entry Parameter Row number
ADDNUX Added _NUX_ entry Parameter Row number
ADDNUY Added _NUY_ entry Parameter Row number
ADDPHI Added _PHI_ entry Parameter Row number Column number
ADDPSI Added _PSI_ entry Parameter Row number Column number
ADTHETAX Added _THETAX_ entry Parameter Row number Column number
ADTHETAY Added _THETAY_ entry Parameter Row number Column number

The value of the _NAME_ variable is LISMOD for the _TYPE_=MDLTYPE observation. Other observations
specify either the variables or the parameters in the model.

Observations with _TYPE_ values equal to XVAR, YVAR, ETAVAR, and XIVAR indicate the variables in the
respective lists in the model. The _NAME_ variable of these observations stores the names of the variables,
and the _VAR1_ variable stores the variable numbers in the respective list. The variable numbers in this data
set are not arbitrary—that is, they define the variable orders in the rows and columns of the LISMOD model
matrices. The _VAR2_ variable of these observations is not used.

All other observations in this data set specify the parameters in the model. The _NAME_ values of these
observations are the parameter names. The corresponding _VAR1_ and _VAR2_ values of these observations
indicate the row and column locations of the parameters in the LISMOD model matrices that are specified in
the _TYPE_ variable. For example, when the value of _TYPE_ is ADDPHI or PHI, the parameter specified is
located in the _PHI_ matrix, with its row and column numbers indicated by the _VAR1_ and _VAR2_ values,
respectively. Some observations for specifying parameters do not have values in the _VAR2_ variable. This
means that the associated LISMOD matrices are vectors so that the column numbers are always 1 for these
observations.
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MSTRUCT Models
_TYPE_= Description _NAME_ _VAR1_ _VAR2_

MDLTYPE Model type MSTRUCT
VAR Variable Variable Variable number
COVMAT Covariance Parameter Row number Column number
MEANVEC Mean Parameter Row number
ADCOVMAT Added covariance Parameter Row number Column number
AMEANVEC Added mean Parameter Row number

The value of the _NAME_ variable is MSTRUCT for the _TYPE_=MDLTYPE observation. Other observations
specify either the variables or the parameters in the model.

Observations with _TYPE_ values equal to VAR indicate the variables in the model. The _NAME_ variable of
these observations stores the names of the variables, and the _VAR1_ variable stores the variable numbers in
the variable list. The variable numbers in this data set are not arbitrary—that is, they define the variable orders
in the rows and columns of the mean and covariance matrices. The _VAR2_ variable of these observations is
not used.

All other observations in this data set specify the parameters in the model. The _NAME_ values of these
observations are the parameter names. The corresponding _VAR1_ and _VAR2_ values of these observations
indicate the row and column locations of the parameters in the mean or covariance matrix, as specified in the
_TYPE_ model. For example, when _TYPE_=COVMAT, the parameter specified is located in the covariance
matrix, with its row and column numbers indicated by the _VAR1_ and _VAR2_ values, respectively. For
observations with _TYPE_=MEANVEC, the _VAR2_ variable is not used because the column numbers are
always 1 for parameters in the mean vector.

PATH Models
_TYPE_= Description _NAME_ _VAR1_ _VAR2_

MDLTYPE Model type PATH
PATHVAR Variable Variable name Variable number Variable type
LEFT Path coefficient Parameter Outcome variable Predictor variable
RIGHT Path coefficient Parameter Predictor variable Outcome variable
PCOV (Partial) covariance Parameter First variable Second variable
PCOVPATH (Partial) covariance path Parameter First variable Second variable
PVAR (Partial) variance Parameter Variable
PVARPATH (Partial) variance path Parameter Variable Variable
MEAN Mean or intercept Parameter Variable
ONEPATH Mean or intercept path Parameter _ONE_ Variable
ADDPCOV Added (partial) covariance Parameter First variable Second variable
ADDPVAR Added (partial) variance Parameter Variable
ADDMEAN Added mean Parameter Variable

The value of the _NAME_ variable is PATH for the _TYPE_=MDLTYPE observation.
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The _TYPE_=PATHVAR observations store the information about the variables in the model. The _NAME_
variable stores the variable names. The value of _VAR1_ indicates the variable number. The value of _VAR2_
indicates the type of the variable. There are four types of variables in the PATH model:

• DEPV for dependent observed variables

• INDV for independent observed variables

• DEPF for dependent latent factors

• INDF for independent latent factors

Other observations specify the parameters in the model. The _NAME_ values for these observations
are the parameter names. Observation with _TYPE_=LEFT, _TYPE_=RIGHT, _TYPE_=PCOV, or
_TYPE_=ADDPCOV are for parameters that are associated with two variables. The _VAR1_ and _VAR2_
values of these two types of observations indicate the variables involved.

Observations with _TYPE_=PVAR, _TYPE_=MEAN, _TYPE_=ADDPVAR, or _TYPE_=ADDMEAN are for
parameters that are associated with a single variable. The value of _VAR1_ indicates the variable involved.

RAM Models
_TYPE_= Description _NAME_ _VAR1_ _VAR2_

MDLTYPE Model type RAM
RAMVAR Variable name Variable Variable number Variable type
_A_ _A_ entry Parameter Row number Column number
_P_ _P_ entry Parameter Row number Column number
_W_ _W_ entry Parameter Row number Column number
ADD_P_ Added _P_ entry Parameter Row number Column number
ADD_W_ Added _W_ entry Parameter Row number Column number

The value of the _NAME_ variable is RAM for the _TYPE_=MDLTYPE observation.

For the _TYPE_=RAMVAR observations, the _NAME_ variable stores the variable names, the _VAR1_
variable stores the variable number, and the _VAR2_ variable stores the variable type. There are four types of
variables in the PATH model:

• DEPV for dependent observed variables

• INDV for independent observed variables

• DEPF for dependent latent factors

• INDF for independent latent factors

Other observations specify the parameters in the model. The _NAME_ variable stores the parameter name.
The _TYPE_ variable indicates the associated matrix with the row number indicated in _VAR1_ and column
number indicated in _VAR2_.
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Reading an OUTMODEL= Data Set As an INMODEL= Data Set in Subsequent Analyses
When the OUTMODEL= data set is treated as an INMODEL= data set in subsequent analyses, you need to
pay attention to observations with _TYPE_ values prefixed by “ADD”, “AD”, or “A” (for example, ADDCOV,
ADTHETAY, or AMEANVEC). These observations represent default parameter locations that are generated
by PROC CALIS in a previous run. Because the context of the new analyses might be different, these
observations for added parameter locations might no longer be suitable in the new runs. Hence, these
observations are not read as input model information. Fortunately, after reading the INMODEL= specification
in the new analyses, CALIS analyzes the new model specification again. It then adds an appropriate set
of parameters in the new context when necessary. If you are certain that the added parameter locations
in the INMODEL= data set are applicable, you can force the input of these observations by using the
READADDPARM option in the PROC CALIS statement. However, you must be very careful about using
the READADDPARM option. The added parameters from the INMODEL= data set might have the same
parameter names as those for the generated parameters in the new run. This might lead to unnecessary
constraints in the model.

OUTSTAT= Data Set

The OUTSTAT= data set is similar to the TYPE=COV, TYPE=UCOV, TYPE=CORR, or TYPE=UCORR
data set produced by the CORR procedure. The OUTSTAT= data set contains the following variables:

• the BY variables, if any

• the _GPNUM_ variable for groups numbers, if used in the analysis

• two character variables, _TYPE_ and _NAME_

• the manifest and the latent variables analyzed

The OUTSTAT= data set contains the following information (when available) in the observations:

• the mean and standard deviation

• the skewness and kurtosis (if the DATA= data set is a raw data set and the KURTOSIS option is
specified)

• the number of observations

• if the WEIGHT statement is used, sum of the weights

• the correlation or covariance matrix to be analyzed

• the robust covariances, standard deviations, and means for robust estimation

• the predicted correlation or covariance matrix

• the standardized or normalized residual correlation or covariance matrix

• if the model contains latent variables, the predicted covariances between latent and manifest variables
and the latent variable (or factor) score regression coefficients (see the PLATCOV option on page 1231)
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In addition, for FACTOR models the OUTSTAT= data set contains:

• the unrotated factor loadings, the error variances, and the matrix of factor correlations

• the standardized factor loadings and factor correlations

• the rotation matrix, rotated factor loadings, and factor correlations

• standardized rotated factor loadings and factor correlations

If effects are analyzed, the OUTSTAT= data set also contains:

• direct, indirect, and total effects and their standard error estimates

• standardized direct, indirect, and total effects and their standard error estimates

Each observation in the OUTSTAT= data set contains some type of statistic as indicated by the _TYPE_
variable. The values of the _TYPE_ variable are shown in the following tables:

Basic Descriptive Statistics

Value of _TYPE_ Contents

ADJCOV Adjusted covariances
ADJSTD Adjusted standard deviations
CORR Correlations
COV Covariances
KURTOSIS Univariate kurtosis
MEAN Means
N Sample size
NPARTIAL Number of partial variables
PARTCOV Covariances after partialling
PARTCORR Correlations after partialling
PARTMEAN Means after partialling
PARTSTD Standard deviations after partialling
ROBCOV Robust covariances
ROBMEAN Robust means
ROBSTD Robust standard deviations
SKEWNESS Univariate skewness
STD Standard deviations
SUMWGT Sum of weights (if the WEIGHT statement is used)
VARDIV Variance divisor
VARDIVAJ Variance divisor adjustment

For the _TYPE_=CORR or COV observations, the _NAME_ variable contains the name of the manifest
variable that corresponds to each row for the covariance or correlation. For other observations, _NAME_ is
blank.
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Predicted Moments and Residuals
value of _TYPE_ Contents

METHOD=DWLS
DWLSPRED DWLS predicted moments
DWLSRES DWLS raw residuals
DWLSSRES DWLS variance standardized residuals

METHOD=GLS
GLSASRES GLS asymptotically standardized residuals
GLSNRES GLS normalized residuals
GLSPRED GLS predicted moments
GLSRES GLS raw residuals
GLSSRES GLS variance standardized residuals

METHOD=ML or FIML
MAXASRES ML asymptotically standardized residuals
MAXNRES ML normalized residuals
MAXPRED ML predicted moments
MAXRES ML raw residuals
MAXSRES ML variance standardized residuals

METHOD=ULS
ULSPRED ULS predicted moments
ULSRES ULS raw residuals
ULSSRES ULS variance standardized residuals

METHOD=WLS
WLSASRES WLS asymptotically standardized residuals
WLSNRES WLS normalized residuals
WLSPRED WLS predicted moments
WLSRES WLS raw residuals
WLSSRES WLS variance standardized residuals

For residuals or predicted moments of means, the _NAME_ variable is a fixed value denoted by _Mean_. For
residuals or predicted moments for covariances or correlations, the _NAME_ variable is used for names of
variables.
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Effects and Latent Variable Scores Regression Coefficients

Value of _TYPE_ Contents

Unstandardized Effects
DEFFECT Direct effects
DEFF_SE Standard error estimates for direct effects
IEFFECT Indirect effects
IEFF_SE Standard error estimates for indirect effects
TEFFECT Total effects
TEFF_SE Standard error estimates for total effects

Standardized Effects
SDEFF Standardized direct effects
SDEFF_SE Standard error estimates for standardized direct effects
SIEFF Standardized indirect effects
SIEFF_SE Standard error estimates for standardized indirect effects
STEFF Standardized total effects
STEFF_SE Standard error estimates for standardized total effects

Latent Variable Scores Coefficients
LSSCORE Latent variable (or factor) scores regression coefficients for ULS method
SCORE Latent variable (or factor) scores regression coefficients other than ULS method

For latent variable or factor scores coefficients, the _NAME_ variable contains factor or latent variables in the
observations. For other observations, the _NAME_ variable contains manifest or latent variable names.

You can use the latent variable score regression coefficients with PROC SCORE to compute factor scores. If
the analyzed matrix is a covariance rather than a correlation matrix, the _TYPE_=STD observation is not
included in the OUTSTAT= data set. In this case, the standard deviations can be obtained from the diagonal
elements of the covariance matrix. Dropping the _TYPE_=STD observation prevents PROC SCORE from
standardizing the observations before computing the factor scores.

Factor Analysis Results

Value of _TYPE_ Contents

ERRVAR Error variances
FCOV Factor correlations or covariances
LOADINGS Unrotated factor loadings
RFCOV Rotated factor correlations or covariances
RLOADING Rotated factor loadings
ROTMAT Rotation matrix
STDERVAR Error variances in standardized solutions
STDFCOV Standardized factor correlations
STDLOAD Standardized factor loadings
STDRFCOV Standardized rotated factor correlations or covariances
STDRLOAD Standardized rotated factor loadings

For the _TYPE_=ERRVAR observation, the _NAME_ variable is blank. For all other observations, the
_NAME_ variable contains factor names.
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OUTWGT= Data Set

You can create an OUTWGT= data set that is of TYPE=WEIGHT and contains the weight matrix used in
generalized, weighted, or diagonally weighted least squares estimation. The OUTWGT= data set contains the
weight matrix on which the WRIDGE= and the WPENALTY= options are applied. However, if you input the
inverse of the weight matrix with the INWGT= and INWGTINV options (or the INWGT(INV)= option alone)
in the same analysis, the OUTWGT= data set contains the same elements of the inverse of the weight matrix.
For unweighted least squares or maximum likelihood estimation, no OUTWGT= data set can be written. The
weight matrix used in maximum likelihood estimation is dynamically updated during optimization. When
the ML solution converges, the final weight matrix is the same as the predicted covariance or correlation
matrix, which is included in the OUTSTAT= data set (observations with _TYPE_ =MAXPRED).

For generalized and diagonally weighted least squares estimation, the weight matrices W of the OUTWGT=
data set contain all elements wij , where the indices i and j correspond to all manifest variables used in the
analysis. Let varnam i be the name of the ith variable in the analysis. In this case, the OUTWGT= data set
contains n observations with the variables shown in the following table:

Variable Contents

_TYPE_ WEIGHT (character)
_NAME_ Name of variable varnam i (character)
varnam1 Weight wi1 for variable varnam1 (numeric)
:::

:::

varnamn Weight win for variable varnamn (numeric)

For weighted least squares estimation, the weight matrix W of the OUTWGT= data set contains only the
nonredundant elementswij;kl . In this case, the OUTWGT= data set contains n.nC1/.2nC1/=6 observations
with the variables shown in the following table:

Variable Contents

_TYPE_ WEIGHT (character)
_NAME_ Name of variable varnam i (character)
_NAM2_ Name of variable varnamj (character)
_NAM3_ Name of variable varnamk (character)
varnam1 Weight wij;k1 for variable varnam1 (numeric)
:::

:::

varnamn Weight wij;kn for variable varnamn (numeric)

Symmetric redundant elements are set to missing values.

OUTFIT= Data Set

You can create an OUTFIT= data set that is of TYPE=CALISFIT and that contains the values of the fit
indices of your analysis. If you use two estimation methods such as LSML or LSWLS, the fit indices are for
the second analysis. An OUTFIT=data set contains the following variables:

• a character variable _TYPE_ for the types of fit indices

• a numerical variable IndexCode for the codes of the fit indices



1386 F Chapter 29: The CALIS Procedure

• a character variable FitIndex for the names of the fit indices

• a numerical variable FitValue for the numerical values of the fit indices

• a character variable PrintChar for the character-formatted fit index values.

The possible values of _TYPE_ are:

ModelInfo: basic modeling statistics and information

Absolute: stand-alone fit indices

Parsimony: fit indices that take model parsimony into account

Incremental: fit indices that are based on comparison with a baseline model

Possible Values of FitIndex When _TYPE_=ModelInfo
Value of FitIndex Description

Number of Observations Number of observations used in the analysis
Number of Complete Observations Number of complete observations

(METHOD=FIML)
Number of Incomplete Observations Number of incomplete observations

(METHOD=FIML)
Number of Variables Number of variables
Number of Moments Number of mean or covariance elements
Number of Parameters Number of parameters
Number of Active Constraints Number of active constraints in the solution
Saturated Model Estimation Estimation status of the saturated model

(METHOD=FIML)
Saturated Model Function Value Saturated model function value

(METHOD=FIML)
Saturated Model -2 Log-Likelihood Saturated model –2 log-likelihood function

value (METHOD=FIML)
Baseline Model Estimation Estimation status of the baseline model

(METHOD=FIML)
Baseline Model Function Value Baseline model function value
Baseline Model -2 Log-Likelihood Baseline model –2 log-likelihood function

value (METHOD=FIML)
Baseline Model Chi-Square Baseline model chi-square value
Baseline Model Chi-Square DF Baseline model chi-square degrees of freedom
Baseline Model DF Baseline model degrees of freedom

(METHOD=ULS or METHOD=DWLS)
Pr > Baseline Model Chi-Square p value of the baseline model chi-square
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Possible Values of FitIndex When _TYPE_=Absolute
Value of FitIndex Description

Fit Function Fit function value
-2 Log-Likelihood –2 log-likelihood function value for the model

(METHOD=FIML)
Chi-Square Model chi-square value
Chi-Square DF Degrees of freedom for the model chi-square test
Model DF Degrees of freedom for model (METHOD=ULS or

METHOD=DWLS)
Pr > Chi-Square Probability of obtaining a larger chi-square than the

observed value
Elliptic Corrected Chi-Square Elliptic-corrected chi-square value
Pr > Elliptic Corr. Chi-Square Probability of obtaining a larger elliptic-corrected

chi-square value
Z-test of Wilson and Hilferty Z-test of Wilson and Hilferty
Hoelter Critical N N value that makes a significant chi-square when

multiplied to the fit function value
Root Mean Square Residual (RMR) Root mean square residual
Standardized RMR (SRMR) Standardized root mean square residual
Goodness of Fit Index (GFI) Jöreskog and Sörbom goodness-of-fit index

Possible Values of FitIndex When _TYPE_=Parsimony

Value of FitIndex Description

Adjusted GFI (AGFI) Goodness-of-fit index adjusted for the degrees of
freedom of the model

Parsimonious GFI Mulaik et al. (1989) modification of the GFI
RMSEA Estimate Steiger and Lind (1980) root mean square error of

approximation
RMSEA Lower r% Confidence Limit Lower r%1 confidence limit for RMSEA
RMSEA Upper r% Confidence Limit Upper r%1 confidence limit for RMSEA
Probability of Close Fit Browne and Cudeck (1993) test of close fit
ECVI Estimate Expected cross-validation index
ECVI Lower r% Confidence Limit Lower r%2 confidence limit for ECVI
ECVI Upper r% Confidence Limit Upper r%2 confidence limit for ECVI
Akaike Information Criterion Akaike information criterion
Bozdogan CAIC Bozdogan (1987) consistent AIC
Schwarz Bayesian Criterion Schwarz (1978) Bayesian criterion
McDonald Centrality McDonald and Marsh (1988) measure of centrality

1. The value of r is one minus the ALPHARMS= value. By default, r=90.

2. The value of r is one minus the ALPHAECV= value. By default, r=90.
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Possible Values of FitIndex When _TYPE_=Incremental
Value of FitIndex Description

Bentler Comparative Fit Index Bentler (1985) comparative fit index
Bentler-Bonett NFI Bentler and Bonett (1980) normed fit index
Bentler-Bonett Non-normed Index Bentler and Bonett (1980) nonnormed fit index
Bollen Normed Index Rho1 Bollen normed �1
Bollen Non-normed Index Delta2 Bollen nonnormed ı2
James et al. Parsimonious NFI James, Mulaik, and Brett (1982) parsimonious normed

fit index

Default Analysis Type and Default Parameterization
This section describes the default analysis type and default parameterization of PROC CALIS. Because
various types of models supported by PROC CALIS have their own specific features, the following table
outlines only those major default settings of PROC CALIS in SAS/STAT 9.22 or later:

Moment Structures Analyzed
Covariance structures Covariance structures are analyzed by default (COVARIANCE

option).

Mean structures Not analyzed by default. Use the MEANSTR option, the
‘Intercept’ variable in the LINEQS statement, the MEAN
statement, or specific MATRIX statements to specify mean or
intercept parameters.

Default Parameterization
Variance parameters Free variance parameters for independent latent factors, observed

variables, and errors.

Covariance parameters Free covariance parameters for all pairs of independent latent
factors and observed variables (except for the latent factors in
exploratory factor models). Fixed zero covariances for all pairs of
error variables, all pairs between errors and other exogenous
variables, and all pairs of latent factors in exploratory factor
models.

Mean parameters Free mean parameters for all exogenous observed variables. Fixed
zero means for all exogenous latent factors and error terms.

Intercept parameters Free intercept parameters for all endogenous observed variables;
Fixed zero intercepts for all endogenous latent factors.

Role of the VAR Statement in Model Specification
Inclusion of Variables If the VAR statement is used, observed variables that are listed in

the VAR statement but not mentioned in corresponding model
specification are included as exogenous variables in the model.
Default variance, covariance, and mean parameterization apply to
these exogenous variables.
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Exclusion of Variables If the VAR statement is used, observed variables that are not listed
in the VAR statement are not recognized as observed variables in
model specification. They might be treated as latent variables
instead.

In general, the default settings of PROC CALIS in SAS/STAT 9.22 and later are more consistent with
conventional practice of structural equation modeling. For example, because statistical theory of structural
equation modeling is based mainly on the analysis of covariance structures, the default analysis type of
PROC CALIS in SAS/STAT 9.22 or later is for covariance structures. This means that the CORR option
must be specified if you want to analyze correlation matrices. Mean structures in PROC CALIS have also
been parameterized more naturally since SAS/STAT 9.22 so that users can make statistical inferences directly
on the mean and intercept estimates. Default variance and covariance parameters for all independent factors
and observed variables have been implemented since SAS/STAT 9.22 to reflect the common belief that no
exogenous variables are absolutely uncorrelated (except for the unrotated factors in the initial solution of
exploratory FACTOR models).

For comparisons of these and other default settings before and after SAS/STAT 9.22, see the section
“Compatibility with the CALIS Procedure in SAS/STAT 9.2 or Earlier” on page 1162.

For details about the default parameters in specific types of model, see the FACTOR, LINEQS, LISMOD,
PATH, and RAM statements. Because there are no explicit latent variables and the exogenous/endogenous
variable distinction is not used in the COSAN and MSTRUCT modeling languages, the default parameteriza-
tion outlined in the preceding table does not apply to these two types of models. See the COSAN and the
MSTRUCT statements for details. See the following sections for details about model parameterization in
various types of models:

• “The COSAN Model” on page 1390

• “The FACTOR Model” on page 1394

• “The LINEQS Model” on page 1401

• “The LISMOD Model and Submodels” on page 1408

• “The PATH Model” on page 1419

• “The RAM Model” on page 1425

• “The MSTRUCT Model” on page 1416

By default, PROC CALIS in SAS/STAT 9.22 or later treats observed variables specified in the VAR
statement as exogenous variables in the FACTOR, PATH, LINEQS, and RAM models. This minimizes the
routine specifications in the COVARIANCE, MEAN, PCOV, PVAR, or VARIANCE for those “standalone”
exogenous observed variables— observed variables that are not functionally related to any other variables
in the model. Including these standalone exogenous observed variables into the model is useful during the
model modification process (by the MODIFICATION option) where you can do Lagrange multiplier tests to
see whether relating these variables to other variables can improve the model fit.
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Notice that the use of the VAR statement specification is optional in PROC CALIS. If you have specified all
the observed variables that you want in the model specification statements, it is not necessary to use the VAR
statement specifications for the purpose of specifying the set of observed variable for analysis.

The COSAN Model
The original COSAN (covariance structure analysis) model is proposed by McDonald (1978, 1980) for
analyzing general covariance structure models. PROC CALIS enables you to analyze a generalized form of
the original COSAN model. The generalized COSAN model extends the original COSAN model with the
inclusion of addition terms in the covariance structure formula and the associated mean structure formula.

The covariance structure formula of the generalized COSAN model is

† D F1P1F01 C � � � C FmPmF0m

and the corresponding mean structure formula of the generalized COSAN model is

� D F1v1 C � � � C Fmvm

where † is a symmetric correlation or covariance matrix for the observed variables, � is a vector for
the observed variable means, each Pk is a symmetric matrix, each vk is a mean vector, and each Fk
(k D 1; : : : ; m;) is the product of n.k/ matrices Fk1 ; : : : ;Fkn.k/ ; that is,

Fk D Fk1 � � �Fkn.k/ ; k D 1; : : : ; m

The matrices Fkj and Pk in the model can be one of the forms

Fkj D

8̂<̂
:

Gkj
G�1
kj

.I �Gkj /
�1

j D 1; : : : ; n.k/ and Pk D
�
Qk
Q�1
k

where Gkj and Qk are basic model matrices that are not expressed as functions of other matrices.

The COSAN model matrices and vectors are Gkj , Qk , and vk (when the mean structures are analyzed). The
elements of these model matrices and vectors are either parameters (free or constrained) or fixed values.
Matrix Pk is referred to as the central covariance matrix for the kth term in the covariance structure formula.

Essentially, the COSAN modeling language enables you to define the covariance and mean structure formulas
of the generalized COSAN model, the basic COSAN model matrices Gkj , Qk , and vk , and the parameters
and fixed values in the model matrices.

You can also specify a generalized COSAN model without using an explicit central covariance matrix in any
term. For example, you can define the kth term in the covariance structure formula as

FkF0k D Fk1 : : :Fkn�1FknF
0
kn
F0kn�1 : : :F

0
k1

The corresponding term for the mean structure becomes

Fk1 : : :Fkn�1vm

In the covariance structure formula, FknF
0
kn

serves as an implicit central covariance matrix in this term of
the covariance structure formula. Because of this, Fkn does not appear in the corresponding mean structure
formula.
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To take advantage of the modeling flexibility of the COSAN model specifications, you are required to provide
the correct covariance and mean structure formulas for the analysis problem. If you are not familiar with the
mathematical formulations of structural equation models, you can consider using simpler modeling languages
such as PATH or LINEQS.

An Example: Specifying a Second-Order Factor Model

This example illustrates how to specify the covariance structures in the COSAN statement. Consider a
second-order factor analysis model with the following formula for the covariance structures of observed
variables v1–v9

† D F1.F2P2F02 CU2/F01 CU1

where F1 is a 9� 3 first-order factor matrix, F2 is a 3� 2 second-order factor matrix, P2 is a 2� 2 covariance
matrix for the second-order factors, U2 is a 3 � 3 diagonal matrix for the unique variances of the first-order
factors, and U1 is a 9 � 9 diagonal matrix for the unique variances of the observed variables.

To fit this covariance structure model, you first rewrite the covariance structure formula in the form of the
generalized COSAN model as

† D F1F2P2F02F
0
1 C F1U2F01 CU1

You can specify the list of observed variables and the three terms for the covariance structure formula in the
following COSAN statement:

cosan var= v1-v9,
F1(3) * F2(2) * P2(2,SYM) + F1(3) * U2(3,DIA) + U1(9,DIA);

The VAR= option specifies the nine observed variables in the model. Next, the three terms of the covariance
structure formula are specified. Because each term in the covariance structure formula is a symmetric product,
you only need to specify each term up to the central covariance matrix. For example, although the first term in
the covariance structure formula is F1F2P2F02F

0
1, you only need to specify F1(3) * F2(2) * P2(2,SYM).

PROC CALIS generates the redundant information for the term. Similarly, you specify the other two terms
of the covariance structure formula.

In each matrix specification of the COSAN statement, you can specify the following three matrix properties
as the arguments in the trailing parentheses: the number of columns, the matrix type, and the transformation
of the matrix. For example, F1(3) means that the number of columns of F1 is 3 (while the number of rows is
9 because this number has to match the number of observed variables specified in the VAR= option), F2(2)
means that the number of columns of F2 is 2 (while the number of rows is 3 because the number has to match
the number of columns of the preceding matrix, F1). You can specify the type of the matrix in the second
argument. For example, P2(2,SYM) means that P2 is a symmetric (SYM) matrix and U2(2,DIA) means that
U2 is a diagonal (DIA) matrix. You can also specify the transformation of the matrix in the third argument.
Because there is no transformation needed in the current second-order factor model, this argument is omitted
in the specification. See the COSAN statement for details about the matrix types and transformation that are
supported by the COSAN modeling language.

Suppose now you also want to analyze the mean structures of the second-order factor model. The correspond-
ing mean structure formula is

� D F1F2vC u

where v is a 2 � 1 mean vector for the second-order factors and u is a 6 � 1 vector for the intercepts of the
observed variables. To analyze the mean and covariance structures simultaneously, you can use the following
COSAN statement:
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cosan var= v1-v9,
F1(3) * F2(2) * P2(2,SYM) [mean = v] + F1(3) * U2(3,DIA)
+ U1(9,DIA) [mean = u];

In addition to the covariance structure specified, you now add the trailing MEAN= options in the first and the
third terms. PROC CALIS then generates the mean structure formula by the following steps:

• Remove the last matrix (that is, the central covariance matrix) in each term of the covariance structure
formula.

• Append to each term the vector that is specified in the MEAN= option of the term, or if no MEAN=
option is specified in a term, that term becomes a zero vector in the mean structure formula.

Following these steps, the mean structure formula generated for the second-order factor model is

� D F1F2vC 0C u

which is what you expect for the mean structures of the second-order factor model. To complete the COSAN
model specification, you can use MATRIX statements to specify the parameters and fixed values in the
COSAN model matrices. See Example 29.29 for a complete example.

Special Cases of the Generalized COSAN Model

It is illustrative to see how you can view different types of models as a special case of the generalized COSAN
model. This section describes two such special cases.

The Original COSAN Model
The original COSAN (covariance structure analysis) model (McDonald 1978, 1980) specifies the following
covariance structures:

† D F1 � � �FnPF0n � � �F
0
1

This is the generalized COSAN with only one term for the covariance structure model formula. Hence, using
the COSAN statement to specify the original COSAN model is straightforward.

Reticular Action Model
The RAM (McArdle 1980; McArdle and McDonald 1984) model fits the covariance structures

†a D .I �A/�1P.I �A/�10

where †a is the symmetric covariance for all latent and observed variables in the RAM model, A is a square
matrix for path coefficients, I is an identity matrix with the same dimensions as A, and P is a symmetric
covariance matrix. For details about the RAM model, see the section “The RAM Model” on page 1425.

Correspondingly, the RAM model fits the mean structure formula

�a D .I �A/�1w

where �a is the mean vector for all latent and observed variables in the RAM model and w is a vector for
mean or intercepts of the variables.
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To extract the covariance and mean structures for the observed variables, a selection matrix G is used. The
selection matrix G contains zeros and ones as its elements. Each row of G has exactly one nonzero element at
the position that corresponds to the location of a manifest row variable in†a or �a. The covariance structure
formula for the observed variables in the RAM model becomes

† D G.I �A/�1P.I �A/�10G0

The mean structure formula for the observed variables in the RAM model becomes

� D G.I �A/�1w

These formulas suggest that the RAM model is special case of the generalized COSAN model with one term.
For example, suppose that there are 10 observed variables (var1–var10) and 3 latent variables in a RAM
model. The following COSAN statement represents the RAM model:

cosan var= v1-v10,
G(13,GEN) * A(13,GEN,IMI) * P(13,SYM) [Mean = w];

In the COSAN statement, you define the 10 variables in the VAR= option. Next, you provide the formulas
for the mean and covariance structures. G is 10 � 13 general matrix (GEN), A is a 13 � 13 general matrix
with the IMI transformation (that is, .I �A/�1), P is a 13 � 13 symmetric matrix (SYM), and w is a 13 � 1
vector. With these COSAN statement specifications, your mean and covariance structure formulas represent
exactly those of the RAM model. To complete the entire model specification, your next step is to use the
MATRIX statements to specify the parameters and fixed values in the model matrices G, A, P, and w.

Similarly, it is possible to use the COSAN modeling language to represent any other model types such as
models defined by the FACTOR, LINEQS, LISMOD, MSTRUCT, PATH, and RAM statements. But this
is not an automatic recommendation of using the COSAN modeling languages in all situations. When an
analysis can be specified by either the COSAN or a more specific modeling language (for example, PATH),
you should consider using the specific modeling language because the specific modeling language can exploit
specific model features so that it does the following:

• enables more supplemental analysis (effect analysis, standardized solutions, and so on), which COSAN
has no general way to display

• supports better initial estimation methods (the COSAN model can only set initial estimates to certain
default or random values)

• leads to more efficient computations due to the availability of more specific formulas and algorithms

Certainly, the COSAN modeling language is still very useful when you fit some nonstandard model structures
that cannot be handled otherwise by the more specific modeling languages.

Naming Variables in the COSAN Model

Although you can define the list of observed (manifest) variables in the VAR= option of the COSAN statement,
the COSAN modeling language does not support a direct specification of the latent or error variables in
the model. In the COSAN statement, you can define the model matrices and how they multiply together to
form the covariance and mean structures. However, except for the row variables of the first matrix in each
term, you do not need to identify the row and column variables in all other matrices. However, you can use
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the VARNAMES statement to label the column variables of the matrices. The names in the VARNAMES
statement follow the general naming rules required by the general SAS system. They should not contain
special characters and cannot be longer than 32 characters. Also, they do not need to use certain prefixes like
what the LINEQS modeling language requires. It is important to realize that the VARNAME statement only
labels, but does not identify, the column variables (and the row variables, by propagation). This means that
while keeping all other things equal, changing the names in the VARNAMES statements does not change the
mathematical model or the estimation of the model. For example, you can label all columns of a COSAN
matrix with the same name but it does not mean that these columns refer to the same variable in the model.
See the section “Naming Variables and Parameters” on page 1433 for the general rules about naming variables
and parameters.

Default Parameters in the COSAN Model

The default parameters of the COSAN model matrices depend on the types of the matrices. Each element of
the IDE or ZID matrix (identity matrix with or without an additional zero matrix) is either a fixed one or a
fixed zero. You cannot override the default parameter values of these fixed matrices. For COSAN model
matrices with types other than IDE or ZID, all elements are fixed zeros by default. You can override these
default zeros by specifying them explicitly in the MATRIX statements.

The FACTOR Model
The FACTOR modeling language is used for specifying exploratory and confirmatory factor analysis models.
You can use other general modeling languages such as LINEQS, LISMOD, PATH, and RAM to specify a
factor model. But the FACTOR modeling language is more convenient for specifying factor models and is
more specialized in displaying factor-analytic results. For convenience, models specified by the FACTOR
modeling language are called FACTOR models.

Types of Variables in the FACTOR Model

Each variable in the FACTOR model is either manifest or latent. Manifest variables are those variables that
are measured in the research. They must be present in the input data set. Latent variables are not directly
observed. Each latent variable in the FACTOR model can be either a factor or an error term.

Factors are unmeasured hypothetical constructs for explaining the covariances among manifest variables,
while errors are the unique parts of the manifest variables that are not explained by the (common) factors.

In the FACTOR model, all manifest variables are endogenous, which means that they are predicted from the
latent variables. In contrast, all latent variables in the FACTOR model are exogenous, which means that they
serve as predictors only.

Naming Variables in the FACTOR Model

Manifest variables in the FACTOR model are referenced in the input data set. In the FACTOR model
specification, you use their names as they appear in the input data set. Manifest variable names must not be
longer than 32 characters. There are no further restrictions on these names beyond those required by the SAS
System.

Error variables in the FACTOR model are not named explicitly, although they are assumed in the model. You
can name latent factors only in confirmatory FACTOR models. Factor names must not be longer than 32
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characters and must be distinguishable from the manifest variable names in the same analysis. You do not
need to name factors in exploratory FACTOR models, however. Latent factors named Factor1, Factor2, and
so on are generated automatically in exploratory FACTOR models.

Model Matrices in the FACTOR Model

Suppose in the FACTOR model that there are p manifest variables and n factors. The FACTOR model
matrices are described in the following subsections.

Matrix F (p � n) : Factor Loading Matrix
The rows of F represent the p manifest variables, while the columns represent the n factors. Each row of F
contains the factor loadings of a variable on all factors in the model.

Matrix P (n � n) : Factor Covariance Matrix
The P matrix is a symmetric matrix for the variances of and covariances among the n factors.

Matrix U (p � p) : Error Covariance Matrix
The U matrix represents a p � p diagonal matrix for the error variances for the manifest variables. Elements
in this matrix are the parts of variances of the manifest variables that are not explained by the common factors.
Note that all off-diagonal elements of U are fixed zeros in the FACTOR model.

Vector a (p � 1) : Intercepts
If the mean structures are analyzed, vector a represents the intercepts of the manifest variables.

Vector v (n � 1) : Factor Means
If the mean structures are analyzed, vector v represents the means of the factors.

Matrix Representation of the FACTOR Model

Let y be a p � 1 vector of manifest variables, � be an n � 1 vector of latent factors, and e be a p � 1 vector
of errors. The factor model is written as

y D aC F� C e

With the model matrix definitions in the previous section, the covariance matrix † (p � p) of manifest
variables is structured as

† D FPF0 CU

The mean vector � (p � p) of manifest variables is structured as

� D aC Fv

Exploratory Factor Analysis Models

Traditionally, exploratory factor analysis is applied when the relationships of manifest variables with factors
have not been well-established in research. All manifest variables are allowed to have nonzero loadings
on the factors in the model. First, factors are extracted and an initial solution is obtained. Then, for ease
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of interpretation a final factor solution is usually derived by rotating the factor space. Factor-variable
relationships are determined by interpreting the final factor solution. This is different from the confirmatory
factor analysis in which the factor-variable relationships are prescribed and to be confirmed.

So far, confirmatory and exploratory models are not distinguished in deriving the covariance and mean
structures. These two types of models are now distinguished in terms of the required structures or restrictions
in model matrices.

In PROC CALIS, the initial exploratory factor solution is obtained from a specific confirmatory factor model
with restricted model matrices, which are described as follows:

• The factor loading matrix F has n � .n � 1/=2 fixed zeros at the upper triangle portion of the matrix.

• The factor covariance matrix P is an identity matrix, which means that factors are not correlated.

• The error covariance matrix U is a diagonal matrix.

• Except for METHOD=FIML or METHOD=LSFIML and robust methods with the ROBUST option,
the mean structures are not modeled by default—that is, the intercept vector a or the factor mean vector
v are not parameterized in the model.

• With METHOD=FIML or METHOD=LSFIML, the application of the robust methods with the
ROBUST option, the use of the MEAN statement, or the specification of the MEANSTR option, the
mean structures are modeled. The intercept vector a contains p free parameters, and the factor mean
vector v is a zero vector.

The intercept vector a is parameterized in the FIML method because the first-order moments (that is, the
variable means) of the data have to be analyzed with the FIML treatment of the incomplete observations. For
robust methods, the observations are reweighted during estimation, so the intercept vector a must also be
parameterized to accommodate the use of robust means in computing robust covariances. Estimation that is
done using methods other than FIML or without the robust methods usually ignores the analysis of the mean
structures because they are saturated and do not affect the fitting of covariance structures.

With the exploratory factor specification, you do not need to specify the patterns of the model matrices.
PROC CALIS automatically sets up the correct patterns for the model matrices. For example, for an analysis
with nine variables and three factors, the relevant model matrices of an exploratory FACTOR model have the
following patterns, where * denotes free parameters in the model matrices:

F D

0BBBBBBBBBBBB@

� 0 0

� � 0

� � �

� � �

� � �

� � �

� � �

� � �

� � �

1CCCCCCCCCCCCA

P D

0@ 1 0 0

0 1 0

0 0 1

1A
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and

U D

0BBBBBBBBBBBB@

� 0 0 0 0 0 0 0 0

0 � 0 0 0 0 0 0 0

0 0 � 0 0 0 0 0 0

0 0 0 � 0 0 0 0 0

0 0 0 0 � 0 0 0 0

0 0 0 0 0 � 0 0 0

0 0 0 0 0 0 � 0 0

0 0 0 0 0 0 0 � 0

0 0 0 0 0 0 0 0 �

1CCCCCCCCCCCCA
If METHOD=FIML or METHOD=LSFIML, the elements of the intercept vector a are all free parameters, as
shown in the following:

a D

0BBBBBBBBBBBB@

�

�

�

�

�

�

�

�

�

1CCCCCCCCCCCCA
The factor mean vector v is a fixed zero vector.

If an initial factor solution is rotated afterward, some of these matrix patterns are changed. In general, rotating
a factor solution eliminates the fixed zero pattern in the upper triangle of the factor loading matrix F. If you
apply an orthogonal rotation, the factor covariance matrix P does not change. It is an identity matrix before
and after rotation. However, if you apply an oblique rotation, in general the rotated factor covariance matrix
P is not an identity matrix and the off-diagonal elements are not zeros.

The error covariance matrix U remains unchanged after rotation. That is, it would still be a diagonal matrix.
For the FIML estimation, the rotation does not affect the estimation of the intercept vector a and the fixed
factor mean vector v.

Confirmatory Factor Analysis Models

In confirmatory FACTOR models, there are no imposed patterns on the F, P, a, and v model matrices. All
elements in these model matrices can be specified. However, for model identification, you might need to
specify some factor loadings or factor variances as constants.

The only model restriction in confirmatory FACTOR models is placed on U, which must be a diagonal matrix,
as in exploratory FACTOR models too.



1398 F Chapter 29: The CALIS Procedure

For example, for a confirmatory factor analysis with nine variables and three factors, you might specify the
following patterns for the model matrices, where * denotes free parameters in the model matrices:

F D

0BBBBBBBBBBBB@

1 0 0

� 0 0

� 0 0

0 1 0

0 � 0

0 � 0

0 0 1

0 0 �

0 0 �

1CCCCCCCCCCCCA

P D

0@ � � �� � �

� � �

1A
and

U D

0BBBBBBBBBBBB@

� 0 0 0 0 0 0 0 0

0 � 0 0 0 0 0 0 0

0 0 � 0 0 0 0 0 0

0 0 0 � 0 0 0 0 0

0 0 0 0 � 0 0 0 0

0 0 0 0 0 � 0 0 0

0 0 0 0 0 0 � 0 0

0 0 0 0 0 0 0 � 0

0 0 0 0 0 0 0 0 �

1CCCCCCCCCCCCA
In this confirmatory factor model, mean structures are not modeled. In addition, there are some distinctive
features that underscore the differences between confirmatory and exploratory models:

• Factor loading matrix F contains mostly zero elements and few nonzero free parameters, a pattern
which is seen in most confirmatory factor models. In contrast, in exploratory factor models most
elements in the F matrix are nonzero parameters.

• Factor loading matrix F contains fixed values of ones. These fixed values are used for model identifica-
tion purposes (that is, identifying the scales of the latent variables). In general, you always have to
make sure that your confirmatory factor models are identified by putting fixed values in appropriate
parameter locations in the model matrices. However, this is not a concern in exploratory FACTOR
models because identification has been ensured by imposing certain patterns on the model matrices.

• The nonzero off-diagonal parameters in the factor covariance matrix P indicate that correlated factors
are hypothesized in the confirmatory factor model. This cannot be the case with the initial model of
exploratory FACTOR models, where the P matrix must be an identity matrix before rotation.
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Summary of Matrices in the FACTOR Model

Let p be the number of manifest variables and n be the number of factors in the FACTOR model. The names,
roles, and dimensions of the FACTOR model matrices are shown in the following table.

Matrix Name Description Dimensions

F _FACTLOAD_ Factor loading matrix p � n

P _FACTFCOV_ Factor covariance matrix n � n

U _FACTERRV_ Error covariance matrix p � p

a _FACTINTE_ Intercepts p � 1

v _FACTMEAN_ Factor means n � 1

Specification of the Exploratory Factor Model

Because all initial model matrices of exploratory FACTOR models are predefined in PROC CALIS, you
do not need to specify any other parameters in the model matrices. To obtain desired factor solutions, you
can use various options for exploratory factor analysis in the FACTOR statement. These options are the
EFA-options in the FACTOR statement. Two main types of EFA-options are shown as follows:

• options for factor extraction: COMPONENT, HEYWOOD, and N=.

• options for factor rotation: GAMMA=, NORM=, RCONVERGE=, RITER=, ROTATE=, and TAU=.

For example, the following statement requests that three factors be extracted, followed by a varimax rotation
of the initial factor solution:

factor n=3 rotate=varimax;

See the FACTOR statement on page 1258 for details about the EFA-options.

Specification of the Confirmatory Factor Model

To specify a confirmatory FACTOR model, you specify the factor-variable relationships in the FACTOR
statement, the factor variances and error variances in the PVAR statement, the factor covariances in the COV
statement, and the means and intercepts in the MEAN statement.

Specification of Factor-Variable Relationships
The CFA-spec in the FACTOR statement is for specifying the factor-variables relationships. For example,
in the following statement you specify three factors F1, F2, and F3 that are related to different clusters of
observed variables V1–V9:

factor
F1 ===> V1-V3 = 1. parm1 (.4) parm2 (.4),
F2 ===> V4-V6 = 1. parm3 parm4,
F3 ===> V7-V9 = 1. parm5 parm6 (.3);

In the specification, variable V1 has a fixed loading of 1.0 on F1. Variables V2 and V3 have loadings on
F1 also. These two loadings are free parameters named parm1 and parm2, respectively. Initial estimates
can be set in parentheses after the free parameters. For example, both parm1 and parm2 have initial values
at 0.4. Similarly, relationships of factor F2 with V4–V6 and of factor F3 with V7–V9 are defined in the
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same FACTOR statement. Providing initial estimates for parameters is optional. In this example, parm3,
parm4, and parm5 are all free parameters without initial values provided. PROC CALIS can determine
appropriate initial estimates for these parameters. See the descriptions of CFA-spec in the FACTOR statement
on page 1258 for more details about the syntax.

Specification of Factor Variances and Error Variances
You can specify the factor variances and error variances in the PVAR statement. For example, consider the
following statement:

pvar F1-F3 = fvar1-fvar3,
V1-V9 = evar1-evar9 (9*10.);

In the PVAR statement, you specify the variances of factors F1, F2, and F3 as free parameters fvar1, fvar2,
and fvar3, respectively, and the error variances for manifest variables V1–V9 as free parameters evar1–evar9,
respectively. Each of the error variance parameters is given a starting value at 10. See the PVAR statement on
page 1345 for more details about the syntax.

Specification of Factor Covariances
You can specify the factor covariances in the COV statement. For example, you specify the covariances
among factors F1, F2, and F3 in the following statement:

cov F1 F2 = cov12,
F1 F3 = cov13,
F2 F3 = cov23;

The covariance parameters are named cov12, cov13, and cov23, respectively. They represent the lower
triangular elements of the factor covariance matrix P. See the COV statement on page 1252 for more details
about the syntax.

Specification of Means and Intercepts
If mean structures are of interest, you can also specify the factor means and the intercepts for the manifest
variables in the MEAN statement. For example, consider the following statement:

mean F1-F3 = fmean1-fmean3,
V1-V9 = 9*12.;

In this statement, you specify the factor means of F1, F2, and F3 as free parameters fmean1, fmean2, and
fmean3, respectively, and the intercepts for variables V1–V9 as fixed parameters at 12. See the MEAN
statement on page 1309 for more details about the syntax.

Naming the Factors
For the exploratory FACTOR model, PROC CALIS generates the names for the factors automatically. For
the confirmatory FACTOR model, you can specify the names for the factors. Unlike the LINEQS model, in
the confirmatory FACTOR model you do not need to use the ‘F’ or ‘f’ prefix to denote factors in the model.
You can use any valid SAS variable names for the factors, especially those names that reflect the nature of the
factors. To avoid confusions with other names in the model, some general rules are recommended. See the
section “Naming Variables and Parameters” on page 1433 for these general rules about naming variables and
parameters.
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Default Parameters in the FACTOR Model

Default parameters in the FACTOR model are different for exploratory and confirmatory factor models.

For the exploratory FACTOR model, all fixed and free parameters of the model are prescribed. These
prescribed parameters include a fixed pattern for the factor loading matrix F, a diagonal pattern for the
error variance matrix U, and an identity matrix for factor covariance matrix P. This means that factors are
uncorrelated in the estimation. However, if you specify an oblique rotation after the estimation of the factor
solution, the factors could become correlated. See the section “Exploratory Factor Analysis Models” on
page 1395 for more details about the patterns of the exploratory FACTOR model. Because all these patterns
are prescribed, you cannot override any of these parameters for the exploratory FACTOR model.

For the confirmatory FACTOR model, the set of default free parameters of the confirmatory FACTOR model
includes the following:

• the error variances of the observed variables; these correspond to the diagonal elements of the
uniqueness matrix U

• the variances and covariances among the factors; these correspond to all elements of the factor
covariance matrix P

• the intercepts of the observed variables if the mean structures are modeled; these correspond to all
elements of the intercept vector a

PROC CALIS names the default free parameters with the _Add prefix (or the _a prefix for the case of default
intercept parameters in a for exploratory factor models), followed by a unique integers for each parameter.
Except for the exploratory factor model, you can override the default free parameters by explicitly specifying
them as free, constrained, or fixed parameters in the COV, MEAN, or PVAR statement.

In addition to default free parameters, another type of default parameter is the fixed zeros applied to the
unspecified parameters in the loading matrix F and the factor means in the � vector. Certainly, you use the
FACTOR and MEAN specifications to override those default zero loadings or factor means and set them to
free, constrained, or fixed parameters. Notice that the uniqueness matrix U in the confirmatory factor model
is a diagonal element. You cannot specify any of its off-diagonal elements—they are always fixed zeros by
the model restriction.

The LINEQS Model
The LINEQS modeling language is adapted from the EQS (equations) program by Bentler (1995). The
statistical models that LINEQS or EQS analyzes are essentially the same as other general modeling languages
such as LISMOD, RAM, and PATH. However, the terminology and approach of the LINEQS or EQS
modeling language are different from other languages. They are based on the theoretical model developed by
Bentler and Weeks (1980). For convenience, models that are analyzed using the LINEQS modeling language
are called LINEQS models. Note that these so-called LINEQS models can also be analyzed by other general
modeling languages in PROC CALIS.
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In the LINEQS (or the original EQS) model, relationships among variables are represented by a system of
equations. For example:

Y1 D a0 C a1X1 C a2X2 CE1

Y2 D b0 C b1X1 C b2Y1 CE2

On the left-hand side of each equation, an outcome variable is hypothesized to be a linear function of one or
more predictor variables and an error, which are all specified on the right-hand side of the equation. The
parameters specified in an equation are the effects (or regression coefficients) of the predictor variables. For
example, in the preceding equations, Y1 and Y2 are outcome variables; E1 and E2 are error variables; a1,
a2, b1, and b2 are effect parameters (or regression coefficients); and a0 and b0 are intercept parameters.
Variables X1 and X2 serve as predictors in the first equation, while variables X1 and Y1 serve as predictors
in the second equation.

This is almost the same representation as in multiple regression models. However, the LINEQS model entails
more. It supports a system of equations that can also include latent variables, measurement errors, and
correlated errors.

Types of Variables in the LINEQS Model

The distinction between dependent and independent variables is important in the LINEQS model.

A variable is dependent if it appears on the left-hand side of an equation in the model. A dependent variable
might be observed (manifest) or latent. It might or might not appear on the right-hand side of other equations,
but it cannot appear on the left-hand sides of two or more equations. Error variables cannot be dependent in
the LINEQS model.

A variable in the LINEQS model is independent if it is not dependent. Independent variables can be observed
(manifest) or latent. All error variables must be independent in the LINEQS model.

Dependent variables are also referred to as endogenous variables; these names are interchangeable. Similarly,
independent variables are interchangeable with exogenous variables.

Whereas an outcome variable in any equation must be a dependent variable, a predictor variable in an equation
is not necessarily an independent variable in the entire LINEQS model. For example, Y1 is a predictor
variable in the second equation of the preceding example, but it is a dependent variable in the LINEQS model.
In summary, the predictor-outcome nature of a variable is determined within a single equation, while the
exogenous-endogenous (independent-dependent) nature of variable is determined within the entire system of
equations.

In addition to the dependent-independent variable distinction, variables in the LINEQS model are distin-
guished according to whether they are observed in the data. Variables that are observed in research are called
observed or manifest variables. Hypothetical variables that are not observed in the LINEQS model are latent
variables.

Two types of latent variables should be distinguished: one is error variables; the other is non-error variables.
An error variable is unique to an equation. It serves as the unsystematic source of effect for the outcome
variable in an equation. If the outcome variable in the equation is latent, the corresponding error variable is
also called disturbance. In contrast, non-error or systematic latent variables are called factors. Factors are
unmeasured hypothetical constructs in your model. They are systematic sources that explain or describe
functional relationships in your model.

Both manifest variables and latent factors can be dependent or independent. However, error or disturbance
terms must be independent (or exogenous) variables in your model.
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Naming Variables in the LINEQS Model

Whether a variable in each equation is an outcome or a predictor variable is prescribed by the modeler.
Whether a variable is independent or dependent can be determined by analyzing the entire system of equations
in the model. Whether a variable is observed or latent can be determined if it is referenced in your data set.
However, whether a latent variable serves as a factor or an error can be determined only if you provide the
specific information.

To distinguish latent factors from errors and both from manifest variables, the following rules for naming
variables in the LINEQS model are followed:

• Manifest variables are referenced in the input data set. You use their names in the LINEQS model
specification directly. There is no additional naming rule for the manifest variables in the LINEQS
model beyond those required by the SAS System.

• Latent factor variables must start with letter F or f (for factor).

• Error variables must start with letter E or e (for error), or D or d (for disturbance). Although you might
enforce the use of D- (or d-) variables for disturbances, it is not required. For flexibility, disturbance
variables can also start with letter E or e in the LINEQS model.

• The names of latent variables, errors, and disturbances (F-, E-, and D-variables) should not coincide
with the names of manifest variables.

• You should not use Intercept as a name for any variable. This name is reserved for the intercept
specification in LINEQS model equations.

See the section “Naming Variables and Parameters” on page 1433 for the general rules about naming variables
and parameters.

Matrix Representation of the LINEQS Model

As a programming language, the LINEQS model uses equations to describes relationships among variables.
But as a mathematical model, the LINEQS model is more conveniently described by matrix terms. In this
section, the LINEQS matrix model is described.

Suppose in a LINEQS model that there are ni independent variables and nd dependent variables. The vector
of the independent variables is denoted by �, in the order of manifest variables, latent factors, and error
variables. The vector of dependent variables is denoted by �, in the order of manifest variables and latent
factors. The LINEQS model matrices are defined as follows:

˛ .nd � 1/ : intercepts of dependent variables

ˇ .nd � nd /: effects of dependent variables (in columns) on dependent variables (in rows)

 .nd � ni / : effects of independent variables (in columns) on dependent variables (in rows)

ˆ .ni � ni / : covariance matrix of independent variables

� .ni � 1/ : means of independent variables
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The model equation of the LINEQS model is

� D ˛C ˇ�C �

Assuming that .I�ˇ/ is invertible, under the model the covariance matrix of all variables .�0; �0/0 is structured
as

†a D

�
.I � ˇ/�1ˆ 0.I � ˇ/�10 .I � ˇ/�1ˆ

ˆ 0.I � ˇ/�10 ˆ

�
The mean vector of all variables .�0; �0/0 is structured as

�a D

�
.I � ˇ/�1.˛C �/

�

�
As is shown in the structured covariance and mean matrices, the means G and covariances of independent
variables are direct model parameters in � and ˆ; whereas the means and covariances of dependent variables
are functions of various model matrices and hence functions of model parameters.

The covariance and mean structures of all observed variables are obtained by selecting the elements in †a
and �a. Mathematically, define a selection matrix G of dimensions n � .nd C ni /, where n is the number of
observed variables in the model. The selection matrix G contains zeros and ones as its elements. Each row
of G has exactly one nonzero element at the position that corresponds to the location of an observed row
variable in †a or �a. With each row of G selecting a distinct observed variable, the structured covariance
matrix of all observed variables is represented by

† D G†aG0

The structured mean vector of all observed variables is represented by

� D G�a

Partitions of Some LINEQS Model Matrices and Their Restrictions

There are some restrictions in some of the LINEQS model matrices. Although these restrictions do not affect
the derivation of the covariance and mean structures, they are enforced in the LINEQS model specification.

Model Restrictions on the ˇ Matrix
The diagonal of the ˇ matrix must be zeros. This prevents the direct regression of dependent variables on
themselves. Hence, in the LINEQS statement you cannot specify the same variable on both the left-hand and
the right-hand sides of the same equation.

Partitions of the  Matrix and the Associated Model Restrictions
The columns of the  matrix refer to the variables in �, in the order of manifest variables, latent factors, and
error variables. In the LINEQS model, the following partition of the  matrix is assumed:

 D
�
0 E

�
where 0 is an nd � .ni � nd / matrix for the effects of independent manifest variables and latent factors on
the dependent variables and E is an nd � nd permutation matrix for the effects of errors on the dependent
variables.
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The dimension of submatrix E is nd �nd because in the LINEQS model each dependent variable signifies an
equation with an error term. In addition, because E is a permutation matrix (which is formed by exchanging
rows of an identity matrix of the same order), the partition of the  matrix ensures that each dependent
variable is associated with a unique error term and that the effect of each error term on its associated dependent
variable is 1.

As a result of the error term restriction, in the LINEQS statement you must specify a unique error term in
each equation. The coefficient associated with the error term can only be a fixed value at one, either explicitly
(with 1.0 inserted immediately before the error term) or implicitly (with no coefficient specified).

Partitions of the � Vector and the Associated Model Restrictions
The � vector contains the means of independent variables, in the order of the manifest, latent factor, and error
variables. In the LINEQS model, the following partition of the � vector is assumed:

� D

�
�0
0

�
where �0 is an .ni � nd / � 1 vector for the means of independent manifest variables and latent factors and
0 is a null vector of dimension nd for the means of errors or disturbances. Again, the dimension of the
null vector is nd because each dependent variable is associated uniquely with an error term. This partition
restricts the means of errors or disturbances to zeros.

Hence, when specifying a LINEQS model, you cannot specify the means of errors (or disturbances) as free
parameter or fixed values other than zero in the MEAN statement.

Partitions of the ˆ matrix
The ˆ matrix is for the covariances of the independent variables, in the order of the manifest, latent factor,
and error variables. The following partition of the ˆ matrix is assumed:

ˆ D

�
ˆ11 ˆ021
ˆ21 ˆ22

�
where ˆ11 is an .ni � nd / � .ni � nd / covariance matrix for the independent manifest variables and latent
factors, ˆ22 is an nd � nd covariance matrix for the errors, and ˆ21 is an nd � .ni � nd / covariance matrix
for the errors with other independent variables in the LINEQS model. Because ˆ is symmetric, ˆ11 and
ˆ22 are also symmetric.

There are actually no model restrictions placed on the submatrices of the partition. However, in most
statistical applications, errors represent unsystematic sources of effects and therefore they are not to be
correlated with other systematic sources. This implies that submatrix ˆ21 is a null matrix. However, ˆ21
being null is not enforced in the LINEQS model specification. If you ever specify a covariance between an
error variable and a non-error independent variable in the COV statement, as a workaround trick or otherwise,
you should provide your own theoretical justifications.

Summary of Matrices and Submatrices in the LINEQS Model

Let nd be the number of dependent variables and ni be the number of independent variables. The names,
roles, and dimensions of the LINEQS model matrices and submatrices are summarized in the following table.
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Matrix Name Description Dimensions

Model Matrices
˛ _EQSALPHA_ Intercepts of dependent variables nd � 1

ˇ _EQSBETA_ Effects of dependent (column)
variables on dependent (row)
variables

nd � nd

 _EQSGAMMA_ Effects of independent (column)
variables on dependent (row)
variables

nd � ni

� _EQSNU_ Means of independent variables ni � 1

ˆ _EQSPHI_ Covariance matrix of independent
variables

ni � ni

Submatrices
0 _EQSGAMMA_SUB_ Effects of independent variables,

excluding errors, on dependent
variables

nd � .ni � nd /

�0 _EQSNU_SUB_ Means of independent variables,
excluding errors

.ni � nd / � 1

ˆ11 _EQSPHI11_ Covariance matrix of independent
variables, excluding errors

.ni � nd /�.ni � nd /

ˆ21 _EQSPHI21_ Covariances of errors with other
independent variables

nd � .ni � nd /

ˆ22 _EQSPHI22_ Covariance matrix of errors nd � nd

Specification of the LINEQS Model

Specification in Equations
In the LINEQS statement, you specify intercepts and effect parameters (or regression coefficients) along with
the variable relationships in equations. In terms of model matrices, you specify the ˛ vector and the ˇ and 
matrices in the LINEQS statement without using any matrix language.

For example:

Y D b0 C b1 �X1 C b2 � F2 CE1

In this equation, you specify Y as an outcome variable, X1 and F2 as predictor variables, and E1 as an error
variable. The parameters in the equation are the intercept b0 and the path coefficients (or effects) b1 and b2.

This kind of model equation is specified in the LINEQS statement. For example, the previous equation
translates into the following LINEQS statement specification:

lineqs Y = b0 * Intercept + b1 * X1 + b2 * F2 + E1;
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If the mean structures of the model are not of interest, the intercept term can be omitted. The specification
becomes:

lineqs Y = b1 * X1 + b2 * F2 + E1;

See the LINEQS statement on page 1275 for the details about the syntax.

Because of the LINEQS model restrictions (see the section “Partitions of Some LINEQS Model Matrices
and Their Restrictions” on page 1404), you must also follow these rules when specifying LINEQS model
equations:

• A dependent variable can appear only on the left-hand side of an equation once. In other words, you
must put all predictor variables for a dependent variable in one equation. This is different from some
econometric models where a dependent variable can appear on the left-hand sides of two equations to
represent an equilibrium point. However, this limitation can be resolved by reparameterization in some
cases. See Example 29.18.

• A dependent variable that appears on the left-hand side of an equation cannot appear on the right-hand
side of the same equation. If you measure the same characteristic at different time points and the
previous measurement serves as a predictor of the next measurement, you should use different variable
names for the measurements so as to comply with this rule.

• An error term must be specified in each equation and must be unique. The same error name cannot
appear in two or more equations. When an equation is truly intended to have no error term, it should
be represented equivalently in the LINEQS equation by introducing an error term with zero variance
(specified in the VARIANCE statement).

• The regression coefficient (effect) that is associated with an error term must be fixed at one (1.0). This
is done automatically by omitting any fixed constants or parameters that are associated with the error
terms. Inserting a parameter or a fixed value other than 1 immediately before an error term is not
allowed.

Mean, Variance, and Covariance Parameter Specification
In addition to the intercept and effect parameters that are specified in equations, the means, variances, and
covariances among all independent variables are parameters in the LINEQS model. An exception is that the
means of all error variables are restricted to fixed zeros in the LINEQS model. To specify the mean, variance,
and covariance parameters, you use the MEAN, VARIANCE, and the COV statements, respectively.

The means, variances, and covariances among dependent variables are not parameters themselves in the
model. Rather, they are complex functions of the model parameters. See the section “Matrix Representation
of the LINEQS Model” on page 1403 for mathematical details.

Default Parameters in the LINEQS Model

There are two types of default parameters of the LINEQS model, as implemented in PROC CALIS. One is
the free parameters; the other is the fixed constants.

The following sets of parameters are free parameters by default:

• the variances of all exogenous (independent) observed or latent variables (including error and distur-
bance variables)
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• the covariances among all exogenous (independent) manifest or latent variables (excluding error and
disturbance variances)

• the means of all exogenous (independent) observed variables if the mean structures are modeled

• the intercepts of all endogenous (dependent) manifest variables if the mean structures are modeled

PROC CALIS names the default free parameters with the _Add prefix and a unique integer suffix. You can
override the default free parameters by explicitly specifying them as free, constrained, or fixed parameters in
the COV, LINEQS, MEAN, or VARIANCE statement.

Parameters that are not default free parameters in the LINEQS model are fixed constants by default. You can
override almost all of the default fixed constants of the LINEQS model by using the COV, LINEQS, MEAN,
or VARIANCE statement. You cannot override the following two sets of fixed constants:

• fixed zero parameters for the direct effects (path coefficients) of variables on their own. You cannot
have an equation in the LINEQS statement that has the same variable specified on the left-hand and the
right-hand sides.

• fixed one effects from the error or disturbance variables. You cannot set the path coefficient (effect) of
the error or disturbance term to any value other than 1 in the LINEQS statement.

These two sets of fixed parameters reflect the LINEQS model restrictions so that they cannot be modified.
Other than these two sets of default fixed parameters, all other default fixed parameters are zeros. You can
override these default zeros by explicitly specifying them as free, constrained, or fixed parameters in the
COV, LINEQS, MEAN, or VARIANCE statement.

The LISMOD Model and Submodels
As a statistical model, the LISMOD modeling language is derived from the LISREL model proposed by
Jöreskog and others (see Keesling 1972; Wiley 1973; Jöreskog 1973). But as a computer language, the
LISMOD modeling language is quite different from the LISREL program. To maintain the consistence of
specification syntax within the CALIS procedure, the LISMOD modeling language departs from the original
LISREL programming language. In addition, to make the programming a little easier, some terminological
changes from LISREL are made in LISMOD.

For brevity, models specified by the LISMOD modeling language are called LISMOD models, although you
can also specify these LISMOD models by other general modeling languages that are supported in PROC
CALIS.

The following descriptions of LISMOD models are basically the same as those of the original LISREL
models. The main modifications are the names for the model matrices.

The LISMOD model is described by three component models. The first one is the structural equation model
that describes the relationships among latent constructs or factors. The other two are measurement models
that relate latent factors to manifest variables.
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Structural Equation Model

The structural equation model for latent factors is

� D ˛C ˇ�C �� C �

where:
� is a random vector of n� endogenous latent factors
� is a random vector of n� exogenous latent factors
� is a random vector of errors
˛ is a vector of intercepts
ˇ is a matrix of regression coefficients of � variables on other � variables
� is a matrix of regression coefficients of � on �

There are some assumptions in the structural equation model. To prevent a random variable in � from
regressing directly on itself, the diagonal elements of ˇ are assumed to be zeros. Also, .I � ˇ/�1 is assumed
to be nonsingular, and � is uncorrelated with �.

The covariance matrix of � is denoted by ‰ and its expected value is a null vector. The covariance matrix of
� is denoted by ˆ and its expected value is denoted by �.

Because variables in the structural equation model are not observed, to analyze the model these latent
variables must somehow relate to the manifest variables. The measurement models, which are discussed in
the subsequent sections, provide such relations.

Measurement Model for y

y D �y Cƒy�C �

where:
y is a random vector of ny manifest variables
� is a random vector of errors for y
�y is a vector of intercepts for y
ƒy is a matrix of regression coefficients of y on �

It is assumed that � is uncorrelated with either � or �. The covariance matrix of � is denoted by‚y and its
expected value is the null vector.

Measurement Model for x

x D �x Cƒx� C ı

where:
x is a random vector of nx manifest variables
ı is a random vector of errors for x
�x is a vector of intercepts for x
ƒx is a matrix of regression coefficients of x on �

It is assumed that ı is uncorrelated with �, �, or �. The covariance matrix of ı is denoted by ‚x and its
expected value is a null vector.
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Covariance and Mean Structures

Under the structural and measurement equations and the model assumptions, the covariance structures of the
manifest variables .y0; x0/0 are expressed as

† D

�
ƒy.I � ˇ/

�1.�ˆ� 0 C‰/.I � ˇ0/�1ƒ0y C‚y ƒy.I � ˇ/
�1�ˆƒ0x

ƒxˆ�
0.I � ˇ0/�1ƒ0y ƒxˆƒ

0
x C‚x

�
The mean structures of the manifest variables .y0; x0/0 are expressed as

� D

�
�y Cƒy.I � ˇ/

�1.˛C ��/

�x Cƒx�

�

Model Matrices in the LISMOD Model

The parameters of the LISMOD model are elements in the model matrices, which are summarized as follows.

Matrix Name Description Dimensions Row
Variables

Column
Variables

˛ _ALPHA_ Intercepts for � n� � 1 �

(ETAVAR=)
N/A

ˇ _BETA_ Effects of � on � n� � n� �

(ETAVAR=)
�

(ETAVAR=)
� _GAMMA_ Effects of � on � n� � n� �

(ETAVAR=)
�

(XIVAR=)
‰ _PSI_ Error covariance

matrix for �
n� � n� �

(ETAVAR=)
�

(ETAVAR=)
ˆ _PHI_ Covariance matrix

for �
n� � n� �

(XIVAR=)
�

(XIVAR=)
� _KAPPA_ Mean vector for � n� � 1 �

(XIVAR=)
N/A

�y _NUY_ Intercepts for y ny � 1 y
(YVAR=)

N/A

ƒy _LAMBDAY_ Effects of � on y ny � n� y
(YVAR=)

�

(ETAVAR=)
‚y _THETAY_ Error covariance

matrix for y
ny � ny y

(YVAR=)
y
(YVAR=)

�x _NUX_ Intercepts for x nx � 1 x
(XVAR=)

N/A

ƒx _LAMBDAX_ Effects of � on x nx � n� x
(XVAR=)

�

(XIVAR=)
‚x _THETAX_ Error covariance

matrix for x
nx � nx x

(XVAR=)
x
(XVAR=)

There are twelve model matrices in the LISMOD model. Not all of them are used in all situations. See the
section “LISMOD Submodels” on page 1413 for details. In the preceding table, each model matrix is given a
name in the column Name, followed by a brief description of the parameters in the matrix, the dimensions,
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and the row and column variables being referred to. In the second column of the table, the LISMOD matrix
names are used in the MATRIX statements when specifying the LISMOD model. In the last two columns of
the table, following the row or column variables is the variable list (for example, ETAVAR=, YVAR=, and so
on) in parentheses. These lists are used in the LISMOD statement for defining variables.

Specification of the LISMOD Model

The LISMOD specification consists of two tasks. The first task is to define the variables in the model. The
second task is to specify the parameters in the LISMOD model matrices.

Specifying Variables
The first task is accomplished in the LISMOD statement. In the LISMOD statement, you define the lists
of variables of interest: YVAR=, XVAR=, ETAVAR=, and XIVAR= lists, respectively for the y-variables,
x-variables, �-variables, and the �-variables. While you provide the names of variables in these lists, you also
define implicitly the numbers of four types of variables: ny , nx , n�, and n� . The variables in the YVAR=
and XVAR= lists are manifest variables and therefore must be present in the analyzed data set. The variables
in the ETAVAR= and XIVAR= lists are latent factors, the names of which are assigned by the researcher
to represent their roles in the substantive theory. After these lists are defined, the dimensions of the model
matrices are also defined by the number of variables on various lists. In addition, the variable orders in the
lists are referred to by the row and column variables of the model matrices.

Unlike the LINEQS model, in the LISMOD model you do not need to use the ‘F’ or ‘f’ prefix to denote
factors in the ETAVAR= or XIVAR= list. You can use any valid SAS variable names for the factors, especially
those names that reflect the nature of the factors. To avoid confusion with other names in the model, some
general rules are recommended. See the section “Naming Variables and Parameters” on page 1433 for these
general rules about naming variables and parameters.

Specifying Parameters in Model Matrices
The second task is accomplished by the MATRIX statements. In each MATRIX statement, you specify the
model matrix by using the matrix names described in the previous table. Then you specify the parameters
(free or fixed) in the locations of the model matrix. You can use as many MATRIX statements as needed
for defining your model. But each model matrix can be specified only in one MATRIX statement, and each
MATRIX statement is used for specifying only one model matrix.

An Example
In the section “LISMOD Model” on page 1189, the LISMOD modeling language is used to specify the model
described in the section “A Structural Equation Example” on page 1184. In the LISMOD statement, you
define four lists of variables, as shown in the following statement:

lismod
yvar = Anomie67 Powerless67 Anomie71 Powerless71,
xvar = Education SEI,
etav = Alien67 Alien71,
xivar = SES;
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Endogenous latent factors are specified in the ETAVAR= list. Exogenous latent factors are specified in the
XIVAR= list. In this case, Alien67 and Alien71 are the �-variables, and SES is the only �-variable in the
model. Manifest variables that are indicators of endogenous latent factors in � are specified in the YVAR= list.
In this case, they are the Anomie and Powerless variables, measured at two different time points. Manifest
variables that are indicators of exogenous latent factors in � are specified in the XVAR= list. In this case,
they are the Education and the SEI variables. Implicitly, the dimensions of the model matrices are defined by
these lists already; that is, ny D 4, nx D 2, n� D 2, and n� D 1.

The MATRIX statements are used to specify parameters in the model matrices. For example, in the following
statement you define the _LAMBDAX_ (ƒx) matrix with two nonzero entries:

matrix _LAMBDAX_ [1,1] = 1.0,
[2,1] = lambda;

The first parameter location is for [1,1], which is the effect of SES (the first variable in the XIVAR= list) on
Education (the first element in the XVAR= list). A fixed value of 1.0 is specified there. The second parameter
location is for [2,1], which is the effect of SES (the first variable in the XIVAR= list) on SEI (the second
variable in the XVAR= list). A parameter named lambda without an initial value is specified there.

Another example is shown as follows:

matrix _THETAY_ [1,1] = theta1,
[2,2] = theta2,
[3,3] = theta1,
[4,4] = theta2,
[3,1] = theta5,
[4,2] = theta5;

In this MATRIX statement, the error variances and covariances (that is, the‚y matrix) for the y-variables are
specified. The diagonal elements of the _THETAY_ matrix are specified by parameters theta1, theta2, theta1,
and theta2, respectively, for the four y-variables Anomie67, Powerless67, Anomie71, and Powerless71.
By using the same parameter name theta1, the error variances for Anomie67 and Anomie71 are implicitly
constrained. Similarly, the error variances for Powerless67 and Powerless71 are also implicitly constrained.
Two more parameter locations are specified. The error covariance between Anomie67 and Anomie71 and
the error covariance between Powerless67 and Powerless71 are both represented by the parameter theta5.
Again, this is an implicit constraint on the covariances. All other unspecified elements in the _THETAY_
matrix are treated as fixed zeros.

In this example, no parameters are specified for matrices _ALPHA_, _KAPPA_, _NUY_, or _NUX_. Therefore,
mean structures are not modeled.
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LISMOD Submodels

It is not necessary to specify all four lists of variables in the LISMOD statement. When some lists are
unspecified in the LISMOD statement, PROC CALIS analyzes submodels derived logically from the specified
lists of variables. For example, if only y- and x-variable lists are specified, the submodel being analyzed
would be a multivariate regression model with manifest variables only. Not all combinations of lists lead to
meaningful submodels, however. To determine whether and how a submodel (which is formed by a certain
combination of variable lists) can be analyzed, the following three principles in the LISMOD modeling
language are applied:

• Submodels with at least one of the YVAR= and XVAR= lists are required.

• Submodels that have an ETAVAR= list but no YVAR= list cannot be analyzed.

• When a submodel has a YVAR= (or an XVAR=) list but without an ETAVAR= (or a XIVAR=) list,
it is assumed that the set of y-variables (x-variables) is equivalent to the �-variables (�-variables).
Hereafter, this principle is referred to as an equivalence interpretation.

Apparently, the third principle is the same as the situation where the latent factors � (or �) are perfectly
measured by the manifest variables y (or x). That is, in such a perfect measurement model, ƒy (ƒx) is an
identity matrix and ‚y (‚x) and �y (�x) are both null. This can be referred to as a perfect measurement
interpretation. However, the equivalence interpretation stated in the last principle presumes that there are
actually no measurement equations at all. This is important because under the equivalence interpretation,
matrices ƒy (ƒx), ‚y (‚x) and �y (�x) are nonexistent rather than fixed quantities, which is assumed
under the perfect measurement interpretation. Hence, the x-variables are treated as exogenous variables
with the equivalence interpretation, but they are still treated as endogenous with the perfect measurement
interpretation. Ultimately, whether x-variables are treated as exogenous or endogenous affects the default or
automatic parameterization. See the section “Default Parameters” on page 1284 for more details.

By using these three principles, the models and submodels that PROC CALIS analyzes are summarized in
the following table, followed by detailed descriptions of these models and submodels.
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Presence of Lists Description Model Equations Nonfixed Model
Matrices

Presence of Both x- and y-variables

1 YVAR=, ETAVAR=, Full model y D �y Cƒy�C � �y ,ƒy ,‚y
XVAR=, XIVAR= x D �x Cƒx� C ı �x ,ƒx ,‚x ,�,ˆ

� D ˛C ˇ�C �� C � ˛ ,ˇ,� ,‰

2 YVAR=, Full model with x D �x Cƒx� C ı �x ,ƒx ,‚x ,�,ˆ
XVAR=, XIVAR= y � � y D ˛C ˇy C �� C � ˛,ˇ,� ,‰

3 YVAR=, ETAVAR=, Full model with y D �y Cƒy�C � �y ,ƒy ,‚y
XVAR= x � � � D ˛C ˇ�C �x C � ˛ ,ˇ,� ,‰ ,�,ˆ

4 YVAR=, Regression y D ˛C ˇy C �x C �, or ˛,ˇ,� ,‰ ,�,ˆ
XVAR= (y � �) .I � ˇ/�1y D ˛C �x C �

(x � �)

Presence of x-variables and Absence of y-variables

5 XVAR=, XIVAR= Factor model x D �x Cƒx� C ı �x ,ƒx ,‚x ,�,ˆ
for x

6 XVAR= x-structures �,ˆ
(x � �)

Presence of y-variables and Absence of x-variables

7 YVAR=, ETAVAR= Factor model y D �y Cƒy�C � �y ,ƒy ,‚y
for y � D ˛C ˇ�C � ˛,ˇ,‰

8 YVAR= y-structures y D ˛C ˇy C �, or ˛,ˇ,‰
(y � �) .I � ˇ/�1y D ˛C �

9 YVAR=, ETAVAR=, Second-order y D �y Cƒy�C � �y ,ƒy ,‚y
XIVAR= factor model � D ˛C ˇ�C �� C � ˛,ˇ,� ,‰ ,�,ˆ

10 YVAR=, Factor model y D ˛C ˇy C �� C �, or ˛,ˇ,� ,‰ ,�,ˆ
XIVAR= (y � �) .I � ˇ/�1y D ˛C �� C �

Models 1, 2, 3, and 4—Presence of Both x- and y-Variables
Submodels 1, 2, 3, and 4 are characterized by the presence of both x- and y-variables in the model. In fact,
Model 1 is the full model with the presence of all four types of variables. All twelve model matrices are
parameter matrices in this model.

Depending on the absence of the latent factor lists, manifest variables can replace the role of the latent factors
in Models 2–4. For example, the absence of the ETAVAR= list in Model 2 means y is equivalent to � (y � �).
Consequently, you cannot, nor do you need to, use the MATRIX statement to specify parameters in the
_LAMBDAY_, _THETAY_, or _NUY_ matrices under this model. Similarly, because x is equivalent to �
(x � �) in Model 3, you cannot, nor do you need to, use the MATRIX statement to specify the parameters
in the _LAMBDAX_, _THETAX_, or _NUX_ matrices. In Model 4, y is equivalent to � (y � �) and x is
equivalent to � (x � �). None of the six model matrices in the measurement equations are defined in the
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model. Matrices in which you can specify parameters by using the MATRIX statement are listed in the last
column of the table.

Describing Model 4 as a regression model is a simplification. Because y can regress on itself in the model
equation, the regression description is not totally accurate for Model 4. Nonetheless, if ˇ is a null matrix, the
equation describes a multivariate regression model with outcome variables y and predictor variables x. This
model is the TYPE 2A model in LISREL VI (Jöreskog and Sörbom 1985).

You should also be aware of the changes in meaning of the model matrices when there is an equivalence
between latent factors and manifest variables. For example, in Model 4 the ˆ and � are now the covariance
matrix and mean vector, respectively, of manifest variables x, while in Model 1 (the complete model) these
matrices are of the latent factors �.

Models 5 and 6 — Presence of x-Variables and Absence of y-Variables
Models 5 and 6 are characterized by the presence of the x-variables and the absence of y-variables.

Model 5 is simply a factor model for measured variables x, with ƒx representing the factor loading matrix,
‚x the error covariance matrix, and ˆ the factor covariance matrix. If mean structures are modeled, �
represents the factor means and �x is the intercept vector. This is the TYPE 1 submodel in LISREL VI
(Jöreskog and Sörbom 1985).

Model 6 is a special case where there is no model equation. You specify the mean and covariance structures
(in � and ˆ, respectively) for the manifest variables x directly. The x-variables are treated as exogenous
variables in this case. Because this submodel uses direct mean and covariance structures for measured
variables, it can also be handled more easily by the MSTRUCT modeling language. See the MSTRUCT
statement and the section “The MSTRUCT Model” on page 1416 for more details.

Note that because �-variables cannot exist in the absence of y-variables (see one of the three aforementioned
principles for deriving submodels), adding the ETAVAR= list alone to these two submodels does not generate
new submodels that can be analyzed by PROC CALIS.

Models 7, 8, 9 and 10—Presence of y-Variables and Absence of x-Variables
Models 7–10 are characterized by the presence of the y-variables and the absence of x-variables.

Model 7 is a factor model for y-variables (TYPE 3B submodel in LISREL VI). It is similar to Model 5,
but with regressions among latent factors allowed. When ˇ is null, Model 7 functions the same as Model
5. It becomes a factor model for y-variables, with ƒy representing the factor loading matrix,‚y the error
covariance matrix, ‰ the factor covariance matrix, ˛ the factor means, and �y the intercept vector.

Model 8 (TYPE 2B submodel in LISREL VI) is a model for studying the mean and covariance structures
of y-variables, with regression among y-variables allowed. When ˇ is null, the mean structures of y are
specified in ˛ and the covariance structures are specified in ‰ . This is similar to Model 6. However, there
is an important distinction. In Model 6, the x-variables are treated as exogenous (no model equation at
all). But the y-variables are treated as endogenous in Model 8 (with or without ˇ D 0). Consequently, the
default parameterization would be different for these two submodels. See the section “Default Parameters”
on page 1284 for details about the default parameterization.

Model 9 represents a modified version of the second-order factor model for y. It would be a standard
second-order factor model when ˇ is null. This is the TYPE 3A submodel in LISREL VI. With ˇ being null,
� represents the first-order factors and � represents the second-order factors. The first- and second-order
factor loading matrices are ƒy and � , respectively.
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Model 10 is another form of factor model when ˇ is null, with factors represented by � and manifest variables
represented by y. However, if ˇ is indeed a null matrix in applications, you might want to use Model 5, in
which the factor model specification is more direct and intuitive.

Default Parameters in the LISMOD Model

When a model matrix is defined in a LISMOD model, you can specify fixed values or free parameters for the
elements of the matrix by the MATRIX statement. All other unspecified elements in the matrix are set by
default. There are two types of default parameters for the LISMOD model matrices: one is free parameters;
the other is fixed zeros.

The following sets of parameters are free parameters by default:

• the diagonal elements of the _THETAX_, _THETAY_, and _PSI_ matrices; these elements represent
the error variances in the model

• all elements of the _PHI_ matrix; these elements represent the variances and covariance among
exogenous variables in the model

• all elements in the _NUX_ and _NUY_ vectors if the mean structures are modeled; these elements
represent the intercepts of the observed variables

• all elements in the _ALPHA_ vector if a YVAR= list is specified but an ETAVAR= list is not specified
and the mean structures are modeled; these elements represent the intercepts of the y-variables

• all elements in the _KAPPA_ vector if an XVAR= list is specified but an XIVAR= list is not specified
and the mean structures are modeled; these elements represent the means of the x-variables

PROC CALIS names the default free parameters with the _Add prefix and a unique integer suffix. You can
override the default free parameters by explicitly specifying them as free, constrained, or fixed parameter in
the MATRIX statements for the matrices.

Parameters that are not default free parameters in the LISMOD model are fixed zeros by default. You can
override almost all of these default fixed zeros of the LISMOD model by using the MATRIX statements for
the matrices. The only set of default fixed zeros that you cannot override is the set of the diagonal elements
of the _BETA_ matrix. These fixed zeros reflect a model restriction that precludes variables from having
direct effects on themselves.

The MSTRUCT Model
In contrast to other modeling languages where the mean and covariance structures are implied from the
specification of equations, paths, variable-factor relations, mean parameters, variance parameters, or covari-
ance parameters, the MSTRUCT modeling language is supported in PROC CALIS for modeling mean and
covariance structures directly.

A simple example for using the MSTRUCT modeling language is the testing of a covariance model with
equal variances and covariances. Suppose that a variable was measured five times in an experiment. The
covariance matrix of these five measurements is hypothesized to have the structure

† D †.�/
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where

� D .�; �/

and

†.�/ D

0BBBB@
� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

1CCCCA
For model structures that are hypothesized directly in the covariance matrix, the MSTRUCT modeling
language is the most convenient to use. You can also use other general modeling languages such as LINEQS,
PATH, or RAM to fit the same model structures, but the specification is less straightforward and more
error-prone. For convenience, models that are specified using the MSTRUCT modeling language are called
MSTRUCT models. For applications of MSTRUCT modeling, see Yung, Browne, and Zhang (2014).

Model Matrices in the MSTRUCT Model

Suppose that there are p observed variables. The two model matrices, their names, their roles, and their
dimensions are summarized in the following table.

Matrix Name Description Dimensions

† _COV_ or _MSTRUCTCOV_ Structured covariance matrix p � p

� _MEAN_ or _MSTRUCTMEAN_ Structured mean vector p � 1

Specification of the MSTRUCT Model

Specifying Variables
In the MSTRUCT statement, you specify the list of p manifest variables of interest in the VAR= list. For
example, you specify v1–v5 as the variables to be analyzed in your MSTRUCT model by this statement:

mstruct VAR= v1 v2 v3 v4 v5;

See the MSTRUCT statement on page 1313 for details about the syntax.

The manifest variables in the VAR= list must be referenced in the input set. The number of variables in the
VAR= list determines the dimensions of the _COV_ and the _MEAN_ matrices in the model. In addition, the
order of variables determines the order of row and column variables in the model matrices.

Specifying Parameters in Model Matrices
Denote the parameter vector in the MSTRUCT model as � . The dimension of � depends on your hypothesized
model. In the preceding example, � contains two parameters in � and � . You can use the MATRIX statement
to specify these parameters in the _COV_ matrix:

matrix _COV_ [1,1] = 5*phi, /* phi for all diagonal elements */
[2, ] = tau, /* tau for all off-diagonal elements */
[3, ] = 2*tau,
[4, ] = 3*tau,
[5, ] = 4*tau;
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In this MATRIX statement, the five diagonal elements, starting from the [1,1] element of the covariance
matrix, are fitted by the phi parameter. The specification 5*phi is a shorthand for specifying phi five times,
once for each of the five diagonal elements in the covariance matrix. All other lower triangular elements
are fitted by the tau parameter, as shown in the MATRIX statement. For example, with [3,] the elements
starting from the first element of the third row of the _COV_ matrix are parameterized by the tau parameter.
The specification 2*tau repeats the specification two times, meaning that the [3,1] and [3,2] elements are
both fitted by the same parameter tau. Similarly, all lower triangular elements (not including the diagonal
elements) of the _COV_ matrix are fitted by the tau parameter. The specification of the upper triangular
elements (diagonal excluded) of the _COV_ matrix is not needed because the _COV_ matrix is symmetric.
The specification in the lower triangular elements is transferred automatically to the upper triangular elements.
See the MATRIX statement on page 1295 for details about the syntax.

Default Parameters in the MSTRUCT Model

By using the MATRIX statements, you can specify either fixed values or free parameters (with or without
initial values) for the elements in the _COV_ and _MEAN_ model matrices. If some or all elements are not
specified, default parameters are applied to the MSTRUCT. There are two types of default parameters: one is
free parameters; the other is fixed zeros. They are applied in different situations.

If you do not specify any elements of the _COV_ matrix with the MATRIX statement, all elements of the
_COV_ matrix are free parameters by default. PROC CALIS names the default free parameters with the
_Add prefix and a unique integer suffix. However, if you specify at least one fixed or free parameter of the
_COV_ matrix with the MATRIX statement, then all other unspecified elements of the _COV_ matrix are
fixed zeros by default.

If the mean structures are modeled, the same treatment applies to the _MEAN_ vector. That is, if you do
not specify any elements of the _MEAN_ vector with the MATRIX statement, all elements of the _MEAN_
vector are free parameters by default. However, if you specify at least one fixed or free parameter of the
_MEAN_ vector with the MATRIX statement, then all other unspecified elements of the _MEAN_ vector are
fixed zeros by default.

How and Why the Default Parameters Are Treated Differently in the MSTRUCT Model
Notice that the default parameter treatment of the MSTRUCT model is quite different from other types of
models such as FACTOR, LINEQS, LISMOD, RAM, or PATH. For these models, unspecified variances and
covariances among exogenous variables are all free parameters by default. However, for the MSTRUCT
model, either default free parameters or fixed zeros are generated depending on whether at least one element
of the covariance matrix is specified. The reason for this different treatment is that you fit the covariance
structure directly by using the MSTRUCT modeling language. Hence, in an MSTRUCT model there is no
information regarding the functional relationships among the variables that indicates whether the variables
are exogenous or endogenous in the model. Hence, PROC CALIS cannot assume default free parameters
based on the exogenous or endogenous variable types.

Because of this special default parameter treatment, when fitting an MSTRUCT model you must make
sure that each diagonal element in your _COV_ matrix is set as a free, constrained, or fixed parameter, in
accordance with your theoretical model. If you specify some elements in the model matrix but omit the
specification of other diagonal elements, the default fixed zero variances would lead to a nonpositive definite
_COV_ model matrix, making the model fitting problematic.
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The PATH Model
The PATH modeling language is supported in PROC CALIS as a more intuitive modeling tool. It is designed
so that specification by using the PATH modeling language translates effortlessly from the path diagram. For
example, consider the following simple path diagram:

B

C

A

You can use the following PATH statement to specify the paths easily:

path A ===> B ,
C ===> B ;

There are two path entries in the PATH statement: one is for the path A ===> B, and the other is for the path
C ===> B. Sometimes you might want to name the effect parameters in the path diagram, as shown in the
following:

B

C

A

effect2

effect1

You can specify the paths and the parameters together in the following statement:

path A ===> B = effect1,
C ===> B = effect2;

In the first entry of the PATH statement, the path A ===> B is specified together with the path coefficient
(effect) effect1. Similarly, in the second entry, the C ===> B path is specified together with the effect
parameter effect2. In addition to the path coefficients (effects) in the path diagram, you can also specify
other types of parameters by using the PVAR and PCOV statements. See the section “A Structural Equation
Example” on page 1184 for a more detailed example of the PATH model specification.

Despite its simple representation of the path diagram, the PATH modeling language is general enough to
handle a wide class of structural models that can also be handled by other general modeling languages such
as LINEQS, LISMOD, or RAM. For brevity, models specified by the PATH modeling language are called
PATH models.

Types of Variables in the PATH Model

When you specify the paths in the PATH model, you typically use arrows (such as <=== or ===>) to denote
“causal” paths. For example, in the preceding path diagram or the PATH statement, you specify that B is an
outcome variable with predictors A and C, respectively, in two paths. An outcome variable is the variable
being pointed to in a path specification, while the predictor variable is the one where the arrow starts from.

Whereas the outcome–predictor relationship describes the roles of variables in each single path, the
endogenous–exogenous relationship describes the roles of variables in the entire system of paths. In a
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system of path specification, a variable is endogenous if it is pointed to by at least one single-headed arrow
or it serves as an outcome variable in at least one path. Otherwise, it is exogenous. In the preceding path
diagram, for example, variable B is endogenous and both variables A and C are exogenous. Note that although
any variable that serves as an outcome variable at least in one path must be endogenous, it does not mean
that all endogenous variables must serve only as outcome variables in all paths. An endogenous variable in
a model might also serve as a predictor variable in a path. For example, variable B in the following PATH
statement is an endogenous variable, and it serves as an outcome variable in the first path but as a predictor
variable in the second path.

path A ===> B = effect1,
B ===> C = effect2;

A variable is a manifest or observed variable in the PATH model if it is measured and exists in the input data
set. Otherwise, it is a latent variable. Because error variables are not explicitly defined in the PATH modeling
language, all latent variables that are named in the PATH model are factors, which are considered to be the
systematic source of effects in the model. Each manifest variable in the PATH model can be endogenous or
exogenous. The same is true for any latent factor in the PATH model.

Because you do not name error variables in the PATH model, you do not need to specify paths from errors to
any endogenous variables. Error terms are implicitly assumed for all endogenous variables in the PATH model.
Although error variables are not named in the PATH model, the error variances are expressed equivalently as
partial variances of the associated endogenous variables. These partial variances are set by default in the
PATH modeling language. Therefore, you do not need to specify error variance parameters explicitly unless
constraints on these parameters are desirable in the model. You can use the PVAR statement to specify the
error variance or partial variance parameters explicitly.

Naming Variables in the PATH Model

Manifest variables in the PATH model are referenced in the input data set. Their names must not be longer
than 32 characters. There are no further restrictions beyond those required by the SAS System. You use the
names of manifest variables directly in the PATH model specification.

Because you do not name error variables in the PATH model, all latent variables named in the PATH model
specification are factors (non-errors). Factor names in the PATH model must not be longer than 32 characters,
and they should be different from the manifest variables. Unlike the LINEQS model, you do not need to use
‘F’ or ‘f’ prefix to denote latent factors in the PATH model. As a general naming convention, you should not
use Intercept as either a manifest or latent variable name. See the section “Naming Variables and Parameters”
on page 1433 for these general rules about naming variables and parameters.

Specification of the PATH Model

(1) Specification of Effects or Paths
You specify the “causal” paths or linear functional relationships among variables in the PATH statement.
For example, if there is a path from v2 to v1 in your model and the effect parameter is named parm1 with a
starting value at 0.5, you can use either of these specifications:

path v1 <=== v2 = parm1(0.5);

path v2 ===> v1 = parm1(0.5);

If you have more than one path in your model, path specifications should be separated by commas, as shown
in the following PATH statement:
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path
v1 <=== v2 = parm1(0.5),
v2 <=== v3 = parm2(0.3);

Because the PATH statement can be used only once in each model specification, all paths in the model must
be specified together in a single PATH statement. See the PATH statement on page 1322 for more details
about the syntax.

(2) Specification of Variances and Partial (Error) Variances
If v2 is an exogenous variable in the PATH model and you want to specify its variance as a parameter named
parm2 with a starting value at 10, you can use the following PVAR statement specification:

pvar v2 = parm2(10.);

If v1 is an endogenous variable in the PATH model and you want to specify its partial variance or error
variance as a parameter named parm3 with a starting value at 5.0, you can also use the following PVAR
statement specification:

pvar v1 = parm3(5.0);

Therefore, the PVAR statement can be used for both exogenous and endogenous variables. When a variable
in the statement is exogenous (which can be automatically determined by PROC CALIS), you are specifying
the variance parameter of the variable. Otherwise, you are specifying the partial or error variance for an
endogenous variable.

You do not need to supply the parameter names for the variances or partial variances if these parameters are
not constrained. For example, the following statement specifies the unnamed free parameters for variances or
partial variances of v1 and v2:

pvar v1 v2;

If you have more than one variance or partial variance parameter to specify in your model, you can put a
variable list on the left-hand side of the equal sign, and a parameter list on the right-hand side, as shown in
the following PVAR statement specification:

pvar
v1 v2 v3 = parm1(0.5) parm2 parm3;

In the specification, variance or partial variance parameters for variables v1–v3 are parm1, parm2, and parm3,
respectively. Only parm1 is given an initial value at 0.5. The initial values for other parameters are generated
by PROC CALIS.

You can also separate the specifications into several entries in the PVAR statement. Entries should be
separated by commas. For example, the preceding specification is equivalent to the following specification:

pvar
v1 = parm1 (0.5),
v2 = parm2,
v3 = parm3;

Because the PVAR statement can be used only once in each model specification, all variance and partial
variance parameters in the model must be specified together in a single PVAR statement. See the PVAR
statement on page 1345 for more details about the syntax.
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(3) Specification of Covariances and Partial Covariances
If you want to specify the (partial) covariance between two variables v3 and v4 as a parameter named parm4
with a starting value at 3, you can use the following PCOV statement specification:

pcov v3 v4 = parm4 (5.);

Whether parm4 is a covariance or partial covariance parameter depends on the variable types of v3 and v4. If
both v3 and v4 are exogenous variables (manifest or latent), parm4 is a covariance parameter between v3 and
v4. If both v3 and v4 are endogenous variables (manifest or latent), parm4 is a parameter for the covariance
between the errors for v3 and v4. In other words, it is a partial covariance or error covariance parameter for
v3 and v4.

A less common case is when one of the variables is exogenous and the other is endogenous. In this case,
parm4 is a parameter for the partial covariance between the endogenous variable and the exogenous variable,
or the covariance between the error for the endogenous variable and the exogenous variable. Fortunately,
such covariances are relatively uncommon in statistical modeling. Their uses confuse the roles of systematic
and unsystematic sources in the model and lead to difficulties in interpretations. Therefore, you should almost
always avoid this kind of partial covariance.

Like the syntax of the PVAR statement, you can specify a list of (partial) covariance parameters in the PCOV
statement. For example, consider the following statement:

pcov
v1 v2 = parm4,
v1 v3 = parm5,
v2 v3 = parm6;

In the specification, three (partial) covariance parameters parm4, parm5, and parm6 are specified, respectively,
for the variable pairs (v1,v2), (v1,v3), and (v2,v3). Entries for (partial) covariance specification are separated
by commas.

Again, if all these covariances are not constrained, you can omit the names for the parameters. For example,
the preceding specification can be specified as the following statement when the three covariances are free
parameters in the model:

pcov
v1 v2,
v1 v3,
v2 v3;

Or, you can simply use the following within-list covariance specification:

pcov
v1 v2 v3;

Three covariance parameters are generated by this specification.

Because the PCOV statement can be used only once in each model specification, all covariance and partial
covariance parameters in the model must be specified together in a single PCOV statement. See the PCOV
statement on page 1343 for more details about the syntax.

(4) Specification of Means and Intercepts
Means and intercepts are specified when the mean structures of the model are of interest. You can specify
mean and intercept parameters in the MEAN statement. For example, consider the following statement:
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mean V5 = parm5(11.);

If V5 is an exogenous variable (which is determined by PROC CALIS automatically), you are specifying
parm5 as the mean parameter of V5. If V5 is an endogenous variable, you are specifying parm5 as the
intercept parameter for V5.

Because each named variable in the PATH model is either exogenous or endogenous (exclusively), each
variable in the PATH model would have either a mean or an intercept parameter (but not both) to specify in
the MEAN statement. Like the syntax of the PVAR statement, you can specify a list of mean or intercept
parameters in the MEAN statement. For example, in the following statement you specify a list of mean or
intercept parameters for variables v1–v4:

mean
v1-v4 = parm6-parm9;

This specification is equivalent to the following specification with four entries of parameter specifications:

mean
v1 = parm6,
v2 = parm7,
v3 = parm8,
v4 = parm9;

Again, entries in the MEAN statement must be separated by commas, as shown in the preceding statement.

Because the MEAN statement can be used only once in each model specification, all mean and intercept
parameters in the model must be specified together in a single MEAN statement. See the MEAN statement
on page 1309 for more details about the syntax.

Specifying Parameters without Initial Values
If you do not have any knowledge about the initial value for a parameter, you can omit the initial value
specification and let PROC CALIS compute it. For example, you can provide just the parameter locations
and parameter names as in the following specification:

path v1 <=== v2 = parm1;
pvar v2 = parm2,

v1 = parm3;

Specifying Fixed Parameter Values
If you want to specify a fixed parameter value, you do not need to provide a parameter name. Instead, you
provide the fixed value (without parentheses) in the specification.

For example, in the following statement the path coefficient for the path is fixed at 1.0 and the (partial)
variance of F1 is also fixed at 1.0:

path v1 <=== F1 = 1.;
pvar

F1 = 1.;

A Complete PATH Model Specification Example
The following specification shows a more complete PATH model specification:
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path v1 <=== v2 ,
v1 <=== v3 ;

pvar v1,
v2 = parm3,
v3 = parm3;

pcov v3 v2 = parm5(5.);

The two paths specified in the PATH statement have unnamed free effect parameters. These parameters are
named by PROC CALIS with the _Parm prefix and unique integer suffixes. The error variance of v1 is an
unnamed parameter, while the variances of v2 and v3 are constrained by using the same parameter parm3.
The covariance between v2 and v3 is a free parameter named parm5, with a starting value of 5.0.

Default Parameters in the PATH Model

There are two types of default parameters of the PATH model. One is the free parameters; the other is the
fixed constants.

The following sets of parameters are free parameters by default:

• the variances or partial (or error) variances of all variables, manifest or latent

• the covariances among all exogenous (independent) manifest or latent variables

• the means of all exogenous (independent) manifest variables if the mean structures are modeled

• the intercepts of all endogenous (dependent) manifest variables if the mean structures are modeled

For each of the default free parameters, PROC CALIS generates a parameter name with the _Add prefix and
a unique integer suffix. Parameters that are not default free parameters in the PATH model are fixed zeros
by default. You can override almost all of the default zeros of the PATH model by using the MEAN, PATH,
PCOV, and MEAN statements. The only exception is the single-headed path that has the same variable on
both sides. That is, the following specification is not accepted by PROC CALIS:

path v1 <=== v1 = parm;

This path should always has a zero coefficient, which is treated as a model restriction that prevents a variable
from having a direct effect on itself.

Relating the PATH Model to the RAM Model

Mathematically, the PATH model is essentially the RAM model. You can consider the PATH model to
share exactly the same set of model matrices as in the RAM model. See the section “Model Matrices in the
RAM Model” on page 1425 and the section “Summary of Matrices and Submatrices in the RAM Model” on
page 1428 for details about the RAM model matrices. In the RAM model, the A matrix contains effects or
path coefficients for describing relationships among variables. In the PATH model, you specify these effect
or coefficient parameters in the PATH statement. The P matrix in the RAM model contains (partial) variance
and (partial) covariance parameters. In the PATH model, you use the PVAR and PCOV statements to specify
these parameters. The W vector in the RAM model contains the mean and intercept parameters, while in the
PATH model you use the MEAN statement to specify these parameters. By using these model matrices in
the PATH model, the covariance and mean structures are derived in the same way as they are derived in the
RAM model. See the section “The RAM Model” on page 1425 for derivations of the model structures.
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The RAM Model
The RAM modeling language is adapted from the basic RAM model developed by McArdle (1980). For
brevity, models specified by the RAM modeling language are called RAM models. You can also specify
these so-called RAM models by other general modeling languages that are supported in PROC CALIS.

Types of Variables in the RAM Model

A variable in the RAM model is manifest if it is observed and is defined in the input data set. A variable in
the RAM model is latent if it is not manifest. Because error variables are not explicitly named in the RAM
model, all latent variables in the RAM model are considered as factors (non-error-type latent variables).

A variable in the RAM model is endogenous if it ever serves as an outcome variable in the RAM model. That
is, an endogenous variable has at least one path (or an effect) from another variable in the model. A variable
is exogenous if it is not endogenous. Endogenous variables are also referred to as dependent variables, while
exogenous variables are also referred to as independent variables.

In the RAM model, distinctions between exogenous and endogenous and between latent and manifest for
variables are not essential to the definitions of model matrices, although they are useful for conceptual
understanding when the model matrices are partitioned.

Naming Variables in the RAM Model

Manifest variables in the RAM model are referenced in the input data set. Their names must not be longer
than 32 characters. There are no further restrictions beyond those required by the SAS System.

Latent variables in the RAM model are those not being referenced in the input data set. Their names must
not be longer than 32 characters. Unlike the LINEQS model, you do not need to use any specific prefix (for
example, ‘F’ or ‘f’) for the latent factor names. The reason is that error or disturbance variables in the RAM
model are not named explicitly in the RAM model. Thus, any variable names that are not referenced in the
input data set are for latent factors.

As a general naming convention, you should not use Intercept as either a manifest or latent variable name.

Model Matrices in the RAM Model

In terms of the number of model matrices involved, the RAM model is the simplest among all the general
structural equations models that are supported by PROC CALIS. Essentially, there are only three model
matrices in the RAM model: one for the interrelationships among variables, one for the variances and
covariances, and one for the means and intercepts. These matrices are discussed in the following subsections.

Matrix A (na � na) : Effects of Column Variables on Row Variables
The row and column variables of matrix A are the set of manifest and latent variables in the RAM model.
Unlike the LINEQS model, the set of latent variables in the RAM model matrix does not include the error or
disturbance variables. Each entry or element in the A matrix represents an effect of the associated column
variable on the associated row variable or a path coefficient from the associated column variable to the
associated row variable. A zero entry means an absence of a path or an effect.

The pattern of matrix A determines whether a variable is endogenous or exogenous. A variable in the RAM
model is endogenous if its associated row in the A matrix has at least one nonzero entry. Any other variable
in the RAM model is exogenous.
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Mathematically, you do not need to arrange the set of variables for matrix A in a particular order, as long as
the order of variables is the same for the rows and the columns. However, arranging the variables according
to whether they are endogenous or exogenous is useful for showing the partitions of the model matrices
and certain mathematical properties. See the section “Partitions of the RAM Model Matrices and Some
Restrictions” on page 1427 for details.

Matrix P (na � na): Variances, Covariances, Partial Variances, and Partial Covariances
The row and column variables of matrix P refer to the same set of manifest and latent variables that are
defined in the RAM model matrix A. The diagonal entries of P contain variances or partial variances of
variables. If a variable is exogenous, then the corresponding diagonal element in the P matrix represents
its variance. Otherwise, the corresponding diagonal element in the P matrix represents its partial variance.
This partial variance is an unsystematic source of variance that is not explained by the interrelationships
of variables in the model. In most cases, you can interpret a partial variance as the error variance for an
endogenous variable.

The off-diagonal elements of P contain covariances or partial covariances among variables. An off-diagonal
element in P that is associated with exogenous row and column variables represents covariance between the
two exogenous variables. An off-diagonal element in P that is associated with endogenous row and column
variables represents partial covariance between the two variables. This partial covariance is unsystematic, in
the sense that it is not explained by the interrelationships of variables in the model. In most cases, you can
interpret a partial covariance as the error covariance between the two endogenous variables involved. An
off-diagonal element in P that is associated with one exogenous variable and one endogenous variable in the
row and column represents the covariance between the exogenous variable and the error of the endogenous
variable. While this interpretation sounds a little awkward and inelegant, this kind of covariance, fortunately,
is rare in most applications.

Vector W (na � 1): Intercepts and Means
The row variables of vector W refer to the same set of manifest and latent variables that are defined in
the RAM model matrix A. Elements in W represent either intercepts or means. An element in W that is
associated with an exogenous row variable represents the mean of the variable. An element in W that is
associated with an endogenous row variable represents the intercept term for the variable.

Covariance and Mean Structures

Assuming that .I �A/ is invertible, where I is an identity matrix of the same dimension as A, the structured
covariance matrix of all variables (including latent variables) in the RAM model is shown as follows:

†a D .I �A/�1P.I �A/�10

The structured mean vector of all variables is shown as follows:

�a D .I �A/�1W

The covariance and mean structures of all manifest variables are obtained by selecting the elements in †a
and �a. This can be achieved by defining a selection matrix G of dimensions n � na, where n is the number
of manifest variables in the model. The selection matrix G contains zeros and ones as its elements. Each
row of G has exactly one nonzero element at the position that corresponds to the location of a manifest row
variable in †a or �a. With each row of G selecting a distinct manifest variable, the structured covariance
matrix of all manifest variables is expressed as the following:

† D G†aG0
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The structured mean vector of all observed variables is expressed as the following:

� D G�a

Partitions of the RAM Model Matrices and Some Restrictions

There are some model restrictions in the RAM model matrices. Although these restrictions do not affect the
derivation of the covariance and mean structures, they are enforced in the RAM model specification.

For convenience, it is useful to assume that na variables are arranged in the order of nd endogenous (or
dependent) variables and the ni exogenous (independent) variables in the rows and columns of the model
matrices.

Model Restrictions on the A Matrix
The A matrix is partitioned as

A D
�
ˇ 

0 0

�
where ˇ is an nd � nd matrix for paths or effects from (column) endogenous variables to (row) endogenous
variables and  is an nd�ni matrix for paths (effects) from (column) exogenous variables to (row) endogenous
variables.

As shown in the matrix partitions, there are four submatrices. The two submatrices at the lower parts are
seemingly structured to zeros. However, this should not be interpreted as restrictions imposed by the model.
The zero submatrices are artifacts created by the exogenous-endogenous arrangement of the row and column
variables. The only restriction on the A matrix is that the diagonal elements must all be zeros. This implies
that the diagonal elements of the submatrix ˇ are also zeros. This restriction prevents a direct path from any
endogenous variable to itself. There are no restrictions on the pattern of  .

It is useful to denote the lower partitions of the A matrix by ALL (lower left) and ALR (lower right) so that

A D
�
ˇ 

ALL ALR

�
Although they are zero matrices in the initial model specification, their entries could become non-zero (paths)
in an improved model when you modify your model by using the Lagrange multiplier statistics (see the
section “Modification Indices” on page 1501 or the MODIFICATION option). Hence, you might need
to reference these two submatrices when you apply the customized LM tests on them during the model
modification process (see the LMTESTS statement).

For the purposes of defining specific parameter regions in customized LM tests, you might also partition the
A matrix in other ways. First, you can partition A into the left and right portions,

A D
�
ALeft ARight

�
where ALeft is top-down concatenation of the ˇ and ALL matrices and ARight is the top-down concatenation
of the  and ALR matrices. Second, you can partition A into the upper and lower portions,

A D
�
AUpper
ALower

�
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where AUpper is the side-by-side concatenation of the ˇ and  matrices and ALower is the side-by-side
concatenation of the ALL and ALR matrices.

In your initial model, because of the arrangement of the endogenous and exogenous variables ALower is a
null matrix. But if you improve your model by applying the LM tests on the entries in ALower , some of these
entries might become free paths in your improved model. Hence, some exogenous variables in your initial
model now become endogenous variables in your improved model. For this reason, ALower is also designated
as a parameter region for new endogenous variables, which is exactly what the NEWENDO region means in
the LMTESTS statement.

Partition of the P Matrix
The P matrix is partitioned as

P D
�
P11 P021
P21 P22

�
where P11 is an nd �nd partial covariance matrix for the endogenous variables, P22 is an ni �ni covariance
matrix for the exogenous variables, and P21 is an ni �nd covariance matrix between the exogenous variables
and the error terms for the endogenous variables. Because P is symmetric, P11 and P22 are also symmetric.

There are virtually no model restrictions placed on these submatrices. However, in most statistical applications,
errors for endogenous variables represent unsystematic sources of effects and therefore they are not to be
correlated with other systematic sources such as the exogenous variables in the RAM model. This means that
in most practical applications P21 would be a null matrix, although this is not enforced in PROC CALIS.

Partition of the W Vector
The W vector is partitioned as

W D
�
˛

�

�
where ˛ is an nd � 1 vector for intercepts of the endogenous variables and � is an ni � 1 vector for the means
of the exogenous variables. There is no model restriction on these subvectors.

Summary of Matrices and Submatrices in the RAM Model

Let na be the total number of manifest and latent variables in the RAM model. Of these na variables, nd
are endogenous and ni are exogenous. Suppose that the rows and columns of the RAM model matrices
A and P and the rows of W are arranged in the order of nd endogenous variables and then ni exogenous
variables. The names, roles, and dimensions of the RAM model matrices and submatrices are summarized in
the following table.
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Matrix Name Description Dimensions

Model Matrices
A _A_ or _RAMA_ Effects of column variables on row variables,

or paths from the column variables to the row
variables

na � na

P _P_ or _RAMP_ (Partial) variances and covariances na � na
W _W_ or _RAMW_ Intercepts and means na � 1

Submatrices
ˇ _RAMBETA_ Effects of endogenous variables on

endogenous variables
nd � nd

 _RAMGAMMA_ Effects of exogenous variables on
endogenous variables

nd � ni

ALL _RAMA_LL_ The null submatrix at the lower left portion
of _A_

ni � nd

ALR _RAMA_LR_ The null submatrix at the lower right portion
of _A_

ni � ni

ALeft _RAMA_LEFT_ The left portion of _A_, including ˇ and ALL na � nd
ARight _RAMA_RIGHT_ The right portion of _A_, including  and

ALR

na � ni

AUpper _RAMA_UPPER_ The upper portion of _A_, including ˇ and  nd � na
ALower _RAMA_LOWER_ The lower portion of _A_, including ALL

and ALR

ni � na

P11 _RAMP11_ Error variances and covariances for
endogenous variables

nd � nd

P21 _RAMP21_ Covariances between exogenous variables
and error terms for endogenous variables

nd � ni

P22 _RAMP22_ Variances and covariances for exogenous
variables

ni � ni

˛ _RAMALPHA_ Intercepts for endogenous variables nd � 1

� _RAMNU_ Means for exogenous variables ni � 1

Specification of the RAM Model

In PROC CALIS, the RAM model specification is a matrix-oriented modeling language. That is, you have to
define the row and column variables for the model matrices and specify the parameters in terms of matrix
entries. The VAR= option specifies the variables (including manifest and latent) in the model. For example,
the following statement specifies five variables in the model:

RAM
var= v1 v2 v3;

The order of variables in the VAR= option is important. The same order is used for the row and column
variables in the model matrices. After you specify the variables in the model, you can specify three types of
parameters, which correspond to the elements in the three model matrices. The three types of RAM entries
are described in the following.
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(1) Specification of Effects or Paths in Model Matrix A
If there is a path from V2 to V1 in your model and the associated effect parameter is named parm1 with 0.5
as the starting value, you can use the following RAM statement:

RAM
var= v1 v2 v3,
_A_ 1 2 parm1(0.5);

The ram-entry that starts with _A_ means that an element of the ram matrix A is being specified. The row
number and the column number of this element are 1 and 2, respectively. With reference to the VAR= list,
the row number 1 refers to variable v1, and the column number 2 refers to variable v2. Therefore, the effect
of V2 on V1 is a parameter named parm1, with an initial value of 0.5.

You can specify fixed values in the ram-entries too. Suppose the effect of v3 on v1 is fixed at 1.0. You can
use the following specification:

RAM
var= v1 v2 v3,
_A_ 1 2 parm1(0.5),
_A_ 1 3 1.0;

(2) Specification of the Latent Factors in the Model
In the RAM model, you specify the list of variables in VAR= list of the RAM statement. The list of variables
can include the latent variables in the model. Because observed variables have references in the input data
sets, those variables that do not have references in the data sets are treated as latent factors automatically.
Unlike the LINEQS model, you do not need to use ‘F’ or ‘f’ prefix to denote latent factors in the RAM model.
It is recommended that you use meaningful names for the latent factors. See the section “Naming Variables
and Parameters” on page 1433 for the general rules about naming variables and parameters.

For example, suppose that SES_Factor and Education_Factor are names that are not used as variable names
in the input data set. These two names represent two latent factors in the model, as shown in the following
specification:

RAM
var= v1 v2 v3 SES_FACTOR Education_Factor,
_A_ 1 4 b1,
_A_ 2 5 b2,
_A_ 3 5 1.0;

This specification shows that the effect of SES_Factor on v1 is a free parameter named b1, and the effects of
Education_Factor on v2 and v3 are a free parameter named b2 and a fixed value of 1.0, respectively.

However, naming latent factors is not compulsory. The preceding specification is equivalent to the following
specification:

RAM
var= v1 v2 v3,
_A_ 1 4 b1,
_A_ 2 5 b2,
_A_ 3 5 1.0;

Although you do not name the fourth and the fifth variables in the VAR= list, PROC CALIS generates the
names for these two latent variables. In this case, the fourth variable is named _Factor1 and the fifth variable
is named _Factor2.
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(3) Specification of (Partial) Variances and (Partial) Covariances in Model Matrix P
Suppose now you want to specify the variance of v2 as a free parameter named parm2. You can add a new
ram-entry for this variance parameter, as shown in the following statement:

RAM
var= v1 v2 v3,
_A_ 1 2 parm1(0.5),
_A_ 1 3 1.0,
_P_ 2 2 parm2;

The ram-entry that starts with _P_ means that an element of the RAM matrix P is being specified. The (2,2)
element of P, which is the variance of v2, is a parameter named parm2. You do not specify an initial value
for this parameter.

You can also specify the error variance of v1 similarly, as shown in the following statement:

RAM
var= v1 v2 v3,
_A_ 1 2 parm1(0.5),
_A_ 1 3 1.0,
_P_ 2 2 parm2,
_P_ 1 1;

In the last ram-entry , the (1,1) element of P, which is the error variance of v1, is an unnamed free parameter.

Covariance parameters are specified in the same manner. For example, the following specification adds a
ram-entry for the covariance parameter between v2 and v3:

RAM
var= v1 v2 v3,
_A_ 1 2 parm1(0.5),
_A_ 1 3 1.0,
_P_ 2 2 parm2,
_P_ 1 1,
_P_ 2 3 (.5);

The covariance between v2 and v3 is an unnamed parameter with an initial value of 0.5.

(4) Specification of Means and Intercepts in Model Matrix _W_
To specifying means or intercepts, you need to start the ram-entries with the _W_ keyword. For example, the
last two entries of following statement specify the intercept of v1 and the mean of v2, respectively:

RAM
var= v1 v2 v3,
_A_ 1 2 parm1(0.5),
_A_ 1 3 1.0,
_P_ 2 2 parm2,
_P_ 1 1 ,
_P_ 2 3 (.5),
_W_ 1 1 int_v1,
_W_ 2 2 mean_v2;

The intercept of v1 is a free parameter named int_v1, and the mean of v2 is a free parameter named mean_v2.
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Default Parameters in the RAM Model

There are two types of default of parameters of the RAM model in PROC CALIS. One is the free parameters;
the other is the fixed zeros.

By default, certain sets of model matrix elements in the RAM model are free parameters. These parameters
are set automatically by PROC CALIS, although you can also specify them explicitly in the ram-entries. In
general, default free parameters enable you to specify only what are absolutely necessary for defining your
model. PROC CALIS automatically sets those commonly assumed free parameters so that you do not need
to specify them routinely. The sets of default free parameters of the RAM model are as follows:

• Diagonal elements of the _P_ matrix—this includes the variance of exogenous variables (latent or
observed) and error variances of all endogenous variables (latent or observed)

• The off-diagonal elements that pertain to the exogenous variables of the _P_ matrix—this includes all
the covariances among exogenous variables, latent or observed

• If the mean structures are modeled, the elements that pertain to the observed variables (but not the
latent variables) in the _W_ vector— this includes all the means of exogenous observed variables and
the intercepts of all endogenous observed variables

For example, suppose you are fitting a RAM model with three observed variables x1, x2, and y3, you specify
a simple multiple-regression model with x1 and x2 predicting y3 by the following statements:

proc calis meanstr;
ram var= x1-x2 y3,

_A_ 3 1 ,
_A_ 3 2 ;

In the RAM statement, you specify that path coefficients represented by _A_[3,1] and _A_[3,2] are free
parameters in the model. In addition to these free parameters, PROC CALIS sets several other free parameters
by default. _P_[1,1], _P_[2,2], and _P_[3,3] are set as free parameters for the variance of x1, the
variance of x2, and the error variance of x3, respectively. _P_[2,1] (and hence _P_[1,2]) is set as a free
parameter for the covariance between the exogenous variables x1 and x2. Because the mean structures are also
analyzed by the MEANSTR option in the PROC CALIS statement, _W_[1,1], _W_[2,1], and _W_[3,1]

are also set as free parameters for the mean of x1, the mean of x2, and the intercept of x3, respectively. In the
current situation, this default parameterization is consistent with using PROC REG for multiple regression
analysis, where you only need to specify the functional relationships among variables.

If a matrix element is not a default free parameter in the RAM model, then it is a fixed zero by default. You
can override almost all default fixed zeros in the RAM model matrices by specifying the ram-entries. The
diagonal elements of the _A_ matrix are exceptions. These elements are always fixed zeros. You cannot
set these elements to free parameters or other fixed values—this reflects a model restriction that prevents a
variable from having a direct effect on itself.
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Naming Variables and Parameters
Follow these rules when you name your variables:

• Use the usual naming conventions of the SAS System.

• Variable names are not more than 32 characters.

• When you create latent variable names, make sure that they are not used in the input data set that is
being analyzed.

• For the LINEQS model, error or disturbance variables must start with ‘E’, ‘e’, ‘D’, or ‘d’.

• For the LINEQS model, non-error-type latent variables (that is, factors) must start with ‘F’ or ‘f’.

• For modeling languages other than LINEQS, names for errors or disturbances are not needed. As a
result, you do not need to distinguish latent factors from errors or disturbances by using particular
prefixes. Variable names that are not referenced in the analyzed data set are supposed to be latent
factors.

• You should not use Intercept (case-insensitive) as a variable name in your data set or as a latent variable
name in your model.

Follow these rules when you name your parameters:

• Use the usual naming conventions of the SAS System.

• Parameter names are not more than 32 characters.

• Use a prefix-name when you want to generate new parameter names automatically. A prefix-name
contains a short string of characters called a “root,” followed by double underscores ‘__’. Each
occurrence of such a prefix-name generates a new parameter name by replacing the two trailing
underscores with a unique integer. For example, occurrences of Gen__ generate Gen1, Gen2, and so
on.

• A special prefix-name is the one without a root—that is, it contains only double underscores ‘__’.
Occurrences of ‘__’ generate _Parm1, _Parm2, and so on.

• PROC CALIS generates parameter names for default parameters to safeguard ill-defined models. These
generated parameter names start with the _Add prefix and unique integer suffixes. For example, _Add1,
_Add2, and so on.

• Avoid using parameter names that start with either _, _Add, or _Parm. These names might get confused
with the names generated by PROC CALIS. The confusion might lead to unintended constraints to
your model if the parameter names that you use match those generated by PROC CALIS.

• Avoid using parameter names that are roots of prefix-names. For example, you should not use Gen as
a parameter name if Gen__ is also used in the same model specification. Although violation of this
rule might not distort the model specification, it might cause ambiguities and confusion.
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Finally, parameter names and variable names in PROC CALIS are not distinguished by explicit declarations.
That is, a valid SAS name can be used as a parameter name or a variable name in any model that is supported
by PROC CALIS. Whether a name in a model specification is for a parameter or a variable is determined by
the syntactic structure. For example, consider the following path specification:

proc calis;
path

a ===> b = c;
run;

PROC CALIS parses the path specification according to the syntactic structure of the PATH statement and
determines that a and b are variable names and c is a parameter name. Consider another specification as
follows:

proc calis;
path

a ===> b = b;
run;

This is a syntactically correct specification. Variables a and b are defined in a path relationship with a path
coefficient parameter also named b. While such a name conflict between parameter and variable names would
not confuse PROC CALIS in terms of model specification and fitting, it would create unnecessary confusion
in programming and result interpretations. Hence, using parameter names that match variable names exactly
is a bad practice and should be avoided.

Setting Constraints on Parameters
The CALIS procedure offers a very flexible way to constrain parameters. There are two main methods for
specifying constraints. One is explicit specification by using specially designed statements for constraints.
The other is implicit specification by using the SAS programming statements.

Explicit Specification of Constraints

Explicit constraints can be set in the following ways:

• specifying boundary constraints on independent parameters in the BOUNDS statement

• specifying general linear equality and inequality constraints on independent parameters in the LINCON
statement

• specifying general nonlinear equality and inequality constraints on parametric functions in the NLIN-
CON statement

BOUNDS Statement
You can specify one-sided or two-sided boundaries on independent parameters in the BOUNDS statement.
For example, in the following statement you constrain parameter var1 to be nonnegative and parameter effect
to be between 0 and 5.
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bounds var1 >= 0,
0. <= effect <= 5.;

Note that if your upper and lower bounds are the same for a parameter, it effectively sets a fixed value for that
parameter. As a result, PROC CALIS will reduce the number of independent parameters by one automatically.
Note also that only independent parameters are allowed to be bounded in the BOUNDS statement.

LINCON Statement
You can specify equality or inequality linear constraints on independent parameters in the LINCON statement.
For example, in the following statement you specify a linear inequality constraint on parameters beta1, beta2,
and beta3 and an equality constraint on parameters gamma1 and gamma2.

lincon beta1 - .5 * beta2 - .5 * beta3 >= 0.,
gamma1 - gamma2 = 0.;

In the inequality constraint, beta1 is set to be at least as large as the average of beta2 and beta3. In the
equality constraint, gamma1 and gamma2 are set to be equal. Note that in PROC CALIS a nonredundant
linear equality constraint on independent parameters effectively reduces the number of parameters by one.

NLINCON Statement
You can specify equality or inequality nonlinear constraints for parameters in the NLINCON statement.
While you can only constrain the independent parameters in the BOUNDS and the LINCON statements, you
can constrain any of the following in the NLINCON statement:

• independent parameters

• dependent parameters

• parametric functions computed by the SAS programming statements

For example, consider the following statements:

nlincon
IndParm >= 0, /* constraint 1 */
0 <= DepParm <= 10, /* constraint 2 */
ParmFunc1 >= 3, /* constraint 3 */
0 <= ParmFunc2 <= 8; /* constraint 4 */

/* SAS Programming statements in the following */
DepParm = Indparm1 + IndParm5;
ParmFunc1 = IndParm1 - .5 * IndParm2 - .5 * IndParm3;
ParmFunc2 = (IndParm1 - 7.)**2 + SQRT(DepParm * IndParm4) * ParmFunc1;

You specify four nonlinear constraints by using the NLINCON statement. Labeled in a comment as
“constraint 1” is a one-sided boundary constraint for independent parameter IndParm. Labeled in a comment
as “constraint 2” is a two-sided boundary constraint for dependent parameter DepParm. Labeled in a
comment as “constraint 3” is a one-sided inequality constraint on parametric function named ParmFunc1.
Finally, labeled in a comment as “constraint 4” is a two-sided inequality constraint on parametric function
named ParmFunc2. Parametric functions ParmFunc1 and ParmFunc2 are defined and computed in the SAS
programming statements after the NLINCON statement specification.
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Constraint 1 could have been set in the BOUNDS statement because it is just a simple boundary constraint
on an independent parameter. Constraint 3 could have been set in the LINCON statement because the
definition of ParmFunc1 in a SAS programming statement shows that it is a linear function of independent
parameters. The purpose of including these special cases of “nonlinear constraints” in this example is to
show the flexibility of the NLINCON statement. However, whenever possible, the BOUNDS or the LINCON
statement specification should be considered first because computationally they are more efficient than the
equivalent specification in the NLINCON statement.

Specification in the NLINCON statement becomes necessary when you want to constrain dependent parame-
ters or nonlinear parametric functions. For example, constraint 2 is a two-sided boundary constraint on the
dependent parameter DepParm, which is defined as a linear function of independent parameters in a SAS
programming statement. Constraints on dependent parameters are not allowed in the BOUNDS statement.
Constraint 4 is a two-sided inequality constraint on the nonlinear parametric function ParmFunc2, which
is defined as a nonlinear function of other parametric functions and parameters in the SAS programming
statements. Again, you cannot use the LINCON statement to specify nonlinear constraints.

Implicit Constraint Specification

An implicit way to specify constraints is to use your own SAS programming statements together with the
PARAMETERS statement to express special properties of the parameter estimates. This kind of reparameter-
ization tool is also present in McDonald’s COSAN implementation (McDonald 1978) but is considerably
easier to use in the CALIS procedure. PROC CALIS is able to compute analytic first- and second-order
derivatives that you would have to specify using the COSAN program.

Some traditional ways to enforce parameter constraints by using reparameterization or parameter transforma-
tion (McDonald 1980) are considered in the following:

• one-sided boundary constraints of the form:

q � a or q � b

where the parameter of interest is q, which should be at least as large as (or at most as small as) a given
constant value a (or b). This inequality constraint can be expressed as an equality constraint:

q D aC x2 or q D b � x2

in which the new parameter x is unconstrained.

For example, inequality constraint q � 7 can be accomplished by the following statements:

parameters x (0.);
q = 7 + x * x;

In this specification, you essentially redefine q as a parametric function of x, which is not constrained
and has a starting value at 0.

• two-sided boundary constraints of the form:

a � q � b
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where the parameter of interest is q, which should be located between two given constant values a and
b, with a < b. This inequality constraint can be expressed as the following equality constraint:

q D aC .b � a/
exp.x/

1C exp.x/

where the new parameter x is unconstrained.

For example, to implement 1 � q � 5 in PROC CALIS, you can use the following statements:

parameters x (0.);
u = exp(x);
q = 1 + 4 * u / (1 + u);

In this specification, q becomes a dependent parameter which is nonlinearly related to independent
parameter x, which is an independent parameter defined in the PARAMETERS statement with a
starting value of 0.

• one-sided order constraints of the form:

q1 � q2; q1 � q3; : : : ; q1 � qk

where q1, . . . , qk are the parameters of interest. These inequality constraints can be expressed as the
following set of equality constraints:

q1 D x1; q2 D x1 C x
2
2 ; : : : ; qk D x1 C x

2
k

where the new parameters x1, . . . , xk are unconstrained.

For example, to implement q1 � q2, q1 � q3, and q1 � q4 simultaneously, you can use the following
statements:

parameters x1-x4 (4*0.);
q1 = x1;
q2 = x1 + x2 * x2;
q3 = x1 + x3 * x3;
q4 = x1 + x4 * x4;

In this specification, you essentially redefine q1 � q4 as dependent parameters that are functions of
x1 � x4, which are defined as independent parameters in the PARAMETERS statement with starting
values of zeros. No constraints on xi ’s are needed. The way that qi ’s are computed in the SAS
programming statements guarantees the required order constraints on qi ’s are satisfied.

• two-sided order constraints of the form:

q1 � q2 � q3 � : : : � qk

These inequality constraints can be expressed as the following set of equality constraints:

q1 D x1; q2 D q1 C x
2
2 ; : : : qk D qk�1 C x

2
k

where the new parameters x1, . . . , xk are unconstrained.
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For example, to implement q1 � q2 � q3 � q4 simultaneously, you can use the following statements:

parameters x1-x4 (4*0.);
q1 = x1;
q2 = q1 + x2 * x2;
q3 = q2 + x3 * x3;
q4 = q3 + x4 * x4;

In this specification, you redefine q1� q4 as dependent parameters that are functions of x1�x4, which
are defined as independent parameters in the PARAMETERS statement. Each xi has a starting value
of zero without being constrained in estimation. The order relation of qi ’s are satisfied by the way they
are computed in the SAS programming statements.

• linear equation constraints of the form:

kX
i

biqi D a

where qi ’s are the parameters of interest, bi ’s are constant coefficients, a is a constant, and k is an
integer greater than one. This linear equation can be expressed as the following system of equations
with unconstrained new parameters x1; x2; : : : ; xk:

qi D xi=bi .i < k/

qk D .a �

k�1X
j

xj /=bk

For example, consider the following linear constraint on independent parameters q1 � q3:

3q1 C 2q2 � 5q3 D 8

You can use the following statements to implement the linear constraint:

parameters x1-x2 (2*0.);
q1 = x1 / 3;
q2 = x2 / 2;
q3 = -(8 - x1 - x2) / 5;

In this specification, q1 � q3 become dependent parameters that are functions of x1 and x2. The linear
constraint on q1 and q3 are satisfied by the way they are computed. In addition, after reparameterization
the number of independent parameters drops to two.

See McDonald (1980) and Browne (1982) for further notes on reparameterization techniques.
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Explicit or Implicit Specification of Constraints?

Explicit and implicit constraint techniques differ in their specifications and lead to different computational
steps in optimizing a solution. The explicit constraint specification that uses the supported statements incurs
additional computational routines within the optimization steps. In contrast, the implicit reparameterization
method does not incur additional routines for evaluating constraints during the optimization. Rather, it
changes the constrained problem to a non-constrained one. This costs more in computing function derivatives
and in storing parameters.

If the optimization problem is small enough to apply the Levenberg-Marquardt or Newton-Raphson algorithm,
use the BOUNDS and the LINCON statements to set explicit boundary and linear constraints. If the problem
is so large that you must use a quasi-Newton or conjugate gradient algorithm, reparameterization techniques
might be more efficient than the BOUNDS and LINCON statements.

Automatic Variable Selection
When you specify your model, you use the main and subsidiary model statements to define variable relation-
ships and parameters. PROC CALIS checks the variables mentioned in these statements against the variable
list of the input data set. If a variable in your model is also found in your data set, PROC CALIS knows that
it is a manifest variable. Otherwise, it is either a latent variable or an invalid variable.

To save computational resources, only manifest variables defined in your model are automatically selected
for analysis. For example, even if you have 100 variables in your input data set, only a covariance matrix of
10 manifest variables is computed for the analysis of the model if only 10 variables are selected for analysis.

In some special circumstances, the automatic variable selection performed for the analysis might be a
drawback. For example, if you are interested in modification indices connected to some of the variables that
are not used in the model, automatic variable selection in the specification stage will exclude those variables
from consideration in computing modification indices. Fortunately, a little trick can be done. You can use
the VAR statement to include as many exogenous manifest variables as needed. Any variables in the VAR
statement that are defined in the input data set but are not used in the main and subsidiary model specification
statements are included in the model as exogenous manifest variables.

For example, the first three steps in a stepwise regression analysis of the Werner Blood Chemistry data
(Jöreskog and Sörbom 1988, p. 111) can be performed as follows:

proc calis data=dixon method=gls nobs=180 print mod;
var x1-x7;
lineqs y = e;
variance e = var;

run;
proc calis data=dixon method=gls nobs=180 print mod;

var x1-x7;
lineqs y = g1 x1 + e;
variance e = var;

run;
proc calis data=dixon method=gls nobs=180 print mod;

var x1-x7;
lineqs y = g1 x1 + g6 x6 + e;
variance e = var;

run;
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In the first analysis, no independent manifest variables are included in the regression equation for dependent
variable y. However, x1–x7 are specified in the VAR statement so that in computing the Lagrange multiplier
tests these variables would be treated as potential predictors in the regression equation for dependent variable
y. Similarly, in the next analysis, x1 is already a predictor in the regression equation, while x2–x7 are treated
as potential predictors in the LM tests. In the last analysis, x1 and x6 are predictors in the regression equation,
while other x-variables are treated as potential predictors in the LM tests.

Path Diagrams: Layout Algorithms, Default Settings, and Customization
Path diagrams provide visually appealing representations of the interrelationships among variables in struc-
tural equation models. However, it is no easy task to determine the “best” layout of the variables in a
path diagram. The CALIS procedure provide three algorithms for laying out good-quality path diagrams.
Understanding the underlying principles of these algorithms helps you select the right algorithm and fine-tune
the features of a path diagram.

The section “The Process-Flow, Grouped-Flow, and GRIP Layout Algorithms” on page 1440 describes the
principles of the algorithms. The sections “Handling Destroyers in Path Diagrams” on page 1448 and “Editing
of Path Diagrams with the ODS Graphics Editor” on page 1454 show how you can improve the quality of
path diagrams in advance or retroactively. The section “Default Path Diagram Settings” on page 1454 details
the default settings for path diagram elements and the corresponding options. By using these options, you
can customize path diagrams to meet your own requirements. Finally, the sections “Expanding the Definition
of the Structural Variables” on page 1460 and “Showing or Emphasizing the Structural Components” on
page 1456 show examples of customizations that you can make to the structural components of models.

The Process-Flow, Grouped-Flow, and GRIP Layout Algorithms

The most important factor in choosing an appropriate algorithm is the nature of the interrelationships among
variables in the model. Depending on the pattern of interrelationships, the CALIS procedure provides three
basic algorithms: the process-flow algorithm, grouped-flow algorithm, and GRIP algorithm. You can request
these algorithms by specifying the ARRANGE= option in the PATHDIAGRAM statement. This section
describes these algorithms and the situations in which they work well. The section also describes how the
CALIS procedure selects the “best” algorithm by default (by specifying the ARRANGE=AUTOMATIC
option).

The Process-Flow Algorithm
The process-flow algorithm (which you select by specifying ARRANGE=FLOW) works well when the
interrelationships among the variables in the model (not including the error variables) follow an ideal process-
flow pattern. In such a pattern, each variable can be placed at a unique level so that all paths between variables
exist only between adjacent levels and are aligned in the same direction. Figure 29.3 shows an example of a
linear ordering of observed variables based on the directions of the paths. This model clearly exhibits an
ideal process-flow pattern: variables can be uniquely assigned to five levels, and the paths can occur only
between adjacent levels and in the same direction.
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Figure 29.3 Linear Ordering of Observed Variables

Figure 29.4 shows a hierarchical ordering of the observed variables. The pattern of interrelationships of
variables in this model is much like an organizational chart. Clearly, this path diagram also depicts an ideal
process-flow pattern.

Figure 29.4 Hierarchical Ordering of Observed Variables

Latent variables are often used in structural equation modeling. Some classes of latent variable models
have ideal process-flow patterns. For example, for confirmatory factor models in their “pure” form, the
process-flow algorithm can be used to show the hierarchical relationships of factors and variables. Figure 29.5
shows an example of a confirmatory factor model.



1442 F Chapter 29: The CALIS Procedure

Figure 29.5 Confirmatory Factor Model That Exhibits an Ideal Process-Flow Pattern

Other examples are higher-order factor models and hierarchical factor models, as shown in Figure 29.6 and
Figure 29.7, respectively.
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Figure 29.6 Linearly Ordered Factors with an Ideal Process-Flow Pattern
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Figure 29.7 Hierarchical Factor Model That Exhibits an Ideal Process-Flow Pattern

The Grouped-Flow Algorithm
The grouped-flow algorithm works well when the interrelationships of the latent factors follow an ideal
process-flow pattern. Such a pattern requires that each latent factor in the model be placed at a unique level
so that all paths between the latent factors exist only between adjacent levels and in the same direction. This
pattern is called an ideal grouped-flow pattern because each latent factor in the model is associated with a
cluster of observed variables. In other words, each cluster of observed variables and a latent factor forms
a group. You can specify the ARRANGE=GROUPEDFLOW option in the PATHDIAGRAM statement to
request the grouped-flow algorithm.

Figure 29.8 illustrates a linear ordering of latent factors, and Figure 29.9 illustrates a hierarchical ordering of
latent factors. Both path diagrams illustrate ideal grouped-flow patterns.
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Figure 29.8 Linearly Ordered Factors with an Ideal Grouped-Flow Pattern

Figure 29.9 Hierarchically Ordered Factors with an Ideal Grouped-Flow Pattern

A model that exhibits an ideal grouped-flow pattern for factors can also exhibit an ideal process-flow pattern
for non-error variables. The question is then which algorithm is better and under what situations. For example,
you can characterize the interrelationships among the variables that are shown in Figure 29.8 by an ideal
process-flow pattern of all non-error variables in the model. Figure 29.10 is the diagram that results if you
use the ARRANGE=FLOW option for this model.
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Figure 29.10 Applying the Process-Flow Algorithm to an Ideal Grouped-Flow Pattern

Unfortunately, the latent variables and observed variables in Figure 29.10 are now mixed within the two
middle levels, burying the important clusters of observed variables and latent factors that are clearly shown
in the grouped-flow representation in Figure 29.8. Hence, the grouped-flow algorithm is more preferable
here. For this reason, PROC CALIS adds an extra condition for applying the process-flow algorithm when
the default automatic layout method is specified. That is, in order for the process-flow algorithm to be used,
variables within each level must also be of the same type (observed or latent), and an ideal process-flow
pattern is required in the non-error variables.

The GRIP Algorithm
The GRIP (Graph dRrawing with Intelligent Placement) algorithm is a general layout method for graphs that
display nodes and links (or variables and paths in the context of path diagrams). Unlike the process-flow
and grouped-flow algorithms, the GRIP algorithm is not designed to display specific patterns of variable
relationships. Rather, the GRIP algorithm uses a graph-theoretic approach to determine an intelligent initial
placement of the nodes (variables). Then the algorithm goes through refinement stages in rendering the
final path diagram. Essentially, the GRIP algorithm provides a general layout algorithm when variables or
factors in the model cannot be ordered uniquely according to the path directions. The algorithm balances the
placement of the variables and groups related variables together.

PROC CALIS uses a modified version of the GRIP algorithm that is more suitable for structural equation
models. Basically, error variables are ignored in the layout process (but are displayed in path diagrams
if requested), and the lengths of the paths are adjusted according to the types of variables that are being
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connected by the paths. These modifications ensure that clusters of observed variables and factors are distinct
from each other, as illustrated in Figure 29.11.

Figure 29.11 Path Diagram That Uses the GRIP Layout Algorithm

In Figure 29.11, Factor1 is the only exogenous variable in the model. This means that no directional path
points to Factor1, which is considered to be a level-1 variable. At the next level are the variables that have
directional paths from Factor1. Therefore, y1, y2, y3, Factor2, and Factor3 are considered to be at level 2.
However, because Factor2 has a directional path to Factor3, Factor3 can also be considered to be at level
3. Hence, this model does not show either an ideal process-flow pattern or an ideal grouped-flow pattern.
However, the more general GRIP algorithm can still show three recognizable clusters of variables.

What does the ARRANGE=AUTOMATIC option actually do?
By default, the CALIS procedure uses an automatic method to determine the layout algorithm for path
diagrams. This automatic method is equivalent to specifying the ARRANGE=AUTOMATIC option. Actually,
the AUTOMATIC option is not associated with a specific layout algorithm. What it does is determine
automatically which algorithm—the process-flow, grouped-flow, or GRIP algorithm—is the best for a given
model.
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The following steps describe how PROC CALIS automatically determines the best layout algorithm:

1. PROC CALIS checks whether the interrelationships among all non-error variables in the model exhibit
an ideal process-flow pattern. In this ideal pattern, all non-error variables in the model can be uniquely
ordered according to the directional paths. PROC CALIS then checks whether variables at each
level are of the same type (observed variables or latent factors). If they are, PROC CALIS uses the
process-flow algorithm as if the ARRANGE=FLOW option were specified. Otherwise, it continues to
the next step.

2. PROC CALIS checks whether the interrelationships among all factors in the model exhibit an ideal
process-flow pattern. In this ideal pattern, all latent factors in the model can be uniquely ordered
according to the directional paths. If they are, PROC CALIS uses the grouped-flow algorithm as if the
ARRANGE=GROUPEDFLOW option were specified. Otherwise, it continues to the next step.

3. PROC CALIS uses the GRIP algorithm as if the ARRANGE=GRIP option were specified.

In summary, when the default ARRANGE=AUTOMATIC option is used, PROC CALIS chooses a suitable
layout algorithm by examining the interrelationships of variables. The procedure detects ideal process-flow
and grouped-flow patterns when they exist in models.

Handling Destroyers in Path Diagrams

No layout algorithm for path diagrams works perfectly in all situations. Chances are that some paths in your
model would violate the ideal pattern that each of the basic layout algorithms assumes. In some cases, even if
the violations are minor—for example, they occur in just one or two paths—they are sufficient to throw off
the layout of the diagram.

There are two ways for you to alleviate the problems that are caused by these minor violations. One way is to
proactively identify the paths in your model that violate the ideal pattern that the intended layout algorithm
assumes. If these minor violations are ignored during the layout process, then the layout algorithm can work
well for the majority of patterns in the path diagram. To accomplish this, the CALIS procedure provides the
DESTROYER= option for you to specify these minor violations. This section presents examples to illustrate
the use of this option.

The other way to alleviate these problems is to use the ODS Graphics Editor to improve the graphical quality
of the path diagram that PROC CALIS produces. The ODS Graphics Editor provides several functionalities
to improve your path diagrams manually. The section “Editing of Path Diagrams with the ODS Graphics
Editor” on page 1454 describes these functionalities.
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To illustrate the use of the DESTROYER= option, consider a higher-order factor model that is specified by
the following statements:

proc calis;
path

FactorG ===> Factor1-Factor3,
Factor1 ===> y1-y3 ,
Factor2 ===> y4-y6 ,
Factor3 ===> y7-y9 ,
FactorG ===> y2 y7 ;

run;

In this model, Factor1, Factor2, Factor3, and FactorG are all latent factors. All other variables are observed
variables. Which would be the best layout algorithm to draw the path diagram for this model?

Does this model exhibit an ideal process-flow pattern? In this model, FactorG is the only exogenous non-error
variable and is considered to be at level 1. Factor1, Factor2, Factor3, y2, and y7 all have directional paths
from FactorG, and therefore they are considered to be at level 2. However, because y2 and y7 also have
directional paths from Factor1 and Factor3, respectively, they can also be considered to be at level 3. Hence,
this model does not exhibit an ideal process-flow pattern.

Does this model exhibit an ideal grouped-flow pattern? If you consider only the factors in the model, FactorG
is at level 1 and all other latent factors are at level 2 without ambiguities. Hence, this model exhibits an
ideal process-flow pattern in factors or an ideal grouped-flow pattern in all non-error variables. You expect
the grouped-flow algorithm to be used to draw the path diagram for this model if you specify the following
statements:

proc calis;
path

FactorG ===> Factor1-Factor3,
Factor1 ===> y1-y3 ,
Factor2 ===> y4-y6 ,
Factor3 ===> y7-y9 ,
FactorG ===> y2 y7 = destroyer1 destroyer2;

pathdiagram diagram=initial notitle;
run;



1450 F Chapter 29: The CALIS Procedure

Figure 29.12 A Higher-Order Factor Model With Two Destroyer Paths

Figure 29.12 shows the output diagram. Although the path diagram still shows the hierarchical ordering
of the latent factors, the two paths, “FactorG ===> y2” and “FactorG ===> y7,” weaken the display of the
factor-variable clusters for Factor1 and Factor3. Therefore, these two paths can be called destroyer paths, or
simply destroyers. For this reason, the effect parameters of these two paths are labeled as “destroyer1” and
“destroyer2” in the PATH statement to show their disruptive characteristics.
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What if you ignore these destroyer paths in the layout process of the diagram? To do this, you can use the
DESTROYER= option in the PATHDIAGRAM statement, as follows:

pathdiagram diagram=initial notitle destroyer=[FactorG ===> y2 y7];

Because the two destroyer paths are ignored when PROC CALIS determines the layout algorithm, an ideal
process-flow pattern is recognized, and the process-flow algorithm is used to lay out all variables in the model.
Then, all paths, including the destroyer paths, are simply put back into the picture to produce the final path
diagram, as shown in Figure 29.13.

Figure 29.13 Higher-Order Factor Model with Two Destroyer Paths Identified

The diagram in Figure 29.13 is preferable to the one in Figure 29.12 because it clearly shows the three levels
of variables in the higher-order factor model.
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Destroyer paths do not necessarily occur only in ideal process-flow or grouped-flow patterns. Even when
the GRIP algorithm is used for a general pattern of variable interrelationships, you might be able to identify
potential destroyers in the path diagram. Consider the model that is specified by the following statements:

proc calis;
path

Factor1 ===> y1 y2,
Factor2 ===> y3 y4,
Factor3 ===> y5 y6,
Factor1 ===> Factor2 Factor3,
Factor2 ===> Factor3,
y2 ===> y5 = destroyer;

pathdiagram diagram=initial notitle;
run;

This model exhibits neither an ideal process-flow pattern nor an ideal grouped-flow pattern. As a result,
PROC CALIS uses the GRIP algorithm automatically to draw the path diagram. Figure 29.14 shows the
output diagram.

Figure 29.14 Path Diagram Whose Destroyer Path Is Not Handled by the GRIP Algorithm
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Because of the presence of the destroyer path “y2 ===> y5,” the two factor clusters for Factor1 and Factor3
are drawn closer to each other in the path diagram, thus destroying their distinctive identities that are
associated with the related measured variables.

You can use the DESTROYER= option to fix this problem, as shown in the following modified PATHDIA-
GRAM statement:

pathdiagram diagram=initial notitle destroyer=[y2 ===> y5];

Figure 29.15 Path Diagram Whose Destroyer Path Is Handled by the GRIP Algorithm

Figure 29.15 now shows a more preferable path diagram. The factor clusters in this diagram are more
distinctive than those in Figure 29.14, in which the algorithm does not handle the destroyer path.
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Editing of Path Diagrams with the ODS Graphics Editor

You can edit the output path diagram in PROC CALIS by using the ODS Graphics Editor. The ODS Graphics
Editor provides the following useful functionalities for editing path diagrams:

• moves the variables around without losing the associated paths

• aligns the selected variables vertically or horizontally

• straightens or curves paths

• reshapes or reroutes paths

• relocates the labels of paths

To use the ODS Graphics Editor, you must first enable the creation of editable graphs. For information about
the enabling procedures, see the section “Enabling and Disabling ODS Graphics” on page 606 in Chapter 21,
“Statistical Graphics Using ODS.” For complete documentation about the ODS Graphics Editor, see the
SAS 9.4 ODS Graphics Editor: User’s Guide. For information about editing nodes and links in output path
diagrams, see Chapter 8 of the SAS 9.4 ODS Graphics Editor: User’s Guide. Note that different terminology
is used in the SAS 9.4 ODS Graphics Editor: User’s Guide. Variables and paths in the current context are
referred to as nodes and links in the User’s Guide. For introductory examples of path diagram editing, see
Yung (2014).

Default Path Diagram Settings

Taking the conventions and clarity of graphical representations into consideration, the CALIS procedure
employs a set of default settings for producing path diagrams. These default settings define the style or
scheme for representing the path diagram elements graphically. For example, PROC CALIS displays the
error variances as double-headed paths that are attached to the associated variables. In this way, there is
no need to display the error variables so that more space is available to present other important graphical
elements in path diagrams.

However, researchers do not always agree on the best style or scheme for representing the path diagram
elements. Even the same researcher might want to use different representation style or scheme for his or her
path diagrams in different situations. In this regard, you can override most of the default settings to customize
path diagrams to meet your own requirements. Table 29.9 summarizes the default graphical and nongraphical
settings of the path diagram elements. Related options are listed next to these default settings.

Table 29.9 Default Path Diagram Settings and the Overriding or
Modifying Options

Graphical Element or Property Default Settings Options

General Graphical Properties
Layout method Automatically determined ARRANGE=

Models with path diagram output All models MODEL=

Path diagrams for structural models Not shown STRUCTADD=
STRUCTURAL
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Table 29.9 continued

Graphical Element or Property Default Settings Options

Paths that affect the layout All paths DESTROYER=
OMITPATH=

Solution type of path diagrams Unstandardized solution DIAGRAM=

Structural components Not emphasized EMPHSTRUCT
STRUCTADD=

Paths

Covariances between error variables Shown as double-headed paths NOCOV
NOERRCOV

Covariances between non-error and
error variables

Shown as double-headed paths NOCOV

Covariances between non-error
variables

Shown as double-headed paths in models
specified using the FACTOR statement;
not shown in other types of models

EXOGCOV
NOCOV
NOEXOGVAR

Directional paths Shown as single-headed paths OMITPATH=

Error variances Shown as double-headed paths in
covariance models; shown as labels in
mean and covariance models

NOERRVAR
NOVARIANCE
VARPARM=

Means and intercepts Not shown as paths; shown as labels in
mean and covariance models

MEANPARM=
NOMEAN

Variances of non-error variables Shown as double-headed paths in
covariance models; shown as labels in
mean and covariance models

NOVARIANCE
VARPARM=

Variables

Error variables Not shown USEERROR

Relative sizes Observed variables:Factors:Errors =
1:1.5:0.5

ERRORSIZE=
FACTORSIZE=

Variable labels Original variable names used LABEL=

Parameter Estimates

Covariances between error variables Shown in all types of models NOCOV
NOERRCOV

Covariances between non-error
variables

Shown in models specified using the
FACTOR statement; not shown in other
types of models

EXOGCOV
NOCOV
NOEXOGCOV

Initial parameter specifications Shown with fixed values and
user-specified parameter names

NOINITPARM

Means and intercepts Shown in models with mean structures NOMEAN
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Table 29.9 continued

Graphical Element or Property Default Settings Options

Variances of error variables Shown in all types of models NOERRVAR
NOVARIANCE

Variances of non-error variables Shown in all types of models NOEXOGVAR
NOVARIANCE

Formats of Parameter Estimates

Decimal places Two decimal places used DECP=

Numerical values Shown in unstandardized and
standardized solutions

NOESTIM

Parameter names Not shown PARMNAMES

Significance flags Shown in unstandardized and
standardized solutions

NOFLAG

Graph Title and Fit Summary

Decimal places in fit summary Two decimal places used DECPFIT=

Fit table Shown in unstandardized and
standardized solutions

NOFITTABLE

Fit table contents A default set of available information and
statistics

FITINDEX=

Title Default title that reflects the identity and
solution type of the model

NOTITLE
TITLE=

Showing or Emphasizing the Structural Components

One often-used customization in structural equation modeling is to display only the structural component
(or structural model) of the full model, which consists of the measurement and the structural components.
Traditionally, the structural component refers to the latent factors and their interrelationships, whereas the
measurement component refers to observed indicator variables and their relationships with the latent factors.

For example, consider the full model that is displayed as a path diagram in Figure 29.16. The latent factors
are Factor1, Factor2, and Factor3. The remaining variables, y1–y9, are observed variables.
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Figure 29.16 Path Diagram for the Complete Model

The structural component of this full model includes the three latent factors, their directional relationships
(represented by the three directed paths), and their variance parameters (represented by the three double-
headed arrows that are attached to the factors).

Showing only the structural component is useful when your research is focused mainly on the interrela-
tionships among the latent factors. The measurement component, which usually contains a relatively large
number of observed variables for reflecting or defining the latent factors, is of secondary interest. Eliminating
the measurement component leads to a clearer path diagram to represent your model.
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To request a path diagram that shows the structural component, you can specify the STRUCTURAL option
in the PATHDIAGRAM statement, as in the following statements:

proc calis;
path

Factor1 ===> y1-y3 ,
Factor2 ===> y4-y6 ,
Factor3 ===> y7-y9 ,
Factor1 ===> Factor2 Factor3,
Factor2 ===> Factor3;

pathdiagram diagram=initial structural;
run;

Figure 29.17 Path Diagram for the Structural Component

Figure 29.17 shows the path diagram for the structural model. For simplicity in presentation, the DIA-
GRAM=INITIAL option is used to show the initial model specifications only.

The preceding specification produces the path diagram for the structural component, in addition to that for the
full model. To output the path diagram for the structural component only, use the STRUCTURAL(ONLY)
option in the PATHDIAGRAM statement, as follows:

pathdiagram diagram=initial structural(only);
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Instead of eliminating the measurement component from the path diagram, PROC CALIS provides the
EMPHSTRUCT option to highlight the structural component in the full model. For example, the following
PATHDIAGRAM statement produces the path diagram in Figure 29.17:

pathdiagram diagram=initial emphstruct;

Figure 29.18 Emphasizing the Structural Component in the Path Diagram

Figure 29.18 shows a complete model, with emphasis on the structural component. The path diagram labels
only the latent factors. Observed variables are represented by small rectangles and are not labeled.

Certainly, the EMPHSTRUCT option is not limited to the initial path diagram, such as the one shown in
Figure 29.18. For the unstandardized and standardized solutions, the EMPHSTRUCT option puts similar
emphasis on the structural variables. In addition, the diagram displays only the parameter estimates of the
structural components. Figure 29.19 shows the path diagram of an unstandardized solution that emphasizes
the structural components.
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Figure 29.19 Emphasizing the Structural Component in the Path Diagram for the Unstandardized Solution

Expanding the Definition of the Structural Variables

The traditional definition of “structural model” or “structural component” might be too restrictive, in the
sense that only latent factors and their interrelationships are included. In contemporary structural equation
modeling, sometimes observed variables can take the role of “factors” in the structural component. For
example, observed variables that have negligible measurement errors and serve as exogenous or predictor
variables in a system of functional equations naturally belong to the structural component. For this reason or
other reasons, researchers might want to expand the definition of “structural component” to include some
designated observed variables. The STRUCTADD= option enables you to do that.

For example, the following statements specify a model that has two latent factors, Factor1 and Factor2:

proc calis;
path

Factor1 ===> y1-y3,
Factor2 ===> y4-y6,
y7 ===> Factor1 Factor2;

pathdiagram diagram=initial notitle structadd=[y7]
label=[y7="y7 is Exogenous"] ;

pathdiagram diagram=initial notitle structadd=[y7] struct(only);
label=[y7="y7 is Exogenous"] ;

pathdiagram diagram=initial notitle structadd=[y7] emphstruct;
label=[y7="y7 is Exogenous"] ;

run;
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By default, only the latent factors Factor1 and Factor2 are treated as structural variables. However, because
the observed variable y7 is exogenous and is a predictor of the two latent variables, it is not unreasonable to
also treat it as a structural variable when you are producing path diagrams. Hence, all three PATHDIAGRAM
statements use the STRUCTADD= option to include y7 in the set of structural variables. For illustration pur-
poses, variable y7 is labeled as “y7 is Exogenous” in the path diagrams. Although all three PATHDIAGRAM
statements produce diagrams for the initial solution, they each display the structural component in a different
way.

The first PATHDIAGRAM statement produces a diagram for the full model in Figure 29.20. The structural
component is not specifically emphasized. Because y7 is treated as a structural variable, it is larger than the
other observed variables, and its size is comparable to that of the default structural variables Factor1 and
Factor2.

Figure 29.20 Including an Observed Variable as a Structural Variable: Full Model

The second PATHDIAGRAM statement produces a diagram that emphasizes the structural component of the
full model in Figure 29.21. Again, because y7 is treated as a structural variable, it is much larger than the
other observed variables, and it is emphasized in the same way as the default structural variables Factor1 and
Factor2.
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Figure 29.21 Including an Observed Variable as a Structural Variable: Emphasizing the Structural Compo-
nent

The third PATHDIAGRAM statement produces a diagram for the structural component in Figure 29.22.
Because y7 is treated as a structural variable, it is also shown in this path diagram, and its size is comparable
to that of Factor1 and Factor2.
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Figure 29.22 Including an Observed Variable as a Structural Variable: Structural Component

If you do not include y7 as a structural variable in this PATHDIAGRAM statement, Figure 29.22 would
display Factor1 and Factor2 as isolated variables that do not have any directional paths that connect them,
making it an uninteresting path diagram display.

Estimation Criteria
The following seven estimation methods are available in PROC CALIS:

• unweighted least squares (ULS)

• full information maximum likelihood (FIML)

• generalized least squares (GLS)

• normal-theory maximum likelihood (ML)

• weighted least squares (WLS, ADF)
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• diagonally weighted least squares (DWLS)

• robust estimation (ROBUST) under the normal theory (ML)

Default weight matrices W are computed for GLS, WLS, and DWLS estimation. You can also provide
your own weight matrices by using an INWGT= data set. The weight matrices in these estimation methods
provide weights for the moment matrices. In contrast, weights that are applied to individual observations
are computed in robust estimation. These observation weights are updated during iteration steps of robust
estimation. The ULS, GLS, ML, WLS, ADF, and DWLS methods can analyze sample moment matrices as
well as raw data, while the FIML and robust methods must analyze raw data.

PROC CALIS does not implement all estimation methods in the field. As mentioned in the section “Overview:
CALIS Procedure” on page 1158, partial least squares (PLS) is not implemented. The PLS method is
developed under less restrictive statistical assumptions. It circumvents some computational and theoretical
problems encountered by the existing estimation methods in PROC CALIS; however, PLS estimates are less
efficient in general. When the statistical assumptions of PROC CALIS are tenable (for example, large sample
size, correct distributional assumptions, and so on), ML, GLS, or WLS methods yield better estimates than
the PLS method. Note that there is a SAS/STAT procedure called PROC PLS that employs the partial least
squares technique, but for a different class of models than those of PROC CALIS. For example, in a PROC
CALIS model each latent variable is typically associated with only a subset of manifest variables (predictor
or outcome variables). However, in PROC PLS latent variables are not prescribed with subsets of manifest
variables. Rather, they are extracted from linear combinations of all manifest predictor variables. Therefore,
for general path analysis with latent variables you should use PROC CALIS.

ULS, GLS, and ML Discrepancy Functions

In each estimation method, the parameter vector is estimated iteratively by a nonlinear optimization algorithm
that minimizes a discrepancy function F, which is also known as the fit function in the literature. With p
denoting the number of manifest variables, S the sample p � p covariance matrix for a sample with size N,
Nx the p � 1 vector of sample means, † the fitted covariance matrix, and � the vector of fitted means, the
discrepancy function for unweighted least squares (ULS) estimation is:

FULS D 0:5TrŒ.S �†/2�C .Nx � �/0.Nx � �/

The discrepancy function for generalized least squares estimation (GLS) is:

FGLS D 0:5TrŒ.W�1.S �†//2�C .Nx � �/0W�1.Nx � �/

By default, W D S is assumed so that FGLS is the normal theory generalized least squares discrepancy
function.

The discrepancy function for normal-theory maximum likelihood estimation (ML) is:

FML D Tr.S†�1/ � p C ln.j†j/ � ln.jSj/C .Nx � �/0†�1.Nx � �/

In each of the discrepancy functions, S and Nx are considered to be given and † and � are functions of model
parameter vector‚. That is:

F D F.†.‚/;�.‚/I S; Nx/

Estimating‚ by using a particular estimation method amounts to choosing a vector � that minimizes the
corresponding discrepancy function F.
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When the mean structures are not modeled or when the mean model is saturated by parameters, the last term
of each fit function vanishes. That is, they become:

FULS D 0:5TrŒ.S �†/2�

FGLS D 0:5TrŒ.W�1.S �†//2�

FML D Tr.S†�1/ � p C ln.j†j/ � ln.jSj/

If, instead of being a covariance matrix, S is a correlation matrix in the discrepancy functions, † would
naturally be interpreted as the fitted correlation matrix. Although whether S is a covariance or correlation
matrix makes no difference in minimizing the discrepancy functions, correlational analyses that use these
functions are problematic because of the following issues:

• The diagonal of the fitted correlation matrix † might contain values other than ones, which violates
the requirement of being a correlation matrix.

• Whenever available, standard errors computed for correlation analysis in PROC CALIS are straightfor-
ward generalizations of those of covariance analysis. In very limited cases these standard errors are
good approximations. However, in general they are not even asymptotically correct.

• The model fit chi-square statistic for correlation analysis might not follow the theoretical distribution,
thus making model fit testing difficult.

Despite these issues in correlation analysis, if your primary interest is to obtain the estimates in the correlation
models, you might still find PROC CALIS results for correlation analysis useful.

The statistical techniques used in PROC CALIS are primarily developed for the analysis of covariance
structures, and hence COVARIANCE is the default option. Depending on the nature of your research, you can
add the mean structures in the analysis by specifying mean and intercept parameters in your models. However,
you cannot analyze mean structures simultaneously with correlation structures (see the CORRELATION
option) in PROC CALIS.

FIML Discrepancy Function

The full information maximum likelihood method (FIML) assumes multivariate normality of the data.
Suppose that you analyze a model that contains p observed variables. The discrepancy function for FIML is

FFIML D
1

N

NX
jD1

.ln.j†j j/C .xj � �j /0†�1j .xj � �j /CKj /

where xj is a data vector for observation j, and Kj is a constant term (to be defined explicitly later)
independent of the model parameters‚. In the current formulation, xj ’s are not required to have the same
dimensions. For example, x1 could be a complete vector with all p variables present while x2 is a .p� 1/� 1
vector with one missing value that has been excluded from the original p � 1 data vector. As a consequence,
subscript j is also used in �j and †j to denote the submatrices that are extracted from the entire p � 1
structured mean vector � (� D �.‚/) and p � p covariance matrix † († D †.‚/). In other words, in the
current formulation �j and †j do not mean that each observation is fitted by distinct mean and covariance
structures (although theoretically it is possible to formulate FIML in such a way). The notation simply
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signifies that the dimensions of xj and of the associated mean and covariance structures could vary from
observation to observation.

Let pj be the number of variables without missing values for observation j. Then xj denotes a pj � 1 data
vector, �j denotes a pj � 1 vector of means (structured with model parameters), †j is a pj � pj matrix
for variances and covariances (also structured with model parameters), and Kj is defined by the following
formula, which is a constant term independent of model parameters:

Kj D ln.2�/ � pj

As a general estimation method, the FIML method is based on the same statistical principle as the ordinary
maximum likelihood (ML) method for multivariate normal data—that is, both methods maximize the normal
theory likelihood function given the data. In fact, FFIML used in PROC CALIS is related to the log-likelihood
function L by the following formula:

FFIML D
�2L

N

Because the FIML method can deal with observations with various levels of information available, it is
primarily developed as an estimation method that could deal with data with random missing values. See
the section “Relationships among Estimation Criteria” on page 1473 for more details about the relationship
between FIML and ML methods.

Whenever you use the FIML method, the mean structures are automatically assumed in the analysis. This is
due to fact that there is no closed-form formula to obtain the saturated mean vector in the FIML discrepancy
function if missing values are present in the data. You can certainly provide explicit specification of the
mean parameters in the model by specifying intercepts in the LINEQS statement or means and intercepts
in the MEAN or MATRIX statement. However, usually you do not need to do the explicit specification if
all you need to achieve is to saturate the mean structures with p parameters (that is, the same number as the
number of observed variables in the model). With METHOD=FIML, PROC CALIS uses certain default
parameterizations for the mean structures automatically. For example, all intercepts of endogenous observed
variables and all means of exogenous observed variables are default parameters in the model, making the
explicit specification of these mean structure parameters unnecessary.

WLS and ADF Discrepancy Functions

Another important discrepancy function to consider is the weighted least squares (WLS) function. Let
u D .s; Nx/ be a p.p C 3/=2 vector containing all nonredundant elements in the sample covariance matrix
S and sample mean vector Nx, with s D vecs.S/ representing the vector of the p.p C 1/=2 lower triangle
elements of the symmetric matrix S, stacking row by row. Similarly, let � D .� ;�/ be a p.p C 3/=2 vector
containing all nonredundant elements in the fitted covariance matrix † and the fitted mean vector �, with
� D vecs.†/ representing the vector of the p.p C 1/=2 lower triangle elements of the symmetric matrix †.

The WLS discrepancy function is:

FWLS D .u � �/0W�1.u � �/

where W is a positive definite symmetric weight matrix with .p.p C 3/=2/ rows and columns. Because � is
a function of model parameter vector‚ under the structural model, you can write the WLS function as:

FWLS D .u � �.‚//0W�1.u � �.‚//
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Suppose that u converges to �o D .�o;�o/ with increasing sample size, where �o and �o denote the
population covariance matrix and mean vector, respectively. By default, the WLS weight matrix W in PROC
CALIS is computed from the raw data as a consistent estimate of the asymptotic covariance matrix � of
p
N.u � �o/, with � partitioned as

� D

�
�ss � 0

Nxs

� Nxs � Nx Nx

�
where �ss denotes the .p.p C 1/=2/ � .p.p C 1/=2/ asymptotic covariance matrix for

p
N.s � �o/, � Nx Nx

denotes the p � p asymptotic covariance matrix for
p
N.Nx � �o/, and � Nxs denotes the p � .p.p C 1/=2/

asymptotic covariance matrix between
p
N.Nx � �o/ and

p
N.s � �o/.

To compute the default weight matrix W as a consistent estimate of � , define a similar partition of the weight
matrix W as:

W D
�
Wss W0

Nxs

W Nxs W Nx Nx

�
Each of the submatrices in the partition can now be computed from the raw data. First, define the biased
sample covariance for variables i and j as:

tij D
1

N

NX
rD1

.xri � Nxi /.xrj � Nxj /

and the sample fourth-order central moment for variables i, j, k, and l as:

tij;kl D
1

N

NX
rD1

.xri � Nxi /.xrj � Nxj /.xrk � Nxk/.xrl � Nxl/

The submatrices in W are computed by:

ŒWss�ij;kl D tij;kl � tij tkl

ŒW Nxs�i;kl D
1

N

NX
rD1

.xri � Nxi /.xrk � Nxk/.xrl � Nxl/

ŒW Nx Nx�ij D tij

Assuming the existence of finite eighth-order moments, this default weight matrix W is a consistent but
biased estimator of the asymptotic covariance matrix � .

By using the ASYCOV= option, you can use Browne’s unbiased estimator (Browne 1984, formula (3.8)) of
�ss as:

ŒWss�ij;kl D
N.N � 1/

.N � 2/.N � 3/
.tij;kl � tij tkl/

�
N

.N � 2/.N � 3/
.tiktjl C tiltjk �

2

N � 1
tij tkl/
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There is no guarantee that Wss computed this way is positive semidefinite. However, the second part is
of order O.N�1/ and does not destroy the positive semidefinite first part for sufficiently large N. For a
large number of independent observations, default settings of the weight matrix W result in asymptotically
distribution-free parameter estimates with unbiased standard errors and a correct �2 test statistic (Browne
1982, 1984).

With the default weight matrix W computed by PROC CALIS, the WLS estimation is also called as the
asymptotically distribution-free (ADF) method. In fact, as options in PROC CALIS, METHOD=WLS and
METHOD=ADF are totally equivalent, even though WLS in general might include cases with special weight
matrices other than the default weight matrix.

When the mean structures are not modeled, the WLS discrepancy function is still the same quadratic form
statistic. However, with only the elements in covariance matrix being modeled, the dimensions of u and � are
both reduced to p.pC1/=2�1, and the dimension of the weight matrix is now .p.pC1/=2/� .p.pC1/=2/.
That is, the WLS discrepancy function for covariance structure models is:

FWLS D .s � � /0W�1ss .s � � /

If S is a correlation rather than a covariance matrix, the default setting of the Wss is a consistent estimator of
the asymptotic covariance matrix �ss of

p
N.s � �o/ (Browne and Shapiro 1986; De Leeuw 1983), with

s and �o representing vectors of sample and population correlations, respectively. Elementwise, Wss is
expressed as:

ŒWss�ij;kl D rij;kl �
1

2
rij .ri i;kl C rjj;kl/ �

1

2
rkl.rkk;ij C rl l;ij /

C
1

4
rij rkl.ri i;kk C ri i;l l C rjj;kk C rjj;l l/

where

rij D
tijp
ti i tjj

and

rij;kl D
tij;klp

ti i tjj tkktl l

The asymptotic variances of the diagonal elements of a correlation matrix are 0. That is,

ŒWss�i i;i i D 0

for all i. Therefore, the weight matrix computed this way is always singular. In this case, the discrepancy
function for weighted least squares estimation is modified to:

FWLS D

pX
iD2

i�1X
jD1

pX
kD2

k�1X
lD1

ŒWss�
ij;kl.ŒS�ij � Œ†�ij /.ŒS�kl � Œ†�kl/

Cr

pX
i

.ŒS�i i � Œ†�i i /2
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where r is the penalty weight specified by the WPENALTY=r option and the ŒWss�
ij;kl are the elements of

the inverse of the reduced .p.p � 1/=2/ � .p.p � 1/=2/ weight matrix that contains only the nonzero rows
and columns of the full weight matrix Wss .

The second term is a penalty term to fit the diagonal elements of the correlation matrix S. The default value
of r = 100 can be decreased or increased by the WPENALTY= option. The often used value of r = 1 seems
to be too small in many cases to fit the diagonal elements of a correlation matrix properly.

Note that when you model correlation structures, no mean structures can be modeled simultaneously in the
same model.

DWLS Discrepancy Functions

Storing and inverting the huge weight matrix W in WLS estimation requires considerable computer resources.
A compromise is found by implementing the diagonally weighted least squares (DWLS) method that uses
only the diagonal of the weight matrix W from the WLS estimation in the following discrepancy function:

FDWLS D .u � �/0Œdiag.W/��1.u � �/

D

pX
iD1

iX
jD1

ŒWss�
�1
ij;ij .ŒS�ij � Œ†�ij /

2
C

pX
iD1

ŒW Nx Nx��1i i .Nxi � �i /
2

When only the covariance structures are modeled, the discrepancy function becomes:

FDWLS D

pX
iD1

iX
jD1

ŒWss�
�1
ij;ij .ŒS�ij � Œ†�ij /

2

For correlation models, the discrepancy function is:

FDWLS D

pX
iD2

i�1X
jD1

ŒWss�
�1
ij;ij .ŒS�ij � Œ†�ij /

2
C r

pX
iD1

.ŒS�i i � Œ†�i i /2

where r is the penalty weight specified by the WPENALTY=r option. Note that no mean structures can be
modeled simultaneously with correlation structures when using the DWLS method.

As the statistical properties of DWLS estimates are still not known, standard errors for estimates are not
computed for the DWLS method.

Input Weight Matrices

In GLS, WLS, or DWLS estimation you can change from the default settings of weight matrices W by using
an INWGT= data set. The CALIS procedure requires a positive definite weight matrix that has positive
diagonal elements.

Multiple-Group Discrepancy Function

Suppose that there are k independent groups in the analysis and N1, N2, . . . , Nk are the sample sizes for the
groups. The overall discrepancy function F.‚/ is expressed as a weighted sum of individual discrepancy
functions Fi ’s for the groups:

F.‚/ D

kX
iD1

tiFi .‚/
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where

ti D
Ni � 1

N � k

is the weight of the discrepancy function for group i, and

N D

kX
iD1

Ni

is the total number of observations in all groups. In PROC CALIS, all discrepancy function Fi ’s in the overall
discrepancy function must belong to the same estimation method. You cannot specify different estimation
methods for the groups in a multiple-group analysis. In addition, the same analysis type must be applied
to all groups—that is, you can analyze either covariance structures, covariance and mean structures, and
correlation structures for all groups.

Robust Estimation

Two robust estimation methods that are proposed by Yuan and Zhong (2008) and Yuan and Hayashi (2010)
are implemented in PROC CALIS. The first method is the two-stage robust method, which estimates robust
covariance and mean matrices in the first stage and then feeds the robust covariance and mean matrices (in
place of the ordinary sample covariance and mean matrices) for ML estimation in the second stage. Weighting
of the observations is done only in the first stage. The ROBUST=SAT option invokes the two-stage robust
estimation. The second method is the direct robust method, which iteratively estimates model parameters
with simultaneous weightings of the observations. The ROBUST, ROBUST=RES(E), or ROBUST=RES(F)
option invokes the direct robust estimation method.

The procedural difference between the two robust methods results in differential treatments of model outliers
and leverage observations (or leverage points). In producing the robust covariance and mean matrices in the
first stage, the two-stage robust method downweights outlying observations in all variable dimensions without
regard to the model structure. This method downweights potential model outliers and leverage observations
(which are not necessarily model outliers) in essentially the same way before the ML estimation in the second
stage.

However, the direct robust method downweights the model outliers only. “Good” leverage observations
(those that are not outliers at the same time) are not downweighted for model estimation. Therefore, it could
be argued that the direct robust method is more desirable if you can be sure that the model is a reasonable one.
The reason is that the direct robust method can retain the information from the “good” leverage observations
for estimation, while the two-stage robust method downweights all leverage observations indiscriminately
during its first stage. However, if the model is itself uncertain, the two-stage robust estimation method might
be more foolproof.

Both robust methods employ weights on the observations. Weights are functions of the Mahalanobis distances
(M-distances) of the observations and are computed differently for the two robust methods. The following
two sections describe the weighting scheme and the estimation procedure of the two robust methods in more
detail.
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Two-Stage Robust Method
For the two-stage robust method, the following conventional M-distance ds for an observed random vector x
is computed as

ds D

q
.x � �/0†�1.x � �/

where � and † are the unstructured mean and covariance matrices, respectively.

Two sets of weights are computed as functions of the M-distances of the observations. The weighting
functions are essentially the same form as that of Huber (see, for example, Huber 1981). Let di be the
M-distance of observation i, computed from the ds formula. The first set of weights w1.di / applies to the
first moments of the data and is defined as

w1.di / D 1 (if di � �)

D �=di (if di > �)

where � is the critical value corresponding to the .1 � '/ � 100 quantile of the �r D
p
�r2 distribution,

with r being the degrees of freedom. For the two-stage robust method, r is simply the number of observed
variables in the analysis. The tuning parameter ' controls the approximate proportion of observations to be
downweighted (that is, with w1.di / less than 1). The default ' value is set to 0.05. You can override this
value by using the ROBPHI= option.

The second set of weights w2.di / applies to the second moments of the data and is defined as

w2.di / D .w1.di //
2=�

where � is a constant that adjusts the sum
PN
iD1w2.di / to 1 approximately. After the tuning parameter ' is

determined, the critical value � and the adjustment � are computed automatically by PROC CALIS.

With these two sets of weights, the two-stage robust method (ROBUST=SAT) estimates the mean and
covariance by the so-called iteratively reweighted least squares (IRLS) algorithm. Specifically, the updating
formulas at the j+1 iteration are

�.jC1/ D

PN
iD1w1.di

.j //xiPn
iD1w1.di

.j //

†.jC1/ D
1

N

NX
iD1

w2.di
.j //.xi � �.j //.xi � �.j //0

where di .j / is the M-distance evaluated at �.j / and †.j / obtained in the jth iteration. Carry out the iterations
until � and † converge. The final iteration yields the robust estimates of mean and covariance matrices.
PROC CALIS uses the relative parameter convergence criterion for the IRLS algorithm. The default criterion
is 1E–8. See the XCONV= option for the definition of the relative parameter convergence criterion. After the
IRLS algorithm converges in the first stage, the two-stage robust method proceeds to treat the robust mean
and covariance estimates as if they were sample mean and covariance matrices for a maximum likelihood
estimation (METHOD=ML) of the model.
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Direct Robust Method
The direct robust method computes the following residual M-distance dr for an observation with residual
random vector Oe (say, of dimension h � 1, where h is the number of dependent observed variables y):

dr D

q
.LOe/0.L�OeL0/�1.LOe/

where L (.h � q/ � h) is a loading matrix that reduces Oe to .h � q/ independent components and q is the
number of independent factors to be estimated from the dependent observed variables y. The reduction of the
residual vector into independent components is necessary when the number of factors q is not zero in the
model. For q > 0, the residual covariance matrix �Oe is not invertible and cannot be used in computing the
residual M-distances. Hence, the covariance matrix L�OeL0 of independent components LOe is used instead.
See Yuan and Hayashi (2010) for details about the computation of the residuals in the context of structural
equation modeling.

The direct robust method also computes two sets of weights as functions of the residual M-distances. Let di
be the M-distance of observation i, computed from the dr formula. The first set of weights w1.di / applies to
parameters in the first moments and is defined as

w1.di / D 1 (if di � �)

D �=di (if di > �)

The second set of weights w2.di / applies to the parameters in the second moments and is defined as

w2.di / D .w1.di //
2=�

These are essentially the same Huber-type weighting functions as those for the two-stage robust method.
The only difference is that the dr , instead of the ds , formula is used in the weighting functions for the direct
robust method. The definition of � is also the same as that in the two-stage robust method, but it is now based
on a different theoretical chi-square distribution. That is, in the direct robust method, � is the critical value
that corresponds to the .1 � '/ � 100 quantile of the �r D

p
�r2 distribution, with r D .h � q/ being the

degrees of freedom. Again, ' is a tuning parameter and is set to 0.05 by default. You can override this value
by using the ROBPHI= option. The calculation of the number of “independent factors” q depends on the
variants of the direct robust estimation that you choose. With the ROBUST=RES(E) option, q is the same as
the number of exogenous factors specified in the model. With the ROBUST=RES(F) option, the disturbances
of the endogenous factors in the model are also treated as “independent factors,” so q is the total number of
latent factors specified in the model.

The direct robust method (ROBUST=RES(E) or ROBUST=RES(F)) employs the IRLS algorithm in model
estimation. Let the following expression be a vector of nonredundant first and second moments structured in
terms of model parameters �:

m.�/ D
�
�.�/

vech.†.�//

�
where vech() extracts the lower-triangular nonredundant elements in †.�/. The updating formulas for � at
the j+1 iteration is
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�.jC1/ D �.j / C��.j /

where �.j / is the parameter values at the jth iteration and ��.j / is defined by the following formula:

��.j / D . Pm0.�.j //W.�.j // Pm.�.j ///�1 Pm0.�.j //W.�.j //gj

where Pm.�/ D @m.�/
@� 0

is the model Jacobian, W.�/ is the (normal theory) weight matrix for the moments
(see Yuan and Zhong 2008 for the formula of the weight matrix), and gj is defined as

gj D

 
1PN

iD1w1.di /

PN
iD1w1.di /xi � �.�

.j //

1
N

PN
iD1w2.di /vechŒ.xi � �.�.j ///.xi � �.�.j ///0� �†.�.j //

!

Starting with some reasonable initial estimates for � , PROC CALIS iterates the updating formulas until the
relative parameter convergence criterion of the IRLS algorithm is satisfied. The default criterion value is
1E–8. This essentially means that the IRLS algorithm converges when �� is sufficiently small. See the
XCONV= option for the definition of the relative parameter convergence criterion.

Although the iterative formulas and the IRLS steps for robust estimation have been presented for single-group
analysis, they are easily generalizable to multiple-group analysis. For the two-stage robust method, you
only need to repeat the robust estimation of the means and covariances for the groups and then apply the
obtained robust moments as if they were sample moments for regular maximum likelihood estimation
(METHOD=ML). For the direct robust method, you need to expand the dimensions of the model Jacobian
matrix Pm.�/, the weight matrix W.�/, and the vector g to include moments from several groups/models.
Therefore, the multiple-group formulas are conceptually quite simple but tedious to present. For this reason,
they are omitted here.

Relationships among Estimation Criteria
There is always some arbitrariness to classify the estimation methods according to certain mathematical
or numerical properties. The discussion in this section is not meant to be a thorough classification of
the estimation methods available in PROC CALIS. Rather, classification is done here with the purpose of
clarifying the uses of different estimation methods and the theoretical relationships of estimation criteria.

Assumption of Multivariate Normality

GLS, ML, and FIML assume multivariate normality of the data, while ULS, WLS, and DWLS do not.
Although the ML method with covariance structure analysis alone can also be based on the Wishart distribution
of the sample covariance matrix, for convenience GLS, ML, and FIML are usually classified as normal-theory
based methods, while ULS, WLS, and DWLS are usually classified as distribution-free methods.

An intuitive or even naive notion is usually that methods without distributional assumptions such as WLS and
DWLS are preferred to normal theory methods such as ML and GLS in practical situations where multivariate
normality is doubt. This notion might need some qualifications because there are simply more factors to
consider in judging the quality of estimation methods in practice. For example, the WLS method might need
a very large sample size to enjoy its purported asymptotic properties, while the ML might be robust against
the violation of multi-normality assumption under certain circumstances. No recommendations regarding
which estimation criterion should be used are attempted here, but you should make your choice based more
than the assumption of multivariate normality.
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Contribution of the Off-Diagonal Elements to the Estimation of Covariance or Correlation
Structures

If only the covariance or correlation structures are considered, the six estimation functions, FULS , FGLS ,
FML, FFIML, FWLS , and FDWLS , belong to the following two groups:

• The functions FULS , FGLS , FML, and FFIML take into account all n2 elements of the symmetric
residual matrix S �†. This means that the off-diagonal residuals contribute twice to the discrepancy
function F, as lower and as upper triangle elements.

• The functions FWLS and FDWLS take into account only the n.n C 1/=2 lower triangular elements
of the symmetric residual matrix S �†. This means that the off-diagonal residuals contribute to the
discrepancy function F only once.

The FDWLS function used in PROC CALIS differs from that used by the LISREL 7 program. Formula (1.25)
of the LISREL 7 manual (Jöreskog and Sörbom 1985, p. 23) shows that LISREL groups the FDWLS function
in the first group by taking into account all n2 elements of the symmetric residual matrix S �†.

• Relationship between DWLS and WLS:
PROC CALIS: The FDWLS and FWLS discrepancy functions deliver the same results for the special
case that the weight matrix W DWss used by WLS estimation is a diagonal matrix.
LISREL 7: This is not the case.

• Relationship between DWLS and ULS:
LISREL 7: The FDWLS and FULS estimation functions deliver the same results for the special case
that the diagonal weight matrix W DWss used by DWLS estimation is an identity matrix.
PROC CALIS: To obtain the same results with FDWLS and FULS estimation, set the diagonal weight
matrix W DWss used in DWLS estimation to:

ŒWss�ik;ik D

�
1: if i D k
0:5 otherwise (k � i )

Because the reciprocal elements of the weight matrix are used in the discrepancy function, the off-
diagonal residuals are weighted by a factor of 2.

ML and FIML Methods

Both the ML and FIML methods can be derived from the log-likelihood function for multivariate normal
data. The preceding section “Estimation Criteria” on page 1463 mentions that FFIML is essentially the same
as �2L

N
, where L is the log-likelihood function for multivariate normal data. For the ML estimation, you

can also consider �2L
N

as a part of the FML discrepancy function that contains the information regarding the
model parameters (while the rest the FML function contains some constant terms given the data). That is,
with some algebraic manipulations and assuming that there is no missing value in the analysis (so that all �j
and †j are the same as � and †, respectively), it can shown that

FFIML D
�2L

N

D
1

N

nX
jD1

.ln.j†j/C .xj � �/0†�1.xj � �/CK/

D ln.j†j/C Tr.SN†
�1/C .Nx � �/0†�1.Nx � �/CK
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where Nx is the sample mean and SN is the biased sample covariance matrix. Compare this FIML function
with the ML function shown in the following expression, which shows that both functions are very similar:

FML D ln.j†j/C Tr.S†�1/C .Nx � �/0†�1.Nx � �/ � p � ln.jSj/

The two expressions differ only in the constant terms, which are independent of the model parameters, and
in the formulas for computing the sample covariance matrix. While the FIML method assumes the biased
formula (with N as the divisor, by default) for the sample covariance matrix, the ML method (as implemented
in PROC CALIS) uses the unbiased formula (with N – 1 as the divisor, by default).

The similarity (or dissimilarity) of the ML and FIML discrepancy functions leads to some useful conclusions
here:

• Because the constant terms in the discrepancy functions play no part in parameter estimation (except
for shifting the function values), overriding the default ML method with VARDEF=N (that is, using
N as the divisor in the covariance matrix formula) leads to the same estimation results as that of the
FIML method, given that there are no missing values in the analysis.

• Because the FIML function is evaluated at the level of individual observations, it is much more
expensive to compute than the ML function. As compared with ML estimation, FIML estimation takes
longer and uses more computing resources. Hence, for data without missing values, the ML method
should always be chosen over the FIML method.

• The advantage of the FIML method lies solely in its ability to handle data with random missing values.
While the FIML method uses the information maximally from each observation, the ML method (as
implemented in PROC CALIS) simply throws away any observations with at least one missing value.
If it is important to use the information from observations with random missing values, the FIML
method should be given consideration over the ML method.

See Example 29.15 for an application of the FIML method and Example 29.16 for an empirical comparison
of the ML and FIML methods. For more examples and details about the FIML method employed by PROC
CALIS, see Yung and Zhang (2011); Zhang and Yung (2011).

Gradient, Hessian, Information Matrix, and Approximate Standard Errors
For a single-sample setting with a discrepancy function F D F.†.‚/;�.‚/I S; Nx/, the gradient is defined
as the first partial derivatives of the discrepancy function with respect to the model parameters‚:

g.‚/ D
@

@‚
F.‚/

The Hessian is defined as the second partial derivatives of the discrepancy function with respect to the model
parameters‚:

H.‚/ D
@2

@‚@‚0
F.‚/
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Suppose that the mean and covariance structures fit perfectly with‚ D ‚o in the population. The information
matrix is defined as

I.‚o/ D
1

2
E.H.‚o//

where the expectation E.�/ is taken over the sampling space of S; Nx.

The information matrix plays a significant role in statistical theory. Under certain regularity conditions, the
inverse of the information matrix I�1.‚o/ is the asymptotic covariance matrix for

p
N. O‚ �‚o/, where N

denotes the sample size and O‚ is an estimator.

In practice,‚o is never known and can only be estimated. The information matrix is therefore estimated by
the so-called empirical information matrix:

I. O‚/ D
1

2
H. O‚/

which is evaluated at the values of the sample estimates O‚. Notice that this empirical information matrix,
rather than the unknown I.‚o/, is the “information matrix” displayed in PROC CALIS output.

Taking the inverse of the empirical information matrix with sample size adjustment, PROC CALIS approxi-
mates the estimated covariance matrix of O‚ by:

..N � 1/I. O‚//�1 D ..N � 1/
1

2
H. O‚//�1 D

2

N � 1
H�1. O‚/

Approximate standard errors for O‚ can then be computed as the square roots of the diagonal elements
of the estimated covariance matrix. The theory about the empirical information matrix, the approximate
covariance matrix of the parameter estimates, and the approximate standard errors applies to all but the
ULS and DWLS estimation methods. Standard errors are therefore not computed with the ULS and DWLS
estimation methods.

If a given Hessian or information matrix is singular, PROC CALIS offers two ways to compute a generalized
inverse of the matrix and, therefore, two ways to compute approximate standard errors of implicitly con-
strained parameter estimates, t values, and modification indices. Depending on the G4= specification, either
a Moore-Penrose inverse or a G2 inverse is computed. The expensive Moore-Penrose inverse computes an
estimate of the null space by using an eigenvalue decomposition. The cheaper G2 inverse is produced by
sweeping the linearly independent rows and columns and zeroing out the dependent ones.

Multiple-Group Extensions

In the section “Multiple-Group Discrepancy Function” on page 1469, the overall discrepancy function for
multiple-group analysis is defined. The same notation is applied here. To begin with, the overall discrepancy
function F.‚/ is expressed as a weighted sum of individual discrepancy functions Fi ’s for the groups as
follows:

F.‚/ D

kX
iD1

tiFi .‚/

where

ti D
Ni � 1

N � k



Gradient, Hessian, Information Matrix, and Approximate Standard Errors F 1477

is the weight for group i,

N D

kX
iD1

Ni

is the total sample size, and Ni is the sample size for group i.

The gradient g.‚/ and the Hessian H.‚/ are now defined as weighted sum of individual functions. That is,

g.‚/ D

kX
iD1

tigi .‚/ D

kX
iD1

ti
@

@‚
Fi .‚/

and

H.‚/ D

kX
iD1

tiHi .‚/ D

kX
iD1

ti
@2

@‚@‚0
Fi .‚/

Suppose that the mean and covariance structures fit perfectly with ‚ D ‚o in the population. If each ti
converges to a fixed constant �i (�i > 0) with increasing total sample size, the information matrix can be
written as:

I.‚o/ D
1

2

kX
iD1

�iE.Hi .‚o//

To approximate this information matrix, an empirical counterpart is used:

I. O‚/ D
1

2

kX
iD1

tiHi . O‚/

which is evaluated at the values of the sample estimates O‚. Again, this empirical information matrix, rather
than the unknown I.‚o/, is the “information matrix” output in PROC CALIS results.

Taking the inverse of the empirical information matrix with sample size adjustment, PROC CALIS approxi-
mates the estimated covariance matrix of O‚ in multiple-group analysis by:

..N � k/I. O‚//�1 D ..N � k/
1

2
H. O‚//�1 D

2

N � k

kX
iD1

tiH
�1
i . O‚/

Approximate standard errors for O‚ can then be computed as the square roots of the diagonal elements of the
estimated covariance matrix. Again, for ULS and DWLS estimation, the theory does not apply and so there
are no standard errors computed in these cases.

Testing Rank Deficiency in the Approximate Covariance Matrix for Parameter Estimates

When computing the approximate covariance matrix and hence the standard errors for the parameter estimates,
inversion of the scaled information matrix or Hessian matrix is involved. The numerical condition of the
information matrix can be very poor in many practical applications, especially for the analysis of unscaled
covariance data. The following four-step strategy is used for the inversion of the information matrix.
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1. The inversion (usually of a normalized matrix D�1HD�1) is tried using a modified form of the Bunch
and Kaufman (1977) algorithm, which allows the specification of a different singularity criterion for
each pivot. The following three criteria for the detection of rank loss in the information matrix are
used to specify thresholds:

• ASING specifies absolute singularity.

• MSING specifies relative singularity depending on the whole matrix norm.

• VSING specifies relative singularity depending on the column matrix norm.

If no rank loss is detected, the inverse of the information matrix is used for the covariance matrix of
parameter estimates, and the next two steps are skipped.

2. The linear dependencies among the parameter subsets are displayed based on the singularity criteria.

3. If the number of parameters t is smaller than the value specified by the G4= option (the default value is
60), the Moore-Penrose inverse is computed based on the eigenvalue decomposition of the information
matrix. If you do not specify the NOPRINT option, the distribution of eigenvalues is displayed, and
those eigenvalues that are set to zero in the Moore-Penrose inverse are indicated. You should inspect
this eigenvalue distribution carefully.

4. If PROC CALIS did not set the right subset of eigenvalues to zero, you can specify the COVSING=
option to set a larger or smaller subset of eigenvalues to zero in a further run of PROC CALIS.

Counting the Degrees of Freedom
When fitting covariance and mean structure models, the population moments are hypothesized to be func-
tions of model parameters ‚. The population moments refer to the first-order moments (means) and the
second-order central moments (variances of and covariances among the variables). Usually, the number of
nonredundant population moments is greater than the number of model parameters for a structural model.
The difference between the two is the degrees of freedom (df ) of your model.

Formally, define a multiple-group situation where you have k independent groups in your model. The set of
variables in each group might be different so that you have p1; p2; : : : ; pk manifest or observed variables for
the k groups. It is assumed that the primary interest is to study the covariance structures. The inclusion of
mean structures is optional for each of these groups. Define ı1; ı2; � � � ; ık as zero-one indicators of the mean
structures for the groups. If ıi takes the value of one, it means that the mean structures of group i is modeled.
The total number of nonredundant elements in the moment matrices is thus computed by:

q D

kX
iD1

.pi .pi C 1/=2C ıipi /

The first term in the summation represents the number of lower triangular elements in the covariance or
correlation matrix, while the second term represents the number of elements in the mean matrix. Let t be the
total number of independent parameters in the model. The degrees of freedom is:

df D q � .t � c/

where c represents the number of linear equality constraints imposed on the independent parameters in the
model. In effect, the .t � c/ expression means that each nonredundant linear equality constraint reduces one
independent parameter.
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Counting the Number of Independent Parameters

To count the number of independent parameters in the model, first you have to distinguish them from the
dependent parameters. Dependent parameters are expressed as functions of other parameters in the SAS
programming statements. That is, a parameter is dependent if it appears at the left-hand side of the equal sign
in a SAS programming statement.

A parameter is independent if it is not dependent. An independent parameter can be specified in the main or
subsidiary model specification statements or the PARAMETERS statement, or it is generated automatically
by PROC CALIS as additional parameters. Quite intuitively, all independent parameter specified in the
main or subsidiary model specification statements are independent parameters in the model. All automatic
parameters added by PROC CALIS are also independent parameters in the model.

Intentionally or not, some independent parameters specified in the PARMS statement might not be counted as
independent parameters in the model. Independent parameters in the PARMS statement belong in the model
only when they are used to define at least one dependent parameter specified in the main or subsidiary model
specification statements. This restriction eliminates the counting of superfluous independent parameters
which have no bearing of model specification.

Note that when counting the number of independent parameters, you are counting the number of distinct
independent parameter names but not the number of distinct parameter locations for independent parameters.
For example, consider the following statement for defining the error variances in a LINEQS model:

variance E1-E3 = vare1 vare2 vare3;

You define three variance parameter locations with three independent parameters vare1, vare2, and vare3.
However, in the following specification:

variance E1-E3 = vare vare vare;

you still have three variance parameter locations to define, but the number of independent parameter is only
one, which is the parameter named vare.

Counting the Number of Linear Equality Constraints

The linear equality constraints refer to those specified in the BOUNDS or LINCON statement. For example,
consider the following specification:

bounds 3 <= parm01 <= 3;
lincon 3 * parm02 + 2 * parm03 = 12;

In the BOUNDS statement, parm01 is constrained to a fixed number 3, and in the LINCON statement, parm02
and parm03 are constrained linearly. In effect, these two statements reduce two independent parameters from
the model. In the degrees of freedom formula, the value of c is 2 for this example.

Adjustment of Degrees of Freedom

In some cases, computing degrees of freedom for model fit is not so straightforward. Two important cases
are considered in the following.

The first case is when you set linear inequality or boundary constraints in your model, and these inequality
or boundary constraints become “active” in your final solution. For example, you might have set inequality
boundary and linear constraints as:
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bounds 0 <= var01;
lincon 3 * beta1 + 2 * beta2 >= 7;

The optimal solution occurs at the boundary point so that you observe in the final solution the following two
equalities:

var01 = 0,
3 * beta1 + 2 * beta2 = 7

These two active constraints reduce the number of independent parameters of your original model. As a result,
PROC CALIS will automatically increase the degrees of freedom by the number of active linear constraints.
Adjusting degrees of freedom not only affects the significance of the model fit chi-square statistic, but it also
affects the computation of many fit statistics and indices. See Dijkstra (1992) for a discussion of the validity
of statistical inferences with active boundary constraints.

Automatically adjusting df in such a situation might not be totally justified in all cases. Statistical estimation
is subject to sampling fluctuation. Active constraints might not occur when fitting the same model in new
samples. If the researcher believes that those linear inequality and boundary constraints have a small chance
of becoming active in repeated sampling, it might be more suitable to turn off the automatic adjustment by
using the NOADJDF option in the PROC CALIS statement.

Another case where you need to pay attention to the computation of degrees of freedom is when you fit
correlation models. The degrees-of-freedom calculation in PROC CALIS applies mainly to models with
covariance structures with or without mean structures. When you model correlation structures, the degrees
of freedom calculation in PROC CALIS is a straightforward generalization of the covariance structures.
It does not take the fixed ones at the diagonal elements of the sample correlation matrix into account.
Some might argue that with correlation structures, the degrees of freedom should be reduced by the total
number of diagonal elements in the correlation matrices in the model. While PROC CALIS does not do this
automatically, you can use the DFREDUCE=i option to specify the adjustment, where i can be any positive
or negative integer. The df value is reduced by the DFREDUCE= value.

A Different Type of Degrees of Freedom

The degrees of freedom for model fitting has to be distinguished from another type of degrees of freedom.
In a regression problem, the number of degrees of freedom for the error variance estimate is the number of
observations in the data set minus the number of parameters. The NOBS=, DFR= (RDF=), and DFE= (EDF=)
options refer to degrees of freedom in this sense. However, these values are not related to the degrees of
freedom for the model fit statistic. The NOBS=, DFR=, and DFE= options should be used in PROC CALIS
to specify the effective number of observations in the input data set only.
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Assessment of Fit
In PROC CALIS, there are three main tools for assessing model fit:

• residuals for the fitted means or covariances

• overall model fit indices

• squared multiple correlations and determination coefficients

This section contains a collection of formulas for these assessment tools. The following notation is used:

• N for the total sample size

• k for the total number of independent groups in analysis

• p for the number of manifest variables

• t for the number of parameters to estimate

• ‚ for the t-vector of parameters, O‚ for the estimated parameters

• S D .sij / for the p � p input covariance or correlation matrix

• Nx D . Nxi / for the p-vector of sample means

• O† D †. O‚/ D . O�ij / for the predicted covariance or correlation matrix

• O� D . O�i / for the predicted mean vector

• ı for indicating the modeling of the mean structures

• W for the weight matrix

• fmin for the minimized function value of the fitted model

• dmin for the degrees of freedom of the fitted model

In multiple-group analyses, subscripts are used to distinguish independent groups or samples. For example,
N1; N2; : : : ; Nr ; : : : ; Nk denote the sample sizes for k groups. Similarly, notation such as pr , Sr , Nxr , O†r ,
O�r , ır , and Wr is used for multiple-group situations.
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Residuals in the Moment Matrices

Residuals indicate how well each entry or element in the mean or covariance matrix is fitted. Large residuals
indicate bad fit.

PROC CALIS computes four types of residuals and writes them to the OUTSTAT= data set when requested.

• raw residuals

sij � O�ij ; Nxi � O�i

for the covariance and mean residuals, respectively. The raw residuals are displayed whenever the
PALL, PRINT, or RESIDUAL option is specified.

• variance standardized residuals

sij � O�ij
p
si isjj

;
Nxi � O�i
p
si i

for the covariance and mean residuals, respectively. The variance standardized residuals are displayed
when you specify one of the following:

– the PALL, PRINT, or RESIDUAL option and METHOD=NONE, METHOD=ULS, or
METHOD=DWLS

– RESIDUAL=VARSTAND

The variance standardized residuals are equal to those computed by the EQS 3 program (Bentler 1995).

• asymptotically standardized residuals

sij � O�ij
p
vij;ij

;
Nxi � O�i
p
ui i

for the covariance and mean residuals, respectively; with

vij;ij D . O�1 � J1bCov. O‚/J01/ij;ij

ui i D . O�2 � J2bCov. O‚/J02/i i

where O�1 is the p2�p2 estimated asymptotic covariance matrix of sample covariances, O�2 is the p�p
estimated asymptotic covariance matrix of sample means, J1 is the p2 � t Jacobian matrix d†=d‚,
J2 is the p � t Jacobian matrix d�=d‚, and bCov. O‚/ is the t � t estimated covariance matrix of
parameter estimates, all evaluated at the sample moments and estimated parameter values. See the next
section for the definitions of O�1 and O�2. Asymptotically standardized residuals are displayed when
one of the following conditions is met:

– The PALL, the PRINT, or the RESIDUAL option is specified, and METHOD=ML,
METHOD=GLS, or METHOD=WLS, and the expensive information and Jacobian matri-
ces are computed for some other reason.

– RESIDUAL= ASYSTAND is specified.
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The asymptotically standardized residuals are equal to those computed by the LISREL 7 program
(Jöreskog and Sörbom 1988) except for the denominator in the definition of matrix O�1.

• normalized residuals

sij � O�ijq
. O�1/ij;ij

;
Nxi � O�iq
. O�2/i i

for the covariance and mean residuals, respectively; with O�1 as the p2 � p2 estimated asymptotic
covariance matrix of sample covariances; and O�2 as the p � p estimated asymptotic covariance matrix
of sample means.

Diagonal elements of O�1 and O�2 are defined for the following methods:

– GLS: . O�1/ij;ij D 1
.N�1/

.si isjj C s
2
ij / and . O�2/i i D 1

.N�1/
si i

– ML: . O�1/ij;ij D 1
.N�1/

. O�i i O�jj C O�
2
ij / and . O�2/i i D 1

.N�1/
O�i i

– WLS: . O�1/ij;ij D 1
.N�1/

Wij;ij and . O�2/i i D 1
.N�1/

si i

where W in the WLS method is the weight matrix for the second-order moments.

Normalized residuals are displayed when one of the following conditions is met:

– The PALL, PRINT, or RESIDUAL option is specified, and METHOD=ML, METHOD=GLS, or
METHOD=WLS, and the expensive information and Jacobian matrices are not computed for
some other reasons.

– RESIDUAL=NORM is specified.

The normalized residuals are equal to those computed by the LISREL VI program (Jöreskog and
Sörbom 1985) except for the definition of the denominator in computing matrix O�1.

For estimation methods that are not “best” generalized least squares estimators (Browne 1982, 1984), such as
METHOD=NONE, METHOD=ULS, or METHOD=DWLS, the assumption of an asymptotic covariance
matrix �1 of sample covariances does not seem to be appropriate. In this case, the normalized residuals
should be replaced by the more relaxed variance standardized residuals. Computation of asymptotically
standardized residuals requires computing the Jacobian and information matrices. This is computationally
very expensive and is done only if the Jacobian matrix has to be computed for some other reasons—that is, if
at least one of the following items is true:

• The default, PRINT, or PALL displayed output is requested, and neither the NOMOD nor NOSTDERR
option is specified.

• Either the MODIFICATION (included in PALL), PCOVES, or STDERR (included in default, PRINT,
and PALL output) option is requested or RESIDUAL=ASYSTAND is specified.

• The LEVMAR or NEWRAP optimization technique is used.

• An OUTMODEL= data set is specified without using the NOSTDERR option.

• An OUTEST= data set is specified without using the NOSTDERR option.
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Since normalized residuals use an overestimate of the asymptotic covariance matrix of residuals (the diagonals
of �1 and �2), the normalized residuals cannot be greater than the asymptotically standardized residuals
(which use the diagonal of the form � � JbCov. O‚/J0).

Together with the residual matrices, the values of the average residual, the average off-diagonal residual,
and the rank order of the largest values are displayed. The distributions of the normalized and standardized
residuals are displayed also.

Overall Model Fit Indices

Instead of assessing the model fit by looking at a number of residuals of the fitted moments, an overall model
fit index measures model fit by a single number. Although an overall model fit index is precise and easy to
use, there are indeed many choices of overall fit indices. Unfortunately, researchers do not always have a
consensus on the best set of indices to use in all occasions.

PROC CALIS produces a large number of overall model fit indices in the fit summary table. If you prefer
to display only a subset of these fit indices, you can use the ONLIST(ONLY)= option of the FITINDEX
statement to customize the fit summary table.

Fit indices are classified into three classes in the fit summary table of PROC CALIS:

• absolute or standalone Indices

• parsimony indices

• incremental indices

Absolute or Standalone Indices
These indices are constructed so that they measure model fit without comparing with a baseline model and
without taking the model complexity into account. They measure the absolute fit of the model.

• fit function or discrepancy function
The fit function or discrepancy function F is minimized during the optimization. See the section
“Estimation Criteria” on page 1463 for definitions of various discrepancy functions available in PROC
CALIS. For a multiple-group analysis, the fit function can be written as a weighted average of
discrepancy functions for k independent groups as:

F D

kX
rD1

arFr

where ar D
.Nj�1/

.N�k/
and Fr are the group weight and the discrepancy function for the rth group,

respectively. Notice that although the groups are assumed to be independent in the model, in general
Fr ’s are not independent when F is being minimized. The reason is that Fr ’s might have shared
parameters in‚ during estimation.

The minimized function value of F will be denoted as fmin , which is always positive, with small values
indicating good fit.
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• �2 test statistic
For the ML, GLS, and the WLS estimation, the overall �2 measure for testing model fit is:

�2 D .N � k/ � fmin

where fmin is the function value at the minimum, N is the total sample size, and k is the number of
independent groups. The associated degrees of freedom is denoted by dmin .

For the ML estimation, this gives the likelihood ratio test statistic of the specified structural model in
the null hypothesis against an unconstrained saturated model in the alternative hypothesis. The �2 test
is valid only if the observations are independent and identically distributed, the analysis is based on the
unstandardized sample covariance matrix S, and the sample size N is sufficiently large (Browne 1982;
Bollen 1989b; Jöreskog and Sörbom 1985). For ML and GLS estimates, the variables must also have
an approximately multivariate normal distribution.

In the output fit summary table of PROC CALIS, the notation “Prob > Chi-Square” means “the
probability of obtaining a greater �2 value than the observed value under the null hypothesis.” This
probability is also known as the p-value of the chi-square test statistic.

• adjusted �2 value (Browne 1982)
If the variables are p-variate elliptic rather than normal and have significant amounts of multivariate
kurtosis (leptokurtic or platykurtic), the �2 value can be adjusted to:

�2el l D
�2

�2

where �2 is the multivariate relative kurtosis coefficient.

• Z-test (Wilson and Hilferty 1931)
The Z-test of Wilson and Hilferty assumes a p-variate normal distribution:

Z D

3

q
�2

d
� .1 � 2

9d
/q

2
9d

where d is the degrees of freedom of the model. See McArdle (1988) and Bishop, Fienberg, and
Holland (1975, p. 527) for an application of the Z-test.

• critical N index (Hoelter 1983)
The critical N (Hoelter 1983) is defined as

CN D int.
�2crit
fmin

/

where �2crit is the critical chi-square value for the given d degrees of freedom and probability ˛ D 0:05,
and int() takes the integer part of the expression. See Bollen (1989b, p. 277). Conceptually, the
CN value is the largest number of observations that could still make the chi-square model fit statistic
insignificant if it were to apply to the actual sample fit function value fmin . Hoelter (1983) suggests
that CN should be at least 200; however, Bollen (1989b) notes that the CN value might lead to an
overly pessimistic assessment of fit for small samples.

Note that when you have a perfect model fit for your data (that is, fmin D 0) or a zero degree of
freedom for your model (that is, d = 0), CN is not computable.
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• root mean square residual (RMR)
For a single-group analysis, the RMR is the root of the mean squared residuals:

RMR D

vuut1

b
Œ

pX
i

iX
j

.sij � O�ij /2 C ı

pX
i

. Nxi � O�i /2�

where

b D
p.p C 1C 2ı/

2

is the number of distinct elements in the covariance matrix and in the mean vector (if modeled).

For multiple-group analysis, PROC CALIS uses the following formula for the overall RMR:

overall RMR D

vuuut kX
rD1

wrPk
rD1wr

Œ

pX
i

iX
j

.sij � O�ij /2 C ı

pX
i

. Nxi � O�i /2�

where

wr D
Nr � 1

N � k
br

is the weight for the squared residuals of the rth group. Hence, the weight wr is the product of group
size weight Nr�1

N�k
and the number of distinct moments br in the rth group.

• standardized root mean square residual (SRMR)

For a single-group analysis, the SRMR is the root of the mean of the standardized squared residuals:

SRMR D

vuut1

b
Œ

pX
i

iX
j

.sij � O�ij /2

si isjj
C ı

pX
i

. Nxi � O�i /2

si i
�

where b is the number of distinct elements in the covariance matrix and in the mean vector (if modeled).
The formula for b is defined exactly the same way as it appears in the formula for RMR.

Similar to the calculation of the overall RMR, an overall measure of SRMR in a multiple-group analysis
is a weighted average of the standardized squared residuals of the groups. That is,

overall SRMR D

vuuut kX
rD1

wrPk
rD1wr

Œ

pX
i

iX
j

.sij � O�ij /2

si isjj
C ı

pX
i

. Nxi � O�i /2

si i
�

where wr is the weight for the squared residuals of the rth group. The formula for wr is defined exactly
the same way as it appears in the formula for SRMR.

• goodness-of-fit index (GFI)
For a single-group analysis, the goodness-of-fit index for the ULS, GLS, and ML estimation methods
is:

GFI D 1 �
Tr..W�1.S � O†//2/C ı.Nx � O�/0W�1.Nx � O�/

Tr..W�1S/2/C ı Nx0W�1 Nx



Assessment of Fit F 1487

with W D I for ULS, W D S for GLS, and W D O†. For WLS and DWLS estimation,

GFI D 1 �
.u � O�/0W�1.u � O�/

u0W�1u

where u is the vector of observed moments and O� is the vector of fitted moments. When the mean struc-
tures are modeled, vectors u and O� contains all the nonredundant elements vecs.S/ in the covariance
matrix and all the means. That is,

u D .vecs0.S/; Nx0/0; O� D .vecs0. O†/; O�0/0

and the symmetric weight matrix W is of dimension p � .p C 3/=2. When the mean structures are
not modeled, vectors u and O� contains all the nonredundant elements vecs.S/ in the covariance matrix
only. That is,

u D vecs.S/; O� D vecs. O†/

and the symmetric weight matrix W is of dimension p � .p C 1/=2. In addition, for the DWLS
estimation, W is a diagonal matrix.

For a constant weight matrix W, the goodness-of-fit index is 1 minus the ratio of the minimum function
value and the function value before any model has been fitted. The GFI should be between 0 and 1.
The data probably do not fit the model if the GFI is negative or much greater than 1.

For a multiple-group analysis, individual GFIr ’s are computed for groups. The overall measure is a
weighted average of individual GFIr ’s, using weight ar D Nr�1

N�k
. That is,

overall GFI D
kX
rD1

arGFIr

Parsimony Indices
These indices are constructed so that the model complexity is taken into account when assessing model fit. In
general, models with more parameters (fewer degrees of freedom) are penalized.

• adjusted goodness-of-fit index (AGFI)
The AGFI is the GFI adjusted for the degrees of freedom d of the model,

AGFI D 1 �
c

d
.1 � GFI/

where

c D

kX
rD1

pk.pk C 1C 2ık/

2

computes the total number of elements in the covariance matrices and mean vectors for modeling. For
single-group analyses, the AGFI corresponds to the GFI in replacing the total sum of squares by the
mean sum of squares.
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CAUTION:

– Large p and small d can result in a negative AGFI. For example, GFI=0.90, p=19, and d=2 result
in an AGFI of –8.5.

– AGFI is not defined for a saturated model, due to division by d = 0.

– AGFI is not sensitive to losses in d.

The AGFI should be between 0 and 1. The data probably do not fit the model if the AGFI is negative
or much greater than 1. For more information, see Mulaik et al. (1989).

• parsimonious goodness-of-fit index (PGFI)
The PGFI (Mulaik et al. 1989) is a modification of the GFI that takes the parsimony of the model into
account:

PGFI D
dmin

d0
GFI

where dmin is the model degrees of freedom and d0 is the degrees of freedom for the independence
model. See the section “Incremental Indices” on page 1490 for the definition of independence model.
The PGFI uses the same parsimonious factor as the parsimonious normed Bentler-Bonett index (James,
Mulaik, and Brett 1982).

• RMSEA index (Steiger and Lind 1980; Steiger 1998)
The root mean square error of approximation (RMSEA) coefficient is:

� D
p
k

s
max.

fmin

dmin
�

1

.N � k/
; 0/

The lower and upper limits of the .1 � ˛/%-confidence interval are computed using the cumulative
distribution function of the noncentral chi-square distribution ˆ.xj�; d/. With x D .N � k/fmin , �L
satisfying ˆ.xj�L; dmin/ D 1 �

˛
2

, and �U satisfying ˆ.xj�U ; dmin/ D
˛
2

:

.�˛L I �˛U / D .
p
k

s
�L

.N � k/dmin
I
p
k

s
�U

.N � k/dmin
/

See Browne and Du Toit (1992) for more details. The size of the confidence interval can be set by the
option ALPHARMS=˛, 0 � ˛ � 1. The default is ˛ D 0:1, which corresponds to the 90% confidence
interval for the RMSEA.

• probability for test of close fit (Browne and Cudeck 1993)
The traditional exact �2 test hypothesis H0W � D 0 is replaced by the null hypothesis of close fit
H0W � � 0:05 and the exceedance probability P is computed as:

P D 1 �ˆ.xj��; dmin/

where x D .N � k/fmin and �� D 0:052.N � k/dmin=k. The null hypothesis of close fit is rejected
if P is smaller than a prespecified level (for example, P < 0.05).
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• ECVI: expected cross validation index (Browne and Cudeck 1993)
The following formulas for ECVI are limited to the case of single-sample analysis without mean
structures and with either the GLS, ML, or WLS estimation method. For other cases, ECVI is not
defined in PROC CALIS. For GLS and WLS, the estimator c of the ECVI is linearly related to AIC,
Akaike’s Information Criterion (Akaike 1974, 1987):

c D fmin C
2t

N � 1

For ML estimation, cML is used:

cML D fmin C
2t

N � p � 2

For GLS and WLS, the confidence interval .cLI cU / for ECVI is computed using the cumulative
distribution function ˆ.xj�; dmin/ of the noncentral chi-square distribution,

.cLI cU / D .
�L C p.p C 1/=2C t

.N � 1/
I
�U C p.p C 1/=2C t

.N � 1/
/

with x D .N � 1/fmin , ˆ.xj�U ; dmin/ D
˛
2

, and ˆ.xj�L; dmin/ D 1 �
˛
2

.

For ML, the confidence interval .c�LI c
�
U / for ECVI is:

.c�LI c
�
U / D .

��L C p.p C 1/=2C t

N � p � 2
I
��U C p.p C 1/=2C t

N � p � 2
/

where x D .N � p � 2/fmin , ˆ.xj��U ; dmin/ D
˛
2

and ˆ.xj��L; dmin/ D 1 � ˛
2

. See Browne
and Cudeck (1993). The size of the confidence interval can be set by the option ALPHAECV=˛,
0 � ˛ � 1. The default is ˛ D 0:1, which corresponds to the 90% confidence interval for the ECVI.

• Akaike’s information criterion (AIC) (Akaike 1974, 1987)
This is a criterion for selecting the best model among a number of candidate models. The model that
yields the smallest value of AIC is considered the best.

AIC D hC 2t

where h is the –2 times the likelihood function value for the FIML method or the �2 value for other
estimation methods.

• consistent Akaike’s information criterion (CAIC) (Bozdogan 1987)
This is another criterion, similar to AIC, for selecting the best model among alternatives. The model
that yields the smallest value of CAIC is considered the best. CAIC is preferred by some people to
AIC or the �2 test.

CAIC D hC .ln.N /C 1/t

where h is the –2 times the likelihood function value for the FIML method or the �2 value for other
estimation methods. Notice that N includes the number of incomplete observations for the FIML
method while it includes only the complete observations for other estimation methods.
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• Schwarz’s Bayesian criterion (SBC) (Schwarz 1978; Sclove 1987)
This is another criterion, similar to AIC, for selecting the best model. The model that yields the
smallest value of SBC is considered the best. SBC is preferred by some people to AIC or the �2 test.

SBC D hC ln.N /t

where h is the –2 times the likelihood function value for the FIML method or the �2 value for other
estimation methods. Notice that N includes the number of incomplete observations for the FIML
method while it includes only the complete observations for other estimation methods.

• McDonald’s measure of centrality (McDonald and Marsh 1988)

CENT D exp.�
.�2 � dmin/

2N
/

Incremental Indices
These indices are constructed so that the model fit is assessed through the comparison with a baseline model.
The baseline model is usually the independence model where all covariances among manifest variables are
assumed to be zeros. The only parameters in the independence model are the diagonals of covariance matrix.
If modeled, the mean structures are saturated in the independence model. For multiple-group analysis, the
overall independence model consists of component independence models for each group.

In the following, let f0 and d0 denote the minimized discrepancy function value and the associated degrees
of freedom, respectively, for the independence model; and fmin and dmin denote the minimized discrepancy
function value and the associated degrees of freedom, respectively, for the model being fitted in the null
hypothesis.

• Bentler comparative fit index (Bentler 1995)

CFI D 1 �
max..N � k/fmin � dmin ; 0/

max..N � k/fmin � dmin ;max..N � k/f0 � d0; 0/

• Bentler-Bonett normed fit index (NFI) (Bentler and Bonett 1980)

� D
f0 � fmin

f0

Mulaik et al. (1989) recommend the parsimonious weighted form called parsimonious normed fit index
(PNFI) (James, Mulaik, and Brett 1982).

• Bentler-Bonett nonnormed coefficient (Bentler and Bonett 1980)

� D
f0=d0 � fmin=dmin

f0=d0 � 1=.N � k/

See Tucker and Lewis (1973).

• normed index �1 (Bollen 1986)

�1 D
f0=d0 � fmin=dmin

f0=d0

�1 is always less than or equal to 1; �1 < 0 is unlikely in practice. See the discussion in Bollen
(1989a).
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• nonnormed index�2 (Bollen 1989a)

�2 D
f0 � fmin

f0 �
dmin
.N�k/

is a modification of Bentler and Bonett’s � that uses d and “lessens the dependence” on N. See the
discussion in (Bollen 1989b). �2 is identical to the IFI2 index of Mulaik et al. (1989).

• parsimonious normed fit index (James, Mulaik, and Brett 1982)
The PNFI is a modification of Bentler-Bonett’s normed fit index that takes parsimony of the model into
account,

PNFI D
dmin

d0

.f0 � fmin/

f0

The PNFI uses the same parsimonious factor as the parsimonious GFI of Mulaik et al. (1989).

Fit Indices and Estimation Methods
Note that not all fit indices are reasonable or appropriate for all estimation methods set by the METHOD=
option of the PROC CALIS statement. The availability of fit indices is summarized as follows:

• Adjusted (elliptic) chi-square and its probability are available only for METHOD=ML or GLS and
with the presence of raw data input.

• For METHOD=ULS or DWLS, probability of the chi-square value, RMSEA and its confidence
intervals, probability of close fit, ECVI and its confidence intervals, critical N index, Z-test, AIC,
CAIC, SBC, and measure of centrality are not appropriate and therefore not displayed.

Individual Fit Indices for Multiple Groups
When you compare the fits of individual groups in a multiple-group analysis, you can examine the residuals
of the groups to gauge which group is fitted better than the others. While examining residuals is good for
knowing specific locations with inadequate fit, summary measures like fit indices for individual groups would
be more convenient for overall comparisons among groups.

Although the overall fit function is a weighted sum of individual fit functions for groups, these individual
functions are not statistically independent. Therefore, in general you cannot partition the degrees of freedom
or �2 value according to the groups. This eliminates the possibility of breaking down those fit indices that
are functions of degrees of freedom or �2 for group comparison purposes. Bearing this fact in mind, PROC
CALIS computes only a limited number of descriptive fit indices for individual groups.

• fit function
The overall fit function is:

F D

kX
rD1

arFr

where ar D
.Nj�1/

.N�k/
and Fr are the group weight and the discrepancy function for group r, respectively.

The value of unweighted fit function Fr for the rth group is denoted by:

fr



1492 F Chapter 29: The CALIS Procedure

This fr value provides a measure of fit in the rth group without taking the sample size into account.
The large the fr , the worse the fit for the group.

• percentage contribution to the chi-square
The percentage contribution of group r to the chi-square is:

percentage contribution D arfr=fmin � 100%

where fr is the value of Fr with F minimized at the value fmin . This percentage value provides a
descriptive measure of fit of the moments in group r, weighted by its sample size. The group with the
largest percentage contribution accounts for the most lack of fit in the overall model.

• root mean square residual (RMR)
For the rth group, the total number of moments being modeled is:

g D
pr.pr C 1C 2ır/

2

where pr is the number of variables and ır is the indicator variable of the mean structures in the rth
group. The root mean square residual for the rth group is:

RMRr D

vuut 1

g
Œ

prX
i

iX
j

.ŒSr �ij � Œ O†r �ij /2 C ır
prX
i

.ŒNxr �i � Œ O�r �i /2�

• standardized root mean square residual (SRMR)
For the rth group, the standardized root mean square residual is:

SRMR D

vuut 1

g
Œ

prX
i

iX
j

.ŒSr �ij � Œ O†r �ij /2

ŒSr �i i ŒSr �jj
C ır

prX
i

.ŒNxr �i � Œ O�r �i /2
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• goodness-of-fit index (GFI)
For the ULS, GLS, and ML estimation, the goodness-of-fit index (GFI) for the rth group is:

GFI D 1 �
Tr..W�1r .Sr � O†r//2/C ır.Nxr � Our/0W�1r .Nxr � Our/

Tr..W�1r Sr/2/C ır Nx0rW�1r Nxr

with Wr D I for ULS, Wr D Sr for GLS, and Wr D
O†r . For the WLS and DWLS estimation,

GFI D 1 �
.ur � O�r/0W�1r .ur � O�r/

u0rW�1r ur

where ur is the vector of observed moments and O�r is the vector of fitted moments for the rth group
(r D 1; : : : ; k).

When the mean structures are modeled, vectors ur and O�r contain all the nonredundant elements
vecs.Sr/ in the covariance matrix and all the means, and Wr is the weight matrix for covariances
and means. When the mean structures are not modeled, ur , O�r , and Wr contain elements pertaining
to the covariance elements only. Basically, formulas presented here are the same as the case for a
single-group GFI. The only thing added here is the subscript r to denote individual group measures.
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• Bentler-Bonett normed fit index (NFI)
For the rth group, the Bentler-Bonett NFI is:

�r D
f0r � fr

f0r

where f0r is the function value for fitting the independence model to the rth group. The larger the
value of �r , the better is the fit for the group. Basically, the formula here is the same as the overall
Bentler-Bonett NFI. The only difference is that the subscript r is added to denote individual group
measures.

Squared Multiple Correlations and Determination Coefficients

In the section, squared multiple correlations for endogenous variables are defined. Squared multiple cor-
relation is computed for all of these five estimation methods: ULS, GLS, ML, WLS, and DWLS. These
coefficients are also computed as in the LISREL VI program of Jöreskog and Sörbom (1985). The DETAE,
DETSE, and DETMV determination coefficients are intended to be multivariate generalizations of the squared
multiple correlations for different subsets of variables. These coefficients are displayed only when you
specify the PDETERM option.

• R2 values corresponding to endogenous variables

R2 D 1 �
bEvar.y/cVar.y/

where y denotes an endogenous variable, cVar.y/ denotes its variance, and bEvar.y/ denotes its error (or
unsystematic) variance. The variance and error variance are estimated under the model.

• total determination of all equations

DETAE D 1 �
jbEcov.y;�/j

jbCov.y;�/j

where the y vector denotes all manifest dependent variables, the � vector denotes all latent dependent
variables, bCov.y;�/ denotes the covariance matrix of y and �, and bEcov.y;�/ denotes the error
covariance matrix of y and �. The covariance matrices are estimated under the model.

• total determination of latent equations

DETSE D 1 �
jbEcov.�/j

jbCov.�/j

where the � vector denotes all latent dependent variables, bCov.�/ denotes the covariance matrix of �,
and bEcov.�/ denotes the error covariance matrix of �. The covariance matrices are estimated under
the model.

• total determination of the manifest equations

DETMV D 1 �
jbEcov.y/j

jbCov.y/j
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where the y vector denotes all manifest dependent variables, bCov.y/ denotes the covariance matrix of
y, bEcov.y/ denotes the error covariance matrix of y, and jAj denotes the determinant of matrix A. All
the covariance matrices in the formula are estimated under the model.

You can also use the DETERM statement to request the computations of determination coefficients for any
subsets of dependent variables.

Case-Level Residuals, Outliers, Leverage Observations, and Residual
Diagnostics

Residual M-Distances and Outlier Detection

In structural equation modeling, residual analysis has been developed traditionally for the elements in the
moment matrices such as mean vector and covariance matrix. See the section “Residuals in the Moment
Matrices” on page 1482 for a detailed description of this type of residual. In fact, almost all fit indices in the
field were developed more or less based on measuring the overall magnitude of the residuals in the moment
matrices. See the section “Assessment of Fit” on page 1481 for examples of fit indices such as standardized
root mean square residual (SRMR), adjusted goodness-of-fit index (AGFI), and so on.

However, recent research advances make it possible to study case-level or observational-level residuals.
Although case-level residuals have not yet been used to assess overall model fit, they are quite useful as
model diagnostic tools. This section describes how case-level residuals are computed and applied to the
detection of outliers, the identification of leverage observations, and various residual diagnostics.

The main difficulty of case-level residual analysis in general structural equation modeling is the presence
of latent variables in the model. Another difficulty is the involvement of multivariate responses. Both are
nonissues in multiple regression analysis because there is no latent variable and there is only a single response
variable. Hence, a good starting point for this section is to explain how PROC CALIS handles these two
issues in general structural equation modeling. The residual diagnostic techniques described in the following
draw heavily from Yuan and Hayashi (2010).

Latent variables in models are not observed, and their values must be predicted from the data. Although the
indeterminacy of factor scores is a well-known issue, it does not mean that factor scores cannot be reasonably
derived or predicted from the observed data. One of the factor score estimation methods is Bartlett’s method.
Suppose for a factor model thatƒ represents a p�m factor matrix and ‰ represents a p�p error covariance
matrix, where p is the number of manifest variables and m is the number of factors. Bartlett’s factor scores
are defined by the formula

f D .ƒ0‰�1ƒ/�1ƒ0‰�1y

where f represents an m � 1 random vector of factors and y represents a p � 1 random vector of manifest
variables. Yuan and Hayashi (2010) generalize Bartlett’s formulas to a certain class of structural equation
models. Essentially, they provide formulas that the quantities ƒ and ‰ are computable functions from the
parameter estimates of the structural equation models. PROC CALIS adopts their formulas with an extension
due to Yung and Yuan (2013). With the estimation of factor scores, residuals in structural equation models
can be computed as if all values of factors are present. Hence, case-level residual analysis becomes possible.

With the possibility of a multivariate residual vector in structural equation models, a summary measure
for the overall magnitude of the residuals in observations is needed. Yuan and Hayashi (2010) consider
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the Mahalanobis distance (M-distance) of case-level residuals. For observation i with residual vector Oei of
dimension h � 1, the residual M-distance of observation i is defined as

dri D

q
.L Oei/0.L�OeL0/�1.L Oei/

where L (.h � q/ � h) is a matrix that reduces Oe to .h � q/ independent components, q is the number of
independent factors to be estimated in the structural equation model, and �Oe is the covariance matrix of Oe.
The reduction of the residual vector into independent components is necessary when the number of factors q
is not zero in the model. For q > 0, �Oe is not invertible and cannot be used in computing the M-distances for
residuals. Hence, the covariance matrix L�OeL0 of independent components LOe is used instead. In practice, Oei
and �Oe are evaluated at the estimated parameter values. L can be computed after �Oe is estimated.

Because the residual M-distance dri is nonnegative and is a distance measure, the interpretation of dri is
straightforward—the larger it is, the farther away observation i is from the origin of the residuals. Therefore,
the residual M-distance dri can be used to detect outliers. The criterion for defining outliers is based on a
selection of an ˛-level for the residual M-distance distribution. Under the multivariate normality distribution
of the residuals, Yuan and Hayashi (2010) find that dri is distributed as a �r variate (that is, the square root
of the corresponding �2r variate), where r D h � q is the degrees of freedom of the distribution. Therefore,
a probability-based criterion for outlier detection can be used. An observation is an outlier according to
the ˛-level criterion if its residual M-distance dri is located within the upper ˛ � 100% region of the �r
distribution. Mathematically, an observation with dri satisfying the following criterion is an outlier if

prob.�r � dri/ < ˛

The larger the ˛, the more liberal the criterion for detecting outliers. By default, PROC CALIS sets ˛ to 0.01.
You can override this value by using the ALPHAOUT= option.

Leverage Observations

Leverage observations are those with large M-distances in the exogenous variables of the model. For example,
in the context of a confirmatory factor model, Yuan and Hayashi (2010) define the M-distance of exogenous
latent factors dfi by the formula

dfi D

q
fi0.�f /�1fi

where fi is the Bartlett’s factor scores for observation i and �f is the covariance matrix of the factor scores.
See Yuan and Hayashi (2010) for the formulas for fi and �f . PROC CALIS uses a more general formula
to compute the M-distance of exogenous observed variables xi and latent variables fi in structural equation
models. That is, with exogenous variables vi D .xi fi/0, the leverage M-distance dvi is computed as

dvi D

q
vi0.�v/�1vi

where �v is the covariance matrix of the exogenous variables. Leverage observations are those judged to
have large leverage M-distances.

As with outlier detection, you need to set a criterion for declaring leverage observations. Specifically, an
observation with dvi satisfying the following criterion is a leverage observation (or leverage point):

prob.�c � dvi/ < ˛
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where �c is the square root of the �2c variate, with c being the dimension of vi. The larger the ˛, the more
liberal the criterion for declaring leverage observations. The default ˛ value is 0.01. You can override this
value by using the ALPHALEV= option.

Unlike the outliers that are usually judged as undesirable in models, leverage observations might or might not
be bad for model estimation. Simply stated, a leverage observation is bad if it is also an outlier according to
its residual M-distance value dri . Otherwise, it is a “good” leverage observation and should not be removed
in model estimation.

Residual Diagnostics

Case-level residuals analysis can be very useful in detecting outliers, anomalies in residual distributions,
and nonlinear functional relationships. All these techniques are graphical in nature and can be found in
most textbooks in regression analysis (see, for example, Belsley, Kuh, and Welsch 1980). PROC CALIS
provides these graphical analyses in the context of structural equation modeling. However, because PROC
CALIS deals with multivariate responses and predictors in general, in some residual analysis the residuals
are measured in terms of M-distances, which are always positive. PROC CALIS can produce the following
graphical plots (with their ODS graph names in parentheses) for residual diagnostics:

• Residual histogram (CaseResidualHistogram): the distribution of residual M-distances is shown
as a histogram. The residual M-distances are theoretically distributed as a �-variate. Use the
PLOTS=CRESHIST option to request this plot.

• Residual by leverage plot (ResidualByLeverage): the observations are plotted in a two-dimensional
space according to their M-distances for residuals and leverages. Criteria for classifying outliers and
leverage observations are shown in the plot so that outliers and leverage observations are located in
well-defined regions of the two-dimensional space. Use the PLOTS=RESBYLEV option to request
this plot.

• Residual by predicted values (ResidualByPredicted): the residuals (not the M-distances) of a dependent
observed variable are plotted against the predicted values. This is also called the residual on fit plot. If
the relationship of the dependent variable to the predictors is truly linear in the model, the residuals
should be randomly dispersed in the plot. If the residuals show some systematic pattern with the
predicted values, unexplained nonlinear relationships of the dependent observed variable with other
variables or heteroscedasticity of error variance might exist. Use the PLOTS=RESBYPRED option to
request this plot.

• Residual by quantile plot or Q-Q plot (ResidualByQuantile): the residual M-distances are plotted
against their theoretical quantiles. Observations that depart significantly from the theoretical line (with
slope=1) are problematic observations. Use the PLOTS=QQPLOT option to request this plot.

• Residual percentile by theoretical percentile plot or P-P plot (ResPercentileByExpPercentile): the
observed residual M-distance percentiles are plotted against the theoretical percentiles. Observations
that depart significantly from the theoretical line (with slope=1) are problematic observations. Use the
PLOTS=PPPLOT option to request this plot.
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Residual Diagnostics with Robust Estimation

With the presence of multiple outliers in a data set, estimation might suffer from the so-called masking effect.
This problem refers to the fact that some prominent outliers in the data might have biased the estimation so
that usual residual diagnostic tools might fail to detect some less prominent outliers. As a result, subsequent
analyses that are based on the data set with outliers removed might actually not be free from the effects of the
outliers.

Robust estimation deals with the outliers differently. Instead of relying on diagnostic tools for detection and
removal of outliers, robust methods downweight the outliers during the estimation so that the undesirable
outlier effect on estimation is minimized effectively. No outliers need to be removed during or after the
robust estimation. Hence, the masking effect is not an issue. In addition, with the use of robust estimation,
residual diagnostics for the purpose of outlier removal become a redundant concept. In such a scenario,
outlier diagnostics are more important for the purpose of identification than for removal. You can use the
ROBUST=RES option (or the default ROBUST option) to downweight the outliers during model estimation.

Similarly, detecting leverage observations might also suffer from the masking effect. That is, some leverage
observations might not be detected if the diagnostic results are based on model estimation that includes the
leverage observations themselves. Unfortunately, the ROBUST=RES option downweights only the residual
outliers and does not downweight the leverage observations during estimation. However, the ROBUST=SAT
option does downweight outlying observations in all variable dimensions, and hence it could be used if the
masking effect of leverage observations is a concern.

Following the recommendation by Yuan and Hayashi (2010), PROC CALIS uses an eclectic approach
to compute the residual and leverage M-distances. That is, when a robust estimation is requested (using
either the ROBUST=SAT or ROBUST=RES option) with case-level residual analysis (using the RESIDUAL
option), the residual M-distances are computed from the robust estimation results that downweight the model
outliers only (that is, the procedure invoked by the ROBUST=RES(E) or RES(F) option); but the leverage
M-distances are computed from the robust estimation results that downweight the outlying observations in
all variable dimensions (that is, the procedure invoked by the ROBUST=SAT option). Consequently, both
the residual M-distances and the leverage M-distances calculated from this eclectic approach are free from
the respective masking effects—and this is true for any robust estimation methods implemented in PROC
CALIS.

It is important to note that this eclectic approach applies only to the computations of the residual and leverage
M-distances. The parameter estimates, fit statistics, and the case-level residuals that are displayed in the
residual on fit plots are still obtained from the specific robust method requested. Table 29.10 summarizes the
robust methods that PROC CALIS uses to compute the parameter estimates, fit statistics, case-level residuals,
and residual and leverage M-distances with different robust options.

Table 29.10 Robust Methods for the Computations of Various
Results

Robust Option Specified

ROBUST=SAT ROBUST=RES(E) ROBUST=RES(F)

Estimates ROBUST=SAT ROBUST=RES(E) ROBUST=RES(F)
Model fit ROBUST=SAT ROBUST=RES(E) ROBUST=RES(F)
Case-level residuals ROBUST=SAT ROBUST=RES(E) ROBUST=RES(F)
Residual M-distances ROBUST=RES(E) ROBUST=RES(E) ROBUST=RES(F)
Leverage M-distances ROBUST=SAT ROBUST=SAT ROBUST=SAT
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One important implication from this table is that ROBUST=SAT and ROBUST=RES(E) lead to the same
residual and leverage diagnostic results, which are all free from masking effects.

In conclusion, even though outlier removal is unnecessary with robust estimation, case-level residual
diagnostics are still useful for identifying outliers and leverage observations. Needless to say, other residual
diagnostics such as residual M-distance distribution, Q-Q plots, P-P plots, and residual on fit plots are useful
whether you use robust estimation or not.

Total, Direct, and Indirect Effects
Most structural equation models involve the specification of the effects of variables on each other. Whenever
you specify equations in the LINEQS model, paths in the PATH model, path coefficient parameters in the
RAM model, variable-factor relations in the FACTOR model, or regression coefficients in model matrices of
the LISMOD model, you are specifying direct effects of predictor variables on outcome variables. All direct
effects are represented by the associated regression coefficients, either fixed or free, in the specifications. You
can examine the direct effect estimates easily in the output for model estimation.

However, direct effects are not the only effects that are important. In some cases, the indirect effects or total
effects are of interest too. For example, suppose Self-Esteem is an important factor of Job Performance in
your theory. Although it does not have a direct effect on Job Performance , it affects Job Performance through
its influences on Motivation and Endurance. Also, Motivation has a direct effect on Endurance in your theory.
The following path diagram summarizes such a theory:

Figure 29.23 Direct and Indirect Effects of Self-Esteem on Job Performance

Self-Esteem

Motivation Endurance

Job Performance

Clearly, each path in the diagram represents a direct effect of a predictor variable on an outcome variable.
Less apparent are the total and indirect effects implied by the same path diagram. Despite this, interesting
theoretical questions regarding the total and indirect effects can be raised in such a model. For example,
even though there is no direct effect of Self-Esteem on Job Performance, what is its indirect effect on Job
Performance? In addition to its direct effect on Job Performance, Motivation also has an indirect effect on Job
Performance via its effect on Endurance. So, what is the total effect of Motivation on Job Performance and
what portion of this total effect is indirect? The TOTEFF option of the CALIS statement and the EFFPART
statement are designed to address these questions. By using the TOTEFF option or the EFFPART statement,
PROC CALIS can compute the total, direct, and indirect effects of any sets of predictor variables on any sets
of outcome variables. In this section, formulas for computing these effects are presented.
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Formulas for Computing Total, Direct and Indirect Effects

No matter which modeling language is used, variables in a model can be classified into three groups. The
first group is the so-called dependent variables, which serve as outcome variables at least once in the model.
The other two groups consist of the remaining independent variables, which never serve as outcome variables
in the model. The second group consists of independent variables that are unsystematic sources such as error
and disturbance variables. The third group consists of independent variables that are systematic sources only.

Any variable, no matter which group it falls into, can have effects on the first group of variables. By definition,
however, effects of variables in the first group on the other two groups do not exist. Because the effects
of unsystematic sources in the second group are treated as residual effects on the first group of dependent
variables, these effects are trivial in the sense that they always serve as direct effects only. That is, the effects
from the second group of unsystematic sources partition trivially—total effects are always the same as the
direct effects for this group. Therefore, for the purpose of effect analysis or partitioning, only the first group
(dependent variables) and the third group (systematic independent variables) are considered.

Define u to be the set of nu dependent variables in the first group and w to be the set of nw systematic
independent variables in the third group. Variables in both groups can be manifest or latent. All variables in
the effect analysis is thus represented by the vector .u0;w0/0.

The .nuCnw/� .nuCnw/matrix D of direct effects refers to the path coefficients from all column variables
to the row variables. This matrix is represented by:

D D
�
ˇ 

0 0

�
where ˇ is an .nu � nu/ matrix for direct effects of dependent variables on dependent variables and  is an
.nu � nw/ matrix for direct effects of systematic independent variables on dependent variables. By definition,
there should not be any direct effects on independent variables, and therefore the lower submatrices of D are
null. In addition, by model restrictions the diagonal elements of matrix ˇ must be zeros.

Correspondingly, the .nu C nw/ � .nu C nw/ matrix T of total effects of column variables on the row
variables is computed by:

T D
�
.I � ˇ/�1 � I .I � ˇ/�1

0 0

�
Finally, the .nu C nw/ � .nu C nw/ matrix � of indirect effects of column variables on the row variables is
computed by the difference between T and D as:

� D

�
.I � ˇ/�1 � I � ˇ .I � ˇ/�1 � 

0 0

�
In PROC CALIS, any subsets of D, T, and� can be requested via the specification in the EFFPART statement.
All you need to do is to specify the sets of column variables (variables that have effects on others) and row
variables (variables that receive the effects, direct or indirect). Specifications of the column and row variables
are done conveniently by specifying variable names—no matrix terminology is needed. This feature is very
handy if you have some focused subsets of effects that you want to analyze a priori. See the EFFPART
statement on page 1257 for details about specifications.



1500 F Chapter 29: The CALIS Procedure

Stability Coefficient of Reciprocal Causation

For recursive models (that is, models without cyclical paths of effects), using the preceding formulas for
computing the total effect and the indirect effect is appropriate without further restrictions. However, for
non-recursive models (that is, models with reciprocal effects or cyclical effects) the appropriateness of the
preceding formulas for effect computations is restricted to situations with the convergence of the total effects.

A necessary and sufficient condition for the convergence of total effects (with or without cyclical paths) is
when all eigenvalues, complex or real, of the ˇ matrix fall into a unit circle (see Bentler and Freeman 1983).
Equivalently, define the stability coefficient of reciprocal causation as the largest length (modulus) of the
eigenvalues of the ˇ matrix. A stability coefficient less than one would ensure that all eigenvalues, complex or
real, of the ˇ matrix fall into a unit circle. Hence, stability coefficient that is less than one is a necessary and
sufficient condition for the convergence of the total effects, which in turn substantiates the appropriateness of
total and indirect effect computations. Whenever effect analysis or partitioning is requested, PROC CALIS
will check the appropriateness of effect computations by evaluating the stability coefficient of reciprocal
causation. If the stability coefficient is greater than one, computations of the total and indirect effects will not
be done.

Standardized Solutions
Standardized solutions are useful when you want to compare parameter values that are measured on quite
different scales. PROC CALIS provides standardized solutions routinely. In standardizing a solution,
parameters are classified into five groups:

• path coefficients, regression coefficients, or direct effects
With each parameter ˛ in this group, there is an associated outcome variable and a predictor variable.
Denote the predicted variance of the outcome variable by �2o and the variance of the predictor variable
by �2p, the standardized parameter ˛� is:

˛� D ˛
�p

�o

• fixed ones for the path coefficients attached to error or disturbance terms
These fixed values are unchanged in standardization.

• variances and covariances among exogenous variables, excluding errors and disturbances
Let �ij be the covariance between variables i and j. In this notation, �i i is the variance of variable i.
The standardized covariance ��ij is:

��ij D
�ij

p
�i i�jj

When i D j , ��i i takes the value of 1 for all i. Also, ��ij is the correlation between the ith and jth
variables.

• variances and covariances among errors or disturbances
Denote the error covariance parameter as �ij so that �i i represents the variance parameter of error
variable i. Associated with each error or disturbance variable i is a unique outcome variable. Let the
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variance of such an outcome variable be �i i . In the standardized solution, the error covariance �ij is
rescaled as:

��ij D
�ij

p
�i i�jj

Notice that when i D j , ��i i is not standardized to 1 in general. In fact, the error (disturbance) variance
is simply rescaled by the reciprocal of the variance of the associated dependent variable. As a result, the
rescaled error (disturbance) variance represents the proportion of variation of the dependent variable
due to the unsystematic source. By the same token, ��ij does not represent the correlation between
errors i and j. It is a rescaled covariance of the errors involved.

• intercepts and means of variables
These parameters are fixed zeros in the standardized solution.

While formulas for the standardized solution are useful in computing the parameter values in the standardized
solution, it is conceptually more useful to explain how variables are being transformed in the standardization
process. The following provides a summary of the transformation process:

• Observed and latent variables, excluding errors or disturbances, are centered and then divided by their
corresponding standard deviations. Therefore, in the standardized solution, all these variables will
have variance equal to 1. In other words, these variables are truly standardized.

• Errors or disturbances are divided by the standard deviations of the corresponding outcome variables.
In the standardized solution, these variables will not have variance equal to 1 in general. However,
the rescaled error variances represent the proportion of unexplained or unsystematic variance of the
corresponding outcome variables. Therefore, errors or disturbances in the standardized solution are
simply rescaled but not standardized.

Standardized total, direct, and indirect effects are computed using formulas presented in the section “Total,
Direct, and Indirect Effects” on page 1498, but with the standardized parameter values substituted into the
formulas.

Although parameter values associated with different scales are made more comparable in the standardized
solution, a precaution should be mentioned. In the standardized solution, the original constraints on parameters
in the unstandardized solution are usually lost. These constraints, however, might underscore some important
theoretical position that needs to be maintained in the model. Destroying these constraints in the standardized
solution means that interpretations or comparisons of parameter values in the standardized solution are made
without maintaining the original theoretical position. You must judge whether such a departure from the
original constraints poses conceptual difficulties for interpreting the standardized solution.

Modification Indices
While fitting structural equation models is mostly a confirmatory analytic procedure, it does not prevent you
from exploring what might have been a better model given the data. After fitting your theoretical structural
equation model, you might want to modify the original model in order to do one of the following:
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• add free parameters to improve the model fit significantly

• reduce the number of parameters without affecting the model fit too much

The first kind of model modification can be achieved by using the Lagrange multiplier (LM) test indices.
Parameters that have the largest LM indices would increase the model fit the most. In general, adding more
parameters to your model improves the overall model fit, as measured by those absolute or standalone fit
indices (see the section “Overall Model Fit Indices” on page 1484 for more details). However, adding
parameters liberally makes your model more prone to sampling errors. It also makes your model more
complex and less interpretable in most cases. A disciplined use of LM test indices is highly recommended.
In addition to the model fit improvement indicated by the LM test indices, you should also consider the
theoretical significance when adding particular parameters. See Example 29.28 for an illustration of the use
of LM test indices for improving model fit.

The second kind of model modification can be achieved by using the Wald statistics. Parameters that are
not significant in your model may be removed from the model without affecting the model fit too much. In
general, removing parameters from your model decreases the model fit, as measured by those absolute or
standalone fit indices (see the section “Overall Model Fit Indices” on page 1484 for more details). However,
for just a little sacrifice in model fit, removing non-significant parameters increases the simplicity and
precision of your model, which is the virtue that any modeler should look for.

Whether adding parameters by using the LM test indices or removing unnecessary parameters by the Wald
statistics, you should not treat your modified model as if it were your original hypothesized model. That
is, you should not publish your modified model as if it were hypothesized a priori. It is perfectly fine to
use modification indices to gain additional insights for future research. But if you want to publish your
modified model together with your original model, you should report the modification process that leads to
your modified model. Theoretical justifications of the modified model should be supplemented if you want to
make strong statements to support your modified model. Whenever possible, the best practice is to show
reasonable model fit of the modified model with new data.

To modify your model either by LM test indices or Wald statistics, you can use the MODIFICATION or MOD
option in the PROC CALIS statement. To customize the LM tests by setting specific regions of parameters,
you can use the LMTESTS statements. PROC CALIS computes and displays the following default set of
modification indices:

• univariate Lagrange multiplier (LM) test indices for parameters in the model
These are second-order approximations of the decrease in the �2 value that would result from allowing
the fixed parameter values in the model to be freed to estimate. LM test indices are ranked within
their own parameter regions in the model. The ones that suggest greatest model improvements (that is,
greatest �2 drop) are ranked first. Depending on the type of your model, the set of possible parameter
regions varies. For example, in a RAM model, modification indices are ranked in three different
parameter regions for the covariance structures: path coefficients, variances of and covariances among
exogenous variables, and the error variances and covariances. In addition to the value of the Lagrange
multiplier, the corresponding p-value (df = 1) and the approximate change of the parameter value are
displayed.

If you use the LMMAT option in the LMTESTS statement, LM test indices are shown as elements in
model matrices. Not all elements in a particular model matrix will have LM test indices. Elements that
are already free parameters in the model do not have LM test indices. Instead, the parameter names are
shown. Elements that are model restricted values (for example, direct path from a variable to itself
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must be zero) are labeled Excluded in the matrix output. When you customize your own regions of
LM tests, some elements might also be excluded from a custom set of LM tests. These elements are
also labeled as Excluded in the matrix output. If an LM test for freeing a parameter would result in a
singular information matrix, the corresponding element in the matrix is labeled as Singular.

• univariate Lagrange multiplier test indices for releasing equality constraints
These are second-order approximations of the decrease in the �2 value that would result from the
release of equality constraints. Multiple equality constraints containing n > 2 parameters are tested
successively in n steps, each assuming the release of one of the equality-constrained parameters. The
expected change of the parameter values of the separated parameter and the remaining parameter
cluster are displayed, too.

• univariate Lagrange multiplier test indices for releasing active boundary constraints
These are second-order approximations of the decrease in the �2 value that would result from the
release of the active boundary constraints specified in the BOUNDS statement.

• stepwise multivariate Wald statistics for constraining free parameters to 0
These are second-order approximations of the increases in �2 value that would result from constraining
free parameters to zero in a stepwise fashion. In each step, the parameter that would lead to the smallest
increase in the multivariate �2 value is set to 0. Besides the multivariate �2 value and its p-value, the
univariate increments are also displayed. The process stops when the univariate p-value is smaller than
the specified value in the SLMW= option, of which the default value is 0.05.

All of the preceding tests are approximations. You can often obtain more accurate tests by actually fitting
different models and computing likelihood ratio tests. For more details about the Wald and the Lagrange
multiplier test, see MacCallum (1986), Buse (1982), Bentler (1986), or Lee (1985). Note that relying solely
on the LM tests to modify your model can lead to unreliable models that capitalize purely on sampling errors.
See MacCallum, Roznowski, and Necowitz (1992) for the use of LM tests.

For large model matrices, the computation time for the default modification indices can considerably exceed
the time needed for the minimization process.

The modification indices are not computed for unweighted least squares or diagonally weighted least squares
estimation.

Missing Values and the Analysis of Missing Patterns
If the DATA= data set contains raw data (rather than a covariance or correlation matrix), in general obser-
vations with missing values for any variables in the analysis are omitted from the computations. The only
exception is with METHOD=FIML. Incomplete observations with at least one nonmissing variables in the
analysis are also used for the estimation.

If a covariance or correlation matrix is read, missing values are allowed as long as every pair of variables has
at least one nonmissing value. Unlike the raw data input, METHOD=FIML does not allow missing values in
the covariance or correlation matrix.

When you use METHOD=FIML, PROC CALIS provide several analyses on the missing patterns of the raw
input data sets. First, PROC CALIS shows the coverage results for the means and covariances. The coverage
results refer to the proportions of data present for computing the means and the covariances. Because
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distinct missing patterns in the data sets are possible, the coverage proportions for the individual means and
covariances could vary. Average coverage proportions of the means and covariances give you an overall
idea about the missingness (or the lack of). In order to help locate the problematic means and covariances
that have the low coverage, PROC CALIS shows the rank orders of the smallest coverages of mean and
covariance elements. The number of smallest coverages shown for the means is equal to half of the total
number of variables. The number of smallest coverages shown for the covariances is equal to half of the total
number of the distinct elements in the lower triangular of the covariance matrix. However, in both cases at
most 10 smallest coverages would be shown.

Second, PROC CALIS ranks the most frequent missing patterns in the data set (the nonmissing pattern is
excluded in the ranking). Because the number of missing patterns could be quite large, PROC CALIS displays
only a limited number of most frequent missing patterns in the output. You can use the MAXMISSPAT= and
the TMISSPAT= options to control the number of missing patterns to display. See these options for details.

Third, PROC CALIS shows the means of the most frequent missing patterns, along with the means for the
nonmissing pattern for comparison.

See Example 29.15 for an illustration of the use of the full information maximum likelihood method and the
analysis of missing patterns. For examples and details about the FIML method and its missing data treatment
in PROC CALIS, see Yung and Zhang (2011); Zhang and Yung (2011).

Measures of Multivariate Kurtosis
In many applications, the manifest variables are not even approximately multivariate normal. If this happens
to be the case with your data set, the default generalized least squares and maximum likelihood estimation
methods are not appropriate, and you should compute the parameter estimates and their standard errors by an
asymptotically distribution-free method, such as the WLS estimation method. If your manifest variables are
multivariate normal, then they have a zero relative multivariate kurtosis, and all marginal distributions have
zero kurtosis (Browne 1982). If your DATA= data set contains raw data, PROC CALIS computes univariate
skewness and kurtosis and a set of multivariate kurtosis values. By default, the values of univariate skewness
and kurtosis are corrected for bias (as in PROC UNIVARIATE), but using the BIASKUR option enables
you to compute the uncorrected values also. The values are displayed when you specify the PROC CALIS
statement option KURTOSIS.

In the following formulas, N denotes the sample size and p denotes the number of variables.

• corrected variance for variable zj

�2j D
1

N � 1

NX
i

.zij � Nzj /
2

• uncorrected univariate skewness for variable zj

1.j / D
N
PN
i .zij � Nzj /

3q
NŒ
PN
i .zij � Nzj /

2�3

• corrected univariate skewness for variable zj

1.j / D
N

.N � 1/.N � 2/

PN
i .zij � Nzj /

3

�3j
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• uncorrected univariate kurtosis for variable zj

2.j / D
N
PN
i .zij � Nzj /

4

Œ
PN
i .zij � Nzj /

2�2
� 3

• corrected univariate kurtosis for variable zj

2.j / D
N.N C 1/

.N � 1/.N � 2/.N � 3/

PN
i .zij � Nzj /

4

�4j
�

3.N � 1/2

.N � 2/.N � 3/

• Mardia’s multivariate kurtosis

2 D
1

N

NX
i

Œ.zi � Nz/
0S�1.zi � Nz/�2 � p.p C 2/

where S is the biased sample covariance matrix with N as the divisor.

• relative multivariate kurtosis

�2 D
2 C p.p C 2/

p.p C 2/

• normalized multivariate kurtosis

�0 D
2p

8p.p C 2/=N

• Mardia based kappa

�1 D
2

p.p C 2/

• mean scaled univariate kurtosis

�2 D
1

3p

pX
j

2.j /

• adjusted mean scaled univariate kurtosis

�3 D
1

3p

pX
j

�2.j /

with

�2.j / D

8̂<̂
:
2.j / ; if 2.j / >

�6
pC2

�6
pC2

; otherwise
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If variable Zj is normally distributed, the uncorrected univariate kurtosis 2.j / is equal to 0. If Z has
an p-variate normal distribution, Mardia’s multivariate kurtosis 2 is equal to 0. A variable Zj is called
leptokurtic if it has a positive value of 2.j / and is called platykurtic if it has a negative value of 2.j /. The
values of �1, �2, and �3 should not be smaller than the following lower bound (Bentler 1985):

O� �
�2

p C 2

PROC CALIS displays a message if �1, �2, or �3 falls below the lower bound.

If weighted least squares estimates (METHOD=WLS or METHOD=ADF) are specified and the weight
matrix is computed from an input raw data set, the CALIS procedure computes two more measures of
multivariate kurtosis.

• multivariate mean kappa

�4 D
1

m

pX
i

iX
j

jX
k

kX
l

O�ij;kl � 1

where

O�ij;kl D
sij;kl

sij skl C siksjl C silsjk

and m D p.p C 1/.p C 2/.p C 3/=24 is the number of elements in the vector sij;kl (Bentler 1985).

• multivariate least squares kappa

�5 D
s04s2

s02s2
� 1

where s2 is the vector of the elements in the denominator of O� (Bentler 1985) and s4 is the vector of
the sij;kl , which is defined as

sij;kl D
1

N

NX
rD1

.zri � Nzi /.zrj � Nzj /.zrk � Nzk/.zrl � Nzl/

The occurrence of significant nonzero values of Mardia’s multivariate kurtosis 2 and significant amounts
of some of the univariate kurtosis values 2.j / indicate that your variables are not multivariate normal
distributed. Violating the multivariate normality assumption in (default) generalized least squares and
maximum likelihood estimation usually leads to the wrong approximate standard errors and incorrect fit
statistics based on the �2 value. In general, the parameter estimates are more stable against violation of the
normal distribution assumption. For more details, see Browne (1974, 1982, 1984).

Initial Estimates
Each optimization technique requires a set of initial values for the parameters. To avoid local optima, the
initial values should be as close as possible to the globally optimal solution. You can check for local optima
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by running the analysis with several different sets of initial values; the RANDOM= option in the PROC
CALIS statement is useful in this regard.

Except for the case of exploratory FACTOR model, you can specify initial estimates manually for all different
types of models. If you do not specify some of the initial estimates and the RANDOM= option is not used,
PROC CALIS will use a combination of good strategic methods to compute initial estimates for your model.

These initial estimation methods are used in PROC CALIS:

– two-stage least squares estimation

– instrumental variable method (Hägglund 1982; Jennrich 1987)

– approximate factor analysis method

– ordinary least squares estimation

– estimation method of McDonald (McDonald and Hartmann 1992)

– observed moments of manifest exogenous variables

The choice of initial estimation methods is dependent on the data and on the model. In general, it is difficult
to tell in advance which initial estimation methods will be used for a given analysis. However, PROC CALIS
displays the methods used to obtain initial estimates in the output. Notice that none of these initial estimation
methods can be applied to the COSAN model because of the general formulation of the COSAN model. If
you do not provide initial parameter estimates for the COSAN model, the default values or random values are
used (see the START= and the RANDOM= options).

Poor initial values can cause convergence problems, especially with maximum likelihood estimation. Suf-
ficiently large positive initial values for variance estimates (as compared with the covariance estimates)
might help prevent a nonnegative definite initial predicted covariance model matrix from happening. If
maximum likelihood estimation fails to converge, it might help to use METHOD=LSML, which uses the
final estimates from an unweighted least squares analysis as initial estimates for maximum likelihood. Or
you can fit a slightly different but better-behaved model and produce an OUTMODEL= data set, which can
then be modified in accordance with the original model and used as an INMODEL= data set to provide initial
values for another analysis.

If you are analyzing a covariance or scalar product matrix, be sure to take into account the scales of the
variables. The default initial values might be inappropriate when some variables have extremely large or
small variances.

Use of Optimization Techniques
No algorithm for optimizing general nonlinear functions exists that can always find the global optimum for
a general nonlinear minimization problem in a reasonable amount of time. Since no single optimization
technique is invariably superior to others, PROC CALIS provides a variety of optimization techniques that
work well in various circumstances. However, you can devise problems for which none of the techniques in
PROC CALIS can find the correct solution. All optimization techniques in PROC CALIS use O.n2/ memory
except the conjugate gradient methods, which use only O.n/ of memory and are designed to optimize
problems with many parameters.
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The PROC CALIS statement NLOPTIONS can be especially helpful for tuning applications with nonlinear
equality and inequality constraints on the parameter estimates. Some of the options available in NLOPTIONS
can also be invoked as PROC CALIS options. The NLOPTIONS statement can specify almost the same
options as the SAS/OR NLP procedure.

Nonlinear optimization requires the repeated computation of the following:

• the function value (optimization criterion)

• the gradient vector (first-order partial derivatives)

• for some techniques, the (approximate) Hessian matrix (second-order partial derivatives)

• values of linear and nonlinear constraints

• the first-order partial derivatives (Jacobian) of nonlinear constraints

For the criteria used by PROC CALIS, computing the gradient takes more computer time than computing the
function value, and computing the Hessian takes much more computer time and memory than computing the
gradient, especially when there are many parameters to estimate. Unfortunately, optimization techniques that
do not use the Hessian usually require many more iterations than techniques that do use the (approximate)
Hessian, and so they are often slower. Techniques that do not use the Hessian also tend to be less reliable (for
example, they might terminate at local rather than global optima).

The available optimization techniques are displayed in the following table and can be chosen by the
OMETHOD=name option.

OMETHOD= Optimization Technique

LEVMAR Levenberg-Marquardt method
TRUREG Trust-region method
NEWRAP Newton-Raphson method with line search
NRRIDG Newton-Raphson method with ridging
QUANEW Quasi-Newton methods (DBFGS, DDFP, BFGS, DFP)
DBLDOG Double-dogleg method (DBFGS, DDFP)
CONGRA Conjugate gradient methods (PB, FR, PR, CD)

The following table shows, for each optimization technique, which derivatives are needed (first-order or
second-order) and what kind of constraints (boundary, linear, or nonlinear) can be imposed on the parameters.

Derivatives Constraints
OMETHOD= First Order Second Order Boundary Linear Nonlinear

LEVMAR x x x x -
TRUREG x x x x -
NEWRAP x x x x -
NRRIDG x x x x -
QUANEW x - x x x
DBLDOG x - x x -
CONGRA x - x x -

The Levenberg-Marquardt, trust-region, and Newton-Raphson techniques are usually the most reliable,
work well with boundary and general linear constraints, and generally converge after a few iterations to a
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precise solution. However, these techniques need to compute a Hessian matrix in each iteration. Computing
the approximate Hessian in each iteration can be very time- and memory-consuming, especially for large
problems (more than 200 parameters, depending on the computer used). For large problems, a quasi-Newton
technique, especially with the BFGS update, can be far more efficient.

For a poor choice of initial values, the Levenberg-Marquardt method seems to be more reliable.

If memory problems occur, you can use one of the conjugate gradient techniques, but they are generally
slower and less reliable than the methods that use second-order information.

There are several options to control the optimization process. You can specify various termination criteria.
You can specify the GCONV= option to specify a relative gradient termination criterion. If there are active
boundary constraints, only those gradient components that correspond to inactive constraints contribute to
the criterion. When you want very precise parameter estimates, the GCONV= option is useful. Other criteria
that use relative changes in function values or parameter estimates in consecutive iterations can lead to early
termination when active constraints cause small steps to occur. The small default value for the FCONV=
option helps prevent early termination. Using the MAXITER= and MAXFUNC= options enables you to
specify the maximum number of iterations and function calls in the optimization process. These limits
are especially useful in combination with the INMODEL= and OUTMODEL= options; you can run a few
iterations at a time, inspect the results, and decide whether to continue iterating.

Nonlinearly Constrained QN Optimization

The algorithm used for nonlinearly constrained quasi-Newton optimization is an efficient modification of
Powell’s Variable Metric Constrained WatchDog (VMCWD) algorithm (Powell 1978a, b, 1982a, b) A similar
but older algorithm (VF02AD) is part of the Harwell library. Both VMCWD and VF02AD use Fletcher’s
VE02AD algorithm (also part of the Harwell library) for positive definite quadratic programming. The PROC
CALIS QUANEW implementation uses a quadratic programming subroutine that updates and downdates
the approximation of the Cholesky factor when the active set changes. The nonlinear QUANEW algorithm
is not a feasible point algorithm, and the value of the objective function might not necessarily decrease
(minimization) or increase (maximization) monotonically. Instead, the algorithm tries to reduce a linear
combination of the objective function and constraint violations, called the merit function.

The following are similarities and differences between this algorithm and VMCWD:

• A modification of this algorithm can be performed by specifying VERSION=1, which replaces the
update of the Lagrange vector � with the original update of Powell (1978a, b), which is used in
VF02AD. This can be helpful for some applications with linearly dependent active constraints.

• If the VERSION= option is not specified or VERSION=2 is specified, the evaluation of the Lagrange
vector � is performed in the same way as Powell (1982a, b) describes.

• Instead of updating an approximate Hessian matrix, this algorithm uses the dual BFGS (or DFP) update
that updates the Cholesky factor of an approximate Hessian. If the condition of the updated matrix gets
too bad, a restart is done with a positive diagonal matrix. At the end of the first iteration after each
restart, the Cholesky factor is scaled.

• The Cholesky factor is loaded into the quadratic programming subroutine, automatically ensuring
positive definiteness of the problem. During the quadratic programming step, the Cholesky factor of
the projected Hessian matrix Z0

k
GZk and the QT decomposition are updated simultaneously when the

active set changes. See Gill et al. (1984) for more information.
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• The line-search strategy is very similar to that of Powell (1982a, b). However, this algorithm does not
call for derivatives during the line search; hence, it generally needs fewer derivative calls than function
calls. The VMCWD algorithm always requires the same number of derivative and function calls. It
was also found in several applications of VMCWD that Powell’s line-search method sometimes uses
steps that are too long during the first iterations. In those cases, you can use the INSTEP= option
specification to restrict the step length ˛ of the first iterations.

• The watchdog strategy is similar to that of Powell (1982a, b). However, this algorithm does not return
automatically after a fixed number of iterations to a former better point. A return here is further delayed
if the observed function reduction is close to the expected function reduction of the quadratic model.

• Although Powell’s termination criterion still is used (as FCONV2), the QUANEW implementation
uses two additional termination criteria (GCONV and ABSGCONV).

This algorithm is automatically invoked when you specify the NLINCON statement. The nonlinear QUANEW
algorithm needs the Jacobian matrix of the first-order derivatives (constraints normals) of the constraints:

.rci / D .
@ci

@xj
/; i D 1; : : : ; nc; j D 1; : : : ; n

where nc is the number of nonlinear constraints for a given point x.

You can specify two update formulas with the UPDATE= option:

• UPDATE=DBFGS performs the dual BFGS update of the Cholesky factor of the Hessian matrix. This
is the default.

• UPDATE=DDFP performs the dual DFP update of the Cholesky factor of the Hessian matrix.

This algorithm uses its own line-search technique. All options and parameters (except the INSTEP= option)
controlling the line search in the other algorithms do not apply here. In several applications, large steps in the
first iterations are troublesome. You can specify the INSTEP= option to impose an upper bound for the step
size ˛ during the first five iterations. The values of the LCSINGULAR=, LCEPSILON=, and LCDEACT=
options (which control the processing of linear and boundary constraints) are valid only for the quadratic
programming subroutine used in each iteration of the nonlinear constraints QUANEW algorithm.

Optimization and Iteration History

The optimization and iteration histories are displayed by default because it is important to check for possible
convergence problems. The optimization history includes the following summary of information about the
initial state of the optimization:

• the number of constraints that are active at the starting point, or more precisely, the number of
constraints that are currently members of the working set. If this number is followed by a plus sign,
there are more active constraints, of which at least one is temporarily released from the working set
due to negative Lagrange multipliers.

• the value of the objective function at the starting point
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• if the (projected) gradient is available, the value of the largest absolute (projected) gradient element

• for the TRUREG and LEVMAR subroutines, the initial radius of the trust region around the starting
point

The optimization history ends with some information concerning the optimization result:

• the number of constraints that are active at the final point, or more precisely, the number of constraints
that are currently members of the working set. If this number is followed by a plus sign, there are more
active constraints, of which at least one is temporarily released from the working set due to negative
Lagrange multipliers.

• the value of the objective function at the final point

• if the (projected) gradient is available, the value of the largest absolute (projected) gradient element

• other information specific to the optimization technique

The iteration history generally consists of one line of displayed output containing the most important
information for each iteration.

The iteration history always includes the following:

• the iteration number

• the number of iteration restarts

• the number of function calls

• the number of active constraints

• the value of the optimization criterion

• the difference between adjacent function values

• the maximum of the absolute gradient components that correspond to inactive boundary constraints

An apostrophe trailing the number of active constraints indicates that at least one of the active constraints is
released from the active set due to a significant Lagrange multiplier.

For the Levenberg-Marquardt technique (LEVMAR), the iteration history also includes the following
information:

• an asterisk trailing the iteration number when the computed Hessian approximation is singular and
consequently ridged with a positive lambda value. If all or the last several iterations show a singular
Hessian approximation, the problem is not sufficiently identified. Thus, there are other locally optimal
solutions that lead to the same optimum function value for different parameter values. This implies
that standard errors for the parameter estimates are not computable without the addition of further
constraints.
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• the value of the Lagrange multiplier (lambda). This value is 0 when the optimum of the quadratic
function approximation is inside the trust region (a trust-region-scaled Newton step can be performed)
and is greater than 0 when the optimum of the quadratic function approximation is located at the
boundary of the trust region (the scaled Newton step is too long to fit in the trust region and a quadratic
constraint optimization is performed). Large values indicate optimization difficulties. For a nonsingular
Hessian matrix, the value of lambda should go to 0 during the last iterations, indicating that the
objective function can be well approximated by a quadratic function in a small neighborhood of the
optimum point. An increasing lambda value often indicates problems in the optimization process.

• the value of the ratio � (rho) between the actually achieved difference in function values and the
predicted difference in the function values on the basis of the quadratic function approximation. Values
much less than 1 indicate optimization difficulties. The value of the ratio � indicates the goodness of
the quadratic function approximation. In other words, � << 1 means that the radius of the trust region
has to be reduced; a fairly large value of � means that the radius of the trust region does not need to be
changed. And a value close to or greater than 1 means that the radius can be increased, indicating a
good quadratic function approximation.

For the Newton-Raphson technique (NRRIDG), the iteration history also includes the following information:

• the value of the ridge parameter. This value is 0 when a Newton step can be performed, and it is
greater than 0 when either the Hessian approximation is singular or a Newton step fails to reduce the
optimization criterion. Large values indicate optimization difficulties.

• the value of the ratio � (rho) between the actually achieved difference in function values and the
predicted difference in the function values on the basis of the quadratic function approximation. Values
much less than 1.0 indicate optimization difficulties.

For the Newton-Raphson with line-search technique (NEWRAP), the iteration history also includes the
following information:

• the step size ˛ (alpha) computed with one of the line-search algorithms

• the slope of the search direction at the current parameter iterate. For minimization, this value should be
significantly negative. Otherwise, the line-search algorithm has difficulty reducing the function value
sufficiently.

For the trust-region technique (TRUREG), the iteration history also includes the following information:

• an asterisk after the iteration number when the computed Hessian approximation is singular and
consequently ridged with a positive lambda value.

• the value of the Lagrange multiplier (lambda). This value is zero when the optimum of the quadratic
function approximation is inside the trust region (a trust-region-scaled Newton step can be performed)
and is greater than zero when the optimum of the quadratic function approximation is located at
the boundary of the trust region (the scaled Newton step is too long to fit in the trust region and a
quadratically constrained optimization is performed). Large values indicate optimization difficulties.
As in Gay (1983), a negative lambda value indicates the special case of an indefinite Hessian matrix
(the smallest eigenvalue is negative in minimization).
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• the value of the radius � of the trust region. Small trust-region radius values combined with large
lambda values in subsequent iterations indicate optimization problems.

For the quasi-Newton (QUANEW) and conjugate gradient (CONGRA) techniques, the iteration history also
includes the following information:

• the step size (alpha) computed with one of the line-search algorithms

• the descent of the search direction at the current parameter iterate. This value should be significantly
smaller than 0. Otherwise, the line-search algorithm has difficulty reducing the function value
sufficiently.

Frequent update restarts (rest) of a quasi-Newton algorithm often indicate numerical problems related to
required properties of the approximate Hessian update, and they decrease the speed of convergence. This
can happen particularly if the ABSGCONV= termination criterion is too small—that is, when the requested
precision cannot be obtained by quasi-Newton optimization. Generally, the number of automatic restarts
used by conjugate gradient methods are much higher.

For the nonlinearly constrained quasi-Newton technique, the iteration history also includes the following
information:

• the maximum value of all constraint violations,

conmax D max.jci .x/j W ci .x/ < 0/

• the value of the predicted function reduction used with the GCONV and FCONV2 termination criteria,

pred D jg.x.k//s.x.k//j C
mX
iD1

j�ici .x
.k//j

• the step size ˛ of the quasi-Newton step. Note that this algorithm works with a special line-search
algorithm.

• the maximum element of the gradient of the Lagrange function,

lfgmax D rxL.x
.k/; �.k//

D rxf .x
.k// �

mX
iD1

�
.k/
i rxci .x

.k//

For the double dogleg technique, the iteration history also includes the following information:

• the parameter � of the double-dogleg step. A value � D 0 corresponds to the full (quasi) Newton step.

• the slope of the search direction at the current parameter iterate. For minimization, this value should
be significantly negative.
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Line-Search Methods

In each iteration k, the (dual) quasi-Newton, hybrid quasi-Newton, conjugate gradient, and Newton-Raphson
minimization techniques use iterative line-search algorithms that try to optimize a linear, quadratic, or cubic
approximation of the nonlinear objective function f of n parameters x along a feasible descent search direction
s.k/ as follows:

f .x.kC1// D f .x.k/ C ˛.k/s.k//

by computing an approximately optimal scalar ˛.k/ > 0. Since the outside iteration process is based only on
the approximation of the objective function, the inside iteration of the line-search algorithm does not have
to be perfect. Usually, it is satisfactory that the choice of ˛ significantly reduces (in a minimization) the
objective function. Criteria often used for termination of line-search algorithms are the Goldstein conditions
(Fletcher 1987).

Various line-search algorithms can be selected by using the LIS= option on page 1218. The line-search
methods LIS=1, LIS=2, and LIS=3 satisfy the left-hand-side and right-hand-side Goldstein conditions
(Fletcher 1987).

The line-search method LIS=2 seems to be superior when function evaluation consumes significantly less
computation time than gradient evaluation. Therefore, LIS=2 is the default value for Newton-Raphson, (dual)
quasi-Newton, and conjugate gradient optimizations.

Restricting the Step Length

Almost all line-search algorithms use iterative extrapolation techniques that can easily lead to feasible points
where the objective function f is no longer defined (resulting in indefinite matrices for ML estimation) or is
difficult to compute (resulting in floating point overflows). Therefore, PROC CALIS provides options that
restrict the step length or trust region radius, especially during the first main iterations.

The inner product g0s of the gradient g and the search direction s is the slope of f .˛/ D f .xC ˛s/ along the
search direction s with step length ˛. The default starting value ˛.0/ D ˛.k;0/ in each line-search algorithm
(min˛>0 f .xC ˛s/) during the main iteration k is computed in three steps:

1. Use either the difference df D jf .k/ � f .k�1/j of the function values during the last two consecutive
iterations or the final stepsize value ˛_ of the previous iteration k – 1 to compute a first value ˛.0/1 .

• Using the DAMPSTEP< r > option:

˛
.0/
1 D min.1; r˛_/

The initial value for the new step length can be no greater than r times the final step length ˛_ of
the previous iteration. The default is r = 2.

• Not using the DAMPSTEP option:

˛
.0/
1 D

8<:
step if 0:1 � step � 10
10 if step > 10
0:1 if step < 0:1

with

step D
�

df =jg0sj if jg0sj � �max.100df ; 1/
1 otherwise
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This value of ˛.0/1 can be too large and can lead to a difficult or impossible function evaluation,
especially for highly nonlinear functions such as the EXP function.

2. During the first five iterations, the second step enables you to reduce ˛.0/1 to a smaller starting value
˛
.0/
2 using the INSTEP=r option:

˛
.0/
2 D min.˛.0/1 ; r/

After more than five iterations, ˛.0/2 is set to ˛.0/1 .

3. The third step can further reduce the step length by

˛
.0/
3 D min.˛.0/2 ;min.10; u//

where u is the maximum length of a step inside the feasible region.

The INSTEP=r option lets you specify a smaller or larger radius of the trust region used in the first iteration
by the trust-region, double-dogleg, and Levenberg-Marquardt algorithms. The default initial trust region
radius is the length of the scaled gradient (Moré 1978). This default length for the initial trust region radius
corresponds to the default radius factor of r = 1. This choice is successful in most practical applications of
the TRUREG, DBLDOG, and LEVMAR algorithms. However, for bad initial values used in the analysis of a
covariance matrix with high variances or for highly nonlinear constraints (such as using the EXP function) in
your SAS programming statements, the default start radius can result in arithmetic overflows. If this happens,
you can try decreasing values of INSTEP=r (0 < r < 1), until the iteration starts successfully. A small factor r
also affects the trust region radius of the next steps because the radius is changed in each iteration by a factor
0 < c � 4 depending on the � ratio. Reducing the radius corresponds to increasing the ridge parameter �
that produces smaller steps directed closer toward the gradient direction.

Computational Problems

First Iteration Overflows

Analyzing a covariance matrix that includes high variances in the diagonal and using bad initial estimates for
the parameters can easily lead to arithmetic overflows in the first iterations of the minimization algorithm.
The line-search algorithms that work with cubic extrapolation are especially sensitive to arithmetic overflows.
If this occurs with quasi-Newton or conjugate gradient minimization, you can specify the INSTEP= option
to reduce the length of the first step. If an arithmetic overflow occurs in the first iteration of the Levenberg-
Marquardt algorithm, you can specify the INSTEP= option to reduce the trust region radius of the first
iteration. You also can change the minimization technique or the line-search method. If none of these help,
you can consider doing the following:

• scaling the covariance matrix

• providing better initial values

• changing the model
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No Convergence of Minimization Process

If convergence does not occur during the minimization process, perform the following tasks:

• If there are negative variance estimates, you can do either of the following:

– Specify the BOUNDS statement to obtain nonnegative variance estimates.

– Specify the HEYWOOD option, if the FACTOR statement is specified.

• Change the estimation method to obtain a better set of initial estimates. For example, if you use
METHOD=ML, you can do either of the following:

– Change to METHOD=LSML.

– Run some iterations with METHOD=DWLS or METHOD=GLS, write the results in an OUT-
MODEL= data set, and use the results as initial values specified by an INMODEL= data set in a
second run with METHOD=ML.

• Change the optimization technique. For example, if you use the default OMETHOD=LEVMAR, you
can do either of the following:

– Change to OMETHOD=QUANEW or to OMETHOD=NEWRAP.

– Run some iterations with OMETHOD=CONGRA, write the results in an OUTMODEL= data
set, and use the results as initial values specified by an INMODEL= data set in a second run with
a different OMETHOD= technique.

• Change or modify the update technique or the line-search algorithm or both when using
OMETHOD=QUANEW or OMETHOD=CONGRA. For example, if you use the default update
formula and the default line-search algorithm, you can do any or all of the following:

– Change the update formula with the UPDATE= option.

– Change the line-search algorithm with the LIS= option.

– Specify a more precise line search with the LSPRECISION= option, if you use LIS=2 or LIS=3.

• Add more iterations and function calls by using the MAXIT= and MAXFU= options.

• Change the initial values. For many categories of model specifications, PROC CALIS computes an
appropriate set of initial values automatically. However, for some of the model specifications (for
example, structural equations with latent variables on the left-hand side and manifest variables on the
right-hand side), PROC CALIS might generate very obscure initial values. In these cases, you have to
set the initial values yourself.

– Increase the initial values of the variance parameters by one of the following ways:

* Set the variance parameter values in the model specification manually.

* Use the DEMPHAS= option to increase all initial variance parameter values.

– Use a slightly different, but more stable, model to obtain preliminary estimates.

– Use additional information to specify initial values, for example, by using other SAS software like
the FACTOR, REG, SYSLIN, and MODEL (SYSNLIN) procedures for the modified, unrestricted
model case.
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Unidentified Model

The parameter vector‚ in the structural model

† D †.‚/

is said to be identified in a parameter space G, if

†.‚/ D †. Q‚/; Q‚ 2 G

implies ‚ D Q‚. The parameter estimates that result from an unidentified model can be very far from the
parameter estimates of a very similar but identified model. They are usually machine dependent. Do not use
parameter estimates of an unidentified model as initial values for another run of PROC CALIS.

Singular Predicted Covariance Model Matrix

Sometimes you might inadvertently specify models with singular predicted covariance model matrices (for
example, by fixing diagonal elements to zero). In such cases, you cannot compute maximum likelihood
estimates (the ML function value F is not defined). Since singular predicted covariance model matrices can
also occur temporarily in the minimization process, PROC CALIS tries in such cases to change the parameter
estimates so that the predicted covariance model matrix becomes positive definite. This process does not
always work well, especially if there are fixed instead of free diagonal elements in the predicted covariance
model matrices. A famous example where you cannot compute ML estimates is a component analysis with
fewer components than given manifest variables. See the section “FACTOR Statement” on page 1258 for
more details. If you continue to obtain a singular predicted covariance model matrix after changing initial
values and optimization techniques, then your model might be specified so that ML estimates cannot be
computed.

Saving Computing Time

For large models, the most computing time is needed to compute the modification indices. If you do not
really need the Lagrange multipliers or multiple Wald test indices (the univariate Wald test indices are the
same as the t values), using the NOMOD option can save a considerable amount of computing time.

Predicted Covariance Matrices with Negative Eigenvalues

A covariance matrix cannot have negative eigenvalues, since a negative eigenvalue means that some linear
combination of the variables has negative variance. PROC CALIS displays a warning if the predicted
covariance matrix has negative eigenvalues but does not actually compute the eigenvalues. Sometimes this
warning can be triggered by 0 or very small positive eigenvalues that appear negative because of numerical
error. If you want to be sure that the predicted covariance matrix you are fitting can be considered to be a
variance-covariance matrix, you can use the SAS/IML command VAL=EIGVAL(U) to compute the vector
VAL of eigenvalues of matrix U.

Negative R2 Values

The estimated squared multiple correlationsR2 of the endogenous variables are computed using the estimated
error variances:

R2i D 1 �
2var.�i /
2var.�i /
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When 2var.�i / > 2var.�i /, R2i is negative. This might indicate poor model fit or R square is an inappropriate
measure for the model. For the latter case, for example, negative R square might be due to cyclical
(nonrecursive) paths in the model so that the R square interpretation is not appropriate.

Displayed Output
The output of PROC CALIS includes the following:

• a list of basic modeling information such as: the data set, the number of records read and used in
the raw data set, the number of observations assumed by the statistical analysis, and the model type.
When a multiple-group analysis is specified, the groups and their corresponding models are listed. This
output assumes at least the PSHORT option.

• a list of all variables in the models. This output is displayed by default or by the PINITIAL option. It
will not be displayed when you use the PSHORT or the PSUMMARY option.

Depending on the modeling language, the variable lists vary, as shown in the following:

– COSAN: a list of the observed variables

– FACTOR: a list of the variables and the factors

– LINEQS, PATH, and RAM: a list of the endogenous and exogenous variables specified in the
model

– LISMOD: a list of x-, y-, �-, and �- variables specified in the model

– MSTRUCT: a list of the manifest variables specified in the model

• initial model specification. This output is displayed by default or by the PINITIAL option. It will not
be displayed when you use the PSHORT or the PSUMMARY option.

Depending on the modeling language, the sets of output vary, as shown in the following:

– COSAN: matrix equations for the covariance and mean structures, dimensions of the model
matrices, and types and transformations of the model matrices. The initial values for free
parameters, the fixed values, and the parameter names are also displayed in the matrices.

– FACTOR: factor loading matrix, factor covariance matrix, intercepts, factor means, and error
variances as specified initially in the model. The initial values for free parameters, the fixed
values, and the parameter names are also displayed.

– LINEQS: linear equations, variance and covariance parameters, and mean parameters as specified
initially in the model. The initial values for free parameters, the fixed values, and the parameter
names are also displayed.

– LISMOD: all model matrices as specified initially in the model. The initial values for free
parameters, the fixed values, and the parameter names are also displayed.

– MSTRUCT: initial covariance matrix and mean vectors, with parameter names and initial values
displayed.
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– PATH: the path list, variance and covariance parameters, intercept and mean parameters as
specified initially in the model. The initial values for free parameters, the fixed values, and the
parameter names are also displayed.

– RAM: a list of parameters, their types, names, and initial values.

• mean and standard deviation of each manifest variable if you specify the SIMPLE option, as well as
skewness and kurtosis if the DATA= data set is a raw data set and you specify the KURTOSIS option.

• various coefficients of multivariate kurtosis and the numbers of observations that contribute most to
the normalized multivariate kurtosis if the DATA= data set is a raw data set and the KURTOSIS option
is used or you specify at least the PRINT option. See the section “Measures of Multivariate Kurtosis”
on page 1504 for more information.

• covariance coverage, variable coverage, average coverage of covariances and means, rank orders of
the variable (mean) and covariance coverage, most frequent missing patterns in the input data set,
and the means of the missing patterns when there are incomplete observations (with some missing
values in the analysis variables) in the input raw data set and when you use METHOD=FIML or
METHOD=LSFIML for estimation.

• covariance or correlation matrix to be analyzed and the value of its determinant if you specify the
output option PCORR or PALL. A zero determinant indicates a singular data matrix. In this case, the
generalized least squares estimates with default weight matrix S and maximum likelihood estimates
cannot be computed.

• robust covariance matrix and its determinant and robust mean vector if you specify the output option
PCORR or PALL for robust estimation with the ROBUST option. Raw data input is required.

• the weight matrix W or its inverse is displayed if GLS, WLS, or DWLS estimation is used and you
specify the PWEIGHT or PALL option.

• initial estimation methods for generating initial estimates. This output is displayed by default. It will
not be displayed when you use the PSHORT or the PSUMMARY option.

• vector of parameter names and initial values and gradients. This output is displayed by default, unless
you specify the PSUMMARY or NOPRINT option.

• special features of the optimization technique chosen if you specify at least the PSHORT option.

• optimization history if at least the PSHORT option is specified. For more details, see the section “Use
of Optimization Techniques” on page 1507.

• specific output requested by options in the NLOPTIONS statement; for example, parameter estimates,
gradient, constraints, projected gradient, Hessian, projected Hessian, Jacobian of nonlinear constraints,
estimated covariance matrix of parameter estimates, and information matrix. Note that the estimated
covariance of parameter estimates and the information matrix are not printed for the ULS and DWLS
estimation methods.

• fit summary table with various model fit test statistics or fit indices, and some basic modeling infor-
mation. For the listing of fit indices and their definitions, see the section “Overall Model Fit Indices”
on page 1484. Note that for ULS and DWLS estimation methods, many of those fit indices that are
based on model fit �2 are not displayed. See the section “Overall Model Fit Indices” on page 1484 for
details. This output can be suppressed by the NOPRINT option.
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• fit comparison for multiple-group analysis. See the section “Individual Fit Indices for Multiple Groups”
on page 1491 for the fit indices for group comparison. This output can be suppressed by the NOPRINT
option.

• the predicted covariance matrix and its determinant and mean vector, if you specify the output option
PCORR or PALL.

• outlier, leverage, and case-level residual analysis if you specify the RESIDUAL option (or at least the
PRINT option) with raw data input.

• leverage and outlier plot, quantile and percentile plots of residual M-distances, distribution of residual
M-distances, and residual on fit plots if you request ODS Graphics by using the relevant PLOTS=
option.

• residual and normalized residual matrix if you specify the RESIDUAL option or at least the PRINT
option. The variance standardized or asymptotically standardized residual matrix can be displayed also.
The average residual and the average off-diagonal residual are also displayed. Note that normalized or
asymptotically standardized residuals are not applicable for the ULS and DWLS estimation methods.

See the section “Residuals in the Moment Matrices” on page 1482 for more details.

• rank order of the largest normalized residuals if you specify the RESIDUAL option or at least the
PRINT option.

• bar chart of the normalized residuals if you specify the RESIDUAL option or at least the PRINT
option.

• plotting of smoothed density functions of residuals if you request ODS Graphics by the relevant
PLOTS= option.

• equations of linear dependencies among the parameters used in the model specification if the informa-
tion matrix is recognized as singular at the final solution.

• the (unstandardized) estimation results for all types of models and the standardized results for all but
the COSAN models. Except for ULS or DWLS estimates, the approximate standard errors, t values,
and p values are also displayed. This output is displayed by default or if you specify the PESTIM
option or at least the PSHORT option. If you specify the CI option, confidence intervals are also
displayed.

Depending on the modeling language, the sets of output vary, as shown in the following:

– COSAN: all model matrices in the model.

– FACTOR: factor loading matrix, rotation matrix, rotated factor loading matrix (if rotation
requested), factor covariance matrix, intercepts, factor means, and error variances in the model.
Factor rotation matrix is printed for the unstandardized solution.

– LINEQS: linear equations, effects in equations, variance and covariance parameters, and mean
parameters in the model.

– LISMOD: all model matrices in the model.

– MSTRUCT: covariance matrix and mean vectors.

– PATH: the path list, variance and covariance parameters, intercept and mean parameters.

– RAM: a list of parameters, their types, names, and initial values.
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• squared multiple correlations table which displays the error variance, total variance, and the squared
multiple correlation of each endogenous variable in the model. The total variances are the diagonal
elements of the predicted covariance matrix. This output is displayed if you specify the PESTIM
option or at least the PSHORT option.

• the total determination of all equations, the total determination of the latent equations, and the total
determination of the manifest equations if you specify the PDETERM or the PALL option. See the
section “Assessment of Fit” on page 1481 for more details. If you specify subsets of variables in the
DETERM statements, the corresponding determination coefficients will also be shown. If one of the
determinants in the formula for computing the determination coefficient is zero, the corresponding
coefficient is displayed as the missing value ‘.’.

• the matrix of estimated covariances among the latent variables in the model if you specify the
PLATCOV option or at least the PRINT option.

• the matrix of estimated covariances between latent and manifest variables in the model if you specify
the PLATCOV option or at least the PRINT option.

• the vector of estimated means for the latent and manifest variables in the model if you specify the
PLATCOV option or at least the PRINT option.

• the matrix FSR of latent variable scores regression coefficients if you specify the PLATCOV option or
at least the PRINT option. The FSR matrix is a generalization of Lawley and Maxwell (1971, p. 109)
factor scores regression matrix,

FSR D O†yx O†�1xx

where O†xx is the p � p predicted covariance matrix among manifest variables and O†yx is the m � p
matrix of the predicted covariances between latent and manifest variables, with p being the number of
manifest variables, and m being the number of latent variables. You can multiply the observed values
by this matrix to estimate the scores of the latent variables used in your model.

• stability coefficient of reciprocal causation if you request the effect analysis by using the EFFPART or
TOTEFF option, and you must not use the NOPRINT option.

• the matrices for the total, direct, and indirect effects if you specify the EFFPART or TOTEFF option
or at least the PRINT option, and you must not use the NOPRINT option. Unstandardized and
standardized effects are printed in separate tables. Standard errors for the all estimated effects are
also included in the output. Additional tables for effects are available if you request specialized effect
analysis in the EFFPART statements.

• the matrix of rotated factor loadings and the orthogonal transformation matrix if you specify the
ROTATE= and PESTIM options or at least the PSHORT options. This output is available for the
FACTOR models.

• factor scores regression matrix, if you specify the PESTIM option or at least the PSHORT option. The
determination of manifest variables is displayed only if you specify the PDETERM option.

• univariate Lagrange multiplier indices if you specify the MODIFICATION (or MOD) or the PALL
option. The value of a Lagrange multiplier (LM) index indicates the approximate drop in �2 when the
corresponding fixed parameter in the original model is freely estimated. The corresponding probability
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(with df = 1) and the estimated change of the parameter value are printed. Ranking of the LM indices
is automatically done for prescribed parameter subsets of the original model. The LM indices with
greatest improvement of �2 model fit appear in the beginning of the ranking list. Note that LM indices
are not applicable to the ULS and the DWLS estimation methods. See the section “Modification
Indices” on page 1501 for more detail.

• matrices of univariate Lagrange multiplier (LM) indices if you specify the MODIFICATION (or
MOD) or the PALL option, and the LMMAT option in the LMTESTS statement. These matrices are
predefined in PROC CALIS, or you can specify them in the LMTESTS statements. If releasing a fixed
parameter in the matrix would result in a singular information matrix, the string ‘Singular’ is displayed
instead of the Lagrange multiplier index. If a fixed entry in the matrix is restricted by the model (for
example, fixed ones for coefficients associated with error terms) or being excluded in the specified
subsets in the LMTESTS statement, the string ‘Excluded’ is displayed. Note that matrices for LM
indices are not printed for the ULS and the DWLS estimation methods. See the section “Modification
Indices” on page 1501 for more detail.

• univariate Lagrange multiplier test indices for releasing equality constraints if you specify the MODI-
FICATION (or MOD) or the PALL option. Note that this output is not applicable to the ULS and the
DWLS estimation methods. See the section “Modification Indices” on page 1501 for more detail.

• univariate Lagrange multiplier test indices for releasing active boundary constraints specified by the
BOUNDS statement if you specify the MODIFICATION (or MOD) or the PALL option. Note that this
output is not applicable to the ULS and the DWLS estimation methods. See the section “Modification
Indices” on page 1501 for more detail.

• the stepwise multivariate Wald test for constraining estimated parameters to zero constants if the
MODIFICATION (or MOD) or the PALL option is specified and the univariate probability is greater
than the value specified in the PMW= option (default PMW=0.05). Note that this output is not
applicable to the ULS and the DWLS estimation methods. See the section “Modification Indices” on
page 1501 for more details.

• path diagrams if you specify the PLOTS=PATHDIAGRAM option or the PATHDIAGRAM statement.
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ODS Table Names
PROC CALIS assigns a name to each table it creates. You can use these names to reference the table when
using the Output Delivery System (ODS) to select tables and create output data sets. For more information
about ODS, see Chapter 20, “Using the Output Delivery System.”

There are numerous ODS tables in the CALIS procedure. The conditions for these ODS tables to display
vary a lot. For convenience in presentation, the ODS tables for the PROC CALIS procedure are organized in
the following categories:

• ODS tables for descriptive statistics, missing patterns, and residual analysis

• ODS tables for model specification and results

• ODS tables for supplementary model analysis

• ODS tables for modification indices

• ODS tables for optimization control and results

Many ODS tables are displayed when you set either a specialized option in a certain statement or a global
display option in the PROC CALIS statement. Rather than requesting displays by setting specialized options
separately, you can request a group of displays by using a global display option.

There are five global display levels, represented by five options: PALL (highest), PRINT, default, PSHORT,
and PSUMMARY. The higher the level, the more output requested. The default printing level is in effect
when you do not specify any other global printing options in the PROC CALIS statement. See the section
“Global Display Options” on page 1203 for details.

In the following description of ODS tables whenever applicable, the lowest level of global printing options
for an ODS table to print is listed. It is understood that global printing options at higher levels can also be
used. For example, if PSHORT is the global display option to print an ODS table, you can also use PALL,
PRINT, or default.

ODS Tables for Descriptive Statistics, Missing Patterns, and Residual Analysis

These ODS tables are group-oriented, meaning that each group has its own set of tables in the output. To
display these tables in your output, you can set a specialized option in either the PROC CALIS or GROUP
statement. If the specialized option is set in the PROC CALIS statement, it will apply to all groups. If the
option is set in the GROUP statement, it will apply to the associated group only. Alternatively, you can set a
global printing option in the PROC CALIS statement to print these tables. Either a specialized or a global
printing option is sufficient to print the tables.
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Table Names for Descriptive Statistics

ODS Table Name Description Specialized Option Global
Display
Option

ContKurtosis Contributions to kurtosis from observations KURTOSIS PRINT
CovRobust Robust covariance matrix, with raw data input PCORR1 PRINT
CovDetRobust Determinant of the robust covariance matrix, with

raw data input
PCORR1 PRINT

InCorr Input correlation matrix PCORR PALL
InCorrDet Determinant of the input correlation matrix PCORR PALL
InCov Input covariance matrix PCORR PALL
InCovDet Determinant of the input covariance matrix PCORR PALL
InMean Input mean vector PCORR PALL
Kurtosis Kurtosis, with raw data input KURTOSIS PRINT
MeanRobust Robust mean vector, with raw data input PCORR1 PRINT
PredCorr Predicted correlation matrix PCORR PALL
PredCorrDet Determinant of the predicted correlation matrix PCORR PALL
PredCov Predicted covariance matrix PCORR PALL
PredCovDet Determinant of the predicted covariance matrix PCORR PALL
PredMean Predicted mean vector PCORR PALL
RidgedCovRobust Ridged robust covariance matrix, with raw data

input
PCORR1 PRINT

RidgedCovDetRobust Determinant of the ridged robust covariance
matrix, with raw data input

PCORR1 PRINT

RidgedInCorr Ridged input correlation matrix PCORR PALL
RidgedInCorrDet Determinant of the ridged input correlation matrix PCORR PALL
RidgedInCov Ridged input covariance matrix PCORR PALL
RidgedInCovDet Determinant of the ridged input covariance matrix PCORR PALL
SimpleStatistics Simple statistics, with raw data input SIMPLE Default
Weights Weight matrix PWEIGHT PALL
WeightsDet Determinant of the weight matrix PWEIGHT PALL

1. Robust estimation with the ROBUST option is required.
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Table Names for Missing Pattern Analysis

ODS Table Name Description Specialized
Option

Global
Display
Option

AveCoverage Average proportion coverages of means
(variances) and covariances

SIMPLE or
PCORR1

Default2

MeanCovCoverage Proportions of data present for means
(variances) and covariances

SIMPLE or
PCORR1

Default2

MissPatternsMeans Means of the nonmissing and the most
frequent missing patterns

SIMPLE or
PCORR1

Default2

RankCovCoverage Rank order of the covariance coverages SIMPLE or
PCORR1

Default2

RankMissPatterns Rank order of the most frequent missing
patterns

SIMPLE or
PCORR1

Default2

RankVariableCoverage Rank order of the proportion coverages of
the variables

SIMPLE or
PCORR1

Default2

1. You can use the NOMISSPAT option in the PROC CALIS statement to suppress the analytic output of the missing patterns. If you

use the NOMISSPAT option in the GROUP statements, only the output of the missing pattern analysis for the corresponding groups

are suppressed.

2. PROC CALIS outputs these tables by default only when there are incomplete observations in the data sets and you use

METHOD=FIML or METHOD=LSFIML for estimation.

Table Names for Residual Displays

ODS Table Name Description Specialized Option Global
Display
Option

Residuals in the Moment Matrices
AsymStdRes Asymptotically standardized

residual matrix
RESIDUAL=ASYSTAND1 PALL

AveAsymStdRes Average of absolute
asymptotically standardized
residual values

RESIDUAL=ASYSTAND1 PALL

AveNormRes Average of absolute normalized
residual values

RESIDUAL=NORM1 PALL

AveRawRes Average of absolute raw residual
values

RESIDUAL PALL

AveVarStdRes Average of absolute variance
standardized residual values

RESIDUAL=VARSTAND1 PALL

DistAsymStdRes Distribution of asymptotically
standardized residuals

RESIDUAL=ASYSTAND1 PALL

DistNormRes Distribution of normalized
residuals

RESIDUAL=NORM1 PALL

DistRawRes Distribution of raw residuals RESIDUAL PALL
DistVarStdRes Distribution of variance

standardized residuals
RESIDUAL=VARSTAND1 PALL
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ODS Table Name Description Specialized Option Global
Display
Option

NormRes Normalized residual matrix RESIDUAL=NORM1 PALL
RawRes Raw residual matrix RESIDUAL2 PALL
RankAsymStdRes Rank order of asymptotically

standardized residuals
RESIDUAL=ASYSTAND1 PALL

RankNormRes Rank order of normalized
residuals

RESIDUAL=NORM1 PALL

RankRawRes Rank order of raw residuals RESIDUAL PALL
RankVarStdRes Rank order of variance

standardized residuals
RESIDUAL=VARSTAND1 PALL

VarStdRes Variance standardized residual
matrix

RESIDUAL=VARSTAND1 PALL

Case-Level Residuals3
DepartResidualDist Departures from the theoretical

distribution for the residual
M-distances

RESIDUAL PALL

Leverage Observations with largest
leverage M-distances

RESIDUAL PALL

Outlier Observations with largest
residual M-distances

RESIDUAL PALL

1. The RESIDUAL= option specifies the RESIDUAL option and the type of residuals. For example, RESIDUAL=ASYSTAND

requests asymptotically standardized residuals, in addition to the tables enabled by the RESIDUAL option. In some cases, the

requested types of residuals are not available due to the specific estimation method or the data type used. When this occurs, PROC

CALIS will determine the appropriate types of normalized or standardized residuals to display.

2. Raw residuals are also printed for correlation analysis even if RESIDUAL or PALL is not specified.

3. Raw data input is required.

ODS Tables for Model Specification and Results

Some ODS tables of this group are model-oriented. Others are not. Model-oriented ODS tables are printed
for each model, while others are printed no more than once no matter how many models you have.

Non-Model-Oriented ODS Tables
The ODS tables that are not model-oriented are listed in the following table:
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ODS Table Name Description Global Display
Option

Additional
Specification
Required

AddParms Estimates for additional
parameters

PSHORT PARAMETERS
statement

AddParmsInit Initial values for additional
parameters

PSHORT PARAMETERS
statement

Fit Fit summary PSUMMARY
GroupFit Fit comparison among groups PSUMMARY Multiple groups
ModelingInfo General modeling information PSHORT
ModelSummary Summary of models and their

labels and types
PSHORT Multiple models1

ParmFunc Parametric function testing PSHORT TESTFUNC
statement

Simtests Simultaneous tests of parametric
functions

PSHORT SIMTESTS
statement

1. This table is displayed when you have multiple models that have labels specified by the LABEL= option, or when you define a

model with more than a single level of reference by using the REFMODEL option. Otherwise, the ModelingInfo table contains all

pertinent information regarding the models in the analysis.

Model-Oriented ODS Tables
These ODS tables are model-oriented, meaning that each model has its own set of ODS tables in the output.
There are three types of model specification and results printing in PROC CALIS: initial specification,
(unstandardized) estimated model results, and standardized model results. To distinguish these three types of
ODS tables, different suffixes for the ODS table names are used. An “Init” suffix indicates initial specification,
while a “Std” suffix indicates standardized solutions. All other tables are for unstandardized solutions.

These ODS tables require some specialized options to print. If you set the specialized option in the PROC
CALIS statement, it applies to all models. If you set the specialized option in the MODEL statement, it
applies to the associated model only. Alternatively, to print all these ODS tables, you can use the PSHORT
or any higher level global printing option in the PROC CALIS statement. Either a specialized or a global
printing option is sufficient to print these ODS tables. The following is a summary of the specialized and
global printing options for these three types of ODS tables:

Type of ODS Tables Table Name
Suffix

Specialized Option Global
Display
Option

Initial specification Init PINITIAL PSHORT
Unstandardized solutions (none) PESTIM PSHORT
Standardized solutions Std PESTIM, and

NOSTAND not used
PSHORT

In the following list of ODS tables, the prefixes of the ODS table names indicate the modeling language
required for the ODS tables to print. The last column of the list indicates whether the PRIMAT option is
needed to print the corresponding ODS tables in matrix formats. You can use the PRIMAT option either in
the PROC CALIS or MODEL statement. If you want matrix output for all models, set this option in the
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PROC CALIS statement. If you want matrix output for a specific model, set this option in the associated
MODEL statement only.

ODS Table Name Description Additional
Option

COSANVariables Variables in the COSAN model
COSANModel Mean and covariance structure formulas
COSANMatrixSummary Summary of COSAN model matrices
COSANMatrix Estimated model matrix
COSANMatrixInit Initial model matrix
FACTORCov Estimated factor covariances
FACTORCovInit Initial factor covariances
FACTORCovStd Factor correlations
FACTORErrVar Estimated error variances
FACTORErrVarInit Initial error variances
FACTORErrVarStd Standardized results for error variances
FACTORIntercepts Estimated intercepts
FACTORInterceptsInit Initial intercepts
FACTORLoadings Estimated factor loadings
FACTORLoadingsInit Initial factor loadings
FACTORLoadingsStd Standardized factor loadings
FACTORMeans Estimated factor means
FACTORMeansInit Initial factor means
FACTORRotCov Estimated rotated factor covariances
FACTORRotCovStd Rotated factor correlations
FACTORRotErrVar Error variances in rotated solution
FACTORRotErrVarStd Standardized results for error variances in rotated

solution
FACTORRotLoadings Rotated factor loadings
FACTORRotLoadingsStd Standardized rotated factor loadings
FACTORRotMat Rotation matrix
FACTORScoresRegCoef Factor scores regression coefficients
FACTORVariables Variables in the analysis
LINEQSAlpha Estimated intercept vector PRIMAT
LINEQSAlphaInit Initial intercept vector PRIMAT
LINEQSBeta Estimated _EQSBETA_ matrix PRIMAT
LINEQSBetaInit Initial _EQSBETA_ matrix PRIMAT
LINEQSBetaStd Standardized results for _EQSBETA_ matrix PRIMAT
LINEQSCovExog Estimated covariances among exogenous variables
LINEQSCovExogInit Initial covariances among exogenous variables
LINEQSCovExogStd Standardized results for covariances among

exogenous variables
LINEQSEffects Estimated effects in equations
LINEQSEffectsStd Estimated standardized effects in equations
LINEQSEq Estimated equations
LINEQSEqInit Initial equations
LINEQSEqStd Standardized equations
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ODS Table Name Description Additional
Option

LINEQSGamma Estimated _EQSGAMMA_ matrix PRIMAT
LINEQSGammaInit Initial _EQSGAMMA_ matrix PRIMAT
LINEQSGammaStd Standardized results for _EQSGAMMA_ matrix PRIMAT
LINEQSMeans Estimated means for exogenous variables
LINEQSMeansInit Initial means for exogenous variables
LINEQSNu Estimated mean vector PRIMAT
LINEQSNuInit Initial mean vector PRIMAT
LINEQSPhi Estimated _EQSPHI_ matrix PRIMAT
LINEQSPhiInit Initial _EQSPHI_ matrix PRIMAT
LINEQSPhiStd Standardized results for _EQSPHI_ matrix PRIMAT
LINEQSVarExog Estimated variances of exogenous variables
LINEQSVarExogInit Initial variances of exogenous variables
LINEQSVarExogStd Standardized results for variances of exogenous

variables
LINEQSVariables Exogenous and endogenous variables
LISMODAlpha Estimated _ALPHA_ vector
LISMODAlphaInit Initial _ALPHA_ vector
LISMODBeta Estimated _BETA_ matrix
LISMODBetaInit Initial _BETA_ matrix
LISMODBetaStd Standardized _BETA_ matrix
LISMODGamma Estimated _GAMMA_ matrix
LISMODGammaInit Initial _GAMMA_ matrix
LISMODGammaStd Standardized _GAMMA_ matrix
LISMODKappa Estimated _KAPPA_ vector
LISMODKappaInit Initial _KAPPA_ vector
LISMODLambdaX Estimated _LAMBDAX_ matrix
LISMODLambdaXInit Initial _LAMBDAX_ matrix
LISMODLambdaXStd Standardized _LAMBDAX_ matrix
LISMODLambdaY Estimated _LAMBDAY_ matrix
LISMODLambdaYInit Initial _LAMBDAY_ matrix
LISMODLambdaYStd Standardized _LAMBDAY_ matrix
LISMODNuX Estimated _NUX_ vector
LISMODNuXInit Initial _NUX_ vector
LISMODNuY Estimated _NUY_ vector
LISMODNuYInit Initial _NUY_ vector
LISMODPhi Estimated _PHI_ matrix
LISMODPhiInit Initial _PHI_ matrix
LISMODPhiStd Standardized _PHI_ matrix
LISMODPsi Estimated _PSI_ matrix
LISMODPsiInit Initial _PSI_ matrix
LISMODPsiStd Standardized _PSI_ matrix
LISMODThetaX Estimated _THETAX_ matrix
LISMODThetaXInit Initial _THETAX_ matrix
LISMODThetaXStd Standardized _THETAX_ matrix
LISMODThetaY Estimated _THETAY_ matrix
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ODS Table Name Description Additional
Option

LISMODThetaYInit Initial _THETAY_ matrix
LISMODThetaYStd Standardized _THETAY_ matrix
LISMODVariables Variables in the model
MSTRUCTCov Estimated _COV_ matrix
MSTRUCTCovInit Initial _COV_ matrix
MSTRUCTCovStd Standardized _COV_ matrix
MSTRUCTMean Estimated _MEAN_ vector
MSTRUCTMeanInit Initial _MEAN_ vector
MSTRUCTVariables Variables in the model
PATHCovErrors Estimated error covariances
PATHCovErrorsInit Initial error covariances
PATHCovErrorsStd Standardized error covariances
PATHCovVarErr Estimated covariances between exogenous

variables and errors
PATHCovVarErrInit Initial covariances between exogenous variables

and errors
PATHCovVarErrStd Standardized results for covariances between

exogenous variables and errors
PATHCovVars Estimated covariances among exogenous variables
PATHCovVarsInit Initial covariances among exogenous variables
PATHCovVarsStd Standardized results for covariances among

exogenous variables
PATHList Estimated path list
PATHListInit Initial path list
PATHListStd Standardized path list
PATHMeansIntercepts Estimated intercepts
PATHMeansInterceptsInit Initial intercepts
PATHVariables Exogenous and endogenous variables
PATHVarParms Estimated variances or error variances
PATHVarParmsInit Initial variances or error variances
PATHVarParmsStd Standardized results for variances or error

variances
RAMAMat Estimated _A_ matrix PRIMAT
RAMAMatInit Initial _A_ matrix PRIMAT
RAMAMatStd Standardized results of _A_ matrix PRIMAT
RAMList List of RAM estimates
RAMListInit List of initial RAM estimates
RAMListStd Standardized results for RAM estimates
RAMPMat Estimated _P_ matrix PRIMAT
RAMPMatInit Initial _P_ matrix PRIMAT
RAMPMatStd Standardized results of _P_ matrix PRIMAT
RAMVariables Exogenous and endogenous variables
RAMWVec Estimated mean and intercept vector PRIMAT
RAMWVecInit Initial mean and intercept vector PRIMAT
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ODS Tables for Supplementary Model Analysis

These ODS tables are model-oriented. They are printed for each model in your analysis. To display these
ODS tables, you can set some specialized options in either the PROC CALIS or MODEL statement. If the
specialized options are used in the PROC CALIS statement, they apply to all models. If the specialized
options are used in the MODEL statement, they apply to the associated model only. For some of these ODS
tables, certain specialized statements for the model might also enable the printing. Alternatively, you can use
the global printing options in the PROC CALIS statement to print these ODS tables. Either a specialized
option (or statement) or a global printing option is sufficient to print a particular ODS table.

ODS Table Name Description Specialized
Option or
Statement

Global
Display
Option

Determination Coefficients of determination PDETERM
DETERM4

Default

DirectEffects Direct effects TOTEFF1 PRINT
DirectEffectsStd Standardized direct effects TOTEFF1;3 PRINT
EffectsOf Effects of the listed variables EFFPART2 PRINT
EffectsOn Effects on the listed variables EFFPART2 PRINT
IndirectEffects Indirect effects TOTEFF1 PRINT
IndirectEffectsStd Standardized indirect effects TOTEFF1;3 PRINT
LatentScoresRegCoef Latent variable scores regression

coefficients
PLATCOV PRINT

PredCovLatent Predicted covariances among latent
variables

PLATCOV PRINT

PredCovLatMan Predicted covariances between latent
and manifest variables

PLATCOV PRINT

PredMeanLatent Predicted means of latent variables PLATCOV PRINT
SqMultCorr Squared multiple correlations PESTIM PSHORT
Stability Stability coefficient of reciprocal

causation
PDETERM,
DETERM4

Default

StdEffectsOf Standardized effects of the listed
variables

EFFPART2;3 PSHORT

StdEffectsOn Standardized effects on the listed
variables

EFFPART2;3 PSHORT

TotalEffects Total effects TOTEFF1 PRINT
TotalEffectsStd Standardized total effects TOTEFF1;3 PRINT

1. This refers to the TOTEFF or EFFPART option in the PROC CALIS or MODEL statement.

2. This refers to the EFFPART statement specifications.

3. NOSTAND option must not be specified in the MODEL or PROC CALIS statement.

4. PDETERM is an option specified in the PROC CALIS or MODEL statement, while DETERM is a statement name.

ODS Tables for Model Modification Indices

To print the ODS tables for model modification indices, you can use the MODIFICATION option in either
the PROC CALIS or MODEL statement. When this option is set in the PROC CALIS statement, it applies
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to all models. When this option is set in the MODEL statement, it applies to the associated model only.
Alternatively, you can also use the PALL option in the PROC CALIS statement to print these ODS tables.

If the NOMOD option is set in the PROC CALIS statement, these ODS tables are not printed for all models,
unless the MODIFICATION is respecified in the individual MODEL statements. If the NOMOD option is
set in the MODEL statement, then the ODS tables for modification do not print for the associated model.

For convenience in presentation, three different classes of ODS tables for model modifications are described in
the following. First, ODS tables for ranking of LM indices are the default printing when the MODIFICATION
option is specified. Second, ODS tables for LM indices in matrix forms require an additional option to print.
Last, ODS tables for other modification indices, including the Wald test indices, require specific data-analytic
conditions to print. While the first two classes of ODS tables are model-oriented (that is, each model has its
own sets of output), the third one is not.

ODS Table Names for Ranking of LM indices
Rankings of the LM statistics in different regions of parameter space are the default printing format when
you specify the MODIFICATION option in the PROC CALIS or MODEL statement. You can also turn off
these default printing by the NODEFAULT option in the LMTESTS statement for models. If you want to
print matrices of LM test statistics rather than the rankings of LM test statistics, you can use the NORANK
or MAXRANK=0 option in the LMTESTS statement.

These ODS tables for ranking LM statistics are specific to the types of modeling languages used. This is
noted in the last column of the following table.

ODS Table Name Description Model

LMRankCosanMatrix Any COSAN model matrix COSAN
LMRankCov Covariances among variables MSTRUCT
LMRankCovErr Covariances among errors LINEQS
LMRankCovErrofVar Covariances among errors of variables PATH
LMRankCovExog Covariances among existing exogenous

variables
LINEQS or PATH

LMRankCovFactors Covariance among factors FACTOR
LMRankCustomSet Customized sets of parameters defined in

LMTESTS statements
any model

LMRankErrorVar Error variances FACTOR
LMRankFactMeans Factor means FACTOR
LMRankIntercepts Intercepts FACTOR, LINEQS,

or PATH
LMRankLisAlpha LISMOD _ALPHA_ LISMOD
LMRankLisBeta LISMOD _BETA_ LISMOD
LMRankLisGamma LISMOD _GAMMA_ LISMOD
LMRankLisKappa LISMOD _KAPPA_ LISMOD
LMRankLisLambdaX LISMOD _LAMBDAX_ LISMOD
LMRankLisLambdaY LISMOD _LAMBDAY_ LISMOD
LMRankLisNuX LISMOD _NUX_ LISMOD
LMRankLisNuY LISMOD _NUY_ LISMOD
LMRankLisPhi LISMOD _PHI_ LISMOD
LMRankLisPsi LISMOD _PSI_ LISMOD
LMRankLisThetaX LISMOD _THETAX_ LISMOD
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ODS Table Name Description Model

LMRankLisThetaY LISMOD _THETAY_ LISMOD
LMRankLoadings Factor loadings FACTOR
LMRankMeans Means of existing variables LINEQS,

MSTRUCT, or
PATH

LMRankPaths All possible paths in the model PATH
LMRankPathsFromEndo Paths from existing endogenous variables LINEQS
LMRankPathsFromExog Paths from existing exogenous variables LINEQS
LMRankPathsNewEndo Paths to existing exogenous variables LINEQS
LMRankRamA _RAMA_ matrix RAM
LMRankRamAlpha _RAMALPHA_ matrix RAM
LMRankRamNu _RAMNU_ matrix RAM
LMRankRamP11 _RAMP11_ matrix RAM
LMRankRamP22 _RAMP22_ matrix RAM

ODS Table Names for Lagrange Multiplier Tests in Matrix Form
To print matrices of LM test indices for a model, you must also use the LMMAT option in the LMTESTS
statement for the model. Some of these matrices are printed by default, while others are printed only when
certain regions of parameter are specified in the LM test sets. In the following tables, the ODS table names
for LM test statistics in matrix form are listed for each model type.

The COSAN Model

ODS Table Name Description Selected Region in Test Sets

LMCosanMatrix Any COSAN model matrix (default)

The FACTOR Model

ODS Table Name Description Selected Region in Test Sets

LMFactErrv Vector of error variances FACTERRV (default)
LMFactFcov Factor covariance matrix FACTFCOV (default)
LMFactInte Intercept vector FACTINTE (default)
LMFactLoad Factor loading matrix FACTLOAD (default)
LMFactMean Factor mean vector FACTMEAN (default)

The LINEQS Model

ODS Table Name Description Selected Regions in Test Sets

LMEqsAlpha _EQSALPHA_ vector _EQSALPHA_ (default)
LMEqsBeta _EQSBETA_ matrix _EQSBETA_ (default)
LMEqsGammaSub _EQSGAMMA_ matrix, excluding entries

with error variables in columns
_EQSGAMMA_ (default)
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ODS Table Name Description Selected Regions in Test Sets

LMEqsNewDep New rows for expanding _EQSBETA_ and
_EQSGAMMA_ matrices

NEWDEP

LMEqsNuSub _EQSNU_ vector, excluding fixed zero means
for error variables

_EQSNU_ (default)

LMEqsPhi _EQSPHI_ matrix _EQSPHI_ alone or
_EQSPHI11_, _EQSPHI21_ and
_EQSPHI22_ together

LMEqsPhi11 Upper left portion (exogenous variances and
covariances) of the _EQSPHI_ matrix

_EQSPHI11_ (default)

LMEqsPhi21 Lower left portion (error variances and
covariances) of the _EQSPHI_ matrix

_EQSPHI21_

LMEqsPhi22 Lower right portion (error variances and
covariances) of the _EQSPHI_ matrix

_EQSPHI22_ (default)

The LISMOD Model

ODS Table Name Description Selected Regions in Test Sets

LMLisAlpha LISMOD _ALPHA_ vector _ALPHA_ (default)
LMLisBeta LISMOD _BETA_ matrix _BETA_ (default)
LMLisGamma LISMOD _GAMMA_ matrix _GAMMA_ (default)
LMLisKappa LISMOD _KAPPA_ vector _KAPPA_ (default)
LMLisLambdaX LISMOD _LAMBDAX_ matrix _LAMBDAX_ (default) or

_LAMBDA_
LMLisLambdaY LISMOD _LAMBDAY_ matrix _LAMBDAY_ (default) or

_LAMBDA_
LMLisNuX LISMOD _NUX_ vector _NUX_ (default) or _NU_
LMLisNuY LISMOD _NUY_ vector _NUY_ (default) or _NU_
LMLisPhi LISMOD _PHI_ matrix _PHI_ (default)
LMLisPsi LISMOD _PSI_ matrix _PSI_ (default)
LMLisThetaX LISMOD _THETAX_ matrix _THETAX_ (default) or

_THETA_
LMLisThetaY LISMOD _THETAY_ matrix _THETAY_ (default) or

_THETA_

The MSTRUCT Model

ODS Table Name Description Selected Regions in Test Sets

LMMstructCov Covariance matrix MSTRUCTCOV (default) or
_COV_

LMMstructMean Mean vector MSTRUCTMEAN (default) or
_MEAN_
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The PATH Model

ODS Table Name Description Selected Regions in Test Sets

LMRamA _RAMA_ matrix ARROWS or _RAMA_ (default)
LMRamALeft Left portion of the _RAMA_ matrix _RAMA_LEFT_ alone or

_RAMBETA_ and _RAMA_LL_
together

LMRamALL Lower left portion of the _RAMA_ matrix _RAMA_LL_
LMRamALower Lower portion of the _RAMA_ matrix NEWENDO or

_RAMA_LOWER_ or
_RAMA_LL_ and _RAMA_LR_
together

LMRamALR Lower right portion of the _RAMA_ matrix _RAMA_LR_
LMRamARight Right portion of the _RAMA_ matrix _RAMA_RIGHT_
LMRamAUpper Upper portion of the _RAMA_ matrix _RAMA_UPPER_ alone or

_RAMBETA_ and
_RAMGAMMA_ together

LMRamAlpha _RAMALPHA_ matrix INTERCEPTS (default)
LMRamBeta Upper left portion of the _RAMA_ matrix _RAMBETA_
LMRamGamma Upper right portion of the _RAMA_ matrix _RAMGAMMA_
LMRamNu _RAMNU_ matrix MEANS (default)
LMRamP _RAMP_ matrix _RAMP_ alone or _RAMP11_,

_RAMP21_, and _RAMP22_
together

LMRamP11 Upper left portion of the _RAMP_ matrix COVERR (default)
LMRamP21 Lower left portion of the _RAMP_ matrix COVEXOGERR
LMRamP22 Lower right portion of the _RAMP_ matrix COVEXOG (default)
LMRamW _RAMW_ matrix FIRSTMOMENTS alone or

MEANS and INTERCEPTS
together

The RAM Model

ODS Table Name Description Selected Regions in Test Sets

LMRamA _RAMA_ matrix _RAMA_ (default)
LMRamALeft Left portion of the _RAMA_ matrix _RAMA_LEFT_ alone or

_RAMBETA_ and _RAMA_LL_
together

LMRamALL Lower left portion of the _RAMA_ matrix _RAMA_LL_
LMRamALower Lower portion of the _RAMA_ matrix NEWENDO or

_RAMA_LOWER_ or
_RAMA_LL_ and _RAMA_LR_
together

LMRamALR Lower right portion of the _RAMA_ matrix _RAMA_LR_
LMRamARight Right portion of the _RAMA_ matrix _RAMA_RIGHT_
LMRamAUpper Upper portion of the _RAMA_ matrix _RAMBETA_ and

_RAMGAMMA_
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ODS Table Name Description Selected Regions in Test Sets

LMRamAlpha _RAMALPHA_ matrix _RAMALPHA_ (default)
LMRamBeta Upper left portion of the _RAMA_ matrix _RAMBETA_
LMRamGamma Upper right portion of the _RAMA_ matrix _RAMGAMMA_
LMRamNu _RAMNU_ matrix _RAMNU_ (default)
LMRamP _RAMP_ matrix _RAMP_ alone or _RAMP11_,

_RAMP21_, and _RAMP22_
together

LMRamP11 Upper left portion of the _RAMP_ matrix _RAMP11_ (default)
LMRamP21 Lower left portion of the _RAMP_ matrix _RAMP21_
LMRamP22 Lower right portion of the _RAMP_ matrix _RAMP22_ (default)
LMRamW _RAMW_ matrix _RAMW_

ODS Table Names for Other Modification Indices
The following table shows the ODS tables for the remaining modification indices.

ODS Table Name Description Additional Requirement

LagrangeBoundary LM tests for active boundary
constraints

Presence of active boundary
constraints

LagrangeDepParmEquality LM tests for equality constraints
in dependent parameters

Presence of equality constraints
in dependent parameters

LagrangeEquality LM tests for equality constraints Presence of equality constraints
in independent parameters

WaldTest Wald tests for testing existing
parameters equaling zeros

At least one insignificant
parameter value

ODS Table for Optimization Control and Results

To display the ODS tables for optimization control and results, you must specify any of the following global
display options in the PROC CALIS statement: PRINT, PALL, or default (that is, NOPRINT is not specified).
Also, you must not use the NOPRINT option in the NLOPTIONS statement. For some of these tables,
you must also specify additional options, either in the PROC CALIS or the NLOPTIONS statement. Some
restrictions might apply. Additional options and restrictions are noted in the last column.
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ODS Table Name Description Additional Option
Required or
Restriction

CovParm Covariances of parameters PCOVES1 or PALL2,
restriction3

ConvergenceStatus Convergence status
DependParmsResults Final dependent parameter estimates Restriction4

DependParmsStart Initial dependent parameter estimates Restriction4

Information Information matrix PCOVES1 or PALL2,
restriction3

InitEstMethods Initial estimation methods
InputOptions Optimization options PALL2

IterHist Iteration history
IterStart Iteration start
IterStop Iteration stop
Lagrange First and second order Lagrange multipliers PALL2

LinCon Linear constraints PALL2, restriction5

LinConDel Deleted constraints PALL2, restriction5

LinConSol Linear constraints evaluated at solution PALL2, restriction5

LinDep Linear dependencies of parameter estimates Restriction6

ParameterEstimatesResults Final estimates
ParameterEstimatesStart Initial estimates
ProblemDescription Problem description
ProjGrad Projected gradient PALL2

1. PCOVES option is specified in the PROC CALIS statement.

2. PALL option is specified in the NLOPTIONS statement.

3. Estimation method must not be ULS or DWLS.

4. Existence of dependent parameters.

5. Linear equality or boundary constraints are imposed.

6. Existence of parameter dependencies during optimization, but not due to model specification.
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ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

In the following table, ODS graph names and the options to display the graphs are listed.

Table 29.21 Graphs Produced by PROC CALIS

ODS Graph Name Plot Description Option

Distribution of Residuals in the Moment Matrices
AsymStdResidualHistogram Asymptotically standardized residuals PLOTS=RESIDUALS and

RESIDUAL=ASYMSTD,
METHOD= is not ULS or DWLS

NormResidualHistogram Normalized residuals PLOTS=RESIDUALS and
RESIDUAL=NORM

RawResidualHistogram Raw residuals PLOTS=RESIDUALS
VarStdResidualHistogram Variance standardized residuals PLOTS=RESIDUALS and

RESIDUAL=VARSTD

Case-Level Residual Diagnostics
CaseResidualHistogram Distribution of the residual

M-distances
PLOTS=CRESHIST or
CASERESIDUAL

ResidualByLeverage Residual M-distances against the
leverage M-distances

PLOTS=RESBYLEV or
CASERESIDUAL

ResidualByPredicted Residuals against the predicted values
of dependent variables

PLOTS=RESBYPRED or
CASERESIDUAL

ResidualByQuantile Residual M-distances against the
theoretical quantiles

PLOTS=QQ or
CASERESIDUAL

ResPercentileByExpPercentile Percentiles of residual M-distances
against the theoretical percentiles

PLOTS=PP or
CASERESIDUAL

Path Diagrams
PathDiagramInit Path diagram for initial model

specifications
DIAGRAM=INITIAL in the
PATHDIAGRAM statement

PathDiagram Path diagram for the unstandardized
solution

PLOTS=PATHDIAGRAM or
PATHDIAGRAM statement

PathDiagramStand Path diagram for the standardized
solution

DIAGRAM=STANDARD in the
PATHDIAGRAM statement

PathDiagramStructInit Path diagram for initial structural
model specifications

DIAGRAM=INITIAL and
STRUCTURAL in the
PATHDIAGRAM statement
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Table 29.21 continued

ODS Graph Name Plot Description Option

PathDiagramStruct Path diagram for the unstandardized
solution of the structural model

STRUCTURAL in the
PATHDIAGRAM statement

PathDiagramStructStand Path diagram for the standardized
solution of the structural model

DIAGRAM=STANDARD and
STRUCTURAL in the
PATHDIAGRAM statement

Examples: CALIS Procedure

Example 29.1: Estimating Covariances and Correlations
This example shows how you can use PROC CALIS to estimate the covariances and correlations of the
variables in your data set. Estimating the covariances introduces you to the most basic form of covariance
structures—a saturated model with all variances and covariances as parameters in the model. To fit such a
saturated model when there is no need to specify the functional relationships among the variables, you can
use the MSTRUCT modeling language of PROC CALIS.

The following data set contains four variables q1–q4 for the quarterly sales (in millions) of a company. The
14 observations represent 14 retail locations in the country. The input data set is shown in the following
DATA step:

data sales;
input q1 q2 q3 q4;
datalines;

1.03 1.54 1.11 2.22
1.23 1.43 1.65 2.12
3.24 2.21 2.31 5.15
1.23 2.35 2.21 7.17
.98 2.13 1.76 2.38

1.02 2.05 3.15 4.28
1.54 1.99 1.77 2.00
1.76 1.79 2.28 3.18
1.11 3.41 2.20 3.21
1.32 2.32 4.32 4.78
1.22 1.81 1.51 3.15
1.11 2.15 2.45 6.17
1.01 2.12 1.96 2.08
1.34 1.74 2.16 3.28
;

Use the following PROC CALIS specification to estimate a saturated covariance structure model with all
variances and covariances as parameters:
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proc calis data=sales pcorr;
mstruct var=q1-q4;

run;

In the PROC CALIS statement, specify the data set with the DATA= option. Use the PCORR option to
display the observed and predicted covariance matrix. Next, use the MSTRUCT statement to fit a covariance
matrix of the variables that are provided in the VAR= option. Without further specifications such as the
MATRIX statement, PROC CALIS assumes all elements in the covariance matrix are model parameters.
Hence, this is a saturated model.

Output 29.1.1 shows the modeling information. Information about the model is displayed: the name and
location of the data set, the number of data records read and used, and the number of observations in the
analysis. The number of data records read is the actual number of records (or observations) that PROC
CALIS processes from the data set. The number of data records used might or might not be the same as the
actual number of records read from the data set. For example, records with missing values are read but not
used in the analysis for the default maximum likelihood (ML) method. The number of observations refers to
the N used for testing statistical significance and model fit. This number might or might not be the same
as the number of records used for at least two reasons. First, if you use a frequency variable in the FREQ
statement, the number of observations used is a weighted sum of the number of records, with the frequency
variable being the weight. Second, if you use the NOBS= option in the PROC CALIS statement, you can
override the number of observations that are used in the analysis. Because the current data set does not have
any missing data and there are no frequency variables or an NOBS= option specified, these three numbers are
all 14.

The model type is MSTRUCT because you use the MSTRUCT statement to define your model. The analysis
type is covariances, which is the default. Output 29.1.1 then shows the four variables in the covariance
structure model.

Output 29.1.1 Modeling Information of the Saturated Covariance Structure Model for the Sales Data

Estimating the Covariance Matrix by the MSTRUCT Modeling Language

The CALIS Procedure
Covariance Structure Analysis: Model and Initial Values

Estimating the Covariance Matrix by the MSTRUCT Modeling Language

The CALIS Procedure
Covariance Structure Analysis: Model and Initial Values

Modeling Information

Maximum Likelihood
Estimation

Data Set WORK.SALES

N Records Read 14

N Records Used 14

N Obs 14

Model Type MSTRUCT

Analysis Covariances

Variables in the Model

q1  q2  q3  q4

Number of Variables = 4
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Output 29.1.2 shows the initial covariance structure model for these four variables. All lower triangular
elements (including the diagonal elements) of the covariance matrix are parameters in the model. PROC
CALIS generates the names for these parameters: _Add01–_Add10. Because the covariance matrix is
symmetric, all upper triangular elements of the matrix are redundant. The initial estimates for covariance are
denoted by missing values no initial values were specified.

Output 29.1.2 Initial Saturated Covariance Structure Model for the Sales Data

Initial MSTRUCT _COV_ Matrix

q1 q2 q3 q4

q1 .
[_Add01]

.
[_Add02]

.
[_Add04]

.
[_Add07]

q2 .
[_Add02]

.
[_Add03]

.
[_Add05]

.
[_Add08]

q3 .
[_Add04]

.
[_Add05]

.
[_Add06]

.
[_Add09]

q4 .
[_Add07]

.
[_Add08]

.
[_Add09]

.
[_Add10]

The PCORR option in the PROC CALIS statement displays the sample covariance matrix in Output 29.1.3.
By default, PROC CALIS computes the unbiased sample covariance matrix (with variance divisor equal to N
– 1) and uses it for the covariance structure analysis.

Output 29.1.3 Sample Covariance Matrix for the Sales Data

Covariance Matrix (DF = 13)

q1 q2 q3 q4

q1 0.33830 0.00020 0.03610 0.22137

q2 0.00020 0.22466 0.12653 0.24425

q3 0.03610 0.12653 0.60633 0.63012

q4 0.22137 0.24425 0.63012 2.66552

The fit summary and the fitted covariance matrix are shown in Output 29.1.4 and Output 29.1.5, respectively.

Output 29.1.4 Fit Summary of the Saturated Covariance Structure Model for the Sales Data

Fit Summary

Chi-Square 0.0000

Chi-Square DF 0

Pr > Chi-Square .
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Output 29.1.5 Fitted Covariance Matrix for the Sales Data

MSTRUCT _COV_ Matrix:
Estimate/StdErr/t-value/p-value

q1 q2 q3 q4

q1 0.3383
0.1327
2.5495
0.0108

0.000198
0.0765

0.002587
0.9979

0.0361
0.1260
0.2865
0.7745

0.2214
0.2704
0.8186
0.4130

q2 0.000198
0.0765

0.002587
0.9979

0.2247
0.0881
2.5495
0.0108

0.1265
0.1082
1.1693
0.2423

0.2443
0.2251
1.0853
0.2778

q3 0.0361
0.1260
0.2865
0.7745

0.1265
0.1082
1.1693
0.2423

0.6063
0.2378
2.5495
0.0108

0.6301
0.3935
1.6012
0.1093

q4 0.2214
0.2704
0.8186
0.4130

0.2443
0.2251
1.0853
0.2778

0.6301
0.3935
1.6012
0.1093

2.6655
1.0455
2.5495
0.0108

In Output 29.1.4, the model fit chi-square is 0 (df = 0). The p-value cannot be computed because the degrees
of freedom is zero. This fit is perfect because the model is saturated.

Output 29.1.5 shows the fitted covariance matrix, along with standard error estimates and t values in each
cell. The variance and covariance estimates match exactly those of the sample covariance matrix shown in
Output 29.1.3.

A common practice for determining statistical significance for estimates in structural equation modeling is
to require the absolute value of t to be greater than 1.96, which is the critical value of a standard normal
variate at ˛=0.05. While all diagonal elements in Output 29.1.5 show statistical significance, all off-diagonal
elements are not significantly different from zero. The t values for these elements range from 0.002 to 1.601.

Output 29.1.6 shows the standardized estimates of the variance and covariance elements. This is also the
correlation matrix under the MSTRUCT model. Standard error estimates and t values are computed with the
correlation estimates. Note that because the diagonal element values are fixed at 1, no standard errors or t
values are shown.
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Output 29.1.6 Standardized Covariance Matrix for the Sales Data

Standardized MSTRUCT _COV_ Matrix:
Estimate/StdErr/t-value/p-value

q1 q2 q3 q4

q1 1.0000 0.000717
0.2773

0.002587
0.9979

0.0797
0.2756
0.2892
0.7724

0.2331
0.2623
0.8888
0.3741

q2 0.000717
0.2773

0.002587
0.9979

1.0000 0.3428
0.2448
1.4008
0.1613

0.3156
0.2497
1.2640
0.2062

q3 0.0797
0.2756
0.2892
0.7724

0.3428
0.2448
1.4008
0.1613

1.0000 0.4957
0.2092
2.3692
0.0178

q4 0.2331
0.2623
0.8888
0.3741

0.3156
0.2497
1.2640
0.2062

0.4957
0.2092
2.3692
0.0178

1.0000

Sometimes researchers do not need to estimate the standard errors that are in their models. You can suppress
the standard error and t value computations by using the NOSE option in the PROC CALIS statement:

proc calis data=sales nose;
mstruct var=q1-q4;

run;

Output 29.1.7 shows the fitted covariance matrix with the NOSE option. These values are exactly the same as
in the sample covariance matrix shown in Output 29.1.3.

Output 29.1.7 Fitted Covariance Matrix without Standard Error Estimates for the Sales Data

MSTRUCT _COV_ Matrix

q1 q2 q3 q4

q1 0.3383 0.000198 0.0361 0.2214

q2 0.000198 0.2247 0.1265 0.2443

q3 0.0361 0.1265 0.6063 0.6301

q4 0.2214 0.2443 0.6301 2.6655

This example shows a very simple application of PROC CALIS: estimating the covariance matrix with
standard error estimates. The covariance structure model is saturated. Several extensions of this very
simple model are possible. To estimate the means and covariances simultaneously, see Example 29.2. To
fit nonsaturated covariance structure models with certain hypothesized patterns, see Example 29.3 and
Example 29.4. To fit structural models with implied covariance structures that are based on specified
functional relationships among variables, see Example 29.6.
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Example 29.2: Estimating Covariances and Means Simultaneously
This example uses the same data set that is used in Example 29.1 and estimates the means and covariances.
Use the MSTRUCT model specification as shown in the following statements:

proc calis data=sales meanstr nostand;
mstruct var=q1-q4;

run;

In the PROC CALIS statement, specify the MEANSTR option to request the mean structure analysis in
addition to the default covariance structure analysis. If you are not interested in the standardized solution,
specify the NOSTAND option in the PROC CALIS statement to suppress computation of the standardized
estimates. Without further model specification (such as the MATRIX statement), PROC CALIS assumes a
saturated structural model with all means, variances, and covariances as model parameters.

Output 29.2.1 shows the modeling information. With the MEANSTR option specified in the PROC CALIS
statement, the current analysis type is Means and Covariances, instead of the default Covariances in Exam-
ple 29.1.

Output 29.2.1 Modeling Information of the Saturated Mean and Covariance Structure Model for the Sales
Data

Saturated Means and Covariance Structures Using MSTRUCT

The CALIS Procedure
Mean and Covariance Structures: Model and Initial Values

Saturated Means and Covariance Structures Using MSTRUCT

The CALIS Procedure
Mean and Covariance Structures: Model and Initial Values

Modeling Information

Maximum Likelihood Estimation

Data Set WORK.SALES

N Records Read 14

N Records Used 14

N Obs 14

Model Type MSTRUCT

Analysis Means and Covariances

Variables in the Model

q1  q2  q3  q4

Number of Variables = 4

Output 29.2.2 shows the fit summary of the current model. Again, this is a perfect model fit with 0 chi-square
value and 0 degrees of freedom.

Output 29.2.2 Fit Summary of the Saturated Mean and Covariance Structure Model for the Sales Data

Fit Summary

Chi-Square 0.0000

Chi-Square DF 0

Pr > Chi-Square .
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Output 29.2.3 shows the estimates of the means, together with the standard error estimates and the t values.
These estimated means are exactly the same as the sample means, which are not shown here.

Output 29.2.3 Mean Estimates for the Sales Data

MSTRUCT _Mean_ Vector

Variable Estimate
Standard

Error t Value Pr > |t|

q1 1.36714 0.16132 8.4749 <.0001

q2 2.07429 0.13146 15.7790 <.0001

q3 2.20286 0.21596 10.2001 <.0001

q4 3.65500 0.45281 8.0718 <.0001

Output 29.2.4 shows the variance and covariance estimates. These estimates are exactly the same as the
elements in the sample covariance matrix. In addition, these estimates match the estimates in Output 29.1.5
of Example 29.1, where only the covariance structures are analyzed.

Output 29.2.4 Variance and Covariance Estimates for the Sales Data

MSTRUCT _COV_ Matrix:
Estimate/StdErr/t-value/p-value

q1 q2 q3 q4

q1 0.3383
0.1327
2.5495
0.0108

0.000198
0.0765

0.002587
0.9979

0.0361
0.1260
0.2865
0.7745

0.2214
0.2704
0.8186
0.4130

q2 0.000198
0.0765

0.002587
0.9979

0.2247
0.0881
2.5495
0.0108

0.1265
0.1082
1.1693
0.2423

0.2443
0.2251
1.0853
0.2778

q3 0.0361
0.1260
0.2865
0.7745

0.1265
0.1082
1.1693
0.2423

0.6063
0.2378
2.5495
0.0108

0.6301
0.3935
1.6012
0.1093

q4 0.2214
0.2704
0.8186
0.4130

0.2443
0.2251
1.0853
0.2778

0.6301
0.3935
1.6012
0.1093

2.6655
1.0455
2.5495
0.0108

These estimates are essentially the same as the sample means, variances, and covariances. This kind of
analysis is much easier using PROC CORR with the NOMISS option. However, the main purpose of Exam-
ple 29.1 and Example 29.2 is to introduce the MSTRUCT modeling language and some basic but important
options in PROC CALIS. You can apply the MSTRUCT modeling language to more sophisticated situations
that are beyond the saturated mean and covariance structure models. Example 29.3 and Example 29.4 fit
some patterned covariance models that are nonsaturated. Also, options such as NOSE, NOSTAND, and
MEANSTR are useful for all modeling languages in PROC CALIS.

Example 29.3: Testing Uncorrelatedness of Variables
This example uses the sales data in Example 29.1 and tests the uncorrelatedness of the variables in the model
by using the MSTRUCT model specification. With the multivariate normality assumption, this is also the test
of independence of the variables. The MATRIX statement defines the parameters in the model.
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The uncorrelatedness model assumes that the correlations or covariances among the four variables are
zero. Therefore, only the four diagonal elements of the covariance matrix, which represent the variances of
the variables, are free parameters in the covariance structure model. To specify these parameters, use the
MATRIX statement with the MSTRUCT model specification:

proc calis data=sales;
mstruct var=q1-q4;
matrix _cov_ [1,1], [2,2], [3,3], [4,4];

run;

Example 29.1 specifies exactly the same MSTRUCT statement for the four variables. The difference here
is the addition of the MATRIX statement. Without a MATRIX statement, the MSTRUCT model assumes
that all nonredundant elements in the covariance matrix are model parameters. This assumption is not the
case in the current specification. The MATRIX statement specification for the covariance matrix (denoted by
the _cov_ keyword) specifies four free parameters on the diagonal of the covariance matrix: [1,1], [2,2],
[3,3], and [4,4]. All other unspecified elements in the covariance matrix are fixed zeros by default.

The uncorrelatedness model is displayed in the output for the initial model specification. Output 29.3.1
shows that all off-diagonal elements of the covariance matrix are fixed zeros while the diagonal elements are
missing and labeled with _Parm1–_Parm4. PROC CALIS generates these parameter names automatically
and estimates these four parameters in the analysis.

Output 29.3.1 Initial Uncorrelatedness Model for the Sales Data

Initial MSTRUCT _COV_ Matrix

q1 q2 q3 q4

q1 .
[_Parm1]

0 0 0

q2 0 .
[_Parm2]

0 0

q3 0 0 .
[_Parm3]

0

q4 0 0 0 .
[_Parm4]

Output 29.3.2 shows the model fit chi-square test of the uncorrelatedness model. The chi-square is 6.528 (df
= 6, p = 0.3667), which is not significant. This means that you fail to reject the uncorrelatedness model. In
other words, the data is consistent with the uncorrelatedness model (zero covariances or correlations among
the quarterly sales).

Output 29.3.2 Fit Summary of the Uncorrelatedness Model for the Sales Data

Fit Summary

Chi-Square 6.5280

Chi-Square DF 6

Pr > Chi-Square 0.3667

Output 29.3.3 shows the estimates of the covariance matrix under the uncorrelatedness model, together with
standard error estimates and t values. All off-diagonal elements are fixed zeros in the estimation results.
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Output 29.3.3 Estimates of Variance under the Uncorrelatedness Model for the Sales Data

MSTRUCT _COV_ Matrix:
Estimate/StdErr/t-value/p-value

q1 q2 q3 q4

q1 0.3383
0.1327
2.5495
0.0108

[_Parm1]

0 0 0

q2 0 0.2247
0.0881
2.5495
0.0108

[_Parm2]

0 0

q3 0 0 0.6063
0.2378
2.5495
0.0108

[_Parm3]

0

q4 0 0 0 2.6655
1.0455
2.5495
0.0108

[_Parm4]

This example shows how to specify free parameters in the MSTRUCT model by using the MATRIX
statement. To specify the covariance matrix, use the _COV_ keyword in the MATRIX statement. To specify
the parameters in the mean structures, you need use an additional MATRIX statement with the _MEAN_
keyword.

Two important notes regarding the MSTRUCT model specification are now in order:

• When you use the MSTRUCT statement without any MATRIX statements, all elements in the co-
variance matrix are free parameters in the model (for example, see Example 29.1). However, if the
MATRIX statement includes at least one free or fixed parameter in the covariance matrix, PROC
CALIS assumes that all other unspecified elements in the covariance matrix are fixed zeros (such as the
current example).

• Using parameter names in the MATRIX statement specification is optional. In the context of the current
example, naming the parameters is optional because there is no need to refer to them anywhere in the
specification. PROC CALIS automatically generates unique names for these parameters. Alternatively,
you can specify your own parameter names in the MATRIX statement. Naming parameters is not
only useful for references, but is also indispensable when you need to constrain model parameters by
referring to their names. See Example 29.4 to use parameter names to define a covariance pattern.

Example 29.4: Testing Covariance Patterns
In the test for sphericity, a covariance matrix is hypothesized to be a constant multiple of an identity matrix.
That is, the null hypothesis for the population covariance matrix is

† D �2I
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where �2 is an unknown positive constant and I is an identity matrix. When this covariance pattern is applied
to the sales data in Example 29.1, this hypothesis states that all four variables have the same variance �2

and are uncorrelated with each other. This model is more restricted than the uncorrelatedness model in
Example 29.3, which requires uncorrelatedness but does not require equal variances. Use the following
specification to conduct a sphericity test for the sales data:

proc calis data=sales;
mstruct var=q1-q4;
matrix _cov_ [1,1] = 4*sigma_sq;

run;

This specification is similar to that of Example 29.3. The major difference is the MATRIX statement
specification. The current example uses a parameter name sigma_sq to represent the unknown variance
parameter �2, whereas Example 29.3 specifies only the locations of the four free variance parameters.

The current MATRIX statement specification uses a shorthand notation. On the left-hand side of the equal
sign, [1,1] indicates the starting location of the covariance matrix. The matrix entries automatically proceed
to [2,2], [3,3] and so on, depending on the length of the parameter list specified on the right-hand sign of
the equal sign. For example, if there is just one parameter on the right-hand side, the matrix specification
contains only [1,1]. In the current example, the specification 4*sigma_sq means that sigma_sq appears
four times in the specification. As a result, the preceding MATRIX statement specification is equivalent to
the following statement:

matrix _cov_ [1,1] = sigma_sq,
[2,2] = sigma_sq,
[3,3] = sigma_sq,
[4,4] = sigma_sq;

This matrix is what is required by the sphericity test. Use either the expanded notation or the shorthand
notation for specifying the covariance pattern. For details about various types of shorthand notation for
parameter specifications, see the MATRIX statement.

Output 29.4.1 shows the initial model specification under the test of sphericity. All the diagonal elements are
labeled with the same name sigma_sq, indicating that they are the same parameter.

Output 29.4.1 Covariance Model under Sphericity for the Sales Data

Initial MSTRUCT _COV_ Matrix

q1 q2 q3 q4

q1 .
[sigma_sq]

0 0 0

q2 0 .
[sigma_sq]

0 0

q3 0 0 .
[sigma_sq]

0

q4 0 0 0 .
[sigma_sq]

Output 29.4.2 shows that the model fit chi-square is 31.5951 (df = 9, p = 0.0002). This means that the
covariance pattern under the sphericity hypothesis is not supported.
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Output 29.4.2 Fit Summary of the Sphericity Test for the Sales Data

Fit Summary

Chi-Square 31.5951

Chi-Square DF 9

Pr > Chi-Square 0.0002

Output 29.4.3 shows the estimated covariance matrix under the sphericity hypothesis. The variance estimate
for all four diagonal elements is 0.9587 (standard error=0.1880).

Output 29.4.3 Fitted Covariance Matrix under the Sphericity Hypothesis for the Sales Data

MSTRUCT _COV_ Matrix:
Estimate/StdErr/t-value/p-value

q1 q2 q3 q4

q1 0.9587
0.1880
5.0990
<.0001

[sigma_sq]

0 0 0

q2 0 0.9587
0.1880
5.0990
<.0001

[sigma_sq]

0 0

q3 0 0 0.9587
0.1880
5.0990
<.0001

[sigma_sq]

0

q4 0 0 0 0.9587
0.1880
5.0990
<.0001

[sigma_sq]

This example shows how you can specify a simple covariance pattern by using the MATRIX statement.
Use the same parameter names to constrain variance parameters that are supposed to be the same under the
model. Constraining parameters by using the same parameter names is applicable not only to the MSTRUCT
models, but also to more complicated covariance structure models, such as multiple-group modeling (see
Example 29.19 and Example 29.21).

The MSTRUCT modeling language is handy when you can directly specify the covariance pattern or
structures in your model. However, in most applications of structural equation modeling, it is difficult to
specify such direct covariance structures. Instead, the covariance structures are usually implied from the
functional relationships among the variables in the model. Using the MSTRUCT modeling language in such
a situation is not easy. Fortunately, PROC CALIS supports other modeling languages that enable you to
specify the functional relationships among variables. The functional relationships can be in the form of
a set of path-like descriptions, a system of linear equations, or parameter specifications in matrices. See
Example 29.6 for an introduction to using the PATH modeling language for specifying path models.
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Example 29.5: Testing Some Standard Covariance Pattern Hypotheses
In Example 29.3, you test the uncorrelatedness of variables by using the MSTRUCT model specification.
In Example 29.4, you test the sphericity of the covariance matrix by using the same model specification
technique. In both examples, you need to specify the parameters in the covariance structure model explicitly
by using the MATRIX statements.

Some covariance patterns are well-known in multivariate statistics, including the two tests in Example 29.3
and Example 29.4. To facilitate the tests of these “standard” covariance patterns, PROC CALIS provides the
COVPATTERN= option to specify those standard covariance patterns more efficiently. With the COVPAT-
TERN=option, you do not need to use the MSTRUCT and MATRIX statements to specify the covariance
patterns explicitly. See the COVPATTERN= option for the supported covariance patterns. This example
illustrates the use of the COVPATTERN= option.

In Example 29.3, you conduct a test of uncorrelatedness for the four variables in the sales data (see
Example 29.1 for the data set). That is, the variables are hypothesized to be uncorrelated and only the four
variances on the diagonal of the covariance matrix are population parameters of interest. The null hypothesis
for the population covariance matrix is

† D

0BB@
x 0 0 0

0 x 0 0

0 0 x 0

0 0 0 x

1CCA
where each x represents a distinct parameter (that is, the diagonal elements are not constrained with each
other). You can test the diagonal covariance pattern easily by the following specification:

proc calis data=sales covpattern=diag;
run;

The COVPATTERN=DIAG option specifies the required diagonal covariance pattern for the test. PROC
CALIS then sets up the covariance structures automatically. Output 29.5.1 shows the initial specification
of the covariance pattern. As required, only the diagonal elements are parameters in the test and the other
elements are fixed to zero. PROC CALIS names the variance parameters automatically—that is, _varparm_1–
_varparm_4 are the four parameters for the variances. This is the same pattern as shown in Output 29.3.1 of
Example 29.3, although the parameter names are different.

Output 29.5.1 Initial Diagonal Pattern for the Covariance Matrix of the Sales Data

Initial MSTRUCT _COV_ Matrix

q1 q2 q3 q4

q1 .
[_varparm_1]

0 0 0

q2 0 .
[_varparm_2]

0 0

q3 0 0 .
[_varparm_3]

0

q4 0 0 0 .
[_varparm_4]
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Output 29.5.2 shows the results of the chi-square test of the diagonal covariance pattern. The chi-square
is 5.44 (df = 6, p = 0.4887), which is not significant. You fail to reject the null hypothesis of the diagonal
covariance pattern in the population.

Output 29.5.2 Fit Summary of the Diagonal Covariance Pattern Test for the Sales Data

Fit Summary

Chi-Square 5.4400

Chi-Square DF 6

Pr > Chi-Square 0.4887

The numerical results shown in Output 29.5.2 are different from those of the same test by using the MSTRUCT
model specification, which is shown in Output 29.3.2 of Example 29.3, although you do not reject the null
hypothesis in both cases. The reason is that with the use of COVPATTERN= option, PROC CALIS applies
the appropriate chi-square correction to the test statistic automatically. In the current example, the chi-square
correction due to Bartlett (1950) has been applied. Test results with chi-square corrections are theoretically
more accurate.

To obtain the same numerical results as those in Output 29.3.2, you can turn off the chi-square correction by
using the CHICORRECT=0 option, as shown in the following specification:

proc calis data=sales covpattern=diag chicorrect=0;
run;

Output 29.5.3 shows the fit summary results without any chi-square correction. The numerical results match
exactly to those shown in Output 29.3.2 of Example 29.3.

Output 29.5.3 Fit Summary of the Diagonal Covariance Pattern Test for the Sales Data: No Chi-Square
Correction

Fit Summary

Chi-Square 6.5280

Chi-Square DF 6

Pr > Chi-Square 0.3667

Example 29.4 tests the sphericity of the covariance matrix of the same data set. The null hypothesis for the
population covariance matrix is

† D �2I

where �2 is an unknown positive constant and I is an identity matrix. You can use the following specification
to test this hypothesis easily:

proc calis data=sales covpattern=sigsqi;
run;

Output 29.5.4 shows the initial specification of the covariance pattern. As required, the diagonal elements are
all the same parameter named _varparm, and all the off-diagonal elements are fixed to zero. This is the same
pattern as shown in Output 29.4.1 of Example 29.4.
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Output 29.5.4 Initial Covariance Pattern for the Sphericity Test on the Sales Data

Initial MSTRUCT _COV_ Matrix

q1 q2 q3 q4

q1 .
[_varparm]

0 0 0

q2 0 .
[_varparm]

0 0

q3 0 0 .
[_varparm]

0

q4 0 0 0 .
[_varparm]

Output 29.5.5 shows the fit summary of the sphericity test. The chi-square is 27.747 (df = 9, p = 0.0011),
which is statistically significant. You reject the sphericity hypothesis for the population covariance matrix.

Output 29.5.5 Fit Summary of the Sphericity Test on the Sales Data

Fit Summary

Chi-Square 27.7470

Chi-Square DF 9

Pr > Chi-Square 0.0011

Again, the numerical results in Output 29.5.5 are different from those shown in Output 29.4.2 of Example 29.4.
This is because with the COVPATTERN=SIGSQI option, the chi-square correction due to Box (1949) has
been applied in the current example. To turn off the automatic chi-square correction, you can use the
following specification:

proc calis data=sales covpattern=sigsqi chicorrect=0;
run;

As expected, the numerical results in Output 29.5.6 match exactly to those of in Output 29.4.2 of Exam-
ple 29.4.

Output 29.5.6 Fit Summary of the Sphericity Test on the Sales Data: No Chi-Square Correction

Fit Summary

Chi-Square 31.5951

Chi-Square DF 9

Pr > Chi-Square 0.0002

This example shows that for the tests of some standard covariance patterns, you can use the COVPATTERN=
option directly. As compared with the use of the explicit MSTRUCT model specifications, which are shown
in Example 29.3 and Example 29.4, the use of COVPATTERN= option is more efficient and less error-prone
in coding. In addition, it can apply chi-square corrections in appropriate situations.

PROC CALIS also provides the test of some “standard” mean patterns by the MEANPATTERN= option.
You can use the COVPATTERN= and MEANPATTERN= options together to define the desired combinations
of covariance and mean patterns. See these two options for details. See Example 29.22 for a multiple-group
analysis with the simultaneous use of the COVPATTERN= and MEANPATTERN= options. Certainly, the
COVPATTERN= and MEANPATTERN= options are limited to the standard covariance and mean patterns
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provided by PROC CALIS. When you need to fit some specific (nonstandard) covariance or mean patterns,
the MSTRUCT model specification would be indispensable. See Example 29.19 and Example 29.22 for
applications.

Example 29.6: Linear Regression Model
This example shows how you can use PROC CALIS to fit the basic regression models. Unlike the preceding
examples (Example 29.1, Example 29.2, Example 29.3, and Example 29.4) where you specify the covariance
structures directly, in this example the covariance structures being analyzed are implied by the functional
relationships specified in the model. The PATH modeling language introduced in the current example requires
you to specify only the functional or path relationships among variables. PROC CALIS analyzes the implied
covariance structures that are derived from the specified functional or path relationships.

Consider the same sales data as in Example 29.1. This example demonstrates a simple linear regression that
uses q1 (the sales in the first quarter) to predict q4 (the sales in the fourth quarter).

In covariance structural analysis, or in general structural equation modeling, relationships among variables
are usually represented by the so-called path diagram. For example, you can represent the linear regression
of q4 on q1 by the following simple path diagram:

q4q1

In the path diagram, q1 is an exogenous (or independent) variable and q4 is an endogenous (or dependent)
variable. Formally, a variable in a path diagram is endogenous if there is at least one single-headed
arrow pointing to it. Otherwise, the variable is exogenous. In some situations, researchers apply “causal”
interpretations among variables in the path diagram, with the single-headed arrows indicating the causal
directions. However, causal interpretations are not a requirement for using covariance structure analysis or
structural equation modeling.

It is easy to transcribe the preceding path diagram into the PATH model specification in PROC CALIS, as
shown in the following statements:

proc calis data=sales;
path q1 ===> q4;

run;

Output 29.6.1 shows the modeling information of the linear regression model. It shows that all 14 observations
are used and the model type is PATH. PROC CALIS analyzes the (implied) covariance structure model for
the data. In the next table of Output 29.6.1, PROC CALIS shows the nature of the variables in the model: q4
is an endogenous manifest variable and q1 is an exogenous manifest variable. There is no latent variable in
this simple path model.
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Output 29.6.1 Modeling Information of the Linear Regression Model for the Sales Data

Simple Linear Regression Model by the PATH Modeling Language

The CALIS Procedure
Covariance Structure Analysis: Model and Initial Values

Simple Linear Regression Model by the PATH Modeling Language

The CALIS Procedure
Covariance Structure Analysis: Model and Initial Values

Modeling Information

Maximum Likelihood
Estimation

Data Set WORK.SALES

N Records Read 14

N Records Used 14

N Obs 14

Model Type PATH

Analysis Covariances

Variables in the Model

Endogenous Manifest q4

Latent

Exogenous Manifest q1

Latent

Number of Endogenous Variables = 1
Number of Exogenous Variables = 1

Output 29.6.2 shows the initial model specification. The path is in the first table. A parameter name is
attached to the path. The name _Parm1, which is generated automatically by PROC CALIS, denotes the effect
parameter of q1 on q4. In the context of linear regression, _Parm1 also denotes the regression coefficient.

Output 29.6.2 Initial Specification of the Linear Regression Model for the Sales Data

Initial Estimates for PATH List

Path Parameter Estimate

q1 ===> q4 _Parm1 .

Initial Estimates for Variance Parameters

Variance
Type Variable Parameter Estimate

Exogenous q1 _Add1 .

Error q4 _Add2 .

NOTE: Parameters with prefix '_Add'
are added by PROC CALIS.

Next, Output 29.6.2 shows the variance parameters in the model. You do not need to specify any of these
parameters in the preceding PATH model specification—because PROC CALIS adds these parameters by
default. _Add1 denotes the variance parameter for the exogenous variable q1. _Add2 denotes the error
variance parameter for the endogenous variable q4.

In the PATH model of PROC CALIS, all variances of exogenous variables and all error variances of
endogenous variables are free parameters by default. In most practical applications, these parameters are
usually free parameters in models and it would be laborious to specify them each time when you fit a
covariance structure model. Therefore, to make the PATH model specification more efficient and easier,
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PROC CALIS sets these free parameters by default. In fact, with these default parameters in the PATH model,
PROC CALIS produces essentially the same regression analysis results as those produced by common linear
regression procedures such as PROC REG. This consistency is shown in the subsequent estimation results for
the current example.

You can also explicitly specify those otherwise default parameters of the PATH model in PROC CALIS.
Depending on the modeling situation, you can set any parameter in the PATH model as a free, fixed, or
constrained parameter. You can also provide names for the parameters. Naming parameters is very useful for
parameter referencing and for setting up parameter constraints. See Example 29.4. For details, see the PATH
statement and the section “The PATH Model” on page 1419.

Output 29.6.3 shows some fit statistics from the linear regression model. The model fit chi-square is 0 with 0
degrees of freedom. This is a perfect model fit. The fit is perfect because the covariance model contains three
distinct elements (variance of q1, variance of q4, and covariance between q1 and q4) that are fitted perfectly
by three parameters: _Parm1 for the effect of q1 on q4, _Add1 for the variance of variable q1, and _Add2 for
the error variance of variable q4. Thus, the unconstrained linear regression model estimates are simply a
transformation of the covariance elements. Hence, the model is saturated with a perfect fit and zero degrees
of freedom.

Output 29.6.3 Model Fit of the Linear Regression Model for the Sales Data

Fit Summary

Chi-Square 0.0000

Chi-Square DF 0

Pr > Chi-Square .

Standardized RMR (SRMR) 0.0000

RMSEA Estimate .

Output 29.6.4 shows the estimates of the model. The effect of q1 on q4 is 0.6544 (standard error=0.7571).
The associated t value is 0.86433, which is not significantly different from zero. The estimated variance of
q1 is 0.3383 and the estimated error variance for q4 is 2.5207. Both estimates are significant.

Output 29.6.4 Parameter Estimates of the Linear Regression Model for the Sales Data

PATH List

Path Parameter Estimate
Standard

Error t Value Pr > |t|

q1 ===> q4 _Parm1 0.65436 0.75707 0.8643 0.3874

Variance Parameters

Variance
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Exogenous q1 _Add1 0.33830 0.13269 2.5495 0.0108

Error q4 _Add2 2.52066 0.98869 2.5495 0.0108

For a simple linear regression such as this one, you could have used PROC REG. You get essentially the
same estimates by specifying the following statements:
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proc reg data=sales;
model q4 = q1;

run;

Output 29.6.5 shows the parameter estimates from PROC REG. The intercept estimate is 2.7604 (standard
error=1.1643) and the regression coefficient is 0.6544 (standard error=0.7880). The regression coefficient
estimate matches PROC CALIS. However, the corresponding standard error estimate in PROC CALIS is
0.7571, which is slightly different from PROC REG. This difference is due to the different variance divisors
that are used in calculating the standard error estimates. PROC CALIS uses (N – 1) as the divisor (by default)
while PROC REG uses .N � q� 1/, where N is the number of observations and q is the number of regression
coefficients. In the current example, q is 1 so that the variance divisor in PROC REG is 1 less than the divisor
in PROC CALIS. If you have at least a moderate sample size and the number of regression parameters is
relatively small compared to the sample size, the discrepancy due to using different variance divisors is of
little consequence.

Output 29.6.5 Parameter Estimates from PROC REG for the Sales Data

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 2.76040 1.16430 2.37 0.0353

q1 1 0.65436 0.78798 0.83 0.4225

By default, PROC CALIS analyzes only the covariance structures, which are properties of the second-order
moments of the data. PROC CALIS does not automatically produce intercept estimates, which are properties
of the first-order moments of the data.

In order to produce the intercept estimate in the linear regression context, you can add the MEANSTR (mean
structures) option in the PROC CALIS statement, as shown in the following statements:

proc calis data=sales meanstr;
path q1 ===> q4;

run;

Output 29.6.6 shows the parameter estimates of the model with the MEANSTR option added. Compared with
Output 29.6.4, Output 29.6.6 produces one more table: estimates of the mean and intercept. The intercept
estimate for q4 is 2.7604, which matches the intercept estimate from PROC REG. The estimated mean of q1
is 1.3671. All other estimates are the same for the analyses with and without the MEANSTR option.

Output 29.6.6 Parameter Estimates of the Linear Regression Model with the MEANSTR option for the
Sales Data

PATH List

Path Parameter Estimate
Standard

Error t Value Pr > |t|

q1 ===> q4 _Parm1 0.65436 0.75707 0.8643 0.3874

Variance Parameters

Variance
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Exogenous q1 _Add1 0.33830 0.13269 2.5495 0.0108

Error q4 _Add2 2.52066 0.98869 2.5495 0.0108
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Output 29.6.6 continued

Means and Intercepts

Type Variable Parameter Estimate
Standard

Error t Value Pr > |t|

Intercept q4 _Add3 2.76040 1.12480 2.4541 0.0141

Mean q1 _Add4 1.36714 0.16132 8.4749 <.0001

Linear regression estimates from PROC CALIS are comparable to those obtained from PROC REG, although
the two procedures have different default treatments of the variance divisor in calculating the standard error
estimates. With the MEANSTR option in the PROC CALIS statement, you can analyze the mean and
covariance structures simultaneously. PROC CALIS prints the estimates of the intercepts and means when
you model the mean structures.

This example shows how you can fit the linear regression model as a PATH model in PROC CALIS. You need
to specify only path relationships among the variables in the PATH statement, because the implied covariance
structures are generated and analyzed by PROC CALIS. To make model specification more efficient, PROC
CALIS sets default variance parameters for exogenous variables and default error variance parameters for
endogenous variables. You can also overwrite these default parameters by explicit specifications. See
Example 29.7 for some sophisticated regression models that you can specify with PROC CALIS. See
Example 29.17 for a more elaborate path model specification.

Example 29.7: Multivariate Regression Models
This example shows how to analyze different types of multivariate regression models with PROC CALIS.
Example 29.6 fits a simple linear regression model to the sales data that are described in Example 29.1.
The simple linear regression model predicts the fourth quarter sales (q4) from the first quarter sales (q1).
There is only one dependent (outcome) variable (q4) and one independent (predictor) variable (q1) in the
analysis. Also, there are no constraints on the parameters. This example fits more sophisticated regression
models. The models include more than one predictor. Some variables can serve as outcome variables and
predictor variables at the same time. This example also illustrates the use of parameter constraints in model
specifications and the use of the model fit statistics to search for a “best” model for the sales data.

Multiple Regression Model for the Sales Data

Consider a multiple regression model for q4. Instead of using just q1 as the predictor in the model as
in Example 29.6, use all previous sales q1–q3 to predict the fourth-quarter sale (q4). The path model
representation is shown in the following path diagram:

q4

q3

q2

q1
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You can transcribe this path diagram into the following PATH model specification:

proc calis data=sales;
path q1 q2 q3 ===> q4;

run;

In the path statement, the shorthand path specification

path q1 q2 q3 ===> q4;

is equivalent to the following specification:

path q1 ===> q4,
q2 ===> q4,
q3 ===> q4;

The shorthand notation provides a more convenient way to specify the path model. Some of the model fit
statistics are shown in Output 29.7.1. This is a saturated model with perfect fit and zero degrees of freedom.
Because the chi-square statistic is always smallest in a saturated model (with a zero chi-square value), it
does not makes much sense to judge the model quality solely by looking at the chi-square value. However, a
saturated model is useful for serving as a baseline model with which other nonsaturated competing models
are compared.

Output 29.7.1 Model Fit of the Multiple Regression Model for the Sales Data

Fit Summary

Chi-Square 0.0000

Chi-Square DF 0

Pr > Chi-Square .

Standardized RMR (SRMR) 0.0000

RMSEA Estimate .

Akaike Information Criterion 20.0000

Bozdogan CAIC 36.3906

Schwarz Bayesian Criterion 26.3906

In addition to the model fit chi-square statistic, Output 29.7.1 also shows Akaike’s information criterion
(AIC), Bozdogan’s CAIC, and Schwarz’s Bayesian criterion (SBC) of the saturated model. The AIC, CAIC,
and SBC are derived from information theory and henceforth they are referred to as the information-theoretic
fit indices. These information-theoretic fit indices measure the model quality by taking the model parsimony
into account. The root mean square error of approximation (RMSEA) also takes the model parsimony into
account, but it is not an information-theoretic fit index. The values of these information-theoretic fit indices
themselves do not indicate the quality of the model. However, when you fit several different models to the
same data, you can order the models by these fit indices. The better the model, the smaller the fit index
values. Unlike the chi-square statistic, these fit indices do not always favor a saturated model because a
saturated model lacks model parsimony (the saturated model uses the most parameters to explain the data).
The subsequent discussion uses these fit indices to select the “best” model for the sales data.

Output 29.7.2 shows the parameter estimates of the multiple regression model. In the first table, all path
effect estimates are not statistically significant—that is, all t values are less than 1.96. The next table in
Output 29.7.2 shows the variance estimates of q1–q3 and the error variance estimate for q4. All of these
estimates are significant. The last table in Output 29.7.2 shows the covariances among the exogenous
variables q1–q3. These covariance estimates are small and are not statistically significant.
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Output 29.7.2 Parameter Estimates of the Multiple Regression Model for the Sales Data

PATH List

Path Parameter Estimate
Standard

Error t Value Pr > |t|

q1 ===> q4 _Parm1 0.55980 0.64938 0.8621 0.3887

q2 ===> q4 _Parm2 0.58946 0.84558 0.6971 0.4857

q3 ===> q4 _Parm3 0.88290 0.51635 1.7099 0.0873

Variance Parameters

Variance
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Exogenous q1 _Add1 0.33830 0.13269 2.5495 0.0108

q2 _Add2 0.22466 0.08812 2.5495 0.0108

q3 _Add3 0.60633 0.23782 2.5495 0.0108

Error q4 _Add4 1.84128 0.72221 2.5495 0.0108

Covariances Among Exogenous Variables

Var1 Var2 Parameter Estimate
Standard

Error t Value Pr > |t|

q2 q1 _Add5 0.0001978 0.07646 0.00259 0.9979

q3 q1 _Add6 0.03610 0.12601 0.2865 0.7745

q3 q2 _Add7 0.12653 0.10821 1.1693 0.2423

In Output 29.7.2, the total number of parameter estimates is 10 (_Parm1–_Parm3 and _Add1–_Add7). Under
the covariance structure model, these 10 parameters explain the 10 nonredundant elements in the covariance
matrix for the sales data. That is why the model has a perfect fit with zero degrees of freedom.

In Output 29.7.2, notice that some parameters have the prefix ‘_Parm’, while others have the prefix ‘_Add’.
Both types of parameter names are generated by PROC CALIS. The parameters named with the ‘_Parm’
prefix are those that were specified in the model, but were not named. In the current example, the parameters
specified but not named are the path coefficients (effects) for the three paths in the PATH statement. The
parameters named with the ‘_Add’ prefix are default parameters added by PROC CALIS. In the current
multiple regression example, the variances and covariances among the predictors (q1–q3) and the error
variance for the outcome variable (q4) are default parameters in the model. In general, variances and
covariances among exogenous variables and error variances of endogenous variables are default parameters
in the PATH model. Avoid using parameter names with the ‘_Parm’ and ‘_Add’ prefixes to avoid confusion
with parameters that are generated by PROC CALIS.

Direct and Indirect Effects Model for the Sales Data

In the multiple regression model, q1–q3 are all predictors that have direct effects on q4. This example
considers the possibility of adding indirect effects into the multiple regression model. Because of the time
ordering, it is reasonable to assume that there is a causal sequence q1 ===> q2 ===> q3. To implement this
idea into the model, put two more paths into the preceding path diagram to form the following new path
diagram:
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q4

q3

q2

q1

With the q1 ===> q2 and q2 ===> q3 paths, q2 and q3 are no longer exogenous in the model. They become
endogenous. The only exogenous variable in the model is q1, which has a direct effect in addition to indirect
effects on q4. The direct effect is indicated by the q1 ===> q4 path. The indirect effects are indicated by the
following two causal chains: q1 ===> q2 ===> q4 and q1 ===> q2 ===> q3 ===> q4. Similarly, q2 has a
direct and an indirect effect on q4. However, q3 has only a direct effect on q4. You can use the following
statements to specify this direct and indirect effects model:

proc calis data=sales;
path q1 ===> q2,

q2 ===> q3,
q1 q2 q3 ===> q4;

run;

Although the direct and indirect effects model has two more paths in the PATH statement than does the
preceding multiple regression model, the current model is more precise because it has one fewer parameter.
By introducing the causal paths q1 ===> q2 and q2===> q3, the six variances and covariances among q1–q3
are explained by: the two causal effects, the exogenous variance of q1, and the error variances for q2 and q3
(that is, five parameters in the model). Hence, the current direct and indirect effects model has one fewer
parameter than the preceding multiple regression model.

Output 29.7.3 shows some model fit indices of the direct and indirect effects model. The model fit chi-square
is 0.0934 with one degree of freedom. It is not significant. Therefore, you cannot reject the model on
statistical grounds. The standardized root mean squares of residuals (SRMR) is 0.028 and the root mean
square error of approximation (RMSEA) is close to zero. Both indices point to a very good model fit. The
AIC, CAIC, and SBC are all smaller than those of the saturated model, as shown in Output 29.7.1. This
suggests that the direct and indirect effects model is better than the saturated model.

Output 29.7.3 Model Fit of the Direct and Indirect Effects Model for the Sales Data

Fit Summary

Chi-Square 0.0934

Chi-Square DF 1

Pr > Chi-Square 0.7600

Standardized RMR (SRMR) 0.0280

RMSEA Estimate 0.0000

Akaike Information Criterion 18.0934

Bozdogan CAIC 32.8449

Schwarz Bayesian Criterion 23.8449



Example 29.7: Multivariate Regression Models F 1561

Output 29.7.4 shows the parameter estimates of the direct and indirect effects model. All the path effects are
not significant, while all the variance or error variance estimates are significant. Unlike the saturated model
where you have covariance estimates among several exogenous variables (as shown in Output 29.7.2), in the
direct and indirect effects model there is only one exogenous variable (q1) and hence there is no covariance
estimate in the results.

Output 29.7.4 Parameter Estimates of the Direct and Indirect Effects Model for the Sales Data

PATH List

Path Parameter Estimate
Standard

Error t Value Pr > |t|

q1 ===> q2 _Parm1 0.0005847 0.22602 0.00259 0.9979

q2 ===> q3 _Parm2 0.56323 0.42803 1.3159 0.1882

q1 ===> q4 _Parm3 0.55980 0.64705 0.8652 0.3870

q2 ===> q4 _Parm4 0.58946 0.84524 0.6974 0.4856

q3 ===> q4 _Parm5 0.88290 0.51450 1.7160 0.0862

Variance Parameters

Variance
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Exogenous q1 _Add1 0.33830 0.13269 2.5495 0.0108

Error q2 _Add2 0.22466 0.08812 2.5495 0.0108

q3 _Add3 0.53506 0.20987 2.5495 0.0108

q4 _Add4 1.84128 0.72221 2.5495 0.0108

Although the current direct and indirect effects model is better than the saturated model and both the SRMR
and RMSEA indicate a good model fit, the nonsignificant path effect estimates are unsettling. You continue
to explore alternative models for the data.

Indirect Effects Model for the Sales Data

The saturated model includes only the direct effects of q1–q3 on q4, while the direct and indirect effects
model includes both the direct and indirect effects of q1 and q2 on q4. An alternative model with only the
indirect effects of q1 and q2 on q4, but without their direct effects, is possible. Such an indirect effects model
is represented by the following path diagram:

q4

q3

q2

q1
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You can easily transcribe this path diagram into the following PATH model specification:

proc calis data=sales;
path q1 ===> q2,

q2 ===> q3,
q3 ===> q4;

run;

Output 29.7.5 shows some model fit indices for the indirect effects model. The chi-square model fit statistic
is not statistically significant, so the model is not rejected. The standardized RMR is 0.0905, which is a bit
higher than the conventional value of 0.05 for an acceptable good model fit. However, the RMSEA is close
to zero, which shows a very good model fit. The AIC, CAIC and SBC are all smaller than the direct and
indirect effects model. These information-theoretic fit indices suggest that the indirect effects model is better.

Output 29.7.5 Model Fit of the Indirect Effects Model for the Sales Data

Fit Summary

Chi-Square 1.2374

Chi-Square DF 3

Pr > Chi-Square 0.7440

Standardized RMR (SRMR) 0.0905

RMSEA Estimate 0.0000

Akaike Information Criterion 15.2374

Bozdogan CAIC 26.7108

Schwarz Bayesian Criterion 19.7108

Output 29.7.6 shows the parameter estimates of the indirect effects model. All the variance and error variance
estimates are statistically significant. However, only the path effect of q3 on q4 is statistically significant, and
all other path effects are not. Having significant variances with nonsignificant paths raises some concerns
about accepting the current model even though the AIC, CAIC, and SBC values suggest that it is the best
model so far.

Output 29.7.6 Parameter Estimates of the Indirect Effects Model for the Sales Data

PATH List

Path Parameter Estimate
Standard

Error t Value Pr > |t|

q1 ===> q2 _Parm1 0.0005847 0.22602 0.00259 0.9979

q2 ===> q3 _Parm2 0.56323 0.42803 1.3159 0.1882

q3 ===> q4 _Parm3 1.03924 0.50506 2.0577 0.0396

Variance Parameters

Variance
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Exogenous q1 _Add1 0.33830 0.13269 2.5495 0.0108

Error q2 _Add2 0.22466 0.08812 2.5495 0.0108

q3 _Add3 0.53506 0.20987 2.5495 0.0108

q4 _Add4 2.01067 0.78865 2.5495 0.0108
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Constrained Indirect Effects Model for the Sales Data

In the preceding indirect effects model, some path effects are not significant. In the current model, all the path
effects are constrained to be equal. The following path diagram represents the constrained indirect effects
model:

q4

q3

q2

q1

gamma

gamma

gamma

Except for one notable difference, this path diagram is the same as the path diagram for the preceding indirect
effects model. The current path diagram labels all the paths with the same name (gamma) to signify that they
are the same parameter. You can specify this constrained indirect effects model with this chosen constraint
on the path effects by the using following statements:

proc calis data=sales;
path q1 ===> q2 = gamma,

q2 ===> q3 = gamma,
q3 ===> q4 = gamma;

run;

In the PATH statement, append an equal sign and a parameter name gamma in each of the path entries. This
specification means that all the associated path effects are the same parameter named gamma.

Output 29.7.7 shows some fit indices for the constrained indirect effects model. Again, the model fit chi-
square statistic is not significant. However, the SRMR is 0.2115, which is too large to accept as a good
model. The RMSEA is 0.0499, which still indicates a good model fit. The AIC, CAIC, and SBC values
are a bit smaller than those of the preceding unconstrained indirect effects model. Therefore, it seems that
constraining the path effects leads to a slightly better model.

Output 29.7.7 Model Fit of the Constrained Indirect Effects Model for the Sales Data

Fit Summary

Chi-Square 5.1619

Chi-Square DF 5

Pr > Chi-Square 0.3964

Standardized RMR (SRMR) 0.2115

RMSEA Estimate 0.0499

Akaike Information Criterion 15.1619

Bozdogan CAIC 23.3572

Schwarz Bayesian Criterion 18.3572

Output 29.7.8 shows the parameter estimates of the constrained indirect effects model. Again, all variance
and error variance estimates are significant, and all path effects are not significant. The effect estimate is 0.24
(standard error=0.19, t = 1.25).
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Output 29.7.8 Parameter Estimates of the Constrained Indirect Effects Model for the Sales Data

PATH List

Path Parameter Estimate
Standard

Error t Value Pr > |t|

q1 ===> q2 gamma 0.24014 0.19152 1.2539 0.2099

q2 ===> q3 gamma 0.24014 0.19152 1.2539 0.2099

q3 ===> q4 gamma 0.24014 0.19152 1.2539 0.2099

Variance Parameters

Variance
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Exogenous q1 _Add1 0.33830 0.13269 2.5495 0.0108

Error q2 _Add2 0.24407 0.09573 2.5495 0.0108

q3 _Add3 0.55851 0.21907 2.5495 0.0108

q4 _Add4 2.39783 0.94051 2.5495 0.0108

Constrained Indirect Effects and Error Variances Model for the Sales Data

In addition to constraining all the path effects in the preceding model, the current model constrains all
the error variances. Before using a path diagram to represent the current constrained indirect effects and
constrained error variances, it is important to realize that you have not manually defined variances and
covariances in the path diagrams for all of the preceding models. The default parameterization in PROC
CALIS defined those parameters.

Represent the variances and covariances in a path diagram with double-headed arrows. When a double-headed
arrow points to a single variable, it represents the variance parameter. When a double-headed arrow points to
two distinct variables, it represents the covariance between the two variables. Consider the unconstrained
indirect effects model for the sales data as an example. A more complete path diagram representation is as
follows:

q4

q3

q2

q1

In this path diagram, a double-headed arrow on each variable represents variance or error variance. For q1,
the double-headed arrow represents the variance parameter of q1. For other variables, the double-headed
arrows represent error variances because those variables are endogenous (that is, they are predicted from
other variables) in the model.

In order to represent the equality-constrained parameters in the model, you can put parameter names in the
respective parameter locations in the path diagram. For the current constrained indirect effects and error
variances model, you can represent the model by the following path diagram:
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q4

q3

q2

q1

gamma

gamma

gamma

evar

evar

evar

In the path diagram, label all the path effects by the parameter gamma and all error variances by the parameter
evar. The double-headed arrow attached to q1 is not labeled by any name. This means that it is an unnamed
free parameter in the model.

You can transcribe the path diagram into the following statements:

proc calis data=sales;
path q1 ===> q2 = gamma,

q2 ===> q3 = gamma,
q3 ===> q4 = gamma;

pvar q2 q3 q4 = 3 * evar;
run;

The specification in the PATH statement is the same as the preceding PATH model specification for the
constrained indirect effects model. The new specification here is the PVAR statement. You use the PVAR
statement to specify partial variances, which include the (total) variances of exogenous variables and the error
variances of the endogenous variables. In the PVAR statement, you specify the variables for which you intend
to define variances. If you do not specify anything after the list of variables, the variances of these variables
are unnamed free parameters. If you put an equal sign after the variable lists, you can specify parameter
names, initial values, or fixed parameters for the variances of the variables. See the PVAR statement for
details. In the current model, 3*evar means that you want to specify evar three times (for the error variance
parameters of q2, q3, and q4).

Note that you did not specify the variance of q1 in the PVAR statement. This variance is a default parameter
in the model, and therefore you do not need to specify it in the PVAR statement. Alternatively, you can
specify it explicitly in the PVAR statement by giving it a parameter name. For example, you can specify the
following:

pvar q2 q3 q4 = 3 * evar,
q1 = MyOwnName;

Or, you can specify it explicitly without giving it a parameter name, as shown in following statement:

pvar q2 q3 q4 = 3 * evar,
q1 ;

All these specifications lead to the same estimation results. The difference between the two specifications is
the explicit parameter name for the variance of q1. Without putting q1 in the PVAR statement, the variance
parameter is named with the prefix _Add, which is generated as a default parameter by PROC CALIS. With
the explicit specification of q1, the variance parameter is named MyOwnName. With the explicit specification
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of q1, but without giving it a parameter name in the PVAR statement, the variance parameter is named with
the prefix _Parm, which PROC CALIS generates for unnamed free parameters.

Output 29.7.9 shows some fit indices for the constrained indirect effects and error variances model. The
model fit chi-square is 19.7843, which is significant at the 0.05 ˛-level. In practice, the model fit chi-square
statistic is not the only criterion for judging model fit. In fact, it might not even be the most commonly
used criterion for measuring model fit. Other criteria such as the SRMR and RMSEA are more popular or
important. Unfortunately, the values of these two fit indices do not support the current constrained model
either. The SRMR is 1.5037 and the RMSEA is 0.3748. Both are much greater than the commonly accepted
0.05 criterion.

Output 29.7.9 Model Fit of the Constrained Indirect Effects and Error Variances Model for the Sales Data

Fit Summary

Chi-Square 19.7843

Chi-Square DF 7

Pr > Chi-Square 0.0061

Standardized RMR (SRMR) 1.5037

RMSEA Estimate 0.3748

Akaike Information Criterion 25.7843

Bozdogan CAIC 30.7015

Schwarz Bayesian Criterion 27.7015

The AIC, CAIC, and SBC values are all much greater than those of the preceding constrained indirect effects
model. Therefore, constraining the error variances in addition to the constrained indirect effects does not lead
to a better model.

Output 29.7.10 shows the parameter estimates of the constrained indirect effects and error variances model.
All estimates are significant in the model, which is often desirable. However, because of the bad model fit,
this model is not acceptable.

Output 29.7.10 Parameter Estimates of the Constrained Indirect Effects and Error Variances Model for the
Sales Data

PATH List

Path Parameter Estimate
Standard

Error t Value Pr > |t|

q1 ===> q2 gamma 0.64733 0.16128 4.0137 <.0001

q2 ===> q3 gamma 0.64733 0.16128 4.0137 <.0001

q3 ===> q4 gamma 0.64733 0.16128 4.0137 <.0001

Variance Parameters

Variance
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Error q2 evar 1.00220 0.22695 4.4159 <.0001

q3 evar 1.00220 0.22695 4.4159 <.0001

q4 evar 1.00220 0.22695 4.4159 <.0001

Exogenous q1 _Add1 0.33830 0.13269 2.5495 0.0108
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Partially Constrained Model for the Sales Data

In the preceding model, constraining all error variances to be same shows that the model fit is unacceptable,
even though all parameter estimates are significant. Relaxing those constraints a little might improve the
model. The following path diagram represents such a partially constrained model:

q4

q3

q2

q1

gamma

gamma

gamma

evar

evar

The only difference between the current partially constrained model and the preceding constrained indirect
effects and error variances model is that the error variance for q4 is no longer constrained to be equal to the
error variances of q2 and q3. In the path diagram, evar is no longer attached to the double-headed arrow
that is associated with the error variance of q4. You can transcribe this path diagram representation into the
following PATH model specification:

proc calis data=sales;
path q1 ===> q2 = gamma,

q2 ===> q3 = gamma,
q3 ===> q4 = gamma;

pvar q2 q3 = 2 * evar,
q4 q1;

run;

Now, the PVAR statement has only the error variances of q2 and q3 constrained to be equal. The error
variance of q4 and the variance of q1 are free parameters without constraints.

Output 29.7.11 shows some fit indices for the partially constrained model. The chi-square model fit
test statistic is not significant. The SRMR is 0.3877 and the RMSEA is 0.1164. These are far from the
conventional acceptance level of 0.05. However, the AIC, CAIC, and SBC values are all slightly smaller
than the constrained indirect effects model, as shown in Output 29.7.7. In fact, these information-theoretic
fit indices suggest that the partially constrained model is the best model among all models that have been
considered.



1568 F Chapter 29: The CALIS Procedure

Output 29.7.11 Model Fit of the Partially Constrained Model for the Sales Data

Fit Summary

Chi-Square 7.0575

Chi-Square DF 6

Pr > Chi-Square 0.3156

Standardized RMR (SRMR) 0.3877

RMSEA Estimate 0.1164

Akaike Information Criterion 15.0575

Bozdogan CAIC 21.6138

Schwarz Bayesian Criterion 17.6138

Output 29.7.12 shows the parameter estimates of the partially constrained model. Again, all variance
and error variance parameters are statistically significant. However, the path effects are only marginally
significant.

Output 29.7.12 Parameter Estimates of the Partially Constrained Model for the Sales Data

PATH List

Path Parameter Estimate
Standard

Error t Value Pr > |t|

q1 ===> q2 gamma 0.35546 0.18958 1.8750 0.0608

q2 ===> q3 gamma 0.35546 0.18958 1.8750 0.0608

q3 ===> q4 gamma 0.35546 0.18958 1.8750 0.0608

Variance Parameters

Variance
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Error q2 evar 0.40601 0.11261 3.6056 0.0003

q3 evar 0.40601 0.11261 3.6056 0.0003

q4 _Parm1 2.29415 0.89984 2.5495 0.0108

Exogenous q1 _Parm2 0.33830 0.13269 2.5495 0.0108

Which Model Should You Choose?

You fit various models in this example for the sales data. The fit summary of the models is shown in the
following table:

1 2 3 4 5 6

Constrained
Direct and Constrained Indirect Effects
Indirect Indirect Indirect and Error Partially

Saturated Effects Effects Effects Variances Constrained

df 0 1 3 5 7 6
p-value . 0.76 0.74 0.40 0.01 0.32
SRMR 0 0.03 0.09 0.21 1.50 0.39
RMSEA . 0.00 0.00 0.05 0.37 0.12
AIC 20.00 18.09 15.24 15.16 25.78 15.06
CAIC 36.39 32.84 26.71 23.36 30.70 21.61
SBC 26.39 23.84 19.71 18.36 27.70 17.61
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As discussed previously, the model fit chi-square test statistic always favors models with a lot of parameters.
It does not take model parsimony into account. In particular, a saturated model (Model 1) always has a
perfect fit. However, it does not explain the data in a concise way. Therefore, the model fit chi-square statistic
is not used here for comparing the competing models.

The standardized root mean square residual (SRMR) also does not take the model parsimony into account.
It tells you how the fitted covariance matrix is different from the observed covariance matrix in a certain
standardized way. Again, it always favors models with a lot of parameters. As shown in the preceding table,
the more parameters (the fewer degrees of freedom) the model has, the smaller the SRMR is. A conventional
criterion is to accept a model with SRMR less than 0.05. Applying this criterion, only the saturated model
(Model 1) and the direct and indirect effects (Model 2) models are acceptable. The indirect effects model
(Model 3) is marginally acceptable.

The root mean square error of approximation (RMSEA) fit index does take model parsimony into account.
With the ‘RMSEA less than 0.05 criterion’, the constrained indirect effects and error variances model (Model
5) and the partially constrained model (Model 6) are not acceptable.

The information-theoretic fit indices such as the AIC, CAIC, and SBC also take model parsimony into
account. All of these indices point to the partially constrained model (Model 6) as the best model among the
competing models. However, because this model has a relatively bad absolute fit, as indicated by the large
SRMR value (0.39), accepting this model is questionable. In addition, the information-theoretic fit indices
of the indirect effects model (Model 3) and of the constrained indirect effects model (Model 4) are not too
different from those of the partially constrained model (Model 6). The indirect effects model is especially
promising because it has relatively small SRMR and RMSEA values. The drawback is that some path effect
estimates in the indirect effects model are not significant. Perhaps collecting and analyzing more data might
confirm these promising models with significant path effects.

You might not be able to draw a unanimous conclusion about the best model for the sales data of this
example. Different fit indices in structural equation modeling do not always point to the same conclusions.
The analyses in the current example show some of the complexity of structural equation modeling. Some
interesting questions about model selections are:

• Do you choose a model based on a single fit criterion? Or, do you consider a set of model fit criteria to
weigh competing models?

• Which fit index criterion is the most important for judging model fit?

• In selecting your “best” model, how do you take “chance” into account?

• How would you use your substantive theory to guide your model search?

The answers to these interesting research questions might depend on the context. Nonetheless, PROC CALIS
can help you in the model selection process by computing various kinds of fit indices. (Only a few of these
fit indices are shown in the output of this example. See the FITINDEX statement for a wide variety of fit
indices that you can obtain from PROC CALIS.)

Alternative PATH Model Specifications for Variances and Covariances

The PATH modeling language of PROC CALIS is designed to map the path diagram representation into the
PATH statement syntax efficiently. For any path that is denoted by a single-headed arrow in the path diagram,
you can specify a path entry in the PATH statement. You can also specify double-headed arrows in the PATH
statement.
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Consider the preceding path diagram for the partially constrained model for the sales data. You use double-
headed arrows to denote variances or error variances of the variables. The path diagram is shown in the
following:

q4

q3

q2

q1

gamma

gamma

gamma

evar

evar

As discussed previously, you can use the PVAR statement to specify these variances or error variances as in
following syntax:

pvar q2 q3 = 2 * evar,
q4 q1;

Alternatively, you can specify these double-headed arrows directly as paths in the PATH statement, as shown
in the following statements:

proc calis data=sales;
path q1 ===> q2 = gamma,

q2 ===> q3 = gamma,
q3 ===> q4 = gamma,
<==> q2 q3 = 2 * evar,
<==> q4 q1;

run;

To specify the double-headed paths pointing to individual variables, you begin with the double-headed arrow
notation <==>, followed by the list of variables. For example, in the preceding specification, the error variance
of q4 and the variance of q1 are specified in the last path entry of the PATH statement. If you want to define
the parameter names for the variances, you can add a parameter list after an equal sign in the path entries.
For example, the error variances of q2 and q3 are denoted by the free parameter evar in a path entry in the
PATH statement.

Alternatively, you can specify the double-headed arrow paths literally in a PATH statement, as shown in the
following equivalent specification:

proc calis data=sales;
path q1 ===> q2 = gamma,

q2 ===> q3 = gamma,
q3 ===> q4 = gamma,
q2 <==> q2 = evar,
q3 <==> q3 = evar,
q4 <==> q4,
q1 <==> q1;

run;
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For example, the path entry q1 <==> q1 specifies the variance of q1. It is an unnamed free parameter in the
model.

Output 29.7.13 show the parameter estimates for this alternative specification method. All these estimates
match exactly those with the PVAR statement specification, as shown in Output 29.7.12. The only difference
is that all estimation results are now presented under one PATH List, as shown in Output 29.7.13, instead of
as two tables as shown in Output 29.7.12.

Output 29.7.13 Path Estimates of the Partially Constrained Model for the Sales Data

PATH List

Path Parameter Estimate
Standard

Error t Value Pr > |t|

q1 ===> q2 gamma 0.35546 0.18958 1.8750 0.0608

q2 ===> q3 gamma 0.35546 0.18958 1.8750 0.0608

q3 ===> q4 gamma 0.35546 0.18958 1.8750 0.0608

q2 <==> q2 evar 0.40601 0.11261 3.6056 0.0003

q3 <==> q3 evar 0.40601 0.11261 3.6056 0.0003

q4 <==> q4 _Parm1 2.29415 0.89984 2.5495 0.0108

q1 <==> q1 _Parm2 0.33830 0.13269 2.5495 0.0108

The double-headed arrow path syntax applies to covariance specification as well. For example, the following
PATH statement specifies the covariances among variables x1–x3:

path x2 <==> x1,
x3 <==> x1,
x3 <==> x2;

In the beginning of the current example, you use the following path diagram to represent the multiple
regression model for the sales data:

q4

q3

q2

q1

The following statements specify the multiple regression model:

proc calis data=sales;
path q1 q2 q3 ===> q4;

run;
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You do not represent the covariances and variances among the exogenous variables explicitly in the path
diagram, nor in the PATH statement specification. However, PROC CALIS generates them as free parameters
by default. Some researchers might prefer to represent the exogenous variances and covariances explicitly in
the path diagram, as shown in the following path diagram:

q4

q3

q2

q1

In the path diagram, there are three single-head arrows and seven double-headed arrows. These 10 paths
represent the 10 parameters in the covariance structure model. To represent all these parameters in the PATH
model specification, you can use the following statements:

proc calis data=sales;
path q1 ===> q4 ,

q2 ===> q4 ,
q3 ===> q4 ,
q1 <==> q1 ,
q2 <==> q2 ,
q3 <==> q3 ,
q1 <==> q2 ,
q2 <==> q3 ,
q1 <==> q3 ,
q4 <==> q4 ;

run;

The first three path entries in the PATH statement reflect the single-headed paths in the path diagram. The
next six path entries in the PATH statement reflect the double-headed paths among the exogenous variables
q1–q3 in the path diagram. The last path entry in the PATH statement reflects the double-headed path attached
to the endogenous variable q4 in the path diagram. With this specification, the parameter estimates for the
multiple regression model are all shown in Output 29.7.14.
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Output 29.7.14 Path Estimates of the Multiple Regression Model for the Sales Data

PATH List

Path Parameter Estimate
Standard

Error t Value Pr > |t|

q1 ===> q4 _Parm01 0.55980 0.64938 0.8621 0.3887

q2 ===> q4 _Parm02 0.58946 0.84558 0.6971 0.4857

q3 ===> q4 _Parm03 0.88290 0.51635 1.7099 0.0873

q1 <==> q1 _Parm04 0.33830 0.13269 2.5495 0.0108

q2 <==> q2 _Parm05 0.22466 0.08812 2.5495 0.0108

q3 <==> q3 _Parm06 0.60633 0.23782 2.5495 0.0108

q1 <==> q2 _Parm07 0.0001978 0.07646 0.00259 0.9979

q2 <==> q3 _Parm08 0.12653 0.10821 1.1693 0.2423

q1 <==> q3 _Parm09 0.03610 0.12601 0.2865 0.7745

q4 <==> q4 _Parm10 1.84128 0.72221 2.5495 0.0108

These estimates are the same as those in Output 29.7.2, where the estimates are shown in three different
tables, instead of in one table for all paths as in Output 29.7.14.

Sometimes, specification of some single-headed and double-headed paths can become very laborious.
Fortunately, PROC CALIS provides shorthand notation for the PATH statement to make the specification
more efficient. For example, a more concise way to specify the preceding multiple regression model is shown
in the following statements:

proc calis data=sales;
path q1 q2 q3 ===> q4 ,

<==> [q1-q3] ,
<==> q4 ;

run;

The first path entry q1 q2 q3 ===> q4 in the PATH statement represents the three single-headed arrows
in the path diagram. The second path entry <==> [q1-q3] generates the variances and covariances for the
set of variables specified in the rectangular brackets. The last path entry represents the error variance of q4.
Consequently, expanding the preceding shorthand specification generates the following specification:

proc calis data=sales;
path q1 ===> q4 ,

q2 ===> q4 ,
q3 ===> q4 ,
q1 <==> q1 ,
q2 <==> q1 ,
q2 <==> q2 ,
q3 <==> q1 ,
q3 <==> q2 ,
q3 <==> q3 ,
q4 <==> q4 ;

run;

Notice that the third through ninth path entries correspond to the lower triangular elements of the covariance
matrix for q1–q3.

CAUTION: The double-headed path specification does not represent a reciprocal relationship. That is, the
following statement specifies the covariance between x2 and x1:
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path x2 <==> x1,

But the following statement specifies that x2 and x1 have reciprocal causal effects:

path x2 <=== x1,
x1 ===> x2;

The reciprocal causal effects specification reflects the following path diagram:

x2x1

Example 29.8: Measurement Error Models
In this example, you use PROC CALIS to fit some measurement error models. You use latent variables to
define “true” scores variables that are measured without errors. You constrain parameters by using parameter
names or fixed values in the PATH model specification.

Consider a simple linear regression model with dependent variable y and predictor variable x. The path
diagram for this simple linear regression model is depicted as follows:

yx

Suppose you have the following SAS data set for the regression analysis of y on x:

data measures;
input x y @@;
datalines;

7.91736 13.8673 6.10807 11.7966 6.94139 12.2174
7.61290 12.9761 6.77190 11.6356 6.33328 11.7732
7.60608 12.8040 6.65642 12.8866 6.26643 11.9382
7.32266 13.2590 5.76977 10.7654 5.62881 11.5041
7.57418 13.2502 7.17305 13.3416 8.23123 13.9876
7.17199 13.1750 8.04604 14.5968 5.77692 11.5077
5.72741 11.3299 6.66033 12.5159 7.14944 12.4988
7.51832 12.3588 5.48877 11.2211 7.50323 13.3735
7.15814 13.1556 7.35485 13.8457 8.91648 14.4929
5.37445 9.6366 6.00419 11.7654 6.89546 13.1493

;

This data set contains 30 observations for the x and y variables. You can fit the simple linear regression
model to the measures data by the PATH model specification of PROC CALIS, as shown in the following
statements:
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proc calis data=measures;
path

x ===> y;
run;

Output 29.8.1 shows that the regression coefficient estimate (denoted as _Parm1 in the PATH List) is 1.1511
(standard error = 0.1002).

Output 29.8.1 Estimates of the Linear Regression Model for the Measures Data

PATH List

Path Parameter Estimate
Standard

Error t Value Pr > |t|

x ===> y _Parm1 1.15112 0.10016 11.4924 <.0001

Variance Parameters

Variance
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Exogenous x _Add1 0.79962 0.20999 3.8079 0.0001

Error y _Add2 0.23265 0.06110 3.8079 0.0001

You can also do the simple linear regression by PROC REG by the following statement:

proc reg data=measures;
model y = x;

run;

Output 29.8.2 shows that PROC REG essentially gives the same regression coefficient estimate with a similar
standard error estimate. The discrepancy in the standard error estimates produced by the two procedures is
due to the different variance divisors in computing standard errors in the two procedures. But the discrepancy
is negligible when the sample size becomes large.

Output 29.8.2 PROC REG Estimates of the Linear Regression Model for the Measures Data

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 4.62455 0.70790 6.53 <.0001

x 1 1.15112 0.10194 11.29 <.0001

There are two main differences between PROC CALIS and PROC REG regarding the parameter estimation
results. First, PROC CALIS does not give the estimate of the intercept because by default PROC CALIS
analyzes only the covariance structures. Therefore, it does not estimate the intercept. To obtain the intercept
estimate, you can add the MEANSTR option in the PROC CALIS statement, as is shown in Example 29.9.
Second, in Output 29.8.1 of PROC CALIS, the variance estimate of x and the error variance estimate of y are
shown. The corresponding results are not shown as parameter estimates in the PROC REG results. In PROC
CALIS, these two variances are model parameters in covariance structure analysis. PROC CALIS adds these
variances as default parameters. You can also represent these two variance parameters by double-headed
arrows in the path diagram, as shown in the following:
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yx

The two double headed-arrows attached to x and y represent the variances. Although it is not necessary to
specify these default parameters, you can use the PVAR statement to specify them explicitly, as shown in the
following statements:

proc calis data=measures meanstr;
path

x ===> y;
pvar

x y;
run;

In the PROC CALIS statement, you specify the MEANSTR option to request the analysis of mean structures
together with covariance structures. Output 29.8.3 shows the estimation results.

Output 29.8.3 Estimates of the Measurement Error Model with Error in x

PATH List

Path Parameter Estimate
Standard

Error t Value Pr > |t|

x ===> y _Parm1 1.15112 0.10016 11.4924 <.0001

Variance Parameters

Variance
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Exogenous x _Parm2 0.79962 0.20999 3.8079 0.0001

Error y _Parm3 0.23265 0.06110 3.8079 0.0001

Means and Intercepts

Type Variable Parameter Estimate
Standard

Error t Value Pr > |t|

Intercept y _Add1 4.62455 0.69578 6.6466 <.0001

Mean x _Add2 6.88865 0.16605 41.4850 <.0001

The regression coefficient estimate and the variance estimates are the same as those in Output 29.8.1. However,
in Output 29.8.3, there is an additional table for the mean and intercept estimates. The intercept estimate for
y is 4.6246 (standard error=0.6958), which match closely to the results obtained from PROC REG, as shown
in Output 29.8.2.

Measurement Error in x

PROC CALIS can also handle more complicated regression situations where the variables are measured with
errors. This is beyond the application of PROC REG.
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Suppose that the predictor variable x is measured with error and from prior studies you know that the size of
the measurement error variance is about 0.019. You can use PROC CALIS to incorporate this information
into the model. First, think of the measured variable x as composed of two components: one component is
the “true” score measure Fx and the other is the measurement error e1. Both of these components are not
observed (that is, latent) but they sum up to yield x. That is,

x D FxC e1

Because x is contaminated with measurement error, what you are interested in knowing is the regression
effect of the true score Fx on x. The following path diagram represents this regression scenario:

yFxx

0.019

1.

In path diagrams, latent variables are usually represented by circles or ovals, while observed variables are
represented by rectangles. In the current path diagram, Fx is a latent variable and is represented by a circle.
The other two variables are observed variables and are represented by rectangles. There are five arrows in the
path diagram. Two of them are single-headed arrows that represent functional relationships, while the other
three are double-headed arrows that represent variances or error variances. Two paths are labeled with fixed
values. The path effect from Fx to x is fixed at 1, as assumed in the measurement error model. The error
variance for measuring x is fixed at 0.019 due to the prior knowledge about the measurement error variance.
The remaining three arrows represent free parameters in the model: the regression coefficient of y on Fx, the
variance of Fx, and the error variance of y. The following statements specify the model for this path diagram:

proc calis data=measures;
path

x <=== Fx = 1.,
Fx ===> y;

pvar
x = 0.019,
Fx, y;

run;

You specify all the single-headed paths in the PATH statement and all the double-headed arrows in the PVAR
statement. For paths with fixed values, you put the equality at the back of the specifications to tell PROC
CALIS about the fixed values. For example, the path coefficient in the path x <=== Fx is fixed at 1 and the
error variance for x is fixed at 0.019. All other specifications represent unnamed free parameters in the model.

Output 29.8.4 shows the estimation results. The effect of Fx on y is 1.1791 (standard error=0.1029). This
effect is slightly greater than the corresponding effect (1.1511) of x on y in the preceding model where the
measurement error of x has not been taken into account, as shown in Output 29.8.3.

Output 29.8.4 Estimates of the Measurement Error Model with Error in x

PATH List

Path Parameter Estimate
Standard

Error t Value Pr > |t|

x <=== Fx 1.00000

Fx ===> y _Parm1 1.17914 0.10288 11.4615 <.0001
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Output 29.8.4 continued

Variance Parameters

Variance
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Error x 0.01900

Exogenous Fx _Parm2 0.78062 0.20999 3.7174 0.0002

Error y _Parm3 0.20686 0.06126 3.3767 0.0007

Measurement Errors in x and y

Measurement error can occur in the y variable too. Suppose that both x and y are measured with errors.
From prior studies, the measurement error variance of x is known to be 0.019 (as in the preceding modeling
scenario) and the measurement error variance of y is known to be 0.022. The following path diagram
represents the current modeling scenario:

y

0.022

1.FyFxx

0.019

1.

In the current path diagram the true score variable Fy and its measurement indicator y have the same kind of
relationship as the relationship between the true score variable Fx and its measurement indicator x in the
previous description. The error variance for measuring y is treated as a known constant 0.022. You can
transcribe this path diagram easily to the following PROC CALIS specification:

proc calis data=measures;
path

x <=== Fx = 1.,
Fx ===> Fy ,
Fy ===> y = 1.;

pvar
x = 0.019,
y = 0.022,
Fx Fy;

run;

Again, you specify all the single-headed paths in the PATH statement and the double-headed paths in the
PVAR statement. You provide the fixed parameter values by appending the required equalities after the
individual specifications.

Output 29.8.5 shows the estimation results of the model with measurement errors in both x and y. The
effect of Fx on Fy is 1.1791 (standard error=0.1029). This is essentially the same effect of Fx on y as in the
preceding measurement model in which no measurement error in y is assumed.
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Output 29.8.5 Estimates of the Measurement Error Model with Errors in x and y

PATH List

Path Parameter Estimate
Standard

Error t Value Pr > |t|

x <=== Fx 1.00000

Fx ===> Fy _Parm1 1.17914 0.10288 11.4615 <.0001

Fy ===> y 1.00000

Variance Parameters

Variance
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Error x 0.01900

y 0.02200

Exogenous Fx _Parm2 0.78062 0.20999 3.7174 0.0002

Error Fy _Parm3 0.18486 0.06126 3.0176 0.0025

The estimated error variance for Fy in the current model is 0.1849 and the measurement error variance
of y is fixed at 0.022, as shown in the last table of Output 29.8.5. The sum is 0.2069, which is the same
amount of error variance for y in the preceding model with measurement error assumed only in x. Hence, the
assumption of the measurement error in y does not change the structural effect of Fx on y (same amount of
effect Fx on Fy, which is 1.1791). It only changes the variance components of y. In the preceding model
with measurement error assumed only in x, the total error variance in y is 0.2069. In the current model, this
total error variance is partitioned into the measurement error variance (which is fixed at 0.022) and the error
variance in the regression on Fx (which is estimated at 0.1849).

Linear Regression Model as a Special Case of Structural Equation Model

By using the current measurement error model as an illustration, it is easy to see that the structural equation
model is a more general model that includes the linear regression model as a special case. If you restrict the
measurement error variances in x and y to zero, the measurement error model (which represents the structural
equation model in this example) reduces to the linear regression model. That is, the path diagram becomes:

y

0.

1.FyFxx

0.

1.

You can then specify the PATH model by the following statements:

proc calis data=measures;
path

x <=== Fx = 1.,
Fx ===> Fy ,
Fy ===> y = 1.;

pvar
x = 0.,
y = 0.,
Fx Fy;

run;
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Output 29.8.6 shows the estimation results of this measurement error model with zero measurement errors.
The estimate of the regression coefficient is 1.1511, which is essentially the same result as in Output 29.8.2
by using PROC REG.

Output 29.8.6 Estimates of the Measurement Error Model with Zero Measurement Errors

PATH List

Path Parameter Estimate
Standard

Error t Value Pr > |t|

x <=== Fx 1.00000

Fx ===> Fy _Parm1 1.15112 0.10016 11.4924 <.0001

Fy ===> y 1.00000

Variance Parameters

Variance
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Error x 0

y 0

Exogenous Fx _Parm2 0.79962 0.20999 3.8079 0.0001

Error Fy _Parm3 0.23265 0.06110 3.8079 0.0001

This example shows that you can apply PROC CALIS to fit measurement error models. You treat true scores
variables as latent variables in the structural equation model. The linear regression model is a special case of
the structural equation model (or measurement error model) where measurement error variances are assumed
to be zero. Structural equation modeling by PROC CALIS is not limited to this simple modeling scenario.
PROC CALIS can treat more complicated measurement error models. In Example 29.9 and Example 29.10,
you fit measurement error models with parameter constraints and with more than one predictor. You can also
fit measurement error models with correlated errors.

Example 29.9: Testing Specific Measurement Error Models
In Example 29.8, you used the PATH modeling language of PROC CALIS to fit some basic measurement
error models. In this example, you continue to fit the same kind of measurement error models but you restrict
some model parameters to test some specific hypotheses.

This example uses the same data set as is used in Example 29.8. This data set contains 30 observations for the
x and y variables. The general measurement error model with measurement errors in both x and y is shown in
the following path diagram:

y1.FyFxx 1.

In the path diagram, two paths are fixed with a path coefficient of 1. They are required in the model
for representing the relationships between true scores (latent) and measured indicators (observed). In
Example 29.8, you consider several different modeling scenarios, all of which require you to make some
parameter restrictions to estimate the models. You fix the measurement error variances to certain values that
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are based on prior knowledge or studies. Without those fixed error variances, those models would have been
overparameterized and the parameters would not have been estimable.

For example, in the current path diagram, five of the single- or double-headed paths are not labeled with fixed
numbers. Each of these paths represents a free parameter in the model. However, in the covariance structure
model analysis, you fit these free parameters to the three nonredundant elements of the sample covariance
matrix, which is a 2 � 2 symmetric matrix. Hence, to have an identified model, you can at most have three
free parameters in your covariance structure model. However, the path diagram shows that you have five free
parameters in the model. You must introduce additional parameter constraints to make the model identified.

If you do not have prior knowledge about the measurement error variances (as those described in Exam-
ple 29.8), then you might need to make some educated guesses about how to restrict the overparameterized
model. For example, if x and y are of the same kind of measurements, perhaps you can assume that they have
an equal amount of measurement error variance. Furthermore, if the measurement errors have been taken
into account, in some physical science studies you might be able to assume that the relationship between the
true scores Fx and Fy is almost deterministic, resulting in a near zero error variance of Fy.

The assumptions here are not comparable to prior knowledge or studies about the measurement error variances.
If you suppose they are reasonable enough in a particular field, you can use these assumptions to give you an
identified model to work with (at least as an exploratory study) when the required prior knowledge is lacking.
The following path diagram incorporates these two assumptions in the measurement error model:

y

evar

1.Fy

0.

Fxx

evar

1.

In the path diagram, you use evar to denote the error variances of x and y. This implicitly constrains the two
error variances to be equal. The error variance of Fy is labeled zero, indicating a fixed parameter value and a
deterministic relationship between x and y. You can transcribe this path diagram into the following PATH
modeling specification:

proc calis data=measures;
path

x <=== Fx = 1.,
Fx ===> Fy ,
Fy ===> y = 1.;

pvar
x = evar,
y = evar,
Fy = 0.,
Fx;

run;

In the PVAR statement, you specify the same parameter name evar for the error variances of x and y. This
way their estimates are constrained to be the same in the estimation. In addition, the error variance for Fy is
fixed at zero, which reflects the “near-deterministic” assumption about the relationship between Fx and Fy.
These two assumptions effectively reduce the overparameterized model by two parameters so that the new
model is just-identified and estimable.

Output 29.9.1 shows the estimation results. The estimated effect of Fx on Fy is 1.3028 (standard error =
0.1134). The measurement error variances for x and y are both estimated at 0.0931 (standard error = 0.0244).
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Output 29.9.1 Estimates of the Measurement Error Model with Equal Measurement Error Variances

PATH List

Path Parameter Estimate
Standard

Error t Value Pr > |t|

x <=== Fx 1.00000

Fx ===> Fy _Parm1 1.30275 0.11336 11.4924 <.0001

Fy ===> y 1.00000

Variance Parameters

Variance
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Error x evar 0.09307 0.02444 3.8079 0.0001

y evar 0.09307 0.02444 3.8079 0.0001

Fy 0

Exogenous Fx _Parm2 0.70655 0.20962 3.3706 0.0008

Testing the Effect of Fx on Fy

Suppose you are interested in testing the hypothesis that the effect of Fx on Fy (that is, the regression slope)
is 1. The following path diagram represents the model under the hypothesis:

y

evar

1.Fy

0.

1.Fxx

evar

1.

Now you label the path from Fx to Fy with a fixed constant 1, which reflects the hypothesis you want to test.
You can transcribe the current path diagram easily into the following PROC CALIS specification:

proc calis data=measures;
path

x <=== Fx = 1.,
Fx ===> Fy = 1., /* Testing a fixed constant effect */
Fy ===> y = 1.;

pvar
x = evar,
y = evar,
Fy = 0.,
Fx;

run;

Output 29.9.2 shows the model fit chi-square statistic. The model fit chi-square test here essentially is a
test of the null hypothesis of the constant effect at 1 because the alternative hypothesis is a saturated model.
The chi-square value is 8.1844 (df = 1, p = .0042), which is statistically significant. This means that the
hypothesis of constant effect at 1 is rejected.
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Output 29.9.2 Fit Summary for Testing Constant Effect

Fit Summary

Chi-Square 8.1844

Chi-Square DF 1

Pr > Chi-Square 0.0042

Output 29.9.3 shows the estimates under this restricted model. In the first table of Output 29.9.3, all path
effects or coefficients are fixed at 1. In the second tale of Output 29.9.3, estimates of the error variances are
0.1255 (standard error = 0.0330) for both x and y. The error variance of Fy is a fixed zero, as required in the
hypothesis. The variance estimate of Fx is 0.9205 (standard error = 0.2587).

Output 29.9.3 Estimates of Constant Effect Measurement Error Model

PATH List

Path Estimate
Standard

Error t Value Pr > |t|

x <=== Fx 1.00000

Fx ===> Fy 1.00000

Fy ===> y 1.00000

Variance Parameters

Variance
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Error x evar 0.12545 0.03295 3.8079 0.0001

y evar 0.12545 0.03295 3.8079 0.0001

Fy 0

Exogenous Fx _Parm1 0.92046 0.25872 3.5577 0.0004

Testing a Zero Intercept

Suppose you are interested in testing the hypothesis that the intercept for the regression of Fy on Fx is zero,
while the regression effect is freely estimated. Because the intercept parameter belongs to the mean structures,
you need to specify this parameter in PROC CALIS to test the hypothesis.

There are two ways to include the mean structure analysis. First, you can include the MEANSTR option
in the PROC CALIS statement. Alternatively, you can use the MEAN statement to specify the means and
intercepts in the model. The following statements specify the model under the zero intercept hypothesis:

proc calis data=measures;
path

x <=== Fx = 1.,
Fx ===> Fy , /* regression effect is freely estimated */
Fy ===> y = 1.;

pvar
x = evar,
y = evar,
Fy = 0.,
Fx;

mean
x y = 0. 0., /* Intercepts are zero in the measurement error model */



1584 F Chapter 29: The CALIS Procedure

Fy = 0., /* Fixed to zero under the hypothesis */
Fx; /* Mean of Fx is freely estimated */

run;

In the PATH statement, the regression effect of Fx on Fy is freely estimated. In the MEAN statement,
you specify the means or intercepts of the variables. Each variable in your measurement error model has
either a mean or an intercept (but not both) to specify. If a variable is exogenous (independent), you can
specify its mean in the MEAN statement. Otherwise, you can specify its intercept in the MEAN statement.
Variables x and y in the measurement error model are both endogenous. They are measured indicators of
their corresponding true scores Fx and Fy. Under the measurement error model, their intercepts are fixed
zeros. The intercept for Fy is zero under the current hypothesized model. The mean of Fx is freely estimated
under the model. This parameter is specified in the MEAN statement but is not named.

Output 29.9.4 shows the model fit chi-square statistic. The chi-square value is 10.5397 (df = 1, p = .0012),
which is statistically significant. This means that the zero intercept hypothesis for the regression of Fy on Fx
is rejected.

Output 29.9.4 Fit Summary for Testing Zero Intercept

Fit Summary

Chi-Square 10.5397

Chi-Square DF 1

Pr > Chi-Square 0.0012

Output 29.9.5 shows the estimates under the hypothesized model. The effect of Fx on Fy is 1.8169 (standard
error = 0.0206). In the last table of Output 29.9.5, the estimate of the mean of Fx is 6.9048 (standard error =
0.1388). The intercepts for all other variables are fixed at zero under the hypothesized model.

Output 29.9.5 Estimates of the Zero Intercept Measurement Error Model

PATH List

Path Parameter Estimate
Standard

Error t Value Pr > |t|

x <=== Fx 1.00000

Fx ===> Fy _Parm1 1.81689 0.02055 88.4247 <.0001

Fy ===> y 1.00000

Variance Parameters

Variance
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Error x evar 0.13684 0.03594 3.8079 0.0001

y evar 0.13684 0.03594 3.8079 0.0001

Fy 0

Exogenous Fx _Parm2 0.42280 0.11990 3.5261 0.0004

Means and Intercepts

Type Variable Parameter Estimate
Standard

Error t Value Pr > |t|

Intercept x 0

y 0

Fy 0

Mean Fx _Parm3 6.90483 0.13881 49.7431 <.0001
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Measurement Model with Means and Intercepts Freely Estimated

In the preceding model, you fit a restricted regression model with a zero intercept. You reject the null
hypothesis and conclude that this intercept is significantly different from zero. The alternative hypothesis is a
saturated model with the intercept freely estimated. The model under the alternative hypothesis is specified
in the following statements:

proc calis data=measures;
path

x <=== Fx = 1.,
Fx ===> Fy ,
Fy ===> y = 1.;

pvar
x = evar,
y = evar,
Fy = 0.,
Fx;

mean
x y = 0. 0.,
Fy Fx;

run;

Output 29.9.6 shows that model fit chi-square statistic is zero. This is expected because you are fitting a
measurement error model with saturated mean and covariance structures.

Output 29.9.6 Fit Summary of the Saturated Measurement Model with Mean Structures

Fit Summary

Chi-Square 0.0000

Chi-Square DF 0

Pr > Chi-Square .

Output 29.9.7 shows the estimates under the measurement model with saturated mean and covariance
structures. The effect of Fx on Fy is 1.3028 (standard error=0.1134), which is considerably smaller than the
corresponding estimate in the restricted model with zero intercept, as shown in Output 29.9.5. The intercept
estimate of Fy is 3.5800 (standard error = 0.7864), with a significant t value of 4.55.

Output 29.9.7 Estimates of the Saturated Measurement Model with Mean Structures

PATH List

Path Parameter Estimate
Standard

Error t Value Pr > |t|

x <=== Fx 1.00000

Fx ===> Fy _Parm1 1.30275 0.11336 11.4924 <.0001

Fy ===> y 1.00000

Variance Parameters

Variance
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Error x evar 0.09307 0.02444 3.8079 0.0001

y evar 0.09307 0.02444 3.8079 0.0001

Fy 0

Exogenous Fx _Parm2 0.70655 0.20962 3.3706 0.0008



1586 F Chapter 29: The CALIS Procedure

Output 29.9.7 continued

Means and Intercepts

Type Variable Parameter Estimate
Standard

Error t Value Pr > |t|

Intercept x 0

y 0

Fy _Parm3 3.57998 0.78641 4.5523 <.0001

Mean Fx _Parm4 6.88865 0.16605 41.4850 <.0001

In this example, you fit some measurement error models with some parameter constraints that reflect the
hypothesized models of interest. You can set equality constraints by simply providing the same parameter
names in the PATH model specification of PROC CALIS. You can also fix parameters to constants. In the
MEAN statement, you can specify the intercepts and means of the variables in the measurement error models.
You can apply all these techniques to more complicated measurement error models with multiple predictors,
as shown in Example 29.10, where you also fit measurement error models with correlated errors.

Example 29.10: Measurement Error Models with Multiple Predictors
In Example 29.8 and Example 29.9, you fit various measurement error models with only one predictor.
This example illustrates the case in which you have more than one predictor, all measured with errors. The
measurement errors might also be correlated.

The data from 37 observations are summarized in a covariance matrix as shown in the following SAS DATA
step:

data multiple(type=cov);
input _type_ $ 1-4 _name_ $ 6-8 @10 y x1 x2 x3;
datalines;

mean 0.93 1.33 1.34 4.11
cov y 1.31 . . .
cov x1 1.24 1.42 . .
cov x2 0.21 0.18 1.15 .
cov x3 3.91 4.21 0.58 14.11
;

In this data set, four variables are measured. Variables x1–x3 are predictors of y. Instead of the raw data, you
can input the sample covariance matrix in the form of a SAS data set for PROC CALIS to analyze.

You assume all of these variables in the data set are measured with errors. From prior studies, you establish
the knowledge about the measurement errors of these variables. You create the true score counterparts for
each of these variables in the same manner as you do in Example 29.8 and Example 29.9. The following path
diagram represents your measurement error model for the data:
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y

x3

x2

x1

0.15

0.03

0.02

0.021.

1.

1.

1.

Fy

F3

F2

F1

In the path diagram, variables F1–F3 and Fy are latent variables that represent the true score for the measured
indicators x1–x3 and y, respectively. All paths from the true scores to the corresponding measured indicators
are labeled with the fixed constant 1, as required by the measurement model. Each measured indicator is
attached with a double-headed arrow that indicates the error variance. Because you have knowledge about
these measurement error variances, you put fixed constant values adjacent to these double-headed arrows. For
example, the measurement error variance of y is 0.02 and the measurement error variance of x3 is 0.15. The
path diagram also indicates that the paths from F1–F3 to Fy and the error variance for Fy are free parameters
to estimate in the model.

Notice that for brevity the variances and covariances among the three exogenous true score variables F1–F3
are not represented in the path diagram. These six variance and covariance parameters could have been
represented by double-headed arrows in the path diagram. However, because PROC CALIS always assumes
the exogenous variances and covariances as default model parameters, this information is not represented to
reduce clutter in the path diagram.

You can transcribe the path diagram easily to the following PATH model specification:

proc calis data=multiple nobs=37;
path

Fy <=== F1 F2 F3,
F1 ===> x1 = 1.,
F2 ===> x2 = 1.,
F3 ===> x3 = 1.,
Fy ===> y = 1.;

pvar
x1 x2 x3 y = .02 .03 .15 .02,
Fy;

run;

In the first entry of the PATH statement, you specify that F1–F3 predicts Fy. In the next four path entries you
specify the measurement model for the true scores and how they are related to the observed variables. In the
PVAR statement, you specify all the known measurement error variances for the observed variables. They are
all fixed constants in the model. In the last entry in the PVAR statement, you specify the error variance of Fy
as a free (unnamed) parameter. You could have omitted this entry because error variances for all endogenous
variables in the PATH model are free parameters by default. Setting these default parameters explicitly as
free parameters would not affect model fitting.

Output 29.10.1 shows the parameter estimates of the model. The path coefficient or effect from F2 to Fy is
not significant, while the other two path coefficients are at least marginally significant.



1588 F Chapter 29: The CALIS Procedure

Output 29.10.1 Parameter Estimates of the Measurement Model with Multiple Predictors

PATH List

Path Parameter Estimate
Standard

Error t Value Pr > |t|

Fy <=== F1 _Parm1 0.46507 0.22682 2.0503 0.0403

Fy <=== F2 _Parm2 0.04123 0.07069 0.5832 0.5597

Fy <=== F3 _Parm3 0.13812 0.07175 1.9249 0.0542

F1 ===> x1 1.00000

F2 ===> x2 1.00000

F3 ===> x3 1.00000

Fy ===> y 1.00000

Variance Parameters

Variance
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Error x1 0.02000

x2 0.03000

x3 0.15000

y 0.02000

Fy _Parm4 0.16461 0.04522 3.6403 0.0003

Exogenous F1 _Add1 1.40000 0.33470 4.1829 <.0001

F2 _Add2 1.12000 0.27106 4.1320 <.0001

F3 _Add3 13.96000 3.32576 4.1975 <.0001

Covariances Among Exogenous Variables

Var1 Var2 Parameter Estimate
Standard

Error t Value Pr > |t|

F2 F1 _Add4 0.18000 0.21508 0.8369 0.4027

F3 F1 _Add5 4.21000 1.02416 4.1107 <.0001

F3 F2 _Add6 0.58000 0.67829 0.8551 0.3925

The second table of Output 29.10.1 shows the variance estimates. As specified in the model, all measurement
error variances for the observed variables are fixed constants. The error variance of Fy is 0.1646 (standard
error =0.0452). Although you do not specify them in the PATH model specification, variances of F1–F3 are
free parameters in the model. The second table of Output 29.10.1 shows their estimates. The last table of
Output 29.10.2 shows the covariances among the latent true scores. Only the covariance between F3 and F1
is significant.

PROC CALIS not only can handle measurement error variance with multiple true score predictors, but it also
can handle correlated errors. Suppose that the measurement errors for variables x1 and x2 are correlated.
From prior studies, you determine that their covariance is 0.01. The path diagram with this new piece of
information added is shown in the following:
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y

x3
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In the path diagram, the double-headed arrow that connects x1 and x2 represents the covariance between the
error terms for the two variables. The value attached to this double-headed arrow is 0.01, which represents a
fixed constant in the model. The PATH model specification is similar to the preceding specification, with one
more entry added in the PCOV statement, as shown in the following statements:

proc calis data=multiple nobs=37;
path

Fy <=== F1 F2 F3,
F1 ===> x1 = 1.,
F2 ===> x2 = 1.,
F3 ===> x3 = 1.,
Fy ===> y = 1.;

pvar
x1 x2 x3 y = .02 .03 .15 .02,
Fy;

pcov
x1 x2 = 0.01;

run;

Except for the PCOV statement specification, everything else is the same as in the preceding specification. In
the PCOV statement, you can specify covariance or error covariances between exogenous or endogenous
variables. In the current model, because both x1 and x2 are endogenous in the model, the specification is for
their error covariance, which is fixed at 0.01 as required.

Output 29.10.2 shows the parameter estimates of the measurement model with correlated errors. The
estimates do not change much from the preceding analysis in which correlated errors is not assumed. Perhaps
the correlation between the errors in the current model is so small that it is ignorable. The last table in
Output 29.10.2 shows the covariance estimates among errors. This table is unique to the current model.
It shows that the measurement errors for x1 and x2 have a covariance of 0.01, which is treated as a fixed
constant in the current model.
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Output 29.10.2 Parameter Estimates of the Measurement Model with Multiple Predictors: Correlated
Errors

PATH List

Path Parameter Estimate
Standard

Error t Value Pr > |t|

Fy <=== F1 _Parm1 0.46839 0.22695 2.0639 0.0390

Fy <=== F2 _Parm2 0.04549 0.07074 0.6431 0.5202

Fy <=== F3 _Parm3 0.13694 0.07194 1.9035 0.0570

F1 ===> x1 1.00000

F2 ===> x2 1.00000

F3 ===> x3 1.00000

Fy ===> y 1.00000

Variance Parameters

Variance
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Error x1 0.02000

x2 0.03000

x3 0.15000

y 0.02000

Fy _Parm4 0.16421 0.04523 3.6305 0.0003

Exogenous F1 _Add1 1.40000 0.33470 4.1829 <.0001

F2 _Add2 1.12000 0.27106 4.1320 <.0001

F3 _Add3 13.96000 3.32576 4.1975 <.0001

Covariances Among Exogenous Variables

Var1 Var2 Parameter Estimate
Standard

Error t Value Pr > |t|

F2 F1 _Add4 0.17000 0.21508 0.7904 0.4293

F3 F1 _Add5 4.21000 1.02416 4.1107 <.0001

F3 F2 _Add6 0.58000 0.67829 0.8551 0.3925

Covariances Among Errors

Error of Error of Estimate
Standard

Error t Value Pr > |t|

x1 x2 0.01000

This example shows how you can use PROC CALIS to fit measurement error models with multiple true score
predictors. You can also fit models with correlated errors. The model specification tool is the PATH modeling
language, which ties closely to the path diagram representations.

However, some researchers might prefer to use linear equations to represent the measurement error models.
PROC CALIS provides the LINEQS modeling language for specifying the measurement error models, or
mean and covariance structure models in general. Example 29.11 illustrates the LINEQS model specification
of the measurement error models.
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Example 29.11: Measurement Error Models Specified As Linear Equations
In Example 29.8, you fit a simple measurement error model with errors in both of the predictor variable
x and the outcome variable y. From prior studies, the measurement error variance of x is 0.019 and the
measurement error variance of y is 0.022. You use the following path diagram to represent the model:

y

0.022

1.FyFxx

0.019

1.

With this path diagram, you use the PATH modeling language of PROC CALIS to specify the model, as
shown in the following:

proc calis data=measures;
path

x <=== Fx = 1.,
Fx ===> Fy ,
Fy ===> y = 1.;

pvar
x = 0.019,
y = 0.022,
Fx Fy;

run;

In the path diagram and in the PATH model specification, there are no explicit representations of the error terms
in the model. You express the error variances of x, y, and Fy as partial variances of the endogenous variables.
In the path diagram, you represent these partial variances by the double-headed arrows. Correspondingly, in
the PATH statement of PROC CALIS, you specify these partial variances in the PVAR statement.

In practice, some researchers might prefer to express the error terms in the model explicitly. For example,
with the error terms added to the preceding measurement error model, the new path diagram becomes:

y1.

1.

e2

0.022

Fy

1.

d

Fxx 1.

1.

e1

0.019

In the path diagram, you add paths from error variables e1, e2, and d to the endogenous variables x, y, and Fy,
respectively. All these paths from the error terms have a fixed path coefficient of 1. The error variances are
represented by double-headed arrows directly attached to them. For example, the variance of e1 is fixed at
0.019, and the variance of e2 is fixed at 0.022. The variance of d, which is sometime called the disturbance,
is a free unnamed parameter in the path diagram. Similarly, the variance of Fx is a free unnamed parameter
in the model.

Corresponding to this new path diagram, you can use the LINEQS modeling language for specifying your
model in PROC CALIS, as shown in the following statements:
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proc calis data=measures;
lineqs

x = 1. * Fx + e1,
y = 1. * Fy + e2,
Fy = * Fx + d;

variance
e1 = 0.019,
e2 = 0.022,
Fx d;

run;

The LINEQS model specification in PROC CALIS emphasizes the linear equation input. In each of the
linear equations in the LINEQS statement, you specify an endogenous variable and how it is related to other
variables. An endogenous variable in the path diagram is a variable that has at least one single-headed arrow
pointing to it. You need to list all endogenous variables on the left-hand side of the linear equations of the
LINEQS statement. In the current model, variables x, y, and Fy are endogenous, and therefore you specify
three linear equations in the LINEQS statement. The first two equations represent the measurement model
for the observed variables, while the third equation represents the structural equation of the model. Notice
that in the third equation, you do not specify the path coefficient that is attached to Fx. PROC CALIS treats
unspecified path coefficients as free parameters. The effect of Fx on Fy is freely estimated, as required in the
path diagram representation.

In the VARIANCE statement, you specify the variances of the exogenous variables in the model. The specifi-
cations in the VARIANCE statement of the LINEQS model are very similar to those in the PVAR statement of
the PATH model. The main difference is the use of error variable names in the VARIANCE statement. With
the LINEQS model specification, you can only specify exogenous variables in the VARIANCE statement.
Hence, you must specify the error variables e1, e2, and d in the VARIANCE statement of the LINEQS model,
instead of the corresponding endogenous variables x, y, and Fy in the PVAR statement of the PATH model.

Output 29.11.1 shows the parameter estimates of the LINEQS model.

Output 29.11.1 LINEQS Parameter Estimates of the Measurement Model for the Measures Data

Linear Equations

x = 1.0000 Fx + 1.0000 e1

y = 1.0000 Fy + 1.0000 e2

Fy = 1.1791 (**) Fx + 1.0000 d

Effects in Linear Equations

Variable Predictor Parameter Estimate
Standard

Error t Value Pr > |t|

x Fx 1.00000

y Fy 1.00000

Fy Fx _Parm1 1.17914 0.10288 11.4615 <.0001

Estimates for Variances of Exogenous Variables

Variable
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Error e1 0.01900

e2 0.02200

Latent Fx _Parm2 0.78062 0.20999 3.7174 0.0002

Disturbance d _Parm3 0.18486 0.06126 3.0176 0.0025
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All these estimates are essentially the same as those obtained from the PATH model specification, as shown
in Output 29.11.2.

Output 29.11.2 PATH Parameter Estimates of the Measurement Model for the Measures Data

PATH List

Path Parameter Estimate
Standard

Error t Value Pr > |t|

x <=== Fx 1.00000

Fx ===> Fy _Parm1 1.17914 0.10288 11.4615 <.0001

Fy ===> y 1.00000

Variance Parameters

Variance
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Error x 0.01900

y 0.02200

Exogenous Fx _Parm2 0.78062 0.20999 3.7174 0.0002

Error Fy _Parm3 0.18486 0.06126 3.0176 0.0025

You can use either the LINEQS or PATH model specification in PROC CALIS for your analysis problems.
They give you the same estimation results.

So far the measurement error model is concerned with one predictor. With more predictors in the model, you
might also want to model the correlated measurement errors in the x variables. You can analyze this kind of
model by using the PATH model specification, as shown in Example 29.10. With measurement error terms
explicitly assumed, you can also use the LINEQS model specification. This example illustrates how you can
do that by using the same data set and the measurement error model with correlated errors in Example 29.10.

In the data set, you have four observed variables: x1–x3 and y. All are measured with errors, as represented
by the following path diagram:

y

x3

x2

x1

0.15
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0.02
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1.

Fy

F3
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In the path diagram, F1–F3 and Fy represent true scores for the measurement indicators x1–x3 and y, respec-
tively. You predict Fy by F1–F3, which represents the structural relationships in the model. Measurement
error variances of the observed variables are treated as known and are represented by the double-headed
arrows attached to the observed variables. For example, the error variance of x3 is 0.15. In addition, the
error covariance between x1 and x2 is treated as known. The double-headed arrow that connects x1 and x2
represents the error covariance, and this covariance is fixed at 0.01 in the model.

You transcribe this path diagram representation into the following PATH model specification:
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proc calis data=multiple nobs=37;
path

Fy <=== F1 F2 F3,
F1 ===> x1 = 1.,
F2 ===> x2 = 1.,
F3 ===> x3 = 1.,
Fy ===> y = 1.;

pvar
x1 x2 x3 y = .02 .03 .15 .02,
Fy;

pcov
x1 x2 = 0.01;

run;

To represent the error terms explicitly, you can add the error terms to the path diagram with some modifications,
as shown in the following:

y

x3

x2

x1

e3 1.

e2 1.

e1 1.

ey1. 0.02

0.15

0.03

0.02

0.01
1.

1.

1.

1.

Fy

1.
dF3

F2

F1

In the path diagram, you attach error variables e1–e3, ey, and d to the associated endogenous variables in the
model. The error variances and covariances, which are attached to the endogenous variables directly, are
now attached to the corresponding error variables. With this new path diagram, you can use the following
LINEQS model specification for the model:

proc calis data=multiple nobs=37;
lineqs

Fy = * F1 + * F2 + * F3 + d,
x1 = 1. * F1 + e1,
x2 = 1. * F2 + e2,
x3 = 1. * F3 + e3,
y = 1. * Fy + ey;

variance
e1-e3 ey = .02 .03 .15 .02,
d;

cov
e1 e2 = 0.01;

run;

Again, in each linear equation of the LINEQS statement, you specify the functional relationship of an
endogenous variable with other variables, including the error variable. The first equation is the structural
equation in the model. You want to estimate the effects of F1, F2, and F3 on Fy. The error or disturbance
variable is d. In the next four equations, you relate the observed variables with their true scores counterparts.

In the VARIANCE statement, you specify the error variances with reference to the error variables in the path
diagram. Four of the error variances are fixed constants, as required in the model. The last specification
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represents a free parameter for the variance of d. The specifications in the VARIANCE statement of the
LINEQS model are similar to those in the PVAR statement of the PATH model specification. The difference
is that in the PATH model specification the reference variables are the endogenous variables in the PATH
model, while in the LINEQS model specification the reference variables are the associated error variables.

In the COV statement, you specify the covariance between the error variables e1 and e2. Again, this is
similar to the corresponding specification of the PATH model, where the same error covariance is specified as
the partial covariance between x1 and x2 in the PCOV statement.

Output 29.11.3 shows the parameter estimates that result from using the LINEQS model specification.
Estimates in the equations, variances, and covariances are shown respectively.

Output 29.11.3 Parameter Estimates of the Measurement Model with Multiple Predictors: LINEQS Model

Linear Equations

Fy = 0.4684 (**) F1 + 0.0455 (ns) F2 + 0.1369 (ns) F3 + 1.0000 d

x1 = 1.0000 F1 + 1.0000 e1

x2 = 1.0000 F2 + 1.0000 e2

x3 = 1.0000 F3 + 1.0000 e3

y = 1.0000 Fy + 1.0000 ey

Effects in Linear Equations

Variable Predictor Parameter Estimate
Standard

Error t Value Pr > |t|

Fy F1 _Parm1 0.46839 0.22695 2.0639 0.0390

Fy F2 _Parm2 0.04549 0.07074 0.6431 0.5202

Fy F3 _Parm3 0.13694 0.07194 1.9035 0.0570

x1 F1 1.00000

x2 F2 1.00000

x3 F3 1.00000

y Fy 1.00000

Estimates for Variances of Exogenous Variables

Variable
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Error e1 0.02000

e2 0.03000

e3 0.15000

ey 0.02000

Disturbance d _Parm4 0.16421 0.04523 3.6305 0.0003

Latent F1 _Add1 1.40000 0.33470 4.1829 <.0001

F2 _Add2 1.12000 0.27106 4.1320 <.0001

F3 _Add3 13.96000 3.32576 4.1975 <.0001

Covariances Among Exogenous Variables

Var1 Var2 Parameter Estimate
Standard

Error t Value Pr > |t|

e1 e2 0.01000

F2 F1 _Add4 0.17000 0.21508 0.7904 0.4293

F3 F1 _Add5 4.21000 1.02416 4.1107 <.0001

F3 F2 _Add6 0.58000 0.67829 0.8551 0.3925
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Output 29.11.4 shows the parameter estimates that result from using the PATH model specification. The
estimates in the path list shown in Output 29.11.4 correspond to those of the equation output in Output 29.11.3.
The variance estimates in Output 29.11.4 correspond to those variance estimates of the exogenous variables of
the LINEQS model, as shown in Output 29.11.3. Finally, the last two tables in Output 29.11.4 correspond to
the covariance estimates among the exogenous variables of the LINEQS model, as shown in Output 29.11.3.
Again, the LINEQS and PATH model specification give you exactly the same estimation results, but in
different output formats.

Output 29.11.4 Parameter Estimates of the Measurement Model with Multiple Predictors: PATH Model

PATH List

Path Parameter Estimate
Standard

Error t Value Pr > |t|

Fy <=== F1 _Parm1 0.46839 0.22695 2.0639 0.0390

Fy <=== F2 _Parm2 0.04549 0.07074 0.6431 0.5202

Fy <=== F3 _Parm3 0.13694 0.07194 1.9035 0.0570

F1 ===> x1 1.00000

F2 ===> x2 1.00000

F3 ===> x3 1.00000

Fy ===> y 1.00000

Variance Parameters

Variance
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Error x1 0.02000

x2 0.03000

x3 0.15000

y 0.02000

Fy _Parm4 0.16421 0.04523 3.6305 0.0003

Exogenous F1 _Add1 1.40000 0.33470 4.1829 <.0001

F2 _Add2 1.12000 0.27106 4.1320 <.0001

F3 _Add3 13.96000 3.32576 4.1975 <.0001

Covariances Among Exogenous Variables

Var1 Var2 Parameter Estimate
Standard

Error t Value Pr > |t|

F2 F1 _Add4 0.17000 0.21508 0.7904 0.4293

F3 F1 _Add5 4.21000 1.02416 4.1107 <.0001

F3 F2 _Add6 0.58000 0.67829 0.8551 0.3925

Covariances Among Errors

Error of Error of Estimate
Standard

Error t Value Pr > |t|

x1 x2 0.01000

In this example, you fit measurement error models by using the LINEQS and PATH model specifications of
PROC CALIS. The two different model specification languages give you essentially the same estimation
results. The measurement models can have multiple true scores predictors and correlated errors. The
measurement error models considered so far have only one measured indicator for each true score latent
variable. This is usually not the case in many psychometric or sociological applications where latent factors
usually have several observed indicators. The confirmatory factor model is a typical example of this kind of
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applications. See Example 29.12 for an application of PROC CALIS to fit confirmatory factor models. See
Example 29.17 for an application of PROC CALIS to fit a general structural equation model where latent
variables have more than one measured indicators.

Example 29.12: Confirmatory Factor Models
This example shows how you can fit a confirmatory factor analysis model by the FACTOR modeling language.
Thirty-two students take tests of their verbal and math abilities. Six tests are administered separately. Tests
x1–x3 test their verbal skills and tests y1–y3 test their math skills.

The data are shown in the following DATA step:

data scores;
input x1 x2 x3 y1 y2 y3;
datalines;

23 17 16 15 14 16
29 26 23 22 18 19
14 21 17 15 16 18
20 18 17 18 21 19
25 26 22 26 21 26
26 19 15 16 17 17
14 17 19 4 6 7
12 17 18 14 16 13
25 19 22 22 20 20
7 12 15 10 11 8

29 24 30 14 13 16
28 24 29 19 19 21
12 9 10 18 19 18
11 8 12 15 16 16
20 14 15 24 23 16
26 25 21 24 23 24
20 16 19 22 21 20
14 19 15 17 19 23
14 20 13 24 26 25
29 24 24 21 20 18
26 28 26 28 26 23
20 23 24 22 23 22
23 24 20 23 22 18
14 18 17 13 16 14
28 34 27 25 21 21
17 12 10 14 12 16
8 1 13 14 15 14

22 19 19 13 11 14
18 21 18 15 18 19
12 12 10 13 13 16
22 14 20 20 18 19
29 21 22 13 17 12

;

Because of the unambiguous nature of the tests, you hypothesize that this is a confirmatory factor model with
two factors: one is the verbal ability factor and the other is the math ability factor. You can represent such a
confirmatory factor model by the following path diagram:
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x1 x2 x3 y1 y2 y3

verbal math

1.0 1.0

In the path diagram, there are two clusters of variables. One cluster is for the verbal factor and the other
is for the math factor. The single-headed arrows in the path diagram represent functional relationships
between factors and the observed variables. The double-headed arrows that point to single variables represent
variances of the factors or error variances of the observed variables. The double-headed arrow that connect the
two factors represents their covariance. All but two of these arrows are not labeled with numbers. Each of the
unlabeled arrows represents a free parameter in the confirmatory factor model. You label the double-headed
arrows that attach to the two factors with the constant 1. This means that the variances of the factors are fixed
at 1.0 in the model.

You can specify the confirmatory factor model by the FACTOR model language of PROC CALIS, as shown
in the following statements:

proc calis data=scores;
factor

verbal ===> x1-x3,
math ===> y1-y3;

pvar
verbal = 1.,
math = 1.;

run;

In each of the entry of the FACTOR statement, you specify a latent factor, followed by a list of observed
variables that are functionally related to the latent factor. For example, in the first entry, the verbal factor
is related to variables x1–x3, as shown by the single-headed arrows in the path diagram. In fact, all single-
headed arrows in the path diagram are specified in the FACTOR statement. Notice that each entry of the
FACTOR statement must take the format of

factor_name ===> variable_list

You cannot reverse the arrow specification as in the following:

variable_list <=== factor_name

Nor you can have a specification such as the following:
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variable_list ===> factor_name

However, you can specify the functional relationships between factors and variables in different entries. For
example, you can specify the same confirmatory factor model by the following statements:

title "Basic Confirmatory Factor Model: Separate Path Entries";
title2 "FACTOR Model Specification";
proc calis data=scores;

factor
verbal ===> x1,
verbal ===> x2,
verbal ===> x3,
math ===> y1,
math ===> y2,
math ===> y3;

pvar
verbal = 1.,
math = 1.;

fitindex noindextype on(only)=[chisq df probchi rmsea srmr bentlercfi];
run;

In the PVAR statement, which is for the specification of variances or error variances, you fix the variances of
the latent factors to 1. This completes the model specification of the confirmatory factor model, although you
do not specify other arrows in the path diagram as free parameters in these statements. The reason is that in
the FACTOR modeling language, the variances and covariances among factors and the error variances of the
observed variables are default parameters in the confirmatory factor model. It is not necessary to specify
these parameters (or the corresponding arrows in the path diagram) explicitly if they are free parameters in
the model. You can also specify these free parameters explicitly without affecting the estimation. However,
if these parameters (or the corresponding double-headed arrows in the path diagram) are intended to be
constrained parameters or fixed values, you must specify them explicitly. For example, in the current
confirmatory factor model, you must provide explicit specifications for the variances of the verbal and the
math factors because these parameters are fixed at 1.

Output 29.12.1 shows the modeling information and the variables in the confirmatory factor model.

Output 29.12.1 Modeling Information and Variables of the CFA Model: Scores Data

Simple Confirmatory Factor Model
FACTOR Model Specification

The CALIS Procedure
Covariance Structure Analysis: Model and Initial Values

Simple Confirmatory Factor Model
FACTOR Model Specification

The CALIS Procedure
Covariance Structure Analysis: Model and Initial Values

Modeling Information

Maximum Likelihood Estimation

Data Set WORK.SCORES

N Records Read 32

N Records Used 32

N Obs 32

Model Type FACTOR

Analysis Covariances
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Output 29.12.1 continued

Variables in the Model

Variables x1  x2  x3  y1  y2  y3

Factors verbal  math

Number of Variables = 6
Number of Factors = 2

In the beginning of the output, PROC CALIS shows the data set, the number of observations, the model
type, and the analysis type. The default analysis type in PROC CALIS is covariances (that is, covariance
structures). If you want to analyze the correlation structures instead, you can use the CORR option in the
PROC CALIS statement. Next, PROC CALIS shows the list of variables and factors in the model. As
expected, the number of variables is 6 and the number of factors is 2.

Output 29.12.2 shows the initial model specifications of the confirmatory factor model.

Output 29.12.2 Initial Specification of the CFA Model: Scores Data

Initial Factor Loading
Matrix

verbal math

x1 .
[_Parm1]

0

x2 .
[_Parm2]

0

x3 .
[_Parm3]

0

y1 0 .
[_Parm4]

y2 0 .
[_Parm5]

y3 0 .
[_Parm6]

Initial Factor
Covariance Matrix

verbal math

verbal 1.0000 .
[_Add1]

math .
[_Add1]

1.0000

Initial Error Variances

Variable Parameter Estimate

x1 _Add2 .

x2 _Add3 .

x3 _Add4 .

y1 _Add5 .

y2 _Add6 .

y3 _Add7 .

NOTE:
Parameters with prefix
'_Add'
are added by PROC CALIS.



Example 29.12: Confirmatory Factor Models F 1601

The first table of Output 29.12.2 shows the pattern of factor loadings of the variables on the two latent factors.
As expected, x1–x3 have nonzero loadings only on the verbal factor, while y1–y3 have nonzero loadings
on the math factor. PROC CALIS names these free parameters automatically with the “_Parm” prefix and
unique numerical suffixes. There are six parameters in the factor loading matrix with six different parameter
names.

The next table of Output 29.12.2 shows the covariance matrix of the factors. The variances of the factors are
fixed at one, as shown on the diagonal of the covariance matrix. The covariance between the two factors is a
free parameter named _Add1. You did not specify this covariance parameter explicitly in the factor model
specification. By default, PROC CALIS assumes that latent factors are correlated. Default free parameters
added by PROC CALIS have the _Add prefix for their names. If you do not want to assume the covariances
among the factors, you must specify zero covariances in the COV statement. For example, the following
statement specifies that the math and verbal factors have zero covariance:

COV
math verbal = 0.;

The last table of Output 29.12.2 shows the error variance parameters of the observed variables. By default
PROC CALIS assumes these error variances are free parameters in the confirmatory factor model. These
added parameters are named with the _Add prefix. However, as all other default parameters that are assumed
by PROC CALIS, you can overwrite the default by using explicit specifications. You can specify the
error variances of a confirmatory factor model explicitly in the PVAR statement. See specifications in
Example 29.13.

Output 29.12.3 shows the fit summary of the confirmatory factor model for the scores data.

Output 29.12.3 Fit Summary of the CFA Model: Scores Data

Fit Summary

Chi-Square 9.8052

Chi-Square DF 8

Pr > Chi-Square 0.2790

Standardized RMR (SRMR) 0.0571

RMSEA Estimate 0.0853

Bentler Comparative Fit Index 0.9887

The model fit chi-square is 9.805 (df = 8, p = 0.279). This shows that statistically you cannot reject
the confirmatory factor model for the test scores. However, the root mean square error of approximation
(RMSEA) estimate is 0.0853, which is greater than the conventional 0.05 value for a good model fit. The
standardized root mean square residual (SRMR) is 0.0571, which is close to the conventional 0.05 value for a
good model fit. Bentler’s comparative fit index is 0.9887, which indicates a very good model fit. Overall, the
model seems to be quite reasonable for the data.

Output 29.12.4 shows the loading and factor covariance estimates of the confirmatory factor model for the
scores data. The first table shows the loading estimates, together with the standard error estimates and the t
values. In structural equation modeling, the significance of the parameter estimates is usually inferred by
comparing the t values with the critical value of a standardized normal variate (that is, the z-table). Therefore,
estimates with associated (absolute) t values greater than 1.96 are significant at ˛=.05. In Output 29.12.4,
all the t values for the loading estimates are greater than 2. This indicates that the prescribed relationships
between the variables and the factors are significant.
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Output 29.12.4 Loading and Factor Covariance Estimates of the CFA Model: Scores Data

Factor Loading Matrix:
Estimate/StdErr/t-value/p-value

verbal math

x1 5.8406
0.9962
5.8629
<.0001

[_Parm1]

0

x2 5.8182
0.9537
6.1004
<.0001

[_Parm2]

0

x3 4.6619
0.7814
5.9662
<.0001

[_Parm3]

0

y1 0 5.2804
0.6998
7.5455
<.0001

[_Parm4]

y2 0 4.2003
0.6220
6.7532
<.0001

[_Parm5]

y3 0 3.7596
0.6341
5.9289
<.0001

[_Parm6]

Factor Covariance Matrix:
Estimate/StdErr/t-value/p-value

verbal math

verbal 1.0000 0.5175
0.1429
3.6221

0.000292
[_Add1]

math 0.5175
0.1429
3.6221

0.000292
[_Add1]

1.0000

The second table of Output 29.12.4 shows the covariance matrix of the verbal and the math factors. Because
the factor variances are fixed at one, the covariance estimate is also the correlation between the two factors.
Output 29.12.4 shows that the two factors are moderately correlated with a correlation estimate of 0.5175,
which is statistically significant.

Output 29.12.5 shows the estimates of the error variances. All but the error variance of y1 are significant.
This suggests that y1 might have an almost perfect relationship with the math factor.
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Output 29.12.5 Error Variance Estimates of the CFA Model: Scores Data

Error Variances

Variable Parameter Estimate
Standard

Error t Value Pr > |t|

x1 _Add2 11.52376 4.26398 2.7026 0.0069

x2 _Add3 9.14503 3.83219 2.3864 0.0170

x3 _Add4 6.68169 2.59770 2.5722 0.0101

y1 _Add5 0.78580 1.29440 0.6071 0.5438

y2 _Add6 2.88069 1.09395 2.6333 0.0085

y3 _Add7 5.15573 1.46854 3.5108 0.0004

Output 29.12.6 echoes this same fact. The R-squares in this table shows the percentages of variance of the
variables that are overlapped with the factors. While all these percentages (0.74 – 0.97) are quite high for all
variables, the percentage is especially high for y1. It shares 97% of the variance with the math factor. So, it
appears that the observed variable y1 is almost a perfect indicator of the math factor.

Output 29.12.6 Squared Multiple Correlations of the CFA Model: Scores Data

Squared Multiple Correlations

Variable
Error

Variance
Total

Variance R-Square

x1 11.52376 45.63609 0.7475

x2 9.14503 42.99597 0.7873

x3 6.68169 28.41532 0.7649

y1 0.78580 28.66835 0.9726

y2 2.88069 20.52319 0.8596

y3 5.15573 19.29032 0.7327

Alternative Identification Constraints

Setting the variances of the latent factors to 1 in the preceding FACTOR model specification makes the model
identified. This is necessary because the scales of the latent factors are arbitrary and the constraints imposed
on the factor variances fix the scales of the factors.

In practice, there is another way to fix the scales of the factors. For each factor, you can fix the loading of one
of its measured indicators to a constant. This fixed loading value is usually set at 1. For example, you can
represent the confirmatory factor model for the scores data by the following alternative path diagram:
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x1 x2 x3 y1 y2 y3

verbal math

1.0 1.0

This path diagram is essentially the same as the preceding one. However, the fixed constants adjacent to the
double-headed arrows that attach to the two factors in the preceding path diagram are now moved to two of
the single-headed paths in the current path diagram.

You can specify this path diagram by the following FACTOR model specification of PROC CALIS:

ods graphics on;
proc calis data=scores plots=pathdiagram;

factor
verbal ===> x1-x3 = 1. ,
math ===> y1-y3 = 1. ;

run;
ods graphics off;

The PLOTS=PATHDIAGRAM option requests the path diagram output. In the FACTOR statement, you
assign a fixed constant to each of the path entries. In the first entry, the constant 1 is assigned to the loading
of x1 on the verbal factor, while all other loadings in this entry are (unnamed) free parameters. Similarly,
in the second entry, the fixed constant 1 is assigned to the loading of y1 on the math factor, while all other
loadings in this entry are (unnamed) free parameters. This completes the specification of the confirmatory
factor model because all the double-headed arrows in the path diagram correspond to default free parameters
in the FACTOR modeling language of PROC CALIS.

Output 29.12.7 shows some fit indices for the current confirmatory factor model for the scores data.

Output 29.12.7 Fit Summary of the CFA Model with Alternative Identification Constraints: Scores Data

Fit Summary

Chi-Square 9.8052

Chi-Square DF 8

Pr > Chi-Square 0.2790

Standardized RMR (SRMR) 0.0571

RMSEA Estimate 0.0853

Bentler Comparative Fit Index 0.9887
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The model fit chi-square is 9.805 (df = 8, p = 0.279). This is the same model fit chi-square as that for the
preceding CFA model specification with factor variances constrained to 1. In fact, all fit information in
Output 29.12.7 are identical to Output 29.12.3.

Figure 29.12.8 shows the path diagram of the confirmatory factor model. The path diagram indicates
significant estimates by attaching asterisks to the numerical values. Estimates that are flagged with one
asterisk are significant at 0.05 ˛-level. Estimates that are flagged with two asterisks are significant at 0.01
˛-level. The path diagram also shows a summary of fit statistics. For more information about specifying path
diagram output, see the section “Path Diagrams: Layout Algorithms, Default Settings, and Customization”
on page 1440.

Output 29.12.8 Path Diagram and Fit Summary: Scores Data
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Output 29.12.9 shows the parameter estimates under the current model specification. The loading of x1 on
the verbal factor is a fixed at 1, as required for the identification of the scale of the verbal factor. Similarly,
the loading of y1 on the math factor is a fixed at 1 for the identification of the scale of the math factor. All
other loading estimates in Output 29.12.9 are not the same as those in the preceding model specification, as
shown in Output 29.12.4. The reason is that the scales of the factors (as measured by the estimated standard
deviations of the factors) in the two specifications are not the same. In the current model specification, the
verbal factor has an estimated variance of 34.1123 and the math factor has an estimated variance of 27.8825,
as shown in the second table of Output 29.12.9. Hence, the estimated standard deviations of these two factors
are 5.8406 and 5.2804, respectively. But the standard deviations of the factors in the preceding confirmatory
factor model specification are fixed at 1.

Output 29.12.9 Loading and Factor Covariance Estimates of the CFA Model with Alternative Identification
Constraints: Scores Data

Factor Loading Matrix:
Estimate/StdErr/t-value/p-value

verbal math

x1 1.0000 0

x2 0.9962
0.1576
6.3194
<.0001

[_Parm1]

0

x3 0.7982
0.1286
6.2083
<.0001

[_Parm2]

0

y1 0 1.0000

y2 0 0.7955
0.0718
11.0820
<.0001

[_Parm3]

y3 0 0.7120
0.0858
8.3027
<.0001

[_Parm4]
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Output 29.12.9 continued

Factor Covariance Matrix:
Estimate/StdErr/t-value/p-value

verbal math

verbal 34.1123
11.6366
2.9315

0.003374
[_Add1]

15.9585
6.7270
2.3723
0.0177
[_Add3]

math 15.9585
6.7270
2.3723
0.0177
[_Add3]

27.8825
7.3905
3.7727

0.000161
[_Add2]

However, if you multiply the loading estimates in Output 29.12.9 by the corresponding estimated factor
standard deviation, you get the same set of loading estimates as in Output 29.12.4. For example, the loading
of x1 on the verbal factor is 1.0 in Output 29.12.9. Multiplying this loading by the estimated standard
deviation 5.8406 of the verbal factor gives you the same corresponding loading as in Output 29.12.4. Another
example is the loading of y3 on the math factor. This loading is 0.7120 in Output 29.12.9. Multiplying this
estimate by the estimated standard deviation 5.2804 of the verbal factor gives an estimate of 3.7596, which
matches the corresponding loading estimate in Output 29.12.4. Therefore, the discrepancies in the loading
estimates are due to different factor scales in the two specifications. The loading estimates in Output 29.12.9
are simply rescaled version of the loading estimates in Output 29.12.4.

However, the scales of the factors do not affect the estimates of the error variances, as shown in Out-
put 29.12.10. These estimates are the same as those for the preceding model specification, as shown in the
Output 29.12.5.

Output 29.12.10 Error Variance Estimates of the CFA Model with Alternative Identification Constraints:
Scores Data

Error Variances

Variable Parameter Estimate
Standard

Error t Value Pr > |t|

x1 _Add4 11.52376 4.26398 2.7026 0.0069

x2 _Add5 9.14503 3.83219 2.3864 0.0170

x3 _Add6 6.68169 2.59770 2.5722 0.0101

y1 _Add7 0.78580 1.29440 0.6071 0.5438

y2 _Add8 2.88069 1.09395 2.6333 0.0085

y3 _Add9 5.15573 1.46854 3.5108 0.0004

This example shows how you can fit a basic confirmatory factor model by the FACTOR modeling language
of PROC CALIS. You can set the identification constraints and get statistically equivalent estimation results
in two different ways. By setting up additional parameter constraints, you can also fit some variations of the
basic confirmatory factor model. See Example 29.13 for illustrations of some restricted confirmatory factor
models for the scores data.

When your data have missing values, with the default ML estimation method PROC CALIS deletes all
observations with missing values for the analysis. This might result in a serious loss of information.
Example 29.15 considers a hypothetical situation where some observations in the scores data have missing
values in the observed variables. Only 16 observations have complete data. By using the full information
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maximum likelihood (FIML) method for treating the missing data, Example 29.15 shows how you can fully
use the information from the scores data set with missing values.

Example 29.13: Confirmatory Factor Models: Some Variations
This example shows how you can fit some variations of the basic confirmatory factor analysis model by
the FACTOR modeling language. You apply these models to the scores data set that is described in
Example 29.12. The data set contains six test scores of verbal and math abilities. Thirty-two students take
the tests. Tests x1–x3 test their verbal skills and tests y1–y3 test their math skills.

The Parallel Tests Model

In classical measurement theory, test items for a latent factor are parallel if they have the same loadings on
the factor and the same error variances (or reliability). Suppose for the scores data, the items within each
of the verbal and the math factors are parallel. You can use the following path diagram to represent such a
parallel tests model:

x1 x2 x3

evar1 evar1 evar1

y1 y2 y3

evar2 evar2 evar2

verbal math

1.0 1.0

load1 load1 load1 load2 load2 load2

In the path diagram, the variances of the verbal and the math are both fixed at 1, as indicated by the constants
1.0 adjacent to the double-headed arrows that are attached to factors. You label all the single-headed paths
in the path diagram by parameter names. For the three paths (loadings) from the verbal factor, you use
the same parameter name load1. This means that these loadings are the same parameter. You also label
the double-headed arrows that are attached to x1–x3 by the parameter name evar1. This means that the
corresponding error variances for these three observed variables are exactly the same. Hence, x1–x3 are
parallel tests for the verbal factor, as required by the current confirmatory factor model.

Similarly, you define parallel tests y1–y3 for the math factor by using load2 as the common factor loading
parameter and evar2 as the common error variances for the observed variables.

Corresponding to this path diagram, you can specify the model by the following FACTOR model specification
of PROC CALIS:
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proc calis data=scores;
factor

verbal ===> x1-x3 = load1 load1 load1,
math ===> y1-y3 = load2 load2 load2;

pvar
verbal = 1.,
math = 1.,
x1-x3 = 3*evar1,
y1-y3 = 3*evar2;

run;

In each entry of the FACTOR statement, you specify the factor-variables relationships, followed by a list of
parameters. For example, the three loading parameters of x1–x3 on the verbal factor are all named load1.
This effectively constrains the corresponding loading estimates to be the same. Similarly, in the next entry
you set equality constraints on the loading estimates y1–y3 on the math factor by using the same parameter
name load2.

To make the tests parallel, you also need to constrain the error variances for each variable cluster. In the PVAR
statement, in addition to setting the factor variances to 1 for identification, you set all the error variances of
x1–x3 to be the same by using the same parameter name evar1. The notation 3*evar1 means that you want
to specify evar1 three times, one time each for the error variances for the three observed variables in the
variable list of the entry. Similarly, you set the equality of the error variances of y1–y3 by using the same
parameter name evar2.

Output 29.13.1 shows some fit indices of the parallel tests model for the scores data. The model fit chi-square
is 26.128 (df = 16, p = 0.0522). The SRMR value is 0.1537 and the RMSEA value is 0.1429. All these
indices show that the model does not fit very well. However, Bentler’s CFI is 0.9366, which shows a good
model fit.

Output 29.13.1 Model Fit of the Parallel Tests Model: Scores Data

Fit Summary

Chi-Square 26.1283

Chi-Square DF 16

Pr > Chi-Square 0.0522

Standardized RMR (SRMR) 0.1537

RMSEA Estimate 0.1429

Bentler Comparative Fit Index 0.9366

Output 29.13.2 shows the parameter estimates of the parallel tests model. The first table of Output 29.13.2
shows the required factor pattern for parallel tests. Variables x1–x3 all have the same loading estimates on
the verbal factor, and variables y1–y3 all have the same loading estimates on the math factor. All loading
estimates are statistically significant.
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Output 29.13.2 Parameter Estimates of the Parallel Tests Model: Scores Data

Factor Loading Matrix:
Estimate/StdErr/t-value/p-value

verbal math

x1 5.4226
0.7655
7.0833
<.0001
[load1]

0

x2 5.4226
0.7655
7.0833
<.0001
[load1]

0

x3 5.4226
0.7655
7.0833
<.0001
[load1]

0

y1 0 4.4001
0.5926
7.4246
<.0001
[load2]

y2 0 4.4001
0.5926
7.4246
<.0001
[load2]

y3 0 4.4001
0.5926
7.4246
<.0001
[load2]

Factor Covariance Matrix:
Estimate/StdErr/t-value/p-value

verbal math

verbal 1.0000 0.5024
0.1497
3.3569

0.000788
[_Add1]

math 0.5024
0.1497
3.3569

0.000788
[_Add1]

1.0000

Error Variances

Variable Parameter Estimate
Standard

Error t Value Pr > |t|

x1 evar1 9.61122 1.72623 5.5678 <.0001

x2 evar1 9.61122 1.72623 5.5678 <.0001

x3 evar1 9.61122 1.72623 5.5678 <.0001

y1 evar2 3.46673 0.62264 5.5678 <.0001

y2 evar2 3.46673 0.62264 5.5678 <.0001

y3 evar2 3.46673 0.62264 5.5678 <.0001
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In the second table of Output 29.13.2, the factor covariance (or correlation) estimate is 0.5024, showing
moderate relationship between the verbal and the math factors. The last table of Output 29.13.2 shows the
error variances of the variables. As required by the parallel tests model, the error variance estimates of x1–x3
are all 9.6112, and the error variance estimates of y1–y3 are all 3.4667.

The Tau-Equivalent Tests Model

Because the parallel tests model does not fit well, you are looking for a less constrained model for the scores
data. The tau-equivalent tests model is such a model. It requires only the equality of factor loadings but not
the equality of error variances within each factor. The following path diagram represents the tau-equivalent
tests model for the scores data:

x1 x2 x3 y1 y2 y3

verbal math

1.0 1.0

load1 load1 load1 load2 load2 load2

This path diagram is much the same as that for the parallel tests model except that now you do not use
parameter names to label the double-headed arrows that are attached to the observed variables. This means
that you allow the corresponding error variances to be free parameters in the tau-equivalent tests model. You
can use the following FACTOR model specification of PROC CALIS to specify the tau-equivalent tests
model for the scores data:

proc calis data=scores;
factor

verbal ===> x1-x3 = load1 load1 load1,
math ===> y1-y3 = load2 load2 load2;

pvar
verbal = 1.,
math = 1.;

run;

This specification is the same as that for the parallel tests model except that you remove the specifications
about the error variances in the PVAR statement in the current tau-equivalent model. This effectively allows
the error variances of the observed variables to be (default) free parameters in the model.

Output 29.13.3 shows some model fit indices of the tau-equivalent tests model for the scores data. The
chi-square is 22.0468 (df = 12, p = 0.037). The SRMR is 0.1398 and the RMSEA is 0.1643. The comparative
fit index (CFI) is 0.9371. Except for the CFI value, all other values do not support a good model fit. This
model has a degrees of freedom of 12, which is less restrictive (has more parameters) than the parallel tests
model, which has a degrees of freedom of 16, as shown in Output 29.13.1. However, it seems that the
tau-equivalent tests model is still too restrictive for the data.



1612 F Chapter 29: The CALIS Procedure

Output 29.13.3 Model Fit of the Tau-Equivalent Tests Model: Scores Data

Fit Summary

Chi-Square 22.0468

Chi-Square DF 12

Pr > Chi-Square 0.0370

Standardized RMR (SRMR) 0.1398

RMSEA Estimate 0.1643

Bentler Comparative Fit Index 0.9371

Output 29.13.4 shows the parameter estimates. The first table of Output 29.13.4 shows the required pattern
of factor loadings under the tau-equivalent tests model. The third table of Output 29.13.4 shows the error
variance estimates. The error variance parameters are no longer constrained under the tau-equivalent tests
model. Each has a unique estimate.

Output 29.13.4 Parameter Estimates of the Tau-Equivalent Tests Model: Scores Data

Factor Loading Matrix:
Estimate/StdErr/t-value/p-value

verbal math

x1 5.2418
0.7374
7.1085
<.0001
[load1]

0

x2 5.2418
0.7374
7.1085
<.0001
[load1]

0

x3 5.2418
0.7374
7.1085
<.0001
[load1]

0

y1 0 4.4462
0.5932
7.4953
<.0001
[load2]

y2 0 4.4462
0.5932
7.4953
<.0001
[load2]

y3 0 4.4462
0.5932
7.4953
<.0001
[load2]
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Output 29.13.4 continued

Factor Covariance Matrix:
Estimate/StdErr/t-value/p-value

verbal math

verbal 1.0000 0.4514
0.1569
2.8772

0.004012
[_Add1]

math 0.4514
0.1569
2.8772

0.004012
[_Add1]

1.0000

Error Variances

Variable Parameter Estimate
Standard

Error t Value Pr > |t|

x1 _Add2 13.05681 4.19549 3.1121 0.0019

x2 _Add3 10.80421 3.70322 2.9175 0.0035

x3 _Add4 5.43527 2.72147 1.9972 0.0458

y1 _Add5 3.29858 1.24673 2.6458 0.0082

y2 _Add6 1.90435 1.02393 1.8598 0.0629

y3 _Add7 5.09724 1.61477 3.1566 0.0016

The Partially Constrained Parallel Tests Model

Because both the parallel tests and tau-equivalent tests models do not fit the data well, you can explore an
alternative model for the scores data. Suppose that for each factor only two (but not all) of their measured
variables (tests) are parallel. For example, suppose you know that tests x1 and x2 are very similar to each
other (for example, both are speeded tests with forced-choice answers), while x3 is a little different in the
way it is administered (for example, open-ended questions). Although all tests are designed for measuring the
verbal factor, only x1 and x2 are parallel tests while x3 is congeneric to the verbal factor. Similarly, suppose
you can argue that y2 and y3 are parallel tests while y1 is only congeneric to the math factor.

The current modeling idea is represented by the following path diagram:

x1 x2 x3

evar1 evar1 phi

y1 y2 y3

theta evar2 evar2

verbal math

1.0 1.0

load1 load1 alpha beta load2 load2
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In the path diagram, x1 and x2 have the same parameter load1 for the paths from the verbal factor. Their
error variances are also the same, as labeled with the evar1 parameter adjacent to the double-headed arrows
that are attached to the variables. The test x3 has distinct parameter names for its associated path and the
attached double-headed arrow. The corresponding loading and error variance parameters are alpha and phi,
respectively. Similarly, with the use of specific parameter names, you define y2 and y3 as parallel tests for the
math factor, while y1 is congeneric to the same factor but with distinct loading and error variance parameters.
Lastly, you fix the variances of the factors to 1.0 for identification of the factor scales.

You can specify such a partially constrained parallel tests model by the following FACTOR model specification
of PROC CALIS:

proc calis data=scores;
factor

verbal ===> x1-x3 = load1 load1 alpha,
math ===> y1-y3 = beta load2 load2;

pvar
verbal = 1.,
math = 1.,
x1-x3 = evar1 evar1 phi,
y1-y3 = theta evar2 evar2;

run;

First, in the FACTOR statement, you name the loading parameters that reflect the parallel tests constraints.
For example, the loading parameters of x1 and x2 on the verbal factor are both named load1. This means that
they are the same. However, the loading parameter of x3 on the verbal factor is named alpha, which means
that it is a separate parameter. Similarly, you apply the load2 parameter name to the loading parameters of y2
and y3 on the math factor, but the loading parameter of y1 on the math factor is a distinct parameter named
beta.

In the PVAR statement, the two factor variances are set to a constant 1 for the identification of latent factor
scales. Next, you use the same naming techniques as in the FACTOR statement to constrain some parts of
the error variances. As a result, together with the specifications in the FACTOR statement, x1 and x2 are
parallel tests for the verbal factor and y2 and y3 are parallel tests for the math factor, while x3 and y1 are
only congeneric tests for their respective factors.

Output 29.13.5 shows some fit indices of the partially constrained parallel tests model. The model fit
chi-square is 12.6784 (df = 12, p = 0.3928). The SRMR is 0.0585 and the RMSEA is close to 0.0427. The
comparative fit index (CFI) is 0.9958. All these fit indices point to a quite reasonable model fit for the scores
data.

Output 29.13.5 Model Fit of the Partially Constrained Parallel Tests Model: Scores Data

Fit Summary

Chi-Square 12.6784

Chi-Square DF 12

Pr > Chi-Square 0.3928

Standardized RMR (SRMR) 0.0585

RMSEA Estimate 0.0427

Bentler Comparative Fit Index 0.9958

Notice that the current model actually has the same degrees of freedom as that of the tau-equivalent tests
model, as shown in Output 29.13.3. Both models have nine parameters. But the current partially constrained
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parallel tests model is definitely a better model for the data. This shows that sometimes you do not have to
add more parameters to improve the model fit. Structurally different models might explain the data quite
differently, even though they might use the same number of parameters.

Output 29.13.6 show the parameter estimates of the partially constrained parallel tests model for the scores
data. The estimates in the factor loading matrix and error variances table confirm the prescribed nature of the
tests—that is, x1 and x2 are parallel tests for the verbal factor and y2 and y3 are parallel tests for the math
factor.

Output 29.13.6 Parameter Estimates of the Partially Constrained Parallel Tests Model: Scores Data

Factor Loading Matrix:
Estimate/StdErr/t-value/p-value

verbal math

x1 5.8306
0.8593
6.7853
<.0001
[load1]

0

x2 5.8306
0.8593
6.7853
<.0001
[load1]

0

x3 4.6623
0.7814
5.9664
<.0001
[alpha]

0

y1 0 5.2784
0.7010
7.5294
<.0001
[beta]

y2 0 3.9789
0.5732
6.9419
<.0001
[load2]

y3 0 3.9789
0.5732
6.9419
<.0001
[load2]

Factor Covariance Matrix:
Estimate/StdErr/t-value/p-value

verbal math

verbal 1.0000 0.5203
0.1425
3.6497

0.000263
[_Add1]

math 0.5203
0.1425
3.6497

0.000263
[_Add1]

1.0000
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Output 29.13.6 continued

Error Variances

Variable Parameter Estimate
Standard

Error t Value Pr > |t|

x1 evar1 10.31998 2.57827 4.0027 <.0001

x2 evar1 10.31998 2.57827 4.0027 <.0001

x3 phi 6.67832 2.59902 2.5696 0.0102

y1 theta 0.80714 1.35247 0.5968 0.5506

y2 evar2 4.07534 1.00371 4.0603 <.0001

y3 evar2 4.07534 1.00371 4.0603 <.0001

Example 29.14: Residual Diagnostics and Robust Estimation
This example illustrates case-level residual diagnostics and robust estimation with PROC CALIS. The data
set is available in Mardia, Kent, and Bibby (1979). It contains 88 responses on five subjects: mechanics,
vector, algebra, analysis, and statistics. Yuan and Hayashi (2010) use the same data set to illustrate the uses
of residual diagnostics in the context of robust estimation. Inspired by their illustrations, this example mirrors
their one-factor model, with some modifications.

Case-Level Residual Diagnostics

The following DATA step specifies and inputs five observed variables for the data set mardia:

data mardia;
input mechanics vector algebra analysis statistics;
datalines;

77.000 82.000 67.000 67.000 81.000
63.000 78.000 80.000 70.000 81.000
75.000 73.000 71.000 66.000 81.000

. . . . .

. . . . .
{ More Data }

. . . . .

. . . . .

. . . . .

. . . . .
;

You specify a one-factor model for the five variables by using the following statements:

ods graphics on;

proc calis data=mardia residual plots=caseresid;
path

fact1 ===> mechanics vector algebra analysis statistics = 1. ;
run;

ods graphics off;
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In the PATH statement, all observed variables are indicators of the latent factor fact1. The first factor loading
for mechanics is fixed at 1 for identification of the latent variable scale, while the remaining four loadings
are free parameters in the model. The RESIDUAL option that is specified in the PROC CALIS statement
requests residual analysis. Because raw data are input, case-level residual analysis is done. To request all the
available ODS Graphics output for case-level residual diagnostics, you specify the PLOTS=CASERESID
option. To enable ODS Graphics, you specify the ODS GRAPHICS ON statement before running the CALIS
procedure.

Output 29.14.1 shows some of the fit statistics of the one-factor model. The model fit chi-square is 8.9782
(df = 5, p = 0.1099). Therefore, you fail to reject the one-factor model for the data. The SRMR is 0.0411,
which shows a good fit. But the RMSEA is 0.0956, which does not show that the one-factor model is a very
good approximating model for the data. Output 29.14.2 shows the loading estimates. All are statistically
significant.

Output 29.14.1 Model Fit of Mardia Data

Fit Summary

Chi-Square 8.9782

Chi-Square DF 5

Pr > Chi-Square 0.1099

Standardized RMR (SRMR) 0.0475

RMSEA Estimate 0.0956

Output 29.14.2 Estimates of Loadings

PATH List

Path Parameter Estimate
Standard

Error t Value Pr > |t|

fact1 ===> mechanics 1.00000

fact1 ===> vector _Parm1 0.83770 0.16598 5.0469 <.0001

fact1 ===> algebra _Parm2 0.93064 0.15369 6.0552 <.0001

fact1 ===> analysis _Parm3 1.09480 0.19611 5.5826 <.0001

fact1 ===> statistics _Parm4 1.19229 0.22309 5.3444 <.0001

Output 29.14.3 shows the classifications of outlier and leverage observations in a two-dimensional space.
Four regions are clearly shown.
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Output 29.14.3 Outliers and Leverage Observations

The upper and the lower regions are separated by a horizontal line that represents the criterion for outlier
detection. This criterion is set by a certain ˛-level that has a probability meaning. Loosely speaking, if
the model is true and the distribution of the residuals is multivariate normal, you would expect that about
˛ � 100% of observations will have their residual M-distances above the criterion. The larger the ˛ value,
the more liberal the outlier detection criterion. This ˛-level is set to 0.01 by default. You can change this
default by using the ALPHAOUT= option.

Notice that all residuals and the criterion are measured in terms of M-distances. Hence, these measures are
always positive. Output 29.14.3 classifies observations 81 and 28 as outliers (in the residual dimension). In
addition to these two outlying observations, PROC CALIS also labels the next five observations with the
largest residual M-distances. Output 29.14.3 shows that observations 33, 54, 56, 61, and 66 are the closest to
being labeled as outliers.

The right and left regions are separated by a vertical line that represents the criterion for leverage observations.
Again, this criterion is set by a certain ˛-level that has a probability meaning. If the model is true and the
distribution of the predictor variables (in this case, the factor variable fact1) is multivariate normal, you would
expect that about ˛ � 100% of observations will have their leverage M-distances above the criterion. The
larger the ˛ value, the more liberal the leverage observation detection criterion. This ˛-level is also set to
0.01 by default. You can change this default by using the ALPHALEV= option.



Example 29.14: Residual Diagnostics and Robust Estimation F 1619

Output 29.14.3 classifies observations 2, 87, and 88 as leverage points or observations. In addition to these
three observations, PROC CALIS also labels the next five observations with the largest leverage M-distances.
Output 29.14.3 shows that observations 1, 3, 6, 8, and 86 are the closest to being labeled as leverage
observations.

The lower left region in Output 29.14.3 contains observations that are neither outliers nor leverage obser-
vations. This region contains the majority of the observations. The upper right region in Output 29.14.3
contains observations that are classified as both outliers and leverage observations. For the current model, no
observations are classified as such.

To supplement the graphical depiction of outliers and leverage observations, PROC CALIS shows two
tables that contain more numerical information. Output 29.14.4 shows the seven observations that have
the largest residual M-distances. The table reflects the outlier classification in Output 29.14.3 numerically.
Two outliers are flagged in the table. However, none of the seven observations are leverage observations.
Output 29.14.5 shows the eight observations that have the largest leverage M-distances. Again, this table
reflects the classification of leverage observations in Output 29.14.3 numerically. Three leverage observations
are flagged, but none of these observations are residual outliers at the same time.

Output 29.14.4 Largest Residual Outliers

Diagnostics of the 7 Largest Case-Level
Residuals (alpha=0.01)

Diagnostics

Case
Number

Residual
(M-Distance) Outlier Leverage

81 4.60511 *

28 3.69953 *

54 3.43068

33 3.17659

61 3.15104

56 3.06094

66 3.03262

Output 29.14.5 Largest Leverage Observations

Diagnostics of the 8 Largest Case-Level
Leverages (alpha=0.01)

Diagnostics

Case
Number

Leverage
(M-Distance) Leverage Outlier

87 2.96438 *

88 2.72441 *

2 2.69293 *

3 2.15519

1 2.04014

6 1.87894

86 1.72950

8 1.59242
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Output 29.14.6 shows the histogram and its kernel density function of the residual M-distances. Theoretically,
the density should look like a �-distribution (that is, the distribution of the square root of the corresponding
�2 variate). While this histogram provides an overall impression of the empirical distribution of the residual
M-distances, it is not very useful in diagnosing the observations that do not conform to the theoretical
distribution of the residual M-distances. To this end, Output 29.14.7 and Output 29.14.8 are more useful.

Output 29.14.6 Distribution of Case-Level Residuals

Output 29.14.7 shows the so-called Q-Q plot for the residual M-distances. The Y coordinates represent
the observed quantiles, and the X coordinates represent the theoretical quantiles. Output 29.14.8 shows the
so-called P-P plots for the residual M-distances. The Y coordinates represent the observed percentiles, and
the X coordinates represent the theoretical percentiles. If the observed residual M-distances distribute exactly
like the theoretical �-distribution, all observations should lie on the straight lines with a slope of 1 in both
plots. In Output 29.14.7 and Output 29.14.8, observations with the largest departures from the straight lines
are labeled.
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Output 29.14.7 Q-Q Plot of Residual M-Distances

In terms of quantiles, the Q-Q plot in Output 29.14.7 shows that observations 81, 28, and 54 have the largest
departures from the theoretical distribution for the residual M-distances. Notice that observations 81 and 28
were also identified as outliers previously.
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Output 29.14.8 P-P Plot of Residual M-Distances

In terms of percentiles, the P-P plot in Output 29.14.8 shows that several observations in the middle of the
distribution have the largest departures from the theoretical distribution. However, it is not clear from the plot
which observations have the largest departures.

To supplement the Q-Q and the P-P plots with numerical information, PROC CALIS outputs the table
in Output 29.14.9, which shows the observations with the largest departures from the theoretical residual
M-distance distribution in terms of quantiles and percentiles. The observations in the table are arranged
by their percentile regions. Approximately 10% of the observations with the largest departures in terms
of quantile and in terms of percentile, respectively, are shown in this table. However, the final percentage
of observations shown in the table might not add up to 20%, because some observations could have large
departures in terms of both quantile and percentile. Output 29.14.9 shows that observations 1, 15, 30, and 72
are this kind of observation. However, none of these are residual outliers.
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Output 29.14.9 Largest Departures from the Theoretical Residual Distribution

Largest Departures From the
Theoretical Residual Distribution

Percentile
Region

Case
Number

Quantile
Deviation

Percentile
Deviation

(.65,.90) 26 -0.05302

36 -0.05836

40 -0.05863

15 -0.13087 -0.06509

87 -0.05257

71 -0.05145

30 -0.11973 -0.05198

1 -0.12344 -0.05065

72 -0.13739 -0.05498

64 -0.12550

(.90,.95) 66 0.13803

>.95 54 0.20039

28 0.32398

81 0.99843

Output 29.14.10 shows the residual on fit plot for the variable algebra. Notice that unlike the preceding
residual diagnostic plots where the M-distances (nonnegative) for residuals are plotted, the residuals (which
can be positive or negative) themselves are plotted against the predicted values for algebra in the current
residual on fit (or residual on predicted) plot. If the linear relationship as described by the one-factor model
is reasonable, then the residuals should show no systematic trend with the predicted values. That is, the
residuals should be randomly scattered around the plot in the range of the predicted values. The pattern of
residuals in Output 29.14.10 looks sufficiently “random,” and therefore it gives support to the prescribed
linear relationship between the variable algebra and the factor fact1. PROC CALIS also outputs the residual
on fit plots for other dependent observed variables. To conserve space, they are not shown here. You can also
control the amount of graphical output by specifying the desirable set of dependent observed variables for the
residual on fit plots. For example, the following requests the residual on fit plots for the variables mechanics
and analysis only, even though there are five dependent observed variables in the model:

PLOTS=RESBYPRED(VAR=mechanics analysis)

See the PLOTS= option for details.
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Output 29.14.10 Residual on Fit Plot for the Variable Algebra

Direct Robust Estimation

Usually, the outlier detection process in residual diagnostics implies some treatments after their detections.
For example, in the preceding analysis, observations 28 and 81 were detected as outliers. You would naturally
think that the next step is to do an additional model fitting with these two outlying observations removed.
While this thinking is intuitively appealing, the outlier issues are usually more complicated than can be
resolved by such a “pick-and-remove” strategy. One issue is the so-called masking effect of outliers. In
the preceding analysis, outliers are detected based on a criterion that is a function of the chosen criterion
level (for example, the ALPHAOUT= value set by the researcher) and the parameter estimates. However,
because the outliers have contributed to the estimation of the parameters, you might wonder whether the
outlier detection process has been contaminated by the outliers themselves. If such a masking effect is present
and an additional analysis is done after employing the pick-and-remove strategy for the outliers, you would
be likely to discover more outliers. As a result, you might wonder whether the outlier removal process should
be carried out indefinitely.

Robust estimation provides an alternative way to resolve the issue of masking effect. In robust estimation,
outlying observations are downweighted simultaneously with the estimation. Iterative steps are used to
reweight the observations according to the updated parameter estimates. Hence, with robust estimation you
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do not need to make a decision about removing outliers because they are already downweighted during the
estimation. The issue of masking effect is avoided.

PROC CALIS provides two major methods of robust estimation—direct and two-stage. This section illustrates
the direct robust estimation method, in which the model is estimated simultaneously with the (re)weighting
of the observations. The next section illustrates the two-stage estimation method, in which the robust mean
and covariance matrices obtained in the first stage are analyzed by the maximum likelihood (ML) estimation
in the second stage. Both methods are based on the methodology proposed by Yuan and Zhong (2008) and
Yuan and Hayashi (2010).

The following statements request direct robust estimation of the model for the mardia data set:

ods graphics on;

proc calis data=mardia residual robust plots=caseresid pcorr;
path

fact1 ===> mechanics vector algebra analysis statistics = 1. ;
run;

ods graphics off;

The ROBUST option invokes the direct robust estimation method. The direct robust method reweights the
observations according to the magnitudes of the residuals during iterative steps. For this reason, you can also
specify ROBUST=RES to signify direct robust estimation with residual (M-distance) weighting. Following
Yuan and Hayashi (2010), there are two variants of the direct robust estimation, One treats the disturbances
(that is, error terms for endogenous latent factors) as factors to estimate (see the ROBUST=RES(F) option),
and the other treats the disturbances as true error terms (see the ROBUST=RES(E) option). See the
ROBUST= option and the section “Robust Estimation” on page 1470 for details. These variants would not
make any difference for the current one-factor model estimation, and the ROBUST option that is used in the
specification is the same as ROBUST=RES(E).

You also request case-level residual analysis by using the RESIDUAL option, even though the intention now
is to identify rather than to remove the outliers.

Output 29.14.11 shows the fit summary of the direct robust estimation. The model fit chi-square is 6.0031
(df = 5, p = 0.3059). Again, you fail to reject the one-factor model for the data. Unlike the regular ML
estimation in the preceding analysis, both SRMR (0.0321) and RMSEA (0.0480) show good model fit. This
result can be attributed to the downweighting of the outlying observations in the direct robust estimation.
Output 29.14.12 shows that all loading estimates are statistically significant.

Output 29.14.11 Model Fit of Mardia Data with Direct Robust Estimation

Fit Summary

Chi-Square 6.0031

Chi-Square DF 5

Pr > Chi-Square 0.3059

Standardized RMR (SRMR) 0.0370

RMSEA Estimate 0.0480

NOTE: Saturated mean structure parameters are
excluded from the computations of fit indices.
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Output 29.14.12 Estimates of Loadings with Direct Robust Estimation

PATH List

Path Parameter Estimate
Standard

Error t Value Pr > |t|

fact1 ===> mechanics 1.00000

fact1 ===> vector _Parm1 0.83279 0.15680 5.3111 <.0001

fact1 ===> algebra _Parm2 0.92854 0.14763 6.2895 <.0001

fact1 ===> analysis _Parm3 1.08665 0.18855 5.7632 <.0001

fact1 ===> statistics _Parm4 1.18799 0.21487 5.5289 <.0001

Output 29.14.13 shows the outlier and leverage classifications by the direct robust estimation. This plot has a
similar pattern to the one obtained from the preceding regular ML estimation (see Output 29.14.3). Both plots
show that observations 28 and 81 are the only outliers. Thus, the results from the direct robust estimation
eliminate the concern of the masking effect.

Output 29.14.13 Outliers and Leverage Observations with Direct Robust Estimation

As a by-product of the direct robust estimation, robust (unstructured) covariance and mean matrices are
computed with the PCORR option. Output 29.14.14 shows the robust covariance and mean matrices obtained
for the current direct robust estimation for the mardia data set. These matrices are essentially computed by
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the usual formulas for covariance and mean matrices, but with weights obtained from the final estimates of
the direct robust estimation of the model. For the current analysis, outlying observations (28 and 81) receive
weights of less than 1 whereas all other observations receive weights of 1 in the computation.

Output 29.14.14 Robust Covariance and Mean Matrices with Direct Robust Estimation

Robust Covariance Matrix

mechanics vector algebra analysis statistics

mechanics 299.05121 118.73107 104.04139 111.35028 122.12239

vector 118.73107 162.60829 86.88667 97.18075 102.10393

algebra 104.04139 86.88667 114.69031 113.43289 124.09414

analysis 111.35028 97.18075 113.43289 220.34769 156.62425

statistics 122.12239 102.10393 124.09414 156.62425 296.42019

Determinant 33723890038 Ln 24.241472

Robust Means

mechanics vector algebra analysis statistics

39.11015 50.80549 50.61153 46.70196 42.21135

Two-Stage Robust Estimation

In addition to the direct robust estimation method, PROC CALIS implements another robust estimation
method for structural equation models. The two-stage robust estimation method estimates the robust means
and covariance matrices in the first stage. It then fits the model to the robust mean and covariance matrix by
using the ML method in the second stage. During the first stage, the robust method downweights the outlying
observations in all variable dimensions. The robust properties are then propagated to the second stage of
estimation.

In PROC CALIS, you can use the ROBUST=SAT option to invoke the two-stage robust estimation method,
as shown in the following statements for fitting the one-factor model to the mardia data set:

proc calis data=mardia robust=sat pcorr;
path

fact1 ===> mechanics vector algebra analysis statistics = 1. ;
run;

With the PCORR option, the (unstructured) robust mean and covariance matrices are displayed in Out-
put 29.14.15. Although the robust covariance and mean matrices obtained here are numerically similar to
those obtained from the direct robust estimation (see Output 29.14.14), they are obtained with totally different
methods. The robust mean and covariance matrices in the direct robust estimation are the by-products of the
model estimation, while the robust mean and covariance matrices in the two-stage robust estimation are the
initial inputs for model estimation.



1628 F Chapter 29: The CALIS Procedure

Output 29.14.15 Robust Covariance and Mean Matrices with Two-Stage Robust Estimation

Robust Covariance Matrix

mechanics vector algebra analysis statistics

mechanics 298.83513 119.28292 99.65134 105.47098 116.68242

vector 119.28292 165.11323 84.25310 94.28855 98.70260

algebra 99.65134 84.25310 110.93012 110.46759 121.18480

analysis 105.47098 94.28855 110.46759 219.56424 155.24377

statistics 116.68242 98.70260 121.18480 155.24377 298.80146

Determinant 36001000868 Ln 24.306813

Robust Means

mechanics vector algebra analysis statistics

39.10571 50.74232 50.65677 46.73882 42.33179

Output 29.14.16 shows the fit summary of the two-stage robust estimation. The model fit chi-square is 7.2941
(df = 5, p = 0.1997). As in direct robust estimation, you fail to reject the one-factor model for the data. Unlike
the case with direct robust estimation, only SRMR (0.0366) shows a good model fit. RMSEA is 0.0726 and
is not very close to a good model fit.

Output 29.14.16 Model Fit of Mardia Data with Two-Stage Robust Estimation

Fit Summary

Chi-Square 7.2941

Chi-Square DF 5

Pr > Chi-Square 0.1997

Standardized RMR (SRMR) 0.0422

RMSEA Estimate 0.0726

NOTE: Saturated mean structure parameters are
excluded from the computations of fit indices.

Output 29.14.16 shows the estimates of loadings with the two-stage robust estimation. All the estimates
are statistically significant. All the numerical results are similar to that of the direct robust estimation in
Output 29.14.12.
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Output 29.14.17 Estimates of Loadings with Two-Stage Robust Estimation

PATH List

Path Parameter Estimate
Standard

Error t Value Pr > |t|

fact1 ===> mechanics 1.00000

fact1 ===> vector _Parm1 0.84322 0.16538 5.0986 <.0001

fact1 ===> algebra _Parm2 0.93683 0.15485 6.0500 <.0001

fact1 ===> analysis _Parm3 1.10397 0.19849 5.5617 <.0001

fact1 ===> statistics _Parm4 1.21080 0.22686 5.3371 <.0001

The outlier and leverage observation detection in two-stage robust estimation is essentially the same method
as that in direct robust estimation. Therefore, the corresponding results for the two-stage robust estimation
are not shown here. See the section “Residual Diagnostics with Robust Estimation” on page 1497 for details
about case-level residual analysis with robust estimation.

Example 29.15: The Full Information Maximum Likelihood Method
This example shows how you can fully utilize all available information from the data when there is a high
proportion of observations with random missing value. You use the full information maximum likelihood
method for model estimation.

In Example 29.12, 32 students take six tests. These six tests are indicator measures of two ability factors:
verbal and math. You conduct a confirmatory factor analysis in Example 29.12 based on a data set without
any missing values. The path diagram for the confirmatory factor model is shown the following:

x1 x2 x3 y1 y2 y3

verbal math

1.0 1.0
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Suppose now due to sickness or unexpected events, some students cannot take part in one of these tests. Now,
the data test contains missing values at various locations, as indicated by the following DATA step:

data missing;
input x1 x2 x3 y1 y2 y3;
datalines;

23 . 16 15 14 16
29 26 23 22 18 19
14 21 . 15 16 18
20 18 17 18 21 19
25 26 22 . 21 26
26 19 15 16 17 17
. 17 19 4 6 7

12 17 18 14 16 .
25 19 22 22 20 20
7 12 15 10 11 8

29 24 . 14 13 16
28 24 29 19 19 21
12 9 10 18 19 .
11 . 12 15 16 16
20 14 15 24 23 16
26 25 . 24 23 24
20 16 19 22 21 20
14 . 15 17 19 23
14 20 13 24 . .
29 24 24 21 20 18
26 . 26 28 26 23
20 23 24 22 23 22
23 24 20 23 22 18
14 . 17 . 16 14
28 34 27 25 21 21
17 12 10 14 12 16
. 1 13 14 15 14

22 19 19 13 11 14
18 21 . 15 18 19
12 12 10 13 13 16
22 14 20 20 18 19
29 21 22 13 17 .

;

This data set is similar to the scores data set used in Example 29.12, except that some values are replaced
at random with missing values. You can still fit the same confirmatory factor analysis model described in
Example 29.12 to this data set by the default maximum likelihood (ML) method, as shown in the following
statement:
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proc calis data=missing;
factor

verbal ===> x1-x3,
math ===> y1-y3;

pvar
verbal = 1.,
math = 1.;

run;

The data set, the number of observations, the model type, and analysis type are shown in the first table of
Output 29.15.1. Although PROC CALIS reads all 32 records in the data set, only 16 of these records are used.
The remaining 16 records contain at least one missing value in the tests. They are discarded from the analysis.
Therefore, the maximum likelihood method only uses those 16 observations without missing values.

Output 29.15.1 Modeling Information of the CFA Model: Missing Data

Confirmatory Factor Model With \Dataset{Missing} Data: ML
FACTOR Model Specification

The CALIS Procedure
Covariance Structure Analysis: Model and Initial Values

Confirmatory Factor Model With \Dataset{Missing} Data: ML
FACTOR Model Specification

The CALIS Procedure
Covariance Structure Analysis: Model and Initial Values

Modeling Information

Maximum Likelihood Estimation

Data Set WORK.MISSING

N Records Read 32

N Records Used 16

N Obs 16

Model Type FACTOR

Analysis Covariances
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Output 29.15.2 shows the parameter estimates.

Output 29.15.2 Parameter Estimates of the CFA Model: Missing Data

Factor Loading Matrix:
Estimate/StdErr/t-value/p-value

verbal math

x1 5.1110
1.3110
3.8984
<.0001

[_Parm1]

0

x2 5.6261
1.2561
4.4790
<.0001

[_Parm2]

0

x3 4.8739
1.1410
4.2717
<.0001

[_Parm3]

0

y1 0 4.4529
0.8530
5.2205
<.0001

[_Parm4]

y2 0 3.8562
0.8303
4.6444
<.0001

[_Parm5]

y3 0 2.6338
0.7416
3.5513

0.000383
[_Parm6]

Factor Covariance Matrix:
Estimate/StdErr/t-value/p-value

verbal math

verbal 1.0000 0.7050
0.1464
4.8165
<.0001
[_Add1]

math 0.7050
0.1464
4.8165
<.0001
[_Add1]

1.0000
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Output 29.15.2 continued

Error Variances

Variable Parameter Estimate
Standard

Error t Value Pr > |t|

x1 _Add2 11.27773 5.19739 2.1699 0.0300

x2 _Add3 6.33003 4.25356 1.4882 0.1367

x3 _Add4 6.47402 3.61040 1.7932 0.0729

y1 _Add5 0.57143 1.51781 0.3765 0.7066

y2 _Add6 2.57992 1.47618 1.7477 0.0805

y3 _Add7 4.59651 1.77777 2.5855 0.0097

Most of the factor loading estimates shown in Output 29.15.2 are similar to those estimated from the data set
without missing values, as shown in Output 29.12.4. The loading estimate of y3 on the math factor shows the
largest discrepancy. With only half of the data used in the current estimation, this loading estimate is 2.6338
in the current analysis, while it is 3.7596 if no data were missing, as shown in Output 29.12.4. Another
obvious difference between the two sets of results is that the standard error estimates for the loadings are
consistently larger in the current analysis than in the analysis in Example 29.12 where there are no missing
data. This is expected because you have only half of the data set available in the current analysis.

Similarly, the estimates for the factor covariance and error variances are mostly similar to those in the analysis
with complete data, but the standard error estimates in the current analysis are consistently higher.

The maximum likelihood method, as implemented in PROC CALIS, deletes all observations with at least one
missing value in the estimation. In a sense, the partially available information of these deleted observations is
wasted. This greatly reduces the efficiency of the estimation, which results in higher standard error estimates.

To fully utilize all available information from the data set with the presence of missing values, you can
use the full information maximum likelihood (FIML) method in PROC CALIS, as shown in the following
statements:

proc calis method=fiml data=missing;
factor

verbal ===> x1-x3,
math ===> y1-y3;

pvar
verbal = 1.,
math = 1.;

run;

In the PROC CALIS statement, you use METHOD=FIML to request the full information maximum likelihood
method. Instead of deleting observations with missing values, the full information maximum likelihood
method uses all available information in all observations. Output 29.15.3 shows some modeling information
of the FIML estimation of the confirmatory factor model on the missing data.
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Output 29.15.3 Modeling Information of the CFA Model with FIML: Missing Data

Confirmatory Factor Model With Missing Data: FIML
FACTOR Model Specification

The CALIS Procedure
Mean and Covariance Structures: Model and Initial Values

Confirmatory Factor Model With Missing Data: FIML
FACTOR Model Specification

The CALIS Procedure
Mean and Covariance Structures: Model and Initial Values

Modeling Information

Full Information Maximum Likelihood
Estimation

Data Set WORK.MISSING

N Records Read 32

N Complete Records 16

N Incomplete Records 16

N Complete Obs 16

N Incomplete Obs 16

Model Type FACTOR

Analysis Means and Covariances

PROC CALIS shows you that the number of complete observations is 16 and the number of incomplete
observations is 16 in the data set. All these observations are included in the estimation. The analysis type is
‘Means and Covariances’ because with full information maximum likelihood, the sample means have to be
analyzed during the estimation.

For the full information maximum likelihood estimation, PROC CALIS outputs several tables to summarize
the missing data patterns and statistics. Output 29.15.4 shows the proportions of data that are present for the
variables, individually or jointly by pairs.

Output 29.15.4 Proportions of Data Present for the Variables: Missing Data

Proportions of Data Present for Means
(Diagonal) and Covariances (Off-Diagonal)

x1 x2 x3 y1 y2 y3

x1 0.9375

x2 0.7813 0.8438

x3 0.8125 0.7188 0.8750

y1 0.8750 0.8125 0.8125 0.9375

y2 0.9063 0.8125 0.8438 0.9063 0.9688

y3 0.8125 0.7188 0.7500 0.8125 0.8750 0.8750

Average Proportion Coverage of Means 0.906250

Average Proportion Coverage of Covariances 0.816667

The diagonal elements of the table in Output 29.15.4 show the proportions of data coverage by each of the
variables. The off-diagonal elements shows the proportions of joint data coverage by all possible pairs of
variables. For example, the first diagonal element of the table shows that about 94% of the observations
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have x1 values that are not missing. This percentage value is referred to as the proportion coverage for x1
or the proportion coverage for computing the means of x1. The off-diagonal element for x1 and x2 shows
that about 78% of the observations have nonmissing values for both their x1 and x2 values. This percentage
value is referred to as the joint proportion coverage of x1 and x2 or the proportion coverage for computing
the covariance between x1 and x2. The larger the coverage proportions this table shows, the more relative
information the data contain for estimating the corresponding moments.

To summarize the proportion coverage, Output 29.15.4 shows that on average about 91% of the data
are nonmissing for computing the means, and about 82% of the data are nonmissing for computing the
covariances.

Output 29.15.5 shows the lowest coverage proportions of the means and the covariances.

Output 29.15.5 Ranking the Lowest Coverage Proportions: Missing Data

Rank Order of the
3 Smallest

Variable
(Mean) Coverages

Variable Coverage

x2 0.8438

x3 0.8750

y3 0.8750

Rank Order of the 7
Smallest Covariance

Coverages

Var1 Var2 Coverage

x3 x2 0.7188

y3 x2 0.7188

y3 x3 0.7500

x2 x1 0.7813

x3 x1 0.8125

y1 x2 0.8125

y1 x3 0.8125

The first table of Output 29.15.5 shows that x2 has the lowest proportion coverage at about 84%, and x3 and
y3 are the next at about 88%. The second table of Output 29.15.5 shows that the joint proportion coverage by
the x3–x2 pair and the y3–x2 pair are the lowest at about 72%, followed by the y3–x3 pair at 75%. These two
tables are useful to diagnose which variables most lack the information for estimation. For this data set, these
tables show that estimation related to the moments of x2, x3, and y3 suffers the missing data problem the
most. However, because the worst proportion coverage is still higher than 70%, the missingness problem
does not seem to be very serious based on percentage.

In Output 29.15.6, PROC CALIS outputs two tables that show an overall picture of the missing patterns in
the data set.
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Output 29.15.6 The Most Frequent Missing Patterns and Their Mean Profiles: Missing Data

Rank Order of the 5 Most Frequent Missing Patterns
Total Number of Distinct Patterns with Missing Values = 7

Pattern
NVar
Miss Freq Proportion Cumulative

1 x.xxxx 1 4 0.1250 0.1250

2 xx.xxx 1 4 0.1250 0.2500

3 xxxxx. 1 3 0.0938 0.3438

4 .xxxxx 1 2 0.0625 0.4063

5 xxxx.. 2 1 0.0313 0.4375

NOTE: Nonmissing Pattern Proportion = 0.5000 (N=16)

Means of the Nonmissing and the Most Frequent Missing Patterns

Missing Pattern

Variable
Nonmissing

(N=16)
1

(N=4)
2

(N=4)
3

(N=3)
4

(N=2)
5

(N=1)

x1 21.75000 18.50000 21.75000 17.66667 . 14.00000

x2 19.37500 . 22.75000 15.66667 9.00000 20.00000

x3 19.31250 17.25000 . 16.66667 16.00000 13.00000

y1 19.00000 18.75000 17.00000 15.00000 9.00000 24.00000

y2 18.12500 18.75000 17.50000 17.33333 10.50000 .

y3 17.75000 19.50000 19.25000 . 10.50000 .

The first table of Output 29.15.6 shows that “x.xxxx” and “xx.xxx” are the two most frequent missing patterns
in the data set. Each has a frequency of 4. An “x” in the missing pattern denotes a nonmissing value, while
a “.” denotes a missing value. Hence, the first pattern has all missing values for the second variable, and
the second pattern has all missing values for the third variable. Each of these two missing patterns accounts
for 12.5% of the total observations. Together, the five missing patterns shown in Output 29.15.6 account for
about 43.8% of the total observations. The note after this table shows that 50% of the total observations do
not have any missing values.

To determine exactly which variables are missing in the missing patterns, it is useful to consult the second
table in Output 29.15.6. In this table, the variable means of the most frequent missing patterns are shown,
together with the variable means of the nonmissing pattern for comparisons. Missing means in this table show
that the corresponding variables are not present in the missing patterns. For example, the column labeled
“Nonmissing” is for the group of 16 observations that do not have any missing values. Each of the variable
means is computed based on 16 observations. The next column labeled “1” is the first missing pattern that
has four observations. The variable mean for x2 is missing for this missing pattern group, while each of the
other variable means is computed based on four observations. Comparing these means with those in the
nonmissing group, it shows that the means for x1, x3, and y1 in the first missing pattern are smaller than
those in the nonmissing group, while the means for y2 and y3 are greater. This comparison does not seem to
suggest any systematic bias in the means of the first missing pattern group.

However, the nonmissing means in the third missing pattern (the column labeled “3” do show a consistent
downward bias, as compared with the means in the nonmissing group. This might mean that respondents
with low scores in x1–x3, y1, and y2 tend not to respond to y3 for some reason. Similarly, the fourth missing
pattern shows a consistent downward bias in x2, x3, and y1–y3. Whether these patterns suggest a systematic
(or nonrandom) pattern of missingness must be judged in the substantive context. Nonetheless, the numerical
results if Output 29.15.6 provide some insight on this matter.
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The tables shown in Output 29.15.6 do not show all the missing patterns. In general, PROC CALIS shows
only the most frequent or dominant missing patterns so that the output results are more focused. By default,
if the total number of missing patterns in a data set is below six, then PROC CALIS shows all the missing
patterns. If the total number of missing patterns is at least six, PROC CALIS shows up to 10 missing patterns
provided that each of these missing patterns accounts for at least 5% of the total observations. The 10 missing
patterns is the default maximum number of missing patterns to show, and the 5% is the default proportion
threshold for a missing pattern to display. You can override the default maximum number of missing patterns
by the MAXMISSPAT= option and the proportion threshold by the TMISSPAT= option.

Output 29.15.7 shows the parameter estimates by the FIML estimation.

Output 29.15.7 Parameter Estimates of the CFA Model with FIML: Missing Data

Factor Loading Matrix:
Estimate/StdErr/t-value/p-value

verbal math

x1 5.5003
1.0025
5.4867
<.0001

[_Parm1]

0

x2 5.7134
0.9956
5.7385
<.0001

[_Parm2]

0

x3 4.4417
0.7669
5.7918
<.0001

[_Parm3]

0

y1 0 4.9277
0.6798
7.2491
<.0001

[_Parm4]

y2 0 4.1215
0.5716
7.2100
<.0001

[_Parm5]

y3 0 3.3834
0.6145
5.5058
<.0001

[_Parm6]
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Output 29.15.7 continued

Factor Covariance Matrix:
Estimate/StdErr/t-value/p-value

verbal math

verbal 1.0000 0.5014
0.1473
3.4029

0.000667
[_Add01]

math 0.5014
0.1473
3.4029

0.000667
[_Add01]

1.0000

Error Variances

Variable Parameter Estimate
Standard

Error t Value Pr > |t|

x1 _Add08 12.72770 4.77627 2.6648 0.0077

x2 _Add09 9.35994 4.48806 2.0855 0.0370

x3 _Add10 5.67393 2.69872 2.1025 0.0355

y1 _Add11 1.86768 1.36676 1.3665 0.1718

y2 _Add12 1.49942 0.97322 1.5407 0.1234

y3 _Add13 5.24973 1.54121 3.4062 0.0007

First, you can compare the current FIML results with the results in Example 29.12, where maximum
likelihood method is used with the complete data set. Overall, the estimates of loadings, factor covariance,
and error variances are similar in the two analyses. Next, you compare the current FIML results with the
results in Output 29.15.2, where the default ML method is applied to the same data set with missing values.
Except for the standard error estimate of the factor covariance, which are very similar with ML and FIML,
the standard error estimates with FIML are consistently smaller than those with ML in Output 29.15.2. This
means that with FIML, you improve the estimation efficiency by including the partial information in those
observations with missing values.

When you have a data set with no missing values, the ML and FIML methods, as implemented in PROC
CALIS, are theoretically the same. Both are equally efficient and produce similar estimates (see Exam-
ple 29.16). FIML and ML are the same estimation technique that maximizes the likelihood function under
the multivariate normal distribution. However, in PROC CALIS, the distinction between of ML and FIML
concerns different treatments of the missing values. With METHOD=ML, all observations with one or more
missing values are discarded from the analysis. With METHOD=FIML, all observations with at least one
nonmissing value are included in the analysis.
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Example 29.16: Comparing the ML and FIML Estimation
This example uses the complete data set from Example 29.12 to illustrate how the maximum likelihood
(ML) and full information maximum likelihood (FIML) methods are theoretically equivalent when you apply
them to data set without missing values. In Example 29.15, you apply a confirmatory factor model to a data
set with missing values. You find that with METHOD=FIML, you can get more stable estimates than with
METHOD=ML (which is the default estimation method). Near the end of Example 29.15, you learn that ML
and FIML are theoretically equivalent estimation methods when you apply them to data sets without missing
values.

However, the ML and FIML methods have two major computational differences in their implementations in
PROC CALIS. First, with METHOD=FIML the first-order properties (that is, the means of the variables)
of the data are automatically included in the analysis. However, by default you analyze only the second-
order properties (that is, the covariances of the variables) with METHOD=ML. Second, the biased sample
covariance formula (with N as the variance divisor) is used with METHOD=FIML, while the unbiased
sample covariance formula (with DF=N – 1 as the variance divisor) is used with METHOD=ML. See the
section “Relationships among Estimation Criteria” on page 1473 for more details about the similarities and
differences between the ML and FIML methods.

If you take care of these two differences between ML and FIML in PROC CALIS, you can obtain exactly the
same results with these two methods when you apply them to data sets without missing values.

For example, with the complete data set scores from Example 29.12, you specify the FIML estimation in the
following statements:

proc calis method=fiml data=scores;
factor

verbal ===> x1-x3,
math ===> y1-y3;

pvar
verbal = 1.,
math = 1.;

run;

An equivalent specification with the ML method is shown in the following statements:

proc calis method=ml meanstr vardef=n data=scores;
factor

verbal ===> x1-x3,
math ===> y1-y3;

pvar
verbal = 1.,
math = 1.;

run;
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In the PROC CALIS statement, you specify two options to make the ML estimation exactly equivalent to
the FIML estimation in PROC CALIS. First, the MEANSTR option requests the first-order properties (the
mean structures) to be analyzed with the covariance structures. Second, the VARDEF=N option defines the
variance divisor to N, instead of the default DF, which is the same as N–1. These two options make the ML
estimation equivalent to the FIML estimation.

Output 29.16.1 and Output 29.16.2 show some fit summary statistics under the FIML and ML methods,
respectively.

Output 29.16.1 Model Fitting by the FIML Method: Scores Data

Fit Summary

Fit Function 31.7837

Chi-Square 10.1215

Chi-Square DF 8

Pr > Chi-Square 0.2566

Standardized RMR (SRMR) 0.0571

RMSEA Estimate 0.0910

Bentler Comparative Fit Index 0.9872

NOTE: Saturated mean structure parameters are
excluded from the computations of fit indices.

Output 29.16.2 Model Fitting by the ML Method: Scores Data

Fit Summary

Fit Function 0.3163

Chi-Square 10.1215

Chi-Square DF 8

Pr > Chi-Square 0.2566

Standardized RMR (SRMR) 0.0504

RMSEA Estimate 0.0910

Bentler Comparative Fit Index 0.9872

Except for the fit function values, both FIML and ML methods produce the same set of fit statistics. The
difference in the fit function values is expected because the FIML function has a constant term which is
derived from the likelihood function. This constant term does not depend on the model parameters. Hence,
the FIML and ML discrepancy functions that are used in PROC CALIS are equivalent when VARDEF=N is
used in the ML method for analyzing mean and covariance structures.

The parameter estimates are shown in Output 29.16.3 and Output 29.16.4 for the FIML and ML methods,
respectively. Except for very tiny numerical differences in some estimates, the FIML and ML estimates
match.
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Output 29.16.3 Parameter Estimates by the FIML Method: Scores Data

Factor Loading Matrix:
Estimate/StdErr/t-value/p-value

verbal math

x1 5.7486
0.9651
5.9567
<.0001

[_Parm1]

0

x2 5.7265
0.9239
6.1980
<.0001

[_Parm2]

0

x3 4.5886
0.7570
6.0618
<.0001

[_Parm3]

0

y1 0 5.1972
0.6779
7.6662
<.0001

[_Parm4]

y2 0 4.1342
0.6025
6.8612
<.0001

[_Parm5]

y3 0 3.7004
0.6143
6.0237
<.0001

[_Parm6]

Factor Covariance Matrix:
Estimate/StdErr/t-value/p-value

verbal math

verbal 1.0000 0.5175
0.1406
3.6804

0.000233
[_Add01]

math 0.5175
0.1406
3.6804

0.000233
[_Add01]

1.0000

Intercepts

Variable Parameter Estimate
Standard

Error t Value Pr > |t|

x1 _Add02 19.90625 1.17540 16.9357 <.0001

x2 _Add03 18.81250 1.14089 16.4893 <.0001

x3 _Add04 18.68750 0.92749 20.1486 <.0001

y1 _Add05 17.90625 0.93161 19.2208 <.0001

y2 _Add06 17.84375 0.78823 22.6377 <.0001

y3 _Add07 17.75000 0.76419 23.2272 <.0001
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Output 29.16.3 continued

Error Variances

Variable Parameter Estimate
Standard

Error t Value Pr > |t|

x1 _Add08 11.16406 4.06574 2.7459 0.0060

x2 _Add09 8.85978 3.65403 2.4247 0.0153

x3 _Add10 6.47248 2.47685 2.6132 0.0090

y1 _Add11 0.76135 1.23420 0.6169 0.5373

y2 _Add12 2.79060 1.04306 2.6754 0.0075

y3 _Add13 4.99466 1.40025 3.5670 0.0004

Output 29.16.4 Parameter Estimates by the ML Method: Scores Data

Factor Loading Matrix:
Estimate/StdErr/t-value/p-value

verbal math

x1 5.7486
0.9651
5.9567
<.0001

[_Parm1]

0

x2 5.7265
0.9239
6.1981
<.0001

[_Parm2]

0

x3 4.5885
0.7570
6.0617
<.0001

[_Parm3]

0

y1 0 5.1972
0.6779
7.6662
<.0001

[_Parm4]

y2 0 4.1341
0.6025
6.8612
<.0001

[_Parm5]

y3 0 3.7004
0.6143
6.0238
<.0001

[_Parm6]
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Output 29.16.4 continued

Factor Covariance Matrix:
Estimate/StdErr/t-value/p-value

verbal math

verbal 1.0000 0.5175
0.1406
3.6800

0.000233
[_Add01]

math 0.5175
0.1406
3.6800

0.000233
[_Add01]

1.0000

Intercepts

Variable Parameter Estimate
Standard

Error t Value Pr > |t|

x1 _Add02 19.90625 1.17540 16.9357 <.0001

x2 _Add03 18.81250 1.14089 16.4893 <.0001

x3 _Add04 18.68750 0.92749 20.1486 <.0001

y1 _Add05 17.90625 0.93161 19.2208 <.0001

y2 _Add06 17.84375 0.78823 22.6377 <.0001

y3 _Add07 17.75000 0.76419 23.2272 <.0001

Error Variances

Variable Parameter Estimate
Standard

Error t Value Pr > |t|

x1 _Add08 11.16365 4.06567 2.7458 0.0060

x2 _Add09 8.85925 3.65397 2.4246 0.0153

x3 _Add10 6.47288 2.47689 2.6133 0.0090

y1 _Add11 0.76124 1.23420 0.6168 0.5374

y2 _Add12 2.79066 1.04307 2.6754 0.0075

y3 _Add13 4.99461 1.40024 3.5670 0.0004

The equivalence between METHOD=ML and METHOD=FIML implies that if you do not have any missing
data in your data, you can just use METHOD=ML because it is computationally more efficient than the FIML
method.

While the equivalence between ML and FIML is established here with the use of the VARDEF= and
MEANSTR options (for data without missing values), it is not necessary in practice to use these options
with METHOD=ML. The VARDEF= option is used in this example only to demonstrate the theoretical
equivalence between METHOD=ML and METHOD=FIML. The VARDEF= option has very little effect if
you have at least a moderate sample size (for example, 30 or more observations).

Merely adding the MEANSTR option to an analysis for data without missing values amounts to adding a
saturated mean structure to a covariance structure analysis. In this case, the MEANSTR option only gives you
more estimates that pertain to the mean structures, but the parameter estimates that pertain to the covariance
structures do not change. Therefore, use the MEANSTR option only when you need to estimate certain mean
structure parameters or when you fit models with nonsaturated mean structures.

However, use METHOD=FIML when there are missing values in your data and you need to use every bit of
information from the incomplete observations with random missing values.



1644 F Chapter 29: The CALIS Procedure

Example 29.17: Path Analysis: Stability of Alienation
The following covariance matrix from Wheaton et al. (1977) has served to illustrate the performance of
several implementations for the analysis of structural equation models. Two different models have been
analyzed by an early implementation of LISREL and are mentioned in Jöreskog (1978). You can also find a
more detailed discussion of these models in the LISREL VI manual (Jöreskog and Sörbom 1985). A slightly
modified model for this covariance matrix is included in the EQS 2.0 manual (Bentler 1985, p. 28). However,
for the analysis with the EQS implementation, the SEI variable is rescaled by a factor of 0.1 to make the
matrix less ill-conditioned. Since the Levenberg-Marquardt or Newton-Raphson optimization techniques
are used with PROC CALIS, rescaling the data matrix is not necessary and, therefore, is not done here. The
results reported here reflect the estimates based on the original covariance matrix.

The path diagram of this model is displayed in Figure 29.1 and is reproduced in the following:

Anomie67 Powerless67 Anomie71 Powerless71‚1 ‚2 ‚1 ‚2

‚5

‚5

1.0 .833 1.0 .833

Alien67 Alien71

SES

‰1 ‰2

ˆ

1 2

1.0 �

ˇ

Education SEI

‚3 ‚4

You use the PATH modeling language of PROC CALIS to specify this path model, as shown in the following
statements:
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title "Stability of Alienation";
title2 "Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)";
data Wheaton(TYPE=COV);

_type_ = 'cov';
input _name_ $ 1-11 Anomie67 Powerless67 Anomie71 Powerless71

Education SEI;
label Anomie67='Anomie (1967)' Powerless67='Powerlessness (1967)'

Anomie71='Anomie (1971)' Powerless71='Powerlessness (1971)'
Education='Education' SEI='Occupational Status Index';

datalines;
Anomie67 11.834 . . . . .
Powerless67 6.947 9.364 . . . .
Anomie71 6.819 5.091 12.532 . . .
Powerless71 4.783 5.028 7.495 9.986 . .
Education -3.839 -3.889 -3.841 -3.625 9.610 .
SEI -21.899 -18.831 -21.748 -18.775 35.522 450.288
;

ods graphics on;

proc calis nobs=932 data=Wheaton plots=residuals;
path

Anomie67 Powerless67 <=== Alien67 = 1.0 0.833,
Anomie71 Powerless71 <=== Alien71 = 1.0 0.833,
Education SEI <=== SES = 1.0 lambda,
Alien67 Alien71 <=== SES = gamma1 gamma2,
Alien71 <=== Alien67 = beta;

pvar
Anomie67 = theta1,
Powerless67 = theta2,
Anomie71 = theta1,
Powerless71 = theta2,
Education = theta3,
SEI = theta4,
Alien67 = psi1,
Alien71 = psi2,
SES = phi;

pcov
Anomie67 Anomie71 = theta5,
Powerless67 Powerless71 = theta5;

pathdiagram title='Stability of Alienation';
run;

ods graphics off;

Since no METHOD= option is used in the PROC CALIS statement, maximum likelihood estimates are
computed by default.

In the PATH statement, you specify the functional relationships of the variables in the model. These functional
relationships are represented as single-headed paths in the path diagram. There are five entries in the PATH
statement. You specify the relationships between the latent constructs and the observed variables in the first
three path entries. For example, the first entry states that Anomie and Powerless67 are measured indicators of
the latent variable Alien67. The path effects or coefficients from the latent factor to these measured indicators
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are fixed at 1.0 and 0.833, respectively. Similarly, in the next two path entries, you define the relationships
between the latent factors Alien71 and SES and their measured indicators. The last two path entries in the
PATH statement represent the functional relationships among the latent variables in the model. SES has
effects on Alien67 and Alien71. These effect parameters are labeled or named with gamma1 and gamma2,
respectively. Alien67 also has an effect on Alien71, with the effect parameter named beta.

In the PVAR statement, you specify the variance or error variance parameters in the model. These parameters
correspond to the double-headed arrows pointing to the individual variables in the path diagram. In the
first six entries of the PVAR statement, you specify the error variance parameters of the observed variables.
You also give names to these parameters that correspond to the notation in the path diagram. Although
you can choose any names for the parameters, it is important to remember that parameters with the same
name are identical and will have the same estimates. For example, the error variances of Anomie67 and
Anomie71 are the same parameter named theta1. Similarly, you constrain the error variances of Powerless67
and Powerless71. However, the error variance parameters of Education and SEI are unique. They are not
constrained with other parameters in the model because they have unique parameter names. Next, you specify
the error variance parameters of Alien67 and Alien71. They also have unique parameter names and therefore
they are not constrained with any other parameters in the model. Lastly, you specify the variance parameter
phi of SES.

In the PCOV statement, you specify the covariances or error covariances among variables in the model.
These parameters correspond to the double-headed arrows pointing to distinct pairs of variables in the path
diagram. Observed variables Anomie67 and Anomie71 have correlated errors and you specify this error
covariance parameter as theta5. Similarly, observed variables Powerless67 and Powerless71 have correlated
errors and you also specify this error covariance parameter as theta5. This way, the two error covariances are
constrained to be equal.

PROC CALIS can produce a high-quality residual histogram that is useful for showing the distribution of
residuals. Before you request the residual histogram, ODS Graphics must be enabled. For example, you
can specify the ODS GRAPHICS ON statement, as shown in the preceding statements before the PROC
CALIS statement. Then, the residual histogram is requested by the plots=residuals option in the PROC
CALIS statement. PROC CALIS can also produce a high-quality path diagram for the model. You can use
the PATHDIAGRAM statement to request the path diagram and to specify related options.

Output 29.17.1 displays the modeling information and variables in the analysis.

Output 29.17.1 Model Specification and Variables

PATH Model Specification

The CALIS Procedure
Covariance Structure Analysis: Model and Initial Values

PATH Model Specification

The CALIS Procedure
Covariance Structure Analysis: Model and Initial Values

Modeling Information

Maximum Likelihood
Estimation

Data Set WORK.WHEATON

N Obs 932

Model Type PATH

Analysis Covariances
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Output 29.17.1 continued

Variables in the Model

Endogenous Manifest Anomie67  Anomie71  Education  Powerless67  Powerless71  SEI

Latent Alien67  Alien71

Exogenous Manifest

Latent SES

Number of Endogenous Variables = 8
Number of Exogenous Variables = 1

Output 29.17.1 shows that the data set Wheaton was used with 932 observations. The model is specified with
the PATH modeling language. Variables in the model are classified into different categories according to
their roles. All manifest variables are endogenous in the model. Also, three latent variables are hypothesized
in the model: Alien67, Alien71, and SES. While Alien67 and Alien71 are endogenous, SES is exogenous in
the model.

Output 29.17.2 echoes the initial specification of the PATH model.

Output 29.17.2 Initial Estimates

Initial Estimates for PATH List

Path Parameter Estimate

Anomie67 <=== Alien67 1.00000

Powerless67 <=== Alien67 0.83300

Anomie71 <=== Alien71 1.00000

Powerless71 <=== Alien71 0.83300

Education <=== SES 1.00000

SEI <=== SES lambda .

Alien67 <=== SES gamma1 .

Alien71 <=== SES gamma2 .

Alien71 <=== Alien67 beta .

Initial Estimates for Variance Parameters

Variance
Type Variable Parameter Estimate

Error Anomie67 theta1 .

Powerless67 theta2 .

Anomie71 theta1 .

Powerless71 theta2 .

Education theta3 .

SEI theta4 .

Alien67 psi1 .

Alien71 psi2 .

Exogenous SES phi .

Initial Estimates for Covariances Among Errors

Error of Error of Parameter Estimate

Anomie67 Anomie71 theta5 .

Powerless67 Powerless71 theta5 .
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The numerical values for estimates in Output 29.17.2 are the initial values that you input in the model
specification. A blank value for the associated parameter name for a numerical estimate indicates that the
estimate is a fixed value, which would not be changed in the estimation. For example, the first five paths have
fixed path coefficients, and their fixed values are shown in the Estimate column. For numerical estimates
that have specified parameter names, the numerical values serve as initial values, which would be changed
during the estimation. Output 29.17.2 does not actually have this type of specification. Missing values ‘.’ are
specified as initial values for all the free parameters that are specified in the model. For example, lambda,
gamma1, theta1, and psi1, among others, are free parameters that do not have specified initial values. PROC
CALIS automatically generates the initial values of these parameters.

You can examine this output to ensure that the desired model is being analyzed. PROC CALIS outputs the
initial specifications or the estimation results in the order you specify in the model, unless you use reordering
options such as ORDERSPEC and ORDERALL. Therefore, the input order of specifications is important—it
determines how your output would look.

Simple descriptive statistics are displayed in Output 29.17.3.

Output 29.17.3 Descriptive Statistics

Simple Statistics

Variable Mean Std Dev

Anomie67 Anomie (1967) 0 3.44006

Powerless67 Powerlessness (1967) 0 3.06007

Anomie71 Anomie (1971) 0 3.54006

Powerless71 Powerlessness (1971) 0 3.16006

Education Education 0 3.10000

SEI Occupational Status Index 0 21.21999

Because the input data set contains only the covariance matrix, the means of the manifest variables are
assumed to be zero. Note that this has no impact on the estimation, unless a mean structure model is being
analyzed.

Initial estimates are necessary in all kinds of optimization problems. You can provide these initial estimates
or let PROC CALIS to generate them automatically. As shown in Output 29.17.2, you did not provide
any initial estimates for the parameters. PROC CALIS uses a combination of well-behaved mathematical
methods to complete the initial estimation. The initial estimation methods for the current analysis are shown
in Output 29.17.4.

Output 29.17.4 Optimization Starting Point

Initial Estimation Methods

1 Instrumental Variables Method

2 McDonald Method

3 Two-Stage Least Squares
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Output 29.17.4 continued

Optimization Start
Parameter Estimates

N Parameter Estimate Gradient

1 lambda 4.99508 -0.00206

2 gamma1 -0.62322 -0.04069

3 gamma2 -0.20437 -0.03816

4 beta 0.66589 0.03789

5 theta1 3.51433 -0.00409

6 theta2 3.65991 0.01182

7 theta3 2.49860 -0.00578

8 theta4 272.85274 0.0000194

9 psi1 5.57764 -0.00217

10 psi2 3.79636 -0.00935

11 phi 7.11140 0.00108

12 theta5 0.45298 -0.06463

Value of Objective
Function = 0.0365979443

In this example, the instrumental variable Method, the McDonald and Hartmann method, and the two-stage
least squares method have been used for initial estimation. In the same output, the vector of initial parameter
estimates and their gradients are also shown. The initial objective function value is 0.0366.

Output 29.17.5 displays the optimization information, including technical details, iteration history and
convergence status.

Output 29.17.5 Optimization

Optimization Start

Active Constraints 0 Objective Function 0.0365979443

Max Abs Gradient Element 0.0646338767 Radius 1

Iteration Restarts
Function

Calls
Active

Constraints
Objective
Function

Objective
Function
Change

Max Abs
Gradient
Element Lambda

Ratio
Between
Actual
and

Predicted
Change

1 0 4 0 0.01453 0.0221 0.00142 0 1.013

2 0 6 0 0.01448 0.000046 0.000249 0 1.001

3 0 8 0 0.01448 1.007E-7 4.717E-6 0 1.006

Optimization Results

Iterations 3 Function Calls 11

Jacobian Calls 5 Active Constraints 0

Objective Function 0.0144844814 Max Abs Gradient Element 4.7172823E-6

Lambda 0 Actual Over Pred Change 1.0060912391

Radius 0.001390392

Convergence criterion (ABSGCONV=0.00001) satisfied.
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The convergence status is important for the validity of your solution. In most cases, you should interpret your
results only when the solution is converged. In this example, you obtain a converged solution, as shown in
the message at the bottom of the table. The final objective function value is 0.01448, which is the minimized
function value during the optimization. If problematic solutions such as nonconvergence are encountered,
PROC CALIS issues an error message.

The fit summary statistics are displayed in Output 29.17.6. By default, PROC CALIS displays all available fit
indices and modeling information.

Output 29.17.6 Fit Summary

Fit Summary

Modeling Info Number of Observations 932

Number of Variables 6

Number of Moments 21

Number of Parameters 12

Number of Active Constraints 0

Baseline Model Function Value 2.2894

Baseline Model Chi-Square 2131.4327

Baseline Model Chi-Square DF 15

Pr > Baseline Model Chi-Square <.0001

Absolute Index Fit Function 0.0145

Chi-Square 13.4851

Chi-Square DF 9

Pr > Chi-Square 0.1419

Z-Test of Wilson & Hilferty 1.0754

Hoelter Critical N 1169

Root Mean Square Residual (RMR) 0.2281

Standardized RMR (SRMR) 0.0150

Goodness of Fit Index (GFI) 0.9953

Parsimony Index Adjusted GFI (AGFI) 0.9890

Parsimonious GFI 0.5972

RMSEA Estimate 0.0231

RMSEA Lower 90% Confidence Limit 0.0000

RMSEA Upper 90% Confidence Limit 0.0470

Probability of Close Fit 0.9705

ECVI Estimate 0.0405

ECVI Lower 90% Confidence Limit 0.0357

ECVI Upper 90% Confidence Limit 0.0556

Akaike Information Criterion 37.4851

Bozdogan CAIC 107.5330

Schwarz Bayesian Criterion 95.5330

McDonald Centrality 0.9976

Incremental Index Bentler Comparative Fit Index 0.9979

Bentler-Bonett NFI 0.9937

Bentler-Bonett Non-normed Index 0.9965

Bollen Normed Index Rho1 0.9895

Bollen Non-normed Index Delta2 0.9979

James et al. Parsimonious NFI 0.5962
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First, the fit summary table starts with some basic modeling information, as shown in Output 29.17.6. You
can check the number of observations, number of variables, number of moments being fitted, number of
parameters, number of active constraints in the solution, and the independent model chi-square and its degrees
of freedom in this modeling information category. Next, three types of fit indices are shown: absolute,
parsimony, and incremental.

The absolute indices are fit measures that you interpret them without referring to any baseline model. These
indices do not adjust for model parsimony. They always favor models with a large number of parameters. The
chi-square test statistic is the best-known absolute index in this category. In this example, the p-value of the
chi-square is 0.1419, which is greater than the conventional 0.05 value. From the statistical hypothesis testing
point of view, you cannot reject this model. The Z-test of Wilson and Hilferty is also insignificant at ˛ D :05,
which echoes the result of the chi-square test. You can consult other absolute indices as well. Although it
seems that there are no clear conventional levels for these absolute indices to indicate an acceptable model fit,
you can always use these indices to compare the relative fit among competing models.

Next, the parsimony fit indices take the model parsimony into account. These indices adjust the model fit
by the degrees of freedom (or the number of the parameters) of the model in certain ways. The advantage
of these indices is that merely increasing the number of parameters in the model might not necessarily lead
better model fit measures. These fit indices penalize models with large numbers of parameters. There is no
universal way to interpret all these indices. However, for the relatively well-known RMSEA estimate, by
convention values under 0.05 indicate good model fit. The RMSEA value for this example is 0.0231, and so
this is a very good model fit. For interpretations of other parsimony indices, you can consult the original
articles for these indices.

Last, the incremental fit indices are computed based on comparing the target model fit against the fit of
a baseline model, which is usually the so-called uncorrelatedness model where all manifest variables are
assumed to be uncorrelated. This is the baseline model that PROC CALIS uses. The baseline model fit
statistic is shown under the ‘Modeling Info’ category of the same fit summary table. In this example, the
model fit chi-square of the baseline model is 2131.43, with 15 degrees of freedom. The incremental indices
show how well the hypothesized model improves over the baseline model for the data. Various incremental
fit indices have been proposed. In the fit summary table, there are six of such fit indices. Large values
for these indices are desired. It has been suggested that values greater than .9 for these indices indicate
acceptable model fit. In this example, all incremental indices but James et al. parsimonious NFI show that
the hypothesized model fits well.

There is no consensus as to which fit index is the best to judge model fit. Probably, with artificial data and
model, all fit indices can be shown defective in some aspects of measuring model fit. Conventional wisdom
is to look at all fit indices and determine whether the majority of them are close to the desirable ranges of
values. In this example, almost all fit indices are good, and so it is safe to conclude that the model fits well.

Nowadays, most researchers pay less attention to the model fit chi-square statistic because it tends to reject all
meaningful models with minimum departures from the truth. Although the model fit chi-square test statistic is
an impeccable statistical inference tool when the underlying statistical assumptions are satisfied, for practical
purposes it is just too powerful to accept any useful and reasonable models with only tiny imperfections.
Some fit indices are more popular than others. Standardized RMR, RMSEA estimate, adjusted AGFI, and
Bentler’s comparative fit index are frequently reported in empirical research for judging model fit. In this
example, all these measures show good model fit of the hypothesized model. While there are certainly
legitimate reasons why these fit indices are more popular than others, they are out of the current scope of
discussion.
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Figure 29.17.7 shows the path diagram of the unstandardized solution. The path diagram indicates significant
estimates by attaching asterisks to the numerical values. Estimates that are flagged with one asterisk are
significant at 0.05 ˛-level. Estimates that are flagged with two asterisks are significant at 0.01 ˛-level.
The path diagram also shows a summary of fit statistics. For more information about specifying path
diagram output, see the section “Path Diagrams: Layout Algorithms, Default Settings, and Customization”
on page 1440.

Output 29.17.7 Path Diagram and Fit Summary

PROC CALIS can perform a detailed residual analysis. Large residuals might indicate misspecification of
the model. In Output 29.17.8, raw residuals are reported and ranked.
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Output 29.17.8 Raw Residuals and Ranking

Raw Residual Matrix

Anomie67 Powerless67 Anomie71 Powerless71 Education SEI

Anomie67 Anomie (1967) -0.06997 0.03642 -0.01116 -0.15200 0.32892 0.47786

Powerless67 Powerlessness (1967) 0.03642 0.01261 0.15600 0.01135 -0.41712 -0.19108

Anomie71 Anomie (1971) -0.01116 0.15600 -0.08381 -0.00854 0.22464 0.07976

Powerless71 Powerlessness (1971) -0.15200 0.01135 -0.00854 0.14067 -0.23832 -0.59248

Education Education 0.32892 -0.41712 0.22464 -0.23832 0.00000 0.00000

SEI Occupational Status Index 0.47786 -0.19108 0.07976 -0.59248 0.00000 0.00002

Average Absolute Residual 0.153940

Average Off-diagonal Absolute Residual 0.195044

Rank Order of the 10 Largest Raw
Residuals

Var1 Var2 Residual

SEI Powerless71 -0.59248

SEI Anomie67 0.47786

Education Powerless67 -0.41712

Education Anomie67 0.32892

Education Powerless71 -0.23832

Education Anomie71 0.22464

SEI Powerless67 -0.19108

Anomie71 Powerless67 0.15600

Powerless71 Anomie67 -0.15200

Powerless71 Powerless71 0.14067

Because of the differential scaling of the variables, it is usually more useful to examine the standardized
residuals instead. In Output 29.17.9, for example, the table for the 10 largest asymptotically standardized
residuals is displayed.
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Output 29.17.9 Asymptotically Standardized Residuals and Ranking

Asymptotically Standardized Residual Matrix

Anomie67 Powerless67 Anomie71 Powerless71 Education SEI

Anomie67 Anomie (1967) -0.30882 0.52686 -0.05619 -0.86507 2.55338 0.46484

Powerless67 Powerlessness (1967) 0.52686 0.05464 0.87613 0.05735 -2.76371 -0.17015

Anomie71 Anomie (1971) -0.05619 0.87613 -0.35460 -0.12169 1.69781 0.07009

Powerless71 Powerlessness (1971) -0.86507 0.05735 -0.12169 0.58521 -1.55750 -0.49608

Education Education 2.55338 -2.76371 1.69781 -1.55750 0.00000 0.00000

SEI Occupational Status Index 0.46484 -0.17015 0.07009 -0.49608 0.00000 0.00000

Average Standardized Residual 0.646672

Average Off-diagonal Standardized Residual 0.818456

Rank Order of the 10 Largest
Asymptotically Standardized

Residuals

Var1 Var2 Residual

Education Powerless67 -2.76371

Education Anomie67 2.55338

Education Anomie71 1.69781

Education Powerless71 -1.55750

Anomie71 Powerless67 0.87613

Powerless71 Anomie67 -0.86507

Powerless71 Powerless71 0.58521

Powerless67 Anomie67 0.52686

SEI Powerless71 -0.49608

SEI Anomie67 0.46484

The model performs the poorest concerning the covariances of Education with all measures of Powerless
and Anomie. This might suggest a misspecification of the functional relationships of Education with other
variables in the model. However, because the model fit is quite good, such a possible misspecification should
not be a serious concern in the analysis.

The histogram of the asymptotically standardized residuals is displayed in Output 29.17.10, which also shows
the normal and kernel approximations.



Example 29.17: Path Analysis: Stability of Alienation F 1655

Output 29.17.10 Distribution of Asymptotically Standardized Residuals

The residual distribution looks quite symmetrical. It shows a small to medium departure from the normal
distribution, as evidenced by the discrepancies between the kernel and the normal distribution curves.

Output 29.17.11 shows the estimation results.

Output 29.17.11 Estimation Results

PATH List

Path Parameter Estimate
Standard

Error t Value Pr > |t|

Anomie67 <=== Alien67 1.00000

Powerless67 <=== Alien67 0.83300

Anomie71 <=== Alien71 1.00000

Powerless71 <=== Alien71 0.83300

Education <=== SES 1.00000

SEI <=== SES lambda 5.36883 0.43371 12.3788 <.0001

Alien67 <=== SES gamma1 -0.62994 0.05634 -11.1809 <.0001

Alien71 <=== SES gamma2 -0.24086 0.05489 -4.3884 <.0001

Alien71 <=== Alien67 beta 0.59312 0.04678 12.6788 <.0001
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Output 29.17.11 continued

Variance Parameters

Variance
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Error Anomie67 theta1 3.60796 0.20092 17.9572 <.0001

Powerless67 theta2 3.59488 0.16448 21.8556 <.0001

Anomie71 theta1 3.60796 0.20092 17.9572 <.0001

Powerless71 theta2 3.59488 0.16448 21.8556 <.0001

Education theta3 2.99366 0.49861 6.0040 <.0001

SEI theta4 259.57639 18.31151 14.1756 <.0001

Alien67 psi1 5.67046 0.42301 13.4050 <.0001

Alien71 psi2 4.51479 0.33532 13.4639 <.0001

Exogenous SES phi 6.61634 0.63914 10.3519 <.0001

Covariances Among Errors

Error of Error of Parameter Estimate
Standard

Error t Value Pr > |t|

Anomie67 Anomie71 theta5 0.90580 0.12167 7.4447 <.0001

Powerless67 Powerless71 theta5 0.90580 0.12167 7.4447 <.0001

The paths, variances and partial (or error) variances, and covariances and partial covariances are shown.
When you have fixed parameters such as the first five path coefficients in the output, the standard errors
and t values are all blanks. For free or constrained estimates, standard errors and t values are computed.
Researchers in structural equation modeling usually use the value 2 as an approximate critical value for the
observed t values. The reason is that the estimates are asymptotically normal, and so the two-sided critical
point with ˛ D 0:05 is 1.96, which is close to 2. Using this criterion, all estimates shown in Output 29.17.11
are significantly different from zero, supporting the presence of these parameters in the model.

Squared multiple correlations are shown in Output 29.17.12.

Output 29.17.12 Squared Multiple Correlations

Squared Multiple Correlations

Variable
Error

Variance
Total

Variance R-Square

Anomie67 3.60796 11.90397 0.6969

Anomie71 3.60796 12.61581 0.7140

Education 2.99366 9.61000 0.6885

Powerless67 3.59488 9.35139 0.6156

Powerless71 3.59488 9.84533 0.6349

SEI 259.57639 450.28798 0.4235

Alien67 5.67046 8.29601 0.3165

Alien71 4.51479 9.00786 0.4988

For each endogenous variable in the model, the corresponding squared multiple correlation is computed by:

1 �
error variance
total variance

In regression analysis, this is the percentage of explained variance of the endogenous variable by the predictors.
However, this interpretation is complicated or even uninterpretable when your structural equation model
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has correlated errors or reciprocal casual relations. In these situations, it is not uncommon to see negative
R-squares. Negative R-squares do not necessarily mean that your model is wrong or the model prediction is
weak. Rather, the R-square interpretation is questionable in these situations.

When your variables are measured on different scales, comparison of path coefficients cannot be made
directly. For example, in Output 29.17.11, the path coefficient for path Education <=== SES is fixed at one,
while the path coefficient for path SEI <=== SES is 5.369. It would be simple-minded to conclude that the
effect of SES on SEI is greater than that SES on Education. Because SEI and Education are measured on
different scales, direct comparison of the corresponding path coefficients is simply inappropriate.

In alleviating this problem, some might resort to the standardized solution for a better comparison. In
a standardized solution, because the variances of manifest variables and systematic predictors are all
standardized to ones, you hope the path coefficients are more comparable. In this example, PROC CALIS
standardizes your results in Output 29.17.13.

Output 29.17.13 Standardized Results

Standardized Results for PATH List

Path Parameter Estimate
Standard

Error t Value Pr > |t|

Anomie67 <=== Alien67 0.83481 0.01093 76.3531 <.0001

Powerless67 <=== Alien67 0.78459 0.01163 67.4776 <.0001

Anomie71 <=== Alien71 0.84499 0.01031 81.9796 <.0001

Powerless71 <=== Alien71 0.79678 0.01107 71.9626 <.0001

Education <=== SES 0.82975 0.03172 26.1599 <.0001

SEI <=== SES lambda 0.65079 0.03019 21.5533 <.0001

Alien67 <=== SES gamma1 -0.56257 0.03456 -16.2796 <.0001

Alien71 <=== SES gamma2 -0.20642 0.04483 -4.6043 <.0001

Alien71 <=== Alien67 beta 0.56920 0.04066 14.0000 <.0001

Standardized Results for Variance Parameters

Variance
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Error Anomie67 theta1 0.30309 0.01825 16.6031 <.0001

Powerless67 theta2 0.38442 0.01825 21.0695 <.0001

Anomie71 theta1 0.28599 0.01742 16.4178 <.0001

Powerless71 theta2 0.36514 0.01764 20.6942 <.0001

Education theta3 0.31152 0.05264 5.9182 <.0001

SEI theta4 0.57647 0.03930 14.6680 <.0001

Alien67 psi1 0.68352 0.03888 17.5797 <.0001

Alien71 psi2 0.50121 0.03321 15.0897 <.0001

Exogenous SES phi 1.00000

Standardized Results for Covariances Among Errors

Error of Error of Parameter Estimate
Standard

Error t Value Pr > |t|

Anomie67 Anomie71 theta5 0.07391 0.01013 7.2957 <.0001

Powerless67 Powerless71 theta5 0.09440 0.01274 7.4092 <.0001
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Now, the standardized path coefficient for path Education <=== SES is 0.830, while the standardized path
coefficient for path SEI <=== SES is 0.651. So the standardized effect of SES on SEI is actually smaller
than that of SES on Education.

Furthermore, in PROC CALIS the standardized estimates are computed with standard error estimates and t
values so that you can make statistical inferences on the standardized estimates as well.

PROC CALIS might differ from other software in its standardization scheme. Unlike other software that
might standardize the path coefficients that attach to the error terms (unsystematic sources), PROC CALIS
keeps these path coefficients at ones (not shown in the output). Unlike other software that might also
standardize the corresponding error variances to ones, the error variances in the standardized solution of
PROC CALIS are rescaled so as to keep the mathematical consistency of the model.

Essentially, in PROC CALIS only variances of manifest and non-error-type latent variables are standardized
to ones. The error variances are rescaled, but not standardized. For example, in the standardized solution
shown in Output 29.17.13, the error variances for all endogenous variables are not ones (see the middle
portion of the output). Only the variance for the latent variable SES is standardized to one. See the section
“Standardized Solutions” on page 1500 for the logic of the standardization scheme adopted by PROC CALIS.

In appearance, the standardized solution is like a correlational analysis on the standardized manifest variables
with standardized exogenous latent factors. Unfortunately, this statement is over-simplified, if not totally
inappropriate. In standardizing a solution, the implicit equality constraints are likely destroyed. In this
example, the unstandardized error variances for Anomie67 and Anomie71 are both 3.608, represented by
a common parameter theta1. However, after standardization, these error variances have different values
at 0.303 and 0.286, respectively. In addition, fixed parameter values are no longer fixed in a standardized
solution (for example, the first five paths in the current example). The issue of standardization is common to
all other SEM software and beyond the current discussion. PROC CALIS provides the standardized solution
so that users can interpret the standardized estimates whenever they find them appropriate.

Example 29.18: Simultaneous Equations with Mean Structures and
Reciprocal Paths

The supply-and-demand food example of Kmenta (1971, pp. 565, 582) is used to illustrate PROC CALIS
for the estimation of intercepts and coefficients of simultaneous equations in econometrics. The model is
specified by two simultaneous equations containing two endogenous variables Q and P, and three exogenous
variables D, F, and Y:

Qt .demand/ D ˛1 C ˇ1Pt C 1Dt

Qt .supply/ D ˛2 C ˇ2Pt C 2Ft C 3Yt

for t = 1, . . . , 20.
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To analyze this model in PROC CALIS, the second equation needs to be written in another form. For instance,
in the LINEQS model each endogenous variable must appear on the left-hand side of exactly one equation.
To satisfy this requirement, you can rewrite the second equation as an equation for Pt as:

Pt D �
˛2

ˇ2
C

1

ˇ2
Qt �

2

ˇ2
Ft �

3

ˇ2
Yt

or, equivalently reparameterized as:

Pt D �1 C �2Qt C �3Ft C �4Yt

where

�1 D �
˛2

ˇ2
; �2 D

1

ˇ2
; �3 D �

2

ˇ2
; �4 D �

3

ˇ2

This new equation for Pt together with the first equation for Qt suggest the following LINEQS model
specification in PROC CALIS:

title 'Food example of KMENTA(1971, p.565 & 582)';
data food;

input Q P D F Y;
label Q='Food Consumption per Head'

P='Ratio of Food Prices to General Price'
D='Disposable Income in Constant Prices'
F='Ratio of Preceding Years Prices'
Y='Time in Years 1922-1941';

datalines;
98.485 100.323 87.4 98.0 1
99.187 104.264 97.6 99.1 2

102.163 103.435 96.7 99.1 3
101.504 104.506 98.2 98.1 4
104.240 98.001 99.8 110.8 5
103.243 99.456 100.5 108.2 6
103.993 101.066 103.2 105.6 7
99.900 104.763 107.8 109.8 8

100.350 96.446 96.6 108.7 9
102.820 91.228 88.9 100.6 10
95.435 93.085 75.1 81.0 11
92.424 98.801 76.9 68.6 12
94.535 102.908 84.6 70.9 13
98.757 98.756 90.6 81.4 14

105.797 95.119 103.1 102.3 15
100.225 98.451 105.1 105.0 16
103.522 86.498 96.4 110.5 17
99.929 104.016 104.4 92.5 18

105.223 105.769 110.7 89.3 19
106.232 113.490 127.1 93.0 20

;
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proc calis data=food pshort nostand;
lineqs

Q = alpha1 * Intercept + beta1 * P + gamma1 * D + E1,
P = theta1 * Intercept + theta2 * Q + theta3 * F + theta4 * Y + E2;

variance
E1-E2 = eps1-eps2;

cov
E1-E2 = eps3;

bounds
eps1-eps2 >= 0. ;

run;

The LINEQS modeling language is used in this example because its specification is similar to the original
equations. In the LINEQS statement, you essentially input the two model equations for Q and P. Parameters
for intercepts and regression coefficients are also specified in the equations. Note that Intercept in the two
equations is treated as a special variable that contains ones for all observations. Intercept is not a variable
in the data set, nor do you need to create such a variable in your data set. Hence, the variable Intercept
does not represent the intercept parameter itself. Instead, the intercept parameters for the two equations
are the coefficients attached to Intercept. In this example, the intercept parameters are alpha1 and theta1,
respectively, in the two equations. As required, error terms E1 and E2 are added to complete the equation
specification.

In the VARIANCE statement, you specify eps1 and eps2, respectively, for the variance parameters of the
error terms. In the COV, you specify eps3 for the covariance parameter between the error terms. In the
BOUNDS statement, you set lower bounds for the error variances so that estimates of eps1 and eps2 would
be nonnegative.

In this example, the PSHORT and the NOSTAND options are used in the PROC CALIS statement. The
PSHORT option suppresses a large amount of the output. For example, initial estimates are not printed and
simple descriptive statistics and standard errors are not computed. The NOSTAND option suppresses the
printing of the standardized results. Because the default printing in PROC CALIS might produce a large
amount of output, using these printing options make your output more concise and readable. Whenever
appropriate, you may consider using these printing options.

The estimated equations are shown in Output 29.18.1.

Output 29.18.1 Linear Equations

Linear Equations

Q = 93.6193 (**) Intercept + -0.2295 (**) P + 0.3100 (**) D + 1.0000 E1

P = -218.9 (ns) Intercept + 4.2140 (**) Q + -0.9305 (**) F + -1.5579 (**) Y + 1.0000 E2

The estimates of intercepts and regression coefficients are shown directly in the equations. Any number in
an equation followed by an asterisk is an estimate. For the estimates in equations, the parameter names are
shown underneath the associated variables. Any number in an equation not followed by an asterisk is a fixed
value. For example, the value 1.0000 attached to the error term in each of the output equation is fixed. Also,
for fixed coefficients there are no parameter names underneath the associated variables.

All but the intercept estimates in the equation for predicting P are statistically significant at ˛ D 0:05 (when
using an approximate critical value of 2). The t ratio for theta1 is –1.590, which implies that this intercept
might have been zero in the population. However, because you have reparameterized the original model
to use the LINEQS model specification, transformed parameters like theta1 in this model might not be of
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primary interest. Therefore, you might not need to pay any attention to the significance of the theta1 estimate.
There is a way to use the original econometric parameters to specify the LINEQS model. It is discussed in
the later part of this example.

Estimates for variance, covariance, and mean parameters are shown in Output 29.18.2.

Output 29.18.2 Variance, Covariance, and Mean Parameters

Estimates for Variances of Exogenous Variables

Variable
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Error E1 eps1 3.51274 1.20204 2.9223 0.0035

E2 eps2 105.06749 83.89446 1.2524 0.2104

Observed D _Add1 139.96029 45.40911 3.0822 0.0021

F _Add2 161.51355 52.40192 3.0822 0.0021

Y _Add3 35.00000 11.35550 3.0822 0.0021

Covariances Among Exogenous Variables

Var1 Var2 Parameter Estimate
Standard

Error t Value Pr > |t|

E1 E2 eps3 -18.87270 8.77951 -2.1496 0.0316

F D _Add4 74.02539 38.44699 1.9254 0.0542

Y D _Add5 22.99211 16.90102 1.3604 0.1737

Y F _Add6 -21.58158 17.94544 -1.2026 0.2291

Mean Parameters

Variable
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Observed D _Add7 97.53500 2.71410 35.9364 <.0001

F _Add8 96.62500 2.91560 33.1407 <.0001

Y _Add9 10.50000 1.35724 7.7363 <.0001

Parameters with a name prefix _Add are added automatically by PROC CALIS. These parameters are added
as free parameters to complete the model specification. In PROC CALIS, variances and covariances among
the set of exogenous manifest variables must be parameters. You either specify them explicitly or let the
CALIS procedure to add them. If you need to constrain or to fix these parameters, then you must specify
them explicitly. When your model also fits the mean structures, the same principle applies to the means of
the exogenous manifest variables. In this example, because variables D, F, and Y are all exogenous manifest
variables, their associated means, variances and covariances must be parameters in the model.

The squared multiple correlations for the equations are shown in Output 29.18.3.

Output 29.18.3 Squared Multiple Correlations

Squared Multiple Correlations

Variable
Error

Variance
Total

Variance R-Square

Q 3.51274 14.11128 0.7511

P 105.06749 35.11850 -1.9918
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For endogenous variable P, the R-square is –1.9918, which is obviously an invalid value. In fact, because
there are correlated errors (between E1 and E2) and reciprocal paths (paths to and from Q and P), the model
departs from the regular assumptions of multiple regression analysis. As a result, you should not interpret the
R-squares for this example.

Specifying the LINEQS with the Original Econometric Parameters

If you are interested in estimating the parameters in the original econometric model (that is, ˛2, ˇ2, 2, and
3), the previous reparameterized LINEQS model does not serve your purpose well enough. However, using
the relations between these original parameters with the � parameters in the reparameterized LINEQS model,
you can set up some “super-parameters” in the LINEQS model, as shown in the following statements:

proc calis data=Food pshort nostand;
lineqs

Q = alpha1 * Intercept + beta1 * P + gamma1 * D + E1,
P = theta1 * Intercept + theta2 * Q + theta3 * F + theta4 * Y + E2;

variance
E1-E2 = eps1-eps2;

cov
E1-E2 = eps3;

bounds
eps1-eps2 >= 0. ;

parameters alpha2 (50.) beta2 gamma2 gamma3 (3*.25);
theta1 = -alpha2 / beta2;
theta2 = 1 / beta2;
theta3 = -gamma2 / beta2;
theta4 = -gamma3 / beta2;

run;

In this new specification, only the PARAMETERS statement and the SAS programming statements following
it are new. In the PARAMETERS statement, you define super-parameters alpha2, beta2, gamma2, and
gamma3, and put initial values for them in parentheses. These parameters are the original econometric
parameters of interest. The SAS programming statements that follow the PARAMETERS statement are
used to define the functional relationships of the super-parameters with the parameters in the LINEQS
model. Consequently, in this new specification, theta1, theta2, theta3, and theta4 are no longer independent
parameters in the model, as they are in the previous reparameterized model. Instead, alpha2, beta2, gamma2,
and gamma3 are independent parameters in this new specification. By fitting this new model, you get
the same set of estimates as those in the previous LINEQS model. In addition, you get estimates of the
super-parameters, as shown in Output 29.18.4.

Output 29.18.4 Additional Parameters

Additional Parameters

Type Parameter Estimate
Standard

Error t Value Pr > |t|

Independent alpha2 51.94452 11.70002 4.4397 <.0001

beta2 0.23731 0.09877 2.4026 0.0163

gamma2 0.22082 0.04161 5.3070 <.0001

gamma3 0.36971 0.07060 5.2365 <.0001
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You can now interpret the results in terms of the original econometric parameterization. As shown in
Output 29.18.4, all these estimates are significant, despite the fact that one of the transformed parameter
estimates in the linear equations of the LINEQS model is not. You can obtain almost equivalent results by
applying the SAS/ETS procedure SYSLIN on this problem.

Alternative Ways to Specify Your LINEQS Model

In specifying the linear equations in the LINEQS model, it might become cumbersome when you need to
name a lot of parameters into the equations. If the parameters in your model are unconstrained, you need to
very careful to use unique parameter names to distinguish the free parameters because parameters with the
same name are identical and will have the same estimate. To make model specification easier and to avoid
accidental constraints, PROC CALIS provides an efficient way to specify these free parameters. That is, you
can simply omit the parameter names in the specification. For example, in the first specification of the current
example, except for the boundary constraints on the error variance parameters, all other parameters in the
model are not constrained, as shown in the following statements:

proc calis data=food pshort nostand;
lineqs

Q = alpha1 * Intercept + beta1 * P + gamma1 * D + E1,
P = theta1 * Intercept + theta2 * Q + theta3 * F + theta4 * Y + E2;

variance
E1-E2 = eps1-eps2;

cov
E1-E2 = eps3;

bounds
eps1-eps2 >= 0. ;

run;

Parameters such as alpha1, beta1, and so on are unique parameter names in the specific locations of the
model. They are free parameters. Hence, you can use the following equivalent specification:

proc calis data=food pshort nostand;
lineqs

Q = * Intercept + * P + * D + E1,
P = * Intercept + * Q + * F + * Y + E2;

variance
E1-E2 = eps1-eps2;

cov
E1 E2;

bounds
eps1-eps2 >= 0. ;

run;

Only the parameters eps1 and eps2 remain in this equivalent specification. You omit the specification of all
other parameter names. But the estimation results are the same, as shown in Output 29.18.5.

Output 29.18.5 Estimation Results With Generated Parameter Names

Linear Equations

Q = 93.6193 (**) Intercept + -0.2295 (**) P + 0.3100 (**) D + 1.0000 E1

P = -218.9 (ns) Intercept + 4.2140 (**) Q + -0.9305 (**) F + -1.5579 (**) Y + 1.0000 E2
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Output 29.18.5 continued

Effects in Linear Equations

Variable Predictor Parameter Estimate
Standard

Error t Value Pr > |t|

Q Intercept _Parm1 93.61928 7.57485 12.3592 <.0001

Q P _Parm2 -0.22954 0.09235 -2.4856 0.0129

Q D _Parm3 0.31001 0.04481 6.9186 <.0001

P Intercept _Parm4 -218.89312 137.69794 -1.5897 0.1119

P Q _Parm5 4.21398 1.75396 2.4025 0.0163

P F _Parm6 -0.93053 0.39597 -2.3500 0.0188

P Y _Parm7 -1.55795 0.66497 -2.3429 0.0191

Estimates for Variances of Exogenous Variables

Variable
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Error E1 eps1 3.51274 1.20204 2.9223 0.0035

E2 eps2 105.06749 83.89446 1.2524 0.2104

Observed D _Add1 139.96029 45.40911 3.0822 0.0021

F _Add2 161.51355 52.40192 3.0822 0.0021

Y _Add3 35.00000 11.35550 3.0822 0.0021

Covariances Among Exogenous Variables

Var1 Var2 Parameter Estimate
Standard

Error t Value Pr > |t|

E1 E2 _Parm8 -18.87270 8.77951 -2.1496 0.0316

F D _Add4 74.02539 38.44699 1.9254 0.0542

Y D _Add5 22.99211 16.90102 1.3604 0.1737

Y F _Add6 -21.58158 17.94544 -1.2026 0.2291

Mean Parameters

Variable
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Observed D _Add7 97.53500 2.71410 35.9364 <.0001

F _Add8 96.62500 2.91560 33.1407 <.0001

Y _Add9 10.50000 1.35724 7.7363 <.0001

The estimation results in Output 29.18.5 are the same as those in Output 29.18.2 and Output 29.18.3 with
the original LINEQS model specification, only now PROC CALIS generates the parameter names with the
_Parm in the results, as shown in Output 29.18.5. Note that you retain the parameter names eps1 and eps2
because you need to refer to them in the BOUNDS statement.
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Example 29.19: Fitting Direct Covariance Structures
In the section “Direct Covariance Structures Analysis” on page 1192, the MSTRUCT modeling language is
used to specify a model with direct covariance structures. In the model, four variables from the data set of
Wheaton et al. (1977) are used. The analysis is carried out in this example to investigate the tenability of the
hypothesized covariance structures.

The four variables used are: Anomie67, Powerless67, Anomie71, and Powerless71. The hypothesized
covariance matrix is structured as:

† D

0BB@
�1 �1 �2 �1
�1 �2 �l �3
�2 �1 �1 �1
�1 �3 �1 �2

1CCA
where:

�1: variance of anomie

�2: variance of powerlessness

�1: covariance between anomie and powerlessness

�2: covariance between anomie measures

�3: covariance between powerlessness measures

In this example, you hypothesize the covariance structures directly, as opposed to those models with implied
covariance structures from path models (see Example 29.17), structural equations (see Example 29.18),
or other types of models. The basic assumption of the direct covariance structures in this example is that
Anomie and Powerless were invariant over the measurement periods employed. This implies that the time
of measurement did not change the variances and covariances of the measures. Therefore, both Anomie67
and Anomie71 have the same variance parameter �1, and both Powerless67 and Powerless71 have the same
variance parameter �2. These two parameters, �1 and �2, are hypothesized on the diagonal of the covariance
matrix †. In the same structured covariance matrix, �1 represents the covariance between Anomie and
Powerless, without regard to the time of measurement. The �2 parameter represents the covariance between
the Anomie measures, or the reliability of the Anomie measure. Similarly, the �2 parameter represents the
covariance between the Powerless measures, or the reliability of the Anomie measure.

As explained in the section “Direct Covariance Structures Analysis” on page 1192, you can use the MSTRUCT
modeling language to specify the hypothesized covariance structures directly, as shown in the following
statements:
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proc calis nobs=932 data=Wheaton psummary;
fitindex on(only)=[chisq df probchi] outfit=savefit;
mstruct

var = Anomie67 Powerless67 Anomie71 Powerless71;
matrix _COV_ [1,1] = phi1,

[2,2] = phi2,
[3,3] = phi1,
[4,4] = phi2,
[2,1] = theta1,
[3,1] = theta2,
[3,2] = theta1,
[4,1] = theta1,
[4,2] = theta3,
[4,3] = theta1;

run;

In the MSTRUCT statement you specify the variables in the VAR= list. The order of variables in this
VAR= list is assumed to be the same as that in the row and column of the hypothesized covariance matrix.
Next, in the MATRIX statement you specify parameters as entries in the hypothesized covariance matrix
_COV_. Only the lower diagonal elements need to be specified because covariance matrices, by nature, are
symmetric. Redundant specification of the upper triangular elements are unnecessary as PROC CALIS has
the information accounted for. You can also set initial estimates by putting parenthesized numbers after the
parameter names. But in this example you let PROC CALIS determine all the initial estimates.

In the PROC CALIS statement, the PSUMMARY option is used. As a global display option, this option
suppresses a lot of displayed output and requests only the fit summary table be printed. This way you can
eliminate quite a lot of displayed output that is not of your primary interest. In this example, the specification
of the covariance structures is straightforward, and you do not need any output regarding the initial estimation
or standardized solution. Suppose that you are not even concerned with the estimates of the parameters
because you are not yet sure if this model is good enough for the data. All you want to know at this stage is
whether the hypothesized covariance structures fit the data well. Therefore, the PSUMMARY option would
serve your purpose well in this example.

In fact, even the fit summary table can be trimmed down quite a bit if you only want to look at certain specific
fit indices. In the FITINDEX statement of this example, the ON(ONLY)= option turns on the printing of the
model fit chi-square, its df, and p-value only. This does not mean that you must lose the information of all
other fit indices. In addition to the printed output, you can save all fit indices in an output data set. To this
end, you can use the OUTFIT= option in the FITINDEX statement. In this example, you save the results of
all fit indices in a SAS data set called savefit.

Output 29.19.1 shows the entire printed output.

Output 29.19.1 Testing Direct Covariance Structures

Fit Summary

Chi-Square 221.5798

Chi-Square DF 5

Pr > Chi-Square <.0001

The displayed output is very concise. It contains only a fit summary table with three statistics. The p-value
for the model fit chi-square test indicates that the hypothesized structures should be rejected at ˛ D 0:05.
Therefore, this rather restrictive direct covariance structure model does not fit the data well. A less restrictive
covariance structure model is needed to explain the variances and covariances.
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All fit indices are saved in the savefit data set. To view it, you can use the following statement:

proc print data=savefit;
run;

Output 29.19.2 shows all indices, their types and values of all fit indices and information.

Output 29.19.2 Saved Fit Indices

Analysis of Direct Covariance Structures
Testing Model by the MSTRUCT Language
Analysis of Direct Covariance Structures

Testing Model by the MSTRUCT Language

Obs _TYPE_ IndexCode FitIndex FitValue PrintChar

1 ModelInfo 101 Number of Observations 932.00 932

2 ModelInfo 103 Number of Variables 4.00 4

3 ModelInfo 104 Number of Moments 10.00 10

4 ModelInfo 105 Number of Parameters 5.00 5

5 ModelInfo 106 Number of Active Constraints 0.00 0

6 ModelInfo 111 Baseline Model Function Value 1.68 1.6799

7 ModelInfo 113 Baseline Model Chi-Square 1563.94 1563.9442

8 ModelInfo 114 Baseline Model Chi-Square DF 6.00 6

9 ModelInfo 115 Pr > Baseline Model Chi-Square 0.00 <.0001

10 Absolute 201 Fit Function 0.24 0.2380

11 Absolute 203 Chi-Square 221.58 221.5798

12 Absolute 204 Chi-Square DF 5.00 5

13 Absolute 205 Pr > Chi-Square 0.00 <.0001

14 Absolute 211 Z-Test of Wilson & Hilferty 12.25 12.2533

15 Absolute 212 Hoelter Critical N 47.00 47

16 Absolute 213 Root Mean Square Residual (RMR) 0.76 0.7649

17 Absolute 214 Standardized RMR (SRMR) 0.07 0.0701

18 Absolute 215 Goodness of Fit Index (GFI) 0.90 0.9036

19 Parsimony 301 Adjusted GFI (AGFI) 0.81 0.8071

20 Parsimony 302 Parsimonious GFI 0.75 0.7530

21 Parsimony 303 RMSEA Estimate 0.22 0.2157

22 Parsimony 304 RMSEA Lower 90% Confidence Limit 0.19 0.1920

23 Parsimony 305 RMSEA Upper 90% Confidence Limit 0.24 0.2404

24 Parsimony 306 Probability of Close Fit 0.00 <.0001

25 Parsimony 307 ECVI Estimate 0.25 0.2488

26 Parsimony 308 ECVI Lower 90% Confidence Limit 0.20 0.2003

27 Parsimony 309 ECVI Upper 90% Confidence Limit 0.31 0.3053

28 Parsimony 310 Akaike Information Criterion 231.58 231.5798

29 Parsimony 311 Bozdogan CAIC 260.77 260.7665

30 Parsimony 312 Schwarz Bayesian Criterion 255.77 255.7665

31 Parsimony 313 McDonald Centrality 0.89 0.8903

32 Incremental 401 Bentler Comparative Fit Index 0.86 0.8610

33 Incremental 402 Bentler-Bonett NFI 0.86 0.8583

34 Incremental 403 Bentler-Bonett Non-normed Index 0.83 0.8332

35 Incremental 404 Bollen Normed Index Rho1 0.83 0.8300

36 Incremental 405 Bollen Non-normed Index Delta2 0.86 0.8611

37 Incremental 406 James et al. Parsimonious NFI 0.72 0.7153
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The results of various fit indices from this output data set confirm that the hypothesized model does not fit the
data well.

As an aside, it is noted with some shorthand notation, the specification of the MSTRUCT model parameters
that use the MATRIX statements can be made a little more precise for the current example. This is shown as
follows:

proc calis nobs=932 data=Wheaton psummary;
mstruct

var = Anomie67 Powerless67 Anomie71 Powerless71;
matrix _COV_ [1,1] = phi1 phi2 phi1 phi2,

[2, ] = theta1,
[3, ] = theta2 theta1,
[4, ] = theta1 theta3 theta1;

fitindex on(only)=[chisq df probchi] outfit=savefit;
run;

In the first entry of the MATRIX statement, the notation [1,1] represents that the parameter list specified after
the equal sign starts with the [1,1] element of the _COV_ matrix and proceeds down the diagonal. In the next
three entries, the notations [2,], [3,], and [4,] represent that parameter lists start with the first elements of the
second, third, and fourth rows, respectively, and proceed to the next (right) elements on the same rows. See
the syntax of the MATRIX statement on page 1295 for more details about this kind of shorthand notation.

This example shows how you can use the MSTRUCT modeling language to test specific covariance patterns.
You need to define the parameters of the covariance patterns explicitly by the MATRIX statements. See
Example 29.4 and Example 29.21 for more applications.

However, some commonly-used covariance and mean patterns are built into PROC CALIS. For these
covariance and mean patterns, you can simply use the COVPATTERN= and the MEANPATTERN= options
without the need to specify the parameters in the MATRIX statements. See the COVPATTERN= and
the MEANPATTERN= options for the supported covariance and mean patterns. See Example 29.5 and
Example 29.22 for applications.

Example 29.20: Confirmatory Factor Analysis: Cognitive Abilities
In this example, cognitive abilities of 64 students from a middle school were measured. The fictitious data
contain nine cognitive test scores. Three of the scores were for reading skills, three others were for math
skills, and the remaining three were for writing skills. The covariance matrix for the nine variables was
obtained. A confirmatory factor analysis with three factors was conducted. The following is the input data
set:
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title "Confirmatory Factor Analysis Using the FACTOR Modeling Language";
title2 "Cognitive Data";
data cognitive1(type=cov);

_type_='cov';
input _name_ $ reading1 reading2 reading3 math1 math2 math3

writing1 writing2 writing3;
datalines;

reading1 83.024 . . . . . . . .
reading2 50.924 108.243 . . . . . . .
reading3 62.205 72.050 99.341 . . . . . .
math1 22.522 22.474 25.731 82.214 . . . . .
math2 14.157 22.487 18.334 64.423 96.125 . . . .
math3 22.252 20.645 23.214 49.287 58.177 88.625 . . .
writing1 33.433 42.474 41.731 25.318 14.254 27.370 90.734 . .
writing2 24.147 20.487 18.034 22.106 26.105 22.346 53.891 96.543 .
writing3 13.340 20.645 23.314 19.387 28.177 38.635 55.347 52.999 98.445
;

Confirmatory Factor Model with Uncorrelated Factors

You first fit a confirmatory factor model with uncorrelated factors to the data, as shown in the following
statements:

proc calis data=cognitive1 nobs=64 modification;
factor

Read_Factor ===> reading1-reading3 ,
Math_Factor ===> math1-math3 ,
Write_Factor ===> writing1-writing3 ;

pvar
Read_Factor Math_Factor Write_Factor = 3 * 1.;

cov
Read_Factor Math_Factor Write_Factor = 3 * 0.;

run;

In the PROC CALIS statement, the number of observations is specified with the NOBS= option. With the
MODIFICATION in the PROC CALIS statement, LM (Lagrange Multiplier) tests are conducted. The results
of LM tests can suggest the inclusion of additional parameters for a better model fit.

The FACTOR modeling language is most handy when you specify confirmatory factor models. You use
the FACTOR statement to invoke the FACTOR modeling language. Entries in the FACTOR statement are
for specifying factor-variables relationships and are separated by commas. In each entry, you first specify
a latent factor, followed by the right arrow sign ===> (you can use >, =>, ==>, or ===>). Then you specify
the observed variables that have nonzero loadings on the factor. For example, in the first entry of FACTOR
statement, you specify that latent factor Read_Factor has nonzero loadings (free parameters) on variables
reading1–reading3. Optionally, you can specify the parameter list after you specify the factor-variable
relationships. For example, you can name the loading parameters as in the following specification:

factor
Read_Factor ===> reading1-reading3 = load1-load3;

This way, you name the factor loadings with parameter names load1, load2, and load3, respectively. However,
in the current example, because the loading parameters are all unconstrained, you can just let PROC CALIS
to generate the parameter names for you. In this example, there are three factors: Read_Factor, Math_Factor,
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and Write_Factor. These factors have simple cluster structures with the nine observed variables. Each
observed variable has only one loading on exactly one factor.

In the PVAR statement, you can specify the variances of the factors and the error variances of the observed
variables. The factor variances in this model are all fixed at 1.0 for identification purposes. You do not need
to specify the error variances of the observed variables in the current model because PROC CALIS assumes
these are free parameters by default.

In the COV statement, you specify that the covariances among the factors are fixed zeros. There are three
covariances among the three latent factors and therefore you put 3 * 0. for their fixed values. This means
that the factors in the current model are uncorrelated. Note that you must specify uncorrelated factors
explicitly in the COV statement because all latent factors are correlated by default.

In Output 29.20.1, the initial model specification is echoed in matrix form. The observed variables and
factors are also displayed.

Output 29.20.1 Uncorrelated Factor Model Specification

Variables in the Model

Variables reading1  reading2  reading3  math1  math2  math3  writing1  writing2  writing3

Factors Read_Factor  Math_Factor  Write_Factor

Number of Variables = 9
Number of Factors = 3

Initial Factor Loading Matrix

Read_Factor Math_Factor Write_Factor

reading1 .
[_Parm1]

0 0

reading2 .
[_Parm2]

0 0

reading3 .
[_Parm3]

0 0

math1 0 .
[_Parm4]

0

math2 0 .
[_Parm5]

0

math3 0 .
[_Parm6]

0

writing1 0 0 .
[_Parm7]

writing2 0 0 .
[_Parm8]

writing3 0 0 .
[_Parm9]

Initial Factor Covariance Matrix

Read_Factor Math_Factor Write_Factor

Read_Factor 1.0000 0 0

Math_Factor 0 1.0000 0

Write_Factor 0 0 1.0000
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Output 29.20.1 continued

Initial Error Variances

Variable Parameter Estimate

reading1 _Add1 .

reading2 _Add2 .

reading3 _Add3 .

math1 _Add4 .

math2 _Add5 .

math3 _Add6 .

writing1 _Add7 .

writing2 _Add8 .

writing3 _Add9 .

NOTE:
Parameters with prefix '_Add'
are added by PROC CALIS.

In the table for initial factor loading matrix, the nine loading parameters are shown to have simple cluster
relations with the factors. In the table for initial factor covariance matrix, the diagonal matrix shows that the
factors are not correlated. The diagonal elements are fixed at ones so that this matrix is also a correlation
matrix for the factors. In the table for initial error variances, the nine variance parameters are shown. As
described previously, these error variances are generated by PROC CALIS as default parameters.

In Output 29.20.2, initial estimates are generated by the instrumental variable method and the McDonald
method.

Output 29.20.2 Optimization of the Uncorrelated Factor Model: Initial Estimates

Initial Estimation Methods

1 Instrumental Variables Method

2 McDonald Method
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Output 29.20.2 continued

Optimization Start
Parameter Estimates

N Parameter Estimate Gradient

1 _Parm1 7.15372 0.00851

2 _Parm2 7.80225 -0.00170

3 _Parm3 8.70856 -0.00602

4 _Parm4 7.68637 0.00272

5 _Parm5 8.01765 -0.01096

6 _Parm6 7.05012 0.00932

7 _Parm7 8.76776 -0.0009955

8 _Parm8 5.96161 -0.01335

9 _Parm9 7.23168 0.01665

10 _Add1 31.84831 -0.00179

11 _Add2 47.36790 0.0003461

12 _Add3 23.50199 0.00257

13 _Add4 23.13374 -0.0008384

14 _Add5 31.84224 0.00280

15 _Add6 38.92075 -0.00167

16 _Add7 13.86035 -0.00579

17 _Add8 61.00217 0.00115

18 _Add9 46.14784 -0.00300

Value of Objective
Function = 0.9103815918

These initial estimates turn out to be pretty good, in the sense that only three more iterations are needed to
converge to the maximum likelihood estimates and the final function value 0.784 does not change much from
the initial function value 0.910, as shown in Output 29.20.3.

Output 29.20.3 Optimization of the Uncorrelated Factor Model: Iteration Summary

Iteration Restarts
Function

Calls
Active

Constraints
Objective
Function

Objective
Function
Change

Max Abs
Gradient
Element Lambda

Ratio
Between
Actual
and

Predicted
Change

1 0 4 0 0.78792 0.1225 0.00175 0 0.932

2 0 6 0 0.78373 0.00419 0.000037 0 1.051

3 0 8 0 0.78373 5.087E-7 3.715E-9 0 1.001

Optimization Results

Iterations 3 Function Calls 11

Jacobian Calls 5 Active Constraints 0

Objective Function 0.783733415 Max Abs Gradient Element 3.7146571E-9

Lambda 0 Actual Over Pred Change 1.0006660673

Radius 0.0025042942

Convergence criterion (ABSGCONV=0.00001) satisfied.
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The fit summary is shown in Output 29.20.4.

Output 29.20.4 Fit of the Uncorrelated Factor Model

Fit Summary

Modeling Info Number of Observations 64

Number of Variables 9

Number of Moments 45

Number of Parameters 18

Number of Active Constraints 0

Baseline Model Function Value 4.3182

Baseline Model Chi-Square 272.0467

Baseline Model Chi-Square DF 36

Pr > Baseline Model Chi-Square <.0001

Absolute Index Fit Function 0.7837

Chi-Square 49.3752

Chi-Square DF 27

Pr > Chi-Square 0.0054

Z-Test of Wilson & Hilferty 2.5474

Hoelter Critical N 52

Root Mean Square Residual (RMR) 19.5739

Standardized RMR (SRMR) 0.2098

Goodness of Fit Index (GFI) 0.8555

Parsimony Index Adjusted GFI (AGFI) 0.7592

Parsimonious GFI 0.6416

RMSEA Estimate 0.1147

RMSEA Lower 90% Confidence Limit 0.0617

RMSEA Upper 90% Confidence Limit 0.1646

Probability of Close Fit 0.0271

ECVI Estimate 1.4630

ECVI Lower 90% Confidence Limit 1.2069

ECVI Upper 90% Confidence Limit 1.8687

Akaike Information Criterion 85.3752

Bozdogan CAIC 142.2351

Schwarz Bayesian Criterion 124.2351

McDonald Centrality 0.8396

Incremental Index Bentler Comparative Fit Index 0.9052

Bentler-Bonett NFI 0.8185

Bentler-Bonett Non-normed Index 0.8736

Bollen Normed Index Rho1 0.7580

Bollen Non-normed Index Delta2 0.9087

James et al. Parsimonious NFI 0.6139

Using the chi-square model test criterion, the uncorrelated factor model should be rejected at ˛ D 0:05. The
RMSEA estimate is 0.1147, which is not indicative of a good fit according to Browne and Cudeck (1993)
Other indices might suggest only a marginal good fit. For example, Bentler’s comparative fit index and
Bollen nonnormed index delta2 are both above 0.90. However, many other do not attain this 0.90 level. For
example, adjusted GFI is only 0.759. It is thus safe to conclude that there could be some improvements on
the model fit.
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The MODIFICATION option in the PROC CALIS statement has been used to request for computing the LM
test indices for model modifications. The results are shown in Output 29.20.5.

Output 29.20.5 Lagrange Multiplier Tests

Rank Order of the 10 Largest LM Stat for Factor
Loadings

Variable Factor LM Stat Pr > ChiSq
Parm

Change

writing1 Read_Factor 9.76596 0.0018 2.95010

math3 Write_Factor 3.58077 0.0585 1.89703

math1 Read_Factor 2.15312 0.1423 1.17976

writing3 Math_Factor 1.87637 0.1707 1.41298

math3 Read_Factor 1.02954 0.3103 0.95427

reading2 Write_Factor 0.91230 0.3395 0.99933

writing2 Math_Factor 0.86221 0.3531 0.95672

reading1 Write_Factor 0.63403 0.4259 0.73916

math1 Write_Factor 0.55602 0.4559 0.63906

reading2 Math_Factor 0.55362 0.4568 0.74628

Rank Order of the 3 Largest LM Stat for Covariances of
Factors

Var1 Var2 LM Stat Pr > ChiSq
Parm

Change

Write_Factor Read_Factor 8.95268 0.0028 0.44165

Write_Factor Math_Factor 7.07904 0.0078 0.40132

Math_Factor Read_Factor 4.61896 0.0316 0.30411

Rank Order of the 10 Largest LM Stat for Error
Variances and Covariances

Error
of

Error
of LM Stat Pr > ChiSq

Parm
Change

writing1 math2 5.45986 0.0195 -13.16822

writing1 math1 5.05573 0.0245 12.32431

writing3 math3 3.93014 0.0474 13.59149

writing3 math1 2.83209 0.0924 -9.86342

writing2 reading1 2.56677 0.1091 10.15901

writing2 math2 1.94879 0.1627 8.40273

writing2 reading3 1.75181 0.1856 -7.82777

writing3 reading1 1.57978 0.2088 -7.97915

writing1 reading2 1.34894 0.2455 7.77158

writing2 math3 1.11704 0.2906 -7.23762
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Three different tables for ranking the LM test results are shown. In the first table, the new loading parameters
that would improve the model fit the most are shown first. For example, in the first row a new factor loading
of writing1 on the Read_Factor is suggested to improve the model fit the most. The ‘LM Stat’ value is 9.77.
This is an approximation of the chi-square drop if this parameter was included in the model. The ‘Pr >
ChiSq’ value of 0.0018 indicates a significant improvement of model fit at ˛ D 0:05. Nine more new loading
parameters are suggested in the table, with less and less statistical significance in the change of model fit
chi-square. Note that these approximate chi-squares are one-at-a-time chi-square changes. That means that
the overall chi-square drop is not a simple sum of individual chi-square changes when you include two or
more new parameters in the modified model.

The other two tables in Output 29.20.5 shows the new parameters in factor covariances, error variances,
or error covariances that would result in a better model fit. The table for the new parameters of the factor
covariance matrix indicates that adding each of the covariances among factors might lead to a statistically
significant improvement in model fit. The largest ‘LM Stat’ value in this table is 8.95, which is smaller than
that of the largest ‘LM Stat’ for the factor loading parameters. Despite this, it is more reasonable to add the
covariance parameters among factors first to determine whether that improves the model fit.

Confirmatory Factor Model with Correlated Factors

To fit the corresponding confirmatory factor model with correlated factors, you can remove the fixed zeros
from the COV statement in the preceding specification, as shown in the following statements:

proc calis data=cognitive1 nobs=64 modification;
factor

Read_Factor ===> reading1-reading3 ,
Math_Factor ===> math1-math3 ,
Write_Factor ===> writing1-writing3 ;

pvar
Read_Factor Math_Factor Write_Factor = 3 * 1.;

cov
Read_Factor Math_Factor Write_Factor /* = 3 * 0. */;

run;

In the COV statement, you comment out the fixed zeros so that the covariances among the latent factors are
now free parameters. An alternative way is to delete the entire COV statement so that the covariances among
factors are free parameters by the FACTOR model default.

The fit summary of the correlated factor model is shown in Output 29.20.6.
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Output 29.20.6 Fit of the Correlated Factor Model

Fit Summary

Modeling Info Number of Observations 64

Number of Variables 9

Number of Moments 45

Number of Parameters 21

Number of Active Constraints 0

Baseline Model Function Value 4.3182

Baseline Model Chi-Square 272.0467

Baseline Model Chi-Square DF 36

Pr > Baseline Model Chi-Square <.0001

Absolute Index Fit Function 0.4677

Chi-Square 29.4667

Chi-Square DF 24

Pr > Chi-Square 0.2031

Z-Test of Wilson & Hilferty 0.8320

Hoelter Critical N 78

Root Mean Square Residual (RMR) 5.7038

Standardized RMR (SRMR) 0.0607

Goodness of Fit Index (GFI) 0.9109

Parsimony Index Adjusted GFI (AGFI) 0.8330

Parsimonious GFI 0.6073

RMSEA Estimate 0.0601

RMSEA Lower 90% Confidence Limit 0.0000

RMSEA Upper 90% Confidence Limit 0.1244

Probability of Close Fit 0.3814

ECVI Estimate 1.2602

ECVI Lower 90% Confidence Limit 1.2453

ECVI Upper 90% Confidence Limit 1.5637

Akaike Information Criterion 71.4667

Bozdogan CAIC 137.8032

Schwarz Bayesian Criterion 116.8032

McDonald Centrality 0.9582

Incremental Index Bentler Comparative Fit Index 0.9768

Bentler-Bonett NFI 0.8917

Bentler-Bonett Non-normed Index 0.9653

Bollen Normed Index Rho1 0.8375

Bollen Non-normed Index Delta2 0.9780

James et al. Parsimonious NFI 0.5945

The model fit chi-square value is 29.47, which is about 20 less than the model with uncorrelated factors. The
p-value is 0.20, indicating a satisfactory model fit. The RMSEA value is 0.06, which is close to 0.05, a value
recommended as an indication of good model fit by Browne and Cudeck (1993) More fit indices that do not
attain the 0.9 level with the uncorrelated factor model now have values close to or above 0.9. These include
the goodness-of-fit index (GFI), McDonald centrality, Bentler-Bonnet NFI, and Bentler-Bonnet nonnormed
index. By all counts, the correlated factor model is a much better fit than the uncorrelated factor model.

In Output 29.20.7, the estimation results for factor loadings are shown. All these loadings are statistically
significant, indicating non-chance relationships with the factors.



Example 29.20: Confirmatory Factor Analysis: Cognitive Abilities F 1677

Output 29.20.7 Estimation of the Factor Loading Matrix

Factor Loading Matrix:
Estimate/StdErr/t-value/p-value

Read_Factor Math_Factor Write_Factor

reading1 6.7657
1.0459
6.4689
<.0001

[_Parm01]

0 0

reading2 7.8579
1.1890
6.6090
<.0001

[_Parm02]

0 0

reading3 9.1344
1.0712
8.5269
<.0001

[_Parm03]

0 0

math1 0 7.5488
1.0128
7.4536
<.0001

[_Parm04]

0

math2 0 8.4401
1.0838
7.7874
<.0001

[_Parm05]

0

math3 0 6.8194
1.0910
6.2506
<.0001

[_Parm06]

0

writing1 0 0 7.9677
1.1254
7.0797
<.0001

[_Parm07]

writing2 0 0 6.8742
1.1986
5.7350
<.0001

[_Parm08]

writing3 0 0 7.0949
1.2057
5.8844
<.0001

[_Parm09]

In Output 29.20.8, the factor covariance matrix is shown. Because the diagonal elements are all ones, the
off-diagonal elements are correlations among factors. The correlations range from 0.30–0.5. These factors
are moderately correlated.



1678 F Chapter 29: The CALIS Procedure

Output 29.20.8 Estimation of the Correlations of Factors

Factor Covariance Matrix:
Estimate/StdErr/t-value/p-value

Read_Factor Math_Factor Write_Factor

Read_Factor 1.0000 0.3272
0.1311
2.4955
0.0126

[_Parm10]

0.4810
0.1208
3.9813
<.0001

[_Parm11]

Math_Factor 0.3272
0.1311
2.4955
0.0126

[_Parm10]

1.0000 0.3992
0.1313
3.0417

0.002352
[_Parm12]

Write_Factor 0.4810
0.1208
3.9813
<.0001

[_Parm11]

0.3992
0.1313
3.0417

0.002352
[_Parm12]

1.0000

In Output 29.20.9, the error variances for variables are shown.

Output 29.20.9 Estimation of the Error Variances

Error Variances

Variable Parameter Estimate
Standard

Error t Value Pr > |t|

reading1 _Add1 37.24939 8.33997 4.4664 <.0001

reading2 _Add2 46.49695 10.69869 4.3460 <.0001

reading3 _Add3 15.90447 9.26097 1.7174 0.0859

math1 _Add4 25.22889 7.72269 3.2669 0.0011

math2 _Add5 24.89032 8.98327 2.7707 0.0056

math3 _Add6 42.12110 9.20362 4.5766 <.0001

writing1 _Add7 27.24965 10.36489 2.6290 0.0086

writing2 _Add8 49.28881 11.39812 4.3243 <.0001

writing3 _Add9 48.10684 11.48868 4.1873 <.0001

All t values except the one for reading3 are greater than 2, a value close to a critical t value at ˛ D 0:05.
This means that the error variance for reading3 could have been zero in the population, or it could have been
nonzero but the current sample just has this insignificant value by chance (that is, a Type 2 error). Further
research is needed to confirm either way.

In addition to the parameter estimation results, PROC CALIS also outputs supplementary results that could
be useful for interpretations. In Output 29.20.10, the squared multiple correlations and the factor scores
regression coefficients are shown.
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Output 29.20.10 Supplementary Estimation Results

Squared Multiple Correlations

Variable
Error

Variance
Total

Variance R-Square

reading1 37.24939 83.02400 0.5513

reading2 46.49695 108.24300 0.5704

reading3 15.90447 99.34100 0.8399

math1 25.22889 82.21400 0.6931

math2 24.89032 96.12500 0.7411

math3 42.12110 88.62500 0.5247

writing1 27.24965 90.73400 0.6997

writing2 49.28881 96.54300 0.4895

writing3 48.10684 98.44500 0.5113

Factor Scores Regression Coefficients

Read_Factor Math_Factor Write_Factor

reading1 0.0200 0.000681 0.001985

reading2 0.0186 0.000633 0.001847

reading3 0.0633 0.002152 0.006275

math1 0.001121 0.0403 0.002808

math2 0.001271 0.0457 0.003183

math3 0.000607 0.0218 0.001520

writing1 0.003195 0.002744 0.0513

writing2 0.001524 0.001309 0.0245

writing3 0.001611 0.001384 0.0259

The percentages of variance for the observed variables that can be explained by the factors are shown in
the ‘R-Square’ column of the table for squared multiple correlations (R-squares). These R-squares can be
interpreted meaningfully because there is no reciprocal relationships among variables or correlated errors in
the model. All estimates of R-squares are bounded between 0 and 1.

In the table for factor scores regression coefficients, entries are coefficients for the variables you can use
to create the factor scores. The larger the coefficient, the more influence of the corresponding variable for
creating the factor scores. It makes intuitive sense to see the cluster pattern of these coefficients—the reading
measures are more important to create the latent variable scores of Read_Factor and so on.
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Example 29.21: Testing Equality of Two Covariance Matrices Using a
Multiple-Group Analysis

You can use PROC CALIS to do multiple-group or multiple-sample analysis. The groups in the analysis must
be independent. In this example, a relatively simple multiple-group analysis is carried out. The covariance
matrices of two independent groups are tested for equality. Hence, individual covariance matrices are actually
not structured. Rather, they are constrained to be the same under the null hypothesis. That is, you want to test
the following null hypothesis:

H0 W †1 D †2

where †1 and †2 represent the population covariance matrices of the two independent groups in question.

In PROC CALIS, you can use two different approaches to test the equality of covariance matrices. The first
approach is to define an MSTRUCT model explicitly and to fit this model to the independent groups. The
second approach is to use the COVPATTERN= option to invoke the required covariance structure model
for the independent groups. Some standard covariance structures or patterns with the MSTRUCT modeling
language are built into PROC CALIS internally. With appropriate keywords for the COVPATTERN= option,
you can invoke the target built-in covariance patterns without defining the MSTRUCT model explicitly. This
example considers these two approaches successively.

This example is concerned with a reaction time experiment that was conducted on two groups of individuals.
One group (N D 20) was considered to be an expert group with prior training related to the tasks of the
experiment. Another group (N D 18) was a control group without prior training. Three tasks of dexterity
were administered to all individuals. These tasks differed by their required complexity levels of body skills.
They were labeled as high, medium, and low complexities.

Apparently, the differential performance of the two groups under different task complexities was the primary
research objective. In this example, however, you are interested in testing whether the groups have the same
covariance matrix for the tasks. Equality of covariance matrices might be an essential assumption in some
statistical tests for comparing group means. In this example, the sample covariance matrices for the two
groups are stored in the data sets Expert and Novice, as shown in the following:

data expert(type=cov);
input _type_ $ _name_ $ high medium low;
datalines;

COV high 5.88 . .
COV medium 2.88 7.16 .
COV low 3.12 4.44 8.14
;

data novice(type=cov);
input _type_ $ _name_ $ high medium low;
datalines;

COV high 6.42 . .
COV medium 1.24 8.25 .
COV low 4.26 2.75 7.99
;

These data sets are read into the analysis through the GROUP statements in the following PROC CALIS
specification:
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proc calis;
group 1 / data=expert nobs=20 label="Expert";
group 2 / data=novice nobs=18 label="Novice";
model 1 / groups=1,2;

mstruct
var=high medium low;

fitindex NoIndexType On(only)=[chisq df probchi]
chicorrect=eqcovmat;

ods select ModelingInfo MSTRUCTVariables MSTRUCTCovInit Fit;
run;

The first GROUP statement defines group 1 for the expert group. The second GROUP statement defines
group 2 for the novice group. You use the NOBS= option in both statements to provide the number of
observations of these groups. You use the LABEL= option in these statements to provide meaningful group
labels.

The MODEL statement defines MODEL 1. In the analysis, this model fits to both groups 1 and 2, as indicated
by the GROUPS= option of the statement. This is done to test the null hypothesis of equality of covariance
matrices in the two groups. An MSTRUCT model for MODEL 1 is defined immediately afterward. Three
variables, high, medium, and low, are specified in the VAR= option of the MSTRUCT statement.

Without further specification about the MSTRUCT model, PROC CALIS assumes all non redundant elements
in the covariance matrix are free parameters. This is what is required under the null hypothesis of the equality
of covariance matrices in the two groups—the groups have the same covariance matrix, but the covariance
matrix itself is unconstrained. Your model under the null hypothesis is now well-defined and ready to run. In
addition, you use FITINDEX and ODS SELECT statements to customize or fine tune the analysis.

By using the options in the FITINDEX statement, you can customize the fit summary table and control some
analytic options. In the current example, you use the NOINDEXTYPE option to suppress the printing of the
index types in the fit summary table. Then, you use the ON(ONLY)= option to specify the fit indices printed in
the fit summary table. In this example, you request only the model fit chi-square statistic, degrees of freedom,
and the probability value of the chi-square be printed. Finally, you use the CHICORRECT=EQCOVMAT
option to request a chi-square correction for the test of equality of covariance matrices. This correction is due
to Box (1949) and is implemented in PROC CALIS as a built-in chi-square correction option.

In addition, because you are not interested in all displayed output for the current hypothesized model, you
use the ODS SELECT statement to display only those output (or ODS tables) of interest. In this example,
you request only the modeling information, the variables involved, the initial covariance matrix specification,
and the fit summary table be printed. All output in PROC CALIS are named as an ODS table. To locate a
particular output in PROC CALIS, you must know the corresponding ODS table name. See the section “ODS
Table Names” on page 1523 for a listing of ODS tables produced by PROC CALIS.

Output 29.21.1 displays some information regarding the basic model setup.

Output 29.21.1 Modeling Information and Initial Specification

Modeling Information

Maximum Likelihood Estimation

Group Label Data Set N Obs Model Type Analysis

1 Expert WORK.EXPERT 20 Model 1 MSTRUCT Covariances

2 Novice WORK.NOVICE 18 Model 1 MSTRUCT Covariances
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Output 29.21.1 continued

Model 1.
Variables in the Model

high  medium  low

Number of Variables = 3

Model 1. Initial MSTRUCT _COV_
Matrix

high medium low

high .
[_Add1]

.
[_Add2]

.
[_Add4]

medium .
[_Add2]

.
[_Add3]

.
[_Add5]

low .
[_Add4]

.
[_Add5]

.
[_Add6]

The modeling information table summarizes some basic information about the two groups. Both of them are
fitted by Model 1. The next table shows the variables involved: high, medium, and low. The order of variables
in this table is the same as that of the row and column variables of the covariance model matrix, which is
shown next in Output 29.21.1. The parameters for the entries in the covariance matrix are shown. The names
of parameters are displayed in parentheses. All these parameters are set by default and their names have the
prefix _Add. No initial estimates are given as input, as indicated by the missing value ‘.’.

Output 29.21.2 shows the customized fit summary table, which has been much simplified for the current
example due to the uses of some options in the FITINDEX statement.

Output 29.21.2 Model Fit

Fit Summary

Chi-Square 2.4924

Chi-Square DF 6

Pr > Chi-Square 0.8693

As shown in Output 29.21.2, the chi-square test statistic is 2.4924. With six degrees of freedom, the test
statistic is not significant at ˛ D 0:01. Therefore, the hypothesized model is supported, which means that the
equality of the covariance matrices of the groups is supported.
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Instead of using the MSTRUCT modeling language explicitly for defining the hypothesized covariance
patterns (or structures), you can also invoke the same covariance patterns by using the COVPATTERN=
option, as shown in the following statements:

proc calis covpattern=eqcovmat;
var high medium low;
group 1 / data=expert nobs=20 label="Expert";
group 2 / data=novice nobs=18 label="Novice";
fitindex NoIndexType On(only)=[chisq df probchi];

run;

The COVPATTERN=EQCOVMAT option in the PROC CALIS statement hypothesizes that the two popula-
tion covariance matrices for the groups are the same. Next, you specify the set of variables in the covariance
matrices in the VAR statement, followed by the specification of the data for the two groups. You use the
FITINDEX statement to select a subset of fit indices to display in the output.

Output 29.21.3 shows the data sets and the corresponding MSTRUCT models that are generated by the
COVPATTERN=EQCOVMAT option.

Output 29.21.3 Modeling Information with the COVPATTERN=EQCOVMAT Option

Modeling Information

Maximum Likelihood Estimation

Group Label Data Set N Obs Model Type Analysis

1 Expert WORK.EXPERT 20 Model 1 MSTRUCT Covariances

2 Novice WORK.NOVICE 18 Model 2 MSTRUCT Covariances

PROC CALIS generates Model 1 for the expert group and Model 2 for the novice group. Output 29.21.4 and
Output 29.21.5 show the covariance matrices of these two models.

Output 29.21.4 Initial Specification of Model 1 for the Expert Group

Model 1.
Variables in the Model

high  medium  low

Number of Variables = 3

Model 1. Initial MSTRUCT _COV_ Matrix

high medium low

high .
[_cov_1_1]

.
[_cov_2_1]

.
[_cov_3_1]

medium .
[_cov_2_1]

.
[_cov_2_2]

.
[_cov_3_2]

low .
[_cov_3_1]

.
[_cov_3_2]

.
[_cov_3_3]

Output 29.21.5 Initial Specification of Model 2 for the Novice Group

Model 2.
Variables in the Model

high  medium  low

Number of Variables = 3
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Output 29.21.5 continued

Model 2. Initial MSTRUCT _COV_ Matrix

high medium low

high .
[_cov_1_1]

.
[_cov_2_1]

.
[_cov_3_1]

medium .
[_cov_2_1]

.
[_cov_2_2]

.
[_cov_3_2]

low .
[_cov_3_1]

.
[_cov_3_2]

.
[_cov_3_3]

In Output 29.21.4, the covariance matrix for the expert group has three variables: high, medium, and low.
The second table of Output 29.21.4 shows the parameters for the corresponding covariance matrix. PROC
CALIS generates the parameter names for the elements in this covariance matrix: _cov_1_1, _cov_2_1,
. . . , _cov_3_3. In Output 29.21.5, the covariance matrix for the novice group has exactly the same set of
three variables: high, medium, and low. The second table of Output 29.21.5 shows the parameters for the
corresponding covariance matrix. These variance and covariance parameters are exactly the same as those in
Output 29.21.4, as required by the testing of equality of covariance matrices.

Output 29.21.6 shows the fit summary of the test. The test results are exactly the same as those in Out-
put 29.21.2, as expected. The chi-square value is 2.4924. With six degrees of freedom, the test statistic is not
significant at ˛ D 0:01. The hypothesis about the equality of the covariance matrices between the groups is
supported.

Output 29.21.6 Model Fit with the COVPATTERN=EQCOVMAT Option

Fit Summary

Chi-Square 2.4924

Chi-Square DF 6

Pr > Chi-Square 0.8693

One advantage of using the built-in covariance patterns such as the current COVPATTERN=EQCOVMAT
option is that it is more efficient and less error-prone than if you specify the covariance patterns manually by
using the MSTRUCT and MATRIX statements. With the COVPATTERN= option, PROC CALIS generates
the correct model specification internally. Another advantage is that when applicable, PROC CALIS applies
the appropriate chi-square correction to the chi-square test statistic. For the current example, PROC CALIS
displays the following message in the output:

NOTE: The chi-square correction due to Box for testing equality of
covariance matrices was applied. Use the CHICORRECT=0 option
if this correction is not desirable.

This shows that when you use the COVPATTERN=EQCOVMAT option, an appropriate chi-square correction
is applied automatically to the chi-square test statistic. To turn off this automatic chi-square, you can use
the CHICORRECT=0 in the PROC CALIS statement (although this should be a rare practice with the
COVPATTERN= options).

To extend the test of the equality of covariance matrices to the test of the equality of mean vectors, see
Example 29.4. To extend the multiple-group analysis of covariance patterns to the multiple-group analysis of
a general structural equation model, see Example 29.28.
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Example 29.22: Testing Equality of Covariance and Mean Matrices between
Independent Groups

To make the specification of some standard MSTRUCT models for covariance and mean patterns more
efficient, PROC CALIS defines these standard models internally. You can use two options to invoke these
built-in covariance and mean patterns easily. For example, with the COVPATTERN= option, you can define
the compound symmetry (COMPSYM) pattern for the covariance matrix or the equality of covariance
matrices between groups (EQCOVMAT). With the MEANPATTERN= option, you can define uniform means
(UNIFORM) for the mean vector or the equality of mean vectors between groups (EQMEANVEC). See the
COVPATTERN= and the MEANPATTERN= options for details about the supported built-in covariance and
mean patterns.

In Example 29.21, you test of the equality of covariance matrices between two groups. This example
extends the application to the test of equality of mean vectors between three independent groups by using the
COVPATTERN= and MEANPATTERN= options together. The “best” fit model for the data is explored. The
following DATA steps define the covariance and mean matrices for the three independent groups, respectively:

data g1(type=corr);
Input _type_ $ 1-8 _name_ $ 9-11 x1-x9;
datalines;

corr x1 1. . . . . . . . .
corr x2 .721 1. . . . . . . .
corr x3 .676 .379 1. . . . . . .
corr x4 .149 .403 .450 1. . . . . .
corr x5 .422 .384 .445 .411 1. . . . .
corr x6 .343 .456 .243 .308 .531 1. . . .
corr x7 .115 .225 .201 .481 .373 .198 1. . .
corr x8 .213 .237 .434 .503 .267 .333 .355 1. .
corr x9 .236 .257 .159 .246 .126 .235 .601 .512 1.
mean . 21.3 22.3 17.2 23.4 22.1 15.6 18.7 20.1 19.7
std . 1.2 1.4 .87 1.33 2.2 1.4 2.3 2.1 1.8
n . 21 21 21 21 21 21 21 21 21
;

data g2(type=corr);
Input _type_ $ 1-8 _name_ $ 9-11 x1-x9;
datalines;

corr x1 1. . . . . . . . .
corr x2 .733 1. . . . . . . .
corr x3 .576 .388 1. . . . . . .
corr x4 .209 .414 .425 1. . . . . .
corr x5 .412 .286 .461 .398 1. . . . .
corr x6 .323 .399 .212 .302 .522 1. . . .
corr x7 .215 .295 .188 .467 .334 .232 1. . .
corr x8 .204 .257 .462 .522 .298 .355 .372 1. .
corr x9 .245 .272 .177 .301 .156 .246 .578 .422 1.
mean . 22.1 19.8 16.9 23.3 21.9 17.3 17.9 19.1 19.8
std . 1.3 1.3 .99 1.25 2.1 1.3 2.2 2.0 1.5
n . 22 22 22 22 22 22 22 22 22
;



1686 F Chapter 29: The CALIS Procedure

data g3(type=corr);
Input _type_ $ 1-8 _name_ $ 9-11 x1-x9;
datalines;

corr x1 1. . . . . . . . .
corr x2 .699 1. . . . . . . .
corr x3 .488 .328 1. . . . . . .
corr x4 .235 .398 .413 1. . . . . .
corr x5 .377 .265 .471 .376 1. . . . .
corr x6 .335 .412 .265 .314 .503 1. . . .
corr x7 .243 .216 .192 .423 .369 .212 1. . .
corr x8 .217 .292 .423 .525 .219 .317 .376 1. .
corr x9 .211 .283 .152 .285 .147 .135 .633 .579 1.
mean . 22.2 20.9 15.4 25.1 22.6 16.3 19.3 20.2 19.5
std . 1.5 1.0 1.04 1.5 1.9 1.6 2.4 2.2 1.6
n . 20 20 20 20 20 20 20 20 20
;

Each of these data sets contains the information about the correlations, means, standard deviations, and
sample sizes. Even though these data sets contain correlations, by default PROC CALIS analyzes the
covariances and means.

The first hypothesis to test is the equality of covariance matrices and mean vectors:

H0 W †1 D †2 D †3 and �1 D �2 D �3

where †1, †2, and †3 are the population covariance matrices for the three independent groups, respectively,
and �1, �2, and �3 are the population mean vectors for the three independent groups, respectively.

The following statements specify this test:

proc calis covpattern=eqcovmat meanpattern=eqmeanvec;
var x1-x9;
group 1 / data=g1;
group 2 / data=g2;
group 3 / data=g3;
fitindex NoIndexType On(only)=[chisq df probchi rmsea aic caic sbc];

run;

In the PROC CALIS statement, the COVPATTERN=EQCOVMAT option specifies the same covariance
matrix for the three groups and the MEANPATTERN=EQMEANVEC option specifies the same mean vector
for the three groups. The VAR statement specifies that x1–9 are the variables in the hypothesis test. Next, the
GROUP statements specify the data sets for the three independent groups. You use the FITINDEX statement
to limit the amount of output fit statistics to the quantities specified: the chi-square test (CHISQ), the degrees
of freedom (DF), the significance value of the test statistic (PROBCHI), the root mean square error of
approximation (RMSEA), Akaike’s information criterion (AIC), consistent Akaike’s information criterion
(CAIC), and Schwarz’s Bayesian criterion (SBC). The first three quantities are useful for the chi-square
model fit test, while the rest of the fit indices are useful for comparing competing models for the data. Because
there are not many quantities in this customized fit summary table, the NOINDEXTYPE option is used to
suppress the printing of the fit index types.

Output 29.22.1 shows the general modeling information, including the sample sizes, the models for the
groups, the model types, and the analysis types.
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Output 29.22.1 Modeling Information for Testing Equality of Covariance and Mean Matrices

Modeling Information

Maximum Likelihood Estimation

Group Data Set N Obs Model Type Analysis

1 WORK.G1 21 Model 1 MSTRUCT Means and Covariances

2 WORK.G2 22 Model 2 MSTRUCT Means and Covariances

3 WORK.G3 20 Model 3 MSTRUCT Means and Covariances

Output 29.22.2 shows the initial mean vector and the initial covariance matrix specifications for Model
1, which fits to Group 1. PROC CALIS generates the mean parameter names _mean_1, _mean_2, . . . ,
and _mean_9 for the nine elements in the mean vector. It also generates the covariance parameter names
_cov_1_1, _cov_2_1, . . . , and _cov_9_9 for the 45 nonredundant elements in the covariance matrix.

Output 29.22.2 Initial Mean Vector and Covariance Matrix for Model 1

Model 1.
Initial MSTRUCT _MEAN_

Vector

Variable Parameter Estimate

x1 _mean_1 .

x2 _mean_2 .

x3 _mean_3 .

x4 _mean_4 .

x5 _mean_5 .

x6 _mean_6 .

x7 _mean_7 .

x8 _mean_8 .

x9 _mean_9 .

Model 1. Initial MSTRUCT _COV_ Matrix

x1 x2 x3 x4 x5 x6 x7 x8 x9

x1 .
[_cov_1_1]

.
[_cov_2_1]

.
[_cov_3_1]

.
[_cov_4_1]

.
[_cov_5_1]

.
[_cov_6_1]

.
[_cov_7_1]

.
[_cov_8_1]

.
[_cov_9_1]

x2 .
[_cov_2_1]

.
[_cov_2_2]

.
[_cov_3_2]

.
[_cov_4_2]

.
[_cov_5_2]

.
[_cov_6_2]

.
[_cov_7_2]

.
[_cov_8_2]

.
[_cov_9_2]

x3 .
[_cov_3_1]

.
[_cov_3_2]

.
[_cov_3_3]

.
[_cov_4_3]

.
[_cov_5_3]

.
[_cov_6_3]

.
[_cov_7_3]

.
[_cov_8_3]

.
[_cov_9_3]

x4 .
[_cov_4_1]

.
[_cov_4_2]

.
[_cov_4_3]

.
[_cov_4_4]

.
[_cov_5_4]

.
[_cov_6_4]

.
[_cov_7_4]

.
[_cov_8_4]

.
[_cov_9_4]

x5 .
[_cov_5_1]

.
[_cov_5_2]

.
[_cov_5_3]

.
[_cov_5_4]

.
[_cov_5_5]

.
[_cov_6_5]

.
[_cov_7_5]

.
[_cov_8_5]

.
[_cov_9_5]

x6 .
[_cov_6_1]

.
[_cov_6_2]

.
[_cov_6_3]

.
[_cov_6_4]

.
[_cov_6_5]

.
[_cov_6_6]

.
[_cov_7_6]

.
[_cov_8_6]

.
[_cov_9_6]

x7 .
[_cov_7_1]

.
[_cov_7_2]

.
[_cov_7_3]

.
[_cov_7_4]

.
[_cov_7_5]

.
[_cov_7_6]

.
[_cov_7_7]

.
[_cov_8_7]

.
[_cov_9_7]

x8 .
[_cov_8_1]

.
[_cov_8_2]

.
[_cov_8_3]

.
[_cov_8_4]

.
[_cov_8_5]

.
[_cov_8_6]

.
[_cov_8_7]

.
[_cov_8_8]

.
[_cov_9_8]

x9 .
[_cov_9_1]

.
[_cov_9_2]

.
[_cov_9_3]

.
[_cov_9_4]

.
[_cov_9_5]

.
[_cov_9_6]

.
[_cov_9_7]

.
[_cov_9_8]

.
[_cov_9_9]
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Although not shown here, the initial mean vector and covariance matrices for Models 2 and 3 are exactly the
same as those shown in Output 29.22.2, as required by the equality of covariance and mean matrices in the
null hypothesis H0.

Output 29.22.3 shows the customized fit summary table. The chi-square test statistic is 203.2605. The
degrees of freedom is 108 and the p-value is less than 0.0001. Therefore, the hypothesis H0 of equality in
covariance and mean matrices is rejected for the three independent groups. The RMSEA index is much
greater than 0.05, which does not indicate a good model fit. Other fit indices such as AIC, CAIC, and SBC
are not interpreted for the fit of the model itself, but are useful for comparing competing models in the later
discussion.

Output 29.22.3 Fit Summary for Testing H0: Equality of Covariance and Mean Matrices

Fit Summary

Chi-Square 203.2605

Chi-Square DF 108

Pr > Chi-Square <.0001

RMSEA Estimate 0.2100

Akaike Information Criterion 311.2605

Bozdogan CAIC 480.9897

Schwarz Bayesian Criterion 426.9897

A less restrictive hypothesis is now considered. This hypothesis states the equality of covariance matrices
only:

H1 W †1 D †2 D †3.�1;�2; and �3unconstrained/

H1 differs from H0 in that the population means in H1 are not constrained. To test this hypothesis, you
need to change the MEANPATTERN= option to use the SATURATED keyword, as shown in the following
statements:

proc calis covpattern=eqcovmat meanpattern=saturated;
var x1-x9;
group 1 / data=g1;
group 2 / data=g2;
group 3 / data=g3;
fitindex NoIndexType On(only)=[chisq df probchi rmsea aic caic sbc];

run;

Output 29.22.4 shows the results of the testing H1.

Output 29.22.4 Fit Summary for Testing H1: Equality of Covariance Matrices but Unconstrained Means

Fit Summary

Chi-Square 26.7897

Chi-Square DF 90

Pr > Chi-Square 1.0000

RMSEA Estimate 0.0000

Akaike Information Criterion 170.7897

Bozdogan CAIC 397.0954

Schwarz Bayesian Criterion 325.0954
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The chi-square test statistic is 26.7897 (df = 90, p = 1.000). You cannot reject this null hypothesis about the
equality of the population covariance matrices. The RMSEA value is virtually zero, which indicates a perfect
fit. Comparing the models under H0 and H1, it is clear that the three groups are significantly different with
regard to their mean vectors. By relaxing all the equality constraints on the means in H0, H1 is derived
and is supported by the chi-square test. In addition, the RMSEA value for the model under H1 is perfect.
Because lower values of AIC, CAIC, and SBC values indicate better model fit (with the model complexity
taken into account), these indices in Output 29.22.3 and Output 29.22.4 support that the model under H1 is
better than H0.

However, in getting a superior model fit, H1 might have relaxed more constraints than absolutely necessary
for an optimal fit. That is, it might be possible to impose equality constraints on only some (but not all, as in
H1) of the means to reach the same or even better model fit (by the RMSEA, AIC, CAIC, or SBC criterion)
than the model under H1. But how can you determine this set of constrained means?

To answer this question, you conduct an exploratory analysis of the data by using some model modification
techniques. Models established from exploratory analysis should be validated by external data in the future.
However, this example demonstrates the exploratory part only.

Beginning with the model under H0, you can manually take away some particular constraints on the means
and explore whether the revised model improves the fit. If the revised model fits better, you can repeat the
process until you cannot improve more. Ultimately, you might be able to find the “best” model between
the models specified under H0 and H1. Such an exploratory analysis is laborious, considering the vast
possibilities of constraints on the nine variable means in three independent groups that you could attempt to
release. Fortunately, PROC CALIS provides some model modification statistics, called the LM (Lagrange
multiplier) statistics, to assist this kind of exploratory analysis.

The following statements specify the model under H0, but now with the MODIFICATION option added to
the PROC CALIS statement:

proc calis covpattern=eqcovmat meanpattern=eqmeanvec modification;
var x1-x9;
group 1 / data=g1;
group 2 / data=g2;
group 3 / data=g3;
fitindex NoIndexType On(only)=[chisq df probchi rmsea aic caic sbc];

run;

The MODIFICATION option requests the so-called LM (Lagrange multiplier) statistics for releasing the
parameter constraints. These constraints include the cross-group or within-group constraints and the fixed
values in the model. For the model underH0, the covariances and the means are all constrained across groups.
These are the equality constraints that you would like to release to obtain a better model fit. Output 29.22.5
shows the results of the LM statistics for releasing these equality constraints in variances, covariances, and
means.
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Output 29.22.5 Lagrange Multiplier Statistics for Releasing the Equality Constraints

Lagrange Multiplier Statistics for Releasing Equality Constraints

Released Parameter Changes

Parm Model Type Var1 Var2 LM Stat Pr > ChiSq
Original

Parm
Released

Parm

_cov_1_1 1 COV x1 x1 0.01137 0.9151 0.0178 -0.0355

2 COV x1 x1 1.00150 0.3169 0.1729 -0.3212

3 COV x1 x1 1.28632 0.2567 -0.1818 0.3923

_cov_2_1 1 COV x2 x1 2.19353 0.1386 0.2038 -0.4076

2 COV x2 x1 0.77014 0.3802 -0.1253 0.2327

3 COV x2 x1 0.36128 0.5478 -0.0796 0.1718

_cov_2_2 1 COV x2 x2 3.12065 0.0773 -0.4344 0.8687

2 COV x2 x2 0.05704 0.8112 -0.0609 0.1132

3 COV x2 x2 4.14151 0.0418 0.4817 -1.0395

_cov_3_1 1 COV x3 x1 0.00672 0.9347 0.00888 -0.0178

2 COV x3 x1 2.23758 0.1347 -0.1681 0.3122

3 COV x3 x1 2.10455 0.1469 0.1512 -0.3264

_cov_3_2 1 COV x3 x2 2.18538 0.1393 -0.1940 0.3881

2 COV x3 x2 3.14532 0.0761 0.2416 -0.4487

3 COV x3 x2 0.10264 0.7487 -0.0405 0.0874

_cov_3_3 1 COV x3 x3 1.56813 0.2105 0.1815 -0.3630

2 COV x3 x3 0.66118 0.4161 0.1223 -0.2272

3 COV x3 x3 4.42160 0.0355 -0.2934 0.6332

_cov_4_1 1 COV x4 x1 0.31691 0.5735 -0.0667 0.1333

2 COV x4 x1 0.32615 0.5679 0.0702 -0.1304

3 COV x4 x1 0.0002277 0.9880 -0.00172 0.00371

_cov_4_2 1 COV x4 x2 0.73377 0.3917 0.1242 -0.2484

2 COV x4 x2 0.53196 0.4658 -0.1097 0.2038

3 COV x4 x2 0.01445 0.9043 -0.0168 0.0362

_cov_4_3 1 COV x4 x3 0.0000258 0.9959 0.000547 -0.00109

2 COV x4 x3 0.24892 0.6178 -0.0558 0.1036

3 COV x4 x3 0.25646 0.6126 0.0525 -0.1134

_cov_4_4 1 COV x4 x4 0.04412 0.8336 0.0361 -0.0722

2 COV x4 x4 0.52198 0.4700 0.1288 -0.2392

3 COV x4 x4 0.90948 0.3403 -0.1577 0.3403

_cov_5_1 1 COV x5 x1 0.0008607 0.9766 -0.00477 0.00953

2 COV x5 x1 0.01238 0.9114 0.0188 -0.0348

3 COV x5 x1 0.00712 0.9328 -0.0132 0.0285

_cov_5_2 1 COV x5 x2 0.10637 0.7443 -0.0649 0.1297

2 COV x5 x2 0.00631 0.9367 -0.0164 0.0304

3 COV x5 x2 0.16971 0.6804 0.0789 -0.1702

_cov_5_3 1 COV x5 x3 0.06645 0.7966 -0.0385 0.0771

2 COV x5 x3 0.0008275 0.9771 0.00446 -0.00829

3 COV x5 x3 0.05370 0.8167 0.0334 -0.0720

_cov_5_4 1 COV x5 x4 0.24212 0.6227 0.0809 -0.1617

2 COV x5 x4 0.04459 0.8328 -0.0360 0.0669

3 COV x5 x4 0.07959 0.7779 -0.0446 0.0963

_cov_5_5 1 COV x5 x5 0.01778 0.8939 -0.0431 0.0862

2 COV x5 x5 0.08223 0.7743 -0.0962 0.1787

3 COV x5 x5 0.18417 0.6678 0.1336 -0.2883

_cov_6_1 1 COV x6 x1 0.29558 0.5867 -0.0721 0.1442
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Output 29.22.5 continued

Lagrange Multiplier Statistics for Releasing Equality Constraints

Released Parameter Changes

Parm Model Type Var1 Var2 LM Stat Pr > ChiSq
Original

Parm
Released

Parm

2 COV x6 x1 0.26589 0.6061 -0.0710 0.1318

3 COV x6 x1 1.16570 0.2803 0.1378 -0.2974

_cov_6_2 1 COV x6 x2 0.00228 0.9619 -0.00780 0.0156

2 COV x6 x2 1.00319 0.3165 0.1697 -0.3152

3 COV x6 x2 0.95767 0.3278 -0.1538 0.3320

_cov_6_3 1 COV x6 x3 1.39116 0.2382 0.1513 -0.3027

2 COV x6 x3 0.08741 0.7675 -0.0394 0.0731

3 COV x6 x3 0.79586 0.3723 -0.1102 0.2378

_cov_6_4 1 COV x6 x4 0.46031 0.4975 -0.0947 0.1894

2 COV x6 x4 0.04254 0.8366 0.0299 -0.0555

3 COV x6 x4 0.22665 0.6340 0.0640 -0.1381

_cov_6_5 1 COV x6 x5 0.14991 0.6986 -0.0700 0.1399

2 COV x6 x5 0.04723 0.8280 0.0408 -0.0757

3 COV x6 x5 0.02874 0.8654 0.0295 -0.0636

_cov_6_6 1 COV x6 x6 0.22550 0.6349 0.1079 -0.2158

2 COV x6 x6 0.04390 0.8340 0.0494 -0.0918

3 COV x6 x6 0.48451 0.4864 -0.1523 0.3286

_cov_7_1 1 COV x7 x1 0.50774 0.4761 0.1203 -0.2406

2 COV x7 x1 0.01246 0.9111 -0.0196 0.0363

3 COV x7 x1 0.36926 0.5434 -0.0988 0.2131

_cov_7_2 1 COV x7 x2 0.01235 0.9115 0.0228 -0.0455

2 COV x7 x2 0.16400 0.6855 -0.0861 0.1598

3 COV x7 x2 0.09159 0.7622 0.0597 -0.1288

_cov_7_3 1 COV x7 x3 0.16844 0.6815 -0.0644 0.1288

2 COV x7 x3 0.15095 0.6976 0.0633 -0.1175

3 COV x7 x3 0.0003079 0.9860 0.00265 -0.00572

_cov_7_4 1 COV x7 x4 0.22542 0.6349 -0.0776 0.1551

2 COV x7 x4 0.00754 0.9308 0.0147 -0.0273

3 COV x7 x4 0.15376 0.6950 0.0617 -0.1331

_cov_7_5 1 COV x7 x5 0.07831 0.7796 -0.0631 0.1262

2 COV x7 x5 0.07552 0.7835 0.0643 -0.1195

3 COV x7 x5 3.293E-6 0.9986 0.000394 -0.00085

_cov_7_6 1 COV x7 x6 0.13810 0.7102 0.0726 -0.1452

2 COV x7 x6 0.0001086 0.9917 0.00211 -0.00392

3 COV x7 x6 0.14999 0.6985 -0.0729 0.1572

_cov_7_7 1 COV x7 x7 0.09334 0.7600 0.1051 -0.2101

2 COV x7 x7 0.00128 0.9714 0.0128 -0.0237

3 COV x7 x7 0.11994 0.7291 -0.1147 0.2474

_cov_8_1 1 COV x8 x1 0.04800 0.8266 0.0353 -0.0706

2 COV x8 x1 0.19725 0.6569 0.0743 -0.1379

3 COV x8 x1 0.45888 0.4981 -0.1051 0.2268

_cov_8_2 1 COV x8 x2 0.13689 0.7114 0.0727 -0.1453

2 COV x8 x2 0.31671 0.5736 -0.1147 0.2130

3 COV x8 x2 0.04084 0.8398 0.0382 -0.0825

_cov_8_3 1 COV x8 x3 0.37615 0.5397 -0.0904 0.1808

2 COV x8 x3 0.00452 0.9464 -0.0103 0.0191
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Output 29.22.5 continued

Lagrange Multiplier Statistics for Releasing Equality Constraints

Released Parameter Changes

Parm Model Type Var1 Var2 LM Stat Pr > ChiSq
Original

Parm
Released

Parm

3 COV x8 x3 0.47678 0.4899 0.0980 -0.2114

_cov_8_4 1 COV x8 x4 0.00989 0.9208 0.0150 -0.0300

2 COV x8 x4 0.01001 0.9203 0.0157 -0.0291

3 COV x8 x4 0.04138 0.8388 -0.0296 0.0638

_cov_8_5 1 COV x8 x5 0.01378 0.9066 -0.0267 0.0533

2 COV x8 x5 0.03154 0.8590 -0.0419 0.0778

3 COV x8 x5 0.09063 0.7634 0.0659 -0.1421

_cov_8_6 1 COV x8 x6 0.0007193 0.9786 0.00510 -0.0102

2 COV x8 x6 0.01293 0.9095 0.0224 -0.0417

3 COV x8 x6 0.02067 0.8857 -0.0263 0.0568

_cov_8_7 1 COV x8 x7 0.16543 0.6842 0.0952 -0.1904

2 COV x8 x7 0.29902 0.5845 -0.1328 0.2467

3 COV x8 x7 0.02206 0.8819 0.0335 -0.0722

_cov_8_8 1 COV x8 x8 0.00581 0.9392 0.0244 -0.0487

2 COV x8 x8 0.00694 0.9336 -0.0276 0.0513

3 COV x8 x8 0.0000660 0.9935 0.00250 -0.00539

_cov_9_1 1 COV x9 x1 0.19272 0.6607 -0.0532 0.1063

2 COV x9 x1 0.01910 0.8901 -0.0174 0.0323

3 COV x9 x1 0.34408 0.5575 0.0684 -0.1476

_cov_9_2 1 COV x9 x2 0.09017 0.7640 -0.0446 0.0892

2 COV x9 x2 0.26496 0.6067 0.0794 -0.1474

3 COV x9 x2 0.04994 0.8232 -0.0320 0.0690

_cov_9_3 1 COV x9 x3 0.44236 0.5060 0.0758 -0.1516

2 COV x9 x3 0.12761 0.7209 -0.0422 0.0784

3 COV x9 x3 0.09470 0.7583 -0.0338 0.0728

_cov_9_4 1 COV x9 x4 0.04619 0.8298 0.0260 -0.0520

2 COV x9 x4 0.22996 0.6316 -0.0602 0.1117

3 COV x9 x4 0.07502 0.7842 0.0319 -0.0688

_cov_9_5 1 COV x9 x5 0.02807 0.8669 0.0279 -0.0557

2 COV x9 x5 0.0006585 0.9795 -0.00443 0.00823

3 COV x9 x5 0.02058 0.8859 -0.0230 0.0496

_cov_9_6 1 COV x9 x6 0.03989 0.8417 -0.0282 0.0563

2 COV x9 x6 0.15069 0.6979 -0.0568 0.1055

3 COV x9 x6 0.36051 0.5482 0.0815 -0.1759

_cov_9_7 1 COV x9 x7 0.03398 0.8537 -0.0284 0.0567

2 COV x9 x7 0.05802 0.8097 0.0385 -0.0714

3 COV x9 x7 0.00362 0.9520 -0.00891 0.0192

_cov_9_8 1 COV x9 x8 0.06050 0.8057 -0.0391 0.0781

2 COV x9 x8 0.56151 0.4537 0.1235 -0.2294

3 COV x9 x8 0.26945 0.6037 -0.0794 0.1713

_cov_9_9 1 COV x9 x9 0.13296 0.7154 -0.0655 0.1310

2 COV x9 x9 0.00130 0.9712 -0.00673 0.0125

3 COV x9 x9 0.16526 0.6844 0.0703 -0.1517

_mean_1 1 MEAN x1 11.09173 0.0009 0.3453 -0.6906

2 MEAN x1 1.21196 0.2709 -0.1184 0.2200

3 MEAN x1 5.04550 0.0247 -0.2242 0.4838
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Output 29.22.5 continued

Lagrange Multiplier Statistics for Releasing Equality Constraints

Released Parameter Changes

Parm Model Type Var1 Var2 LM Stat Pr > ChiSq
Original

Parm
Released

Parm

_mean_2 1 MEAN x2 21.46921 <.0001 -0.5837 1.1675

2 MEAN x2 15.27776 <.0001 0.5110 -0.9490

3 MEAN x2 0.47301 0.4916 0.0834 -0.1800

_mean_3 1 MEAN x3 4.41967 0.0355 -0.2034 0.4067

2 MEAN x3 6.37770 0.0116 -0.2535 0.4708

3 MEAN x3 22.27732 <.0001 0.4395 -0.9485

_mean_4 1 MEAN x4 3.26860 0.0706 0.1904 -0.3807

2 MEAN x4 0.03260 0.8567 0.0197 -0.0366

3 MEAN x4 4.06935 0.0437 -0.2045 0.4413

_mean_5 1 MEAN x5 0.22210 0.6374 -0.0681 0.1362

2 MEAN x5 1.50172 0.2204 0.1837 -0.3412

3 MEAN x5 0.60673 0.4360 -0.1083 0.2338

_mean_6 1 MEAN x6 1.61486 0.2038 0.1539 -0.3078

2 MEAN x6 6.72912 0.0095 -0.3260 0.6055

3 MEAN x6 1.88248 0.1701 0.1600 -0.3452

_mean_7 1 MEAN x7 0.14035 0.7079 -0.0558 0.1116

2 MEAN x7 0.11034 0.7398 0.0514 -0.0954

3 MEAN x7 0.00153 0.9688 0.00560 -0.0121

_mean_8 1 MEAN x8 0.12603 0.7226 -0.0510 0.1019

2 MEAN x8 1.96607 0.1609 0.2089 -0.3880

3 MEAN x8 1.16200 0.2811 -0.1490 0.3215

_mean_9 1 MEAN x9 0.05301 0.8179 0.0248 -0.0496

2 MEAN x9 0.97965 0.3223 -0.1106 0.2054

3 MEAN x9 0.61083 0.4345 0.0810 -0.1748

To use the results of this table, you look for parameters that have large LM statistics (in the LM Stat column).
Equivalently, you can look for parameters that have small p-values (in the Pr > ChiSq column). Loosely
speaking, an LM statistic estimates the reduction of model fit chi-square statistic if you release the constraint
on the corresponding parameter. The p-value indicates whether the improvement would be significant.
Therefore, releasing those parameters with a high LM statistic and small p-value would be the key to model
improvements. Bear in mind that the LM statistics are linear approximations and they might not be very
accurate as estimates of the actual model improvement, which could only be accessed when you refit the
model with the particular constraint released. Nonetheless, the LM statistics could still be very useful because
they show which constraints could potentially improve the model the most.

Output 29.22.5 shows the results from releasing the constraints on the variances and covariances first. Each
constrained element of the covariance matrix has three rows, respectively, for the three models (or groups).
For example, the first parameter is _cov_1_1, which is the same variance parameter for x1 in the three
models. The first row shows that if you release the variance of x1 in Model 1 from the constraint (while
keeping the variances of x1 being constrained between Models 2 and 3), the LM statistic is 0.01127, and
the corresponding p-value is 0.9155. This means that the model fit improvement would be very small and
so you do not expect a significant model fit improvement by releasing this constraint. The columns entitled
“Changes” show the estimated parameter changes in the original parameters (that is, _cov_1_1 for Models 2
and 3) and in the released parameter (that is, the new parameter for the variance of x1 in Model 1) if you
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release the corresponding equality constraint. These two “Changes” columns are not very useful for the
present purpose.

Looking through the results for the variance and covariance constraints, you can see that almost all the
associated p-values are large (that is, as compared with the conventional 0.05 level for significance). Therefore,
all these constraints on variances and covariances would not improve the model fit significantly. In contrast,
the constraints on the means show that several of them could be released for a sizable model fit improvement.
The largest LM statistic in the table is the one for _mean_3 in Model 3. The LM statistic is 22.27678
and its corresponding p-value is less than 0.0001. This means that if the mean of x3 in Model 3 were not
constrained with the means of x3 in Models 1 and 2, you would have expected a reduction in the model fit
chi-square statistic that is estimated at 22.27678. Other notable LM statistics are those for _mean_1 in Model
1, _mean_2 in Model 1 or 2, and _mean_6 in Model 2.

Two important points are noted about the use of the LM statistics. First, the LM statistics are not additive.
You cannot expect that the total reduction in model fit chi-square for releasing a particular set of parameter
constraints is the sum of the corresponding LM statistics. Second, once you release a particular constraint and
refit the model, the LM statistics in the revised model might not follow the same pattern as those LM statistics
in the original model. Basically, these are due to the nonlinearity of the fit function and the dependence of the
parameter estimates. Therefore, in order to find the best model for the data, it would be more sensible to
adopt a one-at-a-time approach to release the constraints. That is, you release one constraint at a time and
refit the model to see if you can release more constraints to improve the model fit.

According to the results of LM statistics in Output 29.22.5, you first release the constraint on the _mean_3
parameter, which is for the mean of x3 in Model 3. The following statements fit such a model:

proc calis modification;
var x1-x9;
group 1 / data=g1;
group 2 / data=g2;
group 3 / data=g3;
model 1 / group = 1;

mstruct;
matrix _cov_ = cov01-cov45;
matrix _mean_ = mean1-mean9;

model 2 / group = 2;
refmodel 1;

model 3 / group = 3;
refmodel 1;
renameparm mean3=mean3_mdl3;

fitindex NoIndexType On(only)=[chisq df probchi rmsea aic caic sbc];
run;

Because the revised model is no longer a supported built-in MSTRUCT model, you cannot use the
MEANPATTERN= or the COVPATTERN= options any more. Instead, you now use the MSTRUCT model-
ing language to specify the covariance and mean patterns. Model 1, which fits to Group 1, is an MSTRUCT
model with variance and covariance parameters cov01–cov45 and mean parameters mean1–mean9. Model
2, which fits to Group 2, refers to the specifications of Model 1, as indicated in a REFMODEL statement.
Hence, Model 1 and Model 2 are completely constrained in variances, covariances, and means. Model 3,
which fits to Group 3, also refers to the specifications of Model 1, as indicated in another REFMODEL
statement. However, the RENAMEPARM statement renames the parameter mean3 in the reference model
(that is, Model 1) to a new name mean3_mdl3. As a results, all variance, covariance, and mean parameters
except one in Model 3 are constrained to be the same as those in Model 1. The mean of x3 in Model 3 is the
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only parameter that is not constrained with any other parameters. This forms the first revised model from
H0. The MODIFICATION option is specified again to determine whether a further model fit improvement is
possible.

Output 29.22.6 shows the modeling information of the first revised model. It shows that Models 2 and 3
make references to Model 1. Therefore, parameters between models are constrained by referencing.

Output 29.22.6 Modeling Information for The First Revised Model

Modeling Information

Maximum Likelihood Estimation

Group Data Set N Obs Model Type Base Model Analysis

1 WORK.G1 21 Model 1 MSTRUCT Means and Covariances

2 WORK.G2 22 Model 2 MSTRUCT Model 1 Means and Covariances

3 WORK.G3 20 Model 3 MSTRUCT Model 1 Means and Covariances

Output 29.22.7 shows the initial specifications of the means, variances, and covariances in Model 1.

Output 29.22.7 Initial Mean Vector and Covariance Matrix for Model 1 in the First Revised Model

Model 1.
Initial MSTRUCT _MEAN_

Vector

Variable Parameter Estimate

x1 mean1 .

x2 mean2 .

x3 mean3 .

x4 mean4 .

x5 mean5 .

x6 mean6 .

x7 mean7 .

x8 mean8 .

x9 mean9 .

Model 1. Initial MSTRUCT _COV_ Matrix

x1 x2 x3 x4 x5 x6 x7 x8 x9

x1 .
[cov01]

.
[cov02]

.
[cov04]

.
[cov07]

.
[cov11]

.
[cov16]

.
[cov22]

.
[cov29]

.
[cov37]

x2 .
[cov02]

.
[cov03]

.
[cov05]

.
[cov08]

.
[cov12]

.
[cov17]

.
[cov23]

.
[cov30]

.
[cov38]

x3 .
[cov04]

.
[cov05]

.
[cov06]

.
[cov09]

.
[cov13]

.
[cov18]

.
[cov24]

.
[cov31]

.
[cov39]

x4 .
[cov07]

.
[cov08]

.
[cov09]

.
[cov10]

.
[cov14]

.
[cov19]

.
[cov25]

.
[cov32]

.
[cov40]

x5 .
[cov11]

.
[cov12]

.
[cov13]

.
[cov14]

.
[cov15]

.
[cov20]

.
[cov26]

.
[cov33]

.
[cov41]

x6 .
[cov16]

.
[cov17]

.
[cov18]

.
[cov19]

.
[cov20]

.
[cov21]

.
[cov27]

.
[cov34]

.
[cov42]

x7 .
[cov22]

.
[cov23]

.
[cov24]

.
[cov25]

.
[cov26]

.
[cov27]

.
[cov28]

.
[cov35]

.
[cov43]

x8 .
[cov29]

.
[cov30]

.
[cov31]

.
[cov32]

.
[cov33]

.
[cov34]

.
[cov35]

.
[cov36]

.
[cov44]

x9 .
[cov37]

.
[cov38]

.
[cov39]

.
[cov40]

.
[cov41]

.
[cov42]

.
[cov43]

.
[cov44]

.
[cov45]
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Output 29.22.8 shows the initial specifications of the means in Model 2. The mean parameters in Model 2 are
exactly the same as those in Model 1, as shown in Output 29.22.7. The variance and covariance parameters
in Model 2 are also exactly the same as those in Model 1, but are not shown here to conserve space.

Output 29.22.8 Initial Mean Vector for Model 2 in the First Revised Model

Model 2.
Initial MSTRUCT _MEAN_

Vector

Variable Parameter Estimate

x1 mean1 .

x2 mean2 .

x3 mean3 .

x4 mean4 .

x5 mean5 .

x6 mean6 .

x7 mean7 .

x8 mean8 .

x9 mean9 .

Output 29.22.9 shows the initial specifications of the means in Model 3. All but one mean parameter in
Model 3 are exactly the same as those in Models 1 and 2, as shown in Output 29.22.7 and Output 29.22.8,
respectively. The mean for x3 in Model 3 is mean3_mdl3, which is now a distinct parameter, and therefore it
is not constrained with any other parameters in the first or the second models for Groups 1 or 2. However, the
variance and covariance parameters in Model 3 are exactly the same as those in Model 1. They are not shown
here to conserve space.

Output 29.22.9 Initial Mean Vector for Model 3 in the First Revised Model

Model 3.
Initial MSTRUCT _MEAN_

Vector

Variable Parameter Estimate

x1 mean1 .

x2 mean2 .

x3 mean3_mdl3 .

x4 mean4 .

x5 mean5 .

x6 mean6 .

x7 mean7 .

x8 mean8 .

x9 mean9 .
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Output 29.22.10 shows the fit summary of the first revised model. The model fit chi-square is 148.8865,
which drops quite a bit from the original model under H0. The p-value of the model fit chi-square is 0.0046,
which is statistically significant. The RMSEA value is 0.1399, which is also a sizable improvement. All the
AIC, CAIC, and SBC values are reduced, indicating better model fit than the model under H0.

Output 29.22.10 Fit Summary for the First Revised Model

Fit Summary

Chi-Square 148.8865

Chi-Square DF 107

Pr > Chi-Square 0.0046

RMSEA Estimate 0.1399

Akaike Information Criterion 258.8865

Bozdogan CAIC 431.7589

Schwarz Bayesian Criterion 376.7589

Output 29.22.11 shows the LM statistics for releasing the equality constraints in the first revised model.
Almost all of the results for the variance and covariance constraints are omitted because their LM statistics
are not significant. However, Output 29.22.11 shows all the LM statistics for releasing the constraints in
means. The mean of x2 in Model 2 has the largest LM statistic at 26.25044.
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Output 29.22.11 LM Statistics for Releasing the Equality Constraints in the First Revised Model

Lagrange Multiplier Statistics for Releasing Equality Constraints

Released Parameter Changes

Parm Model Type Var1 Var2 LM Stat Pr > ChiSq
Original

Parm
Released

Parm

cov01 1 COV x1 x1 0.64999 0.4201 0.1050 -0.2100

2 COV x1 x1 0.41758 0.5181 0.0874 -0.1622

3 COV x1 x1 2.18923 0.1390 -0.1855 0.4004

.

.

.

mean1 1 MEAN x1 9.26674 0.0023 0.2872 -0.5745

2 MEAN x1 3.00599 0.0830 -0.1702 0.3160

3 MEAN x1 2.13787 0.1437 -0.1481 0.3196

mean2 1 MEAN x2 26.25115 <.0001 -0.6568 1.3135

2 MEAN x2 12.34638 0.0004 0.4674 -0.8680

3 MEAN x2 2.52683 0.1119 0.1962 -0.4234

mean3 1 MEAN x3 0.58891 0.4428 -0.0787 0.0827

2 MEAN x3 0.58891 0.4428 0.0827 -0.0787

mean4 1 MEAN x4 6.59009 0.0103 0.2746 -0.5493

2 MEAN x4 0.51343 0.4737 0.0796 -0.1478

3 MEAN x4 11.61610 0.0007 -0.3586 0.7739

mean5 1 MEAN x5 0.52967 0.4667 -0.1042 0.2084

2 MEAN x5 0.22294 0.6368 0.0702 -0.1304

3 MEAN x5 0.06889 0.7930 0.0374 -0.0807

mean6 1 MEAN x6 1.16656 0.2801 0.1270 -0.2540

2 MEAN x6 5.29599 0.0214 -0.2810 0.5218

3 MEAN x6 1.69412 0.1931 0.1518 -0.3275

mean7 1 MEAN x7 0.03791 0.8456 -0.0291 0.0582

2 MEAN x7 0.44510 0.5047 0.1036 -0.1923

3 MEAN x7 0.23804 0.6256 -0.0704 0.1520

mean8 1 MEAN x8 0.39420 0.5301 -0.0883 0.1765

2 MEAN x8 0.24231 0.6225 0.0719 -0.1335

3 MEAN x8 0.01951 0.8889 0.0200 -0.0431

mean9 1 MEAN x9 0.00156 0.9685 0.00423 -0.00846

2 MEAN x9 1.06866 0.3012 -0.1150 0.2136

3 MEAN x9 1.05210 0.3050 0.1065 -0.2297
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You now modify the preceding statements to specify the second revised model, as shown in the following
statements:

proc calis modification;
var x1-x9;
group 1 / data=g1;
group 2 / data=g2;
group 3 / data=g3;
model 1 / group = 1;

mstruct;
matrix _cov_ = cov01-cov45;
matrix _mean_ = mean1-mean9;

model 2 / group = 2;
refmodel 1;
renameparm mean2=mean2_new; /* constraint a */

model 3 / group = 3;
refmodel 1;
renameparm mean2=mean2_new, /* constraint a */

mean3=mean3_mdl3;
fitindex NoIndexType On(only)=[chisq df probchi rmsea aic caic sbc];

run;

This second revised model must not constrain the mean of x2 in Model 1 with any parameters. A straightfor-
ward way to do this is to rename the mean2 parameter to a unique name in Model 1. However, for the current
specification it is more convenient to rename the mean2 parameter in Models 2 and 3 to another name. In the
specification of the second revised model, Models 2 and 3 still make references to Model 1. However, in the
respective RENAMEPARM statements, both Model 2 and 3 rename the mean2 parameter that is referenced
from Model 1 to the new name mean2_new. This way the mean for x2 in Model 1 is not constrained with
the means of x2 in Models 2 and 3. But the means for x2 in Models 2 and 3 are still constrained to be equal
by the same parameter mean2_new. Output 29.22.12 shows the fit summary of the second revised model.

Output 29.22.12 Fit Summary for the Second Revised Model

Fit Summary

Chi-Square 86.3927

Chi-Square DF 106

Pr > Chi-Square 0.9183

RMSEA Estimate 0.0000

Akaike Information Criterion 198.3927

Bozdogan CAIC 374.4083

Schwarz Bayesian Criterion 318.4083

Again, a sizable improvement over the first revised model is shown in the second revised model. The model
fit chi-square statistic is no longer significant (p = 0.9183), and the RMSEA value is perfect at 0. Large drops
in the AIC, CAIC, and SBC values are also observed.
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Output 29.22.13 suggests that the mean of x6 in Model 2 (which has the largest LM statistic at 11.41243)
could be released from the equality constraints to achieve the largest model improvement over the current
model.

Output 29.22.13 LM Statistics for Releasing the Equality Constraints in the Second Revised Model

Lagrange Multiplier Statistics for Releasing Equality Constraints

Released Parameter Changes

Parm Model Type Var1 Var2 LM Stat Pr > ChiSq
Original

Parm
Released

Parm

cov01 1 COV x1 x1 2.77024 0.0960 0.1384 -0.2770

2 COV x1 x1 0.28728 0.5920 0.0462 -0.0860

3 COV x1 x1 5.00087 0.0253 -0.1791 0.3864

.

.

.

mean1 1 MEAN x1 2.75437 0.0970 0.1646 -0.3292

2 MEAN x1 3.21093 0.0731 -0.1511 0.2806

3 MEAN x1 0.24923 0.6176 0.0424 -0.0915

mean3 1 MEAN x3 0.74338 0.3886 -0.0877 0.0934

2 MEAN x3 0.74338 0.3886 0.0934 -0.0877

mean4 1 MEAN x4 6.17449 0.0130 0.2672 -0.5343

2 MEAN x4 0.02087 0.8851 -0.0146 0.0272

3 MEAN x4 4.71344 0.0299 -0.2072 0.4470

mean5 1 MEAN x5 1.65517 0.1983 -0.1853 0.3706

2 MEAN x5 1.16118 0.2812 0.1606 -0.2982

3 MEAN x5 0.04040 0.8407 0.0287 -0.0618

mean6 1 MEAN x6 5.03834 0.0248 0.2712 -0.5423

2 MEAN x6 11.41247 0.0007 -0.4217 0.7831

3 MEAN x6 1.51175 0.2189 0.1460 -0.3150

mean7 1 MEAN x7 0.32382 0.5693 -0.0853 0.1706

2 MEAN x7 0.82184 0.3646 0.1410 -0.2619

3 MEAN x7 0.12513 0.7235 -0.0512 0.1104

mean8 1 MEAN x8 2.39207 0.1220 -0.2210 0.4420

2 MEAN x8 1.58292 0.2083 0.1867 -0.3467

3 MEAN x8 0.08641 0.7688 0.0427 -0.0922

mean9 1 MEAN x9 0.00682 0.9342 0.00886 -0.0177

2 MEAN x9 1.20949 0.2714 -0.1225 0.2274

3 MEAN x9 1.10016 0.2942 0.1089 -0.2349

mean2_new 2 MEAN x2 4.47814 0.0343 0.2983 -0.2661

3 MEAN x2 4.47814 0.0343 -0.2661 0.2983
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The process of model refitting should now become familiar. You modify the previous model to release the
constraint on the mean of x6 in Model 2. As a result, the third revised model is specified by the following
statements:

proc calis modification;
var x1-x9;
group 1 / data=g1;
group 2 / data=g2;
group 3 / data=g3;
model 1 / group = 1;

mstruct;
matrix _cov_ = cov01-cov45;
matrix _mean_ = mean1-mean9;

model 2 / group = 2;
refmodel 1;
renameparm mean2=mean2_new, /* constraint a */

mean6=mean6_mdl2;
model 3 / group = 3;

refmodel 1;
renameparm mean2=mean2_new, /* constraint a */

mean3=mean3_mdl3;
fitindex NoIndexType On(only)=[chisq df probchi rmsea aic caic sbc];

run;

The only modification from the previous specification is to rename mean6 to mean6_mdl2 in the
RENAMEPARM statement of Model 2. Output 29.22.14 shows the model fit summary of the third re-
vised model.

Output 29.22.14 Fit Summary for the Third Revised Model

Fit Summary

Chi-Square 68.7869

Chi-Square DF 105

Pr > Chi-Square 0.9976

RMSEA Estimate 0.0000

Akaike Information Criterion 182.7869

Bozdogan CAIC 361.9456

Schwarz Bayesian Criterion 304.9456

The model improvement over the second revised model is still notable in the third revised model. The
chi-square value drops about 20 points in the third revised model. The AIC, CAIC, and the SBC values are
reduced notably, though not as impressively as with the previous improvements.
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Output 29.22.15 suggests that the mean of x4 in Model 1 (which has the largest LM statistic at 7.01946)
could be released from the equality constraint to improve model fit further.

Output 29.22.15 LM Statistics for Releasing the Equality Constraints in the Third Revised Model

Lagrange Multiplier Statistics for Releasing Equality Constraints

Released Parameter Changes

Parm Model Type Var1 Var2 LM Stat Pr > ChiSq
Original

Parm
Released

Parm

cov01 1 COV x1 x1 2.43374 0.1187 0.1342 -0.2684

2 COV x1 x1 0.19037 0.6626 0.0390 -0.0723

3 COV x1 x1 4.11402 0.0425 -0.1679 0.3625

.

.

.

mean1 1 MEAN x1 6.15722 0.0131 0.2550 -0.5101

2 MEAN x1 6.05791 0.0138 -0.2109 0.3917

3 MEAN x1 0.29302 0.5883 0.0463 -0.0999

mean3 1 MEAN x3 2.89780 0.0887 -0.1796 0.1889

2 MEAN x3 2.89780 0.0887 0.1889 -0.1796

mean4 1 MEAN x4 7.01915 0.0081 0.2850 -0.5701

2 MEAN x4 0.04916 0.8245 -0.0226 0.0419

3 MEAN x4 5.05102 0.0246 -0.2148 0.4635

mean5 1 MEAN x5 0.21231 0.6450 -0.0672 0.1345

2 MEAN x5 0.07502 0.7842 -0.0443 0.0822

3 MEAN x5 0.55031 0.4582 0.1059 -0.2285

mean6 1 MEAN x6 0.07013 0.7911 0.0503 -0.0486

3 MEAN x6 0.07013 0.7911 -0.0486 0.0503

mean7 1 MEAN x7 0.98902 0.3200 -0.1513 0.3025

2 MEAN x7 2.42355 0.1195 0.2463 -0.4575

3 MEAN x7 0.34231 0.5585 -0.0858 0.1850

mean8 1 MEAN x8 1.58481 0.2081 -0.1786 0.3572

2 MEAN x8 0.81634 0.3663 0.1347 -0.2502

3 MEAN x8 0.14503 0.7033 0.0549 -0.1184

mean9 1 MEAN x9 0.13504 0.7133 0.0399 -0.0797

2 MEAN x9 2.54369 0.1107 -0.1796 0.3335

3 MEAN x9 1.61681 0.2035 0.1337 -0.2885

mean2_new 2 MEAN x2 3.21203 0.0731 0.2484 -0.2280

3 MEAN x2 3.21203 0.0731 -0.2280 0.2484
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To make the mean parameter for x4 in Model 1 unique, the mean parameters for x4 in Models 2 and 3 are
renamed from mean4 to mean4_new, as shown in the following statements:

proc calis modification;
var x1-x9;
group 1 / data=g1;
group 2 / data=g2;
group 3 / data=g3;
model 1 / group = 1;

mstruct;
matrix _cov_ = cov01-cov45;
matrix _mean_ = mean1-mean9;

model 2 / group = 2;
refmodel 1;
renameparm mean2=mean2_new, /* constraint a */

mean4=mean4_new, /* constraint b */
mean6=mean6_mdl2;

model 3 / group = 3;
refmodel 1;
renameparm mean2=mean2_new, /* constraint a */

mean3=mean3_mdl3,
mean4=mean4_new; /* constraint b */

fitindex NoIndexType On(only)=[chisq df probchi rmsea aic caic sbc];
run;

This forms the fourth revised model. Output 29.22.16 shows the fit summary of this revised model. Again,
the chi-square, AIC, CAIC, and SBC values all show improvements, as compared with the third revised
model. However, the improvements do seem to slow down. For example, the CAIC value drops from 361.95
to the current value at 358.43—a mere 3 points reduction. The SBC value drops from 304.95 to the current
value at 300.43—a mere 4 points reduction. These small reductions indicate that you might soon reach the
point that no more model fit improvement would be possible with additional release of parameter constraints.

Output 29.22.16 Fit Summary for the Fourth Revised Model

Fit Summary

Chi-Square 60.1265

Chi-Square DF 104

Pr > Chi-Square 0.9998

RMSEA Estimate 0.0000

Akaike Information Criterion 176.1265

Bozdogan CAIC 358.4283

Schwarz Bayesian Criterion 300.4283
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Output 29.22.17 suggests that the mean of x1 in Model 1 (which has the largest LM statistic at 6.45785)
could be released from the equality constraint to achieve the largest model improvement over the current
model.

Output 29.22.17 LM Statistics for Releasing the Equality Constraints in the Fourth Revised Model

Lagrange Multiplier Statistics for Releasing Equality Constraints

Released Parameter Changes

Parm Model Type Var1 Var2 LM Stat Pr > ChiSq
Original

Parm
Released

Parm

cov01 1 COV x1 x1 2.60531 0.1065 0.1376 -0.2751

2 COV x1 x1 0.28122 0.5959 0.0469 -0.0871

3 COV x1 x1 4.75001 0.0293 -0.1788 0.3859

.

.

.

mean1 1 MEAN x1 6.45761 0.0110 0.2616 -0.5232

2 MEAN x1 5.00991 0.0252 -0.1921 0.3568

3 MEAN x1 0.05931 0.8076 0.0209 -0.0452

mean3 1 MEAN x3 1.53300 0.2157 -0.1298 0.1406

2 MEAN x3 1.53300 0.2157 0.1406 -0.1298

mean5 1 MEAN x5 0.09749 0.7549 -0.0457 0.0913

2 MEAN x5 0.19688 0.6572 -0.0716 0.1330

3 MEAN x5 0.56583 0.4519 0.1071 -0.2310

mean6 1 MEAN x6 0.35800 0.5496 0.1141 -0.1113

3 MEAN x6 0.35800 0.5496 -0.1113 0.1141

mean7 1 MEAN x7 4.53367E-6 0.9983 0.000350 -0.00070

2 MEAN x7 0.96363 0.3263 0.1572 -0.2920

3 MEAN x7 1.00890 0.3152 -0.1486 0.3208

mean8 1 MEAN x8 0.20289 0.6524 -0.0676 0.1351

2 MEAN x8 0.12445 0.7243 0.0525 -0.0974

3 MEAN x8 0.00590 0.9388 0.0110 -0.0237

mean9 1 MEAN x9 0.05893 0.8082 -0.0271 0.0542

2 MEAN x9 1.63723 0.2007 -0.1448 0.2689

3 MEAN x9 2.44241 0.1181 0.1652 -0.3565

mean2_new 2 MEAN x2 3.05068 0.0807 0.2396 -0.2246

3 MEAN x2 3.05068 0.0807 -0.2246 0.2396

mean4_new 2 MEAN x4 1.81983 0.1773 0.2306 -0.2003

3 MEAN x4 1.81983 0.1773 -0.2003 0.2306
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To make the mean parameter for x1 in Model 1 unique, the mean parameters for x1 in Models 2 and 3 are
renamed from mean1 to mean1_new, as shown in the following statements:

proc calis modification;
var x1-x9;
group 1 / data=g1;
group 2 / data=g2;
group 3 / data=g3;
model 1 / group = 1;

mstruct;
matrix _cov_ = cov01-cov45;
matrix _mean_ = mean1-mean9;

model 2 / group = 2;
refmodel 1;
renameparm mean1=mean1_new, /* constraint c */

mean2=mean2_new, /* constraint a */
mean4=mean4_new, /* constraint b */
mean6=mean6_mdl2;

model 3 / group = 3;
refmodel 1;
renameparm mean1=mean1_new, /* constraint c */

mean2=mean2_new, /* constraint a */
mean3=mean3_mdl3,
mean4=mean4_new; /* constraint b */

fitindex NoIndexType On(only)=[chisq df probchi rmsea aic caic sbc];
run;

This forms the fifth revised model. Output 29.22.18 shows the fit summary of the fifth revised model. Again,
the chi-square, AIC, CAIC, and SBC values all show improvements, as compared with the fourth revised
model. However, the improvements slow down even more. For example, the CAIC value drops from 358.43
to the current value at 356.32. The SBC value drops from 300.43 to the current value at 297.32. Because the
model fit does not improve much, this is the point where you would cease to release more equality constraints
for improving the model fit.

Output 29.22.18 Fit Summary for the Fifth Revised Model

Fit Summary

Chi-Square 52.8821

Chi-Square DF 103

Pr > Chi-Square 1.0000

RMSEA Estimate 0.0000

Akaike Information Criterion 170.8821

Bozdogan CAIC 356.3270

Schwarz Bayesian Criterion 297.3270
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Output 29.22.19 does not suggest the release of any equality constraints on the means, because all the p-values
for the LM statistics are not significant (that is, all are greater than 0.05). Therefore, the same suggestion
from examining the model fit improvements of the fifth revised model echoes here: this is the point that the
“best” model for the data is found.

Output 29.22.19 LM Statistics for Releasing the Equality Constraints in the Fifth Revised Model

Lagrange Multiplier Statistics for Releasing Equality Constraints

Released Parameter Changes

Parm Model Type Var1 Var2 LM Stat Pr > ChiSq
Original

Parm
Released

Parm

cov01 1 COV x1 x1 4.06279 0.0438 0.1590 -0.3180

2 COV x1 x1 0.48735 0.4851 0.0571 -0.1061

3 COV x1 x1 7.60892 0.0058 -0.2095 0.4520

.

.

.

mean3 1 MEAN x3 0.08363 0.7724 -0.0312 0.0382

2 MEAN x3 0.08363 0.7724 0.0382 -0.0312

mean5 1 MEAN x5 0.02394 0.8770 0.0229 -0.0458

2 MEAN x5 0.47076 0.4926 -0.1113 0.2067

3 MEAN x5 0.26015 0.6100 0.0728 -0.1571

mean6 1 MEAN x6 0.97521 0.3234 0.1893 -0.1892

3 MEAN x6 0.97521 0.3234 -0.1892 0.1893

mean7 1 MEAN x7 0.03746 0.8465 -0.0319 0.0638

2 MEAN x7 1.10428 0.2933 0.1683 -0.3126

3 MEAN x7 0.79474 0.3727 -0.1321 0.2851

mean8 1 MEAN x8 0.86792 0.3515 -0.1426 0.2852

2 MEAN x8 0.47493 0.4907 0.1038 -0.1928

3 MEAN x8 0.03722 0.8470 0.0276 -0.0595

mean9 1 MEAN x9 0.12190 0.7270 0.0401 -0.0801

2 MEAN x9 2.66768 0.1024 -0.1869 0.3472

3 MEAN x9 1.78114 0.1820 0.1417 -0.3058

mean1_new 2 MEAN x1 1.28034 0.2578 -0.1794 0.1359

3 MEAN x1 1.28034 0.2578 0.1359 -0.1794

mean2_new 2 MEAN x2 2.53131 0.1116 0.2117 -0.2112

3 MEAN x2 2.53131 0.1116 -0.2112 0.2117

mean4_new 2 MEAN x4 2.25832 0.1329 0.2558 -0.2253

3 MEAN x4 2.25832 0.1329 -0.2253 0.2558
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To see where the fifth revised model (equality in the covariance matrix and partial equality in the means)
stands between the models under H0 (equality in the covariance and mean matrices) and H1 (equality in the
covariance matrix only), the following table shows the fit statistics of these three models:

H0 “Fifth” H1

Chi-square 203.2605 52.8821 26.7897
Chi-square DF 108 103 90
Pr > chi-square <0.0001 1.0000 1.0000
RMSEA estimate 0.2100 0.0000 0.0000
Akaike information criterion 311.2605 170.8821 170.7897
Bozdogan CAIC 480.9898 356.3270 397.0954
Schwarz Bayesian criterion 426.9898 297.3270 325.0954

The fifth revised model is labeled “Fifth” in the table. Compared with the model under H0, the fifth revised
model is clearly superior. It uses only five more parameters (or five fewer degrees of freedom), but the
improvement in the model fit chi-square and the RMSEA value are huge. The AIC, CAIC, and SBC are also
much better.

Compared with the model under H1, the fifth revised model appears to be inferior in only the chi-square
model fit statistic, although both models already have the highest possible p-value at 1.000 and smallest
possible RMSEA value at 0. However, the model under H1 uses 13 more parameters (or it has 13 fewer
degrees of freedom), and hence it is more complex. In fact, because the model fit chi-square value does not
take model complexity into account, it is often criticized as the basis for choosing competing models for
the data. In contrast, the AIC, CAIC, and SBC measures take model complexity into account, and they are
more reasonable as the basis for choosing competing models. Although the AIC values for the fifth revised
model and the model underH1 are very close, the CAIC and SBC values clearly favor the fifth revised model.
Therefore, according to the CAIC and SBC criteria, the fifth revised model, which is a model with partial
equality constraints on the means, is actually better than the model with all the means being unconstrained
(that is, under H1) for the current data with three independent groups.
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Example 29.23: Illustrating Various General Modeling Languages
In PROC CALIS, you can use many different modeling languages to specify the same model. The choice of
modeling language depends on personal preferences and the purposes of the analysis. See the section “Which
Modeling Language?” on page 1194 for guidance. In this example, the data and the model in Example 29.17
are used to illustrate how a particular model can be specified by various general modeling languages.

RAM Model Specification

In Example 29.17, you use the PATH modeling language to specify the model because of its close resemblance
to the path diagram. In this example, you consider another modeling language of PROC CALIS that is also
closely related to the path diagram representation of structural equation models. The so-called RAM model
language has syntax that represents the single- and double-headed paths (or arrows) in the path diagram.
However, unlike the PATH modeling language, the RAM modeling language is matrix-based. The following
statements show how you can specify the same path model with the RAM model specification for the data in
Example 29.17:

proc calis nobs=932 data=Wheaton;
ram

var = Anomie67 /* 1 */
Powerless67 /* 2 */
Anomie71 /* 3 */
Powerless71 /* 4 */
Education /* 5 */
SEI /* 6 */
Alien67 /* 7 */
Alien71 /* 8 */
SES, /* 9 */

_A_ 1 7 1.0,
_A_ 2 7 0.833,
_A_ 3 8 1.0,
_A_ 4 8 0.833,
_A_ 5 9 1.0,
_A_ 6 9 lambda,
_A_ 7 9 gamma1,
_A_ 8 9 gamma2,
_A_ 8 7 beta,
_P_ 1 1 theta1,
_P_ 2 2 theta2,
_P_ 3 3 theta1,
_P_ 4 4 theta2,
_P_ 5 5 theta3,
_P_ 6 6 theta4,
_P_ 7 7 psi1,
_P_ 8 8 psi2,
_P_ 9 9 phi,
_P_ 1 3 theta5,
_P_ 2 4 theta5;

run;
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In the RAM model for covariance structure analysis, you have two important matrices to specify. The first
one is the _A_ matrix, which is for the specification of the single-headed paths (arrows) in the path diagram.
The second one is the _P_ matrix, which is for the specification of the double-headed paths (arrows) in the
path diagram. Hence, to specify the RAM model is much like mapping the path diagram arrows into the
parameter of the RAM model matrices.

In the RAM statement, you can specify the variables in the model in the VAR= option. The VAR= list
contains all observed and latent variables in your path diagram (without the use of error terms). Although
you can specify the variables in the VAR= list in any order you like, the variable order in the list is also the
order of variables in the RAM model matrices. In VAR= list of the RAM statement, you put comments to
note the order of the variables.

After you specify the variable list, you can specify the model parameter locations in the RAM statement
entries. In the first nine entries, you specify the single-headed paths by mapping them into the elements of the
_A_ matrix of the RAM model. For example, the first entry represents the single-headed path of variable 1
(Anomie67) from variable 7 (Alien67). The corresponding path effect or coefficient is fixed at 1, which is also
the value for _A_[1,7]. Another example is the ninth path entry. You specify a single-headed path of variable
8 (Alien71) from variable 7 (Alien67). The corresponding path effect or coefficient is a free parameter named
beta, which is also the parameter for _A_[8,7]. Hence, you can specify all single-headed paths in the path
diagram as elements in the _A_ matrix of the RAM model.

To facilitate the comparisons between the RAN and PATH modeling languages, the PATH model specification
in Example 29.17 for the same data is reproduced in the following:

proc calis nobs=932 data=Wheaton plots=residuals;
path

Anomie67 Powerless67 <=== Alien67 = 1.0 0.833,
Anomie71 Powerless71 <=== Alien71 = 1.0 0.833,
Education SEI <=== SES = 1.0 lambda,
Alien67 Alien71 <=== SES = gamma1 gamma2,
Alien71 <=== Alien67 = beta;

pvar
Anomie67 = theta1,
Powerless67 = theta2,
Anomie71 = theta1,
Powerless71 = theta2,
Education = theta3,
SEI = theta4,
Alien67 = psi1,
Alien71 = psi2,
SES = phi;

pcov
Anomie67 Anomie71 = theta5,
Powerless67 Powerless71 = theta5;

run;

It is clear that each of the path entries specified in the PATH statement corresponds to an matrix element entry
of the _A_ matrix in the RAM statement. How about the specifications of the double-headed arrows in the
path diagram? Do the RAM and PATH model specifications correspond to each other?
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The answer is yes. In the PATH modeling language, you specify all double-headed arrows in the path
diagram as entries either in the PVAR or PCOV statement. In the RAM modeling language, you specify the
corresponding entries as matrix element entries of the _P_ matrix in the RAM statement. For example, the
error variance of Anomie67 is a parameter called _Variabletheta1 in the PVAR statement of the PATH model.
You specify the same parameter for the _P_[1,1] element in an entry of the RAM statement. Another example
is the error covariance between Powerless67 and Powerless71. You specify this a parameter called theta5 in
the last entry of the PCOV statement in the PATH model. You specify the same parameter for the _P_[2,4]
element in the last entry of the RAM statement. Therefore, it is not difficult to find that the specifications in
the PATH and the RAM model have some kind of one-to-one correspondence.

Output 29.23.1 shows the RAM model estimates for the Wheaton data. These RAM model estimates match
the set of estimates using the PATH model specification, as shown in Output 29.17.11.

Output 29.23.1 RAM Model Estimates

RAM Pattern and Estimates

Matrix Row Column Parameter Estimate
Standard

Error t Value Pr > |t|

_A_ (1) Anomie67 1 Alien67 7 1.00000

Powerless67 2 Alien67 7 0.83300

Anomie71 3 Alien71 8 1.00000

Powerless71 4 Alien71 8 0.83300

Education 5 SES 9 1.00000

SEI 6 SES 9 lambda 5.36883 0.43371 12.3788 <.0001

Alien67 7 SES 9 gamma1 -0.62994 0.05634 -11.1809 <.0001

Alien71 8 SES 9 gamma2 -0.24086 0.05489 -4.3884 <.0001

Alien71 8 Alien67 7 beta 0.59312 0.04678 12.6788 <.0001

_P_ (2) Anomie67 1 Anomie67 1 theta1 3.60796 0.20092 17.9572 <.0001

Powerless67 2 Powerless67 2 theta2 3.59488 0.16448 21.8556 <.0001

Anomie71 3 Anomie71 3 theta1 3.60796 0.20092 17.9572 <.0001

Powerless71 4 Powerless71 4 theta2 3.59488 0.16448 21.8556 <.0001

Education 5 Education 5 theta3 2.99366 0.49861 6.0040 <.0001

SEI 6 SEI 6 theta4 259.57639 18.31151 14.1756 <.0001

Alien67 7 Alien67 7 psi1 5.67046 0.42301 13.4050 <.0001

Alien71 8 Alien71 8 psi2 4.51479 0.33532 13.4639 <.0001

SES 9 SES 9 phi 6.61634 0.63914 10.3519 <.0001

Anomie67 1 Anomie71 3 theta5 0.90580 0.12167 7.4447 <.0001

Powerless67 2 Powerless71 4 theta5 0.90580 0.12167 7.4447 <.0001
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LINEQS Model Specification

Another way to specify the model in Example 29.17 is to use the LINEQS modeling language, which is
shown in the following:

proc calis nobs=932 data=Wheaton;
lineqs

Anomie67 = 1.0 * f_Alien67 + e1,
Powerless67 = 0.833 * f_Alien67 + e2,
Anomie71 = 1.0 * f_Alien71 + e3,
Powerless71 = 0.833 * f_Alien71 + e4,
Education = 1.0 * f_SES + e5,
SEI = lambda * f_SES + e6,
f_Alien67 = gamma1 * f_SES + d1,
f_Alien71 = gamma2 * f_SES + beta * f_Alien67 + d2;

variance
E1 = theta1,
E2 = theta2,
E3 = theta1,
E4 = theta2,
E5 = theta3,
E6 = theta4,
D1 = psi1,
D2 = psi2,
f_SES = phi;

cov
E1 E3 = theta5,
E2 E4 = theta5;

run;

As compared with the PATH and RAM modeling languages, the most distinct feature of the LINEQS
modeling language is the explicit use of error terms in equation specifications. In the LINEQS statement, you
specify exactly one equation for each endogenous variable. In each equation, you list an endogenous variable
on the left-hand-side of the equation and all its predictors on the right-hand-side of the equation. You must
also include an error term in each equation. Because each endogenous variable in the LINEQS statement can
only be specified in exactly one equation, the number of equations in the LINEQS model and the number of
paths in the corresponding path diagram do not match necessarily. In this example, there are eight equations
in the LINEQS statement, but there are nine paths in the corresponding path diagram.

In addition, in the LINEQS model, you need to follow a convention of naming latent variables. For latent
variables that are neither errors nor disturbances, you must use either the ‘F’ or ‘f’ prefix. For error terms,
you must use either the ‘E’ or ‘e’ prefix. For disturbances, you must use either the ‘D’ or ‘d’ prefix. However,
in the PATH or RAM model specification, no such convention is imposed. For example, f_Alien67, f_Alien71,
and f_SES are latent factors in the LINEQS model. They are not error terms, and so they must start with the
‘f’ prefix. However, this prefix is not needed in the PATH or RAM model. Furthermore, there are no explicit
error terms that need to be specified in the PATH or RAM model, let alone specific prefixes for the error
terms.
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The PVAR statement in the PATH model is replaced with the VARIANCE statement in the LINEQS model,
and the PCOV statement with the COV statement. The PVAR and PCOV statements in the PATH model are
for the partial variance and partial covariance specifications. The partial variance or covariance concepts are
used in the PATH or RAM model specification because error terms are not named explicitly. Specification of
error variances in the PATH and RAM model is conceptualized as the specification of the partial variances of
the corresponding variables. But in the LINEQS model, because errors or disturbances are named explicitly
as exogenous variables, the partial variance or covariance concepts are no longer necessary. Instead, you
specify the variances of the error terms directly, which reflects the conceptualization behind the VARIANCE
statement of the LINEQS modeling language. Similarly, you use the COV, but not PCOV, statement in the
LINEQS modeling language because you can specify the covariances among variables or error terms without
using the partial covariance conceptualization.

In this example, the variances of the errors (“E”-variables) and disturbances (“D”-variables) specified in the
VARIANCE statement of the LINEQS model correspond to the partial variances of the endogenous variables
specified in the PVAR statement of the PATH model. Similarly, covariances of errors specified in the COV
statement of the LINEQS model correspond to the partial covariances of endogenous variables specified
in the PCOV statement of the PATH model. The estimation results of the LINEQS model are shown in
Output 29.23.2. Again, they are essentially the same estimates obtained from the PATH model specified in
Example 29.17, as shown in Output 29.17.11.

Output 29.23.2 LINEQS Model Estimates

Linear Equations

Anomie67 = 1.0000 f_Alien67 + 1.0000 e1

Powerless67 = 0.8330 f_Alien67 + 1.0000 e2

Anomie71 = 1.0000 f_Alien71 + 1.0000 e3

Powerless71 = 0.8330 f_Alien71 + 1.0000 e4

Education = 1.0000 f_SES + 1.0000 e5

SEI = 5.3688 (**) f_SES + 1.0000 e6

f_Alien67 = -0.6299 (**) f_SES + 1.0000 d1

f_Alien71 = -0.2409 (**) f_SES + 0.5931 (**) f_Alien67 + 1.0000 d2

Effects in Linear Equations

Variable Predictor Parameter Estimate
Standard

Error t Value Pr > |t|

Anomie67 f_Alien67 1.00000

Powerless67 f_Alien67 0.83300

Anomie71 f_Alien71 1.00000

Powerless71 f_Alien71 0.83300

Education f_SES 1.00000

SEI f_SES lambda 5.36883 0.43371 12.3788 <.0001

f_Alien67 f_SES gamma1 -0.62994 0.05634 -11.1809 <.0001

f_Alien71 f_SES gamma2 -0.24086 0.05489 -4.3884 <.0001

f_Alien71 f_Alien67 beta 0.59312 0.04678 12.6788 <.0001



Example 29.23: Illustrating Various General Modeling Languages F 1713

Output 29.23.2 continued

Estimates for Variances of Exogenous Variables

Variable
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Error e1 theta1 3.60796 0.20092 17.9572 <.0001

e2 theta2 3.59488 0.16448 21.8556 <.0001

e3 theta1 3.60796 0.20092 17.9572 <.0001

e4 theta2 3.59488 0.16448 21.8556 <.0001

e5 theta3 2.99366 0.49861 6.0040 <.0001

e6 theta4 259.57639 18.31151 14.1756 <.0001

Disturbance d1 psi1 5.67046 0.42301 13.4050 <.0001

d2 psi2 4.51479 0.33532 13.4639 <.0001

Latent f_SES phi 6.61634 0.63914 10.3519 <.0001

Covariances Among Exogenous Variables

Var1 Var2 Parameter Estimate
Standard

Error t Value Pr > |t|

e1 e3 theta5 0.90580 0.12167 7.4447 <.0001

e2 e4 theta5 0.90580 0.12167 7.4447 <.0001

LISMOD Specification

You can also specify general structural models by using the LISMOD modeling language. See the section
“The LISMOD Model and Submodels” on page 1408 for details.

To use the LISMOD modeling language, you must recognize four types of variables in the model. The
�-variables (eta-variables) are latent factors that are endogenous, or predicted by other latent factors. The
�-variables (xi-variables) are exogenous latent variables that are not predicted by any other variables. The
y-variables are manifest variables that are indicators of the �-variables, and the x-variables are manifest
variables that are indicators of the �-variables. In this example, Alien67 and Alien71 are the �-variables,
and SES is the �-variable in the model. Manifest indicators for Alien67 and Alien71 include Anomie67,
Powerless67, Anomie71, and Powerless71, which are the y-variables. Manifest indicators for SES include
Education and SEI, which are the x-variables.

After defining these four types of variables, the parameters of the model are defined as entries in the model
matrices. The _LAMBDAY_, _LAMBDAX_, _GAMMA_, and _BETA_ are matrices for the path coefficients
or effects. The _THETAY, _THETAX_, _PSI_, and _PHI_ are matrices for the variances and covariances.
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The following is the LISMOD specification for the model in Example 29.17:

proc calis nobs=932 data=Wheaton;
lismod

yvar = Anomie67 Powerless67 Anomie71 Powerless71,
xvar = Education SEI,
etavar = Alien67 Alien71,
xivar = SES;

matrix _LAMBDAY_
[1,1] = 1,
[2,1] = 0.833,
[3,2] = 1,
[4,2] = 0.833;

matrix _LAMBDAX_
[1,1] = 1,
[2,1] = lambda;

matrix _GAMMA_
[1,1] = gamma1,
[2,1] = gamma2;

matrix _BETA_
[2,1] = beta;

matrix _THETAY_
[1,1] = theta1-theta2 theta1-theta2,
[3,1] = theta5,
[4,2] = theta5;

matrix _THETAX_
[1,1] = theta3-theta4;

matrix _PSI_
[1,1] = psi1-psi2;

matrix _PHI_
[1,1] = phi;

run;

In the LISMOD statement, you specify the four lists of variables in the model. The orders of the variables in
these lists define the order of the row and column variables in the model matrices, of which the parameter
locations are specified in the MATRIX statements.

The estimated model is divided into three conceptual parts. The first part is the measurement model that
relates the �-variables with the y-variables, as shown in Output 29.23.3:
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Output 29.23.3 LISMOD Model Measurement Model for the �-Variables

_LAMBDAY_ Matrix:
Estimate/StdErr/t-value/p-value

Alien67 Alien71

Anomie67 1.0000 0

Powerless67 0.8330 0

Anomie71 0 1.0000

Powerless71 0 0.8330

_THETAY_ Matrix: Estimate/StdErr/t-value/p-value

Anomie67 Powerless67 Anomie71 Powerless71

Anomie67 3.6080
0.2009
17.9572
<.0001
[theta1]

0 0.9058
0.1217
7.4447
<.0001
[theta5]

0

Powerless67 0 3.5949
0.1645
21.8556
<.0001
[theta2]

0 0.9058
0.1217
7.4447
<.0001
[theta5]

Anomie71 0.9058
0.1217
7.4447
<.0001
[theta5]

0 3.6080
0.2009
17.9572
<.0001
[theta1]

0

Powerless71 0 0.9058
0.1217
7.4447
<.0001
[theta5]

0 3.5949
0.1645
21.8556
<.0001
[theta2]

The _LAMBDAY_ matrix contains the coefficients or effects of the �-variables on the y-variables. All
these estimates are fixed constants as specified. The _THETAY_ matrix contains the error variances and
covariances for the y-variables. Three free parameters are located in this matrix: theta1, theta2, and theta5.

The second part of the estimated model is the measurement model that relates the �-variable with the
x-variables, as shown in Output 29.23.4:
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Output 29.23.4 LISMOD Model Measurement Model for the �-Variables

_LAMBDAX_ Matrix:
Estimate/StdErr/t-value/p-value

SES

Education 1.0000

SEI 5.3688
0.4337
12.3788
<.0001
[lambda]

_THETAX_ Matrix:
Estimate/StdErr/t-value/p-value

Education SEI

Education 2.9937
0.4986
6.0040
<.0001
[theta3]

0

SEI 0 259.5764
18.3115
14.1756
<.0001
[theta4]

The _LAMBDAX_ matrix contains the coefficients or effects of the �-variable SES on the x-variables. The
effect of SES on Education is fixed at one. The effect of SES on SEI is represented by the free parameter
lambda, which is estimated at 5.3688. The _THETAX_ matrix contains the error variances and covariances
for the x-variables. Two free parameters are located in this matrix: theta3 and theta4.

The last part of the estimated model is the structural model that relates the latent variables � and �, as shown
in Output 29.23.5:

Output 29.23.5 LISMOD Structural Model for the Latent Variables

_BETA_ Matrix:
Estimate/StdErr/t-value/p-value

Alien67 Alien71

Alien67 0 0

Alien71 0.5931
0.0468
12.6788
<.0001
[beta]

0
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Output 29.23.5 continued

_GAMMA_ Matrix:
Estimate/StdErr/t-value/p-value

SES

Alien67 -0.6299
0.0563

-11.1809
<.0001

[gamma1]

Alien71 -0.2409
0.0549
-4.3884
<.0001

[gamma2]

_PSI_ Matrix:
Estimate/StdErr/t-value/p-value

Alien67 Alien71

Alien67 5.6705
0.4230
13.4050
<.0001
[psi1]

0

Alien71 0 4.5148
0.3353
13.4639
<.0001
[psi2]

_PHI_ Matrix:
Estimate/StdErr/t-value/p-value

SES

SES 6.6163
0.6391
10.3519
<.0001
[phi]

The _BETA_ matrix contains effects of �-variables on themselves. In the current example, there is only one
such effect. The effect of Alien67 on Alien71 is represented by the free parameter beta. The _GAMMA_
matrix contains effects of the �-variable, which is SES in this example, on the �-variables Alien67 on Alien71.
These effects are represented by the free parameters gamma1 and gamma2. The _PSI_ matrix contains the
error variances and covariances in the structural model. In this example, psi1 and psi2 are two free parameters
for the error variances. Finally, the _PHI_ matrix is the covariance matrix for the �-variables. In this example,
there is only one �-variable so that this matrix contains only the estimated variance of SES. This variance is
represented by the parameter phi.

The estimates obtained from fitting the LISMOD model are the same as those from fitting the equivalent
PATH, RAM, or LINEQS model. To some researchers the LISMOD modeling language might be more
familiar, while for others modeling languages such as PATH, RAM, or LINEQS are more convenient to use.
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Example 29.24: Testing Competing Path Models for the Career Aspiration
Data

This example uses some well-known data from Haller and Butterworth (1960). The section “A Combined
Measurement-Structural Model” on page 325 in Chapter 17, “Introduction to Structural Equation Modeling
with Latent Variables,” analyzes some models for these data. Inspired by the examples given in Loehlin
(1987), this example shows additional applications to the same data set, but with a focus on testing nested
models. By manipulating the OUTMODEL= data set, this example shows how you can specify new models
in an efficient way. Various models and analyses of these data are also given by Duncan, Haller, and Portes
(1968), Jöreskog and Sörbom (1988), and Loehlin (1987).

The study is concerned with the career aspirations of high school students and how these aspirations are
affected by close friends. The data are collected from 442 seventeen-year-old boys in Michigan. There are
329 boys in the sample who named another boy in the sample as a best friend. The data from these 329 boys
paired with the data from their best friends are analyzed.

Because of the dependency of the data, the effective sample size assumed in the example is 329, which
you can specify in the NOBS= option in the PROC CALIS statements. See the section “A Combined
Measurement-Structural Model” on page 325 in Chapter 17, “Introduction to Structural Equation Modeling
with Latent Variables,” for the justification of the use of this effective sample size.

The correlation matrix, taken from Jöreskog and Sörbom (1988), is shown in the following DATA step:

title 'Peer Influences on Aspiration: Haller & Butterworth (1960)';
data aspire(type=corr);

_type_='corr';
input _name_ $ riq rpa rses roa rea fiq fpa fses foa fea;
label riq='Respondent: Intelligence'

rpa='Respondent: Parental Aspiration'
rses='Respondent: Family SES'
roa='Respondent: Occupational Aspiration'
rea='Respondent: Educational Aspiration'
fiq='Friend: Intelligence'
fpa='Friend: Parental Aspiration'
fses='Friend: Family SES'
foa='Friend: Occupational Aspiration'
fea='Friend: Educational Aspiration';

datalines;
riq 1. . . . . . . . . .
rpa .1839 1. . . . . . . . .
rses .2220 .0489 1. . . . . . . .
roa .4105 .2137 .3240 1. . . . . . .
rea .4043 .2742 .4047 .6247 1. . . . . .
fiq .3355 .0782 .2302 .2995 .2863 1. . . . .
fpa .1021 .1147 .0931 .0760 .0702 .2087 1. . . .
fses .1861 .0186 .2707 .2930 .2407 .2950 -.0438 1. . .
foa .2598 .0839 .2786 .4216 .3275 .5007 .1988 .3607 1. .
fea .2903 .1124 .3054 .3269 .3669 .5191 .2784 .4105 .6404 1.
;
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For illustration purposes, this correlation matrix is treated here as if it were a covariance matrix for PROC
CALIS to analyze. The reason is that the chi-square tests shown in this example are valid only with covariance
structure analysis. See Example 29.27 for an illustration of covariance structure analysis on correlations.

Model 1: The Full Model

Loehlin (1987) analyzes the following path model for the data:

Figure 29.24 Path Diagram for Career Aspiration: Model 1
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In Figure 29.24, the observed variables rpa, riq, rses, fses, fiq, and fpa are measured with errors. Their
true scores counterparts f_rpa, f_riq, f_rses, f_fses, f_fiq, and f_fpa are latent variables in the model. Path
coefficients from these latent variables to the observed variables are fixed coefficients, indicating the square
roots of the theoretical reliabilities in the model. These latent variables, rather than the observed counterparts,
serve as predictors of the ambition factors R_Amb and F_Amb. The error terms for these two latent factors
are correlated, as indicated by a double-headed path (arrow) that connects the two factors. Correlated errors
for the occupational aspiration variables (roa and foa) and the educational aspiration variables (rea and fea)
are also shown in Figure 29.24. These correlated errors are also represented by two double-headed paths
(arrows) in the path diagram.

Notice that the covariances among the six exogenous latent variables (f_rpa, f_riq, f_rses, f_fses, f_fiq, and
f_fpa) are not represented in the path diagram for two reasons. First, there are 15 of these covariances
and hence you need 15 double-headed arrows to represent them in the path diagram. Apparently, because
of the space limitations, it would be difficult to put all these double-headed arrows in the path diagram
without cluttering it. Second, covariances among exogenous latent variables are free parameters by default in
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PROC CALIS, and therefore omitting these double-headed arrows in the path diagram is compatible with
the default model specification in PROC CALIS. Similarly, double-headed arrows for the error variances of
the endogenous variables (rpa, riq, rses, fses, fiq, fpa, R_Amb, and F_Amb) in the path diagram are omitted
because they are unconstrained free parameters and are set automatically by default in PROC CALIS .

The model represented by the path diagram in Figure 29.24 is considered to be the full model for the data, in
the sense that it has the largest number of parameters among the competing models considered this example.
The same model is analyzed in the section “A Combined Measurement-Structural Model” on page 325
in Chapter 17, “Introduction to Structural Equation Modeling with Latent Variables,” with the following
specification:

proc calis data=aspire nobs=329;
path

/* measurement model for intelligence and environment */
rpa <=== f_rpa = 0.837,
riq <=== f_riq = 0.894,
rses <=== f_rses = 0.949,
fses <=== f_fses = 0.949,
fiq <=== f_fiq = 0.894,
fpa <=== f_fpa = 0.837,

/* structural model of influences: 5 equality constraints */
f_rpa ===> R_Amb ,
f_riq ===> R_Amb ,
f_rses ===> R_Amb ,
f_fses ===> R_Amb ,
f_rses ===> F_Amb ,
f_fses ===> F_Amb ,
f_fiq ===> F_Amb ,
f_fpa ===> F_Amb ,
F_Amb ===> R_Amb ,
R_Amb ===> F_Amb ,

/* measurement model for aspiration: 1 equality constraint */
R_Amb ===> rea ,
R_Amb ===> roa = 1.,
F_Amb ===> foa = 1.,
F_Amb ===> fea ;

pvar
f_rpa f_riq f_rses f_fpa f_fiq f_fses = 6 * 1.0;

pcov
R_Amb F_Amb ,
rea fea ,
roa foa ;

run;

The PATH model specification represents each arrow (single-headed and double-headed) in the path diagram.
You transcribe each arrow in Figure 29.24 into an entry in the PATH model. The PATH statement specifies all
the single-headed arrows in the path diagram. The PVAR statement specifies all the double-headed arrows
that point to individual variables (that is, the fixed error variances of the exogenous latent variables) in the
path diagram. The PCOV statement specifies all the double-headed arrows that connect paired variables (that
is, the error covariances) in the path diagram.
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Output 29.24.1 shows the fit summary of Model 1.

Output 29.24.1 Career Aspiration Data: Fit Summary of Model 1

Fit Summary

Chi-Square 12.0132

Chi-Square DF 13

Pr > Chi-Square 0.5266

Standardized RMR (SRMR) 0.0149

RMSEA Estimate 0.0000

Akaike Information Criterion 96.0132

Bozdogan CAIC 297.4476

Schwarz Bayesian Criterion 255.4476

Since the p-value for the chi-square test is 0.5266, this model clearly cannot be rejected. Both standardized
RMR and RMSEA are very small. All these point to an excellent model fit. Three information-theoretic fit
indices are also shown: Akaike’s information criterion (AIC), Bozdogan’s CAIC, and Schwarz’s Bayesian
Criterion (SBC). These indices are useful when you need to compare competing models for the data.

Model 2: The Model with Equality Constraints

You now consider a much more restrictive model with equality constraints in the model. The path diagram
for this constrained model is shown in Figure 29.25.

Figure 29.25 Path Diagram for Career Aspiration: Model 2
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The main idea about setting the equality constraints in this model is that there is some symmetry in the model
components that correspond to the respondent and his friend. In particular, the corresponding coefficients
or parameters should be equal. For example, the path f_rpa===>R_Amb for the respondent has the same
effect as that of f_fpa===>F_Amb. In the path diagram, they are both labeled by the same parameter gam1.
Generalizing the same idea to other pairs of paths, Output 29.25 shows nine pairs of these equality constraints,
which are all represented by the same parameter names for distinct (single-headed or double-headed) paths.

However, because of the space limitation, there are six more equality constraints that are not shown in the
path diagram. These six constraints concern the covariance structures of the exogenous latent factors f_rpa,
f_riq, f_rses, f_fses, f_fiq, and f_fpa. The first three factors are for the respondent, and the last three are for
his friend. Using the same symmetry argument, the covariance structures imposed on these exogenous latent
factors are shown in the following:

f_rpa f_riq f_rses f_fpa f_fiq f_fses
f_rpa 1.
f_riq c1 1.
f_rses c2 c3 1.

f_fpa c4 c5 c6 1.
f_fiq c5 c7 c8 c1 1.
f_fses c6 c8 c9 c2 c3 1.

In this pattern of covariance structures, the covariance matrix (upper left portion) for the latent factors of the
respondent is the same as that (lower right portion) for the latent factors of his friend. The cross-covariances
among the factors between the friends (lower left portion) also display a symmetry pattern. There are six
pairs of equality constraints in the covariance structures. Imposing these six pairs of equality constraints and
the nine pairs of equality constraints in the path diagram lead to Model 2 of Loehlin (1987).
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You can specify the current constrained model by the following PATH modeling language of PROC CALIS:

proc calis data=aspire nobs=329 outmodel=model2;
path

/* measurement model for intelligence and environment */
rpa <=== f_rpa = 0.837,
riq <=== f_riq = 0.894,
rses <=== f_rses = 0.949,
fses <=== f_fses = 0.949,
fiq <=== f_fiq = 0.894,
fpa <=== f_fpa = 0.837,

/* structural model of influences: 5 equality constraints */
f_rpa ===> R_Amb = gam1,
f_riq ===> R_Amb = gam2,
f_rses ===> R_Amb = gam3,
f_fses ===> R_Amb = gam4,
f_rses ===> F_Amb = gam4,
f_fses ===> F_Amb = gam3,
f_fiq ===> F_Amb = gam2,
f_fpa ===> F_Amb = gam1,
F_Amb ===> R_Amb = beta,
R_Amb ===> F_Amb = beta,

/* measurement model for aspiration: 1 equality constraint */
R_Amb ===> rea = lambda,
R_Amb ===> roa = 1.,
F_Amb ===> foa = 1.,
F_Amb ===> fea = lambda;

pvar
f_rpa f_riq f_rses f_fpa f_fiq f_fses = 6 * 1.0,
R_Amb F_Amb = 2 * psi, /* 1 ec */
rea fea = 2 * theta1, /* 1 ec */
roa foa = 2 * theta2; /* 1 ec */

pcov
R_Amb F_Amb = psi12,
rea fea = covea,
roa foa = covoa,
f_rpa f_riq f_rses = cov1-cov3, /* 3 ec */
f_fpa f_fiq f_fses = cov1-cov3,
f_rpa f_riq f_rses * f_fpa f_fiq f_fses = /* 3 ec */

cov4 cov5 cov6 cov5 cov7 cov8 cov6 cov8 cov9;
run;
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In the current PATH model specification, you specify the same set of paths as in Model 1. In addition, to set
the required constraints in this path model, you use parameter names to label the related paths, variances, or
covariances. Same parameter names mean equality constraints. The 15 equality constraints are labeled with
comments in the specification. In the PROC CALIS statement, you use the OUTMODEL= option to output
the model estimation results into the output data set model2, which is used for subsequent hypotheses tests.

Output 29.24.2 shows the fit summary of Model 2.

Output 29.24.2 Career Aspiration Data: Fit Summary of Model 2 in Loehlin (1987)

Fit Summary

Chi-Square 19.0697

Chi-Square DF 28

Pr > Chi-Square 0.8960

Standardized RMR (SRMR) 0.0276

RMSEA Estimate 0.0000

Akaike Information Criterion 73.0697

Bozdogan CAIC 202.5632

Schwarz Bayesian Criterion 175.5632

The test of Model 2 against Model 1 (Loehlin 1987) yields a chi-square of 19.0697 – 12.0132 = 7.0565 with
15 degrees of freedom, which is clearly not significant. This indicates that the restricted Model 2 fits at least
as well as Model 1. Schwarz’s Bayesian criterion (SBC) is also much lower for Model 2 (175.5623) than for
Model 1 (255.4476). Hence, Model 2 seems preferable on both substantive and statistical grounds.

Model 3: No SES Paths

A question of substantive interest is whether the friend’s socioeconomic status (SES) has a significant direct
influence on a boy’s ambition. This can be addressed by omitting the paths from f_fses to R_Amb and
from f_rses to F_Amb designated by the parameter name gam4, yielding Model 3 of Loehlin (1987). The
corresponding path diagram is shown in Figure 29.26.
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Figure 29.26 Path Diagram for Career Aspiration: Model 3
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In Figure 29.26, you drop the paths f_rses===>F_Amb and f_fses===>R_Amb from the previous model.
Using the path diagram in Figure 29.26, you can specify the current model the same way you do for Model 2.
However, because you have the estimation results from Model 2 in the SAS data set model2, you can modify
this SAS data set to reflect the current model specification and then input the modified SAS data set as an
INMODEL= file for PROC CALIS to analyze.

First, you create a new SAS data set model3 by the following DATA step:

data model3(type=calismdl);
set model2;
if _name_='gam4' then

do;
_name_=' ';
_estim_=0;

end;
run;

Essentially, by blanking out the parameter name for the target paths, you are stating that these paths are no
longer associated with the free parameter gam4 in the new model. Instead, you put a fixed zero to these
paths. This way you eliminate the paths f_rses===>F_Amb and f_fses===>R_Amb for Model 3, of which
the model specification is now saved in the model3 data set.
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Next, you input model3 as the INMODEL= data set for PROC CALIS to analyze, as shown in the following
statements:

proc calis data=aspire nobs=329 inmodel=model3;
run;

PROC CALIS can now use the previous estimation results for fitting the required model. Output 29.24.3
shows the fit summary of Model 3.

Output 29.24.3 Career Aspiration Data: Fit Summary of Model 3 in Loehlin (1987)

Fit Summary

Chi-Square 23.0365

Chi-Square DF 29

Pr > Chi-Square 0.7749

Standardized RMR (SRMR) 0.0304

RMSEA Estimate 0.0000

Akaike Information Criterion 75.0365

Bozdogan CAIC 199.7340

Schwarz Bayesian Criterion 173.7340

The chi-square value for testing Model 3 versus Model 2 is 23.0365 – 19.0697 = 3.9668 with one degree
of freedom and a p-value of 0.0464. The chi-square test shows a marginal significance, which means that
the paths might be needed in the model. However, the SBC (173.7340) indicates that Model 3 is slightly
preferable to Model 2, which has an SBC value of 175.5632.

Model 4: No Reciprocal Influence between the Ambition Factors

Another important question is whether the reciprocal influences between the respondent’s and friend’s
ambitions are needed in the model. To test whether these paths are zero, you can set the parameter beta for
the paths linking R_Amb and F_Amb to zero to obtain Model 4 of Loehlin (1987).

Similar to Model 3, you can modify the model2 data set to form the new model data set model4 for PROC
CALIS to analyze, as shown in the following statements:

data model4(type=calismdl);
set model2;
if _name_='beta' then

do;
_name_=' ';
_estim_=0;

end;
run;

proc calis data=aspire nobs=329 inmodel=model4;
run;

Output 29.24.4 shows the fit summary of Model 4.
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Output 29.24.4 Career Aspiration Data: Fit Summary of Model 4 in Loehlin (1987)

Fit Summary

Chi-Square 20.9981

Chi-Square DF 29

Pr > Chi-Square 0.8592

Standardized RMR (SRMR) 0.0304

RMSEA Estimate 0.0000

Akaike Information Criterion 72.9981

Bozdogan CAIC 197.6956

Schwarz Bayesian Criterion 171.6956

The chi-square value for testing Model 4 versus Model 2 is 20.9981 – 19.0697 = 1.9284 with one degree of
freedom and a p-value of 0.1649. Hence, there is little evidence of reciprocal influence.

Model 5: No Disturbance Correlation between the Ambition Factors

Model 2 of Loehlin (1987) has the direct paths connecting the latent ambition factors R_Amb and F_Amb
and a covariance between the disturbance or error terms (that is, a double-headed arrow connecting the two
factors in the path diagram shown in Figure 29.25). The presence of this disturbance correlation serves as
a “wastebasket” that enables other omitted variables to have joint influences on the respondent’s and his
friend’s ambition factors. To test the hypothesis that this disturbance correlation is zero, you use the following
statements to set the parameter psi12 to zero in the model5 data set and fit the new model by PROC CALIS:

data model5(type=calismdl);
set model2;
if _name_='psi12' then

do;
_name_=' ';
_estim_=0;

end;
run;

proc calis data=aspire nobs=329 inmodel=model5;
run;

Output 29.24.5 displays the fit summary of Model 5.

Output 29.24.5 Career Aspiration Data: Fit Summary of Model 5 in Loehlin (1987)

Fit Summary

Chi-Square 19.0745

Chi-Square DF 29

Pr > Chi-Square 0.9194

Standardized RMR (SRMR) 0.0276

RMSEA Estimate 0.0000

Akaike Information Criterion 71.0745

Bozdogan CAIC 195.7721

Schwarz Bayesian Criterion 169.7721
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The chi-square value for testing Model 5 versus Model 2 is 19.0745 – 19.0697 = 0.0048 with one degree of
freedom. This test statistic is insignificant. Therefore, omitting the covariance between the disturbance terms
causes hardly any deterioration in the fit of the model.

Model 7: No Reciprocal Influence and No Disturbance Correlation between the Ambition
Factors

The test in Model 4 fails to provide evidence of a direct reciprocal influence between the respondent’s and
friend’s ambitions, and the test in Model 5 fails to provide evidence of a covariance or correlation between
the disturbance terms for the ambition factors. Because you consider these two tests separately, you cannot
establish evidence to eliminate the reciprocal influence and the disturbance correlation jointly. Instead, to
make such a joint inference, it is important to test both hypotheses together by setting both beta and psi12 to
zero as in Model 7 of Loehlin (1987). The following statements show how you can do that by modifying the
model2 data set to form a new INMODEL= data set model7 for PROC CALIS to analyze:

data model7(type=calismdl);
set model2;
if _name_='psi12'|_name_='beta' then

do;
_name_=' ';
_estim_=0;

end;
run;

proc calis data=aspire nobs=329 inmodel=model7;
run;

Output 29.24.6 shows the fit summary of Model 7.

Output 29.24.6 Career Aspiration Data: Fit Summary of Model 7 in Loehlin (1987)

Fit Summary

Chi-Square 25.3466

Chi-Square DF 30

Pr > Chi-Square 0.7080

Standardized RMR (SRMR) 0.0363

RMSEA Estimate 0.0000

Akaike Information Criterion 75.3466

Bozdogan CAIC 195.2480

Schwarz Bayesian Criterion 170.2480

When Model 7 is tested against Models 2, 4, and 5, the p-values are respectively 0.0433, 0.0370, and 0.0123,
indicating that the combined effect of the reciprocal influence and the covariance of the disturbance terms is
statistically significant. Thus, the hypothesis tests indicate that it is acceptable to omit either the reciprocal
influences or the covariance of the disturbances, but not both.

Model 6: No Error Correlations between the Friend’s Educational and Occupational
Aspiration

It is also of interest to test the covariances (covea and covoa) between the error terms for educational
aspiration (that is, between rea and fea) and occupational aspiration (that is, between roa and foa), because
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these terms are omitted from Jöreskog and Sörbom (1988) models. Constraining covea and covoa to zero
produces Model 6 of Loehlin (1987). You can use the following statements to fit this model:

data model6(type=calismdl);
set model2;
if _name_='covea'|_name_='covoa' then

do;
_name_=' ';
_estim_=0;

end;
run;

proc calis data=aspire nobs=329 inmodel=model6;
run;

Output 29.24.7 shows the fit summary of Model 6.

Output 29.24.7 Career Aspiration Data: Model 6 of Loehlin (1987)

Fit Summary

Chi-Square 33.4475

Chi-Square DF 30

Pr > Chi-Square 0.3035

Standardized RMR (SRMR) 0.0306

RMSEA Estimate 0.0187

Akaike Information Criterion 83.4475

Bozdogan CAIC 203.3489

Schwarz Bayesian Criterion 178.3489

The chi-square value for testing Model 6 versus Model 2 is 33.4476 – 19.0697 = 14.3779 with two degrees of
freedom and a p-value of 0.0008, indicating that there is considerable evidence of correlation between the
error terms.

Summary of Competing Models

The following table summarizes the results from the seven models described in Loehlin (1987).

Model �2 df p-value SBC
1. Full model 12.0132 13 0.5266 255.4476
2. Equality constraints 19.0697 28 0.8960 175.5632
3. No SES path 23.0365 29 0.7749 173.7340
4. No reciprocal influence 20.9981 29 0.8592 171.6956
5. No disturbance correlation 19.0745 29 0.9194 169.7721
6. No error correlation 33.4475 30 0.3035 178.3489
7. Constraints from both 4 and 5 25.3466 30 0.7080 170.2480

For comparing models, you can use a DATA step to compute the differences of the chi-square statistics and
p-values, as shown in the following statements:
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data _null_;
array achisq[7] _temporary_

(12.0132 19.0697 23.0365 20.9981 19.0745 33.4475 25.3466);
array adf[7] _temporary_

(13 28 29 29 29 30 30);
retain indent 16;
file print;
input ho ha @@;
chisq = achisq[ho] - achisq[ha];
df = adf[ho] - adf[ha];
p = 1 - probchi( chisq, df);
if _n_ = 1 then put

/ +indent 'model comparison chi**2 df p-value'
/ +indent '---------------------------------------';

put +indent +3 ho ' versus ' ha @18 +indent chisq 8.4 df 5. p 9.4;
datalines;

2 1 3 2 4 2 5 2 7 2 7 4 7 5 6 2
;

The DATA step displays the table in Output 29.24.8.

Output 29.24.8 Career Aspiration Data: Model Comparisons     
                model comparison   chi**2   df  p-value                         
                ---------------------------------------                         
                   2  versus 1     7.0565   15   0.9561                         
                   3  versus 2     3.9668    1   0.0464                         
                   4  versus 2     1.9284    1   0.1649                         
                   5  versus 2     0.0048    1   0.9448                         
                   7  versus 2     6.2769    2   0.0433                         
                   7  versus 4     4.3485    1   0.0370                         
                   7  versus 5     6.2721    1   0.0123                         
                   6  versus 2    14.3778    2   0.0008                         

Although none of the seven models can be rejected when tested against the alternative of an unrestricted
covariance matrix, the model comparisons make it clear that there are important differences among the
models. Schwarz’s Bayesian criterion indicates Model 5 as the model of choice. The constraints added to
Model 5 in Model 7 can be rejected (p = 0.0123), while Model 5 cannot be rejected when tested against the
less constrained Model 2 (p = 0.9448). Hence, among the small number of models considered, Model 5 has
strong statistical support. However, as Loehlin (1987, p. 106) points out, many other models for these data
could be constructed. Further analysis should consider, in addition to simple modifications of the models, the
possibility that more than one friend could influence a boy’s aspirations, and that a boy’s ambition might
have some effect on his choice of friends. Pursuing such theories would be statistically challenging.

Example 29.25: Fitting a Latent Growth Curve Model
Latent factors in structural equation modeling are constructed to represent important unobserved hypothetical
constructs. However, with some manipulations latent factors can also represent random effects in models.
In this example, a simple latent growth curve model is considered. You use latent factors to represent the
random intercepts and slopes in the latent growth curve model.
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Sixteen individuals were invited to a training program that was designed to boost self-confidence. During the
training, the individuals’ confidence levels were measured at five time points: initially and four more times
separated by equal intervals. The data are stored in the following SAS data set:

data growth;
input y1 y2 y3 y4 y5;
datalines;

17.6 21.4 25.6 32.1 37.7
13.2 14.3 18.9 20.3 25.4
11.6 13.5 17.4 22.1 39.6
10.7 11.1 13.2 18.2 21.4
18.7 23.7 28.6 31.5 34.0
18.3 19.2 20.5 23.2 25.9
9.2 13.5 17.8 19.2 21.1

18.3 23.5 27.9 30.2 34.6
11.2 15.6 20.8 22.7 30.4
17.0 22.9 26.9 31.9 35.6
10.4 13.6 18.0 25.6 29.3
17.7 19.0 22.5 28.5 30.7
14.5 19.4 21.1 28.8 31.5
20.0 21.4 28.9 30.2 35.6
14.6 19.3 21.7 28.5 32.0
11.7 15.2 19.1 23.7 28.7
;

First, consider a simple linear regression model for the confidence levels at time t due to training. That is,

yt D ˛ C ˇTt C et

where yt represents the confidence level at time t (t D 1; 2; : : : ; 5), ˛ represents the intercept, ˇ represents
the slope or the effect of training, Tt represents the fixed time point at t (T1 D 0 and Ti D Ti�1 C 1), and et
is the error term at time t.

This simple linear regression assumes that the effect of training (slope) and the intercept are constants for the
individuals. However, individual differences are rules rather than exceptions. It is thus more reasonable to
argue that an index i for individuals should be added to the intercept and slope in the model. As a result, the
following individualized regression model is derived:

yit D ˛i C ˇiTt C et

where i D 1; 2; : : : ; 16. In this model, individuals are assumed to have different intercepts and slopes
(regression coefficients). Note that theoretically et could also be “individualized” as eti in the model. But
this is not done because such a model would be unnecessarily complicated without gaining additional insights
in return.

Unfortunately, this individualized model with individual intercepts and slopes cannot be estimated directly. If
you treat each ˛i and ˇi as fixed parameters, you are going to have too many parameters for the model to be
identified or estimable. A workable solution is to treat ˛ and ˇ in the original linear regression model as
random variables instead. That is, the latent growth curve model of interest is as follows:

yt D ˛ C ˇTt C et

where .˛; ˇ/ is bivariate normal with unknown means, variances, and covariance. Therefore, instead of
having 16 intercepts and 16 slopes to estimate in the individualized regression model, the final latent growth
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curve model has to estimate only two means, two variances and one covariance in the bivariate distribution of
.˛; ˇ/.

To use PROC CALIS to fit this latent growth curve model, the random intercept and effect are treated as if
they were covarying latent factors. To make them stand out more as latent variables, the random intercept
and slope are renamed as f˛ and fˇ in the following structural equation:

yt D f˛ C Ttfˇ C et

where f˛ and fˇ are bivariate-normal latent variables. This model assumes that the error distribution is time
dependent (with the index t). A simpler version is to make this error term invariant over time, which is then
represented by the following model with constrained error variances:

yt D f˛ C Ttfˇ C e

This constrained model is considered first. The LINEQS modeling language is used to specify this constrained
model, as shown in the following statements.

proc calis method=ml data=growth nostand noparmname;
lineqs

y1 = 0. * Intercept + f_alpha + e1,
y2 = 0. * Intercept + f_alpha + 1 * f_beta + e2,
y3 = 0. * Intercept + f_alpha + 2 * f_beta + e3,
y4 = 0. * Intercept + f_alpha + 3 * f_beta + e4,
y5 = 0. * Intercept + f_alpha + 4 * f_beta + e5;

variance
f_alpha f_beta,
e1-e5 = 5 * evar;

mean
f_alpha f_beta;

cov
f_alpha f_beta;

fitindex on(only)=[chisq df probchi];
run;

In the LINEQS model specification, f_alpha and f_beta are treated as latent factors representing the random
intercept and random slope, respectively. The f_ prefix for latent factors is required as a convention in the
LINEQS modeling language. See the sections “Naming Variables in the LINEQS Model” on page 1403 and
“Naming Variables and Parameters” on page 1433 for details.

Notice that you need to set the ordinary (non-random) intercepts for endogenous variables to zero by the
0.*Intercept specification because non-random intercepts for observed endogenous variables are default
parameters in the LINEQS model. Because you have already used f_alpha as the random intercept, you must
turn off the default non-random intercept term for the observed endogenous variables y1–y5. Otherwise, your
latent growth curve model might be over-parameterized.

At T1 D 0, y1 represents the initial confidence measurement so that it is not subject to the random effect
f_beta. The next four measurements y2, y3, y4, and y5 are measured at time points T2, T3, T4, and T5,
respectively. These are fixed time points with constant values 1, 2, 3, and 4, respectively, in the equations of
the LINEQS statement.

The means, variances and covariances of f_alpha and f_beta are parameters in the model. The variances
of these two latent variables are specified in the VARIANCE statement, while their covariance is specified
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in the COV statement. The means of f_alpha and f_beta are specified in the MEAN statement. Unlike the
specification for the variances of e1–e5. All these parameters for the latent factors are unnamed because you
do not need to constrain them by references.

The error variances for e1–e5 are also specified in the VARIANCE statement. Using the shorthand notation
5 * evar, the parameter name evar is repeated five times for the five error variances. This constrains the
error variances for e1–e5 to be equal.

You also use some special printing options in this example. In the PROC CALIS statement, the NOSTAND
option is specified because standardized solution is not of interest. The reason is that y1–y5 were already
measured on comparable scales, making standardization unnecessary for interpretations. Another printing
option specified is the NOPARMNAME option in the PROC CALIS statement. This option suppresses the
printing of parameter names in the output for estimation. This makes the output look more concise when you
do not need to make references to the parameter names. Still another printing option used is the ON(ONLY)=
option of the FITINDEX statement. This option trims down the display of fit indices to include only those
listed in the option. See the FITINDEX statement on page 1268 for details.

Output 29.25.1 shows the fit summary table.

Output 29.25.1 Random Intercepts and Effects with Constrained Error Variances: Model Fit

Fit Summary

Chi-Square 31.4310

Chi-Square DF 14

Pr > Chi-Square 0.0048

In Output 29.25.1, the chi-square value in the fit summary table is 31.431 (df = 14, p < 0.01), which is a
statistically significant result that might indicate a poor model fit. Despite that, it is illustrative to continue to
look at the main estimation results, which are shown in the following table.

Output 29.25.2 Estimation of Random Intercepts and Effects with Constrained Error Variances

Estimates for Variances of Exogenous Variables

Variable
Type Variable Estimate

Standard
Error t Value Pr > |t|

Latent f_alpha 13.89140 5.81540 2.3887 0.0169

f_beta 0.80742 0.42198 1.9134 0.0557

Error e1 3.32185 0.70031 4.7434 <.0001

e2 3.32185 0.70031 4.7434 <.0001

e3 3.32185 0.70031 4.7434 <.0001

e4 3.32185 0.70031 4.7434 <.0001

e5 3.32185 0.70031 4.7434 <.0001

Covariances Among Exogenous Variables

Var1 Var2 Estimate
Standard

Error t Value Pr > |t|

f_alpha f_beta -0.35281 1.13815 -0.3100 0.7566
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Output 29.25.2 continued

Mean Parameters

Variable
Type Variable Estimate

Standard
Error t Value Pr > |t|

Latent f_alpha 14.15875 1.02906 13.7589 <.0001

f_beta 4.04813 0.27563 14.6867 <.0001

In Output 29.25.2, the estimated variance of the random intercept ˛, which is represented by the variance
estimate of the latent factor f_alpha, is 13.891 (t = 2.389). In the next row of the same table, the variance
estimate of the random effect ˇ, which is represented by the variance estimate of the latent factor f_beta, is
0.807 (t = 1.913).

The covariance of the random intercept and the random effect is shown in the next table for “Covariances
Among Exogenous Variables.” A negative estimate of –0.353 is shown. This means that the initial self-
confidence level and the boosting effect of training are negatively correlated. The higher the initial self-
confidence level, the smaller the training effect.

In the last table for the “Mean Parameters,” the estimated mean of the random intercept is 14.159, which
is an estimate of the averaged initial self-confidence level. The estimated mean of random effect is 4.048,
which is an estimate of the averaged training effect. They are both significantly different from zero.

Given that the model does not fit that well, perhaps you should not take the interpretations of these estimates
so seriously. Knowing that the distribution of the errors might have been time-dependent, you now try to
improve the fit of the model by relaxing the constraint about common error variances. You can use the
following specifications:

proc calis method=ml data=growth nostand noparmname;
lineqs

y1 = 0. * Intercept + f_alpha + e1,
y2 = 0. * Intercept + f_alpha + 1 * f_beta + e2,
y3 = 0. * Intercept + f_alpha + 2 * f_beta + e3,
y4 = 0. * Intercept + f_alpha + 3 * f_beta + e4,
y5 = 0. * Intercept + f_alpha + 4 * f_beta + e5;

variance
f_alpha f_beta,
e1-e5;

mean
f_alpha f_beta;

cov
f_alpha f_beta;

fitindex on(only)=[chisq df probchi];
run;

In this new specification, there is only one change in the VARIANCE statement from the previous specification.
That is, you now specify only the error variables without putting parameter names for them. This makes the
variances of e1–e5 free (unconstrained) parameters in the model.

Output 29.25.3 shows the model fit summary.
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Output 29.25.3 Random Intercepts and Effects with Unconstrained Error Variances: Model Fit

Fit Summary

Chi-Square 11.6250

Chi-Square DF 10

Pr > Chi-Square 0.3109

The chi-square for the unconstrained model is 11.625 (df = 10, p > .10). This indicates an acceptable model
fit. The chi-square difference test can also be conducted for testing the previous constrained model against
this new model. The chi-square difference is 19.81 = 31.431 – 11.625. With df = 4, this chi-square difference
value is statistically significant at ˛=0.01, indicating a significant improvement of model fit by using the
unconstrained model.

Output 29.25.4 shows the estimation results.

Output 29.25.4 Estimation of Random Intercepts and Effects with Unconstrained Error Variances

Estimates for Variances of Exogenous Variables

Variable
Type Variable Estimate

Standard
Error t Value Pr > |t|

Latent f_alpha 14.70071 5.66943 2.5930 0.0095

f_beta 0.45059 0.29867 1.5087 0.1314

Error e1 2.81712 1.35332 2.0816 0.0374

e2 0.32213 0.46118 0.6985 0.4849

e3 1.94429 0.86824 2.2394 0.0251

e4 1.88569 1.21306 1.5545 0.1201

e5 14.65193 5.99354 2.4446 0.0145

Covariances Among Exogenous Variables

Var1 Var2 Estimate
Standard

Error t Value Pr > |t|

f_alpha f_beta 0.35291 0.90366 0.3905 0.6961

Mean Parameters

Variable
Type Variable Estimate

Standard
Error t Value Pr > |t|

Latent f_alpha 14.03046 1.01534 13.8185 <.0001

f_beta 3.96793 0.22612 17.5478 <.0001

The estimation results for the unconstrained model present a slightly different picture than the constrained
model. While the estimates for the means and variances of the random intercept and the random training
effect look similar in both models, estimates of the covariance between the random intercept and the random
training effect are quite different in the two models. The covariance estimate is negative (–0.353) in the
constrained model, but it is positive (0.353) in the unconstrained model. However, because the covariance
estimates are not statistically significant in both models (t = –0.310 and 0.391, respectively), you wonder
whether the current data are showing strong evidence that supports one way or another. To get a clearer
picture, perhaps you need to collect more data and fit the models again to examine the significance of the
covariance between the random intercept and slope.
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Example 29.26: Higher-Order and Hierarchical Factor Models
In this example, confirmatory higher-order and hierarchical factor models are fitted by PROC CALIS.

In higher-order factor models, factors are at different levels. The higher-order factors explain the relationships
among factors at the next lower level, in the same way that the first-order factors explain the relationships
among manifest variables. For example, in a two-level higher order factor model you have nine manifest
variables V1–V9 with three first-order factors F1–F3. The first-order factor pattern of the model might appear
like the following:

F1 F2 F3
V1 x
V2 x
V3 x
V4 x
V5 x
V6 x
V7 x
V8 x
V9 x

where each “x” marks a nonzero factor loading and all other unmarked entries are fixed zeros in the model.
To explain the correlations among the first-order factors, a second-order factor F4 is hypothesized with the
following second-order factor pattern:

F4
F1 x
F2 x
F3 x

If substantiated by your theory, you might have higher-order factor models with more than two levels.

In hierarchical factor models, all factors are at the same (first-order) level but are different in their clusters
of manifest variables related. Using the terminology of Yung, Thissen, and McLeod (1999), factors in
hierarchical factor models are classified into “layers.” The factors in the first layer partition the manifest
variables into clusters so that each factor has a distinct cluster of related manifest variables. This part of the
factor pattern of the hierarchical factor model is similar to that of the first-order factor model for manifest
variables. The next layer of factors in the hierarchical factor model again partitions the manifest variables
into clusters. However, this time each cluster contains at least two clusters of manifest variables that are
formed in the previous layer. For example, the following is a factor pattern of a confirmatory hierarchical
factor model with two layers:
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First Layer | Second Layer
F1 F2 F3 | F4

V1 x | x
V2 x | x
V3 x | x
V4 x | x
V5 x | x
V6 x | x
V7 x | x
V8 x | x
V9 x | x

F1–F3 are first-layer factors and F4 is the only second-layer factor. This special kind of two-layer hierarchical
pattern is also known as the bifactor solution. In a bifactor solution, there are two classes of factors—group
factors and a general factor. For example, in the preceding hierarchical factor pattern F1–F3 are group factors
for different abilities and F4 is a general factor such as “intelligence” (see, for example, Holzinger and
Swineford 1937). See Mulaik and Quartetti (1997) for more examples and distinctions among various types
of hierarchical factor models. Certainly, if substantiated by your theory, hierarchical factor models with more
than two layers are possible.

In this example, you use PROC CALIS to fit these two types of confirmatory factor models. First, you fit a
second-order factor model to a real data set. Then you fit a bifactor model to the same data set. In the final
section of this example, an informal account of the relationship between the higher-order and hierarchical
factor models is attempted. Techniques for constraining parameters using PROC CALIS are also shown. This
final section might be too technical in the first reading. Interested readers are referred to articles by Mulaik
and Quartetti (1997), Schmid and Leiman (1957), and Yung, Thissen, and McLeod (1999) for more details.

A Second-Order Factor Analysis Model

In this section, a second-order confirmatory factor analysis model is applied to a correlation matrix of
Thurstone reported by McDonald (1985). The correlation matrix is read into a SAS data set in the following
statements:

data Thurst(type=corr);
title "Example of THURSTONE resp. McDONALD (1985, p.57, p.105)";

_type_ = 'corr'; input _name_ $ V1-V9;
label V1='Sentences' V2='Vocabulary' V3='Sentence Completion'

V4='First Letters' V5='Four-letter Words' V6='Suffices'
V7='Letter series' V8='Pedigrees' V9='Letter Grouping';

datalines;
V1 1. . . . . . . . .
V2 .828 1. . . . . . . .
V3 .776 .779 1. . . . . . .
V4 .439 .493 .460 1. . . . . .
V5 .432 .464 .425 .674 1. . . . .
V6 .447 .489 .443 .590 .541 1. . . .
V7 .447 .432 .401 .381 .402 .288 1. . .
V8 .541 .537 .534 .350 .367 .320 .555 1. .
V9 .380 .358 .359 .424 .446 .325 .598 .452 1.
;
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Variables in this data set are measures of cognitive abilities. Three factors are assumed for these nine variable
V1–V9. These three factors are the first-order factors in the analysis. A second-order factor is also assumed
to explain the correlations among the three first-order factors.

The following statements define a second-order factor model by using the LINEQS modeling language.

proc calis corr data=Thurst method=max nobs=213 nose nostand;
lineqs

V1 = X11 * Factor1 + E1,
V2 = X21 * Factor1 + E2,
V3 = X31 * Factor1 + E3,
V4 = X42 * Factor2 + E4,
V5 = X52 * Factor2 + E5,
V6 = X62 * Factor2 + E6,
V7 = X73 * Factor3 + E7,
V8 = X83 * Factor3 + E8,
V9 = X93 * Factor3 + E9,
Factor1 = L1g * FactorG + E10,
Factor2 = L2g * FactorG + E11,
Factor3 = L3g * FactorG + E12;

variance
FactorG = 1. ,
E1-E12 = U1-U9 W1-W3;

bounds
0. <= U1-U9;

fitindex ON(ONLY)=[chisq df probchi];
/* SAS Programming Statements: Dependent parameter definitions */

W1 = 1. - L1g * L1g;
W2 = 1. - L2g * L2g;
W3 = 1. - L3g * L3g;

run;

In the first nine equations of the LINEQS statement, variables V1–V3 are manifest indicators of latent factor
Factor1, variables V4–V6 are manifest indicators of latent factor Factor2, and variables V7–V9 are manifest
indicators of latent factor Factor3. In the last three equations of the LINEQS statement, the three first-order
factors Factor1–Factor3 are explained by a common source: FactorG. Hence, Factor1–Factor3 are correlated
due to the common source FactorG in the model.

An error term is added to each equation in the LINEQS statement. These error terms E1–E12 are needed
because the factors are not assumed to be perfect predictors of the corresponding outcome variables.

In the VARIANCE statement, you specify variance parameters for all independent or exogenous variables
in the model: FactorG, and E1–E12. The variance of FactorG is fixed at one for identification. Variances
for E1–E9 are given parameter names U1–U9, respectively. Variances for E10–E12 are given parameter
names W1–W3, respectively. Note that for model identification purposes, W1–W3 are defined as dependent
parameters in the SAS programming statements. That is,

Wi D 1: � L
2
ig .i D 1; 2; 3/

These dependent parameter definitions ensure that the variances for Factor1–Factor3 are fixed at ones for
identification.

In the BOUNDS statement, you specify that variance parameters U1–U9 must be positive in the solution.

In addition to the statements for model specification, you specify some output control options in the PROC
CALIS statement. You use the NOSE and NOSTAND options suppress the display of standard errors and
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standardized results. In the FITINDEX statement, the ON(ONLY)= option requests only the model fit
chi-square and its associated degrees of freedom and p-value be shown in the fit summary table. Using
printing options in PROC CALIS to reduce the amount the of printout is a good practice. It makes your
output more focused, as you output only what you need in a particular situation.

In Output 29.26.1, parameters and their initial values, gradients, and bounds are shown.

Output 29.26.1 Parameters in the Model

Optimization Start
Parameter Estimates

N Parameter Estimate Gradient Lower Bound Upper Bound

1 X11 1.00000 0.13476 . .

2 X21 1.01408 0.17327 . .

3 X31 0.95518 0.12174 . .

4 X42 1.00000 0.22548 . .

5 X52 0.96603 0.21304 . .

6 X62 0.88305 0.19782 . .

7 X73 1.00000 0.21041 . .

8 X83 1.03403 0.39324 . .

9 X93 0.91752 0.19880 . .

10 L1g 0.75060 -0.57492 . .

11 L2g 0.64268 -0.50975 . .

12 L3g 0.60919 -0.56538 . .

13 U1 0.18879 0.14837 0 .

14 U2 0.16579 0.08989 0 .

15 U3 0.25988 -0.03231 0 .

16 U4 0.33068 0.20120 0 .

17 U5 0.37538 0.09124 0 .

18 U6 0.47808 -0.03595 0 .

19 U7 0.44813 0.20918 0 .

20 U8 0.40994 -0.12469 0 .

21 U9 0.53541 0.05959 0 .

Value of Objective Function = 0.5693888709

The Number of
Dependent Parameters

is 3

N Parameter Estimate

22 W1 0.43660

23 W2 0.58697

24 W3 0.62889

The first table contains all the independent parameters. There are twenty-one in total. Parameters W1–W3,
which are defined in the SAS programming statements, are shown in the next table for dependent parameters.
Their initial values are computed as functions of the independent parameters.

Output 29.26.2 shows the information about optimization—iteration history and the convergence status.
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Output 29.26.2 Optimization

Optimization Start

Active Constraints 0 Objective Function 0.5693888709

Max Abs Gradient Element 0.5749163348 Radius 1.8533033852

Iteration Restarts
Function

Calls
Active

Constraints
Objective
Function

Objective
Function

Change

Max Abs
Gradient
Element Lambda

Ratio
Between

Actual
and

Predicted
Change

1 0 5 0 0.38684 0.1825 0.5158 3.214 1.174

2 0 9 0 0.18706 0.1998 0.1003 0 1.181

3 0 11 0 0.18039 0.00667 0.0273 0 0.987

4 0 13 0 0.18020 0.000192 0.00581 0 0.881

5 0 15 0 0.18017 0.000023 0.00295 0 0.967

6 0 17 0 0.18017 3.08E-6 0.000686 0 1.083

7 0 19 0 0.18017 4.606E-7 0.000379 0 1.195

8 0 21 0 0.18017 7.365E-8 0.000096 0 1.283

9 0 23 0 0.18017 1.228E-8 0.000054 0 1.342

10 0 25 0 0.18017 2.098E-9 0.000018 0 1.377

11 0 27 0 0.18017 3.63E-10 8.561E-6 0 1.397

Optimization Results

Iterations 11 Function Calls 30

Jacobian Calls 13 Active Constraints 0

Objective Function 0.1801712146 Max Abs Gradient Element 8.5605681E-6

Lambda 0 Actual Over Pred Change 1.3969225014

Radius 0.0000572561

Convergence criterion (GCONV=1E-8) satisfied.

First, there are 21 independent parameters in the optimization by using 45 “Functions (Observations).” The
so-called functions refer to the moments in the model that are structured with parameters. Nine lower bounds,
which are specified for the error variance parameters, are specified in the optimization. The next table for
iteration history shows that the optimization stops in 11 iterations. The notes at the bottom of table show that
the solution converges without problems.

Output 29.26.3 shows the fit summary table. The chi-square model fit value is 38.196, with df = 24, and p =
0.033. This indicates a satisfactory model fit.

Output 29.26.3 Fit Summary

Fit Summary

Chi-Square 38.1963

Chi-Square DF 24

Pr > Chi-Square 0.0331

Output 29.26.4 shows the fitted equations with final estimates. Interpretations of these loadings are not done
here. The last table in this output shows various variance estimates. These estimates are classified by whether
they are for the latent variables, error variables, or disturbance variables.
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Output 29.26.4 Estimation Results

Linear Equations

V1 = 0.9047 Factor1 + 1.0000 E1

V2 = 0.9138 Factor1 + 1.0000 E2

V3 = 0.8561 Factor1 + 1.0000 E3

V4 = 0.8358 Factor2 + 1.0000 E4

V5 = 0.7972 Factor2 + 1.0000 E5

V6 = 0.7026 Factor2 + 1.0000 E6

V7 = 0.7808 Factor3 + 1.0000 E7

V8 = 0.7202 Factor3 + 1.0000 E8

V9 = 0.7035 Factor3 + 1.0000 E9

Factor1 = 0.8221 FactorG + 1.0000 E10

Factor2 = 0.7818 FactorG + 1.0000 E11

Factor3 = 0.8150 FactorG + 1.0000 E12

Estimates for Variances of Exogenous
Variables

Variable
Type Variable Parameter Estimate

Latent FactorG 1.00000

Error E1 U1 0.18150

E2 U2 0.16493

E3 U3 0.26713

E4 U4 0.30150

E5 U5 0.36450

E6 U6 0.50642

E7 U7 0.39033

E8 U8 0.48137

E9 U9 0.50510

Disturbance E10 W1 0.32420

E11 W2 0.38879

E12 W3 0.33576

For illustration purposes, you might check whether the model constraints put on the variances of Factor1–
Factor3 are honored (although this should have been taken care of in the optimization). For example, the
variance of Factor1 should be:

1 D .Loading on FactorG/2 C Variance of E10

Extracting the estimates from the output, you indeed verify the required equality, as shown in the following:

1:0000 D .0:8221/2 C 0:32420

A Bifactor Model

A bifactor model (or a hierarchical factor model with two layers) for the same data set is now considered. In
this model, the same set of factors as in the preceding higher-order factor model are used. The most notable
difference is that the second-order factor FactorG in the higher-order factor model is no longer a factor of the
first-order factors Factor1–Factor3. Instead, FactorG, like Factor1–Factor3, now also serves as a factor of the
observed variable V1–V9. Unlike Factor1–Factor3, FactorG is considered to be a general factor in the sense
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that all observed variables have direct functional relationships with it. In contrast, Factor1–Factor3 are group
factors in the sense that each of them has a direct functional relationship with only one group of observed
variables. Because of the coexistence of a general factor and group factors at the same factor level, such a
hierarchical model is also called a bifactor model.

The bifactor model is specified in the following statements:

proc calis corr data=Thurst method=max nobs=213 nose nostand;
lineqs

V1 = X11 * Factor1 + X1g * FactorG + E1,
V2 = X21 * Factor1 + X2g * FactorG + E2,
V3 = X31 * Factor1 + X3g * FactorG + E3,
V4 = X42 * Factor2 + X4g * FactorG + E4,
V5 = X52 * Factor2 + X5g * FactorG + E5,
V6 = X62 * Factor2 + X6g * FactorG + E6,
V7 = X73 * Factor3 + X7g * FactorG + E7,
V8 = X83 * Factor3 + X8g * FactorG + E8,
V9 = X93 * Factor3 + X9g * FactorG + E9;

variance
Factor1-Factor3 = 3 * 1.,
FactorG = 1. ,
E1-E9 = U1-U9;

cov
Factor1-Factor3 FactorG = 6 * 0.;

bounds
0. <= U1-U9;

fitindex ON(ONLY)=[chisq df probchi];
run;

In the LINEQS statement, there are only nine equations for the manifest variables in the model. Unlike the
second-order factor model fitted previously, Factor1–Factor3 are no longer functionally related to FactorG
and therefore there are no equations with Factor1–Factor3 as outcome variables.

The factor variances are all fixed at 1 in the VARIANCE statement. The variance parameters for E1–E9 are
named U1–U9, respectively. The BOUNDS statement, again, is specified so that only positive estimates are
accepted for error variance estimates.

All factors in the bifactor model are uncorrelated. In the COV statement, you specify that the six covariances
among Factor1–Factor3 and FactorG are all zero. This specification is necessary because by default exogenous
variables (excluding error terms) in the LINEQS model are correlated.

Like the previous PROC CALIS run, options are specified in the PROC CALIS and the FITINDEX statements
to reduce the amount of default output.

There are more parameters in this model than in the preceding higher-order factor model, as shown in
Output 29.26.5, which shows the optimization information.

Output 29.26.5 Optimization

Optimization Start

Active Constraints 0 Objective Function 0.8380304146

Max Abs Gradient Element 2.4076251809 Radius 20.596787596



Example 29.26: Higher-Order and Hierarchical Factor Models F 1743

Output 29.26.5 continued

Iteration Restarts
Function

Calls
Active

Constraints
Objective
Function

Objective
Function

Change

Max Abs
Gradient
Element Lambda

Ratio
Between

Actual
and

Predicted
Change

1 0 5 0 0.70566 0.1324 0.4851 0.00140 0.148

2 0 7 0 0.30090 0.4048 0.3269 0 1.292

3 0 9 0 0.17403 0.1269 0.2947 0 0.985

4 0 11 0 0.11759 0.0564 0.0677 0 1.190

5 0 13 0 0.11455 0.00304 0.0267 0 1.043

6 0 15 0 0.11426 0.000285 0.00242 0 1.153

7 0 17 0 0.11423 0.000027 0.00168 0 1.394

8 0 19 0 0.11423 5.552E-6 0.000478 0 1.413

9 0 21 0 0.11423 1.154E-6 0.000335 0 1.420

10 0 23 0 0.11423 2.405E-7 0.000105 0 1.427

11 0 25 0 0.11423 5.016E-8 0.000068 0 1.432

12 0 27 0 0.11423 1.047E-8 0.000023 0 1.436

13 0 29 0 0.11423 2.184E-9 0.000014 0 1.439

14 0 31 0 0.11423 4.56E-10 4.909E-6 0 1.442

Optimization Results

Iterations 14 Function Calls 34

Jacobian Calls 16 Active Constraints 0

Objective Function 0.1142278162 Max Abs Gradient Element 4.9090342E-6

Lambda 0 Actual Over Pred Change 1.4423534599

Radius 0.0002294218

Convergence criterion (GCONV=1E-8) satisfied.

There are 27 parameters in the bifactor model: nine for the loadings on the group factors Factor1–Factor3,
nine for the loadings on the general factor FactorG, and nine for the variances of errors E1–E9. The
optimization converges in 14 iterations without problems.

A fit summary table is shown in Output 29.26.6

Output 29.26.6 Fit Summary

Fit Summary

Chi-Square 24.2163

Chi-Square DF 18

Pr > Chi-Square 0.1481

The fit of this model is quite good. The chi-square value is 24.216, with df = 18 and p = 0.148. This is
expected because the bifactor model has more parameters than the second-order factor model, which already
has a good fit with fewer parameters.

Estimation results are shown in Output 29.26.7. Estimates are left uninterpreted because they are not the
main interest of this example.
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Output 29.26.7 Estimation Results

Linear Equations

V1 = -0.4879 Factor1 + 0.7679 FactorG + 1.0000 E1

V2 = -0.4523 Factor1 + 0.7909 FactorG + 1.0000 E2

V3 = -0.4045 Factor1 + 0.7536 FactorG + 1.0000 E3

V4 = 0.6140 Factor2 + 0.6084 FactorG + 1.0000 E4

V5 = 0.5058 Factor2 + 0.5973 FactorG + 1.0000 E5

V6 = 0.3943 Factor2 + 0.5718 FactorG + 1.0000 E6

V7 = -0.7273 Factor3 + 0.5669 FactorG + 1.0000 E7

V8 = -0.2468 Factor3 + 0.6623 FactorG + 1.0000 E8

V9 = -0.4091 Factor3 + 0.5300 FactorG + 1.0000 E9

Estimates for Variances of Exogenous
Variables

Variable
Type Variable Parameter Estimate

Latent Factor1 1.00000

Factor2 1.00000

Factor3 1.00000

FactorG 1.00000

Error E1 U1 0.17236

E2 U2 0.16984

E3 U3 0.26848

E4 U4 0.25281

E5 U5 0.38735

E6 U6 0.51757

E7 U7 0.14966

E8 U8 0.50039

E9 U9 0.55175

One might ask whether this bifactor (hierarchical) model provides a significantly better fit than the previous
second-order model. Can one use a chi-square difference test for nested models to answer this question? The
answer is yes.

Although it is not obvious that the previous second-order factor model is nested within the current bifactor
model, a general nested relationship between the higher-order factor and the hierarchical factor model is
formally proved by Yung, Thissen, and McLeod (1999). Therefore, a chi-square difference test can be
conducted using the following DATA step:

data _null_;
df0 = 24; chi0 = 38.1963;
df1 = 18; chi1 = 24.2163;
diff = chi0-chi1;
p = 1.-probchi(chi0-chi1,df0-df1);
put 'Chi-square difference = ' diff;
put 'p-value = ' p;

run;
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The results are shown in the following:

Output 29.26.8 Chi-square Difference Test

Chi-square difference = 13.98                                                   
p-value = 0.0298603746                                                          

The chi-square difference is 13.98, with df = 6 and p = 0.02986. If ˛-level is set at 0.05, the bifactor model
indicates a significantly better fit. But if ˛-level is set at 0.01, statistically the two models fit equally well to
the data.

In the next section, it is demonstrated that the second-order factor model is indeed nested within the bifactor
model, and hence the chi-square test conducted in the previous section is justified. In addition, through the
demonstration of the nested relationship between the two classes of models, you can see how some parameter
constraints in structural equation model can be set up in PROC CALIS.

For some practical researchers, the technical details involved in the next section might not be of interest and
therefore could be skipped.

A Constrained Bifactor Model and Its Equivalence to the Second-Order Factor Model

To demonstrate that the second-order factor model is indeed nested within the bifactor model, a constrained
bifactor model is fitted in this section. This constrained bifactor model is essentially the same as the preceding
bifactor model, but with additional constraints on the factor loadings. Hence, the constrained bifactor model
is nested within the unconstrained bifactor model.

Furthermore, if it can be shown that the constrained bifactor model is equivalent to the previous second-order
factor, then the second-order factor model must also be nested within the unconstrained bifactor model. As a
result, it justifies the chi-square difference test conducted in the previous section.

The construction of such a constrained bifactor model is based on Yung, Thissen, and McLeod (1999). In the
following statements, a constrained bifactor model is specified.

proc calis corr data=Thurst method=max nobs=213 nose nostand;
lineqs

V1 = X11 * Factor1 + X1g * FactorG + E1,
V2 = X21 * Factor1 + X2g * FactorG + E2,
V3 = X31 * Factor1 + X3g * FactorG + E3,
V4 = X42 * Factor2 + X4g * FactorG + E4,
V5 = X52 * Factor2 + X5g * FactorG + E5,
V6 = X62 * Factor2 + X6g * FactorG + E6,
V7 = X73 * Factor3 + X7g * FactorG + E7,
V8 = X83 * Factor3 + X8g * FactorG + E8,
V9 = X93 * Factor3 + X9g * FactorG + E9;

variance
Factor1-Factor3 = 3 * 1.,
FactorG = 1. ,
E1-E9 = U1-U9;

cov
Factor1-Factor3 FactorG = 6 * 0.;

bounds
0. <= U1-U9;

fitindex ON(ONLY)=[chisq df probchi];
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parameters p1 (.5) p2 (.5) p3 (.5);
/* Proportionality constraints */
X1g = p1 * X11;
X2g = p1 * X21;
X3g = p1 * X31;
X4g = p2 * X42;
X5g = p2 * X52;
X6g = p2 * X62;
X7g = p3 * X73;
X8g = p3 * X83;
X9g = p3 * X93;

run;

In this constrained model, you add a PARAMETERS statement and nine SAS programming statements
to the previous bifactor model. In the PARAMETERS statement, three new independent parameters are
added: p1, p2, and p3. These parameters represent the proportions that constrain the factor loadings of
the observed variables on the group factors Factor1–Factor3 and the general factor FactorG. They are all
free parameters and have initial values at 0.5. The next nine SAS programming statements represent the
proportionality constraints imposed. For example, X1g–X3g are now dependent parameters expressed as
functions of p1, X11, X21, and X31. Adding three new parameters (in the PARAMETERS statement) and
redefining nine original parameters as dependent (in the SAS programming statements) is equivalent to
adding six (=9-3) constraints to the original bifactor model. Mathematically, the additional statements in
specifying the constrained bifactor model realizes the following six constraints:

X1g
X11

D
X2g
X21

D
X3g
X31

X4g
X42

D
X5g
X52

D
X6g
X62

X7g
X73

D
X8g
X83

D
X9g
X93

Obviously, with these six constraints the current constrained bifactor model is nested within the unconstrained
version. What remains to be shown is that this constrained bifactor model is indeed equivalent to the previous
second-order factor model. If so, the second-order factor model is also nested within the unconstrained
bifactor model. One evidence for the equivalence of the current constrained bifactor model and the second-
order factor model is from the fit summary table shown in Output 29.26.10. But first, it is also useful to
consider the optimization information of the constrained bifactor model, which is shown in Output 29.26.9.

Output 29.26.9 Optimization

Optimization Start

Active Constraints 0 Objective Function 6.8290849536

Max Abs Gradient Element 8.9903038299 Radius 46.912034073
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Output 29.26.9 continued

Iteration Restarts
Function

Calls
Active

Constraints
Objective
Function

Objective
Function

Change

Max Abs
Gradient
Element Lambda

Ratio
Between

Actual
and

Predicted
Change

1 * 0 4 0 4.42090 2.4082 1.5979 0.195 0.121

2 * 0 6 0 2.42951 1.9914 2.4449 0.195 1.700

3 * 0 8 0 1.52546 0.9040 2.1675 0.781 1.657

4 * 0 10 0 0.86547 0.6600 1.2570 0.781 1.552

5 * 0 12 0 0.50425 0.3612 0.4075 0.781 1.351

6 * 0 14 0 0.41864 0.0856 1.1698 0.195 0.216

7 * 0 16 0 0.28298 0.1357 0.2355 0.0488 0.983

8 0 19 0 0.27010 0.0129 0.9602 0.00098 0.327

9 0 21 0 0.21798 0.0521 0.2433 0 0.751

10 * 0 23 0 0.20781 0.0102 0.0373 0.0488 0.943

11 * 0 26 0 0.20251 0.00530 0.0273 0.0918 1.064

12 0 28 0 0.19176 0.0108 0.0718 0.0515 1.008

13 0 30 0 0.18575 0.00601 0.1407 0.00393 0.562

14 0 32 0 0.18024 0.00551 0.0224 0 0.921

15 0 34 0 0.18017 0.000064 0.00161 0 1.067

16 0 36 0 0.18017 2.357E-6 0.000538 0 1.344

17 0 38 0 0.18017 3.389E-7 0.000216 0 1.380

18 0 40 0 0.18017 5.146E-8 0.000075 0 1.389

19 0 42 0 0.18017 7.886E-9 0.000031 0 1.391

20 0 44 0 0.18017 1.211E-9 0.000012 0 1.392

Optimization Results

Iterations 20 Function Calls 47

Jacobian Calls 22 Active Constraints 0

Objective Function 0.1801712147 Max Abs Gradient Element 0.0000117927

Lambda 0 Actual Over Pred Change 1.3915929449

Radius 0.0002502182

Convergence criterion (GCONV=1E-8) satisfied.

As shown Output 29.26.9, there are 21 independent parameters in the constrained bifactor model for the
45 “Functions (Observations).” These numbers match those of the second-order factor model exactly. The
optimization shows some problems in initial iterations. The iteration numbers with asterisks indicate that the
Hessian matrix is not positive definite in those iterations. But as long as the final converged iteration is not
marked with an asterisk, the problems exhibited in early iterations do not raise any concern, as in the current
case. Next, the fit summary is shown in Output 29.26.10.

Output 29.26.10 Model Fit

Fit Summary

Chi-Square 38.1963

Chi-Square DF 24

Pr > Chi-Square 0.0331
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In Output 29.26.10, the chi-square value in the fit summary table is 38.196, with df = 24, and p = 0.033.
Again, these numbers match those of the second-order factor model exactly. These matches (same model fit
with the same number of parameters) are necessary (but not sufficient) to show that the constrained bifactor
model is equivalent to the second-order model. Stronger evidence is now presented.

In Output 29.26.11, estimation results of the constrained bifactor model are shown.

Output 29.26.11 Estimation Results

Linear Equations

V1 = -0.5151 Factor1 + 0.7437 FactorG + 1.0000 E1

V2 = -0.5203 Factor1 + 0.7512 FactorG + 1.0000 E2

V3 = -0.4874 Factor1 + 0.7038 FactorG + 1.0000 E3

V4 = 0.5211 Factor2 + 0.6534 FactorG + 1.0000 E4

V5 = 0.4971 Factor2 + 0.6232 FactorG + 1.0000 E5

V6 = 0.4381 Factor2 + 0.5493 FactorG + 1.0000 E6

V7 = 0.4524 Factor3 + 0.6364 FactorG + 1.0000 E7

V8 = 0.4173 Factor3 + 0.5869 FactorG + 1.0000 E8

V9 = 0.4076 Factor3 + 0.5734 FactorG + 1.0000 E9

Estimates for Variances of Exogenous
Variables

Variable
Type Variable Parameter Estimate

Latent Factor1 1.00000

Factor2 1.00000

Factor3 1.00000

FactorG 1.00000

Error E1 U1 0.18150

E2 U2 0.16493

E3 U3 0.26713

E4 U4 0.30150

E5 U5 0.36450

E6 U6 0.50641

E7 U7 0.39034

E8 U8 0.48136

E9 U9 0.50511

According to Yung, Thissen, and McLeod (1999), two models are equivalent if there is a one-to-one
correspondence of the parameters in the models. This fact is illustrated for the constrained bifactor model
and the second-order factor model.

First, the error variances for E1–E9 in the second-order factor model are transformed directly (using an
identity map) to that of the bifactor models. The nine error variances in Output 29.26.4 for the second-order
factor model match those of the constrained bifactor model exactly in Output 29.26.11. In addition, the
variances of factors are fixed at one in both models. The error variances and the factor loadings at both factor
levels in Output 29.26.4 for the second-order factor model are now transformed to yield the loading estimates
in the constrained bifactor model.
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Denote P1 as the first-order factor loading matrix, P2 as the second-order factor loading matrix, and U21 be
the matrix of variances for disturbances. That is, for the second-order factor model,

P1 D

0BBBBBBBBBBBB@

0:9047 0 0

0:9138 0 0

0:8561 0 0

0 0:8358 0

0 0:7972 0

0 0:7026 0

0 0 0:7808

0 0 0:7202

0 0 0:7035

1CCCCCCCCCCCCA

P2 D

0@ 0:8221

0:7818

0:8150

1A
U21 D

0@ 0:3242 0 0

0 0:3888 0

0 0 0:3358

1A
According to Yung, Thissen, and McLeod (1999), the transformation to obtain the estimates in the equivalent
constrained bifactor model is:

L1 D P1U1
L2 D P1P2

where L1 is the matrix of the first-layer factor loadings (that is, loadings on group factors Factor1–Factor3),
and L2 is the matrix of the second-layer factor loadings (that is, loadings on FactorG) in the constrained
bifactor model. Carrying out the matrix calculations for L1 and L2 shows that:

L1 D

0BBBBBBBBBBBB@

0:5151 0 0

0:5203 0 0

0:4875 0 0

0 0:5212 0

0 0:4971 0

0 0:4381 0

0 0 0:4525

0 0 0:4173

0 0 0:4077

1CCCCCCCCCCCCA

L2 D

0BBBBBBBBBBBB@

0:7438

0:7512

0:7038

0:6534

0:6232

0:5493

0:6364

0:5870

0:5734

1CCCCCCCCCCCCA
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With very minor numerical differences and ignorable sign changes, these transformation results match the
estimated loadings observed in Output 29.26.11 for the constrained bifactor model. Therefore, the second-
order factor model is shown to be equivalent to the constrained bifactor model, and hence is nested within the
unconstrained bifactor model.

Example 29.27: Linear Relations among Factor Loadings
In this example, you use the FACTOR modeling language of PROC CALIS to specify a confirmatory
factor analysis model with linear constraints on loadings. You use SAS programming statements to set the
constraints. This example also discusses the differences between fitting covariance structures and correlation
structures in the current modeling context.

The correlation matrix of six variables from Kinzer and Kinzer (N=326) is used by Guttman (1957) as an
example that yields an approximate simplex. McDonald (1980) uses this data set as an example of factor
analysis where he assumes that the loadings on the second factor are linear functions of the loadings on the
first factor. Let B be the factor loading matrix containing the two factors and six variables so that:

B D

0BBBBBB@

b11 b12
b21 b22
b31 b32
b41 b42
b51 b52
b61 b62

1CCCCCCA
and

bj2 D ˛ C ˇbj1; j D 1; : : : ; 6

The correlation structures are represented by:

P D BB0 C‰

where ‰ D diag. 11;  22;  33;  44;  55;  66/ represents the diagonal matrix of unique variances for the
variables.

With parameters ˛ and ˇ being unconstrained, McDonald (1980) has fitted an underidentified model with
seven degrees of freedom. Browne (1982) imposes the following identification condition:

ˇ D �1

In this example, Browne’s identification condition is imposed. The following is the specification of the
confirmatory factor model using the FACTOR modeling language.
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data kinzer(type=corr);
title "Data Matrix of Kinzer & Kinzer, see GUTTMAN (1957)";

_type_ = 'corr';
input _name_ $ var1-var6;
datalines;

var1 1.00 . . . . .
var2 .51 1.00 . . . .
var3 .46 .51 1.00 . . .
var4 .46 .47 .54 1.00 . .
var5 .40 .39 .49 .57 1.00 .
var6 .33 .39 .47 .45 .56 1.00
;

proc calis data=kinzer nobs=326 nose;
factor

factor1 ===> var1-var6 = b11 b21 b31 b41 b51 b61 (6 *.6),
factor2 ===> var1-var6 = b12 b22 b32 b42 b52 b62;

pvar
factor1-factor2 = 2 * 1.,
var1-var6 = psi1-psi6 (6 *.3);

cov
factor1 factor2 = 0.;

parameters alpha (1.);
/* SAS Programming Statements to define dependent parameters */
b12 = alpha - b11;
b22 = alpha - b21;
b32 = alpha - b31;
b42 = alpha - b41;
b52 = alpha - b51;
b62 = alpha - b61;
fitindex on(only)=[chisq df probchi];

run;

In the FACTOR statement, you specify two factors, named factor1 and factor2, for the variables. In this
model, all manifest variables have nonzero loadings on the two factors. These loading parameters are
specified after the equal signs and are named with the prefix ‘b.’ You specify the initial estimates in the
parentheses for the parameters in the first entry of the FACTOR statement. The loadings in the first entry are
all free parameters with initial estimates of .6. In the second entry of the FACTOR statement, you specify
the Loadings of var1–var6 on factor2. However, these parameters are dependent, as shown in the SAS
programming statements. Initial values for these dependent parameters are thus unnecessary.

In the PVAR statement, the factor variances are fixed at ones, while the error variances of the variables are
free parameters named psi1–psi6. Again, you provide initial estimates for these error variance parameters.
All have the initial value of 0.3.

An additional parameter alpha is specified in the PARAMETERS statement with an initial value of 1. Then,
you use six SAS programming statements to define the loadings on the second factor as functions of the
loadings on the first factor. Lastly, the FITINDEX statement is used to trim the results in the fit summary
table.

In the specification, there are twelve loadings in the FACTOR statement and six error variances in the PVAR
statement. Adding the parameter alpha in the list, there are 19 parameters in total. However, the loading
parameters are not all independent of each other. As defined in the SAS programming statements, six loadings
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are dependent. This reduces the number of free parameters to 13. Hence the degrees of freedom for the
model is 8 = 21 – 13. Notice that the factor variances are fixed at 1, as specified in the PVAR statement, and
covariance among the two factors is fixed at zero, as specified in the COV statement.

Output 29.27.1 shows a concise fit summary table. The chi-square test statistic of model fit is 10.337 with df
= 8 (p = 0.242). This indicates a good model fit.

Output 29.27.1 Fit of the Correlation Structures

Fit Summary

Chi-Square 10.3374

Chi-Square DF 8

Pr > Chi-Square 0.2421

The estimated factor loading matrix is presented in Output 29.27.2, and the estimated error variances and the
estimate for alpha are presented in Output 29.27.3.

Output 29.27.2 Loading Estimates

Factor Loading
Matrix

factor1 factor2

var1 0.3609
[b11]

0.6174
[b12]

var2 0.3212
[b21]

0.6571
[b22]

var3 0.4859
[b31]

0.4923
[b32]

var4 0.5745
[b41]

0.4038
[b42]

var5 0.7985
[b51]

0.1797
[b52]

var6 0.6736
[b61]

0.3046
[b62]

Output 29.27.3 Unique Variances and the Additional Parameter

Error Variances

Variable Parameter Estimate

var1 psi1 0.53036

var2 psi2 0.44986

var3 psi3 0.48756

var4 psi4 0.47278

var5 psi5 0.31125

var6 psi6 0.53815

Additional Parameters

Type Parameter Estimate

Independent alpha 0.97825
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All these estimates are essentially the same as those reported in Browne (1982). Notice that there are no
standard error estimates in the output, as requested by the NOSE option in the PROC CALIS statement.
Standard error estimates are not of interest in this example.

In fitting the preceding factor model, wrong covariance structures rather than the intended correlation
structures have been specified. As pointed out by Browne (1982), fitting such covariance structures directly
is not entirely appropriate for analyzing correlations. For example, when fitting the correlation structures,
the diagonal elements of P must always be fixed ones. This fact has never been enforced in the preceding
specification. A simple check of the estimates will illustrate the problem. In Output 29.27.2, the loading
estimates of VAR1 on the two factors are 0.3609 and 0.6174, respectively. In Output 29.27.3, the error
variance estimate for VAR1 is 0.53036. The fitted variance of VAR1 can therefore be computed by the
following equation:

fitted variance D 0:36092 C 0:61742 C 0:53036 D 1:0418

This fitted value is quite a bit off from 1.00, as required for the standardized variance of VAR1.

Fortunately, even though the wrong covariance structure model has been analyzed, the preceding analysis is
not completely useless. For the current confirmatory factor model, according to Browne (1982) the estimates
obtained from fitting the wrong covariance structure model are still consistent (as if they were estimating
the population parameters in the correlation structures). However, the chi-square test statistic as reported
previously is not correct.

Note that using the CORR option in the PROC CALIS statement will not solve the problem. By specifying
the CORR option you merely request PROC CALIS to use the correlation matrix directly as a covariance
matrix in the objective function for model fitting. It still would not constrain the fitting of the diagonal
elements to 1 during estimation.

In the next section, a solution to the correlation analysis problem is suggested. It is not claimed that this is
the only solution or the best solution. Alternative treatments of the problem are possible.

Fitting the Correct Correlation Structures

This main idea of this solution is to embed the intended correlation structures (with correct constraints on the
diagonal elements of the correlation matrix) into a covariance structure model so that the estimation methods
of PROC CALIS can be applied legitimately to the specially constructed covariance structures.

First, the issue of the fixed ones on the diagonal of the correlation structure model is addressed. That is, the
diagonal elements of the correlation structures represented by .BB0 C‰/ must be fitted by ones. This can be
accomplished by constraining the error variances as dependent parameters of the loadings, as shown in the
following:

‰jj D 1: � b
2
j1 � b

2
j2; j D 1; : : : ; 6

Other constraints might also serve the purpose, but the proposed constraints here are the most convenient and
intuitive.

Now, due to the fact that discrepancy functions used in PROC CALIS are derived for covariance matrices
rather than correlation matrices, PROC CALIS is essentially set up for analyzing covariance structures (with
or without mean structures), but not correlation structures. Hence, the statistical theory behind PROC CALIS
applies to covariance structure analysis, but it might not generalize to correlation structure analysis in all
situations. Despite that, with some manipulations PROC CALIS can fit the correct correlation structures to
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the current data without compromising the statistical theory. These manipulations are now discussed. Recall
that the correlation structures are represented by:

P D BB0 C‰

As before, in the B matrix, there are six linear constraints on the factor loadings. In addition, the diagonal
elements of .BB0 C ‰/ are constrained to ones, as done by defining the error variances as dependent
parameters of the loadings in the preceding equation. To analyze the correlation structures by using PROC
CALIS, a covariance structure model with such correlation structures embedded is now specified. That is, the
covariance structure to be fitted by PROC CALIS is as follows:

† D DPD0 D D.BB0 C‰/D0

where D is a 6 x 6 diagonal matrix containing the population standard deviations for the manifest variables.
Theoretically, it is legitimate that you analyze this covariance structure model for studying the embedded
correlation structures. In addition, it does not matter whether your input matrix is a correlation or covariance
matrix, or any rescaled covariance matrix (by multiplying any variables by any positive constants). You
would get correct results if you could somehow specify these covariance structures correctly in PROC CALIS.
However, there seems to be nowhere in PROC CALIS that you can specify the diagonal matrix D for the
population standard deviations. So what can one do with this formulation? The answer is to rewrite the
covariance structure model in a form similar to the usual confirmatory factor model, as presented in the
following.

Let T D DB and K D D‰D0. The covariance structure model of interest can now be rewritten as:

† D TT0 CK

This form of covariance structures implies a confirmatory factor model with factor loading matrix T and error
covariance matrix K. This confirmatory factor model can certainly be specified using the FACTOR modeling
language, in much the same way you specify a confirmatory factor model in the preceding section. However,
because you are actually more interested in estimating the basic set of parameters in matrices B and ‰ of the
embedded correlation structures, you would define the model parameters as functions of this basic set of
parameters of interest. This can be accomplished by using the PARAMETERS and the SAS programming
statements.

All in all, you can use the following statements to set up such a confirmatory factor model with the desired
correlation structures embedded.
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proc calis data=Kinzer nobs=326 nose;
factor

factor1 ===> var1-var6 = t11 t21 t31 t41 t51 t61,
factor2 ===> var1-var6 = t12 t22 t32 t42 t52 t62;

pvar
factor1-factor2 = 2 * 1.,
var1-var6 = k1-k6;

cov
factor1 factor2 = 0.;

parameters alpha (1.) d1-d6 (6 * 1.)
b11 b21 b31 b41 b51 b61 (6 *.6),
b12 b22 b32 b42 b52 b62
psi1-psi6;

/* SAS Programming Statements */
/* 12 Constraints on Correlation structures */
b12 = alpha - b11;
b22 = alpha - b21;
b32 = alpha - b31;
b42 = alpha - b41;
b52 = alpha - b51;
b62 = alpha - b61;
psi1 = 1. - b11 * b11 - b12 * b12;
psi2 = 1. - b21 * b21 - b22 * b22;
psi3 = 1. - b31 * b31 - b32 * b32;
psi4 = 1. - b41 * b41 - b42 * b42;
psi5 = 1. - b51 * b51 - b52 * b52;
psi6 = 1. - b61 * b61 - b62 * b62;
/* Defining Covariance Structure Parameters */
t11 = d1 * b11;
t21 = d2 * b21;
t31 = d3 * b31;
t41 = d4 * b41;
t51 = d5 * b51;
t61 = d6 * b61;
t12 = d1 * b12;
t22 = d2 * b22;
t32 = d3 * b32;
t42 = d4 * b42;
t52 = d5 * b52;
t62 = d6 * b62;
k1 = d1 * d1 * psi1;
k2 = d2 * d2 * psi2;
k3 = d3 * d3 * psi3;
k4 = d4 * d4 * psi4;
k5 = d5 * d5 * psi5;
k6 = d6 * d6 * psi6;
fitindex on(only)=[chisq df probchi];

run;

First, you notice that specifications in the FACTOR and the PVAR statements are essentially unchanged from
the previous specification, except that the parameters are named differently here to reflect different model
matrices. In the current specification, the factor loading parameters in matrix T are named with prefix ‘t,’ and
the error variance parameters in matrix K are named with prefix ‘k.’ Specification of these parameters reflects
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the covariance structures. As you see in the last block of the SAS programming statements statements, all
these parameters are functions of the correlation structure parameters in B, ‰ , and D.

Next, in the PARAMETERS statement, all correlation structure parameters are defined with initial values
provided. These are the parameters of interest: alpha is used to define dependencies among loadings, d’s are
the population standard deviations, b’s are the loading parameters, and psi’s are the error variance parameters.
There are 25 parameters specified in this statement, but not all of them are free or independent.

In the first block of SAS programming statements, parameter dependencies or constraints on the correlation
structures are specified. The first six statements realize the required linear relations among the factor loadings:

bj2 D ˛ � bj1; j D 1; : : : ; 6

The next six statements constrain the error variances so as to ensure that an embedded correlation structure
model is being fitted. That is, each error variance is dependent on the corresponding loadings, as prescribed
by the following equation:

‰jj D 1: � b
2
j1 � b

2
j2; j D 1; : : : ; 6

These twelve constraints reduce the number of independent parameters to 13, as expected.

The next block of SAS programming statements are essentially for relating the correlation structure parameters
to the covariance structures that are specified in the FACTOR and the PVAR statements. These SAS
programming statements realize the required relations: T D DB and K D D‰D0, but in non-matrix forms:

tj i D dj bj i .j D 1; : : : ; 6I i D 1; 2/

kjj D djdj‰jj .j D 1; : : : ; 6/

where dj denotes the jth diagonal element of D.

The fit summary is presented in Output 29.27.4. The chi-square test statistic is 14.63 with df = 8 (p = 0.067).
This shows that the previous chi-square test based on fitting a wrong covariance structure model is indeed
questionable.

Output 29.27.4 Model Fit of the Correlation Structures

Fit Summary

Chi-Square 14.6269

Chi-Square DF 8

Pr > Chi-Square 0.0668

Estimates of the loadings and error variances are presented in Output 29.27.5. These estimates are for the
covariance structure model with loading matrix T and error covariance matrix K. They are rescaled versions
of the correlation structure parameters and are not of primary interest themselves.
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Output 29.27.5 Estimates of Loadings and Error Variances

Factor Loading
Matrix

factor1 factor2

var1 0.3448
[t11]

0.6367
[t12]

var2 0.3200
[t21]

0.6512
[t22]

var3 0.4873
[t31]

0.4778
[t32]

var4 0.5703
[t41]

0.3948
[t42]

var5 0.7741
[t51]

0.1964
[t52]

var6 0.6778
[t61]

0.3126
[t62]

Factor Covariance
Matrix

factor1 factor2

factor1 1.0000 0

factor2 0 1.0000

Error Variances

Variable Parameter Estimate

var1 k1 0.49119

var2 k2 0.46780

var3 k3 0.51597

var4 k4 0.50070

var5 k5 0.35505

var6 k6 0.47685

The parameter estimates of the embedded correlation structures are shown in Output 29.27.6 as “additional”
parameters.
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Output 29.27.6 Estimates of Correlation Structure Parameters

Additional Parameters

Type Parameter Estimate

Independent alpha 0.97400

d1 1.00771

d2 0.99712

d3 0.99078

d4 0.99085

d5 0.99640

d6 1.01687

b11 0.34217

b21 0.32095

b31 0.49179

b41 0.57553

b51 0.77686

b61 0.66659

Dependent b12 0.63183

b22 0.65305

b32 0.48222

b42 0.39848

b52 0.19714

b62 0.30742

psi1 0.48371

psi2 0.47051

psi3 0.52561

psi4 0.50998

psi5 0.35762

psi6 0.46116

Except for the population standard deviation parameter d’s, all other parameters estimated in the current
model can be compared with those from the previous fitting of an incorrect covariance structure model.
Although estimates in the current model do not differ very much from those in the previous specification, it is
at least reassuring that they are obtained from fitting a correctly specified covariance structure model with the
intended correlation structures embedded.
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Example 29.28: Multiple-Group Model for Purchasing Behavior
In this example, data were collected from customers who made purchases from a retail company during years
2002 and 2003. A two-group structural equation model is fitted to the data.

The variables are:

Spend02: total purchase amount in 2002

Spend03: total purchase amount in 2003

Courtesy: rating of the courtesy of the customer service

Responsive: rating of the responsiveness of the customer service

Helpful: rating of the helpfulness of the customer service

Delivery: rating of the timeliness of the delivery

Pricing: rating of the product pricing

Availability: rating of the product availability

Quality: rating of the product quality

For the ratings scales, nine-point scales were used. Customers could respond 1 to 9 on these scales, with
1 representing “extremely unsatisfied” and 9 representing “extremely satisfied.” Data were collected from
two different regions, which are labeled as Region 1 (N D 378) and Region 2 (N D 423), respectively. The
ratings were collected at the end of year 2002 so that they represent customers’ purchasing experience in
year 2002.

The central questions of the study are:

• How does the overall customer service affect the current purchases and predict future purchases?

• How does the overall product quality affect the current purchases and predict future purchases?

• Do current purchases predict future purchases?

• Do the two regions have different structural models for predicting the purchases?

In stating these research questions, you use several constructs that might or might not correspond to objective
measurements. Current and future purchases are certainly measurable directly by the spending of the
customers. That is, because customer service and product satisfaction and quality were surveyed between
2002 and 2003, Spend02 represents current purchases and Spend03 represents future purchases in the study.
Both variables Spend02 and Spend03 are objective measurements without measurement errors. All you
need to do is to extract the information from the transaction records. But how about hypothetical constructs
such as customer service quality and product quality? How would you measure them in the model?
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In measuring these hypothetical constructs, you might ask customers’ perception about the service or product
quality directly in a single question. A simple survey with two questions about the customer service and
product qualities could then be what you need. These questions are called indicators (or indicator variables)
of the underlying constructs. However, using just one indicator (question) for each of these hypothetical
constructs would be quite unreliable—that is, measurement errors might dominate in the data collection
process. Therefore, multiple indicators are usually recommended for measuring such hypothetical constructs.

There are two main advantages of using multiple indicators for hypothetical constructs. The first one is
conceptual and the other is statistical and mathematical.

First, hypothetical constructs might conceptually be multifaceted themselves. Measuring a hypothetical
construct by a single indicator does not capture the full meaning of the construct. For example, the product
quality might refer to the durability of the product, the outlook of the product, the pricing of the product, and
the availability of product, among others. The customer service quality might refer to the politeness of the
customer service, the timeliness of the delivery, and the responsiveness of customer services, among others.
Therefore, multiple indicators for a single hypothetical construct might be necessary if you want to cover the
multifaceted aspects of a given hypothetical construct.

Second, from a statistical point of view, the reliability would be higher if you combine correlated indicators
for a construct than if you use a single indicator only. Therefore, combining correlated indicators would lead
to more accurate and reliable results.

One way to combine correlated indicators is to use a simple sum of them to represent the underlying
hypothetical construct. However, a better way is to use the structural equation modeling technique that
represents each indicator (variable) as a function of the underlying hypothetical construct plus an error
term. In structural equation modeling, hypothetical constructs are constructed as latent factors, which are
unobserved systematic (that is, non-error) variables. Theoretically, latent factors are free from measurement
errors, and so the estimation through the structural equation modeling technique is more accurate than if
you just use simple sums of indicators to represent hypothetical constructs. Therefore, a structural equation
modeling approach is the method of the choice in the current analysis.

In practice, you must also make sure that there are enough indicators for the identification of the underlying
latent factor, and hence the identification of the entire model. Necessary and sufficient rules for identification
are very complicated to describe and are out of the scope of the current discussion (however, see Bollen
1989b for discussions of identification rules for various classes of structural equation models). Some simple
rules of thumb might be useful as a guidance. For example, for unconstrained situations, you should at least
have three indicators (variables) measured for a latent factor. Unfortunately, these rules of thumb do not
guarantee identification in every case.

In this example, Service and Product are latent factors in the structural equation model which represent
service and product qualities, respectively. In the model, these two latent factors are reflected by the ratings
of the customers. Ratings on the Courtesy, Responsive, Helpful, and Delivery scales are indicators of Service.
Ratings on the Pricing, Availability, and Quality scales are indicators of Product (that is, product quality).
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A Path Diagram

A path diagram shown in Figure 29.27 represents the structural equation model for the purchase behavior.
Observed or manifest variables are represented by rectangles, and latent variables are represented by ovals.
As mentioned, two latent variables (factors), Service and Product, are created as overall measures of customer
service and product qualities, respectively.

Figure 29.27 Path Diagram of Purchasing Behavior
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The left part of the diagram represents the measurement model of the latent variables. The Service factor
has four indicators: Courtesy, Responsive, Helpful, and Delivery. The path coefficients to these observed
variables from the Service factor are b1, b2, b3, and b4, respectively. Similarly, the Product variable has
three indicators: Pricing, Availability, and Quality, with path coefficients b5, b6, and b7, respectively.

The two latent factors are predictors of the purchase amounts Spend02 and Spend03. In addition, Spend02
also serves as a predictor of Spend03. Path coefficients (effects) for this part of functional relationships are
represented by a1–a5 in the diagram.

Each variable in the path diagram has a variance parameter. For endogenous or dependent variables, which
serve as outcome variables in the model, the variance parameters are the error variances that are not accounted
for by the predictors. For example, in the current model all observed variables are endogenous variables. The
double-headed arrows that are attached to these variables represent error variances. In the diagram, �1 to �9
are the names of these error variance parameters. For exogenous or independent variables, which never serve
as outcome variables in the model, the variance parameters are the (total) variances of these variables. For
example, in the diagram the double-headed arrows that are attached to Service and Product represent the
variances of these two latent variables. In the current model, both of these variances are fixed at one.
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When the double-headed arrows point to two variables, they represent covariances in the path diagram. For
example, in Figure 29.27 the covariance between Service and Product is represented by the parameter �.

The Basic Path Model Specification

For the moment, it is hypothesized that both ‘Region 1’ and ‘Region 2’ data are fitted by the same model
as shown in Figure 29.27. Once the path diagram is drawn, it is readily translated into the PATH modeling
language. See the PATH statement on page 1322 for details about how to use the PATH modeling language
to specify structural equation models.

To represent all the features in the path diagram in the PATH model language, you can use the following
specification:

path
Service ===> Spend02 = a1,
Service ===> Spend03 = a1,
Product ===> Spend02 = a3,
Product ===> Spend03 = a4,
Spend02 ===> Spend03 = a5,
Service ===> Courtesy = b1,
Service ===> Responsive = b2,
Service ===> Helpful = b3,
Service ===> Delivery = b4,
Product ===> Pricing = b5,
Product ===> Availability = b6,
Product ===> Quality = b7;

pvar
Courtesy Responsive Helpful
Delivery Pricing
Availability Quality = theta01-theta07,
Spend02 = theta08,
Spend03 = theta09,
Service Product = 2 * 1.;

pcov
Service Product = phi;

The PATH statement captures all the path coefficient specifications and the direction of the paths (single-
headed arrows) in the path diagram. The first five paths define how Spend02 and Spend03 are predicted from
the latent variables Service, Product, and Spend02. The next seven paths define the measurement model,
which shows how the latent variables in the model relate to the observed indicator variables.

The PVAR statement captures the specification of the error variances and the variances of exogenous variables
(that is, the double-headed arrows in the path diagram). The PCOV statement captures the specification of
covariance between the two latent variables in the model (which is represented by the double-headed arrow
that connects Service and Product in the path diagram).
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You can also use the following simpler version of the PATH model specification for the path diagram:

path
Service ===> Spend02 Spend03 ,
Product ===> Spend02 Spend03 ,
Spend02 ===> Spend03 ,
Service ===> Courtesy Responsive

Helpful Delivery ,
Product ===> Pricing Availability

Quality ;
pvar

Courtesy Responsive Helpful Delivery Pricing
Availability Quality Spend02 Spend03,
Service Product = 2 * 1.;

pcov
Service Product;

There are two simplifications in this PATH model specification. First, you do not need to specify the parameter
names if they are unconstrained in the model. For example, parameter a1 in the model is unique to the path
effect from Service to Spend02. You do not need to name this effect because it is not constrained to be the
same as any other parameter in the model. Similar, all the path coefficients (effects), error variances, and
covariances in the path diagram are not constrained. Therefore, you can omit all the corresponding parameter
name specifications in the PATH model specification. The only exceptions are the variances of Service and
Product. Both are fixed constants 1 in the path diagram, and so you must specify them explicitly in the PVAR
statement.

Second, you use a condensed way to specify the paths. In the first three path entries of the PATH statement, you
specify how Spend02 and Spend03 are predicted from the latent variables Service, Product, and Spend02.
Notice that in each path entry, you can define more than one path (single-headed arrow relationship). For
example, in the first path entry, you specify two paths: one is Service===>Spend02 and the other is
Service===>Spend03. In the last two path entries of the PATH statement, you define the relationships
between the two latent constructs Spend and Service and their measured indicators. Each of these path
entries specifies multiple paths (single-headed arrow relationships).

You use this simplified PATH specifications in the subsequent analysis.

A Restrictive Model with Invariant Mean and Covariance Structures

In this section, you fit a mean and covariance structure model to the data from two regions, as shows in the
following DATA steps:
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data region1(type=cov);
input _type_ $6. _name_ $12. Spend02 Spend03 Courtesy Responsive

Helpful Delivery Pricing Availability Quality;
datalines;

COV Spend02 14.428 2.206 0.439 0.520 0.459 0.498 0.635 0.642 0.769
COV Spend03 2.206 14.178 0.540 0.665 0.560 0.622 0.535 0.588 0.715
COV Courtesy 0.439 0.540 1.642 0.541 0.473 0.506 0.109 0.120 0.126
COV Responsive 0.520 0.665 0.541 2.977 0.582 0.629 0.119 0.253 0.184
COV Helpful 0.459 0.560 0.473 0.582 2.801 0.546 0.113 0.121 0.139
COV Delivery 0.498 0.622 0.506 0.629 0.546 3.830 0.120 0.132 0.145
COV Pricing 0.635 0.535 0.109 0.119 0.113 0.120 2.152 0.491 0.538
COV Availability 0.642 0.588 0.120 0.253 0.121 0.132 0.491 2.372 0.589
COV Quality 0.769 0.715 0.126 0.184 0.139 0.145 0.538 0.589 2.753
MEAN . 183.500 301.921 4.312 4.724 3.921 4.357 6.144 4.994 5.971
;

data region2(type=cov);
input _type_ $6. _name_ $12. Spend02 Spend03 Courtesy Responsive

Helpful Delivery Pricing Availability Quality;
datalines;

COV Spend02 14.489 2.193 0.442 0.541 0.469 0.508 0.637 0.675 0.769
COV Spend03 2.193 14.168 0.542 0.663 0.574 0.623 0.607 0.642 0.732
COV Courtesy 0.442 0.542 3.282 0.883 0.477 0.120 0.248 0.283 0.387
COV Responsive 0.541 0.663 0.883 2.717 0.477 0.601 0.421 0.104 0.105
COV Helpful 0.469 0.574 0.477 0.477 2.018 0.507 0.187 0.162 0.205
COV Delivery 0.508 0.623 0.120 0.601 0.507 2.999 0.179 0.334 0.099
COV Pricing 0.637 0.607 0.248 0.421 0.187 0.179 2.512 0.477 0.423
COV Availability 0.675 0.642 0.283 0.104 0.162 0.334 0.477 2.085 0.675
COV Quality 0.769 0.732 0.387 0.105 0.205 0.099 0.423 0.675 2.698
MEAN . 156.250 313.670 2.412 2.727 5.224 6.376 7.147 3.233 5.119
;

To include the analysis of the mean structures, you need to introduce the mean and intercept parameters in the
model. Although various researchers propose some representation schemes that include the mean parameters
in the path diagram, the mean parameters are not depicted in Figure 29.27. The reason is that representing the
mean and intercept parameters in the path diagram would usually obscure the “causal” paths, which are of
primary interest. In addition, it is a simple matter to specify the mean and intercept parameters in the MEAN
statement without the help of a path diagram when you follow these principles:

• Each variable in the path diagram has a mean parameter that can be specified in the MEAN statement.
For an exogenous variable, the mean parameter refers to the variable mean. For an endogenous variable,
the mean parameter refers to the intercept of the variable.

• The means of exogenous observed variables are free parameters by default. The means of exogenous
latent variables are fixed zeros by default.
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• The intercepts of endogenous observed variables are free parameters by default. The intercepts of
endogenous latent variables are fixed zeros by default.

• The total number of mean parameters should not exceed the number of observed variables.

Because all nine observed variables are endogenous (each has at least one single-headed arrow pointing to it)
in the path diagram, you can specify these nine intercepts in the MEAN statement, as shown in the following
specification:

mean
Courtesy Responsive Helpful Delivery Pricing
Availability Quality Spend02 Spend03;

However, the intercepts of endogenous observed variables are already free parameters by default and this
MEAN statement specification is not necessary for the current situation. For the means of the latent variables
Service and Product, you do not have any theoretical reasons to set them other than the default fixed zero.
Hence, you do not need to set these mean parameters explicitly either. Consequently, to include the analysis
of the mean structures with these default mean parameters, all you need to specify the MEANSTR option in
the PROC CALIS statement, as shown in the following specification of the fitting of a constrained two-group
model for the purchase data:

proc calis meanstr;
group 1 / data=region1 label="Region 1" nobs=378;
group 2 / data=region2 label="Region 2" nobs=423;
model 1 / group=1,2;

path
Service ===> Spend02 Spend03 ,
Product ===> Spend02 Spend03 ,
Spend02 ===> Spend03 ,
Service ===> Courtesy Responsive

Helpful Delivery ,
Product ===> Pricing Availability

Quality ;
pvar

Courtesy Responsive Helpful Delivery Pricing
Availability Quality Spend02 Spend03,
Service Product = 2 * 1.;

pcov
Service Product;

run;
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You use the GROUP statements to specify the data for the two regions. Using the DATA= options in the
GROUP statements, you assign the ‘Region 1’ data to Group 1 and the ‘Region 2’ data to Group 2. You label
the two groups by the LABEL= options. Because the number of observations is not defined in the data sets,
you use the NOBS= options in the GROUP statements to provide this information.

In the MODEL statement, you specify in the GROUP= option that both Groups 1 and 2 are fitted by the same
model—model 1. Next, the path model is specified. As discussed before, you do not need to specify the
default mean parameters by using the MEAN statement because the MEANSTR option in the PROC CALIS
statement already indicates the analysis of mean structures.

Output 29.28.1 presents a summary of modeling information. Each group is listed with its associated data
set, number of observations, and its corresponding model and the model type. In the current analysis, the
same model is fitted to both groups. Next, a table for the types of variables is presented. As intended, all nine
observed (manifest) variables are endogenous, and all latent variables are exogenous in the model.

Output 29.28.1 Modeling Information and Variables

Modeling Information

Maximum Likelihood Estimation

Group Label Data Set N Obs Model Type Analysis

1 Region 1 WORK.REGION1 378 Model 1 PATH Means and Covariances

2 Region 2 WORK.REGION2 423 Model 1 PATH Means and Covariances

Model 1. Variables in the Model

Endogenous Manifest Availability  Courtesy  Delivery  Helpful  Pricing  Quality  Responsive  Spend02  Spend03

Latent

Exogenous Manifest

Latent Product  Service

Number of Endogenous Variables = 9
Number of Exogenous Variables = 2
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The optimization converges. The fit summary table is presented in Output 29.28.2.

Output 29.28.2 Fit Summary

Fit Summary

Modeling Info Number of Observations 801

Number of Variables 9

Number of Moments 108

Number of Parameters 31

Number of Active Constraints 0

Baseline Model Function Value 0.5003

Baseline Model Chi-Square 399.7468

Baseline Model Chi-Square DF 72

Pr > Baseline Model Chi-Square <.0001

Absolute Index Fit Function 3.5297

Chi-Square 2820.2504

Chi-Square DF 77

Pr > Chi-Square <.0001

Z-Test of Wilson & Hilferty 43.2575

Hoelter Critical N 29

Root Mean Square Residual (RMR) 28.2208

Standardized RMR (SRMR) 2.1367

Goodness of Fit Index (GFI) 0.9996

Parsimony Index Adjusted GFI (AGFI) 0.9995

Parsimonious GFI 1.0690

RMSEA Estimate 0.2986

RMSEA Lower 90% Confidence Limit 0.2892

RMSEA Upper 90% Confidence Limit 0.3081

Probability of Close Fit <.0001

Akaike Information Criterion 2882.2504

Bozdogan CAIC 3058.5121

Schwarz Bayesian Criterion 3027.5121

McDonald Centrality 0.1804

Incremental Index Bentler Comparative Fit Index 0.0000

Bentler-Bonett NFI -6.0551

Bentler-Bonett Non-normed Index -6.8265

Bollen Normed Index Rho1 -5.5970

Bollen Non-normed Index Delta2 -7.4997

James et al. Parsimonious NFI -6.4756
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The model chi-square statistic is 2820.25. With df = 77 and p < .0001, the null hypothesis for the mean and
covariance structures is rejected. All incremental fit indices are negative. These negative indices indicate a
bad model fit, as compared with the independence model. The same fact can be deduced by comparing the
chi-square values of the baseline model and the fitted model. The baseline model has five degrees of freedom
less (five parameters more) than the structural model but the chi-square value is only 399.747, much less than
the model fit chi-square value of 2820.25. Because variables in social and behavioral sciences are almost
always expected to correlate with each other, a structural model that explains relationships even worse than
the baseline model is deemed inappropriate for the data. The RMSEA for the structural model is 0.2986,
which also indicates a bad model fit. However, the GFI, AGFI, and parsimonious GFI indicate good model
fit, which is a little surprising given the fact that all other indices indicate the opposite and the overall model
is pretty restrictive in the first place.

There are some warnings in the output:

WARNING: Model 1. The estimated error variance for variable Spend02 is
negative.

WARNING: Model 1. Although all predicted variances for the observed and
latent variables are positive, the corresponding predicted
covariance matrix is not positive definite. It has one negative
eigenvalue.

PROC CALIS routinely checks the properties of the estimated variances and the predicted covariance matrix.
It issues warnings when there are problems. In this case, the error variance estimate of Spend02 is negative,
and the predicted covariance matrix for the observed and latent variables is not positive definite and has one
negative eigenvalue. You can inspect Output 29.28.3, which shows the variance parameter estimates of the
variables.

Output 29.28.3 Variance Estimates

Model 1. Variance Parameters

Variance
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Error Courtesy _Parm13 2.59181 0.13600 19.0574 <.0001

Responsive _Parm14 2.92423 0.15325 19.0821 <.0001

Helpful _Parm15 2.44625 0.12320 19.8566 <.0001

Delivery _Parm16 3.53408 0.18169 19.4510 <.0001

Pricing _Parm17 2.52948 0.12784 19.7869 <.0001

Availability _Parm18 1.57410 0.16884 9.3230 <.0001

Quality _Parm19 2.41658 0.13230 18.2661 <.0001

Spend02 _Parm20 -14.40124 16.92863 -0.8507 0.3949

Spend03 _Parm21 22.79309 5.75120 3.9632 <.0001

Exogenous Service 1.00000

Product 1.00000

The error variance estimate for Spend02 is –14.40, which is negative and might have led to the negative
eigenvalue problem in the predicted covariance matrix for the observed and latent variables.
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A Model with Unconstrained Parameters for the Two Regions

With all the bad model fit indications and the problematic predicted covariance matrix for the latent variables,
you might conclude that an overly restricted model has been fit. Region 1 and Region 2 might not share
exactly the same set of parameters. How about fitting a model at the other extreme with all parameters
unconstrained for the two groups (regions)? Such a model can be easily specified, as shown in the following
statements:

proc calis meanstr;
group 1 / data=region1 label="Region 1" nobs=378;
group 2 / data=region2 label="Region 2" nobs=423;
model 1 / group=1;

path
Service ===> Spend02 Spend03 ,
Product ===> Spend02 Spend03 ,
Spend02 ===> Spend03 ,
Service ===> Courtesy Responsive Helpful Delivery ,
Product ===> Pricing Availability Quality ;

pvar
Courtesy Responsive Helpful Delivery Pricing
Availability Quality Spend02 Spend03,
Service Product = 2 * 1.;

pcov
Service Product;

model 2 / group=2;
refmodel 1/ allnewparms;

run;

Unlike the previous specification, in the current specification Group 2 is now fitted by a new model labeled
as Model 2. This model is based on Model 1, as specified in REFMODEL statement. The ALLNEWPARMS
option in the REFMODEL statement request that all parameters specified in Model 1 be renamed so that they
become new parameters in Model 2. As a result, this specification gives different sets of estimates for Model
1 and Model 2, although both models have the same path structures and a comparable set of parameters.

The optimization converges without problems. The fit summary table is displayed in Output 29.28.4. The
chi-square statistic is 29.613 (df = 46, p = .97). The theoretical model is not rejected. Many other measures
of fit also indicate very good model fit. For example, the GFI, AGFI, Bentler CFI, Bentler-Bonett NFI, and
Bollen nonnormed index delta2 are all close to one, and the RMSEA is close to zero.
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Output 29.28.4 Fit Summary

Fit Summary

Modeling Info Number of Observations 801

Number of Variables 9

Number of Moments 108

Number of Parameters 62

Number of Active Constraints 0

Baseline Model Function Value 0.5003

Baseline Model Chi-Square 399.7468

Baseline Model Chi-Square DF 72

Pr > Baseline Model Chi-Square <.0001

Absolute Index Fit Function 0.0371

Chi-Square 29.6131

Chi-Square DF 46

Pr > Chi-Square 0.9710

Z-Test of Wilson & Hilferty -1.8950

Hoelter Critical N 1697

Root Mean Square Residual (RMR) 0.0670

Standardized RMR (SRMR) 0.0220

Goodness of Fit Index (GFI) 1.0000

Parsimony Index Adjusted GFI (AGFI) 1.0000

Parsimonious GFI 0.6389

RMSEA Estimate 0.0000

RMSEA Lower 90% Confidence Limit 0.0000

RMSEA Upper 90% Confidence Limit 0.0000

Probability of Close Fit 1.0000

Akaike Information Criterion 153.6131

Bozdogan CAIC 506.1365

Schwarz Bayesian Criterion 444.1365

McDonald Centrality 1.0103

Incremental Index Bentler Comparative Fit Index 1.0000

Bentler-Bonett NFI 0.9259

Bentler-Bonett Non-normed Index 1.0783

Bollen Normed Index Rho1 0.8840

Bollen Non-normed Index Delta2 1.0463

James et al. Parsimonious NFI 0.5916
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Notice that because there are no constraints between the two models for the groups, you might have fit the
two sets of data by the respective models separately and gotten exactly the same results as in the current
analysis. For example, you get two model fit chi-square values from separate analyses. Adding up these two
chi-squares gives you the same overall chi-square as in Output 29.28.4.

PROC CALIS also provides a table for comparing the relative model fit of the groups. In Output 29.28.5, basic
modeling information and some measures of fit for the two groups are shown along with the corresponding
overall measures.

Output 29.28.5 Fit Comparison among Groups

Fit Comparison Among Groups

Overall Region 1 Region 2

Modeling Info Number of Observations 801 378 423

Number of Variables 9 9 9

Number of Moments 108 54 54

Number of Parameters 62 31 31

Number of Active Constraints 0 0 0

Baseline Model Function Value 0.5003 0.4601 0.5363

Baseline Model Chi-Square 399.7468 173.4482 226.2986

Baseline Model Chi-Square DF 72 36 36

Fit Index Fit Function 0.0371 0.0023 0.0681

Percent Contribution to Chi-Square 100 3 97

Root Mean Square Residual (RMR) 0.0670 0.0172 0.0907

Standardized RMR (SRMR) 0.0220 0.0057 0.0298

Goodness of Fit Index (GFI) 1.0000 1.0000 1.0000

Bentler-Bonett NFI 0.9259 0.9950 0.8730
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When you examine the results of this table, the first thing you have to realize is that in general the group
statistics are not independent. For example, although the overall chi-square statistic can be written as
the weighted sum of fit functions of the groups, in general it does not imply that the individual terms are
statistically independent. In the current two-group analysis, the overall chi-square is written as

T D .N1 � 1/f1 C .N2 � 1/f2

where N1 and N2 are sample sizes for the groups and f1 and f2 are the discrepancy functions for the groups.
Even though T is chi-square distributed under the null hypothesis, in general the individual terms .N1 � 1/f1
and .N2 � 1/f2 are not chi-square distributed under the same null hypothesis. So when you compare the
group fits by using the statistics in Output 29.28.5, you should treat those as descriptive measures only.

The current model is a special case where f1 and f2 are actually independent of each other. The reason
is that there are no constrained parameters for the models fitted to the two groups. This would imply
that the individual terms .N1 � 1/f1 and .N2 � 1/f2 are chi-square distributed under the null hypothesis.
Nonetheless, this fact is not important to the group comparison of the descriptive statistics in Output 29.28.5.
The values of f1 and f2 are shown in the row labeled “Fit Function.” Group 1 (Region 1) is fitted better
by its model (f1 D 0:0023) than is Group 2 (Region 2) by its model (f2 D 0:0681). Next, the percentage
contributions to the overall chi-square statistic for the two groups are shown. Group 1 contributes only
3% (D .N1 � 1/f1=T � 100%) while Group 2 contributes 97%. Other measures like RMR, SRMR, and
Bentler-Bonett NFI show that Group 1 data are fitted better. The GFI’s show equal fits for the two groups,
however.

Despite a very good fit, the current model is not intended to be the final model. It was fitted mainly for
illustration purposes. The next section considers a partially constrained model for the two groups of data.

A Model with Partially Constrained Parameters for the Two Regions

For multiple-group analysis, cross-group constraints are of primary interest and should be explored whenever
appropriate. The first fitting with all model parameters constrained for the groups has been shown to be
too restrictive, while the current model with no cross-group constraints fits very well—so well that it might
have overfit unnecessarily. A multiple-group model between these extremes is now explored. The following
statements specify such a partially constrained model:
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proc calis meanstr modification;
group 1 / data=region1 label="Region 1" nobs=378;
group 2 / data=region2 label="Region 2" nobs=423;
model 3 / label="Model for References Only";

path
Service ===> Spend02 Spend03 ,
Product ===> Spend02 Spend03 ,
Spend02 ===> Spend03 ,
Service ===> Courtesy Responsive

Helpful Delivery ,
Product ===> Pricing Availability

Quality ;
pvar

Courtesy Responsive Helpful Delivery Pricing
Availability Quality Spend02 Spend03,
Service Product = 2 * 1.;

pcov
Service Product;

model 1 / groups=1;
refmodel 3;
mean

Spend02 Spend03 = G1_InterSpend02 G1_InterSpend03,
Courtesy Responsive Helpful
Delivery Pricing Availability
Quality = G1_intercept01-G1_intercept07;

model 2 / groups=2;
refmodel 3;
mean

Spend02 Spend03 = G2_InterSpend02 G2_InterSpend03,
Courtesy Responsive Helpful
Delivery Pricing Availability
Quality = G2_intercept01-G2_intercept07;

simtests
SpendDiff = (Spend02Diff Spend03Diff)
MeasurementDiff = (CourtesyDiff ResponsiveDiff

HelpfulDiff DeliveryDiff
PricingDiff AvailabilityDiff
QualityDiff);

Spend02Diff = G2_InterSpend02 - G1_InterSpend02;
Spend03Diff = G2_InterSpend03 - G1_InterSpend03;
CourtesyDiff = G2_intercept01 - G1_intercept01;
ResponsiveDiff = G2_intercept02 - G1_intercept02;
HelpfulDiff = G2_intercept03 - G1_intercept03;
DeliveryDiff = G2_intercept04 - G1_intercept04;
PricingDiff = G2_intercept05 - G1_intercept05;
AvailabilityDiff = G2_intercept06 - G1_intercept06;
QualityDiff = G2_intercept07 - G1_intercept07;

run;
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In this specification, you use a special model definition. Model 3 serves as a reference model. You are not
going to fit this model directly to any data set, but the specifications of other two models makes reference to
it. Model 3 is no different from the basic path model specification used in preceding examples. The PATH
model specification reflects the path diagram in Figure 29.27.

Region 1 is fitted by Model 1, which makes reference to Model 3 by using the REFMODEL statement. In
addition, you add the MEAN statement specification. You now specify the intercept parameters explicitly by
using the parameter names G1_intercept01–G1_intercept07, G1_InterSpend02, and G1_InterSpend03. In
previous examples, these intercept parameters are set by default by PROC CALIS. This explicit parameter
naming serves the purpose of distinguishing these parameters from those for Model 2.

Region 2 is fitted by Model 2, which also refers to Model 3 by using the REFMODEL statement. You also
specify a MEAN statement for this model with explicit specifications of the intercept parameters. You name
these intercepts G2_intercept01–G2_intercept07, G2_InterSpend02, and G2_InterSpend03. The G2 prefix
distinguishes these parameters from the corresponding intercept parameters in the parent model. All in all,
this means that both Models 1 and 2 refers to Model 3, except that Model 2 uses a different set of intercept
parameters. In other words, in this multiple-group model the covariance structures for the two regions are
constrained to be the same, while the means structures are allowed to be unconstrained.

You request additional statistics or tests in the current PROC CALIS analysis. The MODIFICATION option
in the PROC CALIS statement requests that the Lagrange multiplier tests and Wald tests be conducted. The
Lagrange multiplier tests provide information about which constrained or fixed parameters could be freed
or added so as to improve the overall model fit. The Wald tests provide information about which existing
parameters could be fixed at zeros (eliminated) without significantly affecting the overall model fit. These
tests are discussed in more detail when the results are presented.

In the SIMTESTS statement, two simultaneous tests are requested. The first simultaneous test is named
SpendDiff, which includes two parametric functions Spend02Diff and Spend03Diff. The second simultaneous
test is named MeasurementDiff, which includes seven parametric functions: CourtesyDiff, ResponsiveDiff,
HelpfulDiff, DeliveryDiff, PricingDiff, AvailabilityDiff, and QualityDiff. The null hypothesis of these simultaneous
tests is of the form

H0 W ti D 0 .i D 1 : : : k/

where k is the number of parametric functions within the simultaneous test. In the current analysis, the
component parametric functions are defined in the SAS programming statements, which are shown in the
last block of the specification. Essentially, all these parametric functions represent the differences of the
mean or intercept parameters between the two models for groups. The first simultaneous test is intended
to test whether the mean or intercept parameters in the structural models are the same, while the second
simultaneous test is intended to test whether the mean parameters in the measurement models are the same.

The fit summary table is shown in Output 29.28.6.
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Output 29.28.6 Fit Summary

Fit Summary

Modeling Info Number of Observations 801

Number of Variables 9

Number of Moments 108

Number of Parameters 40

Number of Active Constraints 0

Baseline Model Function Value 0.5003

Baseline Model Chi-Square 399.7468

Baseline Model Chi-Square DF 72

Pr > Baseline Model Chi-Square <.0001

Absolute Index Fit Function 0.1346

Chi-Square 107.5461

Chi-Square DF 68

Pr > Chi-Square 0.0016

Z-Test of Wilson & Hilferty 2.9452

Hoelter Critical N 657

Root Mean Square Residual (RMR) 0.1577

Standardized RMR (SRMR) 0.0678

Goodness of Fit Index (GFI) 1.0000

Parsimony Index Adjusted GFI (AGFI) 0.9999

Parsimonious GFI 0.9444

RMSEA Estimate 0.0382

RMSEA Lower 90% Confidence Limit 0.0237

RMSEA Upper 90% Confidence Limit 0.0514

Probability of Close Fit 0.9275

Akaike Information Criterion 187.5461

Bozdogan CAIC 414.9806

Schwarz Bayesian Criterion 374.9806

McDonald Centrality 0.9756

Incremental Index Bentler Comparative Fit Index 0.8793

Bentler-Bonett NFI 0.7310

Bentler-Bonett Non-normed Index 0.8722

Bollen Normed Index Rho1 0.7151

Bollen Non-normed Index Delta2 0.8808

James et al. Parsimonious NFI 0.6904

The chi-square value is 107.55 (df = 68, p = 0.0016), which is statistically significant. The null hypothesis of
the mean and covariance structures is rejected if an ˛-level at 0.01 or larger is chosen. However, in practical
structural equation modeling, the chi-square test is not the only criterion, or even an important criterion, for
evaluating model fit. The RMSEA estimate for the current model is 0.0382, which indicates a good fit. The
probability level of close fit is 0.9275, indicating that a good population fit hypothesis (that is, population
RMSEA < 0.05) cannot be rejected. The GFI, AGFI, and parsimonious GFI all indicate good fit. However,
the incremental indices show only a respectable model fit.

Comparison of the model fit to the groups is shown in Output 29.28.7.
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Output 29.28.7 Fit Comparison among Groups

Fit Comparison Among Groups

Overall Region 1 Region 2

Modeling Info Number of Observations 801 378 423

Number of Variables 9 9 9

Number of Moments 108 54 54

Number of Parameters 40 31 31

Number of Active Constraints 0 0 0

Baseline Model Function Value 0.5003 0.4601 0.5363

Baseline Model Chi-Square 399.7468 173.4482 226.2986

Baseline Model Chi-Square DF 72 36 36

Fit Index Fit Function 0.1346 0.1261 0.1422

Percent Contribution to Chi-Square 100 44 56

Root Mean Square Residual (RMR) 0.1577 0.1552 0.1599

Standardized RMR (SRMR) 0.0678 0.0792 0.0557

Goodness of Fit Index (GFI) 1.0000 1.0000 1.0000

Bentler-Bonett NFI 0.7310 0.7260 0.7348

Looking at the percentage contribution to the chi-square, the Region 2 fitting shows a worse fit. However,
this might be due to the larger sample size in Region 2. When comparing the fit of the two regions by using
RMR, which does not take the sample size into account, the fitting of two groups are about the same. The
standardized RMR even shows that Region 2 is fitted better. So, it seems to be safe to conclude that the
models fit almost equally well (or badly) for the two regions.

The constrained parameter estimates for the two regions are shown in Output 29.28.8.
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Output 29.28.8 Estimates of Path Coefficients and Other Covariance Parameters

Model 1. PATH List

Path Parameter Estimate
Standard

Error t Value Pr > |t|

Service ===> Spend02 _Parm01 0.37475 0.21318 1.7579 0.0788

Service ===> Spend03 _Parm02 0.53851 0.20840 2.5840 0.0098

Product ===> Spend02 _Parm03 0.80372 0.21939 3.6635 0.0002

Product ===> Spend03 _Parm04 0.59879 0.22144 2.7041 0.0068

Spend02 ===> Spend03 _Parm05 0.08952 0.03694 2.4233 0.0154

Service ===> Courtesy _Parm06 0.72418 0.07989 9.0648 <.0001

Service ===> Responsive _Parm07 0.90452 0.08886 10.1797 <.0001

Service ===> Helpful _Parm08 0.64969 0.07683 8.4557 <.0001

Service ===> Delivery _Parm09 0.64473 0.09021 7.1468 <.0001

Product ===> Pricing _Parm10 0.63452 0.07916 8.0160 <.0001

Product ===> Availability _Parm11 0.76737 0.08265 9.2852 <.0001

Product ===> Quality _Parm12 0.79716 0.08922 8.9347 <.0001

Model 1. Variance Parameters

Variance
Type Variable Parameter Estimate

Standard
Error t Value Pr > |t|

Error Courtesy _Parm13 1.98374 0.13169 15.0638 <.0001

Responsive _Parm14 2.02152 0.16159 12.5101 <.0001

Helpful _Parm15 1.96535 0.12263 16.0273 <.0001

Delivery _Parm16 2.97542 0.17049 17.4518 <.0001

Pricing _Parm17 1.93952 0.12326 15.7358 <.0001

Availability _Parm18 1.63156 0.13067 12.4865 <.0001

Quality _Parm19 2.08849 0.15329 13.6246 <.0001

Spend02 _Parm20 13.47066 0.71842 18.7505 <.0001

Spend03 _Parm21 13.02883 0.68682 18.9697 <.0001

Exogenous Service 1.00000

Product 1.00000

Model 1. Covariances Among Exogenous Variables

Var1 Var2 Parameter Estimate
Standard

Error t Value Pr > |t|

Service Product _Parm22 0.33725 0.07061 4.7760 <.0001

All parameter estimates but one are statistically significant at ˛ D 0:05. The parameter _Parm01, which
represents the path coefficient from Service to Spend02, has a t value of 1.76. This is only marginally
significant. Although all these results bear the title of Model 1, these estimates are the same for Model 2, of
which the corresponding results are not shown here.

The mean and intercept parameters for the two models (regions) are shown in Output 29.28.9.
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Output 29.28.9 Estimates of Means and Intercepts

Model 1. Means and Intercepts

Type Variable Parameter Estimate
Standard

Error t Value Pr > |t|

Intercept Spend02 G1_InterSpend02 183.50000 0.19585 937.0 <.0001

Spend03 G1_InterSpend03 285.49480 6.78127 42.1005 <.0001

Courtesy G1_intercept01 4.31200 0.08157 52.8652 <.0001

Responsive G1_intercept02 4.72400 0.08679 54.4310 <.0001

Helpful G1_intercept03 3.92100 0.07958 49.2720 <.0001

Delivery G1_intercept04 4.35700 0.09484 45.9397 <.0001

Pricing G1_intercept05 6.14400 0.07882 77.9499 <.0001

Availability G1_intercept06 4.99400 0.07674 65.0732 <.0001

Quality G1_intercept07 5.97100 0.08500 70.2454 <.0001

Model 2. Means and Intercepts

Type Variable Parameter Estimate
Standard

Error t Value Pr > |t|

Intercept Spend02 G2_InterSpend02 156.25000 0.18511 844.1 <.0001

Spend03 G2_InterSpend03 299.68311 5.77478 51.8952 <.0001

Courtesy G2_intercept01 2.41200 0.07709 31.2863 <.0001

Responsive G2_intercept02 2.72700 0.08203 33.2435 <.0001

Helpful G2_intercept03 5.22400 0.07522 69.4532 <.0001

Delivery G2_intercept04 6.37600 0.08964 71.1270 <.0001

Pricing G2_intercept05 7.14700 0.07450 95.9343 <.0001

Availability G2_intercept06 3.23300 0.07254 44.5702 <.0001

Quality G2_intercept07 5.11900 0.08034 63.7150 <.0001

All the mean and intercept estimates are statistically significant at ˛ D 0:01. Except for the fixed zero means
for Service and Product, a quick glimpse of these mean and intercepts estimates shows a quite different
pattern for the two models. Do these estimates truly differ beyond chance? The simultaneous tests of these
parameter estimates shown in Output 29.28.10 can confirm this.

Output 29.28.10 shows two simultaneous tests, as requested in the original statements.
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Output 29.28.10 Simultaneous Tests

Simultaneous Tests

Simultaneous
Test

Parametric
Function

Function
Value DF Chi-Square p Value

SpendDiff 2 10458 <.0001

Spend02Diff -27.25000 1 10225 <.0001

Spend03Diff 14.18831 1 185.86725 <.0001

MeasurementDiff 7 1610 <.0001

CourtesyDiff -1.90000 1 286.58605 <.0001

ResponsiveDiff -1.99700 1 279.63659 <.0001

HelpfulDiff 1.30300 1 141.59942 <.0001

DeliveryDiff 2.01900 1 239.35318 <.0001

PricingDiff 1.00300 1 85.52567 <.0001

AvailabilityDiff -1.76100 1 278.09360 <.0001

QualityDiff -0.85200 1 53.06240 <.0001

The first one is SpendDiff, which tests simultaneously the following hypotheses:

H0 : G2_InterSpend02 = G1_InterSpend02

H0 : G2_InterSpend03 = G1_InterSpend03

The exceedingly large chi-square value 10,460 suggests the composite null hypothesis is false. Individual
tests for these hypotheses suggest that each of these hypotheses should be rejected. The chi-square values for
individual tests are 10,227 and 185.84, respectively.

Similarly, the simultaneous and individual tests of the intercepts in the measurement model suggest that the
two models (groups) differ significantly in the means of the measured variables. Region 2 has significantly
higher means in variables Helpful, Delivery, and Pricing, but significantly lower means in variables Courtesy,
Responsive, Availability, and Quality.

Now you are ready to answer the main research questions. The overall customer service (Service) does
affect the future purchase (Spend03), but not the current purchase (Spend02), because the corresponding
path coefficient (_Parm01) is only marginally significant. Perhaps this is an artifact because the rating was
done after the purchases in 2002. That is, purchases in 2002 had been done before the impression about
customer service was fully formed. However, this argument cannot explain why overall customer service
(Service) also shows a strong and significant relationship with purchases in 2002 (Spend02). Nonetheless,
customer service and product quality do affect the future purchases (Spend03) in an expected way, even after
partialling out the effect of the previous purchase amount (Spend02). Apart from the mean differences of the
variables, the common measurement and prediction (or structural) models fit the two regions very well.

Because the current model fits well and most parts of fitting meet your expectations, you might accept this
model without looking for further improvement. Nonetheless, for illustration purposes, it would be useful to
consider the LM test results. In Output 29.28.11, ranked LM statistics for the path coefficients in Model 1
and Model 2 are shown.
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Output 29.28.11 LM Tests for Path Coefficients

Model 1.
Rank Order of the 10 Largest LM Stat for Path

Relations

To From LM Stat Pr > ChiSq
Parm

Change

Service Courtesy 11.15249 0.0008 -0.17145

Service Helpful 3.09038 0.0788 0.09431

Service Delivery 2.59511 0.1072 0.07504

Courtesy Responsive 1.75943 0.1847 -0.07730

Delivery Courtesy 1.66721 0.1966 0.08669

Helpful Courtesy 1.62005 0.2031 0.07277

Courtesy Product 1.48928 0.2223 -0.14815

Service Product 0.83498 0.3608 -0.12327

Responsive Helpful 0.76664 0.3813 -0.05625

Product Helpful 0.53020 0.4665 -0.03831

Model 2.
Rank Order of the 10 Largest LM Stat for Path

Relations

To From LM Stat Pr > ChiSq
Parm

Change

Delivery Courtesy 16.91167 <.0001 -0.26641

Service Courtesy 9.11235 0.0025 0.15430

Courtesy Delivery 8.12091 0.0044 -0.12989

Courtesy Responsive 8.03954 0.0046 0.16215

Pricing Responsive 5.48406 0.0192 0.10424

Courtesy Product 4.39347 0.0361 0.24412

Courtesy Quality 3.52147 0.0606 0.08672

Service Delivery 3.20160 0.0736 -0.08281

Service Helpful 2.97015 0.0848 -0.09198

Responsive Pricing 2.91498 0.0878 0.08943

Path coefficients that lead to better improvement (larger chi-square decrease) are shown first in the tables.
For example, the first path coefficient that is suggested to be freed in Model 1 is the Service <=== Courtesy
path. The associated p-value is 0.0008 and the estimated change of parameter value is –0.171. The second
path coefficient is for the Service <=== Helpful path, but it is not significant at the 0.05 level. So, is it good to
add the Service <=== Courtesy path to Model 1, based on the LM test results? The answer is that it depends
on your application and the theoretical and practical implications. For example, the Service ===> Courtesy
path, which is a part of the measurement model, is already specified in Model 1. Even though the LM test
statistic shows a significant decrease of model fit chi-square, adding the Service <=== Courtesy path might
destroy the measurement model and lead to problematic interpretations. In this case, it is wise not to add the
Service <=== Courtesy path, which is suggested by the LM test results.

LM tests for the path coefficients in Model 2 are shown at the bottom of Output 29.28.11. Quite a few of
these tests suggest significant improvements in model fit. Again, you are cautioned against adding these
paths blindly.

LM tests for the error variances and covariances are shown in Output 29.28.12.
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Output 29.28.12 LM Tests for Error Covariances

Model 1.
Rank Order of the 10 Largest LM Stat for Error

Variances and Covariances

Error
of

Error
of LM Stat Pr > ChiSq

Parm
Change

Responsive Helpful 1.26589 0.2605 -0.15774

Delivery Courtesy 0.70230 0.4020 0.12577

Helpful Courtesy 0.50167 0.4788 0.09103

Quality Availability 0.47993 0.4885 -0.09739

Quality Pricing 0.45925 0.4980 0.09449

Responsive Availability 0.25734 0.6120 0.05965

Helpful Availability 0.24811 0.6184 -0.05413

Responsive Pricing 0.23748 0.6260 -0.05911

Spend02 Availability 0.19634 0.6577 -0.13200

Responsive Courtesy 0.18212 0.6696 0.06201

Model 2.
Rank Order of the 10 Largest LM Stat for Error

Variances and Covariances

Error
of

Error
of LM Stat Pr > ChiSq

Parm
Change

Delivery Courtesy 16.00996 <.0001 -0.57408

Responsive Pricing 4.89190 0.0270 0.25403

Helpful Delivery 3.33480 0.0678 0.25299

Delivery Availability 2.79513 0.0946 0.20656

Responsive Availability 2.16944 0.1408 -0.16421

Quality Courtesy 2.14952 0.1426 0.17094

Responsive Courtesy 2.12832 0.1446 0.20604

Quality Pricing 2.00978 0.1563 -0.19154

Quality Availability 1.99477 0.1578 0.19459

Responsive Quality 1.88736 0.1695 -0.16963

Using ˛ D 0:05, you might consider adding two pairs of correlated errors in Model 2. The first pair is for
Delivery and Courtesy, which has a p-value less than 0.0001. The second pair is Pricing and Responsive,
which has a p-value of 0.027. Again, adding correlated errors (in the PCOV statement) should not be a pure
statistical consideration. You should also consider theoretical and practical implications.

LM tests for other subsets of parameters are also conducted. Some subsets do not have parameters that can
be freed, and so they are not shown here. Other subsets are not shown here simply for conserving space.

PROC CALIS ranks and outputs the LM test results for some default subsets of parameters. You have seen
the subsets for path coefficients and correlated errors in the two previous outputs. Some other LM test results
are not shown. With this kind of default LM output, there could be a huge amount of modification indices
to look at. Fortunately, you can limit the LM test results to any subsets of potential parameters that you
might be interested in. With your substantive knowledge, you can define such meaningful subsets of potential
parameters by using the LMTESTS statement. The LM test indices and rankings are then done for each
predefined subset of potential parameters. With these customized LM results, you can limit your attention
to consider only those meaningful parameters to be added. See the LMTESTS statement on page 1285 for
details.

The next group of LM tests is for releasing implicit equality constraints in your model, as shown in
Output 29.28.13.
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Output 29.28.13 LM Tests for Equality Constraints

Lagrange Multiplier Statistics for Releasing Equality Constraints

Released Parameter Changes

Parm Model Type Var1 Var2 LM Stat Pr > ChiSq
Original

Parm
Released

Parm

_Parm01 1 DV_IV Spend02 Service 0.01554 0.9008 -0.0213 0.0238

2 DV_IV Spend02 Service 0.01554 0.9008 0.0238 -0.0213

_Parm02 1 DV_IV Spend03 Service 0.01763 0.8944 -0.0222 0.0248

2 DV_IV Spend03 Service 0.01763 0.8944 0.0248 -0.0222

_Parm03 1 DV_IV Spend02 Product 0.0003403 0.9853 -0.00321 0.00355

2 DV_IV Spend02 Product 0.0003403 0.9853 0.00355 -0.00321

_Parm04 1 DV_IV Spend03 Product 0.00176 0.9665 0.00714 -0.00802

2 DV_IV Spend03 Product 0.00176 0.9665 -0.00802 0.00714

_Parm05 1 DV_DV Spend03 Spend02 0.0009698 0.9752 -0.00100 0.00112

2 DV_DV Spend03 Spend02 0.0009698 0.9752 0.00112 -0.00100

_Parm06 1 DV_IV Courtesy Service 19.17225 <.0001 0.2851 -0.3191

2 DV_IV Courtesy Service 19.17225 <.0001 -0.3191 0.2851

_Parm07 1 DV_IV Responsive Service 0.21266 0.6447 -0.0304 0.0341

2 DV_IV Responsive Service 0.21266 0.6447 0.0341 -0.0304

_Parm08 1 DV_IV Helpful Service 4.60629 0.0319 -0.1389 0.1555

2 DV_IV Helpful Service 4.60629 0.0319 0.1555 -0.1389

_Parm09 1 DV_IV Delivery Service 3.59763 0.0579 -0.1508 0.1687

2 DV_IV Delivery Service 3.59763 0.0579 0.1687 -0.1508

_Parm10 1 DV_IV Pricing Product 0.50974 0.4753 0.0468 -0.0524

2 DV_IV Pricing Product 0.50974 0.4753 -0.0524 0.0468

_Parm11 1 DV_IV Availability Product 0.57701 0.4475 -0.0457 0.0512

2 DV_IV Availability Product 0.57701 0.4475 0.0512 -0.0457

_Parm12 1 DV_IV Quality Product 0.00566 0.9400 -0.00511 0.00574

2 DV_IV Quality Product 0.00566 0.9400 0.00574 -0.00511

_Parm13 1 COVERR Courtesy Courtesy 45.24725 <.0001 0.7204 -0.8064

2 COVERR Courtesy Courtesy 45.24725 <.0001 -0.8064 0.7204

_Parm14 1 COVERR Responsive Responsive 1.73499 0.1878 -0.1555 0.1740

2 COVERR Responsive Responsive 1.73499 0.1878 0.1740 -0.1555

_Parm15 1 COVERR Helpful Helpful 11.13266 0.0008 -0.3448 0.3860

2 COVERR Helpful Helpful 11.13266 0.0008 0.3860 -0.3448

_Parm16 1 COVERR Delivery Delivery 4.99097 0.0255 -0.3364 0.3766

2 COVERR Delivery Delivery 4.99097 0.0255 0.3766 -0.3364

_Parm17 1 COVERR Pricing Pricing 2.86428 0.0906 0.1729 -0.1936

2 COVERR Pricing Pricing 2.86428 0.0906 -0.1936 0.1729

_Parm18 1 COVERR Availability Availability 2.53147 0.1116 -0.1494 0.1672

2 COVERR Availability Availability 2.53147 0.1116 0.1672 -0.1494

_Parm19 1 COVERR Quality Quality 0.07328 0.7866 -0.0315 0.0352

2 COVERR Quality Quality 0.07328 0.7866 0.0352 -0.0315

_Parm20 1 COVERR Spend02 Spend02 0.00214 0.9631 0.0304 -0.0340

2 COVERR Spend02 Spend02 0.00214 0.9631 -0.0340 0.0304

_Parm21 1 COVERR Spend03 Spend03 0.0001773 0.9894 -0.00842 0.00946

2 COVERR Spend03 Spend03 0.0001773 0.9894 0.00946 -0.00842

_Parm22 1 COVEXOG Service Product 0.87147 0.3505 0.0605 -0.0678

2 COVEXOG Service Product 0.87147 0.3505 -0.0678 0.0605
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Recall that the measurement and the prediction models for the two regions are constrained to be the same
by model referencing (that is, the REFMODEL statement). Output 29.28.13 shows you which parameter
can be unconstrained so that your overall model fit might improve. For example, if you unconstrain the
first parameter _Parm01, which is for the path effect of Spend02 <=== Service, for the two models, the
expected chi-square decrease (LM Stat) is about 0.0158, which is not significant (p = .9001). The associated
parameter changes are small too. However, if you consider unconstraining parameter _Parm06, which is for
the path effect of Courtesy <=== Service, the expected decrease of chi-square is 19.22 (p < 0:0001). There
are two rows for this parameter. Each row represents a parameter location to be released from the equality
constraint. Consider the first row first. If you rename the coefficient for the Courtesy <=== Service path in
Model 1 to a new parameter, say “new” (while keeping _Parm06 as the parameter for the Courtesy <===
Service path in Model 2) and fit the model again, the new estimate of _Parm06 is 0.2852 greater than the
previous _Parm06 estimate. The estimate of “new” is 0.3196 less than the previous _Parm06 estimate. The
second row for the _Parm06 parameter shows similar but reflected results. It is for renaming the parameter
location in Model 2. For this example each equality constraint has exactly two locations, one for Model 1
and one for Model 2. That is the reason why you always observe reflected results for freeing the locations
successively. Reflected results are not the case if you have equality constraints with more than two parameter
locations.

Another example of a large expected improvement of model fit is the result of freeing the constrained
variances of Courtesy among the two models. The corresponding row to look at is the row with parameter
_Parm13, where the parameter type is labeled “COVERR” and the values for Var1 and Var2 are both
“Courtesy.” The LM statistic is 45.255, which is a significant chi-square decrease if you free either parameter
location. If you choose to rename the error variance for Courtesy in Model 1, the new _Parm13 estimate is
0.8052 smaller than the original _Parm13 estimate. The new estimate of the error variance for Courtesy in
Model 2 is 0.7211 greater than the previous _Parm13 estimate. Finally, the constrained parameter _Parm15,
which is the error variance parameter for Helpful in both models, is also a potential constraint that can be
released with a significant model fit improvement.

In addition to the LM statistics for suggesting ways to improve model fit, PROC CALIS also computes
the Wald tests to show which parameters can be constrained to zero without jeopardizing the model fit
significantly. The Wald test results are shown in Output 29.28.14.

Output 29.28.14 Wald Tests

Stepwise Multivariate Wald Test

Cumulative Statistics Univariate Increment

Parm Chi-Square DF Pr > ChiSq Chi-Square Pr > ChiSq

_Parm01 3.09039 1 0.0788 3.09039 0.0788

In Output 29.28.14, you see that _Parm01, which is for the path effect of Spend02 <=== Service, is
suggested to be a fixed zero parameter (eliminated from the model) by the Wald test. Fixing this parameter
to zero (or dropping the Spend02 <=== Service path from the model) is expected to increase the model fit
chi-square by 3.085 (p = .079), which is only marginally significant at ˛ D 0:05.

As is the case for the LM test statistics, you should not automatically adhere to the suggestions by the Wald
statistics. Substantive and theoretical considerations should always be considered when determining whether
a parameter should be added or dropped.
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Example 29.29: Fitting the RAM and EQS Models by the COSAN Modeling
Language

The COSAN modeling language in PROC CALIS enables you to specify the direct or implied mean and
covariance structures for the data in terms of matrix formulas. It is a very general modeling language, and
all other modeling languages in PROC CALIS are special cases of the COSAN modeling language. This
example shows how you can apply the COSAN modeling language to situations where you might usually use
the “easier” modeling languages. Therefore, the purpose of this example is not to recommend the use of the
COSAN modeling specification to the specific application. Rather, through its connections with other more
well-known model types, this example intends to help you understand the basics of the COSAN modeling
language.

In Example 29.17, you fit a path model to the Wheaton data (Wheaton et al. 1977) by using the PATH
modeling language. The mathematical basis of the PATH modeling language is the RAM model. In
Example 29.23, you use the RAM and LINEQS statements to specify the same path model. In all these
different types of specifications, you specify the functional relationships of the variables and the variance
and covariance parameters in the model. PROC CALIS then generates the implied covariance structures for
analysis internally. The COSAN modeling language is quite different. In the COSAN statement, you specify
the covariance structures directly as a matrix formula. This example shows how you can do that in two
different ways. One specification emulates the RAM model (McDonald 1978, 1980) covariance structures
and the other emulates the EQS model (Bentler 1995) covariance structures.

Emulating the RAM model by the COSAN Modeling Language

In the RAM model, you specify all information regarding the path effects or coefficients (that is, single-headed
arrows in the path diagram) in the so-called A (_A_) matrix. You specify all the information regarding the
variances and covariances (that is, the double-headed arrows in the path diagram) in the P (_P_) matrix. See
the section “The RAM Model” on page 1425 for more details about the mathematical model for RAM. Once
you define these two matrices, the implied covariance structures for the observed variables are derived by the
formula

† D J � .I �A/�1 � P � .I �A/�10 � J0

where I is an identity matrix and J is a selection matrix that contains 0 or 1 as its elements for selecting the
covariance structures elements for the observed variables.

For example, in the RAM model specification in Example 29.23, you essentially use the following RAM
model specification:
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proc calis nobs=932 data=Wheaton primat nose;
ram

var = Anomie67 /* 1 */
Powerless67 /* 2 */
Anomie71 /* 3 */
Powerless71 /* 4 */
Education /* 5 */
SEI /* 6 */
Alien67 /* 7 */
Alien71 /* 8 */
SES, /* 9 */

_A_ 1 7 1.0,
_A_ 2 7 0.833,
_A_ 3 8 1.0,
_A_ 4 8 0.833,
_A_ 5 9 1.0,
_A_ 6 9 lambda,
_A_ 7 9 gamma1,
_A_ 8 9 gamma2,
_A_ 8 7 beta,
_P_ 1 1 theta1,
_P_ 2 2 theta2,
_P_ 3 3 theta1,
_P_ 4 4 theta2,
_P_ 5 5 theta3,
_P_ 6 6 theta4,
_P_ 7 7 psi1,
_P_ 8 8 psi2,
_P_ 9 9 phi,
_P_ 1 3 theta5,
_P_ 2 4 theta5;

run;

In the RAM statement, you specify all the parameters in the _A_ and _P_ matrices, and PROC CALIS
generates the corresponding covariance structures for analysis. However, with the COSAN modeling
language, in addition to the parameter in the model matrices, you need to supply the matrix formula for the
covariance structures, as shown in the preceding formula for †.

Before discussing how you can specify the COSAN model that corresponds to this RAM model specification,
it is useful to look at the initial model matrices that are generated by the preceding RAM model specification.
To do this, you use the PRIMAT option in the PROC CALIS statement.
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Output 29.29.1 and Output 29.29.2 show the initial _A_ and _P_ matrices, respectively, for the RAM model.

Output 29.29.1 Initial _A_ Matrix of the RAM Model

Initial RAM _A_ Matrix

Anomie67 Powerless67 Anomie71 Powerless71 Education SEI Alien67 Alien71 SES

Anomie67 0 0 0 0 0 0 1.0000 0 0

Powerless67 0 0 0 0 0 0 0.8330 0 0

Anomie71 0 0 0 0 0 0 0 1.0000 0

Powerless71 0 0 0 0 0 0 0 0.8330 0

Education 0 0 0 0 0 0 0 0 1.0000

SEI 0 0 0 0 0 0 0 0 .
[lambda]

Alien67 0 0 0 0 0 0 0 0 .
[gamma1]

Alien71 0 0 0 0 0 0 .
[beta]

0 .
[gamma2]

SES 0 0 0 0 0 0 0 0 0

Output 29.29.2 Initial _P_ Matrix of the RAM Model

Initial RAM _P_ Matrix

Anomie67 Powerless67 Anomie71 Powerless71 Education SEI Alien67 Alien71 SES

Anomie67 .
[theta1]

0 .
[theta5]

0 0 0 0 0 0

Powerless67 0 .
[theta2]

0 .
[theta5]

0 0 0 0 0

Anomie71 .
[theta5]

0 .
[theta1]

0 0 0 0 0 0

Powerless71 0 .
[theta5]

0 .
[theta2]

0 0 0 0 0

Education 0 0 0 0 .
[theta3]

0 0 0 0

SEI 0 0 0 0 0 .
[theta4]

0 0 0

Alien67 0 0 0 0 0 0 .
[psi1]

0 0

Alien71 0 0 0 0 0 0 0 .
[psi2]

0

SES 0 0 0 0 0 0 0 0 .
[phi]

Essentially, to specify the same model by the COSAN modeling language, you need to provide the same
information in these two initial model matrices and the covariance structure formula for †in the COSAN
model specification, which is shown in the following statements:
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proc calis data=Wheaton nobs=932 nose;
cosan

var= Anomie67 Powerless67 Anomie71 Powerless71 Education SEI,
J(9, IDE) * A(9, GEN, IMI) * P(9, SYM);

matrix A
[1 2 8 , 7] = 1.0 0.833 beta,
[3 4 , 8] = 1.0 0.833 ,
[5 6 7 8 , 9] = 1. lambda gamma1 gamma2;

matrix P
[1,1] = theta1-theta2 theta1-theta4 ,
[7,7] = psi1 psi2 phi,
[3,1] = theta5 ,
[4,2] = theta5 ;

vnames
J = [Anomie67 Powerless67 Anomie71 Powerless71

Education SEI Alien67 Alien71 SES],
A = J,
P = A;

run;

In the PROC CALIS statement, you provide the data set in the DATA= option and the number of observations
in the NOBS= option. You use the NOSE option to turn off the computation of the standard error estimates.

In the VAR= option of the COSAN statement, you provide the list of observed variables for the analysis. You
do not specify the latent variables in the VAR= option in the COSAN statement as you do in the VAR= option
in the RAM statement. Then, you specify the formula for the covariance structures for the set of variables in
the VAR= list. Because the covariance structure formula is symmetric, you only need to specify “half” of
it. That is, the specification J(9,IDE)*A(9,GEN,IMI)*P(9,SYM) in the COSAN statement automatically
expands to

J � .I �A/�1 � P � .I �A/�10 � J0

which is the required covariance structures. The arguments in the matrices represent the number of columns,
the matrix type, and the transformation type (optional), respectively. For example, the notation A(9, GEN,

IMI) means that matrix A has nine columns and it is a general (GEN) rectangular or square matrix. You do
not specify the number of rows for matrix A explicitly, but PROC CALIS can deduce that because matrix A
follows matrix J in the multiplication. To make matrix multiplication conformable, the number of rows for
matrix A must be the same as the number of columns for matrix J, which is nine. The IMI notation means the
identity-minus-inverse transformation, which results in putting .I �A/�1 in the expression. Matrix P in the
covariance structure formula is a 9 � 9 symmetric matrix. It does not have any transformation in the formula.
Matrix J in the covariance structure formula is a so-called generalized identity matrix (IDE), which has six
rows and nine columns. Basically, you use this matrix to select the observed variables in the covariance
structure formula. The exact form of this matrix will become clear when the PROC CALIS output is shown.

Next, you use two MATRIX statements to specify the parameters in the model matrices A and P, for RAM
model matrices _A_ and _P_, respectively. For example, in the first entry of the MATRIX statement for the
A matrix, you specify the elements [1,7], [2,7], and [8,7] by 1.0, 0.833, and beta, respectively. The first
two elements are fixed constants, while the last one is a free parameter named beta. Similarly, you specify all
the fixed or free parameters in matrix A, which reflects the same pattern you specify for the _A_ matrix of
the RAM model, as shown in Output 29.29.1.
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For the P matrix, you specify the parameters in the same fashion. Because P is defined as a symmetric
matrix, you need to specify only the lower triangular elements. In the first entry of the MATRIX statement for
the P matrix, you specify the [1,1] element, but the trailing parameter list has six parameters. The [1,1]
notation here is interpreted as the starting location of the matrix. It proceeds to [2,2], [3,3], [4,4] and so
on. The length of the trailing parameter list determines the number of elements being specified. Therefore,
the last parameter in this entry is for PŒ6; 6�, which is a free parameter theta4. Similarly, you define all other
parameters in the P matrix, which reflects the same pattern you specify for the _P_ matrix of the RAM model,
as shown in Output 29.29.2.

In the VNAMES statement, you can specify the column variable names for the model matrices. You provide
a set of nine variable names for the column of matrix J in the pairs of brackets. The first six names are those
of the observed variables in the COSAN model, while the last six names are for latent factors. How about the
row variable names for matrix J? Because matrix J is the first matrix in the covariance structure formula,
its row names are automatically the same as the names of the observed variables in the VAR= list of the
COSAN statement. Next, you specify the column variable names of matrix A. You equate that to matrix J,
meaning that the column variable names in matrix A are the same those for matrix J. How about the row
variable names for matrix A? Because matrix A follows matrix J in the covariance structure formula, its row
names are automatically same as the column names for matrix J. Lastly, you define that the column names
for matrix P are the same as those for matrix A.

Notice that column names serve only as labels. PROC CALIS does not know the identities of the row and
column variables. For example, the first column of matrix A is Anomie67, which is also a name for an
observed variable in the COSAN model. Keeping other specifications intact, you could name this column by
any other name without affecting the model estimation. It is recommended that you use sensible names that
help you remember the identities of the row and column variables, such as this example shows.

Output 29.29.3 shows the modeling information and the observed variables in the COSAN model. PROC
CALIS analyzed the covariance structures of the six observed variables listed in Output 29.29.3.

Output 29.29.3 Modeling Information of the COSAN Model for the Wheaton Data: RAM Emulation

Modeling Information

Maximum Likelihood
Estimation

Data Set WORK.WHEATON

N Obs 932

Model Type COSAN

Analysis Covariances

Observed Variables (N = 6) in the Model

Anomie67  Powerless67  Anomie71  Powerless71  Education  SEI



Example 29.29: Fitting the RAM and EQS Models by the COSAN Modeling Language F 1789

Output 29.29.4 shows the covariance structures and some properties of the model matrices. The covariance
structure formula for Sigma is defined as required. You can also check the matrix properties in this output to
see if they are what you intend them to be.

Output 29.29.4 The Covariance Structures and Model Matrices of the COSAN Model for the Wheaton
Data: RAM Emulation

COSAN Model Structures

Sigma = J*inv(_I_-A)*P*(inv(_I_-A))`*J`

Summary of Model Matrices

Matrix N Row N Col Matrix Type

A 9 9 GEN: Square

J 6 9 IDE: (I || 0)

P 9 9 SYM: Symmetric

Output 29.29.4 shows that J is a 6 � 9 “identity” matrix .Ijj0/. Essentially, J is a selection matrix that
contains either 0 or 1 as its elements. The role of matrix J in the covariance structure formula is to extract
first six rows and columns in the inner covariance structures .I �A/�1 � P � .I �A/�10 (which is 9 � 9) to
form the covariance structures only for the observed variables (which is 6 � 6). But how can this identity
matrix have more columns (9) than rows (6)? In common mathematical notation, an identity matrix must
always be a square matrix. However, for convenience in notation, PROC CALIS generalizes it to the IDE
type. An IDE matrix that has the same numbers of columns and rows is a square identity matrix. If an IDE
matrix has more columns than rows, it denotes an identity matrix concatenated (to the right) by a null matrix
(that is, the .Ijj0/ notation). If an IDE matrix has more rows than columns, it denotes an identity matrix
appended (to the bottom) by a null matrix (that is, the .I==0/ notation). The generalized definition for the
IDE matrix offers an efficient way to define selection matrix, such as the J matrix shown in this example.

Output 29.29.5 shows the model fit chi-square of the COSAN model. This is the same model fit as in
Output 29.17.6 of Example 29.17, as expected.

Output 29.29.5 Model Fit of the COSAN Model for the Wheaton Data: RAM Emulation

Fit Summary

Chi-Square 13.4851

Chi-Square DF 9

Pr > Chi-Square 0.1419
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Output 29.29.6 shows the estimates in the A matrix.

Output 29.29.6 Estimate of the A Matrix by the COSAN Model Specification

Model Matrix A

(9 x 9 General Square Matrix)

Anomie67 Powerless67 Anomie71 Powerless71 Education SEI Alien67 Alien71 SES

Anomie67 0 0 0 0 0 0 1.0000 0 0

Powerless67 0 0 0 0 0 0 0.8330 0 0

Anomie71 0 0 0 0 0 0 0 1.0000 0

Powerless71 0 0 0 0 0 0 0 0.8330 0

Education 0 0 0 0 0 0 0 0 1.0000

SEI 0 0 0 0 0 0 0 0 5.3689
[lambda]

Alien67 0 0 0 0 0 0 0 0 -0.6299
[gamma1]

Alien71 0 0 0 0 0 0 0.5931
[beta]

0 -0.2409
[gamma2]

SES 0 0 0 0 0 0 0 0 0

The estimates in Output 29.29.6 from the COSAN model specification are essentially the same as those from
the RAM model specification, as shown in the matrix form in Output 29.29.7.

Output 29.29.7 Estimate of the A Matrix by the RAM Model Specification

RAM _A_ Matrix

Anomie67 Powerless67 Anomie71 Powerless71 Education SEI Alien67 Alien71 SES

Anomie67 0 0 0 0 0 0 1.0000 0 0

Powerless67 0 0 0 0 0 0 0.8330 0 0

Anomie71 0 0 0 0 0 0 0 1.0000 0

Powerless71 0 0 0 0 0 0 0 0.8330 0

Education 0 0 0 0 0 0 0 0 1.0000

SEI 0 0 0 0 0 0 0 0 5.3688
[lambda]

Alien67 0 0 0 0 0 0 0 0 -0.6299
[gamma1]

Alien71 0 0 0 0 0 0 0.5931
[beta]

0 -0.2409
[gamma2]

SES 0 0 0 0 0 0 0 0 0
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Output 29.29.8 shows the estimates in the P matrix.

Output 29.29.8 Estimate of the P Matrix by the COSAN Model Specification

Model Matrix P

(9 x 9 Symmetric Matrix)

Anomie67 Powerless67 Anomie71 Powerless71 Education SEI Alien67 Alien71 SES

Anomie67 3.6078
[theta1]

0 0.9058
[theta5]

0 0 0 0 0 0

Powerless67 0 3.5950
[theta2]

0 0.9058
[theta5]

0 0 0 0 0

Anomie71 0.9058
[theta5]

0 3.6078
[theta1]

0 0 0 0 0 0

Powerless71 0 0.9058
[theta5]

0 3.5950
[theta2]

0 0 0 0 0

Education 0 0 0 0 2.9938
[theta3]

0 0 0 0

SEI 0 0 0 0 0 259.5738
[theta4]

0 0 0

Alien67 0 0 0 0 0 0 5.6705
[psi1]

0 0

Alien71 0 0 0 0 0 0 0 4.5148
[psi2]

0

SES 0 0 0 0 0 0 0 0 6.6162
[phi]

Again, aside from very minor numerical differences, the estimates shown in Output 29.29.8 from the COSAN
model specification are essentially the same as those from the RAM model specification, as shown in the
matrix form in Output 29.29.9.

Output 29.29.9 Estimate of the P Matrix by the RAM Model Specification

RAM _P_ Matrix

Anomie67 Powerless67 Anomie71 Powerless71 Education SEI Alien67 Alien71 SES

Anomie67 3.6080
[theta1]

0 0.9058
[theta5]

0 0 0 0 0 0

Powerless67 0 3.5949
[theta2]

0 0.9058
[theta5]

0 0 0 0 0

Anomie71 0.9058
[theta5]

0 3.6080
[theta1]

0 0 0 0 0 0

Powerless71 0 0.9058
[theta5]

0 3.5949
[theta2]

0 0 0 0 0

Education 0 0 0 0 2.9937
[theta3]

0 0 0 0

SEI 0 0 0 0 0 259.5764
[theta4]

0 0 0

Alien67 0 0 0 0 0 0 5.6705
[psi1]

0 0

Alien71 0 0 0 0 0 0 0 4.5148
[psi2]

0

SES 0 0 0 0 0 0 0 0 6.6163
[phi]
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Emulating the EQS model by the COSAN Modeling Language

The LINEQS modeling language in PROC CALIS enables you to specify the functional relationships among
variables by using the equation input, much the same way that you can do with the EQS software (Bentler
1995). The covariance structure formula for the observed variables in the EQS model is

† D J � .I � Beta/�1 �Gamma � Phi �Gamma0 � .I � Beta/�10 � J0

where I is an identity matrix, J is a selection matrix that contains 0 or 1 as its elements for selecting the
covariance structures elements for the observed variables, Beta is a square matrix for specifying relationships
among the endogenous variables, Gamma is a matrix for specifying relationships between the endogenous
variables and the exogenous variables, and Phi is a matrix for specifying the variances and covariances of the
exogenous variables. Notice that in the EQS model, error or disturbance variables are counted as exogenous
variables in the model.

In Example 29.23, you use the following LINEQS specification for the Wheaton data:

proc calis nobs=932 data=Wheaton primat nose;
lineqs

Anomie67 = 1.0 * f_Alien67 + e1,
Powerless67 = 0.833 * f_Alien67 + e2,
Anomie71 = 1.0 * f_Alien71 + e3,
Powerless71 = 0.833 * f_Alien71 + e4,
Education = 1.0 * f_SES + e5,
SEI = lambda * f_SES + e6,
f_Alien67 = gamma1 * f_SES + d1,
f_Alien71 = gamma2 * f_SES + beta * f_Alien67 + d2;

variance
E1 = theta1,
E2 = theta2,
E3 = theta1,
E4 = theta2,
E5 = theta3,
E6 = theta4,
D1 = psi1,
D2 = psi2,
f_SES = phi;

cov
E1 E3 = theta5,
E2 E4 = theta5;

run;

In the LINEQS statement, you specify all the functional relationships among variables. In the VARIANCE
and COV statements, you specify all the variance and covariance parameters in the model. None of the
parameters is specified as a matrix element in the LINEQS model. The default output by PROC CALIS does
not print the EQS model matrices. To print these model matrices, you use the PRIMAT option in the PROC
CALIS statement. Output 29.29.10, Output 29.29.11, and Output 29.29.12 show the initial specification of
these model matrices:
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Output 29.29.10 The Initial _EQSBETA_ Matrix by the LINEQS Model Specification

Initial _EQSBETA_ Matrix

Anomie67 Anomie71 Education Powerless67 Powerless71 SEI f_Alien67 f_Alien71

Anomie67 0 0 0 0 0 0 1.0000 0

Anomie71 0 0 0 0 0 0 0 1.0000

Education 0 0 0 0 0 0 0 0

Powerless67 0 0 0 0 0 0 0.8330 0

Powerless71 0 0 0 0 0 0 0 0.8330

SEI 0 0 0 0 0 0 0 0

f_Alien67 0 0 0 0 0 0 0 0

f_Alien71 0 0 0 0 0 0 .
[beta]

0

Output 29.29.11 The Initial _EQSGAMMA_ Matrix by the LINEQS Model Specification

Initial _EQSGAMMA_ Matrix

f_SES e1 e3 e5 e2 e4 e6 d1 d2

Anomie67 0 1.0000 0 0 0 0 0 0 0

Anomie71 0 0 1.0000 0 0 0 0 0 0

Education 1.0000 0 0 1.0000 0 0 0 0 0

Powerless67 0 0 0 0 1.0000 0 0 0 0

Powerless71 0 0 0 0 0 1.0000 0 0 0

SEI .
[lambda]

0 0 0 0 0 1.0000 0 0

f_Alien67 .
[gamma1]

0 0 0 0 0 0 1.0000 0

f_Alien71 .
[gamma2]

0 0 0 0 0 0 0 1.0000
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Output 29.29.12 The Initial _EQSPHI_ Matrix by the LINEQS Model Specification

Initial _EQSPHI_ Matrix

f_SES e1 e3 e5 e2 e4 e6 d1 d2

f_SES .
[phi]

0 0 0 0 0 0 0 0

e1 0 .
[theta1]

.
[theta5]

0 0 0 0 0 0

e3 0 .
[theta5]

.
[theta1]

0 0 0 0 0 0

e5 0 0 0 .
[theta3]

0 0 0 0 0

e2 0 0 0 0 .
[theta2]

.
[theta5]

0 0 0

e4 0 0 0 0 .
[theta5]

.
[theta2]

0 0 0

e6 0 0 0 0 0 0 .
[theta4]

0 0

d1 0 0 0 0 0 0 0 .
[psi1]

0

d2 0 0 0 0 0 0 0 0 .
[psi2]

In the COSAN modeling language, you need to provide the three initial model matrices and the covariance
structure formula for †, which is shown in the following statements:

proc calis cov data=Wheaton nobs=932 nose;
cosan

var = Anomie67 Anomie71 Education Powerless67 Powerless71 SEI,
J(8, IDE) * Beta(8, GEN, IMI) * Gamma(9, GEN) * Phi(9, SYM);

matrix Beta
[1 4 8 , 7] = 1.0 0.833 beta,
[2 5 , 8] = 1.0 0.833 ;

matrix Gamma
[3 6 7 8 , 1] = 1.0 lambda gamma1 gamma2,
[1,2] = 8 * 1.0;

matrix Phi
[1,1] = phi 2*theta1 theta3 2*theta2 theta4 psi1 psi2,
[3,2] = theta5 ,
[6,5] = theta5 ;

vnames J = [Anomie67 Anomie71 Education Powerless67 Powerless71 SEI
f_Alien67 f_Alien71],

Beta = J,
Gamma = [f_SES e1 e3 e5 e2 e4 e6 d1 d2],
Phi = Gamma;

run;

In the PROC CALIS statement, you provide the data set in the DATA= option and the number of observations
in the NOBS= option. You use the NOSE option to turn off the computation of the standard error estimates.

In the VAR= option of the COSAN statement, you provide the list of observed variables for the analysis.
You arrange the observed variables in such a way that they are in the same order as in Output 29.29.10,
Output 29.29.10, and Output 29.29.12. This is useful for comparing the results from the LINEQS and
COSAN model specifications. After the specification of the observed variables, you specify the covariance
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structure model in the COSAN statement. Again, you only need to specify “half” of it. That is, the specifica-
tion J(8,IDE)*Beta(8,GEN,IMI)*Gamma(9,GEN)*Phi(9,SYM) in the COSAN statement automatically
expands to

† D J � .I � Beta/�1 �Gamma � Phi �Gamma0 � .I � Beta/�10 � J0

which is the required covariance structures. Matrix properties and transformation types are defined in the
arguments for the matrices.

Next, you use three matrix statements to specify the parameters in the matrix elements. The specifications
here reflect exactly the initial specifications for the LINEQS model matrices as shown in Output 29.29.10,
Output 29.29.10, and Output 29.29.12.

In the VNAMES statement, you specify the column variable names for the matrices. The column variable
names of the J matrix include all the observed variable names and the names of the intended endogenous
latent factors f_Alien67 and f_Alien71. The column variable names for the Beta matrix are the same as those
for matrix J. The column variables for the Gamma matrix include the intended latent factor f_SES and error
variable names e1–e6 and d1–d2, which are arranged in such a way that they match the order of the error
variables in the LINEQS output shown in Output 29.29.12.

Output 29.29.13 shows the covariance structures and some properties of the model matrices. The covariance
structure formula for Sigma is defined as required. You can also check the matrix properties in this output to
see if they are what you intend them to be.

Output 29.29.13 The Covariance Structures and Model Matrices of the COSAN Model for the Wheaton
Data: EQS Emulation

COSAN Model Structures

Sigma = J*inv(_I_-Beta)*Gamma*Phi*Gamma`*(inv(_I_-Beta))`*J`

Summary of Model Matrices

Matrix N Row N Col Matrix Type

Beta 8 8 GEN: Square

Gamma 8 9 GEN: Rectangular

J 6 8 IDE: (I || 0)

Phi 9 9 SYM: Symmetric

Output 29.29.14 shows the model fit chi-square of the current COSAN model. As expected, this is the same
model fit as in Output 29.17.6 of Example 29.17 and in Output 29.29.5.

Output 29.29.14 Model Fit of the COSAN Model for the Wheaton Data: EQS Emulation

Fit Summary

Chi-Square 13.4851

Chi-Square DF 9

Pr > Chi-Square 0.1419

Output 29.29.15 shows the estimates of the Beta matrix by the COSAN model specification. These estimates
are essentially the same as the estimates of the _EQSBETA_ matrix obtained from the LINEQS model
specification, as shown in Output 29.29.16.
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Output 29.29.15 Estimate of the Beta Matrix by the COSAN Model Specification

Model Matrix Beta

(8 x 8 General Square Matrix)

Anomie67 Anomie71 Education Powerless67 Powerless71 SEI f_Alien67 f_Alien71

Anomie67 0 0 0 0 0 0 1.0000 0

Anomie71 0 0 0 0 0 0 0 1.0000

Education 0 0 0 0 0 0 0 0

Powerless67 0 0 0 0 0 0 0.8330 0

Powerless71 0 0 0 0 0 0 0 0.8330

SEI 0 0 0 0 0 0 0 0

f_Alien67 0 0 0 0 0 0 0 0

f_Alien71 0 0 0 0 0 0 0.5931
[beta]

0

Output 29.29.16 Estimate of the _EQSBETA_ Matrix by the LINEQS Model Specification

_EQSBETA_ Matrix

Anomie67 Anomie71 Education Powerless67 Powerless71 SEI f_Alien67 f_Alien71

Anomie67 0 0 0 0 0 0 1.0000 0

Anomie71 0 0 0 0 0 0 0 1.0000

Education 0 0 0 0 0 0 0 0

Powerless67 0 0 0 0 0 0 0.8330 0

Powerless71 0 0 0 0 0 0 0 0.8330

SEI 0 0 0 0 0 0 0 0

f_Alien67 0 0 0 0 0 0 0 0

f_Alien71 0 0 0 0 0 0 0.5931
[beta]

0

Output 29.29.17 shows the estimates of the Gamma matrix by the COSAN model specification. Again, these
estimates are essentially the same as the estimates of the _EQSGAMMA_ matrix obtained from the LINEQS
model specification, as shown in Output 29.29.18.



Example 29.29: Fitting the RAM and EQS Models by the COSAN Modeling Language F 1797

Output 29.29.17 Estimate of the Gamma Matrix by the COSAN Model Specification

Model Matrix Gamma

(8 x 9 General Rectangular Matrix)

f_SES e1 e3 e5 e2 e4 e6 d1 d2

Anomie67 0 1.0000 0 0 0 0 0 0 0

Anomie71 0 0 1.0000 0 0 0 0 0 0

Education 1.0000 0 0 1.0000 0 0 0 0 0

Powerless67 0 0 0 0 1.0000 0 0 0 0

Powerless71 0 0 0 0 0 1.0000 0 0 0

SEI 5.3689
[lambda]

0 0 0 0 0 1.0000 0 0

f_Alien67 -0.6299
[gamma1]

0 0 0 0 0 0 1.0000 0

f_Alien71 -0.2409
[gamma2]

0 0 0 0 0 0 0 1.0000

Output 29.29.18 Estimate of the _EQSGAMMA_ Matrix by the LINEQS Model Specification

_EQSGAMMA_ Matrix

f_SES e1 e3 e5 e2 e4 e6 d1 d2

Anomie67 0 1.0000 0 0 0 0 0 0 0

Anomie71 0 0 1.0000 0 0 0 0 0 0

Education 1.0000 0 0 1.0000 0 0 0 0 0

Powerless67 0 0 0 0 1.0000 0 0 0 0

Powerless71 0 0 0 0 0 1.0000 0 0 0

SEI 5.3688
[lambda]

0 0 0 0 0 1.0000 0 0

f_Alien67 -0.6299
[gamma1]

0 0 0 0 0 0 1.0000 0

f_Alien71 -0.2409
[gamma2]

0 0 0 0 0 0 0 1.0000

Finally, Output 29.29.19 shows the estimates of the Phi matrix by the COSAN model specification. These
estimates are essentially the same as the estimates of the _EQSPHI_ matrix obtained from the LINEQS
model specification, as shown in Output 29.29.20.
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Output 29.29.19 Estimate of the Phi Matrix by the COSAN Model Specification

Model Matrix Phi

(9 x 9 Symmetric Matrix)

f_SES e1 e3 e5 e2 e4 e6 d1 d2

f_SES 6.6162
[phi]

0 0 0 0 0 0 0 0

e1 0 3.6078
[theta1]

0.9058
[theta5]

0 0 0 0 0 0

e3 0 0.9058
[theta5]

3.6078
[theta1]

0 0 0 0 0 0

e5 0 0 0 2.9938
[theta3]

0 0 0 0 0

e2 0 0 0 0 3.5950
[theta2]

0.9058
[theta5]

0 0 0

e4 0 0 0 0 0.9058
[theta5]

3.5950
[theta2]

0 0 0

e6 0 0 0 0 0 0 259.5738
[theta4]

0 0

d1 0 0 0 0 0 0 0 5.6705
[psi1]

0

d2 0 0 0 0 0 0 0 0 4.5148
[psi2]

Output 29.29.20 Estimate of the _EQSPHI_ Matrix by the LINEQS Model Specification

_EQSPHI_ Matrix

f_SES e1 e3 e5 e2 e4 e6 d1 d2

f_SES 6.6163
[phi]

0 0 0 0 0 0 0 0

e1 0 3.6080
[theta1]

0.9058
[theta5]

0 0 0 0 0 0

e3 0 0.9058
[theta5]

3.6080
[theta1]

0 0 0 0 0 0

e5 0 0 0 2.9937
[theta3]

0 0 0 0 0

e2 0 0 0 0 3.5949
[theta2]

0.9058
[theta5]

0 0 0

e4 0 0 0 0 0.9058
[theta5]

3.5949
[theta2]

0 0 0

e6 0 0 0 0 0 0 259.5764
[theta4]

0 0

d1 0 0 0 0 0 0 0 5.6705
[psi1]

0

d2 0 0 0 0 0 0 0 0 4.5148
[psi2]
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Example 29.30: Second-Order Confirmatory Factor Analysis
A second-order confirmatory factor analysis model is applied to a correlation matrix of Thurstone reported
by McDonald (1985). The data set is shown in the following DATA step:

data Thurst(TYPE=CORR);
title "Example of THURSTONE resp. McDONALD (1985, p.57, p.105)";

_TYPE_ = 'CORR'; Input _NAME_ $ Obs1-Obs9;
label obs1='Sentences' obs2='Vocabulary' obs3='Sentence Completion'

obs4='First Letters' obs5='Four-letter Words' obs6='Suffices'
obs7='Letter series' obs8='Pedigrees' obs9='Letter Grouping';

datalines;
obs1 1. . . . . . . . .
obs2 .828 1. . . . . . . .
obs3 .776 .779 1. . . . . . .
obs4 .439 .493 .460 1. . . . . .
obs5 .432 .464 .425 .674 1. . . . .
obs6 .447 .489 .443 .590 .541 1. . . .
obs7 .447 .432 .401 .381 .402 .288 1. . .
obs8 .541 .537 .534 .350 .367 .320 .555 1. .
obs9 .380 .358 .359 .424 .446 .325 .598 .452 1.
;

Using the LINEQS modeling language, you specify the three-term second-order factor analysis model in the
following statements:

proc calis data=Thurst nobs=213 corr nose;
lineqs

obs1 = x1 * f1 + e1,
obs2 = x2 * f1 + e2,
obs3 = x3 * f1 + e3,
obs4 = x4 * f2 + e4,
obs5 = x5 * f2 + e5,
obs6 = x6 * f2 + e6,
obs7 = x7 * f3 + e7,
obs8 = x8 * f3 + e8,
obs9 = x9 * f3 + e9,
f1 = x10 * f4 + e10,
f2 = x11 * f4 + e11,
f3 = x12 * f4 + e12;

variance
f4 = 1.,
e1-e9 = u1-u9,
e10-e12 = 3 * 1.;

bounds
0. <= u1-u9;

run;
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In the PROC CALIS statement, you specify the data set in the DATA= option and the number of observations
in the NOBS= option. With the CORR option, you request the correlations be analyzed. You use the NOSE
option to suppress the computation of standard error estimates.

In the LINEQS statement, the first-order loadings for the three factors, f1, f2, and f3, each refer to three
variables, X1–X3, X4–X6, and X7–X9, respectively. One second-order factor, f4, reflects the correlations
among the three first-order factors, f1, f2, and f3.

In the VARIANCE statement, you fix the variance of f4 to 1.0 for identification. The variances of error terms
e1–e9 are free parameters u1–u9. The error variances for the three first-order factors are also fixed at 1.0 for
identification purposes.

You also specify the boundary constraints for the error variance parameters u1–u9. You require them to be
positive in the estimation.

Output 29.30.1 shows the estimation results.

Output 29.30.1 Estimation Results of the Second-Order Factor Model for Thurstone Data: LINEQS Model

Linear Equations

Obs1 = 0.5151 f1 + 1.0000 e1

Obs2 = 0.5203 f1 + 1.0000 e2

Obs3 = 0.4874 f1 + 1.0000 e3

Obs4 = 0.5211 f2 + 1.0000 e4

Obs5 = 0.4971 f2 + 1.0000 e5

Obs6 = 0.4381 f2 + 1.0000 e6

Obs7 = 0.4524 f3 + 1.0000 e7

Obs8 = 0.4173 f3 + 1.0000 e8

Obs9 = 0.4076 f3 + 1.0000 e9

f1 = 1.4438 f4 + 1.0000 e10

f2 = 1.2538 f4 + 1.0000 e11

f3 = 1.4065 f4 + 1.0000 e12

Estimates for Variances of Exogenous
Variables

Variable
Type Variable Parameter Estimate

Latent f4 1.00000

Error e1 u1 0.18150

e2 u2 0.16493

e3 u3 0.26713

e4 u4 0.30150

e5 u5 0.36450

e6 u6 0.50642

e7 u7 0.39033

e8 u8 0.48138

e9 u9 0.50509

Disturbance e10 1.00000

e11 1.00000

e12 1.00000
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Alternatively, you can use the COSAN model specification for analyzing the same data set. First, under the
second-order factor model, the covariance structures of the observed variables can be derived as

† D F1 � F2 � P � F20 � F10 C F1 �U2 � F10 CU1

where F1 is the 9 � 3 first-order loading matrix for the observed variables, F2 is the 3 � 1 second-order
loading matrix for the first-order factors, P is the 1 � 1 covariance matrix for the second-order factor f4, U2
is the 3 � 3 error covariance matrix of the first-order factors f1–f3 (or the covariance matrix of the error terms
e10–12), and U1 is the 9 � 9 error covariance matrix for the observed variables (or the covariance matrix of
the error terms e1–9).

Matrix F1 contains the loading parameters x1–x9 and matrix F2 contains the loading parameters x10–x12.
Because there is only one second-order factor f4 in the model, matrix P is a scalar, which is a fixed constant 1
in the LINEQS model. Matrix U2 is an identity matrix because all error variances are fixed at 1 and they are
not correlated. Matrix U2 is a diagonal matrix that contains the parameters u1–u9. Given this information,
you can use the following statements to specify the second-order factor model as a COSAN model:

proc calis data=Thurst nobs=213 corr nose;
cosan

var = obs1-obs9,
F1(3) * F2(1) * P(1,IDE) + F1(3) * U2(3,IDE) + U1(9,DIA);

matrix F1
[1 , @1] = x1-x3,
[4 , @2] = x4-X6,
[7 , @3] = x7-x9;

matrix F2
[ ,1] = x10-x12;

matrix U1
[1,1] = u1-u9;

bounds
0. <= u1-u9;

vnames
F1 = [f1 f2 f3],
F2 = [f4],
U1 = [e1-e9];

run;

In the PROC CALIS statement, you specify the observed variables in the VAR= option and the covariance
structures for the observed variables. In the terms of the covariance structure formula, you need to specify
the expressions only up the central symmetric matrices. The latter parts of these expressions are redundant
and can be generated automatically by PROC CALIS, as shown in Output 29.30.2.

Output 29.30.2 The Covariance Structures and Model Matrices of the Second-Order Factor Model: COSAN
Model

COSAN Model Structures

Sigma = F1*F2*P*F2`*F1` + F1*U2*F1` + U1
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Output 29.30.2 continued

Summary of Model Matrices

Matrix N Row N Col Matrix Type

F1 9 3 GEN: Rectangular

F2 3 1 GEN: Vector

P 1 1 IDE: Identity

U1 9 9 DIA: Diagonal

U2 3 3 IDE: Identity

Output 29.30.2 shows that the intended covariance structures for the observed variables are being analyzed.
The matrix types are shown next. Matrix F1 is a rectangular matrix and matrix F2 is a vector, although
they have the default general (GEN) matrix type. Matrices P and U2 are fixed identity (IDE) matrices in
the model. For these two matrices, you do not need to specify any of their elements by using the MATRIX
statement because they are already well-defined with the IDE type. Lastly, matrix U1 is a diagonal (DIA)
matrix in the model.

Output 29.30.3 shows the estimates of the first-order factor loading matrix F1.

Output 29.30.3 Estimation of the F1 Matrix of the Second-Order Factor Model: COSAN Model

Model Matrix F1

(9 x 3 General Rectangular Matrix)

f1 f2 f3

Obs1 0.5151
[x1]

0 0

Obs2 0.5203
[x2]

0 0

Obs3 0.4874
[x3]

0 0

Obs4 0 0.5211
[x4]

0

Obs5 0 0.4971
[x5]

0

Obs6 0 0.4381
[x6]

0

Obs7 0 0 0.4524
[x7]

Obs8 0 0 0.4173
[x8]

Obs9 0 0 0.4076
[x9]

In the MATRIX statement for F1, you specify the pattern of the loadings. In the first entry of the MATRIX
statement, you specify the loadings in the following elements: [1,1], [2,1], and [3,1]. They are free
parameters x1–x3, respectively. Notice that the @ sign is necessary in the first entry because the elements
being defined would have been [1,1], [2,2], and [3,3] otherwise. The @ sign fixes the column number to
1. See the MATRIX statement for more details about the notation. Similarly, you define the other clusters of
loading in the second and third entries in the MATRIX statement for F1. This explains the pattern of factor
loadings in Output 29.30.3. These loading estimates x1–x9 match those by the LINEQS model specification,
as shown in Output 29.30.1.
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Output 29.30.3 shows the estimates of the second-order factor loading matrix F2.

Output 29.30.4 Estimation of the F2 Matrix of the Second-Order Factor Model: COSAN Model

Model Matrix F2

(3 x 1 Column Vector)

f4

f1 1.4438
[x10]

f2 1.2538
[x11]

f3 1.4066
[x12]

In the MATRIX statement for F2, you do not specify the row numbers in the [ ,1] specification. PROC
CALIS interprets this as stating that all the valid elements in the first column are being specified in the
parameter list. In the current example, this means that elements F2Œ1; 1�, F2Œ2; 1�, and F2Œ3; 1� are filled
with the free parameters x10, x11, and x12, respectively. Output 29.30.3 shows these specification and the
corresponding estimates, which match those of the LINEQS model specification, as shown in Output 29.30.1.

Output 29.30.5 shows the estimates of the error covariance matrix U1.

Output 29.30.5 Estimation of the U1 Matrix of the Second-Order Factor Model: COSAN Model

Model Matrix U1

(9 x 9 Diagonal Matrix)

e1 e2 e3 e4 e5 e6 e7 e8 e9

e1 0.1815
[u1]

0 0 0 0 0 0 0 0

e2 0 0.1649
[u2]

0 0 0 0 0 0 0

e3 0 0 0.2671
[u3]

0 0 0 0 0 0

e4 0 0 0 0.3015
[u4]

0 0 0 0 0

e5 0 0 0 0 0.3645
[u5]

0 0 0 0

e6 0 0 0 0 0 0.5064
[u6]

0 0 0

e7 0 0 0 0 0 0 0.3903
[u7]

0 0

e8 0 0 0 0 0 0 0 0.4814
[u8]

0

e9 0 0 0 0 0 0 0 0 0.5051
[u9]

In the MATRIX statement for U1, you specify the diagonal elements of the matrix by using the starting
element at [1,1]. The parameter assignment proceeds to [2,2], [3,3] and so on such that all the trailing
parameters u1–u9 are filled. This means that the last element U1Œ9; 9� is a free parameter named u9.
Output 29.30.5 confirms this intended pattern. Again, all these error variance estimates match those by the
LINEQS model specification, as shown in Output 29.30.1.



1804 F Chapter 29: The CALIS Procedure

Example 29.31: Linear Relations among Factor Loadings: COSAN Model
Specification

This example reanalyzes the models in Example 29.27 by using the COSAN modeling language. The
correlation matrix of six variables from Kinzer and Kinzer (N=326) is used (see Guttman 1957). McDonald
(1980) uses this data set to demonstrate the fitting of a factor analysis model with linear constraints on factor
loadings. Two factors are assumed for the data. The factor loading matrix B is shown in the following:

B D

0BBBBBB@

b11 b12
b21 b22
b31 b32
b41 b42
b51 b52
b61 b62

1CCCCCCA
The loadings on the second factor are linearly related to the loadings on the first factor, as described by the
following formula:

bj2 D ˛ � bj1; j D 1; : : : ; 6

The correlation structures are represented by

P D BB0 C‰

where ‰ D diag. 11;  22;  33;  44;  55;  66/ represents the diagonal matrix of unique variances for the
variables. Because matrix P is a correlation matrix, its diagonal elements are fixed constants 1. This means
that the diagonal elements of the correlation structures must also satisfy the following condition:

‰jj D 1: � b
2
j1 � b

2
j2; j D 1; : : : ; 6

To analyze the correlation structures by using PROC CALIS, you formulate a covariance structure model
with such correlation structures embedded in the model. That is, you want to fit the following covariance
structure model to the Kinzer data:

† D DPD0 D D.BB0 C‰/D0 D DBB0D0 CD‰D0

where D is a 6 x 6 diagonal matrix that contains the population standard deviations of the observed variables.
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The following statements use the COSAN modeling language to specify this covariance structure model:

proc calis data=Kinzer nobs=326 nose;
cosan

var= var1-var6,
D(6,DIA) * B(2,GEN) + D(6,DIA) * Psi(6,DIA);

matrix B
[ ,1] = b11 b21 b31 b41 b51 b61,
[ ,2] = b12 b22 b32 b42 b52 b62;

matrix Psi
[1,1] = psi1-psi6;

matrix D
[1,1] = d1-d6;

parameters alpha (1.);

/* SAS Programming Statements to Define Dependent Parameters*/
/* 6 constraints on the factor loadings */
b12 = alpha - b11;
b22 = alpha - b21;
b32 = alpha - b31;
b42 = alpha - b41;
b52 = alpha - b51;
b62 = alpha - b61;

/* 6 Constraints on Correlation structures */
psi1 = 1. - b11 * b11 - b12 * b12;
psi2 = 1. - b21 * b21 - b22 * b22;
psi3 = 1. - b31 * b31 - b32 * b32;
psi4 = 1. - b41 * b41 - b42 * b42;
psi5 = 1. - b51 * b51 - b52 * b52;
psi6 = 1. - b61 * b61 - b62 * b62;
vnames

D = [var1-var6],
B = [factor1 factor2],
Psi = D;

run;

In the PROC CALIS statement, you specify the data set by the DATA= option and the number of observations
by the NOBS= option. You also use the NOSE option to suppress the printing of the standard error estimates.

In the COSAN statement, you specify the variables for the covariance structure analysis in the VAR= option.
Next, you specify the covariance structure formula for the variables. When generating the covariance structure
expressions for the terms, PROC CALIS examines the matrix type of the last matrix in each term to determine
how the expression is generated. If the last matrix in a term is not a symmetric matrix (including diagonal or
identity matrix), the transpose of the last matrix would be included in the expression. This ensures that a
symmetric matrix expression is formed for the covariance structures. For example, the first term in the current
covariance structure formula is D(6,DIA)*B(2,GEN). Because B is not a symmetric matrix, the expression
generated by PROC CALIS is

D � B � B0 �D0
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However, for the second term D(6,DIA)* Psi(6,DIA), matrix Psi is a symmetric matrix so that the
expression generated by PROC CALIS is

D � Psi �D0

Output 29.31.1 shows the covariance structure model and the model matrices. With Psi representing the
unique variance matrix ‰ , the printed covariance structure formula for Sigma is clearly what you intend to
specify.

Output 29.31.1 The Covariance Structures and Model Matrices: Linearly Constrained Loadings

COSAN Model Structures

Sigma = D*B*B`*D` + D*Psi*D`

Summary of Model Matrices

Matrix N Row N Col Matrix Type

B 6 2 GEN: Rectangular

D 6 6 DIA: Diagonal

Psi 6 6 DIA: Diagonal

In the MATRIX statements, you specify the parameters in the model matrices. You use parameters with the
b prefix to name the two columns of loadings of the factor matrix B. You use free parameters psi1–psi6
for the diagonal elements of the Psi matrix, and free parameters d1–d6 for the diagonal elements of the D
matrix. Next, you use a PARAMETERS statement to define an independent parameter alpha in the model.
This parameter takes an initial value of 1.0. Using this independent parameter and six SAS programming
statements, you define the loadings in the second column of matrix B as functions of the loadings in the first
column of the same matrix.

You use six more SAS programming statements to define the unique variance parameters psi1–psi6 as
dependent parameters of the factor loadings. These constraints ensure that the embedded correlation
structures have diagonal elements fixed at 1.0.

Lastly, you use the VNAMES statement to label the column names of the model matrices. The column names
of the diagonal matrix D are the same as the observed variables. The column names of matrix B are for the
factor names.

As compared with the covariance structure specification (that is, the second specification) by the LINEQS
model in Example 29.27, the current COSAN specification seems to be more direct and concise in specifying
the parameter constraints. Because of the direct references to the matrix elements in the COSAN modeling
language, you can set the required 12 constraints in a very straightforward way as the 12 SAS programming
statements in the preceding specification. However, with the LINEQS model specification language in
Example 29.27, you need 18 more SAS programming statements to define the correct constraints for the
same covariance structure model.
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Output 29.31.2 shows the fit summary table. The chi-square test statistic is 14.63 with df = 8 (p = 0.067).
These are the same model fitting results as using the LINEQS model specification, as shown in Output 29.27.4
of Example 29.27.

Output 29.31.2 Model Fit: Linearly Constrained Loadings with Embedded Correlation Structures

Fit Summary

Chi-Square 14.6269

Chi-Square DF 8

Pr > Chi-Square 0.0668

Output 29.31.3 shows the estimation of the loading matrix B. These estimates of factor loadings are essentially
the same as those obtained from the LINEQS model specification, as shown in Output 29.27.6, except that
the two columns of the loading matrix B are switched. The column switching is not a concern because the
factor labels are arbitrary.

Output 29.31.3 Estimation of the B Matrix by the COSAN Model Specification

Model Matrix B

(6 x 2 General Rectangular Matrix)

factor1 factor2

var1 0.6318
[b11]

0.3422
[b12]

var2 0.6531
[b21]

0.3210
[b22]

var3 0.4822
[b31]

0.4918
[b32]

var4 0.3985
[b41]

0.5755
[b42]

var5 0.1971
[b51]

0.7769
[b52]

var6 0.3074
[b61]

0.6666
[b62]

Output 29.31.4 shows the estimation of the scaling matrix D. All these standard deviation estimates for the
observed variables match those obtained from the LINEQS model specification, as shown in Output 29.27.6.
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Output 29.31.4 Estimation of the D Matrix by the COSAN Model Specification

Model Matrix D

(6 x 6 Diagonal Matrix)

var1 var2 var3 var4 var5 var6

var1 1.0077
[d1]

0 0 0 0 0

var2 0 0.9971
[d2]

0 0 0 0

var3 0 0 0.9908
[d3]

0 0 0

var4 0 0 0 0.9909
[d4]

0 0

var5 0 0 0 0 0.9964
[d5]

0

var6 0 0 0 0 0 1.0169
[d6]

Output 29.31.5 shows the estimation of the unique covariance matrix Psi. All these unique variance parameter
estimates match those obtained from the LINEQS model specification, as shown in Output 29.27.6.

Output 29.31.5 Estimation of the Psi Matrix by the COSAN Model Specification

Model Matrix Psi

(6 x 6 Diagonal Matrix)

var1 var2 var3 var4 var5 var6

var1 0.4837
[psi1]

0 0 0 0 0

var2 0 0.4705
[psi2]

0 0 0 0

var3 0 0 0.5256
[psi3]

0 0 0

var4 0 0 0 0.5100
[psi4]

0 0

var5 0 0 0 0 0.3576
[psi5]

0

var6 0 0 0 0 0 0.4612
[psi6]

Finally, Output 29.31.6 shows the estimation of the independent parameter alpha. The same estimate of
alpha is shown in Output 29.27.6.

Output 29.31.6 Estimation of the Independent Parameter alpha by the COSAN Model Specification

Additional Parameters

Type Parameter Estimate

Independent alpha 0.97400
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Example 29.32: Ordinal Relations among Factor Loadings
The same data set as in Example 29.31 is used in McDonald (1980) for analysis with ordinally constrained
factor loadings. In Example 29.27, the results of the linearly constrained factor analysis show that the
loadings of the two factors are ordered as 2, 1, 3, 4, 6, 5. McDonald (1980) then tests the hypothesis that the
factor loadings are all nonnegative and can be ordered in the following manner:

b11 � b21 � b31 � b41 � b51 � b61

b12 � b22 � b32 � b42 � b52 � b62

In this example, you implement these ordinal relationships by using the LINCON statement in the following
COSAN model specification:

proc calis data=Kinzer nobs=326 nose;
cosan

var= var1-var6,
D(6,DIA) * B(2,GEN) + D(6,DIA) * Psi(6,DIA);

matrix B
[ ,1]= b11 b21 b31 b41 b51 b61,
[ ,2]= 0. b22 b32 b42 b52 b62;

matrix Psi
[1,1]= psi1-psi6;

matrix D
[1,1]= d1-d6 ;

lincon
b61 <= b51,
b51 <= b41,
b41 <= b31,
b31 <= b21,
b21 <= b11,
0. <= b22,
b22 <= b32,
b32 <= b42,
b42 <= b52,
b52 <= b62;

/* SAS Programming Statements */
/* 6 Constraints on Correlation structures */
psi1 = 1. - b11 * b11;
psi2 = 1. - b21 * b21 - b22 * b22;
psi3 = 1. - b31 * b31 - b32 * b32;
psi4 = 1. - b41 * b41 - b42 * b42;
psi5 = 1. - b51 * b51 - b52 * b52;
psi6 = 1. - b61 * b61 - b62 * b62;
vnames

B = [factor1 factor2],
Psi = [var1-var6],
D = Psi;

run;
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As in Example 29.31, correlation structures are analyzed in the current example so that the unique variance
parameters psi1–psi6 are defined as functions of the loadings in the SAS programming statements. However,
the loading parameters are no longer not constrained in the current model. Instead, you impose ordinal
constraints on the loading parameters. First, b21 is fixed at 0 for identification purposes. Then, you use the
LINCON statement to specify the ordinal relations of the factor loadings.

As shown in Output 29.32.1, the solution converges in 12 iterations. In the fit summary table, the chi-square
test statistic is 8.48 (df = 6, p = 0.20). This indicates a good fit. However, in the model there are 11 loading
parameters (the b’s) and 6 population standard deviation parameters (the d’s). The degrees of freedom should
have been 4 = 21 – 11 – 6, but why is this number 6 in the fit summary table?

Output 29.32.1 Final Iteration Status and Fit

Optimization Results

Iterations 12 Function Calls 29

Jacobian Calls 14 Active Constraints 2

Objective Function 0.0260990149 Max Abs Gradient Element 2.7626747E-6

Lambda 0 Actual Over Pred Change 1.1572072766

Radius 0.0000851592

Convergence criterion (ABSGCONV=0.00001) satisfied.

Fit Summary

Chi-Square 8.4822

Chi-Square DF 6

Pr > Chi-Square 0.2049

The reason is that there are two active constraints in the solution, resulting in two free parameters fewer in
the final solution than originally specified. Active constraints are those inequality constraints that are fulfilled
on the boundary equalities. As shown in the “Optimization Results” table, the number of active constraints
for the current fitting is two. The default treatment in PROC CALIS is to treat these active constraints as
if they were going to happen for all possible repeated sampling. This might as well be seen as fitting the
active equality constraints on every possible repeated sample. This results in an increase of the degrees of
freedom for model fit, as adjusted in the current fit summary table in Output 29.32.1. To warn you about the
degrees-of-freedom adjustment, the following messages are also printed with the output:

WARNING: There are 2 active boundary or linear inequality constraints at
the solution. The standard errors and chi-square test statistic
assume that the solution is located in the interior of the
parameter space; hence, they do not apply if it is likely that
some different set of inequality a constraints could be active.

NOTE: The degrees of freedom are increased by the number of active
constraints. The number of parameters in calculating fit indices
is decreased by the number of active constraints. To turn off the
adjustment, use the NOADJDF option.
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When active constraints are encountered, you need to be cautious about two implications. First, the estimates
fall on the boundary of the parameter space originally specified. As shown in Output 29.32.2, estimates for
b11 and b21 are the same, and so are the pair of estimates for b52 and b62. These pairs of parameters were
originally constrained by inequalities in the model. For example, b62 was constrained to be at least as large
as b52. The fact that this constraint is honored only on the bound means that a better model fit might exist
with b62 being smaller than b52. Similarly, a better model fit might result without requiring b11 to be at least
as large as b21. Therefore, solutions with active boundary constraints might imply that the original strict
inequality constraints are not appropriate for the data.

Output 29.32.2 Estimation of the Factor Loading Matrix B

Model Matrix B

(6 x 2 General Rectangular Matrix)

factor1 factor2

var1 0.7100
[b11]

0

var2 0.7100
[b21]

0.0393
[b22]

var3 0.6799
[b31]

0.2463
[b32]

var4 0.6561
[b41]

0.3295
[b42]

var5 0.5541
[b51]

0.5432
[b52]

var6 0.4733
[b61]

0.5432
[b62]

Output 29.32.3 Estimation of the Scaling Matrix D and Unique Covariance Matrix Psi

Model Matrix D

(6 x 6 Diagonal Matrix)

var1 var2 var3 var4 var5 var6

var1 1.0022
[d1]

0 0 0 0 0

var2 0 0.9985
[d2]

0 0 0 0

var3 0 0 1.0004
[d3]

0 0 0

var4 0 0 0 1.0004
[d4]

0 0

var5 0 0 0 0 0.9990
[d5]

0

var6 0 0 0 0 0 1.0021
[d6]
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Output 29.32.3 continued

Model Matrix Psi

(6 x 6 Diagonal Matrix)

var1 var2 var3 var4 var5 var6

var1 0.4959
[psi1]

0 0 0 0 0

var2 0 0.4944
[psi2]

0 0 0 0

var3 0 0 0.4771
[psi3]

0 0 0

var4 0 0 0 0.4610
[psi4]

0 0

var5 0 0 0 0 0.3979
[psi5]

0

var6 0 0 0 0 0 0.4809
[psi6]

The second implication for the presence of active constraints is that the chi-square test statistic and the
standard error estimates are computed as if repeated samples were fitted by the model with the presence of the
active equality constraints. The degrees-of-freedom adjustment by PROC CALIS is based on this assumption.
However, if the particular active constraints reflect only a rare sampling event, the degrees-of-freedom
adjustment (or even the computation of the chi-square statistic and standard error estimates) might not be
justified. Unfortunately, whether the active constraints are reflecting the truth of the model or pure sampling
fluctuation is usually difficult to determine.

Example 29.33: Longitudinal Factor Analysis
The following example (McDonald 1980) illustrates both the ability of PROC CALIS to formulate complex
covariance structure analysis problems by the generalized COSAN matrix model and the use of programming
statements to impose nonlinear constraints on the parameters. The example is a longitudinal factor analysis
that uses the Swaminathan (1974) model. For m = 3 tests, k = 3 occasions, and r = 2 factors, the covariance
structure model is formulated as follows:

† D F1F2F3LF�13 F�12 P.F�12 /0.F�13 /0L0F03F
0
2F
0
1 CU2

F1 D

0@B1 B2
B3

1A ; F2 D

0@I2 D2
D2

1A ; F3 D

0@I2 I2
D3

1A
L D

0@I2 0 0

I2 I2 0

I2 I2 I2

1A ; P D

0@I2 S2
S3

1A ; U D

0@U11 U12 U13
U21 U22 U23
U31 U32 U33

1A
S2 D I2 �D22; S3 D I2 �D23

The Swaminathan longitudinal factor model assumes that the factor scores for each (m) common factor
change from occasion to occasion (k) according to a first-order autoregressive scheme. The matrix F1
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contains the k factor loading matrices B1, B2, and B3 (each is n � m). The matrices D2;D3; S2; S3 and
Uij ; i; j D 1; : : : ; k; are diagonal, and the matrices Di and Si ; i D 2; : : : ; k; are subjected to the constraint

Si CD2i D I

Although the covariance structure model looks pretty complicated, it poses no problem for the COSAN
model specifications. Since the constructed correlation matrix given by McDonald (1980) is singular, only
unweighted least squares (METHOD=LS) estimates can be computed. The following statements specify the
COSAN model for the correlation structures.

Title "Swaminathan's Longitudinal Factor Model, Data: McDONALD(1980)";
Title2 "Constructed Singular Correlation Matrix, GLS & ML not possible";
data Mcdon(TYPE=CORR);

_TYPE_ = 'CORR'; INPUT _NAME_ $ obs1-obs9;
datalines;

obs1 1.000 . . . . . . . .
obs2 .100 1.000 . . . . . . .
obs3 .250 .400 1.000 . . . . . .
obs4 .720 .108 .270 1.000 . . . . .
obs5 .135 .740 .380 .180 1.000 . . . .
obs6 .270 .318 .800 .360 .530 1.000 . . .
obs7 .650 .054 .135 .730 .090 .180 1.000 . .
obs8 .108 .690 .196 .144 .700 .269 .200 1.000 .
obs9 .189 .202 .710 .252 .336 .760 .350 .580 1.000
;

proc calis data=Mcdon method=ls nobs=100 corr;
cosan

var = obs1-obs9,
F1(6,GEN) * F2(6,DIA) * F3(6,DIA) * L(6,LOW) * F3(6,DIA,INV)

* F2(6,DIA,INV) * P(6,DIA) + U(9,SYM);
matrix F1

[1 , @1] = x1-x3,
[2 , @2] = x4-x5,
[4 , @3] = x6-x8,
[5 , @4] = x9-x10,
[7 , @5] = x11-x13,
[8 , @6] = x14-x15;

matrix F2
[1,1]= 2 * 1. x16 x17 x16 x17;

matrix F3
[1,1]= 4 * 1. x18 x19;

matrix L
[1,1]= 6 * 1.,
[3,1]= 4 * 1.,
[5,1]= 2 * 1.;

matrix P
[1,1]= 2 * 1. x20-x23;

matrix U
[1,1]= x24-x32,
[4,1]= x33-x38,
[7,1]= x39-x41;

bounds 0. <= x24-x32,
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-1. <= x16-x19 <= 1.;
/* SAS programming statements for dependent parameters */
x20 = 1. - x16 * x16;
x21 = 1. - x17 * x17;
x22 = 1. - x18 * x18;
x23 = 1. - x19 * x19;

run;

In the PROC CALIS statement, you use the NOBS= option to specify the number of observations. The
CORR option requests the analysis of the correlation matrix.

In the COSAN statement, you list the observed variables for the analysis in the VAR= option. Then you
specify the formula for the covariance structures. Notice that in the covariance structure formula, some
matrices are specified twice. That is, matrix F2 and F3 appear in two different places. Matrices with the
same name means that they are identical—which certainly makes sense. In addition, you can apply different
transformations to the same matrix in different locations of the matrix formula. For example, you do not
transform matrix F2 in the first location, but the same matrix is inverted (INV) later in the expression.
Similarly for matrix F3.

Next, you define the parameters in the six distinct model matrices by six MATRIX statements. Each matrix
has some specific patterns under the covariance structure model. For the F1 matrix, it has the following
pattern for the free parameters in the model:

col1 col2 col3 col4 col5 col6
row1 x
row2 x x
row3 x x
row4 x
row5 x x
row6 x x
row7 x
row8 x x
row9 x x

To specify these parameters, you can use some shorthand notation in the MATRIX statement. For example,
in the first entry of the MATRIX statement for matrix F1, you use the notation [1,@1]. This means that
the parameter specification starts with the [1,1] element and proceeds to the next element while fixing the
column number at 1. Hence, parameters x1–x3 are specified for the F1Œ1; 1�, F1Œ2; 1�, and F1Œ3; 1� elements,
respectively. Similarly, you specify other parameters in the F1 matrix in a column by column fashion.

If you do not use the @ sign in the specification, the parameters are assigned differently. For example, in the
specification of the L matrix, the first entry in the corresponding MATRIX statement also starts with the
[1,1] element. But it proceeds down to [2,2], [3,3], and so on because the @ sign is not used to fix any
column or row number. As a result, the MATRIX statement for L specifies the following pattern:

col1 col2 col3 col4 col5 col6
row1 1
row2 1
row3 1 1
row4 1 1
row5 1 1 1
row6 1 1 1
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The unspecified elements are fixed zeros in the model.

Similarly, you specify the diagonal matrices F2, F3, and P, and the symmetric matrix U.

You also set bounds for some parameters in the BOUNDS statement and some dependent parameters in the
SAS programming statements.

Output 29.33.1 shows the correlation structures and the model matrices in the analysis. All appear to be
intended.

Output 29.33.1 The Correlation Structures and Model Matrices of the Longitudinal Factor Model

COSAN Model Structures

Sigma = F1*F2*F3*L*inv(F3)*inv(F2)*P*(inv(F2))`*(inv(F3))`*L`*F3`*F2`*F1` + U

Summary of Model Matrices

Matrix N Row N Col Matrix Type

F1 9 6 GEN: Rectangular

F2 6 6 DIA: Diagonal

F3 6 6 DIA: Diagonal

L 6 6 LOW: L Triangular

P 6 6 DIA: Diagonal

U 9 9 SYM: Symmetric

PROC CALIS finds a converged solution for the estimation problem. Output 29.33.2, Output 29.33.3, and
Output 29.33.4 show the estimation results of the F1, F2, and F3 matrices, respectively.

Output 29.33.2 Estimation of the F1 Matrix of the Longitudinal Factor Model

Model Matrix F1

(9 x 6 General Rectangular Matrix)

Col1 Col2 Col3 Col4 Col5 Col6

obs1 0.3515
[x1]

0 0 0 0 0

obs2 0.2871
[x2]

0.9528
[x4]

0 0 0 0

obs3 0.7101
[x3]

0.2059
[x5]

0 0 0 0

obs4 0 0 0.4204
[x6]

0 0 0

obs5 0 0 0.4303
[x7]

0.9027
[x9]

0 0

obs6 0 0 0.8591
[x8]

0.1772
[x10]

0 0

obs7 0 0 0 0 0.3487
[x11]

0

obs8 0 0 0 0 0.5924
[x12]

-0.1971
[x14]

obs9 0 0 0 0 0.9987
[x13]

0.0871
[x15]
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Output 29.33.3 Estimation of the F2 Matrix of the Longitudinal Factor Model

Model Matrix F2

(6 x 6 Diagonal Matrix)

Col1 Col2 Col3 Col4 Col5 Col6

Row1 1.0000 0 0 0 0 0

Row2 0 1.0000 0 0 0 0

Row3 0 0 0.8939
[x16]

0 0 0

Row4 0 0 0 0.5806
[x17]

0 0

Row5 0 0 0 0 0.8939
[x16]

0

Row6 0 0 0 0 0 0.5806
[x17]

Output 29.33.4 Estimation of the F3 Matrix of the Longitudinal Factor Model

Model Matrix F3

(6 x 6 Diagonal Matrix)

Col1 Col2 Col3 Col4 Col5 Col6

Row1 1.0000 0 0 0 0 0

Row2 0 1.0000 0 0 0 0

Row3 0 0 1.0000 0 0 0

Row4 0 0 0 1.0000 0 0

Row5 0 0 0 0 0.5963
[x18]

0

Row6 0 0 0 0 0 1.0000
[x19]

Output 29.33.5 shows the estimation results of the L matrix, which is a fixed matrix that contains only 0 or 1
for its elements.

Output 29.33.5 Estimation of the L Matrix of the Longitudinal Factor Model

Model Matrix L

(6 x 6 Lower Triangular Matrix)

Col1 Col2 Col3 Col4 Col5 Col6

Row1 1.0000 0 0 0 0 0

Row2 0 1.0000 0 0 0 0

Row3 1.0000 0 1.0000 0 0 0

Row4 0 1.0000 0 1.0000 0 0

Row5 1.0000 0 1.0000 0 1.0000 0

Row6 0 1.0000 0 1.0000 0 1.0000
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Output 29.33.6 shows the estimation results of the P matrix. Notice that parameter estimate x23 falls on the
lower boundary at zero.

Output 29.33.6 Estimation of the P Matrix of the Longitudinal Factor Model

Model Matrix P

(6 x 6 Diagonal Matrix)

Col1 Col2 Col3 Col4 Col5 Col6

Row1 1.0000 0 0 0 0 0

Row2 0 1.0000 0 0 0 0

Row3 0 0 0.2010
[x20]

0 0 0

Row4 0 0 0 0.6629
[x21]

0 0

Row5 0 0 0 0 0.6444
[x22]

0

Row6 0 0 0 0 0 0
[x23]

In fact, PROC CALIS routinely checks for zero values for the estimates on the diagonal of the central
symmetric matrices. In this case, you get the following messages regarding the estimation of matrix P:

WARNING: Although all predicted variances for the observed variables are
positive, the corresponding predicted covariance matrix is not
positive definite. It has one negative eigenvalue.

WARNING: The estimated variance of variable 6 is essentially zero in the
central matrix P of term 1 of the COSAN model.

WARNING: The central matrix P of term 1 of the COSAN model is not positive
definite. It has one zero eigenvalue.

Output 29.33.7 shows the estimation results of the U matrix. Parameter estimates x28 and x32 fall on the
lower boundary at zero. PROC CALIS issues the following messages regarding the estimation of matrix U:

WARNING: The estimated variance of obs5 is essentially zero in the central
matrix U of term 2 of the COSAN model.

WARNING: The estimated variance of obs9 is essentially zero in the central
matrix U of term 2 of the COSAN model.

WARNING: The central matrix U of term 2 of the COSAN model is not positive
definite. It has 3 negative eigenvalues.
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Output 29.33.7 Estimation of the U Matrix of the Longitudinal Factor Model

Model Matrix U

(9 x 9 Symmetric Matrix)

obs1 obs2 obs3 obs4 obs5 obs6 obs7 obs8 obs9

obs1 0.8764
[x24]

0 0 0.5879
[x33]

0 0 0.5847
[x39]

0 0

obs2 0 0.009683
[x25]

0 0 0.1302
[x34]

0 0 0.7084
[x40]

0

obs3 0 0 0.4533
[x26]

0 0 0.2335
[x35]

0 0 0.3215
[x41]

obs4 0.5879
[x33]

0 0 0.8233
[x27]

0 0 0.6426
[x36]

0 0

obs5 0 0.1302
[x34]

0 0 0
[x28]

0 0 0.7259
[x37]

0

obs6 0 0 0.2335
[x35]

0 0 0.2305
[x29]

0 0 0.2329
[x38]

obs7 0.5847
[x39]

0 0 0.6426
[x36]

0 0 0.8784
[x30]

0 0

obs8 0 0.7084
[x40]

0 0 0.7259
[x37]

0 0 0.6102
[x31]

0

obs9 0 0 0.3215
[x41]

0 0 0.2329
[x38]

0 0 0
[x32]

Because this formulation of Swaminathan’s model in general leads to an unidentified problem, the results
given here are different from those reported by McDonald (1980). The displayed output of PROC CALIS also
indicates that the fitted central model matrices P and U are not positive-definite. The BOUNDS statement
constrains the diagonals of the matrices P and U to be nonnegative, but this cannot prevent U from having
three negative eigenvalues. The fact that many of the published results for more complex models in covariance
structure analysis are connected to unidentified problems implies that more theoretical work should be done
to study the general features of such models.
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Overview: CANCORR Procedure
The CANCORR procedure performs canonical correlation, partial canonical correlation, and canonical
redundancy analysis.

Canonical correlation is a generalization of multiple correlation for analyzing the relationship between two
sets of variables. In multiple correlation, you examine the relationship between a linear combination of a
set of explanatory variables, X, and a single response variable, Y. In canonical correlation, you examine
the relationship between linear combinations of the set of X variables and linear combinations of a set of
Y variables. These linear combinations are called canonical variables or canonical variates. Either set of
variables can be considered explanatory or response variables, since the statistical model is symmetric in the
two sets of variables. Simple and multiple correlation are special cases of canonical correlation in which one
or both sets contain a single variable.
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The CANCORR procedure tests a series of hypotheses that each canonical correlation and all smaller
canonical correlations are zero in the population. PROC CANCORR uses an F approximation (Rao 1973;
Kshirsagar 1972) that gives better small sample results than the usual �2 approximation. At least one of the
two sets of variables should have an approximate multivariate normal distribution in order for the probability
levels to be valid.

Both standardized and unstandardized canonical coefficients are computed, as well as the four canonical
structure matrices showing correlations between the two sets of canonical variables and the two sets of
original variables. A canonical redundancy analysis (Stewart and Love 1968; Cooley and Lohnes 1971) can
also be done. PROC CANCORR provides multiple regression analysis options to aid in interpreting the
canonical correlation analysis. You can examine the linear regression of each variable on the opposite set of
variables.

PROC CANCORR can produce a data set containing the scores of each observation on each canonical
variable, and you can use the PRINT procedure to list these values. A plot of each canonical variable against
its counterpart in the other group is often useful, and you can use PROC SGPLOT with the output data set to
produce these plots. A second output data set contains the canonical correlations, coefficients, and most other
statistics computed by the procedure.

Background
Canonical correlation was developed by Hotelling (1935, 1936).

The application of canonical correlation is discussed by Cooley and Lohnes (1971); Tatsuoka (1971); Mardia,
Kent, and Bibby (1979). One of the best theoretical treatments is given by Kshirsagar (1972).

Given a set of p X variables and q Y variables, the CANCORR procedure finds the linear combinations

w1 D a11x1 C a21x2 C � � � C ap1xp

v1 D b11y1 C b21y2 C � � � C bq1yq

such that the two canonical variables, w1 and v1, have the largest possible correlation. This maximized
correlation between the two canonical variables is the first canonical correlation. The coefficients of the linear
combinations are canonical coefficients or canonical weights. It is customary to normalize the canonical
coefficients so that each canonical variable has a variance of 1.

PROC CANCORR continues by finding a second set of canonical variables, uncorrelated with the first pair,
that produces the second-highest correlation coefficient. That is, the second pair of canonical variables is

w2 D a12x1 C a22x2 C � � � C ap2xp

v2 D b12y1 C b22y2 C � � � C bq2yq

such that w2 is uncorrelated with w1 and v1, v2 is uncorrelated with w1 and v1, and w2 and v2 have the
largest possible correlation subject to these constraints. The process of constructing canonical variables
continues until the number of pairs of canonical variables is min.p; q/, the number of variables in the smaller
group.
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Each canonical variable is uncorrelated with all the other canonical variables of either set except for the one
corresponding canonical variable in the opposite set. The canonical coefficients are not generally orthogonal,
however, so the canonical variables do not represent jointly perpendicular directions through the space of the
original variables.

The first canonical correlation is at least as large as the multiple correlation between any variable and the
opposite set of variables. It is possible for the first canonical correlation to be very large while all the multiple
correlations for predicting one of the original variables from the opposite set of canonical variables are small.
Canonical redundancy analysis (Stewart and Love 1968; Cooley and Lohnes 1971; van den Wollenberg 1977)
examines how well the original variables can be predicted from the canonical variables.

PROC CANCORR can also perform partial canonical correlation, which is a multivariate generalization
of ordinary partial correlation (Cooley and Lohnes 1971; Timm 1975). Most commonly used parametric
statistical methods, ranging from t tests to multivariate analysis of covariance, are special cases of partial
canonical correlation.

Getting Started: CANCORR Procedure
The following example demonstrates how you can use the CANCORR procedure to calculate and test
canonical correlations between two sets of variables.

Suppose you want to determine the degree of correspondence between a set of job characteristics and
measures of employee satisfaction. Using a survey instrument for employees, you calculate three measures
of job satisfaction. With another instrument designed for supervisors, you calculate the corresponding job
characteristics profile.

Your three variables associated with job satisfaction are as follows:

• career track satisfaction: employee satisfaction with career direction and the possibility of future
advancement, expressed as a percent

• management and supervisor satisfaction: employee satisfaction with supervisor’s communication and
management style, expressed as a percent

• financial satisfaction: employee satisfaction with salary and other benefits, using a scale measurement
from 1 to 10 (1=unsatisfied, 10=satisfied)

The three variables associated with job characteristics are as follows:

• task variety: degree of variety involved in tasks, expressed as a percent
• feedback: degree of feedback required in job tasks, expressed as a percent
• autonomy: degree of autonomy required in job tasks, expressed as a percent
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The following statements create the SAS data set Jobs and request a canonical correlation analysis:

data Jobs;
input Career Supervisor Finance Variety Feedback Autonomy;
label Career ='Career Satisfaction' Variety ='Task Variety'

Supervisor='Supervisor Satisfaction' Feedback='Amount of Feedback'
Finance ='Financial Satisfaction' Autonomy='Degree of Autonomy';

datalines;
72 26 9 10 11 70
63 76 7 85 22 93
96 31 7 83 63 73
96 98 6 82 75 97
84 94 6 36 77 97
66 10 5 28 24 75
31 40 9 64 23 75
45 14 2 19 15 50
42 18 6 33 13 70
79 74 4 23 14 90
39 12 2 37 13 70
54 35 3 23 74 53
60 75 5 45 58 83
63 45 5 22 67 53
;

proc cancorr data=Jobs
vprefix=Satisfaction wprefix=Characteristics
vname='Satisfaction Areas' wname='Job Characteristics';

var Career Supervisor Finance;
with Variety Feedback Autonomy;

run;

The DATA= option in the PROC CANCORR statement specifies Jobs as the SAS data set to be analyzed.
The VPREFIX and WPREFIX options specify the prefixes for naming the canonical variables from the VAR
statement and the WITH statement, respectively. The VNAME option specifies 'Satisfaction Areas' to refer to
the set of variables from the VAR statement. Similarly, the WNAME option specifies 'Job Characteristics' to
refer to the set of variables from the WITH statement.

The VAR statement defines the first of the two sets of variables to be analyzed as Career, Supervisor, and
Finance. The WITH statement defines the second set of variables to be Variety, Feedback, and Autonomy.
The results of this analysis are displayed in Figure 30.1 to Figure 30.4.

Figure 30.1 displays the canonical correlation, adjusted canonical correlation, approximate standard error,
and squared canonical correlation for each pair of canonical variables. The first canonical correlation (the
correlation between the first pair of canonical variables) is 0.9194. This value represents the highest possible
correlation between any linear combination of the job satisfaction variables and any linear combination of
the job characteristics variables.

Figure 30.1 also lists the likelihood ratio and associated statistics for testing the hypothesis that the canonical
correlations in the current row and all that follow are zero.
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Figure 30.1 Canonical Correlations, Eigenvalues, and Likelihood Tests

The CANCORR Procedure

Canonical Correlation Analysis

The CANCORR Procedure

Canonical Correlation Analysis

Eigenvalues of Inv(E)*H
= CanRsq/(1-CanRsq)

Canonical
Correlation

Adjusted
Canonical

Correlation

Approximate
Standard

Error

Squared
Canonical

Correlation Eigenvalue Difference Proportion Cumulative

1 0.919412 0.898444 0.042901 0.845318 5.4649 5.2524 0.9604 0.9604

2 0.418649 0.276633 0.228740 0.175267 0.2125 0.1995 0.0373 0.9977

3 0.113366 . 0.273786 0.012852 0.0130 0.0023 1.0000

Test of H0: The canonical correlations in the current row and all that follow are zero

Likelihood
Ratio

Approximate
F Value Num DF Den DF Pr > F

1 0.12593148 2.93 9 19.621 0.0223

2 0.81413359 0.49 4 18 0.7450

3 0.98714819 0.13 1 10 0.7257

The first approximate F value of 2.93 corresponds to the test that all three canonical correlations are zero.
Since the p-value is small (0.0223), you would reject the null hypothesis at the 0.05 level. The second
approximate F value of 0.49 corresponds to the test that both the second and the third canonical correlations
are zero. Since the p-value is large (0.7450), you would fail to reject the hypothesis and conclude that only
the first canonical correlation is significant.

Figure 30.2 lists several multivariate statistics and tests that use approximations based on the F distribution for
the null hypothesis that all canonical correlations are zero. Alternatively, you can specify MSTAT=EXACT
to compute exact p-values for three of the four tests (Wilks’ Lambda, the Hotelling-Lawley Trace, and Roy’s
greatest root) and an improved F approximation for the fourth (Pillai’s Trace). These statistics are described
in the section “Multivariate Tests” on page 90 in Chapter 4, “Introduction to Regression Procedures.”

Figure 30.2 Multivariate Statistics and F Approximations

Multivariate Statistics and F Approximations

S=3    M=-0.5    N=3

Statistic Value F Value Num DF Den DF Pr > F

Wilks' Lambda 0.12593148 2.93 9 19.621 0.0223

Pillai's Trace 1.03343732 1.75 9 30 0.1204

Hotelling-Lawley Trace 5.69042615 4.76 9 9.8113 0.0119

Roy's Greatest Root 5.46489324 18.22 3 10 0.0002

NOTE: F Statistic for Roy's Greatest Root is an upper bound.

The small p-values for these tests (< 0.05), except for Pillai’s trace, suggest rejecting the null hypothesis that
all canonical correlations are zero in the population, confirming the results of the preceding likelihood ratio
test (Figure 30.1). With only one of the tests resulting in a p-value larger than 0.05, you can assume that the
first canonical correlation is significant. The next step is to interpret or identify the two canonical variables
corresponding to this significant correlation.
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Even though canonical variables are artificial, they can often be “identified” in terms of the original variables.
This is done primarily by inspecting the standardized coefficients of the canonical variables and the correla-
tions between the canonical variables and their original variables. Since only the first canonical correlation is
significant, only the first pair of canonical variables (Satisfaction1 and Characteristics1) need to be identified.

PROC CANCORR calculates and displays the raw canonical coefficients for the job satisfaction variables and
the job characteristic variables. However, since the original variables do not necessarily have equal variance
and are not measured in the same units, the raw coefficients must be standardized to allow interpretation. The
coefficients are standardized by multiplying the raw coefficients with the standard deviation of the associated
variable.

The standardized canonical coefficients in Figure 30.3 show that the first canonical variable for the Satisfaction
group is a weighted sum of the variables Supervisor (0.7854) and Career (0.3028), with the emphasis
on Supervisor. The coefficient for the variable Finance is near 0. Thus, a person satisfied with his or
her supervisor and with a large degree of career satisfaction would score high on the canonical variable
Satisfaction1.

Figure 30.3 Standardized Canonical Coefficients from the CANCORR Procedure

Standardized Canonical Coefficients for the Satisfaction Areas

Satisfaction1 Satisfaction2 Satisfaction3

Career Career Satisfaction 0.3028 -0.5416 1.0408

Supervisor Supervisor Satisfaction 0.7854 0.1305 -0.9085

Finance Financial Satisfaction 0.0538 0.9754 0.3329

Standardized Canonical Coefficients for the Job Characteristics

Characteristics1 Characteristics2 Characteristics3

Variety Task Variety -0.1108 0.8095 0.9071

Feedback Amount of Feedback 0.5520 -0.7722 0.4194

Autonomy Degree of Autonomy 0.8403 0.1020 -0.8297

The coefficients for the job characteristics variables show that degree of autonomy (Autonomy) and amount
of feedback (Feedback) contribute heavily to the Characteristics1 canonical variable (0.8403 and 0.5520,
respectively).

Figure 30.4 shows the table of correlations between the canonical variables and the original variables.

Figure 30.4 Canonical Structure Correlations from the CANCORR Procedure

The CANCORR Procedure

Canonical Structure

The CANCORR Procedure

Canonical Structure

Correlations Between the Satisfaction Areas and Their Canonical Variables

Satisfaction1 Satisfaction2 Satisfaction3

Career Career Satisfaction 0.7499 -0.2503 0.6123

Supervisor Supervisor Satisfaction 0.9644 0.0362 -0.2618

Finance Financial Satisfaction 0.2873 0.8814 0.3750
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Figure 30.4 continued

Correlations Between the Job Characteristics and Their Canonical Variables

Characteristics1 Characteristics2 Characteristics3

Variety Task Variety 0.4863 0.6592 0.5736

Feedback Amount of Feedback 0.6216 -0.5452 0.5625

Autonomy Degree of Autonomy 0.8459 0.4451 -0.2938

Correlations Between the Satisfaction Areas and the Canonical Variables of the Job
Characteristics

Characteristics1 Characteristics2 Characteristics3

Career Career Satisfaction 0.6895 -0.1048 0.0694

Supervisor Supervisor Satisfaction 0.8867 0.0152 -0.0297

Finance Financial Satisfaction 0.2642 0.3690 0.0425

Correlations Between the Job Characteristics and the Canonical
Variables of the Satisfaction Areas

Satisfaction1 Satisfaction2 Satisfaction3

Variety Task Variety 0.4471 0.2760 0.0650

Feedback Amount of Feedback 0.5715 -0.2283 0.0638

Autonomy Degree of Autonomy 0.7777 0.1863 -0.0333

Although these univariate correlations must be interpreted with caution since they do not indicate how the
original variables contribute jointly to the canonical analysis, they are often useful in the identification of the
canonical variables.

Figure 30.4 shows that the supervisor satisfaction variable Supervisor is strongly associated with the
Satisfaction1 canonical variable, with a correlation of 0.9644. Slightly less influential is the variable Career,
which has a correlation with the canonical variable of 0.7499. Thus, the canonical variable Satisfaction1
seems to represent satisfaction with supervisor and career track.

The correlations for the job characteristics variables show that the canonical variable Characteristics1 seems
to represent all three measured variables, with degree of autonomy variable (Autonomy) being the most
influential (0.8459).

Hence, you can interpret these results to mean that job characteristics and job satisfaction are related—jobs
that possess a high degree of autonomy and level of feedback are associated with workers who are more
satisfied with their supervisor and their career. While financial satisfaction is a factor in job satisfaction, it is
not as important as the other measured satisfaction-related variables.
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Syntax: CANCORR Procedure
The following statements are available in the CANCORR procedure:

PROC CANCORR < options > ;
WITH variables ;
BY variables ;
FREQ variable ;
PARTIAL variables ;
VAR variables ;
WEIGHT variable ;

The PROC CANCORR statement and the WITH statement are required. The rest of this section provides
detailed syntax information for each of the preceding statements, beginning with the PROC CANCORR
statement. The remaining statements are covered in alphabetical order.

PROC CANCORR Statement
PROC CANCORR < options > ;

The PROC CANCORR statement invokes the CANCORR procedure. Optionally, it also identifies input and
output data sets, specifies the analyses performed, and controls displayed output. Table 30.1 summarizes the
options available in the PROC CANCORR statement.

Table 30.1 Summary of PROC CANCORR Statement Options

Option Description

Specify computational details
EDF= Specifies error degrees of freedom if input observations are regression

residuals
MSTAT= Specifies the method of evaluating the multivariate test statistics
NOINT Omits intercept from canonical correlation and regression models
RDF= Specifies regression degrees of freedom if input observations are regression

residuals
SINGULAR= Specifies the singularity criterion

Specify input and output data sets
DATA= Specifies input data set name
OUT= Specifies output data set name
OUTSTAT= Specifies output data set name containing various statistics

Specify labeling options
PARPREFIX= Specifies a prefix for naming residual variables
VNAME= Specifies a name to refer to VAR statement variables
VPREFIX= Specifies a prefix for naming VAR statement canonical variables
WNAME= Specifies a name to refer to WITH statement variables
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Table 30.1 continued

Option Description

WPREFIX= Specifies a prefix for naming WITH statement canonical variables

Control amount of output
ALL Produces simple statistics, input variable correlations, and canonical redun-

dancy analysis
CORR Produces input variable correlations
NCAN= Specifies number of canonical variables for which full output is desired
NOPRINT Suppresses all displayed output
REDUNDANCY Produces canonical redundancy analysis
SHORT Suppresses default output from canonical analysis
SIMPLE Produces means and standard deviations

Request regression analyses
VDEP Requests multiple regression analyses with the VAR variables as dependents

and the WITH variables as regressors
VREG Requests multiple regression analyses with the VAR variables as regressors

and the WITH variables as dependents
WDEP Same as VREG
WREG Same as VDEP

Specify regression statistics
ALL Produces all regression statistics and includes these statistics in the OUT-

STAT= data set
B Produces raw regression coefficients
CLB Produces 95% confidence interval limits for the regression coefficients
CORRB Produces correlations among regression coefficients
INT Requests statistics for the intercept when you specify the B, CLB, SEB, T,

or PROBT option
PCORR Displays partial correlations between regressors and dependents
PROBT Displays probability levels for t statistics
SEB Displays standard errors of regression coefficients
SMC Displays squared multiple correlations and F tests
SPCORR Displays semipartial correlations between regressors and dependents
SQPCORR Displays squared partial correlations between regressors and dependents
SQSPCORR Displays squared semipartial correlations between regressors and depen-

dents
STB Displays standardized regression coefficients
T Displays t statistics for regression coefficients

Following are explanations of the options that can be used in the PROC CANCORR statement (in alphabetic
order).

ALL
displays simple statistics, correlations among the input variables, the confidence limits for the regression
coefficients, and the canonical redundancy analysis. If you specify the VDEP or WDEP option, the
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ALL option displays all related regression statistics (unless the NOPRINT option is specified) and
includes these statistics in the OUTSTAT= data set.

B
produces raw regression coefficients from the regression analyses.

CLB
produces the 95% confidence limits for the regression coefficients from the regression analyses.

CORR

C
produces correlations among the original variables. If you include a PARTIAL statement, the CORR
option produces a correlation matrix for all variables in the analysis, the regression statistics (R square,
RMSE), the standardized regression coefficients for both the VAR and WITH variables as predicted
from the PARTIAL statement variables, and partial correlation matrices.

CORRB
produces correlations among the regression coefficient estimates.

DATA=SAS-data-set
names the SAS data set to be analyzed by PROC CANCORR. It can be an ordinary SAS data set or a
TYPE=CORR, COV, FACTOR, SSCP, UCORR, or UCOV data set. By default, the procedure uses the
most recently created SAS data set.

EDF=error-df
specifies the error degrees of freedom if the input observations are residuals from a regression analysis.
The effective number of observations is the EDF= value plus one. If you have 100 observations, then
specifying EDF=99 has the same effect as omitting the EDF= option.

INT
requests that statistics for the intercept be included when B, CLB, SEB, T, or PROBT is specified for
the regression analyses.

MSTAT=FAPPROX | EXACT
specifies the method of evaluating the multivariate test statistics. The default is MSTAT=FAPPROX,
which specifies that the multivariate tests are evaluated using the usual approximations based on the F
distribution, as discussed in the section “Multivariate Tests” on page 90 in Chapter 4, “Introduction to
Regression Procedures.” Alternatively, you can specify MSTAT=EXACT to compute exact p-values
for three of the four tests (Wilks’ lambda, the Hotelling-Lawley trace, and Roy’s greatest root) and
an improved F approximation for the fourth (Pillai’s trace). While MSTAT=EXACT provides better
control of the significance probability for the tests, especially for Roy’s greatest root, computations for
the exact p-values can be appreciably more demanding, and are in fact infeasible for large problems
(many dependent variables). Thus, although MSTAT=EXACT is more accurate for most data, it is not
the default method.

NCAN=number
specifies the number of canonical variables for which full output is desired. The number must be less
than or equal to the number of canonical variables in the analysis.

The value of the NCAN= option specifies the number of canonical variables for which canonical
coefficients and canonical redundancy statistics are displayed, and the number of variables shown in
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the canonical structure matrices. The NCAN= option does not affect the number of displayed canonical
correlations.

If an OUTSTAT= data set is requested, the NCAN= option controls the number of canonical variables
for which statistics are output. If an OUT= data set is requested, the NCAN= option controls the
number of canonical variables for which scores are output.

NOINT
omits the intercept from the canonical correlation and regression models. Standard deviations, vari-
ances, covariances, and correlations are not corrected for the mean. If you use a TYPE=SSCP data set
as input to the CANCORR procedure and list the variable Intercept in the VAR or WITH statement,
the procedure runs as if you also specified the NOINT option. If you use NOINT and also create an
OUTSTAT= data set, the data set is TYPE=UCORR.

NOPRINT
suppresses the display of all output. Note that this option temporarily disables the Output Delivery
System (ODS). For more information, see Chapter 20, “Using the Output Delivery System.”

OUT=SAS-data-set
creates an output SAS data set to contain all the original data plus scores on the canonical variables.
The OUT= option cannot be used when the DATA= data set is TYPE=CORR, COV, FACTOR, SSCP,
UCORR, or UCOV. For details about OUT= data sets, see the section “Output Data Sets” on page 1840.
If you want to create a SAS data set in a permanent library, you must specify a two-level name.
For more information about permanent libraries and SAS data sets, see SAS Language Reference:
Concepts.

OUTSTAT=SAS-data-set
creates an output SAS data set containing various statistics, including the canonical correlations and
coefficients and the multiple regression statistics you request. For details about OUTSTAT= data sets,
see the section “Output Data Sets” on page 1840. If you want to create a SAS data set in a permanent
library, you must specify a two-level name. For more information about permanent libraries and SAS
data sets, see SAS Language Reference: Concepts.

PCORR
produces partial correlations between regressors and dependent variables, removing from each depen-
dent variable and regressor the effects of all other regressors.

PROBT
produces probability levels for the t statistics in the regression analyses.

RDF=regression-df
specifies the regression degrees of freedom if the input observations are residuals from a regression
analysis. The effective number of observations is the actual number minus the RDF= value. The
degrees of freedom for the intercept should not be included in the RDF= option.

REDUNDANCY

RED
produces canonical redundancy statistics.
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PARPREFIX=name

PPREFIX=name
specifies a prefix for naming the residual variables in the OUT= data set and the OUTSTAT= data set.
By default, the prefix is R_. The number of characters in the prefix plus the maximum length of the
variable names should not exceed the current name length defined by the VALIDVARNAME= system
option.

SEB
produces standard errors of the regression coefficients.

SHORT
suppresses all default output from the canonical analysis except the tables of canonical correlations
and multivariate statistics.

SIMPLE

S
produces means and standard deviations.

SINGULAR=p

SING=p
specifies the singularity criterion, where 0 < p < 1. If a variable in the PARTIAL statement has an R
square as large as 1 – p (where p is the value of the SINGULAR= option) when predicted from the
variables listed before it in the statement, the variable is assigned a standardized regression coefficient
of 0, and the SAS log generates a linear dependency warning message. By default, SINGULAR=1E–8.

SMC
produces squared multiple correlations and F tests for the regression analyses.

SPCORR
produces semipartial correlations between regressors and dependent variables, removing from each
regressor the effects of all other regressors.

SQPCORR
produces squared partial correlations between regressors and dependent variables, removing from each
dependent variable and regressor the effects of all other regressors.

SQSPCORR
produces squared semipartial correlations between regressors and dependent variables, removing from
each regressor the effects of all other regressors.

STB
produces standardized regression coefficients.

T
produces t statistics for the regression coefficients.
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VDEP

WREG
requests multiple regression analyses with the VAR variables as dependent variables and the WITH
Variables as regressors.

VNAME=label

VN=label
specifies a character constant to refer to variables from the VAR statement in the output. Enclose the
constant in single or double quotes. If you omit the VNAME= option, these variables are referred to as
the VAR variables. The number of characters in the label should not exceed the label length defined by
the VALIDVARNAME= system option. For more information about the VALIDVARNAME= system
option, see SAS System Options: Reference.

VPREFIX=name

VP=name
specifies a prefix for naming canonical variables from the VAR statement. By default, these canonical
variables are given the names V1, V2, and so on. If you specify VPREFIX=ABC, the names are ABC1,
ABC2, and so on. The number of characters in the prefix plus the number of digits required to designate
the variables should not exceed the name length defined by the VALIDVARNAME= system option. For
more information about the VALIDVARNAME= system option, see SAS System Options: Reference.

WDEP

VREG
requests multiple regression analyses with the WITH variables as dependent variables and the VAR
variables as regressors.

WNAME=label

WN=label
specifies a character constant to refer to variables in the WITH statement in the output. Enclose the
constant in single or double quotes. If you omit the WNAME= option, these variables are referred to as
the WITH variables. The number of characters in the label should not exceed the label length defined
by the VALIDVARNAME= system option. For more information about the VALIDVARNAME=
system option, see SAS System Options: Reference.

WPREFIX=name

WP=name
specifies a prefix for naming canonical variables from the WITH statement. By default, these canonical
variables are given the names W1, W2, and so on. If you specify WPREFIX=XYZ, the names are XYZ1,
XYZ2, and so on. The number of characters in the prefix plus the number of digits required to designate
the variables should not exceed the label length defined by the VALIDVARNAME= system option. For
more information about the VALIDVARNAME= system option, see SAS System Options: Reference.
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BY Statement
BY variables ;

You can specify a BY statement with PROC CANCORR to obtain separate analyses of observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the CANCORR procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

FREQ Statement
FREQ variable ;

If one variable in your input data set represents the frequency of occurrence for other values in the observation,
specify the variable’s name in a FREQ statement. PROC CANCORR then treats the data set as if each
observation appeared n times, where n is the value of the FREQ variable for the observation. If the value of
the FREQ variable is less than one, the observation is not used in the analysis. Only the integer portion of the
value is used. The total number of observations is considered to be equal to the sum of the FREQ variable
when PROC CANCORR calculates significance probabilities.

PARTIAL Statement
PARTIAL variables ;

You can use the PARTIAL statement to base the canonical analysis on partial correlations. The variables
in the PARTIAL statement are partialed out of the VAR and WITH variables. If you request an OUT= or
OUTSTAT= data set, the residual variables are named by prefixing the characters R_ by default or the string
specified in the RPREFIX= option to the VAR variables.
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VAR Statement
VAR variables ;

The VAR statement lists the variables in the first of the two sets of variables to be analyzed. The variables
must be numeric. If you omit the VAR statement, all numeric variables not mentioned in other statements
make up the first set of variables. If, however, the DATA= data set is TYPE=SSCP, the default set of variables
used as VAR variables does not include the variable Intercept.

WEIGHT Statement
WEIGHT variable ;

If you want to compute weighted product-moment correlation coefficients, specify the name of the weighting
variable in a WEIGHT statement. The WEIGHT and FREQ statements have a similar effect, except the
WEIGHT statement does not alter the degrees of freedom or number of observations. An observation is used
in the analysis only if the WEIGHT variable is greater than zero.

WITH Statement
WITH variables ;

The WITH statement lists the variables in the second set of variables to be analyzed. The variables must be
numeric. The WITH statement is required.

Details: CANCORR Procedure

Missing Values
If an observation has a missing value for any of the variables in the analysis, that observation is omitted from
the analysis.

Formulas
Assume without loss of generality that the two sets of variables, X with p variables and Y with q variables,
have means of zero. Let n be the number of observations, and let m be n � 1.

Note that the scales of eigenvectors and canonical coefficients are arbitrary. PROC CANCORR follows the
usual procedure of rescaling the canonical coefficients so that each canonical variable has a variance of one.

There are several different sets of formulas that can be used to compute the canonical correlations, �i ,
i D 1; : : : ;min.p; q/, and unscaled canonical coefficients:
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1. Let SXX D X0X=m be the covariance matrix of X, SY Y D Y0Y=m be the covariance matrix
of Y, and SXY D X0Y=m be the covariance matrix between X and Y. Then the eigenvalues of
S�1Y Y S

0
XY S

�1
XXSXY are the squared canonical correlations, and the right eigenvectors are raw canonical

coefficients for the Y variables. The eigenvalues of S�1XXSXY S
�1
Y Y S

0
XY are the squared canonical

correlations, and the right eigenvectors are raw canonical coefficients for the X variables.

2. Let T D Y0Y and H D Y0X.X0X/�1X0Y. The eigenvalues �i of T�1H are the squared canonical cor-
relations, �2i , and the right eigenvectors are raw canonical coefficients for the Y variables. Interchange
X and Y in the preceding formulas, and the eigenvalues remain the same, but the right eigenvectors are
raw canonical coefficients for the X variables.

3. Let E D T�H. The eigenvalues of E�1H are �i D �2i =.1� �
2
i /. The right eigenvectors of E�1H are

the same as the right eigenvectors of T�1H.

4. Canonical correlation can be viewed as a principal component analysis of the predicted values of one set
of variables from a regression on the other set of variables, in the metric of the error covariance matrix.
For example, regress the Y variables on the X variables. Call the predicted values P D X.X0X/�1X0Y
and the residuals R D Y�P D .I�X.X0X/�1X0/Y. The error covariance matrix is R0R=m. Choose
a transformation Q that converts the error covariance matrix to an identity—that is, .RQ/0.RQ/ D
Q0R0RQ D mI. Apply the same transformation to the predicted values to yield, say, Z D PQ. Now do
a principal component analysis on the covariance matrix of Z, and you get the eigenvalues of E�1H.
Repeat with X and Y variables interchanged, and you get the same eigenvalues.

To show this relationship between canonical correlation and principal components, note that P0P D
H, R0R D E, and QQ0 D mE�1. Let the covariance matrix of Z be G. Then G D Z0Z=m D
.PQ/0PQ=m D Q0P0PQ=m D Q0HQ=m. Let u be an eigenvector of G and � be the corresponding
eigenvalue. Then by definition, Gu D �u; hence Q0HQu=m D �u. Premultiplying both sides by Q
yields QQ0HQu=m D �Qu and thus E�1HQu D �Qu. Hence Qu is an eigenvector of E�1H and � is
also an eigenvalue of E�1H.

5. If the covariance matrices are replaced by correlation matrices, the preceding formulas yield standard-
ized canonical coefficients instead of raw canonical coefficients.

The formulas for multivariate test statistics are shown in the section “Multivariate Tests” on page 90 in
Chapter 4, “Introduction to Regression Procedures.” Formulas for linear regression are provided in other
sections of that chapter.

Output Data Sets

OUT= Data Set

The OUT= data set contains all the variables in the original data set plus new variables containing the
canonical variable scores. The number of new variables is twice that specified by the NCAN= option. The
names of the new variables are formed by concatenating the values given by the VPREFIX= and WPREFIX=
options (the defaults are V and W) with the numbers 1, 2, 3, and so on. The new variables have mean 0
and variance equal to 1. An OUT= data set cannot be created if the DATA= data set is TYPE=CORR, COV,
FACTOR, SSCP, UCORR, or UCOV.
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If you use a PARTIAL statement, the OUT= data set also contains the residuals from predicting the VAR
variables from the PARTIAL variables. The names of the residual variables are formed by concatenating the
values given by the PARPREFIX= option (the default is R_) with the numbers 1, 2, 3, and so on.

OUTSTAT= Data Set

The OUTSTAT= data set is similar to the TYPE=CORR or TYPE=UCORR data set produced by the CORR
procedure, but it contains several results in addition to those produced by PROC CORR.

The new data set contains the following variables:

• the BY variables, if any

• two new character variables, _TYPE_ and _NAME_

• Intercept, if the INT option is used

• the variables analyzed (those in the VAR statement and the WITH statement)

Each observation in the new data set contains some type of statistic as indicated by the _TYPE_ variable.
The values of the _TYPE_ variable are as follows.

_TYPE_ Contents

MEAN means

STD standard deviations

USTD uncorrected standard deviations. When you specify the NOINT option in the PROC
CANCORR statement, the OUTSTAT= data set contains standard deviations not corrected
for the mean (_TYPE_='USTD').

N number of observations on which the analysis is based. This value is the same for each
variable.

SUMWGT sum of the weights if a WEIGHT statement is used. This value is the same for each
variable.

CORR correlations. The _NAME_ variable contains the name of the variable corresponding to
each row of the correlation matrix.

UCORR uncorrected correlation matrix. When you specify the NOINT option in the PROC
CANCORR statement, the OUTSTAT= data set contains a matrix of correlations not
corrected for the means.

CORRB correlations among the regression coefficient estimates

STB standardized regression coefficients. The _NAME_ variable contains the name of the
dependent variable.
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B raw regression coefficients

SEB standard errors of the regression coefficients

LCLB 95% lower confidence limits for the regression coefficients

UCLB 95% upper confidence limits for the regression coefficients

T t statistics for the regression coefficients

PROBT probability levels for the t statistics

SPCORR semipartial correlations between regressors and dependent variables

SQSPCORR squared semipartial correlations between regressors and dependent variables

PCORR partial correlations between regressors and dependent variables

SQPCORR squared partial correlations between regressors and dependent variables

RSQUARED R squares for the multiple regression analyses

ADJRSQ adjusted R squares

LCLRSQ approximate 95% lower confidence limits for the R squares

UCLRSQ approximate 95% upper confidence limits for the R squares

F F statistics for the multiple regression analyses

PROBF probability levels for the F statistics

CANCORR canonical correlations

SCORE standardized canonical coefficients. The _NAME_ variable contains the name of the
canonical variable.

To obtain the canonical variable scores, these coefficients should be multiplied by the
standardized data, using means obtained from the observation with _TYPE_='MEAN' and
standard deviations obtained from the observation with _TYPE_='STD'.

RAWSCORE raw canonical coefficients.

To obtain the canonical variable scores, these coefficients should be multiplied by the raw
data centered by means obtained from the observation with _TYPE_='MEAN'.

USCORE scoring coefficients to be applied without subtracting the mean from the raw variables.
These are standardized canonical coefficients computed under a NOINT model.

To obtain the canonical variable scores, these coefficients should be multiplied by the data
that are standardized by the uncorrected standard deviations obtained from the observation
with _TYPE_='USTD'.

STRUCTUR canonical structure.
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Computational Resources

Notation

Let

n D number of observations

v D number of variables

w D number of WITH variables

p D max.v; w/
q D min.v; w/
b D v C w

t D total number of variables (VAR, WITH, and PARTIAL)

Time Requirements

The time required to compute the correlation matrix is roughly proportional to

n.p C q/2

The time required for the canonical analysis is roughly proportional to

1

6
p3 C p2q C

3

2
pq2 C 5q3

but the coefficient for q3 varies depending on the number of QR iterations in the singular value decomposition.

Memory Requirements

The minimum memory required is approximately

4.v2 C w2 C t2/

bytes. Additional memory is required if you request the VDEP or WDEP option.
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Displayed Output
If the SIMPLE option is specified, PROC CANCORR produces means and standard deviations for each input
variable. If the CORR option is specified, PROC CANCORR produces correlations among the input variables.
Unless the NOPRINT option is specified, PROC CANCORR displays a table of canonical correlations
containing the following:

• Canonical Correlations. These are always nonnegative.

• Adjusted Canonical Correlations (Lawley 1959), which are asymptotically less biased than the raw
correlations and can be negative. The adjusted canonical correlations might not be computable, and
they are displayed as missing values if two canonical correlations are nearly equal or if some are close
to zero. A missing value is also displayed if an adjusted canonical correlation is larger than a previous
adjusted canonical correlation.

• Approx Standard Errors, which are the approximate standard errors of the canonical correlations

• Squared Canonical Correlations

• Eigenvalues of INV(E)*H, which are equal to CanRsq/(1–CanRsq), where CanRsq is the corresponding
squared canonical correlation. Also displayed for each eigenvalue is the Difference from the next
eigenvalue, the Proportion of the sum of the eigenvalues, and the Cumulative proportion.

• Likelihood Ratio for the hypothesis that the current canonical correlation and all smaller ones are zero
in the population. The likelihood ratio for all canonical correlations equals Wilks’ lambda.

• Approx F statistic based on Rao’s approximation to the distribution of the likelihood ratio (Rao 1973,
p. 556; Kshirsagar 1972, p. 326)

• Num DF and Den DF (numerator and denominator degrees of freedom) and Pr > F (probability level)
associated with the F statistic

Unless you specify the NOPRINT option, PROC CANCORR produces a table of multivariate statistics for
the null hypothesis that all canonical correlations are zero in the population. These statistics, as described in
the section “Multivariate Tests” on page 90 in Chapter 4, “Introduction to Regression Procedures,” are as
follows:

• Wilks’ lambda
• Pillai’s trace
• Hotelling-Lawley trace
• Roy’s greatest root

For each of the preceding statistics, PROC CANCORR displays the following, depending on the specification
of the MSTAT= option.

If you specify MSTAT=FAPPROX (also the default value), the following statistics are displayed:

• an F approximation or upper bound
• Num DF, the numerator degrees of freedom
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• Den DF, the denominator degrees of freedom
• Pr > F , the probability level

If you specify MSTAT=EXACT, the following statistic is displayed:

• a t value

Unless you specify the SHORT or NOPRINT option, PROC CANCORR displays the following:

• both Raw (unstandardized) and Standardized Canonical Coefficients normalized to give canonical
variables with unit variance. Standardized coefficients can be used to compute canonical variable
scores from the standardized (zero mean and unit variance) input variables. Raw coefficients can be
used to compute canonical variable scores from the input variables without standardizing them.

• all four Canonical Structure matrices, giving Correlations Between the canonical variables and the
original variables

If you specify the REDUNDANCY option, PROC CANCORR displays the following:

• the Canonical Redundancy Analysis (Stewart and Love 1968; Cooley and Lohnes 1971), including Raw
(unstandardized) and Standardized Variance and Cumulative Proportion of the Variance of each set
of variables Explained by Their Own Canonical Variables and Explained by The Opposite Canonical
Variables

• the Squared Multiple Correlations of each variable with the first m canonical variables of the opposite
set, where m varies from 1 to the number of canonical correlations

If you specify the VDEP option, PROC CANCORR performs multiple regression analyses with the VAR
variables as dependent variables and the WITH variables as regressors. If you specify the WDEP option,
PROC CANCORR performs multiple regression analyses with the WITH variables as dependent variables
and the VAR variables as regressors. If you specify the VDEP or WDEP option and also specify the ALL
option, PROC CANCORR displays the following items. You can also specify individual options to request a
subset of the output generated by the ALL option; or you can suppress the output by specifying the NOPRINT
option.

SMC Squared Multiple Correlations and F Tests. For each regression model, identified by
its dependent variable name, PROC CANCORR displays the R square, Adjusted R
square (Wherry 1931), F Statistic, and Pr > F . Also for each regression model, PROC
CANCORR displays an Approximate 95% Confidence Interval for the population R
square Helland (1987). These confidence limits are valid only when the regressors are
random and when the regressors and dependent variables are approximately distributed
according to a multivariate normal distribution. The average R squares for the models
considered, unweighted and weighted by variance, are also given.

CORRB Correlations Among the Regression Coefficient Estimates

STB Standardized Regression Coefficients

B Raw Regression Coefficients
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SEB Standard Errors of the Regression Coefficients

CLB 95% confidence limits for the regression coefficients

T T Statistics for the Regression Coefficients

PROBT Probability > |T| for the Regression Coefficients

SPCORR Semipartial Correlations between regressors and dependent variables, Removing from
Each Regressor the Effects of All Other Regressors

SQSPCORR Squared Semipartial Correlations between regressors and dependent variables, Removing
from Each Regressor the Effects of All Other Regressors

PCORR Partial Correlations between regressors and dependent variables, Removing the Effects of
All Other Regressors from Both Regressor and Criterion

SQPCORR Squared Partial Correlations between regressors and dependent variables, Removing the
Effects of All Other Regressors from Both Regressor and Criterion

ODS Table Names
PROC CANCORR assigns a name to each table it creates. You can use these names to reference the table
when using the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed in Table 30.2.

For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

All of the tables in Table 30.2 are created with the specification of the PROC CANCORR statement; a few
tables need an additional PARTIAL statement.

Table 30.2 ODS Tables Produced by PROC CANCORR

ODS Table Name Description Statement and Option

AvgRSquare Average R squares (weighted and
unweighted)

VDEP, WDEP, SMC, or
ALL

CanCorr Canonical correlations default
CanStructureVCan Correlations between the VAR

canonical variables and the VAR and
WITH variables

default (if SHORT is not
specified)

CanStructureWCan Correlations between the WITH
canonical variables and the WITH and
VAR variables

default (if SHORT is not
specified)

ConfidenceLimits 95% confidence limits for the regression
coefficients

VDEP, WDEP, CLB, or
ALL

Corr Correlations among the original
variables

CORR or ALL

CorrOnPartial Partial correlations PARTIAL statement with
CORR or ALL

CorrRegCoefEst Correlations among the regression
coefficient estimates

VDEP, WDEP, CORRB, or
ALL

MultStat Multivariate statistics default
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Table 30.2 continued

ODS Table Name Description Statement and Option

NObsNVar Number of observations and variables SIMPLE or ALL
ParCorr Partial correlations VDEP, WDEP, PCORR, or

ALL
ProbtRegCoef Prob > |t| for the regression coefficients VDEP, WDEP, PROBT, or

ALL
RawCanCoefV Raw canonical coefficients for the VAR

variables
default (if SHORT is not
specified)

RawCanCoefW Raw canonical coefficients for the
WITH variables

default (if SHORT is not
specified)

RawRegCoef Raw regression coefficients VDEP, WDEP, B, or ALL
Redundancy Canonical redundancy analysis REDUNDANCY or ALL
Regression Squared multiple correlations and F

tests
VDEP, WDEP, SMC, or
ALL

RSquareRMSEOnPartial R squares and RMSEs on PARTIAL
variables

PARTIAL statement with
CORR or ALL

SemiParCorr Semipartial correlations VDEP, WDEP, SPCORR, or
ALL

SimpleStatistics Simple statistics SIMPLE or ALL
SqMultCorr Canonical redundancy analysis: squared

multiple correlations
REDUNDANCY or ALL

SqParCorr Squared partial correlations VDEP, WDEP, SQPCORR,
or ALL

SqSemiParCorr Squared semipartial correlations VDEP, WDEP, SQSPCORR,
or ALL

StdCanCoefV Standardized canonical coefficients for
the VAR variables

default (if SHORT is not
specified)

StdCanCoefW Standardized canonical coefficients for
the WITH variables

default (if SHORT is not
specified)

StdErrRawRegCoef Standard errors of the raw regression
coefficients

VDEP, WDEP, SEB, or
ALL

StdRegCoef Standardized regression coefficients VDEP, WDEP, STB, or
ALL

StdRegCoefOnPartial Standardized regression coefficients on
PARTIAL variables

PARTIAL statement with
CORR or ALL

tValueRegCoef t values for the regression coefficients VDEP, WDEP, T, or ALL
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Example: CANCORR Procedure

Example 30.1: Canonical Correlation Analysis of Fitness Club Data
Three physiological and three exercise variables are measured on 20 middle-aged men in a fitness club. You
can use the CANCORR procedure to determine whether the physiological variables are related in any way
to the exercise variables. The following statements create the SAS data set Fit and produce Output 30.1.1
through Output 30.1.5:

data Fit;
input Weight Waist Pulse Chins Situps Jumps;
datalines;

191 36 50 5 162 60
189 37 52 2 110 60
193 38 58 12 101 101
162 35 62 12 105 37
189 35 46 13 155 58
182 36 56 4 101 42
211 38 56 8 101 38
167 34 60 6 125 40
176 31 74 15 200 40
154 33 56 17 251 250
169 34 50 17 120 38
166 33 52 13 210 115
154 34 64 14 215 105
247 46 50 1 50 50
193 36 46 6 70 31
202 37 62 12 210 120
176 37 54 4 60 25
157 32 52 11 230 80
156 33 54 15 225 73
138 33 68 2 110 43
;

proc cancorr data=Fit all
vprefix=Physiological vname='Physiological Measurements'
wprefix=Exercises wname='Exercises';

var Weight Waist Pulse;
with Chins Situps Jumps;
title 'Middle-Aged Men in a Health Fitness Club';
title2 'Data Courtesy of Dr. A. C. Linnerud, NC State Univ';

run;
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Output 30.1.1 Correlations among the Original Variables

Middle-Aged Men in a Health Fitness Club
Data Courtesy of Dr. A. C. Linnerud, NC State Univ

The CANCORR Procedure

Correlations Among the Original Variables

Middle-Aged Men in a Health Fitness Club
Data Courtesy of Dr. A. C. Linnerud, NC State Univ

The CANCORR Procedure

Correlations Among the Original Variables

Correlations Among the
Physiological Measurements

Weight Waist Pulse

Weight 1.0000 0.8702 -0.3658

Waist 0.8702 1.0000 -0.3529

Pulse -0.3658 -0.3529 1.0000

Correlations Among the
Exercises

Chins Situps Jumps

Chins 1.0000 0.6957 0.4958

Situps 0.6957 1.0000 0.6692

Jumps 0.4958 0.6692 1.0000

Correlations Between the
Physiological Measurements

and the Exercises

Chins Situps Jumps

Weight -0.3897 -0.4931 -0.2263

Waist -0.5522 -0.6456 -0.1915

Pulse 0.1506 0.2250 0.0349

Output 30.1.1 displays the correlations among the original variables. The correlations between the physi-
ological and exercise variables are moderate, the largest being –0.6456 between Waist and Situps. There
are larger within-set correlations: 0.8702 between Weight and Waist, 0.6957 between Chins and Situps, and
0.6692 between Situps and Jumps.
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Output 30.1.2 Canonical Correlations and Multivariate Statistics

Middle-Aged Men in a Health Fitness Club
Data Courtesy of Dr. A. C. Linnerud, NC State Univ

The CANCORR Procedure

Canonical Correlation Analysis

Middle-Aged Men in a Health Fitness Club
Data Courtesy of Dr. A. C. Linnerud, NC State Univ

The CANCORR Procedure

Canonical Correlation Analysis

Eigenvalues of Inv(E)*H
= CanRsq/(1-CanRsq)

Canonical
Correlation

Adjusted
Canonical

Correlation

Approximate
Standard

Error

Squared
Canonical

Correlation Eigenvalue Difference Proportion Cumulative

1 0.795608 0.754056 0.084197 0.632992 1.7247 1.6828 0.9734 0.9734

2 0.200556 -.076399 0.220188 0.040223 0.0419 0.0366 0.0237 0.9970

3 0.072570 . 0.228208 0.005266 0.0053 0.0030 1.0000

Test of H0: The canonical correlations in the current row and all that follow are zero

Likelihood
Ratio

Approximate
F Value Num DF Den DF Pr > F

1 0.35039053 2.05 9 34.223 0.0635

2 0.95472266 0.18 4 30 0.9491

3 0.99473355 0.08 1 16 0.7748

Multivariate Statistics and F Approximations

S=3    M=-0.5    N=6

Statistic Value F Value Num DF Den DF Pr > F

Wilks' Lambda 0.35039053 2.05 9 34.223 0.0635

Pillai's Trace 0.67848151 1.56 9 48 0.1551

Hotelling-Lawley Trace 1.77194146 2.64 9 19.053 0.0357

Roy's Greatest Root 1.72473874 9.20 3 16 0.0009

NOTE: F Statistic for Roy's Greatest Root is an upper bound.

As Output 30.1.2 shows, the first canonical correlation is 0.7956, which would appear to be substantially
larger than any of the between-set correlations. The probability level for the null hypothesis that all the
canonical correlations are zero in the population is only 0.0635, so no firm conclusions can be drawn. The
remaining canonical correlations are not worthy of consideration, as can be seen from the probability levels
and especially from the negative adjusted canonical correlations.

Because the variables are not measured in the same units, the standardized coefficients rather than the raw
coefficients should be interpreted. The correlations given in the canonical structure matrices should also be
examined.

Output 30.1.3 Raw and Standardized Canonical Coefficients

Raw Canonical Coefficients for the Physiological
Measurements

Physiological1 Physiological2 Physiological3

Weight -0.031404688 -0.076319506 -0.007735047

Waist 0.4932416756 0.3687229894 0.1580336471

Pulse -0.008199315 -0.032051994 0.1457322421
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Output 30.1.3 continued

Raw Canonical Coefficients for the Exercises

Exercises1 Exercises2 Exercises3

Chins -0.066113986 -0.071041211 -0.245275347

Situps -0.016846231 0.0019737454 0.0197676373

Jumps 0.0139715689 0.0207141063 -0.008167472

Standardized Canonical Coefficients for the
Physiological Measurements

Physiological1 Physiological2 Physiological3

Weight -0.7754 -1.8844 -0.1910

Waist 1.5793 1.1806 0.5060

Pulse -0.0591 -0.2311 1.0508

Standardized Canonical Coefficients for
the Exercises

Exercises1 Exercises2 Exercises3

Chins -0.3495 -0.3755 -1.2966

Situps -1.0540 0.1235 1.2368

Jumps 0.7164 1.0622 -0.4188

The first canonical variable for the physiological variables, displayed in Output 30.1.3, is a weighted difference
of Waist (1.5793) and Weight (–0.7754), with more emphasis on Waist. The coefficient for Pulse is near
0. The correlations between Waist and Weight and the first canonical variable are both positive, 0.9254 for
Waist and 0.6206 for Weight. Weight is therefore a suppressor variable, meaning that its coefficient and its
correlation have opposite signs.

The first canonical variable for the exercise variables also shows a mixture of signs, subtracting Situps
(–1.0540) and Chins (–0.3495) from Jumps (0.7164), with the most weight on Situps. All the correlations
are negative, indicating that Jumps is also a suppressor variable.

It might seem contradictory that a variable should have a coefficient of opposite sign from that of its
correlation with the canonical variable. In order to understand how this can happen, consider a simplified
situation: predicting Situps from Waist and Weight by multiple regression. In informal terms, it seems
plausible that obese people should do fewer sit-ups than skinny people. Assume that the men in the sample
do not vary much in height, so there is a strong correlation between Waist and Weight (0.8702). Examine the
relationships between obesity and the independent variables:

• People with large waists tend to be more obese than people with small waists. Hence, the correlation
between Waist and Situps should be negative.

• People with high weights tend to be more obese than people with low weights. Therefore, Weight
should correlate negatively with Situps.

• For a fixed value of Weight, people with large waists tend to be shorter and more obese. Thus, the
multiple regression coefficient for Waist should be negative.

• For a fixed value of Waist, people with higher weights tend to be taller and skinnier. The multiple
regression coefficient for Weight should therefore be positive, of opposite sign from the correlation
between Weight and Situps.
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Therefore, the general interpretation of the first canonical correlation is that Weight and Jumps act as
suppressor variables to enhance the correlation between Waist and Situps. This canonical correlation
might be strong enough to be of practical interest, but the sample size is not large enough to draw definite
conclusions.

The canonical redundancy analysis (Output 30.1.4) shows that neither of the first pair of canonical variables
is a good overall predictor of the opposite set of variables, the proportions of variance explained being 0.2854
and 0.2584. The second and third canonical variables add virtually nothing, with cumulative proportions for
all three canonical variables being 0.2969 and 0.2767.

Output 30.1.4 Canonical Redundancy Analysis

Middle-Aged Men in a Health Fitness Club
Data Courtesy of Dr. A. C. Linnerud, NC State Univ

The CANCORR Procedure

Canonical Redundancy Analysis

Middle-Aged Men in a Health Fitness Club
Data Courtesy of Dr. A. C. Linnerud, NC State Univ

The CANCORR Procedure

Canonical Redundancy Analysis

Standardized Variance of the Physiological Measurements Explained
by

Their Own
Canonical Variables

The Opposite
Canonical Variables

Canonical
Variable
Number Proportion

Cumulative
Proportion

Canonical
R-Square Proportion

Cumulative
Proportion

1 0.4508 0.4508 0.6330 0.2854 0.2854

2 0.2470 0.6978 0.0402 0.0099 0.2953

3 0.3022 1.0000 0.0053 0.0016 0.2969

Standardized Variance of the Exercises Explained by

Their Own
Canonical Variables

The Opposite
Canonical Variables

Canonical
Variable
Number Proportion

Cumulative
Proportion

Canonical
R-Square Proportion

Cumulative
Proportion

1 0.4081 0.4081 0.6330 0.2584 0.2584

2 0.4345 0.8426 0.0402 0.0175 0.2758

3 0.1574 1.0000 0.0053 0.0008 0.2767
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The squared multiple correlations (Output 30.1.5) indicate that the first canonical variable of the physiological
measurements has some predictive power for Chins (0.3351) and Situps (0.4233) but almost none for Jumps
(0.0167). The first canonical variable of the exercises is a fairly good predictor of Waist (0.5421), a poorer
predictor of Weight (0.2438), and nearly useless for predicting Pulse (0.0701).

Output 30.1.5 Canonical Redundancy Analysis

Squared Multiple
Correlations Between the

Physiological Measurements
and the First M Canonical
Variables of the Exercises

M 1 2 3

Weight 0.2438 0.2678 0.2679

Waist 0.5421 0.5478 0.5478

Pulse 0.0701 0.0702 0.0749

Squared Multiple
Correlations Between the
Exercises and the First M
Canonical Variables of the

Physiological Measurements

M 1 2 3

Chins 0.3351 0.3374 0.3396

Situps 0.4233 0.4365 0.4365

Jumps 0.0167 0.0536 0.0539
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Overview: CANDISC Procedure
Canonical discriminant analysis is a dimension-reduction technique related to principal component analysis
and canonical correlation. The methodology that is used in deriving the canonical coefficients parallels that
of a one-way multivariate analysis of variance (MANOVA). MANOVA tests for equality of the mean vector
across class levels. Canonical discriminant analysis finds linear combinations of the quantitative variables
that provide maximal separation between classes or groups. Given a classification variable and several
quantitative variables, the CANDISC procedure derives canonical variables, which are linear combinations
of the quantitative variables that summarize between-class variation in much the same way that principal
components summarize total variation.

The CANDISC procedure performs a canonical discriminant analysis, computes squared Mahalanobis
distances between class means, and performs both univariate and multivariate one-way analyses of variance.
Two output data sets can be produced: one that contains the canonical coefficients and another that contains,
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among other things, scored canonical variables. You can rotate the canonical coefficients by using the
FACTOR procedure. It is customary to standardize the canonical coefficients so that the canonical variables
have means that are equal to 0 and pooled within-class variances that are equal to 1. PROC CANDISC
displays both standardized and unstandardized canonical coefficients. Correlations between the canonical
variables and the original variables in addition to the class means for the canonical variables are also
displayed; these correlations, sometimes known as loadings, are called canonical structures. To aid the
visual interpretation of group differences, you can use ODS Graphics to display graphs of pairs of canonical
variables from the scored canonical variables output data set.

When you have two or more groups of observations that have measurements on several quantitative variables,
canonical discriminant analysis derives a linear combination of the variables that has the highest possible
multiple correlation with the groups. This maximal multiple correlation is called the first canonical correlation.
The coefficients of the linear combination are the canonical coefficients or canonical weights. The variable
that is defined by the linear combination is the first canonical variable or canonical component. The second
canonical correlation is obtained by finding the linear combination uncorrelated with the first canonical
variable that has the highest possible multiple correlation with the groups. The process of extracting canonical
variables can be repeated until the number of canonical variables equals the number of original variables or
the number of classes minus one, whichever is smaller.

The first canonical correlation is at least as large as the multiple correlation between the groups and any
of the original variables. If the original variables have high within-group correlations, the first canonical
correlation can be large even if all the multiple correlations are small. In other words, the first canonical
variable can show substantial differences between the classes, even if none of the original variables do.
Canonical variables are sometimes called discriminant functions, but this usage is ambiguous because the
DISCRIM procedure produces very different functions for classification that are also called discriminant
functions.

For each canonical correlation, PROC CANDISC tests the hypothesis that it and all smaller canonical
correlations are zero in the population. An F approximation (Rao 1973; Kshirsagar 1972) is used that
gives better small-sample results than the usual chi-square approximation. The variables should have an
approximate multivariate normal distribution within each class, with a common covariance matrix in order
for the probability levels to be valid.

Canonical discriminant analysis is equivalent to canonical correlation analysis between the quantitative
variables and a set of dummy variables coded from the CLASS variable. Performing canonical discriminant
analysis is also equivalent to performing the following steps:

1. Transform the variables so that the pooled within-class covariance matrix is an identity matrix.
2. Compute class means on the transformed variables.
3. Perform a principal component analysis on the means, weighting each mean by the number of

observations in the class. The eigenvalues are equal to the ratio of between-class variation to within-
class variation in the direction of each principal component.

4. Back-transform the principal components into the space of the original variables to obtain the canonical
variables.

An interesting property of the canonical variables is that they are uncorrelated whether the correlation is
calculated from the total sample or from the pooled within-class correlations. However, the canonical
coefficients are not orthogonal, so the canonical variables do not represent perpendicular directions through
the space of the original variables.
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Getting Started: CANDISC Procedure
The data in this example are measurements of 159 fish caught in Finland’s Lake Laengelmaevesi; this data set
is available from the Puranen. For each of the seven species (bream, roach, whitefish, parkki, perch, pike, and
smelt), the weight, length, height, and width of each fish are tallied. Three different length measurements are
recorded: from the nose of the fish to the beginning of its tail, from the nose to the notch of its tail, and from
the nose to the end of its tail. The height and width are recorded as percentages of the third length variable.
The fish data set is available from the Sashelp library.

The following step uses PROC CANDISC to find the three canonical variables that best separate the species
of fish in the Sashelp.Fish data and create the output data set outcan. When the NCAN=3 option is specified,
only the first three canonical variables are displayed. The ODS EXCLUDE statement excludes the canonical
structure tables and most of the canonical coefficient tables in order to obtain a more compact set of results.
The TEMPLATE and SGRENDER procedures create a plot of the first two canonical variables. The following
statements produce Figure 31.1 through Figure 31.6:

title 'Fish Measurement Data';

proc candisc data=sashelp.fish ncan=3 out=outcan;
ods exclude tstruc bstruc pstruc tcoef pcoef;
class Species;
var Weight Length1 Length2 Length3 Height Width;

run;

proc template;
define statgraph scatter;

begingraph / attrpriority=none;
entrytitle 'Fish Measurement Data';
layout overlayequated / equatetype=fit

xaxisopts=(label='Canonical Variable 1')
yaxisopts=(label='Canonical Variable 2');
scatterplot x=Can1 y=Can2 / group=species name='fish'

markerattrs=(size=3px);
layout gridded / autoalign=(topright);

discretelegend 'fish' / border=false opaque=false;
endlayout;

endlayout;
endgraph;

end;
run;

proc sgrender data=outcan template=scatter;
run;

PROC CANDISC begins by displaying summary information about the variables in the analysis. This
information includes the number of observations, the number of quantitative variables in the analysis
(specified with the VAR statement), and the number of classes in the classification variable (specified with
the CLASS statement). The frequency of each class is also displayed.
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Figure 31.1 Summary Information

Fish Measurement Data

The CANDISC Procedure

Fish Measurement Data

The CANDISC Procedure

Total Sample Size 158 DF Total 157

Variables 6 DF Within Classes 151

Classes 7 DF Between Classes 6

Number of Observations Read 159

Number of Observations Used 158

Class Level Information

Species
Variable
Name Frequency Weight Proportion

Bream Bream 34 34.0000 0.215190

Parkki Parkki 11 11.0000 0.069620

Perch Perch 56 56.0000 0.354430

Pike Pike 17 17.0000 0.107595

Roach Roach 20 20.0000 0.126582

Smelt Smelt 14 14.0000 0.088608

Whitefish Whitefish 6 6.0000 0.037975

PROC CANDISC performs a multivariate one-way analysis of variance (one-way MANOVA) and provides
four multivariate tests of the hypothesis that the class mean vectors are equal. These tests, shown in
Figure 31.2, indicate that not all the mean vectors are equal (p < 0.0001).

Figure 31.2 MANOVA and Multivariate Tests

Fish Measurement Data

The CANDISC Procedure

Fish Measurement Data

The CANDISC Procedure

Multivariate Statistics and F Approximations

S=6    M=-0.5    N=72

Statistic Value F Value Num DF Den DF Pr > F

Wilks' Lambda 0.00036325 90.71 36 643.89 <.0001

Pillai's Trace 3.10465132 26.99 36 906 <.0001

Hotelling-Lawley Trace 52.05799676 209.24 36 413.64 <.0001

Roy's Greatest Root 39.13499776 984.90 6 151 <.0001

NOTE: F Statistic for Roy's Greatest Root is an upper bound.



Getting Started: CANDISC Procedure F 1859

The first canonical correlation is the greatest possible multiple correlation with the classes that can be
achieved by using a linear combination of the quantitative variables. The first canonical correlation, displayed
in Figure 31.3, is 0.987463. Figure 31.3 also displays a likelihood ratio test of the hypothesis that the current
canonical correlation and all smaller ones are zero. The first line is equivalent to Wilks’ lambda multivariate
test.

Figure 31.3 Canonical Correlations

Fish Measurement Data

The CANDISC Procedure

Fish Measurement Data

The CANDISC Procedure

Eigenvalues of Inv(E)*H
= CanRsq/(1-CanRsq)

Canonical
Correlation

Adjusted
Canonical

Correlation

Approximate
Standard

Error

Squared
Canonical

Correlation Eigenvalue Difference Proportion Cumulative

1 0.987463 0.986671 0.001989 0.975084 39.1350 29.3859 0.7518 0.7518

2 0.952349 0.950095 0.007425 0.906969 9.7491 7.3786 0.1873 0.9390

3 0.838637 0.832518 0.023678 0.703313 2.3706 1.7016 0.0455 0.9846

4 0.633094 0.623649 0.047821 0.400809 0.6689 0.5346 0.0128 0.9974

5 0.344157 0.334170 0.070356 0.118444 0.1344 0.1343 0.0026 1.0000

6 0.005701 . 0.079806 0.000033 0.0000 0.0000 1.0000

Test of H0: The canonical correlations in the current row and all that follow are zero

Likelihood
Ratio

Approximate
F Value Num DF Den DF Pr > F

1 0.00036325 90.71 36 643.89 <.0001

2 0.01457896 46.46 25 547.58 <.0001

3 0.15671134 23.61 16 452.79 <.0001

4 0.52820347 12.09 9 362.78 <.0001

5 0.88152702 4.88 4 300 0.0008

6 0.99996749 0.00 1 151 0.9442

The first canonical variable, Can1, shows that the linear combination of the centered variables Can1 =
–0.0006 � Weight – 0.33 � Length1 2.49 � Length2 + 2.60 � Length3 + 1.12 � Height – 1.45 � Width
separates the species most effectively (see Figure 31.4).

Figure 31.4 Raw Canonical Coefficients

Fish Measurement Data

The CANDISC Procedure

Fish Measurement Data

The CANDISC Procedure

Raw Canonical Coefficients

Variable Can1 Can2 Can3

Weight -0.000648508 -0.005231659 -0.005596192

Length1 -0.329435762 -0.626598051 -2.934324102

Length2 -2.486133674 -0.690253987 4.045038893

Length3 2.595648437 1.803175454 -1.139264914

Height 1.121983854 -0.714749340 0.283202557

Width -1.446386704 -0.907025481 0.741486686
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PROC CANDISC computes the means of the canonical variables for each class. The first canonical variable
is the linear combination of the variables Weight, Length1, Length2, Length3, Height, and Width that provides
the greatest difference (in terms of a univariate F test) between the class means. The second canonical
variable provides the greatest difference between class means while being uncorrelated with the first canonical
variable.

Figure 31.5 Class Means for Canonical Variables

Class Means on Canonical Variables

Species Can1 Can2 Can3

Bream 10.94142464 0.52078394 0.23496708

Parkki 2.58903743 -2.54722416 -0.49326158

Perch -4.47181389 -1.70822715 1.29281314

Pike -4.89689441 8.22140791 -0.16469132

Roach -0.35837149 0.08733611 -1.10056438

Smelt -4.09136653 -2.35805841 -4.03836098

Whitefish -0.39541755 -0.42071778 1.06459242

Figure 31.6 displays a plot of the first two canonical variables, which shows that Can1 discriminates among
three groups: (1) bream; (2) whitefish, roach, and parkki; and (3) smelt, pike, and perch. Can2 best
discriminates between pike and the other species.

Figure 31.6 Plot of First Two Canonical Variables
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Syntax: CANDISC Procedure
The following statements are available in the CANDISC procedure:

PROC CANDISC < options > ;
CLASS variable ;
BY variables ;
FREQ variable ;
VAR variables ;
WEIGHT variable ;

The BY, CLASS, FREQ, VAR, and WEIGHT statements are described in alphabetical order after the PROC
CANDISC statement.

PROC CANDISC Statement
PROC CANDISC < options > ;

The PROC CANDISC statement invokes the CANDISC procedure. Table 31.1 summarizes the options
available in the PROC CANDISC statement.

Table 31.1 CANDISC Procedure Options

Option Description

Input Data Set
DATA= Specifies the input SAS data set
Output Data Sets
OUT= Specifies the output data set that contains the canonical scores
OUTSTAT= Specifies the output statistics data set

Method Details
NCAN= Specifies the number of canonical variables
PREFIX= Specifies a prefix for naming the canonical variables
SINGULAR= Specifies the singularity criterion

Control Displayed Output
ALL Displays all output
ANOVA Displays univariate statistics
BCORR Displays between correlations
BCOV Displays between covariances
BSSCP Displays between SSCPs
DISTANCE Displays squared Mahalanobis distances
NOPRINT Suppresses all displayed output
PCORR Displays pooled correlations
PCOV Displays pooled covariances
PSSCP Displays pooled SSCPs
SHORT Suppresses some displayed output
SIMPLE Displays simple descriptive statistics
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Table 31.1 continued

Option Description

STDMEAN Displays standardized class means
TCORR Displays total correlations
TCOV Displays total covariances
TSSCP Displays total SSCPs
WCORR Displays within correlations
WCOV Displays within covariances
WSSCP Displays within SSCPs

ALL
activates all the display options.

ANOVA
displays univariate statistics for testing the hypothesis that the class means are equal in the population
for each variable.

BCORR
displays between-class correlations.

BCOV
displays between-class covariances. The between-class covariance matrix equals the between-class
SSCP matrix divided by n.c � 1/=c, where n is the number of observations and c is the number of
classes. The between-class covariances should be interpreted in comparison with the total-sample and
within-class covariances, not as formal estimates of population parameters.

BSSCP
displays the between-class SSCP matrix.

DATA=SAS-data-set
specifies the data set to be analyzed. The data set can be an ordinary SAS data set or one of several
specially structured data sets created by SAS statistical procedures. These specially structured data
sets include TYPE=CORR, TYPE=COV, TYPE=CSSCP, and TYPE=SSCP. If you omit the DATA=
option, PROC CANDISC uses the most recently created SAS data set.

DISTANCE

MAHALANOBIS
displays squared Mahalanobis distances between the group means, the F statistics, and the correspond-
ing probabilities of greater squared Mahalanobis distances between the group means.

NCAN=n
specifies the number of canonical variables to be computed. The value of n must be less than or equal
to the number of variables. If you specify NCAN=0, the procedure displays the canonical correlations
but not the canonical coefficients, structures, or means. A negative value suppresses the canonical
analysis entirely. Let v be the number of variables in the VAR statement, and let c be the number of
classes. If you omit the NCAN= option, only min.v; c � 1/ canonical variables are generated; if you
also specify an OUT= output data set, v canonical variables are generated, and the last v � .c � 1/
canonical variables have missing values.
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NOPRINT
suppresses the normal display of results. This option temporarily disables the Output Delivery System
(ODS). For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

OUT=SAS-data-set
creates an output SAS data set to contain the original data and the canonical variable scores. If you
want to create a SAS data set in a permanent library, you must specify a two-level name. For more
information about permanent libraries and SAS data sets, see SAS Language Reference: Concepts.

OUTSTAT=SAS-data-set
creates a TYPE=CORR output SAS data set to contain various statistics, including class means,
standard deviations, correlations, canonical correlations, canonical structures, canonical coefficients,
and means of canonical variables for each class. If you want to create a SAS data set in a permanent
library, you must specify a two-level name. For more information about permanent libraries and SAS
data sets, see SAS Language Reference: Concepts.

PCORR
displays pooled within-class correlations (partial correlations based on the pooled within-class covari-
ances).

PCOV
displays pooled within-class covariances.

PREFIX=name
specifies a prefix for naming the canonical variables. By default the names are Can1, Can2, Can3, and
so on. If you specify PREFIX=Abc, the components are named Abc1, Abc2, and so on. The number of
characters in the prefix plus the number of digits required to designate the canonical variables should
not exceed 32. The prefix is truncated if the combined length exceeds 32.

PSSCP
displays the pooled within-class corrected SSCP matrix.

SHORT
suppresses the display of canonical structures, canonical coefficients, and class means on canonical
variables; only tables of canonical correlations and multivariate test statistics are displayed.

SIMPLE
displays simple descriptive statistics for the total sample and within each class.

SINGULAR=p
specifies the criterion for determining the singularity of the total-sample correlation matrix and the
pooled within-class covariance matrix, where 0 < p < 1. The default is SINGULAR=1E–8.

Let S be the total-sample correlation matrix. If the R square for predicting a quantitative variable in the
VAR statement from the variables that precede it exceeds 1 – p, then S is considered singular. If S is
singular, the probability levels for the multivariate test statistics and canonical correlations are adjusted
for the number of variables whose R square exceeds 1 – p.

If S is considered singular and the inverse of S (squared Mahalanobis distances) is required, a quasi
inverse is used instead. For more information, see the section “Quasi-inverse” on page 2180 in
Chapter 35, “The DISCRIM Procedure.”
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STDMEAN
displays total-sample and pooled within-class standardized class means.

TCORR
displays total-sample correlations.

TCOV
displays total-sample covariances.

TSSCP
displays the total-sample corrected SSCP matrix.

WCORR
displays within-class correlations for each class level.

WCOV
displays within-class covariances for each class level.

WSSCP
displays the within-class corrected SSCP matrix for each class level.

BY Statement
BY variables ;

You can specify a BY statement with PROC CANDISC to obtain separate analyses of observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the CANDISC procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

CLASS Statement
CLASS variable ;

The values of the CLASS variable define the groups for analysis. Class levels are determined by the formatted
values of the CLASS variable. The CLASS variable can be numeric or character. A CLASS statement is
required.
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FREQ Statement
FREQ variable ;

If a variable in the data set represents the frequency of occurrence of the other values in the observation,
include the name of the variable in a FREQ statement. The procedure then treats the data set as if each
observation appears n times, where n is the value of the FREQ variable for the observation. The total number
of observations is considered to be equal to the sum of the FREQ variable when the procedure determines
degrees of freedom for significance probabilities.

If the value of the FREQ variable is missing or is less than 1, the observation is not used in the analysis. If
the value is not an integer, the value is truncated to an integer.

VAR Statement
VAR variables ;

You specify the quantitative variables to include in the analysis by using a VAR statement. If you do not use
a VAR statement, the analysis includes all numeric variables not listed in other statements.

WEIGHT Statement
WEIGHT variable ;

To use relative weights for each observation in the input data set, place the weights in a variable in the data
set and specify the name in a WEIGHT statement. This is often done when the variance associated with each
observation is different and the values of the WEIGHT variable are proportional to the reciprocals of the
variances. If the value of the WEIGHT variable is missing or is less than 0, then a value of 0 for the weight is
assumed.

The WEIGHT and FREQ statements have a similar effect except that the WEIGHT statement does not alter
the degrees of freedom.

Details: CANDISC Procedure

Missing Values
If an observation has a missing value for any of the quantitative variables, it is omitted from the analysis.
If an observation has a missing CLASS value but is otherwise complete, it is not used in computing the
canonical correlations and coefficients; however, canonical variable scores are computed for that observation
for the OUT= data set.
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Computational Details

General Formulas

Canonical discriminant analysis is equivalent to canonical correlation analysis between the quantitative
variables and a set of dummy variables coded from the CLASS variable. In the following notation, the
dummy variables are denoted by y and the quantitative variables are denoted by x. The total sample covariance
matrix for the x and y variables is

S D
�
Sxx Sxy
Syx Syy

�
When c is the number of groups, nt is the number of observations in group t, and St is the sample covariance
matrix for the x variables in group t, the within-class pooled covariance matrix for the x variables is

Sp D
1P
nt � c

X
.nt � 1/St

The canonical correlations, �i , are the square roots of the eigenvalues, �i , of the following matrix. The
corresponding eigenvectors are vi .

Sp�1=2SxySyy�1SyxSp�1=2

Let V be the matrix that contains the eigenvectors vi that correspond to nonzero eigenvalues as columns. The
raw canonical coefficients are calculated as follows:

R D Sp�1=2V

The pooled within-class standardized canonical coefficients are

P D diag.Sp/1=2R

The total sample standardized canonical coefficients are

T D diag.Sxx/1=2R

Let Xc be the matrix that contains the centered x variables as columns. The canonical scores can be calculated
by any of the following:

Xc R

Xc diag.Sp/�1=2P

Xc diag.Sxx/�1=2T

For the multivariate tests based on E�1H,

E D .n � 1/.Syy � SyxS�1xxSxy/

H D .n � 1/SyxS�1xxSxy

where n is the total number of observations.
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Input Data Set
The input DATA= data set can be an ordinary SAS data set or one of several specially structured data sets
created by statistical procedures available in SAS/STAT software. For more information about special types
of data sets, see Appendix A, “Special SAS Data Sets.” The BY variable in these data sets becomes the
CLASS variable in PROC CANDISC. These specially structured data sets include the following:

• TYPE=CORR data sets created by PROC CORR by using a BY statement

• TYPE=COV data sets created by PROC PRINCOMP by using both the COV option and a BY statement

• TYPE=CSSCP data sets created by PROC CORR by using the CSSCP option and a BY statement,
where the OUT= data set is assigned TYPE=CSSCP by using the TYPE= data set option

• TYPE=SSCP data sets created by PROC REG by using both the OUTSSCP= option and a BY statement

When the input data set is TYPE=CORR, TYPE=COV, or TYPE=CSSCP, then PROC CANDISC reads the
number of observations for each class from the observations for which _TYPE_=’N’ and the variable means
in each class from the observations for which _TYPE_=’MEAN’. The CANDISC procedure then reads the
within-class correlations from the observations for which _TYPE_=’CORR’, the standard deviations from
the observations for which _TYPE_=’STD’ (data set TYPE=CORR), the within-class covariances from the
observations for which _TYPE_=’COV’ (data set TYPE=COV), or the within-class corrected sums of squares
and crossproducts from the observations for which _TYPE_=’CSSCP’ (data set TYPE=CSSCP).

When the data set does not include any observations for which _TYPE_=’CORR’ (data set TYPE=CORR),
_TYPE_=’COV’ (data set TYPE=COV), or _TYPE_=’CSSCP’ (data set TYPE=CSSCP) for each class,
PROC CANDISC reads the pooled within-class information from the data set. In this case, PROC CANDISC
reads the pooled within-class correlations from the observations for which _TYPE_=’PCORR’, the pooled
within-class standard deviations from the observations for which _TYPE_=’PSTD’ (data set TYPE=CORR),
the pooled within-class covariances from the observations for which _TYPE_=’PCOV’ (data set TYPE=COV),
or the pooled within-class corrected SSCP matrix from the observations for which _TYPE_=’PSSCP’ (data
set TYPE=CSSCP).

When the input data set is TYPE=SSCP, then PROC CANDISC reads the number of observations for each
class from the observations for which _TYPE_=’N’, the sum of weights of observations from the variable
Intercept in observations for which _TYPE_=’SSCP’ and _NAME_=’Intercept’, the variable sums from the
analysis variables in observations for which _TYPE_=’SSCP’ and _NAME_=’Intercept’, and the uncorrected
sums of squares and crossproducts from the analysis variables in observations for which _TYPE_=’SSCP’
and _NAME_=variablename.

Output Data Sets

OUT= Data Set

The OUT= data set contains all the variables in the original data set plus new variables that contain the
canonical variable scores. You determine the number of new variables by using the NCAN= option. The
names of the new variables are formed as they are for the PREFIX= option. The new variables have means
equal to 0 and pooled within-class variances equal to 1. An OUT= data set cannot be created if the DATA=
data set is not an ordinary SAS data set.
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OUTSTAT= Data Set

The OUTSTAT= data set is similar to the TYPE=CORR data set that the CORR procedure produces but
contains many results in addition to those produced by the CORR procedure.

The OUTSTAT= data set is TYPE=CORR, and it contains the following variables:

• the BY variables, if any

• the CLASS variable

• _TYPE_, a character variable of length 8 that identifies the type of statistic

• _NAME_, a character variable of length 32 that identifies the row of the matrix or the name of the
canonical variable

• the quantitative variables (those in the VAR statement, or if there is no VAR statement, all numeric
variables not listed in any other statement)

The observations, as identified by the variable _TYPE_, have the following _TYPE_ values:

_TYPE_ Contents

N number of observations both for the total sample (CLASS variable missing) and within
each class (CLASS variable present)

SUMWGT sum of weights both for the total sample (CLASS variable missing) and within each class
(CLASS variable present) if a WEIGHT statement is specified

MEAN means both for the total sample (CLASS variable missing) and within each class (CLASS
variable present)

STDMEAN total-standardized class means

PSTDMEAN pooled within-class standardized class means

STD standard deviations both for the total sample (CLASS variable missing) and within each
class (CLASS variable present)

PSTD pooled within-class standard deviations

BSTD between-class standard deviations

RSQUARED univariate R squares

The following kinds of observations are identified by the combination of the variables _TYPE_ and _NAME_.
When the _TYPE_ variable has one of the following values, the _NAME_ variable identifies the row of the
matrix:

_TYPE_ Contents

CSSCP corrected SSCP matrix for the total sample (CLASS variable missing) and within each
class (CLASS variable present)
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PSSCP pooled within-class corrected SSCP matrix

BSSCP between-class SSCP matrix

COV covariance matrix for the total sample (CLASS variable missing) and within each class
(CLASS variable present)

PCOV pooled within-class covariance matrix

BCOV between-class covariance matrix

CORR correlation matrix for the total sample (CLASS variable missing) and within each class
(CLASS variable present)

PCORR pooled within-class correlation matrix

BCORR between-class correlation matrix

When the _TYPE_ variable has one of the following values, the _NAME_ variable identifies the canonical
variable:

_TYPE_ Contents

CANCORR canonical correlations

STRUCTUR canonical structure

BSTRUCT between canonical structure

PSTRUCT pooled within-class canonical structure

SCORE total sample standardized canonical coefficients

PSCORE pooled within-class standardized canonical coefficients

RAWSCORE raw canonical coefficients

CANMEAN means of the canonical variables for each class

You can use this data set in PROC SCORE to get scores on the canonical variables for new data by using one
of the following forms:

* The CLASS variable C is numeric;
proc score data=NewData score=Coef(where=(c = . )) out=Scores;
run;

* The CLASS variable C is character;
proc score data=NewData score=Coef(where=(c = ' ')) out=Scores;
run;

The WHERE clause is used to exclude the within-class means and standard deviations. PROC SCORE
standardizes the new data by subtracting the original variable means that are stored in the _TYPE_=’MEAN’
observations and dividing by the original variable standard deviations from the _TYPE_=’STD’ observations.
Then PROC SCORE multiplies the standardized variables by the coefficients from the _TYPE_=’SCORE’
observations to get the canonical scores.
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Computational Resources
In the following discussion, let

n D number of observations

c D number of class levels

v D number of variables in the VAR list

l D length of the CLASS variable

Memory Requirements

The amount of memory in bytes for temporary storage needed to process the data is

c.4v2 C 28v C 4l C 68/C 16v2 C 96v C 4l

For the ANOVA option, the temporary storage must be increased by 16v bytes. The DISTANCE option
requires an additional temporary storage of 4v2 C 4v bytes.

Time Requirements

The following factors determine the time requirements of the CANDISC procedure:

• The time needed for reading the data and computing covariance matrices is proportional to nv2. PROC
CANDISC must also look up each class level in the list. This is faster if the data are sorted by the
CLASS variable. The time for looking up class levels is proportional to a value that ranges from n to
n log.c/.

• The time for inverting a covariance matrix is proportional to v3.

• The time required for the canonical discriminant analysis is proportional to v3.

Each of the preceding factors has a different constant of proportionality.

Displayed Output
The displayed output from PROC CANDISC includes the class level information table. For each level of the
classification variable, the following information is provided: the output data set variable name, frequency
sum, weight sum, and the proportion of the total sample.

The optional output from PROC CANDISC includes the following:

• Within-class SSCP matrices for each group

• Pooled within-class SSCP matrix
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• Between-class SSCP matrix

• Total-sample SSCP matrix

• Within-class covariance matrices for each group

• Pooled within-class covariance matrix

• Between-class covariance matrix, equal to the between-class SSCP matrix divided by n.c � 1/=c,
where n is the number of observations and c is the number of classes

• Total-sample covariance matrix

• Within-class correlation coefficients and Pr > jr j to test the hypothesis that the within-class population
correlation coefficients are zero

• Pooled within-class correlation coefficients and Pr > jr j to test the hypothesis that the partial
population correlation coefficients are zero

• Between-class correlation coefficients and Pr > jr j to test the hypothesis that the between-class
population correlation coefficients are zero

• Total-sample correlation coefficients and Pr > jr j to test the hypothesis that the total population
correlation coefficients are zero

• Simple statistics, including N (the number of observations), sum, mean, variance, and standard
deviation both for the total sample and within each class

• Total-sample standardized class means, obtained by subtracting the grand mean from each class mean
and dividing by the total sample standard deviation

• Pooled within-class standardized class means, obtained by subtracting the grand mean from each class
mean and dividing by the pooled within-class standard deviation

• Pairwise squared distances between groups

• Univariate test statistics, including total-sample standard deviations, pooled within-class standard
deviations, between-class standard deviations, R square, R2=.1 �R2/, F, and Pr > F (univariate F
values and probability levels for one-way analyses of variance)

By default, PROC CANDISC displays these statistics:

• Multivariate statistics and F approximations, including Wilks’ lambda, Pillai’s trace, Hotelling-Lawley
trace, and Roy’s greatest root with F approximations, numerator and denominator degrees of freedom
(Num DF and Den DF), and probability values .Pr > F /. Each of these four multivariate statistics
tests the hypothesis that the class means are equal in the population. For more information, see the
section “Multivariate Tests” on page 90 in Chapter 4, “Introduction to Regression Procedures.”

• Canonical correlations
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• Adjusted canonical correlations (Lawley 1959). These are asymptotically less biased than the raw
correlations and can be negative. The adjusted canonical correlations might not be computable and are
displayed as missing values if two canonical correlations are nearly equal or if some are close to zero.
A missing value is also displayed if an adjusted canonical correlation is larger than a previous adjusted
canonical correlation.

• Approximate standard error of the canonical correlations

• Squared canonical correlations

• Eigenvalues of E�1H. Each eigenvalue is equal to �2=.1� �2/, where �2 is the corresponding squared
canonical correlation and can be interpreted as the ratio of between-class variation to pooled within-
class variation for the corresponding canonical variable. The table includes eigenvalues, differences
between successive eigenvalues, the proportion of the sum of the eigenvalues, and the cumulative
proportion.

• Likelihood ratio for the hypothesis that the current canonical correlation and all smaller ones are zero
in the population. The likelihood ratio for the hypothesis that all canonical correlations equal zero is
Wilks’ lambda.

• Approximate F statistic based on Rao’s approximation to the distribution of the likelihood ratio (Rao
1973, p. 556; Kshirsagar 1972, p. 326)

• Numerator degrees of freedom (Num DF), denominator degrees of freedom (Den DF), and Pr > F ,
the probability level associated with the F statistic

You can suppress the following statistics by specifying the SHORT option:

• Total canonical structure, giving total-sample correlations between the canonical variables and the
original variables

• Between canonical structure, giving between-class correlations between the canonical variables and
the original variables

• Pooled within canonical structure, giving pooled within-class correlations between the canonical
variables and the original variables

• Total-sample standardized canonical coefficients, standardized to give canonical variables that have
zero mean and unit pooled within-class variance when applied to the total-sample standardized variables

• Pooled within-class standardized canonical coefficients, standardized to give canonical variables
that have zero mean and unit pooled within-class variance when applied to the pooled within-class
standardized variables

• Raw canonical coefficients, standardized to give canonical variables that have zero mean and unit
pooled within-class variance when applied to the centered variables

• Class means on the canonical variables
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ODS Table Names
PROC CANDISC assigns a name to each table that it creates. You can use these names to reference the table
when using the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed in Table 31.2. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

Table 31.2 ODS Tables Produced by PROC CANDISC

ODS Table Name Description PROC CANDISC Option

ANOVA Univariate statistics ANOVA
AveRSquare Average R square ANOVA
BCorr Between-class correlations BCORR
BCov Between-class covariances BCOV
BSSCP Between-class SSCP matrix BSSCP
BStruc Between canonical structure Default
CanCorr Canonical correlations Default
CanonicalMeans Class means on canonical variables Default
Counts Number of observations, variables,

classes, degrees of freedom
Default

CovDF Degrees of freedom for covariance matrices, not
printed

Any *COV option

Dist Squared distances DISTANCE
DistFValues F statistics based on squared distances DISTANCE
DistProb Probabilities for F statistics from

squared distances
DISTANCE

Levels Class level information Default
MultStat MANOVA Default
NObs Number of observations Default
PCoef Pooled standard canonical coefficients Default
PCorr Pooled within-class correlations PCORR
PCov Pooled within-class covariances PCOV
PSSCP Pooled within-class SSCP matrix PSSCP
PStdMeans Pooled standardized class means STDMEAN
PStruc Pooled within canonical structure Default
RCoef Raw canonical coefficients Default
SimpleStatistics Simple statistics SIMPLE
TCoef Total-sample standard canonical

coefficients
Default

TCorr Total-sample correlations TCORR
TCov Total-sample covariances TCOV
TSSCP Total-sample SSCP matrix TSSCP
TStdMeans Total standardized class means STDMEAN
TStruc Total canonical structure Default
WCorr Within-class correlations WCORR
WCov Within-class covariances WCOV
WSSCP Within-class SSCP matrices WSSCP
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Example: CANDISC Procedure

Example 31.1: Analyzing Iris Data by Using PROC CANDISC
The iris data that were published by Fisher (1936) have been widely used for examples in discriminant
analysis and cluster analysis. The sepal length, sepal width, petal length, and petal width are measured in
millimeters in 50 iris specimens from each of three species: Iris setosa, I. versicolor, and I. virginica. The
iris data set is available from the Sashelp library.

This example is a canonical discriminant analysis that creates an output data set that contains scores on the
canonical variables and plots the canonical variables.

The following statements produce Output 31.1.1 through Output 31.1.6:

title 'Fisher (1936) Iris Data';

proc candisc data=sashelp.iris out=outcan distance anova;
class Species;
var SepalLength SepalWidth PetalLength PetalWidth;

run;

PROC CANDISC first displays information about the observations and the classes in the data set in Out-
put 31.1.1.

Output 31.1.1 Iris Data: Summary Information

Fisher (1936) Iris Data

The CANDISC Procedure

Fisher (1936) Iris Data

The CANDISC Procedure

Total Sample Size 150 DF Total 149

Variables 4 DF Within Classes 147

Classes 3 DF Between Classes 2

Number of Observations Read 150

Number of Observations Used 150

Class Level Information

Species
Variable
Name Frequency Weight Proportion

Setosa Setosa 50 50.0000 0.333333

Versicolor Versicolor 50 50.0000 0.333333

Virginica Virginica 50 50.0000 0.333333

The DISTANCE option in the PROC CANDISC statement displays squared Mahalanobis distances between
class means. Results from the DISTANCE option are shown in Output 31.1.2.
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Output 31.1.2 Iris Data: Squared Mahalanobis Distances and Distance Statistics

Fisher (1936) Iris Data

The CANDISC Procedure

Fisher (1936) Iris Data

The CANDISC Procedure

Squared Distance to Species

From
Species Setosa Versicolor Virginica

Setosa 0 89.86419 179.38471

Versicolor 89.86419 0 17.20107

Virginica 179.38471 17.20107 0

F Statistics, NDF=4,
DDF=144 for Squared Distance to Species

From
Species Setosa Versicolor Virginica

Setosa 0 550.18889 1098

Versicolor 550.18889 0 105.31265

Virginica 1098 105.31265 0

Prob > Mahalanobis Distance for
Squared Distance to Species

From
Species Setosa Versicolor Virginica

Setosa 1.0000 <.0001 <.0001

Versicolor <.0001 1.0000 <.0001

Virginica <.0001 <.0001 1.0000

Output 31.1.3 displays univariate and multivariate statistics. The ANOVA option uses univariate statistics
to test the hypothesis that the class means are equal. The resulting R-square values range from 0.4008 for
SepalWidth to 0.9414 for PetalLength, and each variable is significant at the 0.0001 level. The multivariate
test for differences between the classes (which is displayed by default) is also significant at the 0.0001 level;
you would expect this from the highly significant univariate test results.

Output 31.1.3 Iris Data: Univariate and Multivariate Statistics

Fisher (1936) Iris Data

The CANDISC Procedure

Fisher (1936) Iris Data

The CANDISC Procedure

Univariate Test Statistics

F Statistics,    Num DF=2,   Den DF=147

Variable Label

Total
Standard
Deviation

Pooled
Standard
Deviation

Between
Standard
Deviation R-Square

R-Square
/ (1-RSq) F Value Pr > F

SepalLength Sepal Length (mm) 8.2807 5.1479 7.9506 0.6187 1.6226 119.26 <.0001

SepalWidth Sepal Width (mm) 4.3587 3.3969 3.3682 0.4008 0.6688 49.16 <.0001

PetalLength Petal Length (mm) 17.6530 4.3033 20.9070 0.9414 16.0566 1180.16 <.0001

PetalWidth Petal Width (mm) 7.6224 2.0465 8.9673 0.9289 13.0613 960.01 <.0001
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Output 31.1.3 continued

Average R-Square

Unweighted 0.7224358

Weighted by Variance 0.8689444

Multivariate Statistics and F Approximations

S=2    M=0.5    N=71

Statistic Value F Value Num DF Den DF Pr > F

Wilks' Lambda 0.02343863 199.15 8 288 <.0001

Pillai's Trace 1.19189883 53.47 8 290 <.0001

Hotelling-Lawley Trace 32.47732024 582.20 8 203.4 <.0001

Roy's Greatest Root 32.19192920 1166.96 4 145 <.0001

NOTE: F Statistic for Roy's Greatest Root is an upper bound.

NOTE: F Statistic for Wilks' Lambda is exact.

Output 31.1.4 displays canonical correlations and eigenvalues. The R square between Can1 and the CLASS
variable, 0.969872, is much larger than the corresponding R square for Can2, 0.222027.

Output 31.1.4 Iris Data: Canonical Correlations and Eigenvalues

Fisher (1936) Iris Data

The CANDISC Procedure

Fisher (1936) Iris Data

The CANDISC Procedure

Eigenvalues of Inv(E)*H
= CanRsq/(1-CanRsq)

Canonical
Correlation

Adjusted
Canonical

Correlation

Approximate
Standard

Error

Squared
Canonical

Correlation Eigenvalue Difference Proportion Cumulative

1 0.984821 0.984508 0.002468 0.969872 32.1919 31.9065 0.9912 0.9912

2 0.471197 0.461445 0.063734 0.222027 0.2854 0.0088 1.0000

Test of H0: The canonical correlations in the current row and all that follow are zero

Likelihood
Ratio

Approximate
F Value Num DF Den DF Pr > F

1 0.02343863 199.15 8 288 <.0001

2 0.77797337 13.79 3 145 <.0001

Output 31.1.5 displays correlations between canonical and original variables.
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Output 31.1.5 Iris Data: Correlations between Canonical and Original Variables

Fisher (1936) Iris Data

The CANDISC Procedure

Fisher (1936) Iris Data

The CANDISC Procedure

Total Canonical Structure

Variable Label Can1 Can2

SepalLength Sepal Length (mm) 0.791888 0.217593

SepalWidth Sepal Width (mm) -0.530759 0.757989

PetalLength Petal Length (mm) 0.984951 0.046037

PetalWidth Petal Width (mm) 0.972812 0.222902

Between Canonical Structure

Variable Label Can1 Can2

SepalLength Sepal Length (mm) 0.991468 0.130348

SepalWidth Sepal Width (mm) -0.825658 0.564171

PetalLength Petal Length (mm) 0.999750 0.022358

PetalWidth Petal Width (mm) 0.994044 0.108977

Pooled Within Canonical Structure

Variable Label Can1 Can2

SepalLength Sepal Length (mm) 0.222596 0.310812

SepalWidth Sepal Width (mm) -0.119012 0.863681

PetalLength Petal Length (mm) 0.706065 0.167701

PetalWidth Petal Width (mm) 0.633178 0.737242

Output 31.1.6 displays canonical coefficients. The raw canonical coefficients for the first canonical vari-
able, Can1, show that the classes differ most widely on the linear combination of the centered variables:
�0:0829378�SepalLength� 0:153447�SepalWidthC 0:220121�PetalLengthC 0:281046�PetalWidth.

Output 31.1.6 Iris Data: Canonical Coefficients

Fisher (1936) Iris Data

The CANDISC Procedure

Fisher (1936) Iris Data

The CANDISC Procedure

Total-Sample Standardized Canonical Coefficients

Variable Label Can1 Can2

SepalLength Sepal Length (mm) -0.686779533 0.019958173

SepalWidth Sepal Width (mm) -0.668825075 0.943441829

PetalLength Petal Length (mm) 3.885795047 -1.645118866

PetalWidth Petal Width (mm) 2.142238715 2.164135931

Pooled Within-Class Standardized Canonical Coefficients

Variable Label Can1 Can2

SepalLength Sepal Length (mm) -.4269548486 0.0124075316

SepalWidth Sepal Width (mm) -.5212416758 0.7352613085

PetalLength Petal Length (mm) 0.9472572487 -.4010378190

PetalWidth Petal Width (mm) 0.5751607719 0.5810398645
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Output 31.1.6 continued

Raw Canonical Coefficients

Variable Label Can1 Can2

SepalLength Sepal Length (mm) -.0829377642 0.0024102149

SepalWidth Sepal Width (mm) -.1534473068 0.2164521235

PetalLength Petal Length (mm) 0.2201211656 -.0931921210

PetalWidth Petal Width (mm) 0.2810460309 0.2839187853

Output 31.1.7 displays class level means on canonical variables.

Output 31.1.7 Iris Data: Canonical Means

Class Means on Canonical Variables

Species Can1 Can2

Setosa -7.607599927 0.215133017

Versicolor 1.825049490 -0.727899622

Virginica 5.782550437 0.512766605

The TEMPLATE and SGRENDER procedures are used to create a plot of the first two canonical variables.
The following statements produce Output 31.1.8:

proc template;
define statgraph scatter;

begingraph / attrpriority=none;
entrytitle 'Fisher (1936) Iris Data';
layout overlayequated / equatetype=fit

xaxisopts=(label='Canonical Variable 1')
yaxisopts=(label='Canonical Variable 2');
scatterplot x=Can1 y=Can2 / group=species name='iris'

markerattrs=(size=3px);
layout gridded / autoalign=(topright topleft);

discretelegend 'iris' / border=false opaque=false;
endlayout;

endlayout;
endgraph;

end;
run;

proc sgrender data=outcan template=scatter;
run;
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Output 31.1.8 Iris Data: Plot of First Two Canonical Variables

The plot of canonical variables in Output 31.1.8 shows that of the two canonical variables, Can1 has more
discriminatory power.
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Overview: CATMOD Procedure
The CATMOD procedure performs categorical data modeling of data that can be represented by a contingency
table. PROC CATMOD fits linear models to functions of response frequencies, and it can be used for linear
modeling, log-linear modeling, logistic regression, and repeated measurement analysis. PROC CATMOD
uses the following estimation methods:

• weighted least squares (WLS) estimation of parameters for a wide range of general linear models

• maximum likelihood (ML) estimation of parameters for log-linear models and the analysis of general-
ized logits

The CATMOD procedure provides a wide variety of categorical data analyses, many of which are generaliza-
tions of continuous data analysis methods. For example, analysis of variance, in the traditional sense, refers
to the analysis of means and the partitioning of variation among the means into various sources. Here, the
term analysis of variance is used in a generalized sense to denote the analysis of response functions and the
partitioning of variation among those functions into various sources. The response functions might be mean
scores if the dependent variables are ordinally scaled. But they can also be marginal probabilities, cumulative
logits, or other functions that incorporate the essential information from the dependent variables.

NOTE: PROC CATMOD specializes in WLS modeling and analysis of a wide range of models on contin-
gency tables. For ML modeling on standard models, especially with continuous predictors, it might be
more appropriate to use a procedure such as PROC GENMOD or PROC LOGISTIC; see Chapter 43, “The
GENMOD Procedure,” and Chapter 60, “The LOGISTIC Procedure,” for more information.
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Types of Input Data
The data that PROC CATMOD analyzes are usually supplied in one of two ways. First, you can supply raw
data, where each observation is a subject. Second, you can supply cell count data, where each observation is
a cell in a contingency table. (A third way, which uses direct input of the covariance matrix, is also available;
details are given in the section “Inputting Response Functions and Covariances Directly” on page 1927.)

Suppose detergent brand preference is related to three other categorical variables: water softness, water
temperature, and previous use of a brand of detergent. In the raw data case, each observation in the input
data set identifies a given respondent in the study and contains information about all four variables. The
data set contains the same number of observations as the survey had respondents. In the cell count case,
each observation identifies a given cell in the four-way table of water softness, water temperature, previous
use of brand, and brand preference. A fifth variable contains the number of respondents in the cell. In the
analysis, this fifth variable is identified in a WEIGHT statement. The data set contains the same number
of observations as the number of cross-classifications formed by the four categorical variables. For more
about this particular example, see Example 32.1. For additional details, see the section “Input Data Sets” on
page 1925.

Most of the examples in this chapter use cell counts as input and use a WEIGHT statement.

Types of Statistical Analyses
This section illustrates, by example, the wide variety of categorical data analyses that PROC CATMOD
provides. For each type of analysis, a brief description of the statistical problem and the SAS statements
to provide the analysis are given. For each analysis, assume that the input data set consists of a set of cell
counts from a contingency table. The variable specified in the WEIGHT statement contains these counts. In
all these analyses, both the dependent and independent variables are categorical.

Linear Model Analysis

Suppose you want to analyze the relationship between the dependent variables (r1, r2) and the independent
variables (a, b). Analyze the marginal probabilities of the dependent variables, and use a main-effects model:

proc catmod;
weight wt;
response marginals;
model r1*r2=a b;

quit;

Log-Linear Model Analysis

Suppose you want to analyze the nominal dependent variables (r1, r2, r3) with a log-linear model. Use
maximum likelihood analysis, include the main effects and the r1*r2 interaction in the model, and obtain the
predicted cell frequencies:

proc catmod;
weight wt;
model r1*r2*r3=_response_ / pred=freq;
loglin r1|r2 r3;

quit;
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Logistic Regression

Suppose you want to analyze the relationship between the nominal dependent variable (r) and the independent
variables (x1, x2) with a logistic regression analysis. Use maximum likelihood estimation:

proc catmod;
weight wt;
direct x1 x2;
model r=x1 x2;

quit;

If x1 and x2 are continuous so that each observation has a unique value of these two variables, then it might
be more appropriate to use the LOGISTIC or GENMOD procedure. (See the section “Logistic Regression”
on page 1933.)

Repeated Measures Analysis

Suppose the dependent variables (r1, r2, r3) represent the same type of measurement taken at three different
times. Analyze the relationship among the dependent variables, the repeated measurement factor (time), and
the independent variable (a):

proc catmod;
weight wt;
response marginals;
model r1*r2*r3=_response_|a;
repeated time 3 / _response_=time;

quit;

Analysis of Variance

Suppose you want to investigate the relationship between the dependent variable (r) and the independent
variables (a, b). Analyze the mean of the dependent variable, and include all main effects and interactions in
the model:

proc catmod;
weight wt;
response mean;
model r=a|b;

quit;

Linear Regression

PROC CATMOD can analyze the relationship between the dependent variables (r1, r2) and the independent
variables (x1, x2). Use a linear regression analysis to analyze the marginal probabilities of the dependent
variables:

proc catmod;
weight wt;
direct x1 x2;
response marginals;
model r1*r2=x1 x2;

quit;
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Logistic Analysis of Ordinal Data

Suppose you want to analyze the relationship between the ordinally scaled dependent variable (r) and the
independent variable (a). Use cumulative logits to take into account the ordinal nature of the dependent
variable, and use weighted least squares estimation:

proc catmod;
weight wt;
response clogits;
model r=_response_ a;

quit;

Sample Survey Analysis

Suppose the data set contains estimates of a vector of four functions and their covariance matrix, estimated in
such a way as to correspond to the sampling process that is used. Analyze the functions with respect to the
independent variables (a, b), and use a main-effects model:

proc catmod;
response read b1-b10;
model _f_=_response_;
factors a 2 , b 5 / _response_=a b;

quit;

Background: The Underlying Model
The CATMOD procedure analyzes data that can be represented by a two-dimensional contingency table. The
rows of the table correspond to populations (or samples) formed on the basis of one or more independent
variables. The columns of the table correspond to observed responses formed on the basis of one or more
dependent variables. The frequency in the .i; j / cell is the number of subjects in the ith population that
have the jth response. The frequencies in the table are assumed to follow a product multinomial distribution,
corresponding to a sampling design in which a simple random sample is taken for each population. The
contingency table can be represented as shown in Table 32.1.

Table 32.1 Contingency Table Representation

Response
Sample 1 2 � � � r Total

1 n11 n12 � � � n1r n1
2 n21 n22 � � � n2r n2
:::

:::
:::

: : :
:::

:::

s ns1 ns2 � � � nsr ns

For each sample i, the probability of the jth response (�ij ) is estimated by the sample proportion, pij D
nij =ni . The vector (p) of all such proportions is then transformed into a vector of functions, denoted by



1886 F Chapter 32: The CATMOD Procedure

F D F.p/. If � denotes the vector of true probabilities for the entire table, then the functions of the true
probabilities, denoted by F.�/, are assumed to follow a linear model

EA.F/ D F.�/ D Xˇ

where EA denotes asymptotic expectation, X is the design matrix containing fixed constants, and ˇ is a
vector of parameters to be estimated.

PROC CATMOD provides two estimation methods:

• The weighted least squares method minimizes the weighted residual sum of squares for the model.
The weights are contained in the inverse covariance matrix of the functions F.p/. According to central
limit theory, if the sample sizes within populations are sufficiently large, the elements of F and b (the
estimate of ˇ) are distributed approximately as multivariate normal. This allows the computation of
statistics for testing the goodness of fit of the model and the significance of other sources of variation.
For details of the theory, see Grizzle, Starmer, and Koch (1969) or Koch et al. (1977, Appendix 1).
Weighted least squares estimation is available for all types of response functions.

• The maximum likelihood method estimates the parameters of the linear model so as to maximize the
value of the joint multinomial likelihood function of the responses. Maximum likelihood estimation is
available only for the standard response functions, logits and generalized logits, which are used for
logistic regression analysis and log-linear model analysis. Two methods of maximization are available:
Newton-Raphson and iterative proportional fitting. For details of the theory, see Bishop, Fienberg, and
Holland (1975).

Following parameter estimation, hypotheses about linear combinations of the parameters can be tested.
For that purpose, PROC CATMOD computes generalized Wald (1943) statistics, which are approximately
chi-square distributed if the sample sizes are sufficiently large and the null hypotheses are true.

Linear Models Contrasted with Log-Linear Models
Linear model methods typified by the Grizzle, Starmer, and Koch (1969) approach make a very clear dis-
tinction between independent and dependent variables. The emphasis of these methods is estimation and
hypothesis testing of the model parameters. Therefore, it is easy to test for differences among probabilities,
perform repeated measures analysis, and test for marginal homogeneity, but it is difficult to test for indepen-
dence and generalized independence. These methods are a natural extension of the usual ANOVA approach
for continuous data.

In contrast, log-linear model methods typified by the Bishop, Fienberg, and Holland (1975) approach do not
make an a priori distinction between independent and dependent variables, although model specifications that
allow for the distinction can be made. The emphasis of these methods is on model building, goodness-of-fit
tests, and estimation of cell frequencies or probabilities for the underlying contingency table. With these
methods, it is easy to test independence and generalized independence, but it is difficult to test for differences
among probabilities, do repeated measures analysis, and test for marginal homogeneity.
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Using PROC CATMOD Interactively
You can use the CATMOD procedure interactively. After specifying a model with a MODEL statement
and running PROC CATMOD with a RUN statement, you can execute any statement without reinvoking
PROC CATMOD. You can execute the statements singly or in groups by following the single statement or
group of statements with a RUN statement. Note that you can use more than one MODEL statement; this is
an important difference from the GLM procedure.

If you use PROC CATMOD interactively, you can end the CATMOD procedure with a DATA step, another
PROC step, an ENDSAS statement, or a QUIT statement. The syntax of the QUIT statement is as follows:

quit;

When you are using PROC CATMOD interactively, additional RUN statements do not end the procedure run
but tell the procedure to execute additional statements.

When the CATMOD procedure detects a BY statement, it disables interactive processing; that is, once the
BY statement and the next RUN statement are encountered, processing proceeds for each BY group in the
data set, and no additional statements are accepted by the procedure. For example, the following statements
perform three analyses: one for the entire data set, one for males, and one for females:

proc catmod;
weight wt;
response marginals;
model r1*r2=a|b;

run;
by sex;

run;

Note that the BY statement can appear after the first RUN statement; this is an important difference from
PROC GLM, which requires that the BY statement appear before the first RUN statement.

Getting Started: CATMOD Procedure
The CATMOD procedure is a general modeling procedure for categorical data analysis, and it can be used
for sophisticated analyses that require matrix specification of the response function and the design matrix. It
can also be used to perform basic analysis-of-variance-type analyses that require only a few statements. The
following is a basic example.
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Weighted Least Squares Analysis of Mean Response
Consider the data in Table 32.2 (Stokes, Davis, and Koch 2000).

Table 32.2 Colds in Children

Periods with Colds
Sex Residence 0 1 2 Total

Female Rural 45 64 71 180
Female Urban 80 104 116 300
Male Rural 84 124 82 290
Male Urban 106 117 87 310

For male and female children in rural and urban counties, the number of periods (of two) in which subjects
report cold symptoms are recorded. So 45 subjects who are female and in rural counties report no cold
symptoms, and 71 subjects who are female and from rural counties report colds in both periods.

The question of interest is whether the mean number of periods with colds reported is associated with gender
or type of county. There is no reason to believe that the mean number of periods with colds is normally
distributed, so a weighted least squares analysis of these data is performed with PROC CATMOD instead of
an analysis of variance with PROC ANOVA or PROC GLM.

The input data for categorical data are often recorded in frequency form, with the counts for each particular
profile being the input values. For the colds data, the input SAS data set colds is created with the following
statements. The variable count contains the frequency of observations that have the particular profile described
by the values of the other variables in that input line.

data colds;
input sex $ residence $ periods count @@;
datalines;

female rural 0 45 female rural 1 64 female rural 2 71
female urban 0 80 female urban 1 104 female urban 2 116
male rural 0 84 male rural 1 124 male rural 2 82
male urban 0 106 male urban 1 117 male urban 2 87
;

In order to fit a model to the mean number of periods with colds, you have to specify the response function
in PROC CATMOD. The default response function is the logit if the response variable has two values, and
it is generalized logits if the response variable has more than two values. If you want a different response
function, then you specify that function in the RESPONSE statement. To request the mean number of periods
with colds, you specify the MEANS option in the RESPONSE statement.

You can request a model consisting of the main effects and interaction of the variables sex and residence
just as you would in the GLM procedure. Unlike the GLM procedure, PROC CATMOD does not require
you to use a CLASS statement to treat a variable as a classification variable. In the CATMOD procedure, all
variables in the MODEL statement are treated as classification variables unless you specify otherwise with a
DIRECT statement. To verify that your model is specified correctly, you can specify the DESIGN option in
the MODEL statement to display the design matrix.
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The PROC CATMOD statements needed to model mean periods of colds with a main-effects and interaction
model are as follows:

proc catmod data=colds;
weight count;
response means;
model periods = sex residence sex*residence / design;

run;

The results of this analysis are shown in Figure 32.1 through Figure 32.3.

In Figure 32.1, the CATMOD procedure first displays a summary of the contingency table you are analyzing.
The “Population Profiles” table lists the values of the explanatory variables that define each population,
or row of the underlying contingency table, and labels each group with a sample number. The number of
observations in each population is also displayed. The “Response Profiles” table lists the variable levels that
define the response, or columns of the underlying contingency table.

Figure 32.1 Model Information and Profile Tables

The CATMOD ProcedureThe CATMOD Procedure

Data Summary

Response periods Response Levels 3

Weight Variable count Populations 4

Data Set COLDS Total Frequency 1080

Frequency Missing 0 Observations 12

Population Profiles

Sample sex residence Sample Size

1 female rural 180

2 female urban 300

3 male rural 290

4 male urban 310

Response Profiles

Response periods

1 0

2 1

3 2

The “Response Functions and Design Matrix” table in Figure 32.2 contains the observed response functions—
in this case, the mean number of periods with colds for each of the populations—and the design matrix. The
first column of the design matrix contains the coefficients for the intercept parameter. The second column
contains the coefficients for the sex parameter. (Note that the sum-to-zero constraint of the default full-rank
parameterization PARAM=EFFECT implies that the coefficient for males is the negative of that for females;
the parameter is called the differential effect for females.) The third column is similarly set up for residence,
and the last column is for the interaction.
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Figure 32.2 Observed Response Functions and Design Matrix

Response Functions and
Design Matrix

Design
Matrix

Sample
Response

Function 1 2 3 4

1 1.14444 1 1 1 1

2 1.12000 1 1 -1 -1

3 0.99310 1 -1 1 -1

4 0.93871 1 -1 -1 1

The model-fitting results are displayed in the “Analysis of Variance” table (Figure 32.3), which is similar to
an ANOVA table. The effects from the right side of the MODEL statement are listed in the Source column.

Figure 32.3 ANOVA Table for the Saturated Model

Analysis of Variance

Source DF Chi-Square Pr > ChiSq

Intercept 1 1841.13 <.0001

sex 1 11.57 0.0007

residence 1 0.65 0.4202

sex*residence 1 0.09 0.7594

Residual 0 . .

You can see in Figure 32.3 that the interaction effect is nonsignificant, so the data are reanalyzed using a
main-effects model. Since PROC CATMOD is an interactive procedure, you can analyze the main-effects
model by simply submitting the new MODEL statement as follows. The resulting tables are displayed in
Figure 32.4 and Figure 32.5.

model periods = sex residence / design;
run;

From the ANOVA table in Figure 32.4, you can see that the goodness-of-fit chi-square statistic is 0.09 with
one degree of freedom and a p-value of 0.7594; hence, the model fits the data. Note that the chi-square tests
in Figure 32.4 check whether all the parameters for a given effect are zero. In this model, each effect has only
one parameter and therefore only one degree of freedom.

Figure 32.4 Main-Effects Model

The CATMOD ProcedureThe CATMOD Procedure

Data Summary

Response periods Response Levels 3

Weight Variable count Populations 4

Data Set COLDS Total Frequency 1080

Frequency Missing 0 Observations 12
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Figure 32.4 continued

Population Profiles

Sample sex residence Sample Size

1 female rural 180

2 female urban 300

3 male rural 290

4 male urban 310

Response Profiles

Response periods

1 0

2 1

3 2

Response Functions and
Design Matrix

Design
Matrix

Sample
Response

Function 1 2 3

1 1.14444 1 1 1

2 1.12000 1 1 -1

3 0.99310 1 -1 1

4 0.93871 1 -1 -1

Analysis of Variance

Source DF Chi-Square Pr > ChiSq

Intercept 1 1882.77 <.0001

sex 1 12.08 0.0005

residence 1 0.76 0.3839

Residual 1 0.09 0.7594

The “Analysis of Weighted Least Squares Estimates” table in Figure 32.5 lists the parameters and their
estimates for the model, as well as the standard errors, Wald statistics, and p-values. These chi-square tests
are one-degree-of-freedom tests that the individual parameter is equal to zero. They are equal to the tests
shown in Figure 32.4 since each effect is composed of exactly one parameter.

Figure 32.5 Parameter Estimates for the Main-Effects Model

Analysis of Weighted Least Squares Estimates

Parameter Estimate
Standard

Error
Chi-

Square Pr > ChiSq

Intercept 1.0501 0.0242 1882.77 <.0001

sex female 0.0842 0.0242 12.08 0.0005

residence rural 0.0210 0.0241 0.76 0.3839

You can compute the mean number of periods with colds for the first population (Sample 1, females in rural
residences) from Table 32.2 as follows:

mean colds D 0 �
45

180
C 1 �

64

180
C 2 �

71

180
D 1:1444
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This is the same value reported in the Response Function column for Sample 1 in the “Response Functions
and Design Matrix” table displayed in Figure 32.4.

PROC CATMOD is fitting a model to the mean number of colds in each population as follows:2664
Expected number of colds for rural females

urban females
rural males

urban males

3775 D
2664
1 1 1

1 1 �1

1 �1 1

1 �1 �1

3775
24 ˇ0
ˇ1
ˇ2

35
where the design matrix is the same one displayed in Figure 32.4, ˇ0 is the mean number of colds averaged
over all the populations, ˇ1 is the differential effect for females, and ˇ2 is the differential effect for rural
residences. The parameter estimates are shown in Figure 32.5; the expected number of periods with colds for
rural females from this model is computed as

1 � 1:0501C 1 � 0:0842C 1 � 0:0210 D 1:1553

and the expected number for rural males from this model is

1 � 1:0501 � 1 � 0:0842C 1 � 0:0210 D 0:9869

Notice also, in Figure 32.5, that the differential effect for residence is nonsignificant (p = 0.3839). If you
continue the analysis by fitting a single-effect model (sex), you need to include a POPULATION statement
to maintain the same underlying contingency table:

population sex residence;
model periods = sex;

run;

Generalized Logits Model
Over the course of one school year, third-graders from three different schools are exposed to three different
styles of mathematics instruction: a self-paced computer-learning style, a team approach, and a traditional
class approach. The students are asked which style they prefer, and their responses, classified by the type of
program they are in (a regular school day versus a regular school day supplemented with an afternoon school
program), are displayed in Table 32.3. The data set is from Stokes, Davis, and Koch (2000), and it is also
analyzed in the section “Example 60.4: Nominal Response Data: Generalized Logits Model” on page 4650
in Chapter 60, “The LOGISTIC Procedure.”

Table 32.3 School Program Data

Learning Style Preference
School Program Self Team Class

1 Regular 10 17 26
1 Afternoon 5 12 50
2 Regular 21 17 26
2 Afternoon 16 12 36
3 Regular 15 15 16
3 Afternoon 12 12 20
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The levels of the response variable (self, team, and class) have no essential ordering, so a logistic regression
is performed on the generalized logits. The model to be fit is

log
�
�hij

�hir

�
D ˛j C x0hiˇj

where �hij is the probability that a student in school h and program i prefers teaching style j, j ¤ r , and
style r is the class style. There are separate sets of intercept parameters ˛j and regression parameters ˇj for
each logit, and the matrix xhi is the set of explanatory variables for the hi population. Thus, two logits are
modeled for each school and program combination (population): the logit comparing self to class and the
logit comparing team to class.

The following statements create the data set school and request the analysis. Generalized logits are the default
response functions, and maximum likelihood estimation is the default method for analyzing generalized
logits, so only the WEIGHT and MODEL statements are required. The option ORDER=DATA means that
the response variable levels are ordered as they exist in the data set: self, team, and class; the logits are
formed by comparing self to class and by comparing team to class. The results of this analysis are shown in
Figure 32.6 and Figure 32.7.

data school;
length Program $ 9;
input School Program $ Style $ Count @@;
datalines;

1 regular self 10 1 regular team 17 1 regular class 26
1 afternoon self 5 1 afternoon team 12 1 afternoon class 50
2 regular self 21 2 regular team 17 2 regular class 26
2 afternoon self 16 2 afternoon team 12 2 afternoon class 36
3 regular self 15 3 regular team 15 3 regular class 16
3 afternoon self 12 3 afternoon team 12 3 afternoon class 20
;

proc catmod order=data;
weight Count;
model Style=School Program School*Program;

run;

A summary of the data set is displayed in Figure 32.6; the variable levels that form the three responses and
six populations are listed in the “Response Profiles” and “Population Profiles” tables, respectively.

Figure 32.6 Model Information and Profile Tables

The CATMOD ProcedureThe CATMOD Procedure

Data Summary

Response Style Response Levels 3

Weight Variable Count Populations 6

Data Set SCHOOL Total Frequency 338

Frequency Missing 0 Observations 18
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Figure 32.6 continued

Population Profiles

Sample School Program Sample Size

1 1 regular 53

2 1 afternoon 67

3 2 regular 64

4 2 afternoon 64

5 3 regular 46

6 3 afternoon 44

Response
Profiles

Response Style

1 self

2 team

3 class

The analysis of variance table is displayed in Figure 32.7. Since this is a saturated model, there are no degrees
of freedom remaining for a likelihood ratio test, and missing values are displayed in the table. The interaction
effect is clearly nonsignificant, so a main-effects model is fit.

Figure 32.7 Saturated Model: ANOVA Table

Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq

Intercept 2 40.05 <.0001

School 4 14.55 0.0057

Program 2 10.48 0.0053

School*Program 4 1.74 0.7827

Likelihood Ratio 0 . .

Since PROC CATMOD is an interactive procedure, you can analyze the main-effects model by simply
submitting the new MODEL statement as follows:

model Style=School Program;
run;

You can check the population and response profiles (not shown) to confirm that they are the same as those in
Figure 32.6. The analysis of variance table is shown in Figure 32.8. The likelihood ratio chi-square statistic
is 1.78 with a p-value of 0.7766, indicating a good fit; the Wald chi-square tests for the school and program
effects are also significant. Since School has three levels, two parameters are estimated for each of the two
logits they modeled, for a total of four degrees of freedom. Since Program has two levels, one parameter is
estimated for each of the two logits, for a total of two degrees of freedom.
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Figure 32.8 Main-Effects Model: ANOVA Table

Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq

Intercept 2 39.88 <.0001

School 4 14.84 0.0050

Program 2 10.92 0.0043

Likelihood Ratio 4 1.78 0.7766

The parameter estimates and tests for individual parameters are displayed in Figure 32.9. The order of the
parameters corresponds to the order of the population and response variables as shown in the profile tables
(see Figure 32.6), with the levels of the response variables varying most rapidly. The first response function
is the logit that compares self to class, and the corresponding parameters have Function Number=1. The
second logit (Function Number=2) compares team to class. The School=1 parameters are the differential
effects versus School=3 for their respective logits, and the School=2 parameters are likewise differential
effects versus School=3. The Program parameters are the differential effects of ‘regular’ versus ‘afternoon’
for the two response functions.

Figure 32.9 Parameter Estimates

Analysis of Maximum Likelihood Estimates

Parameter
Function
Number Estimate

Standard
Error

Chi-
Square Pr > ChiSq

Intercept 1 -0.7979 0.1465 29.65 <.0001

2 -0.6589 0.1367 23.23 <.0001

School 1 1 -0.7992 0.2198 13.22 0.0003

1 2 -0.2786 0.1867 2.23 0.1356

2 1 0.2836 0.1899 2.23 0.1352

2 2 -0.0985 0.1892 0.27 0.6028

Program regular 1 0.3737 0.1410 7.03 0.0080

regular 2 0.3713 0.1353 7.53 0.0061

The Program variable has nearly the same effect on both logits, while School=1 has the largest effect of the
schools.
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Syntax: CATMOD Procedure
The following statements are available in the CATMOD procedure:

PROC CATMOD < options > ;
DIRECT < variables > ;
MODEL response-effect = design-effects < / options > ;
CONTRAST 'label ' row-description < , . . . , row-description > < / options > ;
BY variables ;
FACTORS factor-description < , . . . , factor-description > < / options > ;
LOGLIN effects< / option > ;
POPULATION variables ;
REPEATED factor-description < , . . . , factor-description > < / options > ;
RESPONSE < function > < / options > ;
RESTRICT parameter=value < . . . parameter=value > ;
WEIGHT variable ;

You can use all of the statements in PROC CATMOD interactively. The first RUN statement executes all
of the previous statements. Any subsequent RUN statement executes only those statements that appear
between the previous RUN statement and the current one. However, if you specify a BY statement, interactive
processing is disabled. That is, all statements through the following RUN statement are processed for each
BY group in the data set, but no additional statements are accepted by the procedure.

If more than one CONTRAST statement appears between two RUN statements, all the CONTRAST
statements are processed. If more than one RESPONSE statement appears between two RUN statements,
then analyses associated with each RESPONSE statement are produced. For all other statements, there can
be only one occurrence of the statement between any two RUN statements. For example, if there are two
LOGLIN statements between two RUN statements, the first LOGLIN statement is ignored.

The PROC CATMOD and MODEL statements are required. If specified, the DIRECT statement must
precede the MODEL statement. As a result, if you use the DIRECT statement interactively, you need to
specify a MODEL statement in the same RUN group. See the section “DIRECT Statement” on page 1902 for
an example.

The CONTRAST statements, if any, must follow the MODEL statement.

You can specify only one of the LOGLIN, REPEATED, and FACTORS statements between any two RUN
statements, because they all specify the same information: how to partition the variation among the response
functions within a population.

A QUIT statement executes any statements that have not been processed and then ends the CATMOD
procedure run.

The purpose of each statement, other than the PROC CATMOD statement, is summarized in the following
list:

BY determines groups in which data are to be processed separately.

CONTRAST specifies a hypothesis to test.

DIRECT specifies independent variables that are to be treated quantitatively (like continuous vari-
ables) rather than qualitatively (like classification or discrete variables). These variables
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also help to determine the rows of the contingency table and distinguish response functions
in one population from those in other populations.

FACTORS specifies (1) the factors that distinguish response functions from others in the same
population and (2) model effects, based on these factors, which help to determine the
design matrix.

LOGLIN specifies log-linear model effects.

MODEL specifies (1) dependent variables, which determine the columns of the contingency table,
(2) independent variables, which distinguish response functions in one population from
those in other populations, and (3) model effects, which determine the design matrix and
the way in which total variation among the response functions is partitioned.

POPULATION specifies variables that determine the rows of the contingency table and distinguish
response functions in one population from those in other populations.

REPEATED specifies (1) the repeated measurement factors that distinguish response functions from
others in the same population and (2) model effects, based on these factors, which help to
determine the design matrix.

RESPONSE determines the response functions that are to be modeled.

RESTRICT restricts values of parameters to the values you specify.

WEIGHT specifies a variable containing frequency counts.

PROC CATMOD Statement
PROC CATMOD < options > ;

The PROC CATMOD statement invokes the CATMOD procedure. Table 32.4 summarizes the options
available in the PROC CATMOD statement.

Table 32.4 PROC CATMOD Statement Options

Option Description

DATA= Names the input SAS data set
NAMELEN= Specifies the length of effect names
NOPRINT Suppresses the normal display of results
ORDER= Specifies the sort order for the levels of classification variables

You can specify the following options.

DATA=SAS-data-set
names the SAS data set containing the data to be analyzed. By default, the CATMOD procedure uses
the most recently created SAS data set. For details, see the section “Input Data Sets” on page 1925.

NAMELEN=n
specifies the length of effect names in tables and output data sets to be n characters long, where n is a
value between 24 and 200. The default length is 24 characters.
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NOPRINT
suppresses the normal display of results. The NOPRINT option is useful when you only want to create
output data sets with the OUT= or OUTEST= option in the RESPONSE statement. A NOPRINT
option is also available in the MODEL statement. Note that this option temporarily disables the Output
Delivery System (ODS); see Chapter 20, “Using the Output Delivery System,” for more information.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of classification variables. This affects the ordering of the
populations, responses, and parameters, as well as the definitions of the parameters. The default,
ORDER=INTERNAL, orders the variable levels by their unformatted values (for example, numeric
order or alphabetical order).

The following table shows how PROC CATMOD interprets values of the ORDER= option.

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set

FORMATTED External formatted value, except for numeric vari-
ables with no explicit format, which are sorted by
their unformatted (internal) value

FREQ Descending frequency count; levels with the most
observations come first in the order

INTERNAL Unformatted value

By default, ORDER=INTERNAL. For ORDER=FORMATTED and ORDER=INTERNAL, the sort
order is machine dependent. See the section “Ordering of Populations and Responses” on page 1928
for more information and examples. For more information about sort order, see the chapter on the
SORT procedure in the Base SAS Procedures Guide and the discussion of BY-group processing in SAS
Language Reference: Concepts.

BY Statement
BY variables ;

You can specify a BY statement with PROC CATMOD to obtain separate analyses of observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the CATMOD procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).
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You can specify one or more variables in the input data set on the BY statement.

When you specify a BY statement with PROC CATMOD, no further interactive processing is possible. In
other words, once the BY statement appears, all statements up to the associated RUN statement are executed
for each BY group in the data set. After the RUN statement, no further statements are accepted by the
procedure.

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

CONTRAST Statement
CONTRAST 'label ' row-description < , . . . , row-description > < / options > ;

where a row-description is defined as follows:

< @n > effect values < . . . < @n > effect values >

The CONTRAST statement constructs and tests linear functions of the parameters in the MODEL statement
or effects listed in the LOGLIN statement. Each set of effects (separated by commas) specifies one row or set
of rows of the matrix C that PROC CATMOD uses to test the hypothesis Cˇ D 0.

CONTRAST statements must be preceded by the MODEL statement, and by the LOGLIN statement, if one
is used. You can specify the following terms in the CONTRAST statement.

’label’ specifies up to 256 characters of identifying information displayed with the test. The ’label’ is
required.

effect is one of the effects specified in the MODEL or LOGLIN statement, INTERCEPT (for the
intercept parameter), or ALL_PARMS (for the complete set of parameters).

The ALL_PARMS option is regarded as an effect with the same number of parameters as the
number of columns in the design matrix. This is particularly useful when the design matrix is
input directly, as in the following example:

model y=(1 0 0 0,
1 0 1 0,
1 1 0 0,
1 1 1 1);

contrast 'Main Effect of B' all_parms 0 1 0 0;
contrast 'Main Effect of C' all_parms 0 0 1 0;
contrast 'B*C Interaction ' all_parms 0 0 0 1;

values are numbers that form the coefficients of the parameters associated with the given effect. If
there are fewer values than parameters for an effect, the remaining coefficients become zero. For
example, if you specify two values and the effect actually has five parameters, the final three are
set to zero.

@n points to the parameters in the nth set when the model has a separate set of parameters for each
of the response functions. The @n notation is seldom needed. It enables you to test the variation
among response functions in the same population. However, it is usually easier to model and
test such variation by using the _RESPONSE_ effect in the MODEL statement or by using the
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ALL_PARMS designation. Usually, contrasts are performed with respect to all of the response
functions, and this is what the CONTRAST statement does by default (in this case, do not use
the @n notation).

For example, if there are three response functions per population, then the following contrast
results in a three-degree-of-freedom test comparing the first two levels of A simultaneously on
the three response functions.

contrast 'Level 1 vs. Level 2' A 1 -1 0;

If, however, you want to specify a contrast with respect to the parameters in the nth set only, then
use a single @n in a row-description. For example, the following statement tests that the first
parameter of A and the first parameter of B are zero in the third response function:

contrast 'A=0, B=0, Function 3' @3 A 1 B 1;

To specify a contrast with respect to parameters in two or more different sets of effects, use @n
with each effect. For example:

contrast 'Average over Functions' @1 A 1 0 -1
@2 A 1 1 -2;

When the model does not have a separate set of parameters for each of the response functions, the
@n notation is invalid. This type of model is called AVERAGED. For details, see the description
of the AVERAGED option and the section “Generation of the Design Matrix” on page 1939.

You can specify the following options in the CONTRAST statement after a slash.

ALPHA=value
specifies the significance level of the confidence interval for each contrast when the ESTIMATE=
option is specified. The default is ALPHA=0.05, resulting in a 95% confidence interval for each
contrast.

ESTIMATE=keyword

EST=keyword
requests that each individual contrast (that is, each row, ciˇ, of Cˇ) or exponentiated contrast
.exp.ciˇ// be estimated and tested. PROC CATMOD displays the point estimate, its standard error, a
Wald confidence interval, and a Wald chi-square test for each contrast. The significance level of the
confidence interval is controlled by the ALPHA= option.

You can estimate the contrast or the exponentiated contrast, or both, by specifying one of the following
keywords:

PARM specifies that the contrast itself be estimated.

EXP specifies that the exponentiated contrast be estimated.

BOTH specifies that both the contrast and the exponentiated contrast be estimated.
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Specifying Contrasts

PROC CATMOD is parameterized differently than PROC GLM, so you must be careful not to use the same
contrasts that you would with PROC GLM. Since PROC CATMOD uses full-rank parameterizations, all
estimable parameters are directly estimable without involving other parameters.

For example, suppose a classification variable A has four levels and uses the default parameterization
(PARAM=EFFECT). Then there are four parameters (˛1; ˛2; ˛3; ˛4), of which PROC CATMOD uses only
the first three. The fourth parameter is related to the others by the equation

˛4 D �˛1 � ˛2 � ˛3

To test the first versus the fourth level of A, you would test ˛1 D ˛4, which is

˛1 D �˛1 � ˛2 � ˛3

or, equivalently,

2˛1 C ˛2 C ˛3 D 0

Therefore, you would use the following CONTRAST statement:

contrast '1 vs. 4' A 2 1 1;

To contrast the third level with the average of the first two levels, you would test
˛1 C ˛2

2
D ˛3

or, equivalently,

˛1 C ˛2 � 2˛3 D 0

Therefore, you would use the following CONTRAST statement:

contrast '1&2 vs. 3' A 1 1 -2;

Other CONTRAST statements are constructed similarly. For example:

contrast '1 vs. 2 ' A 1 -1 0;
contrast '1&2 vs. 4 ' A 3 3 2;
contrast '1&2 vs. 3&4' A 2 2 0;
contrast 'Main Effect' A 1 0 0,

A 0 1 0,
A 0 0 1;

The actual form of the C matrix depends on the effects in the model. The remaining examples in this section
assume a single response function for each population.

Recall that the statements to test the first versus the fourth level of A are as follows:

proc catmod;
model y=a;
contrast '1 vs. 4' A 2 1 1;

run;

Since the first parameter corresponds to the intercept, the C matrix for the preceding statements is

C D Œ 0 2 1 1 �



1902 F Chapter 32: The CATMOD Procedure

But suppose you have a variable B with three levels and you use the following statements:

proc catmod;
model y=b a;
contrast '1 vs. 4' A 2 1 1;

run;

Then the CONTRAST statement produces the C matrix

C D Œ 0 0 0 2 1 1 �

since the first parameter corresponds to the intercept and the next two correspond to the B main effect.

You can also use the CONTRAST statement to test the joint effect of two or more effects in the MODEL
statement. For example, the joint effect of A and B in the previous model has five degrees of freedom and is
obtained by specifying the following:

contrast 'Joint Effect of A&B' A 1 0 0,
A 0 1 0,
A 0 0 1,
B 1 0,
B 0 1;

The ordering of variable levels is determined by the ORDER= option in the PROC CATMOD statement.
Whenever you specify a contrast that depends on the order of the variable levels, you should verify the order
from the “Population Profiles” table, the “Response Profiles” table, or the “One-Way Frequencies” table.

DIRECT Statement
DIRECT variables ;

The DIRECT statement lists numeric independent variables to be treated in a quantitative, rather than
qualitative, way. The DIRECT statement is useful for logistic regression, which is described in the section
“Logistic Regression” on page 1933. For limitations of models involving continuous variables, see the section
“Continuous Variables” on page 1934.

CAUTION: If a DIRECT variable is formatted, then the unformatted (internal) values are used in the analysis
and the formatted values are displayed. If you use a format to group the internal values into one formatted
value, then the first internal value is used in the analysis. If specified, the DIRECT statement must precede
the MODEL statement. For example:

proc catmod;
direct X;
model Y=X;

run;

Suppose X has five levels. Then the main effect X adds only one column to the design matrix rather than four.
The values inserted into the design matrix are the actual values of X.

You can interactively change the variables declared as DIRECT variables by using the statement without
listing any variables. The following statements are valid:
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proc catmod;
direct X;
model Y=X;
weight wt;

run;
direct;
model Y=X;

run;

The first MODEL statement uses the actual values of X, and the second MODEL statement uses the four
variables created when PROC CATMOD generates the design matrix. Note that the preceding statements
can be run without a WEIGHT statement if the input data are raw data rather than cell counts.

For more details, see the discussions of main and direct effects in the section “Generation of the Design
Matrix” on page 1939.

FACTORS Statement
FACTORS factor-description < , . . . , factor-description > < / options > ;

where a factor-description is defined as follows:

factor-name < $ > < levels >

and factor-descriptions are separated from each other by a comma. The $ is required for character-valued
factors. The value of levels provides the number of levels of the factor identified by a given factor-name. For
only one factor, levels is optional; for two or more factors, it is required.

The FACTORS statement identifies factors that distinguish response functions from others in the same
population. It also specifies how those factors are incorporated into the model. You can use the FACTORS
statement whenever there is more than one response function per population and the keyword _RESPONSE_
is specified in the MODEL statement. You can specify the name, type, and number of levels of each factor
and the identification of each level.

The FACTORS statement is most useful when the response functions and their covariance matrix are read
directly from the input data set. In this case, PROC CATMOD reads the response functions as though they
are from one population (this poses no problem in the multiple-population case because the appropriately
constructed covariance matrix is also read directly). Thus, you can use the FACTORS statement to partition
the variation among the response functions into appropriate sources, even when the functions actually
represent separate populations.

The format of the FACTORS statement is identical to that of the REPEATED statement. In fact, repeated
measurement factors are simply special cases of factors in which some of the response functions correspond
to multiple dependent variables that are measurements on the same experimental (or sampling) units.

You cannot specify the FACTORS statement for an analysis that also contains the REPEATED or LOGLIN
statement since all of them specify the same information: how to partition the variation among the response
functions within a population.

You can specify the following terms in the FACTORS statement:
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factor-name names a factor that corresponds to two or more response functions. This name must be a
valid SAS variable name, and it should not be the same as the name of a variable that already
exists in the data set being analyzed.

$ indicates that the factor is character-valued. If the $ is omitted, then the CATMOD procedure
assumes that the factor is numeric. The type of the factor is relevant only when you use
the PROFILE= option or when the _RESPONSE_= option (described later in this section)
specifies nested-by-value effects.

levels specifies the number of levels of the corresponding factor. If there is only one such factor,
and the number is omitted, then PROC CATMOD assumes that the number of levels is equal
to the number of response functions per population (q). Unless you specify the PROFILE=
option, the number q must either be equal to or be a multiple of the product of the number of
levels of all the factors.

You can specify the following options in the FACTORS statement after a slash.

PROFILE=(matrix)
specifies the values assumed by the factors for each response function. There should be one column
for each factor, and the values in a given column (character or numeric) should match the type of the
corresponding factor. Character values are restricted to 16 characters or less. If there are q response
functions per population, then the matrix must have i rows, where q must either be equal to or be a
multiple of i. Adjacent rows of the matrix should be separated by a comma.

The values in the PROFILE matrix are useful for specifying models in those situations where the study
design is not a full factorial with respect to the factors. They can also be used to specify nested-by-value
effects in the _RESPONSE_= option. If you specify character values in both places (the PROFILE=
option and the _RESPONSE_= option), then the values must match with respect to whether or not they
are enclosed in quotes (that is, enclosed in quotes in both places or in neither place).

For an example of using the PROFILE= option, see Example 32.10.

_RESPONSE_=effects
specifies design effects. The variables named in the effects must be factor-names that appear in the
FACTORS statement. If the _RESPONSE_= option is omitted, then PROC CATMOD builds a full
factorial _RESPONSE_ effect with respect to the factors.

TITLE=’title’
displays the title at the top of certain pages of output that correspond to the current FACTORS statement.

For an example of how the FACTORS statement is useful, consider the case where the response
functions and their covariance matrix are read directly from the input data set. The TYPE=EST data
set might be created in the following manner:

data direct(type=est);
input b1-b4 _type_ $ _name_ $8.;
datalines;

0.590463 0.384720 0.273269 0.136458 parms .
0.001690 0.000911 0.000474 0.000432 cov b1
0.000911 0.001823 0.000031 0.000102 cov b2
0.000474 0.000031 0.001056 0.000477 cov b3
0.000432 0.000102 0.000477 0.000396 cov b4
;
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Suppose the response functions correspond to four populations that represent the cross-classification of
age (two groups) by sex. You can use the FACTORS statement to identify these two factors and to
name the effects in the model. The statements required to fit a main-effects model to these data are as
follows:

proc catmod data=direct;
response read b1-b4;
model _f_=_response_;
factors age 2, sex 2 / _response_=age sex;

run;

If you want to specify some nested-by-value effects, you can change the FACTORS statement to the
following:

factors age $ 2, sex $ 2 /
_response_=age sex(age='under 30') sex(age='30 & over')
profile=('under 30' male,

'under 30' female,
'30 & over' male,
'30 & over' female);

If, by design or by chance, the study contains no male subjects under 30 years of age, then there are
only three response functions, and you can specify a main-effects model as follows:

proc catmod data=direct;
response read b2-b4;
model _f_=_response_;
factors age $ 2, sex $ 2 / _response_=age sex

profile=('under 30' female,
'30 & over' male,
'30 & over' female);

run;

When you specify two or more factors and omit the PROFILE= option, PROC CATMOD presumes
that the response functions are ordered so that the levels of the rightmost factor change most rapidly.
For the preceding example, the order implied by the FACTORS statement is as follows:

Response Dependent
Function Variable Age Sex

1 b1 1 1
2 b2 1 2
3 b3 2 1
4 b4 2 2

For additional examples of how to use the FACTORS statement, see the section “Repeated Measures
Analysis” on page 1936. All of the examples in that section are applicable, with the REPEATED
statement replaced by the FACTORS statement.
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LOGLIN Statement
LOGLIN effects < / option > ;

The LOGLIN statement is used to define log-linear model effects. It can be used whenever the default
response functions (generalized logits) are used.

In the LOGLIN statement, effects are design effects that contain dependent variables in the MODEL statement,
including interaction, nested, and nested-by-value effects. You can use the bar (|) and at (@) operators as
well. The following lists of effects are equivalent:

a b c a*b a*c b*c

and

a|b|c @2

When you use the LOGLIN statement, the keyword _RESPONSE_ should be specified in the MODEL
statement. For further information about log-linear model analysis, see the section “Log-Linear Model
Analysis” on page 1934.

You cannot specify the LOGLIN statement for an analysis that also contains the REPEATED or FACTORS
statement since all of them specify the same information: how to partition the variation among the response
functions within a population.

You can specify the following option in the LOGLIN statement after a slash.

TITLE=’title’
displays the title at the top of certain pages of output that correspond to this LOGLIN statement.

The following statements give an example of how to use the LOGLIN statement:

proc catmod;
model a*b*c=_response_;
loglin a|b|c @ 2;

run;

These statements yield a log-linear model analysis that contains all main effects and two-variable
interactions. For more examples of log-linear model analysis, see the section “Log-Linear Model
Analysis” on page 1934.
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MODEL Statement
MODEL response-effect = < design-effects > < / options > ;

PROC CATMOD requires a MODEL statement. You can specify the following in a MODEL statement:

response-effect can be either a single variable, a crossed effect with two or more variables joined by
asterisks, or _F_. The _F_ specification indicates that the response functions and their
estimated covariance matrix are to be read directly into the procedure (see the section
“Inputting Response Functions and Covariances Directly” on page 1927 for details). The
response-effect indicates the dependent variables that determine the response categories
(the columns of the underlying contingency table).

design-effects specify potential sources of variation (such as main effects and interactions) in the model.
These effects determine the number of model parameters, as well as the interpretation of
such parameters. In addition, if there is no POPULATION statement, PROC CATMOD
uses these variables to determine the populations (the rows of the underlying contingency
table). When fitting the model, PROC CATMOD adjusts the independent effects in the
model for all other independent effects in the model.

Design-effects can be any of those described in the section “Specification of Effects” on
page 1929, or they can be defined by specifying the actual design matrix, enclosed in
parentheses (see the section “Specifying the Design Matrix Directly” on page 1913). In
addition, you can use the keyword _RESPONSE_ alone or as part of an effect. Effects
cannot be nested within _RESPONSE_, so effects of the form A(_RESPONSE_) are
invalid.

For more information, see the section “Log-Linear Model Analysis” on page 1934 and
the section “Repeated Measures Analysis” on page 1936.

Some example MODEL statements are shown in the following table:

Example Result

model r=a b; Main effects only

model r=a b a*b; Main effects with interaction

model r=a b(a); Nested effect

model r=a|b; Complete factorial

model r=a b(a=1) b(a=2); Nested-by-value effects

model r*s=_response_; Log-linear model

model r*s=a _response_(a); Nested repeated measurement factor

model _f_=_response_; Direct input of the response functions

The relationship between these specifications and the structure of the design matrix X is described in the
section “Generation of the Design Matrix” on page 1939.

Table 32.5 summarizes the options available in the MODEL statement.
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Table 32.5 MODEL Statement Options

Options Task

Specify details of computation
ML= Generates the maximum likelihood estimates
GLS Generates the weighted least squares estimates
WLS
NOINT Omits the intercept term from the model
PARAM= Specifies the parameterization of classification variables
ADDCELL= Adds a number to each cell frequency
AVERAGED Averages the main effects across response functions
EPSILON= Specifies the convergence criterion for maximum likelihood
MAXITER= Specifies the number of iterations for maximum likelihood
MISSING= Specifies how missing cells are treated
ZERO= Specifies how zero cells are treated

Request additional computation and tables
ALPHA= Specifies the significance level of confidence intervals
CLPARM Displays the Wald confidence intervals of estimates
CORRB Displays the estimated correlation matrix of estimates
COV Displays the covariance matrix of response functions
COVB Displays the estimated covariance matrix of estimates
DESIGN Displays the design and _RESPONSE_ matrix
FREQ Displays the two-way frequency tables
ITPRINT Displays the iterations for maximum likelihood
ONEWAY Displays the one-way frequency tables
PRED= Displays the predicted values
PREDICT
PROB Displays the probability estimates
PROFILE Displays the population profiles
XPX Displays the crossproducts matrix
TITLE= Specifies the title

Suppress output
NODESIGN Suppresses the design matrix
NOPARM Suppresses the parameter estimates
NOPREDVAR Suppresses the variable levels
NOPROFILE Suppresses the population and response profiles
NORESPONSE Suppresses the _RESPONSE_ matrix

The following list describes these options in alphabetical order.

ADDCELL=number
adds number to the frequency count in each cell, where number is any positive number. This option
has no effect on maximum likelihood analysis; it is used only for weighted least squares analysis.
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ALPHA=number
sets the significance level for the Wald confidence intervals for parameter estimates. The value must be
between 0 and 1. The default value of 0.05 results in the calculation of a 95% confidence interval. This
option has no effect unless the CLPARM option is also specified.

AVERAGED
specifies that dependent variable effects can be modeled and that independent variable main effects
are averaged across the response functions in a population. For further information about the effect of
using (or not using) the AVERAGED option, see the section “Generation of the Design Matrix” on
page 1939. Direct input of the design matrix or specification of the _RESPONSE_ keyword in the
MODEL statement automatically uses an AVERAGED model type.

CLPARM
produces Wald confidence limits for the parameter estimates. The confidence coefficient can be
specified with the ALPHA= option.

CORRB
displays the estimated correlation matrix of the parameter estimates.

COV
displays Si , which is the covariance matrix of the response functions for each population.

COVB
displays the estimated covariance matrix of the parameter estimates.

DESIGN
displays the design matrix X for WLS and ML analyses, and also displays the _RESPONSE_ matrix
for log-linear models. For further information, see the section “Generation of the Design Matrix” on
page 1939.

EPSILON=number
specifies the convergence criterion for the maximum likelihood estimation of the parameters. The
iterative estimation process stops when the proportional change in the log likelihood is less than
number , or after the number of iterations specified by the MAXITER= option, whichever comes first.
By default, EPSILON=1E–8.

FREQ
produces the two-way frequency table for the cross-classification of populations by responses.

ITPRINT
displays parameter estimates and other information at each iteration of a maximum likelihood analysis.

MAXITER=number
specifies the maximum number of iterations used for the maximum likelihood estimation of the
parameters. By default, MAXITER=20.

ML < = NR | IPF< ( ipf-options ) > >
computes maximum likelihood estimates (MLE) by using either a Newton-Raphson algorithm (NR) or
an iterative proportional fitting algorithm (IPF).

The option ML=NR (or simply ML) is available when you use generalized logits, and also when
you perform binary logistic regression with logits, cumulative logits, or adjacent category logits. For
generalized logits (the default response functions), ML=NR is the default estimation method.
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The option ML=IPF is available for fitting a hierarchical log-linear model with one population (no
independent variables and no population variables). The use of bar notation to express the log-linear
effects guarantees that the model is hierarchical (the presence of any interaction term in the model
requires the presence of all its lower-order terms). If your table is incomplete (that is, your table has
a zero or missing entry in at least one cell), then all missing cells and all cells with zero weight are
treated as structural zeros by default; this behavior can be modified with the ZERO= and MISSING=
options in the MODEL statement.

You can control the convergence of the two algorithms with the EPSILON= and MAXITER= options
in the MODEL statement. You can select the convergence criterion for the IPF algorithm with the
CONVCRIT= option.

NOTE: The RESTRICT statement is not available with the ML=IPF option.

You can specify the following ipf-options within parentheses after the ML=IPF option.

CONVCRIT=keyword
specifies the method that determines when convergence of the IPF algorithm occurs. You can
specify one of the following keywords:

CELL termination requires the maximum absolute difference between consecutive
cell estimates to be less than 0.001 (or the value of the EPSILON= option, if
specified).

LOGL termination requires the relative difference between consecutive estimates of
the log likelihood to be less than 1E–8 (or the value of the EPSILON= option,
if specified). This is the default.

MARGIN termination requires the maximum absolute difference between consecutive
margin estimates to be less than 0.001 (or the value of the EPSILON= option,
if specified).

DF=keyword
specifies the method used to compute the degrees of freedom for the goodness-of-fit G2 test
(labeled “Likelihood Ratio” in the “Estimates” table).

For a complete table (a table having nonzero entries in every cell), the degrees of freedom are
calculated as the number of cells in the table (nc) minus the number of independent parameters
specified in the model (np). For incomplete tables, these degrees of freedom can be adjusted by
the number of fitted zeros (nz , which includes the number of structural zeros) and the number of
nonestimable parameters due to the zeros (nn). If you are analyzing an incomplete table, you
should verify that the degrees of freedom are correct.

You can specify one of the following keywords:

UNADJ computes the unadjusted degrees of freedom as nc � np . These are the same
degrees of freedom you would get if all cells in the table were positive.

ADJ computes the degrees of freedom as .nc �np/� .nz �nn/ (Bishop, Fienberg,
and Holland 1975), which adjusts for fitted zeros and nonestimable parameters.
This is the default, and for complete tables it gives the same results as the
UNADJ option.
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ADJEST computes the degrees of freedom as .nc � np/ � nz , which adjusts for fitted
zeros only. This gives a lower bound on the true degrees of freedom.

PARM
computes parameter estimates, generates the “ANOVA,” “Parameter Estimates,” and “Predicted
Values of Response Functions” tables, and includes the predicted standard errors in the “Predicted
Values of Frequencies and Probabilities” tables.

When you specify the PARM option, the algorithm used to obtain the maximum likelihood
parameter estimates is weighted least squares on the IPF-predicted frequencies. This algorithm
can be much faster than the Newton-Raphson algorithm that is used if you specify the ML=NR
option. In the resulting ANOVA table, the likelihood ratio is computed from the initial IPF fit
while the degrees of freedom are generated from the WLS analysis; the DF= option can override
this. Also, the initial response function, which the WLS method usually computes from the raw
data, is computed from the IPF-predicted frequencies.

If there are any zero marginals in the configurations that define the model, then there are
predicted cell frequencies of zero and WLS cannot be used to compute the estimates. In this case,
PROC CATMOD automatically changes the algorithm from ML=IPF to ML=NR and prints a
note in the log.

MISSING=keyword

MISS=keyword
specifies whether a missing cell is treated as a sampling or structural zero.

Structural zero cells are removed from the analysis since their expected values are zero, while sampling
zero cells can have nonzero expected value and might be estimable. For a single population, the
missing cells are treated as structural zeros by default. For multiple populations, as long as some
population has a nonzero count for a given population and response profile, the missing values are
treated as sampling zeros by default.

The following table displays the available keywords and summarizes how PROC CATMOD treats
missing values for one or more populations:

MISSING= One Population Multiple Populations

STRUCTURAL (default) Structural zeros Sampling zeros
SAMP | SAMPLING Sampling zeros Sampling zeros
value Sets missing weights and

cells to value
Sets missing weights and
cells to value

NODESIGN
suppresses the display of the design matrix X when the DESIGN option is also specified. This enables
you to display only the _RESPONSE_ matrix for log-linear models.

NOINT
suppresses the intercept term in the model.

NOPARM
suppresses the display of the estimated parameters and the statistics for testing that each parameter is
zero.
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NOPREDVAR
suppresses the display of the variable levels in tables requested with the PRED= option and in the
“Estimates” table. Population profiles are replaced with the sample number, classification variable
levels are suppressed, and response profiles are replaced with a function number.

NOPRINT
suppresses the normal display of results. The NOPRINT option is useful when you only want to create
output data sets with the OUT= or OUTEST= option in the RESPONSE statement. A NOPRINT
option is also available in the PROC CATMOD statement. Note that this option temporarily disables
the Output Delivery System (ODS); see Chapter 20, “Using the Output Delivery System,” for more
information.

NOPROFILE
suppresses the display of the population profiles and the response profiles.

NORESPONSE
suppresses the display of the _RESPONSE_ matrix for log-linear models when the DESIGN option is
also specified. This enables you to display only the design matrix for log-linear models.

ONEWAY
produces a one-way table of frequencies for each variable used in the analysis. This table is useful in
determining the order of the observed levels for each variable.

PARAM=EFFECT | REFERENCE
specifies the parameterization method for the classification variable or variables. The default is
PARAM=EFFECT. Both the effect and reference parameterizations are full rank. See the section
“Generation of the Design Matrix” on page 1939 for further details.

PREDICT

PRED=FREQ | PROB
displays the observed and predicted values of the response functions for each population, together with
their standard errors and the residuals (observed minus predicted). In addition, if the response functions
are the standard ones (generalized logits), then the PRED=FREQ option specifies the computation and
display of predicted cell frequencies, while PRED=PROB (or just PREDICT) specifies the computation
and display of predicted cell probabilities.

The OUT= data set always contains the predicted probabilities. If the response functions are the
generalized logits, the predicted cell probabilities are output unless the option PRED=FREQ is
specified, in which case the predicted cell frequencies are output.

PROB
produces the two-way table of probability estimates for the cross-classification of populations by
responses. These estimates sum to one across the response categories for each population.

PROFILE
displays all of the population profiles. If you have more than 60 populations, then by default only the
first 40 profiles are displayed; the PROFILE option overrides this default behavior.
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TITLE=’title’
displays the title at the top of certain pages of output that correspond to this MODEL statement.

WLS

GLS
computes weighted least squares estimates. This type of estimation is also called generalized least
squares estimation. For response functions other than the default (of generalized logits), WLS is the
default estimation method.

XPX
displays X0S�1X, the crossproducts matrix for the normal equations.

ZERO=keyword
specifies whether a nonmissing cell with zero weight in the data set is treated as a sampling or structural
zero.

Structural zero cells are removed from the analysis since their expected values are zero, while sampling
zero cells have nonzero expected value and might be estimable. For a single population, the zero cells
are treated as structural zeros by default; with multiple populations, as long as some population has a
nonzero count for a given population and response profile, the zeros are treated as sampling zeros by
default.

The following table displays the available keywords and summarizes how PROC CATMOD treats
zeros for one or more populations:

ZERO= One Population Multiple Populations

STRUCTURAL (default) Structural zeros Sampling zeros
SAMP | SAMPLING Sampling zeros Sampling zeros
value Sets zero weights to value Sets zero weights to value

Specifying the Design Matrix Directly

If you specify the design matrix directly, adjacent rows of the matrix must be separated by a comma, and the
matrix must have q � s rows, where s is the number of populations and q is the number of response functions
per population. The first q rows correspond to the response functions for the first population, the second set
of q rows corresponds to the functions for the second population, and so forth. The following is an example
of using direct specification of the design matrix.

proc catmod;
model R=(1 0,

1 1,
1 2,
1 3);

run;

These statements are appropriate for the case of one population and for R with five levels (generating four
response functions), so that 4 � 1 D 4. These statements are also appropriate for a situation with two
populations and two response functions per population, giving 2 � 2 D 4 rows of the design matrix. (To
accommodate more than one population, the POPULATION statement is needed.)
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When you input the design matrix directly, you also have the option of specifying that any subsets of the
parameters be tested for equality to zero. Indicate each subset by specifying the appropriate column numbers
of the design matrix, followed by an equal sign and a label (24 characters or less, in quotes) that describes the
subset. Adjacent subsets are separated by a comma, and the entire specification is enclosed in parentheses
and placed after the design matrix. For example:

proc catmod;
population Group Time;
model R=(1 1 0 0,

1 1 0 1,
1 1 0 2,
1 0 1 0,
1 0 1 1,
1 0 1 2,
1 -1 -1 0,
1 -1 -1 1,
1 -1 -1 2) (1 ='Intercept',

2 3='Group main effect',
4 ='Linear effect of Time');

run;

The preceding statements are appropriate when Group and Time each have three levels and R is dichotomous.
The POPULATION statement produces nine populations, and q = 1 (since R is dichotomous), so q � s D
1 � 9 D 9.

If you input the design matrix directly but do not specify any subsets of the parameters to be tested, then
PROC CATMOD tests the effect of MODEL | MEAN, which represents the significance of the model beyond
what is explained by an overall mean. For the previous example, the MODEL | MEAN effect is the same as
that obtained by specifying the following at the end of the MODEL statement:

(2 3 4='model|mean');

POPULATION Statement
POPULATION variables ;

The POPULATION statement specifies that populations are to be based only on cross-classifications of the
specified variables. If you do not specify the POPULATION statement, then populations are based only on
cross-classifications of the independent variables in the MODEL statement.

The POPULATION statement has two major uses:

• When you enter the design matrix directly, there are no independent variables in the MODEL statement;
therefore, the POPULATION statement is the only way to produce more than one population.

• When you fit a reduced model, the POPULATION statement might be necessary if you want to form
the same number of populations as there are for the saturated model.

To illustrate the first use, suppose you specify the following statements:
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data one;
input A $ B $ wt @@;
datalines;

yes yes 23 yes no 31 no yes 47 no no 50
;

proc catmod;
weight wt;
population B;
model A=(1 0,

1 1);
run;

Since the dependent variable A has two levels, there is one response function per population. Since the
variable B has two levels, there are two populations. The MODEL statement is valid since the number of rows
in the design matrix (2) is the same as the total number of response functions. If the POPULATION statement
is omitted, there would be only one population and one response function, and the MODEL statement would
be invalid.

To illustrate the second use, suppose you specify the following statements:

data two;
input A $ B $ Y wt @@;
datalines;

yes yes 1 23 yes yes 2 63
yes no 1 31 yes no 2 70
no yes 1 47 no yes 2 80
no no 1 50 no no 2 84
;

proc catmod;
weight wt;
model Y=A B A*B / wls;

run;

These statements form four populations and produce the following design matrix and analysis of variance
table:

X D

2664
1 1 1 1

1 1 �1 �1

1 �1 1 �1

1 �1 �1 1

3775
Source DF Chi-Square Pr > ChiSq

Intercept 1 48.10 <.0001
A 1 3.47 0.0625
B 1 0.25 0.6186
A*B 1 0.19 0.6638
Residual 0

Since the B and A*B effects are nonsignificant (p > 0:10), fit the reduced model that contains only the A
effect:

proc catmod;
weight wt;
model Y=A / wls;

run;
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Now only two populations are formed, and the design matrix and the analysis of variance table are as follows:

X D
�
1 1

1 �1

� Source DF Chi-Square Pr > ChiSq

Intercept 1 47.94 <.0001
A 1 3.33 0.0678
Residual 0

However, you can form four populations by adding the POPULATION statement to the analysis:

proc catmod;
weight wt;
population A B;
model Y=A / wls;

run;

The design matrix and the analysis of variance table resulting from these statements are as follows:

X D

2664
1 1

1 1

1 �1

1 �1

3775
Source DF Chi-Square Pr > ChiSq

Intercept 1 47.76 <.0001
A 1 3.30 0.0694
Residual 2 0.35 0.8374

The advantage of the latter analysis is that it retains four populations for the reduced model, thereby creating
a built-in goodness-of-fit test: the residual chi-square. Such a test is important because the cumulative (or
joint) effect of deleting two or more effects from the model can be significant, even if the individual effects
are not.

The resulting differences between the two analyses are due to the fact that the latter analysis uses pure
weighted least squares estimates with respect to the four populations that are actually sampled. The former
analysis pools populations and therefore uses parameter estimates that can be regarded as weighted least
squares estimates of maximum likelihood predicted cell frequencies. In any case, the estimation methods are
asymptotically equivalent; therefore, the results are very similar. If you specify the ML option (instead of the
WLS option) in the preceding MODEL statements, then the parameter estimates are identical for the two
analyses.

CAUTION: If your model has different covariate profiles within any population, then the first profile is used
in the analysis.

REPEATED Statement
REPEATED factor-description < , . . . , factor-description > < / options > ;

where a factor-description is defined as follows:

factor-name < $ > < levels >

and factor-descriptions are separated from each other by a comma. The $ is required for character-valued
factors. The value of levels provides the number of levels of the repeated measurement factor identified by a
given factor-name. For only one repeated measurement factor, levels is optional; for two or more repeated
measurement factors, it is required. The REPEATED statement incorporates repeated measurement factors
into the model. You can use this statement whenever there is more than one dependent variable and the
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keyword _RESPONSE_ is specified in the MODEL statement. If the dependent variables correspond to one
or more repeated measurement factors, you can use the REPEATED statement to define _RESPONSE_ in
terms of those factors. You can specify the name, type, and number of levels of each factor, as well as the
identification of each level.

You cannot specify the REPEATED statement for an analysis that also contains the FACTORS or LOGLIN
statement since all of them specify the same information: how to partition the variation among the response
functions within a population.

You can specify the following terms in the REPEATED statement:

factor-name names a repeated measurement factor that corresponds to two or more response functions.
This name must be a valid SAS variable name, and it should not be the same as the name of a
variable that already exists in the data set being analyzed.

$ indicates that the factor is character-valued. If the $ is omitted, then the CATMOD procedure
assumes that the factor is numeric. The type of the factor is relevant only when you use the
PROFILE= option or when the _RESPONSE_= option specifies nested-by-value effects.

levels specifies the number of levels of the corresponding repeated measurement factor. If there
is only one such factor and the number is omitted, then PROC CATMOD assumes that the
number of levels is equal to the number of response functions per population (q). Unless you
specify the PROFILE= option, the number q must either be equal to or be a multiple of the
product of the number of levels of all the factors.

You can specify the following options in the REPEATED statement after a slash.

PROFILE=(matrix)
specifies the values assumed by the factors for each response function. There should be one column
for each factor, and the values in a given column should match the type (character or numeric) of the
corresponding factor. Character values are restricted to 16 characters or less. If there are q response
functions per population, then the matrix must have i rows, where q must either be equal to or be a
multiple of i. Adjacent rows of the matrix should be separated by a comma.

The values in the PROFILE matrix are useful for specifying models in those situations where the study
design is not a full factorial with respect to the factors. They can also be used to specify nested-with-
value effects in the _RESPONSE_= option. If you specify character values in both the PROFILE=
option and the _RESPONSE_= option, then the values must match with respect to whether or not they
are enclosed in quotes (that is, they must be enclosed in quotes in both places or in neither place).

_RESPONSE_=effects
specifies design effects. The variables named in the effects must be factor-names that appear in the
REPEATED statement. If the _RESPONSE_= option is omitted, then PROC CATMOD builds a full
factorial _RESPONSE_ effect with respect to the repeated measurement factors. For example, the
following two statements are equivalent in that they produce the same parameter estimates:

repeated Time 2, Treatment 2;
repeated Time 2, Treatment 2 / _response_=Time|Treatment;

However, the second statement produces tests of the Time, Treatment, and Time*Treatment effects in
the “Analysis of Variance” table, whereas the first statement produces a single test for the combined
effects in _RESPONSE_.
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TITLE=’title’
displays the title at the top of certain pages of output that correspond to this REPEATED statement.

For further information and numerous examples of the REPEATED statement, see the section “Repeated
Measures Analysis” on page 1936.

RESPONSE Statement
RESPONSE < function > < / options > ;

The RESPONSE statement specifies functions of the response probabilities. The procedure models these
response functions as linear combinations of the parameters.

By default, PROC CATMOD uses the standard response functions (generalized logits, which are explained
in detail in the section “Understanding the Standard Response Functions” on page 1924). With these standard
response functions, the default estimation method is maximum likelihood, but you can use the WLS option in
the MODEL statement to request weighted least squares estimation. With other response functions (specified
in the RESPONSE statement), the default (and only) estimation method is weighted least squares.

You can specify more than one RESPONSE statement, in which case each RESPONSE statement produces a
separate analysis. If the computed response functions for any population are linearly dependent (yielding a
singular covariance matrix), then PROC CATMOD displays an error message and stops processing. See the
section “Cautions” on page 1948 for methods of dealing with this.

The function specification can be any of the items in the following list. For an example of response functions
generated and formulas for q (the number of response functions), see the section “More on Response
Functions” on page 1920.

Table 32.6 summarizes the options available in the RESPONSE statement.

Table 32.6 RESPONSE Statement Options

Option Description

ALOGIT Specifies response functions as adjacent-category logits
CLOGIT Specifies that the response functions are cumulative logits
JOINT Specifies that the response functions are the joint response probabilities
LOGIT Specifies that the response functions are generalized logits
MARGINAL Specifies that the response functions are marginal probabilities
MEAN Specifies that the response functions are the means dependent variables
READ Directly reads the response functions and their covariance matrix from the

input data set
OUT= Produces a SAS data set that contains predicted values, standard errors and

residuals
OUTEST= Produces a SAS data set that contains the estimated parameter vector and

its estimated covariance matrix
TITLE= Displays the title
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ALOGIT

ALOGITS
specifies response functions as adjacent-category logits of the marginal probabilities for each of
the dependent variables. For each dependent variable, the response functions are a set of linearly
independent adjacent-category logits, obtained by taking the logarithms of the ratios of two probabilities.
The denominator of the kth ratio is the marginal probability corresponding to the kth level of the
variable, and the numerator is the marginal probability corresponding to the (k + 1) level. If a dependent
variable has two levels, then the adjacent-category logit is the negative of the generalized logit.

CLOGIT

CLOGITS
specifies that the response functions are cumulative logits of the marginal probabilities for each of
the dependent variables. For each dependent variable, the response functions are a set of linearly
independent cumulative logits, obtained by taking the logarithms of the ratios of two probabilities.
The denominator of the kth ratio is the cumulative probability, ck , corresponding to the kth level of
the variable, and the numerator is 1 � ck (Agresti 1984, 113–114). If a dependent variable has two
levels, then PROC CATMOD computes its cumulative logit as the negative of its generalized logit.
You should use cumulative logits only when the dependent variables are ordinally scaled.

JOINT
specifies that the response functions are the joint response probabilities. A linearly independent set is
created by deleting the last response probability. For the case of one dependent variable, the JOINT
and MARGINALS specifications are equivalent.

LOGIT

LOGITS
specifies that the response functions are generalized logits of the marginal probabilities for each of
the dependent variables. For each dependent variable, the response functions are a set of linearly
independent generalized logits, obtained by taking the logarithms of the ratios of two probabilities.
The denominator of each ratio is the marginal probability corresponding to the last observed level of
the variable, and the numerators are the marginal probabilities corresponding to each of the other levels.
If there is one dependent variable, then specifying LOGIT is equivalent to using the standard response
functions.

MARGINAL

MARGINALS
specifies that the response functions are marginal probabilities for each of the dependent variables
in the MODEL statement. For each dependent variable, the response functions are a set of linearly
independent marginals, obtained by deleting the marginal probability corresponding to the last level.

MEAN

MEANS
specifies that the response functions are the means of the dependent variables in the MODEL statement.
This specification requires that all of the dependent variables be numeric.
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READ variables
specifies that the response functions and their covariance matrix are to be read directly from the input
data set with one response function for each variable named. See the section “Inputting Response
Functions and Covariances Directly” on page 1927 for more information.

transformation
specifies response functions that can be expressed by using successive applications of the four opera-
tions: LOG, EXP, � matrix literal, or C matrix literal. The operations are described in detail in the
section “Using a Transformation to Specify Response Functions” on page 1922.

You can specify the following options in the RESPONSE statement after a slash.

OUT=SAS-data-set
produces a SAS data set that contains, for each population, the observed and predicted values of the
response functions, their standard errors, and the residuals. Moreover, if you use the standard response
functions, the data set also includes observed and predicted values of the cell frequencies or the cell
probabilities. For further information, see the section “Output Data Sets” on page 1931.

OUTEST=SAS-data-set
produces a SAS data set that contains the estimated parameter vector and its estimated covariance
matrix. For further information, see the section “Output Data Sets” on page 1931.

TITLE=’title’
displays the title at the top of certain pages of output that correspond to this RESPONSE statement.

More on Response Functions

Suppose the dependent variable A has three levels and is the only response-effect in the MODEL statement.
The following table shows the proportions upon which the response functions are defined:

Value of A: 1 2 3
Proportions: p1 p2 p3

Note that
P
j pj D 1. The following table shows the response functions generated for each population:

Function Value
Specification of q Response Function

none� 2 ln
�
p1
p3

�
; ln

�
p2
p3

�
ALOGITS 2 ln

�
p2
p1

�
; ln

�
p3
p2

�
CLOGITS 2 ln

�
1�p1
p1

�
; ln

�
1�.p1Cp2/
p1Cp2

�
JOINT 2 p1; p2

LOGITS 2 ln
�
p1
p3

�
; ln

�
p2
p3

�
MARGINAL 2 p1; p2

MEAN 1 1p1 C 2p2 C 3p3
�Without a function specification, the default response func-
tions are generalized logits.
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Now, suppose the dependent variables A and B each have three levels (valued 1, 2, and 3 each) and the
response-effect in the MODEL statement is A*B. The following table shows the proportions upon which the
response functions are defined:

Value of A: 1 1 1 2 2 2 3 3 3
Value of B: 1 2 3 1 2 3 1 2 3

Proportions: p1 p2 p3 p4 p5 p6 p7 p8 p9

The marginal totals for the preceding table are defined as follows:

p1� D p1 C p2 C p3 p�1 D p1 C p4 C p7

p2� D p4 C p5 C p6 p�2 D p2 C p5 C p8

p3� D p7 C p8 C p9 p�3 D p3 C p6 C p9

where
P
j pj D 1. The following table shows the response functions generated for each population:

Function Value
Specification of q Response Function

none� 8 ln
�
p1
p9

�
; ln

�
p2
p9

�
; ln

�
p3
p9

�
; : : : ; ln

�
p8
p9

�
ALOGITS 4 ln

�
p2�
p1�

�
; ln

�
p3�
p2�

�
; ln

�
p�2
p�1

�
; ln

�
p�3
p�2

�
CLOGITS 4 ln

�
1�p1�
p1�

�
; ln

�
1�.p1�Cp2�/
p1�Cp2�

�
; ln

�
1�p�1
p�1

�
; ln

�
1�.p�1Cp�2/
p�1Cp�2

�
JOINT 8 p1; p2; p3; p4; p5; p6; p7; p8

LOGITS 4 ln
�
p1�
p3�

�
; ln

�
p2�
p3�

�
; ln

�
p�1
p�3

�
; ln

�
p�2
p�3

�
MARGINAL 4 p1�; p2�; p�1; p�2

MEAN 2 1p1� C 2p2� C 3p3�; 1p�1 C 2p�2 C 3p�3
� Without a function specification, the default response functions are generalized logits.

The READ and transformation function specifications are not shown in the preceding table. For these two
situations, there is not a general response function; the response functions that are generated depend on what
you specify.

Another important aspect of the function specification is the number of response functions generated per
population, q. Let mi represent the number of levels for the ith dependent variable in the MODEL statement,
and let d represent the number of dependent variables in the MODEL statement. Then, if the function
specification is ALOGITS, CLOGITS, LOGITS, or MARGINALS, the number of response functions is

q D

dX
iD1

.mi � 1/

If the function specification is JOINT or the default (generalized logits), the number of response functions
per population is

q D r � 1
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where r is the number of response profiles. If every possible cross-classification of the dependent variables is
observed in the samples, then

r D

dY
iD1

mi

Otherwise, r is the number of cross-classifications actually observed.

If the function specification is MEANS, the number of response functions per population is q D d .

Response Statement Examples

Some example response statements are shown in the following table:

Example Result

response marginals; Marginals for each dependent variable

response means; The mean of each dependent variable

response logits; Generalized logits of the marginal probabilities

response clogits; Cumulative logits of the marginal probabilities

response alogits; Adjacent-category logits of the marginal probabilities

response joint; The joint probabilities

response 1 -1 log; The logit

response; Generalized logits

response 1 2 3; The mean score, with scores of 1, 2, and 3 correspond-
ing to the three response levels

response read b1-b4; Four response functions and their covariance matrix,
read directly from the input data set

Using a Transformation to Specify Response Functions

If you specify a transformation, it is applied to the vector that contains the sample proportions in each
population. The transformation can be any combination of the following four operations:

Operation Specification

linear combination � matrix literal
linear combination matrix literal

logarithm LOG

exponential EXP

adding constant C matrix literal

If more than one operation is specified, then PROC CATMOD applies the operations consecutively from
right to left.

A matrix literal is a matrix of numbers with each row of the matrix separated from the next by a comma. If
you specify a linear combination, in most cases the � is not needed. The following statement defines the
response function p1 C 1. The � is needed to separate the two matrix literals ‘1’ and ‘1 0’.
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response + 1 * 1 0;

The LOG of a vector transforms each element of the vector into its natural logarithm; the EXP of a vector
transforms each element into its exponential function (antilogarithm).

In order to specify a linear response function for data that have r = 3 response categories, you can specify
either of the following RESPONSE statements:

response * 1 0 0 , 0 1 0;
response 1 0 0 , 0 1 0;

The matrix literal in the preceding statements specifies a 2 � 3 matrix, which is applied to each population as
follows:�

F1
F2

�
D

�
1 0 0

0 1 0

�
�

24 p1
p2
p3

35
where p1, p2, and p3 are sample proportions for the three response categories in a population, and F1 and F2
are the two response functions computed for that population. Therefore, this response function sets F1 D p1
and F2 D p2 in each population.

As another example of the linear response function, suppose you have two dependent variables corresponding
to two observers who evaluate the same subjects. If the observers grade on the same three-point scale and
if all nine possible responses are observed, then the following RESPONSE statement would compute the
probability that the observers agree on their assessments:

response 1 0 0 0 1 0 0 0 1;

This response function is then computed as

F D p11 C p22 C p33 D
�
1 0 0 0 1 0 0 0 1

�
�

26666666666664

p11
p12
p13
p21
p22
p23
p31
p32
p33

37777777777775
where pij denotes the probability that a subject gets a grade of i from the first observer and j from the second
observer.

If the function is a compound function, requiring more than one operation to specify it, then the operations
should be listed so that the first operation to be applied is on the right and the last operation to be applied is
on the left. For example, if there are two response levels, you can have the following response function:

response 1 -1 log;

This is equivalent to the matrix expression

F D
�
1 �1

�
�

�
log.p1/
log.p2/

�
D log.p1/ � log.p2/ D log

�
p1

p2

�
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which is the logit response function since p2 D 1 � p1 when there are only two response levels.

The following statement specifies another example of a compound response function:

response exp 1 -1 * 1 0 0 1, 0 1 1 0 log;

This is equivalent to the matrix expression

F D EXP.A � B � LOG.P//

where P is the vector of sample proportions for some population,

A D
�
1 �1

�
and B D

�
1 0 0 1

0 1 1 0

�
If the four responses are based on two dependent variables, each with two levels, then the function can also
be written as

F D
p11p22

p12p21

which is the odds (crossproduct) ratio for a 2 � 2 table.

Understanding the Standard Response Functions

If no RESPONSE statement is specified, PROC CATMOD computes the standard response functions, which
contrast the log of each response probability with the log of the probability for the last response category. If
there are r response categories, then there are r � 1 standard response functions. For example, if there are
four response categories, using no RESPONSE statement is equivalent to specifying the following:

response 1 0 0 -1,
0 1 0 -1,
0 0 1 -1 log;

This results in three response functions:

F D

24 F1
F2
F3

35 D
24 log.p1=p4/

log.p2=p4/
log.p3=p4/

35
If there are only two response levels, the resulting response function would be a logit, which is why the
standard response functions are called generalized logits. They are useful in dealing with the log-linear
model:

� D EXP.Xˇ/

If C denotes the matrix in the preceding RESPONSE statement, then because of the restriction that the
probabilities sum to 1, it follows that an equivalent model is

C � LOG.�/ D .CX/ˇ

But C � LOG.P/ is simply the vector of standard response functions. Thus, fitting a log-linear model on the
cell probabilities is equivalent to fitting a linear model on the generalized logits.
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RESTRICT Statement
RESTRICT parameter=value < . . . parameter=value > ;

where parameter is the letter B followed by a number; for example, B3 specifies the third parameter in the
model. The value is the value to which the parameter is restricted. The RESTRICT statement restricts values
of parameters to the values you specify, so that the estimation of the remaining parameters is subject to these
restrictions. Consider the following statement:

restrict b1=1 b4=0 b6=0;

This restricts the values of three parameters. The first parameter is set to 1, and the fourth and sixth parameters
are set to zero.

The RESTRICT statement is interactive. A new RESTRICT statement replaces any previous ones. In
addition, if you submit two or more MODEL, LOGLIN, FACTORS, or REPEATED statements, then the
subsequent occurrences of these statements also delete the previous RESTRICT statement.

WEIGHT Statement
WEIGHT variable ;

You can use a WEIGHT statement to refer to a variable containing the cell frequencies, which do not need to
be integers. The WEIGHT statement lets you use summary data sets containing a count variable. See the
section “Input Data Sets” on page 1925 for further information about the WEIGHT statement.

Details: CATMOD Procedure

Missing Values
Observations with missing values for any variable listed in the MODEL or POPULATION statement are
omitted from the analysis.

If the WEIGHT variable for an observation has a missing value, the observation is by default omitted from
the analysis. You can modify this behavior by specifying the MISSING= option in the MODEL statement.
The option MISSING=value sets all missing weights to value and all missing cells to value. The option
MISSING=SAMPLING causes all missing cells in a contingency table to be treated as sampling zeros.

Any observation with nonpositive weight is also, by default, omitted from the analysis. If it has zero weight,
then you can specify the ZERO= option in the MODEL statement.

Input Data Sets
Data to be analyzed by PROC CATMOD must be in a SAS data set containing one of the following:
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• raw data values (variable values for every subject)
• frequency counts and the corresponding variable values
• response function values and their covariance matrix

If you specify a WEIGHT statement, then PROC CATMOD uses the values of the WEIGHT variable as
the frequency counts. If the READ function is specified in the RESPONSE statement, then the procedure
expects the input data set to contain the values of response functions and their covariance matrix. Otherwise,
PROC CATMOD assumes that the SAS data set contains raw data values.

Raw Data Values

If you use raw data, PROC CATMOD first counts the number of observations having each combination of
values for all variables specified in the MODEL or POPULATION statement. For example, suppose the
variables A and B each take on the values 1 and 2, and their frequencies can be represented as follows:

A
1 2

B 1 2 1
2 3 1

The SAS data set Raw containing the raw data might be as follows:

Observation A B

1 1 1
2 1 1
3 1 2
4 1 2
5 1 2
6 2 1
7 2 2

And the statements for PROC CATMOD are as follows:

proc catmod data=Raw;
model A=B;

run;

For discussions of how to handle structural and random zeros with raw data as input data, see the section
“Zero Frequencies” on page 1949 and Example 32.5.

Frequency Counts

If your data set contains frequency counts, then use the WEIGHT statement to specify the variable containing
the frequencies. For example, you could create and analyze the Summary data set as follows:

data Summary;
input A B Count;
datalines;

1 1 2
1 2 3
2 1 1
2 2 1
;
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proc catmod data=Summary;
weight Count;
model A=B;

run;

The data set Summary can also be created from the data set Raw by using the FREQ procedure:

proc freq data=Raw;
tables A*B / out=Summary;

run;

Inputting Response Functions and Covariances Directly

If you want to read in the response functions and their covariance matrix, rather than have PROC CATMOD
compute them, create a TYPE=EST data set. In addition to having one variable name for each function, the
data set should have two additional variables: _TYPE_ and _NAME_, both character variables of length 8.
The variable _TYPE_ should have the value ’PARMS’ when the observation contains the response functions;
it should have the value ’COV’ when the observation contains elements of the covariance matrix of the
response functions. The variable _NAME_ is used only when _TYPE_=COV, in which case it should contain
the name of the variable that has its covariance elements stored in that observation. In the following data set,
for example, the covariance between the second and fourth response functions is 0.000102:

data direct(type=est);
input b1-b4 _type_ $ _name_ $8.;
datalines;

0.590463 0.384720 0.273269 0.136458 PARMS .
0.001690 0.000911 0.000474 0.000432 COV B1
0.000911 0.001823 0.000031 0.000102 COV B2
0.000474 0.000031 0.001056 0.000477 COV B3
0.000432 0.000102 0.000477 0.000396 COV B4
;

In order to tell PROC CATMOD that the input data set contains the values of response functions and their
covariance matrix, do the following:

• specify the READ function in the RESPONSE statement

• specify _F_ as the dependent variable in the MODEL statement

For example, suppose the response functions correspond to four populations that represent the cross-
classification of two age groups by two race groups. You can use the FACTORS statement to identify
these two factors and to name the effects in the model. The following statements are required to fit a
main-effects model to these data:

proc catmod data=direct;
response read b1-b4;
model _f_=_response_;
factors age 2, race 2 / _response_=age race;

run;
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Ordering of Populations and Responses
By default, populations and responses are sorted in standard SAS order as follows:

• alphabetical order for character variables
• increasing numeric order for numeric variables

Suppose you specify the following statements:

data one;
length A B $ 6;
input A $ B $ wt @@;
datalines;

low low 23 low medium 31 low high 38
medium low 40 medium medium 42 medium high 50
high low 52 high medium 54 high high 61
;

proc catmod;
weight wt;
model A=B / oneway;

run;

The ordering of populations and responses corresponds to the alphabetical order of the levels of the character
variables. You can specify the ONEWAY option to display the ordering of the variables, while the “Popu-
lation Profiles” and “Response Profiles” tables display the ordering of the populations and the responses,
respectively.

Population Profiles Response Profiles
Sample B Response A

1 high 1 high
2 low 2 low
3 medium 3 medium

In this example, if you want to have the levels ordered in the natural order of ‘low,’ ‘medium,’ ‘high,’ you can
specify the ORDER=DATA option:

proc catmod order=data;
weight wt;
model a=b / oneway;

run;

The resulting ordering of populations and responses is as follows:

Population Profiles Response Profiles
Sample B Response A

1 low 1 low
2 medium 2 medium
3 high 3 high
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You can use the ORDER=DATA option to ensure that populations and responses are ordered in a specific
way. But since this also affects the definitions and the ordering of the parameters, you must exercise caution
when using the _RESPONSE_ effect, the CONTRAST statement, or direct input of the design matrix.

An alternative method of ensuring that populations and responses are ordered in a specific way is to assign
a format to your variables and specify the ORDER=FORMATTED option. The levels are then ordered
according to their formatted values.

Another method is to replace any character variables with numeric variables and to assign formatted
values such as ‘yes’ and ‘no’ to the numeric levels. Since ORDER=INTERNAL is the default ordering,
PROC CATMOD orders the populations and responses according to the numeric values but displays the
formatted values.

Specification of Effects
By default, the CATMOD procedure treats all variables as classification variables. As a result, there is no
CLASS statement in PROC CATMOD. The values of a classification variable can be numeric or character.
PROC CATMOD builds a set of effects-coded variables to represent the levels of the classification variable
and then uses these to fit the model (for details, see the section “Generation of the Design Matrix” on
page 1939). You can modify the default by using the DIRECT statement to treat numeric independent
continuous variables as continuous variables. The classification variables, combinations of classification
variables, and continuous variables are then used in fitting linear models to data.

The parameters of a linear model are generally divided into subsets that correspond to meaningful sources of
variation in the response functions. These sources, called effects, can be specified in the MODEL, LOGLIN,
FACTORS, REPEATED, and CONTRAST statements. Effects can be specified in any of the following ways:

• A main effect is a single classification variable (that is, it produces class levels): A B C.

• A crossed effect (or interaction) is two or more classification variables joined by asterisks—for example:
A*B A*B*C.

• A nested effect is a main effect or an interaction, followed by a parenthetical field containing a main
effect or an interaction. Multiple variables within the parentheses are assumed to form a crossed effect
even when the asterisk is absent. In the following list, the last two effects are identical: B(A) C(A*B)
A*B(C*D) A*B(C D).

• A nested-by-value effect is the same as a nested effect except that any variable in the parentheses can
be followed by an equal sign and a value: B(A=1) C(A B=1) C*D(A=1 B=1) A(C=’low’).

• A direct effect is a variable specified in a DIRECT statement: X Y.

• Direct effects can be crossed with other effects: X*Y X*X*X X*A*B(C D=1).

The variables for crossed and nested effects remain in the order in which they are first encountered. For
example, in the following model, the effect A*B is reported as B*A since B appears before A in the statement:



1930 F Chapter 32: The CATMOD Procedure

model R=B A A*B C(A B);

Also, C(A B) is interpreted as C(A*B) and is therefore reported as C(B*A).

Bar Notation

You can shorten the specification of multiple effects by using bar notation. For example, the following
statements illustrate two methods of writing a full three-way factorial model:

proc catmod;
model y=a b c a*b a*c b*c a*b*c;

run;

proc catmod;
model y=a|b|c;

run;

When you use the bar (|) notation, the right and left sides become effects, and the interaction between them
becomes an effect. Multiple bars are permitted. The expressions are expanded from left to right, using rules 1
through 4 given in Searle (1971, p. 390):

• Multiple bars are evaluated left to right. For example, A|B|C is evaluated as follows:
A | B | C ! {A | B} | C

! {A B A*B} | C
! A B A*B C A*C B*C A*B*C

• Crossed and nested groups of variables are combined. For example, A(B) | C(D) generates A*C(B D),
among other terms.

• Duplicate variables are removed. For example, A(C) | B(C) generates A*B(C C), among other terms,
and the extra C is removed.

• Effects are discarded if a variable occurs on both the crossed and nested sides of an effect. For instance,
A(B) | B(D E) generates A*B(B D E), but this effect is deleted.

You can also specify the maximum number of variables involved in any effect that results from bar evaluation
by specifying that maximum number, preceded by an @ sign, at the end of the bar effect. For example, the
specification A | B | C @ 2 would result in only those effects that contain two or fewer variables; in this case,
the effects A, B, A*B, C, A*C, and B*C are generated.

Other examples of the bar notation follow:

A | C(B) is equivalent to A C(B) A*C(B)

A(B) | C(B) is equivalent to A(B) C(B) A*C(B)

A(B) | B(D E) is equivalent to A(B) B(D E)

A | B(A) | C is equivalent to A B(A) C A*C B*C(A)

A | B(A) | C@2 is equivalent to A B(A) C A*C

A | B | C | D@2 is equivalent to A B A*B C A*C B*C D A*D B*D C*D

For details about how the effects specified lead to a design matrix, see the section “Generation of the Design
Matrix” on page 1939.
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Output Data Sets

OUT= Data Set

For each population, the OUT= data set contains the observed and predicted values of the response functions,
their standard errors, the residuals, and variables that describe the population and response profiles. In
addition, if you use the standard response functions, the data set includes observed and predicted values for
the cell frequencies or the cell probabilities, together with their standard errors and residuals.

Number of Observations
For the standard response functions, there are s � .2q � 1/ observations in the data set for each BY group,
where s is the number of populations and q is the number of response functions per population. Otherwise,
there are s � q observations in the data set for each BY group.

Variables in the OUT= Data Set
The data set contains the following variables:

BY variables If you use a BY statement, the BY variables are included in the OUT= data set.

dependent variables If the response functions are the default ones (generalized logits), then the depen-
dent variables, which describe the response profiles, are included in the OUT=
data set. When _TYPE_=FUNCTION, the values of these variables are missing.

independent variables The independent variables, which describe the population profiles, are included
in the OUT= data set.

_NUMBER_ the sequence number of the response function or the cell probability or the cell
frequency

_OBS_ the observed value

_PRED_ the predicted value

_RESID_ the residual (observed minus predicted)

_SAMPLE_ the population number. This matches the sample number in the “Population
Profile” section of the output.

_SEOBS_ the standard error of the observed value

_SEPRED_ the standard error of the predicted value

_TYPE_ specifies a character variable with three possible values. When
_TYPE_=FUNCTION, the observed and predicted values are values of the
response functions. When _TYPE_=PROB, they are values of the cell proba-
bilities. When _TYPE_=FREQ, they are values of the cell frequencies. Cell
probabilities or frequencies are provided only when the default response functions
are modeled. In this case, cell probabilities are provided by default, and cell
frequencies are provided if you specify the option PRED=FREQ.
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OUTEST= Data Set

This TYPE=EST output data set contains the estimated parameter vector and its estimated covariance matrix.
If you specify both the ML and WLS options in the MODEL statement, the OUTEST= data set contains both
sets of estimates. For each BY group, there are pC 1 observations in the data set for each estimation method,
where p is the number of estimated parameters. The data set contains the following variables:

B1, B2, and so on variables for the estimated parameters. The OUTEST= data set contains one
variable for each estimated parameter.

BY variables If you use a BY statement, the BY variables are included in the OUT= data set.

_METHOD_ the method used to obtain parameter estimates. For weighted least squares
estimation, _METHOD_=WLS, and for maximum likelihood estimation,
_METHOD_=ML.

_NAME_ identifies parameter names. When _TYPE_=PARMS, _NAME_ is blank, but when
_TYPE_=COV, _NAME_ has one of the values B1, B2, and so on, corresponding
to the parameter names.

_STATUS_ indicates whether the estimates have converged

_TYPE_ identifies the statistics contained in the variables for parameter estimates (B1, B2,
and so on). When _TYPE_=PARMS, the variables contain parameter estimates;
when _TYPE_=COV, they contain covariance estimates.

The variables _METHOD_, _NAME_, and _TYPE_ are character variables; the BY variables can be either
character or numeric; and the variables for estimated parameters are numeric.

See Appendix A, “Special SAS Data Sets,” for more information about special SAS data sets.

Logistic Analysis
In a logistic analysis, the response functions are the logits of the dependent variable.

PROC CATMOD can compute the three following types of logits with the use of keywords in the RE-
SPONSE statement. Note that other types of response functions can be generated by specifying appropriate
transformations in the RESPONSE statement.

• Generalized logits are used primarily for nominally scaled dependent variables, but they can also be
used for ordinal data modeling. Maximum likelihood estimation is available for the analysis of these
logits.

• Cumulative logits are used for ordinally scaled dependent variables. Except for dependent variables
with two response levels, only weighted least squares estimation is available for the analysis of these
logits.

• Adjacent-category logits are equivalent to generalized logits, but they have some advantages for ordinal
data analysis because they automatically incorporate integer scores for the levels of the dependent
variable. Except for dependent variables with two response levels, only weighted least squares
estimation is available for the analysis of these logits.
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If the dependent variable has only two responses, then the cumulative logit and the adjacent-category logit are
the negative of the generalized logit, as computed by PROC CATMOD. Consequently, parameter estimates
obtained by using these logits are the negative of those obtained from using generalized logits. A simple
logistic analysis of variance uses statements like the following:

proc catmod;
model r=a|b;

run;

Logistic Regression

If the independent variables are treated quantitatively (like continuous variables), then a logistic analysis is
known as a logistic regression. If you want PROC CATMOD to treat the independent variables as quantitative
variables, specify them in both the DIRECT and MODEL statements, as follows:

proc catmod;
direct x1 x2 x3;
model r=x1 x2 x3;

run;

Since the preceding statements do not include a RESPONSE statement, generalized logits are computed. See
Example 32.3 for another example.

The parameter estimates from the CATMOD procedure are the same as those from a logistic regression
program such as PROC LOGISTIC (see Chapter 60, “The LOGISTIC Procedure”). The chi-square statistics
and the predicted values are also identical. In the binary response case, PROC CATMOD can be made to
model the probability of the maximum value by either (1) organizing the input data so that the maximum value
occurs first and specifying ORDER=DATA in the PROC CATMOD statement or (2) specifying cumulative
logits (CLOGITS) in the RESPONSE statement.

CAUTION: Computational difficulties might occur if you use a continuous variable with a large number of
unique values in a DIRECT statement. See the section “Continuous Variables” on page 1934 for more details.

Cumulative Logits

If your dependent variable is ordinally scaled, you can specify the analysis of cumulative logits that take into
account the ordinal nature of the dependent variable:

proc catmod;
response clogits;
direct x;
model r=a x;

run;

The preceding statements correspond to a simple analysis that addresses the question of existence of an
association between the independent variables and the ordinal dependent variable. However, there are some
commonly used models for the analysis of ordinal data (Agresti 1984) that address the structure of association
(in terms of odds ratios), as well as its existence.

If the independent variables are classification variables, a typical analysis for such a model uses the following
statements:
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proc catmod;
weight wt;
response clogits;
model r=_response_ a b;

run;

On the other hand, if the independent variables are ordinally scaled, you might specify numeric scores in
variables x1 and x2, and use the following statements:

proc catmod;
weight wt;
direct x1 x2;
response clogits;
model r=_response_ x1 x2;

run;

See Agresti (1984) for additional details of estimation, testing, and interpretation.

Continuous Variables

Computational difficulties might occur if you have a continuous variable with a large number of unique values
and you use this variable in a DIRECT statement, since an observation often represents a separate population
of size one. At this extreme of sparseness, the weighted least squares method is inappropriate since there are
too many zero frequencies. Therefore, you should use the maximum likelihood method. PROC CATMOD is
not designed optimally for continuous variables; therefore, it might be less efficient and unable to allocate
sufficient memory to handle this problem, as compared with a procedure designed specifically to handle
continuous data. In these situations, consider using the LOGISTIC or GENMOD procedure to analyze your
data.

Log-Linear Model Analysis
When the response functions are the default generalized logits, then inclusion of the keyword _RESPONSE_
in every effect in the right side of the MODEL statement fits a log-linear model. The keyword _RESPONSE_
tells PROC CATMOD that you want to model the variation among the dependent variables. You then specify
the actual model in the LOGLIN statement.

When you perform log-linear model analysis, you can request weighted least squares estimates, maximum
likelihood estimates, or both. By default, PROC CATMOD calculates maximum likelihood estimates when
the default response functions are used. The following table provides appropriate MODEL statements for the
combinations of types of estimates:

Estimation Desired MODEL Statement

Maximum likelihood
(Newton-Raphson)

model a*b=_response_;

Maximum likelihood
(Iterative Proportional Fitting)

model a*b=_response_ / ml=ipf;

Weighted least squares model a*b=_response_ / wls;

Maximum likelihood and
weighted least squares

model a*b=_response_ / wls ml;
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CAUTION: Sampling zeros in the input data set should be specified with the ZERO= option to ensure that
these sampling zeros are not treated as structural zeros. Alternatively, you can replace cell counts for sampling
zeros with some positive number close to zero (such as 1E–20) in a DATA step. Data containing sampling
zeros should be analyzed with maximum likelihood estimation. See the section “Cautions” on page 1948 and
Example 32.5 for further information and an illustration that uses both cell count data and raw data.

One Population

The usual log-linear model analysis has one population, which means that all of the variables are dependent
variables. For example, the following statements yield a maximum likelihood analysis of a saturated log-linear
model for the dependent variables r1 and r2:

proc catmod;
weight wt;
model r1*r2=_response_;
loglin r1|r2;

run;

If you want to fit a reduced model with respect to the dependent variables (for example, a model of
independence or conditional independence), specify the reduced model in the LOGLIN statement. For
example, the following statements yield a main-effects log-linear model analysis of the factors r1 and r2:

proc catmod;
weight wt;
model r1*r2=_response_ / pred;
loglin r1 r2;

run;

The output includes Wald statistics for the individual effects r1 and r2, as well as predicted cell probabilities.
Moreover, the goodness-of-fit statistic is the likelihood ratio test for the hypothesis of independence between
r1 and r2 or, equivalently, a test of r1*r2.

Multiple Populations

You can do log-linear model analysis with multiple populations by using a POPULATION statement or by
including effects on the right side of the MODEL statement that contain independent variables. Each effect
must include the _RESPONSE_ keyword.

For example, suppose the dependent variables r1 and r2 are dichotomous, and the independent variable group
has three levels. Then the following statements specify a saturated model (three degrees of freedom for
_RESPONSE_ and six degrees of freedom for the interaction between _RESPONSE_ and group):

proc catmod;
weight wt;
model r1*r2=_response_ group*_response_;
loglin r1|r2;

run;

From another point of view, _RESPONSE_*group can be regarded as a main effect for group with respect to
the three response functions, while _RESPONSE_ can be regarded as an intercept effect with respect to the
functions. In other words, the following statements give essentially the same results as the logistic analysis:
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proc catmod;
weight wt;
model r1*r2=group;

run;

The ability to model the interaction between the independent and the dependent variables becomes particularly
useful when a reduced model is specified for the dependent variables. For example, the following statements
specify a model with two degrees of freedom for _RESPONSE_ (one for r1 and one for r2) and four degrees
of freedom for the interaction of _RESPONSE_*group:

proc catmod;
weight wt;
model r1*r2=_response_ group*_response_;
loglin r1 r2;

run;

The likelihood ratio goodness-of-fit statistic (three degrees of freedom) tests the hypothesis that r1 and r2 are
independent in each of the three groups.

Iterative Proportional Fitting

You can use the iterative proportional fitting (IPF) algorithm to fit a hierarchical log-linear model with no
independent variables and no population variables.

The advantage of IPF over the Newton-Raphson (NR) algorithm and over the weighted least squares (WLS)
method is that, when the contingency table has several dimensions and the parameter vector is large, you
can obtain the log likelihood, the goodness-of-fit G2, and the predicted frequencies or probabilities without
performing potentially expensive parameter estimation and covariance matrix calculations. This enables you
to do the following:

• compare two models by computing the likelihood ratio statistics to test the significance of the contribu-
tion of the variables in one model that are not in the other model

• compute predicted values of the cell probabilities or frequencies for the final model

Each iteration of the IPF algorithm is generally faster than an iteration of the NR algorithm; however, the IPF
algorithm converges to the MLEs more slowly than the NR algorithm. Both NR and WLS are more general
methods that are able to perform more complex analyses than IPF can.

Repeated Measures Analysis
If there are multiple dependent variables and the variables represent repeated measurements of the same
observational unit, then the variation among the dependent variables can be attributed to one or more repeated
measurement factors. The factors can be included in the model by specifying _RESPONSE_ on the right
side of the MODEL statement and by using a REPEATED statement to identify the factors.

To perform a repeated measures analysis, you also need to specify a RESPONSE statement, since the standard
response functions (generalized logits) cannot be used. Typically, the MEANS or MARGINALS response
functions are specified in a repeated measures analysis, but other response functions can also be reasonable.
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One Population

Consider an experiment in which each subject is measured at three times, and the response functions are
marginal probabilities for each of the dependent variables. If the dependent variables each have k levels, then
PROC CATMOD computes k�1 response functions for each time. Differences among the response functions
with respect to these times could be attributed to the repeated measurement factor Time. To incorporate the
Time variation into the model, specify the following statements:

proc catmod;
response marginals;
model t1*t2*t3=_response_;
repeated Time 3 / _response_=Time;

run;

These statements produce a Time effect that has 2.k � 1/ degrees of freedom since there are k � 1 response
functions at each time point. For a dichotomous variable, the Time effect has two degrees of freedom.

Now suppose that at each time point, each subject has X-rays taken, and the X-rays are read by two different
radiologists. This creates six dependent variables that represent the 3 � 2 cross-classification of the repeated
measurement factors Time and Reader. A saturated model with respect to these factors can be obtained by
specifying the following statements:

proc catmod;
response marginals;
model r11*r12*r21*r22*r31*r32=_response_;
repeated Time 3, Reader 2

/ _response_=Time Reader Time*Reader;
run;

If you want to fit a main-effects model with respect to Time and Reader, then change the REPEATED
statement to the following:

repeated Time 3, Reader 2 / _response_=Time Reader;

If you want to fit a main-effects model for Time but for only one of the readers, the REPEATED statement
might look like the following:

repeated Time $ 3, Reader $ 2
/_response_=Time(Reader=Smith)
profile =('1' Smith,

'1' Jones,
'2' Smith,
'2' Jones,
'3' Smith,
'3' Jones);

If Jones had been unavailable for a reading at time 3, then there would be only 5.k � 1/ response functions,
even though PROC CATMOD would be expecting some multiple of 6 .D 3�2/. In that case, the PROFILE=
option would be necessary to indicate which repeated measurement profiles were actually represented:

repeated Time $ 3, Reader $ 2
/_response_=Time(Reader=Smith)
profile =('1' Smith,

'1' Jones,
'2' Smith,
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'2' Jones,
'3' Smith);

When two or more repeated measurement factors are specified, PROC CATMOD presumes that the response
functions are ordered so that the levels of the rightmost factor change most rapidly. This means that the
dependent variables should be specified in the same order. For this example, the order implied by the
REPEATED statement is as follows, where the variable rij corresponds to Time i and Reader j:

Response Dependent
Function Variable Time Reader

1 r11 1 1
2 r12 1 2
3 r21 2 1
4 r22 2 2
5 r31 3 1
6 r32 3 2

The order of dependent variables in the MODEL statement must agree with the order implied by the
REPEATED statement.

Multiple Populations

When there are variables specified in the POPULATION statement or on the right side of the MODEL
statement, these variables produce multiple populations. PROC CATMOD can then model these independent
variables, the repeated measurement factors, and the interactions between the two.

For example, suppose that there are five groups of subjects, that each subject in the study is measured at
three different times, and that the dichotomous dependent variables are labeled t1, t2, and t3. The following
statements compute three response functions for each population:

proc catmod;
weight wt;
population Group;
response marginals;
model t1*t2*t3=_response_;
repeated Time / _response_=Time;

run;

PROC CATMOD then regards _RESPONSE_ as a variable with three levels corresponding to the three
response functions in each population and forms an effect with two degrees of freedom. The MODEL and
REPEATED statements tell PROC CATMOD to fit the main effect of Time.

In general, the MODEL statement tells PROC CATMOD how to integrate the independent variables and
the repeated measurement factors into the model. For example, again suppose that there are five groups
of subjects, that each subject is measured at three times, and that the dichotomous independent variables
are labeled t1, t2, and t3. If you use the same WEIGHT, POPULATION, RESPONSE, and REPEATED
statements as in the preceding program, the following MODEL statements result in the indicated analyses:
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model t1*t2*t3=Group / averaged; Specifies the Group main effect (with 4 degrees of
freedom)

model t1*t2*t3=_response_; Specifies the Time main effect (with 2 degrees of
freedom)

model t1*t2*t3=_response_*Group; Specifies the interaction between Time and Group
(with 8 degrees of freedom)

model t1*t2*t3=_response_|Group; Specifies both main effects, and the interaction
between Time and Group (with a total of 14
degrees of freedom)

model t1*t2*t3=_response_(Group); Specifies a Time main effect within each Group
(with 10 degrees of freedom)

However, the following MODEL statement is invalid since effects cannot be nested within _RESPONSE_:

model t1*t2*t3=Group(_response_);

Generation of the Design Matrix
Each row of the design matrix (corresponding to a population) is generated by a unique combination of
independent variable values. Each column of the design matrix corresponds to a model parameter. The
columns are produced from the effect specifications in the MODEL, LOGLIN, FACTORS, and REPEATED
statements. For details about effect specifications, see the section “Specification of Effects” on page 1929.

This section is divided into three parts:

• one response function per population

• two or more response functions per population (excluding log-linear models), beginning on page 1942

• log-linear models, beginning on page 1945

This section assumes that the default effect parameterization is used. Specifying the reference parameteriza-
tion replaces the “–1”s with zeros in the design matrix for the main effects of classification variables, and
makes appropriate changes to interaction terms.

You can display the design matrix by specifying the DESIGN option in the MODEL statement.

One Response Function per Population

Intercept
When there is one response function per population, all design matrices start with a column of 1s for the
intercept unless the NOINT option is specified or the design matrix is input directly.

Main Effects
If a classification variable A has k levels, then its main effect has k � 1 degrees of freedom, and the design
matrix has k � 1 columns that correspond to the first k � 1 levels of A. The ith column contains a 1 in the ith
row, a –1 in the last row, and 0s everywhere else. If ˛i denotes the parameter that corresponds to the ith level
of variable A, then the k � 1 columns yield estimates of the independent parameters, ˛1; ˛i ; : : : ; ˛k�1. The
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last parameter is not needed because PROC CATMOD constrains the k parameters to sum to zero. In other
words, PROC CATMOD uses a full-rank center-point parameterization to build design matrices. Here are
two examples:

Effect Parameterization
Variable Data Levels Design Matrix

A 1 1 0
2 0 1
3 –1 –1

B 1 –1
2 –1

For an effect with three levels, such as A, PROC CATMOD produces two parameter estimates for each
response function. By default, the first (corresponding to the first row in the design columns) estimates the
effect of level 1 of A compared to the average effect of the three levels of A. The second (corresponding to
the second row in the design columns) estimates the effect of level 2 of A compared to the average effect of
the three levels of A. The sum-to-zero constraint requires the effect of level 3 of A to be the negative of the
sum of the level 1 and 2 effects (as shown by the third row in the design columns).

Crossed Effects (Interactions)
Crossed effects (such as A*B) are formed by the horizontal direct products of main effects, as illustrated in
the following table:

Data Levels Design Matrix
A B A B A*B

1 1 1 0 1 1 0
1 2 1 0 –1 –1 0
2 1 0 1 1 0 1
2 2 0 1 –1 0 –1
3 1 –1 –1 1 –1 –1
3 2 –1 –1 –1 1 1

The number of degrees of freedom for a crossed effect (that is, the number of design matrix columns) is equal
to the product of the numbers of degrees of freedom for the separate effects.

Nested Effects
The effect A(B) is read “A within B” and is the same as specifying an A main effect for every value of B. If na
and nb are the number of levels in A and B, respectively, then the number of columns for A(B) is .na � 1/nb
when every combination of levels exists in the data. The following table gives an example:

Data Levels Design Matrix
B A A(B)

1 1 1 0 0 0
1 2 0 1 0 0
1 3 –1 –1 0 0
2 1 0 0 1 0
2 2 0 0 0 1
2 3 0 0 –1 –1
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CAUTION: PROC CATMOD actually allocates a column for all possible combinations of values even though
some combinations are not present in the data. This can be of particular concern if the data are not balanced
with respect to the nested levels.

Nested-by-Value Effects
Instead of nesting an effect within all values of the main effect, you can nest an effect within specified values
of the nested variable (A(B=1), for example). The four degrees of freedom for the A(B) effect shown in
the preceding section can also be obtained by specifying the two separate nested effects with values, as the
following table shows:

Data Levels Design Matrix
B A A(B=1) A(B=2)

1 1 1 0 0 0
1 2 0 1 0 0
1 3 –1 –1 0 0
2 1 0 0 1 0
2 2 0 0 0 1
2 3 0 0 –1 –1

Each effect has na � 1 degrees of freedom, assuming a complete combination, so each effect in this example
has two degrees of freedom.

The procedure compares nested values to data values on the basis of formatted values. If a format is not
specified for the variable, the procedure formats internal data values to BEST16, left-justified. The nested
values specified in nested-by-value effects are also converted to a BEST16 formatted value, left-justified.

For example, if the numeric variable B has internal data values 1 and 2, then A(B=1), A(B=1.0), and A(B=1E0)
are all valid nested-by-value effects. However, if the data value 1 is formatted as ‘one’, then A(B=’one’) is a
valid effect, but A(B=1) is not since the formatted nested value (1) does not match the formatted data value
(one).

To ensure correct nested-by-value effects, look at the tables of population and response profiles. These are
displayed by default, and they contain the formatted data values. In addition, the population and response
profiles are displayed when you specify the ONEWAY option in the MODEL statement.

Direct Effects
To request that the actual values of a variable be inserted into the design matrix, declare the variable in a
DIRECT statement, and specify the effect by the variable name. For example, specifying the effects X1 and
X2 in both the MODEL and DIRECT statements results in the following:

Data Levels Design Columns
X1 X2 X1 X2

1 1 1 1
2 4 2 4
3 9 3 9

Unless there is a POPULATION statement that excludes the direct variables, the direct variables help to
define the sample populations. In general, the variables should not be continuous in the sense that every
subject has a different value because this would create a separate population for each subject (note, however,
that such a strategy is used purposely for logistic regression).
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If there is a POPULATION statement that omits mention of the direct variables, then the values of the direct
variables must be identical for all subjects in a given population since there can be only one independent
variable profile for each population.

Two or More Response Functions per Population

When there is more than one response function per population, the structure of the design matrix depends on
whether or not the model type is AVERAGED (see the AVERAGED option in the MODEL statement). The
model type is AVERAGED if independent variable effects are averaged over the multiple responses within a
population rather than being nested in them.

The following subsections illustrate the effect of specifying (or not specifying) an AVERAGED model type.
This section does not apply to log-linear models; for these models, see the section “Log-Linear Model Design
Matrices” on page 1945.

Model Type Not AVERAGED
Suppose the variable A has two levels, and you specify the following statements:

proc catmod;
model Y=A / design;

run;

If the variable Y has two levels, then there is only one response function per population, and the design matrix
is as follows:

Design Matrix
Sample Intercept A

1 1 1
2 1 –1

But if the variable Y has three levels, then there are two response functions per population, and the preceding
design matrix is assumed to hold for each of the two response functions. The response functions are always
ordered so that the multiple response functions within a population are grouped together. For this example,
the design matrix would be as follows:

Response
Function Design Matrix

Sample Number Intercept A

1 1 1 0 1 0
1 2 0 1 0 1
2 1 1 0 –1 0
2 2 0 1 0 –1

Since the same submatrix applies to each of the multiple response functions, PROC CATMOD displays only
the submatrix (that is, the one it would create if there were only one response function per population) rather
than the entire design matrix. PROC CATMOD displays�

1 1

1 �1

�
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Ordering of Parameters
This grouping of multiple response functions within populations also has an effect in the table of parameter
estimates displayed by PROC CATMOD. The following table shows some parameter estimates, where the
four rows of the table correspond to the four columns in the preceding design matrix:

Effect Parameter Estimate

Intercept 1 1.4979
2 0.8404

A 3 0.1116
4 –0.3296

Notice that the intercept and the A effect each have two parameter estimates associated with them. The first
estimate in each pair is associated with the first response function, and the second in each pair is associated
with the second response function. Consequently, 0.1116 is the effect of the first level of A on the first
response function. In any table of parameter estimates displayed by PROC CATMOD, as you read down the
column of estimates, the response function level changes before levels of the variables making up the effect.

Model Type AVERAGED
When the model type is AVERAGED (for example, when the AVERAGED option is specified in the MODEL
statement, when _RESPONSE_ is used in the MODEL statement, or when the design matrix is input directly
in the MODEL statement), PROC CATMOD does not assume that the same submatrix applies to each of the
q response functions per population. Rather, it averages any independent variable effects across the functions,
and it enables you to study variation among the q functions. The first column of the design matrix is always a
column of 1s corresponding to the intercept, unless the NOINT option is specified in the MODEL statement
or the design matrix is input directly. Also, since the design matrix does not have any special submatrix
structure, PROC CATMOD displays the entire matrix.

For example, suppose the dependent variable Y has three levels, the independent variable A has two levels,
and you specify the following statements:

proc catmod;
response marginals;
model y=a / averaged design;

run;

Then there are two response functions per population, and the response functions are always ordered so that
the multiple response functions within a population are grouped together. For this example, the design matrix
would be as follows:

Response
Function Design Matrix

Sample Number Intercept A

1 1 1 1
1 2 1 1
2 1 1 –1
2 2 1 –1

Note that the model now has only two degrees of freedom. The remaining two degrees of freedom in the
residual correspond to variation among the three levels of the dependent variable. Generally, that variation
tends to be statistically significant and therefore should not be left out of the model. You can include it in the
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model by including the two effects, _RESPONSE_ and _RESPONSE_*A, but if the study is not a repeated
measures study, those sources of variation tend to be uninteresting. The usual solution for this type of study
(one dependent variable) is to exclude the AVERAGED option from the MODEL statement.

An AVERAGED model type is automatically used whenever you use the _RESPONSE_ keyword in the
MODEL statement. The _RESPONSE_ effect models variation among the q response functions per popula-
tion. If there is no REPEATED, FACTORS, or LOGLIN statement, then PROC CATMOD builds a main
effect with q � 1 degrees of freedom. For example, three response functions would produce the following
design columns:

Response
Function Design Columns
Number _RESPONSE_

1 1 0
2 0 1
3 –1 –1

If there is more than one population, then the _RESPONSE_ effect is averaged over the populations. Also,
the _RESPONSE_ effect can be crossed with any other effect, or it can be nested within an effect.

If there is a REPEATED statement that contains only one repeated measurement factor, then PROC CATMOD
builds the design columns for _RESPONSE_ in the same way, except that the output labels the main effect
with the factor name rather than with the word _RESPONSE_. For example, suppose an independent variable
A has two levels, and the input statements are as follows:

proc catmod;
response marginals;
model Time1*Time2=A _response_ A*_response_ / design;
repeated Time 2 / _response_=Time;

run;

If Time1 and Time2 each have two levels (so that they each have one independent marginal probability), then
the RESPONSE statement makes PROC CATMOD compute two response functions per population. The
design matrix is as follows:

Response
Function Design Matrix

Sample Number Intercept A Time A*Time

1 1 1 1 1 1
1 2 1 1 –1 –1
2 1 1 –1 1 –1
2 2 1 –1 –1 1

However, if Time1 and Time2 each have three levels (so that they each have two independent marginal
probabilities), then the RESPONSE statement causes PROC CATMOD to compute four response functions
per population. In that case, since Time has two levels, PROC CATMOD groups the functions into sets of 2
.D 4=2/ and constructs the preceding submatrix for each function in the set. This results in the following
design matrix, which is obtained from the previous one by multiplying each element by an identity matrix of
order two:
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Response Design Matrix
Sample Function Intercept A Time A*Time

1 P(Time1=1) 1 0 1 0 1 0 1 0
1 P(Time1=2) 0 1 0 1 0 1 0 1

1 P(Time2=1) 1 0 1 0 –1 0 –1 0
1 P(Time2=2) 0 1 0 1 0 –1 0 –1

2 P(Time1=1) 1 0 –1 0 1 0 –1 0
2 P(Time1=2) 0 1 0 –1 0 1 0 –1

2 P(Time2=1) 1 0 –1 0 –1 0 1 0
2 P(Time2=2) 0 1 0 –1 0 –1 0 1

If there is a REPEATED statement that contains two or more repeated measurement factors, then
PROC CATMOD builds the design columns for _RESPONSE_ according to the definition of _RESPONSE_
in the REPEATED statement. For example, suppose you specify the following statements:

proc catmod;
response marginals;
model R11*R12*R21*R22=_response_ / design;
repeated Time 2, Place 2 / _response_=Time Place;

run;

If each of the dependent variables has two levels, then PROC CATMOD builds four response functions. The
_RESPONSE_ effect generates a main-effects model with respect to Time and Place, and the design matrix
is as follows:

Response
Function Design Matrix
Number Variable Time Place Intercept _RESPONSE_

1 R11 1 1 1 1 1
2 R12 1 2 1 1 –1
3 R21 2 1 1 –1 1
4 R22 2 2 1 –1 –1

Log-Linear Model Design Matrices

When the response functions are the standard ones (generalized logits), then inclusion of the keyword
_RESPONSE_ in every design effect fits a log-linear model. The design matrix for a log-linear model
looks different from a standard design matrix because the standard one is transformed by the same linear
transformation that converts the r response probabilities to r � 1 generalized logits. For example, suppose
the dependent variables X and Y each have two levels, and you specify a saturated log-linear model analysis:

proc catmod;
model X*Y=_response_ / design;
loglin X Y X*Y;

run;

Then the cross-classification of X and Y yields four response probabilities, p11, p12, p21, and p22, which are
then reduced to three generalized logit response functions, F1 D log.p11=p22/, F2 D log.p12=p22/, and
F3 D log.p21=p22/.
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Since the saturated log-linear model implies that
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The design matrix is as follows:

Response
Function Design Matrix

Sample Number X Y X*Y

1 1 2 2 0
1 2 2 0 –2
1 3 0 2 –2

Design matrices for reduced models are constructed similarly. For example, suppose you request a main-
effects log-linear model analysis of the factors X and Y:

proc catmod;
model X*Y=_response_ / design;
loglin X Y;

run;
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Since the main-effects log-linear model implies that2664
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Therefore, the corresponding design matrix is as follows:

Response
Function Design Matrix

Sample Number X Y

1 1 2 2
1 2 2 0
1 3 0 2

Since it is difficult to tell from the final design matrix whether PROC CATMOD used the parameterization
that you intended, the procedure displays the untransformed _RESPONSE_ matrix for log-linear models. For
example, specifying the main-effects model in the preceding example displays the following matrix:

Response
Function _RESPONSE_ Matrix
Number 1 2

1 1 1
2 1 –1
3 –1 1
4 –1 –1

You can suppress the display of this matrix by specifying the NORESPONSE option in the MODEL statement.



1948 F Chapter 32: The CATMOD Procedure

Cautions

Effective Sample Size

Since the method depends on asymptotic approximations, you need to be careful that the sample sizes are
sufficiently large to support the asymptotic normal distributions of the response functions. A general guideline
is that you would like to have an effective sample size of at least 25 to 30 for each response function that is
being analyzed. For example, if you have one dependent variable and r = 4 response levels, and you use the
standard response functions to compute three generalized logits for each population, then you would like
the sample size of each population to be at least 75. Moreover, the subjects should be dispersed throughout
the table so that less than 20 percent of the response functions have an effective sample size less than 5. For
example, if each population had less than 5 subjects in the first response category, then it would be wiser to
pool this category with another category rather than to assume the asymptotic normality of the first response
function. Or, if the dependent variable is ordinally scaled, an alternative is to request the mean score response
function rather than three generalized logits.

If there is more than one dependent variable, and you specify RESPONSE MEANS, then the effective sample
size for each response function is the same as the actual sample size. Thus, a sample size of 30 could be
sufficient to support four response functions, provided that the functions are the means of four dependent
variables.

A Singular Covariance Matrix

If there is a singular (noninvertible) covariance matrix for the response functions in any population, then
PROC CATMOD writes an error message and stops processing. You have several options available to correct
this problem:

• You can reduce the number of response functions according to how many can be supported by the
populations with the smallest sample sizes.

• If there are three or more levels for any independent variable, you can pool the levels into a fewer
number of categories, thereby reducing the number of populations. However, your interpretation of
results must be done more cautiously since such pooling implies a different sampling scheme and
masks any differences that existed among the pooled categories.

• If there are two or more independent variables, you can delete at least one of them from the model.
However, this is just another form of pooling, and the same cautions that apply to the previous option
also apply here.

• If there is one independent variable, then, in some situations, you might simply eliminate the popula-
tions that are causing the covariance matrices to be singular.

• You can use the ADDCELL= option in the MODEL statement to add a small amount (for example,
0.5) to every cell frequency, but this can seriously bias the results if the cell frequencies are small.
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Zero Frequencies

There are two types of zero cells in a contingency table: structural and sampling. A structural zero cell has an
expected value of zero, while a sampling zero cell can have nonzero expected value and can be estimable.

If you use the standard response functions and there are zero frequencies, you should use maximum likelihood
estimation (the default is ML=NR) rather than weighted least squares to analyze the data. For weighted least
squares analysis, the CATMOD procedure always computes the observed response functions and might need
to take the logarithm of a zero proportion. In this case, PROC CATMOD issues a warning and then takes the
log of a small value (0:5=ni for the probability) in order to continue, but this can produce invalid results if
the cells contain too few observations. Maximum likelihood analysis, on the other hand, does not require
computation of the observed response functions and therefore yields valid results for the parameter estimates
and all of the predicted values.

For a log-linear model analysis with WLS or ML=NR, PROC CATMOD creates response profiles only for
the observed profiles. For any log-linear model analysis with one population (the usual case), the contingency
table does not contain zeros, which means that all zero frequencies are treated as structural zeros. If there
is more than one population, then a zero in the body of the contingency table is treated as a sampling zero
(as long as some population has a nonzero count for that profile). If you fit the log-linear model by using
ML=IPF, the contingency table is incomplete and the zeros are treated like structural zeros. If you want zero
frequencies that PROC CATMOD would normally treat as structural zeros to be interpreted as sampling zeros,
you can specify the ZERO=SAMPLING and MISSING=SAMPLING options in the MODEL statement.
Alternatively, you can specify ZERO=1E–20 and MISSING=1E–20.

See Bishop, Fienberg, and Holland (1975) for a discussion of the issues and Example 32.5 for an illustration
of a log-linear model analysis of data that contain both structural and sampling zeros.

If you perform a weighted least squares analysis on a contingency table that contains zero cell frequencies,
then avoid using the LOG transformation as the first transformation on the observed proportions. In general,
it is better to change the response functions or to pool some of the response categories than to settle for the
0.5 correction or to use the ADDCELL= option.

Testing the Wrong Hypothesis

If you use the keyword _RESPONSE_ in the MODEL statement, and you specify MARGINALS, LOGITS,
ALOGITS, or CLOGITS in your RESPONSE statement, you might receive the following warning message:

Warning: The _RESPONSE_ effect may be testing the wrong
hypothesis since the marginal levels of the
dependent variables do not coincide. Consult the
response profiles and the CATMOD documentation.

The following examples illustrate situations in which the _RESPONSE_ effect tests the wrong hypothesis.

Zeros in the Marginal Frequencies
Suppose you specify the following statements:

data A1;
input Time1 Time2 @@;
datalines;

1 2 2 3 1 3
;
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proc catmod;
response marginals;
model Time1*Time2=_response_;
repeated Time 2 / _response_=Time;

run;

One marginal probability is computed for each dependent variable, resulting in two response functions. The
model is a saturated one: one degree of freedom for the intercept and one for the main effect of Time. Except
for the warning message, PROC CATMOD produces an analysis with no apparent errors, but the “Response
Profiles” table displayed by PROC CATMOD is as follows:

Response Profiles
Response Time1 Time2

1 1 2
2 1 3
3 2 3

Since RESPONSE MARGINALS yields marginal probabilities for every level but the last, the two response
functions being analyzed are Prob(Time1=1) and Prob(Time2=2). The Time effect is testing the hypothesis
that Prob(Time1=1)=Prob(Time2=2). What it should be testing is the hypothesis that

Prob(Time1=1) = Prob(Time2=1)
Prob(Time1=2) = Prob(Time2=2)
Prob(Time1=3) = Prob(Time2=3)

but there are not enough data to support the test (assuming that none of the probabilities are structural zeros
by the design of the study).

The ORDER=DATA Option
Suppose you specify the following statements:

data a1;
input Time1 Time2 @@;
datalines;

2 1 2 2 1 1 1 2 2 1
;

proc catmod order=data;
response marginals;
model Time1*Time2=_response_;
repeated Time 2 / _response_=Time;

run;

As in the preceding example, one marginal probability is computed for each dependent variable, resulting in
two response functions. The model is also the same: one degree of freedom for the intercept and one for the
main effect of Time. PROC CATMOD issues the warning message and displays the following “Response
Profiles” table:
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Response Profiles
Response Time1 Time2

1 2 1
2 2 2
3 1 1
4 1 2

Although the marginal levels are the same for the two dependent variables, they are not in the same order
because the ORDER=DATA option specified that they be ordered according to their appearance in the input
stream. Since RESPONSE MARGINALS yields marginal probabilities for every level except the last, the
two response functions being analyzed are Prob(Time1=2) and Prob(Time2=1). The Time effect is testing the
hypothesis that Prob(Time1=2)=Prob(Time2=1). What it should be testing is the hypothesis that

Prob(Time1=1) = Prob(Time2=1)
Prob(Time1=2) = Prob(Time2=2)

Whenever the warning message appears, look at the “Response Profiles” table or the “One-Way Frequencies”
table to determine what hypothesis is actually being tested. For the latter example, a correct analysis can be
obtained by deleting the ORDER=DATA option or by reordering the data so that the (1,1) observation is first.

Computational Method
The notation used in PROC CATMOD differs slightly from that used in the literature. The following table
provides a summary of the basic dimensions and the notation for a contingency table. See the section
“Computational Formulas” on page 1952 for a complete description.

Summary of Basic Dimensions

s = number of populations or samples (= number of rows in the underlying
contingency table)

r = number of response categories (= number of columns in the underlying
contingency table)

q = number of response functions computed for each population

d = number of parameters

Notation

j Denotes a column vector of 1s.
J Denotes a square matrix of 1s.P
k Denotes the sum over all the possible values of k.
ni Denotes the row sum

P
j nij .

DIAGn.p/ Denotes the diagonal matrix formed from the first n
elements of the vector p.

DIAG�1n .p/ Denotes the inverse of DIAGn.p/.
DIAG.A1;A2; : : : ;Ak/ Denotes a block diagonal matrix with the A matrices

on the main diagonal.
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Input data can be represented by a contingency table, as shown in Table 32.7.

Table 32.7 Input Data Represented by a Contingency Table

Response
Population 1 2 � � � r Total

1 n11 n12 � � � n1r n1
2 n21 n22 � � � n2r n2
:::

:::
:::

: : :
:::

:::

s ns1 ns2 � � � nsr ns

Computational Formulas
The following formulas are shown for each population and for all populations combined.

Source Formula Dimension

Probability Estimates

jth response pij D
nij

ni
1 � 1

ith population pi D

26664
pi1
pi2
:::

pir

37775 r � 1

all populations p D

26664
p1
p2
:::

ps

37775 sr � 1

Variance of Probability Estimates

ith population Vi D
1

ni
.DIAG.pi / � pipi 0/ r � r

all populations V D DIAG.V1;V2; : : : ;Vs/ sr � sr

Response Functions

ith population Fi D F.pi / q � 1

all populations F D

26664
F1
F2
:::

Fs

37775 sq � 1
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Source Formula Dimension

Derivative of Function with Respect to Probability Estimates

ith population Hi D
@F.pi /
@pi

q � r

all populations H D DIAG.H1;H2; : : : ;Hs/ sq � sr

Variance of Functions

ith population Si D HiViHi 0 q � q

all populations S D DIAG.S1; S2; : : : ; Ss/ sq � sq

Inverse Variance of Functions

ith population Si D .Si /�1 q � q

all populations S�1 D DIAG.S1; S2; : : : ; Ss/ sq � sq

Derivative Table for Compound Functions: Y=F(G(p))

In the following table, let G.p/ be a vector of functions of p, and let D denote @G=@p, which is the first
derivative matrix of G with respect to p:

Function Y D F.G/ Derivative .@Y=@p/

Multiply matrix Y D A �G A �D

Logarithm Y D LOG.G/ DIAG�1.G/ �D

Exponential Y D EXP.G/ DIAG.Y/ �D

Add constant Y D GCA D

Default Response Functions: Generalized Logits

In the following table, subscripts i for the population are suppressed. Also denote fj D log
�
pj

pr

�
for

j D 1; : : : ; r � 1 for each population i D 1; : : : ; s.

Formula

Inverse of Response Functions for a Population

pj D
exp.fj /

1C
P
k exp.fk/

for j D 1; : : : ; r � 1

pr D
1

1C
P
k exp.fk/
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Formula

Form of F and Derivative for a Population
F D KLOG.p/ D .Ir�1;�j/ LOG.p/

H D
@F
@p
D

�
DIAG�1r�1.p/;

�1

pr
j
�

Covariance Results for a Population
S D HVH0

D
1

n

�
DIAG�1r�1.p/C

1

pr
Jr�1

�
where V;H; and J are as previously defined.

S�1 D n.DIAGr�1.p/ � qq0/ , where q D DIAGr�1.p/ j

S�1F D nDIAGr�1.p/F � .n
X
j

pjfj / q

F0S�1F D n
X
j

pjf
2
j � n.

X
j

pjfj /
2

The following calculations are shown for each population and then for all populations combined:

Source Formula Dimension

Design Matrix

ith population Xi q � d

all populations X D

26664
X1
X2
:::

Xs

37775 sq � d

Crossproduct of Design Matrix

ith population Ci D Xi 0SiXi d � d

all populations C D X0S�1X D
P
i Ci d � d

In the following table, zp is the 100pth percentile of the standard normal distribution:

Formula Dimension

Crossproduct of Design Matrix with Function

R D X0S�1F D
P
i Xi
0SiFi d � 1
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Formula Dimension

Weighted Least Squares Estimates

b D C�1R D .X0S�1X/�1.X0S�1F/ d � 1

Covariance of Weighted Least Squares Estimates

COV.b/ D C�1 d � d

Wald Confidence Limits for Parameter Estimates

bk ˙ z1�˛=2C�1kk k D 1; : : : ; d

Predicted Response Functions

OF D Xb sq � 1

Covariance of Predicted Response Functions

V OF D XC�1X0 sq � sq

Residual Chi-Square

RSSD F0S�1F � OF0S�1 OF 1 � 1

Chi-Square for H0WLˇ D 0

QD .Lb/0.LC�1L0/�1.Lb/ 1 � 1

Maximum Likelihood Method

Let C be the Hessian matrix and G be the gradient of the log-likelihood function (both functions of � and the
parameters ˇ). Let p�i denote the vector containing the first r � 1 sample proportions from population i, and
let ��i denote the corresponding vector of probability estimates from the current iteration. Starting with the
least squares estimates b0 of ˇ (if you use the ML and WLS options; with the ML option alone, the procedure
starts with 0), the probabilities �.b/ are computed, and b is calculated iteratively by the Newton-Raphson
method until it converges (see the EPSILON= option). The factor � is a step-halving factor that equals one at
the start of each iteration. For any iteration in which the likelihood decreases, PROC CATMOD uses a series
of subiterations in which � is iteratively divided by two. The subiterations continue until the likelihood is
greater than that of the previous iteration. If the likelihood has not reached that point after 10 subiterations,
then convergence is assumed, and a warning message is displayed.

Sometimes, infinite parameters are present in the model, either because of the presence of one or more zero
frequencies or because of a poorly specified model with collinearity among the estimates. If an estimate is
tending toward infinity, then PROC CATMOD flags the parameter as infinite and holds the estimate fixed in
subsequent iterations. PROC CATMOD regards a parameter to be infinite when two conditions apply:
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• The absolute value of its estimate exceeds five divided by the range of the corresponding variable.

• The standard error of its estimate is at least three times greater than the estimate itself.

The estimator of the asymptotic covariance matrix of the maximum likelihood predicted probabilities is given
by Imrey, Koch, and Stokes (1981, eq. 2.18).

The following equations summarize the method:

bkC1 D bk � �C�1G

where

C D X0S�1.�/X

N D

264 n1.p�1 � �
�
1 /

:::

ns.p�s � �
�
s /

375
G D X0N

Iterative Proportional Fitting

The algorithm used by PROC CATMOD for iterative proportional fitting is described in Bishop, Fienberg,
and Holland (1975); Haberman (1972); Agresti (2002). To illustrate the method, consider the observed
three-dimensional table fnijkg for the variables X, Y, and Z, and the following hierarchical model:

log.mijk/ D �C �Xi C �
Y
j C �

Z
k C �

XY
ij C �

XZ
ik C �

YZ
jk

The following statements request that PROC CATMOD use IPF to fit the preceding model:

model X*Y*Z = _response_ / ml=ipf;
loglin X|Y|Z@2;

Begin with a table of initial cell estimates f Om.0/
ijk
g. PROC CATMOD produces the initial estimates by setting

the nsz structural zero cells to 0 and all other cells to n=.nc � nsz/, where n is the total weight of the table
and nc is the total number of cells in the table. Iteratively adjust the estimates at step s � 1 to the observed
marginal tables specified in the model by cycling through the following three-stage process to produce the
estimates at step s:

Om
.s1/

ijk
D Om

.s�1/

ijk

nij �

Om
.s�1/
ij �

Om
.s2/

ijk
D Om

.s1/

ijk

ni �k

Om
.s1/

i �k

Om
.s/

ijk
D Om

.s2/

ijk

n�jk

Om
.s2/

�jk
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The subscript “�” indicates summation over the missing subscript. The log-likelihood ls is estimated at each
step s by

ls D
X
i;j;k

nijk log

0@ Om.s/ijk
n

1A
When the function j.ls�1 � ls/=ls�1j is less than 10�8, the iterations terminate. You can change the
comparison value with the EPSILON= option, and you can change the convergence criterion with the
CONVCRIT= option. The option CONVCRIT=CELL uses the maximum cell difference

max
i;j;k
j Om
.s�1/

ijk
� Om

.s/

ijk
j

as the criterion while the option CONVCRIT=MARGIN computes the maximum difference of the margins

Maximum of
�
max
i;j
j Om
.s�1/
ij � � Om

.s/
ij � j;max

i;k
j Om
.s�1/

i �k
� Om

.s/

i �k
j;max
j;k
j Om
.s�1/

�jk
� Om

.s/

�jk
j

�

Memory and Time Requirements
The memory and time required by PROC CATMOD are proportional to the number of parameters in the
model.

Displayed Output
PROC CATMOD displays the following information in the “Data Summary” table:

• the response effect

• the weight variable, if one is specified

• the data set name

• the number of response levels

• the number of samples or populations

• the total frequency, which is the total sample size

• the number of observations from the data set (the number of data records)

• the frequency of missing observations, labeled as “Frequency Missing”

Except for the analysis of variance table, all of the following items can be displayed or suppressed, depending
on your specification of statements and options.

• The ONEWAY option produces the “One-Way Frequencies” table, which displays the frequencies of
each variable value used in the analysis.



1958 F Chapter 32: The CATMOD Procedure

• The populations (or samples) are defined in a table labeled “Population Profiles.” The sample size
and the values of the defining variables are displayed for each sample. This table is suppressed if the
NOPROFILE option is specified.

• The observed responses are defined in a table labeled “Response Profiles.” The values of the defining
variables are displayed for each response. This table is suppressed if the NOPROFILE option is
specified.

• If the FREQ option is specified, then the “Response Frequencies” table is displayed, which shows the
frequency of each response for each population.

• If the PROB option is specified, then the “Response Probabilities” table is produced. This table displays
the probability of each response for each population.

• If the COV option is specified, the “Response Functions, Covariance Matrix” table, which shows the
covariance matrix of the response functions for each sample, is displayed.

• If the DESIGN option is specified, the response functions are displayed in the “Response Functions,
Design Matrix” table. If the COV option is also specified, the response functions are displayed in the
“Response Functions, Covariance Matrix” table.

• If the DESIGN option is specified, the design matrix is displayed in the “Response Functions, Design
Matrix” table, and if a log-linear model is being fit, the _RESPONSE_ matrix is displayed in the
“_Response_ Matrix” table. If the model type is AVERAGED, then the design matrix is displayed with
q � s rows, assuming q response functions for each of s populations. Otherwise, the design matrix is
displayed with only s rows since the model is the same for each of the q response functions.

• The “X0*Inv(S)*X” matrix is displayed for weighted least squares analyses if the XPX option is
specified.

• The “Analysis of Variance” table for the weighted least squares analysis reports the results of signifi-
cance tests for each of the design-effects on the right side of the MODEL statement. If _RESPONSE_
is a design-effect and is defined explicitly in the LOGLIN, FACTORS, or REPEATED statement, then
the table contains test statistics for the individual effects constituting the _RESPONSE_ effect. If the
design matrix is input directly, then the content of the displayed output depends on whether you specify
any subsets of the parameters to be tested. If you specify one or more subsets, then the table contains
one test for each subset. Otherwise, the table contains one test for the effect MODEL | MEAN. In every
case, the table also contains the residual goodness-of-fit test. Produced for each test of significance are
the source of variation, the number of degrees of freedom (DF), the Wald chi-square value, and the
significance probability (Pr > ChiSq).

• The “Analysis of Weighted Least Squares Estimates” table lists, for each parameter in the model, the
least squares estimate, the estimated standard error of the parameter estimate, the Wald chi-square
value (calculated as ((parameter estimate)/(standard error))2) for testing that the parameter is zero, and
the significance probability (Pr > ChiSq) of the test. If the CLPARM option is specified, then 95%
Wald confidence intervals are displayed.

Each row in the table is labeled with the parameter (the model effect and the class levels) and the
response function number; however, if the NOPREDVAR option or a REPEATED or FACTORS
statement is specified or if the design matrix is directly input, the rows are labeled by the effect in the
model for which parameters are formed and the parameter number.
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• The “Covariance Matrix of the Parameter Estimates” table for the weighted least squares analysis
displays the estimated covariance matrix of the least squares estimates of the parameters, provided that
the COVB option is specified.

• The “Correlation Matrix of the Parameter Estimates” table for the weighted least squares analysis
displays the estimated correlation matrix of the least squares estimates of the parameters, provided that
the CORRB option is specified.

• The “Maximum Likelihood Analysis” table is produced when the ML and ITPRINT options are
specified for the standard response functions. It displays the iteration number, the number of step-
halving sub-iterations, –2 log likelihood for that iteration, the convergence criterion, and the parameter
estimates for each iteration.

• The “Maximum Likelihood Analysis of Variance” table, displayed when the ML option is specified for
the standard response functions, is similar to the table produced for the least squares analysis. The
Wald chi-square test for each effect is based on the information matrix from the likelihood calculations.
The likelihood ratio statistic compares the specified model with the unrestricted (saturated) model and
is an appropriate goodness-of-fit test for the model.

• The “Analysis of Maximum Likelihood Estimates” table, displayed when the ML option is specified for
the standard response functions, is similar to the one produced for the least squares analysis. The table
includes the maximum likelihood estimates, the estimated standard errors based on the information
matrix, and the Wald chi-square statistics based on estimated standard errors.

• The “Covariance Matrix of the Maximum Likelihood Estimates” table displays the estimated covariance
matrix of the maximum likelihood estimates of the parameters, provided that the COVB and ML
options are specified for the standard response functions.

• The “Correlation Matrix of the Maximum Likelihood Estimates” table displays the estimated correlation
matrix of the maximum likelihood estimates of the parameters, provided that the CORRB and ML
options are specified for the standard response functions.

• For each source of variation specified in a CONTRAST statement, the “Contrasts” table lists the
label for the source (Contrast), the number of degrees of freedom (DF), the Wald chi-square value,
and the significance probability (Pr > ChiSq). If the ESTIMATE= option is specified, the “Analysis
of Contrasts” table displays, for each row of the contrast, the label (Contrast), the type (PARM or
EXP), the row of the contrast, the estimate and its standard error, a Wald confidence interval, the Wald
chi-square, and the p-value (Pr > ChiSq) for 1 degree of freedom.

• Specification of the PREDICT option in the MODEL statement has the following effect. Produced
for each response function within each population are the observed and predicted function values,
their standard errors, and the residual (observed minus predicted). If the response functions are the
default ones (generalized logits), additional information displayed for each response within each
population includes the observed and predicted cell probabilities, their standard errors, and the residual.
However, specifying PRED=FREQ in the MODEL statement results in the display of the predicted cell
frequencies rather than the predicted cell probabilities. The displayed output includes the population
profiles and, for the response function table, the function number, while the probability and frequency
tables display the response profiles. If the NOPREDVAR option is specified in the MODEL statement,
the population profiles are replaced with the sample numbers, and the response profiles are replaced
with the labels “Pn” for the nth cell probability, and “Fn” for the nth cell frequency.
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• When there are multiple RESPONSE statements, the output for each statement starts on a new page.
For each RESPONSE statement, the corresponding title, if specified, is displayed at the top of each
page.

• If the ADDCELL= option is specified in the MODEL statement, and if there is a weighted least squares
analysis specified, the adjusted sample size for each population (with number added to each cell) is
labeled “Adjusted Sample Size” in the “Population Profiles” table. Similarly, the adjusted response
frequencies and probabilities are displayed in the “Adjusted Response Frequencies” and “Adjusted
Response Probabilities” tables, respectively.

• If _RESPONSE_ is defined explicitly in the LOGLIN, FACTORS, or REPEATED statement, then the
definition is displayed as a note whenever _RESPONSE_ appears in the output.

ODS Table Names
PROC CATMOD assigns a name to each table it creates. You can use these names to reference the table
when using the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed in the following table. For more information about ODS, see Chapter 20, “Using the Output Delivery
System.”

Table 32.12 ODS Tables Produced by PROC CATMOD

ODS Table Name Description Statement Option

ANOVA Analysis of variance MODEL default
Contrasts Contrasts CONTRAST default
ContrastEstimates Analysis of contrasts CONTRAST ESTIMATE=
ConvergenceStatus Convergence status MODEL ML
CorrB Correlation matrix of the

estimates
MODEL CORRB

CovB Covariance matrix of the
estimates

MODEL COVB

DataSummary Data summary PROC default
Estimates Analysis of estimates MODEL default, unless NOPARM
MaxLikelihood Maximum likelihood

analysis
MODEL ML and ITPRINT

OneWayFreqs One-way frequencies MODEL ONEWAY
PopProfiles Population profiles MODEL default, unless NOPROFILE
PredictedFreqs Predicted frequencies MODEL PRED=FREQ
PredictedProbs Predicted probabilities MODEL PREDICT or PRED=PROB
PredictedValues Predicted values MODEL PREDICT or PRED=
ResponseCov Response functions,

covariance matrix
MODEL COV

ResponseDesign Response functions,
design matrix

MODEL DESIGN, unless NODESIGN

ResponseFreqs Response frequencies MODEL FREQ
ResponseMatrix _RESPONSE_ matrix MODEL and

LOGLIN
DESIGN, unless NORESPONSE
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Table 32.12 (continued)

ODS Table Name Description Statement Option

ResponseProbs Response probabilities MODEL PROB
ResponseProfiles Response profiles MODEL default, unless NOPROFILE
XPX X’*Inv(S)*X matrix MODEL XPX, for WLS�

� WLS estimation is the default for response functions other than the default (generalized logits).

Examples: CATMOD Procedure

Example 32.1: Linear Response Function, r=2 Responses
In an example from Ries and Smith (1963), the choice of detergent brand (Brand = M or X) is related to
three other categorical variables: the softness of the laundry water (Softness = soft, medium, or hard), the
temperature of the water (Temperature = high or low), and whether the subject was a previous user of Brand
M (Previous = yes or no). The linear response function, which could also be specified as RESPONSE
MARGINALS, yields one probability, Pr(brand preference=M), as the response function to be analyzed.
Two models are fit in this example: the first model is a saturated one, containing all of the main effects and
interactions, while the second is a reduced model containing only the main effects. The following statements
produce Output 32.1.1 through Output 32.1.4:

data detergent;
input Softness $ Brand $ Previous $ Temperature $ Count @@;
datalines;

soft X yes high 19 soft X yes low 57
soft X no high 29 soft X no low 63
soft M yes high 29 soft M yes low 49
soft M no high 27 soft M no low 53
med X yes high 23 med X yes low 47
med X no high 33 med X no low 66
med M yes high 47 med M yes low 55
med M no high 23 med M no low 50
hard X yes high 24 hard X yes low 37
hard X no high 42 hard X no low 68
hard M yes high 43 hard M yes low 52
hard M no high 30 hard M no low 42
;

title 'Detergent Preference Study';
proc catmod data=detergent;

response 1 0;
weight Count;
model Brand=Softness|Previous|Temperature / freq prob;
title2 'Saturated Model';

run;
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The “Data Summary” table (Output 32.1.1) indicates that you have two response levels and twelve populations.

Output 32.1.1 Detergent Preference Study: Linear Model Analysis

Detergent Preference Study
Saturated Model

The CATMOD Procedure

Detergent Preference Study
Saturated Model

The CATMOD Procedure

Data Summary

Response Brand Response Levels 2

Weight Variable Count Populations 12

Data Set DETERGENTTotal Frequency 1008

Frequency Missing 0 Observations 24

The “Population Profiles” table in Output 32.1.2 displays the ordering of independent variable levels as used
in the table of parameter estimates.

Output 32.1.2 Population Profiles

Population Profiles

Sample Softness Previous Temperature Sample Size

1 hard no high 72

2 hard no low 110

3 hard yes high 67

4 hard yes low 89

5 med no high 56

6 med no low 116

7 med yes high 70

8 med yes low 102

9 soft no high 56

10 soft no low 116

11 soft yes high 48

12 soft yes low 106

Since Brand M is the first level in the “Response Profiles” table (Output 32.1.3), the RESPONSE statement
causes Pr(Brand=M) to be the single response function modeled.

Output 32.1.3 Response Profiles, Frequencies, and Probabilities

Response
Profiles

Response Brand

1 M

2 X
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Output 32.1.3 continued

Response
Frequencies

Response
Number

Sample 1 2

1 30 42

2 42 68

3 43 24

4 52 37

5 23 33

6 50 66

7 47 23

8 55 47

9 27 29

10 53 63

11 29 19

12 49 57

Response Probabilities

Response
Number

Sample 1 2

1 0.41667 0.58333

2 0.38182 0.61818

3 0.64179 0.35821

4 0.58427 0.41573

5 0.41071 0.58929

6 0.43103 0.56897

7 0.67143 0.32857

8 0.53922 0.46078

9 0.48214 0.51786

10 0.45690 0.54310

11 0.60417 0.39583

12 0.46226 0.53774

The “Analysis of Variance” table in Output 32.1.4 shows that all of the interactions are nonsignificant.

Output 32.1.4 Analysis of Variance

Analysis of Variance

Source DF Chi-Square Pr > ChiSq

Intercept 1 983.13 <.0001

Softness 2 0.09 0.9575

Previous 1 22.68 <.0001

Softness*Previous 2 3.85 0.1457

Temperature 1 3.67 0.0555

Softness*Temperature 2 0.23 0.8914

Previous*Temperature 1 2.26 0.1324

Softnes*Previou*Temperat 2 0.76 0.6850

Residual 0 . .
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Therefore, a main-effects model is fit with the following statements:

model Brand=Softness Previous Temperature
/ clparm noprofile design;

title2 'Main-Effects Model';
run;
quit;

The PROC CATMOD statement is not required due to the interactive capability of the CATMOD procedure.
The NOPROFILE option suppresses the redisplay of the “Response Profiles” table. The CLPARM option
produces 95% confidence limits for the parameter estimates. Output 32.1.5 through Output 32.1.7 are
produced.

The design matrix in Output 32.1.5 displays the results of the differential-effects modeling used in
PROC CATMOD.

Output 32.1.5 Main-Effects Design Matrix

Detergent Preference Study
Main-Effects Model

The CATMOD Procedure

Detergent Preference Study
Main-Effects Model

The CATMOD Procedure

Data Summary

Response Brand Response Levels 2

Weight Variable Count Populations 12

Data Set DETERGENTTotal Frequency 1008

Frequency Missing 0 Observations 24

Response Functions and Design
Matrix

Design
Matrix

Sample
Response

Function 1 2 3 4 5

1 0.41667 1 1 0 1 1

2 0.38182 1 1 0 1 -1

3 0.64179 1 1 0 -1 1

4 0.58427 1 1 0 -1 -1

5 0.41071 1 0 1 1 1

6 0.43103 1 0 1 1 -1

7 0.67143 1 0 1 -1 1

8 0.53922 1 0 1 -1 -1

9 0.48214 1 -1 -1 1 1

10 0.45690 1 -1 -1 1 -1

11 0.60417 1 -1 -1 -1 1

12 0.46226 1 -1 -1 -1 -1

The analysis of variance table in Output 32.1.6 shows that previous use of Brand M, together with the
temperature of the laundry water, is a significant factor in whether a subject prefers Brand M laundry
detergent. The table also shows that the additive model fits since the goodness-of-fit statistic (the residual
chi-square) is nonsignificant.
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Output 32.1.6 ANOVA Table for the Main-Effects Model

Analysis of Variance

Source DF Chi-Square Pr > ChiSq

Intercept 1 1004.93 <.0001

Softness 2 0.24 0.8859

Previous 1 20.96 <.0001

Temperature 1 3.95 0.0468

Residual 7 8.26 0.3100

The chi-square test in Output 32.1.7 shows that the Softness parameters are not significantly different from
zero; as expected, the Wald confidence limits for these two estimates contain zero. So softness of the water is
not a factor in choosing Brand M.

Output 32.1.7 WLS Estimates for the Main-Effects Model

Analysis of Weighted Least Squares Estimates

Parameter Estimate
Standard

Error
Chi-

Square Pr > ChiSq

95%
Confidence

Limits

Intercept 0.5080 0.0160 1004.93 <.0001 0.4766 0.5394

Softness hard -0.00256 0.0218 0.01 0.9066 -0.0454 0.0402

med 0.0104 0.0218 0.23 0.6342 -0.0323 0.0530

Previous no -0.0711 0.0155 20.96 <.0001 -0.1015 -0.0407

Temperature high 0.0319 0.0161 3.95 0.0468 0.000446 0.0634

The negative coefficient for Previous (–0.0711) indicates that the first level of Previous (which is shown to
be ‘no’) is associated with a smaller probability of preferring Brand M than the second level of Previous
(with coefficient constrained to be 0.0711 since the parameter estimates for a given effect must sum to zero).
In other words, previous users of Brand M are much more likely to prefer it than those who have never used
it before.

Similarly, the positive coefficient for Temperature indicates that the first level of Temperature (which, from
the “Population Profiles” table, is ‘high’) has a larger probability of preferring Brand M than the second level
of Temperature. In other words, those who do their laundry in hot water are more likely to prefer Brand M
than those who do their laundry in cold water.

Example 32.2: Mean Score Response Function, r=3 Responses
Four surgical operations for duodenal ulcers are compared in a clinical trial at four hospitals. The operations
performed are as follows: Treatment = a, drainage and vagotomy; Treatment = b, 25% resection and
vagotomy; Treatment = c, 50% resection and vagotomy; and Treatment = d, 75% resection. The response is
severity of an undesirable complication called “dumping syndrome.” The data in the following statements
are from Grizzle, Starmer, and Koch (1969, pp. 489–504).

data operate;
input Hospital Treatment $ Severity $ wt @@;
datalines;

1 a none 23 1 a slight 7 1 a moderate 2
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1 b none 23 1 b slight 10 1 b moderate 5
1 c none 20 1 c slight 13 1 c moderate 5
1 d none 24 1 d slight 10 1 d moderate 6
2 a none 18 2 a slight 6 2 a moderate 1
2 b none 18 2 b slight 6 2 b moderate 2
2 c none 13 2 c slight 13 2 c moderate 2
2 d none 9 2 d slight 15 2 d moderate 2
3 a none 8 3 a slight 6 3 a moderate 3
3 b none 12 3 b slight 4 3 b moderate 4
3 c none 11 3 c slight 6 3 c moderate 2
3 d none 7 3 d slight 7 3 d moderate 4
4 a none 12 4 a slight 9 4 a moderate 1
4 b none 15 4 b slight 3 4 b moderate 2
4 c none 14 4 c slight 8 4 c moderate 3
4 d none 13 4 d slight 6 4 d moderate 4
;

The response variable (Severity) is ordinally scaled with three levels, so assignment of scores is appropriate
(0 = none, 0.5 = slight, 1 = moderate). For these scores, the response function yields the mean score. The
following statements produce Output 32.2.1 through Output 32.2.3:

title 'Dumping Syndrome Data';
proc catmod data=operate order=data ;

weight wt;
response 0 0.5 1;
model Severity=Treatment Hospital / freq oneway design;
title2 'Main-Effects Model';

quit;

The ORDER= option is specified so that the levels of the response variable remain in the correct order.
A main-effects model is fit. The ONEWAY option produces a table of the number of subjects within
each variable level, and the FREQ option displays the frequency of each response within each sample
(Output 32.2.1).

Output 32.2.1 Surgical Data: Analysis of Mean Scores

Dumping Syndrome Data
Main-Effects Model

The CATMOD Procedure

Dumping Syndrome Data
Main-Effects Model

The CATMOD Procedure

Data Summary

Response Severity Response Levels 3

Weight Variable wt Populations 16

Data Set OPERATE Total Frequency 417

Frequency Missing 0 Observations 48
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Output 32.2.1 continued

One-Way Frequencies

Variable Value Frequency

Severity none 240

slight 129

moderate 48

Treatment a 96

b 104

c 110

d 107

Hospital 1 148

2 105

3 74

4 90

Population Profiles

Sample Treatment Hospital Sample Size

1 a 1 32

2 a 2 25

3 a 3 17

4 a 4 22

5 b 1 38

6 b 2 26

7 b 3 20

8 b 4 20

9 c 1 38

10 c 2 28

11 c 3 19

12 c 4 25

13 d 1 40

14 d 2 26

15 d 3 18

16 d 4 23

Response Profiles

Response Severity

1 none

2 slight

3 moderate



1968 F Chapter 32: The CATMOD Procedure

Output 32.2.1 continued

Response
Frequencies

Response
Number

Sample 1 2 3

1 23 7 2

2 18 6 1

3 8 6 3

4 12 9 1

5 23 10 5

6 18 6 2

7 12 4 4

8 15 3 2

9 20 13 5

10 13 13 2

11 11 6 2

12 14 8 3

13 24 10 6

14 9 15 2

15 7 7 4

16 13 6 4

You can use the one-way frequencies and the response profiles from Output 32.2.1 to verify that the response
levels are in the desired order (none, slight, moderate) so that the response scores (0, 0.5, 1.0) are applied
appropriately. If the ORDER=DATA option had not been used, the levels would have been in a different
order.

The analysis of variance table (Output 32.2.2) shows that the additive model fits (since the residual chi-square
is not significant), that the Treatment effect is significant, and that the Hospital effect is not significant.
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Output 32.2.2 Surgical Data: Analysis of Mean Scores

Response Functions and Design
Matrix

Design Matrix

Sample
Response

Function 1 2 3 4 5 6 7

1 0.17188 1 1 0 0 1 0 0

2 0.16000 1 1 0 0 0 1 0

3 0.35294 1 1 0 0 0 0 1

4 0.25000 1 1 0 0 -1 -1 -1

5 0.26316 1 0 1 0 1 0 0

6 0.19231 1 0 1 0 0 1 0

7 0.30000 1 0 1 0 0 0 1

8 0.17500 1 0 1 0 -1 -1 -1

9 0.30263 1 0 0 1 1 0 0

10 0.30357 1 0 0 1 0 1 0

11 0.26316 1 0 0 1 0 0 1

12 0.28000 1 0 0 1 -1 -1 -1

13 0.27500 1 -1 -1 -1 1 0 0

14 0.36538 1 -1 -1 -1 0 1 0

15 0.41667 1 -1 -1 -1 0 0 1

16 0.30435 1 -1 -1 -1 -1 -1 -1

Analysis of Variance

Source DF Chi-Square Pr > ChiSq

Intercept 1 248.77 <.0001

Treatment 3 8.90 0.0307

Hospital 3 2.33 0.5065

Residual 9 6.33 0.7069

The coefficients of Treatment in Output 32.2.3 show that the first two treatments (with negative coefficients)
have lower mean scores than the last two treatments (the fourth coefficient, not shown, must be positive
since the four coefficients must sum to zero). In other words, the less severe treatments (the first two) cause
significantly less severe dumping syndrome complications.

Output 32.2.3 Surgical Data: Analysis of Mean Scores

Analysis of Weighted Least Squares Estimates

Parameter Estimate
Standard

Error
Chi-

Square Pr > ChiSq

Intercept 0.2724 0.0173 248.77 <.0001

Treatment a -0.0552 0.0270 4.17 0.0411

b -0.0365 0.0289 1.59 0.2073

c 0.0248 0.0280 0.78 0.3757

Hospital 1 -0.0204 0.0264 0.60 0.4388

2 -0.0178 0.0268 0.44 0.5055

3 0.0531 0.0352 2.28 0.1312
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Example 32.3: Logistic Regression, Standard Response Function
In this data set, from Cox and Snell (1989), ingots are prepared with different heating and soaking times and
tested for their readiness to be rolled. The following DATA step creates a response variable Y with value 1
for ingots that are not ready and value 0 otherwise. The explanatory variables are Heat and Soak.

data ingots;
input Heat Soak nready ntotal @@;
Count=nready;
Y=1;
output;
Count=ntotal-nready;
Y=0;
output;
drop nready ntotal;
datalines;

7 1.0 0 10 14 1.0 0 31 27 1.0 1 56 51 1.0 3 13
7 1.7 0 17 14 1.7 0 43 27 1.7 4 44 51 1.7 0 1
7 2.2 0 7 14 2.2 2 33 27 2.2 0 21 51 2.2 0 1
7 2.8 0 12 14 2.8 0 31 27 2.8 1 22 51 4.0 0 1
7 4.0 0 9 14 4.0 0 19 27 4.0 1 16
;

Logistic regression analysis is often used to investigate the relationship between discrete response variables
and continuous explanatory variables. For logistic regression, the continuous design-effects are declared in a
DIRECT statement. The following statements produce Output 32.3.1 through Output 32.3.6:

title 'Maximum Likelihood Logistic Regression';
proc catmod data=ingots;

weight Count;
direct Heat Soak;
model Y=Heat Soak / freq covb corrb itprint design;

quit;

You can verify that the populations are defined as you intended by looking at the “Population Profiles” table
in Output 32.3.1.

Output 32.3.1 Maximum Likelihood Logistic Regression

Maximum Likelihood Logistic Regression

The CATMOD Procedure

Maximum Likelihood Logistic Regression

The CATMOD Procedure

Data Summary

Response Y Response Levels 2

Weight Variable Count Populations 19

Data Set INGOTS Total Frequency 387

Frequency Missing 0 Observations 25
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Output 32.3.1 continued

Population Profiles

Sample Heat Soak Sample Size

1 7 1 10

2 7 1.7 17

3 7 2.2 7

4 7 2.8 12

5 7 4 9

6 14 1 31

7 14 1.7 43

8 14 2.2 33

9 14 2.8 31

10 14 4 19

11 27 1 56

12 27 1.7 44

13 27 2.2 21

14 27 2.8 22

15 27 4 16

16 51 1 13

17 51 1.7 1

18 51 2.2 1

19 51 4 1

Since the “Response Profiles” table in Output 32.3.2 shows the response level ordering as 0, 1, the default

response function, the logit, is defined as log
�
pYD0

pYD1

�
.

Output 32.3.2 Response Summaries

Response
Profiles

Response Y

1 0

2 1
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Output 32.3.2 continued

Response
Frequencies

Response
Number

Sample 1 2

1 10 0

2 17 0

3 7 0

4 12 0

5 9 0

6 31 0

7 43 0

8 31 2

9 31 0

10 19 0

11 55 1

12 40 4

13 21 0

14 21 1

15 15 1

16 10 3

17 1 0

18 1 0

19 1 0

The values of the continuous variable are inserted into the design matrix (Output 32.3.3).
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Output 32.3.3 Design Matrix

Response Functions and
Design Matrix

Design
Matrix

Sample
Response

Function 1 2 3

1 2.99573 1 7 1

2 3.52636 1 7 1.7

3 2.63906 1 7 2.2

4 3.17805 1 7 2.8

5 2.89037 1 7 4

6 4.12713 1 14 1

7 4.45435 1 14 1.7

8 2.74084 1 14 2.2

9 4.12713 1 14 2.8

10 3.63759 1 14 4

11 4.00733 1 27 1

12 2.30259 1 27 1.7

13 3.73767 1 27 2.2

14 3.04452 1 27 2.8

15 2.70805 1 27 4

16 1.20397 1 51 1

17 0.69315 1 51 1.7

18 0.69315 1 51 2.2

19 0.69315 1 51 4

Seven Newton-Raphson iterations are required to find the maximum likelihood estimates (Output 32.3.4).

Output 32.3.4 Iteration History

Maximum Likelihood Analysis

Parameter Estimates

Iteration
Sub

Iteration
-2 Log

Likelihood
Convergence

Criterion 1 2 3

0 0 536.49592 1.0000 0 0 0

1 0 152.58961 0.7156 2.1594 -0.0139 -0.003733

2 0 106.76066 0.3003 3.5334 -0.0363 -0.0120

3 0 96.692171 0.0943 4.7489 -0.0640 -0.0299

4 0 95.383825 0.0135 5.4138 -0.0790 -0.0498

5 0 95.345659 0.000400 5.5539 -0.0819 -0.0564

6 0 95.345613 4.8289E-7 5.5592 -0.0820 -0.0568

7 0 95.345613 7.728E-13 5.5592 -0.0820 -0.0568

Maximum likelihood computations converged.

The analysis of variance table (Output 32.3.5) shows that the model fits since the likelihood ratio goodness-
of-fit test is nonsignificant. It also shows that the length of heating time is a significant factor with respect to
readiness but that length of soaking time is not.
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Output 32.3.5 Analysis of Variance Table

Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq

Intercept 1 24.65 <.0001

Heat 1 11.95 0.0005

Soak 1 0.03 0.8639

Likelihood Ratio 16 13.75 0.6171

From the table of maximum likelihood estimates in Output 32.3.6, the fitted model is

E.logit.p// D 5:559 � 0:082.Heat/ � 0:057.Soak/

For example, for Sample 1 with Heat = 7 and Soak = 1, the estimate is

E.logit.p// D 5:559 � 0:082.7/ � 0:057.1/ D 4:9284

Output 32.3.6 Maximum Likelihood Estimates, Covariances, and Correlations

Analysis of Maximum Likelihood Estimates

Parameter Estimate
Standard

Error
Chi-

Square Pr > ChiSq

Intercept 5.5592 1.1197 24.65 <.0001

Heat -0.0820 0.0237 11.95 0.0005

Soak -0.0568 0.3312 0.03 0.8639

Covariance Matrix of the Maximum Likelihood
Estimates

Row Parameter Col1 Col2 Col3

1 Intercept 1.2537133 -0.0215664 -0.2817648

2 Heat -0.0215664 0.0005633 0.0026243

3 Soak -0.2817648 0.0026243 0.1097020

Correlation Matrix of the Maximum
Likelihood Estimates

Row Parameter Col1 Col2 Col3

1 Intercept 1.00000 -0.81152 -0.75977

2 Heat -0.81152 1.00000 0.33383

3 Soak -0.75977 0.33383 1.00000

Predicted values of the logits, as well as the probabilities of readiness, could be obtained by specifying
PRED=PROB in the MODEL statement. For the example of Sample 1 with Heat = 7 and Soak = 1,
PRED=PROB would give an estimate of the probability of readiness equal to 0.9928 since

4:9284 D log
�
Op

1 � Op

�
implies that

Op D
e4:9284

1C e4:9284
D 0:9928
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As another consideration, since soaking time is nonsignificant, you could fit another model that deleted the
variable Soak.

Example 32.4: Log-Linear Model, Three Dependent Variables
This analysis reproduces the predicted cell frequencies for Bartlett’s data by using a log-linear model of no
three-variable interaction (Bishop, Fienberg, and Holland 1975, p. 89). Cuttings of two different lengths
(Length=short or long) are planted at one of two time points (Time=now or spring), and their survival status
(Status=dead or alive) is recorded.

As in the text, the variable levels are simply labeled 1 and 2. The following statements produce Output 32.4.1
through Output 32.4.3:

data bartlett;
input Length Time Status wt @@;
datalines;

1 1 1 156 1 1 2 84 1 2 1 84 1 2 2 156
2 1 1 107 2 1 2 133 2 2 1 31 2 2 2 209
;

title 'Bartlett''s Data';
proc catmod data=bartlett;

weight wt;
model Length*Time*Status=_response_

/ noparm pred=freq;
loglin Length|Time|Status @ 2;
title2 'Model with No 3-Variable Interaction';

quit;

Output 32.4.1 Analysis of Bartlett’s Data: Log-Linear Model

Bartlett's Data
Model with No 3-Variable Interaction

The CATMOD Procedure

Bartlett's Data
Model with No 3-Variable Interaction

The CATMOD Procedure

Data Summary

Response Length*Time*Status Response Levels 8

Weight Variable wt Populations 1

Data Set BARTLETT Total Frequency 960

Frequency Missing 0 Observations 8

Population Profiles

Sample Sample Size

1 960
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Output 32.4.1 continued

Response Profiles

Response Length Time Status

1 1 1 1

2 1 1 2

3 1 2 1

4 1 2 2

5 2 1 1

6 2 1 2

7 2 2 1

8 2 2 2

Maximum Likelihood Analysis

Maximum likelihood computations converged.

Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq

Length 1 2.64 0.1041

Time 1 5.25 0.0220

Length*Time 1 5.25 0.0220

Status 1 48.94 <.0001

Length*Status 1 48.94 <.0001

Time*Status 1 95.01 <.0001

Likelihood Ratio 1 2.29 0.1299

The analysis of variance table shows that the model fits since the likelihood ratio test for the three-variable
interaction is nonsignificant. All of the two-variable interactions, however, are significant; this shows that
there is mutual dependence among all three variables.

The predicted values table (Output 32.4.2) displays observed and predicted values for the generalized logits.

Output 32.4.2 Response Function Predicted Values

Maximum Likelihood Predicted Values for Response
Functions

Observed Predicted

Function
Number Function

Standard
Error Function

Standard
Error Residual

1 -0.29248 0.105806 -0.23565 0.098486 -0.05683

2 -0.91152 0.129188 -0.94942 0.129948 0.037901

3 -0.91152 0.129188 -0.94942 0.129948 0.037901

4 -0.29248 0.105806 -0.23565 0.098486 -0.05683

5 -0.66951 0.118872 -0.69362 0.120172 0.024113

6 -0.45199 0.110921 -0.3897 0.102267 -0.06229

7 -1.90835 0.192465 -1.73146 0.142969 -0.17688

The predicted frequencies table (Output 32.4.3) displays observed and predicted cell frequencies, their
standard errors, and residuals.
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Output 32.4.3 Predicted Frequencies

Maximum Likelihood Predicted Values for Frequencies

Observed Predicted

Length Time Status Frequency
Standard

Error Frequency
Standard

Error Residual

1 1 1 156 11.43022 161.0961 11.07379 -5.09614

1 1 2 84 8.754999 78.90386 7.808613 5.096139

1 2 1 84 8.754999 78.90386 7.808613 5.096139

1 2 2 156 11.43022 161.0961 11.07379 -5.09614

2 1 1 107 9.750588 101.9039 8.924304 5.096139

2 1 2 133 10.70392 138.0961 10.33434 -5.09614

2 2 1 31 5.47713 36.09614 4.826315 -5.09614

2 2 2 209 12.78667 203.9039 12.21285 5.09614

Example 32.5: Log-Linear Model, Structural and Sampling Zeros
This example illustrates a log-linear model of independence, by using data that contain structural zero
frequencies as well as sampling (random) zero frequencies.

In a population of six squirrel monkeys, the joint distribution of genital display with respect to active or
passive role was observed. The data are from Fienberg (1980, Table 8-2). Since a monkey cannot have both
the active and passive roles in the same interaction, the diagonal cells of the table are structural zeros. See
Agresti (2002) for more information about the quasi-independence model.

The DATA step replaces the structural zeros with missing values, and the MISSING=STRUCTURAL option
is specified in the MODEL statement to remove these zeros from the analysis. The ZERO=SAMPLING
option treats the off-diagonal zeros as sampling zeros. Also, the row for Monkey ‘t’ is deleted since it contains
all zeros; therefore, the cell frequencies predicted by a model of independence are also zero. In addition,
the CONTRAST statement compares the behavior of the two monkeys labeled ‘u’ and ‘v’. See the section
“Structural and Sampling Zeros with Raw Data” on page 1981 for information about how to perform this
analysis when you have raw data. The following statements produce Output 32.5.1 through Output 32.5.8:

data Display;
input Active $ Passive $ wt @@;
if Active ne 't';
if Active eq Passive then wt=.;
datalines;

r r 0 r s 1 r t 5 r u 8 r v 9 r w 0
s r 29 s s 0 s t 14 s u 46 s v 4 s w 0
t r 0 t s 0 t t 0 t u 0 t v 0 t w 0
u r 2 u s 3 u t 1 u u 0 u v 38 u w 2
v r 0 v s 0 v t 0 v u 0 v v 0 v w 1
w r 9 w s 25 w t 4 w u 6 w v 13 w w 0
;

title 'Behavior of Squirrel Monkeys';
proc catmod data=Display;

weight wt;
model Active*Passive=_response_ /

missing=structural zero=sampling
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freq pred=freq noparm oneway;
loglin Active Passive;
contrast 'Passive, U vs. V' Passive 0 0 0 1 -1;
contrast 'Active, U vs. V' Active 0 0 1 -1;
title2 'Test Quasi-Independence for the Incomplete Table';

quit;

Output 32.5.1 Log-Linear Model Analysis with Zero Frequencies

Behavior of Squirrel Monkeys
Test Quasi-Independence for the Incomplete Table

The CATMOD Procedure

Behavior of Squirrel Monkeys
Test Quasi-Independence for the Incomplete Table

The CATMOD Procedure

Data Summary

Response Active*Passive Response Levels 25

Weight Variable wt Populations 1

Data Set DISPLAY Total Frequency 220

Frequency Missing 0 Observations 25

The results of the ONEWAY option are shown in Output 32.5.2. Monkey ‘t’ does not show up as a value for
the Active variable since that row was removed.

Output 32.5.2 Output from the ONEWAY option

One-Way Frequencies

Variable Value Frequency

Active r 23

s 93

u 46

v 1

w 57

Passive r 40

s 29

t 24

u 60

v 64

w 3

Sampling zeros are displayed as 0 in Output 32.5.4. The Response Number column corresponds to the value
displayed in the “Response Profiles” table in Output 32.5.3.

Output 32.5.3 Profiles

Population Profiles

Sample Sample Size

1 220
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Output 32.5.3 continued

Response Profiles

Response Active Passive

1 r s

2 r t

3 r u

4 r v

5 r w

6 s r

7 s t

8 s u

9 s v

10 s w

11 u r

12 u s

13 u t

14 u v

15 u w

16 v r

17 v s

18 v t

19 v u

20 v w

21 w r

22 w s

23 w t

24 w u

25 w v

Output 32.5.4 Frequency of Response by Response Number

Response Frequencies

Response Number

Sample 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 1 5 8 9 0 29 14 46 4 0 2 3 1 38 2 0 0 0 0 1 9 25 4 6 13

The analysis of variance table (Output 32.5.5) shows that the model of independence does not fit since the
likelihood ratio test for the interaction is significant. In other words, active and passive behaviors of the
squirrel monkeys are dependent behavior roles.

Output 32.5.5 Analysis of Variance Table

Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq

Active 4 56.58 <.0001

Passive 5 47.94 <.0001

Likelihood Ratio 15 135.17 <.0001
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If the model fit these data, then the contrasts in Output 32.5.6 show that monkeys ‘u’ and ‘v’ appear to have
similar passive behavior patterns but very different active behavior patterns.

Output 32.5.6 Contrasts between Monkeys ‘u’ and ‘v’

Contrasts of Maximum Likelihood Estimates

Contrast DF Chi-Square Pr > ChiSq

Passive, U vs. V 1 1.31 0.2524

Active,  U vs. V 1 14.87 0.0001

Output 32.5.7 displays the predicted response functions and Output 32.5.8 displays predicted cell frequencies
(from the PRED=FREQ option), but since the model does not fit, these should be ignored. Note that, since
the response function is the generalized logit with the 25th response as the baseline, the observed response
functions for the sampling zeros are missing.

Output 32.5.7 Response Function Predicted Values

Maximum Likelihood Predicted Values for Response
Functions

Observed Predicted

Function
Number Function

Standard
Error Function

Standard
Error Residual

1 -2.56495 1.037749 -0.97355 0.339019 -1.5914

2 -0.95551 0.526235 -1.72504 0.345438 0.769529

3 -0.48551 0.449359 -0.52751 0.309254 0.042007

4 -0.36772 0.433629 -0.73927 0.249006 0.371543

5 . . -3.56052 0.634104 .

6 0.802346 0.333775 0.320589 0.26629 0.481758

7 0.074108 0.385164 -0.29934 0.295634 0.37345

8 1.263692 0.314105 0.898184 0.250857 0.365508

9 -1.17865 0.571772 0.686431 0.173396 -1.86509

10 . . -2.13482 0.608071 .

11 -1.8718 0.759555 -0.2415 0.287218 -1.63031

12 -1.46634 0.640513 -0.10994 0.303568 -1.3564

13 -2.56495 1.037749 -0.86143 0.314794 -1.70352

14 1.072637 0.321308 0.124346 0.204345 0.94829

15 -1.8718 0.759555 -2.6969 0.617433 0.8251

16 . . -4.14787 1.024508 .

17 . . -4.01632 1.030062 .

18 . . -4.76781 1.032457 .

19 . . -3.57028 1.020794 .

20 -2.56495 1.037749 -6.60328 1.161289 4.038332

21 -0.36772 0.433629 -0.36584 0.202959 -0.00188

22 0.653926 0.34194 -0.23429 0.232794 0.888212

23 -1.17865 0.571772 -0.98577 0.239408 -0.19288

24 -0.77319 0.493548 0.211754 0.185007 -0.98494
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Output 32.5.8 Predicted Frequencies

Maximum Likelihood Predicted Values for Frequencies

Observed Predicted

Active Passive Frequency
Standard

Error Frequency
Standard

Error Residual

r s 1 0.997725 5.259508 1.36156 -4.25951

r t 5 2.210512 2.480726 0.691066 2.519274

r u 8 2.776525 8.215948 1.855146 -0.21595

r v 9 2.937996 6.648049 1.50932 2.351951

r w 0 0 0.395769 0.240268 -0.39577

s r 29 5.017696 19.18599 3.147915 9.814007

s t 14 3.620648 10.32172 2.169599 3.678284

s u 46 6.031734 34.18463 4.428706 11.81537

s v 4 1.981735 27.66096 3.722788 -23.661

s w 0 0 1.6467 0.952712 -1.6467

u r 2 1.407771 10.9364 2.12322 -8.9364

u s 3 1.720201 12.47407 2.554336 -9.47407

u t 1 0.997725 5.883583 1.380655 -4.88358

u v 38 5.606814 15.7673 2.684692 22.2327

u w 2 1.407771 0.938652 0.551645 1.061348

v r 0 0 0.219966 0.221779 -0.21997

v s 0 0 0.250893 0.253706 -0.25089

v t 0 0 0.118338 0.120314 -0.11834

v u 0 0 0.391924 0.393255 -0.39192

v w 1 0.997725 0.018879 0.021728 0.981121

w r 9 2.937996 9.657645 1.808656 -0.65765

w s 25 4.707344 11.01553 2.275019 13.98447

w t 4 1.981735 5.195638 1.184452 -1.19564

w u 6 2.415857 17.2075 2.772098 -11.2075

w v 13 3.497402 13.92369 2.24158 -0.92369

Structural and Sampling Zeros with Raw Data

The preceding PROC CATMOD step uses cell count data as input. Prior to invoking the CATMOD procedure,
structural and sampling zeros are easily identified and manipulated in a single DATA step. For the situation
where structural or sampling zeros (or both) exist and the input data set is raw data, use the following steps:

1. Run PROC FREQ on the raw data (see Chapter 40, “The FREQ Procedure”). In the TABLES statement,
list all dependent and independent variables, separated by asterisks, and use the SPARSE option and
the OUT= option. This creates an output data set that contains all possible zero frequencies. Since the
tabled output can be huge, you should also specify the NOPRINT option in the TABLES statement.

2. Use a DATA step to change the zero frequencies associated with either sampling zeros or structural
zeros to missing.

3. Use the resulting data set as input to PROC CATMOD, specify the statement WEIGHT COUNT to
use adjusted frequencies, and specify the ZERO= and MISSING= options to define your sampling and
structural zeros.
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For example, suppose the data set RawDisplay contains the raw data for the squirrel monkey data. The
following statements show how to obtain the same analysis as shown previously:

proc freq data=RawDisplay;
tables Active*Passive / sparse out=Combos noprint;

run;

data Combos2;
set Combos;
if Active ne 't';
if Active eq Passive then count=.;

run;

proc catmod data=Combos2;
weight count;
model Active*Passive=_response_ /

zero=sampling missing=structural
freq pred=freq noparm noresponse;

loglin Active Passive;
quit;

The first IF statement in the DATA step is needed only for this particular example; since observations for
Monkey ‘t’ were deleted from the Display data set, they also need to be deleted from Combos2.

Example 32.6: Repeated Measures, 2 Response Levels, 3 Populations
In this multiple-population repeated measures example, from Guthrie (1981), subjects from three groups
have their responses (0 or 1) recorded in each of four trials. The analysis of the marginal probabilities
is directed at assessing the main effects of the repeated measurement factor (Trial) and the independent
variable (Group), as well as their interaction. Although the contingency table is incomplete (only 13 of the
16 possible responses are observed), this poses no problem in the computation of the marginal probabilities.
The following statements produce Output 32.6.1:

data group;
input a b c d Group wt @@;
datalines;

1 1 1 1 2 2 0 0 0 0 2 2 0 0 1 0 1 2 0 0 1 0 2 2
0 0 0 1 1 4 0 0 0 1 2 1 0 0 0 1 3 3 1 0 0 1 2 1
0 0 1 1 1 1 0 0 1 1 2 2 0 0 1 1 3 5 0 1 0 0 1 4
0 1 0 0 2 1 0 1 0 1 2 1 0 1 0 1 3 2 0 1 1 0 3 1
1 0 0 0 1 3 1 0 0 0 2 1 0 1 1 1 2 1 0 1 1 1 3 2
1 0 1 0 1 1 1 0 1 1 2 1 1 0 1 1 3 2
;

title 'Multiple-Population Repeated Measures';
proc catmod data=group;

weight wt;
response marginals;
model a*b*c*d=Group _response_ Group*_response_

/ freq;
repeated Trial 4;
title2 'Saturated Model';

run;
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Output 32.6.1 Analysis of Multiple-Population Repeated Measures

Multiple-Population Repeated Measures
Saturated Model

The CATMOD Procedure

Multiple-Population Repeated Measures
Saturated Model

The CATMOD Procedure

Data Summary

Response a*b*c*d Response Levels 13

Weight Variable wt Populations 3

Data Set GROUP Total Frequency 45

Frequency Missing 0 Observations 23

Population Profiles

Sample Group Sample Size

1 1 15

2 2 15

3 3 15

Response Profiles

Response a b c d

1 0 0 0 0

2 0 0 0 1

3 0 0 1 0

4 0 0 1 1

5 0 1 0 0

6 0 1 0 1

7 0 1 1 0

8 0 1 1 1

9 1 0 0 0

10 1 0 0 1

11 1 0 1 0

12 1 0 1 1

13 1 1 1 1

Response Frequencies

Response Number

Sample 1 2 3 4 5 6 7 8 9 10 11 12 13

1 0 4 2 1 4 0 0 0 3 0 1 0 0

2 2 1 2 2 1 1 0 1 1 1 0 1 2

3 0 3 0 5 0 2 1 2 0 0 0 2 0

Analysis of Variance

Source DF Chi-Square Pr > ChiSq

Intercept 1 354.88 <.0001

Group 2 24.79 <.0001

Trial 3 21.45 <.0001

Group*Trial 6 18.71 0.0047

Residual 0 . .
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Output 32.6.1 continued

Analysis of Weighted Least Squares Estimates

Effect Parameter Estimate
Standard

Error
Chi-

Square Pr > ChiSq

Intercept 1 0.5833 0.0310 354.88 <.0001

Group 2 0.1333 0.0335 15.88 <.0001

3 -0.0333 0.0551 0.37 0.5450

Trial 4 0.1722 0.0557 9.57 0.0020

5 0.1056 0.0647 2.66 0.1028

6 -0.0722 0.0577 1.57 0.2107

Group*Trial 7 -0.1556 0.0852 3.33 0.0679

8 -0.0556 0.0800 0.48 0.4877

9 -0.0889 0.0953 0.87 0.3511

10 0.0111 0.0866 0.02 0.8979

11 0.0889 0.0822 1.17 0.2793

12 -0.0111 0.0824 0.02 0.8927

The analysis of variance table in Output 32.6.1 shows that there is a significant interaction between the inde-
pendent variable Group and the repeated measurement factor Trial. An intermediate model (not shown) is fit
in which the effects Trial and Group* Trial are replaced by Trial(Group=1), Trial(Group=2), and Trial(Group=3).
Of these three effects, only the last is significant, so it is retained in the final model. The following statements
produce Output 32.6.2 and Output 32.6.3:

model a*b*c*d=Group _response_(Group=3)
/ noprofile noparm design;

title2 'Trial Nested within Group 3';
quit;

Output 32.6.2 displays the design matrix resulting from retaining the nested effect.

Output 32.6.2 Final Model: Design Matrix

Multi-Population Repeated Measures
Trial Nested within Group 3

The CATMOD Procedure

Multi-Population Repeated Measures
Trial Nested within Group 3

The CATMOD Procedure

Data Summary

Response a*b*c*d Response Levels 13

Weight Variable wt Populations 3

Data Set GROUP Total Frequency 45

Frequency Missing 0 Observations 23
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Output 32.6.2 continued

Response Functions and Design Matrix

Design Matrix

Sample
Function
Number

Response
Function 1 2 3 4 5 6

1 1 0.73333 1 1 0 0 0 0

2 0.73333 1 1 0 0 0 0

3 0.73333 1 1 0 0 0 0

4 0.66667 1 1 0 0 0 0

2 1 0.66667 1 0 1 0 0 0

2 0.66667 1 0 1 0 0 0

3 0.46667 1 0 1 0 0 0

4 0.40000 1 0 1 0 0 0

3 1 0.86667 1 -1 -1 1 0 0

2 0.66667 1 -1 -1 0 1 0

3 0.33333 1 -1 -1 0 0 1

4 0.06667 1 -1 -1 -1 -1 -1

The residual goodness-of-fit statistic tests the joint effect of Trial(Group=1) and Trial(Group=2). The analysis
of variance table in Output 32.6.3 shows that the final model fits, that there is a significant Group effect, and
that there is a significant Trial effect in Group 3.

Output 32.6.3 ANOVA Table

Analysis of Variance

Source DF Chi-Square Pr > ChiSq

Intercept 1 386.94 <.0001

Group 2 25.42 <.0001

Trial(Group=3) 3 75.07 <.0001

Residual 6 5.09 0.5319

Example 32.7: Repeated Measures, 4 Response Levels, 1 Population
This example illustrates a repeated measures analysis in which there are more than two levels of response.
In this study, from Grizzle, Starmer, and Koch (1969, p. 493), 7,477 women aged 30–39 are tested for
vision in both right and left eyes. Since there are four response levels for each dependent variable, the
RESPONSE statement computes three marginal probabilities for each dependent variable, resulting in six
response functions for analysis. Since the model contains a repeated measurement factor (Side) with two
levels (Right, Left), PROC CATMOD groups the functions into sets of three (=6/2). Therefore, the Side effect
has three degrees of freedom (one for each marginal probability), and it is the appropriate test of marginal
homogeneity. The following statements produce Output 32.7.1:

title 'Vision Symmetry';
data vision;

input Right Left count @@;
datalines;

1 1 1520 1 2 266 1 3 124 1 4 66
2 1 234 2 2 1512 2 3 432 2 4 78
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3 1 117 3 2 362 3 3 1772 3 4 205
4 1 36 4 2 82 4 3 179 4 4 492
;

proc catmod data=vision;
weight count;
response marginals;
model Right*Left=_response_ / freq design;
repeated Side 2;
title2 'Test of Marginal Homogeneity';

quit;

Output 32.7.1 Vision Study: Analysis of Marginal Homogeneity

Vision Symmetry
Test of Marginal Homogeneity

The CATMOD Procedure

Vision Symmetry
Test of Marginal Homogeneity

The CATMOD Procedure

Data Summary

Response Right*Left Response Levels 16

Weight Variable count Populations 1

Data Set VISION Total Frequency 7477

Frequency Missing 0 Observations 16

Population Profiles

Sample Sample Size

1 7477

Response Profiles

Response Right Left

1 1 1

2 1 2

3 1 3

4 1 4

5 2 1

6 2 2

7 2 3

8 2 4

9 3 1

10 3 2

11 3 3

12 3 4

13 4 1

14 4 2

15 4 3

16 4 4

Response Frequencies

Response Number

Sample 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1520 266 124 66 234 1512 432 78 117 362 1772 205 36 82 179 492
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Output 32.7.1 continued

Response Functions and Design Matrix

Design Matrix

Sample
Function
Number

Response
Function 1 2 3 4 5 6

1 1 0.26428 1 0 0 1 0 0

2 0.30173 0 1 0 0 1 0

3 0.32847 0 0 1 0 0 1

4 0.25505 1 0 0 -1 0 0

5 0.29718 0 1 0 0 -1 0

6 0.33529 0 0 1 0 0 -1

Analysis of Variance

Source DF Chi-Square Pr > ChiSq

Intercept 3 78744.17 <.0001

Side 3 11.98 0.0075

Residual 0 . .

Analysis of Weighted Least Squares Estimates

Effect Parameter Estimate
Standard

Error
Chi-

Square Pr > ChiSq

Intercept 1 0.2597 0.00468 3073.03 <.0001

2 0.2995 0.00464 4160.17 <.0001

3 0.3319 0.00483 4725.25 <.0001

Side 4 0.00461 0.00194 5.65 0.0174

5 0.00227 0.00255 0.80 0.3726

6 -0.00341 0.00252 1.83 0.1757

The analysis of variance table in Output 32.7.1 shows that the Side effect is significant, so there is not
marginal homogeneity between left-eye vision and right-eye vision. In other words, the distribution of the
quality of right-eye vision differs significantly from the distribution of the quality of left-eye vision in the
same subjects. The test of the Side effect is equivalent to Bhapkar’s test (Agresti 1990) .

Example 32.8: Repeated Measures, Logistic Analysis of Growth Curve
The following data, from a longitudinal study reported in Koch et al. (1977), are from patients in four
populations (2 diagnostic groups � 2 treatments) who are measured at three times to assess their response
(n=normal or a=abnormal) to treatment:

title 'Growth Curve Analysis';
data growth2;

input Diagnosis $ Treatment $ week1 $ week2 $ week4 $ count @@;
datalines;

mild std n n n 16 severe std n n n 2
mild std n n a 13 severe std n n a 2
mild std n a n 9 severe std n a n 8
mild std n a a 3 severe std n a a 9
mild std a n n 14 severe std a n n 9



1988 F Chapter 32: The CATMOD Procedure

mild std a n a 4 severe std a n a 15
mild std a a n 15 severe std a a n 27
mild std a a a 6 severe std a a a 28
mild new n n n 31 severe new n n n 7
mild new n n a 0 severe new n n a 2
mild new n a n 6 severe new n a n 5
mild new n a a 0 severe new n a a 2
mild new a n n 22 severe new a n n 31
mild new a n a 2 severe new a n a 5
mild new a a n 9 severe new a a n 32
mild new a a a 0 severe new a a a 6
;

The analysis is directed at assessing the effect of the repeated measurement factor, Time, as well as the
independent variables, Diagnosis (mild or severe) and Treatment (std or new). The RESPONSE statement
is used to compute the logits of the marginal probabilities. The times used in the design matrix (0, 1,
2) correspond to the logarithms (base 2) of the actual times (1, 2, 4). The following statements produce
Output 32.8.1 through Output 32.8.4:

proc catmod data=growth2 order=data;
title2 'Reduced Logistic Model';
weight count;
population Diagnosis Treatment;
response logit;
model week1*week2*week4=(1 0 0 0, /* mild, std */

1 0 1 0,
1 0 2 0,

1 0 0 0, /* mild, new */
1 0 0 1,
1 0 0 2,

0 1 0 0, /* severe, std */
0 1 1 0,
0 1 2 0,

0 1 0 0, /* severe, new */
0 1 0 1,
0 1 0 2)

(1='Mild diagnosis, week 1',
2='Severe diagnosis, week 1',
3='Time effect for std trt',
4='Time effect for new trt')
/ freq design;

contrast 'Diagnosis effect, week 1' all_parms 1 -1 0 0;
contrast 'Equal time effects' all_parms 0 0 1 -1;

quit;

The samples and the response numbers are defined in Output 32.8.1, and the frequency distribution of the
response numbers within the samples is displayed.
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Output 32.8.1 Logistic Analysis of Growth Curve

Growth Curve Analysis
Reduced Logistic Model

The CATMOD Procedure

Growth Curve Analysis
Reduced Logistic Model

The CATMOD Procedure

Data Summary

Response week1*week2*week4 Response Levels 8

Weight Variable count Populations 4

Data Set GROWTH2 Total Frequency 340

Frequency Missing 0 Observations 29

Population Profiles

Sample Diagnosis Treatment Sample Size

1 mild std 80

2 mild new 70

3 severe std 100

4 severe new 90

Response Profiles

Response week1 week2 week4

1 n n n

2 n n a

3 n a n

4 n a a

5 a n n

6 a n a

7 a a n

8 a a a

Output 32.8.2 displays the design matrix specified in the MODEL statement, and the observed logits of the
marginal probabilities are displayed in the Response Function column.
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Output 32.8.2 Response Frequencies

Response Frequencies

Response Number

Sample 1 2 3 4 5 6 7 8

1 16 13 9 3 14 4 15 6

2 31 0 6 0 22 2 9 0

3 2 2 8 9 9 15 27 28

4 7 2 5 2 31 5 32 6

Response Functions and Design Matrix

Design
Matrix

Sample
Function
Number

Response
Function 1 2 3 4

1 1 0.05001 1 0 0 0

2 0.35364 1 0 1 0

3 0.73089 1 0 2 0

2 1 0.11441 1 0 0 0

2 1.29928 1 0 0 1

3 3.52636 1 0 0 2

3 1 -1.32493 0 1 0 0

2 -0.94446 0 1 1 0

3 -0.16034 0 1 2 0

4 1 -1.53148 0 1 0 0

2 0.00000 0 1 0 1

3 1.60944 0 1 0 2

The analysis of variance table in Output 32.8.3 shows that the data can be adequately modeled by two
parameters that represent diagnosis effects at week 1 and two log-linear time effects (one for each treatment).
Both of the time effects are significant.

Since the estimate of the logit for the severe diagnosis effect (parameter 2) is more negative than it is for the
mild diagnosis effect (parameter 1), there is a smaller predicted probability of the first response (normal) for
the severe diagnosis group.

Output 32.8.3 ANOVA and Parameter Estimates

Analysis of Variance

Source DF Chi-Square Pr > ChiSq

Mild diagnosis, week 1 1 0.28 0.5955

Severe diagnosis, week 1 1 100.48 <.0001

Time effect for std trt 1 26.35 <.0001

Time effect for new trt 1 125.09 <.0001

Residual 8 4.20 0.8387
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Output 32.8.3 continued

Analysis of Weighted Least Squares Estimates

Effect Parameter Estimate
Standard

Error
Chi-

Square Pr > ChiSq

Model 1 -0.0716 0.1348 0.28 0.5955

2 -1.3529 0.1350 100.48 <.0001

3 0.4944 0.0963 26.35 <.0001

4 1.4552 0.1301 125.09 <.0001

The analysis of contrasts (Output 32.8.4) shows that the diagnosis effect at week 1 is highly significant.
In other words, those subjects with a severe diagnosis have a significantly higher probability of abnormal
response at week 1 than those subjects with a mild diagnosis.

Output 32.8.4 Contrasts

Analysis of Contrasts

Contrast DF Chi-Square Pr > ChiSq

Diagnosis effect, week 1 1 77.02 <.0001

Equal time effects 1 59.12 <.0001

The analysis of contrasts (Output 32.8.4) also shows that the time effect for the standard treatment is
significantly different from the one for the new treatment. The table of parameter estimates (Output 32.8.3)
shows that the time effect for the new treatment (parameter 4) is stronger than it is for the standard treatment
(parameter 3).

Example 32.9: Repeated Measures, Two Repeated Measurement Factors
This example, from MacMillan et al. (1981), illustrates a repeated measures analysis in which there are two
repeated measurement factors. Two diagnostic procedures (standard and test) are performed on each subject,
and the results of both are evaluated at each of two times as being positive or negative. In the following
DATA step, std1 and std2 are the two measurements of the standard procedure, and test1 and test2 are the
two measurements of the test procedure:

data a;
input std1 $ test1 $ std2 $ test2 $ wt @@;
datalines;

neg neg neg neg 509 neg neg neg pos 4 neg neg pos neg 17
neg neg pos pos 3 neg pos neg neg 13 neg pos neg pos 8
neg pos pos pos 8 pos neg neg neg 14 pos neg neg pos 1
pos neg pos neg 17 pos neg pos pos 9 pos pos neg neg 7
pos pos neg pos 4 pos pos pos neg 9 pos pos pos pos 170
;

For the initial model, the response functions are marginal probabilities, and the repeated measurement
factors are Time and Treatment. The model is a saturated one, containing effects for Time, Treatment, and
Time*Treatment. The following statements produce Output 32.9.1:
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proc catmod data=a;
title2 'Marginal Symmetry, Saturated Model';
weight wt;
response marginals;
model std1*test1*std2*test2=_response_ / freq design noparm;
repeated Time 2, Treatment 2 / _response_=Time Treatment

Time*Treatment;
run;

The analysis of variance table in Output 32.9.1 shows that there is no significant effect of Time, either by
itself or in its interaction with Treatment. The second model includes only the Treatment effect. Again, the
response functions are marginal probabilities, and the repeated measurement factors are Time and Treatment.

Output 32.9.1 Diagnosis Data: Two Repeated Measurement Factors

Diagnostic Procedure Comparison
Marginal Symmetry, Saturated Model

The CATMOD Procedure

Diagnostic Procedure Comparison
Marginal Symmetry, Saturated Model

The CATMOD Procedure

Data Summary

Response std1*test1*std2*test2 Response Levels 15

Weight Variable wt Populations 1

Data Set A Total Frequency 793

Frequency Missing 0 Observations 15

Population Profiles

Sample Sample Size

1 793

Response Profiles

Response std1 test1 std2 test2

1 neg neg neg neg

2 neg neg neg pos

3 neg neg pos neg

4 neg neg pos pos

5 neg pos neg neg

6 neg pos neg pos

7 neg pos pos pos

8 pos neg neg neg

9 pos neg neg pos

10 pos neg pos neg

11 pos neg pos pos

12 pos pos neg neg

13 pos pos neg pos

14 pos pos pos neg

15 pos pos pos pos
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Output 32.9.1 continued

Response Frequencies

Response Number

Sample 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 509 4 17 3 13 8 8 14 1 17 9 7 4 9 170

Response Functions and Design Matrix

Design
Matrix

Sample
Function
Number

Response
Function 1 2 3 4

1 1 0.70870 1 1 1 1

2 0.72383 1 1 -1 -1

3 0.70618 1 -1 1 -1

4 0.73897 1 -1 -1 1

Analysis of Variance

Source DF Chi-Square Pr > ChiSq

Intercept 1 2385.34 <.0001

Time 1 0.85 0.3570

Treatment 1 8.20 0.0042

Time*Treatment 1 2.40 0.1215

Residual 0 . .

A main effect model with respect to Treatment is fit. The following statements produces Output 32.9.2:

title2 'Marginal Symmetry, Reduced Model';
model std1*test1*std2*test2=_response_ / corrb design noprofile;
repeated Time 2, Treatment 2 / _response_=Treatment;

run;

The analysis of variance table for the reduced model (Output 32.9.2) shows that the model fits (since the
residual chi-square is nonsignificant) and that the treatment effect is significant. The negative parameter
estimate for Treatment shows that the first level of treatment (std) has a smaller probability of the first response
level (neg) than the second level of treatment (test). In other words, the standard diagnostic procedure gives a
significantly higher probability of a positive response than the test diagnostic procedure.

Output 32.9.2 Diagnosis Data: Reduced Model

Diagnostic Procedure Comparison
Marginal Symmetry, Reduced Model

The CATMOD Procedure

Diagnostic Procedure Comparison
Marginal Symmetry, Reduced Model

The CATMOD Procedure

Data Summary

Response std1*test1*std2*test2 Response Levels 15

Weight Variable wt Populations 1

Data Set A Total Frequency 793

Frequency Missing 0 Observations 15
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Output 32.9.2 continued

Response Functions and Design
Matrix

Design
Matrix

Sample
Function
Number

Response
Function 1 2

1 1 0.70870 1 1

2 0.72383 1 -1

3 0.70618 1 1

4 0.73897 1 -1

Analysis of Variance

Source DF Chi-Square Pr > ChiSq

Intercept 1 2386.97 <.0001

Treatment 1 9.55 0.0020

Residual 2 3.51 0.1731

Analysis of Weighted Least Squares Estimates

Effect Parameter Estimate
Standard

Error
Chi-

Square Pr > ChiSq

Intercept 1 0.7196 0.0147 2386.97 <.0001

Treatment 2 -0.0128 0.00416 9.55 0.0020

Correlation Matrix of
the Parameter

Estimates

Row Col1 Col2

1 1.00000 0.04194

2 0.04194 1.00000

The next example illustrates a RESPONSE statement that, at each time, computes the sensitivity and
specificity of the test diagnostic procedure with respect to the standard procedure. Since these are measures
of the relative accuracy of the two diagnostic procedures, the repeated measurement factors in this case are
labeled Time and Accuracy. Only 15 of the 16 possible responses are observed, so additional care must be
taken in formulating the RESPONSE statement for computation of sensitivity and specificity.

The following statements produce Output 32.9.3 and Output 32.9.4:

title2 'Sensitivity and Specificity Analysis, '
'Main-Effects Model';

model std1*test1*std2*test2=_response_ / covb design noprofile;
repeated Time 2, Accuracy 2 / _response_=Time Accuracy;
response exp 1 -1 0 0 0 0 0 0,

0 0 1 -1 0 0 0 0,
0 0 0 0 1 -1 0 0,
0 0 0 0 0 0 1 -1

log 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1,
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1,
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0,
1 1 1 1 1 1 1 0 0 0 0 0 0 0 0,
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0 0 0 1 0 0 1 0 0 0 1 0 0 0 1,
0 0 1 1 0 0 1 0 0 1 1 0 0 1 1,
1 0 0 0 1 0 0 1 0 0 0 1 0 0 0,
1 1 0 0 1 1 0 1 1 0 0 1 1 0 0;

quit;

For the sensitivity and specificity analysis, the four response functions displayed next to the design matrix
(Output 32.9.3) represent the following:

1. sensitivity, time 1

2. specificity, time 1

3. sensitivity, time 2

4. specificity, time 2

The sensitivities and specificities are for the test diagnostic procedure relative to the standard procedure.

Output 32.9.3 Diagnosis Data: Sensitivity and Specificity Analysis

Diagnostic Procedure Comparison
Sensitivity and Specificity Analysis, Main-Effects Model

The CATMOD Procedure

Diagnostic Procedure Comparison
Sensitivity and Specificity Analysis, Main-Effects Model

The CATMOD Procedure

Data Summary

Response std1*test1*std2*test2 Response Levels 15

Weight Variable wt Populations 1

Data Set A Total Frequency 793

Frequency Missing 0 Observations 15

Response Functions and Design
Matrix

Design
Matrix

Sample
Function
Number

Response
Function 1 2 3

1 1 0.82251 1 1 1

2 0.94840 1 1 -1

3 0.81545 1 -1 1

4 0.96964 1 -1 -1

Analysis of Variance

Source DF Chi-Square Pr > ChiSq

Intercept 1 6448.79 <.0001

Time 1 4.10 0.0428

Accuracy 1 38.81 <.0001

Residual 1 1.00 0.3178

The ANOVA table in Output 32.9.3 shows that an additive model fits, that there is a significant effect of time,
and that the sensitivity is significantly different from the specificity.
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Output 32.9.4 shows that the predicted sensitivities and specificities are lower for time 1 (since parameter 2 is
negative). It also shows that the sensitivity is significantly less than the specificity.

Output 32.9.4 Parameter Estimates

Analysis of Weighted Least Squares Estimates

Effect Parameter Estimate
Standard

Error
Chi-

Square Pr > ChiSq

Intercept 1 0.8892 0.0111 6448.79 <.0001

Time 2 -0.00932 0.00460 4.10 0.0428

Accuracy 3 -0.0702 0.0113 38.81 <.0001

Covariance Matrix of the Parameter
Estimates

Row Col1 Col2 Col3

1 0.00012260 0.00000229 0.00010137

2 0.00000229 0.00002116 -.00000587

3 0.00010137 -.00000587 0.00012697

Example 32.10: Direct Input of Response Functions and Covariance Matrix
This example illustrates the ability of PROC CATMOD to operate on an existing vector of functions and the
corresponding covariance matrix. The estimates under investigation are composite indices summarizing the
responses to 18 psychological questions pertaining to general well-being. These estimates are computed
for domains corresponding to an age-by-sex cross-classification, and the covariance matrix is calculated
using the method of balanced repeated replications. The analysis is directed at obtaining a description of the
variation among these domain estimates. The data are from Koch and Stokes (1979).

In the following statements, the first row of the fbeing data set contains the response functions for the variables
b1–b10, while the remaining rows contain the covariance matrix. From the PROC CATMOD statements,
the READ option in the RESPONSE statement says that you are inputting the response functions and their
covariance matrix, while the PROFILE= option in the FACTORS statement tells you that the variables b1–b5
correspond to the effects for sex=‘male’ at the five different age groupings, and b6–b10 likewise correspond
to the effects for sex=‘female’. See the section “Inputting Response Functions and Covariances Directly” on
page 1927 for more information about using the READ option.
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data fbeing(type=est);
input b1-b5 _type_ $ _name_ $ b6-b10 #2;
datalines;

7.93726 7.92509 7.82815 7.73696 8.16791 parms .
7.24978 7.18991 7.35960 7.31937 7.55184
0.00739 0.00019 0.00146 -0.00082 0.00076 cov b1
0.00189 0.00118 0.00140 -0.00140 0.00039
0.00019 0.01172 0.00183 0.00029 0.00083 cov b2

-0.00123 -0.00629 -0.00088 -0.00232 0.00034
0.00146 0.00183 0.01050 -0.00173 0.00011 cov b3
0.00434 -0.00059 -0.00055 0.00023 -0.00013

-0.00082 0.00029 -0.00173 0.01335 0.00140 cov b4
0.00158 0.00212 0.00211 0.00066 0.00240
0.00076 0.00083 0.00011 0.00140 0.01430 cov b5

-0.00050 -0.00098 0.00239 -0.00010 0.00213
0.00189 -0.00123 0.00434 0.00158 -0.00050 cov b6
0.01110 0.00101 0.00177 -0.00018 -0.00082
0.00118 -0.00629 -0.00059 0.00212 -0.00098 cov b7
0.00101 0.02342 0.00144 0.00369 0.00253
0.00140 -0.00088 -0.00055 0.00211 0.00239 cov b8
0.00177 0.00144 0.01060 0.00157 0.00226

-0.00140 -0.00232 0.00023 0.00066 -0.00010 cov b9
-0.00018 0.00369 0.00157 0.02298 0.00918
0.00039 0.00034 -0.00013 0.00240 0.00213 cov b10

-0.00082 0.00253 0.00226 0.00918 0.01921
;

The following statements produce Output 32.10.1:

proc catmod data=fbeing;
title 'Complex Sample Survey Analysis';
response read b1-b10;
factors sex $ 2, age $ 5 / _response_=sex age

profile=(male '25-34',
male '35-44',
male '45-54',
male '55-64',
male '65-74',
female '25-34',
female '35-44',
female '45-54',
female '55-64',
female '65-74');

model _f_=_response_
/ design title='Main Effects for Sex and Age';

run;
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Output 32.10.1 Health Survey Data: Using Direct Input

Complex Sample Survey Analysis

Main Effects for Sex and Age

The CATMOD Procedure

Complex Sample Survey Analysis

Main Effects for Sex and Age

The CATMOD Procedure

Response Functions and Design Matrix

Design Matrix

Sample
Function
Number

Response
Function 1 2 3 4 5 6

1 1 7.93726 1 1 1 0 0 0

2 7.92509 1 1 0 1 0 0

3 7.82815 1 1 0 0 1 0

4 7.73696 1 1 0 0 0 1

5 8.16791 1 1 -1 -1 -1 -1

6 7.24978 1 -1 1 0 0 0

7 7.18991 1 -1 0 1 0 0

8 7.35960 1 -1 0 0 1 0

9 7.31937 1 -1 0 0 0 1

10 7.55184 1 -1 -1 -1 -1 -1

Analysis of Variance

Source DF Chi-Square Pr > ChiSq

Intercept 1 28089.07 <.0001

sex 1 65.84 <.0001

age 4 9.21 0.0561

Residual 4 2.92 0.5713

Analysis of Weighted Least Squares Estimates

Effect Parameter Estimate
Standard

Error
Chi-

Square Pr > ChiSq

Intercept 1 7.6319 0.0455 28089.07 <.0001

sex 2 0.2900 0.0357 65.84 <.0001

age 3 -0.00780 0.0645 0.01 0.9037

4 -0.0465 0.0636 0.54 0.4642

5 -0.0343 0.0557 0.38 0.5387

6 -0.1098 0.0764 2.07 0.1506

The analysis of variance table in Output 32.10.1 shows that the additive model fits and that there is a
significant effect of both sex and age. The following statements produce Output 32.10.2:

contrast 'No Age Effect for Age<65' all_parms 0 0 1 0 0 -1,
all_parms 0 0 0 1 0 -1,
all_parms 0 0 0 0 1 -1;

run;

The analysis of the contrast shows that there is no significant difference among the four age groups that are
under age 65.
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Output 32.10.2 Health Survey Data: Age<65 Contrast

Analysis of Contrasts

Contrast DF Chi-Square Pr > ChiSq

No Age Effect for Age<65 3 0.72 0.8678

The next model contains a binary age effect (under 65 versus 65 and over). The following statements produce
Output 32.10.3:

model _f_=(1 1 1,
1 1 1,
1 1 1,
1 1 1,
1 1 -1,
1 -1 1,
1 -1 1,
1 -1 1,
1 -1 1,
1 -1 -1)

(1='Intercept' ,
2='Sex' ,
3='Age (25-64 vs. 65-74)')

/ design title='Binary Age Effect (25-64 vs. 65-74)' ;
run;
quit;

Output 32.10.3 Health Survey Data: Age<65 Model

Complex Sample Survey Analysis

Binary Age Effect (25-64 vs. 65-74)

The CATMOD Procedure

Complex Sample Survey Analysis

Binary Age Effect (25-64 vs. 65-74)

The CATMOD Procedure

Response Functions and Design
Matrix

Design
Matrix

Sample
Function
Number

Response
Function 1 2 3

1 1 7.93726 1 1 1

2 7.92509 1 1 1

3 7.82815 1 1 1

4 7.73696 1 1 1

5 8.16791 1 1 -1

6 7.24978 1 -1 1

7 7.18991 1 -1 1

8 7.35960 1 -1 1

9 7.31937 1 -1 1

10 7.55184 1 -1 -1



2000 F Chapter 32: The CATMOD Procedure

Output 32.10.3 continued

Analysis of Variance

Source DF Chi-Square Pr > ChiSq

Intercept 1 19087.16 <.0001

Sex 1 72.64 <.0001

Age (25-64 vs. 65-74) 1 8.49 0.0036

Residual 7 3.64 0.8198

Analysis of Weighted Least Squares Estimates

Effect Parameter Estimate
Standard

Error
Chi-

Square Pr > ChiSq

Model 1 7.7183 0.0559 19087.16 <.0001

2 0.2800 0.0329 72.64 <.0001

3 -0.1304 0.0448 8.49 0.0036

The analysis of variance table in Output 32.10.3 shows that the model fits (note that the goodness-of-fit
statistic is the sum of the previous one (Output 32.10.1) plus the chi-square for the contrast matrix in
Output 32.10.2). The age and sex effects are significant. Since the second parameter in the table of estimates
is positive, males (the first level for the sex variable) have a higher predicted index of well-being than females.
Since the third parameter estimate is negative, those younger than age 65 (the first level of age) have a lower
predicted index of well-being than those 65 and older.

Example 32.11: Predicted Probabilities
Suppose you have collected marketing research data to examine the relationship between a prospect’s
likelihood of buying your product and the person’s education and income. Specifically, the variables are as
follows:

Variable Levels Interpretation

Education high, low Prospect’s education level
Income high, low Prospect’s income level
Purchase yes, no Did prospect purchase product?

The following statements first create a data set, loan, that contains the marketing research data. Then the
CATMOD procedure fits a model, obtains the parameter estimates, and obtains the predicted probabilities of
interest. These statements produce Output 32.11.1 and Output 32.11.2.

data loan;
input Education $ Income $ Purchase $ wt;
datalines;

high high yes 54
high high no 23
high low yes 41
high low no 12
low high yes 35
low high no 42
low low yes 19
low low no 8
;
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ods output PredictedValues=Predicted (keep=Education Income PredFunction);
proc catmod data=loan order=data;

weight wt;
response marginals;
model Purchase=Education Income / pred design;

run;

proc sort data=Predicted;
by descending PredFunction;

run;
proc print data=Predicted;
run;

Notice that the preceding statements use the Output Delivery System (ODS) to output the parameter estimates
instead of the OUT= option, though either can be used.

Output 32.11.1 Marketing Research Data: Obtaining Predicted Probabilities

The CATMOD ProcedureThe CATMOD Procedure

Data Summary

Response Purchase Response Levels 2

Weight Variable wt Populations 4

Data Set LOAN Total Frequency 234

Frequency Missing 0 Observations 8

Population Profiles

Sample Education Income Sample Size

1 high high 77

2 high low 53

3 low high 77

4 low low 27

Response Profiles

Response Purchase

1 yes

2 no

Response Functions and
Design Matrix

Design
Matrix

Sample
Response

Function 1 2 3

1 0.70130 1 1 1

2 0.77358 1 1 -1

3 0.45455 1 -1 1

4 0.70370 1 -1 -1
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Output 32.11.1 continued

Analysis of Variance

Source DF Chi-Square Pr > ChiSq

Intercept 1 418.36 <.0001

Education 1 8.85 0.0029

Income 1 4.70 0.0302

Residual 1 1.84 0.1745

Analysis of Weighted Least Squares Estimates

Parameter Estimate
Standard

Error
Chi-

Square Pr > ChiSq

Intercept 0.6481 0.0317 418.36 <.0001

Education high 0.0924 0.0311 8.85 0.0029

Income high -0.0675 0.0312 4.70 0.0302

Predicted Values for Response Functions

Observed Predicted

Education Income
Function
Number Function

Standard
Error Function

Standard
Error Residual

high high 1 0.701299 0.052158 0.67294 0.047794 0.028359

high low 1 0.773585 0.057487 0.808034 0.051586 -0.03445

low high 1 0.454545 0.056744 0.48811 0.051077 -0.03356

low low 1 0.703704 0.087877 0.623204 0.064867 0.080499

Output 32.11.2 Predicted Probabilities Data Set

Obs Education Income PredFunction

1 high low 0.808034

2 high high 0.67294

3 low low 0.623204

4 low high 0.48811

You can use the predicted values (values of PredFunction in Output 32.11.2) as scores representing the
likelihood that a randomly chosen subject from one of these populations will purchase the product. Notice
that the “Response Profiles” table in Output 32.11.1 shows you that the first sorted level of Purchase is
‘yes’, indicating that the predicted probabilities are for Pr(Purchase=‘yes’). For example, someone with high
education and low income has an estimated probability of purchase of 0.808. Like any response function
estimate given by PROC CATMOD, this estimate can be obtained by cross-multiplying the row from the
design matrix corresponding to the sample (sample number 2 in this case) with the vector of parameter
estimates: .1 � 0:6481/C .1 � 0:0924/C .�1 � .�0:0675//.

This ranking of scores can help in decision making (for example, with respect to allocation of advertising
dollars, choice of advertising media, choice of print media, and so on).
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Overview: CLUSTER Procedure
The CLUSTER procedure hierarchically clusters the observations in a SAS data set by using one of 11
methods. The data can be coordinates or distances. If the data are coordinates, PROC CLUSTER computes
(possibly squared) Euclidean distances. If you want non-Euclidean distances, use the DISTANCE procedure
(see Chapter 36) to compute an appropriate distance data set that can then be used as input to PROC
CLUSTER.

The clustering methods are: average linkage, the centroid method, complete linkage, density linkage
(including Wong’s hybrid and kth-nearest-neighbor methods), maximum likelihood for mixtures of spherical
multivariate normal distributions with equal variances but possibly unequal mixing proportions, the flexible-
beta method, McQuitty’s similarity analysis, the median method, single linkage, two-stage density linkage,
and Ward’s minimum-variance method. Each method is described in the section “Clustering Methods” on
page 2026.

All methods are based on the usual agglomerative hierarchical clustering procedure. Each observation begins
in a cluster by itself. The two closest clusters are merged to form a new cluster that replaces the two old
clusters. Merging of the two closest clusters is repeated until only one cluster is left. The various clustering
methods differ in how the distance between two clusters is computed.

The CLUSTER procedure is not practical for very large data sets because the CPU time is roughly proportional
to the square or cube of the number of observations. The FASTCLUS procedure (see Chapter 38) requires
time proportional to the number of observations and thus can be used with much larger data sets than PROC
CLUSTER. If you want to cluster a very large data set hierarchically, use PROC FASTCLUS for a preliminary
cluster analysis to produce a large number of clusters. Then use PROC CLUSTER to cluster the preliminary
clusters hierarchically. This method is illustrated in Example 33.3.

PROC CLUSTER displays a history of the clustering process, showing statistics useful for estimating the
number of clusters in the population from which the data are sampled. It creates a dendrogram when ODS
Graphics is enabled. PROC CLUSTER also creates an output data set that can be used by the TREE procedure
to output the cluster membership at any desired level. For example, to obtain the six-cluster solution, you
could first use PROC CLUSTER with the OUTTREE= option, and then use this output data set as the input
data set to the TREE procedure. With PROC TREE, specify the NCLUSTERS=6 and the OUT= options to
obtain the six-cluster solution. For an example, see Example 105.1 in Chapter 105, “The TREE Procedure.”

For coordinate data, Euclidean distances are computed from differences between coordinate values. The use
of differences has several important consequences:

• For differences to be valid, the variables must have an interval or stronger scale of measurement.
Ordinal or ranked data are generally not appropriate for cluster analysis.

• For Euclidean distances to be comparable, equal differences should have equal practical importance.
You might need to transform the variables linearly or nonlinearly to satisfy this condition. For example,
if one variable is measured in dollars and one in euros, you might need to convert to the same currency.
Or, if ratios are more meaningful than differences, take logarithms.
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• Variables with large variances tend to have more effect on the resulting clusters than variables with
small variances. If you consider all variables to be equally important, you can use the STD option
in PROC CLUSTER to standardize the variables to mean 0 and standard deviation 1. However,
standardization is not always appropriate. See Milligan and Cooper (1987) for a Monte Carlo study
on various methods of variable standardization. You should remove outliers before using PROC
CLUSTER with the STD option unless you specify the TRIM= option. The STDIZE procedure (see
Chapter 94) provides additional methods for standardizing variables and imputing missing values.

The ACECLUS procedure (see Chapter 24) is useful for linear transformations of the variables if any of the
following conditions hold:

• You have no idea how the variables should be scaled.

• You want to detect natural clusters regardless of whether some variables have more influence than
others.

• You want to use a clustering method designed for finding compact clusters, but you want to be able to
detect elongated clusters.

Agglomerative hierarchical clustering is discussed in all standard references on cluster analysis, such as
Anderberg (1973); Sneath and Sokal (1973); Hartigan (1975); Everitt (1980); Spath (1980). An especially
good introduction is given by Massart and Kaufman (1983). Anyone considering doing a hierarchical cluster
analysis should study the Monte Carlo results of Milligan (1980); Milligan and Cooper (1985); Cooper and
Milligan (1988).

Other essential, though more advanced, references on hierarchical clustering include Hartigan (1977, pp.
60–68; 1981), Wong (1982); Wong and Schaack (1982); Wong and Lane (1983). For a discussion of the
confusing terminology in hierarchical cluster analysis, see Blashfield and Aldenderfer (1978).

Getting Started: CLUSTER Procedure
This example shows how you can use the CLUSTER procedure to compute hierarchical clusters of observa-
tions in a SAS data set.

Suppose you want to determine whether national figures for birth rates, death rates, and infant death rates can
be used to categorize countries. Previous studies indicate that the clusters computed from this type of data
can be elongated and elliptical. Thus, you need to perform a linear transformation on the raw data before the
cluster analysis.
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The following data1 from Rouncefield (1995) are birth rates, death rates, and infant death rates for 97
countries. The DATA step creates the SAS data set Poverty:

data Poverty;
input Birth Death InfantDeath Country $20. @@;
datalines;

24.7 5.7 30.8 Albania 12.5 11.9 14.4 Bulgaria
13.4 11.7 11.3 Czechoslovakia 12 12.4 7.6 Former E. Germany
11.6 13.4 14.8 Hungary 14.3 10.2 16 Poland
13.6 10.7 26.9 Romania 14 9 20.2 Yugoslavia

... more lines ...

41.7 10.3 66 Zimbabwe
;

The data set Poverty contains the character variable Country and the numeric variables Birth, Death, and
InfantDeath, which represent the birth rate per thousand, death rate per thousand, and infant death rate per
thousand. The $20. in the INPUT statement specifies that the variable Country is a character variable with
a length of 20. The double trailing at sign (@@) in the INPUT statement holds the input line for further
iterations of the DATA step, specifying that observations are input from each line until all values are read.

Because the variables in the data set do not have equal variance, you must perform some form of scaling or
transformation. One method is to standardize the variables to mean zero and variance one. However, when
you suspect that the data contain elliptical clusters, you can use the ACECLUS procedure to transform the
data such that the resulting within-cluster covariance matrix is spherical. The procedure obtains approximate
estimates of the pooled within-cluster covariance matrix and then computes canonical variables to be used in
subsequent analyses.

The following statements perform the ACECLUS transformation by using the SAS data set Poverty. The
OUT= option creates an output SAS data set called Ace that contains the canonical variable scores:

proc aceclus data=Poverty out=Ace p=.03 noprint;
var Birth Death InfantDeath;

run;

The P= option specifies that approximately 3% of the pairs are included in the estimation of the within-cluster
covariance matrix. The NOPRINT option suppresses the display of the output. The VAR statement specifies
that the variables Birth, Death, and InfantDeath are used in computing the canonical variables.

The following statements invoke the CLUSTER procedure, using the SAS data set Ace created in the previous
PROC ACECLUS run:

ods graphics on;

proc cluster data=Ace method=ward ccc pseudo print=15 out=tree
plots=den(height=rsq);
var can1-can3;
id country;

run;

ods graphics off;

1 These data have been compiled from the United Nations Demographic Yearbook 1990 (United Nations publications, Sales No.
E/F.91.XII.1, copyright 1991, United Nations, New York) and are reproduced with the permission of the United Nations.
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The ODS GRAPHICS ON statement enables ODS Graphics. Ward’s minimum-variance clustering method is
specified by the METHOD= option. The CCC option displays the cubic clustering criterion, and the PSEUDO
option displays pseudo F and t2 statistics. The PRINT=15 option displays only the last 15 generations of
the cluster history. By default, when ODS Graphics is enabled, a dendrogram displaying the semipartial R
square is displayed on the X axis. The option PLOTS=DEN(HEIGHT=RSQ) requests a dendrogram with R
square displayed instead.

The VAR statement specifies that the canonical variables computed in the ACECLUS procedure are used in
the cluster analysis. The ID statement selects the variable Country as the Y axis variable in the dendrogram
and also specifies that Country should be added to the Tree output data set.

PROC CLUSTER first displays the table of eigenvalues of the covariance matrix (Figure 33.1). These
eigenvalues are used in the computation of the cubic clustering criterion. The first two columns list each
eigenvalue and the difference between the eigenvalue and its successor. The last two columns display the
individual and cumulative proportion of variation associated with each eigenvalue.

Figure 33.1 Table of Eigenvalues of the Covariance Matrix

The CLUSTER Procedure
Ward's Minimum Variance Cluster Analysis

The CLUSTER Procedure
Ward's Minimum Variance Cluster Analysis

Eigenvalues of the Covariance Matrix

Eigenvalue Difference Proportion Cumulative

1 64.5500051 54.7313223 0.8091 0.8091

2 9.8186828 4.4038309 0.1231 0.9321

3 5.4148519 0.0679 1.0000

Root-Mean-Square Total-Sample Standard Deviation 5.156987

Root-Mean-Square Distance Between Observations 12.63199

Figure 33.2 displays the last 15 generations of the cluster history. First listed are the number of clusters and
the names of the clusters joined. The observations are identified either by the ID value or by CLn, where n is
the number of the cluster. Next, PROC CLUSTER displays the number of observations in the new cluster
and the semipartial R square. The latter value represents the decrease in the proportion of variance accounted
for by joining the two clusters.
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Figure 33.2 Cluster History

Cluster History

Number
of

Clusters Clusters Joined Freq
Semipartial

R-Square R-Square

Approximate
Expected
R-Square

Cubic
Clustering

Criterion
Pseudo F

Statistic
Pseudo

t-Squared Tie

15 Oman CL37 5 0.0039 .957 .933 6.03 132 12.1

14 CL31 CL22 13 0.0040 .953 .928 5.81 131 9.7

13 CL41 CL17 32 0.0041 .949 .922 5.70 131 13.1

12 CL19 CL21 10 0.0045 .945 .916 5.65 132 6.4

11 CL39 CL15 9 0.0052 .940 .909 5.60 134 6.3

10 CL76 CL27 6 0.0075 .932 .900 5.25 133 18.1

9 CL23 CL11 15 0.0130 .919 .890 4.20 125 12.4

8 CL10 Afghanistan 7 0.0134 .906 .879 3.55 122 7.3

7 CL9 CL25 17 0.0217 .884 .864 2.26 114 11.6

6 CL8 CL20 14 0.0239 .860 .846 1.42 112 10.5

5 CL14 CL13 45 0.0307 .829 .822 0.65 112 59.2

4 CL16 CL7 28 0.0323 .797 .788 0.57 122 14.8

3 CL12 CL6 24 0.0323 .765 .732 1.84 153 11.6

2 CL3 CL4 52 0.1782 .587 .613 -.82 135 48.9

1 CL5 CL2 97 0.5866 .000 .000 0.00 . 135

Next listed is the squared multiple correlation, R square, which is the proportion of variance accounted for by
the clusters. Figure 33.2 shows that, when the data are grouped into three clusters, the proportion of variance
accounted for by the clusters (R square) is just under 77%. The approximate expected value of R square is
given in the ERSq column. This expectation is approximated under the null hypothesis that the data have a
uniform distribution instead of forming distinct clusters.

The next three columns display the values of the cubic clustering criterion (CCC), pseudo F (PSF), and t2

(PST2) statistics. These statistics are useful for estimating the number of clusters in the data.

The final column in Figure 33.2 lists ties for minimum distance; a blank value indicates the absence of a tie.
A tie means that the clusters are indeterminate and that changing the order of the observations might change
the clusters. See Example 33.4 for ways to investigate the effects of ties.

Figure 33.3 plots the three statistics for estimating the number of clusters. Peaks in the plot of the cubic
clustering criterion with values greater than 2 or 3 indicate good clusters; peaks with values between 0 and 2
indicate possible clusters. Large negative values of the CCC can indicate outliers. In Figure 33.3, there is a
local peak of the CCC when the number of clusters is three. The CCC drops at four clusters and then steadily
increases, leveling off at eleven clusters.

Another method of judging the number of clusters in a data set is to look at the pseudo F statistic (PSF).
Relatively large values indicate good numbers of clusters. In Figure 33.3, the pseudo F statistic suggests
three clusters or eleven clusters.
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Figure 33.3 Plot of Statistics for Estimating the Number of Clusters

To interpret the values of the pseudo t2 statistic, look down the column or look at the plot from right to left
until you find the first value that is markedly larger than the previous value, then move back up the column or
to the right in the plot by one step in the cluster history. In Figure 33.3, you can see possibly good clustering
levels at eleven clusters, six clusters, three clusters, and two clusters.

Considered together, these statistics suggest that the data can be clustered into eleven clusters or three clusters.
The following statements examine the results of clustering the data into three clusters.

Figure 33.4 displays the dendrogram. The figure provides a graphical view of the information in Figure 33.2.
As the number of branches grows to the left from the root, the R square approaches 1; the first three clusters
(branches of the tree) account for over half of the variation (about 77%, from Figure 33.4). In other words,
only three clusters are necessary to explain over three-fourths of the variation.
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Figure 33.4 Dendrogram of Clusters versus R-Square Values
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You can use PROC TREE and the output data set from PROC CLUSTER to create a new data set that contains
information about cluster membership as follows:

proc tree data=Tree out=New nclusters=3 noprint;
height _rsq_;
copy can1 can2;
id country;

run;

The SAS data set Tree is input. The OUT= option creates an output SAS data set named New that contains
information about cluster membership. The NCLUSTERS= option specifies the number of clusters desired
in the data set New. The results can be displayed in a scatter plot.

The following statements use the SGPLOT procedure to display the results that are in the SAS data set New:

proc sgplot data=New;
scatter y=can2 x=can1 / group=cluster;

run;

The SCATTER statement requests a plot of the two canonical variables, using the value of the variable cluster,
which is produced by PROC TREE as the identification variable. The results are displayed in Figure 33.5.

Figure 33.5 Plot of Canonical Variables and Cluster for Three Clusters

The statistics in Figure 33.2 and Figure 33.3, the dendrogram in Figure 33.4, and the plot of the canonical
variables in Figure 33.5 assist in the estimation of the number of clusters in the data. There seems to be
reasonable separation in the clusters. However, you must use this information, along with experience and
knowledge of the field, to help in deciding the correct number of clusters.
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Syntax: CLUSTER Procedure
The following statements are available in the CLUSTER procedure:

PROC CLUSTER METHOD=name < options > ;
BY variables ;
COPY variables ;
FREQ variable ;
ID variable ;
RMSSTD variable ;
VAR variables ;

Only the PROC CLUSTER statement is required, except that the FREQ statement is required when the
RMSSTD statement is used; otherwise the FREQ statement is optional. Usually only the VAR statement and
possibly the ID and COPY statements are needed in addition to the PROC CLUSTER statement. The rest of
this section provides detailed syntax information for each of the preceding statements, beginning with the
PROC CLUSTER statement. The remaining statements are covered in alphabetical order.

PROC CLUSTER Statement
PROC CLUSTER METHOD=name < options > ;

The PROC CLUSTER statement invokes the CLUSTER procedure. It also specifies a clustering method, and
optionally specifies details for clustering methods, data sets, data processing, and displayed output.

Table 33.1 summarizes the options available in the PROC CLUSTER statement.

Table 33.1 PROC CLUSTER Statement Options

Option Description

Specify input and output data sets
DATA= Specifies input data set
OUTTREE= Creates output data set

Specify clustering methods
BETA= Specifies beta value for flexible beta method
HYBRID Specifies Wong’s hybrid clustering method
METHOD= Specifies clustering method
MODE= Specifies the minimum number of members for modal clusters
PENALTY= Specifies the penalty coefficient for maximum likelihood

Control data processing prior to clustering
NOEIGEN Suppresses computation of eigenvalues
NONORM Suppresses normalizing of distances
NOSQUARE Suppresses squaring of distances
STANDARD Standardizes variables
TRIM= Omits points with low probability densities

Control density estimation
K= Specifies number of neighbors for kth-nearest-neighbor density estimation
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Table 33.1 continued

Option Description

R= Specifies radius of sphere of support for uniform-kernel density estimation

Ties
NOTIE Suppresses checking for ties

Control display of the cluster history
CCC Displays cubic clustering criterion
NOID Suppresses display of ID values
PRINT= Specifies number of generations to display
PSEUDO Displays pseudo F and t2 statistics
RMSSTD Displays root mean square standard deviation
RSQUARE Displays R square and semipartial R square

Control other aspects of output
NOPRINT Suppresses display of all output
PLOTS= Specifies ODS graphics details
SIMPLE Displays simple summary statistics

METHOD=name
The METHOD= specification determines the clustering method used by the procedure. Any one of the
following 11 methods can be specified for name:

AVERAGE | AVE requests average linkage (group average, unweighted pair-group method
using arithmetic averages, UPGMA). Distance data are squared unless you
specify the NOSQUARE option.

CENTROID | CEN requests the centroid method (unweighted pair-group method using cen-
troids, UPGMC, centroid sorting, weighted-group method). Distance data
are squared unless you specify the NOSQUARE option.

COMPLETE | COM requests complete linkage (furthest neighbor, maximum method, diameter
method, rank order typal analysis). To reduce distortion of clusters by
outliers, the TRIM= option is recommended.

DENSITY | DEN requests density linkage, which is a class of clustering methods using
nonparametric probability density estimation. You must also specify either
the K=, R=, or HYBRID option to indicate the type of density estimation
to be used. See also the MODE= and DIM= options in this section.

EML requests maximum-likelihood hierarchical clustering for mixtures of spher-
ical multivariate normal distributions with equal variances but possibly
unequal mixing proportions. Use METHOD=EML only with coordinate
data. See the PENALTY= option for details. The NONORM option does
not affect the reported likelihood values but does affect other unrelated
criteria. The EML method is much slower than the other methods in the
CLUSTER procedure.

FLEXIBLE | FLE requests the Lance-Williams flexible-beta method. See the BETA= option
in this section.
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MCQUITTY | MCQ requests McQuitty’s similarity analysis (weighted average linkage,
weighted pair-group method using arithmetic averages, WPGMA).

MEDIAN | MED requests Gower’s median method (weighted pair-group method using
centroids, WPGMC). Distance data are squared unless you specify the
NOSQUARE option.

SINGLE | SIN requests single linkage (nearest neighbor, minimum method, connectedness
method, elementary linkage analysis, or dendritic method). To reduce
chaining, you can use the TRIM= option with METHOD=SINGLE.

TWOSTAGE | TWO requests two-stage density linkage. You must also specify the K=, R=, or
HYBRID option to indicate the type of density estimation to be used. See
also the MODE= and DIM= options in this section.

WARD | WAR requests Ward’s minimum-variance method (error sum of squares, trace
W). Distance data are squared unless you specify the NOSQUARE option.
To reduce distortion by outliers, the TRIM= option is recommended. See
the NONORM option.

The following list provides details about the other options.

BETA=n
specifies the beta parameter for METHOD=FLEXIBLE. The value of n should be less than 1, usually
between 0 and –1. By default, BETA=–0.25. Milligan (1987) suggests a somewhat smaller value,
perhaps –0.5, for data with many outliers.

CCC
displays the cubic clustering criterion and approximate expected R square under the uniform null
hypothesis (Sarle 1983). The statistics associated with the RSQUARE option, R square and semipartial
R square, are also displayed. The CCC option applies only to coordinate data. The CCC option
is not appropriate with METHOD=SINGLE because of the method’s tendency to chop off tails of
distributions. Computation of the CCC requires the eigenvalues of the covariance matrix. If the number
of variables is large, computing the eigenvalues requires much computer time and memory.

DATA=SAS-data-set
names the input data set that contains observations to be clustered. By default, the procedure uses
the most recently created SAS data set. If the data set is TYPE=DISTANCE, the data are interpreted
as a distance matrix; the number of variables must equal the number of observations in the data
set or in each BY group. The distances are assumed to be Euclidean, but the procedure accepts
other types of distances or dissimilarities. If the data set is not TYPE=DISTANCE, the data are
interpreted as coordinates in a Euclidean space, and Euclidean distances are computed. For more about
TYPE=DISTANCE data sets, see Chapter A, “Special SAS Data Sets.”

Data set types (such as TYPE=DISTANCE) do not persist when you copy or modify a data set. You
must specify the TYPE= data set option for the new data set, as in the following example:

data dist2(type=distance);
set dist;

run;
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If you do not specify the TYPE=DISTANCE data set option, the new data set is the default
TYPE=DATA. If you use the new data set in a procedure that accepts both TYPE=DATA or
TYPE=DISTANCE data sets (such as PROC CLUSTER or PROC MODECLUS), the results will be
incorrect.

You cannot use a TYPE=CORR data set as input to PROC CLUSTER, since the procedure uses
dissimilarity measures. Instead, you can use a DATA step or the IML procedure to extract the
correlation matrix from a TYPE=CORR data set and transform the values to dissimilarities such as 1 –
r or 1 � r2, where r is the correlation.

All methods produce the same results when used with coordinate data as when used with Euclidean
distances computed from the coordinates. However, the DIM= option must be used with distance data
if you specify METHOD=TWOSTAGE or METHOD=DENSITY or if you specify the TRIM= option.

Certain methods that are most naturally defined in terms of coordinates require squared Euclidean dis-
tances to be used in the combinatorial distance formulas (Lance and Williams 1967). For this reason, dis-
tance data are automatically squared when used with METHOD=AVERAGE, METHOD=CENTROID,
METHOD=MEDIAN, or METHOD=WARD. If you want the combinatorial formulas to be applied to
the (unsquared) distances with these methods, use the NOSQUARE option.

DIM=n
specifies the dimensionality used when computing density estimates with the TRIM= option,
METHOD=DENSITY, or METHOD=TWOSTAGE. The values of n must be greater than or equal
to 1. The default is the number of variables if the data are coordinates; the default is 1 if the data are
distances.

HYBRID
requests the Wong (1982) hybrid clustering method in which density estimates are computed from
a preliminary cluster analysis using the k-means method. The DATA= data set must contain means,
frequencies, and root mean square standard deviations of the preliminary clusters (see the FREQ and
RMSSTD statements). To use HYBRID, you must use either a FREQ statement or a DATA= data set
that contains a _FREQ_ variable, and you must also use either an RMSSTD statement or a DATA=
data set that contains an _RMSSTD_ variable.

The MEAN= data set produced by the FASTCLUS procedure is suitable for input to the CLUSTER
procedure for hybrid clustering. Since this data set contains _FREQ_ and _RMSSTD_ variables, you
can use it as input and then omit the FREQ and RMSSTD statements.

You must specify either METHOD=DENSITY or METHOD=TWOSTAGE with the HYBRID option.
You cannot use this option in combination with the TRIM=, K=, or R= option.

K=n
specifies the number of neighbors to use for kth-nearest-neighbor density estimation (Silverman 1986,
pp. 19–21 and 96–99). The number of neighbors (n) must be at least two but less than the number of
observations. See the MODE= option, which follows.

Density estimation is used with the TRIM=, METHOD=DENSITY, and METHOD=TWOSTAGE
options.
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MODE=n
specifies that, when two clusters are joined, each must have at least n members in order for either
cluster to be designated a modal cluster. If you specify MODE=1, each cluster must also have a
maximum density greater than the fusion density in order for either cluster to be designated a modal
cluster.

Use the MODE= option only with METHOD=DENSITY or METHOD=TWOSTAGE. With
METHOD=TWOSTAGE, the MODE= option affects the number of modal clusters formed. With
METHOD=DENSITY, the MODE= option does not affect the clustering process but does determine
the number of modal clusters reported on the output and identified by the _MODE_ variable in the
output data set.

If you specify the K= option, the default value of MODE= is the same as the value of K= because the
use of kth-nearest-neighbor density estimation limits the resolution that can be obtained for clusters
with fewer than k members. If you do not specify the K= option, the default is MODE=2.

If you specify MODE=0, the default value is used instead of 0.

If you specify a FREQ statement or if a _FREQ_ variable appears in the input data set, the MODE=
value is compared with the number of actual observations in the clusters being joined, not with the
sum of the frequencies in the clusters.

NOEIGEN
suppresses computation of the eigenvalues of the covariance matrix and substitutes the variances of the
variables for the eigenvalues when computing the cubic clustering criterion. The NOEIGEN option
saves time if the number of variables is large, but it should be used only if the variables are nearly
uncorrelated. If you specify the NOEIGEN option and the variables are highly correlated, the cubic
clustering criterion might be very liberal. The NOEIGEN option applies only to coordinate data.

NOID
suppresses the display of ID values for the clusters joined at each generation of the cluster history.

NONORM
prevents the distances from being normalized to unit mean or unit root mean square with most methods.
With METHOD=WARD, the NONORM option prevents the between-cluster sum of squares from
being normalized by the total sum of squares to yield a squared semipartial correlation. The NONORM
option does not affect the reported likelihood values with METHOD=EML, but it does affect other
unrelated criteria, such as the _DIST_ variable.

NOPRINT
suppresses the display of all output. Note that this option temporarily disables the Output Delivery
System (ODS). For more information, see Chapter 20, “Using the Output Delivery System.”

NOSQUARE
prevents input distances from being squared with METHOD=AVERAGE,
METHOD=CENTROID, METHOD=MEDIAN, or METHOD=WARD.

If you specify the NOSQUARE option with distance data, the data are assumed to be squared Euclidean
distances for computing R-square and related statistics defined in a Euclidean coordinate system.

If you specify the NOSQUARE option with coordinate data with METHOD=CENTROID,
METHOD=MEDIAN, or METHOD=WARD, then the combinatorial formula is applied to unsquared



PROC CLUSTER Statement F 2019

Euclidean distances. The resulting cluster distances do not have their usual Euclidean interpretation
and are therefore labeled “False” in the output.

NOTIE
prevents PROC CLUSTER from checking for ties for minimum distance between clusters at each
generation of the cluster history. If your data are measured with such precision that ties are unlikely,
then you can specify the NOTIE option to reduce slightly the time and space required by the procedure.
See the section “Ties” on page 2037 for more information.

OUTTREE=SAS-data-set
creates an output data set that can be used by the TREE procedure to draw a tree diagram. If you
want to create a SAS data set in a permanent library, you must specify a two-level name. For more
information about permanent libraries and SAS data sets, see SAS Language Reference: Concepts.
If you omit the OUTTREE= option, the data set is named by using the DATAn convention and is not
permanently saved. If you do not want to create an output data set, use OUTTREE=_NULL_.

PENALTY=p
specifies the penalty coefficient used with METHOD=EML. See the section “Clustering Methods” on
page 2026 for more information. Values for p must be greater than zero. By default, PENALTY=2.

PLOTS < (global-plot-options) > < = plot-request >

PLOTS < (global-plot-options) > < = (plot-request < ... plot-request >) >
controls the plots produced through ODS Graphics.

ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;

proc cluster method=ward plots=all;
run;

ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

By default, PROC CLUSTER produces a dendrogram. PROC CLUSTER can also produce plots of the
cubic clustering criterion, the pseudo F statistic, and the pseudo t2 statistic from the cluster history
table. These statistics are useful for estimating the number of clusters. Each statistic is plotted against
the number of clusters. You can request that PROC CLUSTER create these graphs by specifying
the CCC or PSEUDO options, or by specifying the statistics in a plot-request in the PLOT option.
PROC CLUSTER might be unable to compute the statistics in some cases; for details, see the CCC
and PSEUDO options. If a statistic cannot be computed, it cannot be plotted. PROC CLUSTER plots
all of these statistics that are computed unless you tell it specifically what to plot using PLOTS=.

PROC CLUSTER has a CCC and PSEUDO option as well as CCC and PSEUDO plot-requests. All
four options are illustrated in the following step:
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ods graphics on;

proc cluster ccc pseudo plots=(ccc pseudo);
run;

ods graphics off;

The maximum number of clusters shown in all the plots is the minimum of the following quantities:

• the number of observations

• the value of the PRINT= option, if that option is specified

• the maximum number of clusters for which CCC is computed, if the CCC is plotted

The global-plot-options apply to all plots generated by the CLUSTER procedure. The global-plot-
options are as follows:

MAXCLUS=n
right-truncates the CCC, PSF, and PST2 plots at the n value. This prevents these plots from losing
resolution when a large number of clusters are plotted. The default is MAXCLUS=200.

MAXPOINTS=n

MAXPTS=n
suppresses the dendrogram when the number of clusters exceeds the n value. This prevents an
unreadable plot from being produced. The default is MAXPOINTS=200.

UNPACKPANEL

UNPACK
breaks a plot that is otherwise paneled into separate plots for each statistic.

ONLY
suppresses the default plots. Only plots specifically requested are displayed.

The following plot-requests can be specified:

ALL
generates all possible plots. The CCC and PSEUDO options must be specified to obtain the CCC,
PSF and PST2 plots in addition to the dendrogram.

CCC
implicitly specifies the CCC option and, if possible, plots the cubic clustering criterion against
the number of clusters.

DENDROGRAM < ( dendrogram-options ) >
requests a dendrogram and specifies dendrogram-options. A dendrogram is created by default
unless the ONLY global-plot-option is requested.

Unlike most graphs, the size of the dendrogram can vary as a function of the number of objects
that appear in the dendrogram. You can specify the following dendrogram-options to control the
size and appearance of the dendrogram:
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COMPUTEHEIGHT=a b

CH=a b
specifies the constants for computing the height of the dendrogram. For n points being
clustered, intercept a, and slope b, the height is based in part on aC bn. For a horizontal
dendrogram, the default (given in pixels) is COMPUTEHEIGHT=100 12, the default height
in pixels is max(100C 12n, 480), the default height in inches is max(1:04167C 0:125n,
5), and the default height in centimeters is max(2:64583C 0:3175n, 12.7). For a vertical
dendrogram, the default height is 480 pixels. The default unit is pixels, and you can use
the UNIT= dendrogram-option to change the unit to inches or centimeters for this option.
Inches equals pixels divided by 96, and centimeters equals inches times 2.54.

COMPUTEWIDTH=a b

CW=a b
specifies the constants for computing the width of the dendrogram. For n points being
clustered, intercept a, and slope b, the width is based in part on a C bn. For a vertical
dendrogram, the default (given in pixels) is COMPUTEWIDTH=100 12, the default width
in pixels is max(100 C 12n, 640), the default width in inches is max(1:04167 C 0:125n,
6.66667), and the default width in centimeters is max(2:64583C 0:3175n, 16.933). For a
horizontal dendrogram, the default width is 640 pixels. The default unit is pixels, and you
can use the UNIT= dendrogram-option to change the unit to inches or centimeters for this
option. Inches equals pixels divided by 96, and centimeters equals inches times 2.54.

HEIGHT=HEIGHT | MODE | NCL | RSQ

H=H | M | N | R
specifies the method for drawing the height of the dendrogram. HEIGHT=HEIGHT is the
default.

HEIGHT=HEIGHT specifies the distance or similarity between the last clusters joined, as
defined in the section “Clustering Methods” on page 2026.

HEIGHT=MODE pertains to the modal clusters. With METHOD=DENSITY, the
mode indicates the number of modal clusters contained by the current cluster. With
METHOD=TWOSTAGE, the mode gives the maximum density in each modal cluster
and the fusion density, d�, for clusters containing two or more modal clusters; for clusters
that contain no modal clusters, that value of the _MODE_ variable is missing.

HEIGHT=NCL specifies that the number of clusters is used.

HEIGHT=RSQ specifies that the squared multiple correlation is used.

HORIZONTAL | VERTICAL
specifies either a horizontal dendrogram with the objects on the vertical axis (HORIZONTAL)
or a vertical dendrogram with the objects on the horizontal axis (VERTICAL). The default
is HORIZONTAL.

SETHEIGHT=height

SH=height
specifies the height of the dendrogram. By default, the height is based on the COMPUTE-
HEIGHT= option. The default unit is pixels, and you can use the UNIT= dendrogram-option
to change the unit to inches or centimeters for this dendrogram-option.
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SETWIDTH=width

SW=width
specifies the width of the dendrogram. By default, the width is based on the COM-
PUTEWIDTH= option. The default unit is pixels, and you can use the UNIT= dendrogram-
option to change the unit to inches or centimeters for this dendrogram-option.

UNIT=PX | IN | CM
specifies the unit (pixels, inches, or centimeters) for the SETHEIGHT=, SETWIDTH=,
COMPUTEHEIGHT=, and COMPUTEWIDTH= dendrogram-options.

NONE
suppresses all plots.

PSEUDO
implicitly specifies the PSEUDO option and, if possible, plots the pseudo F statistic and the
pseudo t2 statistic against the number of clusters.

PSF
implicitly specifies the PSEUDO option and, if possible, plots the pseudo F statistic against the
number of clusters.

PST2
implicitly specifies the PSEUDO option and, if possible, plots the pseudo t2 statistic against the
number of clusters.

You can specify one or more of the plot-requests in the same PLOT option. For example, all of the
following are valid:

proc cluster plots=(ccc pst2);
proc cluster plots=(psf);
proc cluster plots=psf;

The first statement plots both the cubic clustering criterion and the pseudo t2 statistic, while the second
and third statements plot the pseudo F statistic only. When you specify only one plot request, you can
omit the parentheses around the plot request. When you specify more than one plot-request , you must
specify parentheses. Otherwise the second and subsequent plot-requests are options. Since CCC and
PSEUDO are both options as well as plot-requests, the following three statements are valid, but they
are not equivalent:

proc cluster plots(only)=ccc pseudo;
proc cluster plots(only)=pseudo ccc;
proc cluster plots(only)=(ccc pseudo);

The first two examples have one plot-request and one procedure option. The third example has two
plot-requests.

The names of the graphs that PROC CLUSTER generates are listed in Table 33.5, along with the
required statements and options.
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PRINT=n | P=n
specifies the number of generations of the cluster history to display. The PRINT= option displays the
latest n generations; for example, PRINT=5 displays the cluster history from one cluster through five
clusters. The value of PRINT= must be a nonnegative integer. The default is to display all generations.
Specify PRINT=0 to suppress the cluster history.

PSEUDO
displays pseudo F and t2 statistics. This option is effective only when the data are coordinates or when
METHOD=AVERAGE, METHOD=CENTROID, or METHOD=WARD is specified. See the section
“Miscellaneous Formulas” on page 2033 for more information. The PSEUDO option is not appropriate
with METHOD=SINGLE because of the method’s tendency to chop off tails of distributions.

R=n
specifies the radius of the sphere of support for uniform-kernel density estimation (Silverman 1986, pp.
11–13 and 75–94).

The value of R= must be greater than zero.

Density estimation is used with the TRIM=, METHOD=DENSITY, and METHOD=TWOSTAGE
options.

RMSSTD
displays the root mean square standard deviation of each cluster. This option is effective only when the
data are coordinates or when METHOD=AVERAGE, METHOD=CENTROID, or METHOD=WARD
is specified.

See the section “Miscellaneous Formulas” on page 2033 for more information.

RSQUARE | RSQ
displays the R square and semipartial R square. This option is effective only when the data are
coordinates or when METHOD=AVERAGE or METHOD=CENTROID is specified. The R square
and semipartial R square statistics are always displayed with METHOD=WARD. See the section
“Miscellaneous Formulas” on page 2033 for more information..

SIMPLE | S
displays means, standard deviations, skewness, kurtosis, and a coefficient of bimodality. The SIMPLE
option applies only to coordinate data. See the section “Miscellaneous Formulas” on page 2033 for
more information.

STANDARD | STD
standardizes the variables to mean 0 and standard deviation 1. The STANDARD option applies only to
coordinate data.

TRIM=p
omits points with low estimated probability densities from the analysis. Valid values for the TRIM=
option are 0 � p < 100. If p < 1, then p is the proportion of observations omitted. If p � 1, then p is
interpreted as a percentage. A specification of TRIM=10, which trims 10% of the points, is a reasonable
value for many data sets. Densities are estimated by the kth-nearest-neighbor or uniform-kernel method.
Trimmed points are indicated by a negative value of the _FREQ_ variable in the OUTTREE= data set.

You must use either the K= or R= option when you use TRIM=. You cannot use the HYBRID option
in combination with TRIM=, so you might want to use the DIM= option instead. If you specify the
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STANDARD option in combination with TRIM=, the variables are standardized both before and after
trimming.

The TRIM= option is useful for removing outliers and reducing chaining. Trimming is highly recom-
mended with METHOD=WARD or METHOD=COMPLETE because clusters from these methods can
be severely distorted by outliers. Trimming is also valuable with METHOD=SINGLE since single
linkage is the method most susceptible to chaining. Most other methods also benefit from trimming.
However, trimming is unnecessary with METHOD=TWOSTAGE or METHOD=DENSITY when
kth-nearest-neighbor density estimation is used.

Use of the TRIM= option can spuriously inflate the cubic clustering criterion and the pseudo F and t2

statistics. Trimming only outliers improves the accuracy of the statistics, but trimming saddle regions
between clusters yields excessively large values.

BY Statement
BY variables ;

You can specify a BY statement with PROC CLUSTER to obtain separate analyses of observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the CLUSTER procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

COPY Statement
COPY variables ;

The variables in the COPY statement are copied from the input data set to the OUTTREE= data set.
Observations in the OUTTREE= data set that represent clusters of more than one observation from the input
data set have missing values for the COPY variables.
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FREQ Statement
FREQ variable ;

If one variable in the input data set represents the frequency of occurrence for other values in the observation,
specify the variable’s name in a FREQ statement. PROC CLUSTER then treats the data set as if each
observation appeared n times, where n is the value of the FREQ variable for the observation. Noninteger
values of the FREQ variable are truncated to the largest integer less than the FREQ value.

If you omit the FREQ statement but the DATA= data set contains a variable called _FREQ_, then frequencies
are obtained from the _FREQ_ variable. If neither a FREQ statement nor an _FREQ_ variable is present,
each observation is assumed to have a frequency of one.

If each observation in the DATA= data set represents a cluster (for example, clusters formed by PROC
FASTCLUS), the variable specified in the FREQ statement should give the number of original observations
in each cluster.

If you specify the RMSSTD statement, a FREQ statement is required. A FREQ statement or _FREQ_
variable is required when you specify the HYBRID option.

With most clustering methods, the same clusters are obtained from a data set with a FREQ variable as from
a similar data set without a FREQ variable, if each observation is repeated as many times as the value of
the FREQ variable in the first data set. The FLEXIBLE method can yield different results due to the nature
of the combinatorial formula. The DENSITY and TWOSTAGE methods are also exceptions because two
identical observations can be absorbed one at a time by a cluster with a higher density. If you are using a
FREQ statement with either the DENSITY or TWOSTAGE method, see the MODE=option for details.

ID Statement
ID variable ;

The values of the ID variable identify observations in the displayed cluster history and in the OUTTREE=
data set. If the ID statement is omitted, each observation is denoted by OBn, where n is the observation
number.

RMSSTD Statement
RMSSTD variable ;

If the coordinates in the DATA= data set represent cluster means (for example, formed by the FAST-
CLUS procedure), you can obtain accurate statistics in the cluster histories for METHOD=AVERAGE,
METHOD=CENTROID, or METHOD=WARD if the data set contains both of the following:

• a variable giving the number of original observations in each cluster (see the discussion of the FREQ
statement earlier in this chapter)

• a variable giving the root mean squared standard deviation of each cluster

Specify the name of the variable containing root mean squared standard deviations in the RMSSTD statement.
If you specify the RMSSTD statement, you must also specify a FREQ statement.
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If you omit the RMSSTD statement but the DATA= data set contains a variable called _RMSSTD_, then the
root mean squared standard deviations are obtained from the _RMSSTD_ variable.

An RMSSTD statement or _RMSSTD_ variable is required when you specify the HYBRID option.

A data set created by PROC FASTCLUS, using the MEAN= option, contains _FREQ_ and _RMSSTD_
variables, so you do not have to use FREQ and RMSSTD statements when using such a data set as input to
the CLUSTER procedure.

VAR Statement
VAR variables ;

The VAR statement lists numeric variables to be used in the cluster analysis. If you omit the VAR statement,
all numeric variables not listed in other statements are used.

Details: CLUSTER Procedure

Clustering Methods
The following notation is used, with lowercase symbols generally pertaining to observations and uppercase
symbols pertaining to clusters:

n number of observations

v number of variables if data are coordinates

G number of clusters at any given level of the hierarchy

xi or xi ith observation (row vector if coordinate data)

CK Kth cluster, subset of f1; 2; : : : ; ng

NK number of observations in CK

Nx sample mean vector

NxK mean vector for cluster CK

kxk Euclidean length of the vector x—that is, the square root of the sum of the squares of the
elements of x

T
Pn
iD1 kxi � Nxk

2

WK
P
i2Ck
kxi � NxKk2

PG
P
WJ , where summation is over the G clusters at the Gth level of the hierarchy

BKL WM �WK �WL if CM D CK [ CL

d.x; y/ any distance or dissimilarity measure between observations or vectors x and y

DKL any distance or dissimilarity measure between clusters CK and CL
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The distance between two clusters can be defined either directly or combinatorially (Lance and Williams
1967)—that is, by an equation for updating a distance matrix when two clusters are joined. In all of the
following combinatorial formulas, it is assumed that clusters CK and CL are merged to form CM , and the
formula gives the distance between the new cluster CM and any other cluster CJ .

For an introduction to most of the methods used in the CLUSTER procedure, see Massart and Kaufman
(1983).

Average Linkage

The following method is obtained by specifying METHOD=AVERAGE. The distance between two clusters
is defined by

DKL D
1

NKNL

X
i2CK

X
j2CL

d.xi ; xj /

If d.x; y/ D kx � yk2, then

DKL D kNxK � NxLk2 C
WK

NK
C
WL

NL

The combinatorial formula is

DJM D
NKDJK CNLDJL

NM

In average linkage the distance between two clusters is the average distance between pairs of observations,
one in each cluster. Average linkage tends to join clusters with small variances, and it is slightly biased
toward producing clusters with the same variance.

Average linkage was originated by Sokal and Michener (1958).

Centroid Method

The following method is obtained by specifying METHOD=CENTROID. The distance between two clusters
is defined by

DKL D kNxK � NxLk2

If d.x; y/ D kx � yk2, then the combinatorial formula is

DJM D
NKDJK CNLDJL

NM
�
NKNLDKL

N 2
M

In the centroid method, the distance between two clusters is defined as the (squared) Euclidean distance
between their centroids or means. The centroid method is more robust to outliers than most other hierarchical
methods but in other respects might not perform as well as Ward’s method or average linkage (Milligan
1980).

The centroid method was originated by Sokal and Michener (1958).
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Complete Linkage

The following method is obtained by specifying METHOD=COMPLETE. The distance between two clusters
is defined by

DKL D max
i2CK

max
j2CL

d.xi ; xj /

The combinatorial formula is

DJM D max.DJK ;DJL/

In complete linkage, the distance between two clusters is the maximum distance between an observation in
one cluster and an observation in the other cluster. Complete linkage is strongly biased toward producing
clusters with roughly equal diameters, and it can be severely distorted by moderate outliers (Milligan 1980).

Complete linkage was originated by Sørensen (1948).

Density Linkage

The phrase density linkage is used here to refer to a class of clustering methods that use nonparametric
probability density estimates (for example, Hartigan 1975, pp. 205–212; Wong 1982; Wong and Lane 1983).
Density linkage consists of two steps:

1. A new dissimilarity measure, d�, based on density estimates and adjacencies is computed. If xi and xj
are adjacent (the definition of adjacency depends on the method of density estimation), then d�.xi ; xj /
is the reciprocal of an estimate of the density midway between xi and xj ; otherwise, d�.xi ; xj / is
infinite.

2. A single linkage cluster analysis is performed using d�.

The CLUSTER procedure supports three types of density linkage: the kth-nearest-neighbor method, the
uniform-kernel method, and Wong’s hybrid method. These are obtained by using METHOD=DENSITY and
the K=, R=, and HYBRID options, respectively.

kth-Nearest-Neighbor Method
The kth-nearest-neighbor method (Wong and Lane 1983) uses kth-nearest-neighbor density estimates. Let
rk.x/ be the distance from point x to the kth-nearest observation, where k is the value specified for the K=
option. Consider a closed sphere centered at x with radius rk.x/. The estimated density at x, f .x/, is the
proportion of observations within the sphere divided by the volume of the sphere. The new dissimilarity
measure is computed as

d�.xi ; xj / D

8<:
1
2

�
1

f .xi /
C

1
f .xj /

�
if d.xi ; xj / � max.rk.xi /; rk.xj //

1 otherwise

Wong and Lane (1983) show that kth-nearest-neighbor density linkage is strongly set consistent for high-
density (density-contour) clusters if k is chosen such that k=n! 0 and k= ln.n/!1 as n!1. Wong
and Schaack (1982) discuss methods for estimating the number of population clusters by using kth-nearest-
neighbor clustering.



Clustering Methods F 2029

Uniform-Kernel Method
The uniform-kernel method uses uniform-kernel density estimates. Let r be the value specified for the R=
option. Consider a closed sphere centered at point x with radius r. The estimated density at x, f .x/, is the
proportion of observations within the sphere divided by the volume of the sphere. The new dissimilarity
measure is computed as

d�.xi ; xj / D

8<:
1
2

�
1

f .xi /
C

1
f .xj /

�
if d.xi ; xj / � r

1 otherwise

Wong’s Hybrid Method
The Wong (1982) hybrid clustering method uses density estimates based on a preliminary cluster analysis by
the k-means method. The preliminary clustering can be done by the FASTCLUS procedure, by using the
MEAN= option to create a data set containing cluster means, frequencies, and root mean squared standard
deviations. This data set is used as input to the CLUSTER procedure, and the HYBRID option is specified
with METHOD=DENSITY to request the hybrid analysis. The hybrid method is appropriate for very large
data sets but should not be used with small data sets—say, than those with fewer than 100 observations in the
original data. The term preliminary cluster refers to an observation in the DATA= data set.

For preliminary cluster CK , NK and WK are obtained from the input data set, as are the cluster means or the
distances between the cluster means. Preliminary clusters CK and CL are considered adjacent if the midpoint
between NxK and NxL is closer to either NxK or NxL than to any other preliminary cluster mean or, equivalently,
if d2.NxK ; NxL/ < d2.NxK ; NxM /C d2.NxL; NxM / for all other preliminary clusters CM , M ¤ K or L. The new
dissimilarity measure is computed as

d�.NxK ; NxL/ D

8<: .WKCWLC 14 .NKCNL/d
2.NxK ;NxL//

v
2

.NKCNL/
1C v

2
if CK and CL are adjacent

1 otherwise

Using the K= and R= Options
The values of the K= and R= options are called smoothing parameters. Small values of K= or R= produce
jagged density estimates and, as a consequence, many modes. Large values of K= or R= produce smoother
density estimates and fewer modes. In the hybrid method, the smoothing parameter is the number of clusters
in the preliminary cluster analysis. The number of modes in the final analysis tends to increase as the number
of clusters in the preliminary analysis increases. Wong (1982) suggests using n0:3 preliminary clusters, where
n is the number of observations in the original data set. There is no rule of thumb for selecting K= values.
For all types of density linkage, you should repeat the analysis with several different values of the smoothing
parameter (Wong and Schaack 1982).

There is no simple answer to the question of which smoothing parameter to use (Silverman 1986, pp. 43–61,
84–88, and 98–99). It is usually necessary to try several different smoothing parameters. A reasonable first
guess for the R= option in many coordinate data sets is given by"

2vC2.v C 2/�.v
2
C 1/

nv2

# 1
vC4

vuut vX
lD1

s2
l

where s2
l

is the standard deviation of the lth variable. The estimate for R= can be computed in a DATA
step by using the GAMMA function for � . This formula is derived under the assumption that the data are
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sampled from a multivariate normal distribution and tends, therefore, to be too large (oversmooth) if the true
distribution is multimodal. Robust estimates of the standard deviations can be preferable if there are outliers.
If the data are distances, the factor

P
s2
l

can be replaced by an average (mean, trimmed mean, median, root
mean square, and so on) distance divided by

p
2. To prevent outliers from appearing as separate clusters, you

can also specify K=2, or more generally K=m, m � 2, which in most cases forces clusters to have at least m
members.

If the variables all have unit variance (for example, if the STANDARD option is used), Table 33.2 can be
used to obtain an initial guess for the R= option.

Since infinite d� values occur in density linkage, the final number of clusters can exceed one when there are
wide gaps between the clusters or when the smoothing parameter results in little smoothing.

Density linkage applies no constraints to the shapes of the clusters and, unlike most other hierarchical
clustering methods, is capable of recovering clusters with elongated or irregular shapes. Since density linkage
uses less prior knowledge about the shape of the clusters than do methods restricted to compact clusters,
density linkage is less effective at recovering compact clusters from small samples than are methods that
always recover compact clusters, regardless of the data.

Table 33.2 Reasonable First Guess for the R= Option for Standardized Data

Number of Number of Variables
Observations 1 2 3 4 5 6 7 8 9 10

20 1.01 1.36 1.77 2.23 2.73 3.25 3.81 4.38 4.98 5.60

35 0.91 1.24 1.64 2.08 2.56 3.08 3.62 4.18 4.77 5.38

50 0.84 1.17 1.56 1.99 2.46 2.97 3.50 4.06 4.64 5.24

75 0.78 1.09 1.47 1.89 2.35 2.85 3.38 3.93 4.50 5.09

100 0.73 1.04 1.41 1.82 2.28 2.77 3.29 3.83 4.40 4.99

150 0.68 0.97 1.33 1.73 2.18 2.66 3.17 3.71 4.27 4.85

200 0.64 0.93 1.28 1.67 2.11 2.58 3.09 3.62 4.17 4.75

350 0.57 0.85 1.18 1.56 1.98 2.44 2.93 3.45 4.00 4.56

500 0.53 0.80 1.12 1.49 1.91 2.36 2.84 3.35 3.89 4.45

750 0.49 0.74 1.06 1.42 1.82 2.26 2.74 3.24 3.77 4.32

1000 0.46 0.71 1.01 1.37 1.77 2.20 2.67 3.16 3.69 4.23

1500 0.43 0.66 0.96 1.30 1.69 2.11 2.57 3.06 3.57 4.11

2000 0.40 0.63 0.92 1.25 1.63 2.05 2.50 2.99 3.49 4.03

EML

The following method is obtained by specifying METHOD=EML. The distance between two clusters is
given by

DKL D nv ln
�
1C

BKL

PG

�
� 2 .NM ln.NM / �NK ln.NK/ �NL ln.NL//
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The EML method joins clusters to maximize the likelihood at each level of the hierarchy under the following
assumptions:

• multivariate normal mixture

• equal spherical covariance matrices

• unequal sampling probabilities

The EML method is similar to Ward’s minimum-variance method but removes the bias toward equal-sized
clusters. Practical experience has indicated that EML is somewhat biased toward unequal-sized clusters. You
can specify the PENALTY= option to adjust the degree of bias. If you specify PENALTY=p, the formula is
modified to

DKL D nv ln
�
1C

BKL

PG

�
� p .NM ln.NM / �NK ln.NK/ �NL ln.NL//

The EML method was derived by W. S. Sarle of SAS Institute from the maximum likelihood formula obtained
by Symons (1981, p. 37, Equation 8) for disjoint clustering. There are currently no other published references
on the EML method.

Flexible-Beta Method

The following method is obtained by specifying METHOD=FLEXIBLE. The combinatorial formula is

DJM D .DJK CDJL/
1 � b

2
CDKLb

where b is the value of the BETA= option, or –0.25 by default.

The flexible-beta method was developed by Lance and Williams (1967); see also Milligan (1987).

McQuitty’s Similarity Analysis

The following method is obtained by specifying METHOD=MCQUITTY. The combinatorial formula is

DJM D
DJK CDJL

2

The method was independently developed by Sokal and Michener (1958) and McQuitty (1966).

Median Method

The following method is obtained by specifying METHOD=MEDIAN. If d.x; y/ D kx � yk2, then the
combinatorial formula is

DJM D
DJK CDJL

2
�
DKL

4

The median method was developed by Gower (1967).
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Single Linkage

The following method is obtained by specifying METHOD=SINGLE. The distance between two clusters is
defined by

DKL D min
i2CK

min
j2CL

d.xi ; xj /

The combinatorial formula is

DJM D min.DJK ;DJL/

In single linkage, the distance between two clusters is the minimum distance between an observation in
one cluster and an observation in the other cluster. Single linkage has many desirable theoretical properties
(Jardine and Sibson 1971; Fisher and Van Ness 1971; Hartigan 1981) but has fared poorly in Monte Carlo
studies (for example, Milligan 1980). By imposing no constraints on the shape of clusters, single linkage
sacrifices performance in the recovery of compact clusters in return for the ability to detect elongated and
irregular clusters. You must also recognize that single linkage tends to chop off the tails of distributions
before separating the main clusters (Hartigan 1981). The notorious chaining tendency of single linkage can
be alleviated by specifying the TRIM= option (Wishart 1969, pp. 296–298).

Density linkage and two-stage density linkage retain most of the virtues of single linkage while performing
better with compact clusters and possessing better asymptotic properties (Wong and Lane 1983).

Single linkage was originated by Florek et al. (1951b, a) and later reinvented by McQuitty (1957) and Sneath
(1957).

Two-Stage Density Linkage

If you specify METHOD=DENSITY, the modal clusters often merge before all the points in the tails have
clustered. The option METHOD=TWOSTAGE is a modification of density linkage that ensures that all points
are assigned to modal clusters before the modal clusters are permitted to join. The CLUSTER procedure
supports the same three varieties of two-stage density linkage as of ordinary density linkage: kth-nearest
neighbor, uniform kernel, and hybrid.

In the first stage, disjoint modal clusters are formed. The algorithm is the same as the single linkage algorithm
ordinarily used with density linkage, with one exception: two clusters are joined only if at least one of the
two clusters has fewer members than the number specified by the MODE= option. At the end of the first
stage, each point belongs to one modal cluster.

In the second stage, the modal clusters are hierarchically joined by single linkage. The final number of
clusters can exceed one when there are wide gaps between the clusters or when the smoothing parameter is
small.

Each stage forms a tree that can be plotted by the TREE procedure. By default, the TREE procedure plots
the tree from the first stage. To obtain the tree for the second stage, use the option HEIGHT=MODE in the
PROC TREE statement. You can also produce a single tree diagram containing both stages, with the number
of clusters as the height axis, by using the option HEIGHT=N in the PROC TREE statement. To produce an
output data set from PROC TREE containing the modal clusters, use _HEIGHT_ for the HEIGHT variable
(the default) and specify LEVEL=0.

Two-stage density linkage was developed by W. S. Sarle of SAS Institute. There are currently no other
published references on two-stage density linkage.
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Ward’s Minimum-Variance Method

The following method is obtained by specifying METHOD=WARD. The distance between two clusters is
defined by

DKL D BKL D
kNxK � NxLk2
1
NK
C

1
NL

If d.x; y/ D 1
2
kx � yk2, then the combinatorial formula is

DJM D
.NJ CNK/DJK C .NJ CNL/DJL �NJDKL

NJ CNM

In Ward’s minimum-variance method, the distance between two clusters is the ANOVA sum of squares
between the two clusters added up over all the variables. At each generation, the within-cluster sum of
squares is minimized over all partitions obtainable by merging two clusters from the previous generation. The
sums of squares are easier to interpret when they are divided by the total sum of squares to give proportions
of variance (squared semipartial correlations).

Ward’s method joins clusters to maximize the likelihood at each level of the hierarchy under the following
assumptions:

• multivariate normal mixture

• equal spherical covariance matrices

• equal sampling probabilities

Ward’s method tends to join clusters with a small number of observations, and it is strongly biased toward
producing clusters with roughly the same number of observations. It is also very sensitive to outliers (Milligan
1980).

Ward (1963) describes a class of hierarchical clustering methods including the minimum variance method.

Miscellaneous Formulas
The root mean squared standard deviation of a cluster CK is

RMSSTD D

s
WK

v.NK � 1/

The R-square statistic for a given level of the hierarchy is

R2 D 1 �
PG

T

The squared semipartial correlation for joining clusters CK and CL is

semipartial R2 D
BKL

T
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The bimodality coefficient is

b D
m23 C 1

m4 C
3.n�1/2

.n�2/.n�3/

where m3 is skewness and m4 is kurtosis. Values of b greater than 0.555 (the value for a uniform population)
can indicate bimodal or multimodal marginal distributions. The maximum of 1.0 (obtained for the Bernoulli
distribution) is obtained for a population with only two distinct values. Very heavy-tailed distributions have
small values of b regardless of the number of modes.

Formulas for the cubic-clustering criterion and approximate expected R square are given in Sarle (1983).

The pseudo F statistic for a given level is

pseudo F D
T�PG
G�1
PG
n�G

The pseudo t2 statistic for joining CK and CL is

pseudo t2 D
BKL

WKCWL
NKCNL�2

The pseudo F and t2 statistics can be useful indicators of the number of clusters, but they are not distributed
as F and t2 random variables. If the data are independently sampled from a multivariate normal distribution
with a scalar covariance matrix and if the clustering method allocates observations to clusters randomly
(which no clustering method actually does), then the pseudo F statistic is distributed as an F random variable
with v.G � 1/ and v.n � G/ degrees of freedom. Under the same assumptions, the pseudo t2 statistic is
distributed as an F random variable with v and v.NK CNL � 2/ degrees of freedom. The pseudo t2 statistic
differs computationally from Hotelling’s T 2 in that the latter uses a general symmetric covariance matrix
instead of a scalar covariance matrix. The pseudo F statistic was suggested by Caliński and Harabasz (1974).
The pseudo t2 statistic is related to the Je.2/=Je.1/ statistic of Duda and Hart (1973) by

Je.2/

Je.1/
D
WK CWL

WM
D

1

1C t2

NKCNL�2

See Milligan and Cooper (1985) and Cooper and Milligan (1988) regarding the performance of these statistics
in estimating the number of population clusters. Conservative tests for the number of clusters using the
pseudo F and t2 statistics can be obtained by the Bonferroni approach (Hawkins, Muller, and ten Krooden
1982, pp. 337–340).

Ultrametrics
A dissimilarity measure d.x; y/ is called an ultrametric if it satisfies the following conditions:

• d.x; x/ D 0 for all x

• d.x; y/ � 0 for all x, y

• d.x; y/ D d.y; x/ for all x, y

• d.x; y/ � max .d.x; z/; d.y; z// for all x, y, and z
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Any hierarchical clustering method induces a dissimilarity measure on the observations—say, h.xi ; xj /. Let
CM be the cluster with the fewest members that contains both xi and xj . Assume CM was formed by joining
CK and CL. Then define h.xi ; xj / D DKL.

If the fusion of CK and CL reduces the number of clusters from g to g � 1, then define D.g/ D DKL.
Johnson (1967) shows that if

0 � D.n/ � D.n�1/ � � � � � D.2/

then h.�; �/ is an ultrametric. A method that always satisfies this condition is said to be a monotonic or
ultrametric clustering method. All methods implemented in PROC CLUSTER except CENTROID, EML,
and MEDIAN are ultrametric (Milligan 1979; Batagelj 1981).

Algorithms
Anderberg (1973) describes three algorithms for implementing agglomerative hierarchical clustering: stored
data, stored distance, and sorted distance. The algorithms used by PROC CLUSTER for each method are
indicated in Table 33.3. For METHOD=AVERAGE, METHOD=CENTROID, or METHOD=WARD, either
the stored data or the stored distance algorithm can be used. For these methods, if the data are distances
or if you specify the NOSQUARE option, the stored distance algorithm is used; otherwise, the stored data
algorithm is used.

Table 33.3 Three Algorithms for Implementing Agglomerative Hierarchical Clustering

Algorithm
Clustering Stored Stored Sorted
Method Data Distance Distance
AVERAGE x x
CENTROID x x
COMPLETE x
DENSITY x
EML x
FLEXIBLE x
MCQUITTY x
MEDIAN x
SINGLE x
TWOSTAGE x
WARD x x
Note: All of the hierarchical methods accept coordinate
data. Methods that require stored or sorted distances auto-
matically calculate distances from the coordinates.
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Computational Resources
The CLUSTER procedure stores the data (including the COPY and ID variables) in memory or, if necessary,
on disk. If eigenvalues are computed, the covariance matrix is stored in memory. If the stored distance or
sorted distance algorithm is used, the distances are stored in memory or, if necessary, on disk.

With coordinate data, the increase in CPU time is roughly proportional to the number of variables. The VAR
statement should list the variables in order of decreasing variance for greatest efficiency.

For both coordinate and distance data, the dominant factor determining CPU time is the number of observa-
tions. For density methods with coordinate data, the asymptotic time requirements are somewhere between
n ln.n/ and n2, depending on how the smoothing parameter increases. For other methods except EML, time
is roughly proportional to n2. For the EML method, time is roughly proportional to n3.

PROC CLUSTER runs much faster if the data can be stored in memory and, when the stored distance
algorithm is used, if the distance matrix can be stored in memory as well. To estimate the bytes of memory
needed for the data, use the following formula and round up to the nearest multiple of d.

n.vd + 8d C i

+ i if density estimation or the
sorted distance algorithm is used

+ 3d if stored data algorithm is used

+ 3d if density estimation is used

+ max(8, length of ID variable) if ID variable is used

+ length of ID variable if ID variable is used

+ sum of lengths of COPY variables) if COPY variables is used

where

n is the number of observations

v is the number of variables
d is the size of a C variable of type double. For most computers, d = 8.

i is the size of a C variable of type int. For most computers, i = 4.

The number of bytes needed for the distance matrix is dn.nC 1/=2.

Missing Values
If the data are coordinates, observations with missing values are excluded from the analysis. If the data are
distances, missing values are not permitted in the lower triangle of the distance matrix. The upper triangle is
ignored. For more about TYPE=DISTANCE data sets, see Chapter A, “Special SAS Data Sets.”
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Ties
At each level of the clustering algorithm, PROC CLUSTER must identify the pair of clusters with the
minimum distance. Sometimes, usually when the data are discrete, there can be two or more pairs with the
same minimum distance. In such cases the tie must be broken in some arbitrary way. If there are ties, then
the results of the cluster analysis depend on the order of the observations in the data set. The presence of ties
is reported in the SAS log and in the column of the cluster history labeled “Tie” unless the NOTIE option is
specified.

PROC CLUSTER breaks ties as follows. Each cluster is identified by the smallest observation number among
its members. For each pair of clusters, there is a smaller identification number and a larger identification
number. If two or more pairs of clusters are tied for minimum distance between clusters, the pair that has the
minimum larger identification number is merged. If there is a tie for minimum larger identification number,
the pair that has the minimum smaller identification number is merged.

A tie means that the level in the cluster history at which the tie occurred and possibly some of the subsequent
levels are not uniquely determined. Ties that occur early in the cluster history usually have little effect on the
later stages. Ties that occur in the middle part of the cluster history are cause for further investigation. Ties
that occur late in the cluster history indicate important indeterminacies.

The importance of ties can be assessed by repeating the cluster analysis for several different random
permutations of the observations. The discrepancies at a given level can be examined by crosstabulating the
clusters obtained at that level for all of the permutations. See Example 33.4 for details.

Size, Shape, and Correlation
In some biological applications, the organisms that are being clustered can be at different stages of growth.
Unless it is the growth process itself that is being studied, differences in size among such organisms are
not of interest. Therefore, distances among organisms should be computed in such a way as to control for
differences in size while retaining information about differences in shape.

If coordinate data are measured on an interval scale, you can control for size by subtracting a measure of
the overall size of each observation from each data item. For example, if no other direct measure of size is
available, you could subtract the mean of each row of the data matrix, producing a row-centered coordinate
matrix. An easy way to subtract the mean of each row is to use PROC STANDARD on the transposed
coordinate matrix:

proc transpose data= coordinate-datatype;
run;

proc standard m=0;
run;

proc transpose out=row-centered-coordinate-data;
run;

Another way to remove size effects from interval-scale coordinate data is to do a principal component analysis
and discard the first component (Blackith and Reyment 1971).



2038 F Chapter 33: The CLUSTER Procedure

If the data are measured on a ratio scale, you can control for size by dividing each observation by a measure
of overall size; in this case, the geometric mean is a more natural measure of size than the arithmetic mean.
However, it is often more meaningful to analyze the logarithms of ratio-scaled data, in which case you can
subtract the arithmetic mean after taking logarithms. You must also consider the dimensions of measurement.
For example, if you have measures of both length and weight, you might need to cube the measures of length
or take the cube root of the weights. Various other complications can also arise in real applications, such as
different growth rates for different parts of the body (Sneath and Sokal 1973).

Issues of size and shape are pertinent to many areas besides biology (for example, Hamer and Cunningham
1981). Suppose you have data consisting of subjective ratings made by several different raters. Some raters
tend to give higher overall ratings than other raters. Some raters also tend to spread out their ratings over
more of the scale than other raters. If it is impossible for you to adjust directly for rater differences, then
distances should be computed in such a way as to control for differences both in size and variability. For
example, if the data are considered to be measured on an interval scale, you can subtract the mean of each
observation and divide by the standard deviation, producing a row-standardized coordinate matrix. With
some clustering methods, analyzing squared Euclidean distances from a row-standardized coordinate matrix
is equivalent to analyzing the matrix of correlations among rows, since squared Euclidean distance is an
affine transformation of the correlation (Hartigan 1975, p. 64).

If you do an analysis of row-centered or row-standardized data, you need to consider whether the columns
(variables) should be standardized before centering or standardizing the rows, after centering or standardizing
the rows, or both before and after. If you standardize the columns after standardizing the rows, then strictly
speaking you are not analyzing shape because the profiles are distorted by standardizing the columns;
however, this type of double standardization might be necessary in practice to get reasonable results. It is not
clear whether iterating the standardization of rows and columns can be of any benefit.

The choice of distance or correlation measure should depend on the meaning of the data and the purpose of
the analysis. Simulation studies that compare distance and correlation measures are useless unless the data
are generated to mimic data from your field of application. Conclusions drawn from artificial data cannot be
generalized, because it is possible to generate data such that distances that include size effects work better or
such that correlations work better.

You can standardize the rows of a data set by using a DATA step or by using the TRANSPOSE and
STANDARD procedures. You can also use PROC TRANSPOSE and then have PROC CORR create a
TYPE=CORR data set containing a correlation matrix. If you want to analyze a TYPE=CORR data set with
PROC CLUSTER, you must use a DATA step to perform the following steps:

1. Set the data set TYPE= to DISTANCE.

2. Convert the correlations to dissimilarities by computing 1�r ,
p
1 � r , 1�r2, or some other decreasing

function.

3. Delete observations for which the variable _TYPE_ does not have the value ’CORR’.

Output Data Set
The OUTTREE= data set contains one observation for each observation in the input data set, plus one
observation for each cluster of two or more observations (that is, one observation for each node of the cluster
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tree). The total number of output observations is usually 2n� 1, where n is the number of input observations.
The density methods can produce fewer output observations when the number of clusters cannot be reduced
to one.

The label of the OUTTREE= data set identifies the type of cluster analysis performed and is automatically
displayed when the TREE procedure is invoked.

The variables in the OUTTREE= data set are as follows:

• the BY variables, if you use a BY statement

• the ID variable, if you use an ID statement

• the COPY variables, if you use a COPY statement

• _NAME_, a character variable giving the name of the node. If the node is a cluster, the name is CLn,
where n is the number of the cluster. If the node is an observation, the name is OBn, where n is
the observation number. If the node is an observation and the ID statement is used, the name is the
formatted value of the ID variable.

• _PARENT_, a character variable giving the value of _NAME_ of the parent of the node

• _NCL_, the number of clusters

• _FREQ_, the number of observations in the current cluster

• _HEIGHT_, the distance or similarity between the last clusters joined, as defined in the section
“Clustering Methods” on page 2026. The variable _HEIGHT_ is used by the TREE procedure as
the default height axis. The label of the _HEIGHT_ variable identifies the between-cluster distance
measure. For METHOD=TWOSTAGE, the _HEIGHT_ variable contains the densities at which clusters
joined in the first stage; for clusters formed in the second stage, _HEIGHT_ is a very small negative
number.

If the input data set contains coordinates, the following variables appear in the output data set:

• the variables containing the coordinates used in the cluster analysis. For output observations that
correspond to input observations, the values of the coordinates are the same in both data sets except for
some slight numeric error possibly introduced by standardizing and unstandardizing if the STANDARD
option is used. For output observations that correspond to clusters of more than one input observation,
the values of the coordinates are the cluster means.

• _ERSQ_, the approximate expected value of R square under the uniform null hypothesis

• _RATIO_, equal to (1 – _ERSQ_) / (1 – _RSQ_)

• _LOGR_, natural logarithm of _RATIO_

• _CCC_, the cubic clustering criterion
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The variables _ERSQ_, _RATIO_, _LOGR_, and _CCC_ have missing values when the number of clusters is
greater than one-fifth the number of observations.

If the input data set contains coordinates and METHOD=AVERAGE, METHOD=CENTROID, or
METHOD=WARD, then the following variables appear in the output data set:

• _DIST_, the Euclidean distance between the means of the last clusters joined

• _AVLINK_, the average distance between the last clusters joined

If the input data set contains coordinates or METHOD=AVERAGE, METHOD=CENTROID, or
METHOD=WARD, then the following variables appear in the output data set:

• _RMSSTD_, the root mean squared standard deviation of the current cluster

• _SPRSQ_, the semipartial squared multiple correlation or the decrease in the proportion of variance
accounted for due to joining two clusters to form the current cluster

• _RSQ_, the squared multiple correlation

• _PSF_, the pseudo F statistic

• _PST2_, the pseudo t2 statistic

If METHOD=EML, then the following variable appears in the output data set:

• _LNLR_, the log-likelihood ratio

If METHOD=TWOSTAGE or METHOD=DENSITY, the following variable appears in the output data set:

• _MODE_, pertaining to the modal clusters. With METHOD=DENSITY, the _MODE_ variable indicates
the number of modal clusters contained by the current cluster. With METHOD=TWOSTAGE, the
_MODE_ variable gives the maximum density in each modal cluster and the fusion density, d�, for
clusters containing two or more modal clusters; for clusters containing no modal clusters, _MODE_ is
missing.

If nonparametric density estimates are requested (when METHOD=DENSITY or METHOD=TWOSTAGE
and the HYBRID option is not used; or when any of the TRIM=, K= or R= options are used), the output data
set contains the following:

• _DENS_, the maximum density in the current cluster
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Displayed Output
If you specify the SIMPLE option and the data are coordinates, PROC CLUSTER produces simple descriptive
statistics for each variable:

• the Mean

• the standard deviation, Std Dev

• the Skewness

• the Kurtosis

• a coefficient of Bimodality

If the data are coordinates and you do not specify the NOEIGEN option, PROC CLUSTER displays the
following:

• the Eigenvalues of the Correlation or Covariance Matrix

• the Difference between successive eigenvalues

• the Proportion of variance explained by each eigenvalue

• the Cumulative proportion of variance explained

If the data are coordinates, PROC CLUSTER displays the Root Mean Squared Total-Sample Standard
Deviation of the variables

If the distances are normalized, PROC CLUSTER displays one of the following, depending on whether
squared or unsquared distances are used:

• the Root Mean Squared Distance Between Observations

• the Mean Distance Between Observations

For the generations in the clustering process specified by the PRINT= option, PROC CLUSTER displays the
following:

• the Number of Clusters or NCL

• the names of the Clusters Joined. The observations are identified by the formatted value of the ID
variable, if any; otherwise, the observations are identified by OBn, where n is the observation number.
The CLUSTER procedure displays the entire value of the ID variable in the cluster history instead
of truncating at 16 characters. Long ID values might be split onto several lines. Clusters of two or
more observations are identified as CLn, where n is the number of clusters existing after the cluster in
question is formed.

• the number of observations in the new cluster, Frequency of New Cluster or FREQ



2042 F Chapter 33: The CLUSTER Procedure

If you specify the RMSSTD option and the data are coordinates, or if you specify METHOD=AVERAGE,
METHOD=CENTROID, or METHOD=WARD, then PROC CLUSTER displays the root mean squared
standard deviation of the new cluster, RMS Std of New Cluster or RMS Std.

PROC CLUSTER displays the following items if you specify METHOD=WARD. It also displays them if
you specify the RSQUARE option and either the data are coordinates or you specify METHOD=AVERAGE
or METHOD=CENTROID.

• the decrease in the proportion of variance accounted for resulting from joining the two clusters,
Semipartial R-Square or SPRSQ. This equals the between-cluster sum of squares divided by the
corrected total sum of squares.

• the squared multiple correlation, R-Square or RSQ. R square is the proportion of variance accounted
for by the clusters.

If you specify the CCC option and the data are coordinates, PROC CLUSTER displays the following:

• Approximate Expected R-Square or ERSQ, the approximate expected value of R square under the
uniform null hypothesis

• the Cubic Clustering Criterion or CCC. The cubic clustering criterion and approximate expected R
square are given missing values when the number of clusters is greater than one-fifth the number of
observations.

If you specify the PSEUDO option and the data are coordinates, or if you specify METHOD=AVERAGE,
METHOD=CENTROID, or METHOD=WARD, then PROC CLUSTER displays the following:

• Pseudo F or PSF, the pseudo F statistic measuring the separation among all the clusters at the current
level

• Pseudo t2 or PST2, the pseudo t2 statistic measuring the separation between the two clusters most
recently joined

If you specify the NOSQUARE option and METHOD=AVERAGE, PROC CLUSTER displays the (Normal-
ized) Average Distance or (Norm) Aver Dist, the average distance between pairs of objects in the two clusters
joined with one object from each cluster.

If you do not specify the NOSQUARE option and METHOD=AVERAGE, PROC CLUSTER displays the
(Normalized) RMS Distance or (Norm) RMS Dist, the root mean squared distance between pairs of objects
in the two clusters joined with one object from each cluster.

If METHOD=CENTROID, PROC CLUSTER displays the (Normalized) Centroid Distance or (Norm) Cent
Dist, the distance between the two cluster centroids.

If METHOD=COMPLETE, PROC CLUSTER displays the (Normalized) Maximum Distance or (Norm)
Max Dist, the maximum distance between the two clusters.

If METHOD=DENSITY or METHOD=TWOSTAGE, PROC CLUSTER displays the following:
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• Normalized Fusion Density or Normalized Fusion Dens, the value of d� as defined in the section
“Clustering Methods” on page 2026

• the Normalized Maximum Density in Each Cluster joined, including the Lesser or Min, and the Greater
or Max, of the two maximum density values

If METHOD=EML, PROC CLUSTER displays the following:

• Log Likelihood Ratio or LNLR

• Log Likelihood or LNLIKE

If METHOD=FLEXIBLE, PROC CLUSTER displays the (Normalized) Flexible Distance or (Norm) Flex
Dist, the distance between the two clusters based on the Lance-Williams flexible formula.

If METHOD=MEDIAN, PROC CLUSTER displays the (Normalized) Median Distance or (Norm) Med Dist,
the distance between the two clusters based on the median method.

If METHOD=MCQUITTY, PROC CLUSTER displays the (Normalized) McQuitty’s Similarity or (Norm)
MCQ, the distance between the two clusters based on McQuitty’s similarity method.

If METHOD=SINGLE, PROC CLUSTER displays the (Normalized) Minimum Distance or (Norm) Min
Dist, the minimum distance between the two clusters.

If you specify the NONORM option and METHOD=WARD, PROC CLUSTER displays the Between-Cluster
Sum of Squares or BSS, the ANOVA sum of squares between the two clusters joined.

If you specify neither the NOTIE option nor METHOD=TWOSTAGE or METHOD=DENSITY, PROC
CLUSTER displays Tie, where a T in the column indicates a tie for minimum distance and a blank indicates
the absence of a tie.

After the cluster history, if METHOD=TWOSTAGE or METHOD=DENSITY, PROC CLUSTER displays
the number of modal clusters.

ODS Table Names
PROC CLUSTER assigns a name to each table it creates. You can use these names to reference the table
when using the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed in Table 33.4. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

Table 33.4 ODS Tables Produced by PROC CLUSTER
ODS Table Name Description Statement Option
ClusterHistory Observation or clusters joined,

frequencies and other cluster
statistics

PROC default

SimpleStatistics Simple statistics, before or after
trimming

PROC SIMPLE

EigenvalueTable Eigenvalues of the CORR or COV
matrix

PROC default
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Table 33.4 (continued)
ODS Table Name Description Statement Option
RMSStd Root mean square total sample

standard deviation
PROC default

AvDist Root mean square distance be-
tween observations

PROC default

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

PROC CLUSTER can produce plots of the cubic clustering criterion, pseudo F, and pseudo t2 statistics, and
a dendrogram. To plot a statistic, you must ask for it to be computed via one or more of the CCC, PSEUDO,
or PLOT options.

You can reference every graph produced through ODS Graphics with a name. The names of the graphs that
PROC CLUSTER generates are listed in Table 33.5, along with the required statements and options.

Table 33.5 Graphs Produced by PROC CLUSTER

ODS Graph Name Plot Description Statement & Option

CubicClusCritPlot Cubic clustering criterion
for the number of clusters

PROC CLUSTER PLOTS=CCC

PseudoFPlot Pseudo F criterion for the
number of clusters

PROC CLUSTER PLOTS=PSF

PseudoTSqPlot Pseudo t2 criterion for the
number of clusters

PROC CLUSTER PLOTS=PST2

CccAndPsTSqPlot Cubic clustering criterion
and pseudo t2

PROC CLUSTER PLOTS=(CCC PST2)

CccAndPsfPlot Cubic clustering criterion
and pseudo F

PROC CLUSTER PLOTS=(CCC PSF)

CccPsfAndPsTSqPlot Cubic clustering criterion,
pseudo F, and pseudo t2

PROC CLUSTER PLOTS=ALL

Dendrogram Dendrogram
(tree diagram)

PROC CLUSTER
PLOTS=DENDROGRAM
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Examples: CLUSTER Procedure

Example 33.1: Cluster Analysis of Flying Mileages between 10 American
Cities

This example clusters 10 American cities based on the flying mileages between them. Six clustering methods
are shown with corresponding dendrograms. The EML method cannot be used because it requires coordinate
data. The other omitted methods produce the same clusters, although not the same distances between clusters,
as one of the illustrated methods: complete linkage and the flexible-beta method yield the same clusters as
Ward’s method, McQuitty’s similarity analysis produces the same clusters as average linkage, and the median
method corresponds to the centroid method.

All of the methods suggest a division of the cities into two clusters along the east-west dimension. There
is disagreement, however, about which cluster Denver should belong to. Some of the methods indicate a
possible third cluster that contains Denver and Houston.

The following step displays the city mileage SAS data set, which is available in the Sashelp library and is
designated as a TYPE=DISTANCE data set when it is used by PROC CLUSTER:

proc print noobs data=sashelp.mileages;
run;

Output 33.1.1 City Mileage Data Set

Atlanta Chicago Denver Houston LosAngeles Miami NewYork SanFrancisco Seattle WashingtonDC City

0 . . . . . . . . . Atlanta

587 0 . . . . . . . . Chicago

1212 920 0 . . . . . . . Denver

701 940 879 0 . . . . . . Houston

1936 1745 831 1374 0 . . . . . Los Angeles

604 1188 1726 968 2339 0 . . . . Miami

748 713 1631 1420 2451 1092 0 . . . New York

2139 1858 949 1645 347 2594 2571 0 . . San Francisco

2182 1737 1021 1891 959 2734 2408 678 0 . Seattle

543 597 1494 1220 2300 923 205 2442 2329 0 Washington D.C.

A partial listing from the following statements include Output 33.1.2 and Output 33.1.3:

title 'Cluster Analysis of Flying Mileages Between 10 American Cities';
ods graphics on;

title2 'Using METHOD=AVERAGE';
proc cluster data=sashelp.mileages(type=distance) method=average pseudo;

id City;
run;
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Output 33.1.2 Cluster History Using METHOD=AVERAGE

Cluster Analysis of Flying Mileages Between 10 American Cities
Using METHOD=AVERAGE

The CLUSTER Procedure
Average Linkage Cluster Analysis

Cluster Analysis of Flying Mileages Between 10 American Cities
Using METHOD=AVERAGE

The CLUSTER Procedure
Average Linkage Cluster Analysis

Cluster History

Number
of

Clusters Clusters Joined Freq
Pseudo F

Statistic
Pseudo

t-Squared
Norm RMS

Distance Tie

9 New York Washington D.C. 2 66.7 . 0.1297

8 Los Angeles San Francisco 2 39.2 . 0.2196

7 Atlanta Chicago 2 21.7 . 0.3715

6 CL7 CL9 4 14.5 3.4 0.4149

5 CL8 Seattle 3 12.4 7.3 0.5255

4 Denver Houston 2 13.9 . 0.5562

3 CL6 Miami 5 15.5 3.8 0.6185

2 CL3 CL4 7 16.0 5.3 0.8005

1 CL2 CL5 10 . 16.0 1.2967

Output 33.1.3 Dendrogram Using METHOD=AVERAGE
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A partial listing from the following statements include Output 33.1.4 and Output 33.1.5:

title2 'Using METHOD=CENTROID';
proc cluster data=sashelp.mileages(type=distance) method=centroid pseudo;

id City;
run;

Output 33.1.4 Cluster History Using METHOD=CENTROID

Cluster Analysis of Flying Mileages Between 10 American Cities
Using METHOD=CENTROID

The CLUSTER Procedure
Centroid Hierarchical Cluster Analysis

Cluster Analysis of Flying Mileages Between 10 American Cities
Using METHOD=CENTROID

The CLUSTER Procedure
Centroid Hierarchical Cluster Analysis

Cluster History

Number
of

Clusters Clusters Joined Freq
Pseudo F

Statistic
Pseudo

t-Squared

Norm
Centroid
Distance Tie

9 New York Washington D.C. 2 66.7 . 0.1297

8 Los Angeles San Francisco 2 39.2 . 0.2196

7 Atlanta Chicago 2 21.7 . 0.3715

6 CL7 CL9 4 14.5 3.4 0.3652

5 CL8 Seattle 3 12.4 7.3 0.5139

4 Denver CL5 4 12.4 2.1 0.5337

3 CL6 Miami 5 14.2 3.8 0.5743

2 CL3 Houston 6 22.1 2.6 0.6091

1 CL2 CL4 10 . 22.1 1.173

Output 33.1.5 Dendrogram Using METHOD=CENTROID
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A partial listing from the following statements include Output 33.1.6 and Output 33.1.7:

title2 'Using METHOD=DENSITY K=3';
proc cluster data=sashelp.mileages(type=distance) method=density k=3;

id City;
run;

Output 33.1.6 Cluster History Using METHOD=DENSITY K=3

Cluster Analysis of Flying Mileages Between 10 American Cities
Using METHOD=DENSITY K=3

The CLUSTER Procedure
Density Linkage Cluster Analysis

Cluster Analysis of Flying Mileages Between 10 American Cities
Using METHOD=DENSITY K=3

The CLUSTER Procedure
Density Linkage Cluster Analysis

Cluster History

MaximumDensity
in Each Cluster

Number
of

Clusters Clusters Joined Freq

Normalized
Fusion

Density Lesser Greater Tie

9 Atlanta Washington D.C. 2 96.106 92.5043 100.0

8 CL9 Chicago 3 95.263 90.9548 100.0

7 CL8 New York 4 86.465 76.1571 100.0

6 CL7 Miami 5 74.079 58.8299 100.0 T

5 CL6 Houston 6 74.079 61.7747 100.0

4 Los Angeles San Francisco 2 71.968 65.3430 80.0885

3 CL4 Seattle 3 66.341 56.6215 80.0885

2 CL3 Denver 4 63.509 61.7747 80.0885

1 CL5 CL2 10 61.775 * 80.0885 100.0

Output 33.1.7 Dendrogram Using METHOD=DENSITY K=3
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A partial listing from the following statements include Output 33.1.8 and Output 33.1.9:

title2 'Using METHOD=SINGLE';
proc cluster data=sashelp.mileages(type=distance) method=single;

id City;
run;

Output 33.1.8 Cluster History Using METHOD=SINGLE

Cluster Analysis of Flying Mileages Between 10 American Cities
Using METHOD=SINGLE

The CLUSTER Procedure
Single Linkage Cluster Analysis

Cluster Analysis of Flying Mileages Between 10 American Cities
Using METHOD=SINGLE

The CLUSTER Procedure
Single Linkage Cluster Analysis

Cluster History

Number
of

Clusters Clusters Joined Freq

Norm
Minimum
Distance Tie

9 New York Washington D.C. 2 0.1447

8 Los Angeles San Francisco 2 0.2449

7 Atlanta CL9 3 0.3832

6 CL7 Chicago 4 0.4142

5 CL6 Miami 5 0.4262

4 CL8 Seattle 3 0.4784

3 CL5 Houston 6 0.4947

2 Denver CL4 4 0.5864

1 CL3 CL2 10 0.6203

Output 33.1.9 Dendrogram Using METHOD=SINGLE
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A partial listing from the following statements include Output 33.1.10 and Output 33.1.11:

title2 'Using METHOD=TWOSTAGE K=3';
proc cluster data=sashelp.mileages(type=distance) method=twostage k=3;

id City;
run;

Output 33.1.10 Cluster History Using METHOD=TWOSTAGE K=3

Cluster Analysis of Flying Mileages Between 10 American Cities
Using METHOD=TWOSTAGE K=3

The CLUSTER Procedure
Two-Stage Density Linkage Clustering

Cluster Analysis of Flying Mileages Between 10 American Cities
Using METHOD=TWOSTAGE K=3

The CLUSTER Procedure
Two-Stage Density Linkage Clustering

Cluster History

MaximumDensity
in Each Cluster

Number
of

Clusters Clusters Joined Freq

Normalized
Fusion

Density Lesser Greater Tie

9 Atlanta Washington D.C. 2 96.106 92.5043 100.0

8 CL9 Chicago 3 95.263 90.9548 100.0

7 CL8 New York 4 86.465 76.1571 100.0

6 CL7 Miami 5 74.079 58.8299 100.0 T

5 CL6 Houston 6 74.079 61.7747 100.0

4 Los Angeles San Francisco 2 71.968 65.3430 80.0885

3 CL4 Seattle 3 66.341 56.6215 80.0885

2 CL3 Denver 4 63.509 61.7747 80.0885

1 CL5 CL2 10 61.775 80.0885 100.0

Output 33.1.11 Dendrogram Using METHOD=TWOSTAGE K=3



Example 33.1: Cluster Analysis of Flying Mileages between 10 American Cities F 2051

A partial listing from the following statements include Output 33.1.12 and Output 33.1.13:

title2 'Using METHOD=WARD';
proc cluster data=sashelp.mileages(type=distance) method=ward pseudo;

id City;
run;

Output 33.1.12 Cluster History Using METHOD=WARD

Cluster Analysis of Flying Mileages Between 10 American Cities
Using METHOD=WARD

The CLUSTER Procedure
Ward's Minimum Variance Cluster Analysis

Cluster Analysis of Flying Mileages Between 10 American Cities
Using METHOD=WARD

The CLUSTER Procedure
Ward's Minimum Variance Cluster Analysis

Cluster History

Number
of

Clusters Clusters Joined Freq
Semipartial

R-Square R-Square
Pseudo F

Statistic
Pseudo

t-Squared Tie

9 New York Washington D.C. 2 0.0019 .998 66.7 .

8 Los Angeles San Francisco 2 0.0054 .993 39.2 .

7 Atlanta Chicago 2 0.0153 .977 21.7 .

6 CL7 CL9 4 0.0296 .948 14.5 3.4

5 Denver Houston 2 0.0344 .913 13.2 .

4 CL8 Seattle 3 0.0391 .874 13.9 7.3

3 CL6 Miami 5 0.0586 .816 15.5 3.8

2 CL3 CL5 7 0.1488 .667 16.0 5.3

1 CL2 CL4 10 0.6669 .000 . 16.0

Output 33.1.13 Dendrogram Using METHOD=WARD



2052 F Chapter 33: The CLUSTER Procedure

Example 33.2: Crude Birth and Death Rates
This example uses the SAS data set Poverty created in the section “Getting Started: CLUSTER Procedure”
on page 2007. The data, from Rouncefield (1995), are birth rates, death rates, and infant death rates for 97
countries. Six cluster analyses are performed with eight methods. Scatter plots showing cluster membership
at selected levels are produced instead of tree diagrams.

Each cluster analysis is performed by a macro called ANALYZE. The macro takes two arguments. The first,
&METHOD, specifies the value of the METHOD= option to be used in the PROC CLUSTER statement. The
second, &NCL, must be specified as a list of integers, separated by blanks, indicating the number of clusters
desired in each scatter plot. For example, the first invocation of ANALYZE specifies the AVERAGE method
and requests plots of three and eight clusters. When two-stage density linkage is used, the K= and R= options
are specified as part of the first argument.

The ANALYZE macro first invokes the CLUSTER procedure with METHOD=&METHOD, where &METHOD
represents the value of the first argument to ANALYZE. This part of the macro produces the PROC CLUSTER
output shown.

The %DO loop processes &NCL, the list of numbers of clusters to plot. The macro variable &K is a counter
that indexes the numbers within &NCL. The %SCAN function picks out the kth number in &NCL, which is
then assigned to the macro variable &N. When &K exceeds the number of numbers in &NCL, %SCAN returns
a null string. Thus, the %DO loop executes while &N is not equal to a null string. In the %WHILE condition,
a null string is indicated by the absence of any nonblank characters between the comparison operator (NE)
and the right parenthesis that terminates the condition.

Within the %DO loop, the TREE procedure creates an output data set containing &N clusters. The SGPLOT
procedure then produces a scatter plot in which each observation is identified by the number of the cluster to
which it belongs. The TITLE2 statement uses double quotes so that &N and &METHOD can be used within
the title. At the end of the loop, &K is incremented by 1, and the next number is extracted from &NCL by
%SCAN.

title 'Cluster Analysis of Birth and Death Rates';
ods graphics on;

%macro analyze(method,ncl);
proc cluster data=poverty outtree=tree method=&method print=15 ccc pseudo;

var birth death;
title2;

run;

%let k=1;
%let n=%scan(&ncl,&k);
%do %while(&n NE);

proc tree data=tree noprint out=out ncl=&n;
copy birth death;

run;
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proc sgplot;
scatter y=death x=birth / group=cluster;
title2 "Plot of &n Clusters from METHOD=&METHOD";

run;

%let k=%eval(&k+1);
%let n=%scan(&ncl,&k);

%end;
%mend;

The following statement produces Output 33.2.1, Output 33.2.3, and Output 33.2.4:

%analyze(average, 3 8)

For average linkage, the CCC has peaks at three, eight, ten, and twelve clusters, but the three-cluster peak is
lower than the eight-cluster peak. The pseudo F statistic has peaks at three, eight, and twelve clusters. The
pseudo t2 statistic drops sharply at three clusters, continues to fall at four clusters, and has a particularly
low value at twelve clusters. However, there are not enough data to seriously consider as many as twelve
clusters. Scatter plots are given for three and eight clusters. The results are shown in Output 33.2.1 through
Output 33.2.4. In Output 33.2.4, the eighth cluster consists of the two outlying observations, Mexico and
Korea.

Output 33.2.1 Cluster Analysis for Birth and Death Rates: METHOD=AVERAGE

Cluster Analysis of Birth and Death Rates

The CLUSTER Procedure
Average Linkage Cluster Analysis

Cluster Analysis of Birth and Death Rates

The CLUSTER Procedure
Average Linkage Cluster Analysis

Eigenvalues of the Covariance Matrix

Eigenvalue Difference Proportion Cumulative

1 189.106588 173.101020 0.9220 0.9220

2 16.005568 0.0780 1.0000

Root-Mean-Square Total-Sample Standard Deviation 10.127

Root-Mean-Square Distance Between Observations 20.25399
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Output 33.2.1 continued

Cluster History

Number
of

Clusters
Clusters
Joined Freq

Semipartial
R-Square R-Square

Approximate
Expected
R-Square

Cubic
Clustering

Criterion
Pseudo F

Statistic
Pseudo

t-Squared
Norm RMS

Distance Tie

15 CL27 CL20 18 0.0035 .980 .975 2.61 292 18.6 0.2325

14 CL23 CL17 28 0.0034 .977 .972 1.97 271 17.7 0.2358

13 CL18 CL54 8 0.0015 .975 .969 2.35 279 7.1 0.2432

12 CL21 CL26 8 0.0015 .974 .966 2.85 290 6.1 0.2493

11 CL19 CL24 12 0.0033 .971 .962 2.78 285 14.8 0.2767

10 CL22 CL16 12 0.0036 .967 .957 2.84 284 17.4 0.2858

9 CL15 CL28 22 0.0061 .961 .951 2.45 271 17.5 0.3353

8 OB23 OB61 2 0.0014 .960 .943 3.59 302 . 0.3703

7 CL25 CL11 17 0.0098 .950 .933 3.01 284 23.3 0.4033

6 CL7 CL12 25 0.0122 .938 .920 2.63 273 14.8 0.4132

5 CL10 CL14 40 0.0303 .907 .902 0.59 225 82.7 0.4584

4 CL13 CL6 33 0.0244 .883 .875 0.77 234 22.2 0.5194

3 CL9 CL8 24 0.0182 .865 .827 2.13 300 27.7 0.735

2 CL5 CL3 64 0.1836 .681 .697 -.55 203 148 0.8402

1 CL2 CL4 97 0.6810 .000 .000 0.00 . 203 1.3348

Output 33.2.2 Criteria for the Number of Clusters: METHOD=AVERAGE
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Output 33.2.3 Plot of Three Clusters: METHOD=AVERAGE

Output 33.2.4 Plot of Eight Clusters: METHOD=AVERAGE
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The following statement produces Output 33.2.5 and Output 33.2.7:

%analyze(complete, 3)

Complete linkage shows CCC peaks at three, eight and twelve clusters. The pseudo F statistic peaks at three
and twelve clusters. The pseudo t2 statistic indicates three clusters.

The scatter plot for three clusters is shown.

Output 33.2.5 Cluster History for Birth and Death Rates: METHOD=COMPLETE

Cluster Analysis of Birth and Death Rates

The CLUSTER Procedure
Complete Linkage Cluster Analysis

Cluster Analysis of Birth and Death Rates

The CLUSTER Procedure
Complete Linkage Cluster Analysis

Eigenvalues of the Covariance Matrix

Eigenvalue Difference Proportion Cumulative

1 189.106588 173.101020 0.9220 0.9220

2 16.005568 0.0780 1.0000

Root-Mean-Square Total-Sample Standard Deviation 10.127

Mean Distance Between Observations 17.13099

Cluster History

Number
of

Clusters
Clusters
Joined Freq

Semipartial
R-Square R-Square

Approximate
Expected
R-Square

Cubic
Clustering

Criterion
Pseudo F

Statistic
Pseudo

t-Squared

Norm
Maximum
Distance Tie

15 CL22 CL33 8 0.0015 .983 .975 3.80 329 6.1 0.4092

14 CL56 CL18 8 0.0014 .981 .972 3.97 331 6.6 0.4255

13 CL30 CL44 8 0.0019 .979 .969 4.04 330 19.0 0.4332

12 OB23 OB61 2 0.0014 .978 .966 4.45 340 . 0.4378

11 CL19 CL24 24 0.0034 .974 .962 4.17 327 24.1 0.4962

10 CL17 CL28 12 0.0033 .971 .957 4.18 325 14.8 0.5204

9 CL20 CL13 16 0.0067 .964 .951 3.38 297 25.2 0.5236

8 CL11 CL21 32 0.0054 .959 .943 3.44 297 19.7 0.6001

7 CL26 CL15 13 0.0096 .949 .933 2.93 282 28.9 0.7233

6 CL14 CL10 20 0.0128 .937 .920 2.46 269 27.7 0.8033

5 CL9 CL16 30 0.0237 .913 .902 1.29 241 47.1 0.8993

4 CL6 CL7 33 0.0240 .889 .875 1.38 248 21.7 1.2165

3 CL5 CL12 32 0.0178 .871 .827 2.56 317 13.6 1.2326

2 CL3 CL8 64 0.1900 .681 .697 -.55 203 167 1.5412

1 CL2 CL4 97 0.6810 .000 .000 0.00 . 203 2.5233
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Output 33.2.6 Criteria for the Number of Clusters: METHOD=COMPLETE

Output 33.2.7 Plot of Clusters for METHOD=COMPLETE
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The following statement produces Output 33.2.8 and Output 33.2.10:

%analyze(single, 7 10)

The CCC and pseudo F statistics are not appropriate for use with single linkage because of the method’s
tendency to chop off tails of distributions. The pseudo t2 statistic can be used by looking for large values and
taking the number of clusters to be one greater than the level at which the large pseudo t2 value is displayed.
For these data, there are large values at levels 6 and 9, suggesting seven or ten clusters.

The scatter plots for seven and ten clusters are shown.

Output 33.2.8 Cluster History for Birth and Death Rates: METHOD=SINGLE

Cluster Analysis of Birth and Death Rates

The CLUSTER Procedure
Single Linkage Cluster Analysis

Cluster Analysis of Birth and Death Rates

The CLUSTER Procedure
Single Linkage Cluster Analysis

Eigenvalues of the Covariance Matrix

Eigenvalue Difference Proportion Cumulative

1 189.106588 173.101020 0.9220 0.9220

2 16.005568 0.0780 1.0000

Root-Mean-Square Total-Sample Standard Deviation 10.127

Mean Distance Between Observations 17.13099

Cluster History

Number
of

Clusters
Clusters
Joined Freq

Semipartial
R-Square R-Square

Approximate
Expected
R-Square

Cubic
Clustering

Criterion
Pseudo F

Statistic
Pseudo

t-Squared

Norm
Minimum
Distance Tie

15 CL37 CL19 8 0.0014 .968 .975 -2.3 178 6.6 0.1331

14 CL20 CL23 15 0.0059 .962 .972 -3.1 162 18.7 0.1412

13 CL14 CL16 19 0.0054 .957 .969 -3.4 155 8.8 0.1442

12 CL26 OB58 31 0.0014 .955 .966 -2.7 165 4.0 0.1486

11 OB86 CL18 4 0.0003 .955 .962 -1.6 183 3.8 0.1495

10 CL13 CL11 23 0.0088 .946 .957 -2.3 170 11.3 0.1518

9 CL22 CL17 30 0.0235 .923 .951 -4.7 131 45.7 0.1593 T

8 CL15 CL10 31 0.0210 .902 .943 -5.8 117 21.8 0.1593

7 CL9 OB75 31 0.0052 .897 .933 -4.7 130 4.0 0.1628

6 CL7 CL12 62 0.2023 .694 .920 -15 41.3 223 0.1725

5 CL6 CL8 93 0.6681 .026 .902 -26 0.6 199 0.1756

4 CL5 OB48 94 0.0056 .021 .875 -24 0.7 0.5 0.1811 T

3 CL4 OB67 95 0.0083 .012 .827 -15 0.6 0.8 0.1811

2 OB23 OB61 2 0.0014 .011 .697 -13 1.0 . 0.4378

1 CL3 CL2 97 0.0109 .000 .000 0.00 . 1.0 0.5815
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Output 33.2.9 Criteria for the Number of Clusters: METHOD=SINGLE

Output 33.2.10 Plot of Clusters for METHOD=SINGLE
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Output 33.2.10 continued

The following statements produce Output 33.2.11 through Output 33.2.14:

%analyze(two k=10, 3)

%analyze(two k=18, 2)
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For kth-nearest-neighbor density linkage, the number of modes as a function of k is as follows (not all of
these analyses are shown):

k Modes
3 13
4 6

5-7 4
8-15 3

16-21 2
22+ 1

Thus, there is strong evidence of three modes and an indication of the possibility of two modes. Uniform-
kernel density linkage gives similar results. For K=10 (10th-nearest-neighbor density linkage), the scatter
plot for three clusters is shown; and for K=18, the scatter plot for two clusters is shown.

Output 33.2.11 Cluster History for Birth and Death Rates: METHOD=TWOSTAGE K=10

Cluster Analysis of Birth and Death Rates

The CLUSTER Procedure
Two-Stage Density Linkage Clustering

Cluster Analysis of Birth and Death Rates

The CLUSTER Procedure
Two-Stage Density Linkage Clustering

Eigenvalues of the Covariance Matrix

Eigenvalue Difference Proportion Cumulative

1 189.106588 173.101020 0.9220 0.9220

2 16.005568 0.0780 1.0000

K = 10

Root-Mean-Square Total-Sample Standard Deviation 10.127
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Output 33.2.11 continued

Cluster History

MaximumDensity
in Each Cluster

Number
of

Clusters
Clusters
Joined Freq

Semipartial
R-Square R-Square

Approximate
Expected
R-Square

Cubic
Clustering

Criterion
Pseudo F

Statistic
Pseudo

t-Squared

Normalized
Fusion

Density Lesser Greater Tie

15 CL16 OB94 22 0.0015 .921 .975 -11 68.4 1.4 9.2234 6.7927 15.3069

14 CL19 OB49 28 0.0021 .919 .972 -11 72.4 1.8 8.7369 5.9334 33.4385

13 CL15 OB52 23 0.0024 .917 .969 -10 76.9 2.3 8.5847 5.9651 15.3069

12 CL13 OB96 24 0.0018 .915 .966 -9.3 83.0 1.6 7.9252 5.4724 15.3069

11 CL12 OB93 25 0.0025 .912 .962 -8.5 89.5 2.2 7.8913 5.4401 15.3069

10 CL11 OB78 26 0.0031 .909 .957 -7.7 96.9 2.5 7.787 5.4082 15.3069

9 CL10 OB76 27 0.0026 .907 .951 -6.7 107 2.1 7.7133 5.4401 15.3069

8 CL9 OB77 28 0.0023 .904 .943 -5.5 120 1.7 7.4256 4.9017 15.3069

7 CL8 OB43 29 0.0022 .902 .933 -4.1 138 1.6 6.927 4.4764 15.3069

6 CL7 OB87 30 0.0043 .898 .920 -2.7 160 3.1 4.932 2.9977 15.3069

5 CL6 OB82 31 0.0055 .892 .902 -1.1 191 3.7 3.7331 2.1560 15.3069

4 CL22 OB61 37 0.0079 .884 .875 0.93 237 10.6 3.1713 1.6308 100.0

3 CL14 OB23 29 0.0126 .872 .827 2.60 320 10.4 2.0654 1.0744 33.4385

2 CL4 CL3 66 0.2129 .659 .697 -1.3 183 172 12.409 33.4385 100.0

1 CL2 CL5 97 0.6588 .000 .000 0.00 . 183 10.071 15.3069 100.0

3 modal clusters have been formed.
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Output 33.2.12 Cluster History for Birth and Death Rates: METHOD=TWOSTAGE K=18

Cluster Analysis of Birth and Death Rates

The CLUSTER Procedure
Two-Stage Density Linkage Clustering

Cluster Analysis of Birth and Death Rates

The CLUSTER Procedure
Two-Stage Density Linkage Clustering

Eigenvalues of the Covariance Matrix

Eigenvalue Difference Proportion Cumulative

1 189.106588 173.101020 0.9220 0.9220

2 16.005568 0.0780 1.0000

K = 18

Root-Mean-Square Total-Sample Standard Deviation 10.127

Cluster History

MaximumDensity
in Each Cluster

Number
of

Clusters
Clusters
Joined Freq

Semipartial
R-Square R-Square

Approximate
Expected
R-Square

Cubic
Clustering

Criterion
Pseudo F

Statistic
Pseudo

t-Squared

Normalized
Fusion

Density Lesser Greater Tie

15 CL16 OB72 46 0.0107 .799 .975 -21 23.3 3.0 10.118 7.7445 23.4457

14 CL15 OB94 47 0.0098 .789 .972 -21 23.9 2.7 9.676 7.1257 23.4457

13 CL14 OB51 48 0.0037 .786 .969 -20 25.6 1.0 9.409 6.8398 23.4457 T

12 CL13 OB96 49 0.0099 .776 .966 -19 26.7 2.6 9.409 6.8398 23.4457

11 CL12 OB76 50 0.0114 .764 .962 -19 27.9 2.9 8.8136 6.3138 23.4457

10 CL11 OB77 51 0.0021 .762 .957 -18 31.0 0.5 8.6593 6.0751 23.4457

9 CL10 OB78 52 0.0103 .752 .951 -17 33.3 2.5 8.6007 6.0976 23.4457

8 CL9 OB43 53 0.0034 .748 .943 -16 37.8 0.8 8.4964 5.9160 23.4457

7 CL8 OB93 54 0.0109 .737 .933 -15 42.1 2.6 8.367 5.7913 23.4457

6 CL7 OB88 55 0.0110 .726 .920 -13 48.3 2.6 7.916 5.3679 23.4457

5 CL6 OB87 56 0.0120 .714 .902 -12 57.5 2.7 6.6917 4.3415 23.4457

4 CL20 OB61 39 0.0077 .707 .875 -9.8 74.7 8.3 6.2578 3.2882 100.0

3 CL5 OB82 57 0.0138 .693 .827 -5.0 106 3.0 5.3605 3.2834 23.4457

2 CL3 OB23 58 0.0117 .681 .697 -.54 203 2.5 3.2687 1.7568 23.4457

1 CL2 CL4 97 0.6812 .000 .000 0.00 . 203 13.764 23.4457 100.0

2 modal clusters have been formed.
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Output 33.2.13 Plot of Clusters for METHOD=TWOSTAGE K=10

Output 33.2.14 Plot of Clusters for METHOD=TWOSTAGE K=18
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In summary, most of the clustering methods indicate three or eight clusters. Most methods agree at the
three-cluster level, but at the other levels, there is considerable disagreement about the composition of the
clusters. The presence of numerous ties also complicates the analysis; see Example 33.4.

Example 33.3: Cluster Analysis of Fisher’s Iris Data
The iris data published by Fisher (1936) have been widely used for examples in discriminant analysis and
cluster analysis. The sepal length, sepal width, petal length, and petal width are measured in millimeters on
50 iris specimens from each of three species, Iris setosa, I. versicolor, and I. virginica. Mezzich and Solomon
(1980) discuss a variety of cluster analyses of the iris data.

The following step displays the iris SAS data set, which is available in the Sashelp library:

title 'Cluster Analysis of Fisher (1936) Iris Data';

proc print data=sashelp.iris;
run;

The results of this step are not shown.

This example analyzes the iris data by using Ward’s method and two-stage density linkage and then illustrates
how the FASTCLUS procedure can be used in combination with PROC CLUSTER to analyze large data sets.

The following macro, SHOW, is used in the subsequent analyses to display cluster results. It invokes
the FREQ procedure to crosstabulate clusters and species. The CANDISC procedure computes canonical
variables for discriminating among the clusters, and the first two canonical variables are plotted to show
cluster membership. See Chapter 31, “The CANDISC Procedure,” for a canonical discriminant analysis of
the iris species.

/*--- Define macro show ---*/
%macro show;

proc freq;
tables cluster*species / nopercent norow nocol plot=none;

run;

proc candisc noprint out=can;
class cluster;
var petal: sepal:;

run;

proc sgplot data=can;
scatter y=can2 x=can1 / group=cluster;

run;
%mend;
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The first analysis clusters the iris data by using Ward’s method (see Output 33.3.1) and plots the CCC and
pseudo F and t2 statistics (see Output 33.3.2). The CCC has a local peak at three clusters but a higher peak
at five clusters. The pseudo F statistic indicates three clusters, while the pseudo t2 statistic suggests three or
six clusters.

The TREE procedure creates an output data set containing the three-cluster partition for use by the SHOW
macro. The FREQ procedure reveals 16 misclassifications. The results are shown in Output 33.3.3.

title2 'By Ward''s Method';
ods graphics on;

proc cluster data=sashelp.iris method=ward print=15 ccc pseudo;
var petal: sepal:;
copy species;

run;

proc tree noprint ncl=3 out=out;
copy petal: sepal: species;

run;

%show;

Output 33.3.1 Cluster Analysis of Fisher’s Iris Data: PROC CLUSTER with METHOD=WARD

Cluster Analysis of Fisher (1936) Iris Data
By Ward's Method

The CLUSTER Procedure
Ward's Minimum Variance Cluster Analysis

Cluster Analysis of Fisher (1936) Iris Data
By Ward's Method

The CLUSTER Procedure
Ward's Minimum Variance Cluster Analysis

Eigenvalues of the Covariance Matrix

Eigenvalue Difference Proportion Cumulative

1 422.824171 398.557096 0.9246 0.9246

2 24.267075 16.446125 0.0531 0.9777

3 7.820950 5.437441 0.0171 0.9948

4 2.383509 0.0052 1.0000

Root-Mean-Square Total-Sample Standard Deviation 10.69224

Root-Mean-Square Distance Between Observations 30.24221
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Output 33.3.1 continued

Cluster History

Number
of

Clusters
Clusters
Joined Freq

Semipartial
R-Square R-Square

Approximate
Expected
R-Square

Cubic
Clustering

Criterion
Pseudo F

Statistic
Pseudo

t-Squared Tie

15 CL24 CL28 15 0.0016 .971 .958 5.93 324 9.8

14 CL21 CL53 7 0.0019 .969 .955 5.85 329 5.1

13 CL18 CL48 15 0.0023 .967 .953 5.69 334 8.9

12 CL16 CL23 24 0.0023 .965 .950 4.63 342 9.6

11 CL14 CL43 12 0.0025 .962 .946 4.67 353 5.8

10 CL26 CL20 22 0.0027 .959 .942 4.81 368 12.9

9 CL27 CL17 31 0.0031 .956 .936 5.02 387 17.8

8 CL35 CL15 23 0.0031 .953 .930 5.44 414 13.8

7 CL10 CL47 26 0.0058 .947 .921 5.43 430 19.1

6 CL8 CL13 38 0.0060 .941 .911 5.81 463 16.3

5 CL9 CL19 50 0.0105 .931 .895 5.82 488 43.2

4 CL12 CL11 36 0.0172 .914 .872 3.99 515 41.0

3 CL6 CL7 64 0.0301 .884 .827 4.33 558 57.2

2 CL3 CL4 100 0.1110 .773 .697 3.83 503 116

1 CL5 CL2 150 0.7726 .000 .000 0.00 . 503

Output 33.3.2 Criteria for the Number of Clusters with METHOD=WARD
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Output 33.3.3 Crosstabulation of Clusters for METHOD=WARD

Cluster Analysis of Fisher (1936) Iris Data
By Ward's Method

The FREQ Procedure

Cluster Analysis of Fisher (1936) Iris Data
By Ward's Method

The FREQ Procedure

Frequency Table of CLUSTER by Species

CLUSTER

Species(Iris Species)

Setosa Versicolor Virginica Total

1 0 49 15 64

2 50 0 0 50

3 0 1 35 36

Total 50 50 50 150

Output 33.3.4 Scatter Plot of Clusters for METHOD=WARD
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The second analysis uses two-stage density linkage. The raw data suggest two or six modes instead of three:

k Modes
3 12

4-6 6
7 4
8 3

9-50 2
51+ 1

The following analysis uses K=8 to produce three clusters for comparison with other analyses. There are
only six misclassifications. The results are shown in Output 33.3.5 and Output 33.3.6.

title2 'By Two-Stage Density Linkage';

proc cluster data=sashelp.iris method=twostage k=8 print=15 ccc pseudo;
var petal: sepal:;
copy species;

run;

proc tree noprint ncl=3 out=out;
copy petal: sepal: species;

run;

%show;

Output 33.3.5 Cluster Analysis of Fisher’s Iris Data: PROC CLUSTER with METHOD=TWOSTAGE

Cluster Analysis of Fisher (1936) Iris Data
By Two-Stage Density Linkage

The CLUSTER Procedure
Two-Stage Density Linkage Clustering

Cluster Analysis of Fisher (1936) Iris Data
By Two-Stage Density Linkage

The CLUSTER Procedure
Two-Stage Density Linkage Clustering

Eigenvalues of the Covariance Matrix

Eigenvalue Difference Proportion Cumulative

1 422.824171 398.557096 0.9246 0.9246

2 24.267075 16.446125 0.0531 0.9777

3 7.820950 5.437441 0.0171 0.9948

4 2.383509 0.0052 1.0000

K = 8

Root-Mean-Square Total-Sample Standard Deviation 10.69224
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Output 33.3.5 continued

Cluster History

MaximumDensity
in Each Cluster

Number
of

Clusters
Clusters
Joined Freq

Semipartial
R-Square R-Square

Approximate
Expected
R-Square

Cubic
Clustering

Criterion
Pseudo F

Statistic
Pseudo

t-Squared

Normalized
Fusion

Density Lesser Greater Tie

15 CL17 OB144 44 0.0025 .916 .958 -11 105 3.4 0.3903 0.2066 3.5156

14 CL16 OB44 50 0.0023 .913 .955 -11 110 5.6 0.3637 0.1837 100.0

13 CL15 OB127 45 0.0029 .910 .953 -10 116 3.7 0.3553 0.2130 3.5156

12 CL28 OB66 46 0.0036 .907 .950 -8.0 122 5.2 0.3223 0.1736 8.3678 T

11 CL12 OB73 47 0.0036 .903 .946 -7.6 130 4.8 0.3223 0.1736 8.3678

10 CL11 OB79 48 0.0033 .900 .942 -7.1 140 4.1 0.2879 0.1479 8.3678

9 CL13 OB112 46 0.0037 .896 .936 -6.5 152 4.4 0.2802 0.2005 3.5156

8 CL10 OB113 49 0.0019 .894 .930 -5.5 171 2.2 0.2699 0.1372 8.3678

7 CL8 OB91 50 0.0035 .891 .921 -4.5 194 4.0 0.2586 0.1372 8.3678

6 CL9 OB120 47 0.0042 .886 .911 -3.3 225 4.6 0.1412 0.0832 3.5156

5 CL6 OB118 48 0.0049 .882 .895 -1.7 270 5.0 0.107 0.0605 3.5156

4 CL5 OB110 49 0.0049 .877 .872 0.35 346 4.7 0.0969 0.0541 3.5156

3 CL4 OB135 50 0.0047 .872 .827 3.28 500 4.1 0.0715 0.0370 3.5156

2 CL7 CL3 100 0.0993 .773 .697 3.83 503 91.9 2.6277 3.5156 8.3678

3 modal clusters have been formed.

Output 33.3.6 Criteria for the Number of Clusters with METHOD=TWOSTAGE
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Output 33.3.7 Crosstabulation of Clusters for METHOD=TWOSTAGE

Cluster Analysis of Fisher (1936) Iris Data
By Two-Stage Density Linkage

The FREQ Procedure

Cluster Analysis of Fisher (1936) Iris Data
By Two-Stage Density Linkage

The FREQ Procedure

Frequency Table of CLUSTER by Species

CLUSTER

Species(Iris Species)

Setosa Versicolor Virginica Total

1 50 0 0 50

2 0 47 3 50

3 0 3 47 50

Total 50 50 50 150

Output 33.3.8 Scatter Plot of Clusters for METHOD=TWOSTAGE
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The CLUSTER procedure is not practical for very large data sets because, with most methods, the CPU time
is roughly proportional to the square or cube of the number of observations. The FASTCLUS procedure
requires time proportional to the number of observations and can therefore be used with much larger data
sets than PROC CLUSTER. If you want to hierarchically cluster a very large data set, you can use PROC
FASTCLUS for a preliminary cluster analysis to produce a large number of clusters and then use PROC
CLUSTER to hierarchically cluster the preliminary clusters.

FASTCLUS automatically creates the variables _FREQ_ and _RMSSTD_ in the MEAN= output data set.
These variables are then automatically used by PROC CLUSTER in the computation of various statistics.

The following SAS code uses the iris data to illustrate the process of clustering clusters. In the preliminary
analysis, PROC FASTCLUS produces ten clusters, which are then crosstabulated with species. The data
set containing the preliminary clusters is sorted in preparation for later merges. The results are shown in
Output 33.3.9 and Output 33.3.10.

title2 'Preliminary Analysis by FASTCLUS';
proc fastclus data=sashelp.iris summary maxc=10 maxiter=99 converge=0

mean=mean out=prelim cluster=preclus;
var petal: sepal:;

run;

proc freq;
tables preclus*species / nopercent norow nocol plot=none;

run;

proc sort data=prelim;
by preclus;

run;

Output 33.3.9 Preliminary Analysis of Fisher’s Iris Data: FASTCLUS Procedure

Cluster Analysis of Fisher (1936) Iris Data
Preliminary Analysis by FASTCLUS

The FASTCLUS Procedure
Replace=FULL  Radius=0  Maxclusters=10 Maxiter=99  Converge=0

Cluster Analysis of Fisher (1936) Iris Data
Preliminary Analysis by FASTCLUS

The FASTCLUS Procedure
Replace=FULL  Radius=0  Maxclusters=10 Maxiter=99  Converge=0

Convergence criterion is satisfied.

Criterion Based on Final Seeds = 2.1271
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Output 33.3.9 continued

Cluster Summary

Cluster Frequency
RMS Std

Deviation

MaximumDistance
from Seed

to Observation
Radius

Exceeded
Nearest
Cluster

Distance Between
Cluster Centroids

1 14 2.3258 6.6047 10 5.6068

2 16 2.0402 6.7373 3 6.2977

3 23 1.6115 6.3775 8 5.4185

4 24 2.4329 8.3178 6 9.3274

5 10 3.1829 7.9517 4 12.4281

6 18 2.2628 7.1135 7 8.2685

7 12 1.9824 7.0833 1 7.6733

8 11 1.7123 7.0435 3 5.4185

9 10 2.5155 6.1335 10 8.4783

10 12 2.0207 7.9390 1 5.6068

Pseudo F Statistic = 374.89

Observed Over-All R-Squared = 0.96016

Approximate Expected Over-All R-Squared = 0.82928

Cubic Clustering Criterion = 27.285

WARNING: The two values above are invalid for correlated variables.

Output 33.3.10 Crosstabulation of Species and Cluster From the FASTCLUS Procedure

Cluster Analysis of Fisher (1936) Iris Data
Preliminary Analysis by FASTCLUS

The FREQ Procedure

Cluster Analysis of Fisher (1936) Iris Data
Preliminary Analysis by FASTCLUS

The FREQ Procedure

Frequency Table of preclus by Species

preclus(Cluster)

Species(Iris Species)

Setosa Versicolor Virginica Total

1 0 14 0 14

2 16 0 0 16

3 23 0 0 23

4 0 0 24 24

5 0 0 10 10

6 0 3 15 18

7 0 12 0 12

8 11 0 0 11

9 0 10 0 10

10 0 11 1 12

Total 50 50 50 150
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The following macro, CLUS, clusters the preliminary clusters. There is one argument to choose the
METHOD= specification to be used by PROC CLUSTER. The TREE procedure creates an output data
set containing the three-cluster partition, which is sorted and merged with the OUT= data set from PROC
FASTCLUS to determine which cluster each of the original 150 observations belongs to. The SHOW macro
is then used to display the results. In this example, the CLUS macro is invoked using Ward’s method, which
produces 16 misclassifications, and Wong’s hybrid method, which produces 22 misclassifications.

/*--- Define macro clus ---*/
%macro clus(method);

proc cluster data=mean method=&method ccc pseudo;
var petal: sepal:;
copy preclus;

run;

proc tree noprint ncl=3 out=out;
copy petal: sepal: preclus;

run;

proc sort data=out;
by preclus;

run;

data clus;
merge out prelim;
by preclus;

run;

%show;
%mend;

The following statements produce Output 33.3.11 through Output 33.3.14.

title2 'Clustering Clusters by Ward''s Method';
%clus(ward);

Output 33.3.11 Clustering Clusters by Ward’s Method

Cluster Analysis of Fisher (1936) Iris Data
Clustering Clusters by Ward's Method

The CLUSTER Procedure
Ward's Minimum Variance Cluster Analysis

Cluster Analysis of Fisher (1936) Iris Data
Clustering Clusters by Ward's Method

The CLUSTER Procedure
Ward's Minimum Variance Cluster Analysis

Eigenvalues of the Covariance Matrix

Eigenvalue Difference Proportion Cumulative

1 417.301104 398.455363 0.9504 0.9504

2 18.845742 16.244505 0.0429 0.9933

3 2.601236 2.272553 0.0059 0.9993

4 0.328684 0.0007 1.0000

Root-Mean-Square Total-Sample Standard Deviation 10.69224

Root-Mean-Square Distance Between Observations 30.24221
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Output 33.3.11 continued

Cluster History

Number
of

Clusters
Clusters
Joined Freq

Semipartial
R-Square R-Square

Approximate
Expected
R-Square

Cubic
Clustering

Criterion
Pseudo F

Statistic
Pseudo

t-Squared Tie

9 OB1 OB10 26 0.0030 .957 .934 5.84 394 10.6

8 OB3 OB8 34 0.0032 .954 .927 6.16 420 20.2

7 OB6 OB7 30 0.0072 .947 .919 5.70 424 26.5

6 CL9 OB9 36 0.0094 .937 .908 5.26 431 24.5

5 OB2 CL8 50 0.0103 .927 .893 5.36 461 41.3

4 OB4 OB5 34 0.0160 .911 .870 3.84 498 38.4

3 CL6 CL7 66 0.0285 .883 .825 4.36 552 48.8

2 CL3 CL4 100 0.1099 .773 .695 3.91 503 113

1 CL2 CL5 150 0.7726 .000 .000 0.00 . 503

Output 33.3.12 Criteria for the Number of Clusters for Clustering Clusters from Ward’s Method
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Output 33.3.13 Crosstabulation for Clustering Clusters from Ward’s Method

Cluster Analysis of Fisher (1936) Iris Data
Clustering Clusters by Ward's Method

The FREQ Procedure

Cluster Analysis of Fisher (1936) Iris Data
Clustering Clusters by Ward's Method

The FREQ Procedure

Frequency Table of CLUSTER by Species

CLUSTER

Species(Iris Species)

Setosa Versicolor Virginica Total

1 0 50 16 66

2 50 0 0 50

3 0 0 34 34

Total 50 50 50 150

Output 33.3.14 Scatter Plot for Clustering Clusters using Ward’s Method
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The following statements produce Output 33.3.15 through Output 33.3.17.

title2 "Clustering Clusters by Wong's Hybrid Method";
%clus(twostage hybrid);

Output 33.3.15 Clustering Clusters by Wong’s Hybrid Method

Cluster Analysis of Fisher (1936) Iris Data
Clustering Clusters by Wong's Hybrid Method

The CLUSTER Procedure
Two-Stage Density Linkage Clustering

Cluster Analysis of Fisher (1936) Iris Data
Clustering Clusters by Wong's Hybrid Method

The CLUSTER Procedure
Two-Stage Density Linkage Clustering

Eigenvalues of the Covariance Matrix

Eigenvalue Difference Proportion Cumulative

1 417.301104 398.455363 0.9504 0.9504

2 18.845742 16.244505 0.0429 0.9933

3 2.601236 2.272553 0.0059 0.9993

4 0.328684 0.0007 1.0000

Root-Mean-Square Total-Sample Standard Deviation 10.69224

Cluster History

MaximumDensity
in Each Cluster

Number
of

Clusters
Clusters
Joined Freq

Semipartial
R-Square R-Square

Approximate
Expected
R-Square

Cubic
Clustering

Criterion
Pseudo F

Statistic
Pseudo

t-Squared

Normalized
Fusion

Density Lesser Greater Tie

9 OB3 OB8 34 0.0032 .957 .934 5.77 392 20.2 47.595 41.5390 100.0

8 CL9 OB2 50 0.0103 .947 .927 4.19 360 41.3 34.03 28.1852 100.0

7 OB1 OB10 26 0.0030 .944 .919 4.94 399 10.6 17.044 14.8854 22.9763

6 OB6 OB7 30 0.0072 .936 .908 5.07 424 26.5 10.842 20.6497 24.8051

5 CL6 OB4 54 0.0169 .920 .893 4.00 415 38.4 9.7472 20.0098 24.8051

4 CL7 OB9 36 0.0094 .910 .870 3.74 493 24.5 7.0911 8.2711 22.9763

3 CL5 OB5 64 0.0347 .875 .825 3.72 517 47.7 3.4164 3.2270 24.8051

2 CL3 CL4 100 0.1029 .773 .695 3.91 503 98.5 10.77 22.9763 24.8051

1 CL2 CL8 150 0.7726 .000 .000 0.00 . 503 0.5153 24.8051 100.0

3 modal clusters have been formed.
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Output 33.3.16 Crosstabulation for Clustering Clusters from Wong’s Hybrid Method

Cluster Analysis of Fisher (1936) Iris Data
Clustering Clusters by Wong's Hybrid Method

The FREQ Procedure

Cluster Analysis of Fisher (1936) Iris Data
Clustering Clusters by Wong's Hybrid Method

The FREQ Procedure

Frequency Table of CLUSTER by Species

CLUSTER

Species(Iris Species)

Setosa Versicolor Virginica Total

1 50 0 0 50

2 0 35 1 36

3 0 15 49 64

Total 50 50 50 150

Output 33.3.17 Scatter Plot for Clustering Clusters using Wong’s Hybrid Method
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Example 33.4: Evaluating the Effects of Ties
If, at some level of the cluster history, there is a tie for minimum distance between clusters, then one or
more levels of the sample cluster tree are not uniquely determined. This example shows how the degree of
indeterminacy can be assessed.

Mammals have four kinds of teeth: incisors, canines, premolars, and molars. The following data set gives the
number of teeth of each kind on one side of the top and bottom jaws for 32 mammals.

Since all eight variables are measured in the same units, it is not strictly necessary to rescale the data.
However, the canines have much less variance than the other kinds of teeth and, therefore, have little effect on
the analysis if the variables are not standardized. An average linkage cluster analysis is run with and without
standardization to enable comparison of the results.

title 'Hierarchical Cluster Analysis of Mammals'' Teeth Data';
title2 'Evaluating the Effects of Ties';
data teeth;

input Mammal & $16. v1-v8 @@;
label v1='Top incisors'

v2='Bottom incisors'
v3='Top canines'
v4='Bottom canines'
v5='Top premolars'
v6='Bottom premolars'
v7='Top molars'
v8='Bottom molars';

datalines;
Brown Bat 2 3 1 1 3 3 3 3 Mole 3 2 1 0 3 3 3 3
Silver Hair Bat 2 3 1 1 2 3 3 3 Pigmy Bat 2 3 1 1 2 2 3 3
House Bat 2 3 1 1 1 2 3 3 Red Bat 1 3 1 1 2 2 3 3
Pika 2 1 0 0 2 2 3 3 Rabbit 2 1 0 0 3 2 3 3
Beaver 1 1 0 0 2 1 3 3 Groundhog 1 1 0 0 2 1 3 3
Gray Squirrel 1 1 0 0 1 1 3 3 House Mouse 1 1 0 0 0 0 3 3
Porcupine 1 1 0 0 1 1 3 3 Wolf 3 3 1 1 4 4 2 3
Bear 3 3 1 1 4 4 2 3 Raccoon 3 3 1 1 4 4 3 2
Marten 3 3 1 1 4 4 1 2 Weasel 3 3 1 1 3 3 1 2
Wolverine 3 3 1 1 4 4 1 2 Badger 3 3 1 1 3 3 1 2
River Otter 3 3 1 1 4 3 1 2 Sea Otter 3 2 1 1 3 3 1 2
Jaguar 3 3 1 1 3 2 1 1 Cougar 3 3 1 1 3 2 1 1
Fur Seal 3 2 1 1 4 4 1 1 Sea Lion 3 2 1 1 4 4 1 1
Grey Seal 3 2 1 1 3 3 2 2 Elephant Seal 2 1 1 1 4 4 1 1
Reindeer 0 4 1 0 3 3 3 3 Elk 0 4 1 0 3 3 3 3
Deer 0 4 0 0 3 3 3 3 Moose 0 4 0 0 3 3 3 3
;

The following statements produce Output 33.4.1:

title3 'Raw Data';
proc cluster data=teeth method=average nonorm noeigen;

var v1-v8;
id mammal;

run;
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Output 33.4.1 Average Linkage Analysis of Mammals’ Teeth Data: Raw Data

Hierarchical Cluster Analysis of Mammals' Teeth Data
Evaluating the Effects of Ties

Raw Data

The CLUSTER Procedure
Average Linkage Cluster Analysis

Hierarchical Cluster Analysis of Mammals' Teeth Data
Evaluating the Effects of Ties

Raw Data

The CLUSTER Procedure
Average Linkage Cluster Analysis

Root-Mean-Square Total-Sample Standard Deviation 0.898027

Cluster History

Number
of

Clusters Clusters Joined Freq
RMS

Distance Tie

31 Beaver Groundhog 2 0 T

30 Gray Squirrel Porcupine 2 0 T

29 Wolf Bear 2 0 T

28 Marten Wolverine 2 0 T

27 Weasel Badger 2 0 T

26 Jaguar Cougar 2 0 T

25 Fur Seal Sea Lion 2 0 T

24 Reindeer Elk 2 0 T

23 Deer Moose 2 0

22 Brown Bat Silver Hair Bat 2 1 T

21 Pigmy Bat House Bat 2 1 T

20 Pika Rabbit 2 1 T

19 CL31 CL30 4 1 T

18 CL28 River Otter 3 1 T

17 CL27 Sea Otter 3 1 T

16 CL24 CL23 4 1

15 CL21 Red Bat 3 1.2247

14 CL17 Grey Seal 4 1.291

13 CL29 Raccoon 3 1.4142 T

12 CL25 Elephant Seal 3 1.4142

11 CL18 CL14 7 1.5546

10 CL22 CL15 5 1.5811

9 CL20 CL19 6 1.8708 T

8 CL11 CL26 9 1.9272

7 CL8 CL12 12 2.2278

6 Mole CL13 4 2.2361

5 CL9 House Mouse 7 2.4833

4 CL6 CL7 16 2.5658

3 CL10 CL16 9 2.8107

2 CL3 CL5 16 3.7054

1 CL2 CL4 32 4.2939
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The following statements produce Output 33.4.2:

title3 'Standardized Data';
proc cluster data=teeth std method=average nonorm noeigen;

var v1-v8;
id mammal;

run;

Output 33.4.2 Average Linkage Analysis of Mammals’ Teeth Data: Standardized Data

Hierarchical Cluster Analysis of Mammals' Teeth Data
Evaluating the Effects of Ties

Standardized Data

The CLUSTER Procedure
Average Linkage Cluster Analysis

Hierarchical Cluster Analysis of Mammals' Teeth Data
Evaluating the Effects of Ties

Standardized Data

The CLUSTER Procedure
Average Linkage Cluster Analysis

The data have been standardized to mean 0 and variance 1

Root-Mean-Square Total-Sample Standard Deviation 1
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Output 33.4.2 continued

Cluster History

Number
of

Clusters Clusters Joined Freq
RMS

Distance Tie

31 Beaver Groundhog 2 0 T

30 Gray Squirrel Porcupine 2 0 T

29 Wolf Bear 2 0 T

28 Marten Wolverine 2 0 T

27 Weasel Badger 2 0 T

26 Jaguar Cougar 2 0 T

25 Fur Seal Sea Lion 2 0 T

24 Reindeer Elk 2 0 T

23 Deer Moose 2 0

22 Pigmy Bat Red Bat 2 0.9157

21 CL28 River Otter 3 0.9169

20 CL31 CL30 4 0.9428 T

19 Brown Bat Silver Hair Bat 2 0.9428 T

18 Pika Rabbit 2 0.9428

17 CL27 Sea Otter 3 0.9847

16 CL22 House Bat 3 1.1437

15 CL21 CL17 6 1.3314

14 CL25 Elephant Seal 3 1.3447

13 CL19 CL16 5 1.4688

12 CL15 Grey Seal 7 1.6314

11 CL29 Raccoon 3 1.692

10 CL18 CL20 6 1.7357

9 CL12 CL26 9 2.0285

8 CL24 CL23 4 2.1891

7 CL9 CL14 12 2.2674

6 CL10 House Mouse 7 2.317

5 CL11 CL7 15 2.6484

4 CL13 Mole 6 2.8624

3 CL4 CL8 10 3.5194

2 CL3 CL6 17 4.1265

1 CL2 CL5 32 4.7753

There are ties at 16 levels for the raw data but at only 10 levels for the standardized data. There are more ties
for the raw data because the increments between successive values are the same for all of the raw variables
but different for the standardized variables.
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One way to assess the importance of the ties in the analysis is to repeat the analysis on several random
permutations of the observations and then to see to what extent the results are consistent at the interesting
levels of the cluster history. Three macros are presented to facilitate this process, as follows.

/* --------------------------------------------------------- */
/* */
/* The macro CLUSPERM randomly permutes observations and */
/* does a cluster analysis for each permutation. */
/* The arguments are as follows: */
/* */
/* data data set name */
/* var list of variables to cluster */
/* id id variable for proc cluster */
/* method clustering method (and possibly other options) */
/* nperm number of random permutations. */
/* */
/* --------------------------------------------------------- */
%macro CLUSPERM(data,var,id,method,nperm);

/* ------CREATE TEMPORARY DATA SET WITH RANDOM NUMBERS------ */
data _temp_;

set &data;
array _random_ _ran_1-_ran_&nperm;
do over _random_;

_random_=ranuni(835297461);
end;

run;

/* ------PERMUTE AND CLUSTER THE DATA----------------------- */
%do n=1 %to &nperm;

proc sort data=_temp_(keep=_ran_&n &var &id) out=_perm_;
by _ran_&n;

run;

proc cluster method=&method noprint outtree=_tree_&n;
var &var;
id &id;

run;
%end;

%mend;
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/* --------------------------------------------------------- */
/* */
/* The macro PLOTPERM plots various cluster statistics */
/* against the number of clusters for each permutation. */
/* The arguments are as follows: */
/* */
/* nclus maximum number of clusters to be plotted */
/* nperm number of random permutations. */
/* */
/* --------------------------------------------------------- */
%macro PLOTPERM(nclus,nperm);

/* ---CONCATENATE TREE DATA SETS FOR 20 OR FEWER CLUSTERS--- */
data _plot_;

set %do n=1 %to &nperm; _tree_&n(in=_in_&n) %end;;
if _ncl_<=&nclus;
%do n=1 %to &nperm;

if _in_&n then _perm_=&n;
%end;
label _perm_='permutation number';
keep _ncl_ _psf_ _pst2_ _ccc_ _perm_;

run;

/* ---PLOT THE REQUESTED STATISTICS BY NUMBER OF CLUSTERS--- */
proc sgscatter;

compare y=(_ccc_ _psf_ _pst2_) x=_ncl_ /group=_perm_;
label _ccc_ = 'CCC' _psf_ = 'Pseudo F' _pst2_ = 'Pseudo T-Squared';

run;
%mend;

/* --------------------------------------------------------- */
/* */
/* The macro TABPERM generates cluster-membership variables */
/* for a specified number of clusters for each permutation. */
/* PROC TABULATE gives the frequencies and means. */
/* The arguments are as follows: */
/* */
/* var list of variables to cluster */
/* (no "-" or ":" allowed) */
/* id id variable for proc cluster */
/* meanfmt format for printing means in PROC TABULATE */
/* nclus number of clusters desired */
/* nperm number of random permutations. */
/* */
/* --------------------------------------------------------- */
%macro TABPERM(var,id,meanfmt,nclus,nperm);

/* ------CREATE DATA SETS GIVING CLUSTER MEMBERSHIP--------- */
%do n=1 %to &nperm;

proc tree data=_tree_&n noprint n=&nclus
out=_out_&n(drop=clusname

rename=(cluster=_clus_&n));
copy &var;
id &id;

run;
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proc sort;
by &id &var;

run;
%end;

/* ------MERGE THE CLUSTER VARIABLES------------------------ */
data _merge_;

merge
%do n=1 %to &nperm;

_out_&n
%end;;

by &id &var;
length all_clus $ %eval(3*&nperm);
%do n=1 %to &nperm;

substr( all_clus, %eval(1+(&n-1)*3), 3) =
put( _clus_&n, 3.);

%end;
run;

/* ------ TABULATE CLUSTER COMBINATIONS------------ */
proc sort;

by _clus_:;
run;
proc tabulate order=data formchar=' ';

class all_clus;
var &var;
table all_clus, n='FREQ'*f=5. mean*f=&meanfmt*(&var) /

rts=%eval(&nperm*3+1);
run;

%mend;

To use these macros, it is first convenient to define a macro variable, VLIST, listing the teeth variables, since
the forms V1-V8 or V: cannot be used with the TABULATE procedure in the TABPERM macro:

/* -TABULATE does not accept hyphens or colons in VAR lists- */
%let vlist=v1 v2 v3 v4 v5 v6 v7 v8;

The CLUSPERM macro is then called to analyze 10 random permutations. The PLOTPERM macro plots
the pseudo F and t2 statistics and the cubic clustering criterion. Since the data are discrete, the pseudo F
statistic and the cubic clustering criterion can be expected to increase as the number of clusters increases, so
local maxima or large jumps in these statistics are more relevant than the global maximum in determining the
number of clusters. For the raw data, only the pseudo t2 statistic indicates the possible presence of clusters,
with the four-cluster level being suggested. Hence, the macros are used as follows to analyze the results at
the four-cluster level:

title3 'Raw Data';

/* ------CLUSTER RAW DATA WITH AVERAGE LINKAGE-------------- */
%clusperm( teeth, &vlist, mammal, average, 10);
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The following statements produce Output 33.4.3.

/* -----PLOT STATISTICS FOR THE LAST 20 LEVELS-------------- */
%plotperm(20, 10);

Output 33.4.3 Analysis of 10 Random Permutations of Raw Mammals’ Teeth Data

The following statements produce Output 33.4.4.

/* ------ANALYZE THE 4-CLUSTER LEVEL------------------------ */
%tabperm( &vlist, mammal, 9.1, 4, 10);
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Output 33.4.4 Raw Mammals’ Teeth Data: Indeterminacy at the Four-Cluster Level

Hierarchical Cluster Analysis of Mammals' Teeth Data
Evaluating the Effects of Ties

Raw Data

Hierarchical Cluster Analysis of Mammals' Teeth Data
Evaluating the Effects of Ties

Raw Data

FREQ

Mean

Top
incisors

Bottom
incisors

Top
canines

Bottom
canines

Top
premolars

Bottom
premolars

Top
molars

Bottom
molars

all_clus

1  3  1  1  1  3  3  3  2  3 4 0.0 4.0 0.5 0.0 3.0 3.0 3.0 3.0

2  2  2  2  2  2  1  2  1  1 15 2.9 2.6 1.0 1.0 3.6 3.4 1.3 1.8

2  4  2  2  4  2  1  2  1  1 1 3.0 2.0 1.0 0.0 3.0 3.0 3.0 3.0

3  1  3  3  3  1  2  1  3  2 5 1.0 1.0 0.0 0.0 1.2 0.8 3.0 3.0

3  4  3  3  4  1  2  1  3  2 2 2.0 1.0 0.0 0.0 2.5 2.0 3.0 3.0

4  4  4  4  4  4  4  4  4  4 5 1.8 3.0 1.0 1.0 2.0 2.4 3.0 3.0

From the TABULATE output, you can see that two types of clustering are obtained. In one case, the mole is
grouped with the carnivores, while the pika and rabbit are grouped with the rodents. In the other case, both
the mole and the lagomorphs are grouped with the bats.

Next, the analysis is repeated with the standardized data as shown in the following statements. The pseudo
F and t2 statistics indicate three or four clusters, while the cubic clustering criterion shows a sharp rise
up to four clusters and then levels off up to six clusters. So the TABPERM macro is used again at the
four-cluster level. In this case, there is no indeterminacy, because the same four clusters are obtained with
every permutation, although in different orders. It must be emphasized, however, that lack of indeterminacy
in no way indicates validity.

title3 'Standardized Data';

/*------CLUSTER STANDARDIZED DATA WITH AVERAGE LINKAGE------*/
%clusperm( teeth, &vlist, mammal, average std, 10);

The following statements produce Output 33.4.5.

/* -----PLOT STATISTICS FOR THE LAST 20 LEVELS-------------- */
%plotperm(20, 10);
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Output 33.4.5 Analysis of 10 Random Permutations of Standardized Mammals’ Teeth Data
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The following statements produce Output 33.4.6.

/* ------ANALYZE THE 4-CLUSTER LEVEL------------------------ */
%tabperm( &vlist, mammal, 9.1, 4, 10);

Output 33.4.6 Standardized Mammals’ Teeth Data: No Indeterminacy at the Four-Cluster Level

Hierarchical Cluster Analysis of Mammals' Teeth Data
Evaluating the Effects of Ties

Standardized Data

Hierarchical Cluster Analysis of Mammals' Teeth Data
Evaluating the Effects of Ties

Standardized Data

FREQ

Mean

Top
incisors

Bottom
incisors

Top
canines

Bottom
canines

Top
premolars

Bottom
premolars

Top
molars

Bottom
molars

all_clus

1  3  1  1  1  3  3  3  2  3 4 0.0 4.0 0.5 0.0 3.0 3.0 3.0 3.0

2  2  2  2  2  2  1  2  1  1 15 2.9 2.6 1.0 1.0 3.6 3.4 1.3 1.8

3  1  3  3  3  1  2  1  3  2 7 1.3 1.0 0.0 0.0 1.6 1.1 3.0 3.0

4  4  4  4  4  4  4  4  4  4 6 2.0 2.8 1.0 0.8 2.2 2.5 3.0 3.0
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Overview: CORRESP Procedure
The CORRESP procedure performs simple correspondence analysis and multiple correspondence analysis
(MCA). You can use correspondence analysis to find a low-dimensional graphical representation of the rows
and columns of a crosstabulation or contingency table. Each row and column is represented by a point in a
plot determined from the cell frequencies. PROC CORRESP can also compute coordinates for supplementary
rows and columns.

PROC CORRESP can read two kinds of input: raw categorical responses on two or more classification
variables or a two-way contingency table. The correspondence analysis plot is displayed with ODS Graphics.
For more information about ODS Graphics, see the section “ODS Graphics” on page 2137.

Background
Correspondence analysis is a popular data analysis method in France and Japan. In France, correspondence
analysis was developed under the influence of Jean-Paul Benzécri; in Japan, it was developed under Chikio
Hayashi. The name correspondence analysis is a translation of the French analyse des correspondances. The
technique apparently has many independent beginnings (for example, Richardson and Kuder 1933; Hirshfield
1935; Horst 1935; Fisher 1940; Guttman 1941; Burt 1950; Hayashi 1950). It has had many other names,
including optimal scaling, reciprocal averaging, optimal scoring, and appropriate scoring in the United
States; quantification method in Japan; homogeneity analysis in the Netherlands; dual scaling in Canada; and
scalogram analysis in Israel.

Correspondence analysis is described in more detail in French in Benzécri (1973) and Lebart, Morineau,
and Tabard (1977). In Japanese, the subject is described in Komazawa (1982); Nishisato (1982); Kobayashi
(1981). In English, correspondence analysis is described in Lebart, Morineau, and Warwick (1984); Greenacre
(1984); Nishisato (1980); Tenenhaus and Young (1985); Gifi (1990); Greenacre and Hastie (1987), and many
other sources. Hoffman and Franke (1986) offer a short, introductory treatment that uses examples from the
field of market research.

Getting Started: CORRESP Procedure
Data are available containing the numbers of Ph.D.’s awarded in the United States during the years 1973
through 1978 (U.S. Bureau of the Census 1979). The table has six rows, one for each of six academic
disciplines, and six columns for the six years.
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The following DATA step reads the complete table into a SAS data set, and PROC CORRESP displays
correspondence analysis results including the inertia decomposition and coordinates:

title "Number of Ph.D.'s Awarded from 1973 to 1978";

data PhD;
input Science $ 1-19 y1973-y1978;
label y1973 = '1973'

y1974 = '1974'
y1975 = '1975'
y1976 = '1976'
y1977 = '1977'
y1978 = '1978';

datalines;
Life Sciences 4489 4303 4402 4350 4266 4361
Physical Sciences 4101 3800 3749 3572 3410 3234
Social Sciences 3354 3286 3344 3278 3137 3008
Behavioral Sciences 2444 2587 2749 2878 2960 3049
Engineering 3338 3144 2959 2791 2641 2432
Mathematics 1222 1196 1149 1003 959 959
;

ods graphics on;

proc corresp data=PhD out=Results short chi2p;
var y1973-y1978;
id Science;

run;

The results are displayed in Figure 34.1 and Figure 34.2.

Figure 34.1 Inertia and Chi-Square Decomposition
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The concept of inertia in correspondence analysis is analogous to the concept of variance in principal
component analysis, and it is proportional to the chi-square information.

In Figure 34.1, the total chi-square statistic, which is a measure of the association between the rows and
columns in the full five dimensions of the (centered) table, is 383.856. The chi-square p-value, < 0.001,
is displayed when you specify the CHI2P option. The maximum number of dimensions (or axes) is the
minimum of the number of rows and columns, minus one. More than 96% of the total chi-square and inertia
is explained by the first dimension, indicating that the association between the row and column categories is
essentially one-dimensional. The plot in Figure 34.2 shows how the number of doctorates in the different
disciplines changes over time. The plot shows that the number of doctorates in the behavioral sciences is
associated with later years, and the number of doctorates in mathematics and engineering is associated with
earlier years. This is consistent with the data that show that the number of doctorates in the behavioral
sciences is increasing, the number of doctorates in every other discipline is decreasing, and the rate of
decrease is greatest for mathematics and engineering.

Figure 34.2 Correspondence Analysis of Ph.D. Data
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Syntax: CORRESP Procedure
The following statements are available in the CORRESP procedure.

PROC CORRESP < options > ;
TABLES < row-variables, > column-variables ;
VAR variables ;
BY variables ;
ID variable ;
SUPPLEMENTARY variables ;
WEIGHT variable ;

There are two separate forms of input to PROC CORRESP. One form is specified in the TABLES statement,
the other in the VAR statement. You must specify either the TABLES or the VAR statement, but not both,
each time you run PROC CORRESP.

Specify the TABLES statement if you are using raw, categorical data, the levels of which define the rows and
columns of a table.

Specify the VAR statement if your data are already in tabular form. PROC CORRESP is generally more
efficient with VAR statement input than with TABLES statement input.

The other statements are optional. All of the statements are explained, in alphabetical order, following the
PROC CORRESP statement. All of the options in PROC CORRESP can be abbreviated to their first three
letters, except for the OUTF= option. This is a special feature of PROC CORRESP and is not generally true
of SAS/STAT procedures.

PROC CORRESP Statement
PROC CORRESP < options > ;

The PROC CORRESP statement invokes the CORRESP procedure. Table 34.1 summarizes the options
available in the PROC CORRESP statement. These options are described following the table.

Table 34.1 Summary of PROC CORRESP Statement Options

Option Description

Data Set Options
DATA= Specifies input SAS data set
OUTC= Specifies output coordinate SAS data set
OUTF= Specifies output frequency SAS data set

Row and Column Coordinates
DIMENS= Specifies the number of dimensions or axes
MCA Performs multiple correspondence analysis
PROFILE= Standardizes the row and column coordinates

Table Construction
BINARY Specifies binary table
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Table 34.1 continued

Option Description

CROSS= Specifies cross levels of TABLES variables
FREQOUT Specifies input data in PROC FREQ output
MISSING Includes observations with missing values

Control Displayed Output
ALL Displays all output
BENZECRI Displays inertias adjusted by Benzécri’s method
CELLCHI2 Displays cell contributions to chi-square
CHI2P Displays the chi-square p-value
CP Displays column profile matrix
DEVIATION Displays observed minus expected values
EXPECTED Displays chi-square expected values
GREENACRE Displays inertias adjusted by Greenacre’s method
INERTIATABLE Displays the inertia and chi-square decomposition in tabular form
NOCOLUMN= Suppresses the display of column coordinates
NOPRINT Suppresses the display of all output
NOROW= Suppresses the display of row coordinates
OBSERVED Displays contingency table of observed frequencies
PLOTS= Specifies ODS Graphics details
PRINT= Displays percentages or frequencies
RP Displays row profile matrix
SHORT Suppresses all point and coordinate statistics
UNADJUSTED Displays unadjusted inertias

Other Options
COLUMN= Specifies esoteric column coordinate standardizations
MININERTIA= Specifies minimum inertia
NVARS= Specifies number of classification variables
ROW= Specifies esoteric row coordinate standardizations
SINGULAR= Specifies effective zero
SOURCE Includes level source in the OUTC= data set

The display options control the amount of displayed output. The CELLCHI2, EXPECTED, DEVIATION, and
CHI2P options display additional chi-square information. See the “Details: CORRESP Procedure” section
for more information. The unit of the matrices displayed by the CELLCHI2, CP, DEVIATION, EXPECTED,
OBSERVED, and RP options depends on the value of the PRINT= option. The table construction options
control the construction of the contingency table; these options are valid only when you also specify a
TABLES statement.

You can specify the following options in the PROC CORRESP statement. They are listed in alphabetical
order.

ALL
is equivalent to specifying the OBSERVED, RP, CP, CELLCHI2, EXPECTED, and DEVIATION
options. Specifying the ALL option does not affect the PRINT= option. Therefore, only frequencies
(not percentages) for these options are displayed unless you specify otherwise with the PRINT= option.
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BENZECRI
BEN

displays adjusted inertias when you are performing multiple correspondence analysis. By default,
unadjusted inertias (the usual inertias from multiple correspondence analysis) are displayed. However,
adjusted inertias that use a method proposed by Benzécri (1979) and described by Greenacre (1984,
p. 145) can be displayed by specifying the BENZECRI option. Specify the UNADJUSTED option
to output the usual table of unadjusted inertias as well. For more information, see the section “MCA
Adjusted Inertias” on page 2130.

BINARY
enables you to create binary tables easily. When you specify the BINARY option, specify only
column variables in the TABLES statement. Each input data set observation forms a single row in the
constructed table.

CELLCHI2
CEL

displays the contribution to the total chi-square test statistic for each cell. See also the descriptions of
the DEVIATION, EXPECTED, and OBSERVED options.

CHI2P
CHI

displays the chi-square p-value in the inertia and chi-square decomposition table. The chi-square
p-value is not displayed by default because in many cases the table being analyzed is not a true two-way
contingency table.

COLUMN=B | BD | DB | DBD | DBD1/2 | DBID1/2
COL=B | BD | DB | DBD | DBD1/2 | DBID1/2

provides other standardizations of the column coordinates. The COLUMN= option is rarely needed.
Typically, you should use the PROFILE= option instead (see the section “The PROFILE=, ROW=, and
COLUMN= Options” on page 2127). By default, COLUMN=DBD.

CP
displays the column profile matrix. Column profiles contain the observed conditional probabilities of
row membership given column membership. See also the RP option.

CROSS=BOTH | COLUMN | NONE | ROW
CRO=BOT | COL | NON | ROW

specifies the method of crossing (factorially combining) the levels of the TABLES variables. The
default is CROSS=NONE.

NONE causes each level of every row variable to become a row label and each level of
every column variable to become a column label.

ROW causes each combination of levels for all row variables to become a row label,
whereas each level of every column variable becomes a column label.

COLUMN causes each combination of levels for all column variables to become a column
label, whereas each level of every row variable becomes a row label.

BOTH causes each combination of levels for all row variables to become a row label and
each combination of levels for all column variables to become a column label.

The section “TABLES Statement” on page 2107 provides a more detailed description of this option.
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DATA=SAS-data-set
specifies the SAS data set to be used by PROC CORRESP. If you do not specify the DATA= option,
PROC CORRESP uses the most recently created SAS data set.

DEVIATION

DEV
displays the matrix of deviations between the observed frequency matrix and the product of its row
marginals and column marginals divided by its grand frequency. For ordinary two-way contingency
tables, these are the observed minus expected frequencies under the hypothesis of row and column
independence and are components of the chi-square test statistic. See also the CELLCHI2, EXPECTED,
and OBSERVED options.

DIMENS=n

DIM=n
specifies the number of dimensions or axes to use. The default is DIMENS=2. The maximum value of
the DIMENS= option in an .nr � nc/ table is nr � 1 or nc � 1, whichever is smaller. For example, in
a table with 4 rows and 5 columns, the maximum specification is DIMENS=3. If your table has 2 rows
or 2 columns, specify DIMENS=1.

EXPECTED

EXP
displays the product of the row marginals and the column marginals divided by the grand frequency
of the observed frequency table. For ordinary two-way contingency tables, these are the expected
frequencies under the hypothesis of row and column independence and are components of the chi-
square test statistic. In other situations, this interpretation is not strictly valid. See also the CELLCHI2,
DEVIATION, and OBSERVED options.

FREQOUT

FRE
indicates that the PROC CORRESP input data set has the same form as an output data set from the
FREQ procedure, even if it was not directly produced by PROC FREQ. The FREQOUT option enables
PROC CORRESP to take shortcuts in constructing the contingency table.

When you specify the FREQOUT option, you must also specify a WEIGHT statement. The cell
frequencies in a PROC FREQ output data set are contained in a variable called COUNT, so specify
COUNT in a WEIGHT statement with PROC CORRESP. The FREQOUT option might produce
unexpected results if the DATA= data set is structured incorrectly. Each of the two variable lists
specified in the TABLES statement must consist of a single variable, and observations must be grouped
by the levels of the row variable and then by the levels of the column variable. It is not required
that the observations be sorted by the row variable and column variable, but they must be grouped
consistently. There must be as many observations in the input data set (or BY group) as there are cells
in the completed contingency table. Zero cells must be specified with zero weights. When you use
PROC FREQ to create the PROC CORRESP input data set, you must specify the SPARSE option in
the FREQ procedure’s TABLES statement so that the zero cells are written to the output data set.
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GREENACRE

GRE
displays adjusted inertias when you are performing multiple correspondence analysis. By default,
unadjusted inertias (the usual inertias from multiple correspondence analysis) are displayed. However,
adjusted inertias that use a method proposed by Greenacre (1984, p. 156) can be displayed by
specifying the GREENACRE option. Specify the UNADJUSTED option to output the usual table
of unadjusted inertias as well. For more information, see the section “MCA Adjusted Inertias” on
page 2130.

INERTIATABLE

INE
displays the inertia and chi-square decomposition table in addition to the inertia and chi-square
decomposition chart when ODS Graphics is enabled. This table is produced by default when ODS
Graphics is not enabled or when the chart is not produced. When ODS Graphics is enabled:

• By default, the chart is produced and the table is not produced.
• Specify the PLOTS(ONLY)=CONFIGURATION option to produce the table but not the chart.
• Specify the INERTIATABLE option if you want to see the table in addition to the chart.1

MCA
requests a multiple correspondence analysis. This option requires that the input table be a Burt table,
which is a symmetric matrix of crosstabulations among several categorical variables. If you specify
the MCA option and a VAR statement, you must also specify the NVARS= option, which gives the
number of categorical variables that were used to create the table. With raw categorical data, if you
want results for the individuals as well as the categories, use the BINARY option instead.

MININERTIA=n

MIN=n
specifies the minimum inertia .0 � n � 1/ used to create the “best” tables—the indicator of which
points best explain the inertia of each dimension. By default, MININERTIA=0.8. For more information,
see the section “Algorithm and Notation” on page 2125.

MISSING

MIS
specifies that observations with missing values for the TABLES statement variables are included in
the analysis. Missing values are treated as a distinct level of each categorical variable. By default,
observations with missing values are excluded from the analysis.

NOCOLUMN < = BOTH | DATA | PRINT >

NOC < = BOT | DAT | PRI >
suppresses the display of the column coordinates and statistics and omits them from the output
coordinate data set.

1The INERTIATABLE option controls whether the inertia table is displayed with the inertia chart, whereas the UNADJUSTED
option controls whether the unadjusted inertia table or chart is displayed with the BENZECRI or GREENACRE adjusted table or
chart.
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BOTH suppresses all column information from both the SAS listing and the output data
set. The NOCOLUMN option is equivalent to the option NOCOLUMN=BOTH.

DATA suppresses all column information from the output data set.

PRINT suppresses all column information from the SAS listing.

NOPRINT

NOP
suppresses the display of all output. This option is useful when you need only an output data set. This
option disables the Output Delivery System (ODS), including ODS Graphics, for the duration of the
PROC. For more information, see Chapter 20, “Using the Output Delivery System.”

NOROW < = BOTH | DATA | PRINT >

NOR < = BOT | DAT | PRI >
suppresses the display of the row coordinates and statistics and omits them from the output coordinate
data set.

BOTH suppresses all row information from both the SAS listing and the output data set.
The NOROW option is equivalent to the option NOROW=BOTH.

DATA suppresses all row information from the output data set.

PRINT suppresses all row information from the SAS listing.

The NOROW option can be useful when the rows of the contingency table are replications.

NVARS=n

NVA=n
specifies the number of classification variables that were used to create the Burt table. For example,
suppose the Burt table was originally created with the following statement:

tables a b c;

You must specify NVARS=3 to read the table with a VAR statement.

The NVARS= option is required when you specify both the MCA option and a VAR statement. (See
the section “VAR Statement” on page 2108 for an example.)

OBSERVED

OBS
displays the contingency table of observed frequencies and its row, column, and grand totals. If you do
not specify the OBSERVED or ALL option, the contingency table is not displayed.

OUTC=SAS-data-set

OUT=SAS-data-set
creates an output coordinate SAS data set to contain the row, column, supplementary observation,
and supplementary variable coordinates. This data set also contains the masses, squared cosines,
quality of each point’s representation in the DIMENS=n dimensional display, relative inertias, partial
contributions to inertia, and best indicators.
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OUTF=SAS-data-set
creates an output frequency SAS data set to contain the contingency table, row, and column profiles, the
expected values, and the observed minus expected values and contributions to the chi-square statistic.

PLOTS < (global-plot-options) > < =plot-request < (options) > >

PLOTS < (global-plot-options) > < =(plot-request < (options) > < ... plot-request < (options) > >) >
specifies options that control the details of the plots. When you specify only one plot request, you can
omit the parentheses around the plot request.

ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;

proc corresp;
tables Marital, Origin;

run;

ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

By default, for simple correspondence analysis, PROC CORRESP prints the configuration of points
consisting of the row coordinates and column coordinates. With MCA, only column coordinates are
printed. The default plots (y * x) are Dim2 * Dim1, Dim3 * Dim1, Dim3 * Dim2, and so on. When you
specify PLOTS(FLIP), the plots are Dim1 * Dim2, Dim1 * Dim3, Dim2 * Dim3, and so on.

The global-plot-options are as follows:

FLIP

FLI
flips or interchanges the X-axis and Y-axis dimensions.

ONLY

ONL
suppresses the default plots. Only plots that are specifically requested are displayed.

SOURCE

SOU
displays the levels that correspond to each TABLES statement variable in the same color and
shows the source of each group of levels. This option is most useful with multiple correspondence
analysis. For example, if Sex and Age are TABLES statement variables, then when you specify
SOURCE, 'Male' and 'Female' are displayed in one color, and 'Old' and 'Young' are
displayed in a different color. By default, color groups correspond to rows, supplementary rows,
columns, and supplementary columns.

The plot-requests include the following:
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ALL
produces all appropriate plots.

CONFIGURATION

CONFIG

CON
produces the configuration plot. This plot is produced when ODS Graphics is enabled unless you
specify PLOTS(ONLY)=INERTIA.

INERTIA < ( inertia-options ) >

INE< ( inertia-options ) >
requests an inertia decomposition chart and specifies inertia-options. An inertia de-
composition chart is created when ODS Graphics is enabled unless you specify
PLOTS(ONLY)=CONFIGURATION.

Unlike most graphs, the height of the inertia decomposition chart can vary as a function of the
number of dimensions that appear in the chart. You can specify the following inertia-options to
control the height of the inertia decomposition chart:

COMPUTEHEIGHT=a b < max >

CH=a b < max >
specifies the constants for computing the height of the inertia decomposition chart. For
n dimensions, intercept a, slope b, and maximum height max , the height is min(a + b (n
+ 1), max). By default, COMPUTEHEIGHT=130 15 1200. Thus, the default height in
pixels is min(130 + 15(n + 1), 1200). The default unit is pixels, and you can use the UNIT=
inertia-option to change the unit to inches or centimeters.

SETHEIGHT=height

SH=height
specifies the height of the inertia decomposition chart. By default, the height is based on
the COMPUTEHEIGHT= option. The default unit is pixels, and you can use the UNIT=
inertia-option to change the unit to inches or centimeters.

UNIT=PX | IN | CM
specifies the unit (pixels, inches, or centimeters) for the SETHEIGHT= and COMPUTE-
HEIGHT= inertia-options. Inches equals pixels divided by 96, and centimeters equals inches
times 2.54. By default, UNIT=PX.

NONE

NON
suppresses all plots.

PRINT=BOTH | FREQ | PERCENT

PRI=BOT | FRE | PER
affects the OBSERVED, RP, CP, CELLCHI2, EXPECTED, and DEVIATION options. The default is
PRINT=FREQ.

• The PRINT=FREQ option displays output in the appropriate raw or natural units. (That is, PROC
CORRESP displays raw frequencies for the OBSERVED option, relative frequencies with row
marginals of 1.0 for the RP option, and so on.)
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• The PRINT=PERCENT option scales results to percentages for the display of the output. (All
elements in the OBSERVED matrix sum to 100.0, the row marginals are 100.0 for the RP option,
and so on.)

• The PRINT=BOTH option displays both percentages and frequencies.

PROFILE=BOTH | COLUMN | NONE | ROW

PRO=BOT | COL | NON | ROW
specifies the standardization for the row and column coordinates. The default is PROFILE=BOTH.

BOTH specifies a standard correspondence analysis, which jointly displays the principal
row and column coordinates. Row coordinates are computed from the row profile
matrix, and column coordinates are computed from the column profile matrix.

ROW specifies a correspondence analysis of the row profile matrix. The row coordinates
are weighted centroids of the column coordinates.

COLUMN specifies a correspondence analysis of the column profile matrix. The column
coordinates are weighted centroids of the row coordinates.

NONE is rarely needed. Row and column coordinates are the generalized singular vectors,
without the customary standardizations.

ROW=A | AD | DA | DAD | DAD1/2 | DAID1/2
provides other standardizations of the row coordinates. The ROW= option is rarely needed. Typi-
cally, you should use the PROFILE= option instead (see the section “The PROFILE=, ROW=, and
COLUMN= Options” on page 2127). By default, ROW=DAD.

RP
displays the row profile matrix. Row profiles contain the observed conditional probabilities of column
membership given row membership. See also the CP option.

SHORT

SHO
suppresses the display of all point and coordinate statistics except the coordinates. The following
information is suppressed: each point’s mass, relative contribution to the total inertia, and quality of
representation in the DIMENS=n dimensional display; the squared cosines of the angles between each
axis and a vector from the origin to the point; the partial contributions of each point to the inertia of
each dimension; and the best indicators.

SINGULAR=n

SIN=n
specifies the largest value that is considered to be within rounding error of zero. The default value is
1E–8. This parameter is used in checking for zero rows and columns, in checking Burt table diagonal
sums for equality, in checking denominators before dividing, and so on. Typically, you should not
assign a value outside the range 1E–6 to 1E–12.

SOURCE

SOU
adds the variable _VAR_, which contains the name or label of the variable corresponding to the current
level, to the OUTC= and OUTF= data sets.
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UNADJUSTED

UNA
displays unadjusted inertias when you are performing multiple correspondence analysis. By default,
unadjusted inertias (the usual inertias from multiple correspondence analysis) are displayed. However,
if adjusted inertias are requested by either the GREENACRE option or the BENZECRI option, then
the unadjusted inertia table is not displayed unless the UNADJUSTED option is specified.2 For more
information, see the section “MCA Adjusted Inertias” on page 2130.

BY Statement
BY variables ;

You can specify a BY statement with PROC CORRESP to obtain separate analyses of observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the CORRESP procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

ID Statement
ID variable ;

You specify the ID statement only in conjunction with the VAR statement. You cannot specify the ID
statement when you use the TABLES statement or the MCA option. When you specify an ID variable, PROC
CORRESP labels the rows of the tables with the ID values and places the ID variable in the output data set.

2The UNADJUSTED option controls whether the unadjusted inertia table or chart is displayed with the BENZECRI or
GREENACRE adjusted table or chart, whereas the INERTIATABLE option controls whether the inertia table is displayed with the
inertia chart.
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SUPPLEMENTARY Statement
SUPPLEMENTARY variables ;

SUP variables ;

The SUPPLEMENTARY statement specifies variables that are to be represented as points in the joint row and
column space but that are not used in determining the locations of the other, active row and column points
of the contingency table. Supplementary observations on supplementary variables are ignored in simple
correspondence analysis but are needed to compute the squared cosines for multiple correspondence analysis.
Variables that are specified in the SUPPLEMENTARY statement must also be specified in the TABLES or
VAR statement.

When you specify a VAR statement, each SUPPLEMENTARY variable indicates one supplementary column
of the table. Supplementary variables must be numeric with VAR statement input.

When you specify a TABLES statement, each SUPPLEMENTARY variable indicates a set of rows or columns
of the table that is supplementary. Supplementary variables can be either character or numeric with TABLES
statement input.

TABLES Statement
TABLES < row-variables, > column-variables ;

The TABLES statement instructs PROC CORRESP to create a contingency table, Burt table, or binary table
from the values of two or more categorical variables. The TABLES statement specifies classification variables
that are used to construct the rows and columns of the contingency table. The variables can be either numeric
or character. The variable lists in the TABLES statement and the CROSS= option together determine the row
and column labels of the contingency table.

You can specify both row variables and column variables separated by a comma, or you can specify only
column variables and no comma. If you do not specify row variables (that is, if you list variables but do not
use the comma as a delimiter), then you should specify either the MCA or the BINARY option. With the
MCA option, PROC CORRESP creates a Burt table, which is a crosstabulation of each variable with itself
and every other variable. The Burt table is symmetric. With the BINARY option, PROC CORRESP creates a
binary table, which consists of one row for each input data set observation and one column for each category
of each TABLES statement variable. If the binary matrix is Z, then the Burt table is Z0Z. Specifying the
BINARY option with the NOROWS option produces the same results as specifying the MCA option (except
for the chi-square statistics).

See Figure 34.6 for an example or see the section “The MCA Option” on page 2129 for a detailed description
of Burt tables.

You can use the WEIGHT statement with the TABLES statement to read category frequencies. Specify the
SUPPLEMENTARY statement to name variables with categories that are supplementary rows or columns.
You cannot specify the ID or VAR statement with the TABLES statement. See the section “Using the
TABLES Statement” on page 2109 for an example.
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VAR Statement
VAR variables ;

You should specify the VAR statement when your data are in tabular form. The VAR variables must be
numeric. The VAR statement instructs PROC CORRESP to read an existing contingency table, binary
indicator matrix, fuzzy-coded indicator matrix, or Burt table, rather than raw data. See the section “Algorithm
and Notation” on page 2125 for a description of a binary indicator matrix and a fuzzy-coded indicator matrix.

You can specify the WEIGHT statement with the VAR statement to read category frequencies and designate
supplementary rows. Specify the SUPPLEMENTARY statement to name supplementary variables. You
cannot specify the TABLES statement with the VAR statement.

WEIGHT Statement
WEIGHT variable ;

The WEIGHT statement specifies weights for each observation and indicates supplementary observations for
simple correspondence analyses with VAR statement input. You can include only one WEIGHT statement,
and the weight variable must be numeric.

If you omit the WEIGHT statement, each observation contributes a value of 1 to the frequency count for its
category. That is, each observation represents one subject. When you specify a WEIGHT statement, each
observation contributes the value of the weighting variable for that observation. For example, a weight of 3
means that the observation represents three subjects. Weight values are not required to be integers.

You can specify the WEIGHT statement with a TABLES statement to indicate category frequencies, as in the
following example:

proc freq;
tables a*b / out=outfreq sparse;

run;

proc corresp freqout;
tables a, b;
weight count;

run;

If you specify a VAR statement, you can specify the WEIGHT statement to indicate supplementary obser-
vations and to weight some rows of the table more heavily than others. When the value of the WEIGHT
variable is negative, the observation is treated as supplementary, and the absolute value of the weight is used
as the weighting value.

You cannot specify a WEIGHT statement with a VAR statement and the MCA option, because the table must
be symmetric. Supplementary variables are indicated with the SUPPLEMENTARY statement, so differential
weighting of rows is inappropriate.
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Details: CORRESP Procedure

Input Data Set
PROC CORRESP can read two kinds of input:

• raw category responses on two or more classification variables with the TABLES statement

• a two-way contingency table with the VAR statement

You can use output from PROC FREQ as input for PROC CORRESP.

The classification variables referred to by the TABLES statement can be either numeric or character variables.
Normally, all observations for a given variable that have the same formatted value are placed in the same
level, and observations with different values are placed in different levels.

The variables in the VAR statement must be numeric. The values of the observations specify the cell
frequencies. These values are not required to be integers, but only those observations with all nonnegative,
nonmissing values are used in the correspondence analysis. Observations with one or more negative values
are removed from the analysis.

The WEIGHT variable must be numeric. Observations with negative weights are treated as supplementary
observations. The absolute values of the weights are used to weight the observations.

Using the TABLES Statement
This section explains some of the choices for the correspondence analysis input data table and illustrates
some table-construction capabilities of PROC CORRESP. The SAS data set Neighbor, which follows, will
be used throughout this section to illustrate various ways in which PROC CORRESP can read and process
data. This data set consists of one observation for each resident in a fictitious neighborhood along with some
personal information.

title 'PROC CORRESP Table Construction';

data Neighbor;
input Name $ 1-10 Age $ 12-18 Sex $ 19-25

Height $ 26-30 Hair $ 32-37;
datalines;

Jones Old Male Short White
Smith Young Female Tall Brown
Kasavitz Old Male Short Brown
Ernst Old Female Tall White
Zannoria Old Female Short Brown
Spangel Young Male Tall Blond
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Myers Young Male Tall Brown
Kasinski Old Male Short Blond
Colman Young Female Short Blond
Delafave Old Male Tall Brown
Singer Young Male Tall Brown
Igor Old Short
;

This first step creates a simple contingency table or crosstabulation. In the TABLES statement, each variable
list consists of a single variable. The following statements produce the table in Figure 34.3.

proc corresp data=Neighbor dimens=1 observed short;
title2 'Simple Crosstabulation';
ods select observed;
tables Sex, Age;

run;

These statements create a contingency table with two rows (Female and Male) and two columns (Old and
Young) and show the neighbors categorized by age and sex. The DIMENS=1 option specifies the number
of dimensions in the correspondence analysis. Typically, you do not have to specify this option, because
typically your tables will be larger than two by two. The default is DIMENS=2, which is too large for a table
with a two-level factor. The OBSERVED option displays the contingency table. The SHORT option limits
the displayed output. Because it contains missing values, the observation where Name='Igor' is omitted from
the analysis. The table is shown in Figure 34.3.

Figure 34.3 Contingency Table for Sex, Age

PROC CORRESP Table Construction
Simple Crosstabulation

The CORRESP Procedure

PROC CORRESP Table Construction
Simple Crosstabulation

The CORRESP Procedure

Contingency Table

Old Young Sum

Female 2 2 4

Male 4 3 7

Sum 6 5 11

The preceding example showed how to make a two-way contingency table based on the levels of two
categorical variables, which, if it were larger, would be a very typical form of data for a correspondence
analysis. However, many other types of tables, N, can be used as input to a correspondence analysis, and
all tables can be defined based on a binary matrix, Z. The BINARY option enables you to directly compute
and display this matrix. The TABLES statement consists of a single list of all the categorical variables. The
following statements produce Figure 34.4.

proc corresp data=neighbor observed short binary;
title2 'Binary Coding';
ods select binary;
tables Hair Height Sex Age;

run;
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Figure 34.4 Binary Table Using the BINARY Option
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Binary Table

Blond Brown White Short Tall Female Male Old Young

1 0 0 1 1 0 0 1 1 0

2 0 1 0 0 1 1 0 0 1

3 0 1 0 1 0 0 1 1 0

4 0 0 1 0 1 1 0 1 0

5 0 1 0 1 0 1 0 1 0

6 1 0 0 0 1 0 1 0 1

7 0 1 0 0 1 0 1 0 1

8 1 0 0 1 0 0 1 1 0

9 1 0 0 1 0 1 0 0 1

10 0 1 0 0 1 0 1 1 0

11 0 1 0 0 1 0 1 0 1

In this case, N D Z is directly analyzed. The binary matrix has one row for each individual or case and one
column for each category. A binary table constructed from m categorical variables has m partitions. This
binary table has four partitions, one for each of the four categorical variables. Each partition has a 1 in each
row, and each row contains exactly four 1s because there are four categorical variables. More generally, the
binary design matrix has exactly m 1s in each row. The 1s indicate the categories to which the observation
applies. For example, the categorical variable Sex, with two levels (Female and Male), is coded using two
indicator variables. For the variable Sex, a male would be coded Female=0 and Male=1, and a female would
be coded Female=1 and Male=0. This is the same kind of coding that procedures like GLM and TRANSREG
use for CLASS variables.

Implicitly, the binary table has an automatic row variable that is equal to the observation number. Alternatively,
when there is a row ID variable, as there is in this case, you can use it as a row variable in the TABLES
statement, and the resulting ordinary observed frequency table is the binary table. This example uses two
variable lists: Name for the row variable, and Hair Height Sex Age for the column variables. Because two
lists were provided, the BINARY option was not specified. The following statements produce Figure 34.5.

proc corresp data=neighbor observed short;
title2 'Binary Coding';
ods select observed;
tables Name, Hair Height Sex Age;

run;



2112 F Chapter 34: The CORRESP Procedure

Figure 34.5 Binary Table Using a Row Variable
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Contingency Table

Blond Brown White Short Tall Female Male Old Young Sum

Colman 1 0 0 1 0 1 0 0 1 4

Delafave 0 1 0 0 1 0 1 1 0 4

Ernst 0 0 1 0 1 1 0 1 0 4

Jones 0 0 1 1 0 0 1 1 0 4

Kasavitz 0 1 0 1 0 0 1 1 0 4

Kasinski 1 0 0 1 0 0 1 1 0 4

Myers 0 1 0 0 1 0 1 0 1 4

Singer 0 1 0 0 1 0 1 0 1 4

Smith 0 1 0 0 1 1 0 0 1 4

Spangel 1 0 0 0 1 0 1 0 1 4

Zannoria 0 1 0 1 0 1 0 1 0 4

Sum 3 6 2 5 6 4 7 6 5 44

With the MCA option, the Burt table (Z0Z) is analyzed. A Burt table is a partitioned symmetric matrix
containing all pairs of crosstabulations among a set of categorical variables. Each diagonal partition is a
diagonal matrix containing marginal frequencies (a crosstabulation of a variable with itself). Each off-diagonal
partition is an ordinary contingency table. The following statements produce Figure 34.6.

proc corresp data=neighbor observed short mca;
title2 'MCA Burt Table';
ods select burt;
tables Hair Height Sex Age;

run;

Note that there is a single variable list in the TABLES statement, because the row and column variable lists
are the same.
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Figure 34.6 MCA Burt Table
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Burt Table

Blond Brown White Short Tall Female Male Old Young

Blond 3 0 0 2 1 1 2 1 2

Brown 0 6 0 2 4 2 4 3 3

White 0 0 2 1 1 1 1 2 0

Short 2 2 1 5 0 2 3 4 1

Tall 1 4 1 0 6 2 4 2 4

Female 1 2 1 2 2 4 0 2 2

Male 2 4 1 3 4 0 7 4 3

Old 1 3 2 4 2 2 4 6 0

Young 2 3 0 1 4 2 3 0 5

This Burt table is composed of all pairs of crosstabulations among the variables Hair, Height, Sex, and Age.
It is composed of sixteen individual subtables—the number of variables squared. Both the rows and the
columns have the same nine categories (in this case Blond, Brown, White, Short, Tall, Female, Male, Old,
and Young). Below the diagonal (from left to right, top to bottom) are the following crosstabulations: Height
* Hair, Sex * Hair, Sex * Height, Age * Hair, Age * Height, and Age * Sex. Each crosstabulation below the
diagonal has a transposed counterpart above the diagonal. The diagonal contains the crosstabulations: Hair *
Hair, Height * Height, Sex * Sex, and Age * Age. The diagonal elements of the diagonal partitions contain
marginal frequencies of the off-diagonal partitions. The table Hair * Height, for example, has three rows for
Hair and two columns for Height. The values of the Hair * Height table, summed across rows, sum to the
diagonal values of the Height * Height table, as displayed in the following results. The following statements
produce Figure 34.7.

proc corresp data=neighbor observed short dimens=1;
title2 'Part of the Burt Table';
ods output observed=o;
tables Hair Height, Height;

run;

proc print data=o(drop=sum) label noobs;
where label ne 'Sum';
label label = '00'x;

run;
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Figure 34.7 Part of the Burt Table
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Short Tall

Blond 2 1

Brown 2 4

White 1 1

Short 5 0

Tall 0 6

A simple crosstabulation of Hair � Height is N D ZHair
0ZHeight. Tables such as (N D ZHair

0ZHeight,Sex), made
up of several crosstabulations, can also be analyzed in simple correspondence analysis. The following
statements produce Figure 34.8.

proc corresp data=neighbor observed short dimens=1;
title2 'Multiple Crosstabulations';
ods select observed;
tables Hair, Height Sex;

run;

Figure 34.8 Hair � (Height Sex) Crosstabulation
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Contingency Table

Short Tall Female Male Sum

Blond 2 1 1 2 6

Brown 2 4 2 4 12

White 1 1 1 1 4

Sum 5 6 4 7 22

The following statements create a table with six rows (Blond*Short, Blond*Tall, Brown*Short,
Brown*Tall, White*Short, and White*Tall) and four columns (Female, Male, Old, and Young). The
levels of the row variables are crossed by the CROSS=ROW option, forming mutually exclusive categories.
Hence each individual fits into exactly one row category, but two column categories. The following statements
produce Figure 34.9.

proc corresp data=Neighbor cross=row observed short;
title2 'Multiple Crosstabulations with Crossed Rows';
ods select observed;
tables Hair Height, Sex Age;

run;
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Figure 34.9 Contingency Table for Hair * Height, Sex Age
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Contingency Table

Female Male Old Young Sum

Blond * Short 1 1 1 1 4

Blond * Tall 0 1 0 1 2

Brown * Short 1 1 2 0 4

Brown * Tall 1 3 1 3 8

White * Short 0 1 1 0 2

White * Tall 1 0 1 0 2

Sum 4 7 6 5 22

You can enter supplementary variables with TABLES input by including a SUPPLEMENTARY statement.
Variables named in the SUPPLEMENTARY statement indicate TABLES variables with categories that are
supplementary. In other words, the categories of the variable Age are represented in the row and column
space, but they are not used in determining the scores of the categories of the variables Hair, Height, and
Sex. The variable used in the SUPPLEMENTARY statement must be listed in the TABLES statement as
well. For example, the following statements create a Burt table with seven active rows and columns (Blond,
Brown, White, Short, Tall, Female, Male) and two supplementary rows and columns (Old and Young).
The following statements produce Figure 34.10.

proc corresp data=Neighbor observed short mca;
title2 'MCA with Supplementary Variables';
ods select burt supcols;
tables Hair Height Sex Age;
supplementary Age;

run;

Figure 34.10 Burt Table from PROC CORRESP with Supplementary Variables
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Burt Table

Blond Brown White Short Tall Female Male

Blond 3 0 0 2 1 1 2

Brown 0 6 0 2 4 2 4

White 0 0 2 1 1 1 1

Short 2 2 1 5 0 2 3

Tall 1 4 1 0 6 2 4

Female 1 2 1 2 2 4 0

Male 2 4 1 3 4 0 7
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Figure 34.10 continued

Supplementary
Columns

Old Young

Blond 1 2

Brown 3 3

White 2 0

Short 4 1

Tall 2 4

Female 2 2

Male 4 3

The following statements create a binary table with 7 active columns (Blond, Brown, White, Short, Tall,
Female, Male), 2 supplementary columns (Old and Young), and 11 rows for the 11 observations with
nonmissing values. The following statements produce Figure 34.11.

proc corresp data=Neighbor observed short binary;
title2 'Supplementary Binary Variables';
ods select binary supcols;
tables Hair Height Sex Age;
supplementary Age;

run;

Figure 34.11 Binary Table from PROC CORRESP with Supplementary Variables
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Binary Table

Blond Brown White Short Tall Female Male

1 0 0 1 1 0 0 1

2 0 1 0 0 1 1 0

3 0 1 0 1 0 0 1

4 0 0 1 0 1 1 0

5 0 1 0 1 0 1 0

6 1 0 0 0 1 0 1

7 0 1 0 0 1 0 1

8 1 0 0 1 0 0 1

9 1 0 0 1 0 1 0

10 0 1 0 0 1 0 1

11 0 1 0 0 1 0 1
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Figure 34.11 continued

Supplementary
Columns

Old Young

1 1 0

2 0 1

3 1 0

4 1 0

5 1 0

6 0 1

7 0 1

8 1 0

9 0 1

10 1 0

11 0 1

Using the VAR Statement
With VAR statement input, the rows of the contingency table correspond to the observations of the input
data set, and the columns correspond to the VAR statement variables. The values of the variables typically
contain the table frequencies. The table in Figure 34.3 could be created with VAR statement input by using
the following statements:

data Ages;
input Sex $ Old Young;
datalines;

Female 2 2
Male 4 3
;

proc corresp data=Ages dimens=1 observed short;
var Old Young;
id Sex;

run;

Only nonnegative values are accepted. Negative values are treated as missing, causing the observation to be
excluded from the analysis. The values are not required to be integers. Row labels for the table are specified
with an ID variable. Column labels are constructed from the variable name or variable label if one is specified.
When you specify multiple correspondence analysis (MCA), the row and column labels are the same and are
constructed from the variable names or labels, so you cannot include an ID statement. With MCA, the VAR
statement must list the variables in the order in which the rows occur. An example is the table in Figure 34.6,
which was created with the following TABLES statement.

tables Hair Height Sex Age;
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This table could have been created with a VAR statement as follows:

proc corresp data=table nvars=4 mca;
var Blond Brown White Short Tall Female Male Old Young;

run;

You must specify the NVARS= option in order to specify the number of original categorical variables with
the MCA option. The option NVARS=n is needed to find boundaries between the subtables of the Burt table.
If f is the sum of all elements in the Burt table Z0Z, then f n�2 is the number of rows in the binary matrix Z.
The sum of all elements in each diagonal subtable of the Burt table must be f n�2.

To enter supplementary observations, include a WEIGHT statement with negative weights for those ob-
servations. Specify the SUPPLEMENTARY statement to include supplementary variables. You must list
supplementary variables in both the VAR and SUPPLEMENTARY statements.

Missing and Invalid Data
With VAR statement input, observations with missing or negative frequencies are excluded from the analysis.
Supplementary variables and supplementary observations with missing or negative frequencies are also
excluded. Negative weights are valid with VAR statement input.

With TABLES statement input, observations with negative weights are excluded from the analysis. With this
form of input, missing cell frequencies cannot occur. Observations with missing values on the categorical
variables are excluded unless you specify the MISSING option. If you specify the MISSING option, ordinary
missing values and special missing values are treated as additional levels of a categorical variable. In all
cases, if any row or column of the constructed table contains only zeros, that row or column is excluded from
the analysis.

Observations with missing weights are excluded from the analysis.

Coding, Fuzzy Coding, and Doubling
Sometimes, binary data such as Yes/No data are available—for example, 1 means “Yes, I have bought this
brand in the last month” and 0 means “No, I have not bought this brand in the last month”. The following
statements read a data set with Yes/No purchase data for three hypothetical brands.

title 'Doubling Yes/No Data';

proc format;
value yn 0 = 'No ' 1 = 'Yes';

run;

data BrandChoice;
input a b c;
label a = 'Brand A' b = 'Brand B' c = 'Brand B';
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format a b c yn.;
datalines;

0 0 1
1 1 0
0 1 1
0 1 0
1 0 0
;

Data such as these cannot be analyzed directly because the raw data do not consist of partitions, each with
one column per level and exactly one 1 in each row. (See the section “Using the TABLES Statement” on
page 2109.) The data must be doubled so that both Yes and No are represented by a column in the data matrix.
The TRANSREG procedure provides one way of doubling. In the following statements, the DESIGN option
specifies that PROC TRANSREG is being used only for coding, not analysis. The option SEPARATORS=': '
specifies that labels for the coded columns are constructed from input variable labels, followed by a colon and
space, followed by the formatted value. The variables are designated in the MODEL statement as CLASS
variables, and the ZERO=NONE option creates binary variables for all levels. The OUTPUT statement
specifies the output data set and drops the _NAME_, _TYPE_, and Intercept variables. PROC TRANSREG
stores a list of coded variable names in a macro variable &_TRGIND, which in this case has the value
“aNo aYes bNo bYes cNo cYes”. This macro variable can be used directly in the VAR statement in PROC
CORRESP. The following statements produce Figure 34.12. Only the input table is displayed.

proc transreg data=BrandChoice design separators=': ';
model class(a b c / zero=none);
output out=Doubled(drop=_: Intercept);

run;

proc print label;
run;

proc corresp data=Doubled norow short;
var &_trgind;

run;

Figure 34.12 Doubling Yes/No Data

Doubling Yes/No DataDoubling Yes/No Data

Obs
Brand
A: No

Brand
A:

Yes
Brand
B: No

Brand
B:

Yes
Brand
B: No

Brand
B:

Yes
Brand

A
Brand

B
Brand

B

1 1 0 1 0 0 1 No No Yes

2 0 1 0 1 1 0 Yes Yes No

3 1 0 0 1 0 1 No Yes Yes

4 1 0 0 1 1 0 No Yes No

5 0 1 1 0 1 0 Yes No No
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A fuzzy-coded indicator also sums to 1.0 across levels of the categorical variable, but it is coded with fractions
rather than with 0 and 1. The fractions represent the distribution of the attribute across several levels of the
categorical variable.

Ordinal variables, such as survey responses of 1 to 3, can be represented as two fuzzy-coded variables, as
shown in Table 34.2.

Table 34.2 Coding an Ordinal Variable

Ordinal
Values Coding

1 0.25 0.75
2 0.50 0.50
3 0.75 0.25

The values of the coding sum to one across the two coded variables.

These next steps illustrate the use of binary and fuzzy-coded indicator variables. Fuzzy-coded indicators are
used to represent missing data. Note that the missing values in the observation Igor are coded with equal
proportions. The following statements produce Figure 34.13.

title 'Fuzzy Coding of Missing Values';

proc transreg data=Neighbor design cprefix=0;
model class(Age Sex Height Hair / zero=none);
output out=Neighbor2(drop=_: Intercept);
id Name;

run;

data Neighbor3;
set Neighbor2;
if Sex = ' ' then do;

Female = 0.5;
Male = 0.5;

end;
if Hair = ' ' then do;

White = 1/3;
Brown = 1/3;
Blond = 1/3;

end;
run;

proc print label noobs data=Neighbor3(drop=age--name);
format _numeric_ best4.;

run;
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Figure 34.13 Fuzzy Coding of Missing Values

Fuzzy Coding of Missing ValuesFuzzy Coding of Missing Values

Age
Old

Age
Young

Sex
Female

Sex
Male

Height
Short

Height
Tall

Hair
Blond

Hair
Brown

Hair
White

1 0 0 1 1 0 0 0 1

0 1 1 0 0 1 0 1 0

1 0 0 1 1 0 0 1 0

1 0 1 0 0 1 0 0 1

1 0 1 0 1 0 0 1 0

0 1 0 1 0 1 1 0 0

0 1 0 1 0 1 0 1 0

1 0 0 1 1 0 1 0 0

0 1 1 0 1 0 1 0 0

1 0 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0

1 0 0.5 0.5 1 0 0.33 0.33 0.33

There is one set of coded variables for each input categorical variable. If observation 12 is excluded, each set
is a binary design matrix. Each design matrix has one column for each category and exactly one 1 in each
row. Fuzzy coding is shown in the final observation, which corresponds to Igor. The observation for Igor has
missing values for the variables Sex and Hair. The design matrix variables are coded with fractions that sum
to one within each categorical variable.

An alternative way to represent missing data is to treat missing values as an additional level of the categorical
variable. This alternative is available with the MISSING option in the PROC CORRESP statement. This
approach yields coordinates for missing responses, allowing the comparison of “missing” along with the
other levels of the categorical variables.

Greenacre and Hastie (1987) discuss additional coding schemes, including one for continuous variables.
Continuous variables can be coded with PROC TRANSREG by specifying BSPLINE(variables / degree=1)
in the MODEL statement.

Creating a Data Set Containing the Crosstabulation
The CORRESP procedure can read or create a contingency or Burt table. PROC CORRESP is generally more
efficient with VAR statement input than with TABLES statement input. TABLES statement input requires
that the table be created from raw categorical variables, whereas the VAR statement is used to read an existing
table. For extremely large problems, if PROC CORRESP runs out of memory, it might be possible to use
some other method to create the table and then use VAR statement input with PROC CORRESP.

The following example uses the CORRESP, FREQ, and TRANSPOSE procedures to create rectangular
tables from a SAS data set WORK.A that contains the categorical variables V1–V5. The Burt table examples
assume that no categorical variable has a value found in any of the other categorical variables (that is, that
each row and column label is unique).
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You can use PROC CORRESP and the ODS OUTPUT statement as follows to create a rectangular two-way
contingency table from two categorical variables:

proc corresp data=a observed short;
ods output Observed=Obs(drop=Sum where=(Label ne 'Sum'));
tables v1, v2;

run;

You can use PROC FREQ and PROC TRANSPOSE to create a rectangular two-way contingency table from
two categorical variables, as in the following statements:

proc freq data=a;
tables v1 * v2 / sparse noprint out=freqs;

run;

proc transpose data=freqs out=rfreqs(drop=_:);
id v2;
var count;
by v1;

run;

You can use PROC CORRESP and the ODS OUTPUT statement as follows to create a Burt table from five
categorical variables:

proc corresp data=a observed short mca;
ods output Burt=Obs;
tables v1-v5;

run;

You can use a DATA step, PROC FREQ, and PROC TRANSPOSE to create a Burt table from five categorical
variables, as in the following statements:

data b;
set a;
array v[5] $ v1-v5;
do i = 1 to 5;

row = v[i];
do j = 1 to 5;

column = v[j];
output;

end;
end;
keep row column;

run;

proc freq data=b;
tables row * column / sparse noprint out=freqs;

run;

proc transpose data=freqs out=rfreqs(drop=_:);
id column;
var count;
by row;

run;
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Output Data Sets
PROC CORRESP has two output data sets. The OUTC= data set contains coordinates and the results of the
correspondence analysis. The OUTF= data set contains frequencies and other cross-tabulation results.

The OUTC= Data Set

The OUTC= data set contains two or three character variables and 4nC 4 numeric variables, where n is the
number of axes from DIMENS=n (two by default). The OUTC= data set contains one observation for each
row, column, supplementary row, and supplementary column point, and one observation for inertias.

The first variable is named _TYPE_ and identifies the type of observation. The values of _TYPE_ are as
follows:

• The 'INERTIA' observation contains the total inertia in the INERTIA variable, and each dimension’s
inertia in the Contr1–Contrn variables.

• The 'OBS' observations contain the coordinates and statistics for the rows of the table.

• The 'SUPOBS' observations contain the coordinates and statistics for the supplementary rows of the
table.

• The 'VAR' observations contain the coordinates and statistics for the columns of the table.

• The 'SUPVAR' observations contain the coordinates and statistics for the supplementary columns of
the table.

If you specify the SOURCE option, then the data set also contains a variable _VAR_ containing the name or
label of the input variable from which that row originates. The name of the next variable is either _NAME_ or
(if you specify an ID statement) the name of the ID variable.

For observations with a value of 'OBS' or 'SUPOBS' for the _TYPE_ variable, the values of the second
variable are constructed as follows:

• When you use a VAR statement without an ID statement, the values are 'Row1', 'Row2', and so on.

• When you specify a VAR statement with an ID statement, the values are set equal to the values of the
ID variable.

• When you specify a TABLES statement, the _NAME_ variable has values formed from the appropriate
row variable values.

For observations with a value of 'VAR' or 'SUPVAR' for the _TYPE_ variable, the values of the second
variable are equal to the names or labels of the VAR (or SUPPLEMENTARY) variables. When you specify a
TABLES statement, the values are formed from the appropriate column variable values.

The third and subsequent variables contain the numerical results of the correspondence analysis.

• Quality contains the quality of each point’s representation in the DIMENS=n dimensional display,
which is the sum of squared cosines over the first n dimensions.

• Mass contains the masses or marginal sums of the relative frequency matrix.

• Inertia contains each point’s relative contribution to the total inertia.
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• Dim1–Dimn contain the point coordinates.

• Contr1–Contrn contain the partial contributions to inertia.

• SqCos1–SqCosn contain the squared cosines.

• Best1–Bestn and Best contain the summaries of the partial contributions to inertia.

The OUTF= Data Set

The OUTF= data set contains frequencies and percentages. It is similar to a PROC FREQ output data set.
The OUTF= data set begins with a variable called _TYPE_, which contains the observation type. If the
SOURCE option is specified, the data set contains two variables, _ROWVAR_ and _COLVAR_, that contain
the names or labels of the row and column input variables from which each cell originates. The next two
variables are classification variables that contain the row and column levels. If you use TABLES statement
input and each variable list consists of a single variable, the names of the first two variables match the names
of the input variables; otherwise, these variables are named Row and Column. The next two variables are
Count and Percent, which contain frequencies and percentages.

The _TYPE_ variable can have the following values:

• 'OBSERVED' observations contain the contingency table.

• 'SUPOBS' observations contain the supplementary rows.

• 'SUPVAR' observations contain the supplementary columns.

• 'EXPECTED' observations contain the product of the row marginals and the column marginals divided
by the grand frequency of the observed frequency table. For ordinary two-way contingency tables,
these are the expected frequency matrix under the hypothesis of row and column independence.

• 'DEVIATION' observations contain the matrix of deviations between the observed frequency matrix
and the product of its row marginals and column marginals divided by its grand frequency. For ordinary
two-way contingency tables, these are the observed minus expected frequencies under the hypothesis
of row and column independence.

• 'CELLCHI2' observations contain contributions to the total chi-square test statistic.

• 'RP' observations contain the row profiles.

• 'SUPRP' observations contain supplementary row profiles.

• 'CP' observations contain the column profiles.

• 'SUPCP' observations contain supplementary column profiles.
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Computational Resources
Let

nr D number of rows in the table
nc D number of columns in the table
n D number of observations
v D number of VAR statement variables
t D number of TABLES statement variables
c D max.nr ; nc/
d D min.nr ; nc/

For TABLES statement input, more than

32.t C 1/C 8.max.2tn; .nr C 3/.nc C 3///

bytes of array space are required.

For VAR statement input, more than

16.v C 2/C 8.nr C 3/.nc C 3/

bytes of array space are required.

Memory

The computational resources formulas are underestimates of the amounts of memory needed to handle most
problems. If you use a utility data set, and if memory could be used with perfect efficiency, then roughly the
stated amount of memory would be needed. In reality, most problems require at least two or three times the
minimum.

PROC CORRESP tries to store the raw data (TABLES input) and the contingency table in memory. If there
is not enough memory, a utility data set is used, potentially resulting in a large increase in execution time.

Time

The time required to perform the generalized singular value decomposition is roughly proportional to
2cd2 C 5d3. Overall computation time increases with table size at a rate roughly proportional to .nrnc/

3
2 .

Algorithm and Notation
This section is primarily based on the theory of correspondence analysis found in Greenacre (1984). If you
are interested in other references, see the section “Background” on page 2094.

Let N be the contingency table formed from those observations and variables that are not supplementary and
from those observations that have no missing values and have a positive weight. This table is an .nr � nc/
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rank q matrix of nonnegative numbers with nonzero row and column sums. If Za is the binary coding for
variable A, and Zb is the binary coding for variable B, then N D Z0aZb is a contingency table. Similarly,
if Zb;c contains the binary coding for both variables B and C, then N D Z0aZb;c can also be input to a
correspondence analysis. With the BINARY option, N D Z, and the analysis is based on a binary table. In
multiple correspondence analysis, the analysis is based on a Burt table, Z0Z.

Let 1 be a vector of 1s of the appropriate order, let I be an identity matrix, and let diag.�/ be a matrix-valued
function that creates a diagonal matrix from a vector. Let

f D 10N1

P D
1

f
N

r D P1
c D P01

Dr D diag.r/
Dc D diag.c/

R D D�1
r P

C0 D D�1
c P0

The scalar f is the sum of all elements in N. The matrix P is a matrix of relative frequencies. The vector r
contains row marginal proportions or row “masses.” The vector c contains column marginal proportions or
column masses. The matrices Dr and Dc are diagonal matrices of marginals.

The rows of R contain the “row profiles.” The elements of each row of R sum to one. Each .i; j / element of
R contains the observed probability of being in column j given membership in row i. Similarly, the columns
of C contain the column profiles. The coordinates in correspondence analysis are based on the generalized
singular value decomposition of P,

P D ADuB0

where

A0D�1
r A D B0D�1

c B D I

In multiple correspondence analysis,

P D BD2
uB
0

The matrix A, which is the rectangular matrix of left generalized singular vectors, has nr rows and q columns;
the matrix Du, which is a diagonal matrix of singular values, has q rows and columns; and the matrix B,
which is the rectangular matrix of right generalized singular vectors, has nc rows and q columns. The
columns of A and B define the principal axes of the column and row point clouds, respectively.

The generalized singular value decomposition of P � rc0, discarding the last singular value (which is zero)
and the last left and right singular vectors, is exactly the same as a generalized singular value decomposition
of P, discarding the first singular value (which is one), the first left singular vector, r, and the first right
singular vector, c. The first (trivial) column of A and B and the first singular value in Du are discarded before
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any results are displayed. You can obtain the generalized singular value decomposition of P � rc0 from the
ordinary singular value decomposition of D�1=2

r .P � rc0/D�1=2
c :

D�1=2
r .P � rc0/D�1=2

c D UDuV0 D .D�1=2
r A/Du.D�1=2

c B/0

P � rc0 D D1=2
r UDuV0D1=2

c D .D1=2
r U/Du.D1=2

c V/0 D ADuB0

Hence, A D D1=2
r U and B D D1=2

c V.

The default row coordinates are D�1
r ADu, and the default column coordinates are D�1

c BDu. Typically the
first two columns of D�1

r ADu and D�1
c BDu are plotted to display graphically associations between the row

and column categories. The plot consists of two overlaid plots, one for rows and one for columns. The row
points are row profiles, and the column points are column profiles, both rescaled so that distances between
profiles can be displayed as ordinary Euclidean distances, then orthogonally rotated to a principal axes
orientation. Distances between row points and other row points have meaning, as do distances between
column points and other column points. However, distances between column points and row points are not
interpretable.

The PROFILE=, ROW=, and COLUMN= Options

The PROFILE=, ROW=, and COLUMN= options standardize the coordinates before they are displayed and
placed in the output data set. The options PROFILE=BOTH, PROFILE=ROW, and PROFILE=COLUMN
provide the standardizations that are typically used in correspondence analysis. There are six choices each
for row and column coordinates (see Table 34.3). However, most of the combinations of the ROW= and
COLUMN= options are not useful. The ROW= and COLUMN= options are provided for completeness, but
they are not intended for general use.

Table 34.3 Coordinates

ROW= Matrix Formula
A A

AD ADu

DA D�1
r A

DAD D�1
r ADu

DAD1/2 D�1
r AD1=2

u

DAID1/2 D�1
r A.ICDu/

1=2

COLUMN= Matrix Formula
B B

BD BDu

DB D�1
c B

DBD D�1
c BDu

DBD1/2 D�1
c BD1=2

u

DBID1/2 D�1
c B.ICDu/

1=2
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When PROFILE=ROW (ROW=DAD and COLUMN=DB), the row coordinates D�1
r ADu and column

coordinates D�1
c B provide a correspondence analysis based on the row profile matrix. The row profile

(conditional probability) matrix is defined as R D D�1
r P D D�1

r ADuB0. The elements of each row of
R sum to one. Each .i; j / element of R contains the observed probability of being in column j given
membership in row i. The “principal” row coordinates D�1

r ADu and “standard” column coordinates D�1
c B

provide a decomposition of D�1
r ADuB0D�1

c D D�1
r PD�1

c D RD�1
c . Because D�1

r ADu D RD�1
c B, the row

coordinates are weighted centroids of the column coordinates. Each column point, with coordinates scaled to
standard coordinates, defines a vertex in .nc � 1/-dimensional space. All of the principal row coordinates are
located in the space defined by the standard column coordinates. Distances among row points have meaning,
but distances among column points and distances between row and column points are not interpretable.

The option PROFILE=COLUMN can be described as applying the PROFILE=ROW formulas to the transpose
of the contingency table. When PROFILE=COLUMN (ROW=DA and COLUMN=DBD), the principal
column coordinates D�1

c BDu are weighted centroids of the standard row coordinates D�1
r A. Each row point,

with coordinates scaled to standard coordinates, defines a vertex in .nr � 1/-dimensional space. All of the
principal column coordinates are located in the space defined by the standard row coordinates. Distances
among column points have meaning, but distances among row points and distances between row and column
points are not interpretable.

The usual sets of coordinates are given by the default PROFILE=BOTH (ROW=DAD and COLUMN=DBD).
All of the summary statistics, such as the squared cosines and contributions to inertia, apply to these two
sets of points. One advantage to using these coordinates is that both sets .D�1

r ADu and D�1
c BDu/ are

postmultiplied by the diagonal matrix Du, which has diagonal values that are all less than or equal to one.
When Du is a part of the definition of only one set of coordinates, that set forms a tight cluster near the
centroid, whereas the other set of points is more widely dispersed. Including Du in both sets makes a better
graphical display. However, care must be taken in interpreting such a plot. No correct interpretation of
distances between row points and column points can be made.

Another property of this choice of coordinates concerns the geometry of distances between points within
each set. The default row coordinates can be decomposed into D�1

r ADu D D�1
r ADuB0D�1

c B D
.D�1

r P/.D�1=2
c /.D�1=2

c B/. The row coordinates are row profiles .D�1
r P/, rescaled by D�1=2

c (rescaled
so that distances between profiles are transformed from a chi-square metric to a Euclidean metric), then
orthogonally rotated (with D�1=2

c B) to a principal axes orientation. Similarly, the column coordinates are
column profiles rescaled to a Euclidean metric and orthogonally rotated to a principal axes orientation.

The rationale for computing distances between row profiles by using the non-Euclidean chi-square metric is
as follows. Each row of the contingency table can be viewed as a realization of a multinomial distribution
conditional on its row marginal frequency. The null hypothesis of row and column independence is equivalent
to the hypothesis of homogeneity of the row profiles. A significant chi-square statistic is geometrically
interpreted as a significant deviation of the row profiles from their centroid, c0. The chi-square metric is the
Mahalanobis metric between row profiles based on their estimated covariance matrix under the homogeneity
assumption (Greenacre and Hastie 1987). A parallel argument can be made for the column profiles.

When ROW=DAD1/2 and COLUMN=DBD1/2 (Gifi 1990; Van der Heijden and De Leeuw 1985), the row
coordinates D�1

r AD1=2
u and column coordinates D�1

c BD1=2
u are a decomposition of D�1

r PD�1
c .

In all of the preceding pairs, distances between row and column points are not meaningful. This prompted
Carroll, Green, and Schaffer (1986) to propose that row coordinates D�1

r A.ICDu/
1=2 and column coordinates
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D�1
c B.I C Du/

1=2 be used. These coordinates are (except for a constant scaling) the coordinates from a
multiple correspondence analysis of a Burt table created from two categorical variables. This standardization
is available with ROW=DAID1/2 and COLUMN=DBID1/2. However, this approach has been criticized on
both theoretical and empirical grounds by Greenacre (1989). The Carroll, Green, and Schaffer standardization
relies on the assumption that the chi-square metric is an appropriate metric for measuring the distance between
the columns of a bivariate indicator matrix. See the section “Using the TABLES Statement” on page 2109
for a description of indicator matrices. Greenacre (1989) showed that this assumption cannot be justified.

The MCA Option

The MCA option performs a multiple correspondence analysis (MCA). This option requires a Burt table.
You can specify the MCA option with a table created from a design matrix with fuzzy coding schemes as
long as every row of every partition of the design matrix has the same marginal sum. For example, each row
of each partition could contain the probabilities that the observation is a member of each level. Then the Burt
table constructed from this matrix no longer contains all integers, and the diagonal partitions are no longer
diagonal matrices, but MCA is still valid.

A TABLES statement with a single variable list creates a Burt table. Thus, you can always specify the
MCA option with this type of input. If you use the MCA option when reading an existing table with a VAR
statement, you must ensure that the table is a Burt table.

If you perform MCA on a table that is not a Burt table, the results of the analysis are invalid. If the table
is not symmetric, or if the sums of all elements in each diagonal partition are not equal, PROC CORRESP
displays an error message and quits.

A subset of the columns of a Burt table is not necessarily a Burt table, so in MCA it is not appropriate to
designate arbitrary columns as supplementary. You can, however, designate all columns from one or more
categorical variables as supplementary.

The results of a multiple correspondence analysis of a Burt table Z0Z are the same as the column results from
a simple correspondence analysis of the binary (or fuzzy) matrix Z. Multiple correspondence analysis is not
a simple correspondence analysis of the Burt table. It is not appropriate to perform a simple correspondence
analysis of a Burt table. The MCA option is based on P D BD2

uB
0, whereas a simple correspondence analysis

of the Burt table would be based on P D BDuB0.

Because the rows and columns of the Burt table are the same, no row information is displayed or written
to the output data sets. The resulting inertias and the default (COLUMN=DBD) column coordinates are
the appropriate inertias and coordinates for an MCA. The supplementary column coordinates, cosines, and
quality of representation formulas for MCA differ from the simple correspondence analysis formulas because
the design matrix column profiles and left singular vectors are not available.

The following statements create a Burt table and perform a multiple correspondence analysis:

proc corresp data=Neighbor observed short mca;
tables Hair Height Sex Age;

run;

Both the rows and the columns have the same nine categories (Blond, Brown, White, Short, Tall, Female,
Male, Old, and Young).
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MCA Adjusted Inertias

The usual principal inertias of a Burt table constructed from m categorical variables in MCA are the
eigenvalues uk from D2

u. The problem with these inertias is that they provide a pessimistic indication of fit.
Benzécri (1979) proposed the following inertia adjustment, which is also described by Greenacre (1984, p.
145):�

m
m�1

�2
�
�
uk �

1
m

�2
for uk > 1

m

This adjustment computes the percent of adjusted inertia relative to the sum of the adjusted inertias for all
inertias greater than 1

m
. The Benzécri adjustment is available with the BENZECRI option.

Greenacre (1994, p. 156) argues that the Benzécri adjustment overestimates the quality of fit. Greenacre
proposes instead to compute the percentage of adjusted inertia relative to

m
m�1

�
trace.D4u/ �

nc�m
m2

�
for all inertias greater than 1

m
, where trace.D4u/ is the sum of squared inertias. The Greenacre adjustment is

available with the GREENACRE option.

Ordinary unadjusted inertias are printed by default with MCA when neither the BENZECRI nor the
GREENACRE option is specified. However, the unadjusted inertias are not printed by default when
either the BENZECRI or the GREENACRE option is specified. To display both adjusted and unadjusted
inertias, specify the UNADJUSTED option in addition to the relevant adjusted inertia option (BENZECRI,
GREENACRE, or both).

Supplementary Rows and Columns

Supplementary rows and columns are represented as points in the joint row and column space, but they are
not used in determining the locations of the other active rows and columns of the table. The formulas that are
used to compute coordinates for the supplementary rows and columns depend on the PROFILE= option or the
ROW= and COLUMN= options. Let So be a matrix with rows that contain the supplementary observations,
and let Sv be a matrix with rows that contain the supplementary variables. Note that Sv is defined to be the
transpose of the supplementary variable partition of the table. Let Rs D diag.So1/�1So be the supplementary
observation profile matrix, and let Cs D diag.Sv1/�1Sv be the supplementary variable profile matrix. Note
that the notation diag.�/�1 means to convert the vector to a diagonal matrix, then invert the diagonal matrix.
The coordinates for the supplementary observations and variables are shown in Table 34.4.
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Table 34.4 Coordinates for Supplementary Observations

ROW= Matrix Formula
A 1

f
SoD�1

c BD�1
u

AD 1
f
SoD�1

c B

DA RsD�1
c BD�1

u

DAD RsD�1
c B

DAD1/2 RsD�1
c BD�1=2

u

DAID1/2 RsD�1
c BD�1

u .ICDu/
1=2

COLUMN= Matrix Formula
B 1

f
SvD�1

r AD�1
u

BD 1
f
SvD�1

r A

DB CsD�1
r AD�1

u

DBD CsD�1
r A

DBD1/2 CsD�1
r AD�1=2

u

DBID1/2 CsD�1
r AD�1

u .ICDu/
1=2

MCA COLUMN= Matrix Formula
B not allowed

BD not allowed

DB CsD�1
r BD�2

u

DBD CsD�1
r BD�1

u

DBD1/2 CsD�1
r BD�3=2

u

DBID1/2 CsD�1
r BD�2

u .ICDu/
1=2

Statistics That Aid Interpretation

The partial contributions to inertia, squared cosines, quality of representation, inertia, and mass provide
additional information about the coordinates. These statistics are displayed by default. Include the SHORT
or NOPRINT option in the PROC CORRESP statement to avoid having these statistics displayed.

These statistics pertain to the default PROFILE=BOTH coordinates, no matter what values you specify for
the ROW=, COLUMN=, or PROFILE= option. Let sq.�/ be a matrix-valued function denoting element-wise
squaring of the argument matrix. Let t be the total inertia (the sum of the elements in D2

u).

In MCA, let Ds be the Burt table partition containing the intersection of the supplementary columns and
the supplementary rows. The matrix Ds is a diagonal matrix of marginal frequencies of the supplemental
columns of the binary matrix Z. Let p be the number of rows in this design matrix. The statistics are defined
in Table 34.5.
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Table 34.5 Statistics That Aid Interpretation

Statistic Matrix Formula
Row partial contributions D�1

r sq.A/
to inertia

Column partial contributions D�1
c sq.B/

to inertia

Row squared cosines diag.sq.ADu/1/�1sq.ADu/

Column squared cosines diag.sq.BDu/1/�1sq.BDu/

Row mass r

Column mass c

Row inertia 1
t
D�1

r sq.ADu/1

Column inertia 1
t
D�1

c sq.BDu/1

Supplementary row diag.sq.Rs � 1c0/D�1
c 1/�1sq.RsD�1

c B/
squared cosines

Supplementary column diag.sq.Cs � 1r0/D�1
r 1/�1sq.CsD�1

r A/
squared cosines

MCA supplementary column Ds.pI �Ds/
�1sq.CsD�1

r BD�1
u /

squared cosines

The quality of representation in the DIMENS=n dimensional display of any point is the sum of its squared
cosines over only the n dimensions. Inertia and mass are not defined for supplementary points.

A table that summarizes the partial contributions to inertia table is also computed. The points that best explain
the inertia of each dimension and the dimension to which each point contributes the most inertia are indicated.
The output data set variable names for this table are Best1–Bestn (where DIMENS=n) and Best. The Best
column contains the dimension number of the largest partial contribution to inertia for each point (the index
of the maximum value in each row of D�1

r sq.A/ or D�1
c sq.B/).

For each row, the Best1–Bestn columns contain either the corresponding value of Best, if the point is one of
the biggest contributors to the dimension’s inertia, or 0 if it is not. Specifically, Best1 contains the value of
Best for the point with the largest contribution to dimension one’s inertia. A cumulative proportion sum is
initialized to this point’s partial contribution to the inertia of dimension one. If this sum is less than the value
for the MININERTIA= option, then Best1 contains the value of Best for the point with the second-largest
contribution to dimension one’s inertia. Otherwise, this point’s Best1 is 0. This point’s partial contribution to
inertia is added to the sum. This process continues for the point with the third-largest partial contribution, and
so on, until adding a point’s contribution to the sum increases the sum beyond the value of the MININERTIA=
option. This same algorithm is then used for Best2, and so on.

For example, the following table contains contributions to inertia and the corresponding Best variables. The
contribution to inertia variables are proportions that sum to 1 within each column. The first point makes its
greatest contribution to the inertia of dimension two, so Best for point one is set to 2, and Best1–Best3 for
point one must all be 0 or 2. The second point also makes its greatest contribution to the inertia of dimension
two, so Best for point two is set to 2, and Best1–Best3 for point two must all be 0 or 2, and so on.
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Assume MININERTIA=0.8, the default. Table 34.6 shows some contributions to inertia. In dimension one,
the largest contribution is 0.41302 for the fourth point, so Best1 is set to 1, the value of Best for the fourth
point. Because this value is less than 0.8, the second-largest value (0.36456 for point five) is found and its
Best1 is set to its Best’s value of 1. Because 0:41302C 0:36456 D 0:77758 is less than 0.8, the third point
(0.0882 at point eight) is found and Best1 is set to 3, because the contribution to dimension three for that
point is greater than the contribution to dimension one. This increases the sum of the partial contributions to
greater than 0.8, so the remaining Best1 values are all 0.

Table 34.6 Best Statistics

Contr1 Contr2 Contr3 Best1 Best2 Best3 Best
0.01593 0.32178 0.07565 0 2 2 2
0.03014 0.24826 0.07715 0 2 2 2
0.00592 0.02892 0.02698 0 0 0 2
0.41302 0.05191 0.05773 1 0 0 1
0.36456 0.00344 0.15565 1 0 1 1
0.03902 0.30966 0.11717 0 2 2 2
0.00019 0.01840 0.00734 0 0 0 2
0.08820 0.00527 0.16555 3 0 3 3
0.01447 0.00024 0.03851 0 0 0 3
0.02855 0.01213 0.27827 0 0 3 3

Displayed Output
The display options control the amount of displayed output. By default, the following information is
displayed:

• an inertia and chi-square decomposition table including the total inertia, the principal inertias of
each dimension (eigenvalues), the singular values (square roots of the eigenvalues), each dimension’s
percentage of inertia, a horizontal bar chart of the percentages, and the total chi-square with its degrees
of freedom and decomposition. The chi-square statistics and degrees of freedom are valid only when
the constructed table is an ordinary two-way contingency table.

• the coordinates of the rows and columns on the dimensions

• the mass, relative contribution to the total inertia, and quality of representation in the DIMENS=n
dimensional display of each row and column

• the squared cosines of the angles between each axis and a vector from the origin to the point

• the partial contributions of each point to each dimension’s inertia

• the table of indicators of which points best explain the inertia of each dimension
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Specific display options and combinations of options display output as follows.

If you specify the OBSERVED or ALL option and you do not specify PRINT=PERCENT, PROC CORRESP
displays the following:

• the contingency table, including the row and column marginal frequencies; or with BINARY, the binary
table; or the Burt table in MCA

• the supplementary rows

• the supplementary columns

If you specify the OBSERVED or ALL option, with the PRINT=PERCENT or PRINT=BOTH option, PROC
CORRESP displays the following:

• the contingency table or Burt table in MCA, scaled to percentages, including the row and column
marginal percentages

• the supplementary rows, scaled to percentages

• the supplementary columns, scaled to percentages

If you specify the EXPECTED or ALL option and you do not specify PRINT=PERCENT, PROC CORRESP
displays the product of the row marginals and the column marginals divided by the grand frequency of the
observed frequency table. For ordinary two-way contingency tables, these are the expected frequencies under
the hypothesis of row and column independence.

If you specify the EXPECTED or ALL option with the PRINT=PERCENT or PRINT=BOTH option, PROC
CORRESP displays the product of the row marginals and the column marginals divided by the grand
frequency of the observed percentages table. For ordinary two-way contingency tables, these are the expected
percentages under the hypothesis of row and column independence.

If you specify the DEVIATION or ALL option and you do not specify PRINT=PERCENT, PROC CORRESP
displays the observed minus expected frequencies. For ordinary two-way contingency tables, these are the
expected frequencies under the hypothesis of row and column independence.

If you specify the DEVIATION or ALL option with the PRINT=PERCENT or PRINT=BOTH option, PROC
CORRESP displays the observed minus expected percentages. For ordinary two-way contingency tables,
these are the expected percentages under the hypothesis of row and column independence.

If you specify the CELLCHI2 or ALL option and you do not specify PRINT=PERCENT, PROC CORRESP
displays contributions to the total chi-square test statistic, including the row and column marginals. The
intersection of the marginals contains the total chi-square statistic.

If you specify the CELLCHI2 or ALL option with the PRINT=PERCENT or the PRINT=BOTH option,
PROC CORRESP displays contributions to the total chi-square, scaled to percentages, including the row and
column marginals.

If you specify the RP or ALL option and you do not specify PRINT=PERCENT, PROC CORRESP displays
the row profiles and the supplementary row profiles.

If you specify the RP or ALL option with the PRINT=PERCENT or the PRINT=BOTH option, PROC
CORRESP displays the row profiles (scaled to percentages) and the supplementary row profiles (scaled to
percentages).
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If you specify the CP or ALL option and you do not specify PRINT=PERCENT, PROC CORRESP displays
the column profiles and the supplementary column profiles.

If you specify the CP or ALL option with the PRINT=PERCENT or PRINT=BOTH option, PROC CORRESP
displays the column profiles (scaled to percentages) and the supplementary column profiles (scaled to
percentages).

If you do not specify the NOPRINT option, PROC CORRESP displays the inertia and chi-square decomposi-
tion table. This includes the nonzero singular values of the contingency table (or, in MCA, the binary matrix
Z used to create the Burt table), the nonzero principal inertias (or eigenvalues) for each dimension, the total
inertia, the total chi-square, the decomposition of chi-square, the chi-square degrees of freedom (appropriate
only when the table is an ordinary two-way contingency table), the percentage of the total chi-square and
inertia for each dimension, and a bar chart of the percentages.

If you specify the MCA option and you do not specify the NOPRINT option, PROC CORRESP displays the
adjusted inertias. This includes the nonzero adjusted inertias, percentages, cumulative percentages, and a bar
chart of the percentages.

If you do not specify the NOROW, NOPRINT, or MCA option, PROC CORRESP displays the row coordinates
and the supplementary row coordinates (displayed when there are supplementary row points).

If you do not specify the NOROW, NOPRINT, MCA, or SHORT option, PROC CORRESP displays the
following:

• the summary statistics for the row points, including the quality of representation of the row points in
the n-dimensional display, the mass, and the relative contributions to inertia

• the quality of representation of the supplementary row points in the n-dimensional display (displayed
when there are supplementary row points)

• the partial contributions to inertia for the row points

• the table of indicators of which row points best explain the inertia of each dimension

• the squared cosines for the row points

• the squared cosines for the supplementary row points (displayed when there are supplementary row
points)

If you do not specify the NOCOLUMN or NOPRINT option, PROC CORRESP displays the column
coordinates and the supplementary column coordinates (displayed when there are supplementary column
points).

If you do not specify the NOCOLUMN, NOPRINT, or SHORT option, PROC CORRESP displays the
following:

• the summary statistics for the column points, including the quality of representation of the column
points in the n-dimensional display, the mass, and the relative contributions to inertia for the supple-
mentary column points

• the quality of representation of the supplementary column points in the n-dimensional display (dis-
played when there are supplementary column points)

• the partial contributions to inertia for the column points



2136 F Chapter 34: The CORRESP Procedure

• the table of indicators of which column points best explain the inertia of each dimension

• the squared cosines for the column points

• the squared cosines for the supplementary column points

ODS Table Names
PROC CORRESP assigns a name to each table it creates. You can use these names to reference the table
when using the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed in Table 34.7 along with the PROC CORRESP statement options needed to produce the table. For
more information about ODS, see Chapter 20, “Using the Output Delivery System.”

Table 34.7 ODS Tables Produced by PROC CORRESP

ODS Table Name Description Option

AdjInGreenacre Greenacre Inertia Adjustment GREENACRE
AdjInBenzecri Benzécri Inertia Adjustment BENZECRI
Binary Binary table OBSERVED, BINARY
BinaryPct Binary table percentages OBSERVED, BINARY*
Burt Burt table OBSERVED, MCA
BurtPct Burt table percentages OBSERVED, MCA*
CellChiSq Contributions to chi-square CELLCHI2
CellChiSqPct Contributions, percentages CELLCHI2*
ColBest Col best indicators default
ColContr Col contributions to inertia default
ColCoors Col coordinates default
ColProfiles Col profiles CP
ColProfilesPct Col profiles, percentages CP*
ColQualMassIn Col quality, mass, inertia default
ColSqCos Col squared cosines default
DF DF, chi-square (not displayed) default
Deviations Observed - expected freqs DEVIATIONS
DeviationsPct Observed - expected percentages DEVIATIONS*
Expected Expected frequencies EXPECTED
ExpectedPct Expected percentages EXPECTED*
Inertias Inertia decomposition table default
Observed Observed frequencies OBSERVED
ObservedPct Observed percentages OBSERVED*
RowBest Row best indicators default
RowContr Row contributions to inertia default
RowCoors Row coordinates default
RowProfiles Row profiles RP
RowProfilesPct Row profiles, percentages RP*
RowQualMassIn Row quality, mass, inertia default
RowSqCos Row squared cosines default
SupColCoors Supp col coordinates default
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Table 34.7 continued

ODS Table Name Description Option

SupColProfiles Supp col profiles CP
SupColProfilesPct Supp col profiles, percentages CP*
SupColQuality Supp col quality default
SupCols Supplementary col freq OBSERVED
SupColsPct Supplementary col percentages OBSERVED*
SupColSqCos Supp col squared cosines default
SupRows Supplementary row freqs OBSERVED
SupRowCoors Supp row coordinates default
SupRowProfiles Supp row profiles RP
SupRowProfilesPct Supp row profiles, percentages RP*
SupRowQuality Supp row quality default
SupRowsPct Supplementary row percentages OBSERVED*
SupRowSqCos Supp row squared cosines default
*Percentages are displayed when you specify the PRINT=PERCENT or
PRINT=BOTH option.

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

You can reference every graph produced through ODS Graphics with a name. The names of the graph that
PROC CORRESP generates is listed in Table 34.8. It is displayed by default when ODS graphics is enabled.

Table 34.8 Graphs Produced by PROC CORRESP

ODS Graph Name Plot Description

ConfigPlot Correspondence analysis plot
InertiaChart Inertia and chi-square decomposition
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Examples: CORRESP Procedure

Example 34.1: Simple and Multiple Correspondence Analysis of Automobiles
and Their Owners

In this example, PROC CORRESP creates a contingency table from categorical data and performs a simple
correspondence analysis. The data are from a sample of individuals who were asked to provide information
about themselves and their automobiles. The questions included origin of the automobile (American,
Japanese, or European) and family status (single, married, single living with children, or married living with
children).

The first steps read the input data and assign formats:

title1 'Automobile Owners and Auto Attributes';
title2 'Simple Correspondence Analysis';

proc format;
value Origin 1 = 'American' 2 = 'Japanese' 3 = 'European';
value Size 1 = 'Small' 2 = 'Medium' 3 = 'Large';
value Type 1 = 'Family' 2 = 'Sporty' 3 = 'Work';
value Home 1 = 'Own' 2 = 'Rent';
value Sex 1 = 'Male' 2 = 'Female';
value Income 1 = '1 Income' 2 = '2 Incomes';
value Marital 1 = 'Single with Kids' 2 = 'Married with Kids'

3 = 'Single' 4 = 'Married';
run;

data Cars;
missing a;
input (Origin Size Type Home Income Marital Kids Sex) (1.) @@;

* Check for End of Line;
if n(of Origin -- Sex) eq 0 then do; input; return; end;
marital = 2 * (kids le 0) + marital;
format Origin Origin. Size Size. Type Type. Home Home.

Sex Sex. Income Income. Marital Marital.;
output;
datalines;

131112212121110121112201131211011211221122112121131122123211222212212201
121122023121221232211101122122022121110122112102131112211121110112311101
211112113211223121122202221122111311123131211102321122223221220221221101
122122022121220211212201221122021122110132112202213112111331226122221101

... more lines ...

212122011211122131221101121211022212220212121101
;
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PROC CORRESP is used to perform the simple correspondence analysis. The ALL option displays all
tables, including the contingency table, chi-square information, profiles, and all results of the correspondence
analysis. The CHI2P option displays the chi-square p-value. The TABLES statement specifies the row and
column categorical variables. The results are displayed with ODS Graphics.

The following statements produce Output 34.1.1:

ods graphics on;

* Perform Simple Correspondence Analysis;
proc corresp data=Cars all chi2p;

tables Marital, Origin;
run;

Correspondence analysis locates all the categories in a Euclidean space. The first two dimensions of this
space are plotted to examine the associations among the categories.3 Because the smallest dimension of
this table is three, there is no loss of information when only two dimensions are plotted. The plot should be
thought of as two different overlaid plots, one for each categorical variable. Distances between points within
a variable have meaning, but distances between points from different variables do not.

Output 34.1.1 Simple Correspondence Analysis

Automobile Owners and Auto Attributes
Simple Correspondence Analysis

The CORRESP Procedure

Automobile Owners and Auto Attributes
Simple Correspondence Analysis

The CORRESP Procedure

Contingency Table

American European Japanese Sum

Married 37 14 51 102

Married with Kids 52 15 44 111

Single 33 15 63 111

Single with Kids 6 1 8 15

Sum 128 45 166 339

Chi-Square Statistic Expected Values

American European Japanese

Married 38.5133 13.5398 49.9469

Married with Kids 41.9115 14.7345 54.3540

Single 41.9115 14.7345 54.3540

Single with Kids 5.6637 1.9912 7.3451

Observed Minus Expected Values

American European Japanese

Married -1.5133 0.4602 1.0531

Married with Kids 10.0885 0.2655 -10.3540

Single -8.9115 0.2655 8.6460

Single with Kids 0.3363 -0.9912 0.6549

3In this analysis, the chi-square statistic is not significantly different from 0. Hence, you would not reject the null hypothesis that
the rows and columns are independent. If your goal is hypothesis testing, you might stop at this point and not proceed to interpret the
graphical and tabular results. If your goal is exploratory data analysis, you might proceed and interpret the results. This example will
proceed, because it is intended to be a small, simple teaching example.
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Output 34.1.1 continued

Contributions to the Total Chi-Square Statistic

American European Japanese Sum

Married 0.05946 0.01564 0.02220 0.09730

Married with Kids 2.42840 0.00478 1.97235 4.40553

Single 1.89482 0.00478 1.37531 3.27492

Single with Kids 0.01997 0.49337 0.05839 0.57173

Sum 4.40265 0.51858 3.42825 8.34947

Row Profiles

American European Japanese

Married 0.362745 0.137255 0.500000

Married with Kids 0.468468 0.135135 0.396396

Single 0.297297 0.135135 0.567568

Single with Kids 0.400000 0.066667 0.533333

Column Profiles

American European Japanese

Married 0.289063 0.311111 0.307229

Married with Kids 0.406250 0.333333 0.265060

Single 0.257813 0.333333 0.379518

Single with Kids 0.046875 0.022222 0.048193

Row Coordinates

Dim1 Dim2

Married -0.0278 0.0134

Married with Kids 0.1991 0.0064

Single -0.1716 0.0076

Single with Kids -0.0144 -0.1947

Summary Statistics for the Row Points

Quality Mass Inertia

Married 1.0000 0.3009 0.0117

Married with Kids 1.0000 0.3274 0.5276

Single 1.0000 0.3274 0.3922

Single with Kids 1.0000 0.0442 0.0685



Example 34.1: Simple and Multiple Correspondence Analysis of Automobiles F 2141

Partial Contributions to Inertia
for the Row Points

Dim1 Dim2

Married 0.0102 0.0306

Married with Kids 0.5678 0.0076

Single 0.4217 0.0108

Single with Kids 0.0004 0.9511

Indices of the Coordinates That
Contribute Most to Inertia for the

Row Points

Dim1 Dim2 Best

Married 0 0 2

Married with Kids 1 0 1

Single 1 0 1

Single with Kids 0 2 2

Squared Cosines for the Row
Points

Dim1 Dim2

Married 0.8121 0.1879

Married with Kids 0.9990 0.0010

Single 0.9980 0.0020

Single with Kids 0.0054 0.9946

Column Coordinates

Dim1 Dim2

American 0.1847 -0.0166

European 0.0013 0.1073

Japanese -0.1428 -0.0163

Summary Statistics for the
Column Points

Quality Mass Inertia

American 1.0000 0.3776 0.5273

European 1.0000 0.1327 0.0621

Japanese 1.0000 0.4897 0.4106

Partial Contributions to
Inertia for the Column

Points

Dim1 Dim2

American 0.5634 0.0590

European 0.0000 0.8672

Japanese 0.4366 0.0737



2142 F Chapter 34: The CORRESP Procedure

Indices of the Coordinates
That Contribute Most to

Inertia for the Column
Points

Dim1 Dim2 Best

American 1 0 1

European 0 2 2

Japanese 1 0 1

Squared Cosines for the
Column Points

Dim1 Dim2

American 0.9920 0.0080

European 0.0001 0.9999

Japanese 0.9871 0.0129
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To interpret the plot, start by interpreting the row points separately from the column points. The European
point is near and to the left of the centroid, so it makes a relatively small contribution to the chi-square
statistic (because it is near the centroid), it contributes almost nothing to the inertia of dimension one (because
its coordinate on dimension one has a small absolute value relative to the other column points), and it makes
a relatively large contribution to the inertia of dimension two (because its coordinate on dimension two has
a large absolute value relative to the other column points). Its squared cosines for dimension one and two,
approximately 0 and 1, respectively, indicate that its position is almost completely determined by its location
on dimension two. Its quality of display is 1.0, indicating perfect quality, because the table is two-dimensional
after the centering. The American and Japanese points are far from the centroid, and they lie along dimension
one. They make relatively large contributions to the chi-square statistic and the inertia of dimension one. The
horizontal dimension seems to be largely determined by Japanese versus American automobile ownership.

In the row points, the Married point is near the centroid, and the Single with Kids point has a small coordinate
on dimension one that is near zero. The horizontal dimension seems to be largely determined by the Single
versus the Married with Kids points. The two interpretations of dimension one show the association with
being Married with Kids and owning an American auto, and being single and owning a Japanese auto. The
fact that the Married with Kids point is close to the American point and the fact that the Japanese point is
near the Single point should be ignored. Distances between row and column points are not defined. The plot
shows that more people who are married with kids than you would expect if the rows and columns were
independent drive an American auto, and more people who are single than you would expect if the rows and
columns were independent drive a Japanese auto.

In the second part of this example, PROC CORRESP creates a Burt table from categorical data and performs
a multiple correspondence analysis. The variables used in this example are Origin, Size, Type, Income, Home,
Marital, and Sex. MCA specifies multiple correspondence analysis, OBSERVED displays the Burt table. The
TABLES statement with only a single variable list and no comma creates the Burt table.

The following statements produce Output 34.1.2:

title2 'Multiple Correspondence Analysis';

* Perform Multiple Correspondence Analysis;
proc corresp mca observed data=Cars;

tables Origin Size Type Income Home Marital Sex;
run;
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Output 34.1.2 Multiple Correspondence Analysis

Automobile Owners and Auto Attributes
Multiple Correspondence Analysis

The CORRESP Procedure

Automobile Owners and Auto Attributes
Multiple Correspondence Analysis

The CORRESP Procedure

Burt Table

American European Japanese Large Medium Small Family Sporty Work

American 125 0 0 36 60 29 81 24 20

European 0 44 0 4 20 20 17 23 4

Japanese 0 0 165 2 61 102 76 59 30

Large 36 4 2 42 0 0 30 1 11

Medium 60 20 61 0 141 0 89 39 13

Small 29 20 102 0 0 151 55 66 30

Family 81 17 76 30 89 55 174 0 0

Sporty 24 23 59 1 39 66 0 106 0

Work 20 4 30 11 13 30 0 0 54

1 Income 58 18 74 20 57 73 69 55 26

2 Incomes 67 26 91 22 84 78 105 51 28

Own 93 38 111 35 106 101 130 71 41

Rent 32 6 54 7 35 50 44 35 13

Married 37 13 51 9 42 50 50 35 16

Married with Kids 50 15 44 21 51 37 79 12 18

Single 32 15 62 11 40 58 35 57 17

Single with Kids 6 1 8 1 8 6 10 2 3

Female 58 21 70 17 70 62 83 44 22

Male 67 23 95 25 71 89 91 62 32
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Output 34.1.2 continued

Automobile Owners and Auto Attributes
Multiple Correspondence Analysis

The CORRESP Procedure

Burt Table

1
Income

2
Incomes Own Rent Married

Married
with
Kids Single

Single
with
Kids Female Male

American 58 67 93 32 37 50 32 6 58 67

European 18 26 38 6 13 15 15 1 21 23

Japanese 74 91 111 54 51 44 62 8 70 95

Large 20 22 35 7 9 21 11 1 17 25

Medium 57 84 106 35 42 51 40 8 70 71

Small 73 78 101 50 50 37 58 6 62 89

Family 69 105 130 44 50 79 35 10 83 91

Sporty 55 51 71 35 35 12 57 2 44 62

Work 26 28 41 13 16 18 17 3 22 32

1 Income 150 0 80 70 10 27 99 14 47 103

2 Incomes 0 184 162 22 91 82 10 1 102 82

Own 80 162 242 0 76 106 52 8 114 128

Rent 70 22 0 92 25 3 57 7 35 57

Married 10 91 76 25 101 0 0 0 53 48

Married with Kids 27 82 106 3 0 109 0 0 48 61

Single 99 10 52 57 0 0 109 0 35 74

Single with Kids 14 1 8 7 0 0 0 15 13 2

Female 47 102 114 35 53 48 35 13 149 0

Male 103 82 128 57 48 61 74 2 0 185
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Column Coordinates

Dim1 Dim2

American -0.4035 0.8129

European -0.0568 -0.5552

Japanese 0.3208 -0.4678

Large -0.6949 1.5666

Medium -0.2562 0.0965

Small 0.4326 -0.5258

Family -0.4201 0.3602

Sporty 0.6604 -0.6696

Work 0.0575 0.1539

1 Income 0.8251 0.5472

2 Incomes -0.6727 -0.4461

Own -0.3887 -0.0943

Rent 1.0225 0.2480

Married -0.4169 -0.7954

Married with Kids -0.8200 0.3237

Single 1.1461 0.2930

Single with Kids 0.4373 0.8736

Female -0.3365 -0.2057

Male 0.2710 0.1656

Summary Statistics for the Column
Points

Quality Mass Inertia

American 0.4925 0.0535 0.0521

European 0.0473 0.0188 0.0724

Japanese 0.3141 0.0706 0.0422

Large 0.4224 0.0180 0.0729

Medium 0.0548 0.0603 0.0482

Small 0.3825 0.0646 0.0457

Family 0.3330 0.0744 0.0399

Sporty 0.4112 0.0453 0.0569

Work 0.0052 0.0231 0.0699

1 Income 0.7991 0.0642 0.0459

2 Incomes 0.7991 0.0787 0.0374

Own 0.4208 0.1035 0.0230

Rent 0.4208 0.0393 0.0604

Married 0.3496 0.0432 0.0581

Married with Kids 0.3765 0.0466 0.0561

Single 0.6780 0.0466 0.0561

Single with Kids 0.0449 0.0064 0.0796

Female 0.1253 0.0637 0.0462

Male 0.1253 0.0791 0.0372
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Partial Contributions to Inertia
for the Column Points

Dim1 Dim2

American 0.0268 0.1511

European 0.0002 0.0248

Japanese 0.0224 0.0660

Large 0.0268 0.1886

Medium 0.0122 0.0024

Small 0.0373 0.0764

Family 0.0405 0.0413

Sporty 0.0610 0.0870

Work 0.0002 0.0023

1 Income 0.1348 0.0822

2 Incomes 0.1099 0.0670

Own 0.0482 0.0039

Rent 0.1269 0.0103

Married 0.0232 0.1169

Married with Kids 0.0967 0.0209

Single 0.1889 0.0171

Single with Kids 0.0038 0.0209

Female 0.0223 0.0115

Male 0.0179 0.0093

Indices of the Coordinates That
Contribute Most to Inertia for the

Column Points

Dim1 Dim2 Best

American 0 2 2

European 0 0 2

Japanese 0 2 2

Large 0 2 2

Medium 0 0 1

Small 0 2 2

Family 2 0 2

Sporty 2 2 2

Work 0 0 2

1 Income 1 1 1

2 Incomes 1 1 1

Own 1 0 1

Rent 1 0 1

Married 0 2 2

Married with Kids 1 0 1

Single 1 0 1

Single with Kids 0 0 2

Female 0 0 1

Male 0 0 1
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Squared Cosines for the
Column Points

Dim1 Dim2

American 0.0974 0.3952

European 0.0005 0.0468

Japanese 0.1005 0.2136

Large 0.0695 0.3530

Medium 0.0480 0.0068

Small 0.1544 0.2281

Family 0.1919 0.1411

Sporty 0.2027 0.2085

Work 0.0006 0.0046

1 Income 0.5550 0.2441

2 Incomes 0.5550 0.2441

Own 0.3975 0.0234

Rent 0.3975 0.0234

Married 0.0753 0.2742

Married with Kids 0.3258 0.0508

Single 0.6364 0.0416

Single with Kids 0.0090 0.0359

Female 0.0912 0.0341

Male 0.0912 0.0341

Multiple correspondence analysis locates all the categories in a Euclidean space. The first two dimensions of
this space are plotted to examine the associations among the categories. The top-right quadrant of the plot
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shows that the categories Single, Single with Kids, 1 Income, and Rent are associated. Proceeding clockwise,
the categories Sporty, Small, and Japanese are associated. The bottom-left quadrant shows the association
between being married, owning your own home, and having two incomes. Having children is associated with
owning a large American family auto. Such information could be used in market research to identify target
audiences for advertisements.

This interpretation is based on points found in approximately the same direction from the origin and in
approximately the same region of the space. Distances between points do not have a straightforward
interpretation in multiple correspondence analysis. The geometry of multiple correspondence analysis is
not a simple generalization of the geometry of simple correspondence analysis (Greenacre and Hastie 1987;
Greenacre 1988).

If you want to perform a multiple correspondence analysis and get scores for the individuals, you can specify
the BINARY option to analyze the binary table, as in the following statements. In the interest of space, only
the first 10 rows of coordinates are printed in Output 34.1.3.

title2 'Binary Table';

* Perform Multiple Correspondence Analysis;
proc corresp data=Cars binary;

ods select RowCoors;
tables Origin Size Type Income Home Marital Sex;

run;

Output 34.1.3 Correspondence Analysis of a Binary Table

Automobile Owners and Auto Attributes
Binary Table

The CORRESP Procedure

Row Coordinates

Automobile Owners and Auto Attributes
Binary Table

The CORRESP Procedure

Row Coordinates

Dim1 Dim2

1 -0.4093 1.0878

2 0.8198 -0.2221

3 -0.2193 -0.5328

4 0.4382 1.1799

5 -0.6750 0.3600

6 -0.1778 0.1441

7 -0.9375 0.6846

8 -0.7405 -0.1539

9 -0.3027 -0.2749

10 -0.7263 -0.0803

Example 34.2: Simple Correspondence Analysis of U.S. Population
In this example, PROC CORRESP reads an existing contingency table with supplementary observations
and performs a simple correspondence analysis. The data are populations of the 50 U.S. states, grouped
into regions, for each of the census years from 1920 to 1970 (U.S. Bureau of the Census 1979). Alaska and
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Hawaii are treated as supplementary regions, because they were not states during this entire period and are not
physically connected to the other 48 states. Consequently, it is reasonable to expect that population changes
in these two states operate differently from population changes in the other states. The correspondence
analysis is performed giving the supplementary points negative weight, and then the coordinates for the
supplementary points are computed in the solution defined by the other points.

The initial DATA step reads the table, provides labels for the years, flags the supplementary rows with
negative weights, and specifies absolute weights of 1000 for all observations because the data were originally
reported in units of 1000 people.

In the PROC CORRESP statement, PRINT=PERCENT and the display options display the table of cell
percentages (OBSERVED), cell contributions to the total chi-square scaled to sum to 100 (CELLCHI2), row
profile rows that sum to 100 (RP), and column profile columns that sum to 100 (CP). The SHORT option
specifies that the correspondence analysis summary statistics, contributions to inertia, and squared cosines
should not be displayed. Because the data are already in table form, a VAR statement is used to read the
table. Row labels are specified with the ID statement, and column labels come from the variable labels. The
WEIGHT statement flags the supplementary observations and restores the table values to populations.

The following statements produce Output 34.2.1:

title 'United States Population, 1920-1970';

data USPop;

* Regions:

* New England - ME, NH, VT, MA, RI, CT.

* Great Lakes - OH, IN, IL, MI, WI.

* South Atlantic - DE, MD, DC, VA, WV, NC, SC, GA, FL.

* Mountain - MT, ID, WY, CO, NM, AZ, UT, NV.

* Pacific - WA, OR, CA.

*
* Note: Multiply data values by 1000 to get populations.;

input Region $14. y1920 y1930 y1940 y1950 y1960 y1970;

label y1920 = '1920' y1930 = '1930' y1940 = '1940'
y1950 = '1950' y1960 = '1960' y1970 = '1970';

if region = 'Hawaii' or region = 'Alaska'
then w = -1000; /* Flag Supplementary Observations */
else w = 1000;

datalines;
New England 7401 8166 8437 9314 10509 11842
NY, NJ, PA 22261 26261 27539 30146 34168 37199
Great Lakes 21476 25297 26626 30399 36225 40252
Midwest 12544 13297 13517 14061 15394 16319
South Atlantic 13990 15794 17823 21182 25972 30671
KY, TN, AL, MS 8893 9887 10778 11447 12050 12803
AR, LA, OK, TX 10242 12177 13065 14538 16951 19321
Mountain 3336 3702 4150 5075 6855 8282
Pacific 5567 8195 9733 14486 20339 25454
Alaska 55 59 73 129 226 300
Hawaii 256 368 423 500 633 769
;
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ods graphics on;

* Perform Simple Correspondence Analysis;
proc corresp data=uspop print=percent observed cellchi2 rp cp chi2p

short plot(flip);
var y1920 -- y1970;
id Region;
weight w;

run;

The contingency table shows that the population of all regions increased over this time period. The row
profiles show that population increased at a different rate for the different regions. There was a small increase
in population in the Midwest, for example, but the population more than quadrupled in the Pacific region
over the same period. The column profiles show that in 1920, the U.S. population was concentrated in the
NY, NJ, PA, Great Lakes, Midwest, and South Atlantic regions. With time, the population shifted more to
the South Atlantic, Mountain, and Pacific regions. This is also clear from the correspondence analysis. The
inertia and chi-square decomposition table shows that there are five nontrivial dimensions in the table, but the
association between the rows and columns is almost entirely one-dimensional.

Output 34.2.1 United States Population, 1920–1970

United States Population, 1920-1970

The CORRESP Procedure

United States Population, 1920-1970

The CORRESP Procedure

Contingency Table

Percents 1920 1930 1940 1950 1960 1970 Sum

New England 0.830 0.916 0.946 1.045 1.179 1.328 6.245

NY, NJ, PA 2.497 2.946 3.089 3.382 3.833 4.173 19.921

Great Lakes 2.409 2.838 2.987 3.410 4.064 4.516 20.224

Midwest 1.407 1.492 1.516 1.577 1.727 1.831 9.550

South Atlantic 1.569 1.772 1.999 2.376 2.914 3.441 14.071

KY, TN, AL, MS 0.998 1.109 1.209 1.284 1.352 1.436 7.388

AR, LA, OK, TX 1.149 1.366 1.466 1.631 1.902 2.167 9.681

Mountain 0.374 0.415 0.466 0.569 0.769 0.929 3.523

Pacific 0.625 0.919 1.092 1.625 2.282 2.855 9.398

Sum 11.859 13.773 14.771 16.900 20.020 22.677 100.000

Supplementary Rows

Percents 1920 1930 1940 1950 1960 1970

Alaska 0.006170 0.006619 0.008189 0.014471 0.025353 0.033655

Hawaii 0.028719 0.041283 0.047453 0.056091 0.071011 0.086268
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Output 34.2.1 continued

Contributions to the Total Chi-Square Statistic

Percents 1920 1930 1940 1950 1960 1970 Sum

New England 0.937 0.314 0.054 0.009 0.352 0.469 2.135

NY, NJ, PA 0.665 1.287 0.633 0.006 0.521 2.265 5.378

Great Lakes 0.004 0.085 0.000 0.001 0.005 0.094 0.189

Midwest 5.749 2.039 0.684 0.072 1.546 4.472 14.563

South Atlantic 0.509 1.231 0.259 0.000 0.285 1.688 3.973

KY, TN, AL, MS 1.454 0.711 1.098 0.087 0.946 2.945 7.242

AR, LA, OK, TX 0.000 0.069 0.077 0.001 0.059 0.030 0.238

Mountain 0.391 0.868 0.497 0.098 0.498 1.834 4.187

Pacific 18.591 9.380 5.458 0.074 7.346 21.248 62.096

Sum 28.302 15.986 8.761 0.349 11.558 35.046 100.000

Row Profiles

Percents 1920 1930 1940 1950 1960 1970

New England 13.2947 14.6688 15.1557 16.7310 18.8777 21.2722

NY, NJ, PA 12.5362 14.7888 15.5085 16.9766 19.2416 20.9484

Great Lakes 11.9129 14.0325 14.7697 16.8626 20.0943 22.3281

Midwest 14.7348 15.6193 15.8777 16.5167 18.0825 19.1691

South Atlantic 11.1535 12.5917 14.2093 16.8872 20.7060 24.4523

KY, TN, AL, MS 13.5033 15.0126 16.3655 17.3813 18.2969 19.4403

AR, LA, OK, TX 11.8687 14.1111 15.1401 16.8471 19.6433 22.3897

Mountain 10.6242 11.7898 13.2166 16.1624 21.8312 26.3758

Pacific 6.6453 9.7823 11.6182 17.2918 24.2784 30.3841

Supplementary Row Profiles

Percents 1920 1930 1940 1950 1960 1970

Alaska 6.5321 7.0071 8.6698 15.3207 26.8409 35.6295

Hawaii 8.6809 12.4788 14.3438 16.9549 21.4649 26.0766

Column Profiles

Percents 1920 1930 1940 1950 1960 1970

New England 7.0012 6.6511 6.4078 6.1826 5.8886 5.8582

NY, NJ, PA 21.0586 21.3894 20.9155 20.0109 19.1457 18.4023

Great Lakes 20.3160 20.6042 20.2221 20.1788 20.2983 19.9126

Midwest 11.8664 10.8303 10.2660 9.3337 8.6259 8.0730

South Atlantic 13.2343 12.8641 13.5363 14.0606 14.5532 15.1729

KY, TN, AL, MS 8.4126 8.0529 8.1857 7.5985 6.7521 6.3336

AR, LA, OK, TX 9.6888 9.9181 9.9227 9.6503 9.4983 9.5581

Mountain 3.1558 3.0152 3.1519 3.3688 3.8411 4.0971

Pacific 5.2663 6.6748 7.3921 9.6158 11.3968 12.5921
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Row Coordinates

Dim1 Dim2

New England 0.0611 0.0132

NY, NJ, PA 0.0546 -0.0117

Great Lakes 0.0074 -0.0028

Midwest 0.1315 0.0186

South Atlantic -0.0553 0.0105

KY, TN, AL, MS 0.1044 -0.0144

AR, LA, OK, TX 0.0131 -0.0067

Mountain -0.1121 0.0338

Pacific -0.2766 -0.0070

Supplementary Row
Coordinates

Dim1 Dim2

Alaska -0.4152 0.0912

Hawaii -0.1198 -0.0321

Column Coordinates

Dim1 Dim2

1920 0.1642 0.0263

1930 0.1149 -0.0089

1940 0.0816 -0.0108

1950 -0.0046 -0.0125

1960 -0.0815 -0.0007

1970 -0.1335 0.0086
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ODS Graphics is used to plot the results. The results are essentially one-dimensional. For results such as
these, it is better to plot the first dimension vertically, as opposed to the default, which is horizontally. The
vertical orientation has fewer opportunities for label collisions. Specifying PLOTS(FLIP) on the PROC
CORRESP statement switches the vertical and horizontal axes to improve the graphical display.

The plot shows that the first dimension correctly orders the years. There is nothing in the correspondence
analysis that forces this to happen; the analysis has no information about the inherent ordering of the column
categories. The ordering of the regions and the ordering of the years reflect the shift over time of the U.S.
population from the Northeast quadrant of the country to the South and to the West. The results show that the
West and Southeast grew faster than the rest of the contiguous 48 states during this period.

The plot also shows that the growth pattern for Hawaii was similar to the growth pattern for the mountain
states and that Alaska’s growth was even more extreme than the Pacific states’ growth. The row profiles
confirm this interpretation.

The Pacific region is farther from the origin than all other active points. The Midwest is the extreme region in
the other direction. The table of contributions to the total chi-square shows that 62% of the total chi-square
statistic is contributed by the Pacific region, which is followed by the Midwest at over 14%. Similarly the
two extreme years, 1920 and 1970, together contribute over 63% to the total chi-square, whereas the years
nearer the origin of the plot contribute less.
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Overview: DISCRIM Procedure
For a set of observations containing one or more quantitative variables and a classification variable defining
groups of observations, the DISCRIM procedure develops a discriminant criterion to classify each observation
into one of the groups. The derived discriminant criterion from this data set can be applied to a second data
set during the same execution of PROC DISCRIM. The data set that PROC DISCRIM uses to derive the
discriminant criterion is called the training or calibration data set.

When the distribution within each group is assumed to be multivariate normal, a parametric method can be
used to develop a discriminant function. The discriminant function, also known as a classification criterion,
is determined by a measure of generalized squared distance (Rao 1973). The classification criterion can be
based on either the individual within-group covariance matrices (yielding a quadratic function) or the pooled
covariance matrix (yielding a linear function); it also takes into account the prior probabilities of the groups.
The calibration information can be stored in a special SAS data set and applied to other data sets.

When no assumptions can be made about the distribution within each group, or when the distribution is
assumed not to be multivariate normal, nonparametric methods can be used to estimate the group-specific
densities. These methods include the kernel and k-nearest-neighbor methods (Rosenblatt 1956; Parzen 1962).
The DISCRIM procedure uses uniform, normal, Epanechnikov, biweight, or triweight kernels for density
estimation.

Either Mahalanobis or Euclidean distance can be used to determine proximity. Mahalanobis distance can be
based on either the full covariance matrix or the diagonal matrix of variances. With a k-nearest-neighbor
method, the pooled covariance matrix is used to calculate the Mahalanobis distances. With a kernel method,
either the individual within-group covariance matrices or the pooled covariance matrix can be used to
calculate the Mahalanobis distances. With the estimated group-specific densities and their associated prior
probabilities, the posterior probability estimates of group membership for each class can be evaluated.

Canonical discriminant analysis is a dimension-reduction technique related to principal component analysis
and canonical correlation. Given a classification variable and several quantitative variables, PROC DISCRIM
derives canonical variables (linear combinations of the quantitative variables) that summarize between-class
variation in much the same way that principal components summarize total variation. (See Chapter 31, “The
CANDISC Procedure,” for more information about canonical discriminant analysis.) A discriminant criterion
is always derived in PROC DISCRIM. If you want canonical discriminant analysis without the use of a
discriminant criterion, you should use the CANDISC procedure.

The DISCRIM procedure can produce an output data set containing various statistics such as means, standard
deviations, and correlations. If a parametric method is used, the discriminant function is also stored in the
data set to classify future observations. When canonical discriminant analysis is performed, the output data
set includes canonical coefficients that can be rotated by the FACTOR procedure. PROC DISCRIM can
also create a second type of output data set containing the classification results for each observation. When
canonical discriminant analysis is performed, this output data set also includes canonical variable scores. A
third type of output data set containing the group-specific density estimates at each observation can also be
produced.
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PROC DISCRIM evaluates the performance of a discriminant criterion by estimating error rates (probabilities
of misclassification) in the classification of future observations. These error-rate estimates include error-count
estimates and posterior probability error-rate estimates. When the input data set is an ordinary SAS data set,
the error rate can also be estimated by cross validation.

Do not confuse discriminant analysis with cluster analysis. All varieties of discriminant analysis require prior
knowledge of the classes, usually in the form of a sample from each class. In cluster analysis, the data do not
include information about class membership; the purpose is to construct a classification.

See Chapter 10, “Introduction to Discriminant Procedures,” for a discussion of discriminant analysis.

Getting Started: DISCRIM Procedure
The data in this example are measurements of 159 fish caught in Finland’s Lake Laengelmaevesi; this data set
is available from Puranen (1917). For each of the seven species (bream, roach, whitefish, parkki, perch, pike,
and smelt) the weight, length, height, and width of each fish are tallied. Three different length measurements
are recorded: from the nose of the fish to the beginning of its tail, from the nose to the notch of its tail, and
from the nose to the end of its tail. The height and width are recorded as percentages of the third length
variable. The fish data set is available from the Sashelp library. The goal now is to find a discriminant
function based on these six variables that best classifies the fish into species.

First, assume that the data are normally distributed within each group with equal covariances across groups.
The following statements use PROC DISCRIM to analyze the Sashelp.Fish data and create Figure 35.1
through Figure 35.5:

title 'Fish Measurement Data';

proc discrim data=sashelp.fish;
class Species;

run;

The DISCRIM procedure begins by displaying summary information about the variables in the analysis (see
Figure 35.1). This information includes the number of observations, the number of quantitative variables
in the analysis (specified with the VAR statement), and the number of classes in the classification variable
(specified with the CLASS statement). The frequency of each class, its weight, the proportion of the total
sample, and the prior probability are also displayed. Equal priors are assigned by default.
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Figure 35.1 Summary Information

Fish Measurement Data

The DISCRIM Procedure

Fish Measurement Data

The DISCRIM Procedure

Total Sample Size 158 DF Total 157

Variables 6 DF Within Classes 151

Classes 7 DF Between Classes 6

Number of Observations Read 159

Number of Observations Used 158

Class Level Information

Species
Variable
Name Frequency Weight Proportion

Prior
Probability

Bream Bream 34 34.0000 0.215190 0.142857

Parkki Parkki 11 11.0000 0.069620 0.142857

Perch Perch 56 56.0000 0.354430 0.142857

Pike Pike 17 17.0000 0.107595 0.142857

Roach Roach 20 20.0000 0.126582 0.142857

Smelt Smelt 14 14.0000 0.088608 0.142857

Whitefish Whitefish 6 6.0000 0.037975 0.142857

The natural log of the determinant of the pooled covariance matrix is displayed in Figure 35.2.

Figure 35.2 Pooled Covariance Matrix Information

Pooled Covariance Matrix
Information

Covariance
Matrix Rank

Natural Log of the
Determinant of the
Covariance Matrix

6 4.17613

The squared distances between the classes are shown in Figure 35.3.

Figure 35.3 Squared Distances

Fish Measurement Data

The DISCRIM Procedure

Fish Measurement Data

The DISCRIM Procedure

Generalized Squared Distance to Species

From
Species Bream Parkki Perch Pike Roach Smelt Whitefish

Bream 0 83.32523 243.66688 310.52333 133.06721 252.75503 132.05820

Parkki 83.32523 0 57.09760 174.20918 27.00096 60.52076 26.54855

Perch 243.66688 57.09760 0 101.06791 29.21632 29.26806 20.43791

Pike 310.52333 174.20918 101.06791 0 92.40876 127.82177 99.90673

Roach 133.06721 27.00096 29.21632 92.40876 0 33.84280 6.31997

Smelt 252.75503 60.52076 29.26806 127.82177 33.84280 0 46.37326

Whitefish 132.05820 26.54855 20.43791 99.90673 6.31997 46.37326 0
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The coefficients of the linear discriminant function are displayed (in Figure 35.4) with the default options
METHOD=NORMAL and POOL=YES.

Figure 35.4 Linear Discriminant Function

Linear Discriminant Function for Species

Variable Bream Parkki Perch Pike Roach Smelt Whitefish

Constant -185.91682 -64.92517 -48.68009 -148.06402 -62.65963 -19.70401 -67.44603

Weight -0.10912 -0.09031 -0.09418 -0.13805 -0.09901 -0.05778 -0.09948

Length1 -23.02273 -13.64180 -19.45368 -20.92442 -14.63635 -4.09257 -22.57117

Length2 -26.70692 -5.38195 17.33061 6.19887 -7.47195 -3.63996 3.83450

Length3 50.55780 20.89531 5.25993 22.94989 25.00702 10.60171 21.12638

Height 13.91638 8.44567 -1.42833 -8.99687 -0.26083 -1.84569 0.64957

Width -23.71895 -13.38592 1.32749 -9.13410 -3.74542 -3.43630 -2.52442

A summary of how the discriminant function classifies the data used to develop the function is displayed last.
In Figure 35.5, you see that only three of the observations are misclassified. The error-count estimates give
the proportion of misclassified observations in each group. Since you are classifying the same data that are
used to derive the discriminant function, these error-count estimates are biased.

Figure 35.5 Resubstitution Misclassification Summary

Fish Measurement Data

The DISCRIM Procedure
Classification Summary for Calibration Data: SASHELP.FISH
Resubstitution Summary using Linear Discriminant Function

Fish Measurement Data

The DISCRIM Procedure
Classification Summary for Calibration Data: SASHELP.FISH
Resubstitution Summary using Linear Discriminant Function

Number of Observations and Percent Classified into Species

From
Species Bream Parkki Perch Pike Roach Smelt Whitefish Total

Bream 34
100.00

0
0.00

0
0.00

0
0.00

0
0.00

0
0.00

0
0.00

34
100.00

Parkki 0
0.00

11
100.00

0
0.00

0
0.00

0
0.00

0
0.00

0
0.00

11
100.00

Perch 0
0.00

0
0.00

53
94.64

0
0.00

0
0.00

3
5.36

0
0.00

56
100.00

Pike 0
0.00

0
0.00

0
0.00

17
100.00

0
0.00

0
0.00

0
0.00

17
100.00

Roach 0
0.00

0
0.00

0
0.00

0
0.00

20
100.00

0
0.00

0
0.00

20
100.00

Smelt 0
0.00

0
0.00

0
0.00

0
0.00

0
0.00

14
100.00

0
0.00

14
100.00

Whitefish 0
0.00

0
0.00

0
0.00

0
0.00

0
0.00

0
0.00

6
100.00

6
100.00

Total 34
21.52

11
6.96

53
33.54

17
10.76

20
12.66

17
10.76

6
3.80

158
100.00

Priors 0.14286 0.14286 0.14286 0.14286 0.14286 0.14286 0.14286

Error Count Estimates for Species

Bream Parkki Perch Pike Roach Smelt Whitefish Total

Rate 0.0000 0.0000 0.0536 0.0000 0.0000 0.0000 0.0000 0.0077

Priors 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429
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One way to reduce the bias of the error-count estimates is to split your data into two sets. One set is used to
derive the discriminant function, and the other set is used to run validation tests. Example 35.4 shows how to
analyze a test data set. Another method of reducing bias is to classify each observation by using a discriminant
function computed from all of the other observations; this method is invoked with the CROSSVALIDATE
option.

Syntax: DISCRIM Procedure
The following statements are available in the DISCRIM procedure:

PROC DISCRIM < options > ;
CLASS variable ;
BY variables ;
FREQ variable ;
ID variable ;
PRIORS probabilities ;
TESTCLASS variable ;
TESTFREQ variable ;
TESTID variable ;
VAR variables ;
WEIGHT variable ;

Only the PROC DISCRIM and CLASS statements are required.

The following sections describe the PROC DISCRIM statement and then describe the other statements in
alphabetical order.

PROC DISCRIM Statement
PROC DISCRIM < options > ;

The PROC DISCRIM statement invokes the DISCRIM procedure. Table 35.1 summarizes the options
available in the PROC DISCRIM statement.

Table 35.1 Options Available in the PROC DISCRIM Statement

Option Description

Input Data Sets
DATA= Specifies input SAS data set
TESTDATA= Specifies input SAS data set to classify

Output Data Sets
OUTSTAT= Specifies output statistics data set
OUT= Specifies output data set with classification results
OUTCROSS= Specifies output data set with cross validation results
OUTD= Specifies output data set with densities
SCORES= Outputs discriminant scores to the OUT= data set
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Table 35.1 continued

Option Description

TESTOUT= Specifies output data set with TEST= results
TESTOUTD= Specifies output data set with TEST= densities

Method Details
METHOD= Specifies parametric or nonparametric method
POOL= Specifies whether to pool the covariance matrices
SINGULAR= Specifies the singularity criterion
SLPOOL= Specifies significance level homogeneity test
THRESHOLD= Specifies the minimum threshold for classification

Nonparametric Methods
K= Specifies k value for k nearest neighbors
KPROP= Specifies proportion, p, for computing k
R= Specifies radius for kernel density estimation
KERNEL= Specifies a kernel density to estimate
METRIC= Specifies metric in for squared distances

Canonical Discriminant Analysis
CANONICAL Performs canonical discriminant analysis
CANPREFIX= Specifies a prefix for naming the canonical variables
NCAN= Specifies the number of canonical variables

Resubstitution Classification
LIST Displays the classification results
LISTERR Displays the misclassified observations
NOCLASSIFY Suppresses the classification
TESTLIST Displays the classification results of TEST=
TESTLISTERR Displays the misclassified observations of TEST=

Cross Validation Classification
CROSSLIST Displays the cross validation results
CROSSLISTERR Displays the misclassified cross validation results
CROSSVALIDATE Specifies cross validation

Control Displayed Output
ALL Displays all output
ANOVA Displays univariate statistics
BCORR Displays between correlations
BCOV Displays between covariances
BSSCP Displays between SSCPs
DISTANCE Displays squared Mahalanobis distances
FORMULA Displays formulas in destinations other than LISTING
MANOVA Displays multivariate ANOVA results
NOPRINT Suppresses all displayed output
PCORR Displays pooled correlations
PCOV Displays pooled covariances
POSTERR Displays posterior probability error-rate estimates
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Table 35.1 continued

Option Description

PSSCP Displays pooled SSCPs
SHORT Suppresses some displayed output
SIMPLE Displays simple descriptive statistics
STDMEAN Displays standardized class means
TCORR Displays total correlations
TCOV Displays total covariances
TSSCP Displays total SSCPs
WCORR Displays within correlations
WCOV Displays within covariances
WSSCP Displays within SSCPs

ALL
activates all options that control displayed output. When the derived classification criterion is used to
classify observations, the ALL option also activates the POSTERR option.

ANOVA
displays univariate statistics for testing the hypothesis that the class means are equal in the population
for each variable.

BCORR
displays between-class correlations.

BCOV
displays between-class covariances. The between-class covariance matrix equals the between-class
SSCP matrix divided by n.c � 1/=c, where n is the number of observations and c is the number of
classes. You should interpret the between-class covariances in comparison with the total-sample and
within-class covariances, not as formal estimates of population parameters.

BSSCP
displays the between-class SSCP matrix.

CANONICAL

CAN
performs canonical discriminant analysis.

CANPREFIX=name
specifies a prefix for naming the canonical variables. By default, the names are Can1, Can2, . . . ,
Cann. If you specify CANPREFIX=ABC, the components are named ABC1, ABC2, ABC3, and so on.
The number of characters in the prefix, plus the number of digits required to designate the canonical
variables, should not exceed 32. The prefix is truncated if the combined length exceeds 32.

The CANONICAL option is activated when you specify either the NCAN= or the CANPREFIX= op-
tion. A discriminant criterion is always derived in PROC DISCRIM. If you want canonical discriminant
analysis without the use of discriminant criteria, you should use PROC CANDISC.
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CROSSLIST
displays the cross validation classification results for each observation.

CROSSLISTERR
displays the cross validation classification results for misclassified observations only.

CROSSVALIDATE
specifies the cross validation classification of the input DATA= data set. When a parametric method
is used, PROC DISCRIM classifies each observation in the DATA= data set by using a discriminant
function computed from the other observations in the DATA= data set, excluding the observation
being classified. When a nonparametric method is used, the covariance matrices used to compute
the distances are based on all observations in the data set and do not exclude the observation being
classified. However, the observation being classified is excluded from the nonparametric density
estimation (if you specify the R= option) or the k nearest neighbors (if you specify the K= or KPROP=
option) of that observation. The CROSSVALIDATE option is set when you specify the CROSSLIST,
CROSSLISTERR, or OUTCROSS= option. With these options, cross validation information is
displayed or output in addition to the usual resubstitution classification results. Cross validation
classification results are written to the OUTCROSS= data set, and resubstitution classification results
are written to the OUT= data set.

DATA=SAS-data-set
specifies the data set to be analyzed. The data set can be an ordinary SAS data set or one of several
specially structured data sets created by SAS/STAT procedures. These specially structured data sets in-
clude TYPE=CORR, TYPE=COV, TYPE=CSSCP, TYPE=SSCP, TYPE=LINEAR, TYPE=QUAD, and
TYPE=MIXED. The input data set must be an ordinary SAS data set if you specify METHOD=NPAR.
If you omit the DATA= option, the procedure uses the most recently created SAS data set.

DISTANCE

MAHALANOBIS
displays the squared Mahalanobis distances between the group means, F statistics, and the correspond-
ing probabilities of greater Mahalanobis squared distances between the group means. The squared
distances are based on the specification of the POOL= and METRIC= options.

FORMULA
displays formulas in destinations other than LISTING. See the section “Formulas” on page 2194 for
more information.

K=k
specifies a k value for the k-nearest-neighbor rule. An observation x is classified into a group based on
the information from the k nearest neighbors of x. Do not specify the K= option with the KPROP= or
R= option.

KPROP=p
specifies a proportion, p, for computing the k value for the k-nearest-neighbor rule: k D

max.1; floor.np//, where n is the number of valid observations. When there is a FREQ statement, n
is the sum of the FREQ variable for the observations used in the analysis (those without missing or
invalid values). An observation x is classified into a group based on the information from the k nearest
neighbors of x. Do not specify the KPROP= option with the K= or R= option.
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KERNEL=BIWEIGHT | BIW

KERNEL=EPANECHNIKOV | EPA

KERNEL=NORMAL | NOR

KERNEL=TRIWEIGHT | TRI

KERNEL=UNIFORM | UNI
specifies a kernel density to estimate the group-specific densities. You can specify the KERNEL=
option only when the R= option is specified. The default is KERNEL=UNIFORM.

LIST
displays the resubstitution classification results for each observation. You can specify this option only
when the input data set is an ordinary SAS data set.

LISTERR
displays the resubstitution classification results for misclassified observations only. You can specify
this option only when the input data set is an ordinary SAS data set.

MANOVA
displays multivariate statistics for testing the hypothesis that the class means are equal in the population.

METHOD=NORMAL | NPAR
determines the method to use in deriving the classification criterion. When you specify
METHOD=NORMAL, a parametric method based on a multivariate normal distribution within each
class is used to derive a linear or quadratic discriminant function. The default is METHOD=NORMAL.
When you specify METHOD=NPAR, a nonparametric method is used and you must also specify either
the K= or R= option.

METRIC=DIAGONAL | FULL | IDENTITY
specifies the metric in which the computations of squared distances are performed. If you specify
METRIC=FULL, then PROC DISCRIM uses either the pooled covariance matrix (POOL=YES) or indi-
vidual within-group covariance matrices (POOL=NO) to compute the squared distances. If you specify
METRIC=DIAGONAL, then PROC DISCRIM uses either the diagonal matrix of the pooled covariance
matrix (POOL=YES) or diagonal matrices of individual within-group covariance matrices (POOL=NO)
to compute the squared distances. If you specify METRIC=IDENTITY, then PROC DISCRIM uses
Euclidean distance. The default is METRIC=FULL. When you specify METHOD=NORMAL, the
option METRIC=FULL is used.

NCAN=number
specifies the number of canonical variables to compute. The value of number must be less than or
equal to the number of variables. If you specify the option NCAN=0, the procedure displays the
canonical correlations but not the canonical coefficients, structures, or means. Let v be the number
of variables in the VAR statement, and let c be the number of classes. If you omit the NCAN=
option, only min.v; c � 1/ canonical variables are generated. If you request an output data set (OUT=,
OUTCROSS=, TESTOUT=), v canonical variables are generated. In this case, the last v � .c � 1/
canonical variables have missing values.

The CANONICAL option is activated when you specify either the NCAN= or the CANPREFIX= op-
tion. A discriminant criterion is always derived in PROC DISCRIM. If you want canonical discriminant
analysis without the use of discriminant criterion, you should use PROC CANDISC.



PROC DISCRIM Statement F 2167

NOCLASSIFY
suppresses the resubstitution classification of the input DATA= data set. You can specify this option
only when the input data set is an ordinary SAS data set.

NOPRINT
suppresses the normal display of results. Note that this option temporarily disables the Output Delivery
System (ODS); see Chapter 20, “Using the Output Delivery System,” for more information.

OUT=SAS-data-set
creates an output SAS data set containing all the data from the DATA= data set, plus the posterior
probabilities and the class into which each observation is classified by resubstitution. When you specify
the CANONICAL option, the data set also contains new variables with canonical variable scores. See
the section “OUT= Data Set” on page 2186 for more information.

OUTCROSS=SAS-data-set
creates an output SAS data set containing all the data from the DATA= data set, plus the posterior
probabilities and the class into which each observation is classified by cross validation. When you
specify the CANONICAL option, the data set also contains new variables with canonical variable
scores. See the section “OUT= Data Set” on page 2186 for more information.

OUTD=SAS-data-set
creates an output SAS data set containing all the data from the DATA= data set, plus the group-specific
density estimates for each observation. See the section “OUT= Data Set” on page 2186 for more
information.

OUTSTAT=SAS-data-set
creates an output SAS data set containing various statistics such as means, standard deviations,
and correlations. When the input data set is an ordinary SAS data set or when TYPE=CORR,
TYPE=COV, TYPE=CSSCP, or TYPE=SSCP, this option can be used to generate discriminant statistics.
When you specify the CANONICAL option, canonical correlations, canonical structures, canonical
coefficients, and means of canonical variables for each class are included in the data set. If you specify
METHOD=NORMAL, the output data set also includes coefficients of the discriminant functions, and
the output data set is TYPE=LINEAR (POOL=YES), TYPE=QUAD (POOL=NO), or TYPE=MIXED
(POOL=TEST). If you specify METHOD=NPAR, this output data set is TYPE=CORR. This data
set also holds calibration information that can be used to classify new observations. See the sections
“Saving and Using Calibration Information” on page 2183 and “OUT= Data Set” on page 2186 for
more information.

PCORR
displays pooled within-class correlations.

PCOV
displays pooled within-class covariances.

POOL=NO | TEST | YES
determines whether the pooled or within-group covariance matrix is the basis of the measure of the
squared distance. If you specify POOL=YES, then PROC DISCRIM uses the pooled covariance
matrix in calculating the (generalized) squared distances. Linear discriminant functions are computed.
If you specify POOL=NO, the procedure uses the individual within-group covariance matrices in
calculating the distances. Quadratic discriminant functions are computed. The default is POOL=YES.
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The k-nearest-neighbor method assumes the default of POOL=YES, and the POOL=TEST option
cannot be used with the METHOD=NPAR option.

When you specify METHOD=NORMAL, the option POOL=TEST requests Bartlett’s modification
of the likelihood ratio test (Morrison 1976; Anderson 1984) of the homogeneity of the within-group
covariance matrices. The test is unbiased (Perlman 1980). However, it is not robust to nonnormality.
If the test statistic is significant at the level specified by the SLPOOL= option, the within-group
covariance matrices are used. Otherwise, the pooled covariance matrix is used. The discriminant
function coefficients are displayed only when the pooled covariance matrix is used.

POSTERR
displays the posterior probability error-rate estimates of the classification criterion based on the
classification results.

PSSCP
displays the pooled within-class corrected SSCP matrix.

R=r
specifies a radius r value for kernel density estimation. With uniform, Epanechnikov, biweight, or
triweight kernels, an observation x is classified into a group based on the information from observations
y in the training set within the radius r of x—that is, the group t observations y with squared distance
d2t .x; y/ � r

2. When a normal kernel is used, the classification of an observation x is based on the
information of the estimated group-specific densities from all observations in the training set. The
matrix r2Vt is used as the group t covariance matrix in the normal-kernel density, where Vt is the
matrix used in calculating the squared distances. Do not specify the K= or KPROP= option with the
R= option. For more information about selecting r , see the section “Nonparametric Methods” on
page 2176.

SCORES< = prefix >
computes and outputs discriminant scores to the OUT= and TESTOUT= data sets with the default
options METHOD=NORMAL and POOL=YES (or with METHOD=NORMAL, POOL=TEST, and a
nonsignificant chi-square test). Otherwise, or if no OUT= or TESTOUT= data set is specified, this
option is ignored. The scores are computed by a matrix multiplication of an intercept term and the raw
data or test data by the coefficients in the linear discriminant function. One score variable is created for
each level of the CLASS variable. By default, the variables are named “Sc_” followed by the formatted
class level. You can specify SCORES=prefix to use a prefix other than “Sc_”. The specifications
SCORES and SCORES=Sc_ are equivalent.

SHORT
suppresses the display of certain items in the default output. If you specify METHOD=NORMAL, then
PROC DISCRIM suppresses the display of determinants, generalized squared distances between-class
means, and discriminant function coefficients. When you specify the CANONICAL option, PROC
DISCRIM suppresses the display of canonical structures, canonical coefficients, and class means on
canonical variables; only tables of canonical correlations are displayed.

SIMPLE
displays simple descriptive statistics for the total sample and within each class.
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SINGULAR=p
specifies the criterion for determining the singularity of a matrix, where 0< p < 1. The default is
SINGULAR=1E–8.

Let S be the total-sample correlation matrix. If the R square for predicting a quantitative variable in
the VAR statement from the variables preceding it exceeds 1 – p, then S is considered singular. If S is
singular, the probability levels for the multivariate test statistics and canonical correlations are adjusted
for the number of variables with R square exceeding 1 – p.

Let St be the group t covariance matrix, and let Sp be the pooled covariance matrix. In group t, if
the R square for predicting a quantitative variable in the VAR statement from the variables preceding
it exceeds 1 – p, then St is considered singular. Similarly, if the partial R square for predicting a
quantitative variable in the VAR statement from the variables preceding it, after controlling for the
effect of the CLASS variable, exceeds 1 – p, then Sp is considered singular.

If PROC DISCRIM needs to compute either the inverse or the determinant of a matrix that is considered
singular, then it uses a quasi inverse or a quasi determinant. For details, see the section “Quasi-inverse”
on page 2180.

SLPOOL=p
specifies the significance level for the test of homogeneity. You can specify the SLPOOL= option only
when POOL=TEST is also specified. If you specify POOL= TEST but omit the SLPOOL= option,
PROC DISCRIM uses 0.10 as the significance level for the test.

STDMEAN
displays total-sample and pooled within-class standardized class means.

TCORR
displays total-sample correlations.

TCOV
displays total-sample covariances.

TESTDATA=SAS-data-set
names an ordinary SAS data set with observations that are to be classified. The quantitative variable
names in this data set must match those in the DATA= data set. When you specify the TESTDATA=
option, you can also specify the TESTCLASS, TESTFREQ, and TESTID statements. When you
specify the TESTDATA= option, you can use the TESTOUT= and TESTOUTD= options to generate
classification results and group-specific density estimates for observations in the test data set. Note
that if the CLASS variable is not present in the TESTDATA= data set, the output will not include
misclassification statistics.

TESTLIST
lists classification results for all observations in the TESTDATA= data set.

TESTLISTERR
lists only misclassified observations in the TESTDATA= data set but only if a TESTCLASS statement
is also used.
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TESTOUT=SAS-data-set
creates an output SAS data set containing all the data from the TESTDATA= data set, plus the
posterior probabilities and the class into which each observation is classified. When you specify the
CANONICAL option, the data set also contains new variables with canonical variable scores. See the
section “OUT= Data Set” on page 2186 for more information.

TESTOUTD=SAS-data-set
creates an output SAS data set containing all the data from the TESTDATA= data set, plus the group-
specific density estimates for each observation. See the section “OUT= Data Set” on page 2186 for
more information.

THRESHOLD=p
specifies the minimum acceptable posterior probability for classification, where 0 � p � 1. If
the largest posterior probability of group membership is less than the THRESHOLD value, the
observation is labeled as ’Other’. The default is THRESHOLD=0. In some cases, you might
want to specify a THRESHOLD= value slightly smaller than the desired p so that observations
with posterior probabilities within rounding error of p are classified. For example, you can spec-
ify threshold=%sysevalf(0.5 - 1e-8) instead of THRESHOLD=0.5 so that observations with
posterior probabilities within 1E–8 of 0.5 and larger are classified.

TSSCP
displays the total-sample corrected SSCP matrix.

WCORR
displays within-class correlations for each class level.

WCOV
displays within-class covariances for each class level.

WSSCP
displays the within-class corrected SSCP matrix for each class level.

BY Statement
BY variables ;

You can specify a BY statement with PROC DISCRIM to obtain separate analyses of observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the DISCRIM procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.
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• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

If you specify the TESTDATA= option and the TESTDATA= data set does not contain any of the BY
variables, then the entire TESTDATA= data set is classified according to the discriminant functions computed
in each BY group in the DATA= data set.

If the TESTDATA= data set contains some but not all of the BY variables, or if some BY variables do not
have the same type or length in the TESTDATA= data set as in the DATA= data set, then PROC DISCRIM
displays an error message and stops.

If all BY variables appear in the TESTDATA= data set with the same type and length as in the DATA= data
set, then each BY group in the TESTDATA= data set is classified by the discriminant function from the
corresponding BY group in the DATA= data set. The BY groups in the TESTDATA= data set must be in the
same order as in the DATA= data set. If you specify the NOTSORTED option in the BY statement, there
must be exactly the same BY groups in the same order in both data sets. If you omit the NOTSORTED
option, some BY groups can appear in one data set but not in the other. If some BY groups appear in the
TESTDATA= data set but not in the DATA= data set, and you request an output test data set by using the
TESTOUT= or TESTOUTD= option, these BY groups are not included in the output data set.

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

CLASS Statement
CLASS variable ;

The values of the classification variable define the groups for analysis. Class levels are determined by the
formatted values of the CLASS variable. The specified variable can be numeric or character. A CLASS
statement is required.

FREQ Statement
FREQ variable ;

If a variable in the data set represents the frequency of occurrence for the other values in the observation,
include the variable’s name in a FREQ statement. The procedure then treats the data set as if each observation
appears n times, where n is the value of the FREQ variable for the observation. The total number of
observations is considered to be equal to the sum of the FREQ variable when the procedure determines
degrees of freedom for significance probabilities.

If the value of the FREQ variable is missing or is less than one, the observation is not used in the analysis. If
the value is not an integer, it is truncated to an integer.

ID Statement
ID variable ;
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The ID statement is effective only when you specify the LIST or LISTERR option in the PROC DISCRIM
statement. When the DISCRIM procedure displays the classification results, the ID variable (rather than the
observation number) is displayed for each observation.

PRIORS Statement
PRIORS EQUAL ;

PRIORS PROPORTIONAL | PROP ;

PRIORS probabilities ;

The PRIORS statement specifies the prior probabilities of group membership. To set the prior probabilities
equal, use the following statement:

priors equal;

To set the prior probabilities proportional to the sample sizes, use the following statement:

priors proportional;

For other than equal or proportional priors, specify the prior probability for each level of the classification
variable. Each class level can be written as either a SAS name or a quoted string, and it must be followed
by an equal sign and a numeric constant between zero and one. A SAS name begins with a letter or an
underscore and can contain digits as well. Lowercase character values and data values with leading blanks
must be enclosed in quotes. For example, to define prior probabilities for each level of Grade, where Grade’s
values are A, B, C, and D, the PRIORS statement can be specified as follows:

priors A=0.1 B=0.3 C=0.5 D=0.1;

If Grade’s values are ’a’, ’b’, ’c’, and ’d’, each class level must be written as a quoted string as follows:

priors 'a'=0.1 'b'=0.3 'c'=0.5 'd'=0.1;

If Grade is numeric, with formatted values of ’1’, ’2’, and ’3’, the PRIORS statement can be written as
follows:

priors '1'=0.3 '2'=0.6 '3'=0.1;

The specified class levels must exactly match the formatted values of the CLASS variable. For example, if a
CLASS variable C has the format 4.2 and a value 5, the PRIORS statement must specify ’5.00’, not ’5.0’ or
’5’. If the prior probabilities do not sum to one, these probabilities are scaled proportionally to have the sum
equal to one. The default is PRIORS EQUAL.

TESTCLASS Statement
TESTCLASS variable ;

The TESTCLASS statement names the variable in the TESTDATA= data set that is used to determine whether
an observation in the TESTDATA= data set is misclassified. The TESTCLASS variable should have the
same type (character or numeric) and length as the variable given in the CLASS statement. PROC DISCRIM
considers an observation misclassified when the formatted value of the TESTCLASS variable does not match
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the group into which the TESTDATA= observation is classified. When the TESTCLASS statement is missing
and the TESTDATA= data set contains the variable given in the CLASS statement, the CLASS variable is
used as the TESTCLASS variable. Note that if the CLASS variable is not present in the TESTDATA= data
set, the output will not include misclassification statistics.

TESTFREQ Statement
TESTFREQ variable ;

If a variable in the TESTDATA= data set represents the frequency of occurrence of the other values in the
observation, include the variable’s name in a TESTFREQ statement. The procedure then treats the data set as
if each observation appears n times, where n is the value of the TESTFREQ variable for the observation.

If the value of the TESTFREQ variable is missing or is less than one, the observation is not used in the
analysis. If the value is not an integer, it is truncated to an integer.

TESTID Statement
TESTID variable ;

The TESTID statement is effective only when you specify the TESTLIST or TESTLISTERR option in
the PROC DISCRIM statement. When the DISCRIM procedure displays the classification results for the
TESTDATA= data set, the TESTID variable (rather than the observation number) is displayed for each
observation. The variable given in the TESTID statement must be in the TESTDATA= data set.

VAR Statement
VAR variables ;

The VAR statement specifies the quantitative variables to be included in the analysis. The default is all
numeric variables not listed in other statements.

WEIGHT Statement
WEIGHT variable ;

To use relative weights for each observation in the input data set, place the weights in a variable in the data
set and specify the name in a WEIGHT statement. This is often done when the variance associated with
each observation is different and the values of the weight variable are proportional to the reciprocals of the
variances. If the value of the WEIGHT variable is missing or is less than zero, then a value of zero for the
weight is used.

The WEIGHT and FREQ statements have a similar effect except that the WEIGHT statement does not alter
the degrees of freedom.
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Details: DISCRIM Procedure

Missing Values
Observations with missing values for variables in the analysis are excluded from the development of the
classification criterion. When the values of the classification variable are missing, the observation is excluded
from the development of the classification criterion, but if no other variables in the analysis have missing
values for that observation, the observation is classified and displayed with the classification results.

Background
The following notation is used to describe the classification methods:

x a p-dimensional vector containing the quantitative variables of an observation

Sp the pooled covariance matrix

t a subscript to distinguish the groups

nt the number of training set observations in group t

mt the p-dimensional vector containing variable means in group t

St the covariance matrix within group t

jSt j the determinant of St
qt the prior probability of membership in group t

p.t jx/ the posterior probability of an observation x belonging to group t

ft the probability density function for group t

ft .x/ the group-specific density estimate at x from group t

f .x/
P
t qtft .x/, the estimated unconditional density at x

et the classification error rate for group t

Bayes’ Theorem

Assuming that the prior probabilities of group membership are known and that the group-specific densities at
x can be estimated, PROC DISCRIM computes p.t jx/, the probability of x belonging to group t, by applying
Bayes’ theorem:

p.t jx/ D
qtft .x/
f .x/

PROC DISCRIM partitions a p-dimensional vector space into regionsRt , where the regionRt is the subspace
containing all p-dimensional vectors y such that p.t jy/ is the largest among all groups. An observation is
classified as coming from group t if it lies in region Rt .
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Parametric Methods

Assuming that each group has a multivariate normal distribution, PROC DISCRIM develops a discriminant
function or classification criterion by using a measure of generalized squared distance. The classification
criterion is based on either the individual within-group covariance matrices or the pooled covariance matrix;
it also takes into account the prior probabilities of the classes. Each observation is placed in the class
from which it has the smallest generalized squared distance. PROC DISCRIM also computes the posterior
probability of an observation belonging to each class.

The squared Mahalanobis distance from x to group t is

d2t .x/ D .x �mt /0V�1t .x �mt /

where Vt D St if the within-group covariance matrices are used, or Vt D Sp if the pooled covariance matrix
is used.

The group-specific density estimate at x from group t is then given by

ft .x/ D .2�/�
p
2 jVt j�

1
2 exp

�
�0:5d2t .x/

�
Using Bayes’ theorem, the posterior probability of x belonging to group t is

p.t jx/ D
qtft .x/P
u qufu.x/

where the summation is over all groups.

The generalized squared distance from x to group t is defined as

D2t .x/ D d
2
t .x/C g1.t/C g2.t/

where

g1.t/ D

�
ln jSt j if the within-group covariance matrices are used
0 if the pooled covariance matrix is used

and

g2.t/ D

�
�2 ln.qt / if the prior probabilities are not all equal
0 if the prior probabilities are all equal

The posterior probability of x belonging to group t is then equal to

p.t jx/ D
exp

�
�0:5D2t .x/

�P
u exp

�
�0:5D2u.x/

�
The discriminant scores are �0:5D2u.x/. An observation is classified into group u if setting t = u produces
the largest value of p.t jx/ or the smallest value of D2t .x/. If this largest posterior probability is less than the
threshold specified, x is labeled as ’Other’.
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Nonparametric Methods

Nonparametric discriminant methods are based on nonparametric estimates of group-specific probability
densities. Either a kernel method or the k-nearest-neighbor method can be used to generate a nonparametric
density estimate in each group and to produce a classification criterion. The kernel method uses uniform,
normal, Epanechnikov, biweight, or triweight kernels in the density estimation.

Either Mahalanobis distance or Euclidean distance can be used to determine proximity. When the k-nearest-
neighbor method is used, the Mahalanobis distances are based on the pooled covariance matrix. When a
kernel method is used, the Mahalanobis distances are based on either the individual within-group covariance
matrices or the pooled covariance matrix. Either the full covariance matrix or the diagonal matrix of variances
can be used to calculate the Mahalanobis distances.

The squared distance between two observation vectors, x and y, in group t is given by

d2t .x; y/ D .x � y/0V�1t .x � y/

where Vt has one of the following forms:

Vt D

8̂̂̂̂
<̂
ˆ̂̂:

Sp the pooled covariance matrix
diag.Sp/ the diagonal matrix of the pooled covariance matrix
St the covariance matrix within group t
diag.St / the diagonal matrix of the covariance matrix within group t
I the identity matrix

The classification of an observation vector x is based on the estimated group-specific densities from the
training set. From these estimated densities, the posterior probabilities of group membership at x are evaluated.
An observation x is classified into group u if setting t D u produces the largest value of p.t jx/. If there is a
tie for the largest probability or if this largest probability is less than the threshold specified, x is labeled as
’Other’.

The kernel method uses a fixed radius, r, and a specified kernel, Kt , to estimate the group t density at each
observation vector x. Let z be a p-dimensional vector. Then the volume of a p-dimensional unit sphere
bounded by z0z D 1 is

v0 D
�
p
2

�
�p
2
C 1

�
where � represents the gamma function (see SAS Functions and CALL Routines: Reference).

Thus, in group t, the volume of a p-dimensional ellipsoid bounded by
fz j z0V�1t z D r2g is

vr.t/ D r
p
jVt j

1
2 v0

The kernel method uses one of the following densities as the kernel density in group t:

Uniform Kernel

Kt .z/ D

8<:
1

vr.t/
if z0V�1t z � r2

0 elsewhere
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Normal Kernel (with mean zero, variance r2Vt )

Kt .z/ D
1

c0.t/
exp

�
�
1

2r2
z0V�1t z

�
where c0.t/ D .2�/

p
2 rpjVt j

1
2 .

Epanechnikov Kernel

Kt .z/ D

8<: c1.t/

�
1 �

1

r2
z0V�1t z

�
if z0V�1t z � r2

0 elsewhere

where c1.t/ D
1

vr.t/

�
1C

p

2

�
.

Biweight Kernel

Kt .z/ D

8<: c2.t/

�
1 �

1

r2
z0V�1t z

�2
if z0V�1t z � r2

0 elsewhere

where c2.t/ D
�
1C

p

4

�
c1.t/.

Triweight Kernel

Kt .z/ D

8<: c3.t/

�
1 �

1

r2
z0V�1t z

�3
if z0V�1t z � r2

0 elsewhere

where c3.t/ D
�
1C

p

6

�
c2.t/.

The group t density at x is estimated by

ft .x/ D
1

nt

X
y
Kt .x � y/

where the summation is over all observations y in group t, and Kt is the specified kernel function. The
posterior probability of membership in group t is then given by

p.t jx/ D
qtft .x/
f .x/

where f .x/ D
P
u qufu.x/ is the estimated unconditional density. If f .x/ is zero, the observation x is

labeled as ’Other’.
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The uniform-kernel method treatsKt .z/ as a multivariate uniform function with density uniformly distributed
over z0V�1t z � r2. Let kt be the number of training set observations y from group t within the closed
ellipsoid centered at x specified by d2t .x; y/ � r

2. Then the group t density at x is estimated by

ft .x/ D
kt

ntvr.t/

When the identity matrix or the pooled within-group covariance matrix is used in calculating the squared
distance, vr.t/ is a constant, independent of group membership. The posterior probability of x belonging to
group t is then given by

p.t jx/ D
qtkt
ntP
u
quku
nu

If the closed ellipsoid centered at x does not include any training set observations, f .x/ is zero and x is labeled
as ’Other’. When the prior probabilities are equal, p.t jx/ is proportional to kt=nt and x is classified into the
group that has the highest proportion of observations in the closed ellipsoid. When the prior probabilities
are proportional to the group sizes, p.t jx/ D kt=

P
u ku, x is classified into the group that has the largest

number of observations in the closed ellipsoid.

The nearest-neighbor method fixes the number, k, of training set points for each observation x. The method
finds the radius rk.x/ that is the distance from x to the kth-nearest training set point in the metric V�1t .
Consider a closed ellipsoid centered at x bounded by fz j .z� x/0V�1t .z� x/ D r2

k
.x/g; the nearest-neighbor

method is equivalent to the uniform-kernel method with a location-dependent radius rk.x/. Note that, with
ties, more than k training set points might be in the ellipsoid.

Using the k-nearest-neighbor rule, the kn (or more with ties) smallest distances are saved. Of these k distances,
let kt represent the number of distances that are associated with group t. Then, as in the uniform-kernel
method, the estimated group t density at x is

ft .x/ D
kt

ntvk.x/

where vk.x/ is the volume of the ellipsoid bounded by fz j .z � x/0V�1t .z � x/ D r2
k
.x/g. Since the pooled

within-group covariance matrix is used to calculate the distances used in the nearest-neighbor method, the
volume vk.x/ is a constant independent of group membership. When k = 1 is used in the nearest-neighbor
rule, x is classified into the group associated with the y point that yields the smallest squared distance
d2t .x; y/. Prior probabilities affect nearest-neighbor results in the same way that they affect uniform-kernel
results.

With a specified squared distance formula (METRIC=, POOL=), the values of r and k determine the degree
of irregularity in the estimate of the density function, and they are called smoothing parameters. Small values
of r or k produce jagged density estimates, and large values of r or k produce smoother density estimates.
Various methods for choosing the smoothing parameters have been suggested, and there is as yet no simple
solution to this problem.

For a fixed kernel shape, one way to choose the smoothing parameter r is to plot estimated densities with
different values of r and to choose the estimate that is most in accordance with the prior information about
the density. For many applications, this approach is satisfactory.

Another way of selecting the smoothing parameter r is to choose a value that optimizes a given criterion.
Different groups might have different sets of optimal values. Assume that the unknown density has bounded
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and continuous second derivatives and that the kernel is a symmetric probability density function. One
criterion is to minimize an approximate mean integrated square error of the estimated density (Rosenblatt
1956). The resulting optimal value of r depends on the density function and the kernel. A reasonable choice
for the smoothing parameter r is to optimize the criterion with the assumption that group t has a normal
distribution with covariance matrix Vt . Then, in group t, the resulting optimal value for r is given by�

A.Kt /

nt

�1=.pC4/
where the optimal constant A.Kt / depends on the kernel Kt (Epanechnikov 1969). For some useful kernels,
the constants A.Kt / are given by the following:

A.Kt / D
1

p
2pC1.p C 2/�

�p
2

�
with a uniform kernel

A.Kt / D
4

2p C 1
with a normal kernel

A.Kt / D
2pC2p2.p C 2/.p C 4/

2p C 1
�
�p
2

�
with an Epanechnikov kernel

These selections ofA.Kt / are derived under the assumption that the data in each group are from a multivariate
normal distribution with covariance matrix Vt . However, when the Euclidean distances are used in calculating
the squared distance .Vt D I /, the smoothing constant should be multiplied by s, where s is an estimate of
standard deviations for all variables. A reasonable choice for s is

s D

�
1

p

X
sjj

� 1
2

where sjj are group t marginal variances.

The DISCRIM procedure uses only a single smoothing parameter for all groups. However, the selection
of the matrix in the distance formula (from the METRIC= or POOL= option), enables individual groups
and variables to have different scalings. When Vt , the matrix used in calculating the squared distances, is
an identity matrix, the kernel estimate at each data point is scaled equally for all variables in all groups.
When Vt is the diagonal matrix of a covariance matrix, each variable in group t is scaled separately by its
variance in the kernel estimation, where the variance can be the pooled variance .Vt D Sp/ or an individual
within-group variance .Vt D St /. When Vt is a full covariance matrix, the variables in group t are scaled
simultaneously by Vt in the kernel estimation.

In nearest-neighbor methods, the choice of k is usually relatively uncritical (Hand 1982). A practical approach
is to try several different values of the smoothing parameters within the context of the particular application
and to choose the one that gives the best cross validated estimate of the error rate.

Classification Error-Rate Estimates

A classification criterion can be evaluated by its performance in the classification of future observations.
PROC DISCRIM uses two types of error-rate estimates to evaluate the derived classification criterion based
on parameters estimated by the training sample:

• error-count estimates

• posterior probability error-rate estimates
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The error-count estimate is calculated by applying the classification criterion derived from the training sample
to a test set and then counting the number of misclassified observations. The group-specific error-count
estimate is the proportion of misclassified observations in the group. When the test set is independent of the
training sample, the estimate is unbiased. However, the estimate can have a large variance, especially if the
test set is small.

When the input data set is an ordinary SAS data set and no independent test sets are available, the same data
set can be used both to define and to evaluate the classification criterion. The resulting error-count estimate
has an optimistic bias and is called an apparent error rate. To reduce the bias, you can split the data into two
sets—one set for deriving the discriminant function and the other set for estimating the error rate. Such a
split-sample method has the unfortunate effect of reducing the effective sample size.

Another way to reduce bias is cross validation (Lachenbruch and Mickey 1968). Cross validation treats n – 1
out of n training observations as a training set. It determines the discriminant functions based on these n – 1
observations and then applies them to classify the one observation left out. This is done for each of the n
training observations. The misclassification rate for each group is the proportion of sample observations in
that group that are misclassified. This method achieves a nearly unbiased estimate but with a relatively large
variance.

To reduce the variance in an error-count estimate, smoothed error-rate estimates are suggested (Glick 1978).
Instead of summing terms that are either zero or one as in the error-count estimator, the smoothed estimator
uses a continuum of values between zero and one in the terms that are summed. The resulting estimator has a
smaller variance than the error-count estimate. The posterior probability error-rate estimates provided by
the POSTERR option in the PROC DISCRIM statement (see the section “Posterior Probability Error-Rate
Estimates” on page 2182) are smoothed error-rate estimates. The posterior probability estimates for each
group are based on the posterior probabilities of the observations classified into that same group. The
posterior probability estimates provide good estimates of the error rate when the posterior probabilities are
accurate. When a parametric classification criterion (linear or quadratic discriminant function) is derived from
a nonnormal population, the resulting posterior probability error-rate estimators might not be appropriate.

The overall error rate is estimated through a weighted average of the individual group-specific error-rate
estimates, where the prior probabilities are used as the weights.

To reduce both the bias and the variance of the estimator, Hora and Wilcox (1982) compute the posterior
probability estimates based on cross validation. The resulting estimates are intended to have both low variance
from using the posterior probability estimate and low bias from cross validation. They use Monte Carlo
studies on two-group multivariate normal distributions to compare the cross validation posterior probability
estimates with three other estimators: the apparent error rate, cross validation estimator, and posterior
probability estimator. They conclude that the cross validation posterior probability estimator has a lower
mean squared error in their simulations.

Quasi-inverse

Consider the plot shown in Figure 35.6 with two variables, X1 and X2, and two classes, A and B. The within-
class covariance matrix is diagonal, with a positive value for X1 but zero for X2. Using a Moore-Penrose
pseudo-inverse would effectively ignore X2 in doing the classification, and the two classes would have a
zero generalized distance and could not be discriminated at all. The quasi inverse used by PROC DISCRIM
replaces the zero variance for X2 with a small positive number to remove the singularity. This permits X2 to
be used in the discrimination and results correctly in a large generalized distance between the two classes
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and a zero error rate. It also permits new observations, such as the one indicated by N, to be classified in
a reasonable way. PROC CANDISC also uses a quasi inverse when the total-sample covariance matrix is
considered to be singular and Mahalanobis distances are requested. This problem with singular within-class
covariance matrices is discussed in Ripley (1996, p. 38). The use of the quasi inverse is an innovation
introduced by SAS.

Figure 35.6 Plot of Data with Singular Within-Class Covariance Matrix

Let S be a singular covariance matrix. The matrix S can be either a within-group covariance matrix, a
pooled covariance matrix, or a total-sample covariance matrix. Let v be the number of variables in the VAR
statement, and let the nullity n be the number of variables among them with (partial) R square exceeding
1 – p. If the determinant of S (Testing of Homogeneity of Within Covariance Matrices) or the inverse of S
(Squared Distances and Generalized Squared Distances) is required, a quasi determinant or quasi inverse is
used instead. With raw data input, PROC DISCRIM scales each variable to unit total-sample variance before
calculating this quasi inverse. The calculation is based on the spectral decomposition S D �ƒ� 0, where ƒ is
a diagonal matrix of eigenvalues �j , j D 1; : : : ; v, where �i � �j when i < j , and � is a matrix with the
corresponding orthonormal eigenvectors of S as columns. When the nullity n is less than v, set �0j D �j for
j D 1; : : : ; v � n, and �0j D p N� for j D v � nC 1; : : : ; v, where

N� D
1

v � n

v�nX
kD1

�k
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When the nullity n is equal to v, set �0j D p, for j D 1; : : : ; v. A quasi determinant is then defined as the
product of �0j , j D 1; : : : ; v. Similarly, a quasi inverse is then defined as S� D �ƒ�� 0, where ƒ� is a
diagonal matrix of values 1=�0j ; j D 1; : : : ; v.

Posterior Probability Error-Rate Estimates
The posterior probability error-rate estimates (Fukunaga and Kessel 1973; Glick 1978; Hora and Wilcox
1982) for each group are based on the posterior probabilities of the observations classified into that same
group.

A sample of observations with classification results can be used to estimate the posterior error rates. The
following notation is used to describe the sample:

S the set of observations in the (training) sample

n the number of observations in S
nt the number of observations in S in group t

Rt the set of observations such that the posterior probability belonging to group t is the largest

Rut the set of observations from group u such that the posterior probability belonging to group t is the
largest

The classification error rate for group t is defined as

et D 1 �

Z
Rt
ft .x/dx

The posterior probability of x for group t can be written as

p.t jx/ D
qtft .x/
f .x/

where f .x/ D
P
u qufu.x/ is the unconditional density of x.

Thus, if you replace ft .x/ with p.t jx/f .x/=qt , the error rate is

et D 1 �
1

qt

Z
Rt
p.t jx/f .x/dx

An estimator of et , unstratified over the groups from which the observations come, is then given by

Oet (unstratified) D 1 �
1

nqt

X
Rt

p.t jx/

where p.t jx/ is estimated from the classification criterion, and the summation is over all sample observations
of S classified into group t. The true group membership of each observation is not required in the estimation.
The term nqt is the number of observations that are expected to be classified into group t, given the priors. If
more observations than expected are classified into group t, then Oet can be negative.

Further, if you replace f .x/ with
P
u qufu.x/, the error rate can be written as

et D 1 �
1

qt

X
u

qu

Z
Rut

p.t jx/fu.x/dx
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and an estimator stratified over the group from which the observations come is given by

Oet (stratified) D 1 �
1

qt

X
u

qu
1

nu

0@X
Rut

p.t jx/

1A
The inner summation is over all sample observations of S coming from group u and classified into group t, and
nu is the number of observations originally from group u. The stratified estimate uses only the observations
with known group membership. When the prior probabilities of the group membership are proportional to
the group sizes, the stratified estimate is the same as the unstratified estimator.

The estimated group-specific error rates can be less than zero, usually due to a large discrepancy between
prior probabilities of group membership and group sizes. To have a reliable estimate for group-specific
error rate estimates, you should use group sizes that are at least approximately proportional to the prior
probabilities of group membership.

A total error rate is defined as a weighted average of the individual group error rates

e D
X
t

qtet

and can be estimated from

Oe (unstratified) D
X
t

qt Oet (unstratified)

or

Oe (stratified) D
X
t

qt Oet (stratified)

The total unstratified error-rate estimate can also be written as

Oe (unstratified) D 1 �
1

n

X
t

X
Rt

p.t jx/

which is one minus the average value of the maximum posterior probabilities for each observation in the
sample. The prior probabilities of group membership do not appear explicitly in this overall estimate.

Saving and Using Calibration Information
When you specify METHOD=NORMAL to derive a linear or quadratic discriminant function, you can save
the calibration information developed by the DISCRIM procedure in a SAS data set by using the OUTSTAT=
option in the procedure. PROC DISCRIM then creates a specially structured SAS data set of TYPE=LINEAR,
TYPE=QUAD, or TYPE=MIXED that contains the calibration information. For more information about
these data sets, see Appendix A, “Special SAS Data Sets.” Calibration information cannot be saved when
METHOD=NPAR, but you can classify a TESTDATA= data set in the same step. For an example of this, see
Example 35.1.

To use this calibration information to classify observations in another data set, specify both of the following:

• the name of the calibration data set after the DATA= option in the PROC DISCRIM statement

• the name of the data set to be classified after the TESTDATA= option in the PROC DISCRIM statement
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Here is an example:

data original;
input position x1 x2;
datalines;

...[data lines]
;

proc discrim outstat=info;
class position;

run;

data check;
input position x1 x2;
datalines;

...[second set of data lines]
;

proc discrim data=info testdata=check testlist;
class position;

run;

The first DATA step creates the SAS data set Original, which the DISCRIM procedure uses to develop a
classification criterion. Specifying OUTSTAT=INFO in the PROC DISCRIM statement causes the DISCRIM
procedure to store the calibration information in a new data set called Info. The next DATA step creates the
data set Check. The second PROC DISCRIM statement specifies DATA=INFO and TESTDATA=CHECK so
that the classification criterion developed earlier is applied to the Check data set. Note that if the CLASS
variable is not present in the TESTDATA= data set, the output will not include misclassification statistics.

Input Data Sets

DATA= Data Set

When you specify METHOD=NPAR, an ordinary SAS data set is required as the input DATA= data set.
When you specify METHOD=NORMAL, the DATA= data set can be an ordinary SAS data set or one of
several specially structured data sets created by SAS/STAT procedures. These specially structured data sets
include the following:

• TYPE=CORR data sets created by PROC CORR by using a BY statement

• TYPE=COV data sets created by PROC PRINCOMP by using both the COV option and a BY statement

• TYPE=CSSCP data sets created by PROC CORR by using the CSSCP option and a BY statement,
where the OUT= data set is assigned TYPE=CSSCP with the TYPE= data set option

• TYPE=SSCP data sets created by PROC REG by using both the OUTSSCP= option and a BY statement

• TYPE=LINEAR, TYPE=QUAD, and TYPE=MIXED data sets produced by previous runs of PROC
DISCRIM that used both METHOD=NORMAL and OUTSTAT= options
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When the input data set is TYPE=CORR, TYPE=COV, TYPE=CSSCP, or TYPE=SSCP, the BY variable in
these data sets becomes the CLASS variable in the DISCRIM procedure.

When the input data set is TYPE=CORR, TYPE=COV, or TYPE=CSSCP, then PROC DISCRIM reads
the number of observations for each class from the observations with _TYPE_=’N’ and reads the variable
means in each class from the observations with _TYPE_=’MEAN’. Then PROC DISCRIM reads the within-
class correlations from the observations with _TYPE_=’CORR’ and reads the standard deviations from
the observations with _TYPE_=’STD’ (data set TYPE=CORR), the within-class covariances from the
observations with _TYPE_=’COV’ (data set TYPE=COV), or the within-class corrected sums of squares and
crossproducts from the observations with _TYPE_=’CSSCP’ (data set TYPE=CSSCP).

When you specify POOL=YES and the data set does not include any observations with _TYPE_=’CSSCP’
(data set TYPE=CSSCP), _TYPE_=’COV’ (data set TYPE=COV), or _TYPE_=’CORR’ (data set
TYPE=CORR) for each class, PROC DISCRIM reads the pooled within-class information from the data
set. In this case, PROC DISCRIM reads the pooled within-class covariances from the observations with
_TYPE_=’PCOV’ (data set TYPE=COV) or reads the pooled within-class correlations from the observa-
tions with _TYPE_=’PCORR’ and the pooled within-class standard deviations from the observations with
_TYPE_=’PSTD’ (data set TYPE=CORR) or the pooled within-class corrected SSCP matrix from the
observations with _TYPE_=’PSSCP’ (data set TYPE=CSSCP).

When the input data set is TYPE=SSCP, the DISCRIM procedure reads the number of observations for
each class from the observations with _TYPE_=’N’, the sum of weights of observations for each class from
the variable INTERCEP in observations with _TYPE_=’SSCP’ and _NAME_=’INTERCEPT’, the variable
sums from the analysis variables in observations with _TYPE_=’SSCP’ and _NAME_=’INTERCEPT’,
and the uncorrected sums of squares and crossproducts from the analysis variables in observations with
_TYPE_=’SSCP’ and _NAME_=’variablenames’.

When the input data set is TYPE=LINEAR, TYPE=QUAD, or TYPE=MIXED, then PROC DISCRIM reads
the prior probabilities for each class from the observations with variable _TYPE_=’PRIOR’.

When the input data set is TYPE=LINEAR, then PROC DISCRIM reads the coefficients of the linear
discriminant functions from the observations with variable _TYPE_=’LINEAR’.

When the input data set is TYPE=QUAD, then PROC DISCRIM reads the coefficients of the quadratic
discriminant functions from the observations with variable _TYPE_=’QUAD’.

When the input data set is TYPE=MIXED, then PROC DISCRIM reads the coefficients of the linear
discriminant functions from the observations with variable _TYPE_=’LINEAR’. If there are no observations
with _TYPE_=’LINEAR’, then PROC DISCRIM reads the coefficients of the quadratic discriminant functions
from the observations with variable _TYPE_=’QUAD’.

TESTDATA= Data Set

The TESTDATA= data set is an ordinary SAS data set with observations that are to be classified. The
quantitative variable names in this data set must match those in the DATA= data set. The TESTCLASS
statement can be used to specify the variable containing group membership information of the TESTDATA=
data set observations. When the TESTCLASS statement is missing and the TESTDATA= data set contains the
variable given in the CLASS statement, this variable is used as the TESTCLASS variable. The TESTCLASS
variable should have the same type (character or numeric) and length as the variable given in the CLASS
statement. PROC DISCRIM considers an observation misclassified when the value of the TESTCLASS
variable does not match the group into which the TESTDATA= observation is classified.
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Output Data Sets
When an output data set includes variables containing the posterior probabilities of group membership (OUT=,
OUTCROSS=, or TESTOUT= data sets) or group-specific density estimates (OUTD= or TESTOUTD= data
sets), the names of these variables are constructed from the formatted values of the class levels converted to
valid SAS variable names.

OUT= Data Set

The OUT= data set contains all the variables in the DATA= data set, plus new variables containing the
posterior probabilities and the resubstitution classification results. The names of the new variables containing
the posterior probabilities are constructed from the formatted values of the class levels converted to SAS
names. A new variable, _INTO_, with the same attributes as the CLASS variable, specifies the class to which
each observation is assigned. If an observation is labeled as ’Other’, the variable _INTO_ has a missing value.
When you specify the CANONICAL option, the data set also contains new variables with canonical variable
scores. The NCAN= option determines the number of canonical variables. The names of the canonical
variables are constructed as described in the CANPREFIX= option. The canonical variables have means
equal to zero and pooled within-class variances equal to one.

An OUT= data set cannot be created if the DATA= data set is not an ordinary SAS data set.

OUTD= Data Set

The OUTD= data set contains all the variables in the DATA= data set, plus new variables containing the
group-specific density estimates. The names of the new variables containing the density estimates are
constructed from the formatted values of the class levels.

An OUTD= data set cannot be created if the DATA= data set is not an ordinary SAS data set.

OUTCROSS= Data Set

The OUTCROSS= data set contains all the variables in the DATA= data set, plus new variables containing
the posterior probabilities and the classification results of cross validation. The names of the new variables
containing the posterior probabilities are constructed from the formatted values of the class levels. A
new variable, _INTO_, with the same attributes as the CLASS variable, specifies the class to which each
observation is assigned. When an observation is labeled as ’Other’, the variable _INTO_ has a missing
value. When you specify the CANONICAL option, the data set also contains new variables with canonical
variable scores. The NCAN= option determines the number of new variables. The names of the new variables
are constructed as described in the CANPREFIX= option. The new variables have mean zero and pooled
within-class variance equal to one.

An OUTCROSS= data set cannot be created if the DATA= data set is not an ordinary SAS data set.
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TESTOUT= Data Set

The TESTOUT= data set contains all the variables in the TESTDATA= data set, plus new variables containing
the posterior probabilities and the classification results. The names of the new variables containing the
posterior probabilities are formed from the formatted values of the class levels. A new variable, _INTO_,
with the same attributes as the CLASS variable, gives the class to which each observation is assigned.
If an observation is labeled as ’Other’, the variable _INTO_ has a missing value. When you specify the
CANONICAL option, the data set also contains new variables with canonical variable scores. The NCAN=
option determines the number of new variables. The names of the new variables are formed as described in
the CANPREFIX= option.

TESTOUTD= Data Set

The TESTOUTD= data set contains all the variables in the TESTDATA= data set, plus new variables
containing the group-specific density estimates. The names of the new variables containing the density
estimates are formed from the formatted values of the class levels.

OUTSTAT= Data Set

The OUTSTAT= data set is similar to the TYPE=CORR data set produced by the CORR procedure. The data
set contains various statistics such as means, standard deviations, and correlations. For an example of an
OUTSTAT= data set, see Example 35.3. When you specify the CANONICAL option, canonical correlations,
canonical structures, canonical coefficients, and means of canonical variables for each class are included in
the data set.

If you specify METHOD=NORMAL, the output data set also includes coefficients of the discriminant
functions, and the data set is TYPE=LINEAR (POOL=YES), TYPE=QUAD (POOL=NO), or TYPE=MIXED
(POOL=TEST). If you specify METHOD=NPAR, this output data set is TYPE=CORR.

The OUTSTAT= data set contains the following variables:

• the BY variables, if any

• the CLASS variable

• _TYPE_, a character variable of length 8 that identifies the type of statistic

• _NAME_, a character variable of length 32 that identifies the row of the matrix, the name of the
canonical variable, or the type of the discriminant function coefficients

• the quantitative variables—that is, those in the VAR statement, or, if there is no VAR statement, all
numeric variables not listed in any other statement
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The observations, as identified by the variable _TYPE_, have the following values:

_TYPE_ Contents

N number of observations both for the total sample (CLASS variable missing) and within
each class (CLASS variable present)

SUMWGT sum of weights both for the total sample (CLASS variable missing) and within each class
(CLASS variable present), if a WEIGHT statement is specified

MEAN means both for the total sample (CLASS variable missing) and within each class (CLASS
variable present)

PRIOR prior probability for each class

STDMEAN total-standardized class means

PSTDMEAN pooled within-class standardized class means

STD standard deviations both for the total sample (CLASS variable missing) and within each
class (CLASS variable present)

PSTD pooled within-class standard deviations

BSTD between-class standard deviations

RSQUARED univariate R squares

LNDETERM the natural log of the determinant or the natural log of the quasi determinant of the within-
class covariance matrix either pooled (CLASS variable missing) or not pooled (CLASS
variable present)

The following kinds of observations are identified by the combination of the variables _TYPE_ and _NAME_.
When the _TYPE_ variable has one of the following values, the _NAME_ variable identifies the row of the
matrix:

_TYPE_ Contents

CSSCP corrected SSCP matrix both for the total sample (CLASS variable missing) and within
each class (CLASS variable present)

PSSCP pooled within-class corrected SSCP matrix

BSSCP between-class SSCP matrix

COV covariance matrix both for the total sample (CLASS variable missing) and within each
class (CLASS variable present)

PCOV pooled within-class covariance matrix

BCOV between-class covariance matrix

CORR correlation matrix both for the total sample (CLASS variable missing) and within each
class (CLASS variable present)

PCORR pooled within-class correlation matrix

BCORR between-class correlation matrix
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When you request canonical discriminant analysis, the _NAME_ variable identifies a canonical variable, and
_TYPE_ variable can have one of the following values:

_TYPE_ Contents

CANCORR canonical correlations

STRUCTUR canonical structure

BSTRUCT between canonical structure

PSTRUCT pooled within-class canonical structure

SCORE standardized canonical coefficients

RAWSCORE raw canonical coefficients

CANMEAN means of the canonical variables for each class

When you specify METHOD=NORMAL, the _NAME_ variable identifies different types of coefficients in
the discriminant function, and the _TYPE_ variable can have one of the following values:

_TYPE_ Contents

LINEAR coefficients of the linear discriminant functions

QUAD coefficients of the quadratic discriminant functions

The values of the _NAME_ variable are as follows:

_NAME_ Contents

variable names quadratic coefficients of the quadratic discriminant functions (a symmetric matrix for
each class)

_LINEAR_ linear coefficients of the discriminant functions

_CONST_ constant coefficients of the discriminant functions

Computational Resources
In the following discussion, let

n D number of observations in the training data set

v D number of variables

c D number of class levels

k D number of canonical variables

l D length of the CLASS variable
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Memory Requirements

The amount of temporary storage required depends on the discriminant method used and the options specified.
The least amount of temporary storage in bytes needed to process the data is approximately

c.32v C 3l C 128/C 8v2 C 104v C 4l

A parametric method (METHOD=NORMAL) requires an additional temporary memory of 12v2 C 100v
bytes. When you specify the CROSSVALIDATE option, this temporary storage must be increased by
4v2 C 44v bytes. When a nonparametric method (METHOD=NPAR) is used, an additional temporary
storage of 10v2 C 94v bytes is needed if you specify METRIC=FULL to evaluate the distances.

With the MANOVA option, the temporary storage must be increased by 8v2C 96v bytes. The CANONICAL
option requires a temporary storage of 2v2 C 94v C 8k.v C c/ bytes. The POSTERR option requires a
temporary storage of 8c2 C 64c C 96 bytes. Additional temporary storage is also required for classification
summary and for each output data set.

Consider the following statements:

proc discrim manova;
class gp;
var x1 x2 x3;

run;

If the CLASS variable gp has a length of 8 and the input data set contains two class levels, the procedure
requires a temporary storage of 1992 bytes. This includes 1104 bytes for processing data, 480 bytes for using
a parametric method, and 408 bytes for specifying the MANOVA option.

Time Requirements

The following factors determine the time requirements of discriminant analysis:

• The time needed for reading the data and computing covariance matrices is proportional to nv2. PROC
DISCRIM must also look up each class level in the list. This is faster if the data are sorted by the
CLASS variable. The time for looking up class levels is proportional to a value ranging from n to
n ln.c/.

• The time for inverting a covariance matrix is proportional to v3.

• With a parametric method, the time required to classify each observation is proportional to cv for
a linear discriminant function and cv2 for a quadratic discriminant function. When you specify
the CROSSVALIDATE option, the discriminant function is updated for each observation in the
classification. A substantial amount of time is required.

• With a nonparametric method, the data are stored in a tree structure (Friedman, Bentley, and Finkel
1977). The time required to organize the observations into the tree structure is proportional to nv ln.n/.
The time for performing each tree search is proportional to ln.n/. When you specify the normal
KERNEL= option, all observations in the training sample contribute to the density estimation and
more computer time is needed.

• The time required for the canonical discriminant analysis is proportional to v3.

Each of the preceding factors has a different machine-dependent constant of proportionality.
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Displayed Output
The displayed output from PROC DISCRIM includes the class level information table. For each level of the
classification variable, the following information is provided: the output data set variable name, frequency
sum, weight sum, proportion of the total sample, and prior probability.

The optional output from PROC DISCRIM includes the following:

• Within-class SSCP matrices for each group

• Pooled within-class SSCP matrix

• Between-class SSCP matrix

• Total-sample SSCP matrix

• Within-class covariance matrices, St , for each group

• Pooled within-class covariance matrix, Sp

• Between-class covariance matrix, equal to the between-class SSCP matrix divided by n.c � 1/=c,
where n is the number of observations and c is the number of classes

• Total-sample covariance matrix

• Within-class correlation coefficients and Pr > jr j to test the hypothesis that the within-class population
correlation coefficients are zero

• Pooled within-class correlation coefficients and Pr > jr j to test the hypothesis that the partial
population correlation coefficients are zero

• Between-class correlation coefficients and Pr > jr j to test the hypothesis that the between-class
population correlation coefficients are zero

• Total-sample correlation coefficients and Pr > jr j to test the hypothesis that the total population
correlation coefficients are zero

• Simple statistics, including N (the number of observations), sum, mean, variance, and standard
deviation both for the total sample and within each class

• Total-sample standardized class means, obtained by subtracting the grand mean from each class mean
and dividing by the total-sample standard deviation

• Pooled within-class standardized class means, obtained by subtracting the grand mean from each class
mean and dividing by the pooled within-class standard deviation

• Pairwise squared distances between groups

• Univariate test statistics, including total-sample standard deviations, pooled within-class standard
deviations, between-class standard deviations, R square, R2=.1 �R2/, F, and Pr > F (univariate F
values and probability levels for one-way analyses of variance)
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• Multivariate statistics and F approximations, including Wilks’ lambda, Pillai’s trace, Hotelling-Lawley
trace, and Roy’s greatest root with F approximations, numerator and denominator degrees of freedom
(Num DF and Den DF), and probability values .Pr > F /. Each of these four multivariate statistics
tests the hypothesis that the class means are equal in the population. See the section “Multivariate
Tests” on page 90 in Chapter 4, “Introduction to Regression Procedures,” for more information.

If you specify METHOD=NORMAL, the following three statistics are displayed:

• Covariance matrix information, including covariance matrix rank and natural log of determinant of
the covariance matrix for each group (POOL=TEST, POOL=NO) and for the pooled within-group
(POOL=TEST, POOL=YES)

• Optionally, test of homogeneity of within covariance matrices (the results of a chi-square test of
homogeneity of the within-group covariance matrices) (Morrison 1976; Kendall, Stuart, and Ord 1983;
Anderson 1984)

• Pairwise generalized squared distances between groups

If the CANONICAL option is specified, the displayed output contains these statistics:

• Canonical correlations

• Adjusted canonical correlations (Lawley 1959). These are asymptotically less biased than the raw
correlations and can be negative. The adjusted canonical correlations might not be computable and are
displayed as missing values if two canonical correlations are nearly equal or if some are close to zero.
A missing value is also displayed if an adjusted canonical correlation is larger than a previous adjusted
canonical correlation.

• Approximate standard error of the canonical correlations

• Squared canonical correlations

• Eigenvalues of E�1H. Each eigenvalue is equal to �2=.1� �2/, where �2 is the corresponding squared
canonical correlation and can be interpreted as the ratio of between-class variation to within-class
variation for the corresponding canonical variable. The table includes eigenvalues, differences between
successive eigenvalues, proportion of the sum of the eigenvalues, and cumulative proportion.

• Likelihood ratio for the hypothesis that the current canonical correlation and all smaller ones are zero
in the population. The likelihood ratio for all canonical correlations equals Wilks’ lambda.

• Approximate F statistic based on Rao’s approximation to the distribution of the likelihood ratio (Rao
1973, p. 556; Kshirsagar 1972, p. 326)

• Numerator degrees of freedom (Num DF), denominator degrees of freedom (Den DF), and Pr > F ,
the probability level associated with the F statistic
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The following statistic concerns the classification criterion:

• the linear discriminant function, but only if you specify METHOD=NORMAL and the pooled covari-
ance matrix is used to calculate the (generalized) squared distances

When the input DATA= data set is an ordinary SAS data set, the displayed output includes the following:

• Optionally, the resubstitution results including the observation number (if an ID statement is included,
the values of the ID variable are displayed instead of the observation number), the actual group for the
observation, the group into which the developed criterion would classify it, and the posterior probability
of membership in each group

• Resubstitution summary, a summary of the performance of the classification criterion based on
resubstitution classification results

• Error count estimate of the resubstitution classification results

• Optionally, posterior probability error rate estimates of the resubstitution classification results

If you specify the CROSSVALIDATE option, the displayed output contains these statistics:

• Optionally, the cross validation results including the observation number (if an ID statement is included,
the values of the ID variable are displayed instead of the observation number), the actual group for the
observation, the group into which the developed criterion would classify it, and the posterior probability
of membership in each group

• Cross validation summary, a summary of the performance of the classification criterion based on cross
validation classification results

• Error count estimate of the cross validation classification results

• Optionally, posterior probability error rate estimates of the cross validation classification results

If you specify the TESTDATA= option, the displayed output contains these statistics:

• Optionally, the classification results including the observation number (if a TESTID statement is
included, the values of the ID variable are displayed instead of the observation number), the actual
group for the observation (if a TESTCLASS statement is included), the group into which the developed
criterion would classify it, and the posterior probability of membership in each group

• Classification summary, a summary of the performance of the classification criterion

• Error count estimate of the test data classification results

• Optionally, posterior probability error rate estimates of the test data classification results
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Formulas

By default, PROC DISCRIM displays formulas such as the following in the LISTING destination:

2 _ _ -1 _ _
D (i|j) = (X - X )' DIAG(COV ) (X - X )

i j j i j

_ _ 2
| 1 1 | 2P + 3P - 1

RHO = 1.0 - | SUM ----- - --- | -------------
|_ N(i) N _| 6(P+1)(K-1)

2 _ -1 _
D (X) = (X-X )' COV (X-X ) + ln |COV | - 2 ln PRIOR
j j j j j j

These formulas are properly displayed only with uniform fonts. Formulas are not displayed by default
in destinations such as HTML, RTF, and PDF, because destinations other than LISTING typically use
proportional fonts. You can use the FORMULA option to display formulas in destinations other than
LISTING.

In the LISTING destination, formulas are displayed as notes. In other destinations, formulas are displayed
with batch capture (which provides uniform fonts). Therefore, the names that are used to select and exclude
formulas from the LISTING destination are different from the names that are used with other destinations.

By default, batch capture results are displayed in a box. You can remove the box and change the color and
font of the formulas as follows:

proc template;
define style styles.batch; parent=styles.htmlblue;

style fonts from fonts / "BatchFixedFont" =
("SAS Monospace, <monospace>, Courier, monospace", 2, bold);

style batch from batch / frame=void foreground=colors('notefg');
end;

run;

ods listing;
ods html style=batch body='dis.html';
ods rtf style=batch body='dis.rtf';
ods pdf style=batch body='dis.pdf';

proc discrim data=sashelp.iris formula;
class Species;
var Peta:;

run;

ods _all_ close;

The results of these steps are not displayed.
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ODS Table Names
PROC DISCRIM assigns a name to each table it creates. You can use these names to reference the table
when using the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed in Table 35.2. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

Table 35.2 ODS Tables Produced by PROC DISCRIM

ODS Table Name Description PROC DISCRIM Option

ANOVA Univariate statistics ANOVA
AvePostCrossVal Average posterior probabilities,

cross validation
POSTERR & CROSSVALIDATE

AvePostResub Average posterior probabilities,
resubstitution

POSTERR

AvePostTestClass Average posterior probabilities,
test classification

POSTERR & TEST=

AveRSquare Average R-square ANOVA
BCorr Between-class correlations BCORR
BCov Between-class covariances BCOV
BSSCP Between-class SSCP matrix BSSCP
BStruc Between canonical structure CANONICAL
CanCorr Canonical correlations CANONICAL
CanonicalMeans Class means on canonical

variables
CANONICAL

ChiSq Chi-square information POOL=TEST
ClassifiedCrossVal Number of observations and per-

cent classified, cross validation
CROSSVALIDATE

ClassifiedResub Number of observations and per-
cent classified, resubstitution

default

ClassifiedTestClass Number of observations and per-
cent classified, test classification

TEST=

Counts Number of observations,
variables, classes, df

default

CovDF DF for covariance matrices, not
displayed

any *COV option

Dist Squared distances DISTANCE
DistFValues F values based on squared

distances
DISTANCE

DistGeneralized Generalized squared distances default
DistProb Probabilities for F values from

squared distances
DISTANCE

ErrorCrossVal Error count estimates,
cross validation

CROSSVALIDATE

ErrorResub Error count estimates,
resubstitution

default

ErrorTestClass Error count estimates,
test classification

TEST=
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Table 35.2 continued

ODS Table Name Description PROC DISCRIM Option

Levels Class level information default
LinearDiscFunc Linear discriminant function POOL=YES
LogDet Log determinant of the

covariance matrix
default

MultStat MANOVA MANOVA
PCoef Pooled standard canonical

coefficients
CANONICAL

PCorr Pooled within-class correlations PCORR
PCov Pooled within-class covariances PCOV
PSSCP Pooled within-class SSCP matrix PSSCP
PStdMeans Pooled standardized class means STDMEAN
PStruc Pooled within canonical

structure
CANONICAL

PostCrossVal Posterior probabilities,
cross validation

CROSSLIST or CROSSLISTERR

PostErrCrossVal Posterior error estimates,
cross validation

POSTERR & CROSSVALIDATE

PostErrResub Posterior error estimates,
resubstitution

POSTERR

PostErrTestClass Posterior error estimates,
test classification

POSTERR & TEST=

PostResub Posterior probabilities,
resubstitution

LIST or LISTERR

PostTestClass Posterior probabilities,
test classification

TESTLIST or TESTLISTERR

RCoef Raw canonical coefficients CANONICAL
SimpleStatistics Simple statistics SIMPLE
TCoef Total-sample standard canonical

coefficients
CANONICAL

TCorr Total-sample correlations TCORR
TCov Total-sample covariances TCOV
TSSCP Total-sample SSCP matrix TSSCP
TStdMeans Total standardized class means STDMEAN
TStruc Total canonical structure CANONICAL
WCorr Within-class correlations WCORR
WCov Within-class covariances WCOV
WSSCP Within-class SSCP matrices WSSCP
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Examples: DISCRIM Procedure
The iris data published by Fisher (1936) are widely used for examples in discriminant analysis and cluster
analysis. The sepal length, sepal width, petal length, and petal width are measured in millimeters on 50 iris
specimens from each of three species: Iris setosa, I. versicolor, and I. virginica. The iris data set is available
from the Sashelp library.

Example 35.1: Univariate Density Estimates and Posterior Probabilities
In this example, several discriminant analyses are run with a single quantitative variable, petal width, so
that density estimates and posterior probabilities can be plotted easily. The example produces Output 35.1.1
through Output 35.1.5. ODS Graphics is used to display the sample distribution of petal width in the three
species. For general information about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.”
Note the overlap between the species I. versicolor and I. virginica that the bar chart shows. The following
statements produce Output 35.1.1:

title 'Discriminant Analysis of Fisher (1936) Iris Data';

proc freq data=sashelp.iris noprint;
tables petalwidth * species / out=freqout;

run;

proc sgplot data=freqout;
vbar petalwidth / response=count group=species;
keylegend / location=inside position=ne noborder across=1;

run;
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Output 35.1.1 Sample Distribution of Petal Width in Three Species

In order to plot the density estimates and posterior probabilities, a data set called plotdata is created containing
equally spaced values from –5 to 30, covering the range of petal width with a little to spare on each end. The
plotdata data set is used with the TESTDATA= option in PROC DISCRIM. The following statements make
the data set:

data plotdata;
do PetalWidth=-5 to 30 by 0.5;

output;
end;

run;

The same plots are produced after each discriminant analysis, so macros are used to reduce the amount of
typing required. The macros use two data sets. The data set plotd, containing density estimates, is created
by the TESTOUTD= option in PROC DISCRIM. The data set plotp, containing posterior probabilities, is
created by the TESTOUT= option. For each data set, the macros remove uninteresting values (near zero) and
create an overlay plot showing all three species in a single plot.
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The following statements create the macros:

%macro plotden;
title3 'Plot of Estimated Densities';

data plotd2;
set plotd;
if setosa < .002 then setosa = .;
if versicolor < .002 then versicolor = .;
if virginica < .002 then virginica = .;
g = 'Setosa '; Density = setosa; output;
g = 'Versicolor'; Density = versicolor; output;
g = 'Virginica '; Density = virginica; output;
label PetalWidth='Petal Width in mm.';

run;

proc sgplot data=plotd2;
series y=Density x=PetalWidth / group=g;
discretelegend;

run;
%mend;

%macro plotprob;
title3 'Plot of Posterior Probabilities';

data plotp2;
set plotp;
if setosa < .01 then setosa = .;
if versicolor < .01 then versicolor = .;
if virginica < .01 then virginica = .;
g = 'Setosa '; Probability = setosa; output;
g = 'Versicolor'; Probability = versicolor; output;
g = 'Virginica '; Probability = virginica; output;
label PetalWidth='Petal Width in mm.';

run;

proc sgplot data=plotp2;
series y=Probability x=PetalWidth / group=g;
discretelegend;

run;
%mend;

The first analysis uses normal-theory methods (METHOD=NORMAL) assuming equal variances
(POOL=YES) in the three classes. The NOCLASSIFY option suppresses the resubstitution classifica-
tion results of the input data set observations. The CROSSLISTERR option lists the observations that
are misclassified under cross validation and displays cross validation error-rate estimates. The following
statements produce Output 35.1.2:
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title2 'Using Normal Density Estimates with Equal Variance';

proc discrim data=sashelp.iris method=normal pool=yes
testdata=plotdata testout=plotp testoutd=plotd
short noclassify crosslisterr;

class Species;
var PetalWidth;

run;

%plotden;
%plotprob;

Output 35.1.2 Normal Density Estimates with Equal Variance

Discriminant Analysis of Fisher (1936) Iris Data
Using Normal Density Estimates with Equal Variance

The DISCRIM Procedure

Discriminant Analysis of Fisher (1936) Iris Data
Using Normal Density Estimates with Equal Variance

The DISCRIM Procedure

Total Sample Size 150 DF Total 149

Variables 1 DF Within Classes 147

Classes 3 DF Between Classes 2

Number of Observations Read 150

Number of Observations Used 150

Class Level Information

Species
Variable
Name Frequency Weight Proportion

Prior
Probability

Setosa Setosa 50 50.0000 0.333333 0.333333

Versicolor Versicolor 50 50.0000 0.333333 0.333333

Virginica Virginica 50 50.0000 0.333333 0.333333

Discriminant Analysis of Fisher (1936) Iris Data
Using Normal Density Estimates with Equal Variance

The DISCRIM Procedure
Classification Results for Calibration Data: SASHELP.IRIS

Cross-validation Results using Linear Discriminant Function

Discriminant Analysis of Fisher (1936) Iris Data
Using Normal Density Estimates with Equal Variance

The DISCRIM Procedure
Classification Results for Calibration Data: SASHELP.IRIS

Cross-validation Results using Linear Discriminant Function

Posterior Probability of Membership in Species

Obs
From
Species

Classified into
Species Setosa Versicolor Virginica

53 Versicolor Virginica * 0.0000 0.0952 0.9048

100 Versicolor Virginica * 0.0000 0.3828 0.6172

103 Virginica Versicolor * 0.0000 0.9610 0.0390

124 Virginica Versicolor * 0.0000 0.9940 0.0060

130 Virginica Versicolor * 0.0000 0.8009 0.1991

136 Virginica Versicolor * 0.0000 0.9610 0.0390

* Misclassified observation
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Output 35.1.2 continued

Discriminant Analysis of Fisher (1936) Iris Data
Using Normal Density Estimates with Equal Variance

The DISCRIM Procedure
Classification Summary for Calibration Data: SASHELP.IRIS

Cross-validation Summary using Linear Discriminant Function

Discriminant Analysis of Fisher (1936) Iris Data
Using Normal Density Estimates with Equal Variance

The DISCRIM Procedure
Classification Summary for Calibration Data: SASHELP.IRIS

Cross-validation Summary using Linear Discriminant Function

Number of Observations and Percent Classified
into Species

From
Species Setosa Versicolor Virginica Total

Setosa 50
100.00

0
0.00

0
0.00

50
100.00

Versicolor 0
0.00

48
96.00

2
4.00

50
100.00

Virginica 0
0.00

4
8.00

46
92.00

50
100.00

Total 50
33.33

52
34.67

48
32.00

150
100.00

Priors 0.33333 0.33333 0.33333

Error Count Estimates for Species

Setosa Versicolor Virginica Total

Rate 0.0000 0.0400 0.0800 0.0400

Priors 0.3333 0.3333 0.3333

Discriminant Analysis of Fisher (1936) Iris Data
Using Normal Density Estimates with Equal Variance

The DISCRIM Procedure
Classification Summary for Test Data: WORK.PLOTDATA

Classification Summary using Linear Discriminant Function

Discriminant Analysis of Fisher (1936) Iris Data
Using Normal Density Estimates with Equal Variance

The DISCRIM Procedure
Classification Summary for Test Data: WORK.PLOTDATA

Classification Summary using Linear Discriminant Function

Observation Profile for Test Data

Number of Observations Read 71

Number of Observations Used 71

Number of Observations and Percent
Classified into Species

Setosa Versicolor Virginica Total

Total 26
36.62

18
25.35

27
38.03

71
100.00

Priors 0.33333 0.33333 0.33333
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Output 35.1.2 continued



Example 35.1: Univariate Density Estimates and Posterior Probabilities F 2203

The next analysis uses normal-theory methods assuming unequal variances (POOL=NO) in the three classes.
The following statements produce Output 35.1.3:

title2 'Using Normal Density Estimates with Unequal Variance';

proc discrim data=sashelp.iris method=normal pool=no
testdata=plotdata testout=plotp testoutd=plotd
short noclassify crosslisterr;

class Species;
var PetalWidth;

run;

%plotden;
%plotprob;

Output 35.1.3 Normal Density Estimates with Unequal Variance

Discriminant Analysis of Fisher (1936) Iris Data
Using Normal Density Estimates with Unequal Variance

The DISCRIM Procedure

Discriminant Analysis of Fisher (1936) Iris Data
Using Normal Density Estimates with Unequal Variance

The DISCRIM Procedure

Total Sample Size 150 DF Total 149

Variables 1 DF Within Classes 147

Classes 3 DF Between Classes 2

Number of Observations Read 150

Number of Observations Used 150

Class Level Information

Species
Variable
Name Frequency Weight Proportion

Prior
Probability

Setosa Setosa 50 50.0000 0.333333 0.333333

Versicolor Versicolor 50 50.0000 0.333333 0.333333

Virginica Virginica 50 50.0000 0.333333 0.333333
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Output 35.1.3 continued

Discriminant Analysis of Fisher (1936) Iris Data
Using Normal Density Estimates with Unequal Variance

The DISCRIM Procedure
Classification Results for Calibration Data: SASHELP.IRIS

Cross-validation Results using Quadratic Discriminant Function

Discriminant Analysis of Fisher (1936) Iris Data
Using Normal Density Estimates with Unequal Variance

The DISCRIM Procedure
Classification Results for Calibration Data: SASHELP.IRIS

Cross-validation Results using Quadratic Discriminant Function

Posterior Probability of Membership in Species

Obs
From
Species

Classified into
Species Setosa Versicolor Virginica

10 Setosa Versicolor * 0.4923 0.5073 0.0004

53 Versicolor Virginica * 0.0000 0.0686 0.9314

100 Versicolor Virginica * 0.0000 0.2871 0.7129

103 Virginica Versicolor * 0.0000 0.8740 0.1260

124 Virginica Versicolor * 0.0000 0.9602 0.0398

130 Virginica Versicolor * 0.0000 0.6558 0.3442

136 Virginica Versicolor * 0.0000 0.8740 0.1260

* Misclassified observation

Discriminant Analysis of Fisher (1936) Iris Data
Using Normal Density Estimates with Unequal Variance

The DISCRIM Procedure
Classification Summary for Calibration Data: SASHELP.IRIS

Cross-validation Summary using Quadratic Discriminant Function

Discriminant Analysis of Fisher (1936) Iris Data
Using Normal Density Estimates with Unequal Variance

The DISCRIM Procedure
Classification Summary for Calibration Data: SASHELP.IRIS

Cross-validation Summary using Quadratic Discriminant Function

Number of Observations and Percent Classified
into Species

From
Species Setosa Versicolor Virginica Total

Setosa 49
98.00

1
2.00

0
0.00

50
100.00

Versicolor 0
0.00

48
96.00

2
4.00

50
100.00

Virginica 0
0.00

4
8.00

46
92.00

50
100.00

Total 49
32.67

53
35.33

48
32.00

150
100.00

Priors 0.33333 0.33333 0.33333

Error Count Estimates for Species

Setosa Versicolor Virginica Total

Rate 0.0200 0.0400 0.0800 0.0467

Priors 0.3333 0.3333 0.3333
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Output 35.1.3 continued

Discriminant Analysis of Fisher (1936) Iris Data
Using Normal Density Estimates with Unequal Variance

The DISCRIM Procedure
Classification Summary for Test Data: WORK.PLOTDATA

Classification Summary using Quadratic Discriminant Function

Discriminant Analysis of Fisher (1936) Iris Data
Using Normal Density Estimates with Unequal Variance

The DISCRIM Procedure
Classification Summary for Test Data: WORK.PLOTDATA

Classification Summary using Quadratic Discriminant Function

Observation Profile for Test Data

Number of Observations Read 71

Number of Observations Used 71

Number of Observations and Percent
Classified into Species

Setosa Versicolor Virginica Total

Total 23
32.39

20
28.17

28
39.44

71
100.00

Priors 0.33333 0.33333 0.33333

Output 35.1.3 continued
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Output 35.1.3 continued

Two more analyses are run with nonparametric methods (METHOD=NPAR), specifically kernel density
estimates with normal kernels (KERNEL=NORMAL). The first of these uses equal bandwidths (smoothing
parameters) (POOL=YES) in each class. The use of equal bandwidths does not constrain the density
estimates to be of equal variance. The value of the radius parameter that, assuming normality, minimizes an
approximate mean integrated square error is 0.48 (see the section “Nonparametric Methods” on page 2176).
Choosing r = 0.4 gives a more detailed look at the irregularities in the data. The following statements produce
Output 35.1.4:

title2 'Using Kernel Density Estimates with Equal Bandwidth';

proc discrim data=sashelp.iris method=npar kernel=normal
r=.4 pool=yes

testdata=plotdata testout=plotp
testoutd=plotd

short noclassify crosslisterr;
class Species;
var PetalWidth;

run;

%plotden;
%plotprob;
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Output 35.1.4 Kernel Density Estimates with Equal Bandwidth

Discriminant Analysis of Fisher (1936) Iris Data
Using Kernel Density Estimates with Equal Bandwidth

The DISCRIM Procedure

Discriminant Analysis of Fisher (1936) Iris Data
Using Kernel Density Estimates with Equal Bandwidth

The DISCRIM Procedure

Total Sample Size 150 DF Total 149

Variables 1 DF Within Classes 147

Classes 3 DF Between Classes 2

Number of Observations Read 150

Number of Observations Used 150

Class Level Information

Species
Variable
Name Frequency Weight Proportion

Prior
Probability

Setosa Setosa 50 50.0000 0.333333 0.333333

Versicolor Versicolor 50 50.0000 0.333333 0.333333

Virginica Virginica 50 50.0000 0.333333 0.333333

Discriminant Analysis of Fisher (1936) Iris Data
Using Kernel Density Estimates with Equal Bandwidth

The DISCRIM Procedure
Classification Results for Calibration Data: SASHELP.IRIS

Cross-validation Results using Normal Kernel Density

Discriminant Analysis of Fisher (1936) Iris Data
Using Kernel Density Estimates with Equal Bandwidth

The DISCRIM Procedure
Classification Results for Calibration Data: SASHELP.IRIS

Cross-validation Results using Normal Kernel Density

Posterior Probability of Membership in Species

Obs
From
Species

Classified into
Species Setosa Versicolor Virginica

53 Versicolor Virginica * 0.0000 0.0438 0.9562

100 Versicolor Virginica * 0.0000 0.2586 0.7414

103 Virginica Versicolor * 0.0000 0.8827 0.1173

124 Virginica Versicolor * 0.0000 0.9472 0.0528

130 Virginica Versicolor * 0.0000 0.8061 0.1939

136 Virginica Versicolor * 0.0000 0.8827 0.1173

* Misclassified observation
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Output 35.1.4 continued

Discriminant Analysis of Fisher (1936) Iris Data
Using Kernel Density Estimates with Equal Bandwidth

The DISCRIM Procedure
Classification Summary for Calibration Data: SASHELP.IRIS

Cross-validation Summary using Normal Kernel Density

Discriminant Analysis of Fisher (1936) Iris Data
Using Kernel Density Estimates with Equal Bandwidth

The DISCRIM Procedure
Classification Summary for Calibration Data: SASHELP.IRIS

Cross-validation Summary using Normal Kernel Density

Number of Observations and Percent Classified
into Species

From
Species Setosa Versicolor Virginica Total

Setosa 50
100.00

0
0.00

0
0.00

50
100.00

Versicolor 0
0.00

48
96.00

2
4.00

50
100.00

Virginica 0
0.00

4
8.00

46
92.00

50
100.00

Total 50
33.33

52
34.67

48
32.00

150
100.00

Priors 0.33333 0.33333 0.33333

Error Count Estimates for Species

Setosa Versicolor Virginica Total

Rate 0.0000 0.0400 0.0800 0.0400

Priors 0.3333 0.3333 0.3333

Discriminant Analysis of Fisher (1936) Iris Data
Using Kernel Density Estimates with Equal Bandwidth

The DISCRIM Procedure
Classification Summary for Test Data: WORK.PLOTDATA

Classification Summary using Normal Kernel Density

Discriminant Analysis of Fisher (1936) Iris Data
Using Kernel Density Estimates with Equal Bandwidth

The DISCRIM Procedure
Classification Summary for Test Data: WORK.PLOTDATA

Classification Summary using Normal Kernel Density

Observation Profile for Test Data

Number of Observations Read 71

Number of Observations Used 71

Number of Observations and Percent
Classified into Species

Setosa Versicolor Virginica Total

Total 26
36.62

18
25.35

27
38.03

71
100.00

Priors 0.33333 0.33333 0.33333
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Output 35.1.4 continued
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Another nonparametric analysis is run with unequal bandwidths (POOL=NO). The following statements
produce Output 35.1.5:

title2 'Using Kernel Density Estimates with Unequal Bandwidth';

proc discrim data=sashelp.iris method=npar kernel=normal
r=.4 pool=no

testdata=plotdata testout=plotp
testoutd=plotd

short noclassify crosslisterr;
class Species;
var PetalWidth;

run;

%plotden;
%plotprob;

Output 35.1.5 Kernel Density Estimates with Unequal Bandwidth

Discriminant Analysis of Fisher (1936) Iris Data
Using Kernel Density Estimates with Unequal Bandwidth

The DISCRIM Procedure

Discriminant Analysis of Fisher (1936) Iris Data
Using Kernel Density Estimates with Unequal Bandwidth

The DISCRIM Procedure

Total Sample Size 150 DF Total 149

Variables 1 DF Within Classes 147

Classes 3 DF Between Classes 2

Number of Observations Read 150

Number of Observations Used 150

Class Level Information

Species
Variable
Name Frequency Weight Proportion

Prior
Probability

Setosa Setosa 50 50.0000 0.333333 0.333333

Versicolor Versicolor 50 50.0000 0.333333 0.333333

Virginica Virginica 50 50.0000 0.333333 0.333333
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Output 35.1.5 continued

Discriminant Analysis of Fisher (1936) Iris Data
Using Kernel Density Estimates with Unequal Bandwidth

The DISCRIM Procedure
Classification Results for Calibration Data: SASHELP.IRIS

Cross-validation Results using Normal Kernel Density

Discriminant Analysis of Fisher (1936) Iris Data
Using Kernel Density Estimates with Unequal Bandwidth

The DISCRIM Procedure
Classification Results for Calibration Data: SASHELP.IRIS

Cross-validation Results using Normal Kernel Density

Posterior Probability of Membership in Species

Obs
From
Species

Classified into
Species Setosa Versicolor Virginica

53 Versicolor Virginica * 0.0000 0.0475 0.9525

100 Versicolor Virginica * 0.0000 0.2310 0.7690

103 Virginica Versicolor * 0.0000 0.8805 0.1195

124 Virginica Versicolor * 0.0000 0.9394 0.0606

130 Virginica Versicolor * 0.0000 0.7193 0.2807

136 Virginica Versicolor * 0.0000 0.8805 0.1195

* Misclassified observation

Discriminant Analysis of Fisher (1936) Iris Data
Using Kernel Density Estimates with Unequal Bandwidth

The DISCRIM Procedure
Classification Summary for Calibration Data: SASHELP.IRIS

Cross-validation Summary using Normal Kernel Density

Discriminant Analysis of Fisher (1936) Iris Data
Using Kernel Density Estimates with Unequal Bandwidth

The DISCRIM Procedure
Classification Summary for Calibration Data: SASHELP.IRIS

Cross-validation Summary using Normal Kernel Density

Number of Observations and Percent Classified
into Species

From
Species Setosa Versicolor Virginica Total

Setosa 50
100.00

0
0.00

0
0.00

50
100.00

Versicolor 0
0.00

48
96.00

2
4.00

50
100.00

Virginica 0
0.00

4
8.00

46
92.00

50
100.00

Total 50
33.33

52
34.67

48
32.00

150
100.00

Priors 0.33333 0.33333 0.33333

Error Count Estimates for Species

Setosa Versicolor Virginica Total

Rate 0.0000 0.0400 0.0800 0.0400

Priors 0.3333 0.3333 0.3333
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Output 35.1.5 continued

Discriminant Analysis of Fisher (1936) Iris Data
Using Kernel Density Estimates with Unequal Bandwidth

The DISCRIM Procedure
Classification Summary for Test Data: WORK.PLOTDATA

Classification Summary using Normal Kernel Density

Discriminant Analysis of Fisher (1936) Iris Data
Using Kernel Density Estimates with Unequal Bandwidth

The DISCRIM Procedure
Classification Summary for Test Data: WORK.PLOTDATA

Classification Summary using Normal Kernel Density

Observation Profile for Test Data

Number of Observations Read 71

Number of Observations Used 71

Number of Observations and Percent
Classified into Species

Setosa Versicolor Virginica Total

Total 25
35.21

18
25.35

28
39.44

71
100.00

Priors 0.33333 0.33333 0.33333

Output 35.1.5 continued
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Output 35.1.5 continued

Example 35.2: Bivariate Density Estimates and Posterior Probabilities
In this example, four more discriminant analyses of iris data are run with two quantitative variables: petal
width and petal length. The following statements produce Output 35.2.1 through Output 35.2.5:

title 'Discriminant Analysis of Fisher (1936) Iris Data';
proc template;

define statgraph scatter;
begingraph;

entrytitle 'Fisher (1936) Iris Data';
layout overlayequated / equatetype=fit;

scatterplot x=petallength y=petalwidth /
group=species name='iris';

layout gridded / autoalign=(topleft);
discretelegend 'iris' / border=false opaque=false;

endlayout;
endlayout;

endgraph;
end;

run;

proc sgrender data=sashelp.iris template=scatter;
run;

The scatter plot in Output 35.2.1 shows the joint sample distribution.
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Output 35.2.1 Joint Sample Distribution of Petal Width and Petal Length in Three Species

Another data set is created for plotting, containing a grid of points suitable for contour plots. The following
statements create the data set:

data plotdata;
do PetalLength = -2 to 72 by 0.5;

do PetalWidth= - 5 to 32 by 0.5;
output;

end;
end;

run;
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Three macros are defined as follows to make contour plots of density estimates, posterior probabilities, and
classification results:

%let close = thresholdmin=0 thresholdmax=0 offsetmin=0 offsetmax=0;
%let close = xaxisopts=(&close) yaxisopts=(&close);

proc template;
define statgraph contour;

begingraph;
layout overlayequated / equatetype=equate &close;

contourplotparm x=petallength y=petalwidth z=z /
contourtype=fill nhint=30;

scatterplot x=pl y=pw / group=species name='iris'
includemissinggroup=false primary=true;

layout gridded / autoalign=(topleft);
discretelegend 'iris' / border=false opaque=false;

endlayout;
endlayout;

endgraph;
end;

run;

%macro contden;
data contour(keep=PetalWidth PetalLength species z pl pw);

merge plotd(in=d) sashelp.iris(keep=PetalWidth PetalLength species
rename=(PetalWidth=pw PetalLength=pl));

if d then z = max(setosa,versicolor,virginica);
run;

title3 'Plot of Estimated Densities';

proc sgrender data=contour template=contour;
run;

%mend;

%macro contprob;
data posterior(keep=PetalWidth PetalLength species z pl pw into);

merge plotp(in=d) sashelp.iris(keep=PetalWidth PetalLength species
rename=(PetalWidth=pw PetalLength=pl));

if d then z = max(setosa,versicolor,virginica);
into = 1 * (_into_ =: 'Set') + 2 * (_into_ =: 'Ver') +

3 * (_into_ =: 'Vir');
run;

title3 'Plot of Posterior Probabilities ';

proc sgrender data=posterior template=contour;
run;

%mend;
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%macro contclass;
title3 'Plot of Classification Results';

proc sgrender data=posterior(drop=z rename=(into=z)) template=contour;
run;

%mend;

A normal-theory analysis (METHOD=NORMAL) assuming equal covariance matrices (POOL=YES) illus-
trates the linearity of the classification boundaries. These statements produce Output 35.2.2:

title2 'Using Normal Density Estimates with Equal Variance';

proc discrim data=sashelp.iris method=normal pool=yes
testdata=plotdata testout=plotp testoutd=plotd
short noclassify crosslisterr;

class Species;
var Petal:;

run;

%contden
%contprob
%contclass

Output 35.2.2 Normal Density Estimates with Equal Variance

Discriminant Analysis of Fisher (1936) Iris Data
Using Normal Density Estimates with Equal Variance

The DISCRIM Procedure

Discriminant Analysis of Fisher (1936) Iris Data
Using Normal Density Estimates with Equal Variance

The DISCRIM Procedure

Total Sample Size 150 DF Total 149

Variables 2 DF Within Classes 147

Classes 3 DF Between Classes 2

Number of Observations Read 150

Number of Observations Used 150

Class Level Information

Species
Variable
Name Frequency Weight Proportion

Prior
Probability

Setosa Setosa 50 50.0000 0.333333 0.333333

Versicolor Versicolor 50 50.0000 0.333333 0.333333

Virginica Virginica 50 50.0000 0.333333 0.333333
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Output 35.2.2 continued

Discriminant Analysis of Fisher (1936) Iris Data
Using Normal Density Estimates with Equal Variance

The DISCRIM Procedure
Classification Results for Calibration Data: SASHELP.IRIS

Cross-validation Results using Linear Discriminant Function

Discriminant Analysis of Fisher (1936) Iris Data
Using Normal Density Estimates with Equal Variance

The DISCRIM Procedure
Classification Results for Calibration Data: SASHELP.IRIS

Cross-validation Results using Linear Discriminant Function

Posterior Probability of Membership in Species

Obs
From
Species

Classified into
Species Setosa Versicolor Virginica

53 Versicolor Virginica * 0.0000 0.2130 0.7870

100 Versicolor Virginica * 0.0000 0.3118 0.6882

103 Virginica Versicolor * 0.0000 0.8453 0.1547

113 Virginica Versicolor * 0.0000 0.8322 0.1678

124 Virginica Versicolor * 0.0000 0.8057 0.1943

136 Virginica Versicolor * 0.0000 0.8903 0.1097

* Misclassified observation

Discriminant Analysis of Fisher (1936) Iris Data
Using Normal Density Estimates with Equal Variance

The DISCRIM Procedure
Classification Summary for Calibration Data: SASHELP.IRIS

Cross-validation Summary using Linear Discriminant Function

Discriminant Analysis of Fisher (1936) Iris Data
Using Normal Density Estimates with Equal Variance

The DISCRIM Procedure
Classification Summary for Calibration Data: SASHELP.IRIS

Cross-validation Summary using Linear Discriminant Function

Number of Observations and Percent Classified
into Species

From
Species Setosa Versicolor Virginica Total

Setosa 50
100.00

0
0.00

0
0.00

50
100.00

Versicolor 0
0.00

48
96.00

2
4.00

50
100.00

Virginica 0
0.00

4
8.00

46
92.00

50
100.00

Total 50
33.33

52
34.67

48
32.00

150
100.00

Priors 0.33333 0.33333 0.33333

Error Count Estimates for Species

Setosa Versicolor Virginica Total

Rate 0.0000 0.0400 0.0800 0.0400

Priors 0.3333 0.3333 0.3333
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Output 35.2.2 continued

Discriminant Analysis of Fisher (1936) Iris Data
Using Normal Density Estimates with Equal Variance

The DISCRIM Procedure
Classification Summary for Test Data: WORK.PLOTDATA

Classification Summary using Linear Discriminant Function

Discriminant Analysis of Fisher (1936) Iris Data
Using Normal Density Estimates with Equal Variance

The DISCRIM Procedure
Classification Summary for Test Data: WORK.PLOTDATA

Classification Summary using Linear Discriminant Function

Observation Profile for Test Data

Number of Observations Read 11175

Number of Observations Used 11175

Number of Observations and Percent
Classified into Species

Setosa Versicolor Virginica Total

Total 3670
32.84

4243
37.97

3262
29.19

11175
100.00

Priors 0.33333 0.33333 0.33333

Output 35.2.2 continued
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Output 35.2.2 continued
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A normal-theory analysis assuming unequal covariance matrices (POOL=NO) illustrates quadratic classifica-
tion boundaries. These statements produce Output 35.2.3:

title2 'Using Normal Density Estimates with Unequal Variance';

proc discrim data=sashelp.iris method=normal pool=no
testdata=plotdata testout=plotp testoutd=plotd
short noclassify crosslisterr;

class Species;
var Petal:;

run;

%contden
%contprob
%contclass

Output 35.2.3 Normal Density Estimates with Unequal Variance

Discriminant Analysis of Fisher (1936) Iris Data
Using Normal Density Estimates with Unequal Variance

The DISCRIM Procedure

Discriminant Analysis of Fisher (1936) Iris Data
Using Normal Density Estimates with Unequal Variance

The DISCRIM Procedure

Total Sample Size 150 DF Total 149

Variables 2 DF Within Classes 147

Classes 3 DF Between Classes 2

Number of Observations Read 150

Number of Observations Used 150

Class Level Information

Species
Variable
Name Frequency Weight Proportion

Prior
Probability

Setosa Setosa 50 50.0000 0.333333 0.333333

Versicolor Versicolor 50 50.0000 0.333333 0.333333

Virginica Virginica 50 50.0000 0.333333 0.333333

Discriminant Analysis of Fisher (1936) Iris Data
Using Normal Density Estimates with Unequal Variance

The DISCRIM Procedure
Classification Results for Calibration Data: SASHELP.IRIS

Cross-validation Results using Quadratic Discriminant Function

Discriminant Analysis of Fisher (1936) Iris Data
Using Normal Density Estimates with Unequal Variance

The DISCRIM Procedure
Classification Results for Calibration Data: SASHELP.IRIS

Cross-validation Results using Quadratic Discriminant Function

Posterior Probability of Membership in Species

Obs
From
Species

Classified into
Species Setosa Versicolor Virginica

53 Versicolor Virginica * 0.0000 0.0903 0.9097

100 Versicolor Virginica * 0.0000 0.4675 0.5325

103 Virginica Versicolor * 0.0000 0.7288 0.2712

113 Virginica Versicolor * 0.0000 0.5196 0.4804

136 Virginica Versicolor * 0.0000 0.8335 0.1665

* Misclassified observation
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Output 35.2.3 continued

Discriminant Analysis of Fisher (1936) Iris Data
Using Normal Density Estimates with Unequal Variance

The DISCRIM Procedure
Classification Summary for Calibration Data: SASHELP.IRIS

Cross-validation Summary using Quadratic Discriminant Function

Discriminant Analysis of Fisher (1936) Iris Data
Using Normal Density Estimates with Unequal Variance

The DISCRIM Procedure
Classification Summary for Calibration Data: SASHELP.IRIS

Cross-validation Summary using Quadratic Discriminant Function

Number of Observations and Percent Classified
into Species

From
Species Setosa Versicolor Virginica Total

Setosa 50
100.00

0
0.00

0
0.00

50
100.00

Versicolor 0
0.00

48
96.00

2
4.00

50
100.00

Virginica 0
0.00

3
6.00

47
94.00

50
100.00

Total 50
33.33

51
34.00

49
32.67

150
100.00

Priors 0.33333 0.33333 0.33333

Error Count Estimates for Species

Setosa Versicolor Virginica Total

Rate 0.0000 0.0400 0.0600 0.0333

Priors 0.3333 0.3333 0.3333

Discriminant Analysis of Fisher (1936) Iris Data
Using Normal Density Estimates with Unequal Variance

The DISCRIM Procedure
Classification Summary for Test Data: WORK.PLOTDATA

Classification Summary using Quadratic Discriminant Function

Discriminant Analysis of Fisher (1936) Iris Data
Using Normal Density Estimates with Unequal Variance

The DISCRIM Procedure
Classification Summary for Test Data: WORK.PLOTDATA

Classification Summary using Quadratic Discriminant Function

Observation Profile for Test Data

Number of Observations Read 11175

Number of Observations Used 11175

Number of Observations and Percent
Classified into Species

Setosa Versicolor Virginica Total

Total 1382
12.37

1345
12.04

8448
75.60

11175
100.00

Priors 0.33333 0.33333 0.33333
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Output 35.2.3 continued
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Output 35.2.3 continued

A nonparametric analysis (METHOD=NPAR) follows, using normal kernels (KERNEL=NORMAL) and
equal bandwidths (POOL=YES) in each class. The value of the radius parameter r that, assuming normality,
minimizes an approximate mean integrated square error is 0.50 (see the section “Nonparametric Methods” on
page 2176). These statements produce Output 35.2.4:

title2 'Using Kernel Density Estimates with Equal Bandwidth';

proc discrim data=sashelp.iris method=npar kernel=normal
r=.5 pool=yes testoutd=plotd
testdata=plotdata testout=plotp
short noclassify crosslisterr;

class Species;
var Petal:;

run;

%contden
%contprob
%contclass
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Output 35.2.4 Kernel Density Estimates with Equal Bandwidth

Discriminant Analysis of Fisher (1936) Iris Data
Using Kernel Density Estimates with Equal Bandwidth

The DISCRIM Procedure

Discriminant Analysis of Fisher (1936) Iris Data
Using Kernel Density Estimates with Equal Bandwidth

The DISCRIM Procedure

Total Sample Size 150 DF Total 149

Variables 2 DF Within Classes 147

Classes 3 DF Between Classes 2

Number of Observations Read 150

Number of Observations Used 150

Class Level Information

Species
Variable
Name Frequency Weight Proportion

Prior
Probability

Setosa Setosa 50 50.0000 0.333333 0.333333

Versicolor Versicolor 50 50.0000 0.333333 0.333333

Virginica Virginica 50 50.0000 0.333333 0.333333

Discriminant Analysis of Fisher (1936) Iris Data
Using Kernel Density Estimates with Equal Bandwidth

The DISCRIM Procedure
Classification Results for Calibration Data: SASHELP.IRIS

Cross-validation Results using Normal Kernel Density

Discriminant Analysis of Fisher (1936) Iris Data
Using Kernel Density Estimates with Equal Bandwidth

The DISCRIM Procedure
Classification Results for Calibration Data: SASHELP.IRIS

Cross-validation Results using Normal Kernel Density

Posterior Probability of Membership in Species

Obs
From
Species

Classified into
Species Setosa Versicolor Virginica

53 Versicolor Virginica * 0.0000 0.0800 0.9200

100 Versicolor Virginica * 0.0000 0.4123 0.5877

103 Virginica Versicolor * 0.0000 0.7474 0.2526

113 Virginica Versicolor * 0.0000 0.5863 0.4137

136 Virginica Versicolor * 0.0000 0.8358 0.1642

* Misclassified observation
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Output 35.2.4 continued

Discriminant Analysis of Fisher (1936) Iris Data
Using Kernel Density Estimates with Equal Bandwidth

The DISCRIM Procedure
Classification Summary for Calibration Data: SASHELP.IRIS

Cross-validation Summary using Normal Kernel Density

Discriminant Analysis of Fisher (1936) Iris Data
Using Kernel Density Estimates with Equal Bandwidth

The DISCRIM Procedure
Classification Summary for Calibration Data: SASHELP.IRIS

Cross-validation Summary using Normal Kernel Density

Number of Observations and Percent Classified
into Species

From
Species Setosa Versicolor Virginica Total

Setosa 50
100.00

0
0.00

0
0.00

50
100.00

Versicolor 0
0.00

48
96.00

2
4.00

50
100.00

Virginica 0
0.00

3
6.00

47
94.00

50
100.00

Total 50
33.33

51
34.00

49
32.67

150
100.00

Priors 0.33333 0.33333 0.33333

Error Count Estimates for Species

Setosa Versicolor Virginica Total

Rate 0.0000 0.0400 0.0600 0.0333

Priors 0.3333 0.3333 0.3333

Discriminant Analysis of Fisher (1936) Iris Data
Using Kernel Density Estimates with Equal Bandwidth

The DISCRIM Procedure
Classification Summary for Test Data: WORK.PLOTDATA

Classification Summary using Normal Kernel Density

Discriminant Analysis of Fisher (1936) Iris Data
Using Kernel Density Estimates with Equal Bandwidth

The DISCRIM Procedure
Classification Summary for Test Data: WORK.PLOTDATA

Classification Summary using Normal Kernel Density

Observation Profile for Test Data

Number of Observations Read 11175

Number of Observations Used 11175

Number of Observations and Percent
Classified into Species

Setosa Versicolor Virginica Total

Total 3195
28.59

2492
22.30

5488
49.11

11175
100.00

Priors 0.33333 0.33333 0.33333
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Output 35.2.4 continued
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Output 35.2.4 continued

Another nonparametric analysis is run with unequal bandwidths (POOL=NO). These statements produce
Output 35.2.5:

title2 'Using Kernel Density Estimates with Unequal Bandwidth';

proc discrim data=sashelp.iris method=npar kernel=normal
r=.5 pool=no testoutd=plotd
testdata=plotdata testout=plotp
short noclassify crosslisterr;

class Species;
var Petal:;

run;

%contden
%contprob
%contclass

Output 35.2.5 Kernel Density Estimates with Unequal Bandwidth

Discriminant Analysis of Fisher (1936) Iris Data
Using Kernel Density Estimates with Unequal Bandwidth

The DISCRIM Procedure

Discriminant Analysis of Fisher (1936) Iris Data
Using Kernel Density Estimates with Unequal Bandwidth

The DISCRIM Procedure

Total Sample Size 150 DF Total 149

Variables 2 DF Within Classes 147

Classes 3 DF Between Classes 2
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Output 35.2.5 continued

Number of Observations Read 150

Number of Observations Used 150

Class Level Information

Species
Variable
Name Frequency Weight Proportion

Prior
Probability

Setosa Setosa 50 50.0000 0.333333 0.333333

Versicolor Versicolor 50 50.0000 0.333333 0.333333

Virginica Virginica 50 50.0000 0.333333 0.333333

Discriminant Analysis of Fisher (1936) Iris Data
Using Kernel Density Estimates with Unequal Bandwidth

The DISCRIM Procedure
Classification Results for Calibration Data: SASHELP.IRIS

Cross-validation Results using Normal Kernel Density

Discriminant Analysis of Fisher (1936) Iris Data
Using Kernel Density Estimates with Unequal Bandwidth

The DISCRIM Procedure
Classification Results for Calibration Data: SASHELP.IRIS

Cross-validation Results using Normal Kernel Density

Posterior Probability of Membership in Species

Obs
From
Species

Classified into
Species Setosa Versicolor Virginica

53 Versicolor Virginica * 0.0000 0.0516 0.9484

100 Versicolor Virginica * 0.0000 0.3773 0.6227

103 Virginica Versicolor * 0.0000 0.7826 0.2174

136 Virginica Versicolor * 0.0000 0.8802 0.1198

* Misclassified observation

Discriminant Analysis of Fisher (1936) Iris Data
Using Kernel Density Estimates with Unequal Bandwidth

The DISCRIM Procedure
Classification Summary for Calibration Data: SASHELP.IRIS

Cross-validation Summary using Normal Kernel Density

Discriminant Analysis of Fisher (1936) Iris Data
Using Kernel Density Estimates with Unequal Bandwidth

The DISCRIM Procedure
Classification Summary for Calibration Data: SASHELP.IRIS

Cross-validation Summary using Normal Kernel Density

Number of Observations and Percent Classified
into Species

From
Species Setosa Versicolor Virginica Total

Setosa 50
100.00

0
0.00

0
0.00

50
100.00

Versicolor 0
0.00

48
96.00

2
4.00

50
100.00

Virginica 0
0.00

2
4.00

48
96.00

50
100.00

Total 50
33.33

50
33.33

50
33.33

150
100.00

Priors 0.33333 0.33333 0.33333

Error Count Estimates for Species

Setosa Versicolor Virginica Total

Rate 0.0000 0.0400 0.0400 0.0267

Priors 0.3333 0.3333 0.3333
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Output 35.2.5 continued

Discriminant Analysis of Fisher (1936) Iris Data
Using Kernel Density Estimates with Unequal Bandwidth

The DISCRIM Procedure
Classification Summary for Test Data: WORK.PLOTDATA

Classification Summary using Normal Kernel Density

Discriminant Analysis of Fisher (1936) Iris Data
Using Kernel Density Estimates with Unequal Bandwidth

The DISCRIM Procedure
Classification Summary for Test Data: WORK.PLOTDATA

Classification Summary using Normal Kernel Density

Observation Profile for Test Data

Number of Observations Read 11175

Number of Observations Used 11175

Number of Observations and Percent
Classified into Species

Setosa Versicolor Virginica Total

Total 1370
12.26

1505
13.47

8300
74.27

11175
100.00

Priors 0.33333 0.33333 0.33333

Output 35.2.5 continued
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Output 35.2.5 continued
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Example 35.3: Normal-Theory Discriminant Analysis of Iris Data
In this example, PROC DISCRIM uses normal-theory methods to classify the iris data used in Example 35.1.
The POOL=TEST option tests the homogeneity of the within-group covariance matrices (Output 35.3.3).
Since the resulting test statistic is significant at the 0.10 level, the within-group covariance matrices are
used to derive the quadratic discriminant criterion. The WCOV and PCOV options display the within-group
covariance matrices and the pooled covariance matrix (Output 35.3.2). The DISTANCE option displays
squared distances between classes (Output 35.3.4). The ANOVA and MANOVA options test the hypothesis
that the class means are equal, by using univariate statistics and multivariate statistics; all statistics are
significant at the 0.0001 level (Output 35.3.5). The LISTERR option lists the misclassified observations under
resubstitution (Output 35.3.6). The CROSSLISTERR option lists the observations that are misclassified
under cross validation and displays cross validation error-rate estimates (Output 35.3.7). The resubstitution
error count estimate, 0.02, is not larger than the cross validation error count estimate, 0.0267, as would be
expected because the resubstitution estimate is optimistically biased. The OUTSTAT= option generates
a TYPE=MIXED (because POOL=TEST) output data set containing various statistics such as means,
covariances, and coefficients of the discriminant function (Output 35.3.8).

The following statements produce Output 35.3.1 through Output 35.3.8:

title 'Discriminant Analysis of Fisher (1936) Iris Data';
title2 'Using Quadratic Discriminant Function';

proc discrim data=sashelp.iris outstat=irisstat
wcov pcov method=normal pool=test
distance anova manova listerr crosslisterr;

class Species;
var SepalLength SepalWidth PetalLength PetalWidth;

run;

proc print data=irisstat;
title2 'Output Discriminant Statistics';

run;

Output 35.3.1 Quadratic Discriminant Analysis of Iris Data

Discriminant Analysis of Fisher (1936) Iris Data
Using Quadratic Discriminant Function

The DISCRIM Procedure

Discriminant Analysis of Fisher (1936) Iris Data
Using Quadratic Discriminant Function

The DISCRIM Procedure

Total Sample Size 150 DF Total 149

Variables 4 DF Within Classes 147

Classes 3 DF Between Classes 2

Number of Observations Read 150

Number of Observations Used 150
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Output 35.3.1 continued

Class Level Information

Species
Variable
Name Frequency Weight Proportion

Prior
Probability

Setosa Setosa 50 50.0000 0.333333 0.333333

Versicolor Versicolor 50 50.0000 0.333333 0.333333

Virginica Virginica 50 50.0000 0.333333 0.333333

Output 35.3.2 Covariance Matrices

Discriminant Analysis of Fisher (1936) Iris Data
Using Quadratic Discriminant Function

The DISCRIM Procedure
Within-Class Covariance Matrices

Discriminant Analysis of Fisher (1936) Iris Data
Using Quadratic Discriminant Function

The DISCRIM Procedure
Within-Class Covariance Matrices

Species = Setosa,     DF = 49

Variable Label SepalLength SepalWidth PetalLength PetalWidth

SepalLength Sepal Length (mm) 12.42489796 9.92163265 1.63551020 1.03306122

SepalWidth Sepal Width (mm) 9.92163265 14.36897959 1.16979592 0.92979592

PetalLength Petal Length (mm) 1.63551020 1.16979592 3.01591837 0.60693878

PetalWidth Petal Width (mm) 1.03306122 0.92979592 0.60693878 1.11061224

Species = Versicolor,     DF = 49

Variable Label SepalLength SepalWidth PetalLength PetalWidth

SepalLength Sepal Length (mm) 26.64326531 8.51836735 18.28979592 5.57795918

SepalWidth Sepal Width (mm) 8.51836735 9.84693878 8.26530612 4.12040816

PetalLength Petal Length (mm) 18.28979592 8.26530612 22.08163265 7.31020408

PetalWidth Petal Width (mm) 5.57795918 4.12040816 7.31020408 3.91061224

Species = Virginica,     DF = 49

Variable Label SepalLength SepalWidth PetalLength PetalWidth

SepalLength Sepal Length (mm) 40.43428571 9.37632653 30.32897959 4.90938776

SepalWidth Sepal Width (mm) 9.37632653 10.40040816 7.13795918 4.76285714

PetalLength Petal Length (mm) 30.32897959 7.13795918 30.45877551 4.88244898

PetalWidth Petal Width (mm) 4.90938776 4.76285714 4.88244898 7.54326531

Discriminant Analysis of Fisher (1936) Iris Data
Using Quadratic Discriminant Function

The DISCRIM Procedure

Discriminant Analysis of Fisher (1936) Iris Data
Using Quadratic Discriminant Function

The DISCRIM Procedure

Pooled Within-Class Covariance Matrix,     DF = 147

Variable Label SepalLength SepalWidth PetalLength PetalWidth

SepalLength Sepal Length (mm) 26.50081633 9.27210884 16.75142857 3.84013605

SepalWidth Sepal Width (mm) 9.27210884 11.53877551 5.52435374 3.27102041

PetalLength Petal Length (mm) 16.75142857 5.52435374 18.51877551 4.26653061

PetalWidth Petal Width (mm) 3.84013605 3.27102041 4.26653061 4.18816327
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Output 35.3.2 continued

Within Covariance Matrix Information

Species
Covariance

Matrix Rank

Natural Log of the
Determinant of the
Covariance Matrix

Setosa 4 5.35332

Versicolor 4 7.54636

Virginica 4 9.49362

Pooled 4 8.46214

Output 35.3.3 Homogeneity Test

Discriminant Analysis of Fisher (1936) Iris Data
Using Quadratic Discriminant Function

The DISCRIM Procedure
Test of Homogeneity of Within Covariance Matrices

Discriminant Analysis of Fisher (1936) Iris Data
Using Quadratic Discriminant Function

The DISCRIM Procedure
Test of Homogeneity of Within Covariance Matrices

Chi-Square DF Pr > ChiSq

140.943050 20 <.0001

Since the Chi-Square value is significant at the 0.1 level, the within covariance matrices will be
used in the discriminant function.
Reference: Morrison, D.F. (1976) Multivariate Statistical Methods p252.

Output 35.3.4 Squared Distances

Discriminant Analysis of Fisher (1936) Iris Data
Using Quadratic Discriminant Function

The DISCRIM Procedure

Discriminant Analysis of Fisher (1936) Iris Data
Using Quadratic Discriminant Function

The DISCRIM Procedure

Squared Distance to Species

From
Species Setosa Versicolor Virginica

Setosa 0 103.19382 168.76759

Versicolor 323.06203 0 13.83875

Virginica 706.08494 17.86670 0

Generalized Squared Distance to Species

From
Species Setosa Versicolor Virginica

Setosa 5.35332 110.74017 178.26121

Versicolor 328.41535 7.54636 23.33238

Virginica 711.43826 25.41306 9.49362
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Output 35.3.5 Tests of Equal Class Means

Discriminant Analysis of Fisher (1936) Iris Data
Using Quadratic Discriminant Function

The DISCRIM Procedure

Discriminant Analysis of Fisher (1936) Iris Data
Using Quadratic Discriminant Function

The DISCRIM Procedure

Univariate Test Statistics

F Statistics,    Num DF=2,   Den DF=147

Variable Label

Total
Standard
Deviation

Pooled
Standard
Deviation

Between
Standard
Deviation R-Square

R-Square
/ (1-RSq) F Value Pr > F

SepalLength Sepal Length (mm) 8.2807 5.1479 7.9506 0.6187 1.6226 119.26 <.0001

SepalWidth Sepal Width (mm) 4.3587 3.3969 3.3682 0.4008 0.6688 49.16 <.0001

PetalLength Petal Length (mm) 17.6530 4.3033 20.9070 0.9414 16.0566 1180.16 <.0001

PetalWidth Petal Width (mm) 7.6224 2.0465 8.9673 0.9289 13.0613 960.01 <.0001

Average R-Square

Unweighted 0.7224358

Weighted by Variance 0.8689444

Multivariate Statistics and F Approximations

S=2    M=0.5    N=71

Statistic Value F Value Num DF Den DF Pr > F

Wilks' Lambda 0.02343863 199.15 8 288 <.0001

Pillai's Trace 1.19189883 53.47 8 290 <.0001

Hotelling-Lawley Trace 32.47732024 582.20 8 203.4 <.0001

Roy's Greatest Root 32.19192920 1166.96 4 145 <.0001

NOTE: F Statistic for Roy's Greatest Root is an upper bound.

NOTE: F Statistic for Wilks' Lambda is exact.

Output 35.3.6 Misclassified Observations: Resubstitution

Discriminant Analysis of Fisher (1936) Iris Data
Using Quadratic Discriminant Function

The DISCRIM Procedure
Classification Results for Calibration Data: SASHELP.IRIS

Resubstitution Results using Quadratic Discriminant Function

Discriminant Analysis of Fisher (1936) Iris Data
Using Quadratic Discriminant Function

The DISCRIM Procedure
Classification Results for Calibration Data: SASHELP.IRIS

Resubstitution Results using Quadratic Discriminant Function

Posterior Probability of Membership in Species

Obs
From
Species

Classified into
Species Setosa Versicolor Virginica

53 Versicolor Virginica * 0.0000 0.3359 0.6641

55 Versicolor Virginica * 0.0000 0.1543 0.8457

103 Virginica Versicolor * 0.0000 0.6050 0.3950

* Misclassified observation
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Output 35.3.6 continued

Discriminant Analysis of Fisher (1936) Iris Data
Using Quadratic Discriminant Function

The DISCRIM Procedure
Classification Summary for Calibration Data: SASHELP.IRIS

Resubstitution Summary using Quadratic Discriminant Function

Discriminant Analysis of Fisher (1936) Iris Data
Using Quadratic Discriminant Function

The DISCRIM Procedure
Classification Summary for Calibration Data: SASHELP.IRIS

Resubstitution Summary using Quadratic Discriminant Function

Number of Observations and Percent Classified
into Species

From
Species Setosa Versicolor Virginica Total

Setosa 50
100.00

0
0.00

0
0.00

50
100.00

Versicolor 0
0.00

48
96.00

2
4.00

50
100.00

Virginica 0
0.00

1
2.00

49
98.00

50
100.00

Total 50
33.33

49
32.67

51
34.00

150
100.00

Priors 0.33333 0.33333 0.33333

Error Count Estimates for Species

Setosa Versicolor Virginica Total

Rate 0.0000 0.0400 0.0200 0.0200

Priors 0.3333 0.3333 0.3333

Output 35.3.7 Misclassified Observations: Cross Validation

Discriminant Analysis of Fisher (1936) Iris Data
Using Quadratic Discriminant Function

The DISCRIM Procedure
Classification Results for Calibration Data: SASHELP.IRIS

Cross-validation Results using Quadratic Discriminant Function

Discriminant Analysis of Fisher (1936) Iris Data
Using Quadratic Discriminant Function

The DISCRIM Procedure
Classification Results for Calibration Data: SASHELP.IRIS

Cross-validation Results using Quadratic Discriminant Function

Posterior Probability of Membership in Species

Obs
From
Species

Classified into
Species Setosa Versicolor Virginica

52 Versicolor Virginica * 0.0000 0.3134 0.6866

53 Versicolor Virginica * 0.0000 0.1616 0.8384

55 Versicolor Virginica * 0.0000 0.0713 0.9287

103 Virginica Versicolor * 0.0000 0.6632 0.3368

* Misclassified observation
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Output 35.3.7 continued

Discriminant Analysis of Fisher (1936) Iris Data
Using Quadratic Discriminant Function

The DISCRIM Procedure
Classification Summary for Calibration Data: SASHELP.IRIS

Cross-validation Summary using Quadratic Discriminant Function

Discriminant Analysis of Fisher (1936) Iris Data
Using Quadratic Discriminant Function

The DISCRIM Procedure
Classification Summary for Calibration Data: SASHELP.IRIS

Cross-validation Summary using Quadratic Discriminant Function

Number of Observations and Percent Classified
into Species

From
Species Setosa Versicolor Virginica Total

Setosa 50
100.00

0
0.00

0
0.00

50
100.00

Versicolor 0
0.00

47
94.00

3
6.00

50
100.00

Virginica 0
0.00

1
2.00

49
98.00

50
100.00

Total 50
33.33

48
32.00

52
34.67

150
100.00

Priors 0.33333 0.33333 0.33333

Error Count Estimates for Species

Setosa Versicolor Virginica Total

Rate 0.0000 0.0600 0.0200 0.0267

Priors 0.3333 0.3333 0.3333
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Output 35.3.8 Output Statistics from Iris Data

Discriminant Analysis of Fisher (1936) Iris Data
Output Discriminant Statistics

Discriminant Analysis of Fisher (1936) Iris Data
Output Discriminant Statistics

Obs Species _TYPE_ _NAME_ SepalLength SepalWidth PetalLength PetalWidth

1 N 150.00 150.00 150.00 150.00

2 Setosa N 50.00 50.00 50.00 50.00

3 Versicolor N 50.00 50.00 50.00 50.00

4 Virginica N 50.00 50.00 50.00 50.00

5 MEAN 58.43 30.57 37.58 11.99

6 Setosa MEAN 50.06 34.28 14.62 2.46

7 Versicolor MEAN 59.36 27.70 42.60 13.26

8 Virginica MEAN 65.88 29.74 55.52 20.26

9 Setosa PRIOR 0.33 0.33 0.33 0.33

10 Versicolor PRIOR 0.33 0.33 0.33 0.33

11 Virginica PRIOR 0.33 0.33 0.33 0.33

12 Setosa CSSCP SepalLength 608.82 486.16 80.14 50.62

13 Setosa CSSCP SepalWidth 486.16 704.08 57.32 45.56

14 Setosa CSSCP PetalLength 80.14 57.32 147.78 29.74

15 Setosa CSSCP PetalWidth 50.62 45.56 29.74 54.42

16 Versicolor CSSCP SepalLength 1305.52 417.40 896.20 273.32

17 Versicolor CSSCP SepalWidth 417.40 482.50 405.00 201.90

18 Versicolor CSSCP PetalLength 896.20 405.00 1082.00 358.20

19 Versicolor CSSCP PetalWidth 273.32 201.90 358.20 191.62

20 Virginica CSSCP SepalLength 1981.28 459.44 1486.12 240.56

21 Virginica CSSCP SepalWidth 459.44 509.62 349.76 233.38

22 Virginica CSSCP PetalLength 1486.12 349.76 1492.48 239.24

23 Virginica CSSCP PetalWidth 240.56 233.38 239.24 369.62

24 PSSCP SepalLength 3895.62 1363.00 2462.46 564.50

25 PSSCP SepalWidth 1363.00 1696.20 812.08 480.84

26 PSSCP PetalLength 2462.46 812.08 2722.26 627.18

27 PSSCP PetalWidth 564.50 480.84 627.18 615.66

28 BSSCP SepalLength 6321.21 -1995.27 16524.84 7127.93

29 BSSCP SepalWidth -1995.27 1134.49 -5723.96 -2293.27

30 BSSCP PetalLength 16524.84 -5723.96 43710.28 18677.40

31 BSSCP PetalWidth 7127.93 -2293.27 18677.40 8041.33

32 CSSCP SepalLength 10216.83 -632.27 18987.30 7692.43

33 CSSCP SepalWidth -632.27 2830.69 -4911.88 -1812.43

34 CSSCP PetalLength 18987.30 -4911.88 46432.54 19304.58

35 CSSCP PetalWidth 7692.43 -1812.43 19304.58 8656.99

36 RSQUARED 0.62 0.40 0.94 0.93

37 Setosa COV SepalLength 12.42 9.92 1.64 1.03

38 Setosa COV SepalWidth 9.92 14.37 1.17 0.93

39 Setosa COV PetalLength 1.64 1.17 3.02 0.61

40 Setosa COV PetalWidth 1.03 0.93 0.61 1.11

41 Versicolor COV SepalLength 26.64 8.52 18.29 5.58

42 Versicolor COV SepalWidth 8.52 9.85 8.27 4.12

43 Versicolor COV PetalLength 18.29 8.27 22.08 7.31

44 Versicolor COV PetalWidth 5.58 4.12 7.31 3.91

45 Virginica COV SepalLength 40.43 9.38 30.33 4.91

46 Virginica COV SepalWidth 9.38 10.40 7.14 4.76
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Output 35.3.8 continued

Discriminant Analysis of Fisher (1936) Iris Data
Output Discriminant Statistics

Obs Species _TYPE_ _NAME_ SepalLength SepalWidth PetalLength PetalWidth

47 Virginica COV PetalLength 30.33 7.14 30.46 4.88

48 Virginica COV PetalWidth 4.91 4.76 4.88 7.54

49 PCOV SepalLength 26.50 9.27 16.75 3.84

50 PCOV SepalWidth 9.27 11.54 5.52 3.27

51 PCOV PetalLength 16.75 5.52 18.52 4.27

52 PCOV PetalWidth 3.84 3.27 4.27 4.19

53 BCOV SepalLength 63.21 -19.95 165.25 71.28

54 BCOV SepalWidth -19.95 11.34 -57.24 -22.93

55 BCOV PetalLength 165.25 -57.24 437.10 186.77

56 BCOV PetalWidth 71.28 -22.93 186.77 80.41

57 COV SepalLength 68.57 -4.24 127.43 51.63

58 COV SepalWidth -4.24 19.00 -32.97 -12.16

59 COV PetalLength 127.43 -32.97 311.63 129.56

60 COV PetalWidth 51.63 -12.16 129.56 58.10

61 Setosa STD 3.52 3.79 1.74 1.05

62 Versicolor STD 5.16 3.14 4.70 1.98

63 Virginica STD 6.36 3.22 5.52 2.75

64 PSTD 5.15 3.40 4.30 2.05

65 BSTD 7.95 3.37 20.91 8.97

66 STD 8.28 4.36 17.65 7.62

67 Setosa CORR SepalLength 1.00 0.74 0.27 0.28

68 Setosa CORR SepalWidth 0.74 1.00 0.18 0.23

69 Setosa CORR PetalLength 0.27 0.18 1.00 0.33

70 Setosa CORR PetalWidth 0.28 0.23 0.33 1.00

71 Versicolor CORR SepalLength 1.00 0.53 0.75 0.55

72 Versicolor CORR SepalWidth 0.53 1.00 0.56 0.66

73 Versicolor CORR PetalLength 0.75 0.56 1.00 0.79

74 Versicolor CORR PetalWidth 0.55 0.66 0.79 1.00

75 Virginica CORR SepalLength 1.00 0.46 0.86 0.28

76 Virginica CORR SepalWidth 0.46 1.00 0.40 0.54

77 Virginica CORR PetalLength 0.86 0.40 1.00 0.32

78 Virginica CORR PetalWidth 0.28 0.54 0.32 1.00

79 PCORR SepalLength 1.00 0.53 0.76 0.36

80 PCORR SepalWidth 0.53 1.00 0.38 0.47

81 PCORR PetalLength 0.76 0.38 1.00 0.48

82 PCORR PetalWidth 0.36 0.47 0.48 1.00

83 BCORR SepalLength 1.00 -0.75 0.99 1.00

84 BCORR SepalWidth -0.75 1.00 -0.81 -0.76

85 BCORR PetalLength 0.99 -0.81 1.00 1.00

86 BCORR PetalWidth 1.00 -0.76 1.00 1.00

87 CORR SepalLength 1.00 -0.12 0.87 0.82

88 CORR SepalWidth -0.12 1.00 -0.43 -0.37

89 CORR PetalLength 0.87 -0.43 1.00 0.96

90 CORR PetalWidth 0.82 -0.37 0.96 1.00

91 Setosa STDMEAN -1.01 0.85 -1.30 -1.25

92 Versicolor STDMEAN 0.11 -0.66 0.28 0.17
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Output 35.3.8 continued

Discriminant Analysis of Fisher (1936) Iris Data
Output Discriminant Statistics

Obs Species _TYPE_ _NAME_ SepalLength SepalWidth PetalLength PetalWidth

93 Virginica STDMEAN 0.90 -0.19 1.02 1.08

94 Setosa PSTDMEAN -1.63 1.09 -5.34 -4.66

95 Versicolor PSTDMEAN 0.18 -0.85 1.17 0.62

96 Virginica PSTDMEAN 1.45 -0.25 4.17 4.04

97 LNDETERM 8.46 8.46 8.46 8.46

98 Setosa LNDETERM 5.35 5.35 5.35 5.35

99 Versicolor LNDETERM 7.55 7.55 7.55 7.55

100 Virginica LNDETERM 9.49 9.49 9.49 9.49

101 Setosa QUAD SepalLength -0.09 0.06 0.02 0.02

102 Setosa QUAD SepalWidth 0.06 -0.08 -0.01 0.01

103 Setosa QUAD PetalLength 0.02 -0.01 -0.19 0.09

104 Setosa QUAD PetalWidth 0.02 0.01 0.09 -0.53

105 Setosa QUAD _LINEAR_ 4.46 -0.76 3.36 -3.13

106 Setosa QUAD _CONST_ -121.83 -121.83 -121.83 -121.83

107 Versicolor QUAD SepalLength -0.05 0.02 0.04 -0.03

108 Versicolor QUAD SepalWidth 0.02 -0.10 -0.01 0.10

109 Versicolor QUAD PetalLength 0.04 -0.01 -0.10 0.13

110 Versicolor QUAD PetalWidth -0.03 0.10 0.13 -0.44

111 Versicolor QUAD _LINEAR_ 1.80 1.60 0.33 -1.47

112 Versicolor QUAD _CONST_ -76.55 -76.55 -76.55 -76.55

113 Virginica QUAD SepalLength -0.05 0.02 0.05 -0.01

114 Virginica QUAD SepalWidth 0.02 -0.08 -0.01 0.04

115 Virginica QUAD PetalLength 0.05 -0.01 -0.07 0.01

116 Virginica QUAD PetalWidth -0.01 0.04 0.01 -0.10

117 Virginica QUAD _LINEAR_ 0.74 1.32 0.62 0.97

118 Virginica QUAD _CONST_ -75.82 -75.82 -75.82 -75.82

Example 35.4: Linear Discriminant Analysis of Remote-Sensing Data on
Crops

In this example, the remote-sensing data are used. In this data set, the observations are grouped into five
crops: clover, corn, cotton, soybeans, and sugar beets. Four measures called x1 through x4 make up the
descriptive variables.

In the first PROC DISCRIM statement, the DISCRIM procedure uses normal-theory methods
(METHOD=NORMAL) assuming equal variances (POOL=YES) in five crops. The PRIORS state-
ment, PRIORS PROP, sets the prior probabilities proportional to the sample sizes. The LIST option lists the
resubstitution classification results for each observation (Output 35.4.2). The CROSSVALIDATE option
displays cross validation error-rate estimates (Output 35.4.3). The OUTSTAT= option stores the calibration
information in a new data set to classify future observations. A second PROC DISCRIM statement uses
this calibration information to classify a test data set. Note that the values of the identification variable,
xvalues, are obtained by rereading the x1 through x4 fields in the data lines as a single character variable.
The following statements produce Output 35.4.1 through Output 35.4.3:
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title 'Discriminant Analysis of Remote Sensing Data on Five Crops';

data crops;
input Crop $ 1-10 x1-x4 xvalues $ 11-21;
datalines;

Corn 16 27 31 33
Corn 15 23 30 30
Corn 16 27 27 26
Corn 18 20 25 23
Corn 15 15 31 32
Corn 15 32 32 15
Corn 12 15 16 73
Soybeans 20 23 23 25
Soybeans 24 24 25 32
Soybeans 21 25 23 24
Soybeans 27 45 24 12
Soybeans 12 13 15 42
Soybeans 22 32 31 43
Cotton 31 32 33 34
Cotton 29 24 26 28
Cotton 34 32 28 45
Cotton 26 25 23 24
Cotton 53 48 75 26
Cotton 34 35 25 78
Sugarbeets22 23 25 42
Sugarbeets25 25 24 26
Sugarbeets34 25 16 52
Sugarbeets54 23 21 54
Sugarbeets25 43 32 15
Sugarbeets26 54 2 54
Clover 12 45 32 54
Clover 24 58 25 34
Clover 87 54 61 21
Clover 51 31 31 16
Clover 96 48 54 62
Clover 31 31 11 11
Clover 56 13 13 71
Clover 32 13 27 32
Clover 36 26 54 32
Clover 53 08 06 54
Clover 32 32 62 16
;

title2 'Using the Linear Discriminant Function';

proc discrim data=crops outstat=cropstat method=normal pool=yes
list crossvalidate;

class Crop;
priors prop;
id xvalues;
var x1-x4;

run;
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Output 35.4.1 Linear Discriminant Function on Crop Data

Discriminant Analysis of Remote Sensing Data on Five Crops
Using the Linear Discriminant Function

The DISCRIM Procedure

Discriminant Analysis of Remote Sensing Data on Five Crops
Using the Linear Discriminant Function

The DISCRIM Procedure

Total Sample Size 36 DF Total 35

Variables 4 DF Within Classes 31

Classes 5 DF Between Classes 4

Number of Observations Read 36

Number of Observations Used 36

Class Level Information

Crop
Variable
Name Frequency Weight Proportion

Prior
Probability

Clover Clover 11 11.0000 0.305556 0.305556

Corn Corn 7 7.0000 0.194444 0.194444

Cotton Cotton 6 6.0000 0.166667 0.166667

Soybeans Soybeans 6 6.0000 0.166667 0.166667

Sugarbeets Sugarbeets 6 6.0000 0.166667 0.166667

Pooled Covariance Matrix
Information

Covariance
Matrix Rank

Natural Log of the
Determinant of the
Covariance Matrix

4 21.30189

Discriminant Analysis of Remote Sensing Data on Five Crops
Using the Linear Discriminant Function

The DISCRIM Procedure

Discriminant Analysis of Remote Sensing Data on Five Crops
Using the Linear Discriminant Function

The DISCRIM Procedure

Generalized Squared Distance to Crop

From Crop Clover Corn Cotton Soybeans Sugarbeets

Clover 2.37125 7.52830 4.44969 6.16665 5.07262

Corn 6.62433 3.27522 5.46798 4.31383 6.47395

Cotton 3.23741 5.15968 3.58352 5.01819 4.87908

Soybeans 4.95438 4.00552 5.01819 3.58352 4.65998

Sugarbeets 3.86034 6.16564 4.87908 4.65998 3.58352

Linear Discriminant Function for Crop

Variable Clover Corn Cotton Soybeans Sugarbeets

Constant -10.98457 -7.72070 -11.46537 -7.28260 -9.80179

x1 0.08907 -0.04180 0.02462 0.0000369 0.04245

x2 0.17379 0.11970 0.17596 0.15896 0.20988

x3 0.11899 0.16511 0.15880 0.10622 0.06540

x4 0.15637 0.16768 0.18362 0.14133 0.16408
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Output 35.4.2 Misclassified Observations: Resubstitution

Discriminant Analysis of Remote Sensing Data on Five Crops
Using the Linear Discriminant Function

The DISCRIM Procedure
Classification Results for Calibration Data: WORK.CROPS
Resubstitution Results using Linear Discriminant Function

Discriminant Analysis of Remote Sensing Data on Five Crops
Using the Linear Discriminant Function

The DISCRIM Procedure
Classification Results for Calibration Data: WORK.CROPS
Resubstitution Results using Linear Discriminant Function

Posterior Probability of Membership in Crop

xvalues From Crop
Classified into
Crop Clover Corn Cotton Soybeans Sugarbeets

16 27 31 33 Corn Corn 0.0894 0.4054 0.1763 0.2392 0.0897

15 23 30 30 Corn Corn 0.0769 0.4558 0.1421 0.2530 0.0722

16 27 27 26 Corn Corn 0.0982 0.3422 0.1365 0.3073 0.1157

18 20 25 23 Corn Corn 0.1052 0.3634 0.1078 0.3281 0.0955

15 15 31 32 Corn Corn 0.0588 0.5754 0.1173 0.2087 0.0398

15 32 32 15 Corn Soybeans * 0.0972 0.3278 0.1318 0.3420 0.1011

12 15 16 73 Corn Corn 0.0454 0.5238 0.1849 0.1376 0.1083

20 23 23 25 Soybeans Soybeans 0.1330 0.2804 0.1176 0.3305 0.1385

24 24 25 32 Soybeans Soybeans 0.1768 0.2483 0.1586 0.2660 0.1502

21 25 23 24 Soybeans Soybeans 0.1481 0.2431 0.1200 0.3318 0.1570

27 45 24 12 Soybeans Sugarbeets * 0.2357 0.0547 0.1016 0.2721 0.3359

12 13 15 42 Soybeans Corn * 0.0549 0.4749 0.0920 0.2768 0.1013

22 32 31 43 Soybeans Cotton * 0.1474 0.2606 0.2624 0.1848 0.1448

31 32 33 34 Cotton Clover * 0.2815 0.1518 0.2377 0.1767 0.1523

29 24 26 28 Cotton Soybeans * 0.2521 0.1842 0.1529 0.2549 0.1559

34 32 28 45 Cotton Clover * 0.3125 0.1023 0.2404 0.1357 0.2091

26 25 23 24 Cotton Soybeans * 0.2121 0.1809 0.1245 0.3045 0.1780

53 48 75 26 Cotton Clover * 0.4837 0.0391 0.4384 0.0223 0.0166

34 35 25 78 Cotton Cotton 0.2256 0.0794 0.3810 0.0592 0.2548

22 23 25 42 Sugarbeets Corn * 0.1421 0.3066 0.1901 0.2231 0.1381

25 25 24 26 Sugarbeets Soybeans * 0.1969 0.2050 0.1354 0.2960 0.1667

34 25 16 52 Sugarbeets Sugarbeets 0.2928 0.0871 0.1665 0.1479 0.3056

54 23 21 54 Sugarbeets Clover * 0.6215 0.0194 0.1250 0.0496 0.1845

25 43 32 15 Sugarbeets Soybeans * 0.2258 0.1135 0.1646 0.2770 0.2191

26 54  2 54 Sugarbeets Sugarbeets 0.0850 0.0081 0.0521 0.0661 0.7887

12 45 32 54 Clover Cotton * 0.0693 0.2663 0.3394 0.1460 0.1789

24 58 25 34 Clover Sugarbeets * 0.1647 0.0376 0.1680 0.1452 0.4845

87 54 61 21 Clover Clover 0.9328 0.0003 0.0478 0.0025 0.0165

51 31 31 16 Clover Clover 0.6642 0.0205 0.0872 0.0959 0.1322

96 48 54 62 Clover Clover 0.9215 0.0002 0.0604 0.0007 0.0173

31 31 11 11 Clover Sugarbeets * 0.2525 0.0402 0.0473 0.3012 0.3588

56 13 13 71 Clover Clover 0.6132 0.0212 0.1226 0.0408 0.2023

32 13 27 32 Clover Clover 0.2669 0.2616 0.1512 0.2260 0.0943

36 26 54 32 Clover Cotton * 0.2650 0.2645 0.3495 0.0918 0.0292

53 08 06 54 Clover Clover 0.5914 0.0237 0.0676 0.0781 0.2392

32 32 62 16 Clover Cotton * 0.2163 0.3180 0.3327 0.1125 0.0206

* Misclassified observation
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Output 35.4.2 continued

Discriminant Analysis of Remote Sensing Data on Five Crops
Using the Linear Discriminant Function

The DISCRIM Procedure
Classification Summary for Calibration Data: WORK.CROPS
Resubstitution Summary using Linear Discriminant Function

Discriminant Analysis of Remote Sensing Data on Five Crops
Using the Linear Discriminant Function

The DISCRIM Procedure
Classification Summary for Calibration Data: WORK.CROPS
Resubstitution Summary using Linear Discriminant Function

Number of Observations and Percent Classified into Crop

From Crop Clover Corn Cotton Soybeans Sugarbeets Total

Clover 6
54.55

0
0.00

3
27.27

0
0.00

2
18.18

11
100.00

Corn 0
0.00

6
85.71

0
0.00

1
14.29

0
0.00

7
100.00

Cotton 3
50.00

0
0.00

1
16.67

2
33.33

0
0.00

6
100.00

Soybeans 0
0.00

1
16.67

1
16.67

3
50.00

1
16.67

6
100.00

Sugarbeets 1
16.67

1
16.67

0
0.00

2
33.33

2
33.33

6
100.00

Total 10
27.78

8
22.22

5
13.89

8
22.22

5
13.89

36
100.00

Priors 0.30556 0.19444 0.16667 0.16667 0.16667

Error Count Estimates for Crop

Clover Corn Cotton Soybeans Sugarbeets Total

Rate 0.4545 0.1429 0.8333 0.5000 0.6667 0.5000

Priors 0.3056 0.1944 0.1667 0.1667 0.1667
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Output 35.4.3 Misclassified Observations: Cross Validation

Discriminant Analysis of Remote Sensing Data on Five Crops
Using the Linear Discriminant Function

The DISCRIM Procedure
Classification Summary for Calibration Data: WORK.CROPS

Cross-validation Summary using Linear Discriminant Function

Discriminant Analysis of Remote Sensing Data on Five Crops
Using the Linear Discriminant Function

The DISCRIM Procedure
Classification Summary for Calibration Data: WORK.CROPS

Cross-validation Summary using Linear Discriminant Function

Number of Observations and Percent Classified into Crop

From Crop Clover Corn Cotton Soybeans Sugarbeets Total

Clover 4
36.36

3
27.27

1
9.09

0
0.00

3
27.27

11
100.00

Corn 0
0.00

4
57.14

1
14.29

2
28.57

0
0.00

7
100.00

Cotton 3
50.00

0
0.00

0
0.00

2
33.33

1
16.67

6
100.00

Soybeans 0
0.00

1
16.67

1
16.67

3
50.00

1
16.67

6
100.00

Sugarbeets 2
33.33

1
16.67

0
0.00

2
33.33

1
16.67

6
100.00

Total 9
25.00

9
25.00

3
8.33

9
25.00

6
16.67

36
100.00

Priors 0.30556 0.19444 0.16667 0.16667 0.16667

Error Count Estimates for Crop

Clover Corn Cotton Soybeans Sugarbeets Total

Rate 0.6364 0.4286 1.0000 0.5000 0.8333 0.6667

Priors 0.3056 0.1944 0.1667 0.1667 0.1667

Next, you can use the calibration information stored in the Cropstat data set to classify a test data set. The
TESTLIST option lists the classification results for each observation in the test data set. The following
statements produce Output 35.4.4 and Output 35.4.5:

data test;
input Crop $ 1-10 x1-x4 xvalues $ 11-21;
datalines;

Corn 16 27 31 33
Soybeans 21 25 23 24
Cotton 29 24 26 28
Sugarbeets54 23 21 54
Clover 32 32 62 16
;

title2 'Classification of Test Data';

proc discrim data=cropstat testdata=test testout=tout testlist;
class Crop;
testid xvalues;
var x1-x4;

run;

proc print data=tout;
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title 'Discriminant Analysis of Remote Sensing Data on Five Crops';
title2 'Output Classification Results of Test Data';

run;

Output 35.4.4 Classification of Test Data

Discriminant Analysis of Remote Sensing Data on Five Crops
Classification of Test Data

The DISCRIM Procedure
Classification Results for Test Data: WORK.TEST

Classification Results using Linear Discriminant Function

Discriminant Analysis of Remote Sensing Data on Five Crops
Classification of Test Data

The DISCRIM Procedure
Classification Results for Test Data: WORK.TEST

Classification Results using Linear Discriminant Function

Posterior Probability of Membership in Crop

xvalues From Crop
Classified into
Crop Clover Corn Cotton Soybeans Sugarbeets

16 27 31 33 Corn Corn 0.0894 0.4054 0.1763 0.2392 0.0897

21 25 23 24 Soybeans Soybeans 0.1481 0.2431 0.1200 0.3318 0.1570

29 24 26 28 Cotton Soybeans * 0.2521 0.1842 0.1529 0.2549 0.1559

54 23 21 54 Sugarbeets Clover * 0.6215 0.0194 0.1250 0.0496 0.1845

32 32 62 16 Clover Cotton * 0.2163 0.3180 0.3327 0.1125 0.0206

* Misclassified observation

Discriminant Analysis of Remote Sensing Data on Five Crops
Classification of Test Data

The DISCRIM Procedure
Classification Summary for Test Data: WORK.TEST

Classification Summary using Linear Discriminant Function

Discriminant Analysis of Remote Sensing Data on Five Crops
Classification of Test Data

The DISCRIM Procedure
Classification Summary for Test Data: WORK.TEST

Classification Summary using Linear Discriminant Function

Observation Profile for Test Data

Number of Observations Read 5

Number of Observations Used 5

Number of Observations and Percent Classified into Crop

From Crop Clover Corn Cotton Soybeans Sugarbeets Total

Clover 0
0.00

0
0.00

1
100.00

0
0.00

0
0.00

1
100.00

Corn 0
0.00

1
100.00

0
0.00

0
0.00

0
0.00

1
100.00

Cotton 0
0.00

0
0.00

0
0.00

1
100.00

0
0.00

1
100.00

Soybeans 0
0.00

0
0.00

0
0.00

1
100.00

0
0.00

1
100.00

Sugarbeets 1
100.00

0
0.00

0
0.00

0
0.00

0
0.00

1
100.00

Total 1
20.00

1
20.00

1
20.00

2
40.00

0
0.00

5
100.00

Priors 0.30556 0.19444 0.16667 0.16667 0.16667

Error Count Estimates for Crop

Clover Corn Cotton Soybeans Sugarbeets Total

Rate 1.0000 0.0000 1.0000 0.0000 1.0000 0.6389

Priors 0.3056 0.1944 0.1667 0.1667 0.1667
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Output 35.4.5 Output Data Set of the Classification Results for Test Data

Discriminant Analysis of Remote Sensing Data on Five Crops
Output Classification Results of Test Data

Discriminant Analysis of Remote Sensing Data on Five Crops
Output Classification Results of Test Data

Obs Crop x1 x2 x3 x4 xvalues Clover Corn Cotton Soybeans Sugarbeets _INTO_

1 Corn 16 27 31 33 16 27 31 33 0.08935 0.40543 0.17632 0.23918 0.08972 Corn

2 Soybeans 21 25 23 24 21 25 23 24 0.14811 0.24308 0.11999 0.33184 0.15698 Soybeans

3 Cotton 29 24 26 28 29 24 26 28 0.25213 0.18420 0.15294 0.25486 0.15588 Soybeans

4 Sugarbeets 54 23 21 54 54 23 21 54 0.62150 0.01937 0.12498 0.04962 0.18452 Clover

5 Clover 32 32 62 16 32 32 62 16 0.21633 0.31799 0.33266 0.11246 0.02056 Cotton

In this next example, PROC DISCRIM uses normal-theory methods (METHOD=NORMAL) assuming
unequal variances (POOL=NO) for the remote-sensing data. The PRIORS statement, PRIORS PROP, sets the
prior probabilities proportional to the sample sizes. The CROSSVALIDATE option displays cross validation
error-rate estimates. Note that the total error count estimate by cross validation (0.5556) is much larger than
the total error count estimate by resubstitution (0.1111). The following statements produce Output 35.4.6:

title2 'Using Quadratic Discriminant Function';

proc discrim data=crops method=normal pool=no crossvalidate;
class Crop;
priors prop;
id xvalues;
var x1-x4;

run;

Output 35.4.6 Quadratic Discriminant Function on Crop Data

Discriminant Analysis of Remote Sensing Data on Five Crops
Using Quadratic Discriminant Function

The DISCRIM Procedure

Discriminant Analysis of Remote Sensing Data on Five Crops
Using Quadratic Discriminant Function

The DISCRIM Procedure

Total Sample Size 36 DF Total 35

Variables 4 DF Within Classes 31

Classes 5 DF Between Classes 4

Number of Observations Read 36

Number of Observations Used 36

Class Level Information

Crop
Variable
Name Frequency Weight Proportion

Prior
Probability

Clover Clover 11 11.0000 0.305556 0.305556

Corn Corn 7 7.0000 0.194444 0.194444

Cotton Cotton 6 6.0000 0.166667 0.166667

Soybeans Soybeans 6 6.0000 0.166667 0.166667

Sugarbeets Sugarbeets 6 6.0000 0.166667 0.166667
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Output 35.4.6 continued

Within Covariance Matrix Information

Crop
Covariance

Matrix Rank

Natural Log of the
Determinant of the
Covariance Matrix

Clover 4 23.64618

Corn 4 11.13472

Cotton 4 13.23569

Soybeans 4 12.45263

Sugarbeets 4 17.76293

Discriminant Analysis of Remote Sensing Data on Five Crops
Using Quadratic Discriminant Function

The DISCRIM Procedure

Discriminant Analysis of Remote Sensing Data on Five Crops
Using Quadratic Discriminant Function

The DISCRIM Procedure

Generalized Squared Distance to Crop

From Crop Clover Corn Cotton Soybeans Sugarbeets

Clover 26.01743 1320 104.18297 194.10546 31.40816

Corn 27.73809 14.40994 150.50763 38.36252 25.55421

Cotton 26.38544 588.86232 16.81921 52.03266 37.15560

Soybeans 27.07134 46.42131 41.01631 16.03615 23.15920

Sugarbeets 26.80188 332.11563 43.98280 107.95676 21.34645

Discriminant Analysis of Remote Sensing Data on Five Crops
Using Quadratic Discriminant Function

The DISCRIM Procedure
Classification Summary for Calibration Data: WORK.CROPS

Resubstitution Summary using Quadratic Discriminant Function

Discriminant Analysis of Remote Sensing Data on Five Crops
Using Quadratic Discriminant Function

The DISCRIM Procedure
Classification Summary for Calibration Data: WORK.CROPS

Resubstitution Summary using Quadratic Discriminant Function

Number of Observations and Percent Classified into Crop

From Crop Clover Corn Cotton Soybeans Sugarbeets Total

Clover 9
81.82

0
0.00

0
0.00

0
0.00

2
18.18

11
100.00

Corn 0
0.00

7
100.00

0
0.00

0
0.00

0
0.00

7
100.00

Cotton 0
0.00

0
0.00

6
100.00

0
0.00

0
0.00

6
100.00

Soybeans 0
0.00

0
0.00

0
0.00

6
100.00

0
0.00

6
100.00

Sugarbeets 0
0.00

0
0.00

1
16.67

1
16.67

4
66.67

6
100.00

Total 9
25.00

7
19.44

7
19.44

7
19.44

6
16.67

36
100.00

Priors 0.30556 0.19444 0.16667 0.16667 0.16667

Error Count Estimates for Crop

Clover Corn Cotton Soybeans Sugarbeets Total

Rate 0.1818 0.0000 0.0000 0.0000 0.3333 0.1111

Priors 0.3056 0.1944 0.1667 0.1667 0.1667
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Output 35.4.6 continued

Discriminant Analysis of Remote Sensing Data on Five Crops
Using Quadratic Discriminant Function

The DISCRIM Procedure
Classification Summary for Calibration Data: WORK.CROPS

Cross-validation Summary using Quadratic Discriminant Function

Discriminant Analysis of Remote Sensing Data on Five Crops
Using Quadratic Discriminant Function

The DISCRIM Procedure
Classification Summary for Calibration Data: WORK.CROPS

Cross-validation Summary using Quadratic Discriminant Function

Number of Observations and Percent Classified into Crop

From Crop Clover Corn Cotton Soybeans Sugarbeets Total

Clover 9
81.82

0
0.00

0
0.00

0
0.00

2
18.18

11
100.00

Corn 3
42.86

2
28.57

0
0.00

0
0.00

2
28.57

7
100.00

Cotton 3
50.00

0
0.00

2
33.33

0
0.00

1
16.67

6
100.00

Soybeans 3
50.00

0
0.00

0
0.00

2
33.33

1
16.67

6
100.00

Sugarbeets 3
50.00

0
0.00

1
16.67

1
16.67

1
16.67

6
100.00

Total 21
58.33

2
5.56

3
8.33

3
8.33

7
19.44

36
100.00

Priors 0.30556 0.19444 0.16667 0.16667 0.16667

Error Count Estimates for Crop

Clover Corn Cotton Soybeans Sugarbeets Total

Rate 0.1818 0.7143 0.6667 0.6667 0.8333 0.5556

Priors 0.3056 0.1944 0.1667 0.1667 0.1667
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Overview: DISTANCE Procedure
The DISTANCE procedure computes various measures of distance, dissimilarity, or similarity between the
observations (rows) of an input SAS data set, which can contain numeric or character variables, or both,
depending on which proximity measure is used.

The proximity measures are stored as a lower triangular matrix or a square matrix (depending on the SHAPE=
option) in an output data set that can then be used as input to the CLUSTER, MDS, and MODECLUS
procedures.
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The number of rows and columns in the output data set equals the number of observations in the input data
set. If the input data set contains BY groups, an output matrix is computed for each BY group with the size
determined by the maximum number of observations in any BY group.

The output data set is of type TYPE=DISTANCE or TYPE=SIMILAR, depending on the value of the
METHOD= option. See the METHOD= option for more information about the association between the
method and the output data set type.

Data set types do not persist when you copy or modify a data set. You must specify the TYPE= data set
option for the new data set, as in the following example:

data dist2(type=distance);
set dist;

run;

See the OUT= option for more information about data set type persistence.

PROC DISTANCE also provides various nonparametric and parametric methods for standardizing variables.
Different variables can be standardized with different methods.

Distance matrices are used frequently in data mining, genomics, marketing, financial analysis, management
science, education, chemistry, psychology, biology, and various other fields.

Levels of Measurement
Measurement of some attribute of a set of objects is the process of assigning numbers or other symbols
to the objects in such a way that properties of the numbers or symbols reflect properties of the attribute
being measured. There are different levels of measurement that involve different properties (relations and
operations) of the numbers or symbols. Associated with each level of measurement is a set of transformations
of the measurements that preserve the relevant properties; these transformations are called permissible
transformations. A particular way of assigning numbers or symbols to measure something is called a scale of
measurement.

The most commonly discussed levels of measurement are as follows:

Nominal Two objects are assigned the same symbol if they have the same value of the attribute.
Permissible transformations are any one-to-one or many-to-one transformation, although
a many-to-one transformation loses information.

Ordinal Objects are assigned numbers such that the order of the numbers reflects an order rela-
tion defined on the attribute. Two objects x and y with attribute values a.x/ and a.y/
are assigned numbers m.x/ and m.y/ such that if m.x/ > m.y/, then a.x/ > a.y/.
Permissible transformations are any monotone increasing transformation, although a
transformation that is not strictly increasing loses information.

Interval Objects are assigned numbers such that differences between the numbers reflect differ-
ences of the attribute. If m.x/�m.y/ > m.u/�m.v/, then a.x/� a.y/ > a.u/� a.v/.
Permissible transformations are any affine transformation t .m/ D c �mC d , where c
and d are constants; another way of saying this is that the origin and unit of measurement
are arbitrary.
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Log-interval Objects are assigned numbers such that ratios between the numbers reflect ratios of
the attribute. If m.x/=m.y/ > m.u/=m.v/, then a.x/=a.y/ > a.u/=a.v/. Permissible
transformations are any power transformation t .m/ D c�md , where c and d are constants.

Ratio Objects are assigned numbers such that differences and ratios between the numbers
reflect differences and ratios of the attribute. Permissible transformations are any linear
(similarity) transformation t .m/ D c �m, where c is a constant; another way of saying
this is that the unit of measurement is arbitrary.

Absolute Objects are assigned numbers such that all properties of the numbers reflect analogous
properties of the attribute. The only permissible transformation is the identity transforma-
tion.

Proximity measures provided in the DISTANCE procedure accept four levels of measurement: nominal,
ordinal, interval, and ratio. Ordinal variables are transformed to interval variables before processing. This is
done by replacing the data with their rank scores, and by assuming that the classes of an ordinal variable are
spaced equally along the interval scale. See the RANKSCORE= option in the section “PROC DISTANCE
Statement” on page 2260 for choices on assigning scores to ordinal variables. There are also different
approaches for how to transform an ordinal variable to an interval variable. See Anderberg (1973) for
alternatives.

Symmetric versus Asymmetric Nominal Variables
A binary variable contains two possible outcomes: 1 (positive/present) or 0 (negative/absent). If there is no
preference for which outcome should be coded as 0 and which as 1, the binary variable is called symmetric.
For example, the binary variable “is evergreen?” for a plant has the possible states “loses leaves in winter”
and “does not lose leaves in winter.” Both are equally valuable and carry the same weight when a proximity
measure is computed. Commonly used measures that accept symmetric binary variables include the Simple
Matching, Hamann, Roger and Tanimoto, Sokal and Sneath 1, and Sokal and Sneath 3 coefficients.

If the outcomes of a binary variable are not equally important, the binary variable is called asymmetric. An
example of such a variable is the presence or absence of a relatively rare attribute, such as “is color-blind”
for a human being. While you say that two people who are color-blind have something in common, you
cannot say that people who are not color-blind have something in common. The most important outcome is
usually coded as 1 (present) and the other is coded as 0 (absent). The agreement of two 1’s (a present-present
match or a positive match) is more significant than the agreement of two 0’s (an absent-absent match or a
negative match). Usually, the negative match is treated as irrelevant. Commonly used measures that accept
asymmetric binary variables include Jaccard, Dice, Russell and Rao, Binary Lance and Williams nonmetric,
and Kulcynski coefficients.

When nominal variables are employed, the comparison of one data unit with another can only be in terms of
whether the data units score the same or different on the variables. If a variable is defined as an asymmetric
nominal variable and two data units score the same but fall into the absent category, the absent-absent match
is excluded from the computation of the proximity measure.
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Standardization
Since variables with large variances tend to have more effect on the proximity measure than those with small
variances, it is recommended that you standardize the variables before the computation of the proximity
measure. The DISTANCE procedure provides a convenient way to standardize each variable with its own
method before the proximity measures are computed. You can also perform the standardization by using the
STDIZE procedure, with the limitation that all variables must be standardized with the same method.

Mandatory Standardization

Variable standardization is not required if any of the following conditions is true:

• if there is only one level of measurement

• if only asymmetric nominal and nominal levels are specified

• if the NOSTD option is specified in the PROC DISTANCE statement

Otherwise, standardization is mandatory.

When standardization is mandatory and no standardization method is specified, a default method of standard-
ization will be used. This default method is determined by the measurement level. In general, the default
method is STD for interval variables and is MAXABS for ratio variables except when METHOD=GOWER
or METHOD=DGOWER is specified. See the STD= option in the section “VAR Statement” on page 2266
for the default methods for GOWER and DGOWER as well as methods available for standardizing variables.

When standardization is mandatory, PROC DISTANCE ignores the REPONLY option, if it is specified.

Getting Started: DISTANCE Procedure

Creating a Distance Matrix as Input for a Subsequent Cluster Analysis
The following example demonstrates how you can use the DISTANCE procedure to obtain a distance matrix
that will be used as input to a subsequent clustering procedure.
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The following data, originated by A. Weber and cited in Hand et al. (1994, p. 297), measure the amount
of protein consumed for nine food groups in 25 European countries. The nine food groups are red meat
(RedMeat), white meat (WhiteMeat), eggs (Eggs), milk (Milk), fish (Fish), cereal (Cereal), starch (Starch),
nuts (Nuts), and fruits and vegetables (FruitVeg). Suppose you want to determine whether national figures in
protein consumption can be used to determine certain types or categories of countries; specifically, you want
to perform a cluster analysis to determine whether these 25 countries can be formed into groups suggested by
the data.

The following DATA step creates the SAS data set Protein:

data Protein;
input Country $14. RedMeat WhiteMeat Eggs Milk

Fish Cereal Starch Nuts FruitVeg;
datalines;

Albania 10.1 1.4 0.5 8.9 0.2 42.3 0.6 5.5 1.7
Austria 8.9 14.0 4.3 19.9 2.1 28.0 3.6 1.3 4.3
Belgium 13.5 9.3 4.1 17.5 4.5 26.6 5.7 2.1 4.0
Bulgaria 7.8 6.0 1.6 8.3 1.2 56.7 1.1 3.7 4.2
Czechoslovakia 9.7 11.4 2.8 12.5 2.0 34.3 5.0 1.1 4.0
Denmark 10.6 10.8 3.7 25.0 9.9 21.9 4.8 0.7 2.4
E Germany 8.4 11.6 3.7 11.1 5.4 24.6 6.5 0.8 3.6
Finland 9.5 4.9 2.7 33.7 5.8 26.3 5.1 1.0 1.4
France 18.0 9.9 3.3 19.5 5.7 28.1 4.8 2.4 6.5
Greece 10.2 3.0 2.8 17.6 5.9 41.7 2.2 7.8 6.5
Hungary 5.3 12.4 2.9 9.7 0.3 40.1 4.0 5.4 4.2
Ireland 13.9 10.0 4.7 25.8 2.2 24.0 6.2 1.6 2.9
Italy 9.0 5.1 2.9 13.7 3.4 36.8 2.1 4.3 6.7
Netherlands 9.5 13.6 3.6 23.4 2.5 22.4 4.2 1.8 3.7
Norway 9.4 4.7 2.7 23.3 9.7 23.0 4.6 1.6 2.7
Poland 6.9 10.2 2.7 19.3 3.0 36.1 5.9 2.0 6.6
Portugal 6.2 3.7 1.1 4.9 14.2 27.0 5.9 4.7 7.9
Romania 6.2 6.3 1.5 11.1 1.0 49.6 3.1 5.3 2.8
Spain 7.1 3.4 3.1 8.6 7.0 29.2 5.7 5.9 7.2
Sweden 9.9 7.8 3.5 4.7 7.5 19.5 3.7 1.4 2.0
Switzerland 13.1 10.1 3.1 23.8 2.3 25.6 2.8 2.4 4.9
UK 17.4 5.7 4.7 20.6 4.3 24.3 4.7 3.4 3.3
USSR 9.3 4.6 2.1 16.6 3.0 43.6 6.4 3.4 2.9
W Germany 11.4 12.5 4.1 18.8 3.4 18.6 5.2 1.5 3.8
Yugoslavia 4.4 5.0 1.2 9.5 0.6 55.9 3.0 5.7 3.2
;

The data set Protein contains the character variable Country and the nine numeric variables representing the
food groups. The $14. in the INPUT statement specifies that the variable Country has a length of 14.
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The following statements create the distance matrix and display part of it:

title 'Protein Consumption in Europe';
proc distance data=Protein out=Dist method=Euclid;

var interval(RedMeat--FruitVeg / std=Std);
id Country;

run;

proc print data=Dist(obs=10);
title2 'First 10 Observations in Output Data Set from PROC DISTANCE';

run;
title2;

An output SAS data set called Dist, which contains the distance matrix, is created through the OUT= option.
The METHOD=EUCLID option requests that Euclidean distances (which is the default) should be computed
and produces an output data set of TYPE=DISTANCE.1

The VAR statement lists the variables (RedMeat—FruitVeg) along with their measurement level to be used
in the analysis. An interval level of measurement is assigned to those variables. Since variables with large
variances tend to have more effect on the proximity measure than those with small variances, each variable is
standardized by the STD method to have a mean of 0 and a standard deviation of 1. This is done by adding “/
STD=STD” at the end of the variables list.

The ID statement specifies that the variable Country should be copied to the OUT= data set and used to
generate names for the distance variables. The distance variables in the output data set are named by the
values in the ID variable, and the maximum length for the names of these variables is 14.

There are 25 observations in the input data set; therefore, the output data set Dist contains a 25-by-25 lower
triangular matrix.

The PROC PRINT statement displays the first 10 observations in the output data set Dist as shown in
Figure 36.1.

1Data set types do not persist when you copy or modify a data set. You must specify the TYPE= data set option for the new data
set. See the METHOD= and OUT= options for more information about data set types.
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Figure 36.1 First 10 Observations in the Output Data Set from PROC DISTANCE

Protein Consumption in Europe
First 10 Observations in Output Data Set from PROC DISTANCE

Protein Consumption in Europe
First 10 Observations in Output Data Set from PROC DISTANCE

Obs Country Albania Austria Belgium Bulgaria Czechoslovakia Denmark E_Germany Finland

1 Albania 0.00000 . . . . . . .

2 Austria 6.12388 0.00000 . . . . . .

3 Belgium 5.94109 2.44987 0.00000 . . . . .

4 Bulgaria 2.76446 4.88331 5.22711 0.00000 . . . .

5 Czechoslovakia 5.13959 2.11498 2.21330 3.94761 0.00000 . . .

6 Denmark 6.61002 3.01392 2.52541 6.00803 3.34049 0.00000 . .

7 E Germany 6.39178 2.56341 2.10211 5.40824 1.87962 2.72112 0.00000 .

8 Finland 5.81458 4.04271 3.45779 5.74882 3.91378 2.61570 3.99426 0.00000

9 France 6.29601 3.58891 2.19329 5.54675 3.36011 3.65772 3.78184 4.56796

10 Greece 4.24495 5.16330 4.69515 3.74849 4.86684 5.59084 5.61496 5.47453

Obs France Greece Hungary Ireland Italy Netherlands Norway Poland Portugal Romania Spain

1 . . . . . . . . . . .

2 . . . . . . . . . . .

3 . . . . . . . . . . .

4 . . . . . . . . . . .

5 . . . . . . . . . . .

6 . . . . . . . . . . .

7 . . . . . . . . . . .

8 . . . . . . . . . . .

9 0.00000 . . . . . . . . . .

10 4.54456 0 . . . . . . . . .

Obs Sweden Switzerland UK USSR W_Germany Yugoslavia

1 . . . . . .

2 . . . . . .

3 . . . . . .

4 . . . . . .

5 . . . . . .

6 . . . . . .

7 . . . . . .

8 . . . . . .

9 . . . . . .

10 . . . . . .

The following statements produce the dendrogram in Figure 36.2:

ods graphics on;

proc cluster data=Dist method=Ward plots=dendrogram(height=rsq);
id Country;

run;
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The CLUSTER procedure performs a Ward’s minimum-variance cluster analysis based on the distance matrix
created by PROC DISTANCE. PROC CLUSTER, along with ODS Graphics, produces the dendrogram
shown in Figure 36.2. The option PLOTS=DENDROGRAM(HEIGHT=RSQ) specifies the squared multiple
correlation as the height variable in the dendrogram.

Figure 36.2 Dendrogram of R Square
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After inspecting the dendrogram in Figure 36.2, you will see that when the countries are grouped into six
clusters, the proportion of variance accounted for by these clusters is slightly less than 70% (69.3%). The 25
countries are clustered as follows:

• Balkan countries: Albania, Bulgaria, Romania, and Yugoslavia

• Mediterranean countries: Greece and Italy

• Iberian countries: Portugal and Spain

• Western European countries: Austria, Netherlands, Switzerland, Belgium, former West Germany,
Ireland, France, and U.K.

• Scandinavian countries: Denmark, Norway, Finland, and Sweden

• Eastern European countries: former Czechoslovakia, former East Germany, Poland, former U.S.S.R.,
and Hungary

Syntax: DISTANCE Procedure
The following statements are available in the DISTANCE procedure:

PROC DISTANCE < options > ;
BY variables ;
COPY variables ;
FREQ variable ;
ID variable ;
VAR level (variables < / options >) ;
WEIGHT variable ;

Both the PROC DISTANCE statement and the VAR statement are required.
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PROC DISTANCE Statement
PROC DISTANCE < options > ;

The PROC DISTANCE statement invokes the DISTANCE procedure. Table 36.1 summarizes the options
available in the PROC DISTANCE statement. These options are discussed in the following section.

Table 36.1 Summary of PROC DISTANCE Statement Options

Option Description

Standardize variables
ADD= Specifies the constant to add to each value after standardizing and multiplying by

the value specified in the MULT= option
FUZZ= Specifies the relative fuzz factor for writing the output
INITIAL= Specifies the method for computing initial estimates for the A-estimates
MULT= Specifies the constant to multiply each value by after standardizing
NORM Normalizes the scale estimator to be consistent for the standard deviation of a

normal distribution
NOSTD Suppresses standardization
SNORM Normalizes the scale estimator to have an expectation of approximately 1 for a

standard normal distribution
STDONLY Standardizes variables only (suppresses computation of the distance matrix)
VARDEF= Specifies the variances divisor

Generate distance matrix
ABSENT= Specifies the value to be used as an absence value for all the asymmetric nominal

variables
METHOD= Specifies the method for computing proximity measures
PREFIX= Specifies a prefix for naming the distance variables in the OUT= data set
RANKSCORE= Specifies the method of assigning scores to ordinal variables
SHAPE= Specifies the shape of the proximity matrix to be stored in the OUT= data set
UNDEF= Specifies the numeric constant used to replace undefined distances

Replace missing values
NOMISS Omits observations with missing values from computation of the location and scale

measures, if standardization applies; outputs missing values to the distance matrix
for observations with missing values

REPLACE Replaces missing data with zero in the standardized data
REPONLY Replaces missing data with the location measure (does not standardize the data)

Specify data set details
DATA= Specifies the input data set
OUT= Specifies the output data set
OUTSDZ= Specifies the output data set for standardized scores
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These options and their abbreviations are described (in alphabetical order) in the remainder of this section.

ABSENT=number | qs
specifies the value to be used as an absence value in an irrelevant absent-absent match for all of the
asymmetric nominal variables. If you want to specify a different absence value for a particular variable,
use the ABSENT= option in the VAR statement. See the ABSENT= option in the section “VAR
Statement” on page 2266 for details.

An absence value for a variable can be either a numeric value or a quoted string consisting of
combinations of characters. For instance, ., -999, and “NA” are legal values for the ABSENT= option.

The default absence value for a character variable is “NONE” (notice that a blank value is considered a
missing value), and the default absence value for a numeric variable is 0.

ADD=c
specifies a constant, c, to add to each value after standardizing and multiplying by the value you specify
in the MULT= option. The default value is 0.

DATA=SAS-data-set
specifies the input data set containing observations from which the proximity is computed. If you omit
the DATA= option, the most recently created SAS data set is used.

FUZZ=c
specifies the relative fuzz factor for computing the standardized scores. The default value is 1E–14.
For the OUTSDZ= data set, the score is computed as follows:

if jstandardized scoresj < m � c; then standardized scores D 0

where m is the numeric constant specified in the MULT= option, or 1 if MULT= option is not specified.

INITIAL=method
specifies the method of computing initial estimates for the A-estimates (ABW, AWAVE, and AHUBER).
The following methods are not allowed for the INITIAL= option: ABW, AHUBER, AWAVE, and IN.

The default value is INITIAL=MAD.

METHOD=method
specifies the method of computing proximity measures.

For use in PROC CLUSTER, distance or dissimilarity measures such as METHOD=EUCLID or
METHOD=DGOWER should be chosen.

The following six tables outline the proximity measures available for the METHOD= option. These
tables are classified by levels of measurement accepted by each method. Each table contains four or
five columns: the Method column shows the proximity measures, one or two Range columns show the
upper and lower bounds, and the TYPE= column shows the type of proximity. The TYPE= column
contains SIMILAR if a method generates similarity measures or DISTANCE if a method generates
distance or dissimilarity measures. The output data set is of the type shown. For more information
about the output data set, see the OUT= option.

For formulas and descriptions of these methods, see the section “Details: DISTANCE Procedure” on
page 2273.
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Table 36.2 shows the range and output matrix type of the GOWER and DGOWER methods. These
two methods accept all measurement levels including ratio, interval, ordinal, nominal, and asymmetric
nominal. METHOD=GOWER or METHOD=DGOWER always implies standardization. Assuming
all the numeric (ordinal, interval, and ratio) variables are standardized by their corresponding default
methods, the possible range values for both methods are from 0 and 1, inclusive. For more information
about the default methods of standardization for METHOD=GOWER or METHOD=DGOWER, see
the STD= option in the section “VAR Statement” on page 2266.

Table 36.2 Methods That Accept All Measurement Levels

Method Description Range TYPE=
GOWER Gower and Legendre (1986) similarity 0 to 1 SIMILAR
DGOWER 1 minus GOWER 0 to 1 DISTANCE

Table 36.3 shows methods that accept ratio, interval, and ordinal variables.

Table 36.3 Methods That Accept Ratio, Interval, and Ordinal Variables

Method Description Range TYPE=
EUCLID Euclidean distance � 0 DISTANCE
SQEUCLID Squared Euclidean distance � 0 DISTANCE
SIZE Size distance � 0 DISTANCE
SHAPE Shape distance � 0 DISTANCE
COV Covariance � 0 SIMILAR
CORR Correlation –1 to 1 SIMILAR
DCORR Correlation transformed to Euclidean distance 0 to 2 DISTANCE
SQCORR Squared correlation 0 to 1 SIMILAR
DSQCORR One minus squared correlation 0 to 1 DISTANCE
L(p) Minkowski (Lp) distance, where p is a positive nu-

meric value
� 0 DISTANCE

CITYBLOCK L1, city-block, or Manhattan distance � 0 DISTANCE
CHEBYCHEV L1 � 0 DISTANCE
POWER(p; r) Generalized Euclidean distance where p is a positive

numeric value and r is a nonnegative numeric value.
The distance between two observations is the rth root
of sum of the absolute differences to the pth power
between the values for the observations.

� 0 DISTANCE

Table 36.4 shows methods that accept ratio variables. Notice that all possible range values are
nonnegative, because ratio variables are assumed to be positive.
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Table 36.4 Methods That Accept Ratio Variables

Method Description Range TYPE=
SIMRATIO Similarity ratio (if variables are binary, this is the

Jaccard coefficient)
0 to 1 SIMILAR

DISRATIO One minus similarity ratio 0 to 1 DISTANCE
NONMETRIC Lance and Williams nonmetric coefficient 0 to 1 DISTANCE
CANBERRA Canberra metric distance coefficient 0 to 1 DISTANCE
COSINE Cosine coefficient 0 to 1 SIMILAR
DOT Dot (inner) product coefficient � 0 SIMILAR
OVERLAP Overlap similarity � 0 SIMILAR
DOVERLAP Overlap dissimilarity � 0 DISTANCE
CHISQ Chi-square coefficient � 0 DISTANCE
CHI Square root of chi-square coefficient � 0 DISTANCE
PHISQ Phi-square coefficient � 0 DISTANCE
PHI Square root of phi-square coefficient � 0 DISTANCE

Table 36.5 shows methods that accept nominal variables.

Table 36.5 Methods That Accept Nominal Variables

Method Description Range TYPE=
HAMMING Hamming distance 0 to v DISTANCE
MATCH Simple matching coefficient 0 to 1 SIMILAR
DMATCH Simple matching coefficient transformed to Eu-

clidean distance
0 to 1 DISTANCE

DSQMATCH Simple matching coefficient transformed to
squared Euclidean distance

0 to 1 DISTANCE

HAMANN Hamann coefficient –1 to 1 SIMILAR
RT Roger and Tanimoto 0 to 1 SIMILAR
SS1 Sokal and Sneath 1 0 to 1 SIMILAR
SS3 Sokal and Sneath 3 0 to 1 SIMILAR

Note that v denotes the number of variables (dimensionality).

Table 36.6 shows methods that accept asymmetric nominal variables. Use the ABSENT= option to
create a value to be considered absent.

Table 36.6 Methods That Accept Asymmetric Nominal Variables

Method Description Range TYPE=
DICE Dice coefficient or Czekanowski/Sorensen similarity

coefficient
0 to 1 SIMILAR

RR Russell and Rao 0 to 1 SIMILAR
BLWNM Binary Lance and Williams nonmetric, or Bray-Curtis

coefficient
0 to 1 DISTANCE

K1 Kulcynski 1 � 0 SIMILAR
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Table 36.7 shows methods that accept asymmetric nominal and ratio variables. Use the ABSENT=
option to create a value to be considered absent. The table contains five columns. The third column
contains possible range values if only one level of measurement (either ratio or asymmetric nominal
but not both) is specified; the fourth column contains possible range values if both levels are specified.

The JACCARD method is equivalent to the SIMRATIO method if there is no asymmetric nominal
variable; if both ratio and asymmetric nominal variables are present, the coefficient is computed as
the sum of the coefficient from the ratio variables and the coefficient from the asymmetric nominal
variables. See “Proximity Measures” in the section “Details: DISTANCE Procedure” on page 2273 for
the formula and descriptions of the JACCARD method.

Table 36.7 Methods That Accept Asymmetric Nominal and Ratio Variables

Method Description Range (One Level) Range (Two Levels) TYPE=
JACCARD Jaccard similarity

coefficient
0 to 1 0 to 2 SIMILAR

DJACCARD Jaccard dissimilarity
coefficient

0 to 1 0 to 2 DISTANCE

MULT=c
specifies a numeric constant, c, by which to multiply each value after standardizing. The default value
is 1.

NOMISS
omits observations with missing values from computation of the location and scale measures when
standardizing; generates undefined (missing) distances for observations with missing values when
computing distances. Use the UNDEF= option to specify the undefined values.

If a distance matrix is created to be used as an input to PROC CLUSTER, the NOMISS option should
not be used because PROC CLUSTER does not accept distance matrices with missing values.

NORM
normalizes the scale estimator to be consistent for the standard deviation of a normal distribution when
you specify the option STD=AGK, STD=IQR, STD=MAD, or STD=SPACING in the VAR statement.

NOSTD
suppresses standardization of the variables. The NOSTD option should not be specified with the
STDONLY option or with the REPLACE option.

OUT=SAS-data-set
specifies the name of the SAS data set created by PROC DISTANCE. The output data set contains the
BY variables, the ID variable, computed distance variables, the COPY variables, the FREQ variable,
and the WEIGHT variables.

If you omit the OUT= option, PROC DISTANCE creates an output data set named according to the
DATAn convention.

The output data set is of type TYPE=DISTANCE or TYPE=SIMILAR. See the METHOD= option
for more information about the association between the method and the output data set type. Data set
types do not persist when you copy or modify a data set. You must specify the TYPE= data set option
for the new data set, as in the following example:
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data dist2(type=distance);
set dist;

run;

If you do not specify the TYPE=DISTANCE data set option, the new data set is the default
TYPE=DATA. If you use the new data set in a procedure that accepts both TYPE=DATA or
TYPE=DISTANCE data sets (such as PROC CLUSTER or PROC MODECLUS), the results will be
incorrect.

OUTSDZ=SAS-data-set
specifies the name of the SAS data set containing the standardized scores. The output data set contains
a copy of the DATA= data set, except that the analyzed variables have been standardized. Analyzed
variables are those listed in the VAR statement.

PREFIX=name
specifies a prefix for naming the distance variables in the OUT= data set. By default, the names are
Dist1, Dist2, . . . , Distn. If you specify PREFIX=ABC, the variables are named ABC1, ABC2, . . . ,
ABCn. If the ID statement is also specified, the variables are named by appending the value of the ID
variable to the prefix.

RANKSCORE=MIDRANK | INDEX
specifies the method of assigning scores to ordinal variables. The available methods are listed as
follows:

MIDRANK assigns consecutive integers to each category with consideration of the frequency
value. This is the default method.

INDEX assigns consecutive integers to each category regardless of frequencies.

The following example explains how each method assigns the rank scores. Suppose the data contain
an ordinal variable ABC with values A, B, C. There are two ways to assign numbers. One is to use
midranks, which depend on the frequencies of each category. Another is to assign consecutive integers
to each category, regardless of frequencies.

Table 36.8 Example of Assigning Rank Scores

ABC MIDRANK INDEX
A 1.5 1
A 1.5 1
B 4 2
B 4 2
B 4 2
C 6 3

REPLACE
replaces missing data with zero in the standardized data (to correspond to the location measure before
standardizing). To replace missing data with something else, use the MISSING= option in the VAR
statement. The REPLACE option implies standardization.

You cannot specify the following options together:
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• both the REPLACE and the REPONLY options

• both the REPLACE and the NOSTD options

REPONLY
measure specified by the MISSING= option or the STD= option (if the MISSING= option is
not specified), but does not standardize the data. If the MISSING= option is not specified and
METHOD=GOWER is specified, missing values are replaced by the location measure from the
RANGE method (the minimum value), no matter what the value of the STD= option is.

You cannot specify both the REPLACE and the REPONLY options.

SHAPE=TRIANGLE | TRI | SQUARE | SQU | SQR
specifies the shape of the proximity matrix to be stored in the OUT= data set. SHAPE=TRIANGLE
requests the matrix to be stored as a lower triangular matrix; SHAPE=SQUARE requests that the
matrix be stored as a square matrix. Use SHAPE=SQUARE if the output data set is to be used as input
to the MODECLUS procedures. The default is TRIANGLE.

SNORM
normalizes the scale estimator to have an expectation of approximately 1 for a standard normal
distribution when the STD=SPACING option is specified.

STDONLY
standardizes variables only and computes no distance matrix. You must use the OUTSDZ= option to
save the standardized scores. You cannot specify both the STDONLY option and the NOSTD option.

UNDEF=n
specifies the numeric constant used to replace undefined distances, such as when an observation has all
missing values, or if a divisor is zero.

VARDEF=DF | N | WDF | WEIGHT | WGT
specifies the divisor to be used in the calculation of distance, dissimilarity, or similarity measures, and
for standardizing variables whenever a variance or covariance is computed. By default, VARDEF=DF.
The values and associated divisors are as follows:

Value Divisor Formula
DF degrees of freedom n � 1

N number of observations n
WDF sum of weights minus 1 (

P
i wi / � 1

WEIGHT | WGT sum of weights
P
i wi

VAR Statement
VAR level (variables < / options >)< level (variables < / options >). . . > ;

where the syntax for the options is as follows:

ABSENT=value
MISSING=miss-method | value
ORDER=order-option
STD=std-method
WEIGHTS=weight-list
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The VAR statement lists variables from which distances are to be computed. The VAR statement is required.
The variables can be numeric or character depending on their measurement levels. A variable cannot appear
more than once in either the same list or a different list.

level is required. It declares the levels of measurement for those variables specified within the parentheses.
Available values for level are as follows:

ANOMINAL variables are asymmetric nominal and can be either numeric or character.

NOMINAL variables are symmetric nominal and can be either numeric or character.

ORDINAL variables are ordinal and can be either numeric or character. Values of ordinal variables
are replaced by their corresponding rank scores. If standardization is required, the
standardized rank scores are output to the data set specified in the OUTSDZ= option. See
the RANKSCORE= option in the PROC DISTANCE statement for methods available
for assigning rank scores to ordinal variables. After being replaced by scores, ordinal
variables are considered interval.

INTERVAL variables are interval and numeric.

RATIO variables are ratio and numeric. Ratio variables should always contain positive measure-
ments.

Each variable list can be followed by an option list. Use “/ ” after the list of variables to start the option list.
An option list contains options that are applied to the variables. The following options are available in the
option list:

ABSENT= specifies the value to be used as an absence value in an irrelevant absent-absent match for
asymmetric nominal variables.

MISSING= specifies the method (or numeric value) with which to replace missing data.

ORDER= selects the order for assigning scores to ordinal variables.

STD= selects the standardization method.

WEIGHTS= assigns weights to the variables in the list.

If an option is missing from the current attribute list, PROC DISTANCE provides default values for all the
variables in the current list.

For example, in the VAR statement

var ratio(x1-x4/std= mad weights= .5 .5 .1 .5 missing= -99)
interval(x5/std= range)
ordinal(x6/order= desc);

the first option list defines x1–x4 as ratio variables to be standardized by the MAD method. Also, any missing
values in x1–x4 should be replaced by –99. x1 is given a weight of 0.5, x2 is given a weight of 0.5, x3 is
given a weight of 0.1, and x4 is given a weight of 0.5.

The second option list defines x5 as an interval variable to be standardized by the RANGE method. If the
REPLACE option is specified in the PROC DISTANCE statement, missing values in x5 are replaced by the
location estimate from the RANGE method. By default, x5 is given a weight of 1.

The last option list defines x6 as an ordinal variable. The scores are assigned from highest to lowest by its
unformatted values. Although the STD= option is not specified, x6 is standardized by the default method
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(STD) because there is more than one level of measurements (ratio, interval, and ordinal) in the VAR
statement. Again, if the REPLACE option is specified, missing values in x6 are replaced by the location
estimate from the STD method. Finally, by default, x6 is given a weight of 1.

More details for the options are explained as follows.

STD=std-method
specifies the standardization method. Valid values for std-method are MEAN, MEDIAN, SUM,
EUCLEN, USTD, STD, RANGE, MIDRANGE, MAXABS, IQR, MAD, ABW, AHUBER, AWAVE,
AGK, SPACING, and L. Table 36.9 lists available methods of standardization as well as their corre-
sponding location and scale measures.

Table 36.9 Available Standardization Methods

Method Scale Location
MEAN 1 mean
MEDIAN 1 median
SUM sum 0
EUCLEN Euclidean length 0
USTD standard deviation about origin 0
STD standard deviation mean
RANGE range minimum
MIDRANGE range/2 midrange
MAXABS maximum absolute value 0
IQR interval quartile range median
MAD median absolute deviation from

median
median

ABW(c) biweight A-estimate biweight 1-step M-estimate
AHUBER(c) Huber A-estimate Huber 1-step M-estimate
AWAVE(c) Wave 1-step M-estimate Wave A-estimate
AGK(p) AGK estimate (ACECLUS) mean
SPACING(p) minimum spacing mid minimum-spacing
L(p) Lp Lp

These standardization methods are further documented in the section on the METHOD= option in the
PROC STDIZE statement of the STDIZE procedure (see the section “Standardization Methods” on
page 7845 in Chapter 94, “The STDIZE Procedure”).

Standardization is not required if there is only one level of measurement, or if only asymmetric nominal
and nominal levels are specified; otherwise, standardization is mandatory. When standardization is
mandatory, a default method is provided when the STD= option is not specified. You can suppress
the mandatory standardization by using the NOSTD option in the PROC DISTANCE statement. See
the NOSTD option in the section “PROC DISTANCE Statement” on page 2260 and the section
“Mandatory Standardization” on page 2254 for details.

The default method is STD for standardizing interval variables and MAXABS for standardizing ratio
variables unless METHOD=GOWER or METHOD=DGOWER is specified. If METHOD=GOWER
is specified, interval variables are standardized by the RANGE method, and whatever is specified in
the STD= option is ignored; if METHOD=DGOWER is specified, the RANGE method is the default
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standardization method for interval variables. The MAXABS method is the default standardization
method for ratio variables for both the GOWER and DGOWER methods.

Notice that a ratio variable should always be positive.

Table 36.10 lists standardization methods and the levels of measurement that can be accepted by each
method. For example, the SUM method can be used to standardize ratio variables but not interval or
ordinal variables. Also, the AGK and SPACING methods should not be used to standardize ordinal
variables. If you apply AGK and SPACING to ranks, the results are degenerate because all the spacings
of a given order are equal.

Table 36.10 Legitimate Levels of Measurements for Each Method

Standardization Legitimate
Method Levels of Measurement
MEAN ratio, interval, ordinal
MEDIAN ratio, interval, ordinal
SUM ratio
EUCLEN ratio
USTD ratio
STD ratio, interval, ordinal
RANGE ratio, interval, ordinal
MIDRANGE ratio, interval, ordinal
MAXABS ratio
IQR ratio, interval, ordinal
MAD ratio, interval, ordinal
ABW(c) ratio, interval, ordinal
AHUBER(c) ratio, interval, ordinal
AWAVE(c) ratio, interval, ordinal
AGK(p) ratio, interval
SPACING(p) ratio, interval
L(p) ratio, interval, ordinal

ABSENT=numner | qs
specifies the value to be used as an absence value in an irrelevant absent-absent match for asymmetric
nominal variables. The absence value specified here overwrites the absence value specified through the
ABSENT= option in the PROC DISTANCE statement for those variables in the current variable list.

An absence value for a variable can be either a numeric value or a quoted string consisting of
combinations of characters. For instance, ., –999, “NA” are legal values for the ABSENT= option.

The default for an absence value for a character variable is “NONE” (notice that a blank value is
considered a missing value), and the default for an absence value for a numeric variable is 0.

MISSING=miss-method | value
specifies the method or a numeric value for replacing missing values. If you omit the MISSING=
option, the REPLACE option replaces missing values with the location measure given by the STD=
option. Specify the MISSING= option when you want to replace missing values with a different value.
You can specify any method that is valid in the STD= option. The corresponding location measure is
used to replace missing values.
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If a numeric value is given, the value replaces missing values after standardizing the data. However,
when standardization is not mandatory, you can specify the REPONLY option with the MISSING=
option to suppress standardization for cases in which you want only to replace missing values.

If the NOSTD option is specified, there is no standardization, but missing values are replaced by
the corresponding location measures or by the numeric value of the MISSING= option. See the
section “Missing Values” on page 2279 for details about missing values replacement with and without
standardization.

ORDER=ASCENDING | DESCENDING | ASCFORMATTED | DESFORMATTED | DSORDER
ORDER=ASC | DESC | ASCFMT | DESFMT | DATA

specifies the order for assigning score to ordinal variables. The value for the ORDER= option can be
one of the following:

ASCENDING scores are assigned in lowest-to-highest order of unformatted values.

DESCENDING scores are assigned in highest-to-lowest order of unformatted values.

ASCFORMATTED scores are assigned in ascending order by their formatted values. This
option can be applied to character variables only, since unformatted values
are always used for numeric variables.

DESFORMATTED scores are assigned in descending order by their formatted values. This
option can be applied to character variables only, since unformatted values
are always used for numeric variables.

DSORDER scores are assigned according to the order of their appearance in the input
data set.

The default value is ASCENDING.

WEIGHTS=weight-list
specifies a list of values for weighting individual variables while computing the proximity. Values in
this list can be separated by blanks or commas. You can include one or more items of the form start
TO stop BY increment . This list should contain at least one weight. The maximum number of weights
you can list is equal to the number of variables. If the number of weights is less than the number of
variables, the last value in the weight-list is used for the rest of the variables; conversely, if the number
of weights is greater than the number of variables, the trailing weights are discarded.

The default value is 1.

ID Statement
ID variable ;

The ID statement specifies a single variable to be copied to the OUT= data set and used to generate names
for the distance variables. The ID variable must be character.

Typically, each ID value occurs only once in the input data set or, if you use a BY statement, only once within
a BY group.

If you specify both the ID and BY statements, the ID variable must have the same values in the same order in
each BY group.
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COPY Statement
COPY variables ;

The COPY statement specifies a list of additional variables to be copied to the OUT= data set.

BY Statement
BY variables ;

You can specify a BY statement with PROC DISTANCE to obtain separate analyses of observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the DISTANCE procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

FREQ Statement
FREQ j FREQUENCY variable ;

The frequency variable is used for either standardizing variables or assigning rank scores to the ordinal
variables. It has no direct effect on computing the distances.

For standardizing variables and assigning rank scores, PROC DISTANCE treats the data set as if each
observation appeared n times, where n is the value of the FREQ variable for the observation. Nonintegral
values of the FREQ variable are truncated to the largest integer less than the FREQ value. If the FREQ
variable has a value that is less than 1 or is missing, the observation is not used in the analysis.

WEIGHT Statement
WGT jWEIGHT variable ;



2272 F Chapter 36: The DISTANCE Procedure

The WEIGHT statement specifies a numeric variable in the input data set with values that are used to weight
each observation. This weight variable is used for standardizing variables rather than computing the distances.
Only one variable can be specified.

The WEIGHT variable values can be nonintegers. An observation is used in the analysis only if the value of
the WEIGHT variable is greater than zero. The WEIGHT variable applies to variables that are standardized
by the following options: STD=MEAN, STD=SUM, STD=EUCLEN, STD=USTD, STD=STD, STD=AGK,
or STD=L.

PROC DISTANCE uses the value of the WEIGHT variable wi to compute the sample mean, uncorrected
sample variances, and sample variances as follows:

xw D
X
i

wixi=
X
i

wi

u2w D
X
i

wix
2
i =d

s2w D
X
i

wi .xi � xw/
2=d

wi is the weight value of the ith observation, xi is the value of the ith observation, and d is the divisor
controlled by the VARDEF= option (see the VARDEF= option in the PROC DISTANCE statement for
details).

PROC DISTANCE uses the value of the WEIGHT variable to calculate the following statistics for standard-
ization:

MEAN the weighted mean, xw
SUM the weighted sum,

P
i wixi

USTD the weighted uncorrected standard deviation,
p
u2w

STD the weighted standard deviation,
p
s2w

EUCLEN the weighted Euclidean length, computed as the square root of the weighted uncorrected
sum of squares:sX

i

wix
2
i

AGK the AGK estimate. This estimate is documented further in the ACECLUS procedure as the
METHOD=COUNT option. See the discussion of the WEIGHT statement in Chapter 24,
“The ACECLUS Procedure,” for information about how the WEIGHT variable is applied
to the AGK estimate.

L the Lp estimate. This estimate is documented further in the FASTCLUS procedure as
the LEAST= option. See the discussion of the WEIGHT statement in Chapter 38, “The
FASTCLUS Procedure,” for information about how the WEIGHT variable is used to
compute weighted cluster means. Note that the number of clusters is always 1.
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Details: DISTANCE Procedure

Proximity Measures
The following notation is used in this section:

v the number of variables or the dimensionality

xj data for observation x and the jth variable, where j D 1 to v

yj data for observation y and the jth variable, where j D 1 to v

wj weight for the jth variable from the WEIGHTS= option in the VAR statement. wj D 0
when either xj or yj is missing.

W the sum of total weights. No matter if the observation is missing or not, its weight is
added to this metric.

Nx mean for observation x

Nx D
Pv
jD1wjxj =

Pv
jD1wj

Ny mean for observation y

Ny D
Pv
jD1wjyj =

Pv
jD1wj

d.x; y/ the distance or dissimilarity between observations x and y

s.x; y/ the similarity between observations x and y

The factor W=
Pv
jD1wj is used to adjust some of the proximity measures for missing values.

Methods That Accept All Measurement Levels

GOWER Gower’s similarity
s1.x; y/ D

Pv
jD1wj ı

j
x;yd

j
x;y=

Pv
jD1wj ı

j
x;y

ı
j
x;y is computed as follows:

For nominal, ordinal, interval, or ratio variable,

ıjx;y D 1

For asymmetric nominal variable,

ıjx;y D 1; if either xj or yj is present

ıjx;y D 0; if both xj and yj are absent

For nominal or asymmetric nominal variable,

d jx;y D 1; if xj D yj
d jx;y D 0; if xj ¤ yj

For ordinal, interval, or ratio variable,

d jx;y D 1 � jxj � yj j
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DGOWER 1 minus Gower
d2.x; y/ D 1 � s1.x; y/

Methods That Accept Ratio, Interval, and Ordinal Variables

EUCLID Euclidean distance
d3.x; y/ D

q
.
Pv
jD1wj .xj � yj /

2/W=.
Pv
jD1wj /

SQEUCLID squared Euclidean distance
d4.x; y/ D .

Pv
jD1wj .xj � yj /

2/W=.
Pv
jD1wj /

SIZE size distance
d5.x; y/ D j

Pv
jD1wj .xj � yj /j

p
W =.

Pv
jD1wj /

SHAPE shape distance

d6.x; y/ D
q
.
Pv
jD1wj Œ.xj � Nx/ � .yj � Ny/�

2/W=.
Pv
jD1wj /

NOTE: squared shape distance plus squared size distance equals squared Euclidean
distance.

COV covariance similarity coefficient
s7.x; y/ D

Pv
jD1wj .xj � Nx/.yj � Ny/=vardiv , where

vardiv D v if VARDEF D N
D v � 1 if VARDEF D DF
D

Pv
jD1wj if VARDEF DWEIGHT

D
Pv
jD1wj � 1 if VARDEF DWDF

CORR correlation similarity coefficient

s8.x; y/ D

Pv
jD1wj .xj� Nx/.yj� Ny/qPv

jD1wj .xj� Nx/
2
Pv
jD1wj .yj� Ny/

2

DCORR correlation transformed to Euclidean distance as sqrt(1–CORR)
d9.x; y/ D

p
1 � s8.x; y/

SQCORR squared correlation

s10.x; y/ D
Œ
Pv
jD1wj .xj� Nx/.yj� Ny/�

2Pv
jD1wj .xj� Nx/

2
Pv
jD1wj .yj� Ny/

2

DSQCORR squared correlation transformed to squared Euclidean distance as (1–SQCORR)

d11.x; y/ D 1 � s10.x; y/

L(p) Minkowski (Lp) distance, where p is a positive numeric value



Proximity Measures F 2275

d12.x; y/ D Œ.
Pv
jD1wj jxj � yj j

p/W=.
Pv
jD1wj /�

1=p

CITYBLOCK L1
d13.x; y/ D .

Pv
jD1wj jxj � yj j/W=.

Pv
jD1wj /

CHEBYCHEV L1
d14.x; y/ D maxvjD1wj jxj � yj j

POWER(p,r) generalized Euclidean distance, where p is a nonnegative numeric value and r is a positive
numeric value. The distance between two observations is the rth root of sum of the
absolute differences to the pth power between the values for the observations:

d15.x; y/ D Œ.
Pv
jD1wj jxj � yj j

p/W=.
Pv
jD1wj /�

1=r

Methods That Accept Ratio Variables

SIMRATIO similarity ratio

s16.x; y/ D

Pv
j wj .xjyj /Pv

jD1wj .xjyj /C
Pv
j wj .xj�yj /

2

DISRATIO one minus similarity ratio
d17.x; y/ D 1 � s16.x; y/

NONMETRIC Lance-Williams nonmetric coefficient
d18.x; y/ D

Pv
jD1wj jxj�yj jPv
jD1wj .xjCyj /

CANBERRA Canberra metric coefficient. See Sneath and Sokal (1973, pp. 125–126)
d19.x; y/ D

Pv
jD1

wj jxj�yj j

wj .xjCyj /

COSINE cosine coefficient
s20.x; y/ D

Pv
jD1wj .xjyj /qPv

jD1wjxj
2
Pv
jD1wjyj

2

DOT dot (inner) product coefficient
s21.x; y/ D Œ

Pv
jD1wj .xjyj /�=

Pv
jD1wj

OVERLAP sum of the minimum values
s22.x; y/ D

Pv
jD1wj Œmin.xj ; yj /�

DOVERLAP maximum of the sum of the x and the sum of y minus overlap
d23.x; y/ D max.

Pv
jD1wjxj ;

Pv
jD1wjyj / � s22.x; y/

CHISQ chi-square
If the data represent the frequency counts, chi-square dissimilarity between two sets of
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frequencies can be computed. A 2-by-v contingency table is illustrated to explain how the
chi-square dissimilarity is computed as follows:

Variable Row
Observation Var 1 Var 2 . . . Var v Sum

X x1 x2 . . . xv rx
Y y1 y2 . . . yv ry

Column Sum c1 c2 . . . cv T

where

rx D
Pv
jD1wjxj

ry D
Pv
jD1wjyj

cj D wj .xj C yj /

T D rx C ry D
Pv
jD1 cj

The chi-square measure is computed as follows:

d24.x; y/ D .
Pv
jD1

.wjxj�E.xj //
2

E.xj /
C
Pv
jD1

.wjyj�E.yj //
2

E.yj /
/W=.

Pv
jD1wj /

where for j= 1, 2, . . . , v

E.xj / D rxcj =T

E.yj / D rycj =T

CHI square root of chi-square
d25.x; y/ D

p
d23.x; y/

PHISQ phi-square
This is the CHISQ dissimilarity normalized by the sum of weights
d26.x; y/ D d24.x; y/=.

Pv
jD1wj /

PHI square root of phi-square
d27.x; y/ D

p
d25.x; y/

Methods That Accept Symmetric Nominal Variables

The following notation is used for computing d28.x; y/ to s35.x; y/. Notice that only the nonmissing
pairs are discussed below; all the pairs with at least one missing value will be excluded from any of the
computations in the following section because wj D 0, if either xj or yj is missing.

M nonmissing matches

M D
Pv
jD1wj ı

j
x;y , where

ıjx;y D 1; if xj D yj
ıjx;y D 0; otherwise
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X nonmissing mismatches

X D
Pv
jD1wj ı

j
x;y , where

ıjx;y D 1; if xj ¤ yj
ıjx;y D 0; otherwise

N total nonmissing pairs

N D
Pv
jD1wj

HAMMING Hamming distance
d28.x; y/ D X

MATCH simple matching coefficient
s29.x; y/ DM=N

DMATCH simple matching coefficient transformed to Euclidean distance
d30.x; y/ D

p
1 �M=N D

p
.X=N/

DSQMATCH simple matching coefficient transformed to squared Euclidean distance
d31.x; y/ D 1 �M=N D X=N

HAMANN Hamann coefficient
s32.x; y/ D .M �X/=N

RT Roger and Tanimoto
s33.x; y/ DM=.M C 2X/

SS1 Sokal and Sneath 1
s34.x; y/ D 2M=.2M CX/

SS3 Sokal and Sneath 3. The coefficient between an observation and itself is always indeter-
minate (missing) since there is no mismatch.
s35.x; y/ DM=X

The following notation is used for computing s36.x; y/ to d41.x; y/. Notice that only the nonmissing pairs
are discussed in the following section; all the pairs with at least one missing value are excluded from any of
the computations in the following section because wj D 0; if either xj or yj is missing:

Also, the observed nonmissing data of an asymmetric binary variable can have only two possible outcomes:
presence or absence. Therefore, the notation, PX (present mismatches), always has a value of zero for an
asymmetric binary variable.
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The following methods distinguish between the presence and absence of attributes.

X mismatches with at least one present

X D
Pv
jD1wj ı

j
x;y , where

ıjx;y D 1; if xj ¤ yj and not both xj and yj are absent

ıjx;y D 0; otherwise

PM present matches

PM D
Pv
jD1wj ı

j
x;y , where

ıjx;y D 1; if xj D yj and both xj and yj are present

ıjx;y D 0; otherwise

PX present mismatches

PX D
Pv
jD1wj ı

j
x;y , where

ıjx;y D 1; if xj ¤ yj and both xj and yj are present

ıjx;y D 0; otherwise

PP both present = PM + PX

P at least one present = PM + X

PAX present-absent mismatches

PAX D
Pv
jD1wj ı

j
x;y , where

ıjx;y D 1; if xj ¤ yj and either xj is present and yj is absent or
xj is absent and yj is present

ıjx;y D 0 otherwise

N total nonmissing pairs

N D
Pv
jD1wj

Methods That Accept Asymmetric Nominal and Ratio Variables

JACCARD Jaccard similarity coefficient

The JACCARD method is equivalent to the SIMRATIO method if there are only ratio
variables; if there are both ratio and asymmetric nominal variables, the coefficient is com-
puted as sum of the coefficient from the ratio variables (SIMRATIO) and the coefficient
from the asymmetric nominal variables.

s36.x; y/ D s16.x; y/C PM =P
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DJACCARD Jaccard dissimilarity coefficient

The DJACCARD method is equivalent to the DISRATIO method if there are only ratio
variables; if there are both ratio and asymmetric nominal variables, the coefficient is
computed as sum of the coefficient from the ratio variables (DISRATIO) and the coefficient
from the asymmetric nominal variables.

d37.x; y/ D d17.x; y/CX=P

Methods That Accept Asymmetric Nominal Variables

DICE Dice coefficient or Czekanowski/Sorensen similarity coefficient
s38.x; y/ D 2PM =.P C PM /

RR Russell and Rao. This is the binary equivalent of the dot product coefficient.
s39.x; y/ D PM =N

BLWNM | BRAYCURTIS Binary Lance and Williams, also known as Bray and Curtis coefficient

d40.x; y/ D X=.PAX C 2PP/

K1 Kulcynski 1. The coefficient between an observation and itself is always indeterminate
(missing) since there is no mismatch.
d41.x; y/ D PM =X

Missing Values

Standardization versus No Standardization

You can replace the missing values with or without standardization. Missing values are replaced after
standardization by specifying either the REPLACE option in the PROC DISTANCE statement or the
MISSING= option in the VAR statement.

To replace missing values without standardization, use the following two options:

• the NOSTD option in the PROC DISTANCE statement. The NOSTD option suppresses standardization
but still replaces the missing values with the location of the method or the numeric value specified in
the MISSING= option in the VAR statement.

• the REPONLY option in the PROC DISTANCE statement. PROC DISTANCE replaces missing values
with the location of the standardization method or with the numeric value specified in the MISSING=
option in the VAR statement. This approach assumes that standardization is not mandatory (see the
section “Standardization” on page 2254).
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Eliminating Observations with Missing Values

If you specify the NOMISS option, PROC DISTANCE omits observations with any missing values in the
analyzed variables from computation of the location and scale measures.

Distance Measures

If you specify the NOMISS option, PROC DISTANCE generates missing distance for observations with
missing values. If the NOMISS option is not specified, the sum of total weights, no matter if an observation
is missing or not, is incorporated into the computation of some of the proximity measures. See the section
“Details: DISTANCE Procedure” on page 2273 for the formulas and descriptions.

Formatted versus Unformatted Values
PROC DISTANCE uses the formatted values from a character variable, if the variable has a format—for
example, one assigned by a format statement. PROC DISTANCE uses the unformatted values from a numeric
variable, even if it has a format.

Output Data Sets

OUT= Data Set

The DISTANCE procedure always produces an output data set, regardless of whether you specify the OUT=
option in the PROC DISTANCE statement. PROC DISTANCE displays no output. Use PROC PRINT to
display the output data set.

The output data set contains the following variables:

• the ID variable, if any

• the BY variables, if any

• the COPY variables, if any

• the FREQ variable, if any

• the WEIGHT variable, if any

• the new distance variables, named from PREFIX= options along with the ID values, or from the default
values

The output data set is of type TYPE=DISTANCE or TYPE=SIMILAR. See the METHOD= option for more
information about the output data set types. Data set types do not persist when you copy or modify a data set.
You must specify the TYPE= data set option for the new data set, as in the following example:

data dist2(type=distance);
set dist;

run;

See the OUT= option for more information about data set type persistence.
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OUTSDZ= Data Set

The output data set is a copy of the DATA= data set except that the analyzed variables have been standardized.
Analyzed variables are those listed in the VAR statement.

Examples: DISTANCE Procedure

Example 36.1: Divorce Grounds – the Jaccard Coefficient
A wide variety of distance and similarity measures are used in cluster analysis (Anderberg 1973; Sneath and
Sokal 1973). If your data are in coordinate form and you want to use a non-Euclidean distance for clustering,
you can compute a distance matrix by using the DISTANCE procedure.

Similarity measures must be converted to dissimilarities before being used in PROC CLUSTER. Such
conversion can be done in a variety of ways, such as taking reciprocals or subtracting from a large value. The
choice of conversion method depends on the application and the similarity measure. If applicable, PROC
DISTANCE provides a corresponding dissimilarity measure for each similarity measure.

In the following example, the observations are states. Binary-valued variables correspond to various grounds
for divorce and indicate whether the grounds for divorce apply in each of the U.S. states. A value of “1”
indicates that the ground for divorce applies, and a value of “0” indicates the opposite. The 0-0 matches are
treated as totally irrelevant; therefore, each variable has an asymmetric nominal level of measurement. The
absence value is 0.

The DISTANCE procedure is used to compute the Jaccard coefficient (Anderberg 1973, pp. 89, 115, and
117) between each pair of states. The Jaccard coefficient is defined as the number of variables that are
coded as 1 for both states divided by the number of variables that are coded as 1 for either or both states.
Since dissimilarity measures are required by PROC CLUSTER, the DJACCARD coefficient is selected.
Output 36.1.1 displays the distance matrix between the first 10 states.

The CENTROID method is used to perform the cluster analysis, and the resulting tree diagram from PROC
CLUSTER is saved into the tree output data set. Output 36.1.2 displays the cluster history.

The TREE procedure generates nine clusters in the output data set out. After being sorted by the state, the
out data set is then merged with the input data set divorce. After being sorted by the state, the merged data
set is printed to display the cluster membership as shown in Output 36.1.3.

The following statements produce Output 36.1.1 through Output 36.1.3:

data divorce;
input State $15.

(Incompatibility Cruelty Desertion Non_Support Alcohol
Felony Impotence Insanity Separation) (1.) @@;

if mod(_n_,2) then input +4 @@; else input;
datalines;

Alabama 111111111 Alaska 111011110
Arizona 100000000 Arkansas 011111111
California 100000010 Colorado 100000000
Connecticut 111111011 Delaware 100000001
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... more lines ...

Wisconsin 100000001 Wyoming 100000011
;

title 'Grounds for Divorce';
proc distance data=divorce method=djaccard absent=0 out=distjacc;

var anominal(Incompatibility--Separation);
id state;

run;

proc print data=distjacc(obs=10);
id state; var alabama--georgia;
title2 'First 10 States';

run;
title2;

proc cluster data=distjacc method=centroid
pseudo outtree=tree;

id state;
var alabama--wyoming;

run;

proc tree data=tree noprint n=9 out=out;
id state;

run;

proc sort;
by state;

run;

data clus;
merge divorce out;
by state;

run;

proc sort;
by cluster;

run;

proc print;
id state;
var Incompatibility--Separation;
by cluster;

run;
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Output 36.1.1 Distance Matrix Based on the Jaccard Coefficient

Grounds for Divorce
First 10 States

Grounds for Divorce
First 10 States

State Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware Florida Georgia

Alabama 0.00000 . . . . . . . . .

Alaska 0.22222 0.00000 . . . . . . . .

Arizona 0.88889 0.85714 0.00000 . . . . . . .

Arkansas 0.11111 0.33333 1.00000 0.00000 . . . . . .

California 0.77778 0.71429 0.50000 0.88889 0.00000 . . . . .

Colorado 0.88889 0.85714 0.00000 1.00000 0.50000 0.00000 . . . .

Connecticut 0.11111 0.33333 0.87500 0.22222 0.75000 0.87500 0.00000 . . .

Delaware 0.77778 0.87500 0.50000 0.88889 0.66667 0.50000 0.75000 0.00000 . .

Florida 0.77778 0.71429 0.50000 0.88889 0.00000 0.50000 0.75000 0.66667 0.00000 .

Georgia 0.22222 0.00000 0.85714 0.33333 0.71429 0.85714 0.33333 0.87500 0.71429 0

Output 36.1.2 Clustering History

Grounds for Divorce

The CLUSTER Procedure
Centroid Hierarchical Cluster Analysis

Grounds for Divorce

The CLUSTER Procedure
Centroid Hierarchical Cluster Analysis

Root-Mean-Square Distance Between Observations 0.694873
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Output 36.1.2 continued

Cluster History

Number
of

Clusters Clusters Joined Freq
Pseudo F

Statistic
Pseudo

t-Squared

Norm
Centroid
Distance Tie

49 Arizona Colorado 2 . . 0 T

48 California Florida 2 . . 0 T

47 Alaska Georgia 2 . . 0 T

46 Delaware Hawaii 2 . . 0 T

45 Connecticut Idaho 2 . . 0 T

44 CL49 Iowa 3 . . 0 T

43 CL47 Kansas 3 . . 0 T

42 CL44 Kentucky 4 . . 0 T

41 CL42 Michigan 5 . . 0 T

40 CL41 Minnesota 6 . . 0 T

39 CL43 Mississippi 4 . . 0 T

38 CL40 Missouri 7 . . 0 T

37 CL38 Montana 8 . . 0 T

36 CL37 Nebraska 9 . . 0 T

35 North Dakota Oklahoma 2 . . 0 T

34 CL36 Oregon 10 . . 0 T

33 Massachusetts Rhode Island 2 . . 0 T

32 New Hampshire Tennessee 2 . . 0 T

31 CL46 Washington 3 . . 0 T

30 CL31 Wisconsin 4 . . 0 T

29 Nevada Wyoming 2 . . 0

28 Alabama Arkansas 2 1561 . 0.1599 T

27 CL33 CL32 4 479 . 0.1799 T

26 CL39 CL35 6 265 . 0.1799 T

25 CL45 West Virginia 3 231 . 0.1799

24 Maryland Pennsylvania 2 199 . 0.2399

23 CL28 Utah 3 167 3.2 0.2468

22 CL27 Ohio 5 136 5.4 0.2698

21 CL26 Maine 7 111 8.9 0.2998

20 CL23 CL21 10 75.2 8.7 0.3004

19 CL25 New Jersey 4 71.8 6.5 0.3053 T

18 CL19 Texas 5 69.1 2.5 0.3077

17 CL20 CL22 15 48.7 9.9 0.3219

16 New York Virginia 2 50.1 . 0.3598

15 CL18 Vermont 6 49.4 2.9 0.3797

14 CL17 Illinois 16 47.0 3.2 0.4425

13 CL14 CL15 22 29.2 15.3 0.4722

12 CL48 CL29 4 29.5 . 0.4797 T

11 CL13 CL24 24 27.6 4.5 0.5042

10 CL11 South Dakota 25 28.4 2.4 0.5449

9 Louisiana CL16 3 30.3 3.5 0.5844

8 CL34 CL30 14 23.3 . 0.7196

7 CL8 CL12 18 19.3 15.0 0.7175

6 CL10 South Carolina 26 21.4 4.2 0.7384

5 CL6 New Mexico 27 24.0 4.7 0.8303

4 CL5 Indiana 28 28.9 4.1 0.8343
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Output 36.1.2 continued

Cluster History

Number
of

Clusters Clusters Joined Freq
Pseudo F

Statistic
Pseudo

t-Squared

Norm
Centroid
Distance Tie

3 CL4 CL9 31 31.7 10.9 0.8472

2 CL3 North Carolina 32 55.1 4.1 1.0017

1 CL2 CL7 50 . 55.1 1.0663

Output 36.1.3 Cluster Membership

Grounds for DivorceGrounds for Divorce

CLUSTER=1

State Incompatibility Cruelty Desertion Non_Support Alcohol Felony Impotence Insanity Separation

Arizona 1 0 0 0 0 0 0 0 0

Colorado 1 0 0 0 0 0 0 0 0

Iowa 1 0 0 0 0 0 0 0 0

Kentucky 1 0 0 0 0 0 0 0 0

Michigan 1 0 0 0 0 0 0 0 0

Minnesota 1 0 0 0 0 0 0 0 0

Missouri 1 0 0 0 0 0 0 0 0

Montana 1 0 0 0 0 0 0 0 0

Nebraska 1 0 0 0 0 0 0 0 0

Oregon 1 0 0 0 0 0 0 0 0

CLUSTER=2

State Incompatibility Cruelty Desertion Non_Support Alcohol Felony Impotence Insanity Separation

California 1 0 0 0 0 0 0 1 0

Florida 1 0 0 0 0 0 0 1 0

Nevada 1 0 0 0 0 0 0 1 1

Wyoming 1 0 0 0 0 0 0 1 1
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Output 36.1.3 continued

CLUSTER=3

State Incompatibility Cruelty Desertion Non_Support Alcohol Felony Impotence Insanity Separation

Alabama 1 1 1 1 1 1 1 1 1

Alaska 1 1 1 0 1 1 1 1 0

Arkansas 0 1 1 1 1 1 1 1 1

Connecticut 1 1 1 1 1 1 0 1 1

Georgia 1 1 1 0 1 1 1 1 0

Idaho 1 1 1 1 1 1 0 1 1

Illinois 0 1 1 0 1 1 1 0 0

Kansas 1 1 1 0 1 1 1 1 0

Maine 1 1 1 1 1 0 1 1 0

Maryland 0 1 1 0 0 1 1 1 1

Massachusetts 1 1 1 1 1 1 1 0 1

Mississippi 1 1 1 0 1 1 1 1 0

New Hampshire 1 1 1 1 1 1 1 0 0

New Jersey 0 1 1 0 1 1 0 1 1

North Dakota 1 1 1 1 1 1 1 1 0

Ohio 1 1 1 0 1 1 1 0 1

Oklahoma 1 1 1 1 1 1 1 1 0

Pennsylvania 0 1 1 0 0 1 1 1 0

Rhode Island 1 1 1 1 1 1 1 0 1

South Dakota 0 1 1 1 1 1 0 0 0

Tennessee 1 1 1 1 1 1 1 0 0

Texas 1 1 1 0 0 1 0 1 1

Utah 0 1 1 1 1 1 1 1 0

Vermont 0 1 1 1 0 1 0 1 1

West Virginia 1 1 1 0 1 1 0 1 1

CLUSTER=4

State Incompatibility Cruelty Desertion Non_Support Alcohol Felony Impotence Insanity Separation

Delaware 1 0 0 0 0 0 0 0 1

Hawaii 1 0 0 0 0 0 0 0 1

Washington 1 0 0 0 0 0 0 0 1

Wisconsin 1 0 0 0 0 0 0 0 1

CLUSTER=5

State Incompatibility Cruelty Desertion Non_Support Alcohol Felony Impotence Insanity Separation

Louisiana 0 0 0 0 0 1 0 0 1

New York 0 1 1 0 0 1 0 0 1

Virginia 0 1 0 0 0 1 0 0 1

CLUSTER=6

State Incompatibility Cruelty Desertion Non_Support Alcohol Felony Impotence Insanity Separation

South Carolina 0 1 1 0 1 0 0 0 1
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Output 36.1.3 continued

CLUSTER=7

State Incompatibility Cruelty Desertion Non_Support Alcohol Felony Impotence Insanity Separation

New Mexico 1 1 1 0 0 0 0 0 0

CLUSTER=8

State Incompatibility Cruelty Desertion Non_Support Alcohol Felony Impotence Insanity Separation

Indiana 1 0 0 0 0 1 1 1 0

CLUSTER=9

State Incompatibility Cruelty Desertion Non_Support Alcohol Felony Impotence Insanity Separation

North Carolina 0 0 0 0 0 0 1 1 1

Example 36.2: Financial Data – Stock Dividends
The following data set contains the average dividend yields for 15 utility stocks in the United States. The
observations are names of the companies, and the variables correspond to the annual dividend yields for the
period 1986–1990. The objective is to group similar stocks into clusters.

Before the cluster analysis is performed, the correlation similarity is chosen for measuring the close-
ness between each observation. Since distance type of measures are required by PROC CLUSTER,
METHOD=DCORR is used in the PROC DISTANCE statement to transform the correlation measures
to the distance measures. Notice that in Output 36.2.1, all the values in the distance matrix are between 0 and
2.

PROC CLUSTER performs hierarchical clustering by using agglomerative methods based on the distance
data created from the previous PROC DISTANCE statement. Since the cubic clustering criterion is not
suitable for distance data, only the pseudo F statistic is requested to identify the number of clusters.

The two clustering methods are Ward’s and the average linkage methods. Since the results of the pseudo t2

statistic from both Ward’s and the average linkage methods contain many missing values, only the plot of
the pseudo F statistic versus the number of clusters is requested along with the dendrogram by specifying
PLOTS(ONLY)=(PSF DENDROGRAM) in the PROC CLUSTER statement.

Both Output 36.2.2 and Output 36.2.3 suggest four clusters. Both methods produce the same clustering result,
as shown in Output 36.2.4 and Output 36.2.5. The four clusters are as follows:

• Cincinnati G&E and Detroit Edison
• Texas Utilities and Pennsylvania Power & Light
• Union Electric, Iowa-Ill Gas & Electric, Oklahoma Gas & Electric, and Wisconsin Energy
• Orange & Rockland Utilities, Kentucky Utilities, Kansas Power & Light, Allegheny Power, Green

Mountain Power, Dominion Resources, and Minnesota Power & Light
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title 'Stock Dividends';

data stock;
input Company $27. Div_1986 Div_1987 Div_1988 Div_1989 Div_1990;
datalines;

Cincinnati G&E 8.4 8.2 8.4 8.1 8.0
Texas Utilities 7.9 8.9 10.4 8.9 8.3
Detroit Edison 9.7 10.7 11.4 7.8 6.5
Orange & Rockland Utilities 6.5 7.2 7.3 7.7 7.9
Kentucky Utilities 6.5 6.9 7.0 7.2 7.5
Kansas Power & Light 5.9 6.4 6.9 7.4 8.0
Union Electric 7.1 7.5 8.4 7.8 7.7
Dominion Resources 6.7 6.9 7.0 7.0 7.4
Allegheny Power 6.7 7.3 7.8 7.9 8.3
Minnesota Power & Light 5.6 6.1 7.2 7.0 7.5
Iowa-Ill Gas & Electric 7.1 7.5 8.5 7.8 8.0
Pennsylvania Power & Light 7.2 7.6 7.7 7.4 7.1
Oklahoma Gas & Electric 6.1 6.7 7.4 6.7 6.8
Wisconsin Energy 5.1 5.7 6.0 5.7 5.9
Green Mountain Power 7.1 7.4 7.8 7.8 8.3
;

proc distance data=stock method=dcorr out=distdcorr;
var interval(div_1986 div_1987 div_1988 div_1989 div_1990);
id company;

run;

proc print data=distdcorr;
id company;
title2 'Distance Matrix for 15 Utility Stocks';

run;
title2;

ods graphics on;

/* compute pseudo statistic versus number of clusters and create plot */
proc cluster data=distdcorr method=ward pseudo plots(only)=(psf dendrogram);

id company;
run;

/* compute pseudo statistic versus number of clusters and create plot */
proc cluster data=distdcorr method=average pseudo plots(only)=(psf dendrogram);

id company;
run;

ods graphics off;
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Output 36.2.1 Distance Matrix Based on the DCORR Coefficient

Stock Dividends
Distance Matrix for 15 Utility Stocks

Stock Dividends
Distance Matrix for 15 Utility Stocks

Company Cincinnati_G_E Texas_Utilities Detroit_Edison Orange___Rockland_Utilities Kentucky_Utilities

Cincinnati G&E 0.00000 . . . .

Texas Utilities 0.82056 0.00000 . . .

Detroit Edison 0.40511 0.65453 0.00000 . .

Orange & Rockland
Utilities

1.35380 0.88583 1.27306 0.00000 .

Kentucky Utilities 1.35581 0.92539 1.29382 0.12268 0.00000

Kansas Power & Light 1.34227 0.94371 1.31696 0.19905 0.12874

Union Electric 0.98516 0.29043 0.89048 0.68798 0.71824

Dominion Resources 1.32945 0.96853 1.29016 0.33290 0.21510

Allegheny Power 1.30492 0.81666 1.24565 0.17844 0.15759

Company Kansas_Power___Light Union_Electric Dominion_Resources Allegheny_Power

Cincinnati G&E . . . .

Texas Utilities . . . .

Detroit Edison . . . .

Orange & Rockland
Utilities

. . . .

Kentucky Utilities . . . .

Kansas Power & Light 0.00000 . . .

Union Electric 0.72082 0.00000 . .

Dominion Resources 0.24189 0.76587 0.00000 .

Allegheny Power 0.17029 0.58452 0.27819 0.00000

Company Minnesota_Power___Light Iowa_Ill_Gas___Electric Pennsylvania_Power___Light

Cincinnati G&E . . .

Texas Utilities . . .

Detroit Edison . . .

Orange & Rockland
Utilities

. . .

Kentucky Utilities . . .

Kansas Power & Light . . .

Union Electric . . .

Dominion Resources . . .

Allegheny Power . . .

Company Oklahoma_Gas___Electric Wisconsin_Energy Green_Mountain_Power

Cincinnati G&E . . .

Texas Utilities . . .

Detroit Edison . . .

Orange & Rockland
Utilities

. . .

Kentucky Utilities . . .

Kansas Power & Light . . .

Union Electric . . .

Dominion Resources . . .

Allegheny Power . . .



2290 F Chapter 36: The DISTANCE Procedure

Output 36.2.1 continued

Stock Dividends
Distance Matrix for 15 Utility Stocks

Company Cincinnati_G_E Texas_Utilities Detroit_Edison Orange___Rockland_Utilities Kentucky_Utilities

Minnesota Power & Light 1.24069 0.74082 1.20432 0.32581 0.30462

Iowa-Ill Gas & Electric 1.04924 0.43100 0.97616 0.61166 0.61760

Pennsylvania
Power & Light

0.74931 0.37821 0.44256 1.03566 1.08878

Oklahoma Gas & Electric 1.00604 0.30141 0.86200 0.68021 0.70259

Wisconsin Energy 1.17988 0.54830 1.03081 0.45013 0.47184

Green Mountain Power 1.30397 0.88063 1.27176 0.26948 0.17909

Company Kansas_Power___Light Union_Electric Dominion_Resources Allegheny_Power

Minnesota Power & Light 0.27231 0.48372 0.35733 0.15615

Iowa-Ill Gas & Electric 0.61736 0.16923 0.63545 0.47900

Pennsylvania
Power & Light

1.12876 0.63285 1.14354 1.02358

Oklahoma Gas & Electric 0.73158 0.17122 0.72977 0.58391

Wisconsin Energy 0.53381 0.37405 0.51969 0.37522

Green Mountain Power 0.15377 0.64869 0.17360 0.13958

Company Minnesota_Power___Light Iowa_Ill_Gas___Electric Pennsylvania_Power___Light

Minnesota Power & Light 0.00000 . .

Iowa-Ill Gas & Electric 0.36368 0.00000 .

Pennsylvania
Power & Light

0.99384 0.75596 0.00000

Oklahoma Gas & Electric 0.50744 0.19673 0.60216

Wisconsin Energy 0.36319 0.30259 0.76085

Green Mountain Power 0.19370 0.52083 1.09269

Company Oklahoma_Gas___Electric Wisconsin_Energy Green_Mountain_Power

Minnesota Power & Light . . .

Iowa-Ill Gas & Electric . . .

Pennsylvania
Power & Light

. . .

Oklahoma Gas & Electric 0.00000 . .

Wisconsin Energy 0.28070 0.00000 .

Green Mountain Power 0.64175 0.44814 0
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Output 36.2.2 Pseudo F versus Number of Clusters When METHOD=WARD

Output 36.2.3 Pseudo F versus Number of Clusters When METHOD=AVERAGE
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Output 36.2.4 Dendrogram of Semipartial R-Square Values When METHOD=WARD
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Output 36.2.5 Dendrogram of Average Distance between Clusters When METHOD=AVERAGE
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Overview: FACTOR Procedure
The FACTOR procedure performs a variety of common factor and component analyses and rotations. Input
can be multivariate data, a correlation matrix, a covariance matrix, a factor pattern, or a matrix of scoring
coefficients. The procedure can factor either the correlation or covariance matrix, and you can save most
results in an output data set.

PROC FACTOR can process output from other procedures. For example, it can rotate the canonical
coefficients from multivariate analyses in the GLM procedure.

The methods for factor extraction are principal component analysis, principal factor analysis, iterated principal
factor analysis, unweighted least squares factor analysis, maximum likelihood (canonical) factor analysis,
alpha factor analysis, image component analysis, and Harris component analysis. A variety of methods for
prior communality estimation is also available.

Specific methods for orthogonal rotation are varimax, quartimax, biquartimax, equamax, parsimax, and factor
parsimax. Oblique versions of these methods are also available. In addition, quartimin, biquartimin, and
covarimin methods for (direct) oblique rotation are available. General methods for orthogonal rotation are
orthomax with user-specified gamma, Crawford-Ferguson family with user-specified weights on variable
parsimony and factor parsimony, and generalized Crawford-Ferguson family with user-specified weights.
General methods for oblique rotation are direct oblimin with user-specified tau, Crawford-Ferguson family
with user-specified weights on variable parsimony and factor parsimony, generalized Crawford-Ferguson
family with user-specified weights, promax with user-specified exponent, Harris-Kaiser case II with user-
specified exponent, and Procrustes with a user-specified target pattern.

Output includes means, standard deviations, correlations, Kaiser’s measure of sampling adequacy, eigenvalues,
a scree plot, eigenvectors, prior and final communality estimates, the unrotated factor pattern, residual and
partial correlations, the rotated primary factor pattern, the primary factor structure, interfactor correlations,
the reference structure, reference axis correlations, the variance explained by each factor both ignoring and
eliminating other factors, plots of both rotated and unrotated factors, squared multiple correlation of each
factor with the variables, standard error estimates, confidence limits, coverage displays, scoring coefficients,
and path diagrams.

The FACTOR procedure uses ODS Graphics to create graphs as part of its output. For general information
about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.”

Any topics that are not given explicit references are discussed in Mulaik (1972) or Harman (1976).

Background
See Chapter 79, “The PRINCOMP Procedure,” for a discussion of principal component analysis. See
Chapter 29, “The CALIS Procedure,” for a discussion of confirmatory factor analysis.

Common factor analysis was invented by Spearman (1904). Kim and Mueller (1978a, b) provide a very
elementary discussion of the common factor model. Gorsuch (1974) presents a broad survey of factor
analysis, and Gorsuch (1974) and Cattell (1978) are useful as guides to practical research methodology.
Harman (1976) gives a lucid discussion of many of the more technical aspects of factor analysis, especially
oblique rotation. Morrison (1976) and Mardia, Kent, and Bibby (1979) provide excellent statistical treatments
of common factor analysis. Mulaik (1972) provides the most thorough and authoritative general reference on
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factor analysis and is highly recommended to anyone familiar with matrix algebra. Stewart (1981) gives a
nontechnical presentation of some issues to consider when deciding whether or not a factor analysis might be
appropriate.

A frequent source of confusion in the field of factor analysis is the term factor. It sometimes refers to a
hypothetical, unobservable variable, as in the phrase common factor. In this sense, factor analysis must be
distinguished from component analysis since a component is an observable linear combination. Factor is
also used in the sense of matrix factor, in that one matrix is a factor of a second matrix if the first matrix
multiplied by its transpose equals the second matrix. In this sense, factor analysis refers to all methods of
data analysis that use matrix factors, including component analysis and common factor analysis.

A common factor is an unobservable, hypothetical variable that contributes to the variance of at least two of
the observed variables. The unqualified term “factor” often refers to a common factor. A unique factor is an
unobservable, hypothetical variable that contributes to the variance of only one of the observed variables.
The model for common factor analysis posits one unique factor for each observed variable.

The equation for the common factor model is

yij D xi1b1j C xi2b2j C � � � C xiqbqj C eij

where

yij is the value of the ith observation on the jth variable

xik is the value of the ith observation on the kth common factor

bkj is the regression coefficient of the kth common factor for predicting the jth variable

eij is the value of the ith observation on the jth unique factor

q is the number of common factors

It is assumed, for convenience, that all variables have a mean of 0. In matrix terms, these equations reduce to

Y D XBC E

In the preceding equation, X is the matrix of factor scores, and B0 is the factor pattern.

There are two critical assumptions:

• The unique factors are uncorrelated with each other.

• The unique factors are uncorrelated with the common factors.

In principal component analysis, the residuals are generally correlated with each other. In common factor
analysis, the unique factors play the role of residuals and are defined to be uncorrelated both with each
other and with the common factors. Each common factor is assumed to contribute to at least two variables;
otherwise, it would be a unique factor.

When the factors are initially extracted, it is also assumed, for convenience, that the common factors are
uncorrelated with each other and have unit variance. In this case, the common factor model implies that the
covariance sjk between the jth and kth variables, j ¤ k, is given by
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sjk D b1j b1k C b2j b2k C � � � C bqj bqk

or

S D B0BCU2

where S is the covariance matrix of the observed variables, and U2 is the diagonal covariance matrix of the
unique factors.

If the original variables are standardized to unit variance, the preceding formula yields correlations instead of
covariances. It is in this sense that common factors explain the correlations among the observed variables.
When considering the diagonal elements of standardized S, the variance of the jth variable is expressed as

sjj D 1 D b
2
1j C b

2
2j C � � � C b

2
qj C ŒU

2�jj

where b21j C b
2
2j C� � �C b

2
qj and ŒU2�jj are the communality and uniqueness, respectively, of the jth variable.

The communality represents the extent of the overlap with the common factors. In other words, it is the
proportion of variance accounted for by the common factors.

The difference between the correlation predicted by the common factor model and the actual correlation is
the residual correlation. A good way to assess the goodness of fit of the common factor model is to examine
the residual correlations.

The common factor model implies that the partial correlations among the variables, removing the effects of
the common factors, must all be zero. When the common factors are removed, only unique factors, which are
by definition uncorrelated, remain.

The assumptions of common factor analysis imply that the common factors are, in general, not linear
combinations of the observed variables. In fact, even if the data contain measurements on the entire
population of observations, you cannot compute the scores of the observations on the common factors.
Although the common factor scores cannot be computed directly, they can be estimated in a variety of ways.

The problem of factor score indeterminacy has led several factor analysts to propose methods yielding
components that can be considered approximations to common factors. Since these components are defined
as linear combinations, they are computable. The methods include Harris component analysis and image
component analysis. The advantage of producing determinate component scores is offset by the fact that,
even if the data fit the common factor model perfectly, component methods do not generally recover the
correct factor solution. You should not use any type of component analysis if you really want a common
factor analysis (Dziuban and Harris 1973; Lee and Comrey 1979).

After the factors are estimated, it is necessary to interpret them. Interpretation usually means assigning
to each common factor a name that reflects the salience of the factor in predicting each of the observed
variables—that is, the coefficients in the pattern matrix corresponding to the factor. Factor interpretation is a
subjective process. It can sometimes be made less subjective by rotating the common factors—that is, by
applying a nonsingular linear transformation. A rotated pattern matrix in which all the coefficients are close
to 0 or ˙1 is easier to interpret than a pattern with many intermediate elements. Therefore, most rotation
methods attempt to optimize a simplicity function of the rotated pattern matrix that measures, in some sense,
how close the elements are to 0 or˙1. Because the loading estimates are subject to sampling variability, it
is useful to obtain the standard error estimates for the loadings for assessing the uncertainty due to random
sampling. Notice that the salience of a factor loading refers to the magnitude of the loading, while statistical
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significance refers to the statistical evidence against a particular hypothetical value. A loading significantly
different from 0 does not automatically mean it must be salient. For example, if salience is defined as a
magnitude larger than 0.4 while the entire 95% confidence interval for a loading lies between 0.1 and 0.3, the
loading is statistically significant larger than 0 but it is not salient. Under the maximum likelihood method,
you can obtain standard errors and confidence intervals for judging the salience of factor loadings.

After the initial factor extraction, the common factors are uncorrelated with each other. If the factors are
rotated by an orthogonal transformation, the rotated factors are also uncorrelated. If the factors are rotated
by an oblique transformation, the rotated factors become correlated. Oblique rotations often produce more
useful patterns than do orthogonal rotations. However, a consequence of correlated factors is that there is
no single unambiguous measure of the importance of a factor in explaining a variable. Thus, for oblique
rotations, the pattern matrix does not provide all the necessary information for interpreting the factors; you
must also examine the factor structure and the reference structure.

Rotating a set of factors does not change the statistical explanatory power of the factors. You cannot say
that any rotation is better than any other rotation from a statistical point of view; all rotations, orthogonal
or oblique, are equally good statistically. Therefore, the choice among different rotations must be based on
nonstatistical grounds. For most applications, the preferred rotation is that which is most easily interpretable,
or most compatible with substantive theories.

If two rotations give rise to different interpretations, those two interpretations must not be regarded as
conflicting. Rather, they are two different ways of looking at the same thing, two different points of view in
the common-factor space. Any conclusion that depends on one and only one rotation being correct is invalid.

Outline of Use

Principal Component Analysis

One important type of analysis performed by the FACTOR procedure is principal component analysis. The
following statements result in a principal component analysis:

proc factor;
run;

The output includes all the eigenvalues and the pattern matrix for eigenvalues greater than one.

Most applications require additional output. For example, you might want to compute principal component
scores for use in subsequent analyses or obtain a graphical aid to help decide how many components to keep.
You can save the results of the analysis in a permanent SAS data library by using the OUTSTAT= option.
For more information about permanent libraries and SAS data sets, see SAS Language Reference: Concepts.
Assuming that your SAS data library has the libref save and that the data are in a SAS data set called raw,
you could do a principal component analysis as follows:

proc factor data=raw method=principal scree mineigen=0 score
outstat=save.fact_all;

run;

The SCREE option produces a plot of the eigenvalues that is helpful in deciding how many components to use.
Alternative, you can use the PLOTS=SCREE option to produce high-quality scree plots. The MINEIGEN=0
option causes all components with variance greater than zero to be retained. The SCORE option requests that
scoring coefficients be computed. The OUTSTAT= option saves the results in a specially structured SAS data
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set. The name of the data set, in this case fact_all, is arbitrary. To compute principal component scores, use
the SCORE procedure:

proc score data=raw score=save.fact_all out=save.scores;
run;

The SCORE procedure uses the data and the scoring coefficients that are saved in save.fact_all to compute
principal component scores. The component scores are placed in variables named Factor1, Factor2, . . . ,
Factorn and are saved in the data set save.scores. If you know ahead of time how many principal components
you want to use, you can obtain the scores directly from PROC FACTOR by specifying the NFACTORS=
and OUT= options. To get scores from three principal components, specify the following:

proc factor data=raw method=principal
nfactors=3 out=save.scores;

run;

To plot the scores for the first three components, use the SGSCATTER procedure:

proc sgscatter;
matrix factor1-factor3;

run;

Principal Factor Analysis

The simplest and computationally most efficient method of common factor analysis is principal factor analysis,
which is obtained in the same way as principal component analysis except for the use of the PRIORS= option.
The usual form of the initial analysis is as follows:

proc factor data=raw method=principal scree
mineigen=0 priors=smc outstat=save.fact_all;

run;

The squared multiple correlations (SMC) of each variable with all the other variables are used as the prior
communality estimates. If your correlation matrix is singular, you should specify PRIORS=MAX instead of
PRIORS=SMC. The SCREE and MINEIGEN= options serve the same purpose as in the preceding principal
component analysis. Saving the results with the OUTSTAT= option enables you to examine the eigenvalues
and scree plot before deciding how many factors to rotate and to try several different rotations without
re-extracting the factors. The OUTSTAT= data set is automatically marked TYPE=FACTOR, so the FACTOR
procedure realizes that it contains statistics from a previous analysis instead of raw data.

After looking at the eigenvalues to estimate the number of factors, you can try some rotations. Two and three
factors can be rotated with the following statements:

proc factor data=save.fact_all method=principal n=2
rotate=promax reorder score outstat=save.fact_2;

run;
proc factor data=save.fact_all method=principal n=3

rotate=promax reorder score outstat=save.fact_3;
run;

The output data set from the previous run is used as input for these analyses. The options N=2 and N=3
specify the number of factors to be rotated. The specification ROTATE=PROMAX requests a promax rotation,
which has the advantage of providing both orthogonal and oblique rotations with only one invocation of



Outline of Use F 2301

PROC FACTOR. The REORDER option causes the variables to be reordered in the output so that variables
associated with the same factor appear next to each other.

You can now compute and plot factor scores for the two-factor promax-rotated solution as follows:

proc score data=raw score=save.fact_2 out=save.scores;
run;

proc sgplot;
scatter y=factor2 x=factor1;

run;

Maximum Likelihood Factor Analysis

Although principal factor analysis is perhaps the most commonly used method of common factor analysis,
most statisticians prefer maximum likelihood (ML) factor analysis (Lawley and Maxwell 1971). The ML
method of estimation has desirable asymptotic properties (Bickel and Doksum 1977) and produces better
estimates than principal factor analysis in large samples. You can test hypotheses about the number of
common factors by using the ML method. You can also obtain standard error and confidence interval
estimates for many classes of rotated or unrotated factor loadings, factor correlations, and structure loadings
under the ML theory.

The unrotated ML solution is equivalent to Rao’s canonical factor solution (Rao 1955) and Howe’s solution
maximizing the determinant of the partial correlation matrix (Morrison 1976). Thus, as a descriptive method,
ML factor analysis does not require a multivariate normal distribution. The validity of Bartlett’s �2 test
for the number of factors does require approximate normality plus additional regularity conditions that are
usually satisfied in practice (Geweke and Singleton 1980). Bartlett’s test of sphericity in the context of factor
analysis is equivalent to Bartlett’s �2 test for zero common factors. This test is routinely displayed in the
maximum likelihood factor analysis output.

Lawley and Maxwell (1971) derive the standard error formulas for unrotated loadings, while Archer and
Jennrich (1973) and Jennrich (1973, 1974) derive the standard error formulas for several classes of rotated
solutions. Extended formulas for computing standard errors in various situations appear in Browne et al.
(2008); Hayashi and Yung (1999); Yung and Hayashi (2001). A combination of these methods is used in
PROC FACTOR to compute standard errors in an efficient manner. Confidence intervals are computed
by using the asymptotic normality of the estimates. To ensure that the confidence intervals fall within the
admissible parameter range, transformation methods due to Browne (1982) are used. The validity of the
standard error estimates and confidence limits requires the assumptions of multivariate normality and a fixed
number of factors.

The ML method is more computationally demanding than principal factor analysis for two reasons. First, the
communalities are estimated iteratively, and each iteration takes about as much computer time as principal
factor analysis. The number of iterations typically ranges from about five to twenty. Second, if you want
to extract different numbers of factors, as is often the case, you must run the FACTOR procedure once for
each number of factors. Therefore, an ML analysis can take 100 times as long as a principal factor analysis.
This does not include the time for computing standard error estimates, which is even more computationally
demanding. For analyses with fewer than 35 variables, the computing time for the ML method, including the
computation of standard errors, usually ranges from a few seconds to well under a minute. This seems to be a
reasonable performance.
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You can use principal factor analysis to get a rough idea of the number of factors before doing an ML analysis.
If you think that there are between one and three factors, you can use the following statements for the ML
analysis:

proc factor data=raw method=ml n=1
outstat=save.fact1;

run;
proc factor data=raw method=ml n=2 rotate=promax

outstat=save.fact2;
run;
proc factor data=raw method=ml n=3 rotate=promax

outstat=save.fact3;
run;

The output data sets can be used for trying different rotations, computing scoring coefficients, or restarting
the procedure in case it does not converge within the allotted number of iterations.

If you can determine how many factors should be retained before an analysis, as in the following statements,
you can get the standard errors and confidence limits to aid interpretations for the ML analysis:

proc factor data=raw method=ml n=3 rotate=quartimin se
cover=.4;

run;

In this analysis, you specify the quartimin rotation in the ROTATE= option. The SE option requests the
computation of standard error estimates. In the COVER= option, you require absolute values of 0.4 or greater
in order for loadings to be salient. In the output of coverage display, loadings that are salient would have
their entire confidence intervals spanning beyond the 0.4 mark (or the –0.4 mark in the opposite direction).
Only those salient loadings should be used for interpreting the factors. See the section “Confidence Intervals
and the Salience of Factor Loadings” on page 2336 for more details.

The ML method cannot be used with a singular correlation matrix, and it is especially prone to Heywood
cases. See the section “Heywood Cases and Other Anomalies about Communality Estimates” on page 2341
for a discussion of Heywood cases. If you have problems with ML, the best alternative is to use the
METHOD=ULS option for unweighted least squares factor analysis.

Factor Rotation

After the initial factor extraction, the factors are uncorrelated with each other. If the factors are rotated
by an orthogonal transformation, the rotated factors are also uncorrelated. If the factors are rotated by an
oblique transformation, the rotated factors become correlated. Oblique rotations often produce more useful
patterns than orthogonal rotations do. However, a consequence of correlated factors is that there is no single
unambiguous measure of the importance of a factor in explaining a variable. Thus, for oblique rotations,
the pattern matrix does not provide all the necessary information for interpreting the factors; you must also
examine the factor structure and the reference structure.

Nowadays, most rotations are done analytically. There are many choices for orthogonal and oblique rotations.
An excellent summary of a wide class of analytic rotations is in Crawford and Ferguson (1970). The
Crawford-Ferguson family of orthogonal rotations includes the orthomax rotation as a subclass and the
popular varimax rotation as a special case. To illustrate these relationships, the following four specifications
for orthogonal rotations with different ROTATE= options will give the same results for a data set with nine
observed variables:
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/* Orthogonal Crawford-Ferguson Family with
variable parsimony weight = nvar - 1 = 8, and
factor parsimony weight = 1 */

proc factor data=raw n=3 rotate=orthcf(8,1);
run;

/* Orthomax without the GAMMA= option */
proc factor data=raw n=3 rotate=orthomax(1);
run;

/* Orthomax with the GAMMA= option */
proc factor data=raw n=3 rotate=orthomax gamma=1;
run;

/* Varimax */
proc factor data=raw n=3 rotate=varimax;
run;

You can also get the oblique versions of the varimax in two equivalent ways:

/* Oblique Crawford-Ferguson Family with
variable parsimony weight = nvar - 1 = 8, and
factor parsimony weight = 1; */

proc factor data=raw n=3 rotate=oblicf(8,1);
run;

/* Oblique Varimax */
proc factor data=raw n=3 rotate=obvarimax;
run;

Jennrich (1973) proposes a generalized Crawford-Ferguson family that includes the Crawford-Ferguson
family and the (direct) oblimin family (see Harman 1976) as subclasses. The better-known quartimin rotation
is a special case of the oblimin class, and hence a special case of the generalized Crawford-Ferguson family.
For example, the following four specifications of oblique rotations are equivalent:

/* Oblique generalized Crawford-Ferguson Family
with weights 0, 1, 0, -1 */

proc factor data=raw n=3 rotate=obligencf(0,1,0,-1);
run;

/* Oblimin family without the TAU= option */
proc factor data=raw n=3 rotate=oblimin(0);
run;

/* Oblimin family with the TAU= option */
proc factor data=raw n=3 rotate=oblimin tau=0;
run;

/* Quartimin */
proc factor data=raw n=3 rotate=quartimin;
run;
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In addition to the generalized Crawford-Ferguson family, the available oblique rotation methods in PROC
FACTOR include Harris-Kaiser, promax, and Procrustes. See the section “Simplicity Functions for Rotations”
on page 2337 for details about the definitions of various rotations. See Harman (1976) and Mulaik (1972) for
further information.

Getting Started: FACTOR Procedure
The following example demonstrates how you can use the FACTOR procedure to perform common factor
analysis and factor rotation.

In this example, 103 police officers were rated by their supervisors on 14 scales (variables). You conduct a
common factor analysis on these variables to see what latent factors are operating behind these ratings. The
overall rating variable is excluded from the factor analysis.

The following DATA step creates the SAS data set jobratings:

options validvarname=any;
data jobratings;

input ('Communication Skills'n
'Problem Solving'n
'Learning Ability'n
'Judgment under Pressure'n
'Observational Skills'n
'Willingness to Confront Problems'n
'Interest in People'n
'Interpersonal Sensitivity'n
'Desire for Self-Improvement'n
'Appearance'n
'Dependability'n
'Physical Ability'n
'Integrity'n
'Overall Rating'n) (1.);

datalines;
26838853879867
74758876857667
56757863775875
67869777988997
99997798878888
89897899888799
89999889899798
87794798468886

... more lines ...

99899899899899
76656399567486
;
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The following statements invoke the FACTOR procedure:

proc factor data=jobratings(drop='Overall Rating'n) priors=smc
rotate=varimax;

run;

The DATA= option in PROC FACTOR specifies the SAS data set jobratings as the input data set. The DROP=
option drops the Overall Rating variable from the analysis. To conduct a common factor analysis, you need
to set the prior communality estimate to less than one for each variable. Otherwise, the factor solution
would simply be a recast of the principal components solution, in which “factors” are linear combinations of
observed variables. However, in the common factor model you always assume that observed variables are
functions of underlying factors. In this example, the PRIORS= option specifies that the squared multiple
correlations (SMC) of each variable with all the other variables are used as the prior communality estimates.
Note that squared multiple correlations are usually less than one. By default, the principal factor extraction is
used if the METHOD= option is not specified. To facilitate interpretations, the ROTATE= option specifies
the VARIMAX orthogonal factor rotation to be used.

The output from the factor analysis is displayed in Figure 37.1 through Figure 37.5.

As displayed in Figure 37.1, the prior communality estimates are set to the squared multiple correlations.
Figure 37.1 also displays the table of eigenvalues (the variances of the principal factors) of the reduced
correlation matrix. Each row of the table pertains to a single eigenvalue. Following the column of eigenvalues
are three measures of each eigenvalue’s relative size and importance. The first of these displays the difference
between the eigenvalue and its successor. The last two columns display the individual and cumulative
proportions that the corresponding factor contributes to the total variation. The last line displayed in
Figure 37.1 states that three factors are retained, as determined by the PROPORTION criterion.

Figure 37.1 Table of Eigenvalues from PROC FACTOR

The FACTOR Procedure
Initial Factor Method: Principal Factors

The FACTOR Procedure
Initial Factor Method: Principal Factors

Prior Communality Estimates: SMC

Communication
Skills

Problem
Solving

Learning
Ability

Judgment
under

Pressure
Observational

Skills

Willingness
to

Confront
Problems

Interest in
People

0.62981394 0.58657431 0.61009871 0.63766021 0.67187583 0.64779805 0.75641519

Interpersonal
Sensitivity

Desire for
Self-Improvement Appearance Dependability

Physical
Ability Integrity

0.75584891 0.57460176 0.45505304 0.63449045 0.42245324 0.68195454
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Figure 37.1 continued

Eigenvalues of the Reduced Correlation Matrix:
Total = 8.06463816  Average = 0.62035678

Eigenvalue Difference Proportion Cumulative

1 6.17760549 4.71531946 0.7660 0.7660

2 1.46228602 0.90183348 0.1813 0.9473

3 0.56045254 0.28093933 0.0695 1.0168

4 0.27951322 0.04766016 0.0347 1.0515

5 0.23185305 0.16113428 0.0287 1.0802

6 0.07071877 0.07489624 0.0088 1.0890

7 -.00417747 0.03387533 -0.0005 1.0885

8 -.03805279 0.04776534 -0.0047 1.0838

9 -.08581814 0.02438060 -0.0106 1.0731

10 -.11019874 0.01452741 -0.0137 1.0595

11 -.12472615 0.02356465 -0.0155 1.0440

12 -.14829080 0.05823605 -0.0184 1.0256

13 -.20652684 -0.0256 1.0000

3 factors will be retained by the PROPORTION criterion.

Figure 37.2 displays the initial factor pattern matrix. The factor pattern matrix represents standardized
regression coefficients for predicting the variables by using the extracted factors. Because the initial factors
are uncorrelated, the pattern matrix is also equal to the correlations between variables and the common
factors.

Figure 37.2 Factor Pattern Matrix from PROC FACTOR

Factor Pattern

Factor1 Factor2 Factor3

Communication Skills 0.75441 0.07707 -0.25551

Problem Solving 0.68590 0.08026 -0.34788

Learning Ability 0.65904 0.34808 -0.25249

Judgment under Pressure 0.73391 -0.21405 -0.23513

Observational Skills 0.69039 0.45292 0.10298

Willingness to Confront Problems 0.66458 0.47460 0.09210

Interest in People 0.70770 -0.53427 0.10979

Interpersonal Sensitivity 0.64668 -0.61284 -0.07582

Desire for Self-Improvement 0.73820 0.12506 0.09062

Appearance 0.57188 0.20052 0.16367

Dependability 0.79475 -0.04516 0.16400

Physical Ability 0.51285 0.10251 0.34860

Integrity 0.74906 -0.35091 0.18656
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The pattern matrix suggests that Factor1 represents general ability. All loadings for Factor1 in the Factor
Pattern are at least 0.5. Factor2 consists of high positive loadings on certain task-related skills (Willingness
to Confront Problems, Observational Skills, and Learning Ability) and high negative loadings on some
interpersonal skills (Interpersonal Sensitivity, Interest in People, and Integrity). This factor measures
individuals’ relative strength in these skills. Theoretically, individuals with high positive scores on this
factor would exhibit better task-related skills than interpersonal skills. Individuals with high negative scores
would exhibit better interpersonal skills than task-related skills. Individuals with scores near zero would have
those skills balanced. Factor3 does not have a cluster of very high or very low factor loadings. Therefore,
interpreting this factor is difficult.

Figure 37.3 displays the proportion of variance explained by each factor and the final communality estimates,
including the total communality. The final communality estimates are the proportion of variance of the
variables accounted for by the common factors. When the factors are orthogonal, the final communalities are
calculated by taking the sum of squares of each row of the factor pattern matrix.

Figure 37.3 Variance Explained and Final Communality Estimates

Variance Explained by Each
Factor

Factor1 Factor2 Factor3

6.1776055 1.4622860 0.5604525

Final Communality Estimates: Total = 8.200344

Communication
Skills

Problem
Solving

Learning
Ability

Judgment
under

Pressure
Observational

Skills

Willingness
to

Confront
Problems

Interest in
People

0.64036292 0.59791844 0.61924167 0.63972863 0.69237485 0.67538695 0.79833968

Interpersonal
Sensitivity

Desire for
Self-Improvement Appearance Dependability

Physical
Ability Integrity

0.79951357 0.56879171 0.39403630 0.66056907 0.39504805 0.71903222

Figure 37.4 displays the results of the VARIMAX rotation of the three extracted factors and the corresponding
orthogonal transformation matrix. The rotated factor pattern matrix is calculated by postmultiplying the
original factor pattern matrix (Figure 37.4) by the transformation matrix.

Figure 37.4 Transformation Matrix and Rotated Factor Pattern

Orthogonal Transformation
Matrix

1 2 3

1 0.59125 0.59249 0.54715

2 -0.80080 0.51170 0.31125

3 0.09557 0.62219 -0.77701
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Figure 37.4 continued

Rotated Factor Pattern

Factor1 Factor2 Factor3

Communication Skills 0.35991 0.32744 0.63530

Problem Solving 0.30802 0.23102 0.67058

Learning Ability 0.08679 0.41149 0.66512

Judgment under Pressure 0.58287 0.17901 0.51764

Observational Skills 0.05533 0.70488 0.43870

Willingness to Confront Problems 0.02168 0.69391 0.43978

Interest in People 0.85677 0.21422 0.13562

Interpersonal Sensitivity 0.86587 0.02239 0.22200

Desire for Self-Improvement 0.34498 0.55775 0.37242

Appearance 0.19319 0.54327 0.24814

Dependability 0.52174 0.54981 0.29337

Physical Ability 0.25445 0.57321 0.04165

Integrity 0.74172 0.38033 0.15567

The rotated factor pattern matrix is somewhat simpler to interpret. If a magnitude of at least 0.5 is required
to indicate a salient variable-factor relationship, Factor1 now represents interpersonal skills (Interpersonal
Sensitivity, Interest in People, Integrity, Judgment Under Pressure, and Dependability). Factor2 mea-
sures physical skills and job enthusiasm (Observational Skills, Willingness to Confront Problems, Physical
Ability, Desire for Self-Improvement, Dependability, and Appearance). Factor3 measures cognitive skills
(Communication Skills, Problem Solving, Learning Ability, and Judgment Under Pressure).

However, using 0.5 for determining a salient variable-factor relationship does not take sampling variability
into account. If the underlying assumptions for the maximum likelihood estimation are approximately
satisfied, you can output standard error estimates and the confidence intervals with METHOD=ML. You can
then determine the salience of the variable-factor relationship by using the coverage displays. See the section
“Confidence Intervals and the Salience of Factor Loadings” on page 2336 for more details.

Figure 37.5 displays the variance explained by each factor and the final communality estimates after the
orthogonal rotation. Even though the variances explained by the rotated factors are different from that of
the unrotated factor (compare with Figure 37.3), the cumulative variance explained by the common factors
remains the same. Note also that the final communalities for variables, as well as the total communality,
remain unchanged after rotation. Although rotating a factor solution will not increase or decrease the
statistical quality of the factor model, it can simplify the interpretations of the factors and redistribute the
variance explained by the factors.

Figure 37.5 Variance Explained and Final Communality Estimates after Rotation

Variance Explained by Each
Factor

Factor1 Factor2 Factor3

3.1024330 2.7684489 2.3294622
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Figure 37.5 continued

Final Communality Estimates: Total = 8.200344

Communication
Skills
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Learning
Ability
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under

Pressure
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Skills

Willingness
to

Confront
Problems

Interest in
People

0.64036292 0.59791844 0.61924167 0.63972863 0.69237485 0.67538695 0.79833968

Interpersonal
Sensitivity

Desire for
Self-Improvement Appearance Dependability

Physical
Ability Integrity

0.79951357 0.56879171 0.39403630 0.66056907 0.39504805 0.71903222

Syntax: FACTOR Procedure
The following statements are available in the FACTOR procedure:

PROC FACTOR < options > ;
VAR variables ;
PRIORS communalities ;
PATHDIAGRAM < options > ;
PARTIAL variables ;
FREQ variable ;
WEIGHT variable ;
BY variables ;

Usually only the VAR statement is needed in addition to the PROC FACTOR statement. The descriptions of
the BY, FREQ, PARTIAL, PRIORS, VAR, and WEIGHT statements follow the description of the PROC
FACTOR statement in alphabetical order.

PROC FACTOR Statement
PROC FACTOR < options > ;

The PROC FACTOR statement invokes the FACTOR procedure. The options listed in Table 37.1 are available
in the PROC FACTOR statement.

Table 37.1 Options Available in the PROC FACTOR Statement

Option Description

Data Set Options
DATA= Specifies input SAS data set
OUT= Specifies output SAS data set
OUTSTAT= Specifies output data set containing statistical results
TARGET= Specifies input data set containing the target pattern for

rotation

Factor Extraction and Communalities
HEYWOOD Sets to 1 any communality greater than 1
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Table 37.1 continued

Option Description

METHOD= Specifies the estimation method
PRIORS= Specifies the method for computing prior communality

estimates
RANDOM= Specifies the seed for pseudo-random number generation
ULTRAHEYWOOD Allows communalities to exceed 1

Number of Factors
MINEIGEN= Specifies the smallest eigenvalue for retaining a factor
NFACTORS= Specifies the number of factors to retain
PROPORTION= Specifies the proportion of common variance in extracted

factors

Data Analysis Options
ALPHA= Specifies the confidence level for interval construction
COVARIANCE Requests factoring of the covariance matrix
COVER= Computes the confidence interval and specifies the

coverage reference point
NOINT Omits the intercept from computing covariances or

correlations
SE Requests the standard error estimates in ML estimation
VARDEF= Specifies the divisor used in calculating covariances or

correlations
WEIGHT Factors a weighted correlation or covariance matrix

Rotation Method and Properties
GAMMA= Specifies the orthomax weight
HKPOWER= Specifies the power in Harris-Kaiser rotation
NORM= Specifies the method for row normalization in rotation
NOPROMAXNORM Turns off row normalization in promax rotation
POWER= Specifies the power to be used in promax rotation
PREROTATE= Specifies the prerotation method in promax rotation
RCONVERGE= Specifies the convergence criterion for rotation cycles
RITER= Specifies the maximum number of cycles for rotation
ROTATE= Specifies the rotation method
TAU= Specifies the oblimin weight

ODS Graphics
PLOTS= Specifies ODS Graphics selection

Control Display Output
ALL Displays all optional output except plots
CORR Displays the (partial) correlation matrix
EIGENVECTORS Displays the eigenvectors of the reduced correlation matrix
FLAG= Specifies the minimum absolute value to be flagged in the

correlation and loading matrices
FUZZ= Specifies the maximum absolute value to be displayed as

missing in the correlation and loading matrices
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Table 37.1 continued

Option Description

MSA Computes Kaiser’s measure of sampling adequacy and the
related partial correlations

NOPRINT Suppresses the display of all output
NPLOT= Specifies the number of factors to be plotted
PLOT Plots the rotated factor pattern
PLOTREF Plots the reference structure
PREPLOT Plots the factor pattern before rotation
PRINT Displays the input factor pattern or scoring coefficients

and related statistics
REORDER Reorders the rows (variables) of various factor matrices
RESIDUALS Displays the residual correlation matrix and the associated

partial correlation matrix
ROUND Prints correlation and loading matrices with rounded

values
SCORE Displays the factor scoring coefficients
SCREE Displays the scree plot of the eigenvalues
SIMPLE Displays means, standard deviations, and number of

observations

Numerical Properties
CONVERGE= Specifies the convergence criterion
MAXITER= Specifies the maximum number of iterations
SINGULAR= Specifies the singularity criterion

Miscellaneous
NOCORR Excludes the correlation matrix from the OUTSTAT= data

set
NOBS= Specifies the number of observations
PARPREFIX= Specifies the prefix for the residual variables in the output

data sets
PREFIX= Specifies the prefix for naming factors

ALL
displays all optional output except plots. When the input data set is TYPE=CORR, TYPE=UCORR,
TYPE=COV, TYPE=UCOV, or TYPE=FACTOR, simple statistics, correlations, and MSA are not
displayed.

ALPHA=p
specifies the level of confidence 1 – p for interval construction. By default, p = 0.05, corresponding
to 1 – p = 95% confidence intervals. If p is greater than one, it is interpreted as a percentage and
divided by 100. With multiple confidence intervals to be constructed, the ALPHA= value is applied
to each interval construction one at a time. This will not control the coverage probability of the
intervals simultaneously. To control familywise coverage probability, you might consider supplying a
nonconventional p by using methods such as Bonferroni adjustment.
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CONVERGE=p

CONV=p
specifies the convergence criterion for the METHOD=PRINIT, METHOD=ULS, METHOD=ALPHA,
or METHOD=ML option. Iteration stops when the maximum change in the communalities is less than
the value of the CONVERGE= option. The default value is 0.001. Negative values are not allowed.

CORR

C
displays the correlation matrix or partial correlation matrix.

COVARIANCE

COV
requests factoring of the covariance matrix instead of the correlation matrix. The COV op-
tion is effective only with the METHOD=PRINCIPAL, METHOD=PRINIT, METHOD=ULS, or
METHOD=IMAGE option. For other methods, PROC FACTOR produces the same results with or
without the COV option.

COVER < =p >

CI < =p >
computes the confidence intervals and optionally specifies the value of factor loading for coverage
detection. By default, p = 0. The specified value is represented by an asterisk (*) in the coverage
display. This is useful for determining the salience of loadings. For example, if COVER=0.4, a display
‘0*[ ]’ indicates that the entire confidence interval is above 0.4, implying strong evidence for the
salience of the loading. See the section “Confidence Intervals and the Salience of Factor Loadings” on
page 2336 for more details.

DATA=SAS-data-set
specifies the input data set, which can be an ordinary SAS data set or a specially structured SAS data
set as described in the section “Input Data Set” on page 2332. If the DATA= option is omitted, the
most recently created SAS data set is used.

EIGENVECTORS

EV
displays the eigenvectors of the reduced correlation matrix, of which the diagonal elements are replaced
with the communality estimates. When METHOD=ML, the eigenvectors are for the weighted reduced
correlation matrix. PROC FACTOR chooses the solution that makes the sum of the elements of each
eigenvector nonnegative. If the sum of the elements is equal to zero, then the sign depends on how the
number is rounded off.

FLAG=p
flags absolute values larger than p with an asterisk in the correlation and loading matrices. Negative
values are not allowed for p. Values printed in the matrices are multiplied by 100 and rounded to the
nearest integer (see the ROUND option). The FLAG= option has no effect when standard errors or
confidence intervals are also printed.
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FUZZ=p
prints correlations and factor loadings with absolute values less than p printed as missing. For partial
correlations, the FUZZ= value is divided by 2. For residual correlations, the FUZZ= value is divided
by 4. The exact values in any matrix can be obtained from the OUTSTAT= and ODS output data sets.
Negative values are not allowed. The FUZZ= option has no effect when standard errors or confidence
intervals are also printed.

GAMMA=p
specifies the orthomax weight used with the option ROTATE=ORTHOMAX or PRE-
ROTATE=ORTHOMAX. Alternatively, you can use ROTATE=ORTHOMAX(p) with p representing
the orthomax weight. There is no restriction on valid values for the orthomax weight, although the
most common values are between zero and the number of variables. The default GAMMA= value
is one, resulting in the varimax rotation. See the section “Simplicity Functions for Rotations” on
page 2337 for more details.

HEYWOOD

HEY
sets to 1 any communality greater than 1, allowing iterations to proceed. See the section “Heywood
Cases and Other Anomalies about Communality Estimates” on page 2341 for a discussion of Heywood
cases.

HKPOWER=p

HKP=p
specifies the power of the square roots of the eigenvalues used to rescale the eigenvectors for Harris-
Kaiser (ROTATE=HK) rotation, assuming that the factors are extracted by the principal factor method.
If the principal factor method is not used for factor extraction, the eigenvectors are replaced by the
normalized columns of the unrotated factor matrix, and the eigenvalues are replaced by the column
normalizing constants. HKPOWER= values between 0.0 and 1.0 are reasonable. The default value is
0.0, yielding the independent cluster solution, in which each variable tends to have a large loading on
only one factor. An HKPOWER= value of 1.0 is equivalent to an orthogonal rotation, with the varimax
rotation as the default. You can also specify the HKPOWER= option with ROTATE=QUARTIMAX,
ROTATE=BIQUARTIMAX, ROTATE=EQUAMAX, or ROTATE=ORTHOMAX, and so on. The only
restriction is that the Harris-Kaiser rotation must be associated with an orthogonal rotation.

MAXITER=n
specifies the maximum number of iterations for factor extraction. You can use the MAXITER= option
with the PRINIT, ULS, ALPHA, or ML method. The default is 30.

METHOD=name

M=name
specifies the method for extracting factors. The default is METHOD=PRINCIPAL unless the DATA=
data set is TYPE=FACTOR, in which case the default is METHOD=PATTERN. Valid values for name
are as follows:

ALPHA | A produces alpha factor analysis.

HARRIS | H yields Harris component analysis of S�1RS�1 (Harris 1962), a noniterative approx-
imation to canonical component analysis.
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IMAGE | I yields principal component analysis of the image covariance matrix, not the im-
age analysis of Kaiser (1963, 1970) or Kaiser and Rice (1974). A nonsingular
correlation matrix is required.

ML | M performs maximum likelihood factor analysis with an algorithm due, except for
minor details, to Fuller (1987). The option METHOD=ML requires a nonsingular
correlation matrix.

PATTERN reads a factor pattern from a TYPE=FACTOR, TYPE=CORR, TYPE=UCORR,
TYPE=COV, or TYPE=UCOV data set. If you create a TYPE=FACTOR
data set in a DATA step, only observations containing the factor pattern
(_TYPE_=’PATTERN’) and, if the factors are correlated, the interfactor corre-
lations (_TYPE_=’FCORR’) are required.

PRINCIPAL | PRIN | P yields principal component analysis if no PRIORS option or statement is
used or if you specify PRIORS=ONE; if you specify a PRIORS statement or a
PRIORS= value other than PRIORS=ONE, a principal factor analysis is performed.

PRINIT yields iterated principal factor analysis.

SCORE reads scoring coefficients (_TYPE_=’SCORE’) from a TYPE=FACTOR,
TYPE=CORR, TYPE=UCORR, TYPE=COV, or TYPE=UCOV data set. The
data set must also contain either a correlation or a covariance matrix. Scoring
coefficients are also displayed if you specify the OUT= option.

ULS | U produces unweighted least squares factor analysis.

MINEIGEN=p

MIN=p
specifies the smallest eigenvalue for which a factor is retained. If you specify two or more of the
MINEIGEN=, NFACTORS=, and PROPORTION= options, the number of factors retained is the
minimum number satisfying any of the criteria. The MINEIGEN= option cannot be used with either
the METHOD=PATTERN or the METHOD=SCORE option. Negative values are not allowed. The
default is 0 unless you omit both the NFACTORS= and the PROPORTION= options and one of the
following conditions holds:

• If you specify the METHOD=ALPHA or METHOD=HARRIS option, then MINEIGEN=1.

• If you specify the METHOD=IMAGE option, then

MINEIGEN D
total image variance
number of variables

• For any other METHOD= specification, if prior communality estimates of 1.0 are used, then

MINEIGEN D
total weighted variance

number of variables

When an unweighted correlation matrix is factored, this value is 1.

MSA
produces the partial correlations between each pair of variables controlling for all other variables (the
negative anti-image correlations) and Kaiser’s measure of sampling adequacy (Kaiser 1970; Kaiser
and Rice 1974; Cerny and Kaiser 1977).
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NFACTORS=n

NFACT=n

N=n
specifies the maximum number of factors to be extracted and determines the amount of memory to be
allocated for factor matrices. The default is the number of variables. Specifying a number that is small
relative to the number of variables can substantially decrease the amount of memory required to run
PROC FACTOR, especially with oblique rotations. If you specify two or more of the NFACTORS=,
MINEIGEN=, and PROPORTION= options, the number of factors retained is the minimum number
satisfying any of the criteria. If you specify the option NFACTORS=0, eigenvalues are computed,
but no factors are extracted. If you specify the option NFACTORS=–1, neither eigenvalues nor
factors are computed. You can use the NFACTORS= option with the METHOD=PATTERN or
METHOD=SCORE option to specify a smaller number of factors than are present in the data set.

NOBS=n
specifies the number of observations. If the DATA= input data set is a raw data set, nobs is defined by
default to be the number of observations in the raw data set. The NOBS= option overrides this default
definition. If the DATA= input data set contains a covariance, correlation, or scalar product matrix, the
number of observations can be specified either by using the NOBS= option in the PROC FACTOR
statement or by including a _TYPE_=’N’ observation in the DATA= input data set.

NOCORR
prevents the correlation matrix from being transferred to the OUTSTAT= data set when you specify the
METHOD=PATTERN option. The NOCORR option greatly reduces memory requirements when there
are many variables but few factors. The NOCORR option is not effective if the correlation matrix is
required for other requested output; for example, if the scores or the residual correlations are displayed
(for example, by using the SCORE, RESIDUALS, or ALL option).

NOINT
omits the intercept from the analysis; covariances or correlations are not corrected for the mean.

NOPRINT
suppresses the display of all output. Note that this option temporarily disables the Output Delivery
System (ODS). For more information, see Chapter 20, “Using the Output Delivery System.”

NOPROMAXNORM | NOPMAXNORM
turns off the default row normalization of the prerotated factor pattern, which is used in computing the
promax target matrix.

NORM=COV | KAISER | NONE | RAW | WEIGHT
specifies the method for normalizing the rows of the factor pattern for rotation. If you specify the
option NORM=KAISER, Kaiser’s normalization is used .

P
j p

2
ij D 1/. If you specify the option

NORM=WEIGHT, the rows are weighted by the Cureton-Mulaik technique (Cureton and Mulaik
1975). If you specify the option NORM=COV, the rows of the pattern matrix are rescaled to represent
covariances instead of correlations. If you specify the option NORM=NONE or NORM=RAW,
normalization is not performed. The default is NORM=KAISER.

NPLOTS | NPLOT=n
specifies the number of factors to be plotted. The default is to plot all factors. The smallest allowable
value is 2. If you specify the option NPLOTS=n, all pairs of the first n factors are plotted, producing a
total of n.n � 1/=2 plots.
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OUT=SAS-data-set
creates a data set containing all the data from the DATA= data set plus variables called Factor1, Factor2,
and so on, containing estimated factor scores. The DATA= data set must contain multivariate data, not
correlations or covariances. You must also specify the NFACTORS= option to determine the number
of factor score variables. If you specify partial variables in the PARTIAL statement, the OUT= data set
will also contain the residual variables that are used for factor analysis. The output data set is described
in detail in the section “Output Data Sets” on page 2334. If you want to create a SAS data set in a
permanent library, you must specify a two-level name. For more information about permanent libraries
and SAS data sets, see SAS Language Reference: Concepts.

OUTSTAT=SAS-data-set
specifies an output data set containing most of the results of the analysis. The output data set is
described in detail in the section “Output Data Sets” on page 2334. If you want to create a SAS data
set in a permanent library, you must specify a two-level name. For more information about permanent
libraries and SAS data sets, see SAS Language Reference: Concepts.

PARPREFIX=name
specifies the prefix for the residual variables in the OUT= and the OUTSTAT= data sets when partial
variables are specified in the PARTIAL statement.

PLOT
plots the factor pattern after rotation. This option produces printer plots. High-quality ODS graphical
plots for factor patterns can be requested with the PLOTS=LOADINGS or PLOTS=INITLOADINGS
option.

PLOTREF
plots the reference structure instead of the default factor pattern after oblique rotation.

PLOTS < (global-plot-options) > = plot-request < (options) >

PLOTS < (global-plot-options) > = (plot-request < (options) > < . . . plot-request < (options) > > )
specifies one or more ODS graphical plots in PROC FACTOR. When you specify only one plot-request ,
you can omit the parentheses around the plot-request . Here are some examples:

plots=all
plots(flip)=loadings
plots=(loadings(flip) scree(unpack))

ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;
proc factor plots=all;
run;
ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

For an example containing graphical displays of factor analysis results, see Example 37.2.
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The following table shows the available plot-requests and their available suboptions:

Plot-Request Plot Description Suboptions

ALL all available plots all
INITLOADINGS unrotated factor loadings CIRCLE=, FLIP, NPLOTS=,

PLOTREF, and VECTOR
LOADINGS rotated factor loadings CIRCLE=, FLIP, NPLOTS=,

PLOTREF, and VECTOR
NONE no ODS graphical plots
PATHDIAGRAM path diagram
PRELOADINGS prerotated factor loadings CIRCLE=, FLIP, NPLOTS=,

PLOTREF, and VECTOR
SCREE scree and variance explained UNPACK

The following are the available global-plot-options or options for plots:

CIRCLE | CIRCLES < = numbers > draws circular reference lines in scatter plots or vector plots of
factor loadings. You can specify the locations of the circular reference lines in the
numbers list. Each number indicates the proportion or percentage of area of the
unit circle that is enclosed by the specified circle. Each of the numbers must lie
between 0 and 100, inclusively. When a number is between 0 and 1 (inclusively),
it is interpreted as a proportion; otherwise, it is interpreted as a percentage. The
maximum number of circles is 5.
The CIRCLE option applies to the scatter or vector plots requested by the INIT-
LOADINGS, LOADINGS, and PRELOADINGS options. By default, a unit-circle,
which represents 100% of the total area, is drawn for the vector plots. However,
no circle will be drawn for scatter plots unless the CIRCLE option is specified.
Two special cases for this option are: (1) With no numbers following the CIRCLE
option, a 100% circle will be drawn. (2) With CIRCLE=0, no circle will be drawn.
This special case is primarily used to turn off the default unit-circle in vector plots.

FLIP switches the X and Y axes. It applies to the INITLOADINGS, LOADINGS, and
PRELOADINGS plot-requests.

NPLOT | NPLOTS=n specifies the number of factors n (n � 2) to be plotted. It applies to the
INITLOADINGS, LOADINGS, and PRELOADINGS plot-requests. Since this
option can also be specified in the PROC FACTOR statement, the final value of n is
determined by the following steps. The NPLOTS= value of the PROC FACTOR is
read first. If the NPLOTS= option is specified as a global-plot-option, the value of n
will be updated. Then, if the NPLOTS= option is again specified in an individual
plot-request , the value will be updated again for that individual plot-request . For
example, in the following statement, four factors are extracted with the N=4 option:

proc factor n=4 nplots=3 plots(nplots=4)=
(loadings preloadings(nplots=2));

Initially, plots of the first three factors are specified with the NPLOTS=3 option.
When you are producing ODS graphical plots, the global-plot-option NPLOTS=4
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is used. As a result, the LOADINGS plot-request will produce plots for all pairs
of the first 4 factors. However, because the NPLOTS=2 is specified locally for the
PRELOADINGS plot-request , it will produce a prerotated factor loading plot for
the first two factors only.

The default NPLOTS= value is 5 or the total number of factors (m), whichever is
smaller. If you specify an NPLOTS= value that is greater than m, NPLOTS=m will
be used.

PATHDIAGRAM creates a path diagram for the last factor model. The last factor model refers to the
initial factor solution if you do not specify any rotations. It refers to the rotated
factor solution if you use the ROTATE= option. The path diagram shows the links
between factors and variables, the factor correlations, and the error variances in the
model.

The path diagram does not display all non-zero directed links between factors and
variables. It displays only those directed links that have factor loading estimates
at 0.3 or bigger in magnitude. PROC FACTOR uses this 0.3-criterion by default.
You can set your own criterion by using the FUZZ= option in the PROC FACTOR
statement.

If you use both the METHOD=ML and SE options in the PROC FACTOR state-
ment, the statistical significance of the factor loading estimate is also required for
displaying the corresponding directed link between a variable and a factor. The
default level of significance is 0.05. You can set your own level of significance by
using the ALPHA= option in the PROC FACTOR statement.

Alternatively, you can produce path diagrams by using the the PATHDIAGRAM
Statement, which provides many options that enables you to create highly cus-
tomized path diagrams.

PLOTREF plots the reference structures rather than the factor pattern loadings. It applies to
the INITLOADINGS, LOADINGS, and PRELOADINGS plot-requests when the
factor solution is oblique. This option can also be set globally as an option in the
PROC FACTOR statement.

UNPACK plots component graphs separately. It applies to the SCREE plot-request only.

VECTOR plots loadings in vector form. It applies to the INITLOADINGS, LOADINGS, and
PRELOADINGS plot-requests when the factor solution is orthogonal. For oblique
solutions, the VECTOR option is ignored and the default scatter plots for factor
loadings or reference structures are displayed.

Be aware that the PLOT option in the PROC FACTOR statement requests only the printer plots of
factor loadings. The current option PLOTS= or PLOT=, however, is for ODS graphical plots.

You can specify options for the requested ODS graphical plots as global-plot-options or as local options.
Global-plot-options apply to all appropriate individual plot-requests specified. For example, because
the SCREE plot is not subject to axes flipping, the following two specifications are equivalent:

plots(flip)=(loadings preloadings scree)
plots=(loadings(flip) preloadings(flip) scree)
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Options specified locally after each plot-request apply to that plot-request only. For example, consider
the following specification:

plots=(scree(unpack) loadings(plotref) preloadings(flip))

The FLIP option applies to the PRELOADINGS plot-request but not the LOADINGS plot-request ; the
PLOTREF option applies to the LOADINGS plot-request but not the PRELOADINGS plot-request;
and the UNPACK option applies to the SCREE plot-request only.

POWER=n
specifies the power to be used in computing the target pattern for the option ROTATE=PROMAX.
Valid values must be integers � 1. The default value is 3. You can also specify the POWER= value in
the ROTATE= option—for example, ROTATE=PROMAX(4).

PREFIX=name
specifies a prefix for naming the factors. By default, the names are Factor1, Factor2, . . . , Factorn. If
you specify PREFIX=ABC, the factors are named ABC1, ABC2, ABC3, and so on. The number of
characters in the prefix plus the number of digits required to designate the variables should not exceed
the current name length defined by the VALIDVARNAME= system option.

PREPLOT
plots the factor pattern before rotation. This option produces printer plots. High-quality ODS graphical
plots for factor patterns can be requested with the PLOTS=PRELOADINGS option.

PREROTATE=name

PRE=name
specifies the prerotation method for the option ROTATE=PROMAX. Any rotation method other
than PROMAX or PROCRUSTES can be used. The default is PREROTATE=VARIMAX. If a
previously rotated pattern is read using the option METHOD=PATTERN, you should specify the
PREROTATE=NONE option.

PRINT
displays the input factor pattern or scoring coefficients and related statistics. In oblique cases, the
reference and factor structures are computed and displayed. The PRINT option is effective only with
the option METHOD=PATTERN or METHOD=SCORE.

PRIORS=name
specifies a method for computing prior communality estimates. You can specify numeric values for the
prior communality estimates by using the PRIORS statement. Valid values for name are as follows:

ASMC | A sets the prior communality estimates proportional to the squared multiple corre-
lations but adjusted so that their sum is equal to that of the maximum absolute
correlations (Cureton 1968).

INPUT | I reads the prior communality estimates from the first observation with either
_TYPE_=’PRIORS’ or _TYPE_=’COMMUNAL’ in the DATA= data set (which
cannot be TYPE=DATA).

MAX | M sets the prior communality estimate for each variable to its maximum absolute
correlation with any other variable.
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ONE | O sets all prior communalities to 1.0.

RANDOM | R sets the prior communality estimates to pseudo-random numbers uniformly dis-
tributed between 0 and 1.

SMC | S sets the prior communality estimate for each variable to its squared multiple corre-
lation with all other variables.

The default prior communality estimates are as follows:

METHOD= PRIORS=

PRINCIPAL ONE

PRINIT ONE

ALPHA SMC

ULS SMC

ML SMC

HARRIS (not applicable)

IMAGE (not applicable)

PATTERN (not applicable)

SCORE (not applicable)

By default, the options METHOD=PRINIT, METHOD=ULS, METHOD=ALPHA, and
METHOD=ML stop iterating and set the number of factors to 0 if an estimated communality
exceeds 1. The options HEYWOOD and ULTRAHEYWOOD allow processing to continue.

PROPORTION=p

PERCENT=p

P=p
specifies the proportion of common variance to be accounted for by the retained factors. The pro-
portion of common variance is computed using the total prior communality estimates as the basis.
If the value is greater than one, it is interpreted as a percentage and divided by 100. The options
PROPORTION=0.75 and PERCENT=75 are equivalent. The default value is 1.0 or 100%. You cannot
specify the PROPORTION= option with the METHOD=PATTERN or METHOD=SCORE option.
If you specify two or more of the PROPORTION=, NFACTORS=, and MINEIGEN= options, the
number of factors retained is the minimum number satisfying any of the criteria.

RANDOM=n
specifies a positive integer as a starting value for the pseudo-random number generator for use with the
option PRIORS=RANDOM. If you do not specify the RANDOM= option, the time of day is used to
initialize the pseudo-random number sequence. Valid values must be integers � 1.

RCONVERGE=p

RCONV=p
specifies the convergence criterion value p (p > 0) for rotation cycles. Rotation stops when the scaled
change of the simplicity function value is less than p. Mathematically, the convergence criterion is

jfnew � fold j=K < p
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where fnew and fold are simplicity function values of the current cycle and the previous cycle,
respectively, K D max.1; jfold j/ is a scaling factor, and p is 1E–9 by default.

REORDER

RE
causes the rows (variables) of various factor matrices to be reordered on the output. Variables with
their highest absolute loading (reference structure loading for oblique rotations) on the first factor
are displayed first, from largest to smallest loading, followed by variables with their highest absolute
loading on the second factor, and so on. The order of the variables in the output data set is not affected.
The factors are not reordered.

RESIDUALS

RES
displays the residual correlation matrix and the associated partial correlation matrix. The diagonal
elements of the residual correlation matrix are the unique variances.

RITER=n
specifies the maximum number of cycles n for factor rotation. Except for promax and Procrustes, you
can use the RITER= option with all rotation methods. The default n is the maximum between 10 times
the number of variables and 100.

ROTATE=name

R=name
specifies the rotation method. The default is ROTATE=NONE.

Valid names for orthogonal rotations are as follows:

BIQUARTIMAX | BIQMAX specifies orthogonal biquartimax rotation. This corresponds to the speci-
fication ROTATE=ORTHOMAX(.5).

EQUAMAX | E specifies orthogonal equamax rotation. This corresponds to the specification
ROTATE=ORTHOMAX with GAMMA=number of factors/2.

FACTORPARSIMAX | FPA specifies orthogonal factor parsimax rotation. This corresponds to the
specification ROTATE=ORTHOMAX with GAMMA=number of variables.

NONE | N specifies that no rotation be performed, leaving the original orthogonal solution.

ORTHCF(p1,p2) | ORCF(p1,p2) specifies the orthogonal Crawford-Ferguson rotation with the
weights p1 and p2 for variable parsimony and factor parsimony, respectively. See
the definitions of weights in the section “Simplicity Functions for Rotations” on
page 2337.

ORTHGENCF(p1,p2,p3,p4) | ORGENCF(p1,p2,p3,p4) specifies the orthogonal generalized
Crawford-Ferguson rotation with the four weights p1, p2, p3, and p4. See
the definitions of weights in the section “Simplicity Functions for Rotations” on
page 2337.

ORTHOMAX< (p) > | ORMAX< (p) > specifies the orthomax rotation with orthomax weight p. If
ROTATE=ORTHOMAX is used, the default p value is 1 unless specified otherwise
in the GAMMA= option. Alternatively, ROTATE=ORTHOMAX(p) specifies p as
the orthomax weight or the GAMMA= value. See the definition of the orthomax
weight in the section “Simplicity Functions for Rotations” on page 2337.
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PARSIMAX | PA specifies orthogonal parsimax rotation. This corresponds to the specification
ROTATE=ORTHOMAX with

GAMMA D
nvar � .nfact � 1/
nvar C nfact � 2

where nvar is the number of variables and nfact is the number of factors.

QUARTIMAX | QMAX | Q specifies orthogonal quartimax rotation. This corresponds to the specifica-
tion ROTATE=ORTHOMAX(0).

VARIMAX | V specifies orthogonal varimax rotation. This corresponds to the specification
ROTATE=ORTHOMAX with GAMMA=1.

Valid names for oblique rotations are as follows:

BIQUARTIMIN | BIQMIN specifies biquartimin rotation. It corresponds to the specification
ROTATE=OBLIMIN(.5) or ROTATE=OBLIMIN with TAU=0.5.

COVARIMIN | CVMIN specifies covarimin rotation. It corresponds to the specification
ROTATE=OBLIMIN(1) or ROTATE=OBLIMIN with TAU=1.

HK< (p) > | H< (p) > specifies Harris-Kaiser case II orthoblique rotation. When specifying this option,
you can use the HKPOWER= option to set the power of the square roots of the
eigenvalues by which the eigenvectors are scaled, assuming that the factors are ex-
tracted by the principal factor method. For other extraction methods, the unrotated
factor pattern is column normalized. The power is then applied to the column nor-
malizing constants, instead of the eigenvalues. You can also use ROTATE=HK(p),
with p representing the HKPOWER= value. The default associated orthogonal
rotation with ROTATE=HK is the varimax rotation without Kaiser normalization.
You might associate the Harris-Kaiser with other orthogonal rotations by using the
ROTATE= option together with the HKPOWER= option.

OBBIQUARTIMAX | OBIQMAX specifies oblique biquartimax rotation.

OBEQUAMAX | OE specifies oblique equamax rotation.

OBFACTORPARSIMAX | OFPA specifies oblique factor parsimax rotation.

OBLICF(p1,p2) | OBCF(p1,p2) specifies the oblique Crawford-Ferguson rotation with the weights
p1 and p2 for variable parsimony and factor parsimony, respectively. See the defini-
tions of weights in the section “Simplicity Functions for Rotations” on page 2337.

OBLIGENCF(p1,p2,p3,p4) | OBGENCF(p1,p2,p3,p4) specifies the oblique generalized Crawford-
Ferguson rotation with the four weights p1, p2, p3, and p4. See the definitions of
weights in the section “Simplicity Functions for Rotations” on page 2337.

OBLIMIN< (p) > | OBMIN< (p) > specifies the oblimin rotation with oblimin weight p. If
ROTATE=OBLIMIN is used, the default p value is zero unless specified oth-
erwise in the TAU= option. Alternatively, ROTATE=OBLIMIN(p) specifies p as
the oblimin weight or the TAU= value. See the definition of the oblimin weight in
the section “Simplicity Functions for Rotations” on page 2337.

OBPARSIMAX | OPA specifies oblique parsimax rotation.
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OBQUARTIMAX | OQMAX specifies oblique quartimax rotation. This is the same as the QUAR-
TIMIN method.

OBVARIMAX | OV specifies oblique varimax rotation.

PROCRUSTES specifies oblique Procrustes rotation with the target pattern provided by the TAR-
GET= data set. The unrestricted least squares method is used with factors scaled to
unit variance after rotation.

PROMAX< (p) > | P< (p) > specifies oblique promax rotation. You can use the PREROTATE= option
to set the desirable prerotation method, orthogonal or oblique. When used with
ROTATE=PROMAX, the POWER= option lets you specify the power for forming
the target. You can also use ROTATE=PROMAX(p), where p represents the
POWER= value.

QUARTIMIN | QMIN specifies quartimin rotation. It is the same as the oblique quartimax
method. It also corresponds to the specification ROTATE=OBLIMIN(0) or
ROTATE=OBLIMIN with TAU=0.

ROUND
prints correlation and loading matrices with entries multiplied by 100 and rounded to the nearest integer.
The exact values can be obtained from the OUTSTAT= and ODS output data sets. The ROUND option
also flags absolute values larger than the FLAG= value with an asterisk in correlation and loading
matrices (see the FLAG= option). If the FLAG= option is not specified, the root mean square of all the
values in the matrix printed is used as the default FLAG= value. The ROUND option has no effect
when standard errors or confidence intervals are also printed.

SCORE
displays the factor scoring coefficients. The squared multiple correlation of each factor with the
variables is also displayed except in the case of unrotated principal components. The SCORE option
also outputs the factor scoring coefficients in the _TYPE_=SCORE or _TYPE_=USCORE observations
in the OUTSTAT= data set. Unless you specify the NOINT option in PROC FACTOR, the scoring
coefficients should be applied to standardized variables—variables that are centered by subtracting the
original variable means and then divided by the original variable standard deviations. With the NOINT
option, the scoring coefficients should be applied to data without centering.

SCREE
displays a scree plot of the eigenvalues (Cattell 1966, 1978; Cattell and Vogelman 1977; Horn and
Engstrom 1979). This option produces printer plots. High-quality scree plots can be requested with the
PLOTS=SCREE option.

SE

STDERR
computes standard errors for various classes of unrotated and rotated solutions under the maximum
likelihood estimation.

SIMPLE

S
displays means, standard deviations, and the number of observations.
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SINGULAR=p

SING=p
specifies the singularity criterion, where 0 < p < 1. The default value is 1E–8.

TARGET=SAS-data-set
specifies an input data set containing the target pattern for Procrustes rotation (see the description of
the ROTATE= option). The TARGET= data set must contain variables with the same names as those
being factored. Each observation in the TARGET= data set becomes one column of the target factor
pattern. Missing values are treated as zeros. The _NAME_ and _TYPE_ variables are not required and
are ignored if present.

TAU=p
specifies the oblimin weight used with the option ROTATE=OBLIMIN or PREROTATE=OBLIMIN.
Alternatively, you can use ROTATE=OBLIMIN(p) with p representing the oblimin weight. There is
no restriction on valid values for the oblimin weight, although for practical purposes a negative or
zero value is recommended. The default TAU= value is 0, resulting in the quartimin rotation. See the
section “Simplicity Functions for Rotations” on page 2337 for more details.

ULTRAHEYWOOD

ULTRA
allows communalities to exceed 1. The ULTRAHEYWOOD option can cause convergence problems
because communalities can become extremely large, and ill-conditioned Hessians might occur. See the
section “Heywood Cases and Other Anomalies about Communality Estimates” on page 2341 for a
discussion of Heywood cases.

VARDEF=DF | N | WDF | WEIGHT | WGT
specifies the divisor used in the calculation of variances and covariances. The default value is
VARDEF=DF. The values and associated divisors are displayed in the following table where i=0 if the
NOINT option is used and i=1 otherwise, and where k is the number of partial variables specified in
the PARTIAL statement.

Value Description Divisor

DF degrees of freedom n � k � i

N number of observations n � k

WDF sum of weights DF
P
i wi � k � i

WEIGHT | WGT sum of weights
P
i wi � k

WEIGHT
factors a weighted correlation or covariance matrix. The WEIGHT option can be used only with the
METHOD=PRINCIPAL, METHOD=PRINIT, METHOD=ULS, or METHOD=IMAGE option. The
input data set must be of type CORR, UCORR, COV, UCOV, or FACTOR, and the variable weights
are obtained from an observation with _TYPE_=’WEIGHT’.
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BY Statement
BY variables ;

You can specify a BY statement with PROC FACTOR to obtain separate analyses of observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the FACTOR procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

If you specify the TARGET= option and the TARGET= data set does not contain any of the BY variables,
then the entire TARGET= data set is used as a Procrustean target for each BY group in the DATA= data set.

If the TARGET= data set contains some but not all of the BY variables, or if some BY variables do not have
the same type or length in the TARGET= data set as in the DATA= data set, then PROC FACTOR displays an
error message and stops.

If all the BY variables appear in the TARGET= data set with the same type and length as in the DATA= data
set, then each BY group in the TARGET= data set is used as a Procrustean target for the corresponding BY
group in the DATA= data set. The BY groups in the TARGET= data set must be in the same order as in the
DATA= data set. If you specify the NOTSORTED option in the BY statement, there must be identical BY
groups in the same order in both data sets. If you do not specify the NOTSORTED option, some BY groups
can appear in one data set but not in the other.

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

FREQ Statement
FREQ variable ;

If a variable in the data set represents the frequency of occurrence for the other values in the observation,
include the variable’s name in a FREQ statement. The procedure then treats the data set as if each observation
appears n times, where n is the value of the FREQ variable for the observation. The total number of
observations is considered to be equal to the sum of the FREQ variable when the procedure determines
degrees of freedom for significance probabilities.
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If the value of the FREQ variable is missing or is less than one, the observation is not used in the analysis. If
the value is not an integer, the value is truncated to an integer.

The WEIGHT and FREQ statements have a similar effect, except in determining the number of observations
for significance tests.

PARTIAL Statement
PARTIAL variables ;

If you want the analysis to be based on a partial correlation or covariance matrix, use the PARTIAL statement
to list the variables that are used to partial out the variables in the analysis.

PATHDIAGRAM Statement
PATHDIAGRAM < options > ;

You can use the PATHDIAGRAM statement to specify and modify the layout algorithm, to control the
formatting of estimates, and to fine-tune many graphical and nongraphical features of path diagrams. You can
use multiple PATHDIAGRAM statements to produce path diagrams that have different styles and graphical
features.

Specifying a PATHDIAGRAM statement without any options has the same effect as specifying the
PLOTS=PATHDIAGRAM option in the PROC FACTOR statement. Both produce a default path dia-
gram for the last factor solution in a PROC FACTOR run. The default path diagrams show the links between
factors and variables, the factor correlations, and the error variances in the model. For more information
about the default path diagram, see the PLOTS=PATHDIAGRAM option.

The options in the PATHDIAGRAM statement can be classified into three categories, which are summarized
in Table 37.2 through Table 37.4. The following three tables summarize these options. An alphabetical listing
of these options that includes more details follows the tables.

Table 37.2 shows the options that you can use to specify the path diagram layout algorithm, to set the criteria
for displaying the directed paths between variables and factors, and to specify the size of factors relative to
the observed variables.

Table 37.2 Options for Controlling the Layout

Option Description

ALPHA= Specifies the significance level of the loading estimate that is required in order to
display the corresponding link between a variable and a factor

ARRANGE= Specifies the algorithm for laying out variables in the path diagram
COVER= Specifies the salience criterion on the loading estimate
FACTORSIZE= Specifies the size of latent factors relative to observed variables
FUZZ= Specifies the magnitude of the loading estimate that is required in order to display

the corresponding link between a variable and a factor
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Table 37.3 shows the options that you can use to control the display of parameter estimates in output path
diagrams.

Table 37.3 Options for Displaying Parameter Estimates

Option Description

DECP= Specifies the number of decimal places in the estimates
NOESTIM Disables the display of all numerical estimates
NOERRVAR Disables the display of error variances
NOFACTORVAR Disables the display of factor variances
NOVARIANCE Disables the display of all variances

Table 37.4 shows the options that you can use to specify the title, the path diagram label, and the variable
labels.

Table 37.4 Options for Specifying Titles and Labels

Option Description

DIAGRAMLABEL= Specifies the label of the diagram in the ODS
LABEL= Specifies labels of the nodes that are shown in the path diagram
NODELABEL= Specifies whether the variable names or labels are used to label nodes
NOTITLE Suppresses the display of the title
TITLE= Specifies the title to display in the output path diagram

ALPHA=˛

ALPHALOAD=˛
specifies the significance level (˛-level) of the loading estimate that is required in order to display
the corresponding directed link (path) between a variable and a factor. If ˛ is greater than 1, it is
interpreted as a percentage and divided by 100. If the p-value of a loading estimate is greater than ˛,
the loading estimate is insignificant and PROC FACTOR does not display the corresponding link in
the path diagram. By default, ˛ D 0:05.

The ALPHA= option applies only when you specify the METHOD=ML option in the PROC FACTOR
statement and when standard errors are computed in the analysis (for example, by specifying the SE
option in the PROC FACTOR statement).

If you specify the ALPHA= option in the PROC FACTOR statement, all PATHDIAGRAM statements
use the same ˛ value that is specified in the ALPHA= option in the PROC FACTOR statement unless
you respecify the ALPHA= option in individual PATHDIAGRAM statements.

NOTE: The p-value of a loading estimate is computed by using a reference sampling distribution that
has a specific mean value. This mean value reflects the criterion for determining the salience of loading
estimates. You can use the COVER= option or the SALIENCE= option to specify the salience criterion.
By default, COVER=0; so PROC FACTOR displays all directed links between variables and factors
that are significantly greater than 0.
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ARRANGE=name

ARRANGEMENT=name

METHOD=name
specifies the algorithm for laying out the variables in the path diagram. You can specify the following
names:

FLOW specifies the process-flow algorithm.

GRIP specifies the GRIP (graph drawing with intelligent placement) algorithm.

GROUPEDFLOW specifies the grouped-flow algorithm.

By default, ARRANGE=FLOW if the number of observed variables is less than 15; otherwise, the
default is ARRANGE=GRIP. The reason for switching the default layout algorithm is that when the
number of observed variables becomes large, the process-flow algorithm might run out of vertical
space for aligning all observed variables in a vertical line. In that case, the GRIP algorithm might be a
better choice because the observed variables tend to scatter around the space rather than being aligned
vertically. See Example 37.5 for the use of the ARRANGE= option. For more information and for
general uses of these layout algorithms, see the section “The Process-Flow, Grouped-Flow, and GRIP
Layout Algorithms” on page 1440 in Chapter 29, “The CALIS Procedure.”

COVER=p

SALIENCE=p
specifies the salience criterion, p, for the loading estimate. In order to display a loading estimate and its
corresponding link between a variable and a factor in the path diagram, the magnitude of the loading
estimate must be significantly greater than p. By default, p = 0 and the significance level (˛-level) is
0.05. You can specify the significance level in the ALPHA= option.

The COVER= option applies only when you specify METHOD=ML in the PROC FACTOR statement
and when standard errors are computed in the analysis (for example, by specifying the SE option in the
PROC FACTOR statement).

If you specify the COVER= option in the PROC FACTOR statement, any PATHDIAGRAM statement
that does not include a COVER= option uses the value that is specified in the PROC FACTOR
statement.

DECP=i
sets the number of decimal places in the estimates that are displayed in the path diagram, where i is
between 0 and 4. The displayed estimates are at most seven digits long, including the decimal point for
the nonzero value of i . By default, DECP=2.

DIAGRAMLABEL=name

DLABEL=name
specifies the label of the path diagram. You can use any valid SAS name or quoted string of up to 256
characters for name. However, only up to 40 characters of the label are used by ODS. The following
statements show two example label specifications:

pathdiagram diagramlabel=MyFactorModel;
pathdiagram diagramlabel="Varimax-Rotated Factor Solution";
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If you do not specify this option, PROC FACTOR uses the name that is provided in the TITLE= option.
If you specify neither the DIAGRAMLABEL= option nor the TITLE= option, PROC FACTOR uses
“Path Diagram” for the label when there is only one path diagram. When there is more than one path
diagram, a unique number is appended to the label of each path diagram. For example, “Path Diagram
3” is the third path diagram in the output.

FACTORSIZE=size

FACTSIZE=size
specifies the size of latent factors relative to the size of observed variables, where size is between 0.2
and 5. By default, FACTSIZE=1.5, which means that the size ratio of factors to observed variables is
about 3 to 2.

FUZZ=p
specifies the magnitude, p > 0, of the factor loading estimate that is required in order to display the
corresponding directed link between a variable and a factor. If the magnitude of a loading estimate is
less than p, then PROC FACTOR does not display the corresponding directed link in the path diagram.
By default, FUZZ=0.3.

If you specify the FUZZ= option in the PROC FACTOR statement, any PATHDIAGRAM statement
that does not include a FUZZ= option uses the value that is specified in the PROC FACTOR statement.

If you specify METHOD=ML and standard errors are computed, PROC FACTOR displays only those
directed links (paths) between variables and factors that are statistically significant in the path diagram.
In this situation, only the criteria that are specified by the ALPHA= and COVER= options are used
and the FUZZ= option is irrelevant. When METHOD=ML is not specified or standard errors are not
computed, PROC FACTOR uses the criterion that is specified by the FUZZ= option.

LABEL= [varlabel < , varlabel . . . >] | {varlabel < , varlabel . . . >}
specifies the labels of variables to be displayed in path diagrams, where each varlabel has the following
form:

variable=label

You can use any valid SAS names or quoted strings of up to 256 characters for labels. The labels
identify the corresponding variables or factors in output path diagrams. For example, instead of using
original variable names such as x1 and Factor1 in the path diagram, the following statement specifies
the use of more meaningful labels:

pathdiagram label=[x1="Simple Math" Factor1="Math Ability"];

This option is not the only way that you can provide labels for variables. For example, you can also
use the LABEL statement to specify labels for observed variables. PROC FACTOR uses the following
rules to determine the label for a node (variable) in the path diagram:

1. If you specify the label for a variable or a factor by using the LABEL= option in the PATHDI-
AGRAM statement, the associated node (variable) uses this label in the output path diagram.
Proceed to the next rule if the label of a node is not resolved.

2. If the NODELABEL=VARNAME option is specified, the associated node uses the original
variable name as its label in the output path diagram. Otherwise, proceed to the next rule.
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3. If the label of a variable is specified in a LABEL statement, the associated node uses this label in
the output path diagram. Otherwise, proceed to the next rule.

4. The associated node uses the original variable name as its label in the output path diagram.

NODELABEL=VARNAME | VARLABEL
specifies whether the variables (nodes) in path diagrams are labeled by the original variable names
(VARNAME) or their variable labels (VARLABEL), which are provided by specifying the LABEL
statement. If you provide variable labels (applicable only to observed variables) in the LABEL
statement, PROC FACTOR uses those provided labels unless you specify this option.

This option is not the only determinant of the final labels of nodes in the path diagram. The specifica-
tions in the LABEL= option of the PATHDIAGRAM statement are also considered. For the rules that
PROC FACTOR uses to determine the node labels, see the LABEL= option.

NOERRVAR

NOERRORVARIANCE
suppresses the default display of error variances, which are represented as double-headed paths that
are attached to observed variables.

NOESTIM

NOEST
suppresses the default display of all numerical estimates in path diagrams.

NOFACTORVAR

NOFACTORVARIANCE
suppresses the default display of factor variances, which are represented as double-headed paths that
are attached to factors.

NOTITLE
suppresses the display of the default title. You can use the TITLE= option to provide your own title.

NOVARIANCE
suppresses the default display of all variances. This option has the same effect as specifying both the
NOFACTORVAR and NOERRVAR options.

TITLE=name
specifies the title of the path diagram. You can use any valid SAS name or a quoted string of up to
256 characters for name. If you do not specify this option, PROC FACTOR uses “Path Diagram” for
the title when there is only one path diagram. A unique number (for example, “Path Diagram 3”) is
appended to the title of each path diagram when there is more than one path diagram.
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PRIORS Statement
PRIORS communalities ;

The PRIORS statement specifies numeric values between 0.0 and 1.0 for the prior communality estimates
for each variable. The first numeric value corresponds to the first variable in the VAR statement, the second
value to the second variable, and so on. The number of numeric values must equal the number of variables.
For example:

proc factor;
var x y z;
priors .7 .8 .9;

run;

You can specify various methods for computing prior communality estimates with the PRIORS= option in
the PROC FACTOR statement. See the description of that option for more information about the default
prior communality estimates.

VAR Statement
VAR variables ;

The VAR statement specifies the numeric variables to be analyzed. If the VAR statement is omitted, all
numeric variables not specified in other statements are analyzed.

WEIGHT Statement
WEIGHT variable ;

If you want to use relative weights for each observation in the input data set, specify a variable containing
weights in a WEIGHT statement. This is often done when the variance associated with each observation
is different and the values of the weight variable are proportional to the reciprocals of the variances. If a
variable value is negative or is missing, it is excluded from the analysis.
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Details: FACTOR Procedure

Input Data Set
The FACTOR procedure can read an ordinary SAS data set containing raw data or a special data set specified
as a TYPE=CORR, TYPE=UCORR, TYPE=SSCP, TYPE=COV, TYPE=UCOV, or TYPE=FACTOR data set
containing previously computed statistics. A TYPE=CORR data set can be created by the CORR procedure
or various other procedures such as the PRINCOMP procedure. It contains means, standard deviations, the
sample size, the correlation matrix, and possibly other statistics if it is created by some procedure other than
PROC CORR. A TYPE=COV data set is similar to a TYPE=CORR data set but contains a covariance matrix.
A TYPE=UCORR or TYPE=UCOV data set contains a correlation or covariance matrix that is not corrected
for the mean. The default VAR variable list does not include Intercept if the DATA= data set is TYPE=SSCP.
If the Intercept variable is explicitly specified in the VAR statement with a TYPE=SSCP data set, the NOINT
option is activated. A TYPE=FACTOR data set can be created by the FACTOR procedure and is described in
the section “Output Data Sets” on page 2334.

If your data set has many observations and you plan to run FACTOR several times, you can save computer
time by first creating a TYPE=CORR data set and using it as input to PROC FACTOR, as in the following
statements:

proc corr data=raw out=correl; /* create TYPE=CORR data set */
proc factor data=correl method=ml; /* maximum likelihood */
proc factor data=correl; /* principal components */

The data set created by the CORR procedure is automatically given the TYPE=CORR data set option, so you
do not have to specify TYPE=CORR. However, if you use a DATA step with a SET statement to modify
the correlation data set, you must use the TYPE=CORR attribute in the new data set. You can use a VAR
statement with PROC FACTOR when reading a TYPE=CORR data set to select a subset of the variables or
change the order of the variables.

Problems can arise from using the CORR procedure when there are missing data. By default, PROC CORR
computes each correlation from all observations that have values present for the pair of variables involved
(pairwise deletion). The resulting correlation matrix might have negative eigenvalues. If you specify the
NOMISS option with the CORR procedure, observations with any missing values are completely omitted
from the calculations (listwise deletion), and there is no danger of negative eigenvalues.

PROC FACTOR can also create a TYPE=FACTOR data set, which includes all the information in a
TYPE=CORR data set, and use it for repeated analyses. For a TYPE=FACTOR data set, the default
value of the METHOD= option is PATTERN. The following PROC FACTOR statements produce the same
results as the previous example:

proc factor data=raw method=ml outstat=fact; /* max. likelihood */
proc factor data=fact method=prin; /* principal components */

You can use a TYPE=FACTOR data set to try several different rotation methods on the same data without
repeatedly extracting the factors. In the following example, the second and third PROC FACTOR statements
use the data set fact created by the first PROC FACTOR statement:
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proc factor data=raw outstat=fact; /* principal components */
proc factor rotate=varimax; /* varimax rotation */
proc factor rotate=quartimax; /* quartimax rotation */

You can create a TYPE=CORR, TYPE=UCORR, or TYPE=FACTOR data set in a DATA step for PROC
FACTOR to read as input. For example, in the following a TYPE=CORR data set is created and is read as
input data set by the subsequent PROC FACTOR statement:

data correl(type=corr);
_TYPE_='CORR';
input _NAME_ $ x y z;
datalines;

x 1.0 . .
y .7 1.0 .
z .5 .4 1.0
;
proc factor;
run;

Be sure to specify the TYPE= option in parentheses after the data set name in the DATA statement and
include the _TYPE_ and _NAME_ variables. In a TYPE=CORR data set, only the correlation matrix
(_TYPE_=’CORR’) is necessary. It can contain missing values as long as every pair of variables has at least
one nonmissing value.

You can also create a TYPE=FACTOR data set containing only a factor pattern (_TYPE_=’PATTERN’) and
use the FACTOR procedure to rotate it, as these statements show:

data pat(type=factor);
_TYPE_='PATTERN';
input _NAME_ $ x y z;
datalines;

factor1 .5 .7 .3
factor2 .8 .2 .8
;
proc factor rotate=promax prerotate=none;
run;

If the input factors are oblique, you must also include the interfactor correlation matrix with
_TYPE_=’FCORR’, as shown here:

data pat(type=factor);
input _TYPE_ $ _NAME_ $ x y z;
datalines;

pattern factor1 .5 .7 .3
pattern factor2 .8 .2 .8
fcorr factor1 1.0 .2 .
fcorr factor2 .2 1.0 .
;
proc factor rotate=promax prerotate=none;
run;
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Some procedures, such as the PRINCOMP and CANDISC procedures, produce TYPE=CORR or
TYPE=UCORR data sets containing scoring coefficients (_TYPE_=’SCORE’ or _TYPE_= ’USCORE’).
These coefficients can be input to PROC FACTOR and rotated by using the METHOD=SCORE option, as in
the following statements:

proc princomp data=raw n=2 outstat=prin;
run;
proc factor data=prin method=score rotate=varimax;
run;

Notice that the input data set prin must contain the correlation matrix as well as the scoring coefficients.

Output Data Sets

The OUT= Data Set

The OUT= data set contains all the data in the DATA= data set plus new variables called Factor1, Factor2, and
so on, containing estimated factor scores. Each estimated factor score is computed as a linear combination of
the standardized values of the variables that are factored. The coefficients are always displayed if the OUT=
option is specified, and they are labeled “Standardized Scoring Coefficients.”

If partial variables are specified in the PARTIAL statement, the factor analysis is on the residuals of the
variables, which are regressed on the partial variables. In this case, the OUT= data set also contains the
(unstandardized) residuals, which are prefixed by R_ by default. For example, the residual of variable X is
named R_X in the OUT= data set. You might also assign the prefix by the PARPREFIX= option. Because
the residuals are factor-analyzed, the estimated factor scores are computed as linear combinations of the
standardized values of the residuals, but not the original variables.

The OUTSTAT= Data Set

The OUTSTAT= data set is similar to the TYPE=CORR or TYPE=UCORR data set produced by the
CORR procedure, but it is a TYPE=FACTOR data set and it contains many results in addition to those
produced by PROC CORR. The OUTSTAT= data set contains observations with _TYPE_=’UCORR’ and
_TYPE_=’USTD’ if you specify the NOINT option.

The output data set contains the following variables:

• the BY variables, if any

• two new character variables, _TYPE_ and _NAME_

• the variables analyzed—those in the VAR statement, or, if there is no VAR statement, all numeric
variables not listed in any other statement. If partial variables are specified in the PARTIAL statement,
the residuals are included instead. By default, the residual variable names are prefixed by R_, unless
you specify something different in the PARPREFIX= option.

Each observation in the output data set contains some type of statistic as indicated by the _TYPE_ variable.
The _NAME_ variable is blank except where otherwise indicated. The values of the _TYPE_ variable are as
follows:
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MEAN means

STD standard deviations

USTD uncorrected standard deviations

N sample size

CORR correlations. The _NAME_ variable contains the name of the variable corresponding to
each row of the correlation matrix.

UCORR uncorrected correlations. The _NAME_ variable contains the name of the variable corre-
sponding to each row of the uncorrected correlation matrix.

IMAGE image coefficients. The _NAME_ variable contains the name of the variable corresponding
to each row of the image coefficient matrix.

IMAGECOV image covariance matrix. The _NAME_ variable contains the name of the variable
corresponding to each row of the image covariance matrix.

COMMUNAL final communality estimates

PRIORS prior communality estimates, or estimates from the last iteration for iterative methods

WEIGHT variable weights

SUMWGT sum of the variable weights

EIGENVAL eigenvalues

UNROTATE unrotated factor pattern. The _NAME_ variable contains the name of the factor.

SE_UNROT standard error estimates for the unrotated loadings. The _NAME_ variable contains the
name of the factor.

RESIDUAL residual correlations. The _NAME_ variable contains the name of the variable correspond-
ing to each row of the residual correlation matrix.

PRETRANS transformation matrix from prerotation. The _NAME_ variable contains the name of the
factor.

PREFCORR prerotated interfactor correlations. The _NAME_ variable contains the name of the factor.

SE_PREFC standard error estimates for prerotated interfactor correlations. The _NAME_ variable
contains the name of the factor.

PREROTAT prerotated factor pattern. The _NAME_ variable contains the name of the factor.

SE_PREPA standard error estimates for the prerotated loadings. The _NAME_ variable contains the
name of the factor.

PRERCORR prerotated reference axis correlations. The _NAME_ variable contains the name of the
factor.

PREREFER prerotated reference structure. The _NAME_ variable contains the name of the factor.

PRESTRUC prerotated factor structure. The _NAME_ variable contains the name of the factor.

SE_PREST standard error estimates for prerotated structure loadings. The _NAME_ variable contains
the name of the factor.

PRESCORE prerotated scoring coefficients. The _NAME_ variable contains the name of the factor.

TRANSFOR transformation matrix from rotation. The _NAME_ variable contains the name of the
factor.
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FCORR interfactor correlations. The _NAME_ variable contains the name of the factor.

SE_FCORR standard error estimates for interfactor correlations. The _NAME_ variable contains the
name of the factor.

PATTERN factor pattern. The _NAME_ variable contains the name of the factor.

SE_PAT standard error estimates for the rotated loadings. The _NAME_ variable contains the name
of the factor.

RCORR reference axis correlations. The _NAME_ variable contains the name of the factor.

REFERENC reference structure. The _NAME_ variable contains the name of the factor.

STRUCTUR factor structure. The _NAME_ variable contains the name of the factor.

SE_STRUC standard error estimates for structure loadings. The _NAME_ variable contains the name
of the factor.

SCORE scoring coefficients to be applied to standardized variables if the SCORE option is
specified on the PROC FACTOR statement. The _NAME_ variable contains the name of
the factor.

USCORE scoring coefficients to be applied without subtracting the mean from the raw variables if
the SCORE option is specified on the PROC FACTOR statement. The _NAME_ variable
contains the name of the factor.

Confidence Intervals and the Salience of Factor Loadings
The traditional approach to determining salient loadings (loadings that are considered large in absolute values)
employs rules of thumb such as 0.3 or 0.4. However, this does not use the statistical evidence efficiently. The
asymptotic normality of the distribution of factor loadings enables you to construct confidence intervals to
gauge the salience of factor loadings. To guarantee the range-respecting properties of confidence intervals, a
transformation procedure such as in CEFA (Browne et al. 2008) is used. For example, because the orthogonal
rotated factor loading � must be bounded between –1 and +1, the Fisher transformation

' D
1

2
log.

1C �

1 � �
/

is employed so that ' is an unbounded parameter. Assuming the asymptotic normality of O', a symmetric
confidence interval for ' is constructed. Then, a back-transformation on the confidence limits yields an
asymmetric confidence interval for � . Applying the results of Browne (1982), a (1�˛)100% confidence
interval for the orthogonal factor loading � is

. O�l D
a=b � 1

a=b C 1
; O�u D

a � b � 1

a � b C 1
/

where

a D
1C O�

1 � O�
; b D exp.z˛=2 �

2 O�

1 � O�2
/

and O� is the estimated factor loading, O� is the standard error estimate of the factor loading, and z˛=2 is the
.1 � ˛=2/100 percentile point of a standard normal distribution.
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Once the confidence limits are constructed, you can use the corresponding coverage displays for determining
the salience of the variable-factor relationship. In a coverage display, the COVER= value is represented by
an asterisk (*). The following table summarizes various displays and their interpretations.

Table 37.5 Interpretations of the Coverage Displays

Positive
Estimate

Negative
Estimate

COVER=0
Specified

Interpretation

[0]* *[0] The estimate is not significantly different from zero,
and the CI covers a region of values that are smaller
in magnitude than the COVER= value. This is strong
statistical evidence for the nonsalience of the variable-
factor relationship.

0[ ]* *[ ]0 The estimate is significantly different from zero, but
the CI covers a region of values that are smaller in
magnitude than the COVER= value. This is strong
statistical evidence for the nonsalience of the variable-
factor relationship.

[0*] [*0] [0] The estimate is not significantly different from zero or
the COVER= value. The population value might have
been larger or smaller in magnitude than the COVER=
value. There is no statistical evidence for the salience
of the variable-factor relationship.

0[*] [*]0 The estimate is significantly different from zero but not
from the COVER= value. This is marginal statistical
evidence for the salience of the variable-factor relation-
ship.

0*[ ] [ ]*0 0[ ] or [ ]0 The estimate is significantly different from zero, and
the CI covers a region of values that are larger in magni-
tude than the COVER= value. This is strong statistical
evidence for the salience of the variable-factor relation-
ship.

See Example 37.4 for an illustration of the use of confidence intervals for interpreting factors.

Simplicity Functions for Rotations
To rotate a factor pattern is to apply a nonsingular linear transformation to the unrotated factor pattern matrix.
An optimal transformation is usually defined as a minimum or maximum point of a simplicity function.
Different rotation methods are based on different simplicity functions employed.

For the promax or the Procrustes rotation, the simplicity function used is the sum of squared differences
between the rotated factor pattern and the target matrix. The optimal transformation is obtained by minimizing
this simplicity function with respect to the choices of all possible transformation.
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For the class of the generalized Crawford-Ferguson family Jennrich (1973), the simplicity function being
optimized is

f D k1Z C k2H C k3V C k4Q

where

Z D .
X
j

X
i

b2ij /
2; H D

X
i

.
X
j

b2ij /
2

V D
X
j

.
X
i

b2ij /
2; Q D

X
j

X
i

b4ij

k1; k2; k3, and k4 are constants, and bij represents an element of the rotated pattern matrix. Except for
specialized research purposes, it is uncommon in practice to use this simplicity function directly for rotation.
However, this simplicity function reduces to many well-known classes of rotations. One of these is the
Crawford-Ferguson family Crawford and Ferguson (1970), which minimizes

fcf D c1.H �Q/C c2.V �Q/

where c1 and c2 are constants, .H �Q/ represents variable (row) parsimony, and .V �Q/ represents factor
(column) parsimony. Therefore, the relative importance of both the variable parsimony and of the factor
parsimony is adjusted using the constants c1 and c2. The orthomax class (see Harman 1976) maximizes the
function

for D pQ � V

where  is the orthomax weight and is usually between 0 and the number of variables p. The oblimin class
minimizes the function

fob D p.H �Q/ � �.Z � V /

where � is the oblimin weight. For practical purposes, a negative or zero value for � is recommended.

All of the preceding definitions are for rotations without row normalization. For rotations with Kaiser
normalization, the definition of bij is replaced by bij =hi , where hi is the communality estimate of variable i.

Missing Values
If the DATA= data set contains data (rather than a matrix or factor pattern), then observations with missing
values for any variables in the analysis are omitted from the computations. If a correlation or covariance
matrix is read, it can contain missing values as long as every pair of variables has at least one nonmissing
entry. Missing values in a pattern or scoring coefficient matrix are treated as zeros.

Cautions
• The amount of time that FACTOR takes is roughly proportional to the cube of the number of variables.

Factoring 100 variables, therefore, takes about 1,000 times as long as factoring 10 variables. Iterative
methods (PRINIT, ALPHA, ULS, ML) can also take 100 times as long as noniterative methods
(PRINCIPAL, IMAGE, HARRIS).
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• No computer program is capable of reliably determining the optimal number of factors, since the
decision is ultimately subjective. You should not blindly accept the number of factors obtained by
default; instead, use your own judgment to make a decision.

• Singular correlation matrices cause problems with the options PRIORS=SMC and METHOD=ML.
Singularities can result from using a variable that is the sum of other variables, coding too many
dummy variables from a classification variable, or having more variables than observations.

• If you use the CORR procedure to compute the correlation matrix and there are missing data and the
NOMISS option is not specified, then the correlation matrix might have negative eigenvalues.

• If a TYPE=CORR, TYPE=UCORR, or TYPE=FACTOR data set is copied or modified using a DATA
step, the new data set does not automatically have the same TYPE as the old data set. You must specify
the TYPE= data set option in the DATA statement. If you try to analyze a data set that has lost its
TYPE=CORR attribute, PROC FACTOR displays a warning message saying that the data set contains
_NAME_ and _TYPE_ variables but analyzes the data set as an ordinary SAS data set.

• For a TYPE=FACTOR data set, the default is METHOD=PATTERN, not METHOD=PRIN.

Factor Scores
The FACTOR procedure can compute estimated factor scores directly if you specify the NFACTORS= and
OUT= options, or indirectly using the SCORE procedure. The latter method is preferable if you use the
FACTOR procedure interactively to determine the number of factors, the rotation method, or various other
aspects of the analysis. To compute factor scores for each observation by using the SCORE procedure, do the
following:

• Use the SCORE option in the PROC FACTOR statement.

• Create a TYPE=FACTOR output data set with the OUTSTAT= option.

• Use the SCORE procedure with both the raw data and the TYPE=FACTOR data set.

• Do not use the TYPE= option in the PROC SCORE statement.

For example, the following statements could be used:

proc factor data=raw score outstat=fact;
run;
proc score data=raw score=fact out=scores;
run;

or

proc corr data=raw out=correl;
run;
proc factor data=correl score outstat=fact;
run;
proc score data=raw score=fact out=scores;
run;
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For a more detailed example, see Example 88.1 in Chapter 88, “The SCORE Procedure.”

A component analysis (principal, image, or Harris) produces scores with mean zero and variance one. If
you have done a common factor analysis, the true factor scores have mean zero and variance one, but the
computed factor scores are only estimates of the true factor scores. These estimates have mean zero but
variance equal to the squared multiple correlation of the factor with the variables. The estimated factor scores
might have small nonzero correlations even if the true factors are uncorrelated.

Variable Weights and Variance Explained
A principal component analysis of a correlation matrix treats all variables as equally important. A principal
component analysis of a covariance matrix gives more weight to variables with larger variances. A principal
component analysis of a covariance matrix is equivalent to an analysis of a weighted correlation matrix,
where the weight of each variable is equal to its variance. Variables with large weights tend to have larger
loadings on the first component and smaller residual correlations than variables with small weights.

You might want to give weights to variables by using values other than their variances. Mulaik (1972)
explains how to obtain a maximally reliable component by means of a weighted principal component analysis.
With the FACTOR procedure, you can indirectly give arbitrary weights to the variables by using the COV
option and rescaling the variables to have variance equal to the desired weight, or you can give arbitrary
weights directly by using the WEIGHT option and including the weights in a TYPE=CORR data set.

Arbitrary variable weights can be used with the METHOD=PRINCIPAL, METHOD=PRINIT,
METHOD=ULS, or METHOD=IMAGE option. Alpha and ML factor analyses compute variable
weights based on the communalities (Harman 1976, pp. 217–218). For alpha factor analysis, the weight
of a variable is the reciprocal of its communality. In ML factor analysis, the weight is the reciprocal of
the uniqueness. Harris component analysis uses weights equal to the reciprocal of one minus the squared
multiple correlation of each variable with the other variables.

For uncorrelated factors, the variance explained by a factor can be computed with or without taking the
weights into account. The usual method for computing variance accounted for by a factor is to take the sum
of squares of the corresponding column of the factor pattern, yielding an unweighted result. If the square of
each loading is multiplied by the weight of the variable before the sum is taken, the result is the weighted
variance explained, which is equal to the corresponding eigenvalue except in image analysis. Whether the
weighted or unweighted result is more important depends on the purpose of the analysis.

In the case of correlated factors, the variance explained by a factor can be computed with or without taking
the other factors into account. If you want to ignore the other factors, the variance explained is given by the
weighted or unweighted sum of squares of the appropriate column of the factor structure since the factor
structure contains simple correlations. If you want to subtract the variance explained by the other factors from
the amount explained by the factor in question (the Type II variance explained), you can take the weighted
or unweighted sum of squares of the appropriate column of the reference structure because the reference
structure contains semipartial correlations. There are other ways of measuring the variance explained. For
example, given a prior ordering of the factors, you can eliminate from each factor the variance explained by
previous factors and compute a Type I variance explained. Harman (1976, pp. 268–270) provides another
method, which is based on direct and joint contributions.
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Heywood Cases and Other Anomalies about Communality Estimates
Since communalities are squared correlations, you would expect them always to lie between 0 and 1. It is
a mathematical peculiarity of the common factor model, however, that final communality estimates might
exceed 1. If a communality equals 1, the situation is referred to as a Heywood case, and if a communality
exceeds 1, it is an ultra-Heywood case. An ultra-Heywood case implies that some unique factor has negative
variance, a clear indication that something is wrong. Possible causes include the following:

• bad prior communality estimates

• too many common factors

• too few common factors

• not enough data to provide stable estimates

• the common factor model is not an appropriate model for the data

An ultra-Heywood case renders a factor solution invalid. Factor analysts disagree about whether or not a
factor solution with a Heywood case can be considered legitimate.

With METHOD=PRINIT, METHOD=ULS, METHOD=ALPHA, or METHOD=ML, the FACTOR procedure,
by default, stops iterating and sets the number of factors to 0 if an estimated communality exceeds 1. To
enable processing to continue with a Heywood or ultra-Heywood case, you can use the HEYWOOD or
ULTRAHEYWOOD option in the PROC FACTOR statement. The HEYWOOD option sets the upper bound
of any communality to 1, while the ULTRAHEYWOOD option allows communalities to exceed 1.

Theoretically, the communality of a variable should not exceed its reliability. Violation of this condition is
called a quasi-Heywood case and should be regarded with the same suspicion as an ultra-Heywood case.

Elements of the factor structure and reference structure matrices can exceed 1 only in the presence of an
ultra-Heywood case. On the other hand, an element of the factor pattern might exceed 1 in an oblique
rotation.

The maximum likelihood method is especially susceptible to quasi- or ultra-Heywood cases. During
the iteration process, a variable with high communality is given a high weight; this tends to increase its
communality, which increases its weight, and so on.

It is often stated that the squared multiple correlation of a variable with the other variables is a lower bound
to its communality. This is true if the common factor model fits the data perfectly, but it is not generally
the case with real data. A final communality estimate that is less than the squared multiple correlation
can, therefore, indicate poor fit, possibly due to not enough factors. It is by no means as serious a problem
as an ultra-Heywood case. Factor methods that use the Newton-Raphson method can actually produce
communalities less than 0, a result even more disastrous than an ultra-Heywood case.

The squared multiple correlation of a factor with the variables might exceed 1, even in the absence of
ultra-Heywood cases. This situation is also cause for alarm. Alpha factor analysis seems to be especially
prone to this problem, but it does not occur with maximum likelihood. If a squared multiple correlation is
negative, there are too many factors retained.

With data that do not fit the common factor model perfectly, you can expect some of the eigenvalues to
be negative. If an iterative factor method converges properly, the sum of the eigenvalues corresponding to
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rejected factors should be 0; hence, some eigenvalues are positive and some negative. If a principal factor
analysis fails to yield any negative eigenvalues, the prior communality estimates are probably too large.
Negative eigenvalues cause the cumulative proportion of variance explained to exceed 1 for a sufficiently
large number of factors. The cumulative proportion of variance explained by the retained factors should be
approximately 1 for principal factor analysis and should converge to 1 for iterative methods. Occasionally,
a single factor can explain more than 100 percent of the common variance in a principal factor analysis,
indicating that the prior communality estimates are too low.

If a squared canonical correlation or a coefficient alpha is negative, there are too many factors retained.

Principal component analysis, unlike common factor analysis, has none of these problems if the covariance
or correlation matrix is computed correctly from a data set with no missing values. Various methods for
missing value correlation or severe rounding of the correlations can produce negative eigenvalues in principal
components.

Time Requirements

n D number of observations

v D number of variables

f D number of factors

i D number of iterations during factor extraction

r D length of iterations during factor rotation

The time required to compute. . . is roughly proportional to

an overall factor analysis iv3

the correlation matrix nv2

PRIORS=SMC or ASMC v3

PRIORS=MAX v2

eigenvalues v3

final eigenvectors f v2

generalized Crawford-Ferguson rvf 2

family of rotations,
PROMAX, or HK

ROTATE=PROCRUSTES vf 2

Each iteration in the PRINIT or ALPHA method requires computation of eigenvalues and f eigenvectors.

Each iteration in the ML or ULS method requires computation of eigenvalues and v � f eigenvectors.

The amount of time that PROC FACTOR takes is roughly proportional to the cube of the number of variables.
Factoring 100 variables, therefore, takes about 1000 times as long as factoring 10 variables. Iterative methods
(PRINIT, ALPHA, ULS, ML) can also take 100 times as long as noniterative methods (PRINCIPAL, IMAGE,
HARRIS).
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Displayed Output
PROC FACTOR output includes the following.

• Input data type, numbers of records read and used for raw data input, number of observations (NOBS=)
set in the PROC FACTOR statements, and the number of observations used in significance tests

• Mean and Std Dev (standard deviation) of each variable and the number of observations, if you specify
the SIMPLE option

• Correlations, if you specify the CORR option

• Inverse Correlation Matrix, if you specify the ALL option

• Partial Correlations Controlling all other Variables (negative anti-image correlations), if you specify
the MSA option. If the data are appropriate for the common factor model, the partial correlations
should be small.

• Kaiser’s Measure of Sampling Adequacy (Kaiser 1970; Kaiser and Rice 1974; Cerny and Kaiser 1977),
both overall and for each variable, if you specify the MSA option. The MSA is a summary of how
small the partial correlations are relative to the ordinary correlations. Values greater than 0.8 can
be considered good. Values less than 0.5 require remedial action, either by deleting the offending
variables or by including other variables related to the offenders.

• Prior Communality Estimates, unless 1.0s are used or unless you specify the METHOD=IMAGE,
METHOD=HARRIS, METHOD=PATTERN, or METHOD=SCORE option

• Squared Multiple Correlations of each variable with all the other variables, if you specify the
METHOD=IMAGE or METHOD=HARRIS option

• Image Coefficients, if you specify the METHOD=IMAGE option

• Image Covariance Matrix, if you specify the METHOD=IMAGE option

• Preliminary Eigenvalues based on the prior communalities, if you specify the METHOD=PRINIT,
METHOD=ALPHA, METHOD=ML, or METHOD=ULS option. The table produced includes the
Total and the Average of the eigenvalues, the Difference between successive eigenvalues, the Proportion
of variation represented, and the Cumulative proportion of variation.

• the number of factors that are retained, unless you specify the METHOD=PATTERN or
METHOD=SCORE option

• the Scree Plot of Eigenvalues, if you specify the SCREE option. The preliminary eigenvalues are
used if you specify the METHOD=PRINIT, METHOD=ALPHA, METHOD=ML, or METHOD=ULS
option. You can request the corresponding high-quality graphical plot by using the PLOTS= option.

• the iteration history, if you specify the METHOD=PRINIT, METHOD=ALPHA, METHOD=ML, or
METHOD=ULS option. The table produced contains the iteration number (Iter); the Criterion being
optimized (Jöreskog 1977); the Ridge value for the iteration if you specify the METHOD=ML or
METHOD=ULS option; the maximum Change in any communality estimate; and the Communalities.
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• Significance tests, if you specify the option METHOD=ML, including Bartlett’s chi-square, df, and
Prob> �2 for H0: No common factors and H0: factors retained are sufficient to explain the correlations.
The H0 test for no common factors is equivalent to Bartlett’s test of sphericity. The variables should
have an approximate multivariate normal distribution for the probability levels to be valid. Lawley and
Maxwell (1971) suggest that the number of observations should exceed the number of variables by 50
or more, although Geweke and Singleton (1980) claim that as few as 10 observations are adequate with
five variables and one common factor. Certain regularity conditions must also be satisfied for Bartlett’s
�2 test to be valid (Geweke and Singleton 1980), but in practice these conditions usually are satisfied.
The notation Prob>chi**2 means “the probability under the null hypothesis of obtaining a greater �2

statistic than that observed.” The chi-square value is displayed with and without Bartlett’s correction.

• Akaike’s Information Criterion, if you specify the METHOD=ML option. Akaike’s information
criterion (AIC) (Akaike 1973, 1974, 1987) is a general criterion for estimating the best number of
parameters to include in a model when maximum likelihood estimation is used. The number of factors
that yields the smallest value of AIC is considered best. Like the chi-square test, AIC tends to include
factors that are statistically significant but inconsequential for practical purposes.

• Schwarz’s Bayesian Criterion, if you specify the METHOD=ML option. Schwarz’s Bayesian Criterion
(SBC) (Schwarz 1978) is another criterion, similar to AIC, for determining the best number of
parameters. The number of factors that yields the smallest value of SBC is considered best; SBC seems
to be less inclined to include trivial factors than either AIC or the chi-square test.

• Tucker and Lewis’s Reliability Coefficient, if you specify the METHOD=ML option (Tucker and
Lewis 1973)

• Squared Canonical Correlations, if you specify the METHOD=ML option. These are the same as the
squared multiple correlations for predicting each factor from the variables.

• Coefficient Alpha for Each Factor, if you specify the METHOD=ALPHA option

• Eigenvectors, if you specify the EIGENVECTORS or ALL option, unless you also specify the
METHOD=PATTERN or METHOD=SCORE option

• Eigenvalues of the (Weighted) (Reduced) (Image) Correlation or Covariance Matrix, unless you specify
the METHOD=PATTERN or METHOD=SCORE option. Included are the Total and the Average of the
eigenvalues, the Difference between successive eigenvalues, the Proportion of variation represented,
and the Cumulative proportion of variation.

• the Factor Pattern, which is equal to both the matrix of standardized regression coefficients for
predicting variables from common factors and the matrix of correlations between variables and
common factors since the extracted factors are uncorrelated. Standard error estimates are included if
the SE option is specified with METHOD=ML. Confidence limits and coverage displays are included
if COVER= option is specified with METHOD=ML.

• Variance explained by each factor, both Weighted and Unweighted, if variable weights are used

• Final Communality Estimates, including the Total communality; or Final Communality Estimates
and Variable Weights, including the Total communality, both Weighted and Unweighted, if variable
weights are used. Final communality estimates are the squared multiple correlations for predicting the
variables from the estimated factors, and they can be obtained by taking the sum of squares of each
row of the factor pattern, or a weighted sum of squares if variable weights are used.
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• Residual Correlations with Uniqueness on the Diagonal, if you specify the RESIDUAL or ALL option

• Root Mean Square Off-diagonal Residuals, both Over-all and for each variable, if you specify the
RESIDUAL or ALL option

• Partial Correlations Controlling Factors, if you specify the RESIDUAL or ALL option

• Root Mean Square Off-diagonal Partials, both Over-all and for each variable, if you specify the
RESIDUAL or ALL option

• Plots of Factor Pattern for unrotated factors, if you specify the PREPLOT option. The number of plots
is determined by the NPLOT= option. You can request the corresponding high-quality graphical plots
by using the PLOTS= option.

• Variable Weights for Rotation, if you specify the NORM=WEIGHT option

• Factor Weights for Rotation, if you specify the HKPOWER= option

• Orthogonal Transformation Matrix, if you request an orthogonal rotation

• Rotated Factor Pattern, if you request an orthogonal rotation. Standard error estimates are included if
the SE option is specified with METHOD=ML. Confidence limits and coverage displays are included
if COVER= option is specified with METHOD=ML.

• Variance explained by each factor after rotation. If you request an orthogonal rotation and if variable
weights are used, both weighted and unweighted values are produced.

• Target Matrix for Procrustean Transformation, if you specify the ROTATE=PROMAX or
ROTATE=PROCRUSTES option

• the Procrustean Transformation Matrix, if you specify the ROTATE=PROMAX or ROTATE=PROCRUSTES
option

• the Normalized Oblique Transformation Matrix, if you request an oblique rotation, which, for the
option ROTATE=PROMAX, is the product of the prerotation and the Procrustes rotation

• Inter-factor Correlations, if you specify an oblique rotation. Standard error estimates are included if
the SE option is specified with METHOD=ML. Confidence limits and coverage displays are included
if COVER= option is specified with METHOD=ML.

• Rotated Factor Pattern (Std Reg Coefs), if you specify an oblique rotation, giving standardized
regression coefficients for predicting the variables from the factors. Standard error estimates are
included if the SE option is specified with METHOD=ML. Confidence limits and coverage displays
are included if COVER= option is specified with METHOD=ML.

• Reference Axis Correlations if you specify an oblique rotation. These are the partial correlations
between the primary factors when all factors other than the two being correlated are partialed out.

• Reference Structure (Semipartial Correlations), if you request an oblique rotation. The reference
structure is the matrix of semipartial correlations (Kerlinger and Pedhazur 1973) between variables
and common factors, removing from each common factor the effects of other common factors. If the
common factors are uncorrelated, the reference structure is equal to the factor pattern.
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• Variance explained by each factor eliminating the effects of all other factors, if you specify an
oblique rotation. Both Weighted and Unweighted values are produced if variable weights are used.
These variances are equal to the (weighted) sum of the squared elements of the reference structure
corresponding to each factor.

• Factor Structure (Correlations), if you request an oblique rotation. The (primary) factor structure is the
matrix of correlations between variables and common factors. If the common factors are uncorrelated,
the factor structure is equal to the factor pattern. Standard error estimates are included if the SE option
is specified with METHOD=ML. Confidence limits and coverage displays are included if COVER=
option is specified with METHOD=ML.

• Variance explained by each factor ignoring the effects of all other factors, if you request an oblique
rotation. Both Weighted and Unweighted values are produced if variable weights are used. These
variances are equal to the (weighted) sum of the squared elements of the factor structure corresponding
to each factor.

• Final Communality Estimates for the rotated factors if you specify the ROTATE= option. The estimates
should equal the unrotated communalities.

• Squared Multiple Correlations of the Variables with Each Factor, if you specify the SCORE or ALL
option, except for unrotated principal components

• Standardized Scoring Coefficients, if you specify the SCORE or ALL option

• Plots of the Factor Pattern for rotated factors, if you specify the PLOT option and you request an
orthogonal rotation. The number of plots is determined by the NPLOT= option. You can request the
corresponding high-quality graphical plots by using the PLOTS= option.

• Plots of the Reference Structure for rotated factors, if you specify the PLOT option and you request
an oblique rotation. The number of plots is determined by the NPLOT= option. Included are the
Reference Axis Correlation and the Angle between the Reference Axes for each pair of factors plotted.
You can request the corresponding high-quality graphical plots by using the PLOTS= option.

• A path diagram for the final factor solution if you specify the PLOTS=PATHDIAGRAM option or the
PATHDIAGRAM statements.

If you specify the ROTATE=PROMAX option, the output includes results for both the prerotation and the
Procrustes rotation.
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ODS Table Names
PROC FACTOR assigns a name to each table it creates. You can use these names to reference the table when
using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed
in the Table 37.6. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

Table 37.6 ODS Tables Produced by PROC FACTOR

ODS Table Name Description Option

AlphaCoef Coefficient alpha for each
factor

METHOD=ALPHA

CanCorr Squared canonical correlations METHOD=ML
CondStdDev Conditional standard

deviations
SIMPLE with PARTIAL

ConvergenceStatus Convergence status METHOD=PRINIT, ALPHA, ML, or ULS
Corr Correlations CORR
Eigenvalues Eigenvalues default, SCREE
Eigenvectors Eigenvectors EIGENVECTORS
FactorWeightRotate Factor weights for rotation HKPOWER=
FactorPattern Factor pattern default
FactorStructure Factor structure ROTATE= any oblique rotation
FinalCommun Final communalities default
FinalCommunWgt Final communalities with

weights
METHOD=ML or ALPHA

FitMeasures Measures of fit METHOD=ML
ImageCoef Image coefficients METHOD=IMAGE
ImageCov Image covariance matrix METHOD=IMAGE
ImageFactors Image factor matrix METHOD=IMAGE
InputFactorPattern Input factor pattern METHOD=PATTERN with PRINT or ALL
InputScoreCoef Standardized input scoring

coefficients
METHOD=SCORE with PRINT or ALL

InterFactorCorr Interfactor correlations ROTATE= any oblique rotation
InvCorr Inverse correlation matrix ALL
IterHistory Iteration history METHOD=PRINIT, ALPHA, ML, or ULS
MultipleCorr Squared multiple correlations METHOD=IMAGE or

METHOD=HARRIS
NObs Number of records and

observations, input data type
default

NormObliqueTrans Normalized oblique
transformation matrix

ROTATE= any oblique rotation

ObliqueRotFactPat Rotated factor pattern ROTATE= any oblique rotation
ObliqueTrans Oblique transformation matrix HKPOWER=
OrthRotFactPat Rotated factor pattern ROTATE= any orthogonal rotation
OrthTrans Orthogonal transformation

matrix
ROTATE= any orthogonal rotation
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Table 37.6 continued

ODS Table Name Description Option

ParCorrControlFactor Partial correlations controlling
factors

RESIDUAL

ParCorrControlVar Partial correlations controlling
other variables

MSA

PartialCorr Partial correlations MSA, CORR with PARTIAL
PriorCommunalEst Prior communality estimates PRIORS=, METHOD=ML or ALPHA
ProcrustesTarget Target matrix for Procrustean

transformation
ROTATE=PROCRUSTES,
ROTATE=PROMAX

ProcrustesTrans Procrustean transformation
matrix

ROTATE=PROCRUSTES,
ROTATE=PROMAX

RMSOffDiagPartials Root mean square off-diagonal
partials

RESIDUAL

RMSOffDiagResids Root mean square off-diagonal
residuals

RESIDUAL

ReferenceAxisCorr Reference axis correlations ROTATE= any oblique rotation
ReferenceStructure Reference structure ROTATE= any oblique rotation
ResCorrUniqueDiag Residual correlations with

uniqueness on the diagonal
RESIDUAL

SamplingAdequacy Kaiser’s measure of sampling
adequacy

MSA

SignifTests Significance tests METHOD=ML
SimpleStatistics Simple statistics SIMPLE
StdScoreCoef Standardized scoring

coefficients
SCORE

VarExplain Variance explained default
VarExplainWgt Variance explained with

weights
METHOD=ML, or ALPHA

VarFactorCorr Squared multiple correlations
of the variables with each factor

SCORE

VarWeightRotate Variable weights for rotation NORM=WEIGHT, ROTATE=
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ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

The names of the graphs that PROC FACTOR generates are listed in Table 37.7, along with the required
statements and options.

Table 37.7 Graphs Produced by PROC FACTOR

ODS Graph Name Plot Description Option

InitPatternPlot Initial factor pattern PLOTS=INITLOADINGS
InitRefStructurePlot Initial reference structures PLOTS=INITLOADINGS and

PLOTREF
PathDiagram Path diagram PLOTS=PATHDIAGRAM or

PATHDIAGRAM statement
PatternPlot Rotated factor pattern PLOTS=LOADINGS
PrePatternPlot Prerotated factor pattern PLOTS=PRELOADINGS
PreRefStructurePlot Prerotated reference structures PLOTS=PRELOADINGS and

PLOTREF
RefStructurePlot Rotated reference structures PLOTS=LOADINGS and

PLOTREF
ScreePlot Scree and variance explained plots PLOTS=SCREE
VariancePlot Plot of explained variance PLOTS=SCREE(UNPACK)
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Examples: FACTOR Procedure

Example 37.1: Principal Component Analysis
This example analyzes socioeconomic data provided by Harman (1976). The five variables represent total
population (Population), median school years (School), total employment (Employment), miscellaneous
professional services (Services), and median house value (HouseValue). Each observation represents one of
twelve census tracts in the Los Angeles Standard Metropolitan Statistical Area.

You conduct a principal component analysis by using the following statements:

data SocioEconomics;
input Population School Employment Services HouseValue;
datalines;

5700 12.8 2500 270 25000
1000 10.9 600 10 10000
3400 8.8 1000 10 9000
3800 13.6 1700 140 25000
4000 12.8 1600 140 25000
8200 8.3 2600 60 12000
1200 11.4 400 10 16000
9100 11.5 3300 60 14000
9900 12.5 3400 180 18000
9600 13.7 3600 390 25000
9600 9.6 3300 80 12000
9400 11.4 4000 100 13000
;

proc factor data=SocioEconomics simple corr;
run;

You begin with the specification of the raw data set with 12 observations. Then you use the DATA= option in
the PROC FACTOR statement to specify the data set in the analysis. You also set the SIMPLE and CORR
options for additional output results, which are shown in Output 37.1.2 and Output 37.1.3, respectively.

By default, PROC FACTOR assumes that all initial communalities are 1, which is the case for the current
principal component analysis. If you intend to find common factors instead, use the PRIORS= option or the
PRIORS statement to set initial communalities to values less than 1, which results in extracting the principal
factors rather than the principal components. See Example 37.2 for the specification of a principal factor
analysis.

For the current principal component analysis, the first output table is displayed in the Output 37.1.1.
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Output 37.1.1 Principal Component Analysis: Number of Observations

Five Socioeconomic Variables
See Page 14 of Harman: Modern Factor Analysis, 3rd Ed

Principal Component Analysis

The FACTOR Procedure

Five Socioeconomic Variables
See Page 14 of Harman: Modern Factor Analysis, 3rd Ed

Principal Component Analysis

The FACTOR Procedure

Input Data Type Raw Data

Number of Records Read 12

Number of Records Used 12

N for Significance Tests 12

In Output 37.1.1, the input data type is shown to be raw data. PROC FACTOR also accepts other data type
such as correlations and covariances. See Example 37.4 for the use of correlations as input data. For the
current raw data set, PROC FACTOR reads in 12 records and all these 12 records are used. When there are
missing values in the data set, these two numbers might not match due to the dropping of the records with
missing values. The last row of the table shows that N D12 is used in the significance tests conducted in the
analysis.

The SIMPLE option specified in the PROC FACTOR statement generates the means and standard deviations
of all observed variables in the analysis, as shown in Output 37.1.2.

Output 37.1.2 Principal Component Analysis: Simple Statistics

Means and Standard Deviations
from 12 Observations

Variable Mean Std Dev

Population 6241.667 3439.9943

School 11.442 1.7865

Employment 2333.333 1241.2115

Services 120.833 114.9275

HouseValue 17000.000 6367.5313

The ranges of means and standard deviations for the analysis are quite large. Variables are measured on quite
different scales. However, this is not an issue because PROC FACTOR basically analyzes the standardized
scales (that is, the correlations) of the variables.

The CORR option specified in the PROC FACTOR statement generates the output of the observed correlations
in Output 37.1.3.

Output 37.1.3 Principal Component Analysis: Correlations

Correlations

Population School Employment Services HouseValue

Population 1.00000 0.00975 0.97245 0.43887 0.02241

School 0.00975 1.00000 0.15428 0.69141 0.86307

Employment 0.97245 0.15428 1.00000 0.51472 0.12193

Services 0.43887 0.69141 0.51472 1.00000 0.77765

HouseValue 0.02241 0.86307 0.12193 0.77765 1.00000
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The correlation matrix shown in Output 37.1.3 is analyzed by PROC FACTOR.

The first step of principal component analysis is to look at the eigenvalues of the correlation matrix. The
larger eigenvalues are extracted first. Because there are five observed variables, five eigenvalues can be
extracted, as shown in Output 37.1.4.

Output 37.1.4 Principal Component Analysis: Eigenvalues

Eigenvalues of the Correlation Matrix:
Total = 5  Average = 1

Eigenvalue Difference Proportion Cumulative

1 2.87331359 1.07665350 0.5747 0.5747

2 1.79666009 1.58182321 0.3593 0.9340

3 0.21483689 0.11490283 0.0430 0.9770

4 0.09993405 0.08467868 0.0200 0.9969

5 0.01525537 0.0031 1.0000

In Output 37.1.4, the two largest eigenvalues are 2.8733 and 1.7967, which together account for 93.4% of the
standardized variance. Thus, the first two principal components provide an adequate summary of the data for
most purposes. Three components, which explain 97.7% of the variation, should be sufficient for almost any
application. PROC FACTOR retains the first two components on the basis of the eigenvalues-greater-than-one
rule since the third eigenvalue is only 0.2148.

To express the observed variables as functions of the components (or factors, in general), you consult the
factor loading matrix as shown in Output 37.1.5.

Output 37.1.5 Principal Component Analysis: Factor Pattern

Factor Pattern

Factor1 Factor2

Population 0.58096 0.80642

School 0.76704 -0.54476

Employment 0.67243 0.72605

Services 0.93239 -0.10431

HouseValue 0.79116 -0.55818

The factor pattern is often referred to as the factor loading matrix in factor analysis. The elements in the
loading matrix are called factor loadings. There are at least two ways you can interpret these factor loadings.
First, you can use this table to express the observed variables as functions of the extracted factors (or
components, as in the current analysis). Each row of the factor loadings tells you the linear combination of
the factor or component scores that would yield the expected value of the associated variable. Second, you
can interpret each loading as a correlation between an observed variable and a factor or component, provided
that the factor solution is an orthogonal one (that is, factors are uncorrelated), such as the current initial factor
solution. Hence, the factor loadings indicate how strongly the variables and the factors or components are
related.

In Output 37.1.5, the first component (labeled “Factor1”) has large positive loadings for all five variables.
Its correlation with Services (0.9324) is especially high. The second component is basically a contrast of
Population (0.8064) and Employment (0.7261) against School (–0.5448) and HouseValue (–0.5582), with a
very small loading on Services (–0.1043).
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The total variance explained by the two components are shown in Output 37.1.6.

Output 37.1.6 Principal Component Analysis: Total Variance Explained by Factors

Variance Explained
by Each Factor

Factor1 Factor2

2.8733136 1.7966601

The first and second component account for 2.8733 and 1.7967, respectively, of the total variance of 5. In
the initial factor solution, the total variance explained by the factors or components are the same as the
eigenvalues extracted. (Compare the total variance with the eigenvalues shown in Output 37.1.4.) Due to the
dropping of the less important components, the sum of these two numbers is 4.6700, which is only a little bit
less than total variance 5 of the original correlation matrix.

You can also look at the variance explained by the two components for each observed variables in Out-
put 37.1.7.

Output 37.1.7 Principal Component Analysis: Final Communality Estimates

Final Communality Estimates: Total = 4.669974

Population School Employment Services HouseValue

0.98782629 0.88510555 0.97930583 0.88023562 0.93750041

In Output 37.1.7, the final communality estimates show that all the variables are well accounted for by the two
components, with final communality estimates ranging from 0.8802 for Services to 0.9878 for Population.
The sum of the communalities is 4.6700, which is the same as the sum of the variance explained by the two
components, as shown in Output 37.1.6.

Principal Component Analysis by PROC FACTOR and PROC PRINCOMP

The principal component analysis by PROC FACTOR emphasizes how the principal components explain the
observed variables. The factor loadings in the factor pattern as shown in Output 37.1.5 are the coefficients
for combining the factor/component scores to yield the observed variable scores when the expected error
residuals are zero. For example, the predicted standardized value of Population given the factor/component
scores for Factor1 and Factor2 is given by:

Population D 0:58096 � Factor1C 0:80642 � Factor2

If you are primarily interested in getting the component scores as linear combinations of the observed
variables, the factor loading matrix table is not the right one for you. However, you might request the
standardized scoring coefficients by adding the SCORE option in the FACTOR statement:

proc factor data=SocioEconomics n=5 score;
run;

In the preceding PROC FACTOR statement, N=5 is specified for retaining all five components. This is
done for comparing the PROC FACTOR results with those of PROC PRINCOMP, which is described
later. The SCORE option requests the display of the standardized scoring coefficients, which are shown in
Output 37.1.8.
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Output 37.1.8 Principal Component Analysis: Scoring Coefficients for Computing Component Scores

Standardized Scoring Coefficients

Factor1 Factor2 Factor3 Factor4 Factor5

Population 0.20219065 0.44884459 0.1284067 0.64542101 5.58240225

School 0.26695219 -0.3032049 1.48611655 -1.1184573 1.41573501

Employment 0.23402646 0.40410834 0.53496241 0.07255759 -5.6513542

Services 0.32450082 -0.0580552 -1.432726 -1.5828806 -0.0010006

HouseValue 0.27534803 -0.3106762 -0.3012889 2.41418899 -0.6673445

In Output 37.1.8, each factor/component is expressed as a linear combination of the standardized observed
variables. For example, the first principal component or Factor1 is computed as:

0:2022�PopulationC0:2670�SchoolC0:2340�EmploymentC0:3245�ServicesC0:2753�HouseValue

Again, when applying this formula you must use the standardized observed variables (with means 0 and
standard deviations 1), but not the raw data.

Apart from some scaling differences, the set of scoring coefficients obtained from PROC FACTOR are
equivalent to those obtained from PROC PRINCOMP, as specified by the following statement:

proc princomp data=SocioEconomics;
run;

PROC PRINCOMP displays the scoring coefficients as eigenvectors, which are shown in Output 37.1.9.

Output 37.1.9 Principal Component Analysis by PROC PRINCOMP: Eigenvectors

Eigenvectors

Prin1 Prin2 Prin3 Prin4 Prin5

Population 0.342730 0.601629 0.059517 0.204033 0.689497

School 0.452507 -.406414 0.688822 -.353571 0.174861

Employment 0.396695 0.541665 0.247958 0.022937 -.698014

Services 0.550057 -.077817 -.664076 -.500386 -.000124

HouseValue 0.466738 -.416429 -.139649 0.763182 -.082425

For example, to get the first principal component score, you use the following formula:

0:3427�PopulationC0:4525�SchoolC0:3967�EmploymentC0:5500�ServicesC0:4667�HouseValue

This formula is not exactly the same as the one shown by using PROC FACTOR. All scoring coefficients
in PROC FACTOR are smaller, approximately a factor of 0.59 to those coefficients obtained from PROC
PRINCOMP. The reason for the scalar difference is that PROC FACTOR assumes all factors/components to
have variance of 1, while PROC PRINCOMP creates components that have variances equal to the eigenvalues.
You can do a simple rescaling of the standardized scoring coefficients obtained from PROC FACTOR so
that they match the associated eigenvectors from the PROC PRINCOMP. Basically, you need to rescale each
column of the standardized scoring coefficients obtained from PROC FACTOR to have the sum of squares
equaling one, which is a defining characteristic of eigenvectors. This could be accomplished by dividing
each coefficient by the square root of the corresponding column sum of squares.
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For the present example, you can use PROC STDIZE to do the rescaling, as shown in the following statements:

proc factor data=SocioEconomics n=5 score;
ods output StdScoreCoef=Coef;

run;

proc stdize method=ustd mult=.44721 data=Coef out=eigenvectors;
Var Factor1-Factor5;

run;

proc print data=eigenvectors;
run;

First, you create an output set Coef for the standardized scoring coefficients by the ODS OUTPUT state-
ment. Note that “StdScoreCoef” is the ODS table that contains the standardized scoring coefficients as
shown in Output 37.1.8. (See Table 37.6 for all ODS table names for PROC FACTOR.) Next, you use
METHOD=USTD in the PROC STDIZE statement to divide the output coefficients by the corresponding
uncorrected (for mean) standard deviations. The following formula shows the relationship between the
uncorrected standard deviation and the sum of squares:

uncorrected standard deviation D
p

sum of squares=N

Recall that what you intend to divide from each coefficient is its square root of the corresponding column sum
of squares. Therefore, to adjust for what PROC STDIZE does using METHOD=USTD, you have to multiply
each variable by a constant term of 1=

p
N in the standardization. For the current example, this constant term

is 0.44721 (D 1=
p
5) and is specified through the MULT= option in the PROC STDIZE statement. With

the OUT= option, the rescaled scoring coefficients are saved in the SAS data set eigenvectors. The printout
of the data set in Output 37.1.10 shows the rescaled standardized scoring coefficients obtained from PROC
FACTOR.

Output 37.1.10 Rescaled Standardized Scoring Coefficients

Obs Variable Factor1 Factor2 Factor3 Factor4 Factor5

1 Population 0.34272761 0.60162443 0.05951667 0.20403109 0.68949172

2 School 0.45250304 -0.4064112 0.68881691 -0.3535678 0.17485977

3 Employment 0.39669158 0.54166065 0.24795576 0.02293697 -0.6980081

4 Services 0.5500521 -0.0778162 -0.6640703 -0.5003817 -0.0001236

5 HouseValue 0.4667346 -0.4164256 -0.1396478 0.76317568 -0.0824248

As you can see, these standardized scoring coefficients are essentially the same as those obtained from PROC
PRINCOMP, as shown in Output 37.1.9. This example shows that principal component analyses by PROC
FACTOR and PROC PRINCOMP are indeed equivalent. PROC PRINCOMP emphasizes more the linear
combinations of the variables to form the components, while PROC FACTOR expresses variables as linear
combinations of the components in the output. If a principal component analysis of the data is all you need in
a particular application, there is no reason to use PROC FACTOR instead of PROC PRINCOMP. Therefore,
the following examples focus on common factor analysis for which that you can apply only PROC FACTOR,
but not PROC PRINCOMP.
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Example 37.2: Principal Factor Analysis
This example uses the data presented in Example 37.1 and performs a principal factor analysis with squared
multiple correlations for the prior communality estimates. Unlike Example 37.1, which analyzes the principal
components (with default PRIORS=ONE), the current analysis is based on a common factor model. To
use a common factor model, you specify PRIORS=SMC in the PROC FACTOR statement, as shown in the
following:

ods graphics on;

proc factor data=SocioEconomics
priors=smc msa residual
rotate=promax reorder
outstat=fact_all
plots=(scree initloadings preloadings loadings);

run;

ods graphics off;

In the PROC FACTOR statement, you include several other options to help you analyze the results. To help
determine whether the common factor model is appropriate, you request the Kaiser’s measure of sampling
adequacy with the MSA option. You specify the RESIDUALS option to compute the residual correlations
and partial correlations.

The ROTATE= and REORDER options are specified to enhance factor interpretability. The
ROTATE=PROMAX option produces an orthogonal varimax prerotation (default) followed by an oblique
Procrustes rotation, and the REORDER option reorders the variables according to their largest factor loadings.
An OUTSTAT= data set is created by PROC FACTOR and displayed in Output 37.2.15.

PROC FACTOR can produce high-quality graphs that are very useful for interpreting the factor solutions. To
request these graphs, ODS Graphics must be enabled. All ODS graphs in PROC FACTOR are requested
with the PLOTS= option. In this example, you request a scree plot (SCREE) and loading plots for the factor
matrix during the following three stages: initial unrotated solution (INITLOADINGS), prerotated (varimax)
solution (PRELOADINGS), and promax-rotated solution (LOADINGS). The scree plot helps you determine
the number of factors, and the loading plots help you visualize the patterns of factor loadings during various
stages of analyses.

Principal Factor Analysis: Kaiser’s MSA and Factor Extraction Results

Output 37.2.1 displays the results of the partial correlations and Kaiser’s measure of sampling adequacy.

Output 37.2.1 Principal Factor Analysis: Partial Correlations and Kaiser’s MSA

Partial Correlations Controlling all other Variables

Population School Employment Services HouseValue

Population 1.00000 -0.54465 0.97083 0.09612 0.15871

School -0.54465 1.00000 0.54373 0.04996 0.64717

Employment 0.97083 0.54373 1.00000 0.06689 -0.25572

Services 0.09612 0.04996 0.06689 1.00000 0.59415

HouseValue 0.15871 0.64717 -0.25572 0.59415 1.00000
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Output 37.2.1 continued

Kaiser's Measure of Sampling Adequacy:
Overall MSA = 0.57536759

Population School Employment Services HouseValue

0.47207897 0.55158839 0.48851137 0.80664365 0.61281377

If the data are appropriate for the common factor model, the partial correlations (controlling all other variables)
should be small compared to the original correlations. For example, the partial correlation between the
variables School and HouseValue is 0.65, slightly less than the original correlation of 0.86 (see Output 37.1.3).
The partial correlation between Population and School is –0.54, which is much larger in absolute value than
the original correlation; this is an indication of trouble. Kaiser’s MSA is a summary, for each variable and for
all variables together, of how much smaller the partial correlations are than the original correlations. Values
of 0.8 or 0.9 are considered good, while MSAs below 0.5 are unacceptable. The variables Population, School,
and Employment have very poor MSAs. Only the Services variable has a good MSA. The overall MSA
of 0.58 is sufficiently poor that additional variables should be included in the analysis to better define the
common factors. A commonly used rule is that there should be at least three variables per factor. In the
following analysis, you determine that there are two common factors in these data. Therefore, more variables
are needed for a reliable analysis.

Output 37.2.2 displays the results of the principal factor extraction.

Output 37.2.2 Principal Factor Analysis: Factor Extraction

Prior Communality Estimates: SMC

Population School Employment Services HouseValue

0.96859160 0.82228514 0.96918082 0.78572440 0.84701921

Eigenvalues of the Reduced Correlation Matrix:
Total = 4.39280116  Average = 0.87856023

Eigenvalue Difference Proportion Cumulative

1 2.73430084 1.01823217 0.6225 0.6225

2 1.71606867 1.67650586 0.3907 1.0131

3 0.03956281 0.06408626 0.0090 1.0221

4 -.02452345 0.04808427 -0.0056 1.0165

5 -.07260772 -0.0165 1.0000

The square multiple correlations are shown as prior communality estimates in Output 37.2.2. The PRI-
ORS=SMC option basically replaces the diagonal of the original observed correlation matrix by these square
multiple correlations. Because the square multiple correlations are usually less than one, the resulting
correlation matrix for factoring is called the reduced correlation matrix. In the current example, the SMCs
are all fairly large; hence, you expect the results of the principal factor analysis to be similar to those in the
principal component analysis.

The first two largest positive eigenvalues of the reduced correlation matrix account for 101:31% of the
common variance. This is possible because the reduced correlation matrix, in general, is not necessarily
positive definite, and negative eigenvalues for the matrix are possible. A pattern like this suggests that you
might not need more than two common factors. The scree and variance explained plots of Output 37.2.3 clearly
support the conclusion that two common factors are present. Showing in the left panel of Output 37.2.3 is the
scree plot of the eigenvalues of the reduced correlation matrix. A sharp bend occurs at the third eigenvalue,
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reinforcing the conclusion that two common factors are present. These cumulative proportions of common
variance explained by factors are plotted in the right panel of Output 37.2.3, which shows that the curve
essentially flattens out after the second factor.

Output 37.2.3 Scree and Variance Explained Plots

Principal Factor Analysis: Initial Factor Solution

For the current analysis, PROC FACTOR retains two factors by certain default criteria. This decision agrees
with the conclusion drawn by inspecting the scree plot. The principal factor pattern with the two factors
is displayed in Output 37.2.4. This factor pattern is similar to the principal component pattern seen in
Output 37.1.5 of Example 37.1. For example, the variable Services has the largest loading on the first factor,
and the Population variable has the smallest. The variables Population and Employment have large positive
loadings on the second factor, and the HouseValue and School variables have large negative loadings.

Output 37.2.4 Initial Factor Pattern Matrix and Communalities

Factor Pattern

Factor1 Factor2

Services 0.87899 -0.15847

HouseValue 0.74215 -0.57806

Employment 0.71447 0.67936

School 0.71370 -0.55515

Population 0.62533 0.76621
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Output 37.2.4 continued

Variance Explained
by Each Factor

Factor1 Factor2

2.7343008 1.7160687

Final Communality Estimates: Total = 4.450370

Population School Employment Services HouseValue

0.97811334 0.81756387 0.97199928 0.79774304 0.88494998

Comparing the current factor loading matrix in Output 37.2.4 with that in Output 37.1.5 in Example 37.1,
you notice that the variables are arranged differently in the two output tables. This is due to the use of the
REORDER option in the current analysis. The advantage of using this option might not be very obvious in
Output 37.2.4, but you can see its value when looking at the rotated solutions, as shown in Output 37.2.7 and
Output 37.2.11.

The final communality estimates are all fairly close to the priors (shown in Output 37.2.2). Only the
communality for the variable HouseValue increased appreciably, from 0.847 to 0.885. Therefore, you are
sure that all the common variance is accounted for.

Output 37.2.5 shows that the residual correlations (off-diagonal elements) are low, the largest being 0.03.
The partial correlations are not quite as impressive, since the uniqueness values are also rather small. These
results indicate that the squared multiple correlations are good but not quite optimal communality estimates.

Output 37.2.5 Residual and Partial Correlations

Residual Correlations With Uniqueness on the Diagonal

Population School Employment Services HouseValue

Population 0.02189 -0.01118 0.00514 0.01063 0.00124

School -0.01118 0.18244 0.02151 -0.02390 0.01248

Employment 0.00514 0.02151 0.02800 -0.00565 -0.01561

Services 0.01063 -0.02390 -0.00565 0.20226 0.03370

HouseValue 0.00124 0.01248 -0.01561 0.03370 0.11505

Root Mean Square Off-Diagonal Residuals:
Overall = 0.01693282

Population School Employment Services HouseValue

0.00815307 0.01813027 0.01382764 0.02151737 0.01960158

Partial Correlations Controlling Factors

Population School Employment Services HouseValue

Population 1.00000 -0.17693 0.20752 0.15975 0.02471

School -0.17693 1.00000 0.30097 -0.12443 0.08614

Employment 0.20752 0.30097 1.00000 -0.07504 -0.27509

Services 0.15975 -0.12443 -0.07504 1.00000 0.22093

HouseValue 0.02471 0.08614 -0.27509 0.22093 1.00000

Root Mean Square Off-Diagonal Partials: Overall = 0.18550132

Population School Employment Services HouseValue

0.15850824 0.19025867 0.23181838 0.15447043 0.18201538
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As displayed in Output 37.2.6, the unrotated factor pattern reveals two tight clusters of variables, with the
variables HouseValue and School at the negative end of Factor2 axis and the variables Employment and
Population at the positive end. The Services variable is in between but closer to the HouseValue and School
variables. A good rotation would place the axes so that most variables would have zero loadings on most
factors. As a result, the axes would appear as though they are put through the variable clusters.

Output 37.2.6 Unrotated Factor Loading Plot

Principal Factor Analysis: Varimax Prerotation

In Output 37.2.7, the results of the varimax prerotation are shown. To yield the varimax-rotated factor loading
(pattern), the initial factor loading matrix is postmultiplied by an orthogonal transformation matrix. This
orthogonal transformation matrix is shown in Output 37.2.7, followed by the varimax-rotated factor pattern.
This rotation or transformation leads to small loadings of Population and Employment on the first factor and
small loadings of HouseValue and School on the second factor. Services appears to have a larger loading
on the first factor than it has on the second factor, although both loadings are substantial. Hence, Services
appears to be factorially complex.
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With the REORDER option in effect, you can see the variable clusters clearly in the factor pattern. The first
factor is associated more with the first three variables (first three rows of variables): HouseValue, School,
and Services. The second factor is associated more with the last two variables (last two rows of variables):
Population and Employment.

For orthogonal factor solutions such as the current varimax-rotated solution, you can also interpret the values
in the factor loading (pattern) matrix as correlations. For example, HouseValue and Factor 1 have a high
correlation at 0.94, while Population and Factor 1 have a low correlation at 0.02.

Output 37.2.7 Varimax Rotation: Transform Matrix and Rotated Pattern

Orthogonal
Transformation Matrix

1 2

1 0.78895 0.61446

2 -0.61446 0.78895

Rotated Factor Pattern

Factor1 Factor2

HouseValue 0.94072 -0.00004

School 0.90419 0.00055

Services 0.79085 0.41509

Population 0.02255 0.98874

Employment 0.14625 0.97499

Variance Explained
by Each Factor

Factor1 Factor2

2.3498567 2.1005128

Final Communality Estimates: Total = 4.450370

Population School Employment Services HouseValue

0.97811334 0.81756387 0.97199928 0.79774304 0.88494998

The variance explained by the factors are more evenly distributed in the varimax-rotated solution, as compared
with that of the unrotated solution. Indeed, this is a typical fact for any kinds of factor rotation. In the
current example, before the varimax rotation the two factors explain 2.73 and 1.72, respectively, of the
common variance (see Output 37.2.4). After the varimax rotation the two rotated factors explain 2.35 and
2.10, respectively, of the common variance. However, the total variance accounted for by the factors remains
unchanged after the varimax rotation. This invariance property is also observed for the communalities of the
variables after the rotation, as evidenced by comparing the current communality estimates in Output 37.2.7
with those in Output 37.2.4.

Output 37.2.8 shows the graphical plot of the varimax-rotated factor loadings. Clearly, HouseValue and
School cluster together on the Factor 1 axis, while Population and Employment cluster together on the Factor
2 axis. Service is closer to the cluster of HouseValue and School.
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Output 37.2.8 Varimax-Rotated Factor Loadings

An alternative to the scatter plot of factor loadings is the so-called vector plot of loadings, which is shown in
Output 37.2.9. The vector plot is requested with the suboption VECTOR in the PLOTS= option. That is:

plots=preloadings(vector)

This generates the vector plot of loadings in Output 37.2.9.
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Output 37.2.9 Varimax-Rotated Factor Loadings: Vector Plot

Principal Factor Analysis: Oblique Promax Rotation

For some researchers, the varimax-rotated factor solution in the preceding section might be good enough
to provide them useful and interpretable results. For others who believe that common factors are seldom
orthogonal, an obliquely rotated factor solution might be more desirable, or at least should be attempted.

PROC FACTOR provides a very large class of oblique factor rotations. The current example shows a
particular one—namely, the promax rotation as requested by the ROTATE=PROMAX option.

The results of the promax rotation are shown in Output 37.2.10 and Output 37.2.11. The corresponding plot
of factor loadings is shown in Output 37.2.12.
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Output 37.2.10 Promax Rotation: Procrustean Target and Transformation

Target Matrix for Procrustean
Transformation

Factor1 Factor2

HouseValue 1.00000 -0.00000

School 1.00000 0.00000

Services 0.69421 0.10045

Population 0.00001 1.00000

Employment 0.00326 0.96793

Procrustean Transformation
Matrix

1 2

1 1.04116598 -0.0986534

2 -0.1057226 0.96303019

Normalized Oblique
Transformation Matrix

1 2

1 0.73803 0.54202

2 -0.70555 0.86528

Output 37.2.10 shows the Procrustean target, to which the varimax factor pattern is rotated, followed by
the display of the Procrustean transformation matrix. This is the matrix that transforms the varimax factor
pattern so that the rotated pattern is as close as possible to the Procrustean target. However, because the
variances of factors have to be fixed at 1 during the oblique transformation, a normalized version of the
Procrustean transformation matrix is the one that is actually used in the transformation. This normalized
transformation matrix is shown at the bottom of Output 37.2.10. Using this transformation matrix leads to
the promax-rotated factor solution, as shown in Output 37.2.11.

Output 37.2.11 Promax Rotation: Factor Correlations and Factor Pattern

Inter-Factor Correlations

Factor1 Factor2

Factor1 1.00000 0.20188

Factor2 0.20188 1.00000

Rotated Factor Pattern (Standardized Regression Coefficients)

Factor1 Factor2

HouseValue 0.95558485 -0.0979201

School 0.91842142 -0.0935214

Services 0.76053238 0.33931804

Population -0.0790832 1.00192402

Employment 0.04799 0.97509085
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After the promax rotation, the factors are no longer uncorrelated. As shown in Output 37.2.11, the correlation
of the two factors is now 0.20. In the (initial) unrotated and the varimax solutions, the two factors are not
correlated.

In addition to allowing the factors to be correlated, in an oblique factor solution you seek a pattern of factor
loadings that is more “differentiated” (referred to as the “simple structures” in the literature). The more
differentiated the loadings, the easier the interpretation of the factors.

For example, factor loadings of Services and Population on Factor 2 are 0.415 and 0.989, respectively, in
the (orthogonal) varimax-rotated factor pattern (see Output 37.2.7). With the (oblique) promax rotation
(see Output 37.2.11), these two loadings become even more differentiated with values 0.339 and 1.002,
respectively. Overall, however, the factor patterns before and after the promax rotation do not seem to
differ too much. This fact is confirmed by comparing the graphical plots of factor loadings. The plots in
Output 37.2.12 (promax-rotated factor loadings) and Output 37.2.8 (varimax-rotated factor loadings) show
very similar patterns.

Output 37.2.12 Promax Rotation: Factor Loading Plot
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Unlike the orthogonal factor solutions where you can interpret the factor loadings as correlations between
variables and factors, in oblique factor solutions such as the promax solution, you have to turn to the factor
structure matrix for examining the correlations between variables and factors. Output 37.2.13 shows the
factor structures of the promax-rotated solution.

Output 37.2.13 Promax Rotation: Factor Structures and Final Communalities

Factor Structure (Correlations)

Factor1 Factor2

HouseValue 0.93582 0.09500

School 0.89954 0.09189

Services 0.82903 0.49286

Population 0.12319 0.98596

Employment 0.24484 0.98478

Variance Explained
by Each Factor
Ignoring Other

Factors

Factor1 Factor2

2.4473495 2.2022803

Final Communality Estimates: Total = 4.450370

Population School Employment Services HouseValue

0.97811334 0.81756387 0.97199928 0.79774304 0.88494998

Basically, the factor structure matrix shown in Output 37.2.13 reflects a similar pattern to the factor pattern
matrix shown in Output 37.2.11. The critical difference is that you can have the correlation interpretation only
by using the factor structure matrix. For example, in the factor structure matrix shown in Output 37.2.13, the
correlation between Population and Factor 2 is 0.986. The corresponding value shown in the factor pattern
matrix in Output 37.2.11 is 1.002, which certainly cannot be interpreted as a correlation coefficient.

Common variance explained by the promax-rotated factors are 2.447 and 2.202, respectively, for the two
factors. Unlike the orthogonal factor solutions (for example, the prerotated varimax solution), variance
explained by these promax-rotated factors do not sum up to the total communality estimate 4.45. In oblique
factor solutions, variance explained by oblique factors cannot be partitioned for the factors. Variance
explained by a common factor is computed while ignoring the contributions from the other factors.

However, the communalities for the variables, as shown in the bottom of Output 37.2.13, do not change
from rotation to rotation. They are still the same set of communalities in the initial, varimax-rotated, and
promax-rotated solutions. This is a basic fact about factor rotations: they only redistribute the variance
explained by the factors; the total variance explained by the factors for any variable (that is, the communality
of the variable) remains unchanged.
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In the literature of exploratory factor analysis, reference axes had been an important tool in factor rotation.
Nowadays, rotations are seldom done through the uses of the reference axes. Despite that, results about
reference axes do provide additional information for interpreting factor analysis results. For the current
example of the promax rotation, PROC FACTOR shows the relevant results about the reference axes in
Output 37.2.14.

Output 37.2.14 Promax Rotation: Reference Axis Correlations and Reference Structures

Reference Axis
Correlations

Factor1 Factor2

Factor1 1.00000 -0.20188

Factor2 -0.20188 1.00000

Reference Structure
(Semipartial Correlations)

Factor1 Factor2

HouseValue 0.93591 -0.09590

School 0.89951 -0.09160

Services 0.74487 0.33233

Population -0.07745 0.98129

Employment 0.04700 0.95501

Variance Explained
by Each Factor

Eliminating Other
Factors

Factor1 Factor2

2.2480892 2.0030200

To explain the results in the reference-axis system, some geometric interpretations of the factor axes are
needed. Consider a single factor in a system of n common factors in an oblique factor solution. Taking away
the factor under consideration, the remaining n – 1 factors span a hyperplane in the factor space of n – 1
dimensions. The vector that is orthogonal to this hyperplane is the reference axis (reference vector) of the
factor under consideration. Using the same definition for the remaining factors, you have n reference vectors
for n factors.

A factor in an oblique factor solution can be considered as the sum of two independent components: its
associated reference vector and a component that is overlapped with all other factors. In other words, the
reference vector of a factor is a unique part of the factor that is not predictable from all other factors. Thus,
the loadings on a reference vector are the unique effects of the corresponding factor, partialling out the effects
from all other factors. The variances explained by a reference vector are the unique variances explained by
the corresponding factor, partialling out the variances explained by all other factors.
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Output 37.2.14 shows the reference axis correlations. The correlation between the reference vectors is –0.20.
Next, Output 37.2.14 shows the loadings on the reference vectors in the table entitled “Reference Structure
(Semipartial Correlations).” As explained previously, loadings on a reference vector are also the unique
effects of the corresponding factor, partialling out the effects from the all other factors. For example, the
unique effect of Factor 1 on HouseValue is 0.936. Another important property of the reference vector system
is that loadings on a reference vector are also correlations between the variables and the corresponding factor,
partialling out the correlations between the variables and other factors. This means that the loading 0.936
in the reference structure table is the unique correlation between HouseValue and Factor 1, partialling out
the correlation between HouseValue with Factor 2. Hence, as suggested by the title of table, all loadings
reported in the “Reference Structure (Semipartial Correlations)” can be interpreted as semipartial correlations
between variables and factors.

The last table shown in Output 37.2.14 are the variances explained by the reference vectors. As explained
previously, these are also unique variances explained by the factors, partialling out the variances explained by
all other factors (or eliminating all other factors, as suggested by the title of the table). In the current example,
Factor 1 explains 2.248 of the variable variances, partialling out all variable variances explained by Factor 2.

Notice that factor pattern (shown in Output 37.2.11), factor structures (correlations, shown in Output 37.2.13),
and reference structures (semipartial correlations, shown in Output 37.2.14) give you different information
about the oblique factor solutions such as the promax-rotated solution. However, for orthogonal factor
solutions such as the varimax-rotated solution, factor structures and reference structures are all the same as
the factor pattern.

Principal Factor Analysis: Factor Rotations with Factor Pattern Input

The promax rotation is one of the many rotations that PROC FACTOR provides. You can specify many
different rotation algorithms by using the ROTATE= options. In this section, you explore different rotated
factor solutions from the initial principal factor solution. Specifically, you want to examine the factor patterns
yielded by the quartimax transformation (an orthogonal transformation) and the Harris-Kaiser (an oblique
transformation), respectively.

Rather than analyzing the entire problem again with new rotations, you can simply use the OUTSTAT= data
set from the preceding factor analysis results.

First, the OUTSTAT= data set is printed using the following statements:

proc print data=fact_all;
run;

The output data set is displayed in Output 37.2.15.
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Output 37.2.15 Output Data Set

Factor Output Data SetFactor Output Data Set

Obs _TYPE_ _NAME_ Population School Employment Services HouseValue

1 MEAN 6241.67 11.4417 2333.33 120.833 17000.00

2 STD 3439.99 1.7865 1241.21 114.928 6367.53

3 N 12.00 12.0000 12.00 12.000 12.00

4 CORR Population 1.00 0.0098 0.97 0.439 0.02

5 CORR School 0.01 1.0000 0.15 0.691 0.86

6 CORR Employment 0.97 0.1543 1.00 0.515 0.12

7 CORR Services 0.44 0.6914 0.51 1.000 0.78

8 CORR HouseValue 0.02 0.8631 0.12 0.778 1.00

9 COMMUNAL 0.98 0.8176 0.97 0.798 0.88

10 PRIORS 0.97 0.8223 0.97 0.786 0.85

11 EIGENVAL 2.73 1.7161 0.04 -0.025 -0.07

12 UNROTATE Factor1 0.63 0.7137 0.71 0.879 0.74

13 UNROTATE Factor2 0.77 -0.5552 0.68 -0.158 -0.58

14 RESIDUAL Population 0.02 -0.0112 0.01 0.011 0.00

15 RESIDUAL School -0.01 0.1824 0.02 -0.024 0.01

16 RESIDUAL Employment 0.01 0.0215 0.03 -0.006 -0.02

17 RESIDUAL Services 0.01 -0.0239 -0.01 0.202 0.03

18 RESIDUAL HouseValue 0.00 0.0125 -0.02 0.034 0.12

19 PRETRANS Factor1 0.79 -0.6145 . . .

20 PRETRANS Factor2 0.61 0.7889 . . .

21 PREROTAT Factor1 0.02 0.9042 0.15 0.791 0.94

22 PREROTAT Factor2 0.99 0.0006 0.97 0.415 -0.00

23 TRANSFOR Factor1 0.74 -0.7055 . . .

24 TRANSFOR Factor2 0.54 0.8653 . . .

25 FCORR Factor1 1.00 0.2019 . . .

26 FCORR Factor2 0.20 1.0000 . . .

27 PATTERN Factor1 -0.08 0.9184 0.05 0.761 0.96

28 PATTERN Factor2 1.00 -0.0935 0.98 0.339 -0.10

29 RCORR Factor1 1.00 -0.2019 . . .

30 RCORR Factor2 -0.20 1.0000 . . .

31 REFERENC Factor1 -0.08 0.8995 0.05 0.745 0.94

32 REFERENC Factor2 0.98 -0.0916 0.96 0.332 -0.10

33 STRUCTUR Factor1 0.12 0.8995 0.24 0.829 0.94

34 STRUCTUR Factor2 0.99 0.0919 0.98 0.493 0.09

Various results from the previous factor analysis are saved in this data set, including the initial unrotated
solution (its factor pattern is saved in observations with _TYPE_=UNROTATE), the prerotated varimax
solution (its factor pattern is saved in observations with _TYPE_=PREROTAT), and the oblique promax
solution (its factor pattern is saved in observations with _TYPE_=PATTERN).

When PROC FACTOR reads in an input data set with TYPE=FACTOR, the observations with
_TYPE_=PATTERN are treated as the initial factor pattern to be rotated by PROC FACTOR. Hence, it
is important that you provide the correct initial factor pattern for PROC FACTOR to read in.
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In the current example, you need to provide the unrotated solution from the preceding analysis as the
input factor pattern. The following statements create a TYPE=FACTOR data set fact2 from the preceding
OUTSTAT= data set fact_all:

data fact2(type=factor);
set fact_all;
if _TYPE_ in('PATTERN' 'FCORR') then delete;
if _TYPE_='UNROTATE' then _TYPE_='PATTERN';
run;

In these statements, you delete observations with _TYPE_=PATTERN or _TYPE_=FCORR, which are for the
promax-rotated factor solution, and change observations with _TYPE_=UNROTATE to _TYPE_=PATTERN
in the new data set fact2. In this way, the initial orthogonal factor pattern matrix is saved in the observations
with _TYPE_=PATTERN.

You use this new data set and rotate the initial solution to another oblique solution with the
ROTATE=QUARTIMAX option, as shown in the following statements:

proc factor data=fact2 rotate=quartimax reorder;
run;

As shown in Output 37.2.16, the input data set is of the FACTOR type for the new rotation.

Output 37.2.16 Quartimax Rotation With Input Factor Pattern

Quartimax Rotation From a TYPE=FACTOR Data Set

The FACTOR Procedure

Quartimax Rotation From a TYPE=FACTOR Data Set

The FACTOR Procedure

Input Data Type FACTOR

N Set/Assumed in Data Set 12

N for Significance Tests 12

The quartimax-rotated factor pattern is displayed in Output 37.2.17.

Output 37.2.17 Quartimax-Rotated Factor Pattern

Orthogonal
Transformation Matrix

1 2

1 0.80138 0.59815

2 -0.59815 0.80138

Rotated Factor Pattern

Factor1 Factor2

HouseValue 0.94052 -0.01933

School 0.90401 -0.01799

Services 0.79920 0.39878

Population 0.04282 0.98807

Employment 0.16621 0.97179
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Output 37.2.17 continued

Variance Explained
by Each Factor

Factor1 Factor2

2.3699941 2.0803754

The quartimax rotation produces an orthogonal transformation matrix shown at the top of Output 37.2.17.
After the transformation, the factor pattern is shown next. Compared with the varimax-rotated factor pattern
(see Output 37.2.7), the quartimax-rotated factor pattern shows some differences. The loadings of HouseValue
and School on Factor 1 drop only slightly in the quartimax factor pattern, while the loadings of Services,
Population, and Employment on Factor 1 gain relatively larger amounts. The total variance explained by
Factor 1 in the varimax-rotated solution (see Output 37.2.7) is 2.350, while it is 2.370 after the quartimax-
rotation. In other words, more variable variances are explained by the first factor in the quartimax factor
pattern than in the varimax factor pattern. Although not very strongly demonstrated in the current example,
this illustrates a well-known property about the quartimax rotation: it tends to produce a general factor for all
variables.

Another oblique rotation is now explored. The Harris-Kaiser transformation weighted by the Cureton-
Mulaik technique is applied to the initial factor pattern. To achieve this, you use the ROTATE=HK and
NORM=WEIGHT options in the following PROC FACTOR statement:

ods graphics on;

proc factor data=fact2 rotate=hk norm=weight reorder
plots=loadings;

run;

ods graphics off;

Output 37.2.18 shows the variable weights in the rotation.

Output 37.2.18 Harris-Kaiser Rotation: Weights

Variable Weights for Rotation

Population School Employment Services HouseValue

0.95982747 0.93945424 0.99746396 0.12194766 0.94007263

While all other variables have weights at least as large as 0.93, the weight for Services is only 0.12. This
means that due to its small weight, Services is not as important as the other variables for determining the
rotation (transformation). This makes sense when you look at the initial unrotated factor pattern plot in
Output 37.2.6. In the plot, there are two main clusters of variables, and Services does not seem to fall into
either of the clusters. In order to yield a Harris-Kaiser rotation (transformation) that would gear towards to
two clusters, the Cureton-Mulaik weighting essentially downweights the contribution from Services in the
factor rotation.

The results of the Harris-Kaiser factor solution are displayed in Output 37.2.19, with a graphical plot of
rotated loadings displayed in Output 37.2.20.
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Output 37.2.19 Harris-Kaiser Rotation: Factor Correlations and Factor Pattern

Inter-Factor Correlations

Factor1 Factor2

Factor1 1.00000 0.08358

Factor2 0.08358 1.00000

Rotated Factor Pattern (Standardized Regression Coefficients)

Factor1 Factor2

HouseValue 0.94048 0.00279

School 0.90391 0.00327

Services 0.75459 0.41892

Population -0.06335 0.99227

Employment 0.06152 0.97885

Because the Harris-Kaiser produces an oblique factor solution, you compare the current results with that of
the promax (see Output 37.2.11), which also produces an oblique factor solution. The correlation between
the factors in the Harris-Kaiser solution is 0.084; this value is much smaller than the same correlation in the
promax solution, which is 0.201. However, the Harris-Kaiser rotated factor pattern shown in Output 37.2.19
is more or less the same as that of the promax-rotated factor pattern shown in Output 37.2.11. Which solution
would you consider to be more reasonable or interpretable?

From the statistical point of view, the Harris-Kaiser and promax factor solutions are equivalent. They explain
the observed variable relationships equally well. From the simplicity point of view, however, you might
prefer to interpret the Harris-Kaiser solution because the factor correlation is smaller. In other words, the
factors in the Harris-Kaiser solution do not overlap that much conceptually; hence they should be more
distinctive to interpret. However, in practice simplicity in factor correlations might not the only principle to
consider. Researchers might actually expect to have some factors to be highly correlated based on theoretical
or substantive grounds.

Although the Harris-Kaiser and the promax factor patterns are very similar, the graphical plots of the
loadings from the two solutions paint slightly different pictures. The plot of the promax-rotated loadings is
shown in Output 37.2.12, while the plot of the loadings for the current Harris-Kaiser solution is shown in
Output 37.2.20.
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Output 37.2.20 Harris-Kaiser Rotation: Factor Loading Plot

The two factor axes in the Harris-Kaiser rotated pattern (Output 37.2.20) clearly cut through the centers
of the two variable clusters, while the Factor 1 axis in the promax solution lies above a variable cluster
(Output 37.2.12). The reason for this subtle difference is that in the Harris-Kaiser rotation, the Services is
a “loner” that has been downweighted by the Cureton-Mulaik technique (see its relatively small weight in
Output 37.2.18). As a result, the rotated axes are basically determined by the two variable clusters in the
Harris-Kaiser rotation.

As far as the current discussion goes, it is not recommending one rotation method over another. Rather, it
simply illustrates how you could control certain types of characteristics of factor rotation through the many
options supported by PROC FACTOR. Should you prefer an orthogonal rotation to an oblique rotation?
Should you choose the oblique factor solution with the smallest factor correlations? Should you use a
weighting scheme that would enable you to find independent variable clusters? While PROC FACTOR
enables you to explore all these alternatives, you must consult advanced textbooks and published articles to
get satisfactory and complete answers to these questions.
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Example 37.3: Maximum Likelihood Factor Analysis
This example uses maximum likelihood factor analyses for one, two, and three factors. It is already apparent
from the principal factor analysis that the best number of common factors is almost certainly two. The one-
and three-factor ML solutions reinforce this conclusion and illustrate some of the numerical problems that
can occur. The following statements produce Output 37.3.1 through Output 37.3.3:

title3 'Maximum Likelihood Factor Analysis with One Factor';
proc factor data=SocioEconomics method=ml heywood n=1;
run;

title3 'Maximum Likelihood Factor Analysis with Two Factors';
proc factor data=SocioEconomics method=ml heywood n=2;
run;

title3 'Maximum Likelihood Factor Analysis with Three Factors';
proc factor data=SocioEconomics method=ml heywood n=3;
run;

Output 37.3.1 displays the results of the analysis with one factor.

Output 37.3.1 Maximum Likelihood Factor Analysis

Maximum Likelihood Factor Analysis with One Factor

The FACTOR Procedure

Maximum Likelihood Factor Analysis with One Factor

The FACTOR Procedure

Input Data Type Raw Data

Number of Records Read 12

Number of Records Used 12

N for Significance Tests 12

Maximum Likelihood Factor Analysis with One Factor

The FACTOR Procedure
Initial Factor Method: Maximum Likelihood

Maximum Likelihood Factor Analysis with One Factor

The FACTOR Procedure
Initial Factor Method: Maximum Likelihood

Prior Communality Estimates: SMC

Population School Employment Services HouseValue

0.96859160 0.82228514 0.96918082 0.78572440 0.84701921

Preliminary Eigenvalues:
Total = 76.1165859  Average = 15.2233172

Eigenvalue Difference Proportion Cumulative

1 63.7010086 50.6462895 0.8369 0.8369

2 13.0547191 12.7270798 0.1715 1.0084

3 0.3276393 0.6749199 0.0043 1.0127

4 -0.3472805 0.2722202 -0.0046 1.0081

5 -0.6195007 -0.0081 1.0000
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Output 37.3.1 continued

1 factor will be retained by the NFACTOR criterion.

Iteration Criterion Ridge Change Communalities

1 6.5429218 0.0000 0.1033 0.93828 0.72227 1.00000 0.71940 0.74371

2 3.1232699 0.0000 0.7288 0.94566 0.02380 1.00000 0.26493 0.01487

Convergence criterion satisfied.

Significance Tests Based on 12 Observations

Test DF Chi-Square
Pr >

ChiSq

H0: No common factors 10 54.2517 <.0001

HA: At least one common factor

H0: 1 Factor is sufficient 5 24.4656 0.0002

HA: More factors are needed

Chi-Square without Bartlett's Correction 34.355969

Akaike's Information Criterion 24.355969

Schwarz's Bayesian Criterion 21.931436

Tucker and Lewis's Reliability Coefficient 0.120231

Squared
Canonical
Correlations

Factor1

1.0000000

Eigenvalues of the
Weighted Reduced
Correlation Matrix:

Total = 0  Average = 0

Eigenvalue Difference

1 Infty Infty

2 1.92716032 2.15547340

3 -.22831308 0.56464322

4 -.79295630 0.11293464

5 -.90589094

Factor Pattern

Factor1

Population 0.97245

School 0.15428

Employment 1.00000

Services 0.51472

HouseValue 0.12193

Variance Explained by Each
Factor

Factor Weighted Unweighted

Factor1 17.8010629 2.24926004
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Output 37.3.1 continued

Final Communality Estimates and
Variable Weights

Total Communality:
Weighted = 17.801063  
Unweighted = 2.249260

Variable Communality Weight

Population 0.94565561 18.4011648

School 0.02380349 1.0243839

Employment 1.00000000 Infty

Services 0.26493499 1.3604239

HouseValue 0.01486595 1.0150903

The solution on the second iteration is so close to the optimum that PROC FACTOR cannot find a better
solution; hence you receive this message:

Convergence criterion satisfied.

When this message appears, you should try rerunning PROC FACTOR with different prior communality
estimates to make sure that the solution is correct. In this case, other prior estimates lead to the same solution
or possibly to worse local optima, as indicated by the information criteria or the chi-square values.

The variable Employment has a communality of 1.0 and, therefore, an infinite weight that is displayed next to
the final communality estimate as a missing/infinite value. The first eigenvalue is also infinite. Infinite values
are ignored in computing the total of the eigenvalues and the total final communality.

Output 37.3.2 displays the results of the analysis with two factors. The analysis converges without incident.
This time, however, the Population variable is a Heywood case.

Output 37.3.2 Maximum Likelihood Factor Analysis: Two Factors

Input Data Type Raw Data

Number of Records Read 12

Number of Records Used 12

N for Significance Tests 12

Prior Communality Estimates: SMC

Population School Employment Services HouseValue

0.96859160 0.82228514 0.96918082 0.78572440 0.84701921

Preliminary Eigenvalues:
Total = 76.1165859  Average = 15.2233172

Eigenvalue Difference Proportion Cumulative

1 63.7010086 50.6462895 0.8369 0.8369

2 13.0547191 12.7270798 0.1715 1.0084

3 0.3276393 0.6749199 0.0043 1.0127

4 -0.3472805 0.2722202 -0.0046 1.0081

5 -0.6195007 -0.0081 1.0000
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Output 37.3.2 continued

2 factors will be retained by the NFACTOR criterion.

Iteration Criterion Ridge Change Communalities

1 0.3431221 0.0000 0.0471 1.00000 0.80672 0.95058 0.79348 0.89412

2 0.3072178 0.0000 0.0307 1.00000 0.80821 0.96023 0.81048 0.92480

3 0.3067860 0.0000 0.0063 1.00000 0.81149 0.95948 0.81677 0.92023

4 0.3067373 0.0000 0.0022 1.00000 0.80985 0.95963 0.81498 0.92241

5 0.3067321 0.0000 0.0007 1.00000 0.81019 0.95955 0.81569 0.92187

Convergence criterion satisfied.

Significance Tests Based on 12 Observations

Test DF Chi-Square
Pr >

ChiSq

H0: No common factors 10 54.2517 <.0001

HA: At least one common factor

H0: 2 Factors are sufficient 1 2.1982 0.1382

HA: More factors are needed

Chi-Square without Bartlett's Correction 3.3740530

Akaike's Information Criterion 1.3740530

Schwarz's Bayesian Criterion 0.8891463

Tucker and Lewis's Reliability Coefficient 0.7292200

Squared Canonical
Correlations

Factor1 Factor2

1.0000000 0.9518891

Eigenvalues of the Weighted Reduced Correlation
Matrix: Total = 19.7853157  Average = 4.94632893

Eigenvalue Difference Proportion Cumulative

1 Infty Infty

2 19.7853143 19.2421292 1.0000 1.0000

3 0.5431851 0.5829564 0.0275 1.0275

4 -0.0397713 0.4636411 -0.0020 1.0254

5 -0.5034124 -0.0254 1.0000

Factor Pattern

Factor1 Factor2

Population 1.00000 0.00000

School 0.00975 0.90003

Employment 0.97245 0.11797

Services 0.43887 0.78930

HouseValue 0.02241 0.95989
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Output 37.3.2 continued

Variance Explained by Each
Factor

Factor Weighted Unweighted

Factor1 24.4329707 2.13886057

Factor2 19.7853143 2.36835294

Final Communality Estimates and
Variable Weights

Total Communality:
Weighted = 44.218285  
Unweighted = 4.507214

Variable Communality Weight

Population 1.00000000 Infty

School 0.81014489 5.2682940

Employment 0.95957142 24.7246669

Services 0.81560348 5.4256462

HouseValue 0.92189372 12.7996793

The results of the three-factor analysis are shown in Output 37.3.3.

Output 37.3.3 Maximum Likelihood Factor Analysis: Three Factors

Input Data Type Raw Data

Number of Records Read 12

Number of Records Used 12

N for Significance Tests 12

Prior Communality Estimates: SMC

Population School Employment Services HouseValue

0.96859160 0.82228514 0.96918082 0.78572440 0.84701921

Preliminary Eigenvalues:
Total = 76.1165859  Average = 15.2233172

Eigenvalue Difference Proportion Cumulative

1 63.7010086 50.6462895 0.8369 0.8369

2 13.0547191 12.7270798 0.1715 1.0084

3 0.3276393 0.6749199 0.0043 1.0127

4 -0.3472805 0.2722202 -0.0046 1.0081

5 -0.6195007 -0.0081 1.0000

3 factors will be retained by the NFACTOR criterion.3 factors will be retained by the NFACTOR criterion.

Warning: Too many factors for a unique solution.

Iteration Criterion Ridge Change Communalities

1 0.1798029 0.0313 0.0501 0.96081 0.84184 1.00000 0.80175 0.89716

2 0.0016405 0.0313 0.0678 0.98081 0.88713 1.00000 0.79559 0.96500

3 0.0000041 0.0313 0.0094 0.98195 0.88603 1.00000 0.80498 0.96751

4 0.0000000 0.0313 0.0006 0.98202 0.88585 1.00000 0.80561 0.96735

ERROR: Converged, but not to a proper optimum.
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Output 37.3.3 continued

Try a different 'PRIORS' statement.

Significance Tests Based on 12 Observations

Test DF Chi-Square
Pr >

ChiSq

H0: No common factors 10 54.2517 <.0001

HA: At least one common factor

H0: 3 Factors are sufficient -2 0.0000 .

HA: More factors are needed

Chi-Square without Bartlett's Correction 0.0000003

Akaike's Information Criterion 4.0000003

Schwarz's Bayesian Criterion 4.9698136

Tucker and Lewis's Reliability Coefficient 0.0000000

Squared Canonical
Correlations

Factor1 Factor2 Factor3

1.0000000 0.9751895 0.6894465

Eigenvalues of the Weighted Reduced Correlation
Matrix: Total = 41.5254193  Average = 10.3813548

Eigenvalue Difference Proportion Cumulative

1 Infty Infty

2 39.3054826 37.0854258 0.9465 0.9465

3 2.2200568 2.2199693 0.0535 1.0000

4 0.0000875 0.0002949 0.0000 1.0000

5 -0.0002075 -0.0000 1.0000

Factor Pattern

Factor1 Factor2 Factor3

Population 0.97245 -0.11233 -0.15409

School 0.15428 0.89108 0.26083

Employment 1.00000 0.00000 0.00000

Services 0.51472 0.72416 -0.12766

HouseValue 0.12193 0.97227 -0.08473

Variance Explained by Each
Factor

Factor Weighted Unweighted

Factor1 54.6115241 2.24926004

Factor2 39.3054826 2.27634375

Factor3 2.2200568 0.11525433
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Output 37.3.3 continued

Final Communality Estimates and
Variable Weights

Total Communality:
Weighted = 96.137063  
Unweighted = 4.640858

Variable Communality Weight

Population 0.98201660 55.6066901

School 0.88585165 8.7607194

Employment 1.00000000 Infty

Services 0.80564301 5.1444261

HouseValue 0.96734687 30.6251078

In the results, a warning message is displayed:

WARNING: Too many factors for a unique solution.

The number of parameters in the model exceeds the number of elements in the correlation matrix from which
they can be estimated, so an infinite number of different perfect solutions can be obtained. The criterion
approaches zero at an improper optimum, as indicated by this message:

Converged, but not to a proper optimum.

The degrees of freedom for the chi-square test are –2, so a probability level cannot be computed for three
factors. Note also that the variable Employment is a Heywood case again.

The probability levels for the chi-square test are 0.0001 for the hypothesis of no common factors, 0.0002
for one common factor, and 0.1382 for two common factors. Therefore, the two-factor model seems to be
an adequate representation. Akaike’s information criterion and Schwarz’s Bayesian criterion attain their
minimum values at two common factors, so there is little doubt that two factors are appropriate for these data.

Example 37.4: Using Confidence Intervals to Locate Salient Factor Loadings
This example illustrates how you can use the standard errors and confidence intervals to understand the
pattern of factor loadings under the maximum likelihood estimation. There are nine tests and you want a
three-factor solution (N=3) for a correlation matrix based on 200 observations. The following statements
define the input data set and specify the desirable analysis by the FACTOR procedure:
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data test(type=corr);
title 'Quartimin-Rotated Factor Solution with Standard Errors';
input _name_ $ test1-test9;
_type_ = 'corr';
datalines;

Test1 1 .561 .602 .290 .404 .328 .367 .179 -.268
Test2 .561 1 .743 .414 .526 .442 .523 .289 -.399
Test3 .602 .743 1 .286 .343 .361 .679 .456 -.532
Test4 .290 .414 .286 1 .677 .446 .412 .400 -.491
Test5 .404 .526 .343 .677 1 .584 .408 .299 -.466
Test6 .328 .442 .361 .446 .584 1 .333 .178 -.306
Test7 .367 .523 .679 .412 .408 .333 1 .711 -.760
Test8 .179 .289 .456 .400 .299 .178 .711 1 -.725
Test9 -.268 -.399 -.532 -.491 -.466 -.306 -.760 -.725 1
;

title2 'A nine-variable-three-factor example';
proc factor data=test method=ml reorder rotate=quartimin

nobs=200 n=3 se cover=.45 alpha=.1;
run;

In the PROC FACTOR statement, you apply quartimin rotation with (default) Kaiser normalization. You
define loadings with magnitudes greater than 0.45 to be salient (COVER=0.45) and use 90% confidence
intervals (ALPHA=0.1) to judge the salience. The REORDER option is specified so that variables that have
similar loadings with factors are clustered together.

After the quartimin rotation, the correlation matrix for factors is shown in Output 37.4.1.

Output 37.4.1 Quartimin-Rotated Factor Correlations with Standard Errors

Inter-Factor Correlations
With 90% confidence limits

Estimate/StdErr/LowerCL/UpperCL

Factor1 Factor2 Factor3

Factor1 1.00000
0.00000

.

.

0.41283
0.06267
0.30475
0.51041

0.38304
0.06060
0.27919
0.47804

Factor2 0.41283
0.06267
0.30475
0.51041

1.00000
0.00000

.

.

0.47006
0.05116
0.38177
0.54986

Factor3 0.38304
0.06060
0.27919
0.47804

0.47006
0.05116
0.38177
0.54986

1.00000
0.00000

.

.

The factors are medium to highly correlated. The confidence intervals seem to be very wide, suggesting that
the estimation of factor correlations might not be very accurate for this sample size. For example, the 90%
confidence interval for the correlation between Factor1 and Factor2 is (0.30, 0.51), a range of 0.21. You
might need a larger sample to get a narrower interval, or you might need a better estimation.

Next, coverage displays for factor loadings are shown in Output 37.4.2.
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Output 37.4.2 Using the Rotated Factor Pattern to Interpret the Factors

Rotated Factor Pattern (Standardized Regression Coefficients)
With 90% confidence limits; Cover |*| = 0.45?

Estimate/StdErr/LowerCL/UpperCL/Coverage Display

Factor1 Factor2 Factor3

test8 0.86810
0.03282
0.80271
0.91286

0*[]

-0.05045
0.03185
-0.10265
0.00204

*[0]

0.00114
0.03087
-0.04959
0.05187

[0]*

test7 0.73204
0.04434
0.65040
0.79697

0*[]

0.27296
0.05292
0.18390
0.35758

0[]*

0.01098
0.03838
-0.05211
0.07399

[0]*

test9 -0.79654
0.03948
-0.85291
-0.72180

[]*0

-0.01230
0.04225
-0.08163
0.05715

*[0]

-0.17307
0.04420
-0.24472
-0.09955

*[]0

test3 0.27715
0.05489
0.18464
0.36478

0[]*

0.91156
0.04877
0.78650
0.96481

0*[]

-0.19727
0.02981
-0.24577
-0.14778

*[]0

test2 0.01063
0.05060
-0.07248
0.09359

[0]*

0.71540
0.05148
0.61982
0.79007

0*[]

0.20500
0.05496
0.11310
0.29342

0[]*

test1 -0.07356
0.04245
-0.14292
-0.00348

*[]0

0.63815
0.05380
0.54114
0.71839

0*[]

0.13983
0.05597
0.04682
0.23044

0[]*

test5 0.00863
0.04394
-0.06356
0.08073

[0]*

0.03234
0.04387
-0.03986
0.10421

[0]*

0.91282
0.04509
0.80030
0.96323

0*[]

test4 0.22357
0.05956
0.12366
0.31900

0[]*

-0.07576
0.03640
-0.13528
-0.01569

*[]0

0.67925
0.05434
0.57955
0.75891

0*[]

test6 -0.04295
0.05114
-0.12656
0.04127

*[0]

0.21911
0.07481
0.09319
0.33813

0[]*

0.53183
0.06905
0.40893
0.63578

0[*]

The coverage displays in Output 37.4.2 show that Test8, Test7, and Test9 have salient relationships with
Factor1. The coverage displays are either ‘0*[ ]’ or ‘[ ]*0’, indicating that the entire 90% confidence intervals
for the corresponding loadings are beyond the salience value at 0.45. On the other hand, the coverage display
for Test3 on Factor1 is ‘0[ ]*’. This indicates that even though the loading estimate is significantly larger
than zero, it is not large enough to be salient. Similarly, Test3, Test2, and Test1 have salient relationships
with Factor2, while Test5 and Test4 have salient relationships with Factor3. For Test6, its relationship with
Factor3 is a little bit ambiguous; the 90% confidence interval approximately covers values between 0.40
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and 0.64. This means that the population value might have been smaller or larger than 0.45. It is marginal
evidence for a salient relationship.

For oblique factor solutions, some researchers prefer to examine the factor structure loadings, which represent
correlations, for determining salient relationships. In Output 37.4.3, the factor structure loadings and the
associated standard error estimates and coverage displays are shown.

Output 37.4.3 Using the Factor Structure to Interpret the Factors

Factor Structure (Correlations)
With 90% confidence limits; Cover |*| = 0.45?

Estimate/StdErr/LowerCL/UpperCL/Coverage Display

Factor1 Factor2 Factor3

test8 0.84771
0.02871
0.79324
0.88872

0*[]

0.30847
0.06593
0.19641
0.41257

0[]*

0.30994
0.06263
0.20363
0.40904

0[]*

test7 0.84894
0.02688
0.79834
0.88764

0*[]

0.58033
0.05265
0.48721
0.66041

0*[]

0.41970
0.06060
0.31523
0.51412

0[*]

test9 -0.86791
0.02522
-0.90381
-0.81987

[]*0

-0.42248
0.06187
-0.51873
-0.31567

[*]0

-0.48396
0.05504
-0.56921
-0.38841

[*]0

test3 0.57790
0.05069
0.48853
0.65528

0*[]

0.93325
0.02953
0.86340
0.96799

0*[]

0.33738
0.06779
0.22157
0.44380

0[]*

test2 0.38449
0.06143
0.27914
0.48070

0[*]

0.81615
0.03106
0.75829
0.86126

0*[]

0.54535
0.05456
0.44946
0.62883

0[*]

test1 0.24345
0.06864
0.12771
0.35264

0[]*

0.67351
0.04284
0.59680
0.73802

0*[]

0.41162
0.05995
0.30846
0.50522

0[*]

test5 0.37163
0.06092
0.26739
0.46727

0[*]

0.46498
0.04979
0.37923
0.54282

0[*]

0.93132
0.03277
0.85159
0.96894

0*[]

test4 0.45248
0.05876
0.35072
0.54367

0[*]

0.33583
0.06289
0.22867
0.43494

0[]*

0.72927
0.04061
0.65527
0.78941

0*[]

test6 0.25122
0.07140
0.13061
0.36450

0[]*

0.45137
0.05858
0.34997
0.54232

0[*]

0.61837
0.05051
0.52833
0.69465

0*[]
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The interpretations based on the factor structure matrix do not change much from that based on the factor
loadings except for Test3 and Test9. Test9 now has a salient correlation with Factor3. For Test3, it has salient
correlations with both Factor1 and Factor2. Fortunately, there are still tests that have salient correlations only
with either Factor1 or Factor2 (but not both). This would make interpretations of factors less problematic.

Example 37.5: Creating Path Diagrams for Factor Solutions
The section “Getting Started: FACTOR Procedure” on page 2304 analyzes a data set that contains 14 ratings
of 103 police officers to demonstrate some basic techniques in factor analysis. To illustrate the creation and
uses of path diagrams, this example analyzes this data set again by using the following statements:

ods graphics on;

proc factor data=jobratings(drop='Overall Rating'n)
priors=smc rotate=quartimin plots=pathdiagram;

run;

The PRIORS=SMC option specifies that the squared multiple correlations are to be used as the prior
communality estimates. As a result, the factors are extracted by the principal factor method. The RO-
TATE=QUARTIMIN option requests the use of the quartimin rotation to obtain the final factor solution. The
PLOTS=PATHDIAGRAM option requests a path diagram for the final solution.

Except for the PLOTS=PATHDIAGRAM option, previous examples have already described the FACTOR
options that are used in this example. Therefore, this example focuses only on the creation of path diagrams.

Output 37.5.1 and Output 37.5.2 show the quartimin-rotated factor correlations and factor pattern, respectively.

Output 37.5.1 Quartimin-Rotated Factor Correlations

Inter-Factor Correlations

Factor1 Factor2 Factor3

Factor1 1.00000 0.36103 0.34823

Factor2 0.36103 1.00000 0.55721

Factor3 0.34823 0.55721 1.00000
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Output 37.5.2 Quartimin-Rotated Factor Pattern

Rotated Factor Pattern (Standardized Regression Coefficients)

Factor1 Factor2 Factor3

Communication Skills 0.21280 0.13541 0.61091

Problem Solving 0.17222 0.01424 0.68767

Learning Ability -0.09904 0.24961 0.65430

Judgment under Pressure 0.49876 -0.02005 0.48879

Observational Skills -0.15748 0.67661 0.30273

Willingness to Confront Problems -0.19106 0.66639 0.31135

Interest in People 0.84249 0.12734 -0.00710

Interpersonal Sensitivity 0.87832 -0.12964 0.15116

Desire for Self-Improvement 0.19078 0.49891 0.23297

Appearance 0.05254 0.53846 0.10857

Dependability 0.39241 0.50035 0.12032

Physical Ability 0.14404 0.63901 -0.15220

Integrity 0.68277 0.32719 -0.01887

Output 37.5.3 shows the path diagram for the quartimin-rotated factor solution. The path diagram represents
correlations among factors by double-headed links or paths. For example, Output 37.5.3 represents the
correlation between Factor1 and Factor2 by a curved doubled-headed link. The numerical value, 0.36,
is the correlation between the two factors, as can be verified from the table in Output 37.5.1. Similarly,
Output 37.5.3 shows other factor correlations by curved doubled-headed links.
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Output 37.5.3 Default Path Diagram for the Quartimin-Rotated Solution



Example 37.5: Creating Path Diagrams for Factor Solutions F 2387

The path diagram in Output 37.5.3 also represents factor variances and error variances by double-headed
links. However, each of these links points to an individual variable, rather than to a pair of variables as
the double-headed links for correlations do. The path diagram also displays the numerical values of factor
variances or error variances next to the associated links.

The directed links from factors to variables in the path diagram represent the effects of factors on the variables.
The path diagram displays the numerical values of these effects, which are the loading estimates that are
shown in Output 37.5.2. However, to aid the interpretation of the factors, the path diagram does not show all
factor loadings or their corresponding links. By default, the path diagram displays only the links that have
loadings greater than 0.3 in magnitude. For example, instead of associating Factor1 with all variables, the
path diagram in Output 37.5.3 displays only five directed links from Factor1 to the variables. The weaker
links that have loadings less than 0.3 are not shown.

The use of the 0.3 loading value (or greater in magnitude) for relating factors to variables is referred to as the
“0.3-rule” in the field of factor analysis. However, this is only a convention, and sometimes you might want
to use a different criterion to interpret the factors. For example, the path diagram in Output 37.5.3 shows
that variables Dependability, Integrity, and Observational Skills are all associated with more than one factor.
Hence, factors might not be interpreted unambiguously.

One way to tackle this interpretation problem is to set a stricter criterion for interpreting factors. You can
use the FUZZ= option to set such a criterion. For example, you specify the following PATHDIAGRAM
statement to display only the strong directed links that are associated with a 0.4 or greater magnitude in the
loading estimates:

pathdiagram fuzz=0.4 title='Directed Paths with Loadings Greater Than 0.4';

The preceding statement also uses the TITLE= option to specify a customized title for the path diagram.
Output 37.5.4 shows the resulting path diagram. In this path diagram, only one observed variable is linked to
two factors. All other observed variables link to unique factors. Therefore, compared to the path diagram
in Output 37.5.3, the path diagram in Output 37.5.4 provides a much “cleaner” picture for interpreting the
factors.
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Output 37.5.4 Path Diagram Showing Strong Links
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The current example has 13 observed variables in the path diagram. By default, PROC FACTOR uses the
process-flow algorithm to lay out the variables. However, when the number of observed variables becomes
large, the process-flow algorithm needs a lot of vertical space to align all observed variables in a vertical
line. Displaying such a “long” path diagram in limited space (for example, in a page) might compromise the
clarity of the path diagram.

To handle this issue, PROC FACTOR switches to the GRIP algorithm when the number of variables is greater
than 14. However, you can override the layout algorithm whenever you find it useful to do so. For example,
the ARRANGE=GRIP option in the following PATHDIAGRAM statement requests that the GRIP algorithm
be used:

pathdiagram fuzz=.4 arrange=grip notitle;

The NOTITLE option suppresses the display of the title for the path diagram. Output 37.5.5 shows the
resulting path diagram, which spreads out the variables instead of aligning them vertically, as it does when it
uses the process-flow algorithm in Output 37.5.4.

Output 37.5.5 Path Diagram Showing Strong Links by Using the ARRANGE=GRIP Algorithm

For more information about the options for customizing path diagrams, see the PATHDIAGRAM statement.
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Overview: FASTCLUS Procedure
The FASTCLUS procedure performs a disjoint cluster analysis on the basis of distances computed from one
or more quantitative variables. The observations are divided into clusters such that every observation belongs
to one and only one cluster; the clusters do not form a tree structure as they do in the CLUSTER procedure.
If you want separate analyses for different numbers of clusters, you can run PROC FASTCLUS once for each
analysis. Alternatively, to do hierarchical clustering on a large data set, use PROC FASTCLUS to find initial
clusters, and then use those initial clusters as input to PROC CLUSTER.

By default, the FASTCLUS procedure uses Euclidean distances, so the cluster centers are based on least
squares estimation. This kind of clustering method is often called a k-means model, since the cluster centers
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are the means of the observations assigned to each cluster when the algorithm is run to complete convergence.
Each iteration reduces the least squares criterion until convergence is achieved.

Often there is no need to run the FASTCLUS procedure to convergence. PROC FASTCLUS is designed to
find good clusters (but not necessarily the best possible clusters) with only two or three passes through the
data set. The initialization method of PROC FASTCLUS guarantees that, if there exist clusters such that
all distances between observations in the same cluster are less than all distances between observations in
different clusters, and if you tell PROC FASTCLUS the correct number of clusters to find, it can always find
such a clustering without iterating. Even with clusters that are not as well separated, PROC FASTCLUS
usually finds initial seeds that are sufficiently good that few iterations are required. Hence, by default, PROC
FASTCLUS performs only one iteration.

The initialization method used by the FASTCLUS procedure makes it sensitive to outliers. PROC FASTCLUS
can be an effective procedure for detecting outliers because outliers often appear as clusters with only one
member.

The FASTCLUS procedure can use an Lp (least pth powers) clustering criterion (Spath 1985, pp. 62–63)
instead of the least squares (L2) criterion used in k-means clustering methods. The LEAST=p option specifies
the power p to be used. Using the LEAST= option increases execution time since more iterations are usually
required, and the default iteration limit is increased when you specify LEAST=p. Values of p less than 2
reduce the effect of outliers on the cluster centers compared with least squares methods; values of p greater
than 2 increase the effect of outliers.

The FASTCLUS procedure is intended for use with large data sets, with 100 or more observations. With
small data sets, the results can be highly sensitive to the order of the observations in the data set.

PROC FASTCLUS uses algorithms that place a larger influence on variables with larger variance, so it might
be necessary to standardize the variables before performing the cluster analysis. See the “Using PROC
FASTCLUS” section for standardization details.

PROC FASTCLUS produces brief summaries of the clusters it finds. For more extensive examination of the
clusters, you can request an output data set containing a cluster membership variable.

Background
The FASTCLUS procedure combines an effective method for finding initial clusters with a standard iterative
algorithm for minimizing the sum of squared distances from the cluster means. The result is an efficient
procedure for disjoint clustering of large data sets. PROC FASTCLUS was directly inspired by the Hartigan
(1975) leader algorithm and the MacQueen (1967) k-means algorithm. PROC FASTCLUS uses a method
that Anderberg (1973) calls nearest centroid sorting. A set of points called cluster seeds is selected as a
first guess of the means of the clusters. Each observation is assigned to the nearest seed to form temporary
clusters. The seeds are then replaced by the means of the temporary clusters, and the process is repeated until
no further changes occur in the clusters. Similar techniques are described in most references on clustering
(Anderberg 1973; Hartigan 1975; Everitt 1980; Spath 1980).

The FASTCLUS procedure differs from other nearest centroid sorting methods in the way the initial cluster
seeds are selected. The importance of initial seed selection is demonstrated by Milligan (1980).

The clustering is done on the basis of Euclidean distances computed from one or more numeric variables. If
there are missing values, PROC FASTCLUS computes an adjusted distance by using the nonmissing values.
Observations that are very close to each other are usually assigned to the same cluster, while observations
that are far apart are in different clusters.
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The FASTCLUS procedure operates in four steps:

1. Observations called cluster seeds are selected.

2. If you specify the DRIFT option, temporary clusters are formed by assigning each observation to the
cluster with the nearest seed. Each time an observation is assigned, the cluster seed is updated as the
current mean of the cluster. This method is sometimes called incremental, on-line, or adaptive training.

3. If the maximum number of iterations is greater than zero, clusters are formed by assigning each
observation to the nearest seed. After all observations are assigned, the cluster seeds are replaced by
either the cluster means or other location estimates (cluster centers) appropriate to the LEAST=p option.
This step can be repeated until the changes in the cluster seeds become small or zero (MAXITER=n �
1).

4. Final clusters are formed by assigning each observation to the nearest seed.

If PROC FASTCLUS runs to complete convergence, the final cluster seeds will equal the cluster means or
cluster centers. If PROC FASTCLUS terminates before complete convergence, which often happens with
the default settings, the final cluster seeds might not equal the cluster means or cluster centers. If you want
complete convergence, specify CONVERGE=0 and a large value for the MAXITER= option.

The initial cluster seeds must be observations with no missing values. You can specify the maximum number
of seeds (and, hence, clusters) by using the MAXCLUSTERS= option. You can also specify a minimum
distance by which the seeds must be separated by using the RADIUS= option.

PROC FASTCLUS always selects the first complete (no missing values) observation as the first seed. The next
complete observation that is separated from the first seed by at least the distance specified in the RADIUS=
option becomes the second seed. Later observations are selected as new seeds if they are separated from all
previous seeds by at least the radius, as long as the maximum number of seeds is not exceeded.

If an observation is complete but fails to qualify as a new seed, PROC FASTCLUS considers using it to
replace one of the old seeds. Two tests are made to see if the observation can qualify as a new seed.

First, an old seed is replaced if the distance between the observation and the closest seed is greater than the
minimum distance between seeds. The seed that is replaced is selected from the two seeds that are closest to
each other. The seed that is replaced is the one of these two with the shortest distance to the closest of the
remaining seeds when the other seed is replaced by the current observation.

If the observation fails the first test for seed replacement, a second test is made. The observation replaces the
nearest seed if the smallest distance from the observation to all seeds other than the nearest one is greater
than the shortest distance from the nearest seed to all other seeds. If the observation fails this test, PROC
FASTCLUS goes on to the next observation.

You can specify the REPLACE= option to limit seed replacement. You can omit the second test for seed
replacement (REPLACE=PART), causing PROC FASTCLUS to run faster, but the seeds selected might not
be as widely separated as those obtained by the default method. You can also suppress seed replacement
entirely by specifying REPLACE=NONE. In this case, PROC FASTCLUS runs much faster, but you must
choose a good value for the RADIUS= option in order to get good clusters. This method is similar to the
Hartigan (1975, pp. 74–78) leader algorithm and the simple cluster seeking algorithm described by Tou and
Gonzalez (1974, pp. 90–92).
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Getting Started: FASTCLUS Procedure
The following example demonstrates how to use the FASTCLUS procedure to compute disjoint clusters of
observations in a SAS data set.

The data in this example are measurements taken on 159 freshwater fish caught from the same lake (Laengel-
maevesi) near Tampere in Finland. This data set is available from Puranen.

The species (bream, parkki, pike, perch, roach, smelt, and whitefish), weight, three different length measure-
ments (measured from the nose of the fish to the beginning of its tail, the notch of its tail, and the end of its
tail), height, and width of each fish are tallied. The height and width are recorded as percentages of the third
length variable.

Suppose that you want to group empirically the fish measurements into clusters and that you want to associate
the clusters with the species. You can use the FASTCLUS procedure to perform a cluster analysis.

The following DATA step creates the SAS data set Fish:

proc format;
value specfmt

1='Bream'
2='Roach'
3='Whitefish'
4='Parkki'
5='Perch'
6='Pike'
7='Smelt';

run;

data fish (drop=HtPct WidthPct);
title 'Fish Measurement Data';
input Species Weight Length1 Length2 Length3 HtPct WidthPct @@;

*** transform variables;
if Weight <= 0 or Weight =. then delete;
Weight3=Weight**(1/3);
Height=HtPct*Length3/(Weight3*100);
Width=WidthPct*Length3/(Weight3*100);
Length1=Length1/Weight3;
Length2=Length2/Weight3;
Length3=Length3/Weight3;
logLengthRatio=log(Length3/Length1);

format Species specfmt.;
symbol = put(Species, specfmt2.);
datalines;

1 242.0 23.2 25.4 30.0 38.4 13.4 1 290.0 24.0 26.3 31.2 40.0 13.8
1 340.0 23.9 26.5 31.1 39.8 15.1 1 363.0 26.3 29.0 33.5 38.0 13.3
1 430.0 26.5 29.0 34.0 36.6 15.1 1 450.0 26.8 29.7 34.7 39.2 14.2
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1 500.0 26.8 29.7 34.5 41.1 15.3 1 390.0 27.6 30.0 35.0 36.2 13.4
1 450.0 27.6 30.0 35.1 39.9 13.8 1 500.0 28.5 30.7 36.2 39.3 13.7
1 475.0 28.4 31.0 36.2 39.4 14.1 1 500.0 28.7 31.0 36.2 39.7 13.3
1 500.0 29.1 31.5 36.4 37.8 12.0 1 . 29.5 32.0 37.3 37.3 13.6
1 600.0 29.4 32.0 37.2 40.2 13.9 1 600.0 29.4 32.0 37.2 41.5 15.0
1 700.0 30.4 33.0 38.3 38.8 13.8 1 700.0 30.4 33.0 38.5 38.8 13.5

... more lines ...

7 19.7 13.2 14.3 15.2 18.9 13.6 7 19.9 13.8 15.0 16.2 18.1 11.6
;

The double trailing at sign (@@) in the INPUT statement specifies that observations are input from each
line until all values are read. The variables are rescaled in order to adjust for dimensionality. Because the
new variables Weight3–logLengthRatio depend on the variable Weight, observations with missing values for
Weight are not added to the data set. Consequently, there are 157 observations in the SAS data set Fish.

In the Fish data set, the variables are not measured in the same units and cannot be assumed to have equal
variance. Therefore, it is necessary to standardize the variables before performing the cluster analysis.

The following statements standardize the variables and perform a cluster analysis on the standardized data:

proc stdize data=Fish out=Stand method=std;
var Length1 logLengthRatio Height Width Weight3;

run;

proc fastclus data=Stand out=Clust
maxclusters=7 maxiter=100;

var Length1 logLengthRatio Height Width Weight3;
run;

The STDIZE procedure is first used to standardize all the analytical variables to a mean of 0 and standard
deviation of 1. The procedure creates the output data set Stand to contain the transformed variables (for
detailed information,see Chapter 94, “The STDIZE Procedure”).

The FASTCLUS procedure then uses the data set Stand as input and creates the data set Clust. This output
data set contains the original variables and two new variables, Cluster and Distance. The variable Cluster
contains the cluster number to which each observation has been assigned. The variable Distance gives the
distance from the observation to its cluster seed.

It is usually desirable to try several values of the MAXCLUSTERS= option. A reasonable beginning for this
example is to use MAXCLUSTERS=7, since there are seven species of fish represented in the data set Fish.

The VAR statement specifies the variables used in the cluster analysis.

The results from this analysis are displayed in the following figures.
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Figure 38.1 Initial Seeds Used in the FASTCLUS Procedure

Fish Measurement Data

The FASTCLUS Procedure
Replace=FULL  Radius=0  Maxclusters=7 Maxiter=100  Converge=0.02

Fish Measurement Data

The FASTCLUS Procedure
Replace=FULL  Radius=0  Maxclusters=7 Maxiter=100  Converge=0.02

Initial Seeds

Cluster Length1 logLengthRatio Height Width Weight3

1 1.388338414 -0.979577858 -1.594561848 -2.254050655 2.103447062

2 -1.117178039 -0.877218192 -0.336166276 2.528114070 1.170706464

3 2.393997461 -0.662642015 -0.930738701 -2.073879107 -1.839325419

4 -0.495085516 -0.964041012 -0.265106856 -0.028245072 1.536846394

5 -0.728772773 0.540096664 1.130501398 -1.207930053 -1.107018207

6 -0.506924177 0.748211648 1.762482687 0.211507596 1.368987826

7 1.573996573 -0.796593995 -0.824217424 1.561715851 -1.607942726

Criterion Based on Final Seeds = 0.3979

the Figure 38.1 displays the table of initial seeds used for each variable and cluster. The first line in the
figure displays the option settings for REPLACE, RADIUS, MAXCLUSTERS, and MAXITER. These
options, with the exception of MAXCLUSTERS and MAXITER, are set at their respective default values
(REPLACE=FULL, RADIUS=0). Both the MAXCLUSTERS= and MAXITER= options are set in the PROC
FASTCLUS statement.

Next, PROC FASTCLUS produces a table of summary statistics for the clusters. Figure 38.2 displays the
number of observations in the cluster (frequency) and the root mean squared standard deviation. The next
two columns display the largest Euclidean distance from the cluster seed to any observation within the cluster
and the number of the nearest cluster.

The last column of the table displays the distance between the centroid of the nearest cluster and the centroid
of the current cluster. A centroid is the point having coordinates that are the means of all the observations in
the cluster.

Figure 38.2 Cluster Summary Table from the FASTCLUS Procedure

Cluster Summary

Cluster Frequency
RMS Std

Deviation

MaximumDistance
from Seed

to Observation
Radius

Exceeded
Nearest
Cluster

Distance Between
Cluster Centroids

1 17 0.5064 1.7781 4 2.5106

2 19 0.3696 1.5007 4 1.5510

3 13 0.3803 1.7135 1 2.6704

4 13 0.4161 1.3976 7 1.4266

5 11 0.2466 0.6966 6 1.7301

6 34 0.3563 1.5443 5 1.7301

7 50 0.4447 2.3915 4 1.4266

Figure 38.3 displays the table of statistics for the variables. The table lists for each variable the total standard
deviation, the pooled within-cluster standard deviation and the R-square value for predicting the variable
from the cluster. The ratio of between-cluster variance to within-cluster variance (R2 to 1 �R2) appears in
the last column.
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Figure 38.3 Statistics for Variables Used in the FASTCLUS Procedure

Statistics for Variables

Variable Total STD Within STD R-Square RSQ/(1-RSQ)

Length1 1.00000 0.31428 0.905030 9.529606

logLengthRatio 1.00000 0.39276 0.851676 5.741989

Height 1.00000 0.20917 0.957929 22.769295

Width 1.00000 0.55558 0.703200 2.369270

Weight3 1.00000 0.47251 0.785323 3.658162

OVER-ALL 1.00000 0.40712 0.840631 5.274764

Pseudo F Statistic = 131.87

Approximate Expected Over-All R-Squared = 0.57420

Cubic Clustering Criterion = 37.808

The pseudo F statistic, approximate expected overall R square, and cubic clustering criterion (CCC) are listed
at the bottom of the figure. You can compare values of these statistics by running PROC FASTCLUS with
different values for the MAXCLUSTERS= option. The R square and CCC values are not valid for correlated
variables.

Values of the cubic clustering criterion greater than 2 or 3 indicate good clusters. Values between 0 and 2
indicate potential clusters, but they should be taken with caution; large negative values can indicate outliers.

PROC FASTCLUS next produces the within-cluster means and standard deviations of the variables, displayed
in Figure 38.4.

Figure 38.4 Cluster Means and Standard Deviations from the FASTCLUS Procedure

Cluster Means

Cluster Length1 logLengthRatio Height Width Weight3

1 1.747808245 -0.868605685 -1.327226832 -1.128760946 0.806373599

2 -0.405231510 -0.979113021 -0.281064162 1.463094486 1.060450065

3 2.006796315 -0.652725165 -1.053213440 -1.224020795 -1.826752838

4 -0.136820952 -1.039312574 -0.446429482 0.162596336 0.278560318

5 -0.850130601 0.550190242 1.245156076 -0.836585750 -0.567022647

6 -0.843912827 1.522291347 1.511408739 -0.380323563 0.763114370

7 -0.165570970 -0.048881276 -0.353723615 0.546442064 -0.668780782

Cluster Standard Deviations

Cluster Length1 logLengthRatio Height Width Weight3

1 0.3418476428 0.3544065543 0.1666302451 0.6172880027 0.7944227150

2 0.3129902863 0.3592350778 0.1369052680 0.5467406493 0.3720119097

3 0.2962504486 0.1740941675 0.1736086707 0.7528475622 0.0905232968

4 0.3254364840 0.2836681149 0.1884592934 0.4543390702 0.6612055341

5 0.1781837609 0.0745984121 0.2056932592 0.2784540794 0.3832002850

6 0.2273744242 0.3385584051 0.2046010964 0.5143496067 0.4025849044

7 0.3734733622 0.5275768119 0.2551130680 0.5721303628 0.4223181710
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It is useful to study further the clusters calculated by the FASTCLUS procedure. One method is to look at a
frequency tabulation of the clusters with other classification variables. The following statements invoke the
FREQ procedure to crosstabulate the empirical clusters with the variable Species:

proc freq data=Clust;
tables Species*Cluster;

run;

Figure 38.5 displays the marked division between clusters.

Figure 38.5 Frequency Table of Cluster versus Species

Fish Measurement Data

The FREQ Procedure

Fish Measurement Data

The FREQ Procedure

Frequency
Percent
Row Pct
Col Pct

Table of Species by CLUSTER

Species

CLUSTER(Cluster)

1 2 3 4 5 6 7 Total

Bream 0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

34
21.66
100.00
100.00

0
0.00
0.00
0.00

34
21.66

Roach 0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

19
12.10
100.00
38.00

19
12.10

Whitefish 0
0.00
0.00
0.00

2
1.27
33.33
10.53

0
0.00
0.00
0.00

1
0.64
16.67
7.69

0
0.00
0.00
0.00

0
0.00
0.00
0.00

3
1.91
50.00
6.00

6
3.82

Parkki 0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

11
7.01

100.00
100.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

11
7.01

Perch 0
0.00
0.00
0.00

17
10.83
30.36
89.47

0
0.00
0.00
0.00

12
7.64
21.43
92.31

0
0.00
0.00
0.00

0
0.00
0.00
0.00

27
17.20
48.21
54.00

56
35.67

Pike 17
10.83
100.00
100.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

17
10.83

Smelt 0
0.00
0.00
0.00

0
0.00
0.00
0.00

13
8.28
92.86
100.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

1
0.64
7.14
2.00

14
8.92

Total 17
10.83

19
12.10

13
8.28

13
8.28

11
7.01

34
21.66

50
31.85

157
100.00

For cases in which you have three or more clusters, you can use the CANDISC and SGPLOT procedures to
obtain a graphical check on the distribution of the clusters. In the following statements, the CANDISC and
SGPLOT procedures are used to compute canonical variables and plot the clusters:
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proc candisc data=Clust out=Can noprint;
class Cluster;
var Length1 logLengthRatio Height Width Weight3;

run;

proc sgplot data=Can;
scatter y=Can2 x=Can1 / group=Cluster;

run;

First, the CANDISC procedure is invoked to perform a canonical discriminant analysis by using the data
set Clust and creating the output SAS data set Can. The NOPRINT option suppresses display of the output.
The CLASS statement specifies the variable Cluster to define groups for the analysis. The VAR statement
specifies the variables used in the analysis.

Next, the SGPLOT procedure plots the two canonical variables from PROC CANDISC, Can1 and Can2.
The SCATTER statement specifies the variable Cluster as the group identification variable. The resulting plot
(Figure 38.6) illustrates the spatial separation of the clusters calculated in the FASTCLUS procedure.

Figure 38.6 Plot of Canonical Variables and Cluster Value
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Syntax: FASTCLUS Procedure
The following statements are available in the FASTCLUS procedure:

PROC FASTCLUS < MAXCLUSTERS=n > < RADIUS=t > < options > ;
VAR variables ;
ID variables ;
FREQ variable ;
WEIGHT variable ;
BY variables ;

Usually you need only the VAR statement in addition to the PROC FASTCLUS statement. The BY, FREQ,
ID, VAR, and WEIGHT statements are described in alphabetical order after the PROC FASTCLUS statement.

PROC FASTCLUS Statement
PROC FASTCLUS < MAXCLUSTERS=n > < RADIUS=t > < options > ;

The PROC FASTCLUS statement invokes the FASTCLUS procedure. You must specify the MAXCLUS-
TERS= option or RADIUS= option or both in the PROC FASTCLUS statement.

MAXCLUSTERS=n

MAXC=n
specifies the maximum number of clusters permitted. If you omit the MAXCLUSTERS= option, a
value of 100 is assumed.

RADIUS=t

R=t
establishes the minimum distance criterion for selecting new seeds. No observation is considered as a
new seed unless its minimum distance to previous seeds exceeds the value given by the RADIUS=
option. The default value is 0. If you specify the REPLACE=RANDOM option, the RADIUS= option
is ignored.
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You can specify the following options in the PROC FASTCLUS statement. Table 38.1 summarizes the
options available in the PROC FASTCLUS statement.

Table 38.1 PROC FASTCLUS Statement Options

Option Description

Specify input and output data sets
DATA= Specifies input data set
INSTAT= Specifies input SAS data set previously created by the OUTSTAT= option
SEED= Specifies input SAS data set for selecting initial cluster seeds
VARDEF= Specifies divisor for variances

Output Data Processing
CLUSTER= Specifies name for cluster membership variable in OUTSEED= and OUT=

data sets
CLUSTERLABEL= Specifies label for cluster membership variable in OUTSEED= and OUT=

data sets
OUT= Specifies output SAS data set containing original data and cluster assign-

ments
OUTITER Specifies writing to OUTSEED= data set on every iteration
OUTSEED= or MEAN= Specifies output SAS data set containing cluster centers
OUTSTAT= Specifies output SAS data set containing statistics

Initial Clusters
DRIFT Permits cluster to seeds to drift during initialization
MAXCLUSTERS= Specifies maximum number of clusters
RADIUS= Specifies minimum distance for selecting new seeds
RANDOM= Specifies seed to initializes pseudo-random number generator
REPLACE= Specifies seed replacement method

Clustering Methods
CONVERGE= Specifies convergence criterion
DELETE= Deletes cluster seeds with few observations
LEAST= Optimizes an Lp criterion, where 1 � p � 1
MAXITER= Specifies maximum number of iterations
STRICT Prevents an observation from being assigned to a cluster if its distance to

the nearest cluster seed is large
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Table 38.1 continued

Option Description

Arcane Algorithmic Options
BINS= Specifies number of bins used for computing medians for LEAST=1
HC= Specifies criterion for updating the homotopy parameter
HP= Specifies initial value of the homotopy parameter
IRLS Uses an iteratively reweighted least squares method instead of the modified

Ekblom-Newton method for 1 < p < 2

Missing Values
IMPUTE Imputes missing values after final cluster assignment
NOMISS Excludes observations with missing values

Control Displayed Output
DISTANCE Displays distances between cluster centers
LIST Displays cluster assignments for all observations
NOPRINT Suppresses displayed output
SHORT Suppresses display of large matrices
SUMMARY Suppresses display of all results except for the cluster summary

VARIABLESAREUNCORRELATED Suppresses warning in output

The following list provides details on these options. The list is in alphabetical order.

BINS=n
specifies the number of bins used in the bin-sort algorithm for computing medians for LEAST=1. By
default, PROC FASTCLUS uses from 10 to 100 bins, depending on the amount of memory available.
Larger values use more memory and make each iteration somewhat slower, but they can reduce the
number of iterations. Smaller values have the opposite effect. The minimum value of n is 5.

CLUSTER=name
specifies a name for the variable in the OUTSEED= and OUT= data sets that indicates cluster
membership. The default name for this variable is CLUSTER.

CLUSTERLABEL=name
specifies a label for the variable CLUSTER in the OUTSEED= and OUT= data sets. By default this
variable has no label.

CONVERGE=c

CONV=c
specifies the convergence criterion. Any nonnegative value is permitted. The default value is 0.0001
for all values of p if LEAST=p is explicitly specified; otherwise, the default value is 0.02. Iterations
stop when the maximum relative change in the cluster seeds is less than or equal to the convergence
criterion and additional conditions on the homotopy parameter, if any, are satisfied (see the HP=
option). The relative change in a cluster seed is the distance between the old seed and the new seed
divided by a scaling factor. If you do not specify the LEAST= option, the scaling factor is the minimum
distance between the initial seeds. If you specify the LEAST= option, the scaling factor is an L1 scale
estimate and is recomputed on each iteration. Specify the CONVERGE= option only if you specify a
MAXITER= value greater than 1.
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DATA=SAS-data-set
specifies the input data set containing observations to be clustered. If you omit the DATA= option, the
most recently created SAS data set is used. The data must be coordinates, not distances, similarities, or
correlations.

DELETE=n
deletes cluster seeds to which n or fewer observations are assigned. Deletion occurs after processing
for the DRIFT option is completed and after each iteration specified by the MAXITER= option. Cluster
seeds are not deleted after the final assignment of observations to clusters, so in rare cases a final cluster
might not have more than n members. The DELETE= option is ineffective if you specify MAXITER=0
and do not specify the DRIFT option. By default, no cluster seeds are deleted.

DISTANCE | DIST
computes distances between the cluster means.

DRIFT
executes the second of the four steps described in the section “Background” on page 2394. After initial
seed selection, each observation is assigned to the cluster with the nearest seed. After an observation is
processed, the seed of the cluster to which it is assigned is recalculated as the mean of the observations
currently assigned to the cluster. Thus, the cluster seeds drift about rather than remaining fixed for the
duration of the pass.

HC=c
HP=p1 < p2 >

pertains to the homotopy parameter for LEAST=p, where 1 < p < 2. You should specify these options
only if you encounter convergence problems when you use the default values.

For 1 < p < 2, PROC FASTCLUS tries to optimize a perturbed variant of the Lp clustering criterion
(Gonin and Money 1989, pp. 5–6).

When the homotopy parameter is 0, the optimization criterion is equivalent to the clustering criterion.
For a large homotopy parameter, the optimization criterion approaches the least squares criterion
and is therefore easy to optimize. Beginning with a large homotopy parameter, PROC FASTCLUS
gradually decreases it by a factor in the range [0.01,0.5] over the course of the iterations. When both
the homotopy parameter and the convergence measure are sufficiently small, the optimization process
is declared to have converged.

If the initial homotopy parameter is too large or if it is decreased too slowly, the optimization can
require many iterations. If the initial homotopy parameter is too small or if it is decreased too quickly,
convergence to a local optimum is likely. The following list gives details on setting the homotopy
parameter.

HC=c specifies the criterion for updating the homotopy parameter. The homotopy parameter
is updated when the maximum relative change in the cluster seeds is less than or equal
to c. The default is the minimum of 0.01 and 100 times the value of the CONVERGE=
option.

HP=p1 specifies p1 as the initial value of the homotopy parameter. The default is 0.05 if the
modified Ekblom-Newton method is used; otherwise, it is 0.25.

HP=p1 p2 also specifies p2 as the minimum value for the homotopy parameter, which must be
reached for convergence. The default is the minimum of p1 and 0.01 times the value of
the CONVERGE= option.
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IMPUTE
requests imputation of missing values after the final assignment of observations to clusters. If an
observation that is assigned (or would have been assigned) to a cluster has a missing value for variables
used in the cluster analysis, the missing value is replaced by the corresponding value in the cluster
seed to which the observation is assigned (or would have been assigned). If the observation cannot be
assigned to a cluster, missing value replacement depends on whether or not the NOMISS option is
specified. If NOMISS is not specified, missing values are replaced by the mean of all observations
in the DATA= data set having a value for that variable. If NOMISS is specified, missing values are
replace by the mean of only observations used in the analysis. (A weighted mean is used if a variable
is specified in the WEIGHT statement.) For information about cluster assignment see the section
“OUT= Data Set” on page 2412. If you specify the IMPUTE option, the imputed values are not used in
computing cluster statistics.

If you also request an OUT= data set, it contains the imputed values.

INSTAT=SAS-data-set
reads a SAS data set previously created with the FASTCLUS procedure by using the OUTSTAT=
option. If you specify the INSTAT= option, no clustering iterations are performed and no output is
displayed. Only cluster assignment and imputation are performed as an OUT= data set is created.

IRLS
causes PROC FASTCLUS to use an iteratively reweighted least squares method instead of the modified
Ekblom-Newton method. If you specify the IRLS option, you must also specify LEAST=p, where 1 <
p < 2. Use the IRLS option only if you encounter convergence problems with the default method.

LEAST=p | MAX

L=p | MAX
causes PROC FASTCLUS to optimize an Lp criterion, where 1 � p � 1 (Spath 1985, pp. 62–63).
Infinity is indicated by LEAST=MAX. The value of this clustering criterion is displayed in the iteration
history.

If you do not specify the LEAST= option, PROC FASTCLUS uses the least squares (L2) criterion.
However, the default number of iterations is only 1 if you omit the LEAST= option, so the optimization
of the criterion is generally not completed. If you specify the LEAST= option, the maximum number
of iterations is increased to permit the optimization process a chance to converge. See the MAXITER=
n option for details.

Specifying the LEAST= option also changes the default convergence criterion from 0.02 to 0.0001.
See the CONVERGE= c for details.

When LEAST=2, PROC FASTCLUS tries to minimize the root mean squared difference between the
data and the corresponding cluster means.

When LEAST=1, PROC FASTCLUS tries to minimize the mean absolute difference between the data
and the corresponding cluster medians.

When LEAST=MAX, PROC FASTCLUS tries to minimize the maximum absolute difference between
the data and the corresponding cluster midranges.

For general values of p, PROC FASTCLUS tries to minimize the pth root of the mean of the pth
powers of the absolute differences between the data and the corresponding cluster seeds.
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The divisor in the clustering criterion is either the number of nonmissing data used in the analysis or, if
there is a WEIGHT statement, the sum of the weights corresponding to all the nonmissing data used in
the analysis (that is, an observation with n nonmissing data contributes n times the observation weight
to the divisor). The divisor is not adjusted for degrees of freedom.

The method for updating cluster seeds during iteration depends on the LEAST= option, as follows
(Gonin and Money 1989).

LEAST=p Algorithm for Computing Cluster Seeds
p = 1 bin sort for median
1 < p < 2 modified Merle-Spath if you specify IRLS;

otherwise modified Ekblom-Newton
p = 2 arithmetic mean
2 < p <1 Newton
p D1 midrange

During the final pass, a modified Merle-Spath step is taken to compute the cluster centers for 1 � p < 2
or 2 < p <1.

If you specify the LEAST=p option with a value other than 2, PROC FASTCLUS computes pooled
scale estimates analogous to the root mean squared standard deviation but based on pth power deviations
instead of squared deviations.

LEAST=p Scale Estimate
p = 1 mean absolute deviation
1 < p <1 root mean pth-power absolute deviation
p D1 maximum absolute deviation

The divisors for computing the mean absolute deviation or the root mean pth-power absolute deviation
are adjusted for degrees of freedom just like the divisors for computing standard deviations. This
adjustment can be suppressed by the VARDEF= option.

LIST
lists all observations, giving the value of the ID variable (if any), the number of the cluster to which the
observation is assigned, and the distance between the observation and the final cluster seed.

MAXITER=n
specifies the maximum number of iterations for recomputing cluster seeds. When the value of the
MAXITER= option is greater than zero, PROC FASTCLUS executes the third of the four steps
described in the section “Background” on page 2394. In each iteration, each observation is assigned to
the nearest seed, and the seeds are recomputed as the means of the clusters.

The default value of the MAXITER= option depends on the LEAST=p option.

LEAST=p MAXITER=
not specified 1
p = 1 20
1 < p < 1:5 50
1:5 � p < 2 20
p = 2 10
2 < p � 1 20
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MEAN=SAS-data-set
creates an output data set to contain the cluster means and other statistics for each cluster. If you
want to create a SAS data set in a permanent library, you must specify a two-level name. For more
information about permanent libraries and SAS data sets, see SAS Language Reference: Concepts.

NOMISS
excludes observations with missing values from the analysis. However, if you also specify the IMPUTE
option, observations with missing values are included in the final cluster assignments.

NOPRINT
suppresses the display of all output. Note that this option temporarily disables the Output Delivery
System (ODS). For more information, see Chapter 20, “Using the Output Delivery System.”

OUT=SAS-data-set
creates an output data set to contain all the original data, plus the new variables CLUSTER and
DISTANCE. If you want to create a SAS data set in a permanent library, you must specify a two-level
name. For more information about permanent libraries and SAS data sets, see SAS Language Reference:
Concepts.

OUTITER
outputs information from the iteration history to the OUTSEED= data set, including the cluster seeds
at each iteration.

OUTSEED=SAS-data-set

OUTS=SAS-data-set
is another name for the MEAN= data set, provided because the data set can contain location estimates
other than means. The MEAN= option is still accepted.

OUTSTAT=SAS-data-set
creates an output data set to contain various statistics, especially those not included in the OUTSEED=
data set. Unlike the OUTSEED= data set, the OUTSTAT= data set is not suitable for use as a SEED=
data set in a subsequent PROC FASTCLUS step.

RANDOM=n
specifies a positive integer as a starting value for the pseudo-random number generator for use with
REPLACE=RANDOM. If you do not specify the RANDOM= option, the time of day is used to
initialize the pseudo-random number sequence.

REPLACE=FULL | PART | NONE | RANDOM
specifies how seed replacement is performed, as follows:

FULL requests default seed replacement as described in the section “Background” on
page 2394.

PART requests seed replacement only when the distance between the observation and the
closest seed is greater than the minimum distance between seeds.

NONE suppresses seed replacement.

RANDOM selects a simple pseudo-random sample of complete observations as initial cluster
seeds.
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SEED=SAS-data-set
specifies an input data set from which initial cluster seeds are to be selected. If you do not specify the
SEED= option, initial seeds are selected from the DATA= data set. The SEED= data set must contain
the same variables that are used in the data analysis.

SHORT
suppresses the display of the initial cluster seeds, cluster means, and standard deviations.

STRICT

STRICT=s
prevents an observation from being assigned to a cluster if its distance to the nearest cluster seed
exceeds the value of the STRICT= option. If you specify the STRICT option without a numeric value,
you must also specify the RADIUS= option, and its value is used instead. In the OUT= data set,
observations that are not assigned due to the STRICT= option are given a negative cluster number, the
absolute value of which indicates the cluster with the nearest seed.

SUMMARY
suppresses the display of the initial cluster seeds, statistics for variables, cluster means, and standard
deviations.

VARDEF=DF | N | WDF | WEIGHT | WGT
specifies the divisor to be used in the calculation of variances and covariances. The default value is
VARDEF=DF. The possible values of the VARDEF= option and associated divisors are as follows.

Value Description Divisor
DF error degrees of freedom n � c

N number of observations n

WDF sum of weights DF .
P
i wi / � c

WEIGHT | WGT sum of weights
P
i wi

In the preceding definitions, c represents the number of clusters.

VARIABLESAREUNCORRELATED
suppresses the warning, displayed in the listing when there are two or more VAR variables, concerning
the validity of the Approximate Expected Over-All R-Squared and the Cubic Clustering Criterion
when the variables used in clustering are correlated. Note that the FASTCLUS procedure does not
compute correlations; the warning is for a potential problem.

BY Statement
BY variables ;

You can specify a BY statement with PROC FASTCLUS to obtain separate analyses of observations in
groups that are defined by the BY variables. When a BY statement appears, the procedure expects the input
data set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last
one specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:
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• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the FASTCLUS procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

If you specify the SEED= option and the SEED= data set does not contain any of the BY variables, then the
entire SEED= data set is used to obtain initial cluster seeds for each BY group in the DATA= data set.

If the SEED= data set contains some but not all of the BY variables, or if some BY variables do not have the
same type or length in the SEED= data set as in the DATA= data set, then PROC FASTCLUS displays an
error message and stops.

If all the BY variables appear in the SEED= data set with the same type and length as in the DATA= data set,
then each BY group in the SEED= data set is used to obtain initial cluster seeds for the corresponding BY
group in the DATA= data set. All BY groups in the DATA= data set must also appear in the SEED= data set.
The BY groups in the SEED= data set must be in the same order as in the DATA= data set. If you specify the
NOTSORTED option in the BY statement, both data sets must contain exactly the same BY groups in the
same order. If you do not specify NOTSORTED, some BY groups can appear in the SEED= data set but not
in the DATA= data set; such BY groups are not used in the analysis.

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

FREQ Statement
FREQ variable ;

If a variable in the data set represents the frequency of occurrence for the other values in the observation,
include the variable’s name in a FREQ statement. The procedure then treats the data set as if each observation
appears n times, where n is the value of the FREQ variable for the observation.

If the value of the FREQ variable is missing or less than or equal to zero, the observation is not used in the
analysis. The exact values of the FREQ variable are used in computations: frequency values are not truncated
to integers. The total number of observations is considered to be equal to the sum of the FREQ variable when
the procedure determines degrees of freedom for significance probabilities.

The WEIGHT and FREQ statements have a similar effect, except in determining the number of observations
for significance tests.

ID Statement
ID variable ;

The ID variable, which can be character or numeric, identifies observations on the output when you specify
the LIST option.
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VAR Statement
VAR variables ;

The VAR statement lists the numeric variables to be used in the cluster analysis. If you omit the VAR
statement, all numeric variables not listed in other statements are used.

WEIGHT Statement
WEIGHT variable ;

The values of the WEIGHT variable are used to compute weighted cluster means. The WEIGHT and FREQ
statements have a similar effect, except the WEIGHT statement does not alter the degrees of freedom or the
number of observations. The WEIGHT variable can take nonintegral values. An observation is used in the
analysis only if the value of the WEIGHT variable is greater than zero.

Details: FASTCLUS Procedure

Updates in the FASTCLUS Procedure
Some FASTCLUS procedure options and statements have changed from previous versions. The differences
are as follows:

• Values of the FREQ variable are no longer truncated to integers. Noninteger variables specified in the
FREQ statement produce results different from those in previous releases.

• The IMPUTE option produces different cluster standard deviations and related statistics. When you
specify the IMPUTE option, imputed values are no longer used in computing cluster statistics. This
change causes the cluster standard deviations and other statistics computed from the standard deviations
to be different from those in previous releases.

• The INSTAT= option reads a SAS data set previously created with the FASTCLUS procedure by using
the OUTSTAT= option. If you specify the INSTAT= option, no clustering iterations are performed and
no output is produced. Only cluster assignment and imputation are performed as an OUT= data set is
created.

• The OUTSTAT= data set contains additional information used for imputation. _TYPE_=SEED
corresponds to values that are cluster seeds. Observations previously designated _TYPE_=’SCALE’
are now _TYPE_=’DISPERSION’.
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Missing Values
Observations with all missing values are excluded from the analysis. If you specify the NOMISS option,
observations with any missing values are excluded. Observations with missing values cannot be cluster seeds.

The distance between an observation with missing values and a cluster seed is obtained by computing the
squared distance based on the nonmissing values, multiplying by the ratio of the number of variables, n, to
the number of variables having nonmissing values, m, and taking the square root:r� n

m

�X
.xi � si /2

where

n D number of variables

m D number of variables with nonmissing values

xi D value of the i th variable for the observation

si D value of the i th variable for the seed

If you specify the LEAST=p option with a power p other than 2 (the default), the distance is computed using�� n
m

�X
.xi � si /

p
� 1
p

The summation is taken over variables with nonmissing values.

The IMPUTE option fills in missing values in the OUT= output data set.

Output Data Sets

OUT= Data Set

The OUT= data set contains the following:

• the original variables

• a new variable indicating the cluster assignment status of each observation. The value will be less
than the permitted number of clusters (see the MAXCLUSTERS= option) if the procedure detects
fewer clusters than the maximum. A positive value indicates the cluster to which the observation was
assigned. A negative value indicates that the observation was not assigned to a cluster (see the STRICT
option), and the absolute value indicates the cluster to which the observation would have been assigned.
If the value is missing, the observation cannot be assigned to any cluster. You can specify the variable
name with the CLUSTER= option. The default name is CLUSTER.

• a new variable, DISTANCE, giving the distance from the observation to its cluster seed

If you specify the IMPUTE option, the OUT= data set also contains a new variable, _IMPUTE_, giving the
number of imputed values in each observation.
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OUTSEED= Data Set

The OUTSEED= data set contains one observation for each cluster. The variables are as follows:

• the BY variables, if any

• a new variable giving the cluster number. You can specify the variable name with the CLUSTER=
option. The default name is CLUSTER.

• either the FREQ variable or a new variable called _FREQ_ giving the number of observations in the
cluster

• the WEIGHT variable, if any

• a new variable, _RMSSTD_, giving the root mean squared standard deviation for the cluster. See
Chapter 33, “The CLUSTER Procedure,” for details.

• a new variable, _RADIUS_, giving the maximum distance between any observation in the cluster and
the cluster seed

• a new variable, _GAP_, containing the distance between the current cluster mean and the nearest other
cluster mean. The value is the centroid distance given in the output.

• a new variable, _NEAR_, specifying the cluster number of the nearest cluster

• the VAR variables giving the cluster means

If you specify the LEAST=p option with a value other than 2, the _RMSSTD_ variable is replaced by the
_SCALE_ variable, which contains the pooled scale estimate analogous to the root mean squared standard
deviation but based on pth-power deviations instead of squared deviations:

LEAST=1 mean absolute deviation

LEAST=p root mean p-th-power absolute deviation

LEAST=MAX maximum absolute deviation

If you specify the OUTITER option, there is one set of observations in the OUTSEED= data set for each pass
through the data set (that is, one set for initial seeds, one for each iteration, and one for the final clusters).
Also, several additional variables appear:

_ITER_ is the iteration number. For the initial seeds, the value is 0. For the final cluster means or
centers, the _ITER_ variable is one greater than the last iteration reported in the iteration
history.

_CRIT_ is the clustering criterion as described under the LEAST= option.

_CHANGE_ is the maximum over clusters of the relative change in the cluster seed from the previous
iteration. The relative change in a cluster seed is the distance between the old seed and the
new seed divided by a scaling factor. If you do not specify the LEAST= option, the scaling
factor is the minimum distance between the initial seeds. If you specify the LEAST=
option, the scaling factor is an L1 scale estimate and is recomputed on each iteration.
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_HOMPAR_ is the value of the homotopy parameter. This variable appears only for LEAST=p with 1
< p < 2.

_BINSIZ_ is the maximum bin size used for estimating medians. This variable appears only for
LEAST=1.

If you specify the OUTITER option, the variables _SCALE_ or _RMSSTD_, _RADIUS_, _NEAR_, and
_GAP_ have missing values except for the last pass.

You can use the OUTSEED= data set as a SEED= input data set for a subsequent analysis.

OUTSTAT= Data Set

The variables in the OUTSTAT= data set are as follows:

• BY variables, if any

• a new character variable, _TYPE_, specifying the type of statistic given by other variables (see
Table 38.2 and Table 38.3)

• a new numeric variable giving the cluster number. You can specify the variable name with the
CLUSTER= option. The default name is CLUSTER.

• a new numeric variable, OVER_ALL, containing statistics that apply over all of the VAR variables

• the VAR variables giving statistics for particular variables

The values of _TYPE_ for all LEAST= options are given in Table 38.2.

Table 38.2 _TYPE_

_TYPE_ Contents of VAR Variables Contents of OVER_ALL

INITIAL Initial seeds Missing

CRITERION Missing Optimization criterion (see the
LEAST= option); this value is
displayed just before the “Cluster
Summary” table.

CENTER Cluster centers (see the LEAST= op-
tion)

Missing

SEED Cluster seeds: additional information
used for imputation

DISPERSION Dispersion estimates for each cluster
(see the LEAST= option); these values
are displayed in a separate row with
title depending on the LEAST= option

Dispersion estimates pooled over
variables (see the LEAST= op-
tion); these values are displayed
in the “Cluster Summary” ta-
ble with label depending on the
LEAST= option.
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Table 38.2 continued

_TYPE_ Contents of VAR variables Contents of OVER_ALL

FREQ Frequency of each cluster omitting ob-
servations with missing values for the
VAR variable; these values are not dis-
played

Frequency of each cluster based
on all observations with any non-
missing value; these values are
displayed in the “Cluster Sum-
mary” table.

WEIGHT Sum of weights for each cluster omit-
ting observations with missing values
for the VAR variable; these values are
not displayed

Sum of weights for each cluster
based on all observations with any
nonmissing value; these values
are displayed in the “Cluster Sum-
mary” table.

Observations with _TYPE_=’WEIGHT’ are included only if you specify the WEIGHT statement.

The _TYPE_ values included only for least squares clustering are given Table 38.3. Least squares clustering
is obtained by omitting the LEAST= option or by specifying LEAST=2.

Table 38.3 _TYPE_

_TYPE_ Contents of VAR Variables Contents of OVER_ALL

MEAN Mean for the total sample; this is not
displayed

Missing

STD Standard deviation for the total sample;
labeled “Total STD” in the output

Standard deviation pooled over
all the VAR variables; labeled
“Total STD” in the output

WITHIN_STD Pooled within-cluster standard
deviation

Within cluster standard deviation
pooled over clusters and all the
VAR variables

RSQ R square for predicting the variable
from the clusters; labeled “R-Squared”
in the output

R square pooled over all the VAR
variables; labeled “R-Squared” in
the output

RSQ_RATIO R2

1�R2
; labeled “RSQ/(1-RSQ)” in the

output

R2

1�R2
; labeled “RSQ/(1-RSQ)” in

the output

PSEUDO_F Missing Pseudo F statistic
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Table 38.3 continued

_TYPE_ Contents of VAR variables Contents of OVER_ALL

ESRQ Missing Approximate expected value of R
square under the null hypothesis
of a single uniform cluster

CCC Missing Cubic clustering criterion

Computational Resources
Let

n D number of observations

v D number of variables

c D number of clusters

p D number of passes over the data set

Memory

The memory required is approximately 4.19v C 12cv C 10c C 2max.c C 1; v// bytes.

If you request the DISTANCE option, an additional 4c.c C 1/ bytes of space is needed.

Time

The overall time required by PROC FASTCLUS is roughly proportional to nvcp if c is small with respect to
n.

Initial seed selection requires one pass over the data set. If the observations are in random order, the time
required is roughly proportional to

nvc C vc2

unless you specify REPLACE=NONE. In that case, a complete pass might not be necessary, and the time is
roughly proportional to mvc, where c � m � n.

The DRIFT option, each iteration, and the final assignment of cluster seeds each require one pass, with time
for each pass roughly proportional to nvc.

For greatest efficiency, you should list the variables in the VAR statement in order of decreasing variance.
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Using PROC FASTCLUS
Before using PROC FASTCLUS, decide whether your variables should be standardized in some way, since
variables with large variances tend to have more effect on the resulting clusters than those with small
variances. If all variables are measured in the same units, standardization might not be necessary. Otherwise,
some form of standardization is strongly recommended. The STDIZE procedure provides a variety of
standardization methods, including robust scale estimators (for detailed information, see Chapter 94, “The
STDIZE Procedure”).

The FACTOR or PRINCOMP procedure can compute standardized principal component scores. The
ACECLUS procedure can transform the variables according to an estimated within-cluster covariance matrix.

Nonlinear transformations of the variables can change the number of population clusters and should therefore
be approached with caution. For most applications, the variables should be transformed so that equal
differences are of equal practical importance. An interval scale of measurement is required. Ordinal or ranked
data are generally not appropriate.

PROC FASTCLUS produces relatively little output. In most cases you should create an output data set and
use another procedure such as PRINT, SGPLOT, MEANS, DISCRIM, or CANDISC to study the clusters. It
is usually desirable to try several values of the MAXCLUSTERS= option. Macros are useful for running
PROC FASTCLUS repeatedly with other procedures.

A simple application of PROC FASTCLUS with two variables to examine the 2- and 3-cluster solutions can
proceed as follows:

proc stdize method=std out=stan;
var v1 v2;

run;

proc fastclus data=stan out=clust maxclusters=2;
var v1 v2;

run;

proc sgplot;
scatter y=v2 x=v1 / markerchar=cluster;

run;

proc fastclus data=stan out=clust maxclusters=3;
var v1 v2;

run;

proc sgplot;
scatter y=v2 x=v1 / markerchar=cluster;

run;

If you have more than two variables, you can use the CANDISC procedure to compute canonical variables
for plotting the clusters. For example:

proc stdize method=std out=stan;
var v1-v10;

run;
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proc fastclus data=stan out=clust maxclusters=3;
var v1-v10;

run;

proc candisc out=can;
var v1-v10;
class cluster;

run;

proc sgplot;
scatter y=can2 x=can1 / markerchar=cluster;

run;

If the data set is not too large, it might also be helpful to use the following to list the clusters:

proc sort;
by cluster distance;

run;

proc print;
by cluster;

run;

By examining the values of DISTANCE, you can determine if any observations are unusually far from their
cluster seeds.

It is often advisable, especially if the data set is large or contains outliers, to make a preliminary PROC
FASTCLUS run with a large number of clusters, perhaps 20 to 100. Use MAXITER=0 and OUTSEED=SAS-
data-set. You can save time on subsequent runs if you select cluster seeds from this output data set by using
the SEED= option.

You should check the preliminary clusters for outliers, which often appear as clusters with only one member.
Use a DATA step to delete outliers from the data set created by the OUTSEED= option before using it as
a SEED= data set in later runs. If there are severe outliers, you should specify the STRICT option in the
subsequent PROC FASTCLUS runs to prevent the outliers from distorting the clusters.

You can use the OUTSEED= data set with the SGPLOT procedure to plot _GAP_ by _FREQ_. An overlay of
_RADIUS_ by _FREQ_ provides a baseline against which to compare the values of _GAP_. Outliers appear
in the upper-left area of the plot, with large _GAP_ values and small _FREQ_ values. Good clusters appear
in the upper-right area, with large values of both _GAP_ and _FREQ_. Good potential cluster seeds appear in
the lower right, as well as in the upper-right, since large _FREQ_ values indicate high-density regions. Small
_FREQ_ values in the left part of the plot indicate poor cluster seeds because the points are in low-density
regions. It often helps to remove all clusters with small frequencies even though the clusters might not be
remote enough to be considered outliers. Removing points in low-density regions improves cluster separation
and provides visually sharper cluster outlines in scatter plots.
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Displayed Output
Unless the SHORT or SUMMARY option is specified, PROC FASTCLUS displays the following:

• Initial Seeds, cluster seeds selected after one pass through the data

• Change in Cluster Seeds for each iteration, if you specify MAXITER=n > 1

If you specify the LEAST=p option, with (1 < p < 2), and you omit the IRLS option, an additional column is
displayed in the Iteration History table. This column contains a character to identify the method used in each
iteration. PROC FASTCLUS chooses the most efficient method to cluster the data at each iterative step, given
the condition of the data. Thus, the method chosen is data dependent. The possible values are described as
follows:

Value Method
N Newton’s Method
I or L iteratively weighted least squares (IRLS)
1 IRLS step, halved once
2 IRLS step, halved twice
3 IRLS step, halved three times

PROC FASTCLUS displays a Cluster Summary, giving the following for each cluster:

• Cluster number

• Frequency, the number of observations in the cluster

• Weight, the sum of the weights of the observations in the cluster, if you specify the WEIGHT statement

• RMS Std Deviation, the root mean squared across variables of the cluster standard deviations, which is
equal to the root mean square distance between observations in the cluster

• Maximum Distance from Seed to Observation, the maximum distance from the cluster seed to any
observation in the cluster

• Nearest Cluster, the number of the cluster with mean closest to the mean of the current cluster

• Centroid Distance, the distance between the centroids (means) of the current cluster and the nearest
other cluster

A table of statistics for each variable is displayed unless you specify the SUMMARY option. The table
contains the following:

• Total STD, the total standard deviation

• Within STD, the pooled within-cluster standard deviation

• R-Square, the R square for predicting the variable from the cluster
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• RSQ/(1 - RSQ), the ratio of between-cluster variance to within-cluster variance .R2=.1 �R2//

• OVER-ALL, all of the previous quantities pooled across variables

PROC FASTCLUS also displays the following:

• Pseudo F Statistic,

R2

c�1

1�R2

n�c

where R square is the observed overall R square, c is the number of clusters, and n is the number of
observations. The pseudo F statistic was suggested by Caliński and Harabasz (1974). See Milligan
and Cooper (1985) and Cooper and Milligan (1988) regarding the use of the pseudo F statistic in
estimating the number of clusters. See Example 33.2 in Chapter 33, “The CLUSTER Procedure,” for a
comparison of pseudo F statistics.

• Observed Overall R-Square, if you specify the SUMMARY option

• Approximate Expected Overall R-Square, the approximate expected value of the overall R square
under the uniform null hypothesis assuming that the variables are uncorrelated. The value is missing if
the number of clusters is greater than one-fifth the number of observations.

• Cubic Clustering Criterion, computed under the assumption that the variables are uncorrelated. The
value is missing if the number of clusters is greater than one-fifth the number of observations.

If you are interested in the approximate expected R square or the cubic clustering criterion but your
variables are correlated, you should cluster principal component scores from the PRINCOMP procedure.
Both of these statistics are described by Sarle (1983). The performance of the cubic clustering criterion
in estimating the number of clusters is examined by Milligan and Cooper (1985) and Cooper and
Milligan (1988).

• Distances Between Cluster Means, if you specify the DISTANCE option

Unless you specify the SHORT or SUMMARY option, PROC FASTCLUS displays the following:

• Cluster Means for each variable

• Cluster Standard Deviations for each variable
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ODS Table Names
PROC FASTCLUS assigns a name to each table it creates. You can use these names to reference the table
when using the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed in Table 38.4. For more information on ODS, see Chapter 20, “Using the Output Delivery System.”

Table 38.4 ODS Tables Produced by PROC FASTCLUS
ODS Table Name Description Statement Option
ApproxExpOverAllRSq Approximate expected overall R-

square, single number
PROC default

CCC CCC, Cubic Clustering Criterion,
single number

PROC default

ClusterList Cluster listing, obs, id, and dis-
tances

PROC LIST

ClusterSum Cluster summary, cluster number,
distances

PROC PRINTALL

ClusterCenters Cluster centers PROC default
ClusterDispersion Cluster dispersion PROC default
ConvergenceStatus Convergence status PROC PRINTALL
Criterion Criterion based on final seeds, sin-

gle number
PROC default

DistBetweenClust Distance between clusters PROC default
InitialSeeds Initial seeds PROC default
IterHistory Iteration history, various statistics

for each iteration
PROC PRINTALL

MinDist Minimum distance between ini-
tial seeds, single number

PROC PRINTALL

NumberOfBins Number of bins PROC default
ObsOverAllRSquare Observed overall R-square, single

number
PROC SUMMARY

PrelScaleEst Preliminary L(1) scale estimate,
single number

PROC PRINTALL

PseudoFStat Pseudo F statistic, single number PROC default
SimpleStatistics Simple statistics for input vari-

ables
PROC default

VariableStat Statistics for variables within clus-
ters

PROC default
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Examples: FASTCLUS Procedure

Example 38.1: Fisher’s Iris Data
The iris data published by Fisher (1936) have been widely used for examples in discriminant analysis and
cluster analysis. The sepal length, sepal width, petal length, and petal width are measured in millimeters on
50 iris specimens from each of three species, Iris setosa, I. versicolor, and I. virginica. Mezzich and Solomon
(1980) discuss a variety of cluster analyses of the iris data.

In this example, the FASTCLUS procedure is used to find two and then three clusters. In the following
code, an output data set is created, and PROC FREQ is invoked to compare the clusters with the species
classification. See Output 38.1.1 and Output 38.1.2 for these results.

For three clusters, you can use the CANDISC procedure to compute canonical variables for plotting the
clusters. See Output 38.1.3 and Output 38.1.4 for the results.

title 'Fisher (1936) Iris Data';
proc fastclus data=sashelp.iris maxc=2 maxiter=10 out=clus;

var SepalLength SepalWidth PetalLength PetalWidth;
run;

proc freq;
tables cluster*species;

run;

proc fastclus data=sashelp.iris maxc=3 maxiter=10 out=clus;
var SepalLength SepalWidth PetalLength PetalWidth;

run;

proc freq;
tables cluster*Species;

run;

proc candisc anova out=can;
class cluster;
var SepalLength SepalWidth PetalLength PetalWidth;
title2 'Canonical Discriminant Analysis of Iris Clusters';

run;

proc sgplot data=Can;
scatter y=Can2 x=Can1 / group=Cluster;
title2 'Plot of Canonical Variables Identified by Cluster';

run;
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Output 38.1.1 Fisher’s Iris Data: PROC FASTCLUS with MAXC=2 and PROC FREQ

Fisher (1936) Iris Data

The FASTCLUS Procedure
Replace=FULL  Radius=0  Maxclusters=2 Maxiter=10  Converge=0.02

Fisher (1936) Iris Data

The FASTCLUS Procedure
Replace=FULL  Radius=0  Maxclusters=2 Maxiter=10  Converge=0.02

Initial Seeds

Cluster SepalLength SepalWidth PetalLength PetalWidth

1 77.00000000 26.00000000 69.00000000 23.00000000

2 45.00000000 23.00000000 13.00000000 3.00000000

Minimum Distance Between Initial Seeds = 67.59438

Iteration History

Relative
Change in

Cluster Seeds

Iteration Criterion 1 2

1 11.0045 0.3169 0.2164

2 5.6161 0.0379 0.0791

3 5.1042 0.0133 0.0306

4 5.0417 0.00348 0.00679

Convergence criterion is satisfied.

Criterion Based on Final Seeds = 5.0390

Cluster Summary

Cluster Frequency
RMS Std

Deviation

MaximumDistance
from Seed

to Observation
Radius

Exceeded
Nearest
Cluster

Distance Between
Cluster Centroids

1 97 5.6779 24.8448 2 39.2879

2 53 3.7050 21.6197 1 39.2879

Statistics for Variables

Variable Total STD Within STD R-Square RSQ/(1-RSQ)

SepalLength 8.28066 5.49313 0.562896 1.287784

SepalWidth 4.35866 3.70393 0.282710 0.394137

PetalLength 17.65298 6.80331 0.852470 5.778291

PetalWidth 7.62238 3.57200 0.781868 3.584390

OVER-ALL 10.69224 5.07291 0.776410 3.472463

Pseudo F Statistic = 513.92

Approximate Expected Over-All R-Squared = 0.51539

Cubic Clustering Criterion = 14.806
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Output 38.1.1 continued

WARNING: The two values above are invalid for correlated variables.

Cluster Means

Cluster SepalLength SepalWidth PetalLength PetalWidth

1 63.01030928 28.86597938 49.58762887 16.95876289

2 50.05660377 33.69811321 15.60377358 2.90566038

Cluster Standard Deviations

Cluster SepalLength SepalWidth PetalLength PetalWidth

1 6.336887455 3.267991438 7.800577673 4.155612484

2 3.427350930 4.396611045 4.404279486 2.105525249

Fisher (1936) Iris Data

The FREQ Procedure

Fisher (1936) Iris Data

The FREQ Procedure

Frequency
Percent
Row Pct
Col Pct

Table of CLUSTER by Species

CLUSTER(Cluster)

Species(Iris Species)

Setosa Versicolor Virginica Total

1 0
0.00
0.00
0.00

47
31.33
48.45
94.00

50
33.33
51.55
100.00

97
64.67

2 50
33.33
94.34
100.00

3
2.00
5.66
6.00

0
0.00
0.00
0.00

53
35.33

Total 50
33.33

50
33.33

50
33.33

150
100.00

Output 38.1.2 Fisher’s Iris Data: PROC FASTCLUS with MAXC=3 and PROC FREQ

Fisher (1936) Iris Data

The FASTCLUS Procedure
Replace=FULL  Radius=0  Maxclusters=3 Maxiter=10  Converge=0.02

Fisher (1936) Iris Data

The FASTCLUS Procedure
Replace=FULL  Radius=0  Maxclusters=3 Maxiter=10  Converge=0.02

Initial Seeds

Cluster SepalLength SepalWidth PetalLength PetalWidth

1 77.00000000 38.00000000 67.00000000 22.00000000

2 57.00000000 44.00000000 15.00000000 4.00000000

3 49.00000000 25.00000000 45.00000000 17.00000000

Minimum Distance Between Initial Seeds = 38.23611
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Output 38.1.2 continued

Iteration History

Relative Change in
Cluster Seeds

Iteration Criterion 1 2 3

1 7.0151 0.3205 0.3151 0.2985

2 3.7097 0.0459 0 0.0317

3 3.6427 0.0182 0 0.0124

Convergence criterion is satisfied.

Criterion Based on Final Seeds = 3.6289

Cluster Summary

Cluster Frequency
RMS Std

Deviation

MaximumDistance
from Seed

to Observation
Radius

Exceeded
Nearest
Cluster

Distance Between
Cluster Centroids

1 38 4.0168 14.9736 3 17.9718

2 50 2.7803 12.4803 3 33.5693

3 62 4.0398 16.9272 1 17.9718

Statistics for Variables

Variable Total STD Within STD R-Square RSQ/(1-RSQ)

SepalLength 8.28066 4.39488 0.722096 2.598359

SepalWidth 4.35866 3.24816 0.452102 0.825156

PetalLength 17.65298 4.21431 0.943773 16.784895

PetalWidth 7.62238 2.45244 0.897872 8.791618

OVER-ALL 10.69224 3.66198 0.884275 7.641194

Pseudo F Statistic = 561.63

Approximate Expected Over-All R-Squared = 0.62728

Cubic Clustering Criterion = 25.021

WARNING: The two values above are invalid for correlated variables.

Cluster Means

Cluster SepalLength SepalWidth PetalLength PetalWidth

1 68.50000000 30.73684211 57.42105263 20.71052632

2 50.06000000 34.28000000 14.62000000 2.46000000

3 59.01612903 27.48387097 43.93548387 14.33870968

Cluster Standard Deviations

Cluster SepalLength SepalWidth PetalLength PetalWidth

1 4.941550255 2.900924461 4.885895746 2.798724562

2 3.524896872 3.790643691 1.736639965 1.053855894

3 4.664100551 2.962840548 5.088949673 2.974997167
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Output 38.1.2 continued

Fisher (1936) Iris Data

The FREQ Procedure

Fisher (1936) Iris Data

The FREQ Procedure

Frequency
Percent
Row Pct
Col Pct

Table of CLUSTER by Species

CLUSTER(Cluster)

Species(Iris Species)

Setosa Versicolor Virginica Total

1 0
0.00
0.00
0.00

2
1.33
5.26
4.00

36
24.00
94.74
72.00

38
25.33

2 50
33.33
100.00
100.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

50
33.33

3 0
0.00
0.00
0.00

48
32.00
77.42
96.00

14
9.33
22.58
28.00

62
41.33

Total 50
33.33

50
33.33

50
33.33

150
100.00

Output 38.1.3 Fisher’s Iris Data using PROC CANDISC

Fisher (1936) Iris Data
Canonical Discriminant Analysis of Iris Clusters

The CANDISC Procedure

Fisher (1936) Iris Data
Canonical Discriminant Analysis of Iris Clusters

The CANDISC Procedure

Total Sample Size 150 DF Total 149

Variables 4 DF Within Classes 147

Classes 3 DF Between Classes 2

Number of Observations Read 150

Number of Observations Used 150

Class Level Information

CLUSTER
Variable
Name Frequency Weight Proportion

1 _1 38 38.0000 0.253333

2 _2 50 50.0000 0.333333

3 _3 62 62.0000 0.413333



Example 38.1: Fisher’s Iris Data F 2427

Output 38.1.3 continued

Fisher (1936) Iris Data
Canonical Discriminant Analysis of Iris Clusters

The CANDISC Procedure

Fisher (1936) Iris Data
Canonical Discriminant Analysis of Iris Clusters

The CANDISC Procedure

Univariate Test Statistics

F Statistics,    Num DF=2,   Den DF=147

Variable Label

Total
Standard
Deviation

Pooled
Standard
Deviation

Between
Standard
Deviation R-Square

R-Square
/ (1-RSq) F Value Pr > F

SepalLength Sepal Length (mm) 8.2807 4.3949 8.5893 0.7221 2.5984 190.98 <.0001

SepalWidth Sepal Width (mm) 4.3587 3.2482 3.5774 0.4521 0.8252 60.65 <.0001

PetalLength Petal Length (mm) 17.6530 4.2143 20.9336 0.9438 16.7849 1233.69 <.0001

PetalWidth Petal Width (mm) 7.6224 2.4524 8.8164 0.8979 8.7916 646.18 <.0001

Average R-Square

Unweighted 0.7539604

Weighted by Variance 0.8842753

Multivariate Statistics and F Approximations

S=2    M=0.5    N=71

Statistic Value F Value Num DF Den DF Pr > F

Wilks' Lambda 0.03222337 164.55 8 288 <.0001

Pillai's Trace 1.25669612 61.29 8 290 <.0001

Hotelling-Lawley Trace 21.06722883 377.66 8 203.4 <.0001

Roy's Greatest Root 20.63266809 747.93 4 145 <.0001

NOTE: F Statistic for Roy's Greatest Root is an upper bound.

NOTE: F Statistic for Wilks' Lambda is exact.

Fisher (1936) Iris Data
Canonical Discriminant Analysis of Iris Clusters

The CANDISC Procedure

Fisher (1936) Iris Data
Canonical Discriminant Analysis of Iris Clusters

The CANDISC Procedure

Eigenvalues of Inv(E)*H
= CanRsq/(1-CanRsq)

Canonical
Correlation

Adjusted
Canonical

Correlation

Approximate
Standard

Error

Squared
Canonical

Correlation Eigenvalue Difference Proportion Cumulative

1 0.976613 0.976123 0.003787 0.953774 20.6327 20.1981 0.9794 0.9794

2 0.550384 0.543354 0.057107 0.302923 0.4346 0.0206 1.0000

Test of H0: The canonical correlations in the current row and all that follow are zero

Likelihood
Ratio

Approximate
F Value Num DF Den DF Pr > F

1 0.03222337 164.55 8 288 <.0001

2 0.69707749 21.00 3 145 <.0001
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Output 38.1.3 continued

Fisher (1936) Iris Data
Canonical Discriminant Analysis of Iris Clusters

The CANDISC Procedure

Fisher (1936) Iris Data
Canonical Discriminant Analysis of Iris Clusters

The CANDISC Procedure

Total Canonical Structure

Variable Label Can1 Can2

SepalLength Sepal Length (mm) 0.831965 0.452137

SepalWidth Sepal Width (mm) -0.515082 0.810630

PetalLength Petal Length (mm) 0.993520 0.087514

PetalWidth Petal Width (mm) 0.966325 0.154745

Between Canonical Structure

Variable Label Can1 Can2

SepalLength Sepal Length (mm) 0.956160 0.292846

SepalWidth Sepal Width (mm) -0.748136 0.663545

PetalLength Petal Length (mm) 0.998770 0.049580

PetalWidth Petal Width (mm) 0.995952 0.089883

Pooled Within Canonical Structure

Variable Label Can1 Can2

SepalLength Sepal Length (mm) 0.339314 0.716082

SepalWidth Sepal Width (mm) -0.149614 0.914351

PetalLength Petal Length (mm) 0.900839 0.308136

PetalWidth Petal Width (mm) 0.650123 0.404282

Fisher (1936) Iris Data
Canonical Discriminant Analysis of Iris Clusters

The CANDISC Procedure

Fisher (1936) Iris Data
Canonical Discriminant Analysis of Iris Clusters

The CANDISC Procedure

Total-Sample Standardized Canonical Coefficients

Variable Label Can1 Can2

SepalLength Sepal Length (mm) 0.047747341 1.021487262

SepalWidth Sepal Width (mm) -0.577569244 0.864455153

PetalLength Petal Length (mm) 3.341309573 -1.283043758

PetalWidth Petal Width (mm) 0.996451144 0.900476563

Pooled Within-Class Standardized Canonical Coefficients

Variable Label Can1 Can2

SepalLength Sepal Length (mm) 0.0253414487 0.5421446856

SepalWidth Sepal Width (mm) -.4304161258 0.6442092294

PetalLength Petal Length (mm) 0.7976741592 -.3063023132

PetalWidth Petal Width (mm) 0.3205998034 0.2897207865
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Output 38.1.3 continued

Raw Canonical Coefficients

Variable Label Can1 Can2

SepalLength Sepal Length (mm) 0.0057661265 0.1233581748

SepalWidth Sepal Width (mm) -.1325106494 0.1983303556

PetalLength Petal Length (mm) 0.1892773419 -.0726814163

PetalWidth Petal Width (mm) 0.1307270927 0.1181359305

Class Means on Canonical Variables

CLUSTER Can1 Can2

1 4.931414018 0.861972277

2 -6.131527227 0.244761516

3 1.922300462 -0.725693908

Output 38.1.4 Plot of Fisher’s Iris Data using PROC CANDISC
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Example 38.2: Outliers
This example involves data artificially generated to contain two clusters and several severe outliers. A
preliminary analysis specifies 20 clusters and outputs an OUTSEED= data set to be used for a diagnostic plot.
The exact number of initial clusters is not important; similar results could be obtained with 10 or 50 initial
clusters. Examination of the plot suggests that clusters with more than five (again, the exact number is not
important) observations can yield good seeds for the main analysis. A DATA step deletes clusters with five or
fewer observations, and the remaining cluster means provide seeds for the next PROC FASTCLUS analysis.

Two clusters are requested; the LEAST= option specifies the mean absolute deviation criterion (LEAST=1).
Values of the LEAST= option less than 2 reduce the effect of outliers on cluster centers.

The next analysis also requests two clusters; the STRICT= option is specified to prevent outliers from
distorting the results. The STRICT= value is chosen to be close to the _GAP_ and _RADIUS_ values of the
larger clusters in the diagnostic plot; the exact value is not critical.

A final PROC FASTCLUS run assigns the outliers to clusters.

The following SAS statements implement these steps, and the results are displayed in Output 38.2.3 through
Output 38.2.8. First, an artificial data set is created with two clusters and some outliers. Then PROC
FASTCLUS is run with many clusters to produce an OUTSEED= data set. A diagnostic plot using the
variables _GAP_ and _RADIUS_ is then produced using the SGSCATTER procedure. The results from these
steps are shown in Output 38.2.1 and Output 38.2.2.

title 'Using PROC FASTCLUS to Analyze Data with Outliers';
data x;

drop n;
do n=1 to 100;

x=rannor(12345)+2;
y=rannor(12345);
output;

end;
do n=1 to 100;

x=rannor(12345)-2;
y=rannor(12345);
output;

end;
do n=1 to 10;

x=10*rannor(12345);
y=10*rannor(12345);
output;

end;
run;

title2 'Preliminary PROC FASTCLUS Analysis with 20 Clusters';
proc fastclus data=x outseed=mean1 maxc=20 maxiter=0 summary;

var x y;
run;

proc sgscatter data=mean1;
compare y=(_gap_ _radius_) x=_freq_;

run;
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Output 38.2.1 Preliminary Analysis of Data with Outliers Using PROC FASTCLUS

Using PROC FASTCLUS to Analyze Data with Outliers
Preliminary PROC FASTCLUS Analysis with 20 Clusters

The FASTCLUS Procedure
Replace=FULL  Radius=0  Maxclusters=20 Maxiter=0

Using PROC FASTCLUS to Analyze Data with Outliers
Preliminary PROC FASTCLUS Analysis with 20 Clusters

The FASTCLUS Procedure
Replace=FULL  Radius=0  Maxclusters=20 Maxiter=0

Criterion Based on Final Seeds = 0.6873

Cluster Summary

Cluster Frequency
RMS Std

Deviation

MaximumDistance
from Seed

to Observation
Radius

Exceeded
Nearest
Cluster

Distance Between
Cluster Centroids

1 8 0.4753 1.1924 19 1.7205

2 1 . 0 6 6.2847

3 44 0.6252 1.6774 5 1.4386

4 1 . 0 20 5.2130

5 38 0.5603 1.4528 3 1.4386

6 2 0.0542 0.1085 2 6.2847

7 1 . 0 14 2.5094

8 2 0.6480 1.2961 1 1.8450

9 1 . 0 7 9.4534

10 1 . 0 18 4.2514

11 1 . 0 16 4.7582

12 20 0.5911 1.6291 16 1.5601

13 5 0.6682 1.4244 3 1.9553

14 1 . 0 7 2.5094

15 5 0.4074 1.2678 3 1.7609

16 22 0.4168 1.5139 19 1.4936

17 8 0.4031 1.4794 5 1.5564

18 1 . 0 10 4.2514

19 45 0.6475 1.6285 16 1.4936

20 3 0.5719 1.3642 15 1.8999

Pseudo F Statistic = 207.58

Observed Over-All R-Squared = 0.95404

Approximate Expected Over-All R-Squared = 0.96103

Cubic Clustering Criterion = -2.503

WARNING: The two values above are invalid for correlated variables.
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Output 38.2.2 Preliminary Analysis of Data with Outliers: Plot Using and PROC SGSCATGTER

In the following SAS statements, a DATA step is used to remove low frequency clusters, then the FASTCLUS
procedure is run again, selecting seeds from the high frequency clusters in the previous analysis using
LEAST=1 clustering criterion. The results are shown in Output 38.2.3 and Output 38.2.4.

data seed;
set mean1;
if _freq_>5;

run;

title2 'PROC FASTCLUS Analysis Using LEAST= Clustering Criterion';
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title3 'Values < 2 Reduce Effect of Outliers on Cluster Centers';
proc fastclus data=x seed=seed maxc=2 least=1 out=out;

var x y;
run;

proc sgplot data=out;
scatter y=y x=x / group=cluster;

run;

Output 38.2.3 Analysis of Data with Outliers Using the LEAST= Option

Using PROC FASTCLUS to Analyze Data with Outliers
PROC FASTCLUS Analysis Using LEAST= Clustering Criterion

Values < 2 Reduce Effect of Outliers on Cluster Centers

The FASTCLUS Procedure
Replace=FULL  Radius=0  Maxclusters=2 Maxiter=20  Converge=0.0001  Least=1

Using PROC FASTCLUS to Analyze Data with Outliers
PROC FASTCLUS Analysis Using LEAST= Clustering Criterion

Values < 2 Reduce Effect of Outliers on Cluster Centers

The FASTCLUS Procedure
Replace=FULL  Radius=0  Maxclusters=2 Maxiter=20  Converge=0.0001  Least=1

Initial Seeds

Cluster x y

1 2.794174248 -0.065970836

2 -2.027300384 -2.051208579

Minimum Distance Between Initial Seeds = 6.806712

Preliminary L(1) Scale Estimate = 2.796579

Number of Bins = 100

Iteration History

Relative Change
in Cluster Seeds

Iteration Criterion
Maximum

Bin Size 1 2

1 1.3983 0.2263 0.4091 0.6696

2 1.0776 0.0226 0.00511 0.0452

3 1.0771 0.00226 0.00229 0.00234

4 1.0771 0.000396 0.000253 0.000144

5 1.0771 0.000396 0 0

Convergence criterion is satisfied.

Criterion Based on Final Seeds = 1.0771

Cluster Summary

Cluster Frequency

Mean
Absolute
Deviation

MaximumDistance
from Seed

to Observation
Radius

Exceeded
Nearest
Cluster

Distance Between
Cluster Medians

1 102 1.1278 24.1622 2 4.2585

2 108 1.0494 14.8292 1 4.2585
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Output 38.2.3 continued

Cluster Medians

Cluster x y

1 1.923023887 0.222482918

2 -1.826721743 -0.286253041

Mean Absolute Deviations from
Final Seeds

Cluster x y

1 1.113465261 1.142120480

2 0.890331835 1.208370913

Output 38.2.4 Analysis Plot of Data with Outliers

The FASTCLUS procedure is run again, selecting seeds from high frequency clusters in the previous
analysis. STRICT= prevents outliers from distorting the results. The results are shown in Output 38.2.5 and
Output 38.2.6.
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title2 'PROC FASTCLUS Analysis Using STRICT= to Omit Outliers';
proc fastclus data=x seed=seed

maxc=2 strict=3.0 out=out outseed=mean2;
var x y;

run;

proc sgplot data=out;
scatter y=y x=x / group=cluster;

run;

Output 38.2.5 Cluster Analysis with Outliers Omitted: PROC FASTCLUS SGPLOT

Using PROC FASTCLUS to Analyze Data with Outliers
PROC FASTCLUS Analysis Using STRICT= to Omit Outliers

The FASTCLUS Procedure
Replace=FULL  Radius=0  Strict=3  Maxclusters=2 Maxiter=1

Using PROC FASTCLUS to Analyze Data with Outliers
PROC FASTCLUS Analysis Using STRICT= to Omit Outliers

The FASTCLUS Procedure
Replace=FULL  Radius=0  Strict=3  Maxclusters=2 Maxiter=1

Initial Seeds

Cluster x y

1 2.794174248 -0.065970836

2 -2.027300384 -2.051208579

Criterion Based on Final Seeds = 0.9515

Cluster Summary

Cluster Frequency
RMS Std

Deviation

MaximumDistance
from Seed

to Observation
Radius

Exceeded
Nearest
Cluster

Distance Between
Cluster Centroids

1 99 0.9501 2.9589 2 3.7666

2 99 0.9290 2.8011 1 3.7666

12 Observation(s) were not assigned to a cluster 
because the minimum distance to a cluster seed exceeded the STRICT= value.

Statistics for Variables

Variable Total STD Within STD R-Square RSQ/(1-RSQ)

x 2.06854 0.87098 0.823609 4.669219

y 1.02113 1.00352 0.039093 0.040683

OVER-ALL 1.63119 0.93959 0.669891 2.029303

Pseudo F Statistic = 397.74

Approximate Expected Over-All R-Squared = 0.60615

Cubic Clustering Criterion = 3.197

WARNING: The two values above are invalid for correlated variables.

Cluster Means

Cluster x y

1 1.825111432 0.141211701

2 -1.919910712 -0.261558725
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Output 38.2.5 continued

Cluster Standard Deviations

Cluster x y

1 0.889549271 1.006965219

2 0.852000588 1.000062579

Output 38.2.6 Cluster Analysis with Outliers Omitted: Plot Using PROC SGPLOT

Finally, the FASTCLUS procedure is run one more time with zero iterations to assign outliers and tails to
clusters. The results are show in Output 38.2.7 and Output 38.2.8.

title2 'Final PROC FASTCLUS Analysis Assigning Outliers to Clusters';
proc fastclus data=x seed=mean2 maxc=2 maxiter=0 out=out;

var x y;
run;

proc sgplot data=out;
scatter y=y x=x / group=cluster;

run;
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Output 38.2.7 Cluster Analysis with Outliers Omitted: PROC FASTCLUS

Using PROC FASTCLUS to Analyze Data with Outliers
Final PROC FASTCLUS Analysis Assigning Outliers to Clusters

The FASTCLUS Procedure
Replace=FULL  Radius=0  Maxclusters=2 Maxiter=0

Using PROC FASTCLUS to Analyze Data with Outliers
Final PROC FASTCLUS Analysis Assigning Outliers to Clusters

The FASTCLUS Procedure
Replace=FULL  Radius=0  Maxclusters=2 Maxiter=0

Initial Seeds

Cluster x y

1 1.825111432 0.141211701

2 -1.919910712 -0.261558725

Criterion Based on Final Seeds = 2.0594

Cluster Summary

Cluster Frequency
RMS Std

Deviation

MaximumDistance
from Seed

to Observation
Radius

Exceeded
Nearest
Cluster

Distance Between
Cluster Centroids

1 103 2.2569 17.9426 2 4.3753

2 107 1.8371 11.7362 1 4.3753

Statistics for Variables

Variable Total STD Within STD R-Square RSQ/(1-RSQ)

x 2.92721 1.95529 0.555950 1.252000

y 2.15248 2.14754 0.009347 0.009435

OVER-ALL 2.56922 2.05367 0.364119 0.572621

Pseudo F Statistic = 119.11

Approximate Expected Over-All R-Squared = 0.49090

Cubic Clustering Criterion = -5.338

WARNING: The two values above are invalid for correlated variables.

Cluster Means

Cluster x y

1 2.280017469 0.263940765

2 -2.075547895 -0.151348765

Cluster Standard Deviations

Cluster x y

1 2.412264861 2.089922815

2 1.379355878 2.201567557



2438 F Chapter 38: The FASTCLUS Procedure

Output 38.2.8 Cluster Analysis with Outliers Omitted: Plot Using PROC SGPLOT
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Overview: FMM Procedure
The FMM procedure fits statistical models to data for which the distribution of the response is a finite mixture
of distributions—that is, each response is drawn with unknown probability from one of several distributions.
You can use PROC FMM to model the component distributions in addition to the mixing probabilities; see
“A Gentle Introduction to Finite Mixture Models” on page 2511 for more precise definitions and discussion
of similar but distinct modeling methodologies.

Classical statistical models are a special case of the finite mixture models in which the distribution of the
data has only a single component.

Finite mixture models are useful for the following applications:

• estimating multi-modal or heavy-tailed densities

• fitting zero-inflated or hurdle models to count data with excess zeros

• modeling overdispersed data

• fitting regression models with complex error distributions

• classifying observations based on predicted component probabilities

• accounting for unobservable, omitted variables

• estimating switching regressions
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The FMM procedure is designed to fit finite mixtures of regression models or finite mixtures of generalized
linear models in which the covariates and regression structure can be the same across components or might
be different. You can fit finite mixture models by maximum likelihood or Bayesian methods.

For more information about the differences between the FMM procedure and other statistical modeling
procedures in SAS/STAT software, see the section “PROC FMM Contrasted with Other SAS Procedures” on
page 2445.

Basic Features
The FMM procedure estimates the parameters in univariate finite mixture models and produces various
statistics to evaluate parameters and model fit. The following list summarizes some basic features of the
FMM procedure:

• maximum likelihood estimation for all models

• Markov chain Monte Carlo estimation for many models, including zero-inflated Poisson models

• many built-in link and distribution functions for modeling, including the beta, shifted t, Weibull,
beta-binomial, and generalized Poisson distributions, in addition to many standard members of the
exponential family of distributions

• specialized built-in mixture models such as binomial cluster models and multinomial cluster models
(Morel and Nagaraj 1993; Morel and Neerchal 1997; Neerchal and Morel 1998)

• acceptance of multiple MODEL statements to build mixture models in which the model effects,
distributions, or link functions vary across mixture components

• model-building syntax using CLASS and effect-based MODEL statements familiar from many other
SAS/STAT procedures (for example, the GLM, GLIMMIX, and MIXED procedures)

• evaluation of sequences of mixture models when you specify ranges for the number of components

• simple syntax to impose linear equality and inequality constraints among parameters

• ability to model regression and classification effects in the mixing probabilities through the PROB-
MODEL statement

• ability to incorporate full or partially known component membership into the analysis through the
PARTIAL= option in the PROC FMM statement

• OUTPUT statement that produces a SAS data set with important statistics for interpreting mixture
models, such as component log likelihoods and prior and posterior probabilities

• ability to add zero-inflation to any univariate model

• output data set with posterior parameter values for the Markov chain

• high degree of multithreading for high-performance optimization and Monte Carlo sampling
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The FMM procedure uses ODS Graphics to create graphical output. For general information about ODS
Graphics, see Chapter 21, “Statistical Graphics Using ODS.” For specific information about the statistical
graphics available with the FMM procedure, see the PLOTS options in the PROC FMM statement.

Assumptions
The FMM procedure makes the following assumptions in fitting statistical models:

• The number of components k in the finite mixture is known a priori and is not a parameter to be
estimated.

• The parameters of the components are distinct a priori.

• The observations are uncorrelated.

Notation for the Finite Mixture Model
The general expression for the finite mixture model fitted with the FMM procedure is as follows:

f .y/ D

kX
jD1

�j .z;˛j /pj .yI x0jˇj ; �j /

The number of components in the mixture is denoted as k. The mixture probabilities �j can depend on
regressor variables z and parameters ˛j . By default, the FMM procedure models these probabilities using a
logit transform if k = 2 and as a generalized logit model if k > 2. The component distributions pj can also
depend on regressor variables in xj , regression parameters ˇj , and possibly scale parameters �j . Notice
that the component distributions pj are indexed by j because the distributions might belong to different
families. For example, in a two-component model, you might model one component as a normal (Gaussian)
variable and the second component as a variable with a t distribution with low degrees of freedom to manage
overdispersion.

The mixture probabilities �j satisfy �j � 0, for all j, and

kX
jD1

�j .z;˛j / D 1

Homogeneous Mixtures

If the component distributions are of the same distributional form, the mixture is called homogeneous. In
most applications of homogeneous mixtures, the mixing probabilities do not depend on regression parameters.
The general model then simplifies to

f .y/ D

kX
jD1

�jp.yI x0ˇj ; �j /
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Because the component distributions depend on regression parameters ˇj , this model is known as a homo-
geneous regression mixture. A homogeneous regression mixture assumes that the regression effects are
the same across the components, although the FMM procedure does not impose such a restriction. If the
component distributions do not contain regression effects, the model

f .y/ D

kX
jD1

�jp.yI�j ; �j /

is the homogeneous mixture model. A classical case is the estimation of a continuous density as a k-component
mixture of normal distributions.

Special Mixtures

The FMM procedure enables you to fit several special mixture models. The Morel-Neerchal binomial cluster
model (Morel and Nagaraj 1993; Morel and Neerchal 1997; Neerchal and Morel 1998) is a mixture of
binomial distributions in which the success probabilities depend on the mixing probabilities. The multinomial
cluster model is a generalization of the binomial cluster model. It is a mixture of multinomial distributions in
which the outcome probability vector depends on the mixing probabilities.

Zero-inflated count models are obtained as two-component mixtures where one component is a classical
count model—such as the Poisson or negative binomial model—and the other component is a distribution
that is concentrated at zero. If the nondegenerate part of this special mixture is a zero-truncated model, the
resulting two-component mixture is known as a hurdle model (Cameron and Trivedi 1998).

PROC FMM Contrasted with Other SAS Procedures
Because the FMM procedure fits finite mixtures of generalized linear models, it can also fit standard forms of
these models in which the distribution of the data does not follow a mixture. This enables you to use the
FMM procedure to estimate parameters in models that can be fit with the CATMOD, LOGISTIC, GENMOD,
or GLIMMIX procedures. However, the FMM procedure does not fit models that have random effects.

The FMM procedure has limited postprocessing capabilities compared to some other statistical procedures
that are based on linear models. Concepts that are well understood and commonplace in linear models, such
as (linear) estimable functions, estimability, and least squares means, do not apply to mixture models in
the same way. For example, even the computation of a predicted value is not without ambiguity. You can
estimate the means in the component distributions in addition to the overall mean of the mixture.

The FMM procedure provides a limited number of built-in distributions and link functions. User-defined
distributions or link functions are not supported. Mixture models with component distributions that are not
supported by the FMM procedure can be fit with the NLMIXED procedure.

For Bayesian estimation, the FMM procedure implements a small number of highly specialized sampling
algorithms. These algorithms are very efficient and specifically designed for generalized linear models and
their mixtures. This limits, for example, the allowable specifications for prior distributions of the model
parameters. Models that do not fit the targeted algorithms of the FMM procedure can be fit with the MCMC
procedure.
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Getting Started: FMM Procedure

Mixture Modeling for Binomial Overdispersion: “Student,” Pearson, Beer,
and Yeast
The following example demonstrates how you can model a complicated, two-component binomial mixture
distribution, either with maximum likelihood or with Bayesian methods, with a few simple PROC FMM
statements.

William Sealy Gosset, a chemist at the Arthur Guinness Son and Company brewery in Dublin, joined the
statistical laboratory of Karl Pearson in 1906–1907 to study statistics. At first Gosset—who published all
but one paper under the pseudonym “Student” because his employer forbade publications by employees
after a co-worker had disclosed trade secrets—worked on the Poisson limit to the binomial distribution,
using haemacytometer yeast cell counts. Gosset’s interest in studying small-sample (and limit) problems was
motivated by the small sample sizes he typically saw in his work at the brewery.

Subsequently, Gosset’s yeast count data have been examined and revisited by many authors. In 1915, Karl
Pearson undertook his own examination and realized that the variability in “Student’s” data exceeded that
consistent with a Poisson distribution. Pearson (1915) bemoans the fact that if this were so, “it is certainly
most unfortunate that such material should have been selected to illustrate Poisson’s limit to the binomial.”

Using a count of Gosset’s yeast cell counts on the 400 squares of a haemacytometer (Table 39.1), Pearson
argues that a mixture process would explain the heterogeneity (beyond the Poisson).

Table 39.1 “Student’s” Yeast Cell Counts

Number of Cells 0 1 2 3 4 5

Frequency 213 128 37 18 3 1

Pearson fits various models to these data, chief among them a mixture of two binomial series

�1.p1 C q1/
�
C �2.p2 C q2/

�

where � is real-valued and thus the binomial series expands to

.p C q/� D

1X
kD0

�.� C 1/

�.k C 1/�.� � k C 1/
pk q��k

Pearson’s fitted model has � D 4:89997, �1 D 356:986, �2 D 43:014 (corresponding to a mixing proportion
of 356:986=.43:014C 356:986/ D 0:892), and estimated success probabilities in the binomial components
of 0.1017 and 0.4514, respectively. The success probabilities indicate that although the data have about a
90% chance of coming from a distribution with small success probability of about 0.1, there is a 10% chance
of coming from a distribution with a much larger success probability of about 0.45.
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If � is an integer, the binomial series is the cumulative mass function of a binomial random variable. The
value of � suggests that a suitable model for these data could also be constructed as a two-component mixture
of binomial random variables as follows:

f .y/ D � binomial.5; �1/C .1 � �/ binomial.5; �2/

The binomial sample size n=5 is suggested by Pearson’s estimate of � D 4:89997 and the fact that the largest
cell count in Table 39.1 is 5.

The following DATA step creates a SAS data set from the data in Table 39.1.

data yeast;
input count f;
n = 5;
datalines;
0 213
1 128
2 37
3 18
4 3
5 1

;

The two-component binomial model is fit with the FMM procedure with the following statements:

proc fmm data=yeast;
model count/n = / k=2;
freq f;

run;

Because the events/trials syntax is used in the MODEL statement, PROC FMM defaults to the binomial
distribution. The K=2 option specifies that the number of components is fixed and known to be two. The
FREQ statement indicates that the data are grouped; for example, the first observation represents 213 squares
on the haemacytometer where no yeast cells were found.

The “Model Information” and “Number of Observations” tables in Figure 39.1 convey that the fitted model is
a two-component homogeneous binomial mixture with a logit link function. The mixture is homogeneous
because there are no model effects in the MODEL statement and because both component distributions belong
to the same distributional family. By default, PROC FMM estimates the model parameters by maximum
likelihood.

Although only six observations are read from the data set, the data represent 400 observations (squares on the
haemacytometer). Because a constant binomial sample size of 5 is assumed, the data represent 273 successes
(finding a yeast cell) out of 2,000 Bernoulli trials.
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Figure 39.1 Model Information for Yeast Cell Model

The FMM ProcedureThe FMM Procedure

Model Information

Data Set WORK.YEAST

Response Variable (Events) count

Response Variable (Trials) n

Frequency Variable f

Type of Model Homogeneous Mixture

Distribution Binomial

Components 2

Link Function Logit

Estimation Method Maximum Likelihood

Number of Observations Read 6

Number of Observations Used 6

Sum of Frequencies Read 400

Sum of Frequencies Used 400

Number of Events 273

Number of Trials 2000

The estimated intercepts (on the logit scale) for the two binomial means are –2.2316 and –0.2974, respectively.
These values correspond to binomial success probabilities of 0.09695 and 0.4262, respectively (Figure 39.2).
The two components mix with probabilities 0.8799 and 1–0.8799 = 0.1201. These values are generally close
to the values found by Pearson (1915) using infinite binomial series instead of binomial mass functions.

Figure 39.2 Maximum Likelihood Estimates

Parameter Estimates for Binomial Model

Component Parameter Estimate
Standard

Error z Value Pr > |z|

Inverse
Linked

Estimate

1 Intercept -2.2316 0.1522 -14.66 <.0001 0.09695

2 Intercept -0.2974 0.3655 -0.81 0.4158 0.4262

Parameter Estimates for Mixing Probabilities

Linked Scale

Component
Mixing

Probability Logit(Prob)
Standard

Error z Value Pr > |z|

1 0.8799 1.9913 0.5725 3.48 0.0005

2 0.1201 -1.9913

To obtain fitted values and other observationwise statistics under the stipulated two-component model,
you can add the OUTPUT statement to the previous PROC FMM run. The following statements request
componentwise predicted values and the posterior probabilities:

proc fmm data=yeast;
model count/n = / k=2;
freq f;
output out=fmmout pred(components) posterior;
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run;
data fmmout;

set fmmout;
PredCount_1 = post_1 * f;
PredCount_2 = post_2 * f;

run;
proc print data=fmmout;
run;

The DATA step following the PROC FMM step computes the predicted cell counts in each component
(Figure 39.3). The predicted means in the components, 0.48476 and 2.13099, are close to the values
determined by Pearson (0.4983 and 2.2118), as are the predicted cell counts.

Figure 39.3 Predicted Cell Counts

Obs count f n Pred_1 Pred_2 Post_1 Post_2 PredCount_1 PredCount_2

1 0 213 5 0.096951 0.42620 0.98606 0.01394 210.030 2.9698

2 1 128 5 0.096951 0.42620 0.91089 0.08911 116.594 11.4058

3 2 37 5 0.096951 0.42620 0.59638 0.40362 22.066 14.9341

4 3 18 5 0.096951 0.42620 0.17598 0.82402 3.168 14.8323

5 4 3 5 0.096951 0.42620 0.02994 0.97006 0.090 2.9102

6 5 1 5 0.096951 0.42620 0.00444 0.99556 0.004 0.9956

Gosset, who was interested in small-sample statistical problems, investigated the use of prior knowledge in
mathematical-statistical analysis—for example, deriving the sampling distribution of the correlation coeffi-
cient after having assumed a uniform prior distribution for the coefficient in the population (Aldrich 1997).
Pearson also was not opposed to using prior information, especially uniform priors that reflect “equal distri-
bution of ignorance.” Fisher, on the other hand, would not have any of it: the best estimator in his opinion is
obtained by a criterion that is absolutely independent of prior assumptions about probabilities of particular
values. He objected to the insinuation that his derivations in the work on the correlation were deduced from
Bayes theorem (Fisher 1921).

The preceding analysis of the yeast cell count data uses maximum likelihood methods that are free of prior
assumptions. The following analysis takes instead a Bayesian approach, assuming a beta prior distribution
for the binomial success probabilities and a uniform prior distribution for the mixing probabilities. The
changes from the previous FMM run are the addition of the ODS GRAPHICS, PERFORMANCE, and
BAYES statements and the SEED=12345 option.

ods graphics on;
proc fmm data=yeast seed=12345;

model count/n = / k=2;
freq f;
performance cpucount=2;
bayes;

run;
ods graphics off;

With ODS Graphics enabled, PROC FMM produces diagnostic trace plots for the posterior samples. Bayesian
analyses are sensitive to the random number seed and thread count; the SEED= and CPUCOUNT= options
ensure consistent results for the purposes of this example. The SEED=12345 option in the PROC FMM
statement determines the random number seed for the random number generator used in the analysis. The
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CPUCOUNT=2 option in the PERFORMANCE statement sets the number of available processors to two.
The BAYES statement requests a Bayesian analysis.

The “Bayes Information” table in Figure 39.4 provides basic information about the Markov chain Monte
Carlo sampler. Because the model is a homogeneous mixture, the FMM procedure applies an efficient
conjugate sampling algorithm with a posterior sample size of 10,000 samples after a burn-in size of 2,000
samples. The “Prior Distributions” table displays the prior distribution for each parameter along with its
mean and variance and the initial value in the chain. Notice that in this situation all three prior distributions
reduce to a uniform distribution on .0; 1/.

Figure 39.4 Basic Information about MCMC Sampler

The FMM ProcedureThe FMM Procedure

Bayes Information

Sampling Algorithm Conjugate

Data Augmentation Latent Variable

Initial Values of Chain Data Based

Burn-In Size 2000

MC Sample Size 10000

MC Thinning 1

Parameters in Sampling 3

Mean Function Parameters 2

Scale Parameters 0

Mixing Prob Parameters 1

Number of Threads 2

Prior Distributions

Component Parameter Distribution Mean Variance
Initial
Value

1 Success Probability Beta(1, 1) 0.5000 0.08333 0.1365

2 Success Probability Beta(1, 1) 0.5000 0.08333 0.1365

1 Probability Dirichlet(1, 1) 0.5000 0.08333 0.6180

The FMM procedure produces a log note for this model, indicating that the sampled quantities are not the
linear predictors on the logit scale, but are the actual population parameters (on the data scale):

NOTE: Bayesian results for this model (no regressor variables,
non-identity link) are displayed on the data scale, not the
linked scale. You can obtain results on the linked (=linear)
scale by requesting a Metropolis-Hastings sampling algorithm.

The trace panel for the success probability in the first binomial component is shown in Figure 39.5. Note
that the first component in this Bayesian analysis corresponds to the second component in the MLE analysis.
The plots in this panel can be used to diagnose the convergence of the Markov chain. If the chain has not
converged, inferences cannot be made based on quantities derived from the chain. You generally look for the
following:

• a smooth unimodal distribution of the posterior estimates in the density plot displayed on the lower
right
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• good mixing of the posterior samples in the trace plot at the top of the panel (good mixing is indicated
when the trace traverses the support of the distribution and appears to have reached a stationary
distribution)

Figure 39.5 Trace Panel for Success Probability in First Component

The autocorrelation plot in Figure 39.5 shows fairly high and sustained autocorrelation among the posterior
estimates. While this is generally not a problem, you can affect the degree of autocorrelation among the
posterior estimates by running a longer chain and thinning the posterior estimates; see the NMC= and THIN=
options in the BAYES statement.

Both the trace plot and the density plot in Figure 39.5 are indications of successful convergence.

Figure 39.6 reports selected results that summarize the 10,000 posterior samples. The arithmetic means of
the success probabilities in the two components are 0.3884 and 0.0905, respectively. The posterior mean of
the mixing probability is 0.1771. These values are similar to the maximum likelihood parameter estimates in
Figure 39.2 (after swapping components).
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Figure 39.6 Summaries for Posterior Estimates

Posterior Summaries

Percentiles

Component Parameter N Mean
Standard
Deviation 25 50 75

1 Success Probability 10000 0.3884 0.0861 0.3254 0.3835 0.4457

2 Success Probability 10000 0.0905 0.0162 0.0811 0.0923 0.1017

1 Probability 10000 0.1771 0.0978 0.1073 0.1534 0.2227

Posterior Intervals

Component Parameter Alpha
Equal-Tail

Interval HPD Interval

1 Success Probability 0.050 0.2355 0.5663 0.2224 0.5494

2 Success Probability 0.050 0.0538 0.1171 0.0572 0.1187

1 Probability 0.050 0.0564 0.4311 0.0424 0.3780

Note that the standard errors in Figure 39.2 are not comparable to those in Figure 39.6, because the standard
errors for the MLEs are expressed on the logit scale and the Bayesian estimates are expressed on the data
scale. You can add the METROPOLIS option in the BAYES statement to sample the quantities on the logit
scale.

The “Posterior Intervals” table in Figure 39.6 displays 95% credible intervals (equal-tail intervals and intervals
of highest posterior density). It can be concluded that the component with the higher success probability
contributes less than 40% to the process.

Modeling Zero-Inflation: Is it Better to Fish Poorly or Not to Have Fished at
All?
The following example shows how you can use PROC FMM to model data that contain more zero values
than expected.

Many count data show an excess of zeros relative to the frequency of zeros expected under a reference model.
An excess of zeros leads to overdispersion because the process is more variable than a standard count data
model. Different mechanisms can lead to excess zeros. For example, suppose that the data are generated
from two processes with different distribution functions—one process generates the zero counts, and the
other process generates nonzero counts. In the vernacular of Cameron and Trivedi (1998), such a model is
called a hurdle model. With a certain probability—the probability of a nonzero count—a hurdle is crossed,
and events are being generated. Hurdle models are useful, for example, to model the number of doctor visits
per year. Once the decision to see a doctor has been made—the hurdle has been overcome—a certain number
of visits follow.

Hurdle models are closely related to zero-inflated models. Both can be expressed as two-component mixtures
in which one component has a degenerate distribution at zero and the other component is a count model. In
a hurdle model, the count model follows a zero-truncated distribution. In a zero-inflated model, the count



Modeling Zero-Inflation: Is it Better to Fish Poorly or Not to Have Fished at All? F 2453

model has a nonzero probability of generating zeros. Formally, a zero-inflated model can be written as

Pr.Y D y/ D �p1 C .1 � �/p2.y; �/

p1 D

�
1 y D 0

0 otherwise

where p2.y; �/ is a standard count model with mean � and support y 2 f0; 1; 2; � � � g.

The following data illustrates the use of a zero-inflated model. In a survey of park attendees, randomly
selected individuals were asked about the number of fish they caught in the last six months. Along with that
count, the gender and age of each sampled individual was recorded. The following DATA step displays the
data for the analysis:

data catch;
input gender $ age count @@;
datalines;
F 54 18 M 37 0 F 48 12 M 27 0
M 55 0 M 32 0 F 49 12 F 45 11
M 39 0 F 34 1 F 50 0 M 52 4
M 33 0 M 32 0 F 23 1 F 17 0
F 44 5 M 44 0 F 26 0 F 30 0
F 38 0 F 38 0 F 52 18 M 23 1
F 23 0 M 32 0 F 33 3 M 26 0
F 46 8 M 45 5 M 51 10 F 48 5
F 31 2 F 25 1 M 22 0 M 41 0
M 19 0 M 23 0 M 31 1 M 17 0
F 21 0 F 44 7 M 28 0 M 47 3
M 23 0 F 29 3 F 24 0 M 34 1
F 19 0 F 35 2 M 39 0 M 43 6

;

At first glance, the prevalence of zeros in the DATA set is apparent. Many park attendees did not catch any
fish. These zero counts are made up of two populations: attendees who do not fish and attendees who fish
poorly. A zero-inflation mechanism thus appears reasonable for this application because a zero count can be
produced by two separate distributions.

The following statements fit a standard Poisson regression model to these data. A common intercept is
assumed for men and women, and the regression slope varies with gender.

proc fmm data=catch;
class gender;
model count = gender*age / dist=Poisson;

run;

Figure 39.7 displays information about the model and data set. The “Model Information” table conveys
that the model is a single-component Poisson model (a Poisson GLM) and that parameters are estimated by
maximum likelihood. There are two levels in the CLASS variable gender, with females preceding males.
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Figure 39.7 Model Information and Class Levels in Poisson Regression

The FMM ProcedureThe FMM Procedure

Model Information

Data Set WORK.CATCH

Response Variable count

Type of Model Generalized Linear (GLM)

Distribution Poisson

Components 1

Link Function Log

Estimation Method Maximum Likelihood

Class Level
Information

Class Levels Values

gender 2 F M

Number of Observations Read 52

Number of Observations Used 52

The “Fit Statistics” and “Parameter Estimates” tables from the maximum likelihood estimation of the Poisson
GLM are shown in Figure 39.8. If the model is not overdispersed, the Pearson statistic should roughly equal
the number of observations in the data set minus the number of parameters. With n=52, there is evidence of
overdispersion in these data.

Figure 39.8 Fit Results in Poisson Regression

Fit Statistics

-2 Log Likelihood 182.7

AIC  (Smaller is Better) 188.7

AICC (Smaller is Better) 189.2

BIC  (Smaller is Better) 194.6

Pearson Statistic 85.9573

Parameter Estimates for Poisson Model

Effect gender Estimate
Standard

Error z Value Pr > |z|

Intercept -3.9811 0.5439 -7.32 <.0001

age*gender F 0.1278 0.01149 11.12 <.0001

age*gender M 0.1044 0.01224 8.53 <.0001

Suppose that the cause of overdispersion is zero-inflation of the count data. The following statements fit a
zero-inflated Poisson model.

proc fmm data=catch;
class gender;
model count = gender*age / dist=Poisson ;
model + / dist=Constant;

run;
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There are two MODEL statements, one for each component of the mixture. Because the distributions are
different for the components, you cannot specify the mixture model with a single MODEL statement. The
first MODEL statement identifies the response variable for the model (count) and defines a Poisson model
with intercept and gender-specific slopes. The second MODEL statement uses the continuation operator
(“+”) and adds a model with a degenerate distribution by using DIST=CONSTANT. Because the mass of the
constant is placed by default at zero, the second MODEL statement adds a zero-inflation component to the
model. It is sufficient to specify the response variable in one of the MODEL statements; you use the “=” sign
in that statement to separate the response variable from the model effects.

Figure 39.9 displays the “Model Information” and “Optimization Information” tables for this run of the FMM
procedure. The model is now identified as a zero-inflated Poisson (ZIP) model with two components, and the
parameters continue to be estimated by maximum likelihood. The “Optimization Information” table shows
that there are four parameters in the optimization (compared to three parameters in the Poisson GLM model).
The four parameters correspond to three parameters in the mean function (intercept and two gender-specific
slopes) and the mixing probability.

Figure 39.9 Model and Optimization Information in the ZIP Model

The FMM ProcedureThe FMM Procedure

Model Information

Data Set WORK.CATCH

Response Variable count

Type of Model Zero-inflated Poisson

Components 2

Estimation Method Maximum Likelihood

Optimization Information

Optimization Technique Dual Quasi-Newton

Parameters in Optimization 4

Mean Function Parameters 3

Scale Parameters 0

Mixing Prob Parameters 1

Number of Threads 4

Results from fitting the ZIP model by maximum likelihood are shown in Figure 39.10. The –2 log likelihood
and the information criteria suggest a much-improved fit over the single-component Poisson model (compare
Figure 39.10 to Figure 39.8). The Pearson statistic is reduced by factor 2 compared to the Poisson model and
suggests a better fit than the standard Poisson model.

Figure 39.10 Maximum Likelihood Results for the ZIP model

Fit Statistics

-2 Log Likelihood 145.6

AIC  (Smaller is Better) 153.6

AICC (Smaller is Better) 154.5

BIC  (Smaller is Better) 161.4

Pearson Statistic 43.4467

Effective Parameters 4

Effective Components 2
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Figure 39.10 continued

Parameter Estimates for Poisson Model

Component Effect gender Estimate
Standard

Error z Value Pr > |z|

1 Intercept -3.5215 0.6448 -5.46 <.0001

1 age*gender F 0.1216 0.01344 9.04 <.0001

1 age*gender M 0.1056 0.01394 7.58 <.0001

Parameter Estimates for Mixing Probabilities

Linked Scale

Component
Mixing

Probability Logit(Prob)
Standard

Error z Value Pr > |z|

1 0.6972 0.8342 0.4768 1.75 0.0802

2 0.3028 -0.8342

The number of effective parameters and components shown in Figure 39.8 equals the values from Figure 39.9.
This is not always the case because components can collapse (for example, when the mixing probability
approaches zero or when two components have identical parameter estimates). In this example, both
components and all four parameters are identifiable. The Poisson regression and the zero process mix, with a
probability of approximately 0.6972 attributed to the Poisson component.

The FMM procedure enables you to fit some mixture models by Bayesian techniques. The following
statements add the BAYES statement to the previous PROC FMM statements:

proc fmm data=catch seed=12345;
class gender;
model count = gender*age / dist=Poisson;
model + / dist=constant;
performance cpucount=2;
bayes;

run;

The “Model Information” table indicates that the model parameters are estimated by Markov chain Monte
Carlo techniques, and it displays the random number seed (Figure 39.11). This is useful if you did not
specify a seed to identify the seed value that reproduces the current analysis. The “Bayes Information” table
provides basic information about the Monte Carlo sampling scheme. The sampling method uses a data
augmentation scheme to impute component membership and then the Gamerman (1997) algorithm to sample
the component-specific parameters. The 2,000 burn-in samples are followed by 10,000 Monte Carlo samples
without thinning.
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Figure 39.11 Model, Bayes, and Prior Information in the ZIP Model

The FMM ProcedureThe FMM Procedure

Model Information

Data Set WORK.CATCH

Response Variable count

Type of Model Zero-inflated Poisson

Components 2

Estimation Method Markov Chain Monte Carlo

Random Number Seed 12345

Bayes Information

Sampling Algorithm Gamerman

Data Augmentation Latent Variable

Initial Values of Chain ML Estimates

Burn-In Size 2000

MC Sample Size 10000

MC Thinning 1

Parameters in Sampling 4

Mean Function Parameters 3

Scale Parameters 0

Mixing Prob Parameters 1

Number of Threads 2

Prior Distributions

Component Effect gender Distribution Mean Variance
Initial
Value

1 Intercept Normal(0, 1000) 0 1000.00 -3.5215

1 age*gender F Normal(0, 1000) 0 1000.00 0.1216

1 age*gender M Normal(0, 1000) 0 1000.00 0.1056

1 Probability Dirichlet(1, 1) 0.5000 0.08333 0.6972

The “Prior Distributions” table identifies the prior distributions, their parameters for the sampled quantities,
and their initial values. The prior distribution of parameters associated with model effects is a normal distri-
bution with mean 0 and variance 1,000. The prior distribution for the mixing probability is a Dirichlet(1,1),
which is identical to a uniform distribution (Figure 39.11). Because the second mixture component is a
degeneracy at zero with no associated parameters, it does not appear in the “Prior Distributions” table in
Figure 39.11.
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Figure 39.12 displays descriptive statistics about the 10,000 posterior samples. Recall from Figure 39.10 that
the maximum likelihood estimates were –3.5215, 0.1216, 0.1056, and 0.6972, respectively. With this choice
of prior, the means of the posterior samples are generally close to the MLEs in this example. The “Posterior
Intervals” table displays 95% intervals of equal-tail probability and 95% intervals of highest posterior density
(HPD) intervals.

Figure 39.12 Posterior Summaries and Intervals in the ZIP Model

Posterior Summaries

Percentiles

Component Effect gender N Mean
Standard
Deviation 25 50 75

1 Intercept 10000 -3.5524 0.6509 -3.9922 -3.5359 -3.0875

1 age*gender F 10000 0.1220 0.0136 0.1124 0.1218 0.1314

1 age*gender M 10000 0.1058 0.0140 0.0961 0.1055 0.1153

1 Probability 10000 0.6938 0.0945 0.6293 0.6978 0.7605

Posterior Intervals

Component Effect gender Alpha
Equal-Tail

Interval HPD Interval

1 Intercept 0.050 -4.8693 -2.3222 -4.8927 -2.3464

1 age*gender F 0.050 0.0960 0.1494 0.0961 0.1494

1 age*gender M 0.050 0.0792 0.1339 0.0796 0.1341

1 Probability 0.050 0.5041 0.8688 0.5025 0.8666

You can generate trace plots for the posterior parameter estimates by enabling ODS Graphics:

ods graphics on;
ods select TADPanel;
proc fmm data=catch seed=12345;

class gender;
model count = gender*age / dist=Poisson;
model + / dist=constant;
performance cpucount=2;
bayes;

run;
ods graphics off;
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A separate trace panel is produced for each sampled parameter, and the panels for the gender-specific slopes
are shown in Figure 39.13. There is good mixing in the chains: the modest autocorrelation that diminishes
after about 10 successive samples. By default, the FMM procedure transfers the credible intervals for each
parameter from the “Posterior Intervals” table to the trace plot and the density plot in the trace panel.

Figure 39.13 Trace Panels for Gender-Specific Slopes
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Figure 39.13 continued

Looking for Multiple Modes: Are Galaxies Clustered?
Mixture modeling is essentially a generalized form of one-dimensional cluster analysis. The following
example shows how you can use PROC FMM to explore the number and nature of Gaussian clusters in
univariate data.

Roeder (1990) presents data from the Corona Borealis sky survey with the velocities of 82 galaxies in a narrow
slice of the sky. Cosmological theory suggests that the observed velocity of each galaxy is proportional to its
distance from the observer. Thus, the presence of multiple modes in the density of these velocities could
indicate a clustering of the galaxies at different distances.

The following DATA step recreates the data set in Roeder (1990). The computed variable v represents the
measured velocity in thousands of kilometers per second.

title "FMM Analysis of Galaxies Data";
data galaxies;

input velocity @@;
v = velocity / 1000;
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datalines;
9172 9350 9483 9558 9775 10227 10406 16084 16170 18419
18552 18600 18927 19052 19070 19330 19343 19349 19440 19473
19529 19541 19547 19663 19846 19856 19863 19914 19918 19973
19989 20166 20175 20179 20196 20215 20221 20415 20629 20795
20821 20846 20875 20986 21137 21492 21701 21814 21921 21960
22185 22209 22242 22249 22314 22374 22495 22746 22747 22888
22914 23206 23241 23263 23484 23538 23542 23666 23706 23711
24129 24285 24289 24366 24717 24990 25633 26960 26995 32065
32789 34279
;

Analysis of potentially multi-modal data is a natural application of finite mixture models. In this case,
the modeling is complicated by the question of the variance for each of the components. Using identical
variances for each component could obscure underlying structure, but the additional flexibility granted by
component-specific variances might introduce spurious features.

You can use PROC FMM to prepare analyses for equal and unequal variances and use one of the available fit
statistics to compare the resulting models. You can use the model selection facility to explore models that
have varying numbers of mixture components—say, from three to seven as investigated in Roeder (1990).
The following statements select the best unequal-variance model by using Akaike’s information criterion
(AIC), which has a built-in penalty for model complexity:

title2 "Three to Seven Components, Unequal Variances";
ods graphics on;
proc fmm data=galaxies criterion=AIC;

model v = / kmin=3 kmax=7;
run;

The KMIN= and KMAX= options indicate the smallest and largest number of components to consider.
Figure 39.14, Figure 39.15, and Figure 39.16 show a selection of the output from this unequal variances
model.

Figure 39.14 Model Selection for Galaxy Data Assuming Unequal Variances

FMM Analysis of Galaxies Data
Three to Seven Components, Unequal Variances

The FMM Procedure

FMM Analysis of Galaxies Data
Three to Seven Components, Unequal Variances

The FMM Procedure

Model Information

Data Set WORK.GALAXIES

Response Variable v

Type of Model Homogeneous Mixture

Distribution Normal

Min Components 3

Max Components 7

Link Function Identity

Estimation Method Maximum Likelihood
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Figure 39.14 continued

Component Evaluation for Mixture Models

Number of

Components Parameters

Model
ID Total Eff. Total Eff. -2 Log L AIC AICC BIC Pearson

Max
Gradient

1 3 3 8 8 406.96 422.96 424.94 442.22 82.00 0.000024

2 4 4 11 11 406.96 428.96 432.74 455.44 82.00 0.00012

3 5 5 14 14 406.96 434.96 441.23 468.66 82.00 0.000050

4 6 6 17 17 406.96 440.96 450.53 481.88 82.00 0.000057

5 7 7 20 20 406.96 446.96 460.73 495.10 82.00 0.000039

The model with 3 components (ID=1) was selected as 'best' based on the AIC statistic.

Fit Statistics

-2 Log Likelihood 407.0

AIC  (Smaller is Better) 423.0

AICC (Smaller is Better) 424.9

BIC  (Smaller is Better) 442.2

Pearson Statistic 82.0002

Effective Parameters 8

Effective Components 3

Parameter Estimates for Normal Model

Component Parameter Estimate
Standard

Error z Value Pr > |z|

1 Intercept 9.7101 0.1597 60.80 <.0001

2 Intercept 33.0444 0.5322 62.09 <.0001

3 Intercept 21.4039 0.2597 82.41 <.0001

1 Variance 0.1785 0.09542

2 Variance 0.8496 0.6937

3 Variance 4.8567 0.8098

Parameter Estimates for Mixing Probabilities

Linked Scale

Component
Mixing

Probability GLogit(Prob)
Standard

Error z Value Pr > |z|

1 0.0854 -2.3308 0.3959 -5.89 <.0001

2 0.0366 -3.1781 0.5893 -5.39 <.0001

3 0.8781 0
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Figure 39.15 Density Plot for Best (Three-Component) Model Assuming Unequal Variances
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Figure 39.16 Criterion Panel Plot for Model Selection Assuming Unequal Variances

This example uses the AIC for model selection. Figure 39.16 shows the AIC and other model fit criteria for
each of the fitted models.

To require that the separate components have identical variances, add the EQUATE=SCALE option in the
MODEL statement:

title2 "Three to Seven Components, Equal Variances";
proc fmm data=galaxies criterion=AIC gconv=0;

model v = / kmin=3 kmax=7 equate=scale;
run;

The GCONV= convergence criterion is turned off in this PROC FMM run to avoid the early stoppage of
the iterations when the relative gradient changes little between iterations. Turning the criterion off usually
ensures that convergence is achieved with a small absolute gradient of the objective function.

The output for equal variances is shown in Figure 39.17 and Figure 39.18.
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Figure 39.17 Model Selection for Galaxy Data Assuming Equal Variances

FMM Analysis of Galaxies Data
Three to Seven Components, Equal Variances

The FMM Procedure

FMM Analysis of Galaxies Data
Three to Seven Components, Equal Variances

The FMM Procedure

Model Information

Data Set WORK.GALAXIES

Response Variable v

Type of Model Homogeneous Mixture
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Min Components 3

Max Components 7

Link Function Identity

Estimation Method Maximum Likelihood

Component Evaluation for Mixture Models

Number of

Components Parameters

Model
ID Total Eff. Total Eff. -2 Log L AIC AICC BIC Pearson

Max
Gradient

1 3 3 6 6 478.74 490.74 491.86 505.18 82.00 1.197E-6

2 4 4 8 8 416.49 432.49 434.47 451.75 82.00 6.161E-6

3 5 5 10 10 416.49 436.49 439.59 460.56 82.00 4.316E-6

4 6 6 12 12 416.49 440.49 445.02 469.37 82.00 6.294E-6

5 7 7 14 14 416.49 444.49 450.76 478.19 82.00 4.884E-6

The model with 4 components (ID=2) was selected as 'best' based on the AIC statistic.

Fit Statistics

-2 Log Likelihood 416.5

AIC  (Smaller is Better) 432.5

AICC (Smaller is Better) 434.5

BIC  (Smaller is Better) 451.7

Pearson Statistic 82.0000

Effective Parameters 8

Effective Components 4

Parameter Estimates for Normal Model

Component Parameter Estimate
Standard

Error z Value Pr > |z|

1 Intercept 23.5058 0.3460 67.93 <.0001

2 Intercept 33.0440 0.7610 43.42 <.0001

3 Intercept 20.0086 0.3029 66.06 <.0001

4 Intercept 9.7103 0.4981 19.50 <.0001

1 Variance 1.7354 0.3905

2 Variance 1.7354 0.3905

3 Variance 1.7354 0.3905

4 Variance 1.7354 0.3905
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Figure 39.17 continued

Parameter Estimates for Mixing Probabilities

Linked Scale

Component
Mixing

Probability GLogit(Prob)
Standard

Error z Value Pr > |z|

1 0.3503 1.4118 0.4497 3.14 0.0017

2 0.0366 -0.8473 0.6901 -1.23 0.2195

3 0.5277 1.8216 0.4205 4.33 <.0001

4 0.0854 0

Figure 39.18 Density Plot for Best (Four-Component) Model Assuming Equal Variances

Not surprisingly, the two variance specifications produce different optimal models. The unequal variance
specification favors a three-component model while the equal variance specification favors a four-component
model. Comparison of the AIC fit statistics, 423.0 and 432.5, indicates that the three-component, unequal
variance model provides the best overall fit.
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Comparison with Roeder’s Method

It is important to note that Roeder’s original analysis proceeds in a different manner than the finite mixture
modeling presented here. The technique presented by Roeder first develops a “best” range of scale parameters
based on a specific criterion. Roeder then uses fixed scale parameters taken from this range to develop
optimal equal-scale Gaussian mixture models.

You can reproduce Roeder’s point estimate for the density by specifying a five-component Gaussian mixture.
In addition, use the EQUATE=SCALE option in the MODEL statement and a RESTRICT statement fixing the
first component’s scale parameter at 0.9025 (Roeder’s h = 0.95, scaleD h2). The combination of these options
produces a mixture of five Gaussian components, each with variance 0.9025. The following statements
conduct this analysis:

title2 "Five Components, Equal Variances = 0.9025";
proc fmm data=galaxies;

model v = / K=5 equate=scale;
restrict int 0 (scale 1) = 0.9025;

run;

The output is shown in Figure 39.19 and Figure 39.20.

Figure 39.19 Reproduction of Roeder’s Five-Component Analysis of Galaxy Data

FMM Analysis of Galaxies Data
Five Components, Equal Variances = 0.9025

The FMM Procedure
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Five Components, Equal Variances = 0.9025

The FMM Procedure

Model Information

Data Set WORK.GALAXIES

Response Variable v

Type of Model Homogeneous Mixture

Distribution Normal

Components 5

Link Function Identity

Estimation Method Maximum Likelihood

Fit Statistics

-2 Log Likelihood 412.2

AIC  (Smaller is Better) 430.2

AICC (Smaller is Better) 432.7

BIC  (Smaller is Better) 451.9

Pearson Statistic 82.5549

Effective Parameters 9

Effective Components 5

Linear Constraints at
Solution

k = 1
Constraint
Active

Variance = 0.90 Yes
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Figure 39.19 continued

Parameter Estimates for Normal Model

Component Parameter Estimate
Standard

Error z Value Pr > |z|

1 Intercept 26.3266 0.7778 33.85 <.0001

2 Intercept 33.0443 0.5485 60.25 <.0001

3 Intercept 9.7101 0.3591 27.04 <.0001

4 Intercept 23.0295 0.2294 100.38 <.0001

5 Intercept 19.7187 0.1784 110.55 <.0001

1 Variance 0.9025 0

2 Variance 0.9025 0

3 Variance 0.9025 0

4 Variance 0.9025 0

5 Variance 0.9025 0

Parameter Estimates for Mixing Probabilities

Linked Scale

Component
Mixing

Probability GLogit(Prob)
Standard

Error z Value Pr > |z|

1 0.0397 -2.4739 0.7084 -3.49 0.0005

2 0.0366 -2.5544 0.6016 -4.25 <.0001

3 0.0854 -1.7071 0.4141 -4.12 <.0001

4 0.3678 -0.2466 0.2699 -0.91 0.3609

5 0.4706 0
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Figure 39.20 Density Plot for Roeder’s Analysis



2470 F Chapter 39: The FMM Procedure

Syntax: FMM Procedure
The following statements are available in the FMM procedure:

PROC FMM < options > ;
BAYES bayes-options ;
BY variables ;
CLASS variables < / TRUNCATE > ;
FREQ variable ;
ID variables ;
MODEL response< (response-options) > = < effects > < / model-options > ;
MODEL events/trials = < effects > < / model-options > ;
MODEL + < effects > < / model-options > ;
OUTPUT < OUT=SAS-data-set >

< keyword< (keyword-options) > < =name > > . . .
< keyword< (keyword-options) > < =name > > < / options > ;

PERFORMANCE performance-options ;
PROBMODEL < effects > < / probmodel-options > ;
RESTRICT < ’label’ > constraint-specification < , . . . , constraint-specification >

< operator < value > > < / option > ;
WEIGHT variable ;

The PROC FMM statement and at least one MODEL statement is required. The CLASS, RESTRICT and
MODEL statements can appear multiple times. If a CLASS statement is specified, it must precede the
MODEL statements. The RESTRICT statements must appear after the MODEL statements.

PROC FMM Statement
PROC FMM < options > ;

The PROC FMM statement invokes the FMM procedure. Table 39.2 summarizes the options available in the
PROC FMM statement. These and other options in the PROC FMM statement are then described fully in
alphabetical order.

Table 39.2 PROC FMM Statement Options

Option Description

Basic Options
DATA= Specifies the input data set
EXCLUSION= Specifies how the procedure responds to support violations in the

data
NAMELEN= Specifies the length of effect names
ORDER= Determines the sort order of CLASS variables
SEED= Specifies the random number seed for analyses that require random

number draws
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Table 39.2 continued

Option Description

Displayed Output
COMPONENTINFO Displays information about the mixture components
CORR Displays the asymptotic correlation matrix of the maximum

likelihood parameter estimates or the empirical correlation matrix
of the Bayesian posterior estimates

COV Displays the asymptotic covariance matrix of the maximum
likelihood parameter estimates or the empirical covariance matrix
of the Bayesian posterior estimates

COVI Displays the inverse of the covariance matrix of the parameter
estimates

FITDETAILS Displays fit information for all examined models
ITDETAILS Adds estimates and gradients to the “Iteration History” table
NOCLPRINT Suppresses the “Class Level Information” table completely or

partially
NOITPRINT Suppresses the “Iteration History Information” table
NOPRINT Suppresses tabular and graphical output
PARMSTYLE= Specifies how parameters are displayed in ODS tables
PLOTS Produces ODS statistical graphics

Computational Options
CRITERION= Specifies the criterion used in model selection
NOCENTER Prevents centering and scaling of the regressor variables
PARTIAL= Specifies a variable that defines a partial classification

Options Related to Optimization
ABSCONV= Tunes an absolute function convergence criterion
ABSFCONV= Tunes an absolute function difference convergence criterion
ABSGCONV= Tunes the absolute gradient convergence criterion
FCONV= Specifies a relative function convergence criterion that is based on

a relative change of the function value
FCONV2= Specifies a relative function convergence criterion that is based on

a predicted reduction of the objective function
GCONV= Tunes the relative gradient convergence criterion
MAXITER= Specifies the maximum number of iterations in any optimization
MAXFUNC= Specifies the maximum number of function evaluations in any

optimization
MAXTIME= Specifies the upper limit of CPU time in seconds for any

optimization
MINITER= Specifies the minimum number of iterations in any optimization
TECHNIQUE= Selects the optimization technique
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Table 39.2 continued

Option Description

Singularity Tolerances
INVALIDLOGL= Tunes the value assigned to an invalid component log likelihood
SINGCHOL= Tunes singularity for Cholesky decompositions
SINGRES= Tunes singularity for the residual variance
SINGULAR= Tunes general singularity criterion

ZEROPROB= Tunes component weight threshold for number of effective
components

You can specify the following options in the PROC FMM statement.

ABSCONV=r

ABSTOL=r
specifies an absolute function convergence criterion. For minimization, the termination criterion is
f . .k// � r , where is the vector of parameters in the optimization and f .�/ is the objective function.
The default value of r is the negative square root of the largest double-precision value, which serves
only as a protection against overflows.

ABSFCONV=r < n >

ABSFTOL=r< n >
specifies an absolute function difference convergence criterion. For all techniques except NMSIMP,
the termination criterion is a small change of the function value in successive iterations:

jf . .k�1// � f . .k//j � r

Here,  denotes the vector of parameters that participate in the optimization, and f .�/ is the objective
function. The same formula is used for the NMSIMP technique, but  .k/ is defined as the vertex with
the lowest function value, and  .k�1/ is defined as the vertex with the highest function value in the
simplex. The default value is r=0. The optional integer value n specifies the number of successive
iterations for which the criterion must be satisfied before the process can be terminated.

ABSGCONV=r < n >

ABSGTOL=r< n >
specifies an absolute gradient convergence criterion. The termination criterion is a small maximum
absolute gradient element:

max
j
jgj . 

.k//j � r

Here,  denotes the vector of parameters that participate in the optimization, and gj .�/ is the gradient
of the objective function with respect to the jth parameter. This criterion is not used by the NMSIMP
technique. The default value is r=1E–5. The optional integer value n specifies the number of successive
iterations for which the criterion must be satisfied before the process can be terminated.
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COMPONENTINFO

COMPINFO

CINFO
produces a table with additional details about the fitted model components.

COV
produces the covariance matrix of the parameter estimates. For maximum likelihood estimation, this
matrix is based on the inverse (projected) Hessian matrix. For Bayesian estimation, it is the empirical
covariance matrix of the posterior estimates. The covariance matrix is shown for all parameters, even
if they did not participate in the optimization or sampling.

COVI
produces the inverse of the covariance matrix of the parameter estimates. For maximum likelihood
estimation, the covariance matrix is based on the inverse (projected) Hessian matrix. For Bayesian
estimation, it is the empirical covariance matrix of the posterior estimates. This matrix is then inverted
by sweeping, and rows and columns that correspond to linear dependencies or singularities are zeroed.

CORR
produces the correlation matrix of the parameter estimates. For maximum likelihood estimation this
matrix is based on the inverse (projected) Hessian matrix. For Bayesian estimation, it is based on the
empirical covariance matrix of the posterior estimates.

CRITERION=keyword

CRIT=keyword
specifies the criterion by which the FMM procedure ranks models when multiple models are evaluated
during maximum likelihood estimation. You can choose from the following criteria to rank models by
specifying the appropriate keyword :

AIC uses Akaike’s information criterion.

AICC uses the bias-corrected AIC criterion.

BIC uses the Bayesian information criterion.

GRADIENT uses the largest element of the gradient (in absolute value).

LOGL | LL uses the mixture log likelihood.

PEARSON uses the Pearson statistic.

The default for maximum likelihood estimation is CRITERION=BIC.

In Bayesian model selection, you can choose from the following criteria to rank models:

DIC uses the deviance information criterion.

LOGL | LL uses the mixture log likelihood

The default for Bayesian estimation is CRITERION=DIC.

DATA=SAS-data-set
names the SAS data set to be used by PROC FMM. The default is the most recently created data set.
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EXCLUSION=NONE | ANY | ALL
EXCLUDE=NONE | ANY | ALL

specifies how the FMM procedure handles support violations of observations. For example, in a
mixture of two Poisson variables, negative response values are not possible. However, in a mixture of
a Poisson and a normal variable, negative values are possible, and their likelihood contribution to the
Poisson component is zero. An observation that violates the support of one component distribution of
the model might be a valid response with respect to one or more other component distributions. This
requires some nuanced handling of support violations in mixture models.

The default exclusion technique, EXCLUSION=ALL, removes an observation from the analysis only
if it violates the support of all component distributions. The other extreme, EXCLUSION=NONE,
permits an observation into the analysis regardless of support violations. EXCLUSION=ANY removes
observations from the analysis if the response violates the support of any component distributions. In
the single-component case, EXCLUSION=ALL and EXCLUSION=ANY are identical.

FCONV=r< n >
FTOL=r< n >

specifies a relative function convergence criterion that is based on the relative change of the function
value. For all techniques except NMSIMP, PROC FMM terminates when there is a small relative
change of the function value in successive iterations:

jf . .k// � f . .k�1//j

jf . .k�1//j
� r

Here,  denotes the vector of parameters that participate in the optimization, and f .�/ is the objective
function. The same formula is used for the NMSIMP technique, but  .k/ is defined as the vertex with
the lowest function value, and  .k�1/ is defined as the vertex with the highest function value in the
simplex.

The default is r D 10�FDIGITS, where FDIGITS is by default � log10f�g, and � is the machine
precision. The optional integer value n specifies the number of successive iterations for which the
criterion must be satisfied before the process terminates.

FCONV2=r< n >
FTOL2=r< n >

specifies a relative function convergence criterion that is based on the predicted reduction of the
objective function. For all techniques except NMSIMP, the termination criterion is a small predicted
reduction

df .k/ � f .�.k// � f .�.k/ C s.k//

of the objective function. The predicted reduction

df .k/ D �g.k/0s.k/ �
1

2
s.k/0H.k/s.k/

D �
1

2
s.k/0g.k/

� r

is computed by approximating the objective function f by the first two terms of the Taylor series and
substituting the Newton step:

s.k/ D �ŒH.k/��1g.k/
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For the NMSIMP technique, the termination criterion is a small standard deviation of the function
values of the nC 1 simplex vertices �.k/

l
, l D 0; : : : ; n,s

1

nC 1

X
l

h
f .�

.k/

l
/ � f .�.k//

i2
� r

where f .�.k// D 1
nC1

P
l f .�

.k/

l
/. If there are nact boundary constraints active at �.k/, the mean

and standard deviation are computed only for the nC 1 � nact unconstrained vertices.

The default value is r = 1E–6 for the NMSIMP technique and r = 0 otherwise. The optional integer
value n specifies the number of successive iterations for which the criterion must be satisfied before
the process terminates.

FITDETAILS
requests that the “Optimization Information,” “Iteration History,” “Convergence Status,” and “Fit
Statistics” tables be produced for all optimizations when models with different number of components
are evaluated. For example, the following statements fit a binomial regression model with up to three
components and produces fit and optimization information for all three:

proc fmm fitdetails;
model y/n = x / kmax=3;

run;

Without the FITDETAILS option, only the “Fit Statistics” table for the selected model is displayed.

In Bayesian estimation, the FITDETAILS option displays the following tables for each model that the
procedure fits: “Bayes Information,” “Iteration History,” “Prior Information,” “Fit Statistics,” “Posterior
Summaries,” “Posterior Intervals,” and any requested diagnostics tables. The “Iteration History” table
appears only if the BAYES statement includes the INITIAL=MLE option.

Without the FITDETAILS option, these tables are listed only for the selected model.

GCONV=r< n >

GTOL=r< n >
specifies a relative gradient convergence criterion. For all techniques except CONGRA and NMSIMP,
the termination criterion is a small normalized predicted function reduction:

g. .k//0ŒH.k/��1g. .k//
jf . .k//j

� r

Here,  denotes the vector of parameters that participate in the optimization, f .�/ is the objective
function, and g.�/ is the gradient. For the CONGRA technique (where a reliable Hessian estimate H is
not available), the following criterion is used:

k g. .k// k22 k s. .k// k2
k g. .k// � g. .k�1// k2 jf . .k//j

� r

This criterion is not used by the NMSIMP technique. The default value is r = 1E–8. The optional
integer value n specifies the number of successive iterations for which the criterion must be satisfied
before the process can terminate.
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HESSIAN
displays the Hessian matrix of the model. This option is not available for Bayesian estimation.

INVALIDLOGL=r
specifies the value assumed by the FMM procedure if a log likelihood cannot be computed (for example,
because the value of the response variable falls outside of the response distribution’s support). The
default value is –1E20.

ITDETAILS
adds parameter estimates and gradients to the “Iteration History” table. If the FMM procedure centers
or scales the model variables (or both), the parameter estimates and gradients reported during the
iteration refer to that scale. You can suppress centering and scaling with the NOCENTER option.

MAXFUNC=n

MAXFU=n
specifies the maximum number of function calls in the optimization process. The default values are as
follows, depending on the optimization technique:

• TRUREG, NRRIDG, and NEWRAP: 125

• QUANEW and DBLDOG: 500

• CONGRA: 1000

• NMSIMP: 3000

The optimization can terminate only after completing a full iteration. Therefore, the number of function
calls that are actually performed can exceed the number that is specified by the MAXFUNC= option.
You can choose the optimization technique with the TECHNIQUE= option.

MAXITER=n

MAXIT=n
specifies the maximum number of iterations in the optimization process. The default values are as
follows, depending on the optimization technique:

• TRUREG, NRRIDG, and NEWRAP: 50

• QUANEW and DBLDOG: 200

• CONGRA: 400

• NMSIMP: 1000

These default values also apply when n is specified as a missing value. You can choose the optimization
technique with the TECHNIQUE= option.

MAXTIME=r
specifies an upper limit of r seconds of CPU time for the optimization process. The time is checked
only at the end of each iteration. Therefore, the actual run time might be longer than the specified time.
By default, CPU time is not limited.
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MINITER=n

MINIT=n
specifies the minimum number of iterations. The default value is 0. If you request more iterations
than are actually needed for convergence to a stationary point, the optimization algorithms can behave
strangely. For example, the effect of rounding errors can prevent the algorithm from continuing for the
required number of iterations.

NAMELEN=number
specifies the length to which long effect names are shortened. The default and minimum value is 20.

NOCENTER
requests that regressor variables not be centered or scaled. By default the FMM procedure centers
and scales columns of the X matrix if the models contain intercepts. If NOINT options in MODEL
statements are in effect, the columns of X are scaled but not centered. Centering and scaling can help
with the stability of estimation and sampling algorithms. The FMM procedure does not produce a
table of the centered and scaled coefficients and provides no user control over the type of centering and
scaling that is applied. The NOCENTER option turns any centering and scaling off and processes the
raw values of the continuous variables.

NOCLPRINT< =number >
suppresses the display of the “Class Level Information” table if you do not specify number . If you
specify number , the values of the classification variables are displayed for only those variables whose
number of levels is less than number . Specifying a number helps to reduce the size of the “Class Level
Information” table if some classification variables have a large number of levels.

NOITPRINT
suppresses the display of the “Iteration History Information” table.

NOPRINT
suppresses the normal display of tabular and graphical results. The NOPRINT option is useful when
you want to create only one or more output data sets with the procedure. This option temporarily
disables the Output Delivery System (ODS); see Chapter 20, “Using the Output Delivery System,” for
more information.

ORDER=order-type
specifies the sort order for the levels of CLASS variables. This ordering determines which parameters
in the model correspond to each level in the data.

You can specify the following values for order-type:

DATA
sorts the levels by order of appearance in the input data set.

FORMATTED
sorts the levels by external formatted value, except for numeric variables with no explicit format,
which are sorted by their unformatted (internal) value.

FREQ
sorts the levels by descending frequency count; levels with the most observations come first in
the order.
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INTERNAL
sorts the levels by unformatted value.

FREQDATA
sorts the levels by order of descending frequency count, and within counts by order of appearance
in the input data set when counts are tied.

FREQFORMATTED
sorts the levels by order of descending frequency count, and within counts by formatted value (as
above) when counts are tied.

FREQINTERNAL
sorts the levels by order of descending frequency count, and within counts by unformatted value
when counts are tied.

When the default ORDER=FORMATTED is in effect for numeric variables for which you have
supplied no explicit format, the levels are ordered by their internal values. To order numeric class
levels with no explicit format by their BEST12. formatted values, you can specify this format explicitly
for the CLASS variables.

When FORMATTED and INTERNAL values are involved, the sort order is machine-dependent.

When the response variable appears in a CLASS statement, the ORDER= option in the PROC FMM
statement applies to its sort order. For example, in the following statements the sort order of the
wheeze variable is determined by the order of appearance in the input data set because the response
variable appears in the CLASS statement:

proc fmm order=data;
class city wheeze;
model wheeze = city age / dist=binary s;

run;

However, in the following statements the sort order of the wheeze variable is determined by the
formatted value (the default response-option in the MODEL statement):

proc fmm order=data;
class city;
model wheeze = city age / dist=binary s;

run;

The ORDER= option in the PROC FMM statement has no effect on the sort order of the wheeze
variable because it does not appear in the CLASS statement.

When you specify a response-option in the MODEL statement, it overrides the ORDER= option in the
PROC FMM statement.

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.
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PARMSTYLE=EFFECT | LABEL
specifies the display style for parameters and effects. The FMM procedure can display parameters in
two styles:

• The EFFECT style (which is used by the MIXED and GLIMMIX procedure, for example)
identifies a parameter with an “Effect” column and adds separate columns for the CLASS
variables in the model.

• The LABEL style creates one column, named Parameter, that combines the relevant information
about a parameter into a single column. If your model contains multiple CLASS variables, the
LABEL style might use space more economically.

The EFFECT style is the default for models that contain effects; otherwise the LABEL style is used
(for example, in homogeneous mixtures). You can change the display style with the PARMSTYLE=
option. Regardless of the display style, ODS output data sets that contain information about parameter
estimates contain columns for both styles.

PARTIAL=variable

MEMBERSHIP=variable
specifies a variable in the input data set that identifies component membership. You can specify missing
values for observations whose component membership is undetermined; this is known as a partial
classification (McLachlan and Peel 2000, p. 75). For observations with known membership, the
likelihood contribution is no longer a mixture. If observation i is known to be a member of component
m, then its log likelihood contribution is

log
˚
�m.z;˛m/ pm.yI x0mˇm; �m/

	
Otherwise, if membership is undetermined, it is

log

8<:
kX
jD1

�j .z;˛j /pj .yI x0jˇj ; �j /

9=;
The variable specified in the PARTIAL= option can be numeric or character. In case of a character
variable, the variable must appear in the CLASS statement. If the PARTIAL= variable appears in the
CLASS statement, the membership assignment is made based on the levelized values of the variable,
as shown in the “Class Level Information” table. Invalid values of the PARTIAL= variable are ignored.

In a model in which label switching is a problem, the switching can sometimes be avoided by assigning
just a few observations to categories. For example, in a three-component model, switches might be
prevented by assigning the observation with the smallest response value to the first component and the
observation with the largest response value to the last component.
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PLOTS < (global-plot-options) > < =plot-request < (options) > >

PLOTS < (global-plot-options) > < =(plot-request < (options) > < ... plot-request < (options) > >) >
controls the graphical output that is produced through ODS Graphics.

ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;
proc fmm data=yeast seed=12345;

model count/n = / k=2;
freq f;
performance cpucount=2;
bayes;

run;
ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

Global Plot Options

The global-plot-options apply to all relevant plots generated by the FMM procedure. The global-plot-
options supported by the FMM procedure are as follows:

UNPACKPANEL

UNPACK
displays each plot separately. (By default, some plots can appear together in a single panel.)

ONLY
produces only the specified plots. This option is useful if you do not want the procedure to
generate all default plots, but only the ones specified.

Specific Plot Options

The following listing describes the specific plots and their options.

ALL
requests that all plots appropriate for the analysis be produced.

NONE
requests that no ODS graphics be produced.

DENSITY < (density-options) >
requests a plot of the data histogram and mixture density function. This is a default plot in
models that have no effects in the MODEL statements and is available only in these models.
Furthermore, all distributions that are involved in the mixture must be continuous. You can
specify the following density-options to modify the plot:
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CUMULATIVE

CDF
displays the histogram and densities in cumulative form.

NBINS=n

BINS=n
specifies the number of bins in the histogram; n is greater than or equal to 0. By default, the
FMM procedure computes a suitable bin width and number of bins, based on the range of
the response and the number of usable observations. The option has no effect for binary
data.

NOCOMPONENTS

NOCOMP
suppresses the component densities from the plot. If the component densities are displayed,
they are scaled so that their sum equals the mixture density at any point on the graph. In
single-component models, this option has no effect.

NODENSITY

NODENS
suppresses the computation of the mixture density and the component densities. If you
specify the NOHISTOGRAM and the NODENSITY option, no plot is produced.

NOLABEL
suppresses the component identification with labels. By default, the FMM procedure labels
component densities in the legend of the plot. If you do not specify a model label with
the LABEL= option in the MODEL statement, an identifying label is constructed from the
parameter estimates that are associated with the component. In this case the parameter values
are not necessarily the mean and variance of the distribution; the values used to identify the
densities on the plot are chosen to simplify linking between graphical and tabular results.

NOHISTOGRAM

NOHIST
suppresses the computation of the histogram of the raw values. If you specify the NOHIS-
TOGRAM and the NODENSITY option, no plot is produced.

NPOINTS=n

N=n
specifies the number of values used to compute the density functions; n is greater than or
equal to 0. The default is N=200.

WIDTH=value

BINWIDTH=value
specifies the bin width for the histogram. The value is specified in units of the response
variable and must be positive. The option has no effect for binary data.

TRACE < (tadpanel-options) >
requests a trace panel with posterior diagnostics for a Bayesian analysis. If a BAYES statement is
present, the trace panel plots are generated by default, one for each sampled parameter. You can
specify the following tadpanel-options to modify the plot:
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BOX
BOXPLOT

replaces the autocorrelation plot with a box plot of the posterior sample.

SMOOTH=NONE | MEAN | SPLINE
adds a reference estimate to the trace plot. By default, SMOOTH=NONE. SMOOTH=MEAN
uses the arithmetic mean of the trace as the reference. SMOOTH=SPLINE adds a penalized
B-spline.

REFERENCE=reference-style
adds reference lines to the density plot, trace plot, and box plot. You can specify the
following reference-styles:

NONE suppresses the reference lines.

EQT requests equal-tail intervals.

HPD requests intervals of highest posterior density. The level for the credible
or HPD intervals is chosen based on the “Posterior Interval Statistics”
table.

PERCENTILES (or PERC) for percentiles. The largest and smallest percentiles in the
“Posterior Summary Statistics” table are used.

The default is REFERENCE=EQT.

UNPACK
unpacks the panel graphic and displays its elements as separate plots.

CRITERIONPANEL < (critpanel-options) >
requests a plot for comparing the model fit criteria for different numbers of components. This
plot is available only if you also specify the KMAX option in at least one MODEL statement.
The plot includes different criteria, depending on whether you are using maximum likelihood or
Bayesian estimation. You can specify the following critpanel-option to modify the plot:

UNPACK
unpacks the panel plot and displays its elements as separate plots, one for each fit criterion.

SEED=n
determines the random number seed for analyses that depend on a random number stream. If you
do not specify a seed or if you specify a value less than or equal to zero, the seed is generated from
reading the time of day from the computer clock. The largest possible value for the seed is 231 � 1.
The seed value is reported in the “Model Information” table.

You can use the SYSRANDOM and SYSRANEND macro variables after a PROC FMM run to
query the initial and final seed values. However, using the final seed value as the starting seed for a
subsequent analysis does not continue the random number stream where the previous analysis left off.
The SYSRANEND macro variable provides a mechanism to pass on seed values to ensure that the
sequence of random numbers is the same every time you run an entire program.

Analyses that use the same (nonzero) seed are not completely reproducible if they are executed with a
different number of threads because the random number streams in separate threads are independent.
You can control the number of threads used by the FMM procedure with system options or through the
PERFORMANCE statement in the FMM procedure.
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SINGCHOL=number
tunes the singularity criterion in Cholesky decompositions. The default is 1E4 times the machine
epsilon; this product is approximately 1E–12 on most computers.

SINGRES=number
sets the tolerance for which the residual variance or scale parameter is considered to be zero. The
default is 1E4 times the machine epsilon; this product is approximately 1E–12 on most computers.

SINGULAR=number
tunes the general singularity criterion applied by the FMM procedure in sweeps and inversions. The
default is 1E4 times the machine epsilon; this product is approximately 1E–12 on most computers.

TECHNIQUE=keyword

TECH=keyword
specifies the optimization technique to obtain maximum likelihood estimates. You can choose from the
following techniques by specifying the appropriate keyword :

CONGRA performs a conjugate-gradient optimization.

DBLDOG performs a version of double-dogleg optimization.

NEWRAP performs a Newton-Raphson optimization combining a line-search algorithm with
ridging.

NMSIMP performs a Nelder-Mead simplex optimization.

NONE performs no optimization.

NRRIDG performs a Newton-Raphson optimization with ridging.

QUANEW performs a dual quasi-Newton optimization.

TRUREG performs a trust-region optimization.

The default is TECH=QUANEW.

For more details about these optimization methods, see the section “Choosing an Optimization
Algorithm” on page 501 in Chapter 19, “Shared Concepts and Topics.”

ZEROPROB=number
tunes the threshold (a value between 0 and 1) below which the FMM procedure considers a component
mixing probability to be zero. This affects the calculation of the number of effective components. The
default is the square root of the machine epsilon; this is approximately 1E–8 on most computers.

BAYES Statement
BAYES bayes-options ;

The BAYES statement requests that the parameters of the model be estimated by Markov chain Monte Carlo
sampling techniques. The FMM procedure can use maximum likelihood to estimate the parameters of all
models that are supported by the procedure. Bayesian estimation is available for only a subset of these
models.
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In Bayesian analysis, it is essential to examine the convergence of the Markov chains before you proceed
with posterior inference. With ODS Graphics turned on, the FMM procedure produces graphics at the end of
the procedure output; you can visually examine the convergence of the chain in these graphics. You cannot
base inferences on a Markov chain that has not converged.

The output produced for a Bayesian analysis is markedly different from that for a frequentist (maximum
likelihood) analysis for the following reasons:

• Parameter estimates do not have the same interpretation in the two analyses. Parameters are fixed
unknown constants in the frequentist context and random variables in a Bayesian analysis.

• The results of a Bayesian analysis are summarized through chain diagnostics and posterior summary
statistics and intervals.

• The FMM procedure samples the mixing probabilities in Bayesian models directly, rather than mapping
them onto a logistic (or other) scale.

The FMM procedure applies highly specialized sampling algorithms in Bayesian models. For single-
component models without effects, a conjugate sampling algorithm is used where possible. For models in
the exponential family that contain effects, the sampling algorithm is based on Gamerman (1997). For the
normal and t distributions, a conjugate sampler is the default sampling algorithm for models with and without
effects. In multi-component models, the sampling algorithm is based on latent variable sampling through
data augmentation (Frühwirth-Schnatter 2006) and the Gamerman or conjugate sampler. Because of this
specialization, the options for controlling the prior distributions of the parameters are limited.

Table 39.3 summarizes the bayes-options available in the BAYES statement. The full assortment of options
is then described in alphabetical order.

Table 39.3 BAYES Statement Options

Option Description

Options Related to Sampling
INITIAL= Specifies how to construct initial values
NBI= Specifies the number of burn-in samples
NMC= Specifies the number of samples after burn-in
METROPOLIS Forces a Metropolis-Hastings sampling algorithm even if conjugate

sampling is possible
OUTPOST= Generates a data set that contains the posterior estimates
THIN= Controls the thinning of the Markov chain

Specification of Prior Information
MIXPRIORPARMS Specifies the prior parameters for the Dirichlet distribution of the

mixing probabilities
BETAPRIORPARMS= Specifies the parameters of the normal prior distribution for indi-

vidual parameters in the ˇ vector
MUPRIORPARMS= Specifies the parameters of the prior distribution for the means in

homogeneous mixtures without effects
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Table 39.3 continued

Option Description

PHIPRIORPARMS= Specifies the parameters of the inverse gamma prior distribution for
the scale parameters in homogeneous mixtures

PRIOROPTIONS Specifies additional options used in the determination of the prior
distribution

Posterior Summary Statistics and Convergence Diagnostics
DIAGNOSTICS= Displays convergence diagnostics for the Markov chain
STATISTICS Displays posterior summary information for the Markov chain

Other Options
ESTIMATE= Specifies which estimate is used for the computation of OUTPUT

statistics and graphics
TIMEINC= Specifies the time interval to report on sampling progress (in sec-

onds)

You can specify the following bayes-options in the BAYES statement.

BETAPRIORPARMS=pair-specification

BETAPRIORPARMS(pair-specification . . . pair-specification)
specifies the parameters for the normal prior distribution of the parameters that are associated with
model effects (ˇs). The pair-specification is of the form .a; b/, and the values a and b are the mean and
variance of the normal distribution, respectively. This option overrides the PRIOROPTIONS option.

The form of the BETAPRIORPARMS with an equal sign and a single pair is used to specify one pair
of prior parameters that applies to all components in the mixture. In the following example, the two
intercepts and the two regression coefficients all have a N.0; 100/ prior distribution:

proc fmm;
model y = x / k=2;
bayes betapriorparms=(0,100);

run;

You can also provide a list of pairs to specify different sets of prior parameters for the various regression
parameters and components. For example:

proc fmm;
model y = x/ k=2;
bayes betapriorparms( (0,10) (0,20) (.,.) (3,100) );

run;

The simple linear regression in the first component has aN.0; 10/ prior for the intercept and aN.0; 20/
prior for the slope. The prior for the intercept in the second component uses the FMM default, whereas
the prior for the slope is N.3; 100/.
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DIAGNOSTICS=ALL | NONE | (keyword-list)

DIAG=ALL | NONE | (keyword-list)
controls the computation of diagnostics for the posterior chain. You can request all posterior diagnostics
by specifying DIAGNOSTICS=ALL or suppress the computation of posterior diagnostics by specifying
DIAGNOSTICS=NONE. The following keywords enable you to select subsets of posterior diagnostics;
the default is DIAGNOSTICS=(AUTOCORR).

AUTOCORR < (LAGS= numeric-list) >
computes for each sampled parameter the autocorrelations of lags specified in the LAGS= list.
Elements in the list are truncated to integers, and repeated values are removed. If the LAGS=
option is not specified, autocorrelations are computed by default for lags 1, 5, 10, and 50. See
the section “Autocorrelations” on page 150 in Chapter 7, “Introduction to Bayesian Analysis
Procedures,” for details.

ESS
computes an estimate of the effective sample size (Kass et al. 1998), the correlation time, and the
efficiency of the chain for each parameter. See the section “Effective Sample Size” on page 150
in Chapter 7, “Introduction to Bayesian Analysis Procedures,” for details.

GEWEKE < (geweke-options) >
computes the Geweke spectral density diagnostics (Geweke 1992), which are essentially a two-
sample t test between the first f1 portion and the last f2 portion of the chain. The default is
f1 D 0:1 and f2 D 0:5, but you can choose other fractions by using the following geweke-
options:

FRAC1=value
specifies the fraction f1 for the first window.

FRAC2=value
specifies the fraction f2 for the second window.

See the section “Geweke Diagnostics” on page 144 in Chapter 7, “Introduction to Bayesian
Analysis Procedures,” for details.

HEIDELBERGER < (Heidel-options) >

HEIDEL < (Heidel-options) >
computes the Heidelberger and Welch diagnostic (which consists of a stationarity test and a
half-width test) for each variable. The stationary diagnostic test tests the null hypothesis that
the posterior samples are generated from a stationary process. If the stationarity test is passed,
a half-width test is then carried out. See the section “Heidelberger and Welch Diagnostics” on
page 146 in Chapter 7, “Introduction to Bayesian Analysis Procedures,” for more details.

These diagnostics are not performed by default. You can specify the DIAGNOS-
TICS=HEIDELBERGER option to request these diagnostics, and you can also specify
suboptions, such as DIAGNOSTICS=HEIDELBERGER(EPS=0.05), as follows:

SALPHA=value
specifies the ˛ level .0 < ˛ < 1/ for the stationarity test. By default, SALPHA=0.05.
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HALPHA=value
specifies the ˛ level .0 < ˛ < 1/ for the half-width test. By default, HALPHA=0.05.

EPS=value
specifies a small positive number � such that if the half-width is less than � times the sample
mean of the retaining iterates, the half-width test is passed. By default, EPS=0.1.

MCERROR

MCSE
computes an estimate of the Monte Carlo standard error for each sampled parameter. See the
section “Standard Error of the Mean Estimate” on page 151 in Chapter 7, “Introduction to
Bayesian Analysis Procedures,” for details.

MAXLAG=n
specifies the largest lag used in computing the effective sample size and the Monte Carlo
standard error. Specifying this option implies the ESS and MCERROR options. The default is
MAXLAG=250.

RAFTERY < (Raftery-options) >

RL < (Raftery-options) >
computes the Raftery and Lewis diagnostics, which evaluate the accuracy of the estimated
quantile ( O�Q for a given Q 2 .0; 1/) of a chain. O�Q can achieve any degree of accuracy when
the chain is allowed to run for a long time. The algorithm stops when the estimated probability
OPQ D Pr.� � O�Q/ reaches within ˙R of the value Q with probability S; that is, Pr.Q � R �
OPQ � QC R/ D S. See the section “Raftery and Lewis Diagnostics” on page 147 in Chapter 7,
“Introduction to Bayesian Analysis Procedures,” for more details. The Raftery-options enable
you to specify Q, R, S, and a precision level � for a stationary test.

These diagnostics are not performed by default. You can specify the DIAGNOSTICS=RAFERTY
option to request these diagnostics, and you can also specify suboptions, such as DIAGNOS-
TICS=RAFERTY(QUANTILE=0.05), as follows:

QUANTILE=value

Q=value
specifies the order (a value between 0 and 1) of the quantile of interest. By default, QUAN-
TILE=0.025.

ACCURACY=value

R=value
specifies a small positive number as the margin of error for measuring the accuracy of
estimation of the quantile. By default, ACCURACY=0.005.

PROB=value

S=value
specifies the probability of attaining the accuracy of the estimation of the quantile. By
default, PROB=0.95.
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EPS=value
specifies the tolerance level (a small positive number between 0 and 1) for the stationary test.
By default, EPS=0.001.

MIXPRIORPARMS=K

MIXPRIORPARMS(value-list)
specifies the parameters used in constructing the Dirichlet prior distribution for the mixing parameters.
If you specify MIXPRIORPARMS=K, the parameters of the k-dimensional Dirichlet distribution are
a vector that contains the number of components in the model (k), whatever that might be. You can
specify an explicit list of parameters in value-list . If the MIXPRIORPARMS option is not specified,
the default Dirichlet parameter vector is a vector of length k of ones. This results in a uniform prior
over the unit simplex; for k=2, this is the uniform distribution. See the section “Prior Distributions” on
page 2523 for the distribution function of the Dirichlet as used by the FMM procedure.

ESTIMATE=MEAN | MAP
determines which overall estimate is used, based on the posterior sample, in the computation of OUT-
PUT statistics and certain ODS graphics. By default, the arithmetic average of the (thinned) posterior
sample is used. If you specify ESTIMATE=MAP, the parameter vector is used that corresponds to the
maximum log posterior density in the posterior sample. In any event, a message is written to the SAS
log if postprocessing results depend on a summary estimate of the posterior sample.

INITIAL=DATA | MLE | MODE | RANDOM
determines how initial values for the Markov chain are obtained. The default when a conjugate sampler
is used is INITIAL=DATA, in which case the FMM procedure uses the same algorithm to obtain
data-dependent starting values as it uses for maximum likelihood estimation. If no conjugate sampler
is available or if you use the METROPOLIS option to explicitly request that it not be used, then the
default is INITIAL=MLE, in which case the maximum likelihood estimates are used as the initial
values. If the maximum likelihood optimization fails, the FMM procedure switches to the default
INITIAL=DATA.

The options INITIAL=MODE and INITIAL=RANDOM use the mode and random draws from the
prior distribution, respectively, to obtain initial values. If the mode does not exist or if it falls on the
boundary of the parameter space, the prior mean is used instead.

METROPOLIS
requests that the FMM procedure use the Metropolis-Hastings sampling algorithm based on Gamerman
(1997), even in situations where a conjugate sampler is available.

MUPRIORPARMS=pair-specification

MUPRIORPARMS(pair-specification . . . pair-specification)
specifies the parameters for the means in homogeneous mixtures without regression coefficients. The
pair-specification is of the form .a; b/, where a and b are the two parameters of the prior distribution,
optionally delimited with a comma. The actual distribution of the parameter is implied by the
distribution selected in the MODEL statement. For example, it is a normal distribution for a mixture of
normals, a gamma distribution for a mixture of Poisson variables, a beta distribution for a mixture of
binary variables, and an inverse gamma distribution for a mixture of exponential variables. This option
overrides the PRIOROPTIONS option.
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The parameters correspond as follows:

Beta: The parameters correspond to the ˛ and ˇ parameters of the beta prior distribution
such that its mean is � D ˛=.˛ C ˇ/ and its variance is �.1 � �/=.˛ C ˇ C 1/.

Normal: The parameters correspond to the mean and variance of the normal prior distribution.

Gamma: The parameters correspond to the ˛ and ˇ parameters of the gamma prior distribu-
tion such that its mean is ˛=ˇ and its variance is ˛=ˇ2.

Inverse gamma: The parameters correspond to the ˛ and ˇ parameters of the inverse gamma prior
distribution such that its mean is � D ˇ=.˛ � 1/ and its variance is �2=.˛ � 2/.

The two techniques for specifying the prior parameters with the MUPRIORPARMS option are as
follows:

• Specify an equal sign and a single pair of values:

proc fmm seed=12345;
model y = / k=2;
bayes mupriorparms=(0,50);

run;

• Specify a list of parameter pairs within parentheses:

proc fmm seed=12345;
model y = / k=2;
bayes mupriorparms( (.,.) (1.4,10.5));

run;

If you specify an invalid value (outside of the parameter space for the prior distribution), the FMM
procedure chooses the default value and writes a message to the SAS log. If you want to use the default
values for a particular parameter, you can also specify missing values in the pair-specification. For
example, the preceding list specification assigns default values for the first component and uses the
values 1.4 and 10.5 for the mean and variance of the normal prior distribution in the second component.
The first example assigns a N.0; 50/ prior distribution to the means in both components.

NBI=n
specifies the number of burn-in samples. During the burn-in phase, chains are not saved. The default is
NBI=2000.

NMC=n

SAMPLE=n
specifies the number of Monte Carlo samples after the burn-in. Samples after the burn-in phase are
saved unless they are thinned with the THIN= option. The default is NMC=10000.

OUTPOST< (outpost-options) >=data-set
requests that the posterior sample be saved to a SAS data set. In addition to variables that contain
log likelihood and log posterior values, the OUTPOST data set contains variables for the parameters.
The variable names for the parameters are generic (Parm_1, Parm_2, � � � , Parm_p). The labels of the
parameters are descriptive and correspond to the “Parameter Mapping” table that is produced when the
OUTPOST= option is in effect.
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You can specify the following outpost-options in parentheses:

LOGPRIOR
adds the value of the log prior distribution to the data set.

NONSINGULAR | NONSING | COMPRESS
eliminates parameters that correspond to singular columns in the design matrix (and were not
sampled) from the posterior data set. This is the default.

SINGULAR | SING
adds columns of zeros to the data set in positions that correspond to singularities in the model or
to parameters that were not sampled for other reasons. By default, these columns of zeros are not
written to the posterior data set.

PHIPRIORPARMS=pair-specification

PHIPRIORPARMS( pair-specification . . . pair-specification)
specifies the parameters for the inverse gamma prior distribution of the scale parameters (�’s) in the
model. The pair-specification is of the form .a; b/, and the values are chosen such that the prior
distribution has mean � D b=.a � 1/ and variance �2=.a � 2/.

The form of the PHIPRIORPARMS with an equal sign and a single pair is used to specify one pair of
prior parameters that applies to all components in the mixture. For example:

proc fmm seed=12345;
model y = / k=2;
bayes phipriorparms=(2.001,1.001);

run;

The form with a list of pairs is used to specify different prior parameters for the scale parameters in
different components. For example:

proc fmm seed=12345;
model y = / k=2;
bayes phipriorparms( (.,1.001) (3.001,2.001) );

run;

If you specify an invalid value (outside of the parameter space for the prior distribution), the FMM
procedure chooses the default value and writes a message to the SAS log. If you want to use the
default values for a particular parameter, you can also specify missing values in the pair-specification.
For example, the preceding list specification assigns default values for the first component a prior
parameter and uses the value 1.001 for the b prior parameter. The second pair assigns 3.001 and 2.001
for the a and b prior parameters, respectively.

PRIOROPTIONS < = >(prior-options)

PRIOROPTS < = >(prior-options)
specifies options related to the construction of the prior distribution and the choice of their parameters.
Some prior-options apply only in particular models. The BETAPRIORPARMS= and MUPRIOR-
PARMS= options override this option.
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You can specify the following prior-options:

CONDITIONAL | COND
chooses a conditional prior specification for the homogeneous normal and t distribution response
components. The default prior specification in these models is an independence prior where the
mean of the hth component has prior �h � N.a; b/. The conditional prior is characterized by
�h � N.a; �

2
h
=b/.

DEPENDENT | DEP
chooses a data-dependent prior for the homogeneous models without effects. The prior parameters
a and b are chosen as follows, based on the distribution in the MODEL statement:

Binary and binomial: a D Ny=.1� Ny/, b=1, and the prior distribution for the success probability
is beta.a; b/.

Poisson: a D 1, b D 1= Ny, and the prior distribution for � is gamma.a; b/. See
Frühwirth-Schnatter (2006, p. 280) and Viallefont, Richardson, and Greene
(2002).

Exponential: a D 3, b D 2 Ny, and the prior distribution for � is inverse gamma with
parameters a and b.

Normal and t: Under the default independence prior, the prior distribution for � isN. Ny; f s2/
where f is the variance factor from the VAR= option and

s2 D
1

n

nX
iD1

.yi � Ny/
2

Under the default conditional prior specification, the prior for �h is
N.a; �2

h
=b/ where a D Ny and b D 2:6=.maxfyg � minfyg/. The prior

for the scale parameter is inverse gamma with parameters 1.28 and 0:36s2.
For further details, see Raftery (1996) and Frühwirth-Schnatter (2006, p. 179).

VAR=f
specifies the variance for normal prior distributions. The default is VAR=1000. This factor is
used, for example, in determining the prior variance of regression coefficients or in determining
the prior variance of means in homogeneous mixtures of t or normal distributions (unless a
data-dependent prior is used).

MLE< =r >
specifies that the prior distribution for regression variables be based on a multivariate normal
distribution centered at the MLEs and whose dispersion is a multiple r of the asymptotic MLE co-
variance matrix. The default is MLE=10. In other words, if you specify PRIOROPTIONS(MLE),
the FMM procedure chooses the prior distribution for the regression variables as N.b̌; 10VarŒb̌�/
where b̌ is the vector of maximum likelihood estimates. The prior for the scale parameter is
inverse gamma with parameters 1.28 and 0:36s2 where

s2 D
1

n

nX
iD1

.yi � Ny/
2
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For further details, see Raftery (1996) and Frühwirth-Schnatter (2006, p. 179). If you specify
PRIOROPTIONS(MLE) for the regression parameters, then the data-dependent prior is used for
the scale parameter; see the PRIOROPTIONS(DEPENDENT) option above.

The MLE option is not available for mixture models in which the parameters are estimated
directly on the data scale, such as homogeneous mixture models or mixtures of distributions
without model effects for which a conjugate sampler is available. By using the METROPOLIS
option, you can always force the FMM procedure to abandon a conjugate sampler in favor of a
Metropolis-Hastings sampling algorithm to which the MLE option applies.

STATISTICS < (global-options) > = ALL | NONE | keyword | (keyword-list)

SUMMARIES < (global-options) > = ALL | NONE | keyword | (keyword-list)
controls the number of posterior statistics produced. Specifying STATISTICS=ALL is equivalent
to specifying STATISTICS=(SUMMARY INTERVAL). To suppress the computation of posterior
statistics, specify STATISTICS=NONE. The default is STATISTICS=(SUMMARY INTERVAL).
See the section “Summary Statistics” on page 151 in Chapter 7, “Introduction to Bayesian Analysis
Procedures,” for more details.

The global-options include the following:

ALPHA=numeric-list
controls the coverage levels of the equal-tail credible intervals and the credible intervals of highest
posterior density (HPD) credible intervals. The ALPHA= values must be between 0 and 1. Each
ALPHA= value produces a pair of 100.1 � ˛/% equal-tail and HPD credible intervals for each
sampled parameter. The default is ALPHA=0.05, which results in 95% credible intervals for the
parameters.

PERCENT=numeric-list
requests the percentile points of the posterior samples. The values in numeric-list must be greater
than or equal to 0 and less than or equal to 100. The default is PERCENT=(25 50 75), which
yields for each parameter the 25th, 50th, and 75th percentiles, respectively.

The list of keywords includes the following:

SUMMARY
produces the means, standard deviations, and percentile points for the posterior samples. The
default is to produce the 25th, 50th, and 75th percentiles; you can modify this list with the global
PERCENT= option.

INTERVAL
produces equal-tail and HPD credible intervals. The default is to produce the 95% equal-tail
credible intervals and 95% HPD credible intervals, but you can use the ALPHA= global-option to
request credible intervals for any probabilities.
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THIN=n

THINNING=n
controls the thinning of the Markov chain after the burn-in. Only one in every k samples is used when
THIN=k, and if NBI=n0 and NMC=n, the number of samples kept is�

n0 C n

k

�
�

�
n0

k

�
where [a] represents the integer part of the number a. The default is THIN=1—that is, all samples are
kept after the burn-in phase.

TIMEINC=n
specifies a time interval in seconds to report progress during the burn-in and sampling phase. The time
interval is approximate, because the minimum time interval in which the FMM procedure can respond
depends on the multithreading configuration.

BY Statement
BY variables ;

You can specify a BY statement with PROC FMM to obtain separate analyses of observations in groups that
are defined by the BY variables. When a BY statement appears, the procedure expects the input data set to be
sorted in order of the BY variables. If you specify more than one BY statement, only the last one specified is
used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the FMM procedure. The
NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

Because sorting the data changes the order in which PROC FMM reads observations, the sort order for the
levels of the CLASS variable might be affected if you have specified ORDER=DATA in the PROC FMM
statement.

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.
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CLASS Statement
CLASS variables < / TRUNCATE > ;

The CLASS statement names the classification variables to be used in the model. Typical classification
variables are Treatment, Sex, Race, Group, and Replication. If you use the CLASS statement, it must appear
before the MODEL statement.

Classification variables can be either character or numeric. By default, class levels are determined from the
entire set of formatted values of the CLASS variables.

NOTE: Prior to SAS 9, class levels were determined by using no more than the first 16 characters of the
formatted values. To revert to this previous behavior, you can use the TRUNCATE option in the CLASS
statement.

In any case, you can use formats to group values into levels. See the discussion of the FORMAT procedure
in the Base SAS Procedures Guide and the discussions of the FORMAT statement and SAS formats in SAS
Formats and Informats: Reference. You can adjust the order of CLASS variable levels with the ORDER=
option in the PROC FMM statement.

You can specify the following option in the CLASS statement after a slash (/):

TRUNCATE
specifies that class levels should be determined by using only up to the first 16 characters of the
formatted values of CLASS variables. When formatted values are longer than 16 characters, you can
use this option to revert to the levels as determined in releases prior to SAS 9.

FREQ Statement
FREQ variable ;

The variable in the FREQ statement identifies a numeric variable in the data set that contains the frequency
of occurrence for each observation. PROC FMM treats each observation as if it appears f times, where f is
the value of the FREQ variable for the observation. If it is not an integer, the frequency value is truncated to
an integer. If the frequency value is less than 1 or missing, the observation is not used in the analysis. When
the FREQ statement is not specified, each observation is assigned a frequency of 1.

ID Statement
ID variables ;

The ID statement specifies a list of variables that are included in the OUT= data set of the OUTPUT statement.
If no ID statement is specified, all variables from the input data set are copied into the output data set.
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MODEL Statement
MODEL response < (response-options) > = < effects > < / model-options > ;

MODEL events/trials = < effects > < / model-options > ;

MODEL + < effects > < / model-options > ;

The MODEL statement defines elements of the mixture model, such as the model effects, the distribution,
and the link function. At least one MODEL statement is required. You can specify more than one MODEL
statement. Each MODEL statement identifies one or more components of a mixture. For example, if
components differ in their distributions, link functions, or regressor variables, then you can use separate
MODEL statements to define the components. If the finite mixture model is homogeneous—in the sense that
all components share the same regressors, distribution, and link function—then you can specify the mixture
model with a single MODEL statement by using the K= option.

An intercept is included in each model by default. It can be removed with the NOINT option.

The dependent variable can be specified by using either the response syntax or the events/trials syntax. The
events/trials syntax is specific to models for binomial-type data. A binomial(n, �) variable is the sum of
n independent Bernoulli trials with event probability � . Each Bernoulli trial results in either an event or a
nonevent (with probability 1 � �). The value of the second variable, trials, gives the number n of Bernoulli
trials. The value of the first variable, events, is the number of events out of n. The values of both events and
(trials–events) must be nonnegative, and the value of trials must be positive. Other distributions that allow
the events/trials syntax are the beta-binomial distribution and the binomial cluster model.

If the events/trials syntax is used, the FMM procedure defaults to the binomial distribution. If you use the
response syntax, the procedure defaults to the normal distribution unless the response variable is a character
variable or listed in the CLASS statement.

You use a similar syntax to fit multinomial models or multinomial cluster models, except that for these
distributions you specify multiple dependent variables, one for each value of the multinomial response. For
these models, you can specify either multiple response variables or multiple event variables. If you use
multiple response or multiple event variables, the FMM procedure defaults to the multinomial distribution.
If you use the multiple response syntax, the FMM procedure treats the total of these responses as fixed.

The FMM procedure supports a continuation-style syntax in MODEL statements. Because a mixture has only
one set of response variables, it is sufficient to specify the response variable in one MODEL statement. Other
MODEL statements can use the continuation symbol “+” before the specification of effects. For example, the
following statements fit a three-component binomial mixture model:

class A;
model y/n = x / k=2;
model + A;

The first MODEL statement uses the “=” sign to separate response from effect information and specifies
the response variable by using the events/trials syntax. This determines the distribution as binomial. This
MODEL statement adds two components to the mixture models with different intercepts and regression
slopes. The second MODEL statement adds another component to the mixture where the mean is a function
of the classification main effect for variable A. The response is also binomial; it is a continuation from the
previous MODEL statement.
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There are two sets of options in the MODEL statement. The response-options determine how the FMM
procedure models probabilities for binary data. The model-options control other aspects of model formation
and inference. Table 39.4 summarizes the response-options and model-options available in the MODEL
statement. These are subsequently discussed in detail in alphabetical order by option category.

Table 39.4 Summary of MODEL Statement Options

Option Description

Response Variable Options
DESCENDING Reverses the order of response categories
EVENT= Specifies the event category in binary models
ORDER= Specifies the sort order for the response variable
REFERENCE= Specifies the reference category in binary models

Model Building
DIST= Specifies the response distribution
LINK= Specifies the link function
K= Specifies the number of mixture components
KMAX= Specifies the maximum number of mixture components
KMIN= Specifies the minimum number of mixture components
KRESTART Requests that the starting values for each analysis be determined

separately instead of sequentially
NOINT Excludes fixed-effect intercept from model
OFFSET= Specifies the offset variable for linear predictor

Statistical Computations and Output
ALPHA=˛ Determines the confidence level (1 � ˛)
CL Displays confidence limits for fixed-effects parameter estimates
EQUATE= Imposes simple equality constraints on parameters in this model
LABEL= Identifies the model
PARMS Provides starting values for the parameters in this model

Response Variable Options

Response variable options determine how the FMM procedure models probabilities for binary data.

You can specify the following response-options by enclosing them in parentheses after the response variable.
The default is ORDER=FORMATTED.

DESCENDING

DESC
reverses the order of the response categories. If both the DESCENDING and ORDER= options are
specified, PROC FMM orders the response categories according to the ORDER= option and then
reverses that order.
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EVENT=’category ’ | keyword
specifies the event category for the binary response model. PROC FMM models the probability of the
event category. You can specify the value (formatted, if a format is applied) of the event category in
quotes, or you can specify one of the following keywords:

FIRST
designates the first ordered category as the event. This is the default.

LAST
designates the last ordered category as the event.

ORDER=order-type
specifies the sort order for the levels of the response variable. You can specify the following values for
order-type:

DATA
sorts the levels by order of appearance in the input data set.

FORMATTED
sorts the levels by external formatted value, except for numeric variables with no explicit format,
which are sorted by their unformatted (internal) value.

FREQ
sorts the levels by descending frequency count; levels with the most observations come first in
the order.

INTERNAL
sorts the levels by unformatted value.

FREQDATA
sorts the levels by order of descending frequency count, and within counts by order of appearance
in the input data set when counts are tied.

FREQFORMATTED
sorts the levels by order of descending frequency count, and within counts by formatted value (as
above) when counts are tied.

FREQINTERNAL
sorts the levels by order of descending frequency count, and within counts by unformatted value
when counts are tied.

When ORDER=FORMATTED (the default) for numeric variables for which you have supplied no
explicit format (that is, for which there is no corresponding FORMAT statement in the current PROC
FMM run or in the DATA step that created the data set), the levels are ordered by their internal
(numeric) value. If you specify the ORDER= option in the MODEL statement and the ORDER=
option in the PROC FMM statement, the former takes precedence.

By default, ORDER=FORMATTED. For the FORMATTED and INTERNAL values, the sort order is
machine-dependent.

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.
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REFERENCE=’category ’ | keyword

REF=’category ’ | keyword
specifies the reference category for categorical models. For the binary response model, specifying
one response category as the reference is the same as specifying the other response category as the
event category. You can specify the value (formatted if a format is applied) of the reference category in
quotes, or you can specify one of the following keywords:

FIRST
designates the first ordered category as the reference category.

LAST
designates the last ordered category as the reference category. This is the default.

The reference category in multinomial models and multinomial cluster models is determined by the
order in which you specify the response variables.

Model Options

ALPHA=number
requests that confidence intervals be constructed for each of the parameters with confidence level
1-number . The value of number must be between 0 and 1; the default is 0.05.

CL
requests that confidence limits be constructed for each of the parameter estimates. The confidence
level is 0.95 by default; this can be changed with the ALPHA= option.

DISTRIBUTION=keyword

DIST=keyword
specifies the probability distribution for a mixture component.

If you specify the DIST= option and you do not specify a link function with the LINK= option, a default
link function is chosen according to Table 39.5. If you do not specify a distribution, the FMM procedure
defaults to the normal distribution for continuous response variables and to the binary distribution for
classification or character variables, unless the events/trial syntax is used in the MODEL statement. If
you choose the events/trial syntax, the FMM procedure defaults to the binomial distribution.

Table 39.5 lists keywords that you can specify for the DISTRIBUTION= option and the corresponding
default link functions. For generalized linear models with these distributions, you can find expressions
for the log-likelihood functions in the section “Log-Likelihood Functions for Response Distributions”
on page 2514.

Table 39.5 Keyword Values of the DIST= Option

Default Link
keyword Alias Distribution Function

BETA Beta Logit
BETABINOMIAL BETABIN Beta-binomial Logit
BINARY BERNOULLI Binary Logit
BINOMIAL BIN Binomial Logit
BINOMCLUSTER BCLUS Binomial cluster Logit
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Table 39.5 continued

Default Link
DIST= Alias Distribution Function

CONSTANT < (c) > DEGENERATE < (c) > Degenerate N/A
EXPONENTIAL EXPO Exponential Log
FOLDEDNORMAL FNORMAL Folded normal Identity
GAMMA GAM Gamma Log
GAUSSIAN NORMAL Normal Identity
GENPOISSON GPOISSON Generalized Poisson Log
GEOMETRIC GEOM Geometric Log
INVGAUSS IGAUSSIAN, IG Inverse Gaussian Inverse squared

(power(–2))
LOGNORMAL LOGN Lognormal Identity
MULTINOMIAL MULTI Multinomial Generalized logit
MULTINOMCLUSTER MCLUS Multinomial cluster Logit
NEGBINOMIAL NEGBIN, NB Negative binomial Log
POISSON POI Poisson Log
T < (�) > STUDENT < (�) > t Identity
TRUNCEXPO < (a,b) > TEXPO < (a,b) > Truncated exponential Log
TRUNCLOGN < (a,b) > TLOGN < (a,b) > Lognormal Identity
TRUNCNEGBIN TNEGBIN, TNB Negative binomial Log
TRUNCNORMAL < (a,b) > TNORMAL < (a,b) > Truncated normal Identity
TRUNCPOISSON TPOISSON, TPOI Truncated Poisson Log
UNIFORM < (a,b) > UNIF < (a,b) > Uniform N/A
WEIBULL Weibull Log

Note that the PROC FMM default link for the gamma or exponential distribution is not the canonical
link (the reciprocal link).

The binomial cluster and multinomial cluster models are multiple-component models that are de-
scribed in Morel and Nagaraj (1993); Morel and Neerchal (1997); Neerchal and Morel (1998). See
Example 39.1 for an application of the binomial cluster model in a teratological experiment. See
Example 39.4 for an application of the multinomial cluster model to housing survey data.

If the events/trials syntax is used, the default distribution is the binomial and only the following choices
are available: DIST=BINOMIAL, DIST=BETABINOMIAL, and DIST=BINOMCLUSTER. The trials
variable is ignored for all other distributions. This enables you to fit models in which some components
have a binomial or binomial-like distribution. For example, suppose that variable n is a binomial
denominator and variable logn is its logarithm. Then the following statements model a two-component
mixture of a binomial and Poisson count model:

model y/n = ;
model + / dist=Poisson offset=logn;

The OFFSET= option is used in the second MODEL statement to specify that the Poisson counts refer
to different base counts, because the trial variable n is ignored in the second model.
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If DIST=BINOMIAL is specified without the events/trials syntax, then n=1 is used for the default
number of trials.

Similarly, if you specify multiple dependent variables by using the response ... response and event ...
event /trials notation, the default distribution is the multinomial and only DIST=MULTINOMIAL and
DIST=MULTINOMCLUSTER are available.

DIST=TRUNCNEGBIN and DIST=TRUNCPOISSON are zero-truncated versions of
DIST=NEGBINOMIAL and DIST=POISSON, respectively—that is, only the value of 0 is ex-
cluded from the support.

For DIST=TRUNCEXPO, DIST=TRUNCLOGN, and DIST=TRUNCNORMAL, you must specify
the lower (a) and upper (b) truncation points of the distribution. For example:

DIST=TRUNCEXPO< (a,b) >

DIST=TRUNCLOGN< (a,b) >

DIST=TRUNCNORMAL< (a,b) >

Each of these distributions is the conditional version of its corresponding nontruncated distribution
that is confined to the support Œa; b� (inclusive). You can specify a missing value (.) for either a or b to
truncate only on the other side; that is, a=. indicates a right-truncated distribution, and b=. indicates a
left-truncated distribution.

For several distribution specifications you can provide additional optional parameters to further define
the distribution. These optional parameters are listed in the following:

CONSTANT< (c) > The number c specifies the value where the mass is concentrated. The default
is DIST=CONSTANT(0), so you can add zero-inflation to any model by adding a
MODEL statement with DIST=CONSTANT.

T< (�) > The number � specifies the degrees of freedom for the (shifted) t distribution. The
default is DIST=T(3); this leads to a heavy-tailed distribution for which the variance
is defined. See the section “Log-Likelihood Functions for Response Distributions”
on page 2514 for the density function of the shifted t� distribution.

UNIFORM< (a,b) > The values a and b define the support of the uniform distribution, a < b. By
default, a = 0 and b = 1.

EQUATE=MEAN | SCALE | NONE | EFFECTS(effect-list)
specifies simple sets of parameter constraints across the components in a MODEL statement; the
default is EQUATE=NONE. This option is available only for maximum likelihood estimation. If you
specify EQUATE=MEAN, the parameters that determine the mean are reduced to a single set that is
applicable to all components in the MODEL statement. If you specify EQUATE=SCALE, a single
parameter represents the common scale for all components in the MODEL statement. The EFFECTS
option enables you to force the parameters for the chosen model effects to be equal across components;
however, the number of parameters is unaffected.

For example, the following statements fit a two-component multiple regression model in which the
coefficients for variable logd vary by component and the intercepts and coefficients for variable dose
are the same for the two components:
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proc fmm;
model num = dose logd / equate=effects(int dose) k=2;

run;

To fix all coefficients across the two components, you can write the MODEL statement as

model num = dose logd / equate=effects(int dose logd) k=2;

or

model num = dose logd / equate=mean k=2;

If you restrict all parameters in a k-component MODEL statement to be equal, the FMM procedure
reduces the model to k=1.

K=n

NUMBER=n
specifies the number of components the MODEL statement contributes to the overall mixture. For
binomial cluster models and multinomial cluster models, this option is not available because these are
multiple-component models by definition.

KMAX=n
specifies the maximum number of components the MODEL statement contributes to the overall
mixture.

If the maximum number of components in the mixture, as determined by all KMAX= options, is larger
than the minimum number of components, the FMM procedure fits all possible models and displays
summary fit information for the sequence of evaluated models. The “best” model according to the
CRITERION= option in the PROC FMM statement is then chosen, and the remaining output and
analyses performed by PROC FMM pertain to this “best” model.

When you use MCMC methods to estimate the parameters of a mixture, you need to ensure that the
chain for a given value of k has converged; otherwise, comparisons among models that have varying
numbers of components might not be meaningful. You can use the FITDETAILS option to display
summary and diagnostic information for the MCMC chains from each model.

If you specify the KMIN= option but not the KMAX= option, then the default value for the KMAX=
option is the value of the KMIN= option (unless KMIN=0, in which case the KMAX= option is set to
1).

KMIN=n
specifies the minimum number of components that the MODEL statement contributes to the overall
mixture. When you use MCMC methods to estimate the parameters of a mixture, you need to ensure
that the chain for a given value of k has converged; otherwise, comparisons among models that have
varying numbers of components might not be meaningful.
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KRESTART
requests that the starting values for each analysis (that is, for each unique number of components as
determined by the KMIN= and KMAX= options) be determined separately, in the same way as if no
other analyses were performed. If you do not specify the KRESTART option, then the starting values
for each analysis are based on results from the previous analysis with one less component.

LABEL=’label ’
specifies an optional label for the model that is used to identify the model in printed output, on graphics,
and in data sets created from ODS tables.

LINK=keyword
specifies the link function in the model. The keywords and expressions for the associated link functions
are shown in Table 39.6.

Table 39.6 Link Functions in MODEL Statement of the FMM
Procedure

Link
LINK= Alias Function g.�/ D � D

CLOGLOG CLL Complementary log-log log.� log.1 � �//
IDENTITY ID Identity �

LOG Log log.�/
LOGIT Logit log.�=.1 � �//
LOGLOG Log-log � log.� log.�//
PROBIT NORMIT Probit ˆ�1.�/

POWER(�) POW(�) Power with exponent �= number
�
�� if � 6D 0
log.�/ if � D 0

POWERMINUS2 Power with exponent –2 1=�2

RECIPROCAL INVERSE Reciprocal 1=�

The default link functions for the various distributions are shown in Table 39.5.

NOINT
requests that no intercept be included in the model. An intercept is included by default, unless the
distribution is DIST=CONSTANT or DIST=UNIFORM.

OFFSET=variable
specifies the offset variable function for the linear predictor in the model. An offset variable can be
thought of as a regressor variable whose regression coefficient is known to be 1. For example, you can
use an offset in a Poisson model when counts have been obtained in time intervals of different lengths.
With a log link function, you can model the counts as Poisson variables with the logarithm of the time
interval as the offset variable.

PARAMETERS(parameter-specification)
PARMS(parameter-specification)

specifies starting values for the model parameters. If no PARMS option is specified, the FMM
procedure determines starting values by using a data-dependent algorithm. To determine initial values
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for the Markov chain in Bayesian estimation, see the INITIAL= option in the BAYES statement. The
specification of the parameters takes the following form: parameters in the mean function precede the
scale parameters, and parameters for different components are separated by commas.

The following statements specify starting parameters for a two-component normal model. The initial
values for the intercepts are 1 and –3; the initial values for the variances are 0.5 and 4.

proc fmm;
model y = / k=2 parms(1 0.5, -3 4);

run;

You can specify missing values for parameters whose starting values are to be determined by the default
method. Only values for parameters that participate in the optimization are specified. The values for
model effects are specified on the linear (linked) scale.

OUTPUT Statement
OUTPUT < OUT=SAS-data-set >

< keyword< (keyword-options) > < =name > > . . .
< keyword< (keyword-options) > < =name > > < / options > ;

The OUTPUT statement creates a data set that contains observationwise statistics that are computed after
fitting the model. By default, all variables in the original data set are included in the output data set. You can
use the ID statement to limit the variables copied from the input data set to the output data set.

The output statistics are computed based on the parameter estimates of the converged model if the parameters
are estimated by maximum likelihood. If a Bayesian analysis is performed, the output statistics are computed
based on the arithmetic mean in the posterior sample. You can change to the maximum posterior estimate
with the ESTIMATE=MAP option in the BAYES statement.

You can specify the following syntax elements in the OUTPUT statement before the slash (/).

OUT=SAS-data-set
specifies the name of the output data set. If the OUT= option is omitted, the procedure uses the DATAn
convention to name the output data set.

keyword< (keyword-options) > < =name >
specifies a statistic to include in the output data set and optionally assigns the variable the name
name. If you do not provide a name, the FMM procedure assigns a default name based on the type of
statistic requested. If you provide a name for a statistic that leads to multiple output statistics, the name
is modified to index the associated component number. For multivariate responses, names are also
modified to index the associated response.

You can use the keyword-options to control which type of a particular statistic is computed. The
following are valid values for keyword and keyword-options:
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PREDICTED< (COMPONENT | OVERALL) >

PRED< (COMPONENT | OVERALL) >

MEAN< (COMPONENT | OVERALL) >
requests predicted values (predicted means) for the response variable. The predictions in the
output data set are mapped onto the data scale in all cases except for a binomial or binary response
with events/trials syntax and when PREDTYPE=COUNT has not been specified. In that case the
predictions are predicted success probabilities.

The default is to compute the predicted value for the mixture (OVERALL). You can request
predictions for the means of the component distributions by adding the COMPONENT suboption
in parentheses. The predicted values for some distributions are not identical to the parameter
modeled as �. For example, in the lognormal distribution the predicted mean is expf�C 0:5�g
where � and � are the parameters of an underlying normal process; see the section “Log-
Likelihood Functions for Response Distributions” on page 2514 for details.

RESIDUAL< (COMPONENT | OVERALL) >

RESID< (COMPONENT | OVERALL) >
requests residuals for the response or residuals in the component distributions. Only “raw”
residuals on the data scale are computed (observed minus predicted).

VARIANCE< (COMPONENT | OVERALL) >

VAR< (COMPONENT | OVERALL) >
requests variances for the mixture or the component distributions. For multivariate responses, the
output statistic represents the diagonal entry in the associated covariance matrix.

LOGLIKE< (COMPONENT | OVERALL) >

LOGL< (COMPONENT | OVERALL) >
requests values of the log-likelihood function for the mixture or the components. For observations
used in the analysis, the overall computed value is the observations’ contribution to the log
likelihood; if a FREQ statement is present, the frequency is accounted for in the computed value.
In other words, if all observations in the input data set have been used in the analysis, adding
the value of the log-likelihood contributions in the OUTPUT data set produces the negative of
the final objective function value in the “Iteration History” table. By default, the log-likelihood
contribution to the mixture is computed. You can request the individual mixture component
contributions with the COMPONENT suboption.

MIXPROBS< (COMPONENT | MAX) >

MIXPROB< (COMPONENT | MAX) >

PRIOR< (COMPONENT | MAX) >

MIXWEIGHTS< (COMPONENT | MAX) >
requests that the prior weights �j .z;˛j / be added to the OUTPUT data set. By default, the
probabilities are output for all components. You can limit the output to a single statistic, the
largest mixing probability, with the MAX suboption.

NOTE: The keyword “prior” is used here because of long-standing practice to refer to the mixing
probabilities as prior weights. This must not be confused with the prior distribution and its
parameters in a Bayesian analysis.
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POSTERIOR< (COMPONENT | MAX) >

POST< (COMPONENT | MAX) >

PROB< (COMPONENT | MAX) >
requests that the posterior weights

�j .z;˛j /pj .yI x0jˇj ; �j /Pk
jD1 �j .z;˛j /pj .yI x

0
jˇj ; �j /

be added to the OUTPUT data set. By default, the probabilities are output for all components.
You can limit the output to a single statistic, the largest posterior probability, with the MAX
suboption.

NOTE: The keyword “posterior” is used here because of long-standing practice to refer to these
probabilities as posterior probabilities. This must not be confused with the posterior distribution
in a Bayesian analysis.

LINP

XBETA
requests that the linear predictors for the models be added to the OUTPUT data set.

CLASS | CATEGORY | GROUP
adds the estimated component membership to the OUTPUT data set. An observation is associated
with the component that has the highest posterior probability.

MAXPOST | MAXPROB
adds the highest posterior probability to the OUTPUT data set.

A keyword can appear multiple times. For example, the following OUTPUT statement requests
predicted values for the mixture in addition to the predicted means in the individual components:

output out=fmmout pred=MixtureMean pred(component)=CompMean;

In a three-component model, this produces four variables in the fmmout data set: MixtureMean,
CompMean_1, CompMean_2, and CompMean_3.

You can specify the following options in the OUTPUT statement after a slash (/).

ALLSTATS
requests that all statistics are computed. If you do not use a keyword to assign a name, the FMM
procedure uses the default name.

NOVAR
requests that variables from the input data set not be added to the output data set. This option does not
apply to variables listed in the BY statement or to variables listed in the ID statement.

PREDTYPE=PROB | COUNT
specifies the type of predicted values that are produced for a binomial or binary response with
events/trials syntax. If PREDTYPE=PROB, the predicted values are success probabilities. If PRED-
TYPE=COUNT, the predicted values are success counts. The default is PREDTYPE=PROB.



2506 F Chapter 39: The FMM Procedure

PERFORMANCE Statement
PERFORMANCE < performance-options > ;

The PERFORMANCE statement enables you to control the performance characteristics of the FMM proce-
dure (for example, the number of CPUs, the number of threads for multithreading, and so on). By default, the
FMM procedure performs many analyses in multiple threads, and the number of threads equals the number
of CPUs. Certain system and configuration options also can control the number of CPUs available to a SAS
session or whether multithreaded computations are permissible. For example, you can set the number of
available processors to two with

options cpucount=2;

The FMM procedure then acts as though two processors were available, regardless of the number of physically
available processors.

The FMM procedure applies multithreading to the following analytical tasks:

Starting values: all starting value computations that require a pass through the data.

Optimization: all evaluations of objective function, gradient, and Hessian; computation of covariance
matrix.

Bayesian analysis: all sample passes through the data, formation of cross-product matrices, sampling of
latent variables, and posterior diagnostics.

Scoring and ODS Graphics: computation of all output statistics and statistics for the construction of
graphics that require passes through the data.

You can specify the following performance-options:

CPUCOUNT=n | ACTUAL
specifies the number of processors available to the FMM procedure; the number n must be between 1
and 1024. CPUCOUNT=ACTUAL sets the number of available processors equal to the number of
physical processors.

DETAILS
requests a table with timing detail for the tasks performed by the FMM procedure.

NOTHREADS
disables multithreaded computations.

THREADS=YES | NO
enables or disables multithreaded processing. The number of threads used by the FMM procedure
is displayed in the “Bayes Information” or “Optimization Information” table. It typically equals
the number of available CPUs, which can be different from the number of physical CPUs, and
can be modified with the global CPUCOUNT SAS option or with the CPUCOUNT= option in the
PERFORMANCE statement.
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PROBMODEL Statement
PROBMODEL < effects > < / probmodel-options > ;

The PROBMODEL statement defines the model effects for the mixing probabilities and their link function and
starting values. Model effects (other than the implied intercept) are not supported with Bayesian estimation.
By default, the FMM procedure models mixing probabilities on the logit scale for two-component models
and as generalized logit models in situations with more than two components. The PROBMODEL statement
is not required.

The generalized logit model with k categories has a common vector of regressor or design variables, z, k – 1
parameter vectors that vary with category, and one linear predictor whose value is constant. The constant
linear predictor is assigned by the FMM procedure to the last component in the model, and its value is zero
(˛k D 0). The probability of observing category 1 � j � k is then

�j .z;˛j / D
expfz0˛j gPk
iD1 expfz0˛ig

For k=2, the generalized logit model reduces to a model with the logit link (a logistic model); hence the
attribute generalized logit.

By default, an intercept is included in the model for the mixing probabilities. If you suppress the intercept by
using the NOINT option, you must specify at least one effect in the statement.

You can specify the following probmodel-options in the PROBMODEL statement after the slash (/):

ALPHA=number
requests that confidence intervals that have the confidence level 1 � number be constructed for the
parameters in the probability model. The value of number must be between 0 and 1; the default is 0.05.
If the probability model is simple—that is, it does not contain any effects—the confidence intervals are
produced for the estimated parameters (on the logit scale) and for the mixing probabilities. This option
has no effect when you perform Bayesian estimation. You can modify credible interval settings by
specifying the STATISTICS(ALPHA=) option in the BAYES statement.

CL
requests that confidence limits be constructed for each of the parameter estimates. The confidence
level is 0.95 by default; this can be changed with the ALPHA= option.

LINK=keyword
specifies the link function in the model for the mixing probabilities. The default is a logit link for
models with two components. For models with more than two components, only the generalized logit
link is available. The keywords and expressions for the associated link functions for two-component
models are shown in Table 39.7.

Table 39.7 Link Functions in the PROBMODEL Statement

Link
LINK= Function g.�/ D � D

CLOGLOG | CLL Complementary log-log log.� log.1 � �//
LOGIT Logit log.�=.1 � �//
LOGLOG Log-log � log.� log.�//
PROBIT | NORMIT Probit ˆ�1.�/



2508 F Chapter 39: The FMM Procedure

NOINT
requests that no intercept be included in the model for the mixing probabilities. An intercept is included
by default. If you suppress the intercept by using the NOINT option, you must specify at least one
other effect for the mixing probabilities—because an empty probability model is not meaningful.

PARAMETERS(parameter-specification)

PARMS(parameter-specification)
specifies starting values for the parameters. The specification of the parameters takes the following
form: parameters in the mean function appear in a list, and parameters for different components are
separated by commas. Starting values are given on the linked scale, not in terms of probabilities. Also,
you need to specify starting values for each of the first k–1 components in a k-component model. The
linear predictor for the last component is always assumed to be zero.

The following statements specify a three-component mixture of multiple regression models. The
PROBMODEL statement does not list any effects; a standard “intercept-only” generalized logit model
is used to model the mixing probabilities.

proc fmm;
model y = x1 x2 / k=3;
probmodel / parms(2, 1);

run;

There are three linear predictors in the model for the mixing probabilities, ˛1, ˛2, and ˛3. With starting
values of ˛1 D 2, ˛2 D 1, and ˛3 D 0, this leads to initial mixing probabilities of

�1 D
e2

e2 C e1 C e0
D 0:24

�2 D
e1

e2 C e1 C e0
D 0:66

�3 D
e0

e2 C e1 C e0
D 0:1

You can specify missing values for parameters whose starting values are to be determined by the default
method.

RESTRICT Statement
RESTRICT < ’label’ > constraint-specification < , . . . , constraint-specification >

< operator < value > > < / option > ;

The RESTRICT statement enables you to specify linear equality or inequality constraints among the param-
eters of a mixture model. These restrictions are incorporated into the maximum likelihood analysis. The
RESTRICT statement is not available for a Bayesian analysis with the FMM procedure. The RESTRICT
statement is not available for multinomial models that have more than two response variables or more than
one event variable.

Following are reasons why you might want to place constraints and restrictions on the model parameters:
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• to fix a parameter at a particular value

• to equate parameters in different components in a mixture

• to impose order conditions on the parameters in a model

• to specify contrasts among the parameters that the fitted model should honor

A restriction is composed of a left-hand side and a right-hand side, separated by an operator. If the operator
and right-hand side are not specified, the restriction is assumed to be an equality constraint against zero. If
the right-hand side is not specified, the value is assumed to be zero.

An individual constraint-specification is written in (nearly) the same form as estimable linear functions
are specified in the ESTIMATE statement of the GLM, MIXED, or GLIMMIX procedure. The constraint-
specification takes the form

model-effect value-list < . . . model-effect value-list > < (SCALE= value) >

At least one model-effect must be specified followed by one or more values in the value-list . The values in
the list correspond to the multipliers of the corresponding parameter that is associated with the position in the
model effect. If you specify more values in the value-list than the model-effect occupies in the model design
matrix, the extra coefficients are ignored.

To specify restrictions for effects in specific components in the model, separate the constraint-specification
by commas. The following statements provide an example:

proc fmm;
class A;
model y/n = A x / k = 2;
restrict A 1 0 -1;
restrict x 2, x -1 >= 0.5;

run;

The linear predictors for this two-component model can be written as

�1 Dˇ10 C ˛11A1 C � � � C ˛1aAa C xˇ11

�2 Dˇ20 C ˛21A1 C � � � C ˛2aAa C xˇ21

where Ak is the binary variable associated with the kth level of A.

The first RESTRICT statement applies only to the first component and specifies that the parameter estimates
that are associated with the first and third level of the A effect are identical. In terms of the linear predictor,
the restriction can be written as

˛11 � ˛13 D 0

Now suppose that A has only two levels. Then the FMM procedure ignores the value –1 in the first RESTRICT
statement and imposes the restriction

˛11 D 0

on the fitted model.
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The second RESTRICT statement involves parameters in two different components of the model. In terms of
the linear predictors, the restriction can be written as

2ˇ11 � ˇ21 �
1

2

When restrictions are specified explicitly through the RESTRICT statement or implied through the
EQUATE=EFFECTS option in the MODEL statement, the FMM procedure lists all restrictions after the
model fit in a table of linear constraints and indicates whether a particular constraint is active at the converged
solution.

The following operators can be specified to separate the left- and right-hand sides of the restriction: =, >, <,
>=, <=.

Some distributions involve scale parameters (the parameter � in the expressions of the log likelihood) and
you can also use the constraint-specification to involve a component’s scale parameter in a constraint. To this
end, assign a value to the keyword SCALE, separated from the model effects and value lists with parentheses.
The following statements fit a two-component normal model and restrict the component variances to be
equal:

proc fmm;
model y = / k=2;
restrict int 0 (scale 1),

int 0 (scale -1);
run;

The intercept specification is necessary because each constraint-specification requires at least one model
effect. The zero coefficient ensures that the intercepts are not involved in the restriction. Instead, the
RESTRICT statement leads to �1 � �2 D 0.

You can specify the following option in the RESTRICT statement after a slash (/).

DIVISOR=value
specifies a value by which all coefficients on the right-hand side and left-hand side of the restriction
are divided.

WEIGHT Statement
WEIGHT variable ;

The WEIGHT statement is used to perform a weighted analysis. Consult the section “Log-Likelihood
Functions for Response Distributions” on page 2514 for expressions on how weight variables are included in
the log-likelihood functions. Because the probability structure of a mixture model is different from that of
a classical statistical model, the presence of a weight variable in a mixture model cannot be interpreted as
altering the variance of an observation.

Observations with nonpositive or missing weights are not included in the PROC FMM analysis. If a WEIGHT
statement is not included, all observations used in the analysis are assigned a weight of 1.
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Details: FMM Procedure

A Gentle Introduction to Finite Mixture Models

The Form of the Finite Mixture Model

Suppose that you observe realizations of a random variable Y, the distribution of which depends on an
unobservable random variable S that has a discrete distribution. S can occupy one of k states, the number
of which might be unknown but is at least known to be finite. Because S is not observable, it is frequently
referred to as a latent variable.

Let �j denote the probability that S takes on state j. Conditional on S D j , the distribution of the response Y
is assumed to be fj .yI˛j ;ˇj jS D j /. In other words, each distinct state j of the random variable S leads to
a particular distributional form fj and set of parameters f˛j ;ˇj g for Y.

Let f˛;ˇg denote the collection of ˛j and ˇj parameters across all j = 1 to k. The marginal distribution of Y
is obtained by summing the joint distribution of Y and S over the states in the support of S:

f .yI˛;ˇ/ D

kX
jD1

Pr.S D j / f .yI˛j ;ˇj jS D j /

D

kX
jD1

�jf .yI˛j ;ˇj jS D j /

This is a mixture of distributions, and the �j are called the mixture (or prior) probabilities. Because the
number of states k of the latent variable S is finite, the entire model is termed a finite mixture (of distributions)
model.

The finite mixture model can be expressed in a more general form by representing ˛ and ˇ in terms of
regressor variables and parameters with optional additional scale parameters for ˇ. The section “Notation for
the Finite Mixture Model” on page 2444 develops this in detail.

Mixture Models Contrasted with Mixing and Mixed Models: Untangling the Terminology Web

Statistical terminology can have its limitations. The terms mixture, mixing, and mixed models are sometimes
used interchangeably, causing confusion. Even worse, the terms arise in related situations. One application
needs to be eliminated from the discussion in this documentation: mixture experiments, where design factors
are the proportions with which components contribute to a blend, are not mixture models and do not fall
under the purview of the FMM procedure. However, the data from a mixture experiment might be analyzed
with a mixture model, a mixing model, or a mixed model, besides other types of statistical models.

Suppose that you observe realizations of random variable Y and assume that Y follows some distribution
f .yI˛;ˇ/ that depends on parameters ˛ and ˇ. Furthermore, suppose that the model is found to be deficient
in the sense that the variability implied by the fitted model is less than the observed variability in the data, a
condition known as overdispersion (see the section “Overdispersion” on page 2513). To tackle the problem
the statistical model needs to be modified to allow for more variability. Clearly, one way of doing this is
to introduce additional random variables into the process. Mixture, mixing, and mixed models are simply



2512 F Chapter 39: The FMM Procedure

different ways of adding such random variables. The section “The Form of the Finite Mixture Model” on
page 2511 explains how mixture models add a discrete state variable S. The following two subsections explain
how mixing and mixed models instead assume variation for a natural parameter or in the mean function.

Mixing Models
Suppose that the model is modified to allow for some random quantity U, which might be one of the
parameters of the model or a quantity related to the parameters. Now there are two distributions to cope with:
the conditional distribution of the response given the random effect U,

f .yI˛;ˇju/

and the marginal distribution of the data. If U is continuous, the marginal distribution is obtained by
integration:

f .yI˛;ˇ/ D

Z
f .yI˛;ˇju/ f .u/ du

Otherwise, it is obtained by summation over the support of U:

f .yI˛;ˇ/ D
X
u

Pr.U D u/ f .yI˛;ˇju/

The important entity for statistical estimation is the marginal distribution f .yI˛;ˇ/; the conditional distribu-
tion is often important for model description, genesis, and interpretation.

In a mixing model the marginal distribution is known and is typically of a well-known form. For example, if
Y jn has a binomial.n; �/ distribution and n follows a Poisson distribution, then the marginal distribution
of Y is Poisson. The preceding operation is called mixing a binomial distribution with a Poisson distribu-
tion. Similarly, when mixing a Poisson.�/ distribution with a gamma.a; b/ distribution for �, a negative
binomial distribution results as the marginal distribution. Other important mixing models involve mixing a
binomial.n; �/ random variable with a beta.a; b/ distribution for the binomial success probability �. This
results in a distribution known as the beta-binomial.

The finite mixtures have in common with the mixing models the introduction of random effects into the
model to vary some or all of the parameters at random.

Mixed Models
The difference between a mixing and a mixed model is that the conditional distribution is not that important
in the mixing model. It matters to motivate the overdispersed reference model and to arrive at the marginal
distribution. Inferences with respect to the conditional distribution, such as predicting the random variable U,
are not performed in mixing models. In a mixed model the random variable U typically follows a continuous
distribution—almost always a normal distribution. The random effects usually do not model the natural
parameters of the distribution; instead, they are involved in linear predictors that relate to the conditional
mean. For example, a linear mixed model is a model in which the response and the random effects are
normally distributed, and the random effects enter the conditional mean function linearly:

Y D Xˇ C ZUC �
U � N.0;G/
� � N.0;R/

CovŒU; �� D 0
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The conditional and marginal distributions are then

YjU � N.Xˇ C ZUC �;R/
Y � N.Xˇ;ZGZ0 C R/

For this model, because of the linearity in the mean and the normality of the random effects, you could
also refer to mixing the normal vector Y with the normal vector U, because the marginal distribution is
known. The linear mixed model can be fit with the MIXED procedure. When the conditional distribution
is not normal and the random effects are normal, the marginal distribution does not have a closed form. In
this class of mixed models, called generalized linear mixed models, model approximations and numerical
integration methods are commonly used in model fitting; see for example, those models fit by the GLIMMIX
and NLMIXED procedures. Chapter 6, “Introduction to Mixed Modeling Procedures,” contains details about
the various classes of mixed models and about the relevant SAS/STAT procedures.

The previous expression for the marginal variance in the linear mixed model, varŒY� D ZGZ0CR, emphasizes
again that the variability in the marginal distribution of a model that contains random effects exceeds the
variability in a model without the random effects (R).

The finite mixtures have in common with the mixed models that the marginal distribution is not necessarily a
well-known model, but is expressed through a formal integration over the random-effects distribution. In
contrast to the mixed models, in particular those involving nonnormal distributions or nonlinear elements,
this integration is rather trivial; it reduces to a weighted and finite sum of densities or mass functions.

Overdispersion

Overdispersion is the condition by which the data are more dispersed than is permissible under a reference
model. Overdispersion arises only if the variability a model can capture is limited (for example, because
of a functional relationship between mean and variance). For example, a model for normal data can never
be overdispersed in this sense, although the reasons that lead to overdispersion also negatively affect a
misspecified model for normal data. For example, omitted variables increase the residual variance estimate
because variability that should have been modeled through changes in the mean is now “picked up” as error
variability.

Overdispersion is important because an overdispersed model can lead to misleading inferences and conclu-
sions. However, diagnosing and remedying overdispersion is complicated. In order to handle it appropriately,
the source of overdispersion must be identified. For example, overdispersion can arise from any of the
following conditions alone or in combination:

• omitted variables and model effects

• omitted random effects (a source of random variation is not being modeled or is modeled as a fixed
effect)

• correlation among the observations

• incorrect distributional assumptions

• incorrectly specified mean-variance relationships

• outliers in the data
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As discussed in the previous section, introducing randomness into a system increases its variability. Mixture,
mixed, and mixing models have thus been popular in modeling data that appear overdispersed. Finite
mixture models are particularly powerful in this regard, because even low-order mixtures of basic, symmetric
distributions (such as two- or three-component mixtures of normal or t distributions) enable you to model
data with multiple modes, heavy tails, and skewness. In addition, the latent variable S provides a natural way
to accommodate omitted, unobservable variables into the model.

One approach to remedy overdispersion is to apply simple modifications of the variance function of the
reference model. For example, with binomial-type data this approach replaces the variance of the binomial
count variable Y � Binomial.n; �/, VarŒY � D n � �.1 � �/ with a scaled version, �n � �.1 � �/, where
� is called an overdispersion parameter, � > 0.

In addressing overdispersion problems, it is important to tackle the problem at its root. A missing scale factor
on the variance function is hardly ever the root cause of overdispersion; it is only the easiest remedy.

Log-Likelihood Functions for Response Distributions
The FMM procedure calculates the log likelihood that corresponds to a particular response distribution
according to the following formulas. The response distribution is the distribution specified (or chosen
by default) through the DIST= option in the MODEL statement. The parameterizations used for log-
likelihood functions of these distributions were chosen to facilitate expressions in terms of mean parameters
that are modeled through an (inverse) link functions and in terms of scale parameters. These are not
necessarily the parameterizations in which parameters of prior distributions are specified in a Bayesian
analysis of homogeneous mixtures. See the section “Prior Distributions” on page 2523 for details about the
parameterizations of prior distributions.

The FMM procedure includes all constant terms in the computation of densities or mass functions. In the
expressions that follow, l denotes the log-likelihood function, � denotes a general scale parameter, �i is the
“mean”, and wi is a weight from the use of a WEIGHT statement.

For some distributions (for example, the Weibull distribution) �i is not the mean of the distribution. The
parameter �i is the quantity that is modeled as g�1.x‘ˇ/, where g�1.�/ is the inverse link function and the x
vector is constructed based on the effects in the MODEL statement. Situations in which the parameter �
does not represent the mean of the distribution are explicitly mentioned in the list that follows.

The parameter � is frequently labeled as a “Scale” parameter in output from the FMM procedure. It is not
necessarily the scale parameter of the particular distribution.

Beta .�; �/

l.�i ; �Iyi ; wi / D log
�

�.�=wi /

�.�i�=wi /�..1 � �i /�=wi /

�
C .�i�=wi � 1/ logfyig
C ..1 � �i /�=wi � 1/ logf1 � yig

This parameterization of the beta distribution is due to Ferrari and Cribari-Neto (2004)
and has properties EŒY � D �, VarŒY � D �.1 � �/=.1C �/; � > 0.
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Beta-binomial .nI�; �/

� D .1 � �2/=�2

l.�i ; �Iyi / D logf�.ni C 1/g � logf�.yi C 1/g
� logf�.ni � yi C 1/g
C logf�.�/g � logf�.ni C �/g C logf�.yi C ��i /g
C logf�.ni � yi C �.1 � �i //g � logf�.��i /g
� logf�.�.1 � �i //g

l.�i ; �Iyi ; wi / D wi l.�i ; �Iyi /

where yi and ni are the events and trials in the events/trials syntax and 0 < � < 1. This
parameterization of the beta-binomial model presents the distribution as a special case of
the Dirichlet-Multinomial distribution—see, for example, Neerchal and Morel (1998). In
this parameterization, EŒY � D n� and VarŒY � D n�.1 � �/.1C .n � 1/=.� C 1//; 0 �
� � 1. The FMM procedure models the parameter � and labels it “Scale” on the procedure
output. For other parameterizations of the beta-binomial model, see Griffiths (1973) or
Williams (1975).

Binomial .nI�/

l.�i Iyi / D yi logf�ig C .ni � yi / logf1 � �ig
C logf�.ni C 1/g � logf�.yi C 1/g
� logf�.ni � yi C 1/g

l.�i Iyi ; wi / D wi l.�i Iyi /

where yi and ni are the events and trials in the events/trials syntax and 0 < � < 1. In
this parameterization EŒY � D n�, VarŒY � D n�.1 � �/.

Binomial Cluster .nI�; �/

z D logf�.ni C 1/g � logf�.yi C 1/g � logf�.ni � yi C 1/g
��i D .1 � �i /�i

l.�i ; �i Iyi / D z C logf�i .��i C �i /
yi .1 � ��i � �i /

ni�yi

C .1 � �i /.�
�
i /
yi .1 � ��i /

ni�yi g

l.�i ; �i Iyi ; wi / D wi l.�i ; �i Iyi /

In this parameterization, EŒY � D n� and VarŒY � D n�.1 � �/
˚
1C �2.n � 1/

	
. The

binomial cluster model is a two-component mixture of a binomial.n; �� C �/ and a
binomial.n; ��/ random variable. This mixture is unusual in that it fixes the number of
components and because the mixing probability � appears in the moments of the mixture
components. For further details, see Morel and Nagaraj (1993); Morel and Neerchal
(1997); Neerchal and Morel (1998) and Example 39.1 in this chapter. The expressions
for the mean and variance in the binomial cluster model are identical to those of the
beta-binomial model shown previously, with �bc D �bb , �bc D �bb .

The FMM procedure models the parameter � through the MODEL statement and the
parameter � through the PROBMODEL statement.
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Constant (c)

l.yi / D

�
0 jyi � cj < �

�1E20 jyi � cj � �

The extreme value when jyi � cj � � is an approximation for log.0/ D �1, chosen
so that expfl.yi /g yields a likelihood of zero. You can change this value with the
INVALIDLOGL= option in the PROC FMM statement. The constant distribution is useful
for modeling overdispersion due to zero-inflation (or inflation of the process at support c).

The DIST=CONSTANT distribution is useful for modeling an inflated probability of
observing a particular value (zero, by default) in data from other discrete distributions,
as demonstrated in “Modeling Zero-Inflation: Is it Better to Fish Poorly or Not to Have
Fished at All?” on page 2452. While it is syntactically valid to mix a constant distribution
with a continuous distribution, such as DIST=LOGNORMAL, such a mixture is not
mathematically appropriate, because the constant log-likelihood is the log of a probability,
while a continuous log-likelihood is the log of a probability density function. If you
want to mix a constant distribution with a continuous distribution, you could model the
constant as a very narrow continuous distribution, such as DIST=UNIFORM(c� ı, cC ı)
for a small value ı. However, using PROC FMM to analyze such mixtures is sensitive
to numerical inaccuracy and ultimately unnecessary. Instead, the following approach is
mathematically equivalent and more numerically stable:

1. Estimate the mixing probability P.Y D c/ as the proportion of observations in the
data set such that jyi � cj < �.

2. Estimate the parameters of the continuous distribution from the observations for
which jyi � cj � �.

Exponential .�/

l.�i Iyi ; wi / D

(
� logf�ig � yi=�i wi D 1

wi log
n
wiyi
�i

o
�
wiyi
�i
� logfyi�.wi /g wi 6D 1

In this parameterization, EŒY � D � and VarŒY � D �2.

Folded Normal .�; �/

l.�i ; �Iyi ; wi / D�
1

2
logf2�g �

1

2
logf�=wig

C log
�
exp

�
�wi .yi � �i /

2

2�

�
C exp

�
�wi .yi C �i /

2

2�

��
If X has a normal distribution with mean � and variance �, then Y D jX j has a folded
normal distribution and log-likelihood function l.�; �Iy;w/ for y � 0. The folded
normal distribution arises, for example, when normally distributed measurements are
observed, but their signs are not observed. The mean and variance of the folded normal in
terms of the underlying N.�; �/ distribution are

EŒY � D
1

p
2��

exp
�
�
�2

2=�

�
C �

�
1 � 2ˆ

�
��=

p
�
��

VarŒY � D� C �2 � EŒY �2
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The FMM procedure models the folded normal distribution through the mean � and
variance � of the underlying normal distribution. When the FMM procedure computes
output statistics for the response variable (for example when you use the OUTPUT
statement), the mean and variance of the response Y are reported. Similarly, the fit
statistics apply to the distribution of Y D jX j, not the distribution of X. When you
model a folded normal variable, the response input variable should be positive; the FMM
procedure treats negative values of Y as a support violation.

Gamma .�; �/

l.�i ; �Iyi ; wi / D wi� log
�
wiyi�

�i

�
�
wiyi�

�i
� logfyig � log f�.wi�/g

In this parameterization, EŒY � D � and VarŒY � D �2=�; � > 0. This parameterization
of the gamma distribution differs from that in the GLIMMIX procedure, which expresses
the log-likelihood function in terms of 1=� in order to achieve a variance function suitable
for mixed model analysis.

Geometric .�/

l.�i Iyi ; wi / D yi log
�
�i

wi

�
� .yi C wi / log

�
1C

�i

wi

�
C log

�
�.yi C wi /

�.wi /�.yi C 1/

�
In this parameterization, EŒY � D � and VarŒY � D �C �2. The geometric distribution is
a special case of the negative binomial distribution with � D 1.

Generalized Poisson .�; �/

�i D .1 � expf��g/ =wi
��i D �i � �.�i � yi /

l.��i ; �i Iyi ; wi / D logf��i � �iyig C .yi � 1/ logf�
�
i g

���i � logf�.yi C 1/g

In this parameterization, EŒY � D �, VarŒY � D �=.1 � �/2; and � � 0. The FMM
procedure models the mean � through the effects in the MODEL statement and applies
a log link by default. The generalized Poisson distribution provides an overdispersed
alternative to the Poisson distribution; � D �i D 0 produces the mass function of a regular
Poisson random variable. For details about the generalized Poisson distribution and a
comparison with the negative binomial distribution, see Joe and Zhu (2005).

Inverse Gaussian .�; �/

l.�i ; �Iyi ; wi / D �
1

2

"
wi .yi � �i /

2

yi��
2
i

C log

(
�y3i
wi

)
C logf2�g

#
The variance is VarŒY � D ��3; � > 0.

Lognormal .�; �/

zi D logfyig � �i

l.�i ; �Iyi ; wi / D �
1

2

 
2 logfyig C log

�
�

wi

�
C logf2�g C

wiz
2
i

�

!
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If X D logfY g has a normal distribution with mean � and variance �, then Y has the
log-likelihood function l.�i ; �Iyi ; wi /. The FMM procedure models the lognormal
distribution and not the “shortcut” version you can obtain by taking the logarithm of a
random variable and modeling that as normally distributed. The two approaches are not
equivalent, and the approach taken by PROC FMM is the actual lognormal distribution.
Although the lognormal model is a member of the exponential family of distributions, it
is not in the “natural” exponential family because it cannot be written in canonical form.

In terms of the parameters � and � of the underlying normal process for X, the mean
and variance of Y are EŒY � D expf�g

p
! and VarŒY � D expf2�g!.! � 1/, respectively,

where ! D expf�g. When you request predicted values with the OUTPUT statement, the
FMM procedure computes EŒY � and not �.

Multinomial .n;�/

l.�i I yi / D
MX
jD1

yij log.�ij /C logf�.ni /g �
MX
jD1

logf�.yij /g

l.�i I yi ; wi / D wi l.�i ; yi /

where M is the number of levels of the response variable, ni D
PM
jD1 yij , 0 < �ij < 1

for each j, and
PM
jD1 �ij D 1.

The mean and variance are EŒY� D n� and VarŒY� D n.Diag.�/ � ��T /, respectively,
where � D .�1; : : : ; �M�1/.

Multinomial Cluster .n; �;�/

K.�i ;�i ; yi / D
MX
hD1

n
�ih

MY
gD1

Œ�ig.1 � �i /C �i1.g D h/�
yig
o

l.�i ;�i ; yi D logf�.ni /g �
MX
gD1

logf�.yij /g C logfK.�i ;�i ; yi /g

l.�i ;�i ; yi ; wi / D wi l.�i ;�i ; yi /

The multinomial cluster model for a response that has M levels is an M-component
mixture of multinomials. The parameter vector for each component multinomial is based
on the mixing probability vector � and an additional factor �. As is true for the binomial
cluster model, the number of components is fixed and the mixing probabilities in � appear
in the moments for the mixture components. For more information, see Morel and Nagaraj
(1993) and Example 39.4 in this chapter.

The mean and variance are EŒY� D n� and VarŒY� D n.Diag.�/���T /f1C�2.n�1/g,
respectively.

Negative Binomial .�; �/

l.�i ; �Iyi ; wi / D yi log
�
��i

wi

�
� .yi C wi=�/ log

�
1C

��i

wi

�
C log

�
�.yi C wi=�/

�.wi=�/�.yi C 1/

�
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The variance is VarŒY � D �C ��2; � > 0.

For a given �, the negative binomial distribution is a member of the exponential family.
The parameter � is related to the scale of the data because it is part of the variance function.
However, it cannot be factored from the variance, as is the case with the � parameter in
many other distributions.

Normal .�; �/

l.�i ; �Iyi ; wi / D �
1

2

�
wi .yi � �i /

2

�
C log

�
�

wi

�
C logf2�g

�
The mean and variance are EŒY � D � and VarŒY � D �, respectively, � > 0

Poisson .�/

l.�i Iyi ; wi / D wi .yi logf�ig � �i � logf�.yi C 1/g/

The mean and variance are EŒY � D � and VarŒY � D �.

(Shifted) T .�I�; �/

zi D �0:5 logf�=
p
wig C log f�.0:5.� C 1/g

� log f�.0:5�/g � 0:5 � log f��g

l.�i ; �Iyi ; wi / D �

�
� C 1

2

�
log

�
1C

wi

�

.yi � �i /
2

�

�
C zi

In this parameterization EŒY � D � and VarŒY � D ��=.� � 2/; � > 0; � > 0. Note that
this form of the t distribution is not a non-central distribution, but that of a shifted central
t random variable.

Truncated Exponential .�I a; b/

l.�i I a; b; yi ; wi / D wi log
�
wiyi

�i

�
�
wiyi

�i
� logfyi�.wi /g

� log

24
�
wi ;

wib
�i

�
�.wi /

�


�
wi ;

wia
�i

�
�.wi /

35
where

.c1; c2/ D

Z c2

0

tc1�1 exp.�t /dt

is the lower incomplete gamma function. The mean and variance are

EŒY � D
.aC �i / exp.�a=�i / � .b C �i / exp.�b=�i /

exp.�a=�i / � exp.�b=�i /

VarŒY � D
.a2 C 2a�i C 2�

2
i / exp.�a=�i / � .b

2 C 2b�i C 2�
2
i / exp.�b=�i /

exp.�a=�i / � exp.�b=�i /
� .EŒY �/2
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Truncated Lognormal .�; �I a; b/

zi D logfyig � �i

l.�i ; �I a; b; yi ; wi / D �
1

2

 
2 logfyig C log

�
�

wi

�
C logf2�g C

wiz
2
i

�

!
� log

n
ˆ
hp
wi=�.log b � �i /

i
�ˆ

hp
wi=�.log a � �i /

io
where ˆ.�/ is the cumulative distribution function of the standard normal distribution.
The mean and variance are

EŒY � D exp.�i C 0:5�/
ˆ
�
p
� � loga��ip

�

�
�ˆ

�
p
� � log b��ip

�

�
ˆ
�
log b��ip

�

�
�ˆ

�
loga��ip

�

�
VarŒY � D exp.2�i C 2�/

ˆ
�
2
p
� � loga��ip

�

�
�ˆ

�
2
p
� � log b��ip

�

�
ˆ
�
log b��ip

�

�
�ˆ

�
loga��ip

�

� � .EŒY �/2

Truncated Negative Binomial .�; �/

l.�i ; �Iyi ; wi / D yi log
�
��i

wi

�
� .yi C wi=�/ log

�
1C

��i

wi

�
C log

�
�.yi C wi=�/

�.wi=�/�.yi C 1/

�
� log

(
1 �

�
��i

wi
C 1

��wi=�)
The mean and variance are

EŒY � D �i
n
1 � .��i C 1/

�1=�
o�1

VarŒY � D .1C ��i C �i /EŒY � � .EŒY �/2

Truncated Normal .�; �I a; b/

l.�i ; �I a; b; yi ; wi / D �
1

2

�
wi .yi � �i /

2

�
C log

�
�

wi

�
C logf2�g

�
� log

n
ˆ
hp
wi=�.b � �i /

i
�ˆ

hp
wi=�.a � �i /

io
where ˆ.�/ is the cumulative distribution function of the standard normal distribution.
The mean and variance are

EŒY � D �i C
p
�
phi

�
a��ip
�

�
� phi

�
b��ip
�

�
ˆ
�
b��ip
�

�
�ˆ

�
a��ip
�

�
VarŒY � D �

241C a��ip
�
phi

�
a��ip
�

�
�
b��ip
�
phi

�
b��ip
�

�
ˆ
�
b��ip
�

�
�ˆ

�
a��ip
�

�
�

8<:phi
�
a��ip
�

�
� phi

�
b��ip
�

�
ˆ
�
b��ip
�

�
�ˆ

�
a��ip
�

�
9=;
2
375
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where phi.�/ is the probability density function of the standard normal distribution.

Truncated Poisson .�/

l.�i Iyi ; wi / D wi .yi logf�ig � logfexp.�i / � 1g � logf�.yi C 1/g/

The mean and variance are

EŒY � D
�

1 � exp.��i /

VarŒY � D
�i Œ1 � exp.��i / � �i exp.��i /�

Œ1 � exp.��i /�2

Uniform .a; b/

l.�i Iyi ; wi / D � logfb � ag

The mean and variance are EŒY � D 0:5.aC b/ and VarŒY � D .b � a/2=12.

Weibull .�; �/

l.�i ; �Iyi / D �
� � 1

�
log

�
yi

�i

�
� logf�i�g

� exp
�
log

�
yi

�i

�
=�

�
In this particular parameterization of the two-parameter Weibull distribution, the mean
and variance of the random variable Y are EŒY � D ��.1 C �/ and VarŒY � D
�2
˚
�.1C 2�/ � �2.1C �/

	
.

Bayesian Analysis

Conjugate Sampling

The FMM procedure uses Bayesian analysis via a conjugate Gibbs sampler if the model belongs to a small
class of mixture models for which a conjugate sampler is available. See the section “Gibbs Sampler” on
page 133 in Chapter 7, “Introduction to Bayesian Analysis Procedures,” for a general discussion of Gibbs
sampling. Table 39.8 summarizes the models for which conjugate and Metropolis-Hastings samplers are
available.

Table 39.8 Availability of Conjugate and Metropolis Samplers in
the FMM Procedure

Effects (exclusive
of intercept) Distributions Available Samplers

No Normal or T Conjugate or Metropolis-Hastings
Yes Normal or T Conjugate or Metropolis-Hastings
No Binomial, binary, Poisson, exponential Conjugate or Metropolis-Hastings
Yes Binomial, binary, Poisson, exponential Metropolis-Hastings only
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The conjugate sampler enjoys greater efficiency than the Metropolis-Hastings sampler and has the advantage
of sampling in terms of the natural parameters of the distribution.

You can always switch to the Metropolis-Hastings sampling algorithm in any model by adding the METROPO-
LIS option in the BAYES statement.

Metropolis-Hastings Algorithm

If Metropolis-Hastings is the only sampler available for the specified model (see Table 39.8) or if the
METROPOLIS option is specified in the BAYES statement, PROC FMM uses the Metropolis-Hastings
approach of Gamerman (1997). See the section “Metropolis and Metropolis-Hastings Algorithms” on
page 132 in Chapter 7, “Introduction to Bayesian Analysis Procedures,” for a general discussion of the
Metropolis-Hastings algorithm.

The Gamerman (1997) algorithm derives a specific density that is used to generate proposals for the
component-specific parameters ˇj . The form of this proposal density is multivariate normal, with mean mj
and covariance matrix Cj derived as follows.

Suppose ˇj is the vector of model coefficients in the jth component and suppose that ˇj has prior distribution
N.a;R/. Consider a generalized linear model (GLM) with link function g.�/ D � D x0ˇ and variance
function a.�/. The pseudo-response and weight in the GLM for a weighted least squares step are

y� D�C .y � �/=
@�

@�

w D
@�

@�
=a.�/

If the model contains offsets or FREQ or WEIGHT statements, or if a trials variable is involved, suitable
adjustments are made to these quantities.

In each component, j D 1; � � � ; k, form an adjusted cross-product matrix with a “pseudo” border"
X0jWjXj C R�1 X0jWjy�j C R�1a
y�
0

j WjXj C a0R�1 c

#

where Wj is a diagonal matrix formed from the pseudo-weights w, y� is a vector of pseudo-responses, and c
is arbitrary. This is basically a system of normal equations with ridging, and the degree of ridging is governed
by the precision and mean of the normal prior distribution of the coefficients. Sweeping on the leading
partition leads to

Cj D
�

X0jWjXj C R�1
��

mj DCj
�

X0jWjy�j C R�1a
�

where the generalized inverse is a reflexive, g2-inverse (see the section “Linear Model Theory” on page 51 in
Chapter 3, “Introduction to Statistical Modeling with SAS/STAT Software,” for details).

PROC FMM then generates a proposed parameter vector from the resulting multivariate normal distribution,
and then accepts or rejects this proposal according to the appropriate Metropolis-Hastings thresholds.
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Latent Variables via Data Augmentation

In order to fit finite Bayesian mixture models, the FMM procedure treats the mixture model as a missing data
problem and introduces an assignment variable S as in Dempster, Laird, and Rubin (1977). Because S is not
observable, it is frequently referred to as a latent variable. The unobservable variable S assigns an observation
to a component in the mixture model. The number of states, k, might be unknown, but it is known to be
finite. Conditioning on the latent variable S, the component memberships of each observation is assumed
to be known, and Bayesian estimation is straightforward for each component in the finite mixture model.
That is, conditional on S D j , the distribution of the response is now assumed to be f .yI˛j ; ˇj jS D j /. In
other words, each distinct state of the random variable S leads to a distinct set of parameters. The parameters
in each component individually are then updated using a conjugate Gibbs sampler (where available) or a
Metropolis-Hastings sampling algorithm.

The FMM procedure assumes that the random variable S has a discrete multinomial distribution with
probability �j of belonging to a component j; it can occupy one of k states. The distribution for the latent
variable S is

f .Si D j j�1; : : : ; �k/ D multinomial.1; �1; : : : ; �k/

where f .�j�/ denotes a conditional probability density. The parameters in the density �j denote the probability
that S takes on state j.

The FMM procedure assumes a conjugate Dirichlet prior distribution on the mixture proportions �j written
as:

p.�/ D Dirichlet.a1; : : : ; ak/

where p.�/ indicates a prior distribution.

Using Bayes’ theorem, the likelihood function and prior distributions determine a conditionally conjugate
posterior distribution of S and � from the multinomial distribution and Dirichlet distribution, respectively.

Prior Distributions

The following list displays the parameterization of prior distributions for situations in which the FMM
procedure uses a conjugate sampler in mixture models without model effects and certain basic distributions
(binary, binomial, exponential, Poisson, normal, and t). You specify the parameters a and b in the formulas
below in the MUPRIORPARMS= and PHIPRIORPARMS= options in the BAYES statement in these models.

Beta.a; b/

f .y/ D
�.aC b/

�.a/�.b/
ya�1 .1 � y/b�1

where a > 0, b > 0. In this parameterization, the mean and variance of the distribution
are � D a=.aC b/ and �.1 � �/=.aC b C 1/, respectively. The beta distribution is the
prior distribution for the success probability in binary and binomial distributions when
conjugate sampling is used.

Dirichlet.a1; � � � ; ak/

f .y/ D
�
�Pk

iD1 ai

�
Qk
iD1 �.ai /

y
a1�1
1 � � � y

ak�1
k
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where
Pk
iD1 yi D 1 and the parameters ai > 0. If any ai were zero, an improper density

would result. The Dirichlet density is the prior distribution for the mixture probabilities.
You can affect the choice of the ai through the MIXPRIORPARMS option in the BAYES
statement. If k=2, the Dirichlet is the same as the beta.a; b/ distribution.

Gamma.a; b)

f .y/ D
ba

�.a/
ya�1 expf�byg

where a > 0, b > 0. In this parameterization, the mean and variance of the distribution
are � D a=b and �=b, respectively. The gamma distribution is the prior distribution for
the mean parameter of the Poisson distribution when conjugate sampling is used.

Inverse gamma.a; b/

f .y/ D
ba

�.a/
y�a�1 expf�b=yg

where a > 0, b > 0. In this parameterization, the mean and variance of the distribution
are � D b=.a � 1/ if a > 1 and �2=.a � 2/ if a > 2, respectively. The inverse gamma
distribution is the prior distribution for the mean parameter of the exponential distribution
when conjugate sampling is used. It is also the prior distribution for the scale parameter �
in all models.

Multinomial.1; �1; � � � ; �k/

f .y/ D
1

y1Š � � �ykŠ
�
y1
1 � � � �

yk
k

where
Pk
jD1 yj D n, yj � 0,

Pk
jD1 �j D 1, and n is the number of observations

included in the analysis. The multinomial density is the prior distribution for the mixture
proportions. The mean and variance of Yj are �j D �j and �j .1 � �j /, respectively.

Normal.a; b/

f .y/ D
a

p
2�b

exp
�
�
1

2

.y � a/2

b

�
where b > 0. The mean and variance of the distribution are � D a and b, respectively.
The normal distribution is the prior distribution for the mean parameter of the normal and
t distribution when conjugate sampling is used.

When a MODEL statement contains effects or if you specify the METROPOLIS option, the prior distribution
for the regression parameters is multivariate normal, and you can specify the means and variances of the
parameters in the BETAPRIORPARMS= option in the BAYES statement.

Parameterization of Model Effects
PROC FMM constructs a finite mixture model according to the specifications in the CLASS, MODEL, and
PROBMODEL statements. Each effect in the MODEL statement generates one or more columns in the
matrix X for that model. The same X matrix applies to all components that are associated with the MODEL
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statement. Each effect in the PROBMODEL statement generates one or more columns in the matrix Z from
which the linear predictors in the model for the mixture probability models is formed. The same Z matrix
applies to all components.

The formation of effects from continuous and classification variables in the FMM procedure follows the same
general rules and techniques as for other linear modeling procedures. See the section “GLM Parameterization
of Classification Variables and Effects” on page 387 in Chapter 19, “Shared Concepts and Topics.”

Default Output
The following sections describe the output that PROC FMM produces by default. The output is organized
into various tables, which are discussed in the order of appearance for maximum likelihood and Bayesian
estimation, respectively.

Model Information

The “Model Information” table displays basic information about the model, such as the response variable,
frequency variable, link function, and the model category that the FMM procedure determined based on your
input and options. The “Model Information” table is one of a few tables that are produced irrespective of
estimation technique. Most other tables are specific to Bayes or maximum likelihood estimation.

If the analysis depends on generated random numbers, the “Model Information” table also displays the
random number seed used to initialize the random number generators. If you repeat the analysis and pass
this seed value in the SEED= option in the PROC FMM statement, an identical stream of random numbers
results.

Class Level Information

The “Class Level Information” table lists the levels of every variable specified in the CLASS statement. You
should check this information to make sure that the data are correct. You can adjust the order of the CLASS
variable levels with the ORDER= option in the PROC FMM statement. You can suppress the “Class Level
Information” table completely or partially with the NOCLPRINT option in the PROC FMM statement.

Number of Observations

The “Number of Observations” table displays the number of observations read from the input data set and the
number of observations used in the analysis. If you specify a FREQ statement, the table also displays the
sum of frequencies read and used. If the events/trials syntax is used for the response, the table also displays
the number of events and trials used in the analysis.

Note that the number of observations “used” in the analysis is not unambiguous in a mixture model. An
observation that is “unusable” for one component distribution (because the response value is outside of the
support of the distribution) might still be usable in the mixture model when the response value is in the
support of another component distribution. You can affect the way in which PROC FMM handles exclusion
of observations due to support violations with the EXCLUSION= option in the PROC FMM statement.
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Response Profile

For binary data, the “Response Profile” table displays the ordered value from which the FMM procedure
determines the probability being modeled as an event for binary data. For each response category level, the
frequency used in the analysis is reported.

Default Output for Maximum Likelihood

Optimization Information
The “Optimization Information” table displays basic information about the optimization setup to determine
the maximum likelihood estimates, such as the optimization technique, the parameters that participate in the
optimization, and the number of threads used for the calculations. This table is not produced during model
selection—that is, if the KMAX= option is specified in the MODEL statement.

Iteration History
The “Iteration History” table displays for each iteration of the optimization the number of function evaluations
(including gradient and Hessian evaluations), the value of the objective function, the change in the objective
function from the previous iteration, and the absolute value of the largest (projected) gradient element.
The objective function used in the optimization in the FMM procedure is the negative of the mixture log
likelihood; consequently, PROC FMM performs a minimization. This table is not produced if you specify the
KMAX= option in the MODEL statement. If you wish to see the “Iteration History” table in this setting, you
must also specify the FITDETAILS option in the PROC FMM statement.

Convergence Status
The convergence status table is a small ODS table that follows the “Iteration History” table in the default
output. In the listing, it appears as a message that identifies whether the optimization succeeded and which
convergence criterion was met. If the optimization fails, the message indicates the reason for the failure. If
you save the “Convergence Status” table to an output data set, a numeric Status variable is added that allows
you to assess convergence programmatically. The values of the Status variable encode the following:

0 Convergence was achieved or an optimization was not performed (because of TECH-
NIQUE=NONE).

1 The objective function could not be improved.

2 Convergence was not achieved because of a user interrupt or because a limit was exceeded,
such as the maximum number of iterations or the maximum number of function evalu-
ations. To modify these limits, see the MAXITER=, MAXFUNC=, and MAXTIME=
options in the PROC FMM statement.

3 Optimization failed to converge because function or derivative evaluations failed at
the starting values or during the iterations or because a feasible point that satisfies the
parameter constraints could not be found in the parameter space.

Fit Statistics
The “Fit Statistics” table displays a variety of fit measures based on the mixture log likelihood in addition
to the Pearson statistic. All statistics are presented in “smaller is better” form. If you are fitting a single-
component normal, gamma, or inverse Gaussian model, the table also contains the unscaled Pearson statistic.
If you are fitting a mixture model or the model has been fitted under restrictions, the table also contains the
number of effective components and the number of effective parameters.
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The calculation of the information criteria uses the following formulas, where p denotes the number of
effective parameters, n denotes the number of observations used (or the sum of the frequencies used if a
FREQ statement is present), and l is the log likelihood of the mixture evaluated at the converged estimates:

AIC D� 2l C 2p

AICC D
�
�2l C 2pn=.n � p � 1/ n > p C 2

�2l C 2p.p C 2/ otherwise

BIC D� 2l C p log.n/

The Pearson statistic is computed simply as

Pearson statistic D
nX
iD1

fi
.yi �b�i /2
bVarŒYi �

where n denotes the number of observations used in the analysis, fi is the frequency associated with the ith
observation (or 1 if no frequency is specified), �i is the mean of the mixture, and the denominator is the
variance of the ith observation in the mixture. Note that the mean and variance in this expression are not
those of the component distributions, but the mean and variance of the mixture:

�i D EŒYi � D
kX
jD1

�ij�ij

VarŒYi � D� �2i C
kX
jD1

�ij

�
�2ij C �

2
ij

�
where �ij and �2ij are the mean and variance, respectively, for observation i in the jth component distribution
and �ij is the mixing probability for observation i in component j.

The unscaled Pearson statistic is computed with the same expression as the Pearson statistic with n, fi , and
�i as previously defined, but the scale parameter � is set to 1 in the bVarŒYi � expression.

The number of effective components and the number of effective parameters are determined by examining the
converged solution for the parameters that are associated with model effects and the mixing probabilities. For
example, if a component has an estimated mixing probability of zero, the values of its parameter estimates
are immaterial. You might argue that all parameters should be counted towards the penalty in the information
criteria. But a component with zero mixing probability in a k-component model effectively reduces the model
to a .k � 1/-component model. A situation of an overfit model, for which a parameter penalty needs to be
taken when calculating the information criteria, is a different situation; here the mixing probability might be
small, possibly close to zero.

Parameter Estimates
The parameter estimates, their estimated (asymptotic) standard errors, and p-values for the hypothesis that
the parameter is zero are presented in the “Parameter Estimates” table. A separate table is produced for each
MODEL statement, and the components that are associated with a MODEL statement are identified with an
overall component count variable that counts across MODEL statements. If you assign a label to a model
with the LABEL= option in the MODEL statement, the label appears in the title of the “Parameter Estimates”
table. Otherwise, the internal label generated by the FMM procedure is used.
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If the MODEL statement does not contain effects and the link function is not the identity, the inversely linked
estimate is also displayed in the table. For many distributions, the inverse linked estimate is the estimated
mean on the data scale. For example, in a binomial or binary model, it represents the estimated probability of
an event. For some distributions (for example, the Weibull distribution), the inverse linked estimate is not the
component distribution mean.

If you request confidence intervals with the CL or ALPHA= option in the MODEL statement, confidence
limits are produced for the estimate on the linear scale. If the inverse linked estimate is displayed, confidence
intervals for that estimate are also produced by inversely linking the confidence bounds on the linear scale.

Mixing Probabilities
If you fit a model with more than one component, the table of mixing probabilities is produced. If there
are no effects in the PROBMODEL statement or if there is no PROBMODEL statement, the parameters
are reported on the linear scale and as mixing probabilities. If model effects are present, only the linear
parameters (on the scale of the logit, generalized logit, probit, and so on) are displayed.

Default Output for Bayesian Estimation

Bayes Information
This table provides basic information about the sampling algorithm. The FMM procedure uses either a
conjugate sampler or a Metropolis-Hastings sampling algorithm based on Gamerman (1997). The table
reveals, for example, how many model parameters are sampled, how many parameters associated with mixing
probabilities are sampled, and how many threads are used to perform multithreaded analysis.

Prior Distributions
The “Prior Distributions” table lists for each sampled parameter the prior distribution and its parameters. The
mean and variance (if they exist) for those values of the parameters are also displayed, along with the initial
value for the parameter in the Markov chain. The Component column in this table identifies the mixture
component to which a particular parameter belongs. You can control how the FMM procedure determines
initial values with the INITIAL= option in the BAYES statement.

Bayesian Fit Statistics
The “Bayesian Fit Statistics” table shows three measures based on the posterior sample. The “Average -2
Log Likelihood” is derived from the average mixture log-likelihood for the data, where the average is taken
over the posterior sample. The deviance information criterion (DIC) is a Bayesian measure of model fit and
the effective number of parameters (pD) is a penalization term used in the computation of the DIC. Please
refer to “Summary Statistics” on page 151 in Chapter 7, “Introduction to Bayesian Analysis Procedures.” for
a detailed discussion of the DIC and pD .

Posterior Summaries
The arithmetic mean, standard deviation, and percentiles of the posterior distribution of the parameter
estimates are displayed in the “Posterior Summaries” table. By default, the FMM procedure computes the
25th, 50th (median), and 75th percentiles of the sampling distribution. You can modify the percentiles
through suboptions of the STATISTICS option in the BAYES statement. If a parameter corresponds to a
singularity in the design and was removed from sampling for that purpose, it is also displayed in the table
of posterior summaries (and in other tables that relate to output from the BAYES statement). The posterior
sample size for such a parameter is shown as N = 0.
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Posterior Intervals
The table of “Posterior Intervals” displays equal-tail intervals and intervals of highest posterior density for
each parameter. By default, intervals are computed for an ˛-level of 0.05, which corresponds to 95% intervals.
You can modify this confidence level by providing one or more ˛ values in the ALPHA= suboption of the
STATISTICS option in the BAYES statement. The computation of these intervals is detailed in section
“Summary Statistics” on page 151 in Chapter 7, “Introduction to Bayesian Analysis Procedures.”

Posterior Autocorrelations
Autocorrelations for the posterior estimates are computed by default for autocorrelation lags 1, 5, 10, and 50,
provided that a sufficient number of posterior samples is available. See the section “Assessing Markov Chain
Convergence” on page 137 in Chapter 7, “Introduction to Bayesian Analysis Procedures,” for the computation
of posterior autocorrelations and their utility in diagnosing convergence of Markov chains. You can modify
the list of lags for which posterior autocorrelations are calculated with the AUTOCORR suboption of the
DIAGNOSTICS= option in the BAYES statement.

Effective Sample Sizes
The “Effective Sample Sizes” table displays the effective sample size (Kass et al. 1998) for each of the
parameters in the model. The effective sample size (ESS) for an MCMC sample is another assessment of
the mixing of the Markov chain. See the section “Assessing Markov Chain Convergence” on page 137 in
Chapter 7, “Introduction to Bayesian Analysis Procedures.” for a detailed discussion of the ESS.

ODS Table Names
Each table created by PROC FMM has a name associated with it, and you must use this name to reference
the table when you use ODS statements. These names are listed in Table 39.9.

Table 39.9 ODS Tables Produced by PROC FMM

Table Name Description Required Statement / Option

AutoCorr Autocorrelation among posterior es-
timates

BAYES

BayesInfo Basic information about Bayesian es-
timation

BAYES

ClassLevels Level information from the CLASS
statement

CLASS

CompDescription Component description in models
with varying number of components

KMAX= in MODEL with ML
estimation

CompEvaluation Comparison of mixture models with
varying number of components

KMAX= in MODEL with ML
estimation

CompInfo Component information COMPONENTINFO option in
PROC FMM statement

ConvergenceStatus Status of optimization at conclusion
of optimization

Default output
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Table 39.9 continued

Table Name Description Required Statement / Option

Constraints Linear equality and inequality con-
straints

RESTRICT statement or
EQUATE=EFFECTS option in
MODEL statement

Corr Asymptotic correlation matrix of pa-
rameter estimates (ML) or empirical
correlation matrix of the Bayesian
posterior estimates

CORR option in PROC FMM
statement

Cov Asymptotic covariance matrix of pa-
rameter estimates (ML) or empirical
covariance matrix of the Bayesian
posterior estimates

COV option in PROC FMM
statement

CovI Inverse of the covariance matrix of
the parameter estimates

COVI option in PROC FMM
statement

ESS Effective sample sizes BAYES

FitStatistics Fit statistics Default output

Geweke Geweke diagnostics (Geweke 1992)
for Markov chains

DIAG=GEWEKE option in BAYES
statement

Heidelberger Heidelberger and Welch diagnostics
(Heidelberger and Welch 1981, 1983)
for Markov chains

DIAG=HEIDELBERGER option in
BAYES statement

Hessian Hessian matrix from the maximum
likelihood optimization, evaluated at
the converged estimates

HESSIAN

IterHistory Optimizer iteration history Default output for maximum
likelihood estimation; included
in Bayesian estimation when
BAYES statement includes the INI-
TIAL=MLE option and PROC FMM
statement includes the FITDETAILS
option

MCSE Monte Carlo standard errors DIAG=MCERROR in BAYES
statement

MixingProbs Solutions for the parameter estimates
associated with effects in PROB-
MODEL statements

Default output for ML estimation
if number of components is greater
than 1

ModelInfo Model information Default output

NObs Number of observations read and
used, number of trials and events

Default output

OptInfo Optimization information Default output for ML estimation
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Table 39.9 continued

Table Name Description Required Statement / Option

ParameterEstimates Solutions for the parameter estimates
associated with effects in MODEL
statements

Default output for ML estimation

ParameterMap Mapping of parameter names to
OUTPOST= data set

OUTPOST= option in BAYES
statement

PriorInfo Prior distributions and initial value
of Markov chain

BAYES

PostSummaries Summary statistics for posterior esti-
mates

BAYES

PostIntervals Equal-tail and highest posterior den-
sity intervals for posterior estimates

BAYES

Raftery Raftery and Lewis diagnostics
(Raftery and Lewis 1992, 1995) for
Markov chains

DIAG=RAFTERY option in BAYES
statement

ResponseProfile Response categories and category
modeled

Default output in models with binary
response

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

You can reference every graph produced through ODS Graphics with a name. The names of the graphs that
PROC FMM generates are listed in Table 39.10, along with the required statements and options.

Table 39.10 Graphs Produced by PROC FMM

ODS Graph Name Plot Description Option

TADPanel Panel of diagnostic graph-
ics to assess convergence of
Markov chains

BAYES

DensityPlot Histogram and density with
component distributions

Default plot for homogeneous mixtures
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Table 39.10 continued

ODS Graph Name Plot Description Option

CriterionPanel Panel of plots showing pro-
gression of model fit criteria
for mixtures with different
numbers of components

KMIN= and KMAX= options in MODEL
statement

Examples: FMM Procedure

Example 39.1: Modeling Mixing Probabilities: All Mice Are Created Equal, but
Some Are More Equal

This example demonstrates how you can model the means and mixture proportions separately in a binomial
cluster model. It also compares the binomial cluster model to the beta-binomial model.

In a typical teratological experiment, the offspring of animals that were exposed to a toxin during pregnancy
are studied for malformation. If you count the number of malformed offspring in a litter of size n, then this
count is typically not binomially distributed. The responses of the offspring from the same litter are not
independent; hence their sum does not constitute a binomial random variable. Relative to a binomial model,
data from teratological experiments exhibit overdispersion because ignoring positive correlation among the
responses tends to overstate the precision of the parameter estimates. Overdispersion mechanisms are briefly
discussed in the section “Overdispersion” on page 2513.

In this application, the focus is on mixtures and models that involve a mixing mechanism. The mixing
approach (Williams 1975; Haseman and Kupper 1979) supposes that the binomial success probability is a
random variable that follows a beta.˛; ˇ/ distribution:

Y j� � Binomial.n; �/
� � Beta.˛; ˇ/
Y � Beta-binomial.n; �; �/

EŒY � D n�

VarŒY � D n�.1 � �/
˚
1C �2.n � 1/

	
If � D 0, then the beta-binomial distribution reduces to a standard binomial model with success probability
� . The parameterization of the beta-binomial distribution used by the FMM procedure is based on Neerchal
and Morel (1998), see the section “Log-Likelihood Functions for Response Distributions” on page 2514 for
details.
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Morel and Nagaraj (1993); Morel and Neerchal (1997); Neerchal and Morel (1998) propose a different
model to capture dependency within binomial clusters. Their model is a two-component mixture that gives
rise to the same mean and variance function as the beta-binomial model. The genesis is different, however.
In the binomial cluster model of Morel and Neerchal, suppose there is a cluster of n Bernoulli outcomes
with success probability � . The number of responses in the cluster decomposes into N � n outcomes
that all respond with either “success” or “failure”; the important aspect is that they all respond identically.
The remaining n – N Bernoulli outcomes respond independently, so the sum of successes in this group is
a binomial.n � N;�/ random variable. Denote the probability with which cluster members fall into the
group of identical respondents as �. Then 1 � � is the probability that a response belongs to the group of
independent Bernoulli outcomes.

It is easy to see how this process of dividing the individual Bernoulli outcomes creates clustering. The
binomial cluster model can be written as the two-component mixture

Pr.Y D y/ D � Pr.U D y/C .1 � �/Pr.V D y/

where U � Binomial.n; �� C �/, V � Binomial.n; ��/, and �� D .1 � �/� . This mixture model is
somewhat unusual because the mixing probability � appears as a parameter in the component distributions.
The two probabilities involved, � and �, have the following interpretation: � is the unconditional probability
of success for any observation, and � is the probability with which the Bernoulli observations respond
identically. The complement of this probability, 1 � �, is the probability with which the Bernoulli outcomes
respond independently. If � D 0, then the two-component mixture reduces to a standard binomial model that
has success probability � . Because both � and � are involved in the success probabilities of the two binomial
variables in the mixture, you can affect these binomial means by specifying effects in the PROBMODEL
statement (for the �’s) or the MODEL statement (for the �’s). You would vary the success probabilities �1
and �2 by using the MODEL statement in a “straight” two-component binomial mixture,

�Binomial.n; �1/C .1 � �/Binomial.n; �2/

You can fit the beta-binomial model by specifying DIST=BETABIN and the binomial cluster model by
specifying DIST=BINOMCLUSTER in the MODEL statement.

Morel and Neerchal (1997) report data from a completely randomized design that studies the teratogenicity
of phenytoin in 81 pregnant mice. The treatment structure of the experiment is an augmented factorial. In
addition to an untreated control, mice received 60 mg/kg of phenytoin (PHT), 100 mg/kg of trichloropropene
oxide (TCPO), and their combination. The design was augmented with a control group that was treated with
water. As in Morel and Neerchal (1997), the two control groups are combined here into a single group.

The following DATA step creates the data for this analysis as displayed in Table 1 of Morel and Neerchal
(1997). The second DATA step creates continuous variables x1–x3 to match the parameterization of these
authors.
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data ossi;
length tx $8;
input tx$ n @@;
do i=1 to n;

input y m @@;
output;

end;
drop i;
datalines;

Control 18 8 8 9 9 7 9 0 5 3 3 5 8 9 10 5 8 5 8 1 6 0 5
8 8 9 10 5 5 4 7 9 10 6 6 3 5

Control 17 8 9 7 10 10 10 1 6 6 6 1 9 8 9 6 7 5 5 7 9
2 5 5 6 2 8 1 8 0 2 7 8 5 7

PHT 19 1 9 4 9 3 7 4 7 0 7 0 4 1 8 1 7 2 7 2 8 1 7
0 2 3 10 3 7 2 7 0 8 0 8 1 10 1 1

TCPO 16 0 5 7 10 4 4 8 11 6 10 6 9 3 4 2 8 0 6 0 9
3 6 2 9 7 9 1 10 8 8 6 9

PHT+TCPO 11 2 2 0 7 1 8 7 8 0 10 0 4 0 6 0 7 6 6 1 6 1 7
;

data ossi;
set ossi;
array xx{3} x1-x3;
do i=1 to 3; xx{i}=0; end;
pht = 0;
tcpo = 0;
if (tx='TCPO') then do;

xx{1} = 1;
tcpo = 100;

end; else if (tx='PHT') then do;
xx{2} = 1;
pht = 60;

end; else if (tx='PHT+TCPO') then do;
pht = 60;
tcpo = 100;
xx{1} = 1; xx{2} = 1; xx{3}=1;

end;
run;

The FMM procedure models the mean parameters � through the MODEL statement and the mixing propor-
tions � through the PROBMODEL statement. In the binomial cluster model, you can place a regression
structure on either set of probabilities, and the regression structure does not need to be the same. In the
following statements, the unconditional probability of ossification is modeled as a two-way factorial, whereas
the intralitter effect—the propensity to group within a cluster—is assumed to be constant:

proc fmm data=ossi;
class pht tcpo;
model y/m = / dist=binomcluster;
probmodel pht tcpo pht*tcpo;

run;

The CLASS statement declares the PHT and TCPO variables as classification variables. They affect
the analysis through their levels, not through their numeric values. The MODEL statement declares the
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distribution of the data to follow a binomial cluster model. The FMM procedure then automatically assumes
that the model is a two-component mixture. An intercept is included by default. The PROBMODEL statement
declares the effect structure for the mixing probabilities. The unconditional probability of ossification of a
fetus depends on the main effects and the interaction in the factorial.

The “Model Information” table displays important details about the model fit with the FMM procedure
(Output 39.1.1). Although no K= option was specified in the MODEL statement, the FMM procedure
recognizes the model as a two-component model. The “Class Level Information” table displays the levels
and values of the PHT and TCPO variables. Eighty-one observations are read from the data and are used in
the analysis. These observations comprise 287 events and 585 total outcomes.

Output 39.1.1 Model Information in Binomial Cluster Model with Constant Clustering Probability

The FMM ProcedureThe FMM Procedure

Model Information

Data Set WORK.OSSI

Response Variable (Events) y

Response Variable (Trials) m

Type of Model Binomial Cluster

Distribution Binomial Cluster

Components 2

Link Function Logit

Estimation Method Maximum Likelihood

Class Level
Information

Class Levels Values

pht 2 0 60

tcpo 2 0 100

Number of Observations Read 81

Number of Observations Used 81

Number of Events 287

Number of Trials 585

The “Optimization Information” table in Output 39.1.2 gives details about the maximum likelihood optimiza-
tion. By default, the FMM procedure uses a quasi-Newton algorithm. The model contains five parameters,
four of which are part of the model for the mixing probabilities. The fifth parameter is the intercept in the
model for �.

Output 39.1.2 Optimization in Binomial Cluster Model with Constant Clustering Probability

Optimization Information

Optimization Technique Dual Quasi-Newton

Parameters in Optimization 5

Mean Function Parameters 1

Scale Parameters 0

Mixing Prob Parameters 4

Number of Threads 4
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Output 39.1.2 continued

Iteration History

Iteration Evaluations
Objective
Function Change

Max
Gradient

0 5 174.92723892 . 43.78769

1 2 154.13180744 20.79543149 11.2346

2 3 153.26693611 0.86487133 6.888215

3 2 152.84974281 0.41719329 3.541977

4 3 152.61756033 0.23218248 2.783556

5 3 152.54795303 0.06960730 1.146807

6 3 152.52684929 0.02110374 0.034367

7 3 152.52671214 0.00013715 0.011511

8 3 152.52670799 0.00000415 0.000202

9 3 152.52670799 0.00000000 4.001E-6

Convergence criterion (GCONV=1E-8) satisfied.

Fit Statistics

-2 Log Likelihood 305.1

AIC  (Smaller is Better) 315.1

AICC (Smaller is Better) 315.9

BIC  (Smaller is Better) 327.0

Pearson Statistic 89.2077

Effective Parameters 5

Effective Components 2

After nine iterations, the iterative optimization converges. The –2 log likelihood at the converged solution is
305.1, and the Pearson statistic is 89.2077. The FMM procedure computes the Pearson statistic as a general
goodness-of-fit measure that expresses the closeness of the fitted model to the data.

The estimates of the parameters in the conditional probability � and in the unconditional probability � are
given in Output 39.1.3. The intercept estimate in the model for � is 0.3356. Because the default link in the
binomial cluster model is the logit link, the estimate of the conditional probability is

b� D 1

1C expf�0:3356g
D 0:5831

This value is displayed in the “Inverse Linked Estimate” column. There is greater than a 50% chance that the
individual fetuses in a litter provide the same response. The clustering tendency is substantial.
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Output 39.1.3 Parameter Estimates in Binomial Cluster Model with Constant Clustering Probability

Parameter Estimates for Binomial Cluster Model

Component Effect Estimate
Standard

Error z Value Pr > |z|

Inverse
Linked

Estimate

1 Intercept 0.3356 0.1714 1.96 0.0503 0.5831

Parameter Estimates for Mixing Probabilities

Component Effect pht tcpo Estimate
Standard

Error z Value Pr > |z|

1 Intercept -1.2194 0.4690 -2.60 0.0093

1 pht 0 0.9129 0.5608 1.63 0.1036

1 pht 60 0 . . .

1 tcpo 0 0.3295 0.5534 0.60 0.5516

1 tcpo 100 0 . . .

1 pht*tcpo 0 0 0.6162 0.6678 0.92 0.3561

1 pht*tcpo 0 100 0 . . .

1 pht*tcpo 60 0 0 . . .

1 pht*tcpo 60 100 0 . . .

The “Mixing Probabilities” table displays the estimates of the parameters in the model for � on the logit
scale (Output 39.1.3). Table 39.11 constructs the estimates of the unconditional probabilities of ossification.

Table 39.11 Estimates of Ossification Probabilities

PHT TCPO b� b�
0 0 –1.2194 + 0.9129 + 0.3295 + 0.6162 = 0.6392 0.6546

60 0 –1.2194 + 0.3295 = –0.8899 0.2911
0 100 –1.2194 + 0.9129 = –0.3065 0.4240

60 100 –1.2194 0.2280

Morel and Neerchal (1997) considered a model in which the intralitter effects also depend on the treatments.
This model is fit with the FMM procedure with the following statements:

proc fmm data=ossi;
class pht tcpo;
model y/m = pht tcpo pht*tcpo / dist=binomcluster;
probmodel pht tcpo pht*tcpo;

run;

The –2 log likelihood of this model is much reduced compared to the previous model with constant conditional
probability (compare 287.8 in Output 39.1.4 with 305.1 in Output 39.1.2). The likelihood-ratio statistic of
17.3 is significant, Pr.�23 > 17:3 D 0:0006). Varying the conditional probabilities by treatment improved
the model fit significantly.
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Output 39.1.4 Fit Statistics and Parameter Estimates in Binomial Cluster Model

The FMM ProcedureThe FMM Procedure

Fit Statistics

-2 Log Likelihood 287.8

AIC  (Smaller is Better) 303.8

AICC (Smaller is Better) 305.8

BIC  (Smaller is Better) 323.0

Pearson Statistic 85.5998

Effective Parameters 8

Effective Components 2

Parameter Estimates for Binomial Cluster Model

Component Effect pht tcpo Estimate
Standard

Error z Value Pr > |z|

1 Intercept 1.8213 0.5889 3.09 0.0020

1 pht 0 -1.4962 0.6630 -2.26 0.0240

1 pht 60 0 . . .

1 tcpo 0 -3.1828 1.1261 -2.83 0.0047

1 tcpo 100 0 . . .

1 pht*tcpo 0 0 3.3736 1.1953 2.82 0.0048

1 pht*tcpo 0 100 0 . . .

1 pht*tcpo 60 0 0 . . .

1 pht*tcpo 60 100 0 . . .

Parameter Estimates for Mixing Probabilities

Component Effect pht tcpo Estimate
Standard

Error z Value Pr > |z|

1 Intercept -0.7394 0.5395 -1.37 0.1705

1 pht 0 0.4351 0.6203 0.70 0.4830

1 pht 60 0 . . .

1 tcpo 0 -0.5342 0.5893 -0.91 0.3646

1 tcpo 100 0 . . .

1 pht*tcpo 0 0 1.4055 0.7080 1.99 0.0471

1 pht*tcpo 0 100 0 . . .

1 pht*tcpo 60 0 0 . . .

1 pht*tcpo 60 100 0 . . .
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Table 39.12 computes the conditional probabilities in the four treatment groups. Recall that the previous
model estimated a constant clustering probability of 0.5831.

Table 39.12 Estimates of Clustering Probabilities

PHT TCPO b� b�
0 0 1.8213 – 1.4962 – 3.1828 + 3.3736 = 0.5159 0.6262

60 0 1.8213 – 3.1828 = –1.3615 0.2040
0 100 1.8213 – 1.4962 = 0.3251 0.5806

60 100 1.8213 0.8607

The presence of phenytoin alone reduces the probability of response clustering within the litter. The presence
of trichloropropene oxide alone does not have a strong effect on the clustering. The simultaneous presence of
both agents substantially increases the probability of clustering.

The following statements fit the binomial cluster model in the parameterization of Morel and Neerchal (1997).

proc fmm data=ossi;
model y/m = x1-x3 / dist=binomcluster;
probmodel x1-x3;

run;

The model fit is the same as in the previous model (compare the “Fit Statistics” tables in Output 39.1.5 and
Output 39.1.4). The parameter estimates change due to the reparameterization of the treatment effects and
match the results in Table III of Morel and Neerchal (1997).

Output 39.1.5 Fit Statistics and Estimates (Morel and Neerchal Parameterization)

The FMM ProcedureThe FMM Procedure

Fit Statistics

-2 Log Likelihood 287.8

AIC  (Smaller is Better) 303.8

AICC (Smaller is Better) 305.8

BIC  (Smaller is Better) 323.0

Pearson Statistic 85.5999

Effective Parameters 8

Effective Components 2

Parameter Estimates for Binomial Cluster Model

Component Effect Estimate
Standard

Error z Value Pr > |z|

1 Intercept 0.5159 0.2603 1.98 0.0475

1 x1 -0.1908 0.4006 -0.48 0.6339

1 x2 -1.8774 0.9946 -1.89 0.0591

1 x3 3.3736 1.1953 2.82 0.0048
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Output 39.1.5 continued

Parameter Estimates for Mixing Probabilities

Component Effect Estimate
Standard

Error z Value Pr > |z|

1 Intercept 0.5669 0.2455 2.31 0.0209

1 x1 -0.8712 0.3924 -2.22 0.0264

1 x2 -1.8405 0.3413 -5.39 <.0001

1 x3 1.4055 0.7080 1.99 0.0471

The following sets of statements fit the binomial and beta-binomial models, respectively, as single-component
mixtures in the parameterization akin to the first binomial cluster model. Note that the model effects that
affect the underlying Bernoulli success probabilities are specified in the MODEL statement, in contrast to the
binomial cluster model.

proc fmm data=ossi;
model y/m = x1-x3 / dist=binomial;

run;

proc fmm data=ossi;
model y/m = x1-x3 / dist=betabinomial;

run;

The Pearson statistic for the beta-binomial model (Output 39.1.6) indicates a much better fit compared
to the single-component binomial model (Output 39.1.7). This is not surprising because these data are
obviously overdispersed relative to a binomial model because the Bernoulli outcomes are not independent.
The difference between the binomial cluster and the beta-binomial model lies in the mechanism by which the
correlations are induced:

• a mixing mechanism in the beta-binomial model that leads to a common shared random effect among
all offspring in a cluster

• a mixture specification in the binomial cluster model that divides the offspring in a litter into identical
and independent responders

Output 39.1.6 Fit Statistics in Binomial Model

The FMM ProcedureThe FMM Procedure

Fit Statistics

-2 Log Likelihood 401.8

AIC  (Smaller is Better) 409.8

AICC (Smaller is Better) 410.3

BIC  (Smaller is Better) 419.4

Pearson Statistic 252.1
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Output 39.1.7 Fit Statistics in Beta-Binomial Model

The FMM ProcedureThe FMM Procedure

Fit Statistics

-2 Log Likelihood 306.6

AIC  (Smaller is Better) 316.6

AICC (Smaller is Better) 317.4

BIC  (Smaller is Better) 328.5

Pearson Statistic 87.5379

Example 39.2: The Usefulness of Custom Starting Values: When Do Cows
Eat?

This example with a mixture of normal and Weibull distributions illustrates the benefits of specifying starting
values for some of the components.

The data for this example were generously provided by Dr. Luciano A. Gonzalez of the Lethbridge Research
Centre of Agriculture and Agri-Food Canada and his collaborator, Dr. Bert Tolkamp, from the Scottish
Agricultural College.

The outcome variable of interest is the logarithm of a time interval between consecutive visits by cattle to
feeders. The intervals fall into three categories:

• short breaks within meals—such as when an animal stops eating for a moment and resumes shortly
thereafter

• somewhat longer breaks when eating is interrupted to go have a drink of water

• long breaks between meals

Modeling such time interval data is important to understand the feeding behavior and biology of the animals
and to derive other biological parameters such as the probability of an animal to stop eating after it has
consumed a certain amount of a given food. Because there are three distinct biological categories, data of
this nature are frequently modeled as three-component mixtures. The point at which the second and third
components cross over is used to separate feeding events into meals.

The original data set comprises 141,414 observations of log feeding intervals. For the purpose of presentation
in this document, where space is limited, the data have been rounded to precision 0.05 and grouped by
frequency. The following DATA step displays the modified data used in this example. A comparison with the
raw data and the results obtained in a full analysis of the original data show that the grouping does not alter
the presentation or conclusions in a way that matters for the purpose of this example.
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data cattle;
input LogInt Count @@;
datalines;

0.70 195 1.10 233 1.40 355 1.60 563
1.80 822 1.95 926 2.10 1018 2.20 1712
2.30 3190 2.40 2212 2.50 1692 2.55 1558
2.65 1622 2.70 1637 2.75 1568 2.85 1599
2.90 1575 2.95 1526 3.00 1537 3.05 1561
3.10 1555 3.15 1427 3.20 2852 3.25 1396
3.30 1343 3.35 2473 3.40 1310 3.45 2453
3.50 1168 3.55 2300 3.60 2174 3.65 2050
3.70 1926 3.75 1849 3.80 1687 3.85 2416
3.90 1449 3.95 2095 4.00 1278 4.05 1864
4.10 1672 4.15 2104 4.20 1443 4.25 1341
4.30 1685 4.35 1445 4.40 1369 4.45 1284
4.50 1523 4.55 1367 4.60 1027 4.65 1491
4.70 1057 4.75 1155 4.80 1095 4.85 1019
4.90 1158 4.95 1088 5.00 1075 5.05 912
5.10 1073 5.15 803 5.20 924 5.25 916
5.30 784 5.35 751 5.40 766 5.45 833
5.50 748 5.55 725 5.60 674 5.65 690
5.70 659 5.75 695 5.80 529 5.85 639
5.90 580 5.95 557 6.00 524 6.05 473
6.10 538 6.15 444 6.20 456 6.25 453
6.30 374 6.35 406 6.40 409 6.45 371
6.50 320 6.55 334 6.60 353 6.65 305
6.70 302 6.75 301 6.80 263 6.85 218
6.90 255 6.95 240 7.00 219 7.05 202
7.10 192 7.15 180 7.20 162 7.25 126
7.30 148 7.35 173 7.40 142 7.45 163
7.50 152 7.55 149 7.60 139 7.65 161
7.70 174 7.75 179 7.80 188 7.85 239
7.90 225 7.95 213 8.00 235 8.05 256
8.10 272 8.15 290 8.20 320 8.25 355
8.30 307 8.35 311 8.40 317 8.45 335
8.50 369 8.55 365 8.60 365 8.65 396
8.70 419 8.75 467 8.80 468 8.85 515
8.90 558 8.95 623 9.00 712 9.05 716
9.10 829 9.15 803 9.20 834 9.25 856
9.30 838 9.35 842 9.40 826 9.45 834
9.50 798 9.55 801 9.60 780 9.65 849
9.70 779 9.75 737 9.80 683 9.85 686
9.90 626 9.95 582 10.00 522 10.05 450

10.10 443 10.15 375 10.20 342 10.25 285
10.30 254 10.35 231 10.40 195 10.45 186
10.50 143 10.55 100 10.60 73 10.65 49
10.70 28 10.75 36 10.80 16 10.85 9
10.90 5 10.95 6 11.00 4 11.05 1
11.15 1 11.25 4 11.30 2 11.35 5
11.40 4 11.45 3 11.50 1
;
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If you scan the columns for the Count variable in the DATA step, the prevalence of values between 2 and 5
units of LogInt is apparent, as is a long right tail. To explore these data graphically, the following statements
produce a histogram of the data and a kernel density estimate of the density of the LogInt variable.

ods graphics on;
proc kde data=cattle;

univar LogInt / bwm=4;
freq count;

run;

Output 39.2.1 Histogram and Kernel Density for LogInt

Two modes are clearly visible in Output 39.2.1. Given the biological background, one would expect that
three components contribute to the mixture. The histogram would suggest either a two-component mixture
with modes near 4 and 9, or a three-component mixture with modes near 3, 5, and 9.

Following Dr. Gonzalez’ suggestion, the process is modeled as a three-component mixture of two normal
distributions and a Weibull distribution. The Weibull distribution is chosen because it can have long left and
right tails and it is popular in modeling data that relate to time intervals.
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proc fmm data=cattle gconv=0;
model LogInt = / dist=normal k=2 parms(3 1, 5 1);
model + / dist=weibull;
freq count;

run;

The GCONV= convergence criterion is turned off in this PROC FMM run to avoid the early stoppage of
the iterations when the relative gradient changes little between iterations. Turning the criterion off usually
ensures that convergence is achieved with a small absolute gradient of the objective function. The PARMS
option in the first MODEL statement provides starting values for the means and variances for the parameters
of the normal distributions. The means for the two components are started at � D 3 and � D 5, respectively.
Specifying starting values is generally not necessary. However, the choice of starting values can play an
important role in modeling finite mixture models; the importance of the choice of starting values in this
example is discussed further below.

The “Model Information” table shows that the model is a three-component mixture and that the FMM
procedure considers the estimation of a density to be the purpose of modeling. The procedure draws this
conclusion from the absence of effects in the MODEL statements. There are 187 observations in the data set,
but these actually represent 141,414 measurements (Output 39.2.2).

Output 39.2.2 Model Information and Number of Observations

The FMM ProcedureThe FMM Procedure

Model Information

Data Set WORK.CATTLE

Response Variable LogInt

Frequency Variable Count

Type of Model Density Estimation

Components 3

Estimation Method Maximum Likelihood

Number of Observations Read 187

Number of Observations Used 187

Sum of Frequencies Read 141414

Sum of Frequencies Used 141414

There are eight parameters in the optimization: the means and variances of the two normal distributions,
the � and � parameter of the Weibull distribution, and the two mixing probabilities (Output 39.2.3). At the
converged solution, the –2 log likelihood is 563,153 and all parameters and components are effective—that
is, the model is not overspecified in the sense that components have collapsed during the model fitting. The
Pearson statistic is close to the number of observations in the data set, indicating a good fit.
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Output 39.2.3 Optimization Information and Fit Statistics

Optimization Information

Optimization Technique Dual Quasi-Newton

Parameters in Optimization 8

Mean Function Parameters 3

Scale Parameters 3

Mixing Prob Parameters 2

Lower Boundaries 3

Upper Boundaries 0

Number of Threads 4

Fit Statistics

-2 Log Likelihood 563153

AIC  (Smaller is Better) 563169

AICC (Smaller is Better) 563169

BIC  (Smaller is Better) 563248

Pearson Statistic 141458

Effective Parameters 8

Effective Components 3

Output 39.2.4 displays the parameter estimates for the three models and for the mixing probabilities. The
order in which the “Parameter Estimates” tables appear in the output corresponds to the order in which the
MODEL statements were specified.

Output 39.2.4 Optimization Information and Fit Statistics

Parameter Estimates for Normal Model

Component Parameter Estimate
Standard

Error z Value Pr > |z|

1 Intercept 3.3415 0.01260 265.16 <.0001

2 Intercept 4.8940 0.05447 89.84 <.0001

1 Variance 0.6718 0.01287

2 Variance 1.4497 0.05247

Parameter Estimates for Weibull Model

Component Parameter Estimate
Standard

Error z Value Pr > |z|

Inverse
Linked

Estimate

3 Intercept 2.2531 0.000506 4452.11 <.0001 9.5174

3 Scale 0.06848 0.000427

Parameter Estimates for Mixing Probabilities

Linked Scale

Component
Mixing

Probability GLogit(Prob)
Standard

Error z Value Pr > |z|

1 0.4545 0.8106 0.03409 23.78 <.0001

2 0.3435 0.5305 0.04640 11.43 <.0001

3 0.2021 0
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The estimated means of the two normal components are 3.3415 and 4.8940, respectively. Note that the
means are displayed here as Intercept. The inverse linked estimate is not produced because the default
link for the normal distribution is the identity link; hence the Estimate column represents the means of the
component distributions. The parameter estimates in the Weibull model are b̌0 D 2:2531, b� D 0:06848,
and b� D expfb̌0g D 9:5174. In the Weibull distribution, the � parameter does not estimate the mean of the
distribution, the maximum likelihood estimate of the distribution’s mean is b��.b� C 1/ D 9:1828.

The estimated mixing probabilities are b�1 D 0:4545, b�2 D 0:3435, and c�3 D 0:2021. In other
words, the estimated distribution of log feeding intervals is a 45:35:20 mixture of an N.3:3415; 0:6718/, a
N.4:8940; 1:4497/, and a Weibull.9:5174; 0:06848/ distribution.

You can obtain a graphical display of the observed and estimated distribution of these data by enabling ODS
Graphics. The PLOTS option in the PROC FMM statement modifies the default density plot by adding the
densities of the mixture components:

ods select DensityPlot;
proc fmm data=cattle gconv=0;

model LogInt = / dist=normal k=2 parms(3 1, 5 1);
model + / dist=weibull;
freq count;

run;

Output 39.2.5 Observed and Estimated Densities in the Three-Component Model
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The estimated mixture density matches the histogram of the observed data closely (Output 39.2.5). The
component densities are displayed in such a way that, at each point in the support of the LogInt variable, their
sum combines to the overall mixture density. The three components in the mixtures are well separated.

The excellent quality of the fit is even more evident when the distributions are displayed cumulatively by
adding the CUMULATIVE option in the DENSITY option (Output 39.2.6):

ods select DensityPlot;
proc fmm data=cattle plot=density(cumulative) gconv=0;

model LogInt = / dist=normal k=2 parms(3 1, 5 1);
model + / dist=weibull;
freq count;

run;

The component cumulative distribution functions are again scaled so that their sum produces the overall
mixture cumulative distribution function. Because of this scaling, the percentage reached at the maximum
value of LogInt corresponds to the mixing probabilities in Output 39.2.4.

Output 39.2.6 Observed and Estimated Cumulative Densities in the Three-Component Model

The importance of starting values for the parameter estimates was mentioned previously. Suppose that
different starting values are selected for the three components (for example, the default starting values).
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proc fmm data=cattle gconv=0;
model LogInt = / dist=normal k=2;
model + / dist=weibull;
freq count;

run;
ods graphics off;

The fit statistics and parameter estimates from this run are displayed in Output 39.2.7, and the density plot is
shown in Output 39.2.8.

Output 39.2.7 Fit Statistics and Parameter Estimates

The FMM ProcedureThe FMM Procedure

Fit Statistics

-2 Log Likelihood 564431

AIC  (Smaller is Better) 564447

AICC (Smaller is Better) 564447

BIC  (Smaller is Better) 564526

Pearson Statistic 141228

Effective Parameters 8

Effective Components 3

Parameter Estimates for Normal Model

Component Parameter Estimate
Standard

Error z Value Pr > |z|

1 Intercept 4.9106 0.02604 188.56 <.0001

2 Intercept 9.2883 0.005031 1846.28 <.0001

1 Variance 1.7410 0.02753

2 Variance 0.4158 0.005086

Parameter Estimates for Weibull Model

Component Parameter Estimate
Standard

Error z Value Pr > |z|

Inverse
Linked

Estimate

3 Intercept 1.2908 0.002790 462.71 <.0001 3.6358

3 Scale 0.2093 0.001311

Parameter Estimates for Mixing Probabilities

Linked Scale

Component
Mixing

Probability GLogit(Prob)
Standard

Error z Value Pr > |z|

1 0.3745 -0.1505 0.03678 -4.09 <.0001

2 0.1902 -0.8280 0.01922 -43.08 <.0001

3 0.4353 0

All components are active; no collapsing of components occurred. However, a closer look at the “Parameter
Estimates” tables in Output 39.2.7 shows an important difference from the tables in Output 39.2.4. The
means of the two normal distributions are now 4.9106 and 9.2883. Previously, the means were 3.3415 and
4.8940. The “position” of the Weibull distribution has moved from right to left, and the third component
is now modeled by a symmetric normal distribution (Output 39.2.8). The mixture probabilities have also
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changed—in particular, for the first and third component.

Output 39.2.8 Three-Component Model with Default Starting Values

Such switching is not uncommon in mixture modeling. As judged by the information criteria, the model
in which the Weibull distribution is the component with the smallest mean does not fit the data as well as
the first model in which the specification of the starting values guided the optimization towards placing the
normal distributions first. The converged solution found in the last FMM run represents a local minimum of
the log-likelihood surface. There are other local minima—for example, when components are removed from
the model, which is tantamount to estimating the associated mixture probabilities as zero.

Example 39.3: Enforcing Homogeneity Constraints: Count and
Dispersion—It Is All Over!

The following example demonstrates how you can use either the EQUATE= option in the MODEL statement
or the RESTRICT statement to impose homogeneity constraints on chosen model effects.

The data for this example were presented by Margolin, Kaplan, and Zeiger (1981) and analyzed by various
authors applying a number of techniques. The following DATA step shows the number of revertant salmonella
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colonies (variable num) at six levels of quinoline dosing (variable dose). There are three replicate plates at
each dose of quinoline.

data assay;
label dose = 'Dose of quinoline (microg/plate)'

num = 'Observed number of colonies';
input dose @;
logd = log(dose+10);
do i=1 to 3; input num@; output; end;
datalines;
0 15 21 29
10 16 18 21
33 16 26 33

100 27 41 60
333 33 38 41

1000 20 27 42
;

The basic notion is that the data are overdispersed relative to a Poisson distribution in which the logarithm
of the mean count is modeled as a linear regression in dose (in �g=plate) and in the derived variable
logfdoseC 10g (Lawless 1987). The log of the expected count of revertants is thus

ˇ0 C ˇ1doseC ˇ2 logfdoseC 10g

The following statements fit a standard Poisson regression model to these data:

proc fmm data=assay;
model num = dose logd / dist=Poisson;

run;

The Pearson statistic for this model is rather large compared to the number of degrees of freedom (18�3 D 15).
The ratio 46:2707=15 D 3:08 indicates an overdispersion problem in the Poisson model (Output 39.3.1).

Output 39.3.1 Result of Fitting Poisson Regression Models

The FMM ProcedureThe FMM Procedure

Number of Observations Read 18

Number of Observations Used 18

Fit Statistics

-2 Log Likelihood 136.3

AIC  (Smaller is Better) 142.3

AICC (Smaller is Better) 144.0

BIC  (Smaller is Better) 144.9

Pearson Statistic 46.2707

Parameter Estimates for Poisson Model

Effect Estimate
Standard

Error z Value Pr > |z|

Intercept 2.1728 0.2184 9.95 <.0001

dose -0.00101 0.000245 -4.13 <.0001

logd 0.3198 0.05700 5.61 <.0001
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Breslow (1984) accounts for overdispersion by including a random effect in the predictor for the log rate
and applying a quasi-likelihood technique to estimate the parameters. Wang et al. (1996) examine these data
using mixtures of Poisson regression models. They fit several two- and three-component Poisson regression
mixtures. Examining the log likelihoods, AIC, and BIC criteria, they eventually settle on a two-component
model in which the intercepts vary by category and the regression coefficients are the same. This mixture
model can be written as

f .y/ D�
1

yŠ
�
y
1 expf��1g C .1 � �/

1

yŠ
�
y
2 expf��2g

�1 D expfˇ01 C ˇ1doseC ˇ2 logŒdoseC 10�g
�2 D expfˇ02 C ˇ1doseC ˇ2 logŒdoseC 10�g

This model is fit with the FMM procedure with the following statements:

proc fmm data=assay;
model num = dose logd / dist=Poisson k=2

equate=effects(dose logd);
run;

The EQUATE= option in the MODEL statement places constraints on the optimization and makes the
coefficients for dose and logd homogeneous across components in the model. Output 39.3.2 displays the “Fit
Statistics” and parameter estimates in the mixture. The Pearson statistic is drastically reduced compared to
the Poisson regression model in Output 39.3.1. With 18�5 D 13 degrees of freedom, the ratio of the Pearson
and the degrees of freedom is now 16:1573=13 D 1:2429. Note that the effective number of parameters
was used to compute the degrees of freedom, not the total number of parameters, because of the equality
constraints.

Output 39.3.2 Result for Two-Component Poisson Regression Mixture

The FMM ProcedureThe FMM Procedure

Fit Statistics

-2 Log Likelihood 121.8

AIC  (Smaller is Better) 131.8

AICC (Smaller is Better) 136.8

BIC  (Smaller is Better) 136.3

Pearson Statistic 16.1573

Effective Parameters 5

Effective Components 2

Parameter Estimates for Poisson Model

Component Effect Estimate
Standard

Error z Value Pr > |z|

1 Intercept 1.9097 0.2654 7.20 <.0001

1 dose -0.00126 0.000273 -4.62 <.0001

1 logd 0.3639 0.06602 5.51 <.0001

2 Intercept 2.4770 0.2731 9.07 <.0001

2 dose -0.00126 0.000273 -4.62 <.0001

2 logd 0.3639 0.06602 5.51 <.0001
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Output 39.3.2 continued

Parameter Estimates for Mixing Probabilities

Linked Scale

Component
Mixing

Probability Logit(Prob)
Standard

Error z Value Pr > |z|

1 0.8173 1.4984 0.6875 2.18 0.0293

2 0.1827 -1.4984

You could also have used RESTRICT statements to impose the homogeneity constraints on the model fit, as
shown in the following statements:

proc fmm data=assay;
model num = dose logd / dist=Poisson k=2;
restrict 'common dose' dose 1, dose -1;
restrict 'common logd' logd 1, logd -1;

run;

The first RESTRICT statement equates the coefficients for the dose variable in the two components, and
the second RESTRICT statement accomplishes the same for the coefficients of the logd variable. If the
right-hand side of a restriction is not specified, PROC FMM defaults to equating the left-hand side of the
restriction to zero. The “Linear Constraints” table in Output 39.3.3 shows that both linear equality constraints
are active. The parameter estimates match the previous FMM run.

Output 39.3.3 Result for Two-Component Mixture with RESTRICT Statements

The FMM ProcedureThe FMM Procedure

Linear Constraints at Solution

Label k = 1 k = 2
Constraint
Active

common dose dose - dose = 0 Yes

common logd logd - logd = 0 Yes

Parameter Estimates for Poisson Model

Component Effect Estimate
Standard

Error z Value Pr > |z|

1 Intercept 1.9097 0.2654 7.20 <.0001

1 dose -0.00126 0.000273 -4.62 <.0001

1 logd 0.3639 0.06602 5.51 <.0001

2 Intercept 2.4770 0.2731 9.07 <.0001

2 dose -0.00126 0.000273 -4.62 <.0001

2 logd 0.3639 0.06602 5.51 <.0001

Parameter Estimates for Mixing Probabilities

Linked Scale

Component
Mixing

Probability Logit(Prob)
Standard

Error z Value Pr > |z|

1 0.8173 1.4984 0.6875 2.18 0.0293

2 0.1827 -1.4984
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Wang et al. (1996) note that observation 12 with a revertant colony count of 60 is comparably high. The
following statements remove the observation from the analysis and fit their selected model:

proc fmm data=assay(where=(num ne 60));
model num = dose logd / dist=Poisson k=2

equate=effects(dose logd);
run;

Output 39.3.4 Result for Two-Component Model without Outlier

The FMM ProcedureThe FMM Procedure

Fit Statistics

-2 Log Likelihood 111.5

AIC  (Smaller is Better) 121.5

AICC (Smaller is Better) 126.9

BIC  (Smaller is Better) 125.6

Pearson Statistic 16.5987

Effective Parameters 5

Effective Components 2

Parameter Estimates for Poisson Model

Component Effect Estimate
Standard

Error z Value Pr > |z|

1 Intercept 2.2272 0.3022 7.37 <.0001

1 dose -0.00065 0.000445 -1.46 0.1440

1 logd 0.2432 0.1045 2.33 0.0199

2 Intercept 2.5477 0.3331 7.65 <.0001

2 dose -0.00065 0.000445 -1.46 0.1440

2 logd 0.2432 0.1045 2.33 0.0199

Parameter Estimates for Mixing Probabilities

Linked Scale

Component
Mixing

Probability Logit(Prob)
Standard

Error z Value Pr > |z|

1 0.5777 0.3134 1.7261 0.18 0.8559

2 0.4223 -0.3134

The ratio of Pearson Statistic over degrees of freedom (12) is only slightly worse than in the previous model;
the loss of 5% of the observations carries a price (Output 39.3.4). The parameter estimates for the two
intercepts are now fairly close. If the intercepts were identical, then the two-component model would collapse
to the Poisson regression model:

proc fmm data=assay(where=(num ne 60));
model num = dose logd / dist=Poisson;

run;
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Output 39.3.5 Result of Fitting Poisson Regression Model without Outlier

The FMM ProcedureThe FMM Procedure

Number of Observations Read 17

Number of Observations Used 17

Fit Statistics

-2 Log Likelihood 114.1

AIC  (Smaller is Better) 120.1

AICC (Smaller is Better) 121.9

BIC  (Smaller is Better) 122.5

Pearson Statistic 27.8008

Parameter Estimates for Poisson Model

Effect Estimate
Standard

Error z Value Pr > |z|

Intercept 2.3164 0.2244 10.32 <.0001

dose -0.00072 0.000258 -2.78 0.0055

logd 0.2603 0.05996 4.34 <.0001

Compared to the same model applied to the full data, the Pearson statistic is much reduced (compare 46.2707
in Output 39.3.1 to 27.8008 in Output 39.3.5). The outlier—or overcount, if you will—induces at least some
of the overdispersion.

Example 39.4: Modeling Multinomial Overdispersion: Town and Country
This example illustrates how you can use the multinomial distribution to model a discrete response that has
multiple levels, and how you can use the multinomial cluster model to address overdispersion in multinomial
models. The data are survey results from random samples of neighborhoods in both rural and urban areas of
Montevideo, Minnesota. There are 18 rural neighborhoods and 17 urban neighborhoods in the survey. In each
sampled neighborhood, five households were selected to be interviewed about their level of satisfaction with
their homes. The families rated their level of satisfaction as “Unsatisfied,” “Satisfied,” or “Very Satisfied.”
These data have previously been analyzed in Brier (1980), Koehler and Wilson (1986), Wilson (1989), and
Morel and Nagaraj (1993).

The data include a location type and the numbers of households that respond at each satisfaction level:

data housing;
label us = 'Unsatisfied'

s = 'Satisfied'
vs = 'Very Satisfied';

input type $ us s vs @@;
datalines;

rural 3 2 0 rural 3 2 0 rural 0 5 0 rural 3 2 0 rural 0 5 0
rural 4 1 0 rural 3 2 0 rural 2 3 0 rural 4 0 1 rural 0 4 1
rural 2 3 0 rural 4 1 0 rural 4 1 0 rural 1 2 2 rural 4 1 0
rural 1 3 1 rural 4 1 0 rural 5 0 0
urban 0 4 1 urban 0 5 0 urban 0 3 2 urban 3 2 0 urban 2 3 0
urban 1 3 1 urban 4 1 0 urban 4 0 1 urban 0 3 2 urban 1 2 2
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urban 0 5 0 urban 3 2 0 urban 2 3 0 urban 2 2 1 urban 4 0 1
urban 0 4 1 urban 4 1 0
;

The following DATA step appends two observations that have empty response variables to the data set.
These observations are not used in estimating the model parameters, but the FMM procedure scores these
observations by using the fitted model.

data toscore;
type='rural'; output;
type='urban'; output;

run;

data housing;
set housing toscore;

run;

The following statements fit a single-component multinomial model to these data, including the location type
in the mean model for the multinomial. The response variables are the counts for each observation in vector
form.

proc fmm data=housing;
class type;
model us s vs = Type / dist=multinomial;
output out=Pred pred;

run;

The model includes the only available covariate, Type, as an explanatory variable for the mean of the
multinomial distribution. You use the OUTPUT statement and the PRED keyword to direct PROC FMM to
include predicted values for each observation in the Pred output data set.

The “Model Information” table in Output 39.4.1 lists the response variables and indicates that this is a
single-component multinomial model. The “Fit Statistics” table shows the associated fit statistics for the
model.

Output 39.4.1 Model Information and Fit Statistics for the Multinomial Model

The FMM ProcedureThe FMM Procedure

Model Information

Data Set WORK.HOUSING

Response Variable us

Response Variable s

Response Variable vs

Type of Model Homogeneous Regression Mixture

Distribution Multinomial

Components 1

Link Function Logit

Estimation Method Maximum Likelihood
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Output 39.4.1 continued

Fit Statistics

-2 Log Likelihood 194.1

AIC  (Smaller is Better) 202.1

AICC (Smaller is Better) 203.4

BIC  (Smaller is Better) 208.3

Pearson Statistic 107.3

The parameter estimates capture the relationship between the explanatory variable Type and the different
response levels, “Unsatisfied,” “Satisfied,” and “Very Satisfied.” To maintain identifiability, the FMM proce-
dure uses two sets of parameters for the three response variables to parameterize this model. Output 39.4.2
shows the resulting parameter estimates.

Output 39.4.2 Parameter Estimates for the Multinomial Model

Parameter Estimates for Multinomial Model

Response Effect type Estimate
Standard

Error z Value Pr > |z|

1 Intercept 0.9163 0.3416 2.68 0.0073

1 type rural 1.3244 0.5813 2.28 0.0227

1 type urban 0 . . .

2 Intercept 1.2763 0.3265 3.91 <.0001

2 type rural 0.7519 0.5770 1.30 0.1925

2 type urban 0 . . .

The Response column indicates the level of the response that is associated with the parameter set. In this
model, Response 1 corresponds to the “Unsatisfied” level and Response 2 corresponds to the “Satisfied” level.
This corresponds to the order in which you specify the response variables in the MODEL statement. The
“Very Satisfied” level does not appear because of identifiability constraints; the corresponding parameter
estimates are set to 0, which means that you can treat the “Very Satisfied” level as the reference level. The
estimates of the intercept and the rural effect are positive for both of the other levels, indicating that the
estimated proportion at the “Very Satisfied” level is smaller than the proportion at the other two levels for
both rural and urban locations.

The Pred output data set contains predicted proportions for each location type. The following statements
display the observations that have empty responses and their associated predictions:

proc print data=pred(where=(us=.)) noobs;
var type pred:;

run;

Output 39.4.3 shows the predicted proportions at each response level for each location type. As in Out-
put 39.4.2, the order reflects the order in which you specified the responses in the MODEL statement. Pred_1
corresponds to “Unsatisfied”, Pred_2 corresponds to “Satisfied,” and Pred_3 corresponds to “Very Satisfied.”
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Output 39.4.3 Predicted Proportions for Multinomial

type Pred_1 Pred_2 Pred_3

rural 0.52222 0.42222 0.05556

urban 0.35294 0.50588 0.14118

The estimates of response proportions for the two location types indicate a difference in the distribution of
satisfaction levels for the rural and urban populations. In particular, the urban population shows a smaller
proportion of respondents in the “Unsatisfied” category (Pred_1).

The number of degrees of freedom is N � .R � 1/ � p, where N is the number of observations, R is the
number of levels in the multinomial response, and p is the number of parameters in the model. The ratio of
the Pearson statistic to the degrees of freedom is then 107.3 / (35 � 2 – 4) = 1.625; this is larger than 1 and so
indicates potential overdispersion.

One explanation for overdispersion might be correlation. It is likely that the families in these households
meet and talk with one another, which might result in some influence of opinions about housing satisfaction.
The observations are not independent in this case; if you model the proportion of each level of satisfaction
based only on location type, you will miss this interhousehold influence.

The multinomial cluster model (Morel and Nagaraj 1993) is based on the idea of “clumping”; that is, some
proportion � of the observed population responds in the same way. In the context of the housing satisfaction
data, this means that the clumped responders all express the same satisfaction level. The remaining households
respond according to a multinomial distribution with parameter �.

In this model, the clumped responders respond identically with one of the three levels of satisfaction, and
that level is not observable. This discrete latent factor makes a mixture of three multinomials an appropriate
method. The difference between this mixture and a general mixture of multinomials is the role of the
clumping proportion � and the use of the mixing probabilities in the mean model. In this model, the mixing
probabilities � also define the multinomial distribution that governs the distribution of the non-clumped
responses.

The following statements fit a multinomial cluster model to these data:

proc fmm data=housing;
class type;
model us s vs = Type / dist=multinomcluster;
output out=Pred pred;
probmodel Type;

run;

You include Type in the mean for the underlying multinomial distribution by using the PROBMODEL
statement and also in the mean for the clumping parameter � by using the MODEL statement. Output 39.4.4
shows model information and fit statistics for this multinomial cluster model. Because the model specifies
three response variables, the resulting mixture model has three components.
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Output 39.4.4 Model Information and Fit Statistics for the Multinomial Cluster Model

The FMM ProcedureThe FMM Procedure

Model Information

Data Set WORK.HOUSING

Response Variable us

Response Variable s

Response Variable vs

Type of Model Multinomial Cluster

Distribution Multinomial Cluster

Components 3

Link Function Logit

Estimation Method Maximum Likelihood

Fit Statistics

-2 Log Likelihood 182.9

AIC  (Smaller is Better) 194.9

AICC (Smaller is Better) 197.9

BIC  (Smaller is Better) 204.3

Pearson Statistic 61.9809

Effective Parameters 6

Effective Components 3

The fit statistics are generally better for the multinomial cluster model. However, Output 39.4.5 indicates that
the parameters in the mean model for the clumping probability � are not significantly different from 0. There
does not appear to be strong evidence for a clumping effect as modeled by the multinomial cluster model.

Output 39.4.5 Parameter Estimates for the Multinomial Cluster Model

Parameter Estimates for Multinomial Cluster Model

Component Effect type Estimate
Standard

Error z Value Pr > |z|

1 Intercept -0.3696 0.4385 -0.84 0.3992

1 type rural 0.09401 0.6312 0.15 0.8816

1 type urban 0 . . .

In the multinomial cluster model, the predicted proportions are the same as the mixing probabilities.
Output 39.4.6 shows the parameter estimates for the mixing probabilities.

Output 39.4.6 Mixing Probability Parameter Estimates for the Multinomial Cluster Model

Parameter Estimates for Mixing Probabilities

Component Effect type Estimate
Standard

Error z Value Pr > |z|

1 Intercept 0.6383 0.4106 1.55 0.1201

1 type rural 1.4138 0.6781 2.08 0.0371

1 type urban 0 . . .

2 Intercept 1.1077 0.3741 2.96 0.0031

2 type rural 0.7900 0.6527 1.21 0.2262

2 type urban 0 . . .
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As in the multinomial example, the estimates for the intercept and rural effect are positive for both the
“Unsatisfied” and “Satisfied” response levels, indicating that these levels have larger predicted proportions
than the “Very Satisfied” level.

Output 39.4.7 shows the predicted proportions at each level of the response for each location type.

Output 39.4.7 Predicted Proportions for the Multinomial Cluster Model

type Pred_1 Pred_2 Pred_3

rural 0.50367 0.43163 0.06471

urban 0.31977 0.51133 0.16890

By comparing Output 39.4.7 with Output 39.4.3, you can see that the proportion estimates are not markedly
different between the models. This is consistent with the lack of significance in the multinomial cluster
model’s clumping parameters.
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Overview: FREQ Procedure
The FREQ procedure produces one-way to n-way frequency and contingency (crosstabulation) tables. For
two-way tables, PROC FREQ computes tests and measures of association. For n-way tables, PROC FREQ
provides stratified analysis by computing statistics across, as well as within, strata.

For one-way frequency tables, PROC FREQ computes goodness-of-fit tests for equal proportions or specified
null proportions. For one-way tables, PROC FREQ also provides confidence limits and tests for binomial
proportions, including tests for noninferiority and equivalence.

For contingency tables, PROC FREQ can compute various statistics to examine the relationships between
two classification variables. For some pairs of variables, you might want to examine the existence or strength
of any association between the variables. To determine if an association exists, chi-square tests are computed.
To estimate the strength of an association, PROC FREQ computes measures of association that tend to be
close to zero when there is no association and close to the maximum (or minimum) value when there is
perfect association. The statistics for contingency tables include the following:

• chi-square tests and measures

• measures of association

• risks (binomial proportions) and risk differences for 2 � 2 tables

• odds ratios and relative risks for 2 � 2 tables

• tests for trend
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• tests and measures of agreement

• Cochran-Mantel-Haenszel statistics

PROC FREQ computes asymptotic standard errors, confidence intervals, and tests for measures of association
and measures of agreement. Exact p-values and confidence intervals are available for many test statistics
and measures. PROC FREQ also performs analyses that adjust for any stratification variables by computing
statistics across, as well as within, strata for n-way tables. These statistics include Cochran-Mantel-Haenszel
statistics and measures of agreement.

In choosing measures of association to use in analyzing a two-way table, you should consider the study design
(which indicates whether the row and column variables are dependent or independent), the measurement
scale of the variables (nominal, ordinal, or interval), the type of association that each measure is designed
to detect, and any assumptions required for valid interpretation of a measure. You should exercise care in
selecting measures that are appropriate for your data.

Similar comments apply to the choice and interpretation of test statistics. For example, the Mantel-Haenszel
chi-square statistic requires an ordinal scale for both variables and is designed to detect a linear association.
The Pearson chi-square, on the other hand, is appropriate for all variables and can detect any kind of
association, but it is less powerful for detecting a linear association because its power is dispersed over a
greater number of degrees of freedom (except for 2 � 2 tables).

For more information about selecting the appropriate statistical analyses, see Agresti (2007) and Stokes,
Davis, and Koch (2012).

Several SAS procedures produce frequency counts; only PROC FREQ computes chi-square tests for one-way
to n-way tables and measures of association and agreement for contingency tables. Other procedures to
consider for counting include the TABULATE and UNIVARIATE procedures. When you want to produce
contingency tables and tests of association for sample survey data, use PROC SURVEYFREQ. See Chapter 14,
“Introduction to Survey Procedures,” for more information. When you want to fit models to categorical data,
use a procedure such as CATMOD, GENMOD, GLIMMIX, LOGISTIC, PROBIT, or SURVEYLOGISTIC.
See Chapter 8, “Introduction to Categorical Data Analysis Procedures,” for more information.

PROC FREQ uses the Output Delivery System (ODS), a SAS subsystem that provides capabilities for
displaying and controlling the output from SAS procedures. ODS enables you to convert any of the output
from PROC FREQ into a SAS data set. See the section “ODS Table Names” on page 2721 for more
information.

PROC FREQ uses ODS Graphics to create graphs as part of its output. For general information about ODS
Graphics, see Chapter 21, “Statistical Graphics Using ODS.” For specific information about the statistical
graphics available with the FREQ procedure, see the PLOTS= option in the TABLES statement and the
section “ODS Graphics” on page 2725.
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Getting Started: FREQ Procedure

Frequency Tables and Statistics
The FREQ procedure provides easy access to statistics for testing for association in a crosstabulation table.

In this example, high school students applied for courses in a summer enrichment program; these courses
included journalism, art history, statistics, graphic arts, and computer programming. The students accepted
were randomly assigned to classes with and without internships in local companies. Table 40.1 contains
counts of the students who enrolled in the summer program by gender and whether they were assigned an
internship slot.

Table 40.1 Summer Enrichment Data

Enrollment
Gender Internship Yes No Total
boys yes 35 29 64
boys no 14 27 41
girls yes 32 10 42
girls no 53 23 76

The SAS data set SummerSchool is created by inputting the summer enrichment data as cell count data, or
providing the frequency count for each combination of variable values. The following DATA step statements
create the SAS data set SummerSchool:

data SummerSchool;
input Gender $ Internship $ Enrollment $ Count @@;
datalines;

boys yes yes 35 boys yes no 29
boys no yes 14 boys no no 27
girls yes yes 32 girls yes no 10
girls no yes 53 girls no no 23
;

The variable Gender takes the values ‘boys’ or ‘girls,’ the variable Internship takes the values ‘yes’ and
‘no,’ and the variable Enrollment takes the values ‘yes’ and ‘no.’ The variable Count contains the number of
students that correspond to each combination of data values. The double at sign (@@) indicates that more
than one observation is included on a single data line. In this DATA step, two observations are included on
each line.

Researchers are interested in whether there is an association between internship status and summer program
enrollment. The Pearson chi-square statistic is an appropriate statistic to assess the association in the
corresponding 2 � 2 table. The following PROC FREQ statements specify this analysis.
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You specify the table for which you want to compute statistics with the TABLES statement. You specify the
statistics you want to compute with options after a slash (/) in the TABLES statement.

proc freq data=SummerSchool order=data;
tables Internship*Enrollment / chisq;
weight Count;

run;

The ORDER= option controls the order in which variable values are displayed in the rows and columns
of the table. By default, the values are arranged according to the alphanumeric order of their unformatted
values. If you specify ORDER=DATA, the data are displayed in the same order as they occur in the input
data set. Here, because ‘yes’ appears before ‘no’ in the data, ‘yes’ appears first in any table. Other options
for controlling order include ORDER=FORMATTED, which orders according to the formatted values, and
ORDER=FREQUENCY, which orders by descending frequency count.

In the TABLES statement, Internship*Enrollment specifies a table where the rows are internship status and the
columns are program enrollment. The CHISQ option requests chi-square statistics for assessing association
between these two variables. Because the input data are in cell count form, the WEIGHT statement is required.
The WEIGHT statement names the variable Count, which provides the frequency of each combination of
data values.

Figure 40.1 presents the crosstabulation of Internship and Enrollment. In each cell, the values printed under
the cell count are the table percentage, row percentage, and column percentage, respectively. For example, in
the first cell, 63.21 percent of the students offered courses with internships accepted them and 36.79 percent
did not.

Figure 40.1 Crosstabulation Table

The FREQ ProcedureThe FREQ Procedure

Frequency
Percent
Row Pct
Col Pct

Table of Internship by Enrollment

Internship

Enrollment

yes no Total

yes 67
30.04
63.21
50.00

39
17.49
36.79
43.82

106
47.53

no 67
30.04
57.26
50.00

50
22.42
42.74
56.18

117
52.47

Total 134
60.09

89
39.91

223
100.00
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Figure 40.2 displays the statistics produced by the CHISQ option. The Pearson chi-square statistic is labeled
‘Chi-Square’ and has a value of 0.8189 with 1 degree of freedom. The associated p-value is 0.3655, which
means that there is no significant evidence of an association between internship status and program enrollment.
The other chi-square statistics have similar values and are asymptotically equivalent. The other statistics (phi
coefficient, contingency coefficient, and Cramér’s V) are measures of association derived from the Pearson
chi-square. For Fisher’s exact test, the two-sided p-value is 0.4122, which also shows no association between
internship status and program enrollment.

Figure 40.2 Statistics Produced with the CHISQ Option

Statistic DF Value Prob

Chi-Square 1 0.8189 0.3655

Likelihood Ratio Chi-Square 1 0.8202 0.3651

Continuity Adj. Chi-Square 1 0.5899 0.4425

Mantel-Haenszel Chi-Square 1 0.8153 0.3666

Phi Coefficient 0.0606

Contingency Coefficient 0.0605

Cramer's V 0.0606

Fisher's Exact Test

Cell (1,1) Frequency (F) 67

Left-sided Pr <= F 0.8513

Right-sided Pr >= F 0.2213

Table Probability (P) 0.0726

Two-sided Pr <= P 0.4122

The analysis, so far, has ignored gender. However, it might be of interest to ask whether program enrollment
is associated with internship status after adjusting for gender. You can address this question by doing an
analysis of a set of tables (in this case, by analyzing the set consisting of one for boys and one for girls). The
Cochran-Mantel-Haenszel (CMH) statistic is appropriate for this situation: it addresses whether rows and
columns are associated after controlling for the stratification variable. In this case, you would be stratifying
by gender.

The PROC FREQ statements for this analysis are very similar to those for the first analysis, except that there
is a third variable, Gender, in the TABLES statement. When you cross more than two variables, the two
rightmost variables construct the rows and columns of the table, respectively, and the leftmost variables
determine the stratification.

The following PROC FREQ statements also request frequency plots for the crosstabulation tables. PROC
FREQ produces these plots by using ODS Graphics to create graphs as part of the procedure output.
ODS Graphics must be enabled before producing plots. The PLOTS(ONLY)=FREQPLOT option requests
frequency plots. The TWOWAY=CLUSTER plot-option specifies a cluster layout for the two-way frequency
plots.
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ods graphics on;
proc freq data=SummerSchool;

tables Gender*Internship*Enrollment /
chisq cmh plots(only)=freqplot(twoway=cluster);

weight Count;
run;
ods graphics off;

This execution of PROC FREQ first produces two individual crosstabulation tables of Internship by
Enrollment: one for boys and one for girls. Frequency plots and chi-square statistics are produced for
each individual table. Figure 40.3, Figure 40.4, and Figure 40.5 show the results for boys. Note that the
chi-square statistic for boys is significant at the ˛ D 0:05 level of significance. Boys offered a course with an
internship are more likely to enroll than boys who are not.

Figure 40.4 displays the frequency plot of Internship by Enrollment for boys. By default, frequency plots are
displayed as bar charts. You can use PLOTS= options to request dot plots instead of bar charts, to change
the orientation of the bars from vertical to horizontal, and to change the scale from frequencies to percents.
You can also use PLOTS= options to specify other two-way layouts (stacked, vertical groups, or horizontal
groups) and to change the primary grouping from column levels to row levels.

Figure 40.6, Figure 40.7, and Figure 40.8 display the crosstabulation table, frequency plot, and chi-square
statistics for girls. You can see that there is no evidence of association between internship offers and program
enrollment for girls.

Figure 40.3 Crosstabulation Table for Boys

The FREQ ProcedureThe FREQ Procedure

Frequency
Percent
Row Pct
Col Pct

Table 1 of Internship by Enrollment

Controlling for Gender=boys

Internship

Enrollment

no yes Total

no 27
25.71
65.85
48.21

14
13.33
34.15
28.57

41
39.05

yes 29
27.62
45.31
51.79

35
33.33
54.69
71.43

64
60.95

Total 56
53.33

49
46.67

105
100.00
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Figure 40.4 Frequency Plot for Boys

Figure 40.5 Chi-Square Statistics for Boys

Statistic DF Value Prob

Chi-Square 1 4.2366 0.0396

Likelihood Ratio Chi-Square 1 4.2903 0.0383

Continuity Adj. Chi-Square 1 3.4515 0.0632

Mantel-Haenszel Chi-Square 1 4.1963 0.0405

Phi Coefficient 0.2009

Contingency Coefficient 0.1969

Cramer's V 0.2009

Fisher's Exact Test

Cell (1,1) Frequency (F) 27

Left-sided Pr <= F 0.9885

Right-sided Pr >= F 0.0311

Table Probability (P) 0.0196

Two-sided Pr <= P 0.0467
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Figure 40.6 Crosstabulation Table for Girls

Frequency
Percent
Row Pct
Col Pct

Table 2 of Internship by Enrollment

Controlling for Gender=girls

Internship

Enrollment

no yes Total

no 23
19.49
30.26
69.70

53
44.92
69.74
62.35

76
64.41

yes 10
8.47
23.81
30.30

32
27.12
76.19
37.65

42
35.59

Total 33
27.97

85
72.03

118
100.00

Figure 40.7 Frequency Plot for Girls
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Figure 40.8 Chi-Square Statistics for Girls

Statistic DF Value Prob

Chi-Square 1 0.5593 0.4546

Likelihood Ratio Chi-Square 1 0.5681 0.4510

Continuity Adj. Chi-Square 1 0.2848 0.5936

Mantel-Haenszel Chi-Square 1 0.5545 0.4565

Phi Coefficient 0.0688

Contingency Coefficient 0.0687

Cramer's V 0.0688

Fisher's Exact Test

Cell (1,1) Frequency (F) 23

Left-sided Pr <= F 0.8317

Right-sided Pr >= F 0.2994

Table Probability (P) 0.1311

Two-sided Pr <= P 0.5245

These individual table results demonstrate the occasional problems with combining information into one table
and not accounting for information in other variables such as Gender. Figure 40.9 contains the CMH results.
There are three summary (CMH) statistics; which one you use depends on whether your rows and/or columns
have an order in r � c tables. However, in the case of 2 � 2 tables, ordering does not matter and all three
statistics take the same value. The CMH statistic follows the chi-square distribution under the hypothesis
of no association, and here, it takes the value 4.0186 with 1 degree of freedom. The associated p-value is
0.0450, which indicates a significant association at the ˛ D 0:05 level.

Thus, when you adjust for the effect of gender in these data, there is an association between internship and
program enrollment. But, if you ignore gender, no association is found. Note that the CMH option also
produces other statistics, including estimates and confidence limits for relative risk and odds ratios for 2 � 2
tables and the Breslow-Day Test. These results are not displayed here.

Figure 40.9 Test for the Hypothesis of No Association

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 4.0186 0.0450

2 Row Mean Scores Differ 1 4.0186 0.0450

3 General Association 1 4.0186 0.0450
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Agreement Study
Medical researchers are interested in evaluating the efficacy of a new treatment for a skin condition. Derma-
tologists from participating clinics were trained to conduct the study and to evaluate the condition. After the
training, two dermatologists examined patients with the skin condition from a pilot study and rated the same
patients. The possible evaluations are terrible, poor, marginal, and clear. Table 40.2 contains the data.

Table 40.2 Skin Condition Data

Dermatologist 2
Dermatologist 1 Terrible Poor Marginal Clear
Terrible 10 4 1 0
Poor 5 10 12 2
Marginal 2 4 12 5
Clear 0 2 6 13

The following DATA step statements create the SAS dataset SkinCondition. The dermatologists’ evaluations
of the patients are contained in the variables Derm1 and Derm2; the variable Count is the number of patients
given a particular pair of ratings.

data SkinCondition;
input Derm1 $ Derm2 $ Count;
datalines;

terrible terrible 10
terrible poor 4
terrible marginal 1
terrible clear 0
poor terrible 5
poor poor 10
poor marginal 12
poor clear 2
marginal terrible 2
marginal poor 4
marginal marginal 12
marginal clear 5
clear terrible 0
clear poor 2
clear marginal 6
clear clear 13
;
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The following PROC FREQ statements request an agreement analysis of the skin condition data. In order
to evaluate the agreement of the diagnoses (a possible contribution to measurement error in the study), the
kappa coefficient is computed.

The TABLES statement requests a crosstabulation of the variables Derm1 and Derm2. The AGREE option in
the TABLES statement requests the kappa coefficient, together with its standard error and confidence limits.
The KAPPA option in the TEST statement requests a test for the null hypothesis that kappa equals zero, or
that the agreement is purely by chance. The NOPRINT option in the TABLES statement suppresses the
display of the two-way table. The PLOTS= option requests an agreement plot for the two dermatologists.
ODS Graphics must be enabled before producing plots.

ods graphics on;
proc freq data=SkinCondition order=data;

tables Derm1*Derm2 /
agree noprint plots=agreeplot;

test kappa;
weight Count;

run;
ods graphics off;

Figure 40.10 and Figure 40.11 show the results. The kappa coefficient has the value 0.3449, which indicates
some agreement between the dermatologists, and the hypothesis test confirms that you can reject the null
hypothesis of no agreement. This conclusion is further supported by the confidence interval of (0.2030,
0.4868), which suggests that the true kappa is greater than zero. The AGREE option also produces Bowker’s
test for symmetry and the weighted kappa coefficient, but that output is not shown here. Figure 40.11 displays
the agreement plot for the ratings of the two dermatologists.

Figure 40.10 Agreement Study

The FREQ Procedure

Statistics for Table of Derm1 by Derm2

The FREQ Procedure

Statistics for Table of Derm1 by Derm2

Simple Kappa Coefficient

Kappa 0.3449

ASE 0.0724

95% Lower Conf Limit 0.2030

95% Upper Conf Limit 0.4868

Test of H0: Kappa = 0

ASE under H0 0.0612

Z 5.6366

One-sided Pr >  Z <.0001

Two-sided Pr > |Z| <.0001
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Figure 40.11 Agreement Plot

Syntax: FREQ Procedure
The following statements are available in the FREQ procedure:

PROC FREQ < options > ;
BY variables ;
EXACT statistic-options < / computation-options > ;
OUTPUT < OUT=SAS-data-set > output-options ;
TABLES requests < / options > ;
TEST options ;
WEIGHT variable < / option > ;
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The PROC FREQ statement is the only required statement for the FREQ procedure. If you specify the
following statements, PROC FREQ produces a one-way frequency table for each variable in the most recently
created data set.

proc freq;
run;

Table 40.3 summarizes the basic functions of the procedure statements. The following sections provide
detailed syntax information for the BY, EXACT, OUTPUT, TABLES, TEST, and WEIGHT statements in
alphabetical order after the description of the PROC FREQ statement.

Table 40.3 Summary of PROC FREQ Statements

Statement Description

BY Provides separate analyses for each BY group
EXACT Requests exact tests
OUTPUT Requests an output data set
TABLES Specifies tables and requests analyses
TEST Requests tests for measures of association and agreement
WEIGHT Identifies a weight variable

PROC FREQ Statement
PROC FREQ < options > ;

The PROC FREQ statement invokes the FREQ procedure. Optionally, it also identifies the input data set. By
default, the procedure uses the most recently created SAS data set.

Table 40.4 lists the options available in the PROC FREQ statement. Descriptions of the options follow in
alphabetical order.

Table 40.4 PROC FREQ Statement Options

Option Description

COMPRESS Begins the next one-way table on the current page
DATA= Names the input data set
FORMCHAR= Specifies the outline and cell divider characters for crosstabulation tables
NLEVELS Displays the number of levels for all TABLES variables
NOPRINT Suppresses all displayed output
ORDER= Specifies the order for reporting variable values
PAGE Displays one table per page

You can specify the following options in the PROC FREQ statement.

COMPRESS
begins display of the next one-way frequency table on the same page as the preceding one-way table if
there is enough space to begin the table. By default, the next one-way table begins on the current page
only if the entire table fits on that page. The COMPRESS option is not valid with the PAGE option.
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DATA=SAS-data-set
names the SAS-data-set to be analyzed by PROC FREQ. If you omit the DATA= option, the procedure
uses the most recently created SAS data set.

FORMCHAR(1,2,7)=‘formchar-string’
defines the characters to be used for constructing the outlines and dividers for the cells of crosstabulation
table displays. The formchar-string should be three characters long. The characters are used to draw
the vertical separators (1), the horizontal separators (2), and the vertical-horizontal intersections (7). If
you do not specify the FORMCHAR= option, PROC FREQ uses FORMCHAR(1,2,7)=‘|-+’ by default.
Table 40.5 summarizes the formatting characters used by PROC FREQ.

Table 40.5 Formatting Characters Used by PROC FREQ

Position Default Used to Draw

1 | Vertical separators
2 - Horizontal separators
7 + Intersections of vertical and horizontal separators

The FORMCHAR= option can specify 20 different SAS formatting characters used to display output;
however, PROC FREQ uses only the first, second, and seventh formatting characters. Therefore, the
proper specification for PROC FREQ is FORMCHAR(1,2,7)= ‘formchar-string’.

Specifying all blanks for formchar-string produces crosstabulation tables with no outlines or dividers—
for example, FORMCHAR(1,2,7)=‘ ’. You can use any character in formchar-string, including
hexadecimal characters. If you use hexadecimal characters, you must put an x after the closing quote.
For information about which hexadecimal codes to use for which characters, see the documentation for
your hardware.

See the CALENDAR, PLOT, and TABULATE procedures in the Base SAS Procedures Guide for more
information about form characters.

NLEVELS
displays the “Number of Variable Levels” table, which provides the number of levels for each variable
named in the TABLES statements. See the section “Number of Variable Levels Table” on page 2712 for
details. PROC FREQ determines the variable levels from the formatted variable values, as described in
the section “Grouping with Formats” on page 2642.

NOPRINT
suppresses the display of all output. You can use the NOPRINT option when you only want to create
an output data set. See the section “Output Data Sets” on page 2709 for information about the output
data sets produced by PROC FREQ. Note that the NOPRINT option temporarily disables the Output
Delivery System (ODS). For more information, see Chapter 20, “Using the Output Delivery System.”

NOTE: A NOPRINT option is also available in the TABLES statement. It suppresses display of the
crosstabulation tables but allows display of the requested statistics.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the order of the variable levels in the frequency and crosstabulation tables, which you request
in the TABLES statement.

The ORDER= option can take the following values:
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Value of ORDER= Levels Ordered By

DATA Order of appearance in the input data set

FORMATTED External formatted value, except for numeric variables with
no explicit format, which are sorted by their unformatted
(internal) value

FREQ Descending frequency count; levels with the most observa-
tions come first in the order

INTERNAL Unformatted value

By default, ORDER=INTERNAL. The FORMATTED and INTERNAL orders are machine-dependent.
The ORDER= option does not apply to missing values, which are always ordered first.

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

PAGE
displays only one table per page. Otherwise, PROC FREQ displays multiple tables per page as space
permits. The PAGE option is not valid with the COMPRESS option.

BY Statement
BY variables ;

You can specify a BY statement with PROC FREQ to obtain separate analyses of observations in groups that
are defined by the BY variables. When a BY statement appears, the procedure expects the input data set to be
sorted in order of the BY variables. If you specify more than one BY statement, only the last one specified is
used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the FREQ procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

EXACT Statement
EXACT statistic-options < / computation-options > ;
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The EXACT statement requests exact tests and confidence limits for selected statistics. The statistic-options
identify which statistics to compute, and the computation-options specify options for computing exact
statistics. See the section “Exact Statistics” on page 2704 for details.

NOTE: PROC FREQ computes exact tests by using fast and efficient algorithms that are superior to direct
enumeration. Exact tests are appropriate when a data set is small, sparse, skewed, or heavily tied. For
some large problems, computation of exact tests might require a considerable amount of time and memory.
Consider using asymptotic tests for such problems. Alternatively, when asymptotic methods might not be
sufficient for such large problems, consider using Monte Carlo estimation of exact p-values. You can request
Monte Carlo estimation by specifying the MC computation-option in the EXACT statement. See the section
“Computational Resources” on page 2707 for more information.

Statistic Options

The statistic-options specify which exact tests and confidence limits to compute. Table 40.6 lists the available
statistic-options and the exact statistics that are computed. Descriptions of the statistic-options follow the
table in alphabetical order.

For one-way tables, exact p-values are available for binomial proportion tests, the chi-square goodness-of-fit
test, and the likelihood ratio chi-square test. Exact (Clopper-Pearson) confidence limits are available for the
binomial proportion.

For two-way tables, exact p-values are available for the following tests: Pearson chi-square test, likelihood
ratio chi-square test, Mantel-Haenszel chi-square test, Fisher’s exact test, Jonckheere-Terpstra test, and
Cochran-Armitage test for trend. Exact p-values are also available for tests of the following statistics: Pearson
correlation coefficient, Spearman correlation coefficient, Kendall’s tau-b, Stuart’s tau-c, Somers’ D.C jR/,
Somers’ D.RjC/, simple kappa coefficient, and weighted kappa coefficient.

For 2 � 2 tables, PROC FREQ provides the exact McNemar’s test, exact confidence limits for the odds ratio,
and Barnard’s unconditional exact test for the risk (proportion) difference. PROC FREQ also provides exact
unconditional confidence limits for the risk difference and for the relative risk (ratio of proportions). For
stratified 2 � 2 tables, PROC FREQ provides Zelen’s exact test for equal odds ratios, exact confidence limits
for the common odds ratio, and an exact test for the common odds ratio.

Most of the statistic-option names listed in Table 40.6 are identical to the corresponding option names in the
TABLES and OUTPUT statements. You can request exact computations for groups of statistics by using
statistic-options that are identical to the TABLES statement options CHISQ, MEASURES, and AGREE. For
example, when you specify the CHISQ statistic-option in the EXACT statement, PROC FREQ computes
exact p-values for the Pearson chi-square, likelihood ratio chi-square, and Mantel-Haenszel chi-square tests
for two-way tables. You can request an exact test for an individual statistic by specifying the corresponding
statistic-option from the list in Table 40.6.

Using the EXACT Statement with the TABLES Statement
You must use a TABLES statement with the EXACT statement. If you use only one TABLES statement, you
do not need to specify the same options in both the TABLES and EXACT statements; when you specify a
statistic-option in the EXACT statement, PROC FREQ automatically invokes the corresponding TABLES
statement option. However, when you use an EXACT statement with multiple TABLES statements, you must
specify options in the TABLES statements to request statistics. PROC FREQ then provides exact tests or
confidence limits for those statistics that you also specify in the EXACT statement.
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Table 40.6 EXACT Statement Statistic Options

Statistic Option Exact Statistics

AGREE McNemar’s test (for 2 � 2 tables), simple kappa test,
weighted kappa test

BARNARD Barnard’s test (for 2 � 2 tables)
BINOMIAL | BIN Binomial proportion tests for one-way tables
CHISQ Chi-square goodness-of-fit test for one-way tables;

Pearson chi-square, likelihood ratio chi-square, and
Mantel-Haenszel chi-square tests for two-way tables

COMOR Confidence limits for the common odds ratio,
common odds ratio test (for h � 2 � 2 tables)

EQOR | ZELEN Zelen’s test for equal odds ratios (for h � 2 � 2 tables)
FISHER Fisher’s exact test
JT Jonckheere-Terpstra test
KAPPA Test for the simple kappa coefficient
KENTB | TAUB Test for Kendall’s tau-b
LRCHI Likelihood ratio chi-square test (one-way and two-way tables)
MCNEM McNemar’s test (for 2 � 2 tables)
MEASURES Tests for the Pearson correlation and Spearman correlation,

confidence limits for the odds ratio (for 2 � 2 tables)
MHCHI Mantel-Haenszel chi-square test
OR | ODDSRATIO Confidence limits for the odds ratio (for 2 � 2 tables)
PCHI Pearson chi-square test (one-way and two-way tables)
PCORR Test for the Pearson correlation coefficient
RELRISK Confidence limits for the relative risk (for 2 � 2 tables)
RISKDIFF Confidence limits for the proportion difference (for 2� 2 tables)
SCORR Test for the Spearman correlation coefficient
SMDCR Test for Somers’ D.C jR/
SMDRC Test for Somers’ D.RjC/
STUTC | TAUC Test for Stuart’s tau-c
TREND Cochran-Armitage test for trend
WTKAP | WTKAPPA Test for the weighted kappa coefficient

You can specify the following statistic-options in the EXACT statement.

AGREE
requests exact tests for the simple and weighted kappa coefficients and McNemar’s exact test. “Tests
and Measures of Agreement” on page 2690 and “Exact Statistics” on page 2704 for details.

The AGREE option in the TABLES statement provides the simple and weighted kappa coefficients
(with their standard errors and confidence limits) and the asymptotic McNemar’s test. The AGREE
option in the TEST statement provides asymptotic tests for the kappa coefficients.

Kappa coefficients can be computed for square two-way tables, where the number of rows equals
the number of columns. For 2 � 2 tables, the weighted kappa coefficient equals the simple kappa
coefficient, and PROC FREQ displays only the simple kappa coefficient. McNemar’s test is available
for 2 � 2 tables.
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BARNARD
requests Barnard’s exact unconditional test for the risk (proportion) difference for 2 � 2 tables. See the
section “Barnard’s Unconditional Exact Test” on page 2680 for details. The RISKDIFF option in the
TABLES statement provides risk difference estimates, confidence limits, and asymptotic tests. See the
section “Risks and Risk Differences” on page 2671 for more information.

BINOMIAL
BIN

requests exact tests for the binomial proportion (for one-way tables). See the section “Binomial Tests”
on page 2666 for details. The BINOMIAL option in the TABLES statement provides confidence limits
and asymptotic tests for the binomial proportion. See the section “Binomial Proportion” on page 2663
for more information.

CHISQ
requests exact tests for the Pearson chi-square, likelihood ratio chi-square, and Mantel-Haenszel
chi-square for two-way tables. See the section “Chi-Square Tests and Statistics” on page 2648 for
details. The CHISQ option in the TABLES statement provides asymptotic tests for these statistics.

For one-way tables, the CHISQ option requests the exact chi-square goodness-of-fit test. See the
section “Chi-Square Test for One-Way Tables” on page 2648 for details.

COMOR
requests an exact test and exact confidence limits for the common odds ratio for multiway 2 � 2 tables.
See the section “Exact Confidence Limits for the Common Odds Ratio” on page 2701 for details. The
CMH option in the TABLES statement provides Mantel-Haenszel and logit estimates and asymptotic
confidence limits for the common odds ratio.

EQOR
ZELEN

requests Zelen’s exact test for equal odds ratios, which is available for multiway 2 � 2 tables. See the
section “Zelen’s Exact Test for Equal Odds Ratios” on page 2701 for details. The CMH option in the
TABLES statement provides the asymptotic Breslow-Day test for homogeneity of odds ratios.

FISHER
request Fisher’s exact test. See the sections “Fisher’s Exact Test” on page 2651 and “Exact Statistics”
on page 2704 for details. For 2 � 2 tables, the CHISQ option in the TABLES statement provides
Fisher’s exact test. For general R � C tables, Fisher’s exact test is also known as the Freeman-Halton
test.

JT
requests the exact Jonckheere-Terpstra test. See the sections “Jonckheere-Terpstra Test” on page 2689
and “Exact Statistics” on page 2704 for details. The JT option in the TABLES statement provides the
asymptotic Jonckheere-Terpstra test.

KAPPA
requests an exact test for the simple kappa coefficient. See the sections “Simple Kappa Coefficient”
on page 2691 and “Exact Statistics” on page 2704 for details. The AGREE option in the TABLES
statement provides the simple kappa estimate, standard error, and confidence limits. The KAPPA
option in the TEST statement provides the asymptotic test for the simple kappa coefficient.

Kappa coefficients are defined only for square tables, where the number of rows equals the number of
columns. PROC FREQ does not compute kappa coefficients for tables that are not square.



2582 F Chapter 40: The FREQ Procedure

KENTB
TAUB

requests an exact test for Kendall’s tau-b. See the sections “Kendall’s Tau-b” on page 2655 and “Exact
Statistics” on page 2704 for details. The MEASURES option in the TABLES statement provides the
Kendall’s tau-b estimate and standard error. The KENTB option in the TEST statement provides an
asymptotic test for Kendall’s tau-b.

LRCHI
requests an exact test for the likelihood ratio chi-square for two-way tables. See the sections “Likelihood
Ratio Chi-Square Test” on page 2650 and “Exact Statistics” on page 2704 for details. For one-way
tables, the LRCHI option requests an exact likelihood ratio goodness-of-fit test. See the section
“Likelihood Ratio Chi-Square Test for One-Way Tables” on page 2650 for details.

The CHISQ option in the TABLES statement provides asymptotic likelihood ratio chi-square tests.

MCNEM
requests the exact McNemar’s test. See the sections “McNemar’s Test” on page 2691 and “Exact
Statistics” on page 2704 for details. The AGREE option in the TABLES statement provides the
asymptotic McNemar’s test.

MEASURES
requests exact tests for the Pearson and Spearman correlations. See the sections “Pearson Correlation
Coefficient” on page 2657, “Spearman Rank Correlation Coefficient” on page 2658, and “Exact
Statistics” on page 2704 for details. The PCORR and SCORR options in the TEST statement provide
asymptotic tests for the Pearson and Spearman correlations, respectively.

This option also requests exact confidence limits for the odds ratio for 2�2 tables. For more information,
see the sections “Odds Ratio” on page 2683 and “Exact Confidence Limits for the Odds Ratio” on
page 2684. The MEASURES, OR(CL=), and RELRISK options in the TABLES statement provide
asymptotic confidence limits for the odds ratio.

MHCHI
requests an exact test for the Mantel-Haenszel chi-square. See the sections “Mantel-Haenszel Chi-
Square Test” on page 2651 and “Exact Statistics” on page 2704 for details. The CHISQ option in the
TABLES statement provides the asymptotic Mantel-Haenszel chi-square test.

OR
ODDSRATIO

requests exact confidence limits for the odds ratio for 2 � 2 tables. For more information, see the
sections “Odds Ratio” on page 2683 and “Exact Confidence Limits for the Odds Ratio” on page 2684.
The MEASURES, OR(CL=), and RELRISK options in the TABLES statement provide asymptotic
confidence limits for the odds ratio.

You can set the confidence level by specifying the ALPHA= option in the TABLES statement. The
default of ALPHA=0.05 produces 95% confidence limits.

PCHI
requests an exact test for the Pearson chi-square for two-way tables. See the sections “Pearson Chi-
Square Test for Two-Way Tables” on page 2649 and “Exact Statistics” on page 2704 for details. For
one-way tables, the PCHI option requests an exact chi-square goodness-of-fit test. See the section
“Chi-Square Test for One-Way Tables” on page 2648 for details. The CHISQ option in the TABLES
statement provides asymptotic chi-square tests.
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PCORR
requests an exact test for the Pearson correlation coefficient. See the sections “Pearson Correlation
Coefficient” on page 2657 and “Exact Statistics” on page 2704 for details. The MEASURES option
in the TABLES statement provides the Pearson correlation estimate and standard error. The PCORR
option in the TEST statement provides an asymptotic test for the Pearson correlation.

RELRISK < (options) >
requests exact unconditional confidence limits for the relative risk for 2 � 2 tables. PROC FREQ
computes the confidence limits by inverting two separate one-sided exact tests (Santner and Snell
1980). By default, this computation uses the unstandardized relative risk as the test statistic. If you
specify the RELRISK(METHOD=SCORE) option, the computation uses the score statistic (Chan and
Zhang 1999). For more information, see the section “Exact Unconditional Confidence Limits for the
Relative Risk” on page 2686.

You can set the confidence level by specifying the ALPHA= option in the TABLES statement. The
default of ALPHA=0.05 produces 95% confidence limits.

The RELRISK and MEASURES options in the TABLES statement provide asymptotic confidence
limits for the relative risk. For more information, see the section “Relative Risks” on page 2685.

You can specify the following options:

COLUMN=1 | 2 | BOTH
specifies the table column for which to compute the relative risk. The default is COLUMN=1,
which provides exact confidence limits for the column 1 relative risk. If you specify
COLUMN=BOTH, PROC FREQ provides exact confidence limits for both column 1 and column
2 relative risks.

METHOD=SCORE
requests exact unconditional confidence limits that are based on the score statistic (Chan and
Zhang 1999). For more information, see the section “Exact Unconditional Confidence Limits for
the Relative Risk” on page 2686. If you do not specify METHOD=SCORE, by default the exact
confidence limit computations are based on the unstandardized relative risk.

RISKDIFF < (options) >
requests exact unconditional confidence limits for the risk difference for 2 � 2 tables. PROC FREQ
computes the confidence limits by inverting two separate one-sided exact tests (Santner and Snell
1980). By default, this computation uses the unstandardized risk difference as the test statistic. If you
specify the RISKDIFF(METHOD=SCORE) option, the computation uses the score statistic (Chan and
Zhang 1999). See the section “Exact Unconditional Confidence Limits for the Risk Difference” on
page 2679 for more information.

You can set the confidence level by specifying the ALPHA= option in the TABLES statement. The
default of ALPHA=0.05 produces 95% confidence limits.

The RISKDIFF option in the TABLES statement provides asymptotic confidence limits for the risk
difference, including Wald, Newcombe, and Miettinen-Nurminen (score) confidence limits. See the
section “Risk Difference Confidence Limits” on page 2672 for more information.

You can specify the following options:
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COLUMN=1 | 2 | BOTH
specifies the table column for which to compute the risk difference. The default is
COLUMN=BOTH, which provides exact confidence limits for both column 1 and column
2 risk differences.

METHOD=SCORE
requests exact unconditional confidence limits that are based on the score statistic (Chan and
Zhang 1999). See the section “Exact Unconditional Confidence Limits for the Risk Difference”
on page 2679 for more information. If you do not specify METHOD=SCORE, by default the
exact confidence limit computations are based on the unstandardized risk difference.

SCORR
requests an exact test for the Spearman correlation coefficient. See the sections “Spearman Rank
Correlation Coefficient” on page 2658 and “Exact Statistics” on page 2704 for details. The MEASURES
option in the TABLES statement provides the Spearman correlation estimate and standard error. The
SCORR option in the TEST statement provides an asymptotic test for the Spearman correlation.

SMDCR
requests an exact test for Somers’ D.C jR/. See the sections “Somers’ D” on page 2656 and “Exact
Statistics” on page 2704 for details. The MEASURES option in the TABLES statement provides
Somers’ D.C jR/ estimate and the standard error. The SMDCR option in the TEST statement provides
an asymptotic test for Somers’ D.C jR/.

SMDRC
requests an exact test for Somers’ D.RjC/. See the sections “Somers’ D” on page 2656 and “Exact
Statistics” on page 2704 for details. The MEASURES option in the TABLES statement provides
Somers’ D.RjC/ estimate and the standard error. The SMDRC option in the TEST statement requests
an asymptotic test for Somers’ D.C jR/.

STUTC
TAUC

requests an exact test for Stuart’s tau-c. See the sections “Stuart’s Tau-c” on page 2656 and “Exact
Statistics” on page 2704 for details. The MEASURES option in the TABLES statement provides
Stuart’s tau-c estimate and the standard error. The STUTC option in the TEST statement provides an
asymptotic test for Stuart’s tau-c.

TREND
requests the exact Cochran-Armitage test for trend. See the sections “Cochran-Armitage Test for Trend”
on page 2687 and “Exact Statistics” on page 2704 for details. The TREND option in the TABLES
statement provides the asymptotic Cochran-Armitage trend test. The trend test is available for tables of
dimensions 2 � C or R � 2.

WTKAP
WTKAPPA

requests an exact test for the weighted kappa coefficient. See the sections “Weighted Kappa Coefficient”
on page 2692 and “Exact Statistics” on page 2704 for details. The AGREE option in the TABLES
statement provides the weighted kappa estimate, standard error, and confidence limits. The WTKAP
option in the TEST statement provides the asymptotic test for the weighted kappa coefficient.

Kappa coefficients are defined only for square tables, where the number of rows equals the number of
columns. PROC FREQ does not compute kappa coefficients for tables that are not square. For 2 � 2
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tables, the weighted kappa coefficient equals the simple kappa coefficient, and PROC FREQ does not
present separate results for the weighted kappa coefficient.

Computation Options

The computation-options specify options for computing exact statistics. You can specify the following
computation-options in the EXACT statement after a slash (/).

ALPHA=˛
specifies the level of the confidence limits for Monte Carlo p-value estimates. The value of ˛ must be
between 0 and 1, and the default is 0.01. A confidence level of ˛ produces 100.1 � ˛/% confidence
limits. The default of ALPHA=.01 produces 99% confidence limits for the Monte Carlo estimates.

The ALPHA= option invokes the MC option.

MAXTIME=value
specifies the maximum clock time (in seconds) that PROC FREQ can use to compute an exact
p-value. If the procedure does not complete the computation within the specified time, the computation
terminates. The MAXTIME= value must be a positive number. This option is available for Monte Carlo
estimation of exact p-values as well as for direct exact p-value computation. For more information, see
the section “Computational Resources” on page 2707.

MC
requests Monte Carlo estimation of exact p-values instead of direct exact p-value computation. Monte
Carlo estimation can be useful for large problems that require a considerable amount of time and
memory for exact computations but for which asymptotic approximations might not be sufficient. For
more information, see the section “Monte Carlo Estimation” on page 2707.

This option is available for all EXACT statistic-options except the BINOMIAL option and the following
options that apply only to 2 � 2 or h � 2 � 2 tables: BARNARD, COMOR, EQOR, MCNEM, OR,
RELRISK, and RISKDIFF. PROC FREQ always computes exact tests or confidence limits (not Monte
Carlo estimates) for these statistics.

The ALPHA=, N=, and SEED= options invoke the MC option.

MIDP
requests exact mid p-values for the exact tests. The exact mid p-value is defined as the exact p-value
minus half the exact point probability. For more information, see the section “Definition of p-Values”
on page 2706.

The MIDP option is available for all EXACT statement statistic-options except the following:
BARNARD, EQOR, OR, RELRISK, and RISKDIFF. You cannot specify both the MIDP option
and the MC option.

N=n
specifies the number of samples for Monte Carlo estimation. The value of n must be a positive integer,
and the default is 10,000. Larger values of n produce more precise estimates of exact p-values. Because
larger values of n generate more samples, the computation time increases.

The N= option invokes the MC option.
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PFORMAT=format-name | EXACT
specifies the display format for exact p-values. PROC FREQ applies this format to one- and two-sided
exact p-values, exact point probabilities, and exact mid p-values. By default, PROC FREQ displays
exact p-values in the PVALUE6.4 format.

You can provide a format-name or you can specify PFORMAT=EXACT to control the format of exact
p-values. The value of format-name can be any standard SAS numeric format or a user-defined format.
The format length must not exceed 24. For information about formats, see the FORMAT procedure
in the Base SAS Procedures Guide and the FORMAT statement and SAS format in SAS Formats and
Informats: Reference.

If you specify PFORMAT=EXACT, PROC FREQ uses the 6.4 format to display exact p-values that are
greater than or equal to 0.001; the procedure uses the E10.3 format to display values that are between
0.000 and 0.001. This is the format that PROC FREQ uses to display exact p-values in releases before
SAS/STAT 12.3. Beginning in SAS/STAT 12.3, by default PROC FREQ uses the PVALUE6.4 format
to display exact p-values.

POINT
requests exact point probabilities for the exact tests. The exact point probability is the exact probability
that the test statistic equals the observed value. For more information, see the section “Definition of
p-Values” on page 2706.

The POINT option is available for all EXACT statement statistic-options except the following:
BARNARD, EQOR, OR, RELRISK, and RISKDIFF. You cannot specify both the POINT option and
the MC option.

SEED=number
specifies the initial seed for random number generation for Monte Carlo estimation. The value of the
SEED= option must be an integer. If you do not specify the SEED= option or if the SEED= value is
negative or zero, PROC FREQ uses the time of day from the computer’s clock to obtain the initial seed.

The SEED= option invokes the MC option.

OUTPUT Statement
OUTPUT < OUT=SAS-data-set > output-options ;

The OUTPUT statement creates a SAS data set that contains statistics that are computed by PROC FREQ.
Table 40.7 lists the statistics that can be stored in the output data set. You identify which statistics to include
by specifying output-options.

You must use a TABLES statement with the OUTPUT statement. The OUTPUT statement stores statistics for
only one table request. If you use multiple TABLES statements, the contents of the output data set correspond
to the last TABLES statement. If you use multiple table requests in a single TABLES statement, the contents
of the output data set correspond to the last table request. Only one OUTPUT statement is allowed in a single
invocation of the procedure.

For a one-way or two-way table, the output data set contains one observation that stores the requested
statistics for the table. For a multiway table, the output data set contains an observation for each two-way
table (stratum) of the multiway crosstabulation. If you request summary statistics for the multiway table, the
output data set also contains an observation that stores the across-strata summary statistics. If you use a BY
statement, the output data set contains an observation or set of observations for each BY group. For more
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information about the contents of the output data set, see the section “Contents of the OUTPUT Statement
Output Data Set” on page 2711.

The output data set that is created by the OUTPUT statement is not the same as the output data set that
is created by the OUT= option in the TABLES statement. The OUTPUT statement creates a data set that
contains statistics (such as the Pearson chi-square and its p-value), and the OUT= option in the TABLES
statement creates a data set that contains frequency table counts and percentages. See the section “Output
Data Sets” on page 2709 for more information.

As an alternative to the OUTPUT statement, you can use the Output Delivery System (ODS) to store statistics
that PROC FREQ computes. ODS can create a SAS data set from any table that PROC FREQ produces. See
the section “ODS Table Names” on page 2721 for more information.

You can specify the following options in the OUTPUT statement:

OUT=SAS-data-set
specifies the name of the output data set. When you use an OUTPUT statement but do not use the
OUT= option, PROC FREQ creates a data set and names it by using the DATAn convention.

output-options
specify the statistics to include in the output data set. Table 40.7 lists the output-options that are
available in the OUTPUT statement, together with the TABLES statement options that are required to
produce the statistics. Descriptions of the output-options follow the table in alphabetical order.

You can specify output-options to request individual statistics, or you can request groups of statistics
by using output-options that are identical to the group options in the TABLES statement (for example,
the CHISQ, MEASURES, CMH, AGREE, and ALL options).

When you specify an output-option, the output data set includes statistics from the corresponding
analysis. In addition to the estimate or test statistic, the output data set includes associated values such
as standard errors, confidence limits, p-values, and degrees of freedom. See the section “Contents of
the OUTPUT Statement Output Data Set” on page 2711 for details.

To store a statistic in the output data set, you must also request computation of that statistic with
the appropriate TABLES, EXACT, or TEST statement option. For example, the PCHI output-option
includes the Pearson chi-square in the output data set. You must also request computation of the
Pearson chi-square by specifying the CHISQ option in the TABLES statement. Or, if you use only one
TABLES statement, you can request computation of the Pearson chi-square by specifying the PCHI
or CHISQ option in the EXACT statement. Table 40.7 lists the TABLES statement options that are
required to produce the OUTPUT data set statistics.

Table 40.7 OUTPUT Statement Output Options

Output Option Output Data Set Statistics Required TABLES
Statement Option

AGREE McNemar’s test (2 � 2 tables), Bowker’s test, AGREE
simple and weighted kappas; for multiple strata,
overall simple and weighted kappas, tests for equal
kappas, and Cochran’s Q (h � 2 � 2 tables)

AJCHI Continuity-adjusted chi-square (2 � 2 tables) CHISQ
ALL CHISQ, MEASURES, and CMH statistics; ALL

N (number of nonmissing observations)
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Table 40.7 continued

Output Option Output Data Set Statistics Required TABLES
Statement Option

BDCHI Breslow-Day test (h � 2 � 2 tables) CMH, CMH1, or CMH2
BINOMIAL | BIN Binomial statistics (one-way tables) BINOMIAL
CHISQ For one-way tables, goodness-of-fit test; CHISQ

for two-way tables, Pearson, likelihood ratio,
continuity-adjusted, and Mantel-Haenszel
chi-squares, Fisher’s exact test (2 � 2 tables),
phi and contingency coefficients, Cramér’s V

CMH Cochran-Mantel-Haenszel (CMH) correlation, CMH
row mean scores (ANOVA), and general
association statistics; for 2 � 2 tables, logit
and Mantel-Haenszel common odds ratios
and relative risks, Breslow-Day test

CMH1 CMH statistics, except row mean scores (ANOVA) CMH or CMH1
and general association statistics

CMH2 CMH statistics, except general association statistic CMH or CMH2
CMHCOR CMH correlation statistic CMH, CMH1, or CMH2
CMHGA CMH general association statistic CMH
CMHRMS CMH row mean scores (ANOVA) statistic CMH or CMH2
COCHQ Cochran’s Q (h � 2 � 2 tables) AGREE
CONTGY Contingency coefficient CHISQ
CRAMV Cramér’s V CHISQ
EQKAP Test for equal simple kappas AGREE
EQOR | ZELEN Zelen’s test for equal odds ratios (h � 2 � 2 tables) CMH and EXACT EQOR
EQWKP Test for equal weighted kappas AGREE
FISHER Fisher’s exact test CHISQ or FISHER 1

GAMMA Gamma MEASURES
GS | GAILSIMON Gail-Simon test CMH(GAILSIMON)
JT Jonckheere-Terpstra test JT
KAPPA Simple kappa coefficient AGREE
KENTB | TAUB Kendall’s tau-b MEASURES
LAMCR Lambda asymmetric .C jR/ MEASURES
LAMDAS Lambda symmetric MEASURES
LAMRC Lambda asymmetric .RjC/ MEASURES
LGOR Logit common odds ratio CMH, CMH1, or CMH2
LGRRC1 Logit common relative risk, column 1 CMH, CMH1, or CMH2
LGRRC2 Logit common relative risk, column 2 CMH, CMH1, or CMH2
LRCHI Likelihood ratio chi-square CHISQ
MCNEM McNemar’s test (2 � 2 tables) AGREE
MEASURES Gamma, Kendall’s tau-b, Stuart’s tau-c, MEASURES

Somers’ D.C jR/ and D.RjC/, Pearson and
Spearman correlations, lambda asymmetric

1CHISQ computes Fisher’s exact test for 2 � 2 tables. Use the FISHER option to compute Fisher’s exact test for general r � c
tables.
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Table 40.7 continued

Output Option Output Data Set Statistics Required TABLES
Statement Option

.C jR/ and .RjC/, lambda symmetric,
uncertainty coefficients .C jR/ and .RjC/,
symmetric uncertainty coefficient;
odds ratio and relative risks (2 � 2 tables)

MHCHI Mantel-Haenszel chi-square CHISQ
MHOR | COMOR Mantel-Haenszel common odds ratio CMH, CMH1, or CMH2
MHRRC1 Mantel-Haenszel common relative risk, column 1 CMH, CMH1, or CMH2
MHRRC2 Mantel-Haenszel common relative risk, column 2 CMH, CMH1, or CMH2
N Number of nonmissing observations
NMISS Number of missing observations
OR | ODDSRATIO Odds ratio (2 � 2 tables) MEASURES or RELRISK
PCHI Chi-square goodness-of-fit test (one-way tables), CHISQ

Pearson chi-square (two-way tables)
PCORR Pearson correlation coefficient MEASURES
PHI Phi coefficient CHISQ
PLCORR Polychoric correlation coefficient PLCORR
RDIF1 Column 1 risk difference (row 1 – row 2) RISKDIFF
RDIF2 Column 2 risk difference (row 1 – row 2) RISKDIFF
RELRISK Odds ratio and relative risks (2 � 2 tables) MEASURES or RELRISK
RISKDIFF Risks and risk differences (2 � 2 tables) RISKDIFF
RISKDIFF1 Risks and risk difference, column 1 RISKDIFF
RISKDIFF2 Risks and risk difference, column 2 RISKDIFF
RRC1 | RELRISK1 Relative risk, column 1 MEASURES or RELRISK
RRC2 | RELRISK2 Relative risk, column 2 MEASURES or RELRISK
RSK1 | RISK1 Column 1 overall risk RISKDIFF
RSK11 | RISK11 Column 1 risk for row 1 RISKDIFF
RSK12 | RISK12 Column 2 risk for row 1 RISKDIFF
RSK2 | RISK2 Column 2 overall risk RISKDIFF
RSK21 | RISK21 Column 1 risk for row 2 RISKDIFF
RSK22 | RISK22 Column 2 risk for row 2 RISKDIFF
SCORR Spearman correlation coefficient MEASURES
SMDCR Somers’ D.C jR/ MEASURES
SMDRC Somers’ D.RjC/ MEASURES
STUTC | TAUC Stuart’s tau-c MEASURES
TREND Cochran-Armitage test for trend TREND
TSYMM | BOWKER Bowker’s test of symmetry AGREE
U Symmetric uncertainty coefficient MEASURES
UCR Uncertainty coefficient .C jR/ MEASURES
URC Uncertainty coefficient .RjC/ MEASURES
WTKAP | WTKAPPA Weighted kappa coefficient AGREE

You can specify the following output-options in the OUTPUT statement.
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AGREE
includes the following tests and measures of agreement in the output data set: McNemar’s test (for 2�2
tables), Bowker’s test of symmetry, the simple kappa coefficient, and the weighted kappa coefficient.
For multiway tables, the AGREE option also includes the following statistics in the output data set:
overall simple and weighted kappa coefficients, tests for equal simple and weighted kappa coefficients,
and Cochran’s Q test.

The AGREE option in the TABLES statement requests computation of tests and measures of agreement.
See the section “Tests and Measures of Agreement” on page 2690 for details about these statistics.

AGREE statistics are computed only for square tables, where the number of rows equals the number
of columns. PROC FREQ provides Bowker’s test of symmetry and weighted kappa coefficients only
for tables larger than 2 � 2. (For 2 � 2 tables, Bowker’s test is identical to McNemar’s test, and the
weighted kappa coefficient equals the simple kappa coefficient.) Cochran’s Q is available for multiway
2 � 2 tables.

AJCHI
includes the continuity-adjusted chi-square in the output data set. The continuity-adjusted chi-square
is available for 2 � 2 tables and is provided by the CHISQ option in the TABLES statement. See the
section “Continuity-Adjusted Chi-Square Test” on page 2651 for details.

ALL
includes all statistics that are requested by the CHISQ, MEASURES, and CMH output-options in the
output data set. ALL also includes the number of nonmissing observations, which you can request
individually by specifying the N output-option.

BDCHI
includes the Breslow-Day test in the output data set. The Breslow-Day test for homogeneity of odds
ratios is computed for multiway 2 � 2 tables and is provided by the CMH, CMH1, and CMH2 options
in the TABLES statement. See the section “Breslow-Day Test for Homogeneity of the Odds Ratios”
on page 2701 for details.

BINOMIAL

BIN
includes the binomial proportion estimate, confidence limits, and tests in the output data set. The
BINOMIAL option in the TABLES statement requests computation of binomial statistics, which are
available for one-way tables. See the section “Binomial Proportion” on page 2663 for details.

CHISQ
includes the following chi-square tests and measures in the output data set for two-way tables: Pearson
chi-square, likelihood ratio chi-square, Mantel-Haenszel chi-square, phi coefficient, contingency
coefficient, and Cramér’s V. For 2�2 tables, CHISQ also includes Fisher’s exact test and the continuity-
adjusted chi-square in the output data set. See the section “Chi-Square Tests and Statistics” on
page 2648 for details. For one-way tables, CHISQ includes the chi-square goodness-of-fit test in the
output data set. See the section “Chi-Square Test for One-Way Tables” on page 2648 for details. The
CHISQ option in the TABLES statement requests computation of these statistics.

If you specify the CHISQ(WARN=OUTPUT) option in the TABLES statement, the CHISQ option also
includes the variable WARN_PCHI in the output data set. This variable indicates the validity warning
for the asymptotic Pearson chi-square test.
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CMH
includes the following Cochran-Mantel-Haenszel statistics in the output data set: correlation, row
mean scores (ANOVA), and general association. For 2 � 2 tables, the CMH option also includes
the Mantel-Haenszel and logit estimates of the common odds ratio and relative risks. For multiway
(stratified) 2 � 2 tables, the CMH option includes the Breslow-Day test for homogeneity of odds ratios.
The CMH option in the TABLES statement requests computation of these statistics. See the section
“Cochran-Mantel-Haenszel Statistics” on page 2695 for details.

If you specify the CMH(MF) option in the TABLES statement, the CMH option includes the Mantel-
Fleiss analysis in the output data set. The variables MF_CMH and WARN_CMH contain the Mantel-
Fleiss criterion and the warning indicator, respectively.

CMH1
includes the CMH statistics in the output data set, with the exception of the row mean scores (ANOVA)
statistic and the general association statistic. The CMH1 option in the TABLES statement requests
computation of these statistics. See the section “Cochran-Mantel-Haenszel Statistics” on page 2695
for details.

CMH2
includes the CMH statistics in the output data set, with the exception of the general association statistic.
The CMH2 option in the TABLES statement requests computation of these statistics. See the section
“Cochran-Mantel-Haenszel Statistics” on page 2695 for details.

CMHCOR
includes the Cochran-Mantel-Haenszel correlation statistic in the output data set. The CMH option in
the TABLES statement requests computation of this statistic. See the section “Correlation Statistic” on
page 2697 for details.

CMHGA
includes the Cochran-Mantel-Haenszel general association statistic in the output data set. The CMH
option in the TABLES statement requests computation of this statistic. See the section “General
Association Statistic” on page 2698 for details.

CMHRMS
includes the Cochran-Mantel-Haenszel row mean scores (ANOVA) statistic in the output data set. The
CMH option in the TABLES statement requests computation of this statistic. See the section “ANOVA
(Row Mean Scores) Statistic” on page 2697 for details.

COCHQ
includes Cochran’s Q test in the output data set. The AGREE option in the TABLES statement requests
computation of this test, which is available for multiway 2 � 2 tables. See the section “Cochran’s Q
Test” on page 2694 for details.

CONTGY
includes the contingency coefficient in the output data set. The CHISQ option in the TABLES statement
requests computation of the contingency coefficient. See the section “Contingency Coefficient” on
page 2653 for details.
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CRAMV
includes Cramér’s V in the output data set. The CHISQ option in the TABLES statement requests
computation of Cramér’s V. See the section “Cramér’s V” on page 2653 for details.

EQKAP
includes the test for equal simple kappa coefficients in the output data set. The AGREE option in the
TABLES statement requests computation of this test, which is available for multiway, square (h� r � r)
tables. See the section “Tests for Equal Kappa Coefficients” on page 2694 for details.

EQOR

ZELEN
includes Zelen’s exact test for equal odds ratios in the output data set. The EQOR option in the EXACT
statement requests computation of this test, which is available for multiway 2 � 2 tables. See the
section “Zelen’s Exact Test for Equal Odds Ratios” on page 2701 for details.

EQWKP
includes the test for equal weighted kappa coefficients in the output data set. The AGREE option
in the TABLES statement requests computation of this test. The test for equal weighted kappas is
available for multiway, square (h � r � r) tables where r > 2. See the section “Tests for Equal Kappa
Coefficients” on page 2694 for details.

FISHER
includes Fisher’s exact test in the output data set. For 2 � 2 tables, the CHISQ option in the TABLES
statement provides Fisher’s exact test. For tables larger than 2 � 2, the FISHER option in the EXACT
statement provides Fisher’s exact test. See the section “Fisher’s Exact Test” on page 2651 for details.

GAMMA
includes the gamma statistic in the output data set. The MEASURES option in the TABLES statement
requests computation of the gamma statistic. See the section “Gamma” on page 2655 for details.

GS

GAILSIMON
includes the Gail-Simon test for qualitative interaction in the output data set. The CMH(GAILSIMON)
option in the TABLES statement requests computation of this test. See the section “Gail-Simon Test
for Qualitative Interactions” on page 2704 for details.

JT
includes the Jonckheere-Terpstra test in the output data set. The JT option in the TABLES statement
requests the Jonckheere-Terpstra test. See the section “Jonckheere-Terpstra Test” on page 2689 for
details.

KAPPA
includes the simple kappa coefficient in the output data set. The AGREE option in the TABLES
statement requests computation of kappa, which is available for square tables (where the number of
rows equals the number of columns). For multiway square tables, the KAPPA option also includes
the overall kappa coefficient in the output data set. See the sections “Simple Kappa Coefficient” on
page 2691 and “Overall Kappa Coefficient” on page 2694 for details.
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KENTB
TAUB

includes Kendall’s tau-b in the output data set. The MEASURES option in the TABLES statement
requests computation of Kendall’s tau-b. See the section “Kendall’s Tau-b” on page 2655 for details.

LAMCR
includes the asymmetric lambda �.C jR/ in the output data set. The MEASURES option in the
TABLES statement requests computation of lambda. See the section “Lambda (Asymmetric)” on
page 2660 for details.

LAMDAS
includes the symmetric lambda in the output data set. The MEASURES option in the TABLES
statement requests computation of lambda. See the section “Lambda (Symmetric)” on page 2661 for
details.

LAMRC
includes the asymmetric lambda �.RjC/ in the output data set. The MEASURES option in the
TABLES statement requests computation of lambda. See the section “Lambda (Asymmetric)” on
page 2660 for details.

LGOR
includes the logit estimate of the common odds ratio in the output data set. The CMH option in the
TABLES statement requests computation of this statistic, which is available for 2 � 2 tables. See the
section “Adjusted Odds Ratio and Relative Risk Estimates” on page 2699 for details.

LGRRC1
includes the logit estimate of the common relative risk (column 1) in the output data set. The CMH
option in the TABLES statement requests computation of this statistic, which is available for 2 � 2
tables. See the section “Adjusted Odds Ratio and Relative Risk Estimates” on page 2699 for details.

LGRRC2
includes the logit estimate of the common relative risk (column 2) in the output data set. The CMH
option in the TABLES statement requests computation of this statistic, which is available for 2 � 2
tables. See the section “Adjusted Odds Ratio and Relative Risk Estimates” on page 2699 for details.

LRCHI
includes the likelihood ratio chi-square in the output data set. The CHISQ option in the TABLES
statement requests computation of the likelihood ratio chi-square. See the section “Likelihood Ratio
Chi-Square Test” on page 2650 for details.

MCNEM
includes McNemar’s test (for 2 � 2 tables) in the output data set. The AGREE option in the TABLES
statement requests computation of McNemar’s test. See the section “McNemar’s Test” on page 2691
for details.

MEASURES
includes the following measures of association in the output data set: gamma, Kendall’s tau-b, Stuart’s
tau-c, Somers’ D.C jR/, Somers’ D.RjC/, Pearson and Spearman correlation coefficients, lambda
(symmetric and asymmetric), and uncertainty coefficients (symmetric and asymmetric). For 2�2 tables,
the MEASURES option also includes the odds ratio, column 1 relative risk, and column 2 relative risk.
The MEASURES option in the TABLES statement requests computation of these statistics. See the
section “Measures of Association” on page 2653 for details.
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MHCHI
includes the Mantel-Haenszel chi-square in the output data set. The CHISQ option in the TABLES
statement requests computation of the Mantel-Haenszel chi-square. See the section “Mantel-Haenszel
Chi-Square Test” on page 2651 for details.

MHOR

COMOR
includes the Mantel-Haenszel estimate of the common odds ratio in the output data set. The CMH
option in the TABLES statement requests computation of this statistic, which is available for 2 � 2
tables. See the section “Adjusted Odds Ratio and Relative Risk Estimates” on page 2699 for details.

MHRRC1
includes the Mantel-Haenszel estimate of the common relative risk (column 1) in the output data set.
The CMH option in the TABLES statement requests computation of this statistic, which is available
for 2 � 2 tables. See the section “Adjusted Odds Ratio and Relative Risk Estimates” on page 2699 for
details.

MHRRC2
includes the Mantel-Haenszel estimate of the common relative risk (column 2) in the output data set.
The CMH option in the TABLES statement requests computation of this statistic, which is available
for 2 � 2 tables. See the section “Adjusted Odds Ratio and Relative Risk Estimates” on page 2699 for
details.

N
includes the number of nonmissing observations in the output data set.

NMISS
includes the number of missing observations in the output data set. See the section “Missing Values”
on page 2643 for details about how PROC FREQ handles missing values.

OR

ODDSRATIO

RROR
includes the odds ratio (for 2 � 2 tables) in the output data set. The MEASURES, OR(CL=), and
RELRISK options in the TABLES statement request this statistic. For more information, see the
section “Odds Ratio” on page 2683.

PCHI
includes the Pearson chi-square in the output data set for two-way tables. See the section “Pearson
Chi-Square Test for Two-Way Tables” on page 2649 for details. For one-way tables, the PCHI option
includes the chi-square goodness-of-fit test in the output data set. See the section “Chi-Square Test for
One-Way Tables” on page 2648 for details. The CHISQ option in the TABLES statement requests
computation of these statistics.

If you specify the CHISQ(WARN=OUTPUT) option in the TABLES statement, the PCHI option also
includes the variable WARN_PCHI in the output data set. This variable indicates the validity warning
for the asymptotic Pearson chi-square test.
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PCORR
includes the Pearson correlation coefficient in the output data set. The MEASURES option in the TA-
BLES statement requests computation of the Pearson correlation. See the section “Pearson Correlation
Coefficient” on page 2657 for details.

PHI
includes the phi coefficient in the output data set. The CHISQ option in the TABLES statement requests
computation of the phi coefficient. See the section “Phi Coefficient” on page 2653 for details.

PLCORR
includes the polychoric correlation coefficient in the output data set. For 2 � 2 tables, this statistic
is known as the tetrachoric correlation coefficient. The PLCORR option in the TABLES statement
requests computation of the polychoric correlation. See the section “Polychoric Correlation” on
page 2659 for details.

RDIF1
includes the column 1 risk difference (row 1 – row 2) in the output data set. The RISKDIFF option
in the TABLES statement requests computation of risks and risk differences, which are available for
2 � 2 tables. See the section “Risks and Risk Differences” on page 2671 for details.

RDIF2
includes the column 2 risk difference (row 1 – row 2) in the output data set. The RISKDIFF option
in the TABLES statement requests computation of risks and risk differences, which are available for
2 � 2 tables. See the section “Risks and Risk Differences” on page 2671 for details.

RELRISK
includes the column 1 and column 2 relative risks (for 2 � 2 tables) in the output data set. The
MEASURES and RELRISK options in the TABLES statement request these statistics. For more
information, see the section “Relative Risks” on page 2685.

RISKDIFF
includes risks (binomial proportions) and risk differences for 2 � 2 tables in the output data set. These
statistics include the row 1 risk, row 2 risk, total (overall) risk, and risk difference (row 1 – row 2) for
column 1 and column 2. The RISKDIFF option in the TABLES statement requests computation of
these statistics. See the section “Risks and Risk Differences” on page 2671 for details.

RISKDIFF1
includes column 1 risks (binomial proportions) and risk differences for 2 � 2 tables in the output data
set. These statistics include the row 1 risk, row 2 risk, total (overall) risk, and risk difference (row 1 –
row 2). The RISKDIFF option in the TABLES statement requests computation of these statistics. See
the section “Risks and Risk Differences” on page 2671 for details.

RISKDIFF2
includes column 2 risks (binomial proportions) and risk differences for 2 � 2 tables in the output data
set. These statistics include the row 1 risk, row 2 risk, total (overall) risk, and risk difference (row 1 –
row 2). The RISKDIFF option in the TABLES statement requests computation of these statistics. See
the section “Risks and Risk Differences” on page 2671 for details.
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RRC1

RELRISK1
includes the column 1 relative risk in the output data set. The MEASURES and RELRISK options
in the TABLES statement request relative risks, which are available for 2 � 2 tables. See the section
“Odds Ratio and Relative Risks for 2 x 2 Tables” on page 2683 for details.

RRC2

RELRISK2
includes the column 2 relative risk in the output data set. The MEASURES and RELRISK options
in the TABLES statement request relative risks, which are available for 2 � 2 tables. See the section
“Odds Ratio and Relative Risks for 2 x 2 Tables” on page 2683 for details.

RSK1

RISK1
includes the overall column 1 risk in the output data set. The RISKDIFF option in the TABLES
statement requests computation of risks and risk differences, which are available for 2 � 2 tables. See
the section “Risks and Risk Differences” on page 2671 for details.

RSK11

RISK11
includes the column 1 risk for row 1 in the output data set. The RISKDIFF option in the TABLES
statement requests computation of risks and risk differences, which are available for 2 � 2 tables. See
the section “Risks and Risk Differences” on page 2671 for details.

RSK12

RISK12
includes the column 2 risk for row 1 in the output data set. The RISKDIFF option in the TABLES
statement requests computation of risks and risk differences, which are available for 2 � 2 tables. See
the section “Risks and Risk Differences” on page 2671 for details.

RSK2

RISK2
includes the overall column 2 risk in the output data set. The RISKDIFF option in the TABLES state-
ment requests computation of risks and risk differences. See the section “Risks and Risk Differences”
on page 2671 for details.

RSK21

RISK21
includes the column 1 risk for row 2 in the output data set. The RISKDIFF option in the TABLES
statement requests computation of risks and risk differences, which are available for 2 � 2 tables. See
the section “Risks and Risk Differences” on page 2671 for details.

RSK22

RISK22
includes the column 2 risk for row 2 in the output data set. The RISKDIFF option in the TABLES
statement requests computation of risks and risk differences, which are available for 2 � 2 tables. See
the section “Risks and Risk Differences” on page 2671 for details.
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SCORR
includes the Spearman correlation coefficient in the output data set. The MEASURES option in the
TABLES statement requests computation of the Spearman correlation. See the section “Spearman
Rank Correlation Coefficient” on page 2658 for details.

SMDCR
includes Somers’ D.C jR/ in the output data set. The MEASURES option in the TABLES statement
requests computation of Somers’ D. See the section “Somers’ D” on page 2656 for details.

SMDRC
includes Somers’ D.RjC/ in the output data set. The MEASURES option in the TABLES statement
requests computation of Somers’ D. See the section “Somers’ D” on page 2656 for details.

STUTC
TAUC

includes Stuart’s tau-c in the output data set. The MEASURES option in the TABLES statement
requests computation of tau-c. See the section “Stuart’s Tau-c” on page 2656 for details.

TREND
includes the Cochran-Armitage test for trend in the output data set. The TREND option in the TABLES
statement requests computation of the trend test. This test is available for tables of dimension 2 � C or
R � 2. See the section “Cochran-Armitage Test for Trend” on page 2687 for details.

TSYMM
BOWKER

includes Bowker’s test of symmetry in the output data set. The AGREE option in the TABLES
statement requests computation of Bowker’s test. See the section “Bowker’s Test of Symmetry” on
page 2691 for details.

U
includes the uncertainty coefficient (symmetric) in the output data set. The MEASURES option in the
TABLES statement requests computation of the uncertainty coefficient. See the section “Uncertainty
Coefficient (Symmetric)” on page 2662 for details.

UCR
includes the asymmetric uncertainty coefficient U.C jR/ in the output data set. The MEASURES
option in the TABLES statement requests computation of the uncertainty coefficient. See the section
“Uncertainty Coefficients (Asymmetric)” on page 2662 for details.

URC
includes the asymmetric uncertainty coefficient U.RjC/ in the output data set. The MEASURES
option in the TABLES statement requests computation of the uncertainty coefficient. See the section
“Uncertainty Coefficients (Asymmetric)” on page 2662 for details.

WTKAP
WTKAPPA

includes the weighted kappa coefficient in the output data set. The AGREE option in the TABLES
statement requests computation of weighted kappa, which is available for square tables larger than
2 � 2. For multiway tables, the WTKAP option also includes the overall weighted kappa coefficient in
the output data set. See the sections “Weighted Kappa Coefficient” on page 2692 and “Overall Kappa
Coefficient” on page 2694 for details.
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TABLES Statement
TABLES requests < / options > ;

The TABLES statement requests one-way to n-way frequency and crosstabulation tables and statistics for
those tables.

If you omit the TABLES statement, PROC FREQ generates one-way frequency tables for all data set variables
that are not listed in the other statements.

The following argument is required in the TABLES statement.

requests
specify the frequency and crosstabulation tables to produce. A request is composed of one variable
name or several variable names separated by asterisks. To request a one-way frequency table, use a
single variable. To request a two-way crosstabulation table, use an asterisk between two variables. To
request a multiway table (an n-way table, where n>2), separate the desired variables with asterisks.
The unique values of these variables form the rows, columns, and strata of the table. You can include
up to 50 variables in a single multiway table request.

For two-way to multiway tables, the values of the last variable form the crosstabulation table columns,
while the values of the next-to-last variable form the rows. Each level (or combination of levels) of the
other variables forms one stratum. PROC FREQ produces a separate crosstabulation table for each
stratum. For example, a specification of A*B*C*D in a TABLES statement produces k tables, where k
is the number of different combinations of values for A and B. Each table lists the values for C down
the side and the values for D across the top.

You can use multiple TABLES statements in the PROC FREQ step. PROC FREQ builds all the table
requests in one pass of the data, so that there is essentially no loss of efficiency. You can also specify
any number of table requests in a single TABLES statement. To specify multiple table requests quickly,
use a grouping syntax by placing parentheses around several variables and joining other variables or
variable combinations. For example, the statements shown in Table 40.8 illustrate grouping syntax.

Table 40.8 Grouping Syntax

TABLES Request Equivalent to

A*(B C) A*B A*C
(A B)*(C D) A*C B*C A*D B*D
(A B C)*D A*D B*D C*D
A – – C A B C
(A – – C)*D A*D B*D C*D

The TABLES statement variables are one or more variables from the DATA= input data set. These
variables can be either character or numeric, but the procedure treats them as categorical variables.
PROC FREQ uses the formatted values of the TABLES variable to determine the categorical variable
levels. So if you assign a format to a variable with a FORMAT statement, PROC FREQ formats the
values before dividing observations into the levels of a frequency or crosstabulation table. See the
FORMAT procedure in the Base SAS Procedures Guide and the FORMAT statement and SAS formats
in SAS Formats and Informats: Reference.
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If you use PROC FORMAT to create a user-written format that combines missing and nonmissing
values into one category, PROC FREQ treats the entire category of formatted values as missing. See
the discussion in the section “Grouping with Formats” on page 2642 for more information.

By default, the frequency or crosstabulation table lists the values of both character and numeric
variables in ascending order based on internal (unformatted) variable values. You can change the order
of the values in the table by specifying the ORDER= option in the PROC FREQ statement. To list the
values in ascending order by formatted value, use ORDER=FORMATTED.

Without Options

If you request a one-way frequency table for a variable without specifying options, PROC FREQ produces
frequencies, cumulative frequencies, percentages of the total frequency, and cumulative percentages for
each value of the variable. If you request a two-way or an n-way crosstabulation table without specifying
options, PROC FREQ produces crosstabulation tables that include cell frequencies, cell percentages of
the total frequency, cell percentages of row frequencies, and cell percentages of column frequencies. The
procedure excludes observations with missing values from the table but displays the total frequency of
missing observations below each table.

Options

Table 40.9 lists the options available in the TABLES statement. Descriptions of the options follow in
alphabetical order.

Table 40.9 TABLES Statement Options

Option Description

Control Statistical Analysis
AGREE Requests tests and measures of classification agreement
ALL Requests tests and measures of association produced by the

CHISQ, MEASURES, and CMH options
ALPHA= Sets confidence level for confidence limits
BINOMIAL | BIN Requests binomial proportions, confidence limits, and tests

for one-way tables
CHISQ Requests chi-square tests and measures based on chi-square
CL Requests confidence limits for MEASURES statistics
CMH Requests all Cochran-Mantel-Haenszel statistics
CMH1 Requests CMH correlation statistic, adjusted odds ratios,

and adjusted relative risks
CMH2 Requests CMH correlation and row mean scores (ANOVA)

statistics, adjusted odds ratios, and adjusted relative risks
FISHER Requests Fisher’s exact test for tables larger than 2 � 2
GAILSIMON Requests Gail-Simon test for qualitative interactions
JT Requests Jonckheere-Terpstra test
MEASURES Requests measures of association
MISSING Treats missing values as nonmissing
OR Requests the odds ratio for 2 � 2 tables
PLCORR Requests polychoric correlation
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Table 40.9 continued

Option Description

RELRISK Requests relative risks for 2 � 2 tables
RISKDIFF Requests risks and risk differences for 2 � 2 tables
SCORES= Specifies type of row and column scores
TREND Requests Cochran-Armitage test for trend

Control Additional Table Information
CELLCHI2 Displays cell contributions to the Pearson chi-square statistic
CUMCOL Displays cumulative column percentages
DEVIATION Displays deviations of cell frequencies from expected values
EXPECTED Displays expected cell frequencies
MISSPRINT Displays missing value frequencies
PEARSONRES Displays Pearson residuals in the CROSSLIST table
PRINTKWTS Displays kappa coefficient weights
SCOROUT Displays row and column scores
SPARSE Includes all possible combinations of variable levels in the

LIST table and OUT= data set
STDRES Displays standardized residuals in the CROSSLIST table
TOTPCT Displays percentages of total frequency for n-way tables (n>2)

Control Displayed Output
CONTENTS= Specifies contents label for crosstabulation tables
CROSSLIST Displays crosstabulation tables in ODS column format
FORMAT= Formats frequencies in crosstabulation tables
LIST Displays two-way to n-way tables in list format
MAXLEVELS= Specifies maximum number of levels to display in one-way tables
NOCOL Suppresses display of column percentages
NOCUM Suppresses display of cumulative frequencies and percentages
NOFREQ Suppresses display of frequencies
NOPERCENT Suppresses display of percentages
NOPRINT Suppresses display of crosstabulation tables but displays statistics
NOROW Suppresses display of row percentages
NOSPARSE Suppresses zero frequency levels in the CROSSLIST table,

LIST table, and OUT= data set
NOWARN Suppresses log warning message for the chi-square test

Produce Statistical Graphics
PLOTS= Requests plots from ODS Graphics

Create an Output Data Set
OUT= Names an output data set to contain frequency counts
OUTCUM Includes cumulative frequencies and percentages in the

output data set for one-way tables
OUTEXPECT Includes expected frequencies in the output data set
OUTPCT Includes row, column, and two-way table percentages in the

output data set
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You can specify the following options in a TABLES statement.

AGREE < (options) >
requests tests and measures of classification agreement for square tables. This option provides the
simple and weighted kappa coefficients along with their standard errors and confidence limits. For
multiway tables, the AGREE option also produces the overall simple and weighted kappa coefficients
(along with their standard errors and confidence limits) and tests for equal kappas among strata. For
2 � 2 tables, this option provides McNemar’s test; for square tables that have more than two response
categories (levels), this option provides Bowker’s test of symmetry. For multiway tables that have two
response categories, the AGREE option also produces Cochran’s Q test. For more information, see the
section “Tests and Measures of Agreement” on page 2690.

Measures of agreement can be computed only for square tables, where the number of rows equals the
number of columns. If your table is not square because of observations that have zero weights, you can
specify the ZEROS option in the WEIGHT statement to include these observations in the analysis. For
more information, see the section “Tables with Zero Rows and Columns” on page 2695.

You can set the level for agreement confidence limits by specifying the ALPHA= option in the TABLES
statement. The default of ALPHA=0.05 produces 95% confidence limits.

You can specify the TEST statement to request asymptotic tests for the simple and weighted kappa
coefficients. You can specify the EXACT statement to request McNemar’s exact test (for 2 � 2 tables)
and exact tests for the simple and weighted kappa coefficients. For more information, see the section
“Exact Statistics” on page 2704.

The weighted kappa coefficient is computed by using agreement weights that reflect the relative
agreement between pairs of variable levels. To specify the type of agreement weights and to display
the agreement weights, you can specify the following options:

PRINTKWTS
displays the agreement weights that PROC FREQ uses to compute the weighted kappa coefficient.
Agreement weights reflect the relative agreement between pairs of variable levels. By default,
PROC FREQ uses the Cicchetti-Allison form of agreement weights. If you specify the WT=FC
option, the procedure uses the Fleiss-Cohen form of agreement weights. For more information,
see the section “Weighted Kappa Coefficient” on page 2692.

WT=FC
requests Fleiss-Cohen agreement weights in the weighted kappa computation. By default, PROC
FREQ uses Cicchetti-Allison agreement weights to compute the weighted kappa coefficient.
Agreement weights reflect the relative agreement between pairs of variable levels. For more
information, see the section “Weighted Kappa Coefficient” on page 2692.

ALL
requests all tests and measures that are produced by the CHISQ, MEASURES, and CMH options. You
can control the number of CMH statistics to compute by specifying the CMH1 or CMH2 option.
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ALPHA=˛
specifies the level of confidence limits. The value of ˛ must be between 0 and 1; a confidence level of
˛ produces 100.1�˛/% confidence limits. By default ALPHA=0.05, which produces 95% confidence
limits.

This option applies to confidence limits that you request in the TABLES statement. The ALPHA=
option in the EXACT statement applies to confidence limits for Monte Carlo estimates of exact
p-values, which you request by specifying the MC option in the EXACT statement.

BINOMIAL < (binomial-options) >

BIN < (binomial-options) >
requests the binomial proportion for one-way tables. When you specify this option, by default PROC
FREQ provides the asymptotic standard error, asymptotic Wald and exact (Clopper-Pearson) confidence
limits, and the asymptotic equality test for the binomial proportion.

You can specify binomial-options in parentheses after the BINOMIAL option. The LEVEL= binomial-
option identifies the variable level for which to compute the proportion. If you do not specify this
option, PROC FREQ computes the proportion for the first level that appears in the one-way frequency
table. The P= binomial-option specifies the null proportion for the binomial tests. If you do not specify
this option, PROC FREQ uses 0.5 as the null proportion for the binomial tests.

You can also specify binomial-options to request additional tests and confidence limits for the binomial
proportion. The EQUIV, NONINF, and SUP binomial-options request tests of equivalence, nonin-
feriority, and superiority, respectively. The CL= binomial-option requests confidence limits for the
binomial proportion.

You can specify the level for the binomial confidence limits in the ALPHA= option. By default,
ALPHA=0.05, which produces 95% confidence limits. As part of the noninferiority, superiority, and
equivalence analyses, PROC FREQ provides null-based equivalence limits that have a confidence
coefficient of 100.1 � 2˛/% (Schuirmann 1999). In these analyses, the default of ALPHA=0.05
produces 90% equivalence limits. For more information, see the sections “Noninferiority Test” on
page 2667 and “Equivalence Test” on page 2669.

To request exact tests for the binomial proportion, you can specify the BINOMIAL option in the
EXACT statement. PROC FREQ computes exact p-values for all binomial tests that you request, which
can include noninferiority, superiority, and equivalence tests, in addition to the equality test that the
BINOMIAL option produces by default.

For more information, see the section “Binomial Proportion” on page 2663.

Table 40.10 summarizes the binomial-options.
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Table 40.10 BINOMIAL Options

Option Description

CORRECT Requests continuity correction
LEVEL= Specifies the variable level
OUTLEVEL Includes the level in the output data sets
P= Specifies the null proportion

Request Confidence Limits
CL=AGRESTICOULL | AC Requests Agresti-Coull confidence limits
CL=BLAKER Requests Blaker confidence limits
CL=EXACT | CLOPPERPEARSON Requests exact (Clopper-Pearson) confidence limits
CL=JEFFREYS Requests Jeffreys confidence limits
CL=LIKELIHOODRATIO | LR Requests likelihood ratio confidence limits
CL=LOGIT Requests logit confidence limits
CL=MIDP Requests exact mid-p confidence limits
CL=WALD Requests Wald confidence limits
CL=WILSON | SCORE Requests Wilson (score) confidence limits

Request Tests
EQUIV | EQUIVALENCE Requests an equivalence test
MARGIN= Specifies the test margin
NONINF | NONINFERIORITY Requests a noninferiority test
SUP | SUPERIORITY Requests a superiority test
VAR=NULL | SAMPLE Specifies the test variance

You can specify the following binomial-options:

CL=type | (types)
requests confidence limits for the binomial proportion. You can specify one or more types of
confidence limits. When you specify only one type, you can omit the parentheses around the
request. PROC FREQ displays the confidence limits in the “Binomial Confidence Limits” table.

The ALPHA= option determines the level of the confidence limits that the CL= binomial-option
provides. By default, ALPHA=0.05, which produces 95% confidence limits for the binomial
proportion.

You can specify the CL= binomial-option with or without requests for binomial tests. The
confidence limits that CL= produces do not depend on the tests that you request and do not use
the value of the test margin (which you can specify in the MARGIN= binomial-option).
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If you do not specify the CL= binomial-option, the BINOMIAL option displays Wald and exact
(Clopper-Pearson) confidence limits in the “Binomial Proportion” table.

You can specify the following types:

AGRESTICOULL

AC
requests Agresti-Coull confidence limits for the binomial proportion. For more information,
see the section “Agresti-Coull Confidence Limits” on page 2664.

BLAKER
requests Blaker confidence limits for the binomial proportion. For more information, see the
section “Blaker Confidence Limits” on page 2664.

EXACT

CLOPPERPEARSON
requests exact (Clopper-Pearson) confidence limits for the binomial proportion. For more
information, see the section “Exact (Clopper-Pearson) Confidence Limits” on page 2663.

If you do not specify the CL= binomial-option, PROC FREQ displays Wald and exact
(Clopper-Pearson) confidence limits in the “Binomial Proportion” table. To request exact
tests for the binomial proportion, you can specify the BINOMIAL option in the EXACT
statement.

JEFFREYS
requests Jeffreys confidence limits for the binomial proportion. For more information, see
the section “Jeffreys Confidence Limits” on page 2665.

LIKELIHOODRATIO

LR
requests likelihood ratio confidence limits for the binomial proportion. For more information,
see the section “Likelihood Ratio Confidence Limits” on page 2665.

LOGIT
requests logit confidence limits for the binomial proportion. For more information, see the
section “Logit Confidence Limits” on page 2665.

MIDP
requests exact mid-p confidence limits for the binomial proportion. For more information,
see the section “Mid-p Confidence Limits” on page 2665.

WALD < (CORRECT) >
requests Wald confidence limits for the binomial proportion. For more information, see the
section “Wald Confidence Limits” on page 2663.

If you specify CL=WALD(CORRECT), the Wald confidence limits include a continuity
correction. If you specify the CORRECT binomial-option, both the Wald confidence limits
and the Wald tests include continuity corrections.

If you do not specify the CL= binomial-option, PROC FREQ displays Wald and exact
(Clopper-Pearson) confidence limits in the “Binomial Proportion” table.
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WILSON < (CORRECT) >

SCORE < (CORRECT) >
requests Wilson confidence limits for the binomial proportion. These are also known as
score confidence limits. For more information, see the section “Wilson (Score) Confidence
Limits” on page 2666.

If you specify CL=WILSON(CORRECT) or the CORRECT binomial-option, the Wilson
confidence limits include a continuity correction.

CORRECT
includes a continuity correction in the Wald confidence limits, Wald tests, and Wilson confidence
limits.

You can request continuity corrections individually for Wald or Wilson confidence limits by spec-
ifying the CL=WALD(CORRECT) or CL=WILSON(CORRECT) binomial-option, respectively.

EQUIV

EQUIVALENCE
requests a test of equivalence for the binomial proportion. For more information, see the
section “Equivalence Test” on page 2669. You can specify the equivalence test margins, the null
proportion, and the variance type in the MARGIN=, P=, and VAR= binomial-options, respectively.
To request an exact equivalence test, you can specify the BINOMIAL option in the EXACT
statement.

LEVEL=level-number | ‘level-value’
specifies the variable level for the binomial proportion. You can specify the level-number , which
is the order in which the level appears in the one-way frequency table. Or you can specify the
level-value, which is the formatted value of the variable level. The level-number must be a
positive integer. You must enclose the level-value in single quotes.

By default, PROC FREQ computes the binomial proportion for the first variable level that appears
in the one-way frequency table.

MARGIN=value | (lower , upper )
specifies the margin for the noninferiority, superiority, and equivalence tests, which you can
request by specifying the NONINF, SUP, and EQUIV binomial-options, respectively. By default,
MARGIN=0.2.

For noninferiority and superiority tests, specify a single value in the MARGIN= option. The
MARGIN= value must be a positive number. You can specify value as a number between 0 and 1.
Or you can specify value in percentage form as a number between 1 and 100, and PROC FREQ
converts that number to a proportion. PROC FREQ treats the value 1 as 1%.

For noninferiority and superiority tests, the test limits must be between 0 and 1. The limits are
determined by the null proportion value (which you can specify in the P= binomial-option) and
by the margin value. The noninferiority limit is the null proportion minus the margin. By default,
the null proportion is 0.5 and the margin is 0.2, which produces a noninferiority limit of 0.3. The
superiority limit is the null proportion plus the margin, which is 0.7 by default.

For an equivalence test, you can specify a single MARGIN= value, or you can specify both lower
and upper values. If you specify a single MARGIN= value, it must be a positive number, as
described previously. If you specify a single MARGIN= value for an equivalence test, PROC
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FREQ uses –value as the lower margin and value as the upper margin for the test. If you specify
both lower and upper values for an equivalence test, you can specify them in proportion form as
numbers between –1 or 1. Or you can specify them in percentage form as numbers between –100
and 100, and PROC FREQ converts the numbers to proportions. The value of lower must be less
than the value of upper .

The equivalence limits must be between 0 and 1. The equivalence limits are determined by the
null proportion value (which you can specify in the P= binomial-option) and by the margin values.
The lower equivalence limit is the null proportion plus the lower margin. By default, the null
proportion is 0.5 and the lower margin is –0.2, which produces a lower equivalence limit of 0.3.
The upper equivalence limit is the null proportion plus the upper margin, which is 0.7 by default.

For more information, see the sections “Noninferiority Test” on page 2667 and “Equivalence
Test” on page 2669.

NONINF

NONINFERIORITY
requests a test of noninferiority for the binomial proportion. For more information, see the section
“Noninferiority Test” on page 2667. You can specify the noninferiority test margin, the null
proportion, and the variance type in the MARGIN=, P=, and VAR= binomial-options, respectively.
To request an exact noninferiority test, you can specify the BINOMIAL option in the EXACT
statement.

OUTLEVEL
includes the variables LevelNumber and LevelValue in all ODS output data sets that PROC FREQ
produces when you specify the BINOMIAL option in the TABLES statement. The OUTLEVEL
option also includes the variables LevelNumber and LevelValue in the statistics output data set
that PROC FREQ produces when you specify the BINOMIAL option in the OUTPUT statement.

The LevelNumber and LevelValue variables identify the analysis variable level for which PROC
FREQ computes the binomial proportion. The value of LevelNumber is the order of the level in
the one-way frequency table. The value of LevelValue is the formatted value of the level. You
can specify the OUTLEVEL binomial-option with or without the LEVEL= binomial-option.

P=value
specifies the null hypothesis proportion for the binomial tests. The null proportion value must be
a positive number. You can specify value as a number between 0 and 1. Or you can specify value
in percentage form (as a number between 1 and 100), and PROC FREQ converts that number to
a proportion. PROC FREQ treats the value 1 as 1%. By default, P=0.5.

SUP

SUPERIORITY
requests a test of superiority for the binomial proportion. For more information, see the section
“Superiority Test” on page 2669. You can specify the superiority test margin, the null proportion,
and the variance type in the MARGIN=, P=, and VAR= binomial-options, respectively. To request
an exact superiority test, you can specify the BINOMIAL option in the EXACT statement.

VAR=NULL | SAMPLE
specifies the type of variance to use in the Wald tests of noninferiority, superiority, and equivalence.
If you specify VAR=SAMPLE, PROC FREQ computes the variance estimate by using the sample
proportion. If you specify VAR=NULL, PROC FREQ computes a test-based variance by using
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the null hypothesis proportion (which you can specify in the P= binomial-option). For more
information, see the sections “Noninferiority Test” on page 2667 and “Equivalence Test” on
page 2669. The default is VAR=SAMPLE.

CELLCHI2
displays each table cell’s contribution to the Pearson chi-square statistic in the crosstabulation table.
The cell chi-square is computed as .frequency � expected/2=expected, where frequency is the table
cell frequency (count) and expected is the expected cell frequency, which is computed under the null
hypothesis that the row and column variables are independent. For more information, see the section
“Pearson Chi-Square Test for Two-Way Tables” on page 2649. This option has no effect for one-way
tables or for tables that are displayed in list format (which you can request by specifying the LIST
option).

CHISQ < (chisq-options) >
requests chi-square tests of homogeneity or independence and measures of association that are based
on the chi-square statistic. For two-way tables, the chi-square tests include the Pearson chi-square,
likelihood ratio chi-square, and Mantel-Haenszel chi-square tests. The chi-square measures include
the phi coefficient, contingency coefficient, and Cramér’s V. For 2 � 2 tables, the CHISQ option also
provides Fisher’s exact test and the continuity-adjusted chi-square test. See the section “Chi-Square
Tests and Statistics” on page 2648 for details.

For one-way tables, the CHISQ option provides the Pearson chi-square goodness-of-fit test. You
can also request the likelihood ratio goodness-of-fit test for one-way tables by specifying the LRCHI
chisq-option in parentheses after the CHISQ option. By default, the one-way chi-square tests are
based on the null hypothesis of equal proportions. Alternatively, you can provide null hypothesis
proportions or frequencies by specifying the TESTP= or TESTF= chisq-option, respectively. See the
section “Chi-Square Test for One-Way Tables” on page 2648 for more information.

To request Fisher’s exact test for tables larger than 2 � 2, specify the FISHER option in the EXACT
statement. Exact p-values are also available for the Pearson, likelihood ratio, and Mantel-Haenszel
chi-square tests. See the description of the EXACT statement for more information.

You can specify the following chisq-options:

DF=df
specifies the degrees of freedom for the chi-square tests. The value of df must not be zero. If the
value of df is positive, PROC FREQ uses df as the degrees of freedom for the chi-square tests. If
the value of df is negative, PROC FREQ uses df to adjust the default degrees of freedom for the
chi-square tests.

By default for one-way tables, the value of df is (n – 1), where n is the number of variable levels
in the table. By default for two-way tables, the value of df is (r – 1) (c – 1), where r is the
number of rows in the table and c is the number of columns. See the sections “Chi-Square Test
for One-Way Tables” on page 2648 and “Chi-Square Tests and Statistics” on page 2648 for more
information.

If you specify a negative value of df , PROC FREQ adjusts the default degrees of freedom by
adding the (negative) value of df to the default value to produce the adjusted degrees of freedom.
The adjusted degrees of freedom must be positive.



2608 F Chapter 40: The FREQ Procedure

The DF= chisq-option specifies or adjusts the degrees of freedom for the following chi-square
tests: the Pearson and likelihood ratio goodness-of-fit tests for one-way tables; and the Pearson,
likelihood ratio, and Mantel-Haenszel chi-square tests for two-way tables.

LRCHI
requests the likelihood ratio goodness-of-fit test for one-way tables. See the section “Likelihood
Ratio Chi-Square Test for One-Way Tables” on page 2650 for more information.

By default, this test is based on the null hypothesis of equal proportions. You can provide
null hypothesis proportions or frequencies by specifying the TESTP= or TESTF= chisq-option,
respectively. You can request an exact likelihood ratio goodness-of-fit test by specifying the
LRCHI option in the EXACT statement.

TESTF=(values)| SAS-data-set
specifies null hypothesis frequencies for the one-way chi-square goodness-of-fit tests. See the
section “Chi-Square Test for One-Way Tables” on page 2648 for details. You can list the null
frequencies as values in parentheses after TESTF=. Or you can provide the null frequencies in a
secondary input data set by specifying TESTF=SAS-data-set . The TESTF=SAS-data-set cannot
be the same data set that you specify in the DATA= option. You can specify only one TESTF= or
TESTP= data set in a single invocation of the procedure.

If you list the null frequencies as values, you can separate the values with blanks or commas.
The values must be positive numbers. The number of values must equal the number of variable
levels in the one-way table. The sum of the values must equal the total frequency for the one-way
table. Order the values to match the order in which the corresponding variable levels appear in
the one-way frequency table.

If you provide the null frequencies in a secondary input data set (TESTF=SAS-data-set), the vari-
able that contains the null frequencies should be named _TESTF_, TestFrequency, or Frequency.
The null frequencies must be positive numbers. The number of frequencies must equal the
number of levels in the one-way frequency table, and the sum of the frequencies must equal the
total frequency for the one-way table. Order the null frequencies in the data set to match the
order in which the corresponding variable levels appear in the one-way frequency table.

TESTP=(values)| SAS-data-set
specifies null hypothesis proportions for the one-way chi-square goodness-of-fit tests. See the
section “Chi-Square Test for One-Way Tables” on page 2648 for details. You can list the null
proportions as values in parentheses after TESTP=. Or you can provide the null proportions in a
secondary input data set by specifying TESTP=SAS-data-set . The TESTP=SAS-data-set cannot
be the same data set that you specify in the DATA= option. You can specify only one TESTF= or
TESTP= data set in a single invocation of the procedure.

If you list the null proportions as values, you can separate the values with blanks or commas.
The values must be positive numbers. The number of values must equal the number of variable
levels in the one-way table. Order the values to match the order in which the corresponding
variable levels appear in the one-way frequency table. You can specify values in probability
form as numbers between 0 and 1, where the proportions sum to 1. Or you can specify values in
percentage form as numbers between 0 and 100, where the percentages sum to 100.

If you provide the null proportions in a secondary input data set (TESTP=SAS-data-set), the
variable that contains the null proportions should be named _TESTP_, TestPercent, or Percent.
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The null proportions must be positive numbers. The number of proportions must equal the
number of levels in the one-way frequency table. You can provide the proportions in probability
form as numbers between 0 and 1, where the proportions sum to 1. Or you can provide the
proportions in percentage form as numbers between 0 and 100, where the percentages sum to
100. Order the null proportions in the data set to match the order in which the corresponding
variable levels appear in the one-way frequency table.

WARN=type | (types)
controls the warning message for the validity of the asymptotic Pearson chi-square test. By
default, PROC FREQ displays a warning message when more than 20% of the table cells have
expected frequencies that are less than 5. If you specify the NOPRINT option in the PROC FREQ
statement, the procedure displays the warning in the log; otherwise, the procedure displays the
warning as a footnote in the chi-square table. You can use the WARN= option to suppress the
warning and to include a warning indicator in the output data set.

You can specify one or more of the following types in the WARN= option. If you specify
more than one type value, enclose the values in parentheses after WARN=. For example,
warn = (output noprint).

Value of WARN= Description

OUTPUT Adds a warning indicator variable to the output data set
NOLOG Suppresses the chi-square warning message in the log
NOPRINT Suppresses the chi-square warning message in the display
NONE Suppresses the chi-square warning message entirely

If you specify the WARN=OUTPUT option, the ODS output data set ChiSq contains a variable
named Warning that equals 1 for the Pearson chi-square observation when more than 20% of the
table cells have expected frequencies that are less than 5 and equals 0 otherwise. If you specify
WARN=OUTPUT and also specify the CHISQ option in the OUTPUT statement, the statistics
output data set contains a variable named WARN_PCHI that indicates the warning.

The WARN=NOLOG option has the same effect as the NOWARN option in the TABLES
statement.

CL
requests confidence limits for the measures of association, which you can request by specifying the
MEASURES option. For more information, see the sections “Measures of Association” on page 2653
and “Confidence Limits” on page 2654. You can set the level of the confidence limits by using the
ALPHA= option. The default of ALPHA=0.05 produces 95% confidence limits.

If you omit the MEASURES option, the CL option invokes MEASURES. The CL option is equivalent
to the MEASURES(CL) option.

CMH < (cmh-options) >
requests Cochran-Mantel-Haenszel statistics, which test for association between the row and column
variables after adjusting for the remaining variables in a multiway table. The Cochran-Mantel-Haenszel
statistics include the nonzero correlation statistic, the row mean scores (ANOVA) statistic, and the
general association statistic. In addition, for 2 � 2 tables, the CMH option provides the adjusted
Mantel-Haenszel and logit estimates of the odds ratio and relative risks, together with their confidence
limits. For stratified 2 � 2 tables, the CMH option provides the Breslow-Day test for homogeneity of
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odds ratios. (To request Tarone’s adjustment for the Breslow-Day test, specify the BDT cmh-option.)
See the section “Cochran-Mantel-Haenszel Statistics” on page 2695 for details.

You can use the CMH1 or CMH2 option to control the number of CMH statistics that PROC FREQ
computes.

For stratified 2 � 2 tables, you can request Zelen’s exact test for equal odds ratios by specifying the
EQOR option in the EXACT statement. See the section “Zelen’s Exact Test for Equal Odds Ratios” on
page 2701 for details. You can request exact confidence limits for the common odds ratio by specifying
the COMOR option in the EXACT statement. This option also provides a common odds ratio test. See
the section “Exact Confidence Limits for the Common Odds Ratio” on page 2701 for details.

You can specify the following cmh-options in parentheses after the CMH option. These cmh-options,
which apply to stratified 2 � 2 tables, are also available with the CMH1 or CMH2 option.

BDT
requests Tarone’s adjustment in the Breslow-Day test for homogeneity of odds ratios. See the
section “Breslow-Day Test for Homogeneity of the Odds Ratios” on page 2701 for details.

GAILSIMON < (COLUMN=1 | 2) >

GS < (COLUMN=1 | 2) >
requests the Gail-Simon test for qualitative interaction, which applies to stratified 2 � 2 tables.
See the section “Gail-Simon Test for Qualitative Interactions” on page 2704 for details.

The COLUMN= option specifies the column of the risk differences to use in computing the Gail-
Simon test. By default, PROC FREQ uses column 1 risk differences. If you specify COLUMN=2,
PROC FREQ uses column 2 risk differences.

The GAILSIMON cmh-option has the same effect as the GAILSIMON option in the TABLES
statement.

MANTELFLEISS

MF
requests the Mantel-Fleiss criterion for the Mantel-Haenszel statistic for stratified 2 � 2 tables.
See the section “Mantel-Fleiss Criterion” on page 2698 for details.

CMH1 < (cmh-options) >
requests the Cochran-Mantel-Haenszel correlation statistic. This option does not provide the CMH row
mean scores (ANOVA) statistic or the general association statistic, which are provided by the CMH
option. For tables larger than 2 � 2, the CMH1 option requires less memory than the CMH option,
which can require an enormous amount of memory for large tables.

For 2 � 2 tables, the CMH1 option also provides the adjusted Mantel-Haenszel and logit estimates of
the odds ratio and relative risks, together with their confidence limits. For stratified 2 � 2 tables, the
CMH1 option provides the Breslow-Day test for homogeneity of odds ratios.

The cmh-options for CMH1 are the same as the cmh-options that are available with the CMH option.
See the description of the CMH option for details.

CMH2 < (cmh-options) >
requests the Cochran-Mantel-Haenszel correlation statistic and the row mean scores (ANOVA) statistic.
This option does not provide the CMH general association statistic, which is provided by the CMH
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option. For tables larger than 2 � 2, the CMH2 option requires less memory than the CMH option,
which can require an enormous amount of memory for large tables.

For 2 � 2 tables, the CMH1 option also provides the adjusted Mantel-Haenszel and logit estimates of
the odds ratio and relative risks, together with their confidence limits. For stratified 2 � 2 tables, the
CMH1 option provides the Breslow-Day test for homogeneity of odds ratios.

The cmh-options for CMH2 are the same as the cmh-options that are available with the CMH option.
See the description of the CMH option for details.

CONTENTS=‘string’
specifies the label to use for crosstabulation tables in the contents file, the Results window, and the
trace record. For information about output presentation, see the SAS Output Delivery System: User’s
Guide.

If you omit the CONTENTS= option, the contents label for crosstabulation tables is “Cross-Tabular
Freq Table” by default.

Note that contents labels for all crosstabulation tables that are produced by a single TABLES statement
use the same text. To specify different contents labels for different crosstabulation tables, request the
tables in separate TABLES statements and use the CONTENTS= option in each TABLES statement.

To remove the crosstabulation table entry from the contents file, you can specify a null label with
CONTENTS=‘’ .

The CONTENTS= option affects only contents labels for crosstabulation tables. It does not affect
contents labels for other PROC FREQ tables.

To specify the contents label for any PROC FREQ table, you can use PROC TEMPLATE to create
a customized table template. The CONTENTS_LABEL attribute in the DEFINE TABLE statement
of PROC TEMPLATE specifies the contents label for the table. See the chapter “The TEMPLATE
Procedure” in the SAS Output Delivery System: User’s Guide for more information.

CROSSLIST < (options) >
displays crosstabulation tables by using an ODS column format instead of the default crosstabulation
cell format. In the CROSSLIST table display, the rows correspond to the crosstabulation table cells, and
the columns correspond to descriptive statistics such as frequencies and percentages. The CROSSLIST
table displays the same information as the default crosstabulation table (but it uses an ODS column
format). For more information about the contents of the CROSSLIST table, See the section “Two-Way
and Multiway Tables” on page 2714.

You can control the contents of a CROSSLIST table by specifying the same options available for the
default crosstabulation table. These include the NOFREQ, NOPERCENT, NOROW, and NOCOL
options. You can request additional information in a CROSSLIST table by specifying the CELLCHI2,
DEVIATION, EXPECTED, MISSPRINT, and TOTPCT options. You can also display standardized
residuals or Pearson residuals in a CROSSLIST table by specifying the CROSSLIST(STDRES) or
CROSSLIST(PEARSONRES) option, respectively; these options are not available for the default
crosstabulation table. The FORMAT= and CUMCOL options have no effect on CROSSLIST tables.
You cannot specify both the LIST option and the CROSSLIST option in the same TABLES statement.

For CROSSLIST tables, you can use the NOSPARSE option to suppress display of variable levels that
have zero frequencies. By default, PROC FREQ displays all levels of the column variable within each
level of the row variable, including any levels that have zero frequencies. By default for multiway
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tables that are displayed as CROSSLIST tables, the procedure displays all levels of the row variable
for each stratum of the table, including any row levels with zero frequencies in the stratum.

You can specify the following options:

STDRES
displays the standardized residuals of the table cells in the CROSSLIST table. The standardized
residual is the ratio of (frequency – expected) to its standard error, where frequency is the table
cell frequency (count) and expected is the expected table cell frequency, which is computed under
the null hypothesis that the row and column variables are independent. For more information, see
the section “Standardized Residuals” on page 2649. You can display the expected values and
deviations by specifying the EXPECTED and DEVIATION options, respectively.

PEARSONRES
displays the Pearson residuals of the table cells in the CROSSLIST table. The Pearson residual is
the square root of the table cell’s contribution to the Pearson chi-square statistic. The Pearson
residual is computed as .frequency � expected/=

p
expected, where frequency is the table cell

frequency (count) and expected is the expected table cell frequency, which is computed under the
null hypothesis that the row and column variables are independent. For more information, see
the section “Pearson Chi-Square Test for Two-Way Tables” on page 2649. You can display the
expected values, deviations, and cell chi-squares by specifying the EXPECTED, DEVIATION,
and CELLCHI2 options, respectively.

CUMCOL
displays the cumulative column percentages in the cells of the crosstabulation table. The CUMCOL
option does not apply to crosstabulation tables produced with the LIST or CROSSLIST option.

DEVIATION
displays the deviations of the frequencies from the expected frequencies (frequency – expected) in the
crosstabulation table. The expected frequencies are computed under the null hypothesis that the row
and column variables are independent. For more information, see the section “Pearson Chi-Square
Test for Two-Way Tables” on page 2649. You can display the expected values by specifying the
EXPECTED option. This option has no effect for one-way tables or for tables that are displayed in list
format (which you can request by specifying the LIST option).

EXPECTED
displays the expected cell frequencies in the crosstabulation table. The expected frequencies are
computed under the null hypothesis that the row and column variables are independent. For more
information, see the section “Pearson Chi-Square Test for Two-Way Tables” on page 2649. This option
has no effect for one-way tables or for tables that are displayed in list format (which you can request
by specifying the LIST option).

FISHER
requests Fisher’s exact test for tables that are larger than 2 � 2. (For 2 � 2 tables, the CHISQ option
provides Fisher’s exact test.) This test is also known as the Freeman-Halton test. See the sections
“Fisher’s Exact Test” on page 2651 and “Exact Statistics” on page 2704 for more information.

If you omit the CHISQ option in the TABLES statement, the FISHER option invokes CHISQ. You can
also request Fisher’s exact test by specifying the FISHER option in the EXACT statement.

NOTE: PROC FREQ computes exact tests by using fast and efficient algorithms that are superior to
direct enumeration. Exact tests are appropriate when a data set is small, sparse, skewed, or heavily
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tied. For some large problems, computation of exact tests might require a substantial amount of time
and memory. Consider using asymptotic tests for such problems. Alternatively, when asymptotic
methods might not be sufficient for such large problems, consider using Monte Carlo estimation of
exact p-values. You can request Monte Carlo estimation by specifying the MC computation-option in
the EXACT statement. See the section “Computational Resources” on page 2707 for more information.

FORMAT=format-name
specifies a format for the following crosstabulation table cell values: frequency, expected frequency,
and deviation. PROC FREQ also uses the specified format to display the row and column total
frequencies and the overall total frequency in crosstabulation tables.

You can specify any standard SAS numeric format or a numeric format defined with the FORMAT
procedure. The format length must not exceed 24. If you omit the FORMAT= option, by default PROC
FREQ uses the BEST6. format to display frequencies less than 1E6, and the BEST7. format otherwise.

The FORMAT= option applies only to crosstabulation tables displayed in the default format. It does
not apply to crosstabulation tables produced with the LIST or CROSSLIST option.

To change display formats in any FREQ table, you can use PROC TEMPLATE. See the chapter “The
TEMPLATE Procedure” in the SAS Output Delivery System: User’s Guide for more information.

GAILSIMON < (COLUMN=1 | 2) >

GS < (COLUMN=1 | 2) >
requests the Gail-Simon test for qualitative interaction, which applies to stratified 2 � 2 tables. See the
section “Gail-Simon Test for Qualitative Interactions” on page 2704 for details.

The COLUMN= option specifies the column of the risk differences to use in computing the Gail-Simon
test. By default, PROC FREQ uses column 1 risk differences. If you specify COLUMN=2, PROC
FREQ uses column 2 risk differences.

JT
requests the Jonckheere-Terpstra test. See the section “Jonckheere-Terpstra Test” on page 2689 for
details. To request exact p-values for the Jonckheere-Terpstra test, specify the JT option in the EXACT
statement. See the section “Exact Statistics” on page 2704 for more information.

LIST
displays two-way and multiway tables by using a list format instead of the default crosstabulation cell
format. This option displays an entire multiway table in one table, instead of displaying a separate
two-way table for each stratum. For more information, see the section “Two-Way and Multiway Tables”
on page 2714.

The LIST option is not available when you request tests and statistics; you must use the standard
crosstabulation table display or the CROSSLIST display when you request tests and statistics.

MAXLEVELS=n
specifies the maximum number of variable levels to display in one-way frequency tables. The value of
n must be a positive integer. PROC FREQ displays the first n variable levels, matching the order in
which the levels appear in the one-way frequency table. (The ORDER= option controls the order of
the variable levels. By default, ORDER=INTERNAL, which orders the variable levels by unformatted
value.)

The MAXLEVELS= option also applies to one-way frequency plots, which you can request by
specifying the PLOTS=FREQPLOT option when ODS Graphics is enabled.
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If you specify the MISSPRINT option to display missing levels in the frequency table, the
MAXLEVELS= option displays the first n nonmissing levels.

The MAXLEVELS= option does not apply to the OUT= output data set, which includes all variable
levels. The MAXLEVELS= option does not affect the computation of percentages, statistics, or tests
for the one-way table; these values are based on the complete table.

MEASURES < (CL) >
requests measures of association and their asymptotic standard errors. This option provides the
following measures: gamma, Kendall’s tau-b, Stuart’s tau-c, Somers’ D.C jR/, Somers’ D.RjC/,
Pearson and Spearman correlation coefficients, lambda (symmetric and asymmetric), and uncertainty
coefficients (symmetric and asymmetric). If you specify the CL option in parentheses after the
MEASURES option, PROC FREQ provides confidence limits for the measures of association. For
more information, see the section “Measures of Association” on page 2653.

For 2� 2 tables, the MEASURES option also provides the odds ratio, column 1 relative risk, column 2
relative risk, and their asymptotic Wald confidence limits. You can request the odds ratio and relative
risks separately (without the other measures of association) by specifying the RELRISK option. You
can request confidence limits for the odds ratio by specifying the OR(CL=) option.

You can use the TEST statement to request asymptotic tests for the following measures of association:
gamma, Kendall’s tau-b, Stuart’s tau-c, Somers’ D.C jR/, Somers’ D.RjC/, and Pearson and Spear-
man correlation coefficients. You can use the EXACT statement to request exact confidence limits
for the odds ratio, exact unconditional confidence limits for the relative risks, and exact tests for the
following measures of association: Kendall’s tau-b, Stuart’s tau-c, Somers’ D.C jR/ and D.RjC/, and
Pearson and Spearman correlation coefficients. For more information, see the descriptions of the TEST
and EXACT statements and the section “Exact Statistics” on page 2704.

MISSING
treats missing values as a valid nonmissing level for all TABLES variables. The MISSING option
displays the missing levels in frequency and crosstabulation tables and includes them in all calculations
of percentages, tests, and measures.

By default, if you do not specify the MISSING or MISSPRINT option, an observation is excluded from
a table if it has a missing value for any of the variables in the TABLES request. When PROC FREQ
excludes observations with missing values, it displays the total frequency of missing observations
below the table. See the section “Missing Values” on page 2643 for more information.

MISSPRINT
displays missing value frequencies in frequency and crosstabulation tables but does not include the
missing value frequencies in any computations of percentages, tests, or measures.

By default, if you do not specify the MISSING or MISSPRINT option, an observation is excluded from
a table if it has a missing value for any of the variables in the TABLES request. When PROC FREQ
excludes observations with missing values, it displays the total frequency of missing observations
below the table. See the section “Missing Values” on page 2643 for more information.

NOCOL
suppresses the display of column percentages in crosstabulation table cells.
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NOCUM
suppresses the display of cumulative frequencies and percentages in one-way frequency tables. The
NOCUM option also suppresses the display of cumulative frequencies and percentages in crosstabula-
tion tables in list format, which you request with the LIST option.

NOFREQ
suppresses the display of cell frequencies in crosstabulation tables. The NOFREQ option also sup-
presses row total frequencies. This option has no effect for one-way tables or for crosstabulation tables
in list format, which you request with the LIST option.

NOPERCENT
suppresses the display of overall percentages in crosstabulation tables. These percentages include the
cell percentages of the total (two-way) table frequency, as well as the row and column percentages of
the total table frequency. To suppress the display of cell percentages of row or column totals, use the
NOROW or NOCOL option, respectively.

For one-way frequency tables and crosstabulation tables in list format, the NOPERCENT option
suppresses the display of percentages and cumulative percentages.

NOPRINT
suppresses the display of frequency and crosstabulation tables but displays all requested tests and
statistics. To suppress the display of all output, including tests and statistics, use the NOPRINT option
in the PROC FREQ statement.

NOROW
suppresses the display of row percentages in crosstabulation table cells.

NOSPARSE
suppresses the display of cells with a zero frequency count in LIST output and omits them from
the OUT= data set. The NOSPARSE option applies when you specify the ZEROS option in the
WEIGHT statement to include observations with zero weights. By default, the ZEROS option invokes
the SPARSE option, which displays table cells with a zero frequency count in the LIST output and
includes them in the OUT= data set. See the description of the ZEROS option for more information.

The NOSPARSE option also suppresses the display of variable levels with zero frequency in
CROSSLIST tables. By default for CROSSLIST tables, PROC FREQ displays all levels of the
column variable within each level of the row variable, including any column variable levels with zero
frequency for that row. For multiway tables displayed with the CROSSLIST option, the procedure
displays all levels of the row variable for each stratum of the table by default, including any row
variable levels with zero frequency for the stratum.

NOWARN
suppresses the log warning message for the validity of the asymptotic Pearson chi-square test. By
default, PROC FREQ provides a validity warning for the asymptotic Pearson chi-square test when
more than 20cells have expected frequencies that are less than 5. This warning message appears in the
log if you specify the NOPRINT option in the PROC FREQ statement,

The NOWARN option is equivalent to the CHISQ(WARN=NOLOG) option. You can also use the
CHISQ(WARN=) option to suppress the warning message in the display and to request a warning
variable in the chi-square ODS output data set or in the OUTPUT data set.
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OR(CL=type | (types))

ODDSRATIO(CL=type | (types))
requests the odds ratio and confidence limits for 2 � 2 tables. You can specify one or more types of
confidence limits, which include exact, score, and Wald confidence limits. When you specify only one
confidence limit type, you can omit the parentheses around the request.

PROC FREQ displays the confidence limits in the “Odds Ratio Confidence Limits” table. Specifying
the OR option without the CL= option is equivalent to specifying the RELRISK option, which produces
the “Odds Ratio and Relative Risks” table. For more information, see the description of the RELRISK
option. When you specify the OR(CL=) option, PROC FREQ does not produce the “Odds Ratio and
Relative Risks” table unless you also specify the RELRISK or MEASURES option.

The ALPHA= option determines the confidence level; by default, ALPHA=0.05, which produces 95%
confidence limits for the odds ratio.

You can specify the following types:

EXACT
displays exact confidence limits for the odds ratio in the “Confidence Limits for the Odds Ratio”
table. You must also request computation of the exact confidence limits by specifying the OR
option in the EXACT statement. For more information, see the section “Exact Confidence Limits
for the Odds Ratio” on page 2684.

SCORE < (CORRECT=NO) >
requests score confidence limits for the odds ratio. For more information, see the section “Score
Confidence Limits for the Odds Ratio” on page 2684. If you specify CORRECT=NO, PROC
FREQ provides the uncorrected form of the confidence limits.

WALD
requests asymptotic Wald confidence limits for the odds ratio. For more information, see the
section “Odds Ratio and Relative Risks for 2 x 2 Tables” on page 2683.

OUT=SAS-data-set
names an output data set that contains frequency or crosstabulation table counts and percentages. If
more than one table request appears in the TABLES statement, the contents of the OUT= data set
correspond to the last table request in the TABLES statement. The OUT= data set variable COUNT
contains the frequencies and the variable PERCENT contains the percentages. See the section “Output
Data Sets” on page 2709 for details. You can specify the following options to include additional
information in the OUT= data set: OUTCUM, OUTEXPECT, and OUTPCT.

OUTCUM
includes cumulative frequencies and cumulative percentages in the OUT= data set for one-way tables.
The variable CUM_FREQ contains the cumulative frequencies, and the variable CUM_PCT contains the
cumulative percentages. See the section “Output Data Sets” on page 2709 for details. The OUTCUM
option has no effect for two-way or multiway tables.
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OUTEXPECT
includes expected cell frequencies in the OUT= data set for crosstabulation tables. The variable
EXPECTED contains the expected cell frequencies. See the section “Output Data Sets” on page 2709
for details. The EXPECTED option has no effect for one-way tables.

OUTPCT
includes the following additional variables in the OUT= data set for crosstabulation tables:

PCT_COL percentage of column frequency

PCT_ROW percentage of row frequency

PCT_TABL percentage of stratum (two-way table) frequency, for n-way tables where n > 2

See the section “Output Data Sets” on page 2709 for details. The OUTPCT option has no effect for
one-way tables.

PLCORR < (options) >
requests the polychoric correlation coefficient and its asymptotic standard error. For 2 � 2 tables, this
statistic is more commonly known as the tetrachoric correlation coefficient, and it is labeled as such in
the displayed output. For more information, see the section “Polychoric Correlation” on page 2659.

If you also specify the CL or MEASURES(CL) option, PROC FREQ provides confidence limits for
the polychoric correlation. If you specify the PLCORR option in the TEST statement, the procedure
provides Wald and likelihood ratio tests for the polychoric correlation. The PLCORR option invokes
the MEASURES option.

You can specify the following options:

CONVERGE=value
specifies the convergence criterion for computing the polychoric correlation. The convergence
criterion value must be a positive number. By default, CONVERGE=0.0001. Iterative com-
putation of the polychoric correlation stops when the convergence measure falls below value
or when the number of iterations exceeds the MAXITER= number , whichever happens first.
For parameter values that are less than 0.01, PROC FREQ evaluates convergence by using the
absolute difference instead of the relative difference. For more information, see the section
“Polychoric Correlation” on page 2659.

MAXITER=number
specifies the maximum number of iterations for computing the polychoric correlation. The value
of number must be a positive integer. By default, MAXITER=20. Iterative computation of the
polychoric correlation stops when the number of iterations exceeds the maximum number or
when the convergence measure falls below the CONVERGE= value, whichever happens first.
For more information, see the section “Polychoric Correlation” on page 2659.
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PLOTS < (global-plot-options) > < =plot-request < (plot-options) > >

PLOTS < (global-plot-options) >

< =(plot-request < (plot-options) > < . . . plot-request < (plot-options) > > ) >
controls the plots that are produced through ODS Graphics. Plot-requests identify the plots, and
plot-options control the appearance and content of the plots. You can specify plot-options in parentheses
after a plot-request . A global-plot-option applies to all plots for which it is available unless it is altered
by a specific plot-option. You can specify global-plot-options in parentheses after the PLOTS option.

When you specify only one plot-request , you can omit the parentheses around the request. For example:

plots=all
plots=freqplot
plots=(freqplot oddsratioplot)
plots(only)=(cumfreqplot deviationplot)

ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;
proc freq;

tables treatment*response / chisq plots=freqplot;
weight wt;

run;
ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

If ODS Graphics is enabled but you do not specify the PLOTS= option, PROC FREQ produces all plots
that are associated with the analyses that you request, with the exception of the frequency, cumulative
frequency, and mosaic plots. To produce a frequency plot or cumulative frequency plot when ODS
Graphics is enabled, you must specify the FREQPLOT or CUMFREQPLOT plot-request , respectively,
in the PLOTS= option, or you must specify the PLOTS=ALL option. To produce a mosaic plot when
ODS Graphics is enabled, you must specify the MOSAICPLOT plot-request in the PLOTS= option, or
you must specify the PLOTS=ALL option.

PROC FREQ produces the remaining plots (listed in Table 40.11) by default when you request the
corresponding TABLES statement options. You can suppress default plots and request specific plots by
using the PLOTS(ONLY)= option; PLOTS(ONLY)=(plot-requests) produces only the plots that are
specified as plot-requests. You can suppress all plots by specifying the PLOTS=NONE option. The
PLOTS option has no effect when you specify the NOPRINT option in the PROC FREQ statement.

Plot Requests

Table 40.11 lists the available plot-requests together with their required TABLES statement options.
Descriptions of the plot-requests follow the table in alphabetical order.
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Table 40.11 Plot Requests

Plot Request Description Required TABLES Statement Option

AGREEPLOT Agreement plot AGREE (r � r table)
ALL All plots None
CUMFREQPLOT Cumulative frequency plot One-way table request
DEVIATIONPLOT Deviation plot CHISQ (one-way table)
FREQPLOT Frequency plot Any table request
KAPPAPLOT Kappa plot AGREE (h � r � r table)
MOSAICPLOT Mosaic plot Two-way or multiway table request
NONE No plots None
ODDSRATIOPLOT Odds ratio plot MEASURES or RELRISK (h � 2 � 2 table)
RELRISKPLOT Relative risk plot MEASURES or RELRISK (h � 2 � 2 table)
RISKDIFFPLOT Risk difference plot RISKDIFF (h � 2 � 2 table)
WTKAPPAPLOT Weighted kappa plot AGREE (h � r � r table, r > 2)

You can specify the following plot-requests:

AGREEPLOT < (plot-options) >
requests an agreement plot (Bangdiwala and Bryan 1987), An agreement plot displays the strength
of agreement in a two-way table, where the row and column variables represent two independent
ratings of n subjects. For information about agreement plots, see Bangdiwala (1988), Bangdiwala
et al. (2008), and Friendly (2000, Section 3.7.2).

To produce an agreement plot, you must also specify the AGREE option in the TABLES statement.
Agreement statistics and plots are available for two-way square tables, where the number of rows
equals the number of columns.

Table 40.12 lists the plot-options that are available for agreement plots. For descriptions of the
plot-options, see the subsection “Plot Options”.

Table 40.12 Plot Options for AGREEPLOT

Plot Option Description Values

LEGEND= Legend NO or YES�

PARTIAL= Partial agreement NO or YES�

SHOWSCALE= Frequency scale NO or YES�

STATS Statistics None
�Default

If you specify the STATS plot-option, the agreement plot displays the values of the kappa
coefficient, the weighted kappa coefficient, the Bn measure (Bangdiwala and Bryan 1987), and
the sample size. PROC FREQ stores these statistics in an ODS table named BnMeasure, which
is not displayed. For more information, see the section “ODS Table Names” on page 2721.
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ALL
requests all plots that are associated with the specified analyses. Table 40.11 lists the available
plot-requests and the corresponding analysis options. If you specify the PLOTS=ALL option,
PROC FREQ produces the frequency, cumulative frequency, and mosaic plots that are associated
with the tables that you request. (These plots are not produced by default when ODS Graphics is
enabled.)

CUMFREQPLOT < (plot-options) >
requests a plot of cumulative frequencies. Cumulative frequency plots are available for one-way
frequency tables.

To produce a cumulative frequency plot, you must specify the CUMFREQPLOT plot-request
in the PLOTS= option, or you must specify the PLOTS=ALL option. PROC FREQ does not
produce cumulative frequency plots by default when ODS Graphics is enabled.

Table 40.13 lists the plot-options that are available for cumulative frequency plots. For descriptions
of the plot-options, see the subsection “Plot Options”.

Table 40.13 Plot Options for CUMFREQPLOT

Plot Option Description Values

ORIENT= Orientation HORIZONTAL or VERTICAL�

SCALE= Scale FREQ� or PERCENT
TYPE= Type BARCHART� or DOTPLOT
�Default

DEVIATIONPLOT < (plot-options) >
requests a plot of relative deviations from expected frequencies. Deviation plots are available
for chi-square analysis of one-way frequency tables. To produce a deviation plot, you must also
specify the CHISQ option in the TABLES statement for a one-way frequency table.

Table 40.14 lists the plot-options that are available for deviation plots. For descriptions of the
plot-options, see the subsection “Plot Options”.

Table 40.14 Plot Options for DEVIATIONPLOT

Plot Option Description Values

NOSTAT No statistic None
ORIENT= Orientation HORIZONTAL or VERTICAL�

TYPE= Type BARCHART� or DOTPLOT
�Default

FREQPLOT < (plot-options) >
requests a frequency plot. Frequency plots are available for frequency and crosstabulation tables.
For multiway crosstabulation tables, PROC FREQ provides a two-way frequency plot for each
stratum (two-way table).
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To produce a frequency plot, you must specify the FREQPLOT plot-request in the PLOTS=
option, or you must specify the PLOTS=ALL option. PROC FREQ does not produce frequency
plots by default when ODS Graphics is enabled.

Table 40.15 lists the plot-options that are available for frequency plots. For descriptions of the
plot-options, see the subsection “Plot Options”.

Table 40.15 Plot Options for FREQPLOT

Plot Option Description Values

GROUPBY=�� Primary group COLUMN� or ROW
NPANELPOS=�� Sections per panel Number (4�)
ORIENT= Orientation HORIZONTAL or VERTICAL�

SCALE= Scale FREQ�, GROUPPERCENT��,
LOG, PERCENT, SQRT

TWOWAY=�� Two-way layout CLUSTER, GROUPHORIZONTAL,
GROUPVERTICAL�, or STACKED

TYPE= Type BARCHART� or DOTPLOT
�Default
��For two-way tables

You can specify the following plot-options for all frequency plots: ORIENT=, SCALE=, and
TYPE=. You can specify the following plot-options for frequency plots of two-way (and multiway)
tables: GROUPBY=, NPANELPOS=, and TWOWAY=. The NPANELPOS= plot-option is not
available with the TWOWAY=CLUSTER or TWOWAY=STACKED layout, which is always
displayed in a single panel.

By default, PROC FREQ displays frequency plots as bar charts. To display frequency plots
as dot plots, specify TYPE=DOTPLOT. To plot percentages instead of frequencies, specify
SCALE=PERCENT. For two-way tables, there are four frequency plot layouts available, which
you can request by specifying the TWOWAY= plot-option. For more information, see the
subsection “Plot Options”.

By default, graph cells in a two-way layout are first grouped by column variable levels; row
variable levels are then displayed within the column variable levels. To group first by row variable
levels, specify GROUPBY=ROW.

KAPPAPLOT < (plot-options) >
requests a plot of kappa statistics along with confidence limits. Kappa plots are available for
multiway square tables and display the kappa statistic (with confidence limits) for each two-
way table (stratum). Kappa plots also display the overall kappa statistic unless you specify the
COMMON=NO plot-option. To produce a kappa plot, you must specify the AGREE option in
the TABLES statement to compute kappa statistics.

Table 40.16 lists the plot-options that are available for kappa plots. For descriptions of the
plot-options, see the subsection “Plot Options”.
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Table 40.16 Plot Options for KAPPAPLOT and WTKAPPAPLOT

Plot Option Description Values

CLDISPLAY= Error bar type BAR, LINE, LINEARROW,
SERIF�, or SERIFARROW

COMMON= Overall kappa NO or YES�

NPANELPOS= Statistics per graphic Number (all�)
ORDER= Order of two-way levels ASCENDING or DESCENDING
RANGE= Range to display Values or CLIP
STATS Statistic values None
�Default

MOSAICPLOT < (plot-options) >
requests a mosaic plot. Mosaic plots are available for two-way and multiway crosstabulation
tables; for multiway tables, PROC FREQ provides a mosaic plot for each two-way table (stratum).

To produce a mosaic plot, you must specify the MOSAICPLOT plot-request in the PLOTS=
option, or you must specify the PLOTS=ALL option. PROC FREQ does not produce mosaic
plots by default when ODS Graphics is enabled.

Mosaic plots display tiles that correspond to the crosstabulation table cells. The areas of the tiles
are proportional to the frequencies of the table cells. The column variable is displayed on the X
axis, and the tile widths are proportional to the relative frequencies of the column variable levels.
The row variable is displayed on the Y axis, and the tile heights are proportional to the relative
frequencies of the row levels within column levels. For more information, see Friendly (2000).

By default, the colors of the tiles correspond to the row variable levels. If you specify the
COLORSTAT= plot-option, the tiles are colored according to the values of the Pearson or
standardized residuals.

You can specify the following plot-options:

COLORSTAT < =PEARSONRES | STDRES >
colors the mosaic plot tiles according to the values of residuals. If you specify COL-
ORSTAT=PEARSONRES, the tiles are colored according to the Pearson residuals of the
corresponding table cells. For more information, see the section “Pearson Chi-Square
Test for Two-Way Tables” on page 2649. If you specify COLORSTAT=STDRES, the
tiles are colored according to the standardized residuals of the corresponding table cells.
For more information, see the section “Standardized Residuals” on page 2649. You can
display the Pearson or standardized residuals in the CROSSLIST table by specifying the
CROSSLIST(PEARSONRES) or CROSSLIST(STDRES) option, respectively.

SQUARE
produces a square mosaic plot, where the height of the Y axis equals the width of the X axis.
In a square mosaic plot, the scale of the relative frequencies is the same on both axes. By
default, PROC FREQ produces a rectangular mosaic plot.
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NONE
suppresses all plots.

ODDSRATIOPLOT < (plot-options) >
requests a plot of odds ratios along with confidence limits. Odds ratio plots are available for
multiway 2 � 2 tables and display the odds ratio (with confidence limits) for each 2 � 2 table
(stratum). To produce an odds ratio plot, you must also specify the MEASURES, OR(CL=), or
RELRISK option in the TABLES statement to compute the odds ratios.

Table 40.17 lists the plot-options that are available for odds ratio plots. For descriptions of the
plot-options, see the subsection “Plot Options”.

Table 40.17 Plot Options for ODDSRATIOPLOT, RELRISKPLOT, and RISKDIFFPLOT

Plot Option Description Values

CL= Confidence limit type Type
CLDISPLAY= Error bar type BAR, LINE, LINEARROW,

SERIF�, or SERIFARROW
COMMON= Common value NO or YES�

COLUMN=�� Risk column 1� or 2
LOGBASE=��� Axis scale 2, E, or 10
NPANELPOS= Statistics per graphic Number (all�)
ORDER= Order of two-way levels ASCENDING or DESCENDING
RANGE= Range to display Values or CLIP
STATS Statistic values None
�Default
��Available for RELRISKPLOT and RISKDIFFPLOT
���Available for ODDSRATIOPLOT and RELRISKPLOT

You can specify one of the following confidence limit types for the odds ratio plot: exact
(CL=EXACT), score (CL=SCORE), or Wald (CL=WALD). By default, the odds ratio plot
displays Wald confidence limits. For more information, see the descriptions of the CL= plot-
option and the OR(CL=) option.

To display exact or score confidence limits in the odds ratio plot, you must also request their
computation. You can request exact confidence limits for the odds ratio by specifying the OR
option in the EXACT statement. You can request score confidence limits for the odds ratio by
specifying the OR(CL=SCORE) option in the TABLES statement.

When CL=WALD or CL=EXACT, the odds ratio plot displays the common odds ratio by default
when it is available. To compute the common odds ratio along with Wald confidence limits,
specify the CMH option in the TABLES statement. To compute the common odds ratio along
with exact confidence limits, specify the COMOR option in the EXACT statement. To suppress
display of the common odds ratio, specify COMMON=NO. When CL=SCORE, the odds ratio
plot does not display the common odds ratio.
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RELRISKPLOT < (plot-options) >
requests a plot of relative risks along with confidence limits. Relative risk plots are available for
multiway 2 � 2 tables and display the relative risk (with confidence limits) for each 2 � 2 table
(stratum). To produce a relative risk plot, you must also specify the MEASURES or RELRISK
option in the TABLES statement to compute relative risks.

Table 40.17 lists the plot-options that are available for relative risk plots. For descriptions of the
plot-options, see the subsection “Plot Options”.

You can specify one of the following confidence limit types for the relative risk plot: exact
(CL=EXACT), score (CL=SCORE), or Wald (CL=WALD). By default, the relative risk plot
displays Wald confidence limits. For more information, see the descriptions of the CL= plot-option
and the RELRISK(CL=) option.

To display exact or score confidence limits in the relative risk plot, you must also request their
computation. To request exact confidence limits for the relative risk, specify the RELRISK option
in the EXACT statement. To request score confidence limits for the relative risk, specify the
RELRISK(CL=SCORE) option in the TABLES statement. The risk column that you specify for
the confidence limits must match the risk column that you specify for the plot.

The relative risk plot displays the common relative risk by default when you specify CL=WALD
and the CMH option in the TABLES statement. To suppress display of the common relative risk,
specify COMMON=NO. When you specify CL=EXACT or CL=SCORE, the relative risk plot
does not display the common relative risk.

RISKDIFFPLOT < (plot-options) >
requests a plot of risk (proportion) differences along with confidence limits. Risk difference plots
are available for multiway 2� 2 tables and display the risk difference (with confidence limits) for
each 2�2 table (stratum). To produce a risk difference plot, you must also specify the RISKDIFF
option in the TABLES statement to compute risk differences.

Table 40.17 lists the plot-options that are available for risk difference plots. For descriptions of
the plot-options, see the subsection “Plot Options”.

You can specify the CL= plot-option to display one of the following confidence limit types in
the risk difference plot: Agresti-Caffo, exact, Hauck-Anderson, Miettinen-Nurminen (score),
Newcombe, and Wald. By default, the plot displays Wald confidence limits for the risk difference.
For more information, see the descriptions of the CL= plot-option and the RISKDIFF(CL=)
option.

To display exact confidence limits in the risk difference plot, you must also request their compu-
tation by specifying the RISKDIFF option in the EXACT statement. The risk column that you
specify for the confidence limits must match the risk column that you specify for the plot.

By default, the risk difference plot displays the common risk difference when you specify the
RISKDIFF(COMMON) option and one of the following confidence limit types in the CL=
plot-option: Miettinen-Nurminen (score) (CL=MN), Newcombe (CL=NEWCOMBE), or Wald
(CL=WALD). To suppress display of the common risk difference, specify COMMON=NO.

WTKAPPAPLOT < (plot-options) >
requests a plot of weighted kappa coefficients along with confidence limits. Weighted kappa
plots are available for multiway square tables and display the weighted kappa coefficient (with
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confidence limits) for each two-way table (stratum). Weighted kappa plots also display the overall
weighted kappa coefficient unless you specify the COMMON=NO plot-option.

To produce a weighted kappa plot, you must specify the AGREE option in the TABLES statement
to compute weighted kappa coefficients, and the table dimension must be greater than 1.

Table 40.16 lists the plot-options that are available for weighted kappa plots. For descriptions of
the plot-options, see the subsection “Plot Options”.

Global Plot Options

A global-plot-option applies to all plots for which the option is available unless it is altered by an
individual plot-option. You can specify global-plot-options in parentheses after the PLOTS option. For
example:

plots(order=ascending stats)=(riskdiffplot oddsratioplot)
plots(only)=freqplot

The following plot-options are available as global-plot-options: CLDISPLAY=, COLUMN=,
COMMON=, EXACT, LOGBASE=, NPANELPOS=, ORDER=, ORIENT=, RANGE=, SCALE=,
STATS, and TYPE=. For descriptions of these plot-options, see the subsection “Plot Options”.

In addition to these plot-options, you can specify the following global-plot-option:

ONLY
suppresses the default plots and requests only the plots that are specified as plot-requests.

Plot Options

You can specify the following plot-options in parentheses after a plot-request:

CL=type
specifies the type of confidence limits to display. You can specify the CL= plot-option when you
specify the following plot-requests: ODDSRATIOPLOT, RELRISKPLOT, and RISKDIFFPLOT.

For odds ratio plots (ODDSRATIOPLOT), the available confidence limit types include exact,
score, and Wald, which you can request by specifying CL=EXACT, CL=SCORE, and CL=WALD,
respectively. For more information, see the description of the OR(CL=) option and the section
“Odds Ratio and Relative Risks for 2 x 2 Tables” on page 2683. The default is CL=WALD. When
you specify CL=EXACT to display exact confidence limits, you must also request computation
of exact confidence limits by specifying the OR option in the EXACT statement. When you
specify CL=SCORE, you must also request computation of score confidence limits by specifying
the OR(CL=SCORE) option in the TABLES statement.

For relative risk plots (RELRISKPLOT), the available confidence limit types include exact, score,
and Wald, which you can request by specifying CL=EXACT, CL=SCORE, and CL=WALD,
respectively. For more information, see the description of the RELRISK(CL=) option and
the section “Relative Risks” on page 2685. The default is CL=WALD. When you specify
CL=EXACT to display exact confidence limits, you must also request computation of exact
confidence limits by specifying the RELRISK option in the EXACT statement. When you specify
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CL=SCORE, you must also request computation of score confidence limits by specifying the
RELRISK(CL=SCORE) option in the TABLES statement.

For risk difference plots (RISKDIFFPLOT), the available confidence limit types include the
following: Agresti-Caffo (CL=AC), exact (CL=EXACT), Hauck-Anderson (CL=HA), Miettinen-
Nurminen (score) (CL=MN), Newcombe (CL=NEWCOMBE), and Wald (CL=WALD). For more
information, see the description of the RISKDIFF(CL=) option and the section “Risk Difference
Confidence Limits” on page 2672. If you specify CL=EXACT to display exact confidence limits
in the plot, you must also request computation of exact confidence limits by specifying the
RISKDIFF option in the EXACT statement.

CLDISPLAY=BAR < width > | LINE | LINEARROW | SERIF | SERIFARROW
controls the appearance of the confidence limit error bars. You can specify the CLDISPLAY=
plot-option when you specify the following plot-requests: KAPPAPLOT, ODDSRATIOPLOT,
RELRISKPLOT, RISKDIFFPLOT, and WTKAPPAPLOT.

The default is CLDISPLAY=SERIF, which displays the confidence limits as lines with serifs.
CLDISPLAY=LINE displays the confidence limits as plain lines without serifs. The CLDIS-
PLAY=SERIFARROW and CLDISPLAY=LINEARROW plot-options display arrowheads on
any error bars that are clipped by the RANGE= plot-option; if an entire error bar is cut from the
plot, the plot displays an arrowhead that points toward the statistic.

CLDISPLAY=BAR displays the confidence limits as bars. By default, the width of the bars
equals the size of the marker for the estimate. You can control the width of the bars and the
size of the marker by specifying the value of width as a percentage of the distance between bars,
0 < width � 1. The bar might disappear when the value of width is very small.

COLUMN=1 | 2
specifies the table column to use to compute the risks (proportion) for the relative risk plot
(RELRISKPLOT) and the risk difference plot (RISKDIFFPLOT). If you specify COLUMN=1,
the plot displays the column 1 relative risks or the column 1 risk differences. Similarly, if you
specify COLUMN=2, the plot displays the column 2 relative risks or risk differences.

For relative risk plots, the default is COLUMN=1. For risk difference plots, the default is
COLUMN=1 if you request computation of both column 1 and column 2 risk differences by
specifying the RISKDIFF option. If you request computation of only the column 1 (or column
2) risk differences by specifying the RISKDIFF(COLUMN=1) (or RISKDIFF(COLUMN=2))
option, by default the risk difference plot displays the risk differences for the column that you
specify.

COMMON=NO | YES
controls the display of the common (overall) statistic in plots that display stratum (two-way table)
statistics for multiway tables. You can specify the COMMON= plot-option when you specify the
following plot-requests: KAPPAPLOT, ODDSRATIOPLOT, RELRISKPLOT, RISKDIFFPLOT,
and WTKAPPAPLOT.

COMMON=NO suppresses display of the common statistic and its confidence limits. By default,
COMMON=YES, which displays the common statistic and its confidence limits when these
values are available. For more information, see the descriptions of the plot-requests.
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EXACT
requests display of exact confidence limits instead of asymptotic confidence limits. You can spec-
ify the EXACT plot-option when you specify the following plot-requests: ODDSRATIOPLOT,
RELRISKPLOT, and RISKDIFFPLOT. The EXACT plot-option is equivalent to the CL=EXACT
plot-option.

When you specify the EXACT plot-option, you must also request computation of exact confidence
limits by specifying the appropriate statistic-option in the EXACT statement.

GROUPBY=COLUMN | ROW
specifies the primary grouping for two-way frequency plots, which you can request by specifying
the FREQPLOT plot=request . The default is GROUPBY=COLUMN, which groups graph cells
first by column variable and displays row variable levels within column variable levels. You can
specify GROUPBY=ROW to group first by row variable. In two-way and multiway table requests,
the column variable is the last variable specified and forms the columns of the crosstabulation
table. The row variable is the next-to-last variable specified and forms the rows of the table.

By default for a bar chart that is displayed in the TWOWAY=STACKED layout, bars correspond
to the column variable levels, and row levels are displayed (stacked) within each column bar.
By default for a bar chart that is displayed in the TWOWAY=CLUSTER layout, bars are first
grouped by column variable levels, and row levels are displayed as adjacent bars within each
column-level group. You can reverse the default row and column variable grouping by specifying
GROUPBY=ROW.

LOGBASE=2 | E | 10
applies to the odds ratio plot (ODDSRATIOPLOT) and the relative risk plot (RELRISKPLOT).
This plot-option displays the odds ratio or relative risk axis on the log scale that you specify.

LEGEND=NO | YES
applies to the agreement plot (AGREEPLOT). LEGEND=NO suppresses the legend that identifies
the areas of exact and partial agreement. The default is LEGEND=YES.

NOSTAT
applies to the deviation plot (DEVIATIONPLOT). NOSTAT suppresses the chi-square p-value
that deviation plot displays by default.

NPANELPOS=n
divides the plot into multiple panels that display at most jnj statistics or sections.

If n is positive, the number of statistics or sections per panel is balanced; if n is negative, the
number of statistics per panel is not balanced. For example, suppose you want to display 21 odds
ratios. NPANELPOS=20 displays two panels, the first with 11 odds ratios and the second with
10 odds ratios; NPANELPOS=–20 displays 20 odds ratios in the first panel but only 1 odds ratio
in the second panel. This plot-option is available for all plots except mosaic plots and one-way
weighted frequency plots.

For two-way frequency plots (FREQPLOT), NPANELPOS=n requests that panels display at most
jnj sections, where sections correspond to row or column variable levels, depending on the type
of plot and the grouping. By default, n=4 and each panel includes at most four sections. This
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plot-option applies to two-way plots that are displayed in the TWOWAY=GROUPVERTICAL or
TWOWAY=GROUPHORIZONTAL layout. The NPANELPOS= plot-option does not apply to
the TWOWAY=CLUSTER and TWOWAY=STACKED layouts, which are always displayed in a
single panel.

For plots that display statistics along with confidence limits, NPANELPOS=n requests that
panels display at most jnj statistics. By default, n=0 and all statistics are displayed in a single
panel. This plot-option applies to the following plots: KAPPAPLOT, ORPLOT, RELRISKPLOT,
RISKDIFFPLOT, and WTKAPPAPLOT.

ORDER=ASCENDING | DESCENDING
displays the two-way table (strata) statistics in order of the statistic value. You can specify the
ORDER= plot-option when you specify the following plot-requests: KAPPAPLOT, ODDSRA-
TIOPLOT, RELRISKPLOT, RISKDIFFPLOT, and WTKAPPAPLOT.

If you specify ORDER=ASCENDING or ORDER=DESCENDING, the plot displays the statistics
in ascending or descending order, respectively. By default, the order of the statistics in the plot
matches the order that the two-way table strata appear in the multiway table display.

ORIENT=HORIZONTAL | VERTICAL
controls the orientation of the plot. You can specify the ORIENT= plot-option when you specify
the following plot-requests: CUMFREQPLOT, DEVIATIONPLOT, and FREQPLOT.

ORIENT=HORIZONTAL places the variable levels on the Y axis and the frequencies, percent-
ages, or statistic values on the X axis. ORIENT=VERTICAL places the variable levels on the X
axis. The default orientation is ORIENT=VERTICAL for bar charts (TYPE=BARCHART) and
ORIENT=HORIZONTAL for dot plots (TYPE=DOTPLOT).

PARTIAL=NO | YES
controls the display of partial agreement in the agreement plot (AGREEPLOT). PARTIAL=NO
suppresses the display of partial agreement. When you specify PARTIAL=NO, the agreement
plot displays only exact agreement. Exact agreement includes the diagonal cells of the square
table, where the row and column variable levels are the same. Partial agreement includes the
adjacent off-diagonal table cells, where the row and column values are within one level of exact
agreement. The default is PARTIAL=YES.

RANGE=( < min > < , max > )| CLIP
specifies the range of values to display. You can specify the RANGE= plot-option when you spec-
ify the following plot-requests: KAPPAPLOT, ODDSRATIOPLOT, RELRISKPLOT, RISKD-
IFFPLOT, and WTKAPPAPLOT.

If you specify RANGE=CLIP, the confidence limits are clipped and the display range is deter-
mined by the minimum and maximum values of the statistics. By default, the display range
includes all confidence limits.

SCALE=FREQ | GROUPPERCENT | LOG | PERCENT | SQRT
specifies the scale of the frequencies to display. This plot-option is available for frequency plots
(FREQPLOT) and cumulative frequency plots (CUMFREQPLOT).

The default is SCALE=FREQ, which displays unscaled frequencies. SCALE=PERCENT displays
percentages (relative frequencies) of the total frequency. SCALE=LOG displays log (base 10)
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frequencies. SCALE=SQRT displays square roots of the frequencies, producing a plot known as
a rootogram.

SCALE=GROUPPERCENT is available for two-way frequency plots. This option displays the
row or column percentages instead of the overall percentages (of the table frequency). By default
(or when you specify the GROUPBY=COLUMN plot-option), SCALE=GROUPPERCENT
displays the column percentages. If you specify the GROUPBY=ROW plot-option, the primary
grouping of graph cells is by row variable level and the plot displays row percentages. For more
information, see the description of the GROUPBY= plot-option.

SHOWSCALE=NO | YES
controls the display of the cumulative frequency scale on the right side of the agreement plot
(AGREEPLOT). SHOWSCALE=NO suppresses the display of the scale. The default is SHOWS-
CALE=YES.

STATS
displays statistic values in the plot. For the following plot-requests, the STATS plot-option
displays the statistics and their confidence limits on the right side of the plot: KAPPAPLOT,
ODDSRATIOPLOT, RELRISKPLOT, RISKDIFFPLOT, and WTKAPPAPLOT.

For the agreement plot (AGREEPLOT), the STATS plot-option displays the values of the kappa
statistic, the weighted kappa statistic, the Bn measure (Bangdiwala and Bryan 1987), and the
sample size. PROC FREQ stores these statistics in an ODS table named BnMeasure, which is
not displayed. For more information, see the section “ODS Table Names” on page 2721.

If you do not request the STATS plot-option, these plots do not display the statistic values.

TWOWAY=CLUSTER | GROUPHORIZONTAL | GROUPVERTICAL | STACKED
specifies the layout for two-way frequency plots.

All TWOWAY= layouts are available for bar charts (TYPE=BARCHART). All TWOWAY=
layouts except TWOWAY=CLUSTER are available for dot plots (TYPE=DOTPLOT). The
ORIENT= and GROUPBY= plot-options are available for all TWOWAY= layouts.

The default two-way layout is TWOWAY=GROUPVERTICAL, which produces a grouped
plot that has a vertical common baseline. By default for bar charts (TYPE=BARCHART,
ORIENT=VERTICAL), the X axis displays column variable levels, and the Y axis displays
frequencies. The plot includes a vertical (Y-axis) block for each row variable level. The relative
positions of the graph cells in this plot layout are the same as the relative positions of the table
cells in the crosstabulation table. You can reverse the default row and column grouping by
specifying the GROUPBY=ROW plot-option.

The TWOWAY=GROUPHORIZONTAL layout produces a grouped plot that has a horizontal
common baseline. By default (GROUPBY=COLUMN), the plot displays a block on the X axis
for each column variable level. Within each column-level block, the plot displays row variable
levels.

The TWOWAY=STACKED layout produces stacked displays of frequencies. By default
(GROUPBY=COLUMN) in a stacked bar chart, the bars correspond to column variable levels,
and row levels are stacked within each column level. By default in a stacked dot plot, the
dotted lines correspond to column levels, and cell frequencies are plotted as data dots on the
corresponding column line. The dot color identifies the row level.
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The TWOWAY=CLUSTER layout, which is available only for bar charts, displays groups of
adjacent bars. By default, the primary grouping is by column variable level, and row levels are
displayed within each column level.

You can reverse the default row and column grouping in any layout by specifying the
GROUPBY=ROW plot-option. The default is GROUPBY=COLUMN, which groups first by
column variable.

TYPE=BARCHART | DOTPLOT
specifies the plot type (format) of the frequency (FREQPLOT), cumulative frequency
(CUMFREQPLOT), and deviation plots (DEVIATIONPLOT). TYPE=BARCHART produces a
bar chart and TYPE=DOTPLOT produces a dot plot. The default is TYPE=BARCHART.

PRINTKWTS
displays the agreement weights that PROC FREQ uses to compute the weighted kappa coefficient.
Agreement weights reflect the relative agreement between pairs of variable levels. By default, PROC
FREQ uses the Cicchetti-Allison form of agreement weights. If you specify the AGREE(WT=FC)
option, the procedure uses the Fleiss-Cohen form of agreement weights. For more information, see the
section “Weighted Kappa Coefficient” on page 2692.

This option has no effect unless you also specify the AGREE option to compute the weighted kappa
coefficient. The PRINTKWTS option is equivalent to the AGREE(PRINTKWTS) option.

RELRISK < (relrisk-options) >
requests relative risk measures for 2 � 2 tables. These measures include the odds ratio, the column 1
relative risk, and the column 2 relative risk. For more information, see the section “Odds Ratio and
Relative Risks for 2 x 2 Tables” on page 2683. By default, PROC FREQ displays the relative risk
measures and their asymptotic Wald confidence limits in the “Odds Ratio and Relative Risks” table.
You can also obtain this table by specifying the MEASURES option, which produces other measures
of association in addition to the relative risks.

When you specify confidence limit types in the CL= relrisk-option, PROC FREQ displays the “Relative
Risk Confidence Limits” table; PROC FREQ does not display the “Odds Ratio and Relative Risks” table
unless you also specify the PRINTALL relrisk-option. You can request the “Odds Ratio Confidence
Limits” table by specifying the OR(CL=) option.

You can specify the following relrisk-options:

CL=type | (types)
specifies confidence limit types for the relative risk. You can specify one or more types of
confidence limits. When you specify only one type, you can omit the parentheses around the
request. When you specify the CL= relrisk-option, PROC FREQ displays the confidence limits in
the “Relative Risk Confidence Limits” table.

(The ALPHA= option determines the level of the confidence limits that the CL= relrisk-option
provides. By default, ALPHA=0.05, which produces 95% confidence limits for the relative risk.)

You can specify the following types:
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EXACT
displays exact unconditional confidence limits for the relative risk in the “Confidence Limits
for the Relative Risk” table. You must also request computation of the exact confidence
limits by specifying the RELRISK option in the EXACT statement. For more information,
see the section “Exact Unconditional Confidence Limits for the Relative Risk” on page 2686.

SCORE < (CORRECT=NO) >
requests score confidence limits for the relative risk. For more information, see the
section “Score Confidence Limits for the Relative Risk” on page 2686. If you specify
CORRECT=NO, PROC FREQ provides the uncorrected form of the confidence limits.

WALD
requests asymptotic Wald confidence limits for the relative risk. For more information, see
the section “Relative Risks” on page 2685.

If you do not specify the CL= relrisk-option, the RELRISK option displays Wald confidence
limits for the odds ratio, column 1 relative risk, and column 2 relative risk in the “Odds Ratio and
Relative Risks” table.

COLUMN=1 | 2
specifies the table column for which to compute the relative risk confidence limits (which
you request by specifying the CL= relrisk-option). By default, COLUMN=1, which displays
confidence limits for the column 1 relative risk in the “Relative Risk Confidence Limits” tables.
This option has no effect on the “Odds Ratio and Relative Risks” table, which displays both
column 1 and column 2 relative risks.

PRINTALL
displays the “Odds Ratio and Relative Risks” table when you specify the CL= relrisk-option. (By
default, PROC FREQ does not display this table when you specify the CL= relrisk-option.)

RISKDIFF < (riskdiff-options) >
requests risks (binomial proportions) and risk differences for 2 � 2 tables. By default, this option
provides the row 1 risk, row 2 risk, total (overall) risk, and risk difference (row 1 – row 2), together
with their asymptotic standard errors and Wald confidence limits; by default, this option also provides
exact (Clopper-Pearson) confidence limits for the row 1, row 2, and total risks. You can request exact
unconditional confidence limits for the risk difference by specifying the RISKDIFF option in the
EXACT statement. For more information, see the section “Risks and Risk Differences” on page 2671.
PROC FREQ displays these results in the column 1 and column 2 “Risk Estimates” tables.

You can specify riskdiff-options in parentheses after the RISKDIFF option to request tests and additional
confidence limits for the risk difference, in addition to estimates of the common risk difference for
multiway 2 � 2 tables. Table 40.18 summarizes the riskdiff-options.

The CL= riskdiff-option requests confidence limits for the risk difference. Available confidence limit
types include Agresti-Caffo, exact unconditional, Hauck-Anderson, Miettinen-Nurminen (score),
Newcombe, and Wald. Continuity-corrected Newcombe and Wald confidence limits are also available.
You can request more than one type of confidence limits in the same analysis. PROC FREQ displays
the confidence limits in the “Proportion (Risk) Difference Confidence Limits” table.
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The CL=EXACT riskdiff-option displays exact unconditional confidence limits in the “Proportion
(Risk) Difference Confidence Limits” table. When you specify CL=EXACT, you must also request
computation of the exact confidence limits by specifying the RISKDIFF option in the EXACT state-
ment.

The EQUIV, NONINF, and SUP riskdiff-options request tests of equivalence, noninferiority, and
superiority, respectively, for the risk difference. Available test methods include Farrington-Manning
(score), Hauck-Anderson, and Newcombe (hybrid-score), in addition to the Wald test.

As part of the noninferiority, superiority, and equivalence analyses, PROC FREQ provides null-based
equivalence limits that have a confidence coefficient of 100.1 � 2˛/% (Schuirmann 1999). The
ALPHA= option determines the confidence level; by default, ALPHA=0.05, which produces 90%
equivalence limits for these analyses. For more information, see the sections “Noninferiority Tests” on
page 2676 and “Equivalence Tests” on page 2679.

Table 40.18 RISKDIFF (Proportion Difference) Options

Option Description

COLUMN=1 | 2 Specifies the risk column
COMMON Requests common risk difference
CORRECT Requests continuity correction
NORISKS Suppresses default risk tables

Request Confidence Limits
CL=AC Requests Agresti-Caffo confidence limits
CL=EXACT Displays exact confidence limits
CL=HA Requests Hauck-Anderson confidence limits
CL=MN | SCORE Requests Miettinen-Nurminen confidence limits
CL=NEWCOMBE Requests Newcombe confidence limits
CL=WALD Requests Wald confidence limits

Request Tests
EQUAL Requests an equality test
EQUIV | EQUIVALENCE Requests an equivalence test
MARGIN= Specifies the test margin
METHOD= Specifies the test method
NONINF | NONINFERIORITY Requests a noninferiority test
SUP | SUPERIORITY Requests a superiority test
VAR=SAMPLE | NULL Specifies the test variance

You can specify the following riskdiff-options in parentheses after the RISKDIFF option:

CL=type | (types)
requests confidence limits for the risk difference. You can specify one or more types of confidence
limits. When you specify only one type, you can omit the parentheses around the request. PROC
FREQ displays the confidence limits in the “Proportion (Risk) Difference Confidence Limits”
table.

The ALPHA= option determines the level of the confidence limits. By default, ALPHA=0.05,
which produces 95% confidence limits for the risk difference.
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You can specify the CL= riskdiff-option with or without requests for risk difference tests. The
confidence limits that CL= produces do not depend on the tests that you request and do not use
the value of the test margin (which you can specify in the MARGIN= riskdiff-option).

You can control the risk column for the confidence limits by specifying the COLUMN= riskdiff-
option. If you do not specify COLUMN=, by default PROC FREQ provides confidence limits for
the column 1 risk difference.

You can specify the following types:

AGRESTICAFFO

AC
requests Agresti-Caffo confidence limits for the risk difference. For more information, see
the subsection “Agresti-Caffo Confidence Limits” in the section “Risk Difference Confidence
Limits” on page 2672.

EXACT
displays exact unconditional confidence limits for the risk difference in the “Proportion
(Risk) Difference Confidence Limits” table. You must also request computation of the exact
confidence limits by specifying the RISKDIFF option in the EXACT statement.

PROC FREQ computes the confidence limits by inverting two separate one-sided exact tests
(tail method). By default, the tests are based on the unstandardized risk difference. If you
specify the RISKDIFF(METHOD=SCORE) option in the EXACT statement, the tests are
based on the score statistic. For more information, see the RISKDIFF option in the EXACT
statement and the section “Exact Unconditional Confidence Limits for the Risk Difference”
on page 2679.

By default, PROC FREQ also displays these exact confidence limits in the “Risk Estimates”
table. You can suppress this table by specifying the NORISKS riskdiff-option.

HA
requests Hauck-Anderson confidence limits for the risk difference. For more information,
see the subsection “Hauck-Anderson Confidence Limits” in the section “Risk Difference
Confidence Limits” on page 2672.

MN < (CORRECT=NO | MEE) >

SCORE < (CORRECT=NO | MEE) >
requests Miettinen-Nurminen (score) confidence limits for the risk difference. For more
information, see the subsection “Miettinen-Nurminen (Score) Confidence Limits” in the
section “Risk Difference Confidence Limits” on page 2672. By default, the Miettinen-
Nurminen confidence limits include a bias correction factor (Miettinen and Nurminen 1985;
Newcombe and Nurminen 2011). If you specify CL=MN(CORRECT=NO), PROC FREQ
provides the uncorrected form of the confidence limits (Mee 1984).

NEWCOMBE < (CORRECT) >
requests Newcombe hybrid-score confidence limits for the risk difference. If you specify
CL=NEWCOMBE(CORRECT) or the CORRECT riskdiff-option, the Newcombe confidence
limits include a continuity correction. For more information, see the subsection “Newcombe
Confidence Limits” in the section “Risk Difference Confidence Limits” on page 2672.
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WALD < (CORRECT) >
requests Wald confidence limits for the risk difference. If you specify CL=WALD(CORRECT)
or the CORRECT riskdiff-option, the Wald confidence limits include a continuity correction.
For more information, see the subsection “Wald Confidence Limits” in the section “Risk
Difference Confidence Limits” on page 2672.

COLUMN=1 | 2 | BOTH
specifies the table column for which to compute the risk difference tests (EQUAL, EQUIV,
NONINF, and SUP) and the risk difference confidence limits (which you request by specifying
the CL= riskdiff-option). By default, COLUMN=1.

This option has no effect on the “Risk Estimates” table, which is produced for both column
1 and column 2. You can suppress the “Risk Estimates” table by specifying the NORISKS
riskdiff-option.

COMMON
requests estimates of the common (overall) risk difference for multiway 2 � 2 tables. PROC
FREQ produces Mantel-Haenszel and summary score estimates for the common risk difference,
together with their confidence limits. For more information, see the section “Common Risk
Difference” on page 2681. If you specify the RISKDIFF(CL=NEWCOMBE) option, PROC
FREQ also provides Newcombe confidence limits for the common risk difference. For more
information, see the section “Common Risk Difference” on page 2681.

If you do not specify the COLUMN= riskdiff-option, PROC FREQ provides the common risk
difference for column 1 by default. If you specify COLUMN=2, PROC FREQ provides the
common risk difference for column 2. COLUMN=BOTH does not apply to the common risk
difference.

CORRECT
includes a continuity correction in the Wald confidence limits, Wald tests, and Newcombe
confidence limits. For more information, see the section “Risks and Risk Differences” on
page 2671.

EQUAL
requests a test of the null hypothesis that the risk difference equals zero. This option provides
an asymptotic Wald test of equality. If you specify the CORRECT riskdiff-option, the Wald test
includes a continuity correction. If you specify the VAR=NULL riskdiff-option, the test uses
the null-based variance instead of the sample variance. For more information, see the section
“Equality Test” on page 2675.

EQUIV

EQUIVALENCE
requests a test of equivalence for the risk difference. For more information, see the section “Equiv-
alence Tests” on page 2679. You can specify the test method in the METHOD= riskdiff-option,
and you can specify the margins in the MARGIN= riskdiff-option. By default, METHOD=WALD
and MARGIN=0.2.

MARGIN=value | (lower , upper )
specifies the margin for the noninferiority, superiority, and equivalence tests, which you re-
quest by specifying the NONINF, SUP, and EQUIV riskdiff-options, respectively. By default,
MARGIN=0.2.
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For noninferiority and superiority tests, specify a single value in the MARGIN= option. The
value must be a positive number. You can specify value as a number between 0 and 1. Or you
can specify value in percentage form as a number between 1 and 100, and PROC FREQ converts
that number to a proportion. PROC FREQ treats the value 1 as 1%.

For an equivalence test, you can specify a single MARGIN= value, or you can specify both
lower and upper values. If you specify a single value, it must be a positive number, as described
previously. If you specify a single value for an equivalence test, PROC FREQ uses –value as the
lower margin and value as the upper margin for the test. If you specify both lower and upper
values for an equivalence test, you can specify them in proportion form as numbers between –1
or 1. Or you can specify them in percentage form as numbers between –100 and 100, and PROC
FREQ converts the numbers to proportions. The value of lower must be less than the value of
upper .

METHOD=method
specifies the method for the noninferiority, superiority, and equivalence analyses, which you
request by specifying the NONINF, SUP, and EQUIV riskdiff-options, respectively. By default,
METHOD=WALD.

You can specify the following methods:

FM
SCORE

requests Farrington-Manning (score) tests and equivalence limits for the equivalence, nonin-
feriority, and superiority analyses. For more information, see the subsection “Farrington-
Manning (Score) Test” in the section “Noninferiority Tests” on page 2676.

HA
requests Hauck-Anderson tests and confidence limits for the equivalence, noninferiority, and
superiority analyses. For more information, see the subsection “Hauck-Anderson Test” in
the section “Noninferiority Tests” on page 2676.

NEWCOMBE
requests Newcombe (hybrid-score) confidence limits for the equivalence, noninferiority, and
superiority analyses. If you specify the CORRECT riskdiff-option, the Newcombe confidence
limits include a continuity correction. For more information, see the subsection “Newcombe
Noninferiority Analysis” in the section “Noninferiority Tests” on page 2676.

WALD
requests Wald tests and confidence limits for the equivalence, noninferiority, and superiority
analyses. If you specify the CORRECT riskdiff-option, the Wald tests and confidence limits
include a continuity correction. If you specify the VAR=NULL riskdiff-option, the tests use
the null (test-based) variance instead of the sample variance. For more information, see the
subsection “Wald Test” in the section “Noninferiority Tests” on page 2676.

NONINF
NONINFERIORITY

requests a test of noninferiority for the risk difference. For more information, see the sec-
tion “Noninferiority Tests” on page 2676. You can specify the test method in the METHOD=
riskdiff-option, and you can specify the margin in the MARGIN= riskdiff-option. By default,
METHOD=WALD and MARGIN=0.2.
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NORISKS
suppresses display of the “Risk Estimates” tables, which the RISKDIFF option produces by
default for column 1 and column 2. The “Risk Estimates” tables contain the risks and risk
differences, together with their asymptotic standard errors, Wald confidence limits, and exact
confidence limits.

SUP

SUPERIORITY
requests a test of superiority for the risk difference. For more information, see the section
“Superiority Test” on page 2678. You can specify the test method in the METHOD= riskdiff-option,
and you can specify the margin in the MARGIN= riskdiff-option. By default, METHOD=WALD
and MARGIN=0.2.

VAR=NULL | SAMPLE
specifies the type of variance to use in the Wald tests of noninferiority, superiority, equivalence,
and equality. If you specify VAR=SAMPLE, PROC FREQ uses the sample variance. If you
specify VAR=NULL, PROC FREQ uses a test-based variance that is computed by using the null
hypothesis value of the risk difference. For more information, see the sections “Equality Test” on
page 2675 and “Noninferiority Tests” on page 2676. The default is VAR=SAMPLE.

SCORES=type
specifies the type of row and column scores that PROC FREQ uses to compute the following statistics:
Mantel-Haenszel chi-square, Pearson correlation, Cochran-Armitage test for trend, weighted kappa
coefficient, and Cochran-Mantel-Haenszel statistics. The value of type can be one of the following:

• MODRIDIT

• RANK

• RIDIT

• TABLE

See the section “Scores” on page 2647 for descriptions of these score types.

If you do not specify the SCORES= option, PROC FREQ uses SCORES=TABLE by default. For
character variables, the row and column TABLE scores are the row and column numbers. That is,
the TABLE score is 1 for row 1, 2 for row 2, and so on. For numeric variables, the row and column
TABLE scores equal the variable values. See the section “Scores” on page 2647 for details. Using
MODRIDIT, RANK, or RIDIT scores yields nonparametric analyses.

You can use the SCOROUT option to display the row and column scores.

SCOROUT
displays the row and column scores that PROC FREQ uses to compute score-based tests and statistics.
You can specify the score type with the SCORES= option. See the section “Scores” on page 2647 for
details.

The scores are computed and displayed only when PROC FREQ computes statistics for two-way tables.
You can use ODS to store the scores in an output data set. See the section “ODS Table Names” on
page 2721 for more information.
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SPARSE
reports all possible combinations of the variable values for an n-way table when n > 1, even if a
combination does not occur in the data. The SPARSE option applies only to crosstabulation tables
displayed in LIST format and to the OUT= output data set. If you do not use the LIST or OUT= option,
the SPARSE option has no effect.

When you specify the SPARSE and LIST options, PROC FREQ displays all combinations of variable
values in the table listing, including those with a frequency count of zero. By default, without the
SPARSE option, PROC FREQ does not display zero-frequency levels in LIST output. When you use
the SPARSE and OUT= options, PROC FREQ includes empty crosstabulation table cells in the output
data set. By default, PROC FREQ does not include zero-frequency table cells in the output data set.

See the section “Missing Values” on page 2643 for more information.

TOTPCT
displays the percentage of the total multiway table frequency in crosstabulation tables for n-way
tables, where n > 2. By default, PROC FREQ displays the percentage of the individual two-way table
frequency but does not display the percentage of the total frequency for multiway crosstabulation
tables. See the section “Two-Way and Multiway Tables” on page 2714 for more information.

The percentage of total multiway table frequency is displayed by default when you specify the LIST
option. It is also provided by default in the PERCENT variable in the OUT= output data set.

TREND
requests the Cochran-Armitage test for trend. The table must be 2 � C or R � 2 to compute the trend
test. See the section “Cochran-Armitage Test for Trend” on page 2687 for details. To request exact
p-values for the trend test, specify the TREND option in the EXACT statement. See the section “Exact
Statistics” on page 2704 for more information.

TEST Statement
TEST test-options ;

The TEST statement requests asymptotic tests for measures of association and measures of agreement. The
test-options identify which tests to compute. Table 40.19 lists the available test-options, together with their
corresponding TABLES statement options. Descriptions of the test-options follow the table in alphabetical
order.

For each measure of association or agreement that you request in the TEST statement, PROC FREQ provides
an asymptotic test that the measure equals zero. The procedure displays the asymptotic standard error
under the null hypothesis, the test statistic, and the one-sided and two-sided p-values. Additionally, PROC
FREQ reports the confidence limits for the measure. The ALPHA= option in the TABLES statement
determines the confidence level, which by default equals 0.05 and provides 95% confidence limits. See the
sections “Asymptotic Tests” on page 2654 and “Confidence Limits” on page 2654 for details. Also see the
sections “Measures of Association” on page 2653 and “Tests and Measures of Agreement” on page 2690 for
information about the individual measures.

You can also request exact tests for selected measures of association and agreement by using the EXACT
statement. See the section “Exact Statistics” on page 2704 for more information.
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Using the TEST Statement with the TABLES Statement
You must use a TABLES statement with the TEST statement. If you use only one TABLES statement, you
do not need to specify the same options in both the TABLES and TEST statements; when you specify an
option in the TEST statement, PROC FREQ automatically invokes the corresponding TABLES statement
option. However, when you use the TEST statement with multiple TABLES statements, you must specify
options in the TABLES statements to request statistics. PROC FREQ then provides asymptotic tests for those
statistics that you also specify in the TEST statement.

Table 40.19 TEST Statement Options

Test Option Asymptotic Tests Required TABLES
Statement Option

AGREE Simple and weighted kappa coefficients AGREE
GAMMA Gamma ALL or MEASURES
KAPPA Simple kappa coefficient AGREE
KENTB | TAUB Kendall’s tau-b ALL or MEASURES
MEASURES Gamma, Kendall’s tau-b, Stuart’s tau-c, ALL or MEASURES

Somers’ D.C jR/, Somers’ D.RjC/,
Pearson and Spearman correlations

PCORR Pearson correlation coefficient ALL or MEASURES
PLCORR Polychoric correlation PLCORR
SCORR Spearman correlation coefficient ALL or MEASURES
SMDCR Somers’ D.C jR/ ALL or MEASURES
SMDRC Somers’ D.RjC/ ALL or MEASURES
STUTC | TAUC Stuart’s tau-c ALL or MEASURES
WTKAP | WTKAPPA Weighted kappa coefficient AGREE

You can specify the following test-options in the TEST statement.

AGREE
requests asymptotic tests for the simple kappa coefficient and the weighted kappa coefficient. See the
sections “Simple Kappa Coefficient” on page 2691 and “Weighted Kappa Coefficient” on page 2692
for details.

The AGREE option in the TABLES statement provides estimates, standard errors, and confidence
limits for kappa coefficients. You can request exact tests for kappa coefficients by using the EXACT
statement.

Kappa coefficients are defined only for square tables, where the number of rows equals the number
of columns. Kappa coefficients are not computed for tables that are not square. For 2 � 2 tables, the
weighted kappa coefficient is identical to the simple kappa coefficient, and PROC FREQ presents only
the simple kappa coefficient.

GAMMA
requests an asymptotic test for the gamma statistic. See the section “Gamma” on page 2655 for details.
The MEASURES option in the TABLES statement provides the gamma statistic and its asymptotic
standard error.
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KAPPA
requests an asymptotic test for the simple kappa coefficient. See the section “Simple Kappa Coefficient”
on page 2691 for details.

The AGREE option in the TABLES statement provides the kappa statistic, its standard error, and its
confidence limits. You can request an exact test for the simple kappa coefficient by specifying the
KAPPA option in the EXACT statement.

Kappa coefficients are defined only for square tables, where the number of rows equals the number of
columns. PROC FREQ does not compute kappa coefficients for tables that are not square.

KENTB

TAUB
requests an asymptotic test for Kendall’s tau-b. See the section “Kendall’s Tau-b” on page 2655 for
details.

The MEASURES option in the TABLES statement provides Kendall’s tau-b and its standard error. You
can request an exact test for Kendall’s tau-b by specifying the KENTB option in the EXACT statement.

MEASURES
requests asymptotic tests for the following measures of association: gamma, Kendall’s tau-b, Pearson
correlation coefficient, Somers’ D.C jR/, Somers’ D.RjC/, Spearman correlation coefficient, and
Stuart’s tau-c. See the section “Measures of Association” on page 2653 for details.

The MEASURES option in the TABLES statement provides measures of association and their asymp-
totic standard errors. You can request exact tests for selected measures by using the EXACT statement.

PCORR
requests an asymptotic test for the Pearson correlation coefficient. See the section “Pearson Correlation
Coefficient” on page 2657 for details.

The MEASURES option in the TABLES statement provides the Pearson correlation and its standard
error. You can request an exact test for the Pearson correlation by specifying the PCORR option in the
EXACT statement.

PLCORR
requests Wald and likelihood ratio tests for the polychoric correlation coefficient. See the section
“Polychoric Correlation” on page 2659 for details.

The PLCORR option in the TABLES statement provides the polychoric correlation and its standard
error.

SCORR
requests an asymptotic test for the Spearman correlation coefficient. See the section “Spearman Rank
Correlation Coefficient” on page 2658 for details.

The MEASURES option in the TABLES statement provides the Spearman correlation and its standard
error. You can request an exact test for the Spearman correlation by specifying the SCORR option in
the EXACT statement.
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SMDCR
requests an asymptotic test for Somers’ D.C jR/. See the section “Somers’ D” on page 2656 for
details.

The MEASURES option in the TABLES statement provides Somers’ D.C jR/ and its standard error.
You can request an exact test for Somers’ D.C jR/ by specifying the SMDCR option in the EXACT
statement.

SMDRC
requests an asymptotic test for Somers’ D.RjC/. See the section “Somers’ D” on page 2656 for
details.

The MEASURES option in the TABLES statement provides Somers’ D.RjC/ and its standard error.
You can request an exact test for Somers’ D.RjC/ by specifying the SMDRC option in the EXACT
statement.

STUTC

TAUC
requests an asymptotic test for Stuart’s tau-c. See the section “Stuart’s Tau-c” on page 2656 for details.

The MEASURES option in the TABLES statement provides Stuart’s tau-c and its standard error. You
can request an exact test for Stuart’s tau-c by specifying the STUTC option in the EXACT statement.

WTKAP

WTKAPPA
requests an asymptotic test for the weighted kappa coefficient. See the section “Weighted Kappa
Coefficient” on page 2692 for details.

The AGREE option in the TABLES statement provides the weighted kappa coefficient, its standard
error, and confidence limits. You can request an exact test for the weighted kappa by specifying the
WTKAP option in the EXACT statement.

Kappa coefficients are defined only for square tables, where the number of rows equals the number of
columns. PROC FREQ does not compute kappa coefficients for tables that are not square. For 2 � 2
tables, the weighted kappa coefficient is identical to the simple kappa coefficient, and PROC FREQ
presents only the simple kappa coefficient.

WEIGHT Statement
WEIGHT variable < / option > ;

The WEIGHT statement names a numeric variable that provides a weight for each observation in the input
data set. The WEIGHT statement is most commonly used to input cell count data. See the section “Inputting
Frequency Counts” on page 2641 for more information. If you use a WEIGHT statement, PROC FREQ
assumes that an observation represents n observations, where n is the value of variable. The value of the
WEIGHT variable is not required to be an integer.

If the value of the WEIGHT variable is missing, PROC FREQ does not use that observation in the analysis.
If the value of the WEIGHT variable is zero, PROC FREQ ignores the observation unless you specify the
ZEROS option, which includes observations with zero weights. If you do not specify a WEIGHT statement,
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PROC FREQ assigns a weight of one to each observation. The sum of the WEIGHT variable values represents
the total number of observations.

If any value of the WEIGHT variable is negative, PROC FREQ displays the frequencies computed from
the weighted values but does not compute percentages and statistics. If you create an output data set by
using the OUT= option in the TABLES statement, PROC FREQ assigns missing values to the PERCENT
variable. PROC FREQ also assigns missing values to the variables that the OUTEXPECT and OUTPCT
options provide. If any value of the WEIGHT variable is negative, you cannot create an output data set by
using the OUTPUT statement because statistics are not computed when there are negative weights.

You can specify the following option in the WEIGHT statement:

ZEROS
includes observations with zero weight values. By default, PROC FREQ ignores observations with
zero weights.

If you specify the ZEROS option, frequency and and crosstabulation tables display any levels cor-
responding to observations with zero weights. Without the ZEROS option, PROC FREQ does not
process observations with zero weights, and so does not display levels that contain only observations
with zero weights.

With the ZEROS option, PROC FREQ includes levels with zero weights in the chi-square goodness-
of-fit test for one-way tables. Also, PROC FREQ includes any levels with zero weights in binomial
computations for one-way tables. This makes it possible to compute binomial tests and estimates when
the specified level contains no observations with positive weights.

For two-way tables, the ZEROS option enables computation of kappa statistics when there are levels
that contain no observations with positive weight. For more information, see the section “Tables with
Zero Rows and Columns” on page 2695.

Note that even with the ZEROS option, PROC FREQ does not compute the CHISQ or MEASURES
statistics for two-way tables when the table has a zero row or zero column because most of these
statistics are undefined in this case.

The ZEROS option invokes the SPARSE option in the TABLES statement, which includes table cells
with a zero frequency count in the LIST output and in the OUT= data set. By default, without the
SPARSE option, PROC FREQ does not include zero frequency cells in the LIST output or in the OUT=
data set. If you specify the ZEROS option in the WEIGHT statement but do not want the SPARSE
option, you can specify the NOSPARSE option in the TABLES statement.

Details: FREQ Procedure

Inputting Frequency Counts
PROC FREQ can use either raw data or cell count data to produce frequency and crosstabulation tables. Raw
data, also known as case-record data, report the data as one record for each subject or sample member. Cell
count data report the data as a table, listing all possible combinations of data values along with the frequency
counts. This way of presenting data often appears in published results.
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The following DATA step statements store raw data in a SAS data set:

data Raw;
input Subject $ R C @@;
datalines;

01 1 1 02 1 1 03 1 1 04 1 1 05 1 1
06 1 2 07 1 2 08 1 2 09 2 1 10 2 1
11 2 1 12 2 1 13 2 2 14 2 2 14 2 2
;

You can store the same data as cell counts by using the following DATA step statements:

data CellCounts;
input R C Count @@;
datalines;

1 1 5 1 2 3
2 1 4 2 2 3
;

The variable R contains the values for the rows, and the variable C contains the values for the columns. The
variable Count contains the cell count for each row and column combination.

Both the Raw data set and the CellCounts data set produce identical frequency counts, two-way tables, and
statistics. When using the CellCounts data set, you must include a WEIGHT statement to specify that the
variable Count contains cell counts. For example, the following PROC FREQ statements create a two-way
crosstabulation table by using the CellCounts data set:

proc freq data=CellCounts;
tables R*C;
weight Count;

run;

Grouping with Formats
PROC FREQ groups a variable’s values according to its formatted values. If you assign a format to a variable
with a FORMAT statement, PROC FREQ formats the variable values before dividing observations into the
levels of a frequency or crosstabulation table.

For example, suppose that variable X has the values 1.1, 1.4, 1.7, 2.1, and 2.3. Each of these values appears
as a level in the frequency table. If you decide to round each value to a single digit, include the following
statement in the PROC FREQ step:

format X 1.;

Now the table lists the frequency count for formatted level 1 as two and for formatted level 2 as three.

PROC FREQ treats formatted character variables in the same way. The formatted values are used to group
the observations into the levels of a frequency table or crosstabulation table. PROC FREQ uses the entire
value of a character format to classify an observation.

You can also use the FORMAT statement to assign formats that were created with the FORMAT procedure to
the variables. User-written formats determine the number of levels for a variable and provide labels for a
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table. If you use the same data with different formats, then you can produce frequency counts and statistics
for different classifications of the variable values.

When you use PROC FORMAT to create a user-written format that combines missing and nonmissing values
into one category, PROC FREQ treats the entire category of formatted values as missing. For example, a
questionnaire codes 1 as yes, 2 as no, and 8 as a no answer. The following PROC FORMAT statements create
a user-written format:

proc format;
value Questfmt 1 ='Yes'

2 ='No'
8,. ='Missing';

run;

When you use a FORMAT statement to assign Questfmt. to a variable, the variable’s frequency table no
longer includes a frequency count for the response of 8. You must use the MISSING or MISSPRINT option
in the TABLES statement to list the frequency for no answer. The frequency count for this level includes
observations with either a value of 8 or a missing value (.).

The frequency or crosstabulation table lists the values of both character and numeric variables in ascending
order based on internal (unformatted) variable values unless you change the order with the ORDER= option.
To list the values in ascending order by formatted values, use ORDER=FORMATTED in the PROC FREQ
statement.

For more information about the FORMAT statement, see SAS Formats and Informats: Reference.

Missing Values
When the value of the WEIGHT variable is missing, PROC FREQ does not include that observation in the
analysis.

PROC FREQ treats missing BY variable values like any other BY variable value. The missing values form a
separate BY group.

If an observation has a missing value for a variable in a TABLES request, by default PROC FREQ does not
include that observation in the frequency or crosstabulation table. Also by default, PROC FREQ does not
include observations with missing values in the computation of percentages and statistics. The procedure
displays the number of missing observations below each table.

PROC FREQ also reports the number of missing values in output data sets. The TABLES statement OUT=
data set includes an observation that contains the missing value frequency. The NMISS option in the
OUTPUT statement provides an output data set variable that contains the missing value frequency.

The following options change the way in which PROC FREQ handles missing values of TABLES variables:

MISSPRINT displays missing value frequencies in frequency or crosstabulation tables but does not include
them in computations of percentages or statistics.

MISSING treats missing values as a valid nonmissing level for all TABLES variables. Displays miss-
ing levels in frequency and crosstabulation tables and includes them in computations of
percentages and statistics.
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This example shows the three ways that PROC FREQ can handle missing values of TABLES variables. The
following DATA step statements create a data set with a missing value for the variable A:

data one;
input A Freq;
datalines;

1 2
2 2
. 2
;

The following PROC FREQ statements request a one-way frequency table for the variable A. The first request
does not specify a missing value option. The second request specifies the MISSPRINT option in the TABLES
statement. The third request specifies the MISSING option in the TABLES statement.

proc freq data=one;
tables A;
weight Freq;
title 'Default';

run;
proc freq data=one;

tables A / missprint;
weight Freq;
title 'MISSPRINT Option';

run;
proc freq data=one;

tables A / missing;
weight Freq;
title 'MISSING Option';

run;

Figure 40.12 displays the frequency tables produced by this example. The first table shows PROC FREQ’s
default behavior for handling missing values. The observation with a missing value of the TABLES variable
A is not included in the table, and the frequency of missing values is displayed below the table. The second
table, for which the MISSPRINT option is specified, displays the missing observation but does not include its
frequency when computing the total frequency and percentages. The third table shows that PROC FREQ
treats the missing level as a valid nonmissing level when the MISSING option is specified. The table displays
the missing level, and PROC FREQ includes this level when computing frequencies and percentages.

Figure 40.12 Missing Values in Frequency Tables

Default

The FREQ Procedure

Default

The FREQ Procedure

A Frequency Percent
Cumulative
Frequency

Cumulative
Percent

1 2 50.00 2 50.00

2 2 50.00 4 100.00

Frequency Missing = 2
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Figure 40.12 continued

MISSPRINT Option

The FREQ Procedure

MISSPRINT Option

The FREQ Procedure

A Frequency Percent
Cumulative
Frequency

Cumulative
Percent

. 2 . . .

1 2 50.00 2 50.00

2 2 50.00 4 100.00

Frequency Missing = 2

MISSING Option

The FREQ Procedure

MISSING Option

The FREQ Procedure

A Frequency Percent
Cumulative
Frequency

Cumulative
Percent

. 2 33.33 2 33.33

1 2 33.33 4 66.67

2 2 33.33 6 100.00

When a combination of variable values for a two-way table is missing, PROC FREQ assigns zero to the
frequency count for the table cell. By default, PROC FREQ does not display missing combinations in LIST
format. Also, PROC FREQ does not include missing combinations in the OUT= output data set by default.
To include missing combinations, you can specify the SPARSE option with the LIST or OUT= option in the
TABLES statement.

In-Database Computation
The FREQ procedure can use in-database computation to construct frequency and crosstabulation tables
when the DATA= input data set is stored as a table in a supported database management system (DBMS).
Supported databases include Teradata, DB2 under UNIX, and Oracle. In-database computation can provide
the advantages of faster processing and reduced data transfer between the database and SAS software. For
information about in-database computation, see the section “In-Database Procedures” in SAS/ACCESS for
Relational Databases: Reference.

PROC FREQ performs in-database computation by using SQL implicit pass-through. The procedure generates
SQL queries that are based on the tables that you request in the TABLES statement. The database executes
these SQL queries to construct initial summary tables, which are then transmitted to PROC FREQ. The
procedure uses this summary information to perform the remaining analyses and tasks in the usual way (out
of the database). So instead of transferring the entire data set over the network between the database and SAS
software, the in-database method transfers only the summary tables. This can substantially reduce processing
time when the dimensions of the summary tables (in terms of rows and columns) are much smaller than
the dimensions of the entire database table (in terms of individual observations). Additionally, in-database
summarization uses efficient parallel processing, which can also provide performance advantages.

In-database computation is controlled by the SQLGENERATION option, which you can specify in either a
LIBNAME statement or an OPTIONS statement. See the section “In-Database Procedures” in SAS/ACCESS
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for Relational Databases: Reference for details about the SQLGENERATION option and other options that
affect in-database computation. By default, PROC FREQ uses in-database computation when possible. There
are no FREQ procedure options that control in-database computation.

PROC FREQ uses formatted values to group observations into the levels of frequency and crosstabulation
tables. See the section “Grouping with Formats” on page 2642 for more information. If formats are available
in the database, then in-database summarization uses the formats. If formats are not available in the database,
then in-database summarization is based on the raw data values, and PROC FREQ performs the final,
formatted classification (out of the database). For more information, see the section “Deploying and Using
SAS Formats in Teradata” in SAS/ACCESS for Relational Databases: Reference.

The order of observations is not inherently defined for DBMS tables. The following options relate to the
order of observations and therefore should not be specified for PROC FREQ in-database computation:

• If you specify the FIRSTOBS= or OBS= data set option, PROC FREQ does not perform in-database
computation.

• If you specify the NOTSORTED option in the BY statement, PROC FREQ in-database computation
ignores it and uses the default ASCENDING order for BY variables.

• If you specify the ORDER=DATA option for input data in a DBMS table, PROC FREQ computation
might produce different results for separate runs of the same analysis. In addition to determining the
order of variable levels in crosstabulation table displays, the ORDER= option can also affect the values
of many of the test statistics and measures that PROC FREQ computes.

Statistical Computations

Definitions and Notation

A two-way table represents the crosstabulation of row variable X and column variable Y. Let the table row
values or levels be denoted by Xi , i D 1; 2; : : : ; R, and the column values by Yj , j D 1; 2; : : : ; C . Let nij
denote the frequency of the table cell in the ith row and jth column and define the following notation:

ni � D
X
j

nij (row totals)

n�j D
X
i

nij (column totals)

n D
X
i

X
j

nij (overall total)

pij D nij =n (cell percentages)

pi � D ni �=n (row percentages of total)

p�j D n�j =n (column percentages of total)

Ri D score for row i

Cj D score for column j
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NR D
X
i

ni �Ri=n (average row score)

NC D
X
j

n�jCj =n (average column score)

Aij D
X
k>i

X
l>j

nkl C
X
k<i

X
l<j

nkl

Dij D
X
k>i

X
l<j

nkl C
X
k<i

X
l>j

nkl

P D
X
i

X
j

nijAij (twice the number of concordances)

Q D
X
i

X
j

nijDij (twice the number of discordances)

Scores
PROC FREQ uses scores of the variable values to compute the Mantel-Haenszel chi-square, Pearson
correlation, Cochran-Armitage test for trend, weighted kappa coefficient, and Cochran-Mantel-Haenszel
statistics. The SCORES= option in the TABLES statement specifies the score type that PROC FREQ uses.
The available score types are TABLE, RANK, RIDIT, and MODRIDIT scores. The default score type is
TABLE. Using MODRIDIT, RANK, or RIDIT scores yields nonparametric analyses.

For numeric variables, table scores are the values of the row and column levels. If the row or column variable
is formatted, then the table score is the internal numeric value corresponding to that level. If two or more
numeric values are classified into the same formatted level, then the internal numeric value for that level is
the smallest of these values. For character variables, table scores are defined as the row numbers and column
numbers (that is, 1 for the first row, 2 for the second row, and so on).

Rank scores, which you request with the SCORES=RANK option, are defined as

R1i D
X
k<i

nk� C .ni � C 1/=2 i D 1; 2; : : : ; R

C 1j D
X
l<j

n�l C .n�j C 1/=2 j D 1; 2; : : : ; C

where R1i is the rank score of row i, and C 1j is the rank score of column j. Note that rank scores yield
midranks for tied values.

Ridit scores, which you request with the SCORES=RIDIT option, are defined as rank scores standardized by
the sample size (Bross 1958; Mack and Skillings 1980). Ridit scores are derived from the rank scores as

R2i D R
1
i =n i D 1; 2; : : : ; R

C 2j D C
1
j =n j D 1; 2; : : : ; C

Modified ridit scores (SCORES=MODRIDIT) represent the expected values of the order statistics of the
uniform distribution on (0,1) (van Elteren 1960; Lehmann and D’Abrera 2006). Modified ridit scores are
derived from rank scores as

R3i D R
1
i =.nC 1/ i D 1; 2; : : : ; R

C 3j D C
1
j =.nC 1/ j D 1; 2; : : : ; C
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Chi-Square Tests and Statistics

The CHISQ option provides chi-square tests of homogeneity or independence and measures of association
that are based on the chi-square statistic. When you specify the CHISQ option in the TABLES statement,
PROC FREQ computes the following chi-square tests for each two-way table: Pearson chi-square, likelihood
ratio chi-square, and Mantel-Haenszel chi-square tests. PROC FREQ provides the following measures of
association that are based on the Pearson chi-square statistic: phi coefficient, contingency coefficient, and
Cramér’s V. For 2 � 2 tables, the CHISQ option also provides Fisher’s exact test and the continuity-adjusted
chi-square statistic. You can request Fisher’s exact test for general R � C tables by specifying the FISHER
option in the TABLES or EXACT statement.

If you specify the CHISQ option for one-way tables, PROC FREQ provides a one-way Pearson chi-square
goodness-of-fit test. If you specify the CHISQ(LRCHI) option for one-way tables, PROC FREQ also provides
a one-way likelihood ratio chi-square test. The other tests and statistics that the CHISQ option produces are
available only for two-way tables.

For two-way tables, the null hypothesis for the chi-square tests is no association between the row variable
and the column variable. When the sample size n is large, the test statistics have asymptotic chi-square
distributions under the null hypothesis. When the sample size is not large, or when the data set is sparse
or heavily tied, exact tests might be more appropriate than asymptotic tests. PROC FREQ provides exact
p-values for the Pearson chi-square, likelihood ratio chi-square, and Mantel-Haenszel chi-square tests, in
addition to Fisher’s exact test. For one-way tables, PROC FREQ provides exact p-values for the Pearson
and likelihood ratio chi-square goodness-of-fit tests. You can request these exact tests by specifying the
corresponding options in the EXACT statement. See the section “Exact Statistics” on page 2704 for more
information.

The Mantel-Haenszel chi-square statistic is appropriate only when both variables lie on an ordinal scale. The
other chi-square tests and statistics in this section are appropriate for either nominal or ordinal variables. The
following sections give the formulas that PROC FREQ uses to compute the chi-square tests and statistics.
For more information about these statistics, see Agresti (2007) and Stokes, Davis, and Koch (2012), and the
other references cited.

Chi-Square Test for One-Way Tables
For one-way frequency tables, the CHISQ option in the TABLES statement provides a chi-square goodness-
of-fit test. Let C denote the number of classes, or levels, in the one-way table. Let fi denote the frequency
of class i (or the number of observations in class i) for i D 1; 2; : : : ; C . Then PROC FREQ computes the
one-way chi-square statistic as

QP D

CX
iD1

.fi � ei /
2=ei

where ei is the expected frequency for class i under the null hypothesis.

In the test for equal proportions, which is the default for the CHISQ option, the null hypothesis specifies
equal proportions of the total sample size for each class. Under this null hypothesis, the expected frequency
for each class equals the total sample size divided by the number of classes,

ei D n = C for i D 1; 2; : : : ; C

In the test for specified frequencies, which PROC FREQ computes when you input null hypothesis frequencies
by using the TESTF= option, the expected frequencies are the TESTF= values that you specify. In the test for
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specified proportions, which PROC FREQ computes when you input null hypothesis proportions by using
the TESTP= option, the expected frequencies are determined from the specified TESTP= proportions pi as

ei D pi � n for i D 1; 2; : : : ; C

Under the null hypothesis (of equal proportions, specified frequencies, or specified proportions), QP has an
asymptotic chi-square distribution with C–1 degrees of freedom.

In addition to the asymptotic test, you can request an exact one-way chi-square test by specifying the CHISQ
option in the EXACT statement. See the section “Exact Statistics” on page 2704 for more information.

Pearson Chi-Square Test for Two-Way Tables
The Pearson chi-square for two-way tables involves the differences between the observed and expected
frequencies, where the expected frequencies are computed under the null hypothesis of independence. The
Pearson chi-square statistic is computed as

QP D
X
i

X
j

.nij � eij /
2=eij

where nij is the observed frequency in table cell (i, j) and eij is the expected frequency for table cell (i,
j). The expected frequency is computed under the null hypothesis that the row and column variables are
independent,

eij D .ni � n�j / = n

When the row and column variables are independent, QP has an asymptotic chi-square distribution with
(R–1)(C–1) degrees of freedom. For large values of QP , this test rejects the null hypothesis in favor of the
alternative hypothesis of general association.

In addition to the asymptotic test, you can request an exact Pearson chi-square test by specifying the PCHI
or CHISQ option in the EXACT statement. See the section “Exact Statistics” on page 2704 for more
information.

For 2�2 tables, the Pearson chi-square is also appropriate for testing the equality of two binomial proportions.
For R � 2 and 2 � C tables, the Pearson chi-square tests the homogeneity of proportions. See Fienberg
(1980) for details.

Standardized Residuals
When you specify the CROSSLIST(STDRES) option in the TABLES statement for two-way or multiway
tables, PROC FREQ displays the standardized residuals in the CROSSLIST table.

The standardized residual of a crosstabulation table cell is the ratio of (frequency – expected) to its standard
error, where frequency is the table cell frequency and expected is the estimated expected cell frequency. The
expected frequency is computed under the null hypothesis that the row and column variables are independent.
See the section “Pearson Chi-Square Test for Two-Way Tables” on page 2649 for more information.

PROC FREQ computes the standardized residual of table cell (i, j) as

.nij � eij / =

q
eij .1 � pi �/.1 � p�j /
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where nij is the observed frequency of table cell (i, j), eij is the expected frequency of the table cell, pi � is
the proportion in row i (ni �=n), and p�j is the proportion in column j (n�j =n). The expected frequency of
table cell (i, j) is computed as

eij D .ni � n�j / = n

Under the null hypothesis of independence, each standardized residual has an asymptotic standard normal
distribution. See section 2.4.5 of Agresti (2007) for more information.

Likelihood Ratio Chi-Square Test for One-Way Tables
For one-way frequency tables, the CHISQ(LRCHI) option in the TABLES statement provides a likelihood
ratio chi-square goodness-of-fit test. By default, the likelihood ratio test is based on the null hypothesis of
equal proportions in the C classes (levels) of the one-way table. If you specify null hypothesis proportions or
frequencies by using the CHISQ(TESTP=) or CHISQ(TESTF=) option, respectively, the likelihood ratio test
is based on the null hypothesis values that you specify.

PROC FREQ computes the one-way likelihood ratio test as

G2 D 2

CX
iD1

fi ln.fi=ei /

where fi is the observed frequency of class i, and ei is the expected frequency of class i under the null
hypothesis.

For the null hypothesis of equal proportions, the expected frequency of each class equals the total sample
size divided by the number of classes,

ei D n = C for i D 1; 2; : : : ; C

If you provide null hypothesis frequencies by specifying the CHISQ(TESTF=) option in the TABLES
statement, the expected frequencies are the TESTF= values that you specify. If you provide null hypothesis
proportions by specifying the CHISQ(TESTP=) option in the TABLES statement, PROC FREQ computes
the expected frequencies as

ei D pi � n for i D 1; 2; : : : ; C

where the proportions pi are the TESTP= values that you specify.

Under the null hypothesis (of equal proportions, specified frequencies, or specified proportions), the likelihood
ratio statistic G2 has an asymptotic chi-square distribution with C–1 degrees of freedom.

In addition to the asymptotic test, you can request an exact one-way likelihood ratio chi-square test by
specifying the LRCHI option in the EXACT statement. See the section “Exact Statistics” on page 2704 for
more information.

Likelihood Ratio Chi-Square Test
The likelihood ratio chi-square involves the ratios between the observed and expected frequencies. The
likelihood ratio chi-square statistic is computed as

G2 D 2
X
i

X
j

nij ln
�
nij =eij

�
where nij is the observed frequency in table cell (i, j) and eij is the expected frequency for table cell (i, j).
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When the row and column variables are independent, G2 has an asymptotic chi-square distribution with
(R–1)(C–1) degrees of freedom.

In addition to the asymptotic test, you can request an exact likelihood ratio chi-square test by specifying the
LRCHI or CHISQ option in the EXACT statement. See the section “Exact Statistics” on page 2704 for more
information.

Continuity-Adjusted Chi-Square Test
The continuity-adjusted chi-square for 2 � 2 tables is similar to the Pearson chi-square, but it is adjusted
for the continuity of the chi-square distribution. The continuity-adjusted chi-square is most useful for small
sample sizes. The use of the continuity adjustment is somewhat controversial; this chi-square test is more
conservative (and more like Fisher’s exact test) when the sample size is small. As the sample size increases,
the continuity-adjusted chi-square becomes more like the Pearson chi-square.

The continuity-adjusted chi-square statistic is computed as

QC D
X
i

X
j

�
max.0; jnij � eij j � 0:5/

�2
= eij

Under the null hypothesis of independence, QC has an asymptotic chi-square distribution with (R–1)(C–1)
degrees of freedom.

Mantel-Haenszel Chi-Square Test
The Mantel-Haenszel chi-square statistic tests the alternative hypothesis that there is a linear association
between the row variable and the column variable. Both variables must lie on an ordinal scale. The
Mantel-Haenszel chi-square statistic is computed as

QMH D .n � 1/r
2

where r is the Pearson correlation between the row variable and the column variable. For a description of
the Pearson correlation, see the “Pearson Correlation Coefficient” on page 2657. The Pearson correlation
and thus the Mantel-Haenszel chi-square statistic use the scores that you specify in the SCORES= option in
the TABLES statement. See Mantel and Haenszel (1959) and Landis, Heyman, and Koch (1978) for more
information.

Under the null hypothesis of no association, QMH has an asymptotic chi-square distribution with one degree
of freedom.

In addition to the asymptotic test, you can request an exact Mantel-Haenszel chi-square test by specifying
the MHCHI or CHISQ option in the EXACT statement. See the section “Exact Statistics” on page 2704 for
more information.

Fisher’s Exact Test
Fisher’s exact test is another test of association between the row and column variables. This test assumes that
the row and column totals are fixed, and then uses the hypergeometric distribution to compute probabilities
of possible tables conditional on the observed row and column totals. Fisher’s exact test does not depend on
any large-sample distribution assumptions, and so it is appropriate even for small sample sizes and for sparse
tables.
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2 � 2 Tables For 2 � 2 tables, PROC FREQ gives the following information for Fisher’s exact test: table
probability, two-sided p-value, left-sided p-value, and right-sided p-value. The table probability equals the
hypergeometric probability of the observed table, and is in fact the value of the test statistic for Fisher’s exact
test.

Where p is the hypergeometric probability of a specific table with the observed row and column totals,
Fisher’s exact p-values are computed by summing probabilities p over defined sets of tables,

Prob D
X
A

p

The two-sided p-value is the sum of all possible table probabilities (conditional on the observed row and
column totals) that are less than or equal to the observed table probability. For the two-sided p-value, the set
A includes all possible tables with hypergeometric probabilities less than or equal to the probability of the
observed table. A small two-sided p-value supports the alternative hypothesis of association between the row
and column variables.

For 2 � 2 tables, one-sided p-values for Fisher’s exact test are defined in terms of the frequency of the cell in
the first row and first column of the table, the (1,1) cell. Denoting the observed (1,1) cell frequency by n11,
the left-sided p-value for Fisher’s exact test is the probability that the (1,1) cell frequency is less than or equal
to n11. For the left-sided p-value, the set A includes those tables with a (1,1) cell frequency less than or equal
to n11. A small left-sided p-value supports the alternative hypothesis that the probability of an observation
being in the first cell is actually less than expected under the null hypothesis of independent row and column
variables.

Similarly, for a right-sided alternative hypothesis, A is the set of tables where the frequency of the (1,1) cell
is greater than or equal to that in the observed table. A small right-sided p-value supports the alternative that
the probability of the first cell is actually greater than that expected under the null hypothesis.

Because the (1,1) cell frequency completely determines the 2 � 2 table when the marginal row and column
sums are fixed, these one-sided alternatives can be stated equivalently in terms of other cell probabilities or
ratios of cell probabilities. The left-sided alternative is equivalent to an odds ratio less than 1, where the
odds ratio equals (n11n22=n12n21). Additionally, the left-sided alternative is equivalent to the column 1 risk
for row 1 being less than the column 1 risk for row 2, p1j1 < p1j2. Similarly, the right-sided alternative is
equivalent to the column 1 risk for row 1 being greater than the column 1 risk for row 2, p1j1 > p1j2. See
Agresti (2007) for details.

R � C Tables Fisher’s exact test was extended to general R � C tables by Freeman and Halton (1951),
and this test is also known as the Freeman-Halton test. For R � C tables, the two-sided p-value definition
is the same as for 2 � 2 tables. The set A contains all tables with p less than or equal to the probability of
the observed table. A small p-value supports the alternative hypothesis of association between the row and
column variables. For R � C tables, Fisher’s exact test is inherently two-sided. The alternative hypothesis
is defined only in terms of general, and not linear, association. Therefore, Fisher’s exact test does not have
right-sided or left-sided p-values for general R � C tables.

For R � C tables, PROC FREQ computes Fisher’s exact test by using the network algorithm of Mehta and
Patel (1983), which provides a faster and more efficient solution than direct enumeration. See the section
“Exact Statistics” on page 2704 for more details.
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Phi Coefficient
The phi coefficient is a measure of association derived from the Pearson chi-square. The range of the
phi coefficient is �1 � � � 1 for 2 � 2 tables. For tables larger than 2 � 2, the range is 0 � � �

min.
p
R � 1;

p
C � 1/ (Liebetrau 1983). The phi coefficient is computed as

� D .n11n22 � n12n21/ =
p
n1�n2�n�1n�2 for 2 � 2 tables

� D
p
QP=n otherwise

See Fleiss, Levin, and Paik (2003, pp. 98–99) for more information.

Contingency Coefficient
The contingency coefficient is a measure of association derived from the Pearson chi-square. The range
of the contingency coefficient is 0 � P �

p
.m � 1/=m, where m D min.R; C / (Liebetrau 1983). The

contingency coefficient is computed as

P D
p
QP = .QP C n/

See Kendall and Stuart (1979, pp. 587–588) for more information.

Cramér’s V
Cramér’s V is a measure of association derived from the Pearson chi-square. It is designed so that the
attainable upper bound is always 1. The range of Cramér’s V is �1 � V � 1 for 2 � 2 tables; for tables
larger than 2 � 2, the range is 0 � V � 1. Cramér’s V is computed as

V D � for 2 � 2 tables

V D

s
QP=n

min.R � 1; C � 1/
otherwise

See Kendall and Stuart (1979, p. 588) for more information.

Measures of Association

When you specify the MEASURES option in the TABLES statement, PROC FREQ computes several
statistics that describe the association between the row and column variables of the contingency table. The
following are measures of ordinal association that consider whether the column variable Y tends to increase
as the row variable X increases: gamma, Kendall’s tau-b, Stuart’s tau-c, and Somers’ D. These measures are
appropriate for ordinal variables, and they classify pairs of observations as concordant or discordant. A pair
is concordant if the observation with the larger value of X also has the larger value of Y. A pair is discordant
if the observation with the larger value of X has the smaller value of Y. See Agresti (2007) and the other
references cited for the individual measures of association.

The Pearson correlation coefficient and the Spearman rank correlation coefficient are also appropriate for
ordinal variables. The Pearson correlation describes the strength of the linear association between the row
and column variables, and it is computed by using the row and column scores specified by the SCORES=
option in the TABLES statement. The Spearman correlation is computed with rank scores. The polychoric
correlation (requested by the PLCORR option) also requires ordinal variables and assumes that the variables
have an underlying bivariate normal distribution. The following measures of association do not require
ordinal variables and are appropriate for nominal variables: lambda asymmetric, lambda symmetric, and the
uncertainty coefficients.

PROC FREQ computes estimates of the measures according to the formulas given in the following sections.
For each measure, PROC FREQ computes an asymptotic standard error (ASE), which is the square root of
the asymptotic variance denoted by Var in the following sections.
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Confidence Limits
If you specify the CL option in the TABLES statement, PROC FREQ computes asymptotic confidence
limits for all MEASURES statistics. The confidence coefficient is determined according to the value of the
ALPHA= option, which, by default, equals 0.05 and produces 95% confidence limits.

The confidence limits are computed as

Est ˙ . z˛=2 �ASE /

where Est is the estimate of the measure, z˛=2 is the 100.1 � ˛=2/ percentile of the standard normal
distribution, and ASE is the asymptotic standard error of the estimate.

Asymptotic Tests
For each measure that you specify in the TEST statement, PROC FREQ computes an asymptotic test of
the null hypothesis that the measure equals zero. Asymptotic tests are available for the following measures
of association: gamma, Kendall’s tau-b, Stuart’s tau-c, Somers’ D.C jR/, Somers’ D.RjC/, the Pearson
correlation coefficient, and the Spearman rank correlation coefficient. To compute an asymptotic test, PROC
FREQ uses a standardized test statistic z, which has an asymptotic standard normal distribution under the
null hypothesis. The test statistic is computed as

z D Est =
p
Var0.Est/

where Est is the estimate of the measure and Var0.Est/ is the variance of the estimate under the null
hypothesis. Formulas for Var0.Est/ for the individual measures of association are given in the following
sections.

Note that the ratio of Est to
p
Var0.Est/ is the same for the following measures: gamma, Kendall’s tau-b,

Stuart’s tau-c, Somers’ D.C jR/, and Somers’ D.RjC/. Therefore, the tests for these measures are identical.
For example, the p-values for the test of H0W gamma D 0 equal the p-values for the test of H0W tau � b D 0.

PROC FREQ computes one-sided and two-sided p-values for each of these tests. When the test statistic z is
greater than its null hypothesis expected value of zero, PROC FREQ displays the right-sided p-value, which
is the probability of a larger value of the statistic occurring under the null hypothesis. A small right-sided
p-value supports the alternative hypothesis that the true value of the measure is greater than zero. When the
test statistic is less than or equal to zero, PROC FREQ displays the left-sided p-value, which is the probability
of a smaller value of the statistic occurring under the null hypothesis. A small left-sided p-value supports the
alternative hypothesis that the true value of the measure is less than zero. The one-sided p-value P1 can be
expressed as

P1 D

(
Prob.Z > z/ if z > 0

Prob.Z < z/ if z � 0

where Z has a standard normal distribution. The two-sided p-value P2 is computed as

P2 D Prob.jZj > jzj/

Exact Tests
Exact tests are available for the following measures of association: Kendall’s tau-b, Stuart’s tau-c, Somers’
D.C jR/ and .RjC/, the Pearson correlation coefficient, and the Spearman rank correlation coefficient. If
you request an exact test for a measure of association in the EXACT statement, PROC FREQ computes the
exact test of the hypothesis that the measure equals zero. See the section “Exact Statistics” on page 2704 for
details.
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Gamma
The gamma (�) statistic is based only on the number of concordant and discordant pairs of observations. It
ignores tied pairs (that is, pairs of observations that have equal values of X or equal values of Y). Gamma is
appropriate only when both variables lie on an ordinal scale. The range of gamma is �1 � � � 1. If the row
and column variables are independent, then gamma tends to be close to zero. Gamma is computed as

G D .P �Q/ = .P CQ/

and the asymptotic variance is

Var.G/ D
16

.P CQ/4

X
i

X
j

nij .QAij � PDij /
2

For 2 � 2 tables, gamma is equivalent to Yule’s Q. See Goodman and Kruskal (1979) and Agresti (2002) for
more information.

The variance under the null hypothesis that gamma equals zero is computed as

Var0.G/ D
4

.P CQ/2

0@X
i

X
j

nij .Aij �Dij /
2
� .P �Q/2=n

1A
See Brown and Benedetti (1977) for details.

Kendall’s Tau-b
Kendall’s tau-b (�b) is similar to gamma except that tau-b uses a correction for ties. Tau-b is appropriate only
when both variables lie on an ordinal scale. The range of tau-b is �1 � �b � 1. Kendall’s tau-b is computed
as

tb D .P �Q/ =
p
wrwc

and the asymptotic variance is

Var.tb/ D
1

w4

0@X
i

X
j

nij .2wdij C tbvij /
2
� n3t2b .wr C wc/

2

1A
where

w D
p
wrwc

wr D n2 �
X
i

n2i �

wc D n2 �
X
j

n2�j

dij D Aij �Dij

vij D ni �wc C n�jwr

See Kendall (1955) for more information.

The variance under the null hypothesis that tau-b equals zero is computed as

Var0.tb/ D
4

wrwc

0@X
i

X
j

nij .Aij �Dij /
2
� .P �Q/2=n

1A



2656 F Chapter 40: The FREQ Procedure

See Brown and Benedetti (1977) for details.

PROC FREQ also provides an exact test for the Kendall’s tau-b. You can request this test by specifying
the KENTB option in the EXACT statement. See the section “Exact Statistics” on page 2704 for more
information.

Stuart’s Tau-c
Stuart’s tau-c (�c) makes an adjustment for table size in addition to a correction for ties. Tau-c is appropriate
only when both variables lie on an ordinal scale. The range of tau-c is �1 � �c � 1. Stuart’s tau-c is
computed as

tc D m.P �Q/ = n
2.m � 1/

and the asymptotic variance is

Var.tc/ D
4m2

.m � 1/2n4

0@X
i

X
j

nijd
2
ij � .P �Q/

2=n

1A
where m D min.R; C / and dij D Aij �Dij . The variance under the null hypothesis that tau-c equals zero
is the same as the asymptotic variance Var,

Var0.tc/ D Var.tc/

See Brown and Benedetti (1977) for details.

PROC FREQ also provides an exact test for the Stuart’s tau-c. You can request this test by specifying
the STUTC option in the EXACT statement. See the section “Exact Statistics” on page 2704 for more
information.

Somers’ D
Somers’ D.C jR/ and Somers’ D.RjC/ are asymmetric modifications of tau-b. C jR indicates that the
row variable X is regarded as the independent variable and the column variable Y is regarded as dependent.
Similarly, RjC indicates that the column variable Y is regarded as the independent variable and the row
variable X is regarded as dependent. Somers’ D differs from tau-b in that it uses a correction only for pairs
that are tied on the independent variable. Somers’ D is appropriate only when both variables lie on an ordinal
scale. The range of Somers’ D is �1 � D � 1. Somers’ D.C jR/ is computed as

D.C jR/ D .P �Q/ = wr

and its asymptotic variance is

Var.D.C jR// D
4

w4r

X
i

X
j

nij
�
wrdij � .P �Q/.n � ni �/

�2
where dij D Aij �Dij and

wr D n
2
�

X
i

n2i �

For more information, see Somers (1962); Goodman and Kruskal (1979); Liebetrau (1983).
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The variance under the null hypothesis that D.C jR/ equals zero is computed as

Var0.D.C jR// D
4

w2r

0@X
i

X
j

nij .Aij �Dij /
2
� .P �Q/2=n

1A
See Brown and Benedetti (1977) for details.

Formulas for Somers’ D.RjC/ are obtained by interchanging the indices.

PROC FREQ also provides exact tests for Somers’ D.C jR/ and .RjC/. You can request these tests by
specifying the SMDCR and SMDCR options in the EXACT statement. See the section “Exact Statistics” on
page 2704 for more information.

Pearson Correlation Coefficient
The Pearson correlation coefficient (�) is computed by using the scores specified in the SCORES= option.
This measure is appropriate only when both variables lie on an ordinal scale. The range of the Pearson
correlation is �1 � � � 1. The Pearson correlation coefficient is computed as

r D v=w D ssrc=
p
ssrssc

and its asymptotic variance is

Var.r/ D
1

w4

X
i

X
j

nij

�
w.Ri � NR/.Cj � NC/ �

bij v

2w

�2
where Ri and Cj are the row and column scores and

ssr D
X
i

X
j

nij .Ri � NR/
2

ssc D
X
i

X
j

nij .Cj � NC/
2

ssrc D
X
i

X
j

nij .Ri � NR/.Cj � NC/

bij D .Ri � NR/
2ssc C .Cj � NC/2ssr

v D ssrc

w D
p
ssrssc

See Snedecor and Cochran (1989) for more information.

The SCORES= option in the TABLES statement determines the type of row and column scores used to
compute the Pearson correlation (and other score-based statistics). The default is SCORES=TABLE. See the
section “Scores” on page 2647 for details about the available score types and how they are computed.
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The variance under the null hypothesis that the correlation equals zero is computed as

Var0.r/ D

0@X
i

X
j

nij .Ri � NR/
2.Cj � NC/

2
� ss2rc=n

1A = ssrssc

Note that this expression for the variance is derived for multinomial sampling in a contingency table
framework, and it differs from the form obtained under the assumption that both variables are continuous and
normally distributed. See Brown and Benedetti (1977) for details.

PROC FREQ also provides an exact test for the Pearson correlation coefficient. You can request this test by
specifying the PCORR option in the EXACT statement. See the section “Exact Statistics” on page 2704 for
more information.

Spearman Rank Correlation Coefficient
The Spearman correlation coefficient (�s) is computed by using rank scores, which are defined in the section
“Scores” on page 2647. This measure is appropriate only when both variables lie on an ordinal scale. The
range of the Spearman correlation is �1 � �s � 1. The Spearman correlation coefficient is computed as

rs D v = w

and its asymptotic variance is

Var.rs/ D
1

n2w4

X
i

X
j

nij .zij � Nz/
2

where R1i and C 1j are the row and column rank scores and

v D
X
i

X
j

nijR.i/C.j /

w D
1

12

p
FG

F D n3 �
X
i

n3i �

G D n3 �
X
j

n3�j

R.i/ D R1i � n=2

C.j / D C 1j � n=2

Nz D
1

n

X
i

X
j

nij zij

zij D wvij � vwij
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vij D n

 
R.i/C.j / C

1

2

X
l

nilC.l/ C
1

2

X
k

nkjR.k/C

X
l

X
k>i

nklC.l/ C
X
k

X
l>j

nklR.k/

1A
wij D

�n

96w

�
Fn2�j CGn

2
i �

�
See Snedecor and Cochran (1989) for more information.

The variance under the null hypothesis that the correlation equals zero is computed as

Var0.rs/ D
1

n2w2

X
i

X
j

nij .vij � Nv/
2

where

Nv D
X
i

X
j

nij vij =n

Note that the asymptotic variance is derived for multinomial sampling in a contingency table framework,
and it differs from the form obtained under the assumption that both variables are continuous and normally
distributed. See Brown and Benedetti (1977) for details.

PROC FREQ also provides an exact test for the Spearman correlation coefficient. You can request this test by
specifying the SCORR option in the EXACT statement. See the section “Exact Statistics” on page 2704 for
more information.

Polychoric Correlation
When you specify the PLCORR option in the TABLES statement, PROC FREQ computes the polychoric
correlation and its standard error. The polychoric correlation is based on the assumption that the two ordinal,
categorical variables of the frequency table have an underlying bivariate normal distribution. The polychoric
correlation coefficient is the maximum likelihood estimate of the product-moment correlation between the
underlying normal variables. The range of the polychoric correlation is from –1 to 1. For 2 � 2 tables, the
polychoric correlation is also known as the tetrachoric correlation (and it is labeled as such in the displayed
output). See Drasgow (1986) for an overview of polychoric correlation coefficient.

Olsson (1979) gives the likelihood equations and the asymptotic standard errors for estimating the polychoric
correlation. The underlying continuous variables relate to the observed crosstabulation table through
thresholds, which define a range of numeric values that correspond to each categorical (table) level. PROC
FREQ uses Olsson’s maximum likelihood method for simultaneous estimation of the polychoric correlation
and the thresholds. (Olsson also presents a two-step method that estimates the thresholds first.)

PROC FREQ iteratively solves the likelihood equations by using a Newton-Raphson algorithm. The
initial estimates of the thresholds are computed from the inverse of the normal distribution function at the
cumulative marginal proportions of the table. Iterative computation of the polychoric correlation stops when
the convergence measure falls below the convergence criterion or when the maximum number of iterations
is reached, whichever occurs first. For parameter values that are less than 0.01, the procedure evaluates
convergence by using the absolute difference instead of the relative difference. The PLCORR(CONVERGE=)
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option specifies the convergence criterion, which is 0.0001 by default. The PLCORR(MAXITER=) option
specifies the maximum number of iterations, which is 20 by default.

If you specify the CL option in the TABLES statement, PROC FREQ provides confidence limits for the
polychoric correlation. The confidence limits are computed as

O� ˙ . z˛=2 � SE. O�/ /

where O� is the estimate of the polychoric correlation, z˛=2 is the 100.1 � ˛=2/ percentile of the standard
normal distribution, and SE. O�/ is the standard error of the polychoric correlation estimate.

If you specify the PLCORR option in the TEST statement, PROC FREQ provides Wald and likelihood ratio
tests of the null hypothesis that the polychoric correlation equals 0. The Wald test statistic is computed as

z D O� = SE. O�/

which has a standard normal distribution under the null hypothesis. PROC FREQ computes one-sided and
two-sided p-values for the Wald test. When the test statistic z is greater than its null expected value of 0,
PROC FREQ displays the right-sided p-value. When the test statistic is less than or equal to 0, PROC FREQ
displays the left-sided p-value.

The likelihood ratio statistic for the polychoric correlation is computed as

G2 D �2 ln.L0=L1/

where L0 is the value of the likelihood function (Olsson 1979) when the polychoric correlation is 0, and L1
is the value of the likelihood function at the maximum (where all parameters are replaced by their maximum
likelihood estimates). Under the null hypothesis, the likelihood ratio statistic has an asymptotic chi-square
distribution with one degree of freedom.

Lambda (Asymmetric)
Asymmetric lambda, �.C jR/, is interpreted as the probable improvement in predicting the column variable
Y given knowledge of the row variable X. The range of asymmetric lambda is 0 � �.C jR/ � 1. Asymmetric
lambda (C jR) is computed as

�.C jR/ D

P
i ri � r

n � r

and its asymptotic variance is

Var.�.C jR// D
n �

P
i ri

.n � r/3

 X
i

ri C r � 2
X
i

.ri j li D l/

!

where

ri D max
j
.nij /

r D max
j
.n�j /

cj D max
i
.nij /

c D max
i
.ni �/
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The values of li and l are determined as follows. Denote by li the unique value of j such that ri D nij , and let
l be the unique value of j such that r D n�j . Because of the uniqueness assumptions, ties in the frequencies
or in the marginal totals must be broken in an arbitrary but consistent manner. In case of ties, l is defined as
the smallest value of j such that r D n�j .

For those columns containing a cell (i, j) for which nij D ri D cj , csj records the row in which cj is
assumed to occur. Initially csj is set equal to –1 for all j. Beginning with i=1, if there is at least one value j
such that nij D ri D cj , and if csj D �1, then li is defined to be the smallest such value of j, and csj is set
equal to i. Otherwise, if nil D ri , then li is defined to be equal to l. If neither condition is true, then li is
taken to be the smallest value of j such that nij D ri .

The formulas for lambda asymmetric .RjC/ can be obtained by interchanging the indices.

See Goodman and Kruskal (1979) for more information.

Lambda (Symmetric)
The nondirectional lambda is the average of the two asymmetric lambdas, �.C jR/ and �.RjC/. Its range is
0 � � � 1. Lambda symmetric is computed as

� D

P
i ri C

P
j cj � r � c

2n � r � c
D
w � v

w

and its asymptotic variance is computed as

Var.�/ D
1

w4

�
wvy � 2w2

�
n �

X
i

X
j

.nij j j D li ; i D kj /
�
� 2v2.n � nkl/

�
where

ri D max
j
.nij /

r D max
j
.n�j /

cj D max
i
.nij /

c D max
i
.ni �/

w D 2n � r � c

v D 2n �
X
i

ri �
X
j

cj

x D

X
i

.ri j li D l/ C
X
j

.cj j kj D k/ C rk C cl

y D 8n � w � v � 2x

The definitions of li and l are given in the previous section. The values kj and k are defined in a similar way
for lambda asymmetric (RjC ).

See Goodman and Kruskal (1979) for more information.
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Uncertainty Coefficients (Asymmetric)
The uncertainty coefficient U.C jR/ measures the proportion of uncertainty (entropy) in the column variable
Y that is explained by the row variable X. Its range is 0 � U.C jR/ � 1. The uncertainty coefficient is
computed as

U.C jR/ D .H.X/CH.Y / �H.XY // = H.Y / D v=w

and its asymptotic variance is

Var.U.C jR// D
1

n2w4

X
i

X
j

nij
�
H.Y / ln

�
nij

ni �

�
C .H.X/ �H.XY // ln

�n�j
n

��2
where

v D H.X/CH.Y / �H.XY /

w D H.Y /

H.X/ D �

X
i

�ni �
n

�
ln
�ni �
n

�
H.Y / D �

X
j

�n�j
n

�
ln
�n�j
n

�

H.XY / D �

X
i

X
j

�nij
n

�
ln
�nij
n

�

The formulas for the uncertainty coefficient U.RjC/ can be obtained by interchanging the indices.

See Theil (1972, pp. 115–120) and Goodman and Kruskal (1979) for more information.

Uncertainty Coefficient (Symmetric)
The uncertainty coefficient U is the symmetric version of the two asymmetric uncertainty coefficients. Its
range is 0 � U � 1. The uncertainty coefficient is computed as

U D 2 .H.X/CH.Y / �H.XY // = .H.X/CH.Y //

and its asymptotic variance is

Var.U / D 4
X
i

X
j

nij

�
H.XY / ln

�
ni �n�j
n2

�
� .H.X/CH.Y // ln

�nij
n

��2
n2 .H.X/CH.Y //4

where H.X/, H.Y /, and H.XY / are defined in the previous section. See Goodman and Kruskal (1979) for
more information.
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Binomial Proportion

If you specify the BINOMIAL option in the TABLES statement, PROC FREQ computes the binomial
proportion for one-way tables. By default, this is the proportion of observations in the first variable level that
appears in the output. (You can use the LEVEL= option to specify a different level for the proportion.) The
binomial proportion is computed as

Op D n1 = n

where n1 is the frequency of the first (or designated) level and n is the total frequency of the one-way table.
The standard error of the binomial proportion is computed as

se. Op/ D
p
Op .1 � Op/ = n

Binomial Confidence Limits
PROC FREQ provides Wald and exact (Clopper-Pearson) confidence limits for the binomial proportion. You
can also request the following binomial confidence limit types by specifying the BINOMIAL(CL=) option:
Agresti-Coull, Blaker, Jeffreys, exact mid-p, likelihood ratio, logit, and Wilson (score). For more information,
see Brown, Cai, and DasGupta (2001), Agresti and Coull (1998), and Newcombe (1998b), in addition to the
references cited for each confidence limit type.

Wald Confidence Limits Wald asymptotic confidence limits are based on the normal approximation to
the binomial distribution. PROC FREQ computes the Wald confidence limits for the binomial proportion as

Op ˙ . z˛=2 � se. Op/ /

where z˛=2 is the 100.1 � ˛=2/ percentile of the standard normal distribution. The confidence level ˛ is
determined by the ALPHA= option, which, by default, equals 0.05 and produces 95% confidence limits.

If you specify CL=WALD(CORRECT) or the CORRECT binomial-option, PROC FREQ includes a continuity
correction of 1=2n in the Wald asymptotic confidence limits. The purpose of this correction is to adjust for
the difference between the normal approximation and the discrete binomial distribution. See Fleiss, Levin,
and Paik (2003) for more information. The continuity-corrected Wald confidence limits for the binomial
proportion are computed as

Op ˙ . z˛=2 � se. Op/ C .1=2n/ /

Exact (Clopper-Pearson) Confidence Limits Exact (Clopper-Pearson) confidence limits for the binomial
proportion are constructed by inverting the equal-tailed test based on the binomial distribution. This method
is attributed to Clopper and Pearson (1934). The exact confidence limits PL and PU satisfy the following
equations, for n1 D 1; 2; : : : n � 1:

nX
xDn1

 
n

x

!
P x
L .1 � PL/

n�x
D ˛=2

n1X
xD0

 
n

x

!
P x
U .1 � PU /

n�x
D ˛=2

The lower confidence limit is 0 when n1 D 0, and the upper confidence limit is 1 when n1 D n.
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PROC FREQ computes the exact (Clopper-Pearson) confidence limits by using the F distribution as

PL D

�
1C

n � n1 C 1

n1 F. ˛=2; 2n1; 2.n � n1 C 1/ /

��1

PU D

�
1C

n � n1

.n1 C 1/ F. 1 � ˛=2; 2.n1 C 1/; 2.n � n1/ /

��1
where F.˛=2; b; c/ is the ˛=2 percentile of the F distribution with b and c degrees of freedom. See Leemis
and Trivedi (1996) for a derivation of this expression. Also see Collett (1991) for more information about
exact binomial confidence limits.

Because this is a discrete problem, the confidence coefficient (coverage probability) of the exact (Clopper-
Pearson) interval is not exactly .1 � ˛/ but is at least .1 � ˛/. Thus, this confidence interval is conservative.
Unless the sample size is large, the actual coverage probability can be much larger than the target value. For
more information about the performance of these confidence limits, see Agresti and Coull (1998), Brown,
Cai, and DasGupta (2001), and Leemis and Trivedi (1996).

Agresti-Coull Confidence Limits If you specify the CL=AGRESTICOULL binomial-option, PROC
FREQ computes Agresti-Coull confidence limits for the binomial proportion as

Qp ˙ . z˛=2 �
p
Qp .1 � Qp/ = Qn /

where

Qn1 D n1 C z
2
˛=2=2

Qn D nC z2˛=2

Qp D Qn1 = Qn

The Agresti-Coull confidence interval has the same general form as the standard Wald interval but uses Qp
in place of Op. For ˛ D 0:05, the value of z˛=2 is close to 2, and this interval is the “add 2 successes and 2
failures” adjusted Wald interval of Agresti and Coull (1998).

Blaker Confidence Limits If you specify the CL=BLAKER binomial-option, PROC FREQ computes
Blaker confidence limits for the binomial proportion, which are constructed by inverting the two-sided exact
Blaker test (Blaker 2000). The 100.1�˛/% Blaker confidence interval consists of all values of the proportion
p0 for which the test statistic B.p0 ; n1/ falls in the acceptance region,

fp0 W B.p0 ; n1/ > ˛g

where

B.p0 ; n1/ D Prob. .p0 ; X/ � .p0 ; n1/ j p0 /

.p0 ; n1/ D min. Prob. X � n1 j p0 /; Prob. X � n1 j p0 / /

and X is a binomial random variable. For more information, see Blaker (2000).
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Jeffreys Confidence Limits If you specify the CL=JEFFREYS binomial-option, PROC FREQ computes
Jeffreys confidence limits for the binomial proportion as�

ˇ.˛=2; n1 C 1=2; n � n1 C 1=2/; ˇ.1 � ˛=2; n1 C 1=2; n � n1 C 1=2/
�

where ˇ.˛; b; c/ is the ˛ percentile of the beta distribution with shape parameters b and c. The lower
confidence limit is set to 0 when n1 D 0, and the upper confidence limit is set to 1 when n1 D n. This
is an equal-tailed interval based on the noninformative Jeffreys prior for a binomial proportion. For more
information, see Brown, Cai, and DasGupta (2001). For information about using beta priors for inference on
the binomial proportion, see Berger (1985).

Likelihood Ratio Confidence Limits If you specify the CL=LIKELIHOODRATIO binomial-option,
PROC FREQ computes likelihood ratio confidence limits for the binomial proportion by inverting the
likelihood ratio test. The likelihood ratio test statistic for the null hypothesis that the proportion equals p0
can be expressed as

L.p0 D �2 .n1 log. Op=p0 / C .n � n1/ log..1 � Op/=.1 � p0 ///

The 100.1 � ˛/% likelihood ratio confidence interval consists of all values of p0 for which the test statistic
L.p0 / falls in the acceptance region,

fp0 W L.p0 / < �
2
1;˛g

where �21;˛ is the 100.1 � ˛/ percentile of the chi-square distribution with one degree of freedom. PROC
FREQ finds the confidence limits by iterative computation. For more information, see Fleiss, Levin, and Paik
(2003), Brown, Cai, and DasGupta (2001), Agresti (2013), and Newcombe (1998b).

Logit Confidence Limits If you specify the CL=LOGIT binomial-option, PROC FREQ computes logit
confidence limits for the binomial proportion, which are based on the logit transformation Y D log. Op=.1� Op//.
Approximate confidence limits for Y are computed as

YL D log. Op=.1 � Op// � z˛=2
p
n=.n1.n � n1//

YU D log. Op=.1 � Op// C z˛=2
p
n=.n1.n � n1//

The confidence limits for Y are inverted to produce 100.1 � ˛/% logit confidence limits PL and PU for the
binomial proportion p as

PL D exp.YL=.1C exp.YL//

PU D exp.YU =.1C exp.YU //

For more information, see Brown, Cai, and DasGupta (2001) and Korn and Graubard (1998).

Mid-p Confidence Limits If you specify the CL=MIDP binomial-option, PROC FREQ computes exact
mid-p confidence limits for the binomial proportion by inverting two one-sided binomial tests that include mid-
p tail areas. The mid-p approach replaces the probability of the observed frequency by half of that probability
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in the Clopper-Pearson sum, which is described in the section “Exact (Clopper-Pearson) Confidence Limits”
on page 2663. The exact mid-p confidence limits PL and PU are the solutions to the following equations:

nX
xDn1C1

 
n

x

!
P x
L .1 � PL/

n�x
C

1

2

 
n

n1

!
P
n1

L .1 � PL/
n�n1 D ˛=2

n1�1X
xD0

 
n

x

!
P x
U .1 � PU /

n�x
C

1

2

 
n

n1

!
P
n1

U .1 � PU /
n�n1 D ˛=2

For more information, see Agresti and Gottard (2007), Agresti (2013), Newcombe (1998b), and Brown, Cai,
and DasGupta (2001).

Wilson (Score) Confidence Limits If you specify the CL=WILSON binomial-option, PROC FREQ
computes Wilson confidence limits for the binomial proportion. These are also known as score confidence
limits (Wilson 1927). The confidence limits are based on inverting the normal test that uses the null proportion
in the variance (the score test). Wilson confidence limits are the roots of

jp � Opj D z˛=2
p
p.1 � p/=n

and are computed as 
Op C z2˛=2=2n ˙ z˛=2

r�
Op.1 � Op/C z2

˛=2
=4n

�
=n

!
=
�
1C z2˛=2=n

�
If you specify CL=WILSON(CORRECT) or the CORRECT binomial-option, PROC FREQ provides
continuity-corrected Wilson confidence limits, which are computed as the roots of

jp � Opj � 1=2n D z˛=2
p
p.1 � p/=n

The Wilson interval has been shown to have better performance than the Wald interval and the exact (Clopper-
Pearson) interval. For more information, see Agresti and Coull (1998), Brown, Cai, and DasGupta (2001),
and Newcombe (1998b).

Binomial Tests
The BINOMIAL option provides an asymptotic equality test for the binomial proportion by default. You can
also specify binomial-options to request tests of noninferiority, superiority, and equivalence for the binomial
proportion. If you specify the BINOMIAL option in the EXACT statement, PROC FREQ also computes
exact p-values for the tests that you request with the binomial-options.

Equality Test PROC FREQ computes an asymptotic test of the hypothesis that the binomial proportion
equals p0, where you can specify the value of p0 with the P= binomial-option. If you do not specify a null
value with P=, PROC FREQ uses p0 D 0:5 by default. The binomial test statistic is computed as

z D . Op � p0/=se

By default, the standard error is based on the null hypothesis proportion as

se D
p
p0.1 � p0/=n
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If you specify the VAR=SAMPLE binomial-option, the standard error is computed from the sample proportion
as

se D
p
Op.1 � Op/=n

If you specify the CORRECT binomial-option, PROC FREQ includes a continuity correction in the asymptotic
test statistic, towards adjusting for the difference between the normal approximation and the discrete binomial
distribution. See Fleiss, Levin, and Paik (2003) for details. The continuity correction of .1=2n/ is subtracted
from the numerator of the test statistic if . Op � p0/ is positive; otherwise, the continuity correction is added to
the numerator.

PROC FREQ computes one-sided and two-sided p-values for this test. When the test statistic z is greater than
zero (its expected value under the null hypothesis), PROC FREQ computes the right-sided p-value, which
is the probability of a larger value of the statistic occurring under the null hypothesis. A small right-sided
p-value supports the alternative hypothesis that the true value of the proportion is greater than p0. When
the test statistic is less than or equal to zero, PROC FREQ computes the left-sided p-value, which is the
probability of a smaller value of the statistic occurring under the null hypothesis. A small left-sided p-value
supports the alternative hypothesis that the true value of the proportion is less than p0. The one-sided p-value
P1 can be expressed as

P1 D

(
Prob.Z > z/ if z > 0

Prob.Z < z/ if z � 0

where Z has a standard normal distribution. The two-sided p-value is computed as P2 D 2 � P1.

If you specify the BINOMIAL option in the EXACT statement, PROC FREQ also computes an exact test
of the null hypothesis H0Wp D p0. To compute the exact test, PROC FREQ uses the binomial probability
function,

Prob.X D x j p0/ D

 
n

x

!
p x
0 .1 � p0/

.n�x/ for x D 0; 1; 2; : : : ; n

where the variable X has a binomial distribution with parameters n and p0. To compute the left-sided p-value,
Prob.X � n1/, PROC FREQ sums the binomial probabilities over x from zero to n1. To compute the
right-sided p-value, Prob.X � n1/, PROC FREQ sums the binomial probabilities over x from n1 to n. The
exact one-sided p-value is the minimum of the left-sided and right-sided p-values,

P1 D min . Prob.X � n1 j p0/; Prob.X � n1 j p0/ /

and the exact two-sided p-value is computed as P2 D 2 � P1.

Noninferiority Test If you specify the NONINF binomial-option, PROC FREQ provides a noninferiority
test for the binomial proportion. The null hypothesis for the noninferiority test is

H0Wp � p0 � �ı

versus the alternative

HaWp � p0 > �ı



2668 F Chapter 40: The FREQ Procedure

where ı is the noninferiority margin and p0 is the null proportion. Rejection of the null hypothesis indicates
that the binomial proportion is not inferior to the null value. See Chow, Shao, and Wang (2003) for more
information.

You can specify the value of ı with the MARGIN= binomial-option, and you can specify p0 with the P=
binomial-option. By default, ı D 0:2 and p0 D 0:5.

PROC FREQ provides an asymptotic Wald test for noninferiority. The test statistic is computed as

z D . Op � p�0 / = se

where p�0 is the noninferiority limit,

p�0 D p0 � ı

By default, the standard error is computed from the sample proportion as

se D
p
Op.1 � Op/=n

If you specify the VAR=NULL binomial-option, the standard error is based on the noninferiority limit
(determined by the null proportion and the margin) as

se D
q
p�0 .1 � p

�
0 /=n

If you specify the CORRECT binomial-option, PROC FREQ includes a continuity correction in the asymptotic
test statistic z. The continuity correction of .1=2n/ is subtracted from the numerator of the test statistic if
. Op � p�0 / is positive; otherwise, the continuity correction is added to the numerator.

The p-value for the noninferiority test is

Pz D Prob.Z > z/

where Z has a standard normal distribution.

As part of the noninferiority analysis, PROC FREQ provides asymptotic Wald confidence limits for the
binomial proportion. These confidence limits are computed as described in the section “Wald Confidence
Limits” on page 2663 but use the same standard error (VAR=NULL or VAR=SAMPLE) as the noninferiority
test statistic z. The confidence coefficient is 100.1 � 2˛/% (Schuirmann 1999). By default, if you do not
specify the ALPHA= option, the noninferiority confidence limits are 90% confidence limits. You can compare
the confidence limits to the noninferiority limit, p�0 D p0 � ı.

If you specify the BINOMIAL option in the EXACT statement, PROC FREQ provides an exact noninferiority
test for the binomial proportion. The exact p-value is computed by using the binomial probability function
with parameters p�0 and n,

Px D

kDnX
kDn1

 
n

k

!
.p�0 /

k .1 � p�0 /
.n�k/

See Chow, Shao, and Wang (2003, p. 116) for details. If you request exact binomial statistics, PROC
FREQ also includes exact (Clopper-Pearson) confidence limits for the binomial proportion in the equivalence
analysis display. See the section “Exact (Clopper-Pearson) Confidence Limits” on page 2663 for details.
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Superiority Test If you specify the SUP binomial-option, PROC FREQ provides a superiority test for the
binomial proportion. The null hypothesis for the superiority test is

H0Wp � p0 � ı

versus the alternative

HaWp � p0 > ı

where ı is the superiority margin and p0 is the null proportion. Rejection of the null hypothesis indicates that
the binomial proportion is superior to the null value. You can specify the value of ı with the MARGIN=
binomial-option, and you can specify the value of p0 with the P= binomial-option. By default, ı D 0:2 and
p0 D 0:5.

The superiority analysis is identical to the noninferiority analysis but uses a positive value of the margin ı in
the null hypothesis. The superiority limit equals p0 C ı. The superiority computations follow those in the
section “Noninferiority Test” on page 2667 but replace –ı with ı. See Chow, Shao, and Wang (2003) for
more information.

Equivalence Test If you specify the EQUIV binomial-option, PROC FREQ provides an equivalence test
for the binomial proportion. The null hypothesis for the equivalence test is

H0Wp � p0 � ıL or p � p0 � ıU

versus the alternative

HaW ıL < p � p0 < ıU

where ıL is the lower margin, ıU is the upper margin, and p0 is the null proportion. Rejection of the null
hypothesis indicates that the binomial proportion is equivalent to the null value. See Chow, Shao, and Wang
(2003) for more information.

You can specify the value of the margins ıL and ıU with the MARGIN= binomial-option. If you do not
specify MARGIN=, PROC FREQ uses lower and upper margins of –0.2 and 0.2 by default. If you specify
a single margin value ı, PROC FREQ uses lower and upper margins of –ı and ı. You can specify the null
proportion p0 with the P= binomial-option. By default, p0 D 0:5.

PROC FREQ computes two one-sided tests (TOST) for equivalence analysis (Schuirmann 1987). The TOST
approach includes a right-sided test for the lower margin and a left-sided test for the upper margin. The
overall p-value is taken to be the larger of the two p-values from the lower and upper tests.

For the lower margin, the asymptotic Wald test statistic is computed as

zL D . Op � p
�
L/ = se

where the lower equivalence limit is

p�L D p0 C ıL

By default, the standard error is computed from the sample proportion as

se D
p
Op.1 � Op/=n
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If you specify the VAR=NULL binomial-option, the standard error is based on the lower equivalence limit
(determined by the null proportion and the lower margin) as

se D
q
p�L.1 � p

�
L/=n

If you specify the CORRECT binomial-option, PROC FREQ includes a continuity correction in the asymptotic
test statistic zL. The continuity correction of .1=2n/ is subtracted from the numerator of the test statistic
. Op � p�L/ if the numerator is positive; otherwise, the continuity correction is added to the numerator.

The p-value for the lower margin test is

Pz;L D Prob.Z > zL/

The asymptotic test for the upper margin is computed similarly. The Wald test statistic is

zU D . Op � p
�
U / = se

where the upper equivalence limit is

p�U D p0 C ıU

By default, the standard error is computed from the sample proportion. If you specify the VAR=NULL
binomial-option, the standard error is based on the upper equivalence limit as

se D
q
p�U .1 � p

�
U /=n

If you specify the CORRECT binomial-option, PROC FREQ includes a continuity correction of .1=2n/ in
the asymptotic test statistic zU .

The p-value for the upper margin test is

Pz;U D Prob.Z < zU /

Based on the two one-sided tests (TOST), the overall p-value for the test of equivalence equals the larger
p-value from the lower and upper margin tests, which can be expressed as

Pz D max.Pz;L ; Pz;U /

As part of the equivalence analysis, PROC FREQ provides asymptotic Wald confidence limits for the binomial
proportion. These confidence limits are computed as described in the section “Wald Confidence Limits” on
page 2663, but use the same standard error (VAR=NULL or VAR=SAMPLE) as the equivalence test statistics
and have a confidence coefficient of 100.1 � 2˛/% (Schuirmann 1999). By default, if you do not specify the
ALPHA= option, the equivalence confidence limits are 90% limits. If you specify VAR=NULL, separate
standard errors are computed for the lower and upper margin tests, each based on the null proportion and the
corresponding (lower or upper) margin. The confidence limits are computed by using the maximum of these
two standard errors. You can compare the confidence limits to the equivalence limits, .p0 C ıL; p0 C ıU /.

If you specify the BINOMIAL option in the EXACT statement, PROC FREQ also provides an exact
equivalence test by using two one-sided exact tests (TOST). The procedure computes lower and upper
margin exact tests by using the binomial probability function as described in the section “Noninferiority
Test” on page 2667. The overall exact p-value for the equivalence test is taken to be the larger p-value
from the lower and upper margin exact tests. If you request exact statistics, PROC FREQ also includes
exact (Clopper-Pearson) confidence limits in the equivalence analysis display. The confidence coefficient
is 100.1 � 2˛/% (Schuirmann 1999). See the section “Exact (Clopper-Pearson) Confidence Limits” on
page 2663 for details.
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Risks and Risk Differences

The RISKDIFF option in the TABLES statement provides estimates of risks (binomial proportions) and
risk differences for 2 � 2 tables. This analysis might be appropriate when comparing the proportion of
some characteristic for two groups, where row 1 and row 2 correspond to the two groups, and the columns
correspond to two possible characteristics or outcomes. For example, the row variable might be a treatment
or dose, and the column variable might be the response. For more information, see Collett (1991); Fleiss,
Levin, and Paik (2003); Stokes, Davis, and Koch (2012).

Let the frequencies of the 2 � 2 table be represented as follows.

Column 1 Column 2 Total
Row 1 n11 n12 n1�
Row 2 n21 n22 n2�
Total n�1 n�2 n

By default when you specify the RISKDIFF option, PROC FREQ provides estimates of the row 1 risk
(proportion), the row 2 risk, the overall risk, and the risk difference for column 1 and for column 2 of the
2 � 2 table. The risk difference is defined as the row 1 risk minus the row 2 risk. The risks are binomial
proportions of their rows (row 1, row 2, or overall), and the computation of their standard errors and Wald
confidence limits follow the binomial proportion computations, which are described in the section “Binomial
Proportion” on page 2663.

The column 1 risk for row 1 is the proportion of row 1 observations classified in column 1,

Op1 D n11 = n1�

which estimates the conditional probability of the column 1 response, given the first level of the row variable.
The column 1 risk for row 2 is the proportion of row 2 observations classified in column 1,

Op2 D n21 = n2�

The overall column 1 risk is the proportion of all observations classified in column 1,

Op D n�1 = n

The column 1 risk difference compares the risks for the two rows, and it is computed as the column 1 risk for
row 1 minus the column 1 risk for row 2,

Od D Op1 � Op2

The standard error of the column 1 risk for row i is computed as

se. Opi / D
p
Opi .1 � Opi / = ni �

The standard error of the overall column 1 risk is computed as

se. Op/ D
p
Op .1 � Op/ = n

Where the two rows represent independent binomial samples, the standard error of the column 1 risk
difference is computed as

se. Od/ D
p
Op1.1 � Op1/=n1� C Op2.1 � Op2/=n2�

The computations are similar for the column 2 risks and risk difference.



2672 F Chapter 40: The FREQ Procedure

Confidence Limits
By default, the RISKDIFF option provides Wald asymptotic confidence limits for the risks (row 1, row 2, and
overall) and the risk difference. By default, the RISKDIFF option also provides exact (Clopper-Pearson)
confidence limits for the risks. You can suppress the display of this information by specifying the NORISKS
riskdiff-option. You can specify riskdiff-options to request tests and other types of confidence limits for the
risk difference. See the sections “Risk Difference Confidence Limits” on page 2672 and “Risk Difference
Tests” on page 2675 for more information.

The risks are equivalent to the binomial proportions of their corresponding rows. This section describes the
Wald confidence limits that are provided by default when you specify the RISKDIFF option. The BINOMIAL
option provides additional confidence limit types and tests for risks (binomial proportions). See the sections
“Binomial Confidence Limits” on page 2663 and “Binomial Tests” on page 2666 for details.

The Wald confidence limits are based on the normal approximation to the binomial distribution. PROC FREQ
computes the Wald confidence limits for the risks and risk differences as

Est ˙ . z˛=2 � se.Est/ /

where Est is the estimate, z˛=2 is the 100.1�˛=2/ percentile of the standard normal distribution, and se.Est/
is the standard error of the estimate. The confidence level ˛ is determined by the value of the ALPHA=
option; the default of ALPHA=0.05 produces 95% confidence limits.

If you specify the CORRECT riskdiff-option, PROC FREQ includes continuity corrections in the Wald
confidence limits for the risks and risk differences. The purpose of a continuity correction is to adjust for the
difference between the normal approximation and the binomial distribution, which is discrete. See Fleiss,
Levin, and Paik (2003) for more information. The continuity-corrected Wald confidence limits are computed
as

Est ˙ . z˛=2 � se.Est/C cc /

where cc is the continuity correction. For the row 1 risk, cc D .1=2n1�/; for the row 2 risk, cc D .1=2n2�/;
for the overall risk, cc D .1=2n/; and for the risk difference, cc D ..1=n1� C 1=n2�/=2/. The column 1 and
column 2 risks use the same continuity corrections.

By default when you specify the RISKDIFF option, PROC FREQ also provides exact (Clopper-Pearson)
confidence limits for the column 1, column 2, and overall risks. These confidence limits are constructed by
inverting the equal-tailed test that is based on the binomial distribution. See the section “Exact (Clopper-
Pearson) Confidence Limits” on page 2663 for details.

Risk Difference Confidence Limits You can request additional confidence limits for the risk difference
by specifying the CL= riskdiff-option. Available confidence limit types include Agresti-Caffo, exact uncon-
ditional, Hauck-Anderson, Miettinen-Nurminen (score), Newcombe (hybrid-score), and Wald confidence
limits. Continuity-corrected Newcombe and Wald confidence limits are also available.

The confidence coefficient for the confidence limits produced by the CL= riskdiff-option is 100.1 � ˛/%,
where the value of ˛ is determined by the ALPHA= option. The default of ALPHA=0.05 produces 95%
confidence limits. This differs from the test-based confidence limits that are provided with the equivalence,
noninferiority, and superiority tests, which have a confidence coefficient of 100.1 � 2˛/% (Schuirmann
1999). See the section “Risk Difference Tests” on page 2675 for details.

The section “Exact Unconditional Confidence Limits for the Risk Difference” on page 2679 describes the
computation of the exact confidence limits. The confidence limits are constructed by inverting two separate
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one-sided exact tests (tail method). By default, the tests are based on the unstandardized risk difference. If
you specify the RISKDIFF(METHOD=SCORE) option, the tests are based on the score statistic.

The following sections describe the computation of the Agresti-Coull, Hauck-Anderson, Miettinen-Nurminen
(score), Newcombe (hybrid-score), and Wald confidence limits for the risk difference.

Agresti-Caffo Confidence Limits The Agresti-Caffo confidence limits for the risk difference are computed
as

Qd ˙ . z˛=2 � se. Qd/ /

where Qd D Qp1 � Qp2, Qpi D .ni1 C 1/=.ni � C 2/,

se. Qd/ D
p
Qp1.1 � Qp2/=.n1� C 2/ C Qp2.1 � Qp2/=.n2� C 2/

and z˛=2 is the 100.1 � ˛=2/ percentile of the standard normal distribution.

The Agresti-Caffo interval adjusts the Wald interval for the risk difference by adding a pseudo-observation of
each type (success and failure) to each sample. See Agresti and Caffo (2000) and Agresti and Coull (1998)
for more information.

Hauck-Anderson Confidence Limits The Hauck-Anderson confidence limits for the risk difference are
computed as

Od ˙ . cc C z˛=2 � se. Od/ /

where Od D Op1� Op2 and z˛=2 is the 100.1�˛=2/ percentile of the standard normal distribution. The standard
error is computed from the sample proportions as

se. Od/ D
p
Op1.1 � Op1/=.n1� � 1/ C Op2.1 � Op2/=.n2� � 1/

The Hauck-Anderson continuity correction cc is computed as

cc D 1 =
�
2 min.n1�; n2�/

�
See Hauck and Anderson (1986) for more information. The subsection “Hauck-Anderson Test” in the section
“Noninferiority Tests” on page 2676 describes the corresponding noninferiority test.

Miettinen-Nurminen (Score) Confidence Limits The Miettinen-Nurminen (score) confidence limits for the
risk difference (Miettinen and Nurminen 1985) are computed by inverting score tests for the risk difference.
A score-based test statistic for the null hypothesis that the risk difference equals ı can be expressed as

T .ı/ D . Od � ı/=

q
eVar.ı/

where Od is the observed value of the risk difference ( Op1 � Op2),

eVar.ı/ D .n=.n � 1// . Qp1.ı/.1 � Qp1.ı//=n1 C Qp2.ı/.1 � Qp2.ı//=n2 /

and Qp1.ı/ and Qp2.ı/ are the maximum likelihood estimates of the row 1 and row 2 risks (proportions) under
the restriction that the risk difference is ı. For more information, see Miettinen and Nurminen (1985, pp.
215–216) and Miettinen (1985, chapter 12).
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The 100.1 � ˛/% confidence interval for the risk difference consists of all values of ı for which the score
test statistic T .ı/ falls in the acceptance region,

fı W T .ı/ < z˛=2g

where z˛=2 is the 100.1 � ˛=2/ percentile of the standard normal distribution. PROC FREQ finds the confi-
dence limits by iterative computation, which stops when the iteration increment falls below the convergence
criterion or when the maximum number of iterations is reached, whichever occurs first. By default, the
convergence criterion is 0.00000001 and the maximum number of iterations is 100.

By default, the Miettinen-Nurminen confidence limits include the bias correction factor n=.n � 1/ in the
computation of eVar.ı/ (Miettinen and Nurminen 1985, p. 216). For more information, see Newcombe and
Nurminen (2011). If you specify the CL=MN(CORRECT=NO) riskdiff-option, PROC FREQ does not include
the bias correction factor in this computation (Mee 1984). See also Agresti (2002, p. 77). The uncorrected
confidence limits are labeled as “Miettinen-Nurminen-Mee” confidence limits in the displayed output.

The maximum likelihood estimates of p1 and p2, subject to the constraint that the risk difference is ı, are
computed as

Qp1 D 2u cos.w/ � b=3a and Qp2 D Qp1 C ı

where

w D .� C cos�1.v=u3//=3
v D b3=.3a/3 � bc=6a2 C d=2a

u D sign.v/
q
b2=.3a/2 � c=3a

a D 1C �

b D � .1C � C Op1 C � Op2 C ı.� C 2//

c D ı2 C ı.2 Op1 C � C 1/C Op1 C � Op2

d D � Op1ı.1C ı/

� D n2�=n1�

For more information, see Farrington and Manning (1990, p. 1453).

Newcombe Confidence Limits Newcombe (hybrid-score) confidence limits for the risk difference are
constructed from the Wilson score confidence limits for each of the two individual proportions. The
confidence limits for the individual proportions are used in the standard error terms of the Wald confidence
limits for the proportion difference. See Newcombe (1998a) and Barker et al. (2001) for more information.

Wilson score confidence limits for p1 and p2 are the roots of

jpi � Opi j D z˛=2
p
pi .1 � pi /=ni �

for i D 1; 2. The confidence limits are computed as�
Opi C z2˛=2=2ni � ˙ z˛=2

q�
Opi .1 � Opi /C z2˛=4ni �

�
=ni �

�
=
�
1C z2˛=2=ni �

�
See the section “Wilson (Score) Confidence Limits” on page 2666 for details.
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Denote the lower and upper Wilson score confidence limits for p1 as L1 and U1, and denote the lower and
upper confidence limits for p2 as L2 and U2. The Newcombe confidence limits for the proportion difference
(d D p1 � p2) are computed as

dL D . Op1 � Op2/ �

q
. Op1 � L1/2 C .U2 � Op2/2

dU D . Op1 � Op2/ C

q
.U1 � Op1/2 C . Op2 � L2/2

If you specify the CORRECT riskdiff-option, PROC FREQ provides continuity-corrected Newcombe con-
fidence limits. By including a continuity correction of 1=2ni �, the Wilson score confidence limits for the
individual proportions are computed as the roots of

jpi � Opi j � 1=2ni � D z˛=2
p
pi .1 � pi /=ni �

The continuity-corrected confidence limits for the individual proportions are then used to compute the
proportion difference confidence limits dL and dU .

Wald Confidence Limits The Wald confidence limits for the risk difference are computed as

Od ˙ . z˛=2 � se. Od/ /

where Od D Op1� Op2, z˛=2 is the 100.1�˛=2/ percentile of the standard normal distribution. and the standard
error is computed from the sample proportions as

se. Od/ D
p
Op1.1 � Op1/=n1� C Op2.1 � Op2/=n2�

If you specify the CORRECT riskdiff-option, the Wald confidence limits include a continuity correction cc,

Od ˙ . cc C z˛=2 � se. Od/ /

where cc D .1=n1� C 1=n2�/=2.

The subsection “Wald Test” in the section “Noninferiority Tests” on page 2676 describes the corresponding
noninferiority test.

Risk Difference Tests
You can specify riskdiff-options to request tests of the risk (proportion) difference. You can request tests of
equality, noninferiority, superiority, and equivalence for the risk difference. The test of equality is a standard
Wald asymptotic test, available with or without a continuity correction. For noninferiority, superiority, and
equivalence tests of the risk difference, the following test methods are provided: Wald (with and without
continuity correction), Hauck-Anderson, Farrington-Manning (score), and Newcombe (with and without
continuity correction). You can specify the test method with the METHOD= riskdiff-option. By default,
PROC FREQ uses METHOD=WALD.

Equality Test If you specify the EQUAL riskdiff-option, PROC FREQ computes a test of equality, or a test
of the null hypothesis that the risk difference equals zero. For the column 1 (or 2) risk difference, this test can
be expressed as H0W d D 0 versus the alternative HaW d ¤ 0, where d D p1 � p2 denotes the column 1 (or
2) risk difference. PROC FREQ provides a Wald asymptotic test of equality. The test statistic is computed as

z D Od=se. Od/



2676 F Chapter 40: The FREQ Procedure

By default, the standard error is computed from the sample proportions as

se. Od/ D
p
Op1.1 � Op1/=n1� C Op2.1 � Op2/=n2�

If you specify the VAR=NULL riskdiff-option, the standard error is based on the null hypothesis that the row
1 and row 2 risks are equal,

se. Od/ D
p
Op.1 � Op/ � .1=n1� C 1=n2�/

where Op D n�1=n estimates the overall column 1 risk.

If you specify the CORRECT riskdiff-option, PROC FREQ includes a continuity correction in the test statistic.
If Od > 0, the continuity correction is subtracted from Od in the numerator of the test statistic; otherwise, the
continuity correction is added to the numerator. The value of the continuity correction is .1=n1� C 1=n2�/=2.

PROC FREQ computes one-sided and two-sided p-values for this test. When the test statistic z is greater than
0, PROC FREQ displays the right-sided p-value, which is the probability of a larger value occurring under
the null hypothesis. The one-sided p-value can be expressed as

P1 D

(
Prob.Z > z/ if z > 0

Prob.Z < z/ if z � 0

where Z has a standard normal distribution. The two-sided p-value is computed as P2 D 2 � P1.

Noninferiority Tests If you specify the NONINF riskdiff-option, PROC FREQ provides a noninferiority test
for the risk difference, or the difference between two proportions. The null hypothesis for the noninferiority
test is

H0Wp1 � p2 � �ı

versus the alternative

HaWp1 � p2 > �ı

where ı is the noninferiority margin. Rejection of the null hypothesis indicates that the row 1 risk is not
inferior to the row 2 risk. See Chow, Shao, and Wang (2003) for more information.

You can specify the value of ı with the MARGIN= riskdiff-option. By default, ı D 0:2. You can specify the
test method with the METHOD= riskdiff-option. The following methods are available for the risk difference
noninferiority analysis: Wald (with and without continuity correction), Hauck-Anderson, Farrington-Manning
(score), and Newcombe (with and without continuity correction). The Wald, Hauck-Anderson, and Farrington-
Manning methods provide tests and corresponding test-based confidence limits; the Newcombe method
provides only confidence limits. If you do not specify METHOD=, PROC FREQ uses the Wald test by
default.

The confidence coefficient for the test-based confidence limits is 100.1 � 2˛/% (Schuirmann 1999). By
default, if you do not specify the ALPHA= option, these are 90% confidence limits. You can compare the
confidence limits to the noninferiority limit, –ı.

The following sections describe the noninferiority analysis methods for the risk difference.

Wald Test If you specify the METHOD=WALD riskdiff-option, PROC FREQ provides an asymptotic Wald
test of noninferiority for the risk difference. This is also the default method. The Wald test statistic is
computed as
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z D . Od C ı/ = se. Od/

where ( Od D Op1 � Op2) estimates the risk difference and ı is the noninferiority margin.

By default, the standard error for the Wald test is computed from the sample proportions as

se. Od/ D
p
Op1.1 � Op1/=n1� C Op2.1 � Op2/=n2�

If you specify the VAR=NULL riskdiff-option, the standard error is based on the null hypothesis that the risk
difference equals –ı (Dunnett and Gent 1977). The standard error is computed as

se. Od/ D
p
Qp.1 � Qp/=n2� C . Qp � ı/.1 � Qp C ı/=n1�

where

Qp D .n11 C n21 C ın1�/=n

If you specify the CORRECT riskdiff-option, the test statistic includes a continuity correction. The continuity
correction is subtracted from the numerator of the test statistic if the numerator is greater than zero; otherwise,
the continuity correction is added to the numerator. The value of the continuity correction is .1=n1� C
1=n2�/=2.

The p-value for the Wald noninferiority test is Pz D Prob.Z > z/, where Z has a standard normal
distribution.

Hauck-Anderson Test If you specify the METHOD=HA riskdiff-option, PROC FREQ provides the Hauck-
Anderson test for noninferiority. The Hauck-Anderson test statistic is computed as

z D . Od C ı ˙ cc/ = se. Od/

where Od D Op1 � Op2 and the standard error is computed from the sample proportions as

se. Od/ D
p
Op1.1 � Op1/=.n1� � 1/ C Op2.1 � Op2/=.n2� � 1/

The Hauck-Anderson continuity correction cc is computed as

cc D 1 =
�
2 min.n1�; n2�/

�
The p-value for the Hauck-Anderson noninferiority test is Pz D Prob.Z > z/, where Z has a standard
normal distribution. See Hauck and Anderson (1986) and Schuirmann (1999) for more information.

Farrington-Manning (Score) Test If you specify the METHOD=FM riskdiff-option, PROC FREQ provides
the Farrington-Manning (score) test of noninferiority for the risk difference. A score test statistic for the null
hypothesis that the risk difference equals –ı can be expressed as

z D . Od C ı/ = se. Od/

where Od is the observed value of the risk difference ( Op1 � Op2),

se. Od/ D
p
Qp1.1 � Qp1/=n1� C Qp2.1 � Qp2/=n2�

and Qp1 and Qp2 are the maximum likelihood estimates of the row 1 and row 2 risks (proportions) under the
restriction that the risk difference is –ı. The p-value for the noninferiority test is Pz D Prob.Z > z/, where
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Z has a standard normal distribution. For more information, see Miettinen and Nurminen (1985); Miettinen
(1985); Farrington and Manning (1990); Dann and Koch (2005).

The maximum likelihood estimates of p1 and p1, subject to the constraint that the risk difference is –ı, are
computed as

Qp1 D 2u cos.w/ � b=3a and Qp2 D Qp1 C ı

where

w D .� C cos�1.v=u3//=3
v D b3=.3a/3 � bc=6a2 C d=2a

u D sign.v/
q
b2=.3a/2 � c=3a

a D 1C �

b D � .1C � C Op1 C � Op2 � ı.� C 2//

c D ı2 � ı.2 Op1 C � C 1/C Op1 C � Op2

d D Op1ı.1 � ı/

� D n2�=n1�

For more information, see Farrington and Manning (1990, p. 1453).

Newcombe Noninferiority Analysis If you specify the METHOD=NEWCOMBE riskdiff-option, PROC
FREQ provides a noninferiority analysis that is based on Newcombe hybrid-score confidence limits for the
risk difference. The confidence coefficient for the confidence limits is 100.1 � 2˛/% (Schuirmann 1999).
By default, if you do not specify the ALPHA= option, these are 90% confidence limits. You can compare
the confidence limits with the noninferiority limit, –ı. If you specify the CORRECT riskdiff-option, the
confidence limits includes a continuity correction. See the subsection “Newcombe Confidence Limits” in the
section “Risk Difference Confidence Limits” on page 2672 for more information.

Superiority Test If you specify the SUP riskdiff-option, PROC FREQ provides a superiority test for the
risk difference. The null hypothesis is

H0W W p1 � p2 � ı

versus the alternative

HaWp1 � p2 > ı

where ı is the superiority margin. Rejection of the null hypothesis indicates that the row 1 proportion is
superior to the row 2 proportion. You can specify the value of ı with the MARGIN= riskdiff-option. By
default, ı D 0:2.

The superiority analysis is identical to the noninferiority analysis but uses a positive value of the margin ı
in the null hypothesis. The superiority computations follow those in the section “Noninferiority Tests” on
page 2676 by replacing –ı by ı. See Chow, Shao, and Wang (2003) for more information.
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Equivalence Tests If you specify the EQUIV riskdiff-option, PROC FREQ provides an equivalence test
for the risk difference, or the difference between two proportions. The null hypothesis for the equivalence
test is

H0Wp1 � p2 � �ıL or p1 � p2 � ıU

versus the alternative

HaW ıL < p1 � p2 < ıU

where ıL is the lower margin and ıU is the upper margin. Rejection of the null hypothesis indicates that the
two binomial proportions are equivalent. See Chow, Shao, and Wang (2003) for more information.

You can specify the value of the margins ıL and ıU with the MARGIN= riskdiff-option. If you do not specify
MARGIN=, PROC FREQ uses lower and upper margins of –0.2 and 0.2 by default. If you specify a single
margin value ı, PROC FREQ uses lower and upper margins of –ı and ı. You can specify the test method
with the METHOD= riskdiff-option. The following methods are available for the risk difference equivalence
analysis: Wald (with and without continuity correction), Hauck-Anderson, Farrington-Manning (score), and
Newcombe (with and without continuity correction). The Wald, Hauck-Anderson, and Farrington-Manning
methods provide tests and corresponding test-based confidence limits; the Newcombe method provides only
confidence limits. If you do not specify METHOD=, PROC FREQ uses the Wald test by default.

PROC FREQ computes two one-sided tests (TOST) for equivalence analysis (Schuirmann 1987). The TOST
approach includes a right-sided test for the lower margin ıL and a left-sided test for the upper margin ıU .
The overall p-value is taken to be the larger of the two p-values from the lower and upper tests.

The section “Noninferiority Tests” on page 2676 gives details about the Wald, Hauck-Anderson, Farrington-
Manning (score), and Newcombe methods for the risk difference. The lower margin equivalence test statistic
takes the same form as the noninferiority test statistic but uses the lower margin value ıL in place of –ı. The
upper margin equivalence test statistic take the same form as the noninferiority test statistic but uses the upper
margin value ıU in place of –ı.

The test-based confidence limits for the risk difference are computed according to the equivalence test method
that you select. If you specify METHOD=WALD with VAR=NULL, or METHOD=FM, separate standard
errors are computed for the lower and upper margin tests. In this case, the test-based confidence limits are
computed by using the maximum of these two standard errors. These confidence limits have a confidence
coefficient of 100.1 � 2˛/% (Schuirmann 1999). By default, if you do not specify the ALPHA= option,
these are 90% confidence limits. You can compare the test-based confidence limits to the equivalence limits,
.ıL; ıU /.

Exact Unconditional Confidence Limits for the Risk Difference
If you specify the RISKDIFF option in the EXACT statement, PROC FREQ provides exact unconditional
confidence limits for the risk difference. PROC FREQ computes the confidence limits by inverting two
separate one-sided tests (tail method), where the size of each test is at most ˛=2 and the confidence coefficient
is at least .1�˛). Exact conditional methods, described in the section “Exact Statistics” on page 2704, do not
apply to the risk difference due to the presence of a nuisance parameter (Agresti 1992). The unconditional
approach eliminates the nuisance parameter by maximizing the p-value over all possible values of the
parameter (Santner and Snell 1980).

By default, PROC FREQ uses the unstandardized risk difference as the test statistic in the confidence limit
computations. If you specify the RISKDIFF(METHOD=SCORE) option, the procedure uses the score
statistic (Chan and Zhang 1999). The score statistic is a less discrete statistic than the raw risk difference
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and produces less conservative confidence limits (Agresti and Min 2001). See also Santner et al. (2007) for
comparisons of methods for computing exact confidence limits for the risk difference.

PROC FREQ computes the confidence limits as follows. The risk difference is defined as the difference
between the row 1 and row 2 risks (proportions), d D p1 � p2, and n1 and n2 denote the row totals of the
2� 2 table. The joint probability function for the table can be expressed in terms of the table cell frequencies,
the risk difference, and the nuisance parameter p2 as

f .n11; n21In1; n2; d; p2/ D

 
n1

n11

!
.d C p2/

n11.1 � d � p2/
n1�n11 �

 
n2

n21

!
p
n21
2 .1 � p2/

n2�n21

The 100.1 � ˛=2/% confidence limits for the risk difference are computed as

dL D sup .d� W PU .d�/ > ˛=2/
dU D inf .d� W PL.d�/ > ˛=2/

where

PU .d�/ D sup
p2

� X
A;T .a/�t0

f .n11; n21In1; n2; d�; p2/
�

PL.d�/ D sup
p2

� X
A;T .a/�t0

f .n11; n21In1; n2; d�; p2/
�

The set A includes all 2 � 2 tables with row sums equal to n1 and n2, and T .a/ denotes the value of the
test statistic for table a in A. To compute PU .d�/, the sum includes probabilities of those tables for which
(T .a/ � t0), where t0 is the value of the test statistic for the observed table. For a fixed value of d�, PU .d�/
is taken to be the maximum sum over all possible values of p2.

By default, PROC FREQ uses the unstandardized risk difference as the test statistic T. If you specify the
RISKDIFF(METHOD=SCORE) option, the procedure uses the risk difference score statistic as the test
statistic (Chan and Zhang 1999). For information about the computation of the score statistic, see the section
“” on page 2673. For more information, see Miettinen and Nurminen (1985) and Farrington and Manning
(1990).

Barnard’s Unconditional Exact Test
The BARNARD option in the EXACT statement provides an unconditional exact test for the risk (proportion)
difference for 2 � 2 tables. The reference set for the unconditional exact test consists of all 2 � 2 tables that
have the same row sums as the observed table (Barnard 1945, 1947, 1949). This differs from the reference
set for exact conditional inference, which is restricted to the set of tables that have the same row sums and
the same column sums as the observed table. See the sections “Fisher’s Exact Test” on page 2651 and “Exact
Statistics” on page 2704 for more information.

The test statistic is the standardized risk difference, which is computed as

T D d=
p
p�1.1 � p�1/.1=n1 C 1=n2/

where the risk difference d is defined as the difference between the row 1 and row 2 risks (proportions),
d D .n11=n1 � n21=n2/; n1 and n2 are the row 1 and row 2 totals, respectively; and p�1 is the overall
proportion in column 1, .n11 C n21/=n.

Under the null hypothesis that the risk difference is 0, the joint probability function for a table can be
expressed in terms of the table cell frequencies, the row totals, and the unknown parameter � as
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f .n11; n21In1; n2; �/ D

 
n1

n11

! 
n2

n21

!
�n11Cn21.1 � �/n�n11�n21

where � is the common value of the risk (proportion).

PROC FREQ sums the table probabilities over the reference set for those tables where the test statistic is
greater than or equal to the observed value of the test statistic. This sum can be expressed as

Prob.�/ D
X

A;T .a/�t0

f .n11; n21In1; n2; �/

where the set A contains all 2� 2 tables with row sums equal to n1 and n2, and T .a/ denotes the value of the
test statistic for table a in A. The sum includes probabilities of those tables for which (T .a/ � t0), where t0
is the value of the test statistic for the observed table.

The sum Prob(�) depends on the unknown value of � . To compute the exact p-value, PROC FREQ eliminates
the nuisance parameter � by taking the maximum value of Prob(�) over all possible values of � ,

Prob D sup
.0���1/

.Prob.�//

See Suissa and Shuster (1985) and Mehta and Senchaudhuri (2003).

Common Risk Difference

PROC FREQ provides Mantel-Haenszel and summary score estimates for the common risk (proportion)
difference for multiway 2 � 2 tables. PROC FREQ also provides stratified Newcombe confidence limits for
the common risk difference.

Mantel-Haenszel Estimate of the Common Risk Difference
PROC FREQ computes the Mantel-Haenszel (Mantel and Haenszel 1959) estimate of the common risk
difference as

OdMH D

 X
h

Odhwh

!
=

 X
h

wh

!

where Odh is the risk difference in stratum h and

wh D nh1�nh2�=nh

The column 1 risk difference in stratum h is computed as

Odh D Oph1 � Oph2 D .nh11=nh1�/ � .nh21=nh2�/

where Oph1 is the proportion of row 1 observations that are classified in column 1 and Oph2 is the proportion or
row 2 observations that are classified in column 1. The column 2 risk is computed in the same way. For more
information, see Agresti (2013, p. 231).

PROC FREQ computes the variance of OdMH (Sato 1989) as

O�2. OdMH / D

 
OdMH

X
h

Ph C
X
h

Qh

!
=

 X
h

wh

!2
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where

Ph D
�
n2h1�nh21 � n

2
h2�nh11 C nh1�nh2�.nh2� � nh1�/=2

�
=n2h

Qh D .nh11.nh2� � nh21/C nh21.nh1� � nh11// =2nh

The 100.1 � ˛/% confidence limits for the common risk difference are

OdMH ˙
�
z˛=2 � O�. OdMH /

�

Summary Score Estimate of the Common Risk Difference
PROC FREQ computes the summary score estimate of the common risk difference as described in Agresti
(2013, p. 231). This estimate is computed from Miettinen-Nurminen (score) confidence limits for the stratum
risk differences. For more information, see the section “Miettinen-Nurminen (Score) Confidence Limits.”
The score confidence interval for the risk difference in stratum h can be expressed as Od 0

h
˙ z˛=2s

0
h
, where

Od 0
h

is the midpoint of the score confidence interval and s0
h

is the width of the confidence interval divided by
2z˛=2. The summary score estimate of the common risk difference is computed as

OdS D
X
h

Od 0hw
0
h

where

w0h D .1=s
0
h
2
/=
X
i

.1=s0i
2
/

The variance of OdS is computed as

O�2. OdS / D 1=
X
h

.1=s0h
2
/

The 100.1 � ˛/% summary score confidence limits for the common risk difference are

OdS ˙
�
z˛=2 � O�. OdS /

�

Stratified Newcombe Confidence Limits for the Common Risk Difference
PROC FREQ computes stratified Newcombe confidence limits for the common risk (proportion) difference
by using the method of Yan and Su (2010). The stratified Newcombe confidence limits are constructed from
stratified Wilson confidence limits for the common (overall) row proportions.

PROC FREQ first computes individual Wilson confidence limits for the row proportions in each 2 � 2 table
(stratum), as described in the section “Wilson (Score) Confidence Limits” on page 2666. These stratum
Wilson confidence limits are then combined to form stratified Wilson confidence limits for the overall row
proportions by using Mantel-Haenszel weights, where the Mantel-Haenszel weight for stratum h is

wh D nh1�nh2�=nh

The confidence levels of the stratum Wilson confidence limits are chosen so that the overall confidence
coefficient (for the stratified Wilson confidence limits) is 100.1 � ˛/% (Yan and Su 2010).
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Denote the lower and upper stratified Wilson score confidence limits for the common row 1 proportion as L1
and U1, respectively, and denote the lower and upper stratified Wilson confidence limits for the common row
2 proportion as L2 and U2, respectively. The 100.1 � ˛/% stratified Newcombe confidence limits for the
common risk (proportion) difference are

L D OdMH � z˛=2
p
�1L1.1 � L1/C �2U2.1 � U2/

U D OdMH C z˛=2
p
�2L2.1 � L2/C �1U1.1 � U1/

where OdMH is the Mantel-Haenszel estimate of the common risk difference and

�1 D
X
h

w2h=nh1�

�2 D
X
h

w2h=nh2�

When there is a single stratum, the stratified Newcombe confidence interval is equivalent to the (unstratified)
Newcombe confidence interval. For more information, see the subsection “Newcombe Confidence Limits” in
the section “Risk Difference Confidence Limits” on page 2672. See also Kim and Won (2013).

Odds Ratio and Relative Risks for 2 x 2 Tables

Odds Ratio
The odds ratio is a useful measure of association for a variety of study designs. For a retrospective design
called a case-control study, the odds ratio can be used to estimate the relative risk when the probability of
positive response is small (Agresti 2002). In a case-control study, two independent samples are identified
based on a binary (yes-no) response variable, and the conditional distribution of a binary explanatory variable
is examined, within fixed levels of the response variable. See Stokes, Davis, and Koch (2012) and Agresti
(2007).

The odds of a positive response (column 1) in row 1 is n11=n12. Similarly, the odds of a positive response in
row 2 is n21=n22. The odds ratio is formed as the ratio of the row 1 odds to the row 2 odds. The odds ratio
for a 2 � 2 table is defined as

OR D
n11=n12

n21=n22
D
n11 n22

n12 n21

The odds ratio can be any nonnegative number. When the row and column variables are independent, the true
value of the odds ratio equals 1. An odds ratio greater than 1 indicates that the odds of a positive response are
higher in row 1 than in row 2. Values less than 1 indicate the odds of positive response are higher in row 2.
The strength of association increases with the deviation from 1.

The transformation G D .OR � 1/=.OR C 1/ transforms the odds ratio to the range (–1,1) with G = 0 when
OR D 1; G = –1 when OR D 0; and G approaches 1 as OR approaches infinity. G is the gamma statistic,
which PROC FREQ computes when you specify the MEASURES option.

The asymptotic 100.1 � ˛/% confidence limits for the odds ratio are�
OR � exp.�z

p
v/; OR � exp.z

p
v/
�

where
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v D Var.lnOR/ D
1

n11
C

1

n12
C

1

n21
C

1

n22

and z is the 100.1 � ˛=2/ percentile of the standard normal distribution. If any of the four cell frequencies
are zero, the estimates are not computed.

Score Confidence Limits for the Odds Ratio Score confidence limits for the odds ratio (Miettinen and
Nurminen 1985) are computed by inverting score tests for the odds ratio. A score-based chi-square test
statistic for the null hypothesis that the odds ratio equals � can be expressed as

Q.�/ D fn1� . Op1 � Qp1/g
2 = fn=.n � 1/g f1= .n1� Qp1.1 � Qp1//C 1= .n2� Qp2.1 � Qp2//g

�1

where Op1 is the observed row 1 risk (proportion), and Qp1 and Qp2 are the maximum likelihood estimates of the
row 1 and row 2 risks under the restriction that the odds ratio (n11n22=n12n21) is � . For more information,
see Miettinen and Nurminen (1985) and Miettinen (1985, chapter 14).

The 100.1 � ˛/% score confidence interval for the odds ratio consists of all values of � for which the test
statistic Q.�/ falls in the acceptance region,

f� W Q.�/ < �21;˛g

where �21;˛ is the 100.1 � ˛/ percentile of the chi-square distribution with one degree of freedom. PROC
FREQ finds the confidence limits by iterative computation. For more information about score confidence
limits, see Agresti (2013).

By default, the score confidence limits include the bias correction factor n=.n � 1/ in the denominator of
Q.�/ (Miettinen and Nurminen 1985, p. 217). If you specify the CL=SCORE(CORRECT=NO) option,
PROC FREQ does not include this factor in the computation.

The maximum likelihood estimates of p1 and p2, subject to the constraint that the odds ratio is � , are
computed as

Qp2 D
�
�b C

p

b2 � 4ac
�
=2a and Qp1 D Qp2�= .1C Qp2.� � 1//

where

a D n2�.� � 1/

b D n1�� C n2� � Op�1.� � 1/

c D � Op�1

For more information, see Miettinen and Nurminen (1985, pp. 217–218) and Miettinen (1985, chapter 14).

Exact Confidence Limits for the Odds Ratio When you specify the OR option in the EXACT statement,
PROC FREQ computes exact confidence limits for the odds ratio. Because this is a discrete problem, the
confidence coefficient for the exact confidence interval is not exactly .1 � ˛/ but is at least .1 � ˛/. Thus,
these confidence limits are conservative. See Agresti (1992) for more information.
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PROC FREQ computes exact confidence limits for the odds ratio by using an algorithm based on Thomas
(1971). See also Gart (1971). The following two equations are solved iteratively to determine the lower and
upper confidence limits, �1 and �2:

n�1X
iDn11

 
n1�

i

! 
n2�

n�1 � i

!
�i1 =

n�1X
iD0

 
n1�

i

! 
n2�

n�1 � i

!
�i1 D ˛=2

n11X
iD0

 
n1�

i

! 
n2�

n�1 � i

!
�i2 =

n�1X
iD0

 
n1�

i

! 
n2�

n�1 � i

!
�i2 D ˛=2

When the odds ratio equals zero, which occurs when either n11 D 0 or n22 D 0, PROC FREQ sets the lower
exact confidence limit to zero and determines the upper limit with level ˛. Similarly, when the odds ratio
equals infinity, which occurs when either n12 D 0 or n21 D 0, PROC FREQ sets the upper exact confidence
limit to infinity and determines the lower limit with level ˛.

Relative Risks
These measures of relative risk are useful in cohort (prospective) study designs, where two samples are
identified based on the presence or absence of an explanatory factor. The two samples are observed in
future time for the binary (yes-no) response variable under study. Relative risk measures are also useful
in cross-sectional studies, where two variables are observed simultaneously. See Stokes, Davis, and Koch
(2012) and Agresti (2007) for more information.

The column 1 relative risk is the ratio of the column 1 risk for row 1 to row 2. The column 1 risk for row 1 is
the proportion of the row 1 observations classified in column 1,

p1 D n11 = n1�

Similarly, the column 1 risk for row 2 is

p2 D n21 = n2�

The column 1 relative risk is computed as

RR1 D p1 = p2

A relative risk greater than 1 indicates that the probability of positive response is greater in row 1 than in row
2. Similarly, a relative risk less than 1 indicates that the probability of positive response is less in row 1 than
in row 2. The strength of association increases with the deviation from 1.

Asymptotic 100.1 � ˛/% confidence limits for the column 1 relative risk are computed as�
RR1 � exp.�z

p
v/; RR1 � exp.z

p
v/
�

where

v D Var.lnRR1/ D
�
.1 � p1/=n11

�
C
�
.1 � p2/=n21

�
and z is the 100.1 � ˛=2/ percentile of the standard normal distribution. If either n11 or n21 is zero, the
estimates are not computed.

PROC FREQ computes the column 2 relative risks in the same way.
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Score Confidence Limits for the Relative Risk Score confidence limits for the relative risk (Miettinen
and Nurminen 1985; Farrington and Manning 1990) are computed by inverting score tests for the relative
risk. A score-based chi-square test statistic for the null hypothesis that the relative risk equals R0 can be
expressed as

Q.R0 / D . Op1 � R0 Op2/
2 = eVar.R0 /

where Op1 and Op2 are the observed row 1 and row 2 risks (proportions), respectively,

eVar.R0 / D .n=.n � 1//
�
Qp1.1 � Qp1/=n1� C R0

2
Qp2.1 � Qp2/=n2�

�
where Qp1 and Qp2 are the maximum likelihood estimates of p1 and p2, respectively, under the null hypothesis
that the relative risk equals R0 . For more information, see Miettinen and Nurminen (1985) and Miettinen
(1985, chapter 13).

The 100.1� ˛/% score confidence interval for the relative risk consists of all values of R0 for which the test
statistic Q.R0 / falls in the acceptance region,

fR0 W Q.R0 / < �
2
1;˛g

where �21;˛ is the 100.1 � ˛/ percentile of the chi-square distribution with one degree of freedom. PROC
FREQ finds the confidence limits by iterative computation. For more information about score confidence
limits, see Agresti (2013).

By default, the score confidence limits include the bias correction factor n=.n � 1/ in the denominator of
Q.R0 / (Miettinen and Nurminen 1985, p. 217). If you specify the CL=SCORE(CORRECT=NO) option,
PROC FREQ does not include this factor in the computation.

The maximum likelihood estimates of p1 and p2, subject to the constraint that the relative risk is R0 , are
computed as

Qp1 D
�
�b �

p

b2 � 4ac
�
=2a and Qp2 D Qp1=R0

where

a D 1C �

b D � .R0 .1C � Op2/C � C Op1/

c D R0 . Op1 C � Op2/

� D n2�=n1�

For more information, see Farrington and Manning (1990, p. 1454) and Miettinen and Nurminen (1985, p.
217).

Exact Unconditional Confidence Limits for the Relative Risk If you specify the RELRISK option in
the EXACT statement, PROC FREQ provides exact unconditional confidence limits for the relative risk.
PROC FREQ computes the confidence limits by inverting two separate one-sided tests (tail method), where
the size of each test is at most ˛=2 and the confidence coefficient is at least .1 � ˛/. Exact conditional
methods, described in the section “Exact Statistics” on page 2704, do not apply to the relative risk due to
the presence of a nuisance parameter (Agresti 1992). The unconditional approach eliminates the nuisance
parameter by maximizing the p-value over all possible values of the parameter (Santner and Snell 1980).
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By default, PROC FREQ uses the unstandardized relative risk as the test statistic in the confidence limit
computations. If you specify the RELRISK(METHOD=SCORE) option, the procedure uses the relative risk
score statistic (Chan and Zhang 1999). The score statistic is a less discrete statistic than the raw relative risk
and produces less conservative confidence limits (Agresti and Min 2001). See also Santner et al. (2007) for
comparisons of methods for computing exact confidence limits.

See the section “Exact Unconditional Confidence Limits for the Risk Difference” on page 2679 for a
description of the method that PROC FREQ uses to compute confidence limits for the relative risk. The
test statistic for the relative risk computation is either the unstandardized relative risk (by default) or the
relative risk score statistic (if you specify the RELRISK(METHOD=SCORE) option). PROC FREQ uses
the following form of the unstandardized relative risk, which adds 0.05 to each frequency, to ensure that the
statistic is defined when there are zero table cells (Gart and Nam 1988):

rr D
.n11 C 0:5/ = .n1� C 0:5/

.n21 C 0:5/ = .n2� C 0:5/

If you specify the RELRISK(METHOD=SCORE) option, PROC FREQ uses the relative risk score statistic
(Miettinen and Nurminen 1985; Farrington and Manning 1990). This test statistic is computed as

z D . Op1 � R0 Op2/ = se.rr/

where

se.rr/ D
q
Qp1.1 � Qp1/=n1� C R0

2
Qp2.1 � Qp2/=n2�

where Qp1 and Qp2 are the maximum likelihood estimates of p1 and p2 under the null hypothesis that the
relative risk equals R0 . The maximum likelihood solution is

Qp1 D .�b �
p

b2 � 4ac/=2a and Qp2 D Qp1=R0

where

a D 1C �

b D � .R0 .1C � Op2/C � C Op1/

c D R0 . Op1 C � Op2/

� D n2�=n1�

For more information, see Farrington and Manning (1990, p. 1454) and Miettinen and Nurminen (1985, p.
217).

Cochran-Armitage Test for Trend

The TREND option in the TABLES statement provides the Cochran-Armitage test for trend, which tests
for trend in binomial proportions across levels of a single factor or covariate. This test is appropriate for a
two-way table where one variable has two levels and the other variable is ordinal. The two-level variable
represents the response, and the other variable represents an explanatory variable with ordered levels. When
the two-way has two columns and R rows, PROC FREQ tests for trend across the R levels of the row variable,
and the binomial proportion is computed as the proportion of observations in the first column. When the
table has two rows and C columns, PROC FREQ tests for trend across the C levels of the column variable,
and the binomial proportion is computed as the proportion of observations in the first row.
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The trend test is based on the regression coefficient for the weighted linear regression of the binomial
proportions on the scores of the explanatory variable levels. See Margolin (1988) and Agresti (2002) for
details. If the table has two columns and R rows, the trend test statistic is computed as

T D

RX
iD1

ni1.Ri � NR/ =

q
p�1 .1 � p�1/ s2

where Ri is the score of row i, NR is the average row score, and

s2 D

RX
iD1

ni �.Ri � NR/
2

The SCORES= option in the TABLES statement determines the type of row scores used in computing the
trend test (and other score-based statistics). The default is SCORES=TABLE. See the section “Scores” on
page 2647 for details. For character variables, the table scores for the row variable are the row numbers (for
example, 1 for the first row, 2 for the second row, and so on). For numeric variables, the table score for each
row is the numeric value of the row level. When you perform the trend test, the explanatory variable might
be numeric (for example, dose of a test substance), and the variable values might be appropriate scores. If the
explanatory variable has ordinal levels that are not numeric, you can assign meaningful scores to the variable
levels. Sometimes equidistant scores, such as the table scores for a character variable, might be appropriate.
For more information on choosing scores for the trend test, see Margolin (1988).

The null hypothesis for the Cochran-Armitage test is no trend, which means that the binomial proportion
pi1 D ni1=ni � is the same for all levels of the explanatory variable. Under the null hypothesis, the trend
statistic has an asymptotic standard normal distribution.

PROC FREQ computes one-sided and two-sided p-values for the trend test. When the test statistic is greater
than its null hypothesis expected value of zero, PROC FREQ displays the right-sided p-value, which is the
probability of a larger value of the statistic occurring under the null hypothesis. A small right-sided p-value
supports the alternative hypothesis of increasing trend in proportions from row 1 to row R. When the test
statistic is less than or equal to zero, PROC FREQ displays the left-sided p-value. A small left-sided p-value
supports the alternative of decreasing trend.

The one-sided p-value for the trend test is computed as

P1 D

(
Prob.Z > T / if T > 0

Prob.Z < T / if T � 0

where Z has a standard normal distribution. The two-sided p-value is computed as

P2 D Prob.jZj > jT j/

PROC FREQ also provides exact p-values for the Cochran-Armitage trend test. You can request the exact test
by specifying the TREND option in the EXACT statement. See the section “Exact Statistics” on page 2704
for more information.
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Jonckheere-Terpstra Test

The JT option in the TABLES statement provides the Jonckheere-Terpstra test, which is a nonparametric
test for ordered differences among classes. It tests the null hypothesis that the distribution of the response
variable does not differ among classes. It is designed to detect alternatives of ordered class differences, which
can be expressed as �1 � �2 � � � � � �R (or �1 � �2 � � � � � �R), with at least one of the inequalities being
strict, where �i denotes the effect of class i. For such ordered alternatives, the Jonckheere-Terpstra test can be
preferable to tests of more general class difference alternatives, such as the Kruskal–Wallis test (produced by
the WILCOXON option in the NPAR1WAY procedure). See Pirie (1983) and Hollander and Wolfe (1999)
for more information about the Jonckheere-Terpstra test.

The Jonckheere-Terpstra test is appropriate for a two-way table in which an ordinal column variable represents
the response. The row variable, which can be nominal or ordinal, represents the classification variable. The
levels of the row variable should be ordered according to the ordering you want the test to detect. The
order of variable levels is determined by the ORDER= option in the PROC FREQ statement. The default is
ORDER=INTERNAL, which orders by unformatted values. If you specify ORDER=DATA, PROC FREQ
orders values according to their order in the input data set. For more information about how to order variable
levels, see the ORDER= option.

The Jonckheere-Terpstra test statistic is computed by first forming R.R � 1/=2 Mann-Whitney counts Mi;i 0 ,
where i < i 0, for pairs of rows in the contingency table,

Mi;i 0 D f number of times Xi;j < Xi 0;j 0 ; j D 1; : : : ; ni:I j
0
D 1; : : : ; ni 0: g

C
1
2
f number of times Xi;j D Xi 0;j 0 ; j D 1; : : : ; ni:I j

0
D 1; : : : ; ni 0: g

where Xi;j is response j in row i. The Jonckheere-Terpstra test statistic is computed as

J D
X
1�i<

X
i 0�R

Mi;i 0

This test rejects the null hypothesis of no difference among classes for large values of J. Asymptotic p-values
for the Jonckheere-Terpstra test are obtained by using the normal approximation for the distribution of the
standardized test statistic. The standardized test statistic is computed as

J � D .J � E0.J // =
p
Var0.J /

where E0.J / and Var0.J / are the expected value and variance of the test statistic under the null hypothesis,

E0.J / D

 
n2 �

X
i

n2i �

!
=4

Var0.J / D A=72C B= .36n.n � 1/.n � 2//C C= .8n.n � 1//

where

A D n.n � 1/.2nC 5/ �
X
i

ni �.ni � � 1/.2ni � C 5/ �
X
j

n�j .n�j � 1/.2n�j C 5/

B D

 X
i

ni �.ni � � 1/.ni � � 2/

!0@X
j

n�j .n�j � 1/.n�j � 2/

1A
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C D

 X
i

ni �.ni � � 1/

!0@X
j

n�j .n�j � 1/

1A
PROC FREQ computes one-sided and two-sided p-values for the Jonckheere-Terpstra test. When the
standardized test statistic is greater than its null hypothesis expected value of zero, PROC FREQ displays
the right-sided p-value, which is the probability of a larger value of the statistic occurring under the null
hypothesis. A small right-sided p-value supports the alternative hypothesis of increasing order from row 1 to
row R. When the standardized test statistic is less than or equal to zero, PROC FREQ displays the left-sided
p-value. A small left-sided p-value supports the alternative of decreasing order from row 1 to row R.

The one-sided p-value for the Jonckheere-Terpstra test, P1, is computed as

P1 D

(
Prob.Z > J �/ if J � > 0

Prob.Z < J �/ if J � � 0

where Z has a standard normal distribution. The two-sided p-value, P2, is computed as

P2 D Prob.jZj > jJ �j/

PROC FREQ also provides exact p-values for the Jonckheere-Terpstra test. You can request the exact test by
specifying the JT option in the EXACT statement. See the section “Exact Statistics” on page 2704 for more
information.

Tests and Measures of Agreement

When you specify the AGREE option in the TABLES statement, PROC FREQ computes tests and measures
of agreement for square tables (that is, for tables where the number of rows equals the number of columns).
For two-way tables, these tests and measures include McNemar’s test for 2 � 2 tables, Bowker’s test of
symmetry, the simple kappa coefficient, and the weighted kappa coefficient. For multiple strata (n-way tables,
where n > 2), PROC FREQ also computes the overall simple kappa coefficient and the overall weighted
kappa coefficient, as well as tests for equal kappas (simple and weighted) among strata. Cochran’s Q is
computed for multiway tables when each variable has two levels, that is, for h � 2 � 2 tables.

PROC FREQ computes the kappa coefficients (simple and weighted), their asymptotic standard errors, and
their confidence limits when you specify the AGREE option in the TABLES statement. If you also specify
the KAPPA option in the TEST statement, then PROC FREQ computes the asymptotic test of the hypothesis
that simple kappa equals zero. Similarly, if you specify the WTKAP option in the TEST statement, PROC
FREQ computes the asymptotic test for weighted kappa.

In addition to the asymptotic tests described in this section, PROC FREQ provides exact p-values for
McNemar’s test, the simple kappa coefficient test, and the weighted kappa coefficient test. You can request
these exact tests by specifying the corresponding options in the EXACT statement. See the section “Exact
Statistics” on page 2704 for more information.

The following sections provide the formulas that PROC FREQ uses to compute the AGREE statistics. For
information about the use and interpretation of these statistics, see Agresti (2002, 2007); Fleiss, Levin, and
Paik (2003), and the other references cited for each statistic.
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McNemar’s Test
PROC FREQ computes McNemar’s test for 2 � 2 tables when you specify the AGREE option. McNemar’s
test is appropriate when you are analyzing data from matched pairs of subjects with a dichotomous (yes-no)
response. It tests the null hypothesis of marginal homogeneity, or p1� D p�1. McNemar’s test is computed as

QM D .n12 � n21/
2 = .n12 C n21/

Under the null hypothesis, QM has an asymptotic chi-square distribution with one degree of freedom.
See McNemar (1947), as well as the general references cited in the preceding section. In addition to the
asymptotic test, PROC FREQ also computes the exact p-value for McNemar’s test when you specify the
MCNEM option in the EXACT statement.

Bowker’s Test of Symmetry
For Bowker’s test of symmetry, the null hypothesis is that the cell proportions are symmetric, or that
pij D pj i for all pairs of table cells. For 2 � 2 tables, Bowker’s test is identical to McNemar’s test, and so
PROC FREQ provides Bowker’s test for square tables larger than 2 � 2.

Bowker’s test of symmetry is computed as

QB D
XX
i<j

.nij � nj i /
2 = .nij C nj i /

For large samples, QB has an asymptotic chi-square distribution with R.R � 1/=2 degrees of freedom under
the null hypothesis of symmetry. See Bowker (1948) for details.

Simple Kappa Coefficient
The simple kappa coefficient, introduced by Cohen (1960), is a measure of interrater agreement. PROC
FREQ computes the simple kappa coefficient as

O� D .Po � Pe/ = .1 � Pe/

where Po D
P
i pi i and Pe D

P
i pi:p:i . If the two response variables are viewed as two independent

ratings of the n subjects, the kappa coefficient equals +1 when there is complete agreement of the raters.
When the observed agreement exceeds chance agreement, kappa is positive, with its magnitude reflecting the
strength of agreement. Although this is unusual in practice, kappa is negative when the observed agreement
is less than chance agreement. The minimum value of kappa is between –1 and 0, depending on the marginal
proportions.

The asymptotic variance of the simple kappa coefficient is computed as

Var. O�/ D .AC B � C/ = .1 � Pe/2 n

where

A D

X
i

pi i .1 � .pi � C p�i /.1 � O�//
2

B D .1 � O�/2
XX
i¤j

pij .p�i C pj �/
2

C D . O� � Pe.1 � O�/ /
2

See Fleiss, Cohen, and Everitt (1969) for details.
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PROC FREQ computes confidence limits for the simple kappa coefficient as

O� ˙
�
z˛=2 �

p
Var. O�/

�
where z˛=2 is the 100.1 � ˛=2/ percentile of the standard normal distribution. The value of ˛ is determined
by the value of the ALPHA= option, which, by default, equals 0.05 and produces 95% confidence limits.

To compute an asymptotic test for the kappa coefficient, PROC FREQ uses the standardized test statistic O��,
which has an asymptotic standard normal distribution under the null hypothesis that kappa equals zero. The
standardized test statistic is computed as

O�� D O� =
p
Var0. O�/

where Var0. O�/ is the variance of the kappa coefficient under the null hypothesis,

Var0. O�/ D

 
Pe C P

2
e �

X
i

pi �p�i .pi � C p�i /

!
= .1 � Pe/

2 n

See Fleiss, Levin, and Paik (2003) for details.

PROC FREQ also provides an exact test for the simple kappa coefficient. You can request the exact test by
specifying the KAPPA or AGREE option in the EXACT statement. See the section “Exact Statistics” on
page 2704 for more information.

Weighted Kappa Coefficient
The weighted kappa coefficient is a generalization of the simple kappa coefficient that uses weights to
quantify the relative difference between categories. For 2 � 2 tables, the weighted kappa coefficient equals
the simple kappa coefficient. PROC FREQ displays the weighted kappa coefficient only for tables larger than
2 � 2. PROC FREQ computes the kappa weights from the column scores, by using either Cicchetti-Allison
weights or Fleiss-Cohen weights, both of which are described in the following section. The weights wij
are constructed so that 0 � wij < 1 for all i 6D j , wi i D 1 for all i, and wij D wj i . The weighted kappa
coefficient is computed as

O�w D
�
Po.w/ � Pe.w/

�
=
�
1 � Pe.w/

�
where

Po.w/ D
X
i

X
j

wijpij

Pe.w/ D
X
i

X
j

wijpi �p�j

The asymptotic variance of the weighted kappa coefficient is

Var. O�w/ D

0@X
i

X
j

pij
�
wij � .wi � C w�j /.1 � O�w/

�2
�
�
O�w � Pe.w/.1 � O�w/

�21A = .1�Pe.w//
2 n

where

wi � D
X
j

p�jwij
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w�j D
X
i

pi �wij

See Fleiss, Cohen, and Everitt (1969) for details.

PROC FREQ computes confidence limits for the weighted kappa coefficient as

O�w ˙
�
z˛=2 �

p
Var. O�w/

�
where z˛=2 is the 100.1 � ˛=2/ percentile of the standard normal distribution. The value of ˛ is determined
by the value of the ALPHA= option, which, by default, equals 0.05 and produces 95% confidence limits.

To compute an asymptotic test for the weighted kappa coefficient, PROC FREQ uses the standardized test
statistic O��w , which has an asymptotic standard normal distribution under the null hypothesis that weighted
kappa equals zero. The standardized test statistic is computed as

O��w D O�w =
p
Var0. O�w/

where Var0. O�w/ is the variance of the weighted kappa coefficient under the null hypothesis,

Var0. O�w/ D

0@X
i

X
j

pi �p�j
�
wij � .wi � C w�j /

�2
� P 2e.w/

1A = .1 � Pe.w//
2 n

See Fleiss, Levin, and Paik (2003) for details.

PROC FREQ also provides an exact test for the weighted kappa coefficient. You can request the exact test by
specifying the WTKAPPA or AGREE option in the EXACT statement. See the section “Exact Statistics” on
page 2704 for more information.

Weights PROC FREQ computes kappa coefficient weights by using the column scores and one of the
two available weight types. The column scores are determined by the SCORES= option in the TABLES
statement. The two available types of kappa weights are Cicchetti-Allison and Fleiss-Cohen weights. By
default, PROC FREQ uses Cicchetti-Allison weights. If you specify (WT=FC) with the AGREE option, then
PROC FREQ uses Fleiss-Cohen weights to compute the weighted kappa coefficient.

PROC FREQ computes Cicchetti-Allison kappa coefficient weights as

wij D 1 �
jCi � Cj j

CC � C1

where Ci is the score for column i and C is the number of categories or columns. See Cicchetti and Allison
(1971) for details.

The SCORES= option in the TABLES statement determines the type of column scores used to compute the
kappa weights (and other score-based statistics). The default is SCORES=TABLE. See the section “Scores”
on page 2647 for details. For numeric variables, table scores are the values of the variable levels. You can
assign numeric values to the levels in a way that reflects their level of similarity. For example, suppose you
have four levels and order them according to similarity. If you assign them values of 0, 2, 4, and 10, the
Cicchetti-Allison kappa weights take the following values: w12 = 0.8, w13 = 0.6, w14 = 0, w23 = 0.8, w24
= 0.2, and w34 = 0.4. Note that when there are only two categories (that is, C = 2), the weighted kappa
coefficient is identical to the simple kappa coefficient.
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If you specify (WT=FC) with the AGREE option in the TABLES statement, PROC FREQ computes
Fleiss-Cohen kappa coefficient weights as

wij D 1 �
.Ci � Cj /

2

.CC � C1/2

See Fleiss and Cohen (1973) for details.

For the preceding example, the Fleiss-Cohen kappa weights are: w12 = 0.96, w13 = 0.84, w14 = 0, w23 =
0.96, w24 = 0.36, and w34 = 0.64.

Overall Kappa Coefficient
When there are multiple strata, PROC FREQ combines the stratum-level estimates of kappa into an overall
estimate of the supposed common value of kappa. Assume there are q strata, indexed by h D 1; 2; : : : ; q,
and let Var. O�h/ denote the variance of O�h. The estimate of the overall kappa coefficient is computed as

O�T D

qX
hD1

O�h

Var. O�h/
=

qX
hD1

1

Var. O�h/

See Fleiss, Levin, and Paik (2003) for details.

PROC FREQ computes an estimate of the overall weighted kappa in the same way.

Tests for Equal Kappa Coefficients
When there are multiple strata, the following chi-square statistic tests whether the stratum-level values of
kappa are equal:

QK D

qX
hD1

. O�h � O�T /
2 = Var. O�h/

Under the null hypothesis of equal kappas for the q strata, QK has an asymptotic chi-square distribution with
q–1 degrees of freedom. See Fleiss, Levin, and Paik (2003) for more information. PROC FREQ computes a
test for equal weighted kappa coefficients in the same way.

Cochran’s Q Test
Cochran’s Q is computed for multiway tables when each variable has two levels, that is, for 2 � 2 � � � � 2
tables. Cochran’s Q statistic is used to test the homogeneity of the one-dimensional margins. Let m denote
the number of variables and N denote the total number of subjects. Cochran’s Q statistic is computed as

QC D m.m � 1/

0@ mX
jD1

T 2j � T
2

1A =

 
mT �

NX
kD1

S2k

!

where Tj is the number of positive responses for variable j, T is the total number of positive responses over
all variables, and Sk is the number of positive responses for subject k. Under the null hypothesis, Cochran’s
Q has an asymptotic chi-square distribution with m–1 degrees of freedom. See Cochran (1950) for details.
When there are only two binary response variables (m=2), Cochran’s Q simplifies to McNemar’s test. When
there are more than two response categories, you can test for marginal homogeneity by using the repeated
measures capabilities of the CATMOD procedure.
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Tables with Zero Rows and Columns
The AGREE statistics are defined only for square tables, where the number of rows equals the number of
columns. If the table is not square, PROC FREQ does not compute AGREE statistics. In the kappa statistic
framework, where two independent raters assign ratings to each of n subjects, suppose one of the raters
does not use all possible r rating levels. If the corresponding table has r rows but only r–1 columns, then
the table is not square and PROC FREQ does not compute AGREE statistics. To create a square table in
this situation, use the ZEROS option in the WEIGHT statement, which requests that PROC FREQ include
observations with zero weights in the analysis. Include zero-weight observations in the input data set to
represent any rating levels that are not used by a rater, so that the input data set has at least one observation
for each possible rater and rating combination. The analysis then includes all rating levels, even when all
levels are not actually assigned by both raters. The resulting table (of rater 1 by rater 2) is a square table, and
AGREE statistics can be computed.

For more information, see the description of the ZEROS option. By default, PROC FREQ does not process
observations that have zero weights, because these observations do not contribute to the total frequency count,
and because any resulting zero-weight row or column causes many of the tests and measures of association
to be undefined. However, kappa statistics are defined for tables with a zero-weight row or column, and
the ZEROS option makes it possible to input zero-weight observations and construct the tables needed to
compute kappas.

Cochran-Mantel-Haenszel Statistics

The CMH option in the TABLES statement gives a stratified statistical analysis of the relationship between
the row and column variables after controlling for the strata variables in a multiway table. For example, for
the table request A*B*C*D, the CMH option provides an analysis of the relationship between C and D, after
controlling for A and B. The stratified analysis provides a way to adjust for the possible confounding effects
of A and B without being forced to estimate parameters for them.

The CMH analysis produces Cochran-Mantel-Haenszel statistics, which include the correlation statistic, the
ANOVA (row mean scores) statistic, and the general association statistic. For 2 � 2 tables, the CMH option
also provides Mantel-Haenszel and logit estimates of the common odds ratio and the common relative risks,
as well as the Breslow-Day test for homogeneity of the odds ratios.

Exact statistics are also available for stratified 2 � 2 tables. If you specify the EQOR option in the EXACT
statement, PROC FREQ provides Zelen’s exact test for equal odds ratios. If you specify the COMOR option
in the EXACT statement, PROC FREQ provides exact confidence limits for the common odds ratio and an
exact test that the common odds ratio equals one.

Let the number of strata be denoted by q, indexing the strata by h D 1; 2; : : : ; q. Each stratum contains a
contingency table with X representing the row variable and Y representing the column variable. For table h,
denote the cell frequency in row i and column j by nhij , with corresponding row and column marginal totals
denoted by nhi: and nh:j , and the overall stratum total by nh.
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Because the formulas for the Cochran-Mantel-Haenszel statistics are more easily defined in terms of matrices,
the following notation is used. Vectors are presumed to be column vectors unless they are transposed .0/.

n0
hi

D .nhi1; nhi2; : : : ; nhiC / .1 � C/

n0
h

D .n0
h1
; n0
h2
; : : : ; n0

hR
/ .1 �RC/

phi � D nhi � = nh .1 � 1/

ph�j D nh�j = nh .1 � 1/

P0
h��
D .ph1�; ph2�; : : : ; phR�/ .1 �R/

P0
h��
D .ph�1; ph�2; : : : ; ph�C / .1 � C/

Assume that the strata are independent and that the marginal totals of each stratum are fixed. The null
hypothesis, H0, is that there is no association between X and Y in any of the strata. The corresponding model
is the multiple hypergeometric; this implies that, under H0, the expected value and covariance matrix of the
frequencies are, respectively,

mh D EŒnh jH0� D nh.Ph�� ˝ Ph��/

VarŒnh jH0� D c
�
.DPh�� � Ph��P0h��/˝ .DPh�� � Ph��P0h��/

�
where

c D n2h = .nh � 1/

and where˝ denotes Kronecker product multiplication and Da is a diagonal matrix with the elements of a
on the main diagonal.

The generalized CMH statistic (Landis, Heyman, and Koch 1978) is defined as

QCMH D G0VG
�1G

where

G D

X
h

Bh.nh �mh/

VG D

X
h

Bh .VarŒnh jH0�/B0h

and where

Bh D Ch ˝Rh

is a matrix of fixed constants based on column scores Ch and row scores Rh. When the null hypothesis is
true, the CMH statistic has an asymptotic chi-square distribution with degrees of freedom equal to the rank of
Bh. If VG is found to be singular, PROC FREQ prints a message and sets the value of the CMH statistic to
missing.
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PROC FREQ computes three CMH statistics by using this formula for the generalized CMH statistic, with
different row and column score definitions for each statistic. The CMH statistics that PROC FREQ computes
are the correlation statistic, the ANOVA (row mean scores) statistic, and the general association statistic.
These statistics test the null hypothesis of no association against different alternative hypotheses. The
following sections describe the computation of these CMH statistics.

CAUTION: The CMH statistics have low power for detecting an association in which the patterns of
association for some of the strata are in the opposite direction of the patterns displayed by other strata. Thus,
a nonsignificant CMH statistic suggests either that there is no association or that no pattern of association has
enough strength or consistency to dominate any other pattern.

Correlation Statistic
The correlation statistic, popularized by Mantel and Haenszel, has one degree of freedom and is known as the
Mantel-Haenszel statistic (Mantel and Haenszel 1959; Mantel 1963).

The alternative hypothesis for the correlation statistic is that there is a linear association between X and Y in
at least one stratum. If either X or Y does not lie on an ordinal (or interval) scale, then this statistic is not
meaningful.

To compute the correlation statistic, PROC FREQ uses the formula for the generalized CMH statistic with
the row and column scores determined by the SCORES= option in the TABLES statement. See the section
“Scores” on page 2647 for more information about the available score types. The matrix of row scores Rh
has dimension 1 �R, and the matrix of column scores Ch has dimension 1 � C .

When there is only one stratum, this CMH statistic reduces to .n � 1/r2, where r is the Pearson correlation
coefficient between X and Y. When nonparametric (RANK or RIDIT) scores are specified, the statistic
reduces to .n � 1/r2s , where rs is the Spearman rank correlation coefficient between X and Y. When there is
more than one stratum, this CMH statistic becomes a stratum-adjusted correlation statistic.

ANOVA (Row Mean Scores) Statistic
The ANOVA statistic can be used only when the column variable Y lies on an ordinal (or interval) scale so
that the mean score of Y is meaningful. For the ANOVA statistic, the mean score is computed for each row of
the table, and the alternative hypothesis is that, for at least one stratum, the mean scores of the R rows are
unequal. In other words, the statistic is sensitive to location differences among the R distributions of Y.

The matrix of column scores Ch has dimension 1�C , and the column scores are determined by the SCORES=
option.

The matrix of row scores Rh has dimension .R � 1/ �R and is created internally by PROC FREQ as

Rh D ŒIR�1;�JR�1�

where IR�1 is an identity matrix of rank R – 1 and JR�1 is an .R � 1/ � 1 vector of ones. This matrix has
the effect of forming R – 1 independent contrasts of the R mean scores.

When there is only one stratum, this CMH statistic is essentially an analysis of variance (ANOVA) statistic in
the sense that it is a function of the variance ratio F statistic that would be obtained from a one-way ANOVA
on the dependent variable Y. If nonparametric scores are specified in this case, then the ANOVA statistic is a
Kruskal-Wallis test.

If there is more than one stratum, then this CMH statistic corresponds to a stratum-adjusted ANOVA or
Kruskal-Wallis test. In the special case where there is one subject per row and one subject per column in the
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contingency table of each stratum, this CMH statistic is identical to Friedman’s chi-square. See Example 40.9
for an illustration.

General Association Statistic
The alternative hypothesis for the general association statistic is that, for at least one stratum, there is some
kind of association between X and Y. This statistic is always interpretable because it does not require an
ordinal scale for either X or Y.

For the general association statistic, the matrix Rh is the same as the one used for the ANOVA statistic. The
matrix Ch is defined similarly as

Ch D ŒIC�1;�JC�1�

PROC FREQ generates both score matrices internally. When there is only one stratum, then the general
association CMH statistic reduces toQP .n�1/=n, whereQP is the Pearson chi-square statistic. When there
is more than one stratum, then the CMH statistic becomes a stratum-adjusted Pearson chi-square statistic.
Note that a similar adjustment can be made by summing the Pearson chi-squares across the strata. However,
the latter statistic requires a large sample size in each stratum to support the resulting chi-square distribution
with q(R–1)(C–1) degrees of freedom. The CMH statistic requires only a large overall sample size because it
has only (R–1)(C–1) degrees of freedom.

See Cochran (1954); Mantel and Haenszel (1959); Mantel (1963); Birch (1965); Landis, Heyman, and Koch
(1978).

Mantel-Fleiss Criterion
If you specify the CMH(MANTELFLEISS) option in the TABLES statement, PROC FREQ computes the
Mantel-Fleiss criterion for stratified 2 � 2 tables. The Mantel-Fleiss criterion can be used to assess the
validity of the chi-square approximation for the distribution of the Mantel-Haenszel statistic for 2 � 2 tables.
For details, see Mantel and Fleiss (1980); Mantel and Haenszel (1959); Stokes, Davis, and Koch (2012);
Dmitrienko et al. (2005).

The Mantel-Fleiss criterion is computed as

MF D min

 "X
h

mh11 �
X
h

.nh11/L

#
;

"X
h

.nh11/U �
X
h

mh11

# !

wheremh11 is the expected value of nh11 under the hypothesis of no association between the row and column
variables in table h, .nh11/L is the minimum possible value of the table cell frequency, and .nh11/U is the
maximum possible value,

mh11 D nh1� nh�1 = nh

.nh11/L D max . 0; nh1� � nh�2 /

.nh11/U D min . nh�1; nh1� /

The Mantel-Fleiss guideline accepts the validity of the Mantel-Haenszel approximation when the value of the
criterion is at least 5. When the criterion is less than 5, PROC FREQ displays a warning.
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Adjusted Odds Ratio and Relative Risk Estimates
The CMH option provides adjusted odds ratio and relative risk estimates for stratified 2 � 2 tables. For each
of these measures, PROC FREQ computes a Mantel-Haenszel estimate and a logit estimate. These estimates
apply to n-way table requests in the TABLES statement, when the row and column variables both have two
levels.

For example, for the table request A*B*C*D, if the row and column variables C and D both have two levels,
PROC FREQ provides odds ratio and relative risk estimates, adjusting for the confounding variables A and B.

The choice of an appropriate measure depends on the study design. For case-control (retrospective) studies,
the odds ratio is appropriate. For cohort (prospective) or cross-sectional studies, the relative risk is appropriate.
See the section “Odds Ratio and Relative Risks for 2 x 2 Tables” on page 2683 for more information on these
measures.

Throughout this section, z denotes the 100.1 � ˛=2/ percentile of the standard normal distribution.

Odds Ratio, Case-Control Studies PROC FREQ provides Mantel-Haenszel and logit estimates for the
common odds ratio for stratified 2 � 2 tables.

Mantel-Haenszel Estimator The Mantel-Haenszel estimate of the common odds ratio is computed as

ORMH D

 X
h

nh11 nh22=nh

!
=

 X
h

nh12 nh21=nh

!
It is always computed unless the denominator is zero. See Mantel and Haenszel (1959) and Agresti (2002)
for details.

To compute confidence limits for the common odds ratio, PROC FREQ uses the Robins, Breslow, and
Greenland (1986) variance estimate for ln.ORMH /. The 100.1 � ˛=2/% confidence limits for the common
odds ratio are�

ORMH � exp.�z O�/; ORMH � exp.z O�/
�

where

O�2 D bVar. ln.ORMH / /

D

P
h.nh11 C nh22/.nh11 nh22/=n

2
h

2
�P

h nh11 nh22=nh
�2

C

P
hŒ.nh11 C nh22/.nh12 nh21/C .nh12 C nh21/.nh11 nh22/�=n

2
h

2
�P

h nh11 nh22=nh
� �P

h nh12 nh21=nh
�

C

P
h.nh12 C nh21/.nh12 nh21/=n

2
h

2
�P

h nh12 nh21=nh
�2

Note that the Mantel-Haenszel odds ratio estimator is less sensitive to small nh than the logit estimator.

Logit Estimator The adjusted logit estimate of the common odds ratio (Woolf 1955) is computed as

ORL D exp

 X
h

wh ln.ORh/ =
X
h

wh

!
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and the corresponding 100.1 � ˛/% confidence limits are0@ ORL � exp

0@�z=sX
h

wh

1A ; ORL � exp

0@z=sX
h

wh

1A 1A
where ORh is the odds ratio for stratum h, and

wh D 1=Var.ln.ORh//

If any table cell frequency in a stratum h is zero, PROC FREQ adds 0.5 to each cell of the stratum before
computing ORh and wh (Haldane 1955) for the logit estimate. The procedure prints a warning when this
occurs.

Relative Risks, Cohort Studies PROC FREQ provides Mantel-Haenszel and logit estimates of the
common relative risks for stratified 2 � 2 tables.

Mantel-Haenszel Estimator The Mantel-Haenszel estimate of the common relative risk for column 1 is
computed as

RRMH D

 X
h

nh11 nh2� = nh

!
=

 X
h

nh21 nh1� = nh

!
It is always computed unless the denominator is zero. See Mantel and Haenszel (1959) and Agresti (2002)
for more information.

To compute confidence limits for the common relative risk, PROC FREQ uses the Greenland and Robins
(1985) variance estimate for log.RRMH /. The 100.1 � ˛=2/% confidence limits for the common relative
risk are�

RRMH � exp.�z O�/; RRMH � exp.z O�/
�

where

O�2 DbVar. ln.RRMH / / D

P
h.nh1� nh2� nh�1 � nh11 nh21 nh/=n

2
h�P

h nh11 nh2�=nh
� �P

h nh21 nh1�=nh
�

Logit Estimator The adjusted logit estimate of the common relative risk for column 1 is computed as

RRL D exp

 X
h

wh ln.RRh/ =
X

wh

!
and the corresponding 100.1 � ˛/% confidence limits are0@ RRL � exp

0@�z =sX
h

wh

1A ; RRL � exp

0@z =sX
h

wh

1A 1A
where RRh is the column 1 relative risk estimate for stratum h and

wh D 1 = Var.ln.RRh//

If nh11 or nh21 is zero, then PROC FREQ adds 0.5 to each cell of the stratum before computing RRh and
wh for the logit estimate. The procedure prints a warning when this occurs. See Kleinbaum, Kupper, and
Morgenstern (1982, Sections 17.4 and 17.5) for details.
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Breslow-Day Test for Homogeneity of the Odds Ratios
When you specify the CMH option, PROC FREQ computes the Breslow-Day test for stratified 2 � 2 tables.
It tests the null hypothesis that the odds ratios for the q strata are equal. When the null hypothesis is true,
the statistic has approximately a chi-square distribution with q–1 degrees of freedom. See Breslow and Day
(1980) and Agresti (2007) for more information.

The Breslow-Day statistic is computed as

QBD D
X
h

.nh11 � E.nh11 j ORMH //
2 = Var.nh11 j ORMH /

where E and Var denote expected value and variance, respectively. The summation does not include any table
with a zero row or column. If ORMH equals zero or if it is undefined, then PROC FREQ does not compute
the statistic and prints a warning message.

For the Breslow-Day test to be valid, the sample size should be relatively large in each stratum, and at least
80% of the expected cell counts should be greater than 5. Note that this is a stricter sample size requirement
than the requirement for the Cochran-Mantel-Haenszel test for q � 2 � 2 tables, in that each stratum sample
size (not just the overall sample size) must be relatively large. Even when the Breslow-Day test is valid, it
might not be very powerful against certain alternatives, as discussed in Breslow and Day (1980).

If you specify the BDT option, PROC FREQ computes the Breslow-Day test with Tarone’s adjustment,
which subtracts an adjustment factor from QBD to make the resulting statistic asymptotically chi-square.
The Breslow-Day-Tarone statistic is computed as

QBDT D QBD �

 X
h

.nh11 � E.nh11 j ORMH //

!2
=
X
h

Var.nh11 j ORMH /

See Tarone (1985); Jones et al. (1989); Breslow (1996) for more information.

Zelen’s Exact Test for Equal Odds Ratios
If you specify the EQOR option in the EXACT statement, PROC FREQ computes Zelen’s exact test for equal
odds ratios for stratified 2 � 2 tables. Zelen’s test is an exact counterpart to the Breslow-Day asymptotic test
for equal odds ratios. The reference set for Zelen’s test includes all possible q�2�2 tables with the same row,
column, and stratum totals as the observed multiway table and with the same sum of cell (1,1) frequencies as
the observed table. The test statistic is the probability of the observed q � 2� 2 table conditional on the fixed
margins, which is a product of hypergeometric probabilities.

The p-value for Zelen’s test is the sum of all table probabilities that are less than or equal to the observed
table probability, where the sum is computed over all tables in the reference set determined by the fixed
margins and the observed sum of cell (1,1) frequencies. This test is similar to Fisher’s exact test for two-way
tables. For more information, see Zelen (1971); Hirji (2006); Agresti (1992). PROC FREQ computes Zelen’s
exact test by using the polynomial multiplication algorithm of Hirji et al. (1996).

Exact Confidence Limits for the Common Odds Ratio
If you specify the COMOR option in the EXACT statement, PROC FREQ computes exact confidence limits
for the common odds ratio for stratified 2� 2 tables. This computation assumes that the odds ratio is constant
over all the 2 � 2 tables. Exact confidence limits are constructed from the distribution of S D

P
h nh11,

conditional on the marginal totals of the 2 � 2 tables.
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Because this is a discrete problem, the confidence coefficient for these exact confidence limits is not exactly
.1 � ˛/ but is at least .1 � ˛/. Thus, these confidence limits are conservative. See Agresti (1992) for more
information.

PROC FREQ computes exact confidence limits for the common odds ratio by using an algorithm based on
Vollset, Hirji, and Elashoff (1991). See also Mehta, Patel, and Gray (1985).

Conditional on the marginal totals of 2 � 2 table h, let the random variable Sh denote the frequency of table
cell (1,1). Given the row totals nh1� and nh2� and column totals nh�1 and nh�2, the lower and upper bounds for
Sh are lh and uh,

lh D max . 0; nh1� � nh�2 /
uh D min . nh1�; nh�1 /

Let Csh denote the hypergeometric coefficient,

Csh D

 
nh�1

sh

! 
nh�2

nh1� � sh

!

and let � denote the common odds ratio. Then the conditional distribution of Sh is

P. Sh D sh j n1�; n�1; n�2 / D Csh �
sh =

x D uhX
x D lh

Cx �
x

Summing over all the 2 � 2 tables, S D
P
h Sh, and the lower and upper bounds of S are l and u,

l D
X
h

lh and u D
X
h

uh

The conditional distribution of the sum S is

P. S D s j nh1�; nh�1; nh�2I h D 1; : : : ; q / D Cs �
s =

x D uX
x D l

Cx �
x

where

Cs D
X

s1C::::Csq D s

 Y
h

Csh

!

Let s0 denote the observed sum of cell (1,1) frequencies over the q tables. The following two equations are
solved iteratively for lower and upper confidence limits for the common odds ratio, �1 and �2:

x D uX
x D s0

Cx �
x
1 =

x D uX
x D l

Cx �
x
1 D ˛=2

x D s0X
x D l

Cx �
x
2 =

x D uX
x D l

Cx �
x
2 D ˛=2
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When the observed sum s0 equals the lower bound l, PROC FREQ sets the lower confidence limit to zero
and determines the upper limit with level ˛. Similarly, when the observed sum s0 equals the upper bound u,
PROC FREQ sets the upper confidence limit to infinity and determines the lower limit with level ˛.

When you specify the COMOR option in the EXACT statement, PROC FREQ also computes the exact test
that the common odds ratio equals one. Setting � D 1, the conditional distribution of the sum S under the
null hypothesis becomes

P0. S D s j nh1�; nh�1; nh�2I h D 1; : : : ; q / D Cs =

x D uX
x D l

Cx

The point probability for this exact test is the probability of the observed sum s0 under the null hypothesis,
conditional on the marginals of the stratified 2 � 2 tables, and is denoted by P0.s0/. The expected value of S
under the null hypothesis is

E0.S/ D
x D uX
x D l

x Cx =

x D uX
x D l

Cx

The one-sided exact p-value is computed from the conditional distribution as P0.S >D s0/ or P0.S � s0/,
depending on whether the observed sum s0 is greater or less than E0.S/,

P1 D P0. S >D s0 / D

x D uX
x D s0

Cx =

x D uX
x D l

Cx if s0 > E0.S/

P1 D P0. S <D s0 / D

x D s0X
x D l

Cx =

x D uX
x D l

Cx if s0 � E0.S/

PROC FREQ computes two-sided p-values for this test according to three different definitions. A two-sided
p-value is computed as twice the one-sided p-value, setting the result equal to one if it exceeds one,

P a
2 D 2 � P1

Additionally, a two-sided p-value is computed as the sum of all probabilities less than or equal to the point
probability of the observed sum s0, summing over all possible values of s, l � s � u,

P b
2 D

X
l�s�uWP0.s/�P0.s0/

P0.s/

Also, a two-sided p-value is computed as the sum of the one-sided p-value and the corresponding area in the
opposite tail of the distribution, equidistant from the expected value,

P c
2 D P0 . jS � E0.S/j � js0 � E0.S/j /
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Gail-Simon Test for Qualitative Interactions

The GAILSIMON option in the TABLES statement provides the Gail-Simon test for qualitative interaction
for stratified 2� 2 tables. For details, see Gail and Simon (1985); Silvapulle (2001); Dmitrienko et al. (2005).

The Gail-Simon test is based on the risk differences in stratified 2 � 2 tables, where the risk difference
is defined as the row 1 risk (proportion in column 1) minus the row 2 risk. See the section “Risks and
Risk Differences” on page 2671 for details. By default, the procedure uses column 1 risks to compute the
Gail-Simon test. If you specify the GAILSIMON(COLUMN=2) option, the procedure uses column 2 risks.

PROC FREQ computes the Gail-Simon test statistics as described in Gail and Simon (1985),

Q� D

X
h

.dh=sh/
2 I.dh > 0/

QC D

X
h

.dh=sh/
2 I.dh < 0/

Q D min .Q�; QC/

where dh is the risk difference in table h, sh is the standard error of the risk difference, and I.dh > 0/ equals
1 if dh > 0 and 0 otherwise. Similarly, I.dh < 0/ equals 1 if dh < 0 and 0 otherwise. The q 2 � 2 tables
(strata) are indexed by h D 1; 2; : : : ; q.

The p-values for the Gail-Simon statistics are computed as

p.Q�/ D
X
h

.1 � Fh.Q�// B.hIn D q; p D 0:5/

p.QC/ D
X
h

.1 � Fh.QC// B.hIn D q; p D 0:5/

p.Q/ D

q�1X
hD1

.1 � Fh.Q// B.hIn D .q � 1/; p D 0:5/

where Fh.�/ is the cumulative chi-square distribution function with h degrees of freedom and B.hIn; p/ is
the binomial probability function with parameters n and p. The statistic Q tests the null hypothesis of no
qualitative interaction. The statistic Q� tests the null hypothesis of positive risk differences. A small p-value
for Q� indicates negative differences; similarly, a small p-value for QC indicates positive risk differences.

Exact Statistics

Exact statistics can be useful in situations where the asymptotic assumptions are not met, and so the
asymptotic p-values are not close approximations for the true p-values. Standard asymptotic methods involve
the assumption that the test statistic follows a particular distribution when the sample size is sufficiently
large. When the sample size is not large, asymptotic results might not be valid, with the asymptotic p-values
differing perhaps substantially from the exact p-values. Asymptotic results might also be unreliable when
the distribution of the data is sparse, skewed, or heavily tied. See Agresti (2007) and Bishop, Fienberg,
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and Holland (1975) for more information. Exact computations are based on the statistical theory of exact
conditional inference for contingency tables, reviewed by Agresti (1992).

In addition to computation of exact p-values, PROC FREQ provides the option of estimating exact p-values
by Monte Carlo simulation. This can be useful for problems that are so large that exact computations require
a great amount of time and memory, but for which asymptotic approximations might not be sufficient.

Exact statistics are available for many PROC FREQ tests. For one-way tables, PROC FREQ provides exact
p-values for the binomial proportion tests and the chi-square goodness-of-fit test. Exact (Clopper-Pearson)
confidence limits are available for the binomial proportion. For two-way tables, PROC FREQ provides exact
p-values for the following tests: Pearson chi-square test, likelihood ratio chi-square test, Mantel-Haenszel chi-
square test, Fisher’s exact test, Jonckheere-Terpstra test, and Cochran-Armitage test for trend. PROC FREQ
also computes exact p-values for tests of the following statistics: Kendall’s tau-b, Stuart’s tau-c, Somers’
D.C jR/, Somers’ D.RjC/, Pearson correlation coefficient, Spearman correlation coefficient, simple kappa
coefficient, and weighted kappa coefficient. For 2 � 2 tables, PROC FREQ provides McNemar’s exact test
and exact confidence limits for the odds ratio. PROC FREQ also provides exact unconditional confidence
limits for the proportion (risk) difference and for the relative risk. For stratified 2 � 2 tables, PROC FREQ
provides Zelen’s exact test for equal odds ratios, exact confidence limits for the common odds ratio, and an
exact test for the common odds ratio.

The following sections summarize the exact computational algorithms, define the exact p-values that PROC
FREQ computes, discuss the computational resource requirements, and describe the Monte Carlo estimation
option.

Computational Algorithms
PROC FREQ computes exact p-values for general R � C tables by using the network algorithm developed
by Mehta and Patel (1983). This algorithm provides a substantial advantage over direct enumeration, which
can be very time-consuming and feasible only for small problems. See Agresti (1992) for a review of
algorithms for computation of exact p-values, and see Mehta, Patel, and Tsiatis (1984) and Mehta, Patel, and
Senchaudhuri (1991) for information about the performance of the network algorithm.

The reference set for a given contingency table is the set of all contingency tables with the observed marginal
row and column sums. Corresponding to this reference set, the network algorithm forms a directed acyclic
network consisting of nodes in a number of stages. A path through the network corresponds to a distinct
table in the reference set. The distances between nodes are defined so that the total distance of a path through
the network is the corresponding value of the test statistic. At each node, the algorithm computes the shortest
and longest path distances for all the paths that pass through that node. For statistics that can be expressed
as a linear combination of cell frequencies multiplied by increasing row and column scores, PROC FREQ
computes shortest and longest path distances by using the algorithm of Agresti, Mehta, and Patel (1990). For
statistics of other forms, PROC FREQ computes an upper bound for the longest path and a lower bound for
the shortest path by following the approach of Valz and Thompson (1994).

The longest and shortest path distances or bounds for a node are compared to the value of the test statistic
to determine whether all paths through the node contribute to the p-value, none of the paths through the
node contribute to the p-value, or neither of these situations occurs. If all paths through the node contribute,
the p-value is incremented accordingly, and these paths are eliminated from further analysis. If no paths
contribute, these paths are eliminated from the analysis. Otherwise, the algorithm continues, still processing
this node and the associated paths. The algorithm finishes when all nodes have been accounted for.

In applying the network algorithm, PROC FREQ uses full numerical precision to represent all statistics, row
and column scores, and other quantities involved in the computations. Although it is possible to use rounding



2706 F Chapter 40: The FREQ Procedure

to improve the speed and memory requirements of the algorithm, PROC FREQ does not do this because it
can result in reduced accuracy of the p-values.

For one-way tables, PROC FREQ computes the exact chi-square goodness-of-fit test by the method of Radlow
and Alf (1975). PROC FREQ generates all possible one-way tables with the observed total sample size and
number of categories. For each possible table, PROC FREQ compares its chi-square value with the value
for the observed table. If the table’s chi-square value is greater than or equal to the observed chi-square,
PROC FREQ increments the exact p-value by the probability of that table, which is calculated under the null
hypothesis by using the multinomial frequency distribution. By default, the null hypothesis states that all
categories have equal proportions. If you specify null hypothesis proportions or frequencies by using the
TESTP= or TESTF= option in the TABLES statement, then PROC FREQ calculates the exact chi-square test
based on that null hypothesis.

Other exact computations are described in sections about the individual statistics. See the section “Binomial
Proportion” on page 2663 for details about how PROC FREQ computes exact confidence limits and tests for
the binomial proportion. See the section “Odds Ratio and Relative Risks for 2 x 2 Tables” on page 2683 for
information about computation of exact confidence limits for the odds ratio for 2 � 2 tables. Also, see the
sections “Exact Unconditional Confidence Limits for the Risk Difference” on page 2679, “Exact Confidence
Limits for the Common Odds Ratio” on page 2701, and “Zelen’s Exact Test for Equal Odds Ratios” on
page 2701.

Definition of p-Values
For several tests in PROC FREQ, the test statistic is nonnegative, and large values of the test statistic indicate
a departure from the null hypothesis. Such nondirectional tests include the Pearson chi-square, the likelihood
ratio chi-square, the Mantel-Haenszel chi-square, Fisher’s exact test for tables larger than 2 � 2, McNemar’s
test, and the one-way chi-square goodness-of-fit test. The exact p-value for a nondirectional test is the sum
of probabilities for those tables having a test statistic greater than or equal to the value of the observed test
statistic.

There are other tests where it might be appropriate to test against either a one-sided or a two-sided alternative
hypothesis. For example, when you test the null hypothesis that the true parameter value equals 0 (T D 0),
the alternative of interest might be one-sided (T � 0, or T � 0) or two-sided (T ¤ 0). Such tests include the
Pearson correlation coefficient, Spearman correlation coefficient, Jonckheere-Terpstra test, Cochran-Armitage
test for trend, simple kappa coefficient, and weighted kappa coefficient. For these tests, PROC FREQ displays
the right-sided p-value when the observed value of the test statistic is greater than its expected value. The
right-sided p-value is the sum of probabilities for those tables for which the test statistic is greater than or
equal to the observed test statistic. Otherwise, when the observed test statistic is less than or equal to the
expected value, PROC FREQ displays the left-sided p-value. The left-sided p-value is the sum of probabilities
for those tables for which the test statistic is less than or equal to the one observed. The one-sided p-value P1
can be expressed as

P1 D

(
Prob. Test Statistic � t / if t > E0.T /
Prob. Test Statistic � t / if t � E0.T /

where t is the observed value of the test statistic and E0.T / is the expected value of the test statistic under the
null hypothesis. PROC FREQ computes the two-sided p-value as the sum of the one-sided p-value and the
corresponding area in the opposite tail of the distribution of the statistic, equidistant from the expected value.
The two-sided p-value P2 can be expressed as

P2 D Prob . jTest Statistic � E0.T /j � jt � E0.T /j/
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If you specify the POINT option in the EXACT statement, PROC FREQ provides exact point probabilities for
the exact tests. The exact point probability is the exact probability that the test statistic equals the observed
value.

If you specify the MIDP option in the EXACT statement, PROC FREQ provides exact mid-p-values. The
exact mid p-value is defined as the exact p-value minus half the exact point probability, which equals the
average of Prob.Test Statistic � t / and Prob.Test Statistic > t/ for a right-sided test. The exact mid p-value
is smaller and less conservative than the non-adjusted exact p-value. For more information, see Agresti (2013,
section 1.1.4) and Hirji (2006, sections 2.5 and 2.11.1).

Computational Resources
PROC FREQ uses relatively fast and efficient algorithms for exact computations. These recently developed
algorithms, together with improvements in computer power, now make it feasible to perform exact compu-
tations for data sets where previously only asymptotic methods could be applied. Nevertheless, there are
still large problems that might require a prohibitive amount of time and memory for exact computations,
depending on the speed and memory available on your computer. For large problems, consider whether exact
methods are really needed or whether asymptotic methods might give results quite close to the exact results,
while requiring much less computer time and memory. When asymptotic methods might not be sufficient for
such large problems, consider using Monte Carlo estimation of exact p-values, as described in the section
“Monte Carlo Estimation” on page 2707.

A formula does not exist that can predict in advance how much time and memory are needed to compute an
exact p-value for a certain problem. The time and memory required depend on several factors, including
which test is being performed, the total sample size, the number of rows and columns, and the specific
arrangement of the observations into table cells. Generally, larger problems (in terms of total sample size,
number of rows, and number of columns) tend to require more time and memory. Additionally, for a fixed
total sample size, time and memory requirements tend to increase as the number of rows and columns
increases, because this corresponds to an increase in the number of tables in the reference set. Also for a
fixed sample size, time and memory requirements increase as the marginal row and column totals become
more homogeneous. See Agresti, Mehta, and Patel (1990) and Gail and Mantel (1977) for more information.

At any time while PROC FREQ is computing exact p-values, you can terminate the computations by
pressing the system interrupt key sequence (see the SAS Companion for your system) and choosing to stop
computations. After you terminate exact computations, PROC FREQ completes all other remaining tasks.
The procedure produces the requested output and reports missing values for any exact p-values that were not
computed by the time of termination.

You can also use the MAXTIME= option in the EXACT statement to limit the amount of time PROC FREQ
uses for exact computations. You specify a MAXTIME= value that is the maximum amount of clock time (in
seconds) that PROC FREQ can use to compute an exact p-value. If PROC FREQ does not finish computing
an exact p-value within that time, it terminates the computation and completes all other remaining tasks.

Monte Carlo Estimation
If you specify the option MC in the EXACT statement, PROC FREQ computes Monte Carlo estimates of
the exact p-values instead of directly computing the exact p-values. Monte Carlo estimation can be useful
for large problems that require a great amount of time and memory for exact computations but for which
asymptotic approximations might not be sufficient. To describe the precision of each Monte Carlo estimate,
PROC FREQ provides the asymptotic standard error and 100.1 � ˛/% confidence limits. The confidence
level ˛ is determined by the ALPHA= option in the EXACT statement, which, by default, equals 0.01 and
produces 99% confidence limits. The N=n option in the EXACT statement specifies the number of samples
that PROC FREQ uses for Monte Carlo estimation; the default is 10000 samples. You can specify a larger
value for n to improve the precision of the Monte Carlo estimates. Because larger values of n generate more
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samples, the computation time increases. Alternatively, you can specify a smaller value of n to reduce the
computation time.

To compute a Monte Carlo estimate of an exact p-value, PROC FREQ generates a random sample of
tables with the same total sample size, row totals, and column totals as the observed table. PROC FREQ
uses the algorithm of Agresti, Wackerly, and Boyett (1979), which generates tables in proportion to their
hypergeometric probabilities conditional on the marginal frequencies. For each sample table, PROC FREQ
computes the value of the test statistic and compares it to the value for the observed table. When estimating a
right-sided p-value, PROC FREQ counts all sample tables for which the test statistic is greater than or equal
to the observed test statistic. Then the p-value estimate equals the number of these tables divided by the total
number of tables sampled.

OPMC D M = N

M D number of samples with .Test Statistic � t /

N D total number of samples

t D observed Test Statistic

PROC FREQ computes left-sided and two-sided p-value estimates in a similar manner. For left-sided
p-values, PROC FREQ evaluates whether the test statistic for each sampled table is less than or equal to the
observed test statistic. For two-sided p-values, PROC FREQ examines the sample test statistics according to
the expression for P2 given in the section “Definition of p-Values” on page 2706.

The variable M is a binomially distributed variable with N trials and success probability p. It follows that the
asymptotic standard error of the Monte Carlo estimate is

se. OPMC / D

q
OPMC .1 � OPMC / = .N � 1/

PROC FREQ constructs asymptotic confidence limits for the p-values according to

OPMC ˙
�
z˛=2 � se. OPMC /

�
where z˛=2 is the 100.1 � ˛=2/ percentile of the standard normal distribution and the confidence level ˛ is
determined by the ALPHA= option in the EXACT statement.

When the Monte Carlo estimate OPMC equals 0, PROC FREQ computes the confidence limits for the p-value
as

. 0; 1 � ˛.1=N/ /

When the Monte Carlo estimate OPMC equals 1, PROC FREQ computes the confidence limits as

. ˛.1=N/; 1 /

Computational Resources
For each variable in a table request, PROC FREQ stores all of the levels in memory. If all variables are
numeric and not formatted, this requires about 84 bytes for each variable level. When there are character
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variables or formatted numeric variables, the memory that is required depends on the formatted variable
lengths, with longer formatted lengths requiring more memory. The number of levels for each variable is
limited only by the largest integer that your operating environment can store.

For any single crosstabulation table requested, PROC FREQ builds the entire table in memory, regardless of
whether the table has zero cell counts. Thus, if the numeric variables A, B, and C each have 10 levels, PROC
FREQ requires 2520 bytes to store the variable levels for the table request A*B*C, as follows:

3 variables * 10 levels/variable * 84 bytes/level

In addition, PROC FREQ requires 8000 bytes to store the table cell frequencies

1000 cells * 8 bytes/cell

even though there might be only 10 observations.

When the variables have many levels or when there are many multiway tables, your computer might not
have enough memory to construct the tables. If PROC FREQ runs out of memory while constructing tables,
it stops collecting levels for the variable with the most levels and returns the memory that is used by that
variable. The procedure then builds the tables that do not contain the disabled variables.

If there is not enough memory for your table request and if increasing the available memory is impractical,
you can reduce the number of multiway tables or variable levels. If you are not using the CMH or AGREE
option in the TABLES statement to compute statistics across strata, reduce the number of multiway tables
by using PROC SORT to sort the data set by one or more of the variables or by using the DATA step to
create an index for the variables. Then remove the sorted or indexed variables from the TABLES statement
and include a BY statement that uses these variables. You can also reduce memory requirements by using
a FORMAT statement in the PROC FREQ step to reduce the number of levels. Additionally, reducing the
formatted variable lengths reduces the amount of memory that is needed to store the variable levels. For more
information about using formats, see the section “Grouping with Formats” on page 2642.

Output Data Sets
PROC FREQ produces two types of output data sets that you can use with other statistical and reporting
procedures. You can request these data sets as follows:

• Specify the OUT= option in a TABLES statement. This creates an output data set that contains
frequency or crosstabulation table counts and percentages

• Specify an OUTPUT statement. This creates an output data set that contains statistics.

PROC FREQ does not display the output data sets. Use PROC PRINT, PROC REPORT, or any other SAS
reporting tool to display an output data set.

In addition to these two output data sets, you can create a SAS data set from any piece of PROC FREQ
output by using the Output Delivery System. See the section “ODS Table Names” on page 2721 for more
information.
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Contents of the TABLES Statement Output Data Set

The OUT= option in the TABLES statement creates an output data set that contains one observation for each
combination of variable values (or table cell) in the last table request. By default, each observation contains
the frequency and percentage for the table cell. When the input data set contains missing values, the output
data set also contains an observation with the frequency of missing values. The output data set includes the
following variables:

• BY variables

• table request variables, such as A, B, C, and D in the table request A*B*C*D

• COUNT, which contains the table cell frequency

• PERCENT, which contains the table cell percentage

If you specify the OUTEXPECT option in the TABLES statement for a two-way or multiway table, the
output data set also includes expected frequencies. If you specify the OUTPCT option for a two-way or
multiway table, the output data set also includes row, column, and table percentages. The additional variables
are as follows:

• EXPECTED, which contains the expected frequency

• PCT_TABL, which contains the percentage of two-way table frequency, for n-way tables where n > 2

• PCT_ROW, which contains the percentage of row frequency

• PCT_COL, which contains the percentage of column frequency

If you specify the OUTCUM option in the TABLES statement for a one-way table, the output data set also
includes cumulative frequencies and cumulative percentages. The additional variables are as follows:

• CUM_FREQ, which contains the cumulative frequency

• CUM_PCT, which contains the cumulative percentage

The OUTCUM option has no effect for two-way or multiway tables.

The following PROC FREQ statements create an output data set of frequencies and percentages:

proc freq;
tables A A*B / out=D;

run;

The output data set D contains frequencies and percentages for the table of A by B, which is the last table
request listed in the TABLES statement. If A has two levels (1 and 2), B has three levels (1,2, and 3), and
no table cell count is zero or missing, then the output data set D includes six observations, one for each
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combination of A and B levels. The first observation corresponds to A=1 and B=1; the second observation
corresponds to A=1 and B=2; and so on. The data set includes the variables COUNT and PERCENT. The
value of COUNT is the number of observations with the given combination of A and B levels. The value of
PERCENT is the percentage of the total number of observations with that A and B combination.

When PROC FREQ combines different variable values into the same formatted level, the output data set
contains the smallest internal value for the formatted level. For example, suppose a variable X has the values
1.1., 1.4, 1.7, 2.1, and 2.3. When you submit the statement

format X 1.;

in a PROC FREQ step, the formatted levels listed in the frequency table for X are 1 and 2. If you create an
output data set with the frequency counts, the internal values of the levels of X are 1.1 and 1.7. To report the
internal values of X when you display the output data set, use a format of 3.1 for X.

Contents of the OUTPUT Statement Output Data Set

The OUTPUT statement creates a SAS data set that contains statistics computed by PROC FREQ. Table 40.7
lists the statistics that can be stored in the output data set. You identify which statistics to include by
specifying output-options. See the description of the OUTPUT statement for details.

If you specify multiple TABLES statements or multiple table requests in a single TABLES statement, the
contents of the output data set correspond to the last table request.

For a one-way table or a two-way table, the output data set contains one observation that stores the requested
statistics for the table. For a multiway table, the output data set contains an observation for each two-way
table (stratum) of the multiway crosstabulation. If you request summary statistics for the multiway table, the
output data set also contains an observation that stores the across-strata summary statistics. If you use a BY
statement, the output data set contains an observation (for one-way or two-way tables) or set of observations
(for multiway tables) for each BY group.

The OUTPUT data set can include the following variables:

• BY variables

• Variables that identify the stratum for multiway tables, such as A and B in the table request A*B*C*D

• Variables that contain the specified statistics

In addition to the specified estimate or test statistic, the output data set includes associated values such as
standard errors, confidence limits, p-values, and degrees of freedom.

PROC FREQ constructs variable names for the statistics in the output data set by enclosing the output-option
names in underscores. Variable names for the corresponding standard errors, confidence limits, p-values,
and degrees of freedom are formed by combining the output-option names with prefixes that identify the
associated values. Table 40.20 lists the prefixes and their descriptions.
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Table 40.20 Output Data Set Variable Name Prefixes

Prefix Description

E_ Asymptotic standard error (ASE)
L_ Lower confidence limit
U_ Upper confidence limit
E0_ Null hypothesis ASE
Z_ Standardized value

DF_ Degrees of freedom
P_ p-value
P2_ Two-sided p-value
PL_ Left-sided p-value
PR_ Right-sided p-value

XP_ Exact p-value
XP2_ Exact two-sided p-value
XPL_ Exact left-sided p-value
XPR_ Exact right-sided p-value
XPT_ Exact point probability
XMP_ Exact mid p-value
XL_ Exact lower confidence limit
XU_ Exact upper confidence limit

For example, the PCHI output-option in the OUTPUT statement includes the Pearson chi-square test in the
output data set. The variable names for the Pearson chi-square statistic, its degrees of freedom, and the
corresponding p-value are _PCHI_, DF_PCHI, and P_PCHI, respectively. For variables that were added to
the output data set before SAS/STAT 8.2, PROC FREQ truncates the variable name to eight characters when
the length of the prefix plus the output-option name exceeds eight characters.

Displayed Output

Number of Variable Levels Table

If you specify the NLEVELS option in the PROC FREQ statement, PROC FREQ displays the “Number
of Variable Levels” table. This table provides the number of levels for all variables named in the TABLES
statements. PROC FREQ determines the variable levels from the formatted variable values. See “Grouping
with Formats” on page 2642 for details. The “Number of Variable Levels” table contains the following
information:

• Variable name

• Levels, which is the total number of levels of the variable

• Number of Nonmissing Levels, if there are missing levels for any of the variables

• Number of Missing Levels, if there are missing levels for any of the variables
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One-Way Frequency Tables

PROC FREQ displays one-way frequency tables for all one-way table requests in the TABLES statements,
unless you specify the NOPRINT option in the PROC FREQ statement or the NOPRINT option in the
TABLES statement. For a one-way table showing the frequency distribution of a single variable, PROC
FREQ displays the name of the variable and its values. For each variable value or level, PROC FREQ displays
the following information:

• Frequency count, which is the number of observations in the level

• Test Frequency count, if you specify the CHISQ and TESTF= options to request a chi-square goodness-
of-fit test for specified frequencies

• Percent, which is the percentage of the total number of observations. (The NOPERCENT option
suppresses this information.)

• Test Percent, if you specify the CHISQ and TESTP= options to request a chi-square goodness-of-fit
test for specified percents. (The NOPERCENT option suppresses this information.)

• Cumulative Frequency count, which is the sum of the frequency counts for that level and all other
levels listed above it in the table. The last cumulative frequency is the total number of nonmissing
observations. (The NOCUM option suppresses this information.)

• Cumulative Percent, which is the percentage of the total number of observations in that level and in all
other levels listed above it in the table. (The NOCUM or the NOPERCENT option suppresses this
information.)

The one-way table also displays the Frequency Missing, which is the number of observations with missing
values.

Statistics for One-Way Frequency Tables

For one-way tables, two statistical options are available in the TABLES statement. The CHISQ option
provides a chi-square goodness-of-fit test, and the BINOMIAL option provides binomial proportion statistics
and tests. PROC FREQ displays the following information, unless you specify the NOPRINT option in the
PROC FREQ statement:

• If you specify the CHISQ option for a one-way table, PROC FREQ provides a chi-square goodness-
of-fit test, displaying the Chi-Square statistic, the degrees of freedom (DF), and the probability value
(Pr > ChiSq). If you specify the CHISQ option in the EXACT statement, PROC FREQ also displays
the exact probability value for this test. If you specify the POINT option with the CHISQ option in
the EXACT statement, PROC FREQ displays the exact point probability for the test statistic. If you
specify the MIDP option in the EXACT statement, PROC FREQ displays the exact mid p-value for the
chi-square test.

• If you specify the BINOMIAL option for a one-way table, PROC FREQ displays the estimate of the
binomial Proportion, which is the proportion of observations in the first class listed in the one-way
table. PROC FREQ also displays the asymptotic standard error (ASE) and the asymptotic (Wald) and
exact (Clopper-Pearson) confidence limits by default. For the binomial proportion test, PROC FREQ
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displays the asymptotic standard error under the null hypothesis (ASE Under H0), the standardized
test statistic (Z), and the one-sided and two-sided probability values.

If you specify the BINOMIAL option in the EXACT statement, PROC FREQ also displays the exact
one-sided and two-sided probability values for this test. If you specify the POINT option with the
BINOMIAL option in the EXACT statement, PROC FREQ displays the exact point probability for the
test. If you specify the MIDP option in the EXACT statement, PROC FREQ displays the exact mid
p-value for the binomial proportion test.

• If you request binomial confidence limits by specifying the BINOMIAL(CL=) option, PROC FREQ
displays the “Binomial Confidence Limits” table, which includes the Lower and Upper Confidence
Limits for each confidence limit Type that you request. In addition to Wald and Clopper-Pearson
(Exact) confidence limits, you can request the following confidence limit types for the binomial
proportion: Agresti-Coull, Blaker, Jeffreys, Likelihood Ratio, Logit, Mid-p, and Wilson (score).

• If you request a binomial noninferiority or superiority test by specifying the NONINF or SUP binomial-
option, PROC FREQ displays a Noninferiority Analysis or Superiority Analysis table that contains
the following information: the binomial Proportion, the test ASE (under H0 or Sample), the test
statistic Z, the probability value, the noninferiority or superiority limit, and the test confidence limits.
If you specify the BINOMIAL option in the EXACT statement, PROC FREQ also provides the exact
probability value for the test, and exact test confidence limits.

• If you request a binomial equivalence test by specifying the EQUIV binomial-option, PROC FREQ
displays an Equivalence Analysis table that contains the following information: binomial Proportion
and the test ASE (under H0 or Sample). PROC FREQ displays two one-sided tests (TOST) for
equivalence, which include test statistics (Z) and probability values for the Lower and Upper tests,
together with the Overall probability value. PROC FREQ also displays the equivalence limits and the
test-based confidence limits. If you specify the BINOMIAL option in the EXACT statement, PROC
FREQ provides exact probability values for the TOST and exact test-based confidence limits.

Two-Way and Multiway Tables

PROC FREQ displays all multiway table requests in the TABLES statements, unless you specify the
NOPRINT option in the PROC FREQ statement or the NOPRINT option in the TABLES statement.

For two-way to multiway crosstabulation tables, the values of the last variable in the table request form the
table columns. The values of the next-to-last variable form the rows. Each level (or combination of levels) of
the other variables forms one stratum.

There are three ways to display multiway tables in PROC FREQ. By default, PROC FREQ displays multiway
tables as separate two-way crosstabulation tables for each stratum of the multiway table. Also by default,
PROC FREQ displays these two-way crosstabulation tables in table cell format. Alternatively, if you specify
the CROSSLIST option, PROC FREQ displays the two-way crosstabulation tables in ODS column format. If
you specify the LIST option, PROC FREQ displays multiway tables in list format, which presents the entire
multiway crosstabulation in a single table.

Crosstabulation Tables
By default, PROC FREQ displays two-way crosstabulation tables in table cell format. The row variable
values are listed down the side of the table, the column variable values are listed across the top of the table,
and each row and column variable level combination forms a table cell.
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Each cell of a crosstabulation table can contain the following information:

• Frequency, which is the number of observations in the table cell. (The NOFREQ option suppresses
this information.)

• Expected frequency under the hypothesis of independence, if you specify the EXPECTED option

• Deviation of the cell frequency from the expected value, if you specify the DEVIATION option

• Cell Chi-Square, which is the cell’s contribution to the total chi-square statistic, if you specify the
CELLCHI2 option

• Tot Pct, which is the cell’s percentage of the total multiway table frequency, for n-way tables when n >
2, if you specify the TOTPCT option

• Percent, which is the cell’s percentage of the total (two-way table) frequency. (The NOPERCENT
option suppresses this information.)

• Row Pct, or the row percentage, which is the cell’s percentage of the total frequency for its row. (The
NOROW option suppresses this information.)

• Col Pct, or column percentage, which is the cell’s percentage of the total frequency for its column.
(The NOCOL option suppresses this information.)

• Cumulative Col%, or cumulative column percentage, if you specify the CUMCOL option

The table also displays the Frequency Missing, which is the number of observations with missing values.

CROSSLIST Tables
If you specify the CROSSLIST option, PROC FREQ displays two-way crosstabulation tables in ODS column
format. The CROSSLIST column format is different from the default crosstabulation table cell format, but
the CROSSLIST table provides the same information (frequencies, percentages, and other statistics) as the
default crosstabulation table.

In the CROSSLIST table format, the rows of the display correspond to the crosstabulation table cells, and the
columns of the display correspond to descriptive statistics such as frequencies and percentages. Each table
cell is identified by the values of its TABLES row and column variable levels, with all column variable levels
listed within each row variable level. The CROSSLIST table also provides row totals, column totals, and
overall table totals.

For a crosstabulation table in CROSSLIST format, PROC FREQ displays the following information:

• the row variable name and values

• the column variable name and values

• Frequency, which is the number of observations in the table cell. (The NOFREQ option suppresses
this information.)

• Expected cell frequency under the hypothesis of independence, if you specify the EXPECTED option

• Deviation of the cell frequency from the expected value, if you specify the DEVIATION option
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• Standardized Residual, if you specify the CROSSLIST(STDRES) option

• Pearson Residual, if you specify the CROSSLIST(PEARSONRES) option

• Cell Chi-Square, which is the cell’s contribution to the total chi-square statistic, if you specify the
CELLCHI2 option

• Total Percent, which is the cell’s percentage of the total multiway table frequency, for n-way tables
when n > 2, if you specify the TOTPCT option

• Percent, which is the cell’s percentage of the total (two-way table) frequency. (The NOPERCENT
option suppresses this information.)

• Row Percent, which is the cell’s percentage of the total frequency for its row. (The NOROW option
suppresses this information.)

• Column Percent, the cell’s percentage of the total frequency for its column. (The NOCOL option
suppresses this information.)

The table also displays the Frequency Missing, which is the number of observations with missing values.

LIST Tables
If you specify the LIST option in the TABLES statement, PROC FREQ displays multiway tables in a list
format rather than as crosstabulation tables. The LIST option displays the entire multiway table in one table,
instead of displaying a separate two-way table for each stratum. The LIST option is not available when
you also request statistical options. Unlike the default crosstabulation output, the LIST output does not
display row percentages, column percentages, and optional information such as expected frequencies and cell
chi-squares.

For a multiway table in list format, PROC FREQ displays the following information:

• the variable names and values

• Frequency, which is the number of observations in the level (with the indicated variable values)

• Percent, which is the level’s percentage of the total number of observations. (The NOPERCENT option
suppresses this information.)

• Cumulative Frequency, which is the accumulated frequency of the level and all other levels listed
above it in the table. The last cumulative frequency in the table is the total number of nonmissing
observations. (The NOCUM option suppresses this information.)

• Cumulative Percent, which is the accumulated percentage of the level and all other levels listed above
it in the table. (The NOCUM or the NOPERCENT option suppresses this information.)

The table also displays the Frequency Missing, which is the number of observations with missing values.
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Statistics for Two-Way and Multiway Tables

PROC FREQ computes statistical tests and measures for crosstabulation tables, depending on which state-
ments and options you specify. You can suppress the display of these results by specifying the NOPRINT
option in the PROC FREQ statement. With any of the following information, PROC FREQ also displays the
Sample Size and the Frequency Missing.

• If you specify the SCOROUT option in the TABLES statement, PROC FREQ displays the Row Scores
and Column Scores that it uses for statistical computations. The Row Scores table displays the row
variable values and the Score corresponding to each value. The Column Scores table displays the
column variable values and the corresponding Scores. PROC FREQ also identifies the score type used
to compute the row and column scores. You can specify the score type with the SCORES= option in
the TABLES statement.

• If you specify the CHISQ option, PROC FREQ displays the following statistics for each two-way table:
Pearson Chi-Square, Likelihood Ratio Chi-Square, Continuity-Adjusted Chi-Square (for 2 � 2 tables),
Mantel-Haenszel Chi-Square, the Phi Coefficient, the Contingency Coefficient, and Cramér’s V. For
each test statistic, PROC FREQ also displays the degrees of freedom (DF) and the probability value
(Prob).

• If you specify the CHISQ option for 2 � 2 tables, PROC FREQ also displays Fisher’s exact test. The
test output includes the cell (1,1) frequency (F), the exact left-sided and right-sided probability values,
the table probability (P), and the exact two-sided probability value. If you specify the POINT option in
the EXACT statement, PROC FREQ displays the exact point probability for Fisher’s exact test. If you
specify the MIDP option in the EXACT statement, PROC FREQ displays the Mid p-Value for the test.

• If you specify the FISHER option in the TABLES statement (or, equivalently, the FISHER option in
the EXACT statement), PROC FREQ displays Fisher’s exact test for tables larger than 2 � 2. The test
output includes the table probability (P) and the probability value. If you specify the POINT option in
the EXACT statement, PROC FREQ displays the exact point probability for Fisher’s exact test. If you
specify the MIDP option in the EXACT statement, PROC FREQ displays the Mid p-Value for the test.

• If you specify the PCHI, LRCHI, or MHCHI option in the EXACT statement, PROC FREQ displays
the corresponding exact test: Pearson Chi-Square, Likelihood Ratio Chi-Square, or Mantel-Haenszel
Chi-Square, respectively. The test output includes the test statistic, the degrees of freedom (DF), and
the asymptotic and exact probability values. If you also specify the POINT option in the EXACT
statement, PROC FREQ displays the point probability for each exact test requested. If you specify
the MIDP option in the EXACT statement, PROC FREQ displays the exact mid p-value for each test.
If you specify the CHISQ option in the EXACT statement, PROC FREQ displays exact probability
values for all three of these chi-square tests.

• If you specify the MEASURES option, PROC FREQ displays the following statistics and their
asymptotic standard errors (ASE) for each two-way table: Gamma, Kendall’s Tau-b, Stuart’s Tau-c,
Somers’D.C jR/, Somers’D.RjC/, Pearson Correlation, Spearman Correlation, Lambda Asymmetric
.C jR/, Lambda Asymmetric .RjC/, Lambda Symmetric, Uncertainty Coefficient .C jR/, Uncertainty
Coefficient .RjC/, and Uncertainty Coefficient Symmetric. If you specify the CL option, PROC FREQ
also displays confidence limits for these measures.

• If you specify the PLCORR option, PROC FREQ displays the tetrachoric correlation for 2 � 2 tables
or the polychoric correlation for larger tables. In addition, PROC FREQ displays the MEASURES
output listed earlier, even if you do not also specify the MEASURES option.



2718 F Chapter 40: The FREQ Procedure

• If you specify the GAMMA, KENTB, STUTC, SMDCR, SMDRC, PCORR, or SCORR option in
the TEST statement, PROC FREQ displays asymptotic tests for Gamma, Kendall’s Tau-b, Stuart’s
Tau-c, Somers’ D.C jR/, Somers’ D.RjC/, the Pearson Correlation, or the Spearman Correlation,
respectively. If you specify the MEASURES option in the TEST statement, PROC FREQ displays
all these asymptotic tests. The test output includes the statistic, its asymptotic standard error (ASE),
Confidence Limits, the ASE under the null hypothesis H0, the standardized test statistic (Z), and the
one-sided and two-sided probability values.

• If you specify the KENTB, STUTC, SMDCR, SMDRC, PCORR, or SCORR option in the EXACT
statement, PROC FREQ displays asymptotic and exact tests for the corresponding measure of associa-
tion: Kendall’s Tau-b, Stuart’s Tau-c, Somers’ D.C jR/, Somers’ D.RjC/, the Pearson Correlation, or
the Spearman correlation, respectively. The test output includes the correlation, its asymptotic standard
error (ASE), Confidence Limits, the ASE under the null hypothesis H0, the standardized test statistic
(Z), and the asymptotic and exact one-sided and two-sided probability values. If you also specify the
POINT option in the EXACT statement, PROC FREQ displays the point probability for each exact test
requested. If you specify the MIDP option in the EXACT statement, PROC FREQ displays the exact
Mid p-Value for each test.

• If you specify the RISKDIFF option for 2� 2 tables, PROC FREQ displays the Column 1 and Column
2 Risk Estimates. For each column, PROC FREQ displays the Row 1 Risk, Row 2 Risk, Total
Risk, and Risk Difference, together with their asymptotic standard errors (ASE) and Asymptotic
Confidence Limits. PROC FREQ also displays Exact Confidence Limits for the Row 1 Risk, Row 2
Risk, and Total Risk. If you specify the RISKDIFF option in the EXACT statement, PROC FREQ
provides unconditional Exact Confidence Limits for the Risk Difference. You can suppress this table
by specifying the RISKDIFF(NORISKS) option.

• If you specify the RISKDIFF(CL=) option for 2 � 2 tables, PROC FREQ displays the “Confidence
Limits for the Proportion (Risk) Difference” table, which includes the Lower and Upper Confidence
Limits for each confidence limit Type that you request (Exact, Hauck-Anderson, Miettinen-Nurminen
score, Newcombe, or Wald).

• If you request a noninferiority or superiority test for the proportion difference (RISKDIFF) by spec-
ifying the NONINF or SUP riskdiff-option, and if you specify METHOD=HA (Hauck-Anderson),
METHOD=FM (Farrington-Manning score), or METHOD=WALD (Wald), PROC FREQ displays
the following information: the Proportion Difference, the test ASE (H0, Sample, Sample H-A, or FM,
depending on the method you specify), the test statistic Z, the probability value, the Noninferiority or
Superiority Limit, and the test-based Confidence Limits. If you specify METHOD=NEWCOMBE
(Newcombe), PROC FREQ displays the Proportion Difference, the Noninferiority or Superiority Limit,
and the Newcombe Confidence Limits.

• If you request an equivalence test for the proportion difference (RISKDIFF) by specifying the EQUIV
riskdiff-option, and if you specify METHOD=HA (Hauck-Anderson), METHOD=FM (Farrington-
Manning score), or METHOD=WALD (Wald), PROC FREQ displays the following information: the
Proportion Difference and the test ASE (H0, Sample, Sample H-A, or FM, depending on the method
you specify). PROC FREQ displays a two one-sided test (TOST) for equivalence, which includes test
statistics (Z) and probability values for the Lower and Upper tests, together with the Overall probability
value. PROC FREQ also displays the Equivalence Limits and the test-based Confidence Limits. If you
specify METHOD=NEWCOMBE (Newcombe), PROC FREQ displays the Proportion Difference, the
Equivalence Limits, and the Newcombe Confidence Limits.
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• If you request an equality test for the proportion difference (RISKDIFF) by specifying the EQUAL
riskdiff-option, PROC FREQ displays the following information: the Proportion Difference and the test
ASE (H0 or Sample), the test statistic Z, the One-Sided probability value (Pr > Z or Pr < Z), and the
Two-Sided probability value, Pr > |Z|.

• If you specify the MEASURES option or the RELRISK option for 2 � 2 tables, PROC FREQ displays
the “Odds Ratio and Relative Risks” table, which includes the following statistics with their confidence
limits: Odds Ratio, Relative Risk (Column 1), and Relative Risk (Column 2). If you specify the OR
option in the EXACT statement, PROC FREQ also displays the “Exact Confidence Limits for the Odds
Ratio” table If you specify the RELRISK option in the EXACT statement, PROC FREQ displays the
“Exact Confidence Limits for the Relative Risk” table.

• If you specify the OR(CL=) option for 2� 2 tables, PROC FREQ displays the “Odds Ratio Confidence
Limits” table, which includes the Lower and Upper Confidence Limits for each confidence limit Type
that you request (Exact, Score, or Wald).

• If you specify the RELRISK(CL=) option for 2 � 2 tables, PROC FREQ displays the “Relative Risk
Confidence Limits” table, which includes the Lower and Upper Confidence Limits for each confidence
limit Type that you request (Exact, Score, or Wald).

• If you specify the TREND option, PROC FREQ displays the Cochran-Armitage Trend Test for tables
that are 2 � C or R � 2. For this test, PROC FREQ gives the Statistic (Z) and the one-sided and
two-sided probability values. If you specify the TREND option in the EXACT statement, PROC FREQ
also displays the exact one-sided and two-sided probability values for this test. If you specify the
POINT option with the TREND option in the EXACT statement, PROC FREQ displays the exact
point probability for the test statistic. If you specify the MIDP option in the EXACT statement, PROC
FREQ displays the exact Mid p-Value for the trend test.

• If you specify the JT option, PROC FREQ displays the Jonckheere-Terpstra Test, showing the Statistic
(JT), the standardized test statistic (Z), and the one-sided and two-sided probability values. If you
specify the JT option in the EXACT statement, PROC FREQ also displays the exact one-sided and
two-sided probability values for this test. If you specify the POINT option with the JT option in
the EXACT statement, PROC FREQ displays the exact point probability for the test statistic. If you
specify the MIDP option in the EXACT statement, PROC FREQ displays the exact Mid p-Value for
the Jonckheere-Terpstra test.

• If you specify the AGREE(PRINTKWTS) option, PROC FREQ displays the Kappa Coefficient Weights
for square tables of dimension greater than 2.

• If you specify the AGREE option, for two-way tables PROC FREQ displays McNemar’s Test and the
Simple Kappa Coefficient for 2 � 2 tables. For square tables larger than 2 � 2, PROC FREQ displays
Bowker’s Test of Symmetry, the Simple Kappa Coefficient, and the Weighted Kappa Coefficient. For
McNemar’s Test and Bowker’s Test of Symmetry, PROC FREQ displays the Statistic (S), the degrees
of freedom (DF), and For the simple and weighted kappa coefficients, PROC FREQ displays the kappa
values, asymptotic standard errors (ASE), and Confidence Limits. the probability value (Pr > S).

If you specify the MCNEM option in the EXACT statement, PROC FREQ also displays the exact
probability value for McNemar’s test. If you specify the POINT option with the MCNEM option in
the EXACT statement, PROC FREQ displays the exact point probability for the test statistic. If you
specify the MIDP option in the EXACT statement, PROC FREQ displays the Exact Mid p-Value for
McNemar’s test.
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• If you specify the KAPPA or WTKAP option in the TEST statement, PROC FREQ displays asymptotic
tests for the simple kappa coefficient or the weighted kappa coefficient, respectively. If you specify
the AGREE option in the TEST statement, PROC FREQ displays both these asymptotic tests. The
test output includes the kappa coefficient, its asymptotic standard error (ASE), Confidence Limits, the
ASE under the null hypothesis H0, the standardized test statistic (Z), and the one-sided and two-sided
probability values.

• If you specify the KAPPA or WTKAP option in the EXACT statement, PROC FREQ displays asymp-
totic and exact tests for the simple kappa coefficient or the weighted kappa coefficient, respectively.
The test output includes the kappa coefficient, its asymptotic standard error (ASE), Confidence Limits,
the ASE under the null hypothesis H0, the standardized test statistic (Z), and the asymptotic and exact
one-sided and two-sided probability values. If you specify the POINT option in the EXACT statement,
PROC FREQ displays the point probability for each exact test requested. If you specify the MIDP
option in the EXACT statement, PROC FREQ displays the exact Mid p-Value for each exact test.

• If you specify the MC option in the EXACT statement, PROC FREQ displays Monte Carlo estimates
for all exact p-values requested by statistic-options in the EXACT statement. The Monte Carlo output
includes the p-value Estimate, its Confidence Limits, the Number of Samples used to compute the
Monte Carlo estimate, and the Initial Seed for random number generation.

• If you specify the AGREE option for a multiway square table, PROC FREQ displays Overall Simple
and Weighted Kappa Coefficients, with their asymptotic standard errors (ASE) and Confidence Limits.
PROC FREQ also displays Tests for Equal Kappa Coefficients, giving the Chi-Squares, degrees of
freedom (DF), and probability values (Pr > ChiSq) for the Simple Kappa and Weighted Kappa. For
multiple strata of 2 � 2 tables, PROC FREQ displays Cochran’s Q, giving the Statistic (Q), the degrees
of freedom (DF), and the probability value (Pr > Q).

• If you specify the RISKDIFF(COMMON) option for a multiway 2 � 2 table, PROC FREQ displays
the “Common Proportion (Risk) Difference” table, which includes the following information: Method
(Mantel-Haenszel or Summary Score), Value of the common risk difference, Standard Error, and Confi-
dence Limits. If you specify both the RISKDIFF(COMMON) and the RISKDIFF(CL=NEWCOMBE)
options, this table also includes the Newcombe confidence limits for the common risk difference.

• If you specify the CMH option, PROC FREQ displays Cochran-Mantel-Haenszel Statistics for the
following three alternative hypotheses: Nonzero Correlation, Row Mean Scores Differ (ANOVA
Statistic), and General Association. For each of these statistics, PROC FREQ gives the degrees of
freedom (DF) and the probability value (Prob). If you specify the MANTELFLEISS option, PROC
FREQ displays the Mantel-Fleiss Criterion for 2�2 tables. For 2�2 tables, PROC FREQ also displays
Estimates of the Common Relative Risk for Case-Control and Cohort studies, together with their
confidence limits. These include both Mantel-Haenszel and Logit stratum-adjusted estimates of the
common Odds Ratio, Column 1 Relative Risk, and Column 2 Relative Risk. Also for 2 � 2 tables,
PROC FREQ displays the Breslow-Day Test for Homogeneity of the Odds Ratios. For this test, PROC
FREQ gives the Chi-Square, the degrees of freedom (DF), and the probability value (Pr > ChiSq).

• If you specify the CMH option in the TABLES statement and also specify the COMOR option in the
EXACT statement for a multiway 2�2 table, PROC FREQ displays exact confidence limits for the Com-
mon Odds Ratio. PROC FREQ also displays the Exact Test of H0: Common Odds Ratio = 1. The test
output includes the Cell (1,1) Sum (S), Mean of S Under H0, One-sided Pr <= S, and Point Pr = S.
PROC FREQ also provides exact two-sided probability values for the test, computed according
to the following three methods: 2 * One-sided, Sum of probabilities <= Point probability, and
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Pr >= |S - Mean|. If you specify the MIDP option in the EXACT statement, PROC FREQ provides the
exact Mid p-Value for the common odds ratio test.

• If you specify the CMH option in the TABLES statement and also specify the EQOR option in the
EXACT statement for a multiway 2� 2 table, PROC FREQ computes Zelen’s exact test for equal odds
ratios. PROC FREQ displays Zelen’s test along with the asymptotic Breslow-Day test produced by the
CMH option. PROC FREQ displays the test statistic, Zelen’s Exact Test (P), and the probability value,
Exact Pr <= P.

• If you specify the GAILSIMON option in the TABLES statement for a multiway 2 � 2 tables, PROC
FREQ displays the Gail-Simon test for qualitative interactions. The display include the following
statistics and their p-values: Q+ (Positive Risk Differences), Q- (Negative Risk Differences), and Q
(Two-Sided).

ODS Table Names
PROC FREQ assigns a name to each table that it creates. You can use these names to refer to tables when
you use the Output Delivery System (ODS) to select tables and create output data sets. For more information
about ODS, see Chapter 20, “Using the Output Delivery System.”

Table 40.21 lists the ODS table names together with their descriptions and the options required to produce
the tables. Note that the ALL option in the TABLES statement invokes the CHISQ, MEASURES, and CMH
options.

Table 40.21 ODS Tables Produced by PROC FREQ

ODS Table Name Description Statement Option

BarnardsTest Barnard’s exact test EXACT BARNARD
BinomialCLs Binomial confidence limits TABLES BINOMIAL(CL=)
BinomialEquiv Binomial equivalence analysis TABLES BINOMIAL(EQUIV)
BinomialEquivLimits Binomial equivalence limits TABLES BINOMIAL(EQUIV)
BinomialEquivTest Binomial equivalence test TABLES BINOMIAL(EQUIV)
BinomialNoninf Binomial noninferiority test TABLES BINOMIAL(NONINF)
Binomial Binomial proportion TABLES BINOMIAL
BinomialTest Binomial proportion test TABLES BINOMIAL
BinomialSup Binomial superiority test TABLES BINOMIAL(SUP)
BnMeasure Agreement measures TABLES PLOTS=AGREEPLOT(STATS)
BreslowDayTest Breslow-Day test TABLES CMH

(h � 2 � 2 table)
CMH Cochran-Mantel-Haenszel TABLES CMH

statistics
ChiSq Chi-square tests TABLES CHISQ
CochransQ Cochran’s Q TABLES AGREE

(h � 2 � 2 table)
ColScores Column scores TABLES SCOROUT
CommonOdds- Exact confidence limits EXACT COMOR
RatioCl for the common odds ratio (h � 2 � 2 table)
CommonOdds- Common odds ratio exact test EXACT COMOR
RatioTest (h � 2 � 2 table)
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Table 40.21 continued

ODS Table Name Description Statement Option

CommonPdiff Common proportion difference TABLES RISKDIFF(COMMON)
(h � 2 � 2 table)

CommonRelRisks Common relative risks TABLES CMH
(h � 2 � 2 table)

CrossList Crosstabulation table TABLES CROSSLIST
in column format (n-way table, n > 1)

CrossTabFreqs Crosstabulation table TABLES (n-way table, n > 1)
EqualKappaTest Test for equal simple kappas TABLES AGREE

(h � 2 � 2 table)
EqualKappaTests Tests for equal kappas TABLES AGREE

(h � r � r , r > 2)
EqualOddsRatios Tests for equal odds ratios EXACT EQOR

(h � 2 � 2 table)
GailSimon Gail-Simon test TABLES GAILSIMON

(h � 2 � 2 table)
FishersExact Fisher’s exact test EXACT FISHER

or TABLES FISHER or EXACT
or TABLES CHISQ (2 � 2 table)

FishersExactMC Monte Carlo estimates EXACT FISHER / MC
for Fisher’s exact test

Gamma Gamma TEST GAMMA
GammaTest Gamma test TEST GAMMA
JTTest Jonckheere-Terpstra test TABLES JT
JTTestMC Monte Carlo estimates for EXACT JT / MC

Jonckheere-Terpstra exact test
Kappa Simple kappa coefficient TEST KAPPA

or EXACT KAPPA
KappaMC Monte Carlo exact test for EXACT KAPPA / MC

simple kappa coefficient
KappaStatistics Kappa statistics TABLES AGREE,

no TEST or EXACT
(r � r table, r > 2)

KappaTest Simple kappa test TEST KAPPA
or EXACT KAPPA

KappaWeights Kappa weights TABLES AGREE(PRINTKWTS)
List List format multiway table TABLES LIST
LRChiSq Likelihood ratio chi-square EXACT LRCHI

exact test
LRChiSqMC Monte Carlo exact test for EXACT LRCHI / MC

likelihood ratio chi-square
MantelFleiss Mantel-Fleiss criterion TABLES CMH(MF)

(h � 2 � 2 table)
McNemarsTest McNemar’s test TABLES AGREE

(2 � 2 table)
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Table 40.21 continued

ODS Table Name Description Statement Option

Measures Measures of association TABLES MEASURES
MHChiSq Mantel-Haenszel chi-square EXACT MHCHI

exact test
MHChiSqMC Monte Carlo exact test for EXACT MHCHI / MC

Mantel-Haenszel chi-square
NLevels Number of variable levels PROC NLEVELS
OddsRatioCLs Odds ratio confidence limits TABLES OR(CL=) (2 � 2 table)
OddsRatioExactCL Exact confidence limits EXACT OR (2 � 2 table)

for the odds ratio
OneWayChiSq One-way chi-square test TABLES CHISQ

(one-way table)
OneWayChiSqMC Monte Carlo exact test for EXACT CHISQ / MC

one-way chi-square (one-way table)
OneWayFreqs One-way frequencies PROC (no TABLES stmt)

or TABLES (one-way table)
OneWayLRChiSq One-way likelihood ratio TABLES CHISQ(LRCHI)

chi-square test (one-way table)
OverallKappa Overall simple kappa TABLES AGREE

(h � 2 � 2 table)
OverallKappas Overall kappa coefficients TABLES AGREE

(h � r � r , r > 2)
PdiffCLs Proportion difference TABLES RISKDIFF(CL=)

confidence limits (2 � 2 table)
PdiffEquiv Equivalence analysis TABLES RISKDIFF(EQUIV)

for the proportion difference (2 � 2 table)
PdiffEquivLimits Equivalence limits TABLES RISKDIFF(EQUIV)

for the proportion difference (2 � 2 table)
PdiffEquivTest Equivalence test TABLES RISKDIFF(EQUIV)

for the proportion difference (2 � 2 table)
PdiffNoninf Noninferiority test TABLES RISKDIFF(NONINF)

for the proportion difference (2 � 2 table)
PdiffSup Superiority test TABLES RISKDIFF(SUP)

for the proportion difference (2 � 2 table)
PdiffTest Proportion difference test TABLES RISKDIFF(EQUAL)

(2 � 2 table)
PearsonChiSq Pearson chi-square exact test EXACT PCHI
PearsonChiSqMC Monte Carlo exact test for EXACT PCHI / MC

Pearson chi-square
PearsonCorr Pearson correlation TEST PCORR

or EXACT PCORR
PearsonCorrMC Monte Carlo exact test for EXACT PCORR / MC

Pearson correlation
PearsonCorrTest Pearson correlation test TEST PCORR

or EXACT PCORR
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Table 40.21 continued

ODS Table Name Description Statement Option

PlCorr Polychoric correlation TEST PLCORR
PlCorrTest Polychoric correlation test TEST PLCORR
RelativeRiskCLs Relative risk confidence limits TABLES RELRISK(CL=)

(2 � 2 table )
RelativeRisks Relative risk estimates TABLES RELRISK

or MEASURES
(2 � 2 table)

RelRisk1ExactCL Exact confidence limits EXACT RELRISK
for column 1 relative risk (2 � 2 table)

RelRisk2ExactCL Exact confidence limits EXACT RELRISK
for column 2 relative risk (2 � 2 table)

RiskDiffCol1 Column 1 risk estimates TABLES RISKDIFF
(2 � 2 table)

RiskDiffCol2 Column 2 risk estimates TABLES RISKDIFF
(2 � 2 table)

RowScores Row scores TABLES SCOROUT
SomersDCR Somers’ D.C jR/ TEST SMDCR

or EXACT SMDCR
SomersDCRMC Monte Carlo exact test for EXACT SMDCR / MC

Somers’ D.C jR/
SomersDCRTest Somers’ D.C jR/ test TEST SMDCR

or EXACT SMDCR
SomersDRC Somers’ D.RjC/ TEST SMDRC

or EXACT SMDRC
SomersDRCMC Monte Carlo exact test for EXACT SMDRC / MC

Somers’ D.RjC/
SomersDRCTest Somers’ D.RjC/ test TEST SMDRC

or EXACT SMDRC
SpearmanCorr Spearman correlation TEST SCORR

or EXACT SCORR
SpearmanCorrMC Monte Carlo exact test for EXACT SCORR / MC

Spearman correlation
SpearmanCorrTest Spearman correlation test TEST SCORR

or EXACT SCORR
SymmetryTest Test of symmetry TABLES AGREE
TauB Kendall’s tau-b TEST KENTB

or EXACT KENTB
TauBMC Monte Carlo exact test for EXACT KENTB / MC

Kendall’s tau-b
TauBTest Kendall’s tau-b test TEST KENTB

or EXACT KENTB
TauC Stuart’s tau-c TEST STUTC

or EXACT STUTC
TauCMC Monte Carlo exact test for EXACT STUTC / MC
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Table 40.21 continued

ODS Table Name Description Statement Option

Stuart’s tau-c
TauCTest Stuart’s tau-c test TEST STUTC

or EXACT STUTC
TrendTest Cochran-Armitage trend test TABLES TREND
TrendTestMC Monte Carlo exact test EXACT TREND / MC

for trend
WtKappa Weighted kappa coefficient TEST WTKAP

or EXACT WTKAP
WtKappaMC Monte Carlo exact test for EXACT WTKAP / MC

weighted kappa coefficient
WtKappaTest Weighted kappa test TEST WTKAP

or EXACT WTKAP

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

When ODS Graphics is enabled, you can request specific plots with the PLOTS= option in the TABLES
statement. To produce a frequency plot or cumulative frequency plot, you must specify the FREQPLOT or
CUMFREQPLOT plot-request , respectively, in the PLOTS= option. To produce a mosaic plot, you must
specify the MOSAICPLOT plot-request in the PLOTS= option. You can also produce frequency, cumulative
frequency, and mosaic plots by specifying the PLOTS=ALL option. By default, PROC FREQ produces all
other plots that are associated with the analyses that you request in the TABLES statement. You can suppress
the default plots and request specific plots by using the PLOTS(ONLY)= option. See the description of the
PLOTS= option for details.

PROC FREQ assigns a name to each graph that it creates with ODS Graphics. You can use these names to
refer to the graphs. Table 40.22 lists the names of the graphs that PROC FREQ generates together with their
descriptions, their PLOTS= options (plot-requests), and the TABLES statement options that are required to
produce the graphs.
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Table 40.22 Graphs Produced by PROC FREQ

ODS Graph Name Description PLOTS= Option TABLES Statement Option

AgreePlot Agreement plot AGREEPLOT AGREE (r � r table)
CumFreqPlot Cumulative frequency plot CUMFREQPLOT One-way table request
DeviationPlot Deviation plot DEVIATIONPLOT CHISQ (one-way table)
FreqPlot Frequency plot FREQPLOT Any table request
KappaPlot Kappa plot KAPPAPLOT AGREE (h � r � r table)
MosaicPlot Mosaic plot MOSAICPLOT Two-way or multiway table request
ORPlot Odds ratio plot ODDSRATIOPLOT MEASURES or RELRISK

(h � 2 � 2 table)
RelRiskPlot Relative risk plot RELRISKPLOT MEASURES or RELRISK

(h � 2 � 2 table)
RiskDiffPlot Risk difference plot RISKDIFFPLOT RISKDIFF (h � 2 � 2 table)
WtKappaPlot Weighted kappa plot WTKAPPAPLOT AGREE

(h � r � r table, r > 2)

Examples: FREQ Procedure

Example 40.1: Output Data Set of Frequencies
The eye and hair color of children from two different regions of Europe are recorded in the data set Color.
Instead of recording one observation per child, the data are recorded as cell counts, where the variable Count
contains the number of children exhibiting each of the 15 eye and hair color combinations. The data set does
not include missing combinations.

The following DATA step statements create the SAS data set Color:

data Color;
input Region Eyes $ Hair $ Count @@;
label Eyes ='Eye Color'

Hair ='Hair Color'
Region='Geographic Region';

datalines;
1 blue fair 23 1 blue red 7 1 blue medium 24
1 blue dark 11 1 green fair 19 1 green red 7
1 green medium 18 1 green dark 14 1 brown fair 34
1 brown red 5 1 brown medium 41 1 brown dark 40
1 brown black 3 2 blue fair 46 2 blue red 21
2 blue medium 44 2 blue dark 40 2 blue black 6
2 green fair 50 2 green red 31 2 green medium 37
2 green dark 23 2 brown fair 56 2 brown red 42
2 brown medium 53 2 brown dark 54 2 brown black 13
;

The following PROC FREQ statements read the Color data set and create an output data set that contains the
frequencies, percentages, and expected cell frequencies of the two-way table of Eyes by Hair. The TABLES
statement requests three tables: a frequency table for Eyes, a frequency table for Hair, and a crosstabulation
table for Eyes by Hair. The OUT= option creates the FreqCount data set, which contains the crosstabulation
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table frequencies. The OUTEXPECT option outputs the expected table cell frequencies to FreqCount, and
the SPARSE option includes zero cell frequencies in the output data set. The WEIGHT statement specifies
that the variable Count contains the observation weights. These statements create Output 40.1.1 through
Output 40.1.3.

proc freq data=Color;
tables Eyes Hair Eyes*Hair / out=FreqCount outexpect sparse;
weight Count;
title 'Eye and Hair Color of European Children';

run;

proc print data=FreqCount noobs;
title2 'Output Data Set from PROC FREQ';

run;

Output 40.1.1 displays the two frequency tables produced by PROC FREQ: one showing the distribution of
eye color, and one showing the distribution of hair color. By default, PROC FREQ lists the variables values in
alphabetical order. The ‘Eyes*Hair’ specification produces a crosstabulation table, shown in Output 40.1.2,
with eye color defining the table rows and hair color defining the table columns. A zero cell frequency for
green eyes and black hair indicates that this eye and hair color combination does not occur in the data.

The output data set FreqCount (Output 40.1.3) contains frequency counts and percentages for the last table
requested in the TABLES statement, Eyes by Hair. Because the SPARSE option is specified, the data set
includes the observation with a zero frequency. The variable Expected contains the expected frequencies, as
requested by the OUTEXPECT option.

Output 40.1.1 Frequency Tables

Eye and Hair Color of European Children

The FREQ Procedure

Eye and Hair Color of European Children

The FREQ Procedure

Eye Color

Eyes Frequency Percent
Cumulative
Frequency

Cumulative
Percent

blue 222 29.13 222 29.13

brown 341 44.75 563 73.88

green 199 26.12 762 100.00

Hair Color

Hair Frequency Percent
Cumulative
Frequency

Cumulative
Percent

black 22 2.89 22 2.89

dark 182 23.88 204 26.77

fair 228 29.92 432 56.69

medium 217 28.48 649 85.17

red 113 14.83 762 100.00
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Output 40.1.2 Crosstabulation Table

Frequency
Percent
Row Pct
Col Pct

Table of Eyes by Hair

Eyes(Eye
Color)

Hair(Hair Color)

black dark fair medium red Total

blue 6
0.79
2.70
27.27

51
6.69
22.97
28.02

69
9.06
31.08
30.26

68
8.92
30.63
31.34

28
3.67
12.61
24.78

222
29.13

brown 16
2.10
4.69
72.73

94
12.34
27.57
51.65

90
11.81
26.39
39.47

94
12.34
27.57
43.32

47
6.17
13.78
41.59

341
44.75

green 0
0.00
0.00
0.00

37
4.86
18.59
20.33

69
9.06
34.67
30.26

55
7.22
27.64
25.35

38
4.99
19.10
33.63

199
26.12

Total 22
2.89

182
23.88

228
29.92

217
28.48

113
14.83

762
100.00

Output 40.1.3 Output Data Set of Frequencies

Eye and Hair Color of European Children
Output Data Set from PROC FREQ

Eye and Hair Color of European Children
Output Data Set from PROC FREQ

Eyes Hair COUNT EXPECTED PERCENT

blue black 6 6.409 0.7874

blue dark 51 53.024 6.6929

blue fair 69 66.425 9.0551

blue medium 68 63.220 8.9239

blue red 28 32.921 3.6745

brown black 16 9.845 2.0997

brown dark 94 81.446 12.3360

brown fair 90 102.031 11.8110

brown medium 94 97.109 12.3360

brown red 47 50.568 6.1680

green black 0 5.745 0.0000

green dark 37 47.530 4.8556

green fair 69 59.543 9.0551

green medium 55 56.671 7.2178

green red 38 29.510 4.9869
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Example 40.2: Frequency Dot Plots
This example produces frequency dot plots for the children’s eye and hair color data from Example 40.1.

PROC FREQ produces plots by using ODS Graphics to create graphs as part of the procedure output.
Frequency plots are available for any frequency or crosstabulation table request. You can display frequency
plots as bar charts or dot plots. You can use plot-options to specify the orientation (vertical or horizontal),
scale, and layout of the plots.

The following PROC FREQ statements request frequency tables and dot plots. The first TABLES statement
requests a one-way frequency table of Hair and a crosstabulation table of Eyes by Hair. The PLOTS= option
requests frequency plots for the tables, and the TYPE=DOTPLOT plot-option specifies dot plots. By default,
frequency plots are produced as bar charts. ODS Graphics must be enabled before producing plots.

The second TABLES statement requests a crosstabulation table of Region by Hair and a frequency dot plot for
this table. The SCALE=PERCENT plot-option plots percentages instead of frequency counts. SCALE=LOG
and SCALE=SQRT plot-options are also available to plot log frequencies and square roots of frequencies,
respectively.

The ORDER=FREQ option in the PROC FREQ statement orders the variable levels by frequency. This order
applies to the frequency and crosstabulation table displays and also to the corresponding frequency plots.

ods graphics on;
proc freq data=Color order=freq;

tables Hair Hair*Eyes / plots=freqplot(type=dotplot);
tables Hair*Region / plots=freqplot(type=dotplot scale=percent);
weight Count;
title 'Eye and Hair Color of European Children';

run;
ods graphics off;

Output 40.2.1, Output 40.2.2, and Output 40.2.3 display the dot plots produced by PROC FREQ. By default,
the orientation of dot plots is horizontal, which places the variable levels on the Y axis. You can specify
the ORIENT=VERTICAL plot-option to request a vertical orientation. For two-way plots, you can use
the TWOWAY= plot-option to specify the plot layout. The default layout (shown in Output 40.2.2 and
Output 40.2.3) is GROUPVERTICAL. Two-way layouts STACKED and GROUPHORIZONTAL are also
available.
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Output 40.2.1 One-Way Frequency Dot Plot
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Output 40.2.2 Two-Way Frequency Dot Plot
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Output 40.2.3 Two-Way Percent Dot Plot

Example 40.3: Chi-Square Goodness-of-Fit Tests
This example examines whether the children’s hair color (from Example 40.1) has a specified multinomial
distribution for the two geographical regions. The hypothesized distribution of hair color is 30% fair, 12%
red, 30% medium, 25% dark, and 3% black.

In order to test the hypothesis for each region, the data are first sorted by Region. Then the FREQ procedure
uses a BY statement to produce a separate table for each BY group (Region). The option ORDER=DATA
orders the variable values (hair color) in the frequency table by their order in the input data set. The TABLES
statement requests a frequency table for hair color, and the option NOCUM suppresses the display of the
cumulative frequencies and percentages.

The CHISQ option requests a chi-square goodness-of-fit test for the frequency table of Hair. The TESTP=
option specifies the hypothesized (or test) percentages for the chi-square test; the number of percentages
listed equals the number of table levels, and the percentages sum to 100%. The TESTP= percentages are
listed in the same order as the corresponding variable levels appear in frequency table.

The PLOTS= option requests a deviation plot, which is associated with the CHISQ option and displays the
relative deviations from the test frequencies. The TYPE=DOTPLOT plot-option requests a dot plot instead
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of the default type, which is a bar chart. ODS Graphics must be enabled before producing plots. These
statements produce Output 40.3.1 through Output 40.3.4.

proc sort data=Color;
by Region;

run;

ods graphics on;
proc freq data=Color order=data;

tables Hair / nocum chisq testp=(30 12 30 25 3)
plots(only)=deviationplot(type=dotplot);

weight Count;
by Region;
title 'Hair Color of European Children';

run;
ods graphics off;

Output 40.3.1 Frequency Table and Chi-Square Test for Region 1

Hair Color of European Children

The FREQ Procedure

Hair Color of European Children

The FREQ Procedure

Geographic Region=1

Hair Color

Hair Frequency Percent
Test

Percent

fair 76 30.89 30.00

red 19 7.72 12.00

medium 83 33.74 30.00

dark 65 26.42 25.00

black 3 1.22 3.00

Geographic Region=1

Chi-Square Test
for Specified Proportions

Chi-Square 7.7602

DF 4

Pr > ChiSq 0.1008

Output 40.3.1 shows the frequency table and chi-square test for Region 1. The frequency table lists the
variable values (hair color) in the order in which they appear in the data set. The “Test Percent” column
lists the hypothesized percentages for the chi-square test. Always check that you have ordered the TESTP=
percentages to correctly match the order of the variable levels.

Output 40.3.2 shows the deviation plot for Region 1, which displays the relative deviations from the
hypothesized values. The relative deviation for a level is the difference between the observed and hypothesized
(test) percentage divided by the test percentage. You can suppress the chi-square p-value that is displayed by
default in the deviation plot by specifying the NOSTATS plot-option.
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Output 40.3.2 Deviation Plot for Region 1

Output 40.3.3 and Output 40.3.4 show the results for Region 2. PROC FREQ computes a chi-square statistic
for each region. The chi-square statistic is significant at the 0.05 level for Region 2 (p=0.0003) but not for
Region 1. This indicates a significant departure from the hypothesized percentages in Region 2.

Output 40.3.3 Frequency Table and Chi-Square Test for Region 2

Hair Color of European Children

The FREQ Procedure

Hair Color of European Children

The FREQ Procedure

Geographic Region=2

Hair Color

Hair Frequency Percent
Test

Percent

fair 152 29.46 30.00

red 94 18.22 12.00

medium 134 25.97 30.00

dark 117 22.67 25.00

black 19 3.68 3.00
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Output 40.3.3 continued

Geographic Region=2

Chi-Square Test
for Specified Proportions

Chi-Square 21.3824

DF 4

Pr > ChiSq 0.0003

Output 40.3.4 Deviation Plot for Region 2

Example 40.4: Binomial Proportions
In this example, PROC FREQ computes binomial proportions, confidence limits, and tests. The example uses
the eye and hair color data from Example 40.1. By default, PROC FREQ computes the binomial proportion
as the proportion of observations in the first level of the one-way table. You can designate a different level by
using the LEVEL= binomial-option.

The following PROC FREQ statements compute the proportion of children with brown eyes (from the data
set in Example 40.1) and test the null hypothesis that the population proportion equals 50%. These statements
also compute an equivalence for the proportion of children with fair hair.



2736 F Chapter 40: The FREQ Procedure

The first TABLES statement requests a one-way frequency table for the variable Eyes. The BINOMIAL
option requests the binomial proportion, confidence limits, and test. PROC FREQ computes the proportion
with Eyes = ‘brown’, which is the first level displayed in the table. The AC, WILSON, and EXACT
binomial-options request the following confidence limits types: Agresti-Coull, Wilson (score), and exact
(Clopper-Pearson). By default, PROC FREQ provides Wald and exact (Clopper-Pearson) confidence limits for
the binomial proportion. The BINOMIAL option also produces an asymptotic Wald test that the proportion
equals 0.5. You can specify a different test proportion with the P= binomial-option. The ALPHA=0.1 option
specifies that ˛ D 10%, which produces 90% confidence limits.

The second TABLES statement requests a one-way frequency table for the variable Hair. The BINOMIAL
option requests the proportion for the first level, Hair = ‘fair’. The EQUIV binomial-option requests an
equivalence test for the binomial proportion. The P=.28 option specifies 0.28 as the null hypothesis proportion,
and the MARGIN=.1 option specifies 0.1 as the equivalence test margin.

proc freq data=Color order=freq;
tables Eyes / binomial(ac wilson exact) alpha=.1;
tables Hair / binomial(equiv p=.28 margin=.1);
weight Count;
title 'Hair and Eye Color of European Children';

run;

Output 40.4.1 displays the results for eye color, and Output 40.4.2 displays the results for hair color.

Output 40.4.1 Binomial Proportion for Eye Color

Hair and Eye Color of European Children

The FREQ Procedure

Hair and Eye Color of European Children

The FREQ Procedure

Eye Color

Eyes Frequency Percent
Cumulative
Frequency

Cumulative
Percent

brown 341 44.75 341 44.75

blue 222 29.13 563 73.88

green 199 26.12 762 100.00

Binomial
Proportion

Eyes = brown

Proportion 0.4475

ASE 0.0180

Confidence Limits for the Binomial Proportion

Proportion = 0.4475

Type 90% Confidence Limits

Agresti-Coull 0.4181 0.4773

Clopper-Pearson (Exact) 0.4174 0.4779

Wilson 0.4181 0.4773
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Output 40.4.1 continued

Test of H0:
Proportion = 0.5

ASE under H0 0.0181

Z -2.8981

One-sided Pr <  Z 0.0019

Two-sided Pr > |Z| 0.0038

The frequency table in Output 40.4.1 displays the values of Eyes in order of descending frequency count.
PROC FREQ computes the proportion of children in the first level displayed in the frequency table, Eyes =
‘brown’. Output 40.4.1 displays the binomial proportion confidence limits and test. The confidence limits are
90% confidence limits. If you do not specify the ALPHA= option, PROC FREQ computes 95% confidence
limits by default. Because the value of Z is less than zero, PROC FREQ displays the a left-sided p-value
(0.0019). This small p-value supports the alternative hypothesis that the true value of the proportion of
children with brown eyes is less than 50%.

Output 40.4.2 displays the equivalence test results produced by the second TABLES statement. The null
hypothesis proportion is 0.28 and the equivalence margins are –0.1 and 0.1, which yield equivalence limits
of 0.18 and 0.38. PROC FREQ provides two one-sided tests (TOST) for equivalence. The small p-value
indicates rejection of the null hypothesis in favor of the alternative that the proportion is equivalent to the null
value.

Output 40.4.2 Binomial Proportion for Hair Color

Hair Color

Hair Frequency Percent
Cumulative
Frequency

Cumulative
Percent

fair 228 29.92 228 29.92

medium 217 28.48 445 58.40

dark 182 23.88 627 82.28

red 113 14.83 740 97.11

black 22 2.89 762 100.00

Equivalence Analysis

H0: P - p0 <= Lower Margin or >= Upper Margin

Ha: Lower Margin < P - p0 < Upper Margin

p0 = 0.28 Lower Margin = -0.1 Upper Margin = 0.1

Proportion ASE (Sample)

0.2992 0.0166

Two One-Sided Tests (TOST)

Test Z P-Value

Lower Margin 7.1865 Pr > Z <.0001

Upper Margin -4.8701 Pr < Z <.0001

Overall <.0001

Equivalence Limits 90% Confidence Limits

0.1800 0.3800 0.2719 0.3265
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Example 40.5: Analysis of a 2x2 Contingency Table
This example computes chi-square tests and Fisher’s exact test to compare the probability of coronary heart
disease for two types of diet. It also estimates the relative risks and computes exact confidence limits for the
odds ratio.

The data set FatComp contains hypothetical data for a case-control study of high fat diet and the risk of
coronary heart disease. The data are recorded as cell counts, where the variable Count contains the frequencies
for each exposure and response combination. The data set is sorted in descending order by the variables
Exposure and Response, so that the first cell of the 2 � 2 table contains the frequency of positive exposure
and positive response. The FORMAT procedure creates formats to identify the type of exposure and response
with character values.

proc format;
value ExpFmt 1='High Cholesterol Diet'

0='Low Cholesterol Diet';
value RspFmt 1='Yes'

0='No';
run;

data FatComp;
input Exposure Response Count;
label Response='Heart Disease';
datalines;

0 0 6
0 1 2
1 0 4
1 1 11
;

proc sort data=FatComp;
by descending Exposure descending Response;

run;

In the following PROC FREQ statements, ORDER=DATA option orders the contingency table values by their
order in the input data set. The TABLES statement requests a two-way table of Exposure by Response. The
CHISQ option produces several chi-square tests, while the RELRISK option produces relative risk measures.
The EXACT statement requests the exact Pearson chi-square test and exact confidence limits for the odds
ratio.

proc freq data=FatComp order=data;
format Exposure ExpFmt. Response RspFmt.;
tables Exposure*Response / chisq relrisk;
exact pchi or;
weight Count;
title 'Case-Control Study of High Fat/Cholesterol Diet';

run;

The contingency table in Output 40.5.1 displays the variable values so that the first table cell contains the
frequency for the first cell in the data set (the frequency of positive exposure and positive response).
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Output 40.5.1 Contingency Table

Case-Control Study of High Fat/Cholesterol Diet

The FREQ Procedure

Case-Control Study of High Fat/Cholesterol Diet

The FREQ Procedure

Frequency
Percent
Row Pct
Col Pct

Table of Exposure by Response

Exposure

Response(Heart Disease)

Yes No Total

High Cholesterol Diet 11
47.83
73.33
84.62

4
17.39
26.67
40.00

15
65.22

Low Cholesterol Diet 2
8.70
25.00
15.38

6
26.09
75.00
60.00

8
34.78

Total 13
56.52

10
43.48

23
100.00

Output 40.5.2 displays the chi-square statistics. Because the expected counts in some of the table cells are
small, PROC FREQ gives a warning that the asymptotic chi-square tests might not be appropriate. In this
case, the exact tests are appropriate. The alternative hypothesis for this analysis states that coronary heart
disease is more likely to be associated with a high fat diet, so a one-sided test is desired. Fisher’s exact
right-sided test analyzes whether the probability of heart disease in the high fat group exceeds the probability
of heart disease in the low fat group; because this p-value is small, the alternative hypothesis is supported.

The odds ratio, displayed in Output 40.5.3, provides an estimate of the relative risk when an event is rare.
This estimate indicates that the odds of heart disease is 8.25 times higher in the high fat diet group; however,
the wide confidence limits indicate that this estimate has low precision.

Output 40.5.2 Chi-Square Statistics

Statistic DF Value Prob

Chi-Square 1 4.9597 0.0259

Likelihood Ratio Chi-Square 1 5.0975 0.0240

Continuity Adj. Chi-Square 1 3.1879 0.0742

Mantel-Haenszel Chi-Square 1 4.7441 0.0294

Phi Coefficient 0.4644

Contingency Coefficient 0.4212

Cramer's V 0.4644

WARNING: 50% of the cells have expected counts less than 5.
(Asymptotic) Chi-Square may not be a valid test.

Pearson Chi-Square Test

Chi-Square 4.9597

DF 1

Asymptotic Pr >  ChiSq 0.0259

Exact      Pr >= ChiSq 0.0393
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Output 40.5.2 continued

Fisher's Exact Test

Cell (1,1) Frequency (F) 11

Left-sided Pr <= F 0.9967

Right-sided Pr >= F 0.0367

Table Probability (P) 0.0334

Two-sided Pr <= P 0.0393

Output 40.5.3 Relative Risk

Odds Ratio and Relative Risks

Statistic Value 95% Confidence Limits

Odds Ratio 8.2500 1.1535 59.0029

Relative Risk (Column 1) 2.9333 0.8502 10.1204

Relative Risk (Column 2) 0.3556 0.1403 0.9009

Odds Ratio

Odds Ratio 8.2500

Asymptotic Conf Limits

95% Lower Conf Limit 1.1535

95% Upper Conf Limit 59.0029

Exact Conf Limits

95% Lower Conf Limit 0.8677

95% Upper Conf Limit 105.5488

Example 40.6: Output Data Set of Chi-Square Statistics
This example uses the Color data from Example 40.1 to output the Pearson chi-square and the likelihood
ratio chi-square statistics to a SAS data set. The following PROC FREQ statements create a two-way table of
eye color versus hair color.

proc freq data=Color order=data;
tables Eyes*Hair / expected cellchi2 norow nocol chisq;
output out=ChiSqData n nmiss pchi lrchi;
weight Count;
title 'Chi-Square Tests for 3 by 5 Table of Eye and Hair Color';

run;

proc print data=ChiSqData noobs;
title1 'Chi-Square Statistics for Eye and Hair Color';
title2 'Output Data Set from the FREQ Procedure';

run;

The EXPECTED option displays expected cell frequencies in the crosstabulation table, and the CELLCHI2
option displays the cell contribution to the overall chi-square. The NOROW and NOCOL options suppress
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the display of row and column percents in the crosstabulation table. The CHISQ option produces chi-square
tests.

The OUTPUT statement creates the ChiSqData output data set and specifies the statistics to include. The N
option requests the number of nonmissing observations, the NMISS option stores the number of missing
observations, and the PCHI and LRCHI options request Pearson and likelihood ratio chi-square statistics,
respectively, together with their degrees of freedom and p-values.

The preceding statements produce Output 40.6.1 and Output 40.6.2. The contingency table in Output 40.6.1
displays eye and hair color in the order in which they appear in the Color data set. The Pearson chi-square
statistic in Output 40.6.2 provides evidence of an association between eye and hair color (p=0.0073). The
cell chi-square values show that most of the association is due to more green-eyed children with fair or red
hair and fewer with dark or black hair. The opposite occurs with the brown-eyed children.

Output 40.6.3 displays the output data set created by the OUTPUT statement. It includes one observation
that contains the sample size, the number of missing values, and the chi-square statistics and corresponding
degrees of freedom and p-values as in Output 40.6.2.

Output 40.6.1 Contingency Table

Chi-Square Tests for 3 by 5 Table of Eye and Hair Color

The FREQ Procedure

Chi-Square Tests for 3 by 5 Table of Eye and Hair Color

The FREQ Procedure

Frequency
Expected
Cell Chi-Square
Percent

Table of Eyes by Hair

Eyes(Eye
Color)

Hair(Hair Color)

fair red medium dark black Total

blue 69
66.425
0.0998
9.06

28
32.921
0.7357
3.67

68
63.22
0.3613
8.92

51
53.024
0.0772
6.69

6
6.4094
0.0262
0.79

222

29.13

green 69
59.543
1.5019
9.06

38
29.51
2.4422
4.99

55
56.671
0.0492
7.22

37
47.53
2.3329
4.86

0
5.7454
5.7454
0.00

199

26.12

brown 90
102.03
1.4187
11.81

47
50.568
0.2518
6.17

94
97.109
0.0995
12.34

94
81.446
1.935
12.34

16
9.8451
3.8478
2.10

341

44.75

Total 228
29.92

113
14.83

217
28.48

182
23.88

22
2.89

762
100.00

Output 40.6.2 Chi-Square Statistics

Statistic DF Value Prob

Chi-Square 8 20.9248 0.0073

Likelihood Ratio Chi-Square 8 25.9733 0.0011

Mantel-Haenszel Chi-Square 1 3.7838 0.0518

Phi Coefficient 0.1657

Contingency Coefficient 0.1635

Cramer's V 0.1172



2742 F Chapter 40: The FREQ Procedure

Output 40.6.3 Output Data Set

Chi-Square Statistics for Eye and Hair Color
Output Data Set from the FREQ Procedure

Chi-Square Statistics for Eye and Hair Color
Output Data Set from the FREQ Procedure

N NMISS _PCHI_ DF_PCHI P_PCHI _LRCHI_ DF_LRCHI P_LRCHI

762 0 20.9248 8 .007349898 25.9733 8 .001061424

Example 40.7: Cochran-Mantel-Haenszel Statistics
The data set Migraine contains hypothetical data for a clinical trial of migraine treatment. Subjects of both
genders receive either a new drug therapy or a placebo. Their response to treatment is coded as ‘Better’ or
‘Same’. The data are recorded as cell counts, and the number of subjects for each treatment and response
combination is recorded in the variable Count.

data Migraine;
input Gender $ Treatment $ Response $ Count @@;
datalines;

female Active Better 16 female Active Same 11
female Placebo Better 5 female Placebo Same 20
male Active Better 12 male Active Same 16
male Placebo Better 7 male Placebo Same 19
;

The following PROC FREQ statements create a multiway table stratified by Gender, where Treatment forms
the rows and Response forms the columns. The RELRISK option in the TABLES statement requests the
odds ratio and relative risks for the two-way tables of Treatment by Response. The PLOTS= option requests
a relative risk plot, which shows the relative risk and its confidence limits for each level of Gender and overall.
The CMH option requests Cochran-Mantel-Haenszel statistics for the multiway table. For this stratified 2� 2
table, the CMH option also produces estimates of the common relative risk and the Breslow-Day test for
homogeneity of the odds ratios. The NOPRINT option suppresses the display of the crosstabulation tables.

ods graphics on;
proc freq data=Migraine;

tables Gender*Treatment*Response /
relrisk plots(only)=relriskplot(stats) cmh noprint;

weight Count;
title 'Clinical Trial for Treatment of Migraine Headaches';

run;
ods graphics off;

Output 40.7.1 through Output 40.7.4 show the results of the analysis. The relative risk plot (Output 40.7.1)
displays the relative risks and confidence limits for the two levels of Gender and for the overall (common)
relative risk. Output 40.7.2 displays the CMH statistics. For a stratified 2 � 2 table, the three CMH statistics
test the same hypothesis. The significant p-value (0.004) indicates that the association between treatment and
response remains strong after adjusting for gender.

The CMH option also produces a table of overall relative risks, as shown in Output 40.7.3. Because this is a
prospective study, the relative risk estimate assesses the effectiveness of the new drug; the “Cohort (Col1
Risk)” values are the appropriate estimates for the first column (the risk of improvement). The probability
of migraine improvement with the new drug is just over two times the probability of improvement with the
placebo.
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The large p-value for the Breslow-Day test (0.2218) in Output 40.7.4 indicates no significant gender difference
in the odds ratios.

Output 40.7.1 Relative Risk Plot

Output 40.7.2 Cochran-Mantel-Haenszel Statistics

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 8.3052 0.0040

2 Row Mean Scores Differ 1 8.3052 0.0040

3 General Association 1 8.3052 0.0040
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Output 40.7.3 CMH Option: Common Relative Risks

Common Odds Ratio and Relative Risks

Statistic Method Value 95% Confidence Limits

Odds Ratio Mantel-Haenszel 3.3132 1.4456 7.5934

Logit 3.2941 1.4182 7.6515

Relative Risk (Column 1) Mantel-Haenszel 2.1636 1.2336 3.7948

Logit 2.1059 1.1951 3.7108

Relative Risk (Column 2) Mantel-Haenszel 0.6420 0.4705 0.8761

Logit 0.6613 0.4852 0.9013

Output 40.7.4 CMH Option: Breslow-Day Test

Breslow-Day Test for
Homogeneity of the Odds Ratios

Chi-Square 1.4929

DF 1

Pr > ChiSq 0.2218

Example 40.8: Cochran-Armitage Trend Test
The data set Pain contains hypothetical data for a clinical trial of a drug therapy to control pain. The clinical
trial investigates whether adverse responses increase with larger drug doses. Subjects receive either a placebo
or one of four drug doses. An adverse response is recorded as Adverse=‘Yes’; otherwise, it is recorded as
Adverse=‘No’. The number of subjects for each drug dose and response combination is contained in the
variable Count.

data pain;
input Dose Adverse $ Count @@;
datalines;

0 No 26 0 Yes 6
1 No 26 1 Yes 7
2 No 23 2 Yes 9
3 No 18 3 Yes 14
4 No 9 4 Yes 23
;

The following PROC FREQ statements provide a trend analysis. The TABLES statement requests a table of
Adverse by Dose. The MEASURES option produces measures of association, and the CL option produces
confidence limits for these measures. The TREND option tests for a trend across the ordinal values of the
variable Dose with the Cochran-Armitage test. The PLOTS= option requests a mosaic plot of Adverse by
Dose.

The EXACT statement produces exact p-values for this test, and the MAXTIME= option terminates the exact
computations if they do not complete within 60 seconds. The TEST statement computes an asymptotic test
for Somers’ D.RjC/.
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ods graphics on;
proc freq data=Pain;

tables Adverse*Dose / trend measures cl
plots=mosaicplot;

test smdrc;
exact trend / maxtime=60;
weight Count;
title 'Clinical Trial for Treatment of Pain';

run;
ods graphics off;

Output 40.8.1 through Output 40.8.4 display the results of the analysis. The “Col Pct” values in Output 40.8.1
show the expected increasing trend in the proportion of adverse effects with the increasing dosage (from
18.75% to 71.88%). The corresponding mosaic plot (Output 40.8.2) also shows this increasing trend.

Output 40.8.1 Contingency Table

Clinical Trial for Treatment of Pain

The FREQ Procedure

Clinical Trial for Treatment of Pain

The FREQ Procedure

Frequency
Percent
Row Pct
Col Pct

Table of Adverse by Dose

Adverse

Dose

0 1 2 3 4 Total

No 26
16.15
25.49
81.25

26
16.15
25.49
78.79

23
14.29
22.55
71.88

18
11.18
17.65
56.25

9
5.59
8.82
28.13

102
63.35

Yes 6
3.73
10.17
18.75

7
4.35
11.86
21.21

9
5.59
15.25
28.13

14
8.70
23.73
43.75

23
14.29
38.98
71.88

59
36.65

Total 32
19.88

33
20.50

32
19.88

32
19.88

32
19.88

161
100.00
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Output 40.8.2 Mosaic Plot

Output 40.8.3 displays the measures of association produced by the MEASURES option. Somers’ D.RjC/
measures the association treating the row variable (Adverse) as the response and the column variable (Dose)
as a predictor. Because the asymptotic 95% confidence limits do not contain zero, this indicates a strong
positive association. Similarly, the Pearson and Spearman correlation coefficients show evidence of a strong
positive association, as hypothesized.

The Cochran-Armitage test (Output 40.8.4) supports the trend hypothesis. The small left-sided p-values
for the Cochran-Armitage test indicate that the probability of the Row 1 level (Adverse=‘No’) decreases
as Dose increases or, equivalently, that the probability of the Row 2 level (Adverse=‘Yes’) increases as
Dose increases. The two-sided p-value tests against either an increasing or decreasing alternative. This
is an appropriate hypothesis when you want to determine whether the drug has progressive effects on the
probability of adverse effects but the direction is unknown.
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Output 40.8.3 Measures of Association

Statistic Value ASE
95%

Confidence Limits

Gamma 0.5313 0.0935 0.3480 0.7146

Kendall's Tau-b 0.3373 0.0642 0.2114 0.4631

Stuart's Tau-c 0.4111 0.0798 0.2547 0.5675

Somers' D C|R 0.4427 0.0837 0.2786 0.6068

Somers' D R|C 0.2569 0.0499 0.1592 0.3547

Pearson Correlation 0.3776 0.0714 0.2378 0.5175

Spearman Correlation 0.3771 0.0718 0.2363 0.5178

Lambda Asymmetric C|R 0.1250 0.0662 0.0000 0.2547

Lambda Asymmetric R|C 0.2373 0.0837 0.0732 0.4014

Lambda Symmetric 0.1604 0.0621 0.0388 0.2821

Uncertainty Coefficient C|R 0.0515 0.0191 0.0140 0.0890

Uncertainty Coefficient R|C 0.1261 0.0467 0.0346 0.2175

Uncertainty Coefficient Symmetric 0.0731 0.0271 0.0199 0.1262

Somers' D R|C

Somers' D R|C 0.2569

ASE 0.0499

95% Lower Conf Limit 0.1592

95% Upper Conf Limit 0.3547

Test of H0: Somers'
D R|C = 0

ASE under H0 0.0499

Z 5.1511

One-sided Pr >  Z <.0001

Two-sided Pr > |Z| <.0001

Output 40.8.4 Trend Test

Cochran-Armitage Trend
Test

Statistic (Z) -4.7918

Asymptotic Test

One-sided Pr <  Z <.0001

Two-sided Pr > |Z| <.0001

Exact Test

One-sided Pr <=  Z <.0001

Two-sided Pr >= |Z| <.0001
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Example 40.9: Friedman’s Chi-Square Test
Friedman’s test is a nonparametric test for treatment differences in a randomized complete block design.
Each block of the design might be a subject or a homogeneous group of subjects. If blocks are groups of
subjects, the number of subjects in each block must equal the number of treatments. Treatments are randomly
assigned to subjects within each block. If there is one subject per block, then the subjects are repeatedly
measured once under each treatment. The order of treatments is randomized for each subject.

In this setting, Friedman’s test is identical to the ANOVA (row means scores) CMH statistic when the analysis
uses rank scores (SCORES=RANK). The three-way table uses subject (or subject group) as the stratifying
variable, treatment as the row variable, and response as the column variable. PROC FREQ handles ties by
assigning midranks to tied response values. If there are multiple subjects per treatment in each block, the
ANOVA CMH statistic is a generalization of Friedman’s test.

The data set Hypnosis contains data from a study investigating whether hypnosis has the same effect on skin
potential (measured in millivolts) for four emotions (Lehmann and D’Abrera 2006, p. 264). Eight subjects
are asked to display fear, joy, sadness, and calmness under hypnosis. The data are recorded as one observation
per subject for each emotion.

data Hypnosis;
length Emotion $ 10;
input Subject Emotion $ SkinResponse @@;
datalines;

1 fear 23.1 1 joy 22.7 1 sadness 22.5 1 calmness 22.6
2 fear 57.6 2 joy 53.2 2 sadness 53.7 2 calmness 53.1
3 fear 10.5 3 joy 9.7 3 sadness 10.8 3 calmness 8.3
4 fear 23.6 4 joy 19.6 4 sadness 21.1 4 calmness 21.6
5 fear 11.9 5 joy 13.8 5 sadness 13.7 5 calmness 13.3
6 fear 54.6 6 joy 47.1 6 sadness 39.2 6 calmness 37.0
7 fear 21.0 7 joy 13.6 7 sadness 13.7 7 calmness 14.8
8 fear 20.3 8 joy 23.6 8 sadness 16.3 8 calmness 14.8
;

In the following PROC FREQ statements, the TABLES statement creates a three-way table stratified
by Subject and a two-way table; the variables Emotion and SkinResponse form the rows and columns
of each table. The CMH2 option produces the first two Cochran-Mantel-Haenszel statistics, the option
SCORES=RANK specifies that rank scores are used to compute these statistics, and the NOPRINT option
suppresses the contingency tables. These statements produce Output 40.9.1 and Output 40.9.2.

proc freq data=Hypnosis;
tables Subject*Emotion*SkinResponse /

cmh2 scores=rank noprint;
run;

proc freq data=Hypnosis;
tables Emotion*SkinResponse /

cmh2 scores=rank noprint;
run;

Because the CMH statistics in Output 40.9.1 are based on rank scores, the Row Mean Scores Differ statistic
is identical to Friedman’s chi-square (Q = 6.45). The p-value of 0.0917 indicates that differences in skin
potential response for different emotions are significant at the 10% level but not at the 5% level.
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When you do not stratify by subject, the Row Mean Scores Differ CMH statistic is identical to a Kruskal-
Wallis test and is not significant (p = 0.9038 in Output 40.9.2). Thus, adjusting for subject is critical to
reducing the background variation due to subject differences.

Output 40.9.1 CMH Statistics: Stratifying by Subject

Clinical Trial for Treatment of Pain

The FREQ Procedure

Summary Statistics for Emotion by SkinResponse
Controlling for Subject

Clinical Trial for Treatment of Pain

The FREQ Procedure

Summary Statistics for Emotion by SkinResponse
Controlling for Subject

Cochran-Mantel-Haenszel Statistics (Based on Rank Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 0.2400 0.6242

2 Row Mean Scores Differ 3 6.4500 0.0917

Output 40.9.2 CMH Statistics: No Stratification

Clinical Trial for Treatment of Pain

The FREQ Procedure

Summary Statistics for Emotion by SkinResponse

Clinical Trial for Treatment of Pain

The FREQ Procedure

Summary Statistics for Emotion by SkinResponse

Cochran-Mantel-Haenszel Statistics (Based on Rank Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 0.0001 0.9933

2 Row Mean Scores Differ 3 0.5678 0.9038

Example 40.10: Cochran’s Q Test
When a binary response is measured several times or under different conditions, Cochran’s Q tests that the
marginal probability of a positive response is unchanged across the times or conditions. When there are more
than two response categories, you can use the CATMOD procedure to fit a repeated-measures model.

The data set Drugs contains data for a study of three drugs to treat a chronic disease (Agresti 2002). Forty-six
subjects receive drugs A, B, and C. The response to each drug is either favorable (‘F’) or unfavorable (‘U’).

proc format;
value $ResponseFmt 'F'='Favorable'

'U'='Unfavorable';
run;

data drugs;
input Drug_A $ Drug_B $ Drug_C $ Count @@;
datalines;

F F F 6 U F F 2
F F U 16 U F U 4
F U F 2 U U F 6
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F U U 4 U U U 6
;

The following statements create one-way frequency tables of the responses to each drug. The AGREE option
produces Cochran’s Q and other measures of agreement for the three-way table. These statements produce
Output 40.10.1 through Output 40.10.5.

proc freq data=Drugs;
tables Drug_A Drug_B Drug_C / nocum;
tables Drug_A*Drug_B*Drug_C / agree noprint;
format Drug_A Drug_B Drug_C $ResponseFmt.;
weight Count;
title 'Study of Three Drug Treatments for a Chronic Disease';

run;

The one-way frequency tables in Output 40.10.1 provide the marginal response for each drug. For drugs A
and B, 61% of the subjects reported a favorable response while 35% of the subjects reported a favorable
response to drug C. Output 40.10.2 and Output 40.10.3 display measures of agreement for the ‘Favorable’
and ‘Unfavorable’ levels of drug A, respectively. McNemar’s test shows a strong discordance between drugs
B and C when the response to drug A is favorable.

Output 40.10.1 One-Way Frequency Tables

Study of Three Drug Treatments for a Chronic Disease

The FREQ Procedure

Study of Three Drug Treatments for a Chronic Disease

The FREQ Procedure

Drug_A Frequency Percent

Favorable 28 60.87

Unfavorable 18 39.13

Drug_B Frequency Percent

Favorable 28 60.87

Unfavorable 18 39.13

Drug_C Frequency Percent

Favorable 16 34.78

Unfavorable 30 65.22

Output 40.10.2 Measures of Agreement for Drug A Favorable

McNemar's Test

Statistic (S) 10.8889

DF 1

Pr > S 0.0010

Simple Kappa Coefficient

Kappa -0.0328

ASE 0.1167

95% Lower Conf Limit -0.2615

95% Upper Conf Limit 0.1960
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Output 40.10.3 Measures of Agreement for Drug A Unfavorable

McNemar's Test

Statistic (S) 0.4000

DF 1

Pr > S 0.5271

Simple Kappa Coefficient

Kappa -0.1538

ASE 0.2230

95% Lower Conf Limit -0.5909

95% Upper Conf Limit 0.2832

Output 40.10.4 displays the overall kappa coefficient. The small negative value of kappa indicates no
agreement between drug B response and drug C response.

Output 40.10.4 Overall Measures of Agreement

Overall Kappa Coefficient

Kappa -0.0588

ASE 0.1034

95% Lower Conf Limit -0.2615

95% Upper Conf Limit 0.1439

Test for Equal
Kappa

Coefficients

Chi-Square 0.2314

DF 1

Pr > ChiSq 0.6305

Cochran’s Q is statistically significant (p=0.0145 in Output 40.10.5), which leads to rejection of the hypothesis
that the probability of favorable response is the same for the three drugs.

Output 40.10.5 Cochran’s Q Test

Cochran's Q,
for Drug_A by

Drug_B by Drug_C

Statistic (Q) 8.4706

DF 2

Pr > Q 0.0145
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Overview: GAM Procedure
The GAM procedure fits generalized additive models as defined by Hastie and Tibshirani (1990). This
procedure provides powerful tools for nonparametric regression and smoothing.

Nonparametric regression relaxes the usual assumption of linearity and enables you to uncover relationships
between the independent variables and the dependent variable that might otherwise be missed. SAS provides
many procedures for nonparametric regression, such as the LOESS procedure for local regression and the
TPSPLINE procedure for thin-plate smoothing splines. The generalized additive models fit by the GAM
procedure combine the following:

• an additivity assumption (Stone 1985) that enables relatively many nonparametric relationships to be
explored simultaneously

• the distributional flexibility of generalized linear models (Nelder and Wedderburn 1972)

Thus, you can use the GAM procedure when you have multiple independent variables whose effect you want
to model nonparametrically, or when the dependent variable is not normally distributed. See the section
“Nonparametric Regression” on page 2774 for more details on the form of generalized additive models.

The GAM procedure does the following:

• provides nonparametric estimates for additive models

• supports the use of multidimensional data

• supports multiple SCORE statements

• fits both generalized semiparametric additive models and generalized additive models

• enables you to choose a particular model by specifying the model degrees of freedom or smoothing
parameter

• produces graphs with ODS Graphics

Getting Started: GAM Procedure
The following example illustrates the use of the GAM procedure to explore in a nonparametric way how two
factors affect a response. The data come from a study of the factors affecting patterns of insulin-dependent
diabetes mellitus in children (Sochett et al. 1987). The objective is to investigate the dependence of the
level of serum C-peptide on various other factors in order to understand the patterns of residual insulin
secretion. The response measurement is the logarithm of C-peptide concentration (pmol/ml) at diagnosis,
and the predictor measurements are age and base deficit (a measure of acidity).
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title 'Patterns of Diabetes';
data diabetes;

input Age BaseDeficit CPeptide @@;
logCP = log(CPeptide);
datalines;

5.2 -8.1 4.8 8.8 -16.1 4.1 10.5 -0.9 5.2
10.6 -7.8 5.5 10.4 -29.0 5.0 1.8 -19.2 3.4
12.7 -18.9 3.4 15.6 -10.6 4.9 5.8 -2.8 5.6
1.9 -25.0 3.7 2.2 -3.1 3.9 4.8 -7.8 4.5
7.9 -13.9 4.8 5.2 -4.5 4.9 0.9 -11.6 3.0
11.8 -2.1 4.6 7.9 -2.0 4.8 11.5 -9.0 5.5
10.6 -11.2 4.5 8.5 -0.2 5.3 11.1 -6.1 4.7
12.8 -1.0 6.6 11.3 -3.6 5.1 1.0 -8.2 3.9
14.5 -0.5 5.7 11.9 -2.0 5.1 8.1 -1.6 5.2
13.8 -11.9 3.7 15.5 -0.7 4.9 9.8 -1.2 4.8
11.0 -14.3 4.4 12.4 -0.8 5.2 11.1 -16.8 5.1
5.1 -5.1 4.6 4.8 -9.5 3.9 4.2 -17.0 5.1
6.9 -3.3 5.1 13.2 -0.7 6.0 9.9 -3.3 4.9
12.5 -13.6 4.1 13.2 -1.9 4.6 8.9 -10.0 4.9
10.8 -13.5 5.1
;

The following statements perform the desired analysis. The PROC GAM statement invokes the procedure
and specifies the diabetes data set as input. The MODEL statement specifies logCP as the response variable
and names Age and BaseDeficit as independent variables with univariate smoothing splines and the default of
four degrees of freedom.

ods graphics on;
proc gam data=diabetes;

model logCP = spline(Age) spline(BaseDeficit);
run;

The results are shown in Figure 41.1 and Figure 41.2.

Figure 41.1 Summary Statistics

Patterns of Diabetes

The GAM Procedure
Dependent Variable: logCP

Smoothing Model Component(s): spline(Age) spline(BaseDeficit)

Patterns of Diabetes

The GAM Procedure
Dependent Variable: logCP

Smoothing Model Component(s): spline(Age) spline(BaseDeficit)

Summary of Input Data Set

Number of Observations 43

Number of Missing Observations 0

Distribution Gaussian

Link Function Identity

Iteration Summary and Fit Statistics

Final Number of Backfitting Iterations 5

Final Backfitting Criterion 5.542745E-10

The Deviance of the Final Estimate 0.4180791724
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Figure 41.1 shows two tables. The first table summarizes the input data set and the distributional family used
for the model; the second table summarizes the convergence criterion for backfitting.

Figure 41.2 Analysis of Model

Regression Model Analysis
Parameter Estimates

Parameter
Parameter
Estimate

Standard
Error t Value Pr > |t|

Intercept 1.48141 0.05120 28.93 <.0001

Linear(Age) 0.01437 0.00437 3.28 0.0024

Linear(BaseDeficit) 0.00807 0.00247 3.27 0.0025

Smoothing Model Analysis
Fit Summary for Smoothing Components

Component
Smoothing
Parameter DF GCV

Num
Unique
Obs

Spline(Age) 0.995582 3.000000 0.011675 37

Spline(BaseDeficit) 0.995299 3.000000 0.012437 39

Smoothing Model Analysis
Analysis of Deviance

Source DF
Sum of

Squares Chi-Square Pr > ChiSq

Spline(Age) 3.00000 0.150761 12.2605 0.0065

Spline(BaseDeficit) 3.00000 0.081273 6.6095 0.0854

Figure 41.2 displays summary statistics for the model. It consists of three tables. The first is the “Parameter
Estimates” table for the parametric part of the model. It indicates that the linear trends for both Age and
BaseDeficit are highly significant. The second table is the summary of smoothing components of the
nonparametric part of the model. This table presents the smoothing parameter and degrees of freedom (DF)
for each component. By default, each smoothing component has approximately 4 DF. For univariate spline
components, one DF is taken up by the (parametric) linear part of the model, so the remaining approximate
DF is 3. Finally, the third table is the “Analysis of Deviance” table for the nonparametric component of the
model.

With ODS Graphics enabled, PROC GAM produces by default a panel of plots of partial prediction curves of
smoothing components. In these plots, the partial prediction for a predictor such as Age is its nonparametric
contribution to the model, s.Age/. For general information about ODS Graphics, see Chapter 21, “Statistical
Graphics Using ODS.” For specific information about the graphics available in the GAM procedure, see the
section “ODS Graphics” on page 2788.

Plots for both predictors (Figure 41.3) show a strong quadratic pattern, with a possible indication of higher-
order behavior. Further investigation is required to determine whether these patterns are real or not.
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Figure 41.3 Partial Predictions for Each Predictor

Syntax: GAM Procedure
The following statements are available in the GAM procedure:

PROC GAM < options > ;
CLASS variable < (options) > < variable < (options) > . . . > < / options > ;
MODEL dependent < (options) > = < PARAM(effects) > < smoothing-effects > < / options > ;
SCORE DATA= SAS-data-set OUT= SAS-data-set ;
OUTPUT OUT= SAS-data-set < keyword< =prefix > . . . keyword< =prefix > > ;
BY variables ;
FREQ variable ;
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The syntax of the GAM procedure is similar to that of other regression procedures in the SAS System. The
PROC GAM and MODEL statements are required. The CLASS statement, if specified, must precede the
MODEL statement. The CLASS and SCORE statements can appear multiple times; all other statements must
appear only once.

The syntax for PROC GAM is described in the following sections in alphabetical order after the description
of the PROC GAM statement.

PROC GAM Statement
PROC GAM < options > ;

The PROC GAM statement invokes the procedure. Table 41.1 summarizes the options available in the PROC
GAM statement.

Table 41.1 PROC GAM Statement Options

Option Description

DATA= Specifies the input SAS data set
DESCENDING Reverses the sort order of all CLASS variables
ORDER= Specifies the sort order for CLASS variables
PLOTS Controls plots produced through ODS Graphics

You can specify the following options.

DATA=SAS-data-set
specifies the SAS data set to be read by PROC GAM. The default value is the most recently created
data set.

DESCENDING

DESC
reverses the sort order of all classification variables (specified in the CLASS statement). If both the
DESCENDING and ORDER= options are specified, PROC GAM orders the categories according
to the ORDER= option and then reverses that order. This option has the same effect as the classi-
fication variable option DESCENDING in the CLASS statement and the response variable option
DESCENDING in the MODEL statement.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of all classification variables (specified in the CLASS statement).
This ordering determines which parameters in the model correspond to each level in the data. Note
that the ORDER= option in the CLASS statement and the ORDER= response variable option in the
MODEL statement override the ORDER= option in the PROC GAM statement.

PLOTS < (global-plot-options) > < = plot-request < (options) > >

PLOTS < (global-plot-options) > < =(plot-request < (options) > < . . . plot-request < (options) > >) >
controls the plots produced through ODS Graphics. When you specify only one plot-request , you can
omit the parentheses around the plot-request . Here are some examples:
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plots=all

plots=components(commonaxes)

plots(unpack)=components(commonaxes clm)

ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;

proc gam data=test plots(unpack)=components(commonaxes clm);
model z=spline(x) spline(y);

run;

ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and Disabling
ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

With ODS Graphics enabled, PROC GAM produces by default a panel of plots of partial prediction curves of
smoothing components.

Global Plot Options

The global-plot-options apply to all plots generated by the GAM procedure, unless altered by a specific-plot-
option.

UNPACK
separately displays the smoothing component plots that are by default presented in panels. Use this
option if you want to access individual smoothing component plots within the panel.

Specific Plot Options

The following listing describes the specific plots and their options.

ALL
requests that all plots be produced.

NONE
suppresses all plots.

COMPONENTS | COMPONENT < (components-options) >
displays a panel of smoothing component plots. The following components-options are available:

ADDITIVE
produces the additive component plots for spline and loess effects. The additive component plots
combine the linear trend and the nonparametric prediction for each spline or loess effect.



2766 F Chapter 41: The GAM Procedure

CLM
includes confidence limits in the smoothing component plots. By default, 95% confidence limits
are produced, but you can change the significance level by specifying the ALPHA= option in the
MODEL statement. Note that producing these limits can be computationally intensive for large
data sets.

COMMONAXES
specifies that smoothing component plots use a common vertical axis. This enables you to
visually judge relative effect size.

UNPACK
displays the smoothing components individually.

BY Statement
BY variables ;

You can specify a BY statement with PROC GAM to obtain separate analyses of observations in groups that
are defined by the BY variables. When a BY statement appears, the procedure expects the input data set to be
sorted in order of the BY variables. If you specify more than one BY statement, only the last one specified is
used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the GAM procedure. The
NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

CLASS Statement
CLASS variable < (options) > < variable < (options) > . . . > < / options > ;

The CLASS statement names the classification variables to be used in the analysis. The CLASS statement
must precede the MODEL statement. You can specify various options for each variable by enclosing them in
parentheses after the variable name. You can also specify global options for the CLASS statement by placing
them after a slash (/). Global options are applied to all the variables specified in the CLASS statement. If you
specify more than one CLASS statement, the global options specified on any one CLASS statement apply to
all CLASS statements. However, individual CLASS variable options override the global options.
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DESCENDING

DESC
reverses the sort order of the classification variable. If both the DESCENDING and ORDER= options
are specified, PROC GAM orders the categories according to the ORDER= option and then reverses
that order.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the categories of categorical variables. This ordering determines which
parameters in the model correspond to each level in the data. When the default ORDER=FORMATTED
is in effect for numeric variables for which you have supplied no explicit format, the levels are ordered
by their internal values. The following table shows how PROC GAM interprets values of the ORDER=
option.

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set

FORMATTED External formatted value, except for numeric variables with
no explicit format, which are sorted by their unformatted
(internal) value

FREQ Descending frequency count; levels with the most observa-
tions come first in the order

INTERNAL Unformatted value

By default, ORDER=FORMATTED. For FORMATTED and INTERNAL, the sort order is machine-
dependent. For more information on sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

REF=’level’ | keyword
specifies a level of the classification variable to be put at the end of the list of levels. This level thus
corresponds to the reference level in the usual interpretation of the linear estimates with a singular
parameterization.

For an individual variable REF= option (but not for a global REF= option), you can specify the level
of the variable to use as the reference level. Specify the formatted value of the variable if a format is
assigned. For a global or individual variable REF= option, you can use one of the following keywords.
The default is REF=LAST.

FIRST designates the first ordered level as reference.

LAST designates the last ordered level as reference.

TRUNCATE< =n >
specifies the length n of CLASS variable values to use in determining CLASS variable levels. If you
specify TRUNCATE without the length n, the first 16 characters of the formatted values are used.
When formatted values are longer than 16 characters, you can use this option to revert to the levels as
determined in releases previous to SAS 9. The default is to use the full formatted length of the CLASS
variable. The TRUNCATE option is available only as a global option.
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FREQ Statement
FREQ variable ;

The FREQ statement names a variable that provides frequencies for each observation in the DATA= data set.
Specifically, if n is the value of the FREQ variable for a given observation, then that observation is used n
times.

The analysis produced by using a FREQ statement reflects the expanded number of observations. You can
produce the same analysis (without the FREQ statement) by first creating a new data set that contains the
expanded number of observations. For example, if the value of the FREQ variable is 5 for the first observation,
the first five observations in the new data set are identical. Each observation in the old data set is replicated
ni times in the new data set, where ni is the value of the FREQ variable for that observation.

If the value of the FREQ variable is missing or is less than 1, the observation is not used in the analysis. If
the value is not an integer, only the integer portion is used.

The FREQ statement is not available when a loess smoother is included in the model.

MODEL Statement
MODEL dependent < (options) > = < PARAM(effects) > < smoothing-effects > < / options > ;

MODEL event/trials = < PARAM(effects) > < smoothing-effects > < / options > ;

The MODEL statement specifies the dependent variable and the independent effects you want to use in the
model. Specify the independent parametric variables inside the parentheses of PARAM( ). The parametric
variables can be either classification variables or continuous variables. Classification variables must be
declared in a CLASS statement. Interactions between variables can also be included as parametric effects.
Multiple PARAM() specifications are allowed in the MODEL statement. The syntax for the specification of
effects is the same as for the GLM procedure (Chapter 45, “The GLM Procedure”).

Only continuous variables can be specified in smoothing-effects. Any number of smoothing-effects can be
specified, as follows:

Smoothing Effect Meaning

SPLINE(variable < , DF=number >) Fits a smoothing spline with the vari-
able and with DF=number

LOESS(variable < , DF=number >) Fits a local regression with the vari-
able and with DF=number

SPLINE2(variable1, variable2 < ,DF=number >) Fits a bivariate thin-plate smoothing
spline with variable1 and variable2
and with DF=number

The number specified in the DF= option must be positive. If you specify neither the DF= option nor the
METHOD=GCV in the MODEL statement, then the default is DF=4. Note that for univariate spline and
loess components, a degree of freedom is used by default to account for the linear portion of the model, so
the value displayed in the “Fit Summary” and “Analysis of Deviance” tables will be one less than the value
you specify.
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Both parametric effects and smoothing effects are optional. If none are specified, a model that contains only
an intercept is fitted.

If only parametric variables are present, PROC GAM fits a parametric linear model by using the terms inside
the parentheses of PARAM( ). If only smoothing effects are present, PROC GAM fits a nonparametric
additive model. If both types of effect are present, PROC GAM fits a semiparametric model by using the
parametric effects as the linear part of the model.

Table 41.2 shows how to specify various models for a dependent variable y and independent variables x, x1,
and x2. si . /; i D 1; 2 are nonparametric smooth functions.

Table 41.2 Syntax for Common GAM Models

Type of Model Syntax for model Mathematical Form

Parametric y=param(x1 x2) E.Y jX D x/ D ˇ0 C ˇ1x1 C ˇ2x2
Nonparametric y=spline(x) E.Y jX D x/ D ˇ0 C ˇ1x C s.x/

Nonparametric y=loess(x) E.Y jX D x/ D ˇ0 C ˇ1x C s.x/

Semiparametric y=spline(x1) param(x2) E.Y jX D x/ D ˇ0 C ˇ1x1 C ˇ2x2 C s.x1/

Additive y=spline(x1) spline(x2) E.Y jX D x/ D ˇ0 C ˇ1x1 C ˇ2x2 C s1.x1/C s2.x2/

Thin-plate spline y=spline2(x1,x2) E.Y jX D x/ D ˇ0 C s.x1; x2/

Table 41.3 summarizes the options available in the MODEL statement.

Table 41.3 MODEL Statement Options

Option Description

Response Variable Options
DESCENDING Reverses the order of the response categories
EVENT= Specifies the event category for the binary response model
ORDER= Specifies the sort order for the response variable
REFERENCE= Specifies the reference category for the binary response model

Model Options
ALPHA= Specifies the significance level
ANODEV= Specifies the method used to analyze smoothing effects
DIST= Specifies the distribution family
EPSILON= Specifies the convergence criterion for the backfitting algorithm
EPSSCORE= Specifies the convergence criterion for the local scoring algorithm
ITPRINT Produces an iteration summary table for the smoothing effects
MAXITER= Specifies the maximum number of iterations for the backfitting algorithm
MAXITSCORE= Specifies the maximum number of iterations for the local scoring algorithm
METHOD= Specifies the method for selecting the value of the smoothing parameter
OFFSET= Specifies an offset for the linear predictor
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Response Variable Options

Response variable options determine how the GAM procedure models probabilities for binary data.

You can specify the following options by enclosing them in parentheses after the response variable. See the
section “CLASS Statement” on page 2766 for more detail.

DESCENDING

DESC
reverses the order of the response categories. If both the DESCENDING and ORDER= options are
specified, PROC GAM orders the response categories according to the ORDER= option and then
reverses that order.

EVENT=‘category ’ | keyword
specifies the event category for the binary response model. PROC GAM models the probability of the
event category. You can specify the value (formatted, if a format is applied) of the event category in
quotes, or you can specify one of the following keywords. The default is EVENT=FIRST.

FIRST
designates the first ordered category as the event.

LAST
designates the last ordered category as the event.

One of the most common sets of response levels is f0; 1g, with 1 representing the event for which
the probability is to be modeled. Consider the example where Y takes the value 1 and 0 for event
and nonevent, respectively, and X is the explanatory variable. By default, PROC GAM models the
probability that Y = 0. To model the probability that Y = 1 , specify the following MODEL statement:

model Y (event='1') = X;

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of the response variable. By default, ORDER=FORMATTED.
When ORDER=FORMATTED, the values of numeric variables for which you have supplied no explicit
format (that is, for which there is no corresponding FORMAT statement in the current PROC GAM
run or in the DATA step that created the data set), are ordered by their internal (numeric) value. If
you specify the ORDER= option in the MODEL statement and the ORDER= option in the CLASS
statement, the former takes precedence. The following table shows the interpretation of the ORDER=
values:

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set

FORMATTED External formatted value, except for numeric variables with
no explicit format, which are sorted by their unformatted
(internal) value

FREQ Descending frequency count; levels with the most observa-
tions come first in the order

INTERNAL Unformatted value
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For the FORMATTED and INTERNAL values, the sort order is machine-dependent.

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

REFERENCE=’category ’ | keyword

REF=’category ’ | keyword
specifies the reference category for the binary response model. Specifying one response category as the
reference is the same as specifying the other response category as the event category. You can specify
the value (formatted if a format is applied) of the reference category in quotes, or you can specify one
of the following keywords:

FIRST designates the first ordered category as the reference.

LAST designates the last ordered category as the reference. This is the default.

The REFERENCE= option is ignored when the EVENT= option is present.

Model Options

ALPHA=number
specifies the significance level ˛ of the confidence limits on the final nonparametric component
estimates when you request confidence limits to be included in the output data set. Specify number as a
value between 0 and 1. The default value is 0.05. See the section “OUTPUT Statement” on page 2772
for more information about the OUTPUT statement.

ANODEV=type
specifies the type of method to be used to produce the “Analysis of Deviance” table for smoothing
effects. The available choices are as follows:

REFIT specifies that PROC GAM perform �2 tests by fitting nested GAM models. This
is the default choice if you do not specify the ANODEV= option. This choice
requires fitting separate GAM models where one smoothing term is omitted from
each model.

NOREFIT specifies that PROC GAM perform approximate tests of smoothing effects. To test
each smoothing effect, a weighted least squares model is fitted to the remaining
parametric part of the model while keeping other nonlinear smoothers fixed. For
details, see Hastie (1991). This choice requires only a single GAM fitting to be
performed, which reduces the time of the procedure.

NONE requests that the procedure not produce the “Analysis of Deviance” table for smooth-
ing effects.

DIST=distribution-id

LINK=distribution-id
specifies the distribution family used in the model. The choices for distribution-id are displayed in
Table 41.4. See “Distribution Family and Canonical Link” on page 2784 for more information.
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Table 41.4 Distribution Families for GAM Models

DIST= Distribution Link Function Response Data Type

GAUSSIAN | GAUS | NORM Normal (Gaussian) Identity Continuous variables
BINOMIAL | LOGI | BIN Binomial Logit Binary variables
POISSON | POIS | LOGL Poisson Log Nonnegative discrete variables
GAMMA | GAMM Gamma Negative reciprocal Positive continuous variables
IGAUSSIAN | IGAU | INVG Inverse Gaussian Squared reciprocal Positive continuous variables

Canonical link functions are used with those distributions. Although alternative links are possible
theoretically, the final fit of nonparametric regression models is relatively insensitive to the precise
choice of link functions. Therefore, only the canonical link for each distribution family is implemented
in PROC GAM. The loess smoother is not available for DIST=BINOMIAL when the number of trials
is greater than 1.

EPSILON=number
specifies the convergence criterion for the backfitting algorithm. The default value is 1E–8.

EPSSCORE=number
specifies the convergence criterion for the local scoring algorithm. The default value is 1E–8.

ITPRINT
produces an iteration summary table for the smoothing effects when doing backfitting and local scoring.

MAXITER=number
specifies the maximum number of iterations for the backfitting algorithm. The default value is 50.

MAXITSCORE=number
specifies the maximum number of iterations for the local scoring algorithm. The default value is 100.

METHOD=GCV
specifies that the value of the smoothing parameter should be selected by generalized cross validation.
If you specify both METHOD=GCV and the DF= option for some smoothing effects, the user-specified
DF values are used for those effects in which the DF= option is specified. The GCV criterion is used for
determining smoothness of the remaining effects. See the section “Selection of Smoothing Parameters”
on page 2781 for more details on the GCV method.

OFFSET=variable
specifies an offset for the linear predictor. An offset plays the role of a predictor whose coefficient is
known to be 1. For example, you can use an offset in a Poisson model when counts have been obtained
in time intervals of different lengths. With a log link function, you can model the counts as Poisson
variables with the logarithm of the time interval as the offset variable. The offset variable cannot appear
in the CLASS statement or elsewhere in the MODEL statement.

OUTPUT Statement
OUTPUT OUT= SAS-data-set < keyword< =prefix > . . . keyword< =prefix > > ;
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The OUTPUT statement creates a new SAS data set that contains diagnostic measures calculated after fitting
the model.

All the variables in the original data set are included in the new data set, along with new variables that are
created with keywords specified in the OUTPUT statement. These new variables contain the values of a
variety of statistics and diagnostic measures that are calculated for each observation in the data set. If no
keywords are present, the OUT= data set contains only the original data set and predicted values. The
predicted values include the linear predictor for the response and the prediction for each smoothing term
in the model. When you specify a distribution family with the DIST= or LINK= option in the MODEL
statement, predicted response values after applying the inverse link function are also included. Predicted
values are computed for observations that have missing response values, nonmissing values in the explanatory
variables, and values of the smoothing variables that are within the smoothing ranges of the fitted model.

You can specify the following options in the OUTPUT statement:

OUT=SAS-data-set
specifies the name of the new data set to contain the diagnostic measures. This option is required.

keyword < =prefix >
specifies the statistics to include in the output data set. The keywords and the statistics they represent
are as follows:

PREDICTED predicted values for each smoothing component and overall predicted values on the
response scale at design points. The prediction for each spline or loess term is only
for the nonlinear component of each smoother.

LINP linear prediction values on the link scale at design points

UCLM upper confidence limits for each predicted smoothing component

LCLM lower confidence limits for each predicted smoothing component

ADIAG diagonal element of the hat matrix associated with the observation for each smooth-
ing spline component

RESIDUAL residual standardized by its weights

STD standard deviation of the prediction for each smoothing component

ALL all statistics in this list

The names of the new variables that contain the statistics are formed by concatenating a prefix and the
corresponding variable names. If you do not specify a prefix , the names are formed by using default
prefixes listed in the following table:

Keyword Prefix

PRED P_
LINP LINP_
UCLM UCLM_
LCLM LCLM_
ADIAG ADIAG_
RESID R_
STD STD_ (for spline)

STDP_ (for loess)
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For example, suppose that you have a dependent variable y and an independent smoothing variable
x. If you specify the keywords PRED=MyP_ and ADIAG=MyA_, the new variables in the output
SAS data set are MyP_y, MyP_x, and MyA_x. If you specify the keywords PRED and ADIAG without
prefixes, the new variables are P_y, P_x, and ADIAG_x.

SCORE Statement
SCORE DATA= SAS-data-set OUT= SAS-data-set ;

The SCORE statement calculates predicted values for a new data set. All the variables in the DATA= data
set are included in the OUT= data set, along with the predicted values. The predicted values consist of
predicted responses after the inverse link function transformation, predicted values of all smoothing terms,
and predicted values on the link scale. Predicted values are computed for observations with missing response
values whose values of the specified explanatory variables are nonmissing, and whose values of the specified
smoothing variables are within the smoothing ranges of the fitted model. The predicted variables use the
same naming convention as the OUTPUT statement. If you have multiple data sets to score, you can specify
multiple SCORE statements.

The following options must be specified in the SCORE statement:

DATA=SAS-data-set
specifies an input SAS data set containing all the variables included in independent effects in the
MODEL statement. The predicted response is computed for each observation in the SCORE DATA=
data set.

OUT=SAS-data-set
specifies the name of the SAS data set to contain the predictions.

Details: GAM Procedure

Missing Values
When fitting a model, PROC GAM excludes any observation with missing values for an explanatory variable,
offset variable, or dependent variable. However, if only the response is missing, predicted values can be
computed and output to a data set by using the OUTPUT or SCORE statement.

Nonparametric Regression
Nonparametric regression relaxes the usual assumption of linearity and enables you to explore the data more
flexibly, uncovering structure in the data that might otherwise be missed.

However, many forms of nonparametric regression do not perform well when the number of independent
variables in the model is large. The sparseness of data in this setting causes the variances of the estimates to
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be unacceptably large unless the sample size is extremely large. The problem of rapidly increasing variance
for increasing dimensionality is sometimes referred to as the “curse of dimensionality.” Interpretability is
another problem with nonparametric regression based on kernel and smoothing spline estimates. These
estimates contain information about the relationship between the dependent and independent variables, and
the information is often difficult to comprehend.

To overcome these difficulties, additive models were proposed by some researchers, for example, Stone
(1985). These models estimate an additive approximation to the multivariate regression function. The
benefits of an additive approximation are at least twofold. First, since each of the individual additive terms is
estimated by using a univariate smoother, the curse of dimensionality is avoided, at the cost of not being able
to approximate universally. Second, estimates of the individual terms explain how the dependent variable
changes with the corresponding independent variables.

To extend the additive model to a wide range of distribution families, Hastie and Tibshirani (1990) proposed
generalized additive models. These models enable the mean of the dependent variable to depend on an
additive predictor through a nonlinear link function. The models permit the response probability distribution
to be any member of the exponential family of distributions. Many widely used statistical models belong to
this general class; they include additive models for Gaussian data, nonparametric logistic models for binary
data, and nonparametric log-linear models for Poisson data.

Additive Models and Generalized Additive Models
This section describes the methodology and the fitting procedure behind generalized additive models.

Let Y be a response random variable and X1; X2; � � � ; Xp be a set of predictor variables. A regression proce-
dure can be viewed as a method for estimating the expected value of Y given the values of X1; X2; � � � ; Xp.
The standard linear regression model assumes a linear form for the dependency of Y on X:

Y D ˇ0 C ˇ1X1 C ˇ2X2 C � � � C ˇpXp C �

where E.�/ D 0 and Var.�/ D �2. Given a sample, estimates of ˇ0; ˇ1; � � � ; ˇp are usually obtained by the
least squares method.

The additive model generalizes the linear model by modeling the dependency as

Y D s0 C s1.X1/C s2.X2/C � � � C sp.Xp/C �

where sj .X/; j D 1; 2; : : : ; p; are smooth functions, E.�/ D 0 and Var.�/ D �2.

In order to be estimable, the smooth functions si have to satisfy standardized conditions such asE
�
sj .Xj /

�
D

0. These functions are not given a parametric form but instead are estimated in a nonparametric fashion.

While traditional linear models and additive models can be used in most statistical data analysis, there are
types of problems for which they are not appropriate. For example, the normal distribution might not be
adequate for modeling discrete responses such as counts or bounded responses such as proportions.

Generalized additive models address these difficulties, extending additive models to many other distributions
besides just the normal. Thus, generalized additive models can be applied to a much wider range of data
analysis problems.
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Like generalized linear models, generalized additive models consist of a random component, an additive
component, and a link function relating the two components. The response Y, the random component, is
assumed to have exponential family density

fY .yI �; �/ D exp
�
y� � b.�/

a.�/
C c.y; �/

�

where � is called the natural parameter and � is the scale parameter. The mean of the response variable � is
related to the set of covariates X1; X2; � � � ; Xp by a link function g. The quantity

� D s0 C

pX
jD1

sj .Xj /

defines the additive component, where s1. /; � � � ; sp. / are smooth functions, and the relationship between �
and � is defined by g.�/ D �. The most commonly used link function is the canonical link, for which � D � .

Generalized additive models and generalized linear models can be applied in similar situations, but they
serve different analytic purposes. Generalized linear models emphasize estimation and inference for the
parameters of the model, while generalized additive models focus on exploring data nonparametrically.
Generalized additive models are more suitable for exploring the data and visualizing the relationship between
the dependent variable and the independent variables.

Forms of Additive Models
Suppose that y is a continuous variable and x1 and x2 are two explanatory variables of interest. To fit an
additive model, you can use a MODEL statement similar to that used in many regression procedures in the
SAS System:

model y = spline(x1) spline(x2);

This model statement requires the procedure to fit the following model:

�.x1; x2/ D ˇ0 C ˇ1x1 C ˇ2x2 C s1.x1/C s2.x2/

where the si . / terms denote nonparametric spline functions of the respective explanatory variables.

The GAM procedure can fit semiparametric models. The following MODEL statement assumes a linear
relation with x1 and an unknown functional relation with x2:

model y = param(x1) spline(x2);

If you want to fit a model containing a functional two-way interaction between x1 and x2, you can use the
following MODEL statement:

model y = spline2(x1,x2);

In this case, the GAM procedure fits a model equivalent to that of PROC TPSPLINE.
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Estimates from PROC GAM
PROC GAM provides the capability to fit both nonparametric and semiparametric models. So that you
can better understand the underlying trend of any given factor, PROC GAM separates the linear trend from
any general nonparametric trend during the fitting as well as in the final report. This makes it easy to
determine whether the significance of a smoothing variable is associated with a simple linear trend or a more
complicated pattern.

For example, suppose you want to fit a semiparametric model as

y D ˛0 C ˛1z C f1.x1/C f2.x2/

The GAM estimate for this model is

y D b̨0 C b̨1z C č1x1 C č2x2 C bs1.x1/C bs2.x2/
where bs1 and bs2 are linear-adjusted nonparametric estimates of the f1 and f2 effects. The p-values forb̨0; b̨1; č1; and č2 are reported in the parameter estimates table. č1 and č2 are the estimates labeled
Linear(x1) and Linear(x2) in the table. The p-values for bs1 and bs2 are reported in the analysis of deviance
table.

Only bs1, bs2, and Oy are output to the output data set, with the corresponding variable names P_x1, P_x2, and
P_y. For Gaussian data, the complete marginal prediction for variable x1 is:

č
1x1 C P_x1

If the additive component plots are requested by the ADDITIVE suboption, the additive component for
variable x2 is computed as:

č
2.x2 � Nx2/C P_x2

where Nx2 is the mean for variable x2.

Backfitting and Local Scoring Algorithms
Much of the development and notation in this section follows Hastie and Tibshirani (1986).

Additive Models

Consider the estimation of the smoothing terms s0; s1. /; � � � ; sp. / in the additive model

�.X/ D s0 C

pX
jD1

sj .Xj /

where E
�
sj .Xj /

�
D 0 for every j. Since the algorithm for additive models is the basis for fitting generalized

additive models, the algorithm for additive models is discussed first.

Many ways are available to approach the formulation and estimation of additive models. The backfitting
algorithm is a general algorithm that can fit an additive model with any regression-type fitting mechanisms.
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Define the kth set of partial residuals as

Rk D Y � s0 �
X
j¤k

sj .Xj /

then E.RkjXk/ D sk.Xk/. This observation provides a way to estimate each smoothing function sk. / given
estimates fOsj . /; j ¤ kg for all the others. The resulting iterative procedure is known as the backfitting
algorithm (Friedman and Stuetzle 1981). The following formulation is taken from Hastie and Tibshirani
(1986).

The Backfitting Algorithm

The unweighted form of the backfitting algorithm is as follows:

1. Initialization:
s0 D E.Y /; s

.1/
1 D s

.1/
2 D � � � D s

.1/
p D 0;m D 0

2. Iterate:
m D mC 1;
for j = 1 to p do:

Rj D Y � s0 �
Pj�1

kD1
s
.m/

k
.Xk/ �

Pp

kDjC1
s
.m�1/

k
.Xk/;

s
.m/
j D E.Rj jXj /;

3. Until:
RSS D 1

n

Y � s0 �Pp
jD1 s

.m/
j .Xj /

2 fails to decrease, or satisfies the convergence criterion.

In the preceding notation, s.m/j . / denotes the estimate of sj . / at the mth iteration. It can be shown that with
many smoothers (including linear regression, univariate and bivariate splines, and combinations of these),
RSS never increases at any step. This implies that the algorithm always converges (Hastie and Tibshirani
1986). Note, however, that for distributions other than Gaussian, numerical instabilities with weights can
cause convergence problems. Even when the algorithm converges, the individual functions need not be
unique, since dependence among the covariates can lead to more than one representation for the same fitted
surface.

A weighted backfitting algorithm has the same form as for the unweighted case, except that the smoothers are
weighted. In PROC GAM, weights are used with non-Gaussian data in the local scoring procedure described
later in this section.

The GAM procedure uses the following condition as the convergence criterion for the backfitting algorithm:

Pn
iD1

Pp
jD1

�
s
.m�1/
j .Xij / � s

.m/
j .Xij /

�2
1C

Pn
iD1

Pp
jD1

�
s
.m�1/
j .Xij /

�2 � �

where � D 10�8 by default; you can change this with the EPSILON= option in the MODEL statement.
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Generalized Additive Models

The algorithm described so far fits only additive models. The algorithm for generalized additive models is a
little more complicated. Generalized additive models extend generalized linear models in the same manner
that additive models extend linear regression models—that is, by replacing the form ˛ C

P
j ˇjxj with the

additive form ˛ C
P
j fj .xj /. See “Generalized Linear Models Theory” on page 2935 in Chapter 43, “The

GENMOD Procedure,” for more information.

PROC GAM fits generalized additive models by using a modified form of adjusted dependent variable
regression, as described for generalized linear models in McCullagh and Nelder (1989), with the additive
predictor taking the role of the linear predictor. Hastie and Tibshirani (1986) call this the local scoring
algorithm. Important components of this algorithm depend on the link function for each distribution, as
shown in the following table.

Distribution Link Adjusted Dependent (z) Weights (w)

Normal � y 1

Binomial log
�

�
n��

�
�C .y � �/=n�.1 � �/ n�.1 � �/

Gamma �1=� �C .y � �/=�2 �2

Poisson log.�/ �C .y � �/=� �

Inverse Gaussian 1=�2 � � 2.y � �/=�3 �3=4

Once the distribution and hence these quantities are defined, the local scoring algorithm proceeds as follows.

The General Local Scoring Algorithm

1. Initialization:
si D g.E.y//; s

0
1 D s

0
2 D � � � D s

0
p D 0;m D 0

2. Iterate:
m D mC 1;
Form the predictor �, mean �, weights w, and adjusted dependent variable z based on their correspond-
ing values from the previous iteration:

�
.m�1/
i D s0 C

pX
jD1

s
.m�1/
j .xij /

�
.m�1/
i D g�1

�
�
.m�1/
i

�
wi D

�
V
.m�1/
i

��1
�

"�
@�

@�

�.m�1/
i

#2

zi D �
.m�1/
i C

�
yi � �

.m�1/
i

�
�

�
@�

@�

�.m�1/
i

where V .m�1/i is the variance of Y at �.m�1/i . Fit an additive model to z by using the backfitting
algorithm with weights w to obtain estimated functions s.m/j . /; j D 1; : : : ; p;
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3. Until:
The convergence criterion is satisfied or the deviance fails to decrease. The deviance is an extension
to generalized linear models of the RSS; see “Goodness of Fit” on page 2942 in Chapter 43, “The
GENMOD Procedure,” for a definition.

The GAM procedure uses the following condition as the convergence criterion for local scoring:Pn
iD1wi

Pp
jD1

�
s
.m�1/
j .Xij / � s

.m/
j .Xij /

�2
Pn
iD1wi

�
1C

Pp
jD1

�
s
.m�1/
j .Xij /

�2� � �s

where �s D 10�8 by default; you can change this with the EPSSCORE= option in the MODEL statement.

The estimating procedure for generalized additive models consists of two loops. Inside each step of the local
scoring algorithm (outer loop), a weighted backfitting algorithm (inner loop) is used until convergence or
until the RSS fails to decrease. Then, based on the estimates from this weighted backfitting algorithm, a new
set of weights is calculated and the next iteration of the scoring algorithm starts. The scoring algorithm stops
when the convergence criterion is satisfied or the deviance of the estimates stops decreasing.

Smoothers
You can specify three types of smoothers in the MODEL statement:

• SPLINE(x) specifies a cubic smoothing spline term for variable x

• LOESS(x) specifies a loess term for variable x

• SPLINE2(x1, x2) specifies a thin-plate smoothing spline term for variables x1 and x2

A smoother is a tool for summarizing the trend of a response measurement Y as a function of one or more
predictor measurements X1; � � � ; Xp. It produces an estimate of the trend that is less variable than Y itself.
An important property of a smoother is its nonparametric nature. It does not assume a rigid form for the
dependence of Y on X1; � � � ; Xp . This section gives a brief overview of the smoothers that can be used with
the GAM procedure.

Cubic Smoothing Spline

A smoothing spline is the solution to the following optimization problem: among all functions �.x/ with two
continuous derivatives, find one that minimizes the penalized least square

nX
iD1

.yi � �.xi //
2
C �

Z b

a

�
�
00

.t/
�2

dt

where � is a fixed constant and a � x1 � � � � � xn � b. The first term measures closeness to the data while
the second term penalizes curvature in the function. It can be shown that there exists an explicit, unique
minimizer, and that minimizer is a natural cubic spline with knots at the unique values of xi .

The value �=.1C �/ is the smoothing parameter. When � is large, the smoothing parameter is close to 1,
producing a smoother curve; small values of �, corresponding to smoothing parameters near 0, are apt to
produce rougher curves, more nearly interpolating the data.
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Local Regression

Local regression was proposed by Cleveland, Devlin, and Grosse (1988). The idea of local regression is that
at a predictor x, the regression function �.x/ can be locally approximated by the value of a function in some
specified parametric class. Such a local approximation is obtained by fitting a regression surface to the data
points within a chosen neighborhood of the point x. A weighted least squares algorithm is used to fit linear
functions of the predictors at the centers of neighborhoods. The radius of each neighborhood is chosen so
that the neighborhood contains a specified percentage of the data points. The smoothing parameter for the
local regression procedure, which controls the smoothness of the estimated curve, is the fraction of the data
in each local neighborhood. Data points in a given local neighborhood are weighted by a smooth decreasing
function of their distance from the center of the neighborhood. See Chapter 59, “The LOESS Procedure,” for
more details.

Thin-Plate Smoothing Spline

The thin-plate smoothing spline is a multivariate version of the cubic smoothing spline. The theoretical
foundations for the thin-plate smoothing spline are described in Duchon (1976, 1977); Meinguet (1979).
The smoothing parameter for the thin-plate smoothing spline smoother is the parameter that controls the
smoothness penalty. When the smoothing parameter is close to 0, the fit is close to an interpolation. When
the smoothing parameter is very large, the fit is a smooth surface. Further results and applications are given
in Wahba and Wendelberger (1980). See Chapter 103, “The TPSPLINE Procedure,” for more details.

Selection of Smoothing Parameters

CV and GCV

The smoothers discussed here have a single smoothing parameter. In choosing the smoothing parameter,
cross validation can be used. Cross validation works by leaving points .xi ; yi / out one at a time, estimating
the squared residual for smooth function at xi based on the remaining n � 1 data points, and choosing the
smoother to minimize the sum of those squared residuals. This mimics the use of training and test samples
for prediction. The cross validation function is defined as

CV.�/ D
1

n

nX
iD1

�
yi � O�

.�i/

�
.xi /

�2
where O�.�i/

�
.xi / indicates the fit at xi , computed by leaving out the ith data point. The quantity nCV.�/ is

sometimes called the prediction sum of squares, or PRESS (Allen 1974).

All of the smoothers fit by the GAM procedure can be formulated as a linear combination of the sample
responses

O�.x/ D A.�/y

for some matrix A.�/, which depends on �. (The matrix A.�/ depends on x and the sample data as well, but
this dependence is suppressed in the preceding equation.) Let ai i be the ith diagonal element of A.�/. Then
the CV function can be expressed as

CV.�/ D
1

n

nX
iD1

�
.yi � O��.xi //

1 � ai i

�2
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In most cases, it is very time-consuming to compute the quantity ai i individually. To solve this computational
problem, Wahba (1990) has proposed the generalized cross validation function (GCV) that can be used to
solve a wide variety of problems involving selection of a parameter to minimize the prediction risk.

The GCV function is defined as

GCV.�/ D
n
Pn
iD1.yi � O��.xi //

2

.n � Trace.A.�///2

The GCV formula simply replaces the ai i with Trace.A.�//=n. Therefore, it can be viewed as a weighted
version of CV. In most of the cases of interest, GCV is closely related to CV but much easier to compute.
Specify the METHOD=GCV option in the MODEL statement in order to use the GCV function to choose
the smoothing parameters.

Degrees of Freedom

The estimated GAM model can be expressed as

O�.X/ D Os0 C

pX
jD1

Aj .�j /Y

Because the weights are calculated based on previous iteration during the local scoring iteration, the matrices
Aj might depend on Y for non-Gaussian data. However, for the final iteration, the Aj matrix for the spline
smoothers has the same role as the projection matrix in linear regression; therefore, nonparametric degrees of
freedom (DF) for the jth spline smoother can be defined as

DF.j th spline smoother/ D Trace.Aj .�j //

For loess smoothers Aj is not symmetric and so is not a projection matrix. In this case PROC GAM uses

DF.j th loess smoother/ D Trace.Aj .�j /0Aj .�j //

The GAM procedure gives you the option of specifying the degrees of freedom for each individual smoothing
component. If you choose a particular value for the degrees of freedom, then during every local scoring
iteration the procedure will search for a corresponding smoothing parameter lambda that yields the specified
value or comes as close as possible. The final estimate for the smoother during this local scoring iteration
will be based on this lambda. Note that for univariate spline and loess components, an additional degree of
freedom is used by default to account for the linear portion of the model, so the value displayed in the “Fit
Summary” and “Analysis of Deviance” tables will be one less than the value you specify.

Confidence Intervals for Smoothers
Buja, Hastie, and Tibshirani (1989) showed that each smoothing function estimate from the backfitting
algorithm is the result of a linear mapping applied to the working response, if the backfitting algorithm
converges.

The smoothing function estimate can be expressed as

Osj .xj / D Hj z
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where xj is the jth covariate and z is the adjusted dependent variable that is formed in the local scoring
algorithm. If the errors are independent and identically distributed, then

Cov.Osj / D �2HjH0j

where �2 D Var.z/.

However, direct computation of Hj is formidable within the backfitting framework. Hastie and Tibshirani
(1990) proposed using each individual smoothing matrix Aj .�j / as a substitute for the linear operator Hj
when computing confidence intervals. In the GAM procedure, curvewise confidence intervals for smoothing
splines and pointwise confidence intervals for loess are provided in the output data set.

Curvewise Confidence Interval for Smoothing Spline Smoothers

Viewing the spline model as a Bayesian model, Wahba (1983) proposes Bayesian confidence intervals for
smoothing spline estimates as:

Os�.xi /˙ z˛=2

q
OVi i .�/

where OVi i .�/ is the ith diagonal element of the Bayesian posterior covariance matrix OV and z˛=2 is the
1 � ˛=2 quantile of the standard normal distribution. The confidence intervals are interpreted as intervals
“across the function” as opposed to pointwise intervals.

Suppose that you fit a spline estimate to experimental data that consist of a true function f and a random error
term �i . In repeated experiments, it is likely that about 100.1 � ˛/% of the confidence intervals cover the
corresponding true values, although some values are covered every time and other values are not covered by
the confidence intervals most of the time. This effect is more pronounced when the true response curve or
surface has small regions of particularly rapid change.

In the GAM procedure, let the smoothing matrix for the nonlinear part of the jth spline term be QAj after the
linear part is separated out from Aj .�/. The Bayesian posterior variance for the nonlinear part is computed
as

OVj D O� QAjW�1

where O� is the dispersion parameter estimate and W is the weight matrix from the final local scoring iteration.
If you specify UCLM, LCLM, ADIAG, and STD options in the OUTPUT statement, the statistics are derived
based on OVj .

When you request both the ADDITIVE and CLM suboptions in the PLOTS=COMPONENTS option, each
of the smoothing component plots displays a confidence band for the total contribution of each smoothing
spline smoother. The confidence band is derived from the total variance that is contributed by both linear and
nonlinear parts by the jth term

O�
�
x0j .X

0WX/�1xj C QAjW�1
�



2784 F Chapter 41: The GAM Procedure

Pointwise Confidence Interval for Loess Smoothers

As shown in Cleveland, Devlin, and Grosse (1988), the smoothing matrix A.�/ for a loess smoother is
asymmetric. The confidence intervals are computed as follows:

Os�.xi /˙ z˛=2

q
OVi i .�/

where OVi i .�/ is the ith diagonal element of the covariance matrix OV and z˛=2 is the 1 � ˛=2 quantile of the
standard normal distribution.

In the GAM procedure, let the smoothing matrix for the nonlinear part of the jth loess term be QAj after the
linear part is separated out from Aj .�/. The covariance matrix for the nonlinear part is then

OVj D O� QAjW�1 QA0j

where O� is the dispersion parameter estimate and W is the weight matrix from the final local scoring iteration.
If you specify UCLM, LCLM, and STD options in the OUTPUT statement, the statistics are derived based
on OVj .

When you request both the ADDITVE and CLM suboptions in the PLOTS=COMPONENTS option, each of
the smoothing component plots displays confidence intervals for total prediction of each loess smoother. The
confidence intervals are derived from the total variance that is contributed by both the linear and nonlinear
parts by the jth term

O�
�
x0j .X

0WX/�1xj C QAjW�1 QA0j
�

Distribution Family and Canonical Link
In general, there is not just one reasonable link function for a given response variable distribution. For
parametric models, the choice of link function can lead to substantively different estimates and tests. However,
the inherent flexibility of nonparametric models makes them less likely to be sensitive to the precise choice of
link function. Thus, for simplicity and computational efficiency, the GAM procedure uses only the canonical
link for each distribution, as discussed in the following sections.

The Gaussian Model

For a Gaussian model, the link function is the identity function, and the generalized additive model is the same
as the additive model. The Gaussian model is selected by default or when you specify the DIST=GAUSSIAN
option in the MODEL statement.

The Binomial Model

The binomial model is selected by specifying the DIST=BINOMIAL option in the MODEL statement.
A binomial response model assumes that the proportion of successes Y is such that Y has a Bi.n; p.x//
distribution. Bi.n; p.x// refers to the binomial distribution with the parameters n and p.x/. Often the data
are binary, in which case n = 1. The canonical link is

g.p/ D log
p

n � p
D �
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By default, PROC GAM models the probability of the response level with the lower ordered value. Ordered
values are assigned to response levels in ascending sorted order and are displayed in the “Response Profiles”
table. For binary data, if your event category has a higher Ordered Value, then by default the nonevent is
modeled. The effect of modeling the nonevent is to change the signs of the estimated coefficients for linear
terms in the model for the event. You can change which probability is modeled by specifying the EVENT=,
DESCENDING, or ORDER= response variable options in the MODEL statement.

The Poisson Model

The Poisson model is selected by specifying the DIST=POISSON option in the MODEL statement. The link
function for the Poisson model is the log function. Assuming that the mean of the Poisson distribution is
�.x/, the dependence of �.x/ and independent variables x1; � � � ; xk is

g.�/ D log.�/ D �

The Gamma Model

The gamma model is selected by specifying the DIST=GAMMA option in the MODEL statement. Let the
mean of the gamma distribution be �.x/. The canonical link function for the gamma distribution is �1=�.x/.
Note that this link function is the negative of the default link function in PROC GENMOD for a gamma
model. The relationship between �.x/ and the independent variables x1; � � � ; xk is

g.�/ D �
1

�
D �

The Inverse Gaussian Model

The inverse Gaussian model is selected by specifying the DIST=IGAUSSIAN option in the MODEL statement.
Let the mean of the inverse Gaussian distribution be �.x/. The canonical link function for inverse Gaussian
distribution is 1=�2. Therefore, the relationship between �.x/ and the independent variables x1; � � � ; xk is

g.�/ D
1

�2
D �

Dispersion Parameter
Continuous distributions in the exponential family (Gaussian, gamma, and inverse Gaussian) have a dispersion
parameter that can be estimated by the scaled deviance. For these continuous response distributions, PROC
GAM incorporates this dispersion parameter estimate into standard errors of the parameter estimates,
prediction standard errors of spline and loess components, and chi-square statistics. The discrete distributions
used in GAM (binomial and Poisson) do not have a dispersion parameter. For more details on the distributions,
dispersion parameter, and deviance, see “Generalized Linear Models Theory” on page 2935 in Chapter 43,
“The GENMOD Procedure.”
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Computational Resources
Since PROC GAM implements a doubly iterative method (inner backfitting iterations within each local
scoring iteration), data are accessed multiple times in performing a fit. To expedite the data access, PROC
GAM keeps the data used in the analysis in memory.

Let

n D number of observations used in the analysis
pr D number of parametric variables
ps D number of univariate spline smoothers
pl D number of loess smoothers
pb D number of bivariate thin-plate spline smoothers
p D pr C ps C pl C pb

pn D ps C pl C pb

m D maximum number of iterations for the backfitting algorithm

In addition to the space to store the data (8np bytes), the minimum working space (in bytes) needed for
fitting a model using PROC GAM is

.16C8pr/.nC2pr/C.160C48pC16psC8pbC8pl/nC8pC32pbC32psC8mC8nC.4nC4/psC4:

For fitting bivariate thin-plate smoothing spline variables, an extra 80C 120nC 8n2C 8pb bytes of memory
are needed. For fitting loess variables, an extra 48nC 16pl bytes of memory are needed. If model inference
or confidence limits are requested, additional memory is required.

It is difficult to provide accurate estimates of the time required to fit a GAM model. Both the backfitting
algorithm and the local scoring algorithm are iterative techniques whose convergence rates depend on the
particular data being analyzed. Furthermore, the time required depends on the types of smoothers that you
specify, as well as on the inferential information you request.

You can estimate the time required for problems with a larger number of observations by observing the time
required for smaller problems and then using the following growth rules (obtained using by simulations) that
show that the time required grows proportionally with the following:

• n3 when at least one bivariate thin-plate spline is used

• n3=2 when only loess smoothers are used

• n when only univariate smoothing splines are used

For additive models (models with Gaussian response distribution) with a fixed number of observations, the
time required is roughly proportional to p3=2n . For generalized additive models (models with non-Gaussian
distributions), the computation time grows more rapidly as pn increases. This is harder to quantify as it
depends on the distribution family and the number of iterations required for the local scoring algorithm to
converge.
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Figure 41.4 Feasible Problem Sizes for Different Smoothers

Figure 41.4 shows a rough estimation of feasible sizes for the smoothers that you can use, as a function of the
number of observations and number of smoothing components. This figure depicts the regions where you
can expect a single fit of an additive model to finish within a few minutes on a typical Pentium 4 system.

Note that the times reflected in Figure 41.4 are based on fitting additive models (no local scoring iterations)
when no analysis of deviance or confidence limits are computed. The time required for fitting generalized
additive models grows proportionally with the number of the local scoring iterations. Furthermore, analysis
of deviance (if you do not request the fast approximations with the ANODEV option) requires fitting multiple
GAM models as each smoothing component is omitted sequentially, and so the time estimates need to
be multiplied by the number of smoothing components when analysis of deviance is performed. Finally
computation of confidence limits for each individual smoother increases the time required, especially when
loess smoothers are utilized.

For univariate spline smoothers, subject to the aforementioned caveats, problems that correspond to all
shaded regions in Figure 41.4 can be completed within a few minutes. For univariate loess smoothers, the
two darkest regions are feasible. For bivariate spline smoothers, problems that correspond to only the darkest
shading can be completed in the order of a few minutes. The problems that correspond to the upper right
unshaded region might be possible, but they require long computation times.
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ODS Table Names
PROC GAM assigns a name to each table it creates. You can use these names to reference the table when
using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in
the following table. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

Table 41.5 ODS Tables Produced by PROC GAM

ODS Table Name Description Statement Option

ANODEV Analysis of deviance table for smoothing
variables

PROC Default

ClassSummary Summary of classification variables PROC Default
ConvergenceStatus Convergence status of the local scoring

algorithm
PROC Default

InputSummary Input data summary PROC Default
IterHistory Iteration history table MODEL ITPRINT
IterSummary Iteration summary PROC Default
FitSummary Fit parameters and fit summary PROC Default
ParameterEstimates Parameter estimation for regression vari-

ables
PROC Default

ResponseProfile Frequency counts for binary models MODEL DIST=BINOMIAL

By referring to the names of such tables, you can use the ODS OUTPUT statement to place one or more of
these tables in output data sets.

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

When ODS Graphics is enabled, the GAM procedure by default produces plots of the partial predictions for
each nonparametric predictor in the model. Use the PLOTS option in the PROC GAM statement to control
aspects of these plots.

ODS Graph Names

PROC GAM assigns a name to each graph it creates by using ODS. You can use these names to reference the
graphs when using ODS. The names are listed in Table 41.6.
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Table 41.6 Graphs Produced by PROC GAM

ODS Graph Name Plot Description PLOTS= Option

SmoothingComponentPlot Panel of multiple partial prediction
curves

COMPONENTS

SmoothingComponentPlot Unpacked partial prediction curves COMPONENTS(UNPACK)

By default, partial prediction plots for each component are displayed in panels containing at most six plots.
If you specify more than six smoothing components, multiple panels are used. Use the PLOTS(UNPACK)
option in the PROC GAM statement to display these plots individually.

Examples: GAM Procedure

Example 41.1: Generalized Additive Model with Binary Data
This example illustrates the capabilities of the GAM procedure and compares it to the GENMOD procedure.
From this example, you can see that PROC GAM is very useful in visualizing the data and detecting the
nonlinearity among the variables.

The data used in this example are based on a study by Bell et al. (1994). Bell and his associates studied the
result of multiple-level thoracic and lumbar laminectomy, a corrective spinal surgery commonly performed
on children. The data in the study consist of retrospective measurements on 83 patients. The specific outcome
of interest is the presence (1) or absence (0) of kyphosis, defined as a forward flexion of the spine of at
least 40 degrees from vertical. The available predictor variables are age in months at time of the operation
(Age), the starting of vertebrae levels involved in the operation (StartVert), and the number of levels involved
(NumVert). The goal of this analysis is to identify risk factors for kyphosis. PROC GENMOD can be used
to investigate the relationship among kyphosis and the predictors. The following statements create the data
kyphosis and fit a logistic model specifying linear effects for the three predictors:

title 'Comparing PROC GAM with PROC GENMOD';
data kyphosis;

input Age StartVert NumVert Kyphosis @@;
datalines;

71 5 3 0 158 14 3 0 128 5 4 1
2 1 5 0 1 15 4 0 1 16 2 0
61 17 2 0 37 16 3 0 113 16 2 0
59 12 6 1 82 14 5 1 148 16 3 0
18 2 5 0 1 12 4 0 243 8 8 0
168 18 3 0 1 16 3 0 78 15 6 0
175 13 5 0 80 16 5 0 27 9 4 0
22 16 2 0 105 5 6 1 96 12 3 1
131 3 2 0 15 2 7 1 9 13 5 0
12 2 14 1 8 6 3 0 100 14 3 0
4 16 3 0 151 16 2 0 31 16 3 0
125 11 2 0 130 13 5 0 112 16 3 0
140 11 5 0 93 16 3 0 1 9 3 0
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52 6 5 1 20 9 6 0 91 12 5 1
73 1 5 1 35 13 3 0 143 3 9 0
61 1 4 0 97 16 3 0 139 10 3 1
136 15 4 0 131 13 5 0 121 3 3 1
177 14 2 0 68 10 5 0 9 17 2 0
139 6 10 1 2 17 2 0 140 15 4 0
72 15 5 0 2 13 3 0 120 8 5 1
51 9 7 0 102 13 3 0 130 1 4 1
114 8 7 1 81 1 4 0 118 16 3 0
118 16 4 0 17 10 4 0 195 17 2 0
159 13 4 0 18 11 4 0 15 16 5 0
158 15 4 0 127 12 4 0 87 16 4 0
206 10 4 0 11 15 3 0 178 15 4 0
157 13 3 1 26 13 7 0 120 13 2 0
42 6 7 1 36 13 4 0
;

proc genmod data=kyphosis descending;
model Kyphosis = Age StartVert NumVert/link=logit dist=binomial;

run;

The GENMOD analysis of the independent variable effects is shown in Output 41.1.1. Based on these results,
the only significant factor is StartVert with a log odds ratio of –0.1972. The variable NumVert has a p-value
of 0.0904 with a log odds ratio of 0.3031.

Output 41.1.1 GENMOD Analysis: Partial Output

Comparing PROC GAM with PROC GENMOD

The GENMOD Procedure

Comparing PROC GAM with PROC GENMOD

The GENMOD Procedure

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

Wald 95%
Confidence

Limits
Wald

Chi-Square Pr > ChiSq

Intercept 1 -1.2497 1.2424 -3.6848 1.1853 1.01 0.3145

Age 1 0.0061 0.0055 -0.0048 0.0170 1.21 0.2713

StartVert 1 -0.1972 0.0657 -0.3260 -0.0684 9.01 0.0027

NumVert 1 0.3031 0.1790 -0.0477 0.6540 2.87 0.0904

Scale 0 1.0000 0.0000 1.0000 1.0000

Note: The scale parameter was held fixed.

The GENMOD procedure assumes a strict linear relationship between the predictors and the response
function, which is the logit (log odds) in this model. The following SAS statements use PROC GAM to
investigate a less restrictive model, with moderately flexible spline terms for each of the predictors:

title 'Comparing PROC GAM with PROC GENMOD';
proc gam data=kyphosis;

model Kyphosis (event='1') = spline(Age ,df=3)
spline(StartVert,df=3)
spline(NumVert ,df=3) / dist=binomial;

run;
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The MODEL statement requests an additive model with a univariate smoothing spline for each term. The
response variable option EVENT= chooses Kyphosis=1 (presence) as the event so that the probability of
presence of kyphosis is modeled. The option DIST=BINOMIAL with binary responses specifies a logistic
model. Each term is fit by using a univariate smoothing spline with three degrees of freedom. Of these three
degrees of freedom, one is taken up by the linear portion of the fit and two are left for the nonlinear spline
portion. Although this might seem to be an unduly modest amount of flexibility, it is better to be conservative
with a data set this small.

Output 41.1.2 and Output 41.1.3 list the output from PROC GAM.

Output 41.1.2 Summary Statistics

Comparing PROC GAM with PROC GENMOD

The GAM Procedure
Dependent Variable: Kyphosis

Smoothing Model Component(s): spline(Age) spline(StartVert) spline(NumVert)

Comparing PROC GAM with PROC GENMOD

The GAM Procedure
Dependent Variable: Kyphosis

Smoothing Model Component(s): spline(Age) spline(StartVert) spline(NumVert)

Summary of Input Data Set

Number of Observations 83

Number of Missing Observations 0

Distribution Binomial

Link Function Logit

Response Profile

Ordered
Value Kyphosis

Total
Frequency

1 0 65

2 1 18

Note: PROC GAM is modeling the probability that Kyphosis=1. One way to change this to model the probability that Kyphosis=0 is to
specify the response variable option EVENT='0'.

Iteration Summary and Fit Statistics

Number of local scoring iterations 9

Local scoring convergence criterion 2.6635661E-9

Final Number of Backfitting Iterations 1

Final Backfitting Criterion 5.2326593E-9

The Deviance of the Final Estimate 46.610922438

Output 41.1.3 Model Fit Statistics

Regression Model Analysis
Parameter Estimates

Parameter
Parameter
Estimate

Standard
Error t Value Pr > |t|

Intercept -2.01533 1.45620 -1.38 0.1706

Linear(Age) 0.01213 0.00794 1.53 0.1308

Linear(StartVert) -0.18615 0.07628 -2.44 0.0171

Linear(NumVert) 0.38347 0.19102 2.01 0.0484
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Output 41.1.3 continued

Smoothing Model Analysis
Fit Summary for Smoothing Components

Component
Smoothing
Parameter DF GCV

Num
Unique
Obs

Spline(Age) 0.999996 2.000000 328.512831 66

Spline(StartVert) 0.999551 2.000000 317.646685 16

Spline(NumVert) 0.921758 2.000000 20.144056 10

Smoothing Model Analysis
Analysis of Deviance

Source DF
Sum of

Squares Chi-Square Pr > ChiSq

Spline(Age) 2.00000 10.494369 10.4944 0.0053

Spline(StartVert) 2.00000 5.494968 5.4950 0.0641

Spline(NumVert) 2.00000 2.184518 2.1845 0.3355

The critical part of the GAM results is the “Analysis of Deviance” table, shown in Output 41.1.3. For each
smoothing effect in the model, this table gives a �2 test comparing the deviance between the full model and
the model without the nonparametric component of this variable. The analysis of deviance results indicate
that the nonparametric effect of Age is highly significant, the nonparametric effect of StartVert is nearly
significant, and the nonparametric effect of NumVert is insignificant at the 5% level.

PROC GAM can also perform approximate analysis of deviance for smoothing effects by using the AN-
ODEV=NOREFIT option, as in the following statements:

title 'PROC GAM with Approximate Analysis of Deviance';
proc gam data=kyphosis;

model Kyphosis (event='1') = spline(Age ,df=3)
spline(StartVert,df=3)
spline(NumVert ,df=3) /

dist=binomial anodev=norefit;
run;

Output 41.1.4 Approximate Analysis of Deviance Table

PROC GAM with Approximate Analysis of Deviance

The GAM Procedure
Dependent Variable: Kyphosis

Smoothing Model Component(s): spline(Age) spline(StartVert) spline(NumVert)

PROC GAM with Approximate Analysis of Deviance

The GAM Procedure
Dependent Variable: Kyphosis

Smoothing Model Component(s): spline(Age) spline(StartVert) spline(NumVert)

Smoothing Model Analysis
Approximate Analysis of Deviance

Source DF Chi-Square Pr > ChiSq

Spline(Age) 2.00000 7.0888 0.0289

Spline(StartVert) 2.00000 5.0431 0.0803

Spline(NumVert) 2.00000 2.2471 0.3251
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The “Approximate Analysis of Deviance” table shown in Output 41.1.4 yields similar conclusions to those
of the “Analysis of Deviance” table (Output 41.1.3). In addition to fitting the model using all the specified
smoothing effects, the default ANODEV=REFIT option requires fitting p additional subset models to p
smoothing effects. Each submodel is fit by omitting one smoothing term from the model. By contrast, the
ANODEV=NOREFIT option keeps the nonparametric terms fixed and requires a weighted least squares fit for
only the parametric part of the model. Hence, GAM with the ANODEV=NOREFIT option is computationally
inexpensive and is useful for obtaining approximate analysis of deviance results for models with many
smoothing effects. This option assumes that the remaining nonparametric terms do not change much with
the deletion of one nonparametric component. It should be used with caution when a model contains highly
correlated predictors.

Plots of the partial predictions for each predictor can be used to investigate why PROC GAM and PROC
GENMOD produce different results. The following statements use ODS Graphics to produce plots of the
individual smoothing components. The CLM suboption in the PLOTS=COMPONENTS option adds a
curvewise Bayesian confidence band to each smoothing component, while the COMMONAXES suboption
forces all three smoothing component plots to share the same vertical axis limits, allowing a visual judgment
of the relative nonparametric effect sizes.

ods graphics on;

proc gam data=kyphosis plots=components(clm commonaxes);
model Kyphosis (event='1') = spline(Age ,df=3)

spline(StartVert,df=3)
spline(NumVert ,df=3) / dist=binomial;

run;

ods graphics off;

For general information about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.” For
specific information about the graphics available in the GAM procedure, see the section “ODS Graphics” on
page 2788. The smoothing component plots are displayed in Output 41.1.5.
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Output 41.1.5 Partial Prediction for Each Predictor

The plots show that the partial predictions corresponding to both Age and StartVert have a quadratic pattern,
while NumVert has a more complicated but ultimately nonsignificant pattern.

An important difference between the first analysis of these data with PROC GENMOD and the subsequent
analysis with PROC GAM is that PROC GAM indicates that Age has a significant but nonlinear association
with kyphosis. The difference is due to the fact that the generalized linear model includes only the linear effect
of Age whereas the generalized additive model allows a more complex relationship, which the plots indicate
is nearly quadratic. Having used the GAM procedure to discover an appropriate form of the dependence of
Kyphosis on each of the three independent variables, you can use the GENMOD procedure to fit and assess
the corresponding parametric model. The following statements fit a generalized linear model with quadratic
terms for all three variables. The parameter estimates are shown in Output 41.1.6.

title 'Comparing PROC GAM with PROC GENMOD';
proc genmod data=kyphosis descending;

model kyphosis = Age Age *Age
StartVert StartVert*StartVert
NumVert NumVert *NumVert /

link=logit dist=binomial;
run;
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Output 41.1.6 Logistic Model with Quadratic Terms

Comparing PROC GAM with PROC GENMOD

The GENMOD Procedure

Comparing PROC GAM with PROC GENMOD

The GENMOD Procedure

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

Wald 95%
Confidence

Limits
Wald

Chi-Square Pr > ChiSq

Intercept 1 -5.8134 2.5618 -10.8345 -0.7923 5.15 0.0233

Age 1 0.0819 0.0345 0.0143 0.1496 5.63 0.0176

Age*Age 1 -0.0004 0.0002 -0.0008 -0.0000 4.32 0.0376

StartVert 1 0.4394 0.3234 -0.1944 1.0733 1.85 0.1742

StartVert*StartVert 1 -0.0396 0.0202 -0.0791 -0.0001 3.86 0.0495

NumVert 1 0.3798 0.5988 -0.7939 1.5535 0.40 0.5259

NumVert*NumVert 1 0.0020 0.0420 -0.0803 0.0843 0.00 0.9621

Scale 0 1.0000 0.0000 1.0000 1.0000

Note: The scale parameter was held fixed.

The p-value for the �2 test is 0.0376 for dropping the quadratic term of Age, 0.0495 for dropping the quadratic
term of StartVert, and 0.9621 for dropping this quadratic term of NumVert. The results for the quadratic
GENMOD model are consistent with the GAM results.

Example 41.2: Poisson Regression Analysis of Component Reliability
In this example, the number of maintenance repairs on a complex system are modeled as realizations
of Poisson random variables. The system under investigation has a large number of components, which
occasionally break down and are replaced or repaired. During a four-year period, the system was observed
to be in a state of steady operation, meaning that the rate of operation remained approximately constant. A
monthly maintenance record is available for that period, which tracks the number of components removed
for maintenance each month. The data are listed in the following statements, which create a SAS data set:

title 'Analysis of Component Reliability';
data equip;

input year month removals @@;
datalines;

1987 1 2 1987 2 4 1987 3 3
1987 4 3 1987 5 3 1987 6 8
1987 7 2 1987 8 6 1987 9 3
1987 10 9 1987 11 4 1987 12 10
1988 1 4 1988 2 6 1988 3 4
1988 4 4 1988 5 3 1988 6 5
1988 7 3 1988 8 4 1988 9 5
1988 10 3 1988 11 6 1988 12 3
1989 1 2 1989 2 6 1989 3 1
1989 4 5 1989 5 5 1989 6 4
1989 7 2 1989 8 2 1989 9 2
1989 10 5 1989 11 1 1989 12 10
1990 1 3 1990 2 8 1990 3 12
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1990 4 7 1990 5 3 1990 6 2
1990 7 4 1990 8 3 1990 9 0
1990 10 6 1990 11 6 1990 12 6
;

For planning purposes, it is of interest to understand the long- and short-term trends in the maintenance
needs of the system. Over the long term, it is suspected that the quality of new components and repair work
improves over time, so the number of component removals would tend to decrease from year to year. It is not
known whether the robustness of the system is affected by seasonal variations in the operating environment,
but this possibility is also of interest.

Because the maintenance record is in the form of counts, the number of removals are modeled as realizations
of Poisson random variables. Denote by �ij the unobserved component removal rate for year i and month j.
Since the data were recorded at regular intervals (from a system operating at a constant rate), each �ij is
assumed to be a function of year and month only.

A preliminary two-way analysis is performed by using PROC GENMOD to make broad inferences on repair
trends. A log-link is specified for the model

log �ij D �C ˛Yi C ˛
M
j

where � is a grand mean, ˛Yi is the effect of the ith year, and ˛Mj is the effect of the jth month.

In the following statements, the CLASS statement declares the variables year and month as categorical. Type
III sum of squares are requested to test whether there is an overall effect of year and/or month.

title2 'Two-way model';
proc genmod data=equip;

class year month;
model removals=year month / dist=Poisson link=log type3;

run;

Output 41.2.1 displays the listed Type III statistics for the fitted model. With the test for year effects yielding
a p-value of 0.4527, there is no evidence of a long-term trend in maintenance rates. Apparently, the quality of
new or repaired components did not change between 1987 and 1990. However, the test for monthly trends
does yield a small p-value of 0.0321, indicating that seasonal trends are significant at the ˛ D 0:05 level.

Output 41.2.1 PROC GENMOD Listing for Type III Analysis

Analysis of Component Reliability
Two-way model

The GENMOD Procedure

Analysis of Component Reliability
Two-way model

The GENMOD Procedure

LR Statistics For Type 3 Analysis

Source DF Chi-Square Pr > ChiSq

year 3 2.63 0.4527

month 11 21.12 0.0321
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If year is dropped from the model, the focus of the analysis is now on identifying the form of the underlying
seasonal trend, which is a task that PROC GAM is especially suited for. PROC GAM will be used to fit
both a reduced categorical model, with year eliminated, and a nonparametric spline model. Although PROC
GENMOD also has the capability to fit categorical models, as demonstrated earlier, PROC GAM will be
used here to fit both models for a better comparison.

The following PROC GAM statements specify the reduced categorical model and write predicted values to a
data set. For this part of the analysis, a CLASS statement is again used to specify that month is a categorical
variable. In the follow-up, the seasonal effect will be treated as a nonparametric function of month.

title2 'One-way model';
proc gam data=equip;

class month;
model removals=param(month) / dist=Poisson;
output out=est p;

run;

The following statements use the SGPLOT procedure to generate a plot of the estimated seasonal trend. The
plot is displayed in Output 41.2.2.

proc sort data=est;by month;run;
proc sgplot data=est;

title "Predicted Seasonal Trend";
yaxis label="Number of Removals";
xaxis integer values=(1 to 12);
scatter x=Month y=Removals / name="points"

legendLabel="Removals";
series x=Month y=p_Removals / name="line"

legendLabel="Predicted Removals"
lineattrs = GRAPHFIT;

discretelegend "points" "line";
run;
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Output 41.2.2 Predicted Seasonal Trend from a Parametric Model Fit Using a CLASS Statement

The predicted repair rates shown in Output 41.2.2 form a jagged seasonal pattern. Ignoring the month-to-
month fluctuations, which are difficult to explain and can be artifacts of random noise, the general removal
rate trend is high in winter and low in summer.

One advantage of nonparametric regression is its ability to highlight general trends in the data, such as
those described earlier, and to attribute local fluctuations to unexplained random noise. The nonparametric
regression model used by PROC GAM specifies that the underlying removal rates �j are of the form

log �j D ˇ0 C ˇ1Monthj C s.Monthj /

where ˇ1 is a linear coefficient and s. / is a nonparametric regression function. ˇ1 and s. / define the linear
and nonparametric parts, respectively, of the seasonal trend.

The following statements request that PROC GAM fit a cubic spline model to the monthly repair data. The
output listing is displayed in Output 41.2.3 and Output 41.2.4.

title 'Analysis of Component Reliability';
title2 'Spline model';
proc gam data=equip;

model removals=spline(month) / dist=Poisson method=gcv;
run;
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The METHOD=GCV option is used to determine an appropriate level of smoothing.

Output 41.2.3 PROC GAM Listing for Cubic Spline Regression Using the METHOD=GCV Option

Analysis of Component Reliability
Spline model

The GAM Procedure
Dependent Variable: removals

Smoothing Model Component(s): spline(month)

Analysis of Component Reliability
Spline model

The GAM Procedure
Dependent Variable: removals

Smoothing Model Component(s): spline(month)

Summary of Input Data Set

Number of Observations 48

Number of Missing Observations 0

Distribution Poisson

Link Function Log

Output 41.2.4 Model Fit Statistics

Regression Model Analysis
Parameter Estimates

Parameter
Parameter
Estimate

Standard
Error t Value Pr > |t|

Intercept 1.34594 0.14509 9.28 <.0001

Linear(month) 0.02274 0.01893 1.20 0.2362

Smoothing Model Analysis
Fit Summary for Smoothing Components

Component
Smoothing
Parameter DF GCV

Num
Unique
Obs

Spline(month) 0.901512 1.879980 0.115848 12

Smoothing Model Analysis
Analysis of Deviance

Source DF
Sum of

Squares Chi-Square Pr > ChiSq

Spline(month) 1.87998 8.877764 8.8778 0.0103

Notice in the listing in Output 41.2.4 that the DF value chosen for the nonlinear portion of the spline by
minimizing GCV is about 1.88, which is smaller than the default value of 3. This indicates that the spline
model of the seasonal trend is relatively simple. As indicated by the “Analysis of Deviance” table, it is a
significant feature of the data. The table lists a p-value of 0.0103 for the hypothesis of no seasonal trend.
Note also that the “Parameter Estimates” table lists a p-value of 0.2362 for the hypothesis of no linear factor
in the seasonal trend indicating no significant linear trend.

The following statements use ODS Graphics to plot the smoothing component for the effect of Month on
predicted repair rates. The CLM suboption for the PLOTS=COMPONENTS option adds a 95% confidence
band to the fit.
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ods graphics on;

proc gam data=equip plots=components(clm);
model removals=spline(month) / dist=Poisson method=gcv;

run;

ods graphics off;

For general information about ODS graphics, see Chapter 21, “Statistical Graphics Using ODS.” For specific
information about the graphics available in the GAM procedure, see the section “ODS Graphics” on page 2788.
The smoothing component plot is displayed in Output 41.2.5.

In Output 41.2.5, it is apparent that the pattern of repair rates follows the general pattern observed in
Output 41.2.2. However, the plot in Output 41.2.5 is much cleaner because the month-to-month fluctuations
are smoothed out to reveal the broader seasonal trend.

Output 41.2.5 Estimated Nonparametric Factor of Seasonal Trend, Along with 95% Confidence Bounds

In Output 41.2.1 the small p-value (p = 0.0321) for the hypothesis of no seasonal trend indicates that the
data exhibit significant seasonal structure. Output 41.2.5 is a graphical illustration of the seasonality of the
number of removals.
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Example 41.3: Comparing PROC GAM with PROC LOESS
In an analysis of simulated data from a hypothetical chemistry experiment, additive nonparametric regression
performed by PROC GAM is compared to the unrestricted multidimensional procedure of PROC LOESS.

In each repetition of the experiment, a catalyst is added to a chemical solution, thereby inducing synthesis of
a new material. The data are measurements of the temperature of the solution, the amount of catalyst added,
and the yield of the chemical reaction. The following statements read and plots the raw data.

data ExperimentA;
format Temperature f4.0 Catalyst f6.3 Yield f8.3;
input Temperature Catalyst Yield @@;
datalines;

80 0.005 6.039 80 0.010 4.719 80 0.015 6.301
80 0.020 4.558 80 0.025 5.917 80 0.030 4.365
80 0.035 6.540 80 0.040 5.063 80 0.045 4.668
80 0.050 7.641 80 0.055 6.736 80 0.060 7.255
80 0.065 5.515 80 0.070 5.260 80 0.075 4.813
80 0.080 4.465 90 0.005 4.540 90 0.010 3.553
90 0.015 5.611 90 0.020 4.586 90 0.025 6.503
90 0.030 4.671 90 0.035 4.919 90 0.040 6.536
90 0.045 4.799 90 0.050 6.002 90 0.055 6.988
90 0.060 6.206 90 0.065 5.193 90 0.070 5.783
90 0.075 6.482 90 0.080 5.222 100 0.005 5.042
100 0.010 5.551 100 0.015 4.804 100 0.020 5.313
100 0.025 4.957 100 0.030 6.177 100 0.035 5.433
100 0.040 6.139 100 0.045 6.217 100 0.050 6.498
100 0.055 7.037 100 0.060 5.589 100 0.065 5.593
100 0.070 7.438 100 0.075 4.794 100 0.080 3.692
110 0.005 6.005 110 0.010 5.493 110 0.015 5.107
110 0.020 5.511 110 0.025 5.692 110 0.030 5.969
110 0.035 6.244 110 0.040 7.364 110 0.045 6.412
110 0.050 6.928 110 0.055 6.814 110 0.060 8.071
110 0.065 6.038 110 0.070 6.295 110 0.075 4.308
110 0.080 7.020 120 0.005 5.409 120 0.010 7.009
120 0.015 6.160 120 0.020 7.408 120 0.025 7.123
120 0.030 7.009 120 0.035 7.708 120 0.040 5.278
120 0.045 8.111 120 0.050 8.547 120 0.055 8.279
120 0.060 8.736 120 0.065 6.988 120 0.070 6.283
120 0.075 7.367 120 0.080 6.579 130 0.005 7.629
130 0.010 7.171 130 0.015 5.997 130 0.020 6.587
130 0.025 7.335 130 0.030 7.209 130 0.035 8.259
130 0.040 6.530 130 0.045 8.400 130 0.050 7.218
130 0.055 9.167 130 0.060 9.082 130 0.065 7.680
130 0.070 7.139 130 0.075 7.275 130 0.080 7.544
140 0.005 4.860 140 0.010 5.932 140 0.015 3.685
140 0.020 5.581 140 0.025 4.935 140 0.030 5.197
140 0.035 5.559 140 0.040 4.836 140 0.045 5.795
140 0.050 5.524 140 0.055 7.736 140 0.060 5.628
140 0.065 6.644 140 0.070 3.785 140 0.075 4.853
140 0.080 6.006
;
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proc sort data=ExperimentA;
by Temperature Catalyst;

run;

proc template;
define statgraph surface;

dynamic _X _Y _Z _T;
begingraph;

entrytitle _T;
layout overlay3d/

xaxisopts=(linearopts=(tickvaluesequence=
(start=85 end=135 increment=25)))

yaxisopts=(linearopts=(tickvaluesequence=
(start=0 end=0.08 increment=0.04)))

rotate=30 cube=false;
surfaceplotparm x=_X y=_Y z=_Z;
endlayout;

endgraph;
end;

run;

ods graphics on;
proc sgrender data=ExperimentA template=surface;

dynamic _X='Temperature' _Y='Catalyst' _Z='Yield' _T='Raw Data';
run;

The plot is displayed in Output 41.3.1. A surface fitted to the plot of Output 41.3.1 by PROC LOESS will be
of a very general (and flexible) type, since the procedure requires only weak assumptions about the structure
of the dependencies among the data. PROC GAM, on the other hand, makes stronger structural assumptions
by restricting the fitted surface to an additive form. These differences will be demonstrated in this example.
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Output 41.3.1 Surface Plot of Yield by Temperature and Amount of Catalyst

The following statements request that both PROC LOESS and PROC GAM fit surfaces to the data:

ods output ScoreResults=PredLOESS;
proc loess data=ExperimentA;

model Yield = Temperature Catalyst
/ scale=sd select=gcv degree=2;

score;
run;

proc gam data=PredLoess;
model Yield = loess(Temperature) loess(Catalyst) / method=gcv;
output out=PredGAM p=Gam_p_;

run;

In both cases the smoothing parameter was chosen as the value that minimizes GCV. This is performed
automatically by PROC LOESS and PROC GAM.
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The following statements generate plots of the predicted yields, which are displayed in Output 41.3.2:

proc template;
define statgraph surface1;

begingraph;
entrytitle "Fitted Surface";
layout lattice/columns=2;

layout
overlay3d/xaxisopts=(linearopts=(tickvaluesequence=

(start=85 end=135 increment=25)))
yaxisopts=(linearopts=(tickvaluesequence=

(start=0 end=0.08 increment=0.04)))
zaxisopts=(label="P_Yield")
rotate=30 cube=0;

entry "PROC LOESS"/location=outside valign=top
textattrs=graphlabeltext;

surfaceplotparm x=Temperature y=Catalyst z=p_Yield;
endlayout;
layout
overlay3d/xaxisopts=(linearopts=(tickvaluesequence=

(start=85 end=135 increment=25)))
yaxisopts=(linearopts=(tickvaluesequence=

(start=0 end=0.08 increment=0.04)))
rotate=30 cube=0
zaxisopts=(label="P_Yield")
rotate=30 cube=0;

entry "PROC GAM"/location=outside valign=top
textattrs=graphlabeltext;

surfaceplotparm x=Temperature y=Catalyst z=Gam_p_Yield;
endlayout;

endlayout;
endgraph;

end;
run;

proc sgrender data=PredGAM template=surface1;
run;
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Output 41.3.2 Fitted Regression Surfaces

Though both PROC LOESS and PROC GAM use the statistical technique loess, it is apparent from Out-
put 41.3.2 that the manner in which it is applied is very different. By smoothing out the data in local
neighborhoods, PROC LOESS essentially fits a surface to the data in pieces, one neighborhood at a time.
The local regions are treated independently, so separate areas of the fitted surface are only weakly related.
PROC GAM imposes additive structure, requiring that cross sections of the fitted surface always have the
same shape and thereby relating regions that have a common value of the same individual regressor variable.
Under that restriction, the loess technique need not be applied to the entire multidimensional scatter plot, but
only to one-dimensional cross sections of the data.

The advantage of using additive model fitting is that its statistical power is directed toward univariate
smoothing, and so it is able to discern the finer details of any underlying structure in the data. Regression
data can be very sparse when viewed in the context of multidimensional space, even when every individual
set of regressor values densely covers its range. This is the familiar curse of dimensionality. Sparse data
greatly restrict the effectiveness of nonparametric procedures, but additive model fitting, when appropriate, is
one way to overcome this limitation.
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To examine these properties, you can use ODS Graphics to generate plots of cross sections of the unrestricted
(PROC LOESS) and additive (PROC GAM) fitted surfaces for the variable Catalyst, as shown in the following
statements:

proc template;
define statgraph projection;

begingraph;
entrytitle "Cross Sections of Fitted Surfaces";
layout lattice/rows=2 columndatarange=unionall

columngutter=10;
columnAxes;

columnAxis / display=all griddisplay=auto_on;
endColumnAxes;

layout overlay/
xaxisopts=(display=none)
yaxisopts=(label="LOESS Prediction"
linearopts=(viewmin=2 viewmax=10));
seriesplot x=Catalyst y=p_Yield /

group=temperature
name="Temperature";

endlayout;

layout overlay/
xaxisopts=(display=none)
yaxisopts=(label="GAM Prediction"
linearopts=(viewmin=2 viewmax=10));
seriesplot x=Catalyst y=Gam_p_Yield /

group=temperature
name="Temperature";

endlayout;

columnheaders;
discreteLegend "Temperature" / title = "Temperature";

endcolumnheaders;

endlayout;
endgraph;

end;
run;

proc sgrender data=PredGAM template=projection;
run;

The plots are displayed in Output 41.3.3.
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Output 41.3.3 Cross Sections of Fitted Regression Surfaces

Notice that the cross sections in the top panel (PROC LOESS) of Output 41.3.3 have varying shapes, while
every cross section in the bottom panel (PROC GAM) is the same curve shifted vertically. This illustrates
precisely the kind of structural differences that distinguish additive models. A second important comparison
to make between Output 41.3.2 and Output 41.3.3 is the level of detail in the fitted regression surfaces. Cross
sections of the PROC LOESS surface are rather flat, but those of the additive surface have a clear shape.
In particular, the ridge near Catalyst=0.055 is only vaguely evident in the PROC LOESS surface, but it is
plainly revealed by the additive procedure.

For an example of a situation where unrestricted multidimensional fitting is preferred over additive regression,
consider the following simulated data from a similar experiment. The following statements create another
SAS data set and plot.
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data ExperimentB;
format Temperature f4.0 Catalyst f6.3 Yield f8.3;
input Temperature Catalyst Yield @@;
datalines;

80 0.005 9.115 80 0.010 9.275 80 0.015 9.160
80 0.020 7.065 80 0.025 6.054 80 0.030 4.899
80 0.035 4.504 80 0.040 4.238 80 0.045 3.232
80 0.050 3.135 80 0.055 5.100 80 0.060 4.802
80 0.065 8.218 80 0.070 7.679 80 0.075 9.669
80 0.080 9.071 90 0.005 7.085 90 0.010 6.814
90 0.015 4.009 90 0.020 4.199 90 0.025 3.377
90 0.030 2.141 90 0.035 3.500 90 0.040 5.967
90 0.045 5.268 90 0.050 6.238 90 0.055 7.847
90 0.060 7.992 90 0.065 7.904 90 0.070 10.184
90 0.075 7.914 90 0.080 6.842 100 0.005 4.497
100 0.010 2.565 100 0.015 2.637 100 0.020 2.436
100 0.025 2.525 100 0.030 4.474 100 0.035 6.238
100 0.040 7.029 100 0.045 8.183 100 0.050 8.939
100 0.055 9.283 100 0.060 8.246 100 0.065 6.927
100 0.070 7.062 100 0.075 5.615 100 0.080 4.687
110 0.005 3.706 110 0.010 3.154 110 0.015 3.726
110 0.020 4.634 110 0.025 5.970 110 0.030 8.219
110 0.035 8.590 110 0.040 9.097 110 0.045 7.887
110 0.050 8.480 110 0.055 6.818 110 0.060 7.666
110 0.065 4.375 110 0.070 3.994 110 0.075 3.630
110 0.080 2.685 120 0.005 4.697 120 0.010 4.268
120 0.015 6.507 120 0.020 7.747 120 0.025 9.412
120 0.030 8.761 120 0.035 8.997 120 0.040 7.538
120 0.045 7.003 120 0.050 6.010 120 0.055 3.886
120 0.060 4.897 120 0.065 2.562 120 0.070 2.714
120 0.075 3.141 120 0.080 5.081 130 0.005 8.729
130 0.010 7.460 130 0.015 9.549 130 0.020 10.049
130 0.025 8.131 130 0.030 7.553 130 0.035 6.191
130 0.040 6.272 130 0.045 4.649 130 0.050 3.884
130 0.055 2.522 130 0.060 4.366 130 0.065 3.272
130 0.070 4.906 130 0.075 6.538 130 0.080 7.380
140 0.005 8.991 140 0.010 8.029 140 0.015 8.417
140 0.020 8.049 140 0.025 4.608 140 0.030 5.025
140 0.035 2.795 140 0.040 3.123 140 0.045 3.407
140 0.050 4.183 140 0.055 3.750 140 0.060 6.316
140 0.065 5.799 140 0.070 7.992 140 0.075 7.835
140 0.080 8.985
;

proc sort data=ExperimentB;
by Temperature Catalyst;

run;

proc sgrender data=ExperimentB template=surface;
dynamic _X='Temperature' _Y='Catalyst' _Z='Yield' _T='Raw Data';

run;

A plot of the raw data is displayed in Output 41.3.4.
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Output 41.3.4 Raw Data from Experiment B

Though the surface displayed in Output 41.3.4 is quite jagged, a distinct feature of the plot is a large ridge
that runs diagonally across its surface. One would expect that the ridge would appear in the fitted regression
surface of an appropriate nonparametric procedure. Nevertheless, between PROC LOESS and PROC GAM,
only PROC LOESS is able to capture this significant feature.

The SAS program for fitting the new data is essentially the same as that for the data set from the first
experiment and produces output data set PredGAMb for this experiment. As in Output 41.3.2, multivariate
and additive fitted surfaces for these data are displayed in Output 41.3.5.
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Output 41.3.5 Fitted Regression Surfaces

It is clear from Output 41.3.5 that the results of PROC LOESS and PROC GAM are completely different.
While the plot in the left panel resembles the raw data plot in Output 41.3.4, the plot in the right panel is
essentially featureless.

To understand what is happening, compare the scatter plots of Yield by Catalyst for the two data sets in this
example. These are generated by the following statements and displayed in Output 41.3.6.

data PredGAM;
set PredGAM;
rename Yield=Yield_a;

run;

data PredGAMb;
set PredGAMb;
set PredGAM(keep=Yield_a);

run;
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proc template;
define statgraph scatter2;

dynamic _X _Y1 _Y2;
begingraph;

entrytitle "Scatter Plots of Yield by Catalyst";
layout lattice/rows=2 columndatarange=unionall

rowdatarange=unionall
columngutter=15;

columnAxes;
columnAxis / display=all griddisplay=auto_on;

endColumnAxes;

layout overlay/
xaxisopts=(display=none)
yaxisopts=(label="Yield of Experiment A"
linearopts=(viewmin=2 viewmax=10));
scatterplot x=_X y=_Y1;

endlayout;

layout overlay/
xaxisopts=(display=none)
yaxisopts=(label="Yield of Experiment B"
linearopts=(viewmin=2 viewmax=10));
scatterplot x=_X y=_Y2;

endlayout;

endlayout;
endgraph;

end;
run;

proc sgrender data=PredGAMb template=scatter2;
dynamic _X='Catalyst' _Y1='Yield_a' _Y2='Yield';

run;

ods graphics off;

The top panel of Output 41.3.6 hints at the same kind of structure exhibited in the fitted cross sections of
Output 41.3.3. In PROC GAM, the additive model component corresponding to Catalyst is fit to a similar
scatter plot, with the partial residuals computed in the backfitting algorithm, so it is able to capture the trend
seen here. In contrast, when the second data set is viewed from the perspective of Output 41.3.6, the diagonal
ridge apparent in Output 41.3.4 is washed out, and no clear structure shows up in the scatter plot. As a result,
the additive model fit produced by PROC GAM is relatively featureless.
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Output 41.3.6 Scatter Plots of Yield by Catalyst

References

Allen, D. M. (1974), “The Relationship between Variable Selection and Data Augmentation and a Method of
Prediction,” Technometrics, 16, 125–127.

Bell, D. F., Walker, J. L., O’Connor, G., and Tibshirani, R. J. (1994), “Spinal Deformity after Multiple-Level
Cervical Laminectomy in Children,” Spine, 19, 406–411.

Buja, A., Hastie, T. J., and Tibshirani, R. J. (1989), “Linear Smoothers and Additive Models,” Annals of
Statistics, 17, 453–510.

Cleveland, W. S., Devlin, S. J., and Grosse, E. (1988), “Regression by Local Fitting,” Journal of Econometrics,
37, 87–114.

Duchon, J. (1976), “Fonctions-spline et espérances conditionnelles de champs gaussiens,” Annales scien-
tifiques de l’Université de Clermont-Ferrand 2, Série Mathématique, 14, 19–27.



References F 2813

Duchon, J. (1977), “Splines Minimizing Rotation-Invariant Semi-norms in Sobolev Spaces,” in W. Schempp
and K. Zeller, eds., Constructive Theory of Functions of Several Variables, 85–100, New York: Springer-
Verlag.

Friedman, J. H. and Stuetzle, W. (1981), “Projection Pursuit Regression,” Journal of the American Statistical
Association, 76, 817–823.

Hastie, T. J. (1991), “Generalized Additive Models,” in J. M. Chambers and T. J. Hastie, eds., Statistical
Models in S, 249–307, Pacific Grove, CA: Chapman & Hall/CRC.

Hastie, T. J. and Tibshirani, R. J. (1986), “Generalized Additive Models,” Statistical Science, 3, 297–318.

Hastie, T. J. and Tibshirani, R. J. (1990), Generalized Additive Models, New York: Chapman & Hall.

Houghton, A. N., Flannery, J., and Viola, M. V. (1980), “Malignant Melanoma in Connecticut and Denmark,”
International Journal of Cancer, 25, 95–104.

McCullagh, P. and Nelder, J. A. (1989), Generalized Linear Models, 2nd Edition, London: Chapman & Hall.

Meinguet, J. (1979), “Multivariate Interpolation at Arbitrary Points Made Simple,” Journal of Applied
Mathematics and Physics, 30, 292–304.

Nelder, J. A. and Wedderburn, R. W. M. (1972), “Generalized Linear Models,” Journal of the Royal Statistical
Society, Series A, 135, 370–384.

Sochett, E. B., Daneman, D., Clarson, C., and Ehrich, R. M. (1987), “Factors Affecting and Patterns of
Residual Insulin Secretion during the First Year of Type I (Insulin Dependent) Diabetes Mellitus in
Children,” Diabetologia, 30, 453–459.

Stone, C. J. (1985), “Additive Regression and Other Nonparametric Models,” Annals of Statistics, 13,
689–705.

Wahba, G. (1983), “Bayesian ‘Confidence Intervals’ for the Cross Validated Smoothing Spline,” Journal of
the Royal Statistical Society, Series B, 45, 133–150.

Wahba, G. (1990), Spline Models for Observational Data, Philadelphia: Society for Industrial and Applied
Mathematics.

Wahba, G. and Wendelberger, J. (1980), “Some New Mathematical Methods for Variational Objective
Analysis Using Splines and Cross Validation,” Monthly Weather Review, 108, 1122–1145.



2814



Chapter 42

The GEE Procedure (Experimental)

Contents
Overview: GEE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2815
Getting Started: GEE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2816
Syntax: GEE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2819

PROC GEE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2819
BY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2820
CLASS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2821
FREQ Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2822
MISSMODEL Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2822
MODEL Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2823
REPEATED Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2825
WEIGHT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2828

Details: GEE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2829
Generalized Estimating Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2829
Weighted Generalized Estimating Equations under the MAR Assumption . . . . . . . 2832
ODS Table Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2836
ODS Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2837

Examples: GEE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2838
Example 42.1: Comparison of the Marginal and Random Effect Models for Binary Data 2838
Example 42.2: Log-Linear Model for Count Data . . . . . . . . . . . . . . . . . . . 2841
Example 42.3: Weighted GEE for Longitudinal Data That Have Missing Values . . . 2845

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2849

Overview: GEE Procedure
The GEE procedure implements the generalized estimating equations (GEE) approach (Liang and Zeger
1986), which extends the generalized linear model to handle longitudinal data (Stokes, Davis, and Koch 2012;
Fitzmaurice, Laird, and Ware 2011; Diggle et al. 2002). For longitudinal studies, missing data are common,
and they can be caused by dropouts or skipped visits. If missing responses depend on previous responses,
the usual GEE approach can lead to biased estimates. So the GEE procedure also implements the weighted
GEE method to handle missing responses that are caused by dropouts in longitudinal studies (Robins and
Rotnitzky 1995; Preisser, Lohman, and Rathouz 2002).

The GEE method fits a marginal model to longitudinal data. The regression parameters in the marginal model
are interpreted as population-averaged. For more information about the GEE method, see Fitzmaurice, Laird,
and Ware (2011); Hardin and Hilbe (2003); Diggle et al. (2002); Lipsitz et al. (1994).
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The GEE procedure compares most closely to the GENMOD procedure in SAS/STAT software. Both
procedures implement the standard generalized estimating equation approach for longitudinal data; this
approach is appropriate for complete data or when data are missing completely at random (MCAR). When
the data are missing at random (MAR), the weighted GEE method produces valid inference. Molenberghs
and Kenward (2007); Fitzmaurice, Laird, and Ware (2011); Mallinckrodt (2013); O’Kelly and Ratitch (2014)
describe the weighted GEE method.

This version of the GEE procedure does not provide the multinomial distribution for polytomous responses,
the CLOGIT or GLOGIT link functions, diagnostics, or the alternating logistic regressions (ALR) analysis.
Future releases will contain additional functionality.

Getting Started: GEE Procedure
This section illustrates some of the basic features of the GEE procedure by analyzing longitudinal data from
Stokes, Davis, and Koch (2012).

In this study, researchers followed 25 children at ages 8, 9, 10, and 11 years. The goal of this study is to
investigate the health effects of air pollution on children. The binary response is the wheezing status of the
children at four different ages. The explanatory variables are age, city, and passive smoking index (with
values 0, 1, 2) that represented the degree of smoking in the home. The responses for individual children are
assumed to be equally correlated, implying an exchangeable correlation structure.

The following statements create the data set Children:

data Children;
input ID City$ @@;
do i=1 to 4;

input Age Smoke Symptom @@;
output;

end;
datalines;

1 steelcity 8 0 1 9 0 1 10 0 1 11 0 0
2 steelcity 8 2 1 9 2 1 10 2 1 11 1 0
3 steelcity 8 2 1 9 2 0 10 1 0 11 0 0
4 greenhills 8 0 0 9 1 1 10 1 1 11 0 0
5 steelcity 8 0 0 9 1 0 10 1 0 11 1 0
6 greenhills 8 0 1 9 0 0 10 0 0 11 0 1
7 steelcity 8 1 1 9 1 1 10 0 1 11 0 0
8 greenhills 8 1 0 9 1 0 10 1 0 11 2 0
9 greenhills 8 2 1 9 2 0 10 1 1 11 1 0

10 steelcity 8 0 0 9 0 0 10 0 0 11 1 0
11 steelcity 8 1 1 9 0 0 10 0 0 11 0 1
12 greenhills 8 0 0 9 0 0 10 0 0 11 0 0
13 steelcity 8 2 1 9 2 1 10 1 0 11 0 1
14 greenhills 8 0 1 9 0 1 10 0 0 11 0 0
15 steelcity 8 2 0 9 0 0 10 0 0 11 2 1
16 greenhills 8 1 0 9 1 0 10 0 0 11 1 0
17 greenhills 8 0 0 9 0 1 10 0 1 11 1 1
18 steelcity 8 1 1 9 2 1 10 0 0 11 1 0
19 steelcity 8 2 1 9 1 0 10 0 1 11 0 0
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20 greenhills 8 0 0 9 0 1 10 0 1 11 0 0
21 steelcity 8 1 0 9 1 0 10 1 0 11 2 1
22 greenhills 8 0 1 9 0 1 10 0 0 11 0 0
23 steelcity 8 1 1 9 1 0 10 0 1 11 0 0
24 greenhills 8 1 0 9 1 1 10 1 1 11 2 1
25 greenhills 8 0 1 9 0 0 10 0 0 11 0 0
;

The following statements fit the model by the GEE method:

proc gee data=Children descending;
class ID City;
model Symptom = City Age Smoke / dist=bin link=logit;
repeated subject=ID / type=exch covb corrw;

run;

Both the MODEL statement and the REPEATED statement are required.

The DIST=BIN and LINK=LOGIT options in the MODEL statement request a logistic regression with the
variable Symptom as the response and City, Age, and Smoke as explanatory variables.

The REPEATED statement specifies the correlation structure and requests various tables in the output. The
SUBJECT=ID option requests that individual subjects be identified in the input data set by the variable Case,
which must be listed in the CLASS statement. Measurements of individual subjects at ages 8, 9, 10, and 11
are in the proper order in the data set, so the WITHIN= option is not required. The TYPE=EXCH option
specifies an exchangeable working correlation structure, the COVB option requests the parameter estimate
covariance matrix, and the CORRW option requests the working correlation matrix.

Figure 42.1 shows the “Model Information” table, which provides information about the specified logistic
regression model and the input data set.

Figure 42.1 Model Information

The GEE ProcedureThe GEE Procedure

Model Information

Data Set WORK.CHILDREN

Distribution Binomial

Link Function Logit

Dependent Variable Symptom

Figure 42.2 displays general information about the GEE analysis. Each subject has four measurements.

Figure 42.2 GEE Model Information

GEE Model Information

Correlation Structure Exchangeable

Subject Effect ID (25 levels)

Number of Clusters 25

Correlation Matrix Dimension 4

Maximum Cluster Size 4

Minimum Cluster Size 4



2818 F Chapter 42: The GEE Procedure (Experimental)

Figure 42.3 displays the model-based and empirical covariance matrices of the parameter estimates.

Figure 42.3 Covariance Matrices of Parameter Estimates

Covariance Matrix (Model-Based)

Prm1 Prm2 Prm4 Prm5

Prm1 3.26069 -0.16313 -0.32274 -0.12257

Prm2 -0.16313 0.24015 0.002520 0.03422

Prm4 -0.32274 0.002520 0.03379 0.004471

Prm5 -0.12257 0.03422 0.004471 0.09533

Covariance Matrix (Empirical)

Prm1 Prm2 Prm4 Prm5

Prm1 4.09770 -0.55261 -0.37280 -0.29397

Prm2 -0.55261 0.29538 0.03719 0.09143

Prm4 -0.37280 0.03719 0.03550 0.02064

Prm5 -0.29397 0.09143 0.02064 0.07957

The exchangeable working correlation matrix is displayed in Figure 42.4.

Figure 42.4 Working Correlation Matrix

Working Correlation Matrix

Obs 1 Obs 2 Obs 3 Obs 4

Obs 1 1.0000 0.0883 0.0883 0.0883

Obs 2 0.0883 1.0000 0.0883 0.0883

Obs 3 0.0883 0.0883 1.0000 0.0883

Obs 4 0.0883 0.0883 0.0883 1.0000

The parameter estimates table, shown in Figure 42.5, contains parameter estimates, standard errors, confidence
intervals, Z scores, and p-values for the parameter estimates. Empirical standard error estimates are used in
this table. You can create a table that uses model-based standard errors by specifying the MODELSE option
in the REPEATED statement. The results indicate that smoking exposure is significant with a p-value of
0.0211, Age is marginally influential with a p-value of 0.0893, and City does not influence wheezing. The
parameter estimate for Age is –0.3201, which indicates that the odds ratio of wheezing for the children at the
higher age group compared to those in the lower age group is e�0:3201 D 0:726.

Figure 42.5 GEE Parameter Estimates Table

Parameter Estimates for Response Model

with Empirical Standard Error

Parameter Estimate
Standard

Error

95%
Confidence

Limits Z Pr > |Z|

Intercept 2.2615 2.0243 -1.7060 6.2290 1.12 0.2639

City greenhil 0.0418 0.5435 -1.0234 1.1070 0.08 0.9387

City steelcit 0.0000 0.0000 0.0000 0.0000 . .

Age -0.3201 0.1884 -0.6894 0.0492 -1.70 0.0893

Smoke 0.6506 0.2821 0.0978 1.2035 2.31 0.0211
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Goodness-of-fit criteria for the model are displayed in Figure 42.6. For more information about the quasi-
likelihood information criterion (QIC), see the section “Quasi-likelihood Information Criterion” on page 2831.

Figure 42.6 Model Fit Criteria

GEE Fit
Criteria

QIC 137.1373

QICu 136.2173

Syntax: GEE Procedure
The following statements are available in the GEE procedure. Items within < > are optional.

PROC GEE < options > ;
BY variables ;
CLASS variable < (options) > . . . < variable < (options) > > < / options > ;
FREQ | FREQUENCY variable ;
MISSMODEL < effects > < / options > ;
MODEL response = < effects > < / options > ;
REPEATED SUBJECT=subject-effect < / options > ;
WEIGHT variable ;

The syntax of the GEE procedure compares most closely to that of the GENMOD procedures. The PROC
GEE, MODEL, and REPEATED statements are required. All other statements can appear only once. The
following sections describe the PROC GEE statement and then describe the other statements in alphabetical
order.

PROC GEE Statement
PROC GEE < options > ;

The PROC GEE statement invokes the GEE procedure. Table 42.1 summarizes the options available in the
PROC GEE statement.

Table 42.1 PROC GEE Statement Options

Option Description

DATA= Specifies the input data set
DESCENDING Sorts the response variable in the reverse of the default order
NAMELEN= Specifies the length of effect names
ORDER= Specifies the sort order of CLASS variable
PLOTS Controls the plots that are produced through ODS Graphics
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You can specify the following options.

DATA=SAS-data-set
specifies the SAS data set that contains the data to be analyzed. If you omit the DATA= option, PROC
GEE uses the most recently created SAS data set.

DESCENDING

DESCEND

DESC
requests that the levels of the response variable for the binomial model that uses a single-variable
response syntax be sorted in the reverse of the default order.

NAMELEN=number
specifies the length to which long effect names are shortened. The default and minimum value is 20.

PLOTS < = plot-request >
controls the plots produced through ODS Graphics. For example:

proc gee plots=histogram;
model y=x1;

run;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

You can specify the following plot-requests:

ALL
requests that all default plots be produced.

HISTOGRAM
creates a histogram for the predicted weights from the missingness model.

NONE
suppresses all plots.

BY Statement
BY variables ;

You can specify a BY statement with PROC GEE to obtain separate analyses of observations in groups that
are defined by the BY variables. When a BY statement appears, the procedure expects the input data set to be
sorted in order of the BY variables. If you specify more than one BY statement, only the last one specified is
used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.
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• Specify the NOTSORTED or DESCENDING option in the BY statement for the GEE procedure. The
NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

CLASS Statement
CLASS variables < / options > ;

The CLASS statement names the classification variables to be used in the analysis. If the CLASS statement
is used, it must appear before the MODEL statement.

Classification variables can be either character or numeric. CLASS levels are determined from the formatted
values of the variables. Thus, you can use formats to group values into levels. For more information, see
the discussion of the FORMAT procedure in the Base SAS Procedures Guide and the discussions of the
FORMAT statement and SAS formats in SAS Formats and Informats: Reference.

You can specify the following options for classification variables:

DESCENDING
DESC

reverses the sort order of the classification variable. If you specify both the DESCENDING and
ORDER= options, PROC GEE orders the categories according to the ORDER= option and then
reverses that order.

ORDER=order-type
specifies the sort order for the categories of categorical variables. This ordering determines which
parameters in the model correspond to each level in the data. When the default ORDER=FORMATTED
is in effect for numeric variables for which you have supplied no explicit format, the levels are ordered
by their internal values. Table 42.2 shows how PROC GEE interprets values of the ORDER= option.

Table 42.2 Sort Order for Categorical Variables

order-type Levels Sorted By

DATA Order of appearance in the input data set
FORMATTED External formatted value, except for numeric variables that have no

explicit format, which are sorted by their unformatted (internal) value
FREQ Descending frequency count; levels that have the most observations

come first in the order
FREQDATA Order of descending frequency count, and within counts by order of

appearance in the input data set when counts are tied
FREQFORMATTED Order of descending frequency count, and within counts by formatted

value (as above) when counts are tied
FREQINTERNAL Order of descending frequency count, and within counts by unformat-

ted value when counts are tied
INTERNAL Unformatted value
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For the FORMATTED and INTERNAL values, the sort order is machine-dependent. If you specify
the ORDER= option in the MODEL statement and the ORDER= option in the CLASS statement, the
former takes precedence.

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

FREQ Statement
FREQ variable ;

FREQUENCY variable ;

The variable in the FREQ statement identifies a variable in the input data set that contains the frequency of
occurrence of each observation. PROC GEE treats each observation as if it appeared n times, where n is the
value of the FREQ variable for the observation. If the frequency value is not an integer, it is truncated to an
integer. If it is less than 1 or missing, the observation is not used. The frequencies must be the same for all
observations within each subject.

MISSMODEL Statement
MISSMODEL effects < / options > ;

The MISSMODEL statement requests a weighted GEE analysis. It specifies a logistic regression that is
used to estimate the weights under the MAR assumption. If the pattern of missing data is intermittent (not
dropout), the GEE procedure terminates and does not perform an analysis.

You can use the same effects or different effects in the MODEL and MISSMODEL statements. Explanatory
variables can be continuous or classification variables. Classification variables can be character or numeric.
Explanatory variables that represent nominal (classification) data must be declared in a CLASS statement.
Interactions between variables can also be included as effects. Columns of the design matrix are automatically
generated for classification variables and interactions. The syntax for effects is the same as for the GLM
procedure. For more information, see the section “Specification of Effects” on page 3453 in Chapter 45,
“The GLM Procedure.”

You can specify the following options after a slash (/).

MAXWEIGHT=number
truncates the predicted weights from the missingness model if they are are larger than number , where
number � 1.

TYPE=OBSLEVEL | SUBLEVEL
specifies the type of weighted GEE method. You can specify the following values:

OBSLEVEL specifies the observation-level weighted GEE method.

SUBLEVEL specifies the subject-level weighted GEE method.

By default, TYPE=OBSLEVEL.
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MODEL Statement
MODEL response = < effects > < / options > ;

MODEL events/trials = < effects > < / options > ;

The MODEL statement specifies the response (dependent variable) and the effects (explanatory variables). If
you omit the explanatory variables, PROC GEE fits an intercept-only model. An intercept term is included in
the model by default. You can remove the intercept by specifying the NOINT option.

You can specify the response in the form of a single variable (response) or in the form of a ratio of two
variables ( events/trials). The first form is applicable to all responses. The second form is applicable only to
summarized binomial response data. When each observation in the input data set contains the number of
events (for example, successes) and the number of trials from a set of binomial trials, use the events/trials
syntax.

In the events/trials model syntax, you specify two variables: one for the event counts and one for trial counts.
These two variables are separated by a slash (/). The value of the events variable must be nonnegative,
and the value of the trials variable must be equal to or greater than the value of the events variable for an
observation to be valid. The events and trials variables can take noninteger values.

When each observation in the input data set contains a single trial from a binomial experiment, use the
response form of the MODEL statement. The response variable can be numeric or character. The ordering
of response levels is critical in these models.

Responses for the Poisson distribution must be all nonnegative, but they can be noninteger values.

The effects in the MODEL statement consist of an explanatory variable or combination of variables. Ex-
planatory variables can be continuous or classification variables. Classification variables can be character or
numeric. Explanatory variables that represent nominal (classification) data must be declared in a CLASS
statement. Interactions between variables can also be included as effects. Columns of the design matrix
are automatically generated for classification variables and interactions. The syntax for specifying effects
is the same as for the GLM procedure. For more information, see the section “Specification of Effects” on
page 3453 in Chapter 45, “The GLM Procedure.”

Table 42.3 summarizes the options available in the MODEL statement.

Table 42.3 MODEL Statement Options

Option Description

ALPHA= Sets the confidence coefficient
DIST= Specifies the probability distribution
LINK= Specifies the link function
NOINT Requests no intercept term
NOSCALE Holds the scale parameter fixed
OFFSET= Specifies a variable in the input data set to be used as an offset
SCALE= Specifies the value used for the scale
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You can specify the following options after a slash (/).

ALPHA=number
sets the confidence coefficient for parameter confidence intervals to 1–number . The value of number
must be between 0 and 1. The default value of number is 0.05.

DIST=keyword

D=keyword

ERROR=keyword

ERR=keyword
specifies the built-in probability distribution to use in the model. If you specify the DIST= option
and you omit the LINK= option, a default link function is chosen as displayed in Table 42.4. If you
specify neither the DIST= option nor the LINK= option, then the GEE procedure defaults to the normal
distribution with the identity link function.

Table 42.4 Distributions and Default Link Functions

DIST= Distribution Default Link Function

BINOMIAL | BIN | B Binomial Logit
GAMMA | GAM | G Gamma Reciprocal
IGAUSSIAN | IG Inverse Gaussian Reciprocal square
NEGBIN | NB Negative binomial Log
NORMAL | NOR | N Normal Identity
POISSON | POI | P Poisson Log

LINK=keyword
specifies the link function in the model. You can specify the following keywords:

Table 42.5 Built-in Link Functions of the GEE Procedure

Link
LINK= Function g.�/ D � D

CLOGLOG | CLL Complementary log-log log.� log.1 � �//
IDENTITY | ID Identity �

LOG Log log.�/
LOGIT Logit log.�=.1 � �//
PROBIT Probit ˆ�1.�/

INVERSE | RECIPROCAL Reciprocal 1=�

POWERMINUS2 Power with exponent –2 1=�2

For the probit and cumulative probit links, ˆ�1.�/ denotes the quantile function of the standard normal
distribution. If you do not specify the LINK= option, then by default the canonical link function is used
if you specify the DIST= option. Otherwise, if you omit the DIST= option, the identity link function is
used.



REPEATED Statement F 2825

NOINT
requests that no intercept term be included in the model. An intercept is included unless this option is
specified.

NOSCALE
holds the scale parameter fixed. Otherwise, for the normal, inverse Gaussian, and gamma distributions,
the scale parameter is estimated by maximum likelihood. If you omit the SCALE= option, the scale
parameter is fixed at the value 1.

OFFSET=variable
specifies a variable in the input data set to be used as an offset variable. This variable cannot be a
CLASS variable, the response variable, or any of the explanatory variables.

SCALE=number

SCALE=PEARSON | P

PSCALE

SCALE=DEVIANCE | D

DSCALE
specifies the value used for the scale parameter when the NOSCALE option is used. For the binomial
and Poisson distributions, which have no free scale parameter, this can be used to specify an overdis-
persed model. If the NOSCALE option is not specified, then number is used as an initial estimate of
the scale parameter.

Specifying SCALE=PEARSON or SCALE=P is the same as specifying the PSCALE option. This
fixes the scale parameter at the value 1 in the estimation procedure. After the parameter estimates
are determined, the exponential family dispersion parameter is assumed to be given by Pearson’s
chi-square statistic divided by the degrees of freedom, and all statistics such as standard errors are
adjusted appropriately.

Specifying SCALE=DEVIANCE or SCALE=D is the same as specifying the DSCALE option. This
fixes the scale parameter at a value of 1 in the estimation procedure.

REPEATED Statement
REPEATED SUBJECT=subject-effect < / options > ;

The REPEATED statement specifies the correlation structure of the responses for GEE model fitting. In
addition, the REPEATED statement controls the iterative fitting algorithm and specifies optional output.

Table 42.6 summarizes the options available in the REPEATED statement.

Table 42.6 REPEATED Statement Options

Option Description

CONVERGE= Specifies the convergence criterion for GEE parameter estimation
CORRB Displays the estimated correlation matrix
CORRW Displays the estimated working correlation matrix
COVB Displays the estimated covariance matrix
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Table 42.6 continued

Option Description

ECORRB Displays the estimated empirical correlation matrix
ECOVB Displays the estimated empirical covariance matrix
INITIAL= Specifies initial values of the regression parameters estimation
INTERCEPT= Specifies an initial value of the intercept
MAXITER= Specifies the maximum number of iterations
MCORRB Displays the estimated model-based correlation matrix
MCOVB Displays the estimated model-based covariance matrix
MODELSE Displays a parameter estimates table with the model-based standard errors
SUBJECT= Identifies a different subject (cluster)
TYPE= Specifies the working correlation matrix structure
WITHIN= Specifies the order of measurements within subjects

You must specify the SUBJECT= option:

SUBJECT=subject-effect
identifies subjects in the input data set. The subject-effect can be a single variable, an interaction effect,
a nested effect, or a combination. Each distinct value (level) of the effect identifies a different subject
(cluster). Responses from different subjects are assumed to be statistically independent, and responses
within subjects are assumed to be correlated. You must specify a subject-effect , and you must list
variables that are used in defining the subject-effect in the CLASS statement.

You can also specify the following options after a slash (/) to control how the model is fit and what output is
produced:

CONVERGE=number
specifies the convergence criterion for GEE parameter estimation. If the maximum absolute difference
between regression parameter estimates is less than number on two successive iterations, convergence
is declared. If the absolute value of a regression parameter estimate is greater than 0.08, then the
absolute difference normalized by the regression parameter value is used instead of the absolute
difference. The default value of number is 0.0001.

CORRB
displays the estimated regression parameter correlation matrix. Both model-based and empirical
correlations are displayed.

CORRW
displays the estimated working correlation matrix. If you specify TYPE=EXCH for the exchangeable
working correlation structure, then the CORRW option is not needed to view the estimated correlation,
because a table that contains the single estimated correlation is printed by default.

COVB
displays the estimated regression parameter covariance matrix. Both model-based and empirical
covariances are displayed.



REPEATED Statement F 2827

ECORRB
displays the estimated regression parameter empirical correlation matrix.

ECOVB
displays the estimated regression parameter empirical covariance matrix.

INITIAL=numbers
specifies initial values of the regression parameters estimation, other than the intercept parameter, for
GEE estimation. If you do not specify this option, then the estimated regression parameters (assuming
independence for all responses) are used for the initial values.

INTERCEPT=number
specifies an initial value of the intercept regression parameter in the GEE model.

MAXITER=number

MAXIT=number
specifies the maximum number of iterations allowed in the iterative GEE estimation process. By
default, MAXITER=50.

MCORRB
displays the estimated regression parameter model-based correlation matrix.

MCOVB
displays the estimated regression parameter model-based covariance matrix.

MODELSE
displays a parameter estimates table that uses model-based standard errors for inference. By default, a
“Parameter Estimates” table that is based on empirical standard errors is displayed.

TYPE=correlation-structure-keyword

CORR=correlation-structure-keyword
specifies the structure of the working correlation matrix that is used to model the correlation of the
responses from subjects. You can specify the values that are shown in Table 42.7 (for definitions of the
correlation matrix types, see Table 42.8 in the section “Details: GEE Procedure” on page 2829):

Table 42.7 Correlation Structure Types

Keyword Correlation Matrix Type

AR | AR(1) Autoregressive(1)
EXCH | CS Exchangeable
IND Independent
MDEP(number ) m-dependent, where m = number
UNSTR | UN Unstructured
USER(matrix) | FIXED(matrix) Fixed, user-specified correlation matrix

By default, TYPE=IND.
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For example, the following option specifies a fixed 4 � 4 correlation matrix:

type=user( 1.0 0.9 0.8 0.6
0.9 1.0 0.9 0.8
0.8 0.9 1.0 0.9
0.6 0.8 0.9 1.0 )

WITHINSUBJECT=within-subject-effect

WITHIN=within-subject-effect
defines an effect that specifies the order of measurements within subjects. Each distinct level of the
within-subject-effect defines a different response from the same subject. If the data are in proper order
within each subject, you do not need to specify this option.

If some measurements do not appear in the data for some subjects, this option properly orders the
existing measurements and treats the omitted measurements as missing values.

If you do not specify the WITHIN= option for the standard GEE method, missing values are assumed
to be the last values and are not used; the remaining observations are then ordered in the sequence
in which they are provided in the input data set. If you do not specify the WITHIN= option for the
weighted GEE method, the observations are assumed to be ordered in the sequence in which they are
provided in the input data set.

Variables that are used in defining the within-subject-effect must be listed in the CLASS statement.

WEIGHT Statement
WEIGHT variable ;

The WEIGHT statement identifies a variable in the input data set to be used as the exponential family
dispersion parameter weight for each observation. The exponential family dispersion parameter is divided by
the WEIGHT variable value for each observation.

The WEIGHT variable value does not have to be an integer; if the value is less than or equal to 0 or if it is
missing, the corresponding observation is not used.
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Details: GEE Procedure

Generalized Estimating Equations
The marginal model is commonly used in analyzing longitudinal data when the population-averaged effect is
of interest. To estimate the regression parameters in the marginal model, Liang and Zeger (1986) proposed
the generalized estimating equations method, which is widely used.

Suppose yij ; j D 1; : : : ; ni ; i D 1; : : : ; K, represent the jth response of the ith subject, which has a vector
of covariates xij . There are ni measurements on subject i, and the maximum number of measurements per
subject is T.

Suppose the responses of the ith subject be Yi D Œyi1; : : : ; yini �
0 with corresponding means �i D

Œ�i1; : : : ; �ini �
0. For generalized linear models, the marginal mean �ij of the response yij is related

to a linear predictor through a link function g.�ij / D x0ijˇ, and the variance of yij depends on the mean
through a variance function v.�ij /.

An estimate of the parameter ˇ in the marginal model can be obtained by solving the generalized estimating
equations,

S.ˇ/ D
KX
iD1

@�0i
@ˇ

V�1i .Yi � �i .ˇ// D 0

where Vi is the working covariance matrix of Yi .

Only the mean and the covariance of Yi are required in the GEE method; a full specification of the joint
distribution of the correlated responses is not needed. This is particularly convenient because the joint
distribution for noncontinuous responses involves high-order associations and is complicated to specify.
Moreover, the regression parameter estimates are consistent even when the working covariance is incorrectly
specified. Because of these properties, the GEE method is popular in situations where the marginal effect is
of interest and the responses are not continuous. However, the GEE approach can lead to biased estimates
when missing responses depend on previous responses. The weighted GEE method, which is described in
the section “Weighted Generalized Estimating Equations under the MAR Assumption” on page 2832, can
provide unbiased estimates.

Working Correlation Matrix

Suppose Ri .˛/ is an ni � ni “working” correlation matrix that is fully specified by the vector of parameters
˛. The covariance matrix of Yi is modeled as

Vi D �A
1
2

i W
� 1
2

i R.˛/W
� 1
2

i A
1
2

i

where Ai is an ni � ni diagonal matrix whose jth diagonal element is v.�ij / and Wi is an ni � ni diagonal
matrix whose jth diagonal is wij , where wij is a weight variable that is specified in the WEIGHT statement.
If there is no WEIGHT statement, wij D 1 for all i and j. If Ri .˛/ is the true correlation matrix of Yi , then
Vi is the true covariance matrix of Yi .
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In practice, the working correlation matrix is usually unknown and must be estimated. It is estimated in the
iterative fitting process by using the current value of the parameter vector ˇ to compute appropriate functions
of the Pearson residual:

eij D
yij � �ijp
v.�ij /=wij

If you specify the working correlation matrix as R0 D I, which is the identity matrix, the GEE reduces to the
independence estimating equation.

Table 42.8 shows the working correlation structures that are supported by the GEE procedure and the
estimators that are used to estimate the working correlations.

Table 42.8 Working Correlation Structures and Estimators

Working Correlation Structure Estimator

Fixed
Corr.Yij ; Yik/ D rjk
where rjk is the jkth element of a constant,
user-specified correlation matrix R0

The working correlation is not estimated in this case.

Independent

Corr.Yij ; Yik/ D
�
1 j D k

0 j ¤ k
The working correlation is not estimated in this case.

m-dependent

Corr.Yij ; Yi;jCt / D

8<:
1 t D 0

˛t t D 1; 2; : : : ; m

0 t > m

Ǫ t D
1

.Kt�p/�

PK
iD1

P
j�ni�t

eij ei;jCt

Kt D
PK
iD1.ni � t /

Exchangeable

Corr.Yij ; Yik/ D
�
1 j D k

˛ j ¤ k
Ǫ D

1
.N��p/�

PK
iD1

P
j<k eij eik

N � D 0:5
PK
iD1 ni .ni � 1/

Unstructured

Corr.Yij ; Yik/ D
�
1 j D k

˛jk j ¤ k
Ǫjk D

1
.K�p/�

PK
iD1 eij eik

Autoregressive AR(1)
Corr.Yij ; Yi;jCt / D ˛t

for t D 0; 1; 2; : : : ; ni � j
Ǫ D

1
.K1�p/�

PK
iD1

P
j�ni�1

eij ei;jC1

K1 D
PK
iD1.ni � 1/
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Dispersion Parameter

The dispersion parameter � is estimated by

O� D
1

N � p

KX
iD1

niX
jD1

e2ij

where N D
PK
iD1 ni is the total number of measurements and p is the number of regression parameters.

The square root of O� is reported by PROC GEE as the scale parameter in the “Parameter Estimates for
Response Model with Model-Based Standard Error” output table. If a fixed scale parameter is specified
by using the NOSCALE option in the MODEL statement, then the fixed value is used in estimating the
model-based covariance matrix and standard errors.

Quasi-likelihood Information Criterion

The quasi-likelihood information criterion (QIC) was developed by Pan (2001) as a modification of Akaike’s
information criterion (AIC) to apply to models fit by the GEE approach.

Define the quasi-likelihood under the independent working correlation assumption, evaluated with the
parameter estimates under the working correlation of interest as

Q. Ǒ.R/; �/ D

KX
iD1

niX
jD1

Q. Ǒ.R/; �I .Yij ;Xij //

where the quasi-likelihood contribution of the jth observation in the ith cluster is defined in the section
“Quasi-likelihood Functions” on page 2831 and Ǒ.R/ are the parameter estimates that are obtained by using
the GEE approach with the working correlation of interest R.

QIC is defined as

QIC.R/ D �2Q. Ǒ.R/; �/C 2trace. O�I OVR/

where OVR is the robust covariance estimate and O�I is the inverse of the model-based covariance estimate
under the independent working correlation assumption, evaluated at Ǒ.R/, which are the parameter estimates
that are obtained by using the GEE approach with the working correlation of interest R.

PROC GEE also computes an approximation to QIC.R/, which is defined by Pan (2001) as

QICu.R/ D �2Q. Ǒ.R/; �/C 2p

where p is the number of regression parameters.

Pan (2001) notes that QIC is appropriate for selecting regression models and working correlations, whereas
QICu is appropriate only for selecting regression models.

Quasi-likelihood Functions

See McCullagh and Nelder (1989) and Hardin and Hilbe (2003) for discussions of quasi-likelihood functions.
The contribution of observation j in cluster i to the quasi-likelihood function that is evaluated at the regression
parameters ˇ is expressed by Q.ˇ; �I .Yij ;Xij // D

Qij
�

, where Qij is defined in the following list. These
definitions are used in the computation of the quasi-likelihood information criteria (QIC) for goodness of
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fit of models that are fit by the GEE approach. The wij are prior weights, if any, that are specified in the
WEIGHT or FREQ statement. Note that the definition of the quasi-likelihood for the negative binomial differs
from that given in McCullagh and Nelder (1989). The definition used here allows the negative binomial
quasi-likelihood to approach the Poisson as k ! 0.

• Normal:

Qij D �
1

2
wij .yij � �ij /

2

• Inverse Gaussian:

Qij D
wij .�ij � :5yij /

�2ij

• Gamma:

Qij D �wij

�
yij

�ij
C log.�ij /

�
• Negative binomial:

Qij D wij

�
log�

�
yij C

1

k

�
� log�

�
1

k

�
C yij log

�
k�ij

1C k�ij

�
C
1

k
log

�
1

1C k�ij

��
• Poisson:

Qij D wij .yij log.�ij / � �ij /

• Binomial:

Qij D wij Œrij log.pij /C .nij � rij / log.1 � pij /�

Weighted Generalized Estimating Equations under the MAR Assumption
In longitudinal studies, response measurements are often missing because of skipped visits or dropouts.
Suppose rij is the indicator that the response yij is observed, where rij D 1 if yij is observed and 0 otherwise.
Missing data patterns can be classified into two types: dropout and intermittent. A dropout occurs if an
individual skips a particular visit and then never comes back for subsequent visits. That is, if rij D 0, then
rik D 0 for all k > j . Otherwise, the missing data pattern is intermittent. Intermittent patterns can be quite
complicated; only dropout patterns are considered here.

The mechanism for missingness can be described by a statistical model for the probability of observing
a missing value, and making the right assumption about the mechanism is crucial to methods that handle
missing data. Missingness mechanisms are classified into three types: missing completely at random
(MCAR), missing at random (MAR), and missing not at random (MNAR) (Rubin 1976).

Assumptions about longitudinal data that include missing responses caused by dropouts are classified as
follows:
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• The data are said to be MCAR if the probability of a missing response is independent of its past, current,
and future responses conditional on the covariates. That is, P.rij D 0jYi ;Xi / D P.rij D 0jXi /.

• The data are said to be MAR if the probability of a missing response is independent of its current
and future responses conditional on the observed past responses and the covariates. That is, P.rij D
0jrij�1 D 1;Xi ; Yi / D P.rij D 0jrij�1 D 1;Xi ; yi1; : : : ; yij�1/. MAR is a weaker assumption than
MCAR.

• The data are said to be MNAR if the probability of a missing response depends on the unobserved
responses. MNAR is the most general and the most problematic missing-data scenario.

The GEE procedure implements two different weighted methods (observation-specific and subject-specific)
for estimating the regression parameter ˇ when dropouts occur. Both provide consistent estimates if the data
are MAR.

Observation-Specific Weighted GEE Method

Suppose wij is the weight for yij , which is defined as the inverse probability of observing yij . In other
words, wij D P.rij D 1jXi ; Yi /�1. Suppose Wi is a T � T diagonal matrix whose jth diagonal is rijwij .
The responses for the ith subject are Yi D .yi1; yi2; : : : ; yiT /0. Consider the following weighted generalized
estimating equations (Robins and Rotnitzky 1995; Preisser, Lohman, and Rathouz 2002):

Sow.ˇ/ D
KX
iD1

@�0i
@ˇ

V�1i Wi .Yi � �i .ˇ// D 0

Unlike the standard generalized estimating equations, the weighted generalized estimating equations are
unbiased when the observations are appropriately weighted and lead to consistent estimates of ˇ.

The weights wij are often unknown in practice and are estimated by a logistic regression model under the
MAR assumption. Specifically, say that �ij D P.rij D 1jrij�1 D 1;Xi ; Yi / denotes the probability of
observing the response yij given its observed previous responses.

Under the MAR assumption,

�ij D P.rij D 1jrij�1 D 1;Xi ; Yi / D P.rij D 1jrij�1 D 1;Xi ; Y1; : : : ; Yj�1/

Using the observed data, �ij can be predicted from a logistic regression model,

logitf�ij g D zij˛

where the zij are predictors that usually include the covariates xij , the past responses, and the indicators for
visit times. The dropout process implies that the estimated probability of observing yij can be expressed as a
cumulative product of conditional probabilities:

OP .rij D 1jXi ; Yi / D �i1. Ǫ / � �i2. Ǫ / � � � � � �ij . Ǫ /

With the estimated weights Owij D OP .rij D 1jXi ; Yi /�1, the regression parameter ˇ is estimated by solving
the equation for Sow.ˇ/.

The regression parameter ˇ can be estimated by solving for Sow.ˇ/ after plugging in the estimated weights.
The fitting algorithm is described in the section “Fitting Algorithm for Weighted GEE” on page 2834.
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Subject-Specific Weighted GEE Method

Unlike the observation-specific weighted method, which assigns an observation-specific weight to each
observation, the subject-specific weighted method assigns a single weight to each subject. In other words, all
the observations from a subject receive the same weight. Specifically, the subject-specific weighted method
obtains the regression parameter estimates by solving the equations

Ssw.ˇ/ D
KX
iD1

D0iV
�1
i wi .Yi � �i .ˇ// D 0

where the responses for the ith subject are Yi D .yi1; yi2; : : : ; yini /
0 and the weight wi for subject i is the

inverse probability of a subject i dropping out at the observed time (Fitzmaurice, Molenberghs, and Lipsitz
1995; Preisser, Lohman, and Rathouz 2002). Note that the weight wi is a scalar, in contrast to the weight
matrix Wi that the observation-specific weighted GEE method uses.

The subject-specific weighted estimating equations are also unbiased when the subjects are appropriately
weighted and lead to consistent estimates of the regression parameters ˇ.

The weight wi is usually unknown in practice and needs to be estimated. Suppose subject i drops out at time
mi D

PT
jD1 rij C 1. Assume that the first visit yi1 is always observed with ri1 D 1. Thus, the dropout

times mi range from 2 to T+1. Note that a dropout time of T+1 indicates that subject i completes all the T
visits and dropout does not occur.

The weight wi is defined as follows: if subject i drops out before completing the last visit (that is, mi � T ),
then wi D P.rimi D 0; rimi�1 D 1jXi ; Yi /

�1; otherwise, the subject completes all the T visits (that is,
mi D T C 1), and wi D P.riT D 1jXi ; Yi /�1.

Similar to the process for the observation-specific weighted method, the dropout process for the subject-
specific weighted method implies that subject-specific weights can be estimated as a cumulative product of
conditional probabilities:

Owi D P.rimi D 0; rimi�1 D 1jXi ; Yi /
�1
D Œ�i1. Ǫ / � � � � � �imi�1. Ǫ / � .1 � �imi . Ǫ //�

�1; ifmi � T

Owi D P.rimi�1 D 1jXi ; Yi /
�1
D Œ�i1. Ǫ / � �i2. Ǫ / � � � � � �imi�1. Ǫ /�

�1; ifmi D T C 1

Thus, the subject-specific weights Owi can be obtained after �ij is estimated by fitting a logistic regression to
the data .rij ; zij /.

The regression parameter ˇ from the subject-specific weighted GEE method can be estimated by solving for
Ssw.ˇ/ after plugging in the estimated weights. The fitting algorithm is described in the section “Fitting
Algorithm for Weighted GEE” on page 2834. The subject-specific weighting scheme was originally developed
for computational convenience. Preisser, Lohman, and Rathouz (2002) showed that the observation-level
weighted GEE method produces more efficient estimates than the cluster-level weighted GEE method for
incomplete longitudinal binary data.

Fitting Algorithm for Weighted GEE

The following fitting algorithm fits marginal models by using the observation-specific or the subject-specific
weighted GEE method when the dropout process is missing at random:

1. Fit a logistic regression to the data .rij ; zij / to obtain an estimate of ˛ and estimate the weights.
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2. Compute an initial estimate of ˇ by using an ordinary generalized linear model, assuming independence
of the responses.

3. Compute the working correlation matrix R based on the standardized residuals, the current estimate of
ˇ, and the specified structure of R.

4. Compute the estimated covariance matrix:

Vi D �A
1
2

i
OR.˛/A

1
2

i

5. Update Ǒ:

Ǒ
rC1 D

Ǒ
r C

"
KX
iD1

@�i

@ˇ

0

V�1i
@�i

@ˇ

#�1 "
KX
iD1

@�i

@ˇ

0

V�1i Wi .Yi � �i /

#

where Yi ;�i ;Vi , and Wi are as follows:

• For the observation-specific weighted method, Yi D .yi1; yi2; : : : ; yiT /
0; �i and Vi are its

corresponding mean vector and working covariance matrix, respectively; and Wi is a T � T
diagonal matrix whose jth diagonal is rij Owij .

• For the subject-specific weighted method, Yi D .yi1; yi2; : : : ; yini /
0; �i and Vi are its corre-

sponding mean vector and working covariance matrix, respectively; and Wi is a ni � ni diagonal
matrix whose jth diagonal is Owi .

6. Repeat steps 3–5 until convergence.

Note that you can use the WEIGHT statement in the GENMOD procedure to perform a two-stage strategy
that is often used in practice to obtain the weighted GEE estimates. You fit a logistic regression to the data
.rij ; zij / to obtain the weights as described in the preceding steps. Then you estimate ˇ by specifying the
estimated weights in the WEIGHT statement in PROC GENMOD for the GEE analysis. For the subject-
specific weighted GEE method, this approach is appropriate for any working correlation structure. However,
for the observation-specific weighted method, this approach is appropriate only for the independent working
correlation structure.

The two-stage approach results in standard errors that are larger than those that are produced by using
the MISSMODEL statement in the GEE procedure (because PROC GENMOD treats the weights as fixed
and known). Thus, the two-stage approach that uses PROC GENMOD results in conservative inference
(Fitzmaurice, Laird, and Ware 2011). The GEE procedure computes the parameter estimate covariances as
described in (Fitzmaurice, Laird, and Ware 2011) and Preisser, Lohman, and Rathouz (2002).

Missing Data

Suppose that each subject in a longitudinal study is measured at T times. In other words, for the ith subject
you measure T responses .yi1; yi2; : : : ; yiT / and T corresponding covariates .xi1; xi2; ; : : : ; xiT /.

By default, the GEE procedure handles missing data in the same manner as the standard GEE method in the
GENMOD procedure. The working correlation matrix is estimated from data that contain both intermittent
and dropout types of missing values by using the all-available-pairs method, in which all nonmissing pairs of
data are used in the moment estimators. The resulting covariances and standard errors are valid under the
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missing completely at random (MCAR) assumption. For more information, see the section “Missing Data”
on page 2960 in Chapter 43, “The GENMOD Procedure.”

When you specify the MISSMODEL statement in the GEE procedure to use the weighted GEE method to
analyze the data, the procedure uses observations that have missing values in the response, provided that the
missing values for all subjects are caused by dropouts. If the missing values are intermittent for any of the
subjects, then the weighted GEE method does not apply and the procedure terminates.

For the observation-specific weighted GEE method, the covariates for all the observations for a subject must
be observed, regardless of whether the response is missing. For each subject, the input data set must provide
T observations.

For the subject-specific weighted GEE method, the covariates for a subject who drops out at time k must
be observed for the observations up to and including time k. The input data set must provide at least k
observations for this subject. The covariates must be observed for all observations on a subject who completes
the study, and the input data set must provide T observations for this subject.

For more information about how weighted GEE methods handle missing values, see Fitzmaurice, Laird, and
Ware (2011) and Preisser, Lohman, and Rathouz (2002).

ODS Table Names
PROC GEE assigns a name to each table that it creates. You can use these names to refer to the table when
you use the Output Delivery System (ODS) to select tables and create output data sets. Table 42.9 lists these
names. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

Table 42.9 ODS Tables Produced BY PROC GEE

ODS Table Name Description Statement Option

ClassLevels Classification variable levels CLASS Default
GEEEmpPEst Parameter estimates with

empirical standard errors
REPEATED Default

GEEExchCorr Exchangeable working cor-
relation value

REPEATED TYPE=EXCH

GEEFitCriteria QIC fit criteria REPEATED Default
GEEModInfo GEE model information REPEATED Default
GEEModPEst Parameter estimates with

model-based standard errors
REPEATED MODELSE

GEENCorr Model-based correlation ma-
trix

REPEATED MCORRB

GEENCov Model-based covariance ma-
trix

REPEATED MCOVB
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Table 42.9 continued

ODS Table Name Description Statement Option

GEERCorr Empirical correlation matrix REPEATED ECORRB
GEERCov Empirical covariance matrix REPEATED ECOVB
GEEWCorr GEE working correlation

matrix
REPEATED CORRW

ModelInfo Model information MODEL Default
NObs Number of observations

summary
Default

ParmInfo Parameter indices REPEATED MCORRB, MCOVB,
ECORRB, ECOVB

ResponseProfile Frequency counts for binary
models

MODEL DIST=BINOMIAL

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

ODS Graph Names

PROC GEE assigns a name to each graph it creates using ODS. You can use these names to refer to the
graphs when you use ODS. Table 42.10 lists the names.

To request these graphs, ODS Graphics must be enabled and you must specify the statement and option that
are indicated in Table 42.10.

Table 42.10 Graphs Produced by PROC GEE

ODS Graph Name Description Statement Option

Histogram Histogram of predicted weights
from the missingness model

PROC PLOTS=
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Examples: GEE Procedure
The following examples illustrate some of the capabilities of the GEE procedure. These examples are not
intended to represent definitive analyses of the data sets that are presented here.

Example 42.1: Comparison of the Marginal and Random Effect Models for
Binary Data

A clinical trial (Stokes, Davis, and Koch 2012) was conducted to compare two treatments for a respiratory
illness. Patients in each of two centers were randomly assigned to two groups: one group received the active
treatment and one group received a placebo.

During treatment, respiratory status was determined for each of four visits and is represented by the variable
Outcome (coded here as 0 = poor, 1 = good). The variables Center, Treatment, Sex, and Baseline (baseline
respiratory status) are classification variables that have two levels. The variable Age (age at time of entry into
the study) is a continuous variable.

All 111 patients completed the study. That is, there are no missing data for responses or covariates. The
following statements create the data set Resp:

data Resp;
input Center ID Treatment $ Sex $ Age Baseline Visit1-Visit4;
datalines;

1 1 P M 46 0 0 0 0 0
1 2 P M 28 0 0 0 0 0
1 3 A M 23 1 1 1 1 1
1 4 P M 44 1 1 1 1 0
1 5 P F 13 1 1 1 1 1
1 6 A M 34 0 0 0 0 0

... more lines ...

2 51 A M 43 1 1 1 1 0
2 52 A F 39 0 1 1 1 1
2 53 A M 68 0 1 1 1 1
2 54 A F 63 1 1 1 1 1
2 55 A M 31 1 1 1 1 1
;

data Resp;
set Resp;
Visit=1; Outcome=Visit1; output;
Visit=2; Outcome=Visit2; output;
Visit=3; Outcome=Visit3; output;
Visit=4; Outcome=Visit4; output;

run;

Suppose yij represents the respiratory status of patient i at the jth visit, j D 1; : : : ; 4, and �ij D E.yij /
represents the mean of the respiratory status. Logistic regression is commonly used to analyze binary response
data. You can use the variance function for the binomial distribution, v.�ij / D �ij .1 � �ij /, and the logit
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link function, g.�ij / D log.�ij =.1��ij //. The model for the mean is g.�ij / D xij 0ˇ, where ˇ is a vector
of regression parameters to be estimated.

The following SAS statements perform the GEE model fit:

proc gee data=Resp descend;
class ID Treatment Center Sex Baseline;
model Outcome=Treatment Center Sex Age Baseline /

dist=bin link=logit;
repeated subject=ID(Center) / corr=exch corrw;

run;

Both the MODEL statement and the REPEATED statement are required.

In the MODEL statement, you use the DIST=BIN and LINK=LOGIT options to specify a logistic regression,
and you specify Outcome as the response variable and Treatment, Center, Sex, Age, and Baseline as the
explanatory variables. The DESCEND option in the PROC GEE statement requests that the probability that
Outcome = 1 be modeled. If the DESCEND option had not been specified, the probability that Outcome = 0
would be modeled by default.

You use the REPEATED statement to specify the subject and the correlation structure of the responses. The
SUBJECT=ID(CENTER) option specifies that the observations in any single cluster are uniquely identified
by Center and ID. An equivalent specification is SUBJECT=ID*CENTER. Because the same ID values
are used in each center, one of these specifications is needed. If ID values were unique across all centers,
SUBJECT=ID could be specified. The option TYPE=EXCH specifies the exchangeable working correlation
structure.

The “Model Information” table displayed in Output 42.1.1 provides information about the specified logistic
regression model and the input data set.

Output 42.1.1 Model Information

The GEE ProcedureThe GEE Procedure

Model Information

Data Set WORK.RESP

Distribution Binomial

Link Function Logit

Dependent Variable Outcome

General information about the GEE analysis is displayed in Output 42.1.2.

Output 42.1.2 Model Fitting Information

GEE Model Information

Correlation Structure Exchangeable

Subject Effect ID(Center) (111 levels)

Number of Clusters 111

Correlation Matrix Dimension 4

Maximum Cluster Size 4

Minimum Cluster Size 4
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The results of GEE model fitting are displayed in Output 42.1.3. If you specify no other options, the standard
errors, confidence intervals, Z scores, and p-values are based on empirical standard error estimates. You can
specify the MODELSE option in the REPEATED statement to create a table that is based on model-based
standard error estimates.

Output 42.1.3 Results of Model Fitting

Parameter Estimates for Response Model

with Empirical Standard Error

Parameter Estimate
Standard

Error

95%
Confidence

Limits Z Pr > |Z|

Intercept 1.6391 0.5247 0.6107 2.6675 3.12 0.0018

Treatment A 1.2654 0.3467 0.5859 1.9448 3.65 0.0003

Treatment P 0.0000 0.0000 0.0000 0.0000 . .

Center 1 -0.6495 0.3532 -1.3418 0.0428 -1.84 0.0660

Center 2 0.0000 0.0000 0.0000 0.0000 . .

Sex F 0.1368 0.4402 -0.7261 0.9996 0.31 0.7560

Sex M 0.0000 0.0000 0.0000 0.0000 . .

Age -0.0188 0.0130 -0.0442 0.0067 -1.45 0.1480

Baseline 0 -1.8457 0.3460 -2.5238 -1.1676 -5.33 <.0001

Baseline 1 0.0000 0.0000 0.0000 0.0000 . .

Treatment and Baseline appear to be strongly influential, and Center might be marginally significant.

For comparison, a generalized linear mixed model is fitted to the data set to obtain subject-specific effects.
Specifically, consider the logistic regression model,

logit.E.yij jbi // D xij 0ˇ� C bi

where the random effect bi is normally distributed with zero mean and variance, Var.bi / D �2b .

The following statements use the GLIMMIX procedure to fit a generalized linear mixed model:

proc glimmix data=Resp;
class ID Treatment Center Sex Baseline;
model Outcome (desc)=Treatment Center Sex Age Baseline /

dist=binary solution;
random ID(Center);

run;
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Output 42.1.4 displays the parameter estimates for the fixed effects in the generalized linear mixed model.

Output 42.1.4 Parameter Estimates

The GLIMMIX ProcedureThe GLIMMIX Procedure

Solutions for Fixed Effects

Effect Treatment Sex Center Baseline Estimate
Standard

Error DF t Value Pr > |t|

Intercept 1.7936 0.6292 105 2.85 0.0053

Treatment A 1.4758 0.3898 333 3.79 0.0002

Treatment P 0 . . . .

Center 1 -0.7201 0.4051 105 -1.78 0.0784

Center 2 0 . . . .

Sex F 0.1732 0.5034 333 0.34 0.7310

Sex M 0 . . . .

Age -0.02011 0.01507 333 -1.33 0.1831

Baseline 0 -2.1343 0.3971 333 -5.38 <.0001

Baseline 1 0 . . . .

From Output 42.1.3 and Output 42.1.4, you can see that the parameter estimates from the marginal model
and the mixed-effects model differ. For example, the estimated treatment effects are 1.2654 and 1.4758 from
the marginal model and the mixed-effects model, respectively.

The interpretation of the model effects in the marginal and random models differs. For example, the estimated
treatment effect from the marginal model indicates that, on average, the odds of a good response for the
patients is e1:2654 D 3:5 times higher when they receive the active treatment versus the placebo. The
estimated treatment effect from the generalized linear mixed model indicates that an individual patient’s odds
of a good response is e1:4758 D 4:4 times higher when the patient receives the active treatment versus the
placebo.

The choice of the marginal model or a subject-specific model often depends on the goal of your analysis:
whether you are interested in population-averaged effects or subject-specific effects. For more information,
see Diggle et al. (2002); Fitzmaurice, Laird, and Ware (2011).

Example 42.2: Log-Linear Model for Count Data
The following example demonstrates how you can fit a GEE model to count data. The data are analyzed by
Diggle, Liang, and Zeger (1994). The response is the number of epileptic seizures, which was measured
at the end of each of eight two-week treatment periods over sixteen weeks. The first eight weeks were the
baseline period (during which no treatment was given), and the second eight weeks were the treatment period,
during which patients received either a placebo or the drug progabide. The question of scientific interest is
whether progabide is effective in reducing the rate of epileptic seizures.

The following DATA step creates the data set Seizure:

data Seizure;
input ID Count Visit Trt Age Weeks;
datalines;

104 11 0 0 31 8
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104 5 1 0 31 2
104 3 2 0 31 2
104 3 3 0 31 2
104 3 4 0 31 2
106 11 0 0 30 8

... more lines ...

236 12 0 1 37 8
236 1 1 1 37 2
236 4 2 1 37 2
236 3 3 1 37 2
236 2 4 1 37 2
;

The following DATA step creates a log time interval variable for use as an offset and an indicator variable for
whether the observation is for a baseline measurement or a visit measurement. Patient 207 is deleted as an
outlier, which was done in the Diggle et al. (2002) analysis:

data Seizure;
set Seizure;
if ID ne 207;
if Visit = 0 then do;

X1=0;
Ltime = log(8);

end;
else do;

X1=1;
Ltime=log(2);

end;
run;

Poisson regression is commonly used to model count data. In this example, the log-linear Poisson model is
specified by V.�/ D � (the Poisson variance function) and a log link function,

log.E.Yij // D ˇ0 C xi1ˇ1 C xi2ˇ2 C xi1xi2ˇ3 C log.tij /

where

Yij D number of epileptic seizures in interval j

tij D length of interval j

xi1 D

�
1 W weeks 8–16 (treatment)
0 W weeks 0–8 (baseline)

xi2 D

�
1 W progabide group
0 W placebo group

Because the visits represent repeated measurements, the responses from the same individual are correlated
and inferences need to take this into account. The correlations between the counts are modeled as rij D ˛,
i ¤ j (exchangeable correlations).
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In this model, the regression parameters are interpreted in terms of the log seizure rate that is displayed in
Table 42.11.

Table 42.11 Interpretation of Regression Parameters

Treatment Visit log.E.Yij /=tij /

Placebo Baseline ˇ0
1–4 ˇ0 C ˇ1

Progabide Baseline ˇ0 C ˇ2
1–4 ˇ0 C ˇ1 C ˇ2 C ˇ3

The difference between the log seizure rates in the pretreatment (baseline) period and the treatment periods is
ˇ1 for the placebo group and ˇ1 C ˇ3 for the progabide group. A value of ˇ3 < 0 indicates a reduction in
the seizure rate.

The following statements perform the analysis:

proc gee data = Seizure;
class ID Visit;
model Count = X1 Trt X1*Trt / dist=poisson link=log offset= Ltime;
repeated subject = ID / within = Visit type=unstr covb corrw;

run;

In the MODEL statement, Count is the response variable, and X1, Trt, and the interaction X1*Trt are the
explanatory variables. You request Poisson regression with the DIST=POISSON and the LINK=LOG options.
The offset variable is often used in Poisson regression to account for different exposures. In this case, the
OFFSET= option specifies Ltime as the offset variable representing different time intervals.

In the REPEATED statement, the SUBJECT= option indicates that the variable ID identifies the observations
from a single cluster, and the TYPE=UNSTR option specifies the unstructured working correlation structure.
The CORRW option requests that the working correlation matrix be displayed.

The “Model Information” table that is displayed in Output 42.2.1 provides information about the specified
model and the input data set.

Output 42.2.1 Model Information

The GEE ProcedureThe GEE Procedure

Model Information

Data Set WORK.SEIZURE

Distribution Poisson

Link Function Log

Dependent Variable Count

Offset Variable Ltime

Output 42.2.2 displays general information about the GEE model analysis.
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Output 42.2.2 GEE Model Information

GEE Model Information

Correlation Structure Unstructured

Within-Subject Effect Visit (5 levels)

Subject Effect ID (58 levels)

Number of Clusters 58

Correlation Matrix Dimension 5

Maximum Cluster Size 5

Minimum Cluster Size 5

Output 42.2.3 displays the parameter estimate covariance matrices, which are requested by the COVB option.
Both model-based and empirical covariances are produced.

Output 42.2.3 Covariance Matrices of Parameter Estimate

Covariance Matrix (Model-Based)

Prm1 Prm2 Prm3 Prm4

Prm1 0.01210 0.004902 -0.01210 -0.004902

Prm2 0.004902 0.006660 -0.004902 -0.006660

Prm3 -0.01210 -0.004902 0.02461 0.01299

Prm4 -0.004902 -0.006660 0.01299 0.01852

Covariance Matrix (Empirical)

Prm1 Prm2 Prm3 Prm4

Prm1 0.02597 -0.003069 -0.02597 0.003069

Prm2 -0.003069 0.008597 0.003069 -0.008597

Prm3 -0.02597 0.003069 0.03841 -0.006196

Prm4 0.003069 -0.008597 -0.006196 0.02237

The exchangeable working correlation matrix is displayed in Output 42.2.4. It shows that there are noticeable
correlations among the respective visits.

Output 42.2.4 Working Correlation Matrix

Working Correlation Matrix

Obs 1 Obs 2 Obs 3 Obs 4 Obs 5

Obs 1 1.0000 0.7920 0.7190 0.8111 0.6582

Obs 2 0.7920 1.0000 0.4859 0.6552 0.4566

Obs 3 0.7190 0.4859 1.0000 0.6988 0.4171

Obs 4 0.8111 0.6552 0.6988 1.0000 0.6464

Obs 5 0.6582 0.4566 0.4171 0.6464 1.0000

The parameter estimates table, shown in Output 42.2.5, contains parameter estimates, standard errors,
confidence intervals, Z scores, and p-values for the parameter estimates. Empirical standard error estimates
are used in this table.
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Output 42.2.5 Parameter Estimates Table

Parameter Estimates for Response Model

with Empirical Standard Error

Parameter Estimate
Standard

Error

95%
Confidence

Limits Z Pr > |Z|

Intercept 1.3309 0.1612 1.0151 1.6468 8.26 <.0001

X1 0.1128 0.0927 -0.0689 0.2945 1.22 0.2237

Trt -0.1034 0.1960 -0.4875 0.2807 -0.53 0.5978

X1*Trt -0.3162 0.1496 -0.6093 -0.0231 -2.11 0.0345

The estimate of ˇ3 is –0.3162, which indicates that progabide is effective in reducing the rate of epileptic
seizures.

Model fit criteria for the model are displayed in Output 42.2.6. These criteria are used in selecting selecting
regression models and working correlations.

Output 42.2.6 Model Fit Criteria

GEE Fit
Criteria

QIC 512.5723

QICu 499.4873

Example 42.3: Weighted GEE for Longitudinal Data That Have Missing Values
This example shows how you can use the GEE procedure to analyze longitudinal data that contain missing
values. The data set is taken from a longitudinal study of women who used contraception during four
consecutive months (Fitzmaurice, Laird, and Ware 2011). In this study, 1,151 women were randomly
assigned to one of two treatments: 100 mg or 150 mg of depot-medroxyprogesterone acetate (DPMA). The
response variable indicates their amenorrhea status in each of the four months. The question of interest is
whether the treatment has an effect on the rate of the amenorrhea over time. The example follows the analysis
done by Fitzmaurice, Laird, and Ware (2011).

The following statements create the data set Amenorrhea:

data Amenorrhea;
input ID Dose Time Y@@;
datalines;
1 0 1 0
1 0 2 .
1 0 3 .
1 0 4 .

... more lines ...

1150 1 4 1
1151 1 1 1
1151 1 2 1
1151 1 3 1
1151 1 4 1
;
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The variables in the data are as follows:

• ID: patient’s ID

• Y: indicator of amenorrhea status (1 for amenorrhea; 0 otherwise)

• Time: four consecutive months with values 0, 1, 2, and 3

• Dose: 0 for treatment with 100 mg injection; 1 for treatment with 150 mg injection

To prepare for the analysis, two additional variables are created:

• Prevy: the patient’s amenorrhea status in the previous month. For the first month, this is set to
an arbitrary nonmissing value (0 here). In this release of PROC GEE, this arbitrary value must
be nonmissing and valid for the response variable—for example, it should be 0 or 1 for a binary
response—but it does not otherwise affect the results.

• Ctime: a copy of Time, which you can include in the marginal model as a continuous effect and also in
the missingness model as a classification effect

The following statements add these two variables to the data set:

data Amenorrhea;
set Amenorrhea;
by ID;
Prevy=lag(Y);
if first.id then Prevy=0;
Time=Time-1;
Ctime=Time;

run;

Suppose yij denotes the amenorrhea status of woman i at the jth visit, j D 1; : : : ; 4, and suppose �ij D
P.yij D 1/ denotes the average rate of high dosage. To explore whether the treatment has an effect on the
rate of amenorrhea over time, consider the following marginal model:

logit.�ij / D ˇ0 C ˇ1timeij C ˇ2time2ij C ˇ3dosei C ˇ4dosei � timeC ˇ5dosei � time2

Of the 1,151 women in this study, 576 are from the low-dose group, and 575 are from the high-dose group.
For the low-dose group, 62.67% of the women completed the trial; for the high-dose group, 61.39% of the
women completed this trial. Thus, both groups have substantial dropouts.

To obtain the weights for the weighted GEE analysis, consider the following logistic regression model for
missingness:

logitp.rij D 1jrij�1 D 1; dosei ; timeij ; yij�1/ D˛0 C ˛1I.timeij D 2/C ˛2I.timeij D 3/
C ˛3dosei C ˛4yij�1 C ˛5dosei � yij�1
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The following statements use the observation-specific weighted GEE method and the specified response and
missingness models to analyze the data:

ods graphics on;
proc gee data=Amenorrhea desc plots=histogram;

class ID Ctime;
missmodel Ctime Prevy Dose Dose*Prevy / type=obslevel;
model Y = Time Dose Time*Time Dose*Time Dose*Time*Time / dist=bin;
repeated subject=ID / within=Ctime corr=cs;

run;

The MODEL statement specifies logistic regression and the model effects. The DESCEND option in the
PROC GEE statement models the probability that Y = 1.

The REPEATED statement requests GEE analysis. The SUBJECT=ID option specifies that observations
from the same subject are identified by ID. The TYPE=CS option specifies the compound symmetric working
correlation structure.

The MISSMODEL statement requests the weighted GEE analysis. It specifies the logistic regression model
for missingness. Note that no response variable is needed in weighted GEE analysis to specify a missingness
model because the response is completely determined by the response variable in the MODEL statement.
Without the MISSMODEL statement, PROC GEE would use the standard GEE approach, the same as
provided by PROC GENMOD. The TYPE=OBSLEVEL option requests observation-specific weights.

Output 42.3.1 shows the parameter estimates for the missingness model. The estimate of ˛4 is –0.4514 with a
p-value of 0.0053, which suggests that the possibility that a participant will drop out is related to her previous
amenorrhea status. This suggests that the assumption of MAR is more appropriate than that of MCAR.

Output 42.3.1 Parameter Estimates for the Missingness Model

Parameter Estimates for Missingness Model

Parameter Estimate
Standard

Error

95%
Confidence

Limits Z Pr > |Z|

Intercept 2.3967 0.1438 2.1149 2.6785 16.67 <.0001

Ctime 0 0.0000 0.0000 0.0000 0.0000 . .

Ctime 1 -0.7286 0.1439 -1.0106 -0.4466 -5.06 <.0001

Ctime 2 -0.5919 0.1469 -0.8798 -0.3040 -4.03 <.0001

Ctime 3 0.0000 0.0000 0.0000 0.0000 . .

Prevy -0.4514 0.1619 -0.7687 -0.1341 -2.79 0.0053

Dose 0.0680 0.1313 -0.1893 0.3253 0.52 0.6046

Prevy*Dose -0.2381 0.2196 -0.6685 0.1923 -1.08 0.2782

Output 42.3.2 displays the results of the weighted GEE analysis.
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Output 42.3.2 Parameter Estimates for Amenorrhea Data Analysis Using Weighted GEE

The GEE ProcedureThe GEE Procedure

Parameter Estimates for Response Model

with Empirical Standard Error

Parameter Estimate
Standard

Error

95%
Confidence

Limits Z Pr > |Z|

Intercept -1.4965 0.1072 -1.7067 -1.2863 -13.95 <.0001

Time 0.5379 0.1334 0.2764 0.7994 4.03 <.0001

Dose 0.1061 0.1491 -0.1861 0.3983 0.71 0.4767

Time*Time -0.0037 0.0405 -0.0831 0.0757 -0.09 0.9275

Dose*Time 0.4092 0.1903 0.0362 0.7823 2.15 0.0315

Dose*Time*Time -0.1264 0.0577 -0.2395 -0.0134 -2.19 0.0284

The estimate of ˇ4 (the parameter estimate for the Dose*Time interaction) is 0.4092, which indicates that the
change of amenorrhea rate over time depends on the dose of DMPA. Specifically, for women in the low-dose
group, the amenorrhea rates �ij at the four consecutive time intervals are 0.1830, 0.2764, 0.3928, and 0.5210
and for women in the high-dose group, the amenorrhea rate are 0.1997, 0.3609, 0.4963, and 0.5701. In other
words, the amenorrhea rate increases over time for both treatments, and the rates of increase are slightly
different.

You can request subject-level weights by specifying the TYPE=SUBLEVEL option. The results (not
shown here) from the subject-level weighted method are similar to the results from the observation-level
weighted method. Both of the weighted GEE methods provide unbiased regression parameter estimates if the
missingness model is specified correctly. Preisser, Lohman, and Rathouz (2002) note that the observation-
level weighted GEE produces more efficient estimates than the cluster-level weighted GEE produces for
incomplete longitudinal binary data.

Large weights can have impacts on the parameter estimates. Consequently, it is recommended that you check
the distribution of the estimated weights. If there are large weights, you might consider trimming them
by specifying the MAXWEIGHT= option in the MISSMODEL statement. Output 42.3.3 shows that the
estimated weights in this example range between 1 and 2.1, so no trimming is needed.
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Overview: GENMOD Procedure
The GENMOD procedure fits generalized linear models, as defined by Nelder and Wedderburn (1972).
The class of generalized linear models is an extension of traditional linear models that allows the mean
of a population to depend on a linear predictor through a nonlinear link function and allows the response
probability distribution to be any member of an exponential family of distributions. Many widely used
statistical models are generalized linear models. These include classical linear models with normal errors,
logistic and probit models for binary data, and log-linear models for multinomial data. Many other useful
statistical models can be formulated as generalized linear models by the selection of an appropriate link
function and response probability distribution.

See McCullagh and Nelder (1989) for a discussion of statistical modeling using generalized linear models.
The books by Aitkin et al. (1989) and Dobson (1990) are also excellent references with many examples of
applications of generalized linear models. Firth (1991) provides an overview of generalized linear models.
Myers, Montgomery, and Vining (2002) provide applications of generalized linear models in the engineering
and physical sciences. Collett (2003) and Hilbe (2009) provide comprehensive accounts of generalized linear
models when the responses are binary.

The analysis of correlated data arising from repeated measurements when the measurements are assumed to
be multivariate normal has been studied extensively. However, the normality assumption might not always be
reasonable; for example, different methodology must be used in the data analysis when the responses are
discrete and correlated. Generalized estimating equations (GEEs) provide a practical method with reasonable
statistical efficiency to analyze such data.

Liang and Zeger (1986) introduced GEEs as a method of dealing with correlated data when, except for the
correlation among responses, the data can be modeled as a generalized linear model. For example, correlated
binary and count data in many cases can be modeled in this way.

The GENMOD procedure can fit models to correlated responses by the GEE method. You can use PROC
GENMOD to fit models with most of the correlation structures from Liang and Zeger (1986) by using GEEs.
For more details on GEEs, see Hardin and Hilbe (2003); Diggle, Liang, and Zeger (1994); Lipsitz et al.
(1994).

Bayesian analysis of generalized linear models can be requested by using the BAYES statement in the
GENMOD procedure. In Bayesian analysis, the model parameters are treated as random variables, and
inference about parameters is based on the posterior distribution of the parameters, given the data. The
posterior distribution is obtained using Bayes’ theorem as the likelihood function of the data weighted
with a prior distribution. The prior distribution enables you to incorporate knowledge or experience of
the likely range of values of the parameters of interest into the analysis. If you have no prior knowledge
of the parameter values, you can use a noninformative prior distribution, and the results of the Bayesian
analysis will be very similar to a classical analysis based on maximum likelihood. A closed form of the
posterior distribution is often not feasible, and a Markov chain Monte Carlo method by Gibbs sampling is
used to simulate samples from the posterior distribution. See Chapter 7, “Introduction to Bayesian Analysis
Procedures,” for an introduction to the basic concepts of Bayesian statistics. Also see the section “Bayesian
Analysis: Advantages and Disadvantages” on page 130 in Chapter 7, “Introduction to Bayesian Analysis
Procedures,” for a discussion of the advantages and disadvantages of Bayesian analysis. See Ibrahim, Chen,
and Sinha (2001) for a detailed description of Bayesian analysis.

In a Bayesian analysis, a Gibbs chain of samples from the posterior distribution is generated for the
model parameters. Summary statistics (mean, standard deviation, quartiles, HPD and credible intervals,
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correlation matrix) and convergence diagnostics (autocorrelations; Gelman-Rubin, Geweke, Raftery-Lewis,
and Heidelberger and Welch tests; the effective sample size; and Monte Carlo standard errors) are computed
for each parameter, as well as the correlation matrix and the covariance matrix of the posterior sample. Trace
plots, posterior density plots, and autocorrelation function plots that are created using ODS Graphics are also
provided for each parameter.

The GENMOD procedure enables you to perform exact logistic regression, also called exact conditional
binary logistic regression, and exact Poisson regression, also called exact conditional Poisson regression, by
specifying one or more EXACT statements. You can test individual parameters or conduct a joint test for
several parameters. The procedure computes two exact tests: the exact conditional score test and the exact
conditional probability test. You can request exact estimation of specific parameters and corresponding odds
ratios where appropriate. Point estimates, standard errors, and confidence intervals are provided.

The GENMOD procedure uses ODS Graphics to create graphs as part of its output. For general information
about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.”

What Is a Generalized Linear Model?
A traditional linear model is of the form

yi D x0iˇ C "i

where yi is the response variable for the ith observation. The quantity xi is a column vector of covariates, or
explanatory variables, for observation i that is known from the experimental setting and is considered to be
fixed, or nonrandom. The vector of unknown coefficients ˇ is estimated by a least squares fit to the data y.
The "i are assumed to be independent, normal random variables with zero mean and constant variance. The
expected value of yi , denoted by �i , is

�i D x0iˇ

While traditional linear models are used extensively in statistical data analysis, there are types of problems
such as the following for which they are not appropriate.

• It might not be reasonable to assume that data are normally distributed. For example, the normal
distribution (which is continuous) might not be adequate for modeling counts or measured proportions
that are considered to be discrete.

• If the mean of the data is naturally restricted to a range of values, the traditional linear model might
not be appropriate, since the linear predictor x0iˇ can take on any value. For example, the mean of a
measured proportion is between 0 and 1, but the linear predictor of the mean in a traditional linear
model is not restricted to this range.

• It might not be realistic to assume that the variance of the data is constant for all observations. For
example, it is not unusual to observe data where the variance increases with the mean of the data.

A generalized linear model extends the traditional linear model and is therefore applicable to a wider range
of data analysis problems. A generalized linear model consists of the following components:

• The linear component is defined just as it is for traditional linear models:

�i D x0iˇ
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• A monotonic differentiable link function g describes how the expected value of yi is related to the
linear predictor �i :

g.�i / D x0iˇ

• The response variables yi are independent for i = 1, 2,. . . and have a probability distribution from an
exponential family. This implies that the variance of the response depends on the mean � through a
variance function V:

Var.yi / D
�V.�i /

wi

where � is a constant and wi is a known weight for each observation. The dispersion parameter � is
either known (for example, for the binomial or Poisson distribution, � D 1) or must be estimated.

See the section “Response Probability Distributions” on page 2935 for the form of a probability distribution
from the exponential family of distributions.

As in the case of traditional linear models, fitted generalized linear models can be summarized through
statistics such as parameter estimates, their standard errors, and goodness-of-fit statistics. You can also
make statistical inference about the parameters by using confidence intervals and hypothesis tests. However,
specific inference procedures are usually based on asymptotic considerations, since exact distribution theory
is not available or is not practical for all generalized linear models.

Examples of Generalized Linear Models
You construct a generalized linear model by deciding on response and explanatory variables for your data and
choosing an appropriate link function and response probability distribution. Some examples of generalized
linear models follow. Explanatory variables can be any combination of continuous variables, classification
variables, and interactions.

Traditional Linear Model

• response variable: a continuous variable

• distribution: normal

• link function: identity, g.�/ D �

Logistic Regression

• response variable: a proportion

• distribution: binomial

• link function: logit, g.�/ D log
�

�

1 � �

�
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Poisson Regression in Log-Linear Model

• response variable: a count

• distribution: Poisson

• link function: log, g.�/ D log.�/

Gamma Model with Log Link

• response variable: a positive, continuous variable

• distribution: gamma

• link function: log, g.�/ D log.�/

The GENMOD Procedure
The GENMOD procedure fits a generalized linear model to the data by maximum likelihood estimation of the
parameter vector ˇ. There is, in general, no closed form solution for the maximum likelihood estimates of the
parameters. The GENMOD procedure estimates the parameters of the model numerically through an iterative
fitting process. The dispersion parameter � is also estimated by maximum likelihood or, optionally, by the
residual deviance or by Pearson’s chi-square divided by the degrees of freedom. Covariances, standard errors,
and p-values are computed for the estimated parameters based on the asymptotic normality of maximum
likelihood estimators. A number of popular link functions and probability distributions are available in the
GENMOD procedure. The built-in link functions are as follows:

• identity: g.�/ D �

• logit: g.�/ D log.�=.1 � �//

• probit: g.�/ D ˆ�1.�/, where ˆ is the standard normal cumulative distribution function

• power: g.�/ D
�
�� if � ¤ 0
log.�/ if � D 0

• log: g.�/ D log.�/

• complementary log-log: g.�/ D log.� log.1 � �//

The available distributions and associated variance functions are as follows:

• normal: V.�/ D 1

• binomial (proportion): V.�/ D �.1 � �/

• Poisson: V.�/ D �

• gamma: V.�/ D �2
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• inverse Gaussian: V.�/ D �3

• negative binomial: V.�/ D �C k�2

• geometric: V.�/ D �C �2

• multinomial

• zero-inflated Poisson

• zero-inflated negative binomial

The negative binomial and zero-inflated negative binomial are distributions with an additional parameter k in
the variance function. PROC GENMOD estimates k by maximum likelihood, or you can optionally set it to
a constant value. For discussions of the negative binomial distribution, see McCullagh and Nelder (1989);
Hilbe (1994, 2007); Long (1997); Cameron and Trivedi (1998); Lawless (1987).

The multinomial distribution is sometimes used to model a response that can take values from a number
of categories. The binomial is a special case of the multinomial with two categories. See the section
“Multinomial Models” on page 2954 and McCullagh and Nelder (1989, Chapter 5) for a description of the
multinomial distribution.

The zero-inflated Poisson and zero-inflated negative binomial are included in PROC GENMOD even though
they are not generalized linear models. They are useful extensions of generalized linear models. See the
section “Zero-Inflated Models” on page 2954 for information about the zero-inflated distributions. Models
for data with correlated responses fit by the GEE method are not available for zero-inflated distributions.

In addition, you can easily define your own link functions or distributions through DATA step programming
statements used within the procedure.

An important aspect of generalized linear modeling is the selection of explanatory variables in the model.
Changes in goodness-of-fit statistics are often used to evaluate the contribution of subsets of explanatory
variables to a particular model. The deviance, defined to be twice the difference between the maximum
attainable log likelihood and the log likelihood of the model under consideration, is often used as a measure
of goodness of fit. The maximum attainable log likelihood is achieved with a model that has a parameter for
every observation. See the section “Goodness of Fit” on page 2942 for formulas for the deviance.

One strategy for variable selection is to fit a sequence of models, beginning with a simple model with only an
intercept term, and then to include one additional explanatory variable in each successive model. You can
measure the importance of the additional explanatory variable by the difference in deviances or fitted log
likelihoods between successive models. Asymptotic tests computed by the GENMOD procedure enable you
to assess the statistical significance of the additional term.

The GENMOD procedure enables you to fit a sequence of models, up through a maximum number of terms
specified in a MODEL statement. A table summarizes twice the difference in log likelihoods between each
successive pair of models. This is called a Type 1 analysis in the GENMOD procedure, because it is analogous
to Type I (sequential) sums of squares in the GLM procedure. As with the PROC GLM Type I sums of
squares, the results from this process depend on the order in which the model terms are fit.

The GENMOD procedure also generates a Type 3 analysis analogous to Type III sums of squares in the GLM
procedure. A Type 3 analysis does not depend on the order in which the terms for the model are specified. A
GENMOD procedure Type 3 analysis consists of specifying a model and computing likelihood ratio statistics
for Type III contrasts for each term in the model. The contrasts are defined in the same way as they are in the
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GLM procedure. The GENMOD procedure optionally computes Wald statistics for Type III contrasts. This
is computationally less expensive than likelihood ratio statistics, but it is thought to be less accurate because
the specified significance level of hypothesis tests based on the Wald statistic might not be as close to the
actual significance level as it is for likelihood ratio tests.

A Type 3 analysis generalizes the use of Type III estimable functions in linear models. Briefly, a Type III
estimable function (contrast) for an effect is a linear function of the model parameters that involves the
parameters of the effect and any interactions with that effect. A test of the hypothesis that the Type III
contrast for a main effect is equal to 0 is intended to test the significance of the main effect in the presence
of interactions. See Chapter 45, “The GLM Procedure,” and Chapter 15, “The Four Types of Estimable
Functions,” for more information about Type III estimable functions. Also see Littell, Freund, and Spector
(1991).

Additional features of the GENMOD procedure include the following:

• likelihood ratio statistics for user-defined contrasts—that is, linear functions of the parameters and
p-values based on their asymptotic chi-square distributions

• estimated values, standard errors, and confidence limits for user-defined contrasts and least squares
means

• ability to create a SAS data set corresponding to most tables displayed by the procedure (see Table 43.12
and Table 43.13)

• confidence intervals for model parameters based on either the profile likelihood function or asymptotic
normality

• syntax similar to that of PROC GLM for the specification of the response and model effects, including
interaction terms and automatic coding of classification variables

• ability to fit GEE models for clustered response data

• ability to perform Bayesian analysis by Gibbs sampling

Getting Started: GENMOD Procedure

Poisson Regression
You can use the GENMOD procedure to fit a variety of statistical models. A typical use of PROC GENMOD
is to perform Poisson regression.

You can use the Poisson distribution to model the distribution of cell counts in a multiway contingency
table. Aitkin et al. (1989) have used this method to model insurance claims data. Suppose the following
hypothetical insurance claims data are classified by two factors: age group (with two levels) and car type
(with three levels).
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data insure;
input n c car$ age;
ln = log(n);
datalines;

500 42 small 1
1200 37 medium 1
100 1 large 1
400 101 small 2
500 73 medium 2
300 14 large 2
;

In the preceding data set, the variable n represents the number of insurance policyholders and the variable c
represents the number of insurance claims. The variable car is the type of car involved (classified into three
groups) and the variable age is the age group of a policyholder (classified into two groups).

You can use PROC GENMOD to perform a Poisson regression analysis of these data with a log link function.
This type of model is sometimes called a log-linear model.

Assume that the number of claims c has a Poisson probability distribution and that its mean, �i , is related to
the factors car and age for observation i by

log.�i / D log.ni /C x0iˇ
D log.ni /C ˇ0 C

cari .1/ˇ1 C cari .2/ˇ2 C cari .3/ˇ3 C

agei .1/ˇ4 C agei .2/ˇ5

The indicator variables cari .j / and agei .j / are associated with the jth level of the variables car and age for
observation i

cari .j / D
�
1 if car D j
0 if car ¤ j

The ˇs are unknown parameters to be estimated by the procedure. The logarithm of the variable n is used as
an offset—that is, a regression variable with a constant coefficient of 1 for each observation. A log-linear
relationship between the mean and the factors car and age is specified by the log link function. The log link
function ensures that the mean number of insurance claims for each car and age group predicted from the
fitted model is positive.

The following statements invoke the GENMOD procedure to perform this analysis:

proc genmod data=insure;
class car age;
model c = car age / dist = poisson

link = log
offset = ln;

run;
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The variables car and age are specified as CLASS variables so that PROC GENMOD automatically generates
the indicator variables associated with car and age.

The MODEL statement specifies c as the response variable and car and age as explanatory variables. An
intercept term is included by default. Thus, the model matrix X (the matrix that has as its ith row the transpose
of the covariate vector for the ith observation) consists of a column of 1s representing the intercept term and
columns of 0s and 1s derived from indicator variables representing the levels of the car and age variables.

That is, the model matrix is

X D

26666664

1 1 0 0 1 0

1 0 1 0 1 0

1 0 0 1 1 0

1 1 0 0 0 1

1 0 1 0 0 1

1 0 0 1 0 1

37777775
where the first column corresponds to the intercept, the next three columns correspond to the variable car,
and the last two columns correspond to the variable age.

The response distribution is specified as Poisson, and the link function is chosen to be log. That is, the
Poisson mean parameter � is related to the linear predictor by

log.�/ D x0iˇ

The logarithm of n is specified as an offset variable, as is common in this type of analysis. In this case, the
offset variable serves to normalize the fitted cell means to a per-policyholder basis, since the total number of
claims, not individual policyholder claims, is observed. PROC GENMOD produces the following default
output from the preceding statements.

Figure 43.1 Model Information

The GENMOD ProcedureThe GENMOD Procedure

Model Information

Data Set WORK.INSURE

Distribution Poisson

Link Function Log

Dependent Variable c

Offset Variable ln
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The “Model Information” table displayed in Figure 43.1 provides information about the specified model and
the input data set.

Figure 43.2 Class Level Information

Class Level Information

Class Levels Values

car 3 large medium small

age 2 1 2

Figure 43.2 displays the “Class Level Information” table, which identifies the levels of the classification
variables that are used in the model. Note that car is a character variable, and the values are sorted in
alphabetical order. This is the default sort order, but you can select different sort orders with the ORDER=
option in the PROC GENMOD statement.

Figure 43.3 Goodness of Fit

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 2 2.8207 1.4103

Scaled Deviance 2 2.8207 1.4103

Pearson Chi-Square 2 2.8416 1.4208

Scaled Pearson X2 2 2.8416 1.4208

Log Likelihood 837.4533

Full Log Likelihood -16.4638

AIC (smaller is better) 40.9276

AICC (smaller is better) 80.9276

BIC (smaller is better) 40.0946

The “Criteria For Assessing Goodness Of Fit” table displayed in Figure 43.3 contains statistics that summarize
the fit of the specified model. These statistics are helpful in judging the adequacy of a model and in comparing
it with other models under consideration. If you compare the deviance of 2.8207 with its asymptotic chi-
square with 2 degrees of freedom distribution, you find that the p-value is 0.24. This indicates that the
specified model fits the data reasonably well.

Figure 43.4 Analysis of Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

Wald 95%
Confidence

Limits
Wald

Chi-Square Pr > ChiSq

Intercept 1 -1.3168 0.0903 -1.4937 -1.1398 212.73 <.0001

car large 1 -1.7643 0.2724 -2.2981 -1.2304 41.96 <.0001

car medium 1 -0.6928 0.1282 -0.9441 -0.4414 29.18 <.0001

car small 0 0.0000 0.0000 0.0000 0.0000 . .

age 1 1 -1.3199 0.1359 -1.5863 -1.0536 94.34 <.0001

age 2 0 0.0000 0.0000 0.0000 0.0000 . .

Scale 0 1.0000 0.0000 1.0000 1.0000

Note: The scale parameter was held fixed.
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Figure 43.4 displays the “Analysis Of Parameter Estimates” table, which summarizes the results of the
iterative parameter estimation process. For each parameter in the model, PROC GENMOD displays columns
with the parameter name, the degrees of freedom associated with the parameter, the estimated parameter value,
the standard error of the parameter estimate, the confidence intervals, and the Wald chi-square statistic and
associated p-value for testing the significance of the parameter to the model. If a column of the model matrix
corresponding to a parameter is found to be linearly dependent, or aliased, with columns corresponding to
parameters preceding it in the model, PROC GENMOD assigns it zero degrees of freedom and displays a
value of zero for both the parameter estimate and its standard error.

This table includes a row for a scale parameter, even though there is no free scale parameter in the Poisson
distribution. See the section “Response Probability Distributions” on page 2935 for the form of the Poisson
probability distribution. PROC GENMOD allows the specification of a scale parameter to fit overdispersed
Poisson and binomial distributions. In such cases, the SCALE row indicates the value of the overdispersion
scale parameter used in adjusting output statistics. See the section “Overdispersion” on page 2945 for more
about overdispersion and the meaning of the SCALE parameter output by the GENMOD procedure. PROC
GENMOD displays a note indicating that the scale parameter is fixed—that is, not estimated by the iterative
fitting process.

It is usually of interest to assess the importance of the main effects in the model. Type 1 and Type 3 analyses
generate statistical tests for the significance of these effects.

You can request these analyses with the TYPE1 and TYPE3 options in the MODEL statement, as follows:

proc genmod data=insure;
class car age;
model c = car age / dist = poisson

link = log
offset = ln
type1
type3;

run;

The results of these analyses are summarized in the figures that follow.

Figure 43.5 Type 1 Analysis

The GENMOD ProcedureThe GENMOD Procedure

LR Statistics For Type 1 Analysis

Source Deviance DF Chi-Square Pr > ChiSq

Intercept 175.1536

car 107.4620 2 67.69 <.0001

age 2.8207 1 104.64 <.0001
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In the table for Type 1 analysis displayed in Figure 43.5, each entry in the deviance column represents the
deviance for the model containing the effect for that row and all effects preceding it in the table. For example,
the deviance corresponding to car in the table is the deviance of the model containing an intercept and car.
As more terms are included in the model, the deviance decreases.

Entries in the chi-square column are likelihood ratio statistics for testing the significance of the effect added
to the model containing all the preceding effects. The chi-square value of 67.69 for car represents twice the
difference in log likelihoods between fitting a model with only an intercept term and a model with an intercept
and car. Since the scale parameter is set to 1 in this analysis, this is equal to the difference in deviances.
Since two additional parameters are involved, this statistic can be compared with a chi-square distribution
with two degrees of freedom. The resulting p-value (labeled Pr>Chi) of less than 0.0001 indicates that this
variable is highly significant. Similarly, the chi-square value of 104.64 for age represents the difference in
log likelihoods between the model with the intercept and car and the model with the intercept, car, and age.
This effect is also highly significant, as indicated by the small p-value.

Figure 43.6 Type 3 Analysis

LR Statistics For Type 3 Analysis

Source DF Chi-Square Pr > ChiSq

car 2 72.82 <.0001

age 1 104.64 <.0001

The Type 3 analysis results in the same conclusions as the Type 1 analysis. The Type 3 chi-square value
for the car variable, for example, is twice the difference between the log likelihood for the model with the
variables Intercept, car, and age included and the log likelihood for the model with the car variable excluded.
The hypothesis tested in this case is the significance of the variable car given that the variable age is in the
model. In other words, it tests the additional contribution of car in the model.

The values of the Type 3 likelihood ratio statistics for the car and age variables indicate that both of these
factors are highly significant in determining the claims performance of the insurance policyholders.

Bayesian Analysis of a Linear Regression Model
Neter et al. (1996) describe a study of 54 patients undergoing a certain kind of liver operation in a surgical
unit. The data set Surg contains survival time and certain covariates for each patient. Observations for the
first 20 patients in the data set Surg are shown in Figure 43.7.
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Figure 43.7 Surgical Unit Data

Obs x1 x2 x3 x4 y logy Logx1

1 6.7 62 81 2.59 200 2.3010 1.90211

2 5.1 59 66 1.70 101 2.0043 1.62924

3 7.4 57 83 2.16 204 2.3096 2.00148

4 6.5 73 41 2.01 101 2.0043 1.87180

5 7.8 65 115 4.30 509 2.7067 2.05412

6 5.8 38 72 1.42 80 1.9031 1.75786

7 5.7 46 63 1.91 80 1.9031 1.74047

8 3.7 68 81 2.57 127 2.1038 1.30833

9 6.0 67 93 2.50 202 2.3054 1.79176

10 3.7 76 94 2.40 203 2.3075 1.30833

11 6.3 84 83 4.13 329 2.5172 1.84055

12 6.7 51 43 1.86 65 1.8129 1.90211

13 5.8 96 114 3.95 830 2.9191 1.75786

14 5.8 83 88 3.95 330 2.5185 1.75786

15 7.7 62 67 3.40 168 2.2253 2.04122

16 7.4 74 68 2.40 217 2.3365 2.00148

17 6.0 85 28 2.98 87 1.9395 1.79176

18 3.7 51 41 1.55 34 1.5315 1.30833

19 7.3 68 74 3.56 215 2.3324 1.98787

20 5.6 57 87 3.02 172 2.2355 1.72277

Consider the model

Y D ˇ0 C ˇ1LogX1C ˇ2X2C ˇ3X3C ˇ4X4C �

where Y is the survival time, LogX1 is log(blood-clotting score), X2 is a prognostic index, X3 is an enzyme
function test score, X4 is a liver function test score, and � is an N.0; �2/ error term.

A question of scientific interest is whether blood clotting score has a positive effect on survival time. Using
PROC GENMOD, you can obtain a maximum likelihood estimate of the coefficient and construct a null
point hypothesis to test whether ˇ1 is equal to 0. However, if you are interested in finding the probability that
the coefficient is positive, Bayesian analysis offers a convenient alternative. You can use Bayesian analysis to
directly estimate the conditional probability, Pr.ˇ1 > 0jY/, using the posterior distribution samples, which
are produced as part of the output by PROC GENMOD.

The example that follows shows how to use PROC GENMOD to carry out a Bayesian analysis of the linear
model with a normal error term. The SEED= option is specified to maintain reproducibility; no other options
are specified in the BAYES statement. By default, a uniform prior distribution is assumed on the regression
coefficients. The uniform prior is a flat prior on the real line with a distribution that reflects ignorance of the
location of the parameter, placing equal likelihood on all possible values the regression coefficient can take.
Using the uniform prior in the following example, you would expect the Bayesian estimates to resemble
the classical results of maximizing the likelihood. If you can elicit an informative prior distribution for the
regression coefficients, you should use the COEFFPRIOR= option to specify it. A default noninformative
gamma prior is used for the scale parameter � .

You should make sure that the posterior distribution samples have achieved convergence before using them
for Bayesian inference. PROC GENMOD produces three convergence diagnostics by default. If ODS
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Graphics is enabled as specified in the following SAS statements, diagnostic plots are also displayed. See
the section “Assessing Markov Chain Convergence” on page 137 in Chapter 7, “Introduction to Bayesian
Analysis Procedures,” for more information about convergence diagnostics and their interpretation.

Summary statistics of the posterior distribution samples are produced by default. However, these statistics
might not be sufficient for carrying out your Bayesian inference, and further processing of the posterior sam-
ples might be necessary. The following SAS statements request the Bayesian analysis, and the OUTPOST=
option saves the samples in the SAS data set PostSurg for further processing:

proc genmod data=Surg;
model y = Logx1 X2 X3 X4 / dist=normal;
bayes seed=1 OutPost=PostSurg;

run;

The results of this analysis are shown in the following figures.

The “Model Information” table in Figure 43.8 summarizes information about the model you fit and the size
of the simulation.

Figure 43.8 Model Information

The GENMOD Procedure

Bayesian Analysis

The GENMOD Procedure

Bayesian Analysis

Model Information

Data Set WORK.SURG

Burn-In Size 2000

MC Sample Size 10000

Thinning 1

Sampling Algorithm Conjugate

Distribution Normal

Link Function Identity

Dependent Variable y Survival Time

The “Analysis of Maximum Likelihood Parameter Estimates” table in Figure 43.9 summarizes maximum
likelihood estimates of the model parameters.

Figure 43.9 Maximum Likelihood Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error
Wald 95%

Confidence Limits

Intercept 1 -730.559 85.4333 -898.005 -563.112

Logx1 1 171.8758 38.2250 96.9561 246.7954

x2 1 4.3019 0.5566 3.2109 5.3929

x3 1 4.0309 0.4996 3.0517 5.0100

x4 1 18.1377 12.0721 -5.5232 41.7986

Scale 1 59.8591 5.7599 49.5705 72.2832

Note: The scale parameter was estimated by maximum likelihood.
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Since no prior distributions for the regression coefficients were specified, the default noninformative uniform
distributions shown in the “Uniform Prior for Regression Coefficients” table in Figure 43.10 are used.
Noninformative priors are appropriate if you have no prior knowledge of the likely range of values of
the parameters, and if you want to make probability statements about the parameters or functions of the
parameters. See, for example, Ibrahim, Chen, and Sinha (2001) for more information about choosing prior
distributions.

Figure 43.10 Regression Coefficient Priors

The GENMOD Procedure

Bayesian Analysis

The GENMOD Procedure

Bayesian Analysis

Uniform Prior for
Regression
Coefficients

Parameter Prior

Intercept Constant

Logx1 Constant

x2 Constant

x3 Constant

x4 Constant

The default noninformative improper prior distribution for the normal dispersion parameter is shown in the
“Independent Prior Distributions for Model Parameters” table in Figure 43.11.

Figure 43.11 Scale Parameter Prior

Independent Prior
Distributions for Model

Parameters

Parameter
Prior
Distribution

Dispersion Improper

By default, the maximum likelihood estimates of the regression parameters are used as the starting values for
the simulation when noninformative prior distributions are used. These are listed in the “Initial Values and
Seeds” table in Figure 43.12.

Figure 43.12 MCMC Initial Values and Seeds

Initial Values of the Chain

Chain Seed Intercept Logx1 x2 x3 x4 Dispersion

1 1 -730.559 171.8758 4.301896 4.030878 18.1377 3449.176

Summary statistics for the posterior sample are displayed in the “Fit Statistics,” “Descriptive Statistics for the
Posterior Sample,” “Interval Statistics for the Posterior Sample,” and “Posterior Correlation Matrix” tables in
Figure 43.13, Figure 43.14, Figure 43.15, and Figure 43.16, respectively.
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Figure 43.13 Fit Statistics

Fit Statistics

DIC (smaller is better) 607.796

pD (effective number of parameters) 6.062

Figure 43.14 Descriptive Statistics
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Bayesian Analysis

Posterior Summaries

Percentiles

Parameter N Mean
Standard
Deviation 25% 50% 75%

Intercept 10000 -730.0 91.2102 -789.6 -729.6 -670.5

Logx1 10000 171.7 40.6455 144.2 171.6 198.6

x2 10000 4.2988 0.5952 3.9029 4.2919 4.6903

x3 10000 4.0308 0.5359 3.6641 4.0267 4.3921

x4 10000 18.0858 12.9123 9.4471 18.1230 26.8141

Dispersion 10000 4113.1 867.7 3497.2 3995.9 4606.4

Figure 43.15 Interval Statistics

Posterior Intervals

Parameter Alpha
Equal-Tail

Interval HPD Interval

Intercept 0.050 -908.6 -549.8 -906.9 -549.1

Logx1 0.050 91.9723 252.5 94.1279 254.0

x2 0.050 3.1091 5.4778 3.1705 5.5167

x3 0.050 2.9803 5.1031 2.9227 5.0343

x4 0.050 -7.3043 43.6387 -8.8440 41.8229

Dispersion 0.050 2741.5 6096.6 2540.1 5810.0

Figure 43.16 Posterior Sample Correlation Matrix

Posterior Correlation Matrix

Parameter Intercept Logx1 x2 x3 x4 Dispersion

Intercept 1.000 -0.857 -0.579 -0.712 0.582 0.000

Logx1 -0.857 1.000 0.286 0.491 -0.640 0.007

x2 -0.579 0.286 1.000 0.302 -0.489 -0.009

x3 -0.712 0.491 0.302 1.000 -0.618 -0.006

x4 0.582 -0.640 -0.489 -0.618 1.000 0.003

Dispersion 0.000 0.007 -0.009 -0.006 0.003 1.000

Since noninformative prior distributions were used, the posterior sample means, standard deviations, and
interval statistics shown in Figure 43.13 and Figure 43.14 are consistent with the maximum likelihood
estimates shown in Figure 43.9.
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By default, PROC GENMOD computes three convergence diagnostics: the lag1, lag5, lag10, and lag50
autocorrelations (Figure 43.17); Geweke diagnostic statistics (Figure 43.18); and effective sample sizes
(Figure 43.19). There is no indication that the Markov chain has not converged. See the section
“Assessing Markov Chain Convergence” on page 137 in Chapter 7, “Introduction to Bayesian Analysis Pro-
cedures,” for more information about convergence diagnostics and their interpretation.

Figure 43.17 Posterior Sample Autocorrelations
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Bayesian Analysis

Posterior Autocorrelations

Parameter Lag 1 Lag 5 Lag 10 Lag 50

Intercept -0.0059 -0.0037 -0.0152 0.0010

Logx1 -0.0002 -0.0064 -0.0066 -0.0054

x2 -0.0120 -0.0026 -0.0267 -0.0168

x3 0.0036 0.0033 -0.0035 0.0004

x4 0.0034 -0.0064 0.0083 -0.0124

Dispersion -0.0011 0.0091 -0.0279 0.0037

Figure 43.18 Geweke Diagnostic Statistics

Geweke Diagnostics

Parameter z Pr > |z|

Intercept -1.0815 0.2795

Logx1 1.6667 0.0956

x2 0.0977 0.9222

x3 0.2506 0.8021

x4 -1.1082 0.2678

Dispersion 0.2451 0.8064

Figure 43.19 Effective Sample Sizes

Effective Sample Sizes

Parameter ESS
Autocorrelation

Time Efficiency

Intercept 10000.0 1.0000 1.0000

Logx1 10000.0 1.0000 1.0000

x2 10245.2 0.9761 1.0245

x3 10000.0 1.0000 1.0000

x4 10000.0 1.0000 1.0000

Dispersion 10000.0 1.0000 1.0000
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Trace, autocorrelation, and density plots for the seven model parameters, shown in Figure 43.20
through Figure 43.25, are useful in diagnosing whether the Markov chain of posterior samples has
converged. These plots show no evidence that the chain has not converged. See the section
“Visual Analysis via Trace Plots” on page 137 in Chapter 7, “Introduction to Bayesian Analysis Procedures,”
for help with interpreting these diagnostic plots.

Figure 43.20 Diagnostic Plots for Intercept
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Figure 43.21 Diagnostic Plots for logX1
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Figure 43.22 Diagnostic Plots for X2
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Figure 43.23 Diagnostic Plots for X3
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Figure 43.24 Diagnostic Plots for X4



2874 F Chapter 43: The GENMOD Procedure

Figure 43.25 Diagnostic Plots for X5



Generalized Estimating Equations F 2875

Suppose, for illustration, a question of scientific interest is whether blood clotting score has a positive effect
on survival time. Since the model parameters are regarded as random quantities in a Bayesian analysis,
you can answer this question by estimating the conditional probability of ˇ1 being positive, given the data,
Pr.ˇ1 > 0jY/, from the posterior distribution samples. The following SAS statements compute the estimate
of the probability of ˇ1 being positive:

data Prob;
set PostSurg;
Indicator = (logX1 > 0);
label Indicator= 'log(Blood Clotting Score) > 0';

run;

proc Means data = Prob(keep=Indicator) n mean;
run;

As shown in Figure 43.26, there is a 1.00 probability of a positive relationship between the logarithm of a
blood clotting score and survival time, adjusted for the other covariates.

Figure 43.26 Probability That ˇ1 > 0

The MEANS ProcedureThe MEANS Procedure

Analysis
Variable : Indicator
log(Blood Clotting

Score) > 0

N Mean

10000 0.9999000

Generalized Estimating Equations
This section illustrates the use of the REPEATED statement to fit a GEE model, using repeated measures data
from the “Six Cities” study of the health effects of air pollution (Ware et al. 1984). The data analyzed are the
16 selected cases in Lipsitz et al. (1994). The binary response is the wheezing status of 16 children at ages 9,
10, 11, and 12 years. The mean response is modeled as a logistic regression model by using the explanatory
variables city of residence, age, and maternal smoking status at the particular age. The binary responses for
individual children are assumed to be equally correlated, implying an exchangeable correlation structure.

The data set and SAS statements that fit the model by the GEE method are as follows:

data six;
input case city$ @@;
do i=1 to 4;

input age smoke wheeze @@;
output;

end;
datalines;

1 portage 9 0 1 10 0 1 11 0 1 12 0 0
2 kingston 9 1 1 10 2 1 11 2 0 12 2 0
3 kingston 9 0 1 10 0 0 11 1 0 12 1 0
4 portage 9 0 0 10 0 1 11 0 1 12 1 0
5 kingston 9 0 0 10 1 0 11 1 0 12 1 0
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6 portage 9 0 0 10 1 0 11 1 0 12 1 0
7 kingston 9 1 0 10 1 0 11 0 0 12 0 0
8 portage 9 1 0 10 1 0 11 1 0 12 2 0
9 portage 9 2 1 10 2 0 11 1 0 12 1 0

10 kingston 9 0 0 10 0 0 11 0 0 12 1 0
11 kingston 9 1 1 10 0 0 11 0 1 12 0 1
12 portage 9 1 0 10 0 0 11 0 0 12 0 0
13 kingston 9 1 0 10 0 1 11 1 1 12 1 1
14 portage 9 1 0 10 2 0 11 1 0 12 2 1
15 kingston 9 1 0 10 1 0 11 1 0 12 2 1
16 portage 9 1 1 10 1 1 11 2 0 12 1 0
;

proc genmod data=six;
class case city;
model wheeze = city age smoke / dist=bin;
repeated subject=case / type=exch covb corrw;

run;

The CLASS statement and the MODEL statement specify the model for the mean of the wheeze variable
response as a logistic regression with city, age, and smoke as independent variables, just as for an ordinary
logistic regression.

The REPEATED statement invokes the GEE method, specifies the correlation structure, and controls the
displayed output from the GEE model. The option SUBJECT=CASE specifies that individual subjects be
identified in the input data set by the variable case. The SUBJECT= variable case must be listed in the
CLASS statement. Measurements on individual subjects at ages 9, 10, 11, and 12 are in the proper order
in the data set, so the WITHINSUBJECT= option is not required. The TYPE=EXCH option specifies an
exchangeable working correlation structure, the COVB option specifies that the parameter estimate covariance
matrix be displayed, and the CORRW option specifies that the final working correlation be displayed.

Initial parameter estimates for iterative fitting of the GEE model are computed as in an ordinary generalized
linear model, as described previously. Results of the initial model fit displayed as part of the generated output
are not shown here. Statistics for the initial model fit such as parameter estimates, standard errors, deviances,
and Pearson chi-squares do not apply to the GEE model and are valid only for the initial model fit. The
following figures display information that applies to the GEE model fit.

Figure 43.27 displays general information about the GEE model fit.

Figure 43.27 GEE Model Information

The GENMOD ProcedureThe GENMOD Procedure

GEE Model Information

Correlation Structure Exchangeable

Subject Effect case (16 levels)

Number of Clusters 16

Correlation Matrix Dimension 4

Maximum Cluster Size 4

Minimum Cluster Size 4
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Figure 43.28 displays the parameter estimate covariance matrices specified by the COVB option. Both
model-based and empirical covariances are produced.

Figure 43.28 GEE Parameter Estimate Covariance Matrices

Covariance Matrix (Model-Based)

Prm1 Prm2 Prm4 Prm5

Prm1 5.74947 -0.22257 -0.53472 0.01655

Prm2 -0.22257 0.45478 -0.002410 0.01876

Prm4 -0.53472 -0.002410 0.05300 -0.01658

Prm5 0.01655 0.01876 -0.01658 0.19104

Covariance Matrix (Empirical)

Prm1 Prm2 Prm4 Prm5

Prm1 9.33994 -0.85104 -0.83253 -0.16534

Prm2 -0.85104 0.47368 0.05736 0.04023

Prm4 -0.83253 0.05736 0.07778 -0.002364

Prm5 -0.16534 0.04023 -0.002364 0.13051

The exchangeable working correlation matrix specified by the CORRW option is displayed in Figure 43.29.

Figure 43.29 GEE Working Correlation Matrix

Working Correlation Matrix

Col1 Col2 Col3 Col4

Row1 1.0000 0.1648 0.1648 0.1648

Row2 0.1648 1.0000 0.1648 0.1648

Row3 0.1648 0.1648 1.0000 0.1648

Row4 0.1648 0.1648 0.1648 1.0000

The parameter estimates table, displayed in Figure 43.30, contains parameter estimates, standard errors,
confidence intervals, Z scores, and p-values for the parameter estimates. Empirical standard error estimates are
used in this table. A table that displays model-based standard errors can be created by using the REPEATED
statement option MODELSE.

Figure 43.30 GEE Parameter Estimates Table

Analysis Of GEE Parameter Estimates

Empirical Standard Error Estimates

Parameter Estimate
Standard

Error

95%
Confidence

Limits Z Pr > |Z|

Intercept -1.2751 3.0561 -7.2650 4.7148 -0.42 0.6765

city kingston -0.1223 0.6882 -1.4713 1.2266 -0.18 0.8589

city portage 0.0000 0.0000 0.0000 0.0000 . .

age 0.2036 0.2789 -0.3431 0.7502 0.73 0.4655

smoke 0.0935 0.3613 -0.6145 0.8016 0.26 0.7957
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Syntax: GENMOD Procedure
The following statements are available in the GENMOD procedure. Items within the < > are optional.

PROC GENMOD < options > ;
ASSESS | ASSESSMENT VAR=(effect)| LINK < / options > ;
BAYES < options > ;
BY variables ;
CLASS variable < (options) > . . . < variable < (options) > > < / options > ;
CODE < options > ;
CONTRAST 'label ' contrast-specification < / options > ;
DEVIANCE variable = expression ;
EFFECTPLOT < plot-type < (plot-definition-options) > > < / options > ;
ESTIMATE 'label ' effect values < , . . . effect values > < / options > ;
EXACT < 'label ' > < INTERCEPT > < effects > < / options > ;
EXACTOPTIONS options ;
FREQ | FREQUENCY variable ;
FWDLINK variable = expression ;
INVLINK variable = expression ;
LSMEANS < model-effects > < / options > ;
LSMESTIMATE model-effect < 'label ' > values < divisor=n > < , . . . < 'label ' > values < divisor=n > >

< / options > ;
MODEL response = < effects > < / options > ;
OUTPUT < OUT=SAS-data-set > < keyword=name . . . keyword=name > ;
Programming statements ;
REPEATED SUBJECT=subject-effect < / options > ;
SLICE model-effect < / options > ;
STORE < OUT= >item-store-name < / LABEL='label ' > ;
STRATA variable < (option) > . . . < variable < (option) > > < / options > ;
WEIGHT | SCWGT variable ;
VARIANCE variable = expression ;
ZEROMODEL < effects > < / options > ;

The ASSESS, BAYES, BY, CLASS, CODE, CONTRAST, DEVIANCE, ESTIMATE, FREQUENCY,
FWDLINK, INVLINK, MODEL, OUTPUT, programming statements, REPEATED, VARIANCE, WEIGHT,
and ZEROMODEL statements are described in full after the PROC GENMOD statement in alphabetical
order. The EFFECTPLOT, LSMEANS, LSMESTIMATE, SLICE, and STORE statements are common to
many procedures. Summary descriptions of functionality and syntax for these statements are also given after
the PROC GENMOD statement in alphabetical order, and full documentation about them is available in
Chapter 19, “Shared Concepts and Topics.”

The PROC GENMOD statement invokes the GENMOD procedure. All statements other than the MODEL
statement are optional. The CLASS statement, if present, must precede the MODEL statement, and the
CONTRAST and EXACT statements must come after the MODEL statement.
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PROC GENMOD Statement
PROC GENMOD < options > ;

The PROC GENMOD statement invokes the GENMOD procedure. Table 43.1 summarizes the options
available in the PROC GENMOD statement.

Table 43.1 PROC GENMOD Statement Options

Option Description

DATA= Specifies the input data set
DESCENDING Sorts response variable in the reverse of the default order
EXACTONLY Requests only the exact analyses
NAMELEN= Specifies the length of effect names
ORDER= Specifies the sort order of CLASS variable
PLOTS Controls the plots produced through ODS Graphics
RORDER= Specifies the sort order for the levels of the response variable

You can specify the following options.

DATA=SAS-data-set
specifies the SAS data set containing the data to be analyzed. If you omit the DATA= option, the
procedure uses the most recently created SAS data set.

DESCENDING

DESCEND

DESC
specifies that the levels of the response variable for the ordinal multinomial model and the binomial
model with single variable response syntax be sorted in the reverse of the default order. For example, if
RORDER=FORMATTED (the default), the DESCENDING option causes the levels to be sorted from
highest to lowest instead of from lowest to highest. If RORDER=FREQ, the DESCENDING option
causes the levels to be sorted from lowest frequency count to highest instead of from highest to lowest.

EXACTONLY
requests only the exact analyses. The asymptotic analysis that PROC GENMOD usually performs is
suppressed.

NAMELEN=n
specifies the length of effect names in tables and output data sets to be n characters long, where n is a
value between 20 and 200 characters. The default length is 20 characters.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of the classification variables (which are specified in the CLASS
statement).

The ORDER= option can be useful when you use the CONTRAST or ESTIMATE statement because
it determines which parameters in the model correspond to each level in the data.
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This option applies to the levels for all classification variables, except when you use the (default)
ORDER=FORMATTED option with numeric classification variables that have no explicit format. In
that case, the levels of such variables are ordered by their internal value.

The ORDER= option can take the following values:

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set

FORMATTED External formatted value, except for numeric variables with
no explicit format, which are sorted by their unformatted
(internal) value

FREQ Descending frequency count; levels with the most observa-
tions come first in the order

INTERNAL Unformatted value

By default, ORDER=FORMATTED. For ORDER=FORMATTED and ORDER=INTERNAL, the sort
order is machine-dependent.

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

PLOTS < (global-plot-options) > < =plot-request < (options) > >

PLOTS < (global-plot-options) > < =(plot-request < (options) > < ... plot-request < (options) > >) >
specifies plots to be created using ODS Graphics. Many of the observational statistics in the output
data set can be plotted using this option. You are not required to create an output data set in order to
produce a plot. When you specify only one plot request, you can omit the parentheses around the plot
request. Here are some examples:

plots=all
plots=predicted
plots=(predicted reschi)
plots(unpack)=dfbeta

ODS Graphics must be enabled before plots can be requested. For example:

proc genmod plots=all;
model y = x;

run;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

Any specified global-plot-options apply to all plots that are specified with plot-requests. The following
global-plot-options are available.
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CLUSTERLABEL
displays formatted levels of the SUBJECT= effect instead of plot symbols. This option applies
only to diagnostic statistics for models fit by GEEs that are plotted against cluster number, and
provides a way to identify cluster level names with corresponding ordered cluster numbers.

UNPACK
displays multiple plots individually. The default is to display related multiple plots in a panel.

See the section “OUTPUT Statement” on page 2923 for definitions of the statistics specified with the
plot-requests. The plot-requests include the following:

ALL
produces all available plots.

COOKSD

DOBS
plots the Cook’s distance statistic as a function of observation number.

DFBETA
plots the ˇ deletion statistic as a function of observation number for each regression parameter in
the model.

DFBETAS
plots the standardized ˇ deletion statistic as a function of observation number for each regression
parameter in the model.

LEVERAGE
plots the leverage as a function of observation number.

PREDICTED< (option) >
plots predicted values with confidence limits as a function of observation number. The PRE-
DICTED plot request has the following option:

CLM
includes confidence limits in the predicted value plot.

PZERO
plots the zero inflation probability for zero-inflated Poisson and negative binomial models as a
function of observation number.

RESCHI< (options) >
The RESCHI plot request has the following options:

INDEX
plots as a function of observation number.

XBETA
plots as a function of linear predictor.

If you do not specify an option, Pearson residuals are plotted as a function of observation number.
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RESDEV< (options) >
plots deviance residuals. The RESDEV plot request has the following options:

INDEX
plots as a function of observation number.

XBETA
plots as a function of linear predictor.

If you do not specify an option, deviance residuals are plotted as a function of observation number.

RESLIK< (options) >
plots likelihood residuals. The RESLIK plot request has the following options:

INDEX
plots as a function of observation number.

XBETA
plots as a function of linear predictor.

If you do not specify an option, likelihood residuals are plotted as a function of observation
number.

RESRAW< (options) >
plots raw residuals. The RESRAW plot request has the following options:

INDEX
plots as a function of observation number.

XBETA
plots as a function of linear predictor.

If you do not specify an option, raw residuals are plotted as a function of observation number.

STDRESCHI< (options) >
plots standardized Pearson residuals. The STDRESCHI plot request has the following options:

INDEX
plots as a function of observation number.

XBETA
plots as a function of linear predictor.

If you do not specify an option, standardized Pearson residuals are plotted as a function of
observation number.

STDRESDEV< (options) >
plots standardized deviance residuals. The STDRESDEV plot request has the following options:

INDEX
plots as a function of observation number.



PROC GENMOD Statement F 2883

XBETA
plots as a function of linear predictor.

If you do not specify an option, standardized deviance residuals are plotted as a function of
observation number.

If you fit a model by using generalized estimating equations (GEEs), the following additional plot-
requests are available:

CLEVERAGE
plots the cluster leverage as a function of ordered cluster.

CLUSTERCOOKSD

DCLS
plots the cluster Cook’s distance statistic as a function of ordered cluster.

CLUSTERDFIT

MCLS
plots the studentized cluster Cook’s distance statistic as a function of ordered cluster.

DFBETAC
plots the cluster deletion statistic as a function of ordered cluster for each regression parameter in
the model.

DFBETACS
plots the standardized cluster deletion statistic as a function of ordered cluster for each regression
parameter in the model.

RORDER=keyword
specifies the sort order for the levels of the response variable. This order determines which intercept
parameter in the model corresponds to each level in the data. If RORDER=FORMATTED for numeric
variables for which you have supplied no explicit format, the levels are ordered by their internal values.
The following table displays the valid keywords and describes how PROC GENMOD interprets them.

RORDER=keyword Levels Sorted by

DATA Order of appearance in the input data set
FORMATTED External formatted value, except for numeric

variables with no explicit format, which are
sorted by their unformatted (internal) value

FREQ Descending frequency count; levels with the
most observations come first in the order

INTERNAL Unformatted value

By default, RORDER=FORMATTED. For RORDER=FORMATTED and RORDER=INTERNAL,
the sort order is machine dependent. The DESCENDING option in the PROC GENMOD statement
causes the response variable to be sorted in the reverse of the order displayed in the previous table. For
more information about sort order, see the chapter on the SORT procedure in the Base SAS Procedures
Guide.
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The NOPRINT option, which suppresses displayed output in other SAS procedures, is not available
in the PROC GENMOD statement. However, you can use the Output Delivery System (ODS) to
suppress all displayed output, store all output on disk for further analysis, or create SAS data sets from
selected output. You can suppress all displayed output with the statement ODS SELECT NONE; and
turn displayed output back on with the statement ODS SELECT ALL;. See Table 43.12 and Table 43.13
for the names of output tables available from PROC GENMOD. For more information about ODS, see
Chapter 20, “Using the Output Delivery System.”

ASSESS Statement
ASSESS VAR=(effect)| LINK < / options > ;

ASSESSMENT VAR=(effect)| LINK < / options > ;

The ASSESS statement computes and plots, using ODS Graphics, model-checking statistics based on
aggregates of residuals. See the section “Assessment of Models Based on Aggregates of Residuals” on
page 2966 for details about the model assessment methods available in GENMOD.

The types of aggregates available are cumulative residuals, moving sums of residuals, and loess smoothed
residuals. If you do not specify which aggregate to use, the assessments are based on cumulative sums. PROC
GENMOD uses ODS Graphics for graphical displays. For specific information about the graphics available
in PROC GENMOD, see the section “ODS Graphics” on page 2995.

You must specify either LINK or VAR= in order to create an analysis.

LINK requests the assessment of the link function by performing the analysis with respect to the linear
predictor.

VAR=(effect) specifies that the functional form of a covariate be checked by performing the analysis with
respect to the variable identified by the effect. The effect must be specified in the MODEL statement and
must contain only continuous variables (variables not listed in a CLASS statement).

You can specify the following options after the slash (/).

CRPANEL
requests that a plot with four panels showing just a few of the paths from the default aggregate plot to
make it easier to compare simulated and observed paths. The plot in each panel contains aggregates of
the observed residuals and two simulated curves (fewer if NPATHS= is less than 8).

LOESS< (number ) >
LOWESS< (number ) >

requests model assessment based on loess smoothed residuals with optional number the fraction of data
used; number must be between zero and one. If number is not specified, the default value one-third is
used.

NPATHS=number
NPATH=number
PATHS=number
PATH=number

specifies the number of simulated paths to plot in the default aggregate residuals plot. The default
value of number is twenty.
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RESAMPLE< =number >

RESAMPLES< =number >
specifies that a p-value be computed based on 1,000 simulated paths, or number paths, if number is
specified.

SEED=number
specifies a seed for the normal random number generator used in creating simulated realizations of
aggregates of residuals for plots and estimating p-values. Specifying a seed enables you to produce
identical graphs and p-values from one run of the procedure to the next run. If a seed is not specified,
or if number is negative or zero, a random number seed is derived from the time of day.

WINDOW< (number ) >
requests assessment based on a moving sum window of width number . If number is not specified, a
value of one-half of the range of the x-coordinate is used.

BAYES Statement
BAYES < options > ;

The BAYES statement requests a Bayesian analysis of the regression model by using Gibbs sampling. The
Bayesian posterior samples (also known as the chain) for the regression parameters are not tabulated. The
Bayesian posterior samples (also known as the chain) for the regression parameters can be output to a SAS
data set.

Table 43.2 summarizes the options available in the BAYES statement.

Table 43.2 BAYES Statement Options

Option Description

Monte Carlo Options
INITIAL= Specifies the initial values of the chain
INITIALMLE Specifies that maximum likelihood estimates be used as

initial values of the chain
METROPOLIS= Specifies the use of a Metropolis step in the ARMS algo-

rithm
NBI= Specifies the number of burn-in iterations
NMC= Specifies the number of iterations after burn-in
SAMPLING= Specifies the algorithm used to sample the posterior distri-

bution
SEED= Specifies the random number generator seed
THINNING= Controls the thinning of the Markov chain

Model and Prior Options
COEFFPRIOR= Specifies the prior of the regression coefficients
DISPERSIONPRIOR= Specifies the prior of the dispersion parameter
PRECISIONPRIOR= Specifies the prior of the precision parameter
SCALEPRIOR= Specifies the prior of the scale parameter
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Table 43.2 (continued)

Option Description

Summary Statistics and Convergence Diagnostics
DIAGNOSTICS= Displays convergence diagnostics
PLOTS= Displays diagnostic plots
STATISTICS= Displays summary statistics of the posterior samples

Posterior Samples
OUTPOST= Names a SAS data set for the posterior samples

The following list describes these options and their suboptions.

COEFFPRIOR=JEFFREYS< (option) > | NORMAL< (options) > | UNIFORM

COEFF=JEFFREYS< (options) > | NORMAL< (options) > | UNIFORM

CPRIOR=JEFFREYS< (options) > | NORMAL< (options) > | UNIFORM
specifies the prior distribution for the regression coefficients. The default is COEFFPRIOR=UNIFORM,
which specifies the noninformative and improper prior of a constant.

Jeffreys’ prior is specified by COEFFPRIOR=JEFFREYS, which can be followed by the following
option in parentheses. Jeffreys’ prior is proportional to jI.ˇ/j

1
2 , where I.ˇ/ is the Fisher information

matrix. See the section “Jeffreys’ Prior” on page 2976 and Ibrahim and Laud (1991) for more details.

CONDITIONAL
specifies that the Jeffreys’ prior, conditional on the current Markov chain value of the generalized
linear model precision parameter � , is proportional to j�I.ˇ/j

1
2 .

The normal prior is specified by COEFFPRIOR=NORMAL, which can be followed by one of the
following options enclosed in parentheses. However, if you do not specify an option, the normal prior
N.0; 106I/, where I is the identity matrix, is used. See the section “Normal Prior” on page 2976 for
more details.

CONDITIONAL
specifies that the normal prior, conditional on the current Markov chain value of the generalized
linear model precision parameter � , is N.�; ��1†/, where � and† are the mean and covariance
of the normal prior specified by other normal options.

INPUT=SAS-data-set
specifies a SAS data set containing the mean and covariance information of the normal prior. The
data set must have a _TYPE_ variable to represent the type of each observation and a variable for
each regression coefficient. If the data set also contains a _NAME_ variable, the values of this
variable are used to identify the covariances for the _TYPE_=’COV’ observations; otherwise, the
_TYPE_=’COV’ observations are assumed to be in the same order as the explanatory variables
in the MODEL statement. PROC GENMOD reads the mean vector from the observation with
_TYPE_=’MEAN’ and reads the covariance matrix from observations with _TYPE_=’COV’. For
an independent normal prior, the variances can be specified with _TYPE_=’VAR’; alternatively,
the precisions (inverse of the variances) can be specified with _TYPE_=’PRECISION’.
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RELVAR< =c >
specifies the normal prior N.0; cJ/, where J is a diagonal matrix with diagonal elements equal to
the variances of the corresponding ML estimator. By default, c D 106.

VAR< =c >
specifies the normal prior N.0; cI/, where I is the identity matrix.

DIAGNOSTICS=ALL | NONE | (keyword-list)

DIAG=ALL | NONE | (keyword-list)
controls the number of diagnostics produced. You can request all the following diagnostics by
specifying DIAGNOSTICS=ALL. If you do not want any of these diagnostics, specify DIAGNOS-
TICS=NONE. If you want some but not all of the diagnostics, or if you want to change certain
settings of these diagnostics, specify a subset of the following keywords. The default is DIAGNOS-
TICS=(AUTOCORR ESS GEWEKE).

AUTOCORR < (LAGS= numeric-list) >
computes the autocorrelations of lags given by LAGS= list for each parameter. Elements in
the list are truncated to integers and repeated values are removed. If the LAGS= option is not
specified, autocorrelations of lags 1, 5, 10, and 50 are computed for each variable. See the section
“Autocorrelations” on page 150 in Chapter 7, “Introduction to Bayesian Analysis Procedures,” for
details.

ESS
computes Carlin’s estimate of the effective sample size, the correlation time, and the efficiency of
the chain for each parameter. See the section “Effective Sample Size” on page 150 in Chapter 7,
“Introduction to Bayesian Analysis Procedures,” for details.

GELMAN < (gelman-options) >
computes the Gelman and Rubin convergence diagnostics. You can specify one or more of the
following gelman-options:

NCHAIN | N=number
specifies the number of parallel chains used to compute the diagnostic, and must be 2 or
larger. The default is NCHAIN=3. If an INITIAL= data set is used, NCHAIN defaults to the
number of rows in the INITIAL= data set. If any number other than this is specified with the
NCHAIN= option, the NCHAIN= value is ignored.

ALPHA=value
specifies the significance level for the upper bound. The default is ALPHA=0.05, resulting
in a 97.5% bound.

See the section “Gelman and Rubin Diagnostics” on page 143 in Chapter 7, “Introduction to
Bayesian Analysis Procedures,” for details.

GEWEKE < (geweke-options) >
computes the Geweke spectral density diagnostics, which are essentially a two-sample t test
between the first f1 portion and the last f2 portion of the chain. The default is f1 D 0:1 and
f2 D 0:5, but you can choose other fractions by using the following geweke-options:
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FRAC1=value
specifies the fraction f1 for the first window.

FRAC2=value
specifies the fraction f2 for the second window.

See the section “Geweke Diagnostics” on page 144 in Chapter 7, “Introduction to Bayesian
Analysis Procedures,” for details.

HEIDELBERGER < (heidel-options) >
computes the Heidelberger and Welch diagnostic for each variable, which consists of a stationarity
test of the null hypothesis that the sample values form a stationary process. If the stationarity test
is not rejected, a halfwidth test is then carried out. Optionally, you can specify one or more of the
following heidel-options:

SALPHA=value
specifies the ˛ level .0 < ˛ < 1/ for the stationarity test.

HALPHA=value
specifies the ˛ level .0 < ˛ < 1/ for the halfwidth test.

EPS=value
specifies a positive number � such that if the halfwidth is less than � times the sample mean
of the retained iterates, the halfwidth test is passed.

See the section “Heidelberger and Welch Diagnostics” on page 146 in Chapter 7, “Introduction
to Bayesian Analysis Procedures,” for details.

MCSE

MCERROR
computes the Monte Carlo standard error for each parameter. The Monte Caro standard error,
which measures the simulation accuracy, is the standard error of the posterior mean estimate
and is calculated as the posterior standard deviation divided by the square root of the effective
sample size. See the section “Standard Error of the Mean Estimate” on page 151 in Chapter 7,
“Introduction to Bayesian Analysis Procedures,” for details.

RAFTERY< (raftery-options) >
computes the Raftery and Lewis diagnostics that evaluate the accuracy of the estimated quantile
( O�Q for a given Q 2 .0; 1/) of a chain. O�Q can achieve any degree of accuracy when the
chain is allowed to run for a long time. A stopping criterion is when the estimated probability
OPQ D Pr.� � O�Q/ reaches within˙R of the value Q with probability S; that is, Pr.Q �R �
OPQ � Q C R/ D S . The following raftery-options enable you to specify Q;R; S , and a

precision level � for the test:

QUANTILE | Q=value
specifies the order (a value between 0 and 1) of the quantile of interest. The default is 0.025.

ACCURACY | R=value
specifies a small positive number as the margin of error for measuring the accuracy of
estimation of the quantile. The default is 0.005.
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PROBABILITY | S=value
specifies the probability of attaining the accuracy of the estimation of the quantile. The
default is 0.95.

EPSILON | EPS=value
specifies the tolerance level (a small positive number) for the stationary test. The default is
0.001.

See the section “Raftery and Lewis Diagnostics” on page 147 in Chapter 7, “Introduction to
Bayesian Analysis Procedures,” for details.

DISPERSIONPRIOR=GAMMA< (options) > | IGAMMA< (options) > | IMPROPER

DPRIOR=GAMMA< (options) > | IGAMMA< (options) > | IMPROPER
specifies that Gibbs sampling be performed on the generalized linear model dispersion parameter and
the prior distribution for the dispersion parameter, if there is a dispersion parameter in the model. For
models that do not have a dispersion parameter (the Poisson and binomial), this option is ignored.
Note that you can specify Gibbs sampling on either the dispersion parameter �, the scale parameter
� D �

1
2 , or the precision parameter � D ��1, with the DPRIOR=, SPRIOR=, and PPRIOR= options,

respectively. These three parameters are transformations of one another, and you should specify Gibbs
sampling for only one of them.

A gamma prior G.a; b/ with density f .t/ D b.bt/a�1e�bt
�.a/

is specified by DISPERSION-
PRIOR=GAMMA, which can be followed by one of the following gamma-options enclosed in
parentheses. The hyperparameters a and b are the shape and inverse-scale parameters of the gamma
distribution, respectively. See the section “Gamma Prior” on page 2975 for details. The default is
G.10�4; 10�4/.

RELSHAPE< =c >
specifies independent G.c O�; c/ distribution, where O� is the MLE of the dispersion parameter.
With this choice of hyperparameters, the mean of the prior distribution is O� and the variance is

O�
c

.
By default, c=10�4.

SHAPE=a

ISCALE=b
when both specified, results in a G.a; b/ prior.

SHAPE=c
when specified alone, results in a G.c; c/ prior.

ISCALE=c
when specified alone, results in a G.c; c/ prior.

An inverse gamma prior IG.a; b/ with density f .t/ D ba

�.a/
t�.aC1/e�b=t is specified by DISPER-

SIONPRIOR=IGAMMA, which can be followed by one of the following inverse gamma-options
enclosed in parentheses. The hyperparameters a and b are the shape and scale parameters of the inverse
gamma distribution, respectively. See the section “Inverse Gamma Prior” on page 2976 for details.
The default is IG.2:001; 0:001/.
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RELSHAPE< =c >
specifies independent IG.cC O�

O�
; c/ distribution, where O� is the MLE of the dispersion parameter.

With this choice of hyperparameters, the mean of the prior distribution is O�. By default, c=10�4.

SHAPE=a

SCALE=b
when both specified, results in a IG.a; b/ prior.

SHAPE=c
when specified alone, results in an IG.c; c/ prior.

SCALE=c
when specified alone, results in an IG.c; c/ prior.

An improper prior with density f .t/ proportional to t�1 is specified with DISPERSION-
PRIOR=IMPROPER.

INITIAL=SAS-data-set
specifies the SAS data set that contains the initial values of the Markov chains. The INITIAL= data set
must contain all the variables of the model. You can specify multiple rows as the initial values of the
parallel chains for the Gelman-Rubin statistics, but posterior summaries, diagnostics, and plots are
computed only for the first chain. If the data set also contains the variable _SEED_, the value of the
_SEED_ variable is used as the seed of the random number generator for the corresponding chain.

INITIALMLE
specifies that maximum likelihood estimates of the model parameters be used as initial values of
the Markov chain. If this option is not specified, estimates of the mode of the posterior distribution
obtained by optimization are used as initial values.

METROPOLIS=YES | NO
specifies the use of a Metropolis step to generate Gibbs samples for posterior distributions that are not
log concave. The default value is METROPOLIS=YES.

NBI=number
specifies the number of burn-in iterations before the chains are saved. The default is 2000.

NMC=number
specifies the number of iterations after the burn-in. The default is 10000.

OUTPOST=SAS-data-set

OUT=SAS-data-set
names the SAS data set that contains the posterior samples. See the sections “OUTPOST= Output
Data Set” on page 2978 and “Posterior Samples Output Data Set” on page 2975 for more information.
Alternatively, you can create the output data set by specifying an ODS OUTPUT statement as follows:

ODS OUTPUT POSTERIORSAMPLE=SAS-data-set
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PRECISIONPRIOR=GAMMA< (options) > | IMPROPER

PPRIOR=GAMMA< (options) > | IMPROPER
specifies that Gibbs sampling be performed on the generalized linear model precision parameter and
the prior distribution for the precision parameter, if there is a precision parameter in the model. For
models that do not have a precision parameter (the Poisson and binomial), this option is ignored.
Note that you can specify Gibbs sampling on either the dispersion parameter �, the scale parameter
� D �

1
2 , or the precision parameter � D ��1, with the DPRIOR=, SPRIOR=, and PPRIOR= options,

respectively. These three parameters are transformations of one another, and you should specify Gibbs
sampling for only one of them.

A gamma prior G.a; b/ with density f .t/ D b.bt/a�1e�bt
�.a/

is specified by PRECISION-
PRIOR=GAMMA, which can be followed by one of the following gamma-options enclosed
in parentheses. The hyperparameters a and b are the shape and inverse-scale parameters of the gamma
distribution, respectively. See the section “Gamma Prior” on page 2975 for details. The default is
G.10�4; 10�4/.

RELSHAPE< =c >
specifies independent G.c O�; c/ distribution, where O� is the MLE of the dispersion parameter.
With this choice of hyperparameters, the mean of the prior distribution is O� and the variance is O�

c
.

By default, c D 10�4.

SHAPE=a

ISCALE=b
when both specified, results in a G.a; b/ prior.

SHAPE=c
when specified alone, results in an G.c; c/ prior.

ISCALE=c
when specified alone, results in an G.c; c/ prior.

An improper prior with density f .t/ proportional to t�1 is specified with PRECISION-
PRIOR=IMPROPER.

PLOTS< (global-plot-options) >=plot-request

PLOTS< (global-plot-options) >=(plot-request < . . . plot-request >)
controls the display of diagnostic plots. Three types of plots can be requested: trace plots, autocorrela-
tion function plots, and kernel density plots. By default, the plots are displayed in panels unless the
global-plot-option UNPACK is specified. Also, when you are specifying more than one type of plots,
the plots are displayed by parameters unless the global-plot-option GROUPBY is specified. When you
specify only one plot-request , you can omit the parentheses around the plot-request . For example:

plots=none
plots(unpack)=trace
plots=(trace autocorr)
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ODS Graphics must be enabled before requesting plots. For example, the following SAS statements
enable ODS Graphics:

ods graphics on;
proc genmod;

model y=x;
bayes plots=trace;

run;
ods graphics off;

The global-plot-options are as follows:

FRINGE
creates a fringe plot on the X axis of the density plot.

GROUPBY=PARAMETER

GROUPBY=TYPE
specifies how the plots are grouped when there is more than one type of plot.

GROUPBY=TYPE
specifies that the plots be grouped by type.

GROUPBY=PARAMETER
specifies that the plots be grouped by parameter.

GROUPBY=PARAMETER is the default.

LAGS=n
specifies that autocorrelations be plotted up to lag n. If this option is not specified, autocorrelations
are plotted up to lag 50.

SMOOTH
displays a fitted penalized B-spline curve for each trace plot.

UNPACKPANEL

UNPACK
specifies that all paneled plots be unpacked, meaning that each plot in a panel is displayed
separately.

The plot-requests include the following:

ALL
specifies all types of plots. PLOTS=ALL is equivalent to specifying PLOTS=(TRACE AUTO-
CORR DENSITY).

AUTOCORR
displays the autocorrelation function plots for the parameters.
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DENSITY
displays the kernel density plots for the parameters.

NONE
suppresses all diagnostic plots.

TRACE
displays the trace plots for the parameters. See the section “Visual Analysis via Trace Plots” on
page 137 in Chapter 7, “Introduction to Bayesian Analysis Procedures,” for details.

SAMPLING=option
specifies an algorithm used to sample the posterior distribution. The following options are available:

ARMS

GIBBS
use the ARMS algorithm.

GAMERMAN

GAM
use the Gamerman algorithm. This is the default method except for the normal distribution with a
conjugate prior. In this case a closed form for the posterior distribution is available, and samples
are obtained directly from the posterior distribution.

IM
Use the independent Metropolis algorithm.

SCALEPRIOR=GAMMA< (options) > | IMPROPER

SPRIOR=GAMMA< (options) > | IMPROPER
specifies that Gibbs sampling be performed on the generalized linear model scale parameter and the
prior distribution for the scale parameter, if there is a scale parameter in the model. For models that do
not have a scale parameter (the Poisson and binomial), this option is ignored. Note that you can specify
Gibbs sampling on either the dispersion parameter �, the scale parameter � D �

1
2 , or the precision

parameter � D ��1, with the DPRIOR=, SPRIOR=, and PPRIOR= options, respectively. These three
parameters are transformations of one another, and you should specify Gibbs sampling for only one of
them.

A gamma prior G.a; b/ with density f .t/ D b.bt/a�1e�bt
�.a/

is specified by SCALEPRIOR=GAMMA,
which can be followed by one of the following gamma-options enclosed in parentheses. The hyperpa-
rameters a and b are the shape and inverse-scale parameters of the gamma distribution, respectively.
See the section “Gamma Prior” on page 2975 for details. The default is G.10�4; 10�4/.

RELSHAPE< =c >
specifies independent G.c O�; c/ distribution, where O� is the MLE of the dispersion parameter.
With this choice of hyperparameters, the mean of the prior distribution is O� and the variance is O�

c
.

By default, c D 10�4.

SHAPE=a

ISCALE=b
when both specified, results in a G.a; b/ prior.
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SHAPE=c
when specified alone, results in an G.c; c/ prior.

ISCALE=c
when specified alone, results in an G.c; c/ prior.

An improper prior with density f .t/ proportional to t�1 is specified with SCALEPRIOR=IMPROPER.

SEED=number
specifies an integer seed in the range 1 to 231 � 1 for the random number generator in the simulation.
Specifying a seed enables you to reproduce identical Markov chains for the same specification. If the
SEED= option is not specified, or if you specify a nonpositive seed, a random seed is derived from the
time of day.

STATISTICS < (global-options) > = ALL | NONE | keyword | (keyword-list)

STATS < (global-options) > = ALL | NONE | keyword | (keyword-list)
controls the number of posterior statistics produced. Specifying STATISTICS=ALL is equivalent to
specifying STATISTICS= (SUMMARY INTERVAL COV CORR). If you do not want any posterior
statistics, you specify STATISTICS=NONE. The default is STATISTICS=(SUMMARY INTERVAL).
See the section “Summary Statistics” on page 151 in Chapter 7, “Introduction to Bayesian Analysis
Procedures,” for details. The global-options include the following:

ALPHA=numeric-list
controls the probabilities of the credible intervals. The ALPHA= values must be between 0 and 1.
Each ALPHA= value produces a pair of 100(1–ALPHA)% equal-tail and HPD intervals for each
parameters. The default is the value of the ALPHA= option in the MODEL statement, or 0.05 if
that option is not specified (yielding the 95% credible intervals for each parameter).

PERCENT=numeric-list
requests the percentile points of the posterior samples. The PERCENT= values must be between
0 and 100. The default is PERCENT=25, 50, 75, which yield the 25th, 50th, and 75th percentile
points, respectively, for each parameter.

The list of keywords includes the following:

CORR
produces the posterior correlation matrix.

COV
produces the posterior covariance matrix.

SUMMARY
produces the means, standard deviations, and percentile points for the posterior samples. The
default is to produce the 25th, 50th, and 75th percentile points, but you can use the global
PERCENT= option to request specific percentile points.

INTERVAL
produces equal-tail credible intervals and HPD intervals. The default is to produce the 95%
equal-tail credible intervals and 95% HPD intervals, but you can use the global ALPHA= option
to request intervals of any probabilities.
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THINNING=number

THIN=number
controls the thinning of the Markov chain. Only one in every k samples is used when THINNING=k,
and if NBI=n0 and NMC=n, the number of samples kept is�

n0 C n

k

�
�

�
n0

k

�
where [a] represents the integer part of the number a. The default is THINNING=1.

BY Statement
BY variables ;

You can specify a BY statement with PROC GENMOD to obtain separate analyses of observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the GENMOD procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

CLASS Statement
CLASS variable < (options) > . . . < variable < (options) > > < / global-options > ;

The CLASS statement names the classification variables to be used as explanatory variables in the analysis.
Response variables do not need to be specified in the CLASS statement.

The CLASS statement must precede the MODEL statement. Most options can be specified either as individual
variable options or as global-options. You can specify options for each variable by enclosing the options in
parentheses after the variable name. You can also specify global-options for the CLASS statement by placing
them after a slash (/). Global-options are applied to all the variables specified in the CLASS statement. If you
specify more than one CLASS statement, the global-options specified in any one CLASS statement apply to
all CLASS statements. However, individual CLASS variable options override the global-options. You can
specify the following values for either an option or a global-option:
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CPREFIX=n
specifies that, at most, the first n characters of a CLASS variable name be used in creating names for
the corresponding design variables. The default is 32 �min.32;max.2; f //, where f is the formatted
length of the CLASS variable.

DESCENDING

DESC
reverses the sort order of the classification variable. If both the DESCENDING and ORDER= options
are specified, PROC GENMOD orders the categories according to the ORDER= option and then
reverses that order.

LPREFIX=n
specifies that, at most, the first n characters of a CLASS variable label be used in creating labels for the
corresponding design variables. The default is 256 �min.256;max.2; f //, where f is the formatted
length of the CLASS variable.

MISSING
treats missing values (., ._, .A, . . . , .Z for numeric variables and blanks for character variables) as valid
values for the CLASS variable.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of classification variables. This ordering determines which
parameters in the model correspond to each level in the data, so the ORDER= option can be useful when
you use the CONTRAST statement. By default, ORDER=FORMATTED. For ORDER=FORMATTED
and ORDER=INTERNAL, the sort order is machine-dependent. When ORDER=FORMATTED is in
effect for numeric variables for which you have supplied no explicit format, the levels are ordered by
their internal values.

The following table shows how PROC GENMOD interprets values of the ORDER= option.

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set
FORMATTED External formatted values, except for numeric

variables with no explicit format, which are sorted
by their unformatted (internal) values

FREQ Descending frequency count; levels with more
observations come earlier in the order

INTERNAL Unformatted value

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

PARAM=keyword
specifies the parameterization method for the classification variable or variables. You can specify any
of the keywords shown in the following table;

Design matrix columns are created from CLASS variables according to the corresponding coding
schemes:
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Value of PARAM= Coding

EFFECT Effect coding

GLM Less-than-full-rank reference cell coding (this
keyword can be used only in a global option)

ORDINAL
THERMOMETER

Cumulative parameterization for an ordinal
CLASS variable

POLYNOMIAL
POLY

Polynomial coding

REFERENCE
REF

Reference cell coding

ORTHEFFECT Orthogonalizes PARAM=EFFECT coding

ORTHORDINAL
ORTHOTHERM

Orthogonalizes PARAM=ORDINAL coding

ORTHPOLY Orthogonalizes PARAM=POLYNOMIAL coding

ORTHREF Orthogonalizes PARAM=REFERENCE coding

All parameterizations are full rank, except for the GLM parameterization. The REF= option in the
CLASS statement determines the reference level for EFFECT and REFERENCE coding and for their
orthogonal parameterizations. It also indirectly determines the reference level for a singular GLM
parameterization through the order of levels.

If PARAM=ORTHPOLY or PARAM=POLY and the classification variable is numeric, then the
ORDER= option in the CLASS statement is ignored, and the internal unformatted values are used. See
the section “Other Parameterizations” on page 391 in Chapter 19, “Shared Concepts and Topics,” for
further details.

REF=’level’ | keyword
specifies the reference level for PARAM=EFFECT, PARAM=REFERENCE, and their orthogonaliza-
tions. For PARAM=GLM, the REF= option specifies a level of the classification variable to be put at
the end of the list of levels. This level thus corresponds to the reference level in the usual interpretation
of the linear estimates with a singular parameterization.

For an individual variable REF= option (but not for a global REF= option), you can specify the level
of the variable to use as the reference level. Specify the formatted value of the variable if a format is
assigned. For a global or individual variable REF= option, you can use one of the following keywords.
The default is REF=LAST.

FIRST designates the first ordered level as reference.

LAST designates the last ordered level as reference.

TRUNCATE< =n >
specifies the length n of CLASS variable values to use in determining CLASS variable levels. The
default is to use the full formatted length of the CLASS variable. If you specify TRUNCATE without
the length n, the first 16 characters of the formatted values are used. When formatted values are longer
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than 16 characters, you can use this option to revert to the levels as determined in releases before SAS
9. The TRUNCATE option is available only as a global option.

Class Variable Default Parameterization

If you do not specify the PARAM= option, the default PARAM=GLM parameterization is used.

Class Variable Naming Convention

Parameter names for a CLASS predictor variable are constructed by concatenating the CLASS variable name
with the CLASS levels. However, for the POLYNOMIAL and orthogonal parameterizations, parameter
names are formed by concatenating the CLASS variable name and keywords that reflect the parameterization.
See the section “Other Parameterizations” on page 391 in Chapter 19, “Shared Concepts and Topics,” for
examples and further details.

Class Variable Parameterization with Unbalanced Designs

PROC GENMOD initially parameterizes the CLASS variables by looking at the levels of the variables across
the complete data set. If you have an unbalanced replication of levels across variables or BY groups, then
the design matrix and the parameter interpretation might be different from what you expect. For instance,
suppose you have a model with one CLASS variable A with three levels (1, 2, and 3), and another CLASS
variable B with two levels (1 and 2). If the third level of A occurs only with the first level of B, if you use the
EFFECT parameterization, and if your model contains the effect A(B) and an intercept, then the design for A
within the second level of B is not a differential effect. In particular, the design looks like the following:

Design Matrix
A(B=1) A(B=2)

B A A1 A2 A1 A2

1 1 1 0 0 0
1 2 0 1 0 0
1 3 –1 –1 0 0
2 1 0 0 1 0
2 2 0 0 0 1

PROC GENMOD detects linear dependency among the last two design variables and sets the parameter for
A2(B=2) to zero, resulting in an interpretation of these parameters as if they were reference- or dummy-coded.
The REFERENCE or GLM parameterization might be more appropriate for such problems.

CODE Statement
CODE < options > ;

The CODE statement writes SAS DATA step code for computing predicted values of the fitted model either
to a file or to a catalog entry. This code can then be included in a DATA step to score new data.

Table 43.3 summarizes the options available in the CODE statement.
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Table 43.3 CODE Statement Options

Option Description

CATALOG= Names the catalog entry where the generated code is saved
DUMMIES Retains the dummy variables in the data set
ERROR Computes the error function
FILE= Names the file where the generated code is saved
FORMAT= Specifies the numeric format for the regression coefficients
GROUP= Specifies the group identifier for array names and statement labels
IMPUTE Imputes predicted values for observations with missing or invalid

covariates
LINESIZE= Specifies the line size of the generated code
LOOKUP= Specifies the algorithm for looking up CLASS levels
RESIDUAL Computes residuals

For details about the syntax of the CODE statement, see the section “CODE Statement” on page 395 in
Chapter 19, “Shared Concepts and Topics.”

CONTRAST Statement
CONTRAST 'label ' contrast-specification < / options > ;

The CONTRAST statement provides a means of obtaining a test of a specified hypothesis concerning the
model parameters. This is accomplished by specifying a matrix L for testing the hypothesis L0ˇ D 0. You
must be familiar with the details of the model parameterization that PROC GENMOD uses. For more
information, see the section “Parameterization Used in PROC GENMOD” on page 2947 and the section
“CLASS Statement” on page 2895. Computed statistics are based on the asymptotic chi-square distribution
of the likelihood ratio statistic, or the generalized score statistic for GEE models, with degrees of freedom
determined by the number of linearly independent rows in the L0 matrix. You can request Wald chi-square
statistics with the Wald option in the CONTRAST statement.

There is no limit to the number of CONTRAST statements that you can specify, but they must appear after
the MODEL statement and after the ZEROMODEL statement for zero-inflated models. Statistics for multiple
CONTRAST statements are displayed in a single table.

The elements of the CONTRAST statement are as follows:

label identifies the contrast on the output. A label is required for every contrast specified. Labels can be
up to 20 characters and must be enclosed in single quotes.

contrast-specification identifies the effects and their coefficients from which the L matrix is formed. The
contrast-specification can be specified in two different ways. The first method applies to all
models except the zero-inflated (ZI) distributions (zero-inflated Poisson and zero-inflated negative
binomial), and the syntax is:
effect values < ,. . . effect values >

The second method of specifying a contrast applies only to ZI models, and the syntax is:
effect values < ,. . . effect values > @ZERO effect values < ,. . . effect values >

where
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effect identifies an effect that appears in the MODEL statement. The value INTERCEPT or
intercept can be used as an effect when an intercept is included in the model. You do
not need to include all effects that are included in the MODEL statement.

values are constants that are elements of the L vector associated with the effect.

options specifies CONTRAST statement options.

Specification of sets of effect values before the @ZERO separator results in a row of the L0 matrix with
coefficients for effects in the regression part of the model set to values and with the coefficients for the
zero-inflation part of the model set to zero. Specification of sets of effect values after the @ZERO separator
results in a row of the L matrix with the coefficients for the regression part of the model set to zero and with
the coefficients of effects in the zero-inflation part of the model set to values.

For example, the statements

class a;
model y=a;
contrast 'Label1' A 1 -1;

specify an L0 matrix with one row with coefficients 1 for the first level of A and –1 for the second level of A.

The statements

class a b;
model y=a / dist=zip;
zeromodel b;
contrast 'Label2' A 1 -1 @zero B 1 -1;

specify an L0 matrix with two rows: the first row has coefficients 1 for the first level of A, –1 for the second
level of A, and zeros for all levels of B; the second row has coefficients 0 for all levels of A, 1 for the first
level of B, and –1 for the second level of B.

The rows of L0 are specified in order and are separated by commas.

If you use the default less-than-full-rank PROC GLM CLASS variable parameterization, each row of the
L0 matrix is checked for estimability. If PROC GENMOD finds a contrast to be nonestimable, it displays
missing values in corresponding rows in the results. See Searle (1971) for a discussion of estimable functions.
If the elements of L0 are not specified for an effect that contains a specified effect, then the elements of the
specified effect are distributed over the levels of the higher-order effect just as the GLM procedure does for
its CONTRAST and ESTIMATE statements. For example, suppose that the model contains effects A and B
and their interaction A*B. If you specify a CONTRAST statement involving A alone, the L0 matrix contains
nonzero terms for both A and A*B, since A*B contains A.

When you use any of the full-rank PARAM= CLASS variable options, all parameters are directly estimable,
and rows of L0 are not checked for estimability.

If an effect is not specified in the CONTRAST statement, all of its coefficients in the L0 matrix are set to 0. If
too many values are specified for an effect, the extra ones are ignored. If too few values are specified, the
remaining ones are set to 0.

PROC GENMOD handles missing level combinations of classification variables in the same manner as the
GLM and MIXED procedures. Parameters corresponding to missing level combinations are not included
in the model. This convention can affect the way in which you specify the L matrix in your CONTRAST
statement.
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If you specify the WALD option, the test of hypothesis is based on a Wald chi-square statistic. If you omit
the WALD option, the test statistic computed depends on whether an ordinary generalized linear model or a
GEE-type model is specified.

For an ordinary generalized linear model, the CONTRAST statement computes the likelihood ratio statistic.
This is defined to be twice the difference between the log likelihood of the model unconstrained by the
contrast and the log likelihood with the model fitted under the constraint that the linear function of the
parameters defined by the contrast is equal to 0. A p-value is computed based on the asymptotic chi-square
distribution of the chi-square statistic.

If you specify a GEE model with the REPEATED statement, the test is based on a score statistic. The GEE
model is fit under the constraint that the linear function of the parameters defined by the contrast is equal
to 0. The score chi-square statistic is computed based on the generalized score function. See the section
“Generalized Score Statistics” on page 2966 for more information.

The degrees of freedom is the number of linearly independent constraints implied by the CONTRAST
statement—that is, the rank of L.

You can specify the following options after a slash (/).

E
requests that the L matrix be displayed.

SINGULAR=number

EPSILON=number
tunes the estimability checking. If v is a vector, define ABS(v) to be the absolute value of the element
of v with the largest absolute value. Let K0 be any row in the contrast matrix L. Define C to be equal
to ABS.K0/ if ABS.K0/ is greater than 0; otherwise, C equals 1. If ABS.K0 � K0T/ is greater than
C*number , then K is declared nonestimable. T is the Hermite form matrix .X0X/�.X0X/, and .X0X/�

represents a generalized inverse of the matrix X0X. The value for number must be between 0 and 1;
the default value is 1E–4. The SINGULAR= option in the MODEL statement affects the computation
of the generalized inverse of the matrix X0X. It might also be necessary to adjust this value for some
data.

WALD
requests that a Wald chi-square statistic be computed for the contrast rather than the default likelihood
ratio or score statistic. The Wald statistic for testing L0ˇ D 0 is defined by

S D .L0 Ǒ/0.L0†L/�.L0 Ǒ/

where Ǒ is the maximum likelihood estimate and † is its estimated covariance matrix. The asymptotic
distribution of S is �2r , where r is the rank of L. Computed p-values are based on this distribution.

If you specify a GEE model with the REPEATED statement, † is the empirical covariance matrix
estimate.

DEVIANCE Statement
DEVIANCE variable=expression ;
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You can specify a probability distribution other than those available in PROC GENMOD by using the
DEVIANCE and VARIANCE statements. You do not need to specify the DEVIANCE or VARIANCE
statement if you use the DIST= MODEL statement option to specify a probability distribution. The variable
identifies the deviance contribution from a single observation to the procedure, and it must be a valid SAS
variable name that does not appear in the input data set. The expression can be any arithmetic expression
supported by the DATA step language, and it is used to define the functional dependence of the deviance on
the mean and the response. You use the automatic variables _MEAN_ and _RESP_ to represent the mean and
response in the expression.

Alternatively, the deviance function can be defined using programming statements (see the section “Program-
ming Statements” on page 2926) and assigned to a variable, which is then listed as the expression. This form
is convenient for using complex statements such as IF-THEN/ELSE clauses.

The DEVIANCE statement is ignored unless the VARIANCE statement is also specified.

EFFECTPLOT Statement
EFFECTPLOT < plot-type < (plot-definition-options) > > < / options > ;

The EFFECTPLOT statement produces a display of the fitted model and provides options for changing and
enhancing the displays. Table 43.4 describes the available plot-types and their plot-definition-options.

Table 43.4 Plot-Types and Plot-Definition-Options

Plot-Type and Description Plot-Definition-Options

BOX
Displays a box plot of continuous response data at each
level of a CLASS effect, with predicted values
superimposed and connected by a line. This is an
alternative to the INTERACTION plot-type.

PLOTBY= variable or CLASS effect
X= CLASS variable or effect

CONTOUR
Displays a contour plot of predicted values against two
continuous covariates

PLOTBY= variable or CLASS effect
X= continuous variable
Y= continuous variable

FIT
Displays a curve of predicted values versus a
continuous variable

PLOTBY= variable or CLASS effect
X= continuous variable

INTERACTION
Displays a plot of predicted values (possibly with error
bars) versus the levels of a CLASS effect. The
predicted values are connected with lines and can be
grouped by the levels of another CLASS effect.

PLOTBY= variable or CLASS effect
SLICEBY= variable or CLASS effect
X= CLASS variable or effect

MOSAIC
Displays a mosaic plot of predicted values by using up
to three CLASS effects

PLOTBY= variable or CLASS effect
X= CLASS effects
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Table 43.4 continued

Plot-Type and Description Plot-Definition-Options

SLICEFIT
Displays a curve of predicted values versus a
continuous variable, grouped by the levels of a
CLASS effect

PLOTBY= variable or CLASS effect
SLICEBY= variable or CLASS effect
X= continuous variable

For full details about the syntax and options of the EFFECTPLOT statement, see the section “EFFECTPLOT
Statement” on page 416 in Chapter 19, “Shared Concepts and Topics.”

ESTIMATE Statement
ESTIMATE 'label ' contrast-specification < / options > ;

The ESTIMATE statement is similar to a CONTRAST statement, except only one-row L0 matrices are
permitted.

The elements of the ESTIMATE statement are as follows:

label identifies the contrast on the output. A label is required for every contrast specified. Labels can be
up to 20 characters and must be enclosed in single quotes.

contrast-specification identifies the effects and their coefficients from which the L matrix is formed. The
contrast-specification can be specified in two different ways. The first method applies to all
models except the zero-inflated (ZI) distributions (zero-inflated Poisson and zero-inflated negative
binomial), and the syntax is:

effect values < . . . effect values >

The second method of specifying a contrast applies only to ZI models, and the syntax is:

effect values < . . . effect values > @ZERO effect values < . . . effect values >

where

effect identifies an effect that appears in the MODEL statement. The value INTERCEPT or
intercept can be used as an effect when an intercept is included in the model. You do
not need to include all effects that are included in the MODEL statement.

values are constants that are elements of the L vector associated with the effect.

options specifies options for the ESTIMATE statement.

For ZI models, sets of effects values before the @ZERO separator correspond to the regression part of
the model with regression parameters ˇ, and effects values after the @ZERO separator correspond to the
zero-inflation part of the model with regression parameters  . In the case of ZI models, a one-row L0 matrix
is created for the regression part of the model, another one-row L0 matrix is created for the zero-inflation part
of the model, and separate estimates for the two L matrices are computed and displayed.

If you use the default less-than-full-rank GLM CLASS variable parameterization, each row is checked
for estimability. If PROC GENMOD finds a contrast to be nonestimable, it displays missing values in
corresponding rows in the results. See Searle (1971) for a discussion of estimable functions.
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The actual estimate, L0ˇ (and L0 for ZI models), its approximate standard error, and confidence limits are
displayed. Additionally, the corresponding estimate on the mean scale (defined as the inverse link function
applied to L0ˇ), and confidence limits are displayed. Wald chi-square tests that L0ˇ = 0 and L0 D 0 are also
displayed.

The approximate standard error of the estimate is computed as the square root of L0 O†L, where O† is the
estimated covariance matrix of the parameter estimates. If you specify a GEE model in the REPEATED
statement, O† is the empirical covariance matrix estimate.

If you specify the EXP option, then exp.L0ˇ/, its standard error, and its confidence limits are also displayed.

The construction of the L vector and the checking for estimability for an ESTIMATE statement follow the
same rules as listed under the CONTRAST statement.

You can specify the following options in the ESTIMATE statement after a slash (/).

ALPHA=number
requests that a confidence interval be constructed with confidence level 1 – number . The value of
number must be between 0 and 1; the default value is 0.05.

DIVISOR=number
specifies a value by which to divide all coefficients so that fractional coefficients can be entered as
integer numerators. For example, you can use

estimate '1/3(A1+A2) - 2/3A3' a 1 1 -2 / divisor=3;

instead of

estimate '1/3(A1+A2) - 2/3A3' a 0.33333 0.33333 -0.66667;

E
requests that the L matrix coefficients be displayed.

EXP
requests that exp.L0ˇ/, its standard error, and its confidence limits be computed. If you specify the
EXP option, standard errors are computed using the delta method. Confidence limits are computed by
exponentiating the confidence limits for L0ˇ.

SINGULAR=number

EPSILON=number
tunes the estimability checking as described for the CONTRAST statement.

EXACT Statement
EXACT < 'label ' > < INTERCEPT > < effects > < / options > ;

The EXACT statement performs exact tests of the parameters for the specified effects and optionally estimates
the parameters and outputs the exact conditional distributions. You can specify the keyword INTERCEPT
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and any effects in the MODEL statement. Inference on the parameters of the specified effects is performed
by conditioning on the sufficient statistics of all the other model parameters (possibly including the intercept).

You can specify several EXACT statements, but they must follow the MODEL statement. Each statement can
optionally include an identifying label . If several EXACT statements are specified, any statement without
a label is assigned a label of the form “Exactn,” where n indicates the nth EXACT statement. The label is
included in the headers of the displayed exact analysis tables.

If a STRATA statement is also specified, then a stratified exact logistic regression or a stratified exact Poisson
regression is performed. The model contains a different intercept for each stratum, and these intercepts are
conditioned out of the model along with any other nuisance parameters (parameters for effects specified in
the MODEL statement that are not in the EXACT statement).

The ASSESSMENT, BAYES, CONTRAST, EFFECTPLOT, ESTIMATE, LSMEANS, LSMESTIMATE,
OUTPUT, SLICE, and STORE statements are not available with an exact analysis. Exact analyses are not
performed when you specify a WEIGHT statement, or a model other than LINK=LOGIT with DIST=BIN or
LINK=LOG with DIST=POISSON. An OFFSET= variable is not available with exact logistic regression.
Exact estimation is not available for ordinal response models.

For classification variables, use of the reference parameterization is recommended.

The following options can be specified in each EXACT statement after a slash (/):

ALPHA=number
specifies the level of significance ˛ for 100.1 � ˛/% confidence limits for the parameters or odds
ratios. The value of number must be between 0 and 1. By default, number is equal to the value of the
ALPHA= option in the MODEL statement, or 0.05 if that option is not specified.

CLTYPE=EXACT | MIDP
requests either the exact or mid-p confidence intervals for the parameter estimates. By default, the
exact intervals are produced. The confidence coefficient can be specified with the ALPHA= option.
The mid-p interval can be modified with the MIDPFACTOR= option. See the section “Exact Logistic
and Exact Poisson Regression” on page 2978 for details.

ESTIMATE < =keyword >
estimates the individual parameters (conditioned on all other parameters) for the effects specified in the
EXACT statement. For each parameter, a point estimate, a standard error, a confidence interval, and a
p-value for a two-sided test that the parameter is zero are displayed. Note that the two-sided p-value is
twice the one-sided p-value. You can optionally specify one of the following keywords:

PARM specifies that the parameters be estimated. This is the default.

ODDS specifies that the odds ratios be estimated. If you have classification variables, then you
must also specify the PARAM=REF option in the CLASS statement.

BOTH specifies that both the parameters and odds ratios be estimated.

JOINT
performs the joint test that all of the parameters are simultaneously equal to zero, performs individual
hypothesis tests for the parameter of each continuous variable, and performs joint tests for the parame-
ters of each classification variable. The joint test is indicated in the “Conditional Exact Tests” table by
the label “Joint.”
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JOINTONLY
performs only the joint test of the parameters. The test is indicated in the “Conditional Exact Tests”
table by the label “Joint.” When this option is specified, individual tests for the parameters of each
continuous variable and joint tests for the parameters of the classification variables are not performed.

MIDPFACTOR=ı1 | (ı1; ı2)
sets the tie factors used to produce the mid-p hypothesis statistics and the mid-p confidence intervals.
ı1 modifies both the hypothesis tests and confidence intervals, while ı2 affects only the hypothesis tests.
By default, ı1 D 0:5 and ı2 D 1:0. See the section “Exact Logistic and Exact Poisson Regression” on
page 2978 for details.

ONESIDED
requests one-sided confidence intervals and p-values for the individual parameter estimates and odds
ratios. The one-sided p-value is the smaller of the left- and right-tail probabilities for the observed
sufficient statistic of the parameter under the null hypothesis that the parameter is zero. The two-sided
p-values (default) are twice the one-sided p-values. See the section “Exact Logistic and Exact Poisson
Regression” on page 2978 for more details.

OUTDIST=SAS-data-set
names the SAS data set that contains the exact conditional distributions. This data set contains all of
the exact conditional distributions that are required to process the corresponding EXACT statement.
This data set contains the possible sufficient statistics for the parameters of the effects specified
in the EXACT statement, the counts, and, when hypothesis tests are performed on the parameters,
the probability of occurrence and the score value for each sufficient statistic. When you request an
OUTDIST= data set, the observed sufficient statistics are displayed in the “Sufficient Statistics” table.
See the section “OUTDIST= Output Data Set” on page 2979 for more information.

EXACT Statement Examples

In the following example, two exact tests are computed: one for x1 and the other for x2. The test for x1 is
based on the exact conditional distribution of the sufficient statistic for the x1 parameter given the observed
values of the sufficient statistics for the intercept, x2, and x3 parameters; likewise, the test for x2 is conditional
on the observed sufficient statistics for the intercept, x1, and x3.

proc genmod;
model y= x1 x2 x3/d=b;
exact x1 x2;

run;

PROC GENMOD determines, from all the specified EXACT statements, the distinct conditional distributions
that need to be evaluated. For example, there is only one exact conditional distribution for the following two
EXACT statements:

exact 'One' x1 / estimate=parm;
exact 'Two' x1 / estimate=parm onesided;

For each EXACT statement, individual tests for the parameters of the specified effects are computed unless
the JOINTONLY option is specified. Consider the following EXACT statements:
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exact 'E12' x1 x2 / estimate;
exact 'E1' x1 / estimate;
exact 'E2' x2 / estimate;
exact 'J12' x1 x2 / joint;

In the E12 statement, the parameters for x1 and x2 are estimated and tested separately. Specifying the E12
statement is equivalent to specifying both the E1 and E2 statements. In the J12 statement, the joint test for
the parameters of x1 and x2 is computed in addition to the individual tests for x1 and x2.

EXACTOPTIONS Statement
EXACTOPTIONS options ;

The EXACTOPTIONS statement specifies options that apply to every EXACT statement in the program.
The following options are available:

ABSFCONV=value
specifies the absolute function convergence criterion. Convergence requires a small change in the
log-likelihood function in subsequent iterations,

jli � li�1j < value

where li is the value of the log-likelihood function at iteration i.

By default, ABSFCONV=1E–12. You can also specify the FCONV= and XCONV= criteria; optimiza-
tions are terminated as soon as one criterion is satisfied.

ADDTOBS
adds the observed sufficient statistic to the sampled exact distribution if the statistic was not sampled.
This option has no effect unless the METHOD=NETWORKMC option is specified and the ESTIMATE
option is specified in the EXACT statement. If the observed statistic has not been sampled, then the
parameter estimate does not exist; by specifying this option, you can produce (biased) estimates.

BUILDSUBSETS
builds every distribution for sampling. By default, some exact distributions are created by taking a
subset of a previously generated exact distribution. When the METHOD=NETWORKMC option is
invoked, this subsetting behavior has the effect of using fewer than the desired n samples; see the N=
option for more details. Use the BUILDSUBSETS option to suppress this subsetting.

EPSILON=value
controls how the partial sums

Pj
iD1 yixi are compared. value must be between 0 and 1; by default,

value=1E–8.

FCONV=value
specifies the relative function convergence criterion. Convergence requires a small relative change in
the log-likelihood function in subsequent iterations,

jli � li�1j

jli�1j C 1E–6
< value
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where li is the value of the log likelihood at iteration i.

By default, FCONV=1E–8. You can also specify the ABSFCONV= and XCONV= criteria; if more
than one criterion is specified, then optimizations are terminated as soon as one criterion is satisfied.

MAXTIME=seconds
specifies the maximum clock time (in seconds) that PROC GENMOD can use to calculate the exact
distributions. If the limit is exceeded, the procedure halts all computations and prints a note to the
LOG. The default maximum clock time is seven days.

METHOD=keyword
specifies which exact conditional algorithm to use for every EXACT statement specified. You can
specify one of the following keywords:

DIRECT invokes the multivariate shift algorithm of Hirji, Mehta, and Patel (1987). This method
directly builds the exact distribution, but it can require an excessive amount of memory in its
intermediate stages. METHOD=DIRECT is invoked by default when you are conditioning
out at most the intercept.

NETWORK invokes an algorithm described in Mehta, Patel, and Senchaudhuri (1992). This method
builds a network for each parameter that you are conditioning out, combines the networks,
then uses the multivariate shift algorithm to create the exact distribution. The NETWORK
method can be faster and require less memory than the DIRECT method. The NETWORK
method is invoked by default for most analyses.

NETWORKMC invokes the hybrid network and Monte Carlo algorithm of Mehta, Patel, and Sen-
chaudhuri (1992). This method creates a network, then samples from that network; this
method does not reject any of the samples at the cost of using a large amount of memory
to create the network. METHOD=NETWORKMC is most useful for producing parameter
estimates for problems that are too large for the DIRECT and NETWORK methods to
handle and for which asymptotic methods are invalid—for example, for sparse data on a
large grid.

N=n
specifies the number of Monte Carlo samples to take when the METHOD=NETWORKMC option is
specified. By default, n = 10,000. If the procedure cannot obtain n samples due to a lack of memory,
then a note is printed in the SAS log (the number of valid samples is also reported in the listing) and
the analysis continues.

The number of samples used to produce any particular statistic might be smaller than n. For example,
let X1 and X2 be continuous variables, denote their joint distribution by f (X1,X2), and let f (X1 | X2 =
x2) denote the marginal distribution of X1 conditioned on the observed value of X2. If you request
the JOINT test of X1 and X2, then n samples are used to generate the estimate Of (X1,X2) of f (X1,X2),
from which the test is computed. However, the parameter estimate for X1 is computed from the subset
of Of (X1,X2) that has X2 = x2, and this subset need not contain n samples. Similarly, the distribution
for each level of a classification variable is created by extracting the appropriate subset from the joint
distribution for the CLASS variable.

In some cases, the marginal sample size can be too small to admit accurate estimation of a particular
statistic; a note is printed in the SAS log when a marginal sample size is less than 100. Increasing n
increases the number of samples used in a marginal distribution; however, if you want to control the
sample size exactly, you can either specify the BUILDSUBSETS option or do both of the following:



EXACTOPTIONS Statement F 2909

• Remove the JOINT option from the EXACT statement.

• Create dummy variables in a DATA step to represent the levels of a CLASS variable, and specify
them as independent variables in the MODEL statement.

NOLOGSCALE
specifies that computations for the exact conditional models be computed by using normal scaling.
Log scaling can handle numerically larger problems than normal scaling; however, computations in the
log scale are slower than computations in normal scale.

ONDISK
uses disk space instead of random access memory to build the exact conditional distribution. Use this
option to handle larger problems at the cost of slower processing.

SEED=seed
specifies the initial seed for the random number generator used to take the Monte Carlo samples when
the METHOD=NETWORKMC option is specified. The value of the SEED= option must be an integer.
If you do not specify a seed, or if you specify a value less than or equal to zero, then PROC GENMOD
uses the time of day from the computer’s clock to generate an initial seed.

STATUSN=number
prints a status line in the SAS log after every number of Monte Carlo samples when the
METHOD=NETWORKMC option is specified. The number of samples taken and the current exact
p-value for testing the significance of the model are displayed. You can use this status line to track the
progress of the computation of the exact conditional distributions.

STATUSTIME=seconds
specifies the time interval (in seconds) for printing a status line in the LOG. You can use this status line
to track the progress of the computation of the exact conditional distributions. The time interval you
specify is approximate; the actual time interval varies. By default, no status reports are produced.

XCONV=value
specifies the relative parameter convergence criterion. Convergence requires a small relative parameter
change in subsequent iterations,

max
j
jı
.i/
j j < value

where

ı
.i/
j D

8<: ˇ
.i/
j � ˇ

.i�1/
j jˇ

.i�1/
j j < 0:01

ˇ
.i/

j
�ˇ

.i�1/

j

ˇ
.i�1/

j

otherwise

and ˇ.i/j is the estimate of the jth parameter at iteration i.

By default, XCONV=1E–4. You can also specify the ABSFCONV= and FCONV= criteria; if more
than one criterion is specified, then optimizations are terminated as soon as one criterion is satisfied.
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FREQ Statement
FREQ variable ;

FREQUENCY variable ;

The variable in the FREQ statement identifies a variable in the input data set containing the frequency of
occurrence of each observation. PROC GENMOD treats each observation as if it appears n times, where n is
the value of the FREQ variable for the observation. If it is not an integer, the frequency value is truncated to
an integer. If it is less than 1 or missing, the observation is not used. In the case of models fit with generalized
estimating equations (GEEs), the frequencies apply to the subject/cluster and therefore must be the same for
all observations within each subject.

FWDLINK Statement
FWDLINK variable=expression ;

You can define a link function other than a built-in link function by using the FWDLINK statement. If you
use the MODEL statement option LINK= to specify a link function, you do not need to use the FWDLINK
statement. The variable identifies the link function to the procedure. The expression can be any arithmetic
expression supported by the DATA step language, and it is used to define the functional dependence on the
mean.

Alternatively, the link function can be defined by using programming statements (see the section “Program-
ming Statements” on page 2926) and assigned to a variable, which is then listed as the expression. The
second form is convenient for using complex statements such as IF-THEN/ELSE clauses. The GENMOD
procedure automatically computes derivatives of the link function required for iterative fitting. You must
specify the inverse of the link function in the INVLINK statement when you specify the FWDLINK statement
to define the link function. You use the automatic variable _MEAN_ to represent the mean in the preceding
expression.

INVLINK Statement
INVLINK variable=expression ;

If you define a link function in the FWDLINK statement, then you must define the inverse link function by
using the INVLINK statement. If you use the MODEL statement option LINK= to specify a link function,
you do not need to use the INVLINK statement. The variable identifies the inverse link function to the
procedure. The expression can be any arithmetic expression supported by the DATA step language, and it is
used to define the functional dependence on the linear predictor.

Alternatively, the inverse link function can be defined using programming statements (see the section
“Programming Statements” on page 2926) and assigned to a variable, which is then listed as the expression.
The second form is convenient for using complex statements such as IF-THEN/ELSE clauses. The automatic
variable _XBETA_ represents the linear predictor in the preceding expression.
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LSMEANS Statement
LSMEANS < model-effects > < / options > ;

The LSMEANS statement computes and compares least squares means (LS-means) of fixed effects. LS-means
are predicted population margins—that is, they estimate the marginal means over a balanced population. In a
sense, LS-means are to unbalanced designs as class and subclass arithmetic means are to balanced designs.

Table 43.5 summarizes the options available in the LSMEANS statement. If you specify the BAYES
statement, the ADJUST=, STEPDOWN, and LINES options are ignored. The PLOTS= option is not available
for a maximum likelihood analysis; it is available only for a Bayesian analysis.

If you specify a zero-inflated model (that is, a model for either the zero-inflated Poisson or the zero-inflated
negative binomial distribution), then the least squares means are computed only for effects in the model for
the distribution mean, and not for effects in the zero-inflation probability part of the model.

Table 43.5 LSMEANS Statement Options

Option Description

Construction and Computation of LS-Means
AT Modifies the covariate value in computing LS-means
BYLEVEL Computes separate margins
DIFF Requests differences of LS-means
OM= Specifies the weighting scheme for LS-means computation as de-

termined by the input data set
SINGULAR= Tunes estimability checking

Degrees of Freedom and p-values
ADJUST= Determines the method for multiple-comparison adjustment of LS-

means differences
ALPHA=˛ Determines the confidence level (1 � ˛)
STEPDOWN Adjusts multiple-comparison p-values further in a step-down

fashion

Statistical Output
CL Constructs confidence limits for means and mean differences
CORR Displays the correlation matrix of LS-means
COV Displays the covariance matrix of LS-means
E Prints the L matrix
LINES Produces a “Lines” display for pairwise LS-means differences
MEANS Prints the LS-means
PLOTS= Requests graphs of means and mean comparisons
SEED= Specifies the seed for computations that depend on random numbers



2912 F Chapter 43: The GENMOD Procedure

Table 43.5 continued

Option Description

Generalized Linear Modeling
EXP Exponentiates and displays estimates of LS-means or LS-means

differences
ILINK Computes and displays estimates and standard errors of LS-means

(but not differences) on the inverse linked scale
ODDSRATIO Reports (simple) differences of least squares means in terms of

odds ratios if permitted by the link function

For details about the syntax of the LSMEANS statement, see the section “LSMEANS Statement” on page 460
in Chapter 19, “Shared Concepts and Topics.”

LSMESTIMATE Statement
LSMESTIMATE model-effect < 'label ' > values < divisor=n >

< , . . . < 'label ' > values < divisor=n > >
< / options > ;

The LSMESTIMATE statement provides a mechanism for obtaining custom hypothesis tests among least
squares means.

Table 43.6 summarizes the options available in the LSMESTIMATE statement.

Table 43.6 LSMESTIMATE Statement Options

Option Description

Construction and Computation of LS-Means
AT Modifies covariate values in computing LS-means
BYLEVEL Computes separate margins
DIVISOR= Specifies a list of values to divide the coefficients
OM= Specifies the weighting scheme for LS-means computation as de-

termined by a data set
SINGULAR= Tunes estimability checking

Degrees of Freedom and p-values
ADJUST= Determines the method for multiple-comparison adjustment of LS-

means differences
ALPHA=˛ Determines the confidence level (1 � ˛)
LOWER Performs one-sided, lower-tailed inference
STEPDOWN Adjusts multiple-comparison p-values further in a step-down fash-

ion
TESTVALUE= Specifies values under the null hypothesis for tests
UPPER Performs one-sided, upper-tailed inference
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Table 43.6 continued

Option Description

Statistical Output
CL Constructs confidence limits for means and mean differences
CORR Displays the correlation matrix of LS-means
COV Displays the covariance matrix of LS-means
E Prints the L matrix
ELSM Prints the K matrix
JOINT Produces a joint F or chi-square test for the LS-means and LS-

means differences
PLOTS= Requests graphs of means and mean comparisons
SEED= Specifies the seed for computations that depend on random numbers

Generalized Linear Modeling
CATEGORY= Specifies how to construct estimable functions with multinomial

data
EXP Exponentiates and displays LS-means estimates
ILINK Computes and displays estimates and standard errors of LS-means

(but not differences) on the inverse linked scale

For details about the syntax of the LSMESTIMATE statement, see the section “LSMESTIMATE Statement”
on page 476 in Chapter 19, “Shared Concepts and Topics.”

MODEL Statement
MODEL response = < effects > < / options > ;

MODEL events/trials = < effects > < / options > ;

The MODEL statement specifies the response, or dependent variable, and the effects, or explanatory variables.
If you omit the explanatory variables, the procedure fits an intercept-only model. An intercept term is
included in the model by default. The intercept can be removed with the NOINT option.

You can specify the response in the form of a single variable or in the form of a ratio of two variables denoted
events/trials. The first form is applicable to all responses. The second form is applicable only to summarized
binomial response data. When each observation in the input data set contains the number of events (for
example, successes) and the number of trials from a set of binomial trials, use the events/trials syntax.

In the events/trials model syntax, you specify two variables that contain the event and trial counts. These two
variables are separated by a slash (/). The values of both events and (trials–events) must be nonnegative, and
the value of the trials variable must be greater than 0 for an observation to be valid. The variable events or
trials can take noninteger values.

When each observation in the input data set contains a single trial from a binomial or multinomial experiment,
use the first form of the preceding MODEL statements. The response variable can be numeric or character.
The ordering of response levels is critical in these models. You can use the RORDER= option in the PROC
GENMOD statement to specify the response level ordering.
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Responses for the Poisson distribution must be all nonnegative, but they can be noninteger values.

The effects in the MODEL statement consist of an explanatory variable or combination of variables. Ex-
planatory variables can be continuous or classification variables. Classification variables can be character or
numeric. Explanatory variables representing nominal, or classification, data must be declared in a CLASS
statement. Interactions between variables can also be included as effects. Columns of the design matrix are
automatically generated for classification variables and interactions. The syntax for specification of effects
is the same as for the GLM procedure. See the section “Specification of Effects” on page 2946 for more
information. Also see Chapter 45, “The GLM Procedure.”

Table 43.7 summarizes the options available in the MODEL statement.

Table 43.7 MODEL Statement Options

Option Description

AGGREGATE= Specifies the subpopulations
ALPHA= Sets the confidence coefficient
CICONV= Sets the convergence criterion for profile likelihood confidence intervals
CL Displays confidence limits for predicted values
CODING= Uses effect coding for all classification variables
CONVERGE= Sets the convergence criterion
CONVH= Sets the relative Hessian convergence criterion
CORRB Displays the parameter estimate correlation matrix
COVB Displays the parameter estimate covariance matrix
DIAGNOSTICS Displays case deletion diagnostic statistics
DIST= Specifies the built-in probability distribution
EXACTMAX Names a variable used for performing an exact Poisson regression
EXPECTED Computes covariances and associated statistics using the expected Fisher

information matrix
ID= Displays the values of variable in the input data set in the OBSTATS table
INITIAL= Sets initial values for parameter estimates
INTERCEPT= Initializes the intercept term
ITPRINT Displays the iteration history for all iterative processes
LINK= Specifies the link function
LOGNB Computes the maximum likelihood estimate and confidence limits of k

based log.k/
LRCI Computes two-sided confidence intervals for the partially likelihood func-

tion
MAXITER= Sets the maximum allowable number of iterations for all iterative computa-

tion processes
NOINT Requests that no intercept term
NOLOGNB Computes the maximum likelihood estimate and confidence limits of k

based on k
NOSCALE Holds the scale parameter fixed
OBSTATS Displays an additional table of statistics
OFFSET= Specifies a variable in the input data set to be used as an offset
PREDICTED Displays predicted values and associated statistics
RESIDUALS Displays residuals and standardized residuals
SCALE= Sets the value used for the scale
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Table 43.7 continued

Option Description

SCORING= Computes the Hessian matrix using the Fisher scoring method
SINGULAR= Sets the tolerance for testing singularity
TYPE1 Performs a Type 1 analysis
TYPE3 Computes statistics for Type 3 contrasts
WALD Requests Wald statistics for Type 3 contrasts
WALDCI Computes two-sided Wald confidence intervals
XVARS Includes the regression variables in the OBSTATS table

You can specify the following options in the MODEL statement after a slash (/).

AGGREGATE= (variable-list) | variable

AGGREGATE
specifies the subpopulations on which the Pearson chi-square and the deviance are calculated. This
option applies only to the multinomial distribution or the binomial distribution with binary (single
trial syntax) response. It is ignored if specified for other cases. Observations with common values
in the given list of variables are regarded as coming from the same subpopulation. This affects
the computation of the deviance and Pearson chi-square statistics. Variables in the list can be any
variables in the input data set. Specifying the AGGREGATE option is equivalent to specifying the
AGGREGATE= option with a variable list that includes all explanatory variables in the MODEL
statement. Pearson chi-square and deviance statistics are not computed for multinomial models unless
this option is specified.

ALPHA=number

ALPH=number

A=number
sets the confidence coefficient for parameter confidence intervals to 1–number . The value of number
must be between 0 and 1. The default value of number is 0.05.

CICONV=number
sets the convergence criterion for profile likelihood confidence intervals. See the section “Confidence
Intervals for Parameters” on page 2950 for the definition of convergence. The value of number must
be between 0 and 1. By default, CICONV=1E–4.

CL
requests that confidence limits for predicted values be displayed (see the OBSTATS option).

CODING=EFFECT | FULLRANK
specifies that effect coding be used for all classification variables in the model. This is the same as
specifying PARAM=EFFECT as a CLASS statement option.

CONVERGE=number
sets the convergence criterion. The value of number must be between 0 and 1. The iterations are
considered to have converged when the maximum change in the parameter estimates between iteration
steps is less than the value specified. The change is a relative change if the parameter is greater than
0.01 in absolute value; otherwise, it is an absolute change. By default, CONVERGE=1E–4. This
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convergence criterion is used in parameter estimation for a single model fit, Type 1 statistics, and
likelihood ratio statistics for Type 3 analyses and CONTRAST statements.

CONVH=number
sets the relative Hessian convergence criterion. The value of number must be between 0 and 1. After
convergence is determined with the change in parameter criterion specified with the CONVERGE=
option, the quantity tc D g0H�1g

jf j
is computed and compared to number , where g is the gradient

vector, H is the Hessian matrix for the model parameters, and f is the log-likelihood function. If tc
is greater than number , a warning that the relative Hessian convergence criterion has been exceeded
is printed. This criterion detects the occasional case where the change in parameter convergence
criterion is satisfied, but a maximum in the log-likelihood function has not been attained. By default,
CONVH=1E–4.

CORRB
requests that the parameter estimate correlation matrix be displayed.

COVB
requests that the parameter estimate covariance matrix be displayed.

DIAGNOSTICS

INFLUENCE
requests that case deletion diagnostic statistics be displayed (see the OBSTATS option).

DIST=keyword

D=keyword

ERROR=keyword

ERR=keyword
specifies the built-in probability distribution to use in the model. If you specify the DIST= option and
you omit a user-defined link function, a default link function is chosen as displayed in the following
table. If you specify no distribution and no link function, then the GENMOD procedure defaults to the
normal distribution with the identity link function. Models for data with correlated responses fit by the
GEE method are not available for the zero-inflated distributions.

DIST= Distribution Default Link Function

BINOMIAL | BIN | B Binomial Logit
GAMMA | GAM | G Gamma Inverse ( power(–1) )
GEOMETRIC | GEOM Geometric Log
IGAUSSIAN | IG Inverse Gaussian Inverse squared ( power(–2) )
MULTINOMIAL | MULT Multinomial Cumulative logit
NEGBIN | NB Negative binomial Log
NORMAL | NOR | N Normal Identity
POISSON | POI | P Poisson Log
TWEEDIE< (Tweedie-options) > Tweedie Log
ZIP Zero-inflated Poisson Log/logit
ZINB Zero-inflated negative binomial Log/logit

You can specify the following Tweedie-options when you specify DIST=TWEEDIE.
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INITIALP=starting-value
specifies a starting value for iterative estimation of the Tweedie power parameter.

P=power-parameter
specifies a fixed Tweedie power parameter.

EPSILON=tolerance
specifies the tolerance for series approximation of the Tweedie density function.

OFFSET=constant-value
specifies a constant value to be added to the response variable for evaluating the extended
quasi-likelihood. By default, OFFSET=0.5.

NTHREADS=number
specifies the number of threads to be used in computation.

EXACTMAX< =variable >
names a variable to be used for performing an exact Poisson regression. For each observation, the
integer part of the EXACTMAX value should be nonnegative and at least as large as the response
value. If the EXACTMAX option is specified without a variable, then default values are computed.
See the section “Exact Logistic and Exact Poisson Regression” on page 2978 for information about
using this option.

EXPECTED
requests that the expected Fisher information matrix be used to compute parameter estimate covariances
and the associated statistics. The default action is to use the observed Fisher information matrix. This
option does not affect the model fitting, only the way in which the covariance matrix is computed (see
the SCORING= option.)

ID=variable
causes the values of variable in the input data set to be displayed in the OBSTATS table. If an explicit
format for variable has been defined, the formatted values are displayed. If the OBSTATS option is not
specified, this option has no effect.

INITIAL=numbers
sets initial values for parameter estimates in the model. The default initial parameter values are
weighted least squares estimates based on using the response data as the initial mean estimate. This
option can be useful in case of convergence difficulty. The intercept parameter is initialized with the
INTERCEPT= option and is not included here. The values are assigned to the variables in the MODEL
statement in the same order in which they appear in the MODEL statement. The order of levels
for CLASS variables is determined by the ORDER= option. Note that some levels of classification
variables can be aliased; that is, they correspond to linearly dependent parameters that are not estimated
by the procedure. Initial values must be assigned to all levels of classification variables, regardless
of whether they are aliased or not. The procedure ignores initial values corresponding to parameters
not being estimated. If you specify a BY statement, all classification variables must take on the same
number of levels in each BY group. Otherwise, classification variables in some of the BY groups are
assigned incorrect initial values. Types of INITIAL= specifications are illustrated in the following
table.
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Type of List Specification

List separated by blanks INITIAL = 3 4 5
List separated by commas INITIAL = 3, 4, 5
x to y INITIAL = 3 to 5
x to y by z INITIAL = 3 to 5 by 1
Combination of list types INITIAL = 1, 3 to 5, 9

INTERCEPT=number | number-list
initializes the intercept term to number for parameter estimation. If you specify both the INTERCEPT=
and the NOINT options, the intercept term is not estimated, but an intercept term of number is included
in the model. If you specify a multinomial model for ordinal data, you can specify a number-list for
the multiple intercepts in the model.

ITPRINT
displays the iteration history for all iterative processes: parameter estimation, fitting constrained models
for contrasts and Type 3 analyses, and profile likelihood confidence intervals. The last evaluation of
the gradient and the negative of the Hessian (second derivative) matrix are also displayed for parameter
estimation. If you perform a Bayesian analysis by specifying the BAYES statement, the iteration
history for computing the mode of the posterior distribution is also displayed.

This option might result in a large amount of displayed output, especially if some of the optional
iterative processes are selected.

LINK=keyword
specifies the link function to use in the model. The keywords and their associated built-in link functions
are as follows.

LINK= Link Function

CUMCLL
CCLL Cumulative complementary log-log
CUMLOGIT
CLOGIT Cumulative logit
CUMPROBIT
CPROBIT Cumulative probit
CLOGLOG
CLL Complementary log-log
IDENTITY
ID Identity
LOG Log
LOGIT Logit
PROBIT Probit
POWER(number ) | POW(number ) Power with �= number

If no LINK= option is supplied and there is a user-defined link function, the user-defined link function
is used. If you specify neither the LINK= option nor a user-defined link function, then the default
canonical link function is used if you specify the DIST= option. Otherwise, if you omit the DIST=
option, the identity link function is used.

The cumulative link functions are appropriate only for the multinomial distribution.
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LOGNB
specifies that the maximum likelihood estimate and confidence limits of the negative binomial disper-
sion parameter k be computed based log.k/. This is the default method used for the negative binomial
dispersion parameter, so that specifying no option or specifying the LOGNB option have the same
effect. The GENMOD procedure computes the maximum likelihood estimate of log.k/ and computes
confidence limits based on the asymptotic normality of log.k/ rather than of k. The results are always
reported in terms of k rather than of log.k/. This method ensures that the estimate and confidence
limits for k are positive. See Meeker and Escobar (1998, p. 163) for details about this method of
computing confidence limits.

LRCI
requests that two-sided confidence intervals for all model parameters be computed based on the profile
likelihood function. This is sometimes called the partially maximized likelihood function. See the
section “Confidence Intervals for Parameters” on page 2950 for more information about the profile
likelihood function. This computation is iterative and can consume a relatively large amount of CPU
time. The confidence coefficient can be selected with the ALPHA=number option. The resulting
confidence coefficient is 1–number . The default confidence coefficient is 0.95.

MAXITER=number

MAXIT=number
sets the maximum allowable number of iterations for all iterative computation processes in PROC
GENMOD. By default, MAXITER=50.

NOINT
requests that no intercept term be included in the model. An intercept is included unless this option is
specified.

NOLOGNB
specifies that the maximum likelihood estimate and confidence limits of the negative binomial disper-
sion parameter k be computed based on k rather than log.k/. If this option is not specified, then the
GENMOD procedure computes the maximum likelihood estimate of log.k/ and computes confidence
limits based on the asymptotic normality of log.k/ rather than of k. The results are always reported
in terms of k rather than of log.k/. This method ensures that the estimate and confidence limits for
k are positive. See Meeker and Escobar (1998, p. 163) for details about this method of computing
confidence limits.

NOSCALE
holds the scale parameter fixed. Otherwise, for the normal, inverse Gaussian, and gamma distributions,
the scale parameter is estimated by maximum likelihood. If you omit the SCALE= option, the scale
parameter is fixed at the value 1.

OBSTATS
specifies that an additional table of statistics be displayed. Formulas for the statistics are given in
the section “Predicted Values of the Mean” on page 2952, the section “Residuals” on page 2952, and
the section “Case Deletion Diagnostic Statistics” on page 2970. Residuals and fit diagnostics are not
computed for multinomial models.

For each observation, the following items are displayed:

• the value of the response variable (variables if the data are binomial), frequency, and weight
variables
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• the values of the regression variables

• predicted mean, O� D g�1.�/, where � D x0i Ǒ is the linear predictor and g is the link function. If
there is an offset, it is included in x0i Ǒ.

• estimate of the linear predictor x0i Ǒ. If there is an offset, it is included in x0i Ǒ.

• standard error of the linear predictor x0i Ǒ

• the value of the Hessian weight at the final iteration

• lower confidence limit of the predicted value of the mean. The confidence coefficient is specified
with the ALPHA= option. See the section “Confidence Intervals on Predicted Values” on
page 2952 for the computational method.

• upper confidence limit of the predicted value of the mean

• raw residual, defined as Y � �

• Pearson, or chi residual, defined as the square root of the contribution for the observation to the
Pearson chi-square—that is,

Y � �p
V.�/=w

where Y is the response, � is the predicted mean, w is the value of the prior weight variable
specified in a WEIGHT statement, and V(�) is the variance function evaluated at �.

• the standardized Pearson residual

• deviance residual, defined as the square root of the deviance contribution for the observation,
with sign equal to the sign of the raw residual

• the standardized deviance residual

• the likelihood residual

• a Cook distance type statistic for assessing the influence of individual observations on overall
model fit

• observation leverage

• DFBETA, defined as an approximation to Ǒ � OˇŒi� for each parameter estimate Ǒ, where OˇŒi� is
the parameter estimate with the ith observation deleted

• standardized DFBETA, defined as DFBETA, normalized by its standard deviation

• zero inflation probability for zero-inflated models

• the mean of a zero-inflated response

The following additional cluster deletion diagnostic statistics are created and displayed for each cluster
if a REPEATED statement is specified:

• a Cook distance type statistic for assessing the influence of entire clusters on overall model fit

• a studentized Cook distance for assessing influence of clusters

• cluster leverage

• cluster DFBETA for assessing the influence of entire clusters on individual parameter estimates

• cluster DFBETA normalized by its standard deviation
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If you specify the multinomial distribution, only regression variable values, response values, predicted
values, confidence limits for the predicted values, and the linear predictor are displayed in the table.
Residuals and other diagnostic statistics are not available for the multinomial distribution.

The RESIDUALS, DIAGNOSTICS | INFLUENCE, PREDICTED, XVARS, and CL options cause
only subgroups of the observation statistics to be displayed. You can specify more than one of these
options to include different subgroups of statistics.

The ID=variable option causes the values of variable in the input data set to be displayed in the table.
If an explicit format for variable has been defined, the formatted values are displayed.

If a REPEATED statement is present, a table is displayed for the GEE model specified in the RE-
PEATED statement. Regression variables, response values, predicted values, confidence limits for the
predicted values, linear predictor, raw residuals, Pearson residuals for each observation in the input
data set are available. Case deletion diagnostic statistics are available for each observation and for each
cluster.

OFFSET=variable
specifies a variable in the input data set to be used as an offset variable. This variable cannot be a
CLASS variable, and it cannot be the response variable or one of the explanatory variables.

When you perform an exact Poisson regression with an OFFSET= variable but the EXACTMAX=
option is not specified, then if oi is the offset for the ith observation, floor(exp(oi )) should be greater
than or equal to the response value. See the section “Exact Logistic and Exact Poisson Regression” on
page 2978 for information about the use of the offset in the exact Poisson model.

PREDICTED

PRED

P
requests that predicted values, the linear predictor, its standard error, and the Hessian weight be
displayed (see the OBSTATS option).

RESIDUALS

R
requests that residuals and standardized residuals be displayed. Residuals and other diagnostic statistics
are not available for the multinomial distribution (see the OBSTATS option).

SCALE=number

SCALE=PEARSON | P

PSCALE

SCALE=DEVIANCE | D

DSCALE
sets the value used for the scale parameter where the NOSCALE option is used. For the binomial and
Poisson distributions, which have no free scale parameter, this can be used to specify an overdispersed
model. In this case, the parameter covariance matrix and the likelihood function are adjusted by the
scale parameter. See the section “Dispersion Parameter” on page 2944 and the section “Overdispersion”
on page 2945 for more information. If the NOSCALE option is not specified, then number is used as
an initial estimate of the scale parameter.

Specifying SCALE=PEARSON or SCALE=P is the same as specifying the PSCALE option. This
fixes the scale parameter at the value 1 in the estimation procedure. After the parameter estimates
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are determined, the exponential family dispersion parameter is assumed to be given by Pearson’s
chi-square statistic divided by the degrees of freedom, and all statistics such as standard errors and
likelihood ratio statistics are adjusted appropriately.

Specifying SCALE=DEVIANCE or SCALE=D is the same as specifying the DSCALE option. This
fixes the scale parameter at a value of 1 in the estimation procedure.

After the parameter estimates are determined, the exponential family dispersion parameter is assumed
to be given by the deviance divided by the degrees of freedom. All statistics such as standard errors
and likelihood ratio statistics are adjusted appropriately.

SCORING=number
requests that on iterations up to number , the Hessian matrix be computed using the Fisher scoring
method. For further iterations, the full Hessian matrix is computed. The default value is 1. A value of
0 causes all iterations to use the full Hessian matrix, and a value greater than or equal to the value of
the MAXITER option causes all iterations to use Fisher scoring. The value of the SCORING= option
must be 0 or a positive integer.

SINGULAR=number
sets the tolerance for testing singularity of the information matrix and the crossproducts matrix.
Roughly, the test requires that a pivot be at least this number times the original diagonal value. By
default, number is 107 times the machine epsilon. The default number is approximately 10�9 on
most machines. This value also controls the check on estimability for ESTIMATE and CONTRAST
statements.

TYPE1
requests that a Type 1, or sequential, analysis be performed. This consists of sequentially fitting models,
beginning with the null (intercept term only) model and continuing up to the model specified in the
MODEL statement. The likelihood ratio statistic between each successive pair of models is computed
and displayed in a table.

A Type 1 analysis is not available for GEE models, since there is no associated likelihood.

TYPE3
requests that statistics for Type 3 contrasts be computed for each effect specified in the MODEL
statement. The default analysis is to compute likelihood ratio statistics for the contrasts or score
statistics for GEEs. Wald statistics are computed if the WALD option is also specified.

WALD
requests Wald statistics for Type 3 contrasts. You must also specify the TYPE3 option in order to
compute Type 3 Wald statistics.

WALDCI
requests that two-sided Wald confidence intervals for all model parameters be computed based on
the asymptotic normality of the parameter estimators. This computation is not as time-consuming
as the LRCI method, since it does not involve an iterative procedure. However, it is thought to be
less accurate, especially for small sample sizes. The confidence coefficient can be selected with the
ALPHA= option in the same way as for the LRCI option.
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XVARS
requests that the regression variables be included in the OBSTATS table.

OUTPUT Statement
OUTPUT < OUT=SAS-data-set > < keyword=name . . . keyword=name > ;

The OUTPUT statement creates a new SAS data set that contains all the variables in the input data set and,
optionally, the estimated linear predictors (XBETA) and their standard error estimates, the weights for the
Hessian matrix, predicted values of the mean, confidence limits for predicted values, residuals, and case
deletion diagnostics. Residuals and diagnostic statistics are not computed for multinomial models.

You can also request these statistics with the OBSTATS, PREDICTED, RESIDUALS, DIAGNOSTICS | IN-
FLUENCE, CL, or XVARS option in the MODEL statement. You can then create a SAS data set containing
them with ODS OUTPUT commands.

You might prefer to specify the OUTPUT statement for requesting these statistics since the following are true:

• The OUTPUT statement produces no tabular output.

• The OUTPUT statement creates a SAS data set more efficiently than ODS. This can be an advantage
for large data sets.

• You can specify the individual statistics to be included in the SAS data set.

If you use the multinomial distribution with one of the cumulative link functions for ordinal data, the data
set also contains variables named _ORDER_ and _LEVEL_ that indicate the levels of the ordinal response
variable and the values of the variable in the input data set corresponding to the sorted levels. These variables
indicate that the predicted value for a given observation is the probability that the response variable is as
large as the value of the _LEVEL_ variable. Residuals and other diagnostic statistics are not available for the
multinomial distribution.

The estimated linear predictor, its standard error estimate, and the predicted values and their confidence
intervals are computed for all observations in which the explanatory variables are all nonmissing, even if
the response is missing. By adding observations with missing response values to the input data set, you can
compute these statistics for new observations or for settings of the explanatory variables not present in the
data without affecting the model fit.

The following list explains specifications in the OUTPUT statement.

OUT=SAS-data-set
specifies the output data set. If you omit the OUT=option, the output data set is created and given a
default name that uses the DATAn convention.

keyword=name
specifies the statistics to be included in the output data set and names the new variables that contain
the statistics. Specify a keyword for each desired statistic (see the following list of keywords), an
equal sign, and the name of the new variable or variables to contain the statistic. You can list only
one variable after the equal sign for all the statistics, except for the case deletion diagnostics for
individual parameter estimates, DFBETA, DFBETAS, DFBETAC, and DFBETACS. You can list
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variables enclosed in parentheses to correspond to the variables in the model, or you can specify the
keyword _all_, without parentheses, to include deletion diagnostics for all of the parameters in the
model.

Although you can use the OUTPUT statement without any keyword=name specifications, the output
data set then contains only the original variables and, possibly, the variables Level and Value (if you
use the multinomial model with ordinal data). Note that the residuals and deletion diagnostics are not
available for the multinomial model with ordinal data. Some of the case deletion diagnostic statistics
apply only to models for correlated data specified with a REPEATED statement. If you request these
statistics for ordinary generalized linear models, the values of the corresponding variables are set to
missing in the output data set. Formulas for the statistics are given in the section “Predicted Values
of the Mean” on page 2952, the section “Residuals” on page 2952, and the section “Case Deletion
Diagnostic Statistics” on page 2970.

The keywords allowed and the statistics they represent are as follows:

DFBETA | DBETA represents the effect of deleting an observation on parameter estimates. If
you specify the keyword _all_ after the equal sign, variables named DF-
BETA_ParameterName will be included in the output data set to contain the values
of the diagnostic statistic to measure the influence of deleting a single observation
on the individual parameter estimates. ParameterName is the name of the regres-
sion model parameter formed from the input variable names concatenated with the
appropriate levels, if classification variables are involved.

DFBETAS | DBETAS represents the effect of deleting an observation on standardized parameter
estimates. If you specify the keyword _all_ after the equal sign, variables named
DFBETAS_ParameterName will be included in the output data set to contain
the values of the diagnostic statistic to measure the influence of deleting a single
observation on the individual parameter estimates. ParameterName is the name of
the regression model parameter formed from the input variable names concatenated
with the appropriate levels, if classification variables are involved.

DOBS | COOKD | COOKSD represents the Cook distance type statistic to measure the influence of
deleting a single observation on the overall model fit.

HESSWGT represents the diagonal element of the weight matrix used in computing the Hessian
matrix.

H | LEVERAGE represents the leverage of a single observation.

LOWER | L represents the lower confidence limit for the predicted value of the mean, or the
lower confidence limit for the probability that the response is less than or equal
to the value of Level or Value. The confidence coefficient is determined by the
ALPHA=number option in the MODEL statement as .1 � number/ � 100%. The
default confidence coefficient is 95%.

PREDICTED | PRED | PROB | P represents the predicted value of the mean of the response or the
predicted probability that the response variable is less than or equal to the value
of _LEVEL_ if the multinomial model for ordinal data is used (in other words,
Pr.Y � _LEVEL_/, where Y is the response variable).

PZERO represents the zero-inflation probability for zero-inflated models.

RESCHI represents the Pearson (chi) residual for identifying observations that are poorly
accounted for by the model.
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RESDEV represents the deviance residual for identifying poorly fitted observations.

RESLIK represents the likelihood residual for identifying poorly fitted observations.

RESRAW represents the raw residual for identifying poorly fitted observations.

STDRESCHI represents the standardized Pearson (chi) residual for identifying observations that
are poorly accounted for by the model.

STDRESDEV represents the standardized deviance residual for identifying poorly fitted observa-
tions.

STDXBETA represents the standard error estimate of XBETA (see the XBETA keyword).

UPPER | U represents the upper confidence limit for the predicted value of the mean, or the
upper confidence limit for the probability that the response is less than or equal
to the value of Level or Value. The confidence coefficient is determined by the
ALPHA=number option in the MODEL statement as .1 � number/ � 100%. The
default confidence coefficient is 95%.

XBETA represents the estimate of the linear predictor x0iˇ for observation i, or ˛j C
x0iˇ, where j is the corresponding ordered value of the response variable for the
multinomial model with ordinal data. If there is an offset, it is included in x0iˇ.

The keywords in the following list apply only to models specified with a REPEATED statement, fit by
generalized estimating equations (GEEs).

CH | CLUSTERH | CLEVERAGE represents the leverage of a cluster.

CLUSTER represents the numerical cluster index, in order of sorted clusters.

DCLS | CLUSTERCOOKD | CLUSTERCOOKSD represents the Cook distance type statistic to mea-
sure the influence of deleting an entire cluster on the overall model fit.

DFBETAC | DBETAC represents the effect of deleting an entire cluster on parameter estimates.
If you specify the keyword _all_ after the equal sign, variables named DFBE-
TAC_ParameterName will be included in the output data set to contain the values
of the diagnostic statistic to measure the influence of deleting the cluster on the in-
dividual parameter estimates. ParameterName is the name of the regression model
parameter formed from the input variable names concatenated with the appropriate
levels, if classification variables are involved.

DFBETACS | DBETACS represents the effect of deleting an entire cluster on normalized parameter
estimates. If you specify the keyword _all_ after the equal sign, variables named
DFBETACS_ParameterName will be included in the output data set to contain the
values of the diagnostic statistic to measure the influence of deleting the cluster on
the individual parameter estimates, normalized by their standard errors. Param-
eterName is the name of the regression model parameter formed from the input
variable names concatenated with the appropriate levels, if classification variables
are involved.

MCLS | CLUSTERDFIT represents the studentized Cook distance type statistic to measure the influ-
ence of deleting an entire cluster on the overall model fit.
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Programming Statements
Although the most commonly used link and probability distributions are available as built-in functions, the
GENMOD procedure enables you to define your own link functions and response probability distributions by
using the FWDLINK, INVLINK, VARIANCE, and DEVIANCE statements. The variables assigned in these
statements can have values computed in programming statements.

These programming statements can occur anywhere between the PROC GENMOD statement and the RUN
statement. Variable names used in programming statements must be unique. Variables from the input data set
can be referenced in programming statements. The mean, linear predictor, and response are represented by
the automatic variables _MEAN_, _XBETA_, and _RESP_, respectively, which can be referenced in your
programming statements. Programming statements are used to define the functional dependencies of the
link function, the inverse link function, the variance function, and the deviance function on the mean, linear
predictor, and response variable.

The following statements illustrate the use of programming statements. Even though you usually request
the Poisson distribution by specifying DIST=POISSON as a MODEL statement option, you can define the
variance and deviance functions for the Poisson distribution by using the VARIANCE and DEVIANCE
statements. For example, the following statements perform the same analysis as the Poisson regression
example in the section “Getting Started: GENMOD Procedure” on page 2858.

The statements must be in logical order for computation, just as in a DATA step.

proc genmod;
class car age;
a = _MEAN_;
y = _RESP_;
d = 2 * ( y * log( y / a ) - ( y - a ) );
variance var = a;
deviance dev = d;
model c = car age / link = log offset = ln;

run;

The variables var and dev are dummy variables used internally by the procedure to identify the variance and
deviance functions. Any valid SAS variable names can be used.

Similarly, the log link function and its inverse could be defined with the FWDLINK and INVLINK statements,
as follows:

fwdlink link = log(_MEAN_);
invlink ilink = exp(_XBETA_);

These statements are for illustration, and they work well for most Poisson regression problems. If, however,
in the iterative fitting process, the mean parameter becomes too close to 0, or a 0 response value occurs, an
error condition occurs when the procedure attempts to evaluate the log function. You can circumvent this
kind of problem by using IF-THEN/ELSE clauses or other conditional statements to check for possible error
conditions and appropriately define the functions for these cases.

Data set variables can be referenced in user definitions of the link function and response distributions by
using programming statements and the FWDLINK, INVLINK, DEVIANCE, and VARIANCE statements.

See the DEVIANCE, VARIANCE, FWDLINK, and INVLINK statements for more information.
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The syntax of programming statements used in PROC GENMOD is identical to that used in the NLMIXED
procedure and the GLIMMIX procedure (see Chapter 70, “The NLMIXED Procedure,” and Chapter 44,
“The GLIMMIX Procedure,”) and the MODEL procedure (see the SAS/ETS User’s Guide). Most of the
programming statements that can be used in the DATA step can also be used in the GENMOD procedure.
See SAS Statements: Reference for a description of SAS programming statements. The following are some
commonly used programming statements.

ABORT;
ARRAY arrayname < [ dimensions ] > < $ > < variables-and-constants >;
CALL name < (expression < , expression . . . >) >;
DELETE;
DO < variable = expression < TO expression > < BY expression > >

< , expression < TO expression > < BY expression > > . . .
< WHILE expression > < UNTIL expression >;

END;
GOTO statement-label;
IF expression;
IF expression THEN program-statement;

ELSE program-statement;
variable = expression;
variable + expression;
LINK statement-label;
PUT < variable > < = > . . . ;
RETURN;
SELECT < (expression) >;
STOP;
SUBSTR(variable, index , length)= expression;
WHEN (expression)program-statement;

OTHERWISE program-statement;

REPEATED Statement
REPEATED SUBJECT=subject-effect < / options > ;

The REPEATED statement specifies the covariance structure of multivariate responses for GEE model fitting
in the GENMOD procedure. In addition, the REPEATED statement controls the iterative fitting algorithm
used in GEEs and specifies optional output. Other GENMOD procedure statements, such as the MODEL and
CLASS statements, are used in the same way as they are for ordinary generalized linear models to specify
the regression model for the mean of the responses.

Table 43.8 summarizes the options available in the REPEATED statement.

Table 43.8 REPEATED Statement Options

Option Description

ALPHAINIT= Specifies initial values for log odds ratio regression parameters
CONVERGE= Specifies the convergence criterion for GEE parameter estimation
CORRB Displays the estimated correlation matrix
CORRW Displays the estimated working correlation matrix



2928 F Chapter 43: The GENMOD Procedure

Table 43.8 continued

Option Description

COVB Displays the estimated covariance matrix
ECORRB Displays the estimated empirical correlation matrix
ECOVB Displays the estimated empirical covariance matrix
INITIAL= Specifies initial values of the regression parameters estimation
INTERCEPT= Specifies either an initial or a fixed value of the intercept
LOGOR= Specifies the regression structure of the log odds ratio
MAXITER= Specifies the maximum number of iterations
MCORRB Displays the estimated model-based correlation matrix
MCOVB Displays the estimated model-based covariance matrix
MODELSE Displays an analysis of parameter estimates table
PRINTMLE Displays an analysis of maximum likelihood parameter estimates table
RUPDATE= Specifies the number of iterations between updates of the working correla-

tion matrix
SORTED Groups by subject and sorts within subject
SUBCLUSTER= Specifies a variable defining subclusters
SUBJECT= Identifies a different subject, or cluster
TYPE= Specifies the working correlation matrix structure
V6CORR Uses the SAS ‘Version 6’ method of computing normalized Pearson chi-

square
WITHIN= Specifies the order of measurements within subjects
YPAIR= Specifies the pairs of responses
ZDATA= Specifies the full z matrix
ZROW= Specifies the rows of the z matrix

SUBJECT=subject-effect
identifies subjects in the input data set. The subject-effect can be a single variable, an interaction effect,
a nested effect, or a combination. Each distinct value, or level, of the effect identifies a different subject,
or cluster. Responses from different subjects are assumed to be statistically independent, and responses
within subjects are assumed to be correlated. A subject-effect must be specified, and variables used in
defining the subject-effect must be listed in the CLASS statement. The input data set does not need to
be sorted by subject (see the SORTED option).

The options control how the model is fit and what output is produced. You can specify the following
options after a slash (/).

ALPHAINIT=numbers
specifies initial values for log odds ratio regression parameters if the LOGOR= option is specified for
binary data. If this option is not specified, an initial value of 0.01 is used for all the parameters.

CONVERGE=number
specifies the convergence criterion for GEE parameter estimation. If the maximum absolute difference
between regression parameter estimates is less than the value of number on two successive iterations,
convergence is declared. If the absolute value of a regression parameter estimate is greater than
0.08, then the absolute difference normalized by the regression parameter value is used instead of the
absolute difference. The default value of number is 0.0001.
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CORRW
displays the estimated working correlation matrix. If you specify an exchangeable working correlation
structure with the CORR=EXCH option, the CORRW option is not needed to view the estimated
correlation, since a table is printed by default that contains the single estimated correlation.

CORRB
displays the estimated regression parameter correlation matrix. Both model-based and empirical
correlations are displayed.

COVB
displays the estimated regression parameter covariance matrix. Both model-based and empirical
covariances are displayed.

ECORRB
displays the estimated regression parameter empirical correlation matrix.

ECOVB
displays the estimated regression parameter empirical covariance matrix.

INTERCEPT=number
specifies either an initial or a fixed value of the intercept regression parameter in the GEE model. If
you specify the NOINT option in the MODEL statement, then the intercept is fixed at the value of
number .

INITIAL=numbers
specifies initial values of the regression parameters estimation, other than the intercept parameter,
for GEE estimation. If this option is not specified, the estimated regression parameters assuming
independence for all responses are used for the initial values.

LOGOR=log-odds-ratio-structure-keyword
specifies the regression structure of the log odds ratio used to model the association of the responses
from subjects for binary data. The response syntax must be of the single variable type, the distribution
must be binomial, and the data must be binary. Table 43.9 displays the log odds ratio structure
keywords and the corresponding log odds ratio regression structures. See the section “Alternating
Logistic Regressions” on page 2962 for definitions of the log odds ratio types and examples of
specifying log odds ratio models. You should specify either the LOGOR= or the TYPE= option, but
not both.

Table 43.9 Log Odds Ratio Regression Structures

Keyword Log Odds Ratio Regression Structure

EXCH Exchangeable
FULLCLUST Fully parameterized clusters
LOGORVAR(variable) Indicator variable for specifying block effects
NESTK k-nested
NEST1 1-nested
ZFULL Fully specified z matrix specified in ZDATA= data set
ZREP Single cluster specification for replicated z matrix specified

in ZDATA= data set
ZREP(matrix) Single cluster specification for replicated z matrix
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MAXITER=number

MAXIT=number
specifies the maximum number of iterations allowed in the iterative GEE estimation process. The
default number is 50.

MCORRB
displays the estimated regression parameter model-based correlation matrix.

MCOVB
displays the estimated regression parameter model-based covariance matrix.

MODELSE
displays an analysis of parameter estimates table that uses model-based standard errors for inference.
By default, an “Analysis of Parameter Estimates” table based on empirical standard errors is displayed.

PRINTMLE
displays an analysis of maximum likelihood parameter estimates table. The maximum likelihood
estimates are not displayed unless this option is specified.

RUPDATE=number
specifies the number of iterations between updates of the working correlation matrix. For example,
RUPDATE=5 specifies that the working correlation is updated once for every five regression parameter
updates. The default value of number is 1; that is, the working correlation is updated every time the
regression parameters are updated.

SORTED
specifies that the input data are grouped by subject and sorted within subject. If this option is not
specified, then the procedure internally sorts by subject-effect and within subject-effect , if a within
subject-effect is specified.

SUBCLUSTER=variable

SUBCLUST=variable
specifies a variable defining subclusters for the 1-nested or k-nested log odds ratio association modeling
structures. This variable must be listed in the CLASS statement.

TYPE=correlation-structure keyword

CORR=correlation-structure keyword
specifies the structure of the working correlation matrix used to model the correlation of the responses
from subjects. Table 43.10 displays the correlation structure keywords and the corresponding cor-
relation structures. The default working correlation type is the independent (CORR=IND). See the
section “Details: GENMOD Procedure” on page 2935 for definitions of the correlation matrix types.
You should specify LOGOR= or TYPE= but not both.
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Table 43.10 Correlation Structure Types

Keyword Correlation Matrix Type

AR
AR(1) Autoregressive(1)
EXCH
CS Exchangeable
IND Independent
MDEP(number ) m-dependent with m=number
UNSTR
UN Unstructured
USER
FIXED(matrix) Fixed, user-specified correlation matrix

For example, you can specify a fixed 4 � 4 correlation matrix with the following option:

type=user( 1.0 0.9 0.8 0.6
0.9 1.0 0.9 0.8
0.8 0.9 1.0 0.9
0.6 0.8 0.9 1.0 )

V6CORR
specifies that the SAS ‘Version 6’ method of computing the normalized Pearson chi-square be used for
working correlation estimation and for model-based covariance matrix scale factor.

WITHINSUBJECT | WITHIN=within subject-effect
defines an effect specifying the order of measurements within subjects. Each distinct level of the within
subject-effect defines a different response from the same subject. If the data are in proper order within
each subject, you do not need to specify this option.

If some measurements do not appear in the data for some subjects, this option properly orders the exist-
ing measurements and treats the omitted measurements as missing values. If the WITHINSUBJECT=
option is not used in this situation, measurements might be improperly ordered and missing values
assumed for the last measurements in a cluster.

Variables used in defining the within subject-effect must be listed in the CLASS statement.

YPAIR=variable-list
specifies the variables in the ZDATA= data set corresponding to pairs of responses for log odds ratio
association modeling.

ZDATA=SAS-data-set
specifies a SAS data set containing either the full z matrix for log odds ratio association modeling or
the z matrix for a single complete cluster to be replicated for all clusters.

ZROW=variable-list
specifies the variables in the ZDATA= data set corresponding to rows of the z matrix for log odds ratio
association modeling.
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SLICE Statement
SLICE model-effect < / options > ;

The SLICE statement provides a general mechanism for performing a partitioned analysis of the LS-means
for an interaction. This analysis is also known as an analysis of simple effects.

The SLICE statement uses the same options as the LSMEANS statement, which are summarized in Ta-
ble 19.21. For details about the syntax of the SLICE statement, see the section “SLICE Statement” on
page 505 in Chapter 19, “Shared Concepts and Topics.”

STORE Statement
STORE < OUT= >item-store-name < / LABEL='label ' > ;

The STORE statement requests that the procedure save the context and results of the statistical analysis. The
resulting item store has a binary file format that cannot be modified. The contents of the item store can be
processed with the PLM procedure.

For details about the syntax of the STORE statement, see the section “STORE Statement” on page 508 in
Chapter 19, “Shared Concepts and Topics.”

STRATA Statement
STRATA variable < (option) > . . . < variable < (option) > > < / options > ;

The STRATA statement names the variables that define strata or matched sets to use in stratified exact
logistic regression of binary response data, or a stratified exact Poisson regression of count data. An EXACT
statement must also be specified.

Observations that have the same variable values are in the same matched set. For a stratified logistic model,
you can analyze 1W 1, 1W n, mW n, and general mi W ni matched sets where the number of cases and controls
varies across strata. For a stratified Poisson model, you can have any number of observations in each stratum.
At least one variable must be specified to invoke the stratified analysis, and the usual unconditional asymptotic
analysis is not performed. The stratified logistic model has the form

logit.�hi / D ˛h C x0hiˇ

where �hi is the event probability for the ith observation in stratum h with covariates xhi and where the
stratum-specific intercepts ˛h are the nuisance parameters that are to be conditioned out.

STRATA variables can also be specified in the MODEL statement as classification or continuous covariates;
however, the effects are nondegenerate only when crossed with a nonstratification variable. Specifying several
STRATA statements is the same as specifying one STRATA statement that contains all the strata variables.
The STRATA variables can be either character or numeric, and the formatted values of the STRATA variables
determine the levels. Thus, you can also use formats to group values into levels; see the discussion of the
FORMAT procedure in the Base SAS Procedures Guide.
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The “Strata Summary” table is displayed by default. For an exact logistic regression, it displays the number
of strata that have a specific number of events and non-events. For example, if you are analyzing a 1W 5
matched study, this table enables you to verify that every stratum in the analysis has exactly one event and
five non-events. Strata that contain only events or only non-events are reported in this table, but such strata
are uninformative and are not used in the analysis. For an exact Poisson regression, the “Strata Summary”
table displays the number of strata that contain a specific number of observations, which enables you to check
whether every stratum in the analysis has the same number of observations.

The ASSESSMENT, BAYES, CONTRAST, EFFECTPLOT, ESTIMATE, LSMEANS, LSMESTIMATE,
OUTPUT, REPEATED, SLICE, and STORE statements are not available with a STRATA statement. Exact
analyses are not performed when you specify a WEIGHT statement, or a model other than LINK=LOGIT
with DIST=BIN or LINK=LOG with DIST=POISSON. An OFFSET= variable is not available with exact
logistic regression.

The following option can be specified for a stratification variable by enclosing the option in parentheses after
the variable name, or it can be specified globally for all STRATA variables after a slash (/).

MISSING
treats missing values (‘.’, ._, .A, . . . , .Z for numeric variables and blanks for character variables) as
valid STRATA variable values.

The following strata options are also available after the slash:

CHECKDEPENDENCY | CHECK=keyword
specifies which variables are to be tested for dependency before the analysis is performed. The available
keywords are as follows:

NONE performs no dependence checking. Typically, a message about a singular information matrix
is displayed if you have dependent variables. Dependent variables can be identified after the
analysis by noting any missing parameter estimates.

COVARIATES checks dependence between covariates and an added intercept. Dependent covariates
are removed from the analysis. However, covariates that are linear functions of the strata
variable might not be removed, which results in a singular information matrix message
being displayed in the SAS log. This is the default.

ALL checks dependence between all the strata and covariates. This option can adversely affect
performance if you have a large number of strata.

NOSUMMARY
suppresses the display of the “Strata Summary” table.

INFO
displays the “Strata Information” table, which includes the stratum number, levels of the STRATA
variables that define the stratum, and the total frequency for each stratum. Since the number of strata
can be very large, this table is displayed only by request.

VARIANCE Statement
VARIANCE variable = expression ;



2934 F Chapter 43: The GENMOD Procedure

You can specify a probability distribution other than the built-in distributions by using the VARIANCE and
DEVIANCE statements. The variable name variable identifies the variance function to the procedure. The
expression is used to define the functional dependence on the mean, and it can be any arithmetic expression
supported by the DATA step language. You use the automatic variable _MEAN_ to represent the mean in the
expression.

Alternatively, you can define the variance function with programming statements, as detailed in the section
“Programming Statements” on page 2926. This form is convenient for using complex statements such as
IF-THEN/ELSE clauses. Derivatives of the variance function for use during optimization are computed
automatically. The DEVIANCE statement must also appear when the VARIANCE statement is used to define
the variance function.

WEIGHT Statement
WEIGHT | SCWGT variable ;

The WEIGHT statement identifies a variable in the input data set to be used as the exponential family
dispersion parameter weight for each observation. The exponential family dispersion parameter is divided
by the WEIGHT variable value for each observation. This is true regardless of whether the parameter is
estimated by the procedure or specified in the MODEL statement with the SCALE= option. It is also true for
distributions such as the Poisson and binomial that are not usually defined to have a dispersion parameter. For
these distributions, a WEIGHT variable weights the overdispersion parameter, which has the default value of
1.

The WEIGHT variable does not have to be an integer; if it is less than or equal to 0 or if it is missing, the
corresponding observation is not used.

ZEROMODEL Statement
ZEROMODEL effects < / options > ;

The ZEROMODEL statement enables you to perform zero-inflated Poisson regression or zero-inflated
negative binomial regression when those respective distributions are specified by the DIST= option in
the MODEL statement. The effects in the ZEROMODEL statement consist of explanatory variables or
combinations of variables for the zero-inflation probability regression model in a zero-inflated model. The
same effects can be used in both the ZEROMODEL statement and the MODEL statement, or effects can
be used in one statement or the other separately. Explanatory variables can be continuous or classification
variables. Classification variables can be character or numeric. Explanatory variables representing nominal,
or classification, data must be declared in a CLASS statement. Interactions between variables can also be
included as effects. Columns of the design matrix are automatically generated for classification variables and
interactions. The syntax for specification of effects is the same as for the GLM procedure. See the section
“Specification of Effects” on page 2946 for more information. Also see Chapter 45, “The GLM Procedure.”

You can specify the following option in the ZEROMODEL statement after a slash (/).
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LINK=keyword
specifies the link function to use in the model. The keywords and their associated link functions are as
follows.

LINK= Link Function

CLOGLOG
CLL Complementary log-log
LOGIT Logit
PROBIT Probit

If no LINK= option is supplied, the LOGIT link is used. User-defined link functions are not allowed.

Details: GENMOD Procedure

Generalized Linear Models Theory
This is a brief introduction to the theory of generalized linear models.

Response Probability Distributions

In generalized linear models, the response is assumed to possess a probability distribution of the exponential
form. That is, the probability density of the response Y for continuous response variables, or the probability
function for discrete responses, can be expressed as

f .y/ D exp
�
y� � b.�/

a.�/
C c.y; �/

�
for some functions a, b, and c that determine the specific distribution. For fixed �, this is a one-parameter
exponential family of distributions. The functions a and c are such that a.�/ D �=w and c D c.y; �=w/,
where w is a known weight for each observation. A variable representing w in the input data set can be
specified in the WEIGHT statement. If no WEIGHT statement is specified, wi D 1 for all observations.

Standard theory for this type of distribution gives expressions for the mean and variance of Y:

E.Y / D b0.�/

Var.Y / D
b00.�/�

w

where the primes denote derivatives with respect to � . If � represents the mean of Y, then the variance
expressed as a function of the mean is

Var.Y / D
V.�/�

w

where V is the variance function.
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Probability distributions of the response Y in generalized linear models are usually parameterized in terms of
the mean � and dispersion parameter � instead of the natural parameter � . The probability distributions
that are available in the GENMOD procedure are shown in the following list. The zero-inflated Poisson and
zero-inflated negative binomial distributions are not generalized linear models. However, the zero-inflated
distributions are included in PROC GENMOD since they are useful extensions of generalized linear models.
See Long (1997) for a discussion of the zero-inflated Poisson and zero-inflated negative binomial distributions.
The PROC GENMOD scale parameter and the variance of Y are also shown.

• Normal:

f .y/ D
1

p
2��

exp
�
�
1

2

�y � �
�

�2�
for �1 < y <1

� D �2

scale D �

Var.Y / D �2

• Inverse Gaussian:

f .y/ D
1p

2�y3�
exp

"
�
1

2y

�
y � �

��

�2#
for 0 < y <1

� D �2

scale D �

Var.Y / D �2�3

• Gamma:

f .y/ D
1

�.�/y

�
y�

�

��
exp

�
�
y�

�

�
for 0 < y <1

� D ��1

scale D �

Var.Y / D
�2

�

• Geometric: This is a special case of the negative binomial with k = 1.

f .y/ D
.�/y

.1C �/yC1
for y D 0; 1; 2; : : :

� D 1

Var.Y / D �.1C �/
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• Negative binomial:

f .y/ D
�.y C 1=k/

�.y C 1/�.1=k/

.k�/y

.1C k�/yC1=k
for y D 0; 1; 2; : : :

� D 1

dispersion D k

Var.Y / D �C k�2

• Poisson:

f .y/ D
�ye��

yŠ
for y D 0; 1; 2; : : :

� D 1

Var.Y / D �

• Binomial:

f .y/ D

�
n

r

�
�r.1 � �/n�r for y D

r

n
; r D 0; 1; 2; : : : ; n

� D 1

Var.Y / D
�.1 � �/

n

• Multinomial:

f .y1; y2; � � � ; yk/ D
mŠ

y1Šy2Š � � �ykŠ
p
y1
1 p

y2
2 � � �p

yk
k

� D 1

• Zero-inflated Poisson:

f .y/ D

(
! C .1 � !/e�� for y D 0
.1 � !/�

ye��
yŠ

for y D 1; 2; : : :

� D 1

� D E.Y / D .1 � !/�

Var.Y / D .1 � !/�.1C !�/

D �C
!

1 � !
�2
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• Zero-inflated negative binomial:

f .y/ D

(
! C .1 � !/.1C k�/�

1
k for y D 0

.1 � !/ �.yC1=k/
�.yC1/�.1=k/

.k�/y

.1Ck�/yC1=k
for y D 1; 2; : : :

� D 1

dispersion D k

� D E.Y / D .1 � !/�

Var.Y / D .1 � !/�.1C !�C k�/

D �C

�
!

1 � !
C

k

1 � !

�
�2

• Tweedie (1 < p < 2):

f .y/ D

(
e�� for y D 0
e�y=e��

P1
nD1

�n˛

�.n˛/
yn˛�1 �

n

nŠ
for y > 0

� D
�1�p.˛/2�p

2 � p

� D E.Y / D �˛

Var.Y / D �˛2 C �˛22

The negative binomial and the zero-inflated negative binomial distributions contain a parameter k, called the
negative binomial dispersion parameter. This is not the same as the generalized linear model dispersion �,
but it is an additional distribution parameter that must be estimated or set to a fixed value.

For the binomial distribution, the response is the binomial proportion Y D events=trials . The variance
function is V.�/ D �.1 � �/, and the binomial trials parameter n is regarded as a weight w.

The density function for the Tweedie distribution when 1 < p < 2 is expressed in terms of the parameters of
the compound Poisson distribution. For more information about this representation, see the section “Tweedie
Distribution For Generalized Linear Models” on page 2956. For p > 2, the Tweedie random variable has
positive support and its density function f .y/ can be expressed in terms of stable distributions as defined in
Hougaard (1986).

If a weight variable is present, � is replaced with �=w, where w is the weight variable.

PROC GENMOD works with a scale parameter that is related to the exponential family dispersion parameter
� instead of working with � itself. The scale parameters are related to the dispersion parameter as shown
previously with the probability distribution definitions. Thus, the scale parameter output in the “Analysis of
Parameter Estimates” table is related to the exponential family dispersion parameter. If you specify a constant
scale parameter with the SCALE= option in the MODEL statement, it is also related to the exponential family
dispersion parameter in the same way.
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Link Function

For distributions other than the zero-inflated Poisson or zero-inflated negative binomial, the mean �i of the
response in the ith observation is related to a linear predictor through a monotonic differentiable link function
g.

g.�i / D x0iˇ

Here, xi is a fixed known vector of explanatory variables, and ˇ is a vector of unknown parameters.

There are two link functions and linear predictors associated with zero-inflated distributions: one for the zero
inflation probability !, and another for the mean parameter �. See the section “Zero-Inflated Models” on
page 2954 for more details about zero-inflated distributions.

Log-Likelihood Functions

Log-likelihood functions for the distributions that are available in the procedure are parameterized in terms
of the means �i and the dispersion parameter �. Zero-inflated log likelihoods are parameterized in terms two
parameters, � and !. The parameter ! is the zero-inflation probability, and � is a function of the distribution
mean. The relationship between the mean of the zero-inflated Poisson and zero-inflated negative binomial
distributions and the parameter � is defined in the section “Response Probability Distributions” on page 2935.
The term yi represents the response for the ith observation, and wi represents the known dispersion weight.
The log-likelihood functions are of the form

L.y;�; �/ D
X
i

log .f .yi ; �i ; �//

where the sum is over the observations. The forms of the individual contributions

li D log .f .yi ; �i ; �//

are shown in the following list; the parameterizations are expressed in terms of the mean and dispersion
parameters.

For the discrete distributions (binomial, multinomial, negative binomial, and Poisson), the functions computed
as the sum of the li terms are not proper log-likelihood functions, since terms involving binomial coefficients
or factorials of the observed counts are dropped from the computation of the log likelihood, and a dispersion
parameter � is included in the computation. Deletion of factorial terms and inclusion of a dispersion
parameter do not affect parameter estimates or their estimated covariances for these distributions, and this
is the function used in maximum likelihood estimation. The value of � used in computing the reported
log-likelihood function is either the final estimated value, or the fixed value, if the dispersion parameter is
fixed. Even though it is not a proper log-likelihood function in all cases, the function computed as the sum
of the li terms is reported in the output as the log likelihood. The proper log-likelihood function is also
computed as the sum of the ll i terms in the following list, and it is reported as the full log likelihood in the
output.

• Normal:

ll i D li D �
1

2

�
wi .yi � �i /

2

�
C log

�
�

wi

�
C log.2�/

�
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• Inverse Gaussian:

ll i D li D �
1

2

"
wi .yi � �i /

2

yi�2�
C log

 
�y3i
wi

!
C log.2�/

#

• Gamma:

ll i D li D
wi

�
log

�
wiyi

��i

�
�
wiyi

��i
� log.yi / � log

�
�

�
wi

�

��
• Negative binomial:

li D yi log
�
k�

wi

�
� .yi C wi=k/ log

�
1C

k�

wi

�
C log

�
�.yi C wi=k/

�.wi=k/

�

ll i D yi log
�
k�

wi

�
� .yi C wi=k/ log

�
1C

k�

wi

�
C log

�
�.yi C wi=k/

�.yi C 1/�.wi=k/

�
• Poisson:

li D
wi

�
Œyi log.�i / � �i �

ll i D wi Œyi log.�i / � �i � log.yi Š/�

• Binomial:

li D
wi

�
Œri log.pi /C .ni � ri / log.1 � pi /�

ll i D wi Œlog
�
ni
ri

�
C ri log.pi /C .ni � ri / log.1 � pi /�

• Multinomial (k categories):

li D
wi

�

kX
jD1

yij log.�ij /

ll i D wi Œlog.mi Š/C
kX
jD1

.yij log.�ij / � log.yij Š//�

• Zero-inflated Poisson:

li D ll i D

8<:
wi logŒ!i C .1 � !i / exp.��i /� yi D 0

wi Œlog.1 � !i /C yi log.�i / � �i � log.yi Š/� yi > 0



Generalized Linear Models Theory F 2941

• Zero-inflated negative binomial:

li D ll i D

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

logŒ!i C .1 � !i /.1C k
wi
�/�

1
k � yi D 0

log.1 � !i /C yi log
�
k�
wi

�
�.yi C

wi
k
/ log

�
1C k�

wi

�
C log

�
�.yiC

wi
k
/

�.yiC1/�.
wi
k
/

�
yi > 0

• Tweedie:

li D ll i D log .f .yi ; �i ; �=!i ; p//

Maximum Likelihood Fitting

The GENMOD procedure uses a ridge-stabilized Newton-Raphson algorithm to maximize the log-likelihood
function L.y;�; �/ with respect to the regression parameters. By default, the procedure also produces
maximum likelihood estimates of the scale parameter as defined in the section “Response Probability
Distributions” on page 2935 for the normal, inverse Gaussian, negative binomial, and gamma distributions.

On the rth iteration, the algorithm updates the parameter vector ˇr with

ˇrC1 D ˇr �H�1s

where H is the Hessian (second derivative) matrix, and s is the gradient (first derivative) vector of the
log-likelihood function, both evaluated at the current value of the parameter vector. That is,

s D Œsj � D
�
@L

@ˇj

�
and

H D Œhij � D
�
@2L

@ˇi@ˇj

�

In some cases, the scale parameter is estimated by maximum likelihood. In these cases, elements correspond-
ing to the scale parameter are computed and included in s and H.

If �i D x0iˇ is the linear predictor for observation i and g is the link function, then �i D g.�i /, so that
�i D g

�1.x0iˇ/ is an estimate of the mean of the ith observation, obtained from an estimate of the parameter
vector ˇ.

The gradient vector and Hessian matrix for the regression parameters are given by

s D
X
i

wi .yi � �i /xi
V.�i /g0.�i /�

H D �X0WoX
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where X is the design matrix, xi is the transpose of the ith row of X, and V is the variance function. The
matrix Wo is diagonal with its ith diagonal element

woi D wei C wi .yi � �i /
V .�i /g

00.�i /C V
0.�i /g

0.�i /

.V .�i //2.g0.�i //3�

where

wei D
wi

�V.�i /.g0.�i //2

The primes denote derivatives of g and V with respect to �. The negative of H is called the observed
information matrix. The expected value of Wo is a diagonal matrix We with diagonal values wei . If you
replace Wo with We, then the negative of H is called the expected information matrix. We is the weight
matrix for the Fisher scoring method of fitting. Either Wo or We can be used in the update equation. The
GENMOD procedure uses Fisher scoring for iterations up to the number specified by the SCORING option
in the MODEL statement, and it uses the observed information matrix on additional iterations.

Covariance and Correlation Matrix

The estimated covariance matrix of the parameter estimator is given by

† D �H�1

where H is the Hessian matrix evaluated using the parameter estimates on the last iteration. Note that
the dispersion parameter, whether estimated or specified, is incorporated into H. Rows and columns
corresponding to aliased parameters are not included in †.

The correlation matrix is the normalized covariance matrix. That is, if �ij is an element of †, then the
corresponding element of the correlation matrix is �ij =�i�j , where �i D

p
�i i .

Goodness of Fit

Two statistics that are helpful in assessing the goodness of fit of a given generalized linear model are the
scaled deviance and Pearson’s chi-square statistic. For a fixed value of the dispersion parameter �, the scaled
deviance is defined to be twice the difference between the maximum achievable log likelihood and the log
likelihood at the maximum likelihood estimates of the regression parameters.

Note that these statistics are not valid for GEE models.

If l.y;�/ is the log-likelihood function expressed as a function of the predicted mean values � and the vector
y of response values, then the scaled deviance is defined by

D�.y;�/ D 2.l.y; y/ � l.y;�//

For specific distributions, this can be expressed as

D�.y;�/ D
D.y;�/
�

where D is the deviance. The following table displays the deviance for each of the probability distributions
available in PROC GENMOD. The deviance cannot be directly calculated for zero-inflated models. Twice
the negative of the log likelihood is reported instead of the proper deviance for the zero-inflated Poisson and
zero-inflated negative binomial.
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Distribution Deviance

Normal
P
i wi .yi � �i /

2

Poisson 2
P
i wi

h
yi log

�
yi
�i

�
� .yi � �i /

i
Binomial 2

P
i wimi

h
yi log

�
yi
�i

�
C .1 � yi / log

�
1�yi
1��i

�i
Gamma 2

P
i wi

h
� log

�
yi
�i

�
C

yi��i
�i

i
Inverse Gaussian

P
i
wi .yi��i /

2

�2
i
yi

Multinomial
P
i

P
j wiyij log

�
yij
pijmi

�
Negative binomial 2

P
i

h
y log.y=�/ � .y C wi=k/ log

�
yCwi=k
�Cwi=k

�i

Zero-inflated Poisson �2
P
i

8̂̂<̂
:̂
wi logŒ!i C .1 � !i / exp.��i /� yi D 0

wi Œlog.1 � !i /C yi log.�i /�
�i � log.yi Š/� yi > 0

Zero-inflated negative binomial �2
P
i

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

logŒ!i C .1 � !i /.1C k
wi
�/� yi D 0

log.1 � !i /C yi log
�
k�
wi

�
�

.yi C
wi
k
/ log

�
1C k�

wi

�
C

log
�

�.yiC
wi
k
/

�.yiC1/�.
wi
k
/

�
yi > 0

In the binomial case, yi D ri=mi , where ri is a binomial count and mi is the binomial number of trials
parameter.

In the multinomial case, yij refers to the observed number of occurrences of the jth category for the ith
subpopulation defined by the AGGREGATE= variable, mi is the total number in the ith subpopulation, and
pij is the category probability.

Pearson’s chi-square statistic is defined as

X2 D
X
i

wi .yi � �i /
2

V.�i /

and the scaled Pearson’s chi-square is X2=�.

The scaled version of both of these statistics, under certain regularity conditions, has a limiting chi-square
distribution, with degrees of freedom equal to the number of observations minus the number of parameters
estimated. The scaled version can be used as an approximate guide to the goodness of fit of a given model.
Use caution before applying these statistics to ensure that all the conditions for the asymptotic distributions
hold. McCullagh and Nelder (1989) advise that differences in deviances for nested models can be better
approximated by chi-square distributions than the deviances can themselves.

In cases where the dispersion parameter is not known, an estimate can be used to obtain an approximation to
the scaled deviance and Pearson’s chi-square statistic. One strategy is to fit a model that contains a sufficient
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number of parameters so that all systematic variation is removed, estimate � from this model, and then use
this estimate in computing the scaled deviance of submodels. The deviance or Pearson’s chi-square divided
by its degrees of freedom is sometimes used as an estimate of the dispersion parameter �. For example, since
the limiting chi-square distribution of the scaled deviance D� D D=� has n � p degrees of freedom, where
n is the number of observations and p is the number of parameters, equating D� to its mean and solving for
� yields O� D D=.n � p/. Similarly, an estimate of � based on Pearson’s chi-square X2 is O� D X2=.n � p/.
Alternatively, a maximum likelihood estimate of � can be computed by the procedure, if desired. See the
discussion in the section “Type 1 Analysis” on page 2947 for more about the estimation of the dispersion
parameter.

Other Fit Statistics

The Akaike information criterion (AIC) is a measure of goodness of model fit that balances model fit against
model simplicity. AIC has the form

AIC D �2LLC 2p

where p is the number of parameters estimated in the model, and LL is the log likelihood evaluated at the
value of the estimated parameters. An alternative form is the corrected AIC given by

AICC D �2LLC 2p
n

n � p � 1

where n is the total number of observations used.

The Bayesian information criterion (BIC) is a similar measure. BIC is defined by

BIC D �2LLC p log.n/

See Akaike (1981, 1979) for details of AIC and BIC. See Simonoff (2003) for a discussion of using AIC,
AICC, and BIC with generalized linear models. These criteria are useful in selecting among regression
models, with smaller values representing better model fit. PROC GENMOD uses the full log likelihoods
defined in the section “Log-Likelihood Functions” on page 2939, with all terms included, for computing all
of the criteria.

Dispersion Parameter

There are several options available in PROC GENMOD for handling the exponential distribution dispersion
parameter. The NOSCALE and SCALE options in the MODEL statement affect the way in which the
dispersion parameter is treated. If you specify the SCALE=DEVIANCE option, the dispersion parameter is
estimated by the deviance divided by its degrees of freedom. If you specify the SCALE=PEARSON option,
the dispersion parameter is estimated by Pearson’s chi-square statistic divided by its degrees of freedom.

Otherwise, values of the SCALE and NOSCALE options and the resultant actions are displayed in the
following table.

NOSCALE SCALE=value Action

Present Present Scale fixed at value
Present Not present Scale fixed at 1
Not present Not present Scale estimated by ML
Not present Present Scale estimated by ML,

starting point at value
Present (negative binomial) Not present k fixed at 0
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The meaning of the scale parameter displayed in the “Analysis Of Parameter Estimates” table is different
for the gamma distribution than for the other distributions. The relation of the scale parameter as used by
PROC GENMOD to the exponential family dispersion parameter � is displayed in the following table. For
the binomial and Poisson distributions, � is the overdispersion parameter, as defined in the “Overdispersion”
section, which follows.

Distribution Scale

Normal
p
�

Inverse Gaussian
p
�

Gamma 1=�

Binomial
p
�

Poisson
p
�

In the case of the negative binomial distribution, PROC GENMOD reports the “dispersion” parameter
estimated by maximum likelihood. This is the negative binomial parameter k defined in the section “Response
Probability Distributions” on page 2935.

Overdispersion

Overdispersion is a phenomenon that sometimes occurs in data that are modeled with the binomial or Poisson
distributions. If the estimate of dispersion after fitting, as measured by the deviance or Pearson’s chi-square,
divided by the degrees of freedom, is not near 1, then the data might be overdispersed if the dispersion
estimate is greater than 1 or underdispersed if the dispersion estimate is less than 1. A simple way to model
this situation is to allow the variance functions of these distributions to have a multiplicative overdispersion
factor �:

• Binomial: V.�/ D ��.1 � �/

• Poisson: V.�/ D ��

An alternative method to allow for overdispersion in the Poisson distribution is to fit a negative binomial
distribution, where V.�/ D �C k�2, instead of the Poisson. The parameter k can be estimated by maximum
likelihood, thus allowing for overdispersion of a specific form. This is different from the multiplicative
overdispersion factor �, which can accommodate many forms of overdispersion.

The models are fit in the usual way, and the parameter estimates are not affected by the value of �. The
covariance matrix, however, is multiplied by �, and the scaled deviance and log likelihoods used in likelihood
ratio tests are divided by �. The profile likelihood function used in computing confidence intervals is also
divided by �. If you specify a WEIGHT statement, � is divided by the value of the WEIGHT variable for
each observation. This has the effect of multiplying the contributions of the log-likelihood function, the
gradient, and the Hessian by the value of the WEIGHT variable for each observation.

The SCALE= option in the MODEL statement enables you to specify a value of � D
p
� for the binomial

and Poisson distributions. If you specify the SCALE=DEVIANCE option in the MODEL statement, the
procedure uses the deviance divided by degrees of freedom as an estimate of �, and all statistics are adjusted
appropriately. You can use Pearson’s chi-square instead of the deviance by specifying the SCALE=PEARSON
option.

The function obtained by dividing a log-likelihood function for the binomial or Poisson distribution by a
dispersion parameter is not a legitimate log-likelihood function. It is an example of a quasi-likelihood function.



2946 F Chapter 43: The GENMOD Procedure

Most of the asymptotic theory for log likelihoods also applies to quasi-likelihoods, which justifies computing
standard errors and likelihood ratio statistics by using quasi-likelihoods instead of proper log likelihoods.
For details on quasi-likelihood functions, see McCullagh and Nelder (1989, Chapter 9), McCullagh (1983);
Hardin and Hilbe (2003).

Although the estimate of the dispersion parameter is often used to indicate overdispersion or underdispersion,
this estimate might also indicate other problems such as an incorrectly specified model or outliers in the data.
You should carefully assess whether this type of model is appropriate for your data.

Specification of Effects
Each term in a model is called an effect. Effects are specified in the MODEL statement. You specify effects
with a special notation that uses variable names and operators. There are two types of variables, classification
(or CLASS) variables and continuous variables. There are two primary types of operators, crossing and
nesting. A third type, the bar operator, is used to simplify effect specification. Crossing is the type of operator
most commonly used in generalized linear models.

Variables that identify classification levels are called CLASS variables in SAS and are identified in a CLASS
statement. These might also be called categorical, qualitative, discrete, or nominal variables. CLASS
variables can be either character or numeric. The values of CLASS variables are called levels. For example,
the CLASS variable Sex could have the levels ‘male’ and ‘female’.

In a model, an explanatory variable that is not declared in a CLASS statement is assumed to be continuous.
Continuous variables must be numeric. For example, the heights and weights of subjects in an experiment
are continuous variables.

The types of effects most useful in generalized linear models are shown in the following list. Assume that A,
B, and C are classification variables and that X1 and X2 are continuous variables.

• Regressor effects are specified by writing continuous variables by themselves: X1, X2.

• Polynomial effects are specified by joining two or more continuous variables with asterisks: X1*X2.

• Main effects are specified by writing classification variables by themselves: A, B, C.

• Crossed effects (interactions) are specified by joining two or more classification variables with asterisks:
A*B, B*C, A*B*C.

• Nested effects are specified by following a main effect or crossed effect with a classification variable or
list of classification variables enclosed in parentheses: B(A), C(B A), A*B(C). In the preceding example,
B(A) is “B nested within A.”

• Combinations of continuous and classification variables can be specified in the same way by using the
crossing and nesting operators.

The bar operator consists of two effects joined with a vertical bar (|). It is shorthand notation for including
the left-hand side, the right-hand side, and the cross between them as effects in the model. For example, A | B
is equivalent to A B A*B. The effects in the bar operator can be classification variables, continuous variables,
or combinations of effects defined using operators. Multiple bars are permitted. For example, A | B | C means
A B C A*B A*C B*C A*B*C.
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You can specify the maximum number of variables in any effect that results from bar evaluation by specifying
the maximum number, preceded by an @ sign. For example, A | B | C@2 results in effects that involve two or
fewer variables: A B C A*B A*C B*C.

Parameterization Used in PROC GENMOD

Design Matrix

The linear predictor part of a generalized linear model is

� D Xˇ

where ˇ is an unknown parameter vector and X is a known design matrix. By default, all models automatically
contain an intercept term; that is, the first column of X contains all 1s. Additional columns of X are generated
for classification variables, regression variables, and any interaction terms included in the model. It is
important to understand the ordering of classification variable parameters when you use the ESTIMATE or
CONTRAST statement. The ordering of these parameters is displayed in the “CLASS Level Information”
table and in tables displaying the parameter estimates of the fitted model.

When you specify an overparameterized model with the PARAM=GLM option in the CLASS statement,
some columns of X can be linearly dependent on other columns. For example, when you specify a model
consisting of an intercept term and a classification variable, the column corresponding to any one of the
levels of the classification variable is linearly dependent on the other columns of X. The columns of X0X are
checked in the order in which the model is specified for dependence on preceding columns. If a dependency
is found, the parameter corresponding to the dependent column is set to 0 along with its standard error to
indicate that it is not estimated. The order in which the levels of a classification variable are checked for
dependencies can be set by the ORDER= option in the PROC GENMOD statement or by the ORDER=
option in the CLASS statement. For full-rank parameterizations, the columns of the X matrix are designed to
be linearly independent.

You can exclude the intercept term from the model by specifying the NOINT option in the MODEL statement.

Missing Level Combinations

All levels of interaction terms involving classification variables might not be represented in the data. In that
case, PROC GENMOD does not include parameters in the model for the missing levels.

Type 1 Analysis
A Type 1 analysis consists of fitting a sequence of models, beginning with a simple model with only an
intercept term, and continuing through a model of specified complexity, fitting one additional effect on each
step. Likelihood ratio statistics—that is, twice the difference of the log likelihoods—are computed between
successive models. This type of analysis is sometimes called an analysis of deviance since, if the dispersion
parameter is held fixed for all models, it is equivalent to computing differences of scaled deviances. The
asymptotic distribution of the likelihood ratio statistics, under the hypothesis that the additional parameters
included in the model are equal to 0, is a chi-square with degrees of freedom equal to the difference in the
number of parameters estimated in the successive models. Thus, these statistics can be used in a test of
hypothesis of the significance of each additional term fit.
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This type of analysis is not available for GEE models, since the deviance is not computed for this type of
model.

If the dispersion parameter � is known, it can be included in the models; if it is unknown, there are two
strategies allowed by PROC GENMOD. The dispersion parameter can be estimated from a maximal model
by the deviance or Pearson’s chi-square divided by degrees of freedom, as discussed in the section “Goodness
of Fit” on page 2942, and this value can be used in all models. An alternative is to consider the dispersion to
be an additional unknown parameter for each model and estimate it by maximum likelihood on each step. By
default, PROC GENMOD estimates scale by maximum likelihood at each step.

A table of likelihood ratio statistics is produced, along with associated p-values based on the asymptotic
chi-square distributions.

If you specify either the SCALE=DEVIANCE or the SCALE=PEARSON option in the MODEL statement,
the dispersion parameter is estimated using the deviance or Pearson’s chi-square statistic, and F statistics are
computed in addition to the chi-square statistics for assessing the significance of each additional term in the
Type 1 analysis. See the section “F Statistics” on page 2951 for a definition of F statistics.

This Type 1 analysis has the general property that the results depend on the order in which the terms of the
model are fitted. The terms are fitted in the order in which they are specified in the MODEL statement.

Type 3 Analysis
A Type 3 analysis is similar to the Type III sums of squares used in PROC GLM, except that likelihood ratios
are used instead of sums of squares. First, a Type III estimable function is defined for an effect of interest
in exactly the same way as in PROC GLM. Then maximum likelihood estimates are computed under the
constraint that the Type III function of the parameters is equal to 0, by using constrained optimization. Let
the resulting constrained parameter estimates be Q̌ and the log likelihood be l. Q̌/. Then the likelihood ratio
statistic

S D 2.l. Ǒ/ � l. Q̌//

where Ǒ is the unconstrained estimate, has an asymptotic chi-square distribution under the hypothesis that
the Type III contrast is equal to 0, with degrees of freedom equal to the number of parameters associated with
the effect.

When a Type 3 analysis is requested, PROC GENMOD produces a table that contains the likelihood ratio
statistics, degrees of freedom, and p-values based on the limiting chi-square distributions for each effect in
the model. If you specify either the DSCALE or PSCALE option in the MODEL statement, F statistics are
also computed for each effect.

Options for handling the dispersion parameter are the same as for a Type 1 analysis. The dispersion parameter
can be specified to be a known value, estimated from the deviance or Pearson’s chi-square divided by degrees
of freedom, or estimated by maximum likelihood individually for the unconstrained and constrained models.
By default, PROC GENMOD estimates scale by maximum likelihood for each model fit.

The results of this type of analysis do not depend on the order in which the terms are specified in the MODEL
statement.
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A Type 3 analysis can consume considerable computation time since a constrained model is fitted for each
effect. Wald statistics for Type 3 contrasts are computed if you specify the WALD option. Wald statistics for
contrasts use less computation time than likelihood ratio statistics but might be less accurate indicators of the
significance of the effect of interest. The Wald statistic for testing L0ˇ D 0, where L is the contrast matrix, is
defined by

S D .L0 Ǒ/0.L0 O†L/�.L0 Ǒ/

where ˇ is the maximum likelihood estimate and † is its estimated covariance matrix. The asymptotic
distribution of S is chi-square with r degrees of freedom, where r is the rank of L.

For models that use less-than-full-rank parameterization (as specified by the PARAM=GLM option in the
CLASS statement), a Type 3 test of an effect of interest (main effect or interaction) is a test of the Type III
estimable functions that are defined for that effect. When the model contains no missing cells, the Type 3 test
of a main effect corresponds to testing the hypothesis of equal marginal means. For more information about
Type III estimable functions, see Chapter 45, “The GLM Procedure,” and Chapter 15, “The Four Types of
Estimable Functions.” Also see Littell, Freund, and Spector (1991).

For models that use full-rank parameterization, all parameters are estimable when there are no missing
cells, so it is unnecessary to define estimable functions. The standard test of an effect of interest in this
case is the joint test that the values of the parameters associated with that effect are zero. For a model that
uses effects parameterization (as specified by the PARAM=EFFECT option in the CLASS statement), the
joint test for a main effect is equivalent to testing the equality of marginal means. For a model that uses
reference parameterization (as specified by the PARAM=REF option in the CLASS statement), the joint test
is equivalent to testing the equality of cell means at the reference level of the other model effects. For more
information about the coding scheme and the associated interpretation of results, see Muller and Fetterman
(2002, Chapter 14).

If there is no interaction term, the Type 3 test of an effect for a model with GLM parameterization is the same
as the joint test of the effect for the model with full-rank parameterization. In this situation, the joint test is
also called the Type 3 test. For a model that contains an interaction term and no missing cells, the Type 3 test
for a component main effect under GLM parameterization is the same as the joint test of the component main
effect under effect parameterization. Both test the equality of cell means. But this Type 3 test differs from the
joint test under reference parameterization, which tests the equality of cell means at the reference level of the
other component main effect. If some cells are missing, you can obtain meaningful tests only by testing a
Type III estimation function, so in this case you should use GLM parameterization.

The results of a Type 3 test or a joint test do not depend on the order in which the terms are specified in the
MODEL statement.

Generalized score tests for Type III contrasts are computed for GEE models if you specify the TYPE3 option
in the MODEL statement when a REPEATED statement is also used. See the section “Generalized Score
Statistics” on page 2966 for more information about generalized score statistics. Wald tests are also available
with the Wald option in the CONTRAST statement. In this case, the robust covariance matrix estimate is
used for † in the Wald statistic.
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Confidence Intervals for Parameters

Likelihood Ratio-Based Confidence Intervals

PROC GENMOD produces likelihood ratio-based confidence intervals, also known as profile likelihood
confidence intervals, for parameter estimates for generalized linear models. These are not computed for
GEE models, since there is no likelihood for this type of model. Suppose that the parameter vector is
ˇ D Œˇ0; ˇ1; : : : ; ˇp�

0 and that you want a confidence interval for ˇj . The profile likelihood function for ˇj
is defined as

l�.ˇj / D max
Q̌
l.ˇ/

where Q̌ is the vector ˇ with the jth element fixed at ˇj and l is the log-likelihood function. If l D l. Ǒ/ is the
log likelihood evaluated at the maximum likelihood estimate Ǒ, then 2.l � l�.ˇj // has a limiting chi-square
distribution with one degree of freedom if ˇj is the true parameter value. A .1� ˛/100% confidence interval
for ˇj is˚

ˇj W l
�.ˇj / � l0 D l � 0:5�

2
1�˛;1

	
where �21�˛;1 is the 100.1 � ˛/th percentile of the chi-square distribution with one degree of freedom. The
endpoints of the confidence interval can be found by solving numerically for values of ˇj that satisfy equality
in the preceding relation. PROC GENMOD solves this by starting at the maximum likelihood estimate of ˇ.
The log-likelihood function is approximated with a quadratic surface, for which an exact solution is possible.
The process is iterated until convergence to an endpoint is attained. The process is repeated for the other
endpoint.

Convergence is controlled by the CICONV= option in the MODEL statement. Suppose � is the number
specified in the CICONV= option. The default value of � is 10�4. Let the parameter of interest be ˇj , and
define r D uj , the unit vector with a 1 in position j and 0s elsewhere. Convergence is declared on the current
iteration if the following two conditions are satisfied:

jl�.ˇj / � l0j � �

.sC �r/0H�1.sC �r/ � �

where l�.ˇj /, s, and H are the log likelihood, the gradient, and the Hessian evaluated at the current parameter
vector and � is a constant computed by the procedure. The first condition for convergence means that the
log-likelihood function must be within � of the correct value, and the second condition means that the gradient
vector must be proportional to the restriction vector r.

When you specify the LRCI option in the MODEL statement, PROC GENMOD computes profile likelihood
confidence intervals for all parameters in the model, including the scale parameter, if there is one. The
interval endpoints are displayed in a table as well as the values of the remaining parameters at the solution.

Wald Confidence Intervals

You can request that PROC GENMOD produce Wald confidence intervals for the parameters. The (1�˛)100%
Wald confidence interval for a parameter ˇ is defined as
Ǒ ˙ z1�˛=2 O�

where zp is the 100p percentile of the standard normal distribution, Ǒ is the parameter estimate, and O� is the
estimate of its standard error.
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F Statistics
Suppose that D0 is the deviance resulting from fitting a generalized linear model and that D1 is the deviance
from fitting a submodel. Then, under appropriate regularity conditions, the asymptotic distribution of
.D1 �D0/=� is chi-square with r degrees of freedom, where r is the difference in the number of parameters
between the two models and � is the dispersion parameter. If � is unknown, and O� is an estimate of � based
on the deviance or Pearson’s chi-square divided by degrees of freedom, then, under regularity conditions,
.n�p/ O�=� has an asymptotic chi-square distribution with n�p degrees of freedom. Here, n is the number of
observations and p is the number of parameters in the model that is used to estimate �. Thus, the asymptotic
distribution of

F D
D1 �D0

r O�

is the F distribution with r and n� p degrees of freedom, assuming that .D1 �D0/=� and .n � p/ O�=� are
approximately independent.

This F statistic is computed for the Type 1 analysis, Type 3 analysis, and hypothesis tests specified in
CONTRAST statements when the dispersion parameter is estimated by either the deviance or Pearson’s
chi-square divided by degrees of freedom, as specified by the DSCALE or PSCALE option in the MODEL
statement. In the case of a Type 1 analysis, model 0 is the higher-order model obtained by including one
additional effect in model 1. For a Type 3 analysis and hypothesis tests, model 0 is the full specified model
and model 1 is the submodel obtained from constraining the Type III contrast or the user-specified contrast to
be 0.

Lagrange Multiplier Statistics
When you select the NOINT or NOSCALE option, restrictions are placed on the intercept or scale parameters.
Lagrange multiplier, or score, statistics are computed in these cases. These statistics assess the validity of the
restrictions, and they are computed as

�2 D
s2

V

where s is the component of the score vector evaluated at the restricted maximum corresponding to the
restricted parameter and V D I11 � I12I�122 I21. The matrix I is the information matrix, 1 refers to the
restricted parameter, and 2 refers to the rest of the parameters.

Under regularity conditions, this statistic has an asymptotic chi-square distribution with one degree of
freedom, and p-values are computed based on this limiting distribution.

If you set k = 0 in a negative binomial model, s is the score statistic of Cameron and Trivedi (1998) for testing
for overdispersion in a Poisson model against alternatives of the form V.�/ D �C k�2.

See Rao (1973, p. 417) for more details.
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Predicted Values of the Mean

Predicted Values

A predicted value, or fitted value, of the mean �i corresponding to the vector of covariates xi is given by

O�i D g
�1.x0i Ǒ/

where g is the link function, regardless of whether xi corresponds to an observation or not. That is, the
response variable can be missing and the predicted value is still computed for valid xi . In the case where
xi does not correspond to a valid observation, xi is not checked for estimability. You should check the
estimability of xi in this case in order to ensure the uniqueness of the predicted value of the mean. If there is
an offset, it is included in the predicted value computation.

Confidence Intervals on Predicted Values

Approximate confidence intervals for predicted values of the mean can be computed as follows. The variance
of the linear predictor �i D x0i Ǒ is estimated by

�2x D x0i†xi

where † is the estimated covariance of Ǒ. The robust estimate of the covariance is used for † in the case of
models fit with GEEs.

Approximate 100.1 � ˛/% confidence intervals are computed as

g�1
�
x0i Ǒ ˙ z1�˛=2�x

�
where zp is the 100pth percentile of the standard normal distribution and g is the link function. If either end-
point in the argument is outside the valid range of arguments for the inverse link function, the corresponding
confidence interval endpoint is set to missing.

Residuals
The GENMOD procedure computes three kinds of residuals. Residuals are available for all generalized linear
models except multinomial models for ordinal response data, for which residuals are not available. Raw
residuals and Pearson residuals are available for models fit with generalized estimating equations (GEEs).

The raw residual is defined as

ri D yi � �i

where yi is the ith response and �i is the corresponding predicted mean. You can request raw residuals in an
output data set with the keyword RESRAW in the OUTPUT statement.

The Pearson residual is the square root of the ith contribution to the Pearson’s chi-square:

rPi D .yi � �i /

r
wi

V.�i /



Residuals F 2953

You can request Pearson residuals in an output data set with the keyword RESCHI in the OUTPUT statement.

Finally, the deviance residual is defined as the square root of the contribution of the ith observation to the
deviance, with the sign of the raw residual:

rDi D
p
di .sign.yi � �i //

You can request deviance residuals in an output data set with the keyword RESDEV in the OUTPUT
statement.

The adjusted Pearson, deviance, and likelihood residuals are defined by Agresti (2002); Williams (1987);
Davison and Snell (1991). These residuals are useful for outlier detection and for assessing the influence of
single observations on the fitted model.

For the generalized linear model, the variance of the ith individual observation is given by

vi D
�V.�i /

wi

where � is the dispersion parameter, wi is a user-specified prior weight (if not specified, wi D 1), �i is the
mean, and V.�i / is the variance function. Let

wei D v
�1
i .g0.�i //

�2

for the ith observation, where g0.�i / is the derivative of the link function, evaluated at �i . Let We be the
diagonal matrix with wei denoting the ith diagonal element. The weight matrix We is used in computing the
expected information matrix.

Define hi as the ith diagonal element of the matrix

W
1
2
e X.X0WeX/�1X0W

1
2
e

The Pearson residuals, standardized to have unit asymptotic variance, are given by

rPi D
yi � �ip
vi .1 � hi /

You can request standardized Pearson residuals in an output data set with the keyword STDRESCHI in the
OUTPUT statement. The deviance residuals, standardized to have unit asymptotic variance, are given by

rDi D
sign.yi � �i /

p
dip

�.1 � hi /

where di is the contribution to the total deviance from observation i, and sign.yi � �i / is 1 if yi � �i is
positive and –1 if yi � �i is negative. You can request standardized deviance residuals in an output data set
with the keyword STDRESDEV in the OUTPUT statement. The likelihood residuals are defined by

rGi D sign.yi � �i /
q
.1 � hi /r

2
Di C hir

2
P i

You can request likelihood residuals in an output data set with the keyword RESLIK in the OUTPUT
statement.
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Multinomial Models
This type of model applies to cases where an observation can fall into one of k categories. Binary data
occur in the special case where k = 2. If there are mi observations in a subpopulation i, then the probability
distribution of the number falling into the k categories yi D .yi1; yi2; : : : ; yik/ can be modeled by the
multinomial distribution, defined in the section “Response Probability Distributions” on page 2935, withP
j yij D mi . The multinomial model is an ordinal model if the categories have a natural order.

Residuals are not available in the OBSTATS table or the output data set for multinomial models.

By default, and consistently with binomial models, the GENMOD procedure orders the response categories
for ordinal multinomial models from lowest to highest and models the probabilities of the lower response
levels. You can change the way PROC GENMOD orders the response levels with the RORDER= option in
the PROC GENMOD statement. The order that PROC GENMOD uses is shown in the “Response Profiles”
output table described in the section “Response Profile” on page 2982.

The GENMOD procedure supports only the ordinal multinomial model. If .pi1; pi2; : : : ; pik/ are the
category probabilities, the cumulative category probabilities are modeled with the same link functions used
for binomial data. Let Pir D

Pr
jD1 pij , r D 1; 2; : : : ; k�1, be the cumulative category probabilities (note

that Pik D 1). The ordinal model is

g.Pir/ D �r C x0ˇ for r D 1; 2; : : : ; k�1

where �1; �2; : : : ; �k�1 are intercept terms that depend only on the categories and xi is a vector of covariates
that does not include an intercept term. The logit, probit, and complementary log-log link functions g are
available. These are obtained by specifying the MODEL statement options DIST=MULTINOMIAL and
LINK=CUMLOGIT (cumulative logit), LINK=CUMPROBIT (cumulative probit), or LINK=CUMCLL
(cumulative complementary log-log). Alternatively,

Pir D F.�r C x0ˇ/ for r D 1; 2; : : : ; k�1

where F D g�1 is a cumulative distribution function for the logistic, normal, or extreme-value distribution.

PROC GENMOD estimates the intercept parameters �1; �2; : : : ; �k�1 and regression parameters ˇ by
maximum likelihood.

The subpopulations i are defined by constant values of the AGGREGATE= variable. This has no effect on the
parameter estimates, but it does affect the deviance and Pearson chi-square statistics; it also affects parameter
estimate standard errors if you specify the SCALE=DEVIANCE or SCALE=PEARSON option.

Zero-Inflated Models
Count data that have an incidence of zeros greater than expected for the underlying probability distribution
of counts can be modeled with a zero-inflated distribution. In GENMOD, the underlying distribution can
be either Poisson or negative binomial. See Lambert (1992), Long (1997) and Cameron and Trivedi (1998)
for more information about zero-inflated models. The population is considered to consist of two types of
individuals. The first type gives Poisson or negative binomial distributed counts, which might contain zeros.
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The second type always gives a zero count. Let � be the underlying distribution mean and ! be the probability
of an individual being of the second type. The parameter ! is called here the zero-inflation probability, and
is the probability of zero counts in excess of the frequency predicted by the underlying distribution. You can
request that the zero inflation probability be displayed in an output data set with the PZERO keyword. The
probability distribution of a zero-inflated Poisson random variable Y is given by

Pr.Y D y/ D

(
! C .1 � !/e�� for y D 0
.1 � !/�

ye��
yŠ

for y D 1; 2; : : :

and the probability distribution of a zero-inflated negative binomial random variable Y is given by

Pr.Y D y/ D

(
! C .1 � !/.1C k�/�

1
k for y D 0

.1 � !/ �.yC1=k/
�.yC1/�.1=k/

.k�/y

.1Ck�/yC1=k
for y D 1; 2; : : :

where k is the negative binomial dispersion parameter.

You can model the parameters ! and � in GENMOD with the regression models:

h.!i / D z0i
g.�i / D x0iˇ

where h is one of the binary link functions: logit, probit, or complementary log-log. The link function h is the
logit link by default, or the link function option specified in the ZEROMODEL statement. The link function
g is the log link function by default, or the link function specified in the MODEL statement, for both the
Poisson and the negative binomial. The covariates zi for observation i are determined by the model specified
in the ZEROMODEL statement, and the covariates xi are determined by the model specified in the MODEL
statement. The regression parameters  and ˇ are estimated by maximum likelihood.

The mean and variance of Y for the zero-inflated Poisson are given by

E.Y / D � D .1 � !/�

Var.Y / D �C
!

1 � !
�2

and for the zero-inflated negative binomial by

E.Y / D � D .1 � !/�

Var.Y / D �C

�
!

1 � !
C

k

1 � !

�
�2

You can request that the mean of Y be displayed for each observation in an output data set with the PRED
keyword.
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Tweedie Distribution For Generalized Linear Models
The Tweedie (1984) distribution has nonnegative support and can have a discrete mass at zero, making it
useful to model responses that are a mixture of zeros and positive values. The Tweedie distribution belongs to
the exponential family, so it conveniently fits in the generalized linear models framework. According to such
parameterization, the mean and variance for the Tweedie random variable are E.Y / D � and Var.Y / D ��p ,
respectively, where � is the dispersion parameter and p is an extra parameter that controls the variance of the
distribution.

The Tweedie family of distributions includes several important distributions for generalized linear models.
When p D 0, the Tweedie distribution degenerates to the normal distribution; when p D 1, it becomes a
Poisson distribution; when p D 2, it becomes a gamma distribution; when p D 3, it is an inverse Gaussian
distribution.

Except for these special cases, the probability density function for the Tweedie distribution does not have a
closed form and can at best be expressed in terms of series. Numerical approximations are needed to evaluate
the density function. Dunn and Smyth (2005) propose using a finite series and provide a formula to determine
its lower and upper indices in order to achieve a desired accuracy. Alternatively, you can apply the Fourier
transformation on the characteristic function (Dunn and Smyth 2008). These approximations tend to be
expensive when a high level of accuracy is demanded or the data volume becomes large. PROC GENMOD
uses the series method unless it becomes complicated to do so. In this case, the method that is based on the
Fourier transformation is used. The accuracy of approximation is controlled by the EPSILON= option, whose
default value is 10�5.

The Tweedie distribution is not defined when p is between 0 and 1. In practice, the most interesting range
is from 1 to 2 in which the Tweedie distribution gradually loses its mass at 0 as it shifts from a Poisson
distribution to a gamma distribution. In this case, the Tweedie random variable Y can be generated from a
compound Poisson distribution (Smyth 1996) as

Y D †TiD1Xi

T � Poisson.�/
Xi � gamma.˛; /

where Y D 0 if T D 0, T and Xi are statistically independent, and gamma.˛; / denotes a gamma random
variable that has mean ˛ and variance ˛2. These parameters are determined by the Tweedie parameters as
follows:

� D
�2�p

�.2 � p/

˛ D
2 � p

p � 1

 D �.p � 1/�p�1
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Inversely, given the Tweedie distributional parameters, the parameters of the compound Poisson distribution
are determined as follows:

� D �˛

p D
˛ C 2

˛ C 1

� D
�1�p.˛/2�p

2 � p

In terms of generalized linear models parameterizations, the canonical parameter � for the Tweedie density
can be expressed as

� D

(
�1�p

1�p
p ¤ 1

log� p D 1

and the function b.�/ is

b.�/ D

(
�2�p

2�p
p ¤ 2

log� p D 2

Because of the intractability of differentiating the gradient functions with respect to the variance parameters,
PROC GENMOD uses a quasi-Newton approach to maximize the likelihood function, where the Hessian
matrix is approximated by taking finite differences of the gradient functions. Convergence is determined by
a union of two criteria: the relative gradient convergence criterion is set to 10�9, and the relative function
convergence criterion is set to 2 � 10�9. Convergence is declared when at least one of the criteria is attained
during the quasi-Newton iteration.

Before PROC GENMOD maximizes the approximate likelihood, it first maximizes the following extended
log quasi-likelihood which is constructed according to the definition of McCullagh and Nelder (1989, Chapter
9) as

Qp.y;�; �; p/ D
X
i

q.yi ; �i ; �; p/

where the contribution from an observation is

q.yi ; �i ; �; p/ D �0:5 log.2��y
p
i =wi / � wi

 
y
2�p
i � .2 � p/yi�

1�p
i C .1 � p/�

2�p
i

.1 � p/.1 � p/

!
=�

and wi is the weight for the observation from the WEIGHT statement.

The range of parameter p for the quasi-likelihood is from 1 to 2. For a specified P= value outside this
range, PROC GENMOD skips optimization of the quasi-likelihood. To maintain numerical stability, PROC
GENMOD imposes a lower bound of 1.1 and a upper bound of 1.99 for computation with the quasi-likelihood.
The estimates that are obtained from optimizing the quasi-likelihood are usually near the full-likelihood
solution so that fewer iterations are needed for maximizing the more expensive full likelihood.
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Generalized Estimating Equations
Let yij , j D 1; : : : ; ni , i D 1; : : : ; K, represent the jth measurement on the ith subject. There are ni
measurements on subject i and

PK
iD1 ni total measurements.

Correlated data are modeled using the same link function and linear predictor setup (systematic component)
as the independence case. The random component is described by the same variance functions as in the
independence case, but the covariance structure of the correlated measurements must also be modeled.
Let the vector of measurements on the ith subject be Yi D Œyi1; : : : ; yini �

0 with corresponding vector of
means �i D Œ�i1; : : : ; �ini �

0, and let Vi be the covariance matrix of Yi . Let the vector of independent, or
explanatory, variables for the jth measurement on the ith subject be

xij D Œxij1; : : : ; xijp�0

The generalized estimating equation of Liang and Zeger (1986) for estimating the p � 1 vector of regression
parameters ˇ is an extension of the independence estimating equation to correlated data and is given by

S.ˇ/ D
KX
iD1

D0iV
�1
i .Yi � �i .ˇ// D 0

where

Di D
@�i

@ˇ

Since

g.�ij / D xij 0ˇ

where g is the link function, the p � ni matrix of partial derivatives of the mean with respect to the regression
parameters for the ith subject is given by

D0i D
@�0i
@ˇ
D

266664
xi11

g0.�i1/
: : :

xini1

g0.�ini /
:::

:::
xi1p

g0.�i1/
: : :

xinip

g0.�ini /

377775

Working Correlation Matrix

Let Ri .˛/ be an ni � ni “working” correlation matrix that is fully specified by the vector of parameters ˛.
The covariance matrix of Yi is modeled as

Vi D �A
1
2

i W
� 1
2

i R.˛/W
� 1
2

i A
1
2

i

where Ai is an ni �ni diagonal matrix with v.�ij / as the jth diagonal element and Wi is an ni �ni diagonal
matrix with wij as the jth diagonal, where wij is a weight specified with the WEIGHT statement. If there is
no WEIGHT statement, wij D 1 for all i and j. If Ri .˛/ is the true correlation matrix of Yi , then Vi is the
true covariance matrix of Yi .
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The working correlation matrix is usually unknown and must be estimated. It is estimated in the iterative
fitting process by using the current value of the parameter vector ˇ to compute appropriate functions of the
Pearson residual

eij D
yij � �ijp
v.�ij /=wij

If you specify the working correlation as R0 D I, which is the identity matrix, the GEE reduces to the
independence estimating equation.

Following are the structures of the working correlation supported by the GENMOD procedure and the
estimators used to estimate the working correlations.

Working Correlation Structure Estimator

Fixed
Corr.Yij ; Yik/ D rjk
where rjk is the jkth element of a constant,
user-specified correlation matrix R0.

The working correlation is not esti-
mated in this case.

Independent

Corr.Yij ; Yik/ D
�
1 j D k

0 j ¤ k
The working correlation is not esti-
mated in this case.

m-dependent

Corr.Yij ; Yi;jCt / D

8<:
1 t D 0

˛t t D 1; 2; : : : ; m

0 t > m

Ǫ t D
1

.Kt�p/�

PK
iD1

P
j�ni�t

eij ei;jCt

Kt D
PK
iD1.ni � t /

Exchangeable

Corr.Yij ; Yik/ D
�
1 j D k

˛ j ¤ k
Ǫ D

1
.N��p/�

PK
iD1

P
j<k eij eik

N � D 0:5
PK
iD1 ni .ni � 1/

Unstructured

Corr.Yij ; Yik/ D
�
1 j D k

˛jk j ¤ k
Ǫjk D

1
.K�p/�

PK
iD1 eij eik

Autoregressive
AR(1)

Corr.Yij ; Yi;jCt / D ˛t

for t D 0; 1; 2; : : : ; ni � j
Ǫ D

1
.K1�p/�

PK
iD1

P
j�ni�1

eij ei;jC1

K1 D
PK
iD1.ni � 1/
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Dispersion Parameter

The dispersion parameter � is estimated by

O� D
1

N � p

KX
iD1

niX
jD1

e2ij

where N D
PK
iD1 ni is the total number of measurements and p is the number of regression parameters.

The square root of O� is reported by PROC GENMOD as the scale parameter in the “Analysis of GEE
Parameter Estimates Model-Based Standard Error Estimates” output table. If a fixed scale parameter is
specified with the NOSCALE option in the MODEL statement, then the fixed value is used in estimating the
model-based covariance matrix and standard errors.

Fitting Algorithm

The following is an algorithm for fitting the specified model by using GEEs. Note that this is not in general
a likelihood-based method of estimation, so that inferences based on likelihoods are not possible for GEE
methods.

1. Compute an initial estimate of ˇ with an ordinary generalized linear model assuming independence.

2. Compute the working correlations R based on the standardized residuals, the current ˇ, and the
assumed structure of R.

3. Compute an estimate of the covariance:

Vi D �A
1
2

i W
� 1
2

i
OR.˛/W

� 1
2

i A
1
2

i

4. Update ˇ:

ˇrC1 D ˇr C

"
KX
iD1

@�i

@ˇ

0

V�1i
@�i

@ˇ

#�1 "
KX
iD1

@�i

@ˇ

0

V�1i .Yi � �i /

#

5. Repeat steps 2-4 until convergence.

Missing Data

See Diggle, Liang, and Zeger (1994, Chapter 11) for a discussion of missing values in longitudinal data.
Suppose that you intend to take measurements Yi1; : : : ; Yin for the ith unit. Missing values for which Yij are
missing whenever Yik is missing for all j � k are called dropouts. Otherwise, missing values that occur
intermixed with nonmissing values are intermittent missing values. The GENMOD procedure can estimate
the working correlation from data containing both types of missing values by using the all available pairs
method, in which all nonmissing pairs of data are used in the moment estimators of the working correlation
parameters defined previously. The resulting covariances and standard errors are valid under the missing
completely at random (MCAR) assumption.

For example, for the unstructured working correlation model,

Ǫjk D
1

.K 0 � p/�

X
eij eik
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where the sum is over the units that have nonmissing measurements at times j and k, and K 0 is the number of
units with nonmissing measurements at j and k. Estimates of the parameters for other working correlation
types are computed in a similar manner, using available nonmissing pairs in the appropriate moment
estimators.

The contribution of the ith unit to the parameter update equation is computed by omitting the elements
of .Yi � �i/, the columns of D0i D

@�
@ˇ

0
, and the rows and columns of Vi corresponding to missing

measurements.

Parameter Estimate Covariances

The model-based estimator of Cov. Ǒ/ is given by

†m. Ǒ/ D I�10

where

I0 D
KX
iD1

@�i

@ˇ

0

V�1i
@�i

@ˇ

This is the GEE equivalent of the inverse of the Fisher information matrix that is often used in generalized
linear models as an estimator of the covariance estimate of the maximum likelihood estimator of ˇ. It is a
consistent estimator of the covariance matrix of Ǒ if the mean model and the working correlation matrix are
correctly specified.

The estimator

†e D I�10 I1I�10

is called the empirical, or robust, estimator of the covariance matrix of Ǒ, where

I1 D
KX
iD1

@�i

@ˇ

0

V�1i Cov.Yi /V�1i
@�i

@ˇ

It has the property of being a consistent estimator of the covariance matrix of Ǒ, even if the working
correlation matrix is misspecified—that is, if Cov.Yi / ¤ Vi . For further information about the robust
variance estimate, see Zeger, Liang, and Albert (1988); Royall (1986); White (1982). In computing †e, ˇ
and � are replaced by estimates, and Cov.Yi / is replaced by the estimate

.Yi � �i . Ǒ//.Yi � �i . Ǒ//0

Multinomial GEEs

Lipsitz, Kim, and Zhao (1994) and Miller, Davis, and Landis (1993) describe how to extend GEEs to
multinomial data. Currently, only the independent working correlation is available for multinomial models in
PROC GENMOD.
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Alternating Logistic Regressions

If the responses are binary (that is, they take only two values), then there is an alternative method to account
for the association among the measurements. The alternating logistic regressions (ALR) algorithm of Carey,
Zeger, and Diggle (1993) models the association between pairs of responses with log odds ratios, instead of
with correlations, as ordinary GEEs do.

For binary data, the correlation between the jth and kth response is, by definition,

Corr.Yij ; Yik/ D
Pr.Yij D 1; Yik D 1/ � �ij�ikp

�ij .1 � �ij /�ik.1 � �ik/

The joint probability in the numerator satisfies the following bounds, by elementary properties of probability,
since �ij D Pr.Yij D 1/:

max.0; �ij C �ik � 1/ � Pr.Yij D 1; Yik D 1/ � min.�ij ; �ik/

The correlation, therefore, is constrained to be within limits that depend in a complicated way on the means
of the data.

The odds ratio, defined as

OR.Yij ; Yik/ D
Pr.Yij D 1; Yik D 1/Pr.Yij D 0; Yik D 0/
Pr.Yij D 1; Yik D 0/Pr.Yij D 0; Yik D 1/

is not constrained by the means and is preferred, in some cases, to correlations for binary data.

The ALR algorithm seeks to model the logarithm of the odds ratio, ijk D log.OR.Yij ; Yik//, as

ijk D z0ijk˛

where ˛ is a q � 1 vector of regression parameters and zijk is a fixed, specified vector of coefficients.

The parameter ijk can take any value in .�1;1/ with ijk D 0 corresponding to no association.

The log odds ratio, when modeled in this way with a regression model, can take different values in subgroups
defined by zijk . For example, zijk can define subgroups within clusters, or it can define “block effects”
between clusters.

You specify a GEE model for binary data that uses log odds ratios by specifying a model for the mean, as
in ordinary GEEs, and a model for the log odds ratios. You can use any of the link functions appropriate
for binary data in the model for the mean, such as logistic, probit, or complementary log-log. The ALR
algorithm alternates between a GEE step to update the model for the mean and a logistic regression step to
update the log odds ratio model. Upon convergence, the ALR algorithm provides estimates of the regression
parameters for the mean, ˇ, the regression parameters for the log odds ratios, ˛, their standard errors, and
their covariances.

Specifying Log Odds Ratio Models
Specifying a regression model for the log odds ratio requires you to specify rows of the z matrix zijk for
each cluster i and each unique within-cluster pair .j; k/. The GENMOD procedure provides several methods
of specifying zijk . These are controlled by the LOGOR=keyword and associated options in the REPEATED
statement. The supported keywords and the resulting log odds ratio models are described as follows.
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EXCH specifies exchangeable log odds ratios. In this model, the log odds ratio is a
constant for all clusters i and pairs .j; k/. The parameter ˛ is the common log
odds ratio.

zijk D 1 for all i; j; k

FULLCLUST specifies fully parameterized clusters. Each cluster is parameterized in the same
way, and there is a parameter for each unique pair within clusters. If a complete
cluster is of size n, then there are n.n�1/

2
parameters in the vector ˛. For example,

if a full cluster is of size 4, then there are 4�3
2
D 6 parameters, and the z matrix

is of the form

Z D

26666664

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

37777775
The elements of ˛ correspond to log odds ratios for cluster pairs in the following
order:

Pair Parameter

(1,2) Alpha1
(1,3) Alpha2
(1,4) Alpha3
(2.3) Alpha4
(2,4) Alpha5
(3,4) Alpha6

LOGORVAR(variable) specifies log odds ratios by cluster. The argument variable is a variable name that
defines the “block effects” between clusters. The log odds ratios are constant
within clusters, but they take a different value for each different value of the
variable. For example, if Center is a variable in the input data set taking a different
value for k treatment centers, then specifying LOGOR=LOGORVAR(Center)
requests a model with different log odds ratios for each of the k centers, constant
within center.

NESTK specifies k-nested log odds ratios. You must also specify the SUB-
CLUST=variable option to define subclusters within clusters. Within each
cluster, PROC GENMOD computes a log odds ratio parameter for pairs having
the same value of variable for both members of the pair and one log odds ratio
parameter for each unique combination of different values of variable.

NEST1 specifies 1-nested log odds ratios. You must also specify the SUB-
CLUST=variable option to define subclusters within clusters. There are
two log odds ratio parameters for this model. Pairs having the same value of
variable correspond to one parameter; pairs having different values of variable
correspond to the other parameter. For example, if clusters are hospitals and
subclusters are wards within hospitals, then patients within the same ward have
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one log odds ratio parameter, and patients from different wards have the other
parameter.

ZFULL specifies the full z matrix. You must also specify a SAS data set containing
the z matrix with the ZDATA=data-set-name option. Each observation in
the data set corresponds to one row of the z matrix. You must specify the
ZDATA data set as if all clusters are complete—that is, as if all clusters are
the same size and there are no missing observations. The ZDATA data set
has KŒnmax .nmax � 1/=2� observations, where K is the number of clusters and
nmax is the maximum cluster size. If the members of cluster i are ordered as
1; 2; � � � ; n, then the rows of the z matrix must be specified for pairs in the order
.1; 2/; .1; 3/; � � � ; .1; n/; .2; 3/; � � � ; .2; n/; � � � ; .n � 1; n/. The variables speci-
fied in the REPEATED statement for the SUBJECT effect must also be present
in the ZDATA= data set to identify clusters. You must specify variables in the
data set that define the columns of the z matrix by the ZROW=variable-list option.
If there are q columns (q variables in variable-list), then there are q log odds
ratio parameters. You can optionally specify variables indicating the cluster pairs
corresponding to each row of the z matrix with the YPAIR=(variable1, variable2)
option. If you specify this option, the data from the ZDATA data set are sorted
within each cluster by variable1 and variable2. See Example 43.6 for an example
of specifying a full z matrix.

ZREP specifies a replicated z matrix. You specify z matrix data exactly as you do for the
ZFULL case, except that you specify only one complete cluster. The z matrix for
the one cluster is replicated for each cluster. The number of observations in the
ZDATA data set is nmax .nmax�1/

2
, where nmax is the size of a complete cluster (a

cluster with no missing observations).

ZREP(matrix) specifies direct input of the replicated z matrix. You specify the z matrix for
one cluster with the syntax LOGOR=ZREP ( .y1 y2/z1 z2 � � � zq; � � � ), where
y1 and y2 are numbers representing a pair of observations and the values
z1; z2; � � � ; zq make up the corresponding row of the z matrix. The number
of rows specified is nmax .nmax�1/

2
, where nmax is the size of a complete cluster

(a cluster with no missing observations). For example,

logor = zrep((1 2) 1 0,
(1 3) 1 0,
(1 4) 1 0,
(2 3) 1 1,
(2 4) 1 1,
(3 4) 1 1)

specifies the 4�3
2
D 6 rows of the z matrix for a cluster of size 4 with q = 2 log

odds ratio parameters. The log odds ratio for the pairs (1 2), (1 3), (1 4) is ˛1, and
the log odds ratio for the pairs (2 3), (2 4), (3 4) is ˛1 C ˛2.
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Quasi-likelihood Information Criterion

The quasi-likelihood information criterion (QIC) was developed by Pan (2001) as a modification of the
Akaike information criterion (AIC) to apply to models fit by GEEs.

Define the quasi-likelihood under the independence working correlation assumption, evaluated with the
parameter estimates under the working correlation of interest as

Q. Ǒ.R/; �/ D

KX
iD1

niX
jD1

Q. Ǒ.R/; �I .Yij ;Xij //

where the quasi-likelihood contribution of the jth observation in the ith cluster is defined in the section
“Quasi-likelihood Functions” on page 2965 and Ǒ.R/ are the parameter estimates obtained from GEEs with
the working correlation of interest R.

QIC is defined as

QIC.R/ D �2Q. Ǒ.R/; �/C 2trace. O�I OVR/

where OVR is the robust covariance estimate and O�I is the inverse of the model-based covariance estimate
under the independent working correlation assumption, evaluated at Ǒ.R/, the parameter estimates obtained
from GEEs with the working correlation of interest R.

PROC GENMOD also computes an approximation to QIC.R/ defined by Pan (2001) as

QICu.R/ D �2Q. Ǒ.R/; �/C 2p

where p is the number of regression parameters.

Pan (2001) notes that QIC is appropriate for selecting regression models and working correlations, whereas
QICu is appropriate only for selecting regression models.

Quasi-likelihood Functions

See McCullagh and Nelder (1989) and Hardin and Hilbe (2003) for discussions of quasi-likelihood functions.
The contribution of observation j in cluster i to the quasi-likelihood function evaluated at the regression
parameters ˇ is given by Q.ˇ; �I .Yij ;Xij // D

Qij
�

, where Qij is defined in the following list. These are
used in the computation of the quasi-likelihood information criteria (QIC) for goodness of fit of models fit
with GEEs. The wij are prior weights, if any, specified with the WEIGHT or FREQ statements. Note that the
definition of the quasi-likelihood for the negative binomial differs from that given in McCullagh and Nelder
(1989). The definition used here allows the negative binomial quasi-likelihood to approach the Poisson as
k ! 0.

• Normal:

Qij D �
1

2
wij .yij � �ij /

2

• Inverse Gaussian:

Qij D
wij .�ij � :5yij /

�2ij
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• Gamma:

Qij D �wij

�
yij

�ij
C log.�ij /

�
• Negative binomial:

Qij D wij

�
log�

�
yij C

1

k

�
� log�

�
1

k

�
C yij log

�
k�ij

1C k�ij

�
C
1

k
log

�
1

1C k�ij

��
• Poisson:

Qij D wij .yij log.�ij / � �ij /

• Binomial:

Qij D wij Œrij log.pij /C .nij � rij / log.1 � pij /�

• Multinomial (s categories):

Qij D wij

sX
kD1

yijk log.�ijk/

Generalized Score Statistics

Boos (1992) and Rotnitzky and Jewell (1990) describe score tests applicable to testing L0ˇ D 0 in GEEs,
where L0 is a user-specified r � p contrast matrix or a contrast for a Type 3 test of hypothesis.

Let Q̌ be the regression parameters resulting from solving the GEE under the restricted model L0ˇ D 0, and
let S. Q̌/ be the generalized estimating equation values at Q̌.

The generalized score statistic is

T D S. Q̌/0†mL.L0†eL/�1L0†mS. Q̌/

where †m is the model-based covariance estimate and †e is the empirical covariance estimate. The p-values
for T are computed based on the chi-square distribution with r degrees of freedom.

Assessment of Models Based on Aggregates of Residuals
Lin, Wei, and Ying (2002) present graphical and numerical methods for model assessment based on the
cumulative sums of residuals over certain coordinates (such as covariates or linear predictors) or some
related aggregates of residuals. The distributions of these stochastic processes under the assumed model
can be approximated by the distributions of certain zero-mean Gaussian processes whose realizations can
be generated by simulation. Each observed residual pattern can then be compared, both graphically and
numerically, with a number of realizations from the null distribution. Such comparisons enable you to
assess objectively whether the observed residual pattern reflects anything beyond random fluctuation. These
procedures are useful in determining appropriate functional forms of covariates and link function. You use
the ASSESS|ASSESSMENT statement to perform this kind of model-checking with cumulative sums of
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residuals, moving sums of residuals, or LOESS smoothed residuals. See Example 43.8 and Example 43.9 for
examples of model assessment.

Let the model for the mean be

g.�i / D x0iˇ

where �i is the mean of the response yi and xi is the vector of covariates for the ith observation. Denote the
raw residual resulting from fitting the model as

ei D yi � O�i

and let xij be the value of the jth covariate in the model for observation i. Then to check the functional form
of the jth covariate, consider the cumulative sum of residuals with respect to xij ,

Wj .x/ D
1
p
n

nX
iD1

I.xij � x/ei

where I./ is the indicator function. For any x, Wj .x/ is the sum of the residuals with values of xj less than
or equal to x.

Denote the score, or gradient vector, by

U.ˇ/ D

nX
iD1

h.x0ˇ/xi .yi � �.x0ˇ//

where �.r/ D g�1.r/, and

h.r/ D
1

g0.�.r//V .�.r//

Let J be the Fisher information matrix

J.ˇ/ D �
@U.ˇ/

@ˇ0

Define

OWj .x/ D
1
p
n

nX
iD1

ŒI.xij � x/C �
0.xI Ǒ/J�1. Ǒ/xih.x0 Ǒ/�eiZi

where

�.xIˇ/ D �

nX
iD1

I.xij � x/
@�.x0iˇ/
@ˇ

and Zi are independent N.0; 1/ random variables. Then the conditional distribution of OWj .x/, given
.yi ; xi /; i D 1; : : : ; n, under the null hypothesis H0 that the model for the mean is correct, is the same
asymptotically as n!1 as the unconditional distribution of Wj .x/ (Lin, Wei, and Ying 2002).

You can approximate realizations from the null hypothesis distribution ofWj .x/ by repeatedly generating nor-
mal samples Zi ; i D 1; : : : ; n, while holding .yi ; xi /; i D 1; : : : ; n, at their observed values and computing
OWj .x/ for each sample.



2968 F Chapter 43: The GENMOD Procedure

You can assess the functional form of covariate j by plotting a few realizations of OWj .x/ on the same plot as
the observed Wj .x/ and visually comparing to see how typical the observed Wj .x/ is of the null distribution
samples.

You can supplement the graphical inspection method with a Kolmogorov-type supremum test. Let sj be the
observed value of Sj D supx jWj .x/j. The p-value PrŒSj � sj � is approximated by PrŒ OSj � sj �, where
OSj D supx j OWj .x/j. PrŒ OSj � sj � is estimated by generating realizations of OWj .:/ (1,000 is the default

number of realizations).

You can check the link function instead of the jth covariate by using values of the linear predictor x0i Ǒ in
place of values of the jth covariate xij . The graphical and numerical methods described previously are then
sensitive to inadequacies in the link function.

An alternative aggregate of residuals is the moving sum statistic

Wj .x; b/ D
1
p
n

nX
iD1

I.x � b � xij � x/ei

If you specify the keyword WINDOW(b), then the moving sum statistic with window size b is used instead
of the cumulative sum of residuals, with I.x � b � xij � x/ replacing I.xij � x/ in the earlier equation.

If you specify the keyword LOESS(f ), loess smoothed residuals are used in the preceding formulas, where f is
the fraction of the data to be used at a given point. If f is not specified, f D 1

3
is used. For data .Yi ; Xi /; i D

1; : : : ; n, define r as the nearest integer to nf and h as the rth smallest among jXi � xj; i D 1; : : : ; n. Let

Ki .x/ D K

�
Xi � x

h

�
where

K.t/ D
70

81
.1 � jt j3/3I.�1 � t � 1/

Define

wi .x/ D Ki .x/ŒS2.x/ � .Xi � x/S1.x/�

where

S1.x/ D

nX
iD1

Ki .x/.Xi � x/

S2.x/ D

nX
iD1

Ki .x/.Xi � x/
2

Then the loess estimate of Y at x is defined by

OY .x/ D

nX
iD1

wi .x/Pn
iD1wi .x/

Yi
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Loess smoothed residuals for checking the functional form of the jth covariate are defined by replacing Yi
with ei and Xi with xij . To implement the graphical and numerical assessment methods, I.xij � x/ is
replaced with wi .x/Pn

iD1wi .x/
in the formulas for Wj .x/ and OWj .x/.

You can perform the model checking described earlier for marginal models for dependent responses fit by
generalized estimating equations (GEEs). Let yik denote the kth measurement on the ith cluster, i D 1; : : : ; K,
k D 1; : : : ; ni , and let xik denote the corresponding vector of covariates. The marginal mean of the response
�ik D E.yik/ is assumed to depend on the covariate vector by

g.�ik/ D x0ikˇ

where g is the link function.

Define the vector of residuals for the ith cluster as

ei D .ei1; : : : ; eini /
0
D .yi1 � O�i1; : : : ; yini � O�ini /

0

You use the following extension of Wj .x/ defined earlier to check the functional form of the jth covariate:

Wj .x/ D
1
p
K

KX
iD1

niX
kD1

I.xikj � x/eik

where xikj is the jth component of xik .

The null distribution of Wj .x/ can be approximated by the conditional distribution of

OWj .x/ D
1
p
K

KX
iD1

(
niX
kD1

I.xikj � x/eik C �
0.x; Ǒ/I�10 OD

0
i
OV�1i ei

)
Zi

where ODi and OVi are defined as in the section “Generalized Estimating Equations” on page 2958 with the
unknown parameters replaced by their estimated values,

�.x;ˇ/ D �

KX
iD1

niX
kD1

I.xikj � x/
@�ik

@ˇ

I0 D
KX
iD1

OD0i OV
�1
i
ODi

and Zi ; i D 1; : : : ; K, are independent N.0; 1/ random variables. You replace xikj with the linear predictor
x0
ik
Ǒ in the preceding formulas to check the link function.
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Case Deletion Diagnostic Statistics
For ordinary generalized linear models, regression diagnostic statistics developed by Williams (1987) can be
requested in an output data set or in the OBSTATS table by specifying the DIAGNOSTICS | INFLUENCE
option in the MODEL statement. These diagnostics measure the influence of an individual observation on
model fit, and generalize the one-step diagnostics developed by Pregibon (1981) for the logistic regression
model for binary data.

Preisser and Qaqish (1996) further generalized regression diagnostics to apply to models for correlated data fit
by generalized estimating equations (GEEs), where the influence of entire clusters of correlated observations,
or the influence of individual observations within a cluster, is measured. These diagnostic statistics can be
requested in an output data set or in the OBSTATS table if a model for correlated data is specified with a
REPEATED statement.

The next two sections use the following notation:

Ǒ is the maximum likelihood estimate of the regression parameters ˇ, or, in the case of correlated data,
the solution of the GEEs.

Ǒ
Œi� is the corresponding estimate evaluated with the ith observation deleted, or, in the case of correlated

data, with the ith cluster deleted.

p is the dimension of the regression parameter vector ˇ.

rpi is the standardized Pearson residual yi��ip
vi .1�hi /

, where vi is the variance of the ith response and hi is
the leverage defined in the section “H | LEVERAGE” on page 2971.

vi is the variance of response i, Var.Yi / D �V.�i /, where V.�/ is the variance function and � is the
dispersion parameter.

wi is the prior weight of the ith observation specified with the WEIGHT statement. If there is no WEIGHT
statement, wi D 1 for all i.

All unknown quantities are replaced by their estimated values in the following two sections.

Diagnostics for Ordinary Generalized Linear Models

The following statistics are available for generalized linear models.

DFBETA
The DFBETA statistic for measuring the influence of the ith observation is defined as the one-step approxima-
tion to the difference in the MLE of the regression parameter vector and the MLE of the regression parameter
vector without the ith observation. This one-step approximation assumes a Fisher scoring step, and is given
by

Ǒ � ǑŒi� � DFBETAi D .X0WX/�1X0iW
1
2

i .1 � hi /
� 1
2 rpi

where hi is the leverage defined in the section “H | LEVERAGE” on page 2971.
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DFBETAS
The standardized DFBETA statistic for assessing the influence of the ith observation on the jth regression
parameter is defined as the DFBETA statistic for the jth parameter divided by its estimated standard deviation,
where the standard deviation is estimated from all the data.

DFBETASij D DFBETAij = O�.ˇj /

DOBS | COOKD | COOKSD
In normal linear regression, the influence of observation i can be measured by Cook’s distance (Cook and
Weisberg 1982). A measure of influence of observation i for generalized linear models that is equivalent to
Cook’s distance for normal linear regression is given by

DOBSi D p�1hi .1 � hi /�1r2pi

where hi is the leverage defined in the section “H | LEVERAGE” on page 2971. This measure is the one-step
approximation to 2p�1ŒL. Ǒ/ � L. ǑŒi�/�, where L.ˇ/ is the log likelihood evaluated at ˇ.

H | LEVERAGE
The Fisher scores, or expected, weight for observation i is wei D wi

�V.�i /.g 0.�i //2
. Let W be the diagonal

matrix with wei as the ith diagonal. The leverage hi of the ith observation is defined as the ith diagonal
element of the hat matrix

H DW
1
2X.X0WX/�1X0W

1
2

Diagnostics for Models Fit by Generalized Estimating Equations (GEEs)

The diagnostic statistics in this section were developed by Preisser and Qaqish (1996). See the section
“Generalized Estimating Equations” on page 2958 for further information and notation for generalized
estimating equations (GEEs). The following additional notation is used in this section.

Partition the design matrix X and response vector Y by cluster; that is, let X D .X 01; : : : ; X
0
K/
0, and

Y D .Y 01; : : : ; Y
0
K/
0 corresponding to the K clusters.

Let ni be the number of responses for cluster i, and denote byN D
PK
iD1 ni the total number of observations.

Denote by Ai the ni � ni diagonal matrix with V.�ij / as the jth diagonal element. If there is a WEIGHT
statement, the diagonal element of Ai is V.�ij /=wij , where wij is the specified weight of the jth observation
in the ith cluster. Let B the N � N diagonal matrix with g0.�ij / as diagonal elements, i D 1; : : : ; K,
j D 1; : : : ; ni . Let Bi the ni � ni diagonal matrix corresponding to cluster i with g0.�ij / as the jth diagonal
element.

Let W be the N �N block diagonal weight matrix whose ith block, corresponding to the ith cluster, is the
ni � ni matrix

Wei D B�1i A�
1
2

i R�1i . Ǫ /A�
1
2

i B�1i

where Ri is the working correlation matrix for cluster i.
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Let

Qi D Xi .X0WX/�1X0i
where Xi is the ni � p design matrix corresponding to cluster i.

Define the adjusted residual vector as

E D B.Y � O�/

and Ei D Bi .Yi � O�i /, the estimated residual for the ith cluster.

Let the subscript Œi � denote estimates evaluated without the ith cluster, Œi t � estimates evaluated using all the
data except the tth observation of the ith cluster, and let i Œt � denote matrices corresponding to the ith cluster
without the tth observation.

The following statistics are available for generalized estimating equation models.

CH | CLUSTERH | CLEVERAGE
The leverage of cluster i is contained in the matrix Hi D QiWei , and is summarized by the trace of Hi ,

ch i D tr.Hi /

The leverage hi of the tth observation in the ith cluster is the tth diagonal element of Hi .

DFBETAC
The effect of deleting cluster i on the estimated parameter vector is given by the following one-step approxi-
mation for Ǒ � ǑŒi�:

DBETACi D .X0WX/�1X0i .W
�1
ei �Qi /�1Ei

DFBETACS
The cluster deletion statistic DFBETAC can be standardized using the variances of Ǒ based on the complete
data. The standardized one-step approximation for the change in Ǒj due to deletion of cluster i is

DBETACSij D
DBETACij
O�Œ.X0WX/�1�

1
2

jj

DFBETAO
Partition the matrices Wei and Vi as

Wei D

�
Weit WeitŒt�

WeiŒt�t WeiŒt�

�

Vi DW�1ei D
�

Vit VitŒt�
ViŒt�t ViŒt�

�
and let Eit D Bit .Yit � O�it / and EiŒt� D BiŒt�.YiŒt� � O�iŒt�/.



Bayesian Analysis F 2973

The effect of deleting the tth observation from the ith cluster is given by the following one-step approximation
to Ǒ � ǑŒit�:

DBETAOit D .X0WX/�1 QX0it
QEit

W �1eit �
QQit

where QXit D Xit � VitŒt�V�1iŒt�XiŒt�, QQit D QXit .X
0WX/�1 QX 0it , and QEit D Eit � VitŒt�V�1iŒt�EiŒt�. Note that

Weit , QQit , and QEit are scalars.

DFBETAOS
The observation deletion statistic DFBETAO can be standardized using the variances of Ǒ based on the
complete data. The standardized one-step approximation for the change in Ǒj due to deletion of observation
t in cluster i is

DBETAOSitj D
DBETAOitj
O�Œ.X0WX/�1�

1
2

jj

DCLS | CLUSTERCOOKD | CLUSTERCOOKSD
A measure of the standardized influence of the subset m of observations on the overall fit is . Ǒ �
Ǒ
Œm�/
0.X0WX/. Ǒ � ǑŒm�/=p O�. For deletion of cluster i, this is approximated by

DCLSi D E0i .W
�1
ei �Qi /�1/Qi .W�1ei �Qi /�1/Ei=p O�

DOBS | COOKD | COOKSD
The measure of overall fit in the section “DCLS | CLUSTERCOOKD | CLUSTERCOOKSD” on page 2973
for the deletion of the tth observation in the ith cluster is approximated by

DOBSit D
QE2it
QQit

p O�.W �1eit �
QQit /2

where QEit , QQit , and Weit are defined in the section “DFBETAO” on page 2972. In the case of the
independence working correlation, this is equal to the measure for ordinary generalized linear models defined
in the section “DOBS | COOKD | COOKSD” on page 2971.

MCLS | CLUSTERDFIT
A studentized distance measure of the type defined in the section “DCLS | CLUSTERCOOKD | CLUSTER-
COOKSD” on page 2973 of the influence of the ith cluster is given by

MCLSi D E0i .W
�1
ei �Qi /�1HiEi=p O�

Bayesian Analysis
In generalized linear models, the response has a probability distribution from a family of distributions of the
exponential form. That is, the probability density of the response Y for continuous response variables, or the
probability function for discrete responses, can be expressed as

f .y/ D exp
�
y� � b.�/

a.�/
C c.y; �/

�
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for some functions a, b, and c that determine the specific distribution. The canonical parameters � depend
only on the means of the response �i , which are related to the regression parameters ˇ through the link
function g.�i / D x0ˇ. The additional parameter � is the dispersion parameter. The GENMOD procedure
estimates the regression parameters and the scale parameter � D �

1
2 by maximum likelihood. However, the

GENMOD procedure can also provide Bayesian estimates of the regression parameters and either the scale � ,
the dispersion �, or the precision � D ��1 by sampling from the posterior distribution. Except where noted,
the following discussion applies to either � , �, or � , although � is used to illustrate the formulas. Note that the
Poisson and binomial distributions do not have a dispersion parameter, and the dispersion is considered to be
fixed at � D 1. The ASSESS, CONTRAST, ESTIMATE, OUTPUT, and REPEATED statements, if specified,
are ignored. Also ignored are the PLOTS= option in the PROC GENMOD statement and the following options
in the MODEL statement: ALPHA=, CORRB, COVB, TYPE1, TYPE3, SCALE=DEVIANCE (DSCALE),
SCALE=PEARSON (PSCALE), OBSTATS, RESIDUALS, XVARS, PREDICTED, DIAGNOSTICS, and
SCALE= for Poisson and binomial distributions. The multinomial and zero-inflated Poisson distributions are
not available for Bayesian analysis.

See the section “Assessing Markov Chain Convergence” on page 137 in Chapter 7, “Introduction to Bayesian
Analysis Procedures,” for information about assessing the convergence of the chain of posterior samples.

Several algorithms, specified with the SAMPLING= option in the BAYES statement, are available in
GENMOD for drawing samples from the posterior distribution.

ARMS Algorithm for Gibbs Sampling

This section provides details for Bayesian analysis by Gibbs sampling in generalized linear models. See the
section “Gibbs Sampler” on page 133 in Chapter 7, “Introduction to Bayesian Analysis Procedures,” for a
general discussion of Gibbs sampling. See Gilks, Richardson, and Spiegelhalter (1996) for a discussion of
applications of Gibbs sampling to a number of different models, including generalized linear models.

Let � D .�1; : : : ; �k/
0 be the parameter vector. For generalized linear models, the �is are the regression

coefficients ˇis and the dispersion parameter �. Let L.Dj�/ be the likelihood function, where D is the
observed data. Let �.�/ be the prior distribution. The full conditional distribution of Œ�i j�j ; i ¤ j � is
proportional to the joint distribution; that is,

�.�i j�j ; i ¤ j;D/ / L.Dj�/p.�/

For instance, the one-dimensional conditional distribution of �1 given �j D ��j ; 2 � j � k, is computed as

�.�1j�j D �
�
j ; 2 � j � k;D/ D L.Dj.� D .�1; �

�
2 ; : : : ; �

�
k /
0/p.� D .�1; �

�
2 ; : : : ; �

�
k /
0/

Suppose you have a set of arbitrary starting values f� .0/1 ; : : : ; �
.0/

k
g. Using the ARMS (adaptive rejection

Metropolis sampling) algorithm (Gilks and Wild 1992; Gilks, Best, and Tan 1995), you can do the following:

draw �
.1/
1 from Œ�1j�

.0/
2 ; : : : ; �

.0/

k
�

draw �
.1/
2 from Œ�2j�

.1/
1 ; �

.0/
3 ; : : : ; �

.0/

k
�

: : :

draw �
.1/

k
from Œ�kj�

.1/
1 ; : : : ; �

.1/

k�1
�
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This completes one iteration of the Gibbs sampler. After one iteration, you have f� .1/1 ; : : : ; �
.1/

k
g. After n

iterations, you have f� .n/1 ; : : : ; �
.n/

k
g. PROC GENMOD implements the ARMS algorithm provided by Gilks

(2003) to draw a sample from a full conditional distribution. See the section “Adaptive Rejection Sampling
Algorithm” on page 134 in Chapter 7, “Introduction to Bayesian Analysis Procedures,” for more information
about the ARMS algorithm.

Gamerman Algorithm

The Gamerman algorithm, unlike a Gibbs sampling algorithm, samples parameters from their multivariate
posterior conditional distribution. The algorithm uses the structure of generalized linear models to efficiently
sample from the posterior distribution of the model parameters. For a detailed description and explanation
of the algorithm, see Gamerman (1997) and the section “Gamerman Algorithm” on page 136 in Chapter 7,
“Introduction to Bayesian Analysis Procedures.” The Gamerman algorithm is the default method used to
sample from the posterior distribution, except in the case of a normal distribution with a conjugate prior, in
which case a closed form is available for the posterior distribution. See any of the introductory references in
Chapter 7, “Introduction to Bayesian Analysis Procedures,” for a discussion of conjugate prior distributions
for a linear model with the normal distribution.

Independence Metropolis Algorithm

The independence Metropolis algorithm is another sampling algorithm that draws multivariate samples from
the posterior distribution. See the section “Independence Sampler” on page 135 in Chapter 7, “Introduction
to Bayesian Analysis Procedures,” for more details.

Posterior Samples Output Data Set

You can output posterior samples into a SAS data set through ODS. The following SAS statement outputs the
posterior samples into the SAS data set Post:

ODS OUTPUT POSTERIORSAMPLE=Post

You can alternatively create the SAS data set Post with the OUTPOST=Post option in the BAYES statement.

The data set also includes the variables LogPost and LogLike, which represent the log of the posterior
likelihood and the log of the likelihood, respectively.

Priors for Model Parameters

The model parameters are the regression coefficients and the dispersion parameter (or the precision or scale),
if the model has one. The priors for the dispersion parameter and the priors for the regression coefficients
are assumed to be independent, while you can have a joint multivariate normal prior for the regression
coefficients.

Dispersion, Precision, or Scale Parameter
Gamma Prior The gamma distribution G.a; b/ has a probability density function

f .u/ D
b.bu/a�1e�bu

�.a/
; u > 0

where a is the shape parameter and b is the inverse-scale parameter. The mean is a
b

and the variance is a
b2

.
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Improper Prior The joint prior density is given by

p.u/ / u�1; u > 0

Inverse Gamma Prior The inverse gamma distribution IG.a; b/ has a probability density function

f .u/ D
ba

�.a/
u�.aC1/e�b=u; u > 0

where a is the shape parameter and b is the scale parameter. The mean is b
a�1

if a > 1, and the variance is
b2

.a�1/2.a�2/
if a > 2.

Regression Coefficients
Let ˇ be the regression coefficients.

Jeffreys’ Prior The joint prior density is given by

p.ˇ/ / jI.ˇ/j
1
2

where I.ˇ/ is the Fisher information matrix for the model. If the underlying model has a scale parameter (for
example, a normal linear regression model), then the Fisher information matrix is computed with the scale
parameter set to a fixed value of one.

If you specify the CONDITIONAL option, then Jeffreys’ prior, conditional on the current Markov chain
value of the generalized linear model precision parameter � , is given by

j�I.ˇ/j
1
2

where � is the model precision parameter.

See Ibrahim and Laud (1991) for a full discussion, with examples, of Jeffreys’ prior for generalized linear
models.

Normal Prior Assume ˇ has a multivariate normal prior with mean vector ˇ0 and covariance matrix †0.
The joint prior density is given by

p.ˇ/ / e�
1
2
.ˇ�ˇ0/

0†�10 .ˇ�ˇ0/

If you specify the CONDITIONAL option, then, conditional on the current Markov chain value of the
generalized linear model precision parameter � , the joint prior density is given by

p.ˇ/ / e�
1
2
.ˇ�ˇ0/

0�†�10 .ˇ�ˇ0/

Uniform Prior The joint prior density is given by

p.ˇ/ / 1
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Deviance Information Criterion

Let �i be the model parameters at iteration i of the Gibbs sampler and let LL(�i ) be the corresponding model
log likelihood. PROC GENMOD computes the following fit statistics defined by Spiegelhalter et al. (2002):

• Effective number of parameters:

pD D LL.�/ � LL. N�/

• Deviance information criterion (DIC):

DIC D LL.�/C pD

where

LL.�/ D 1
n

Pn
iD1 LL.�i /

N� D
1
n

Pn
iD1 �i

PROC GENMOD uses the full log likelihoods defined in the section “Log-Likelihood Functions” on
page 2939, with all terms included, for computing the DIC.

Posterior Distribution

Denote the observed data by D.

The posterior distribution is

�.ˇjD/ / LP .Djˇ/p.ˇ/

where LP .Djˇ/ is the likelihood function with regression coefficients ˇ as parameters.

Starting Values of the Markov Chains

When the BAYES statement is specified, PROC GENMOD generates one Markov chain containing the
approximate posterior samples of the model parameters. Additional chains are produced when the Gelman-
Rubin diagnostics are requested. Starting values (or initial values) can be specified in the INITIAL= data set
in the BAYES statement. If INITIAL= option is not specified, PROC GENMOD picks its own initial values
for the chains.

Denote Œx� as the integral value of x. Denote Os.X/ as the estimated standard error of the estimator X.

Regression Coefficients
For the first chain that the summary statistics and regression diagnostics are based on, the default initial
values are estimates of the mode of the posterior distribution. If the INITIALMLE option is specified, the
initial values are the maximum likelihood estimates; that is,

ˇ
.0/
i D

Ǒ
i

Initial values for the rth chain (r � 2) are given by

ˇ
.0/
i D

Ǒ
i ˙

�
2C

�
r

2

��
Os. Ǒi /

with the plus sign for odd r and minus sign for even r.
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Dispersion, Scale, or Precision Parameter �
Let � be the generalized linear model parameter you choose to sample, either the dispersion, scale, or
precision parameter. Note that the Poisson and binomial distributions do not have this additional parameter.

For the first chain that the summary statistics and regression diagnostics are based on, the default initial
values are estimates of the mode of the posterior distribution. If the INITIALMLE option is specified, the
initial values are the maximum likelihood estimates; that is,

�.0/ D O�

The initial values of the rth chain (r � 2) are given by

�.0/ D O�e
˙

�
Œ r
2
�C2

�
Os. O�/

with the plus sign for odd r and minus sign for even r.

OUTPOST= Output Data Set

The OUTPOST= data set contains the generated posterior samples. There are 3+n variables, where n is the
number of model parameters. The variable Iteration represents the iteration number, the variable LogLike
contains the log of the likelihood, and the variable LogPost contains the log of the posterior. The other n
variables represent the draws of the Markov chain for the model parameters.

Exact Logistic and Exact Poisson Regression
The theory of exact logistic regression, also called exact conditional logistic regression, is described in the
section “Exact Conditional Logistic Regression” on page 4601 in Chapter 60, “The LOGISTIC Procedure.”
The following discussion of exact Poisson regression, also called exact conditional Poisson regression, uses
the notation given in that section.

Note that in exact logistic regression, the coefficients C.t/ are the number of possible response vectors y
that generate t: C.t/ D jjfy W y 0X D t 0gjj. However, when performing an exact Poisson regression, this
value is replaced by

C.t/ D
X
�

nY
iD1

N
yi
i

yi Š

where � D fyWy 0X D tg and Ni D exp.oi / is the exponential of the offset oi for observation i. If an offset
variable is not specified, then Ni D 1.

The probability density function (PDF) for T is created by summing over all candidate sequences y that
generate an observable t

Pr.T D t/ D
C.t/ exp.t 0ˇ/Qn
iD1 exp.Nie

x0
i
ˇ/

However, the conditional likelihood of TI given TN D tN has the same form as that for exact logistic
regression.
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For details about hypothesis testing and estimation, see the sections “Hypothesis Tests” on page 4603 and
“Inference for a Single Parameter” on page 4604 in Chapter 60, “The LOGISTIC Procedure.” See the section
“Computational Resources for Exact Logistic Regression” on page 4611 in Chapter 60, “The LOGISTIC
Procedure,” for some computational notes about exact analyses.

In exact logistic binary regression, each component yi ; i D 1; :::; n; of y can take a value of 0 or 1, so
there are a finite number, 2n, of candidate y vectors to be considered. Since a Poisson-distributed response
variable can take an infinite number of values, exact Poisson regression should evaluate an infinite number
of y vectors. However, by identifying the maximum value of yi to check, Si , for each observation i, the
number of candidate y vectors to check is reduced to

Qn
iD1 Si . On a practical level, as Si becomes large the

probability of the Poisson random variable achieving this value drops to zero, so Si can be thought of as the
point at which the value does not matter. You can provide these maxima by specifying either an OFFSET=
variable, oi , or an EXACTMAX= variable, ei , or you can let the algorithm choose a maximum for you. The
way these two options interact to provide a maximum is described in the following list:

1. If an EXACTMAX= variable is specified, then Si D ei .

2. If the EXACTMAX option is specified without a variable, or if neither the EXACTMAX= nor
OFFSET= options are specified, then you must also condition out the intercept or you must specify the
STRATA statement. If you are conditioning out the intercept, then every Si has an effective maximum
of
Pn
iD1 fiy0i , where y0 is the observed response and fi is the frequency of the observation; this is

the sufficient statistic for the intercept term. If you are performing a stratified analysis, these sums are
computed within each stratum.

3. If an offset variable is specified and the EXACTMAX option is not specified (you are modeling
proportions), then Ni D exp.oi / must be a positive integer, and Si D Ni is the maximum possible
value for each observation in the experiment; for example, if you are counting the number of rats in a
cage that acquire a disease, then Ni is the number of rats in cage i.

OUTDIST= Output Data Set

The OUTDIST= data set contains every exact conditional distribution necessary to process the corresponding
EXACT statement. For example, the following statements create one distribution for the x1 parameter and
another for the x2 parameters, and produce the data set dist shown in Table 43.11:

data test;
input y x1 x2 count;
datalines;

0 0 0 1
1 0 0 1
0 1 1 2
1 1 1 1
1 0 2 3
1 1 2 1
1 2 0 3
1 2 1 2
1 2 2 1
;
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proc genmod data=test exactonly;
class x2 / param=ref;
model y=x1 x2 / d=b;
exact x1 x2/ outdist=dist;

run;
proc print data=dist;
run;

Table 43.11 OUTDIST= Data Set

Obs x1 x20 x21 Count Score Prob

1 . 0 0 3 5.81151 0.03333
2 . 0 1 15 1.66031 0.16667
3 . 0 2 9 3.12728 0.10000
4 . 1 0 15 1.46523 0.16667
5 . 1 1 18 0.21675 0.20000
6 . 1 2 6 4.58644 0.06667
7 . 2 0 19 1.61869 0.21111
8 . 2 1 2 3.27293 0.02222
9 . 3 0 3 6.27189 0.03333

10 2 . . 6 3.03030 0.12000
11 3 . . 12 0.75758 0.24000
12 4 . . 11 0.00000 0.22000
13 5 . . 18 0.75758 0.36000
14 6 . . 3 3.03030 0.06000

The first nine observations in the dist data set contain an exact distribution for the parameters of the x2
effect (hence the values for the x1 parameter are missing), and the remaining five observations are for the
x1 parameter. If a joint distribution was created, there would be observations with values for both the x1
and x2 parameters. For CLASS variables, the corresponding parameters in the dist data set are identified by
concatenating the variable name with the appropriate classification level.

The data set contains the possible sufficient statistics of the parameters for the effects specified in the EXACT
statement, and the Count variable contains the number of different responses that yield these statistics. In
particular, there are six possible response vectors y for which the dot product y0x1 was equal to 2, and for
which y0x20, y0x21, and y01 were equal to their actual observed values (displayed in the “Sufficient Statistics”
table).

NOTE: If you are performing an exact Poisson analysis, then the Count variable is replaced by a variable
named Weight.

When hypothesis tests are performed on the parameters, the Prob variable contains the probability of obtaining
that statistic (which is just the count divided by the total count), and the Score variable contains the score for
that statistic.

The OUTDIST= data set can contain a different exact conditional distribution for each specified EXACT
statement. For example, consider the following EXACT statements:
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exact 'O1' x1 / outdist=o1;
exact 'OJ12' x1 x2 / jointonly outdist=oj12;
exact 'OA12' x1 x2 / joint outdist=oa12;
exact 'OE12' x1 x2 / estimate outdist=oe12;

The O1 statement outputs a single exact conditional distribution. The OJ12 statement outputs only the joint
distribution for x1 and x2. The OA12 statement outputs three conditional distributions: one for x1, one for x2,
and one jointly for x1 and x2. The OE12 statement outputs two conditional distributions: one for x1 and the
other for x2. Data set oe12 contains both the x1 and x2 variables; the distribution for x1 has missing values
in the x2 column while the distribution for x2 has missing values in the x1 column.

Missing Values
For generalized linear models, PROC GENMOD ignores any observation with a missing value for any
variable involved in the model. You can score an observation in an output data set by setting only the
response value to missing. For models fit with generalized estimating equations (GEEs), observations with
missing values within a cluster are not used, and all available pairs are used in estimating the working
correlation matrix. Clusters with fewer observations than the full cluster size are treated as having missing
observations occurring at the end of the cluster. You can specify the order of missing observations with
the WITHINSUBJECT= option. See the section “Missing Data” on page 2960 for more information about
missing values in GEEs.

Displayed Output for Classical Analysis
The following output is produced by the GENMOD procedure. Note that some of the tables are optional and
appear only in conjunction with the REPEATED statement and its options or with options in the MODEL
statement. For details, see the section “ODS Table Names” on page 2991.

Model Information

The “Model Information” table displays the two-level data set name, the response distribution, the link
function, the response variable name, the offset variable name, the frequency variable name, the scale weight
variable name, the number of observations used, the number of events if events/trials format is used for
response, the number of trials if events/trials format is used for response, the sum of frequency weights,
the number of missing values in data set, and the number of invalid observations (for example, negative or
0 response values with gamma distribution or number of observations with events greater than trials with
binomial distribution).

Class Level Information

If you use classification variables in the model, PROC GENMOD displays the levels of classification variables
specified in the CLASS statement and in the MODEL statement. The levels are displayed in the same sorted
order used to generate columns in the design matrix.
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Response Profile

If you specify an ordinal model for the multinomial distribution, a table titled “Response Profile” is displayed
containing the ordered values of the response variable and the number of occurrences of the values used in
the model.

Iteration History for Parameter Estimates

If you specify the ITPRINT model option, PROC GENMOD displays a table containing the following for
each iteration in the Newton-Raphson procedure for model fitting: the iteration number, the ridge value, the
log likelihood, and values of all parameters in the model.

Criteria for Assessing Goodness of Fit

In the “Criteria for Assessing Goodness of Fit” table, PROC GENMOD displays the degrees of freedom
for deviance and Pearson’s chi-square, equal to the number of observations minus the number of regression
parameters estimated, the deviance, the deviance divided by degrees of freedom, the scaled deviance, the
scaled deviance divided by degrees of freedom, Pearson’s chi-square, Pearson’s chi-square divided by degrees
of freedom, the scaled Pearson’s chi-square, the scaled Pearson’s chi-square divided by degrees of freedom,
the log likelihood (excludes factorial terms) the full log likelihood, the Akaike information criterion, the
corrected Akaike information criterion, and the Bayesian information criterion. The information in this table
is valid only for maximum likelihood model fitting, and the table is not printed if the REPEATED statement
is specified.

Last Evaluation of the Gradient

If you specify the model option ITPRINT, the GENMOD procedure displays the last evaluation of the
gradient vector.

Last Evaluation of the Hessian

If you specify the model option ITPRINT, the GENMOD procedure displays the last evaluation of the Hessian
matrix.

Analysis of (Initial) Parameter Estimates

The “Analysis of (Initial) Parameter Estimates” table contains the results from fitting a generalized linear
model to the data. If you specify the REPEATED statement, these GLM parameter estimates are used as
initial values for the GEE solution, and are displayed only if the PRINTMLE option in the REPEATED
statement is specified. For each parameter in the model, PROC GENMOD displays the parameter name, as
follows:

• the variable name for continuous regression variables

• the variable name and level for classification variables and interactions involving classification variables

• SCALE for the scale variable related to the dispersion parameter

In addition, PROC GENMOD displays the degrees of freedom for the parameter, the estimate value, the
standard error, the Wald chi-square value, the p-value based on the chi-square distribution, and the confidence
limits (Wald or profile likelihood) for parameters.
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Lagrange Multiplier Statistics

If you specify that either the model intercept or the scale parameter is fixed, for those distributions that have
a distribution scale parameter, the GENMOD procedure displays a table of Lagrange multiplier, or score,
statistics for testing the validity of the constrained parameter that contains the test statistic, and the p-value.

Estimated Covariance Matrix

If you specify the model option COVB, the GENMOD procedure displays the estimated covariance matrix,
defined as the inverse of the information matrix at the final iteration. This is based on the expected information
matrix if the EXPECTED option is specified in the MODEL statement. Otherwise, it is based on the Hessian
matrix used at the final iteration. This is, by default, the observed Hessian unless altered by the SCORING
option in the MODEL statement.

Estimated Correlation Matrix

If you specify the CORRB model option, PROC GENMOD displays the estimated correlation matrix. This is
based on the expected information matrix if the EXPECTED option is specified in the MODEL statement.
Otherwise, it is based on the Hessian matrix used at the final iteration. This is, by default, the observed
Hessian unless altered by the SCORING option in the MODEL statement.

Iteration History for LR Confidence Intervals

If you specify the ITPRINT and LRCI model options, PROC GENMOD displays an iteration history table for
profile likelihood-based confidence intervals. For each parameter in the model, PROC GENMOD displays
the parameter identification number, the iteration number, the log-likelihood value, parameter values.

Likelihood Ratio-Based Confidence Intervals for Parameters

If you specify the LRCI and the ITPRINT options in the MODEL statement, a table is displayed that
summarizes profile likelihood-based confidence intervals for all parameters. For each parameter in the model,
the table displays the confidence coefficient, the parameter identification number, lower and upper endpoints
of confidence intervals for the parameter, and values of all other parameters at the solution.

LR Statistics for Type 1 Analysis

If you specify the TYPE1 model option, a table is displayed that contains the name of the effect, the
deviance for the model including the effect and all previous effects, the degrees of freedom for the effect,
the likelihood ratio statistic for testing the significance of the effect, and the p-value computed from the
chi-square distribution with the effect’s degrees of freedom.

If you specify either the SCALE=DEVIANCE or SCALE=PEARSON option in the MODEL statement,
columns are displayed that contain the name of the effect, the deviance for the model including the effect and
all previous effects, the numerator degrees of freedom, the denominator degrees of freedom, the chi-square
statistic for testing the significance of the effect, the p-value computed from the chi-square distribution with
numerator degrees of freedom, the F statistic for testing the significance of the effect, and the p-value based
on the F distribution.
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Iteration History for Type 3 Contrasts

If you specify the model options ITPRINT and TYPE3, an iteration history table is displayed for fitting the
model with Type 3 contrast constraints for each effect that contains the effect name, the iteration number, the
ridge value, the log likelihood, and values of all parameters.

LR Statistics for Type 3 Analysis

If you specify the TYPE3 model option, a table is displayed that contains, for each effect in the model,
the name of the effect, the likelihood ratio statistic for testing the significance of the effect, the degrees of
freedom for the effect, and the p-value computed from the chi-square distribution.

If you specify either the SCALE=DEVIANCE or SCALE=PEARSON option in the MODEL statement,
columns are displayed that contain the name of the effect, the likelihood ratio statistic for testing the
significance of the effect, the F statistic for testing the significance of the effect, the numerator degrees
of freedom, the denominator degrees of freedom, the p-value based on the F distribution, and the p-value
computed from the chi-square distribution with the numerator’s degrees of freedom.

Wald Statistics for Type 3 Analysis

If you specify the TYPE3 and WALD model options, a table is displayed that contains the name of the
effect, the degrees of freedom of the effect, the Wald statistic for testing the significance of the effect, and the
p-value computed from the chi-square distribution.

Parameter Information

If you specify the ITPRINT, COVB, CORRB, WALDCI, or LRCI option in the MODEL statement, or if you
specify a CONTRAST statement, a table is displayed that identifies parameters with numbers, rather than
names, for use in tables and matrices where a compact identifier for parameters is helpful. For each parameter,
the table contains an index number that identifies the parameter, and the parameter name, including level
information for effects containing classification variables.

Observation Statistics

If you specify the OBSTATS option in the MODEL statement, PROC GENMOD displays a table containing
miscellaneous statistics. Residuals and case deletion diagnostic statistics are not available for the multinomial
distribution. Case deletion diagnostics are not available for zero-inflated models.

For each observation in the input data set, the following are displayed:

• the value of the response variable

• the predicted value of the mean

• the value of the linear predictor The value of an OFFSET variable is added to the linear predictor.

• the estimated standard error of the linear predictor

• the value of the negative of the weight in the Hessian matrix at the final iteration. This is the expected
weight if the EXPECTED option is specified in the MODEL statement. Otherwise, it is the weight
used in the final iteration. That is, it is the observed weight unless the SCORING= option has been
specified.
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• approximate lower and upper endpoints for a confidence interval for the predicted value of the mean

• raw residual

• Pearson residual

• deviance residual

• standardized Pearson residual

• standardized deviance residual

• likelihood residual

• leverage

• Cook’s distance statistic

• DFBETA statistic, for each parameter

• standardized DFBETA statistic, for each parameter

• zero-inflation probability for zero-inflated models

• response mean for zero-inflated models

ESTIMATE Statement Results

If you specify a REPEATED statement, the ESTIMATE statement results apply to the specified GEE model.
Otherwise, they apply to the specified generalized linear model.

For each ESTIMATE statement, the table contains the contrast label, the estimated value of the contrast, the
standard error of the estimate, the significance level ˛, .1 � ˛/ � 100% confidence intervals for contrast,
the Wald chi-square statistic for the contrast, and the p-value computed from the chi-square distribution.
The mean of the contrast, defined as the inverse link function applied to the contrast, and .1 � ˛/ � 100%
confidence intervals for the mean are also displayed.

If you specify the EXP option, an additional row is displayed with statistics for the exponentiated value of
the contrast.

CONTRAST Coefficients

If you specify the CONTRAST or ESTIMATE statement and you specify the E option, a table titled
“Coefficients For Contrast label” is displayed, where label is the label specified in the CONTRAST statement.
The table contains the contrast label, and the rows of the contrast matrix.

Iteration History for Contrasts

If you specify the ITPRINT option, an iteration history table is displayed for fitting the model with contrast
constraints for each effect. The table contains the contrast label, the iteration number, the ridge value, the log
likelihood, and values of all parameters.
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CONTRAST Statement Results

If you specify a REPEATED statement, the CONTRAST statement results apply to the specified GEE model.
Otherwise, they apply to the specified generalized linear model.

A table is displayed that contains the contrast label, the degrees of freedom for the contrast, and the likelihood
ratio, score, or Wald statistic for testing the significance of the contrast. Score statistics are used in GEE
models, likelihood ratio statistics are used in generalized linear models, and Wald statistics are used in both.
Also displayed are the p-value computed from the chi-square distribution, and the type of statistic computed
for this contrast: Wald, LR, or score.

If you specify either the SCALE=DEVIANCE or SCALE=PEARSON option for generalized linear models,
columns are displayed that contain the contrast label, the likelihood ratio statistic for testing the significance
of the contrast, the F statistic for testing the significance of the contrast, the numerator degrees of freedom,
the denominator degrees of freedom, the p-value based on the F distribution, and the p-value computed from
the chi-square distribution with numerator degrees of freedom.

LSMEANS Coefficients

If you specify the LSMEANS statement and you specify the E option, the “Coefficients for effect Least
Squares Means” table is displayed, where effect is the effect specified in the LSMEANS statement. The table
contains the effect names and the rows of least squares means coefficients.

Least Squares Means

If you specify the LSMEANS statement, the “Least Squares Means” table is displayed. The table contains
for each effect the following: the effect name, and for each level of each effect the following:

• the least squares mean estimate

• standard error

• chi-square value

• p-value computed from the chi-square distribution

If you specify the DIFF option, a table titled “Differences of Least Squares Means” is displayed containing
corresponding statistics for the differences between the least squares means for the levels of each effect.

GEE Model Information

If you specify the REPEATED statement, the “GEE Model Information” table displays the correlation
structure of the working correlation matrix or the log odds ratio structure, the within-subject effect, the
subject effect, the number of clusters, the correlation matrix dimension, and the minimum and maximum
cluster size.

Log Odds Ratio Parameter Information

If you specify the REPEATED statement and specify a log odds ratio model for binary data with the LOGOR=
option, then the “Log Odds Ratio Parameter Information” table is displayed showing the correspondence
between data pairs and log odds ratio model parameters.
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Iteration History for GEE Parameter Estimates

If you specify the REPEATED statement and the MODEL statement option ITPRINT, the “Iteration History
For GEE Parameter Estimates” table is displayed. The table contains the parameter identification number, the
iteration number, and values of all parameters.

Last Evaluation of the Generalized Gradient and Hessian

If you specify the REPEATED statement and select ITPRINT as a model option, PROC GENMOD displays
the “Last Evaluation Of The Generalized Gradient And Hessian” table.

GEE Parameter Estimate Covariance Matrices

If you specify the REPEATED statement and the COVB option, PROC GENMOD displays the “Covariance
Matrix (Model-Based)” and “Covariance Matrix (Empirical)” tables.

GEE Parameter Estimate Correlation Matrices

If you specify the REPEATED statement and the CORRB option, PROC GENMOD displays the “Correlation
Matrix (Model-Based)” and “Correlation Matrix (Empirical)” tables.

GEE Working Correlation Matrix

If you specify the REPEATED statement and the CORRW option, PROC GENMOD displays the “Working
Correlation Matrix” table.

GEE Fit Criteria

If you specify the REPEATED statement, PROC GENMOD displays the quasi-likelihood information criteria
for model fit QIC and QICu in the “GEE Fit Criteria” table.

Analysis of GEE Parameter Estimates

If you specify the REPEATED statement, PROC GENMOD uses empirical standard error estimates to
compute and display the “Analysis Of GEE Parameter Estimates Empirical Standard Error Estimates” table
that contains the parameter names as follows:

• the variable name for continuous regression variables

• the variable name and level for classification variables and interactions involving classification variables

• “Scale” for the scale variable related to the dispersion parameter

In addition, the parameter estimate, the empirical standard error, a 95% confidence interval, and the Z score
and p-value are displayed for each parameter.

If you specify the MODELSE option in the REPEATED statement, the “Analysis Of GEE Parameter Estimates
Model-Based Standard Error Estimates” table based on model-based standard errors is also produced.
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GEE Observation Statistics

If you specify the OBSTATS option in the REPEATED statement, PROC GENMOD displays a table
containing miscellaneous statistics. For each observation in the input data set, the following are displayed:

• the value of the response variable and all other variables in the model, denoted by the variable names

• the predicted value of the mean

• the value of the linear predictor

• the standard error of the linear predictor

• confidence limits for the predicted values

• raw residual

• Pearson residual

• cluster number

• leverage

• cluster leverage

• cluster Cook’s distance statistic

• studentized cluster Cook’s distance statistic

• individual observation Cook’s distance statistic

• cluster DFBETA statistic for each parameter

• cluster standardized DFBETA statistic for each parameter

• individual observation DFBETA statistic for each parameter

• individual observation standardized DFBETA statistic for each parameter

Displayed Output for Bayesian Analysis
If a Bayesian analysis is requested with a BAYES statement, the displayed output includes the following.

Model Information

The “Model Information” table displays the two-level data set name, the number of burn-in iterations, the
number of iterations after the burn-in, the number of thinning iterations, the response distribution, the link
function, the response variable name, the offset variable name, the frequency variable name, the scale weight
variable name, the number of observations used, the number of events if events/trials format is used for
response, the number of trials if events/trials format is used for response, the sum of frequency weights,
the number of missing values in data set, and the number of invalid observations (for example, negative or
0 response values with gamma distribution or number of observations with events greater than trials with
binomial distribution).
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Class Level Information

The “Class Level Information” table displays the levels of classification variables if you specify a CLASS
statement.

Maximum Likelihood Estimates

The “Analysis of Maximum Likelihood Parameter Estimates” table displays the maximum likelihood estimate
of each parameter, the estimated standard error of the parameter estimator, and confidence limits for each
parameter.

Coefficient Prior

The “Coefficient Prior” table displays the prior distribution of the regression coefficients.

Independent Prior Distributions for Model Parameters

The “Independent Prior Distributions for Model Parameters” table displays the prior distributions of additional
model parameters (scale, exponential scale, Weibull scale, Weibull shape, gamma shape).

Initial Values and Seeds

The “Initial Values and Seeds” table displays the initial values and random number generator seeds for the
Gibbs chains.

Fit Statistics

The “Fit Statistics” table displays the deviance information criterion (DIC) and the effective number of
parameters.

Descriptive Statistics of the Posterior Samples

The “Descriptive Statistics of the Posterior Sample” table contains the size of the sample, the mean, the
standard deviation, and the quartiles for each model parameter.

Interval Estimates for Posterior Sample

The “Interval Estimates for Posterior Sample” table contains the HPD intervals and the credible intervals for
each model parameter.

Correlation Matrix of the Posterior Samples

The “Correlation Matrix of the Posterior Samples” table is produced if you include the CORR suboption in
the SUMMARY= option in the BAYES statement. This table displays the sample correlation of the posterior
samples.

Covariance Matrix of the Posterior Samples

The “Covariance Matrix of the Posterior Samples” table is produced if you include the COV suboption in the
SUMMARY= option in the BAYES statement. This table displays the sample covariance of the posterior
samples.
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Autocorrelations of the Posterior Samples

The “Autocorrelations of the Posterior Samples” table displays the lag1, lag5, lag10, and lag50 autocorrela-
tions for each parameter.

Gelman and Rubin Diagnostics

The “Gelman and Rubin Diagnostics” table is produced if you include the GELMAN suboption in the
DIAGNOSTIC= option in the BAYES statement. This table displays the estimate of the potential scale
reduction factor and its 97.5% upper confidence limit for each parameter.

Geweke Diagnostics

The “Geweke Diagnostics” table displays the Geweke statistic and its p-value for each parameter.

Raftery and Lewis Diagnostics

The “Raftery Diagnostics” tables is produced if you include the RAFTERY suboption in the DIAGNOSTIC=
option in the BAYES statement. This table displays the Raftery and Lewis diagnostics for each variable.

Heidelberger and Welch Diagnostics

The “Heidelberger and Welch Diagnostics” table is displayed if you include the HEIDELBERGER suboption
in the DIAGNOSTIC= option in the BAYES statement. This table shows the results of a stationary test and a
halfwidth test for each parameter.

Effective Sample Size

The “Effective Sample Size” table displays, for each parameter, the effective sample size, the correlation
time, and the efficiency.

Monte Carlo Standard Errors

The “Monte Carlo Standard Errors” table displays, for each parameter, the Monte Carlo standard error, the
posterior sample standard deviation, and the ratio of the two.

Displayed Output for Exact Analysis
If an exact analysis is requested with an EXACT statement, the displayed output includes the following tables.
If the METHOD=NETWORKMC option is specified, the test and estimate tables are renamed “Monte Carlo”
tables and a Monte Carlo standard error column (

p
p.1 � p/=n) is displayed.

Sufficient Statistics

Displays if you request an OUTDIST= data set in an EXACT statement. The table lists the parameters and
their observed sufficient statistics.
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(Monte Carlo) Conditional Exact Tests

This table tests the hypotheses that the parameters of interest are insignificant. See the section “Exact Logistic
and Exact Poisson Regression” on page 2978 for details.

(Monte Carlo) Exact Parameter Estimates

Displays if you specify the ESTIMATE option in the EXACT statement. This table gives individual parameter
estimates for each variable (conditional on the values of all the other parameters in the model), confidence
limits, and a two-sided p-value (twice the one-sided p-value) for testing that the parameter is zero. See the
section “Exact Logistic and Exact Poisson Regression” on page 2978 for details.

(Monte Carlo) Exact Odds Ratios

Displays if you specify the ESTIMATE=ODDS or ESTIMATE=BOTH option in the EXACT statement. See
the section “Exact Logistic and Exact Poisson Regression” on page 2978 for details.

Strata Summary

Displays if a STRATA statement is also specified. Shows the pattern of the number of events and the number
of nonevents, or of the number of observations, in a stratum. See the section “STRATA Statement” on
page 2932 for more information.

Strata Information

Displays if a STRATA statement is specified with the INFO option.

ODS Table Names
PROC GENMOD assigns a name to each table that it creates. You can use these names to reference the table
when using the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed separately in Table 43.12 for a maximum likelihood analysis, in Table 43.13 for a Bayesian analysis,
and in Table 43.14 for an Exact analysis. For more information about ODS, see Chapter 20, “Using the
Output Delivery System.”

Table 43.12 ODS Tables Produced in PROC GENMOD for a
Classical Analysis

ODS Table Name Description Statement Option

AssessmentSummary Model assessment summary ASSESS Default
ClassLevels Classification variable levels CLASS Default
Contrasts Tests of contrasts CONTRAST Default
ContrastCoef Contrast coefficients CONTRAST E
ConvergenceStatus Convergence status MODEL Default
CorrB Parameter estimate correla-

tion matrix
MODEL CORRB

CovB Parameter estimate covari-
ance matrix

MODEL COVB
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Table 43.12 continued

ODS Table Name Description Statement Option

Estimates Estimates of contrasts ESTIMATE Default
EstimateCoef Contrast coefficients ESTIMATE E
GEEEmpPEst GEE parameter estimates

with empirical standard er-
rors

REPEATED Default

GEEExchCorr GEE exchangeable working
correlation value

REPEATED TYPE=EXCH

GEEFitCriteria GEE QIC fit criteria REPEATED Default
GEELogORInfo GEE log odds ratio model

information
REPEATED LOGOR=

GEEModInfo GEE model information REPEATED Default
GEEModPEst GEE parameter estimates

with model-based standard
errors

REPEATED MODELSE

GEENCorr GEE model-based correla-
tion matrix

REPEATED MCORRB

GEENCov GEE model-based covari-
ance matrix

REPEATED MCOVB

GEERCorr GEE empirical correlation
matrix

REPEATED ECORRB

GEERCov GEE empirical covariance
matrix

REPEATED ECOVB

GEEWCorr GEE working correlation
matrix

REPEATED CORRW

IterContrasts Iteration history for con-
trasts

MODEL CON-
TRAST

ITPRINT

IterLRCI Iteration history for likeli-
hood ratio confidence inter-
vals

MODEL LRCI ITPRINT

IterParms Iteration history for parame-
ter estimates

MODEL ITPRINT

IterParmsGEE Iteration history for GEE pa-
rameter estimates

MODEL
REPEATED

ITPRINT

IterType3 Iteration history for Type 3
statistics

MODEL TYPE3 ITPRINT

LRCI Likelihood ratio confidence
intervals

MODEL LRCI ITPRINT

Coef Coefficients for least squares
means

LSMEANS E

Diffs Least squares means differ-
ences

LSMEANS DIFF

LSMeans Least squares means LSMEANS Default
LagrangeStatistics Lagrange statistics MODEL NOINT | NOSCALE
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Table 43.12 continued

ODS Table Name Description Statement Option

LastGEEGrad Last evaluation of the gener-
alized gradient and Hessian

MODEL
REPEATED

ITPRINT

LastGradHess Last evaluation of the gradi-
ent and Hessian

MODEL ITPRINT

LinDep Linearly dependent rows of
contrasts

CONTRAST Default

ModelInfo Model information MODEL Default
Modelfit Goodness-of-fit statistics MODEL Default without REPEATED
NObs Number of observations

summary
Default

NonEst Nonestimable rows of con-
trasts

CONTRAST Default

ObStats Observation-wise statistics MODEL OBSTATS | CL |
PREDICTED |
RESIDUALS | XVARS

ParameterEstimates Parameter estimates MODEL Default without REPEATED |
PRINTMLE with REPEATED

ParmInfo Parameter indices MODEL Default
ResponseProfile Frequency counts for multi-

nomial and binary models
MODEL DIST=MULTINOMIAL |

DIST=BINOMIAL
Type1 Type 1 tests MODEL TYPE1
Type3 Type 3 tests MODEL TYPE3
ZeroParameterEstimates Parameter estimates for zero-

inflated model
ZEROMODEL Default

Table 43.13 ODS Tables Produced in PROC GENMOD for a
Bayesian Analysis

ODS Table Name Description Statement Option

AutoCorr Autocorrelations of the pos-
terior samples

BAYES Default

ClassLevels Classification variable levels CLASS Default
CoeffPrior Prior distribution of the re-

gression coefficients
BAYES Default

ConvergenceStatus Convergence status of maxi-
mum likelihood estimation

MODEL Default

Corr Correlation matrix of the
posterior samples

BAYES SUMMARY=CORR

ESS Effective sample size BAYES Default
FitStatistics Fit statistics BAYES Default
Gelman Gelman and Rubin conver-

gence diagnostics
BAYES DIAG=GELMAN

Geweke Geweke convergence diag-
nostics

BAYES Default
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Table 43.13 continued

ODS Table Name Description Statement Option

Heidelberger Heidelberger and Welch con-
vergence diagnostics

BAYES DIAG=HEIDELBERGER

InitialValues Initial values of the Markov
chains

BAYES Default

IterParms Iteration history for parame-
ter estimates

MODEL ITPRINT

LastGradHess Last evaluation of the gra-
dient and Hessian for max-
imum likelihood estimation

MODEL ITPRINT

MCError Monte Carlo standard errors BAYES DIAG=MCSE
ModelInfo Model information PROC Default
NObs Number of observations Default
ParameterEstimates Maximum likelihood esti-

mates of model parameters
MODEL Default

ParmInfo Parameter indices MODEL Default
ParmPrior Prior distribution for scale

and shape
BAYES Default

PostIntervals HPD and equal-tail intervals
of the posterior samples

BAYES Default

PosteriorSample Posterior samples (for ODS
output data set only)

BAYES

PostSummaries Summary statistics of the
posterior samples

BAYES Default

Raftery Raftery and Lewis conver-
gence diagnostics

BAYES DIAG=RAFTERY

Table 43.14 ODS Tables Produced in PROC GENMOD for an
Exact Analysis

ODS Table Name Description Statement Option

ExactOddsRatio Exact odds ratios EXACT ESTIMATE=ODDS,
ESTIMATE=BOTH

ExactParmEst Parameter estimates EXACT ESTIMATE,
ESTIMATE=PARM,
ESTIMATE=BOTH

ExactTests Conditional exact tests EXACT Default
NStrataIgnored Number of uninformative

strata
STRATA Default

StrataSummary Number of strata with spe-
cific response frequencies

STRATA Default

StrataInfo Event and nonevent frequen-
cies for each stratum

STRATA INFO

SuffStats Sufficient statistics EXACT OUTDIST=
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ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

Some graphs are produced by default; other graphs are produced by using statements and options. You can
reference every graph produced through ODS Graphics with a name. The names of the graphs that PROC
GENMOD generates are listed in Table 43.15, along with the required statements and options.

ODS Graph Names

PROC GENMOD assigns a name to each graph it creates using ODS. You can use these names to reference
the graphs when using ODS. The names are listed in Table 43.15.

To request these graphs, ODS Graphics must be enabled and you must specify the statement and options
indicated in Table 43.15.

Table 43.15 Graphs Produced by PROC GENMOD

ODS Graph Name Description Statement Option

ADPanel Autocorrelation function
and density panel

BAYES PLOTS=(AUTOCORR DENSITY)

AutocorrPanel Autocorrelation function
panel

BAYES PLOTS= AUTOCORR

AutocorrPlot Autocorrelation function
plot

BAYES PLOTS(UNPACK)=AUTOCORR

ClusterCooksDPlot Cluster Cook’s D by clus-
ter number

PROC PLOTS=

ClusterDFFITPlot Cluster DFFIT by cluster
number

PROC PLOTS=

ClusterLeveragePlot Cluster leverage by clus-
ter number

PROC PLOTS=

CooksDPlot Cook’s distance PROC PLOTS=
CumResidPanel Panel of aggregates of

residuals
ASSESS CRPANEL

CumulativeResiduals Model assessment based
on aggregates of residu-
als

ASSESS Default

DevianceResidByXBeta Deviance residuals by
linear predictor

PROC PLOTS=

DevianceResidualPlot Deviance values PROC PLOTS=



2996 F Chapter 43: The GENMOD Procedure

Table 43.15 continued

ODS Table Name Description Statement Option

DFBETAByCluster Cluster DFBeta by clus-
ter number

PROC PLOTS=

DFBETAPlot DFBeta PROC PLOTS=
DiagnosticPlot Panel of residuals, in-

fluence, and diagnostic
statistics

PROC
MODEL
RE-
PEATED

PLOTS=

LeveragePlot Leverage PROC PLOTS=
LikeResidByXBeta Likelihood residuals by

linear predictor
PROC PLOTS=

LikeResidualPlot Likelihood residuals PROC PLOTS=
PearsonResidByXBeta Pearson residuals by lin-

ear predictor
PROC PLOTS=

PearsonResidualPlot Pearson residuals PROC PLOTS=
PredictedByObservation Predicted values PROC PLOTS=
RawResidByXBeta Raw residuals by linear

predictor
PROC PLOTS=

RawResidualPlot Raw residuals PROC PLOTS=
StdDevianceResidByXBeta Standardized deviance

residuals by linear
predictor

PROC PLOTS=

StdDevianceResidualPlot Standardized deviance
residuals

PROC PLOTS=

StdDFBETAByCluster Standardized cluster DF-
Beta by cluster number

PROC PLOTS=

StdDFBETAPlot Standardized DFBeta PROC PLOTS=
StdPearsonResidByXBeta Standardized Pearson

residuals by linear
predictor

PROC PLOTS=

StdPearsonResidualPlot Standardized Pearson
residuals

PROC PLOTS=

TAPanel Trace and autocorrela-
tion function panel

BAYES PLOTS=(TRACE AUTOCORR)

TADPanel Trace, autocorrelation,
and density function
panel

BAYES Default

TDPanel Trace and density panel BAYES PLOTS=(TRACE DENSITY)
TracePanel Trace panel BAYES PLOTS=TRACE
TracePlot Trace plot BAYES PLOTS(UNPACK)=TRACE
ZeroInflationProbPlot Zero-inflation probabili-

ties
PROC PLOTS=
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Examples: GENMOD Procedure
The following examples illustrate some of the capabilities of the GENMOD procedure. These are not
intended to represent definitive analyses of the data sets presented here. You should refer to the texts cited in
the references for guidance on complete analysis of data by using generalized linear models.

Example 43.1: Logistic Regression
In an experiment comparing the effects of five different drugs, each drug is tested on a number of different
subjects. The outcome of each experiment is the presence or absence of a positive response in a subject. The
following artificial data represent the number of responses r in the n subjects for the five different drugs,
labeled A through E. The response is measured for different levels of a continuous covariate x for each drug.
The drug type and the continuous covariate x are explanatory variables in this experiment. The number of
responses r is modeled as a binomial random variable for each combination of the explanatory variable values,
with the binomial number of trials parameter equal to the number of subjects n and the binomial probability
equal to the probability of a response.

The following DATA step creates the data set:

data drug;
input drug$ x r n @@;
datalines;

A .1 1 10 A .23 2 12 A .67 1 9
B .2 3 13 B .3 4 15 B .45 5 16 B .78 5 13
C .04 0 10 C .15 0 11 C .56 1 12 C .7 2 12
D .34 5 10 D .6 5 9 D .7 8 10
E .2 12 20 E .34 15 20 E .56 13 15 E .8 17 20
;

A logistic regression for these data is a generalized linear model with response equal to the binomial
proportion r/n. The probability distribution is binomial, and the link function is logit. For these data, drug and
x are explanatory variables. The probit and the complementary log-log link functions are also appropriate for
binomial data.

PROC GENMOD performs a logistic regression on the data in the following SAS statements:

proc genmod data=drug;
class drug;
model r/n = x drug / dist = bin

link = logit
lrci;

run;

Since these data are binomial, you use the events/trials syntax to specify the response in the MODEL
statement. Profile likelihood confidence intervals for the regression parameters are computed using the LRCI
option.

General model and data information is produced in Output 43.1.1.
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Output 43.1.1 Model Information

The GENMOD ProcedureThe GENMOD Procedure

Model Information

Data Set WORK.DRUG

Distribution Binomial

Link Function Logit

Response Variable (Events) r

Response Variable (Trials) n

The five levels of the CLASS variable DRUG are displayed in Output 43.1.2.

Output 43.1.2 CLASS Variable Levels

Class Level Information

Class Levels Values

drug 5 A B C D E

In the “Criteria For Assessing Goodness Of Fit” table displayed in Output 43.1.3, the value of the deviance
divided by its degrees of freedom is less than 1. A p-value is not computed for the deviance; however, a
deviance that is approximately equal to its degrees of freedom is a possible indication of a good model fit.
Asymptotic distribution theory applies to binomial data as the number of binomial trials parameter n becomes
large for each combination of explanatory variables. McCullagh and Nelder (1989) caution against the use of
the deviance alone to assess model fit. The model fit for each observation should be assessed by examination
of residuals. The OBSTATS option in the MODEL statement produces a table of residuals and other useful
statistics for each observation.

Output 43.1.3 Goodness-of-Fit Criteria

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 12 5.2751 0.4396

Scaled Deviance 12 5.2751 0.4396

Pearson Chi-Square 12 4.5133 0.3761

Scaled Pearson X2 12 4.5133 0.3761

Log Likelihood -114.7732

Full Log Likelihood -23.7343

AIC (smaller is better) 59.4686

AICC (smaller is better) 67.1050

BIC (smaller is better) 64.8109

In the “Analysis Of Parameter Estimates” table displayed in Output 43.1.4, chi-square values for the
explanatory variables indicate that the parameter values other than the intercept term are all significant. The
scale parameter is set to 1 for the binomial distribution. When you perform an overdispersion analysis, the
value of the overdispersion parameter is indicated here. See the section “Overdispersion” on page 2945 for a
discussion of overdispersion.
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Output 43.1.4 Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

Likelihood
Ratio 95%
Confidence

Limits
Wald

Chi-Square Pr > ChiSq

Intercept 1 0.2792 0.4196 -0.5336 1.1190 0.44 0.5057

x 1 1.9794 0.7660 0.5038 3.5206 6.68 0.0098

drug A 1 -2.8955 0.6092 -4.2280 -1.7909 22.59 <.0001

drug B 1 -2.0162 0.4052 -2.8375 -1.2435 24.76 <.0001

drug C 1 -3.7952 0.6655 -5.3111 -2.6261 32.53 <.0001

drug D 1 -0.8548 0.4838 -1.8072 0.1028 3.12 0.0773

drug E 0 0.0000 0.0000 0.0000 0.0000 . .

Scale 0 1.0000 0.0000 1.0000 1.0000

Note: The scale parameter was held fixed.

The preceding table contains the profile likelihood confidence intervals for the explanatory variable parameters
requested with the LRCI option. Wald confidence intervals are displayed by default. Profile likelihood
confidence intervals are considered to be more accurate than Wald intervals (see Aitkin et al. (1989)),
especially with small sample sizes. You can specify the confidence coefficient with the ALPHA= option in
the MODEL statement. The default value of 0.05, corresponding to 95% confidence limits, is used here.
See the section “Confidence Intervals for Parameters” on page 2950 for a discussion of profile likelihood
confidence intervals.

Example 43.2: Normal Regression, Log Link
Consider the following data, where x is an explanatory variable and y is the response variable. It appears that
y varies nonlinearly with x and that the variance is approximately constant. A normal distribution with a log
link function is chosen to model these data; that is, log.�i / D x0iˇ so that �i D exp.x0iˇ/.

data nor;
input x y;
datalines;

0 5
0 7
0 9
1 7
1 10
1 8
2 11
2 9
3 16
3 13
3 14
4 25
4 24
5 34
5 32
5 30
;
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The following SAS statements produce the analysis with the normal distribution and log link:

proc genmod data=nor;
model y = x / dist = normal

link = log;
output out = Residuals

pred = Pred
resraw = Resraw
reschi = Reschi
resdev = Resdev
stdreschi = Stdreschi
stdresdev = Stdresdev
reslik = Reslik;

run;

The OUTPUT statement is specified to produce a data set that contains predicted values and residuals for
each observation. This data set can be useful for further analysis, such as residual plotting.

The results from these statements are displayed in Output 43.2.1.

Output 43.2.1 Log-Linked Normal Regression

The GENMOD ProcedureThe GENMOD Procedure

Model Information

Data Set WORK.NOR

Distribution Normal

Link Function Log

Dependent Variable y

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 14 52.3000 3.7357

Scaled Deviance 14 16.0000 1.1429

Pearson Chi-Square 14 52.3000 3.7357

Scaled Pearson X2 14 16.0000 1.1429

Log Likelihood -32.1783

Full Log Likelihood -32.1783

AIC (smaller is better) 70.3566

AICC (smaller is better) 72.3566

BIC (smaller is better) 72.6743

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

Wald 95%
Confidence

Limits
Wald

Chi-Square Pr > ChiSq

Intercept 1 1.7214 0.0894 1.5461 1.8966 370.76 <.0001

x 1 0.3496 0.0206 0.3091 0.3901 286.64 <.0001

Scale 1 1.8080 0.3196 1.2786 2.5566

Note: The scale parameter was estimated by maximum likelihood.
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The PROC GENMOD scale parameter, in the case of the normal distribution, is the standard deviation. By
default, the scale parameter is estimated by maximum likelihood. You can specify a fixed standard deviation
by using the NOSCALE and SCALE= options in the MODEL statement.

proc print data=Residuals;
run;

Output 43.2.2 Data Set of Predicted Values and Residuals

Obs x y Pred Reschi Resraw Resdev Stdreschi Stdresdev Reslik

1 0 5 5.5921 -0.59212 -0.59212 -0.59212 -0.34036 -0.34036 -0.34036

2 0 7 5.5921 1.40788 1.40788 1.40788 0.80928 0.80928 0.80928

3 0 9 5.5921 3.40788 3.40788 3.40788 1.95892 1.95892 1.95892

4 1 7 7.9324 -0.93243 -0.93243 -0.93243 -0.54093 -0.54093 -0.54093

5 1 10 7.9324 2.06757 2.06757 2.06757 1.19947 1.19947 1.19947

6 1 8 7.9324 0.06757 0.06757 0.06757 0.03920 0.03920 0.03920

7 2 11 11.2522 -0.25217 -0.25217 -0.25217 -0.14686 -0.14686 -0.14686

8 2 9 11.2522 -2.25217 -2.25217 -2.25217 -1.31166 -1.31166 -1.31166

9 3 16 15.9612 0.03878 0.03878 0.03878 0.02249 0.02249 0.02249

10 3 13 15.9612 -2.96122 -2.96122 -2.96122 -1.71738 -1.71738 -1.71738

11 3 14 15.9612 -1.96122 -1.96122 -1.96122 -1.13743 -1.13743 -1.13743

12 4 25 22.6410 2.35897 2.35897 2.35897 1.37252 1.37252 1.37252

13 4 24 22.6410 1.35897 1.35897 1.35897 0.79069 0.79069 0.79069

14 5 34 32.1163 1.88366 1.88366 1.88366 1.22914 1.22914 1.22914

15 5 32 32.1163 -0.11634 -0.11634 -0.11634 -0.07592 -0.07592 -0.07592

16 5 30 32.1163 -2.11634 -2.11634 -2.11634 -1.38098 -1.38098 -1.38098

The data set of predicted values and residuals (Output 43.2.2) is created by the OUTPUT statement. You can
use the PLOTS= option in the PROC GENMOD statement to create plots of predicted values and residuals.
Note that raw, Pearson, and deviance residuals are equal in this example. This is a characteristic of the normal
distribution and is not true in general for other distributions.

Example 43.3: Gamma Distribution Applied to Life Data
Life data are sometimes modeled with the gamma distribution. Although PROC GENMOD does not analyze
censored data or provide other useful lifetime distributions such as the Weibull or lognormal, it can be used
for modeling complete (uncensored) data with the gamma distribution, and it can provide a statistical test for
the exponential distribution against other gamma distribution alternatives. See Lawless (2003) or Nelson
(1982) for applications of the gamma distribution to life data.

The following data represent failure times of machine parts, some of which are manufactured by manufacturer
A and some by manufacturer B.

data A;
input lifetime @@;
mfg = 'A';
datalines;

620 470 260 89 388 242
103 100 39 460 284 1285
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218 393 106 158 152 477
403 103 69 158 818 947
399 1274 32 12 134 660
548 381 203 871 193 531
317 85 1410 250 41 1101
32 421 32 343 376 1512
1792 47 95 76 515 72
1585 253 6 860 89 1055
537 101 385 176 11 565
164 16 1267 352 160 195
1279 356 751 500 803 560
151 24 689 1119 1733 2194
763 555 14 45 776 1
;

data B;
input lifetime @@;
mfg = 'B';
datalines;

1747 945 12 1453 14 150
20 41 35 69 195 89
1090 1868 294 96 618 44
142 892 1307 310 230 30
403 860 23 406 1054 1935
561 348 130 13 230 250
317 304 79 1793 536 12
9 256 201 733 510 660
122 27 273 1231 182 289
667 761 1096 43 44 87
405 998 1409 61 278 407
113 25 940 28 848 41
646 575 219 303 304 38
195 1061 174 377 388 10
246 323 198 234 39 308
55 729 813 1216 1618 539
6 1566 459 946 764 794
35 181 147 116 141 19
380 609 546
;

data lifdat;
set A B;

run;

The following SAS statements use PROC GENMOD to compute Type 3 statistics to test for differences
between the two manufacturers in machine part life. Type 3 statistics are identical to Type 1 statistics in this
case, since there is only one effect in the model. The log link function is selected to ensure that the mean is
positive.

proc genmod data = lifdat;
class mfg;
model lifetime = mfg / dist=gamma

link=log
type3;

run;
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The output from these statements is displayed in Output 43.3.1.

Output 43.3.1 Gamma Model of Life Data

The GENMOD ProcedureThe GENMOD Procedure

Model Information

Data Set WORK.LIFDAT

Distribution Gamma

Link Function Log

Dependent Variable lifetime

Class Level
Information

Class Levels Values

mfg 2 A B

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 199 287.0591 1.4425

Scaled Deviance 199 237.5335 1.1936

Pearson Chi-Square 199 211.6870 1.0638

Scaled Pearson X2 199 175.1652 0.8802

Log Likelihood -1432.4177

Full Log Likelihood -1432.4177

AIC (smaller is better) 2870.8353

AICC (smaller is better) 2870.9572

BIC (smaller is better) 2880.7453

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

Wald 95%
Confidence

Limits
Wald

Chi-Square Pr > ChiSq

Intercept 1 6.1302 0.1043 5.9257 6.3347 3451.61 <.0001

mfg A 1 0.0199 0.1559 -0.2857 0.3255 0.02 0.8985

mfg B 0 0.0000 0.0000 0.0000 0.0000 . .

Scale 1 0.8275 0.0714 0.6987 0.9800

Note: The scale parameter was estimated by maximum likelihood.

LR Statistics For Type 3 Analysis

Source DF Chi-Square Pr > ChiSq

mfg 1 0.02 0.8985

The p-value of 0.8985 for the chi-square statistic in the Type 3 table indicates that there is no significant
difference in the part life between the two manufacturers.

Using the following statements, you can refit the model without using the manufacturer as an effect. The
LRCI option in the MODEL statement is specified to compute profile likelihood confidence intervals for the
mean life and scale parameters.



3004 F Chapter 43: The GENMOD Procedure

proc genmod data = lifdat;
model lifetime = / dist=gamma

link=log
lrci;

run;

Output 43.3.2 displays the results of fitting the model with the mfg effect omitted.

Output 43.3.2 Refitting of the Gamma Model: Omitting the mfg Effect

The GENMOD ProcedureThe GENMOD Procedure

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

Likelihood
Ratio 95%
Confidence

Limits
Wald

Chi-Square Pr > ChiSq

Intercept 1 6.1391 0.0775 5.9904 6.2956 6268.10 <.0001

Scale 1 0.8274 0.0714 0.6959 0.9762

Note: The scale parameter was estimated by maximum likelihood.

The intercept is the estimated log mean of the fitted gamma distribution, so that the mean life of the parts is

� D exp.INTERCEPT/ D exp.6:1391/ D 463:64

The SCALE parameter used in PROC GENMOD is the inverse of the gamma dispersion parameter, and it
is sometimes called the gamma index parameter. See the section “Response Probability Distributions” on
page 2935 for the definition of the gamma probability density function. A value of 1 for the index parameter
corresponds to the exponential distribution . The estimated value of the scale parameter is 0.8274. The 95%
profile likelihood confidence interval for the scale parameter is (0.6959, 0.9762), which does not contain 1.
The hypothesis of an exponential distribution for the data is, therefore, rejected at the 0.05 level. A confidence
interval for the mean life is

.exp.5:99/; exp.6:30// D .399:57; 542:18/

Example 43.4: Ordinal Model for Multinomial Data
This example illustrates how you can use the GENMOD procedure to fit a model to data measured on an
ordinal scale. The following statements create a SAS data set called Icecream. The data set contains the
results of a hypothetical taste test of three brands of ice cream. The three brands are rated for taste on a
five-point scale from very good (vg) to very bad (vb). An analysis is performed to assess the differences in
the ratings of the three brands. The variable taste contains the ratings, and the variable brand contains the
brands tested. The variable count contains the number of testers rating each brand in each category.

The following statements create the Icecream data set:

data Icecream;
input count brand$ taste$;
datalines;

70 ice1 vg
71 ice1 g
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151 ice1 m
30 ice1 b
46 ice1 vb
20 ice2 vg
36 ice2 g
130 ice2 m
74 ice2 b
70 ice2 vb
50 ice3 vg
55 ice3 g
140 ice3 m
52 ice3 b
50 ice3 vb
;

The following statements fit a cumulative logit model to the ordinal data with the variable taste as the
response and the variable brand as a covariate. The variable count is used as a FREQ variable.

proc genmod data=Icecream rorder=data;
freq count;
class brand;
model taste = brand / dist=multinomial

link=cumlogit
aggregate=brand
type1;

estimate 'LogOR12' brand 1 -1 / exp;
estimate 'LogOR13' brand 1 0 -1 / exp;
estimate 'LogOR23' brand 0 1 -1 / exp;

run;

The AGGREGATE=BRAND option in the MODEL statement specifies the variable brand as defining
multinomial populations for computing deviances and Pearson chi-squares. The RORDER=DATA option
specifies that the taste variable levels be ordered by their order of appearance in the input data set—that is,
from very good (vg) to very bad (vb). By default, the response is sorted in increasing ASCII order. Always
check the “Response Profiles” table to verify that response levels are appropriately ordered. The TYPE1
option requests a Type 1 test for the significance of the covariate brand.

If j .x/ D Pr.taste � j / is the cumulative probability of the jth or lower taste category, then the odds ratio
comparing x1 to x2 is as follows:

j .x1/=.1 � j .x1//
j .x2/=.1 � j .x2//

D expŒ.x1 � x2/0ˇ�

See McCullagh and Nelder (1989, Chapter 5) for details on the cumulative logit model. The ESTIMATE
statements compute log odds ratios comparing each of brands. The EXP option in the ESTIMATE statements
exponentiates the log odds ratios to form odds ratio estimates. Standard errors and confidence intervals are
also computed.

Output 43.4.1 displays general information about the model and data, the levels of the CLASS variable brand,
and the total number of occurrences of the ordered levels of the response variable taste.
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Output 43.4.1 Ordinal Model Information

The GENMOD ProcedureThe GENMOD Procedure

Model Information

Data Set WORK.ICECREAM

Distribution Multinomial

Link Function Cumulative Logit

Dependent Variable taste

Frequency Weight Variable count

Class Level Information

Class Levels Values

brand 3 ice1 ice2 ice3

Response Profile

Ordered
Value taste

Total
Frequency

1 vg 140

2 g 162

3 m 421

4 b 156

5 vb 166

Output 43.4.2 displays estimates of the intercept terms and covariates and associated statistics. The inter-
cept terms correspond to the four cumulative logits defined on the taste categories in the order shown in
Output 43.4.1. That is, Intercept1 is the intercept for the first cumulative logit, log. p1

1�p1
/, Intercept2 is the

intercept for the second cumulative logit, log. p1Cp2
1�.p1Cp2/

/, and so forth.

Output 43.4.2 Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

Wald 95%
Confidence

Limits
Wald

Chi-Square Pr > ChiSq

Intercept1 1 -1.8578 0.1219 -2.0967 -1.6189 232.35 <.0001

Intercept2 1 -0.8646 0.1056 -1.0716 -0.6576 67.02 <.0001

Intercept3 1 0.9231 0.1060 0.7154 1.1308 75.87 <.0001

Intercept4 1 1.8078 0.1191 1.5743 2.0413 230.32 <.0001

brand ice1 1 0.3847 0.1370 0.1162 0.6532 7.89 0.0050

brand ice2 1 -0.6457 0.1397 -0.9196 -0.3719 21.36 <.0001

brand ice3 0 0.0000 0.0000 0.0000 0.0000 . .

Scale 0 1.0000 0.0000 1.0000 1.0000

Note: The scale parameter was held fixed.

The Type 1 test displayed in Output 43.4.3 indicates that Brand is highly significant; that is, there are
significant differences among the brands. The log odds ratios and odds ratios in the “ESTIMATE Statement
Results” table indicate the relative differences among the brands. For example, the odds ratio of 2.8 in the
“Exp(LogOR12)” row indicates that the odds of brand 1 being in lower taste categories is 2.8 times the
odds of brand 2 being in lower taste categories. Since, in this ordering, the lower categories represent the
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more favorable taste results, this indicates that brand 1 scored significantly better than brand 2. This is also
apparent from the data in this example.

Output 43.4.3 Type 1 Tests and Odds Ratios

LR Statistics For Type 1 Analysis

Source Deviance DF Chi-Square Pr > ChiSq

Intercepts 65.9576

brand 9.8654 2 56.09 <.0001

Contrast Estimate Results

Mean L'Beta

Label
Mean

Estimate
Confidence

Limits
L'Beta

Estimate
Standard

Error Alpha
Confidence

Limits Chi-Square Pr > ChiSq

LogOR12 0.7370 0.6805 0.7867 1.0305 0.1401 0.05 0.7559 1.3050 54.11 <.0001

Exp(LogOR12) 2.8024 0.3926 0.05 2.1295 3.6878

LogOR13 0.5950 0.5290 0.6577 0.3847 0.1370 0.05 0.1162 0.6532 7.89 0.0050

Exp(LogOR13) 1.4692 0.2013 0.05 1.1233 1.9217

LogOR23 0.3439 0.2850 0.4081 -0.6457 0.1397 0.05 -0.9196 -0.3719 21.36 <.0001

Exp(LogOR23) 0.5243 0.0733 0.05 0.3987 0.6894

Example 43.5: GEE for Binary Data with Logit Link Function
Output 43.5.1 displays a partial listing of a SAS data set of clinical trial data comparing two treatments for a
respiratory disorder. See “Gee Model for Binary Data” in the SAS/STAT Sample Program Library for the
complete data set. These data are from Stokes, Davis, and Koch (2000).

Patients in each of two centers are randomly assigned to groups receiving the active treatment or a placebo.
During treatment, respiratory status, represented by the variable outcome (coded here as 0=poor, 1=good), is
determined for each of four visits. The variables center, treatment, sex, and baseline (baseline respiratory
status) are classification variables with two levels. The variable age (age at time of entry into the study) is a
continuous variable.

Explanatory variables in the model are Intercept (xij1), treatment (xij2), center (xij3), sex (xij4), age
(xij5), and baseline (xij6), so that x0 D Œxij1; xij2; : : : ; xij6� is the vector of explanatory variables. Indicator
variables for the classification explanatory variables can be automatically generated by listing them in the
CLASS statement in PROC GENMOD. To be consistent with the analysis in Stokes, Davis, and Koch (2000),
the four classification explanatory variables are coded as follows via options in the CLASS statement:

xij2 D

�
0 placebo
1 active

xij3 D

�
0 center 1
1 center 2

xij4 D

�
0 male
1 female

xij6 D

�
0 0
1 1

Suppose yij represents the respiratory status of patient i at the jth visit, j D 1; : : : ; 4, and �ij D E.yij /
represents the mean of the respiratory status. Since the response data are binary, you can use the variance
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function for the binomial distribution v.�ij / D �ij .1 � �ij / and the logit link function g.�ij / D
log.�ij =.1 � �ij //. The model for the mean is g.�ij / D xij 0ˇ, where ˇ is a vector of regression pa-
rameters to be estimated.

Output 43.5.1 Respiratory Disorder Data

Obs center id treatment sex age baseline visit1 visit2 visit3 visit4 visit outcome

1 1 1 P M 46 0 0 0 0 0 1 0

2 1 1 P M 46 0 0 0 0 0 2 0

3 1 1 P M 46 0 0 0 0 0 3 0

4 1 1 P M 46 0 0 0 0 0 4 0

5 1 2 P M 28 0 0 0 0 0 1 0

6 1 2 P M 28 0 0 0 0 0 2 0

7 1 2 P M 28 0 0 0 0 0 3 0

8 1 2 P M 28 0 0 0 0 0 4 0

.

.

.

214 2 1 P F 39 0 0 0 0 0 1 0

215 2 1 P F 39 0 0 0 0 0 2 0

216 2 1 P F 39 0 0 0 0 0 3 0

217 2 1 P F 39 0 0 0 0 0 4 0

218 2 2 A M 25 0 0 1 1 1 1 0

219 2 2 A M 25 0 0 1 1 1 2 1

220 2 2 A M 25 0 0 1 1 1 3 1

221 2 2 A M 25 0 0 1 1 1 4 1

.

.

.

.

The GEE solution is requested with the REPEATED statement in the GENMOD procedure. The option
SUBJECT=ID(CENTER) specifies that the observations in any single cluster are uniquely identified by both
center and id. An equivalent specification is SUBJECT=ID*CENTER. Since the same id values are used in
each center, one of these specifications is needed. If id values were unique across all centers, SUBJECT=ID
would be specified.

The option TYPE=UNSTR specifies the unstructured working correlation structure. The MODEL statement
specifies the regression model for the mean with the binomial distribution variance function. The following
SAS statements perform the GEE model fit:

proc genmod data=resp descend;
class id treatment(ref="P") center(ref="1") sex(ref="M")

baseline(ref="0") / param=ref;
model outcome=treatment center sex age baseline / dist=bin;
repeated subject=id(center) / corr=unstr corrw;

run;

These statements first fit the generalized linear (GLM) model specified in the MODEL statement. The
parameter estimates from the generalized linear model fit are not shown in the output, but they are used as
initial values for the GEE solution. The DESCEND option in the PROC GENMOD statement specifies that
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the probability that outcome = 1 be modeled. If the DESCEND option had not been specified, the probability
that outcome = 0 would be modeled by default.

Information about the GEE model is displayed in Output 43.5.2. The results of GEE model fitting are
displayed in Output 43.5.3. Model goodness-of-fit criteria are displayed in Output 43.5.4. If you specify
no other options, the standard errors, confidence intervals, Z scores, and p-values are based on empirical
standard error estimates. You can specify the MODELSE option in the REPEATED statement to create a
table based on model-based standard error estimates.

Output 43.5.2 Model Fitting Information

The GENMOD ProcedureThe GENMOD Procedure

GEE Model Information

Correlation Structure Unstructured

Subject Effect id(center) (111 levels)

Number of Clusters 111

Correlation Matrix Dimension 4

Maximum Cluster Size 4

Minimum Cluster Size 4

Output 43.5.3 Results of Model Fitting

Working Correlation Matrix

Col1 Col2 Col3 Col4

Row1 1.0000 0.3351 0.2140 0.2953

Row2 0.3351 1.0000 0.4429 0.3581

Row3 0.2140 0.4429 1.0000 0.3964

Row4 0.2953 0.3581 0.3964 1.0000

Analysis Of GEE Parameter Estimates

Empirical Standard Error Estimates

Parameter Estimate
Standard

Error

95%
Confidence

Limits Z Pr > |Z|

Intercept -0.8882 0.4568 -1.7835 0.0071 -1.94 0.0519

treatment A 1.2442 0.3455 0.5669 1.9214 3.60 0.0003

center 2 0.6558 0.3512 -0.0326 1.3442 1.87 0.0619

sex F 0.1128 0.4408 -0.7512 0.9768 0.26 0.7981

age -0.0175 0.0129 -0.0427 0.0077 -1.36 0.1728

baseline 1 1.8981 0.3441 1.2237 2.5725 5.52 <.0001

Output 43.5.4 Model Fit Criteria

GEE Fit
Criteria

QIC 512.3416

QICu 499.6081

The nonsignificance of age and sex make them candidates for omission from the model.
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Example 43.6: Log Odds Ratios and the ALR Algorithm
Since the respiratory data in Example 43.5 are binary, you can use the ALR algorithm to model the log odds
ratios instead of using working correlations to model associations. In this example, a “fully parameterized
cluster” model for the log odds ratio is fit. That is, there is a log odds ratio parameter for each unique pair
of responses within clusters, and all clusters are parameterized identically. The following statements fit the
same regression model for the mean as in Example 43.5 but use a regression model for the log odds ratios
instead of a working correlation. The LOGOR=FULLCLUST option specifies a fully parameterized log odds
ratio model.

proc genmod data=resp descend;
class id treatment(ref="P") center(ref="1") sex(ref="M")

baseline(ref="0") / param=ref;
model outcome=treatment center sex age baseline / dist=bin;
repeated subject=id(center) / logor=fullclust;

run;

The results of fitting the model are displayed in Output 43.6.1 along with a table that shows the correspondence
between the log odds ratio parameters and the within-cluster pairs. Model goodness-of-fit criteria are shown
in Output 43.6.2. The QIC for the ALR model shown in Output 43.6.2 is 511.86, whereas the QIC for the
unstructured working correlation model shown in Output 43.5.4 is 512.34, indicating that the ALR model is
a slightly better fit.

Output 43.6.1 Results of Model Fitting

The GENMOD ProcedureThe GENMOD Procedure

Log Odds Ratio
Parameter
Information

Parameter Group

Alpha1 (1, 2)

Alpha2 (1, 3)

Alpha3 (1, 4)

Alpha4 (2, 3)

Alpha5 (2, 4)

Alpha6 (3, 4)
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Output 43.6.1 continued

Analysis Of GEE Parameter Estimates

Empirical Standard Error Estimates

Parameter Estimate
Standard

Error

95%
Confidence

Limits Z Pr > |Z|

Intercept -0.9266 0.4513 -1.8111 -0.0421 -2.05 0.0400

treatment A 1.2611 0.3406 0.5934 1.9287 3.70 0.0002

center 2 0.6287 0.3486 -0.0545 1.3119 1.80 0.0713

sex F 0.1024 0.4362 -0.7526 0.9575 0.23 0.8144

age -0.0162 0.0125 -0.0407 0.0084 -1.29 0.1977

baseline 1 1.8980 0.3404 1.2308 2.5652 5.58 <.0001

Alpha1 1.6109 0.4892 0.6522 2.5696 3.29 0.0010

Alpha2 1.0771 0.4834 0.1297 2.0246 2.23 0.0259

Alpha3 1.5875 0.4735 0.6594 2.5155 3.35 0.0008

Alpha4 2.1224 0.5022 1.1381 3.1068 4.23 <.0001

Alpha5 1.8818 0.4686 0.9634 2.8001 4.02 <.0001

Alpha6 2.1046 0.4949 1.1347 3.0745 4.25 <.0001

Output 43.6.2 Model Fit Criteria

GEE Fit
Criteria

QIC 511.8589

QICu 499.6516

You can fit the same model by fully specifying the z matrix. The following statements create a data set
containing the full z matrix:

data zin;
keep id center z1-z6 y1 y2;
array zin(6) z1-z6;
set resp;
by center id;
if first.id

then do;
t = 0;
do m = 1 to 4;

do n = m+1 to 4;
do j = 1 to 6;

zin(j) = 0;
end;
y1 = m;
y2 = n;
t + 1;
zin(t) = 1;
output;

end;
end;

end;
run;
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proc print data=zin (obs=12);
run;

Output 43.6.3 displays the full z matrix for the first two clusters. The z matrix is identical for all clusters in
this example.

Output 43.6.3 Full z Matrix Data Set

Obs z1 z2 z3 z4 z5 z6 center id y1 y2

1 1 0 0 0 0 0 1 1 1 2

2 0 1 0 0 0 0 1 1 1 3

3 0 0 1 0 0 0 1 1 1 4

4 0 0 0 1 0 0 1 1 2 3

5 0 0 0 0 1 0 1 1 2 4

6 0 0 0 0 0 1 1 1 3 4

7 1 0 0 0 0 0 1 2 1 2

8 0 1 0 0 0 0 1 2 1 3

9 0 0 1 0 0 0 1 2 1 4

10 0 0 0 1 0 0 1 2 2 3

11 0 0 0 0 1 0 1 2 2 4

12 0 0 0 0 0 1 1 2 3 4

The following statements fit the model for fully parameterized clusters by fully specifying the z matrix. The
results are identical to those shown previously.

proc genmod data=resp descend;
class id treatment(ref="P") center(ref="1") sex(ref="M")

baseline(ref="0") / param=ref;
model outcome=treatment center sex age baseline / dist=bin;
repeated subject=id(center) / logor=zfull

zdata=zin
zrow =(z1-z6)
ypair=(y1 y2);

run;

Example 43.7: Log-Linear Model for Count Data
In this example the data, from Thall and Vail (1990), concern the treatment of people suffering from epileptic
seizure episodes. These data are also analyzed in Diggle, Liang, and Zeger (1994). The data consist of
the number of epileptic seizures in an eight-week baseline period, before any treatment, and in each of
four two-week treatment periods, in which patients received either a placebo or the drug Progabide in
addition to other therapy. A portion of the data is displayed in Table 43.16. See “Gee Model for Count Data,
Exchangeable Correlation” in the SAS/STAT Sample Program Library for the complete data set.
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Table 43.16 Epileptic Seizure Data

Patient ID Treatment Baseline Visit1 Visit2 Visit3 Visit4

104 Placebo 11 5 3 3 3
106 Placebo 11 3 5 3 3
107 Placebo 6 2 4 0 5

.

.

.
101 Progabide 76 11 14 9 8
102 Progabide 38 8 7 9 4
103 Progabide 19 0 4 3 0

.

.

.

Model the data as a log-linear model with V.�/ D � (the Poisson variance function) and

log.E.Yij // D ˇ0 C xi1ˇ1 C xi2ˇ2 C xi1xi2ˇ3 C log.tij /

where

Yij D number of epileptic seizures in interval j

tij D length of interval j

xi1 D

�
1 W weeks 8–16 (treatment)
0 W weeks 0–8 (baseline)

xi2 D

�
1 W progabide group
0 W placebo group

The correlations between the counts are modeled as rij D ˛, i ¤ j (exchangeable correlations). For
comparison, the correlations are also modeled as independent (identity correlation matrix). In this model, the
regression parameters have the interpretation in terms of the log seizure rate displayed in Table 43.17.

Table 43.17 Interpretation of Regression Parameters

Treatment Visit log.E.Yij /=tij /

Placebo Baseline ˇ0
1–4 ˇ0 C ˇ1

Progabide Baseline ˇ0 C ˇ2
1–4 ˇ0 C ˇ1 C ˇ2 C ˇ3

The difference between the log seizure rates in the pretreatment (baseline) period and the treatment periods is
ˇ1 for the placebo group and ˇ1 C ˇ3 for the Progabide group. A value of ˇ3 < 0 indicates a reduction in
the seizure rate.

Output 43.7.1 lists the first 14 observations of the data, which are arranged as one visit per observation:
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Output 43.7.1 Partial Listing of the Seizure Data

Obs id y visit trt bline age

1 104 5 1 0 11 31

2 104 3 2 0 11 31

3 104 3 3 0 11 31

4 104 3 4 0 11 31

5 106 3 1 0 11 30

6 106 5 2 0 11 30

7 106 3 3 0 11 30

8 106 3 4 0 11 30

9 107 2 1 0 6 25

10 107 4 2 0 6 25

11 107 0 3 0 6 25

12 107 5 4 0 6 25

13 114 4 1 0 8 36

14 114 4 2 0 8 36

Some further data manipulations create an observation for the baseline measures, a log time interval variable
for use as an offset, and an indicator variable for whether the observation is for a baseline measurement or a
visit measurement. Patient 207 is deleted as an outlier, as in the Diggle, Liang, and Zeger (1994) analysis.
The following statements prepare the data for analysis with PROC GENMOD:

data new;
set thall;
output;
if visit=1 then do;

y=bline;
visit=0;
output;

end;
run;

data new;
set new;
if id ne 207;
if visit=0 then do;

x1=0;
ltime=log(8);

end;
else do;

x1=1;
ltime=log(2);

end;
run;

For comparison with the GEE results, an ordinary Poisson regression is first fit. The results are shown in
Output 43.7.2.
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Output 43.7.2 Maximum Likelihood Estimates

The GENMOD ProcedureThe GENMOD Procedure

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

Wald 95%
Confidence

Limits
Wald

Chi-Square Pr > ChiSq

Intercept 1 1.3476 0.0341 1.2809 1.4144 1565.44 <.0001

x1 1 0.1108 0.0469 0.0189 0.2027 5.58 0.0181

trt 1 -0.1080 0.0486 -0.2034 -0.0127 4.93 0.0264

x1*trt 1 -0.3016 0.0697 -0.4383 -0.1649 18.70 <.0001

Scale 0 1.0000 0.0000 1.0000 1.0000

Note: The scale parameter was held fixed.

The GEE solution is requested with the REPEATED statement in the GENMOD procedure. The SUB-
JECT=ID option indicates that the variable id describes the observations for a single cluster, and the CORRW
option displays the working correlation matrix. The TYPE= option specifies the correlation structure; the
value EXCH indicates the exchangeable structure.

The following statements perform the analysis:

proc genmod data=new;
class id;
model y=x1 | trt / d=poisson offset=ltime;
repeated subject=id / corrw covb type=exch;

run;

These statements first fit a generalized linear model (GLM) to these data by maximum likelihood. The
estimates are not shown in the output, but are used as initial values for the GEE solution.

Information about the GEE model is displayed in Output 43.7.3. The results of fitting the model are displayed
in Output 43.7.4. Compare these with the model of independence displayed in Output 43.7.2. The parameter
estimates are nearly identical, but the standard errors for the independence case are underestimated. The
coefficient of the interaction term, ˇ3, is highly significant under the independence model and marginally
significant with the exchangeable correlations model.

Output 43.7.3 GEE Model Information

The GENMOD ProcedureThe GENMOD Procedure

GEE Model Information

Correlation Structure Exchangeable

Subject Effect id (58 levels)

Number of Clusters 58

Correlation Matrix Dimension 5

Maximum Cluster Size 5

Minimum Cluster Size 5
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Output 43.7.4 GEE Parameter Estimates

Analysis Of GEE Parameter Estimates

Empirical Standard Error Estimates

Parameter Estimate
Standard

Error

95%
Confidence

Limits Z Pr > |Z|

Intercept 1.3476 0.1574 1.0392 1.6560 8.56 <.0001

x1 0.1108 0.1161 -0.1168 0.3383 0.95 0.3399

trt -0.1080 0.1937 -0.4876 0.2716 -0.56 0.5770

x1*trt -0.3016 0.1712 -0.6371 0.0339 -1.76 0.0781

Table 43.18 displays the regression coefficients, standard errors, and normalized coefficients that result from
fitting the model with independent and exchangeable working correlation matrices.

Table 43.18 Results of Model Fitting

Variable Correlation Structure Coef. Std. Error Coef./S.E.

Intercept Exchangeable 1.35 0.16 8.56
Independent 1.35 0.03 39.52

Visit .x1/ Exchangeable 0.11 0.12 0.95
Independent 0.11 0.05 2.36

Treat .x2/ Exchangeable –0.11 0.19 –0.56
Independent –0.11 0.05 –2.22

x1 � x2 Exchangeable –0.30 0.17 –1.76
Independent –0.30 0.07 –4.32

The fitted exchangeable correlation matrix is specified with the CORRW option and is displayed in Out-
put 43.7.5.

Output 43.7.5 Working Correlation Matrix

Working Correlation Matrix

Col1 Col2 Col3 Col4 Col5

Row1 1.0000 0.5941 0.5941 0.5941 0.5941

Row2 0.5941 1.0000 0.5941 0.5941 0.5941

Row3 0.5941 0.5941 1.0000 0.5941 0.5941

Row4 0.5941 0.5941 0.5941 1.0000 0.5941

Row5 0.5941 0.5941 0.5941 0.5941 1.0000

If you specify the COVB option, you produce both the model-based (naive) and the empirical (robust)
covariance matrices. Output 43.7.6 contains these estimates.
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Output 43.7.6 Covariance Matrices

Covariance Matrix (Model-Based)

Prm1 Prm2 Prm3 Prm4

Prm1 0.01223 0.001520 -0.01223 -0.001520

Prm2 0.001520 0.01519 -0.001520 -0.01519

Prm3 -0.01223 -0.001520 0.02495 0.005427

Prm4 -0.001520 -0.01519 0.005427 0.03748

Covariance Matrix (Empirical)

Prm1 Prm2 Prm3 Prm4

Prm1 0.02476 -0.001152 -0.02476 0.001152

Prm2 -0.001152 0.01348 0.001152 -0.01348

Prm3 -0.02476 0.001152 0.03751 -0.002999

Prm4 0.001152 -0.01348 -0.002999 0.02931

The two covariance estimates are similar, indicating an adequate correlation model.

Example 43.8: Model Assessment of Multiple Regression Using Aggregates
of Residuals

This example illustrates the use of cumulative residuals to assess the adequacy of a normal linear regression
model. Neter et al. (1996, Section 8.2) describe a study of 54 patients undergoing a certain kind of liver
operation in a surgical unit. The data consist of the survival time and certain covariates. After a model
selection procedure, they arrived at the following model:

Y D ˇ0 C ˇ1X1 C ˇ2X2 C ˇ3X3 C �

where Y is the logarithm (base 10) of the survival time; X1, X2, X3 are blood-clotting score, prognostic index,
and enzyme function, respectively; and � is a normal error term. A listing of the SAS data set containing the
data is shown in Output 43.8.1. The variables Y, X1, X2, and X3 correspond to Y, X1, X2, and X3, and LogX1
is log(X1). The PROC GENMOD fit of the model is shown in Output 43.8.2. The analysis first focuses on
the adequacy of the functional form of X1, blood-clotting score.
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Output 43.8.1 Surgical Unit Example Data

Obs Y X1 X2 X3 LogX1

1 2.3010 6.7 62 81 0.82607

2 2.0043 5.1 59 66 0.70757

3 2.3096 7.4 57 83 0.86923

4 2.0043 6.5 73 41 0.81291

5 2.7067 7.8 65 115 0.89209

6 1.9031 5.8 38 72 0.76343

7 1.9031 5.7 46 63 0.75587

8 2.1038 3.7 68 81 0.56820

9 2.3054 6.0 67 93 0.77815

10 2.3075 3.7 76 94 0.56820

11 2.5172 6.3 84 83 0.79934

12 1.8129 6.7 51 43 0.82607

13 2.9191 5.8 96 114 0.76343

14 2.5185 5.8 83 88 0.76343

15 2.2253 7.7 62 67 0.88649

16 2.3365 7.4 74 68 0.86923

17 1.9395 6.0 85 28 0.77815

18 1.5315 3.7 51 41 0.56820

19 2.3324 7.3 68 74 0.86332

20 2.2355 5.6 57 87 0.74819

21 2.0374 5.2 52 76 0.71600

22 2.1335 3.4 83 53 0.53148

23 1.8451 6.7 26 68 0.82607

24 2.3424 5.8 67 86 0.76343

25 2.4409 6.3 59 100 0.79934

26 2.1584 5.8 61 73 0.76343

27 2.2577 5.2 52 86 0.71600

28 2.7589 11.2 76 90 1.04922

29 1.8573 5.2 54 56 0.71600

30 2.2504 5.8 76 59 0.76343

31 1.8513 3.2 64 65 0.50515

32 1.7634 8.7 45 23 0.93952

33 2.0645 5.0 59 73 0.69897

34 2.4698 5.8 72 93 0.76343

35 2.0607 5.4 58 70 0.73239

36 2.2648 5.3 51 99 0.72428

37 2.0719 2.6 74 86 0.41497

38 2.0792 4.3 8 119 0.63347

39 2.1790 4.8 61 76 0.68124

40 2.1703 5.4 52 88 0.73239

41 1.9777 5.2 49 72 0.71600

42 1.8751 3.6 28 99 0.55630

43 2.6840 8.8 86 88 0.94448

44 2.1847 6.5 56 77 0.81291

45 2.2810 3.4 77 93 0.53148

46 2.0899 6.5 40 84 0.81291

47 2.4928 4.5 73 106 0.65321

48 2.5999 4.8 86 101 0.68124
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Output 43.8.1 continued

Obs Y X1 X2 X3 LogX1

49 2.1987 5.1 67 77 0.70757

50 2.4914 3.9 82 103 0.59106

51 2.0934 6.6 77 46 0.81954

52 2.0969 6.4 85 40 0.80618

53 2.2967 6.4 59 85 0.80618

54 2.4955 8.8 78 72 0.94448

In order to assess the adequacy of the fitted multiple regression model, the ASSESS statement in the following
SAS statements is used to create the plots of cumulative residuals against X1 shown in Output 43.8.3 and
Output 43.8.4 and the summary table in Output 43.8.5:

ods graphics on;

proc genmod data=Surg;
model Y = X1 X2 X3 / scale=Pearson;
assess var=(X1) / resample=10000

seed=603708000
crpanel;

run;

Output 43.8.2 Regression Model for Linear X1

The GENMOD ProcedureThe GENMOD Procedure

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

Wald 95%
Confidence

Limits
Wald

Chi-Square Pr > ChiSq

Intercept 1 0.4836 0.0426 0.4001 0.5672 128.71 <.0001

X1 1 0.0692 0.0041 0.0612 0.0772 288.17 <.0001

X2 1 0.0093 0.0004 0.0085 0.0100 590.45 <.0001

X3 1 0.0095 0.0003 0.0089 0.0101 966.07 <.0001

Scale 0 0.0469 0.0000 0.0469 0.0469

Note: The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

See Lin, Wei, and Ying (2002) for details about model assessment that uses cumulative residual plots. The
RESAMPLE= keyword specifies that a p-value be computed based on a sample of 10,000 simulated residual
paths. A random number seed is specified by the SEED= keyword for reproducibility. If you do not specify
the seed, one is derived from the time of day. The keyword CRPANEL specifies that the panel of four
cumulative residual plots shown in Output 43.8.4 be created, each with two simulated paths. The single
residual plot with 20 simulated paths in Output 43.8.3 is created by default.

To request these graphs, ODS Graphics must be enabled and you must specify the ASSESS statement. For
general information about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.” For specific
information about the graphics available in the GENMOD procedure, see the section “ODS Graphics” on
page 2995.
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Output 43.8.3 Cumulative Residual Plot for Linear X1 Fit
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Output 43.8.4 Cumulative Residual Panel Plot for Linear X1 Fit

Output 43.8.5 Summary of Model Assessment

Assessment Summary

Assessment
Variable

Maximum
Absolute

Value Replications Seed
Pr >

MaxAbsVal

X1 0.0380 10000 603708000 0.1084

The p-value of 0.1084 reported on Output 43.8.3 and Output 43.8.5 suggests that a more adequate model
might be possible. The observed cumulative residuals in Output 43.8.3 and Output 43.8.4, represented by the
heavy lines, seem atypical of the simulated curves, represented by the light lines, reinforcing the conclusion
that a more appropriate functional form for X1 is possible.

The cumulative residual plots in Output 43.8.6 provide guidance in determining a more appropriate functional
form. The four curves were created from simple forms of model misspecification by using simulated data.
The mean models of the data and the fitted model are shown in Table 43.19.
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Output 43.8.6 Typical Cumulative Residual Patterns

Table 43.19 Model Misspecifications

Plot Data E(Y) Fitted Model E(Y)

(a) log(X) X
(b) X CX2 X
(c) X CX2 CX3 X CX2

(d) I.X > 5/ X

The observed cumulative residual pattern in Output 43.8.3 and Output 43.8.4 most resembles the behavior of
the curve in plot (a) of Output 43.8.6, indicating that log(X1) might be a more appropriate term in the model
than X1.

The following SAS statements fit a model with LogX1 in place of X1 and request a model assessment:

proc genmod data=Surg;
model Y = LogX1 X2 X3 / scale=Pearson;
assess var=(LogX1) / resample=10000

seed=603708000;
run;
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The revised model fit is shown in Output 43.8.7, the p-value from the simulation is 0.4777, and the cumulative
residuals plotted in Output 43.8.8 show no systematic trend. The log transformation for X1 is more appropriate.
Under the revised model, the p-values for testing the functional forms of X2 and X3 are 0.20 and 0.63,
respectively; and the p-value for testing the linearity of the model is 0.65. Thus, the revised model seems
reasonable.

Output 43.8.7 Multiple Regression Model with Log(X1)

The GENMOD ProcedureThe GENMOD Procedure

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

Wald 95%
Confidence

Limits
Wald

Chi-Square Pr > ChiSq

Intercept 1 0.1844 0.0504 0.0857 0.2832 13.41 0.0003

LogX1 1 0.9121 0.0491 0.8158 1.0083 345.05 <.0001

X2 1 0.0095 0.0004 0.0088 0.0102 728.62 <.0001

X3 1 0.0096 0.0003 0.0090 0.0101 1139.73 <.0001

Scale 0 0.0434 0.0000 0.0434 0.0434

Note: The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

Output 43.8.8 Cumulative Residual Plot with Log(X1)
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Example 43.9: Assessment of a Marginal Model for Dependent Data
This example illustrates the use of cumulative residuals to assess the adequacy of a marginal model for
dependent data fit by generalized estimating equations (GEEs). The assessment methods are applied to CD4
count data from an AIDS clinical trial reported by Fischl, Richman, and Hansen (1990) and reanalyzed by
Lin, Wei, and Ying (2002). The study randomly assigned 360 HIV patients to the drug AZT and 351 patients
to placebo. CD4 counts were measured repeatedly over the course of the study. The data used here are the
4328 measurements taken in the first 40 weeks of the study.

The analysis focuses on the time trend of the response. The first model considered is

E.yik/ D ˇ0 C ˇ1Tik C ˇ2T
2
ik C ˇ3RiTik C ˇ4RiT

2
ik

where Tik is the time (in weeks) of the kth measurement on the ith patient, yik is the CD4 count at Tik for
the ith patient, and Ri is the indicator of AZT for the ith patient. Normal errors and an independent working
correlation are assumed.

The following statements create the SAS data set cd4:

data cd4;
input Id Y Time Time2 TrtTime TrtTime2;
Time3 = Time2 * Time;
TrtTime3 = TrtTime2 * Time;
datalines;

1 264.00024 -0.28571 0.08163 -0.28571 0.08163
1 175.00070 4.14286 17.16327 4.14286 17.16327
1 306.00150 8.14286 66.30612 8.14286 66.30612
1 331.99835 12.14286 147.44898 12.14286 147.44898
1 309.99929 16.14286 260.59184 16.14286 260.59184
1 185.00077 28.71429 824.51020 28.71429 824.51020
1 175.00070 40.14286 1611.44898 40.14286 1611.44898
2 574.99998 -0.57143 0.32653 0.00000 0.00000

... more lines ...

711 363.99859 8.14286 66.30612 8.14286 66.30612
711 488.00224 12.14286 147.44898 12.14286 147.44898
711 240.00026 18.14286 329.16327 18.14286 329.16327
;

The following SAS statements fit the preceding model, create the cumulative residual plot in Output 43.9.1,
and compute a p-value for the model.

To request these graphs, ODS Graphics must be enabled and you must specify the ASSESS statement. For
general information about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.” For specific
information about the graphics available in the GENMOD procedure, see the section “ODS Graphics” on
page 2995.

Here, the SAS data set variables Time, Time2, TrtTime, and TrtTime2 correspond to Tik , T 2
ik

, RiTik , and
RiT

2
ik

, respectively. The variable Id identifies individual patients.
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ods graphics on;

proc genmod data=cd4;
class Id;
model Y = Time Time2 TrtTime TrtTime2;
repeated sub=Id;
assess var=(Time) / resample

seed=603708000;
run;

Output 43.9.1 Cumulative Residual Plot for Quadratic Time Fit

The cumulative residual plot in Output 43.9.1 displays cumulative residuals versus time for the model and 20
simulated realizations. The associated p-value, also shown in Output 43.9.1, is 0.18. These results indicate
that a more satisfactory model might be possible. The observed cumulative residual pattern most resembles
plot (c) in Output 43.8.6, suggesting cubic time trends.

The following SAS statements fit the model, create the plot in Output 43.9.2, and compute a p-value for a
model with the additional terms T 3

ik
and RiT 3ik:
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proc genmod data=cd4;
class Id;
model Y = Time Time2 Time3 TrtTime TrtTime2 TrtTime3;
repeated sub=Id;
assess var=(Time) / resample

seed=603708000;
run;

Output 43.9.2 Cumulative Residual Plot for Cubic Time Fit

The observed cumulative residual pattern appears more typical of the simulated realizations, and the p-value
is 0.45, indicating that the model with cubic time trends is more appropriate.

Example 43.10: Bayesian Analysis of a Poisson Regression Model
This example illustrates a Bayesian analysis of a log-linear Poisson regression model. Consider the following
data on patients from clinical trials. The data set is a subset of the data described in Ibrahim, Chen, and
Lipsitz (1999).
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data Liver;
input X1-X6 Y;
datalines;

19.1358 50.0110 51.000 0 0 1 3
23.5970 18.4959 3.429 0 0 1 9
20.0474 56.7699 3.429 1 1 0 6
28.0277 59.7836 4.000 0 0 1 6
28.6851 74.1589 5.714 1 0 1 1
18.8092 31.0630 2.286 0 1 1 61
28.7201 52.9178 37.286 1 0 1 6
21.3669 61.6603 54.143 0 1 1 6
23.7332 42.2904 0.571 1 0 1 21
20.4783 22.1260 19.000 1 0 1 6

... more lines ...

17.0993 48.8384 3.000 0 0 0 9
19.1327 65.3425 2.571 1 0 0 1
17.3010 51.4493 4.429 1 0 0 6
;

The primary interest is in prediction of the number of cancerous liver nodes when a patient enters the trials,
by using six other baseline characteristics. The number of nodes is modeled by a Poisson regression model
with the six baseline characteristics as covariates. The response and regression variables are as follows:

Y Number of Cancerous Liver Nodes
X1 Body Mass Index
X2 Age, in Years
X3 Time Since Diagnosis of Disease, in Weeks
X4 Two Biochemical Markers (each classified as normal=1 or abnormal=0)
X5 Anti Hepatitis B Antigen
X6 Associated Jaundice (yes=1, no=0)

Two analyses are performed using PROC GENMOD. The first analysis uses noninformative normal prior
distributions, and the second analysis uses an informative normal prior for one of the regression parameters.

In the following BAYES statement, COEFFPRIOR=NORMAL specifies a noninformative independent
normal prior distribution with zero mean and variance 106 for each parameter.

The initial analysis is performed using PROC GENMOD to obtain Bayesian estimates of the regression
coefficients by using the following SAS statements:

proc genmod data=Liver;
model Y = X1-X6 / dist=Poisson link=log;
bayes seed=1 coeffprior=normal;

run;

Maximum likelihood estimates of the model parameters are computed by default. These are shown in the
“Analysis of Maximum Likelihood Parameter Estimates” table in Output 43.10.1.
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Output 43.10.1 Maximum Likelihood Parameter Estimates

The GENMOD Procedure

Bayesian Analysis

The GENMOD Procedure

Bayesian Analysis

Analysis Of Maximum Likelihood Parameter
Estimates

Parameter DF Estimate
Standard

Error

Wald 95%
Confidence

Limits

Intercept 1 2.4508 0.2284 2.0032 2.8984

X1 1 -0.0044 0.0080 -0.0201 0.0114

X2 1 -0.0135 0.0024 -0.0181 -0.0088

X3 1 -0.0029 0.0022 -0.0072 0.0014

X4 1 -0.2715 0.0795 -0.4272 -0.1157

X5 1 0.3215 0.0832 0.1585 0.4845

X6 1 0.2077 0.0827 0.0456 0.3698

Scale 0 1.0000 0.0000 1.0000 1.0000

Note: The scale parameter was held fixed.

Noninformative independent normal prior distributions with zero means and variances of 106 were used in
the initial analysis. These are shown in Output 43.10.2.

Output 43.10.2 Regression Coefficient Priors

The GENMOD Procedure

Bayesian Analysis

The GENMOD Procedure

Bayesian Analysis

Independent Normal Prior
for Regression

Coefficients

Parameter Mean Precision

Intercept 0 1E-6

X1 0 1E-6

X2 0 1E-6

X3 0 1E-6

X4 0 1E-6

X5 0 1E-6

X6 0 1E-6

Initial values for the Markov chain are listed in the “Initial Values and Seeds” table in Output 43.10.3. The
random number seed is also listed so that you can reproduce the analysis. Since no seed was specified, the
seed shown was derived from the time of day.

Output 43.10.3 MCMC Initial Values and Seeds

Initial Values of the Chain

Chain Seed Intercept X1 X2 X3 X4 X5 X6

1 1 2.450813 -0.00435 -0.01347 -0.00291 -0.27149 0.321507 0.207713
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Summary statistics for the posterior sample are displayed in the “Fit Statistics,” “Descriptive Statistics for the
Posterior Sample,” “Interval Statistics for the Posterior Sample,” and “Posterior Correlation Matrix” tables
in Output 43.10.4, Output 43.10.5, Output 43.10.6, and Output 43.10.7, respectively. Since noninformative
prior distributions for the regression coefficients were used, the mean and standard deviations of the posterior
distributions for the model parameters are close to the maximum likelihood estimates and standard errors.

Output 43.10.4 Fit Statistics

Fit Statistics

DIC (smaller is better) 829.810

pD (effective number of parameters) 7.005

Output 43.10.5 Descriptive Statistics

The GENMOD Procedure

Bayesian Analysis

The GENMOD Procedure

Bayesian Analysis

Posterior Summaries

Percentiles

Parameter N Mean
Standard
Deviation 25% 50% 75%

Intercept 10000 2.4483 0.2320 2.2903 2.4493 2.6093

X1 10000 -0.00475 0.00809 -0.0101 -0.00466 0.000851

X2 10000 -0.0134 0.00237 -0.0150 -0.0134 -0.0118

X3 10000 -0.00303 0.00220 -0.00445 -0.00298 -0.00150

X4 10000 -0.2703 0.0799 -0.3241 -0.2725 -0.2190

X5 10000 0.3202 0.0828 0.2642 0.3209 0.3775

X6 10000 0.2106 0.0838 0.1533 0.2111 0.2663

Output 43.10.6 Interval Statistics

Posterior Intervals

Parameter Alpha
Equal-Tail

Interval HPD Interval

Intercept 0.050 1.9903 2.9059 2.0289 2.9321

X1 0.050 -0.0209 0.0108 -0.0211 0.0106

X2 0.050 -0.0181 -0.00870 -0.0184 -0.00908

X3 0.050 -0.00761 0.00105 -0.00745 0.00113

X4 0.050 -0.4257 -0.1063 -0.4314 -0.1152

X5 0.050 0.1563 0.4804 0.1574 0.4811

X6 0.050 0.0450 0.3777 0.0468 0.3788
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Output 43.10.7 Posterior Sample Correlation Matrix

Posterior Correlation Matrix

Parameter Intercept X1 X2 X3 X4 X5 X6

Intercept 1.000 -0.708 -0.432 -0.046 -0.261 -0.185 -0.422

X1 -0.708 1.000 -0.202 -0.047 -0.035 0.078 0.129

X2 -0.432 -0.202 1.000 0.035 0.076 0.054 0.117

X3 -0.046 -0.047 0.035 1.000 0.027 -0.042 -0.077

X4 -0.261 -0.035 0.076 0.027 1.000 -0.024 0.127

X5 -0.185 0.078 0.054 -0.042 -0.024 1.000 -0.037

X6 -0.422 0.129 0.117 -0.077 0.127 -0.037 1.000

Posterior sample autocorrelations for each model parameter are shown in Output 43.10.8. The autocorrelation
after 10 lags is negligible for all parameters, indicating good mixing in the Markov chain.

Output 43.10.8 Posterior Sample Autocorrelations

The GENMOD Procedure

Bayesian Analysis

The GENMOD Procedure

Bayesian Analysis

Posterior Autocorrelations

Parameter Lag 1 Lag 5 Lag 10 Lag 50

Intercept 0.3037 0.0152 0.0095 -0.0170

X1 0.3398 0.0025 0.0003 0.0052

X2 0.3036 0.0061 0.0003 -0.0062

X3 0.3489 0.0190 -0.0064 -0.0210

X4 0.2868 0.0213 0.0157 -0.0107

X5 0.2854 0.0108 -0.0288 -0.0012

X6 0.3078 0.0230 0.0073 0.0062

The p-values for the Geweke test statistics shown in Output 43.10.9 all indicate convergence of the MCMC.
See the section “Assessing Markov Chain Convergence” on page 137 in Chapter 7, “Introduction to Bayesian
Analysis Procedures,” for more information about convergence diagnostics and their interpretation.

Output 43.10.9 Geweke Diagnostic Statistics

Geweke Diagnostics

Parameter z Pr > |z|

Intercept -0.6533 0.5135

X1 0.3418 0.7325

X2 0.3609 0.7182

X3 -0.3345 0.7380

X4 0.2851 0.7755

X5 -0.5266 0.5985

X6 1.1285 0.2591

The effective sample sizes for each parameter are shown in Output 43.10.10.
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Output 43.10.10 Effective Sample Sizes

Effective Sample Sizes

Parameter ESS
Autocorrelation

Time Efficiency

Intercept 4880.3 2.0491 0.4880

X1 4844.2 2.0643 0.4844

X2 5139.3 1.9458 0.5139

X3 4551.2 2.1972 0.4551

X4 4953.6 2.0187 0.4954

X5 5330.5 1.8760 0.5331

X6 4988.1 2.0048 0.4988

Trace, autocorrelation, and density plots for the seven model parameters are shown in Output 43.10.11
through Output 43.10.17. All indicate satisfactory convergence of the Markov chain.

Output 43.10.11 Diagnostic Plots for Intercept
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Output 43.10.12 Diagnostic Plots for X1
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Output 43.10.13 Diagnostic Plots for X2
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Output 43.10.14 Diagnostic Plots for X3
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Output 43.10.15 Diagnostic Plots for X4
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Output 43.10.16 Diagnostic Plots for X5
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Output 43.10.17 Diagnostic Plots for X6

In order to illustrate the use of an informative prior distribution, suppose that researchers expect that a unit
increase in body mass index (X1) will be associated with an increase in the mean number of nodes of between
10% and 20%, and they want to incorporate this prior knowledge in the Bayesian analysis. For log-linear
models, the mean and linear predictor are related by log.�i / D x0iˇ. If X11 and X12 are two values of body
mass index, �1 and �2 are the two mean values, and all other covariates remain equal for the two values of
X1, then

�1

�2
D exp.ˇ.X11 � X12//

so that for a unit change in X1,

�1

�2
D exp.ˇ/

If 1:1 � �1
�2
� 1:2, then 1:1 � exp.ˇ/ � 1:2, or 0:095 � ˇ � 0:182. This gives you guidance in specifying

a prior distribution for the ˇ for body mass index. Taking the mean of the prior normal distribution to be the
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midrange of the values of ˇ, and taking �˙ 2� to be the extremes of the range, an N.0:1385; 0:0005/ is
the resulting prior distribution. The second analysis uses this informative normal prior distribution for the
coefficient of X1 and uses independent noninformative normal priors with zero means and variances equal to
106 for the remaining model regression parameters.

In the following BAYES statement, COEFFPRIOR=NORMAL(INPUT=NormalPrior) specifies the nor-
mal prior distribution for the regression coefficients with means and variances contained in the data set
NormalPrior.

An analysis is performed using PROC GENMOD to obtain Bayesian estimates of the regression coefficients
by using the following SAS statements:

data NormalPrior;
input _type_ $ Intercept X1-X6;
datalines;

Var 1e6 0.0005 1e6 1e6 1e6 1e6 1e6
Mean 0.0 0.1385 0.0 0.0 0.0 0.0 0.0
;

proc genmod data=Liver;
model Y = X1-X6 / dist=Poisson link=log;
bayes seed=1 plots=none coeffprior=normal(input=NormalPrior);

run;

The prior distributions for the regression parameters are shown in Output 43.10.18.

Output 43.10.18 Regression Coefficient Priors

The GENMOD Procedure

Bayesian Analysis

The GENMOD Procedure

Bayesian Analysis

Independent Normal Prior
for Regression Coefficients

Parameter Mean Precision

Intercept 0 1E-6

X1 0.1385 2000

X2 0 1E-6

X3 0 1E-6

X4 0 1E-6

X5 0 1E-6

X6 0 1E-6

Initial values for the MCMC are shown in Output 43.10.19. The initial values of the covariates are joint
estimates of their posterior modes. The prior distribution for X1 is informative, so the initial value of X1 is
further from the MLE than the rest of the covariates. Initial values for the rest of the covariates are close to
their MLEs, since noninformative prior distributions were specified for them.

Output 43.10.19 MCMC Initial Values and Seeds

Initial Values of the Chain

Chain Seed Intercept X1 X2 X3 X4 X5 X6

1 1 2.14282 0.010595 -0.01434 -0.00301 -0.28062 0.334983 0.231213
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Goodness-of-fit, summary, and interval statistics are shown in Output 43.10.20. Except for X1, the statistics
shown in Output 43.10.20 are very similar to the previous statistics for noninformative priors shown in
Output 43.10.4 through Output 43.10.7. The point estimate for X1 is now positive. This is expected because
the prior distribution on ˇ1 is quite informative. The distribution reflects the belief that the coefficient is
positive. The N.0:1385; 0:0005/ distribution places the majority of its probability density on positive values.
As a result, the posterior density of ˇ1 places more likelihood on positive values than in the noninformative
case.

Output 43.10.20 Fit Statistics

Fit Statistics

DIC (smaller is better) 833.074

pD (effective number of parameters) 6.869

The GENMOD Procedure

Bayesian Analysis

The GENMOD Procedure

Bayesian Analysis

Posterior Summaries

Percentiles

Parameter N Mean
Standard
Deviation 25% 50% 75%

Intercept 10000 2.1419 0.2157 1.9965 2.1430 2.2894

X1 10000 0.0103 0.00684 0.00573 0.0104 0.0150

X2 10000 -0.0143 0.00233 -0.0159 -0.0142 -0.0127

X3 10000 -0.00318 0.00218 -0.00467 -0.00314 -0.00170

X4 10000 -0.2806 0.0800 -0.3336 -0.2793 -0.2266

X5 10000 0.3341 0.0832 0.2788 0.3341 0.3906

X6 10000 0.2333 0.0826 0.1774 0.2325 0.2880

Posterior Intervals

Parameter Alpha
Equal-Tail

Interval HPD Interval

Intercept 0.050 1.7225 2.5574 1.7293 2.5632

X1 0.050 -0.00344 0.0235 -0.00345 0.0234

X2 0.050 -0.0188 -0.00970 -0.0189 -0.00980

X3 0.050 -0.00757 0.00108 -0.00733 0.00121

X4 0.050 -0.4365 -0.1200 -0.4391 -0.1256

X5 0.050 0.1657 0.4966 0.1682 0.4987

X6 0.050 0.0695 0.3959 0.0725 0.3981

Example 43.11: Exact Poisson Regression
The following data, taken from Cox and Snell (1989, pp. 10–11), consists of the number, Notready, of ingots
that are not ready for rolling, out of Total tested, for several combinations of heating time and soaking time:

data ingots;
input Heat Soak Notready Total @@;
lnTotal= log(Total);
datalines;

7 1.0 0 10 14 1.0 0 31 27 1.0 1 56 51 1.0 3 13
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7 1.7 0 17 14 1.7 0 43 27 1.7 4 44 51 1.7 0 1
7 2.2 0 7 14 2.2 2 33 27 2.2 0 21 51 2.2 0 1
7 2.8 0 12 14 2.8 0 31 27 2.8 1 22 51 4.0 0 1
7 4.0 0 9 14 4.0 0 19 27 4.0 1 16
;

The following invocation of PROC GENMOD fits an asymptotic (unconditional) Poisson regression model
to the data. The variable Notready is specified as the response variable, and the continuous predictors Heat
and Soak are defined in the CLASS statement as categorical predictors that use reference coding. Specifying
the offset variable as lnTotal enables you to model the ratio Notready/Total.

proc genmod data=ingots;
class Heat Soak / param=ref;
model Notready=Heat Soak / offset=lnTotal dist=Poisson link=log;
exact Heat Soak / joint estimate;
exactoptions statustime=10;

run;

The EXACT statement is specified to additionally fit an exact conditional Poisson regression model. Spec-
ifying the lnTotal offset variable models the ratio Notready/Total; in this case, the Total variable contains
the largest possible response value for each observation. The JOINT option produces a joint test for the
significance of the covariates, along with the usual marginal tests. The ESTIMATE option produces exact
parameter estimates for the covariates. The STATUSTIME=10 option is specified in the EXACTOPTIONS
statement for monitoring the progress of the results; this example can take several minutes to complete due to
the JOINT option. If you run out of memory, see the SAS Companion for your system for information about
how to increase the available memory.

The “Criteria For Assessing Goodness Of Fit” table is displayed in Output 43.11.1. Comparing the deviance
of 10.9363 to an asymptotic chi-square distribution with 11 degrees of freedom, you find that the p-value is
0.449. This indicates that the specified model fits the data reasonably well.

Output 43.11.1 Unconditional Goodness of Fit Criteria

The GENMOD ProcedureThe GENMOD Procedure

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 11 10.9363 0.9942

Scaled Deviance 11 10.9363 0.9942

Pearson Chi-Square 11 9.3722 0.8520

Scaled Pearson X2 11 9.3722 0.8520

Log Likelihood -7.2408

Full Log Likelihood -12.9038

AIC (smaller is better) 41.8076

AICC (smaller is better) 56.2076

BIC (smaller is better) 49.3631

From the “Analysis Of Parameter Estimates” table in Output 43.11.2, you can see that only two of the Heat
parameters are deemed significant. Looking at the standard errors, you can see that the unconditional analysis
had convergence difficulties with the Heat=7 parameter (Standard Error=264324.6), which means you cannot
fit this unconditional Poisson regression model to this data.



Example 43.11: Exact Poisson Regression F 3041

Output 43.11.2 Unconditional Maximum Likelihood Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

Wald 95%
Confidence

Limits
Wald

Chi-Square Pr > ChiSq

Intercept 1 -1.5700 1.1657 -3.8548 0.7147 1.81 0.1780

Heat 7 1 -27.6129 264324.6 -518094 518039.0 0.00 0.9999

Heat 14 1 -3.0107 1.0025 -4.9756 -1.0458 9.02 0.0027

Heat 27 1 -1.7180 0.7691 -3.2253 -0.2106 4.99 0.0255

Soak 1 1 -0.2454 1.1455 -2.4906 1.9998 0.05 0.8304

Soak 1.7 1 0.5572 1.1217 -1.6412 2.7557 0.25 0.6193

Soak 2.2 1 0.4079 1.2260 -1.9951 2.8109 0.11 0.7394

Soak 2.8 1 -0.1301 1.4234 -2.9199 2.6597 0.01 0.9272

Scale 0 1.0000 0.0000 1.0000 1.0000

Note: The scale parameter was held fixed.

Following the output from the asymptotic analysis, the exact conditional Poisson regression results are
displayed, as shown in Output 43.11.3.

Output 43.11.3 Exact Tests

The GENMOD Procedure

Exact Conditional Analysis

The GENMOD Procedure

Exact Conditional Analysis

Exact Conditional Tests

p-Value

Effect Test Statistic Exact Mid

Joint Score 18.3665 0.0137 0.0137

Probability 1.294E-6 0.0471 0.0471

Heat Score 15.8259 0.0023 0.0022

Probability 0.000175 0.0063 0.0062

Soak Score 1.4612 0.8683 0.8646

Probability 0.00735 0.8176 0.8139

The Joint test in the “Conditional Exact Tests” table in Output 43.11.3 is produced by specifying the JOINT
option in the EXACT statement. The p-values for this test indicate that the parameters for Heat and Soak are
jointly significant as explanatory effects in the model. If the Heat variable is the only explanatory variable
in your model, then the rows of this table labeled as “Heat” show the joint significance of all the Heat
effect parameters in that reduced model. In this case, a model that contains only the Heat parameters still
explains a significant amount of the variability; however, you can see that a model that contains only the
Soak parameters would not be significant.

The “Exact Parameter Estimates” table in Output 43.11.4 displays parameter estimates and tests of significance
for the levels of the CLASS variables. Again, the Heat=7 parameter has some difficulties; however, in the
exact analysis, a median unbiased estimate is computed for the parameter instead of a maximum likelihood
estimate. The confidence limits show that the Heat variable contains some explanatory power, while the
categorical Soak variable is insignificant and can be dropped from the model.
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Output 43.11.4 Exact Parameter Estimates

Exact Parameter Estimates

Parameter Estimate
Standard

Error

95%
Confidence

Limits
Two-sided

p-Value

Heat 7 -2.7552 * . -Infinity -0.7864 0.0199

Heat 14 -3.0255 1.0128 -5.7450 -0.6194 0.0113

Heat 27 -1.7846 0.8065 -3.6779 0.2260 0.0844

Soak 1 -0.3231 1.1717 -2.8673 3.6754 1.0000

Soak 1.7 0.5375 1.1284 -1.8056 4.4588 1.0000

Soak 2.2 0.4035 1.2347 -2.5785 4.5054 1.0000

Soak 2.8 -0.1661 1.4214 -4.5490 4.2168 1.0000

Note: * indicates a median unbiased estimate.

NOTE: If you want to make predictions from the exact results, you can obtain an estimate for the intercept
parameter by specifying the INTERCEPT keyword in the EXACT statement. You should also remove the
JOINT option to reduce the amount of time and memory consumed.

Example 43.12: Tweedie Regression
The following SAS statements simulate 250 observations, which are based on an underlying Tweedie
generalized linear model (GLM) that exploits its connection with the compound Poisson distribution. A
natural logarithm link function is assumed for modeling the response variable (yTweedie), and there are five
categorical variables (C1–C5), each of which has four numerical levels and two continuous variables (D1 and
D2). By design, two of the categorical variables, C3 and C4, and one of the two continuous variables, D2,
have no effect on the response. The dispersion parameter is set to 0.5, and the power parameter is set to 1.5.

%let nObs = 250;
%let nClass = 5;
%let nLevs = 4;
%let seed = 100;

data tmp1;
array c{&nClass};

keep c1-c&nClass yTweedie d1 d2;

/* Tweedie parms */
phi=0.5;
p=1.5;

do i=1 to &nObs;

do j=1 to &nClass;
c{j} = int(ranuni(1)*&nLevs);

end;

d1 = ranuni(&seed);
d2 = ranuni(&seed);
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xBeta = 0.5*((c2<2) - 2*(c1=1) + 0.5*c&nClass + 0.05*d1);
mu = exp(xBeta);

/* Poisson distributions parms */
lambda = mu**(2-p)/(phi*(2-p));
/* Gamma distribution parms */
alpha = (2-p)/(p-1);
gamma = phi*(p-1)*(mu**(p-1));

rpoi = ranpoi(&seed,lambda);
if rpoi=0 then yTweedie=0;
else do;

yTweedie=0;
do j=1 to rpoi;
yTweedie = yTweedie + rangam(&seed,alpha);
end;
yTweedie = yTweedie * gamma;

end;
output;

end;
run;

The following SAS statements invoke PROC GENMOD to fit the Tweedie GLM with the log link using all
of the categorical and continuous variables. A Type III analysis is requested by the TYPE3 option in the
MODEL statement.

proc genmod data=tmp1;
class C1-C5;
model yTweedie = C1-C5 D1 D2 / dist=Tweedie type3;

run;

The “Criteria For Assessing Goodness Of Fit” table is displayed in Output 43.12.1. The scaled Pearson �2 is
close to 1, indicating that the specified model fits the data well.

Output 43.12.1 Tweedie Goodness of Fit Criteria

The GENMOD ProcedureThe GENMOD Procedure

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Pearson Chi-Square 232 101.9124 0.4393

Scaled Pearson X2 232 251.5826 1.0844

Log Likelihood -297.2106

Full Log Likelihood -297.2106

AIC (smaller is better) 634.4212

AICC (smaller is better) 638.0893

BIC (smaller is better) 704.8504

The “LR Statistics For Type 3 Analysis” table is displayed in Output 43.12.2. As expected, the p-values for
C3, C4, and d2 are not statistically significant at the 5% level.
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Output 43.12.2 Type III Analysis of Covariate Effects

LR Statistics For Type 3 Analysis

Source DF Chi-Square Pr > ChiSq

c1 3 85.46 <.0001

c2 3 48.18 <.0001

c3 3 0.56 0.9050

c4 3 9.38 0.0247

c5 3 47.76 <.0001

d1 1 0.00 0.9595

d2 1 1.31 0.2518

You can fix the power parameter for fitting the Tweedie GLM by using the P= option. The following SAS
statements fit the model for C1, C2 and D1, while holding the power parameter at 1.5:

proc genmod data=tmp1;
class C1 C2;
model yTweedie = C1 C2 D1 / dist=Tweedie(p=1.5) type3;

run;

The parameter estimates are displayed in Output 43.12.3.

Output 43.12.3 Tweedie Maximum Likelihood Parameter Estimates

The GENMOD ProcedureThe GENMOD Procedure

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

Wald 95%
Confidence

Limits
Wald

Chi-Square Pr > ChiSq

Intercept 1 0.3440 0.1347 0.0801 0.6080 6.53 0.0106

c1 0 1 -0.0722 0.1101 -0.2880 0.1436 0.43 0.5120

c1 1 1 -0.8952 0.1196 -1.1296 -0.6607 56.01 <.0001

c1 2 1 0.0770 0.1073 -0.1334 0.2873 0.51 0.4733

c1 3 0 0.0000 0.0000 0.0000 0.0000 . .

c2 0 1 0.6138 0.1161 0.3862 0.8414 27.93 <.0001

c2 1 1 0.5103 0.1150 0.2849 0.7356 19.70 <.0001

c2 2 1 0.1001 0.1215 -0.1380 0.3381 0.68 0.4099

c2 3 0 0.0000 0.0000 0.0000 0.0000 . .

d1 1 -0.0211 0.1493 -0.3136 0.2714 0.02 0.8876

Dispersion 1 0.4951 0.0398 0.4172 0.5731

Power 0 1.5000 0.0000 1.5000 1.5000

Note: The Tweedie dispersion parameter was estimated by maximum likelihood.
Note: The Tweedie power parameter was held fixed.
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Overview: GLIMMIX Procedure
The GLIMMIX procedure fits statistical models to data with correlations or nonconstant variability and
where the response is not necessarily normally distributed. These models are known as generalized linear
mixed models (GLMM).

GLMMs, like linear mixed models, assume normal (Gaussian) random effects. Conditional on these random
effects, data can have any distribution in the exponential family. The exponential family comprises many of
the elementary discrete and continuous distributions. The binary, binomial, Poisson, and negative binomial
distributions, for example, are discrete members of this family. The normal, beta, gamma, and chi-square
distributions are representatives of the continuous distributions in this family. In the absence of random
effects, the GLIMMIX procedure fits generalized linear models (fit by the GENMOD procedure).

GLMMs are useful for the following applications:

• estimating trends in disease rates

• modeling CD4 counts in a clinical trial over time

• modeling the proportion of infected plants on experimental units in a design with randomly selected
treatments or randomly selected blocks

• predicting the probability of high ozone levels in counties

• modeling skewed data over time

• analyzing customer preference

• joint modeling of multivariate outcomes

Such data often display correlations among some or all observations as well as nonnormality. The correlations
can arise from repeated observation of the same sampling units, shared random effects in an experimental
design, spatial (temporal) proximity, multivariate observations, and so on.

The GLIMMIX procedure does not fit hierarchical models with nonnormal random effects. With the
GLIMMIX procedure you select the distribution of the response variable conditional on normally distributed
random effects.

For more information about the differences between the GLIMMIX procedure and SAS procedures that
specialize in certain subsets of the GLMM models, see the section “PROC GLIMMIX Contrasted with Other
SAS Procedures” on page 3056.

Basic Features
The GLIMMIX procedure enables you to specify a generalized linear mixed model and to perform confirma-
tory inference in such models. The syntax is similar to that of the MIXED procedure and includes CLASS,
MODEL, and RANDOM statements. For instructions on how to specify PROC MIXED REPEATED effects
with PROC GLIMMIX, see the section “Comparing the GLIMMIX and MIXED Procedures” on page 3236.
The following are some of the basic features of PROC GLIMMIX.
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• SUBJECT= and GROUP= options, which enable blocking of variance matrices and parameter hetero-
geneity

• choice of linearization approach or integral approximation by quadrature or Laplace method for mixed
models with nonlinear random effects or nonnormal distribution

• choice of linearization about expected values or expansion about current solutions of best linear
unbiased predictors

• flexible covariance structures for random and residual random effects, including variance components,
unstructured, autoregressive, and spatial structures

• CONTRAST, ESTIMATE, LSMEANS, and LSMESTIMATE statements, which produce hypothesis
tests and estimable linear combinations of effects

• NLOPTIONS statement, which enables you to exercise control over the numerical optimization. You
can choose techniques, update methods, line search algorithms, convergence criteria, and more. Or,
you can choose the default optimization strategies selected for the particular class of model you are
fitting.

• computed variables with SAS programming statements inside of PROC GLIMMIX (except for variables
listed in the CLASS statement). These computed variables can appear in the MODEL, RANDOM,
WEIGHT, or FREQ statement.

• grouped data analysis

• user-specified link and variance functions

• choice of model-based variance-covariance estimators for the fixed effects or empirical (sandwich)
estimators to make analysis robust against misspecification of the covariance structure and to adjust for
small-sample bias

• joint modeling for multivariate data. For example, you can model binary and normal responses from a
subject jointly and use random effects to relate (fuse) the two outcomes.

• multinomial models for ordinal and nominal outcomes

• univariate and multivariate low-rank mixed model smoothing

Assumptions
The primary assumptions underlying the analyses performed by PROC GLIMMIX are as follows:

• If the model contains random effects, the distribution of the data conditional on the random effects is
known. This distribution is either a member of the exponential family of distributions or one of the
supplementary distributions provided by the GLIMMIX procedure. In models without random effects,
the unconditional (marginal) distribution is assumed to be known for maximum likelihood estimation,
or the first two moments are known in the case of quasi-likelihood estimation.
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• The conditional expected value of the data takes the form of a linear mixed model after a monotonic
transformation is applied.

• The problem of fitting the GLMM can be cast as a singly or doubly iterative optimization problem. The
objective function for the optimization is a function of either the actual log likelihood, an approximation
to the log likelihood, or the log likelihood of an approximated model.

For a model containing random effects, the GLIMMIX procedure, by default, estimates the parameters by
applying pseudo-likelihood techniques as in Wolfinger and O’Connell (1993) and Breslow and Clayton
(1993). In a model without random effects (GLM models), PROC GLIMMIX estimates the parameters
by maximum likelihood, restricted maximum likelihood, or quasi-likelihood. See the section “Singly or
Doubly Iterative Fitting” on page 3239 about when the GLIMMIX procedure applies noniterative, singly and
doubly iterative algorithms, and the section “Default Estimation Techniques” on page 3241 about the default
estimation methods. You can also fit generalized linear mixed models by maximum likelihood where the
marginal distribution is numerically approximated by the Laplace method (METHOD=LAPLACE) or by
adaptive Gaussian quadrature (METHOD=QUAD).

Once the parameters have been estimated, you can perform statistical inferences for the fixed effects and
covariance parameters of the model. Tests of hypotheses for the fixed effects are based on Wald-type tests
and the estimated variance-covariance matrix. The COVTEST statement enables you to perform inferences
about covariance parameters based on likelihood ratio tests.

PROC GLIMMIX uses the Output Delivery System (ODS) for displaying and controlling the output from
SAS procedures. ODS enables you to convert any of the output from PROC GLIMMIX into a SAS data set.
See the section “ODS Table Names” on page 3247 for more information.

The GLIMMIX procedure uses ODS Graphics to create graphs as part of its output. For general information
about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.” For specific information about the
statistical graphics available with the GLIMMIX procedure, see the PLOTS options in the PROC GLIMMIX
and LSMEANS statements.

Notation for the Generalized Linear Mixed Model
This section introduces the mathematical notation used throughout the chapter to describe the generalized
linear mixed model (GLMM). See the section “Details: GLIMMIX Procedure” on page 3180 for a description
of the fitting algorithms and the mathematical-statistical details.

The Basic Model

Suppose Y represents the .n� 1/ vector of observed data and  is a .r � 1/ vector of random effects. Models
fit by the GLIMMIX procedure assume that

EŒYj� D g�1.Xˇ C Z/

where g.�/ is a differentiable monotonic link function and g�1.�/ is its inverse. The matrix X is an .n � p/
matrix of rank k, and Z is an .n � r/ design matrix for the random effects. The random effects are assumed
to be normally distributed with mean 0 and variance matrix G.
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The GLMM contains a linear mixed model inside the inverse link function. This model component is referred
to as the linear predictor,

� D Xˇ C Z

The variance of the observations, conditional on the random effects, is

VarŒYj� D A1=2RA1=2

The matrix A is a diagonal matrix and contains the variance functions of the model. The variance function
expresses the variance of a response as a function of the mean. The GLIMMIX procedure determines the
variance function from the DIST= option in the MODEL statement or from the user-supplied variance
function (see the section “Implied Variance Functions” on page 3177). The matrix R is a variance matrix
specified by the user through the RANDOM statement. If the conditional distribution of the data contains an
additional scale parameter, it is either part of the variance functions or part of the R matrix. For example,
the gamma distribution with mean � has the variance function a.�/ D �2 and VarŒY j� D �2�. If your
model calls for G-side random effects only (see the next section), the procedure models R D �I, where I is
the identity matrix. Table 44.19 identifies the distributions for which � � 1.

G-Side and R-Side Random Effects and Covariance Structures

The GLIMMIX procedure distinguishes two types of random effects. Depending on whether the parameters
of the covariance structure for random components in your model are contained in G or in R, the procedure
distinguishes between “G-side” and “R-side” random effects. The associated covariance structures of G and
R are similarly termed the G-side and R-side covariance structure, respectively. R-side effects are also called
“residual” effects. Simply put, if a random effect is an element of  , it is a G-side effect and you are modeling
the G-side covariance structure; otherwise, you are modeling the R-side covariance structure of the model.
Models without G-side effects are also known as marginal (or population-averaged) models. Models fit with
the GLIMMIX procedure can have none, one, or more of each type of effect.

Note that an R-side effect in the GLIMMIX procedure is equivalent to a REPEATED effect in the MIXED
procedure. The R-side covariance structure in the GLIMMIX procedure is the covariance structure that you
would formulate with the REPEATED statement in the MIXED procedure. In the GLIMMIX procedure all
random effects and their covariance structures are specified through the RANDOM statement. See the section
“Comparing the GLIMMIX and MIXED Procedures” on page 3236 for a comparison of the GLIMMIX and
MIXED procedures.

The columns of X are constructed from effects listed on the right side in the MODEL statement. Columns of
Z and the variance matrices G and R are constructed from the RANDOM statement.

The R matrix is by default the scaled identity matrix, R D �I. The scale parameter � is set to one if
the distribution does not have a scale parameter, such as in the case of the binary, binomial, Poisson, and
exponential distribution (see Table 44.19). To specify a different R matrix, use the RANDOM statement with
the _RESIDUAL_ keyword or the RESIDUAL option. For example, to specify that the Time effect for each
patient is an R-side effect with a first-order autoregressive covariance structure, use the RESIDUAL option:

random time / type=ar(1) subject=patient residual;
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To add a multiplicative overdispersion parameter, use the _RESIDUAL_ keyword:

random _residual_;

You specify the link function g.�/ with the LINK= option in the MODEL statement or with programming
statements. You specify the variance function that controls the matrix A with the DIST= option in the
MODEL statement or with programming statements.

Unknown quantities subject to estimation are the fixed-effects parameter vector ˇ and the covariance
parameter vector � that comprises all unknowns in G and R. The random effects  are not parameters of the
model in the sense that they are not estimated. The vector  is a vector of random variables. The solutions
for  are predictors of these random variables.

Relationship with Generalized Linear Models

Generalized linear models (Nelder and Wedderburn 1972; McCullagh and Nelder 1989) are a special case
of GLMMs. If  D 0 and R D �I, the GLMM reduces to either a generalized linear model (GLM) or
a GLM with overdispersion. For example, if Y is a vector of Poisson variables so that A is a diagonal
matrix containing EŒY� D � on the diagonal, then the model is a Poisson regression model for � D 1 and
overdispersed relative to a Poisson distribution for � > 1. Because the Poisson distribution does not have an
extra scale parameter, you can model overdispersion by adding the following statement to your GLIMMIX
program:

random _residual_;

If the only random effect is an overdispersion effect, PROC GLIMMIX fits the model by (restricted) maximum
likelihood and not by one of the methods specific to GLMMs.

PROC GLIMMIX Contrasted with Other SAS Procedures
The GLIMMIX procedure generalizes the MIXED and GENMOD procedures in two important ways. First,
the response can have a nonnormal distribution. The MIXED procedure assumes that the response is normally
(Gaussian) distributed. Second, the GLIMMIX procedure incorporates random effects in the model and
so allows for subject-specific (conditional) and population-averaged (marginal) inference. The GENMOD
procedure allows only for marginal inference.

The GLIMMIX and MIXED procedure are closely related; see the syntax and feature comparison in the
section “Comparing the GLIMMIX and MIXED Procedures” on page 3236. The remainder of this section
compares the GLIMMIX procedure with the GENMOD, NLMIXED, LOGISTIC, and CATMOD procedures.

The GENMOD procedure fits generalized linear models for independent data by maximum likelihood. It
can also handle correlated data through the marginal GEE approach of Liang and Zeger (1986) and Zeger
and Liang (1986). The GEE implementation in the GENMOD procedure is a marginal method that does not
incorporate random effects. The GEE estimation in the GENMOD procedure relies on R-side covariances
only, and the unknown parameters in R are estimated by the method of moments. The GLIMMIX procedure
allows G-side random effects and R-side covariances. PROC GLIMMIX can fit marginal (GEE-type) models,
but the covariance parameters are not estimated by the method of moments. The parameters are estimated
by likelihood-based techniques. When the GLIMMIX and GENMOD procedures fit a generalized linear
model where the distribution contains a scale parameter, such as the normal, gamma, inverse Gaussian,
or negative binomial distribution, the scale parameter is reported in the “Parameter Estimates” table. For
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some distributions, the parameterization of this parameter differs. See the section “Scale and Dispersion
Parameters” on page 3184 for details about how the GLIMMIX procedure parameterizes the log-likelihood
functions and information about how the reported quantities differ between the two procedures.

Many of the fit statistics and tests in the GENMOD procedure are based on the likelihood. In a GLMM
it is not always possible to derive the log likelihood of the data. Even if the log likelihood is tractable,
it might be computationally infeasible. In some cases, the objective function must be constructed based
on a substitute model. In other cases, only the first two moments of the marginal distribution can be
approximated. Consequently, obtaining likelihood-based tests and statistics is difficult for many generalized
linear mixed models. The GLIMMIX procedure relies heavily on linearization and Taylor-series techniques
to construct Wald-type test statistics and confidence intervals. Likelihood ratio tests and confidence intervals
for covariance parameters are available in the GLIMMIX procedure through the COVTEST statement.

The NLMIXED procedure fits nonlinear mixed models where the conditional mean function is a general
nonlinear function. The class of generalized linear mixed models is a special case of the nonlinear mixed
models; hence some of the models you can fit with PROC NLMIXED can also be fit with the GLIMMIX
procedure. The NLMIXED procedure relies by default on approximating the marginal log likelihood through
adaptive Gaussian quadrature. In the GLIMMIX procedure, maximum likelihood estimation by adaptive
Gaussian quadrature is available with the METHOD=QUAD option in the PROC GLIMMIX statement.
The default estimation methods thus differ between the NLMIXED and GLIMMIX procedures, because
adaptive quadrature is possible for only a subset of the models available with the GLIMMIX procedure. If
you choose METHOD=LAPLACE or METHOD=QUAD(QPOINTS=1) in the PROC GLIMMIX statement
for a generalized linear mixed model, the GLIMMIX procedure performs maximum likelihood estimation
based on a Laplace approximation of the marginal log likelihood. This is equivalent to the QPOINTS=1
option in the NLMIXED procedure.

The LOGISTIC and CATMOD procedures also fit generalized linear models; PROC LOGISTIC accommo-
dates the independence case only. Binary, binomial, multinomial models for ordered data, and generalized
logit models that can be fit with PROC LOGISTIC can also be fit with the GLIMMIX procedure. The
diagnostic tools and capabilities specific to such data implemented in the LOGISTIC procedure go beyond
the capabilities of the GLIMMIX procedure.

Getting Started: GLIMMIX Procedure

Logistic Regressions with Random Intercepts
Researchers investigated the performance of two medical procedures in a multicenter study. They randomly
selected 15 centers for inclusion. One of the study goals was to compare the occurrence of side effects for
the procedures. In each center nA patients were randomly selected and assigned to procedure “A,” and nB
patients were randomly assigned to procedure “B.” The following DATA step creates the data set for the
analysis:

data multicenter;
input center group$ n sideeffect;
datalines;

1 A 32 14
1 B 33 18
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2 A 30 4
2 B 28 8
3 A 23 14
3 B 24 9
4 A 22 7
4 B 22 10
5 A 20 6
5 B 21 12
6 A 19 1
6 B 20 3
7 A 17 2
7 B 17 6
8 A 16 7
8 B 15 9
9 A 13 1
9 B 14 5

10 A 13 3
10 B 13 1
11 A 11 1
11 B 12 2
12 A 10 1
12 B 9 0
13 A 9 2
13 B 9 6
14 A 8 1
14 B 8 1
15 A 7 1
15 B 8 0
;

The variable group identifies the two procedures, n is the number of patients who received a given procedure
in a particular center, and sideeffect is the number of patients who reported side effects.

If YiA and YiB denote the number of patients in center i who report side effects for procedures A and B,
respectively, then—for a given center—these are independent binomial random variables. To model the
probability of side effects for the two drugs, �iA and �iB , you need to account for the fixed group effect and
the random selection of centers. One possibility is to assume a model that relates group and center effects
linearly to the logit of the probabilities:

log
�

�iA

1 � �iA

�
D ˇ0 C ˇA C i

log
�

�iB

1 � �iB

�
D ˇ0 C ˇB C i

In this model, ˇA � ˇB measures the difference in the logits of experiencing side effects, and the i are
independent random variables due to the random selection of centers. If you think of ˇ0 as the overall
intercept in the model, then the i are random intercept adjustments. Observations from the same center
receive the same adjustment, and these vary randomly from center to center with variance VarŒi � D �2c .

Because �iA is the conditional mean of the sample proportion, EŒYiA=niAji � D �iA, you can model the
sample proportions as binomial ratios in a generalized linear mixed model. The following statements request
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this analysis under the assumption of normally distributed center effects with equal variance and a logit link
function:

proc glimmix data=multicenter;
class center group;
model sideeffect/n = group / solution;
random intercept / subject=center;

run;

The PROC GLIMMIX statement invokes the procedure. The CLASS statement instructs the procedure
to treat the variables center and group as classification variables. The MODEL statement specifies the
response variable as a sample proportion by using the events/trials syntax. In terms of the previous formulas,
sideeffect/n corresponds to YiA=niA for observations from group A and to YiB=niB for observations from
group B. The SOLUTION option in the MODEL statement requests a listing of the solutions for the fixed-
effects parameter estimates. Note that because of the events/trials syntax, the GLIMMIX procedure defaults
to the binomial distribution, and that distribution’s default link is the logit link. The RANDOM statement
specifies that the linear predictor contains an intercept term that randomly varies at the level of the center
effect. In other words, a random intercept is drawn separately and independently for each center in the study.

The results of this analysis are shown in Figure 44.1–Figure 44.9.

The “Model Information Table” in Figure 44.1 summarizes important information about the model you fit
and about aspects of the estimation technique.

Figure 44.1 Model Information

The GLIMMIX ProcedureThe GLIMMIX Procedure

Model Information

Data Set WORK.MULTICENTER

Response Variable (Events) sideeffect

Response Variable (Trials) n

Response Distribution Binomial

Link Function Logit

Variance Function Default

Variance Matrix Blocked By center

Estimation Technique Residual PL

Degrees of Freedom Method Containment

PROC GLIMMIX recognizes the variables sideeffect and n as the numerator and denominator in the
events/trials syntax, respectively. The distribution—conditional on the random center effects—is binomial.
The marginal variance matrix is block-diagonal, and observations from the same center form the blocks.
The default estimation technique in generalized linear mixed models is residual pseudo-likelihood with a
subject-specific expansion (METHOD=RSPL).

The “Class Level Information” table lists the levels of the variables specified in the CLASS statement and the
ordering of the levels. The “Number of Observations” table displays the number of observations read and
used in the analysis (Figure 44.2).
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Figure 44.2 Class Level Information and Number of Observations

Class Level Information

Class Levels Values

center 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

group 2 A B

Number of Observations Read 30

Number of Observations Used 30

Number of Events 155

Number of Trials 503

There are two variables listed in the CLASS statement. The center variable has fifteen levels, and the group
variable has two levels. Because the response is specified through the events/trial syntax, the “Number of
Observations” table also contains the total number of events and trials used in the analysis.

The “Dimensions” table lists the size of relevant matrices (Figure 44.3).

Figure 44.3 Dimensions

Dimensions

G-side Cov. Parameters 1

Columns in X 3

Columns in Z per Subject 1

Subjects (Blocks in V) 15

Max Obs per Subject 2

There are three columns in the X matrix, corresponding to an intercept and the two levels of the group
variable. For each subject (center), the Z matrix contains only an intercept column.

The “Optimization Information” table provides information about the methods and size of the optimization
problem (Figure 44.4).

Figure 44.4 Optimization Information

Optimization Information

Optimization Technique Dual Quasi-Newton

Parameters in Optimization 1

Lower Boundaries 1

Upper Boundaries 0

Fixed Effects Profiled

Starting From Data

The default optimization technique for generalized linear mixed models with binomial data is the quasi-
Newton method. Because a residual likelihood technique is used to compute the objective function, only the
covariance parameters participate in the optimization. A lower boundary constraint is placed on the variance
component for the random center effect. The solution for this variance cannot be less than zero.

The “Iteration History” table displays information about the progress of the optimization process. After the
initial optimization, the GLIMMIX procedure performed 15 updates before the convergence criterion was
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met (Figure 44.5). At convergence, the largest absolute value of the gradient was near zero. This indicates
that the process stopped at an extremum of the objective function.

Figure 44.5 Iteration History and Convergence Status

Iteration History

Iteration Restarts Subiterations
Objective
Function Change

Max
Gradient

0 0 5 79.688580269 0.11807224 7.851E-7

1 0 3 81.294622554 0.02558021 8.209E-7

2 0 2 81.438701534 0.00166079 4.061E-8

3 0 1 81.444083567 0.00006263 2.311E-8

4 0 1 81.444265216 0.00000421 0.000025

5 0 1 81.444277364 0.00000383 0.000023

6 0 1 81.444266322 0.00000348 0.000021

7 0 1 81.44427636 0.00000316 0.000019

8 0 1 81.444267235 0.00000287 0.000017

9 0 1 81.444275529 0.00000261 0.000016

10 0 1 81.44426799 0.00000237 0.000014

11 0 1 81.444274843 0.00000216 0.000013

12 0 1 81.444268614 0.00000196 0.000012

13 0 1 81.444274277 0.00000178 0.000011

14 0 1 81.444269129 0.00000162 9.772E-6

15 0 0 81.444273808 0.00000000 9.102E-6

Convergence criterion (PCONV=1.11022E-8) satisfied.

The “Fit Statistics” table lists information about the fitted model (Figure 44.6).

Figure 44.6 Fit Statistics

Fit Statistics

-2 Res Log Pseudo-Likelihood 81.44

Generalized Chi-Square 30.69

Gener. Chi-Square / DF 1.10

Twice the negative of the residual log likelihood in the final pseudo-model equaled 81.44. The ratio of the
generalized chi-square statistic and its degrees of freedom is close to 1. This is a measure of the residual
variability in the marginal distribution of the data.

The “Covariance Parameter Estimates” table displays estimates and asymptotic estimated standard errors for
all covariance parameters (Figure 44.7).

Figure 44.7 Covariance Parameter Estimates

Covariance Parameter Estimates

Cov Parm Subject Estimate
Standard

Error

Intercept center 0.6176 0.3181
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The variance of the random center intercepts on the logit scale is estimated asb�2c D 0:6176.

The “Parameter Estimates” table displays the solutions for the fixed effects in the model (Figure 44.8).

Figure 44.8 Parameter Estimates

Solutions for Fixed Effects

Effect group Estimate
Standard

Error DF t Value Pr > |t|

Intercept -0.8071 0.2514 14 -3.21 0.0063

group A -0.4896 0.2034 14 -2.41 0.0305

group B 0 . . . .

Because of the fixed-effects parameterization used in the GLIMMIX procedure, the “Intercept” effect is an
estimate of ˇ0 C ˇB , and the “A” group effect is an estimate of ˇA � ˇB , the log odds ratio. The associated
estimated probabilities of side effects in the two groups are

b�A D 1

1C expf0:8071C 0:4896g
D 0:2147

b�B D 1

1C expf0:8071g
D 0:3085

There is a significant difference between the two groups (p = 0.0305).

The “Type III Tests of Fixed Effect” table displays significance tests for the fixed effects in the model
(Figure 44.9).

Figure 44.9 Type III Tests of Fixed Effects

Type III Tests of Fixed Effects

Effect
Num

DF
Den

DF F Value Pr > F

group 1 14 5.79 0.0305

Because the group effect has only two levels, the p-value for the effect is the same as in the “Parameter
Estimates” table, and the “F Value” is the square of the “t Value” shown there.

You can produce the estimates of the average logits in the two groups and their predictions on the scale of the
data with the LSMEANS statement in PROC GLIMMIX:

ods select lsmeans;
proc glimmix data=multicenter;

class center group;
model sideeffect/n = group / solution;
random intercept / subject=center;
lsmeans group / cl ilink;

run;

The LSMEANS statement requests the least squares means of the group effect on the logit scale. The CL
option requests their confidence limits. The ILINK option adds estimates, standard errors, and confidence
limits on the mean (probability) scale (Figure 44.10).
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Figure 44.10 Least Squares Means

The GLIMMIX ProcedureThe GLIMMIX Procedure

group Least Squares Means

group Estimate
Standard

Error DF t Value Pr > |t| Alpha Lower Upper Mean

Standard
Error
Mean

Lower
Mean

Upper
Mean

A -1.2966 0.2601 14 -4.99 0.0002 0.05 -1.8544 -0.7388 0.2147 0.04385 0.1354 0.3233

B -0.8071 0.2514 14 -3.21 0.0063 0.05 -1.3462 -0.2679 0.3085 0.05363 0.2065 0.4334

The “Estimate” column displays the least squares mean estimate on the logit scale, and the “Mean” column
represents its mapping onto the probability scale. The “Lower” and “Upper” columns are 95% confidence
limits for the logits in the two groups. The “Lower Mean” and “Upper Mean” columns are the corresponding
confidence limits for the probabilities of side effects. These limits are obtained by inversely linking the
confidence bounds on the linear scale, and thus are not symmetric about the estimate of the probabilities.

Syntax: GLIMMIX Procedure
The following statements are available in the GLIMMIX procedure:

PROC GLIMMIX < options > ;
BY variables ;
CLASS variable < (REF= option) > . . . < variable < (REF= option) > > < / global-options > ;
CODE < options > ;
CONTRAST 'label ' contrast-specification < , contrast-specification > < , . . . > < / options > ;
COVTEST < 'label ' > < test-specification > < / options > ;
EFFECT effect-specification ;
ESTIMATE 'label ' contrast-specification < (divisor=n) >

< , 'label ' contrast-specification < (divisor=n) > > < , . . . > < / options > ;
FREQ variable ;
ID variables ;
LSMEANS fixed-effects < / options > ;
LSMESTIMATE fixed-effect < 'label ' > values < divisor=n >

< , < 'label ' > values < divisor=n > > < , . . . > < / options > ;
MODEL response< (response-options) > = < fixed-effects > < / model-options > ;
MODEL events/trials = < fixed-effects > < / model-options > ;
NLOPTIONS < options > ;
OUTPUT < OUT=SAS-data-set >

< keyword< (keyword-options) > < =name > > . . .
< keyword< (keyword-options) > < =name > > < / options > ;

PARMS (value-list). . . < / options > ;
RANDOM random-effects < / options > ;
SLICE model-effect < / options > ;
STORE < OUT= >item-store-name < / LABEL='label ' > ;
WEIGHT variable ;
Programming statements ;
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The CLASS, CONTRAST, COVTEST, EFFECT, ESTIMATE, LSMEANS, LSMESTIMATE, RANDOM
and SLICE statements and the programming statements can appear multiple times. The PROC GLIMMIX
and MODEL statements are required, and the MODEL statement must appear after the CLASS statement if a
CLASS statement is included. The EFFECT statements must appear before the MODEL statement.

The SLICE statement is also available in many other procedures. A summary description of functionality
and syntax for this statement is given in this chapter. You can find full documentation in the section “SLICE
Statement” on page 505 in Chapter 19, “Shared Concepts and Topics.”

PROC GLIMMIX Statement
PROC GLIMMIX < options > ;

The PROC GLIMMIX statement invokes the GLIMMIX procedure. Table 44.1 summarizes the options
available in the PROC GLIMMIX statement. These and other options in the PROC GLIMMIX statement are
then described fully in alphabetical order.

Table 44.1 PROC GLIMMIX Statement Options

Option Description

Basic Options
DATA= Specifies the input data set
METHOD= Determines estimation method
NOFIT Does not fit the model
NOPROFILE Includes scale parameter in optimization
NOREML Determines computation of scale parameters in GLM models
ORDER= Determines the sort order of CLASS variables
OUTDESIGN Writes X and/or Z matrices to a SAS data set
PROFILE Profile scale parameters from the optimization

Displayed Output
ASYCORR Displays the asymptotic correlation matrix of the covariance param-

eter estimates
ASYCOV Displays the asymptotic covariance matrix of the covariance param-

eter estimates
GRADIENT Displays the gradient of the objective function with respect to the

parameter estimates
HESSIAN Displays the Hessian matrix
ITDETAILS Adds estimates and gradients to the “Iteration History”
NAMELEN= Specifies the length of long effect names
NOBSDETAIL Shows data exclusions
NOCLPRINT Suppresses “Class Level Information” completely or in part
ODDSRATIO Requests odds ratios
PLOTS Produces ODS statistical graphics
SUBGRADIENT Writes subject-specific gradients to a SAS data set
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Table 44.1 continued

Option Description

Optimization Options
MAXOPT= Specifies the number of optimizations

Computational Options
CHOLESKY Constructs and solves mixed model equations using the Cholesky

root of the G matrix
EMPIRICAL Computes empirical (“sandwich”) estimators
EXPHESSIAN Uses the expected Hessian matrix to compute the covariance matrix

of nonprofiled parameters
INFOCRIT Affects the computation of information criteria
INITGLM Uses fixed-effects starting values via generalized linear model
INITITER= Sets the number of initial GLM steps
NOBOUND Unbounds the covariance parameter estimates
NOINITGLM Does not use fixed-effects starting values via generalized linear

model
SCORING= Applies Fisher scoring where applicable
SCOREMOD Bases the Hessian matrix in GLMMs on a modified scoring

algorithm

Singularity Tolerances
ABSPCONV= Determines the absolute parameter estimate convergence criterion

for PL
FDIGITS= Specifies significant digits in computing objective function
PCONV= Specifies the relative parameter estimate convergence criterion for

PL
SINGCHOL= Tunes singularity for Cholesky decompositions
SINGRES= Tunes singularity for the residual variance
SINGULAR= Tunes general singularity criterion

Debugging Output
LIST Lists model program and variables

You can specify the following options in the PROC GLIMMIX statement.

ABSPCONV=r
specifies an absolute parameter estimate convergence criterion for doubly iterative estimation methods.
For such methods, the GLIMMIX procedure by default examines the relative change in parameter
estimates between optimizations (see PCONV=). The purpose of the ABSPCONV= criterion is to stop
the process when the absolute change in parameter estimates is less than the tolerance criterion r . The
criterion is based on fixed effects and covariance parameters.

Note that this convergence criterion does not affect the convergence criteria applied within any
individual optimization. In order to change the convergence behavior within an optimization, you can
change the ABSCONV=, ABSFCONV=, ABSGCONV=, ABSXCONV=, FCONV=, or GCONV=
option in the NLOPTIONS statement.
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ASYCORR
produces the asymptotic correlation matrix of the covariance parameter estimates. It is computed from
the corresponding asymptotic covariance matrix (see the description of the ASYCOV option, which
follows).

ASYCOV
requests that the asymptotic covariance matrix of the covariance parameter estimates be displayed. By
default, this matrix is the observed inverse Fisher information matrix, which equals mH�1, where H is
the Hessian (second derivative) matrix of the objective function. The factor m equals 1 in a GLM and
equals 2 in a GLMM.

When you use the SCORING= option and PROC GLIMMIX converges without stopping the scoring
algorithm, the procedure uses the expected Hessian matrix to compute the covariance matrix instead
of the observed Hessian. Regardless of whether a scoring algorithm is used or the number of scoring
iterations has been exceeded, you can request that the asymptotic covariance matrix be based on the
expected Hessian with the EXPHESSIAN option in the PROC GLIMMIX statement. If a residual
scale parameter is profiled from the likelihood equation, the asymptotic covariance matrix is adjusted
for the presence of this parameter; details of this adjustment process are found in Wolfinger, Tobias,
and Sall (1994) and in the section “Estimated Precision of Estimates” on page 3189.

CHOLESKY

CHOL
requests that the mixed model equations be constructed and solved by using the Cholesky root of the
G matrix. This option applies only to estimation methods that involve mixed model equations. The
Cholesky root algorithm has greater numerical stability but also requires more computing resources.
When the estimated G matrix is not positive definite during a particular function evaluation, PROC
GLIMMIX switches to the Cholesky algorithm for that evaluation and returns to the regular algorithm
if bG becomes positive definite again. When the CHOLESKY option is in effect, the procedure applies
the algorithm all the time.

DATA=SAS-data-set
names the SAS data set to be used by PROC GLIMMIX. The default is the most recently created data
set.

EMPIRICAL< =CLASSICAL | HC0 >

EMPIRICAL< =DF | HC1 >

EMPIRICAL< =MBN< (mbn-options) > >

EMPIRICAL< =ROOT | HC2 >

EMPIRICAL< =FIRORES | HC3 >

EMPIRICAL< =FIROEEQ< (r ) > >
requests that the covariance matrix of the parameter estimates be computed as one of the asymptotically
consistent estimators, known as sandwich or empirical estimators. The name stems from the layering
of the estimator. An empirically based estimate of the inverse variance of the parameter estimates (the
“meat”) is wrapped by the model-based variance estimate (the “bread”).

Empirical estimators are useful for obtaining inferences that are not sensitive to the choice of the
covariance model. In nonmixed models, they can help, for example, to allay the effects of variance
heterogeneity on the tests of fixed effects. Empirical estimators can coarsely be grouped into likelihood-
based and residual-based estimators. The distinction arises from the components used to construct the



PROC GLIMMIX Statement F 3067

“meat” and “bread” of the estimator. If you specify the EMPIRICAL option without further qualifiers,
the GLIMMIX procedure computes the classical sandwich estimator in the appropriate category.

Likelihood-Based Estimator

Let H.˛/ denote the second derivative matrix of the log likelihood for some parameter vector ˛, and let
gi .˛/ denote the gradient of the log likelihood with respect to ˛ for the ith of m independent sampling
units. The gradient for the entire data is

Pm
iD1 gi .˛/. A sandwich estimator for the covariance matrix

of b̨ can then be constructed as (White 1982)

H.b̨/�1  mX
iD1

gi .b̨/gi .b̨/0!H.b̨/�1
If you fit a mixed model by maximum likelihood with Laplace or quadrature approximation
(METHOD=LAPLACE, METHOD=QUAD), the GLIMMIX procedure constructs this likelihood-
based estimator when you choose EMPIRICAL=CLASSICAL. If you choose EMPIRICAL=MBN,
the likelihood-based sandwich estimator is further adjusted (see the section “Design-Adjusted MBN
Estimator” on page 3215 for details). Because Laplace and quadrature estimation in GLIMMIX
includes the fixed-effects parameters and the covariance parameters in the optimization, this empirical
estimator adjusts the covariance matrix of both types of parameters. The following empirical esti-
mators are not available with METHOD=LAPLACE or with METHOD=QUAD: EMPIRICAL=DF,
EMPIRICAL=ROOT, EMPIRICAL=FIRORES, and EMPIRICAL=FIROEEQ.

Residual-Based Estimators

For a general model, let Y denote the response with mean � and variance †, and let D be the matrix
of first derivatives of � with respect to the fixed effects ˇ. The classical sandwich estimator (Huber
1967; White 1980) is

b� mX
iD1

bD0ib†�1i eie0ib†�1i bDi! b�
where� D .D0†�1D/�, ei D yi �b�i , and m denotes the number of independent sampling units.

Since the expected value of eie0i does not equal †i , the classical sandwich estimator is biased,
particularly if m is small. The estimator tends to underestimate the variance of b̌. The EMPIRICAL=DF,
ROOT, FIRORES, FIROEEQ, and MBN estimators are bias-corrected sandwich estimators. The DF
estimator applies a simple sample size adjustment. The ROOT, FIRORES, and FIROEEQ estimators are
based on Taylor series approximations applied to residuals and estimating equations. For uncorrelated
data, the EMPIRICAL=FIRORES estimator can be motivated as a jackknife estimator.

In the case of a linear regression model, the various estimators reduce to the heteroscedasticity-
consistent covariance matrix estimators (HCMM) of White (1980) and MacKinnon and White (1985).
The classical estimator, HC0, was found to perform poorly in small samples. Based on simulations in
regression models, MacKinnon and White (1985) and Long and Ervin (2000) strongly recommend the
HC3 estimator. The sandwich estimators computed by the GLIMMIX procedure can be viewed as an
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extension of the HC0—HC3 estimators of MacKinnon and White (1985) to accommodate nonnormal
data and correlated observations.

The MBN estimator, introduced as a residual-based estimator (Morel 1989; Morel, Bokossa, and
Neerchal 2003), applies an additive adjustment to the residual crossproduct. It is controlled by three
suboptions. The valid mbn-options are as follows: a sample size adjustment is applied when the DF
suboption is in effect. The NODF suboption suppresses this component of the adjustment. The lower
bound of the design effect parameter 0 � r � 1 can be specified with the R= option. The magnitude of
Morel’s ı parameter is partly determined with the D= option (d � 1).

For details about the general expression for the residual-based estimators and their relationship, see the
section “Empirical Covariance (“Sandwich”) Estimators” on page 3213. The MBN estimator and its
parameters are explained for residual- and likelihood-based estimators in the section “Design-Adjusted
MBN Estimator” on page 3215.

The EMPIRICAL=DF estimator applies a simple, multiplicative correction factor to the classical
estimator (Hinkley 1977). This correction factor is

c D

�
m=.m � k/ m > k

1 otherwise

where k is the rank of X, and m equals the sum of all frequencies when PROC GLIMMIX is in GLM
mode and equals the number of subjects in GLMM mode. For example, the following statements fit an
overdispersed GLM:

proc glimmix empirical;
model y = x;
random _residual_;

run;

PROC GLIMMIX is in GLM mode, and the individual observations are the independent sampling units
from which the sandwich estimator is constructed. If you use a SUBJECT= effect in the RANDOM
statement, however, the procedure fits the model in GLMM mode and the subjects represent the
sampling units in the construction of the sandwich estimator. In other words, the following statements
fit a GEE-type model with independence working covariance structure and subjects (clusters) defined
by the levels of ID:

proc glimmix empirical;
class id;
model y = x;
random _residual_ / subject=id type=vc;

run;

See the section “GLM Mode or GLMM Mode” on page 3203 for information about how the GLIMMIX
procedure determines the estimation mode.

The EMPIRICAL=ROOT estimator is based on the residual approximation in Kauermann and Carroll
(2001), and the EMPIRICAL=FIRORES estimator is based on the approximation in Mancl and DeR-
ouen (2001). The Kauermann and Carroll estimator requires the inverse square root of a nonsymmetric
matrix. This square root matrix is obtained from the singular value decomposition in PROC GLIM-
MIX, and thus this sandwich estimator is computationally more demanding than others. In the linear
regression case, the Mancl-DeRouen estimator can be motivated as a jackknife estimator, based on the
“leave-one-out” estimates of b̌; see MacKinnon and White (1985) for details.



PROC GLIMMIX Statement F 3069

The EMPIRICAL=FIROEEQ estimator is based on approximating an unbiased estimating equation
(Fay and Graubard 2001). It is computationally less demanding than the estimator of Kauermann and
Carroll (2001) and, in certain balanced cases, gives identical results. The optional number 0 � r < 1
is chosen to provide an upper bound on the correction factor. The default value for r is 0.75.

When you specify the EMPIRICAL option with a residual-based estimator, PROC GLIMMIX adjusts
all standard errors and test statistics involving the fixed-effects parameters.

Sampling Units

Computation of an empirical variance estimator requires that the data can be processed by independent
sampling units. This is always the case in GLMs. In this case, m, the number of independent units,
equals the sum of the frequencies used in the analysis (see “Number of Observations” table). In
GLMMs, empirical estimators can be computed only if the data comprise more than one subject as per
the “Dimensions” table. See the section “Processing by Subjects” on page 3218 for information about
how the GLIMMIX procedure determines whether the data can be processed by subjects. If a GLMM
comprises only a single subject for a particular BY group, the model-based variance estimator is used
instead of the empirical estimator, and a message is written to the log.

EXPHESSIAN
requests that the expected Hessian matrix be used in computing the covariance matrix of the nonprofiled
parameters. By default, the GLIMMIX procedure uses the observed Hessian matrix in computing the
asymptotic covariance matrix of covariance parameters in mixed models and the covariance matrix of
fixed effects in models without random effects. The EXPHESSIAN option is ignored if the (conditional)
distribution is not a member of the exponential family or is unknown. It is also ignored in models for
nominal data.

FDIGITS=r
specifies the number of accurate digits in evaluations of the objective function. Fractional values are
allowed. The default value is r D � log10 �, where � is the machine precision. The value of r is used
to compute the interval size for the computation of finite-difference approximations of the derivatives
of the objective function. It is also used in computing the default value of the FCONV= option in the
NLOPTIONS statement.

GRADIENT
displays the gradient of the objective function with respect to the parameter estimates in the “Covariance
Parameter Estimates” table and/or the “Parameter Estimates” table.

HESSIAN

HESS

H
displays the Hessian matrix of the optimization.

INFOCRIT=NONE | PQ | Q

IC=NONE | PQ | Q
determines the computation of information criteria in the “Fit Statistics” table. The GLIMMIX
procedure computes various information criteria that typically apply a penalty to the (possibly restricted)
log likelihood, log pseudo-likelihood, or log quasi-likelihood that depends on the number of parameters
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and/or the sample size. If IC=NONE, these criteria are suppressed in the “Fit Statistics” table. This is
the default for models based on pseudo-likelihoods.

The AIC, AICC, BIC, CAIC, and HQIC fit statistics are various information criteria. AIC and AICC
represent Akaike’s information criteria (Akaike 1974) and a small sample bias corrected version thereof
(for AICC, see Hurvich and Tsai 1989; Burnham and Anderson 1998). BIC represents Schwarz’s
Bayesian criterion (Schwarz 1978). Table 44.2 gives formulas for the criteria.

Table 44.2 Information Criteria

Criterion Formula Reference

AIC �2`C 2d Akaike (1974)

AICC �2`C 2dn�=.n� � d � 1/ Hurvich and Tsai (1989)
Burnham and Anderson (1998)

HQIC �2`C 2d log log n Hannan and Quinn (1979)

BIC �2`C d log n Schwarz (1978)

CAIC �2`C d.log nC 1/ Bozdogan (1987)

Here, ` denotes the maximum value of the (possibly restricted) log likelihood, log pseudo-likelihood,
or log quasi-likelihood, d is the dimension of the model, and n, n� reflect the size of the data.

The IC=PQ option requests that the penalties include the number of fixed-effects parameters,
when estimation in models with random effects is based on a residual (restricted) likelihood. For
METHOD=MSPL, METHOD=MMPL, METHOD=LAPLACE, and METHOD=QUAD, IC=Q and
IC=PQ produce the same results. IC=Q is the default for linear mixed models with normal errors, and
the resulting information criteria are identical to the IC option in the MIXED procedure.

The quantities d, n, and n� depend on the model and IC= option in the following way:

GLM: IC=Q and IC=PQ options have no effect on the computation.

• d equals the number of parameters in the optimization whose solutions do
not fall on the boundary or are otherwise constrained. The scale parameter is
included, if it is part of the optimization. If you use the PARMS statement to
place a hold on a scale parameter, that parameter does not count toward d.

• n equals the sum of the frequencies (f ) for maximum likelihood and quasi-
likelihood estimation and f � rank.X/ for restricted maximum likelihood
estimation.

• n� equals n, unless n < d C 2, in which case n� D d C 2.

GLMM, IC=Q: • d equals the number of effective covariance parameters—that is, covariance
parameters whose solution does not fall on the boundary. For estimation of
an unrestricted objective function (METHOD=MMPL, METHOD=MSPL,
METHOD=LAPLACE, METHOD=QUAD), this value is incremented by
rank.X/.

• n equals the effective number of subjects as displayed in the “Dimensions”
table, unless this value equals 1, in which case n equals the number of levels of



PROC GLIMMIX Statement F 3071

the first G-side RANDOM effect specified. If the number of effective subjects
equals 1 and there are no G-side random effects, n is determined as

n D

�
f � rank.X/ METHOD D RMPL;METHOD D RSPL
f otherwise

where f is the sum of frequencies used.
• n� equals f or f � rank.X/ (for METHOD=RMPL and METHOD=RSPL),

unless this value is less than d C 2, in which case n� D d C 2.

GLMM, IC=PQ: For METHOD=MSPL, METHOD=MMPL, METHOD=LAPLACE, and
METHOD=QUAD, the results are the same as for IC=Q. For METHOD=RSPL
and METHOD=RMPL, d equals the number of effective covariance parameters
plus rank.X/, and n D n� equals f � rank.X/. The formulas for the information
criteria thus agree with Verbeke and Molenberghs (2000, Table 6.7, p. 74) and
Vonesh and Chinchilli (1997, p. 263).

INITGLM
requests that the estimates from a generalized linear model fit (a model without random effects) be
used as the starting values for the generalized linear mixed model. This option is the default for
METHOD=LAPLACE and METHOD=QUAD.

INITITER=number
specifies the maximum number of iterations used when a generalized linear model is fit initially to
derive starting values for the fixed effects; see the INITGLM option. By default, the initial fit involves
at most four iteratively reweighted least squares updates. You can change the upper limit of initial
iterations with number . If the model does not contain random effects, this option has no effect.

ITDETAILS
adds parameter estimates and gradients to the “Iteration History” table.

LIST
requests that the model program and variable lists be displayed. This is a debugging feature and is
not normally needed. When you use programming statements to define your statistical model, this
option enables you to examine the complete set of statements submitted for processing. See the section
“Programming Statements” for more details about how to use SAS statements with the GLIMMIX
procedure.

MAXLMMUPDATE=number

MAXOPT=number
specifies the maximum number of optimizations for doubly iterative estimation methods based on
linearizations. After each optimization, a new pseudo-model is constructed through a Taylor series
expansion. This step is known as the linear mixed model update. The MAXLMMUPDATE option
limits the number of updates and thereby limits the number of optimizations. If this option is not
specified, number is set equal to the value specified in the MAXITER= option in the NLOPTIONS
statement. If no MAXITER= value is given, number defaults to 20.
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METHOD=RSPL | MSPL | RMPL | MMPL | LAPLACE | QUAD< (quad-options) >
specifies the estimation method in a generalized linear mixed model (GLMM). The default is
METHOD=RSPL.

Pseudo-Likelihood

Estimation methods ending in “PL” are pseudo-likelihood techniques. The first letter of the METHOD=
identifier determines whether estimation is based on a residual likelihood (“R”) or a maximum
likelihood (“M”). The second letter identifies the expansion locus for the underlying approximation.
Pseudo-likelihood methods for generalized linear mixed models can be cast in terms of Taylor series
expansions (linearizations) of the GLMM. The expansion locus of the expansion is either the vector
of random effects solutions (“S”) or the mean of the random effects (“M”). The expansions are also
referred to as the “S”ubject-specific and “M”arginal expansions. The abbreviation “PL” identifies the
method as a pseudo-likelihood technique.

Residual methods account for the fixed effects in the construction of the objective function, which
reduces the bias in covariance parameter estimates. Estimation methods involving Taylor series create
pseudo-data for each optimization. Those data are transformed to have zero mean in a residual method.
While the covariance parameter estimates in a residual method are the maximum likelihood estimates
for the transformed problem, the fixed-effects estimates are (estimated) generalized least squares
estimates. In a likelihood method that is not residual based, both the covariance parameters and the
fixed-effects estimates are maximum likelihood estimates, but the former are known to have greater
bias. In some problems, residual likelihood estimates of covariance parameters are unbiased.

For more information about linearization methods for generalized linear mixed models, see the section
“Pseudo-likelihood Estimation Based on Linearization” on page 3188.

Maximum Likelihood with Laplace Approximation

If you choose METHOD=LAPLACE with a generalized linear mixed model, PROC GLIMMIX
approximates the marginal likelihood by using Laplace’s method. Twice the negative of the resulting
log-likelihood approximation is the objective function that the procedure minimizes to determine
parameter estimates. Laplace estimates typically exhibit better asymptotic behavior and less small-
sample bias than pseudo-likelihood estimators. On the other hand, the class of models for which a
Laplace approximation of the marginal log likelihood is available is much smaller compared to the
class of models to which PL estimation can be applied.

To determine whether Laplace estimation can be applied in your model, consider the marginal distribu-
tion of the data in a mixed model

p.y/ D
Z
p.yj/ p./ d

D

Z
exp flogfp.yj/g C logfp./gg d

D

Z
exp fnf .y;/g d

The function f .y;/ plays an important role in the Laplace approximation: it is a function of the
joint distribution of the data and the random effects (see the section “Maximum Likelihood Estimation
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Based on Laplace Approximation” on page 3192). In order to construct a Laplace approximation,
PROC GLIMMIX requires a conditional log-likelihood logfp.yj/g as well as the distribution of
the G-side random effects. The random effects are always assumed to be normal with zero mean
and covariance structure determined by the RANDOM statement. The conditional distribution is
determined by the DIST= option of the MODEL statement or the default associated with a particular
response type. Because a valid conditional distribution is required, R-side random effects are not
permitted for METHOD=LAPLACE in the GLIMMIX procedure. In other words, the GLIMMIX
procedure requires for METHOD=LAPLACE conditional independence without R-side overdispersion
or covariance structure.

Because the marginal likelihood of the data is approximated numerically, certain features of the
marginal distribution are not available—for example, you cannot display a marginal variance-covariance
matrix. Also, the procedure includes both the fixed-effects parameters and the covariance parameters
in the optimization for Laplace estimation. Consequently, this setting imposes some restrictions with
respect to available options for Laplace estimation. Table 44.3 lists the options that are assumed for
METHOD=LAPLACE, and Table 44.4 lists the options that are not compatible with this estimation
method.

The section “Maximum Likelihood Estimation Based on Laplace Approximation” contains details
about Laplace estimation in PROC GLIMMIX.

Maximum Likelihood with Adaptive Quadrature

If you choose METHOD=QUAD in a generalized linear mixed model, the GLIMMIX procedure
approximates the marginal log likelihood with an adaptive Gauss-Hermite quadrature. Compared to
METHOD=LAPLACE, the models for which parameters can be estimated by quadrature are further
restricted. In addition to the conditional independence assumption and the absence of R-side covariance
parameters, it is required that models suitable for METHOD=QUAD can be processed by subjects. (See
the section “Processing by Subjects” on page 3218 about how the GLIMMIX procedure determines
whether the data can be processed by subjects.) This in turn requires that all RANDOM statements
have SUBJECT= effects and in the case of multiple SUBJECT= effects that these form a containment
hierarchy.

In a containment hierarchy each effect is contained by another effect, and the effect contained by all is
considered “the” effect for subject processing. For example, the SUBJECT= effects in the following
statements form a containment hierarchy:

proc glimmix;
class A B block;
model y = A B A*B;
random intercept / subject=block;
random intercept / subject=A*block;

run;

The block effect is contained in the A*block interaction and the data are processed by block. The
SUBJECT= effects in the following statements do not form a containment hierarchy:
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proc glimmix;
class A B block;
model y = A B A*B;
random intercept / subject=block;
random block / subject=A;

run;

The section “Maximum Likelihood Estimation Based on Adaptive Quadrature” on page 3195 contains
important details about the computations involved with quadrature approximations. The section
“Aspects Common to Adaptive Quadrature and Laplace Approximation” on page 3197 contains
information about issues that apply to Laplace and adaptive quadrature, such as the computation of the
prediction variance matrix and the determination of starting values.

You can specify the following quad-options for METHOD=QUAD in parentheses:

EBDETAILS
reports details about the empirical Bayes suboptimization process should this suboptimization
fail.

EBSSFRAC=r
specifies the step-shortening fraction to be used while computing empirical Bayes estimates of
the random effects. The default value is r = 0.8, and it is required that r > 0.

EBSSTOL=r
specifies the objective function tolerance for determining the cessation of step shortening while
computing empirical Bayes estimates of the random effects, r � 0. The default value is r=1E–8.

EBSTEPS=n
specifies the maximum number of Newton steps for computing empirical Bayes estimates of
random effects, n � 0. The default value is n=50.

EBSUBSTEPS=n
specifies the maximum number of step shortenings for computing empirical Bayes estimates of
random effects. The default value is n=20, and it is required that n � 0.

EBTOL=r
specifies the convergence tolerance for empirical Bayes estimation, r � 0. The default value is
r D � � 1E4, where � is the machine precision. This default value equals approximately 1E–12
on most machines.

INITPL=number
requests that adaptive quadrature commence after performing up to number pseudo-likelihood
updates. The initial pseudo-likelihood (PL) steps (METHOD=MSPL) can be useful to provide
good starting values for the quadrature algorithm. If you choose number large enough so that the
initial PL estimation converges, the process is equivalent to starting a quadrature from the PL
estimates of the fixed-effects and covariance parameters. Because this also makes available the
PL random-effects solutions, the adaptive step of the quadrature that determines the number of
quadrature points can take this information into account.

Note that you can combine the INITPL option with the NOINITGLM option in the PROC
GLIMMIX statement to define a precise path for starting value construction to the GLIMMIX
procedure. For example, the following statement generates starting values in these steps:
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proc glimmix method=quad(initpl=5);

1. A GLM without random effects is fit initially to obtain as starting values for the fixed effects.
The INITITER= option in the PROC GLIMMIX statement controls the number of iterations
in this step.

2. Starting values for the covariance parameters are then obtained by MIVQUE0 estimation
(Goodnight 1978a), using the fixed-effects parameter estimates from step 1.

3. With these values up to five pseudo-likelihood updates are computed.
4. The PL estimates for fixed-effects, covariance parameters, and the solutions for the random

effects are then used to determine the number of quadrature points and used as the starting
values for the quadrature.

The first step (GLM fixed-effects estimates) is omitted, if you modify the previous statement as
follows:

proc glimmix method=quad(initpl=5) noinitglm;

The NOINITGLM option is the default of the pseudo-likelihood methods you select with the
METHOD= option.

QCHECK
performs an adaptive recalculation of the objective function (–2 log likelihood) at the solution. The
increment of the quadrature points, starting from the number of points used in the optimization,
follows the same rules as the determination of the quadrature point sequence at the starting values
(see the QFAC= and QMAX= suboptions). For example, the following statement estimates the
parameters based on a quadrature with seven nodes in each dimension:

proc glimmix method=quad(qpoints=7 qcheck);

Because the default search sequence is 1; 3; 5; 7; 9; 11; 21; 31, the QCHECK option computes the
–2 log likelihood at the converged solution for 9; 11; 21; and 31 quadrature points and reports
relative differences to the converged value and among successive values. The ODS table produced
by this option is named QuadCheck.

CAUTION: This option is useful to diagnose the sensitivity of the likelihood approximation at
the solution. It does not diagnose the stability of the solution under changes in the number of
quadrature points. For example, if increasing the number of points from 7 to 9 does not alter the
objective function, this does not imply that a quadrature with 9 points would arrive at the same
parameter estimates as a quadrature with 7 points.

QFAC=r
determines the step size for the quadrature point sequence. If the GLIMMIX procedure determines
the quadrature nodes adaptively, the log likelihoods are computed for nodes in a predetermined
sequence. If Nmin and Nmax denote the values from the QMIN= and QMAX= suboptions,
respectively, the sequence for values less than 11 is constructed in increments of 2 starting
at Nmin . Values greater than 11 are incremented in steps of r . The default value is r=10.
The default sequence, without specifying the QMIN=, QMAX=, or QFAC= option, is thus
1; 3; 5; 7; 9; 11; 21; 31. By contrast, the following statement evaluates the sequence 8; 10; 30; 50:
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proc glimmix method=quad(qmin=8,qmax=51,qfac=20);

QMAX=n
specifies an upper bound for the number of quadrature points. The default is n=31.

QMIN=n
specifies a lower bound for the number of quadrature points. The default is n=1 and the value
must be less than the QMAX= value.

QPOINTS=n
determines the number of quadrature points in each dimension of the integral. Note that if there
are r random effects for each subject, the GLIMMIX procedure evaluates nr conditional log
likelihoods for each observation to compute one value of the objective function. Increasing the
number of quadrature nodes can substantially increase the computational burden. If you choose
QPOINTS=1, the quadrature approximation reduces to the Laplace approximation. If you do not
specify the number of quadrature points, it is determined adaptively by increasing the number
of nodes at the starting values. See the section “Aspects Common to Adaptive Quadrature and
Laplace Approximation” on page 3197 for details.

QTOL=r
specifies a relative tolerance criterion for the successive evaluation of log likelihoods for different
numbers of quadrature points. When the GLIMMIX procedure determines the number of
quadrature points adaptively, the number of nodes are increased until the QMAX=n limit is
reached or until two successive evaluations of the log likelihood have a relative change of less
than r . In the latter case, the lesser number of quadrature nodes is used for the optimization.

The EBSSFRAC, EBSSTOL, EBSTEPS, EBSUBSTEPS, and EBTOL suboptions affect the subopti-
mization that leads to the empirical Bayes estimates of the random effects. Under normal circumstances,
there is no reason to change from the default values. When the sub-optimizations fail, the optimization
process can come to a halt. If the EBDETAILS option is in effect, you might be able to determine why
the suboptimization fails and then adjust these values accordingly.

The QMIN, QMAX, QTOL, and QFAC suboptions determine the quadrature point search sequence for
the adaptive component of estimation.

As for METHOD=LAPLACE, certain features of the marginal distribution are not available because
the marginal likelihood of the data is approximated numerically. For example, you cannot display
a marginal variance-covariance matrix. Also, the procedure includes both the fixed-effects and
covariance parameters in the optimization for quadrature estimation. Consequently, this setting
imposes some restrictions with respect to available options. Table 44.3 lists the options that are
assumed for METHOD=QUAD and METHOD=LAPLACE, and Table 44.4 lists the options that are
not compatible with these estimation methods.

Table 44.3 Defaults for METHOD=LAPLACE and
METHOD=QUAD

Statement Option

PROC GLIMMIX NOPROFILE
PROC GLIMMIX INITGLM
MODEL NOCENTER



PROC GLIMMIX Statement F 3077

Table 44.4 Options Incompatible with METHOD=LAPLACE and
METHOD=QUAD

Statement Option

PROC GLIMMIX EXPHESSIAN
PROC GLIMMIX SCOREMOD
PROC GLIMMIX SCORING
PROC GLIMMIX PROFILE
MODEL DDFM=KENWARDROGER
MODEL DDFM=SATTERTHWAITE
MODEL STDCOEF
RANDOM RESIDUAL
RANDOM _RESIDUAL_ All R-side random effects
RANDOM V
RANDOM VC
RANDOM VCI
RANDOM VCORR
RANDOM VI

In addition to the options displayed in Table 44.4, the NOBOUND option in the PROC GLIMMIX
and the NOBOUND option in the PARMS statements are not available with METHOD=QUAD.
Unbounding the covariance parameter estimates is possible with METHOD=LAPLACE, however.

No Random Effects Present

If the model does not contain G-side random effects or contains only a single overdispersion component,
then the model belongs to the family of (overdispersed) generalized linear models if the distribution
is known or the quasi-likelihood models for independent data if the distribution is not known. The
GLIMMIX procedure then estimates model parameters by the following techniques:

• normally distributed data: residual maximum likelihood

• nonnormal data: maximum likelihood

• data with unknown distribution: quasi-likelihood

The METHOD= specification then has only an effect with respect to the divisor used in estimating the
overdispersion component. With a residual method, the divisor is f – k, where f denotes the sum of the
frequencies and k is the rank of X. Otherwise, the divisor is f.

NAMELEN=number
specifies the length to which long effect names are shortened. The default and minimum value is 20.

NOBOUND
requests the removal of boundary constraints on covariance and scale parameters in mixed models. For
example, variance components have a default lower boundary constraint of 0, and the NOBOUND
option allows their estimates to be negative.
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The NOBOUND option cannot be used for adaptive quadrature estimation with METHOD=QUAD. The
scaling of the quadrature abscissas requires an inverse Cholesky root that is possibly not well defined
when the G matrix of the mixed model is negative definite or indefinite. The Laplace approximation
(METHOD=LAPLACE) is not subject to this limitation.

NOBSDETAIL
adds detailed information to the “Number of Observations” table to reflect how many observations
were excluded from the analysis and for which reason.

NOCLPRINT< =number >
suppresses the display of the “Class Level Information” table, if you do not specify number . If you
specify number , only levels with totals that are less than number are listed in the table.

NOFIT
suppresses fitting of the model. When the NOFIT option is in effect, PROC GLIMMIX produces the
“Model Information,” “Class Level Information,” “Number of Observations,” and “Dimensions” tables.
These can be helpful to gauge the computational effort required to fit the model. For example, the
“Dimensions” table informs you as to whether the GLIMMIX procedure processes the data by subjects,
which is typically more computationally efficient than processing the data as a single subject. See the
section “Processing by Subjects” for more information.

If you request a radial smooth with knot selection by k-d tree methods, PROC GLIMMIX also
computes the knot locations of the smoother. You can then examine the knots without fitting the
model. This enables you to try out different knot construction methods and bucket sizes. See the
KNOTMETHOD=KDTREE option (and its suboptions) of the RANDOM statement.

If you combine the NOFIT option with the OUTDESIGN option, you can write the X and/or Z matrix
of your model to a SAS data set without fitting the model.

NOINITGLM
requests that the starting values for the fixed effects not be obtained by first fitting a generalized linear
model. This option is the default for the pseudo-likelihood estimation methods and for the linear mixed
model. For the pseudo-likelihood methods, starting values can be implicitly defined based on an initial
pseudo-data set derived from the data and the link function. For linear mixed models, starting values
for the fixed effects are not necessary. The NOINITGLM option is useful in conjunction with the
INITPL= suboption of METHOD=QUAD in order to perform initial pseudo-likelihood steps prior to
an adaptive quadrature.

NOITPRINT
suppresses the display of the “Iteration History” table.

NOPROFILE
includes the scale parameter � into the optimization for models that have such a parameter (see
Table 44.19). By default, the GLIMMIX procedure profiles scale parameters from the optimization in
mixed models. In generalized linear models, scale parameters are not profiled.

NOREML
determines the denominator for the computation of the scale parameter in a GLM for normal data and
for overdispersion parameters. By default, the GLIMMIX procedure computes the scale parameter for
the normal distribution as

b� D nX
iD1

fi .yi �byi /2
f � k
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where k is the rank of X, fi is the frequency associated with the ith observation, and f D
P
fi .

Similarly, the overdispersion parameter in an overdispersed GLM is estimated by the ratio of the
Pearson statistic and .f � k/. If the NOREML option is in effect, the denominators are replaced by f,
the sum of the frequencies. In a GLM for normal data, this yields the maximum likelihood estimate of
the error variance. For this case, the NOREML option is a convenient way to change from REML to
ML estimation.

In GLMM models fit by pseudo-likelihood methods, the NOREML option changes the estimation
method to the nonresidual form. See the METHOD= option for the distinction between residual and
nonresidual estimation methods.

ODDSRATIO

OR
requests that odds ratios be added to the output when applicable. Odds ratios and their confidence
limits are reported only for models with logit, cumulative logit, or generalized logit link. Specifying
the ODDSRATIO option in the PROC GLIMMIX statement has the same effect as specifying the
ODDSRATIO option in the MODEL statement and in all LSMEANS statements. Note that the
ODDSRATIO option in the MODEL statement has several suboptions that enable you to construct
customized odds ratios. These suboptions are available only through the MODEL statement. For
details about the interpretation and computation of odds and odds ratios with the GLIMMIX procedure,
see the section “Odds and Odds Ratio Estimation” on page 3225.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of the classification variables (which are specified in the CLASS
statement).

This ordering determines which parameters in the model correspond to each level in the data, so the OR-
DER= option can be useful when you use CONTRAST or ESTIMATE statements. This option applies
to the levels for all classification variables, except when you use the (default) ORDER=FORMATTED
option with numeric classification variables that have no explicit format. In that case, the levels of such
variables are ordered by their internal value.

The ORDER= option can take the following values:

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set

FORMATTED External formatted value, except for numeric variables with
no explicit format, which are sorted by their unformatted
(internal) value

FREQ Descending frequency count; levels with the most observa-
tions come first in the order

INTERNAL Unformatted value

By default, ORDER=FORMATTED. For ORDER=FORMATTED and ORDER=INTERNAL, the sort
order is machine-dependent.

When the response variable appears in a CLASS statement, the ORDER= option in the PROC
GLIMMIX statement applies to its sort order. Specification of a response-option in the MODEL
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statement overrides the ORDER= option in the PROC GLIMMIX statement. For example, in the
following statements the sort order of the wheeze variable is determined by the formatted value
(default):

proc glimmix order=data;
class city;
model wheeze = city age / dist=binary s;

run;

The ORDER= option in the PROC GLIMMIX statement has no effect on the sort order of the wheeze
variable because it does not appear in the CLASS statement. However, in the following statements
the sort order of the wheeze variable is determined by the order of appearance in the input data set
because the response variable appears in the CLASS statement:

proc glimmix order=data;
class city wheeze;
model wheeze = city age / dist=binary s;

run;

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

OUTDESIGN< (options) > < =SAS-data-set >
creates a data set that contains the contents of the X and Z matrix. If the data are processed by subjects
as shown in the “Dimensions” table, then the Z matrix saved to the data set corresponds to a single
subject. By default, the GLIMMIX procedure includes in the OUTDESIGN data set the X and Z
matrix (if present) and the variables in the input data set. You can specify the following options in
parentheses to control the contents of the OUTDESIGN data set:

NAMES
produces tables associating columns in the OUTDESIGN data set with fixed-effects parameter
estimates and random-effects solutions.

NOMISS
excludes from the OUTDESIGN data set observations that were not used in the analysis.

NOVAR
excludes from the OUTDESIGN data set variables from the input data set. Variables listed in the
BY and ID statements and variables needed for identification of SUBJECT= effects are always
included in the OUTDESIGN data set.

X< =prefix >
saves the contents of the X matrix. The optional prefix is used to name the columns. The default
naming prefix is “_X”.

Z< =prefix >
saves the contents of the Z matrix. The optional prefix is used to name the columns. The default
naming prefix is “_Z”.

The order of the observations in the OUTDESIGN data set is the same as the order of the input data
set. If you do not specify a data set with the OUTDESIGN option, the procedure uses the DATAn
convention to name the data set.
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PCONV=r
specifies the parameter estimate convergence criterion for doubly iterative estimation methods. The
GLIMMIX procedure applies this criterion to fixed-effects estimates and covariance parameter esti-
mates. Suppose b .u/i denotes the estimate of the ith parameter at the uth optimization. The procedure
terminates the doubly iterative process if the largest value

2 �
jb .u/i � b .u�1/i j

jb .u/i j C jb .u�1/i j

is less than r . To check an absolute convergence criteria as well, you can set the ABSPCONV= option
in the PROC GLIMMIX statement. The default value for r is 1E8 times the machine epsilon, a product
that equals about 1E–8 on most machines.

Note that this convergence criterion does not affect the convergence criteria applied within any
individual optimization. In order to change the convergence behavior within an optimization, you can
use the ABSCONV=, ABSFCONV=, ABSGCONV=, ABSXCONV=, FCONV=, or GCONV= option
in the NLOPTIONS statement.

PLOTS < (global-plot-options) > < =plot-request < (options) > >

PLOTS < (global-plot-options) > < =(plot-request < (options) > < ... plot-request < (options) > >) >
requests that the GLIMMIX procedure produce statistical graphics via ODS Graphics.

ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;

proc glimmix data=plants;
class Block Type;
model StemLength = Block Type;
lsmeans type / diff=control plots=controlplot;

run;

ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

For examples of the basic statistical graphics produced by the GLIMMIX procedure and aspects of
their computation and interpretation, see the section “ODS Graphics” on page 3249 in this chapter.
You can also request statistical graphics for least squares means through the PLOTS option in the
LSMEANS statement, which gives you more control over the display compared to the PLOTS option
in the PROC GLIMMIX statement.

Global Plot Options

The global-plot-options apply to all relevant plots generated by the GLIMMIX procedure. The global-
plot-options supported by the GLIMMIX procedure are as follows:



3082 F Chapter 44: The GLIMMIX Procedure

OBSNO
uses the data set observation number to identify observations in tooltips, provided that the
observation number can be determined. Otherwise, the number displayed in tooltips is the index
of the observation as it is used in the analysis within the BY group.

UNPACKPANEL

UNPACK
displays each graph separately. (By default, some graphs can appear together in a single panel.)

Specific Plot Options

The following listing describes the specific plots and their options.

ALL
requests that all plots appropriate for the analysis be produced. In models with G-side random
effects, residual plots are based on conditional residuals (by using the BLUPs of random effects)
on the linear (linked) scale. Plots of least squares means differences are produced for LSMEANS
statements without options that would contradict such a display.

ANOMPLOT

ANOM
requests an analysis of means display in which least squares means are compared against an
average least squares mean (Ott 1967; Nelson 1982, 1991, 1993). See the DIFF= option in the
LSMEANS statement for the computation of this average. Least squares mean ANOM plots are
produced only for those fixed effects that are listed in LSMEANS statements that have options
that do not contradict the display. For example, if you request ANOM plots with the PLOTS=
option in the PROC GLIMMIX statement, the following LSMEANS statements produce analysis
of mean plots for effects A and C:

lsmeans A / diff=anom;
lsmeans B / diff;
lsmeans C;

The DIFF option in the second LSMEANS statement implies all pairwise differences.

When differences against the average LS-mean are adjusted for multiplicity with the AD-
JUST=NELSON option in the LSMEANS statement, the ANOMPLOT display is adjusted
accordingly.

BOXPLOT < (boxplot-options) >
requests box plots for the effects in your model that consist of classification effects only. Note that
these effects can involve more than one classification variable (interaction and nested effects), but
cannot contain any continuous variables. By default, the BOXPLOT request produces box plots
of (conditional) residuals for the qualifying effects in the MODEL and RANDOM statements.
See the discussion of the boxplot-options in a later section for information about how to tune
your box plot request.
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CONTROLPLOT

CONTROL
requests a display in which least squares means are visually compared against a reference level.
LS-mean control plots are produced only for those fixed effects that are listed in LSMEANS
statements that have options that do not contradict with the display. For example, the following
statements produce control plots for effects A and C if you specify PLOTS=CONTROL in the
PROC GLIMMIX statement:

lsmeans A / diff=control('1');
lsmeans B / diff;
lsmeans C;

The DIFF option in the second LSMEANS statement implies all pairwise differences.

When differences against a control level are adjusted for multiplicity with the ADJUST= option
in the LSMEANS statement, the control plot display is adjusted accordingly.

DIFFPLOT< (diffplot-options) >

DIFFOGRAM < (diffplot-options) >

DIFF< (diffplot-options) >
requests a display of all pairwise least squares mean differences and their significance. When
constructed from arithmetic means, the display is also known as a “mean-mean scatter plot” (Hsu
1996; Hsu and Peruggia 1994). For each comparison a line segment, centered at the LS-means in
the pair, is drawn. The length of the segment corresponds to the projected width of a confidence
interval for the least squares mean difference. Segments that fail to cross the 45-degree reference
line correspond to significant least squares mean differences.

If you specify the ADJUST= option in the LSMEANS statement, the lengths of the line segments
are adjusted for multiplicity.

LS-mean difference plots are produced only for those fixed effects listed in LSMEANS statements
that have options that do not conflict with the display. For example, the following statements
request differences against a control level for the A effect, all pairwise differences for the B effect,
and the least squares means for the C effect:

lsmeans A / diff=control('1');
lsmeans B / diff;
lsmeans C;

The DIFF= type in the first statement contradicts a display of all pairwise differences. Difference
plots are produced only for the B and C effects if you specify PLOTS=DIFF in the PROC
GLIMMIX statement.

You can specify the following diffplot-options. The ABS and NOABS options determine the
positioning of the line segments in the plot. When the ABS option is in effect (this is the default)
all line segments are shown on the same side of the reference line. The NOABS option separates
comparisons according to the sign of the difference. The CENTER option marks the center point
for each comparison. This point corresponds to the intersection of two least squares means. The
NOLINES option suppresses the display of the line segments that represent the confidence bounds
for the differences of the least squares means. The NOLINES option implies the CENTER option.
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The default is to draw line segments in the upper portion of the plot area without marking the
center point.

MEANPLOT< (meanplot-options) >
requests a display of the least squares means of effects specified in LSMEANS statements. The
following meanplot-options affect the display. Upper and lower confidence limits are plotted
when the CL option is used. When the CLBAND option is in effect, confidence limits are
shown as bands and the means are connected. By default, least squares means are not joined by
lines. You can achieve that effect with the JOIN or CONNECT option. Least squares means are
displayed in the same order in which they appear in the “Least Squares Means” table. You can
change that order for plotting purposes with the ASCENDING and DESCENDING options. The
ILINK option requests that results be displayed on the inverse linked (the data) scale.

Note that there is also a MEANPLOT suboption of the PLOTS= option in the LSMEANS
statement. In addition to the meanplot-options just described, you can also specify classification
effects that give you more control over the display of interaction means through the PLOTBY=
and SLICEBY= options. To display interaction means, you typically want to use the MEANPLOT
option in the LSMEANS statement. For example, the next statement requests a plot in which the
levels of A are placed on the horizontal axis and the means that belong to the same level of B are
joined by lines:

lsmeans A*B / plot=meanplot(sliceby=b join);

NONE
requests that no plots be produced.

ODDSRATIO < (oddsratioplot-options) >
requests a display of odds ratios and their confidence limits when the link function permits the
computation of odds ratios (see the ODDSRATIO option in the MODEL statement). Possible
suboptions of the ODDSRATIO plot request are described below under the heading “Odds Ratio
Plot Options.”

RESIDUALPANEL< (residualplot-options) >
requests a paneled display constructed from raw residuals. The panel consists of a plot of the
residuals against the linear predictor or predicted mean, a histogram with normal density overlaid,
a Q-Q plot, and a box plot of the residuals. The residualplot-options enable you to specify which
type of residual is being graphed. These are further discussed below under the heading “Residual
Plot Options.”

STUDENTPANEL< (residualplot-options) >
requests a paneled display constructed from studentized residuals. The same panel organization
is applied as for the RESIDUALPANEL plot type.

PEARSONPANEL< (residualplot-options) >
requests a paneled display constructed from Pearson residuals. The same panel organization is
applied as for the RESIDUALPANEL plot type.
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Residual Plot Options

The residualplot-options apply to the RESIDUALPANEL, STUDENTPANEL, and PEARSON-
PANEL displays. The primary function of these options is to control which type of a residual to
display. The four types correspond to keyword-options as for output statistics in the OUTPUT
statement. The residualplot-options take on the following values:

BLUP

CONDITIONAL
uses the predictors of the random effects in computing the residual.

ILINK

NONLINEAR
computes the residual on the inverse linked scale (the data scale).

NOBLUP

MARGINAL
does not use the predictors of the random effects in computing the residual.

NOILINK

LINEAR
computes the residual on the linked scale.

UNPACK
produces separate plots from the elements of the panel.

You can list a plot request one or more times with different options. For example, the following
statements request a panel of marginal raw residuals, individual plots generated from a panel of
the conditional raw residuals, and a panel of marginal studentized residuals:

ods graphics on;
proc glimmix plots=(ResidualPanel(marginal)

ResidualPanel(unpack conditional)
StudentPanel(marginal));

The default is to compute conditional residuals on the linear scale if the model contains G-
side random effects (BLUP NOILINK). Not all combinations of the BLUP/NOBLUP and
ILINK/NOILINK suboptions are possible for all residual types and models. For details, see
the description of output statistics for the OUTPUT statement. Pearson residuals are always
displayed against the linear predictor; all other residuals are graphed versus the linear predictor
if the NOILINK suboption is in effect (default), and against the corresponding prediction on
the mean scale if the ILINK option is in effect. See Table 44.14 for a definition of the residual
quantities and exclusions.
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Box Plot Options

The boxplot-options determine whether box plots are produced for residuals or for residuals
and observed values, and for which model effects the box plots are constructed. The available
boxplot-options are as follows:

BLOCK
BLOCKLEGEND

displays levels of up to four classification variables of the box plot effect by using block
legends instead of axis tick values.

BLUP
CONDITIONAL

constructs box plots from conditional residuals—that is, residuals that use the estimated
BLUPs of random effects.

FIXED
produces box plots for all fixed effects (MODEL statement) consisting entirely of classifica-
tion variables.

GROUP
produces box plots for all GROUP= effects in RANDOM statements consisting entirely of
classification variables.

ILINK
NONLINEAR

computes the residual on the scale of the data (the inverse linked scale).

NOBLUP
MARGINAL

constructs box plots from marginal residuals.

NOILINK
LINEAR

computes the residual on the linked scale.

NPANELPOS=number
specifies the number of box positions on the graphic and provides the capability to break
a box plot into multiple graphics. If number is negative, no balancing of the number of
boxes takes place and number is the maximum number of boxes per graphic. If number is
positive, the number of boxes per graphic is balanced. For example, suppose that variable A
has 125 levels. The following statements request that the number of boxes per plot results be
balanced and result in six plots with 18 boxes each and one plot with 17 boxes:

ods graphics on;
proc glimmix plots=boxplot(npanelpos=20);

class A;
model y = A;

run;

If number is zero (this is the default), all levels of the effect are displayed in a single plot.
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OBSERVED
adds box plots of the observed data for the selected effects.

PEARSON
constructs box plots from Pearson residuals rather than from the default residuals.

PSEUDO
adds box plots of the pseudo-data for the selected effects. This option is available only for
the pseudo-likelihood estimation methods that construct pseudo-data.

RANDOM
produces box plots for all effects in RANDOM statements that consist entirely of classifica-
tion variables. This does not include effects specified in the GROUP= or SUBJECT= option
of the RANDOM statements.

RAW
constructs box plots from raw residuals (observed minus predicted).

STUDENT
constructs box plots from studentized residuals rather than from the default residuals.

SUBJECT
produces box plots for all SUBJECT= effects in RANDOM statements consisting entirely of
classification variables.

USEINDEX
uses as the horizontal axis label the index of the effect level, rather than the formatted
value(s). For classification variables with many levels or model effects that involve multiple
classification variables, the formatted values identifying the effect levels might take up too
much space as axis tick values, leading to extensive thinning. The USEINDEX option
replaces tick values constructed from formatted values with the internal level number.

By default, box plots of residuals are constructed from the raw conditional residuals (on the
linked scale) in linear mixed models and from Pearson residuals in all other models. Note that
not all combinations of the BLUP/NOBLUP and ILINK/NOILINK suboptions are possible for
all residual types and models. For details, see the description of output statistics for the OUTPUT
statement.

Odds Ratio Plot Options

The oddsratioplot-options determine the display of odds ratios and their confidence limits. The
computation of the odds ratios follows the ODDSRATIO option in the MODEL statement. The
available oddsratioplot-options are as follows:

LOGBASE= 2 | E | 10
log-scales the odds ratio axis.

NPANELPOS=n
provides the capability to break an odds ratio plot into multiple graphics having at most
jnj odds ratios per graphic. If n is positive, then the number of odds ratios per graphic is
balanced. If n is negative, then no balancing of the number of odds ratios takes place. For
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example, suppose you want to display 21 odds ratios. Then NPANELPOS=20 displays two
plots, the first with 11 and the second with 10 odds ratios, and NPANELPOS=–20 displays
20 odds ratios in the first plot and a single odds ratio in the second. If n=0 (this is the default),
then all odds ratios are displayed in a single plot.

ORDER=ASCENDING | DESCENDING
displays the odds ratios in sorted order. By default the odds ratios are displayed in the order
in which they appear in the “Odds Ratio Estimates” table.

RANGE=(< min > < ,max >) | CLIP
specifies the range of odds ratios to display. If you specify RANGE=CLIP, then the confi-
dence intervals are clipped and the range contains the minimum and maximum odds ratios.
By default the range of view captures the extent of the odds ratio confidence intervals.

STATS
adds the numeric values of the odds ratio and its confidence limits to the graphic.

PROFILE
requests that scale parameters be profiled from the optimization, if possible. This is the default for
generalized linear mixed models. In generalized linear models with normally distributed data, you can
use the PROFILE option to request profiling of the residual variance.

SCOREMOD
requests that the Hessian matrix in GLMMs be based on a modified scoring algorithm, provided that
PROC GLIMMIX is in scoring mode when the Hessian is evaluated. The procedure is in scoring mode
during iteration, if the optimization technique requires second derivatives, the SCORING=n option
is specified, and the iteration count has not exceeded n. The procedure also computes the expected
(scoring) Hessian matrix when you use the EXPHESSIAN option in the PROC GLIMMIX statement.

The SCOREMOD option has no effect if the SCORING= or EXPHESSIAN option is not specified. The
nature of the SCOREMOD modification to the expected Hessian computation is shown in Table 44.21,
in the section “Pseudo-likelihood Estimation Based on Linearization” on page 3188. The modification
can improve the convergence behavior of the GLMM compared to standard Fisher scoring and can
provide a better approximation of the variability of the covariance parameters. For more details, see
the section “Estimated Precision of Estimates” on page 3189.

SCORING=number
requests that Fisher scoring be used in association with the estimation method up to iteration number .
By default, no scoring is applied. When you use the SCORING= option and PROC GLIMMIX
converges without stopping the scoring algorithm, the procedure uses the expected Hessian matrix to
compute approximate standard errors for the covariance parameters instead of the observed Hessian. If
necessary, the standard errors of the covariance parameters as well as the output from the ASYCOV
and ASYCORR options are adjusted.

If scoring stopped prior to convergence and you want to use the expected Hessian matrix in the
computation of standard errors, use the EXPHESSIAN option in the PROC GLIMMIX statement.

Scoring is not possible in models for nominal data. It is also not possible for GLMs with unknown
distribution or for those outside the exponential family. If you perform quasi-likelihood estimation,
the GLIMMIX procedure is always in scoring mode and the SCORING= option has no effect. See
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the section “Quasi-likelihood for Independent Data” for a description of the types of models where
GLIMMIX applies quasi-likelihood estimation.

The SCORING= option has no effect for optimization methods that do not involve second derivatives.
See the TECHNIQUE= option in the NLOPTIONS statement and the section “Choosing an Optimiza-
tion Algorithm” on page 501 in Chapter 19, “Shared Concepts and Topics,” for details about first- and
second-order algorithms.

SINGCHOL=number
tunes the singularity criterion in Cholesky decompositions. The default is 1E4 times the machine
epsilon; this product is approximately 1E–12 on most computers.

SINGRES=number
sets the tolerance for which the residual variance is considered to be zero. The default is 1E4 times the
machine epsilon; this product is approximately 1E–12 on most computers.

SINGULAR=number
tunes the general singularity criterion applied by the GLIMMIX procedure in divisions and inversions.
The default is 1E4 times the machine epsilon; this product is approximately 1E–12 on most computers.

STARTGLM
is an alias of the INITGLM option.

SUBGRADIENT< =SAS-data-set >
SUBGRAD< =SAS-data-set >

creates a data set with information about the gradient of the objective function. The contents and
organization of the SUBGRADIENT= data set depend on the type of model. The following paragraphs
describe the SUBGRADIENT= data set for the two major estimation modes. See the section “GLM
Mode or GLMM Mode” on page 3203 for details about the estimation modes of the GLIMMIX
procedure.

GLMM Mode If the GLIMMIX procedure operates in GLMM mode, the SUBGRADIENT=
data set contains as many observations as there are usable subjects in the analysis.
The maximum number of usable subjects is displayed in the “Dimensions” table.
Gradient information is not written to the data set for subjects who do not contribute
valid observations to the analysis. Note that the objective function in the “Iteration
History” table is in terms of the –2 log (residual, pseudo-) likelihood. The gradients
in the SUBGRADIENT= data set are gradients of that objective function.

The gradients are evaluated at the final solution of the estimation problem. If the
GLIMMIX procedure fails to converge, then the information in the SUBGRA-
DIENT= data set corresponds to the gradient evaluated at the last iteration or
optimization.

The number of gradients saved to the SUBGRADIENT= data set equals the number
of parameters in the optimization. For example, with METHOD=LAPLACE or
METHOD=QUAD the fixed-effects parameters and the covariance parameters take
part in the optimization. The order in which the gradients appear in the data set
equals the order in which the gradients are displayed when the ITDETAILS option
is in effect: gradients for fixed-effects parameters precede those for covariance
parameters, and gradients are not reported for singular columns in the X0X ma-
trix. In models where the residual variance is profiled from the optimization, a
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subject-specific gradient is not reported for the residual variance. To decompose
this gradient by subjects, add the NOPROFILE option in the PROC GLIMMIX
statement. When the subject-specific gradients in the SUBGRADIENT= data set
are summed, the totals equal the values reported by the GRADIENT option.

GLM Mode When you fit a generalized linear model (GLM) or a GLM with overdispersion, the
SUBGRADIENT= data set contains the observation-wise gradients of the negative
log-likelihood function with respect to the parameter estimates. Note that this
corresponds to the objective function in GLMs as displayed in the “Iteration History”
table. However, the gradients displayed in the “Iteration History” for GLMs—when
the ITDETAILS option is in effect—are possibly those of the centered and scaled
coefficients. The gradients reported in the “Parameter Estimates” table and in
the SUBGRADIENT= data set are gradients with respect to the uncentered and
unscaled coefficients.

The gradients are evaluated at the final estimates. If the model does not converge, the
gradients contain missing values. The gradients appear in the SUBGRADIENT=
data set in the same order as in the “Parameter Estimates” table, with singular
columns removed.

The variables from the input data set are added to the SUBGRADIENT= data set
in GLM mode. The data set is organized in the same way as the input data set;
observations that do not contribute to the analysis are transferred to the SUBGRA-
DIENT= data set, but gradients are calculated only for observations that take part in
the analysis. If you use an ID statement, then only the variables in the ID statement
are transferred to the SUBGRADIENT= data set.

BY Statement
BY variables ;

You can specify a BY statement with PROC GLIMMIX to obtain separate analyses of observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the GLIMMIX procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

Since sorting the data changes the order in which PROC GLMMIX reads observations, the sort order for
the levels of the CLASS variables might be affected if you have also specified ORDER=DATA in the
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PROC GLIMMIX statement. This, in turn, affects specifications in the CONTRAST, ESTIMATE, or
LSMESTIMATE statement.

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

CLASS Statement
CLASS variable < (REF= option) > . . . < variable < (REF= option) > > < / global-options > ;

The CLASS statement names the classification variables to be used in the model. Typical classification
variables are Treatment, Sex, Race, Group, and Replication. If you use the CLASS statement, it must appear
before the MODEL statement.

Classification variables can be either character or numeric. By default, class levels are determined from the
entire set of formatted values of the CLASS variables.

NOTE: Prior to SAS 9, class levels were determined by using no more than the first 16 characters of the
formatted values. To revert to this previous behavior, you can use the TRUNCATE option in the CLASS
statement.

In any case, you can use formats to group values into levels. See the discussion of the FORMAT procedure
in the Base SAS Procedures Guide and the discussions of the FORMAT statement and SAS formats in SAS
Formats and Informats: Reference. You can adjust the order of CLASS variable levels with the ORDER=
option in the PROC GLIMMIX statement.

You can specify the following REF= option to indicate how the levels of an individual classification variable
are to be ordered by enclosing it in parentheses after the variable name:

REF=’level’ | FIRST | LAST
specifies a level of the classification variable to be put at the end of the list of levels. This level thus
corresponds to the reference level in the usual interpretation of the estimates with PROC GLIMMIX’s
singular parameterization. You can specify the level of the variable to use as the reference level; specify
a value that corresponds to the formatted value of the variable if a format is assigned. Alternatively, you
can specify REF=FIRST to designate that the first ordered level serve as the reference, or REF=LAST to
designate that the last ordered level serve as the reference. To specify that REF=FIRST or REF=LAST
be used for all classification variables, use the REF= global-option after the slash (/) in the CLASS
statement.

You can specify the following global-options in the CLASS statement after a slash (/):

REF=FIRST | LAST
specifies a level of all classification variables to be put at the end of the list of levels. This level thus
corresponds to the reference level in the usual interpretation of the estimates with PROC GLIMMIX’s
singular parameterization. Specify REF=FIRST to designate that the first ordered level for each
classification variable serve as the reference. Specify REF=LAST to designate that the last ordered
level serve as the reference. This option applies to all the variables specified in the CLASS statement. To
specify different reference levels for different classification variables, use REF= options for individual
variables.
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TRUNCATE
specifies that class levels be determined by using only up to the first 16 characters of the formatted
values of CLASS variables. When formatted values are longer than 16 characters, you can use this
option to revert to the levels as determined in releases prior to SAS 9.

CODE Statement
CODE < options > ;

The CODE statement writes SAS DATA step code for computing predicted values of the fitted model either
to a file or to a catalog entry. This code can then be included in a DATA step to score new data.

Table 44.5 summarizes the options available in the CODE statement.

Table 44.5 CODE Statement Options

Option Description

CATALOG= Names the catalog entry where the generated code is saved
DUMMIES Retains the dummy variables in the data set
ERROR Computes the error function
FILE= Names the file where the generated code is saved
FORMAT= Specifies the numeric format for the regression coefficients
GROUP= Specifies the group identifier for array names and statement labels
IMPUTE Imputes predicted values for observations with missing or invalid

covariates
LINESIZE= Specifies the line size of the generated code
LOOKUP= Specifies the algorithm for looking up CLASS levels
RESIDUAL Computes residuals

For details about the syntax of the CODE statement, see the section “CODE Statement” on page 395 in
Chapter 19, “Shared Concepts and Topics.”

CONTRAST Statement
CONTRAST 'label ' contrast-specification

< , contrast-specification > < , . . . >
< / options > ;

The CONTRAST statement provides a mechanism for obtaining custom hypothesis tests. It is patterned
after the CONTRAST statement in PROC MIXED and enables you to select an appropriate inference space
(McLean, Sanders, and Stroup 1991). The GLIMMIX procedure gives you greater flexibility in entering
contrast coefficients for random effects, however, because it permits the usual value-oriented positional syntax
for entering contrast coefficients, as well as a level-oriented syntax that simplifies entering coefficients for
interaction terms and is designed to work with constructed effects that are defined through the experimental
EFFECT statement. The differences between the traditional and new-style coefficient syntax are explained in
detail in the section “Positional and Nonpositional Syntax for Contrast Coefficients” on page 3232.
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You can test the hypothesis L0� D 0, where L0 D ŒK0 M0� and �0 D Œˇ0  0�, in several inference spaces. The
inference space corresponds to the choice of M. When M D 0, your inferences apply to the entire population
from which the random effects are sampled; this is known as the broad inference space. When all elements
of M are nonzero, your inferences apply only to the observed levels of the random effects. This is known
as the narrow inference space, and you can also choose it by specifying all of the random effects as fixed.
The GLM procedure uses the narrow inference space. Finally, by zeroing portions of M corresponding to
selected main effects and interactions, you can choose intermediate inference spaces. The broad inference
space is usually the most appropriate; it is used when you do not specify random effects in the CONTRAST
statement.

In the CONTRAST statement,

label identifies the contrast in the table. A label is required for every contrast specified. Labels
can be up to 200 characters and must be enclosed in quotes.

contrast-specification identifies the fixed effects and random effects and their coefficients from which the
L matrix is formed. The syntax representation of a contrast-specification is
< fixed-effect values . . . > < | random-effect values . . . >

fixed-effect identifies an effect that appears in the MODEL statement. The keyword INTERCEPT can
be used as an effect when an intercept is fitted in the model. You do not need to include
all effects that are in the MODEL statement.

random-effect identifies an effect that appears in the RANDOM statement. The first random effect must
follow a vertical bar (|); however, random effects do not have to be specified.

values are constants that are elements of the L matrix associated with the fixed and random effects.
There are two basic methods of specifying the entries of the L matrix. The traditional
representation—also known as the positional syntax—relies on entering coefficients in
the position they assume in the L matrix. For example, in the following statements the
elements of L associated with the b main effect receive a 1 in the first position and a –1 in
the second position:

class a b;
model y = a b a*b;
contrast 'B at A2' b 1 -1 a*b 0 0 1 -1;

The elements associated with the interaction receive a 1 in the third position and a –1 in
the fourth position. In order to specify coefficients correctly for the interaction term, you
need to know how the levels of a and b vary in the interaction, which is governed by the
order of the variables in the CLASS statement. The nonpositional syntax is designed to
make it easier to enter coefficients for interactions and is necessary to enter coefficients
for effects constructed with the experimental EFFECT statement. In square brackets you
enter the coefficient followed by the associated levels of the CLASS variables. If B has
two and A has three levels, the previous CONTRAST statement, by using nonpositional
syntax for the interaction term, becomes

contrast 'B at A2' b 1 -1 a*b [1, 2 1] [-1, 2 2];

It assigns value 1 to the interaction where A is at level 2 and B is at level 1, and it
assigns –1 to the interaction where both classification variables are at level 2. The comma
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separating the entry for the L matrix from the level indicators is optional. Further details
about the nonpositional contrast syntax and its use with constructed effects can be found in
the section “Positional and Nonpositional Syntax for Contrast Coefficients” on page 3232.
Nonpositional syntax is available only for fixed-effects coefficients.

The rows of L0 are specified in order and are separated by commas. The rows of the K0 component of L0 are
specified on the left side of the vertical bars (|). These rows test the fixed effects and are, therefore, checked
for estimability. The rows of the M0 component of L0 are specified on the right side of the vertical bars. They
test the random effects, and no estimability checking is necessary.

If PROC GLIMMIX finds the fixed-effects portion of the specified contrast to be nonestimable (see the
SINGULAR= option), then it displays missing values for the test statistics.

If the elements of L are not specified for an effect that contains a specified effect, then the elements of the
unspecified effect are automatically “filled in” over the levels of the higher-order effect. This feature is
designed to preserve estimability for cases where there are complex higher-order effects. The coefficients for
the higher-order effect are determined by equitably distributing the coefficients of the lower-level effect as
in the construction of least squares means. In addition, if the intercept is specified, it is distributed over all
classification effects that are not contained by any other specified effect. If an effect is not specified and does
not contain any specified effects, then all of its coefficients in L are set to 0. You can override this behavior
by specifying coefficients for the higher-order effect.

If too many values are specified for an effect, the extra ones are ignored; if too few are specified, the remaining
ones are set to 0. If no random effects are specified, the vertical bar can be omitted; otherwise, it must be
present. If a SUBJECT effect is used in the RANDOM statement, then the coefficients specified for the
effects in the RANDOM statement are equitably distributed across the levels of the SUBJECT effect. You
can use the E option to see exactly what L matrix is used.

PROC GLIMMIX handles missing level combinations of classification variables similarly to PROC GLM
and PROC MIXED. These procedures delete fixed-effects parameters corresponding to missing levels in
order to preserve estimability. However, PROC MIXED and PROC GLIMMIX do not delete missing level
combinations for random-effects parameters, because linear combinations of the random-effects parameters
are always estimable. These conventions can affect the way you specify your CONTRAST coefficients.

The CONTRAST statement computes the statistic

F D

� b̌b
�0

L.L0CL/�1L0
� b̌b

�
r

where r D rank.L0CL/, and approximates its distribution with an F distribution unless DDFM=NONE. If
you select DDFM=NONE as the degrees-of-freedom method in the MODEL statement, and if you do not
assign degrees of freedom to the contrast with the DF= option, then PROC GLIMMIX computes the test
statistic r � F and approximates its distribution with a chi-square distribution. In the expression for F, C
is an estimate of VarŒb̌;b � �; see the section “Estimated Precision of Estimates” on page 3189 and the
section “Aspects Common to Adaptive Quadrature and Laplace Approximation” on page 3197 for details
about the computation of C in a generalized linear mixed model.

The numerator degrees of freedom in the F approximation and the degrees of freedom in the chi-square
approximation are equal to r. The denominator degrees of freedom are taken from the “Tests of Fixed
Effects” table and correspond to the final effect you list in the CONTRAST statement. You can change the
denominator degrees of freedom by using the DF= option.
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You can specify the following options in the CONTRAST statement after a slash (/).

BYCATEGORY
BYCAT

requests that in models for nominal data (generalized logit models) the contrasts not be combined across
response categories but reported separately for each category. For example, assume that the response
variable Style is multinomial with three (unordered) categories. The following GLIMMIX statements fit
a generalized logit model relating the preferred style of instruction to school and educational program
effects:

proc glimmix data=school;
class School Program;
model Style(order=data) = School Program / s ddfm=none

dist=multinomial link=glogit;
freq Count;
contrast 'School 1 vs. 2' school 1 -1;
contrast 'School 1 vs. 2' school 1 -1 / bycat;

run;

The first contrast compares school effects in all categories. This is a two-degrees-of-freedom contrast
because there are two nonredundant categories. The second CONTRAST statement produces two
single-degree-of-freedom contrasts, one for each nonreference Style category.

The BYCATEGORY option has no effect unless your model is a generalized (mixed) logit model.

CHISQ
requests that chi-square tests be performed for all contrasts in addition to any F tests. A chi-square
statistic equals its corresponding F statistic times the numerator degrees of freedom, and these same
degrees of freedom are used to compute the p-value for the chi-square test. This p-value will always be
less than that for the F test, because it effectively corresponds to an F test with infinite denominator
degrees of freedom.

DF=number
specifies the denominator degrees of freedom for the F test. For the degrees of freedom methods
DDFM=BETWITHIN, DDFM=CONTAIN, and DDFM=RESIDUAL, the default is the denominator
degrees of freedom taken from the “Tests of Fixed Effects” table and corresponds to the final effect
you list in the CONTRAST statement. For DDFM=NONE, infinite denominator degrees of freedom
are assumed by default, and for DDFM=SATTERTHWAITE and DDFM=KENWARDROGER, the
denominator degrees of freedom are computed separately for each contrast.

E
requests that the L matrix coefficients for the contrast be displayed.

GROUP coeffs
sets up random-effect contrasts between different groups when a GROUP= variable appears in the
RANDOM statement. By default, CONTRAST statement coefficients on random effects are distributed
equally across groups. If you enter a multiple row contrast, you can also enter multiple rows for the
GROUP coefficients. If the number of GROUP coefficients is less than the number of contrasts in
the CONTRAST statement, the GLIMMIX procedure cycles through the GROUP coefficients. For
example, the following two statements are equivalent:
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contrast 'Trt 1 vs 2 @ x=0.4' trt 1 -1 0 | x 0.4,
trt 1 0 -1 | x 0.4,
trt 1 -1 0 | x 0.5,
trt 1 0 -1 | x 0.5 /

group 1 -1, 1 0 -1, 1 -1, 1 0 -1;

contrast 'Trt 1 vs 2 @ x=0.4' trt 1 -1 0 | x 0.4,
trt 1 0 -1 | x 0.4,
trt 1 -1 0 | x 0.5,
trt 1 0 -1 | x 0.5 /

group 1 -1, 1 0 -1;

SINGULAR=number
tunes the estimability checking. If v is a vector, define ABS(v) to be the largest absolute value of the
elements of v. If ABS(K0 �K0T) is greater than c*number for any row of K0 in the contrast, then K0ˇ
is declared nonestimable. Here, T is the Hermite form matrix .X0X/�X0X, and c is ABS(K0), except
when it equals 0, and then c is 1. The value for number must be between 0 and 1; the default is 1E–4.

SUBJECT coeffs
sets up random-effect contrasts between different subjects when a SUBJECT= variable appears in the
RANDOM statement. By default, CONTRAST statement coefficients on random effects are distributed
equally across subjects. Listing subject coefficients for multiple row CONTRAST statements follows
the same rules as for GROUP coefficients.

COVTEST Statement
COVTEST < 'label ' > < test-specification > < / options > ;

The COVTEST statement provides a mechanism to obtain statistical inferences for the covariance parameters.
Significance tests are based on the ratio of (residual) likelihoods or pseudo-likelihoods. Confidence limits
and bounds are computed as Wald or likelihood ratio limits. You can specify multiple COVTEST statements.

The likelihood ratio test is obtained by fitting the model subject to the constraints imposed by the test-
specification. The test statistic is formed as twice the difference of the (possibly restricted) log (pseudo-)
likelihoods of the full and the reduced models. Note that fitting the null model does not necessarily require
fewer computer resources compared to fitting the full model. The optimization settings for refitting the model
are the same as for the full model and can be controlled with the NLOPTIONS statement.

Common questions in mixed modeling are whether variance components are zero, whether random effects are
independent, and whether rows (columns) can be added or removed from an unstructured covariance matrix.
When the parameters under the null hypothesis fall on the boundary of the parameter space, the distribution
of the likelihood ratio statistic can be a complicated mixture of distributions. In certain situations it is known
to be a relatively straightforward mixture of central chi-square distributions. When the GLIMMIX procedure
recognizes the model and hypothesis as a case for which the mixture is readily available, the p-value of the
likelihood ratio test is determined accordingly as a linear combination of central chi-square probabilities.
The Note column in the “Likelihood Ratio Tests for Covariance Parameters” table along with the table’s
footnotes informs you about when mixture distributions are used in the calculation of p-values. You can find
important statistical and computational details about likelihood ratio testing of covariance parameters with
the GLIMMIX procedure in the section “Statistical Inference for Covariance Parameters” on page 3204.
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In generalized linear mixed models that depend on pseudo-data, the GLIMMIX procedure fits the null model
for a test of covariance parameters to the final pseudo-data of the converged optimization.

Table 44.6 summarizes the options available in the COVTEST statement.

Table 44.6 COVTEST Statement Options

Option Description

Test specification
TESTDATA= Reads in covariance parameter values from a SAS data set
GENERAL Provides a general facility to test linear combinations of covariance

parameters

Covariance Test Options
CL Requests confidence limits for the covariance parameter estimates
CLASSICAL Computes the likelihood ratio test p-value using the classical method
DF= Specifies the degrees of freedom
ESTIMATES Displays the estimates of the covariance parameters under the null hypothe-

sis
MAXITER= Limits the number of iterations
PARMS Displays the values of the covariance parameters under the null hypothesis
RESTART Specifies that starting values for the covariance parameters
TOLERANCE= Sets the tolerance level of the parameter space boundary
WALD Produces Wald Z tests
WGHT= Supplies weights for the computation of p-values

Test Specification

The test-specification in the COVTEST statement draws on keywords that represent a particular null
hypothesis, lists or data sets of parameter values, or general contrast specifications. Valid keywords are as
follows:

GLM | INDEP tests the model against a null model of complete independence. All G-side
covariance parameters are eliminated and the R-side covariance structure is
reduced to a diagonal structure.

DIAGG tests for a diagonal G matrix by constraining off-diagonal elements in G to zero.
The R-side structure is not modified.

DIAGR | CINDEP tests for conditional independence by reducing the R-side covariance structure to
diagonal form. The G-side structure is not modified.

HOMOGENEITY tests homogeneity of covariance parameters across groups by imposing equality
constraints. For example, the following statements fit a one-way model with
heterogeneous variances and test whether the model could be reduced to a one-
way analysis with the same variance across groups:
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proc glimmix;
class A;
model y = a;
random _residual_ / group=A;
covtest 'common variance' homogeneity;

run;

See Example 44.9 for an application with groups and unstructured covariance
matrices.

START | INITIAL compares the final estimates to the starting values of the covariance parameter
estimates. This option is useful, for example, if you supply starting values
in the PARMS statement and want to test whether the optimization produced
significantly better values. In GLMMs based on pseudo-data, the likelihoods that
use the starting and the final values are based on the final pseudo-data.

ZEROG tests whether the G matrix can be reduced to a zero matrix. This eliminates all
G-side random effects from the model.

Only a single keyword is permitted in the COVTEST statement. To test more complicated hypotheses, you
can formulate tests with the following specifications.

TESTDATA=data-set

TDATA=data-set
reads in covariance parameter values from a SAS data set. The data set should contain the numerical
variable Estimate or numerical variables named Covpi. The GLIMMIX procedure associates the values
for Covpi with the ith covariance parameter.

For data sets containing the numerical variable Estimate, the GLIMMIX procedure fixes the ith
covariance parameter value at the value of the ith observation in the data set. A missing value indicates
not to fix the particular parameter. PROC GLIMMIX performs one likelihood ratio test for the
TESTDATA= data set.

For data sets containing numerical variables named Covpi, the procedure performs one likelihood ratio
test for each observation in the TESTDATA= data set. You do not have to specify a Covpi variable for
every covariance parameter. If the value for the variable is not missing, PROC GLIMMIX fixes the
associated covariance parameter in the null model. Consider the following statements:

data TestDataSet;
input covp1 covp2 covp3;
datalines;

. 0 .
0 0 .
. 0 0
0 0 0
;

proc glimmix method=mspl;
class subject x;
model y = x age x*age;
random intercept age / sub=subject type=un;
covtest testdata=TestDataSet;

run;
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Because the G matrix is a .2 � 2/ unstructured matrix, the first observation of the TestDataSet
corresponds to zeroing the covariance between the random intercept and the random slope. When the
reduced model is fit, the variances of the intercept and slope are reestimated. The second observation
reduces the model to one with only a random slope in age. The third reduces the model to a random
intercept model. The last observation eliminates the G matrix altogether.

Note that the tests associated with the first and last set of covariance parameters in TestDataSet can
also be obtained by using keywords:

proc glimmix;
class subject x;
model y = x age x*age;
random intercept age / sub=subject type=un;
covtest DiagG;
covtest GLM;

run;

value-list
supplies a list of values at which to fix the covariance parameters. A missing value in the list indicates
that the covariance parameter is not fixed. If the list is shorter than the number of covariance parameters,
missing values are assumed for all parameters not specified. The COVTEST statements that test the
random intercept and random slope in the previous example are as follows:

proc glimmix;
class subject x;
model y = x age x*age;
random intercept age / sub=subject type=un;
covtest 0 0;
covtest . 0 0;

run;

GENERAL coefficients < ,coefficients > < ,. . . >
CONTRAST coefficients < ,coefficients > < ,. . . >

provides a general facility to test linear combinations of covariance parameters. You can specify one
or more sets of coefficients. The position of a coefficient in the list corresponds to the position of
the parameter in the “Covariance Parameter Estimates” table. The linear combination of covariance
parameters that is implied by each set of coefficients is tested against zero. If the list of coefficients
is shorter than the number of covariance parameters, a zero coefficient is assumed for the remaining
parameters.

For example, in a heterogeneous variance model with four groups, the following statements test the
simultaneous hypothesis H W �21 D �

2
2 ; �

2
3 D �

2
4 :

proc glimmix;
class A;
model y = a;
random _residual_ / group=A;
covtest 'pair-wise homogeneity'

general 1 -1 0 0,
0 0 1 -1;

run;
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In a repeated measures study with four observations per subject, the COVTEST statement in the
following example tests whether the four correlation parameters are identical:

proc glimmix;
class subject drug time;
model y = drug time drug*time;
random _residual_ / sub=subject type=unr;
covtest 'Homogeneous correlation'

general 0 0 0 0 1 -1 ,
0 0 0 0 1 0 -1 ,
0 0 0 0 1 0 0 -1 ,
0 0 0 0 1 0 0 0 -1 ,
0 0 0 0 1 0 0 0 0 -1;

run;

Notice that the variances (the first four covariance parameters) are allowed to vary. The null model for
this test is thus a heterogeneous compound symmetry model.

The degrees of freedom associated with these general linear hypotheses are determined as the rank
of the matrix LL0, where L is the k � q matrix of coefficients and q is the number of covariance
parameters. Notice that the coefficients in a row do not have to sum to zero. The following statement
tests H W �1 D 3�2; �3 D 0:

covtest general 1 -3, 0 0 1;

Covariance Test Options

You can specify the following options in the COVTEST statement after a slash (/).

CL< (suboptions) >
requests confidence limits or bounds for the covariance parameter estimates. These limits are displayed
as extra columns in the “Covariance Parameter Estimates” table.

The following suboptions determine the computation of confidence bounds and intervals. See the
section “Statistical Inference for Covariance Parameters” on page 3204 for details about constructing
likelihood ratio confidence limits for covariance parameters with PROC GLIMMIX.

ALPHA=number
determines the confidence level for constructing confidence limits for the covariance parameters.
The value of number must be between 0 and 1, the default is 0.05, and the confidence level is 1 –
number .

LOWERBOUND

LOWER
requests lower confidence bounds.

TYPE=method
determines how the GLIMMIX procedure constructs confidence limits for covariance parameters.
The valid methods are PLR (or PROFILE), ELR (or ESTIMATED), and WALD. TYPE=PLR
(TYPE=PROFILE) requests confidence bounds by inversion of the profile (restricted) likelihood
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ratio (PLR). If � is the parameter of interest, L denotes the likelihood (possibly restricted and
possibly a pseudo-likelihood), and �2 is the vector of the remaining (nuisance) parameters, then
the profile likelihood is defined as

L.�2je�/ D sup
�2

L.e�;�2/
for a given value e� of � . If L.b�/ is the overall likelihood evaluated at the estimates b� , the
.1 � ˛/ � 100% confidence region for � satisfies the inequality

2
n
L.b�/ � L.�2je�/o � �21;.1�˛/

where �2
1;.1�˛/

is the cutoff from a chi-square distribution with one degree of freedom and ˛
probability to its right. If a residual scale parameter � is profiled from the estimation, and � is
expressed in terms of a ratio with � during estimation, then profile likelihood confidence limits
are constructed for the ratio of the parameter with the residual variance. A column showing
the ratio estimates is added to the “Covariance Parameter Estimates” table in this case. To
obtain profile likelihood ratio limits for the parameters, rather than their ratios, and for the
residual variance, use the NOPROFILE option in the PROC GLIMMIX statement. Also note that
METHOD=LAPLACE or METHOD=QUAD implies the NOPROFILE option.

The TYPE=ELR (TYPE=ESTIMATED) option constructs bounds from the estimated likelihood
(Pawitan 2001), where nuisance parameters are held fixed at the (restricted) maximum (pseudo-
) likelihood estimates of the model. Estimated likelihood intervals are computationally less
demanding than profile likelihood intervals, but they do not take into account the variability of
the nuisance parameters or the dependence among the covariance parameters. See the section
“Statistical Inference for Covariance Parameters” on page 3204 for a geometric interpretation and
comparison of ELR versus PLR confidence bounds. A .1 � ˛/ � 100% confidence region based
on the estimated likelihood is defined by the inequality

2
n
L.b�/ � L.e�;b�2/o � �21;.1�˛/

where L.e�;b�2/ is the likelihood evaluated at e� and the component of b� that corresponds to
�2. Estimated likelihood ratio intervals tend to perform well when the correlations between the
parameter of interest and the nuisance parameters is small. Their coverage probabilities can fall
short of the nominal coverage otherwise. You can display the correlation matrix of the covariance
parameter estimates with the ASYCORR option in the PROC GLIMMIX statement.

If you choose TYPE=PLR or TYPE=ELR, the GLIMMIX procedure reports the right-tail proba-
bility of the associated single-degree-of-freedom likelihood ratio test along with the confidence
bounds. This helps you diagnose whether solutions to the inequality could be found. If the
reported probability exceeds ˛, the associated bound does not meet the inequality. This might
occur, for example, when the parameter space is bounded and the likelihood at the boundary
values has not dropped by a sufficient amount to satisfy the test inequality.

The TYPE=WALD method requests confidence limits based on the Wald-type statistic Z� Db�=ease.b�/, where ease is the estimated asymptotic standard error of the covariance parameter.
For parameters that have a lower boundary constraint of zero, a Satterthwaite approximation is
used to construct limits of the form

�b�
�2
�;1�˛=2

� � �
�b�

�2
�;˛=2
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where � D 2Z2, and the denominators are quantiles of the �2 distribution with � degrees
of freedom. See Milliken and Johnson (1992) and Burdick and Graybill (1992) for similar
techniques. For all other parameters, Wald Z-scores and normal quantiles are used to construct
the limits. Such limits are also provided for variance components if you specify the NOBOUND
option in the PROC GLIMMIX statement or the PARMS statement.

UPPERBOUND
UPPER

requests upper confidence bounds.

If you do not specify any suboptions, the default is to compute two-sided Wald confidence intervals
with confidence level 1 � ˛ D 0:95.

CLASSICAL
requests that the p-value of the likelihood ratio test be computed by the classical method. Ifb� is the
realized value of the test statistic in the likelihood ratio test,

p D Pr
�
�2� �

b��
where � is the degrees of freedom of the hypothesis.

DF=value-list
enables you to supply degrees of freedom �1; � � � ; �k for the computation of p-values from chi-square
mixtures. The mixture weights w1; � � � ; wk are supplied with the WGHT= option. If no weights are
specified, an equal weight distribution is assumed. Ifb� is the realized value of the test statistic in the
likelihood ratio test, PROC GLIMMIX computes the p-value as (Shapiro 1988)

p D

kX
iD1

wiPr
�
�2�i �

b��
Note that �20 � 0 and that mixture weights are scaled to sum to one. If you specify more weights than
degrees of freedom in value-list , the rank of the hypothesis (DF column) is substituted for the missing
degrees of freedom.

Specifying a single value � for value-list without giving mixture weights is equivalent to computing
the p-value as

p D Pr
�
�2� �

b��
For example, the following statements compute the p-value based on a chi-square distribution with one
degree of freedom:

proc glimmix noprofile;
class A sub;
model score = A;
random _residual_ / type=ar(1) subject=sub;
covtest 'ELR low' 30.62555 0.7133361 / df=1;

run;

The DF column of the COVTEST output will continue to read 2 regardless of the DF= specification,
however, because the DF column reflects the rank of the hypothesis and equals the number of constraints
imposed on the full model.
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ESTIMATES

EST
displays the estimates of the covariance parameters under the null hypothesis. Specifying the ES-
TIMATES option in one COVTEST statement has the same effect as specifying the option in every
COVTEST statement.

MAXITER=number
limits the number of iterations when you are refitting the model under the null hypothesis to number
iterations. If the null model does not converge before the limit is reached, no p-values are produced.

PARMS
displays the values of the covariance parameters under the null hypothesis. This option is useful if you
supply multiple sets of parameter values with the TESTDATA= option. Specifying the PARMS option
in one COVTEST statement has the same effect as specifying the option in every COVTEST statement.

RESTART
specifies that starting values for the covariance parameters for the null model are obtained by the
same mechanism as starting values for the full models. For example, if you do not specify a PARMS
statement, the RESTART option computes MIVQUE(0) estimates under the null model (Goodnight
1978a). If you provide starting values with the PARMS statement, the starting values for the null model
are obtained by applying restrictions to the starting values for the full model.

By default, PROC GLIMMIX obtains starting values by applying null model restrictions to the
converged estimates of the full model. Although this is computationally expedient, the method does
not always lead to good starting values for the null model, depending on the nature of the model and
hypothesis. In particular, when you receive a warning about parameters not specified under H0 falling
on the boundary, the RESTART option can be useful.

TOLERANCE=r
Values within tolerance r � 0 of the boundary of the parameter space are considered on the boundary
when PROC GLIMMIX examines estimates of nuisance parameters under H0 and determines whether
mixture weights and degrees of freedom can be obtained. In certain cases, when parameters not
specified under the null hypothesis are on boundaries, the asymptotic distribution of the likelihood ratio
statistic is not a mixture of chi-squares (see, for example, case 8 in Self and Liang 1987). The default
for r is 1E4 times the machine epsilon; this product is approximately 1E–12 on most computers.

WALD
produces Wald Z tests for the covariance parameters based on the estimates and asymptotic standard
errors in the “Covariance Parameter Estimates” table.

WGHT=value-list
enables you to supply weights for the computation of p-values from chi-square mixtures. See the DF=
option for details. Mixture weights are scaled to sum to one.

EFFECT Statement
EFFECT effect-specification ;
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The experimental EFFECT statement enables you to construct special collections of columns for X or Z
matrices in your model. These collections are referred to as constructed effects to distinguish them from the
usual model effects formed from continuous or classification variables.

For details about the syntax of the EFFECT statement and how columns of constructed effects are computed,
see the section “EFFECT Statement” on page 397 in Chapter 19, “Shared Concepts and Topics.” For specific
details concerning the use of the EFFECT statement with the GLIMMIX procedure, see the section “Notes
on the EFFECT Statement” on page 3231.

ESTIMATE Statement
ESTIMATE 'label ' contrast-specification < (divisor=n) >

< , 'label ' contrast-specification < (divisor=n) > > < , . . . >
< / options > ;

The ESTIMATE statement provides a mechanism for obtaining custom hypothesis tests. As in the CON-
TRAST statement, the basic element of the ESTIMATE statement is the contrast-specification, which consists
of MODEL and G-side random effects and their coefficients. Specifically, a contrast-specification takes the
form

< fixed-effect values . . . > < | random-effect values . . . >

Based on the contrast-specifications in your ESTIMATE statement, PROC GLIMMIX constructs the matrix
L0 D ŒK0 M0�, as in the CONTRAST statement, where K is associated with the fixed effects and M is
associated with the G-side random effects. The GLIMMIX procedure supports nonpositional syntax for
the coefficients of fixed effects in the ESTIMATE statement. For details see the section “Positional and
Nonpositional Syntax for Contrast Coefficients” on page 3232.

PROC GLIMMIX then produces for each row l of L0 an approximate t test of the hypothesis H W l� D 0,
where � D Œˇ0  0�0. You can also obtain multiplicity-adjusted p-values and confidence limits for multirow
estimates with the ADJUST= option. The output from multiple ESTIMATE statements is organized as
follows. Results from unadjusted estimates are reported first in a single table, followed by separate tables
for each of the adjusted estimates. Results from all ESTIMATE statements are combined in the “Estimates”
ODS table.

Note that multirow estimates are permitted. Unlike the CONTRAST statement, you need to specify a
'label ' for every row of the multirow estimate, because PROC GLIMMIX produces one test per row. PROC
GLIMMIX selects the degrees of freedom to match those displayed in the “Type III Tests of Fixed Effects”
table for the final effect you list in the ESTIMATE statement. You can modify the degrees of freedom by
using the DF= option. If you select DDFM=NONE and do not modify the degrees of freedom by using the
DF= option, PROC GLIMMIX uses infinite degrees of freedom, essentially computing approximate z tests. If
PROC GLIMMIX finds the fixed-effects portion of the specified estimate to be nonestimable, then it displays
“Non-est” for the estimate entry.

Table 44.7 summarizes the options available in the ESTIMATE statement.
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Table 44.7 ESTIMATE Statement Options

Option Description

Construction and Computation of Estimable Functions
DIVISOR= Specifies a list of values to divide the coefficients
GROUP Sets up random-effect contrasts between different groups
SINGULAR= Tunes the estimability checking difference
SUBJECT Sets up random-effect contrasts between different subjects

Degrees of Freedom and p-values
ADJDFE= Determines denominator degrees of freedom when p-values and confidence

limits are adjusted for multiple comparisons
ADJUST= Determines the method for multiple comparison adjustment of estimates
ALPHA=˛ Determines the confidence level (1 � ˛)
DF= Assigns a specific value to degrees of freedom for tests and confidence

limits
LOWER Performs one-sided, lower-tailed inference
STEPDOWN Adjusts multiplicity-corrected p-values further in a step-down fashion
UPPER Performs one-sided, upper-tailed inference

Statistical Output
CL Constructs t-type confidence limits
E Prints the L matrix

Generalized Linear Modeling
BYCATEGORY= Reports estimates separately for each category for models with nominal

data
EXP Displays exponentiated estimates
ILINK Computes and displays estimates and standard errors on the inverse linked

scale

ADJDFE=SOURCE | ROW
specifies how denominator degrees of freedom are determined when p-values and confidence limits
are adjusted for multiple comparisons with the ADJUST= option. When you do not specify the
ADJDFE= option, or when you specify ADJDFE=SOURCE, the denominator degrees of freedom for
multiplicity-adjusted results are the denominator degrees of freedom for the final effect listed in the
ESTIMATE statement from the “Type III Tests of Fixed Effects” table.

The ADJDFE=ROW setting is useful if you want multiplicity adjustments to take into account that
denominator degrees of freedom are not constant across estimates. This can be the case, for example,
when the DDFM=SATTERTHWAITE or DDFM=KENWARDROGER degrees-of-freedom method is
in effect.

ADJUST=BON | SCHEFFE | SIDAK | SIMULATE< (simoptions) > | T
requests a multiple comparison adjustment for the p-values and confidence limits for the estimates. The
adjusted quantities are produced in addition to the unadjusted quantities. Adjusted confidence limits are
produced if the CL or ALPHA= option is in effect. For a description of the adjustments, see Chapter 45,
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“The GLM Procedure,” and Chapter 67, “The MULTTEST Procedure,” and the documentation for the
ADJUST= option in the LSMEANS statement. The ADJUST= option is ignored for generalized logit
models.

If the STEPDOWN option is in effect, the p-values are further adjusted in a step-down fashion.

ALPHA=number
requests that a t-type confidence interval be constructed with confidence level 1 – number . The value
of number must be between 0 and 1; the default is 0.05. If DDFM=NONE and you do not specify
degrees of freedom with the DF= option, PROC GLIMMIX uses infinite degrees of freedom, essentially
computing a z interval.

BYCATEGORY

BYCAT
requests that in models for nominal data (generalized logit models) estimates be reported separately for
each category. In contrast to the BYCATEGORY option in the CONTRAST statement, an ESTIMATE
statement in a generalized logit model does not distribute coefficients by response category, because
ESTIMATE statements always correspond to single rows of the L matrix.

For example, assume that the response variable Style is multinomial with three (unordered) categories.
The following GLIMMIX statements fit a generalized logit model relating the preferred style of
instruction to school and educational program effects:

proc glimmix data=school;
class School Program;
model Style(order=data) = School Program / s ddfm=none

dist=multinomial link=glogit;
freq Count;
estimate 'School 1 vs. 2' school 1 -1 / bycat;
estimate 'School 1 vs. 2' school 1 -1;

run;

The first ESTIMATE statement compares school effects separately for each nonredundant category.
The second ESTIMATE statement compares the school effects for the first non-reference category.

The BYCATEGORY option has no effect unless your model is a generalized (mixed) logit model.

CL
requests that t-type confidence limits be constructed. If DDFM=NONE and you do not specify degrees
of freedom with the DF= option, PROC GLIMMIX uses infinite degrees of freedom, essentially
computing a z interval. The confidence level is 0.95 by default. These intervals are adjusted for
multiplicity when you specify the ADJUST= option.

DF=number
specifies the degrees of freedom for the t test and confidence limits. The default is the denominator
degrees of freedom taken from the “Type III Tests of Fixed Effects” table and corresponds to the final
effect you list in the ESTIMATE statement.
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DIVISOR=value-list
specifies a list of values by which to divide the coefficients so that fractional coefficients can be entered
as integer numerators. If you do not specify value-list , a default value of 1.0 is assumed. Missing
values in the value-list are converted to 1.0.

If the number of elements in value-list exceeds the number of rows of the estimate, the extra values are
ignored. If the number of elements in value-list is less than the number of rows of the estimate, the last
value in value-list is copied forward.

If you specify a row-specific divisor as part of the specification of the estimate row, this value multiplies
the corresponding divisor implied by the value-list . For example, the following statement divides the
coefficients in the first row by 8, and the coefficients in the third and fourth row by 3:

estimate 'One vs. two' A 2 -2 (divisor=2),
'One vs. three' A 1 0 -1 ,
'One vs. four' A 3 0 0 -3 ,
'One vs. five' A 1 0 0 0 -1 / divisor=4,.,3;

Coefficients in the second row are not altered.

E
requests that the L matrix coefficients be displayed.

EXP
requests exponentiation of the estimate. When you model data with the logit, cumulative logit, or
generalized logit link functions, and the estimate represents a log odds ratio or log cumulative odds
ratio, the EXP option produces an odds ratio. See “Odds and Odds Ratio Estimation” on page 3225
for important details about the computation and interpretation of odds and odds ratio results with the
GLIMMIX procedure. If you specify the CL or ALPHA= option, the (adjusted) confidence bounds are
also exponentiated.

GROUP coeffs
sets up random-effect contrasts between different groups when a GROUP= variable appears in the
RANDOM statement. By default, ESTIMATE statement coefficients on random effects are distributed
equally across groups. If you enter a multirow estimate, you can also enter multiple rows for the
GROUP coefficients. If the number of GROUP coefficients is less than the number of contrasts in
the ESTIMATE statement, the GLIMMIX procedure cycles through the GROUP coefficients. For
example, the following two statements are equivalent:

estimate 'Trt 1 vs 2 @ x=0.4' trt 1 -1 0 | x 0.4,
'Trt 1 vs 3 @ x=0.4' trt 1 0 -1 | x 0.4,
'Trt 1 vs 2 @ x=0.5' trt 1 -1 0 | x 0.5,
'Trt 1 vs 3 @ x=0.5' trt 1 0 -1 | x 0.5 /

group 1 -1, 1 0 -1, 1 -1, 1 0 -1;

estimate 'Trt 1 vs 2 @ x=0.4' trt 1 -1 0 | x 0.4,
'Trt 1 vs 3 @ x=0.4' trt 1 0 -1 | x 0.4,
'Trt 1 vs 2 @ x=0.5' trt 1 -1 0 | x 0.5,
'Trt 1 vs 3 @ x=0.5' trt 1 0 -1 | x 0.5 /

group 1 -1, 1 0 -1;
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ILINK
requests that the estimate and its standard error are also reported on the scale of the mean (the inverse
linked scale). PROC GLIMMIX computes the value on the mean scale by applying the inverse link to
the estimate. The interpretation of this quantity depends on the fixed-effect values and random-effect
values specified in your ESTIMATE statement and on the link function. In a model for binary data
with logit link, for example, the following statements compute

1

1C expf�.˛1 � ˛2/g

where ˛1 and ˛2 are the fixed-effects solutions associated with the first two levels of the classification
effect A:

proc glimmix;
class A;
model y = A / dist=binary link=logit;
estimate 'A one vs. two' A 1 -1 / ilink;

run;

This quantity is not the difference of the probabilities associated with the two levels,

�1 � �2 D
1

1C expf�ˇ0 � ˛1g
�

1

1C expf�ˇ0 � ˛2g

The standard error of the inversely linked estimate is based on the delta method. If you also specify the
CL option, the GLIMMIX procedure computes confidence limits for the estimate on the mean scale.
In multinomial models for nominal data, the limits are obtained by the delta method. In other models
they are obtained from the inverse link transformation of the confidence limits for the estimate. The
ILINK option is specific to an ESTIMATE statement.

LOWER

LOWERTAILED
requests that the p-value for the t test be based only on values less than the test statistic. A two-tailed
test is the default. A lower-tailed confidence limit is also produced if you specify the CL or ALPHA=
option.

Note that for ADJUST=SCHEFFE the one-sided adjusted confidence intervals and one-sided adjusted
p-values are the same as the corresponding two-sided statistics, because this adjustment is based on
only the right tail of the F distribution.

SINGULAR=number
tunes the estimability checking as documented for the CONTRAST statement.

STEPDOWN< (step-down-options) >
requests that multiplicity adjustments for the p-values of estimates be further adjusted in a step-down
fashion. Step-down methods increase the power of multiple testing procedures by taking advantage of
the fact that a p-value will never be declared significant unless all smaller p-values are also declared
significant. Note that the STEPDOWN adjustment combined with ADJUST=BON corresponds to
the methods of Holm (1979) and “Method 2” of Shaffer (1986); this is the default. Using step-
down-adjusted p-values combined with ADJUST=SIMULATE corresponds to the method of Westfall
(1997).
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If the degrees-of-freedom method is DDFM=KENWARDROGER or DDFM=SATTERTHWAITE,
then step-down-adjusted p-values are produced only if the ADJDFE=ROW option is in effect.

Also, the STEPDOWN option affects only p-values, not confidence limits. For ADJUST=SIMULATE,
the generalized least squares hybrid approach of Westfall (1997) is employed to increase Monte Carlo
accuracy.

You can specify the following step-down-options in parentheses after the STEPDOWN option.

MAXTIME=n
specifies the time (in seconds) to spend computing the maximal logically consistent sequential
subsets of equality hypotheses for TYPE=LOGICAL. The default is MAXTIME=60. If the
MAXTIME value is exceeded, the adjusted tests are not computed. When this occurs, you can
try increasing the MAXTIME value. However, note that there are common multiple comparisons
problems for which this computation requires a huge amount of time—for example, all pairwise
comparisons between more than 10 groups. In such cases, try to use TYPE=FREE (the default)
or TYPE=LOGICAL(n) for small n.

ORDER=PVALUE | ROWS
specifies the order in which the step-down tests are performed. ORDER=PVALUE is the default,
with estimates being declared significant only if all estimates with smaller (unadjusted) p-values
are significant. If you specify ORDER=ROWS, then significances are evaluated in the order in
which they are specified in the syntax.

REPORT
specifies that a report on the step-down adjustment be displayed, including a listing of the
sequential subsets (Westfall 1997) and, for ADJUST=SIMULATE, the step-down simulation
results.

TYPE=LOGICAL< (n) > | FREE
If you specify TYPE=LOGICAL, the step-down adjustments are computed by using maximal
logically consistent sequential subsets of equality hypotheses (Shaffer 1986; Westfall 1997).
Alternatively, for TYPE=FREE, sequential subsets are computed ignoring logical constraints.
The TYPE=FREE results are more conservative than those for TYPE=LOGICAL, but they can
be much more efficient to produce for many estimates. For example, it is not feasible to take
logical constraints between all pairwise comparisons of more than about 10 groups. For this
reason, TYPE=FREE is the default.

However, you can reduce the computational complexity of taking logical constraints into account
by limiting the depth of the search tree used to compute them, specifying the optional depth
parameter as a number n in parentheses after TYPE=LOGICAL. As with TYPE=FREE, results
for TYPE=LOGICAL(n) are conservative relative to the true TYPE=LOGICAL results, but even
for TYPE=LOGICAL(0) they can be appreciably less conservative than TYPE=FREE and they
are computationally feasible for much larger numbers of estimates. If you do not specify n or if n
= –1, the full search tree is used.

SUBJECT coeffs
sets up random-effect contrasts between different subjects when a SUBJECT= variable appears in the
RANDOM statement. By default, ESTIMATE statement coefficients on random effects are distributed
equally across subjects. Listing subject coefficients for an ESTIMATE statement with multiple rows
follows the same rules as for GROUP coefficients.
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UPPER

UPPERTAILED
requests that the p-value for the t test be based only on values greater than the test statistic. A two-tailed
test is the default. An upper-tailed confidence limit is also produced if you specify the CL or ALPHA=
option.

Note that for ADJUST=SCHEFFE the one-sided adjusted confidence intervals and one-sided adjusted
p-values are the same as the corresponding two-sided statistics, because this adjustment is based on
only the right tail of the F distribution.

FREQ Statement
FREQ variable ;

The variable in the FREQ statement identifies a numeric variable in the data set or one computed through
PROC GLIMMIX programming statements that contains the frequency of occurrence for each observation.
PROC GLIMMIX treats each observation as if it appears f times, where f is the value of the FREQ variable
for the observation. If it is not an integer, the frequency value is truncated to an integer. If the frequency
value is less than 1 or missing, the observation is not used in the analysis. When the FREQ statement is not
specified, each observation is assigned a frequency of 1.

The analysis produced by using a FREQ statement reflects the expanded number of observations. For an
example of a FREQ statement in a model with random effects, see Example 44.11 in this chapter.

ID Statement
ID variables ;

The ID statement specifies which quantities to include in the OUT= data set from the OUTPUT statement in
addition to any statistics requested in the OUTPUT statement. If no ID statement is given, the GLIMMIX
procedure includes all variables from the input data set in the OUT= data set. Otherwise, only the variables
listed in the ID statement are included. Automatic variables such as _LINP_, _MU_, _VARIANCE_, etc. are
not transferred to the OUT= data set unless they are listed in the ID statement.

The ID statement can be used to transfer computed quantities that depend on the model to an output data
set. In the following example, two sets of Hessian weights are computed in a gamma regression with a
noncanonical link. The covariance matrix for the fixed effects can be constructed as the inverse of X0WX. W
is a diagonal matrix of the wei or woi , depending on whether the expected or observed Hessian matrix is
desired, respectively.

proc glimmix;
class group age;
model cost = group age / s error=gamma link=pow(0.5);
output out=gmxout pred=pred;
id _variance_ wei woi;
vpmu = 2*_mu_;
if (_mu_ > 1.0e-8) then do;

gpmu = 0.5 * (_mu_**(-0.5));
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gppmu = -0.25 * (_mu_**(-1.5));
wei = 1/(_phi_*_variance_*gpmu*gpmu);
woi = wei + (cost-_mu_) *

(_variance_*gppmu + vpmu*gpmu) /
(_variance_*_variance_*gpmu*gpmu*gpmu*_phi_);

end;
run;

The variables _VARIANCE_ and _MU_ and other symbols are predefined by PROC GLIMMIX and can be
used in programming statements. For rules and restrictions, see the section “Programming Statements” on
page 3175.

LSMEANS Statement
LSMEANS fixed-effects < / options > ;

The LSMEANS statement computes least squares means (LS-means) of fixed effects. As in the GLM and
the MIXED procedures, LS-means are predicted population margins—that is, they estimate the marginal
means over a balanced population. In a sense, LS-means are to unbalanced designs as class and subclass
arithmetic means are to balanced designs. The L matrix constructed to compute them is the same as the L
matrix formed in PROC GLM; however, the standard errors are adjusted for the covariance parameters in the
model. Least squares means computations are not supported for multinomial models.

Each LS-mean is computed as Lb̌, where L is the coefficient matrix associated with the least squares mean
and b̌ is the estimate of the fixed-effects parameter vector. The approximate standard error for the LS-mean
is computed as the square root of LbVarŒb̌�L0. The approximate variance matrix of the fixed-effects estimates
depends on the estimation method.

LS-means are constructed on the linked scale—that is, the scale on which the model effects are additive. For
example, in a binomial model with logit link, the least squares means are predicted population margins of the
logits.

LS-means can be computed for any effect in the MODEL statement that involves only CLASS variables.
You can specify multiple effects in one LSMEANS statement or in multiple LSMEANS statements, and all
LSMEANS statements must appear after the MODEL statement. As in the ESTIMATE statement, the L
matrix is tested for estimability, and if this test fails, PROC GLIMMIX displays “Non-est” for the LS-means
entries.

Assuming the LS-mean is estimable, PROC GLIMMIX constructs an approximate t test to test the null
hypothesis that the associated population quantity equals zero. By default, the denominator degrees of
freedom for this test are the same as those displayed for the effect in the “Type III Tests of Fixed Effects”
table. If the DDFM=SATTERTHWAITE or DDFM=KENWARDROGER option is specified in the MODEL
statement, PROC GLIMMIX determines degrees of freedom separately for each test, unless the DDF= option
overrides it for a particular effect. See the DDFM= option for more information. Table 44.8 summarizes
options available in the LSMEANS statement. All LSMEANS options are subsequently discussed in
alphabetical order.
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Table 44.8 LSMEANS Statement Options

Option Description

Construction and Computation of LS-Means
AT Modifies covariate value in computing LS-means
BYLEVEL Computes separate margins
DIFF Requests differences of LS-means
OM Specifies weighting scheme for LS-mean computation as determined by the

input data set
SINGULAR= Tunes estimability checking
SLICE= Partitions F tests (simple effects)
SLICEDIFF= Requests simple effects differences
SLICEDIFFTYPE Determines the type of simple difference

Degrees of Freedom and P-values
ADJDFE= Determines whether to compute row-wise denominator degrees of freedom

with DDFM=SATTERTHWAITE or DDFM=KENWARDROGER
ADJUST= Determines the method for multiple comparison adjustment of LS-mean

differences
ALPHA=˛ Determines the confidence level (1 � ˛)
DF= Assigns specific value to degrees of freedom for tests and confidence limits
STEPDOWN Adjusts multiple comparison p-values further in a step-down fashion

Statistical Output
CL Constructs confidence limits for means and or mean differences
CORR Displays correlation matrix of LS-means
COV Displays covariance matrix of LS-means
E Prints the L matrix
ILINK Applies the inverse link transform to the LS-Means (not differences) and

produces the standard errors on the inverse linked scale
LINES Produces “Lines” display for pairwise LS-mean differences
ODDS Reports odds of levels of fixed effects if permissible by the link function
ODDSRATIO Reports (simple) differences of least squares means in terms of odds ratios

if permissible by the link function
PLOTS= Requests ODS statistical graphics of means and mean comparisons

You can specify the following options in the LSMEANS statement after a slash (/).

ADJDFE=ROW | SOURCE
specifies how denominator degrees of freedom are determined when p-values and confidence limits
are adjusted for multiple comparisons with the ADJUST= option. When you do not specify the
ADJDFE= option, or when you specify ADJDFE=SOURCE, the denominator degrees of freedom for
multiplicity-adjusted results are the denominator degrees of freedom for the LS-mean effect in the
“Type III Tests of Fixed Effects” table. When you specify ADJDFE=ROW, the denominator degrees of
freedom for multiplicity-adjusted results correspond to the degrees of freedom displayed in the DF
column of the “Differences of Least Squares Means” table.
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The ADJDFE=ROW setting is particularly useful if you want multiplicity adjustments to take into
account that denominator degrees of freedom are not constant across LS-mean differences. This
can be the case, for example, when the DDFM=SATTERTHWAITE or DDFM=KENWARDROGER
degrees-of-freedom method is in effect.

In one-way models with heterogeneous variance, combining certain ADJUST= options with the
ADJDFE=ROW option corresponds to particular methods of performing multiplicity adjustments in
the presence of heteroscedasticity. For example, the following statements fit a heteroscedastic one-way
model and perform Dunnett’s T3 method (Dunnett 1980), which is based on the studentized maximum
modulus (ADJUST=SMM):

proc glimmix;
class A;
model y = A / ddfm=satterth;
random _residual_ / group=A;
lsmeans A / adjust=smm adjdfe=row;

run;

If you combine the ADJDFE=ROW option with ADJUST=SIDAK, the multiplicity adjustment corre-
sponds to the T2 method of Tamhane (1979), while ADJUST=TUKEY corresponds to the method of
Games-Howell (Games and Howell 1976). Note that ADJUST=TUKEY gives the exact results for the
case of fractional degrees of freedom in the one-way model, but it does not take into account that the
degrees of freedom are subject to variability. A more conservative method, such as ADJUST=SMM,
might protect the overall error rate better.

Unless the ADJUST= option is specified in the LSMEANS statement, the ADJDFE= option has no
effect.

ADJUST=BON

ADJUST=DUNNETT

ADJUST=NELSON

ADJUST=SCHEFFE

ADJUST=SIDAK

ADJUST=SIMULATE< (simoptions) >

ADJUST=SMM | GT2

ADJUST=TUKEY
requests a multiple comparison adjustment for the p-values and confidence limits for the differences
of LS-means. The adjusted quantities are produced in addition to the unadjusted quantities. By
default, PROC GLIMMIX performs all pairwise differences. If you specify ADJUST=DUNNETT, the
procedure analyzes all differences with a control level. If you specify ADJUST=NELSON, ANOM
differences are taken. The ADJUST= option implies the DIFF option, unless the SLICEDIFF= option
is specified.

The BON (Bonferroni) and SIDAK adjustments involve correction factors described in Chapter 45,
“The GLM Procedure,” and Chapter 67, “The MULTTEST Procedure;” also see Westfall and Young
(1993) and Westfall et al. (1999). When you specify ADJUST=TUKEY and your data are unbal-
anced, PROC GLIMMIX uses the approximation described in Kramer (1956) and identifies the
adjustment as “Tukey-Kramer” in the results. Similarly, when you specify ADJUST=DUNNETT
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or ADJUST=NELSON and the LS-means are correlated, the GLIMMIX procedure uses the factor-
analytic covariance approximation described in Hsu (1992) and identifies the adjustment in the results
as “Dunnett-Hsu” or “Nelson-Hsu,” respectively. The approximation derives an approximate “effective
sample sizes” for which exact critical values are computed. Note that computing the exact adjusted
p-values and critical values for unbalanced designs can be computationally intensive, in particular for
ADJUST=NELSON. A simulation-based approach, as specified by the ADJUST=SIM option, while
nondeterministic, can provide inferences that are sufficiently accurate in much less time. The preceding
references also describe the SCHEFFE and SMM adjustments.

Nelson’s adjustment applies only to the analysis of means (Ott 1967; Nelson 1982, 1991, 1993), where
LS-means are compared against an average LS-mean. It does not apply to all pairwise differences of
least squares means, or to slice differences that you specify with the SLICEDIFF= option. See the
DIFF=ANOM option for more details regarding the analysis of means with the GLIMMIX procedure.

The SIMULATE adjustment computes adjusted p-values and confidence limits from the simulated
distribution of the maximum or maximum absolute value of a multivariate t random vector. All covari-
ance parameters, except the residual scale parameter, are fixed at their estimated values throughout the
simulation, potentially resulting in some underdispersion. The simulation estimates q, the true .1 � ˛/
quantile, where 1 � ˛ is the confidence coefficient. The default ˛ is 0.05, and you can change this
value with the ALPHA= option in the LSMEANS statement.

The number of samples is set so that the tail area for the simulated q is within  of 1 � ˛ with
100.1 � �/% confidence. In equation form,

Pr.jF.bq/ � .1 � ˛/j � / D 1 � �
where Oq is the simulated q and F is the true distribution function of the maximum; see Edwards and
Berry (1987) for details. By default,  = 0.005 and � = 0.01, placing the tail area of Oq within 0.005 of
0.95 with 99% confidence. The ACC= and EPS= simoptions reset  and �, respectively, the NSAMP=
simoption sets the sample size directly, and the SEED= simoption specifies an integer used to start the
pseudo-random number generator for the simulation. If you do not specify a seed, or if you specify a
value less than or equal to zero, the seed is generated from reading the time of day from the computer
clock. For additional descriptions of these and other simulation options, see the section “LSMEANS
Statement” on page 3419 in Chapter 45, “The GLM Procedure.”

If the STEPDOWN option is in effect, the p-values are further adjusted in a step-down fashion. For
certain options and data, this adjustment is exact under an iid N.0; �2/ model for the dependent
variable, in particular for the following:

• for ADJUST=DUNNETT when the means are uncorrelated

• for ADJUST=TUKEY with STEPDOWN(TYPE=LOGICAL) when the means are balanced and
uncorrelated.

The first case is a consequence of the nature of the successive step-down hypotheses for comparisons
with a control; the second employs an extension of the maximum studentized range distribution
appropriate for partition hypotheses (Royen 1989). Finally, for STEPDOWN(TYPE=FREE), AD-
JUST=TUKEY employs the Royen (1989) extension in such a way that the resulting p-values are
conservative.
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ALPHA=number
requests that a t-type confidence interval be constructed for each of the LS-means with confidence
level 1 – number . The value of number must be between 0 and 1; the default is 0.05.

AT variable=value

AT (variable-list)=(value-list)

AT MEANS
enables you to modify the values of the covariates used in computing LS-means. By default, all
covariate effects are set equal to their mean values for computation of standard LS-means. The AT
option enables you to assign arbitrary values to the covariates. Additional columns in the output table
indicate the values of the covariates.

If there is an effect containing two or more covariates, the AT option sets the effect equal to the product
of the individual means rather than the mean of the product (as with standard LS-means calculations).
The AT MEANS option sets covariates equal to their mean values (as with standard LS-means) and
incorporates this adjustment to crossproducts of covariates.

As an example, consider the following invocation of PROC GLIMMIX:

proc glimmix;
class A;
model Y = A x1 x2 x1*x2;
lsmeans A;
lsmeans A / at means;
lsmeans A / at x1=1.2;
lsmeans A / at (x1 x2)=(1.2 0.3);

run;

For the first two LSMEANS statements, the LS-means coefficient for x1 is x1 (the mean of x1) and
for x2 is x2 (the mean of x2). However, for the first LSMEANS statement, the coefficient for x1*x2
is x1x2, but for the second LSMEANS statement, the coefficient is x1 � x2. The third LSMEANS
statement sets the coefficient for x1 equal to 1.2 and leaves it at x2 for x2, and the final LSMEANS
statement sets these values to 1.2 and 0.3, respectively.

Even if you specify a WEIGHT variable, the unweighted covariate means are used for the covariate
coefficients if there is no AT specification. If you specify the AT option, WEIGHT or FREQ variables
are taken into account as follows. The weighted covariate means are then used for the covariate
coefficients for which no explicit AT values are given, or if you specify AT MEANS. Observations that
do not contribute to the analysis because of a missing dependent variable are included in computing
the covariate means. You should use the E option in conjunction with the AT option to check that the
modified LS-means coefficients are the ones you want.

The AT option is disabled if you specify the BYLEVEL option.

BYLEVEL
requests that separate margins be computed for each level of the LSMEANS effect.

The standard LS-means have equal coefficients across classification effects. The BYLEVEL option
changes these coefficients to be proportional to the observed margins. This adjustment is reasonable
when you want your inferences to apply to a population that is not necessarily balanced but has the
margins observed in the input data set. In this case, the resulting LS-means are actually equal to
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raw means for fixed-effects models and certain balanced random-effects models, but their estimated
standard errors account for the covariance structure that you have specified. If a WEIGHT statement is
specified, PROC GLIMMIX uses weighted margins to construct the LS-means coefficients.

If the AT option is specified, the BYLEVEL option disables it.

CL
requests that t-type confidence limits be constructed for each of the LS-means. If DDFM=NONE, then
PROC GLIMMIX uses infinite degrees of freedom for this test, essentially computing a z interval.
The confidence level is 0.95 by default; this can be changed with the ALPHA= option. If you specify
an ADJUST= option, then the confidence limits are adjusted for multiplicity, but if you also specify
STEPDOWN, then only p-values are step-down adjusted, not the confidence limits.

CORR
displays the estimated correlation matrix of the least squares means as part of the “Least Squares
Means” table.

COV
displays the estimated covariance matrix of the least squares means as part of the “Least Squares
Means” table.

DF=number
specifies the degrees of freedom for the t test and confidence limits. The default is the denominator
degrees of freedom taken from the “Type III Tests of Fixed Effects” table corresponding to the
LS-means effect.

DIFF< =difftype >

PDIFF< =difftype >
requests that differences of the LS-means be displayed. The optional difftype specifies which differences
to produce, with possible values ALL, ANOM, CONTROL, CONTROLL, and CONTROLU. The
ALL value requests all pairwise differences, and it is the default. The CONTROL difftype requests
differences with a control, which, by default, is the first level of each of the specified LSMEANS
effects.

The ANOM value requests differences between each LS-mean and the average LS-mean, as in the
analysis of means (Ott 1967). The average is computed as a weighted mean of the LS-means, the
weights being inversely proportional to the diagonal entries of the

L
�
X0X

�� L0

matrix. If LS-means are nonestimable, this design-based weighted mean is replaced with an equally
weighted mean. Note that the ANOM procedure in SAS/QC software implements both tables and
graphics for the analysis of means with a variety of response types. For one-way designs and normal
data with identity link, the DIFF=ANOM computations are equivalent to the results of PROC ANOM.
If the LS-means being compared are uncorrelated, exact adjusted p-values and critical values for
confidence limits can be computed in the analysis of means; see Nelson (1982, 1991, 1993); Guirguis
and Tobias (2004) as well as the documentation for the ADJUST=NELSON option.

To specify which levels of the effects are the controls, list the quoted formatted values in parentheses
after the CONTROL keyword. For example, if the effects A, B, and C are classification variables, each
having two levels, 1 and 2, the following LSMEANS statement specifies the (1,2) level of A*B and the
(2,1) level of B*C as controls:
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lsmeans A*B B*C / diff=control('1' '2' '2' '1');

For multiple effects, the results depend upon the order of the list, and so you should check the output
to make sure that the controls are correct.

Two-tailed tests and confidence limits are associated with the CONTROL difftype. For one-tailed results,
use either the CONTROLL or CONTROLU difftype. The CONTROLL difftype tests whether the
noncontrol levels are significantly smaller than the control; the upper confidence limits for the control
minus the noncontrol levels are considered to be infinity and are displayed as missing. Conversely, the
CONTROLU difftype tests whether the noncontrol levels are significantly larger than the control; the
upper confidence limits for the noncontrol levels minus the control are considered to be infinity and are
displayed as missing.

If you want to perform multiple comparison adjustments on the differences of LS-means, you must
specify the ADJUST= option.

The differences of the LS-means are displayed in a table titled “Differences of Least Squares Means.”

E
requests that the L matrix coefficients for the LSMEANS effects be displayed.

ILINK
requests that estimates and their standard errors in the “Least Squares Means” table also be reported
on the scale of the mean (the inverse linked scale). The ILINK option is specific to an LSMEANS
statement. If you also specify the CL option, the GLIMMIX procedure computes confidence intervals
for the predicted means by applying the inverse link transform to the confidence limits on the linked
(linear) scale. Standard errors on the inverse linked scale are computed by the delta method.

The GLIMMIX procedure applies the inverse link transform to the LS-mean reported in the Estimate
column. In a logistic model, for example, this implies that the value reported as the inversely linked
estimate corresponds to a predicted probability that is based on an average estimable function (the
estimable function that produces the LS-mean on the linear scale). To compute average predicted
probabilities, you can average the results from applying the ILINK option in the ESTIMATE statement
for suitably chosen estimable functions.

LINES
presents results of comparisons between all pairs of least squares means by listing the means in
descending order and indicating nonsignificant subsets by line segments beside the corresponding
LS-means. When all differences have the same variance, these comparison lines are guaranteed to
accurately reflect the inferences based on the corresponding tests, made by comparing the respective
p-values to the value of the ALPHA= option (0.05 by default). However, equal variances might not be
the case for differences between LS-means. If the variances are not all the same, then the comparison
lines might be conservative, in the sense that if you base your inferences on the lines alone, you will
detect fewer significant differences than the tests indicate. If there are any such differences, PROC
GLIMMIX lists the pairs of means that are inferred to be significantly different by the tests but not by
the comparison lines. Note, however, that in many cases, even though the variances are unequal, they
are similar enough that the comparison lines accurately reflect the test inferences.
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ODDS
requests that in models with logit, cumulative logit, and generalized logit link function the odds of the
levels of the fixed effects are reported. If you specify the CL or ALPHA= option, confidence intervals
for the odds are also computed. See the section “Odds and Odds Ratio Estimation” on page 3225
for further details about computation and interpretation of odds and odds ratios with the GLIMMIX
procedure.

ODDSRATIO

OR
requests that LS-mean differences (DIFF, ADJUST= options) and simple effect comparisons (SLICED-
IFF option) are also reported in terms of odds ratios. The ODDSRATIO option is ignored unless
you use either the logit, cumulative logit, or generalized logit link function. If you specify the CL
or ALPHA= option, confidence intervals for the odds ratios are also computed. These intervals are
adjusted for multiplicity when you specify the ADJUST= option. See the section “Odds and Odds
Ratio Estimation” on page 3225 for further details about computation and interpretation of odds and
odds ratios with the GLIMMIX procedure.

OBSMARGINS

OM
specifies a potentially different weighting scheme for the computation of LS-means coefficients. The
standard LS-means have equal coefficients across classification effects; however, the OM option
changes these coefficients to be proportional to those found in the input data set. This adjustment is
reasonable when you want your inferences to apply to a population that is not necessarily balanced but
has the margins observed in your data.

In computing the observed margins, PROC GLIMMIX uses all observations for which there are
no missing or invalid independent variables, including those for which there are missing dependent
variables. Also, if you use a WEIGHT statement, PROC GLIMMIX computes weighted margins to
construct the LS-means coefficients. If your data are balanced, the LS-means are unchanged by the
OM option.

The BYLEVEL option modifies the observed-margins LS-means. Instead of computing the margins
across all of the input data set, PROC GLIMMIX computes separate margins for each level of the
LSMEANS effect in question. In this case the resulting LS-means are actually equal to raw means for
fixed-effects models and certain balanced random-effects models, but their estimated standard errors
account for the covariance structure that you have specified.

You can use the E option in conjunction with either the OM or BYLEVEL option to check that the
modified LS-means coefficients are the ones you want. It is possible that the modified LS-means are
not estimable when the standard ones are estimable, or vice versa.

PDIFF
is the same as the DIFF option. See the description of the DIFF option on page 3116.

PLOT | PLOTS< =plot-request< (options) > >

PLOT | PLOTS< =(plot-request< (options) > < . . . plot-request< (options) > >) >
creates least squares means related graphs when ODS Graphics has been enabled and the plot request
does not conflict with other options in the LSMEANS statement. For general information about ODS
Graphics, see Chapter 21, “Statistical Graphics Using ODS.” For examples of the basic statistical
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graphics for least squares means and aspects of their computation and interpretation, see the section
“Graphics for LS-Mean Comparisons” on page 3256 in this chapter.

The options for a specific plot request (and their suboptions) of the LSMEANS statement include those
for the PLOTS= option in the PROC GLIMMIX statement. You can specify classification effects in
the MEANPLOT request of the LSMEANS statement to control the display of interaction means with
the PLOTBY= and SLICEBY= suboptions; these are not available in the PLOTS= option in the PROC
GLIMMIX statement. Options specified in the LSMEANS statement override those in the PLOTS=
option in the PROC GLIMMIX statement.

The available options and suboptions are as follows.

ALL
requests that the default plots corresponding to this LSMEANS statement be produced. The
default plot depends on the options in the statement.

ANOMPLOT

ANOM
requests an analysis of means display in which least squares means are compared to an average
least squares mean. Least squares mean ANOM plots are produced only for those model effects
listed in LSMEANS statements that have options that do not contradict with the display. For
example, the following statements produce analysis of mean plots for effects A and C:

lsmeans A / diff=anom plot=anom;
lsmeans B / diff plot=anom;
lsmeans C / plot=anom;

The DIFF option in the second LSMEANS statement implies all pairwise differences.

CONTROLPLOT

CONTROL
requests a display in which least squares means are visually compared against a reference level.
These plots are produced only for statements with options that are compatible with control
differences. For example, the following statements produce control plots for effects A and C:

lsmeans A / diff=control('1') plot=control;
lsmeans B / diff plot=control;
lsmeans C plot=control;

The DIFF option in the second LSMEANS statement implies all pairwise differences.

DIFFPLOT< (diffplot-options) >

DIFFOGRAM< (diffplot-options) >

DIFF< (diffplot-options) >
requests a display of all pairwise least squares mean differences and their significance. The
display is also known as a “mean-mean scatter plot” when it is based on arithmetic means (Hsu
1996; Hsu and Peruggia 1994). For each comparison a line segment, centered at the LS-means in
the pair, is drawn. The length of the segment corresponds to the projected width of a confidence
interval for the least squares mean difference. Segments that fail to cross the 45-degree reference
line correspond to significant least squares mean differences.
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LS-mean difference plots are produced only for statements with options that are compatible with
the display. For example, the following statements request differences against a control level for
the A effect, all pairwise differences for the B effect, and the least squares means for the C effect:

lsmeans A / diff=control('1') plot=diff;
lsmeans B / diff plot=diff;
lsmeans C plot=diff;

The DIFF= type in the first statement is incompatible with a display of all pairwise differences.

You can specify the following diffplot-options. The ABS and NOABS options determine the
positioning of the line segments in the plot. When the ABS option is in effect, and this is the
default, all line segments are shown on the same side of the reference line. The NOABS option
separates comparisons according to the sign of the difference. The CENTER option marks the
center point for each comparison. This point corresponds to the intersection of two least squares
means. The NOLINES option suppresses the display of the line segments that represent the
confidence bounds for the differences of the least squares means. The NOLINES option implies
the CENTER option. The default is to draw line segments in the upper portion of the plot area
without marking the center point.

MEANPLOT< (meanplot-options) >
requests displays of the least squares means.

The following meanplot-options control the display of the least squares means.

ASCENDING
displays the least squares means in ascending order. This option has no effect if means are
sliced or displayed in separate plots.

CL
displays upper and lower confidence limits for the least squares means. By default, 95%
limits are drawn. You can change the confidence level with the ALPHA= option. Confidence
limits are drawn by default if the CL option is specified in the LSMEANS statement.

CLBAND
displays confidence limits as bands. This option implies the JOIN option.

DESCENDING
displays the least squares means in descending order. This option has no effect if means are
sliced or displayed in separate plots.

ILINK
requests that means (and confidence limits) are displayed on the inverse linked scale.

JOIN

CONNECT
connects the least squares means with lines. This option is implied by the CLBAND
option. If the effect contains nested variables, and a SLICEBY= effect contains classification
variables that appear as crossed effects, this option is ignored.
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SLICEBY=fixed-effect
specifies an effect by which to group the means in a single plot. For example, the following
statement requests a plot in which the levels of A are placed on the horizontal axis and the
means that belong to the same level of B are joined by lines:

lsmeans A*B / plot=meanplot(sliceby=b join);

Unless the LS-mean effect contains at least two classification variables, the SLICEBY=
option has no effect. The fixed-effect does not have to be an effect in your MODEL statement,
but it must consist entirely of classification variables.

PLOTBY=fixed-effect
specifies an effect by which to break interaction plots into separate displays. For example,
the following statement requests for each level of C one plot of the A*B cell means that are
associated with that level of C:

lsmeans A*B*C / plot=meanplot(sliceby=b plotby=c clband);

In each plot, levels of A are displayed on the horizontal axis, and confidence bands are drawn
around the means that share the same level of B.

The PLOTBY= option has no effect unless the LS-mean effect contains at least three
classification variables. The fixed-effect does not have to be an effect in the MODEL
statement, but it must consist entirely of classification variables.

NONE
requests that no plots be produced.

When LS-mean calculations are adjusted for multiplicity by using the ADJUST= option, the plots are
adjusted accordingly.

SINGULAR=number
tunes the estimability checking as documented for the CONTRAST statement.

SLICE=fixed-effect | (fixed-effects)
specifies effects by which to partition interaction LSMEANS effects. This can produce what are known
as tests of simple effects (Winer 1971). For example, suppose that A*B is significant, and you want to
test the effect of A for each level of B. The appropriate LSMEANS statement is

lsmeans A*B / slice=B;

This statement tests for the simple main effects of A for B, which are calculated by extracting the
appropriate rows from the coefficient matrix for the A*B LS-means and by using them to form an F
test.

The SLICE option produces F tests that test the simultaneous equality of cell means at a fixed level of
the slice effect (Schabenberger, Gregoire, and Kong 2000). You can request differences of the least
squares means while holding one or more factors at a fixed level with the SLICEDIFF= option.

The SLICE option produces a table titled “Tests of Effect Slices.”
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SLICEDIFF=fixed-effect | (fixed-effects)

SIMPLEDIFF=fixed-effect | (fixed-effects)
requests that differences of simple effects be constructed and tested against zero. Whereas the SLICE
option extracts multiple rows of the coefficient matrix and forms an F test, the SLICEDIFF option
tests pairwise differences of these rows. This enables you to perform multiple comparisons among the
levels of one factor at a fixed level of the other factor. For example, assume that, in a balanced design,
factors A and B have a = 4 and b = 3 levels, respectively. Consider the following statements:

proc glimmix;
class a b;
model y = a b a*b;
lsmeans a*b / slice=a;
lsmeans a*b / slicediff=a;

run;

The first LSMEANS statement produces four F tests, one per level of A. The first of these tests is
constructed by extracting the three rows corresponding to the first level of A from the coefficient matrix
for the A*B interaction. Call this matrix La1 and its rows l.1/a1 , l.2/a1 , and l.3/a1 . The SLICE tests the
two-degrees-of-freedom hypothesis

H W

8<:
�
l.1/a1 � l.2/a1

�
ˇ D 0�

l.1/a1 � l.3/a1
�
ˇ D 0

In a balanced design, where �ij denotes the mean response if A is at level i and B is at level j, this
hypothesis is equivalent to H W�11 D �12 D �13. The SLICEDIFF option considers the three rows
of La1 in turn and performs tests of the difference between pairs of rows. How these differences are
constructed depends on the SLICEDIFFTYPE= option. By default, all pairwise differences within the
subset of L are considered; in the example this corresponds to tests of the form

H W
�
l.1/a1 � l.2/a1

�
ˇ D 0

H W
�
l.1/a1 � l.3/a1

�
ˇ D 0

H W
�
l.2/a1 � l.3/a1

�
ˇ D 0

In the example, with a = 4 and b = 3, the second LSMEANS statement produces four sets of least
squares means differences. Within each set, factor A is held fixed at a particular level and each set
consists of three comparisons.

When the ADJUST= option is specified, the GLIMMIX procedure also adjusts the tests for multiplicity.
The adjustment is based on the number of comparisons within each level of the SLICEDIFF= effect;
see the SLICEDIFFTYPE= option. The Nelson adjustment is not available for slice differences.

SLICEDIFFTYPE< =difftype >

SIMPLEDIFFTYPE< =difftype >
determines the type of simple effect differences produced with the SLICEDIFF= option.

The possible values for the difftype are ALL, CONTROL, CONTROLL, and CONTROLU. The difftype
ALL requests all simple effects differences, and it is the default. The difftype CONTROL requests
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the differences with a control, which, by default, is the first level of each of the specified LSMEANS
effects.

To specify which levels of the effects are the controls, list the quoted formatted values in parentheses
after the keyword CONTROL. For example, if the effects A, B, and C are classification variables, each
having three levels (1, 2, and 3), the following LSMEANS statement specifies the (1,3) level of A*B as
the control:

lsmeans A*B / slicediff=(A B)
slicedifftype=control('1' '3');

This LSMEANS statement first produces simple effects differences holding the levels of A fixed, and
then it produces simple effects differences holding the levels of B fixed. In the former case, level ’3’ of
B serves as the control level. In the latter case, level ’1’ of A serves as the control.

For multiple effects, the results depend upon the order of the list, and so you should check the output
to make sure that the controls are correct.

Two-tailed tests and confidence limits are associated with the CONTROL difftype. For one-tailed results,
use either the CONTROLL or CONTROLU difftype. The CONTROLL difftype tests whether the
noncontrol levels are significantly smaller than the control; the upper confidence limits for the control
minus the noncontrol levels are considered to be infinity and are displayed as missing. Conversely, the
CONTROLU difftype tests whether the noncontrol levels are significantly larger than the control; the
upper confidence limits for the noncontrol levels minus the control are considered to be infinity and are
displayed as missing.

STEPDOWN< (step-down options) >
requests that multiple comparison adjustments for the p-values of LS-mean differences be further
adjusted in a step-down fashion. Step-down methods increase the power of multiple comparisons by
taking advantage of the fact that a p-value will never be declared significant unless all smaller p-values
are also declared significant. Note that the STEPDOWN adjustment combined with ADJUST=BON
corresponds to the methods of Holm (1979) and “Method 2” of Shaffer (1986); this is the default.
Using step-down-adjusted p-values combined with ADJUST=SIMULATE corresponds to the method
of Westfall (1997).

If the degrees-of-freedom method is DDFM=KENWARDROGER or DDFM=SATTERTHWAITE,
then step-down-adjusted p-values are produced only if the ADJDFE=ROW option is in effect.

Also, STEPDOWN affects only p-values, not confidence limits. For ADJUST=SIMULATE, the
generalized least squares hybrid approach of Westfall (1997) is employed to increase Monte Carlo
accuracy.

You can specify the following step-down options in parentheses:

MAXTIME=n
specifies the time (in seconds) to spend computing the maximal logically consistent sequential
subsets of equality hypotheses for TYPE=LOGICAL. The default is MAXTIME=60. If the
MAXTIME value is exceeded, the adjusted tests are not computed. When this occurs, you can
try increasing the MAXTIME value. However, note that there are common multiple comparisons
problems for which this computation requires a huge amount of time—for example, all pairwise
comparisons between more than 10 groups. In such cases, try to use TYPE=FREE (the default)
or TYPE=LOGICAL(n) for small n.
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REPORT
specifies that a report on the step-down adjustment should be displayed, including a listing of
the sequential subsets (Westfall 1997) and, for ADJUST=SIMULATE, the step-down simulation
results.

TYPE=LOGICAL< (n) > | FREE
If you specify TYPE=LOGICAL, the step-down adjustments are computed by using maximal
logically consistent sequential subsets of equality hypotheses (Shaffer 1986; Westfall 1997).
Alternatively, for TYPE=FREE, sequential subsets are computed ignoring logical constraints.
The TYPE=FREE results are more conservative than those for TYPE=LOGICAL, but they can
be much more efficient to produce for many comparisons. For example, it is not feasible to take
logical constraints between all pairwise comparisons of more than 10 groups. For this reason,
TYPE=FREE is the default.

However, you can reduce the computational complexity of taking logical constraints into account
by limiting the depth of the search tree used to compute them, specifying the optional depth
parameter as a number n in parentheses after TYPE=LOGICAL. As with TYPE=FREE, results
for TYPE=LOGICAL(n) are conservative relative to the true TYPE=LOGICAL results, but even
for TYPE=LOGICAL(0) they can be appreciably less conservative than TYPE=FREE and they
are computationally feasible for much larger numbers of comparisons. If you do not specify n or
if n = –1, the full search tree is used.

LSMESTIMATE Statement
LSMESTIMATE fixed-effect < 'label ' > values < divisor=n >

< , < 'label ' > values < divisor=n > > < , . . . >
< / options > ;

The LSMESTIMATE statement provides a mechanism for obtaining custom hypothesis tests among the least
squares means. In contrast to the hypotheses tested with the ESTIMATE or CONTRAST statements, the
LSMESTIMATE statement enables you to form linear combinations of the least squares means, rather than
linear combination of fixed-effects parameter estimates and/or random-effects solutions. Multiple-row sets of
coefficients are permitted.

The computation of an LSMESTIMATE involves two coefficient matrices. Suppose that the fixed-effect
has nl levels. Then the LS-means are formed as L1b̌, where L1 is a .nl � p/ coefficient matrix. The
.k � nl/ coefficient matrix K is formed from the values that you supply in the k rows of the LSMESTIMATE
statement. The least squares means estimates then represent the .k � 1/ vector

KL1ˇ D Lˇ

The GLIMMIX procedure supports nonpositional syntax for the coefficients (values) in the LSMESTIMATE
statement. For details see the section “Positional and Nonpositional Syntax for Contrast Coefficients” on
page 3232.

PROC GLIMMIX produces a t test for each row of coefficients specified in the LSMESTIMATE statement.
You can adjust p-values and confidence intervals for multiplicity with the ADJUST= option. You can obtain
an F test of single-row or multirow LSMESTIMATEs with the FTEST option.
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Note that in contrast to a multirow estimate in the ESTIMATE statement, you specify only a single fixed
effect in the LSMESTIMATE statement. The row labels are optional and follow the effects specification. For
example, the following statements fit a split-split-plot design and compare the average of the third and fourth
LS-mean of the whole-plot factor A to the first LS-mean of the factor:

proc glimmix;
class a b block;
model y = a b a*b / s;
random int a / sub=block;
lsmestimate A 'a1 vs avg(a3,a4)' 2 0 -1 -1 divisor=2;

run;

The order in which coefficients are assigned to the least squares means corresponds to the order in which
they are displayed in the “Least Squares Means” table. You can use the ELSM option to see how coefficients
are matched to levels of the fixed-effect .

The optional divisor=n specification enables you to assign a separate divisor to each row of the LSMES-
TIMATE. You can also assign divisor values through the DIVISOR= option. See the documentation that
follows for the interaction between the two ways of specifying divisors.

Many options of the LSMESTIMATE statement affect the computation of least squares means—for example,
the AT=, BYLEVEL, and OM options. See the documentation for the LSMEANS statement for details.

Table 44.9 summarizes the options available in the LSMESTIMATE statement.

Table 44.9 LSMESTIMATE Statement Options

Option Description

Construction and Computation of LS-Means
AT Modifies covariate values in computing LS-means
BYLEVEL Computes separate margins
DIVISOR= Specifies a list of values to divide the coefficients
OM= Specifies the weighting scheme for LS-means computation as determined

by a data set
SINGULAR= Tunes estimability checking

Degrees of Freedom and p-values
ADJDFE= Determines denominator degrees of freedom when p-values and confidence

limits are adjusted for multiple comparisons
ADJUST= Determines the method for multiple comparison adjustment of LS-means

differences
ALPHA=˛ Determines the confidence level (1 � ˛)
CHISQ Requests a chi-square test in addition to the F test
DF= Assigns a specific value to degrees of freedom for tests and confidence

limits
FTEST Produces an F test
LOWER Performs one-sided, lower-tailed inference
STEPDOWN Adjusts multiple comparison p-values further in a step-down fashion
UPPER Performs one-sided, upper-tailed inference
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Table 44.9 continued

Option Description

Statistical Output
CL Constructs confidence limits for means and mean differences
CORR Displays the correlation matrix of LS-means
COV Displays the covariance matrix of LS-means
E Prints the L matrix
ELSM Prints the K matrix
JOINT Produces a joint F or chi-square test for the LS-means and LS-means

differences

Generalized Linear Modeling
EXP Exponentiates and displays LS-means estimates
ILINK Computes and displays estimates and standard errors of LS-means (but not

differences) on the inverse linked scale

You can specify the following options in the LSMESTIMATE statement after a slash (/).

ADJDFE=SOURCE | ROW
specifies how denominator degrees of freedom are determined when p-values and confidence limits
are adjusted for multiple comparisons with the ADJUST= option. When you do not specify the
ADJDFE= option, or when you specify ADJDFE=SOURCE, the denominator degrees of freedom for
multiplicity-adjusted results are the denominator degrees of freedom for the LS-mean effect in the
“Type III Tests of Fixed Effects” table.

The ADJDFE=ROW setting is useful if you want multiplicity adjustments to take into account that
denominator degrees of freedom are not constant across estimates. This can be the case, for exam-
ple, when DDFM=SATTERTHWAITE or DDFM=KENWARDROGER is specified in the MODEL
statement.

ADJUST=BON | SCHEFFE | SIDAK | SIMULATE< (simoptions) > | T
requests a multiple comparison adjustment for the p-values and confidence limits for the LS-mean
estimates. The adjusted quantities are produced in addition to the unadjusted p-values and confidence
limits. Adjusted confidence limits are produced if the CL or ALPHA= option is in effect. For
a description of the adjustments, see Chapter 45, “The GLM Procedure,” and Chapter 67, “The
MULTTEST Procedure,” as well as the documentation for the ADJUST= option in the LSMEANS
statement.

Note that not all adjustment methods of the LSMEANS statement are available for the LSMESTI-
MATE statement. Multiplicity adjustments in the LSMEANS statement are designed specifically for
differences of least squares means.

If you specify the STEPDOWN option, the p-values are further adjusted in a step-down fashion.

ALPHA=number
requests that a t-type confidence interval be constructed for each of the LS-means with confidence
level 1 – number . The value of number must be between 0 and 1; the default is 0.05.



LSMESTIMATE Statement F 3127

AT variable=value

AT (variable-list)=(value-list)

AT MEANS
enables you to modify the values of the covariates used in computing LS-means. See the AT option in
the LSMEANS statement for details.

BYLEVEL
requests that PROC GLIMMIX compute separate margins for each level of the LSMEANS effect.

The standard LS-means have equal coefficients across classification effects. The BYLEVEL option
changes these coefficients to be proportional to the observed margins. This adjustment is reasonable
when you want your inferences to apply to a population that is not necessarily balanced but has the
margins observed in the input data set. In this case, the resulting LS-means are actually equal to
raw means for fixed-effects models and certain balanced random-effects models, but their estimated
standard errors account for the covariance structure that you have specified. If a WEIGHT statement is
specified, PROC GLIMMIX uses weighted margins to construct the LS-means coefficients.

If the AT option is specified, the BYLEVEL option disables it.

CHISQ
requests that chi-square tests be performed in addition to F tests, when you request an F test with the
FTEST option.

CL
requests that t-type confidence limits be constructed for each of the LS-means. If DDFM=NONE, then
PROC GLIMMIX uses infinite degrees of freedom for this test, essentially computing a z interval. The
confidence level is 0.95 by default; this can be changed with the ALPHA= option.

CORR
displays the estimated correlation matrix of the linear combination of the least squares means.

COV
displays the estimated covariance matrix of the linear combination of the least squares means.

DF=number
specifies the degrees of freedom for the t test and confidence limits. The default is the denominator
degrees of freedom taken from the “Type III Tests of Fixed Effects” table corresponding to the
LS-means effect.

DIVISOR=value-list
specifies a list of values by which to divide the coefficients so that fractional coefficients can be entered
as integer numerators. If you do not specify value-list , a default value of 1.0 is assumed. Missing
values in the value-list are converted to 1.0.

If the number of elements in value-list exceeds the number of rows of the estimate, the extra values are
ignored. If the number of elements in value-list is less than the number of rows of the estimate, the last
value in value-list is carried forward.

If you specify a row-specific divisor as part of the specification of the estimate row, this value multiplies
the corresponding value in the value-list . For example, the following statement divides the coefficients
in the first row by 8, and the coefficients in the third and fourth row by 3:
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lsmestimate A 'One vs. two' 8 -8 divisor=2,
'One vs. three' 1 0 -1 ,
'One vs. four' 3 0 0 -3 ,
'One vs. five' 3 0 0 0 -3 / divisor=4,.,3;

Coefficients in the second row are not altered.

E
requests that the L coefficients of the estimable function be displayed. These are the coefficients that
apply to the fixed-effect parameter estimates. The E option displays the coefficients that you would
need to enter in an equivalent ESTIMATE statement.

ELSM
requests that the K matrix coefficients be displayed. These are the coefficients that apply to the
LS-means. This option is useful to ensure that you assigned the coefficients correctly to the LS-means.

EXP
requests exponentiation of the least squares means estimate. When you model data with the logit
link function and the estimate represents a log odds ratio, the EXP option produces an odds ratio.
See the section “Odds and Odds Ratio Estimation” on page 3225 for important details concerning
the computation and interpretation of odds and odds ratio results with the GLIMMIX procedure. If
you specify the CL or ALPHA= option, the (adjusted) confidence limits for the estimate are also
exponentiated.

FTEST< (joint-test-options) >

JOINT< (joint-test-options) >
produces an F test that jointly tests the rows of the LSMESTIMATE against zero. If the LOWER
or UPPER options are in effect or if you specify boundary values with the BOUNDS= suboption,
the GLIMMIX procedure computes a simulation-based p-value for the constrained joint test. For
more information about these simulation-based p-values, see the section “Joint Hypothesis Tests with
Complex Alternatives, the Chi-Bar-Square Statistic” on page 457 in Chapter 19, “Shared Concepts and
Topics.” You can specify the following joint-test-options in parentheses:

ACC=
specifies the accuracy radius for determining the necessary sample size in the simulation-based
approach of Silvapulle and Sen (2004) for tests with order restrictions. The value of  must be
strictly between 0 and 1; the default value is 0.005.

BOUNDS=value-list
specifies boundary values for the estimable linear function. The null value of the hypothesis
is always zero. If you specify a positive boundary value z, the hypotheses are H W � D 0 vs.
HaW � > 0 with the added constraint that � < z. The same is true for negative boundary values.
The alternative hypothesis is then HaW � < 0 subject to the constraint � > �jzj. If you specify a
missing value, the hypothesis is assumed to be two-sided. The BOUNDS option enables you to
specify sets of one- and two-sided joint hypotheses. If all values in value-list are set to missing,
the procedure performs a simulation-based p-value calculation for a two-sided test.
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EPS=�
specifies the accuracy confidence level for determining the necessary sample size in the simulation-
based approach of Silvapulle and Sen (2004) for F tests with order restrictions. The value of �
must be strictly between 0 and 1; the default value is 0.01.

LABEL='label '
enables you to assign a label to the joint test that identifies the results in the “LSMFtest” table. If
you do not specify a label, the first non-default label for the LSMESTIMATE rows is used to
label the joint test.

NSAMP=n
specifies the number of samples for the simulation-based method of Silvapulle and Sen (2004).
If n is not specified, it is constructed from the values of the ALPHA=˛, the ACC= , and the
EPS=� options. With the default values for  , �, and ˛ (0.005, 0.01, and 0.05, respectively),
NSAMP=12,604 by default.

ILINK
requests that the estimate and its standard error also be reported on the scale of the mean (the inverse
linked scale). PROC GLIMMIX computes the value on the mean scale by applying the inverse link to
the estimate. The interpretation of this quantity depends on the coefficients that are specified in your
LSMESTIMATE statement and the link function. For example, in a model for binary data with a logit
link, the following LSMESTIMATE statement computes

q D
1

1C expf�.�1 � �2/g

where �1 and �2 are the least squares means associated with the first two levels of the classification
effect A:

proc glimmix;
class A;
model y = A / dist=binary link=logit;
lsmestimate A 1 -1 / ilink;

run;

The quantity q is not the difference of the probabilities associated with the two levels,

�1 � �2 D
1

1C expf��1g
�

1

1C expf��2g

The standard error of the inversely linked estimate is based on the delta method. If you also specify
the CL or ALPHA= option, the GLIMMIX procedure computes confidence intervals for the inversely
linked estimate. These intervals are obtained by applying the inverse link to the confidence intervals on
the linked scale.

JOINT< (joint-test-options) >
is an alias for the FTEST option.
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LOWER
LOWERTAILED

requests that the p-value for the t test be based only on values that are less than the test statistic. A
two-tailed test is the default. A lower-tailed confidence limit is also produced if you specify the CL or
ALPHA= option.

Note that for ADJUST=SCHEFFE the one-sided adjusted confidence intervals and one-sided adjusted
p-values are the same as the corresponding two-sided statistics, because this adjustment is based on
only the right tail of the F distribution.

If you request an F test with the FTEST option, then a one-sided left-tailed order restriction is applied
to all estimable functions, and the corresponding chi-bar-square statistic of Silvapulle and Sen (2004)
is computed in addition to the two-sided, standard F or chi-square statistic. See the description of
the FTEST option for information about how to control the computation of the simulation-based
chi-bar-square statistic.

OBSMARGINS
OM

specifies a potentially different weighting scheme for the computation of LS-means coefficients. The
standard LS-means have equal coefficients across classification effects; however, the OM option
changes these coefficients to be proportional to those found in the input data set. See the OBSMAR-
GINS option in the LSMEANS statement for further details.

SINGULAR=number
tunes the estimability checking as documented for the CONTRAST statement.

STEPDOWN< (step-down-options) >
requests that multiplicity adjustments for the p-values of LS-mean estimates be further adjusted in a
step-down fashion. Step-down methods increase the power of multiple testing procedures by taking
advantage of the fact that a p-value will never be declared significant unless all smaller p-values are
also declared significant. Note that the STEPDOWN adjustment combined with ADJUST=BON
corresponds to the Holm (1979) and “Method 2” of Shaffer (1986); this is the default. Using step-
down-adjusted p-values combined with ADJUST=SIMULATE corresponds to the method of Westfall
(1997).

If the degrees-of-freedom method is DDFM=KENWARDROGER or DDFM=SATTERTHWAITE,
then step-down-adjusted p-values are produced only if the ADJDFE=ROW option is in effect.

Also, the STEPDOWN option affects only p-values, not confidence limits. For ADJUST=SIMULATE,
the generalized least squares hybrid approach of Westfall (1997) is employed to increase Monte Carlo
accuracy.

You can specify the following step-down-options in parentheses:

MAXTIME=n
specifies the time (in seconds) to spend computing the maximal logically consistent sequential
subsets of equality hypotheses for TYPE=LOGICAL. The default is MAXTIME=60. If the
MAXTIME value is exceeded, the adjusted tests are not computed. When this occurs, you can
try increasing the MAXTIME value. However, note that there are common multiple comparisons
problems for which this computation requires a huge amount of time—for example, all pairwise
comparisons between more than 10 groups. In such cases, try to use TYPE=FREE (the default)
or TYPE=LOGICAL(n) for small n.
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ORDER=PVALUE | ROWS
specifies the order in which the step-down tests are performed. ORDER=PVALUE is the default,
with LS-mean estimates being declared significant only if all LS-mean estimates with smaller
(unadjusted) p-values are significant. If you specify ORDER=ROWS, then significances are
evaluated in the order in which they are specified.

REPORT
specifies that a report on the step-down adjustment be displayed, including a listing of the
sequential subsets (Westfall 1997) and, for ADJUST=SIMULATE, the step-down simulation
results.

TYPE=LOGICAL< (n) > | FREE
If you specify TYPE=LOGICAL, the step-down adjustments are computed by using maximal
logically consistent sequential subsets of equality hypotheses (Shaffer 1986; Westfall 1997).
Alternatively, for TYPE=FREE, logical constraints are ignored when sequential subsets are
computed. The TYPE=FREE results are more conservative than those for TYPE=LOGICAL, but
they can be much more efficient to produce for many estimates. For example, it is not feasible to
take logical constraints between all pairwise comparisons of more than about 10 groups. For this
reason, TYPE=FREE is the default.

However, you can reduce the computational complexity of taking logical constraints into account
by limiting the depth of the search tree used to compute them, specifying the optional depth
parameter as a number n in parentheses after TYPE=LOGICAL. As with TYPE=FREE, results
for TYPE=LOGICAL(n) are conservative relative to the true TYPE=LOGICAL results, but even
for TYPE=LOGICAL(0), they can be appreciably less conservative than TYPE=FREE, and they
are computationally feasible for much larger numbers of estimates. If you do not specify n or if n
= –1, the full search tree is used.

UPPER

UPPERTAILED
requests that the p-value for the t test be based only on values that are greater than the test statistic. A
two-tailed test is the default. An upper-tailed confidence limit is also produced if you specify the CL or
ALPHA= option.

Note that for ADJUST=SCHEFFE the one-sided adjusted confidence intervals and one-sided adjusted
p-values are the same as the corresponding two-sided statistics, because this adjustment is based on
only the right tail of the F distribution.

If you request a joint test with the FTEST option, then a one-sided right-tailed order restriction is
applied to all estimable functions, and the corresponding chi-bar-square statistic of Silvapulle and Sen
(2004) is computed in addition to the two-sided, standard F or chi-square statistic. See the FTEST
option for information about how to control the computation of the simulation-based chi-bar-square
statistic.

MODEL Statement
MODEL response < (response-options) > = < fixed-effects > < / model-options > ;

MODEL events/trials = < fixed-effects > < / model-options > ;
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The MODEL statement is required and names the dependent variable and the fixed effects. The fixed-effects
determine the X matrix of the model (see the section “Notation for the Generalized Linear Mixed Model” for
details). The specification of effects is the same as in the GLM or MIXED procedure. In contrast to PROC
GLM, you do not specify random effects in the MODEL statement. However, in contrast to PROC GLM and
PROC MIXED, continuous variables on the left and right side of the MODEL statement can be computed
through PROC GLIMMIX programming statements.

An intercept is included in the fixed-effects model by default. It can be removed with the NOINT option.

The dependent variable can be specified by using either the response syntax or the events/trials syntax.
The events/trials syntax is specific to models for binomial data. A binomial(n,�) variable is the sum of n
independent Bernoulli trials with event probability � . Each Bernoulli trial results in either an event or a
nonevent (with probability 1 � �). You use the events/trials syntax to indicate to the GLIMMIX procedure
that the Bernoulli outcomes are grouped. The value of the second variable, trials, gives the number n of
Bernoulli trials. The value of the first variable, events, is the number of events out of n. The values of both
events and (trials–events) must be nonnegative and the value of trials must be positive. Observations for
which these conditions are not met are excluded from the analysis. If the events/trials syntax is used, the
GLIMMIX procedure defaults to the binomial distribution. The response is then the events variable. The
trials variable is accounted in model fitting as an additional weight. If you use the response syntax, the
procedure defaults to the normal distribution.

There are two sets of options in the MODEL statement. The response-options determine how the GLIMMIX
procedure models probabilities for binary and multinomial data. The model-options control other aspects
of model formation and inference. Table 44.10 summarizes the options available in the MODEL statement.
These are subsequently discussed in detail in alphabetical order by option category.

Table 44.10 MODEL Statement Options

Option Description

Response Variable Options
DESCENDING Reverses the order of response categories
EVENT= Specifies the event category in binary models
ORDER= Specifies the sort order for the response variable
REFERENCE= Specifies the reference category in generalized logit models

Model Building
DIST= Specifies the response distribution
LINK= Specifies the link function
NOINT Excludes fixed-effect intercept from model
OFFSET= Specifies the offset variable for linear predictor
OBSWEIGHT= Specifies the weight variable for the observation level unit

Statistical Computations
ALPHA=˛ Determines the confidence level (1 � ˛)
CHISQ Requests chi-square tests
DDF= Specifies the denominator degrees of freedom (list)
DDFM= Specifies the method for computing denominator degrees of freedom
HTYPE= Selects the type of hypothesis test
LWEIGHT Determines how weights are used
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Table 44.10 continued

Option Description

NOCENTER Suppresses centering and scaling of X columns during the estimation phase
REFLINP Specifies a value for the linear predictor
ZETA= Tunes sensitivity in computing Type III functions

Statistical Output
CL Displays confidence limits for fixed-effects parameter estimates
CORRB Displays the correlation matrix of fixed-effects parameter estimates
COVB Displays the covariance matrix of fixed-effects parameter estimates
COVBI Displays the inverse covariance matrix of fixed-effects parameter estimates
E, E1, E2, E3 Displays the L matrix coefficients
INTERCEPT Adds a row for the intercept to test tables
ODDSRATIO Displays odds ratios and confidence limits
SOLUTION Displays fixed-effects parameter estimates (and scale parameter in GLM

models)
STDCOEF Displays standardized coefficients

Response Variable Options

Response variable options determine how the GLIMMIX procedure models probabilities for binary and
multinomial data.

You can specify the following options by enclosing them in parentheses after the response variable. See the
section “Response-Level Ordering and Referencing” on page 3235 for more detail and examples.

DESCENDING

DESC
reverses the order of the response categories. If both the DESCENDING and ORDER= options are
specified, PROC GLIMMIX orders the response categories according to the ORDER= option and then
reverses that order.

EVENT=’category ’ | keyword
specifies the event category for the binary response model. PROC GLIMMIX models the probability
of the event category. The EVENT= option has no effect when there are more than two response
categories. You can specify the value (formatted, if a format is applied) of the event category in quotes,
or you can specify one of the following keywords:

FIRST
designates the first ordered category as the event. This is the default.

LAST
designates the last ordered category as the event.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of the response variable. When ORDER=FORMATTED (the
default) for numeric variables for which you have supplied no explicit format (that is, for which there
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is no corresponding FORMAT statement in the current PROC GLIMMIX run or in the DATA step
that created the data set), the levels are ordered by their internal (numeric) value. If you specify the
ORDER= option in the MODEL statement and the ORDER= option in the PROC GLIMMIX statement,
the former takes precedence. The following table shows the interpretation of the ORDER= values:

Value of ORDER= Levels Sorted By

DATA order of appearance in the input data set

FORMATTED external formatted value, except for numeric variables with
no explicit format, which are sorted by their unformatted
(internal) value

FREQ descending frequency count; levels with the most observa-
tions come first in the order

INTERNAL unformatted value

By default, ORDER=FORMATTED. For the FORMATTED and INTERNAL values, the sort order is
machine dependent.

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

REFERENCE=’category ’ | keyword

REF=’category ’ | keyword
specifies the reference category for the generalized logit model and the binary response model. For the
generalized logit model, each nonreference category is contrasted with the reference category. For the
binary response model, specifying one response category as the reference is the same as specifying
the other response category as the event category. You can specify the value (formatted if a format is
applied) of the reference category in quotes, or you can specify one of the following keywords:

FIRST
designates the first ordered category as the reference category.

LAST
designates the last ordered category as the reference category. This is the default.

Model Options

ALPHA=number
requests that a t-type confidence interval be constructed for each of the fixed-effects parameters with
confidence level 1 – number . The value of number must be between 0 and 1; the default is 0.05.

CHISQ
requests that chi-square tests be performed for all specified effects in addition to the F tests. Type III
tests are the default; you can produce the Type I and Type II tests by using the HTYPE= option.

CL
requests that t-type confidence limits be constructed for each of the fixed-effects parameter estimates.
The confidence level is 0.95 by default; this can be changed with the ALPHA= option.
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CORRB
produces the correlation matrix from the approximate covariance matrix of the fixed-effects parameter
estimates.

COVB< (DETAILS) >
produces the approximate variance-covariance matrix of the fixed-effects parameter estimates b̌. In a
generalized linear mixed model this matrix typically takes the form .X0bV�1X/� and can be obtained by
sweeping the mixed model equations; see the section “Estimated Precision of Estimates” on page 3189.
In a model without random effects, it is obtained from the inverse of the observed or expected Hessian
matrix. Which Hessian is used in the computation depends on whether the procedure is in scoring mode
(see the SCORING= option in the PROC GLIMMIX statement) and whether the EXPHESSIAN option
is in effect. Note that if you use EMPIRICAL= or DDFM=KENWARDROGER, the matrix displayed
by the COVB option is the empirical (sandwich) estimator or the adjusted estimator, respectively.

The DETAILS suboption of the COVB option enables you to obtain a table of statistics about the
covariance matrix of the fixed effects. If an adjusted estimator is used because of the EMPIRICAL= or
DDFM=KENWARDROGER option, the GLIMMIX procedure displays statistics for the adjusted and
unadjusted estimators as well as statistics comparing them. This enables you to diagnose, for example,
changes in rank (because of an insufficient number of subjects for the empirical estimator) and to
assess the extent of the covariance adjustment. In addition, the GLIMMIX procedure then displays
the unadjusted (=model-based) covariance matrix of the fixed-effects parameter estimates. For more
details, see the section “Exploring and Comparing Covariance Matrices” on page 3216.

COVBI
produces the inverse of the approximate covariance matrix of the fixed-effects parameter estimates.

DDF=value-list

DF=value-list
enables you to specify your own denominator degrees of freedom for the fixed effects. The value-list
specification is a list of numbers or missing values (.) separated by commas. The degrees of freedom
should be listed in the order in which the effects appear in the “Type III Tests of Fixed Effects” table.
If you want to retain the default degrees of freedom for a particular effect, use a missing value for its
location in the list. For example, the statement assigns 3 denominator degrees of freedom to A and 4.7
to A*B, while those for B remain the same:

model Y = A B A*B / ddf=3,.,4.7;

If you select a degrees-of-freedom method with the DDFM= option, then nonmissing, positive values
in value-list override the degrees of freedom for the particular effect. For example, the statement
assigns 3 and 6 denominator degrees of freedom in the test of the A main effect and the A*B interaction,
respectively:

model Y = A B A*B / ddf=3,.,6 ddfm=Satterth;

The denominator degrees of freedom for the test for the B effect are determined from a Satterthwaite
approximation.

Note that the DDF= and DDFM= options determine the degrees of freedom in the “Type I Tests of
Fixed Effects,” “Type II Tests of Fixed Effects,” and “Type III Tests of Fixed Effects” tables. These



3136 F Chapter 44: The GLIMMIX Procedure

degrees of freedom are also used in determining the degrees of freedom in tests and confidence intervals
from the CONTRAST, ESTIMATE, LSMEANS, and LSMESTIMATE statements. Exceptions from
this rule are noted in the documentation for the respective statements.

DDFM=method
specifies the method for computing the denominator degrees of freedom for the tests of fixed effects that
result from the MODEL, CONTRAST, ESTIMATE, LSMEANS, and LSMESTIMATE statements.

You can specify the following methods:

BETWITHIN

BW
assigns within-subject degrees of freedom to a fixed effect if the fixed effect changes within a
subject, and between-subject degrees of freedom otherwise. This method is the default for models
with only R-side random effects and a SUBJECT= option. Computational details can be found in
the section “Degrees of Freedom Methods” on page 3210.

CONTAIN

CON
invokes the containment method to compute denominator degrees of freedom. This method is the
default when the model contains G-side random effects. Computational details can be found in
the section “Degrees of Freedom Methods” on page 3210.

KENWARDROGER< (FIRSTORDER) >

KENROGER< (FIRSTORDER) >

KR< (FIRSTORDER) >
applies the (prediction) standard error and degrees-of-freedom correction detailed by Kenward
and Roger (1997). This approximation involves adjusting the estimated variance-covariance
matrix of the fixed and random effects in a manner similar to that of Prasad and Rao (1990);
Harville and Jeske (1992); Kackar and Harville (1984). Satterthwaite-type degrees of freedom
are then computed based on this adjustment. Computational details can be found in the section
“Degrees of Freedom Methods” on page 3210.

KENWARDROGER2

KENROGER2

KR2
applies the (prediction) standard error and degrees-of-freedom correction that are detailed by
Kenward and Roger (2009). This correction further reduces the precision estimator bias for the
fixed and random effects under nonlinear covariance structures. Computational details can be
found in the section “Degrees of Freedom Methods” on page 3210.

NONE
specifies that no denominator degrees of freedom be applied. PROC GLIMMIX then essentially
assumes that infinite degrees of freedom are available in the calculation of p-values. The p-values
for t tests are then identical to p-values that are derived from the standard normal distribution.
In the case of F tests, the p-values are equal to those of chi-square tests that are determined as
follows: if Fobs is the observed value of the F test with l numerator degrees of freedom, then
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p D PrfFl;1 > Fobsg D Prf�2l > lFobsg

Regardless of the DDFM= method, you can obtain these chi-square p-values with the CHISQ
option in the MODEL statement.

RESIDUAL

RES
performs all tests by using the residual degrees of freedom, n � rank.X/, where n is the sum of
the frequencies of observations or the sum of frequencies of event/trials pairs. This method is the
default degrees of freedom method for GLMs and overdispersed GLMs.

SATTERTHWAITE

SAT
performs a general Satterthwaite approximation for the denominator degrees of freedom in a
generalized linear mixed model. This method is a generalization of the techniques that are
described in Giesbrecht and Burns (1985); McLean and Sanders (1988); Fai and Cornelius (1996).
The method can also include estimated random effects. Computational details can be found in
the section “Degrees of Freedom Methods” on page 3210.

When the asymptotic variance matrix of the covariance parameters is found to be singular, a generalized
inverse is used. Covariance parameters with zero variance then do not contribute to the degrees of
freedom adjustment for DDFM=SATTERTH and DDFM=KENWARDROGER, and a message is
written to the log.

DISTRIBUTION=keyword

DIST=keyword

D=keyword

ERROR=keyword

E=keyword
specifies the built-in (conditional) probability distribution of the data. If you specify the DIST= option
and you do not specify a user-defined link function, a default link function is chosen according to the
following table. If you do not specify a distribution, the GLIMMIX procedure defaults to the normal
distribution for continuous response variables and to the multinomial distribution for classification or
character variables, unless the events/trial syntax is used in the MODEL statement. If you choose the
events/trial syntax, the GLIMMIX procedure defaults to the binomial distribution.

Table 44.11 lists the values of the DIST= option and the corresponding default link functions. For
the case of generalized linear models with these distributions, you can find expressions for the log-
likelihood functions in the section “Maximum Likelihood” on page 3181.
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Table 44.11 Keyword Values of the DIST= Option

Default Link Numeric
DIST= Distribution Function Value

BETA beta logit 12
BINARY binary logit 4
BINOMIAL | BIN | B binomial logit 3
EXPONENTIAL | EXPO exponential log 9
GAMMA | GAM gamma log 5
GAUSSIAN | G | NORMAL | N normal identity 1
GEOMETRIC | GEOM geometric log 8
INVGAUSS | IGAUSSIAN | IG inverse Gaussian inverse squared 6

(power(–2) )
LOGNORMAL | LOGN lognormal identity 11
MULTINOMIAL | MULTI | MULT multinomial cumulative logit NA
NEGBINOMIAL | NEGBIN | NB negative binomial log 7
POISSON | POI | P Poisson log 2
TCENTRAL | TDIST | T t identity 10

BYOBS(variable) multivariate varied NA

Note that the PROC GLIMMIX default link for the gamma or exponential distribution is not the
canonical link (the reciprocal link).

The numeric value in the last column of Table 44.11 can be used in combination with DIST=BYOBS.
The BYOBS(variable) syntax designates a variable whose value identifies the distribution to which
an observation belongs. If the variable is numeric, its values must match values in the last column of
Table 44.11. If the variable is not numeric, an observation’s distribution is identified by the first four
characters of the distribution’s name in the leftmost column of the table. Distributions whose numeric
value is “NA” cannot be used with DIST=BYOBS.

If the variable in BYOBS(variable) is a data set variable, it can also be used in the CLASS statement of
the GLIMMIX procedure. For example, this provides a convenient method to model multivariate data
jointly while varying fixed-effects components across outcomes. Assume that, for example, for each
patient, a count and a continuous outcome were observed; the count data are modeled as Poisson data
and the continuous data are modeled as gamma variates. The following statements fit a Poisson and a
gamma regression model simultaneously:

proc sort data=yourdata;
by patient;

run;
data yourdata;

set yourdata;
by patient;
if first.patient then dist='POIS' else dist='GAMM';

run;
proc glimmix data=yourdata;

class treatment dist;
model y = dist treatment*dist / dist=byobs(dist);

run;
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The two models have separate intercepts and treatment effects. To correlate the outcomes, you can
share a random effect between the observations from the same patient:

proc glimmix data=yourdata;
class treatment dist patient;
model y = dist treatment*dist / dist=byobs(dist);
random intercept / subject=patient;

run;

Or, you could use an R-side correlation structure:

proc glimmix data=yourdata;
class treatment dist patient;
model y = dist treatment*dist / dist=byobs(dist);
random _residual_ / subject=patient type=un;

run;

Although DIST=BYOBS(variable) is used to model multivariate data, you only need a single response
variable in PROC GLIMMIX. The responses are in “univariate” form. This allows, for example,
different missing value patterns across the responses. It does, however, require that all response
variables be numeric.

The default links that are assigned when DIST=BYOBS is in effect correspond to the respective default
links in Table 44.11.

When you choose DIST=LOGNORMAL, the GLIMMIX procedure models the logarithm of the
response variable as a normal random variable. That is, the mean and variance are estimated on the
logarithmic scale, assuming a normal distribution, logfY g � N.�; �2/. This enables you to draw on
options that require a distribution in the exponential family—for example, by using a scoring algorithm
in a GLM. To convert means and variances for logfY g into those of Y, use the relationships

EŒY � D expf�g
p
!

VarŒY � D expf2�g!.! � 1/

! D expf�2g

The DIST=T option models the data as a shifted and scaled central t variable. This enables you to
model data with heavy-tailed distributions. If Y denotes the response and X has a t� distribution with �
degrees of freedom, then PROC GLIMMIX models

Y D �C
p
�X

In this parameterization, Y has mean � and variance ��=.� � 2/.

By default, � D 3. You can supply different degrees of freedom for the t variate as in the following
statements:

proc glimmix;
class a b;
model y = b x b*x / dist=tcentral(9.6);
random a;

run;
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The GLIMMIX procedure does not accept values for the degrees of freedom parameter less than 3.0.
If the t distribution is used with the DIST=BYOBS(variable) specification, the degrees of freedom are
fixed at � D 3. For mixed models where parameters are estimated based on linearization, choosing
DIST=T instead of DIST=NORMAL affects only the residual variance, which decreases by the factor
�=.� � 2/.

Note that in SAS 9.1, the GLIMMIX procedure modeled Y D �C ��
q
��2
�
X . The scale parameter

of the parameterizations are related as � D �� � �� � .� � 2/=�.

The DIST=BETA option implements the parameterization of the beta distribution in Ferrari and Cribari-
Neto (2004). If Y has a beta.˛; ˇ/ density, so that EŒY � D � D ˛=.˛Cˇ/, this parameterization uses
the variance function a.�/ D �.1 � �/ and VarŒY � D a.�/=.1C �/.

See the section “Maximum Likelihood” on page 3181 for the log likelihoods of the distributions fitted
by the GLIMMIX procedure.

E
requests that Type I, Type II, and Type III L matrix coefficients be displayed for all specified effects.

E1 | EI
requests that Type I L matrix coefficients be displayed for all specified effects.

E2 | EII
requests that Type II L matrix coefficients be displayed for all specified effects.

E3 | EIII
requests that Type III L matrix coefficients be displayed for all specified effects.

HTYPE=value-list
indicates the type of hypothesis test to perform on the fixed effects. Valid entries for values in the
value-list are 1, 2, and 3, corresponding to Type I, Type II, and Type III tests. The default value is 3.
You can specify several types by separating the values with a comma or a space. The ODS table names
are “Tests1,” “Tests2,” and “Tests3” for the Type I, Type II, and Type III tests, respectively.

INTERCEPT
adds a row to the tables for Type I, II, and III tests corresponding to the overall intercept.

LINK=keyword
specifies the link function in the generalized linear mixed model. The keywords and their associated
built-in link functions are shown in Table 44.12.

Table 44.12 Built-in Link Functions of the GLIMMIX Procedure

Link Numeric
LINK= Function g.�/ D � D Value

CUMCLL | CCLL cumulative log.� log.1 � �// NA
complementary log-log

CUMLOGIT | CLOGIT cumulative logit log.=.1 � �// NA
CUMLOGLOG cumulative log-log � log.� log.�// NA
CUMPROBIT | CPROBIT cumulative probit ˆ�1.�/ NA
CLOGLOG | CLL complementary log-log log.� log.1 � �// 5
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Table 44.12 continued

Link Numeric
LINK= Function g.�/ D � D Value

GLOGIT | GENLOGIT generalized logit NA
IDENTITY | ID identity � 1
LOG log log.�/ 4
LOGIT logit log.�=.1 � �// 2
LOGLOG log-log � log.� log.�// 6
PROBIT probit ˆ�1.�/ 3

POWER(�) | POW(�) power with exponent �= number
�
�� if � 6D 0
log.�/ if � D 0

NA

POWERMINUS2 power with exponent -2 1=�2 8
RECIPROCAL | INVERSE reciprocal 1=� 7

BYOBS(variable) varied varied NA

For the probit and cumulative probit links, ˆ�1.�/ denotes the quantile function of the standard
normal distribution. For the other cumulative links, � denotes a cumulative category probability. The
cumulative and generalized logit link functions are appropriate only for the multinomial distribution.
When you choose a cumulative link function, PROC GLIMMIX assumes that the data are ordinal.
When you specify LINK=GLOGIT, the GLIMMIX procedure assumes that the data are nominal (not
ordered).

The numeric value in the rightmost column of Table 44.12 can be used in conjunction with
LINK=BYOBS(variable). This syntax designates a variable whose values identify the link func-
tion associated with an observation. If the variable is numeric, its values must match those in the last
column of Table 44.12. If the variable is not numeric, an observation’s link function is determined by
the first four characters of the link’s name in the first column. Those link functions whose numeric
value is “NA” cannot be used with LINK=BYOBS(variable).

You can define your own link function through programming statements. See the section “User-Defined
Link or Variance Function” on page 3177 for more information about how to specify a link function.
If a user-defined link function is in effect, the specification in the LINK= option is ignored. If you
specify neither the LINK= option nor a user-defined link function, then the default link function is
chosen according to Table 44.11.

LWEIGHT=FIRSTORDER | FIRO

LWEIGHT=NONE

LWEIGHT=VAR
determines how weights are used in constructing the coefficients for Type I through Type III L
matrices. The default is LWEIGHT=VAR, and the values of the WEIGHT variable are used in forming
crossproduct matrices. If you specify LWEIGHT=FIRO, the weights incorporate the WEIGHT variable
as well as the first-order weights of the linearized model. For LWEIGHT=NONE, the L matrix
coefficients are based on the raw crossproduct matrix, whether a WEIGHT variable is specified or not.
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NOCENTER
requests that the columns of the X matrix are not centered and scaled. By default, the columns of
X are centered and scaled. Unless the NOCENTER option is in effect, X is replaced by X� during
estimation. The columns of X� are computed as follows:

• In models with an intercept, the intercept column remains the same and the jth entry in row i of
X� is

x�ij D
xij � xjqPn
iD1.xij � xj /

2

• In models without intercept, no centering takes place and the jth entry in row i of X� is

x�ij D
xijqPn

iD1.xij � xj /
2

The effects of centering and scaling are removed when results are reported. For example, if the
covariance matrix of the fixed effects is printed with the COVB option of the MODEL statement, the
covariances are reported in terms of the original parameters, not the centered and scaled versions.
If you specify the STDCOEF option, fixed-effects parameter estimates and their standard errors are
reported in terms of the standardized (scaled and/or centered) coefficients in addition to the usual
results in noncentered form.

NOINT
requests that no intercept be included in the fixed-effects model. An intercept is included by default.

ODDSRATIO< (odds-ratio-options) >

OR< (odds-ratio-options) >
requests estimates of odds ratios and their confidence limits, provided the link function is the logit,
cumulative logit, or generalized logit. Odds ratios are produced for the following:

• classification main effects, if they appear in the MODEL statement

• continuous variables in the MODEL statement, unless they appear in an interaction with a
classification effect

• continuous variables in the MODEL statement at fixed levels of a classification effect, if the
MODEL statement contains an interaction of the two

• continuous variables in the MODEL statement, if they interact with other continuous variables

You can specify the following odds-ratio-options to create customized odds ratio results.

AT var-list=value-list
specifies the reference values for continuous variables in the model. By default, the average value
serves as the reference. Consider, for example, the following statements:

proc glimmix;
class A;
model y = A x A*x / dist=binary oddsratio;

run;
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Odds ratios for A are based on differences of least squares means for which x is set to its mean.
Odds ratios for x are computed by differencing two sets of least squares mean for the A factor.
One set is computed at x = xC1, and the second set is computed at x = x. The following MODEL
statement changes the reference value for x to 3:

model y = A x A*x / dist=binary
oddsratio(at x=3);

DIFF< =difftype >
controls the type of differences for classification main effects. By default, odds ratios compare the
odds of a response for level j of a factor to the odds of the response for the last level of that factor
(DIFF=LAST). The DIFF=FIRST option compares the levels against the first level, DIFF=ALL
produces odds ratios based on all pairwise differences, and DIFF=NONE suppresses odds ratios
for classification main effects.

LABEL
displays a label in the “Odds Ratio Estimates” table. The table describes the comparison
associated with the table row.

UNIT var-list=value-list
specifies the units in which the effects of continuous variable in the model are assessed. By
default, odds ratios are computed for a change of one unit from the average. Consider a model
with a classification factor A with 4 levels. The following statements produce an “Odds Ratio
Estimates” table with 10 rows:

proc glimmix;
class A;
model y = A x A*x / dist=binary

oddsratio(diff=all unit x=2);
run;

The first 4 � 3=2 D 6 rows correspond to pairwise differences of levels of A. The underlying
log odds ratios are computed as differences of A least squares means. In the least squares mean
computation the covariate x is set to x. The next four rows compare least squares means for A at
x = xC 2 and at x = x. You can combine the AT and UNIT options to produce custom odds ratios.
For example, the following statements produce an “Odds Ratio Estimates” table with 8 rows:

proc glimmix;
class A;
model y = A x x*z / dist=binary

oddsratio(diff=all
at x = 3
unit x z = 2 4);

run;

The first 4 � 3=2 D 6 rows correspond to pairwise differences of levels of A. The underlying
log odds ratios are computed as differences of A least squares means. In the least squares mean
computation, the covariate x is set to 3, and the covariate x*z is set to 3z. The next odds ratio
measures the effect of a change in x. It is based on differencing the linear predictor for x = 3C 2
and x*z = .3C 2/z with the linear predictor for x = 3 and x*z = 3z. The last odds ratio expresses
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a change in z by contrasting the linear predictors based on x = 3 and x*z = 3.z C 4/ with the
predictor based on x = 3 and x*z = 3z.

To compute odds and odds ratios for general estimable functions and least squares means, see the
ODDSRATIO option in the LSMEANS statement and the EXP options in the ESTIMATE and
LSMESTIMATE statements.

For important details concerning interpretation and computation of odds ratios with the GLIMMIX
procedure, see the section “Odds and Odds Ratio Estimation” on page 3225.

OFFSET=variable
specifies a variable to be used as an offset for the linear predictor. An offset plays the role of a fixed
effect whose coefficient is known to be 1. You can use an offset in a Poisson model, for example, when
counts have been obtained in time intervals of different lengths. With a log link function, you can
model the counts as Poisson variables with the logarithm of the time interval as the offset variable.
The offset variable cannot appear in the CLASS statement or elsewhere in the MODEL or RANDOM
statement.

REFLINP=r
specifies a value for the linear predictor of the reference level in the generalized logit model for nominal
data. By default r=0.

SOLUTION

S
requests that a solution for the fixed-effects parameters be produced. Using notation from the section
“Notation for the Generalized Linear Mixed Model” on page 3054, the fixed-effects parameter estimates
are b̌, and their (approximate) estimated standard errors are the square roots of the diagonal elements
of bVarŒb̌�. This matrix commonly is of the form .X0bV�1X/� in GLMMs. You can output this
approximate variance matrix with the COVB option. See the section “Details: GLIMMIX Procedure”
on page 3180 on the construction of bV in the various models.

Along with the estimates and their approximate standard errors, a t statistic is computed as the
estimate divided by its standard error. The degrees of freedom for this t statistic matches the one
appearing in the “Type III Tests of Fixed Effects” table under the effect containing the parameter. If
DDFM=KENWARDROGER or DDFM=SATTERTHWAITE, the degrees of freedom are computed
separately for each fixed-effect estimate, unless you override the value for any specific effect with
the DDF=value-list option. The “Pr > |t|” column contains the two-tailed p-value corresponding to
the t statistic and associated degrees of freedom. You can use the CL option to request confidence
intervals for the fixed-effects parameters; they are constructed around the estimate by using a radius of
the standard error times a percentage point from the t distribution.

STDCOEF
reports solutions for fixed effects in terms of the standardized (scaled and/or centered) coefficients.
This option has no effect when the NOCENTER option is specified or in models for multinomial data.

OBSWEIGHT< =variable >

OBSWT< =variable >
specifies a variable to be used as the weight for the observation-level unit in a weighted multilevel
model. If a weight variable is not specified in the OBSWEIGHT option, a weight of 1 is used. For
details on the use of weights in multilevel models, see the section “Pseudo-likelihood Estimation for
Weighted Multilevel Models” on page 3200.
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ZETA=number
tunes the sensitivity in forming Type III functions. Any element in the estimable function basis with an
absolute value less than number is set to 0. The default is 1E–8.

NLOPTIONS Statement
NLOPTIONS < options > ;

Most models fit with the GLIMMIX procedure typically have one or more nonlinear parameters. Esti-
mation requires nonlinear optimization methods. You can control the optimization through options in the
NLOPTIONS statement.

Several estimation methods of the GLIMMIX procedure (METHOD=RSPL, MSPL, RMPL, MMPL) are
doubly iterative in the following sense. The generalized linear mixed model is approximated by a linear
mixed model based on current values of the covariance parameter estimates. The resulting linear mixed
model is then fit, which is itself an iterative process (with some exceptions). On convergence, new covariance
parameters and fixed-effects estimates are obtained and the approximated linear mixed model is updated.
Its parameters are again estimated iteratively. It is thus reasonable to refer to outer and inner iterations.
The outer iterations involve the repeated updates of the linear mixed models, and the inner iterations are
the iterative steps that lead to parameter estimates in any given linear mixed model. The NLOPTIONS
statement controls the inner iterations. The outer iteration behavior can be controlled with options in the
PROC GLIMMIX statement, such as the MAXLMMUPDATE=, PCONV=, and ABSPCONV= options. If
the estimation method involves a singly iterative approach, then there is no need for the outer cycling and the
model is fit in a single optimization controlled by the NLOPTIONS statement (see the section “Singly or
Doubly Iterative Fitting” on page 3239).

The syntax and options of the NLOPTIONS statement are described in the section “NLOPTIONS Statement”
on page 488 in Chapter 19, “Shared Concepts and Topics.”

Note that in a GLMM with pseudo-likelihood estimation, specifying TECHNIQUE=NONE has the same
effect as specifying the NOITER option in the PARMS statement. If you estimate the parameters by
METHOD=LAPLACE or METHOD=QUAD, TECHNIQUE=NONE applies to the optimization after starting
values have been determined.

The GLIMMIX procedure applies the default optimization technique shown in Table 44.13, depending on
your model.

Table 44.13 Default Techniques

Model Family Setting TECHNIQUE=

GLM DIST=NORMAL NONE
LINK=IDENTITY

GLM otherwise NEWRAP

GLMM PARMS NOITER, PL NONE

GLMM binary data, PL NRRIDG

GLMM otherwise QUANEW
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OUTPUT Statement
OUTPUT < OUT=SAS-data-set >

< keyword< (keyword-options) > < =name > > . . .
< keyword< (keyword-options) > < =name > > < / options > ;

The OUTPUT statement creates a data set that contains predicted values and residual diagnostics, computed
after fitting the model. By default, all variables in the original data set are included in the output data set.

You can use the ID statement to select a subset of the variables from the input data set as well as computed
variables for adding to the output data set. If you reassign a data set variable through programming statements,
the value of the variable from the input data set supersedes the recomputed value when observations are
written to the output data set. If you list the variable in the ID statement, however, PROC GLIMMIX saves
the current value of the variable after the programming statements have been executed.

For example, suppose that data set Scores contains the variables score, machine, and person. The following
statements fit a model with fixed machine and random person effects. The variable score divided by 100 is
assumed to follow an inverse Gaussian distribution. The (conditional) mean and residuals are saved to the
data set igausout. Because no ID statement is given, the variable score in the output data set contains the
values from the input data set.

proc glimmix;
class machine person;
score = score/100;
p = 4*_linp_;
model score = machine / dist=invgauss;
random int / sub=person;
output out=igausout pred=p resid=r;

run;

On the contrary, the following statements list explicitly which variables to save to the OUTPUT data set.
Because the variable score is listed in the ID statement, and is (re-)assigned through programming statements,
the values of score saved to the OUTPUT data set are the input values divided by 100.

proc glimmix;
class machine person;
score = score / 100;
model score = machine / dist=invgauss;
random int / sub=person;
output out=igausout pred=p resid=r;
id machine score _xbeta_ _zgamma_;

run;

You can specify the following syntax elements in the OUTPUT statement before the slash (/).

OUT=SAS-data-set
specifies the name of the output data set. If the OUT= option is omitted, the procedure uses the DATAn
convention to name the output data set.

keyword< (keyword-options) > < =name >
specifies a statistic to include in the output data set and optionally assigns the variable the name
name. You can use the keyword-options to control which type of a particular statistic to compute. The
keyword-options can take on the following values:
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BLUP uses the predictors of the random effects in computing the statistic.

ILINK computes the statistic on the scale of the data.

NOBLUP does not use the predictors of the random effects in computing the statistic.

NOILINK computes the statistic on the scale of the link function.

The default is to compute statistics by using BLUPs on the scale of the link function (the linearized
scale). For example, the following OUTPUT statements are equivalent:

output out=out1 pred=predicted lcl=lower;

output out=out1 pred(blup noilink)=predicted
lcl (blup noilink)=lower;

If a particular combination of keyword and keyword options is not supported, the statistic is not
computed and a message is produced in the SAS log.

A keyword can appear multiple times in the OUTPUT statement. Table 44.14 lists the keywords
and the default names assigned by the GLIMMIX procedure if you do not specify a name. In this
table, y denotes the observed response, and p denotes the linearized pseudo-data. See the section
“Pseudo-likelihood Estimation Based on Linearization” on page 3188 for details on notation and the
section “Notes on Output Statistics” on page 3246 for further details regarding the output statistics.

Table 44.14 Keywords for Output Statistics

Keyword Options Description Expression Name

PREDICTED Default Linear predictor b� D x0b̌C z0b Pred
NOBLUP Marginal linear predictor b�m D x0b̌ PredPA
ILINK Predicted mean g�1.b�/ PredMu
NOBLUP ILINK Marginal mean g�1.b�m/ PredMuPA

STDERR Default Standard deviation of lin-
ear predictor

p
VarŒb� � z0� StdErr

NOBLUP Standard deviation of
marginal linear predictor

p
VarŒb�m� StdErrPA

ILINK Standard deviation of
mean

p
VarŒg�1.b� � z0/� StdErr

NOBLUP ILINK Standard deviation of
marginal mean

p
VarŒg�1.b�m/� StdErrMuPA

RESIDUAL Default Residual r D p �b� Resid
NOBLUP Marginal residual rm D pm �b�m ResidPA
ILINK Residual on mean scale ry D y � g

�1.b�/ ResidMu
NOBLUP ILINK Marginal residual on

mean scale
rym D y � g

�1.b�m/ ResidMuPA

PEARSON Default Pearson-type residual r=

q
bVarŒpj� Pearson
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Table 44.14 continued

Keyword Options Description Expression Name

NOBLUP Marginal Pearson-type
residual

rm=

q
bVarŒpm� PearsonPA

ILINK Conditional Pearson-
type mean residual

ry=

q
bVarŒY j� PearsonMu

STUDENT Default Studentized residual r=

q
bVarŒr� Student

NOBLUP Studentized marginal
residual

rm=

q
bVarŒrm� StudentPA

LCL Default Lower prediction limit
for linear predictor

LCL

NOBLUP Lower confidence limit
for marginal linear pre-
dictor

LCLPA

ILINK Lower prediction limit
for mean

LCLMu

NOBLUP ILINK Lower confidence limit
for marginal mean

LCLMuPA

UCL Default Upper prediction limit
for linear predictor

UCL

NOBLUP Upper confidence limit
for marginal linear pre-
dictor

UCLPA

ILINK Upper prediction limit
for mean

UCLMu

NOBLUP ILINK Upper confidence limit
for marginal mean

UCLMuPA

VARIANCE Default Conditional variance of
pseudo-data

bVarŒpj� Variance

NOBLUP Marginal variance of
pseudo-data

bVarŒpm� VariancePA

ILINK Conditional variance of
response

bVarŒY j� Variance_Dep

NOBLUP ILINK Marginal variance of re-
sponse

bVarŒY � Variance_DepPA

Studentized residuals are computed only on the linear scale (scale of the link), unless the link is the
identity, in which case the two scales are equal. The keywords RESIDUAL, PEARSON, STUDENT,
and VARIANCE are not available with the multinomial distribution. You can use the following
shortcuts to request statistics: PRED for PREDICTED, STD for STDERR, RESID for RESIDUAL,
and VAR for VARIANCE. Output statistics that depend on the marginal variance VarŒYi � are not
available with METHOD=LAPLACE or METHOD=QUAD.
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Table 44.15 summarizes the options available in the OUTPUT statement.

Table 44.15 OUTPUT Statement Options

Option Description

ALLSTATS Computes all statistics
ALPHA=˛ Determines the confidence level (1 � ˛)
CPSEUDO Changes the way in which marginal residuals are computed
DERIVATIVES Adds derivatives of model quantities to the output data set
NOMISS Outputs only observations used in the analysis
NOUNIQUE Requests that names not be made unique
NOVAR Requests that variables from the input data set not be added to the output

data set
OBSCAT Writes statistics to output data set only for the response level corresponding

to the observed level of the observation
SYMBOLS Adds computed variables to the output data set

You can specify the following options in the OUTPUT statement after a slash (/).

ALLSTATS
requests that all statistics are computed. If you do not use a keyword to assign a name, the GLIMMIX
procedure uses the default name.

ALPHA=number
determines the coverage probability for two-sided confidence and prediction intervals. The coverage
probability is computed as 1 – number . The value of number must be between 0 and 1; the default is
0.05.

CPSEUDO
changes the way in which marginal residuals are computed when model parameters are estimated by
pseudo-likelihood methods. See the section “Notes on Output Statistics” on page 3246 for details.

DERIVATIVES
DER

adds derivatives of model quantities to the output data set. If, for example, the model fit requires the
(conditional) log likelihood of the data, then the DERIVATIVES option writes for each observation the
evaluations of the first and second derivatives of the log likelihood with respect to _LINP_ and _PHI_
to the output data set. The particular derivatives produced by the GLIMMIX procedure depend on the
type of model and the estimation method.

NOMISS
requests that records be written to the output data only for those observations that were used in the
analysis. By default, the GLIMMIX procedure produces output statistics for all observations in the
input data set.

NOUNIQUE
requests that names not be made unique in the case of naming conflicts. By default, the GLIMMIX
procedure avoids naming conflicts by assigning a unique name to each output variable. If you specify
the NOUNIQUE option, variables with conflicting names are not renamed. In that case, the first
variable added to the output data set takes precedence.
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NOVAR
requests that variables from the input data set not be added to the output data set. This option does not
apply to variables listed in the BY statement or to computed variables listed in the ID statement.

OBSCAT
requests that in models for multinomial data statistics be written to the output data set only for the
response level that corresponds to the observed level of the observation.

SYMBOLS

SYM
adds to the output data set computed variables that are defined or referenced in the program.

PARMS Statement
PARMS < (value-list) > . . . < / options > ;

The PARMS statement specifies initial values for the covariance or scale parameters, or it requests a grid
search over several values of these parameters in generalized linear mixed models.

The value-list specification can take any of several forms:

m a single value

m1; m2; : : : ; mn several values

m to n a sequence where m equals the starting value, n equals the ending value, and the increment
equals 1

m to n by i a sequence where m equals the starting value, n equals the ending value, and the increment
equals i

m1; m2 to m3 mixed values and sequences

Using the PARMS Statement with a GLM

If you are fitting a GLM or a GLM with overdispersion, the scale parameters are listed at the end of the
“Parameter Estimates” table in the same order as value-list . If you specify more than one set of initial values,
PROC GLIMMIX uses only the first value listed for each parameter. Grid searches by using scale parameters
are not possible for these models, because the fixed effects are part of the optimization.

Using the PARMS Statement with a GLMM

If you are fitting a GLMM, the value-list corresponds to the parameters as listed in the “Covariance Parameter
Estimates” table. Note that this order can change depending on whether a residual variance is profiled or not;
see the NOPROFILE option in the PROC GLIMMIX statement.

If you specify more than one set of initial values, PROC GLIMMIX performs a grid search of the objective
function surface and uses the best point on the grid for subsequent analysis. Specifying a large number of
grid points can result in long computing times.
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Options in the PARMS Statement

You can specify the following options in the PARMS statement after a slash (/).

HOLD=value-list
specifies which parameter values PROC GLIMMIX should hold equal to the specified values. For
example, the following statement constrains the first and third covariance parameters to equal 5 and 2,
respectively:

parms (5) (3) (2) (3) / hold=1,3;

Covariance or scale parameters that are held fixed with the HOLD= option are treated as constrained
parameters in the optimization. This is different from evaluating the objective function, gradient, and
Hessian matrix at known values of the covariance parameters. A constrained parameter introduces a
singularity in the optimization process. The covariance matrix of the covariance parameters (see the
ASYCOV option of the PROC GLIMMIX statement) is then based on the projected Hessian matrix.
As a consequence, the variance of parameters subjected to a HOLD= is zero. Such parameters do not
contribute to the computation of denominator degrees of freedom with the DDFM=KENWARDROGER
and DDFM=SATTERTHWAITE methods, for example. If you want to treat the covariance parameters
as known, without imposing constraints on the optimization, you should use the NOITER option.

When you place a hold on all parameters (or when you specify the NOITER) option in a GLMM, you
might notice that PROC GLIMMIX continues to produce an iteration history. Unless your model is a
linear mixed model, several recomputations of the pseudo-response might be required in linearization-
based methods to achieve agreement between the pseudo-data and the covariance matrix. In other
words, the GLIMMIX procedure continues to update the fixed-effects estimates (and random-effects
solutions) until convergence is achieved.

In certain models, placing a hold on covariance parameters implies that the procedure processes the
parameters in the same order as if the NOPROFILE were in effect. This can change the order of the
covariance parameters when you place a hold on one or more parameters. Models that are subject to this
reordering are those with R-side covariance structures whose scale parameter could be profiled. This
includes the TYPE=CS, TYPE=SP, TYPE=AR(1), TYPE=TOEP, and TYPE=ARMA(1,1) covariance
structures.

LOWERB=value-list
enables you to specify lower boundary constraints for the covariance or scale parameters. The value-list
specification is a list of numbers or missing values (.) separated by commas. You must list the numbers
in the same order that PROC GLIMMIX uses for the value-list in the PARMS statement, and each
number corresponds to the lower boundary constraint. A missing value instructs PROC GLIMMIX
to use its default constraint, and if you do not specify numbers for all of the covariance parameters,
PROC GLIMMIX assumes that the remaining ones are missing.

This option is useful, for example, when you want to constrain the G matrix to be positive definite in
order to avoid the more computationally intensive algorithms required when G becomes singular. The
corresponding statements for a random coefficients model are as follows:

proc glimmix;
class person;
model y = time;
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random int time / type=chol sub=person;
parms / lowerb=1e-4,.,1e-4;

run;

Here, the TYPE=CHOL structure is used in order to specify a Cholesky root parameterization for the
2� 2 unstructured blocks in G. This parameterization ensures that the G matrix is nonnegative definite,
and the PARMS statement then ensures that it is positive definite by constraining the two diagonal
terms to be greater than or equal to 1E–4.

NOBOUND
requests the removal of boundary constraints on covariance and scale parameters in mixed models. For
example, variance components have a default lower boundary constraint of 0, and the NOBOUND
option allows their estimates to be negative. See the NOBOUND option in the PROC GLIMMIX
statement for further details.

NOITER
requests that no optimization of the covariance parameters be performed. This option has no effect in
generalized linear models.

If you specify the NOITER option, PROC GLIMMIX uses the values for the covariance parameters
given in the PARMS statement to perform statistical inferences. Note that the NOITER option is not
equivalent to specifying a HOLD= value for all covariance parameters. If you use the NOITER option,
covariance parameters are not constrained in the optimization. This prevents singularities that might
otherwise occur in the optimization process.

If a residual variance is profiled, the parameter estimates can change from the initial values you provide
as the residual variance is recomputed. To prevent an update of the residual variance, combine the
NOITER option with the NOPROFILE option in the PROC GLIMMIX statements, as in the following
code:

proc glimmix noprofile;
class A B C rep mp sp;
model y = A | B | C;
random rep mp sp;
parms (180) (200) (170) (1000) / noiter;

run;

When you specify the NOITER option in a model where parameters are estimated by pseudo-likelihood
techniques, you might notice that the GLIMMIX procedure continues to produce an iteration history.
Unless your model is a linear mixed model, several recomputations of the pseudo-response might
be required in linearization-based methods to achieve agreement between the pseudo-data and the
covariance matrix. In other words, the GLIMMIX procedure continues to update the profiled fixed-
effects estimates (and random-effects solutions) until convergence is achieved. To prevent these
updates, use the MAXLMMUPDATE= option in the PROC GLIMMIX statement. Specifying the
NOITER option in the PARMS statement of a GLMM with pseudo-likelihood estimation has the same
effect as choosing TECHNIQUE=NONE in the NLOPTIONS statement.

If you want to base initial fixed-effects estimates on the results of fitting a generalized linear model,
then you can combine the NOITER option with the TECHNIQUE= option. For example, the following
statements determine the starting values for the fixed effects by fitting a logistic model (without random
effects) with the Newton-Raphson algorithm:
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proc glimmix startglm inititer=10;
class clinic A;
model y/n = A / link=logit dist=binomial;
random clinic;
parms (0.4) / noiter;
nloptions technique=newrap;

run;

The initial GLM fit stops at convergence or after at most 10 iterations, whichever comes first. The
pseudo-data for the linearized GLMM is computed from the GLM estimates. The variance of the Clinic
random effect is held constant at 0.4 during subsequent iterations that update the fixed effects only.

If you also want to combine the GLM fixed-effects estimates with known and fixed covariance
parameter values without updating the fixed effects, you can add the MAXLMMUPDATE=0 option:

proc glimmix startglm inititer=10 maxlmmupdate=0;
class clinic A;
model y/n = A / link=logit dist=binomial;
random clinic;
parms (0.4) / noiter;
nloptions technique=newrap;

run;

In a GLMM with parameter estimation by METHOD=LAPLACE or METHOD=QUAD the NOITER
option also leads to an iteration history, since the fixed-effects estimates are part of the optimization
and the PARMS statement places restrictions on only the covariance parameters.

Finally, the NOITER option can be useful if you want to obtain minimum variance quadratic unbiased
estimates (with 0 priors), also known as MIVQUE0 estimates (Goodnight 1978a). Because MIVQUE0
estimates are starting values for covariance parameters—unless you provide (value-list) in the PARMS
statement—the following statements produce MIVQUE0 mixed model estimates:

proc glimmix noprofile;
class A B;
model y = A;
random int / subject=B;
parms / noiter;

run;

PARMSDATA=SAS-data-set

PDATA=SAS-data-set
reads in covariance parameter values from a SAS data set. The data set should contain the numeri-
cal variable ESTIMATE or the numerical variables Covp1–Covpq, where q denotes the number of
covariance parameters.

If the PARMSDATA= data set contains multiple sets of covariance parameters, the GLIMMIX pro-
cedure evaluates the initial objective function for each set and commences the optimization step by
using the set with the lowest function value as the starting values. For example, the following SAS
statements request that the objective function be evaluated for three sets of initial values:
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data data_covp;
input covp1-covp4;
datalines;
180 200 170 1000
170 190 160 900
160 180 150 800

;
proc glimmix;

class A B C rep mainEU smallEU;
model yield = A|B|C;
random rep mainEU smallEU;
parms / pdata=data_covp;

run;

Each set comprises four covariance parameters.

The order of the observations in a data set with the numerical variable Estimate corresponds to the
order of the covariance parameters in the “Covariance Parameter Estimates” table. In a GLM, the
PARMSDATA= option can be used to set the starting value for the exponential family scale parameter.
A grid search is not conducted for GLMs if you specify multiple values.

The PARMSDATA= data set must not contain missing values.

If the GLIMMIX procedure is processing the input data set in BY groups, you can add the BY variables
to the PARMSDATA= data set. If this data set is sorted by the BY variables, the GLIMMIX procedure
matches the covariance parameter values to the current BY group. If the PARMSDATA= data set does
not contain all BY variables, the data set is processed in its entirety for every BY group and a message
is written to the log. This enables you to provide a single set of starting values across BY groups, as in
the following statements:

data data_covp;
input covp1-covp4;
datalines;
180 200 170 1000

;

proc glimmix;
class A B C rep mainEU smallEU;
model yield = A|B|C;
random rep mainEU smallEU;
parms / pdata=data_covp;
by year;

run;

The same set of starting values is used for each value of the year variable.

UPPERB=value-list
enables you to specify upper boundary constraints on the covariance parameters. The value-list
specification is a list of numbers or missing values (.) separated by commas. You must list the numbers
in the same order that PROC GLIMMIX uses for the value-list in the PARMS statement, and each
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number corresponds to the upper boundary constraint. A missing value instructs PROC GLIMMIX to
use its default constraint. If you do not specify numbers for all of the covariance parameters, PROC
GLIMMIX assumes that the remaining ones are missing.

RANDOM Statement
RANDOM random-effects < / options > ;

Using notation from “Notation for the Generalized Linear Mixed Model” on page 3054, the RANDOM
statement defines the Z matrix of the mixed model, the random effects in the  vector, the structure of G, and
the structure of R.

The Z matrix is constructed exactly like the X matrix for the fixed effects, and the G matrix is constructed
to correspond to the effects constituting Z. The structures of G and R are defined by using the TYPE=
option described on page 3162. The random effects can be classification or continuous effects, and multiple
RANDOM statements are possible.

Some reserved keywords have special significance in the random-effects list. You can specify INTERCEPT
(or INT) as a random effect to indicate the intercept. PROC GLIMMIX does not include the intercept in the
RANDOM statement by default as it does in the MODEL statement. You can specify the _RESIDUAL_
keyword (or RESID, RESIDUAL, _RESID_) before the option slash (/) to indicate a residual-type (R-side)
random component that defines the R matrix. Basically, the _RESIDUAL_ keyword takes the place of
the random-effect if you want to specify R-side variances and covariance structures. These keywords take
precedence over variables in the data set with the same name. If your data or the covariance structure requires
that an effect is specified, you can use the RESIDUAL option to instruct the GLIMMIX procedure to model
the R-side variances and covariances.

In order to add an overdispersion component to the variance function, simply specify a single residual
random component. For example, the following statements fit a polynomial Poisson regression model with
overdispersion. The variance function a.�/ D � is replaced by �a.�/:

proc glimmix;
model count = x x*x / dist=poisson;
random _residual_;

run;

Table 44.16 summarizes the options available in the RANDOM statement. All options are subsequently
discussed in alphabetical order.

Table 44.16 RANDOM Statement Options

Option Description

Construction of Covariance Structure
GCOORD= Determines coordinate association for G-side spatial structures with repeat

levels
GROUP= Varies covariance parameters by groups
LDATA= Specifies a data set with coefficient matrices for TYPE= LIN
NOFULLZ Eliminates columns in Z corresponding to missing values
RESIDUAL Designates a covariance structure as R-side
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Table 44.16 continued

Option Description

SUBJECT= Identifies the subjects in the model
TYPE= Specifies the covariance structure
WEIGHT= Specifies the weights for the subjects

Mixed Model Smoothing
KNOTINFO Displays spline knots
KNOTMAX= Specifies the upper limit for knot construction
KNOTMETHOD Specifies the method for constructing knots for radial smoother and penal-

ized B-splines
KNOTMIN= Specifies the lower limit for knot construction

Statistical Output
ALPHA=˛ Determines the confidence level (1 � ˛)
CL Requests confidence limits for predictors of random effects
G Displays the estimated G matrix
GC Displays the Cholesky root (lower) of the estimated G matrix
GCI Displays the inverse Cholesky root (lower) of the estimated G matrix
GCORR Displays the correlation matrix that corresponds to the estimated G matrix
GI Displays the inverse of the estimated G matrix
SOLUTION Displays solutionsb of the G-side random effects
V Displays blocks of the estimated V matrix
VC Displays the lower-triangular Cholesky root of blocks of the estimated V

matrix
VCI Displays the inverse Cholesky root of blocks of the estimated V matrix
VCORR Displays the correlation matrix corresponding to blocks of the estimated V

matrix
VI Displays the inverse of the blocks of the estimated V matrix

You can specify the following options in the RANDOM statement after a slash (/).

ALPHA=number
requests that a t-type confidence interval with confidence level 1 – number be constructed for the
predictors of G-side random effects in this statement. The value of number must be between 0 and 1;
the default is 0.05. Specifying the ALPHA= option implies the CL option.

CL
requests that t-type confidence limits be constructed for each of the predictors of G-side random effects
in this statement. The confidence level is 0.95 by default; this can be changed with the ALPHA=
option. The CL option implies the SOLUTION option.

G
requests that the estimated G matrix be displayed for G-side random effects associated with this
RANDOM statement. PROC GLIMMIX displays blanks for values that are 0.
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GC
displays the lower-triangular Cholesky root of the estimated G matrix for G-side random effects.

GCI
displays the inverse Cholesky root of the estimated G matrix for G-side random effects.

GCOORD=LAST | FIRST | MEAN
determines how the GLIMMIX procedure associates coordinates for TYPE=SP() covariance structures
with effect levels for G-side random effects. In these covariance structures, you specify one or more
variables that identify the coordinates of a data point. The levels of classification variables, on the
other hand, can occur multiple times for a particular subject. For example, in the following statements
the same level of A can occur multiple times, and the associated values of x might be different:

proc glimmix;
class A B;
model y = B;
random A / type=sp(pow)(x);

run;

The GCOORD=LAST option determines the coordinates for a level of the random effect from the
last observation associated with the level. Similarly, the GCOORD=FIRST and GCOORD=MEAN
options determine the coordinate from the first observation and from the average of the observations.
Observations not used in the analysis are not considered in determining the first, last, or average
coordinate. The default is GCOORD=LAST.

GCORR
displays the correlation matrix that corresponds to the estimated G matrix for G-side random effects.

GI
displays the inverse of the estimated G matrix for G-side random effects.

GROUP=effect

GRP=effect
identifies groups by which to vary the covariance parameters. Each new level of the grouping effect
produces a new set of covariance parameters. Continuous variables and computed variables are
permitted as group effects. PROC GLIMMIX does not sort by the values of the continuous variable;
rather, it considers the data to be from a new group whenever the value of the continuous variable
changes from the previous observation. Using a continuous variable decreases execution time for
models with a large number of groups and also prevents the production of a large “Class Levels
Information” table.

Specifying a GROUP effect can greatly increase the number of estimated covariance parameters, which
can adversely affect the optimization process.

KNOTINFO
displays the number and coordinates of the knots as determined by the KNOTMETHOD= option.

KNOTMAX=number-list
provides upper limits for the values of random effects used in the construction of knots for
TYPE=RSMOOTH. The items in number-list correspond to the random effects of the radial smooth. If



3158 F Chapter 44: The GLIMMIX Procedure

the KNOTMAX= option is not specified, or if the value associated with a particular random effect is set
to missing, the maximum is based on the values in the data set for KNOTMETHOD=EQUAL or KNOT-
METHOD=KDTREE, and is based on the values in the knot data set for KNOTMETHOD=DATA.

KNOTMETHOD=KDTREE< (tree-options) >

KNOTMETHOD=EQUAL< (number-list) >

KNOTMETHOD=DATA(SAS-data-set)
determines the method of constructing knots for the radial smoother fit with the TYPE=RSMOOTH
covariance structure and the TYPE=PSPLINE covariance structure.

Unless you select the TYPE=RSMOOTH or TYPE=PSPLINE covariance structure, the KNOT-
METHOD= option has no effect. The default for TYPE=RSMOOTH is KNOTMETHOD=KDTREE.
For TYPE=PSPLINE, only equally spaced knots are used and you can use the optional numberlist
argument of KNOTMETHOD=EQUAL to determine the number of interior knots for TYPE=PSPLINE.

Knot Construction for TYPE=RSMOOTH

PROC GLIMMIX fits a low-rank smoother, meaning that the number of knots is considerably less
than the number of observations. By default, PROC GLIMMIX determines the knot locations based
on the vertices of a k-d tree (Friedman, Bentley, and Finkel 1977; Cleveland and Grosse 1991). The
k-d tree is a tree data structure that is useful for efficiently determining the m nearest neighbors of a
point. The k-d tree also can be used to obtain a grid of points that adapts to the configuration of the
data. The process starts with a hypercube that encloses the values of the random effects. The space
is then partitioned recursively by splitting cells at the median of the data in the cell for the random
effect. The procedure is repeated for all cells that contain more than a specified number of points, b.
The value b is called the bucket size.

The k-d tree is thus a division of the data into cells such that cells representing leaf nodes contain at
most b values. You control the building of the k-d tree through the BUCKET= tree-option. You control
the construction of knots from the cell coordinates of the tree with the other options as follows.

BUCKET=number
determines the bucket size b. A larger bucket size will result in fewer knots. For k-d trees in more
than one dimension, the correspondence between bucket size and number of knots is difficult
to determine. It depends on the data configuration and on other suboptions. In the multivariate
case, you might need to try out different bucket sizes to obtain the desired number of knots.
The default value of number is 4 for univariate trees (a single random effect) and b0:1nc in the
multidimensional case.

KNOTTYPE=type
specifies whether the knots are based on vertices of the tree cells or the centroid. The two
possible values of type are VERTEX and CENTER. The default is KNOTTYPE=VERTEX.
For multidimensional smoothing, such as smoothing across irregularly shaped spatial domains,
the KNOTTYPE=CENTER option is useful to move knot locations away from the bounding
hypercube toward the convex hull.
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NEAREST
specifies that knot coordinates are the coordinates of the nearest neighbor of either the centroid
or vertex of the cell, as determined by the KNOTTYPE= suboption.

TREEINFO
displays details about the construction of the k-d tree, such as the cell splits and the split values.

See the section “Knot Selection” on page 3221 for a detailed example of how the specification of the
bucket size translates into the construction of a k-d tree and the spline knots.

The KNOTMETHOD=EQUAL option enables you to define a regular grid of knots. By default,
PROC GLIMMIX constructs 10 knots for one-dimensional smooths and 5 knots in each dimension
for smoothing in higher dimensions. You can specify a different number of knots with the optional
number-list . Missing values in the number-list are replaced with the default values. A minimum of two
knots in each dimension is required. For example, the following statements use a rectangular grid of
35 knots, five knots for x1 combined with seven knots for x2:

proc glimmix;
model y=;
random x1 x2 / type=rsmooth knotmethod=equal(5 7);

run;

When you use the NOFIT option in the PROC GLIMMIX statement, the GLIMMIX procedure
computes the knots but does not fit the model. This can be useful if you want to compare knot
selections with different suboptions of KNOTMETHOD=KDTREE. Suppose you want to determine
the number of knots based on a particular bucket size. The following statements compute and display
the knots in a bivariate smooth, constructed from nearest neighbors of the vertices of a k-d tree with
bucket size 10:

proc glimmix nofit;
model y = Latitude Longitude;
random Latitude Longitude / type=rsmooth

knotmethod=kdtree(knottype=vertex
nearest bucket=10) knotinfo;

run;

You can specify a data set that contains variables whose values give the knot coordinates with the
KNOTMETHOD=DATA option. The data set must contain numeric variables with the same name
as the radial smoothing random-effects. PROC GLIMMIX uses only the unique knot coordinates in
the knot data set. This option is useful to provide knot coordinates different from those that can be
produced from a k-d tree. For example, in spatial problems where the domain is irregularly shaped,
you might want to determine knots by a space-filling algorithm. The following SAS statements invoke
the OPTEX procedure to compute 45 knots that uniformly cover the convex hull of the data locations
(see SAS/QC User’s Guide for details about the OPTEX procedure).

proc optex coding=none;
model latitude longitude / noint;
generate n=45 criterion=u method=m_fedorov;
output out=knotdata;

run;
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proc glimmix;
model y = Latitude Longitude;
random Latitude Longitude / type=rsmooth

knotmethod=data(knotdata);
run;

Knot Construction for TYPE=PSPLINE

Only evenly spaced knots are supported when you fit penalized B-splines with the GLIMMIX procedure.
For the TYPE=PSPLINE covariance structure, the number-list argument specifies the number m of
interior knots, the default is m D 10. Suppose that x.1/ and x.n/ denote the smallest and largest values,
respectively. For a B-spline of degree d (De Boor 2001), the interior knots are supplemented with d
exterior knots below x.1/ and maxf1; dg exterior knots above x.n/. PROC GLIMMIX computes the
location of these mC d Cmaxf1; dg knots as follows. Let ıx D .x.n/ � x.1//=.mC 1/, then interior
knots are placed at

x.1/ C jıx; j D 1; � � � ; m

The exterior knots are also evenly spaced with step size ıx and start at x.1/ ˙ 100 times the machine
epsilon. At least one interior knot is required.

KNOTMIN=number-list
provides lower limits for the values of random effects used in the construction of knots for
TYPE=RSMOOTH. The items in number-list correspond to the random effects of the radial smooth. If
the KNOTMIN= option is not specified, or if the value associated with a particular random effect is set
to missing, the minimum is based on the values in the data set for KNOTMETHOD=EQUAL or KNOT-
METHOD=KDTREE, and is based on the values in the knot data set for KNOTMETHOD=DATA.

LDATA=SAS-data-set
reads the coefficient matrices A1; � � � ;Aq for the TYPE=LIN(q) option. You can specify the LDATA=
data set in a sparse or dense form. In the sparse form the data set must contain the numeric variables
Parm, Row, Col, and Value. The Parm variable contains the indices i D 1; � � � ; q of the Ai matrices.
The Row and Col variables identify the position within a matrix and the Value variable contains the
matrix element. Values not specified for a particular row and column are set to zero. Missing values
are allowed in the Value column of the LDATA= data set; these values are also replaced by zeros. The
sparse form is particularly useful if the A matrices have only a few nonzero elements.

In the dense form the LDATA= data set contains the numeric variables Parm and Row (with the same
function as above), in addition to the numeric variables Col1–Colq. If you omit one or more of the
Col1–Colq variables from the data set, zeros are assumed for the respective rows and columns of the A
matrix. Missing values for Col1–Colq are ignored in the dense form.

The GLIMMIX procedure assumes that the matrices A1; � � � ;Aq are symmetric. In the sparse LDATA=
form you do not need to specify off-diagonal elements in position .i; j / and .j; i/. One of them is
sufficient. Row-column indices are converted in both storage forms into positions in lower triangular
storage. If you specify multiple values in row .maxfi; j g and column minfi; j g/ of a particular matrix,
only the last value is used. For example, assume you are specifying elements of a 4 � 4 matrix. The
lower triangular storage of matrix A3 defined by
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data ldata;
input parm row col value;
datalines;

3 2 1 2
3 1 2 5
;

is 2664
0

5 0

0 0 0

0 0 0 0

3775
NOFULLZ

eliminates the columns in Z corresponding to missing levels of random effects involving CLASS
variables. By default, these columns are included in Z. It is sufficient to specify the NOFULLZ option
on any G-side RANDOM statement.

RESIDUAL

RSIDE
specifies that the random effects listed in this statement be R-side effects. You use the RESIDUAL
option in the RANDOM statement if the nature of the covariance structure requires you to specify an
effect. For example, if it is necessary to order the columns of the R-side AR(1) covariance structure by
the time variable, you can use the RESIDUAL option as in the following statements:

class time id;
random time / subject=id type=ar(1) residual;

SOLUTION

S
requests that the solutionb for the random-effects parameters be produced, if the statement defines
G-side random effects.

The numbers displayed in the Std Err Pred column of the “Solution for Random Effects” table are not
the standard errors of theb displayed in the Estimate column; rather, they are the square roots of the
prediction errorsb i � i , whereb i is the predictor of the ith random effect and i is the ith random
effect. In pseudo-likelihood methods that are based on linearization, these EBLUPs are the estimated
best linear unbiased predictors in the linear mixed pseudo-model. In models fit by maximum likelihood
by using the Laplace approximation or by using adaptive quadrature, the SOLUTION option displays
the empirical Bayes estimates (EBE) of i .

SUBJECT=effect

SUB=effect
identifies the subjects in your generalized linear mixed model. Complete independence is assumed
across subjects. Specifying a subject effect is equivalent to nesting all other effects in the RANDOM
statement within the subject effect.
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Continuous variables and computed variables are permitted with the SUBJECT= option. PROC
GLIMMIX does not sort by the values of the continuous variable but considers the data to be from
a new subject whenever the value of the continuous variable changes from the previous observation.
Using a continuous variable can decrease execution time for models with a large number of subjects
and also prevents the production of a large “Class Levels Information” table.

TYPE=covariance-structure
specifies the covariance structure of G for G-side effects and the covariance structure of R for R-side
effects.

Although a variety of structures are available, many applications call for either simple diagonal
(TYPE=VC) or unstructured covariance matrices. The TYPE=VC (variance components) option
is the default structure, and it models a different variance component for each random effect. It is
recommended to model unstructured covariance matrices in terms of their Cholesky parameterization
(TYPE=CHOL) rather than TYPE=UN.

If you want different covariance structures in different parts of G, you must use multiple RANDOM
statements with different TYPE= options.

Valid values for covariance-structure are as follows. Examples are shown in Table 44.18.

The variances and covariances in the formulas that follow in the TYPE= descriptions are expressed in
terms of generic random variables �i and �j . They represent the G-side random effects or the residual
random variables for which the G or R matrices are constructed.

ANTE(1)
specifies a first-order ante-dependence structure (Kenward 1987; Patel 1991) parameterized in
terms of variances and correlation parameters. If t ordered random variables �1; � � � ; �t have a
first-order ante-dependence structure, then each �j , j > 1, is independent of all other �k; k < j ,
given �j�1. This Markovian structure is characterized by its inverse variance matrix, which is
tridiagonal. Parameterizing an ANTE(1) structure for a random vector of size t requires 2t – 1
parameters: variances �21 ; � � � ; �

2
t and t – 1 correlation parameters �1; � � � ; �t�1. The covariances

among random variables �i and �j are then constructed as

Cov
�
�i ; �j

�
D

q
�2i �

2
j

j�1Y
kDi

�k

PROC GLIMMIX constrains the correlation parameters to satisfy j�kj < 1; 8k. For variable-
order ante-dependence models see Macchiavelli and Arnold (1994).

AR(1)
specifies a first-order autoregressive structure,

Cov
�
�i ; �j

�
D �2�ji

��j�j

The values i� and j � are derived for the ith and jth observations, respectively, and are not
necessarily the observation numbers. For example, in the following statements the values
correspond to the class levels for the time effect of the ith and jth observation within a particular
subject:
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proc glimmix;
class time patient;
model y = x x*x;
random time / sub=patient type=ar(1);

run;

PROC GLIMMIX imposes the constraint j�j < 1 for stationarity.

ARH(1)
specifies a heterogeneous first-order autoregressive structure,

Cov
�
�i ; �j

�
D

q
�2i �

2
j �
ji��j�j

with j�j < 1. This covariance structure has the same correlation pattern as the TYPE=AR(1)
structure, but the variances are allowed to differ.

ARMA(1,1)
specifies the first-order autoregressive moving-average structure,

Cov
�
�i ; �j

�
D

�
�2 i D j

�2�ji
��j�j�1 i 6D j

Here, � is the autoregressive parameter,  models a moving-average component, and �2 is a scale
parameter. In the notation of Fuller (1976, p. 68), � D �1 and

 D
.1C b1�1/.�1 C b1/

1C b21 C 2b1�1

The example in Table 44.18 and jb1j < 1 imply that

b1 D
ˇ �

p
ˇ2 � 4˛2

2˛

where ˛ D  � � and ˇ D 1C �2 � 2�. PROC GLIMMIX imposes the constraints j�j < 1

and j j < 1 for stationarity, although for some values of � and  in this region the resulting
covariance matrix is not positive definite. When the estimated value of � becomes negative, the
computed covariance is multiplied by cos.�dij / to account for the negativity.

CHOL< (q) >
specifies an unstructured variance-covariance matrix parameterized through its Cholesky root.
This parameterization ensures that the resulting variance-covariance matrix is at least positive
semidefinite. If all diagonal values are nonzero, it is positive definite. For example, a 2 � 2
unstructured covariance matrix can be written as

VarŒ�� D
�
�1 �12
�12 �2

�

Without imposing constraints on the three parameters, there is no guarantee that the estimated
variance matrix is positive definite. Even if �1 and �2 are nonzero, a large value for �12 can lead
to a negative eigenvalue of VarŒ��. The Cholesky root of a positive definite matrix A is a lower
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triangular matrix C such that CC0 D A. The Cholesky root of the above 2 � 2 matrix can be
written as

C D
�
˛1 0

˛12 ˛2

�
The elements of the unstructured variance matrix are then simply �1 D ˛21 , �12 D ˛1˛12, and
�2 D ˛212 C ˛

2
2 . Similar operations yield the generalization to covariance matrices of higher

orders.

For example, the following statements model the covariance matrix of each subject as an unstruc-
tured matrix:

proc glimmix;
class sub;
model y = x;
random _residual_ / subject=sub type=un;

run;

The next set of statements accomplishes the same, but the estimated R matrix is guaranteed to be
nonnegative definite:

proc glimmix;
class sub;
model y = x;
random _residual_ / subject=sub type=chol;

run;

The GLIMMIX procedure constrains the diagonal elements of the Cholesky root to be positive.
This guarantees a unique solution when the matrix is positive definite.

The optional order parameter q > 0 determines how many bands below the diagonal are modeled.
Elements in the lower triangular portion of C in bands higher than q are set to zero. If you
consider the resulting covariance matrix A D CC0, then the order parameter has the effect of
zeroing all off-diagonal elements that are at least q positions away from the diagonal.

Because of its good computational and statistical properties, the Cholesky root parameterization is
generally recommended over a completely unstructured covariance matrix (TYPE=UN). However,
it is computationally slightly more involved.

CS
specifies the compound-symmetry structure, which has constant variance and constant covariance

Cov
�
�i ; �j

�
D

�
� C � i D j

� i 6D j

The compound symmetry structure arises naturally with nested random effects, such as when
subsampling error is nested within experimental error. The models constructed with the following
two sets of GLIMMIX statements have the same marginal variance matrix, provided � is positive:



RANDOM Statement F 3165

proc glimmix;
class block A;
model y = block A;
random block*A / type=vc;

run;

proc glimmix;
class block A;
model y = block A;
random _residual_ / subject=block*A

type=cs;
run;

In the first case, the block*A random effect models the G-side experimental error. Because the
distribution defaults to the normal, the R matrix is of form �I (see Table 44.19), and � is the
subsampling error variance. The marginal variance for the data from a particular experimental
unit is thus �2

b�a
JC �I. This matrix is of compound symmetric form.

Hierarchical random assignments or selections, such as subsampling or split-plot designs, give rise
to compound symmetric covariance structures. This implies exchangeability of the observations
on the subunit, leading to constant correlations between the observations. Compound symmetric
structures are thus usually not appropriate for processes where correlations decline according to
some metric, such as spatial and temporal processes.

Note that R-side compound-symmetry structures do not impose any constraint on � . You can
thus use an R-side TYPE=CS structure to emulate a variance-component model with unbounded
estimate of the variance component.

CSH
specifies the heterogeneous compound-symmetry structure, which is an equi-correlation structure
but allows for different variances

Cov
�
�i ; �j

�
D

8<:
q
�2i �

2
j i D j

�
q
�2i �

2
j i 6D j

FA(q)
specifies the factor-analytic structure with q factors (Jennrich and Schluchter 1986). This structure
is of the form ƒƒ0 CD, where ƒ is a t � q rectangular matrix and D is a t � t diagonal matrix
with t different parameters. When q > 1, the elements of ƒ in its upper-right corner (that is,
the elements in the ith row and jth column for j > i) are set to zero to fix the rotation of the
structure.

FA0(q)
specifies a factor-analytic structure with q factors of the form VarŒ�� D ƒƒ0, where ƒ is a
t � q rectangular matrix and t is the dimension of Y. When q > 1, ƒ is a lower triangular
matrix. When q < t—that is, when the number of factors is less than the dimension of the
matrix—this structure is nonnegative definite but not of full rank. In this situation, you can use it
to approximate an unstructured covariance matrix.
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HF
specifies a covariance structure that satisfies the general Huynh-Feldt condition (Huynh and Feldt
1970). For a random vector with t elements, this structure has t C 1 positive parameters and
covariances

Cov
�
�i ; �j

�
D

�
�2i i D j

0:5.�2i C �
2
j / � � i 6D j

A covariance matrix † generally satisfies the Huynh-Feldt condition if it can be written as
† D �10C1�0C�I. The preceding parameterization chooses �i D 0:5.�2i ��/. Several simpler
covariance structures give rise to covariance matrices that also satisfy the Huynh-Feldt condition.
For example, TYPE=CS, TYPE=VC, and TYPE=UN(1) are nested within TYPE=HF. You can
use the COVTEST statement to test the HF structure against one of these simpler structures. Note
also that the HF structure is nested within an unstructured covariance matrix.

The TYPE=HF covariance structure can be sensitive to the choice of starting values and the
default MIVQUE(0) starting values can be poor for this structure; you can supply your own
starting values with the PARMS statement.

LIN(q)
specifies a general linear covariance structure with q parameters. This structure consists of a
linear combination of known matrices that you input with the LDATA= option. Suppose that you
want to model the covariance of a random vector of length t, and further suppose that A1; � � � ;Aq
are symmetric .t � t ) matrices constructed from the information in the LDATA= data set. Then,

Cov
�
�i ; �j

�
D

qX
kD1

�kŒAk�ij

where ŒAk�ij denotes the element in row i, column j of matrix Ak .

Linear structures are very flexible and general. You need to exercise caution to ensure that the
variance matrix is positive definite. Note that PROC GLIMMIX does not impose boundary
constraints on the parameters �1; � � � ; �k of a general linear covariance structure. For example, if
classification variable A has 6 levels, the following statements fit a variance component structure
for the random effect without boundary constraints:

data ldata;
retain parm 1 value 1;
do row=1 to 6; col=row; output; end;

run;

proc glimmix data=MyData;
class A B;
model Y = B;
random A / type=lin(1) ldata=ldata;

run;
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PSPLINE< (options) >
requests that PROC GLIMMIX form a B-spline basis and fits a penalized B-spline (P-spline,
Eilers and Marx 1996) with random spline coefficients. This covariance structure is available
only for G-side random effects and only a single continuous random effect can be specified with
TYPE=PSPLINE. As for TYPE=RSMOOTH, PROC GLIMMIX forms a modified Z matrix
and fits a mixed model in which the random variables associated with the columns of Z are
independent with a common variance. The Z matrix is constructed as follows.

Denote as eZ the .n � K/ matrix of B-splines of degree d and denote as Dr the .K � r � K/
matrix of rth-order differences. For example, for K = 5,

D1 D

2664
1 �1 0 0 0

0 1 �1 0 0

0 0 1 �1 0

0 0 0 1 �1

3775
D2 D

24 1 �2 1 0 0

0 1 �2 1 0

0 0 1 �2 1

35
D3 D

�
1 �3 3 �1 0

0 1 �3 3 �1

�
Then, the Z matrix used in fitting the mixed model is the .n �K � r/ matrix

Z DeZ.D0rDr/�D0r
The construction of the B-spline knots is controlled with the KNOTMETHOD= EQUAL(m)
option and the DEGREE=d suboption of TYPE=PSPLINE. The total number of knots equals the
number m of equally spaced interior knots plus d knots at the low end and maxf1; dg knots at
the high end. The number of columns in the B-spline basis equals K = m + d + 1. By default, the
interior knots exclude the minimum and maximum of the random-effect values and are based on
m – 1 equally spaced intervals. Suppose x.1/ and x.n/ are the smallest and largest random-effect
values; then interior knots are placed at

x.1/ C j.x.n/ � x.1//=.mC 1/; j D 1; � � � ; m

In addition, d evenly spaced exterior knots are placed below x.1/ and maxfd; 1g exterior knots
are placed above x.m/. The exterior knots are evenly spaced and start at x.1/ ˙ 100 times the
machine epsilon. For example, based on the defaults d = 3, r = 3, the following statements lead
to 26 total knots and 21 columns in Z, m = 20, K = m + d + 1 = 24, K – r = 21:

proc glimmix;
model y = x;
random x / type=pspline knotmethod=equal(20);

run;

Details about the computation and properties of B-splines can be found in De Boor (2001). You
can extend or limit the range of the knots with the KNOTMIN= and KNOTMAX= options.
Table 44.17 lists some of the parameters that control this covariance type and their relationships.
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Table 44.17 P-Spline Parameters

Parameter Description

d Degree of B-spline, default d = 3
r Order of differencing in construction of Dr , default r = 3
m Number of interior knots, default m D 10
mC d Cmaxf1; dg Total number of knots
K D mC d C 1 Number of columns in B-spline basis
K � r Number of columns in Z

You can specify the following options for TYPE=PSPLINE:

DEGREE=d specifies the degree of the B-spline. The default is d = 3.

DIFFORDER=r specifies the order of the differencing matrix Dr . The default and maximum
is r = 3.

RSMOOTH< (m | NOLOG) >
specifies a radial smoother covariance structure for G-side random effects. This results in
an approximate low-rank thin-plate spline where the smoothing parameter is obtained by the
estimation method selected with the METHOD= option of the PROC GLIMMIX statement. The
smoother is based on the automatic smoother in Ruppert, Wand, and Carroll (2003, Chapter
13.4–13.5), but with a different method of selecting the spline knots. See the section “Radial
Smoothing Based on Mixed Models” on page 3220 for further details about the construction of
the smoother and the knot selection.

Radial smoothing is possible in one or more dimensions. A univariate smoother is obtained with a
single random effect, while multiple random effects in a RANDOM statement yield a multivariate
smoother. Only continuous random effects are permitted with this covariance structure. If nr
denotes the number of continuous random effects in the RANDOM statement, then the covariance
structure of the random effects  is determined as follows. Suppose that zi denotes the vector of
random effects for the ith observation. Let �k denote the .nr � 1/ vector of knot coordinates,
k D 1; � � � ; K, and K is the total number of knots. The Euclidean distance between the knots is
computed as

dkp D jj�k � �pjj D

vuut nrX
jD1

.�jk � �jp/
2

and the distance between knots and effects is computed as

hik D jjzi � �kjj D

vuut nrX
jD1

.zij � �jk/
2

The Z matrix for the GLMM is constructed as

Z D eZ��1=2
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where the .n �K/ matrixeZ has typical element

ŒeZ�ik D � h
p

ik
nr odd

h
p

ik
logfhikg nr even

and the .K �K/ matrix� has typical element

Œ��kp D

(
d
p

kp
nr odd

d
p

kp
logfdkpg nr even

The exponent in these expressions equals p D 2m � nr , where the optional value m corresponds
to the derivative penalized in the thin-plate spline. A larger value of m will yield a smoother
fit. The GLIMMIX procedure requires p > 0 and chooses by default m = 2 if nr < 3 and
m D nr=2C 1 otherwise. The NOLOG option removes the logfhikg and logfdkpg terms from
the computation of theeZ and� matrices when nr is even; this yields invariance under rescaling
of the coordinates.

Finally, the components of  are assumed to have equal variance �2r . The “smoothing parameter”
� of the low-rank spline is related to the variance components in the model, �2 D f .�; �2r /. See
Ruppert, Wand, and Carroll (2003) for details. If the conditional distribution does not provide a
scale parameter �, you can add a single R-side residual parameter.

The knot selection is controlled with the KNOTMETHOD= option. The GLIMMIX procedure
selects knots automatically based on the vertices of a k-d tree or reads knots from a data set
that you supply. See the section “Radial Smoothing Based on Mixed Models” on page 3220 for
further details on radial smoothing in the GLIMMIX procedure and its connection to a mixed
model formulation.

SIMPLE
is an alias for TYPE=VC.

SP(EXP)(c-list)
models an exponential spatial or temporal covariance structure, where the covariance between
two observations depends on a distance metric dij . The c-list contains the names of the numeric
variables used as coordinates to determine distance. For a stochastic process in Rk , there are k
elements in c-list . If the .k � 1/ vectors of coordinates for observations i and j are ci and cj , then
PROC GLIMMIX computes the Euclidean distance

dij D jjci � cj jj D

vuut kX
mD1

.cmi � cmj /2

The covariance between two observations is then

Cov
�
�i ; �j

�
D �2 expf�dij =˛g

The parameter ˛ is not what is commonly referred to as the range parameter in geostatistical
applications. The practical range of a (second-order stationary) spatial process is the distance d .p/

at which the correlations fall below 0.05. For the SP(EXP) structure, this distance is d .p/ D 3˛.
PROC GLIMMIX constrains ˛ to be positive.
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SP(GAU)(c-list)
models a Gaussian covariance structure,

Cov
�
�i ; �j

�
D �2 expf�d2ij =˛

2
g

See TYPE=SP(EXP) for the computation of the distance dij . The parameter ˛ is related to the
range of the process as follows. If the practical range d .p/ is defined as the distance at which the
correlations fall below 0.05, then d .p/ D

p
3˛. PROC GLIMMIX constrains ˛ to be positive.

See TYPE=SP(EXP) for the computation of the distance dij from the variables specified in c-list .

SP(MAT)(c-list)
models a covariance structure in the Matérn class of covariance functions (Matérn 1986). The
covariance is expressed in the parameterization of Handcock and Stein (1993); Handcock and
Wallis (1994); it can be written as

Cov
�
�i ; �j

�
D �2

1

�.�/

�
dij
p
�

�

��
2K�

�
2dij
p
�

�

�
The function K� is the modified Bessel function of the second kind of (real) order � > 0. The
smoothness (continuity) of a stochastic process with covariance function in the Matérn class
increases with �. This class thus enables data-driven estimation of the smoothness properties of
the process. The covariance is identical to the exponential model for � D 0:5 (TYPE=SP(EXP)(c-
list)), while for � D 1 the model advocated by Whittle (1954) results. As � ! 1, the model
approaches the Gaussian covariance structure (TYPE=SP(GAU)(c-list)).

Note that the MIXED procedure offers covariance structures in the Matérn class in two param-
eterizations, TYPE=SP(MATERN) and TYPE=SP(MATHSW). The TYPE=SP(MAT) in the
GLIMMIX procedure is equivalent to TYPE=SP(MATHSW) in the MIXED procedure.

Computation of the function K� and its derivatives is numerically demanding; fitting models
with Matérn covariance structures can be time-consuming. Good starting values are essential.

SP(POW)(c-list)
models a power covariance structure,

Cov
�
�i ; �j

�
D �2�dij

where � � 0. This is a reparameterization of the exponential structure, TYPE=SP(EXP).
Specifically, logf�g D �1=˛. See TYPE=SP(EXP) for the computation of the distance dij from
the variables specified in c-list . When the estimated value of � becomes negative, the computed
covariance is multiplied by cos.�dij / to account for the negativity.

SP(POWA)(c-list)
models an anisotropic power covariance structure in k dimensions, provided that the coordinate
list c-list has k elements. If cim denotes the coordinate for the ith observation of the mth variable
in c-list , the covariance between two observations is given by

Cov
�
�i ; �j

�
D �2�

jci1�cj1j

1 �
jci2�cj2j

2 : : : �
jcik�cjk j

k

Note that for k = 1, TYPE=SP(POWA) is equivalent to TYPE=SP(POW), which is itself a
reparameterization of TYPE=SP(EXP). When the estimated value of �m becomes negative, the
computed covariance is multiplied by cos.�jcim � cjmj/ to account for the negativity.
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SP(SPH)(c-list)
models a spherical covariance structure,

Cov
�
�i ; �j

�
D

8<: �2
�
1 �

3dij
2˛
C

1
2

�
dij
˛

�3�
dij � ˛

0 dij > ˛

The spherical covariance structure has a true range parameter. The covariances between observa-
tions are exactly zero when their distance exceeds ˛. See TYPE=SP(EXP) for the computation
of the distance dij from the variables specified in c-list .

TOEP
models a Toeplitz covariance structure. This structure can be viewed as an autoregressive structure
with order equal to the dimension of the matrix,

Cov
�
�i ; �j

�
D

�
�2 i D j

�ji�j j i 6D j

TOEP(q)
specifies a banded Toeplitz structure,

Cov
�
�i ; �j

�
D

�
�2 i D j

�ji�j j ji � j j < q

This can be viewed as a moving-average structure with order equal to q – 1. The specification
TYPE=TOEP(1) is the same as �2I, and it can be useful for specifying the same variance
component for several effects.

TOEPH< (q) >
models a Toeplitz covariance structure. The correlations of this structure are banded as the TOEP
or TOEP(q) structures, but the variances are allowed to vary:

Cov
�
�i ; �j

�
D

(
�2i i D j

�ji�j j

q
�2i �

2
j i 6D j

The correlation parameters satisfy j�ji�j jj < 1. If you specify the optional value q, the correlation
parameters with ji � j j � q are set to zero, creating a banded correlation structure. The
specification TYPE=TOEPH(1) results in a diagonal covariance matrix with heterogeneous
variances.

UN< (q) >
specifies a completely general (unstructured) covariance matrix parameterized directly in terms
of variances and covariances,

Cov
�
�i ; �j

�
D �ij

The variances are constrained to be nonnegative, and the covariances are unconstrained. This
structure is not constrained to be nonnegative definite in order to avoid nonlinear constraints;
however, you can use the TYPE=CHOL structure if you want this constraint to be imposed by a
Cholesky factorization. If you specify the order parameter q, then PROC GLIMMIX estimates
only the first q bands of the matrix, setting elements in all higher bands equal to 0.
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UNR< (q) >
specifies a completely general (unstructured) covariance matrix parameterized in terms of vari-
ances and correlations,

Cov
�
�i ; �j

�
D �i�j�ij

where �i denotes the standard deviation and the correlation �ij is zero when i D j and when
ji � j j � q, provided the order parameter q is given. This structure fits the same model as the
TYPE=UN(q) option, but with a different parameterization. The ith variance parameter is �2i .
The parameter �ij is the correlation between the ith and jth measurements; it satisfies j�ij j < 1.
If you specify the order parameter q, then PROC GLIMMIX estimates only the first q bands of
the matrix, setting all higher bands equal to zero.

VC
specifies standard variance components and is the default structure for both G-side and R-side
covariance structures. In a G-side covariance structure, a distinct variance component is assigned
to each effect. In an R-side structure TYPE=VC is usually used only to add overdispersion effects
or with the GROUP= option to specify a heterogeneous variance model.

Table 44.18 Covariance Structure Examples

Description Structure Example

Variance
Components

VC (default)

2664
�2B 0 0 0

0 �2B 0 0

0 0 �2AB 0

0 0 0 �2AB

3775

Compound
Symmetry

CS

2664
� C � � � �

� � C � � �

� � � C � �

� � � � C �

3775

Heterogeneous
CS

CSH

2664
�21 �1�2� �1�3� �1�4�

�2�1� �22 �2�3� �2�4�

�3�1� �3�2� �23 �3�4�

�4�1� �4�2� �4�3� �24

3775

First-Order
Autoregressive

AR(1) �2

2664
1 � �2 �3

� 1 � �2

�2 � 1 �

�3 �2 � 1

3775

Heterogeneous
AR(1)

ARH(1)

2664
�21 �1�2� �1�3�

2 �1�4�
3

�2�1� �22 �2�3� �2�4�
2

�3�1�
2 �3�2� �23 �3�4�

�4�1�
3 �4�2� �4�3� �24

3775

Unstructured UN

2664
�21 �21 �31 �41
�21 �22 �32 �42
�31 �32 �23 �43
�41 �42 �43 �24

3775
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Table 44.18 continued

Description Structure Example

Banded Main
Diagonal

UN(1)

2664
�21 0 0 0

0 �22 0 0

0 0 �23 0

0 0 0 �24

3775

Unstructured
Correlations

UNR

2664
�21 �1�2�21 �1�3�31 �1�4�41

�2�1�21 �22 �2�3�32 �2�4�42
�3�1�31 �3�2�32 �23 �3�4�43
�4�1�41 �4�2�42 �4�3�43 �24

3775

Toeplitz TOEP

2664
�2 �1 �2 �3
�1 �2 �1 �2
�2 �1 �2 �1
�3 �2 �1 �2

3775

Toeplitz with
Two Bands

TOEP(2)

2664
�2 �1 0 0

�1 �2 �1 0

0 �1 �2 �1
0 0 �1 �2

3775

Heterogeneous
Toeplitz

TOEPH

2664
�21 �1�2�1 �1�3�2 �1�4�3

�2�1�1 �22 �2�3�1 �2�4�2
�3�1�2 �3�2�1 �23 �3�4�1
�4�1�3 �4�2�2 �4�3�1 �24

3775

Spatial
Power

SP(POW)(c-list) �2

2664
1 �d12 �d13 �d14

�d21 1 �d23 �d24

�d31 �d32 1 �d34

�d41 �d42 �d43 1

3775

First-Order
Autoregressive
Moving-Average

ARMA(1,1) �2

2664
1  � �2

 1  �

�  1 

�2 �  1

3775

First-Order
Factor
Analytic

FA(1)

2664
�21 C d1 �1�2 �1�3 �1�4
�2�1 �22 C d2 �2�3 �2�4
�3�1 �3�2 �23 C d3 �3�4
�4�1 �4�2 �4�3 �24 C d4

3775

Huynh-Feldt HF

2664 �21
�21C�

2
2

2
� �

�21C�
2
3

2
� �

�22C�
2
1

2
� � �22

�22C�
2
3

2
� �

�23C�
2
1

2
� �

�23C�
2
2

2
� � �23

3775
First-Order
Ante-dependence

ANTE(1)

24 �21 �1�2�1 �1�3�1�2
�2�1�1 �22 �2�3�2
�3�1�2�1 �3�2�2 �23

35
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V< =value-list >
requests that blocks of the estimated marginal variance-covariance matrix V.b�/ be displayed in
generalized linear mixed models. This matrix is based on the last linearization as described in the
section “The Pseudo-model” on page 3188. You can use the value-list to select the subjects for which
the matrix is displayed. If value-list is not specified, the V matrix for the first subject is chosen.

Note that the value-list refers to subjects as the processing units in the “Dimensions” table. For example,
the following statements request that the estimated marginal variance matrix for the second subject be
displayed:

proc glimmix;
class A B;
model y = B;
random int / subject=A;
random int / subject=A*B v=2;

run;

The subject effect for processing in this case is the A effect, because it is contained in the A*B interaction.
If there is only a single subject as per the “Dimensions” table, then the V option displays an .n � n/
matrix.

See the section “Processing by Subjects” on page 3218 for how the GLIMMIX procedure determines
the number of subjects in the “Dimensions” table.

The GLIMMIX procedure displays blanks for values that are 0.

VC< =value-list >
displays the lower-triangular Cholesky root of the blocks of the estimated V.b�/ matrix. See the V
option for the specification of value-list .

VCI< =value-list >
displays the inverse Cholesky root of the blocks of the estimated V.b�/ matrix. See the V option for the
specification of value-list .

VCORR< =value-list >
displays the correlation matrix corresponding to the blocks of the estimated V.b�/ matrix. See the V
option for the specification of value-list .

VI< =value-list >
displays the inverse of the blocks of the estimated V.b�/ matrix. See the V option for the specification
of value-list .

WEIGHT< =variable >

WT< =variable >
specifies a variable to be used as the weight for the units at the current level in a weighted multilevel
model. If a weight variable is not specified in the WEIGHT option, a weight of 1 is used. For details
on the use of weights in multilevel models, see the section “Pseudo-likelihood Estimation for Weighted
Multilevel Models” on page 3200.
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SLICE Statement
SLICE model-effect < / options > ;

The SLICE statement provides a general mechanism for performing a partitioned analysis of the LS-means
for an interaction. This analysis is also known as an analysis of simple effects (Winer 1971).

The SLICE statement uses most of the options of the LSMEANS statement that are summarized in Table 44.8.
The options SLICEDIFF=, SLICEDIFFTYPE=, and ODDS do not apply to the SLICE statement; in the
SLICE statement, the relevant options for SLICEDIFF= and SLICEDIFFTYPE= are the SLICEBY= and the
DIFF= options, respectively.

For details about the syntax of the SLICE statement, see the section “SLICE Statement” on page 505 in
Chapter 19, “Shared Concepts and Topics.”

STORE Statement
STORE < OUT= >item-store-name < / LABEL='label ' > ;

The STORE statement requests that the procedure save the context and results of the statistical analysis. The
resulting item store has a binary file format that cannot be modified. The contents of the item store can be
processed with the PLM procedure.

For details about the syntax of the STORE statement, see the section “STORE Statement” on page 508 in
Chapter 19, “Shared Concepts and Topics.”

WEIGHT Statement
WEIGHT variable ;

The WEIGHT statement replaces R with W�1=2RW�1=2, where W is a diagonal matrix containing the
weights. Observations with nonpositive or missing weights are not included in the resulting PROC GLIMMIX
analysis. If a WEIGHT statement is not included, all observations used in the analysis are assigned a weight
of 1.

Programming Statements
This section lists the programming statements available in PROC GLIMMIX to compute various aspects
of the generalized linear mixed model or output quantities. For example, you can compute model effects,
weights, frequency, subject, group, and other variables. You can use programming statements to define the
mean and variance functions. This section also documents the differences between programming statements
in PROC GLIMMIX and programming statements in the SAS DATA step. The syntax of programming
statements used in PROC GLIMMIX is identical to that used in the NLMIXED procedure (see Chapter 70,
“The NLMIXED Procedure,” and the MODEL procedure (see the SAS/ETS User’s Guide). Most of the
programming statements that can be used in the DATA step can also be used in the GLIMMIX procedure.
See SAS Statements: Reference for a description of SAS programming statements. The following are valid
statements:
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ABORT;
ARRAY arrayname < [ dimensions ] > < $ > < variables-and-constants >;
CALL name < (expression < , expression . . . >) >;
DELETE;
DO < variable = expression < TO expression > < BY expression > >

< , expression < TO expression > < BY expression > > . . .
< WHILE expression > < UNTIL expression >;

END;
GOTO statement-label;
IF expression;
IF expression THEN program-statement;

ELSE program-statement;
variable = expression;
variable + expression;
LINK statement-label;
PUT < variable > < = > . . . ;
RETURN;
SELECT < (expression) >;
STOP;
SUBSTR(variable, index , length)= expression;
WHEN (expression)program-statement;

OTHERWISE program-statement;

For the most part, the SAS programming statements work the same as they do in the SAS DATA step, as
documented in SAS Language Reference: Concepts. However, there are several differences:

• The ABORT statement does not allow any arguments.

• The DO statement does not allow a character index variable. Thus

do i = 1,2,3;

is supported; however, the following statement is not supported:

do i = 'A','B','C';

• The LAG function is not supported with PROC GLIMMIX.

• The PUT statement, used mostly for program debugging in PROC GLIMMIX, supports only some of
the features of the DATA step PUT statement, and it has some features not available with the DATA
step PUT statement:

– The PROC GLIMMIX PUT statement does not support line pointers, factored lists, iteration
factors, overprinting, _INFILE_, the colon (:) format modifier, or “$”.

– The PROC GLIMMIX PUT statement does support expressions, but the expression must be
enclosed in parentheses. For example, the following statement displays the square root of x:

put (sqrt(x));

– The PROC GLIMMIX PUT statement supports the item _PDV_ to display a formatted listing of
all variables in the program. For example:



User-Defined Link or Variance Function F 3177

put _pdv_;

• The WHEN and OTHERWISE statements enable you to specify more than one target statement. That
is, DO/END groups are not necessary for multiple statement WHENs. For example, the following
syntax is valid:

select;
when (exp1) stmt1;

stmt2;
when (exp2) stmt3;

stmt4;
end;

The LINK statement is used in a program to jump immediately to the label statement_label and to continue
program execution at that point. It is not used to specify a user-defined link function.

When coding your programming statements, you should avoid defining variables that begin with an underscore
(_), because they might conflict with internal variables created by PROC GLIMMIX.

User-Defined Link or Variance Function

Implied Variance Functions

While link functions are not unique for each distribution (see Table 44.12 for the default link functions), the
distribution does determine the variance function a.�/. This function expresses the variance of an observation
as a function of the mean, apart from weights, frequencies, and additional scale parameters. The implied
variance functions a.�/ of the GLIMMIX procedure are shown in Table 44.19 for the supported distributions.
For the binomial distribution, n denotes the number of trials in the events/trials syntax. For the negative
binomial distribution, k denotes the scale parameter. The multiplicative scale parameter � is not included
for the other distributions. The last column of the table indicates whether � has a value equal to 1.0 for the
particular distribution.

Table 44.19 Variance Functions in PROC GLIMMIX

Variance function
DIST= Distribution a.�/ � � 1

BETA beta �.1 � �/=.1C �/ No
BINARY binary �.1 � �/ Yes
BINOMIAL | BIN | B binomial �.1 � �/=n Yes
EXPONENTIAL | EXPO exponential �2 Yes
GAMMA | GAM gamma �2 No
GAUSSIAN | G | NORMAL | N normal 1 No
GEOMETRIC | GEOM geometric �C �2 Yes
INVGAUSS | IGAUSSIAN | IG inverse Gaussian �3 No
LOGNORMAL | LOGN lognormal 1 No
NEGBINOMIAL | NEGBIN | NB negative binomial �C k�2 Yes
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Table 44.19 continued

Variance function
DIST= Distribution a.�/ � � 1

POISSON | POI | P Poisson � Yes
TCENTRAL | TDIST | T t �=.� � 2/ No

To change the variance function, you can use SAS programming statements and the predefined automatic
variables, as outlined in the following section. Your definition of a variance function will override the DIST=
option and its implied variance function. This has the following implication for parameter estimation with the
GLIMMIX procedure. When a user-defined link is available, the distribution of the data is determined from
the DIST= option, or the respective default for the type of response. In a GLM, for example, this enables
maximum likelihood estimation. If a user-defined variance function is provided, the DIST= option is not
honored and the distribution of the data is assumed unknown. In a GLM framework, only quasi-likelihood
estimation is then available to estimate the model parameters.

Automatic Variables

To specify your own link or variance function you can use SAS programming statements and draw on the
following automatic variables:

_LINP_ is the current value of the linear predictor. It equals either b� D x0b̌ C z0b C o orb� D x0b̌C o, where o is the value of the offset variable, or 0 if no offset is specified. The
estimated random effects solutions b are used in the calculation of the linear predictor
during the model fitting phase, if a linearization expands about the current values of  .
During the computation of output statistics, the EBLUPs are used if statistics depend on
them. For example, the following statements add the variable p to the output data set
glimmixout:

proc glimmix;
model y = x / dist=binary;
random int / subject=b;
p = 1/(1+exp(-_linp_);
output out=glimmixout;
id p;

run;

Because no output statistics are requested in the OUTPUT statement that depend on the
random-effects solutions (BLUPs, EBEs), the value of _LINP_ in this example equals
x0b̌. On the contrary, the following statements also request conditional residuals on the
logistic scale:

proc glimmix;
model y = x / dist=binary;
random int / subject=b;
p = 1/(1+exp(-_linp_);
output out=glimmixout resid(blup)=r;
id p;

run;
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The value of _LINP_ when computing the variable p is x0b̌Cz0b . To ensure that computed
statistics are formed from x0b̌ and z0b terms as needed, it is recommended that you use
the automatic variables _XBETA_ and _ZGAMMA_ instead of _LINP_.

_MU_ expresses the mean of an observation as a function of the linear predictor, b� D g�1.b�/.
_N_ is the observation number in the sequence of the data read.

_VARIANCE_ is the estimate of the variance function, a.b�/.
_XBETA_ equals x0b̌.

_ZGAMMA_ equals z0b .

The automatic variable _N_ is incremented whenever the procedure reads an observation from the data set.
Observations that are not used in the analysis—for example, because of missing values or invalid weights—
are counted. The counter is reset to 1 at the start of every new BY group. Only in some circumstances will
_N_ equal the actual observation number. The symbol should thus be used sparingly to avoid unexpected
results.

You must observe the following syntax rules when you use the automatic variables. The _LINP_ symbol
cannot appear on the left side of programming statements; you cannot make an assignment to the _LINP_
variable. The value of the linear predictor is controlled by the CLASS, MODEL, and RANDOM statements
as well as the current parameter estimates and solutions. You can, however, use the _LINP_ variable on the
right side of other operations. Suppose, for example, that you want to transform the linear predictor prior to
applying the inverse log link. The following statements are not valid because the linear predictor appears in
an assignment:

proc glimmix;
_linp_ = sqrt(abs(_linp_));
_mu_ = exp(_linp_);
model count = logtstd / dist=poisson;

run;

The next statements achieve the desired result:

proc glimmix;
_mu_ = exp(sqrt(abs(_linp_)));
model count = logtstd / dist=poisson;

run;

If the value of the linear predictor is altered in any way through programming statements, you need to ensure
that an assignment to _MU_ follows. The assignment to variable P in the next set of GLIMMIX statements
is without effect:

proc glimmix;
p = _linp_ + rannor(454);
model count = logtstd / dist=poisson;

run;

A user-defined link function is implied by expressing _MU_ as a function of _LINP_. That is, if � D g�1.�/,
you are providing an expression for the inverse link function with programming statements. It is neither
necessary nor possible to give an expression for the inverse operation, � D g.�/. The variance function
is determined by expressing _VARIANCE_ as a function of _MU_. If the _MU_ variable appears in an
assignment statement inside PROC GLIMMIX, the LINK= option of the MODEL statement is ignored. If
the _VARIANCE_ function appears in an assignment statement, the DIST= option is ignored. Furthermore,
the associated variance function per Table 44.19 is not honored. In short, user-defined expressions take
precedence over built-in defaults.
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If you specify your own link and variance function, the assignment to _MU_ must precede an assignment to
the variable _VARIANCE_.

The following two sets of GLIMMIX statements yield the same parameter estimates, but the models differ
statistically:

proc glimmix;
class block entry;
model y/n = block entry / dist=binomial link=logit;

run;

proc glimmix;
class block entry;
prob = 1 / (1+exp(- _linp_));
_mu_ = n * prob ;
_variance_ = n * prob *(1-prob);
model y = block entry;

run;

The first GLIMMIX invocation models the proportion y=n as a binomial proportion with a logit link. The
DIST= and LINK= options are superfluous in this case, because the GLIMMIX procedure defaults to the
binomial distribution in light of the events/trials syntax. The logit link is that distribution’s default link. The
second set of GLIMMIX statements models the count variable y and takes the binomial sample size into
account through assignments to the mean and variance function. In contrast to the first set of GLIMMIX
statements, the distribution of y is unknown. Only its mean and variance are known. The model parameters
are estimated by maximum likelihood in the first case and by quasi-likelihood in the second case.

Details: GLIMMIX Procedure

Generalized Linear Models Theory
A generalized linear model consists of the following:

• a linear predictor � D x0ˇ

• a monotonic mapping between the mean of the data and the linear predictor

• a response distribution in the exponential family of distributions

A density or mass function in this family can be written as

f .y/ D exp
�
y� � b.�/

�
C c.y; f .�//

�
for some functions b.�/ and c.�/. The parameter � is called the natural (canonical) parameter. The parameter
� is a scale parameter, and it is not present in all exponential family distributions. See Table 44.19 for a
list of distributions for which � � 1. In the case where observations are weighted, the scale parameter is
replaced with �=w in the preceding density (or mass function), where w is the weight associated with the
observation y.
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The mean and variance of the data are related to the components of the density, EŒY � D � D b0.�/,
VarŒY � D �b00.�/, where primes denote first and second derivatives. If you express � as a function of �, the
relationship is known as the natural link or the canonical link function. In other words, modeling data with a
canonical link assumes that � D x0ˇ; the effect contributions are additive on the canonical scale. The second
derivative of b.�/, expressed as a function of �, is the variance function of the generalized linear model,
a.�/ D b00.�.�//. Note that because of this relationship, the distribution determines the variance function
and the canonical link function. You cannot, however, proceed in the opposite direction. If you provide a
user-specified variance function, the GLIMMIX procedure assumes that only the first two moments of the
response distribution are known. The full distribution of the data is then unknown and maximum likelihood
estimation is not possible. Instead, the GLIMMIX procedure then estimates parameters by quasi-likelihood.

Maximum Likelihood

The GLIMMIX procedure forms the log likelihoods of generalized linear models as

L.�; �I y/ D
nX
iD1

fi l.�i ; �Iyi ; wi /

where l.�i ; �Iyi ; wi / is the log likelihood contribution of the ith observation with weight wi and fi is the
value of the frequency variable. For the determination of wi and fi , see the WEIGHT and FREQ statements.
The individual log likelihood contributions for the various distributions are as follows.

Beta

l.�i ; �Iyi ; wi / D log
�

�.�=wi /

�.��=wi /�..1 � �/�=wi /

�
C .��=wi � 1/ logfyig
C ..1 � �/�=wi � 1/ logf1 � yig

VarŒY � D �.1 � �/=.1C �/; � > 0. See Ferrari and Cribari-Neto (2004).

Binary

l.�i ; �Iyi ; wi / D wi .yi logf�ig C .1 � yi / logf1 � �ig/

VarŒY � D �.1 � �/; � � 1.

Binomial

l.�i ; �Iyi ; wi / D wi .yi logf�ig C .ni � yi / logf1 � �ig/
C wi .logf�.ni C 1/g � logf�.yi C 1/g � logf�.ni � yi C 1/g/

where yi and ni are the events and trials in the events/trials syntax, and 0 < � < 1.
VarŒY=n� D �.1 � �/=n; � � 1.

Exponential

l.�i ; �Iyi ; wi / D

(
� logf�ig � yi=�i wi D 1

wi log
n
wiyi
�i

o
�
wiyi
�i
� logfyi�.wi /g wi 6D 1

VarŒY � D �2; � � 1.



3182 F Chapter 44: The GLIMMIX Procedure

Gamma

l.�i ; �Iyi ; wi / D wi� log
�
wiyi�

�i

�
�
wiyi�

�i
� logfyig � log f�.wi�/g

VarŒY � D ��2; � > 0.

Geometric

l.�i ; �Iyi ; wi / D yi log
�
�i

wi

�
� .yi C wi / log

�
1C

�i

wi

�
C log

�
�.yi C wi /

�.wi /�.yi C 1/

�
VarŒY � D �C �2; � � 1.

Inverse Gaussian

l.�i ; �Iyi ; wi / D �
1

2

"
wi .yi � �i /

2

yi��
2
i

C log

(
�y3i
wi

)
C logf2�g

#

VarŒY � D ��3; � > 0.

“Lognormal”

l.�i ; �I logfyig; wi / D �
1

2

�
wi .logfyig � �i /2

�
C log

�
�

wi

�
C logf2�g

�
VarŒlogfY g� D �; � > 0.
If you specify DIST=LOGNORMAL with response variable Y, the GLIMMIX procedure
assumes that logfY g � N.�; �2/. Note that the preceding density is not the density of Y.

Multinomial

l.�i ; �I yi ; wi / D wi
JX
jD1

yij logf�ij g

� � 1.

Negative Binomial

l.�i ; �Iyi ; wi / D yi log
�
k�i

wi

�
� .yi C wi=k/ log

�
1C

k�i

wi

�
C log

�
�.yi C wi=k/

�.wi=k/�.yi C 1/

�
VarŒY � D �C k�2; k > 0; � � 1.
For a given k, the negative binomial distribution is a member of the exponential family.
The parameter k is related to the scale of the data, because it is part of the variance
function. However, it cannot be factored from the variance, as is the case with the �
parameter in many other distributions. The parameter k is designated as “Scale” in the
“Parameter Estimates” table of the GLIMMIX procedure.
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Normal (Gaussian)

l.�i ; �Iyi ; wi / D �
1

2

�
wi .yi � �i /

2

�
C log

�
�

wi

�
C logf2�g

�
VarŒY � D �; � > 0.

Poisson

l.�i ; �Iyi ; wi / D wi .yi logf�ig � �i � logf�.yi C 1/g/

VarŒY � D �; � � 1.

Shifted T

zi D �0:5 logf�=
p
wig C log f�.0:5.� C 1/g

� log f�.0:5�/g � 0:5 � log f��g

l.�i ; �Iyi ; wi / D �.�=2C 0:5/ log
�
1C

wi

�

.yi � �i /
2

�

�
C zi

� > 0; � > 0; VarŒY � D ��=.� � 2/.

Define the parameter vector for the generalized linear model as � D ˇ, if � � 1, and as � D Œˇ0; ��0

otherwise. ˇ denotes the fixed-effects parameters in the linear predictor. For the negative binomial distribution,
the relevant parameter vector is � D Œˇ0; k�0. The gradient and Hessian of the negative log likelihood are then

g D �
@L.�I y/
@�

H D �
@2L.�I y/
@� @� 0

The GLIMMIX procedure computes the gradient vector and Hessian matrix analytically, unless your program-
ming statements involve functions whose derivatives are determined by finite differences. If the procedure is
in scoring mode, H is replaced by its expected value. PROC GLIMMIX is in scoring mode when the number
n of SCORING=n iterations has not been exceeded and the optimization technique uses second derivatives,
or when the Hessian is computed at convergence and the EXPHESSIAN option is in effect. Note that the
objective function is the negative log likelihood when the GLIMMIX procedure fits a GLM model. The
procedure performs a minimization problem in this case.

In models for independent data with known distribution, parameter estimates are obtained by the method of
maximum likelihood. No parameters are profiled from the optimization. The default optimization technique
for GLMs is the Newton-Raphson algorithm, except for Gaussian models with identity link, which do not
require iterative model fitting. In the case of a Gaussian model, the scale parameter is estimated by restricted
maximum likelihood, because this estimate is unbiased. The results from the GLIMMIX procedure agree
with those from the GLM and REG procedure for such models. You can obtain the maximum likelihood
estimate of the scale parameter with the NOREML option in the PROC GLIMMIX statement. To change the
optimization algorithm, use the TECHNIQUE= option in the NLOPTIONS statement.

Standard errors of the parameter estimates are obtained from the inverse of the (observed or expected) second
derivative matrix H.
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Scale and Dispersion Parameters

The parameter � in the log-likelihood functions is a scale parameter. McCullagh and Nelder (1989, p. 29)
refer to it as the dispersion parameter. With the exception of the normal distribution, � does not correspond
to the variance of an observation, the variance of an observation in a generalized linear model is a function
of � and �. In a generalized linear model (GLM mode), the GLIMMIX procedure displays the estimate of
� is as “Scale” in the “Parameter Estimates” table. Note that for some distributions this scale is different
from that reported by the GENMOD procedure in its “Parameter Estimates” table. The scale reported by
PROC GENMOD is sometimes a transformation of the dispersion parameter in the log-likelihood function.
Table 44.19 displays the relationship between the “Scale” entries reported by the two procedures in terms of
the � (or k) parameter in the GLIMMIX log-likelihood functions.

Table 44.19 Scales in Parameter Estimates Table

Distribution GLIMMIX Reports GENMOD Reports

Beta b� N/A
Gamma b� b�
Inverse Gaussian b� qb�
Negative binomial bk bk
Normal b� DbVarŒY �

qb�
Note that for normal linear models, PROC GLIMMIX by default estimates the parameters by restricted
maximum likelihood, whereas PROC GENMOD estimates the parameters by maximum likelihood. As a
consequence, the scale parameter in the “Parameter Estimates” table of the GLIMMIX procedure coincides
for these models with the mean-squared error estimate of the GLM or REG procedures. To obtain maximum
likelihood estimates in a normal linear model in the GLIMMIX procedure, specify the NOREML option in
the PROC GLIMMIX statement.

Quasi-likelihood for Independent Data

Quasi-likelihood estimation uses only the first and second moment of the response. In the case of independent
data, this requires only a specification of the mean and variance of your data. The GLIMMIX procedure
estimates parameters by quasi-likelihood, if the following conditions are met:

• The response distribution is unknown, because of a user-specified variance function.

• There are no G-side random effects.

• There are no R-side covariance structures or at most an overdispersion parameter.

Under some mild regularity conditions, the function

Q.�i ; yi / D

Z �i

yi

yi � t

�a.t/
dt

known as the log quasi-likelihood of the ith observation, has some properties of a log-likelihood function
(McCullagh and Nelder 1989, p. 325). For example, the expected value of its derivative is zero, and the
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variance of its derivative equals the negative of the expected value of the second derivative. Consequently,

QL.�; �; y/ D
nX
iD1

fiwi
Yi � �i

�a.�i /

can serve as the score function for estimation. Quasi-likelihood estimation takes as the gradient and “Hessian”
matrix—with respect to the fixed-effects parameters ˇ—the quantities

gql D
�
gql;j

�
D

�
@QL.�; �; y/

@ˇj

�
D D0V�1.Y � �/=�

Hql D
�
hql;jk

�
D

�
@2QL.�; �; y/

@ˇj @ˇk

�
D D0V�1D=�

In this expression, D is a matrix of derivatives of � with respect to the elements in ˇ, and V is a diagonal
matrix containing variance functions, V D Œa.�1/; � � � ; a.�n/�. Notice that Hql is not the second derivative
matrix of Q.�; y/. Rather, it is the negative of the expected value of @gql=@ˇ. Hql thus has the form of a
“scoring Hessian.”

The GLIMMIX procedure fixes the scale parameter � at 1.0 by default. To estimate the parameter, add the
statement

random _residual_;

The resulting estimator (McCullagh and Nelder 1989, p. 328) is

b� D 1

m

nX
iD1

fiwi
.yi �b�i /2
a.b�i /

where m D f � rankfXg if the NOREML option is in effect, m = f otherwise, and f is the sum of the
frequencies.

See Example 44.4 for an application of quasi-likelihood estimation with PROC GLIMMIX.

Effects of Adding Overdispersion

You can add a multiplicative overdispersion parameter to a generalized linear model in the GLIMMIX
procedure with the statement

random _residual_;

For models in which � � 1, this effectively lifts the constraint of the parameter. In models that already
contain a � or k scale parameter—such as the normal, gamma, or negative binomial model—the statement
adds a multiplicative scalar (the overdispersion parameter, �o) to the variance function.

The overdispersion parameter is estimated from Pearson’s statistic after all other parameters have been
determined by (restricted) maximum likelihood or quasi-likelihood. This estimate is

b�o D 1

�pm

nX
iD1

fiwi
.yi � �i /

2

a.�i /

where m D f � rankfXg if the NOREML option is in effect, and m D f otherwise, and f is the sum of the
frequencies. The power p is –1 for the gamma distribution and 1 otherwise.

Adding an overdispersion parameter does not alter any of the other parameter estimates. It only changes the
variance-covariance matrix of the estimates by a certain factor. If overdispersion arises from correlations
among the observations, then you should investigate more complex random-effects structures.
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Generalized Linear Mixed Models Theory

Model or Integral Approximation

In a generalized linear model, the log likelihood is well defined, and an objective function for estimation of
the parameters is simple to construct based on the independence of the data. In a GLMM, several problems
must be overcome before an objective function can be computed.

• The model might be vacuous in the sense that no valid joint distribution can be constructed either in
general or for a particular set of parameter values. For example, if Y is an equicorrelated .n� 1/ vector
of binary responses with the same success probability and a symmetric distribution, then the lower
bound on the correlation parameter depends on n and � (Gilliland and Schabenberger 2001). If further
restrictions are placed on the joint distribution, as in Bahadur (1961), the correlation is also restricted
from above.

• The dependency between mean and variance for nonnormal data places constraints on the possible
correlation models that simultaneously yield valid joint distributions and a desired conditional distri-
butions. Thus, for example, aspiring for conditional Poisson variates that are marginally correlated
according to a spherical spatial process might not be possible.

• Even if the joint distribution is feasible mathematically, it still can be out of reach computationally.
When data are independent, conditional on the random effects, the marginal log likelihood can in
principle be constructed by integrating out the random effects from the joint distribution. However,
numerical integration is practical only when the number of random effects is small and when the data
have a clustered (subject) structure.

Because of these special features of generalized linear mixed models, many estimation methods have been
put forth in the literature. The two basic approaches are (1) to approximate the objective function and (2)
to approximate the model. Algorithms in the second category can be expressed in terms of Taylor series
(linearizations) and are hence also known as linearization methods. They employ expansions to approximate
the model by one based on pseudo-data with fewer nonlinear components. The process of computing the
linear approximation must be repeated several times until some criterion indicates lack of further progress.
Schabenberger and Gregoire (1996) list numerous algorithms based on Taylor series for the case of clustered
data alone. The fitting methods based on linearizations are usually doubly iterative. The generalized linear
mixed model is approximated by a linear mixed model based on current values of the covariance parameter
estimates. The resulting linear mixed model is then fit, which is itself an iterative process. On convergence,
the new parameter estimates are used to update the linearization, which results in a new linear mixed model.
The process stops when parameter estimates between successive linear mixed model fits change only within
a specified tolerance.

Integral approximation methods approximate the log likelihood of the GLMM and submit the approximated
function to numerical optimization. Various techniques are used to compute the approximation: Laplace
methods, quadrature methods, Monte Carlo integration, and Markov chain Monte Carlo methods. The
advantage of integral approximation methods is to provide an actual objective function for optimization.
This enables you to perform likelihood ratio tests among nested models and to compute likelihood-based fit
statistics. The estimation process is singly iterative. The disadvantage of integral approximation methods
is the difficulty of accommodating crossed random effects and multiple subject effects, and the inability to
accommodate R-side covariance structures, even only R-side overdispersion. The number of random effects
should be small for integral approximation methods to be practically feasible.
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The advantages of linearization-based methods include a relatively simple form of the linearized model that
typically can be fit based on only the mean and variance in the linearized form. Models for which the joint
distribution is difficult—or impossible—to ascertain can be fit with linearization-based approaches. Models
with correlated errors, a large number of random effects, crossed random effects, and multiple types of
subjects are thus excellent candidates for linearization methods. The disadvantages of this approach include
the absence of a true objective function for the overall optimization process and potentially biased estimates,
especially for binary data when the number of observations per subject is small (see the section “Notes on
Bias of Estimators” on page 3199 for further comments and considerations about the bias of estimates in
generalized linear mixed models). Because the objective function to be optimized after each linearization
update depends on the current pseudo-data, objective functions are not comparable across linearizations. The
estimation process can fail at both levels of the double iteration scheme.

By default the GLIMMIX procedure fits generalized linear mixed models based on linearizations. The default
estimation method in GLIMMIX for models containing random effects is a technique known as restricted
pseudo-likelihood (RPL) (Wolfinger and O’Connell 1993) estimation with an expansion around the current
estimate of the best linear unbiased predictors of the random effects (METHOD=RSPL).

Two maximum likelihood estimation methods based on integral approximation are available in the GLIMMIX
procedure. If you choose METHOD=LAPLACE in a GLMM, the GLIMMIX procedure performs maximum
likelihood estimation based on a Laplace approximation of the marginal log likelihood. See the section
“Maximum Likelihood Estimation Based on Laplace Approximation” on page 3192 for details about the
Laplace approximation with PROC GLIMMIX. If you choose METHOD=QUAD in the PROC GLIMMIX
statement in a generalized linear mixed model, the GLIMMIX procedure estimates the model parameters by
adaptive Gauss-Hermite quadrature. See the section “Maximum Likelihood Estimation Based on Adaptive
Quadrature” on page 3195 for details about the adaptive Gauss-Hermite quadrature approximation with
PROC GLIMMIX.

The following subsections discuss the three estimation methods in turn. Keep in mind that your modeling
possibilities are increasingly restricted in the order of these subsections. For example, in the class of
generalized linear mixed models, the pseudo-likelihood estimation methods place no restrictions on the
covariance structure, and Laplace estimation adds restriction with respect to the R-side covariance structure.
Adaptive quadrature estimation further requires a clustered data structure—that is, the data must be processed
by subjects.

Table 44.20 Model Restrictions Depending on Estimation
Method

Method Restriction

RSPL, RMPL None

MSPL, MMPL None

LAPLACE No R-side effects

QUAD No R-side effects
Requires SUBJECT= effect
Requires processing by subjects
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Pseudo-likelihood Estimation Based on Linearization

The Pseudo-model
Recall from the section “Notation for the Generalized Linear Mixed Model” on page 3054 that

EŒYj� D g�1.Xˇ C Z/ D g�1.�/ D �

where  � N.0;G/ and VarŒYj� D A1=2RA1=2. Following Wolfinger and O’Connell (1993), a first-order
Taylor series of � about ě ande yields

g�1.�/
:
D g�1.e�/C e�X.ˇ � ě/C e�Z. �e/

where

e� D �@g�1.�/
@�

�
ě;e

is a diagonal matrix of derivatives of the conditional mean evaluated at the expansion locus. Rearranging
terms yields the expression

e��1.� � g�1.e�//CXěC Ze :
D Xˇ C Z

The left side is the expected value, conditional on  , of

e��1.Y � g�1.e�//CXěC Ze � P

and

VarŒPj� D e��1A1=2RA1=2e��1
You can thus consider the model

P D Xˇ C Z C �

which is a linear mixed model with pseudo-response P, fixed effects ˇ, random effects  , and VarŒ�� D
VarŒPj�.

Objective Functions
Now define

V.�/ D ZGZ0 C e��1A1=2RA1=2e��1
as the marginal variance in the linear mixed pseudo-model, where � is the .q�1/ parameter vector containing
all unknowns in G and R. Based on this linearized model, an objective function can be defined, assuming
that the distribution of P is known. The GLIMMIX procedure assumes that � has a normal distribution. The
maximum log pseudo-likelihood (MxPL) and restricted log pseudo-likelihood (RxPL) for P are then

l.�; p/ D �
1

2
log jV.�/j �

1

2
r0V.�/�1r �

f

2
logf2�g

lR.�; p/ D �
1

2
log jV.�/j �

1

2
r0V.�/�1r �

1

2
log jX0V.�/�1Xj �

f � k

2
logf2�g
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with r D p�X.X0V�1X/�X0V�1p. f denotes the sum of the frequencies used in the analysis, and k denotes
the rank of X. The fixed-effects parameters ˇ are profiled from these expressions. The parameters in � are
estimated by the optimization techniques specified in the NLOPTIONS statement. The objective function
for minimization is �2l.�; p/ or �2lR.�; p/. At convergence, the profiled parameters are estimated and the
random effects are predicted asb̌D .X0V.b�/�1X/�X0V.b�/�1pb D bGZ0V.b�/�1br
With these statistics, the pseudo-response and error weights of the linearized model are recomputed and
the objective function is minimized again. The predictorsb are the estimated BLUPs in the approximated
linear model. This process continues until the relative change between parameter estimates at two succes-
sive (outer) iterations is sufficiently small. See the PCONV= option in the PROC GLIMMIX statement
for the computational details about how the GLIMMIX procedure compares parameter estimates across
optimizations.

If the conditional distribution contains a scale parameter � 6D 1 (Table 44.19), the GLIMMIX procedure
profiles this parameter in GLMMs from the log pseudo-likelihoods as well. To this end define

V.��/ D e��1A1=2R�A1=2e��1 C ZG�Z0

where �� is the covariance parameter vector with q – 1 elements. The matrices G� and R� are appropriately
reparameterized versions of G and R. For example, if G has a variance component structure and R D �I,
then �� contains ratios of the variance components and �, and R� D I. The solution forb� isb� Dbr0V.b��/�1br=m
where m = f for MxPL and m = f – k for RxPL. Substitution into the previous functions yields the profiled
log pseudo-likelihoods,

l.��; p/ D�
1

2
log jV.��/j �

f

2
log

˚
r0V.��/�1r

	
�
f

2
.1C logf2�=f g/

lR.�
�; p/ D�

1

2
log jV.��/j �

f � k

2
log

˚
r0V.��/�1r

	
�
1

2
log jX0V.��/�1Xj �

f � k

2
.1C logf2�=.f � k/g/

Profiling of � can be suppressed with the NOPROFILE option in the PROC GLIMMIX statement.

Where possible, the objective function, its gradient, and its Hessian employ the sweep-based W-transformation
( Hemmerle and Hartley 1973; Goodnight 1979; Goodnight and Hemmerle 1979). Further details about the
minimization process in the general linear mixed model can be found in Wolfinger, Tobias, and Sall (1994).

Estimated Precision of Estimates
The GLIMMIX procedure produces estimates of the variability of b̌, b� , and estimates of the prediction
variability forb , VarŒb � �. Denote as S the matrix

S �bVarŒPj� D e��1A1=2RA1=2e��1
where all components on the right side are evaluated at the converged estimates. The mixed model equations
(Henderson 1984) in the linear mixed (pseudo-)model are then�

X0S�1X X0S�1Z
Z0S�1X Z0S�1ZCG.b�/�1

� � b̌b
�
D

�
X0S�1p
Z0S�1p

�
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and

C D
�

X0S�1X X0S�1Z
Z0S�1X Z0S�1ZCG.b�/�1

��

D

" b� �b�X0V.b�/�1ZG.b�/
�G.b�/Z0V.b�/�1Xb� MCG.b�/Z0V.b�/�1Xb�X0V.b�/�1ZG.b�/

#

is the approximate estimated variance-covariance matrix of Œb̌0;b 0 �  0�0. Here, b� D .X0V.b�/�1X/� and
M D .Z0S�1ZCG.b�/�1/�1.

The square roots of the diagonal elements of b� are reported in the Standard Error column of the “Parameter
Estimates” table. This table is produced with the SOLUTION option in the MODEL statement. The
prediction standard errors of the random-effects solutions are reported in the Std Err Pred column of the
“Solution for Random Effects” table. This table is produced with the SOLUTION option in the RANDOM
statement.

As a cautionary note, C tends to underestimate the true sampling variability of [b̌0;b 0�0, because no account
is made for the uncertainty in estimating G and R. Although inflation factors have been proposed (Kackar
and Harville 1984; Kass and Steffey 1989; Prasad and Rao 1990), they tend to be small for data sets
that are fairly well balanced. PROC GLIMMIX does not compute any inflation factors by default. The
DDFM=KENWARDROGER option in the MODEL statement prompts PROC GLIMMIX to compute a
specific inflation factor (Kenward and Roger 1997), along with Satterthwaite-based degrees of freedom.

If G.b�/ is singular, or if you use the CHOL option of the PROC GLIMMIX statement, the mixed model
equations are modified as follows. Let L denote the lower triangular matrix so that LL0 D G.b�/. PROC
GLIMMIX then solves the equations�

X0S�1X X0S�1ZL
L0Z0S�1X L0Z0S�1ZLC I

� � b̌b�
�
D

�
X0S�1p
L0Z0S�1p

�
and transformsb� and a generalized inverse of the left-side coefficient matrix by using L.

The asymptotic covariance matrix of the covariance parameter estimatorb� is computed based on the observed
or expected Hessian matrix of the optimization procedure. Consider first the case where the scale parameter
� is not present or not profiled. Because ˇ is profiled from the pseudo-likelihood, the objective function for
minimization is f .�/ D �2l.�; p/ for METHOD=MSPL and METHOD=MMPL and f .�/ D �2lR.�; p/
for METHOD=RSPL and METHOD=RMPL. Denote the observed Hessian (second derivative) matrix as

H D
@2f .�/

@� @� 0

The GLIMMIX procedure computes the variance of b� by default as 2H�1. If the Hessian is not positive
definite, a sweep-based generalized inverse is used instead. When the EXPHESSIAN option of the PROC
GLIMMIX statement is used, or when the procedure is in scoring mode at convergence (see the SCORING
option in the PROC GLIMMIX statement), the observed Hessian is replaced with an approximated expected
Hessian matrix in these calculations.
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Following Wolfinger, Tobias, and Sall (1994), define the following components of the gradient and Hessian
in the optimization:

g1 D
@

@�
r0V.�/�1r

H1 D
@2

@� @� 0
logfV.�/g

H2 D
@2

@� @� 0
r0V.�/�1r

H3 D
@2

@� @� 0
logfjX0V.�/�1Xjg

Table 44.21 gives expressions for the Hessian matrix H depending on estimation method, profiling, and
scoring.

Table 44.21 Hessian Computation in GLIMMIX

Profiling Scoring MxPL RxPL

No No H1 CH2 H1 CH2 CH3

No Yes �H1 �H1 CH3

No Modified �H1 �H1 �H3

Yes No
�

H1 CH2=� �g2=�2

�g02=�
2 f=�2

� �
H1 CH2=� CH3 �g2=�2

�g02=�
2 .f � k/=�2

�

Yes Yes
�
�H1 �g2=�2

�g02=�
2 f=�2

� �
�H1 CH3 �g2=�2

�g02=�
2 .f � k/=�2

�

Yes Modified
�
�H1 �g2=�2

�g02=�
2 f=�2

� �
�H1 �H3 �g2=�2

�g02=�
2 .f � k/=�2

�

The “Modified” expressions for the Hessian under scoring in RxPL estimation refer to a modified scoring
method. In some cases, the modification leads to faster convergence than the standard scoring algorithm. The
modification is requested with the SCOREMOD option in the PROC GLIMMIX statement.

Finally, in the case of a profiled scale parameter �, the Hessian for the .��; �/ parameterization is converted
into that for the � parameterization as

H.�/ D BH.��; �/B0

where

B D

2664
1=� 0 � � � 0 0

0 1=� � � � 0 0

0 � � � � � � 1=� 0

���1 =� ���2 =� � � � ���q�1=� 1

3775
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Subject-Specific and Population-Averaged (Marginal) Expansions
There are two basic choices for the expansion locus of the linearization. A subject-specific (SS) expansion
uses

ěD b̌ e D b
which are the current estimates of the fixed effects and estimated BLUPs. The population-averaged (PA)
expansion expands about the same fixed effects and the expected value of the random effects

ěD b̌ e D 0

To recompute the pseudo-response and weights in the SS expansion, the BLUPs must be computed every
time the objective function in the linear mixed model is maximized. The PA expansion does not require any
BLUPs. The four pseudo-likelihood methods implemented in the GLIMMIX procedure are the 2� 2 factorial
combination between two expansion loci and residual versus maximum pseudo-likelihood estimation. The
following table shows the combination and the corresponding values of the METHOD= option (PROC
GLIMMIX statement); METHOD=RSPL is the default.

Type of Expansion Locus
PL b EŒ�

residual RSPL RMPL
maximum MSPL MMPL

Maximum Likelihood Estimation Based on Laplace Approximation

Objective Function
Let ˇ denote the vector of fixed-effects parameters and � the vector of covariance parameters. For Laplace
estimation in the GLIMMIX procedure, � includes the G-side parameters and a possible scale parameter �,
provided that the conditional distribution of the data contains such a scale parameter. �� is the vector of the
G-side parameters.

The marginal distribution of the data in a mixed model can be expressed as

p.y/ D
Z
p.yj;ˇ; �/ p.j��/ d

D

Z
exp

˚
logfp.yj;ˇ; �/g C logfp.j��/g

	
d

D

Z
exp fclf .y;ˇ;�I/g d

If the constant cl is large, the Laplace approximation of this integral is

L.ˇ;�Ib; y/ D �2�
cl

�n=2
j � f 00.y;ˇ;�Ib/j�1=2 eclf .y;ˇ;�Ib/

where n is the number of elements in  , f 00 is the second derivative matrix

f 00.y;ˇ;�Ib/ D @2f .y;ˇ;�I/
@@ 0

jb
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andb satisfies the first-order condition

@f .y;ˇ;�I/
@

D 0

The objective function for Laplace parameter estimation in the GLIMMIX procedure is �2 logfL.ˇ;� b; y/g.
The optimization process is singly iterative, but becauseb depends on b̌ andb� , the GLIMMIX procedure
solves a suboptimization problem to determine for given values of b̌ andb� the random-effects solution vector
that maximizes f .y;ˇ;�I/.

When you have longitudinal or clustered data with m independent subjects or clusters, the vector of observa-
tions can be written as y D Œy01; � � � ; y

0
m�
0, where yi is an ni � 1 vector of observations for subject (cluster) i

(i D 1; � � � ; m). In this case, assuming conditional independence such that

p.yi ji / D
niY
jD1

p.yij ji /

the marginal distribution of the data can be expressed as

p.y/ D
mY
iD1

p.yi / D
mY
iD1

Z
p.yi ji /p.i / di

D

mY
iD1

Z
exp fnif .yi ;ˇ;�Ii /g di

where

nif .yi ;ˇ;�Ii / D log fp.yi ji / p.i /g

D

niX
jD1

log
˚
p.yij ji /

	
C log fp.i /g

When the number of observations within a cluster, ni , is large, the Laplace approximation to the ith
individual’s marginal probability density function is

p.yi jˇ;�/ D
Z

exp fnif .yi ;ˇ;�Ii /g di

D
.2�/n=2

j � nif 00.yi ;ˇ;�Ib i /j1=2 exp fnif .yi ;ˇ;�Ib i /g
where ni is the common dimension of the random effects, i . In this case, provided that the constant
cl D minfnig is large, the Laplace approximation to the marginal log likelihood is

log fL.ˇ;�Ib; y/g D mX
iD1

n
nif .y;ˇ;�Ib i /C ni

2
logf2�g

�
1

2
log j � nif 00.ˇ;�Ib i /j�

which serves as the objective function for the METHOD=LAPLACE estimator in PROC GLIMMIX.
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The Laplace approximation implemented in the GLIMMIX procedure differs from that in Wolfinger (1993)
and Pinheiro and Bates (1995) in important respects. Wolfinger (1993) assumed a flat prior for ˇ and
expanded the integrand around ˇ and  , leaving only the covariance parameters for the overall optimization.
The “fixed” effects ˇ and the random effects  are determined in a suboptimization that takes the form of
a linear mixed model step with pseudo-data. The GLIMMIX procedure involves only the random effects
vector  in the suboptimization. Pinheiro and Bates (1995) and Wolfinger (1993) consider a modified
Laplace approximation that replaces the second derivative f 00.y;ˇ;�Ib/ with an (approximate) expected
value, akin to scoring. The GLIMMIX procedure does not use an approximation to f 00.y;ˇ;�Ib/. The
METHOD=RSPL estimates in PROC GLIMMIX are equivalent to the estimates obtained with the modified
Laplace approximation in Wolfinger (1993). The objective functions of METHOD=RSPL and Wolfinger
(1993) differ in a constant that depends on the number of parameters.

Asymptotic Properties and the Importance of Subjects
Suppose that the GLIMMIX procedure processes your data by subjects (see the section “Processing by
Subjects” on page 3218) and let ni denote the number of observations per subject, i D 1; : : : ; s. Arguments
in Vonesh (1996) show that the maximum likelihood estimator based on the Laplace approximation is a
consistent estimator to order Opfmaxf1=

p
sg; 1=minfnigg. In other words, as the number of subjects and

the number of observations per subject grows, the small-sample bias of the Laplace estimator disappears. Note
that the term involving the number of subjects in this maximum relates to standard asymptotic theory, and the
term involving the number of observations per subject relates to the accuracy of the Laplace approximation
(Vonesh 1996). In the case where random effects enter the model linearly, the Laplace approximation is exact
and the requirement that minfnig ! 1 can be dropped.

If your model is not processed by subjects but is equivalent to a subject model, the asymptotics with respect
to s still apply, because the Hessian matrix of the suboptimization for  breaks into s separate blocks. For
example, the following two models are equivalent with respect to s and ni , although only for the first model
does PROC GLIMMIX process the data explicitly by subjects:

proc glimmix method=laplace;
class sub A;
model y = A;
random intercept / subject=sub;

run;

proc glimmix method=laplace;
class sub A;
model y = A;
random sub;

run;

The same holds, for example, for models with independent nested random effects. The following two models
are equivalent, and you can derive asymptotic properties related to s and minfnig from the model in the first
run:

proc glimmix method=laplace;
class A B block;
model y = A B A*B;
random intercept A / subject=block;

run;

proc glimmix method=laplace;
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class A B block;
model y = A B A*B;
random block a*block;

run;

The Laplace approximation requires that the dimension of the integral does not increase with the size of the
sample. Otherwise the error of the likelihood approximation does not diminish with ni . This is the case,
for example, with exchangeable arrays (Shun and McCullagh 1995), crossed random effects (Shun 1997),
and correlated random effects of arbitrary dimension (Raudenbush, Yang, and Yosef 2000). Results in Shun
(1997), for example, show that even in this case the standard Laplace approximation has smaller bias than
pseudo-likelihood estimates.

Maximum Likelihood Estimation Based on Adaptive Quadrature

Quadrature methods, like the Laplace approximation, approximate integrals. If you choose METHOD=QUAD
for a generalized linear mixed model, the GLIMMIX procedure approximates the marginal log likelihood with
an adaptive Gauss-Hermite quadrature rule. Gaussian quadrature is particularly well suited to numerically
evaluate integrals against probability measures (Lange 1999, Ch. 16). And Gauss-Hermite quadrature is
appropriate when the density has kernel expf�x2g and integration extends over the real line, as is the case
for the normal distribution. Suppose that p.x/ is a probability density function and the function f .x/ is to be
integrated against it. Then the quadrature rule isZ 1

�1

f .x/p.x/ dx �

NX
iD1

wif .xi /

where N denotes the number of quadrature points, the wi are the quadrature weights, and the xi are the
abscissas. The Gaussian quadrature chooses abscissas in areas of high density, and if p.x/ is continuous, the
quadrature rule is exact if f .x/ is a polynomial of up to degree 2N – 1. In the generalized linear mixed model
the roles of f .x/ and p.x/ are played by the conditional distribution of the data given the random effects,
and the random-effects distribution, respectively. Quadrature abscissas and weights are those of the standard
Gauss-Hermite quadrature (Golub and Welsch 1969; see also Table 25.10 of Abramowitz and Stegun 1972;
Evans 1993).

A numerical integration rule is called adaptive when it uses a variable step size to control the error of the
approximation. For example, an adaptive trapezoidal rule uses serial splitting of intervals at midpoints until a
desired tolerance is achieved. The quadrature rule in the GLIMMIX procedure is adaptive in the following
sense: if you do not specify the number of quadrature points (nodes) with the QPOINTS= suboption of
the METHOD=QUAD option, then the number of quadrature points is determined by evaluating the log
likelihood at the starting values at a successively larger number of nodes until a tolerance is met (for more
details see the text under the heading “Starting Values” in the next section). Furthermore, the GLIMMIX
procedure centers and scales the quadrature points by using the empirical Bayes estimates (EBEs) of the
random effects and the Hessian (second derivative) matrix from the EBE suboptimization. This centering and
scaling improves the likelihood approximation by placing the abscissas according to the density function of
the random effects. It is not, however, adaptiveness in the previously stated sense.

Objective Function
Let ˇ denote the vector of fixed-effects parameters and � the vector of covariance parameters. For quadrature
estimation in the GLIMMIX procedure, � includes the G-side parameters and a possible scale parameter �,
provided that the conditional distribution of the data contains such a scale parameter. �� is the vector of the
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G-side parameters. The marginal distribution of the data for subject i in a mixed model can be expressed as

p.yi / D
Z
� � �

Z
p.yi ji ;ˇ; �/ p.i j��/ di

Suppose Nq denotes the number of quadrature points in each dimension (for each random effect) and r
denotes the number of random effects. For each subject, obtain the empirical Bayes estimates of i as the
vectorb i that minimizes

� log
˚
p.yi ji ;ˇ; �/p.i j��/

	
D f .yi ;ˇ;�Ii /

If z D Œz1; � � � ; zNq � are the standard abscissas for Gauss-Hermite quadrature, and z�j D Œzj1 ; � � � ; zjr � is a
point on the r-dimensional quadrature grid, then the centered and scaled abscissas are

a�j D b i C 21=2f 00.yi ;ˇ;�Ib i /�1=2z�j
As for the Laplace approximation, f 00 is the second derivative matrix with respect to the random effects,

f 00.yi ;ˇ;�Ib i / D @2f .yi ;ˇ;�Ii /
@i@

0
i

jbi
These centered and scaled abscissas, along with the Gauss-Hermite quadrature weights w D Œw1; � � � ; wNq �,
are used to construct the r-dimensional integral by a sequence of one-dimensional rules

p.yi / D
Z
� � �

Z
p.yi ji ;ˇ; �/ p.i j��/ di

� 2r=2jf 00.yi ;ˇ;�Ib i /j�1=2
NqX
j1D1

� � �

NqX
jrD1

"
p.yi ja�j ;ˇ; �/p.a

�
j j�
�/

rY
kD1

wjk exp z
2
jk

#

The right-hand side of this expression, properly accumulated across subjects, is the objective function for
adaptive quadrature estimation in the GLIMMIX procedure.

Quadrature or Laplace Approximation
If you select the quadrature rule with a single quadrature point, namely

proc glimmix method=quad(qpoints=1);

the results will be identical to METHOD=LAPLACE. Computationally, the two methods are not identical,
however. METHOD=LAPLACE can be applied to a considerably larger class of models. For example,
crossed random effects, models without subjects, or models with non-nested subjects can be handled with the
Laplace approximation but not with quadrature. Furthermore, METHOD=LAPLACE draws on a number
of computational simplifications that can increase its efficiency compared to a quadrature algorithm with
a single node. For example, the Laplace approximation is possible with unbounded covariance parameter
estimates (NOBOUND option in the PROC GLIMMIX statement) and can permit certain types of negative
definite or indefinite G matrices. The adaptive quadrature approximation with scaled abscissas typically
breaks down when G is not at least positive semidefinite.

As the number of random effects grows—for example, if you have nested random effects—quadrature
quickly becomes computationally infeasible, due to the high dimensionality of the integral. To this end it
is worthwhile to clarify the issues of dimensionality and computational effort as related to the number of
quadrature nodes. Suppose that the A effect has 4 levels and consider the following statements:
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proc glimmix method=quad(qpoints=5);
class A id;
model y = / dist=negbin;
random A / subject=id;

run;

For each subject, computing the marginal log likelihood requires the numerical evaluation of a four-
dimensional integral. As part of this evaluation 54 D 625 conditional log likelihoods need to be computed for
each observation on each pass through the data. As the number of quadrature points or the number of random
effects increases, this constitutes a sizable computational effort. Suppose, for example, that an additional
random effect with b = 2 levels is added as an interaction. The following statements then require evaluation
of 5.4C8/ D 244140625 conditional log likelihoods for each observation one each pass through the data:

proc glimmix method=quad(qpoints=5);
class A B id;
model y = / dist=negbin;
random A A*B / subject=id;

run;

As the number of random effects increases, Laplace approximation presents a computationally more expedient
alternative.

If you wonder whether METHOD=LAPLACE would present a viable alternative to a model that you can fit
with METHOD=QUAD, the “Optimization Information” table can provide some insights. The table contains
as its last entry the number of quadrature points determined by PROC GLIMMIX to yield a sufficiently
accurate approximation of the log likelihood (at the starting values). In many cases, a single quadrature node
is sufficient, in which case the estimates are identical to those of METHOD=LAPLACE.

Aspects Common to Adaptive Quadrature and Laplace Approximation

Estimated Precision of Estimates
Denote as H the second derivative matrix

H D �
@2 logfL.ˇ;� b/g
@Œˇ;��@Œˇ0;� 0�

evaluated at the converged solution of the optimization process. Partition its inverse as

H�1 D
�

C.ˇ;ˇ/ C.ˇ;�/
C.�;ˇ/ C.�;�/

�
For METHOD=LAPLACE and METHOD=QUAD, the GLIMMIX procedure computes H by finite forward
differences based on the analytic gradient of logfL.ˇ;� b/g. The partition C.�;�/ serves as the asymptotic
covariance matrix of the covariance parameter estimates (ASYCOV option in the PROC GLIMMIX state-
ment). The standard errors reported in the “Covariance Parameter Estimates” table are based on the diagonal
entries of this partition.

If you request an empirical standard error matrix with the EMPIRICAL option in the PROC GLIMMIX
statement, a likelihood-based sandwich estimator is computed based on the subject-specific gradients of the
Laplace or quadrature approximation. The sandwich estimator then replaces H�1 in calculations following
convergence.
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To compute the standard errors and prediction standard errors of linear combinations of ˇ and  , PROC
GLIMMIX forms an approximate prediction variance matrix for Œb̌;b�0 from

P D

24 H�1 H�1
�

@b
@Œˇ;��

�
�

@b
@Œˇ0;� 0�

�
H�1 ��1 C

�
@b

@Œˇ0;� 0�

�
H�1

�
@b

@Œˇ;��

�
35

where � is the second derivative matrix from the  suboptimization that maximizes f .y;ˇ;�I/ for given
values of ˇ and � . The prediction variance submatrix for the random effects is based on approximating the
conditional mean squared error of prediction as in Booth and Hobert (1998). Note that even in the normal
linear mixed model, the approximate conditional prediction standard errors are not identical to the prediction
standard errors you obtain by inversion of the mixed model equations.

Conditional Fit and Output Statistics
When you estimate the parameters of a mixed model by Laplace approximation or quadrature, the GLIMMIX
procedure displays fit statistics related to the marginal distribution as well as the conditional distribution
p.yjb; b̌;b�/. The ODS name of the “Conditional Fit Statistics” table is CondFitStatistics. Because the
marginal likelihood is approximated numerically for these methods, statistics based on the marginal distri-
bution are not available. Instead of the generalized Pearson chi-square statistic in the “Fit Statistics” table,
PROC GLIMMIX reports the Pearson statistic of the conditional distribution in the “Conditional Fit Statistics”
table.

The unavailability of the marginal distribution also affects the set of output statistics that can be produced
with METHOD=LAPLACE and METHOD=QUAD. Output statistics and statistical graphics that depend on
the marginal variance of the data are not available with these estimation methods.

User-Defined Variance Function
If you provide your own variance function, PROC GLIMMIX generally assumes that the (conditional)
distribution of the data is unknown. Laplace or quadrature estimation would then not be possible. When you
specify a variance function with METHOD=LAPLACE or METHOD=QUAD, the procedure assumes that
the conditional distribution is normal. For example, consider the following statements to fit a mixed model to
count data:

proc glimmix method=laplace;
class sub;
_variance_ = _phi_*_mu_;
model count = x / s link=log;
random int / sub=sub;

run;

The variance function and the link suggest an overdispersed Poisson model. The Poisson distribution cannot
accommodate the extra scale parameter _PHI_, however. In this situation, the GLIMMIX procedure fits a
mixed model with random intercepts, log link function, and variance function ��, assuming that the count
variable is normally distributed, given the random effects.

Starting Values
Good starting values for the fixed effects and covariance parameters are important for Laplace and quadrature
methods because the process commences with a suboptimization in which the empirical Bayes estimates of
the random effects must be obtained before the optimization can get under way. Furthermore, the starting
values are important for the adaptive choice of the number of quadrature points.
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If you choose METHOD=LAPLACE or METHOD=QUAD and you do not provide starting values for the
covariance parameters through the PARMS statement, the GLIMMIX procedure determines starting values
in the following steps.

1. A GLM is fit initially to obtain starting values for the fixed-effects parameters. No output is produced
from this stage. The number of initial iterations of this GLM fit can be controlled with the INITITER=
option in the PROC GLIMMIX statement. You can suppress this step with the NOINITGLM option in
the PROC GLIMMIX statement.

2. Given the fixed-effects estimates, starting values for the covariance parameters are computed by a
MIVQUE0 step (Goodnight 1978a).

3. For METHOD=QUAD you can follow these steps with several pseudo-likelihood updates to improve
on the estimates and to obtain solutions for the random effects. The number of pseudo-likelihood steps
is controlled by the INITPL= suboption of METHOD=QUAD.

4. For METHOD=QUAD, if you do not specify the number of quadrature points with the suboptions of
the METHOD option, the GLIMMIX procedure attempts to determine a sufficient number of points
adaptively as follows. Suppose that Nq denotes the number of nodes in each dimension. If Nmin
and Nmax denote the values from the QMIN= and QMAX= suboptions, respectively, the sequence
for values less than 11 is constructed in increments of 2 starting at Nmin . Values greater than 11 are
incremented in steps of r. The default value is r = 10. The default sequence, without specifying the
QMIN=, QMAX=, or QFAC= option, is thus 1; 3; 5; 7; 9; 11; 21; 31. If the relative difference of the
log-likelihood approximation for two values in the sequence is less than the QTOL=t value (default t =
0.0001), the GLIMMIX procedure uses the lesser value for Nq in the subsequent optimization. If the
relative difference does not fall below the tolerance t for any two subsequent values in the sequence,
no estimation takes place.

Notes on Bias of Estimators

Generalized linear mixed models are nonlinear models, and the estimation techniques rely on approximations
to the log likelihood or approximations of the model. It is thus not surprising that the estimates of the
covariance parameters and the fixed effects are usually not unbiased. Whenever estimates are biased,
questions arise about the magnitude of the bias, its dependence on other model quantities, and the order of
the bias. The order is important because it determines how quickly the bias vanishes while some aspect of
the data increases. Typically, studies of asymptotic properties in models for hierarchical data suppose that the
number of subjects (clusters) tends to infinity while the size of the clusters is held constant or grows at a
particular rate. Note that asymptotic results so established do not extend to designs with fully crossed random
effects, for example.

The following paragraphs summarize some important findings from the literature regarding the bias in
covariance parameter and fixed-effects estimates with pseudo-likelihood, Laplace, and adaptive quadrature
methods. The remarks draw in particular on results in Breslow and Lin (1995); Lin and Breslow (1996);
Pinheiro and Chao (2006). Breslow and Lin (1995); Lin and Breslow (1996) study the “worst case” scenario
of binary responses in a matched-pairs design. Their models have a variance component structure, comprising
either a single variance component (a subject-specific random intercept; Breslow and Lin 1995) or a diagonal
G matrix (Lin and Breslow 1996). They study the bias in the estimates of the fixed-effects ˇ and the
covariance parameters � when the variance components are near the origin and for a canonical link function.
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The matched-pairs design gives rise to a generalized linear mixed model with a cluster (subject) size of 2.
Recall that the pseudo-likelihood methods rely on a linearization and a probabilistic assumption that the
pseudo-data so obtained follow a normal linear mixed model. Obviously, it is difficult to imagine how the
subject-specific (conditional) distribution would follow a normal linear mixed models with binary data in a
cluster size of 2. The bias in the pseudo-likelihood estimator of ˇ is of order jj�jj. The bias for the Laplace
estimator of ˇ is of smaller magnitude; its asymptotic bias has order jj�jj2.

The Laplace methods and the pseudo-likelihood method produce biased estimators of the variance component
� for the model considered in Breslow and Lin (1995). The order of the asymptotic bias for both estimation
methods is � , as � approaches zero. Breslow and Lin (1995) comment on the fact that even with matched
pairs, the bias vanishes very quickly in the binomial setting. If the conditional mean in the two groups is
equal to 0.5, then the asymptotic bias factor of the pseudo-likelihood estimator is 1 � 1=.2n/, where n is the
binomial denominator. This term goes to 1 quickly as n increases. This result underlines the importance of
grouping binary observations into binomial responses whenever possible.

The results of Breslow and Lin (1995) and Lin and Breslow (1996) are echoed in the simulation study
in Pinheiro and Chao (2006). These authors also consider adaptive quadrature in models with nested,
hierarchical, random effects and show that adaptive quadrature with a sufficient number of nodes leads to
nearly unbiased—or least biased—estimates. Their results also show that results for binary data cannot
so easily be ported to other distributions. Even with a cluster size of 2, the pseudo-likelihood estimates
of fixed effects and covariance parameters are virtually unbiased in their simulation of a Poisson GLMM.
Breslow and Lin (1995) and Lin and Breslow (1996) “eschew” the residual PL version (METHOD=RSPL)
over the maximum likelihood form (METHOD=MSPL). Pinheiro and Chao (2006) consider both forms in
their simulation study. As expected, the residual form shows less bias than the MSPL form, for the same
reasons REML estimation leads to less biased estimates compared to ML estimation in linear mixed models.
However, the gain is modest; see, for example, Table 1 in Pinheiro and Chao (2006). When the variance
components are small, there are a sufficient number of observations per cluster, and a reasonable number of
clusters, then pseudo-likelihood methods for binary data are very useful—they provide a computationally
expedient alternative to numerical integration, and they allow the incorporation of R-side covariance structure
into the model. Because many group randomized trials involve many observations per group and small
random-effects variances, Murray, Varnell, and Blitstein (2004) refer to the use of conditional models for
trials that have a binary outcome as an “overreaction.”

Pseudo-likelihood Estimation for Weighted Multilevel Models

Multilevel models provide a flexible and powerful tool for the analysis of data that are observed in nested
units at multiple levels. A multilevel model is a special case of generalized linear mixed models that can be
handled by the GLIMMIX procedure. In proc GLIMMIX, the SUBJECT= option in the RANDOM statement
identifies the clustering structure for the random effects. When the subjects of the multiple RANDOM
statements are nested, the model is a multilevel model and each RANDOM statement corresponds to one
level.

Using a pseudo-maximum-likelihood approach, you can extend the multilevel model framework to accom-
modate weights at different levels. Such an approach is very useful in analyzing survey data that arise from
multistage sampling. In these sampling designs, survey weights are often constructed to account for unequal
sampling probabilities, nonresponse adjustments, and poststratification.

The following survey example from a three-stage sampling design illustrates the use of multiple levels of
weighting in a multilevel model. Extending this example to models that have more than three levels is
straightforward. Let i D 1; : : : ; n.3/, j D 1; : : : n.2/i , and k D 1; : : : n.1/j denote the indices of units at level
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3, level 2, and level 1, respectively. Let superscript .l/ denote the lth level and n.l/ denote the number of
level-l units in the sample. Assume that the first-stage cluster (level-3 unit) i is selected with probability �i ;
the second-stage cluster (level-2 unit) j is selected with probability �j ji , given that the first-stage cluster i
is already selected in the sample; and the third-stage unit (level-1 unit) k is selected with probability �kjij ,
given that the second-stage cluster j within the first-stage cluster i is already selected in the sample.

If you use the inverse selection probability weights wj ji D 1=�j ji , wkjij D 1=�kjij , the conditional log
likelihood contribution of the first-stage cluster i is

log .p.yi j
.2/
i ; 

.3/
i // D

n
.2/

iX
jD1

wj ji

n
.1/

jX
kD1

wkjij log .p.yijkj
.2/
ij 

.3/
i //

where  .2/ij is the random-effects vector for the jth second-stage cluster,  .2/i D . 0i1; 
0
i2; : : : ; 

0

in
.2/

i

/0, and


.3/
i is the random-effects vector for the ith first-stage cluster.

As with unweighted multilevel models, the adaptive quadrature method is used to compute the pseudo-
likelihood of the first-stage cluster i:

p.yi / D

Z
p.yi j

.2/
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.3/
i /p.

.2/
i /p.

.3/
i /d.

.2/
i /d.

.3/
i /

The total log pseudo-likelihood is

log .p.y// D
n.3/X
iD1

wi log .p.yi //

where wi D 1=�i .

To illustrate weighting in a multilevel model, consider the following data set. In these simulated data, the
response y is a Poisson-distributed count, w3 is the weight for the first-stage clusters, w2 is the weight for the
second-stage clusters, and w1 is the weight for the observation-level units.

data d;
input A w3 AB w2 w1 y x;
datalines;

1 6.1 1 5.3 7.1 56 -.214
1 6.1 1 5.3 3.9 41 0.732
1 6.1 2 7.3 6.3 50 0.372
1 6.1 2 7.3 3.9 36 -.892
1 6.1 3 4.6 8.4 39 0.424
1 6.1 3 4.6 6.3 35 -.200
2 8.5 1 4.8 7.4 30 0.868
2 8.5 1 4.8 6.7 25 0.110
2 8.5 2 8.4 3.5 36 0.004
2 8.5 2 8.4 4.1 28 0.755
2 8.5 3 .80 3.8 33 -.600
2 8.5 3 .80 7.4 30 -.525
3 9.5 1 8.2 6.7 32 -.454
3 9.5 1 8.2 7.1 24 0.458
3 9.5 2 11 4.8 31 0.162
3 9.5 2 11 7.9 27 1.099
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3 9.5 3 3.9 3.8 15 -1.57
3 9.5 3 3.9 5.5 19 -.448
4 4.5 1 8.0 5.7 30 -.468
4 4.5 1 8.0 2.9 25 0.890
4 4.5 2 6.0 5.0 35 0.635
4 4.5 2 6.0 3.0 30 0.743
4 4.5 3 6.8 7.3 17 -.015
4 4.5 3 6.8 3.1 18 -.560
;

You can use the following statements to fit a weighted three-level model:

proc glimmix method=quadrature empirical=classical;
class A AB;
model y = x / dist=poisson link=log obsweight=w1;
random int / subject=A weight=w3;
random int / subject=AB(A) weight=w2;

run;

The SUBJECT= option in the first and second RANDOM statements specifies the first-stage and second-stage
clusters A and AB(A), respectively. The OBSWEIGHT= option in the MODEL statement specifies the
variable for the weight at the observation level. The WEIGHT= option in the RANDOM statement specifies
the variable for the weight at the level that is specified by the SUBJECT= option.

For inference about fixed effects and variance that are estimated by pseudo-likelihood, you can use the
empirical (sandwich) variance estimators. For weighted multilevel models, the only empirical estimator
available in PROC GLIMMIX is EMPIRICAL=CLASSICAL. The EMPIRICAL=CLASSICAL variance
estimator can be described as follows.

Let ˛ D .ˇ0; � 0/0, where ˇ is vector of the fixed-effects parameters and � is the vector of covariance
parameters. For an L-level model, Rabe-Hesketh and Skrondal (2006) show that the gradient can be written
as a weighted sum of the gradients of the top-level units:

n.L/X
iD1

wi
@ log.p.yi I˛//

@˛
�

n.L/X
iD1

Si .˛/

where n.L/ is the number of level-L units and Si .˛/ is the weighted score vector of the top-level unit i. The
estimator of the “meat” of the sandwich estimator can be written as

J D
n.L/

n.L/ � 1

n.L/X
iD1

Si . Ǫ /Si . Ǫ /
0

The empirical estimator of the covariance matrix of Ǫ can be constructed as

H. Ǫ /�1JH. Ǫ /�1

where H.˛/ is the second derivative matrix of the log pseudo-likelihood with respect to ˛.

The covariance parameter estimators that are obtained by the pseudo-maximum-likelihood method can be
biased when the sample size is small. Pfeffermann et al. (1998) and Rabe-Hesketh and Skrondal (2006)
discuss two weight-scaling methods for reducing the biases of the covariance parameter estimators in a
two-level model. To derive the scaling factor � for a two-level model, let ni denote the number of level-1
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units in the level-2 unit i and let wj ji denote the weight of the jth level-1 unit in level-2 unit i. The first
method computes an “apparent” cluster size as the “effective” sample size:

niX
jD1

�wj ji D
.
Pni
jD1wj ji /

2Pni
jD1w

2
j ji

Therefore the scale factor is

� D

Pni
jD1wj jiPni
jD1w

2
j ji

The second method sets the apparent cluster size equal to the actual cluster size so that the scale factor is

� D
niPni

jD1wj ji

PROC GLIMMIX uses the weights provided in the data set directly. To use the scaled weights, you need to
provide them in the data set.

GLM Mode or GLMM Mode
The GLIMMIX procedure uses two basic modes of parameter estimation, and it can be important for you to
understand the differences between the two modes.

In GLM mode, the data are never correlated and there can be no G-side random effects. Typical examples
are logistic regression and normal linear models. When you fit a model in GLM mode, the METHOD=
option in the PROC GLIMMIX statement has no effect. PROC GLIMMIX estimates the parameters of
the model by maximum likelihood, (restricted) maximum likelihood, or quasi-likelihood, depending on the
distributional properties of the model (see the section “Default Estimation Techniques” on page 3241). The
“Model Information” table tells you which estimation method was applied. In GLM mode, the individual
observations are considered the sampling units. This has bearing, for example, on how sandwich estimators
are computed (see the EMPIRICAL option and the section “Empirical Covariance (“Sandwich”) Estimators”
on page 3213).

In GLMM mode, the procedure assumes that the model contains random effects or possibly correlated errors,
or that the data have a clustered structure. PROC GLIMMIX then estimates the parameters by using the
techniques specified in the METHOD= option in the PROC GLIMMIX statement.

In general, adding one overdispersion parameter to a generalized linear model does not trigger GLMM mode.
For example, the model that is defined by the following statements is fit in GLM mode:

proc glimmix;
model y = x1 x2 / dist=poisson;
random _residual_;

run;

The parameters of the fixed effects are estimated by maximum likelihood, and the covariance matrix of the
fixed-effects parameters is adjusted by the overdispersion parameter.

In a model that contains uncorrelated data, you can trigger GLMM mode by specifying the SUBJECT= or
GROUP= option in the RANDOM statement. For example, the following statements fit the model by using
the residual pseudo-likelihood algorithm:
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proc glimmix;
class id;
model y = x1 x2 / dist=poisson;
random _residual_ / subject=id;

run;

If in doubt, you can determine whether a model was fit in GLM mode or GLMM mode. In GLM mode the
“Covariance Parameter Estimates” table is not produced. Scale and dispersion parameters in the model appear
in the “Parameter Estimates” table.

Statistical Inference for Covariance Parameters

The Likelihood Ratio Test

The likelihood ratio test (LRT) compares the likelihoods of two models where parameter estimates are
obtained in two parameter spaces, the space � and the restricted subspace �0. In the GLIMMIX procedure,
the full model defines � and the test-specification in the COVTEST statement determines the null parameter
space �0. The likelihood ratio procedure consists of the following steps (see, for example, Bickel and
Doksum 1977, p. 210):

1. Find the estimateb� of � 2 �. Compute the likelihood L.b�/.
2. Find the estimateb�0 of � 2 �0. Compute the likelihood L.b�0/.
3. Form the likelihood ratio

� D
L.b�/
L.b�0/

4. Find a function f
�
�
�

that has a known distribution. f .�/ serves as the test statistic for the likelihood
ratio test.

Please note the following regarding the implementation of these steps in the COVTEST statement of the
GLIMMIX procedure.

• The function f .�/ in step 4 is always taken to be

� D 2 log
n
�
o

which is twice the difference between the log likelihoods for the full model and the model under the
COVTEST restriction.

• For METHOD=RSPL and METHOD=RMPL, the test statistic is based on the restricted likelihood.

• For GLMMs involving pseudo-data, the test statistics are based on the pseudo-likelihood or the
restricted pseudo-likelihood and are based on the final pseudo-data.
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• The parameter space � for the full model is typically not an unrestricted space. The GLIMMIX
procedure imposes boundary constraints for variance components and scale parameters, for example.
The specification of the subspace �0 must be consistent with these full-model constraints; otherwise
the test statistic � does not have the needed distribution. You can remove the boundary restrictions with
the NOBOUND option in the PROC GLIMMIX statement or the NOBOUND option in the PARMS
statement.

One- and Two-Sided Testing, Mixture Distributions

Consider testing the hypothesisH0W �i D 0. If� is the open interval .0;1/, then only a one-sided alternative
hypothesis is meaningful,

H0W �i D 0 HaW �i > 0

This is the appropriate set of hypotheses, for example, when �i is the variance of a G-side random effect. The
positivity constraint on � is required for valid conditional and marginal distributions of the data. Verbeke
and Molenberghs (2003) refer to this situation as the constrained case.

However, if one focuses on the validity of the marginal distribution alone, then negative values for �i might be
permissible, provided that the marginal variance remains positive definite. In the vernacular or Verbeke and
Molenberghs (2003), this is the unconstrained case. The appropriate alternative hypothesis is then two-sided,

H0W �i D 0 HaW �i 6D 0

Several important issues are connected to the choice of hypotheses. The GLIMMIX procedure by default
imposes constraints on some covariance parameters. For example, variances and scale parameters have
a lower bound of 0. This implies a constrained setting with one-sided alternatives. If you specify the
NOBOUND option in the PROC GLIMMIX statement, or the NOBOUND option in the PARMS statement,
the boundary restrictions are lifted from the covariance parameters and the GLIMMIX procedure takes
an unconstrained stance in the sense of Verbeke and Molenberghs (2003). The alternative hypotheses for
variance components are then two-sided.

When H0W �i D 0 and � D .0;1/, the value of �i under the null hypothesis is on the boundary of the
parameter space. The distribution of the likelihood ratio test statistic � is then nonstandard. In general, it
is a mixture of distributions, and in certain special cases, it is a mixture of central chi-square distributions.
Important contributions to the understanding of the asymptotic behavior of the likelihood ratio and score test
statistic in this situation have been made by, for example, Self and Liang (1987); Shapiro (1988); Silvapulle
and Silvapulle (1995). Stram and Lee (1994, 1995) applied the results of Self and Liang (1987) to likelihood
ratio testing in the mixed model with uncorrelated errors. Verbeke and Molenberghs (2003) compared the
score and likelihood ratio tests in random effects models with unstructured G matrix and provide further
results on mixture distributions.

The GLIMMIX procedure recognizes the following special cases in the computation of p-values (b� denotes the
realized value of the test statistic). Notice that the probabilities of general chi-square mixture distributions do
not equal linear combination of central chi-square probabilities (Davis 1977; Johnson, Kotz, and Balakrishnan
1994, Section 18.8).

1. � parameters are tested, and neither parameters specified under H0 nor nuisance parameters are on the
boundary of the parameters space (Case 4 in Self and Liang 1987). The p-value is computed by the
classical result:

p D Pr
�
�2� �

b��
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2. One parameter is specified under H0 and it falls on the boundary. No other parameters are on the
boundary (Case 5 in Self and Liang 1987).

p D

(
1 b� D 0
0:5Pr

�
�21 �

b�� b� > 0
Note that this implies a 50:50 mixture of a �20 and a �21 distribution. This is also Case 1 in Verbeke and
Molenberghs (2000, p. 69).

3. Two parameters are specified under H0, and one falls on the boundary. No nuisance parameters are on
the boundary (Case 6 in Self and Liang 1987).

p D 0:5Pr
�
�21 �

b��C 0:5Pr ��22 �b��
A special case of this scenario is the addition of a random effect to a model with a single random effect
and unstructured covariance matrix (Case 2 in Verbeke and Molenberghs 2000, p. 70).

4. Removing j random effects from j C k uncorrelated random effects (Verbeke and Molenberghs 2003).

p D 2�j
jX
iD0

�
j

i

�
Pr
�
�2i �

b��
Note that this case includes the case of testing a single random effects variance against zero, which
leads to a 50:50 mixture of a �20 and a �21 as in 2.

5. Removing a random effect from an unstructured G matrix (Case 3 in Verbeke and Molenberghs 2000,
p. 71).

p D 0:5Pr
�
�2k �

b��C 0:5Pr ��2k�1 �b��
where k is the number of random effects (columns of G) in the full model. Case 5 in Self and Liang
(1987) describes a special case.

When the GLIMMIX procedure determines that estimates of nuisance parameters (parameters not specified
under H0) fall on the boundary, no mixture results are computed.

You can request that the procedure not use mixtures with the CLASSICAL option in the COVTEST statement.
If mixtures are used, the Note column of the “Likelihood Ratio Tests of Covariance Parameters” table contains
the “MI” entry. The “DF” entry is used when PROC GLIMMIX determines that the standard computation of
p-values is appropriate. The “–” entry is used when the classical computation was used because the testing
and model scenario does not match one of the special cases described previously.

Handling the Degenerate Distribution

Likelihood ratio testing in mixed models invariably involves the chi-square distribution with zero degrees of
freedom. The �20 random variable is degenerate at 0, and it occurs in two important circumstances. First,
it is a component of mixtures, where typically the value of the test statistic is not zero. In that case, the
contribution of the �20 component of the mixture to the p-value is nil. Second, a degenerate distribution of the
test statistic occurs when the null model is identical to the full model—for example, if you test a hypothesis
that does not impose any (new) constraints on the parameter space. The following statements test whether
the R matrix in a variance component model is diagonal:
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proc glimmix;
class a b;
model y = a;
random b a*b;
covtest diagR;

run;

Because no R-side covariance structure is specified (all random effects are G-side effects), the R matrix
is diagonal in the full model and the COVTEST statement does not impose any further restriction on the
parameter space. The likelihood ratio test statistic is zero. The GLIMMIX procedure computes the p-value as
the probability to observe a value at least as large as the test statistic under the null hypothesis. Hence,

p D Pr.�20 � 0/ D 1

Wald Versus Likelihood Ratio Tests

The Wald test and the likelihood ratio tests are asymptotic tests, meaning that the distribution from which
p-values are calculated for a finite number of samples draws on the distribution of the test statistic as the
sample size grows to infinity. The Wald test is a simple test that is easy to compute based only on parameter
estimates and their (asymptotic) standard errors. The likelihood ratio test, on the other hand, requires the
likelihoods of the full model and the model reduced under H0. It is computationally more demanding, but
also provides the asymptotically more powerful and reliable test. The likelihood ratio test is almost always
preferable to the Wald test, unless computational demands make it impractical to refit the model.

Confidence Bounds Based on Likelihoods

Families of statistical tests can be inverted to produce confidence limits for parameters. The confidence
region for parameter � is the set of values for which the corresponding test fails to reject H W � D �0. When
parameters are estimated by maximum likelihood or a likelihood-based technique, it is natural to consider the
likelihood ratio test statistic for H in the test inversion. When there are multiple parameters in the model,
however, you need to supply values for these nuisance parameters during the test inversion as well.

In the following, suppose that � is the covariance parameter vector and that one of its elements, � , is
the parameter of interest for which you want to construct a confidence interval. The other elements of �
are collected in the nuisance parameter vector �2. Suppose that b� is the estimate of � from the overall
optimization and that L.b�/ is the likelihood evaluated at that estimate. If estimation is based on pseudo-data,
then L.b�/ is the pseudo-likelihood based on the final pseudo-data. If estimation uses a residual (restricted)
likelihood, then L denotes the restricted maximum likelihood andb� is the REML estimate.

Profile Likelihood Bounds
The likelihood ratio test statistic for testing H W � D �0 is

2
n
log

n
L.b�/o � log

n
L.�0;b�2/oo

where b�2 is the likelihood estimate of �2 under the restriction that � D �0. To invert this test, a function
is defined that returns the maximum likelihood for a fixed value of � by seeking the maximum over the
remaining parameters. This function is termed the profile likelihood (Pawitan 2001, Ch. 3.4),

�p D L.�2je�/ D sup
�2

L.e�;�2/
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In computing �p , � is fixed ate� and �2 is estimated. In mixed models, this step typically requires a separate,
iterative optimization to find the estimate of �2 while � is held fixed. The .1 � ˛/ � 100% profile likelihood
confidence interval for � is then defined as the set of values fore� that satisfy

2
n
log

n
L.b�/o � log

n
L.�2je�/oo � �21;.1�˛/

The GLIMMIX procedure seeks the valuese� l ande�u that mark the endpoints of the set aroundb� that satisfy
the inequality. The values .e� l ande�u/ are then called the .1 � ˛/ � 100% confidence bounds for � . Note
that the GLIMMIX procedure assumes that the confidence region is not disjoint and relies on the convexity
of L.b�/.
It is not always possible to find values e� l and e�u that satisfy the inequalities. For example, when the
parameter space is (0;1/ and

2
n
log

n
L.b�/o � log fL.�2j0/g

o
> �21;.1�˛/

a lower bound cannot be found at the desired confidence level. The GLIMMIX procedure reports the right-tail
probabilities that are achieved by the underlying likelihood ratio statistic separately for lower and upper
bounds.

Effect of Scale Parameter
When a scale parameter � is eliminated from the optimization by profiling from the likelihood, some
parameters might be expressed as ratios with � in the optimization. This is the case, for example, in variance
component models. The profile likelihood confidence bounds are reported on the scale of the parameter in
the overall optimization. In case parameters are expressed as ratios with � or functions of �, the column
RatioEstimate is added to the “Covariance Parameter Estimates” table. If parameters are expressed as ratios
with � and you want confidence bounds for the unscaled parameter, you can prevent profiling of � from the
optimization with the NOPROFILE option in the PROC GLIMMIX statement, or choose estimated likelihood
confidence bounds with the TYPE=ELR suboption of the CL option in the COVTEST statement. Note that
the NOPROFILE option is automatically in effect with METHOD=LAPLACE and METHOD=QUAD.

Estimated Likelihood Bounds
Computing profile likelihood ratio confidence bounds can be computationally expensive, because of the need
to repeatedly estimate �2 in a constrained optimization. A computationally simpler method to construct
confidence bounds from likelihood-based quantities is to use the estimated likelihood (Pawitan 2001, Ch.
10.7) instead of the profile likelihood. An estimated likelihood technique replaces the nuisance parameters in
the test inversion with some other estimate. If you choose the TYPE=ELR suboption of the CL option in
the COVTEST statement, the GLIMMIX procedure holds the nuisance parameters fixed at the likelihood
estimates. The estimated likelihood statistic for inversion is then

�e D L.e�;b�2/
whereb�2 are the elements ofb� that correspond to the nuisance parameters. As the values ofe� are varied, no
reestimation of �2 takes place. Although computationally more economical, estimated likelihood intervals
do not take into account the variability associated with the nuisance parameters. Their coverage can be
satisfactory if the parameter of interest is not (or only weakly) correlated with the nuisance parameters.
Estimated likelihood ratio intervals can fall short of the nominal coverage otherwise.
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Figure 44.11 depicts profile and estimated likelihood ratio intervals for the parameter � in a two-parameter
compound-symmetric model, � D Œ�; ��0, in which the correlation between the covariance parameters is
small. The elliptical shape traces the set of values for which the likelihood ratio test rejects the hypothesis of
equality with the solution. The interior of the ellipse is the “acceptance” region of the test. The solid and
dashed lines depict the PLR and ELR confidence limits for � , respectively. Note that both confidence limits
intersect the ellipse and that the ELR interval passes through the REML estimate of �. The PLR bounds are
found as those points intersecting the ellipse, where � equals the constrained REML estimate.

Figure 44.11 PLR and ELR Intervals, Small Correlation between Parameters

The major axes of the ellipse in Figure 44.11 are nearly aligned with the major axes of the coordinate
system. As a consequence, the line connecting the PLR bounds passes close to the REML estimate in the full
model. As a result, ELR bounds will be similar to PLR bounds. Figure 44.12 displays a different scenario, a
two-parameter AR(1) covariance structure with a more substantial correlation between the AR(1) parameter
(�) and the residual variance (�).
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Figure 44.12 PLR and ELR Intervals, Large Correlation between Parameters

The correlation between the parameters yields an acceptance region whose major axes are not aligned with
the axes of the coordinate system. The ELR bound for � passes through the REML estimate of � from the
full model and is much shorter than the PLR interval. The PLR interval aligns with the major axis of the
acceptance region; it is the preferred confidence interval.

Degrees of Freedom Methods

Between-Within Degrees of Freedom Approximation

The DDFM=BETWITHIN option divides the residual degrees of freedom into between-subject and within-
subject portions. PROC GLIMMIX then determines whether a fixed effect changes within any subject. If so,
it assigns within-subject degrees of freedom to the effect; otherwise, it assigns the between-subject degrees
of freedom to the effect (Schluchter and Elashoff 1990). If the GLIMMIX procedure does not process the
data by subjects, the DDFM=BETWITHIN option has no effect. See the section “Processing by Subjects” on
page 3218 for more information.

If multiple within-subject effects contain classification variables, the within-subject degrees of freedom are
partitioned into components that correspond to the subject-by-effect interactions.
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One exception to the preceding method is the case where you model only R-side covariation with an
unstructured covariance matrix (TYPE=UN). In this case, all fixed effects are assigned the between-subject
degrees of freedom to provide for better small-sample approximations to the relevant sampling distributions.
The DDFM=BETWITHIN method is the default for models with only R-side random effects and a SUBJECT=
option.

Containment Degrees of Freedom Approximation

The DDFM=CONTAIN method is carried out as follows: Denote the fixed effect in question as A and search
the G-side random effect list for the effects that syntactically contain A. For example, the effect B(A) contains
A, but the effect C does not, even if it has the same levels as B(A).

Among the random effects that contain A, compute their rank contributions to the ŒX Z� matrix (in order).
The denominator degrees of freedom that is assigned to A is the smallest of these rank contributions. If no
effects are found, the denominator degrees of freedom for A is set equal to the residual degrees of freedom,
n � rankŒX Z�. This choice of degrees of freedom is the same as for the tests performed for balanced
split-plot designs and should be adequate for moderately unbalanced designs.

NOTE: If you have a Z matrix with a large number of columns, the overall memory requirements and
the computing time after convergence can be substantial for the containment method. In this case, you
might want to use a different degrees-of-freedom method, such as DDFM=RESIDUAL, DDFM=NONE, or
DDFM=BETWITHIN.

Satterthwaite Degrees of Freedom Approximation

The DDFM=SATTERTHWAITE option in the MODEL statement requests that denominator degrees of
freedom in t tests and F tests be computed according to a general Satterthwaite approximation.

The general Satterthwaite approximation computed in PROC GLIMMIX for the test

H WL
� b̌b

�
D 0

is based on the F statistic

F D

� b̌b
�0

L0.LCL0/�1L
� b̌b

�
r

where r D rank.LCL0/ and C is the approximate variance matrix of Œb̌0;b 0� 0�0. See the section “Estimated
Precision of Estimates” on page 3189 and the section “Aspects Common to Adaptive Quadrature and Laplace
Approximation” on page 3197.

The approximation proceeds by first performing the spectral decomposition LCL0 D U0DU, where U is an
orthogonal matrix of eigenvectors and D is a diagonal matrix of eigenvalues, both of dimension r � r . Define
bj to be the jth row of UL, and let

�j D
2.Dj /

2

g0jAgj

where Dj is the jth diagonal element of D and gj is the gradient of bjCb0j with respect to � , evaluated

atb� . The matrix A is the asymptotic variance-covariance matrix ofb� , which is obtained from the second
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derivative matrix of the likelihood equations. You can display this matrix with the ASYCOV option in the
PROC GLIMMIX statement.

Finally, let

E D

rX
jD1

�j

�j � 2
I.�j > 2/

where the indicator function eliminates terms for which �j � 2. The degrees of freedom for F are then
computed as

� D
2E

E � rank.L/

provided E > r; otherwise � is set to 0.

In the one-dimensional case, when PROC GLIMMIX computes a t test, the Satterthwaite degrees of freedom
for the t statistic

t D

l0
� b̌b

�
l0Cl

are computed as

� D
2.l0Cl/2

g0Ag

where g is the gradient of l0Cl with respect to � , evaluated atb� .

The calculation of Satterthwaite degrees of freedom requires extra memory to hold q matrices that are the
size of the mixed model equations, where q is the number of covariance parameters. Extra computing time is
also required to process these matrices. The implemented Satterthwaite method is intended to produce an
accurate F approximation; however, the results can differ from those produced by PROC GLM. Also, the
small-sample properties of this approximation have not been extensively investigated for the various models
available with PROC GLIMMIX.

Kenward-Roger Degrees of Freedom Approximation

The DDFM=KENWARDROGER option prompts PROC GLIMMIX to compute the denominator degrees
of freedom in t tests and F tests by using the approximation described in Kenward and Roger (1997). For
inference on the linear combination Lˇ in a Gaussian linear model, they propose a scaled Wald statistic

F � D �F

D
�

l
. Ǒ � ˇ/TL.LT Ô AL/

�1LT . Ǒ � ˇ/;

where l D rank.L/, Ô A is a bias-adjusted estimator of the precision of Ǒ, and 0 < � < 1. An appropriate
Fl;m approximation to the sampling distribution of F � is derived by matching the first two moments of F �

with those from the approximating F distribution and solving for the values of � and m. The value of m thus
derived is the Kenward-Roger degrees of freedom. The precision estimator Ô A is bias-adjusted, in contrast
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to the conventional precision estimator ˆ. O�/ D .X 0V. O�/�1X/�1, which is obtained by simply replacing �
with O� in ˆ.�/, the asymptotic variance of Ǒ. This method uses Ô A to address the fact that ˆ. O�/ is a biased
estimator of ˆ.�/, and ˆ.�/ itself underestimates var. Ǒ/ when � is unknown. This bias-adjusted precision
estimator is also discussed in Prasad and Rao (1990); Harville and Jeske (1992); Kackar and Harville (1984).

By default, the observed information matrix of the covariance parameter estimates is used in the calculations.
For covariance structures that have nonzero second derivatives with respect to the covariance parameters, the
Kenward-Roger covariance matrix adjustment includes a second-order term. This term can result in standard
error shrinkage. Also, the resulting adjusted covariance matrix can then be indefinite and is not invariant under
reparameterization. The FIRSTORDER suboption of the DDFM=KENWARDROGER option eliminates the
second derivatives from the calculation of the covariance matrix adjustment. For scalar estimable functions,
the resulting estimator is referred to as the Prasad-Rao estimator em@ in Harville and Jeske (1992). You
can use the COVB(DETAILS) option to diagnose the adjustments that PROC GLIMMIX makes to the
covariance matrix of fixed-effects parameter estimates. An application with DDFM=KENWARDROGER is
presented in Example 44.8. The following are examples of covariance structures that generally lead to nonzero
second derivatives: TYPE=ANTE(1), TYPE=AR(1), TYPE=ARH(1), TYPE=ARMA(1,1), TYPE=CHOL,
TYPE=CSH, TYPE=FA0(q), TYPE=TOEPH, TYPE=UNR, and all TYPE=SP() structures.

DDFM=KENWARDROGER2 specifies an improved F approximation of the DDFM=KENWARD-ROGER
type that uses a less biased precision estimator, as proposed by Kenward and Roger (2009). An important
feature of the KR2 precision estimator is that it is invariant under reparameterization within the classes of
intrinsically linear and intrinsically linear inverse covariance structures. For the invariance to hold within
these two classes of covariance structures, a modified expected Hessian matrix is used in the computation of
the covariance matrix of � . The two cells classified as “Modified” scoring for RxPL estimation in Table 44.21
give the modified Hessian expressions for the cases where the scale parameter is profiled and not profiled.
You can enforce the use of the modified expected Hessian matrix by specifying both the EXPHESSIAN
and SCOREMOD options in the PROC GLIMMIX statement. Kenward and Roger (2009) note that for an
intrinsically linear covariance parameterization, DDFM=KR2 produces the same precision estimator as that
obtained using DDFM=KR(FIRSTORDER).

Empirical Covariance (“Sandwich”) Estimators

Residual-Based Estimators

The GLIMMIX procedure can compute the classical sandwich estimator of the covariance matrix of the fixed
effects, as well as several bias-adjusted estimators. This requires that the model is either an (overdispersed)
GLM or a GLMM that can be processed by subjects (see the section “Processing by Subjects” on page 3218).

Consider a statistical model of the form

Y D �C �; � � .0;†/

The general expression of a sandwich covariance estimator is then

c � b� mX
iD1

AibD0ib†�1i F0ieie
0
iFib†�1i bDiAi! b�

where ei D yi �b�i ,� D .D0†�1D/�.
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For a GLMM estimated by one of the pseudo-likelihood techniques that involve linearization, you can make
the following substitutions: Y ! P, † ! V.�/, D ! X, b� ! Xb̌. These matrices are defined in the
section “Pseudo-likelihood Estimation Based on Linearization” on page 3188.

The various estimators computed by the GLIMMIX procedure differ in the choice of the constant c and the
matrices Fi and Ai . You obtain the classical estimator, for example, with c = 1, and Fi D Ai equal to the
identity matrix.

The EMPIRICAL=ROOT estimator of Kauermann and Carroll (2001) is based on the approximation

Var
�
eie0i

�
� .I �Hi /†i

where Hi D Di�D0i†
�1
i . The EMPIRICAL=FIRORES estimator is based on the approximation

Var
�
eie0i

�
� .I �Hi /†i .I �H0i /

of Mancl and DeRouen (2001). Finally, the EMPIRICAL=FIROEEQ estimator is based on approximating
an unbiased estimating equation (Fay and Graubard 2001). For this estimator, Ai is a diagonal matrix with
entries

ŒAi �jj D
�
1 �minfr; ŒQ�jj g

��1=2
where Q D D0ib†�1i Dib�. The optional number 0 � r < 1 is chosen to provide an upper bound on the
correction factor. For r = 0, the classical sandwich estimator results. PROC GLIMMIX chooses as default
value r D 3=4. The diagonal entries of Ai are then no greater than 2.

Table 44.22 summarizes the components of the computation for the GLMM based on linearization, where m
denotes the number of subjects and k is the rank of X.

Table 44.22 Empirical Covariance Estimators for a Linearized
GLMM

EMPIRICAL= c Ai Fi

CLASSICAL 1 I I

DF
�

m
m�k

m > k

1 otherwise I I

ROOT 1 I .I �H0i /
�1=2

FIRORES 1 I .I �H0i /
�1

FIROEEQ(r) 1 Diagf.1 �minfr; ŒQ�jj g/�1=2g I

Computation of an empirical variance estimator requires that the data can be processed by independent
sampling units. This is always the case in GLMs. In this case, m equals the sum of all frequencies. In
GLMMs, the empirical estimators require that the data consist of multiple subjects. In that case, m equals
the number of subjects as per the “Dimensions” table. The following section discusses how the GLIMMIX
procedure determines whether the data can be processed by subjects. The section “GLM Mode or GLMM
Mode” on page 3203 explains how PROC GLIMMIX determines whether a model is fit in GLM mode or in
GLMM mode.
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Design-Adjusted MBN Estimator

Morel (1989) and Morel, Bokossa, and Neerchal (2003) suggested a bias correction of the classical sandwich
estimator that rests on an additive correction of the residual crossproducts and a sample size correction. This
estimator is available with the EMPIRICAL=MBN option in the PROC GLIMMIX statement. In the notation
of the previous section, the residual-based MBN estimator can be written as

b� mX
iD1

bD0ib†�1i �
ceie0i C Bi

� b†�1i bDi! b�
where

• c D .f � 1/=.f � k/�m=.m� 1/ or c = 1 when you specify the EMPIRICAL=MBN(NODF) option

• f is the sum of the frequencies

• k equals the rank of X

• Bi D ım�b†i
• � D max

n
r; trace

�b�M
�
=k�

o
• M D

Pm
iD1

bD0ib†�1i eie0ib†�1i bDi
• k� D k if m � k, otherwise k� equals the number of nonzero singular values of b�M

• ım D k=.m � k/ if m > .d C 1/k and ım D 1=d otherwise

• d � 1 and 0 � r � 1 are parameters supplied with the mbn-options of the EMPIRICAL=MBN(mbn-
options) option. The default values are d = 2 and r = 1. When the NODF option is in effect, the factor
c is set to 1.

Rearranging terms, the MBN estimator can also be written as an additive adjustment to a sample-size
corrected classical sandwich estimator

c � b� mX
iD1

bD0ib†�1i eie0ib†�1i bDi! b�C ım�b�
Because ım is of order m�1, the additive adjustment to the classical estimator vanishes as the number of
independent sampling units (subjects) increases. The parameter � is a measure of the design effect (Morel,
Bokossa, and Neerchal 2003). Besides good statistical properties in terms of Type I error rates in small-m
situations, the MBN estimator also has the desirable property of recovering rank when the number of sampling
units is small. If m < k, the “meat” piece of the classical sandwich estimator is essentially a sum of rank one
matrices. A small number of subjects relative to the rank of X can result in a loss of rank and subsequent loss
of numerator degrees of freedom in tests. The additive MBN adjustment counters the rank exhaustion. You
can examine the rank of an adjusted covariance matrix with the COVB(DETAILS) option in the MODEL
statement.

When the principle of the MBN estimator is applied to the likelihood-based empirical estimator, you obtain

H.b̨/�1  mX
iD1

cgi .b̨/gi .b̨/0 C Bi

!
H.b̨/�1
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where Bi D �ım�Hi .b̨/, and Hi .b̨/ is the second derivative of the log likelihood for the ith sampling unit
(subject) evaluated at the vector of parameter estimates, b̨. Also, gi .b̨/ is the first derivative of the log
likelihood for the ith sampling unit. This estimator is computed if you request EMPIRICAL=MBN with
METHOD=LAPLACE or METHOD=QUAD.

In terms of adjusting the classical likelihood-based estimator (White 1982), the likelihood MBN estimator
can be written as

c �H.b̨/�1  mX
iD1

gi .b̨/gi .b̨/0!H.b̨/�1 � ım�H.b̨/�1
The parameter � is determined as

• � D max
˚
r; trace

�
�H.b̨/�1M

�
=k�

	
• M D

Pm
iD1 gi .b̨/gi .b̨/0

• k� D k if m � k, otherwise k� equals the number of nonzero singular values of �H.b̨/�1M

Exploring and Comparing Covariance Matrices
If you use an empirical (sandwich) estimator with the EMPIRICAL= option in the PROC GLIMMIX
statement, the procedure replaces the model-based estimator of the covariance of the fixed effects with the
sandwich estimator. This affects aspects of inference, such as prediction standard errors, tests of fixed effects,
estimates, contrasts, and so forth. Similarly, if you choose the DDFM=KENWARDROGER degrees-of-
freedom method in the MODEL statement, PROC GLIMMIX adjusts the model-based covariance matrix of
the fixed effects according to Kenward and Roger (1997) or according to Kackar and Harville (1984) and
Harville and Jeske (1992).

In this situation, the COVB(DETAILS) option in the MODEL statement has two effects. The GLIMMIX
procedure displays the (adjusted) covariance matrix of the fixed effects and the model-based covariance
matrix (the ODS name of the table with the model-based covariance matrix is CovBModelBased). The
procedure also displays a table of statistics for the unadjusted and adjusted covariance matrix and for their
comparison. The ODS name of this table is CovBDetails.

If the model-based covariance matrix is not replaced with an adjusted estimator, the COVB(DETAILS) option
displays the model-based covariance matrix and provides diagnostic measures for it in the CovBDetails table.

The table generated by the COVB(DETAILS) option consists of several sections. See Example 44.8 for an
application.

The trace and log determinant of covariance matrices are general scalar summaries that are sometimes used
in direct comparisons, or in formulating other statistics, such as the difference of log determinants. The
trace simply represents the sum of the variances of all fixed-effects parameters. If a matrix is indefinite, the
determinant is reported instead of the log determinant.

The model-based and adjusted covariance matrices should have the same general makeup of eigenvalues.
There should not be any negative eigenvalues, and they should have the same numbers of positive and zero
eigenvalues. A reduction in rank due to the adjustment is troublesome for aspects of inference. Negative
eigenvalues are listed in the table only if they occur, because a covariance matrix should be at least positive
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semi-definite. However, the GLIMMIX procedure examines the model-based and adjusted covariance matrix
for negative eigenvalues. The condition numbers reported by PROC GLIMMIX for positive (semi-)definite
matrices are computed as the ratio of the largest and smallest nonzero eigenvalue. A large condition number
reflects poor conditioning of the matrix.

Matrix norms are extensions of the concept of vector norms to measure the “length” of a matrix. The
Frobenius norm of an .n �m/ matrix A is the direct equivalent of the Euclidean vector norm, the square root
of the sum of the squared elements,

jjAjjF D

vuut nX
iD1

nX
jD1

a2ij

The1- and 1-norms of matrix A are the maximum absolute row and column sums, respectively:

jjAjj1 D max

8<:
mX
jD1

jaij j W i D 1; � � � ; n

9=;
jjAjj1 D max

(
nX
iD1

jaij j W j D 1; � � � ; m

)

These two norms are identical for symmetric matrices.

The “Comparison” section of the CovBDetails table provides several statistics that set the matrices in
relationship. The concordance correlation reported by the GLIMMIX procedure is a standardized measure of
the closeness of the model-based and adjusted covariance matrix. It is a slight modification of the covariance
concordance correlation in Vonesh, Chinchilli, and Pu (1996) and Vonesh and Chinchilli (1997, Ch. 8.3).
Denote as � the .p � p/ model-based covariance matrix and as �a the adjusted matrix. Suppose that K
is the matrix obtained from the identity matrix of size p by replacing diagonal elements corresponding to
singular rows in� with zeros. The lower triangular portion of��1=2�a��1=2 is stored in vector ! and the
lower triangular portion of K is stored in vector k. The matrix��1=2 is constructed from an eigenanalysis of
� and is symmetric. The covariance concordance correlation is then

r.!/ D 1 �
jj! � kjj2

jj!jj2 C jjkjj2

This measure is 1 if� =�a. If ! is orthogonal to k, there is total disagreement between the model-based
and the adjusted covariance matrix and r.!/ is zero.

The discrepancy function reported by PROC GLIMMIX is computed as

d D logfj�jg � logfj�ajg C tracef�a��g � rankf�g

In diagnosing departures between an assumed covariance structure and VarŒY�—using an empirical
estimator—Vonesh, Chinchilli, and Pu (1996) find that the concordance correlation is useful in detect-
ing gross departures and propose � D nsd to test the correctness of the assumed model, where ns denotes
the number of subjects.
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Processing by Subjects
Some mixed models can be expressed in different but mathematically equivalent ways with PROC GLIMMIX
statements. While equivalent statements lead to equivalent statistical models, the data processing and
estimation phase can be quite different, depending on how you write the GLIMMIX statements. For example,
the particular use of the SUBJECT= option in the RANDOM statement affects data processing and estimation.
Certain options are available only when the data are processed by subject, such as the EMPIRICAL option in
the PROC GLIMMIX statement.

Consider a GLIMMIX model where variables A and Rep are classification variables with a and r levels,
respectively. The following pairs of statements produce the same random-effects structure:

class Rep A;
random Rep*A;

class Rep A;
random intercept / subject=Rep*A;

class Rep A;
random Rep / subject=A;

class Rep A;
random A / subject=Rep;

In the first case, PROC GLIMMIX does not process the data by subjects because no SUBJECT= option was
given. The computation of empirical covariance estimators, for example, will not be possible. The marginal
variance-covariance matrix has the same block-diagonal structure as for cases 2–4, where each block consists
of the observations belonging to a unique combination of Rep and A. More importantly, the dimension of the
Z matrix of this model will be n � ra, and Z will be sparse. In the second case, the Zi matrix for each of the
ra subjects is a vector of ones.

If the data can be processed by subjects, the procedure typically executes faster and requires less memory. The
differences can be substantial, especially if the number of subjects is large. Recall that fitting of generalized
linear mixed models might be doubly iterative. Small gains in efficiency for any one optimization can produce
large overall savings.

If you interpret the intercept as “1,” then a RANDOM statement with TYPE=VC (the default) and no
SUBJECT= option can be converted into a statement with subject by dividing the random effect by the
eventual subject effect. However, the presence of the SUBJECT= option does not imply processing by
subject. If a RANDOM statement does not have a SUBJECT= effect, processing by subjects is not possible
unless the random effect is a pure R-side overdispersion effect. In the following example, the data will not be
processed by subjects, because the first RANDOM statement specifies a G-side component and does not use
a SUBJECT= option:

proc glimmix;
class A B;
model y = B;
random A;
random B / subject=A;

run;
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To allow processing by subjects, you can write the equivalent model with the following statements:

proc glimmix;
class A B;
model y = B;
random int / subject=A;
random B / subject=A;

run;

If you denote a variance component effect X with subject effect S as X–(S), then the “calculus of random
effects” applied to the first RANDOM statement reads A = Int*A = Int–(A) = A–(Int). For the second statement
there are even more equivalent formulations: A*B = A*B*Int = A*B–(Int) = A–(B) = B–(A) = Int–(A*B).

If there are multiple subject effects, processing by subjects is possible if the effects are equal or contained in
each other. Note that in the last example the A*B interaction is a random effect. The following statements
give an equivalent specification to the previous model:

proc glimmix;
class A B;
model y = B;
random int / subject=A;
random A / subject=B;

run;

Processing by subjects is not possible in this case, because the two subject effects are not syntactically equal
or contained in each other. The following statements depict a case where subject effects are syntactically
contained:

proc glimmix;
class A B;
model y = B;
random int / subject=A;
random int / subject=A*B;

run;

The A main effect is contained in the A*B interaction. The GLIMMIX procedure chooses as the subject effect
for processing the effect that is contained in all other subject effects. In this case, the subjects are defined by
the levels of A.

You can examine the “Model Information” and “Dimensions” tables to see whether the GLIMMIX procedure
processes the data by subjects and which effect is used to define subjects. The “Model Information” table
displays whether the marginal variance matrix is diagonal (GLM models), blocked, or not blocked. The
“Dimensions” table tells you how many subjects (=blocks) there are.

Finally, nesting and crossing of interaction effects in subject effects are equivalent. The following two
RANDOM statements are equivalent:

class Rep A;
random intercept / subject=Rep*A;

class Rep A;
random intercept / subject=Rep(A);
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Radial Smoothing Based on Mixed Models
The radial smoother implemented with the TYPE=RSMOOTH option in the RANDOM statement is an
approximate low-rank thin-plate spline as described in Ruppert, Wand, and Carroll (2003, Chapter 13.4–13.5).
The following sections discuss in more detail the mathematical-statistical connection between mixed models
and penalized splines and the determination of the number of spline knots and their location as implemented
in the GLIMMIX procedure.

From Penalized Splines to Mixed Models

The connection between splines and mixed models arises from the similarity of the penalized spline fitting
criterion to the minimization problem that yields the mixed model equations and solutions for ˇ and  .
This connection is made explicit in the following paragraphs. An important distinction between classical
spline fitting and its mixed model smoothing variant, however, lies in the nature of the spline coefficients.
Although they address similar minimization criteria, the solutions for the spline coefficients in the GLIMMIX
procedure are the solutions of random effects, not fixed effects. Standard errors of predicted values, for
example, account for this source of variation.

Consider the linearized mixed pseudo-model from the section “The Pseudo-model” on page 3188, P D
Xˇ C Z C �. One derivation of the mixed model equations, whose solutions are b̌ andb , is to maximize
the joint density of f .; �/ with respect to ˇ and  . This is not a true likelihood problem, because  is not a
parameter, but a random vector.

In the special case with VarŒ�� D �I and VarŒ� D �2I, the maximization of f .; �/ is equivalent to the
minimization of

Q.ˇ;/ D ��1.p � Xˇ � Z/0.p � Xˇ � Z/C ��2 0

Now consider a linear spline as in Ruppert, Wand, and Carroll (2003, p. 108),

pi D ˇ0 C ˇ1xi C

KX
jD1

j .xi � tj /C

where the j denote the spline coefficients at knots t1; � � � ; tK . The truncated line function is defined as

.x � t /C D

�
x � t x > t

0 otherwise

If you collect the intercept and regressor x into the matrix X, and if you collect the truncated line functions
into the .n � K/ matrix Z, then fitting the linear spline amounts to minimization of the penalized spline
criterion

Q�.ˇ;/ D .p �Xˇ � Z/0.p �Xˇ � Z/C �2 0

where � is the smoothing parameter.

Because minimizing Q�.ˇ;/ with respect to ˇ and  is equivalent to minimizing Q�.ˇ;/=�, both
problems lead to the same solution, and � D �=� is the smoothing parameter. The mixed model formulation
of spline smoothing has the advantage that the smoothing parameter is selected “automatically.” It is a
function of the covariance parameter estimates, which, in turn, are estimated according to the method you
specify with the METHOD= option in the PROC GLIMMIX statement.
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To accommodate nonnormal responses and general link functions, the GLIMMIX procedure uses VarŒ�� D
�e��1Ae��1, where A is the matrix of variance functions and� is the diagonal matrix of mean derivatives
defined earlier. The correspondence between spline smoothing and mixed modeling is then one between a
weighted linear mixed model and a weighted spline. In other words, the minimization criterion that yields the
estimates b̌ and solutionsb is then

Q.ˇ;/ D ��1.p �Xˇ � Z/0e�A�1e�.p �Xˇ � Z/0 C ��2 0

If you choose the TYPE=RSMOOTH covariance structure, PROC GLIMMIX chooses radial basis functions
as the spline basis and transforms them to approximate a thin-plate spline as in Chapter 13.4 of Ruppert,
Wand, and Carroll (2003). For computational expediency, the number of knots is chosen to be less than
the number of data points. Ruppert, Wand, and Carroll (2003) recommend one knot per every four unique
regressor values for one-dimensional smoothers. In the multivariate case, general recommendations are more
difficult, because the optimal number and placement of knots depend on the spatial configuration of samples.
Their recommendation for a bivariate smoother is one knot per four samples, but at least 20 and no more than
150 knots (Ruppert, Wand, and Carroll 2003, p. 257).

The magnitude of the variance component �2 depends on the metric of the random effects. For example,
if you apply radial smoothing in time, the variance changes if you measure time in days or minutes. If the
solution for the variance component is near zero, then a rescaling of the random effect data can help the
optimization problem by moving the solution for the variance component away from the boundary of the
parameter space.

Knot Selection

The GLIMMIX procedure computes knots for low-rank smoothing based on the vertices or centroids of a k-d
tree. The default is to use the vertices of the tree as the knot locations, if you use the TYPE=RSMOOTH
covariance structure. The construction of this tree amounts to a partitioning of the random regressor space
until all partitions contain at most b observations. The number b is called the bucket size of the k-d tree.
You can exercise control over the construction of the tree by changing the bucket size with the BUCKET=
suboption of the KNOTMETHOD=KDTREE option in the RANDOM statement. A large bucket size leads
to fewer knots, but it is not correct to assume that K, the number of knots, is simply bn=bc. The number of
vertices depends on the configuration of the values in the regressor space. Also, coordinates of the bounding
hypercube are vertices of the tree. In the one-dimensional case, for example, the extreme values of the
random effect are vertices.

To demonstrate how the k-d tree partitions the random-effects space based on observed data and the influence
of the bucket size, consider the following example from Chapter 59, “The LOESS Procedure.” The SAS
data set Gas contains the results of an engine exhaust emission study (Brinkman 1981). The covariate in
this analysis, E, is a measure of the air-fuel mixture richness. The response, NOx, measures the nitric oxide
concentration (in micrograms per joule, and normalized).

data Gas;
input NOx E;
format NOx E f5.3;
datalines;

4.818 0.831
2.849 1.045
3.275 1.021
4.691 0.97
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4.255 0.825
5.064 0.891
2.118 0.71
4.602 0.801
2.286 1.074
0.97 1.148
3.965 1
5.344 0.928
3.834 0.767
1.99 0.701
5.199 0.807
5.283 0.902
3.752 0.997
0.537 1.224
1.64 1.089
5.055 0.973
4.937 0.98
1.561 0.665

;

There are 22 observations in the data set, and the values of the covariate are unique. If you want to smooth
these data with a low-rank radial smoother, you need to choose the number of knots, as well as their placement
within the support of the variable E. The k-d tree construction depends on the observed values of the variable
E; it is independent of the values of nitric oxide in the data. The following statements construct a tree based
on a bucket size of b = 11 and display information about the tree and the selected knots:

ods select KDtree KnotInfo;
proc glimmix data=gas nofit;

model NOx = e;
random e / type=rsmooth

knotmethod=kdtree(bucket=11 treeinfo knotinfo);
run;

The NOFIT option prevents the GLIMMIX procedure from fitting the model. This option is useful if you want
to investigate the knot construction for various bucket sizes. The TREEINFO and KNOTINFO suboptions of
the KNOTMETHOD=KDTREE option request displays of the k-d tree and the knot coordinates derived from
it. Construction of the tree commences by splitting the data in half. For b = 11, n = 22, neither of the two
splits contains more than b observations and the process stops. With a single split value, and the two extreme
values, the tree has two terminal nodes and leads to three knots (Figure 44.13). Note that for one-dimensional
problems, vertices of the k-d tree always coincide with data values.

Figure 44.13 K-d Tree and Knots for Bucket Size 11

The GLIMMIX ProcedureThe GLIMMIX Procedure

kd-Tree for RSmooth(E)

Node
Number

Left
Child

Right
Child

Split
Direction

Split
Value

0 1 2 E 0.9280

1 TERMINAL

2 TERMINAL



Radial Smoothing Based on Mixed Models F 3223

Figure 44.13 continued

Radial
Smoother
Knots for

RSmooth(E)

Knot
Number E

1 0.6650

2 0.9280

3 1.2240

If the bucket size is reduced to b = 8, the following statements produce the tree and knots in Figure 44.14:

ods select KDtree KnotInfo;
proc glimmix data=gas nofit;

model NOx = e;
random e / type=rsmooth

knotmethod=kdtree(bucket=8 treeinfo knotinfo);
run;

The initial split value of 0.9280 leads to two sets of 11 observations. In order to achieve a partition into cells
that contain at most eight observations, each initial partition is split at its median one more time. Note that
one split value is greater and one split value is less than 0.9280.

Figure 44.14 K-d Tree and Knots for Bucket Size 8
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kd-Tree for RSmooth(E)

Node
Number

Left
Child

Right
Child

Split
Direction

Split
Value

0 1 2 E 0.9280

1 3 4 E 0.8070

2 5 6 E 1.0210

3 TERMINAL

4 TERMINAL

5 TERMINAL

6 TERMINAL

Radial
Smoother
Knots for

RSmooth(E)

Knot
Number E

1 0.6650

2 0.8070

3 0.9280

4 1.0210

5 1.2240

A further reduction in bucket size to b = 4 leads to the tree and knot information shown in Figure 44.15.
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Figure 44.15 K-d Tree and Knots for Bucket Size 4
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kd-Tree for RSmooth(E)

Node
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Left
Child

Right
Child

Split
Direction

Split
Value

0 1 2 E 0.9280

1 3 4 E 0.8070

2 9 10 E 1.0210

3 5 6 E 0.7100

4 7 8 E 0.8910

5 TERMINAL

6 TERMINAL

7 TERMINAL

8 TERMINAL

9 11 12 E 0.9800

10 13 14 E 1.0890

11 TERMINAL

12 TERMINAL

13 TERMINAL

14 TERMINAL
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RSmooth(E)

Knot
Number E

1 0.6650

2 0.7100

3 0.8070

4 0.8910

5 0.9280

6 0.9800

7 1.0210

8 1.0890

9 1.2240

The split value for b = 11 is also a split value for b = 8, the split values for b = 8 are a subset of those for b
= 4, and so forth. Figure 44.16 displays the data and the location of split values for the three cases. For a
one-dimensional problem (a univariate smoother), the vertices comprise the split values and the values on the
bounding interval.

You might want to move away from the boundary, in particular for an irregular data configuration or for
multivariate smoothing. The KNOTTYPE=CENTER suboption of the KNOTMETHOD= option chooses
centroids of the leaf node cells instead of vertices. This tends to move the outer knot locations closer to the
convex hull, but not necessarily to data locations. In the emission example, choosing a bucket size of b = 11
and centroids as knot locations yields two knots at E=0.7956 and E=1.076. If you choose the NEAREST
suboption, then the nearest neighbor of a vertex or centroid will serve as the knot location. In this case, the
knot locations are a subset of the data locations, regardless of the dimension of the smooth.
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Figure 44.16 Vertices of k-d Trees for Various Bucket Sizes

Odds and Odds Ratio Estimation
In models with a logit, generalized logit, or cumulative logit link, you can obtain estimates of odds ratios
through the ODDSRATIO options in the PROC GLIMMIX, LSMEANS, and MODEL statements. This
section provides details about the computation and interpretation of the computed quantities. Note that for
these link functions the EXP option in the ESTIMATE and LSMESTIMATE statements also produces odds
or odds ratios.

Consider first a model with a dichotomous outcome variable, linear predictor � D x0ˇ C z0 , and logit link
function. Suppose that �0 represents the linear predictor for a condition of interest. For example, in a simple
logistic regression model with � D ˛ C ˇx, �0 might correspond to the linear predictor at a particular value
of the covariate—say, �0 D ˛ C ˇx0.

The modeled probability is � D 1=.1C expf��g/, and the odds for � D �0 are

�0

1 � �0
D

1=.1C expf��0g/
expf��0g=.1C expf��0g/

D expf�0g
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Because �0 is a logit, it represents the log odds. The odds ratio  .�1; �0/ is defined as the ratio of odds for
�1 and �0,

 .�1; �0/ D expf�1 � �0g

The odds ratio compares the odds of the outcome under the condition expressed by �1 to the odds under
the condition expressed by �0. In the preceding simple logistic regression example, this ratio equals
expfˇ.x1 � x0/g. The exponentiation of the estimate of ˇ is thus an estimate of the odds ratio comparing
conditions for which x1�x0 D 1. If x and x + 1 represent standard and experimental conditions, for example,
expfˇg compares the odds of the outcome under the experimental condition to the odds under the standard
condition. For many other types of models, odds ratios can be expressed as simple functions of parameter
estimates. For example, suppose you are fitting a logistic model with a single classification effect with three
levels:

proc glimmix;
class A;
model y = A / dist=binary;

run;

The estimated linear predictor for level j of A isb�j D b̌C b̨j , j D 1; 2; 3. Because the X matrix is singular
in this model due to the presence of an overall intercept, the solution for the intercept estimates ˇ C ˛3, and
the solution for the jth treatment effect estimates ˛j � ˛3. Exponentiating the solutions for ˛1 and ˛2 thus
produces odds ratios comparing the odds for these levels against the third level of A.

Results designated as odds or odds ratios in the GLIMMIX procedure might reduce to simple exponentiations
of solutions in the “Parameter Estimates” table, but they are computed by a different mechanism if the model
contains classification variables. The computations rely on general estimable functions; for the MODEL,
LSMEANS, and LSMESTIMATE statements, these functions are based on least squares means. This enables
you to obtain odds ratio estimates in more complicated models that involve main effects and interactions,
including interactions between continuous and classification variables.

In all cases, the results represent the exponentiation of a linear function of the fixed-effects parameters,
� D l0ˇ. If L� and U� are the confidence limits for � on the logit scale, confidence limits for the odds or the
odds ratio are obtained as expfL�g and expfU�g.

The Odds Ratio Estimates Table

This table is produced by the ODDSRATIO option in the MODEL statement. It consists of estimates of odds
ratios and their confidence limits. Odds ratios are produced for the following:

• classification main effects, if they appear in the MODEL statement

• continuous variables in the MODEL statement, unless they appear in an interaction with a classification
effect

• continuous variables in the MODEL statement at fixed levels of a classification effect, if the MODEL
statement contains an interaction of the two.

• continuous variables in the MODEL statements if they interact with other continuous variables
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The Default Table
Consider the following PROC GLIMMIX statements that fit a logistic model with one classification effect,
one continuous variable, and their interaction (the ODDSRATIO option in the MODEL statement requests
the “Odds Ratio Estimates” table).

proc glimmix;
class A;
model y = A x A*x / dist=binary oddsratio;

run;

By default, odds ratios are computed as follows:

• The covariate is set to its average, x, and the least squares means for the A effect are obtained. Suppose
L.1/ denotes the matrix of coefficients defining the estimable functions that produce the a least squares
means Lb̌, and l.1/j denotes the jth row of L.1/. Differences of the least squares means against the last
level of the A factor are computed and exponentiated:

 .A1; Aa/ D exp
n�

l.1/1 � l.1/a
�b̌o

 .A2; Aa/ D exp
n�

l.1/2 � l.1/a
�b̌o

:::

 .Aa�1; Aa/ D exp
n�

l.1/a�1 � l.1/a
�b̌o

The differences are checked for estimability. Notice that this set of odds ratios can also be obtained
with the following LSMESTIMATE statement (assuming A has five levels):

lsmestimate A 1 0 0 0 -1,
0 1 0 0 -1,
0 0 1 0 -1,
0 0 0 1 -1 / exp cl;

You can also obtain the odds ratios with this LSMEANS statement (assuming the last level of A is
coded as 5):

lsmeans A / diff=control('5') oddsratio cl;

• The odds ratios for the covariate must take into account that x occurs in an interaction with the A effect.
A second set of least squares means are computed, where x is set to x C 1. Denote the coefficients
of the estimable functions for this set of least squares means as L.2/. Differences of the least squares
means at a given level of factor A are then computed and exponentiated:

 .A.x C 1/1; A.x/1/ D exp
n�

l.2/1 � l.1/1
�b̌o

 .A.x C 1/2; A.x/2/ D exp
n�

l.2/2 � l.1/2
�b̌o

:::

 .A.x C 1/a; A.x/a/ D exp
n�

l.2/a � l.1/a
�b̌o
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The differences are checked for estimability. If the continuous covariate does not appear in an
interaction with the A variable, only a single odds ratio estimate related to x would be produced,
relating the odds of a one-unit shift in the regressor from x.

Suppose you fit a model that contains interactions of continuous variables, as with the following statements:

proc glimmix;
class A;
model y = A x x*z / dist=binary oddsratio;

run;

In the computation of the A least squares means, the continuous effects are set to their means—that is, x and
xz. In the computation of odds ratios for x, linear predictors are computed at x = x, x*z = x � z and at x =
x C 1, x*z = .x C 1/z.

Modifying the Default Table, Customized Odds Ratios
Several suboptions of the ODDSRATIO option in the MODEL statement are available to obtain customized
odds ratio estimates. For customized odds ratios that cannot be obtained with these suboptions, use the EXP
option in the ESTIMATE or LSMESTIMATE statement.

The type of differences constructed when the levels of a classification factor are varied is controlled by the
DIFF= suboption. By default, differences against the last level are taken. DIFF=FIRST computes differences
from the first level, and DIFF=ALL computes odds ratios based on all pairwise differences.

For continuous variables in the model, you can change both the reference value (with the AT suboption) and
the units of change (with the UNIT suboption). By default, a one-unit change from the mean of the covariate
is assessed. For example, the following statements produce all pairwise differences for the A factor:

proc glimmix;
class A;
model y = A x A*x / dist=binary

oddsratio(diff=all
at x=4
unit x=3);

run;

The covariate x is set to the reference value x = 4 in the computation of the least squares means for the A
odds ratio estimates. The odds ratios computed for the covariate are based on differencing this set of least
squares means with a set of least squares means computed at x D 4C 3.

Odds or Odds Ratio

The odds ratio is the exponentiation of a difference on the logit scale,

 .�1; �0/ D exp f.l1 � l0/ˇg

and expfl1ˇg and expfl0ˇg are the corresponding odds. If the ODDSRATIO option is specified in a suitable
model in the PROC GLIMMIX statement or the individual statements that support the option, odds ratios
are computed in the “Odds Ratio Estimates” table (MODEL statement), the “Differences of Least Squares
Means” table (LSMEANS / DIFF), and the “Simple Effect Comparisons of Least Squares Means” table
(LSMEANS / SLICEDIFF=). Odds are computed in the “Least Squares Means” table.
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Odds Ratios in Multinomial Models

The GLIMMIX procedure fits two kinds of models to multinomial data. Models with cumulative link
functions apply to ordinal data, and generalized logit models are fit to nominal data. If you model a
multinomial response with LINK=CUMLOGIT or LINK=GLOGIT, odds ratio results are available for these
models.

In the generalized logit model, you model baseline category logits. By default, the GLIMMIX procedure
chooses the last category as the reference category. If your nominal response has J categories, the baseline
logit for category j is

log
˚
�j =�J

	
D �j D x0ˇj C z0uj

and

�j D
expf�j gPJ
kD1 expf�kg

�J D 0

As before, suppose that the two conditions to be compared are identified with subscripts 1 and 0. The log
odds ratio of outcome j versus J for the two conditions is then

log
˚
 
�
�j1; �j0

�	
D log

�
�j1=�J1

�j0=�J0

�
D log

�
expf�j1g
expf�j0g

�
D �j1 � �j0

Note that the log odds ratios are again differences on the scale of the linear predictor, but they depend on
the response category. The GLIMMIX procedure determines the estimable functions whose differences
represent log odds ratios as discussed previously but produces separate estimates for each nonreference
response category.

In models for ordinal data, PROC GLIMMIX models the logits of cumulative probabilities. Thus, the
estimates on the linear scale represent log cumulative odds. The cumulative logits are formed as

log
�
Pr.Y � j /
Pr.Y > j /

�
D �j D ˛j C x0ˇ C z0 D ˛j C Q�

so that the linear predictor depends on the response category only through the intercepts (cutoffs)
˛1; � � � ; ˛J�1. The odds ratio comparing two conditions represented by linear predictors �j1 and �j0
is then

 
�
�j1; �j0

�
D exp

˚
�j1 � �j0

	
D exp f Q�1 � Q�0g

and is independent of category.

Parameterization of Generalized Linear Mixed Models
PROC GLIMMIX constructs a generalized linear mixed model according to the specifications in the CLASS,
MODEL, and RANDOM statements. Each effect in the MODEL statement generates one or more columns
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in the matrix X, and each G-side effect in the RANDOM statement generates one or more columns in the
matrix Z. R-side effects in the RANDOM statement do not generate model matrices; they serve only to
index observations within subjects. This section shows how the GLIMMIX procedure builds X and Z. You
can output the X and Z matrices to a SAS data set with the OUTDESIGN= option in the PROC GLIMMIX
statement.

The general rules and techniques for parameterization of a linear model are given in “GLM Parameterization
of Classification Variables and Effects” on page 387 in Chapter 19, “Shared Concepts and Topics.” The
following paragraphs discuss how these rules differ in a mixed model, in particular, how parameterization
differs between the X and the Z matrix.

Intercept

By default, all models automatically include a column of 1s in X to estimate a fixed-effect intercept parameter.
You can use the NOINT option in the MODEL statement to suppress this intercept. The NOINT option is
useful when you are specifying a classification effect in the MODEL statement and you want the parameter
estimates to be in terms of the (linked) mean response for each level of that effect, rather than in terms of a
deviation from an overall mean.

By contrast, the intercept is not included by default in Z. To obtain a column of 1s in Z, you must specify in
the RANDOM statement either the INTERCEPT effect or some effect that has only one level.

Interaction Effects

Often a model includes interaction (crossed) effects. With an interaction, PROC GLIMMIX first reorders
the terms to correspond to the order of the variables in the CLASS statement. Thus, B*A becomes A*B if A
precedes B in the CLASS statement. Then, PROC GLIMMIX generates columns for all combinations of
levels that occur in the data. The order of the columns is such that the rightmost variables in the cross index
faster than the leftmost variables. Empty columns (which would contain all 0s) are not generated for X, but
they are for Z.

See Table 19.5 in the section “GLM Parameterization of Classification Variables and Effects” on page 387 in
Chapter 19, “Shared Concepts and Topics,” for an example of an interaction parameterization.

Nested Effects

Nested effects are generated in the same manner as crossed effects. Hence, the design columns generated by
the following two statements are the same (but the ordering of the columns is different):

Note that nested effects are often distinguished from interaction effects by the implied randomization structure
of the design. That is, they usually indicate random effects within a fixed-effects framework. The fact that
random effects can be modeled directly in the RANDOM statement might make the specification of nested
effects in the MODEL statement unnecessary.

See Table 19.6 in the section “GLM Parameterization of Classification Variables and Effects” on page 387 in
Chapter 19, “Shared Concepts and Topics,” for an example of the parameterization of a nested effect.

Implications of the Non-Full-Rank Parameterization

For models with fixed effects involving classification variables, there are more design columns in X con-
structed than there are degrees of freedom for the effect. Thus, there are linear dependencies among the
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columns of X. In this event, all of the parameters are not estimable; there is an infinite number of solutions
to the mixed model equations. The GLIMMIX procedure uses a generalized inverse (a g2-inverse, Pringle
and Rayner (1971), to obtain values for the estimates (Searle 1971). The solution values are not displayed
unless you specify the SOLUTION option in the MODEL statement. The solution has the characteristic that
estimates are 0 whenever the design column for that parameter is a linear combination of previous columns.
With this parameterization, hypothesis tests are constructed to test linear functions of the parameters that are
estimable.

Some procedures (such as the CATMOD and LOGISTIC procedures) reparameterize models to full rank
by using restrictions on the parameters. PROC GLM, PROC MIXED, and PROC GLIMMIX do not
reparameterize, making the hypotheses that are commonly tested more understandable. See Goodnight
(1978b) for additional reasons for not reparameterizing.

Missing Level Combinations

PROC GLIMMIX handles missing level combinations of classification variables in the same manner as PROC
GLM and PROC MIXED. These procedures delete fixed-effects parameters corresponding to missing levels
in order to preserve estimability. However, PROC GLIMMIX does not delete missing level combinations
for random-effects parameters because linear combinations of the random-effects parameters are always
predictable. These conventions can affect the way you specify your CONTRAST and ESTIMATE coefficients.

Notes on the EFFECT Statement

Some restrictions and limitations for models that contain constructed effects are in place with the GLIMMIX
procedure. Also, you should be aware of some special defaults and handling that apply only when the model
contains constructed fixed and/or random effects.

• Constructed effects can be used in the MODEL and RANDOM statements but not to specify SUB-
JECT= or GROUP= effects.

• Computed variables are not supported in the specification of a constructed effect. All variables needed
to form the collection of columns for a constructed effect must be in the data set.

• You cannot use constructed effects that comprise continuous variables or interactions with other
constructed effects as the LSMEANS or LSMESTIMATE effect.

• The calculation of quantities that depend on least squares means, such as odds ratios in the “Odds
Ratio Estimates” table, is not possible if the model contains fixed effects that consist of more than one
constructed effects, unless all constructed effects are of spline type. For example, least squares means
computations are not possible in the following model because the MM_AB*cvars effect contains two
constructed effects:

proc glimmix;
class A B C;
effect MM_AB = MM(A B);
effect cvars = COLLECTION(x1 x2 x3);
model y = C MM_AB*cvars;

run;
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• If the MODEL or RANDOM statement contains constructed effects, the default degrees-of-freedom
method for mixed models is DDFM=KENWARDROGER. The containment degrees-of-freedom
method (DDFM=CONTAIN) is not available in these models.

• If the model contains fixed spline effects, least squares means are computed at the average spline
coefficients across the usable data, possibly further averaged over levels of CLASS variables that
interact with the spline effects in the model. You can use the AT option in the LSMEANS and
LSMESTIMATE statements to construct the splines for particular values of the covariates involved.
Consider, for example, the following statements:

proc glimmix;
class A;
effect spl = spline(x);
model y = A spl;
lsmeans A;
lsmeans A / at means;
lsmeans A / at x=0.4;

run;

Suppose that the spl effect contributes seven columns Œs1; � � � ; s7� to the X matrix. The least squares
means coefficients for the spl effect in the first LSMEANS statement are Œs1; � � � ; s7� with the averages
taken across the observations used in the analysis. The second LSMEANS statement computes the
spline coefficient at the average value of x: Œs.x/1; � � � ; s.x/7�. The final LSMEANS statement uses
Œs.0:4/1; � � � ; s.0:4/7�. Using the AT option for least squares means calculations with spline effects
can resolve inestimability issues.

• Using a spline effect with B-spline basis in the RANDOM statement is not the same as using a
penalized B-spline (P-spline) through the TYPE=PSPLINE option in the RANDOM statement. The
following statement constructs a penalized B-spline by using mixed model methodology:

random x / type=pspline;

The next set of statements defines a set of B-spline columns in the Z matrix with uncorrelated random
effects and homogeneous variance:

effect bspline = spline(x);
random bspline / type=vc;

This does not lead to a properly penalized fit. See the documentation on TYPE=PSPLINE about the
construction of penalties for B-splines through the covariance matrix of random effects.

Positional and Nonpositional Syntax for Contrast Coefficients

When you define custom linear hypotheses with the CONTRAST or ESTIMATE statement, the GLIMMIX
procedure sets up an L vector or matrix that conforms to the fixed-effects solutions or the fixed- and random-
effects solutions. With the LSMESTIMATE statement, you specify coefficients of the matrix K that is then
converted into a coefficient matrix that conforms to the fixed-effects solutions.

There are two methods for specifying the entries in a coefficient matrix (hereafter simply referred to as the L
matrix), termed the positional and nonpositional methods. In the positional form, and this is the traditional
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method, you provide a list of values that occupy the elements of the L matrix associated with the effect in
question in the order in which the values are listed. For traditional model effects comprising continuous and
classification variables, the positional syntax is simpler in some cases (main effects) and more cumbersome in
others (interactions). When you work with effects constructed through the experimental EFFECT statement,
the nonpositional syntax is essential.

Consider, for example, the following two-way model with interactions where factors A and B have three and
two levels, respectively:

proc glimmix;
class a b block;
model y = a b a*b / ddfm=kr;
random block a*block;

run;

To test the difference of the B levels at the second level of A with a CONTRAST statement (a slice), you
need to assign coefficients 1 and –1 to the levels of B and to the levels of the interaction where A is at the
second level. Two examples of equivalent CONTRAST statements by using positional and nonpositional
syntax are as follows:

contrast 'B at A2' b 1 -1 a*b 0 0 1 -1 ;
contrast 'B at A2' b 1 -1 a*b [1 2 1] [-1 2 2];

Because A precedes B in the CLASS statement, the levels of the interaction are formed as
˛1ˇ1; ˛1ˇ2; ˛2ˇ1; ˛2ˇ2; � � � . If B precedes A in the CLASS statement, you need to modify the coef-
ficients accordingly:

proc glimmix;
class b a block;
model y = a b a*b / ddfm=kr;
random block a*block;
contrast 'B at A2' b 1 -1 a*b 0 1 0 0 -1 ;
contrast 'B at A2' b 1 -1 a*b [1 1 2] [-1 2 2];
contrast 'B at A2' b 1 -1 a*b [1, 1 2] [-1, 2 2];

run;

You can optionally separate the L value entry from the level indicators with a comma, as in the last
CONTRAST statement.

The general syntax for defining coefficients with the nonpositional syntax is as follows:

effect-name [multiplier < , > level-values] . . . < [multiplier < , > level-values] >

The first entry in square brackets is the multiplier that is applied to the elements of L for the effect after the
level-values have been resolved and any necessary action forming L has been taken.

The level-values are organized in a specific form:

• The number of entries should equal the number of terms needed to construct the effect. For effects that
do not contain any constructed effects, this number is simply the number of terms in the name of the
effect.

• Values of continuous variables needed for the construction of the L matrix precede the level indicators
of CLASS variables.
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• If the effect involves constructed effects, then you need to provide as many continuous and classification
variables as are needed for the effect formation. For example, if a grouping effect is defined as

class c;
effect v = vars(x1 x2 c);

then a proper nonpositional syntax would be, for example,

v [0.5, 0.2 0.3 3]

• If an effect contains both regular terms (old-style effects) and constructed effects, then the order of
the coefficients is as follows: continuous values for old-style effects, class levels for CLASS variables
in old-style effects, continuous values for constructed effects, and finally class levels needed for
constructed effects.

Assume that C has four levels so that effect v contributes six elements to the L matrix. When PROC
GLIMMIX resolves this syntax, the values 0.2 and 0.3 are assigned to the positions for x1 and x2 and a
1 is associated with the third level of C. The resulting vector is then multiplied by 0.5 to produce

Œ0:1 0:15 0 0 0:5 0�

Note that you enter the levels of the classification variables in the square brackets, not their formatted values.
The ordering of the levels of CLASS variables can be gleaned from the “Class Level Information” table.

To specify values for continuous variables, simply give their value as one of the terms in the effect. The
nonpositional syntax in the following ESTIMATE statement is read as “1-time the value 0.4 in the column
associated with level 2 of A”

proc glimmix;
class a;
model y = a a*x / s;
lsmeans a / e at x=0.4;
estimate 'A2 at x=0.4' intercept 1 a 0 1 a*x [1,0.4 2] / e;

run;

Because the value before the comma serves as a multiplier, the same estimable function could also be
constructed with the following statements:

estimate 'A2 at x=0.4' intercept 1 a 0 1 a*x [ 4, 0.1 2];
estimate 'A2 at x=0.4' intercept 1 a 0 1 a*x [ 2, 0.2 2];
estimate 'A2 at x=0.4' intercept 1 a 0 1 a*x [-1, -0.4 2];

Note that continuous variables needed to construct an effect are always listed before any CLASS variables.

When you work with constructed effects, the nonpositional syntax works in the same way. For example, the
following model contains a classification effect and a B-spline. The first two ESTIMATE statements produce
predicted values for level one of C when the continuous variable x takes on the values 20 and 10, respectively.
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proc glimmix;
class c;
effect spl = spline(x / knotmethod=equal(5));
model y = c spl;
estimate 'C = 1 @ x=20' intercept 1 c 1 spl [1,20],

'C = 1 @ x=10' intercept 1 c 1 spl [1,10];
estimate 'Difference' spl [1,20] [-1,10];

run;

The GLIMMIX procedure computes the spline coefficients for the first ESTIMATE statement based on
x = 20, and similarly in the second statement for x = 10. The third ESTIMATE statement computes the
difference of the predicted values. Because the spline effect does not interact with the classification variable,
this difference does not depend on the level of C. If such an interaction is present, you can estimate the
difference in predicted values for a given level of C by using the nonpositional syntax. Because the effect
C*spl contains both old-style terms (C) and a constructed effect, you specify the values for the old-style
terms before assigning values to constructed effects:

proc glimmix;
class c;
effect spl = spline(x / knotmethod=equal(5));
model y = spl*c;
estimate 'C2 = 1, x=20' intercept 1 c*spl [1,1 20];
estimate 'C2 = 2, x=20' intercept 1 c*spl [1,2 20];
estimate 'C diff at x=20' c*spl [1,1 20] [-1,2 20];

run;

It is recommended to add the E option to the CONTRAST, ESTIMATE, or LSMESTIMATE statement to
verify that the L matrix is formed according to your expectations.

In any row of an ESTIMATE or CONTRAST statement you can choose positional and nonpositional syntax
separately for each effect. You cannot mix the two forms of syntax for coefficients of a single effect, however.
For example, the following statement is not proper because both forms of syntax are used for the interaction
effect:

estimate 'A1B1 - A1B2' b 1 -1 a*b 0 1 [-1, 1 2];

Response-Level Ordering and Referencing
In models for binary and multinomial data, the response-level ordering is important because it reflects the
following:

• which probability is modeled with binary data

• how categories are ordered for ordinal data

• which category serves as the reference category in nominal generalized logit models (models for
nominal data)

You should view the “Response Profile” table to ensure that the categories are properly arranged and that
the desired outcome is modeled. In this table, response levels are arranged by Ordered Value. The lowest
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response level is assigned Ordered Value 1, the next lowest is assigned Ordered Value 2, and so forth. In
binary models, the probability modeled is the probability of the response level with the lowest Ordered Value.

You can change which probability is modeled and the Ordered Value in the “Response Profile” table with
the DESCENDING, EVENT=, ORDER=, and REF= response variable options in the MODEL statement.
See the section “Response Level Ordering” on page 4564 in Chapter 60, “The LOGISTIC Procedure,” for
examples about how to use these options to affect the probability being modeled for binary data.

For multinomial models, the response-level ordering affects two important aspects. In cumulative link models
the categories are assumed ordered according to their Ordered Value in the “Response Profile” table. If the
response variable is a character variable or has a format, you should check this table carefully as to whether
the Ordered Values reflect the correct ordinal scale.

In generalized logit models (for multinomial data with unordered categories), one response category is chosen
as the reference category in the formulation of the generalized logits. By default, the linear predictor in
the reference category is set to 0, and the reference category corresponds to the entry in the “Response
Profile” table with the highest Ordered Value. You can affect the assignment of Ordered Values with the
DESCENDING and ORDER= options in the MODEL statement. You can choose a different reference
category with the REF= option. The choice of the reference category for generalized logit models affects
the results. It is sometimes recommended that you choose the category with the highest frequency as the
reference (see, for example, Brown and Prescott 1999, p. 160). You can achieve this with the GLIMMIX
procedure by combining the ORDER= and REF= options, as in the following statements:

proc glimmix;
class preference;
model preference(order=freq ref=first) = feature price /

dist=multinomial
link=glogit;

random intercept / subject=store group=preference;
run;

The ORDER=FREQ option arranges the categories by descending frequency. The REF=FIRST option then
selects the response category with the lowest Ordered Value—the most frequent category—as the reference.

Comparing the GLIMMIX and MIXED Procedures
The MIXED procedure is subsumed by the GLIMMIX procedure in the following sense:

• Linear mixed models are a special case in the family of generalized linear mixed models; a linear
mixed model is a generalized linear mixed model where the conditional distribution is normal and the
link function is the identity function.

• Most models that can be fit with the MIXED procedure can also be fit with the GLIMMIX procedure.

Despite this overlap in functionality, there are also some important differences between the two procedures.
Awareness of these differences enables you to select the most appropriate tool in situations where you have
a choice between procedures and to identify situations where a choice does not exist. Furthermore, the
%GLIMMIX macro, which fits generalized linear mixed models by linearization methods, essentially calls
the MIXED procedure repeatedly. If you are aware of the syntax differences between the procedures, you
can easily convert your %GLIMMIX macro statements.
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Important functional differences between PROC GLIMMIX and PROC MIXED for linear models and linear
mixed models include the following:

• The MIXED procedure models R-side effects through the REPEATED statement and G-side effects
through the RANDOM statement. The GLIMMIX procedure models all random components of the
model through the RANDOM statement. You use the _RESIDUAL_ keyword or the RESIDUAL
option in the RANDOM statement to model R-side covariance structure in the GLIMMIX procedure.
For example, the PROC MIXED statement

repeated / subject=id type=ar(1);

is equivalent to the following RANDOM statement in the GLIMMIX procedure:

random _residual_ / subject=id type=ar(1);

If you need to specify an effect for levelization—for example, because the construction of the R matrix
is order-dependent or because you need to account for missing values—the RESIDUAL option in the
RANDOM statement of the GLIMMIX procedure is used to indicate that you are modeling an R-side
covariance nature. For example, the PROC MIXED statements

class time id;
repeated time / subject=id type=ar(1);

are equivalent to the following PROC GLIMMIX statements:

class time id;
random time / subject=id type=ar(1) residual;

• There is generally considerable overlap in the covariance structures available through the TYPE= option
in the RANDOM statement in PROC GLIMMIX and through the TYPE= options in the RANDOM and
REPEATED statements in PROC MIXED. However, the Kronecker-type structures, the geometrically
anisotropic spatial structures, and the GDATA= option in the RANDOM statement of the MIXED
procedure are currently not supported in the GLIMMIX procedure. The MIXED procedure, on the
other hand, does not support TYPE=RSMOOTH and TYPE=PSPLINE.

• For normal linear mixed models, the (default) METHOD=RSPL in PROC GLIMMIX is identical to
the default METHOD=REML in PROC MIXED. Similarly, METHOD=MSPL in PROC GLIMMIX is
identical for these models to METHOD=ML in PROC MIXED. The GLIMMIX procedure does not
support Type I through Type III (ANOVA) estimation methods for variance component models. Also,
the procedure does not have a METHOD=MIVQUE0 option, but you can produce these estimates
through the NOITER option in the PARMS statement.

• The MIXED procedure solves the iterative optimization problem by means of a ridge-stabilized Newton-
Raphson algorithm. With the GLIMMIX procedure, you can choose from a variety of optimization
methods via the NLOPTIONS statement. The default method for most GLMMs is a quasi-Newton
algorithm. A ridge-stabilized Newton-Raphson algorithm, akin to the optimization method in the
MIXED procedure, is available in the GLIMMIX procedure through the TECHNIQUE=NRRIDG
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option in the NLOPTIONS statement. Because of differences in the line-search methods, update meth-
ods, and the convergence criteria, you might get slightly different estimates with the two procedures
in some instances. The GLIMMIX procedure, for example, monitors several convergence criteria
simultaneously.

• You can produce predicted values, residuals, and confidence limits for predicted values with both
procedures. The mechanics are slightly different, however. With the MIXED procedure you use the
OUTPM= and OUTP= options in the MODEL statement to write statistics to data sets. With the
GLIMMIX procedure you use the OUTPUT statement and indicate with keywords which “flavor” of a
statistic to compute.

• The following GLIMMIX statements are not available in the MIXED procedure: COVTEST, EFFECT,
FREQ, LSMESTIMATE, OUTPUT, and programming statements.

• A sampling-based Bayesian analysis as through the PRIOR statement in the MIXED procedure is not
available in the GLIMMIX procedure.

• In the GLIMMIX procedure, several RANDOM statement options apply to the RANDOM statement
in which they are specified. For example, the following statements in the GLIMMIX procedure
request that the solution vector be printed for the A and A*B*C random effects and that the G matrix
corresponding to the A*B interaction random effect be displayed:

random a / s;
random a*b / G;
random a*b*c / alpha=0.04;

Confidence intervals with a 0.96 coverage probability are produced for the solutions of the A*B*C effect.
In the MIXED procedure, the S option, for example, when specified in one RANDOM statement,
applies to all RANDOM statements.

• If you select nonmissing values in the value-list of the DDF= option in the MODEL statement, PROC
GLIMMIX uses these values to override degrees of freedom for this effect that might be determined
otherwise. For example, the following statements request that the denominator degrees of freedom for
tests and confidence intervals involving the A effect be set to 4:

proc glimmix;
class block a b;
model y = a b a*b / s ddf=4,.,. ddfm=satterthwaite;
random block a*block / s;
lsmeans a b a*b / diff;

run;

In the example, this applies to the “Type III Tests of Fixed Effects,” “Least Squares Means,” and
“Differences of Least Squares Means” tables. In the MIXED procedure, the Satterthwaite approximation
overrides the DDF= specification.

• The DDFM=BETWITHIN degrees-of-freedom method in the GLIMMIX procedure requires that the
data be processed by subjects; see the section “Processing by Subjects” on page 3218.
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• When you add the response variable to the CLASS statement, PROC GLIMMIX defaults to the
multinomial distribution. Adding the response variable to the CLASS statement in PROC MIXED has
no effect on the fitted model.

• The ODS name of the table for the solution of fixed effects is SolutionF in the MIXED procedure. In
PROC GLIMMIX, the name of the table that contains fixed-effects solutions is ParameterEstimates.
In generalized linear models, this table also contains scale parameters and overdispersion parameters.
The MIXED procedure always produces a “Covariance Parameter Estimates” table. The GLIMMIX
procedure produces this table only in mixed models or models with nontrivial R-side covariance
structure.

• If you compute predicted values in the GLIMMIX procedure in a model with only R-side random
components and missing values for the dependent variable, the predicted values will not be kriging
predictions as is the case with the MIXED procedure.

Singly or Doubly Iterative Fitting
Depending on the structure of your model, the GLIMMIX procedure determines the appropriate approach for
estimating the parameters of the model. The elementary algorithms fall into three categories:

1. Noniterative algorithms
A closed form solution exists for all model parameters. Standard linear models with homoscedastic,
uncorrelated errors can be fit with noniterative algorithms.

2. Singly iterative algorithms
A single optimization, consisting of one or more iterations, is performed to obtain solutions for the
parameter estimates by numerical techniques. Linear mixed models for normal data can be fit with
singly iterative algorithms. Laplace and quadrature estimation for generalized linear mixed models uses
a singly iterative algorithm with a separate suboptimization to compute the random-effects solutions as
modes of the log-posterior distribution.

3. Doubly iterative algorithms
A model of simpler structure is derived from the target model. The parameters of the simpler model
are estimated by noniterative or singly iterative methods. Based on these new estimates, the model of
simpler structure is rederived and another estimation step follows. The process continues until changes
in the parameter estimates are sufficiently small between two recomputations of the simpler model or
until some other criterion is met. The rederivation of the model can often be cast as a change of the
response to some pseudo-data along with an update of implicit model weights.

Obviously, noniterative algorithms are preferable to singly iterative ones, which in turn are preferable to
doubly iterative algorithms. Two drawbacks of doubly iterative algorithms based on linearization are that
likelihood-based measures apply to the pseudo-data, not the original data, and that at the outer level the
progress of the algorithm is tied to monitoring the parameter estimates. The advantage of doubly iterative
algorithms, however, is to offer—at convergence—the statistical inference tools that apply to the simpler
models.
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The output and log messages contain information about which algorithm is employed. For a noniterative al-
gorithm, PROC GLIMMIX produces a message that no optimization was performed. Noniterative algorithms
are employed automatically for normal data with identity link.

You can determine whether a singly or doubly iterative algorithm was used, based on the “Iteration History”
table and the “Convergence Status” table (Figure 44.17).

Figure 44.17 Iteration History and Convergence Status in Singly Iterative Fit

The GLIMMIX ProcedureThe GLIMMIX Procedure

Iteration History

Iteration Restarts Evaluations
Objective
Function Change

Max
Gradient

0 0 4 83.039723731 . 13.63536

1 0 3 82.189661988 0.85006174 0.281308

2 0 3 82.189255211 0.00040678 0.000174

3 0 3 82.189255211 0.00000000 1.05E-10

Convergence criterion (GCONV=1E-8) satisfied.

The “Iteration History” table contains the Evaluations column that shows how many function evaluations were
performed in a particular iteration. The convergence status message informs you which convergence criterion
was met when the estimation process concluded. In a singly iterative fit, the criterion is one that applies to the
optimization. In other words, it is one of the criteria that can be controlled with the NLOPTIONS statement:
see the ABSCONV=, ABSFCONV=, ABSGCONV=, ABSXCONV=, FCONV=, or GCONV= option.

In a doubly iterative fit, the “Iteration History” table does not contain an Evaluations column. Instead it
displays the number of iterations within an optimization (Subiterations column in Figure 44.18).

Figure 44.18 Iteration History and Convergence Status in Doubly Iterative Fit

Iteration History

Iteration Restarts Subiterations
Objective
Function Change

Max
Gradient

0 0 5 79.688580269 0.11807224 7.851E-7

1 0 3 81.294622554 0.02558021 8.209E-7

2 0 2 81.438701534 0.00166079 4.061E-8

3 0 1 81.444083567 0.00006263 2.311E-8

4 0 1 81.444265216 0.00000421 0.000025

5 0 1 81.444277364 0.00000383 0.000023

6 0 1 81.444266322 0.00000348 0.000021

7 0 1 81.44427636 0.00000316 0.000019

8 0 1 81.444267235 0.00000287 0.000017

9 0 1 81.444275529 0.00000261 0.000016

10 0 1 81.44426799 0.00000237 0.000014

11 0 1 81.444274843 0.00000216 0.000013

12 0 1 81.444268614 0.00000196 0.000012

13 0 1 81.444274277 0.00000178 0.000011

14 0 1 81.444269129 0.00000162 9.772E-6

15 0 0 81.444273808 0.00000000 9.102E-6
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Figure 44.18 continued

Convergence criterion (PCONV=1.11022E-8) satisfied.

The Iteration column then counts the number of optimizations. The “Convergence Status” table indicates
that the estimation process concludes when a criterion is met that monitors the parameter estimates across
optimization, namely the PCONV= or ABSPCONV= criterion.

You can control the optimization process with the GLIMMIX procedure through the NLOPTIONS statement.
Its options affect the individual optimizations. In a doubly iterative scheme, these apply to all optimizations.

The default optimization techniques are TECHNIQUE=NONE for noniterative estimation, TECH-
NIQUE=NEWRAP for singly iterative methods in GLMs, TECHNIQUE=NRRIDG for pseudo-likelihood
estimation with binary data, and TECHNIQUE=QUANEW for other mixed models.

Default Estimation Techniques
Based on the structure of the model, the GLIMMIX procedure selects the estimation technique for estimating
the model parameters. If you fit a generalized linear mixed model, you can change the estimation technique
with the METHOD= option in the PROC GLIMMIX statement. The defaults are determined as follows:

• generalized linear model

– normal distribution: restricted maximum likelihood

– all other distributions: maximum likelihood

• generalized linear model with overdispersion
Parameters (ˇ; �, if present) are estimated by (restricted) maximum likelihood as for generalized linear
models. The overdispersion parameter is estimated from the Pearson statistic after all other parameters
have been estimated.

• generalized linear mixed models
The default technique is METHOD=RSPL, corresponding to maximizing the residual log pseudo-
likelihood with an expansion about the current solutions of the best linear unbiased predictors of the ran-
dom effects. In models for normal data with identity link, METHOD=RSPL and METHOD=RMPL are
equivalent to restricted maximum likelihood estimation, and METHOD=MSPL and METHOD=MMPL
are equivalent to maximum likelihood estimation. This is reflected in the labeling of statistics in the
“Fit Statistics” table.

Default Output
The following sections describe the output that PROC GLIMMIX produces by default. The output is
organized into various tables, which are discussed in the order of appearance. Note that the contents of a
table can change with the estimation method or the model being fit.



3242 F Chapter 44: The GLIMMIX Procedure

Model Information

The “Model Information” table displays basic information about the fitted model, such as the link and
variance functions, the distribution of the response, and the data set. If important model quantities—for
example, the response, weights, link, or variance function—are user-defined, the “Model Information” table
displays the final assignment to the respective variable, as determined from your programming statements.
If the table indicates that the variance matrix is blocked by an effect, then PROC GLIMMIX processes the
data by subjects. The “Dimensions” table displays the number of subjects. For more information about
processing by subjects, see the section “Processing by Subjects” on page 3218. The ODS name of the “Model
Information” table is ModelInfo.

Class Level Information

The “Class Level Information” table lists the levels of every variable specified in the CLASS statement. You
should check this information to make sure that the data are correct. You can adjust the order of the CLASS
variable levels with the ORDER= option in the PROC GLIMMIX statement. The ODS name of the “Class
Level Information” table is ClassLevels.

Number of Observations

The “Number of Observations” table displays the number of observations read from the input data set and the
number of observations used in the analysis. If you specify a FREQ statement, the table also displays the
sum of frequencies read and used. If the events/trials syntax is used for the response, the table also displays
the number of events and trials used in the analysis. The ODS name of the “Number of Observations” table
is NObs.

Response Profile

For binary and multinomial data, the “Response Profile” table displays the Ordered Value from which the
GLIMMIX procedure determines the following:

• the probability being modeled for binary data

• the ordering of categories for ordinal data

• the reference category for generalized logit models

For each response category level, the frequency used in the analysis is reported. The section “Response-Level
Ordering and Referencing” on page 3235 explains how you can use the DESCENDING, EVENT=, ORDER=,
and REF= options to affect the assignment of Ordered Values to the response categories. The ODS name of
the “Response Profile” table is ResponseProfile.

Dimensions

The “Dimensions” table displays information from which you can determine the size of relevant matrices in
the model. This table is useful in determining CPU time and memory requirements. The ODS name of the
“Dimensions” table is “Dimensions.”
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Optimization Information

The “Optimization Information” table displays important details about the optimization process.

The optimization technique that is displayed in the table is the technique that applies to any single optimization.
For singly iterative methods that is the optimization method.

The number of parameters that are updated in the optimization equals the number of parameters in this
table minus the number of equality constraints. The number of constraints is displayed if you fix covariance
parameters with the HOLD= option in the PARMS statement. The GLIMMIX procedure also lists the number
of upper and lower boundary constraints. Note that the procedure might impose boundary constraints for
certain parameters, such as variance components and correlation parameters. Covariance parameters for
which a HOLD= was issued have an upper and lower boundary equal to the parameter value.

If a residual scale parameter is profiled from the optimization, it is also shown in the “Optimization Informa-
tion” table.

In a GLMM for which the parameters are estimated by one of the linearization methods, you need to initiate
the process of computing the pseudo-response. This can be done based on existing estimates of the fixed
effects, or by using the data themselves—possibly after some suitable adjustment—as an estimate of the
initial mean. The default in PROC GLIMMIX is to use the data themselves to derive initial estimates of
the mean function and to construct the pseudo-data. The “Optimization Information” table shows how the
pseudo-data are determined initially. Note that this issue is separate from the determination of starting values
for the covariance parameters. These are computed as minimum variance quadratic unbiased estimates (with
0 priors, MIVQUE0; Goodnight 1978a) or obtained from the value-list in the PARMS statement.

The ODS name of the table is OptInfo.

Iteration History

The “Iteration History” table describes the progress of the estimation process. In singly iterative methods, the
table displays the following:

• the iteration count, Iteration

• the number of restarts, Restarts

• the number of function evaluations, Evaluations

• the objective function, Objective

• the change in the objective function, Change

• the absolute value of the largest (projected) gradient, MaxGradient

Note that the change in the objective function is not the convergence criterion monitored by the GLIMMIX
procedure. PROC GLIMMIX tracks several convergence criteria simultaneously; see the ABSCONV=, ABS-
FCONV=, ABSGCONV=, ABSXCONV=, FCONV=, or GCONV= option in the NLOPTIONS statement.

For doubly iterative estimation methods, the “Iteration History” table does not display the progress of the
individual optimizations; instead, it reports on the progress of the outer iterations. Every row of the table
then corresponds to an update of the linearization, the computation of a new set of pseudo-data, and a new
optimization. In the listing, PROC GLIMMIX displays the following:
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• the optimization count, Iteration

• the number of restarts, Restarts

• the number of iterations per optimization, Subiterations

• the change in the parameter estimates, Change

• the absolute value of the largest (projected) gradient at the end of the optimization, MaxGradient

By default, the change in the parameter estimates is expressed in terms of the relative PCONV criterion.
If you request an absolute criterion with the ABSPCONV option of the PROC GLIMMIX statement, the
change reflects the largest absolute difference since the last optimization.

If you specify the ITDETAILS option in the PROC GLIMMIX statement, parameter estimates and their
gradients are added to the “Iteration History” table. The ODS name of the “Iteration History” table is
IterHistory.

Convergence Status

The “Convergence Status” table contains a status message describing the reason for termination of the
optimization. The message is also written to the log. The ODS name of the “Convergence Status” table is
ConvergenceStatus, and you can query the nonprinting numeric variable Status to check for a successful
optimization. This is useful in batch processing, or when processing BY groups, such as in simulations.
Successful optimizations are indicated by the value 0 of the Status variable.

Fit Statistics

The “Fit Statistics” table provides statistics about the estimated model. The first entry of the table corresponds
to the negative of twice the (possibly restricted) log likelihood, log pseudo-likelihood, or log quasi-likelihood.
If the estimation method permits the true log likelihood or residual log likelihood, the description of the first
entry reads accordingly. Otherwise, the fit statistics are preceded by the words Pseudo- or Quasi-, for Pseudo-
and Quasi-Likelihood estimation, respectively.

Note that the (residual) log pseudo-likelihood in a GLMM is the (residual) log likelihood of a linearized
model. You should not compare these values across different statistical models, even if the models are
nested with respect to fixed and/or G-side random effects. It is possible that between two nested models the
larger model has a smaller pseudo-likelihood. For this reason, IC=NONE is the default for GLMMs fit by
pseudo-likelihood methods.

See the IC= option of the PROC GLIMMIX statement and Table 44.2 for the definition and computation of
the information criteria reported in the “Fit Statistics” table.

For generalized linear models, the GLIMMIX procedure reports Pearson’s chi-square statistic

X2 D
X
i

wi .yi �b�i /2
a.b�i /

where a.b�i / is the variance function evaluated at the estimated mean.

For GLMMs, the procedure typically reports a generalized chi-square statistic,

X2g Dbr0V.b��/�1br
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so that the ratio of X2 or X2g and the degrees of freedom produces the usual residual dispersion estimate.

If the R-side scale parameter � is not extracted from V, the GLIMMIX procedure computes

X2g Dbr0V.b�/�1br
as the generalized chi-square statistic. This is the case, for example, if R-side covariance structures are varied
by a GROUP= effect or if the scale parameter is not profiled for an R-side TYPE=CS, TYPE=SP, TYPE=AR,
TYPE=TOEP, or TYPE=ARMA covariance structure.

For METHOD=LAPLACE, the generalized chi-square statistic is not reported. Instead, the Pearson statistic
for the conditional distribution appears in the “Conditional Fit Statistics” table.

If your model contains smooth components (such as TYPE=RSMOOTH), then the “Fit Statistics” table also
displays the residual degrees of freedom of the smoother. These degrees of freedom are computed as

df smooth;res D f � trace.S/

where S is the “smoother” matrix—that is, the matrix that produces the predicted values on the linked scale.

The ODS name of the “Fit Statistics” table is FitStatistics.

Covariance Parameter Estimates

In a GLMM, the “Covariance Parameter Estimates” table displays the estimates of the covariance parameters
and their asymptotic standard errors. This table is produced only for generalized linear mixed models. In
generalized linear models with scale parameter, or when an overdispersion parameter is present, the estimates
of parameters related to the dispersion are displayed in the “Parameter Estimates” table.

The standard error of the covariance parameters is determined from the diagonal entries of the asymptotic
variance matrix of the covariance parameter estimates. You can display this matrix with the ASYCOV option
in the PROC GLIMMIX statement.

The ODS name of the “Covariance Parameter Estimates” table is CovParms.

Type III Tests of Fixed Effects

The “Type III Tests of Fixed Effects” table contains hypothesis tests for the significance of each of the fixed
effects specified in the MODEL statement. By default, PROC GLIMMIX computes these tests by first
constructing a Type III L matrix for each effect; see Chapter 15, “The Four Types of Estimable Functions.”
The L matrix is then used to construct the test statistic

F D
b̌0L0.LQL0/�1Lb̌

rank.LQL0/

where the matrix Q depends on the estimation method and options. For example, in a GLMM, the default
is Q D .X0V.b�/�1X/�, where V.�/ is the marginal variance of the pseudo-response. If you specify the
DDFM=KENWARDROGER option, Q is the estimated variance matrix of the fixed effects, adjusted by the
method of Kenward and Roger (1997). If the EMPIRICAL= option is in effect, Q corresponds to the selected
sandwich estimator.

You can use the HTYPE= option in the MODEL statement to obtain tables of Type I (sequential) tests and
Type II (adjusted) tests in addition to or instead of the table of Type III (partial) tests.

The ODS names of the “Type I Tests of Fixed Effects” through the “Type III Tests of Fixed Effects” tables
are Tests1 through Tests3, respectively.
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Notes on Output Statistics
Table 44.14 lists the statistics computed with the OUTPUT statement of the GLIMMIX procedure and their
default names. This section provides further details about these statistics.

The distinction between prediction and confidence limits in Table 44.14 stems from the involvement of
the predictors of the random effects. If the random-effect solutions (BLUPs, EBES) are involved, then the
associated standard error used in computing the limits are standard errors of prediction rather than standard
errors of estimation. The prediction limits are not limits for the prediction of a new observation.

The Pearson residuals in Table 44.14 are “Pearson-type” residuals, because the residuals are standardized by
the square root of the marginal or conditional variance of an observation. Traditionally, Pearson residuals in
generalized linear models are divided by the square root of the variance function. The GLIMMIX procedure
divides by the square root of the variance so that marginal and conditional residuals have similar expressions.
In other words, scale and overdispersion parameters are included.

When residuals or predicted values involve only the fixed effects part of the linear predictor (that is,b�m D x0b̌),
then all model quantities are computed based on this predictor. For example, if the variance by which to
standardize a marginal residual involves the variance function, then the variance function is also evaluated at
the marginal mean, g�1.b�m/. Thus the residuals p �b� and pm �b�m can also be expressed as .y � �/=@�
and .y ��m/=@�m, respectively, where @� is the derivative with respect to the linear predictor. To construct
the residual p �b�m in a GLMM, you can add the value of _ZGAMMA_ to the conditional residual p �b�.
(The residual p �b�m is computed instead of the default marginal residual when you specify the CPSEUDO
option in the OUTPUT statement.) If the predictor involves the BLUPs, then all relevant expressions and
evaluations involve the conditional mean g�1.b�/.
The naming convention to add “PA” to quantities not involving the BLUPs is chosen to suggest the concept of
a population average. When the link function is nonlinear, these are not truly population-averaged quantities,
because g�1.x0ˇ/ does not equal EŒY � in the presence of random effects. For example, if

�i D g
�1.x0iˇ C z0ii /

is the conditional mean for subject i, then

g�1.x0ib̌/
does not estimate the average response in the population of subjects but the response of the average subject
(the subject for which i D 0). For models with identity link, the average response and the response of the
average subject are identical.

The GLIMMIX procedure obtains standard errors on the scale of the mean by the delta method. If the link is
a nonlinear function of the linear predictor, these standard errors are only approximate. For example,

VarŒg�1.b�m/� :D �@g�1.t/
@t jb�m

�2
VarŒb�m�

Confidence limits on the scale of the data are usually computed by applying the inverse link function to
the confidence limits on the linked scale. The resulting limits on the data scale have the same coverage
probability as the limits on the linked scale, but they are possibly asymmetric.

In generalized logit models, confidence limits on the mean scale are based on symmetric limits about the
predicted mean in a category. Suppose that the multinomial response in such a model has J categories. The
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probability of a response in category i is computed as

b�i D exp fb�igPJ
jD1 exp fb�ig

The variance of b�i is then approximated as

VarŒb�i � :D � D �0iVar � b�1 b�2 � � � b�J �
�i

where �i is a J � 1 vector with kth element

b�i .1 �b�i / i D k

�b�ib�k i 6D k

The confidence limits in the generalized logit model are then obtained as

b�i ˙ t�;˛=2p�
where t�;˛=2 is the 100 � .1 � ˛=2/ percentile from a t distribution with � degrees of freedom. Confidence
limits are truncated if they fall outside the Œ0; 1� interval.

ODS Table Names
Each table created by PROC GLIMMIX has a name associated with it, and you must use this name to
reference the table when you use ODS statements. These names are listed in Table 44.23.

Table 44.23 ODS Tables Produced by PROC GLIMMIX

Table Name Description Required Statement / Option

AsyCorr asymptotic correlation matrix of co-
variance parameters

PROC GLIMMIX ASYCORR

AsyCov asymptotic covariance matrix of co-
variance parameters

PROC GLIMMIX ASYCOV

CholG Cholesky root of the estimated G ma-
trix

RANDOM / GC

CholV Cholesky root of blocks of the esti-
mated V matrix

RANDOM / VC

ClassLevels level information from the CLASS
statement

default output

Coef L matrix coefficients E option in MODEL, CONTRAST,
ESTIMATE, LSMESTIMATE, or
LSMEANS; ELSM option in LS-
MESTIMATE

ColumnNames name association for OUTDESIGN
data set

PROC GLIMMIX
OUTDESIGN(NAMES)

CondFitStatistics conditional fit statistics PROC GLIMMIX
METHOD=LAPLACE

Contrasts results from the CONTRAST state-
ments

CONTRAST
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Table 44.23 continued

Table Name Description Required Statement / Option

ConvergenceStatus status of optimization at conclusion default output
CorrB approximate correlation matrix of

fixed-effects parameter estimates
MODEL / CORRB

CovB approximate covariance matrix of
fixed-effects parameter estimates

MODEL / COVB

CovBDetails details about model-based and/or ad-
justed covariance matrix of fixed ef-
fects

MODEL / COVB(DETAILS)

CovBI inverse of approximate covariance
matrix of fixed-effects parameter es-
timates

MODEL / COVBI

CovBModelBased model-based (unadjusted) covariance
matrix of fixed effects if DDFM=KR
or EMPIRICAL option is used

MODEL / COVB(DETAILS)

CovParms estimated covariance parameters in
GLMMs

default output (in GLMMs)

CovTests results from COVTEST statements
(except for confidence bounds)

COVTEST

Diffs differences of LS-means LSMEANS / DIFF (or PDIFF)
Dimensions dimensions of the model default output
Estimates results from ESTIMATE statements ESTIMATE
FitStatistics fit statistics default
G estimated G matrix RANDOM / G
GCorr correlation matrix from the estimated

G matrix
RANDOM / GCORR

Hessian Hessian matrix (observed or ex-
pected)

PROC GLIMMIX HESSIAN

InvCholG inverse Cholesky root of the esti-
mated G matrix

RANDOM / GCI

InvCholV inverse Cholesky root of the blocks
of the estimated V matrix

RANDOM / VCI

InvG inverse of the estimated G matrix RANDOM / GI
InvV inverse of blocks of the estimated V

matrix
RANDOM / VI

IterHistory iteration history default output
kdTree k-d tree information RANDOM / TYPE=RSMOOTH

KNOTMETHOD=
KDTREE(TREEINFO)

KnotInfo knot coordinates of low-rank spline
smoother

RANDOM / TYPE=RSMOOTH
KNOTINFO

LSMeans LS-means LSMEANS
LSMEstimates estimates among LS-means LSMESTIMATE
LSMFtest F test for LSMESTIMATEs LSMESTIMATE / FTEST
LSMLines lines display for LS-means LSMEANS / LINES



ODS Graphics F 3249

Table 44.23 continued

Table Name Description Required Statement / Option

ModelInfo model information default output
NObs number of observations read and

used, number of trials and events
default output

OddsRatios odds ratios of parameter estimates MODEL / ODDSRATIO
OptInfo optimization information default output
ParameterEstimates fixed-effects solution; overdispersion

and scale parameter in GLMs
MODEL / S

ParmSearch parameter search values PARMS
QuadCheck adaptive recalculation of quadrature

approximation at solution
METHOD=QUAD(QCHECK)

ResponseProfile response categories and category
modeled

default output in models with binary
or nominal response

Slices tests of LS-means slices LSMEANS / SLICE=
SliceDiffs differences of simple LS-means ef-

fects
LSMEANS / SLICEDIFF=

SolutionR random-effects solution vector RANDOM / S
StandardizedCoefficients fixed-effects solutions from centered

and/or scaled model
MODEL / STDCOEF

Tests1 Type I tests of fixed effects MODEL / HTYPE=1
Tests2 Type II tests of fixed effects MODEL / HTYPE=2
Tests3 Type III tests of fixed effects default output
V blocks of the estimated V matrix RANDOM / V
VCorr correlation matrix from the blocks of

the estimated V matrix
RANDOM / VCORR

The SLICE statement also creates tables, which are not listed in Table 44.23. For information about these
tables, see the section “SLICE Statement” on page 505 in Chapter 19, “Shared Concepts and Topics.”

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

The following subsections provide information about the basic ODS statistical graphics produced by the
GLIMMIX procedure. The graphics fall roughly into two categories: diagnostic plots and graphics for least
squares means.
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ODS Graph Names

The GLIMMIX procedure does not produce graphs by default. You can reference every graph produced
through ODS Graphics with a name. The names of the graphs that PROC GLIMMIX generates are listed in
Table 44.24, along with the required statements and options.

Table 44.24 Graphs Produced by PROC GLIMMIX

ODS Graph Name Plot Description Option

AnomPlot Plot of LS-mean differences
against the average LS-mean

PLOTS=ANOMPLOT
LSMEANS / PLOTS=ANOMPLOT

Boxplot Box plots of residuals and/or
observed values for model
effects

PLOTS=BOXPLOT

ControlPlot Plot of LS-mean differences
against a control level

PLOTS=CONTROLPLOT
LSMEANS / PLOTS=CONTROLPLOT

DiffPlot Plot of LS-mean pairwise
differences

PLOTS=DIFFPLOT
LSMEANS / PLOTS=DIFFPLOT

MeanPlot Plot of least squares means PLOTS=MEANPLOT
LSMEANS / PLOTS=MEANPLOT

ORPlot Plot of odds ratios PLOTS=ODDSRATIO

PearsonBoxplot Box plot of Pearson residu-
als

PLOTS=PEARSONPANEL(UNPACK)

PearsonByPredicted Pearson residuals vs. mean PLOTS=PEARSONPANEL(UNPACK)

PearsonHistogram Histogram of Pearson resid-
uals

PLOTS=PEARSONPANEL(UNPACK)

PearsonPanel Panel of Pearson residuals PLOTS=PEARSONPANEL

PearsonQQplot Q-Q plot of Pearson residu-
als

PLOTS=PEARSONPANEL(UNPACK)

ResidualBoxplot Box plot of (raw) residuals PLOTS=RESIDUALPANEL(UNPACK)

ResidualByPredicted Residuals vs. mean or linear
predictor

PLOTS=RESIDUALPANEL(UNPACK)

ResidualHistogram Histogram of (raw) residuals PLOTS=RESIDUALPANEL(UNPACK)

ResidualPanel Panel of (raw) residuals PLOTS=RESIDUALPANEL

ResidualQQplot Q-Q plot of (raw) residuals PLOTS=RESIDUALPANEL(UNPACK)

StudentBoxplot Box plot of studentized
residuals

PLOTS=STUDENTPANEL(UNPACK)

StudentByPredicted Studentized residuals vs.
mean or linear predictor

PLOTS=STUDENTPANEL(UNPACK)

StudentHistogram Histogram of studentized
residuals

PLOTS=STUDENTPANEL(UNPACK)

StudentPanel Panel of studentized residu-
als

PLOTS=STUDENTPANEL

StudentQQplot Q-Q plot of studentized
residuals

PLOTS=STUDENTPANEL(UNPACK)
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When ODS Graphics is enabled, the SLICE statement can produce plots that are associated with
its analysis. For information about these plots, see the section “SLICE Statement” on page 505 in
Chapter 19, “Shared Concepts and Topics.”

Diagnostic Plots

Residual Panels
There are three types of residual panels in the GLIMMIX procedure. Their makeup of four component plots
is the same; the difference lies in the type of residual from which the panel is computed. Raw residuals
are displayed with the PLOTS=RESIDUALPANEL option. Studentized residuals are displayed with the
PLOTS=STUDENTPANEL option, and Pearson residuals with the PLOTS=PEARSONPANEL option. By
default, conditional residuals are used in the construction of the panels if the model contains G-side random
effects. For example, consider the following statements:

proc glimmix plots=residualpanel;
class A;
model y = x1 x2 / dist=Poisson;
random int / sub=A;

run;

The parameters are estimated by a pseudo-likelihood method, and at the final stage pseudo-data are related to
a linear mixed model with random intercepts. The residual panel is constructed from

r D p � x0b̌C z0b
where p is the pseudo-data.

The following hypothetical data set contains yields of an industrial process. Material was available from five
randomly selected vendors to produce a chemical reaction whose yield depends on two factors (pressure and
temperature at 3 and 2 levels, respectively).

data Yields;
input Vendor Pressure Temp Yield @@;
datalines;

1 1 1 10.20 1 1 2 9.48 1 2 1 9.74
1 2 2 8.92 1 3 1 11.79 1 3 2 8.85
2 1 1 10.43 2 1 2 10.59 2 2 1 10.29
2 2 2 10.15 2 3 1 11.12 2 3 2 9.30
3 1 1 6.46 3 1 2 7.34 3 2 1 9.44
3 2 2 8.11 3 3 1 9.38 3 3 2 8.37
4 1 1 7.36 4 1 2 9.92 4 2 1 10.99
4 2 2 10.34 4 3 1 10.24 4 3 2 9.96
5 1 1 11.72 5 1 2 10.60 5 2 1 11.28
5 2 2 9.03 5 3 1 14.09 5 3 2 8.92

;

Consider a linear mixed model with a two-way factorial fixed-effects structure for pressure and temperature
effects and independent, homoscedastic random effects for the vendors. The following statements fit this
model and request panels of marginal and conditional residuals:
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ods graphics on;

proc glimmix data=Yields
plots=residualpanel(conditional marginal);

class Vendor Pressure Temp;
model Yield = Pressure Temp Pressure*Temp;
random vendor;

run;

ods graphics off;

The suboptions of the RESIDUALPANEL request produce two panels. The panel of conditional residuals is
constructed from y � x0b̌� z0b (Figure 44.19). The panel of marginal residuals is constructed from y � x0b̌
(Figure 44.20). Note that these residuals are deviations from the observed data, because the model is a normal
linear mixed model, and hence it does not involve pseudo-data. Whenever the random-effects solutionsb are
involved in constructing residuals, the title of the residual graphics identifies them as conditional residuals
(Figure 44.19).

Figure 44.19 Conditional Residuals
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Figure 44.20 Marginal Residuals

The predictor takes on only six values for the marginal residuals, corresponding to the combinations of
three temperature and two pressure levels. The assumption of a zero mean for the vendor random effect
seems justified; the marginal residuals in the upper-left plot of Figure 44.20 do not exhibit any trend. The
conditional residuals in Figure 44.19 are smaller and somewhat closer to normality compared to the marginal
residuals.

Box Plots
You can produce box plots of observed data, pseudo-data, and various residuals for effects in your model
that consist of classification variables. Because you might not want to produce box plots for all such effects,
you can request subsets with the suboptions of the BOXPLOT option in the PLOTS option. The BOXPLOT
request in the following PROC GLIMMIX statement produces box plots for the random effects—in this
case, the vendor effect. By default, PROC GLIMMIX constructs box plots from conditional residuals.
The MARGINAL, CONDITIONAL, and OBSERVED suboptions instruct the procedure to construct three
box plots for each random effect: box plots of the observed data (Figure 44.21), the marginal residuals
(Figure 44.22), and the conditional residuals (Figure 44.23).
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ods graphics on;

proc glimmix data=Yields
plots=boxplot(random marginal conditional observed);

class Vendor Pressure Temp;
model Yield = Pressure Temp Pressure*Temp;
random vendor;

run;

ods graphics off;

The observed vendor means in Figure 44.21 are different; in particular, vendors 3 and 5 appear to differ
from the other vendors and from each other. There is also heterogeneity of variance in the five groups. The
marginal residuals in Figure 44.22 continue to show the differences in means by vendor, because vendor
enters the model as a random effect. The marginal means are adjusted for vendor effects only in the sense
that the vendor variance component affects the marginal variance that is involved in the generalized least
squares solution for the pressure and temperature effects.

Figure 44.21 Box Plots of Observed Values
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Figure 44.22 Box Plots of Marginal Residuals

The conditional residuals account for the vendor effects through the empirical BLUPs. The means and
medians have stabilized near zero, but some heterogeneity in these residuals remains (Figure 44.23).
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Figure 44.23 Box Plots of Conditional Residuals

Graphics for LS-Mean Comparisons

The following subsections provide information about the ODS statistical graphics for least squares means
produced by the GLIMMIX procedure. Mean plots display marginal or interaction means. The diffogram,
control plot, and ANOM plot display least squares mean comparisons.

Mean Plots
The following SAS statements request a plot of the Pressure�Temp means in which the pressure trends are
plotted for each temperature.
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ods graphics on;
ods select CovParms Tests3 MeanPlot;
proc glimmix data=Yields;

class Vendor Pressure Temp;
model Yield = Pressure Temp Pressure*Temp;
random Vendor;
lsmeans Pressure*Temp / plot=mean(sliceby=Temp join);

run;
ods graphics off;

There is a significant effect of temperature and an interaction between pressure and temperature (Figure 44.24).
Notice that the pressure main effect might be masked by the interaction. Because of the interaction,
temperature comparisons depend on the pressure and vice versa. The mean plot option requests a display of
the Pressure � Temp least squares means with separate trends for each temperature (Figure 44.25).

Figure 44.24 Tests for Fixed Effects

The GLIMMIX ProcedureThe GLIMMIX Procedure

Covariance Parameter
Estimates

Cov Parm Estimate
Standard

Error

Vendor 0.8602 0.7406

Residual 1.1039 0.3491

Type III Tests of Fixed Effects

Effect
Num

DF
Den

DF F Value Pr > F

Pressure 2 20 1.42 0.2646

Temp 1 20 6.48 0.0193

Pressure*Temp 2 20 3.82 0.0393

The interaction between the two effects is evident in the lack of parallelism in Figure 44.25. The masking of
the pressure main effect can be explained by slopes of different sign for the two trends. Based on these results,
inferences about the pressure effects are conducted for a specific temperature. For example, Figure 44.26 is
produced by adding the following statement:

lsmeans pressure*temp / slicediff=temp slice=temp;
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Figure 44.25 Interaction Plot for Pressure x Temperature

Figure 44.26 Pressure Comparisons at a Given Temperature

The GLIMMIX ProcedureThe GLIMMIX Procedure

Tests of Effect Slices for
Pressure*Temp Sliced By Temp

Temp
Num

DF
Den

DF F Value Pr > F

1 2 20 4.95 0.0179

2 2 20 0.29 0.7508
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Figure 44.26 continued

Simple Effect Comparisons of Pressure*Temp Least Squares Means By Temp

Simple
Effect
Level Pressure _Pressure Estimate

Standard
Error DF t Value Pr > |t|

Temp 1 1 2 -1.1140 0.6645 20 -1.68 0.1092

Temp 1 1 3 -2.0900 0.6645 20 -3.15 0.0051

Temp 1 2 3 -0.9760 0.6645 20 -1.47 0.1575

Temp 2 1 2 0.2760 0.6645 20 0.42 0.6823

Temp 2 1 3 0.5060 0.6645 20 0.76 0.4553

Temp 2 2 3 0.2300 0.6645 20 0.35 0.7329

The slope differences are evident by the change in sign for comparisons within temperature 1 and within
temperature 2. There is a significant effect of pressure at temperature 1 (p = 0.0179), but not at temperature 2
(p = 0.7508).

Pairwise Difference Plot (Diffogram)
Graphical displays of LS-means-related analyses consist of plots of all pairwise differences (DiffPlot), plots
of differences against a control level (ControlPlot), and plots of differences against an overall average
(AnomPlot). The following data set is from an experiment to investigate how snapdragons grow in various
soils (Stenstrom 1940). To eliminate the effect of local fertility variations, the experiment is run in blocks,
with each soil type sampled in each block. See the “Examples” section of Chapter 45, “The GLM Procedure,”
for an in-depth analysis of these data.

data plants;
input Type $ @;
do Block = 1 to 3;

input StemLength @;
output;

end;
datalines;

Clarion 32.7 32.3 31.5
Clinton 32.1 29.7 29.1
Knox 35.7 35.9 33.1
ONeill 36.0 34.2 31.2
Compost 31.8 28.0 29.2
Wabash 38.2 37.8 31.9
Webster 32.5 31.1 29.7
;

The following statements perform the analysis of the experiment with the GLIMMIX procedure:

ods graphics on;
ods select LSMeans DiffPlot;

proc glimmix data=plants order=data plots=Diffogram;
class Block Type;
model StemLength = Block Type;
lsmeans Type;

run;

ods graphics off;
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The PLOTS= option in the PROC GLIMMIX statement requests that plots of pairwise least squares means
differences are produced for effects that are listed in corresponding LSMEANS statements. This is the Type
effect.

The Type LS-means are shown in Figure 44.27. Note that the order in which the levels appear corresponds to
the order in which they were read from the data set. This was accomplished with the ORDER=DATA option
in the PROC GLIMMIX statement.

Figure 44.27 Least Squares Means for Type Effect

The GLIMMIX ProcedureThe GLIMMIX Procedure

Type Least Squares Means

Type Estimate
Standard

Error DF t Value Pr > |t|

Clarion 32.1667 0.7405 12 43.44 <.0001

Clinton 30.3000 0.7405 12 40.92 <.0001

Knox 34.9000 0.7405 12 47.13 <.0001

ONeill 33.8000 0.7405 12 45.64 <.0001

Compost 29.6667 0.7405 12 40.06 <.0001

Wabash 35.9667 0.7405 12 48.57 <.0001

Webster 31.1000 0.7405 12 42.00 <.0001

Because there are seven levels of Type in this analysis, there are 7.6 � 1/=2 D 21 pairwise comparisons
among the least squares means. The comparisons are performed in the following fashion: the first level of
Type is compared against levels 2 through 7; the second level of Type is compared against levels 3 through 7;
and so forth.

The default difference plot for these data is shown in Figure 44.28. The display is also known as a “mean-mean
scatter plot” (Hsu 1996; Hsu and Peruggia 1994). It contains 21 lines rotated by 45 degrees counterclockwise,
and a reference line (dashed 45-degree line). The .x; y/ coordinate for the center of each line corresponds to
the two least squares means being compared. Suppose thatb�:i andb�:j denote the ith and jth least squares
mean, respectively, for the effect in question, where i < j according to the ordering of the effect levels. If
the ABS option is in effect, which is the default, the line segment is centered at .minfb�i:;b�j:g;maxfb�i:;b�j:g/.
Take, for example, the comparison of “Clarion” and “Compost” types. The respective estimates of their
LS-means areb�:1 D 32:1667 andb�:5 D 29:6667. The center of the line segment for H0W �:1 D �:5 is placed
at .29:6667; 32:1667/.

The length of the line segment for the comparison between means i and j corresponds to the width of the
confidence interval for the difference �:i � �:j . This length is adjusted for the rotation in the plot. As a
consequence, comparisons whose confidence interval covers zero cross the 45-degree reference line. These
are the nonsignificant comparisons. Lines associated with significant comparisons do not touch or cross the
reference line. Because these data are balanced, the estimated standard errors of all pairwise comparisons are
identical, and the widths of the line segments are the same.
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Figure 44.28 LS-Means Plot of Pairwise Differences

The background grid of the difference plot is drawn at the values of the least squares means for the seven
type levels. These grid lines are used to find a particular comparison by intersection. Also, the labels of the
grid lines indicate the ordering of the least squares means.

In the next set of statements, the NOABS and CENTER suboptions of the PLOTS=DIFFOGRAM option in
the LSMEANS statement modify the appearance of the diffogram:

ods graphics on;
proc glimmix data=plants order=data;

class Block Type;
model StemLength = Block Type;
lsmeans Type / plots=diffogram(noabs center);

run;
ods graphics off;

The NOABS suboption of the difference plot changes the way in which the GLIMMIX procedure places the
line segments (Figure 44.29). If the NOABS suboption is in effect, the line segment is centered at the point
.b�:i ;b�:j /, i < j . For example, the center of the line segment for a comparison of “Clarion” and “Compost”
types is centered at .b�:1;b�:5/ D .32:1667; 29:6667/. Whether a line segment appears above or below the
reference line depends on the magnitude of the least squares means and the order of their appearance in the
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“Least Squares Means” table. The CENTER suboption places a marker at the intersection of the least squares
means.

Because the ABS option places lines on the same side of the 45-degree reference, it can help to visually
discover groups of significant and nonsignificant differences. On the other hand, when the number of levels
in the effect is large, the display can get crowded. The NOABS option can then provide a more accessible
resolution.

Figure 44.29 Diffogram with NOABS and CENTER Options

Least Squares Mean Control Plot
The following SAS statements create the same data set as before, except that one observation for Type=“Knox”
has been removed for illustrative purposes:

data plants;
input Type $ @;
do Block = 1 to 3;

input StemLength @;
output;

end;
datalines;
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Clarion 32.7 32.3 31.5
Clinton 32.1 29.7 29.1
Knox 35.7 35.9 .
ONeill 36.0 34.2 31.2
Compost 31.8 28.0 29.2
Wabash 38.2 37.8 31.9
Webster 32.5 31.1 29.7
;

The following statements request control plots for effects in LSMEANS statements with compatible option:

ods graphics on;
ods select Diffs ControlPlot;

proc glimmix data=plants order=data plots=ControlPlot;
class Block Type;
model StemLength = Block Type;
lsmeans Type / diff=control('Clarion') adjust=dunnett;

run;

ods graphics off;

The LSMEANS statement for the Type effect is compatible; it requests comparisons of Type levels against
“Clarion,” adjusted for multiplicity with Dunnett’s method. Because “Clarion” is the first level of the effect,
the LSMEANS statement is equivalent to

lsmeans type / diff=control adjust=dunnett;

The “Differences of Type Least Squares Means” table in Figure 44.30 shows the six comparisons between
Type levels and the control level.

Figure 44.30 Least Squares Means Differences

The GLIMMIX ProcedureThe GLIMMIX Procedure

Differences of Type Least Squares Means
Adjustment for Multiple Comparisons: Dunnett

Type _Type Estimate
Standard

Error DF t Value Pr > |t| Adj P

Clinton Clarion -1.8667 1.0937 11 -1.71 0.1159 0.3936

Knox Clarion 2.7667 1.2430 11 2.23 0.0479 0.1854

ONeill Clarion 1.6333 1.0937 11 1.49 0.1635 0.5144

Compost Clarion -2.5000 1.0937 11 -2.29 0.0431 0.1688

Wabash Clarion 3.8000 1.0937 11 3.47 0.0052 0.0236

Webster Clarion -1.0667 1.0937 11 -0.98 0.3504 0.8359

The two rightmost columns of the table give the unadjusted and multiplicity-adjusted p-values. At the 5%
significance level, both “Knox” and “Wabash” differ significantly from “Clarion” according to the unadjusted
tests. After adjusting for multiplicity, only “Wabash” has a least squares mean significantly different from the
control mean. Note that the standard error for the comparison involving “Knox” is larger than that for other
comparisons because of the reduced sample size for that soil type.
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In the plot of control differences a horizontal line is drawn at the value of the “Clarion” least squares mean.
Vertical lines emanating from this reference line terminate in the least squares means for the other levels
(Figure 44.31).

The dashed upper and lower horizontal reference lines are the upper and lower decision limits for tests against
the control level. If a vertical line crosses the upper or lower decision limit, the corresponding least squares
mean is significantly different from the LS-mean in the control group. If the data had been balanced, the
UDL and LDL would be straight lines, because all estimatesb�:i �b�:j would have had the same standard
error. The limits for the comparison between “Knox” and “Clarion” are wider than for other comparisons,
because of the reduced sample size for the “Knox” soil type.

Figure 44.31 LS-Means Plot of Differences against a Control
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The significance level of the decision limits is determined from the ALPHA= level in the LSMEANS
statement. The default are 95% limits. If you choose one-sided comparisons with DIFF=CONTROLL or
DIFF=CONTROLU in the LSMEANS statement, only one of the decision limits is drawn.

Analysis of Means (ANOM) Plot
The analysis of means in PROC GLIMMIX compares least squares means not by contrasting them against
each other as with all pairwise differences or control differences. Instead, the least squares means are
compared against an average value. Consequently, there are k comparisons for a factor with k levels. The
following statements request ANOM differences for the Type least squares means (Figure 44.32) and plots
the differences (Figure 44.33):

ods graphics on;
ods select Diffs AnomPlot;
proc glimmix data=plants order=data plots=AnomPlot;

class Block Type;
model StemLength = Block Type;
lsmeans Type / diff=anom;

run;
ods graphics off;

Figure 44.32 ANOM LS-Mean Differences

The GLIMMIX ProcedureThe GLIMMIX Procedure

Differences of Type Least Squares Means

Type _Type Estimate
Standard

Error DF t Value Pr > |t|

Clarion Avg -0.2635 0.7127 11 -0.37 0.7186

Clinton Avg -2.1302 0.7127 11 -2.99 0.0123

Knox Avg 2.5032 0.9256 11 2.70 0.0205

ONeill Avg 1.3698 0.7127 11 1.92 0.0809

Compost Avg -2.7635 0.7127 11 -3.88 0.0026

Wabash Avg 3.5365 0.7127 11 4.96 0.0004

Webster Avg -1.3302 0.7127 11 -1.87 0.0888

At the 5% level, the “Clarion,” “O’Neill,” and “Webster” soil types are not significantly different from the
average. Note that the artificial lack of balance introduced previously reduces the precision of the ANOM
comparison for the “Knox” soil type.
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Figure 44.33 LS-Means Analysis of Means (ANOM) Plot

The reference line in the ANOM plot is drawn at the average. Vertical lines extend from this reference line
upward or downward, depending on the magnitude of the least squares means compared to the reference
value. This enables you to quickly see which levels perform above and below the average. The horizontal
reference lines are 95% upper and lower decision limits. If a vertical line crosses the limits, you conclude
that the least squares mean is significantly different (at the 5% significance level) from the average. You
can adjust the comparisons for multiplicity by adding the ADJUST=NELSON option in the LSMEANS
statement.

Examples: GLIMMIX Procedure

Example 44.1: Binomial Counts in Randomized Blocks
In the context of spatial prediction in generalized linear models, Gotway and Stroup (1997) analyze data from
an agronomic field trial. Researchers studied 16 varieties (entries) of wheat for their resistance to infestation
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by the Hessian fly. They arranged the varieties in a randomized complete block design on an 8� 8 grid. Each
4 � 4 quadrant of that arrangement constitutes a block.

The outcome of interest was the number of damaged plants (Yij ) out of the total number of plants growing
on the unit (nij ). The two subscripts identify the block (i D 1; � � � ; 4) and the entry (j D 1; � � � ; 16).
The following SAS statements create the data set. The variables lat and lng denote the coordinate of an
experimental unit on the 8 � 8 grid.

data HessianFly;
label Y = 'No. of damaged plants'

n = 'No. of plants';
input block entry lat lng n Y @@;
datalines;
1 14 1 1 8 2 1 16 1 2 9 1
1 7 1 3 13 9 1 6 1 4 9 9
1 13 2 1 9 2 1 15 2 2 14 7
1 8 2 3 8 6 1 5 2 4 11 8
1 11 3 1 12 7 1 12 3 2 11 8
1 2 3 3 10 8 1 3 3 4 12 5
1 10 4 1 9 7 1 9 4 2 15 8
1 4 4 3 19 6 1 1 4 4 8 7
2 15 5 1 15 6 2 3 5 2 11 9
2 10 5 3 12 5 2 2 5 4 9 9
2 11 6 1 20 10 2 7 6 2 10 8
2 14 6 3 12 4 2 6 6 4 10 7
2 5 7 1 8 8 2 13 7 2 6 0
2 12 7 3 9 2 2 16 7 4 9 0
2 9 8 1 14 9 2 1 8 2 13 12
2 8 8 3 12 3 2 4 8 4 14 7
3 7 1 5 7 7 3 13 1 6 7 0
3 8 1 7 13 3 3 14 1 8 9 0
3 4 2 5 15 11 3 10 2 6 9 7
3 3 2 7 15 11 3 9 2 8 13 5
3 6 3 5 16 9 3 1 3 6 8 8
3 15 3 7 7 0 3 12 3 8 12 8
3 11 4 5 8 1 3 16 4 6 15 1
3 5 4 7 12 7 3 2 4 8 16 12
4 9 5 5 15 8 4 4 5 6 10 6
4 12 5 7 13 5 4 1 5 8 15 9
4 15 6 5 17 6 4 6 6 6 8 2
4 14 6 7 12 5 4 7 6 8 15 8
4 13 7 5 13 2 4 8 7 6 13 9
4 3 7 7 9 9 4 10 7 8 6 6
4 2 8 5 12 8 4 11 8 6 9 7
4 5 8 7 11 10 4 16 8 8 15 7

;

Analysis as a GLM

If infestations are independent among experimental units, and all plants within a unit have the same propensity
for infestation, then the Yij are binomial random variables. The first model considered is a standard
generalized linear model for independent binomial counts:
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proc glimmix data=HessianFly;
class block entry;
model y/n = block entry / solution;

run;

The PROC GLIMMIX statement invokes the procedure. The CLASS statement instructs the GLIMMIX
procedure to treat both block and entry as classification variables. The MODEL statement specifies the
response variable and the fixed effects in the model. PROC GLIMMIX constructs the X matrix of the model
from the terms on the right side of the MODEL statement. The GLIMMIX procedure supports two kinds of
syntax for the response variable. This example uses the events/trials syntax. The variable y represents the
number of successes (events) out of n Bernoulli trials. When the events/trials syntax is used, the GLIMMIX
procedure automatically selects the binomial distribution as the response distribution. Once the distribution
is determined, the procedure selects the link function for the model. The default link for binomial data is the
logit link. The preceding statements are thus equivalent to the following statements:

proc glimmix data=HessianFly;
class block entry;
model y/n = block entry / dist=binomial link=logit solution;

run;

The SOLUTION option in the MODEL statement requests that solutions for the fixed effects (parameter
estimates) be displayed.

The “Model Information” table describes the model and methods used in fitting the statistical model
(Output 44.1.1).

The GLIMMIX procedure recognizes that this is a model for uncorrelated data (variance matrix is diagonal)
and that parameters can be estimated by maximum likelihood. The default degrees-of-freedom method to
denominator degrees of freedom for F tests and t tests is the RESIDUAL method. This corresponds to
choosing f � rank.X/ as the degrees of freedom, where f is the sum of the frequencies used in the analysis.
You can change the degrees of freedom method with the DDFM= option in the MODEL statement.

Output 44.1.1 Model Information in GLM Analysis

The GLIMMIX ProcedureThe GLIMMIX Procedure

Model Information

Data Set WORK.HESSIANFLY

Response Variable (Events) Y

Response Variable (Trials) n

Response Distribution Binomial

Link Function Logit

Variance Function Default

Variance Matrix Diagonal

Estimation Technique Maximum Likelihood

Degrees of Freedom Method Residual

The “Class Level Information” table lists the levels of the variables specified in the CLASS statement and
the ordering of the levels (Output 44.1.2). The “Number of Observations” table displays the number of
observations read and used in the analysis.
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Output 44.1.2 Class Level Information and Number of Observations

Class Level Information

Class Levels Values

block 4 1 2 3 4

entry 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Observations Read 64

Number of Observations Used 64

Number of Events 396

Number of Trials 736

The “Dimensions” table lists the size of relevant matrices (Output 44.1.3).

Output 44.1.3 Model Dimensions Information in GLM Analysis

Dimensions

Columns in X 21

Columns in Z 0

Subjects (Blocks in V) 1

Max Obs per Subject 64

Because of the absence of G-side random effects in this model, there are no columns in the Z matrix. The 21
columns in the X matrix comprise the intercept, 4 columns for the block effect and 16 columns for the entry
effect. Because no RANDOM statement with a SUBJECT= option was specified, the GLIMMIX procedure
does not process the data by subjects (see the section “Processing by Subjects” on page 3218 for details about
subject processing).

The “Optimization Information” table provides information about the methods and size of the optimization
problem (Output 44.1.4).

Output 44.1.4 Optimization Information in GLM Analysis

Optimization Information

Optimization Technique Newton-Raphson

Parameters in Optimization 19

Lower Boundaries 0

Upper Boundaries 0

Fixed Effects Not Profiled

With few exceptions, models fit with the GLIMMIX procedure require numerical methods for parameter
estimation. The default optimization method for (overdispersed) GLM models is the Newton-Raphson
algorithm. In this example, the optimization involves 19 parameters, corresponding to the number of linearly
independent columns of the X0X matrix.

The “Iteration History” table shows that the procedure converged after 3 iterations and 13 function evaluations
(Output 44.1.5). The Change column measures the change in the objective function between iterations;
however, this is not the monitored convergence criterion. The GLIMMIX procedure monitors several features
simultaneously to determine whether to stop an optimization.
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Output 44.1.5 Iteration History in GLM Analysis

Iteration History

Iteration Restarts Evaluations
Objective
Function Change

Max
Gradient

0 0 4 134.13393738 . 4.899609

1 0 3 132.85058236 1.28335502 0.206204

2 0 3 132.84724263 0.00333973 0.000698

3 0 3 132.84724254 0.00000009 3.029E-8

Convergence criterion (GCONV=1E-8) satisfied.

The “Fit Statistics” table lists information about the fitted model (Output 44.1.6). The –2 Log Likelihood
values are useful for comparing nested models, and the information criteria AIC, AICC, BIC, CAIC, and
HQIC are useful for comparing nonnested models. On average, the ratio between the Pearson statistic and its
degrees of freedom should equal one in GLMs. Values larger than one indicate overdispersion. With a ratio
of 2.37, these data appear to exhibit more dispersion than expected under a binomial model with block and
varietal effects.

Output 44.1.6 Fit Statistics in GLM Analysis

Fit Statistics

-2 Log Likelihood 265.69

AIC  (smaller is better) 303.69

AICC (smaller is better) 320.97

BIC  (smaller is better) 344.71

CAIC (smaller is better) 363.71

HQIC (smaller is better) 319.85

Pearson Chi-Square 106.74

Pearson Chi-Square / DF 2.37

The “Parameter Estimates” table displays the maximum likelihood estimates (Estimate), standard errors, and
t tests for the hypothesis that the estimate is zero (Output 44.1.7).
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Output 44.1.7 Parameter Estimates in GLM Analysis

Parameter Estimates

Effect block entry Estimate
Standard

Error DF t Value Pr > |t|

Intercept -1.2936 0.3908 45 -3.31 0.0018

block 1 -0.05776 0.2332 45 -0.25 0.8055

block 2 -0.1838 0.2303 45 -0.80 0.4289

block 3 -0.4420 0.2328 45 -1.90 0.0640

block 4 0 . . . .

entry 1 2.9509 0.5397 45 5.47 <.0001

entry 2 2.8098 0.5158 45 5.45 <.0001

entry 3 2.4608 0.4956 45 4.97 <.0001

entry 4 1.5404 0.4564 45 3.38 0.0015

entry 5 2.7784 0.5293 45 5.25 <.0001

entry 6 2.0403 0.4889 45 4.17 0.0001

entry 7 2.3253 0.4966 45 4.68 <.0001

entry 8 1.3006 0.4754 45 2.74 0.0089

entry 9 1.5605 0.4569 45 3.42 0.0014

entry 10 2.3058 0.5203 45 4.43 <.0001

entry 11 1.4957 0.4710 45 3.18 0.0027

entry 12 1.5068 0.4767 45 3.16 0.0028

entry 13 -0.6296 0.6488 45 -0.97 0.3370

entry 14 0.4460 0.5126 45 0.87 0.3889

entry 15 0.8342 0.4698 45 1.78 0.0826

entry 16 0 . . . .

The “Type III Tests of Fixed Effect” table displays significance tests for the two fixed effects in the model
(Output 44.1.8).

Output 44.1.8 Type III Tests of Block and Entry Effects in GLM Analysis

Type III Tests of Fixed Effects

Effect
Num

DF
Den

DF F Value Pr > F

block 3 45 1.42 0.2503

entry 15 45 6.96 <.0001

These tests are Wald-type tests, not likelihood ratio tests. The entry effect is clearly significant in this model
with a p-value of <0.0001, indicating that the 16 wheat varieties are not equally susceptible to infestation by
the Hessian fly.

Analysis with Random Block Effects

There are several possible reasons for the overdispersion noted in Output 44.1.6 (Pearson ratio = 2.37). The
data might not follow a binomial distribution, one or more important effects might not have been accounted
for in the model, or the data might be positively correlated. If important fixed effects have been omitted, then
you might need to consider adding them to the model. Because this is a designed experiment, it is reasonable
not to expect further effects apart from the block and entry effects that represent the treatment and error
control design structure. The reasons for the overdispersion must lie elsewhere.
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If overdispersion stems from correlations among the observations, then the model should be appropriately
adjusted. The correlation can have multiple sources. First, it might not be the case that the plants within
an experimental unit responded independently. If the probability of infestation of a particular plant is
altered by the infestation of a neighboring plant within the same unit, the infestation counts are not binomial
and a different probability model should be used. A second possible source of correlations is the lack of
independence of experimental units. Even if treatments were assigned to units at random, they might not
respond independently. Shared spatial soil effects, for example, can be the underlying factor. The following
analyses take these spatial effects into account.

First, assume that the environmental effects operate at the scale of the blocks. By making the block effects
random, the marginal responses will be correlated due to the fact that observations within a block share the
same random effects. Observations from different blocks will remain uncorrelated, in the spirit of separate
randomizations among the blocks. The next set of statements fits a generalized linear mixed model (GLMM)
with random block effects:

proc glimmix data=HessianFly;
class block entry;
model y/n = entry / solution;
random block;

run;

Because the conditional distribution—conditional on the block effects—is binomial, the marginal distribution
will be overdispersed relative to the binomial distribution. In contrast to adding a multiplicative scale
parameter to the variance function, treating the block effects as random changes the estimates compared to a
model with fixed block effects.

In the presence of random effects and a conditional binomial distribution, PROC GLIMMIX does not
use maximum likelihood for estimation. Instead, the GLIMMIX procedure applies a restricted (residual)
pseudo-likelihood algorithm (Output 44.1.9). The “restricted” attribute derives from the same rationale by
which restricted (residual) maximum likelihood methods for linear mixed models attain their name; the
likelihood equations are adjusted for the presence of fixed effects in the model to reduce bias in covariance
parameter estimates.

Output 44.1.9 Model Information in GLMM Analysis

The GLIMMIX ProcedureThe GLIMMIX Procedure

Model Information

Data Set WORK.HESSIANFLY

Response Variable (Events) Y

Response Variable (Trials) n

Response Distribution Binomial

Link Function Logit

Variance Function Default

Variance Matrix Not blocked

Estimation Technique Residual PL

Degrees of Freedom Method Containment

The “Class Level Information” and “Number of Observations” tables are as before (Output 44.1.10).
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Output 44.1.10 Class Level Information and Number of Observations

Class Level Information

Class Levels Values

block 4 1 2 3 4

entry 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Observations Read 64

Number of Observations Used 64

Number of Events 396

Number of Trials 736

The “Dimensions” table indicates that there is a single G-side parameter, the variance of the random
block effect (Output 44.1.11). The “Dimensions” table has changed from the previous model (compare
Output 44.1.11 to Output 44.1.3). Note that although the block effect has four levels, only a single variance
component is estimated. The Z matrix has four columns, however, corresponding to the four levels of the
block effect. Because no SUBJECT= option is used in the RANDOM statement, the GLIMMIX procedure
treats these data as having arisen from a single subject with 64 observations.

Output 44.1.11 Model Dimensions Information in GLMM Analysis

Dimensions

G-side Cov. Parameters 1

Columns in X 17

Columns in Z 4

Subjects (Blocks in V) 1

Max Obs per Subject 64

The “Optimization Information” table indicates that a quasi-Newton method is used to solve the optimization
problem. This is the default optimization method for GLMM models (Output 44.1.12).

Output 44.1.12 Optimization Information in GLMM Analysis

Optimization Information

Optimization Technique Dual Quasi-Newton

Parameters in Optimization 1

Lower Boundaries 1

Upper Boundaries 0

Fixed Effects Profiled

Starting From Data

In contrast to the Newton-Raphson method, the quasi-Newton method does not require second derivatives.
Because the covariance parameters are not unbounded in this example, the procedure enforces a lower
boundary constraint (zero) for the variance of the block effect, and the optimization method is changed to a
dual quasi-Newton method. The fixed effects are profiled from the likelihood equations in this model. The
resulting optimization problem involves only the covariance parameters.

The “Iteration History” table appears to indicate that the procedure converged after four iterations (Out-
put 44.1.13). Notice, however, that this table has changed slightly from the previous analysis (see Out-
put 44.1.5). The Evaluations column has been replaced by the Subiterations column, because the GLIMMIX
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procedure applied a doubly iterative fitting algorithm. The entire process consisted of five optimizations,
each of which was iterative. The initial optimization required four iterations, the next one required three
iterations, and so on.

Output 44.1.13 Iteration History in GLMM Analysis

Iteration History

Iteration Restarts Subiterations
Objective
Function Change

Max
Gradient

0 0 4 173.28473428 0.81019251 0.000197

1 0 3 181.66726674 0.17550228 0.000739

2 0 2 182.20789493 0.00614874 7.018E-6

3 0 1 182.21315596 0.00004386 1.213E-8

4 0 0 182.21317662 0.00000000 3.349E-6

Convergence criterion (PCONV=1.11022E-8) satisfied.

The “Fit Statistics” table shows information about the fit of the GLMM (Output 44.1.14). The log likelihood
reported in the table is not the residual log likelihood of the data. It is the residual log likelihood for an
approximated model. The generalized chi-square statistic measures the residual sum of squares in the final
model, and the ratio with its degrees of freedom is a measure of variability of the observation about the mean
model.

Output 44.1.14 Fit Statistics in GLMM Analysis

Fit Statistics

-2 Res Log Pseudo-Likelihood 182.21

Generalized Chi-Square 107.96

Gener. Chi-Square / DF 2.25

The variance of the random block effects is rather small (Output 44.1.15).

Output 44.1.15 Estimated Covariance Parameters and Approximate Standard Errors

Covariance Parameter
Estimates

Cov
Parm Estimate

Standard
Error

block 0.01116 0.03116

If the environmental effects operate on a spatial scale smaller than the block size, the random block model
does not provide a suitable adjustment. From the coarse layout of the experimental area, it is not surprising
that random block effects alone do not account for the overdispersion in the data. Adding a random component
to a generalized linear model is different from adding a multiplicative overdispersion component, for example,
via the PSCALE option in PROC GENMOD or a

random _residual_;

statement in PROC GLIMMIX. Such overdispersion components do not affect the parameter estimates, only
their standard errors. A genuine random effect, on the other hand, affects both the parameter estimates and
their standard errors (compare Output 44.1.16 to Output 44.1.7).
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Output 44.1.16 Parameter Estimates for Fixed Effects in GLMM Analysis

Solutions for Fixed Effects

Effect entry Estimate
Standard

Error DF t Value Pr > |t|

Intercept -1.4637 0.3738 3 -3.92 0.0296

entry 1 2.9609 0.5384 45 5.50 <.0001

entry 2 2.7807 0.5138 45 5.41 <.0001

entry 3 2.4339 0.4934 45 4.93 <.0001

entry 4 1.5347 0.4542 45 3.38 0.0015

entry 5 2.7653 0.5276 45 5.24 <.0001

entry 6 2.0014 0.4865 45 4.11 0.0002

entry 7 2.3518 0.4952 45 4.75 <.0001

entry 8 1.2927 0.4739 45 2.73 0.0091

entry 9 1.5663 0.4554 45 3.44 0.0013

entry 10 2.2896 0.5179 45 4.42 <.0001

entry 11 1.5018 0.4682 45 3.21 0.0025

entry 12 1.5075 0.4752 45 3.17 0.0027

entry 13 -0.5955 0.6475 45 -0.92 0.3626

entry 14 0.4573 0.5111 45 0.89 0.3758

entry 15 0.8683 0.4682 45 1.85 0.0702

entry 16 0 . . . .

Output 44.1.17 Type III Test of Entry in GLMM Analysis

Type III Tests of Fixed Effects

Effect
Num

DF
Den

DF F Value Pr > F

entry 15 45 6.90 <.0001

Because the block variance component is small, the Type III test for the variety effect in Output 44.1.17 is
affected only very little compared to the GLM (Output 44.1.8).

Analysis with Smooth Spatial Trends

You can also consider these data in an observational sense, where the covariation of the observations is subject
to modeling. Rather than deriving model components from the experimental design alone, environmental
effects can be modeled by adjusting the mean and/or correlation structure. Gotway and Stroup (1997) and
Schabenberger and Pierce (2002) supplant the coarse block effects with smooth-scale spatial components.

The model considered by Gotway and Stroup (1997) is a marginal model in that the correlation structure is
modeled through residual-side (R-side) random components. This exponential covariance model is fit with
the following statements:

proc glimmix data=HessianFly;
class entry;
model y/n = entry / solution ddfm=contain;
random _residual_ / subject=intercept type=sp(exp)(lng lat);

run;



3276 F Chapter 44: The GLIMMIX Procedure

Note that the block effects have been removed from the statements. The keyword _RESIDUAL_ in the
RANDOM statement instructs the GLIMMIX procedure to model the R matrix. Here, R is to be modeled as
an exponential covariance structure matrix. The SUBJECT=INTERCEPT option means that all observations
are considered correlated. Because the random effects are residual-type (R-side) effects, there are no columns
in the Z matrix for this model (Output 44.1.18).

Output 44.1.18 Model Dimension Information in Marginal Spatial Analysis

The GLIMMIX ProcedureThe GLIMMIX Procedure

Dimensions

R-side Cov. Parameters 2

Columns in X 17

Columns in Z per Subject 0

Subjects (Blocks in V) 1

Max Obs per Subject 64

In addition to the fixed effects, the GLIMMIX procedure now profiles one of the covariance parameters, the
variance of the exponential covariance model (Output 44.1.19). This reduces the size of the optimization
problem. Only a single parameter is part of the optimization, the “range” (SP(EXP)) of the spatial process.

Output 44.1.19 Optimization Information in Spatial Analysis

Optimization Information

Optimization Technique Dual Quasi-Newton

Parameters in Optimization 1

Lower Boundaries 1

Upper Boundaries 0

Fixed Effects Profiled

Residual Variance Profiled

Starting From Data

The practical range of a spatial process is that distance at which the correlation between data points has
decreased to at most 0.05. The parameter reported by the GLIMMIX procedure as SP(EXP) in Output 44.1.20
corresponds to one-third of the practical range. The practical range in this process is 3 � 0:9052 D 2:7156.
Correlations extend beyond a single experimental unit, but they do not appear to exist on the scale of the
block size.

Output 44.1.20 Estimates of Covariance Parameters

Covariance Parameter Estimates

Cov Parm Subject Estimate
Standard

Error

SP(EXP) Intercept 0.9052 0.4404

Residual 2.5315 0.6974

The sill of the spatial process, the variance of the underlying residual effect, is estimated as 2.5315.
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Output 44.1.21 Type III Test of Entry Effect in Spatial Analysis

Type III Tests of Fixed Effects

Effect
Num

DF
Den

DF F Value Pr > F

entry 15 48 3.60 0.0004

The F value for the entry effect has been sharply reduced compared to the previous analyses. The smooth
spatial variation accounts for some of the variation among the varieties (Output 44.1.21).

In this example three models were considered for the analysis of a randomized block design with binomial
outcomes. If data are correlated, a standard generalized linear model often will indicate overdispersion
relative to the binomial distribution. Two courses of action are considered in this example to address this
overdispersion. First, the inclusion of G-side random effects models the correlation indirectly; it is induced
through the sharing of random effects among responses from the same block. Second, the R-side spatial
covariance structure models covariation directly. In generalized linear (mixed) models these two modeling
approaches can lead to different inferences, because the models have different interpretation. The random
block effects are modeled on the linked (logit) scale, and the spatial effects were modeled on the mean scale.
Only in a linear mixed model are the two scales identical.

Example 44.2: Mating Experiment with Crossed Random Effects
McCullagh and Nelder (1989, Ch. 14.5) describe a mating experiment—conducted by S. Arnold and P. Verell
at the University of Chicago, Department of Ecology and Evolution—involving two geographically isolated
populations of mountain dusky salamanders. One goal of the experiment was to determine whether barriers
to interbreeding have evolved in light of the geographical isolation of the populations. In this case, matings
within a population should be more successful than matings between the populations. The experiment
conducted in the summer of 1986 involved 40 animals, 20 rough butt (R) and 20 whiteside (W) salamanders,
with equal numbers of males and females. The animals were grouped into two sets of R males, two sets of R
females, two sets of W males, and two sets of W females, so that each set comprised five salamanders. Each
set was mated against one rough butt and one whiteside set, creating eight crossings. Within the pairings of
sets, each female was paired to three male animals. The salamander mating data have been used by a number
of authors; see, for example, McCullagh and Nelder (1989); Schall (1991); Karim and Zeger (1992); Breslow
and Clayton (1993); Wolfinger and O’Connell (1993); Shun (1997).

The following DATA step creates the data set for the analysis.

data salamander;
input day fpop$ fnum mpop$ mnum mating @@;
datalines;

4 rb 1 rb 1 1 4 rb 2 rb 5 1
4 rb 3 rb 2 1 4 rb 4 rb 4 1
4 rb 5 rb 3 1 4 rb 6 ws 9 1
4 rb 7 ws 8 0 4 rb 8 ws 6 0
4 rb 9 ws 10 0 4 rb 10 ws 7 0
4 ws 1 rb 9 0 4 ws 2 rb 7 0
4 ws 3 rb 8 0 4 ws 4 rb 10 0
4 ws 5 rb 6 0 4 ws 6 ws 5 0
4 ws 7 ws 4 1 4 ws 8 ws 1 1
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4 ws 9 ws 3 1 4 ws 10 ws 2 1
8 rb 1 ws 4 1 8 rb 2 ws 5 1
8 rb 3 ws 1 0 8 rb 4 ws 2 1
8 rb 5 ws 3 1 8 rb 6 rb 9 1
8 rb 7 rb 8 0 8 rb 8 rb 6 1
8 rb 9 rb 7 0 8 rb 10 rb 10 0
8 ws 1 ws 9 1 8 ws 2 ws 6 0
8 ws 3 ws 7 0 8 ws 4 ws 10 1
8 ws 5 ws 8 1 8 ws 6 rb 2 0
8 ws 7 rb 1 1 8 ws 8 rb 4 0
8 ws 9 rb 3 1 8 ws 10 rb 5 0
12 rb 1 rb 5 1 12 rb 2 rb 3 1
12 rb 3 rb 1 1 12 rb 4 rb 2 1
12 rb 5 rb 4 1 12 rb 6 ws 10 1
12 rb 7 ws 9 0 12 rb 8 ws 7 0
12 rb 9 ws 8 1 12 rb 10 ws 6 1
12 ws 1 rb 7 1 12 ws 2 rb 9 0
12 ws 3 rb 6 0 12 ws 4 rb 8 1
12 ws 5 rb 10 0 12 ws 6 ws 3 1
12 ws 7 ws 5 1 12 ws 8 ws 2 1
12 ws 9 ws 1 1 12 ws 10 ws 4 0
16 rb 1 ws 1 0 16 rb 2 ws 3 1
16 rb 3 ws 4 1 16 rb 4 ws 5 0
16 rb 5 ws 2 1 16 rb 6 rb 7 0
16 rb 7 rb 9 1 16 rb 8 rb 10 0
16 rb 9 rb 6 1 16 rb 10 rb 8 0
16 ws 1 ws 10 1 16 ws 2 ws 7 1
16 ws 3 ws 9 0 16 ws 4 ws 8 1
16 ws 5 ws 6 0 16 ws 6 rb 4 0
16 ws 7 rb 2 0 16 ws 8 rb 5 0
16 ws 9 rb 1 1 16 ws 10 rb 3 1
20 rb 1 rb 4 1 20 rb 2 rb 1 1
20 rb 3 rb 3 1 20 rb 4 rb 5 1
20 rb 5 rb 2 1 20 rb 6 ws 6 1
20 rb 7 ws 7 0 20 rb 8 ws 10 1
20 rb 9 ws 9 1 20 rb 10 ws 8 1
20 ws 1 rb 10 0 20 ws 2 rb 6 0
20 ws 3 rb 7 0 20 ws 4 rb 9 0
20 ws 5 rb 8 0 20 ws 6 ws 2 0
20 ws 7 ws 1 1 20 ws 8 ws 5 1
20 ws 9 ws 4 1 20 ws 10 ws 3 1
24 rb 1 ws 5 1 24 rb 2 ws 2 1
24 rb 3 ws 3 1 24 rb 4 ws 4 1
24 rb 5 ws 1 1 24 rb 6 rb 8 1
24 rb 7 rb 6 0 24 rb 8 rb 9 1
24 rb 9 rb 10 1 24 rb 10 rb 7 0
24 ws 1 ws 8 1 24 ws 2 ws 10 0
24 ws 3 ws 6 1 24 ws 4 ws 9 1
24 ws 5 ws 7 0 24 ws 6 rb 1 0
24 ws 7 rb 5 1 24 ws 8 rb 3 0
24 ws 9 rb 4 0 24 ws 10 rb 2 0
;
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The first observation, for example, indicates that rough butt female 1 was paired in the laboratory on day 4 of
the experiment with rough butt male 1, and the pair mated. On the same day rough butt female 7 was paired
with whiteside male 8, but the pairing did not result in mating of the animals.

The model adopted by many authors for these data comprises fixed effects for gender and population, their
interaction, and male and female random effects. Specifically, let �RR, �RW , �WR, and �WW denote the
mating probabilities between the populations, where the first subscript identifies the female partner of the
pair. Then, you model

log
�

�kl

1 � �kl

�
D �kl C f C m k; l 2 fR;W g

where f and m are independent random variables representing female and male random effects (20 each),
and �kl denotes the average logit of mating between females of population k and males of population l. The
following statements fit this model by pseudo-likelihood:

proc glimmix data=salamander;
class fpop fnum mpop mnum;
model mating(event='1') = fpop|mpop / dist=binary;
random fpop*fnum mpop*mnum;
lsmeans fpop*mpop / ilink;

run;

The response variable is the two-level variable mating. Because it is coded as zeros and ones, and because
PROC GLIMMIX models by default the probability of the first level according to the response-level ordering,
the EVENT=’1’ option instructs PROC GLIMMIX to model the probability of a successful mating. The
distribution of the mating variable, conditional on the random effects, is binary.

The fpop*fnum effect in the RANDOM statement creates a random intercept for each female animal. Because
fpop and fnum are CLASS variables, the effect has 20 levels (10 rb and 10 ws females). Similarly, the
mpop*mnum effect creates the random intercepts for the male animals. Because no TYPE= is specified in the
RANDOM statement, the covariance structure defaults to TYPE=VC. The random effects and their levels are
independent, and each effect has its own variance component. Because the conditional distribution of the
data, conditioned on the random effects, is binary, no extra scale parameter (�) is added.

The LSMEANS statement requests least squares means for the four levels of the fpop*mpop effect, which are
estimates of the cell means in the 2 � 2 classification of female and male populations. The ILINK option in
the LSMEANS statement requests that the estimated means and standard errors are also reported on the scale
of the data. This yields estimates of the four mating probabilities, �RR, �RW , �WR, and �WW .

The “Model Information” table displays general information about the model being fit (Output 44.2.1).
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Output 44.2.1 Analysis of Mating Experiment with Crossed Random Effects

The GLIMMIX ProcedureThe GLIMMIX Procedure

Model Information

Data Set WORK.SALAMANDER

Response Variable mating

Response Distribution Binary

Link Function Logit

Variance Function Default

Variance Matrix Not blocked

Estimation Technique Residual PL

Degrees of Freedom Method Containment

The response variable mating follows a binary distribution (conditional on the random effects). Hence, the
mean of the data is an event probability, � , and the logit of this probability is linearly related to the linear
predictor of the model. The variance function is the default function that is implied by the distribution,
a.�/ D �.1 � �/. The variance matrix is not blocked, because the GLIMMIX procedure does not process
the data by subjects (see the section “Processing by Subjects” on page 3218 for details). The estimation
technique is the default method for GLMMs, residual pseudo-likelihood (METHOD=RSPL), and degrees of
freedom for tests and confidence intervals are determined by the containment method.

The “Class Level Information” table in Output 44.2.2 lists the levels of the variables listed in the CLASS
statement, as well as the order of the levels.

Output 44.2.2 Class Level Information and Number of Observations

Class Level Information

Class Levels Values

fpop 2 rb ws

fnum 10 1 2 3 4 5 6 7 8 9 10

mpop 2 rb ws

mnum 10 1 2 3 4 5 6 7 8 9 10

Number of Observations Read 120

Number of Observations Used 120

Note that there are two female populations and two male populations; also, the variables fnum and mnum
have 10 levels each. As a consequence, the effects fpop*fnum and mpop*mnum identify the 20 females and
males, respectively. The effect fpop*mpop identifies the four mating types.

The “Response Profile Table,” which is displayed for binary or multinomial data, lists the levels of the
response variable and their order (Output 44.2.3). With binary data, the table also provides information about
which level of the response variable defines the event. Because of the EVENT=’1’ response variable option
in the MODEL statement, the probability being modeled is that of the higher-ordered value.
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Output 44.2.3 Response Profiles

Response Profile

Ordered
Value mating

Total
Frequency

1 0 50

2 1 70

The GLIMMIX procedure is
modeling the probability

that mating='1'.

There are two covariance parameters in this model, the variance of the fpop*fnum effect and the variance
of the mpop*mnum effect (Output 44.2.4). Both parameters are modeled as G-side parameters. The nine
columns in the X matrix comprise the intercept, two columns each for the levels of the fpop and mpop effects,
and four columns for their interaction. The Z matrix has 40 columns, one for each animal. Because the data
are not processed by subjects, PROC GLIMMIX assumes the data consist of a single subject (a single block
in V).

Output 44.2.4 Model Dimensions Information

Dimensions

G-side Cov. Parameters 2

Columns in X 9

Columns in Z 40

Subjects (Blocks in V) 1

Max Obs per Subject 120

The “Optimization Information” table displays basic information about the optimization (Output 44.2.5). The
default technique for GLMMs is the quasi-Newton method. There are two parameters in the optimization,
which correspond to the two variance components. The 17 fixed effects parameters are not part of the
optimization. The initial optimization computes pseudo-data based on the response values in the data set
rather than from estimates of a generalized linear model fit.

Output 44.2.5 Optimization Information

Optimization Information

Optimization Technique Newton-Raphson with Ridging

Parameters in Optimization 2

Lower Boundaries 2

Upper Boundaries 0

Fixed Effects Profiled

Starting From Data

The GLIMMIX procedure performs eight optimizations after the initial optimization (Output 44.2.6). That is,
following the initial pseudo-data creation, the pseudo-data were updated eight more times and a total of nine
linear mixed models were estimated.
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Output 44.2.6 Iteration History and Convergence Status

Iteration History

Iteration Restarts Subiterations
Objective
Function Change

Max
Gradient

0 0 4 537.09173501 2.00000000 1.719E-8

1 0 3 544.12516903 0.66319780 1.14E-8

2 0 2 545.89139118 0.13539318 1.609E-6

3 0 2 546.10489538 0.01742065 5.89E-10

4 0 1 546.13075146 0.00212475 9.654E-7

5 0 1 546.13374731 0.00025072 1.346E-8

6 0 1 546.13409761 0.00002931 1.84E-10

7 0 0 546.13413861 0.00000000 4.285E-6

Convergence criterion (PCONV=1.11022E-8) satisfied.

The “Covariance Parameter Estimates” table lists the estimates for the two variance components and their
estimated standard errors (Output 44.2.7). The heterogeneity (in the logit of the mating probabilities) among
the females is considerably larger than the heterogeneity among the males.

Output 44.2.7 Estimated Covariance Parameters and Approximate Standard Errors

Covariance Parameter Estimates

Cov Parm Estimate
Standard

Error

fpop*fnum 1.4099 0.8871

mpop*mnum 0.08963 0.4102

The “Type III Tests of Fixed Effects” table indicates a significant interaction between the male and female
populations (Output 44.2.8). A comparison in the logits of mating success in pairs with R females and W
females depends on whether the male partner in the pair is the same species. The “fpop*mpop Least Squares
Means” table shows this effect more clearly (Output 44.2.9).

Output 44.2.8 Tests of Main Effects and Interaction

Type III Tests of Fixed Effects

Effect
Num

DF
Den

DF F Value Pr > F

fpop 1 18 2.86 0.1081

mpop 1 17 4.71 0.0444

fpop*mpop 1 81 9.61 0.0027
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Output 44.2.9 Interaction Least Squares Means

fpop*mpop Least Squares Means

fpop mpop Estimate
Standard

Error DF t Value Pr > |t| Mean

Standard
Error
Mean

rb rb 1.1629 0.5961 81 1.95 0.0545 0.7619 0.1081

rb ws 0.7839 0.5729 81 1.37 0.1750 0.6865 0.1233

ws rb -1.4119 0.6143 81 -2.30 0.0241 0.1959 0.09678

ws ws 1.0151 0.5871 81 1.73 0.0876 0.7340 0.1146

In a pairing with a male rough butt salamander, the logit drops sharply from 1.1629 to –1.4119 when the
male is paired with a whiteside female instead of a female from its own population. The corresponding
estimated probabilities of mating success are b�RR D 0:7619 and b�WR D 0:1959. If the same comparisons
are made in pairs with whiteside males, then you also notice a drop in the logit if the female comes from a
different population, 1.0151 versus 0.7839. The change is considerably less, though, corresponding to mating
probabilities of b�WW D 0:7340 and b�RW D 0:6865. Whiteside females appear to be successful with their
own population. Whiteside males appear to succeed equally well with female partners of the two populations.

This insight into the factor-level comparisons can be amplified by graphing the least squares mean comparisons
and by subsetting the differences of least squares means. This is accomplished with the following statements:

ods graphics on;
ods select DiffPlot SliceDiffs;
proc glimmix data=salamander;

class fpop fnum mpop mnum;
model mating(event='1') = fpop|mpop / dist=binary;
random fpop*fnum mpop*mnum;
lsmeans fpop*mpop / plots=diffplot;
lsmeans fpop*mpop / slicediff=(mpop fpop);

run;
ods graphics off;

The PLOTS=DIFFPLOT option in the first LSMEANS statement requests a comparison plot that displays
the result of all pairwise comparisons (Output 44.2.10). The SLICEDIFF=(mpop fpop) option requests
differences of simple effects.

The comparison plot in Output 44.2.10 is also known as a mean-mean scatter plot (Hsu 1996). Each solid line
in the plot corresponds to one of the possible 4 � 3=2 D 6 unique pairwise comparisons. The line is centered
at the intersection of two least squares means, and the length of the line segments corresponds to the width of
a 95% confidence interval for the difference between the two least squares means. The length of the segment
is adjusted for the rotation. If a line segment crosses the dashed 45-degree line, the comparison between the
two factor levels is not significant; otherwise, it is significant. The horizontal and vertical axes of the plot are
drawn in least squares means units, and the grid lines are placed at the values of the least squares means.

The six pairs of least squares means comparisons separate into two sets of three pairs. Comparisons in the
first set are significant; comparisons in the second set are not significant. For the significant set, the female
partner in one of the pairs is a whiteside salamander. For the nonsignificant comparisons, the male partner in
one of the pairs is a whiteside salamander.
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Output 44.2.10 LS-Means Diffogram

The “Simple Effect Comparisons” tables show the results of the SLICEDIFF= option in the second LSMEANS
statement (Output 44.2.11).

Output 44.2.11 Simple Effect Comparisons

Simple Effect Comparisons of fpop*mpop Least Squares Means By mpop

Simple
Effect
Level fpop _fpop Estimate

Standard
Error DF t Value Pr > |t|

mpop rb rb ws 2.5748 0.8458 81 3.04 0.0031

mpop ws rb ws -0.2312 0.8092 81 -0.29 0.7758

Simple Effect Comparisons of fpop*mpop Least Squares Means By fpop

Simple
Effect
Level mpop _mpop Estimate

Standard
Error DF t Value Pr > |t|

fpop rb rb ws 0.3790 0.6268 81 0.60 0.5471

fpop ws rb ws -2.4270 0.6793 81 -3.57 0.0006
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The first table of simple effect comparisons holds fixed the level of the mpop factor and compares the levels
of the fpop factor. Because there is only one possible comparison for each male population, there are two
entries in the table. The first entry compares the logits of mating probabilities when the male partner is a
rough butt, and the second entry applies when the male partner is from the whiteside population. The second
table of simple effects comparisons applies the same logic, but holds fixed the level of the female partner in
the pair. Note that these four comparisons are a subset of all six possible comparisons, eliminating those
where both factors are varied at the same time. The simple effect comparisons show that there is no difference
in mating probabilities if the male partner is a whiteside salamander, or if the female partner is a rough butt.
Rough butt females also appear to mate indiscriminately.

Example 44.3: Smoothing Disease Rates; Standardized Mortality Ratios
Clayton and Kaldor (1987, Table 1) present data on observed and expected cases of lip cancer in the 56
counties of Scotland between 1975 and 1980. The expected number of cases was determined by a separate
multiplicative model that accounted for the age distribution in the counties. The goal of the analysis is to
estimate the county-specific log-relative risks, also known as standardized mortality ratios (SMR).

If Yi is the number of incident cases in county i and Ei is the expected number of incident cases, then the
ratio of observed to expected counts, Yi=Ei , is the standardized mortality ratio. Clayton and Kaldor (1987)
assume there exists a relative risk �i that is specific to each county and is a random variable. Conditional on
�i , the observed counts are independent Poisson variables with mean Ei�i .

An elementary mixed model for �i specifies only a random intercept for each county, in addition to a fixed
intercept. Breslow and Clayton (1993), in their analysis of these data, also provide a covariate that measures
the percentage of employees in agriculture, fishing, and forestry. The expanded model for the region-specific
relative risk in Breslow and Clayton (1993) is

�i D exp fˇ0 C ˇ1xi=10C ig ; i D 1; � � � ; 56

where ˇ0 and ˇ1 are fixed effects, and the i are county random effects.

The following DATA step creates the data set lipcancer. The expected number of cases is based on the
observed standardized mortality ratio for counties with lip cancer cases, and based on the expected counts
reported by Clayton and Kaldor (1987, Table 1) for the counties without cases. The sum of the expected
counts then equals the sum of the observed counts.

data lipcancer;
input county observed expected employment SMR;
if (observed > 0) then expCount = 100*observed/SMR;
else expCount = expected;
datalines;

1 9 1.4 16 652.2
2 39 8.7 16 450.3
3 11 3.0 10 361.8
4 9 2.5 24 355.7
5 15 4.3 10 352.1
6 8 2.4 24 333.3
7 26 8.1 10 320.6
8 7 2.3 7 304.3
9 6 2.0 7 303.0

10 20 6.6 16 301.7
11 13 4.4 7 295.5
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12 5 1.8 16 279.3
13 3 1.1 10 277.8
14 8 3.3 24 241.7
15 17 7.8 7 216.8
16 9 4.6 16 197.8
17 2 1.1 10 186.9
18 7 4.2 7 167.5
19 9 5.5 7 162.7
20 7 4.4 10 157.7
21 16 10.5 7 153.0
22 31 22.7 16 136.7
23 11 8.8 10 125.4
24 7 5.6 7 124.6
25 19 15.5 1 122.8
26 15 12.5 1 120.1
27 7 6.0 7 115.9
28 10 9.0 7 111.6
29 16 14.4 10 111.3
30 11 10.2 10 107.8
31 5 4.8 7 105.3
32 3 2.9 24 104.2
33 7 7.0 10 99.6
34 8 8.5 7 93.8
35 11 12.3 7 89.3
36 9 10.1 0 89.1
37 11 12.7 10 86.8
38 8 9.4 1 85.6
39 6 7.2 16 83.3
40 4 5.3 0 75.9
41 10 18.8 1 53.3
42 8 15.8 16 50.7
43 2 4.3 16 46.3
44 6 14.6 0 41.0
45 19 50.7 1 37.5
46 3 8.2 7 36.6
47 2 5.6 1 35.8
48 3 9.3 1 32.1
49 28 88.7 0 31.6
50 6 19.6 1 30.6
51 1 3.4 1 29.1
52 1 3.6 0 27.6
53 1 5.7 1 17.4
54 1 7.0 1 14.2
55 0 4.2 16 0.0
56 0 1.8 10 0.0
;

Because the mean of the Poisson variates, conditional on the random effects, is �i D Ei�i , applying a log
link yields

logf�ig D logfEig C ˇ0 C ˇ1xi=10C i

The term logfEig is an offset, a regressor variable whose coefficient is known to be one. Note that it is
assumed that the Ei are known; they are not treated as random variables.
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The following statements fit this model by residual pseudo-likelihood:

proc glimmix data=lipcancer;
class county;
x = employment / 10;
logn = log(expCount);
model observed = x / dist=poisson offset=logn

solution ddfm=none;
random county;
SMR_pred = 100*exp(_zgamma_ + _xbeta_);
id employment SMR SMR_pred;
output out=glimmixout;

run;

The offset is created with the assignment statement

logn = log(expCount);

and is associated with the linear predictor through the OFFSET= option in the MODEL statement. The
statement

x = employment / 10;

transforms the covariate measuring percentage of employment in agriculture, fisheries, and forestry to agree
with the analysis of Breslow and Clayton (1993). The DDFM=NONE option in the MODEL statement
requests chi-square tests and z tests instead of the default F tests and t tests by setting the denominator degrees
of freedom in tests of fixed effects to1.

The statement

SMR_pred = 100*exp(_zgamma_ + _xbeta_);

calculates the fitted standardized mortality rate. Note that the offset variable does not contribute to the
exponentiated term.

The OUTPUT statement saves results of the calculations to the output data set glimmixout. The ID statement
specifies that only the listed variables are written to the output data set.

Output 44.3.1 Model Information in Poisson GLMM

The GLIMMIX ProcedureThe GLIMMIX Procedure

Model Information

Data Set WORK.LIPCANCER

Response Variable observed

Response Distribution Poisson

Link Function Log

Variance Function Default

Offset Variable logn = log(expCount);

Variance Matrix Not blocked

Estimation Technique Residual PL

Degrees of Freedom Method None
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Output 44.3.1 continued

Class Level Information

Class Levels Values

county 56 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

Number of Observations Read 56

Number of Observations Used 56

Dimensions

G-side Cov. Parameters 1

Columns in X 2

Columns in Z 56

Subjects (Blocks in V) 1

Max Obs per Subject 56

The GLIMMIX procedure displays in the “Model Information” table that the offset variable was computed
with programming statements and the final assignment statement from your GLIMMIX statements (Out-
put 44.3.1). There are two columns in the X matrix, corresponding to the intercept and the regressor x=10.
There are 56 columns in the Z matrix, however, one for each observation in the data set (Output 44.3.1).

The optimization involves only a single covariance parameter, the variance of the county effect (Output 44.3.2).
Because this parameter is a variance, the GLIMMIX procedure imposes a lower boundary constraint; the
solution for the variance is bounded by zero from below.

Output 44.3.2 Optimization Information in Poisson GLMM

Optimization Information

Optimization Technique Dual Quasi-Newton

Parameters in Optimization 1

Lower Boundaries 1

Upper Boundaries 0

Fixed Effects Profiled

Starting From Data

Following the initial creation of pseudo-data and the fit of a linear mixed model, the procedure goes through
five more updates of the pseudo-data, each associated with a separate optimization (Output 44.3.3). Although
the objective function in each optimization is the negative of twice the restricted maximum likelihood for
that pseudo-data, there is no guarantee that across the outer iterations the objective function decreases in
subsequent optimizations. In this example, minus twice the residual maximum likelihood at convergence
takes on its smallest value at the initial optimization and increases in subsequent optimizations.
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Output 44.3.3 Iteration History in Poisson GLMM

Iteration History

Iteration Restarts Subiterations
Objective
Function Change

Max
Gradient

0 0 4 123.64113992 0.20997891 3.848E-8

1 0 3 127.05866018 0.03393332 0.000048

2 0 2 127.48839749 0.00223427 5.753E-6

3 0 1 127.50502469 0.00006946 1.938E-7

4 0 1 127.50528068 0.00000118 1.09E-7

5 0 0 127.50528481 0.00000000 1.299E-6

Convergence criterion (PCONV=1.11022E-8) satisfied.

The “Covariance Parameter Estimates” table in Output 44.3.4 shows the estimate of the variance of the
region-specific log-relative risks. There is significant county-to-county heterogeneity in risks. If the covariate
were removed from the analysis, as in Clayton and Kaldor (1987), the heterogeneity in county-specific risks
would increase. (The fitted SMRs in Table 6 of Breslow and Clayton (1993) were obtained without the
covariate x in the model.)

Output 44.3.4 Estimated Covariance Parameters in Poisson GLMM

Covariance Parameter
Estimates

Cov
Parm Estimate

Standard
Error

county 0.3567 0.09869

The “Solutions for Fixed Effects” table displays the estimates of ˇ0 and ˇ1 along with their standard errors
and test statistics (Output 44.3.5). Because of the DDFM=NONE option in the MODEL statement, PROC
GLIMMIX assumes that the degrees of freedom for the t tests of H0Wˇj D 0 are infinite. The p-values
correspond to probabilities under a standard normal distribution. The covariate measuring employment
percentages in agriculture, fisheries, and forestry is significant. This covariate might be a surrogate for the
exposure to sunlight, an important risk factor for lip cancer.

Output 44.3.5 Fixed-Effects Parameter Estimates in Poisson GLMM

Solutions for Fixed Effects

Effect Estimate
Standard

Error DF t Value Pr > |t|

Intercept -0.4406 0.1572 Infty -2.80 0.0051

x 0.6799 0.1409 Infty 4.82 <.0001

You can examine the quality of the fit of this model with various residual plots. A panel of studentized
residuals is requested with the following statements:

ods graphics on;
ods select StudentPanel;

proc glimmix data=lipcancer plots=studentpanel;
class county;
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x = employment / 10;
logn = log(expCount);
model observed = x / dist=poisson offset=logn s ddfm=none;
random county;

run;

ods graphics off;

The graph in the upper-left corner of the panel displays studentized residuals plotted against the linear
predictor (Output 44.3.6). The default of the GLIMMIX procedure is to use the estimated BLUPs in the
construction of the residuals and to present them on the linear scale, which in this case is the logarithmic
scale. You can change the type of the computed residual with the TYPE= suboptions of each paneled display.
For example, the option PLOTS=STUDENTPANEL(TYPE=NOBLUP) would request a paneled display of
the marginal residuals on the linear scale.

Output 44.3.6 Panel of Studentized Residuals

The graph in the upper-right corner of the panel shows a histogram with overlaid normal density. A Q-Q plot
and a box plot are shown in the lower cells of the panel.

The following statements produce a graph of the observed and predicted standardized mortality ratios
(Output 44.3.7):
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proc template;
define statgraph scatter;

BeginGraph;
layout overlayequated / yaxisopts=(label='Predicted SMR')

xaxisopts=(label='Observed SMR')
equatetype=square;

lineparm y=0 slope=1 x=0 /
lineattrs = GraphFit(pattern=dash)
extend = true;

scatterplot y=SMR_pred x=SMR /
markercharacter = employment;

endlayout;
EndGraph;

end;
run;
proc sgrender data=glimmixout template=scatter;
run;

In Output 44.3.7, fitted SMRs tend to be larger than the observed SMRs for counties with small observed
SMR and smaller than the observed SMRs for counties with high observed SMR.

Output 44.3.7 Observed and Predicted SMRs; Data Labels Indicate Covariate Values
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To demonstrate the impact of the random effects adjustment to the log-relative risks, the following statements
fit a Poisson regression model (a GLM) by maximum likelihood:

proc glimmix data=lipcancer;
x = employment / 10;
logn = log(expCount);
model observed = x / dist=poisson offset=logn

solution ddfm=none;
SMR_pred = 100*exp(_zgamma_ + _xbeta_);
id employment SMR SMR_pred;
output out=glimmixout;

run;

The GLIMMIX procedure defaults to maximum likelihood estimation because these statements fit a gen-
eralized linear model with nonnormal distribution. As a consequence, the SMRs are county specific only
to the extent that the risks vary with the value of the covariate. But risks are no longer adjusted based on
county-to-county heterogeneity in the observed incidence count.

Because of the absence of random effects, the GLIMMIX procedure recognizes the model as a generalized
linear model and fits it by maximum likelihood (Output 44.3.8). The variance matrix is diagonal because the
observations are uncorrelated.

Output 44.3.8 Model Information in Poisson GLM

The GLIMMIX ProcedureThe GLIMMIX Procedure

Model Information

Data Set WORK.LIPCANCER

Response Variable observed

Response Distribution Poisson

Link Function Log

Variance Function Default

Offset Variable logn = log(expCount);

Variance Matrix Diagonal

Estimation Technique Maximum Likelihood

Degrees of Freedom Method None

The “Dimensions” table shows that there are no G-side random effects in this model and no R-side scale
parameter either (Output 44.3.9).
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Output 44.3.9 Model Dimensions Information in Poisson GLM

Dimensions

Columns in X 2

Columns in Z 0

Subjects (Blocks in V) 1

Max Obs per Subject 56

Because this is a GLM, the GLIMMIX procedure defaults to the Newton-Raphson algorithm, and the fixed
effects (intercept and slope) comprise the parameters in the optimization (Output 44.3.10). (The default
optimization technique for a GLM is the Newton-Raphson method.)

Output 44.3.10 Optimization Information in Poisson GLM

Optimization Information

Optimization Technique Newton-Raphson

Parameters in Optimization 2

Lower Boundaries 0

Upper Boundaries 0

Fixed Effects Not Profiled

The estimates of ˇ0 and ˇ1 have changed from the previous analysis. In the GLMM, the estimates wereb̌
0 D �0:4406 and b̌1 D 0:6799 (Output 44.3.11).

Output 44.3.11 Parameter Estimates in Poisson GLM

Parameter Estimates

Effect Estimate
Standard

Error DF t Value Pr > |t|

Intercept -0.5419 0.06951 Infty -7.80 <.0001

x 0.7374 0.05954 Infty 12.38 <.0001

More importantly, without the county-specific adjustments through the best linear unbiased predictors of the
random effects, the predicted SMRs are the same for all counties with the same percentage of employees in
agriculture, fisheries, and forestry (Output 44.3.12).
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Output 44.3.12 Observed and Predicted SMRs in Poisson GLM

Example 44.4: Quasi-likelihood Estimation for Proportions with Unknown
Distribution

Wedderburn (1974) analyzes data on the incidence of leaf blotch (Rhynchosporium secalis) on barley.

The data represent the percentage of leaf area affected in a two-way layout with 10 barley varieties at nine
sites. The following DATA step converts these data to proportions, as analyzed in McCullagh and Nelder
(1989, Ch. 9.2.4). The purpose of the analysis is to make comparisons among the varieties, adjusted for site
effects.
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data blotch;
array p{9} pct1-pct9;
input variety pct1-pct9;
do site = 1 to 9;

prop = p{site}/100;
output;

end;
drop pct1-pct9;
datalines;

1 0.05 0.00 1.25 2.50 5.50 1.00 5.00 5.00 17.50
2 0.00 0.05 1.25 0.50 1.00 5.00 0.10 10.00 25.00
3 0.00 0.05 2.50 0.01 6.00 5.00 5.00 5.00 42.50
4 0.10 0.30 16.60 3.00 1.10 5.00 5.00 5.00 50.00
5 0.25 0.75 2.50 2.50 2.50 5.00 50.00 25.00 37.50
6 0.05 0.30 2.50 0.01 8.00 5.00 10.00 75.00 95.00
7 0.50 3.00 0.00 25.00 16.50 10.00 50.00 50.00 62.50
8 1.30 7.50 20.00 55.00 29.50 5.00 25.00 75.00 95.00
9 1.50 1.00 37.50 5.00 20.00 50.00 50.00 75.00 95.00
10 1.50 12.70 26.25 40.00 43.50 75.00 75.00 75.00 95.00
;

Little is known about the distribution of the leaf area proportions. The outcomes are not binomial proportions,
because they do not represent the ratio of a count over a total number of Bernoulli trials. However, because
the mean proportion �ij for variety j on site i must lie in the interval Œ0; 1�, you can commence the analysis
with a model that treats Prop as a “pseudo-binomial” variable:

EŒPropij � D �ij
�ij D 1=.1C expf��ij g/
�ij D ˇ0 C ˛i C �j

VarŒPropij � D ��ij .1 � �ij /

Here, �ij is the linear predictor for variety j on site i, ˛i denotes the ith site effect, and �j denotes the jth
barley variety effect. The logit of the expected leaf area proportions is linearly related to these effects. The
variance function of the model is that of a binomial(n,�ij ) variable, and � is an overdispersion parameter. The
moniker “pseudo-binomial” derives not from the pseudo-likelihood methods used to estimate the parameters
in the model, but from treating the response variable as if it had first and second moment properties akin to a
binomial random variable.
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The model is fit in the GLIMMIX procedure with the following statements:

proc glimmix data=blotch;
class site variety;
model prop = site variety / link=logit dist=binomial;
random _residual_;
lsmeans variety / diff=control('1');

run;

The MODEL statement specifies the distribution as binomial and the logit link. Because the variance function
of the binomial distribution is a.�/ D �.1 � �/, you use the statement

random _residual_;

to specify the scale parameter �. The LSMEANS statement requests estimates of the least squares means
for the barley variety. The DIFF=CONTROL(’1’) option requests tests of least squares means differences
against the first variety.

The “Model Information” table in Output 44.4.1 describes the model and methods used in fitting the statistical
model. It is assumed here that the data are binomial proportions.

Output 44.4.1 Model Information in Pseudo-binomial Analysis

The GLIMMIX ProcedureThe GLIMMIX Procedure

Model Information

Data Set WORK.BLOTCH

Response Variable prop

Response Distribution Binomial

Link Function Logit

Variance Function Default

Variance Matrix Diagonal

Estimation Technique Maximum Likelihood

Degrees of Freedom Method Residual

The “Class Level Information” table in Output 44.4.2 lists the number of levels of the Site and Variety effects
and their values. All 90 observations read from the data are used in the analysis.

Output 44.4.2 Class Levels and Number of Observations

Class Level Information

Class Levels Values

site 9 1 2 3 4 5 6 7 8 9

variety 10 1 2 3 4 5 6 7 8 9 10

Number of Observations Read 90

Number of Observations Used 90

In Output 44.4.3, the “Dimensions” table shows that the model does not contain G-side random effects. There
is a single covariance parameter, which corresponds to �. The “Optimization Information” table shows that
the optimization comprises 18 parameters (Output 44.4.3). These correspond to the 18 nonsingular columns
of the X0X matrix.
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Output 44.4.3 Model Fit in Pseudo-binomial Analysis

Dimensions

Covariance Parameters 1

Columns in X 20

Columns in Z 0

Subjects (Blocks in V) 1

Max Obs per Subject 90

Optimization Information

Optimization Technique Newton-Raphson

Parameters in Optimization 18

Lower Boundaries 0

Upper Boundaries 0

Fixed Effects Not Profiled

Fit Statistics

-2 Log Likelihood 57.15

AIC  (smaller is better) 93.15

AICC (smaller is better) 102.79

BIC  (smaller is better) 138.15

CAIC (smaller is better) 156.15

HQIC (smaller is better) 111.30

Pearson Chi-Square 6.39

Pearson Chi-Square / DF 0.09

There are significant site and variety effects in this model based on the approximate Type III F tests
(Output 44.4.4).

Output 44.4.4 Tests of Site and Variety Effects in Pseudo-binomial Analysis

Type III Tests of Fixed Effects

Effect
Num

DF
Den

DF F Value Pr > F

site 8 72 18.25 <.0001

variety 9 72 13.85 <.0001

Output 44.4.5 displays the Variety least squares means for this analysis. These are obtained by averaging

logit.b�ij / Db�ij
across the sites. In other words, LS-means are computed on the linked scale where the model effects are
additive. Note that the least squares means are ordered by variety. The estimate of the expected proportion of
infected leaf area for the first variety is

b�:;1 D 1

1C expf4:38g
D 0:0124

and that for the last variety is

b�:;10 D 1

1C expf0:127g
D 0:468
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Output 44.4.5 Variety Least Squares Means in Pseudo-binomial Analysis

variety Least Squares Means

variety Estimate
Standard

Error DF t Value Pr > |t|

1 -4.3800 0.5643 72 -7.76 <.0001

2 -4.2300 0.5383 72 -7.86 <.0001

3 -3.6906 0.4623 72 -7.98 <.0001

4 -3.3319 0.4239 72 -7.86 <.0001

5 -2.7653 0.3768 72 -7.34 <.0001

6 -2.0089 0.3320 72 -6.05 <.0001

7 -1.8095 0.3228 72 -5.61 <.0001

8 -1.0380 0.2960 72 -3.51 0.0008

9 -0.8800 0.2921 72 -3.01 0.0036

10 -0.1270 0.2808 72 -0.45 0.6523

Because of the ordering of the least squares means, the differences against the first variety are also ordered
from smallest to largest (Output 44.4.6).

Output 44.4.6 Variety Differences against the First Variety

Differences of variety Least Squares Means

variety _variety Estimate
Standard

Error DF t Value Pr > |t|

2 1 0.1501 0.7237 72 0.21 0.8363

3 1 0.6895 0.6724 72 1.03 0.3086

4 1 1.0482 0.6494 72 1.61 0.1109

5 1 1.6147 0.6257 72 2.58 0.0119

6 1 2.3712 0.6090 72 3.89 0.0002

7 1 2.5705 0.6065 72 4.24 <.0001

8 1 3.3420 0.6015 72 5.56 <.0001

9 1 3.5000 0.6013 72 5.82 <.0001

10 1 4.2530 0.6042 72 7.04 <.0001

This analysis depends on your choice for the variance function that was implied by the binomial distribution.
You can diagnose the distributional assumption by examining various graphical diagnostics measures. The
following statements request a panel display of the Pearson-type residuals:

ods graphics on;
ods select PearsonPanel;
proc glimmix data=blotch plots=pearsonpanel;

class site variety;
model prop = site variety / link=logit dist=binomial;
random _residual_;

run;
ods graphics off;

Output 44.4.7 clearly indicates that the chosen variance function is not appropriate for these data. As �
approaches zero or one, the variability in the residuals is less than that implied by the binomial variance
function.
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Output 44.4.7 Panel of Pearson-Type Residuals in Pseudo-binomial Analysis

To remedy this situation, McCullagh and Nelder (1989) consider instead the variance function

VarŒPropij � D �
2
ij .1 � �ij /

2

Imagine two varieties with �:i D 0:1 and �:k D 0:5. Under the binomial variance function, the variance of
the proportion for variety k is 2.77 times larger than that for variety i. Under the revised model this ratio
increases to 2:772 D 7:67.

The analysis of the revised model is obtained with the next set of GLIMMIX statements. Because you need
to model a variance function that does not correspond to any of the built-in distributions, you need to supply
a function with an assignment to the automatic variable _VARIANCE_. The GLIMMIX procedure then
considers the distribution of the data as unknown. The corresponding estimation technique is quasi-likelihood.
Because this model does not include an extra scale parameter, you can drop the RANDOM _RESIDUAL_
statement from the analysis.
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ods graphics on;
ods select ModelInfo FitStatistics LSMeans Diffs PearsonPanel;
proc glimmix data=blotch plots=pearsonpanel;

class site variety;
_variance_ = _mu_**2 * (1-_mu_)**2;
model prop = site variety / link=logit;
lsmeans variety / diff=control('1');

run;
ods graphics off;

The “Model Information” table in Output 44.4.8 now displays the distribution as “Unknown,” because of
the assignment made in the GLIMMIX statements to _VARIANCE_. The table also shows the expression
evaluated as the variance function.

Output 44.4.8 Model Information in Quasi-likelihood Analysis

The GLIMMIX ProcedureThe GLIMMIX Procedure

Model Information

Data Set WORK.BLOTCH

Response Variable prop

Response Distribution Unknown

Link Function Logit

Variance Function _mu_**2 * (1-_mu_)**2

Variance Matrix Diagonal

Estimation Technique Quasi-Likelihood

Degrees of Freedom Method Residual

The fit statistics of the model are now expressed in terms of the log quasi-likelihood. It is computed as

9X
iD1

10X
jD1

Z �ij

yij

yij � t

t2.1 � t /2
dt

Twice the negative of this sum equals –85.74, which is displayed in the “Fit Statistics” table (Output 44.4.9).

The scaled Pearson statistic is now 0.99. Inclusion of an extra scale parameter � would have little or no effect
on the results.

Output 44.4.9 Fit Statistics in Quasi-likelihood Analysis

Fit Statistics

-2 Log Quasi-Likelihood -85.74

Quasi-AIC  (smaller is better) -49.74

Quasi-AICC (smaller is better) -40.11

Quasi-BIC  (smaller is better) -4.75

Quasi-CAIC (smaller is better) 13.25

Quasi-HQIC (smaller is better) -31.60

Pearson Chi-Square 71.17

Pearson Chi-Square / DF 0.99
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The panel of Pearson-type residuals now shows a much more adequate distribution for the residuals and a
reduction in the number of outlying residuals (Output 44.4.10).

Output 44.4.10 Panel of Pearson-Type Residuals (Quasi-likelihood)

The least squares means are no longer ordered in size by variety (Output 44.4.11). For example, logit.b�:1/ >
logit.b�:2/. Under the revised model, the second variety has a greater percentage of its leaf area covered by
blotch, compared to the first variety. Varieties 5 and 6 and varieties 8 and 9 show similar reversal in ranking.
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Output 44.4.11 Variety Least Squares Means in Quasi-likelihood Analysis

variety Least Squares Means

variety Estimate
Standard

Error DF t Value Pr > |t|

1 -4.0453 0.3333 72 -12.14 <.0001

2 -4.5126 0.3333 72 -13.54 <.0001

3 -3.9664 0.3333 72 -11.90 <.0001

4 -3.0912 0.3333 72 -9.27 <.0001

5 -2.6927 0.3333 72 -8.08 <.0001

6 -2.7167 0.3333 72 -8.15 <.0001

7 -1.7052 0.3333 72 -5.12 <.0001

8 -0.7827 0.3333 72 -2.35 0.0216

9 -0.9098 0.3333 72 -2.73 0.0080

10 -0.1580 0.3333 72 -0.47 0.6369

Interestingly, the standard errors are constant among the LS-means (Output 44.4.11) and among the LS-means
differences (Output 44.4.12). This is due to the fact that for the logit link

@�

@�
D �.1 � �/

which cancels with the square root of the variance function in the estimating equations. The analysis is thus
orthogonal.

Output 44.4.12 Variety Differences in Quasi-likelihood Analysis

Differences of variety Least Squares Means

variety _variety Estimate
Standard

Error DF t Value Pr > |t|

2 1 -0.4673 0.4714 72 -0.99 0.3249

3 1 0.07885 0.4714 72 0.17 0.8676

4 1 0.9541 0.4714 72 2.02 0.0467

5 1 1.3526 0.4714 72 2.87 0.0054

6 1 1.3286 0.4714 72 2.82 0.0062

7 1 2.3401 0.4714 72 4.96 <.0001

8 1 3.2626 0.4714 72 6.92 <.0001

9 1 3.1355 0.4714 72 6.65 <.0001

10 1 3.8873 0.4714 72 8.25 <.0001

Example 44.5: Joint Modeling of Binary and Count Data
Clustered data arise when multiple observations are collected on the same sampling or experimental unit.
Often, these multiple observations refer to the same attribute measured at different points in time or space.
This leads to repeated measures, longitudinal, and spatial data, which are special forms of multivariate data.
A different class of multivariate data arises when the multiple observations refer to different attributes.

The data set hernio, created in the following DATA step, provides an example of a bivariate outcome variable.
It reflects the condition and length of hospital stay for 32 herniorrhaphy patients. These data are based on
data given by Mosteller and Tukey (1977) and reproduced in Hand et al. (1994, pp. 390, 391). The data set
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that follows does not contain all the covariates given in these sources. The response variables are leave and
los; these denote the condition of the patient upon leaving the operating room and the length of hospital stay
after the operation (in days). The variable leave takes on the value one if a patient experiences a routine
recovery, and the value zero if postoperative intensive care was required. The binary variable OKstatus
distinguishes patients based on their postoperative physical status (“1” implies better status).

data hernio;
input patient age gender$ OKstatus leave los;
datalines;

1 78 m 1 0 9
2 60 m 1 0 4
3 68 m 1 1 7
4 62 m 0 1 35
5 76 m 0 0 9
6 76 m 1 1 7
7 64 m 1 1 5
8 74 f 1 1 16
9 68 m 0 1 7

10 79 f 1 0 11
11 80 f 0 1 4
12 48 m 1 1 9
13 35 f 1 1 2
14 58 m 1 1 4
15 40 m 1 1 3
16 19 m 1 1 4
17 79 m 0 0 3
18 51 m 1 1 5
19 57 m 1 1 8
20 51 m 0 1 8
21 48 m 1 1 3
22 48 m 1 1 5
23 66 m 1 1 8
24 71 m 1 0 2
25 75 f 0 0 7
26 2 f 1 1 0
27 65 f 1 0 16
28 42 f 1 0 3
29 54 m 1 0 2
30 43 m 1 1 3
31 4 m 1 1 3
32 52 m 1 1 8
;

While the response variable los is a Poisson count variable, the response variable leave is a binary variable.
You can perform separate analysis for the two outcomes, for example, by fitting a logistic model for the
operating room exit condition and a Poisson regression model for the length of hospital stay. This, however,
would ignore the correlation between the two outcomes. Intuitively, you would expect that the length of
postoperative hospital stay is longer for those patients who had more tenuous exit conditions.

The following DATA step converts the data set hernio from the multivariate form to the univariate form. In
the multivariate form the responses are stored in separate variables. The GLIMMIX procedure requires the
univariate data structure.
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data hernio_uv;
length dist $7;
set hernio;
response = (leave=1);
dist = "Binary";
output;
response = los;
dist = "Poisson";
output;
keep patient age OKstatus response dist;

run;

This DATA step expands the 32 observations in the data set hernio into 64 observations, stacking two
observations per patient. The character variable dist identifies the distribution that is assumed for the
respective observations within a patient. The first observation for each patient corresponds to the binary
response.

The following GLIMMIX statements fit a logistic regression model with two regressors (age and OKStatus)
to the binary observations:

proc glimmix data=hernio_uv(where=(dist="Binary"));
model response(event='1') = age OKStatus / s dist=binary;

run;

The EVENT=(’1’) response option requests that PROC GLIMMIX model the probability Pr.leave D 1/—
that is, the probability of routine recovery. The fit statistics and parameter estimates for this univariate
analysis are shown in Output 44.5.1. The coefficient for the age effect is negative (–0.07725) and marginally
significant at the 5% level (p = 0.0491). The negative sign indicates that the probability of routine recovery
decreases with age. The coefficient for the OKStatus variable is also negative. Its large standard error and the
p-value of 0.7341 indicate, however, that this regressor is not significant.

Output 44.5.1 Univariate Logistic Regression

The GLIMMIX ProcedureThe GLIMMIX Procedure

Fit Statistics

-2 Log Likelihood 32.77

AIC  (smaller is better) 38.77

AICC (smaller is better) 39.63

BIC  (smaller is better) 43.17

CAIC (smaller is better) 46.17

HQIC (smaller is better) 40.23

Pearson Chi-Square 30.37

Pearson Chi-Square / DF 1.05

Parameter Estimates

Effect Estimate
Standard

Error DF t Value Pr > |t|

Intercept 5.7694 2.8245 29 2.04 0.0503

age -0.07725 0.03761 29 -2.05 0.0491

OKstatus -0.3516 1.0253 29 -0.34 0.7341
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Based on the univariate logistic regression analysis, you would probably want to revisit the model, examine
other regressor variables, test for gender effects and interactions, and so forth. The two-regressor model is
sufficient for this example. It is illustrative to trace the relative importance of the two regressors through
various types of models.

The next statements fit the same regressors to the count data:

proc glimmix data=hernio_uv(where=(dist="Poisson"));
model response = age OKStatus / s dist=Poisson;

run;

For this response, both regressors appear to make significant contributions at the 5% significance level
(Output 44.5.2). The sign of the coefficient seems appropriate; the length of hospital stay should increase
with patient age and be shorter for patients with better preoperative health. The magnitude of the scaled
Pearson statistic (4.48) indicates, however, that there is considerable overdispersion in this model. This could
be due to omitted variables or an improper distributional assumption. The importance of preoperative health
status, for example, can change with a patient’s age, which could call for an interaction term.

Output 44.5.2 Univariate Poisson Regression

The GLIMMIX ProcedureThe GLIMMIX Procedure

Fit Statistics

-2 Log Likelihood 215.52

AIC  (smaller is better) 221.52

AICC (smaller is better) 222.38

BIC  (smaller is better) 225.92

CAIC (smaller is better) 228.92

HQIC (smaller is better) 222.98

Pearson Chi-Square 129.98

Pearson Chi-Square / DF 4.48

Parameter Estimates

Effect Estimate
Standard

Error DF t Value Pr > |t|

Intercept 1.2640 0.3393 29 3.72 0.0008

age 0.01525 0.004454 29 3.42 0.0019

OKstatus -0.3301 0.1562 29 -2.11 0.0433

You can also model both responses jointly. The following statements request a multivariate analysis:

proc glimmix data=hernio_uv;
class dist;
model response(event='1') = dist dist*age dist*OKstatus /

noint s dist=byobs(dist);
run;

The DIST=BYOBS option in the MODEL statement instructs the GLIMMIX procedure to examine the
variable dist in order to identify the distribution of an observation. The variable can be character or numeric.
See the DIST= option of the MODEL statement for a list of the numeric codes for the various distributions
that are compatible with the DIST=BYOBS formulation. Because no LINK= option is specified, the link
functions are chosen as the default links that correspond to the respective distributions. In this case, the logit
link is applied to the binary observations and the log link is applied to the Poisson outcomes. The dist variable
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is also listed in the CLASS statement, which enables you to use interaction terms in the MODEL statement
to vary the regression coefficients by response distribution. The NOINT option is used here so that the
parameter estimates of the joint model are directly comparable to those in Output 44.5.1 and Output 44.5.2.

The “Fit Statistics” and “Parameter Estimates” tables of this bivariate estimation process are shown in
Output 44.5.3.

Output 44.5.3 Bivariate Analysis – Independence

The GLIMMIX ProcedureThe GLIMMIX Procedure

Fit Statistics

Description
Binary Poisson

Total

-2 Log Likelihood 32.77 215.52 248.29

AIC  (smaller is better) 44.77 227.52 260.29

AICC (smaller is better) 48.13 230.88 261.77

BIC  (smaller is better) 53.56 236.32 273.25

CAIC (smaller is better) 59.56 242.32 279.25

HQIC (smaller is better) 47.68 230.44 265.40

Pearson Chi-Square 30.37 129.98 160.35

Pearson Chi-Square / DF 1.05 4.48 2.76

Parameter Estimates

Effect dist Estimate
Standard

Error DF t Value Pr > |t|

dist Binary 5.7694 2.8245 58 2.04 0.0456

dist Poisson 1.2640 0.3393 58 3.72 0.0004

age*dist Binary -0.07725 0.03761 58 -2.05 0.0445

age*dist Poisson 0.01525 0.004454 58 3.42 0.0011

OKstatus*dist Binary -0.3516 1.0253 58 -0.34 0.7329

OKstatus*dist Poisson -0.3301 0.1562 58 -2.11 0.0389

The “Fit Statistics” table now contains a separate column for each response distribution, as well as an
overall contribution. Because the model does not specify any random effects or R-side correlations, the log
likelihoods are additive. The parameter estimates and their standard errors in this joint model are identical to
those in Output 44.5.1 and Output 44.5.2. The p-values reflect the larger “sample size” in the joint analysis.
Note that the coefficients would be different from the separate analyses if the dist variable had not been used
to form interactions with the model effects.

There are two ways in which the correlations between the two responses for the same patient can be
incorporated. You can induce them through shared random effects or model the dependency directly. The
following statements fit a model that induces correlation:

proc glimmix data=hernio_uv;
class patient dist;
model response(event='1') = dist dist*age dist*OKstatus /

noint s dist=byobs(dist);
random int / subject=patient;

run;

Notice that the patient variable has been added to the CLASS statement and as the SUBJECT= effect in the
RANDOM statement.
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The “Fit Statistics” table in Output 44.5.4 no longer has separate columns for each response distribution,
because the data are not independent. The log (pseudo-)likelihood does not factor into additive component
that correspond to distributions. Instead, it factors into components associated with subjects.

Output 44.5.4 Bivariate Analysis – Mixed Model

The GLIMMIX ProcedureThe GLIMMIX Procedure

Fit Statistics

-2 Res Log Pseudo-Likelihood 226.71

Generalized Chi-Square 52.25

Gener. Chi-Square / DF 0.90

Covariance Parameter Estimates

Cov Parm Subject Estimate
Standard

Error

Intercept patient 0.2990 0.1116

Solutions for Fixed Effects

Effect dist Estimate
Standard

Error DF t Value Pr > |t|

dist Binary 5.7783 2.9048 29 1.99 0.0562

dist Poisson 0.8410 0.5696 29 1.48 0.1506

age*dist Binary -0.07572 0.03791 29 -2.00 0.0552

age*dist Poisson 0.01875 0.007383 29 2.54 0.0167

OKstatus*dist Binary -0.4697 1.1251 29 -0.42 0.6794

OKstatus*dist Poisson -0.1856 0.3020 29 -0.61 0.5435

The estimate of the variance of the random patient intercept is 0.2990, and the estimated standard error of
this variance component estimate is 0.1116. There appears to be significant patient-to-patient variation in
the intercepts. The estimates of the fixed effects as well as their estimated standard errors have changed
from the bivariate-independence analysis (see Output 44.5.3). When the length of hospital stay and the
postoperative condition are modeled jointly, the preoperative health status (variable OKStatus) no longer
appears significant. Compare this result to Output 44.5.3; in the separate analyses the initial health status was
a significant predictor of the length of hospital stay. A further joint analysis of these data would probably
remove this predictor from the model entirely.

A joint model of the second kind, where correlations are modeled directly, is fit with the following GLIMMIX
statements:

proc glimmix data=hernio_uv;
class patient dist;
model response(event='1') = dist dist*age dist*OKstatus /

noint s dist=byobs(dist);
random _residual_ / subject=patient type=chol;

run;

Instead of a shared G-side random effect, an R-side covariance structure is used to model the correlations.
It is important to note that this is a marginal model that models covariation on the scale of the data. The
previous model involves the Z random components inside the linear predictor.

The _RESIDUAL_ keyword instructs PROC GLIMMIX to model the R-side correlations. Because of the
SUBJECT=PATIENT option, data from different patients are independent, and data from a single patient
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follow the covariance model specified with the TYPE= option. In this case, a generally unstructured 2 � 2
covariance matrix is modeled, but in its Cholesky parameterization. This ensures that the resulting covariance
matrix is at least positive semidefinite and stabilizes the numerical optimizations.

Output 44.5.5 Bivariate Analysis – Marginal Correlated Error Model

The GLIMMIX ProcedureThe GLIMMIX Procedure

Fit Statistics

-2 Res Log Pseudo-Likelihood 240.98

Generalized Chi-Square 58.00

Gener. Chi-Square / DF 1.00

Covariance Parameter Estimates

Cov Parm Subject Estimate
Standard

Error

CHOL(1,1) patient 1.0162 0.1334

CHOL(2,1) patient 0.3942 0.3893

CHOL(2,2) patient 2.0819 0.2734

Solutions for Fixed Effects

Effect dist Estimate
Standard

Error DF t Value Pr > |t|

dist Binary 5.6514 2.8283 26 2.00 0.0563

dist Poisson 1.2463 0.7189 26 1.73 0.0948

age*dist Binary -0.07568 0.03765 26 -2.01 0.0549

age*dist Poisson 0.01548 0.009432 26 1.64 0.1128

OKstatus*dist Binary -0.3421 1.0384 26 -0.33 0.7445

OKstatus*dist Poisson -0.3253 0.3310 26 -0.98 0.3349

The “Covariance Parameter Estimates” table in Output 44.5.5 contains three entries for this model, corre-
sponding to a .2 � 2/ covariance matrix for each patient. The Cholesky root of the R matrix is

L D
�
1:0162 0

0:3942 2:0819

�
so that the covariance matrix can be obtained as

LL0 D
�
1:0162 0

0:3942 2:0819

� �
1:0162 0:3942

0 2:0819

�
D

�
1:0326 0:4005

0:4005 4:4897

�
This is not the covariance matrix of the data, however, because the variance functions need to be accounted
for.

The p-values in the “Solutions for Fixed Effects” table indicate the same pattern of significance and non-
significance as in the conditional model with random patient intercepts.

Example 44.6: Radial Smoothing of Repeated Measures Data
This example of a repeated measures study is taken from Diggle, Liang, and Zeger (1994, p. 100). The
data consist of body weights of 27 cows, measured at 23 unequally spaced time points over a period of
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approximately 22 months. Following Diggle, Liang, and Zeger (1994), one animal is removed from the
analysis, one observation is removed according to their Figure 5.7, and the time is shifted to start at 0 and is
measured in 10-day increments. The design is a 2 � 2 factorial, and the factors are the infection of an animal
with M. paratuberculosis and whether the animal is receiving iron dosing.

The following DATA steps create the data and arrange them in univariate format.

data times;
input time1-time23;
datalines;

122 150 166 179 219 247 276 296 324 354 380 445
478 508 536 569 599 627 655 668 723 751 781

;

data cows;
if _n_ = 1 then merge times;
array t{23} time1 - time23;
array w{23} weight1 - weight23;
input cow iron infection weight1-weight23 @@;
do i=1 to 23;

weight = w{i};
tpoint = (t{i}-t{1})/10;
output;

end;
keep cow iron infection tpoint weight;
datalines;
1 0 0 4.7 4.905 5.011 5.075 5.136 5.165 5.298 5.323

5.416 5.438 5.541 5.652 5.687 5.737 5.814 5.799
5.784 5.844 5.886 5.914 5.979 5.927 5.94

2 0 0 4.868 5.075 5.193 5.22 5.298 5.416 5.481 5.521
5.617 5.635 5.687 5.768 5.799 5.872 5.886 5.872
5.914 5.966 5.991 6.016 6.087 6.098 6.153

3 0 0 4.868 5.011 5.136 5.193 5.273 5.323 5.416 5.46
5.521 5.58 5.617 5.687 5.72 5.753 5.784 5.784
5.784 5.814 5.829 5.872 5.927 5.9 5.991

4 0 0 4.828 5.011 5.136 5.193 5.273 5.347 5.438 5.561
5.541 5.598 5.67 . 5.737 5.844 5.858 5.872
5.886 5.927 5.94 5.979 6.052 6.028 6.12

5 1 0 4.787 4.977 5.043 5.136 5.106 5.298 5.298 5.371
5.438 5.501 5.561 5.652 5.67 5.737 5.784 5.768
5.784 5.784 5.829 5.858 5.914 5.9 5.94

6 1 0 4.745 4.868 5.043 5.106 5.22 5.298 5.347 5.347
5.416 5.501 5.561 5.58 5.687 5.72 5.737 5.72
5.737 5.753 5.768 5.784 5.844 5.844 5.9

7 1 0 4.745 4.905 5.011 5.106 5.165 5.273 5.371 5.416
5.416 5.521 5.541 5.635 5.687 5.704 5.784 5.768
5.768 5.814 5.829 5.858 5.94 5.94 6.004

8 0 1 4.942 5.106 5.136 5.193 5.298 5.347 5.46 5.521
5.561 5.58 5.635 5.704 5.784 5.823 5.858 5.9
5.94 5.991 6.016 6.064 6.052 6.016 5.979

9 0 1 4.605 4.745 4.868 4.905 4.977 5.22 5.165 5.22
5.22 5.247 5.298 5.416 5.501 5.521 5.58 5.58
5.635 5.67 5.72 5.753 5.799 5.829 5.858
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10 0 1 4.7 4.868 4.905 4.977 5.011 5.106 5.165 5.22
5.22 5.22 5.273 5.384 5.438 5.438 5.501 5.501
5.541 5.598 5.58 5.635 5.687 5.72 5.704

11 0 1 4.828 5.011 5.075 5.165 5.247 5.323 5.394 5.46
5.46 5.501 5.541 5.609 5.687 5.704 5.72 5.704
5.704 5.72 5.737 5.768 5.858 5.9 5.94

12 0 1 4.7 4.828 4.905 5.011 5.075 5.165 5.247 5.298
5.298 5.323 5.416 5.505 5.561 5.58 5.561 5.635
5.687 5.72 5.72 5.737 5.784 5.814 5.799

13 0 1 4.828 5.011 5.075 5.136 5.22 5.273 5.347 5.416
5.438 5.416 5.521 5.628 5.67 5.687 5.72 5.72
5.799 5.858 5.872 5.914 5.94 5.991 6.016

14 0 1 4.828 4.942 5.011 5.075 5.075 5.22 5.273 5.298
5.323 5.298 5.394 5.489 5.541 5.58 5.617 5.67
5.704 5.753 5.768 5.814 5.872 5.927 5.927

15 0 1 4.745 4.905 4.977 5.075 5.193 5.22 5.298 5.323
5.394 5.394 5.438 5.583 5.617 5.652 5.687 5.72
5.753 5.768 5.814 5.844 5.886 5.886 5.886

16 0 1 4.7 4.868 5.011 5.043 5.106 5.165 5.247 5.298
5.347 5.371 5.438 5.455 5.617 5.635 5.704 5.737
5.784 5.768 5.814 5.844 5.886 5.94 5.927

17 1 1 4.605 4.787 4.828 4.942 5.011 5.136 5.22 5.247
5.273 5.247 5.347 5.366 5.416 5.46 5.541 5.481
5.501 5.635 5.652 5.598 5.635 5.635 5.598

18 1 1 4.828 4.977 5.011 5.136 5.273 5.298 5.371 5.46
5.416 5.416 5.438 5.557 5.617 5.67 5.72 5.72
5.799 5.858 5.886 5.914 5.979 6.004 6.028

19 1 1 4.7 4.905 4.942 5.011 5.043 5.136 5.193 5.193
5.247 5.22 5.323 5.338 5.371 5.394 5.438 5.416
5.501 5.561 5.541 5.58 5.652 5.67 5.704

20 1 1 4.745 4.905 4.977 5.043 5.136 5.273 5.347 5.394
5.416 5.394 5.521 5.617 5.617 5.617 5.67 5.635
5.652 5.687 5.652 5.617 5.687 5.768 5.814

21 1 1 4.787 4.942 4.977 5.106 5.165 5.247 5.323 5.416
5.394 5.371 5.438 5.521 5.521 5.561 5.635 5.617
5.687 5.72 5.737 5.737 5.768 5.768 5.704

22 1 1 4.605 4.828 4.828 4.977 5.043 5.165 5.22 5.273
5.247 5.22 5.298 5.375 5.371 5.416 5.501 5.501
5.521 5.561 5.617 5.635 5.72 5.737 5.768

23 1 1 4.7 4.905 5.011 5.075 5.106 5.22 5.22 5.298
5.323 5.347 5.416 5.472 5.501 5.541 5.598 5.598
5.598 5.652 5.67 5.704 5.737 5.768 5.784

24 1 1 4.745 4.942 5.011 5.075 5.106 5.247 5.273 5.323
5.347 5.371 5.416 5.481 5.501 5.541 5.598 5.598
5.635 5.687 5.704 5.72 5.829 5.844 5.9

25 1 1 4.654 4.828 4.828 4.977 4.977 5.043 5.136 5.165
5.165 5.165 5.193 5.204 5.22 5.273 5.371 5.347
5.46 5.58 5.635 5.67 5.753 5.799 5.844

26 1 1 4.828 4.977 5.011 5.106 5.165 5.22 5.273 5.323
5.371 5.394 5.46 5.576 5.652 5.617 5.687 5.67
5.72 5.784 5.784 5.784 5.829 5.814 5.844

;
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The mean response profiles of the cows are not of particular interest; what matters are inferences about the
Iron effect, the Infection effect, and their interaction. Nevertheless, the body weight of the cows changes
over the 22-month period, and you need to account for these changes in the analysis. A reasonable approach
is to apply the approximate low-rank smoother to capture the trends over time. This approach frees you
from having to stipulate a parametric model for the response trajectories over time. In addition, you can test
hypotheses about the smoothing parameter; for example, whether it should be varied by treatment.

The following statements fit a model with a 2 � 2 factorial treatment structure and smooth trends over time,
choosing the Newton-Raphson algorithm with ridging for the optimization:

proc glimmix data=cows;
t2 = tpoint / 100;
class cow iron infection;
model weight = iron infection iron*infection tpoint;
random t2 / type=rsmooth subject=cow

knotmethod=kdtree(bucket=100 knotinfo);
output out=gmxout pred(blup)=pred;
nloptions tech=newrap;

run;

The continuous time effect appears in both the MODEL statement (tpoint) and the RANDOM statement (t2).
Because the variance of the radial smoothing component depends on the temporal metric, the time scale was
rescaled for the RANDOM effect to move the parameter estimate away from the boundary. The knots of the
radial smoother are selected as the vertices of a k-d tree. Specifying BUCKET=100 sets the bucket size of
the tree to b = 100. Because measurements at each time point are available for 26 (or 25) cows, this groups
approximately four time points in a single bucket. The KNOTINFO keyword of the KNOTMETHOD=
option requests a printout of the knot locations for the radial smoother. The OUTPUT statement saves the
predictions of the mean of each observations to the data set gmxout. Finally, the TECH=NEWRAP option in
the NLOPTIONS statement specifies the Newton-Raphson algorithm for the optimization technique.

The “Class Level Information” table lists the number of levels of the Cow, Iron, and Infection effects
(Output 44.6.1).

Output 44.6.1 Model Information and Class Levels in Repeated Measures Analysis

The GLIMMIX ProcedureThe GLIMMIX Procedure

Model Information

Data Set WORK.COWS

Response Variable weight

Response Distribution Gaussian

Link Function Identity

Variance Function Default

Variance Matrix Blocked By cow

Estimation Technique Restricted Maximum Likelihood

Degrees of Freedom Method Containment

Class Level Information

Class Levels Values

cow 26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

iron 2 0 1

infection 2 0 1
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The “Radial Smoother Knots for RSmooth(t2)” table displays the knots computed from the vertices of the t2
k-d tree (Output 44.6.2). Notice that knots are spaced unequally and that the extreme time points are among
the knot locations. The “Number of Observations” table shows that one observation was not used in the
analysis. The 12th observation for cow 4 has a missing value.

Output 44.6.2 Knot Information and Number of Observations

Radial
Smoother Knots
for RSmooth(t2)

Knot
Number t2

1 0

2 0.04400

3 0.1250

4 0.2020

5 0.3230

6 0.4140

7 0.5050

8 0.6010

9 0.6590

Number of Observations Read 598

Number of Observations Used 597

The “Dimensions” table shows that the model contains only two covariance parameters, the G-side variance
of the spline coefficients (�2) and the R-side scale parameter (�, Output 44.6.3). For each subject (cow),
there are nine columns in the Z matrix, one per knot location. The GLIMMIX procedure processes these data
by subjects (cows).

Output 44.6.3 Dimensions Information in Repeated Measures Analysis

Dimensions

G-side Cov. Parameters 1

R-side Cov. Parameters 1

Columns in X 10

Columns in Z per Subject 9

Subjects (Blocks in V) 26

Max Obs per Subject 23

The “Optimization Information” table displays information about the optimization process. Because fixed
effects and the residual scale parameter can be profiled from the optimization, the iterative algorithm involves
only a single covariance parameter, the variance of the spline coefficients (Output 44.6.4).
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Output 44.6.4 Optimization Information in Repeated Measures Analysis

Optimization Information

Optimization Technique Newton-Raphson

Parameters in Optimization 1

Lower Boundaries 1

Upper Boundaries 0

Fixed Effects Profiled

Residual Variance Profiled

Starting From Data

After 11 iterations, the optimization process terminates (Output 44.6.5). In this case, the absolute gradient
convergence criterion was met.

Output 44.6.5 Iteration History and Convergence Status

Iteration History

Iteration Restarts Evaluations
Objective
Function Change

Max
Gradient

0 0 4 -1302.549272 . 20.33682

1 0 3 -1451.587367 149.03809501 9.940495

2 0 3 -1585.640946 134.05357887 4.71531

3 0 3 -1694.516203 108.87525722 2.176741

4 0 3 -1775.290458 80.77425512 0.978577

5 0 3 -1829.966584 54.67612585 0.425724

6 0 3 -1862.878184 32.91160012 0.175992

7 0 3 -1879.329133 16.45094875 0.066061

8 0 3 -1885.175082 5.84594887 0.020137

9 0 3 -1886.238032 1.06295071 0.00372

10 0 3 -1886.288519 0.05048659 0.000198

11 0 3 -1886.288673 0.00015425 6.364E-7

Convergence criterion (ABSGCONV=0.00001) satisfied.

The generalized chi-square statistic in the “Fit Statistics” table is small for this model (Output 44.6.6). There
is very little residual variation. The radial smoother is associated with 433.55 residual degrees of freedom,
computed as 597 minus the trace of the smoother matrix.

Output 44.6.6 Fit Statistics in Repeated Measures Analysis

Fit Statistics

-2 Res Log Likelihood -1886.29

AIC  (smaller is better) -1882.29

AICC (smaller is better) -1882.27

BIC  (smaller is better) -1879.77

CAIC (smaller is better) -1877.77

HQIC (smaller is better) -1881.56

Generalized Chi-Square 0.47

Gener. Chi-Square / DF 0.00

Radial Smoother df(res) 433.55
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The “Covariance Parameter Estimates” table in Output 44.6.7 displays the estimates of the covariance
parameters. The variance of the random spline coefficients is estimated as b�2 D 0:5961, and the scale
parameter (=residual variance) estimate isb� = 0.0008.

Output 44.6.7 Estimated Covariance Parameters

Covariance Parameter Estimates

Cov Parm Subject Estimate
Standard

Error

Var[RSmooth(t2)] cow 0.5961 0.08144

Residual 0.000800 0.000059

The “Type III Tests of Fixed Effects” table displays F tests for the fixed effects in the MODEL statement
(Output 44.6.8). There is a strong infection effect as well as the absence of an interaction between infection
with M. paratuberculosis and iron dosing. It is important to note, however, that the interpretation of these
tests rests on the assumption that the random effects in the mixed model have zero mean; in this case, the
radial smoother coefficients.

Output 44.6.8 Tests of Fixed Effects

Type III Tests of Fixed Effects

Effect
Num

DF
Den

DF F Value Pr > F

iron 1 358 3.59 0.0588

infection 1 358 21.16 <.0001

iron*infection 1 358 0.09 0.7637

tpoint 1 358 53.88 <.0001

A graph of the observed data and fitted profiles in the four groups is produced with the following statements
(Output 44.6.9):

data plot;
set gmxout;
length group $26;
if (iron=0) and (infection=0) then group='Control Group (n=4)';
else if (iron=1) and (infection=0) then group='Iron - No Infection (n=3)';
else if (iron=0) and (infection=1) then group='No Iron - Infection (n=9)';
else group = 'Iron - Infection (n=10)';

run;
proc sort data=plot; by group cow;
run;

proc sgpanel data=plot noautolegend;
title 'Radial Smoothing With Cow-Specific Trends';
label tpoint='Time' weight='log(Weight)';
panelby group / columns=2 rows=2;
scatter x=tpoint y=weight;
series x=tpoint y=pred / group=cow lineattrs=GraphFit;

run;
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Output 44.6.9 Observed and Predicted Profiles

The trends are quite smooth, and you can see how the radial smoother adapts to the cow-specific profile. This
is the reason for the small scale parameter estimate,b� D 0:008. Comparing the panels at the top to the panels
at the bottom of Output 44.6.9 reveals the effect of Infection. A comparison of the panels on the left to those
on the right indicates the weak Iron effect.

The smoothing parameter in this analysis is related to the covariance parameter estimates. Because there is
only one radial smoothing variance component, the amount of smoothing is the same in all four treatment
groups. To test whether the smoothing parameter should be varied by group, you can refine the analysis
of the previous model. The following statements fit the same general model, but they vary the covariance
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parameters by the levels of the Iron*Infection interaction. This is accomplished with the GROUP= option in
the RANDOM statement.

ods select OptInfo FitStatistics CovParms;
proc glimmix data=cows;

t2 = tpoint / 100;
class cow iron infection;
model weight = iron infection iron*infection tpoint;
random t2 / type=rsmooth

subject=cow
group=iron*infection
knotmethod=kdtree(bucket=100);

nloptions tech=newrap;
run;

All observations that have the same value combination of the Iron and Infection effects share the same
covariance parameter. As a consequence, you obtain different smoothing parameters result in the four groups.

In Output 44.6.10, the “Optimization Information” table shows that there are now four covariance parameters
in the optimization, one spline coefficient variance for each group.

Output 44.6.10 Analysis with Group-Specific Smoothing Parameter

The GLIMMIX ProcedureThe GLIMMIX Procedure

Optimization Information

Optimization Technique Newton-Raphson

Parameters in Optimization 4

Lower Boundaries 4

Upper Boundaries 0

Fixed Effects Profiled

Residual Variance Profiled

Starting From Data

Fit Statistics

-2 Res Log Likelihood -1887.95

AIC  (smaller is better) -1877.95

AICC (smaller is better) -1877.85

BIC  (smaller is better) -1871.66

CAIC (smaller is better) -1866.66

HQIC (smaller is better) -1876.14

Generalized Chi-Square 0.48

Gener. Chi-Square / DF 0.00

Radial Smoother df(res) 434.72

Covariance Parameter Estimates

Cov Parm Subject Group Estimate
Standard

Error

Var[RSmooth(t2)] cow iron*infection 0 0 0.4788 0.1922

Var[RSmooth(t2)] cow iron*infection 0 1 0.5152 0.1182

Var[RSmooth(t2)] cow iron*infection 1 0 0.4904 0.2195

Var[RSmooth(t2)] cow iron*infection 1 1 0.7105 0.1409

Residual 0.000807 0.000060
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Varying this variance component by groups has changed the –2 Res Log Likelihood from –1886.29 to
–1887.95 (Output 44.6.10). The difference, 1.66, can be viewed (asymptotically) as the realization of a
chi-square random variable with three degrees of freedom. The difference is not significant (p = 0.64586).
The “Covariance Parameter Estimates” table confirms that the estimates of the spline coefficient variance are
quite similar in the four groups, ranging from 0.4788 to 0.7105.

Finally, you can apply a different technique for varying the temporal trends among the cows. From Out-
put 44.6.9 it appears that an assumption of parallel trends within groups might be reasonable. In other words,
you can fit a model in which the “overall” trend over time in each group is modeled nonparametrically, and
this trend is shifted up or down to capture the behavior of the individual cow. You can accomplish this with
the following statements:

ods select FitStatistics CovParms;
proc glimmix data=cows;

t2 = tpoint / 100;
class cow iron infection;
model weight = iron infection iron*infection tpoint;
random t2 / type=rsmooth

subject=iron*infection
knotmethod=kdtree(bucket=100);

random intercept / subject=cow;
output out=gmxout pred(blup)=pred;
nloptions tech=newrap;

run;

There are now two subject effects in this analysis. The first RANDOM statement applies the radial smoothing
and identifies the experimental conditions as the subject. For each condition, a separate realization of the
random spline coefficients is obtained. The second RANDOM statement adds a random intercept to the trend
for each cow. This random intercept results in the parallel shift of the trends over time.

Results from this analysis are shown in Output 44.6.11.

Output 44.6.11 Analysis with Parallel Shifts

The GLIMMIX ProcedureThe GLIMMIX Procedure

Fit Statistics

-2 Res Log Likelihood -1788.52

AIC  (smaller is better) -1782.52

AICC (smaller is better) -1782.48

BIC  (smaller is better) -1788.52

CAIC (smaller is better) -1785.52

HQIC (smaller is better) -1788.52

Generalized Chi-Square 1.17

Gener. Chi-Square / DF 0.00

Radial Smoother df(res) 547.21

Covariance Parameter Estimates

Cov Parm Subject Estimate
Standard

Error

Var[RSmooth(t2)] iron*infection 0.5398 0.1940

Intercept cow 0.007122 0.002173

Residual 0.001976 0.000121
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Because the parallel shift model is not nested within either one of the previous models, the models cannot be
compared with a likelihood ratio test. However, you can draw on the other fit statistics.

All statistics indicate that this model does not fit the data as well as the initial model that varies the spline
coefficients by cow. The Pearson chi-square statistic is more than twice as large as in the previous model,
indicating much more residual variation in the fit. On the other hand, this model generates only four sets of
spline coefficients, one for each treatment group, and thus retains more residual degrees of freedom.

The “Covariance Parameter Estimates” table in Output 44.6.11 displays the solutions for the covariance
parameters. The estimate of the variance of the spline coefficients is not that different from the estimate
obtained in the first model (0.5961). The residual variance, however, has more than doubled.

Using similar SAS statements as previously, you can produce a plot of the observed and predicted profiles
(Output 44.6.12).

The parallel shifts of the nonparametric smooths are clearly visible in Output 44.6.12. In the groups receiving
only iron or only an infection, the parallel lines assumption holds quite well. In the control group and the
group receiving iron and the infection, the parallel shift assumption does not hold as well. Two of the profiles
in the iron-only group are nearly indistinguishable.
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Output 44.6.12 Observed and Predicted Profiles
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This example demonstrates that mixed model smoothing techniques can be applied not only to achieve scatter
plot smoothing, but also to longitudinal or repeated measures data. You can then use the SUBJECT= option
in the RANDOM statement to obtain independent sets of spline coefficients for different subjects, and the
GROUP= option in the RANDOM statement to vary the degree of smoothing across groups. Also, radial
smoothers can be combined with other random effects. For the data considered here, the appropriate model is
one with a single smoothing parameter for all treatment group and cow-specific spline coefficients.

Example 44.7: Isotonic Contrasts for Ordered Alternatives
Dose response studies often focus on testing for monotone increasing or decreasing behavior in the mean
values of the dependent variable. Hirotsu and Srivastava (2000) demonstrate one approach by using data that
originally appeared in Moriguchi (1976). The data, which follow, consist of ferrite cores subjected to four
increasing temperatures. The response variable is the magnetic force of each core.

data FerriteCores;
do Temp = 1 to 4;

do rep = 1 to 5; drop rep;
input MagneticForce @@;
output;

end;
end;
datalines;

10.8 9.9 10.7 10.4 9.7
10.7 10.6 11.0 10.8 10.9
11.9 11.2 11.0 11.1 11.3
11.4 10.7 10.9 11.3 11.7
;

It is of interest to test whether the magnetic force of the cores rises monotonically with temperature. The
approach of Hirotsu and Srivastava (2000) depends on the lower confidence limits of the isotonic contrasts of
the force means at each temperature, adjusted for multiplicity. The corresponding isotonic contrast compares
the average of a particular group and the preceding groups with the average of the succeeding groups. You
can compute adjusted confidence intervals for isotonic contrasts by using the LSMESTIMATE statement.

The following statements request an analysis of the FerriteCores data as a one-way design and multiplicity-
adjusted lower confidence limits for the isotonic contrasts. For the multiplicity adjustment, the LSMESTI-
MATE statement employs simulation, which provides adjusted p-values and lower confidence limits that are
exact up to Monte Carlo error.

proc glimmix data=FerriteCores;
class Temp;
model MagneticForce = Temp;
lsmestimate Temp

'avg(1:1)<avg(2:4)' -3 1 1 1 divisor=3,
'avg(1:2)<avg(3:4)' -1 -1 1 1 divisor=2,
'avg(1:3)<avg(4:4)' -1 -1 -1 3 divisor=3
/ adjust=simulate(seed=1) cl upper;

ods select LSMestimates;
run;

The results are shown in Output 44.7.1.
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Output 44.7.1 Analysis of LS-Means with Isotonic Contrasts

The GLIMMIX ProcedureThe GLIMMIX Procedure

Least Squares Means Estimates
Adjustment for Multiplicity: Simulated

Effect Label Estimate
Standard

Error DF t Value Tails Pr > t Adj P Alpha Lower Upper
Adj

Lower
Adj

Upper

Temp avg(1:1)<avg(2:4) 0.8000 0.1906 16 4.20 Upper 0.0003 0.0010 0.05 0.4672 Infty 0.3771 Infty

Temp avg(1:2)<avg(3:4) 0.7000 0.1651 16 4.24 Upper 0.0003 0.0009 0.05 0.4118 Infty 0.3337 Infty

Temp avg(1:3)<avg(4:4) 0.4000 0.1906 16 2.10 Upper 0.0260 0.0625 0.05 0.06721 Infty -0.02291 Infty

With an adjusted p-value of 0.001, the magnetic force at the first temperature is significantly less than the
average of the other temperatures. Likewise, the average of the first two temperatures is significantly less
than the average of the last two (p = 0.0009). However, the magnetic force at the last temperature is not
significantly greater than the average magnetic force of the others (p = 0.0625). These results indicate a
significant monotone increase over the first three temperatures, but not across all four temperatures.

Example 44.8: Adjusted Covariance Matrices of Fixed Effects
The following data are from Pothoff and Roy (1964) and consist of growth measurements for 11 girls and 16
boys at ages 8, 10, 12, and 14. Some of the observations are suspect (for example, the third observation for
person 20); however, all of the data are used here for comparison purposes.

data pr;
input child gender$ y1 y2 y3 y4;
array yy y1-y4;
do time=1 to 4;

age = time*2 + 6;
y = yy{time};
output;

end;
drop y1-y4;
datalines;

1 F 21.0 20.0 21.5 23.0
2 F 21.0 21.5 24.0 25.5
3 F 20.5 24.0 24.5 26.0
4 F 23.5 24.5 25.0 26.5
5 F 21.5 23.0 22.5 23.5
6 F 20.0 21.0 21.0 22.5
7 F 21.5 22.5 23.0 25.0
8 F 23.0 23.0 23.5 24.0
9 F 20.0 21.0 22.0 21.5

10 F 16.5 19.0 19.0 19.5
11 F 24.5 25.0 28.0 28.0
12 M 26.0 25.0 29.0 31.0
13 M 21.5 22.5 23.0 26.5
14 M 23.0 22.5 24.0 27.5
15 M 25.5 27.5 26.5 27.0
16 M 20.0 23.5 22.5 26.0
17 M 24.5 25.5 27.0 28.5
18 M 22.0 22.0 24.5 26.5
19 M 24.0 21.5 24.5 25.5
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20 M 23.0 20.5 31.0 26.0
21 M 27.5 28.0 31.0 31.5
22 M 23.0 23.0 23.5 25.0
23 M 21.5 23.5 24.0 28.0
24 M 17.0 24.5 26.0 29.5
25 M 22.5 25.5 25.5 26.0
26 M 23.0 24.5 26.0 30.0
27 M 22.0 21.5 23.5 25.0
;

Jennrich and Schluchter (1986) analyze these data with various models for the fixed effects and the covariance
structure. The strategy here is to fit a growth curve model for the boys and girls and to account for subject-
to-subject variation through G-side random effects. In addition, serial correlation among the observations
within each child is accounted for by a time series process. The data are assumed to be Gaussian, and their
–2 restricted log likelihood is minimized to estimate the model parameters.

The following statements fit a mixed model in which a separate growth curve is assumed for each gender:

proc glimmix data=pr;
class child gender time;
model y = gender age gender*age / covb(details) ddfm=kr;
random intercept age / type=chol sub=child;
random time / subject=child type=ar(1) residual;
ods select ModelInfo CovB CovBModelBased CovBDetails;

run;

The growth curve for an individual child differs from the gender-specific trend because of a random intercept
and a random slope. The two G-side random effects are assumed to be correlated. Their unstructured
covariance matrix is parameterized in terms of the Cholesky root to guarantee a positive (semi-)definite
estimate. An AR(1) covariance structure is modeled for the observations over time for each child. Notice the
RESIDUAL option in the second RANDOM statement. It identifies this as an R-side random effect.

The DDFM=KR option requests that the covariance matrix of the fixed-effect parameter estimates and
denominator degrees of freedom for t and F tests are determined according to Kenward and Roger (1997).
This is reflected in the “Model Information” table (Output 44.8.1).

Output 44.8.1 Model Information with DDFM=KR

The GLIMMIX ProcedureThe GLIMMIX Procedure

Model Information

Data Set WORK.PR

Response Variable y

Response Distribution Gaussian

Link Function Identity

Variance Function Default

Variance Matrix Blocked By child

Estimation Technique Restricted Maximum Likelihood

Degrees of Freedom Method Kenward-Roger

Fixed Effects SE Adjustment Kenward-Roger



Example 44.8: Adjusted Covariance Matrices of Fixed Effects F 3323

The COVB option in the MODEL statement requests that the covariance matrix used for inference about
fixed effects in this model is displayed; this is the Kenward-Roger-adjusted covariance matrix. The DETAILS
suboption requests that the unadjusted covariance matrix is also displayed (Output 44.8.2). In addition, a
table of diagnostic measures for the covariance matrices is produced.

Output 44.8.2 Model-Based and Adjusted Covariance Matrix

Model Based Covariance Matrix for Fixed Effects (Unadjusted)

Effect gender Row Col1 Col2 Col3 Col4 Col5 Col6

Intercept 1 0.9969 -0.9969 -0.07620 0.07620

gender F 2 -0.9969 2.4470 0.07620 -0.1870

gender M 3

age 4 -0.07620 0.07620 0.007581 -0.00758

age*gender F 5 0.07620 -0.1870 -0.00758 0.01861

age*gender M 6

Covariance Matrix for Fixed Effects

Effect gender Row Col1 Col2 Col3 Col4 Col5 Col6

Intercept 1 0.9724 -0.9724 -0.07412 0.07412

gender F 2 -0.9724 2.3868 0.07412 -0.1819

gender M 3

age 4 -0.07412 0.07412 0.007256 -0.00726

age*gender F 5 0.07412 -0.1819 -0.00726 0.01781

age*gender M 6

Diagnostics for Covariance Matrices of Fixed Effects

Model-Based Adjusted

Dimensions Rows 6 6

Non-zero entries 16 16

Summaries Trace 3.4701 3.3843

Log determinant -11.95 -12.17

Eigenvalues > 0 4 4

= 0 2 2

max abs 2.972 2.8988

min abs non-zero 0.0009 0.0008

Condition number 3467.8 3698.2

Norms Frobenius 3.0124 2.9382

Infinity 3.7072 3.6153

Comparisons Concordance correlation 0.9979

Discrepancy function 0.0084

Frobenius norm of difference 0.0742

Trace(Adjusted Inv(MBased)) 3.7801

Determinant and inversion results apply to the nonsingular
partitions of the covariance matrices.
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The “Diagnostics for Covariance Matrices” table in Output 44.8.2 consists of several sections. The trace
and log determinant of covariance matrices are general scalar summaries that are sometimes used in direct
comparisons, or in formulating further statistics, such as the difference of log determinants. The trace simply
represents the sum of the variances of all fixed-effects parameters.

The two matrices have the same number of positive and zero eigenvalues; hence they are of the same rank.
There are no negative eigenvalues; hence the matrices are positive semi-definite.

The “Comparisons” section of the table provides several statistics that set the matrices in relationship. The
statistics enable you to assess the extent to which the adjustment affected the model-based matrix. If the two
matrices are identical, the concordance correlation equals 1, the discrepancy function and the Frobenius norm
of the differences equal 0, and the trace of the adjusted and the (generalized) inverse of the model-based
matrix equals the rank. See the section “Exploring and Comparing Covariance Matrices” on page 3216 for
computational details regarding these statistics. With increasing discrepancy between the matrices, the
difference norm and discrepancy function increase, the concordance correlation falls below 1, and the trace
deviates from the rank. In this particular example, there is strong agreement between the two matrices; the
adjustment to the covariance matrix associated with DDFM=KR is only slight. It is noteworthy, however,
that the trace of the adjusted covariance matrix falls short of the trace of the unadjusted one. Indeed, from
Output 44.8.2 you can see that the diagonal elements of the adjusted covariance matrices are uniformly
smaller than those of the model-based covariance matrix.

Standard error “shrinkage” for the Kenward-Roger covariance adjustment is due to the term �0:25Rij in
equation (3) of Kenward and Roger (1997), which is nonzero for covariance structures with second deriva-
tives, such as the TYPE=ANTE(1), TYPE=AR(1), TYPE=ARH(1), TYPE=ARMA(1,1), TYPE=CHOL,
TYPE=CSH, TYPE=FA0(q), TYPE=TOEPH, and TYPE=UNR structures and all TYPE=SP() structures.

For covariance structures that are linear in the parameters, Rij D 0. You can add the FIRSTORDER suboption
to the DDFM=KR option to request that second derivative matrices Rij are excluded from computing the
covariance matrix adjustment. The resulting covariance adjustment is that of Kackar and Harville (1984)
and Harville and Jeske (1992). This estimator is denoted as em@ in Harville and Jeske (1992) and is referred
to there as the Prasad-Rao estimator after related work by Prasad and Rao (1990). This standard error
adjustment is guaranteed to be positive (semi-)definite. The following statements fit the model with the
Kackar-Harville-Jeske estimator and compare model-based and adjusted covariance matrices:

proc glimmix data=pr;
class child gender time;
model y = gender age gender*age / covb(details)

ddfm=kr(firstorder);
random intercept age / type=chol sub=child;
random time / subject=child type=ar(1) residual;
ods select ModelInfo CovB CovBDetails;

run;

The standard error adjustment is reflected in the “Model Information” table (Output 44.8.3).
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Output 44.8.3 Model Information with DDFM=KR(FIRSTORDER)

The GLIMMIX ProcedureThe GLIMMIX Procedure

Model Information

Data Set WORK.PR

Response Variable y

Response Distribution Gaussian

Link Function Identity

Variance Function Default

Variance Matrix Blocked By child

Estimation Technique Restricted Maximum Likelihood

Degrees of Freedom Method Kenward-Roger

Fixed Effects SE Adjustment Prasad-Rao-Kackar-Harville-Jeske

Output 44.8.4 displays the adjusted covariance matrix. Notice that the elements of this matrix, in particular
the diagonal elements, are larger in absolute value than those of the model-based estimator (Output 44.8.2).

Output 44.8.4 Adjusted Covariance Matrix and Comparison to Model-Based Estimator

Covariance Matrix for Fixed Effects

Effect gender Row Col1 Col2 Col3 Col4 Col5 Col6

Intercept 1 1.0122 -1.0122 -0.07758 0.07758

gender F 2 -1.0122 2.4845 0.07758 -0.1904

gender M 3

age 4 -0.07758 0.07758 0.007706 -0.00771

age*gender F 5 0.07758 -0.1904 -0.00771 0.01891

age*gender M 6
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Output 44.8.4 continued

Diagnostics for Covariance Matrices of Fixed Effects

Model-Based Adjusted

Dimensions Rows 6 6

Non-zero entries 16 16

Summaries Trace 3.4701 3.5234

Log determinant -11.95 -11.91

Eigenvalues > 0 4 4

= 0 2 2

max abs 2.972 3.0176

min abs non-zero 0.0009 0.0009

Condition number 3467.8 3513.4

Norms Frobenius 3.0124 3.0587

Infinity 3.7072 3.7647

Comparisons Concordance correlation 0.9999

Discrepancy function 0.0003

Frobenius norm of difference 0.0463

Trace(Adjusted Inv(MBased)) 4.0352

Determinant and inversion results apply to the nonsingular
partitions of the covariance matrices.

The “Comparisons” statistics show that the model-based and adjusted covariance matrix of the fixed-effects
parameter estimates are very similar. The concordance correlation is near 1, the discrepancy is near zero,
and the trace is very close to the number of positive eigenvalues. This is due to the balanced nature of these
repeated measures data. Shrinkage of standard errors, however, can not occur with the Kackar-Harville-Jeske
estimator.

Example 44.9: Testing Equality of Covariance and Correlation Matrices
Fisher’s iris data are widely used in multivariate statistics. They comprise measurements in millimeters of
four flower attributes, the length and width of sepals and petals for 50 specimens from each of three species,
Iris setosa, I. versicolor, and I. virginica (Fisher 1936).

When modeling multiple attributes from the same specimen, correlations among measurements from the
same flower must be taken into account. Unstructured covariance matrices are common in this multivariate
setting. Species comparisons can focus on comparisons of mean response, but comparisons of the variation
and covariation are also of interest. In this example, the equivalence of covariance and correlation matrices
among the species are examined.
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The iris data set is available in the Sashelp library. The following step displays the first 10 observations
of the iris data in multivariate format—that is, each observation contains multiple response variables. The
DATA step that follows creates a data set in univariate form, where each observation corresponds to a single
response variable. This is the form needed by the GLIMMIX procedure.

proc print data=Sashelp.iris(obs=10);
run;

Output 44.9.1 Fisher (1936) Iris Data

Obs Species SepalLength SepalWidth PetalLength PetalWidth

1 Setosa 50 33 14 2

2 Setosa 46 34 14 3

3 Setosa 46 36 10 2

4 Setosa 51 33 17 5

5 Setosa 55 35 13 2

6 Setosa 48 31 16 2

7 Setosa 52 34 14 2

8 Setosa 49 36 14 1

9 Setosa 44 32 13 2

10 Setosa 50 35 16 6

data iris_univ;
set sashelp.iris;
retain id 0;
array y (4) SepalLength SepalWidth PetalLength PetalWidth;
id+1;
do var=1 to 4;

response = y{var};
output;

end;
drop SepalLength SepalWidth PetalLength PetalWidth:;

run;

The following GLIMMIX statements fit a model with separate unstructured covariance matrices for each
species:

ods select FitStatistics CovParms CovTests;
proc glimmix data=iris_univ;

class species var id;
model response = species*var;
random _residual_ / type=un group=species subject=id;
covtest homogeneity;

run;
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The mean function is modeled as a cell-means model that allows for different means for each species and
outcome variable. The covariances are modeled directly (R-side) rather than through random effects. The
ID variable identifies the individual plant, so that responses from different plants are independent. The
GROUP=SPECIES option varies the parameters of the unstructured covariance matrix by species. Hence,
this model has 30 covariance parameters: 10 unique parameters for a .4 � 4/ covariance matrix for each of
three species.

The COVTEST statement requests a test of homogeneity—that is, it tests whether varying the covariance
parameters by the group effect provides a significantly better fit compared to a model in which different
groups share the same parameter.

Output 44.9.2 Fit Statistics for Analysis of Fisher’s Iris Data

The GLIMMIX ProcedureThe GLIMMIX Procedure

Fit Statistics

-2 Res Log Likelihood 2812.89

AIC  (smaller is better) 2872.89

AICC (smaller is better) 2876.23

BIC  (smaller is better) 2963.21

CAIC (smaller is better) 2993.21

HQIC (smaller is better) 2909.58

Generalized Chi-Square 588.00

Gener. Chi-Square / DF 1.00

The “Fit Statistics” table shows the –2 restricted (residual) log likelihood in the full model and other fit
statistics (Output 44.9.2). The “-2 Res Log Likelihood” sets the benchmark against which a model with
homogeneity constraint is compared. Output 44.9.3 displays the 30 covariance parameters in this model.

There appear to be substantial differences among the covariance parameters from different groups. For
example, the residual variability of the petal length of the three species is 12.4249, 26.6433, and 40.4343,
respectively. The homogeneity hypothesis restricts these variances to be equal and similarly for the other
covariance parameters. The results from the COVTEST statement are shown in Output 44.9.4.
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Output 44.9.3 Covariance Parameters Varied by Species (TYPE=UN)

Covariance Parameter Estimates

Cov
Parm Subject Group Estimate

Standard
Error

UN(1,1) id Species Setosa 12.4249 2.5102

UN(2,1) id Species Setosa 9.9216 2.3775

UN(2,2) id Species Setosa 14.3690 2.9030

UN(3,1) id Species Setosa 1.6355 0.9052

UN(3,2) id Species Setosa 1.1698 0.9552

UN(3,3) id Species Setosa 3.0159 0.6093

UN(4,1) id Species Setosa 1.0331 0.5508

UN(4,2) id Species Setosa 0.9298 0.5859

UN(4,3) id Species Setosa 0.6069 0.2755

UN(4,4) id Species Setosa 1.1106 0.2244

UN(1,1) id Species Versicolor 26.6433 5.3828

UN(2,1) id Species Versicolor 8.5184 2.6144

UN(2,2) id Species Versicolor 9.8469 1.9894

UN(3,1) id Species Versicolor 18.2898 4.3398

UN(3,2) id Species Versicolor 8.2653 2.4149

UN(3,3) id Species Versicolor 22.0816 4.4612

UN(4,1) id Species Versicolor 5.5780 1.6617

UN(4,2) id Species Versicolor 4.1204 1.0641

UN(4,3) id Species Versicolor 7.3102 1.6891

UN(4,4) id Species Versicolor 3.9106 0.7901

UN(1,1) id Species Virginica 40.4343 8.1690

UN(2,1) id Species Virginica 9.3763 3.2213

UN(2,2) id Species Virginica 10.4004 2.1012

UN(3,1) id Species Virginica 30.3290 6.6262

UN(3,2) id Species Virginica 7.1380 2.7395

UN(3,3) id Species Virginica 30.4588 6.1536

UN(4,1) id Species Virginica 4.9094 2.5916

UN(4,2) id Species Virginica 4.7629 1.4367

UN(4,3) id Species Virginica 4.8824 2.2750

UN(4,4) id Species Virginica 7.5433 1.5240

Output 44.9.4 Likelihood Ratio Test of Homogeneity

Tests of Covariance Parameters
Based on the Restricted Likelihood

Label DF

-2 Res
Log
Like ChiSq Pr > ChiSq Note

Homogeneity 20 2959.55 146.66 <.0001 DF

DF: P-value based on a chi-square with DF degrees of freedom.
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Denote as Rk the covariance matrix for species k D 1; 2; 3 with elements �ijk . In processing the COVTEST
hypothesis H0WR1 D R2 D R3, the GLIMMIX procedure fits a model that satisfies the constraints

�111 D �112 D �113

�211 D �212 D �213

�231 D �232 D �233

:::

�441 D �442 D �443

where �ijk is the covariance between the ith and jth variable for the kth species. The –2 restricted log
likelihood of this restricted model is 2959.55 (Output 44.9.4). The change of 146.66 compared to the full
model is highly significant. There is sufficient evidence to reject the notion of equal covariance matrices
among the three iris species.

Equality of covariance matrices implies equality of correlation matrices, but the reverse is not true. Fewer
constraints are needed to equate correlations because the diagonal entries of the covariance matrices are free
to vary. In order to test the equality of the correlation matrices among the three species, you can parameterize
the unstructured covariance matrix in terms of the correlations and use a COVTEST statement with general
contrasts, as shown in the following statements:

ods select FitStatistics CovParms CovTests;
proc glimmix data=iris_univ;

class species var id;
model response = species*var;
random _residual_ / type=unr group=species subject=id;
covtest 'Equal Covariance Matrices' homogeneity;
covtest 'Equal Correlation Matrices' general

0 0 0 0 1 0 0 0 0 0
0 0 0 0 -1 0 0 0 0 0,
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 -1 0 0 0 0 0,
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 -1 0 0 0 0,
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 -1 0 0 0 0,
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 -1 0 0 0,
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 -1 0 0 0,
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 -1 0 0,
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 -1 0 0,
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 -1 0,
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 -1 0,
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 -1,
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 -1 / estimates;

run;

The TYPE=UNR structure is a reparameterization of TYPE=UN. The models provide the same fit, as seen by
comparison of the “Fit Statistics” tables in Output 44.9.2 and Output 44.9.5. The covariance parameters are
ordered differently, however. In each group, the four variances precede the six correlations (Output 44.9.5).
The first COVTEST statement tests the homogeneity hypothesis in terms of the UNR parameterization, and
the result is identical to the test in Output 44.9.4. The second COVTEST statement restricts the correlations
to be equal across groups. If �ijk is the correlation between the ith and jth variable for the kth species, the 12
restrictions are

�211 D �212 D �213

�311 D �312 D �313

�321 D �322 D �323

�411 D �412 D �413

�421 D �422 D �423

�431 D �432 D �433

The ESTIMATES option in the COVTEST statement requests that the GLIMMIX procedure display the
covariance parameter estimates in the restricted model (Output 44.9.5).

Output 44.9.5 Fit Statistics, Covariance Parameters (TYPE=UNR), and Likelihood Ratio Tests for Equality
of Covariance and Correlation Matrices

The GLIMMIX ProcedureThe GLIMMIX Procedure

Fit Statistics

-2 Res Log Likelihood 2812.89

AIC  (smaller is better) 2872.89

AICC (smaller is better) 2876.23

BIC  (smaller is better) 2963.21

CAIC (smaller is better) 2993.21

HQIC (smaller is better) 2909.58

Generalized Chi-Square 588.00

Gener. Chi-Square / DF 1.00
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Output 44.9.5 continued

Covariance Parameter Estimates

Cov Parm Subject Group Estimate
Standard

Error

Var(1) id Species Setosa 12.4249 2.5102

Var(2) id Species Setosa 14.3690 2.9030

Var(3) id Species Setosa 3.0159 0.6093

Var(4) id Species Setosa 1.1106 0.2244

Corr(2,1) id Species Setosa 0.7425 0.06409

Corr(3,1) id Species Setosa 0.2672 0.1327

Corr(3,2) id Species Setosa 0.1777 0.1383

Corr(4,1) id Species Setosa 0.2781 0.1318

Corr(4,2) id Species Setosa 0.2328 0.1351

Corr(4,3) id Species Setosa 0.3316 0.1271

Var(1) id Species Versicolor 26.6433 5.3828

Var(2) id Species Versicolor 9.8469 1.9894

Var(3) id Species Versicolor 22.0816 4.4612

Var(4) id Species Versicolor 3.9106 0.7901

Corr(2,1) id Species Versicolor 0.5259 0.1033

Corr(3,1) id Species Versicolor 0.7540 0.06163

Corr(3,2) id Species Versicolor 0.5605 0.09797

Corr(4,1) id Species Versicolor 0.5465 0.1002

Corr(4,2) id Species Versicolor 0.6640 0.07987

Corr(4,3) id Species Versicolor 0.7867 0.05445

Var(1) id Species Virginica 40.4343 8.1690

Var(2) id Species Virginica 10.4004 2.1012

Var(3) id Species Virginica 30.4588 6.1536

Var(4) id Species Virginica 7.5433 1.5240

Corr(2,1) id Species Virginica 0.4572 0.1130

Corr(3,1) id Species Virginica 0.8642 0.03616

Corr(3,2) id Species Virginica 0.4010 0.1199

Corr(4,1) id Species Virginica 0.2811 0.1316

Corr(4,2) id Species Virginica 0.5377 0.1015

Corr(4,3) id Species Virginica 0.3221 0.1280
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Output 44.9.5 continued

Tests of Covariance Parameters
Based on the Restricted Likelihood

Estimates H0

Label DF

-2 Res
Log
Like ChiSq Pr > ChiSq Est1 Est2 Est3 Est4 Est5 Est6 Est7 Est8 Est9 Est10

Equal
Covariance
Matrices

20 2959.55 146.66 <.0001 26.5004 11.5395 18.5179 4.1883 0.5302 0.7562 0.3779 0.3645 0.4705 0.4845

Equal
Correlation
Matrices

12 2876.38 63.49 <.0001 16.4715 14.8656 4.8427 1.4392 0.5612 0.6827 0.4016 0.3844 0.4976 0.5219

Tests of Covariance Parameters
Based on the Restricted Likelihood

Estimates H0

Label Est11 Est12 Est13 Est14 Est15 Est16 Est17 Est18 Est19 Est20 Est21 Est22 Est23 Est24

Equal
Covariance
Matrices

26.5004 11.5395 18.5179 4.1883 0.5302 0.7562 0.3779 0.3645 0.4705 0.4845 26.5004 11.5395 18.5179 4.1883

Equal
Correlation
Matrices

24.4020 9.1566 17.4434 3.0021 0.5612 0.6827 0.4016 0.3844 0.4976 0.5219 35.0544 10.8350 27.3593 8.1395

Tests of Covariance Parameters
Based on the Restricted Likelihood

Estimates H0

Label Est25 Est26 Est27 Est28 Est29 Est30 Note

Equal
Covariance
Matrices

0.5302 0.7562 0.3779 0.3645 0.4705 0.4845 DF

Equal
Correlation
Matrices

0.5612 0.6827 0.4016 0.3844 0.4976 0.5219 DF

DF: P-value based on a chi-square with DF degrees of freedom.

The result of the homogeneity test is identical to that in Output 44.9.4. The hypothesis of equality of the
correlation matrices is also rejected with a chi-square value of 63.49 and a p-value of < 0:0001. Notice,
however, that the chi-square statistic is smaller than in the test of homogeneity due to the smaller number
of restrictions imposed on the full model. The estimate of the common correlation matrix in the restricted
model is2664

1 0:561 0:683 0:384

0:561 1 0:402 0:498

0:683 0:402 1 0:522

0:384 0:498 0:522 1

3775
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Example 44.10: Multiple Trends Correspond to Multiple Extrema in Profile
Likelihoods

Observations for a period of 168 months for the “Southern Oscillation Index,” measurements of monthly
averaged atmospheric pressure differences between Easter Island and Darwin, Australia (Kahaner, Moler,
and Nash 1989, Ch. 11.9; National Institute of Standards and Technology 1998) is available in the data set
ENSO in the Sashelp library. These data are also used as an example in Chapter 59, “The LOESS Procedure.”
The following statements print the first 10 observations of this data set in Output 44.10.1.

proc print data=Sashelp.enso(obs=10);
run;

Output 44.10.1 El Niño Southern Oscillation Data

Obs Month Year Pressure

1 1 0.08333 12.9

2 2 0.16667 11.3

3 3 0.25000 10.6

4 4 0.33333 11.2

5 5 0.41667 10.9

6 6 0.50000 7.5

7 7 0.58333 7.7

8 8 0.66667 11.7

9 9 0.75000 12.9

10 10 0.83333 14.3

Differences in atmospheric pressure create wind, and the differences recorded in the data set ENSO drive the
trade winds in the southern hemisphere. Such time series often do not consist of a single trend or cycle. In
this particular case, there are at least two known cycles that reflect the annual weather pattern and a longer
cycle that represents the periodic warming of the Pacific Ocean (El Niño).

To estimate the trend in these data by using mixed model technology, you can apply a mixed model smoothing
technique such as TYPE=RSMOOTH or TYPE=PSPLINE. The following statements fit a radial smoother
to the ENSO data and obtain profile likelihoods for a series of values for the variance of the random spline
coefficients:

data tdata;
do covp1=0,0.0005,0.05,0.1,0.2,0.5,

1,2,3,4,5,6,8,10,15,20,50,
75,100,125,140,150,160,175,
200,225,250,275,300,350;

output;
end;

run;

ods select FitStatistics CovParms CovTests;
proc glimmix data=sashelp.enso noprofile;

model pressure = year;
random year / type=rsmooth knotmethod=equal(50);
parms (2) (10);
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covtest tdata=tdata / parms;
ods output covtests=ct;

run;

The tdata data set contains value for the variance of the radial smoother variance for which the profile
likelihood of the model is to be computed. The profile likelihood is obtained by setting the radial smoother
variance at the specified value and estimating all other parameters subject to that constraint.

Because the model contains a residual variance and you need to specify nonzero values for the first covariance
parameter, the NOPROFILE is added to the PROC GLIMMIX statements. If the residual variance is profiled
from the estimation, you cannot fix covariance parameters at a given value, because they would be reexpressed
during model fitting in terms of ratios with the profiled (and changing) variance.

The PARMS statement determines starting values for the covariance parameters for fitting the (full) model.
The PARMS option in the COVTEST statement requests that the input parameters be added to the output and
the output data set. This is useful for subsequent plotting of the profile likelihood function.

The “Fit Statistics” table displays the –2 restricted log likelihood of the model (897.76, Output 44.10.2). The
estimate of the variance of the radial smoother coefficients is 3.5719.

The “Test of Covariance Parameters” table displays the –2 restricted log likelihood for each observation in
the tdata set. Because the tdata data set specifies values for only the first covariance parameter, the second
covariance parameter is free to vary and the values for –2 Res Log Like are profile likelihoods. Notice that
for a number of values of CovP1 the chi-square statistic is missing in this table. For these values the –2 Res
Log Like is smaller than that of the full model. The model did not converge to a global minimum of the
negative restricted log likelihood.

Output 44.10.2 REML and Profile Likelihood Analysis

The GLIMMIX ProcedureThe GLIMMIX Procedure

Fit Statistics

-2 Res Log Likelihood 897.76

AIC  (smaller is better) 901.76

AICC (smaller is better) 901.83

BIC  (smaller is better) 897.76

CAIC (smaller is better) 899.76

HQIC (smaller is better) 897.76

Generalized Chi-Square 1554.38

Gener. Chi-Square / DF 9.36

Radial Smoother df(res) 153.52

Covariance Parameter Estimates

Cov Parm Estimate
Standard

Error

Var[RSmooth(Year)] 3.5719 3.7672

Residual 9.3638 1.3014
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Output 44.10.2 continued

Tests of Covariance Parameters
Based on the Restricted Likelihood

Input
Parameters

Label DF

-2 Res
Log
Like ChiSq Pr > ChiSq CovP1 CovP2 Note

WORK.TDATA 1 893.01 . 1.0000 0 9.3638 MI

WORK.TDATA 1 892.76 . 1.0000 0.000500 9.3638 DF

WORK.TDATA 1 897.34 . 1.0000 0.05000 9.3638 DF

WORK.TDATA 1 898.53 0.77 0.3816 0.1000 9.3638 DF

WORK.TDATA 1 899.38 1.62 0.2038 0.2000 9.3638 DF

WORK.TDATA 1 899.49 1.73 0.1888 0.5000 9.3638 DF

WORK.TDATA 1 898.83 1.07 0.3016 1.0000 9.3638 DF

WORK.TDATA 1 898.04 0.28 0.5967 2.0000 9.3638 DF

WORK.TDATA 1 897.79 0.03 0.8693 3.0000 9.3638 DF

WORK.TDATA 1 897.77 0.01 0.9145 4.0000 9.3638 DF

WORK.TDATA 1 897.86 0.10 0.7517 5.0000 9.3638 DF

WORK.TDATA 1 897.99 0.23 0.6311 6.0000 9.3638 DF

WORK.TDATA 1 898.27 0.51 0.4761 8.0000 9.3638 DF

WORK.TDATA 1 898.49 0.73 0.3919 10.0000 9.3638 DF

WORK.TDATA 1 898.70 0.94 0.3318 15.0000 9.3638 DF

WORK.TDATA 1 898.45 0.69 0.4068 20.0000 9.3638 DF

WORK.TDATA 1 892.63 . 1.0000 50.0000 9.3638 DF

WORK.TDATA 1 887.44 . 1.0000 75.0000 9.3638 DF

WORK.TDATA 1 883.79 . 1.0000 100.00 9.3638 DF

WORK.TDATA 1 881.55 . 1.0000 125.00 9.3638 DF

WORK.TDATA 1 880.72 . 1.0000 140.00 9.3638 DF

WORK.TDATA 1 . . . 150.00 9.3638

WORK.TDATA 1 880.07 . 1.0000 160.00 9.3638 DF

WORK.TDATA 1 879.85 . 1.0000 175.00 9.3638 DF

WORK.TDATA 1 . . . 200.00 9.3638

WORK.TDATA 1 880.21 . 1.0000 225.00 9.3638 DF

WORK.TDATA 1 880.80 . 1.0000 250.00 9.3638 DF

WORK.TDATA 1 881.56 . 1.0000 275.00 9.3638 DF

WORK.TDATA 1 882.44 . 1.0000 300.00 9.3638 DF

WORK.TDATA 1 884.41 . 1.0000 350.00 9.3638 DF

DF: P-value based on a chi-square with DF degrees of freedom.
MI: P-value based on a mixture of chi-squares.

The following statements plot the –2 restricted profile log likelihood (Output 44.10.3):

proc sgplot data=ct;
series y=objective x=covp1;

run;



Example 44.10: Multiple Trends Correspond to Multiple Extrema in Profile Likelihoods F 3337

Output 44.10.3 –2 Restricted Profile Log Likelihood for Smoothing Variance

The local minimum at which the optimization stopped is clearly visible, as are a second local minimum near
zero and the global minimum near 180.

The observed and predicted pressure differences that correspond to the three minima are shown in Out-
put 44.10.4. These results were produced with the following statements:

proc glimmix data=sashelp.enso;
model pressure = year;
random year / type=rsmooth knotmethod=equal(50);
parms (0) (10);
output out=gmxout1 pred=pred1;

run;
proc glimmix data=sashelp.enso;

model pressure = year;
random year / type=rsmooth knotmethod=equal(50);
output out=gmxout2 pred=pred2;
parms (2) (10);

run;
proc glimmix data=sashelp.enso;

model pressure = year;
random year / type=rsmooth knotmethod=equal(50);
output out=gmxout3 pred=pred3;
parms (200) (10);

run;
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data plotthis; merge gmxout1 gmxout2 gmxout3;
run;
proc sgplot data=plotthis;

scatter x=year y=Pressure;
series x=year y=pred1 /

lineattrs = (pattern=solid thickness=2)
legendlabel = "Var[RSmooth] = 0.0005"
name = "pred1";

series x=year y=pred2 /
lineattrs = (pattern=dot thickness=2)
legendlabel = "Var[RSmooth] = 3.5719"
name = "pred2";

series x=year y=pred3 /
lineattrs = (pattern=dash thickness=2)
legendlabel = "Var[RSmooth] = 186.71"
name = "pred3";

keylegend "pred1" "pred2" "pred3" / across=2;
run;

Output 44.10.4 Observed and Predicted Pressure Differences

The one-year cycle (b�2r D 186:71) and the El Niño cycle (b�2r D 3:5719) are clearly visible. Notice that a
larger smoother variance results in larger BLUPs and hence larger adjustments to the fixed-effects model. A
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large smoother variance thus results in a more wiggly fit. The third local minimum atb�2r D 0:0005 applies
only very small adjustments to the linear regression between pressure and time, creating slight curvature.

Example 44.11: Maximum Likelihood in Proportional Odds Model with
Random Effects

The data for this example are taken from Gilmour, Anderson, and Rae (1987) and concern the foot shape of
2,513 lambs that represent 34 sires. The foot shape of the animals was scored in three ordered categories.
The following DATA step lists the data in multivariate form, where each observation corresponds to a sire
and contains the outcomes for the three response categories in the variables k1, k2, and k3. For example,
for the first sire the first foot shape category was observed for 52 of its offspring, foot shape category 2 was
observed for 25 lambs, and none of its offspring was rated in foot shape category 3. The variables yr, b1, b2,
and b3 represent contrasts of fixed effects.

data foot_mv;
input yr b1 b2 b3 k1 k2 k3;
sire = _n_;
datalines;
1 1 0 0 52 25 0
1 1 0 0 49 17 1
1 1 0 0 50 13 1
1 1 0 0 42 9 0
1 1 0 0 74 15 0
1 1 0 0 54 8 0
1 1 0 0 96 12 0
1 -1 1 0 57 52 9
1 -1 1 0 55 27 5
1 -1 1 0 70 36 4
1 -1 1 0 70 37 3
1 -1 1 0 82 21 1
1 -1 1 0 75 19 0
1 -1 -1 0 17 12 10
1 -1 -1 0 13 23 3
1 -1 -1 0 21 17 3

-1 0 0 1 37 41 23
-1 0 0 1 47 24 12
-1 0 0 1 46 25 9
-1 0 0 1 79 32 11
-1 0 0 1 50 23 5
-1 0 0 1 63 18 8
-1 0 0 -1 30 20 9
-1 0 0 -1 31 33 3
-1 0 0 -1 28 18 4
-1 0 0 -1 42 27 4
-1 0 0 -1 35 22 2
-1 0 0 -1 33 18 3
-1 0 0 -1 35 17 4
-1 0 0 -1 26 13 2
-1 0 0 -1 37 15 2
-1 0 0 -1 36 14 1
-1 0 0 -1 63 20 3
-1 0 0 -1 41 8 1

;
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In order to analyze these data as multinomial data with PROC GLIMMIX, the data need to be arranged in
univariate form. The following DATA step creates three observations from each record in data set foot_mv
and stores the category counts in the variable count:

data footshape; set foot_mv;
array k{3};
do Shape = 1 to 3;

count = k{Shape};
output;

end;
drop k:;

run;

Because the sires were selected at random, a model for the three-category response with fixed regression
effects for yr, b1–b3, and with random sire effects is considered. Because the response categories are ordered,
a proportional odds model is chosen (McCullagh 1980). Gilmour, Anderson, and Rae (1987) consider
various analyses for these data. The following GLIMMIX statements fit a model with probit link for the
cumulative probabilities by maximum likelihood where the marginal log likelihood is approximated by
adaptive quadrature:

proc glimmix data=footshape method=quad;
class sire;
model Shape = yr b1 b2 b3 / s link=cumprobit dist=multinomial;
random int / sub=sire s cl;
ods output Solutionr=solr;
freq count;

run;

The number of observations that share a particular response and covariate pattern (variable count) is used in
the FREQ statement. The S and CL options request solutions for the sire effects. These are output to the data
set solr for plotting.

The “Model Information” table shows that the parameters are estimated by maximum likelihood and that the
marginal likelihood is approximated by Gauss-Hermite quadrature (Output 44.11.1).

Output 44.11.1 Model and Data Information

The GLIMMIX ProcedureThe GLIMMIX Procedure

Model Information

Data Set WORK.FOOTSHAPE

Response Variable Shape

Response Distribution Multinomial (ordered)

Link Function Cumulative Probit

Variance Function Default

Frequency Variable count

Variance Matrix Blocked By sire

Estimation Technique Maximum Likelihood

Likelihood Approximation Gauss-Hermite Quadrature

Degrees of Freedom Method Containment
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Output 44.11.1 continued

Number of Observations Read 102

Number of Observations Used 96

Sum of Frequencies Read 2513

Sum of Frequencies Used 2513

Response Profile

Ordered
Value Shape

Total
Frequency

1 1 1636

2 2 731

3 3 146

The GLIMMIX procedure is
modeling the probabilities
of levels of Shape having
lower Ordered Values in

the Response Profile table.

The distribution of the data is multinomial with ordered categories. The ordering is implied by the choice of
a link function for the cumulative probabilities. Because a frequency variable is specified, the number of
observations as well as the number of frequencies is displayed. Observations with zero frequency—that is,
foot shape categories that were not observed for a particular sire are not used in the analysis. The “Response
Profile Table” shows the ordering of the response variable and gives a breakdown of the frequencies by
category.

Output 44.11.2 Information about the Size of the Optimization Problem

Dimensions

G-side Cov. Parameters 1

Columns in X 6

Columns in Z per Subject 1

Subjects (Blocks in V) 34

Max Obs per Subject 3

Optimization Information

Optimization Technique Dual Quasi-Newton

Parameters in Optimization 7

Lower Boundaries 1

Upper Boundaries 0

Fixed Effects Not Profiled

Starting From GLM estimates

Quadrature Points 1

With METHOD=QUAD, the “Dimensions” and “Optimization Information” tables are particularly important,
because for this estimation methods both fixed effects and covariance parameters participate in the optimiza-
tion (Output 44.11.2). For GLM models the optimization involves the fixed effects and possibly a single
scale parameter. For mixed models the fixed effects are typically profiled from the optimization. Laplace
and quadrature estimations are exceptions to these rules. Consequently, there are seven parameters in this
optimization, corresponding to six fixed effects and one variance component. The variance component has a
lower bound of 0. Also, because the fixed effects are part of the optimizations, PROC GLIMMIX initially
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performs a few GLM iterations to obtain starting values for the fixed effects. You can control the number of
initial iterations with the INITITER= option in the PROC GLIMMIX statement.

The last entry in the “Optimization Information” table shows that—at the starting values—PROC GLIMMIX
determined that a single quadrature point is sufficient to approximate the marginal log likelihood with
the required accuracy. This approximation is thus identical to the Laplace method that is available with
METHOD=LAPLACE.

For METHOD=LAPLACE and METHOD=QUAD, the GLIMMIX procedure produces fit statistics based
on the conditional and marginal distribution (Output 44.11.3). Within the limits of the numeric likelihood
approximation, the information criteria shown in the “Fit Statistics” table can be used to compare models,
and the –2 log likelihood can be used to compare among nested models (nested with respect to fixed effects
and/or the covariance parameters).

Output 44.11.3 Marginal and Conditional Fit Statistics

Fit Statistics

-2 Log Likelihood 3870.12

AIC  (smaller is better) 3884.12

AICC (smaller is better) 3884.17

BIC  (smaller is better) 3894.81

CAIC (smaller is better) 3901.81

HQIC (smaller is better) 3887.76

Fit Statistics for Conditional
Distribution

-2 log L(Shape | r. effects) 3807.62

The variance of the sire effect is estimated as 0.04849 with estimated asymptotic standard error of 0.01673
(Output 44.11.4). Based on the magnitude of the estimate relative to the standard error, one might conclude
that there is significant sire-to-sire variability. Because parameter estimation is based on maximum likelihood,
a formal test of the hypothesis of no sire variability is possible. The category cutoffs for the cumulative
probabilities are 0.3781 and 1.6435. Except for b3, all fixed effects contrasts are significant.

Output 44.11.4 Parameter Estimates

Covariance Parameter Estimates

Cov Parm Subject Estimate
Standard

Error

Intercept sire 0.04849 0.01673

Solutions for Fixed Effects

Effect Shape Estimate
Standard

Error DF t Value Pr > |t|

Intercept 1 0.3781 0.04907 29 7.71 <.0001

Intercept 2 1.6435 0.05930 29 27.72 <.0001

yr 0.1422 0.04834 2478 2.94 0.0033

b1 0.3781 0.07154 2478 5.28 <.0001

b2 0.3157 0.09709 2478 3.25 0.0012

b3 -0.09887 0.06508 2478 -1.52 0.1289
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A likelihood ratio test for the sire variability can be carried out by adding a COVTEST statement to the
PROC GLIMMIX statements (Output 44.11.5):

ods select FitStatistics CovParms Covtests;
proc glimmix data=footshape method=quad;

class sire;
model Shape = yr b1 b2 b3 / link=cumprobit dist=multinomial;
random int / sub=sire;
covtest GLM;
freq count;

run;

The statement

covtest GLM;

compares the fitted model to a generalized linear model for independent data by removing the sire variance
component from the model. Equivalently, you can specify

covtest 0;

which compares the fitted model against one where the sire variance is fixed at zero.

Output 44.11.5 Likelihood Ratio Test for Sire Variance

The GLIMMIX ProcedureThe GLIMMIX Procedure

Fit Statistics

-2 Log Likelihood 3870.12

AIC  (smaller is better) 3884.12

AICC (smaller is better) 3884.17

BIC  (smaller is better) 3894.81

CAIC (smaller is better) 3901.81

HQIC (smaller is better) 3887.76

Covariance Parameter Estimates

Cov Parm Subject Estimate
Standard

Error

Intercept sire 0.04849 0.01673

Tests of Covariance Parameters
Based on the Likelihood

Label DF
-2 Log

Like ChiSq Pr > ChiSq Note

Independence 1 3915.29 45.17 <.0001 MI

MI: P-value based on a mixture of chi-squares.

The –2 Log Likelihood in the reduced model without the sire effect is 3915.29. Compared to the corresponding
marginal fit statistic in the full model (3870.12), this results in a chi-square statistic of 45.17. Because the
variance component for the sire effect has a natural lower bound of zero, PROC GLIMMIX performs the
likelihood ratio test as a one-sided test. As indicated by the note, the p-value for this test is computed from
a mixture of chi-square distributions, applying the results of Self and Liang (1987). There is significant
evidence that the model without sire random effects does not fit the data as well.
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In studies of heritability, one is often interested to rank individuals according to some measure of “breeding
value.” The following statements display the empirical Bayes estimates of the sire effects from ML estimation
by quadrature along with prediction standard error bars (Output 44.11.6):

proc sort data=solr;
by Estimate;

run;
data solr; set solr;

length sire $2;
obs = _n_;
sire = left(substr(Subject,6,2));

run;
proc sgplot data=solr;

scatter x=obs y=estimate /
markerchar = sire
yerrorupper = upper
yerrorlower = lower;

xaxis grid label='Sire Rank' values=(1 5 10 15 20 25 30);
yaxis grid label='Predicted Sire Effect';

run;

Output 44.11.6 Ranked Predicted Sire Effects and Prediction Standard Errors
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Example 44.12: Fitting a Marginal (GEE-Type) Model
A marginal GEE-type model for clustered data is a model for correlated data that is specified through a
mean function, a variance function, and a “working” covariance structure. Because the assumed covariance
structure can be wrong, the covariance matrix of the parameter estimates is not based on the model alone.
Rather, one of the empirical (“sandwich”) estimators is used to make inferences robust against the choice of
working covariance structure. PROC GLIMMIX can fit marginal models by using R-side random effects and
drawing on the distributional specification in the MODEL statement to derive the link and variance functions.
The EMPIRICAL= option in the PROC GLIMMIX statement enables you to choose one of a number of
empirical covariance estimators.

The data for this example are from Thall and Vail (1990) and reflect the number of seizures of patients
suffering from epileptic episodes. After an eight-week period without treatment, patients were observed four
times in two-week intervals during which they received a placebo or the drug Progabide in addition to other
therapy. These data are also analyzed in Example 43.7 of Chapter 43, “The GENMOD Procedure.” The
following DATA step creates the data set seizures. The variable id identifies the subjects in the study, and the
variable trt identifies whether a subject received the placebo (trt = 0) or the drug Progabide (trt = 1). The
variable x1 takes on value 0 for the baseline measurement and 1 otherwise.

data seizures;
array c{5};
input id trt c1-c5;
do i=1 to 5;

x1 = (i > 1);
ltime = (i=1)*log(8) + (i ne 1)*log(2);
cnt = c{i};
output;

end;
keep id cnt x1 trt ltime;
datalines;

101 1 76 11 14 9 8
102 1 38 8 7 9 4
103 1 19 0 4 3 0
104 0 11 5 3 3 3
106 0 11 3 5 3 3
107 0 6 2 4 0 5
108 1 10 3 6 1 3
110 1 19 2 6 7 4
111 1 24 4 3 1 3
112 1 31 22 17 19 16
113 1 14 5 4 7 4
114 0 8 4 4 1 4
116 0 66 7 18 9 21
117 1 11 2 4 0 4
118 0 27 5 2 8 7
121 1 67 3 7 7 7
122 1 41 4 18 2 5
123 0 12 6 4 0 2
124 1 7 2 1 1 0
126 0 52 40 20 23 12
128 1 22 0 2 4 0
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129 1 13 5 4 0 3
130 0 23 5 6 6 5
135 0 10 14 13 6 0
137 1 46 11 14 25 15
139 1 36 10 5 3 8
141 0 52 26 12 6 22
143 1 38 19 7 6 7
145 0 33 12 6 8 4
147 1 7 1 1 2 3
201 0 18 4 4 6 2
202 0 42 7 9 12 14
203 1 36 6 10 8 8
204 1 11 2 1 0 0
205 0 87 16 24 10 9
206 0 50 11 0 0 5
208 1 22 4 3 2 4
209 1 41 8 6 5 7
210 0 18 0 0 3 3
211 1 32 1 3 1 5
213 0 111 37 29 28 29
214 1 56 18 11 28 13
215 0 18 3 5 2 5
217 0 20 3 0 6 7
218 1 24 6 3 4 0
219 0 12 3 4 3 4
220 0 9 3 4 3 4
221 1 16 3 5 4 3
222 0 17 2 3 3 5
225 1 22 1 23 19 8
226 0 28 8 12 2 8
227 0 55 18 24 76 25
228 1 25 2 3 0 1
230 0 9 2 1 2 1
232 1 13 0 0 0 0
234 0 10 3 1 4 2
236 1 12 1 4 3 2
238 0 47 13 15 13 12
;

The model fit initially with the following PROC GLIMMIX statements is a Poisson generalized linear model
with effects for an intercept, the baseline measurement, the treatment, and their interaction:

proc glimmix data=seizures;
model cnt = x1 trt x1*trt / dist=poisson offset=ltime

ddfm=none s;
run;

The DDFM=NONE option is chosen in the MODEL statement to produce chi-square and z tests instead of F
and t tests.

Because the initial pretreatment time period is four times as long as the subsequent measurement intervals,
an offset variable is used to standardize the counts. If Yij denotes the number of seizures of subject i in time
interval j of length tj , then Yij =tj is the number of seizures per time unit. Modeling the average number per
time unit with a log link leads to logfEŒYij =tj �g D x0ˇ or logfEŒYij �g D x0ˇ C logftj g. The logarithm of
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time (variable ltime) thus serves as an offset. Suppose that ˇ0 denotes the intercept, ˇ1 the effect of x1, and ˇ2
the effect of trt. Then expfˇ0g is the expected number of seizures per week in the placebo group at baseline.
The corresponding numbers in the treatment group are expfˇ0 C ˇ2g at baseline and expfˇ0 C ˇ1 C ˇ2g
for postbaseline visits.

The “Model Information” table shows that the parameters in this Poisson model are estimated by maximum
likelihood (Output 44.12.1). In addition to the default link and variance function, the variable ltime is used as
an offset.

Output 44.12.1 Model Information in Poisson GLM

The GLIMMIX ProcedureThe GLIMMIX Procedure

Model Information

Data Set WORK.SEIZURES

Response Variable cnt

Response Distribution Poisson

Link Function Log

Variance Function Default

Offset Variable ltime

Variance Matrix Diagonal

Estimation Technique Maximum Likelihood

Degrees of Freedom Method None

Fit statistics and parameter estimates are shown in Output 44.12.2.

Output 44.12.2 Results from Fitting Poisson GLM

Fit Statistics

-2 Log Likelihood 3442.66

AIC  (smaller is better) 3450.66

AICC (smaller is better) 3450.80

BIC  (smaller is better) 3465.34

CAIC (smaller is better) 3469.34

HQIC (smaller is better) 3456.54

Pearson Chi-Square 3015.16

Pearson Chi-Square / DF 10.54

Parameter Estimates

Effect Estimate
Standard

Error DF t Value Pr > |t|

Intercept 1.3476 0.03406 Infty 39.57 <.0001

x1 0.1108 0.04689 Infty 2.36 0.0181

trt -0.1080 0.04865 Infty -2.22 0.0264

x1*trt -0.3016 0.06975 Infty -4.32 <.0001

Because this is a generalized linear model, the large value for the ratio of the Pearson chi-square statistic
and its degrees of freedom is indicative of a model shortcoming. The data are considerably more dispersed
than is expected under a Poisson model. There could be many reasons for this overdispersion—for example,
a misspecified mean model, data that might not be Poisson distributed, an incorrect variance function,
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and correlations among the observations. Because these data are repeated measurements, the presence of
correlations among the observations from the same subject is a likely contributor to the overdispersion.

The following PROC GLIMMIX statements fit a marginal model with correlations. The model is a marginal
one, because no G-side random effects are specified on which the distribution could be conditioned. The
choice of the id variable as the SUBJECT effect indicates that observations from different IDs are uncorrelated.
Observations from the same ID are assumed to follow a compound symmetry (equicorrelation) model. The
EMPIRICAL option in the PROC GLIMMIX statement requests the classical sandwich estimator as the
covariance estimator for the fixed effects:

proc glimmix data=seizures empirical;
class id;
model cnt = x1 trt x1*trt / dist=poisson offset=ltime

ddfm=none covb s;
random _residual_ / subject=id type=cs vcorr;

run;

The “Model Information” table shows that the parameters are now estimated by residual pseudo-likelihood
(compare Output 44.12.3 and Output 44.12.1). And in this fact lies the main difference between fitting
marginal models with PROC GLIMMIX and with GEE methods as per Liang and Zeger (1986), where
parameters of the working correlation matrix are estimated by the method of moments.

Output 44.12.3 Model Information in Marginal Model

The GLIMMIX ProcedureThe GLIMMIX Procedure

Model Information

Data Set WORK.SEIZURES

Response Variable cnt

Response Distribution Poisson

Link Function Log

Variance Function Default

Offset Variable ltime

Variance Matrix Blocked By id

Estimation Technique Residual PL

Degrees of Freedom Method None

Fixed Effects SE Adjustment Sandwich - Classical

According to the compound symmetry model, there is substantial correlation among the observations from
the same subject (Output 44.12.4).

Output 44.12.4 Covariance Parameter Estimates and Correlation Matrix

Estimated V Correlation Matrix for id 101

Row Col1 Col2 Col3 Col4 Col5

1 1.0000 0.6055 0.6055 0.6055 0.6055

2 0.6055 1.0000 0.6055 0.6055 0.6055

3 0.6055 0.6055 1.0000 0.6055 0.6055

4 0.6055 0.6055 0.6055 1.0000 0.6055

5 0.6055 0.6055 0.6055 0.6055 1.0000
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Output 44.12.4 continued

Covariance Parameter Estimates

Cov Parm Subject Estimate
Standard

Error

CS id 6.4653 1.3833

Residual 4.2128 0.3928

The parameter estimates in Output 44.12.5 are the same as in the Poisson generalized linear model (Out-
put 44.12.2), because of the balance in these data. The standard errors have increased substantially, however,
by taking into account the correlations among the observations.

Output 44.12.5 GEE-Type Inference for Fixed Effects

Solutions for Fixed Effects

Effect Estimate
Standard

Error DF t Value Pr > |t|

Intercept 1.3476 0.1574 Infty 8.56 <.0001

x1 0.1108 0.1161 Infty 0.95 0.3399

trt -0.1080 0.1937 Infty -0.56 0.5770

x1*trt -0.3016 0.1712 Infty -1.76 0.0781

Empirical Covariance Matrix for Fixed Effects

Effect Row Col1 Col2 Col3 Col4

Intercept 1 0.02476 -0.00115 -0.02476 0.001152

x1 2 -0.00115 0.01348 0.001152 -0.01348

trt 3 -0.02476 0.001152 0.03751 -0.00300

x1*trt 4 0.001152 -0.01348 -0.00300 0.02931

Example 44.13: Response Surface Comparisons with Multiplicity
Adjustments

Koch et al. (1990) present data for a multicenter clinical trial testing the efficacy of a respiratory drug in
patients with respiratory disease. Within each of two centers, patients were randomly assigned to a placebo
(P) or an active (A) treatment. Prior to treatment and at four follow-up visits, patient status was recorded in
one of five ordered categories (0=terrible, 1=poor, . . . , 4=excellent). The following DATA step creates the
SAS data set clinical for this study.

data Clinical;
do Center = 1, 2;

do Gender = 'F','M';
do Drug = 'A','P';

input nPatient @@;
do iPatient = 1 to nPatient;

input ID Age (t0-t4) (1.) @@;
output;

end;
end;

end;
end;
datalines;
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2 53 32 12242 18 47 22344
5 5 13 44444 19 31 21022 25 35 10000 28 36 23322

36 45 22221
25 54 11 44442 12 14 23332 51 15 02333 20 20 33231

16 22 12223 50 22 21344 3 23 33443 32 23 23444
56 25 23323 35 26 12232 26 26 22222 21 26 24142
8 28 12212 30 28 00121 33 30 33442 11 30 34443

42 31 12311 9 31 33444 37 31 02321 23 32 34433
6 34 11211 22 46 43434 24 48 23202 38 50 22222

48 57 33434
24 43 13 34444 41 14 22123 34 15 22332 29 19 23300

15 20 44444 13 23 33111 27 23 44244 55 24 34443
17 25 11222 45 26 24243 40 26 12122 44 27 12212
49 27 33433 39 23 21111 2 28 20000 14 30 10000
31 37 10000 10 37 32332 7 43 23244 52 43 11132
4 44 34342 1 46 22222 46 49 22222 47 63 22222

4 30 37 13444 52 39 23444 23 60 44334 54 63 44444
12 28 31 34444 5 32 32234 21 36 33213 50 38 12000

1 39 12112 48 39 32300 7 44 34444 38 47 23323
8 48 22100 11 48 22222 4 51 34244 17 58 14220

23 12 13 44444 10 14 14444 27 19 33233 47 20 24443
16 20 21100 29 21 33444 20 24 44444 25 25 34331
15 25 34433 2 25 22444 9 26 23444 49 28 23221
55 31 44444 43 34 24424 26 35 44444 14 37 43224
36 41 34434 51 43 33442 37 52 12122 19 55 44444
32 55 22331 3 58 44444 53 68 23334

16 39 11 34444 40 14 21232 24 15 32233 41 15 43334
33 19 42233 34 20 32444 13 20 14444 45 33 33323
22 36 24334 18 38 43000 35 42 32222 44 43 21000
6 45 34212 46 48 44000 31 52 23434 42 66 33344

;

Westfall and Tobias (2007) define as the measure of efficacy the average of the ratings at the final two visits
and model this average as a function of drug, baseline assessment score, and age. Hence, in their model, the
expected efficacy for drug d 2 A;P can be written as

E ŒYd � D ˇ0d C ˇ1d t C ˇ2da

where t is the baseline (pretreatment) assessment score and a is the patient’s age at baseline. The age range
for these data extends from 11 to 68 years. Suppose that the scientific question of interest is the comparison of
the two response surfaces at a set of values St � Sa D f0; 1; 2; 3; 4g � Sa. In other words, you want to know
for which values of the covariates the average response differs significantly between the treatment group
and the placebo group. If the set of ages of interest is f10; 13; 16; � � � ; 70g, then this involves 5 � 21 D 105
comparisons, a massive multiple testing problem. The large number of comparisons and the fact that the set
Sa is chosen somewhat arbitrarily require the application of multiplicity corrections in order to protect the
familywise Type I error across the comparisons.

When testing hypotheses that have logical restrictions, the power of multiplicity corrected tests can be
increased by taking the restrictions into account. Logical restrictions exist, for example, when not all
hypotheses in a set can be simultaneously true. Westfall and Tobias (2007) extend the truncated closed
testing procedure (TCTP) of Royen (1989) for pairwise comparisons in ANOVA to general contrasts. Their



Example 44.13: Response Surface Comparisons with Multiplicity Adjustments F 3351

work is also an extension of the S2 method of Shaffer (1986); see also Westfall (1997). These methods are all
monotonic in the (unadjusted) p-values of the individual tests, in the sense that if pj < pi then the multiple
test will never retain Hj while rejecting Hi . In terms of multiplicity-adjusted p-values Qpj , monotonicity
means that if pj < pi , then Qpj < Qpi .

Analysis as Normal Data with Averaged Endpoints

In order to apply the extended TCTP procedure of Westfall and Tobias (2007) to the problem of comparing
response surfaces in the clinical trial, the following convenience macro is helpful to generate the comparisons
for the ESTIMATE statement in PROC GLIMMIX:

%macro Contrast(from,to,byA,byT);
%let nCmp = 0;
%do age = &from %to &to %by &byA;

%do t0 = 0 %to 4 %by &byT;
%let nCmp = %eval(&nCmp+1);

%end;
%end;
%let iCmp = 0;
%do age = &from %to &to %by &byA;

%do t0 = 0 %to 4 %by &byT;
%let iCmp = %eval(&iCmp+1);
"%trim(%left(&age)) %trim(%left(&t0))"
drug 1 -1
drug*age &age -&age
drug*t0 &t0 -&t0

%if (&icmp < &nCmp) %then %do; , %end;
%end;

%end;
%mend;

The following GLIMMIX statements fit the model to the data and compute the 105 contrasts that compare
the placebo to the active response at 105 points in the two-dimensional regressor space:

proc glimmix data=clinical;
t = (t3+t4)/2;
class drug;
model t = drug t0 age drug*age drug*t0;
estimate %contrast(10,70,3,1)

/ adjust=simulate(seed=1)
stepdown(type=logical);

ods output Estimates=EstStepDown;
run;

Note that only a single ESTIMATE statement is used. Each of the 105 comparisons is one comparison in the
multirow statement. The ADJUST option in the ESTIMATE statement requests multiplicity-adjusted p-values.
The extended TCTP method is applied by specifying the STEPDOWN(TYPE=LOGICAL) option to compute
step-down-adjusted p-values where logical constraints among the hypotheses are taken into account. The
results from the ESTIMATE statement are saved to a data set for subsequent processing. Note also that
the response, the average of the ratings at the final two visits, is computed with programming statements in
PROC GLIMMIX.
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The following statements print the 20 most significant estimated differences (Output 44.13.1):

proc sort data=EstStepDown;
by Probt;

run;
proc print data=EstStepDown(obs=20);

var Label Estimate StdErr Probt AdjP;
run;

Output 44.13.1 The First 20 Observations of the Estimates Data Set

Obs Label Estimate StdErr Probt Adjp

1 37 2 0.8310 0.2387 0.0007 0.0071

2 40 2 0.8813 0.2553 0.0008 0.0071

3 34 2 0.7806 0.2312 0.0010 0.0071

4 43 2 0.9316 0.2794 0.0012 0.0071

5 46 2 0.9819 0.3093 0.0020 0.0071

6 31 2 0.7303 0.2338 0.0023 0.0081

7 49 2 1.0322 0.3434 0.0033 0.0107

8 52 2 1.0825 0.3807 0.0054 0.0167

9 40 3 0.7755 0.2756 0.0059 0.0200

10 37 3 0.7252 0.2602 0.0063 0.0201

11 43 3 0.8258 0.2982 0.0066 0.0201

12 28 2 0.6800 0.2461 0.0068 0.0215

13 55 2 1.1329 0.4202 0.0082 0.0239

14 46 3 0.8761 0.3265 0.0085 0.0239

15 34 3 0.6749 0.2532 0.0089 0.0257

16 43 1 1.0374 0.3991 0.0107 0.0329

17 46 1 1.0877 0.4205 0.0111 0.0329

18 49 3 0.9264 0.3591 0.0113 0.0329

19 40 1 0.9871 0.3827 0.0113 0.0329

20 58 2 1.1832 0.4615 0.0118 0.0329

Notice that the adjusted p-values (Adjp) are larger than the unadjusted p-values, as expected. Also notice that
several comparisons share the same adjusted p-values. This is a result of the monotonicity of the extended
TCTP method.

In order to compare the step-down-adjusted p-values to adjusted p-values that do not use step-down methods,
replace the ESTIMATE statement in the previous statements with the following:

estimate %contrast2(10,70,3,1) / adjust=simulate(seed=1);
ods output Estimates=EstAdjust;

The following GLIMMIX invocations create output data sets named EstAdjust and EstUnAdjust that contain
(non-step-down-) adjusted and unadjusted p-values:

proc glimmix data=clinical;
t = (t3+t4)/2;
class drug;
model t = drug t0 age drug*age drug*t0;
estimate %contrast(10,70,3,1)

/ adjust=simulate(seed=1);
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ods output Estimates=EstAdjust;
run;
proc glimmix data=clinical;

t = (t3+t4)/2;
class drug;
model t = drug t0 age drug*age drug*t0;
estimate %contrast(10,70,3,1);
ods output Estimates=EstUnAdjust;

run;

Output 44.13.2 shows a comparison of the significant comparisons (p < 0.05) based on unadjusted, adjusted,
and step-down (TCTP) adjusted p-values. Clearly, the unadjusted results indicate the most significant results,
but without protecting the Type I error rate for the group of tests. The adjusted p-values (filled circles) lead to a
much smaller region in which the response surfaces between treatment and placebo are significantly different.
The increased power of the TCTP procedure (open circles) over the standard multiplicity adjustment—without
sacrificing Type I error protection—can be seen in the considerably larger region covered by the open circles.

Output 44.13.2 Comparison of Significance Regions
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Ordinal Repeated Measure Analysis

The outcome variable in this clinical trial is an ordinal rating of patients in categories 0=terrible, 1=poor,
2=fair, 3=good, and 4=excellent. Furthermore, the observations from repeat visits for the same patients are
likely correlated. The previous analysis removes the repeated measures aspect by defining efficacy as the
average score at the final two visits. These averages are not normally distributed, however. The response
surfaces for the two study arms can also be compared based on a model for ordinal data that takes correlation
into account through random effects. Keeping with the theme of the previous analysis, the focus here for
illustrative purposes is on the final two visits, and the pretreatment assessment score serves as a covariate in
the model.

The following DATA step rearranges the data from the third and fourth on-treatment visits in univariate form
with separate observations for the visits by patient:

data clinical_uv;
set clinical;
array time{2} t3-t4;
do i=1 to 2; rating = time{i}; output; end;

run;

The basic model for the analysis is a proportional odds model with cumulative logit link (McCullagh 1980)
and J = 5 categories. In this model, separate intercepts (cutoffs) are modeled for the first J � 1 D 4

cumulative categories and the intercepts are monotonically increasing. This guarantees ordering of the
cumulative probabilities and nonnegative category probabilities. Using the same covariate structure as in the
previous analysis, the probability to observe a rating in at most category k � 4 is

Pr.Yd � k/ D
1

1C expf��kd g
�kd D ˛k C ˇ0d C ˇ1d t C ˇ2da

Because only the intercepts are dependent on the category, contrasts comparing regression coefficients can
be formulated in standard fashion. To accommodate the random and covariance structure of the repeated
measures model, a random intercept i is applied to the observations for each patient:

Pr.Yid � k/ D
1

1C expf��ikd g
�ikd D ˛k C ˇ0d C ˇ1d t C ˇ2daC i

i � iidN.0; �2 /

The shared random effect of the two observations creates a marginal correlation. Note that the random effects
do not depend on category.

The following GLIMMIX statements fit this ordinal repeated measures model by maximum likelihood via
the Laplace approximation and compute TCTP-adjusted p-values for the 105 estimates:

proc glimmix data=clinical_uv method=laplace;
class center id drug;
model rating = drug t0 age drug*age drug*t0 /

dist=multinomial link=cumlogit;
random intercept / subject=id(center);
covtest 0;
estimate %contrast(10,70,3,1)

/ adjust=simulate(seed=1)
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stepdown(type=logical);
ods output Estimates=EstStepDownMulti;

run;

The combination of DIST=MULTINOMIAL and LINK=CUMLOGIT requests the proportional odds model.
The SUBJECT= effect nests patient IDs within centers, because patient IDs in the data set clinical are not
unique within centers. (Specifying SUBJECT=ID*CENTER would have the same effect.) The COVTEST
statement requests a likelihood ratio test for the significance of the random patient effect.

The estimate of the variance component for the random patient effect is substantial (Output 44.13.3), but so
is its standard error.

Output 44.13.3 Model and Covariance Parameter Information

The GLIMMIX ProcedureThe GLIMMIX Procedure

Model Information

Data Set WORK.CLINICAL_UV

Response Variable rating

Response Distribution Multinomial (ordered)

Link Function Cumulative Logit

Variance Function Default

Variance Matrix Blocked By ID(Center)

Estimation Technique Maximum Likelihood

Likelihood Approximation Laplace

Degrees of Freedom Method Containment

Covariance Parameter Estimates

Cov Parm Subject Estimate
Standard

Error

Intercept ID(Center) 10.3483 3.2599

Tests of Covariance Parameters
Based on the Likelihood

Label DF
-2 Log

Like ChiSq Pr > ChiSq Note

Parameter list 1 604.70 57.64 <.0001 MI

MI: P-value based on a mixture of chi-squares.

The likelihood ratio test provides a better picture of the significance of the variance component. The difference
in the –2 log likelihoods is 57.6, highly significant even if one does not apply the Self and Liang (1987)
correction that halves the p-value in this instance.

The results for the 20 most significant estimates are requested with the following statements and shown in
Output 44.13.4:

proc sort data=EstStepDownMulti;
by Probt;

run;
proc print data=EstStepDownMulti(obs=20);

var Label Estimate StdErr Probt AdjP;
run;

The p-values again show the “repeat” pattern corresponding to the monotonicity of the step-down procedure.
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Output 44.13.4 The First 20 Estimates in the Ordinal Analysis

Obs Label Estimate StdErr Probt Adjp

1 37 2 -2.7224 0.8263 0.0013 0.0133

2 40 2 -2.8857 0.8842 0.0015 0.0133

3 34 2 -2.5590 0.7976 0.0018 0.0133

4 43 2 -3.0491 0.9659 0.0021 0.0133

5 46 2 -3.2124 1.0660 0.0032 0.0133

6 31 2 -2.3957 0.8010 0.0034 0.0133

7 49 2 -3.3758 1.1798 0.0051 0.0164

8 52 2 -3.5391 1.3037 0.0077 0.0236

9 40 3 -2.6263 0.9718 0.0080 0.0267

10 37 3 -2.4630 0.9213 0.0087 0.0267

11 28 2 -2.2323 0.8362 0.0088 0.0278

12 43 3 -2.7897 1.0451 0.0088 0.0278

13 46 3 -2.9530 1.1368 0.0107 0.0291

14 55 2 -3.7025 1.4351 0.0112 0.0324

15 34 3 -2.2996 0.8974 0.0118 0.0337

16 49 3 -3.1164 1.2428 0.0136 0.0344

17 43 1 -3.3085 1.3438 0.0154 0.0448

18 58 2 -3.8658 1.5722 0.0155 0.0448

19 40 1 -3.1451 1.2851 0.0160 0.0448

20 46 1 -3.4718 1.4187 0.0160 0.0448

As previously, the comparisons were also performed with standard p-value adjustment via simulation. Out-
put 44.13.5 displays the components of the regressor space in which the response surfaces differ significantly
(p < 0.05) between the two treatment arms. As before, the most significant differences occur with unadjusted
p-values at the cost of protecting only the individual Type I error rate. The standard multiplicity adjustment
has considerably less power than the TCTP adjustment.
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Output 44.13.5 Comparison of Significance Regions, Ordinal Analysis

Example 44.14: Generalized Poisson Mixed Model for Overdispersed Count
Data

Overdispersion is the condition by which data appear more dispersed than is expected under a reference
model. For count data, the reference models are typically based on the binomial or Poisson distributions.
Among the many reasons for overdispersion are an incorrect model, an incorrect distributional specification,
incorrect variance functions, positive correlation among the observations, and so forth. In short, correcting an
overdispersion problem, if it exists, requires the appropriate remedy. Adding an R-side scale parameter to
multiply the variance function is not necessarily the adequate correction. For example, Poisson-distributed
data appear overdispersed relative to a Poisson model with regressors when an important regressor is omitted.

If the reference model for count data is Poisson, a number of alternative model formulations are available
to increase the dispersion. For example, zero-inflated models add a proportion of zeros (usually from a
Bernoulli process) to the zeros of a Poisson process. Hurdle models are two-part models where zeros and
nonzeros are generated by different stochastic processes. Zero-inflated and hurdle models are described in
detail by Cameron and Trivedi (1998) and cannot be fit with the GLIMMIX procedure. See Section 15.5 in
Littell et al. (2006) for examples of using the NLMIXED procedure to fit zero-inflated and hurdle models.
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An alternative approach is to derive from the reference distribution a probability distribution that exhibits
increased dispersion. By mixing a Poisson process with a gamma distribution for the Poisson parameter, for
example, the negative binomial distribution results, which is thus overdispersed relative to the Poisson.

Joe and Zhu (2005) show that the generalized Poisson distribution can also be motivated as a Poisson mixture
and hence provides an alternative to the negative binomial (NB) distribution. Like the NB, the generalized
Poisson distribution has a scale parameter. It is heavier in the tails than the NB distribution and easily reduces
to the standard Poisson. Joe and Zhu (2005) discuss further comparisons between these distributions.

The probability mass function of the generalized Poisson is given by

p.y/ D
˛

yŠ
.˛ C �y/y�1 exp f�˛ � �yg

where y D 0; 1; 2; � � � , ˛ > 0, and 0 � � < 1 (Joe and Zhu 2005). Notice that for � D 0 the mass function of
the standard Poisson distribution with mean ˛ results. The mean and variance of Y in terms of the parameters
˛ and � are given by

EŒY � D
˛

1 � �
D �

VarŒY � D
˛

.1 � �/3
D

�

.1 � �/2

The log likelihood of the generalized Poisson can thus be written in terms of the mean � and scale parameter
� as

l.�; �Iy/ D log f�.1 � �/g C .y � 1/ log f� � �.� � y/g
� .� � �.� � y// � log f�.y C 1/g

The data in the following DATA step are simulated counts. For each of i D 1; � � � ; 30 subjects a randomly
varying number ni of observations were drawn from a count regression model with a single covariate and
excess zeros (compared to a Poisson distribution).

data counts;
input ni @@;
sub = _n_;
do i=1 to ni;

input x y @@;
output;

end;
datalines;
1 29 0
6 2 0 82 5 33 0 15 2 35 0 79 0

19 81 0 18 0 85 0 99 0 20 0 26 2 29 0 91 2 37 0 39 0 9 1 33 0
3 0 60 0 87 2 80 0 75 0 3 0 63 1

9 18 0 64 0 80 0 0 0 58 0 7 0 81 0 22 3 50 0
15 91 0 2 1 14 0 5 2 27 1 8 1 95 0 76 0 62 0 26 2 9 0 72 1

98 0 94 0 23 1
2 34 0 95 0

18 48 1 5 0 47 0 44 0 27 0 88 0 27 0 68 0 84 0 86 0 44 0 90 0
63 0 27 0 47 0 25 0 72 0 62 1

13 28 1 31 0 63 0 14 0 74 0 44 0 75 0 65 0 74 1 84 0 57 0 29 0
41 0
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9 42 0 8 0 91 0 20 0 23 0 22 0 96 0 83 0 56 0
3 64 0 64 1 15 0
4 5 0 73 2 50 1 13 0
2 0 0 41 0

20 21 0 58 0 5 0 61 1 28 0 71 0 75 1 94 16 51 4 51 2 74 0 1 1
34 0 7 0 11 0 60 3 31 0 75 0 62 0 54 1

2 66 1 13 0
5 83 7 98 1 11 1 28 0 18 0

17 29 5 79 0 39 2 47 2 80 1 19 0 37 0 78 1 26 0 72 1 6 0 50 3
50 4 97 0 37 2 51 0 45 0

17 47 0 57 0 33 0 47 0 2 0 83 0 74 0 93 0 36 0 53 0 26 0 86 0
6 0 17 0 30 0 70 1 99 0

7 91 0 25 1 51 4 20 0 61 1 34 0 33 2
14 60 0 87 0 94 0 29 0 41 0 78 0 50 0 37 0 15 0 39 0 22 0 82 0

93 0 3 0
16 68 0 26 1 19 0 60 1 93 3 65 0 16 0 79 0 14 0 3 1 90 0 28 3

82 0 34 0 30 0 81 0
19 48 3 48 1 43 2 54 0 45 9 53 0 14 0 92 5 21 1 20 0 73 0 99 0

66 0 86 2 63 0 10 0 92 14 44 1 74 0
8 34 1 44 0 62 0 21 0 7 0 17 0 0 2 49 0

13 11 0 27 2 16 1 12 3 52 1 55 0 2 6 89 5 31 5 28 3 51 5 54 13
64 0

9 3 0 36 0 57 0 77 0 41 0 39 0 55 0 57 0 88 1
7 2 0 80 0 41 1 20 0 2 0 27 0 40 0

18 73 1 66 0 10 0 42 0 22 0 59 9 68 0 34 1 96 0 30 0 13 0 35 0
51 2 47 0 60 1 55 4 83 3 38 0

17 96 0 40 0 34 0 59 0 12 1 47 0 93 0 50 0 39 0 97 0 19 0 54 0
11 0 29 0 70 2 87 0 47 0

13 59 0 96 0 47 1 64 0 18 0 30 0 37 0 36 1 69 0 78 1 47 1 86 0
88 0

15 66 0 45 1 96 1 17 0 91 0 4 0 22 0 5 2 47 0 38 0 80 0 7 1
38 1 33 0 52 0

12 84 6 60 1 33 1 92 0 38 0 6 0 43 3 13 2 18 0 51 0 50 4 68 0
;

The following PROC GLIMMIX statements fit a standard Poisson regression model with random intercepts
by maximum likelihood. The marginal likelihood of the data is approximated by adaptive quadrature
(METHOD=QUAD).

proc glimmix data=counts method=quad;
class sub;
model y = x / link=log s dist=poisson;
random int / subject=sub;

run;

Output 44.14.1 displays various informational items about the model and the estimation process.



3360 F Chapter 44: The GLIMMIX Procedure

Output 44.14.1 Poisson: Model and Optimization Information

The GLIMMIX ProcedureThe GLIMMIX Procedure

Model Information

Data Set WORK.COUNTS

Response Variable y

Response Distribution Poisson

Link Function Log

Variance Function Default

Variance Matrix Blocked By sub

Estimation Technique Maximum Likelihood

Likelihood Approximation Gauss-Hermite Quadrature

Degrees of Freedom Method Containment

Optimization Information

Optimization Technique Dual Quasi-Newton

Parameters in Optimization 3

Lower Boundaries 1

Upper Boundaries 0

Fixed Effects Not Profiled

Starting From GLM estimates

Quadrature Points 5

Iteration History

Iteration Restarts Evaluations
Objective
Function Change

Max
Gradient

0 0 4 862.57645728 . 366.7105

1 0 5 862.43893582 0.13752147 22.36158

2 0 6 854.49131023 7.94762559 28.70814

3 0 2 854.47983504 0.01147519 6.036114

4 0 4 854.47396189 0.00587315 4.238363

5 0 4 854.47006558 0.00389631 0.332454

6 0 3 854.47006484 0.00000074 0.003104

The “Model Information” table shows that the parameters are estimated by ML with quadrature. Using the
starting values for fixed effects and covariance parameters that the GLIMMIX procedure generates by default,
the procedure determined that five quadrature nodes provide a sufficiently accurate approximation of the
marginal log likelihood (“Optimization Information” table). The iterative estimation process converges after
nine iterations.

The table of conditional fit statistics displays the sum of the independent contributions to the conditional –2
log likelihood (854.47) and the Pearson statistics for the conditional distribution (Output 44.14.2).
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Output 44.14.2 Poisson: Fit Statistics and Estimates

Fit Statistics

-2 Log Likelihood 854.47

AIC  (smaller is better) 860.47

AICC (smaller is better) 860.54

BIC  (smaller is better) 864.67

CAIC (smaller is better) 867.67

HQIC (smaller is better) 861.81

Fit Statistics for Conditional
Distribution

-2 log L(y | r. effects) 777.90

Pearson Chi-Square 649.58

Pearson Chi-Square / DF 1.97

Covariance Parameter Estimates

Cov Parm Subject Estimate
Standard

Error

Intercept sub 1.1959 0.4334

Solutions for Fixed Effects

Effect Estimate
Standard

Error DF t Value Pr > |t|

Intercept -1.4947 0.2745 29 -5.45 <.0001

x 0.01207 0.002387 299 5.06 <.0001

The departure of the scaled Pearson statistic from 1.0 is fairly pronounced in this case (1.97). If one deems it
to far from 1.0, however, the conclusion has to be that the conditional variation is not properly specified. This
could be due to an incorrect variance function, for example. The “Solutions for Fixed Effects” table shows
the estimates of the slope and intercept in this model along with their standard errors and tests of significance.
Note that the slope in this model is highly significant. The variance of the random subject-specific intercepts
is estimated as 1.1959.

To fit the generalized Poisson distribution to these data, you cannot draw on the built-in distributions. Instead,
the variance function and the log likelihood are computed directly with PROC GLIMMIX programming
statements. The CLASS, MODEL, and RANDOM statements in the following PROC GLIMMIX program
are as before, except for the omission of the DIST= option in the MODEL statement:
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proc glimmix data=counts method=quad;
class sub;
model y = x / link=log s;
random int / subject=sub;
xi = (1 - 1/exp(_phi_));
_variance_ = _mu_ / (1-xi)/(1-xi);
if (_mu_=.) or (_linp_ = .) then _logl_ = .;
else do;

mustar = _mu_ - xi*(_mu_ - y);
if (mustar < 1E-12) or (_mu_*(1-xi) < 1e-12) then

_logl_ = -1E20;
else do;

_logl_ = log(_mu_*(1-xi)) + (y-1)*log(mustar) -
mustar - lgamma(y+1);

end;
end;

run;

The assignments to the variables xi and the reserved symbols _VARIANCE_ and _LOGL_ define the variance
function and the log likelihood. Because the scale parameter of the generalized Poisson distribution has
the range 0 < � < 1, and the scale parameter _PHI_ in the GLIMMIX procedure is bounded only from
below (by 0), a reparameterization is applied so that � D 0, � D 0 and � approaches 1 as � increases.
The statements preceding the calculation of the actual log likelihood are intended to prevent floating-point
exceptions and to trap missing values.

Output 44.14.3 displays information about the model and estimation process. The “Model Information”
table shows that the distribution is not a built-in distribution and echoes the expression for the user-specified
variance function. As in the case of the Poisson model, the GLIMMIX procedure determines that five
quadrature points are sufficient for accurate estimation of the marginal log likelihood at the starting values.
The estimation process converges after 11 iterations.

Output 44.14.3 Generalized Poisson: Model, Optimization, and Iteration Information

The GLIMMIX ProcedureThe GLIMMIX Procedure

Model Information

Data Set WORK.COUNTS

Response Variable y

Response Distribution User specified

Link Function Log

Variance Function _mu_ / (1-xi)/(1-xi)

Variance Matrix Blocked By sub

Estimation Technique Maximum Likelihood

Likelihood Approximation Gauss-Hermite Quadrature

Degrees of Freedom Method Containment
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Output 44.14.3 continued

Optimization Information

Optimization Technique Dual Quasi-Newton

Parameters in Optimization 4

Lower Boundaries 2

Upper Boundaries 0

Fixed Effects Not Profiled

Starting From GLM estimates

Quadrature Points 5

Iteration History

Iteration Restarts Evaluations
Objective
Function Change

Max
Gradient

0 0 4 716.12976769 . 161.1184

1 0 5 716.07585953 0.05390816 11.88788

2 0 4 714.27148068 1.80437884 36.09657

3 0 2 711.02643265 3.24504804 108.4615

4 0 2 710.26952196 0.75691069 216.9822

5 0 2 709.96824991 0.30127205 96.2775

6 0 3 709.8419071 0.12634280 19.07487

7 0 3 709.83122731 0.01067980 0.649164

8 0 3 709.83047646 0.00075085 2.127665

9 0 3 709.83046461 0.00001185 0.383319

10 0 3 709.83046436 0.00000025 0.010279

The achieved –2 log likelihood is lower than in the Poisson model (compare “Fit Statistics” tables in
Output 44.14.4 and Output 44.14.1). The scaled Pearson statistic is now less than 1.0. The fixed slope
estimate remains significant at the 5% level, but the test statistics are not as large as in the Poisson model,
partly because the generalized Poisson model permits more variation.

Output 44.14.4 Generalized Poisson: Fit Statistics and Estimates

Fit Statistics

-2 Log Likelihood 709.83

AIC  (smaller is better) 717.83

AICC (smaller is better) 717.95

BIC  (smaller is better) 723.44

CAIC (smaller is better) 727.44

HQIC (smaller is better) 719.62

Fit Statistics for Conditional
Distribution

-2 log L(y | r. effects) 665.56

Pearson Chi-Square 241.42

Pearson Chi-Square / DF 0.73
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Output 44.14.4 continued

Covariance Parameter Estimates

Cov Parm Subject Estimate
Standard

Error

Intercept sub 0.5135 0.2400

Scale 0.6401 0.09718

Solutions for Fixed Effects

Effect Estimate
Standard

Error DF t Value Pr > |t|

Intercept -0.7264 0.2749 29 -2.64 0.0131

x 0.003742 0.003537 299 1.06 0.2910

Based on the large difference in the –2 log likelihoods between the Poisson and generalized Poisson models,
you conclude that a mixed model based on the latter provides a better fit to these data. From the “Covariance
Parameter Estimates” table in Output 44.14.4, you can see that the estimate of the scale parameter isb� D 0:6401 and is considerably larger than 0, taking into account its standard error. The hypothesis
H W� D 0, which articulates that a Poisson model fits the data as well as the generalized Poisson model,
can be formally tested with a likelihood ratio test. Adding the following statement to the previous PROC
GLIMMIX run compares the model to one in which the variance of the random intercepts (the first covariance
parameter) is not constrained and the scale parameter is fixed at zero:

covtest 'H: phi = 0' . 0 / est;

This COVTEST statement produces Output 44.14.5.

Output 44.14.5 Likelihood Ratio Test for Poisson Assumption

Tests of Covariance Parameters
Based on the Likelihood

Estimates H0

Label DF
-2 Log

Like ChiSq Pr > ChiSq Est1 Est2 Note

H:phi = 0 1 854.47 144.64 <.0001 1.1959 1.11E-12 MI

MI: P-value based on a mixture of chi-squares.

Note that the –2 Log Like reported in Output 44.14.5 agrees with the value reported in the “Fit Statistics”
table for the Poisson model (Output 44.14.2) and that the estimate of the random intercept under the null
hypothesis agrees with the “Covariance Parameter Estimates” table in Output 44.14.2. Because the null
hypothesis places the parameter � (or �) on the boundary of the parameter space, a mixture correction is
applied in the p-value calculation. Because of the magnitude of the likelihood ratio statistic (144.64), this
correction has no effect on the displayed p-value.
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Example 44.15: Comparing Multiple B-Splines
This example uses simulated data to demonstrate the use of the nonpositional syntax (see the section
“Positional and Nonpositional Syntax for Contrast Coefficients” on page 3232 for details) in combination
with the experimental EFFECT statement to produce interesting predictions and comparisons in models
containing fixed spline effects. Consider the data in the following DATA step. Each of the 100 observations
for the continuous response variable y is associated with one of two groups.

data spline;
input group y @@;
x = _n_;
datalines;

1 -.020 1 0.199 2 -1.36 1 -.026
2 -.397 1 0.065 2 -.861 1 0.251
1 0.253 2 -.460 2 0.195 2 -.108
1 0.379 1 0.971 1 0.712 2 0.811
2 0.574 2 0.755 1 0.316 2 0.961
2 1.088 2 0.607 2 0.959 1 0.653
1 0.629 2 1.237 2 0.734 2 0.299
2 1.002 2 1.201 1 1.520 1 1.105
1 1.329 1 1.580 2 1.098 1 1.613
2 1.052 2 1.108 2 1.257 2 2.005
2 1.726 2 1.179 2 1.338 1 1.707
2 2.105 2 1.828 2 1.368 1 2.252
1 1.984 2 1.867 1 2.771 1 2.052
2 1.522 2 2.200 1 2.562 1 2.517
1 2.769 1 2.534 2 1.969 1 2.460
1 2.873 1 2.678 1 3.135 2 1.705
1 2.893 1 3.023 1 3.050 2 2.273
2 2.549 1 2.836 2 2.375 2 1.841
1 3.727 1 3.806 1 3.269 1 3.533
1 2.948 2 1.954 2 2.326 2 2.017
1 3.744 2 2.431 2 2.040 1 3.995
2 1.996 2 2.028 2 2.321 2 2.479
2 2.337 1 4.516 2 2.326 2 2.144
2 2.474 2 2.221 1 4.867 2 2.453
1 5.253 2 3.024 2 2.403 1 5.498

;

The following statements produce a scatter plot of the response variable by group (Output 44.15.1):

proc sgplot data=spline;
scatter y=y x=x / group=group name="data";
keylegend "data" / title="Group";

run;
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Output 44.15.1 Scatter Plot of Observed Data by Group

The trends in the two groups exhibit curvature, but the type of curvature is not the same in the groups. Also,
there appear to be ranges of x values where the groups are similar and areas where the point scatters separate.
To model the trends in the two groups separately and with flexibility, you might want to allow for some
smooth trends in x that vary by group. Consider the following PROC GLIMMIX statements:

proc glimmix data=spline outdesign=x;
class group;
effect spl = spline(x);
model y = group spl*group / s noint;
output out=gmxout pred=p;

run;

The EFFECT statement defines a constructed effect named spl by expanding the x into a spline with seven
columns. The group main effect creates separate intercepts for the groups, and the interaction of the group
variable with the spline effect creates separate trends. The NOINT option suppresses the intercept. This is
not necessary and is done here only for convenience of interpretation. The OUTPUT statement computes
predicted values.

The “Parameter Estimates” table contains the estimates of the group-specific “intercepts,” the spline coeffi-
cients varied by group, and the residual variance (“Scale,” Output 44.15.2).
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Output 44.15.2 Parameter Estimates in Two-Group Spline Model

The GLIMMIX ProcedureThe GLIMMIX Procedure

Parameter Estimates

Effect spl group Estimate
Standard

Error DF t Value Pr > |t|

group 1 9.7027 3.1342 86 3.10 0.0026

group 2 6.3062 2.6299 86 2.40 0.0187

spl*group 1 1 -11.1786 3.7008 86 -3.02 0.0033

spl*group 1 2 -20.1946 3.9765 86 -5.08 <.0001

spl*group 2 1 -9.5327 3.2576 86 -2.93 0.0044

spl*group 2 2 -5.8565 2.7906 86 -2.10 0.0388

spl*group 3 1 -8.9612 3.0718 86 -2.92 0.0045

spl*group 3 2 -5.5567 2.5717 86 -2.16 0.0335

spl*group 4 1 -7.2615 3.2437 86 -2.24 0.0278

spl*group 4 2 -4.3678 2.7247 86 -1.60 0.1126

spl*group 5 1 -6.4462 2.9617 86 -2.18 0.0323

spl*group 5 2 -4.0380 2.4589 86 -1.64 0.1042

spl*group 6 1 -4.6382 3.7095 86 -1.25 0.2146

spl*group 6 2 -4.3029 3.0479 86 -1.41 0.1616

spl*group 7 1 0 . . . .

spl*group 7 2 0 . . . .

Scale 0.07352 0.01121 . . .

Because the B-spline coefficients for an observation sum to 1 and the model contains group-specific constants,
the last spline coefficient in each group is zero. In other words, you can achieve exactly the same fit with the
MODEL statement

model y = spl*group / noint;

or

model y = spl*group;

The following statements graph the observed and fitted values in the two groups (Output 44.15.3):

proc sgplot data=gmxout;
series y=p x=x / group=group name="fit";
scatter y=y x=x / group=group;
keylegend "fit" / title="Group";

run;
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Output 44.15.3 Observed and Predicted Values by Group

Suppose that you are interested in estimating the mean response at particular values of x and in performing
comparisons of predicted values. The following program uses ESTIMATE statements with nonpositional
syntax to accomplish this:

proc glimmix data=spline;
class group;
effect spl = spline(x);
model y = group spl*group / s noint;
estimate 'Group 1, x=20' group 1 group*spl [1,1 20] / e;
estimate 'Group 2, x=20' group 0 1 group*spl [1,2 20];
estimate 'Diff at x=20 ' group 1 -1 group*spl [1,1 20] [-1,2 20];

run;

The first ESTIMATE statement predicts the mean response at x = 20 in group 1. The E option requests
the coefficient vector for this linear combination of the parameter estimates. The coefficient for the group
effect is entered with positional (standard) syntax. The coefficients for the group*spl effect are formed based
on nonpositional syntax. Because this effect comprises the interaction of a standard effect (group) with a
constructed effect, the values and levels for the standard effect must precede those for the constructed effect.
A similar statement produces the predicted mean at x = 20 in group 2.

The GLIMMIX procedure interprets the syntax
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group*spl [1,2 20]

as follows: construct the spline basis at x = 20 as appropriate for group 2; then multiply the resulting
coefficients for these columns of the L matrix with 1.

The final ESTIMATE statement represents the difference between the predicted values; it is a group compari-
son at x = 20.

Output 44.15.4 Coefficients from First ESTIMATE Statement

The GLIMMIX ProcedureThe GLIMMIX Procedure

Coefficients for Estimate
Group 1, x=20

Effect spl group Row1

group 1 1

group 2

spl*group 1 1 0.0021

spl*group 1 2

spl*group 2 1 0.3035

spl*group 2 2

spl*group 3 1 0.619

spl*group 3 2

spl*group 4 1 0.0754

spl*group 4 2

spl*group 5 1

spl*group 5 2

spl*group 6 1

spl*group 6 2

spl*group 7 1

spl*group 7 2

The “Coefficients” table shows how the value 20 supplied in the ESTIMATE statement was expanded into
the appropriate spline basis (Output 44.15.4). There is no significant difference between the group means at x
= 20 (p = 0.8346, Output 44.15.5).

Output 44.15.5 Results from ESTIMATE Statements

Estimates

Label Estimate
Standard

Error DF t Value Pr > |t|

Group 1, x=20 0.6915 0.09546 86 7.24 <.0001

Group 2, x=20 0.7175 0.07953 86 9.02 <.0001

Diff at x=20 -0.02602 0.1243 86 -0.21 0.8346

The group comparisons you can achieve in this way are comparable to slices of interaction effects with
classification effects. There are, however, no preset number of levels at which to perform the comparisons
because x is continuous. If you add further x values for the comparisons, a multiplicity correction is
in order to control the familywise Type I error. The following statements compare the groups at values
x D 0; 5; 10; � � � ; 80 and compute simulation-based step-down-adjusted p-values. The results appear in
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Output 44.15.6. (The numeric results for simulation-based p-value adjustments depend slightly on the value
of the random number seed.)

ods select Estimates;
proc glimmix data=spline;

class group;
effect spl = spline(x);
model y = group spl*group / s;
estimate 'Diff at x= 0' group 1 -1 group*spl [1,1 0] [-1,2 0],

'Diff at x= 5' group 1 -1 group*spl [1,1 5] [-1,2 5],
'Diff at x=10' group 1 -1 group*spl [1,1 10] [-1,2 10],
'Diff at x=15' group 1 -1 group*spl [1,1 15] [-1,2 15],
'Diff at x=20' group 1 -1 group*spl [1,1 20] [-1,2 20],
'Diff at x=25' group 1 -1 group*spl [1,1 25] [-1,2 25],
'Diff at x=30' group 1 -1 group*spl [1,1 30] [-1,2 30],
'Diff at x=35' group 1 -1 group*spl [1,1 35] [-1,2 35],
'Diff at x=40' group 1 -1 group*spl [1,1 40] [-1,2 40],
'Diff at x=45' group 1 -1 group*spl [1,1 45] [-1,2 45],
'Diff at x=50' group 1 -1 group*spl [1,1 50] [-1,2 50],
'Diff at x=55' group 1 -1 group*spl [1,1 55] [-1,2 55],
'Diff at x=60' group 1 -1 group*spl [1,1 60] [-1,2 60],
'Diff at x=65' group 1 -1 group*spl [1,1 65] [-1,2 65],
'Diff at x=70' group 1 -1 group*spl [1,1 70] [-1,2 70],
'Diff at x=75' group 1 -1 group*spl [1,1 75] [-1,2 75],
'Diff at x=80' group 1 -1 group*spl [1,1 80] [-1,2 80] /
adjust=sim(seed=1) stepdown;

run;

Output 44.15.6 Estimates with Multiplicity Adjustments

The GLIMMIX ProcedureThe GLIMMIX Procedure

Estimates
Adjustment for Multiplicity: Holm-Simulated

Label Estimate
Standard

Error DF t Value Pr > |t| Adj P

Diff at x= 0 12.4124 4.2130 86 2.95 0.0041 0.0210

Diff at x= 5 1.0376 0.1759 86 5.90 <.0001 <.0001

Diff at x=10 0.3778 0.1540 86 2.45 0.0162 0.0554

Diff at x=15 0.05822 0.1481 86 0.39 0.6952 0.9043

Diff at x=20 -0.02602 0.1243 86 -0.21 0.8346 0.9578

Diff at x=25 0.02014 0.1312 86 0.15 0.8783 0.9578

Diff at x=30 0.1023 0.1378 86 0.74 0.4600 0.7419

Diff at x=35 0.1924 0.1236 86 1.56 0.1231 0.2890

Diff at x=40 0.2883 0.1114 86 2.59 0.0113 0.0465

Diff at x=45 0.3877 0.1195 86 3.24 0.0017 0.0098

Diff at x=50 0.4885 0.1308 86 3.74 0.0003 0.0022

Diff at x=55 0.5903 0.1231 86 4.79 <.0001 <.0001

Diff at x=60 0.7031 0.1125 86 6.25 <.0001 <.0001

Diff at x=65 0.8401 0.1203 86 6.99 <.0001 <.0001

Diff at x=70 1.0147 0.1348 86 7.52 <.0001 <.0001

Diff at x=75 1.2400 0.1326 86 9.35 <.0001 <.0001

Diff at x=80 1.5237 0.1281 86 11.89 <.0001 <.0001
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There are significant differences at the low end and high end of the x range. Notice that without the multiplicity
adjustment you would have concluded at the 0.05 level that the groups are significantly different at x = 10. At
the 0.05 level, the groups separate significantly for x < 10 and x > 40.

Example 44.16: Diallel Experiment with Multimember Random Effects
Cockerham and Weir (1977) apply variance component models in the analysis of reciprocal crosses. In
these experiments, it is of interest to separate genetically determined variation from variation determined
by parentage. This example analyzes the data for the diallel experiment in Cockerham and Weir (1977,
Appendix C). A diallel is a mating design that consists of all possible crosses of a set of parental lines. It
includes reciprocal crossings, but not self-crossings.

The basic model for a cross is Yijk D ˇ C ˛ij C �ijk , where Yijk is the observation for offspring k from
maternal parent i and paternal parent j. The various models in Cockerham and Weir (1977) are different
decompositions of the term ˛ij , the total effect that is due to the parents. Their “bio model” (model (c))
decomposes ˛ij into

˛ij D �i C �j C �i C �j C .��/ij C �ij

where �i and �j are contributions of the female and male parents, respectively. The term .��/ij captures
the interaction between maternal and paternal effects. In contrast to usual interaction effects, this term must
obey a symmetry because of the reciprocals: .��/ij D .��/j i . The terms �i and �j in the decomposition
are extranuclear maternal and paternal effects, and the remaining interactions are captured by the �ij term.

The following DATA step creates a SAS data set for the diallel example in Appendix C of Cockerham and
Weir (1977):

data diallel;
label time = 'Flowering time in days';
do p = 1 to 8;

do m = 1 to 8;
if (m ne p) then do;

sym = trim(left(min(m,p))) || ',' || trim(left(max(m,p)));
do block = 1 to 2;

input time @@;
output;

end;
end;

end;
end;
datalines;

14.4 16.2 27.2 30.8 17.2 27.0 18.3 20.2 16.2 16.8 18.6 14.4 16.4 16.0
15.4 16.5 14.8 14.6 18.6 18.6 15.2 15.3 17.0 15.2 14.4 14.8 10.8 13.2
31.8 30.4 21.0 23.0 24.6 25.4 19.2 20.0 29.8 28.4 12.8 14.2 13.0 14.4
16.2 17.8 11.4 13.0 16.8 16.3 12.4 14.2 16.8 14.8 12.6 12.2 9.6 11.2
14.6 18.8 12.2 13.6 15.2 15.4 15.2 13.8 18.0 16.0 10.4 12.2 13.4 20.0
20.2 23.4 14.2 14.0 18.6 14.8 22.2 17.0 14.3 17.3 9.0 10.2 11.8 12.8
14.0 16.6 12.2 9.2 13.6 16.2 13.8 14.4 15.6 15.6 15.6 11.0 13.0 9.8
15.2 17.2 10.0 11.6 17.0 18.2 20.8 20.8 20.0 17.4 17.0 12.6 13.0 9.8
;
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The observations represent mean flowering times of Nicotiana rustica (Aztec tobacco) from crosses of
inbred varieties grown in two blocks. The variables p and m identify the eight paternal and maternal lines,
respectively. The variable sym is used to model the interaction between the parents, subject to the symmetry
condition .��/ij D .��/j i . For example, the first two observations, 14.4 and 16.2 days, represent the
observations from blocks 1 and 2 where paternal line 1 was crossed with maternal line 2.

The following PROC GLIMMIX statements fit the “bio model” in Cockerham and Weir (1977):

proc glimmix data=diallel outdesign(z)=zmat;
class block sym p m;
effect line = mm(p m);
model time = block;
random line sym p m p*m;

run;

The EFFECT statement defines the nuclear parental contributions as a multimember effect based on the
CLASS variables p and m. Each observation has two nonzero entries in the design matrix for the effect
that identifies the paternal and maternal lines. The terms in the RANDOM statement model the variance
components as follows: line! �2n , sym! �2

.��/
, p! �2� , m! �2�, p*m! �2� . The OUTDESIGN= option

in the PROC GLIMMIX statement writes the Z matrix to the SAS data set zmat. The EFFECT statement
alleviates the need for complex coding, as in Section 2.3 of Saxton (2004).

Output 44.16.1 displays the “Class Level Information” table of the diallel model. Because the interaction
terms are symmetric, there are only 8 � 7=2 D 28 levels for the 8 lines. The estimates of the variance
components and the residual variance in Output 44.16.1 agree with the results in Table 7 of Cockerham and
Weir (1977).

Output 44.16.1 Class Levels and Covariance Parameter Estimates in Diallel Example

The GLIMMIX ProcedureThe GLIMMIX Procedure

Class Level Information

Class Levels Values

block 2 1 2

sym 28 1,2 1,3 1,4 1,5 1,6 1,7 1,8 2,3 2,4 2,5 2,6 2,7 2,8 3,4 3,5 3,6 3,7 3,8 4,5 4,6 4,7 4,8 5,6 5,7 5,8 6,7 6,8 7,8

p 8 1 2 3 4 5 6 7 8

m 8 1 2 3 4 5 6 7 8

Covariance Parameter
Estimates

Cov Parm Estimate
Standard

Error

line 5.1047 4.0021

sym 2.3856 1.9025

p 3.3080 3.4053

m 1.9134 2.9891

p*m 4.0196 1.8323

Residual 3.6225 0.6908

The following statements print the Z matrix columns that correspond to the multimember line effect for the
first 10 observations in block 1 (Output 44.16.2). For each observation there are two nonzero entries, and
their column index corresponds to the index of the paternal and maternal line.
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proc print data=zmat(where=(block=1) obs=10);
var p m time _z1-_z8;

run;

Output 44.16.2 Z Matrix for Line Effect of the First 10 Observations in Block 1

Obs p m time _Z1 _Z2 _Z3 _Z4 _Z5 _Z6 _Z7 _Z8

1 1 2 14.4 1 1 0 0 0 0 0 0

3 1 3 27.2 1 0 1 0 0 0 0 0

5 1 4 17.2 1 0 0 1 0 0 0 0

7 1 5 18.3 1 0 0 0 1 0 0 0

9 1 6 16.2 1 0 0 0 0 1 0 0

11 1 7 18.6 1 0 0 0 0 0 1 0

13 1 8 16.4 1 0 0 0 0 0 0 1

15 2 1 15.4 1 1 0 0 0 0 0 0

17 2 3 14.8 0 1 1 0 0 0 0 0

19 2 4 18.6 0 1 0 1 0 0 0 0

Example 44.17: Linear Inference Based on Summary Data
The GLIMMIX procedure has facilities for multiplicity-adjusted inference through the ADJUST= and
STEPDOWN options in the ESTIMATE, LSMEANS, and LSMESTIMATE statements. You can employ
these facilities to test linear hypotheses among parameters even in situations where the quantities were
obtained outside the GLIMMIX procedure. This example demonstrates the process. The basic idea is to
prepare a data set containing the estimates of interest and a data set containing their covariance matrix. These
are then passed to the GLIMMIX procedure, preventing updating of the parameters, essentially moving
directly into the post-processing stage as if estimates with this covariance matrix had been produced by the
GLIMMIX procedure.

The final documentation example in Chapter 69, “The NLIN Procedure,” discusses a nonlinear first-order
compartment pharmacokinetic model for theophylline concentration. The data are derived by collapsing and
averaging the subject-specific data from Pinheiro and Bates (1995) in a particular—yet unimportant—way
that leads to two groups for comparisons. The following DATA step creates these data:

data theop;
input time dose conc @@;
if (dose = 4) then group=1; else group=2;
datalines;

0.00 4 0.1633 0.25 4 2.045
0.27 4 4.4 0.30 4 7.37
0.35 4 1.89 0.37 4 2.89
0.50 4 3.96 0.57 4 6.57
0.58 4 6.9 0.60 4 4.6
0.63 4 9.03 0.77 4 5.22
1.00 4 7.82 1.02 4 7.305
1.05 4 7.14 1.07 4 8.6
1.12 4 10.5 2.00 4 9.72
2.02 4 7.93 2.05 4 7.83
2.13 4 8.38 3.50 4 7.54
3.52 4 9.75 3.53 4 5.66
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3.55 4 10.21 3.62 4 7.5
3.82 4 8.58 5.02 4 6.275
5.05 4 9.18 5.07 4 8.57
5.08 4 6.2 5.10 4 8.36
7.02 4 5.78 7.03 4 7.47
7.07 4 5.945 7.08 4 8.02
7.17 4 4.24 8.80 4 4.11
9.00 4 4.9 9.02 4 5.33
9.03 4 6.11 9.05 4 6.89
9.38 4 7.14 11.60 4 3.16

11.98 4 4.19 12.05 4 4.57
12.10 4 5.68 12.12 4 5.94
12.15 4 3.7 23.70 4 2.42
24.15 4 1.17 24.17 4 1.05
24.37 4 3.28 24.43 4 1.12
24.65 4 1.15 0.00 5 0.025
0.25 5 2.92 0.27 5 1.505
0.30 5 2.02 0.50 5 4.795
0.52 5 5.53 0.58 5 3.08
0.98 5 7.655 1.00 5 9.855
1.02 5 5.02 1.15 5 6.44
1.92 5 8.33 1.98 5 6.81
2.02 5 7.8233 2.03 5 6.32
3.48 5 7.09 3.50 5 7.795
3.53 5 6.59 3.57 5 5.53
3.60 5 5.87 5.00 5 5.8
5.02 5 6.2867 5.05 5 5.88
6.98 5 5.25 7.00 5 4.02
7.02 5 7.09 7.03 5 4.925
7.15 5 4.73 9.00 5 4.47
9.03 5 3.62 9.07 5 4.57
9.10 5 5.9 9.22 5 3.46

12.00 5 3.69 12.05 5 3.53
12.10 5 2.89 12.12 5 2.69
23.85 5 0.92 24.08 5 0.86
24.12 5 1.25 24.22 5 1.15
24.30 5 0.9 24.35 5 1.57
;

In terms of two fixed treatment groups, the nonlinear model for these data can be written as

Cit D
Dkeikai

Cli .kai � kei /
Œexp.�kei t / � exp.�kai t /�C �it

where Cit is the observed concentration in group i at time t, D is the dose of theophylline, kei is the
elimination rate constant in group i, kai is the absorption rate in group i, Cli is the clearance in group i, and
�it denotes the model error. Because the rates and the clearance must be positive, you can parameterize the
model in terms of log rates and the log clearance:

Cli D expfˇ1ig
kai D expfˇ2ig
kei D expfˇ3ig
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In this parameterization the model contains six parameters, and the rates and clearance vary by group. The
following PROC NLIN statements fit the model and obtain the group-specific parameter estimates:

proc nlin data=theop outest=cov;
parms beta1_1=-3.22 beta2_1=0.47 beta3_1=-2.45

beta1_2=-3.22 beta2_2=0.47 beta3_2=-2.45;
if (group=1) then do;

cl = exp(beta1_1);
ka = exp(beta2_1);
ke = exp(beta3_1);

end; else do;
cl = exp(beta1_2);
ka = exp(beta2_2);
ke = exp(beta3_2);

end;
mean = dose*ke*ka*(exp(-ke*time)-exp(-ka*time))/cl/(ka-ke);
model conc = mean;
ods output ParameterEstimates=ests;

run;

The conditional programming statements determine the clearance, elimination, and absorption rates depending
on the value of the group variable. The OUTEST= option in the PROC NLIN statement saves estimates and
their covariance matrix to the data set cov. The ODS OUTPUT statement saves the “Parameter Estimates”
table to the data set ests.

Output 44.17.1 displays the analysis of variance table and the parameter estimates from this NLIN run.
Note that the confidence levels in the “Parameter Estimates” table are based on 92 degrees of freedom,
corresponding to the residual degrees of freedom in the analysis of variance table.

Output 44.17.1 Analysis of Variance and Parameter Estimates for Nonlinear Model

The NLIN ProcedureThe NLIN Procedure

Note: An intercept was not specified for this model.

Source DF
Sum of

Squares
Mean

Square F Value
Approx

Pr > F

Model 6 3247.9 541.3 358.56 <.0001

Error 92 138.9 1.5097

Uncorrected Total 98 3386.8

Parameter Estimate
Approx

Std Error

Approximate
95%

Confidence
Limits

beta1_1 -3.5671 0.0864 -3.7387 -3.3956

beta2_1 0.4421 0.1349 0.1742 0.7101

beta3_1 -2.6230 0.1265 -2.8742 -2.3718

beta1_2 -3.0111 0.1061 -3.2219 -2.8003

beta2_2 0.3977 0.1987 0.00305 0.7924

beta3_2 -2.4442 0.1618 -2.7655 -2.1229

The following DATA step extracts the part of the cov data set that contains the covariance matrix of the
parameter estimates in Output 44.17.1 and renames the variables as Col1–Col6. Output 44.17.2 shows the
result of the DATA step.
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data covb;
set cov(where=(_type_='COVB'));
rename beta1_1=col1 beta2_1=col2 beta3_1=col3

beta1_2=col4 beta2_2=col5 beta3_2=col6;
row = _n_;
Parm = 1;
keep parm row beta:;

run;

proc print data=covb;
run;

Output 44.17.2 Covariance Matrix of NLIN Parameter Estimates

Obs col1 col2 col3 col4 col5 col6 row Parm

1 0.007462 -0.005222 0.010234 0.000000 0.000000 0.000000 1 1

2 -0.005222 0.018197 -0.010590 0.000000 0.000000 0.000000 2 1

3 0.010234 -0.010590 0.015999 0.000000 0.000000 0.000000 3 1

4 0.000000 0.000000 0.000000 0.011261 -0.009096 0.015785 4 1

5 0.000000 0.000000 0.000000 -0.009096 0.039487 -0.019996 5 1

6 0.000000 0.000000 0.000000 0.015785 -0.019996 0.026172 6 1

The reason for this transformation of the data is to use the resulting data set to define a covariance structure
in PROC GLIMMIX. The following statements reconstitute a model in which the parameter estimates from
PROC NLIN are the observations and in which the covariance matrix of the “observations” matches the
covariance matrix of the NLIN parameter estimates:

proc glimmix data=ests order=data;
class Parameter;
model Estimate = Parameter / noint df=92 s;
random _residual_ / type=lin(1) ldata=covb v;
parms (1) / noiter;
lsmeans parameter / cl;
lsmestimate Parameter

'beta1 eq. across groups' 1 0 0 -1,
'beta2 eq. across groups' 0 1 0 0 -1,
'beta3 eq. across groups' 0 0 1 0 0 -1 /
adjust=bon stepdown ftest(label='Homogeneity');

run;

In other words, you are using PROC GLIMMIX to set up a linear statistical model

Y D I˛C �
� � .0;A/

where the covariance matrix A is given by
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A D

26666664

0:007 �0:005 0:010 0 0 0

�0:005 0:018 �0:011 0 0 0

0:010 �0:011 0:016 0 0 0

0 0 0 0:011 �0:009 0:016

0 0 0 �0:009 0:039 �0:019

0 0 0 0:016 �0:019 0:026

37777775
The generalized least squares estimate for ˛ in this saturated model reproduces the observations:

b̨D �I0A�1I��1 I0A�1y
D
�
A�1

��1
A�1y

D y

The ORDER=DATA option in the PROC GLIMMIX statement requests that the sort order of the Parameter
variable be identical to the order in which it appeared in the “Parameter Estimates” table of the NLIN
procedure (Output 44.17.1). The MODEL statement uses the Estimate and Parameter variables from that
table to form a model in which the X matrix is the identity; hence the NOINT option. The DF=92 option sets
the degrees of freedom equal to the value used in the NLIN procedure. The RANDOM statement specifies
a linear covariance structure with a single component and supplies the values for the structure through the
LDATA= data set. This structure models the covariance matrix as VarŒY� D �A, where the A matrix is given
previously. Essentially, the TYPE=LIN(1) structure forces an unstructured covariance matrix onto the data.
To make this work, the parameter � is held fixed at 1 in the PARMS statement.

Output 44.17.3 displays the parameter estimates and least squares means for this model. Note that estimates
and least squares means are identical, since the X matrix is the identity. Also, the confidence limits agree
with the values reported by PROC NLIN (see Output 44.17.1).

Output 44.17.3 Parameter Estimates and LS-Means from Summary Data

The GLIMMIX ProcedureThe GLIMMIX Procedure

Solutions for Fixed Effects

Effect Parameter Estimate
Standard

Error DF t Value Pr > |t|

Parameter beta1_1 -3.5671 0.08638 92 -41.29 <.0001

Parameter beta2_1 0.4421 0.1349 92 3.28 0.0015

Parameter beta3_1 -2.6230 0.1265 92 -20.74 <.0001

Parameter beta1_2 -3.0111 0.1061 92 -28.37 <.0001

Parameter beta2_2 0.3977 0.1987 92 2.00 0.0483

Parameter beta3_2 -2.4442 0.1618 92 -15.11 <.0001

Parameter Least Squares Means

Parameter Estimate
Standard

Error DF t Value Pr > |t| Alpha Lower Upper

beta1_1 -3.5671 0.08638 92 -41.29 <.0001 0.05 -3.7387 -3.3956

beta2_1 0.4421 0.1349 92 3.28 0.0015 0.05 0.1742 0.7101

beta3_1 -2.6230 0.1265 92 -20.74 <.0001 0.05 -2.8742 -2.3718

beta1_2 -3.0111 0.1061 92 -28.37 <.0001 0.05 -3.2219 -2.8003

beta2_2 0.3977 0.1987 92 2.00 0.0483 0.05 0.003050 0.7924

beta3_2 -2.4442 0.1618 92 -15.11 <.0001 0.05 -2.7655 -2.1229
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The (marginal) covariance matrix of the data is shown in Output 44.17.4 to confirm that it matches the A
matrix given earlier.

Output 44.17.4 R-Side Covariance Matrix

Estimated V Matrix for Subject 1

Row Col1 Col2 Col3 Col4 Col5 Col6

1 0.007462 -0.00522 0.01023

2 -0.00522 0.01820 -0.01059

3 0.01023 -0.01059 0.01600

4 0.01126 -0.00910 0.01579

5 -0.00910 0.03949 -0.02000

6 0.01579 -0.02000 0.02617

The LSMESTIMATE statement specifies three linear functions. These set equal the ˇ parameters from the
groups. The step-down Bonferroni adjustment requests a multiplicity adjustment for the family of three
tests. The FTEST option requests a joint test of the three estimable functions; it is a global test of parameter
homogeneity across groups.

Output 44.17.5 displays the result from the LSMESTIMATE statement. The joint test is highly significant (F
= 30.52, p < 0.0001). From the p-values associated with the individual rows of the estimates, you can see that
the lack of homogeneity is due to group differences for ˇ1, the log clearance.

Output 44.17.5 Test of Parameter Homogeneity across Groups

Least Squares Means Estimates
Adjustment for Multiplicity: Holm

Effect Label Estimate
Standard

Error DF t Value Pr > |t| Adj P

Parameter beta1 eq. across groups -0.5560 0.1368 92 -4.06 0.0001 0.0003

Parameter beta2 eq. across groups 0.04443 0.2402 92 0.18 0.8537 0.8537

Parameter beta3 eq. across groups -0.1788 0.2054 92 -0.87 0.3862 0.7725

F Test for Least Squares Means
Estimates

Label
Num

DF
Den

DF F Value Pr > F

Homogeneity 3 92 30.52 <.0001

An alternative method of setting up this model is given by the following statements, where the data set pdata
contains the covariance parameters:

random _residual_ / type=un;
parms / pdata=pdata noiter

The following DATA step creates an appropriate PDATA= data set from the data set covb, which was
constructed earlier:

data pdata;
set covb;
array col{6};
do i=1 to _n_;
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estimate = col{i};
output;

end;
keep estimate;

run;

Example 44.18: Weighted Multilevel Model for Survey Data
Multilevel models are a useful tool for analyzing survey data from multistage sampling designs. In multistage
designs, the first-stage clusters (primary sampling units) are selected by using a probability sample from a list
of first-stage units. In the second stage, second-stage clusters are selected by using a probability sample from
a list of second-stage clusters for every first-stage cluster in the sample. The third and subsequent stages of
clusters are selected similarly. You can use multilevel models to analyze data from multistage designs in
which each stage of sampling corresponds to one level of random effects in the model. The characteristics
of the units at each stage become the explanatory variables at that level. If units are drawn with unequal
selection probabilities at each stage, then the unweighted estimators from standard multilevel models can be
biased. Pfeffermann et al. (1998) and Rabe-Hesketh and Skrondal (2006) discuss using sampling weights to
reduce this bias.

To learn how to fit a two-level model, consider a two-stage design simulation that is similar to the simulation
discussed in Rabe-Hesketh and Skrondal (2006).

First, you generate a finite population of 500 level-2 units and 50 level-1 units from a two-level random
intercept probit model with dichotomous responses and linear predictor,

�ij D ˇ0 C ˇ1x1i C ˇ2x2ij C i

where ˇ0 D ˇ1 D ˇ2 D 1, i � N.0; �2/, and �2 D 1. The between-cluster covariate x_1i and within-
cluster covariate x_2ij are generated from a Bernoulli distribution with probability 0.5.

Then, you sample subsets of level-2 units and level-1 units from a two-stage sampling design similar to
the one discussed in Rabe-Hesketh and Skrondal (2006). The generated sample contains a total of 7,530
observations. The inverse selection probabilities are used as weights. To reduce the bias in the variance
parameter estimator, you scale the level-1 weights by using what Pfeffermann et al. (1998) and Rabe-Hesketh
and Skrondal (2006) refer to as “Method 2.”

The first 30 observations of the data set are shown in Output 44.18.1. In this data set, y is the dichotomous
response variable, and x1 and x2 are the between-cluster and within-cluster covariates, respectively. The
variables id and w2 identify the first-stage clusters (level-2 units) and their weights, respectively. The
observation units are the second-stage clusters (level-1 units), and their weights are scaled using “Method
2” in Pfeffermann et al. (1998) and Rabe-Hesketh and Skrondal (2006) and stored in sw1. The first-stage
sampling weights, w2, range from 1.3359 to 4.0513, with an average of 1.6965. The second-stage sampling
weights, w1, range from 1.8571 to 2.000, with an average of 1.9588. The scaled weights, sw1, range from
0.9657 to 1.0126, with an average of 1.000.
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Output 44.18.1 Simulated Two-Stage Sampling Survey Data (First 30 Observations)

Obs x1 x2 y w2 id sw1

1 1 0 1 1.33594 1 1.00286

2 1 0 1 1.33594 1 1.00286

3 1 1 1 1.33594 1 1.00286

4 1 1 1 1.33594 1 1.00286

5 1 0 1 1.33594 1 1.00286

6 1 1 1 1.33594 1 1.00286

7 1 1 1 1.33594 1 1.00286

8 1 1 1 1.33594 1 1.00286

9 1 0 1 1.33594 1 1.00286

10 1 0 1 1.33594 1 1.00286

11 1 1 1 1.33594 1 1.00286

12 1 0 1 1.33594 1 1.00286

13 1 1 1 1.33594 1 1.00286

14 1 0 1 1.33594 1 1.00286

15 1 0 1 1.33594 1 0.99667

16 1 1 1 1.33594 1 0.99667

17 1 0 1 1.33594 1 0.99667

18 1 0 1 1.33594 1 0.99667

19 1 0 1 1.33594 1 0.99667

20 1 1 1 1.33594 1 0.99667

21 1 0 1 1.33594 1 0.99667

22 1 0 1 1.33594 1 0.99667

23 1 0 1 1.33594 1 0.99667

24 1 0 1 1.33594 1 0.99667

25 1 1 1 1.33594 1 0.99667

26 1 1 1 1.33594 1 0.99667

27 1 0 1 1.33594 2 0.99667

28 1 0 1 1.33594 2 0.99667

29 1 1 1 1.33594 2 0.99667

30 1 1 1 1.33594 2 0.99667

The following statements fit a two-level model without using weights at any level:

proc glimmix data=dws method=quadrature;
class id;
model y = x1 x2 / dist=binomial link=probit solution;
random int / subject=id;

run;

The parameter estimates are shown in Output 44.18.2. The estimated fixed-effects parameters are all close to
their corresponding true values, but the estimated covariance parameter is almost half of its true value.
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Output 44.18.2 Analysis of Two-Stage Sampling Survey Data

The GLIMMIX ProcedureThe GLIMMIX Procedure

Covariance Parameter Estimates

Cov Parm Subject Estimate
Standard

Error

Intercept id 0.5612 0.08777

Solutions for Fixed Effects

Effect Estimate
Standard

Error DF t Value Pr > |t|

Intercept 1.0300 0.07608 293 13.54 <.0001

x1 1.0809 0.1186 7234 9.11 <.0001

x2 0.9934 0.06344 7234 15.66 <.0001

You can incorporate the unequal weights at both levels into the model by using the OBSWEIGHT= and
WEIGHT= options as follows:

proc glimmix data=dws method=quadrature empirical=classical;
class id;
model y = x1 x2 / dist=binomial link=probit obsweight=sw1 solution;
random int / subject=id weight=w2;

run;

To fit a weighted multilevel model, you should use METHOD=QUAD. The EMPIRICAL=CLASSICAL
option in the PROC GLIMMIX statement instructs PROC GLIMMIX to compute the empirical (sandwich)
variance estimators for the fixed effect and the variance. The empirical variance estimators are recommended
for the inference about fixed effects and variance estimated by pseudo-likelihood.

The OBSWEIGHT= option in the MODEL statement specifies the weight variable for the observation level.
The WEIGHT= option in the RANDOM statement specifies the weight variable for the level that is specified
by the SUBJECT= option.

The parameter estimates are shown in Output 44.18.3.

Output 44.18.3 Analysis of Two-Stage Sampling Survey Data Using Weights

The GLIMMIX ProcedureThe GLIMMIX Procedure

Covariance Parameter Estimates

Cov Parm Subject Estimate
Standard

Error

Intercept id 1.0106 0.2503

Solutions for Fixed Effects

Effect Estimate
Standard

Error DF t Value Pr > |t|

Intercept 1.0322 0.1263 497.3 8.17 <.0001

x1 1.1182 0.2142 12275 5.22 <.0001

x2 1.0074 0.07887 12275 12.77 <.0001
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Note that the estimated variance component for the random id effect is much closer to the true value of 1 in
the weighted analysis. When you use the raw level-2 weights and the scaled level-1 weights, the multilevel
model reduces the bias in the variance parameter estimate. However, the standard errors for the weighted
analysis are larger than those for the unweighted analysis.
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Overview: GLM Procedure
The GLM procedure uses the method of least squares to fit general linear models. Among the statistical
methods available in PROC GLM are regression, analysis of variance, analysis of covariance, multivariate
analysis of variance, and partial correlation.

PROC GLM analyzes data within the framework of general linear models. PROC GLM handles models
relating one or several continuous dependent variables to one or several independent variables. The inde-
pendent variables can be either classification variables, which divide the observations into discrete groups,
or continuous variables. Thus, the GLM procedure can be used for many different analyses, including the
following:

• simple regression
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• multiple regression

• analysis of variance (ANOVA), especially for unbalanced data

• analysis of covariance

• response surface models

• weighted regression

• polynomial regression

• partial correlation

• multivariate analysis of variance (MANOVA)

• repeated measures analysis of variance

PROC GLM Features
The following list summarizes the features in PROC GLM:

• PROC GLM enables you to specify any degree of interaction (crossed effects) and nested effects. It
also provides for polynomial, continuous-by-class, and continuous-nesting-class effects.

• Through the concept of estimability, the GLM procedure can provide tests of hypotheses for the effects
of a linear model regardless of the number of missing cells or the extent of confounding. PROC GLM
displays the sum of squares (SS) associated with each hypothesis tested and, upon request, the form
of the estimable functions employed in the test. PROC GLM can produce the general form of all
estimable functions.

• The REPEATED statement enables you to specify effects in the model that represent repeated measure-
ments on the same experimental unit for the same response, providing both univariate and multivariate
tests of hypotheses.

• The RANDOM statement enables you to specify random effects in the model; expected mean squares
are produced for each Type I, Type II, Type III, Type IV, and contrast mean square used in the analysis.
Upon request, F tests that use appropriate mean squares or linear combinations of mean squares as
error terms are performed.

• The ESTIMATE statement enables you to specify an L vector for estimating a linear function of the
parameters Lˇ.

• The CONTRAST statement enables you to specify a contrast vector or matrix for testing the hypothesis
that Lˇ D 0. When specified, the contrasts are also incorporated into analyses that use the MANOVA
and REPEATED statements.

• The MANOVA statement enables you to specify both the hypothesis effects and the error effect to use
for a multivariate analysis of variance.
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• PROC GLM can create an output data set containing the input data set in addition to predicted values,
residuals, and other diagnostic measures.

• PROC GLM can be used interactively. After you specify and fit a model, you can execute a variety of
statements without recomputing the model parameters or sums of squares.

• For analysis involving multiple dependent variables but not the MANOVA or REPEATED statements,
a missing value in one dependent variable does not eliminate the observation from the analysis for
other dependent variables. PROC GLM automatically groups together those variables that have the
same pattern of missing values within the data set or within a BY group. This ensures that the analysis
for each dependent variable brings into use all possible observations.

• The GLM procedure automatically produces graphs as part of its ODS output. For general information
about ODS Graphics, see the section “ODS Graphics” on page 3514 and Chapter 21, “Statistical
Graphics Using ODS.”

PROC GLM Contrasted with Other SAS Procedures
As described previously, PROC GLM can be used for many different analyses and has many special features
not available in other SAS procedures. However, for some types of analyses, other procedures are available.
As discussed in the sections “PROC GLM for Unbalanced ANOVA” on page 3395 and “PROC GLM for
Quadratic Least Squares Regression” on page 3398, sometimes these other procedures are more efficient
than PROC GLM. The following procedures perform some of the same analyses as PROC GLM:

ANOVA performs analysis of variance for balanced designs. The ANOVA procedure is generally
more efficient than PROC GLM for these designs.

MIXED fits mixed linear models by incorporating covariance structures in the model fitting process.
Its RANDOM and REPEATED statements are similar to those in PROC GLM but offer
different functionalities.

NESTED performs analysis of variance and estimates variance components for nested random
models. The NESTED procedure is generally more efficient than PROC GLM for these
models.

NPAR1WAY performs nonparametric one-way analysis of rank scores. This can also be done using the
RANK procedure and PROC GLM.

REG performs simple linear regression. The REG procedure allows several MODEL statements
and gives additional regression diagnostics, especially for detection of collinearity.

RSREG performs quadratic response surface regression, and canonical and ridge analysis. The
RSREG procedure is generally recommended for data from a response surface experiment.
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TTEST compares the means of two groups of observations. Also, tests for equality of variances
for the two groups are available. The TTEST procedure is usually more efficient than
PROC GLM for this type of data.

VARCOMP estimates variance components for a general linear model.

Getting Started: GLM Procedure

PROC GLM for Unbalanced ANOVA
Analysis of variance, or ANOVA, typically refers to partitioning the variation in a variable’s values into
variation between and within several groups or classes of observations. The GLM procedure can perform
simple or complicated ANOVA for balanced or unbalanced data.

This example discusses the analysis of variance for the unbalanced 2 � 2 data shown in Table 45.1. The
experimental design is a full factorial, in which each level of one treatment factor occurs at each level of the
other treatment factor. Note that there is only one value for the cell with A=‘A2’ and B=‘B2’. Since one cell
contains a different number of values from the other cells in the table, this is an unbalanced design.

Table 45.1 Unbalanced Two-Way Data

A1 A2
B1 12, 14 20, 18
B2 11, 9 17

The following statements read the data into a SAS data set and then invoke PROC GLM to produce the
analysis.

title 'Analysis of Unbalanced 2-by-2 Factorial';
data exp;

input A $ B $ Y @@;
datalines;

A1 B1 12 A1 B1 14 A1 B2 11 A1 B2 9
A2 B1 20 A2 B1 18 A2 B2 17
;

proc glm data=exp;
class A B;
model Y=A B A*B;

run;

Both treatments are listed in the CLASS statement because they are classification variables. A*B denotes the
interaction of the A effect and the B effect. The results are shown in Figure 45.1 and Figure 45.2.
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Figure 45.1 Class Level Information

Analysis of Unbalanced 2-by-2 Factorial

The GLM Procedure

Analysis of Unbalanced 2-by-2 Factorial

The GLM Procedure

Class Level
Information

Class Levels Values

A 2 A1 A2

B 2 B1 B2

Number of Observations Read 7

Number of Observations Used 7

Figure 45.1 displays information about the classes as well as the number of observations in the data set.
Figure 45.2 shows the ANOVA table, simple statistics, and tests of effects.

Figure 45.2 ANOVA Table and Tests of Effects

Analysis of Unbalanced 2-by-2 Factorial

The GLM Procedure

Dependent Variable: Y

Analysis of Unbalanced 2-by-2 Factorial

The GLM Procedure

Dependent Variable: Y

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 3 91.71428571 30.57142857 15.29 0.0253

Error 3 6.00000000 2.00000000

Corrected Total 6 97.71428571

R-Square Coeff Var Root MSE Y Mean

0.938596 9.801480 1.414214 14.42857

Source DF Type I SS Mean Square F Value Pr > F

A 1 80.04761905 80.04761905 40.02 0.0080

B 1 11.26666667 11.26666667 5.63 0.0982

A*B 1 0.40000000 0.40000000 0.20 0.6850

Source DF Type III SS Mean Square F Value Pr > F

A 1 67.60000000 67.60000000 33.80 0.0101

B 1 10.00000000 10.00000000 5.00 0.1114

A*B 1 0.40000000 0.40000000 0.20 0.6850
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The degrees of freedom can be used to check your data. The Model degrees of freedom for a 2 � 2 factorial
design with interaction are .ab � 1/, where a is the number of levels of A and b is the number of levels of B;
in this case, .2� 2� 1/ D 3. The Corrected Total degrees of freedom are always one less than the number of
observations used in the analysis; in this case, 7 – 1 = 6.

The overall F test is significant .F D 15:29; p D 0:0253/, indicating strong evidence that the means for the
four different A�B cells are different. You can further analyze this difference by examining the individual
tests for each effect.

Four types of estimable functions of parameters are available for testing hypotheses in PROC GLM. For data
with no missing cells, the Type III and Type IV estimable functions are the same and test the same hypotheses
that would be tested if the data were balanced. Type I and Type III sums of squares are typically not equal
when the data are unbalanced; Type III sums of squares are preferred in testing effects in unbalanced cases
because they test a function of the underlying parameters that is independent of the number of observations
per treatment combination.

According to a significance level of 5% .˛ D 0:05/, the A*B interaction is not significant .F D 0:20; p D
0:6850/. This indicates that the effect of A does not depend on the level of B and vice versa. Therefore, the
tests for the individual effects are valid, showing a significant A effect .F D 33:80; p D 0:0101/ but no
significant B effect .F D 5:00; p D 0:1114/.

If ODS Graphics is enabled, GLM also displays by default an interaction plot for this analysis. The following
statements, which are the same as in the previous analysis but with ODS Graphics enabled, additionally
produce Figure 45.3.

ods graphics on;
proc glm data=exp;

class A B;
model Y=A B A*B;

run;
ods graphics off;
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Figure 45.3 Plot of Y by A and B

The insignificance of the A*B interaction is reflected in the fact that two lines in Figure 45.3 are nearly
parallel. For more information about the graphics that GLM can produce, see the section “ODS Graphics” on
page 3514.

PROC GLM for Quadratic Least Squares Regression
In polynomial regression, the values of a dependent variable (also called a response variable) are described
or predicted in terms of polynomial terms involving one or more independent or explanatory variables. An
example of quadratic regression in PROC GLM follows. These data are taken from Draper and Smith (1966,
p. 57). Thirteen specimens of 90/10 Cu-Ni alloys are tested in a corrosion-wheel setup in order to examine
corrosion. Each specimen has a certain iron content. The wheel is rotated in salt sea water at 30 ft/sec for 60
days. Weight loss is used to quantify the corrosion. The fe variable represents the iron content, and the loss
variable denotes the weight loss in milligrams/square decimeter/day in the following DATA step.

title 'Regression in PROC GLM';
data iron;

input fe loss @@;
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datalines;
0.01 127.6 0.48 124.0 0.71 110.8 0.95 103.9
1.19 101.5 0.01 130.1 0.48 122.0 1.44 92.3
0.71 113.1 1.96 83.7 0.01 128.0 1.44 91.4
1.96 86.2
;

The SGSCATTER procedure is used in the following statements to request a scatter plot of the response
variable versus the independent variable.

ods graphics on;
proc sgscatter data=iron;

plot loss*fe;
run;
ods graphics off;

The plot in Figure 45.4 displays a strong negative relationship between iron content and corrosion resistance,
but it is not clear whether there is curvature in this relationship.

Figure 45.4 Plot of Observed Corrosion Resistance by Iron Content
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The following statements fit a quadratic regression model to the data. This enables you to estimate the
linear relationship between iron content and corrosion resistance and to test for the presence of a quadratic
component. The intercept is automatically fit unless the NOINT option is specified.

proc glm data=iron;
model loss=fe fe*fe;

run;

The CLASS statement is omitted because a regression line is being fitted. Unlike PROC REG, PROC GLM
allows polynomial terms in the MODEL statement.

PROC GLM first displays preliminary information, shown in Figure 45.5, telling you that the GLM procedure
has been invoked and stating the number of observations in the data set. If the model involves classification
variables, they are also listed here, along with their levels.

Figure 45.5 Data Information

Regression in PROC GLM

The GLM Procedure

Regression in PROC GLM

The GLM Procedure

Number of Observations Read 13

Number of Observations Used 13

Figure 45.6 shows the overall ANOVA table and some simple statistics. The degrees of freedom can be
used to check that the model is correct and that the data have been read correctly. The Model degrees of
freedom for a regression is the number of parameters in the model minus 1. You are fitting a model with
three parameters in this case,

loss D ˇ0 C ˇ1 � .fe/C ˇ2 � .fe/2 C error

so the degrees of freedom are 3 � 1 D 2. The Corrected Total degrees of freedom are always one less than
the number of observations used in the analysis.

Figure 45.6 ANOVA Table

Regression in PROC GLM

The GLM Procedure

Dependent Variable: loss

Regression in PROC GLM

The GLM Procedure

Dependent Variable: loss

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 2 3296.530589 1648.265295 164.68 <.0001

Error 10 100.086334 10.008633

Corrected Total 12 3396.616923

R-Square Coeff Var Root MSE loss Mean

0.970534 2.907348 3.163642 108.8154
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The R square indicates that the model accounts for 97% of the variation in LOSS. The coefficient of variation
(Coeff Var), Root MSE (Mean Square for Error), and mean of the dependent variable are also listed.

The overall F test is significant .F D 164:68; p < 0:0001/, indicating that the model as a whole accounts
for a significant amount of the variation in LOSS. Thus, it is appropriate to proceed to testing the effects.

Figure 45.7 contains tests of effects and parameter estimates. The latter are displayed by default when the
model contains only continuous variables.

Figure 45.7 Tests of Effects and Parameter Estimates

Source DF Type I SS Mean Square F Value Pr > F

fe 1 3293.766690 3293.766690 329.09 <.0001

fe*fe 1 2.763899 2.763899 0.28 0.6107

Source DF Type III SS Mean Square F Value Pr > F

fe 1 356.7572421 356.7572421 35.64 0.0001

fe*fe 1 2.7638994 2.7638994 0.28 0.6107

Parameter Estimate
Standard

Error t Value Pr > |t|

Intercept 130.3199337 1.77096213 73.59 <.0001

fe -26.2203900 4.39177557 -5.97 0.0001

fe*fe 1.1552018 2.19828568 0.53 0.6107

The t tests provided are equivalent to the Type III F tests. The quadratic term is not significant (p = 0.6107)
and thus can be removed from the model; the linear term is significant .p < 0:0001/. This suggests that there
is indeed a straight-line relationship between loss and fe.

Finally, if ODS Graphics is enabled, PROC GLM also displays by default a scatter plot of the original data, as
in Figure 45.4, with the quadratic fit overlaid. The following statements, which are the same as the previous
analysis but with ODS Graphics enabled, additionally produce Figure 45.8.

ods graphics on;
proc glm data=iron;

model loss=fe fe*fe;
run;
ods graphics off;
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Figure 45.8 Plot of Observed and Fit Corrosion Resistance by Iron Content, Quadratic Model

The insignificance of the quadratic term in the model is reflected in the fact that the fit is nearly linear.

Fitting the model without the quadratic term provides more accurate estimates for ˇ0 and ˇ1. PROC GLM
allows only one MODEL statement per invocation of the procedure, so the PROC GLM statement must be
issued again. The following statements are used to fit the linear model.

proc glm data=iron;
model loss=fe;

run;



PROC GLM for Quadratic Least Squares Regression F 3403

Figure 45.9 displays the output produced by these statements. The linear term is still significant .F D
352:27; p < 0:0001/. The estimated model is now

loss D 129:79 � 24:02 � fe

Figure 45.9 Linear Model Output

Regression in PROC GLM

The GLM Procedure

Dependent Variable: loss

Regression in PROC GLM

The GLM Procedure

Dependent Variable: loss

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 1 3293.766690 3293.766690 352.27 <.0001

Error 11 102.850233 9.350021

Corrected Total 12 3396.616923

R-Square Coeff Var Root MSE loss Mean

0.969720 2.810063 3.057780 108.8154

Source DF Type I SS Mean Square F Value Pr > F

fe 1 3293.766690 3293.766690 352.27 <.0001

Source DF Type III SS Mean Square F Value Pr > F

fe 1 3293.766690 3293.766690 352.27 <.0001

Parameter Estimate
Standard

Error t Value Pr > |t|

Intercept 129.7865993 1.40273671 92.52 <.0001

fe -24.0198934 1.27976715 -18.77 <.0001
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Syntax: GLM Procedure
The following statements are available in the GLM procedure:

PROC GLM < options > ;
CLASS variable < (REF= option) > . . . < variable < (REF= option) > > < / global-options > ;
MODEL dependent-variables = independent-effects < / options > ;
ABSORB variables ;
BY variables ;
CODE < options > ;
FREQ variable ;
ID variables ;
WEIGHT variable ;
CONTRAST ’label’ effect values < . . . effect values > < / options > ;
ESTIMATE ’label’ effect values < . . . effect values > < / options > ;
LSMEANS effects < / options > ;
MANOVA < test-options > < / detail-options > ;
MEANS effects < / options > ;
OUTPUT < OUT=SAS-data-set > keyword=names < . . . keyword=names > < / option > ;
RANDOM effects < / options > ;
REPEATED factor-specification < / options > ;
STORE < OUT= >item-store-name < / LABEL='label ' > ;
TEST < H=effects > E=effect < / options > ;

Although there are numerous statements and options available in PROC GLM, many applications use only
a few of them. Often you can find the features you need by looking at an example or by quickly scanning
through this section.

To use PROC GLM, the PROC GLM and MODEL statements are required. You can specify only one
MODEL statement (in contrast to the REG procedure, for example, which allows several MODEL statements
in the same PROC REG run). If your model contains classification effects, the classification variables must
be listed in a CLASS statement, and the CLASS statement must appear before the MODEL statement. In
addition, if you use a CONTRAST statement in combination with a MANOVA, RANDOM, REPEATED, or
TEST statement, the CONTRAST statement must be entered first in order for the contrast to be included in
the MANOVA, RANDOM, REPEATED, or TEST analysis.

Table 45.2 summarizes the positional requirements for the statements in the GLM procedure.
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Table 45.2 Positional Requirements for PROC GLM Statements

Statement Must Precede. . . Must Follow. . .
ABSORB First RUN statement

BY First RUN statement

CLASS MODEL statement

CONTRAST MANOVA, REPEATED, MODEL statement
or RANDOM statement

ESTIMATE MODEL statement

FREQ First RUN statement

ID First RUN statement

LSMEANS MODEL statement

MANOVA CONTRAST or
MODEL statement

MEANS MODEL statement

MODEL CONTRAST, ESTIMATE, CLASS statement
LSMEANS, or MEANS
statement

OUTPUT MODEL statement

RANDOM CONTRAST or
MODEL statement

REPEATED CONTRAST, MODEL,
or TEST statement

TEST MANOVA or MODEL statement
REPEATED statement

WEIGHT First RUN statement

Table 45.3 summarizes the function of each statement (other than the PROC statement) in the GLM procedure.

Table 45.3 Statements in the GLM Procedure
Statement Description
ABSORB Absorbs classification effects in a model
BY Specifies variables to define subgroups for the analysis
CLASS Declares classification variables
CODE Requests that the procedure write SAS DATA step code to a file or

catalog entry for computing predicted values according to the fitted
model

CONTRAST Constructs and tests linear functions of the parameters
ESTIMATE Estimates linear functions of the parameters
FREQ Specifies a frequency variable
ID Identifies observations on output
LSMEANS Computes least squares (marginal) means
MANOVA Performs a multivariate analysis of variance



3406 F Chapter 45: The GLM Procedure

Table 45.3 continued
Statement Description
MEANS Computes and optionally compares arithmetic means
MODEL Defines the model to be fit
OUTPUT Requests an output data set containing diagnostics for each obser-

vation
RANDOM Declares certain effects to be random and computes expected mean

squares
REPEATED Performs multivariate and univariate repeated measures analysis of

variance
STORE Requests that the procedure save the context and results of the

statistical analysis into an item store
TEST Constructs tests that use the sums of squares for effects and the

error term you specify
WEIGHT Specifies a variable for weighting observations

The rest of this section provides detailed syntax information for each of these statements, beginning with the
PROC GLM statement. The remaining statements are covered in alphabetical order.

The STORE and CODE statements are also used by many other procedures. A summary description of
functionality and syntax for these statements is also shown after the PROC GLM statement in alphabetical
order, but you can find full documentation about them in the section “STORE Statement” on page 508 in
Chapter 19, “Shared Concepts and Topics.”

PROC GLM Statement
PROC GLM < options > ;

The PROC GLM statement invokes the GLM procedure. Table 45.4 summarizes the options available in the
PROC GLM statement.

Table 45.4 PROC GLM Statement Options

Option Description

ALPHA= Specifies the level of significance for confidence intervals
DATA= Names the SAS data set used by the GLM procedure
MANOVA Requests the multivariate mode of eliminating observations with missing

values
MULTIPASS Requests that the input data set be reread when necessary, instead of using a

utility file
NAMELEN= Specifies the length of effect names
NOPRINT Suppresses the normal display of results
ORDER= Specifies the order in which to sort classification variables
OUTSTAT= Names an output data set for information and statistics on each model effect
PLOTS Controls the plots produced through ODS Graphics
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You can specify the following options in the PROC GLM statement.

ALPHA=p
specifies the level of significance p for 100.1�p/% confidence intervals. The value must be between 0
and 1; the default value of p = 0.05 results in 95% intervals. This value is used as the default confidence
level for limits computed by the following options.

Statement Options
LSMEANS CL

MEANS CLM CLDIFF

MODEL CLI CLM CLPARM

OUTPUT UCL= LCL= UCLM= LCLM=

You can override the default in each of these cases by specifying the ALPHA= option for each statement
individually.

DATA=SAS-data-set
names the SAS data set used by the GLM procedure. By default, PROC GLM uses the most recently
created SAS data set.

MANOVA
requests the multivariate mode of eliminating observations with missing values. If any of the dependent
variables have missing values, the procedure eliminates that observation from the analysis. The
MANOVA option is useful if you use PROC GLM in interactive mode and plan to perform a multivariate
analysis.

MULTIPASS
requests that PROC GLM reread the input data set when necessary, instead of writing the necessary
values of dependent variables to a utility file. This option decreases disk space usage at the expense
of increased execution times, and is useful only in rare situations where disk space is at an absolute
premium.

NAMELEN=n
specifies the length of effect names in tables and output data sets to be n characters long, where n is a
value between 20 and 200 characters. The default length is 20 characters.

NOPRINT
suppresses the normal display of results. The NOPRINT option is useful when you want only to create
one or more output data sets with the procedure. Note that this option temporarily disables the Output
Delivery System (ODS); see Chapter 20, “Using the Output Delivery System,” for more information.
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ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of the classification variables (which are specified in the CLASS
statement).

This ordering determines which parameters in the model correspond to each level in the data, so the
ORDER= option can be useful when you specify the CONTRAST or ESTIMATE statement.

This option applies to the levels for all classification variables, except when you use the (default)
ORDER=FORMATTED option with numeric classification variables that have no explicit format. In
that case, the levels of such variables are ordered by their internal value.

The ORDER= option can take the following values:

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set

FORMATTED External formatted value, except for numeric variables with
no explicit format, which are sorted by their unformatted
(internal) value

FREQ Descending frequency count; levels with the most observa-
tions come first in the order

INTERNAL Unformatted value

By default, ORDER=FORMATTED. For ORDER=FORMATTED and ORDER=INTERNAL, the sort
order is machine-dependent.

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

OUTSTAT=SAS-data-set
names an output data set that contains sums of squares, degrees of freedom, F statistics, and probability
levels for each effect in the model, as well as for each CONTRAST that uses the overall residual or error
mean square (MSE) as the denominator in constructing the F statistic. If you use the CANONICAL
option in the MANOVA statement and do not use an M= specification in the MANOVA statement, the
data set also contains results of the canonical analysis.

See the section “Output Data Sets” on page 3508 for more information.

PLOTS < (global-plot-options) > < =plot-request < (options) > >

PLOTS < (global-plot-options) > < =(plot-request < (options) > < ... plot-request < (options) > >) >
controls the plots produced through ODS Graphics. When you specify only one plot-request , you can
omit the parentheses from around the plot-request . For example:

PLOTS=NONE
PLOTS=(DIAGNOSTICS RESIDUALS)
PLOTS(UNPACK)=RESIDUALS
PLOT=MEANPLOT(CLBAND)
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ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;
proc glm data=iron;

model loss=fe fe*fe;
run;
ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

If ODS Graphics is enabled but you do not specify the PLOTS= option, then PROC GLM produces a
default set of plots, which might be different for different models, as discussed in the following.

• If you specify a one-way analysis of variance model, with just one CLASS variable, the GLM
procedure produces a grouped box plot of the response values versus the CLASS levels. For
an example of the box plot, see the section “One-Way Layout with Means Comparisons” on
page 946 in Chapter 26, “The ANOVA Procedure.”

• If you specify a two-way analysis of variance model, with just two CLASS variables, the
GLM procedure produces an interaction plot of the response values, with horizontal position
representing one CLASS variable and marker style representing the other; and with predicted
response values connected by lines representing the two-way analysis. For an example of the
interaction plot, see the section “PROC GLM for Unbalanced ANOVA” on page 3395.

• If you specify a model with a single continuous predictor, the GLM procedure produces a fit plot
of the response values versus the covariate values, with a curve representing the fitted relationship
and a band representing the confidence limits for individual mean values. For an example of the
fit plot, see the section “PROC GLM for Quadratic Least Squares Regression” on page 3398.

• If you specify a model with two continuous predictors and no CLASS variables, the GLM
procedure produces a contour fit plot, overlaying a scatter plot of the data and a contour plot of
the predicted surface.

• If you specify an analysis of covariance model, with one or two CLASS variables and one
continuous variable, the GLM procedure produces an analysis of covariance plot of the response
values versus the covariate values, with lines representing the fitted relationship within each
classification level. For an example of the analysis of covariance plot, see Example 45.4.

• If you specify an LSMEANS statement with the PDIFF option, the GLM procedure produces a
plot appropriate for the type of LS-means comparison. For PDIFF=ALL (which is the default if
you specify only PDIFF), the procedure produces a diffogram, which displays all pairwise LS-
means differences and their significance. The display is also known as a “mean-mean scatter plot”
(Hsu 1996). For PDIFF=CONTROL, the procedure produces a display of each noncontrol LS-
mean compared to the control LS-mean, with two-sided confidence intervals for the comparison.
For PDIFF=CONTROLL and PDIFF=CONTROLU a similar display is produced, but with
one-sided confidence intervals. Finally, for the PDIFF=ANOM option, the procedure produces
an “analysis of means” plot, comparing each LS-mean to the average LS-mean.

• If you specify a MEANS statement, the GLM procedure produces a grouped box plot of the
response values versus the effect for which means are being calculated.
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The global-plot-options include the following:

MAXPOINTS=NONE | number
specifies that plots with elements that require processing of more than number points be
suppressed. The default is MAXPOINTS=5000. This limit is ignored if you specify MAX-
POINTS=NONE.

ONLY
suppresses the default plots. Only plots specifically requested are displayed.

UNPACKPANEL

UNPACK
suppresses paneling. By default, multiple plots can appear in some output panels. Specify
UNPACKPANEL to get each plot in a separate panel. You can specify PLOTS(UNPACKPANEL)
to just unpack the default plots. You can also specify UNPACKPANEL as a suboption with
DIAGNOSTICS and RESIDUALS.

The following individual plots and plot options are available. If you specify only one plot , then you
can omit the parentheses.

ALL
produces all appropriate plots. You can specify other options with ALL; for example, to request
all plots and unpack just the residuals, specify: PLOTS=(ALL RESIDUALS(UNPACK)).

ANCOVAPLOT< (CLM CLI LIMITS) >
modifies the analysis of covariance plot produced by default when you have an analysis of covari-
ance model, with one or two CLASS variables and one continuous variable. By default the plot
does not show confidence limits around the predicted values. The PLOTS=ANCOVAPLOT(CLM)
option adds limits for the expected predicted values, and PLOTS=ANCOVAPLOT(CLI) adds
limits for new predictions. Use PLOTS=ANCOVAPLOT(LIMITS) to add both kinds of limits.

ANOMPLOT
requests an analysis of means display, in which least squares means are compared against an
average least squares mean (Ott 1967; Nelson 1982, 1991, 1993). LS-mean ANOM plots are
produced only if you also specify PDIFF=ANOM or ADJUST=NELSON in the LSMEANS
statement, and in this case they are produced by default.

BOXPLOT< (NPANELPOS=n) >
modifies the plot produced by default for the model effect in a one-way analysis of variance
model, or for an effect specified in the MEANS statement. Suppose the effect has m levels. By
default, or if you specify PLOTS=BOXPLOT(NPANELPOS=0), all m levels of the effect are
displayed in a single plot. Specifying a nonzero value of n will result in P panels, where P is the
integer part of m=nC 1. If n > 0, then the levels will be approximately balanced across the P
panels; whereas if n < 0, precisely jnj levels will be displayed on each panel except possibly the
last.

CONTOURFIT< (OBS=obs-options) >
modifies the contour fit plot produced by default when you have a model involving only two
continuous predictors. The plot displays a contour plot of the predicted surface overlaid with
a scatter plot of the observed data. You can use the following obs-options to control how the
observations are displayed:
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GRADIENT
specifies that observations are displayed as circles colored by the observed response. The
same color gradient is used to display the fitted surface and the observations. Observations
where the predicted response is close to the observed response have similar colors: the
greater the contrast between the color of an observation and the surface, the larger the
residual is at that point.

NONE
suppresses the observations.

OUTLINE
specifies that observations are displayed as circles with a border but with a completely
transparent fill.

OUTLINEGRADIENT
is the same as OBS=GRADIENT except that a border is shown around each observation. This
option is useful to identify the location of observations where the residuals are small, since
at these points the color of the observations and the color of the surface are indistinguishable.
OBS=OUTLINEGRADIENT is the default if you do not specify any obs-options.

CONTROLPLOT
requests a display in which least squares means are compared against a reference level. LS-mean
control plots are produced only when you specify PDIFF=CONTROL or ADJUST=DUNNETT
in the LSMEANS statement, and in this case they are produced by default.

DIAGNOSTICS< (LABEL UNPACK) >
requests that a panel of summary diagnostics for the fit be displayed. The panel displays scatter
plots of residuals, studentized residuals, and observed responses by predicted values; studentized
residuals by leverage; Cook’s D by observation; a Q-Q plot of residuals; a residual histogram;
and a residual-fit spread plot. The LABEL option displays labels on observations satisfying
RSTUDENT > 2, LEVERAGE > 2p=n, and on the Cook’s D plot, COOKSD > 4=n, where
n is the number of observations used in fitting the model, and p is the number of parameters in
the model. The label is the first ID variable if the ID statement is specified; otherwise, it is the
observation number. The UNPACK option unpanels the diagnostic display and produces the
series of individual plots that form the paneled display.

DIFFPLOT< (ABS NOABS CENTER NOLINES) >
modifies the plot produced by an LSMEANS statement with the PDIFF=ALL option (or just
PDIFF, since ALL is the default argument). The ABS and NOABS options determine the
positioning of the line segments in the plot. When the ABS option is in effect, and this is the
default, all line segments are shown on the same side of the reference line. The NOABS option
separates comparisons according to the sign of the difference. The CENTER option marks the
center point for each comparison. This point corresponds to the intersection of two least squares
means. The NOLINES option suppresses the display of the line segments that represent the
confidence bounds for the differences of the least squares means. The NOLINES option implies
the CENTER option. The default is to draw line segments in the upper portion of the plot area
without marking the center point.
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FITPLOT< (NOCLM NOCLI NOLIMITS) >
modifies the fit plot produced by default when you have a model with a single continuous
predictor. By default the plot includes confidence limits for both the expected predicted values
and individual new predictions. The PLOTS=FITPLOT(NOCLM) option removes the limits
on the expected values and the PLOTS=FITPLOT(NOCLI) option removes the limits on new
predictions. The PLOTS=FITPLOT(NOLIMITS) option removes both kinds of confidence limits.

INTPLOT< (CLM CLI LIMITS) >
modifies the interaction plot produced by default when you have a two-way analysis of vari-
ance model, with just two CLASS variables. By default the plot does not show confidence
limits around the predicted values. The PLOTS=INTPLOT(CLM) option adds limits for the
expected predicted values and PLOTS=INTPLOT(CLI) adds limits for new predictions. Use
PLOTS=INTPLOT(LIMITS) to add both kinds of limits.

MEANPLOT< (CL CLBAND CONNECT ASCENDING DESCENDING) >
modifies the grouped box plot produced by an MEANS statement. Upper and lower confidence
limits are plotted when the CL option is used. When the CLBAND option is in effect, confidence
limits are shown as bands and the means are connected. By default, means are not joined by lines.
You can achieve that effect with the CONNECT option. Means are displayed in the same order as
they appear in the “Means” table. You can change that order for plotting with the ASCENDING
and DESCENDING options.

NONE
specifies that no graphics be displayed.

RESIDUALS< (SMOOTH UNPACK) >
requests that scatter plots of the residuals against each continuous covariate be displayed. The
SMOOTH option overlays a Loess smooth on each residual plot. Note that if a WEIGHT variable
is specified, then it is not used to weight the smoother. See Chapter 59, “The LOESS Procedure,”
for more information. The UNPACK option unpanels the residual display and produces a series
of individual plots that form the paneled display.

ABSORB Statement
ABSORB variables ;

Absorption is a computational technique that provides a large reduction in time and memory requirements for
certain types of models. The variables are one or more variables in the input data set.

For a main-effect variable that does not participate in interactions, you can absorb the effect by naming it in
an ABSORB statement. This means that the effect can be adjusted out before the construction and solution
of the rest of the model. This is particularly useful when the effect has a large number of levels.

Several variables can be specified, in which case each one is assumed to be nested in the preceding variable
in the ABSORB statement.

NOTE: When you use the ABSORB statement, the data set (or each BY group, if a BY statement appears)
must be sorted by the variables in the ABSORB statement. The GLM procedure cannot produce predicted
values or least squares means (LS-means) or create an output data set of diagnostic values if an ABSORB
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statement is used. If the ABSORB statement is used, it must appear before the first RUN statement; otherwise,
it is ignored.

When you use an ABSORB statement and also use the INT option in the MODEL statement, the procedure
ignores the option but computes the uncorrected total sum of squares (SS) instead of the corrected total sums
of squares.

See the section “Absorption” on page 3469 for more information.

BY Statement
BY variables ;

You can specify a BY statement with PROC GLM to obtain separate analyses of observations in groups that
are defined by the BY variables. When a BY statement appears, the procedure expects the input data set to be
sorted in order of the BY variables. If you specify more than one BY statement, only the last one specified is
used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the GLM procedure. The
NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

Since sorting the data changes the order in which PROC GLM reads observations, the sort order for the
levels of the classification variables might be affected if you also specify ORDER=DATA in the PROC GLM
statement. This, in turn, affects specifications in the CONTRAST and ESTIMATE statements.

If you specify the BY statement, it must appear before the first RUN statement; otherwise, it is ignored.
When you use a BY statement, the interactive features of PROC GLM are disabled.

When both the BY and ABSORB statements are used, observations must be sorted first by the variables in
the BY statement, and then by the variables in the ABSORB statement.

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

CLASS Statement
CLASS variable < (REF= option) > . . . < variable < (REF= option) > > < / global-options > ;

The CLASS statement names the classification variables to be used in the model. Typical classification
variables are Treatment, Sex, Race, Group, and Replication. If you use the CLASS statement, it must appear
before the MODEL statement.
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Classification variables can be either character or numeric. By default, class levels are determined from the
entire set of formatted values of the CLASS variables.

NOTE: Prior to SAS 9, class levels were determined by using no more than the first 16 characters of the
formatted values. To revert to this previous behavior, you can use the TRUNCATE option in the CLASS
statement.

In any case, you can use formats to group values into levels. See the discussion of the FORMAT procedure
in the Base SAS Procedures Guide and the discussions of the FORMAT statement and SAS formats in SAS
Formats and Informats: Reference. You can adjust the order of CLASS variable levels with the ORDER=
option in the PROC GLM statement.

The GLM procedure displays a table that summarizes the CLASS variables and their levels. You can use
this table to check the ordering of levels and, hence, of the corresponding parameters for main effects.
If you need to check the ordering of parameters for interaction effects, use the E option in the MODEL,
CONTRAST, ESTIMATE, or LSMEANS statement. See the section “Parameterization of PROC GLM
Models” on page 3456 for more information.

You can specify the following REF= option to indicate how the levels of an individual classification variable
are to be ordered by enclosing it in parentheses after the variable name:

REF=’level’ | FIRST | LAST
specifies a level of the classification variable to be put at the end of the list of levels. This level thus
corresponds to the reference level in the usual interpretation of the estimates with PROC GLM’s
singular parameterization. You can specify the level of the variable to use as the reference level; specify
a value that corresponds to the formatted value of the variable if a format is assigned. Alternatively, you
can specify REF=FIRST to designate that the first ordered level serve as the reference, or REF=LAST to
designate that the last ordered level serve as the reference. To specify that REF=FIRST or REF=LAST
be used for all classification variables, use the REF= global-option after the slash (/) in the CLASS
statement.

You can specify the following global-options in the CLASS statement after a slash (/):

REF=FIRST | LAST
specifies a level of all classification variables to be put at the end of the list of levels. This level
thus corresponds to the reference level in the usual interpretation of the estimates with PROC GLM’s
singular parameterization. Specify REF=FIRST to designate that the first ordered level for each
classification variable serve as the reference. Specify REF=LAST to designate that the last ordered
level serve as the reference. This option applies to all the variables specified in the CLASS statement. To
specify different reference levels for different classification variables, use REF= options for individual
variables.

TRUNCATE
specifies that class levels be determined by using only up to the first 16 characters of the formatted
values of CLASS variables. When formatted values are longer than 16 characters, you can use this
option to revert to the levels as determined in releases prior to SAS 9.
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CODE Statement
CODE < options > ;

The CODE statement writes SAS DATA step code for computing predicted values of the fitted model either
to a file or to a catalog entry. This code can then be included in a DATA step to score new data.

Table 45.5 summarizes the options available in the CODE statement.

Table 45.5 CODE Statement Options

Option Description

CATALOG= Names the catalog entry where the generated code is saved
DUMMIES Retains the dummy variables in the data set
ERROR Computes the error function
FILE= Names the file where the generated code is saved
FORMAT= Specifies the numeric format for the regression coefficients
GROUP= Specifies the group identifier for array names and statement labels
IMPUTE Imputes predicted values for observations with missing or invalid

covariates
LINESIZE= Specifies the line size of the generated code
LOOKUP= Specifies the algorithm for looking up CLASS levels
RESIDUAL Computes residuals

For details about the syntax of the CODE statement, see the section “CODE Statement” on page 395 in
Chapter 19, “Shared Concepts and Topics.”

CONTRAST Statement
CONTRAST ’label’ effect values < . . . effect values > < / options > ;

The CONTRAST statement enables you to perform custom hypothesis tests by specifying an L vector or
matrix for testing the univariate hypothesis Lˇ D 0 or the multivariate hypothesis LBM D 0. Thus, to
use this feature you must be familiar with the details of the model parameterization that PROC GLM uses.
For more information, see the section “Parameterization of PROC GLM Models” on page 3456. All of the
elements of the L vector might be given, or if only certain portions of the L vector are given, the remaining
elements are constructed by PROC GLM from the context (in a manner similar to rule 4 discussed in the
section “Construction of Least Squares Means” on page 3489).

There is no limit to the number of CONTRAST statements you can specify, but they must appear after the
MODEL statement. In addition, if you use a CONTRAST statement and a MANOVA, REPEATED, or TEST
statement, appropriate tests for contrasts are carried out as part of the MANOVA, REPEATED, or TEST
analysis. If you use a CONTRAST statement and a RANDOM statement, the expected mean square of the
contrast is displayed. As a result of these additional analyses, the CONTRAST statement must appear before
the MANOVA, REPEATED, RANDOM, or TEST statement.



3416 F Chapter 45: The GLM Procedure

In the CONTRAST statement,

label identifies the contrast on the output. A label is required for every contrast specified. Labels
must be enclosed in quotes.

effect identifies an effect that appears in the MODEL statement, or the INTERCEPT effect. The
INTERCEPT effect can be used when an intercept is fitted in the model. You do not need
to include all effects that are in the MODEL statement.

values are constants that are elements of the L vector associated with the effect.

You can specify the following options in the CONTRAST statement after a slash (/).

E
displays the entire L vector. This option is useful in confirming the ordering of parameters for
specifying L.

E=effect
specifies an error term, which must be one of the effects in the model. The procedure uses this effect
as the denominator in F tests in univariate analysis. In addition, if you use a MANOVA or REPEATED
statement, the procedure uses the effect specified by the E= option as the basis of the E matrix. By
default, the procedure uses the overall residual or error mean square (MSE) as an error term.

ETYPE=n
specifies the type (1, 2, 3, or 4, corresponding to a Type I, II, III, or IV test, respectively) of the E=
effect. If the E= option is specified and the ETYPE= option is not, the procedure uses the highest type
computed in the analysis.

SINGULAR=number
tunes the estimability checking. If ABS.L � LH/ > C�number for any row in the contrast, then L is
declared nonestimable. H is the .X0X/�X0X matrix, and C is ABS.L/ except for rows where L is zero,
and then it is 1. The default value for the SINGULAR= option is 10�4. Values for the SINGULAR=
option must be between 0 and 1.

As stated previously, the CONTRAST statement enables you to perform custom hypothesis tests. If
the hypothesis is testable in the univariate case, SS(H0WLˇ D 0) is computed as

.Lb/0.L.X0X/�L0/�1.Lb/

where b D .X0X/�X0y. This is the sum of squares displayed on the analysis-of-variance table.

For multivariate testable hypotheses, the usual multivariate tests are performed using

H DM0.LB/0.L.X0X/�L0/�1.LB/M

where B D .X0X/�X0Y and Y is the matrix of multivariate responses or dependent variables. The
degrees of freedom associated with the hypothesis are equal to the row rank of L. The sum of squares
computed in this situation is equivalent to the sum of squares computed using an L matrix with any
row deleted that is a linear combination of previous rows.

Multiple-degrees-of-freedom hypotheses can be specified by separating the rows of the L matrix with
commas.
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For example, for the model

proc glm;
class A B;
model Y=A B;

run;

with A at 5 levels and B at 2 levels, the parameter vector is

.� ˛1 ˛2 ˛3 ˛4 ˛5 ˇ1 ˇ2/

To test the hypothesis that the pooled A linear and A quadratic effect is zero, you can use the following
L matrix:

L D
�
0 �2 �1 0 1 2 0 0

0 2 �1 �2 �1 2 0 0

�
The corresponding CONTRAST statement is

contrast 'A LINEAR & QUADRATIC'
a -2 -1 0 1 2,
a 2 -1 -2 -1 2;

If the first level of A is a control level and you want a test of control versus others, you can use this
statement:

contrast 'CONTROL VS OTHERS' a -1 0.25 0.25 0.25 0.25;

See the following discussion of the ESTIMATE statement and the section “Specification of ESTIMATE
Expressions” on page 3472 for rules on specification, construction, distribution, and estimability in the
CONTRAST statement.

ESTIMATE Statement
ESTIMATE ’label’ effect values < . . . effect values > < / options > ;

The ESTIMATE statement enables you to estimate linear functions of the parameters by multiplying the
vector L by the parameter estimate vector b, resulting in Lb. All of the elements of the L vector might be
given, or, if only certain portions of the L vector are given, the remaining elements are constructed by PROC
GLM from the context (in a manner similar to rule 4 discussed in the section “Construction of Least Squares
Means” on page 3489).

The linear function is checked for estimability. The estimate Lb, where b D .X0X/�X0y, is displayed along
with its associated standard error,

p
L.X0X/�L0s2, and t test. If you specify the CLPARM option in the

MODEL statement (see page 3440), confidence limits for the true value are also displayed.

There is no limit to the number of ESTIMATE statements that you can specify, but they must appear after the
MODEL statement. In the ESTIMATE statement,
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label identifies the estimate on the output. A label is required for every contrast specified.
Labels must be enclosed in quotes.

effect identifies an effect that appears in the MODEL statement, or the INTERCEPT effect. The
INTERCEPT effect can be used as an effect when an intercept is fitted in the model. You
do not need to include all effects that are in the MODEL statement.

values are constants that are the elements of the L vector associated with the preceding effect.
For example,

estimate 'A1 VS A2' A 1 -1;

forms an estimate that is the difference between the parameters estimated for the first and
second levels of the CLASS variable A.

You can specify the following options in the ESTIMATE statement after a slash (/):

DIVISOR=number
specifies a value by which to divide all coefficients so that fractional coefficients can be entered as
integer numerators. For example, you can use

estimate '1/3(A1+A2) - 2/3A3' a 1 1 -2 / divisor=3;

instead of

estimate '1/3(A1+A2) - 2/3A3' a 0.33333 0.33333 -0.66667;

E
displays the entire L vector. This option is useful in confirming the ordering of parameters for
specifying L.

SINGULAR=number
tunes the estimability checking. If ABS.L � LH/ > C�number , then the L vector is declared
nonestimable. H is the .X0X/�X0X matrix, and C is ABS.L/ except for rows where L is zero, and then
it is 1. The default value for the SINGULAR= option is 10�4. Values for the SINGULAR= option
must be between 0 and 1.

See also the section “Specification of ESTIMATE Expressions” on page 3472.

FREQ Statement
FREQ variable ;

The FREQ statement names a variable that provides frequencies for each observation in the DATA= data set.
Specifically, if n is the value of the FREQ variable for a given observation, then that observation is used n
times.

The analysis produced using a FREQ statement reflects the expanded number of observations. For example,
means and total degrees of freedom reflect the expanded number of observations. You can produce the same
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analysis (without the FREQ statement) by first creating a new data set that contains the expanded number
of observations. For example, if the value of the FREQ variable is 5 for the first observation, the first 5
observations in the new data set are identical. Each observation in the old data set is replicated ni times in
the new data set, where ni is the value of the FREQ variable for that observation.

If the value of the FREQ variable is missing or is less than 1, the observation is not used in the analysis. If
the value is not an integer, only the integer portion is used.

If you specify the FREQ statement, it must appear before the first RUN statement or it is ignored.

ID Statement
ID variables ;

When predicted values are requested as a MODEL statement option, values of the variables given in the ID
statement are displayed beside each observed, predicted, and residual value for identification. Although there
are no restrictions on the length of ID variables, PROC GLM might truncate the number of values listed in
order to display them on one line. The GLM procedure displays a maximum of five ID variables.

If you specify the ID statement, it must appear before the first RUN statement or it is ignored.

LSMEANS Statement
LSMEANS effects < / options > ;

Table 45.6 summarizes the options available in the LSMEANS statement.

Table 45.6 LSMEANS Statement Options

Option Description

ADJUST= Requests a multiple comparison adjustment
ALPHA= Specifies the level of significance
AT Enables you to modify the values of the covariates
BYLEVEL Processes the OM data set by each level of the LS-mean effect
CL Requests confidence limits
COV Includes variances and covariances of the LS-means
E Displays the coefficients of the linear functions
E= Specifies an effect in the model to use as an error term
ETYPE= Specifies the type of the E= effect
LINES Uses connecting lines to indicate nonsignificantly different subsets of LS-

means
NOPRINT Suppresses the normal display of results
OBSMARGINS Specifies a potentially different weighting scheme
OUT= Creates an output data set
PDIFF Requests that p-values for differences
PLOT= Requests graphics related to least squares means
SLICE= Specifies effects within which to test for differences
SINGULAR= Tunes the estimability checking
STDERR Produces the standard error
TDIFF Produces the t values
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Least squares means (LS-means) are computed for each effect listed in the LSMEANS statement. You can
specify only classification effects in the LSMEANS statement—that is, effects that contain only classification
variables. You can also specify options to perform multiple comparisons. In contrast to the MEANS statement,
the LSMEANS statement performs multiple comparisons on interactions as well as main effects.

LS-means are predicted population margins; that is, they estimate the marginal means over a balanced
population. In a sense, LS-means are to unbalanced designs as class and subclass arithmetic means are to
balanced designs. Each LS-mean is computed as L0b for a certain column vector L, where b is the vector of
parameter estimates—that is, the solution of the normal equations. For further information, see the section
“Construction of Least Squares Means” on page 3489.

Multiple effects can be specified in one LSMEANS statement, or multiple LSMEANS statements can be
used, but they must all appear after the MODEL statement. For example:

proc glm;
class A B;
model Y=A B A*B;
lsmeans A B A*B;

run;

LS-means are displayed for each level of the A, B, and A*B effects.

You can specify the following options in the LSMEANS statement after a slash (/):

ADJUST=BON

ADJUST=DUNNETT

ADJUST=NELSON

ADJUST=SCHEFFE

ADJUST=SIDAK

ADJUST=SIMULATE < (simoptions) >

ADJUST=SMM | GT2

ADJUST=TUKEY

ADJUST=T
requests a multiple comparison adjustment for the p-values and confidence limits for the differences
of LS-means. The ADJUST= option modifies the results of the TDIFF and PDIFF options; thus, if
you omit the TDIFF or PDIFF option then the ADJUST= option implies PDIFF. By default, PROC
GLM analyzes all pairwise differences. If you specify ADJUST=DUNNETT, PROC GLM analyzes
all differences with a control level. If you specify the ADJUST=NELSON option, PROC GLM
analyzes all differences with the average LS-mean. The default is ADJUST=T, which really signifies
no adjustment for multiple comparisons.

The BON (Bonferroni) and SIDAK adjustments involve correction factors described in the section
“Multiple Comparisons” on page 3475 and in Chapter 67, “The MULTTEST Procedure.” When
you specify ADJUST=TUKEY and your data are unbalanced, PROC GLM uses the approximation
described in Kramer (1956) and identifies the adjustment as “Tukey-Kramer” in the results. Similarly,
when you specify either ADJUST=DUNNETT or the ADJUST=NELSON option and the LS-means
are correlated, PROC GLM uses the factor-analytic covariance approximation described in Hsu (1992)
and identifies the adjustment in the results as “Dunnett-Hsu” or “Nelson-Hsu,” respectively. The
preceding references also describe the SCHEFFE and SMM adjustments.
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The SIMULATE adjustment computes the adjusted p-values from the simulated distribution of the
maximum or maximum absolute value of a multivariate t random vector. The simulation estimates q,
the true .1 � ˛/ quantile, where 1 � ˛ is the confidence coefficient. The default ˛ is the value of the
ALPHA= option in the PROC GLM statement or 0.05 if that option is not specified. You can change
this value with the ALPHA= option in the LSMEANS statement.

The number of samples for the SIMULATE adjustment is set so that the tail area for the simulated q is
within a certain accuracy radius  of 1 � ˛ with an accuracy confidence of 100.1 � �/%. In equation
form,

P.jF. Oq/ � .1 � ˛/j � / D 1 � �

where Oq is the simulated q and F is the true distribution function of the maximum; see Edwards and
Berry (1987) for details. By default,  = 0.005 and � = 0.01, so that the tail area of Oq is within 0.005 of
0.95 with 99% confidence.

You can specify the following simoptions in parentheses after the ADJUST=SIMULATE option.

ACC=value
specifies the target accuracy radius  of a 100.1� �/% confidence interval for the true probability
content of the estimated .1� ˛/ quantile. The default value is ACC=0.005. Note that, if you also
specify the CVADJUST simoption, then the actual accuracy radius will probably be substantially
less than this target.

CVADJUST
specifies that the quantile should be estimated by the control variate adjustment method of Hsu
and Nelson (1998) instead of simply as the quantile of the simulated sample. Specifying the
CVADJUST option typically has the effect of significantly reducing the accuracy radius  of
a 100 � .1 � �/% confidence interval for the true probability content of the estimated .1 � ˛/
quantile. The control-variate-adjusted quantile estimate takes roughly twice as long to compute,
but it is typically much more accurate than the sample quantile.

EPS=value
specifies the value � for a 100�.1��/% confidence interval for the true probability content of the
estimated .1 � ˛/ quantile. The default value for the accuracy confidence is 99%, corresponding
to EPS=0.01.

NSAMP=n
specifies the sample size for the simulation. By default, n is set based on the values of the target
accuracy radius  and accuracy confidence 100� .1� �/% for an interval for the true probability
content of the estimated .1 � ˛/ quantile. With the default values for  , �, and ˛ (0.005, 0.01,
and 0.05, respectively), NSAMP=12604 by default.

REPORT
specifies that a report on the simulation should be displayed, including a listing of the parameters,
such as  , �, and ˛, as well as an analysis of various methods for estimating or approximating the
quantile.

SEED=number
specifies an integer used to start the pseudo-random number generator for the simulation. If you
do not specify a seed, or specify a value less than or equal to zero, the seed is by default generated
from reading the time of day from the computer’s clock.
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THREADS
specifies that the computational work for the simulation be divided into parallel threads, where
the number of threads is the value of the SAS system option CPUCOUNT=. For large simulations
(as specified directly using the NSAMP= simoption or indirectly using the ACC= or EPS=
simoptions), parallel processing can markedly speed up the computation of adjusted p-values and
confidence intervals. However, because the parallel processing has different pseudo-random num-
ber streams, the precise results are different from the default ones, which are computed in sequence
rather than in parallel. This option overrides the SAS system option THREADS | NOTHREADS.

NOTHREADS
specifies that the computational work for the simulation be performed in sequence rather
than in parallel. NOTHREADS is the default. This option overrides the SAS system option
THREADS | NOTHREADS.

ALPHA=p
specifies the level of significance p for 100.1 � p/% confidence intervals. This option is useful only if
you also specify the CL option, and, optionally, the PDIFF option. By default, p is equal to the value
of the ALPHA= option in the PROC GLM statement or 0.05 if that option is not specified, This value
is used to set the endpoints for confidence intervals for the individual means as well as for differences
between means.

AT variable = value

AT (variable-list)= (value-list)

AT MEANS
enables you to modify the values of the covariates used in computing LS-means. By default, all
covariate effects are set equal to their mean values for computation of standard LS-means. The
AT option enables you to set the covariates to whatever values you consider interesting. For more
information, see the section “Setting Covariate Values” on page 3490.

BYLEVEL
requests that PROC GLM process the OM data set by each level of the LS-mean effect in question. For
more details, see the entry for the OM option in this section.

CL
requests confidence limits for the individual LS-means. If you specify the PDIFF option, confidence
limits for differences between means are produced as well. You can control the confidence level with
the ALPHA= option. Note that, if you specify an ADJUST= option, the confidence limits for the
differences are adjusted for multiple inference but the confidence intervals for individual means are
not adjusted.

COV
includes variances and covariances of the LS-means in the output data set specified in the OUT= option
in the LSMEANS statement. Note that this is the covariance matrix for the LS-means themselves,
not the covariance matrix for the differences between the LS-means, which is used in the PDIFF
computations. If you omit the OUT= option, the COV option has no effect. When you specify the
COV option, you can specify only one effect in the LSMEANS statement.
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E
displays the coefficients of the linear functions used to compute the LS-means.

E=effect
specifies an effect in the model to use as an error term. The procedure uses the mean square for
the effect as the error mean square when calculating estimated standard errors (requested with the
STDERR option) and probabilities (requested with the STDERR, PDIFF, or TDIFF option). Unless
you specify STDERR, PDIFF or TDIFF, the E= option is ignored. By default, if you specify the
STDERR, PDIFF, or TDIFF option and do not specify the E= option, the procedure uses the error
mean square for calculating standard errors and probabilities.

ETYPE=n
specifies the type (1, 2, 3, or 4, corresponding to a Type I, II, III, or IV test, respectively) of the E=
effect. If you specify the E= option but not the ETYPE= option, the highest type computed in the
analysis is used. If you omit the E= option, the ETYPE= option has no effect.

LINES
presents results of comparisons between all pairs of means (specified by the PDIFF=ALL option) by
listing the means in descending order and indicating nonsignificant subsets by line segments beside
the corresponding means. When all differences have the same variance, these comparison lines are
guaranteed to accurately reflect the inferences based on the corresponding tests, made by comparing
the respective p-values to the value of the ALPHA= option (0.05 by default). However, equal variances
are rarely the case for differences between LS-means. If the variances are not all the same, then the
comparison lines might be conservative, in the sense that if you base your inferences on the lines alone,
you will detect fewer significant differences than the tests indicate. If there are any such differences, a
note is appended to the table that lists the pairs of means that are inferred to be significantly different
by the tests but not by the comparison lines. Note, however, that in many cases, even though the
variances are unbalanced, they are near enough that the comparison lines in fact accurately reflect the
test inferences.

NOPRINT
suppresses the normal display of results from the LSMEANS statement. This option is useful when an
output data set is created with the OUT= option in the LSMEANS statement.

OBSMARGINS

OM
specifies a potentially different weighting scheme for computing LS-means coefficients. The standard
LS-means have equal coefficients across classification effects; however, the OM option changes these
coefficients to be proportional to those found in the input data set. For more information, see the
section “Changing the Weighting Scheme” on page 3491.

The BYLEVEL option modifies the observed-margins LS-means. Instead of computing the margins
across the entire data set, the procedure computes separate margins for each level of the LS-mean
effect in question. The resulting LS-means are actually equal to raw means in this case. If you specify
the BYLEVEL option, it disables the AT option.
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OUT=SAS-data-set
creates an output data set that contains the values, standard errors, and, optionally, the covariances (see
the COV option) of the LS-means.

For more information, see the section “Output Data Sets” on page 3508.

PDIFF< =difftype >
requests that p-values for differences of the LS-means be produced. The optional difftype specifies
which differences to display. Possible values for difftype are ALL, CONTROL, CONTROLL, CON-
TROLU, and ANOM. The ALL value requests all pairwise differences, and it is the default. The
CONTROL value requests the differences with a control that, by default, is the first level of each of
the specified LS-mean effects. The ANOM value requests differences between each LS-mean and
the average LS-mean, as in the analysis of means (Ott 1967). The average is computed as a weighted
mean of the LS-means, the weights being inversely proportional to the variances. Note that the ANOM
procedure in SAS/QC software implements both tables and graphics for the analysis of means with a
variety of response types. For one-way designs, the PDIFF=ANOM computations are equivalent to
the results of PROC ANOM. See the section “Analysis of Means: Comparing Each Treatments to the
Average” on page 3482 for more details.

To specify which levels of the effects are the controls, list the quoted formatted values in parentheses
after the keyword CONTROL. For example, if the effects A, B, and C are CLASS variables, each
having two levels, ’1’ and ’2’, the following LSMEANS statement specifies the ’1’ ’2’ level of A*B
and the ’2’ ’1’ level of B*C as controls:

lsmeans A*B B*C / pdiff=control('1' '2', '2' '1');

For multiple-effect situations such as this one, the ordering of the list is significant, and you should
check the output to make sure that the controls are correct.

Two-tailed tests and confidence limits are associated with the CONTROL difftype. For one-tailed
results, use either the CONTROLL or CONTROLU difftype.

• CONTROLL tests whether the noncontrol levels are less than the control; you declare a noncon-
trol level to be significantly less than the control if the associated upper confidence limit for
the noncontrol level minus the control is less than zero, and you ignore the associated lower
confidence limits (which are set to minus infinity).

• CONTROLU tests whether the noncontrol levels are greater than the control; you declare a
noncontrol level to be significantly greater than the control if the associated lower confidence
limit for the noncontrol level minus the control is greater than zero, and you ignore the associated
upper confidence limits (which are set to infinity).
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The default multiple comparisons adjustment for each difftype is shown in the following table.

difftype Default ADJUST=

Not specified T

ALL TUKEY

CONTROL
CONTROLL DUNNETT
CONTROLU

ANOM NELSON

If no difftype is specified, the default for the ADJUST= option is T (that is, no adjustment); for
PDIFF=ALL, ADJUST=TUKEY is the default; for PDIFF=CONTROL, PDIFF=CONTROLL, or
PDIFF=CONTROLU, the default value for the ADJUST= option is DUNNETT. For PDIFF=ANOM,
ADJUST=NELSON is the default. If there is a conflict between the PDIFF= and ADJUST= options,
the ADJUST= option takes precedence.

For example, in order to compute one-sided confidence limits for differences with a control, adjusted
according to Dunnett’s procedure, the following statements are equivalent:

lsmeans Treatment / pdiff=controll cl;
lsmeans Treatment / pdiff=controll cl adjust=dunnett;

PLOT | PLOTS< =plot-request< (options) > >
PLOT | PLOTS< =(plot-request< (options) > < . . . plot-request< (options) > >) >

requests that graphics related to least squares means be produced via ODS Graphics, provided that
ODS Graphics is enabled and the plot-request does not conflict with other options in the LSMEANS
statement. For general information about ODS Graphics, see Chapter 21, “Statistical Graphics Using
ODS.”

The available options and suboptions are as follows:

ALL
requests that the default plots that correspond to this LSMEANS statement be produced. The
default plot depends on the options in the statement.

ANOMPLOT
ANOM

requests an analysis-of-means display in which least squares means are compared to an average
least squares mean. Least squares mean ANOM plots are produced only for those model effects
that are listed in LSMEANS statements and have options that do not contradict with the display.
For example, the following statements produce analysis-of-mean plots for effects A and C:

lsmeans A / diff=anom plot=anom;
lsmeans B / diff plot=anom;
lsmeans C / plot=anom;

The PDIFF option in the second LSMEANS statement implies all pairwise differences.
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CONTROLPLOT

CONTROL
requests a display in which least squares means are visually compared against a reference level.
These plots are produced only for statements with options that are compatible with control
differences. For example, the following statements produce control plots for effects A and C:

lsmeans A / diff=control('1') plot=control;
lsmeans B / diff plot=control;
lsmeans C plot=control;

The PDIFF option in the second LSMEANS statement implies all pairwise differences.

DIFFPLOT< (diffplot-options) >

DIFFOGRAM< (diffplot-options) >
requests a display of all pairwise least squares mean differences and their significance. The
display is also known as a “mean-mean scatter plot” when it is based on arithmetic means (Hsu
1996; Hsu and Peruggia 1994). For each comparison a line segment, centered at the LS-means in
the pair, is drawn. The length of the segment corresponds to the projected width of a confidence
interval for the least squares mean difference. Segments that fail to cross the 45-degree reference
line correspond to significant least squares mean differences.

LS-mean difference plots are produced only for statements with options that are compatible with
the display. For example, the following statements request differences against a control level for
the A effect, all pairwise differences for the B effect, and the least squares means for the C effect:

lsmeans A / diff=control('1') plot=diffplot;
lsmeans B / diff plot=diffplot;
lsmeans C plot=diffplot;

The PDIFF= type in the first statement is incompatible with a display of all pairwise differences.

You can specify the following diffplot-options:

ABS
determines the positioning of the line segments in the plot. This is the default diffplot-options.
When the ABS option is in effect, all line segments are shown on the same side of the
reference line.

NOABS
determines the positioning of the line segments in the plot. The NOABS option separates
comparisons according to the sign of the difference.

CENTER
marks the center point for each comparison. This point corresponds to the intersection of
two least squares means.

NOLINES
suppresses the display of the line segments that represent the confidence bounds for the
differences of the least squares means. The NOLINES option implies the CENTER option.
The default is to draw line segments in the upper portion of the plot area without marking
the center point.
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MEANPLOT< (meanplot-options) >
requests displays of the least squares means.

The following meanplot-options control the display of the least squares means.

ASCENDING
displays the least squares means in ascending order. This option has no effect if means are
displayed in separate plots.

CL
displays upper and lower confidence limits for the least squares means. By default, 95%
limits are drawn. You can change the confidence level with the ALPHA= option. Confidence
limits are drawn by default if the CL option is specified in the LSMEANS statement.

CLBAND
displays confidence limits as bands. This option implies the JOIN option.

DESCENDING
displays the least squares means in descending order. This option has no effect if means are
displayed in separate plots.

ILINK
requests that means (and confidence limits) be displayed on the inverse linked scale.

JOIN

CONNECT
connects the least squares means with lines. This option is implied by the CLBAND option.

NONE
requests that no plots be produced.

When LS-mean calculations are adjusted for multiplicity by using the ADJUST= option, the plots are
adjusted accordingly.

SLICE=fixed-effect | (fixed-effects)
specifies effects within which to test for differences between interaction LS-mean effects. This can
produce what are known as tests of simple effects (Winer 1971). For example, suppose that A*B is
significant and you want to test for the effect of A within each level of B. The appropriate LSMEANS
statement is

lsmeans A*B / slice=B;

This statement tests for the simple main effects of A for B, which are calculated by extracting the
appropriate rows from the coefficient matrix for the A*B LS-means and using them to form an F test
as performed by the CONTRAST statement.

SINGULAR=number
tunes the estimability checking. If ABS.L � LH/ > C�number for any row, then L is declared
nonestimable. H is the .X0X/�X0X matrix, and C is ABS.L/ except for rows where L is zero, and then
it is 1. The default value for the SINGULAR= option is 10�4. Values for the SINGULAR= option
must be between 0 and 1.
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STDERR
produces the standard error of the LS-means and the probability level for the hypothesis
H0WLS-mean D 0.

TDIFF
produces the t values for all hypotheses H0WLS-mean.i/ D LS-mean.j / and the corresponding
probabilities.

MANOVA Statement
MANOVA < test-options > < / detail-options > ;

If the MODEL statement includes more than one dependent variable, you can perform multivariate analysis of
variance with the MANOVA statement. The test-options define which effects to test, while the detail-options
specify how to execute the tests and what results to display. Table 45.7 summarizes the options available in
the MANOVA statement.

Table 45.7 MANOVA Statement Options

Option Description

Test Options
H= Specifies hypothesis effects
E= Specifies the error effect
M= Specifies a transformation matrix for the dependent variables
MNAMES= Provides names for the transformed variables
PREFIX= Alternatively identifies the transformed variables

Detail Options
CANONICAL Displays a canonical analysis of the H and E matrices
ETYPE= Specifies the type of the E matrix
HTYPE= Specifies the type of the H matrix
MSTAT= Specifies the method of evaluating the multivariate test statistics
ORTH Orthogonalizes the rows of the transformation matrix
PRINTE Displays the error SSCP matrix E
PRINTH Displays the hypothesis SSCP matrix H
SUMMARY Produces analysis-of-variance tables for each dependent variable

When a MANOVA statement appears before the first RUN statement, PROC GLM enters a multivariate
mode with respect to the handling of missing values; in addition to observations with missing independent
variables, observations with any missing dependent variables are excluded from the analysis. If you want to
use this mode of handling missing values and do not need any multivariate analyses, specify the MANOVA
option in the PROC GLM statement.

If you use both the CONTRAST and MANOVA statements, the MANOVA statement must appear after the
CONTRAST statement.
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Test Options

The following options can be specified in the MANOVA statement as test-options in order to define which
multivariate tests to perform.

H=effects | INTERCEPT | _ALL_
specifies effects in the preceding model to use as hypothesis matrices. For each H matrix (the SSCP
matrix associated with an effect), the H= specification displays the characteristic roots and vectors
of E�1H (where E is the matrix associated with the error effect), along with the Hotelling-Lawley
trace, Pillai’s trace, Wilks’ lambda, and Roy’s greatest root. By default, these statistics are tested with
approximations based on the F distribution. To test them with exact (but computationally intensive)
calculations, use the MSTAT=EXACT option.

Use the keyword INTERCEPT to produce tests for the intercept. To produce tests for all effects listed
in the MODEL statement, use the keyword _ALL_ in place of a list of effects.

For background and further details, see the section “Multivariate Analysis of Variance” on page 3492.

E=effect
specifies the error effect. If you omit the E= specification, the GLM procedure uses the error SSCP
(residual) matrix from the analysis.

M=equation,. . . ,equation | (row-of-matrix,. . . ,row-of-matrix)
specifies a transformation matrix for the dependent variables listed in the MODEL statement. The
equations in the M= specification are of the form

c1 � dependent-variable ˙ c2 � dependent-variable

� � � ˙ cn � dependent-variable

where the ci values are coefficients for the various dependent-variables. If the value of a given ci is
1, it can be omitted; in other words 1 � Y is the same as Y. Equations should involve two or more
dependent variables. For sample syntax, see the section “Examples” on page 3431.

Alternatively, you can input the transformation matrix directly by entering the elements of the matrix
with commas separating the rows and parentheses surrounding the matrix. When this alternate form
of input is used, the number of elements in each row must equal the number of dependent variables.
Although these combinations actually represent the columns of the M matrix, they are displayed by
rows.

When you include an M= specification, the analysis requested in the MANOVA statement is carried out
for the variables defined by the equations in the specification, not the original dependent variables. If
you omit the M= option, the analysis is performed for the original dependent variables in the MODEL
statement.

If an M= specification is included without either the MNAMES= or PREFIX= option, the variables
are labeled MVAR1, MVAR2, and so forth, by default. For further information, see the section
“Multivariate Analysis of Variance” on page 3492.
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MNAMES=names
provides names for the variables defined by the equations in the M= specification. Names in the list
correspond to the M= equations or to the rows of the M matrix (as it is entered).

PREFIX=name
is an alternative means of identifying the transformed variables defined by the M= specification. For
example, if you specify PREFIX=DIFF, the transformed variables are labeled DIFF1, DIFF2, and so
forth.

Detail Options

You can specify the following options in the MANOVA statement after a slash (/) as detail-options.

CANONICAL
displays a canonical analysis of the H and E matrices (transformed by the M matrix, if specified)
instead of the default display of characteristic roots and vectors.

ETYPE=n
specifies the type (1, 2, 3, or 4, corresponding to a Type I, II, III, or IV test, respectively) of the
E matrix, the SSCP matrix associated with the E= effect. You need this option if you use the E=
specification to specify an error effect other than residual error and you want to specify the type of
sums of squares used for the effect. If you specify ETYPE=n, the corresponding test must have been
performed in the MODEL statement, either by options SSn, En, or the default Type I and Type III tests.
By default, the procedure uses an ETYPE= value corresponding to the highest type (largest n) used in
the analysis.

HTYPE=n
specifies the type (1, 2, 3, or 4, corresponding to a Type I, II, III, or IV test, respectively) of the H
matrix. See the ETYPE= option for more details.

MSTAT=FAPPROX | EXACT
specifies the method of evaluating the multivariate test statistics. The default is MSTAT=FAPPROX,
which specifies that the multivariate tests are evaluated using the usual approximations based on
the F distribution, as discussed in the section “Multivariate Tests” in Chapter 4, “Introduction to
Regression Procedures.” Alternatively, you can specify MSTAT=EXACT to compute exact p-values
for three of the four tests (Wilks’ lambda, the Hotelling-Lawley trace, and Roy’s greatest root) and
an improved F approximation for the fourth (Pillai’s trace). While MSTAT=EXACT provides better
control of the significance probability for the tests, especially for Roy’s greatest root, computations for
the exact p-values can be appreciably more demanding, and are in fact infeasible for large problems
(many dependent variables). Thus, although MSTAT=EXACT is more accurate for most data, it is
not the default method. For more information about the results of MSTAT=EXACT, see the section
“Multivariate Analysis of Variance” on page 3492.

ORTH
requests that the transformation matrix in the M= specification of the MANOVA statement be orthonor-
malized by rows before the analysis.
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PRINTE
displays the error SSCP matrix E. If the E matrix is the error SSCP (residual) matrix from the analysis,
the partial correlations of the dependent variables given the independent variables are also produced.

For example, the statement

manova / printe;

displays the error SSCP matrix and the partial correlation matrix computed from the error SSCP matrix.

PRINTH
displays the hypothesis SSCP matrix H associated with each effect specified by the H= specification.

SUMMARY
produces analysis-of-variance tables for each dependent variable. When no M matrix is specified, a
table is displayed for each original dependent variable from the MODEL statement; with an M matrix
other than the identity, a table is displayed for each transformed variable defined by the M matrix.

Examples

The following statements provide several examples of using a MANOVA statement.

proc glm;
class A B;
model Y1-Y5=A B(A) / nouni;
manova h=A e=B(A) / printh printe htype=1 etype=1;
manova h=B(A) / printe;
manova h=A e=B(A) m=Y1-Y2,Y2-Y3,Y3-Y4,Y4-Y5

prefix=diff;
manova h=A e=B(A) m=(1 -1 0 0 0,

0 1 -1 0 0,
0 0 1 -1 0,
0 0 0 1 -1) prefix=diff;

run;

Since this MODEL statement requests no options for type of sums of squares, the procedure uses Type I
and Type III sums of squares. The first MANOVA statement specifies A as the hypothesis effect and B(A)
as the error effect. As a result of the PRINTH option, the procedure displays the hypothesis SSCP matrix
associated with the A effect; and, as a result of the PRINTE option, the procedure displays the error SSCP
matrix associated with the B(A) effect. The option HTYPE=1 specifies a Type I H matrix, and the option
ETYPE=1 specifies a Type I E matrix.

The second MANOVA statement specifies B(A) as the hypothesis effect. Since no error effect is specified,
PROC GLM uses the error SSCP matrix from the analysis as the E matrix. The PRINTE option displays
this E matrix. Since the E matrix is the error SSCP matrix from the analysis, the partial correlation matrix
computed from this matrix is also produced.

The third MANOVA statement requests the same analysis as the first MANOVA statement, but the analysis is
carried out for variables transformed to be successive differences between the original dependent variables.
The option PREFIX=DIFF labels the transformed variables as DIFF1, DIFF2, DIFF3, and DIFF4.
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Finally, the fourth MANOVA statement has the identical effect as the third, but it uses an alternative form of
the M= specification. Instead of specifying a set of equations, the fourth MANOVA statement specifies rows
of a matrix of coefficients for the five dependent variables.

As a second example of the use of the M= specification, consider the following:

proc glm;
class group;
model dose1-dose4=group / nouni;
manova h = group

m = -3*dose1 - dose2 + dose3 + 3*dose4,
dose1 - dose2 - dose3 + dose4,

-dose1 + 3*dose2 - 3*dose3 + dose4
mnames = Linear Quadratic Cubic
/ printe;

run;

The M= specification gives a transformation of the dependent variables dose1 through dose4 into orthogonal
polynomial components, and the MNAMES= option labels the transformed variables LINEAR, QUADRATIC,
and CUBIC, respectively. Since the PRINTE option is specified and the default residual matrix is used as an
error term, the partial correlation matrix of the orthogonal polynomial components is also produced.

MEANS Statement
MEANS effects < / options > ;

Within each group corresponding to each effect specified in the MEANS statement, PROC GLM computes
the arithmetic means and standard deviations of all continuous variables in the model (both dependent and
independent). You can specify only classification effects in the MEANS statement—that is, effects that
contain only classification variables.

Note that the arithmetic means are not adjusted for other effects in the model; for adjusted means, see the
section “LSMEANS Statement” on page 3419.

If you use a WEIGHT statement, PROC GLM computes weighted means; see the section “Weighted Means”
on page 3489.

You can also specify options to perform multiple comparisons. However, the MEANS statement performs
multiple comparisons only for main-effect means; for multiple comparisons of interaction means, see the
section “LSMEANS Statement” on page 3419.

You can use any number of MEANS statements, provided that they appear after the MODEL statement. For
example, suppose A and B each have two levels. Then, if you use the statements

proc glm;
class A B;
model Y=A B A*B;
means A B / tukey;
means A*B;

run;

the means, standard deviations, and Tukey’s multiple comparisons tests are displayed for each level of
the main effects A and B, and just the means and standard deviations are displayed for each of the four
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combinations of levels for A*B. Since multiple comparisons tests apply only to main effects, the single
MEANS statement

means A B A*B / tukey;

produces the same results.

PROC GLM does not compute means for interaction effects containing continuous variables. Thus, if you
have the model

class A;
model Y=A X A*X;

then the effects X and A*X cannot be used in the MEANS statement. However, if you specify the effect A in
the means statement

means A;

then PROC GLM, by default, displays within-A arithmetic means of both Y and X. You can use the DEPONLY
option to display means of only the dependent variables.

means A / deponly;

If you use a WEIGHT statement, PROC GLM computes weighted means and estimates their variance as
inversely proportional to the corresponding sum of weights (see the section “Weighted Means” on page 3489).
However, note that the statistical interpretation of multiple comparison tests for weighted means is not well
understood. See the section “Multiple Comparisons” on page 3475 for formulas. Table 45.8 summarizes the
options available in the MEANS statement.

Table 45.8 MEANS Statement Options

Option Description

Modify output
DEPONLY Displays only means for the dependent variables

Perform multiple comparison tests
BON Performs Bonferroni t tests
DUNCAN Performs Duncan’s multiple range test
DUNNETT Performs Dunnett’s two-tailed t test
DUNNETTL Performs Dunnett’s lower one-tailed t test
DUNNETTU Performs Dunnett’s upper one-tailed t test
GABRIEL Performs Gabriel’s multiple-comparison procedure
REGWQ Performs the Ryan-Einot-Gabriel-Welsch multiple range test
SCHEFFE Performs Scheffé’s multiple-comparison procedure
SIDAK Performs pairwise t tests on differences between means
SMM or GT2 Performs pairwise comparisons based on the studentized maximum modulus

and Sidak’s uncorrelated-t inequality
SNK Performs the Student-Newman-Keuls multiple range test
T or LSD Performs pairwise t tests
TUKEY Performs Tukey’s studentized range test (HSD)
WALLER Performs the Waller-Duncan k-ratio t test
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Table 45.8 continued

Option Description

Specify additional details for multiple comparison tests
ALPHA= Specifies the level of significance
CLDIFF Presents confidence intervals for all pairwise differences between means
CLM Presents results as intervals for the mean of each level of the variables
E= Specifies the error mean square used in the multiple comparisons
ETYPE= Specifies the type of mean square for the error effect
HTYPE= Specifies the MS type for the hypothesis MS
KRATIO= Specifies the Type 1/Type 2 error seriousness ratio
LINES Lists the means in descending order and indicating nonsignificant subsets

by line segments
NOSORT Prevents the means from being sorted into descending order

Test for homogeneity of variances
HOVTEST Requests a homogeneity of variance test

Compensate for heterogeneous variances
WELCH Requests the variance-weighted one-way ANOVA of Welch (1951)

The options available in the MEANS statement are described in the following list.

ALPHA=
ALPHA=p specifies the level of significance for comparisons among the means. By default, p is equal
to the value of the ALPHA= option in the PROC GLM statement or 0.05 if that option is not specified.
You can specify any value greater than 0 and less than 1.

BON
performs Bonferroni t tests of differences between means for all main-effect means in the MEANS
statement. See the CLDIFF and LINES options for a discussion of how the procedure displays results.

CLDIFF
presents results of the BON, GABRIEL, SCHEFFE, SIDAK, SMM, GT2, T, LSD, and TUKEY options
as confidence intervals for all pairwise differences between means, and the results of the DUNNETT,
DUNNETTU, and DUNNETTL options as confidence intervals for differences with the control. The
CLDIFF option is the default for unequal cell sizes unless the DUNCAN, REGWQ, SNK, or WALLER
option is specified.

CLM
presents results of the BON, GABRIEL, SCHEFFE, SIDAK, SMM, T, and LSD options as intervals
for the mean of each level of the variables specified in the MEANS statement. For all options except
GABRIEL, the intervals are confidence intervals for the true means. For the GABRIEL option, they
are comparison intervals for comparing means pairwise: in this case, if the intervals corresponding to
two means overlap, then the difference between them is insignificant according to Gabriel’s method.

DEPONLY
displays only means for the dependent variables. By default, PROC GLM produces means for all
continuous variables, including continuous independent variables.
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DUNCAN
performs Duncan’s multiple range test on all main-effect means given in the MEANS statement. See
the LINES option for a discussion of how the procedure displays results.

DUNNETT < (formatted-control-values) >
performs Dunnett’s two-tailed t test, testing if any treatments are significantly different from a single
control for all main-effect means in the MEANS statement.

To specify which level of the effect is the control, enclose the formatted value in quotes and parentheses
after the keyword . If more than one effect is specified in the MEANS statement, you can use a list of
control values within the parentheses. By default, the first level of the effect is used as the control. For
example:

means A / dunnett('CONTROL');

where CONTROL is the formatted control value of A. As another example:

means A B C / dunnett('CNTLA' 'CNTLB' 'CNTLC');

where CNTLA, CNTLB, and CNTLC are the formatted control values for A, B, and C, respectively.

DUNNETTL < (formatted-control-value) >
performs Dunnett’s one-tailed t test, testing if any treatment is significantly less than the control.
Control level information is specified as described for the DUNNETT option.

DUNNETTU < (formatted-control-value) >
performs Dunnett’s one-tailed t test, testing if any treatment is significantly greater than the control.
Control level information is specified as described for the DUNNETT option.

E=effect
specifies the error mean square used in the multiple comparisons. By default, PROC GLM uses the
overall residual or error mean square (MS). The effect specified with the E= option must be a term in
the model; otherwise, the procedure uses the residual MS.

ETYPE=n
specifies the type of mean square for the error effect. When you specify E=effect , you might need to
indicate which type (1, 2, 3, or 4) of MS is to be used. The n value must be one of the types specified
in or implied by the MODEL statement. The default MS type is the highest type used in the analysis.

GABRIEL
performs Gabriel’s multiple-comparison procedure on all main-effect means in the MEANS statement.
See the CLDIFF and LINES options for discussions of how the procedure displays results.

GT2
See the SMM option.
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HOVTEST

HOVTEST=BARTLETT

HOVTEST=BF

HOVTEST=LEVENE < ( TYPE= ABS | SQUARE ) >

HOVTEST=OBRIEN < ( W=number ) >
requests a homogeneity of variance test for the groups defined by the MEANS effect. You can
optionally specify a particular test; if you do not specify a test, Levene’s test (Levene 1960) with
TYPE=SQUARE is computed. Note that this option is ignored unless your MODEL statement specifies
a simple one-way model.

The HOVTEST=BARTLETT option specifies Bartlett’s test (Bartlett 1937), a modification of the
normal-theory likelihood ratio test.

The HOVTEST=BF option specifies Brown and Forsythe’s variation of Levene’s test (Brown and
Forsythe 1974).

The HOVTEST=LEVENE option specifies Levene’s test (Levene 1960), which is widely considered to
be the standard homogeneity of variance test. You can use the TYPE= option in parentheses to specify
whether to use the absolute residuals (TYPE=ABS) or the squared residuals (TYPE=SQUARE) in
Levene’s test. TYPE=SQUARE is the default.

The HOVTEST=OBRIEN option specifies O’Brien’s test (O’Brien 1979), which is basically a mod-
ification of HOVTEST=LEVENE(TYPE=SQUARE). You can use the W= option in parentheses to
tune the variable to match the suspected kurtosis of the underlying distribution. By default, W=0.5, as
suggested by O’Brien (1979, 1981).

See the section “Homogeneity of Variance in One-Way Models” on page 3488 for more details on these
methods. Example 45.10 illustrates the use of the HOVTEST and WELCH options in the MEANS
statement in testing for equal group variances and adjusting for unequal group variances in a one-way
ANOVA.

HTYPE=n
specifies the MS type for the hypothesis MS. The HTYPE= option is needed only when the WALLER
option is specified. The default HTYPE= value is the highest type used in the model.

KRATIO=value
specifies the Type 1/Type 2 error seriousness ratio for the Waller-Duncan test. Reasonable values for
the KRATIO= option are 50, 100, 500, which roughly correspond for the two-level case to ALPHA
levels of 0.1, 0.05, and 0.01, respectively. By default, the procedure uses the value of 100.

LINES
presents results of the BON, DUNCAN, GABRIEL, REGWQ, SCHEFFE, SIDAK, SMM, GT2, SNK,
T, LSD, TUKEY, and WALLER options by listing the means in descending order and indicating
nonsignificant subsets by line segments beside the corresponding means. The LINES option is
appropriate for equal cell sizes, for which it is the default. The LINES option is also the default if
the DUNCAN, REGWQ, SNK, or WALLER option is specified, or if there are only two cells of
unequal size. The LINES option cannot be used in combination with the DUNNETT, DUNNETTL, or
DUNNETTU option. In addition, the procedure has a restriction that no more than 24 overlapping
groups of means can exist. If a mean belongs to more than 24 groups, the procedure issues an error
message. You can either reduce the number of levels of the variable or use a multiple comparison test
that allows the CLDIFF option rather than the LINES option.
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NOTE: If the cell sizes are unequal, the harmonic mean of the cell sizes is used to compute the critical
ranges. This approach is reasonable if the cell sizes are not too different, but it can lead to liberal tests
if the cell sizes are highly disparate. In this case, you should not use the LINES option for displaying
multiple comparisons results; use the TUKEY and CLDIFF options instead.

LSD
See the T option.

NOSORT
prevents the means from being sorted into descending order when the CLDIFF or CLM option is
specified.

REGWQ
performs the Ryan-Einot-Gabriel-Welsch multiple range test on all main-effect means in the MEANS
statement. See the LINES option for a discussion of how the procedure displays results.

SCHEFFE
erforms Scheffé’s multiple-comparison procedure on all main-effect means in the MEANS statement.
See the CLDIFF and LINES options for discussions of how the procedure displays results.

SIDAK
performs pairwise t tests on differences between means with levels adjusted according to Sidak’s
inequality for all main-effect means in the MEANS statement. See the CLDIFF and LINES options for
discussions of how the procedure displays results.

SMM

GT2
performs pairwise comparisons based on the studentized maximum modulus and Sidak’s uncorrelated-t
inequality, yielding Hochberg’s GT2 method when sample sizes are unequal, for all main-effect means
in the MEANS statement. See the CLDIFF and LINES options for discussions of how the procedure
displays results.

SNK
performs the Student-Newman-Keuls multiple range test on all main-effect means in the MEANS
statement. See the LINES option for discussions of how the procedure displays results.

T

LSD
performs pairwise t tests, equivalent to Fisher’s least significant difference test in the case of equal cell
sizes, for all main-effect means in the MEANS statement. See the CLDIFF and LINES options for
discussions of how the procedure displays results.

TUKEY
performs Tukey’s studentized range test (HSD) on all main-effect means in the MEANS statement.
(When the group sizes are different, this is the Tukey-Kramer test.) See the CLDIFF and LINES
options for discussions of how the procedure displays results.

WALLER
performs the Waller-Duncan k-ratio t test on all main-effect means in the MEANS statement. See the
KRATIO= and HTYPE= options for information about controlling details of the test, and the LINES
option for a discussion of how the procedure displays results.
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WELCH
requests the variance-weighted one-way ANOVA of Welch (1951). This alternative to the usual analysis
of variance for a one-way model is robust to the assumption of equal within-group variances. This
option is ignored unless your MODEL statement specifies a simple one-way model.

Note that using the WELCH option merely produces one additional table consisting of Welch’s
ANOVA. It does not affect all of the other tests displayed by the GLM procedure, which still require
the assumption of equal variance for exact validity.

See the section “Homogeneity of Variance in One-Way Models” on page 3488 for more details on
Welch’s ANOVA. Example 45.10 illustrates the use of the HOVTEST and WELCH options in the
MEANS statement in testing for equal group variances and adjusting for unequal group variances in a
one-way ANOVA.

MODEL Statement
MODEL dependent-variables = independent-effects < / options > ;

The MODEL statement names the dependent variables and independent effects. The syntax of effects is
described in the section “Specification of Effects” on page 3453. For any model effect involving classification
variables (interactions as well as main effects), the number of levels cannot exceed 32,767. If no independent
effects are specified, only an intercept term is fit. You can specify only one MODEL statement (in contrast to
the REG procedure, for example, which allows several MODEL statements in the same PROC REG run).

Table 45.9 summarizes the options available in the MODEL statement.

Table 45.9 MODEL Statement Options

Option Description

Produce effect size information
EFFECTSIZE Adds measures of effect size to each analysis of variance table

Produce tests for the intercept
INTERCEPT Produces the hypothesis tests associated with the intercept

Omit the intercept parameter from model
NOINT Omits the intercept parameter from the model

Produce parameter estimates
SOLUTION Produces parameter estimates

Produce tolerance analysis
TOLERANCE Displays the tolerances used in the SWEEP routine

Suppress univariate tests and output
NOUNI Suppresses the display of univariate statistics

Display estimable functions
E Displays the general form of all estimable functions
E1 Displays the Type I estimable functions and computes sums of squares
E2 Displays the Type II estimable functions and computes sums of squares
E3 Displays the Type III estimable functions and computes sums of squares
E4 Displays the Type IV estimable functions computes sums of squares
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Table 45.9 continued

Option Description

ALIASING Specifies that the estimable functions should be displayed as an aliasing
structure

Control hypothesis tests performed
SS1 Displays Type I sum of squares
SS2 Displays Type II sum of squares
SS3 Displays Type III sum of squares
SS4 Displays Type IV sum of squares

Produce confidence intervals
ALPHA= Specifies the level of significance
CLI Produces confidence limits for individual predicted values
CLM Produces confidence limits for a mean predicted value
CLPARM Produces confidence limits for the parameter estimates

Display predicted and residual values
P Displays observed, predicted, and residual values

Display intermediate calculations
INVERSE Displays the augmented inverse (or generalized inverse) X0X matrix
XPX Displays the augmented X0X crossproducts matrix

Tune sensitivity
SINGULAR= Tunes the sensitivity of the regression routine to linear dependencies
ZETA= Tunes the sensitivity of the check for estimability for Type III and Type IV

functions

The options available in the MODEL statement are described in the following list.

ALIASING
specifies that the estimable functions should be displayed as an aliasing structure, for which each row
says which linear combination of the parameters is estimated by each estimable function; also, this
option adds a column of the same information to the table of parameter estimates, giving for each
parameter the expected value of the estimate associated with that parameter. This option is most useful
in fractional factorial experiments that can be analyzed without a CLASS statement.

ALPHA=p
specifies the level of significance p for 100.1 � p/% confidence intervals. By default, p is equal to the
value of the ALPHA= option in the PROC GLM statement, or 0.05 if that option is not specified. You
can use values between 0 and 1.

CLI
produces confidence limits for individual predicted values for each observation. The CLI option is
ignored if the CLM option is also specified.

CLM
produces confidence limits for a mean predicted value for each observation.
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CLPARM
produces confidence limits for the parameter estimates (if the SOLUTION option is also specified) and
for the results of all ESTIMATE statements.

E
displays the general form of all estimable functions. This is useful for determining the order of
parameters when you are writing CONTRAST and ESTIMATE statements.

E1
displays the Type I estimable functions for each effect in the model and computes the corresponding
sums of squares.

E2
displays the Type II estimable functions for each effect in the model and computes the corresponding
sums of squares.

E3
displays the Type III estimable functions for each effect in the model and computes the corresponding
sums of squares.

E4
displays the Type IV estimable functions for each effect in the model and computes the corresponding
sums of squares.

EFFECTSIZE
adds measures of effect size to each analysis of variance table displayed by the procedure, except for
those displayed by the TEST option in the RANDOM statement, by CONTRAST and TEST statements
with the E= option, and by MANOVA and REPEATED statements. The effect size measures include
the intraclass correlation and both estimates and confidence intervals for the noncentrality for the
F test, as well as for the semipartial and partial correlation ratios. For more information about the
computation and interpretation of these measures, see the section “Effect Size Measures for F Tests in
GLM” on page 3465.

INTERCEPT

INT
produces the hypothesis tests associated with the intercept as an effect in the model. By default, the
procedure includes the intercept in the model but does not display associated tests of hypotheses.
Except for producing the uncorrected total sum of squares instead of the corrected total sum of squares,
the INT option is ignored when you use an ABSORB statement.

INVERSE

I
displays the augmented inverse (or generalized inverse) X0X matrix:�

.X0X/� .X0X/�X0y
y0X.X0X/� y0y � y0X.X0X/�X0y

�
The upper-left corner is the generalized inverse of X0X, the upper-right corner is the parameter
estimates, and the lower-right corner is the error sum of squares.
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NOINT
omits the intercept parameter from the model. The NOINT option is ignored when you use an ABSORB
statement.

NOUNI
suppresses the display of univariate statistics. You typically use the NOUNI option with a multivariate
or repeated measures analysis of variance when you do not need the standard univariate results.
The NOUNI option in a MODEL statement does not affect the univariate output produced by the
REPEATED statement.

P
displays observed, predicted, and residual values for each observation that does not contain missing
values for independent variables. The Durbin-Watson statistic is also displayed when the P option is
specified. The PRESS statistic is also produced if either the CLM or CLI option is specified.

SINGULAR=number
tunes the sensitivity of the regression routine to linear dependencies in the design. If a diagonal pivot
element is less than C �number as PROC GLM sweeps the X0X matrix, the associated design column
is declared to be linearly dependent with previous columns, and the associated parameter is zeroed.

The C value adjusts the check to the relative scale of the variable. The C value is equal to the corrected
sum of squares for the variable, unless the corrected sum of squares is 0, in which case C is 1. If you
specify the NOINT option but not the ABSORB statement, PROC GLM uses the uncorrected sum of
squares instead.

The default value of the SINGULAR= option, 10�7, might be too small, but this value is necessary in
order to handle the high-degree polynomials used in the literature to compare regression routines.

SOLUTION
produces a solution to the normal equations (parameter estimates). PROC GLM displays a solution by
default when your model involves no classification variables, so you need this option only if you want
to see the solution for models with classification effects.

SS1
displays the sum of squares associated with Type I estimable functions for each effect. These are also
displayed by default.

SS2
displays the sum of squares associated with Type II estimable functions for each effect.

SS3
displays the sum of squares associated with Type III estimable functions for each effect. These are also
displayed by default.

SS4
displays the sum of squares associated with Type IV estimable functions for each effect.

TOLERANCE
displays the tolerances used in the SWEEP routine. The tolerances are of the form C/USS or C/CSS,
as described in the discussion of the SINGULAR= option. The tolerance value for the intercept is not
divided by its uncorrected sum of squares.
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XPX
displays the augmented X0X crossproducts matrix:�

X0X X0y
y0X y0y

�

ZETA=value
tunes the sensitivity of the check for estimability for Type III and Type IV functions. Any element
in the estimable function basis with an absolute value less than the ZETA= option is set to zero. The
default value for the ZETA= option is 10�8.

Although it is possible to generate data for which this absolute check can be defeated, the check suffices
in most practical examples. Additional research is needed in order to make this check relative rather
than absolute.

OUTPUT Statement
OUTPUT < OUT=SAS-data-set > keyword=names < . . . keyword=names > < option > ;

The OUTPUT statement creates a new SAS data set that saves diagnostic measures calculated after fitting the
model. At least one specification of the form keyword=names is required.

All the variables in the original data set are included in the new data set, along with variables created in the
OUTPUT statement. These new variables contain the values of a variety of diagnostic measures that are
calculated for each observation in the data set. If you want to create a SAS data set in a permanent library,
you must specify a two-level name. For more information about permanent libraries and SAS data sets, see
SAS Language Reference: Concepts.

Details on the specifications in the OUTPUT statement follow.

keyword=names
specifies the statistics to include in the output data set and provides names to the new variables that
contain the statistics. Specify a keyword for each desired statistic (see the following list of keywords),
an equal sign, and the variable or variables to contain the statistic.

In the output data set, the first variable listed after a keyword in the OUTPUT statement contains that
statistic for the first dependent variable listed in the MODEL statement; the second variable contains
the statistic for the second dependent variable in the MODEL statement, and so on. The list of variables
following the equal sign can be shorter than the list of dependent variables in the MODEL statement.
In this case, the procedure creates the new names in order of the dependent variables in the MODEL
statement. See the section “Examples” on page 3444.

The keywords allowed and the statistics they represent are as follows:

COOKD
Cook’s D influence statistic
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COVRATIO
standard influence of observation on covariance of parameter estimates

DFFITS
standard influence of observation on predicted value

H
leverage, hi D xi .X0X/�1x0i

LCL
lower bound of a 100(1 - p)% confidence interval for an individual prediction. The p-level is
equal to the value of the ALPHA= option in the OUTPUT statement or, if this option is not
specified, to the ALPHA= option in the PROC GLM statement. If neither of these options is set,
then p = 0.05 by default, resulting in the lower bound for a 95% confidence interval. The interval
also depends on the variance of the error, as well as the variance of the parameter estimates. For
the corresponding upper bound, see the UCL keyword.

LCLM
lower bound of a 100(1 - p)% confidence interval for the expected value (mean) of the predicted
value. The p-level is equal to the value of the ALPHA= option in the OUTPUT statement or, if
this option is not specified, to the ALPHA= option in the PROC GLM statement. If neither of
these options is set, then p = 0.05 by default, resulting in the lower bound for a 95% confidence
interval. For the corresponding upper bound, see the UCLM keyword.

PREDICTED | P
predicted values

PRESS
residual for the ith observation that results from dropping it and predicting it on the basis of all
other observations. This is the residual divided by .1 � hi /, where hi is the leverage, defined
previously.

RESIDUAL | R
residuals, calculated as ACTUAL – PREDICTED

RSTUDENT
a studentized residual with the current observation deleted

STDI
standard error of the individual predicted value

STDP
standard error of the mean predicted value

STDR
standard error of the residual

STUDENT
studentized residuals, the residual divided by its standard error
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UCL
upper bound of a 100(1 - p)% confidence interval for an individual prediction. The p-level is
equal to the value of the ALPHA= option in the OUTPUT statement or, if this option is not
specified, to the ALPHA= option in the PROC GLM statement. If neither of these options is set,
then p = 0.05 by default, resulting in the upper bound for a 95% confidence interval. The interval
also depends on the variance of the error, as well as the variance of the parameter estimates. For
the corresponding lower bound, see the LCL keyword.

UCLM
upper bound of a 100(1 - p)% confidence interval for the expected value (mean) of the predicted
value. The p-level is equal to the value of the ALPHA= option in the OUTPUT statement or, if
this option is not specified, to the ALPHA= option in the PROC GLM statement. If neither of
these options is set, then p = 0.05 by default, resulting in the upper bound for a 95% confidence
interval. For the corresponding lower bound, see the LCLM keyword.

OUT=SAS-data-set
gives the name of the new data set. By default, the procedure uses the DATAn convention to name the
new data set.

The following option is available in the OUTPUT statement and is specified after a slash (/):

ALPHA=p
specifies the level of significance p for 100.1 � p/% confidence intervals. By default, p is equal to the
value of the ALPHA= option in the PROC GLM statement or 0.05 if that option is not specified. You
can use values between 0 and 1.

See Chapter 4, “Introduction to Regression Procedures,” and the section “Influence Statistics” on
page 7064 in Chapter 85, “The REG Procedure,” for details on the calculation of these statistics.

Examples

The following statements show the syntax for creating an output data set with a single dependent variable.

proc glm;
class a b;
model y=a b a*b;
output out=new p=yhat r=resid stdr=eresid;

run;

These statements create an output data set named new. In addition to all the variables from the original data
set, new contains the variable yhat, with values that are predicted values of the dependent variable y; the
variable resid, with values that are the residual values of y; and the variable eresid, with values that are the
standard errors of the residuals.

The following statements show a situation with five dependent variables.

proc glm;
by group;
class a;
model y1-y5=a x(a);
output out=pout predicted=py1-py5;

run;
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The data set pout contains five new variables, py1 through py5. The values of py1 are the predicted values of
y1; the values of py2 are the predicted values of y2; and so on.

For more information about the data set produced by the OUTPUT statement, see the section “Output Data
Sets” on page 3508.

RANDOM Statement
RANDOM effects < / options > ;

When some model effects are random (that is, assumed to be sampled from a normal population of effects),
you can specify these effects in the RANDOM statement in order to compute the expected values of mean
squares for various model effects and contrasts and, optionally, to perform random effects analysis of variance
tests. You can use as many RANDOM statements as you want, provided that they appear after the MODEL
statement. If you use a CONTRAST statement with a RANDOM statement and you want to obtain the
expected mean squares for the contrast hypothesis, you must enter the CONTRAST statement before the
RANDOM statement.

NOTE: PROC GLM uses only the information pertaining to expected mean squares when you specify the
TEST option in the RANDOM statement and, even then, only in the extra F tests produced by the RANDOM
statement. Other features in the GLM procedure—including the results of the LSMEANS and ESTIMATE
statements—assume that all effects are fixed, so that all tests and estimability checks for these statements are
based on a fixed-effects model, even when you use a RANDOM statement. Therefore, you should use the
MIXED procedure to compute tests involving these features that take the random effects into account; see the
section “PROC GLM versus PROC MIXED for Random-Effects Analysis” on page 3501 and Chapter 65,
“The MIXED Procedure,” for more information.

When you use the RANDOM statement, by default the GLM procedure produces the Type III expected
mean squares for model effects and for contrasts specified before the RANDOM statement in the program
statements. In order to obtain expected values for other types of mean squares, you need to specify which
types of mean squares are of interest in the MODEL statement. See the section “Computing Type I, II, and
IV Expected Mean Squares” on page 3504 for more information.

The list of effects in the RANDOM statement should contain one or more of the pure classification effects
specified in the MODEL statement (that is, main effects, crossed effects, or nested effects involving only clas-
sification variables). The coefficients corresponding to each effect specified are assumed to be normally and
independently distributed with common variance. Levels in different effects are assumed to be independent.

You can specify the following options in the RANDOM statement after a slash (/):

Q
displays all quadratic forms in the fixed effects that appear in the expected mean squares. For some
designs, such as large mixed-level factorials, the Q option might generate a substantial amount of
output.

TEST
performs hypothesis tests for each effect specified in the model, using appropriate error terms as
determined by the expected mean squares.

CAUTION: PROC GLM does not automatically declare interactions to be random when the effects in
the interaction are declared random. For example,
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random a b / test;

does not produce the same expected mean squares or tests as

random a b a*b / test;

To ensure correct tests, you need to list all random interactions and random main effects in the
RANDOM statement.

See the section “Random-Effects Analysis” on page 3501 for more information about the calculation of
expected mean squares and tests and on the similarities and differences between the GLM and MIXED
procedures. See Chapter 5, “Introduction to Analysis of Variance Procedures,” and Chapter 65, “The
MIXED Procedure,” for more information about random effects.

REPEATED Statement
REPEATED factor-specification < / options > ;

When values of the dependent variables in the MODEL statement represent repeated measurements on the
same experimental unit, the REPEATED statement enables you to test hypotheses about the measurement
factors (often called within-subject factors) as well as the interactions of within-subject factors with indepen-
dent variables in the MODEL statement (often called between-subject factors). The REPEATED statement
provides multivariate and univariate tests as well as hypothesis tests for a variety of single-degree-of-freedom
contrasts. There is no limit to the number of within-subject factors that can be specified.

The REPEATED statement is typically used for handling repeated measures designs with one repeated
response variable. Usually, the variables on the left-hand side of the equation in the MODEL statement
represent one repeated response variable. This does not mean that only one factor can be listed in the
REPEATED statement. For example, one repeated response variable (hemoglobin count) might be measured
12 times (implying variables Y1 to Y12 on the left-hand side of the equal sign in the MODEL statement),
with the associated within-subject factors treatment and time (implying two factors listed in the REPEATED
statement). See the section “Examples” on page 3450 for an example of how PROC GLM handles this case.

Designs with two or more repeated response variables can, however, be handled with the IDENTITY
transformation; see the description of this transformation in the following section, and see Example 45.9 for
an example of analyzing a doubly multivariate repeated measures design.

When a REPEATED statement appears, the GLM procedure enters a multivariate mode of handling missing
values. If any values for variables corresponding to each combination of the within-subject factors are
missing, the observation is excluded from the analysis.

If you use a CONTRAST or TEST statement with a REPEATED statement, you must enter the CONTRAST
or TEST statement before the REPEATED statement.

The simplest form of the REPEATED statement requires only a factor-name. With two repeated factors, you
must specify the factor-name and number of levels (levels) for each factor. Optionally, you can specify the
actual values for the levels (level-values), a transformation that defines single-degree-of-freedom contrasts,
and options for additional analyses and output. When you specify more than one within-subject factor, the
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factor-names (and associated level and transformation information) must be separated by a comma in the
REPEATED statement.

These terms are described in the following section, “Syntax Details.”

Syntax Details

Table 45.10 summarizes the options available in the REPEATED statement.

Table 45.10 REPEATED Statement Options

Option Description

CANONICAL Performs a canonical analysis of the H and E matrices
HTYPE= Specifies the type of the H matrix used for analysis
MEAN Generates the overall arithmetic means of the within-subject variables
MSTAT= Specifies the method of evaluating the test statistics
NOM Displays only univariate analyses results
NOU Displays only multivariate analyses results
PRINTE Displays E and partial correlation matrices for multivariate tests, and prints

sphericity tests
PRINTH Displays the H matrices for multivariate tests
PRINTM Displays the transformation matrices that define tested contrasts
PRINTRV Displays characteristic roots and vectors for multivariate tests
SUMMARY Produces analysis-of-variance tables for univariate tests
UEPSDEF= Specifies the F test adjustment for univariate tests

You can specify the following terms in the REPEATED statement.

factor-specification

The factor-specification for the REPEATED statement can include any number of individual factor
specifications, separated by commas, of the following form:

factor-name levels < (level-values) > < transformation >

where

factor-name names a factor to be associated with the dependent variables. The name should not
be the same as any variable name that already exists in the data set being analyzed
and should conform to the usual conventions of SAS variable names.
When specifying more than one factor, list the dependent variables in the MODEL
statement so that the within-subject factors defined in the REPEATED statement
are nested; that is, the first factor defined in the REPEATED statement should be
the one with values that change least frequently.

levels gives the number of levels associated with the factor being defined. When there
is only one within-subject factor, the number of levels is equal to the number of
dependent variables. In this case, levels is optional. When more than one within-
subject factor is defined, however, levels is required, and the product of the number
of levels of all the factors must equal the number of dependent variables in the
MODEL statement.
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(level-values) gives values that correspond to levels of a repeated-measures factor. These values
are used to label output and as spacings for constructing orthogonal polynomial
contrasts if you specify a POLYNOMIAL transformation. The number of values
specified must correspond to the number of levels for that factor in the REPEATED
statement. Enclose the level-values in parentheses.

The following transformation keywords define single-degree-of-freedom contrasts for factors specified
in the REPEATED statement. Since the number of contrasts generated is always one less than the
number of levels of the factor, you have some control over which contrast is omitted from the analysis
by which transformation you select. The only exception is the IDENTITY transformation; this
transformation is not composed of contrasts and has the same degrees of freedom as the factor has
levels. By default, the procedure uses the CONTRAST transformation.

CONTRAST< (ordinal-reference-level) >
generates contrasts between levels of the factor and a reference level. By default, the procedure
uses the last level as the reference level; you can optionally specify a reference level in parentheses
after the keyword CONTRAST. The reference level corresponds to the ordinal value of the level
rather than the level value specified. For example, to generate contrasts between the first level of
a factor and the other levels, use

contrast(1)

HELMERT
generates contrasts between each level of the factor and the mean of subsequent levels.

IDENTITY
generates an identity transformation corresponding to the associated factor. This transformation
is not composed of contrasts; it has n degrees of freedom for an n-level factor, instead of n – 1.
This can be used for doubly multivariate repeated measures.

MEAN< (ordinal-reference-level) >
generates contrasts between levels of the factor and the mean of all other levels of the factor.
Specifying a reference level eliminates the contrast between that level and the mean. Without a ref-
erence level, the contrast involving the last level is omitted. See the CONTRAST transformation
for an example.

POLYNOMIAL
generates orthogonal polynomial contrasts. Level values, if provided, are used as spacings in the
construction of the polynomials; otherwise, equal spacing is assumed.

PROFILE
generates contrasts between adjacent levels of the factor.

You can specify the following options in the REPEATED statement after a slash (/).

CANONICAL
performs a canonical analysis of the H and E matrices corresponding to the transformed variables
specified in the REPEATED statement.
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HTYPE=n
specifies the type of the H matrix used in the multivariate tests and the type of sums of squares used
in the univariate tests. See the HTYPE= option in the specifications for the MANOVA statement for
further details.

MEAN
generates the overall arithmetic means of the within-subject variables.

MSTAT=FAPPROX | EXACT
specifies the method of evaluating the test statistics for the multivariate analysis. The default is
MSTAT=FAPPROX, which specifies that the multivariate tests are evaluated using the usual approx-
imations based on the F distribution, as discussed in the section “Multivariate Tests” in Chapter 4,
“Introduction to Regression Procedures.” Alternatively, you can specify MSTAT=EXACT to compute
exact p-values for three of the four tests (Wilks’ lambda, the Hotelling-Lawley trace, and Roy’s
greatest root) and an improved F approximation for the fourth (Pillai’s trace). While MSTAT=EXACT
provides better control of the significance probability for the tests, especially for Roy’s greatest root,
computations for the exact p-values can be appreciably more demanding, and are in fact infeasible for
large problems (many dependent variables). Thus, although MSTAT=EXACT is more accurate for
most data, it is not the default method. For more information about the results of MSTAT=EXACT, see
the section “Multivariate Analysis of Variance” on page 3492.

NOM
displays only the results of the univariate analyses.

NOU
displays only the results of the multivariate analyses.

PRINTE
displays the E matrix for each combination of within-subject factors, as well as partial correlation
matrices for both the original dependent variables and the variables defined by the transformations
specified in the REPEATED statement. In addition, the PRINTE option provides sphericity tests for
each set of transformed variables. If the requested transformations are not orthogonal, the PRINTE
option also provides a sphericity test for a set of orthogonal contrasts.

PRINTH
displays the H (SSCP) matrix associated with each multivariate test.

PRINTM
displays the transformation matrices that define the contrasts in the analysis. PROC GLM always
displays the M matrix so that the transformed variables are defined by the rows, not the columns, of
the displayed M matrix. In other words, PROC GLM actually displays M0.

PRINTRV
displays the characteristic roots and vectors for each multivariate test.

SUMMARY
produces analysis-of-variance tables for each contrast defined by the within-subject factors. Along
with tests for the effects of the independent variables specified in the MODEL statement, a term labeled
MEAN tests the hypothesis that the overall mean of the contrast is zero.
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UEPSDEF=unbiased-epsilon-definition
specifies the type of adjustment for the univariate F test that is displayed in addition to the Greenhouse-
Geisser adjustment. The default is UEPSDEF=HFL, corresponding to the corrected form of the Huynh-
Feldt adjustment (Huynh and Feldt 1976; Lecoutre 1991). Other alternatives are UEPSDEF=HF, the
uncorrected Huynh-Feldt adjustment (the only available method in previous releases of SAS/STAT
software), and UEPSDEF=CM, the adjustment of Chi et al. (2012). See the section “Hypothesis
Testing in Repeated Measures Analysis” on page 3496 for details about these adjustments.

Examples

When specifying more than one factor, list the dependent variables in the MODEL statement so that the
within-subject factors defined in the REPEATED statement are nested; that is, the first factor defined in the
REPEATED statement should be the one with values that change least frequently. For example, assume
that three treatments are administered at each of four times, for a total of twelve dependent variables on
each experimental unit. If the variables are listed in the MODEL statement as Y1 through Y12, then the
REPEATED statement in

proc glm;
class group;
model Y1-Y12=group / nouni;
repeated trt 3, time 4;

run;

implies the following structure:

Dependent Variables
Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12

Value of trt 1 1 1 1 2 2 2 2 3 3 3 3

Value of time 1 2 3 4 1 2 3 4 1 2 3 4

The REPEATED statement always produces a table like the preceding one. For more information, see the
section “Repeated Measures Analysis of Variance” on page 3493.

STORE Statement
STORE < OUT= >item-store-name < / LABEL='label ' > ;

The STORE statement requests that the procedure save the context and results of the statistical analysis. The
resulting item store has a binary file format that cannot be modified. The contents of the item store can be
processed with the PLM procedure.

For details about the syntax of the STORE statement, see the section “STORE Statement” on page 508 in
Chapter 19, “Shared Concepts and Topics.”
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TEST Statement
TEST H=effects E=effect < / options > ;

By default, for each sum of squares in the analysis an F value is computed that uses the residual MS as an
error term. Use a TEST statement to request additional F tests that use other effects as error terms. You need
a TEST statement when a nonstandard error structure (as in a split-plot design) exists. Note, however, that this
might not be appropriate if the design is unbalanced, since in most unbalanced designs with nonstandard error
structures, mean squares are not necessarily independent with equal expectations under the null hypothesis.

CAUTION: The GLM procedure does not check any of the assumptions underlying the F statistic. When
you specify a TEST statement, you assume sole responsibility for the validity of the F statistic produced. To
help validate a test, you can use the RANDOM statement and inspect the expected mean squares, or you can
use the TEST option of the RANDOM statement.

You can use as many TEST statements as you want, provided that they appear after the MODEL statement.

You can specify the following terms in the TEST statement.

H=effects
specifies which effects in the preceding model are to be used as hypothesis (numerator) effects. The
H= specification is required.

E=effect
specifies one, and only one, effect to use as the error (denominator) term. The E= specification is
required.

By default, the sum of squares type for all hypothesis sum of squares and error sum of squares is the highest
type computed in the model. If the hypothesis type or error type is to be another type that was computed in
the model, you should specify one or both of the following options after a slash (/).

ETYPE=n
specifies the type of sum of squares to use for the error term. The type must be a type computed in the
model (n=1, 2, 3, or 4 ).

HTYPE=n
specifies the type of sum of squares to use for the hypothesis. The type must be a type computed in the
model (n=1, 2, 3, or 4).

This example illustrates the TEST statement with a split-plot model:

proc glm;
class a b c;
model y=a b(a) c a*c b*c(a);
test h=a e=b(a)/ htype=1 etype=1;
test h=c a*c e=b*c(a) / htype=1 etype=1;

run;
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WEIGHT Statement
WEIGHT variable ;

When a WEIGHT statement is used, a weighted residual sum of squaresX
i

wi .yi � Oyi /
2

is minimized, where wi is the value of the variable specified in the WEIGHT statement, yi is the observed
value of the response variable, and Oyi is the predicted value of the response variable.

If you specify the WEIGHT statement, it must appear before the first RUN statement or it is ignored.

An observation is used in the analysis only if the value of the WEIGHT statement variable is nonmissing and
greater than zero.

The WEIGHT statement has no effect on degrees of freedom or number of observations, but it is used by the
MEANS statement when calculating means and performing multiple comparison tests (as described in the
section “MEANS Statement” on page 3432).

The normal equations used when a WEIGHT statement is present are

X0WXˇ D X0WY

where W is a diagonal matrix consisting of the values of the variable specified in the WEIGHT statement.

If the weights for the observations are proportional to the reciprocals of the error variances, then the weighted
least squares estimates are best linear unbiased estimators (BLUE).

Details: GLM Procedure

Statistical Assumptions for Using PROC GLM
The basic statistical assumption underlying the least squares approach to general linear modeling is that the
observed values of each dependent variable can be written as the sum of two parts: a fixed component x0ˇ,
which is a linear function of the independent coefficients, and a random noise, or error, component �:

y D x0ˇ C �

The independent coefficients x are constructed from the model effects as described in the section “Parameteri-
zation of PROC GLM Models” on page 3456. Further, the errors for different observations are assumed to be
uncorrelated with identical variances. Thus, this model can be written

E.Y / D Xˇ; Var.Y / D �2I

where Y is the vector of dependent variable values, X is the matrix of independent coefficients, I is the
identity matrix, and �2 is the common variance for the errors. For multiple dependent variables, the model is



Specification of Effects F 3453

similar except that the errors for different dependent variables within the same observation are not assumed
to be uncorrelated. This yields a multivariate linear model of the form

E.Y / D XB; Var.vec.Y // D †˝ I

where Y and B are now matrices, with one column for each dependent variable, vec.Y / strings Y out by rows,
and˝ indicates the Kronecker matrix product.

Under the assumptions thus far discussed, the least squares approach provides estimates of the linear
parameters that are unbiased and have minimum variance among linear estimators. Under the further
assumption that the errors have a normal (or Gaussian) distribution, the least squares estimates are the
maximum likelihood estimates and their distribution is known. All of the significance levels (“p values”)
and confidence limits calculated by the GLM procedure require this assumption of normality in order to be
exactly valid, although they are good approximations in many other cases.

Specification of Effects
Each term in a model, called an effect, is a variable or combination of variables. Effects are specified with a
special notation that uses variable names and operators. There are two kinds of variables: classification (or
CLASS) variables and continuous variables. There are two primary operators: crossing and nesting. A third
operator, the bar operator, is used to simplify effect specification.

In an analysis-of-variance model, independent variables must be variables that identify classification levels. In
the SAS System, these are called classification (or class) variables and are declared in the CLASS statement.
(They can also be called categorical, qualitative, discrete, or nominal variables.) Classification variables can
be either numeric or character. The values of a classification variable are called levels. For example, the
classification variable Sex has the levels “male” and “female.”

In a model, an independent variable that is not declared in the CLASS statement is assumed to be continuous.
Continuous variables, which must be numeric, are used for response variables and covariates. For example,
the heights and weights of subjects are continuous variables.

Types of Effects

There are seven different types of effects used in the GLM procedure. In the following list, assume that A, B,
C, D, and E are CLASS variables and that X1, X2, and Y are continuous variables:

• Regressor effects are specified by writing continuous variables by themselves: X1 X2.

• Polynomial effects are specified by joining two or more continuous variables with asterisks: X1*X1
X1*X2.

• Main effects are specified by writing CLASS variables by themselves: A B C.

• Crossed effects (interactions) are specified by joining classification variables with asterisks: A*B B*C
A*B*C.

• Nested effects are specified by following a main effect or crossed effect with a classification variable
or list of classification variables enclosed in parentheses. The main effect or crossed effect is nested
within the effects listed in parentheses: B(A) C(B*A) D*E(C*B*A). In this example, B(A) is read
“B nested within A.”
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• Continuous-by-class effects are written by joining continuous variables and classification variables
with asterisks: X1*A.

• Continuous-nesting-class effects consist of continuous variables followed by a classification variable
interaction enclosed in parentheses: X1(A) X1*X2(A*B).

One example of the general form of an effect involving several variables is

X1*X2*A*B*C(D*E)

This example contains crossed continuous terms by crossed classification terms nested within more than
one classification variable. The continuous list comes first, followed by the crossed list, followed by the
nesting list in parentheses. Note that asterisks can appear within the nested list but not immediately before
the left parenthesis. For details on how the design matrix and parameters are defined with respect to the
effects specified in this section, see the section “Parameterization of PROC GLM Models” on page 3456.

The MODEL statement and several other statements use these effects. Some examples of MODEL statements
that use various kinds of effects are shown in the following table; a, b, and c represent classification variables,
and y, y1, y2, x, and z represent continuous variables.

Specification Type of Model
model y=x; Simple regression

model y=x z; Multiple regression

model y=x x*x; Polynomial regression

model y1 y2=x z; Multivariate regression

model y=a; One-way ANOVA

model y=a b c; Main-effects ANOVA

model y=a b a*b; Factorial ANOVA with interaction

model y=a b(a) c(b a); Nested ANOVA

model y1 y2=a b; Multivariate analysis of variance (MANOVA)

model y=a x; Analysis of covariance

model y=a x(a); Separate-slopes regression

model y=a x x*a; Homogeneity-of-slopes regression

The Bar Operator

You can shorten the specification of a large factorial model by using the bar operator. For example, two ways
of writing the model for a full three-way factorial model follow:

model Y = A B C A*B A*C B*C A*B*C;

model Y = A|B|C;
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When the bar (|) is used, the right and left sides become effects, and the cross of them becomes an effect.
Multiple bars are permitted. The expressions are expanded from left to right, using rules 2–4 given in Searle
(1971, p. 390).

• Multiple bars are evaluated from left to right. For instance, A|B|C is evaluated as follows:

A | B | C ! f A | B g | C

! f A B A*B g | C

! A B A*B C A*C B*C A*B*C

• Crossed and nested groups of variables are combined. For example, A(B) | C(D) generates A*C(B D),
among other terms.

• Duplicate variables are removed. For example, A(C) | B(C) generates A*B(C C), among other terms,
and the extra C is removed.

• Effects are discarded if a variable occurs on both the crossed and nested parts of an effect. For instance,
A(B) | B(D E) generates A*B(B D E), but this effect is eliminated immediately.

You can also specify the maximum number of variables involved in any effect that results from bar evaluation
by specifying that maximum number, preceded by an @ sign, at the end of the bar effect. For example, the
specification A | B | C@2 would result in only those effects that contain 2 or fewer variables: in this case,
A B A*B C A*C and B*C.

More examples of using the bar and at operators follow:

A | C(B) is equivalent to A C(B) A*C(B)

A(B) | C(B) is equivalent to A(B) C(B) A*C(B)

A(B) | B(D E) is equivalent to A(B) B(D E)

A | B(A) | C is equivalent to A B(A) C A*C B*C(A)

A | B(A) | C@2 is equivalent to A B(A) C A*C

A | B | C | D@2 is equivalent to A B A*B C A*C B*C D A*D B*D C*D

A*B(C*D) is equivalent to A*B(C D)

Using PROC GLM Interactively
You can use the GLM procedure interactively. After you specify a model with a MODEL statement and run
PROC GLM with a RUN statement, you can execute a variety of statements without reinvoking PROC GLM.

The section “Syntax: GLM Procedure” on page 3404 describes which statements can be used interactively.
These interactive statements can be executed singly or in groups by following the single statement or group
of statements with a RUN statement. Note that the MODEL statement cannot be repeated; PROC GLM
allows only one MODEL statement.

If you use PROC GLM interactively, you can end the GLM procedure with a DATA step, another PROC step,
an ENDSAS statement, or a QUIT statement.
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When you are using PROC GLM interactively, additional RUN statements do not end the procedure but tell
PROC GLM to execute additional statements.

When you specify a WHERE statement with PROC GLM, it should appear before the first RUN statement.
The WHERE statement enables you to select only certain observations for analysis without using a subsetting
DATA step. For example, where group ne 5 omits observations with GROUP=5 from the analysis. See
SAS Statements: Reference for details on this statement.

When you specify a BY statement with PROC GLM, interactive processing is not possible; that is, once the
first RUN statement is encountered, processing proceeds for each BY group in the data set, and no further
statements are accepted by the procedure.

Interactivity is also disabled when there are different patterns of missing values among the dependent
variables. For details, see the section “Missing Values” on page 3505.

Parameterization of PROC GLM Models
The GLM procedure constructs a linear model according to the specifications in the MODEL statement. Each
effect generates one or more columns in a design matrix X. This section shows precisely how X is built.

Intercept

All models include a column of 1s by default to estimate an intercept parameter �. You can use the NOINT
option to suppress the intercept.

Regression Effects

Regression effects (covariates) have the values of the variables copied into the design matrix directly.
Polynomial terms are multiplied out and then installed in X.

Main Effects

If a classification variable has m levels, PROC GLM generates m columns in the design matrix for its main
effect. Each column is an indicator variable for one of the levels of the classification variable. The default
order of the columns is the sort order of the values of their levels; this order can be controlled with the
ORDER= option in the PROC GLM statement, as shown in the following table.

Data Design Matrix
A B

A B � A1 A2 B1 B2 B3
1 1 1 1 0 1 0 0
1 2 1 1 0 0 1 0
1 3 1 1 0 0 0 1
2 1 1 0 1 1 0 0
2 2 1 0 1 0 1 0
2 3 1 0 1 0 0 1

There are more columns for these effects than there are degrees of freedom for them; in other words, PROC
GLM is using an over-parameterized model.
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Crossed Effects

First, PROC GLM reorders the terms to correspond to the order of the variables in the CLASS statement;
thus, B*A becomes A*B if A precedes B in the CLASS statement. Then, PROC GLM generates columns
for all combinations of levels that occur in the data. The order of the columns is such that the rightmost
variables in the cross index faster than the leftmost variables. No columns are generated corresponding to
combinations of levels that do not occur in the data.

Data Design Matrix
A B A*B

A B � A1 A2 B1 B2 B3 A1B1 A1B2 A1B3 A2B1 A2B2 A2B3
1 1 1 1 0 1 0 0 1 0 0 0 0 0
1 2 1 1 0 0 1 0 0 1 0 0 0 0
1 3 1 1 0 0 0 1 0 0 1 0 0 0
2 1 1 0 1 1 0 0 0 0 0 1 0 0
2 2 1 0 1 0 1 0 0 0 0 0 1 0
2 3 1 0 1 0 0 1 0 0 0 0 0 1

In this matrix, main-effects columns are not linearly independent of crossed-effect columns; in fact, the
column space for the crossed effects contains the space of the main effect.

Nested Effects

Nested effects are generated in the same manner as crossed effects. Hence, the design columns generated by
the following statements are the same (but the ordering of the columns is different):

model y=a b(a); (B nested within A)

model y=a a*b; (omitted main effect for B)

The nesting operator in PROC GLM is more a notational convenience than an operation distinct from crossing.
Nested effects are characterized by the property that the nested variables never appear as main effects. The
order of the variables within nesting parentheses is made to correspond to the order of these variables in the
CLASS statement. The order of the columns is such that variables outside the parentheses index faster than
those inside the parentheses, and the rightmost nested variables index faster than the leftmost variables.

Data Design Matrix
A B(A)

A B � A1 A2 B1A1 B2A1 B3A1 B1A2 B2A2 B3A2
1 1 1 1 0 1 0 0 0 0 0
1 2 1 1 0 0 1 0 0 0 0
1 3 1 1 0 0 0 1 0 0 0
2 1 1 0 1 0 0 0 1 0 0
2 2 1 0 1 0 0 0 0 1 0
2 3 1 0 1 0 0 0 0 0 1
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Continuous-Nesting-Class Effects

When a continuous variable nests with a classification variable, the design columns are constructed by
multiplying the continuous values into the design columns for the class effect.

Data Design Matrix
A X(A)

X A � A1 A2 X(A1) X(A2)
21 1 1 1 0 21 0
24 1 1 1 0 24 0
22 1 1 1 0 22 0
28 2 1 0 1 0 28
19 2 1 0 1 0 19
23 2 1 0 1 0 23

This model estimates a separate slope for X within each level of A.

Continuous-by-Class Effects

Continuous-by-class effects generate the same design columns as continuous-nesting-class effects. The
two models differ by the presence of the continuous variable as a regressor by itself, in addition to being a
contributor to X*A.

Data Design Matrix
A X*A

X A � X A1 A2 X*A1 X*A2
21 1 1 21 1 0 21 0
24 1 1 24 1 0 24 0
22 1 1 22 1 0 22 0
28 2 1 28 0 1 0 28
19 2 1 19 0 1 0 19
23 2 1 23 0 1 0 23

Continuous-by-class effects are used to test the homogeneity of slopes. If the continuous-by-class effect is
nonsignificant, the effect can be removed so that the response with respect to X is the same for all levels of
the classification variables.

General Effects

An example that combines all the effects is

X1*X2*A*B*C(D E)

The continuous list comes first, followed by the crossed list, followed by the nested list in parentheses.

The sequencing of parameters is important to learn if you use the CONTRAST or ESTIMATE statement to
compute or test some linear function of the parameter estimates.

Effects might be retitled by PROC GLM to correspond to ordering rules. For example, B*A(E D) might be
retitled A*B(D E) to satisfy the following:
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• Classification variables that occur outside parentheses (crossed effects) are sorted in the order in which
they appear in the CLASS statement.

• Variables within parentheses (nested effects) are sorted in the order in which they appear in a CLASS
statement.

The sequencing of the parameters generated by an effect can be described by which variables have their
levels indexed faster:

• Variables in the crossed part index faster than variables in the nested list.

• Within a crossed or nested list, variables to the right index faster than variables to the left.

For example, suppose a model includes four effects—A, B, C, and D—each having two levels, 1 and 2. If the
CLASS statement is

class A B C D;

then the order of the parameters for the effect B*A(C D), which is retitled A*B(C D), is as follows.

A1B1C1D1
A1B2C1D1
A2B1C1D1
A2B2C1D1
A1B1C1D2
A1B2C1D2
A2B1C1D2
A2B2C1D2
A1B1C2D1
A1B2C2D1
A2B1C2D1
A2B2C2D1
A1B1C2D2
A1B2C2D2
A2B1C2D2
A2B2C2D2

Note that first the crossed effects B and A are sorted in the order in which they appear in the CLASS
statement so that A precedes B in the parameter list. Then, for each combination of the nested effects in turn,
combinations of A and B appear. The B effect changes fastest because it is rightmost in the (renamed) cross
list. Then A changes next fastest. The D effect changes next fastest, and C is the slowest since it is leftmost in
the nested list.

When numeric classification variables are used, their levels are sorted by their character format, which might
not correspond to their numeric sort sequence. Therefore, it is advisable to include a format for numeric
classification variables or to use the ORDER=INTERNAL option in the PROC GLM statement to ensure that
levels are sorted by their internal values.
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Degrees of Freedom

For models with classification (categorical) effects, there are more design columns constructed than there
are degrees of freedom for the effect. Thus, there are linear dependencies among the columns. In this event,
the parameters are not jointly estimable; there is an infinite number of least squares solutions. The GLM
procedure uses a generalized g2-inverse to obtain values for the estimates; see the section “Computational
Method” on page 3508 for more details. The solution values are not produced unless the SOLUTION option
is specified in the MODEL statement. The solution has the characteristic that estimates are zero whenever the
design column for that parameter is a linear combination of previous columns. (Strictly termed, the solution
values should not be called estimates, since the parameters might not be formally estimable.) With this full
parameterization, hypothesis tests are constructed to test linear functions of the parameters that are estimable.

Other procedures (such as the CATMOD procedure) reparameterize models to full rank by using certain re-
strictions on the parameters. PROC GLM does not reparameterize, making the hypotheses that are commonly
tested more understandable. See Goodnight (1978a) for additional reasons for not reparameterizing.

PROC GLM does not actually construct the entire design matrix X; rather, a row xi of X is constructed for
each observation in the data set and used to accumulate the crossproduct matrix X0X D

P
i x
0
ixi .

Hypothesis Testing in PROC GLM
See Chapter 15, “The Four Types of Estimable Functions,” for a complete discussion of the four standard
types of hypothesis tests.

Example

To illustrate the four types of tests and the principles upon which they are based, consider a two-way design
with interaction based on the following data:

B
1 2

1 23.5 28.7
23.7

A 2 8.9 5.6
8.9

3 10.3 13.6
12.5 14.6

Invoke PROC GLM and specify all the estimable functions options to examine what the GLM procedure can
test. The following statements produce the summary ANOVA table displayed in Figure 45.10.

data example;
input a b y @@;
datalines;

1 1 23.5 1 1 23.7 1 2 28.7 2 1 8.9 2 2 5.6
2 2 8.9 3 1 10.3 3 1 12.5 3 2 13.6 3 2 14.6
;
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proc glm;
class a b;
model y=a b a*b / e e1 e2 e3 e4;

run;

Figure 45.10 Summary ANOVA Table from PROC GLM

The GLM Procedure

Dependent Variable: y

The GLM Procedure

Dependent Variable: y

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 5 520.4760000 104.0952000 49.66 0.0011

Error 4 8.3850000 2.0962500

Corrected Total 9 528.8610000

R-Square Coeff Var Root MSE y Mean

0.984145 9.633022 1.447843 15.03000

The following sections show the general form of estimable functions and discuss the four standard tests, their
properties, and abbreviated output for the two-way crossed example.

Estimability

Figure 45.11 is the general form of estimable functions for the example. In order to be testable, a hypothesis
must be able to fit within the framework displayed here.

Figure 45.11 General Form of Estimable Functions

The GLM ProcedureThe GLM Procedure

General Form of Estimable
Functions

Effect Coefficients

Intercept L1

a         1 L2

a         2 L3

a         3 L1-L2-L3

b         1 L5

b         2 L1-L5

a*b       1 1 L7

a*b       1 2 L2-L7

a*b       2 1 L9

a*b       2 2 L3-L9

a*b       3 1 L5-L7-L9

a*b       3 2 L1-L2-L3-L5+L7+L9

If a hypothesis is estimable, the Ls in the preceding scheme can be set to values that match the hypothesis.
All the standard tests in PROC GLM can be shown in the preceding format, with some of the Ls zeroed and
some set to functions of other Ls.
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The following sections show how many of the hypotheses can be tested by comparing the model sum-of-
squares regression from one model to a submodel. The notation used is

SS.B effectsjA effects/ D SS.B effects;A effects/ � SS.A effects/

where SS(A effects) denotes the regression model sum of squares for the model consisting of A effects. This
notation is equivalent to the reduction notation defined by Searle (1971) and summarized in Chapter 15, “The
Four Types of Estimable Functions.”

Type I Tests

Type I sums of squares (SS), also called sequential sums of squares, are the incremental improvement in error
sums of squares as each effect is added to the model. They can be computed by fitting the model in steps and
recording the difference in error sum of squares at each step.

Source Type I SS
A SS.A j �/
B SS.B j �;A/
A � B SS.A � B j�;A;B/

Type I sums of squares are displayed by default because they are easy to obtain and can be used in various
hand calculations to produce sum of squares values for a series of different models. Nelder (1994) and others
have argued that Type I and II sums are essentially the only appropriate ones for testing ANOVA effects;
however, see also the discussion of Nelder’s article, especially Rodriguez, Tobias, and Wolfinger (1995) and
Searle (1995).

The Type I hypotheses have these properties:

• Type I sum of squares for all effects add up to the model sum of squares. None of the other sum of
squares types have this property, except in special cases.

• Type I hypotheses can be derived from rows of the Forward-Dolittle transformation of X0X (a transfor-
mation that reduces X0X to an upper triangular matrix by row operations).

• Type I sum of squares are statistically independent of each other under the usual assumption that the
true residual errors are independent and identically normally distributed (see page 3452).

• Type I hypotheses depend on the order in which effects are specified in the MODEL statement.

• Type I hypotheses are uncontaminated by parameters corresponding to effects that precede the effect
being tested; however, the hypotheses usually involve parameters for effects following the tested effect
in the model. For example, in the model

Y=A B;

the Type I hypothesis for B does not involve A parameters, but the Type I hypothesis for A does involve
B parameters.
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• Type I hypotheses are functions of the cell counts for unbalanced data; the hypotheses are not usually
the same hypotheses that are tested if the data are balanced.

• Type I sums of squares are useful for polynomial models where you want to know the contribution of a
term as though it had been made orthogonal to preceding effects. Thus, in polynomial models, Type I
sums of squares correspond to tests of the orthogonal polynomial effects.

The Type I estimable functions and associated tests for the example are shown in Figure 45.12.

Figure 45.12 Type I Estimable Functions and Tests

Type I Estimable Functions

Coefficients

Effect a b a*b

Intercept 0 0 0

a         1 L2 0 0

a         2 L3 0 0

a         3 -L2-L3 0 0

b         1 0.1667*L2-0.1667*L3 L5 0

b         2 -0.1667*L2+0.1667*L3 -L5 0

a*b       1 1 0.6667*L2 0.2857*L5 L7

a*b       1 2 0.3333*L2 -0.2857*L5 -L7

a*b       2 1 0.3333*L3 0.2857*L5 L9

a*b       2 2 0.6667*L3 -0.2857*L5 -L9

a*b       3 1 -0.5*L2-0.5*L3 0.4286*L5 -L7-L9

a*b       3 2 -0.5*L2-0.5*L3 -0.4286*L5 L7+L9

Source DF Type I SS Mean Square F Value Pr > F

a 2 494.0310000 247.0155000 117.84 0.0003

b 1 10.7142857 10.7142857 5.11 0.0866

a*b 2 15.7307143 7.8653571 3.75 0.1209

Type II Tests

The Type II tests can also be calculated by comparing the error sums of squares (SS) for subset models. The
Type II SS are the reduction in error SS due to adding the term after all other terms have been added to the
model except terms that contain the effect being tested. An effect is contained in another effect if it can be
derived by deleting variables from the latter effect. For example, A and B are both contained in A*B. For this
model, the Type II SS are given by the reduced sums of squares as shown in the following table.

Source Type II SS
A SS.A j �;B/
B SS.B j �;A/
A � B SS.A � B j �;A;B/

Type II SS have these properties:

• Type II SS do not necessarily sum to the model SS.
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• The hypothesis for an effect does not involve parameters of other effects except for containing effects
(which it must involve to be estimable).

• Type II SS are invariant to the ordering of effects in the model.

• For unbalanced designs, Type II hypotheses for effects that are contained in other effects are not usually
the same hypotheses that are tested if the data are balanced. The hypotheses are generally functions of
the cell counts.

The Type II estimable functions and associated tests for the example are shown in Figure 45.13.

Figure 45.13 Type II Estimable Functions and Tests

Type II Estimable Functions

Coefficients

Effect a b a*b

Intercept 0 0 0

a         1 L2 0 0

a         2 L3 0 0

a         3 -L2-L3 0 0

b         1 0 L5 0

b         2 0 -L5 0

a*b       1 1 0.619*L2+0.0476*L3 0.2857*L5 L7

a*b       1 2 0.381*L2-0.0476*L3 -0.2857*L5 -L7

a*b       2 1 -0.0476*L2+0.381*L3 0.2857*L5 L9

a*b       2 2 0.0476*L2+0.619*L3 -0.2857*L5 -L9

a*b       3 1 -0.5714*L2-0.4286*L3 0.4286*L5 -L7-L9

a*b       3 2 -0.4286*L2-0.5714*L3 -0.4286*L5 L7+L9

Source DF Type II SS Mean Square F Value Pr > F

a 2 499.1202857 249.5601429 119.05 0.0003

b 1 10.7142857 10.7142857 5.11 0.0866

a*b 2 15.7307143 7.8653571 3.75 0.1209

Type III and Type IV Tests

Type III and Type IV sums of squares (SS), sometimes referred to as partial sums of squares, are considered
by many to be the most desirable; see Searle (1987, Section 4.6). Using PROC GLM’s singular parameteriza-
tion, these SS cannot, in general, be computed by comparing model SS from different models. However,
they can sometimes be computed by reduction for methods that reparameterize to full rank, when such a
reparameterization effectively imposes Type III linear constraints on the parameters. In PROC GLM, they are
computed by constructing a hypothesis matrix L and then computing the SS associated with the hypothesis
Lˇ D 0. As long as there are no missing cells in the design, Type III and Type IV SS are the same.

These are properties of Type III and Type IV SS:

• The hypothesis for an effect does not involve parameters of other effects except for containing effects
(which it must involve to be estimable).
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• The hypotheses to be tested are invariant to the ordering of effects in the model.

• The hypotheses are the same hypotheses that are tested if there are no missing cells. They are not
functions of cell counts.

• The SS do not generally add up to the model SS and, in some cases, can exceed the model SS.

The SS are constructed from the general form of estimable functions. Type III and Type IV tests are different
only if the design has missing cells. In this case, the Type III tests have an orthogonality property, while the
Type IV tests have a balancing property. These properties are discussed in Chapter 15, “The Four Types of
Estimable Functions.” For this example, since the data contain observations for all pairs of levels of A and B,
Type IV tests are identical to the Type III tests that are shown in Figure 45.14. (This combines tables from
several pages of output.)

Figure 45.14 Type III Estimable Functions and Tests

Type III Estimable Functions

Coefficients

Effect a b a*b

Intercept 0 0 0

a         1 L2 0 0

a         2 L3 0 0

a         3 -L2-L3 0 0

b         1 0 L5 0

b         2 0 -L5 0

a*b       1 1 0.5*L2 0.3333*L5 L7

a*b       1 2 0.5*L2 -0.3333*L5 -L7

a*b       2 1 0.5*L3 0.3333*L5 L9

a*b       2 2 0.5*L3 -0.3333*L5 -L9

a*b       3 1 -0.5*L2-0.5*L3 0.3333*L5 -L7-L9

a*b       3 2 -0.5*L2-0.5*L3 -0.3333*L5 L7+L9

Source DF Type III SS Mean Square F Value Pr > F

a 2 479.1078571 239.5539286 114.28 0.0003

b 1 9.4556250 9.4556250 4.51 0.1009

a*b 2 15.7307143 7.8653571 3.75 0.1209

Effect Size Measures for F Tests in GLM
A significant F test in a linear model indicates that the effect of the term or contrast being tested might
be real. The next thing you want to know is, How big is the effect? Various measures have been devised
to give answers to this question that are comparable over different experimental designs. If you specify
the experimental EFFECTSIZE option in the MODEL statement, then GLM adds to each ANOVA table
estimates and confidence intervals for three different measures of effect size:

• the noncentrality parameter for the F test
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• the proportion of total variation accounted for (also known as the semipartial correlation ratio or the
squared semipartial correlation)

• the proportion of partial variation accounted for (also known as the full partial correlation ratio or the
squared full partial correlation)

The adjectives “semipartial” and “full partial” might seem strange. They refer to how other effects are
“partialed out” of the dependent variable and the effect being tested. For “semipartial” statistics, all other
effects are partialed out of the effect in question, but not the dependent variable. This measures the (adjusted)
effect as a proportion of the total variation in the dependent variable. On the other hand, for “full partial”
statistics, all other effects are partialed out of both the dependent variable and the effect in question. This
measures the (adjusted) effect as a proportion of only the dependent variation remaining after partialing, or in
other words the partial variation. Details about the computation and interpretation of these estimates and
confidence intervals are discussed in the remainder of this section.

The noncentrality parameter is directly related to the true distribution of the F statistic when the effect being
tested has a non-null effect. The uniformly minimum variance unbiased estimate for the noncentrality is

NCUMVUE D
DF.DFE � 2/FValue

DFE
� DF

where FValue is the observed value of the F statistic for the test and DF and DFE are the numerator and
denominator degrees of freedom for the test, respectively. An alternative estimate that can be slightly biased
but has a somewhat lower expected mean square error is

NCminMSE D
DF.DFE � 4/FValue

DFE
�

DF.DFE � 4/
DFE � 2

(See Perlman and Rasmussen (1975), cited in Johnson, Kotz, and Balakrishnan (1994).) A p � 100% lower
confidence bound for the noncentrality is given by the value of NC for which probf(FValue,DF,DFE,NC) = p,
where probf() is the cumulative probability function for the non-central F distribution. This result can be
used to form a .1 � ˛/ � 100% confidence interval for the noncentrality.

The partial proportion of variation accounted for by the effect being tested is easiest to define by its natural
sample estimate,

O�2partial D
SS

SSC SSE

where SSE is the sample error sum of squares. Note that O�2partial is actually sometimes denoted R2partial or
just R square, but in this context the R square notation is reserved for the O�2 corresponding to the overall
model, which is just the familiar R square for the model. O�2partial is actually a biased estimate of the true
�2partial ; an alternative that is approximately unbiased is given by

!2partial D
SS � DF �MSE

SSC .N � DF/MSE
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where MSE = SSE/DFE is the sample mean square for error and N is the number of observations. The true
�2partial is related to the true noncentrality parameter NC by the formula

�2partial D
NC

NCC N

This fact can be employed to transform a confidence interval for NC into one for �2partial . Note that some
authors (Steiger and Fouladi 1997; Fidler and Thompson 2001; Smithson 2003) have published slightly
different confidence intervals for �2partial , based on a slightly different formula for the relationship between
�2partial and NC, apparently due to Cohen (1988). Cohen’s formula appears to be approximately correct for
random predictor values (Maxwell 2000), but the one given previously is correct if the predictor values are
assumed fixed, as is standard for the GLM procedure.

Finally, the proportion of total variation accounted for by the effect being tested is again easiest to define by
its natural sample estimate, which is known as the (semipartial) O�2 statistic,

O�2 D
SS

SStotal

where SStotal is the total sample (corrected) sum of squares, and SS is the observed sum of squares due to
the effect being tested. As with O�2partial , O�

2 is actually a biased estimate of the true �2; an alternative that is
approximately unbiased is the (semipartial) !2 statistic

!2 D
SS � DF �MSE
SStotal CMSE

where MSE = SSE/DFE is the sample mean square for error. Whereas �2partial depends only on the noncen-
trality for its associated F test, the presence of the total sum of squares in the previous formulas indicates that
�2 depends on the noncentralities for all effects in the model. An exact confidence interval is not available,
but if you write the formula for O�2 as

O�2 D
SS

SSC .SStotal � SS/

then a conservative confidence interval can be constructed as for �2partial , treating SStotal � SS as the SSE
and N – DF – 1 as the DFE (Smithson 2004). This confidence interval is conservative in the sense that it
implies values of the true �2 that are smaller than they should be.

Estimates and confidence intervals for effect sizes require some care in interpretation. For example, while the
true proportions of total and partial variation accounted for are nonnegative quantities, their estimates might
be less than zero. Also, confidence intervals for effect sizes are not directly related to the corresponding
estimates. In particular, it is possible for the estimate to lie outside the confidence interval.

As for interpreting the actual values of effect size measures, the approximately unbiased !2 estimates are
usually preferred for point estimates. Some authors have proposed certain ranges as indicating “small,”
“medium,” and “large” effects (Cohen 1988), but general benchmarks like this depend on the nature of the
data and the typical signal-to-noise ratio; they should not be expected to apply across various disciplines. For
example, while an !2 value of 10% might be viewed as “large” for psychometric data, it can be a relatively
small effect for industrial experimentation. Whatever the standard, confidence intervals for true effect sizes
typically span more than one category, indicating that in small experiments, it can be difficult to make firm
statements about the size of effects.
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Example

The data for this example are similar to data analyzed in Steiger and Fouladi (1997); Fidler and Thompson
(2001); Smithson (2003). Consider the following hypothetical design, testing 28 men and 28 women on
seven different tasks.

data Test;
do Task = 1 to 7;

do Gender = 'M','F';
do i = 1 to 4;

input Response @@;
output;

end;
end;

end;
datalines;

7.1 2.8 3.9 3.7 6.5 6.5 6.5 6.6
7.1 5.5 4.8 2.6 3.6 5.4 5.6 4.5
7.2 4.6 4.9 4.6 3.3 5.4 2.8 1.5
5.6 6.2 5.4 6.5 5.6 2.7 3.8 2.3
2.2 5.4 5.6 8.4 1.2 2.0 4.3 4.6
9.1 4.5 7.6 4.9 4.3 7.7 6.5 7.7
4.5 3.8 5.9 6.1 1.7 2.5 4.3 2.7
;

This is a balanced two-way design with four replicates per cell. The following statements analyze this data.
Since this is a balanced design, you can use the SS1 option in the MODEL statement to display only the
Type I sums of squares.

proc glm data=Test;
class Gender Task;
model Response = Gender|Task / ss1;

run;

The analysis of variance results are shown in Figure 45.15.

Figure 45.15 Two-Way Analysis of Variance

The GLM Procedure

Dependent Variable: Response

The GLM Procedure

Dependent Variable: Response

Source DF Type I SS Mean Square F Value Pr > F

Gender 1 14.40285714 14.40285714 6.00 0.0185

Task 6 38.15964286 6.35994048 2.65 0.0285

Gender*Task 6 35.99964286 5.99994048 2.50 0.0369

You can see that the two main effects as well as their interaction are all significant. Suppose you want to
compare the main effect of Gender with the interaction between Gender and Task. The sums of squares
for the interaction are more than twice as large, but it’s not clear how experimental variability might affect
this. The following statements perform the same analysis as before, but add the EFFECTSIZE option to
the MODEL statement; also, with ALPHA=0.1 option displays 90% confidence intervals, ensuring that
inferences based on the p-values at the 0.05 levels will agree with the lower confidence limit.
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proc glm data=Test;
class Gender Task;
model Response = Gender|Task / ss1 effectsize alpha=0.1;

run;

The Type I analysis of variance results with added effect size information are shown in Figure 45.16.

Figure 45.16 Two-Way Analysis of Variance with Effect Sizes

The GLM Procedure

Dependent Variable: Response

The GLM Procedure

Dependent Variable: Response

Noncentrality Parameter

Source DF Type I SS Mean Square F Value Pr > F

Min Var
Unbiased
Estimate

Low MSE
Estimate

90%
Confidence

Limits

Gender 1 14.40285714 14.40285714 6.00 0.0185 4.72 4.48 0.521 17.1

Task 6 38.15964286 6.35994048 2.65 0.0285 9.14 8.69 0.870 27.3

Gender*Task 6 35.99964286 5.99994048 2.50 0.0369 8.29 7.87 0.463 25.9

Total Variation Accounted For Partial Variation Accounted For

Source
Semipartial
Eta-Square

Semipartial
Omega-Square

Conservative
90% Confidence Limits

Partial
Eta-Square

Partial
Omega-Square

90%
Confidence

Limits

Gender 0.0761 0.0626 0.0019 0.2030 0.1250 0.0820 0.0092 0.2342

Task 0.2015 0.1239 0.0000 0.2772 0.2746 0.1502 0.0153 0.3277

Gender*Task 0.1901 0.1126 0.0000 0.2639 0.2632 0.1385 0.0082 0.3160

The estimated effect sizes for Gender and the interaction all tell pretty much the same story: the effect of
the interaction is appreciably greater than the effect of Gender. However, the confidence intervals suggest
that this inference should be treated with some caution, since the lower confidence bound for the Gender
effect is greater than the lower confidence bound for the interaction in all three cases. Follow-up testing is
probably in order, using the estimated effect sizes in this preliminary study to design a large enough sample
to distinguish the sizes of the effects.

Absorption
Absorption is a computational technique used to reduce computing resource needs in certain cases. The
classic use of absorption occurs when a blocking factor with a large number of levels is a term in the model.

For example, the statements

proc glm;
absorb herd;
class a b;
model y=a b a*b;

run;

are equivalent to
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proc glm;
class herd a b;
model y=herd a b a*b;

run;

The exception to the previous statements is that the Type II, Type III, or Type IV SS for HERD are not
computed when HERD is absorbed.

The algorithm for absorbing variables is similar to the one used by the NESTED procedure for computing
a nested analysis of variance. As each new row of ŒX jY � (corresponding to the nonabsorbed independent
effects and the dependent variables) is constructed, it is adjusted for the absorbed effects in a Type I fashion.
The efficiency of the absorption technique is due to the fact that this adjustment can be done in one pass of
the data and without solving any linear equations, assuming that the data have been sorted by the absorbed
variables.

Several effects can be absorbed at one time. For example, these statements

proc glm;
absorb herd cow;
class a b;
model y=a b a*b;

run;

are equivalent to

proc glm;
class herd cow a b;
model y=herd cow(herd) a b a*b;

run;

When you use absorption, the size of the X0X matrix is a function only of the effects in the MODEL statement.
The effects being absorbed do not contribute to the size of the X0X matrix.

For the preceding example, a and b can be absorbed:

proc glm;
absorb a b;
class herd cow;
model y=herd cow(herd);

run;

Although the sources of variation in the results are listed as

a b(a) herd cow(herd)

all types of estimable functions for herd and cow(herd) are free of a, b, and a*b parameters.

To illustrate the savings in computing by using the ABSORB statement, PROC GLM is run on generated
data with 1147 degrees of freedom in the model with the following statements.

data a;
do herd=1 to 40;

do cow=1 to 30;
do treatment=1 to 3;

do rep=1 to 2;
y = herd/5 + cow/10 + treatment + rannor(1);
output;
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end;
end;

end;
end;

run;

proc glm data=a;
class herd cow treatment;
model y=herd cow(herd) treatment;

run;

This analysis would have required over 6 megabytes of memory for the X0X matrix had PROC GLM solved
it directly. However, in the following statements, the GLM procedure needs only a 4 � 4 matrix for the
intercept and treatment because the other effects are absorbed.

proc glm data=a;
absorb herd cow;
class treatment;
model y = treatment;

run;

These statements produce the results shown in Figure 45.17.

Figure 45.17 Absorption of Effects

The GLM ProcedureThe GLM Procedure

Class Level Information

Class Levels Values

treatment 3 1 2 3

Number of Observations Read 7200

Number of Observations Used 7200

The GLM Procedure

Dependent Variable: y

The GLM Procedure

Dependent Variable: y

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 1201 49465.40242 41.18685 41.57 <.0001

Error 5998 5942.23647 0.99070

Corrected Total 7199 55407.63889

R-Square Coeff Var Root MSE y Mean

0.892754 13.04236 0.995341 7.631598

Source DF Type I SS Mean Square F Value Pr > F

herd 39 38549.18655 988.44068 997.72 <.0001

cow(herd) 1160 6320.18141 5.44843 5.50 <.0001

treatment 2 4596.03446 2298.01723 2319.58 <.0001

Source DF Type III SS Mean Square F Value Pr > F

treatment 2 4596.034455 2298.017228 2319.58 <.0001
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Specification of ESTIMATE Expressions
Consider the model

E.Y / D ˇ0 C ˇ1x1 C ˇ2x2 C ˇ3x3

The corresponding MODEL statement for PROC GLM is

model y=x1 x2 x3;

To estimate the difference between the parameters for x1 and x2,

ˇ1 � ˇ2 D . 0 1 �1 0 /ˇ; where ˇ D . ˇ0 ˇ1 ˇ2 ˇ3 /
0

you can use the following ESTIMATE statement:

estimate 'B1-B2' x1 1 x2 -1;

To predict y at x1 D 1, x2 D 0, and x3 D �2, you can estimate

ˇ0 C ˇ1 � 2ˇ3 D . 1 1 0 �2 /ˇ

with the following ESTIMATE statement:

estimate 'B0+B1-2B3' intercept 1 x1 1 x3 -2;

Now consider models involving classification variables such as

model y=A B A*B;

with the associated parameters:�
� ˛1 ˛2 ˛3 ˇ1 ˇ2 11 12 21 22 31 32

�
The LS-mean for the first level of A is Lˇ, where

L D . 1 j 1 0 0 j 0:5 0:5 j 0:5 0:5 0 0 0 0 /

You can estimate this with the following ESTIMATE statement:

estimate 'LS-mean(A1)' intercept 1 A 1 B 0.5 0.5 A*B 0.5 0.5;

Note in this statement that only one element of L is specified following the A effect, even though A has three
levels. Whenever the list of constants following an effect name is shorter than the effect’s number of levels,
zeros are used as the remaining constants. (If the list of constants is longer than the number of levels for the
effect, the extra constants are ignored, and a warning message is displayed.)

To estimate the A linear effect in the preceding model, assuming equally spaced levels for A, you can use the
following L:

L D . 0 j �1 0 1 j 0 0 j �0:5 �0:5 0 0 0:5 0:5 /
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The ESTIMATE statement for this L is written as

estimate 'A Linear' A -1 0 1;

If you do not specify the elements of L for an effect that contains a specified effect, then the elements of the
specified effect are equally distributed over the corresponding levels of the higher-order effect. In addition, if
you specify the intercept in an ESTIMATE or CONTRAST statement, it is distributed over all classification
effects that are not contained by any other specified effect.

The distribution of lower-order coefficients to higher-order effect coefficients follows the same general rules
as in the LSMEANS statement, and it is similar to that used to construct Type IV tests. In the previous
example, the –1 associated with ˛1 is divided by the number n1j of 1j parameters; then each 1j coefficient
is set to �1=n1j . The 1 associated with ˛3 is distributed among the 3j parameters in a similar fashion. In
the event that an unspecified effect contains several specified effects, only that specified effect with the most
factors in common with the unspecified effect is used for distribution of coefficients to the higher-order effect.

Numerous syntactical expressions for the ESTIMATE statement were considered, including many that
involved specifying the effect and level information associated with each coefficient. For models involving
higher-level effects, the requirement of specifying level information can lead to very bulky specifications.
Consequently, the simpler form of the ESTIMATE statement described earlier was implemented.

The syntax of this ESTIMATE statement puts a burden on you to know a priori the order of the parameter list
associated with each effect. You can use the ORDER= option in the PROC GLM statement to ensure that the
levels of the classification effects are sorted appropriately.

NOTE: If you use the ESTIMATE statement with unspecified effects, use the E option to make sure that the
actual L constructed by the preceding rules is the one you intended.

A Check for Estimability

Each L is checked for estimability using the relationship L D LH, where H D .X0X/�X0X. The L vector is
declared nonestimable, if for any i

ABS.Li � .LH/i / >

(
� if Li D 0 or

� � ABS.Li / otherwise

where � D 10�4 by default; you can change this with the SINGULAR= option. Continued fractions (like
1/3) should be specified to at least six decimal places, or the DIVISOR parameter should be used.

Comparing Groups
An important task in analyzing data with classification effects is to estimate the typical response for each level
of a given effect; often, you also want to compare these estimates to determine which levels are equivalent
in terms of the response. You can perform this task in two ways with the GLM procedure: with direct,
arithmetic group means; and with so-called least squares means (LS-means).
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Means versus LS-Means

Computing and comparing arithmetic means—either simple or weighted within-group averages of the input
data—is a familiar and well-studied statistical process. This is the right approach to summarizing and
comparing groups for one-way and balanced designs. However, in unbalanced designs with more than one
effect, the arithmetic mean for a group might not accurately reflect the “typical” response for that group,
since it does not take other effects into account.

For example, the following analysis of an unbalanced two-way design produces the ANOVA, means, and
LS-means shown in Figure 45.18, Figure 45.19, and Figure 45.20.

data twoway;
input Treatment Block y @@;
datalines;

1 1 17 1 1 28 1 1 19 1 1 21 1 1 19
1 2 43 1 2 30 1 2 39 1 2 44 1 2 44
1 3 16
2 1 21 2 1 21 2 1 24 2 1 25
2 2 39 2 2 45 2 2 42 2 2 47
2 3 19 2 3 22 2 3 16
3 1 22 3 1 30 3 1 33 3 1 31
3 2 46
3 3 26 3 3 31 3 3 26 3 3 33 3 3 29 3 3 25
;

title "Unbalanced Two-way Design";
ods select ModelANOVA Means LSMeans;

proc glm data=twoway;
class Treatment Block;
model y = Treatment|Block;
means Treatment;
lsmeans Treatment;

run;

ods select all;

Figure 45.18 ANOVA Results for Unbalanced Two-Way Design

Unbalanced Two-way Design

The GLM Procedure

Dependent Variable: y

Unbalanced Two-way Design

The GLM Procedure

Dependent Variable: y

Source DF Type I SS Mean Square F Value Pr > F

Treatment 2 8.060606 4.030303 0.24 0.7888

Block 2 2621.864124 1310.932062 77.95 <.0001

Treatment*Block 4 32.684361 8.171090 0.49 0.7460

Source DF Type III SS Mean Square F Value Pr > F

Treatment 2 266.130682 133.065341 7.91 0.0023

Block 2 1883.729465 941.864732 56.00 <.0001

Treatment*Block 4 32.684361 8.171090 0.49 0.7460
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Figure 45.19 Treatment Means for Unbalanced Two-Way Design

Unbalanced Two-way Design

The GLM Procedure

Unbalanced Two-way Design

The GLM Procedure

y

Level of
Treatment N Mean Std Dev

1 11 29.0909091 11.5104695

2 11 29.1818182 11.5569735

3 11 30.1818182 6.3058414

Figure 45.20 Treatment LS-means for Unbalanced Two-Way Design

Unbalanced Two-way Design

The GLM Procedure
Least Squares Means

Unbalanced Two-way Design

The GLM Procedure
Least Squares Means

Treatment y LSMEAN

1 25.6000000

2 28.3333333

3 34.4444444

No matter how you look at them, these data exhibit a strong effect due to the blocks (F test p < 0:0001) and
no significant interaction between treatments and blocks (F test p > 0:7). But the lack of balance affects how
the treatment effect is interpreted: in a main-effects-only model, there are no significant differences between
the treatment means themselves (Type I F test p > 0:7), but there are highly significant differences between
the treatment means corrected for the block effects (Type III F test p < 0:01).

LS-means are, in effect, within-group means appropriately adjusted for the other effects in the model. More
precisely, they estimate the marginal means for a balanced population (as opposed to the unbalanced design).
For this reason, they are also called estimated population marginal means by Searle, Speed, and Milliken
(1980). In the same way that the Type I F test assesses differences between the arithmetic treatment means
(when the treatment effect comes first in the model), the Type III F test assesses differences between the
LS-means. Accordingly, for the unbalanced two-way design, the discrepancy between the Type I and Type
III tests is reflected in the arithmetic treatment means and treatment LS-means, as shown in Figure 45.19 and
Figure 45.20. See the section “Construction of Least Squares Means” on page 3489 for more on LS-means.

Note that, while the arithmetic means are always uncorrelated (under the usual assumptions for analysis
of variance; see page 3452), the LS-means might not be. This fact complicates the problem of multiple
comparisons for LS-means; see the following section.

Multiple Comparisons

When comparing more than two means, an ANOVA F test tells you whether the means are significantly
different from each other, but it does not tell you which means differ from which other means. Multiple-
comparison procedures (MCPs), also called mean separation tests, give you more detailed information about
the differences among the means. The goal in multiple comparisons is to compare the average effects of
three or more “treatments” (for example, drugs, groups of subjects) to decide which treatments are better,
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which ones are worse, and by how much, while controlling the probability of making an incorrect decision.
A variety of multiple-comparison methods are available with the MEANS and LSMEANS statement in the
GLM procedure.

The following classification is due to Hsu (1996). Multiple-comparison procedures can be categorized in two
ways: by the comparisons they make and by the strength of inference they provide. With respect to which
comparisons are made, the GLM procedure offers two types:

• comparisons between all pairs of means

• comparisons between a control and all other means

The strength of inference says what can be inferred about the structure of the means when a test is significant;
it is related to what type of error rate the MCP controls. MCPs available in the GLM procedure provide one
of the following types of inference, in order from weakest to strongest:

• Individual: differences between means, unadjusted for multiplicity

• Inhomogeneity: means are different

• Inequalities: which means are different

• Intervals: simultaneous confidence intervals for mean differences

Methods that control only individual error rates are not true MCPs at all. Methods that yield the strongest
level of inference, simultaneous confidence intervals, are usually preferred, since they enable you not only to
say which means are different but also to put confidence bounds on how much they differ, making it easier to
assess the practical significance of a difference. They are also less likely to lead nonstatisticians to the invalid
conclusion that nonsignificantly different sample means imply equal population means. Interval MCPs are
available for both arithmetic means and LS-means via the MEANS and LSMEANS statements, respectively.1

Table 45.12 and Table 45.13 display MCPs available in PROC GLM for all pairwise comparisons and
comparisons with a control, respectively, along with associated strength of inference and the syntax (when
applicable) for both the MEANS and the LSMEANS statements.

1The Duncan-Waller method does not fit into the preceding scheme, since it is based on the Bayes risk rather than any particular
error rate.
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Table 45.12 Multiple-Comparison Procedures for All Pairwise Comparisons

Strength of Syntax
Method Inference MEANS LSMEANS
Student’s t Individual T PDIFF ADJUST=T
Duncan Individual DUNCAN
Student-Newman-Keuls Inhomogeneity SNK
REGWQ Inequalities REGWQ
Tukey-Kramer Intervals TUKEY PDIFF ADJUST=TUKEY
Bonferroni Intervals BON PDIFF ADJUST=BON
Sidak Intervals SIDAK PDIFF ADJUST=SIDAK
Scheffé Intervals SCHEFFE PDIFF ADJUST=SCHEFFE
SMM Intervals SMM PDIFF ADJUST=SMM
Gabriel Intervals GABRIEL
Simulation Intervals PDIFF ADJUST=SIMULATE

Table 45.13 Multiple-Comparison Procedures for Comparisons with a Control

Strength of Syntax
Method Inference MEANS LSMEANS
Student’s t Individual PDIFF=CONTROL ADJUST=T
Dunnett Intervals DUNNETT PDIFF=CONTROL ADJUST=DUNNETT
Bonferroni Intervals PDIFF=CONTROL ADJUST=BON
Sidak Intervals PDIFF=CONTROL ADJUST=SIDAK
Scheffé Intervals PDIFF=CONTROL ADJUST=SCHEFFE
SMM Intervals PDIFF=CONTROL ADJUST=SMM
Simulation Intervals PDIFF=CONTROL ADJUST=SIMULATE

NOTE: One-sided Dunnett’s tests are also available from the MEANS statement with the DUN-
NETTL and DUNNETTU options and from the LSMEANS statement with PDIFF=CONTROLL and
PDIFF=CONTROLU.

A note concerning the ODS tables for the results of the PDIFF or TDIFF options in the LSMEANS statement:
The p/t-values for differences are displayed in columns of the LSMeans table for PDIFF/TDIFF=CONTROL
or PDIFF/TDIFF=ANOM, and for PDIFF/TDIFF=ALL when there are only two LS-means. Otherwise (for
PDIFF/TDIFF=ALL when there are more than two LS-means), the p/t-values for differences are displayed in
a separate table called Diff.

Details of these multiple comparison methods are given in the following sections.

Pairwise Comparisons
All the methods discussed in this section depend on the standardized pairwise differences tij D . Nyi � Nyj /= O�ij ,
where the parts of this expression are defined as follows:

• i and j are the indices of two groups

• Nyi and Nyj are the means or LS-means for groups i and j
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• O�ij is the square root of the estimated variance of Nyi � Nyj . For simple arithmetic means, O�2ij D
s2.1=ni C 1=nj /, where ni and nj are the sizes of groups i and j, respectively, and s2 is the mean
square for error, with � degrees of freedom. For weighted arithmetic means, O�2ij D s

2.1=wi C 1=wj /,
where wi and wj are the sums of the weights in groups i and j, respectively. Finally, for LS-means
defined by the linear combinations l0ib and l0jb of the parameter estimates, O�2ij D s

2l0i .X
0X/�lj .

Furthermore, all of the methods are discussed in terms of significance tests of the form

jtij j � c.˛/

where c.˛/ is some constant depending on the significance level. Such tests can be inverted to form confidence
intervals of the form

. Nyi � Nyj / � O�ij c.˛/ � �i � �j � . Nyi � Nyj /C O�ij c.˛/

The simplest approach to multiple comparisons is to do a t test on every pair of means (the T option in the
MEANS statement, ADJUST=T in the LSMEANS statement). For the ith and jth means, you can reject the
null hypothesis that the population means are equal if

jtij j � t .˛I �/

where ˛ is the significance level, � is the number of error degrees of freedom, and t .˛I �/ is the two-tailed
critical value from a Student’s t distribution. If the cell sizes are all equal to, say, n, the preceding formula
can be rearranged to give

j Nyi � Nyj j � t .˛I �/s

r
2

n

the value of the right-hand side being Fisher’s least significant difference (LSD).

There is a problem with repeated t tests, however. Suppose there are 10 means and each t test is performed
at the 0.05 level. There are 10.10 � 1/=2 D 45 pairs of means to compare, each with a 0.05 probability
of a type 1 error (a false rejection of the null hypothesis). The chance of making at least one type 1 error
is much higher than 0.05. It is difficult to calculate the exact probability, but you can derive a pessimistic
approximation by assuming that the comparisons are independent, giving an upper bound to the probability
of making at least one type 1 error (the experimentwise error rate) of

1 � .1 � 0:05/45 D 0:90

The actual probability is somewhat less than 0.90, but as the number of means increases, the chance of
making at least one type 1 error approaches 1.

If you decide to control the individual type 1 error rates for each comparison, you are controlling the
individual or comparisonwise error rate. On the other hand, if you want to control the overall type 1 error rate
for all the comparisons, you are controlling the experimentwise error rate. It is up to you to decide whether to
control the comparisonwise error rate or the experimentwise error rate, but there are many situations in which
the experimentwise error rate should be held to a small value. Statistical methods for comparing three or more
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means while controlling the probability of making at least one type 1 error are called multiple-comparison
procedures.

It has been suggested that the experimentwise error rate can be held to the ˛ level by performing the overall
ANOVA F test at the ˛ level and making further comparisons only if the F test is significant, as in Fisher’s
protected LSD. This assertion is false if there are more than three means (Einot and Gabriel 1975). Consider
again the situation with 10 means. Suppose that one population mean differs from the others by such a
sufficiently large amount that the power (probability of correctly rejecting the null hypothesis) of the F test
is near 1 but that all the other population means are equal to each other. There will be 9.9 � 1/=2 D 36 t
tests of true null hypotheses, with an upper limit of 0.84 on the probability of at least one type 1 error. Thus,
you must distinguish between the experimentwise error rate under the complete null hypothesis, in which all
population means are equal, and the experimentwise error rate under a partial null hypothesis, in which some
means are equal but others differ. The following abbreviations are used in the discussion:

CER comparisonwise error rate

EERC experimentwise error rate under the complete null hypothesis

MEER maximum experimentwise error rate under any complete or partial null hypothesis

These error rates are associated with the different strengths of inference discussed on page 3476: individual
tests control the CER; tests for inhomogeneity of means control the EERC; tests that yield confidence
inequalities or confidence intervals control the MEER. A preliminary F test controls the EERC but not the
MEER.

You can control the MEER at the ˛ level by setting the CER to a sufficiently small value. The Bonferroni
inequality (Miller 1981) has been widely used for this purpose. If

CER D
˛

c

where c is the total number of comparisons, then the MEER is less than ˛. Bonferroni t tests (the BON option
in the MEANS statement, ADJUST=BON in the LSMEANS statement) with MEER < ˛ declare two means
to be significantly different if

jtij j � t .�I �/

where

� D
2˛

k.k � 1/

for comparison of k means.

Šidák (1967) has provided a tighter bound, showing that

CER D 1 � .1 � ˛/1=c

also ensures that MEER � ˛ for any set of c comparisons. A Sidak t test (Games 1977), provided by the
SIDAK option, is thus given by

jtij j � t .�I �/
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where

� D 1 � .1 � ˛/
2

k.k�1/

for comparison of k means.

You can use the Bonferroni additive inequality and the Sidak multiplicative inequality to control the MEER
for any set of contrasts or other hypothesis tests, not just pairwise comparisons. The Bonferroni inequality
can provide simultaneous inferences in any statistical application requiring tests of more than one hypothesis.
Other methods discussed in this section for pairwise comparisons can also be adapted for general contrasts
(Miller 1981).

Scheffé (1953, 1959) proposes another method to control the MEER for any set of contrasts or other linear
hypotheses in the analysis of linear models, including pairwise comparisons, obtained with the SCHEFFE
option. Two means are declared significantly different if

jtij j �
p

DF � F.˛IDF; �/

where F.˛IDF; �/ is the ˛-level critical value of an F distribution with DF numerator degrees of freedom and
� denominator degrees of freedom. The value of DF is k – 1 for the MEANS statement, but in other statements
the precise definition depends on context. For the LSMEANS statement, DF is the rank of the contrast matrix
L for LS-means differences. In more general contexts—for example, the ESTIMATE or LSMESTIMATE
statements in PROC GLIMMIX—DF is the rank of the contrast covariance matrix LCov.b/L0.

Scheffé’s test is compatible with the overall ANOVA F test in that Scheffé’s method never declares a contrast
significant if the overall F test is nonsignificant. Most other multiple-comparison methods can find significant
contrasts when the overall F test is nonsignificant and, therefore, suffer a loss of power when used with a
preliminary F test.

Scheffé’s method might be more powerful than the Bonferroni or Sidak method if the number of comparisons
is large relative to the number of means. For pairwise comparisons, Sidak t tests are generally more powerful.

Tukey (1952, 1953) proposes a test designed specifically for pairwise comparisons based on the studentized
range, sometimes called the “honestly significant difference test,” that controls the MEER when the sample
sizes are equal. Tukey (1953) and Kramer (1956) independently propose a modification for unequal cell sizes.
The Tukey or Tukey-Kramer method is provided by the TUKEY option in the MEANS statement and the
ADJUST=TUKEY option in the LSMEANS statement. This method has fared extremely well in Monte Carlo
studies (Dunnett 1980). In addition, Hayter (1984) gives a proof that the Tukey-Kramer procedure controls
the MEER for means comparisons, and Hayter (1989) describes the extent to which the Tukey-Kramer
procedure has been proven to control the MEER for LS-means comparisons. The Tukey-Kramer method
is more powerful than the Bonferroni, Sidak, or Scheffé method for pairwise comparisons. Two means are
considered significantly different by the Tukey-Kramer criterion if

jtij j � q.˛I k; �/=
p
2

where q.˛I k; �/ is the ˛-level critical value of a studentized range distribution of k independent normal
random variables with � degrees of freedom.
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Hochberg (1974) devised a method (the GT2 or SMM option) similar to Tukey’s, but it uses the studentized
maximum modulus instead of the studentized range and employs the uncorrelated t inequality of Šidák
(1967). It is proven to hold the MEER at a level not exceeding ˛ with unequal sample sizes. It is generally
less powerful than the Tukey-Kramer method and always less powerful than Tukey’s test for equal cell sizes.
Two means are declared significantly different if

jtij j � m.˛I c; �/

where m.˛I c; �/ is the ˛-level critical value of the studentized maximum modulus distribution of c indepen-
dent normal random variables with � degrees of freedom and c D k.k � 1/=2.

Gabriel (1978) proposes another method (the GABRIEL option) based on the studentized maximum modulus.
This method is applicable only to arithmetic means. It rejects if

j Nyi � Nyj j

s
�

1p
2ni
C

1p
2nj

� � m.˛I k; �/

For equal cell sizes, Gabriel’s test is equivalent to Hochberg’s GT2 method. For unequal cell sizes, Gabriel’s
method is more powerful than GT2 but might become liberal with highly disparate cell sizes (see also
Dunnett (1980)). Gabriel’s test is the only method for unequal sample sizes that lends itself to a graphical
representation as intervals around the means. Assuming Nyi > Nyj , you can rewrite the preceding inequality as

Nyi �m.˛I k; �/
s
p
2ni

� Nyj Cm.˛I k; �/
sp
2nj

The expression on the left does not depend on j, nor does the expression on the right depend on i. Hence,
you can form what Gabriel calls an .l; u/-interval around each sample mean and declare two means to be
significantly different if their .l; u/-intervals do not overlap. See Hsu (1996, section 5.2.1.1) for a discussion
of other methods of graphically representing all pairwise comparisons.

Comparing All Treatments to a Control
One special case of means comparison is that in which the only comparisons that need to be tested are
between a set of new treatments and a single control. In this case, you can achieve better power by using a
method that is restricted to test only comparisons to the single control mean. Dunnett (1955) proposes a test
for this situation that declares a mean significantly different from the control if

jti0j � d.˛I k; �; �1; : : : ; �k�1/

where Ny0 is the control mean and d.˛I k; �; �1; : : : ; �k�1/ is the critical value of the “many-to-one t statistic”
(Miller 1981; Krishnaiah and Armitage 1966) for k means to be compared to a control, with � error degrees
of freedom and correlations �1; : : : ; �k�1, �i D ni=.n0 C ni /. The correlation terms arise because each of
the treatment means is being compared to the same control. Dunnett’s test holds the MEER to a level not
exceeding the stated ˛.
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Analysis of Means: Comparing Each Treatments to the Average
Analysis of means (ANOM) refers to a technique for comparing group means and displaying the comparisons
graphically so that you can easily see which ones are different. Means are judged as different if they are
significantly different from the overall average, with significance adjusted for multiplicity. The overall
average is computed as a weighted mean of the LS-means, the weights being inversely proportional to the
variances. If you use the PDIFF=ANOM option in the LSMEANS statement, the procedure will display
the p-values (adjusted for multiplicity, by default) for tests of the differences between each LS-mean and
the average LS-mean. The ANOM procedure in SAS/QC software displays both tables and graphics for
the analysis of means with a variety of response types. For one-way designs, confidence intervals for
PDIFF=ANOM comparisons are equivalent to the results of PROC ANOM. The difference is that PROC
GLM directly displays the confidence intervals for the differences, while the graphical output of PROC
ANOM displays them as decision limits around the overall mean.

If the LS-means being compared are uncorrelated, exact adjusted p-values and critical values for confidence
limits can be computed; see Nelson (1982, 1991, 1993) and Guirguis and Tobias (2004). For correlated
LS-means, an approach similar to that of Hsu (1992) is employed, using a factor-analytic approximation of
the correlation between the LS-means to derive approximate “effective sample sizes” for which exact critical
values are computed. Note that computing the exact adjusted p-values and critical values for unbalanced
designs can be computationally intensive. A simulation-based approach, as specified by the ADJUST=SIM
option, while nondeterministic, might provide inferences that are accurate enough in much less time. See the
section “Approximate and Simulation-Based Methods” on page 3482 for more details.

Approximate and Simulation-Based Methods
Tukey’s, Dunnett’s, and Nelson’s tests are all based on the same general quantile calculation:

qt .˛; �; R/ D fq 3 P.max.jt1j; : : : ; jtnj/ > q/ D ˛g

where the ti have a joint multivariate t distribution with � degrees of freedom and correlation matrix R. In
general, evaluating qt .˛; �; R/ requires repeated numerical calculation of an .nC 1/-fold integral. This is
usually intractable, but the problem reduces to a feasible 2-fold integral when R has a certain symmetry in the
case of Tukey’s test, and a factor analytic structure (Hsu 1992) in the case of Dunnett’s and Nelson’s tests.
The R matrix has the required symmetry for exact computation of Tukey’s test in the following two cases:

• The tis are studentized differences between k.k � 1/=2 pairs of k uncorrelated means with equal
variances—that is, equal sample sizes.

• The ti s are studentized differences between k.k � 1/=2 pairs of k LS-means from a variance-balanced
design (for example, a balanced incomplete block design).

See Hsu (1992, 1996) for more information. The R matrix has the factor analytic structure for exact
computation of Dunnett’s and Nelson’s tests in the following two cases:

• if the tis are studentized differences between k – 1 means and a control mean, all uncorrelated.
(Dunnett’s one-sided methods depend on a similar probability calculation, without the absolute values.)
Note that it is not required that the variances of the means (that is, the sample sizes) be equal.

• if the tis are studentized differences between k – 1 LS-means and a control LS-mean from either a
variance-balanced design, or a design in which the other factors are orthogonal to the treatment factor
(for example, a randomized block design with proportional cell frequencies)
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However, other important situations that do not result in a correlation matrix R that has the structure for exact
computation are the following:

• all pairwise differences with unequal sample sizes

• differences between LS-means in many unbalanced designs

In these situations, exact calculation of qt .˛; �; R/ is intractable in general. Most of the preceding methods
can be viewed as using various approximations for qt .˛; �; R/. When the sample sizes are unequal, the Tukey-
Kramer test is equivalent to another approximation. For comparisons with a control when the correlation
R does not have a factor analytic structure, Hsu (1992) suggests approximating R with a matrix R� that
does have such a structure and correspondingly approximating qt .˛; �; R/ with qt .˛; �; R�/. When you
request Dunnett’s or Nelson’s test for LS-means (the PDIFF=CONTROL and ADJUST=DUNNETT options
or the PDIFF=ANOM and ADJUST=NELSON options, respectively), the GLM procedure automatically
uses Hsu’s approximation when appropriate.

Finally, Edwards and Berry (1987) suggest calculating qt .˛; �; R/ by simulation. Multivariate t vectors are
sampled from a distribution with the appropriate � and R parameters, and Edwards and Berry (1987) suggest
estimating qt .˛; �; R/ by Oq, the ˛ percentile of the observed values of max.jt1j; : : : ; jtnj/. Sufficient samples
are generated for the true P.max.jt1j; : : : ; jtnj/ > Oq/ to be within a certain accuracy radius  of ˛ with
accuracy confidence 100.1 � �/. You can approximate qt .˛; �; R/ by simulation for comparisons between
LS-means by specifying ADJUST=SIM (with any PDIFF= type). By default,  D 0:005 and � D 0:01, so
that the tail area of Oq is within 0.005 of ˛ with 99% confidence. You can use the ACC= and EPS= options
with ADJUST=SIM to reset  and �, or you can use the NSAMP= option to set the sample size directly. You
can also control the random number sequence with the SEED= option.

Hsu and Nelson (1998) suggest a more accurate simulation method for estimating qt .˛; �; R/, using a
control variate adjustment technique. The same independent, standardized normal variates that are used to
generate multivariate t vectors from a distribution with the appropriate � and R parameters are also used
to generate multivariate t vectors from a distribution for which the exact value of qt .˛; �; R/ is known.
max.jt1j; : : : ; jtnj/ for the second sample is used as a control variate for adjusting the quantile estimate
based on the first sample; see Hsu and Nelson (1998) for more details. The control variate adjustment has
the drawback that it takes somewhat longer than the crude technique of Edwards and Berry (1987), but it
typically yields an estimate that is many times more accurate. In most cases, if you are using ADJUST=SIM,
then you should specify ADJUST=SIM(CVADJUST). You can also specify ADJUST=SIM(CVADJUST
REPORT) to display a summary of the simulation that includes, among other things, the actual accuracy
radius  , which should be substantially smaller than the target accuracy radius (0.005 by default).

Multiple-Stage Tests
You can use all of the methods discussed so far to obtain simultaneous confidence intervals (Miller 1981). By
sacrificing the facility for simultaneous estimation, you can obtain simultaneous tests with greater power by
using multiple-stage tests (MSTs). MSTs come in both step-up and step-down varieties (Welsch 1977). The
step-down methods, which have been more widely used, are available in SAS/STAT software.

Step-down MSTs first test the homogeneity of all the means at a level k . If the test results in a rejection,
then each subset of k – 1 means is tested at level k�1; otherwise, the procedure stops. In general, if the
hypothesis of homogeneity of a set of p means is rejected at the p level, then each subset of p � 1 means is
tested at the p�1 level; otherwise, the set of p means is considered not to differ significantly and none of
its subsets are tested. The many varieties of MSTs that have been proposed differ in the levels p and the
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statistics on which the subset tests are based. Clearly, the EERC of a step-down MST is not greater than k ,
and the CER is not greater than 2, but the MEER is a complicated function of p, p D 2; : : : ; k.

With unequal cell sizes, PROC GLM uses the harmonic mean of the cell sizes as the common sample size.
However, since the resulting operating characteristics can be undesirable, MSTs are recommended only for
the balanced case. When the sample sizes are equal, using the range statistic enables you to arrange the means
in ascending or descending order and test only contiguous subsets. But if you specify the F statistic, this
shortcut cannot be taken. For this reason, only range-based MSTs are implemented. It is common practice
to report the results of an MST by writing the means in such an order and drawing lines parallel to the list
of means spanning the homogeneous subsets. This form of presentation is also convenient for pairwise
comparisons with equal cell sizes.

The best-known MSTs are the Duncan (the DUNCAN option) and Student-Newman-Keuls (the SNK option)
methods (Miller 1981). Both use the studentized range statistic and, hence, are called multiple range tests.
Duncan’s method is often called the “new” multiple range test despite the fact that it is one of the oldest
MSTs in current use.

The Duncan and SNK methods differ in the p values used. For Duncan’s method, they are

p D 1 � .1 � ˛/p�1

whereas the SNK method uses

p D ˛

Duncan’s method controls the CER at the ˛ level. Its operating characteristics appear similar to those of
Fisher’s unprotected LSD or repeated t tests at level ˛ (Petrinovich and Hardyck 1969). Since repeated t
tests are easier to compute, easier to explain, and applicable to unequal sample sizes, Duncan’s method is
not recommended. Several published studies (for example, Carmer and Swanson (1973)) have claimed that
Duncan’s method is superior to Tukey’s because of greater power without considering that the greater power
of Duncan’s method is due to its higher type 1 error rate (Einot and Gabriel 1975).

The SNK method holds the EERC to the ˛ level but does not control the MEER (Einot and Gabriel 1975).
Consider ten population means that occur in five pairs such that means within a pair are equal, but there
are large differences between pairs. If you make the usual sampling assumptions and also assume that the
sample sizes are very large, all subset homogeneity hypotheses for three or more means are rejected. The
SNK method then comes down to five independent tests, one for each pair, each at the ˛ level. Letting ˛ be
0.05, the probability of at least one false rejection is

1 � .1 � 0:05/5 D 0:23

As the number of means increases, the MEER approaches 1. Therefore, the SNK method cannot be
recommended.

A variety of MSTs that control the MEER have been proposed, but these methods are not as well known as
those of Duncan and SNK. One approach (Ryan 1959, 1960; Einot and Gabriel 1975; Welsch 1977) sets

p D

(
1 � .1 � ˛/p=k for p < k � 1

˛ for p � k � 1
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You can use range statistics, leading to what is called the REGWQ method, after the authors’ initials. If you
assume that the sample means have been arranged in descending order from Ny1 through Nyk , the homogeneity
of means Nyi ; : : : ; Nyj ; i < j , is rejected by REGWQ if

Nyi � Nyj � q.pIp; �/
s
p
n

where p D j � i C 1 and the summations are over u D i; : : : ; j (Einot and Gabriel 1975). To ensure that
the MEER is controlled, the current implementation checks whether q.pIp; �/ is monotonically increasing
in p. If not, then a set of critical values that are increasing in p is substituted instead.

REGWQ appears to be the most powerful step-down MST in the current literature (for example, Ramsey
1978). Use of a preliminary F test decreases the power of all the other multiple-comparison methods discussed
previously except for Scheffé’s test.

Bayesian Approach
Waller and Duncan (1969) and Duncan (1975) take an approach to multiple comparisons that differs from all
the methods previously discussed in minimizing the Bayes risk under additive loss rather than controlling
type 1 error rates. For each pair of population means �i and �j , null .H ij

0 / and alternative .H ij
a / hypotheses

are defined:

H
ij
0 W �i � �j � 0

H ij
a W �i � �j > 0

For any i, j pair, let d0 indicate a decision in favor of H ij
0 and da indicate a decision in favor of H ij

a , and let
ı D �i � �j . The loss function for the decision on the i, j pair is

L.d0 j ı/ D

(
0 if ı � 0

ı if ı > 0

L.da j ı/ D

(
�kı if ı � 0

0 if ı > 0

where k represents a constant that you specify rather than the number of means. The loss for the joint decision
involving all pairs of means is the sum of the losses for each individual decision. The population means are
assumed to have a normal prior distribution with unknown variance, the logarithm of the variance of the
means having a uniform prior distribution. For the i, j pair, the null hypothesis is rejected if

Nyi � Nyj � tBs

r
2

n

where tB is the Bayesian t value (Waller and Kemp 1976) depending on k, the F statistic for the one-way
ANOVA, and the degrees of freedom for F. The value of tB is a decreasing function of F, so the Waller-Duncan
test (specified by the WALLER option) becomes more liberal as F increases.
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Recommendations
In summary, if you are interested in several individual comparisons and are not concerned about the effects
of multiple inferences, you can use repeated t tests or Fisher’s unprotected LSD. If you are interested in all
pairwise comparisons or all comparisons with a control, you should use Tukey’s or Dunnett’s test, respectively,
in order to make the strongest possible inferences. If you have weaker inferential requirements and, in
particular, if you do not want confidence intervals for the mean differences, you should use the REGWQ
method. Finally, if you agree with the Bayesian approach and Waller and Duncan’s assumptions, you should
use the Waller-Duncan test.

Interpretation of Multiple Comparisons
When you interpret multiple comparisons, remember that failure to reject the hypothesis that two or more
means are equal should not lead you to conclude that the population means are, in fact, equal. Failure to
reject the null hypothesis implies only that the difference between population means, if any, is not large
enough to be detected with the given sample size. A related point is that nonsignificance is nontransitive: that
is, given three sample means, the largest and smallest might be significantly different from each other, while
neither is significantly different from the middle one. Nontransitive results of this type occur frequently in
multiple comparisons.

Multiple comparisons can also lead to counterintuitive results when the cell sizes are unequal. Consider
four cells labeled A, B, C, and D, with sample means in the order A>B>C>D. If A and D each have two
observations, and B and C each have 10,000 observations, then the difference between B and C might be
significant, while the difference between A and D is not.

Simple Effects

Suppose you use the following statements to fit a full factorial model to a two-way design:

data twoway;
input A B Y @@;
datalines;

1 1 10.6 1 1 11.0 1 1 10.6 1 1 11.3
1 2 -0.2 1 2 1.3 1 2 -0.2 1 2 0.2
1 3 0.1 1 3 0.4 1 3 -0.4 1 3 1.0
2 1 19.7 2 1 19.3 2 1 18.5 2 1 20.4
2 2 -0.2 2 2 0.5 2 2 0.8 2 2 -0.4
2 3 -0.9 2 3 -0.1 2 3 -0.2 2 3 -1.7
3 1 29.7 3 1 29.6 3 1 29.0 3 1 30.2
3 2 1.5 3 2 0.2 3 2 -1.5 3 2 1.3
3 3 0.2 3 3 0.4 3 3 -0.4 3 3 -2.2
;

proc glm data=twoway;
class A B;
model Y = A B A*B;

run;

Partial results for the analysis of variance are shown in Figure 45.21. The Type I and Type III results are the
same because this is a balanced design.
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Figure 45.21 Two-Way Design with Significant Interaction

The GLM Procedure

Dependent Variable: Y

The GLM Procedure

Dependent Variable: Y

Source DF Type I SS Mean Square F Value Pr > F

A 2 219.905000 109.952500 165.11 <.0001

B 2 3206.101667 1603.050833 2407.25 <.0001

A*B 4 487.103333 121.775833 182.87 <.0001

Source DF Type III SS Mean Square F Value Pr > F

A 2 219.905000 109.952500 165.11 <.0001

B 2 3206.101667 1603.050833 2407.25 <.0001

A*B 4 487.103333 121.775833 182.87 <.0001

The interaction A*B is significant, indicating that the effect of A depends on the level of B. In some cases,
you might be interested in looking at the differences between predicted values across A for different levels
of B. Winer (1971) calls this the simple effects of A. You can compute simple effects with the LSMEANS
statement by specifying the SLICE= option. In this case, since the GLM procedure is interactive, you can
compute the simple effects of A by submitting the following statements after the preceding statements.

lsmeans A*B / slice=B;
run;

The results are shown Figure 45.22. Note that A has a significant effect for B=1 but not for B=2 and B=3.

Figure 45.22 Interaction LS-Means and Simple Effects

The GLM Procedure
Least Squares Means
The GLM Procedure

Least Squares Means

A B Y LSMEAN

1 1 10.8750000

1 2 0.2750000

1 3 0.2750000

2 1 19.4750000

2 2 0.1750000

2 3 -0.7250000

3 1 29.6250000

3 2 0.3750000

3 3 -0.5000000

The GLM Procedure
Least Squares Means
The GLM Procedure

Least Squares Means

A*B Effect Sliced by B for Y

B DF
Sum of

Squares Mean Square F Value Pr > F

1 2 704.726667 352.363333 529.13 <.0001

2 2 0.080000 0.040000 0.06 0.9418

3 2 2.201667 1.100833 1.65 0.2103
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Homogeneity of Variance in One-Way Models

One of the usual assumptions in using the GLM procedure is that the underlying errors are all uncorrelated
with homogeneous variances (see page 3452). You can test this assumption in PROC GLM by using the
HOVTEST option in the MEANS statement, requesting a homogeneity of variance test. This section discusses
the computational details behind these tests. Note that the GLM procedure allows homogeneity of variance
testing for simple one-way models only. Homogeneity of variance testing for more complex models is a
subject of current research.

Bartlett (1937) proposes a test for equal variances that is a modification of the normal-theory likelihood ratio
test (the HOVTEST=BARTLETT option). While Bartlett’s test has accurate Type I error rates and optimal
power when the underlying distribution of the data is normal, it can be very inaccurate if that distribution is
even slightly nonnormal (Box 1953). Therefore, Bartlett’s test is not recommended for routine use.

An approach that leads to tests that are much more robust to the underlying distribution is to transform the
original values of the dependent variable to derive a dispersion variable and then to perform analysis of
variance on this variable. The significance level for the test of homogeneity of variance is the p-value for the
ANOVA F test on the dispersion variable. All of the homogeneity of variance tests available in PROC GLM
except Bartlett’s use this approach.

Levene’s test (Levene 1960) is widely considered to be the standard homogeneity of variance test (the
HOVTEST=LEVENE option). Levene’s test is of the dispersion-variable-ANOVA form discussed previously,
where the dispersion variable is either of the following:

z2ij D .yij � Nyi /
2 (TYPE=SQUARE, the default)

zij D jyij � Nyi j (TYPE=ABS)

O’Brien (1979) proposes a test (HOVTEST=OBRIEN) that is basically a modification of Levene’s z2ij , using
the dispersion variable

zWij D
.W C ni � 2/ni .yij � Nyi /

2 �W.ni � 1/�
2
i

.ni � 1/.ni � 2/

where ni is the size of the ith group and �2i is its sample variance. You can use the W= option in parentheses
to tune O’Brien’s zWij dispersion variable to match the suspected kurtosis of the underlying distribution.
The choice of the value of the W= option is rarely critical. By default, W=0.5, as suggested by O’Brien
(1979, 1981).

Finally, Brown and Forsythe (1974) suggest using the absolute deviations from the group medians:

zBF
ij D jyij �mi j

where mi is the median of the ith group. You can use the HOVTEST=BF option to specify this test.

Simulation results (Conover, Johnson, and Johnson 1981; Olejnik and Algina 1987) show that, while all of
these ANOVA-based tests are reasonably robust to the underlying distribution, the Brown-Forsythe test seems
best at providing power to detect variance differences while protecting the Type I error probability. However,
since the within-group medians are required for the Brown-Forsythe test, it can be resource intensive if there
are very many groups or if some groups are very large.
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If one of these tests rejects the assumption of homogeneity of variance, you should use Welch’s ANOVA
instead of the usual ANOVA to test for differences between group means. However, this conclusion holds
only if you use one of the robust homogeneity of variance tests (that is, not for HOVTEST=BARTLETT);
even then, any homogeneity of variance test has too little power to be relied upon to always detect when
Welch’s ANOVA is appropriate. Unless the group variances are extremely different or the number of groups
is large, the usual ANOVA test is relatively robust when the groups are all about the same size. As Box
(1953) notes, “To make the preliminary test on variances is rather like putting to sea in a rowing boat to find
out whether conditions are sufficiently calm for an ocean liner to leave port!”

Example 45.10 illustrates the use of the HOVTEST and WELCH options in the MEANS statement in testing
for equal group variances and adjusting for unequal group variances in a one-way ANOVA.

Weighted Means

If you specify a WEIGHT statement and one or more of the multiple comparisons options, the variance of
the difference between weighted group means for group i and j is computed as

MSE �
�
1

wi
C

1

wj

�
where wi is the sum of the weights for the observations in group i.

Construction of Least Squares Means

To construct a least squares mean (LS-mean) for a given level of a given effect, construct a row vector L
according to the following rules and use it in an ESTIMATE statement to compute the value of the LS-mean:

1. Set all Li corresponding to covariates (continuous variables) to their mean value.

2. Consider effects contained by the given effect. Set the Li corresponding to levels associated with the
given level equal to 1. Set all other Li in these effects equal to 0. (See Chapter 15, “The Four Types of
Estimable Functions,” for a definition of containing.)

3. Consider the given effect. Set the Li corresponding to the given level equal to 1. Set the Li
corresponding to other levels equal to 0.

4. Consider the effects that contain the given effect. If these effects are not nested within the given effect,
then set the Li corresponding to the given level to 1=k, where k is the number of such columns. If
these effects are nested within the given effect, then set the Li corresponding to the given level to
1=.k1k2/, where k1 is the number of nested levels within this combination of nested effects, and k2 is
the number of such combinations. For Li corresponding to other levels, use 0.

5. Consider the other effects not yet considered. If there are no nested factors, then set allLi corresponding
to this effect to 1=j , where j is the number of levels in the effect. If there are nested factors, then set all
Li corresponding to this effect to 1=.j1j2/, where j1 is the number of nested levels within a given
combination of nested effects and j2 is the number of such combinations.

The consequence of these rules is that the sum of the Xs within any classification effect is 1. This set of Xs
forms a linear combination of the parameters that is checked for estimability before it is evaluated.
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For example, consider the following model:

proc glm;
class A B C;
model Y=A B A*B C Z;
lsmeans A B A*B C;

run;

Assume A has 3 levels, B has 2 levels, and C has 2 levels, and assume that every combination of levels of A
and B exists in the data. Assume also that Z is a continuous variable with an average of 12.5. Then the least
squares means are computed by the following linear combinations of the parameter estimates:

A B A*B C
� 1 2 3 1 2 11 12 21 22 31 32 1 2 Z

LSM( ) 1 1/3 1/3 1/3 1/2 1/2 1/6 1/6 1/6 1/6 1/6 1/6 1/2 1/2 12.5

LSM(A1) 1 1 0 0 1/2 1/2 1/2 1/2 0 0 0 0 1/2 1/2 12.5
LSM(A2) 1 0 1 0 1/2 1/2 0 0 1/2 1/2 0 0 1/2 1/2 12.5
LSM(A3) 1 0 0 1 1/2 1/2 0 0 0 0 1/2 1/2 1/2 1/2 12.5

LSM(B1) 1 1/3 1/3 1/3 1 0 1/3 0 1/3 0 1/3 0 1/2 1/2 12.5
LSM(B2) 1 1/3 1/3 1/3 0 1 0 1/3 0 1/3 0 1/3 1/2 1/2 12.5

LSM(AB11) 1 1 0 0 1 0 1 0 0 0 0 0 1/2 1/2 12.5
LSM(AB12) 1 1 0 0 0 1 0 1 0 0 0 0 1/2 1/2 12.5
LSM(AB21) 1 0 1 0 1 0 0 0 1 0 0 0 1/2 1/2 12.5
LSM(AB22) 1 0 1 0 0 1 0 0 0 1 0 0 1/2 1/2 12.5
LSM(AB31) 1 0 0 1 1 0 0 0 0 0 1 0 1/2 1/2 12.5
LSM(AB32) 1 0 0 1 0 1 0 0 0 0 0 1 1/2 1/2 12.5

LSM(C1) 1 1/3 1/3 1/3 1/2 1/2 1/6 1/6 1/6 1/6 1/6 1/6 1 0 12.5
LSM(C2) 1 1/3 1/3 1/3 1/2 1/2 1/6 1/6 1/6 1/6 1/6 1/6 0 1 12.5

Setting Covariate Values
By default, all covariate effects are set equal to their mean values for computation of standard LS-means.
The AT option in the LSMEANS statement enables you to set the covariates to whatever values you consider
interesting.

If there is an effect containing two or more covariates, the AT option sets the effect equal to the product of
the individual means rather than the mean of the product (as with standard LS-means calculations). The AT
MEANS option leaves covariates equal to their mean values (as with standard LS-means) and incorporates
this adjustment to crossproducts of covariates.

As an example, the following is a model with a classification variable A and two continuous variables, x1 and
x2:

class A;
model y = A x1 x2 x1*x2;

The coefficients for the continuous effects with various AT specifications are shown in the following table.
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Syntax x1 x2 x1*x2
lsmeans A; x1 x2 x1x2
lsmeans A / at means; x1 x2 x1 � x2
lsmeans A / at x1=1.2; 1.2 x2 1:2 � x2
lsmeans A / at (x1 x2)=(1.2 0.3); 1.2 0.3 1:2 � 0:3

For the first two LSMEANS statements, the A LS-mean coefficient for x1 is x1 (the mean of x1) and for
x2 is x2 (the mean of x2). However, for the first LSMEANS statement, the coefficient for x1*x2 is x1x2,
but for the second LSMEANS statement the coefficient is x1 � x2. The third LSMEANS statement sets the
coefficient for x1 equal to 1.2 and leaves that for x2 at x2, and the final LSMEANS statement sets these
values to 1.2 and 0.3, respectively.

Even if you specify a WEIGHT variable, the unweighted covariate means are used for the covariate coeffi-
cients if there is no AT specification. However, if you also use an AT specification, then weighted covariate
means are used for the covariate coefficients for which no explicit AT values are given, or if you specify
AT MEANS. Also, observations with missing dependent variables are included in computing the covariate
means, unless these observations form a missing cell. You can use the E option in conjunction with the AT
option to check that the modified LS-means coefficients are the ones you want.

The AT option is disabled if you specify the BYLEVEL option, in which case the coefficients for the
covariates are set equal to their means within each level of the LS-mean effect in question.

Changing the Weighting Scheme
The standard LS-means have equal coefficients across classification effects; however, the OM option in the
LSMEANS statement changes these coefficients to be proportional to those found in the input data set. This
adjustment is reasonable when you want your inferences to apply to a population that is not necessarily
balanced but has the margins observed in the original data set.

In computing the observed margins, PROC GLM uses all observations for which there are no missing
independent variables, including those for which there are missing dependent variables. Also, if there is
a WEIGHT variable, PROC GLM uses weighted margins to construct the LS-means coefficients. If the
analysis data set is balanced or if you specify a simple one-way model, the LS-means will be unchanged by
the OM option.

The BYLEVEL option modifies the observed-margins LS-means. Instead of computing the margins across
the entire data set, PROC GLM computes separate margins for each level of the LS-mean effect in question.
The resulting LS-means are actually equal to raw means in this case. The BYLEVEL option disables the AT
option if it is specified.

Note that the MIXED procedure implements a more versatile form of the OM option, enabling you to
specifying an alternative data set over which to compute observed margins. If you use the BYLEVEL option,
too, then this data set is effectively the “population” over which the population marginal means are computed.
See Chapter 65, “The MIXED Procedure,” for more information.

You might want to use the E option in conjunction with either the OM or BYLEVEL option to check that
the modified LS-means coefficients are the ones you want. It is possible that the modified LS-means are not
estimable when the standard ones are, or vice versa.
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Estimability of LS-means
LS-means are defined as certain linear combinations of the parameters. As such, it is possible for them to be
inestimable. In fact, it is possible for a pair of LS-means to be both inestimable but their difference estimable.
When this happens, only the entries corresponding to the estimable difference are computed and displayed
in the Diffs table. If ADJUST=SIMULATE is specified when there are inestimable LS-means differences,
adjusted results for all differences are displayed as missing.

Multivariate Analysis of Variance
If you fit several dependent variables to the same effects, you might want to make joint tests involving
parameters of several dependent variables. Suppose you have p dependent variables, k parameters for each
dependent variable, and n observations. The models can be collected into one equation:

Y D Xˇ C �

where Y is n � p, X is n � k, ˇ is k � p, and � is n � p. Each of the p models can be estimated and
tested separately. However, you might also want to consider the joint distribution and test the p models
simultaneously.

For multivariate tests, you need to make some assumptions about the errors. With p dependent variables,
there are n � p errors that are independent across observations but not across dependent variables. Assume

vec.�/ � N.0; In ˝†/

where vec.�/ strings � out by rows,˝ denotes Kronecker product multiplication, and † is p � p. † can be
estimated by

S D
e0e
n � r

D
.Y �Xb/0.Y �Xb/

n � r

where b D .X0X/�X0Y, r is the rank of the X matrix, and e is the matrix of residuals.

If S is scaled to unit diagonals, the values in S are called partial correlations of the Ys adjusting for the Xs.
This matrix can be displayed by PROC GLM if PRINTE is specified as a MANOVA option.

The multivariate general linear hypothesis is written

LˇM D 0

You can form hypotheses for linear combinations across columns, as well as across rows of ˇ.

The MANOVA statement of the GLM procedure tests special cases where L corresponds to Type I, Type II,
Type III, or Type IV tests, and M is the p � p identity matrix. These tests are joint tests that the given type of
hypothesis holds for all dependent variables in the model, and they are often sufficient to test all hypotheses
of interest.

Finally, when these special cases are not appropriate, you can specify your own L and M matrices by using the
CONTRAST statement before the MANOVA statement and the M= specification in the MANOVA statement,
respectively. Another alternative is to use a REPEATED statement, which automatically generates a variety
of M matrices useful in repeated measures analysis of variance. See the section “REPEATED Statement” on
page 3446 and the section “Repeated Measures Analysis of Variance” on page 3493 for more information.
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One useful way to think of a MANOVA analysis with an M matrix other than the identity is as an analysis of
a set of transformed variables defined by the columns of the M matrix. You should note, however, that PROC
GLM always displays the M matrix in such a way that the transformed variables are defined by the rows, not
the columns, of the displayed M matrix.

All multivariate tests carried out by the GLM procedure first construct the matrices H and E corresponding to
the numerator and denominator, respectively, of a univariate F test:

H D M0.Lb/0.L.X0X/�L0/�1.Lb/M

E D M0.Y0Y � b0.X0X/b/M

The diagonal elements of H and E correspond to the hypothesis and error SS for univariate tests. When
the M matrix is the identity matrix (the default), these tests are for the original dependent variables on the
left side of the MODEL statement. When an M matrix other than the identity is specified, the tests are for
transformed variables defined by the columns of the M matrix. These tests can be studied by requesting the
SUMMARY option, which produces univariate analyses for each original or transformed variable.

Four multivariate test statistics, all functions of the eigenvalues of E�1H (or .ECH/�1H), are constructed:

• Wilks’ lambda = det.E//det.HC E/

• Pillai’s trace = trace.H.HC E/�1/

• Hotelling-Lawley trace = trace.E�1H/

• Roy’s greatest root = �, largest eigenvalue of E�1H

By default, all four are reported with p-values based on F approximations, as discussed in the “Multi-
variate Tests” section in Chapter 4, “Introduction to Regression Procedures.” Alternatively, if you specify
MSTAT=EXACT in the associated MANOVA or REPEATED statement, p-values for three of the four tests
are computed exactly (Wilks’ lambda, the Hotelling-Lawley trace, and Roy’s greatest root), and the p-values
for the fourth (Pillai’s trace) are based on an F approximation that is more accurate than the default. See the
“Multivariate Tests” section in Chapter 4, “Introduction to Regression Procedures,” for more details on the
exact calculations.

Repeated Measures Analysis of Variance
When several measurements are taken on the same experimental unit (person, plant, machine, and so on), the
measurements tend to be correlated with each other. When the measurements represent qualitatively different
things, such as weight, length, and width, this correlation is best taken into account by use of multivariate
methods, such as multivariate analysis of variance. When the measurements can be thought of as responses
to levels of an experimental factor of interest, such as time, treatment, or dose, the correlation can be taken
into account by performing a repeated measures analysis of variance.

PROC GLM provides both univariate and multivariate tests for repeated measures for one response. For an
overall reference on univariate repeated measures, see Winer (1971). The multivariate approach is covered
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in Cole and Grizzle (1966). For a discussion of the relative merits of the two approaches, see LaTour and
Miniard (1983).

Another approach to analysis of repeated measures is via general mixed models. This approach can handle
balanced as well as unbalanced or missing within-subject data, and it offers more options for modeling the
within-subject covariance. The main drawback of the mixed models approach is that it generally requires
iteration and, thus, might be less computationally efficient. For further details on this approach, see Chapter 65,
“The MIXED Procedure,” and Wolfinger and Chang (1995).

Organization of Data for Repeated Measure Analysis

In order to deal efficiently with the correlation of repeated measures, the GLM procedure uses the multivariate
method of specifying the model, even if only a univariate analysis is desired. In some cases, data might
already be entered in the univariate mode, with each repeated measure listed as a separate observation along
with a variable that represents the experimental unit (subject) on which measurement is taken. Consider the
following data set Old:

data Old;
input Subject Group Time y;
datalines;

1 1 1 15
1 1 2 19
1 1 3 25
2 1 1 21
2 1 2 18
2 1 3 17
1 2 1 14
1 2 2 12
1 2 3 16
2 2 1 11
2 2 2 20
2 2 3 21

... more lines ...

10 3 1 14
10 3 2 18
10 3 3 16
;

There are three observations for each subject, corresponding to measurements taken at times 1, 2, and 3.
These data could be analyzed using the following statements:

proc glm data=Old;
class Group Subject Time;
model y=Group Subject(Group) Time Group*Time;
test h=Group e=Subject(Group);

run;

However, this analysis assumes subjects’ measurements are uncorrelated across time. A repeated measures
analysis does not make this assumption. It uses the following data set New:
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data New;
input Group y1 y2 y3;
datalines;

1 15 19 25
1 21 18 17
2 14 12 16
2 11 20 21
2 24 15 12

... more lines ...

3 14 18 16
;

In the data set New, the three measurements for a subject are all in one observation. For example, the
measurements for subject 1 for times 1, 2, and 3 are 15, 19, and 25, respectively. For these data, the
statements for a repeated measures analysis (assuming default options) are

proc glm data=New;
class Group;
model y1-y3 = Group / nouni;
repeated Time;

run;

To convert the univariate form of repeated measures data to the multivariate form, you can use a program like
the following:

proc sort data=Old;
by Group Subject;

run;

data New(keep=y1-y3 Group);
array yy(3) y1-y3;
do Time = 1 to 3;

set Old;
by Group Subject;
yy(Time) = y;
if last.Subject then return;

end;
run;

Alternatively, you could use PROC TRANSPOSE to achieve the same results with a program like this one:

proc sort data=Old;
by Group Subject;

run;

proc transpose out=New(rename=(_1=y1 _2=y2 _3=y3));
by Group Subject;
id Time;

run;

See the discussions in SAS Language Reference: Concepts for more information about rearrangement of data
sets.
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Hypothesis Testing in Repeated Measures Analysis

In repeated measures analysis of variance, the effects of interest are as follows:

• between-subject effects (such as GROUP in the previous example)

• within-subject effects (such as TIME in the previous example)

• interactions between the two types of effects (such as GROUP*TIME in the previous example)

Repeated measures analyses are distinguished from MANOVA because of interest in testing hypotheses
about the within-subject effects and the within-subject-by-between-subject interactions.

For tests that involve only between-subjects effects, both the multivariate and univariate approaches give
rise to the same tests. These tests are provided for all effects in the MODEL statement, as well as for any
CONTRASTs specified. The ANOVA table for these tests is labeled “Tests of Hypotheses for Between
Subjects Effects” in the PROC GLM results. These tests are constructed by first adding together the dependent
variables in the model. Then an analysis of variance is performed on the sum divided by the square root of
the number of dependent variables. For example, the statements

model y1-y3=group;
repeated time;

give a one-way analysis of variance that uses .Y1C Y 2C Y 3/=
p
3 as the dependent variable for performing

tests of hypothesis on the between-subject effect GROUP. Tests for between-subject effects are equivalent to
tests of the hypothesis LˇM D 0, where M is simply a vector of 1s.

For within-subject effects and for within-subject-by-between-subject interaction effects, the univariate and
multivariate approaches yield different tests. These tests are provided for the within-subject effects and for
the interactions between these effects and the other effects in the MODEL statement, as well as for any
CONTRASTs specified. The univariate tests are displayed in a table labeled “Univariate Tests of Hypotheses
for Within Subject Effects.” Results for multivariate tests are displayed in a table labeled “Repeated Measures
Analysis of Variance.”

The multivariate tests provided for within-subjects effects and interactions involving these effects are Wilks’
lambda, Pillai’s trace, Hotelling-Lawley trace, and Roy’s greatest root. For further details on these four
statistics, see the “Multivariate Tests” section in Chapter 4, “Introduction to Regression Procedures.” As an
example, the statements

model y1-y3=group;
repeated time;

produce multivariate tests for the within-subject effect TIME and the interaction TIME*GROUP.

The multivariate tests for within-subject effects are produced by testing the hypothesis LˇM D 0, where the
L matrix is the usual matrix corresponding to the Type I, Type II, Type III, or Type IV hypotheses test, and
the M matrix is one of several matrices depending on the transformation that you specify in the REPEATED
statement. These multivariate tests require that the column rank of M be less than or equal to the number of
error degrees of freedom. Besides that, the only assumption required for valid tests is that the dependent
variables in the model have a multivariate normal distribution with a common covariance matrix across the
between-subject effects.
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The univariate tests for within-subject effects and interactions involving these effects require some assump-
tions for the probabilities provided by the ordinary F tests to be correct. Specifically, these tests require certain
patterns of covariance matrices, known as Type H covariances (Huynh and Feldt 1970). Data with these
patterns in the covariance matrices are said to satisfy the Huynh-Feldt condition. You can test this assumption
(and the Huynh-Feldt condition) by applying a sphericity test (Anderson 1958) to any set of variables defined
by an orthogonal contrast transformation. Such a set of variables is known as a set of orthogonal components.
When you use the PRINTE option in the REPEATED statement, this sphericity test is applied both to the
transformed variables defined by the REPEATED statement and to a set of orthogonal components if the
specified transformation is not orthogonal. It is the test applied to the orthogonal components that is important
in determining whether your data have a Type H covariance structure. When there are only two levels of
the within-subject effect, there is only one transformed variable, and a sphericity test is not needed. The
sphericity test is labeled “Test for Sphericity” in the output.

If your data satisfy the preceding assumptions, use the usual F tests to test univariate hypotheses for the
within-subject effects and associated interactions.

If your data do not satisfy the assumption of Type H covariance, an adjustment to numerator and denominator
degrees of freedom can be used. Several such adjustments, based on a degrees-of-freedom adjustment factor
known as � (epsilon) (Box 1954), are provided in PROC GLM. All these adjustments estimate � and then
multiply the numerator and denominator degrees of freedom by this estimate before determining significance
levels for the F tests. Significance levels associated with the adjusted tests are labeled “Adj Pr > F” in the
output. Two such adjustments are displayed. One is the maximum likelihood estimate of Box’s � factor,
which is known to be conservative, possibly very much so. The other adjustment is intended to be unbiased
although possibly at the cost of being liberal. The first adjustment is labeled as the “Greenhouse-Geisser
Epsilon.” It has the form

O�GG D
trace2.E/=b

trace.E2/

where E is the error matrix for the corresponding multivariate test and b is the degrees of freedom for the
hypothesis being tested. O�GG was initially proposed for use in data analysis by Greenhouse and Geisser
(1959). Significance levels associated with F tests thus adjusted are labeled “G-G” in the output.

Huynh and Feldt (1976) showed that O�GG tends to be biased downward (that is, conservative), especially for
small samples. Alternative estimates have been proposed to overcome this conservative bias, and there are
several options for which estimate to display along with O�GG.

• Huynh and Feldt (1976) proposed an estimate of Box’s epsilon, constructed using estimators of its
numerator and denominator that are intended to be unbiased. The Huynh-Feldt epsilon has the form of
a modification of the Greenhouse-Geisser epsilon,

O�HF D
nb O�GG � 2

b.DFE � b O�GG/

where n is the number of subjects and DFE is the degrees of freedom for error. The numerator
of this estimate is precisely unbiased only when there are no between-subject effects, but O�HF is
still often employed even with nontrivial between-subject models; it was the only unbiased epsilon
alternative in SAS/STAT releases before SAS/STAT 9.22. The Huynh-Feldt epsilon is no longer the
default, but you can request it and its corresponding F test by using the UEPSDEF=HF option in the
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REPEATED statement. The estimate is labeled “Huynh-Feldt Epsilon” in the PROC GLM output, and
the significance levels associated with adjusted F tests are labeled “H-F.”

• Lecoutre (1991) gave the unbiased form of the numerator of Box’s epsilon when there is one between-
subject effect. The correct form of Huynh and Feldt’s idea in this case is

O�HFL D
.DFEC 1/b O�GG � 2

b.DFE � b O�GG/

More recently, Gribbin (2007) showed that O�HFL applies to general between-subject models, and Chi
et al. (2012) showed that it extends even to situations where the number of error degrees of freedom is
less than the column rank of the within-subject contrast matrix. Thus, the Lecoutre correction of the
Huynh-Feldt epsilon is displayed by default along with the Greenhouse-Geisser epsilon; you can also
explicitly request it by using the UEPSDEF=HFL option in the REPEATED statement. The estimate
is labeled “Huynh-Feldt-Lecoutre Epsilon” in the PROC GLM output, and the significance levels
associated with adjusted F tests are labeled “H-F-L.”

• Finally, Chi et al. (2012) suggest that Box’s epsilon might be better estimated by replacing the reciprocal
of an unbiased form of the denominator with an approximately unbiased form of the reciprocal itself.
The resulting estimator can be written as a multiple of the corrected Huynh-Feldt epsilon O�HFL,

O�CM D O�HFL.�a � 2/.�a � 4/=�
2
a

where �a D .DFE�1/CDFE.DFE�1/=2. Simulations indicate that O�CM does a good job of providing
accurate p-values without being either too conservative or too liberal. Over a wide range of cases, it is
never much worse than any other alternative epsilon and often much better. You can request that the
Chi-Muller epsilon estimate and its corresponding F test be displayed by using the UEPSDEF=CM
option in the REPEATED statement. The estimate is labeled “Chi-Muller Epsilon” in the PROC GLM
output, and the significance levels associated with adjusted F tests are labeled “C-M.”

Although � must be in the range of 0 to 1, the three approximately unbiased estimators can be outside
this range. When any of these estimators is greater than 1, a value of 1 is used in all calculations for
probabilities—in other words, the probabilities are not adjusted. Additionally, if O�CM < 1=b, then the degrees
of freedom are adjusted by 1=b instead of O�CM.

In summary, if your data do not meet the assumptions, use adjusted F tests. However, when you strongly
suspect that your data might not have Type H covariance, all these univariate tests should be interpreted
cautiously. In such cases, you should consider using the multivariate tests instead.

The univariate sums of squares for hypotheses involving within-subject effects can be easily calculated from
the H and E matrices corresponding to the multivariate tests described in the section “Multivariate Analysis
of Variance” on page 3492. If the M matrix is orthogonal, the univariate sums of squares is calculated as the
trace (sum of diagonal elements) of the appropriate H matrix; if it is not orthogonal, PROC GLM calculates
the trace of the H matrix that results from an orthogonal M matrix transformation. The appropriate error
term for the univariate F tests is constructed in a similar way from the error SSCP matrix and is labeled
Error(factorname), where factorname indicates the M matrix that is used in the transformation.

When the design specifies more than one repeated measures factor, PROC GLM computes the M matrix for a
given effect as the direct (Kronecker) product of the M matrices defined by the REPEATED statement if the
factor is involved in the effect or as a vector of 1s if the factor is not involved. The test for the main effect of
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a repeated measures factor is constructed using an L matrix that corresponds to a test that the mean of the
observation is zero. Thus, the main effect test for repeated measures is a test that the means of the variables
defined by the M matrix are all equal to zero, while interactions involving repeated measures effects are tests
that the between-subjects factors involved in the interaction have no effect on the means of the transformed
variables defined by the M matrix. In addition, you can specify other L matrices to test hypotheses of interest
by using the CONTRAST statement, since hypotheses defined by CONTRAST statements are also tested
in the REPEATED analysis. To see which combinations of the original variables the transformed variables
represent, you can specify the PRINTM option in the REPEATED statement. This option displays the
transpose of M, which is labeled as M in the PROC GLM results. The tests produced are the same for any
choice of transformation .M/ matrix specified in the REPEATED statement; however, depending on the
nature of the repeated measurements being studied, a particular choice of transformation matrix, coupled
with the CANONICAL or SUMMARY option, can provide additional insight into the data being studied.

Transformations Used in Repeated Measures Analysis of Variance

As mentioned in the specifications of the REPEATED statement, several different M matrices can be generated
automatically, based on the transformation that you specify in the REPEATED statement. Remember that both
the univariate and multivariate tests that PROC GLM performs are unaffected by the choice of transformation;
the choice of transformation is important only when you are trying to study the nature of a repeated measures
effect, particularly with the CANONICAL and SUMMARY options. If one of these matrices does not meet
your needs for a particular analysis, you might want to use the M= option in the MANOVA statement to
perform the tests of interest.

The following sections describe the transformations available in the REPEATED statement, provide an
example of the M matrix that is produced, and give guidelines for the use of the transformation. As in the
PROC GLM output, the displayed matrix is labeled M. This is the M0 matrix.

CONTRAST Transformation
This is the default transformation used by the REPEATED statement. It is useful when one level of the
repeated measures effect can be thought of as a control level against which the others are compared. For
example, if five drugs are administered to each of several animals and the first drug is a control or placebo,
the statements

proc glm;
model d1-d5= / nouni;
repeated drug 5 contrast(1) / summary printm;

run;

produce the following M matrix:

M D

2664
�1 1 0 0 0

�1 0 1 0 0

�1 0 0 1 0

�1 0 0 0 1

3775
When you examine the analysis of variance tables produced by the SUMMARY option, you can tell which of
the drugs differed significantly from the placebo.
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POLYNOMIAL Transformation
This transformation is useful when the levels of the repeated measure represent quantitative values of a
treatment, such as dose or time. If the levels are unequally spaced, level values can be specified in parentheses
after the number of levels in the REPEATED statement. For example, if five levels of a drug corresponding
to 1, 2, 5, 10, and 20 milligrams are administered to different treatment groups, represented by the variable
group, the statements

proc glm;
class group;
model r1-r5=group / nouni;
repeated dose 5 (1 2 5 10 20) polynomial / summary printm;

run;

produce the following M matrix:

M D

2664
�0:4250 �0:3606 �0:1674 0:1545 0:7984

0:4349 0:2073 �0:3252 �0:7116 0:3946

�0:4331 0:1366 0:7253 �0:5108 0:0821

0:4926 �0:7800 0:3743 �0:0936 0:0066

3775
The SUMMARY option in this example provides univariate ANOVAs for the variables defined by the rows
of this M matrix. In this case, they represent the linear, quadratic, cubic, and quartic trends for dose and are
labeled dose_1, dose_2, dose_3, and dose_4, respectively.

HELMERT Transformation
Since the Helmert transformation compares a level of a repeated measure to the mean of subsequent levels, it
is useful when interest lies in the point at which responses cease to change. For example, if four levels of a
repeated measures factor represent responses to treatments administered over time to males and females, the
statements

proc glm;
class sex;
model resp1-resp4=sex / nouni;
repeated trtmnt 4 helmert / canon printm;

run;

produce the following M matrix:

M D

24 1 �0:33333 �0:33333 �0:33333

0 1 �0:50000 �0:50000

0 0 1 �1

35

MEAN Transformation
This transformation can be useful in the same types of situations in which the CONTRAST transformation is
useful. If you substitute the following statement for the REPEATED statement shown in the CONTRAST
Transformation section,
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repeated drug 5 mean / printm;

the following M matrix is produced:

M D

2664
1 �0:25 �0:25 �0:25 �0:25

�0:25 1 �0:25 �0:25 �0:25

�0:25 �0:25 1 �0:25 �0:25

�0:25 �0:25 �0:25 1 �0:25

3775
As with the CONTRAST transformation, if you want to omit a level other than the last, you can specify it in
parentheses after the keyword MEAN in the REPEATED statement.

PROFILE Transformation
When a repeated measure represents a series of factors administered over time, but a polynomial response
is unreasonable, a profile transformation might prove useful. As an example, consider a training program
in which four different methods are employed to teach students at several different schools. The repeated
measure is the score on tests administered after each of the methods is completed. The statements

proc glm;
class school;
model t1-t4=school / nouni;
repeated method 4 profile / summary nom printm;

run;

produce the following M matrix:

M D

24 1 �1 0 0

0 1 �1 0

0 0 1 �1

35
To determine the point at which an improvement in test scores takes place, you can examine the analyses of
variance for the transformed variables representing the differences between adjacent tests. These analyses are
requested by the SUMMARY option in the REPEATED statement, and the variables are labeled METHOD.1,
METHOD.2, and METHOD.3.

Random-Effects Analysis
When some model effects are random (that is, assumed to be sampled from a normal population of effects),
you can specify these effects in the RANDOM statement in order to compute the expected values of mean
squares for various model effects and contrasts and, optionally, to perform random-effects analysis of variance
tests.

PROC GLM versus PROC MIXED for Random-Effects Analysis

Other SAS procedures that can be used to analyze models with random effects include the MIXED and
VARCOMP procedures. Note that, for these procedures, the random-effects specification is an integral part
of the model, affecting how both random and fixed effects are fit; for PROC GLM, the random effects are
treated in a post hoc fashion after the complete fixed-effect model is fit. This distinction affects other features
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in the GLM procedure, such as the results of the LSMEANS and ESTIMATE statements. These features
assume that all effects are fixed, so that all tests and estimability checks for these statements are based on a
fixed-effects model, even when you use a RANDOM statement. Standard errors for estimates and LS-means
based on the fixed-effects model might be significantly smaller than those based on a true random-effects
model; in fact, some functions that are estimable under a true random-effects model might not even be
estimable under the fixed-effects model. Therefore, you should use the MIXED procedure to compute tests
involving these features that take the random effects into account; see Chapter 65, “The MIXED Procedure,”
for more information.

Note that, for balanced data, the test statistics computed when you specify the TEST option in the RANDOM
statement have an exact F distribution only when the design is balanced; for unbalanced designs, the p values
for the F tests are approximate. For balanced data, the values obtained by PROC GLM and PROC MIXED
agree; for unbalanced data, they usually do not.

Computation of Expected Mean Squares for Random Effects

The RANDOM statement in PROC GLM declares one or more effects in the model to be random rather than
fixed. By default, PROC GLM displays the coefficients of the expected mean squares for all terms in the
model. In addition, when you specify the TEST option in the RANDOM statement, the procedure determines
what tests are appropriate and provides F ratios and probabilities for these tests.

The expected mean squares are computed as follows. Consider the model

Y D X0ˇ0 CX1ˇ1 C � � � CXkˇk C �

where ˇ0 represents the fixed effects and ˇ1;ˇ2; � � � ; � represent the random effects. Random ef-
fects are assumed to be normally and independently distributed. For any L in the row space of X D
.X0 j X1 j X2 j � � � j Xk/, the expected value of the sum of squares for Lˇ is

E.SSL/ D ˇ00C
0
0C0ˇ0 C SSQ.C1/�21 C SSQ.C2/�22 C � � � C SSQ.Ck/�2k C rank.L/�2�

where C is of the same dimensions as L and is partitioned as the X matrix. In other words,

C D .C0 j C1 j � � � j Ck/

Furthermore, C D ML, where M is the inverse of the lower triangular Cholesky decomposition matrix of
L.X0X/�L0. SSQ(A) is defined as tr.A0A/.

For the model in the following MODEL statement

model Y=A B(A) C A*C;
random B(A);

with B(A) declared as random, the expected mean square of each effect is displayed as

Var(Error)C constant � Var.B.A//CQ.A;C;A � C/

If any fixed effects appear in the expected mean square of an effect, the letter Q followed by the list of fixed
effects in the expected value is displayed. The actual numeric values of the quadratic form (Q matrix) can be
displayed using the Q option.
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To determine appropriate means squares for testing the effects in the model, the TEST option in the RANDOM
statement performs the following steps:

1. First, it forms a matrix of coefficients of the expected mean squares of those effects that were declared
to be random.

2. Next, for each effect in the model, it determines the combination of these expected mean squares that
produce an expectation that includes all the terms in the expected mean square of the effect of interest
except the one corresponding to the effect of interest. For example, if the expected mean square of an
effect A*B is

Var(Error)C 3 � Var.A/C Var.A � B/

PROC GLM determines the combination of other expected mean squares in the model that has
expectation

Var(Error)C 3 � Var.A/

3. If the preceding criterion is met by the expected mean square of a single effect in the model (as is often
the case in balanced designs), the F test is formed directly. In this case, the mean square of the effect
of interest is used as the numerator, the mean square of the single effect with an expected mean square
that satisfies the criterion is used as the denominator, and the degrees of freedom for the test are simply
the usual model degrees of freedom.

4. When more than one mean square must be combined to achieve the appropriate expectation, an
approximation is employed to determine the appropriate degrees of freedom (Satterthwaite 1946).
When effects other than the effect of interest are listed after the Q in the output, tests of hypotheses
involving the effect of interest are not valid unless all other fixed effects involved in it are assumed to
be zero. When tests such as these are performed by using the TEST option in the RANDOM statement,
a note is displayed reminding you that further assumptions are necessary for the validity of these
tests. Remember that although the tests are not valid unless these assumptions are made, this does
not provide a basis for these assumptions to be true. The particulars of a given experiment must be
examined to determine whether the assumption is reasonable.

For further theoretical discussion, see Goodnight and Speed (1978), Milliken and Johnson (1984, Chapters
22 and 23), and Hocking (1985).

Sum-to-Zero Assumptions

The formulation and parameterization of the expected mean squares for random effects in mixed models are
ongoing items of controversy in the statistical literature. Confusion arises over whether or not to assume that
terms involving fixed effects sum to zero. Cornfield and Tukey (1956); Winer (1971), and others assume that
they do sum to zero; Searle (1971); Hocking (1973), and others (including PROC GLM) do not.

Different assumptions about these sum-to-zero constraints can lead to different expected mean squares for
certain terms, and hence to different F and p values.

For arguments in favor of not assuming that terms involving fixed effects sum to zero, see Section 9.7 of
Searle (1971) and Sections 1 and 4 of McLean, Sanders, and Stroup (1991). Other references are Hartley and
Searle (1969) and Searle, Casella, and McCulloch (1992).
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Computing Type I, II, and IV Expected Mean Squares

When you use the RANDOM statement, by default the GLM procedure produces the Type III expected mean
squares for model effects and for contrasts specified before the RANDOM statement. In order to obtain
expected values for other types of mean squares, you need to specify which types of mean squares are of
interest in the MODEL statement. For example, in order to obtain the Type IV expected mean squares for
effects in the RANDOM and CONTRAST statements, specify the SS4 option in the MODEL statement. If
you want both Type III and Type IV expected mean squares, specify both the SS3 and SS4 options in the
MODEL statement. Since the estimable function basis is not automatically calculated for Type I and Type II
SS, the E1 (for Type I) or E2 (for Type II) option must be specified in the MODEL statement in order for the
RANDOM statement to produce the expected mean squares for the Type I or Type II sums of squares. Note
that it is important to list the fixed effects first in the MODEL statement when requesting the Type I expected
mean squares.

For example, suppose you have a two-way design with factors A and B in which the main effect for B and
the interaction are random. In order to compute the Type III expected mean squares (in addition to the
fixed-effect analysis), you can use the following statements:

proc glm;
class A B;
model Y = A B A*B;
random B A*B;

run;

Suppose you use the SS4 option in the MODEL statement, as follows:

proc glm;
class A B;
model Y = A B A*B / ss4;
random B A*B;

run;

Then only the Type IV expected mean squares are computed (as well as the Type IV fixed-effect tests). For
the Type I expected mean squares, you can use the following statements:

proc glm;
class A B;
model Y = A B A*B / e1;
random B A*B;

run;

For each of these cases, in order to perform random-effect analysis of variance tests for each effect specified
in the model, you need to specify the TEST option in the RANDOM statement, as follows:

proc glm;
class A B;
model Y = A B A*B;
random B A*B / test;

run;

The GLM procedure automatically determines the appropriate error term for each test, based on the expected
mean squares.
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Missing Values
For an analysis involving one dependent variable, PROC GLM uses an observation if values are nonmissing
for that dependent variable and all the classification variables.

For an analysis involving multiple dependent variables without the MANOVA or REPEATED statement, or
without the MANOVA option in the PROC GLM statement, a missing value in one dependent variable does
not eliminate the observation from the analysis of other nonmissing dependent variables. On the other hand,
for an analysis with the MANOVA or REPEATED statement, or with the MANOVA option in the PROC
GLM statement, PROC GLM uses an observation if values are nonmissing for all dependent variables and all
the variables used in independent effects.

During processing, the GLM procedure groups the dependent variables by their pattern of missing values
across observations so that sums and crossproducts can be collected in the most efficient manner.

If your data have different patterns of missing values among the dependent variables, interactivity is disabled.
This can occur when some of the variables in your data set have missing values and either of the following
conditions obtain:

• You do not use the MANOVA option in the PROC GLM statement.

• You do not use a MANOVA or REPEATED statement before the first RUN statement.

Note that the REG procedure handles missing values differently in this case; see Chapter 85, “The REG
Procedure,” for more information.

Computational Resources

Memory

For large problems, most of the memory resources are required for holding the X0X matrix of the sums
and crossproducts. The section “Parameterization of PROC GLM Models” on page 3456 describes how
columns of the X matrix are allocated for various types of effects. For each level that occurs in the data for a
combination of classification variables in a given effect, a row and a column for X0X are needed.

The following example illustrates the calculation. Suppose A has 20 levels, B has 4 levels, and C has 3 levels.
Then consider the model

proc glm;
class A B C;
model Y1 Y2 Y3=A B A*B C A*C B*C A*B*C X1 X2;

run;
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The X0X matrix (bordered by X0Y and Y0Y) can have as many as 425 rows and columns:

1 for the intercept term

20 for A

4 for B

80 for A � B

3 for C

60 for A � C

12 for B � C

240 for A � B � C

2 for X1 and X2 (continuous variables)

3 for Y1;Y2; and Y3 (dependent variables)

The matrix has 425 rows and columns only if all combinations of levels occur for each effect in the model.
For m rows and columns, 8m2 bytes are needed for crossproducts. In this case, 8 � 4252 D 1; 445; 000 bytes,
or about 1; 445; 000=1024 D 1411K.

The required memory grows as the square of the number of columns of X; most of the memory is for the
A*B*C interaction. Without A*B*C, you have 185 columns and need 268K for X0X. Without either A*B*C
or A*B, you need 86K. If A is recoded to have 10 levels, then the full model has only 220 columns and
requires 378K.

The second time that a large amount of memory is needed is when Type III, Type IV, or contrast sums of
squares are being calculated. This memory requirement is a function of the number of degrees of freedom of
the model being analyzed and the maximum degrees of freedom for any single source. Let Rank equal the
sum of the model degrees of freedom, MaxDF be the maximum number of degrees of freedom for any single
source, and Ny be the number of dependent variables in the model. Then the memory requirement in bytes is
8 times

Ny � Rank C .Rank � .RankC 1// =2

C MaxDF � Rank

C .MaxDF � .MaxDFC 1// =2

C MaxDF �Ny

The first two components of this formula are for the estimable model coefficients and their variance; the rest
correspond to L, L.X0X/�L0, and Lb in the computation of SS.Lˇ D 0/ D .Lb/0.L.X0X/�L0/�1.Lb/. If
the operating system enables SAS to run parallel computational threads on multiple CPUs, then GLM will
attempt to allocate another 8 � Rank � Rank bytes in order to perform these calculations in parallel. If this
much memory is not available, then the estimability calculations are performed in a single thread.

Unfortunately, these quantities are not available when the X0X matrix is being constructed, so PROC GLM
might occasionally request additional memory even after you have increased the memory allocation available
to the program.
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If you have a large model that exceeds the memory capacity of your computer, these are your options:

• Eliminate terms, especially high-level interactions.

• Reduce the number of levels for variables with many levels.

• Use the ABSORB statement for parts of the model that are large.

• Use the REPEATED statement for repeated measures variables.

• Use PROC ANOVA or PROC REG rather than PROC GLM, if your design allows.

A related limitation is that for any model effect involving classification variables (interactions as well as main
effects), the number of levels cannot exceed 32,767. This is because GLM internally indexes effect levels
with signed short (16-bit) integers, for which the maximum value is 215 � 1 D 32; 767.

CPU Time

Typically, if the GLM procedure requires a lot of CPU time, it will be for one of several reasons. Suppose that
the input data has n rows (observations) and the model has E effects that together produce a design matrix
X with m columns. Then if m or n is relatively large, the procedure might spend a lot of time in any of the
following areas:

• collecting the sums of squares and crossproducts

• solving the normal equations

• computing the Type III tests

The time required for collecting sums and crossproducts is difficult to calculate because it is a complicated
function of the model. The worst case occurs if all columns are continuous variables, involving nm2=2
multiplications and additions. If the columns are levels of a classification, then only m sums might be
needed, but a significant amount of time might be spent in look-up operations. Solving the normal equations
requires time for approximately m3=2 multiplications and additions, and the number of operations required
to compute the Type III tests is also proportional to both E and m3.

Suppose that you know that Type IV sums of squares are appropriate for the model you are analyzing (for
example, if your design has no missing cells). You can specify the SS4 option in your MODEL statement,
which saves CPU time by requesting the Type IV sums of squares instead of the more computationally
burdensome Type III sums of squares. This proves especially useful if you have a factor in your model that
has many levels and is involved in several interactions.

If the operating system enables SAS to run parallel computational threads on multiple CPUs, then both the
solution of the normal equations and the computation of Type III tests can take advantage of this to reduce the
computational time for large models. In solving the normal equations, the fundamental row sweep operations
(Goodnight 1979) are performed in parallel. In computing the Type III tests, both the orthogonalization
for the estimable functions and the sums of squares calculation have been parallelized (if there is sufficient
memory).
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The reduction in computational time due to parallel processing depends on the size of the model, the number
of processors, and the parallel architecture of the operating system. If the model is large enough that the
overwhelming proportion of CPU time for the procedure is accounted for in solving the normal equations
and/or computing the Type III tests, then you can expect a reduction in computational time approximately
inversely proportional to the number of CPUs. However, as you increase the number of processors, the
efficiency of this scaling can be reduced by several effects. One mitigating factor is a purely mathematical one
known as “Amdahl’s law,” which is related to the fact that only part of the processing time for the procedure
can be parallelized. Even taking Amdahl’s law into account, the parallelization efficiency can be reduced
by cache effects related to how fast the multiple processors can access memory. See Cohen (2002) for a
discussion of these issues. For additional information about parallel processing in SAS, see the chapter on
“Support for Parallel Processing” in SAS Language Reference: Concepts.

Computational Method
Let X represent the n � p design matrix and Y the n � 1 vector of dependent variables. (See the section
“Parameterization of PROC GLM Models” on page 3456 for information about how X is formed from your
model specification.)

The normal equations X0Xˇ D X0Y are solved using a modified sweep routine that produces a generalized
inverse .X0X/� and a solution b D .X0X/�X0y. The modification is that rows and columns corresponding to
diagonal elements that are found during sweeping to be zero (or within the expected level of numerical error
of zero) are zeroed out. The .X0X/� produced by this procedure satisfies the following two equations:

.X0X/ .X0X/�.X0X/ D .X0X/

.X0X/�.X0X/ .X0X/� D .X0X/�

Pringle and Rayner (1971) call a generalized inverse with these characteristics a g2-inverse, and this is the
term usually used in SAS documentation and output. Urquhart (1968) uses the term reflexive g-inverse to
emphasize that .X0X/� is a generalized inverse of X0X in the same way that X0X is a generalized inverse of
.X0X/�. Note that a g2-inverse is not necessarily unique: if X0X is singular, then sweeping the matrix in a
different order will result in a different g2-inverse that also satisfies the two preceding equations.

For each effect in the model, a matrix L is computed such that the rows of L are estimable. Tests of the
hypothesis Lˇ D 0 are then made by first computing

SS.Lˇ D 0/ D .Lb/0.L.X0X/�L0/�1.Lb/

and then computing the associated F value by using the mean squared error.

Output Data Sets

OUT= Data Set Created by the OUTPUT Statement

The OUTPUT statement produces an output data set that contains the following:

• all original data from the SAS data set input to PROC GLM
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• the new variables corresponding to the diagnostic measures specified with statistics keywords in the
OUTPUT statement (PREDICTED=, RESIDUAL=, and so on)

With multiple dependent variables, a name can be specified for any of the diagnostic measures for each of the
dependent variables in the order in which they occur in the MODEL statement.

For example, suppose that the input data set A contains the variables y1, y2, y3, x1, and x2. Then you can use
the following statements:

proc glm data=A;
model y1 y2 y3=x1;
output out=out p=y1hat y2hat y3hat

r=y1resid lclm=y1lcl uclm=y1ucl;
run;

The output data set out contains y1, y2, y3, x1, x2, y1hat, y2hat, y3hat, y1resid, y1lcl, and y1ucl. The variable
x2 is output even though it is not used by PROC GLM. Although predicted values are generated for all three
dependent variables, residuals are output for only the first dependent variable.

When any independent variable in the analysis (including all class variables) is missing for an observation,
then all new variables that correspond to diagnostic measures are missing for the observation in the output
data set.

When a dependent variable in the analysis is missing for an observation, then some new variables that
correspond to diagnostic measures are missing for the observation in the output data set, and some are
still available. Specifically, in this case, the new variables that correspond to COOKD, COVRATIO,
DFFITS, PRESS, R, RSTUDENT, STDR, and STUDENT are missing in the output data set. The variables
corresponding to H, LCL, LCLM, P, STDI, STDP, UCL, and UCLM are not missing.

OUT= Data Set Created by the LSMEANS Statement

The OUT= option in the LSMEANS statement produces an output data set that contains the following:

• the unformatted values of each classification variable specified in any effect in the LSMEANS statement

• a new variable, LSMEAN, which contains the LS-mean for the specified levels of the classification
variables

• a new variable, STDERR, which contains the standard error of the LS-mean

The variances and covariances among the LS-means are also output when the COV option is specified along
with the OUT= option. In this case, only one effect can be specified in the LSMEANS statement, and the
following variables are included in the output data set:

• new variables, COV1, COV2, . . . , COVn, where n is the number of levels of the effect specified in
the LSMEANS statement. These variables contain the covariances of each LS-mean with every other
LS-mean.

• a new variable, NUMBER, which provides an index for each observation to identify the covariances
that correspond to that observation. The covariances for the observation with NUMBER equal to n can
be found in the variable COVn.
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OUTSTAT= Data Set

The OUTSTAT= option in the PROC GLM statement produces an output data set that contains the following:

• the BY variables, if any

• _TYPE_, a new character variable. _TYPE_ can take the values ‘SS1’, ‘SS2’, ‘SS3’, ‘SS4’, or ‘CON-
TRAST’, corresponding to the various types of sums of squares generated, or the values ‘CANCORR’,
‘STRUCTUR’, or ‘SCORE’, if a canonical analysis is performed through the MANOVA statement and
no M= matrix is specified.

• _SOURCE_, a new character variable. For each observation in the data set, _SOURCE_ contains the
name of the model effect or contrast label from which the corresponding statistics are generated.

• _NAME_, a new character variable. For each observation in the data set, _NAME_ contains the name
of one of the dependent variables in the model or, in the case of canonical statistics, the name of one of
the canonical variables (CAN1, CAN2, and so forth).

• four new numeric variables: SS, DF, F, and PROB, containing sums of squares, degrees of freedom,
F values, and probabilities, respectively, for each model or contrast sum of squares generated in the
analysis. For observations resulting from canonical analyses, these variables have missing values.

• if there is more than one dependent variable, then variables with the same names as the dependent
variables represent the following:

– for _TYPE_=SS1, SS2, SS3, SS4, or CONTRAST, the crossproducts of the hypothesis matrices

– for _TYPE_=CANCORR, canonical correlations for each variable

– for _TYPE_=STRUCTUR, coefficients of the total structure matrix

– for _TYPE_=SCORE, raw canonical score coefficients

The output data set can be used to perform special hypothesis tests (for example, with the IML procedure in
SAS/IML software), to reformat output, to produce canonical variates (through the SCORE procedure), or to
rotate structure matrices (through the FACTOR procedure).

Displayed Output
The GLM procedure produces the following output by default:

• The overall analysis-of-variance table breaks down the Total Sum of Squares for the dependent variable
into the portion attributed to the Model and the portion attributed to Error.

• The Mean Square term is the Sum of Squares divided by the degrees of freedom (DF).

• The Mean Square for Error is an estimate of �2, the variance of the true errors.

• The F Value is the ratio produced by dividing the Mean Square for the Model by the Mean Square
for Error. It tests how well the model as a whole (adjusted for the mean) accounts for the dependent
variable’s behavior. An F test is a joint test to determine that all parameters except the intercept are
zero.
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• A small significance probability, Pr > F, indicates that some linear function of the parameters is
significantly different from zero.

• R-Square, R2, measures how much variation in the dependent variable can be accounted for by the
model. R square, which can range from 0 to 1, is the ratio of the sum of squares for the model to the
corrected total sum of squares. In general, the larger the value of R square, the better the model’s fit.

• Coeff Var, the coefficient of variation, which describes the amount of variation in the population, is 100
times the standard deviation estimate of the dependent variable, Root MSE (Mean Square for Error),
divided by the Mean. The coefficient of variation is often a preferred measure because it is unitless.

• Root MSE estimates the standard deviation of the dependent variable (or equivalently, the error term)
and equals the square root of the Mean Square for Error.

• Mean is the sample mean of the dependent variable.

These tests are used primarily in analysis-of-variance applications:

• The Type I SS (sum of squares) measures incremental sums of squares for the model as each variable
is added.

• The Type III SS is the sum of squares for a balanced test of each effect, adjusted for every other effect.

These items are used primarily in regression applications:

• The Estimates for the model Parameters (the intercept and the coefficients)

• t Value is the Student’s t value for testing the null hypothesis that the parameter (if it is estimable)
equals zero.

• The significance level, Pr > |t|, is the probability of getting a larger value of t if the parameter is truly
equal to zero. A very small value for this probability leads to the conclusion that the independent
variable contributes significantly to the model.

• The Standard Error is the square root of the estimated variance of the estimate of the true value of the
parameter.

Other portions of output are discussed in the following examples.

ODS Table Names
PROC GLM assigns a name to each table it creates. You can use these names to reference the table when
using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed
in Table 45.14. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”
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Table 45.14 ODS Tables Produced by PROC GLM
ODS Table Name Description Statement / Option
Aliasing Type 1,2,3,4 aliasing structure MODEL / (E1 E2 E3 or E4) and

ALIASING
AltErrContrasts ANOVA table for contrasts with

alternative error
CONTRAST / E=

AltErrTests ANOVA table for tests with alter-
native error

TEST / E=

Bartlett Bartlett’s homogeneity of vari-
ance test

MEANS / HOVTEST=BARTLETT

CLDiffs Multiple comparisons of pairwise
differences

MEANS / CLDIFF or DUNNETT or
(Unequal cells and not LINES)

CLDiffsInfo Information for multiple compar-
isons of pairwise differences

MEANS / CLDIFF or DUNNETT or
(Unequal cells and not LINES)

CLMeans Multiple comparisons of means
with confidence/comparison
interval

MEANS / CLM

CLMeansInfo Information for multiple com-
parison of means with confi-
dence/comparison interval

MEANS / CLM

CanAnalysis Canonical analysis (MANOVA or REPEATED)
/ CANONICAL

CanCoef Canonical coefficients (MANOVA or REPEATED)
/ CANONICAL

CanStructure Canonical structure (MANOVA or REPEATED)
/ CANONICAL

CharStruct Characteristic roots and vectors (MANOVA / not CANONICAL) or
(REPEATED / PRINTRV)

ClassLevels Classification variable levels CLASS statement
ContrastCoef L matrix for contrast or estimate CONTRAST / E or ESTIMATE / E
Contrasts ANOVA table for contrasts CONTRAST statement
DependentInfo Simultaneously analyzed depen-

dent variables
default when there are multiple depen-
dent variables with different patterns
of missing values

Diff PDiff matrix of least squares
means

LSMEANS / PDIFF=ALL and
more than two LS-means

Epsilons Greenhouse-Geisser and Huynh-
Feldt epsilons

REPEATED statement

ErrorSSCP Error SSCP matrix (MANOVA or REPEATED)
/ PRINTE

EstFunc Type 1,2,3,4 estimable functions MODEL / (E1 E2 E3 or E4)
Estimates Estimate statement results ESTIMATE statement
ExpectedMeanSquares Expected mean squares RANDOM statement
FitStatistics R-Square, Coeff Var, Root MSE,

and dependent mean
default

GAliasing General form of aliasing
structure

MODEL / E and ALIASING
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Table 45.14 continued
ODS Table Name Description Statement / Option
GEstFunc General form of estimable

functions
MODEL / E

HOVFTest Homogeneity of variance
ANOVA

MEANS / HOVTEST

HypothesisSSCP Hypothesis SSCP matrix (MANOVA or REPEATED)
/ PRINTH

InvXPX inv(X0X) matrix MODEL / INVERSE
LSMeanCL Confidence interval for LS-means LSMEANS / CL
LSMeanCoef Coefficients of least squares

means
LSMEANS / E

LSMeanDiffCL Confidence interval for LS-mean
differences

LSMEANS / PDIFF and CL

LSMeans Least squares means LSMEANS statement
LSMLines Least squares means comparison

lines
LSMEANS / PDIFF=ALL LINES

MANOVATransform Multivariate transformation
matrix

MANOVA / M=

MCLines Multiple comparisons LINES out-
put

MEANS / LINES or ((DUNCAN or
WALLER or SNK or REGWQ) and
not (CLDIFF or CLM))
or (Equal cells and not CLDIFF)

MCLinesInfo Information for multiple compari-
son LINES output

MEANS / LINES or ((DUNCAN or
WALLER or SNK or REGWQ) and
not (CLDIFF or CLM))
or (Equal cells and not CLDIFF)

MCLinesRange Ranges for multiple range MC
tests

MEANS / LINES or ((DUNCAN or
WALLER or SNK or REGWQ) and
not (CLDIFF or CLM))
or (Equal cells and not CLDIFF)

MatrixRepresentation X matrix element
representation

as needed for other options

Means Group means MEANS statement
ModelANOVA ANOVA for model terms default
MultStat Multivariate tests MANOVA statement
NObs Number of observations default
OverallANOVA Overall ANOVA default
OverallEffectSize Effect size measures for overall

ANOVA
MODEL / EFFECTSIZE

ParameterEstimates Estimated linear model
coefficients

MODEL / SOLUTION

PartialCorr Partial correlation matrix (MANOVA or REPEATED)
/ PRINTE

PredictedInfo Predicted values info MODEL / P or CLM or CLI
PredictedValues Predicted values MODEL / P or CLM or CLI
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Table 45.14 continued
ODS Table Name Description Statement / Option
QForm Quadratic form for expected

mean squares
RANDOM / Q

RandomModelANOVA Random-effect tests RANDOM / TEST
RepeatedLevelInfo Correspondence between depen-

dents and repeated measures lev-
els

REPEATED statement

RepeatedTransform Repeated measures transforma-
tion matrix

REPEATED / PRINTM

SimDetails Details of difference quantile sim-
ulation

LSMEANS
/ ADJUST=SIMULATE(REPORT)

SimResults Evaluation of difference quantile
simulation

LSMEANS
/ ADJUST=SIMULATE(REPORT)

SlicedANOVA Sliced-effect ANOVA table LSMEANS / SLICE
Sphericity Sphericity tests REPEATED / PRINTE
Tests Summary ANOVA for specified

MANOVA H= effects
MANOVA / H= SUMMARY

Tolerances X0X tolerances MODEL / TOLERANCE
Welch Welch’s ANOVA MEANS / WELCH
XPX X0X matrix MODEL / XPX

With the PDIFF or TDIFF option in the LSMEANS statement, the p/t-values for differences are dis-
played in columns of the LSMeans table for PDIFF/TDIFF=CONTROL or PDIFF/TDIFF=ANOM, and for
PDIFF/TDIFF=ALL when there are only two LS-means. Otherwise (for PDIFF/TDIFF=ALL when there are
more than two LS-means), the p/t-values for differences are displayed in a separate table called Diff.

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

When ODS Graphics is enabled, then for particular models the GLM procedure will produce default graphics.

• If you specify a one-way analysis of variance model, with just one CLASS variable, the GLM procedure
will produce a grouped box plot of the response values versus the CLASS levels. For an example of
the box plot, see the section “One-Way Layout with Means Comparisons” on page 946 in Chapter 26,
“The ANOVA Procedure.”
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• If you specify a two-way analysis of variance model, with just two CLASS variables, the GLM
procedure will produce an interaction plot of the response values, with horizontal position representing
one CLASS variable and marker style representing the other; and with predicted response values
connected by lines representing the two-way analysis. For an example of the interaction plot, see the
section “PROC GLM for Unbalanced ANOVA” on page 3395.

• If you specify a model with a single continuous predictor, the GLM procedure will produce a fit plot of
the response values versus the covariate values, with a curve representing the fitted relationship. For
an example of the fit plot, see the section “PROC GLM for Quadratic Least Squares Regression” on
page 3398.

• If you specify a model with a two continuous predictors and no CLASS variables, the GLM procedure
will produce a panel of fit plots as in the single predictor case, with a plot of the response values versus
one of the covariates at each of several values of the other covariate.

• If you specify an analysis of covariance model, with one or two CLASS variables and one continuous
variable, the GLM procedure will produce an analysis of covariance plot of the response values versus
the covariate values, with lines representing the fitted relationship within each classification level. For
an example of the analysis of covariance plot, see Example 45.4.

• If you specify an LSMEANS statement with the PDIFF option, the GLM procedure will produce a plot
appropriate for the type of LS-means comparison. For PDIFF=ALL (which is the default if you specify
only PDIFF), the procedure produces a diffogram, which displays all pairwise LS-means differences
and their significance. The display is also known as a “mean-mean scatter plot” (Hsu 1996). For
PDIFF=CONTROL, the procedure produces a display of each noncontrol LS-mean compared to the
control LS-mean, with two-sided confidence intervals for the comparison. For PDIFF=CONTROLL
and PDIFF=CONTROLU a similar display is produced, but with one-sided confidence intervals.
Finally, for the PDIFF=ANOM option, the procedure produces an “analysis of means” plot, comparing
each LS-mean to the average LS-mean.

• If you specify a MEANS statement, the GLM procedure will produce a grouped box plot of the
response values versus the effect for which means are being calculated.

In addition to the default graphics mentioned previously, you can request plots that help you diagnose the
quality of the fitted model.

• The PLOTS=DIAGNOSTICS option in the PROC GLM statement requests that a panel of summary
diagnostics for the fit be displayed. The panel displays scatter plots of residuals, absolute residuals,
studentized residuals, and observed responses by predicted values; studentized residuals by leverage;
Cook’s D by observation; a Q-Q plot of residuals; a residual histogram; and a residual-fit spread plot.

• The PLOTS=RESIDUALS option in the PROC GLM statement requests scatter plots of the residuals
against each continuous covariate.
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ODS Graph Names

PROC GLM assigns a name to each graph it creates using ODS. You can use these names to reference
the graphs when using ODS. The names are listed in Table 45.15. ODS Graphics must be enabled before
requesting plots. For more information about ODS Graphics, see Chapter 21, “Statistical Graphics Using
ODS.”

Table 45.15 Graphs Produced by PROC GLM
ODS Graph Name Plot Description Option
ANCOVAPlot Analysis of covariance plot Analysis of covariance model
ANOMPlot Plot of LS-mean differences

against average LS-mean
LSMEANS / PDIFF=ANOM

BoxPlot Box plot of group means One-way ANOVA model or MEANS
statement

ContourFit Plot of predicted response
surface

Two-predictor response surface model

ControlPlot Plot of LS-mean differences
against a control level

LSMEANS / PDIFF=CONTROL

DiagnosticsPanel Panel of summary diagnos-
tics for the fit

PLOTS=DIAGNOSTICS

CooksDPlot Cook’s D plot PLOTS=DIAGNOSTICS(UNPACK)
ObservedByPredicted Observed by predicted PLOTS=DIAGNOSTICS(UNPACK)
QQPlot Residual Q-Q plot PLOTS=DIAGNOSTICS(UNPACK)
ResidualByPredicted Residual by predicted values PLOTS=DIAGNOSTICS(UNPACK)
ResidualHistogram Residual histogram PLOTS=DIAGNOSTICS(UNPACK)
RFPlot RF plot PLOTS=DIAGNOSTICS(UNPACK)
RStudentByPredicted Studentized residuals by pre-

dicted
PLOTS=DIAGNOSTICS(UNPACK)

RStudentByLeverage RStudent by hat diagonals PLOTS=DIAGNOSTICS(UNPACK)
DiffPlot Plot of LS-mean pairwise

differences
LSMEANS / PDIFF

IntPlot Interaction plot Two-way ANOVA model
FitPlot Plot of predicted response by

predictor
Model with one continuous predictor

ResidualPlots Plots of the residuals against
each continuous covariate

PLOTS=RESIDUALS
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Examples: GLM Procedure

Example 45.1: Randomized Complete Blocks with Means Comparisons and
Contrasts

This example, reported by Stenstrom (1940), analyzes an experiment to investigate how snapdragons grow in
various soils. To eliminate the effect of local fertility variations, the experiment is run in blocks, with each
soil type sampled in each block. Since these data are balanced, the Type I and Type III SS are the same and
are equal to the traditional ANOVA SS.

First, the standard analysis is shown, followed by an analysis that uses the SOLUTION option and includes
MEANS and CONTRAST statements. The ORDER=DATA option in the second PROC GLM statement
is used so that the ordering of coefficients in the CONTRAST statement can correspond to the ordering in
the input data. The SOLUTION option requests a display of the parameter estimates, which are produced
by default only if there are no CLASS variables. A MEANS statement is used to request a table of the
means with two multiple-comparison procedures requested. In experiments with focused treatment questions,
CONTRAST statements are preferable to general means comparison methods. The following statements
produce Output 45.1.1 through Output 45.1.4.

title 'Balanced Data from Randomized Complete Block';
data plants;

input Type $ @;
do Block = 1 to 3;

input StemLength @;
output;

end;
datalines;

Clarion 32.7 32.3 31.5
Clinton 32.1 29.7 29.1
Knox 35.7 35.9 33.1
O'Neill 36.0 34.2 31.2
Compost 31.8 28.0 29.2
Wabash 38.2 37.8 31.9
Webster 32.5 31.1 29.7
;

proc glm;
class Block Type;
model StemLength = Block Type;

run;

proc glm order=data;
class Block Type;
model StemLength = Block Type / solution;

/*----------------------------------clrn-cltn-knox-onel-cpst-wbsh-wstr */
contrast 'Compost vs. others' Type -1 -1 -1 -1 6 -1 -1;
contrast 'River soils vs. non' Type -1 -1 -1 -1 0 5 -1,

Type -1 4 -1 -1 0 0 -1;
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contrast 'Glacial vs. drift' Type -1 0 1 1 0 0 -1;
contrast 'Clarion vs. Webster' Type -1 0 0 0 0 0 1;
contrast "Knox vs. O'Neill" Type 0 0 1 -1 0 0 0;

run;

means Type / waller regwq;
run;

Output 45.1.1 Analysis of Variance for Randomized Complete Blocks

Balanced Data from Randomized Complete Block

The GLM Procedure

Balanced Data from Randomized Complete Block

The GLM Procedure

Class Level Information

Class Levels Values

Block 3 1 2 3

Type 7 Clarion Clinton Compost Knox O'Neill Wabash Webster

Number of Observations Read 21

Number of Observations Used 21

Balanced Data from Randomized Complete Block

The GLM Procedure

Dependent Variable: StemLength

Balanced Data from Randomized Complete Block

The GLM Procedure

Dependent Variable: StemLength

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 8 142.1885714 17.7735714 10.80 0.0002

Error 12 19.7428571 1.6452381

Corrected Total 20 161.9314286

R-Square Coeff Var Root MSE StemLength Mean

0.878079 3.939745 1.282668 32.55714

Source DF Type I SS Mean Square F Value Pr > F

Block 2 39.0371429 19.5185714 11.86 0.0014

Type 6 103.1514286 17.1919048 10.45 0.0004

Source DF Type III SS Mean Square F Value Pr > F

Block 2 39.0371429 19.5185714 11.86 0.0014

Type 6 103.1514286 17.1919048 10.45 0.0004

This analysis shows that the stem length is significantly different for the different soil types. In addition,
there are significant differences in stem length among the three blocks in the experiment.

The GLM procedure is invoked again, this time with the ORDER=DATA option. This enables you to write
accurate contrast statements more easily because you know the order SAS is using for the levels of the
variable Type. The standard analysis is displayed again, this time including the tests for contrasts that you
specified as well as the estimated parameters. These additional results are shown in Output 45.1.2.
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Output 45.1.2 Contrasts and Solutions

Balanced Data from Randomized Complete Block

The GLM Procedure

Dependent Variable: StemLength

Balanced Data from Randomized Complete Block

The GLM Procedure

Dependent Variable: StemLength

Contrast DF Contrast SS Mean Square F Value Pr > F

Compost vs. others 1 29.24198413 29.24198413 17.77 0.0012

River soils vs. non 2 48.24694444 24.12347222 14.66 0.0006

Glacial vs. drift 1 22.14083333 22.14083333 13.46 0.0032

Clarion vs. Webster 1 1.70666667 1.70666667 1.04 0.3285

Knox vs. O'Neill 1 1.81500000 1.81500000 1.10 0.3143

Parameter Estimate
Standard

Error t Value Pr > |t|

Intercept 29.35714286 B 0.83970354 34.96 <.0001

Block     1 3.32857143 B 0.68561507 4.85 0.0004

Block     2 1.90000000 B 0.68561507 2.77 0.0169

Block     3 0.00000000 B . . .

Type      Clarion 1.06666667 B 1.04729432 1.02 0.3285

Type      Clinton -0.80000000 B 1.04729432 -0.76 0.4597

Type      Knox 3.80000000 B 1.04729432 3.63 0.0035

Type      O'Neill 2.70000000 B 1.04729432 2.58 0.0242

Type      Compost -1.43333333 B 1.04729432 -1.37 0.1962

Type      Wabash 4.86666667 B 1.04729432 4.65 0.0006

Type      Webster 0.00000000 B . . .

Note: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations.  Terms whose
estimates are followed by the letter 'B' are not uniquely estimable.

The contrast label, degrees of freedom, sum of squares, Mean Square, F Value, and Pr > F are shown for
each contrast requested. In this example, the contrast results indicate the following inferences, at the 5%
significance level:

• The stem length of plants grown in compost soil is significantly different from the average stem length
of plants grown in other soils.

• The stem length of plants grown in river soils is significantly different from the average stem length of
those grown in nonriver soils.

• The average stem length of plants grown in glacial soils (Clarion and Webster types) is significantly
different from the average stem length of those grown in drift soils (Knox and O’Neill types).
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• Stem lengths for Clarion and Webster types are not significantly different.

• Stem lengths for Knox and O’Neill types are not significantly different.

In addition to the estimates for the parameters of the model, the results of t tests about the parameters are
also displayed. The ‘B’ following the parameter estimates indicates that the estimates are biased and do not
represent a unique solution to the normal equations.

Output 45.1.3 Waller-Duncan tests

Balanced Data from Randomized Complete Block

The GLM Procedure

Waller-Duncan K-ratio t Test for StemLength

Balanced Data from Randomized Complete Block

The GLM Procedure

Waller-Duncan K-ratio t Test for StemLength

Note: This test minimizes the Bayes risk under additive loss and certain other assumptions.

Kratio 100

Error Degrees of Freedom 12

Error Mean Square 1.645238

F Value 10.45

Critical Value of t 2.12034

Minimum Significant Difference 2.2206

Means with the same letter are not
significantly different.

Waller Grouping Mean N Type

A 35.967 3 Wabash

A

A 34.900 3 Knox

A

B A 33.800 3 O'Neill

B

B C 32.167 3 Clarion

C

D C 31.100 3 Webster

D C

D C 30.300 3 Clinton

D

D 29.667 3 Compost
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Output 45.1.4 Ryan-Einot-Gabriel-Welsch Multiple Range Test

Balanced Data from Randomized Complete Block

The GLM Procedure

Ryan-Einot-Gabriel-Welsch Multiple Range Test for StemLength

Balanced Data from Randomized Complete Block

The GLM Procedure

Ryan-Einot-Gabriel-Welsch Multiple Range Test for StemLength

Note: This test controls the Type I experimentwise error rate.

Alpha 0.05

Error Degrees of Freedom 12

Error Mean Square 1.645238

Number of Means 2 3 4 5 6 7

Critical Range 2.9875528 3.2837322 3.4395625 3.5402383 3.5402383 3.6653133

Means with the same letter are not
significantly different.

REGWQ Grouping Mean N Type

A 35.967 3 Wabash

A

B A 34.900 3 Knox

B A

B A C 33.800 3 O'Neill

B C

B D C 32.167 3 Clarion

D C

D C 31.100 3 Webster

D

D 30.300 3 Clinton

D

D 29.667 3 Compost

The final two pages of output (Output 45.1.3 and Output 45.1.4) present results of the Waller-Duncan and
REGWQ multiple-comparison procedures. For each test, notes and information pertinent to the test are given
in the output. The Type means are arranged from highest to lowest. Means with the same letter are not
significantly different. For this example, while some pairs of means are significantly different, there are no
clear equivalence classes among the different soils.

For an alternative method of analyzing and displaying mean differences, including high-resolution graphics,
see Example 45.3.

Example 45.2: Regression with Mileage Data
A car is tested for gas mileage at various speeds to determine at what speed the car achieves the highest gas
mileage. A quadratic model is fit to the experimental data. The following statements produce Output 45.2.1
through Output 45.2.4.
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title 'Gasoline Mileage Experiment';
data mileage;

input mph mpg @@;
datalines;

20 15.4
30 20.2
40 25.7
50 26.2 50 26.6 50 27.4
55 .
60 24.8
;

ods graphics on;
proc glm;

model mpg=mph mph*mph / p clm;
run;
ods graphics off;

Output 45.2.1 Standard Regression Analysis

Gasoline Mileage Experiment

The GLM Procedure

Gasoline Mileage Experiment

The GLM Procedure

Number of Observations Read 8

Number of Observations Used 7

Gasoline Mileage Experiment

The GLM Procedure

Dependent Variable: mpg

Gasoline Mileage Experiment

The GLM Procedure

Dependent Variable: mpg

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 2 111.8086183 55.9043091 77.96 0.0006

Error 4 2.8685246 0.7171311

Corrected Total 6 114.6771429

R-Square Coeff Var Root MSE mpg Mean

0.974986 3.564553 0.846836 23.75714

Source DF Type I SS Mean Square F Value Pr > F

mph 1 85.64464286 85.64464286 119.43 0.0004

mph*mph 1 26.16397541 26.16397541 36.48 0.0038

Source DF Type III SS Mean Square F Value Pr > F

mph 1 41.01171219 41.01171219 57.19 0.0016

mph*mph 1 26.16397541 26.16397541 36.48 0.0038
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Output 45.2.1 continued

Parameter Estimate
Standard

Error t Value Pr > |t|

Intercept -5.985245902 3.18522249 -1.88 0.1334

mph 1.305245902 0.17259876 7.56 0.0016

mph*mph -0.013098361 0.00216852 -6.04 0.0038

The overall F statistic is significant. The tests of mph and mph*mph in the Type I sums of squares show that
both the linear and quadratic terms in the regression model are significant. The model fits well, with an R
square of 0.97. The table of parameter estimates indicates that the estimated regression equation is

mpg D �5:9852C 1:3052 �mph � 0:0131 �mph2

Output 45.2.2 Results of Requesting the P and CLM Options

Observation Observed Predicted Residual

95%
Confidence Limits for
Mean Predicted Value

1 15.40000000 14.88032787 0.51967213 12.69701317 17.06364257

2 20.20000000 21.38360656 -1.18360656 20.01727192 22.74994119

3 25.70000000 25.26721311 0.43278689 23.87460041 26.65982582

4 26.20000000 26.53114754 -0.33114754 25.44573423 27.61656085

5 26.60000000 26.53114754 0.06885246 25.44573423 27.61656085

6 27.40000000 26.53114754 0.86885246 25.44573423 27.61656085

7 * . 26.18073770 . 24.88679308 27.47468233

8 24.80000000 25.17540984 -0.37540984 23.05954977 27.29126990

The P and CLM options in the MODEL statement produce the table shown in Output 45.2.2. For each
observation, the observed, predicted, and residual values are shown. In addition, the 95% confidence limits
for a mean predicted value are shown for each observation. Note that the observation with a missing value
for mph is not used in the analysis, but predicted and confidence limit values are shown.

Output 45.2.3 Additional Results of Requesting the P and CLM Options

Sum of Residuals -0.00000000

Sum of Squared Residuals 2.86852459

Sum of Squared Residuals - Error SS -0.00000000

PRESS Statistic 23.18107335

First Order Autocorrelation -0.54376613

Durbin-Watson D 2.94425592

The last portion of the output listing, shown in Output 45.2.3, gives some additional information about the
residuals. The Press statistic gives the sum of squares of predicted residual errors, as described in Chapter 4,
“Introduction to Regression Procedures.” The First Order Autocorrelation and the Durbin-Watson D statistic,
which measures first-order autocorrelation, are also given.
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Output 45.2.4 Plot of Mileage Data

Finally, the ODS GRAPHICS ON command in the previous statements enables ODS Graphics, which in this
case produces the plot shown in Output 45.2.4 of the actual and predicted values for the data, as well as a
band representing the confidence limits for individual predictions. The quadratic relationship between mpg
and mph is evident.

Example 45.3: Unbalanced ANOVA for Two-Way Design with Interaction
This example uses data from Kutner (1974, p. 98) to illustrate a two-way analysis of variance. The original
data source is Afifi and Azen (1972, p. 166). These statements produce Output 45.3.1 and Output 45.3.2.

title 'Unbalanced Two-Way Analysis of Variance';
data a;

input drug disease @;
do i=1 to 6;

input y @;
output;

end;
datalines;
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1 1 42 44 36 13 19 22
1 2 33 . 26 . 33 21
1 3 31 -3 . 25 25 24
2 1 28 . 23 34 42 13
2 2 . 34 33 31 . 36
2 3 3 26 28 32 4 16
3 1 . . 1 29 . 19
3 2 . 11 9 7 1 -6
3 3 21 1 . 9 3 .
4 1 24 . 9 22 -2 15
4 2 27 12 12 -5 16 15
4 3 22 7 25 5 12 .
;

proc glm;
class drug disease;
model y=drug disease drug*disease / ss1 ss2 ss3 ss4;

run;

Output 45.3.1 Classes and Levels for Unbalanced Two-Way Design

Unbalanced Two-Way Analysis of Variance

The GLM Procedure

Unbalanced Two-Way Analysis of Variance

The GLM Procedure

Class Level
Information

Class Levels Values

drug 4 1 2 3 4

disease 3 1 2 3

Number of Observations Read 72

Number of Observations Used 58

Output 45.3.2 Analysis of Variance for Unbalanced Two-Way Design

Unbalanced Two-Way Analysis of Variance

The GLM Procedure

Dependent Variable: y

Unbalanced Two-Way Analysis of Variance

The GLM Procedure

Dependent Variable: y

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 11 4259.338506 387.212591 3.51 0.0013

Error 46 5080.816667 110.452536

Corrected Total 57 9340.155172

R-Square Coeff Var Root MSE y Mean

0.456024 55.66750 10.50964 18.87931
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Output 45.3.2 continued

Source DF Type I SS Mean Square F Value Pr > F

drug 3 3133.238506 1044.412835 9.46 <.0001

disease 2 418.833741 209.416870 1.90 0.1617

drug*disease 6 707.266259 117.877710 1.07 0.3958

Source DF Type II SS Mean Square F Value Pr > F

drug 3 3063.432863 1021.144288 9.25 <.0001

disease 2 418.833741 209.416870 1.90 0.1617

drug*disease 6 707.266259 117.877710 1.07 0.3958

Source DF Type III SS Mean Square F Value Pr > F

drug 3 2997.471860 999.157287 9.05 <.0001

disease 2 415.873046 207.936523 1.88 0.1637

drug*disease 6 707.266259 117.877710 1.07 0.3958

Source DF Type IV SS Mean Square F Value Pr > F

drug 3 2997.471860 999.157287 9.05 <.0001

disease 2 415.873046 207.936523 1.88 0.1637

drug*disease 6 707.266259 117.877710 1.07 0.3958

Note the differences among the four types of sums of squares. The Type I sum of squares for drug essentially
tests for differences between the expected values of the arithmetic mean response for different drugs,
unadjusted for the effect of disease. By contrast, the Type II sum of squares for drug measures the differences
between arithmetic means for each drug after adjusting for disease. The Type III sum of squares measures
the differences between predicted drug means over a balanced drug�disease population—that is, between the
LS-means for drug. Finally, the Type IV sum of squares is the same as the Type III sum of squares in this
case, since there are data for every drug-by-disease combination.

No matter which sum of squares you prefer to use, this analysis shows a significant difference among the
four drugs, while the disease effect and the drug-by-disease interaction are not significant. As the previous
discussion indicates, Type III sums of squares correspond to differences between LS-means, so you can
follow up the Type III tests with a multiple-comparison analysis of the drug LS-means. Since the GLM
procedure is interactive, you can accomplish this by submitting the following statements after the previous
ones that performed the ANOVA.

lsmeans drug / pdiff=all adjust=tukey;
run;

Both the LS-means themselves and a matrix of adjusted p-values for pairwise differences between them are
displayed; see Output 45.3.3 and Output 45.3.4.
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Output 45.3.3 LS-Means for Unbalanced ANOVA

Unbalanced Two-Way Analysis of Variance

The GLM Procedure
Least Squares Means

Adjustment for Multiple Comparisons: Tukey-Kramer

Unbalanced Two-Way Analysis of Variance

The GLM Procedure
Least Squares Means

Adjustment for Multiple Comparisons: Tukey-Kramer

drug y LSMEAN
LSMEAN
Number

1 25.9944444 1

2 26.5555556 2

3 9.7444444 3

4 13.5444444 4

Output 45.3.4 Adjusted p-Values for Pairwise LS-Mean Differences

Least Squares Means for effect drug
Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: y

i/j 1 2 3 4

1 0.9989 0.0016 0.0107

2 0.9989 0.0011 0.0071

3 0.0016 0.0011 0.7870

4 0.0107 0.0071 0.7870

The multiple-comparison analysis shows that drugs 1 and 2 have very similar effects, and that drugs 3 and 4
are also insignificantly different from each other. Evidently, the main contribution to the significant drug
effect is the difference between the 1/2 pair and the 3/4 pair.

If ODS Graphics is enabled for the previous analysis, GLM also displays three additional plots by default:

• an interaction plot for the effects of disease and drug

• a mean plot of the drug LS-means

• a plot of the adjusted pairwise differences and their significance levels



3528 F Chapter 45: The GLM Procedure

The following statements reproduce the previous analysis with ODS Graphics enabled. Additionally, the
PLOTS=MEANPLOT(CL) option specifies that confidence limits for the LS-means should also be displayed
in the mean plot. The graphical results are shown in Output 45.3.5 through Output 45.3.7.

ods graphics on;
proc glm plot=meanplot(cl);

class drug disease;
model y=drug disease drug*disease;
lsmeans drug / pdiff=all adjust=tukey;

run;
ods graphics off;

Output 45.3.5 Plot of Response by Drug and Disease
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Output 45.3.6 Plot of Response LS-Means for Drug
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Output 45.3.7 Plot of Response LS-Mean Differences for Drug

The significance of the drug differences is difficult to discern in the original data, as displayed in Output 45.3.5,
but the plot of just the LS-means and their individual confidence limits in Output 45.3.6 makes it clearer.
Finally, Output 45.3.7 indicates conclusively that the significance of the effect of drug is due to the difference
between the two drug pairs (1, 2) and (3, 4).

Example 45.4: Analysis of Covariance
Analysis of covariance combines some of the features of both regression and analysis of variance. Typically,
a continuous variable (the covariate) is introduced into the model of an analysis-of-variance experiment.

Data in the following example are selected from a larger experiment on the use of drugs in the treatment of
leprosy (Snedecor and Cochran 1967, p. 422).
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Variables in the study are as follows:

Drug two antibiotics (A and D) and a control (F)
PreTreatment a pretreatment score of leprosy bacilli
PostTreatment a posttreatment score of leprosy bacilli

Ten patients are selected for each treatment (Drug), and six sites on each patient are measured for leprosy
bacilli.

The covariate (a pretreatment score) is included in the model for increased precision in determining the effect
of drug treatments on the posttreatment count of bacilli.

The following statements create the data set, perform a parallel-slopes analysis of covariance with PROC
GLM, and compute Drug LS-means. These statements produce Output 45.4.1 and Output 45.4.2.

data DrugTest;
input Drug $ PreTreatment PostTreatment @@;
datalines;

A 11 6 A 8 0 A 5 2 A 14 8 A 19 11
A 6 4 A 10 13 A 6 1 A 11 8 A 3 0
D 6 0 D 6 2 D 7 3 D 8 1 D 18 18
D 8 4 D 19 14 D 8 9 D 5 1 D 15 9
F 16 13 F 13 10 F 11 18 F 9 5 F 21 23
F 16 12 F 12 5 F 12 16 F 7 1 F 12 20
;

proc glm data=DrugTest;
class Drug;
model PostTreatment = Drug PreTreatment / solution;
lsmeans Drug / stderr pdiff cov out=adjmeans;

run;

proc print data=adjmeans;
run;

Output 45.4.1 Classes and Levels

The GLM ProcedureThe GLM Procedure

Class Level
Information

Class Levels Values

Drug 3 A D F

Number of Observations Read 30

Number of Observations Used 30
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Output 45.4.2 Overall Analysis of Variance

The GLM Procedure

Dependent Variable: PostTreatment

The GLM Procedure

Dependent Variable: PostTreatment

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 3 871.497403 290.499134 18.10 <.0001

Error 26 417.202597 16.046254

Corrected Total 29 1288.700000

R-Square Coeff Var Root MSE PostTreatment Mean

0.676261 50.70604 4.005778 7.900000

This model assumes that the slopes relating posttreatment scores to pretreatment scores are parallel for all
drugs. You can check this assumption by including the class-by-covariate interaction, Drug*PreTreatment, in
the model and examining the ANOVA test for the significance of this effect. This extra test is omitted in this
example, but it is insignificant, justifying the equal-slopes assumption.

In Output 45.4.3, the Type I SS for Drug (293.6) gives the between-drug sums of squares that are obtained
for the analysis-of-variance model PostTreatment=Drug. This measures the difference between arithmetic
means of posttreatment scores for different drugs, disregarding the covariate. The Type III SS for Drug
(68.5537) gives the Drug sum of squares adjusted for the covariate. This measures the differences between
Drug LS-means, controlling for the covariate. The Type I test is highly significant (p = 0.001), but the Type
III test is not. This indicates that, while there is a statistically significant difference between the arithmetic
drug means, this difference is reduced to below the level of background noise when you take the pretreatment
scores into account. From the table of parameter estimates, you can derive the least squares predictive
formula model for estimating posttreatment score based on pretreatment score and drug:

post D

8<:
.�0:435C�3:446/ C 0:987 � pre; if Drug=A
.�0:435C�3:337/ C 0:987 � pre; if Drug=D
�0:435 C 0:987 � pre; if Drug=F

Output 45.4.3 Tests and Parameter Estimates

Source DF Type I SS Mean Square F Value Pr > F

Drug 2 293.6000000 146.8000000 9.15 0.0010

PreTreatment 1 577.8974030 577.8974030 36.01 <.0001

Source DF Type III SS Mean Square F Value Pr > F

Drug 2 68.5537106 34.2768553 2.14 0.1384

PreTreatment 1 577.8974030 577.8974030 36.01 <.0001

Parameter Estimate
Standard

Error t Value Pr > |t|

Intercept -0.434671164 B 2.47135356 -0.18 0.8617

Drug         A -3.446138280 B 1.88678065 -1.83 0.0793

Drug         D -3.337166948 B 1.85386642 -1.80 0.0835

Drug         F 0.000000000 B . . .

PreTreatment 0.987183811 0.16449757 6.00 <.0001
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Output 45.4.4 displays the LS-means, which are, in a sense, the means adjusted for the covariate. The
STDERR option in the LSMEANS statement causes the standard error of the LS-means and the probability of
getting a larger t value under the hypothesisH0WLS-mean D 0 to be included in this table as well. Specifying
the PDIFF option causes all probability values for the hypothesis H0WLS-mean.i/ D LS-mean.j / to be
displayed, where the indexes i and j are numbered treatment levels.

Output 45.4.4 LS-Means

The GLM Procedure
Least Squares Means
The GLM Procedure

Least Squares Means

Drug
PostTreatment

LSMEAN
Standard

Error Pr > |t|
LSMEAN
Number

A 6.7149635 1.2884943 <.0001 1

D 6.8239348 1.2724690 <.0001 2

F 10.1611017 1.3159234 <.0001 3

Least Squares Means for effect Drug
Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: PostTreatment

i/j 1 2 3

1 0.9521 0.0793

2 0.9521 0.0835

3 0.0793 0.0835

The OUT= and COV options in the LSMEANS statement create a data set of the estimates, their standard
errors, and the variances and covariances of the LS-means, which is displayed in Output 45.4.5.

Output 45.4.5 LS-Means Output Data Set

Obs _NAME_ Drug LSMEAN STDERR NUMBER COV1 COV2 COV3

1 PostTreatment A 6.7150 1.28849 1 1.66022 0.02844 -0.08403

2 PostTreatment D 6.8239 1.27247 2 0.02844 1.61918 -0.04299

3 PostTreatment F 10.1611 1.31592 3 -0.08403 -0.04299 1.73165

The new graphical features of PROC GLM enable you to visualize the fitted analysis of covariance model.
The following statements enable ODS Graphics by specifying the ODS GRAPHICS statement and then fit an
analysis-of-covariance model with LS-means for Drug.

ods graphics on;

proc glm data=DrugTest plot=meanplot(cl);
class Drug;
model PostTreatment = Drug PreTreatment;
lsmeans Drug / pdiff;

run;

ods graphics off;

With graphics enabled, the GLM procedure output includes an analysis-of-covariance plot, as in Output 45.4.6.
The LSMEANS statement produces a plot of the LS-means; the SAS statements previously shown use
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the PLOTS=MEANPLOT(CL) option to add confidence limits for the individual LS-means, shown in
Output 45.4.7. If you also specify the PDIFF option in the LSMEANS statement, the output also includes a
plot appropriate for the type of LS-mean differences computed. In this case, the default is to compare all
LS-means with each other pairwise, so the plot is a “diffogram” or “mean-mean scatter plot” (Hsu 1996), as
in Output 45.4.8. For general information about ODS Graphics, see Chapter 21, “Statistical Graphics Using
ODS.” For specific information about the graphics available in the GLM procedure, see the section “ODS
Graphics” on page 3514.

Output 45.4.6 Analysis of Covariance Plot of PostTreatment Score by Drug and PreTreatment Score
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Output 45.4.7 LS-Means for PostTreatment Score by Drug
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Output 45.4.8 Plot of Differences between Drug LS-Means for PostTreatment Scores

The analysis of covariance plot Output 45.4.6 makes it clear that the control (drug F) has higher posttreatment
scores across the range of pretreatment scores, while the fitted models for the two antibiotics (drugs A and D)
nearly coincide. Similarly, while the diffogram Output 45.4.7 indicates that none of the LS-mean differences
are significant at the 5% level, the difference between the LS-means for the two antibiotics is much closer to
zero than the differences between either one and the control.

Example 45.5: Three-Way Analysis of Variance with Contrasts
This example uses data from Cochran and Cox (1957, p. 176) to illustrate the analysis of a three-way factorial
design with replication, including the use of the CONTRAST statement with interactions, the OUTSTAT=
data set, and the SLICE= option in the LSMEANS statement.

The object of the study is to determine the effects of electric current on denervated muscle. The variables are
as follows:

Rep the replicate number, 1 or 2

Time the length of time the current is applied to the muscle, ranging from 1 to 4
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Current the level of electric current applied, ranging from 1 to 4

Number the number of treatments per day, ranging from 1 to 3

MuscleWeight the weight of the denervated muscle

The following statements produce Output 45.5.1 through Output 45.5.4.

data muscles;
do Rep=1 to 2;

do Time=1 to 4;
do Current=1 to 4;

do Number=1 to 3;
input MuscleWeight @@;
output;

end;
end;

end;
end;
datalines;

72 74 69 61 61 65 62 65 70 85 76 61
67 52 62 60 55 59 64 65 64 67 72 60
57 66 72 72 43 43 63 66 72 56 75 92
57 56 78 60 63 58 61 79 68 73 86 71
46 74 58 60 64 52 71 64 71 53 65 66
44 58 54 57 55 51 62 61 79 60 78 82
53 50 61 56 57 56 56 56 71 56 58 69
46 55 64 56 55 57 64 66 62 59 58 88
;

proc glm outstat=summary;
class Rep Current Time Number;
model MuscleWeight = Rep Current|Time|Number;
contrast 'Time in Current 3'

Time 1 0 0 -1 Current*Time 0 0 0 0 0 0 0 0 1 0 0 -1,
Time 0 1 0 -1 Current*Time 0 0 0 0 0 0 0 0 0 1 0 -1,
Time 0 0 1 -1 Current*Time 0 0 0 0 0 0 0 0 0 0 1 -1;

contrast 'Current 1 versus 2' Current 1 -1;
lsmeans Current*Time / slice=Current;

run;

proc print data=summary;
run;

The first CONTRAST statement examines the effects of Time within level 3 of Current. This is also called the
simple effect of Time within Current*Time. Note that, since there are three degrees of freedom, it is necessary
to specify three rows in the CONTRAST statement, separated by commas. Since the parameterization that
PROC GLM uses is determined in part by the ordering of the variables in the CLASS statement, Current
is specified before Time so that the Time parameters are nested within the Current*Time parameters; thus,
the Current*Time contrast coefficients in each row are simply the Time coefficients of that row within the
appropriate level of Current.
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The second CONTRAST statement isolates a single-degree-of-freedom effect corresponding to the difference
between the first two levels of Current. You can use such a contrast in a large experiment where certain
preplanned comparisons are important, but you want to take advantage of the additional error degrees of
freedom available when all levels of the factors are considered.

The LSMEANS statement with the SLICE= option is an alternative way to test for the simple effect of Time
within Current*Time. In addition to listing the LS-means for each current strength and length of time, it gives
a table of F tests for differences between the LS-means across Time within each Current level. In some cases,
this can be a way to disentangle a complex interaction.

Output 45.5.1 Overall Analysis

The GLM ProcedureThe GLM Procedure

Class Level
Information

Class Levels Values

Rep 2 1 2

Current 4 1 2 3 4

Time 4 1 2 3 4

Number 3 1 2 3

Number of Observations Read 96

Number of Observations Used 96

The GLM Procedure

Dependent Variable: MuscleWeight

The GLM Procedure

Dependent Variable: MuscleWeight

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 48 5782.916667 120.477431 1.77 0.0261

Error 47 3199.489583 68.074246

Corrected Total 95 8982.406250

R-Square Coeff Var Root MSE MuscleWeight Mean

0.643805 13.05105 8.250712 63.21875

The output, shown in Output 45.5.2 and Output 45.5.3, indicates that the main effects for Rep, Current, and
Number are significant (with p-values of 0.0045, <0.0001, and 0.0461, respectively), but the main effect for
Time is not significant, indicating that, in general, it does not matter how long the current is applied. None
of the interaction terms are significant, nor are the contrasts significant. Notice that the row in the sliced
ANOVA table corresponding to level 3 of current matches the “Time in Current 3” contrast.
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Output 45.5.2 Individual Effects and Contrasts

Source DF Type I SS Mean Square F Value Pr > F

Rep 1 605.010417 605.010417 8.89 0.0045

Current 3 2145.447917 715.149306 10.51 <.0001

Time 3 223.114583 74.371528 1.09 0.3616

Current*Time 9 298.677083 33.186343 0.49 0.8756

Number 2 447.437500 223.718750 3.29 0.0461

Current*Number 6 644.395833 107.399306 1.58 0.1747

Time*Number 6 367.979167 61.329861 0.90 0.5023

Current*Time*Number 18 1050.854167 58.380787 0.86 0.6276

Source DF Type III SS Mean Square F Value Pr > F

Rep 1 605.010417 605.010417 8.89 0.0045

Current 3 2145.447917 715.149306 10.51 <.0001

Time 3 223.114583 74.371528 1.09 0.3616

Current*Time 9 298.677083 33.186343 0.49 0.8756

Number 2 447.437500 223.718750 3.29 0.0461

Current*Number 6 644.395833 107.399306 1.58 0.1747

Time*Number 6 367.979167 61.329861 0.90 0.5023

Current*Time*Number 18 1050.854167 58.380787 0.86 0.6276

Contrast DF Contrast SS Mean Square F Value Pr > F

Time in Current 3 3 34.83333333 11.61111111 0.17 0.9157

Current 1 versus 2 1 99.18750000 99.18750000 1.46 0.2334

Output 45.5.3 Simple Effects of Time

The GLM Procedure
Least Squares Means
The GLM Procedure

Least Squares Means

Current*Time Effect Sliced by Current for
MuscleWeight

Current DF
Sum of

Squares Mean Square F Value Pr > F

1 3 271.458333 90.486111 1.33 0.2761

2 3 120.666667 40.222222 0.59 0.6241

3 3 34.833333 11.611111 0.17 0.9157

4 3 94.833333 31.611111 0.46 0.7085
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The SS, F statistics, and p-values can be stored in an OUTSTAT= data set, as shown in Output 45.5.4.

Output 45.5.4 Contents of the OUTSTAT= Data Set

Obs _NAME_ _SOURCE_ _TYPE_ DF SS F PROB

1 MuscleWeight ERROR ERROR 47 3199.49 . .

2 MuscleWeight Rep SS1 1 605.01 8.8875 0.00454

3 MuscleWeight Current SS1 3 2145.45 10.5054 0.00002

4 MuscleWeight Time SS1 3 223.11 1.0925 0.36159

5 MuscleWeight Current*Time SS1 9 298.68 0.4875 0.87562

6 MuscleWeight Number SS1 2 447.44 3.2864 0.04614

7 MuscleWeight Current*Number SS1 6 644.40 1.5777 0.17468

8 MuscleWeight Time*Number SS1 6 367.98 0.9009 0.50231

9 MuscleWeight Current*Time*Number SS1 18 1050.85 0.8576 0.62757

10 MuscleWeight Rep SS3 1 605.01 8.8875 0.00454

11 MuscleWeight Current SS3 3 2145.45 10.5054 0.00002

12 MuscleWeight Time SS3 3 223.11 1.0925 0.36159

13 MuscleWeight Current*Time SS3 9 298.68 0.4875 0.87562

14 MuscleWeight Number SS3 2 447.44 3.2864 0.04614

15 MuscleWeight Current*Number SS3 6 644.40 1.5777 0.17468

16 MuscleWeight Time*Number SS3 6 367.98 0.9009 0.50231

17 MuscleWeight Current*Time*Number SS3 18 1050.85 0.8576 0.62757

18 MuscleWeight Time in Current 3 CONTRAST 3 34.83 0.1706 0.91574

19 MuscleWeight Current 1 versus 2 CONTRAST 1 99.19 1.4570 0.23344

Example 45.6: Multivariate Analysis of Variance
This example employs multivariate analysis of variance (MANOVA) to measure differences in the chemical
characteristics of ancient pottery found at four kiln sites in Great Britain. The data are from Tubb, Parker,
and Nickless (1980), as reported in Hand et al. (1994).

For each of 26 samples of pottery, the percentages of oxides of five metals are measured. The following
statements create the data set and invoke the GLM procedure to perform a one-way MANOVA. Additionally,
it is of interest to know whether the pottery from one site in Wales (Llanederyn) differs from the samples
from other sites; a CONTRAST statement is used to test this hypothesis.

title "Romano-British Pottery";
data pottery;

input Site $12. Al Fe Mg Ca Na;
datalines;

Llanederyn 14.4 7.00 4.30 0.15 0.51
Llanederyn 13.8 7.08 3.43 0.12 0.17
Llanederyn 14.6 7.09 3.88 0.13 0.20
Llanederyn 11.5 6.37 5.64 0.16 0.14
Llanederyn 13.8 7.06 5.34 0.20 0.20
Llanederyn 10.9 6.26 3.47 0.17 0.22
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Llanederyn 10.1 4.26 4.26 0.20 0.18
Llanederyn 11.6 5.78 5.91 0.18 0.16
Llanederyn 11.1 5.49 4.52 0.29 0.30
Llanederyn 13.4 6.92 7.23 0.28 0.20
Llanederyn 12.4 6.13 5.69 0.22 0.54
Llanederyn 13.1 6.64 5.51 0.31 0.24
Llanederyn 12.7 6.69 4.45 0.20 0.22
Llanederyn 12.5 6.44 3.94 0.22 0.23
Caldicot 11.8 5.44 3.94 0.30 0.04
Caldicot 11.6 5.39 3.77 0.29 0.06
IslandThorns 18.3 1.28 0.67 0.03 0.03
IslandThorns 15.8 2.39 0.63 0.01 0.04
IslandThorns 18.0 1.50 0.67 0.01 0.06
IslandThorns 18.0 1.88 0.68 0.01 0.04
IslandThorns 20.8 1.51 0.72 0.07 0.10
AshleyRails 17.7 1.12 0.56 0.06 0.06
AshleyRails 18.3 1.14 0.67 0.06 0.05
AshleyRails 16.7 0.92 0.53 0.01 0.05
AshleyRails 14.8 2.74 0.67 0.03 0.05
AshleyRails 19.1 1.64 0.60 0.10 0.03
;

proc glm data=pottery;
class Site;
model Al Fe Mg Ca Na = Site;
contrast 'Llanederyn vs. the rest' Site 1 1 1 -3;
manova h=_all_ / printe printh;

run;

After the summary information, displayed in Output 45.6.1, PROC GLM produces the univariate analyses
for each of the dependent variables, as shown in Output 45.6.2 through Output 45.6.6. These analyses show
that sites are significantly different for all oxides individually. You can suppress these univariate analyses by
specifying the NOUNI option in the MODEL statement.

Output 45.6.1 Summary Information about Groups

Romano-British Pottery

The GLM Procedure

Romano-British Pottery

The GLM Procedure

Class Level Information

Class Levels Values

Site 4 AshleyRails Caldicot IslandThorns Llanederyn

Number of Observations Read 26

Number of Observations Used 26
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Output 45.6.2 Univariate Analysis of Variance for Aluminum Oxide

Romano-British Pottery

The GLM Procedure

Dependent Variable: Al

Romano-British Pottery

The GLM Procedure

Dependent Variable: Al

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 3 175.6103187 58.5367729 26.67 <.0001

Error 22 48.2881429 2.1949156

Corrected Total 25 223.8984615

R-Square Coeff Var Root MSE Al Mean

0.784330 10.22284 1.481525 14.49231

Source DF Type I SS Mean Square F Value Pr > F

Site 3 175.6103187 58.5367729 26.67 <.0001

Source DF Type III SS Mean Square F Value Pr > F

Site 3 175.6103187 58.5367729 26.67 <.0001

Contrast DF Contrast SS Mean Square F Value Pr > F

Llanederyn vs. the rest 1 58.58336640 58.58336640 26.69 <.0001

Output 45.6.3 Univariate Analysis of Variance for Iron Oxide

Romano-British Pottery

The GLM Procedure

Dependent Variable: Fe

Romano-British Pottery

The GLM Procedure

Dependent Variable: Fe

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 3 134.2216158 44.7405386 89.88 <.0001

Error 22 10.9508457 0.4977657

Corrected Total 25 145.1724615

R-Square Coeff Var Root MSE Fe Mean

0.924567 15.79171 0.705525 4.467692

Source DF Type I SS Mean Square F Value Pr > F

Site 3 134.2216158 44.7405386 89.88 <.0001

Source DF Type III SS Mean Square F Value Pr > F

Site 3 134.2216158 44.7405386 89.88 <.0001

Contrast DF Contrast SS Mean Square F Value Pr > F

Llanederyn vs. the rest 1 71.15144132 71.15144132 142.94 <.0001
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Output 45.6.4 Univariate Analysis of Variance for Calcium Oxide

Romano-British Pottery

The GLM Procedure

Dependent Variable: Ca

Romano-British Pottery

The GLM Procedure

Dependent Variable: Ca

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 3 0.20470275 0.06823425 29.16 <.0001

Error 22 0.05148571 0.00234026

Corrected Total 25 0.25618846

R-Square Coeff Var Root MSE Ca Mean

0.799032 33.01265 0.048376 0.146538

Source DF Type I SS Mean Square F Value Pr > F

Site 3 0.20470275 0.06823425 29.16 <.0001

Source DF Type III SS Mean Square F Value Pr > F

Site 3 0.20470275 0.06823425 29.16 <.0001

Contrast DF Contrast SS Mean Square F Value Pr > F

Llanederyn vs. the rest 1 0.03531688 0.03531688 15.09 0.0008

Output 45.6.5 Univariate Analysis of Variance for Magnesium Oxide

Romano-British Pottery

The GLM Procedure

Dependent Variable: Mg

Romano-British Pottery

The GLM Procedure

Dependent Variable: Mg

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 3 103.3505270 34.4501757 49.12 <.0001

Error 22 15.4296114 0.7013460

Corrected Total 25 118.7801385

R-Square Coeff Var Root MSE Mg Mean

0.870099 26.65777 0.837464 3.141538

Source DF Type I SS Mean Square F Value Pr > F

Site 3 103.3505270 34.4501757 49.12 <.0001

Source DF Type III SS Mean Square F Value Pr > F

Site 3 103.3505270 34.4501757 49.12 <.0001

Contrast DF Contrast SS Mean Square F Value Pr > F

Llanederyn vs. the rest 1 56.59349339 56.59349339 80.69 <.0001
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Output 45.6.6 Univariate Analysis of Variance for Sodium Oxide

Romano-British Pottery

The GLM Procedure

Dependent Variable: Na

Romano-British Pottery

The GLM Procedure

Dependent Variable: Na

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 3 0.25824560 0.08608187 9.50 0.0003

Error 22 0.19929286 0.00905877

Corrected Total 25 0.45753846

R-Square Coeff Var Root MSE Na Mean

0.564424 60.06350 0.095178 0.158462

Source DF Type I SS Mean Square F Value Pr > F

Site 3 0.25824560 0.08608187 9.50 0.0003

Source DF Type III SS Mean Square F Value Pr > F

Site 3 0.25824560 0.08608187 9.50 0.0003

Contrast DF Contrast SS Mean Square F Value Pr > F

Llanederyn vs. the rest 1 0.23344446 0.23344446 25.77 <.0001

The PRINTE option in the MANOVA statement displays the elements of the error matrix, also called the
Error Sums of Squares and Crossproducts matrix. (See Output 45.6.7.) The diagonal elements of this matrix
are the error sums of squares from the corresponding univariate analyses.

The PRINTE option also displays the partial correlation matrix associated with the E matrix. In this example,
none of the oxides are very strongly correlated; the strongest correlation (r = 0.488) is between magnesium
oxide and calcium oxide.

Output 45.6.7 Error SSCP Matrix and Partial Correlations

Romano-British Pottery

The GLM Procedure
Multivariate Analysis of Variance

Romano-British Pottery

The GLM Procedure
Multivariate Analysis of Variance

E = Error SSCP Matrix

Al Fe Mg Ca Na

Al 48.288142857 7.0800714286 0.6080142857 0.1064714286 0.5889571429

Fe 7.0800714286 10.950845714 0.5270571429 -0.155194286 0.0667585714

Mg 0.6080142857 0.5270571429 15.429611429 0.4353771429 0.0276157143

Ca 0.1064714286 -0.155194286 0.4353771429 0.0514857143 0.0100785714

Na 0.5889571429 0.0667585714 0.0276157143 0.0100785714 0.1992928571
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Output 45.6.7 continued

Partial Correlation Coefficients from the Error SSCP Matrix / Prob > |r|

DF = 22 Al Fe Mg Ca Na

Al 1.000000 0.307889
0.1529

0.022275
0.9196

0.067526
0.7595

0.189853
0.3856

Fe 0.307889
0.1529

1.000000 0.040547
0.8543

-0.206685
0.3440

0.045189
0.8378

Mg 0.022275
0.9196

0.040547
0.8543

1.000000 0.488478
0.0180

0.015748
0.9431

Ca 0.067526
0.7595

-0.206685
0.3440

0.488478
0.0180

1.000000 0.099497
0.6515

Na 0.189853
0.3856

0.045189
0.8378

0.015748
0.9431

0.099497
0.6515

1.000000

The PRINTH option produces the SSCP matrix for the hypotheses being tested (Site and the contrast); see
Output 45.6.8 and Output 45.6.9. Since the Type III SS are the highest-level SS produced by PROC GLM
by default, and since the HTYPE= option is not specified, the SSCP matrix for Site gives the Type III H
matrix. The diagonal elements of this matrix are the model sums of squares from the corresponding univariate
analyses.

Four multivariate tests are computed, all based on the characteristic roots and vectors of E�1H. These roots
and vectors are displayed along with the tests. All four tests can be transformed to variates that have F
distributions under the null hypothesis. Note that the four tests all give the same results for the contrast, since
it has only one degree of freedom. In this case, the multivariate analysis matches the univariate results: there
is an overall difference between the chemical composition of samples from different sites, and the samples
from Llanederyn are different from the average of the other sites.

Output 45.6.8 Hypothesis SSCP Matrix and Multivariate Tests for Overall Site Effect

Romano-British Pottery

The GLM Procedure
Multivariate Analysis of Variance

Romano-British Pottery

The GLM Procedure
Multivariate Analysis of Variance

H = Type III SSCP Matrix for Site

Al Fe Mg Ca Na

Al 175.61031868 -149.295533 -130.8097066 -5.889163736 -5.372264835

Fe -149.295533 134.22161582 117.74503516 4.8217865934 5.3259491209

Mg -130.8097066 117.74503516 103.35052703 4.2091613187 4.7105458242

Ca -5.889163736 4.8217865934 4.2091613187 0.2047027473 0.154782967

Na -5.372264835 5.3259491209 4.7105458242 0.154782967 0.2582456044
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Output 45.6.8 continued

Characteristic Roots and Vectors of: E Inverse * H, where
H = Type III SSCP Matrix for Site

E = Error SSCP Matrix

Characteristic Vector V'EV=1

Characteristic
Root Percent Al Fe Mg Ca Na

34.1611140 96.39 0.09562211 -0.26330469 -0.05305978 -1.87982100 -0.47071123

1.2500994 3.53 0.02651891 -0.01239715 0.17564390 -4.25929785 1.23727668

0.0275396 0.08 0.09082220 0.13159869 0.03508901 -0.15701602 -1.39364544

0.0000000 0.00 0.03673984 -0.15129712 0.20455529 0.54624873 -0.17402107

0.0000000 0.00 0.06862324 0.03056912 -0.10662399 2.51151978 1.23668841

MANOVATest Criteria and F Approximations for the Hypothesis of No Overall Site Effect
H = Type III SSCP Matrix for Site

E = Error SSCP Matrix

S=3 M=0.5 N=8

Statistic Value F Value Num DF Den DF Pr > F

Wilks' Lambda 0.01230091 13.09 15 50.091 <.0001

Pillai's Trace 1.55393619 4.30 15 60 <.0001

Hotelling-Lawley Trace 35.43875302 40.59 15 29.13 <.0001

Roy's Greatest Root 34.16111399 136.64 5 20 <.0001

NOTE: F Statistic for Roy's Greatest Root is an upper bound.

Output 45.6.9 Hypothesis SSCP Matrix and Multivariate Tests for Differences between Llanederyn and the
Other Sites

H = Contrast SSCP Matrix for Llanederyn vs. the rest

Al Fe Mg Ca Na

Al 58.583366402 -64.56230291 -57.57983466 -1.438395503 -3.698102513

Fe -64.56230291 71.151441323 63.456352116 1.5851961376 4.0755256878

Mg -57.57983466 63.456352116 56.593493386 1.4137558201 3.6347541005

Ca -1.438395503 1.5851961376 1.4137558201 0.0353168783 0.0907993915

Na -3.698102513 4.0755256878 3.6347541005 0.0907993915 0.2334444577

Characteristic Roots and Vectors of: E Inverse * H, where
H = Contrast SSCP Matrix for Llanederyn vs. the rest

E = Error SSCP Matrix

Characteristic Vector V'EV=1

Characteristic
Root Percent Al Fe Mg Ca Na

16.1251646 100.00 -0.08883488 0.25458141 0.08723574 0.98158668 0.71925759

0.0000000 0.00 -0.00503538 0.03825743 -0.17632854 5.16256699 -0.01022754

0.0000000 0.00 0.00162771 -0.08885364 -0.01774069 -0.83096817 2.17644566

0.0000000 0.00 0.04450136 -0.15722494 0.22156791 0.00000000 0.00000000

0.0000000 0.00 0.11939206 0.10833549 0.00000000 0.00000000 0.00000000



Example 45.7: Repeated Measures Analysis of Variance F 3547

Output 45.6.9 continued

MANOVATest Criteria and Exact F Statistics for the Hypothesis of No Overall Llanederyn vs. the rest Effect
H = Contrast SSCP Matrix for Llanederyn vs. the rest

E = Error SSCP Matrix

S=1 M=1.5 N=8

Statistic Value F Value Num DF Den DF Pr > F

Wilks' Lambda 0.05839360 58.05 5 18 <.0001

Pillai's Trace 0.94160640 58.05 5 18 <.0001

Hotelling-Lawley Trace 16.12516462 58.05 5 18 <.0001

Roy's Greatest Root 16.12516462 58.05 5 18 <.0001

Example 45.7: Repeated Measures Analysis of Variance
This example uses data from Cole and Grizzle (1966) to illustrate a commonly occurring repeated measures
ANOVA design. Sixteen dogs are randomly assigned to four groups. (One animal is removed from the
analysis due to a missing value for one dependent variable.) Dogs in each group receive either morphine or
trimethaphan (variable Drug) and have either depleted or intact histamine levels (variable Depleted) before
receiving the drugs. The dependent variable is the blood concentration of histamine at 0, 1, 3, and 5 minutes
after injection of the drug. Logarithms are applied to these concentrations to minimize correlation between
the mean and the variance of the data.

The following SAS statements perform both univariate and multivariate repeated measures analyses and
produce Output 45.7.1 through Output 45.7.7.

data dogs;
input Drug $12. Depleted $ Histamine0 Histamine1

Histamine3 Histamine5;
LogHistamine0=log(Histamine0);
LogHistamine1=log(Histamine1);
LogHistamine3=log(Histamine3);
LogHistamine5=log(Histamine5);
datalines;

Morphine N .04 .20 .10 .08
Morphine N .02 .06 .02 .02
Morphine N .07 1.40 .48 .24
Morphine N .17 .57 .35 .24
Morphine Y .10 .09 .13 .14
Morphine Y .12 .11 .10 .
Morphine Y .07 .07 .06 .07
Morphine Y .05 .07 .06 .07
Trimethaphan N .03 .62 .31 .22
Trimethaphan N .03 1.05 .73 .60
Trimethaphan N .07 .83 1.07 .80
Trimethaphan N .09 3.13 2.06 1.23
Trimethaphan Y .10 .09 .09 .08
Trimethaphan Y .08 .09 .09 .10
Trimethaphan Y .13 .10 .12 .12
Trimethaphan Y .06 .05 .05 .05
;



3548 F Chapter 45: The GLM Procedure

proc glm;
class Drug Depleted;
model LogHistamine0--LogHistamine5 =

Drug Depleted Drug*Depleted / nouni;
repeated Time 4 (0 1 3 5) polynomial / summary printe;

run;

The NOUNI option in the MODEL statement suppresses the individual ANOVA tables for the original
dependent variables. These analyses are usually of no interest in a repeated measures analysis. The
POLYNOMIAL option in the REPEATED statement indicates that the transformation used to implement the
repeated measures analysis is an orthogonal polynomial transformation, and the SUMMARY option requests
that the univariate analyses for the orthogonal polynomial contrast variables be displayed. The parenthetical
numbers (0 1 3 5) determine the spacing of the orthogonal polynomials used in the analysis.

Output 45.7.1 Summary Information about Groups

The GLM ProcedureThe GLM Procedure

Class Level Information

Class Levels Values

Drug 2 Morphine Trimethaphan

Depleted 2 N Y

Number of Observations Read 16

Number of Observations Used 15

The “Repeated Measures Level Information” table gives information about the repeated measures effect; it is
displayed in Output 45.7.2. In this example, the within-subject (within-dog) effect is Time, which has the
levels 0, 1, 3, and 5.

Output 45.7.2 Repeated Measures Levels

The GLM Procedure
Repeated Measures Analysis of Variance

The GLM Procedure
Repeated Measures Analysis of Variance

Repeated Measures Level Information

Dependent Variable LogHistamine0 LogHistamine1 LogHistamine3 LogHistamine5

Level of Time 0 1 3 5

The multivariate analyses for within-subject effects and related interactions are displayed in Output 45.7.3.
For the example, the first table displayed shows that the TIME effect is significant. In addition, the
Time*Drug*Depleted interaction is significant, as shown in the fourth table. This means that the effect of
Time on the blood concentration of histamine is different for the four Drug*Depleted combinations studied.
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Output 45.7.3 Multivariate Tests of Within-Subject Effects

MANOVATest Criteria and Exact F Statistics for the Hypothesis of no Time Effect
H = Type III SSCP Matrix for Time

E = Error SSCP Matrix

S=1 M=0.5 N=3.5

Statistic Value F Value Num DF Den DF Pr > F

Wilks' Lambda 0.11097706 24.03 3 9 0.0001

Pillai's Trace 0.88902294 24.03 3 9 0.0001

Hotelling-Lawley Trace 8.01087137 24.03 3 9 0.0001

Roy's Greatest Root 8.01087137 24.03 3 9 0.0001

MANOVATest Criteria and Exact F Statistics for the Hypothesis of no Time*Drug Effect
H = Type III SSCP Matrix for Time*Drug

E = Error SSCP Matrix

S=1 M=0.5 N=3.5

Statistic Value F Value Num DF Den DF Pr > F

Wilks' Lambda 0.34155984 5.78 3 9 0.0175

Pillai's Trace 0.65844016 5.78 3 9 0.0175

Hotelling-Lawley Trace 1.92774470 5.78 3 9 0.0175

Roy's Greatest Root 1.92774470 5.78 3 9 0.0175

MANOVATest Criteria and Exact F Statistics for the Hypothesis of no Time*Depleted Effect
H = Type III SSCP Matrix for Time*Depleted

E = Error SSCP Matrix

S=1 M=0.5 N=3.5

Statistic Value F Value Num DF Den DF Pr > F

Wilks' Lambda 0.12339988 21.31 3 9 0.0002

Pillai's Trace 0.87660012 21.31 3 9 0.0002

Hotelling-Lawley Trace 7.10373567 21.31 3 9 0.0002

Roy's Greatest Root 7.10373567 21.31 3 9 0.0002

MANOVATest Criteria and Exact F Statistics for the Hypothesis of no Time*Drug*Depleted Effect
H = Type III SSCP Matrix for Time*Drug*Depleted

E = Error SSCP Matrix

S=1 M=0.5 N=3.5

Statistic Value F Value Num DF Den DF Pr > F

Wilks' Lambda 0.19383010 12.48 3 9 0.0015

Pillai's Trace 0.80616990 12.48 3 9 0.0015

Hotelling-Lawley Trace 4.15915732 12.48 3 9 0.0015

Roy's Greatest Root 4.15915732 12.48 3 9 0.0015

Output 45.7.4 displays tests of hypotheses for between-subject (between-dog) effects. This section tests
the hypotheses that the different Drugs, Depleteds, and their interactions have no effects on the dependent
variables, while ignoring the within-dog effects. From this analysis, there is a significant between-dog
effect for Depleted (p-value=0.0229). The interaction and the main effect for Drug are not significant
(p-values=0.1734 and 0.1281, respectively).
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Output 45.7.4 Tests of Between-Subject Effects

The GLM Procedure
Repeated Measures Analysis of Variance

Tests of Hypotheses for Between Subjects Effects

The GLM Procedure
Repeated Measures Analysis of Variance

Tests of Hypotheses for Between Subjects Effects

Source DF Type III SS Mean Square F Value Pr > F

Drug 1 5.99336243 5.99336243 2.71 0.1281

Depleted 1 15.44840703 15.44840703 6.98 0.0229

Drug*Depleted 1 4.69087508 4.69087508 2.12 0.1734

Error 11 24.34683348 2.21334850

Univariate analyses for within-subject (within-dog) effects and related interactions are displayed in Out-
put 45.7.6. The results for this example are the same as for the multivariate analyses; this is not always
the case. In addition, before the univariate analyses are used to make conclusions about the data, the result
of the sphericity test (requested with the PRINTE option in the REPEATED statement and displayed in
Output 45.7.5) should be examined. If the sphericity test is rejected, consider using the adjusted G-G or
H-F-L probabilities. See the section “Repeated Measures Analysis of Variance” on page 3493 for more
information.

Output 45.7.5 Sphericity Test

Sphericity Tests

Variables DF
Mauchly's
Criterion Chi-Square Pr > ChiSq

Transformed Variates 5 0.1752641 16.930873 0.0046

Orthogonal Components 5 0.1752641 16.930873 0.0046

Output 45.7.6 Univariate Tests of Within-Subject Effects

The GLM Procedure
Repeated Measures Analysis of Variance

Univariate Tests of Hypotheses for Within Subject Effects

The GLM Procedure
Repeated Measures Analysis of Variance

Univariate Tests of Hypotheses for Within Subject Effects

Adj Pr > F

Source DF Type III SS Mean Square F Value Pr > F G - G H-F-L

Time 3 12.05898677 4.01966226 53.44 <.0001 <.0001 <.0001

Time*Drug 3 1.84429514 0.61476505 8.17 0.0003 0.0039 0.0023

Time*Depleted 3 12.08978557 4.02992852 53.57 <.0001 <.0001 <.0001

Time*Drug*Depleted 3 2.93077939 0.97692646 12.99 <.0001 0.0005 0.0002

Error(Time) 33 2.48238887 0.07522391

Greenhouse-Geisser Epsilon 0.5694

Huynh-Feldt-Lecoutre Epsilon 0.6636

Output 45.7.7 is produced by the SUMMARY option in the REPEATED statement. If the POLYNOMIAL
option is not used, a similar table is displayed using the default CONTRAST transformation. The linear,
quadratic, and cubic trends for Time, labeled as ‘Time_1’, ‘Time_2’, and ‘Time_3’, are displayed, and in
each case, the Source labeled ‘Mean’ gives a test for the respective trend.



Example 45.8: Mixed Model Analysis of Variance with the RANDOM Statement F 3551

Output 45.7.7 Tests of Between-Subject Effects for Transformed Variables

The GLM Procedure
Repeated Measures Analysis of Variance
Analysis of Variance of Contrast Variables

Time_N represents the nth degree polynomial contrast for Time

The GLM Procedure
Repeated Measures Analysis of Variance
Analysis of Variance of Contrast Variables

Time_N represents the nth degree polynomial contrast for Time

Contrast Variable: Time_1

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 2.00963483 2.00963483 34.99 0.0001

Drug 1 1.18069076 1.18069076 20.56 0.0009

Depleted 1 1.36172504 1.36172504 23.71 0.0005

Drug*Depleted 1 2.04346848 2.04346848 35.58 <.0001

Error 11 0.63171161 0.05742833

Contrast Variable: Time_2

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 5.40988418 5.40988418 57.15 <.0001

Drug 1 0.59173192 0.59173192 6.25 0.0295

Depleted 1 5.94945506 5.94945506 62.86 <.0001

Drug*Depleted 1 0.67031587 0.67031587 7.08 0.0221

Error 11 1.04118707 0.09465337

Contrast Variable: Time_3

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 4.63946776 4.63946776 63.04 <.0001

Drug 1 0.07187246 0.07187246 0.98 0.3443

Depleted 1 4.77860547 4.77860547 64.94 <.0001

Drug*Depleted 1 0.21699504 0.21699504 2.95 0.1139

Error 11 0.80949018 0.07359002

Example 45.8: Mixed Model Analysis of Variance with the RANDOM
Statement

Milliken and Johnson (1984) present an example of an unbalanced mixed model. Three machines, which are
considered as a fixed effect, and six employees, which are considered a random effect, are studied. Each
employee operates each machine for either one, two, or three different times. The dependent variable is an
overall rating, which takes into account the number and quality of components produced.

The following statements form the data set and perform a mixed model analysis of variance by requesting the
TEST option in the RANDOM statement. Note that the machine*person interaction is declared as a random
effect; in general, when an interaction involves a random effect, it too should be declared as random. The
results of the analysis are shown in Output 45.8.1 through Output 45.8.4.

data machine;
input machine person rating @@;
datalines;
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1 1 52.0 1 2 51.8 1 2 52.8 1 3 60.0 1 4 51.1 1 4 52.3 1 5 50.9
1 5 51.8 1 5 51.4 1 6 46.4 1 6 44.8 1 6 49.2 2 1 64.0 2 2 59.7
2 2 60.0 2 2 59.0 2 3 68.6 2 3 65.8 2 4 63.2 2 4 62.8 2 4 62.2
2 5 64.8 2 5 65.0 2 6 43.7 2 6 44.2 2 6 43.0 3 1 67.5 3 1 67.2
3 1 66.9 3 2 61.5 3 2 61.7 3 2 62.3 3 3 70.8 3 3 70.6 3 3 71.0
3 4 64.1 3 4 66.2 3 4 64.0 3 5 72.1 3 5 72.0 3 5 71.1 3 6 62.0
3 6 61.4 3 6 60.5
;

proc glm data=machine;
class machine person;
model rating=machine person machine*person;
random person machine*person / test;

run;

The TEST option in the RANDOM statement requests that PROC GLM determine the appropriate F tests
based on person and machine*person being treated as random effects. As you can see in Output 45.8.4,
this requires that a linear combination of mean squares be constructed to test both the machine and person
hypotheses; thus, F tests that use Satterthwaite approximations are needed.

Output 45.8.1 Summary Information about Groups

The GLM ProcedureThe GLM Procedure

Class Level Information

Class Levels Values

machine 3 1 2 3

person 6 1 2 3 4 5 6

Number of Observations Read 44

Number of Observations Used 44

Output 45.8.2 Fixed-Effect Model Analysis of Variance

The GLM Procedure

Dependent Variable: rating

The GLM Procedure

Dependent Variable: rating

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 17 3061.743333 180.102549 206.41 <.0001

Error 26 22.686667 0.872564

Corrected Total 43 3084.430000

R-Square Coeff Var Root MSE rating Mean

0.992645 1.560754 0.934111 59.85000

Source DF Type I SS Mean Square F Value Pr > F

machine 2 1648.664722 824.332361 944.72 <.0001

person 5 1008.763583 201.752717 231.22 <.0001

machine*person 10 404.315028 40.431503 46.34 <.0001
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Output 45.8.2 continued

Source DF Type III SS Mean Square F Value Pr > F

machine 2 1238.197626 619.098813 709.52 <.0001

person 5 1011.053834 202.210767 231.74 <.0001

machine*person 10 404.315028 40.431503 46.34 <.0001

Output 45.8.3 Expected Values of Type III Mean Squares

Source Type III Expected Mean Square

machine Var(Error) + 2.137 Var(machine*person) + Q(machine)

person Var(Error) + 2.2408 Var(machine*person) + 6.7224 Var(person)

machine*person Var(Error) + 2.3162 Var(machine*person)

Output 45.8.4 Mixed Model Analysis of Variance

The GLM Procedure
Tests of Hypotheses for Mixed Model Analysis of Variance

Dependent Variable: rating

The GLM Procedure
Tests of Hypotheses for Mixed Model Analysis of Variance

Dependent Variable: rating

Source DF Type III SS Mean Square F Value Pr > F

machine 2 1238.197626 619.098813 16.57 0.0007

Error 10.036 375.057436 37.370384

Error: 0.9226*MS(machine*person) + 0.0774*MS(Error)

Source DF Type III SS Mean Square F Value Pr > F

person 5 1011.053834 202.210767 5.17 0.0133

Error 10.015 392.005726 39.143708

Error: 0.9674*MS(machine*person) + 0.0326*MS(Error)

Source DF Type III SS Mean Square F Value Pr > F

machine*person 10 404.315028 40.431503 46.34 <.0001

Error: MS(Error) 26 22.686667 0.872564

Note that you can also use the MIXED procedure to analyze mixed models. The following statements use
PROC MIXED to reproduce the mixed model analysis of variance; the relevant part of the PROC MIXED
results is shown in Output 45.8.5.

proc mixed data=machine method=type3;
class machine person;
model rating = machine;
random person machine*person;

run;
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Output 45.8.5 PROC MIXED Mixed Model Analysis of Variance (Partial Output)

The Mixed ProcedureThe Mixed Procedure

Type 3 Analysis of Variance

Source DF
Sum of

Squares
Mean

Square Expected Mean Square Error Term
Error

DF

machine 2 1238.197626 619.098813 Var(Residual) + 2.137
Var(machine*person) + Q(machine)

0.9226
MS(machine*person) + 0.0774
MS(Residual)

10.036

person 5 1011.053834 202.210767 Var(Residual) + 2.2408
Var(machine*person) + 6.7224
Var(person)

0.9674
MS(machine*person) + 0.0326
MS(Residual)

10.015

machine*person 10 404.315028 40.431503 Var(Residual) + 2.3162
Var(machine*person)

MS(Residual) 26

Residual 26 22.686667 0.872564 Var(Residual) . .

Type 3 Analysis of Variance

Source
F

Value Pr > F

machine 16.57 0.0007

person 5.17 0.0133

machine*person 46.34 <.0001

Residual . .

The advantage of PROC MIXED is that it offers more versatility for mixed models; the disadvantage is that it
can be less computationally efficient for large data sets. See Chapter 65, “The MIXED Procedure,” for more
details.

Example 45.9: Analyzing a Doubly Multivariate Repeated Measures Design
This example shows how to analyze a doubly multivariate repeated measures design by using PROC GLM
with an IDENTITY factor in the REPEATED statement. Note that this differs from previous releases of
PROC GLM, in which you had to use a MANOVA statement to get a doubly repeated measures analysis.

Two responses, Y1 and Y2, are each measured three times for each subject (pretreatment, posttreatment, and
in a later follow-up). Each subject receives one of three treatments; A, B, or the control. In PROC GLM, you
use a REPEATED factor of type IDENTITY to identify the different responses and another repeated factor to
identify the different measurement times. The repeated measures analysis includes multivariate tests for time
and treatment main effects, as well as their interactions, across responses. The following statements produce
Output 45.9.1 through Output 45.9.3.

options ls=96;
data Trial;

input Treatment $ Repetition PreY1 PostY1 FollowY1
PreY2 PostY2 FollowY2;

datalines;
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A 1 3 13 9 0 0 9
A 2 0 14 10 6 6 3
A 3 4 6 17 8 2 6
A 4 7 7 13 7 6 4
A 5 3 12 11 6 12 6
A 6 10 14 8 13 3 8
B 1 9 11 17 8 11 27
B 2 4 16 13 9 3 26
B 3 8 10 9 12 0 18
B 4 5 9 13 3 0 14
B 5 0 15 11 3 0 25
B 6 4 11 14 4 2 9
Control 1 10 12 15 4 3 7
Control 2 2 8 12 8 7 20
Control 3 4 9 10 2 0 10
Control 4 10 8 8 5 8 14
Control 5 11 11 11 1 0 11
Control 6 1 5 15 8 9 10
;

proc glm data=Trial;
class Treatment;
model PreY1 PostY1 FollowY1

PreY2 PostY2 FollowY2 = Treatment / nouni;
repeated Response 2 identity, Time 3;

run;

Output 45.9.1 A Doubly Multivariate Repeated Measures Design

The GLM ProcedureThe GLM Procedure

Class Level Information

Class Levels Values

Treatment 3 A B Control

Number of Observations Read 18

Number of Observations Used 18

The levels of the repeated factors are displayed in Output 45.9.2. Note that RESPONSE is 1 for all the Y1
measurements and 2 for all the Y2 measurements, while the three levels of Time identify the pretreatment,
posttreatment, and follow-up measurements within each response. The multivariate tests for within-subject
effects are displayed in Output 45.9.3.

Output 45.9.2 Repeated Factor Levels

The GLM Procedure
Repeated Measures Analysis of Variance

The GLM Procedure
Repeated Measures Analysis of Variance

Repeated Measures Level Information

Dependent Variable PreY1 PostY1 FollowY1 PreY2 PostY2 FollowY2

Level of Response 1 1 1 2 2 2

Level of Time 1 2 3 1 2 3
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Output 45.9.3 Within-Subject Tests

MANOVATest Criteria and Exact F Statistics for the Hypothesis of no Response Effect
H = Type III SSCP Matrix for Response

E = Error SSCP Matrix

S=1 M=0 N=6

Statistic Value F Value Num DF Den DF Pr > F

Wilks' Lambda 0.02165587 316.24 2 14 <.0001

Pillai's Trace 0.97834413 316.24 2 14 <.0001

Hotelling-Lawley Trace 45.17686368 316.24 2 14 <.0001

Roy's Greatest Root 45.17686368 316.24 2 14 <.0001

MANOVATest Criteria and F Approximations for the Hypothesis of no Response*Treatment Effect
H = Type III SSCP Matrix for Response*Treatment

E = Error SSCP Matrix

S=2 M=-0.5 N=6

Statistic Value F Value Num DF Den DF Pr > F

Wilks' Lambda 0.72215797 1.24 4 28 0.3178

Pillai's Trace 0.27937444 1.22 4 30 0.3240

Hotelling-Lawley Trace 0.38261660 1.31 4 15.818 0.3074

Roy's Greatest Root 0.37698780 2.83 2 15 0.0908

NOTE: F Statistic for Roy's Greatest Root is an upper bound.

NOTE: F Statistic for Wilks' Lambda is exact.

MANOVATest Criteria and Exact F Statistics for the Hypothesis of no Response*Time Effect
H = Type III SSCP Matrix for Response*Time

E = Error SSCP Matrix

S=1 M=1 N=5

Statistic Value F Value Num DF Den DF Pr > F

Wilks' Lambda 0.14071380 18.32 4 12 <.0001

Pillai's Trace 0.85928620 18.32 4 12 <.0001

Hotelling-Lawley Trace 6.10662362 18.32 4 12 <.0001

Roy's Greatest Root 6.10662362 18.32 4 12 <.0001

MANOVATest Criteria and F Approximations for the Hypothesis of no Response*Time*Treatment Effect
H = Type III SSCP Matrix for Response*Time*Treatment

E = Error SSCP Matrix

S=2 M=0.5 N=5

Statistic Value F Value Num DF Den DF Pr > F

Wilks' Lambda 0.22861451 3.27 8 24 0.0115

Pillai's Trace 0.96538785 3.03 8 26 0.0151

Hotelling-Lawley Trace 2.52557514 3.64 8 15 0.0149

Roy's Greatest Root 2.12651905 6.91 4 13 0.0033

NOTE: F Statistic for Roy's Greatest Root is an upper bound.

NOTE: F Statistic for Wilks' Lambda is exact.

The table for Response*Treatment tests for an overall treatment effect across the two responses; likewise,
the tables for Response*Time and Response*Treatment*Time test for time and the treatment-by-time
interaction, respectively. In this case, there is a strong main effect for time and possibly for the interaction,
but not for treatment.
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In previous releases (before the IDENTITY transformation was introduced), in order to perform a doubly
repeated measures analysis, you had to use a MANOVA statement with a customized transformation matrix
M. You might still want to use this approach to see details of the analysis, such as the univariate ANOVA
for each transformed variate. The following statements demonstrate this approach by using the MANOVA
statement to test for the overall main effect of time and specifying the SUMMARY option.

proc glm data=Trial;
class Treatment;
model PreY1 PostY1 FollowY1

PreY2 PostY2 FollowY2 = Treatment / nouni;
manova h=intercept m=prey1 - posty1,

prey1 - followy1,
prey2 - posty2,
prey2 - followy2 / summary;

run;

The M matrix used to perform the test for time effects is displayed in Output 45.9.4, while the results of the
multivariate test are given in Output 45.9.5. Note that the test results are the same as for the Response*Time
effect in Output 45.9.3.

Output 45.9.4 M Matrix to Test for Time Effect (Repeated Measure)

The GLM Procedure
Multivariate Analysis of Variance

The GLM Procedure
Multivariate Analysis of Variance

M Matrix Describing Transformed Variables

PreY1 PostY1 FollowY1 PreY2 PostY2 FollowY2

MVAR1 1 -1 0 0 0 0

MVAR2 1 0 -1 0 0 0

MVAR3 0 0 0 1 -1 0

MVAR4 0 0 0 1 0 -1

Output 45.9.5 Tests for Time Effect (Repeated Measure)

The GLM Procedure
Multivariate Analysis of Variance

The GLM Procedure
Multivariate Analysis of Variance

Characteristic Roots and Vectors of: E Inverse * H, where
H = Type III SSCP Matrix for Intercept

E = Error SSCP Matrix

Variables have been transformed by the M Matrix

Characteristic Vector V'EV=1

Characteristic
Root Percent MVAR1 MVAR2 MVAR3 MVAR4

6.10662362 100.00 -0.00157729 0.04081620 -0.04210209 0.03519437

0.00000000 0.00 0.00796367 0.00493217 0.05185236 0.00377940

0.00000000 0.00 -0.03534089 -0.01502146 -0.00283074 0.04259372

0.00000000 0.00 -0.05672137 0.04500208 0.00000000 0.00000000
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Output 45.9.5 continued

MANOVATest Criteria and Exact F Statistics for the Hypothesis of No Overall Intercept Effect
on the Variables Defined by the M Matrix Transformation

H = Type III SSCP Matrix for Intercept
E = Error SSCP Matrix

S=1 M=1 N=5

Statistic Value F Value Num DF Den DF Pr > F

Wilks' Lambda 0.14071380 18.32 4 12 <.0001

Pillai's Trace 0.85928620 18.32 4 12 <.0001

Hotelling-Lawley Trace 6.10662362 18.32 4 12 <.0001

Roy's Greatest Root 6.10662362 18.32 4 12 <.0001

The SUMMARY option in the MANOVA statement creates an ANOVA table for each transformed variable
as defined by the M matrix. MVAR1 and MVAR2 contrast the pretreatment measurement for Y1 with the
posttreatment and follow-up measurements for Y1, respectively; MVAR3 and MVAR4 are the same contrasts
for Y2. Output 45.9.6 displays these univariate ANOVA tables and shows that the contrasts are all strongly
significant except for the pre-versus-post difference for Y2.

Output 45.9.6 Summary Output for the Test for Time Effect

The GLM Procedure
Multivariate Analysis of Variance

Dependent Variable: MVAR1

The GLM Procedure
Multivariate Analysis of Variance

Dependent Variable: MVAR1

Source DF Type III SS Mean Square F Value Pr > F

Intercept 1 512.0000000 512.0000000 22.65 0.0003

Error 15 339.0000000 22.6000000

The GLM Procedure
Multivariate Analysis of Variance

Dependent Variable: MVAR2

The GLM Procedure
Multivariate Analysis of Variance

Dependent Variable: MVAR2

Source DF Type III SS Mean Square F Value Pr > F

Intercept 1 813.3888889 813.3888889 32.87 <.0001

Error 15 371.1666667 24.7444444

The GLM Procedure
Multivariate Analysis of Variance

Dependent Variable: MVAR3

The GLM Procedure
Multivariate Analysis of Variance

Dependent Variable: MVAR3

Source DF Type III SS Mean Square F Value Pr > F

Intercept 1 68.0555556 68.0555556 3.49 0.0814

Error 15 292.5000000 19.5000000
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Output 45.9.6 continued

The GLM Procedure
Multivariate Analysis of Variance

Dependent Variable: MVAR4

The GLM Procedure
Multivariate Analysis of Variance

Dependent Variable: MVAR4

Source DF Type III SS Mean Square F Value Pr > F

Intercept 1 800.0000000 800.0000000 26.43 0.0001

Error 15 454.0000000 30.2666667

Example 45.10: Testing for Equal Group Variances
This example demonstrates how you can test for equal group variances in a one-way design. The data come
from the University of Pennsylvania Smell Identification Test (UPSIT), reported in O’Brien and Heft (1995).
The study is undertaken to explore how age and gender are related to sense of smell. A total of 180 subjects
20 to 89 years old are exposed to 40 different odors: for each odor, subjects are asked to choose which of
four words best describes the odor. The Freeman-Tukey modified arcsine transformation (Bishop, Fienberg,
and Holland 1975) is applied to the proportion of correctly identified odors to arrive at an olfactory index.
For the following analysis, subjects are divided into five age groups:

agegroup D

8̂̂̂̂
<̂
ˆ̂̂:
1 if age � 25

2 if 25 < age � 40

3 if 40 < age � 55

4 if 55 < age � 70

5 if 70 < age

The following statements create a data set named upsit, containing the age group and olfactory index for each
subject.

data upsit;
input agegroup smell @@;
datalines;

1 1.381 1 1.322 1 1.162 1 1.275 1 1.381 1 1.275 1 1.322
1 1.492 1 1.322 1 1.381 1 1.162 1 1.013 1 1.322 1 1.322
1 1.275 1 1.492 1 1.322 1 1.322 1 1.492 1 1.322 1 1.381
1 1.234 1 1.162 1 1.381 1 1.381 1 1.381 1 1.322 1 1.381
1 1.322 1 1.381 1 1.275 1 1.492 1 1.275 1 1.322 1 1.275
1 1.381 1 1.234 1 1.105
2 1.234 2 1.234 2 1.381 2 1.322 2 1.492 2 1.234 2 1.381
2 1.381 2 1.492 2 1.492 2 1.275 2 1.492 2 1.381 2 1.492
2 1.322 2 1.275 2 1.275 2 1.275 2 1.322 2 1.492 2 1.381
2 1.322 2 1.492 2 1.196 2 1.322 2 1.275 2 1.234 2 1.322
2 1.098 2 1.322 2 1.381 2 1.275 2 1.492 2 1.492 2 1.381
2 1.196
3 1.381 3 1.381 3 1.492 3 1.492 3 1.492 3 1.098 3 1.492
3 1.381 3 1.234 3 1.234 3 1.129 3 1.069 3 1.234 3 1.322
3 1.275 3 1.230 3 1.234 3 1.234 3 1.322 3 1.322 3 1.381
4 1.322 4 1.381 4 1.381 4 1.322 4 1.234 4 1.234 4 1.234
4 1.381 4 1.322 4 1.275 4 1.275 4 1.492 4 1.234 4 1.098
4 1.322 4 1.129 4 0.687 4 1.322 4 1.322 4 1.234 4 1.129
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4 1.492 4 0.810 4 1.234 4 1.381 4 1.040 4 1.381 4 1.381
4 1.129 4 1.492 4 1.129 4 1.098 4 1.275 4 1.322 4 1.234
4 1.196 4 1.234 4 0.585 4 0.785 4 1.275 4 1.322 4 0.712
4 0.810
5 1.322 5 1.234 5 1.381 5 1.275 5 1.275 5 1.322 5 1.162
5 0.909 5 0.502 5 1.234 5 1.322 5 1.196 5 0.859 5 1.196
5 1.381 5 1.322 5 1.234 5 1.275 5 1.162 5 1.162 5 0.585
5 1.013 5 0.960 5 0.662 5 1.129 5 0.531 5 1.162 5 0.737
5 1.098 5 1.162 5 1.040 5 0.558 5 0.960 5 1.098 5 0.884
5 1.162 5 1.098 5 0.859 5 1.275 5 1.162 5 0.785 5 0.859
;

Older people are more at risk for problems with their sense of smell, and this should be reflected in significant
differences in the mean of the olfactory index across the different age groups. However, many older people
also have an excellent sense of smell, which implies that the older age groups should have greater variability.
In order to test this hypothesis and to compute a one-way ANOVA for the olfactory index that is robust to
the possibility of unequal group variances, you can use the HOVTEST and WELCH options in the MEANS
statement for the GLM procedure, as shown in the following statements.

proc glm data=upsit;
class agegroup;
model smell = agegroup;
means agegroup / hovtest welch;

run;

Output 45.10.1, Output 45.10.2, and Output 45.10.3 display the usual ANOVA test for equal age group
means, Levene’s test for equal age group variances, and Welch’s test for equal age group means, respectively.
The hypotheses of age effects for mean and variance of the olfactory index are both confirmed.

Output 45.10.1 Usual ANOVA Test for Age Group Differences in Mean Olfactory Index

The GLM Procedure

Dependent Variable: smell

The GLM Procedure

Dependent Variable: smell

Source DF Type III SS Mean Square F Value Pr > F

agegroup 4 2.13878141 0.53469535 16.65 <.0001

Output 45.10.2 Levene’s Test for Age Group Differences in Olfactory Variability

The GLM ProcedureThe GLM Procedure

Levene's Test for Homogeneity of smell Variance
ANOVA of Squared Deviations from Group Means

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

agegroup 4 0.0799 0.0200 6.35 <.0001

Error 175 0.5503 0.00314



Example 45.10: Testing for Equal Group Variances F 3561

Output 45.10.3 Welch’s Test for Age Group Differences in Mean Olfactory Index

Welch's ANOVA for smell

Source DF F Value Pr > F

agegroup 4.0000 13.72 <.0001

Error 78.7489

As discussed in “Homogeneity of Variance in One-Way Models” on page 3488, Levene’s test or any other test
for homogeneity of variance should not be used as a diagnostic for the assumption of equal group variances
that underlies the usual analysis of variance. However, graphical diagnostics can be a useful informal tool for
monitoring whether your data meet the assumptions of a GLM analysis. The following statements perform a
one-way ANOVA as before, but with ODS Graphics enabled. In addition to the box plot that is produced
by default, the PLOTS=DIAGNOSTICS option requests a panel of summary diagnostics for the fit. These
additional plots are shown in Output 45.10.4 and Output 45.10.5.

ods graphics on;
proc glm data=upsit plot=diagnostics;

class agegroup;
model smell = agegroup;

run;
ods graphics off;

Output 45.10.4 Box Plot of Olfactory Index by Age Group
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Output 45.10.5 Diagnostics for One-Way ANOVA of Olfactory Index by Age Group

Output 45.10.4 clearly shows different degrees of variability for olfactory index within different age groups,
with the variability generally rising with age. Likewise, several of the plots in the diagnostics panel shown in
Output 45.10.5 indicate a relationship between olfactory variability and mean olfactory index. Also, note that
the plot of Cook’s D statistic indicates that observations in the higher, more variable age groups are overly
influential on the analysis of group means. The overall inference from these plots is that an assumption of
equal group variances is probably untenable and that the analysis of the group means should thus take this
into account.
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Example 45.11: Analysis of a Screening Design
Yin and Jillie (1987) describe an experiment performed on a nitride etch process for a single wafer plasma
etcher. The experiment is run using four factors: cathode power (power), gas flow (flow), reactor chamber
pressure (pressure), and electrode gap (gap). Of interest are the main effects and interaction effects of the
factors on the nitride etch rate (rate). The following statements create a SAS data set named HalfFraction,
containing the factor settings and the observed etch rate for each of eight experimental runs.

data HalfFraction;
input power flow pressure gap rate;
datalines;

0.8 4.5 125 275 550
0.8 4.5 200 325 650
0.8 550.0 125 325 642
0.8 550.0 200 275 601
1.2 4.5 125 325 749
1.2 4.5 200 275 1052
1.2 550.0 125 275 1075
1.2 550.0 200 325 729
;

Notice that each of the factors has just two values. This is a common experimental design when the intent
is to screen from the many factors that might affect the response the few that actually do. Since there are
24 D 16 different possible settings of four two-level factors, this design with only eight runs is called a “half
fraction.” The eight runs are chosen specifically to provide unambiguous information on main effects at the
cost of confounding interaction effects with each other.

One way to analyze these data is simply to use PROC GLM to compute an analysis of variance, including
both main effects and interactions in the model. The following statements demonstrate this approach.

proc glm data=HalfFraction;
class power flow pressure gap;
model rate=power|flow|pressure|gap@2;

run;

The “@2” notation in the MODEL statement includes all main effects and two-factor interactions between the
factors. The output is shown in Output 45.11.1.

Output 45.11.1 Analysis of Variance for Nitride Etch Process Half Fraction

The GLM ProcedureThe GLM Procedure

Class Level Information

Class Levels Values

power 2 0.8 1.2

flow 2 4.5 550

pressure 2 125 200

gap 2 275 325

Number of Observations Read 8

Number of Observations Used 8



3564 F Chapter 45: The GLM Procedure

Output 45.11.1 continued

The GLM Procedure

Dependent Variable: rate

The GLM Procedure

Dependent Variable: rate

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 7 280848.0000 40121.1429 . .

Error 0 0.0000 .

Corrected Total 7 280848.0000

R-Square Coeff Var Root MSE rate Mean

1.000000 . . 756.0000

Source DF Type I SS Mean Square F Value Pr > F

power 1 168780.5000 168780.5000 . .

flow 1 264.5000 264.5000 . .

power*flow 1 200.0000 200.0000 . .

pressure 1 32.0000 32.0000 . .

power*pressure 1 1300.5000 1300.5000 . .

flow*pressure 1 78012.5000 78012.5000 . .

gap 1 32258.0000 32258.0000 . .

power*gap 0 0.0000 . . .

flow*gap 0 0.0000 . . .

pressure*gap 0 0.0000 . . .

Source DF Type III SS Mean Square F Value Pr > F

power 1 168780.5000 168780.5000 . .

flow 1 264.5000 264.5000 . .

power*flow 0 0.0000 . . .

pressure 1 32.0000 32.0000 . .

power*pressure 0 0.0000 . . .

flow*pressure 0 0.0000 . . .

gap 1 32258.0000 32258.0000 . .

power*gap 0 0.0000 . . .

flow*gap 0 0.0000 . . .

pressure*gap 0 0.0000 . . .

Notice that there are no error degrees of freedom. This is because there are 10 effects in the model (4
main effects plus 6 interactions) but only 8 observations in the data set. This is another cost of using a
fractional design: not only is it impossible to estimate all the main effects and interactions, but there is also
no information left to estimate the underlying error rate in order to measure the significance of the effects
that are estimable.

Another thing to notice in Output 45.11.1 is the difference between the Type I and Type III ANOVA tables.
The rows corresponding to main effects in each are the same, but no Type III interaction tests are estimable,
while some Type I interaction tests are estimable. This indicates that there is aliasing in the design: some
interactions are completely confounded with each other.

In order to analyze this confounding, you should examine the aliasing structure of the design by using the
ALIASING option in the MODEL statement. Before doing so, however, it is advisable to code the design,
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replacing low and high levels of each factor with the values –1 and +1, respectively. This puts each factor
on an equal footing in the model and makes the aliasing structure much more interpretable. The following
statements code the data, creating a new data set named Coded.

data Coded; set HalfFraction;
power = -1*(power =0.80) + 1*(power =1.20);
flow = -1*(flow =4.50) + 1*(flow =550 );
pressure = -1*(pressure=125 ) + 1*(pressure=200 );
gap = -1*(gap =275 ) + 1*(gap =325 );

run;

The following statements use the GLM procedure to reanalyze the coded design, displaying the parameter
estimates as well as the functions of the parameters that they each estimate.

proc glm data=Coded;
model rate=power|flow|pressure|gap@2 / solution aliasing;

run;

The parameter estimates table is shown in Output 45.11.2.

Output 45.11.2 Parameter Estimates and Aliases for Nitride Etch Process Half Fraction

The GLM Procedure

Dependent Variable: rate

The GLM Procedure

Dependent Variable: rate

Parameter Estimate
Standard

Error t Value Pr > |t| Expected Value

Intercept 756.0000000 . . . Intercept

power 145.2500000 . . . power

flow 5.7500000 . . . flow

power*flow -5.0000000 B . . . power*flow + pressure*gap

pressure 2.0000000 . . . pressure

power*pressure -12.7500000 B . . . power*pressure + flow*gap

flow*pressure -98.7500000 B . . . flow*pressure + power*gap

gap -63.5000000 . . . gap

power*gap 0.0000000 B . . .

flow*gap 0.0000000 B . . .

pressure*gap 0.0000000 B . . .

In the “Expected Value” column, notice that, while each of the main effects is unambiguously estimated by
its associated term in the model, the expected values of the interaction estimates are more complicated. For
example, the relatively large effect (–98.75) corresponding to flow*pressure actually estimates the combined
effect of flow*pressure and power*gap. Without further information, it is impossible to disentangle these
aliased interactions; however, since the main effects of both power and gap are large and those for flow and
pressure are small, it is reasonable to suspect that power*gap is the more “active” of the two interactions.

Fortunately, eight more runs are available for this experiment (the other half fraction). The following
statements create a data set containing these extra runs and add it to the previous eight, resulting in a full
24 D 16 run replicate. Then PROC GLM displays the analysis of variance again.
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data OtherHalf;
input power flow pressure gap rate;
datalines;

0.8 4.5 125 325 669
0.8 4.5 200 275 604
0.8 550.0 125 275 633
0.8 550.0 200 325 635
1.2 4.5 125 275 1037
1.2 4.5 200 325 868
1.2 550.0 125 325 860
1.2 550.0 200 275 1063
;
data FullRep;

set HalfFraction OtherHalf;
run;

proc glm data=FullRep;
class power flow pressure gap;
model rate=power|flow|pressure|gap@2;

run;

The results are displayed in Output 45.11.3.

Output 45.11.3 Analysis of Variance for Nitride Etch Process Full Replicate

The GLM ProcedureThe GLM Procedure

Class Level Information

Class Levels Values

power 2 0.8 1.2

flow 2 4.5 550

pressure 2 125 200

gap 2 275 325

Number of Observations Read 16

Number of Observations Used 16

The GLM Procedure

Dependent Variable: rate

The GLM Procedure

Dependent Variable: rate

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 10 521234.1250 52123.4125 25.58 0.0011

Error 5 10186.8125 2037.3625

Corrected Total 15 531420.9375

R-Square Coeff Var Root MSE rate Mean

0.980831 5.816175 45.13715 776.0625
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Output 45.11.3 continued

Source DF Type I SS Mean Square F Value Pr > F

power 1 374850.0625 374850.0625 183.99 <.0001

flow 1 217.5625 217.5625 0.11 0.7571

power*flow 1 18.0625 18.0625 0.01 0.9286

pressure 1 10.5625 10.5625 0.01 0.9454

power*pressure 1 1.5625 1.5625 0.00 0.9790

flow*pressure 1 7700.0625 7700.0625 3.78 0.1095

gap 1 41310.5625 41310.5625 20.28 0.0064

power*gap 1 94402.5625 94402.5625 46.34 0.0010

flow*gap 1 2475.0625 2475.0625 1.21 0.3206

pressure*gap 1 248.0625 248.0625 0.12 0.7414

Source DF Type III SS Mean Square F Value Pr > F

power 1 374850.0625 374850.0625 183.99 <.0001

flow 1 217.5625 217.5625 0.11 0.7571

power*flow 1 18.0625 18.0625 0.01 0.9286

pressure 1 10.5625 10.5625 0.01 0.9454

power*pressure 1 1.5625 1.5625 0.00 0.9790

flow*pressure 1 7700.0625 7700.0625 3.78 0.1095

gap 1 41310.5625 41310.5625 20.28 0.0064

power*gap 1 94402.5625 94402.5625 46.34 0.0010

flow*gap 1 2475.0625 2475.0625 1.21 0.3206

pressure*gap 1 248.0625 248.0625 0.12 0.7414

With 16 runs, the analysis of variance tells the whole story: all effects are estimable and there are five degrees
of freedom left over to estimate the underlying error. The main effects of power and gap and their interaction
are all significant, and no other effects are. Notice that the Type I and Type III ANOVA tables are the same;
this is because the design is orthogonal and all effects are estimable.

This example illustrates the use of the GLM procedure for the model analysis of a screening experiment.
Typically, there is much more involved in performing an experiment of this type, from selecting the design
points to be studied to graphically assessing significant effects, optimizing the final model, and performing
subsequent experimentation. Specialized tools for this are available in SAS/QC software, in particular the
ADX Interface and the FACTEX and OPTEX procedures. See SAS/QC User’s Guide for more information.
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Overview: GLMMOD Procedure
The GLMMOD procedure constructs the design matrix for a general linear model; it essentially constitutes the
model-building front end for the GLM procedure. You can use the GLMMOD procedure in conjunction with
other SAS/STAT software regression procedures or with SAS/IML software to obtain specialized analyses
for general linear models that you cannot obtain with the GLM procedure.

While some of the regression procedures in SAS/STAT software provide for general linear effects modeling
with classification variables and interaction or polynomial effects, many others do not. For such procedures,
you must specify the model directly in terms of distinct variables. For example, if you want to use the REG
procedure to fit a polynomial model, you must first create the crossproduct and power terms as new variables,
usually in a DATA step. Alternatively, you can use the GLMMOD procedure to create a data set that contains
the design matrix for a model as specified using the effects modeling facilities of the GLM procedure.

Note that the TRANSREG procedure provides alternative methods to construct design matrices for full-rank
and less-than-full-rank models, polynomials, and splines. See Chapter 104, “The TRANSREG Procedure,”
for more information.



3576 F Chapter 46: The GLMMOD Procedure

Getting Started: GLMMOD Procedure

A One-Way Design
A one-way analysis of variance considers one treatment factor with two or more treatment levels. This
example employs PROC GLMMOD together with PROC REG to perform a one-way analysis of variance
to study the effect of bacteria on the nitrogen content of red clover plants. The treatment factor is bacteria
strain, and it has six levels. Red clover plants are inoculated with the treatments, and nitrogen content is
later measured in milligrams. The data are derived from an experiment by Erdman (1946) and are analyzed
in Chapters 7 and 8 of Steel and Torrie (1980). PROC GLMMOD is used to create the design matrix. The
following DATA step creates the SAS data set Clover.

title 'Nitrogen Content of Red Clover Plants';
data Clover;

input Strain $ Nitrogen @@;
datalines;

3DOK1 19.4 3DOK1 32.6 3DOK1 27.0 3DOK1 32.1 3DOK1 33.0
3DOK5 17.7 3DOK5 24.8 3DOK5 27.9 3DOK5 25.2 3DOK5 24.3
3DOK4 17.0 3DOK4 19.4 3DOK4 9.1 3DOK4 11.9 3DOK4 15.8
3DOK7 20.7 3DOK7 21.0 3DOK7 20.5 3DOK7 18.8 3DOK7 18.6
3DOK13 14.3 3DOK13 14.4 3DOK13 11.8 3DOK13 11.6 3DOK13 14.2
COMPOS 17.3 COMPOS 19.4 COMPOS 19.1 COMPOS 16.9 COMPOS 20.8
;

The variable Strain contains the treatment levels, and the variable Nitrogen contains the response. The
following statements produce the design matrix:

proc glmmod data=Clover;
class Strain;
model Nitrogen = Strain;

run;

The classification variable, or treatment factor, is specified in the CLASS statement. The MODEL statement
defines the response and independent variables. The design matrix produced corresponds to the model

Yi;j D �C ˛i C �i;j

where i D 1; : : : ; 6 and j D 1; : : : ; 5.



A One-Way Design F 3577

Figure 46.1 and Figure 46.2 display the output produced by these statements. Figure 46.1 displays information
about the data set, which is useful for checking your data.

Figure 46.1 Class Level Information and Parameter Definitions

Nitrogen Content of Red Clover Plants

The GLMMOD Procedure

Nitrogen Content of Red Clover Plants

The GLMMOD Procedure

Class Level Information

Class Levels Values

Strain 6 3DOK1 3DOK13 3DOK4 3DOK5 3DOK7 COMPOS

Number of Observations Read 30

Number of Observations Used 30

Parameter Definitions

CLASS
Variable
Values

Column
Number

Name of
Associated

Effect Strain

1 Intercept

2 Strain 3DOK1

3 Strain 3DOK13

4 Strain 3DOK4

5 Strain 3DOK5

6 Strain 3DOK7

7 Strain COMPOS

The design matrix, shown in Figure 46.2, consists of seven columns: one for the mean and six for the
treatment levels. The vector of responses, Nitrogen, is also displayed.
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Figure 46.2 Design Matrix

Design Points

Column
Number

Observation
Number Nitrogen 1 2 3 4 5 6 7

1 19.4 1 1 0 0 0 0 0

2 32.6 1 1 0 0 0 0 0

3 27.0 1 1 0 0 0 0 0

4 32.1 1 1 0 0 0 0 0

5 33.0 1 1 0 0 0 0 0

6 17.7 1 0 0 0 1 0 0

7 24.8 1 0 0 0 1 0 0

8 27.9 1 0 0 0 1 0 0

9 25.2 1 0 0 0 1 0 0

10 24.3 1 0 0 0 1 0 0

11 17.0 1 0 0 1 0 0 0

12 19.4 1 0 0 1 0 0 0

13 9.1 1 0 0 1 0 0 0

14 11.9 1 0 0 1 0 0 0

15 15.8 1 0 0 1 0 0 0

16 20.7 1 0 0 0 0 1 0

17 21.0 1 0 0 0 0 1 0

18 20.5 1 0 0 0 0 1 0

19 18.8 1 0 0 0 0 1 0

20 18.6 1 0 0 0 0 1 0

21 14.3 1 0 1 0 0 0 0

22 14.4 1 0 1 0 0 0 0

23 11.8 1 0 1 0 0 0 0

24 11.6 1 0 1 0 0 0 0

25 14.2 1 0 1 0 0 0 0

26 17.3 1 0 0 0 0 0 1

27 19.4 1 0 0 0 0 0 1

28 19.1 1 0 0 0 0 0 1

29 16.9 1 0 0 0 0 0 1

30 20.8 1 0 0 0 0 0 1

Usually, you will find PROC GLMMOD most useful for the data sets it can create rather than for its displayed
output. For example, the following statements use PROC GLMMOD to save the design matrix for the clover
study to the data set CloverDesign instead of displaying it.

proc glmmod data=Clover outdesign=CloverDesign noprint;
class Strain;
model Nitrogen = Strain;

run;
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Now you can use the REG procedure to analyze the data, as the following statements demonstrate:

proc reg data=CloverDesign;
model Nitrogen = Col2-Col7;

run;

The results are shown in Figure 46.3.

Figure 46.3 Regression Analysis Using the REG Procedure

Nitrogen Content of Red Clover Plants

The REG Procedure
Model: MODEL1

Dependent Variable: Nitrogen

Nitrogen Content of Red Clover Plants

The REG Procedure
Model: MODEL1

Dependent Variable: Nitrogen

Number of Observations Read 30

Number of Observations Used 30

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 5 847.04667 169.40933 14.37 <.0001

Error 24 282.92800 11.78867

Corrected Total 29 1129.97467

Root MSE 3.43346 R-Square 0.7496

Dependent Mean 19.88667 Adj R-Sq 0.6975

Coeff Var 17.26515

Note: Model is not full rank. Least-squares solutions for the parameters are not unique. Some statistics will be misleading. A reported
DF of 0 or B means that the estimate is biased.

Note: Model is not full rank. Least-squares solutions for the parameters are not unique. Some statistics will be misleading. A reported
DF of 0 or B means that the estimate is biased.

Note: The following parameters have been set to 0, since the variables are a linear combination of other variables as shown.

Col7 = Intercept - Col2 - Col3 - Col4 - Col5 - Col6

Parameter Estimates

Variable Label DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept Intercept B 18.70000 1.53549 12.18 <.0001

Col2 Strain 3DOK1 B 10.12000 2.17151 4.66 <.0001

Col3 Strain 3DOK13 B -5.44000 2.17151 -2.51 0.0194

Col4 Strain 3DOK4 B -4.06000 2.17151 -1.87 0.0738

Col5 Strain 3DOK5 B 5.28000 2.17151 2.43 0.0229

Col6 Strain 3DOK7 B 1.22000 2.17151 0.56 0.5794

Col7 Strain COMPOS 0 0 . . .
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Syntax: GLMMOD Procedure
The following statements are available in the GLMMOD procedure.

PROC GLMMOD < options > ;
BY variables ;
CLASS variables ;
FREQ variable ;
MODEL dependents = independents < / options > ;
WEIGHT variable ;

The PROC GLMMOD and MODEL statements are required. If classification effects are used, the classifica-
tion variables must be declared in a CLASS statement, and the CLASS statement must appear before the
MODEL statement.

PROC GLMMOD Statement
PROC GLMMOD < options > ;

The PROC GLMMOD statement invokes the GLMMOD procedure. Table 46.1 summarizes the options
available in the PROC GLMMOD statement.

Table 46.1 PROC GLMMOD Statement Options
Statement Description
DATA= Specifies the SAS data set to be used
NAMELEN= Specifies the maximum length for an effect name
NOPRINT Suppresses the normal display of results
OUTPARM= Names an output data set describing the design matrix columns
OUTDESIGN= Names an output data set to contain the columns of the design matrix
PREFIX= Specifies a prefix to use in naming the columns of the design matrix
ZEROBASED Modifies the numbering for the columns of the design matrix

It has the following options:

DATA=SAS-data-set
specifies the SAS data set to be used by the GLMMOD procedure. If you do not specify the DATA=
option, the most recently created SAS data set is used.

NAMELEN=n
specifies the maximum length for an effect name. Effect names are listed in the table of parameter
definitions and stored in the EFFNAME variable in the OUTPARM= data set. By default, n = 20.
You can specify 20 < n � 200 if 20 characters are not enough to distinguish between effects, which
might be the case if the model includes a high-order interaction between variables with relatively long,
similar names.
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NOPRINT
suppresses the normal display of results. This option is generally useful only when one or more output
data sets are being produced by the GLMMOD procedure. Note that this option temporarily disables
the Output Delivery System (ODS); see Chapter 20, “Using the Output Delivery System,” for more
information.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of the classification variables (which are specified in the CLASS
statement).

This option applies to the levels for all classification variables, except when you use the (default)
ORDER=FORMATTED option with numeric classification variables that have no explicit format. In
that case, the levels of such variables are ordered by their internal value.

The ORDER= option can take the following values:

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set

FORMATTED External formatted value, except for numeric variables with
no explicit format, which are sorted by their unformatted
(internal) value

FREQ Descending frequency count; levels with the most observa-
tions come first in the order

INTERNAL Unformatted value

By default, ORDER=FORMATTED. For ORDER=FORMATTED and ORDER=INTERNAL, the sort
order is machine-dependent.

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

OUTPARM=SAS-data-set
names an output data set to contain the information regarding the association between model effects
and design matrix columns.

OUTDESIGN=SAS-data-set
names an output data set to contain the columns of the design matrix.

PREFIX=name
specifies a prefix to use in naming the columns of the design matrix in the OUTDESIGN= data set. The
default prefix is Col and the column name is formed by appending the column number to the prefix, so
that by default the columns are named Col1, Col2, and so on. If you specify the ZEROBASED option,
the column numbering starts at zero, so that with the default value of PREFIX= the columns of the
design matrix in the OUTDESIGN= data set are named Col0, Col1, and so on.
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ZEROBASED
specifies that the numbering for the columns of the design matrix in the OUTDESIGN= data set begin
at 0. By default it begins at 1, so that with the default value of PREFIX= the columns of the design
matrix in the OUTDESIGN= data set are named Col1, Col2, and so on. If you use the ZEROBASED
option, the column names are instead Col0, Col1, and so on.

BY Statement
BY variables ;

You can specify a BY statement with PROC GLMMOD to obtain separate analyses of observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the GLMMOD procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

CLASS Statement
CLASS variables < / TRUNCATE > ;

The CLASS statement names the classification variables to be used in the model. Typical classification
variables are Treatment, Sex, Race, Group, and Replication. If you use the CLASS statement, it must appear
before the MODEL statement.

Classification variables can be either character or numeric. By default, class levels are determined from the
entire set of formatted values of the CLASS variables.

NOTE: Prior to SAS 9, class levels were determined by using no more than the first 16 characters of the
formatted values. To revert to this previous behavior, you can use the TRUNCATE option in the CLASS
statement.

In any case, you can use formats to group values into levels. See the discussion of the FORMAT procedure
in the Base SAS Procedures Guide and the discussions of the FORMAT statement and SAS formats in SAS
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Formats and Informats: Reference. You can adjust the order of CLASS variable levels with the ORDER=
option in the PROC GLMMOD statement.

You can specify the following option in the CLASS statement after a slash (/):

TRUNCATE
specifies that class levels should be determined by using only up to the first 16 characters of the
formatted values of CLASS variables. When formatted values are longer than 16 characters, you can
use this option to revert to the levels as determined in releases prior to SAS 9.

FREQ and WEIGHT Statements
FREQ variable ;

WEIGHT variable ;

FREQ and WEIGHT variables are transferred to the output data sets without change.

MODEL Statement
MODEL dependents = independents < / options > ;

The MODEL statement names the dependent variables and independent effects. For the syntax of effects, see
the section “Specification of Effects” on page 3453 in Chapter 45, “The GLM Procedure.”

You can specify the following option in the MODEL statement after a slash (/):

NOINT
requests that the intercept parameter not be included in the model.

Details: GLMMOD Procedure

Displayed Output
For each pass of the data (that is, for each BY group and for each pass required by the pattern of missing
values for the dependent variables), the GLMMOD procedure displays the definitions of the columns of the
design matrix along with the following:

• the number of the column

• the name of the associated effect

• the values that the classification variables take for this level of the effect
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The design matrix itself is also displayed, along with the following:

• the observation number

• the dependent variable values

• the FREQ and WEIGHT values, if any

• the columns of the design matrix

Missing Values
If some variables have missing values for some observations, then PROC GLMMOD handles missing values
in the same way as PROC GLM; see the section “Missing Values” on page 3505 in Chapter 45, “The GLM
Procedure,” for further details.

OUTPARM= Data Set
An output data set containing information regarding the association between model effects and design matrix
columns is created whenever you specify the OUTPARM= option in the PROC GLMMOD statement. The
OUTPARM= data set contains an observation for each column of the design matrix with the following
variables:

• a numeric variable, _COLNUM_, identifying the number of the column of the design matrix corre-
sponding to this observation

• a character variable, EFFNAME, containing the name of the effect that generates the column of the
design matrix corresponding to this observation

• the CLASS variables, with the values they have for the column corresponding to this observation, or
blanks if they are not involved with the effect associated with this column

If there are BY-group variables or if the pattern of missing values for the dependent variables requires
it, the single data set defines several design matrices. In this case, for each of these design matrices, the
OUTPARM= data set also contains the following:

• the current values of the BY variables, if you specify a BY statement

• a numeric variable, _YPASS_, containing the current pass of the data, if the pattern of missing values
for the dependent variables requires multiple passes
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OUTDESIGN= Data Set
An output data set containing the design matrix is created whenever you specify the OUTDESIGN= option in
the PROC GLMMOD statement. The OUTDESIGN= data set contains an observation for each observation
in the DATA= data set, with the following variables:

• the dependent variables

• the FREQ variable, if any

• the WEIGHT variable, if any

• a variable for each column of the design matrix, with names COL1, COL2, and so forth

If there are BY-group variables or if the pattern of missing values for the dependent variables requires it, the
single data set contains several design matrices. In this case, for each of these, the OUTDESIGN= data set
also contains the following:

• the current values of the BY variables, if you specify a BY statement

• a numeric variable, _YPASS_, containing the current pass of the data, if the pattern of missing values
for the dependent variables requires multiple passes

ODS Table Names
PROC GLMMOD assigns a name to each table it creates. You can use these names to reference the table
when using the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed in the following table. For more information about ODS, see Chapter 20, “Using the Output Delivery
System.”

Table 46.2 ODS Tables Produced by PROC GLMMOD
ODS Table Name Description Statement
ClassLevels Table of class levels CLASS statement
DependentInfo Simultaneously analyzed

dependent variables
default when there are multiple
dependent variables

DesignPoints Design matrix default
NObs Number of observations default
Parameters Parameters and associated

column numbers
default
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Examples: GLMMOD Procedure

Example 46.1: A Two-Way Design
The following program uses the GLMMOD procedure to produce the design matrix for a two-way design.
The two classification factors have seven and three levels, respectively, so the design matrix contains
1C 7C 3C 21 D 32 columns in all. Output 46.1.1, Output 46.1.2, and Output 46.1.3 display the output
produced by the following statements.

data Plants;
input Type $ @;
do Block=1 to 3;

input StemLength @;
output;

end;
datalines;

Clarion 32.7 32.3 31.5
Clinton 32.1 29.7 29.1
Knox 35.7 35.9 33.1
O'Neill 36.0 34.2 31.2
Compost 31.8 28.0 29.2
Wabash 38.2 37.8 31.9
Webster 32.5 31.1 29.7
;

proc glmmod data=Plants outparm=Parm outdesign=Design;
class Type Block;
model StemLength = Type|Block;

run;

proc print data=Parm;
run;

proc print data=Design;
run;
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Output 46.1.1 A Two-Way Design

The GLMMOD ProcedureThe GLMMOD Procedure

Class Level Information

Class Levels Values

Type 7 Clarion Clinton Compost Knox O'Neill Wabash Webster

Block 3 1 2 3

Number of Observations Read 21

Number of Observations Used 21

Parameter Definitions

CLASS
Variable
Values

Column
Number

Name of
Associated

Effect Type Block

1 Intercept

2 Type Clarion

3 Type Clinton

4 Type Compost

5 Type Knox

6 Type O'Neill

7 Type Wabash

8 Type Webster

9 Block 1

10 Block 2

11 Block 3

12 Type*Block Clarion 1

13 Type*Block Clarion 2

14 Type*Block Clarion 3

15 Type*Block Clinton 1

16 Type*Block Clinton 2

17 Type*Block Clinton 3

18 Type*Block Compost 1

19 Type*Block Compost 2

20 Type*Block Compost 3

21 Type*Block Knox 1

22 Type*Block Knox 2

23 Type*Block Knox 3

24 Type*Block O'Neill 1

25 Type*Block O'Neill 2

26 Type*Block O'Neill 3

27 Type*Block Wabash 1

28 Type*Block Wabash 2

29 Type*Block Wabash 3

30 Type*Block Webster 1

31 Type*Block Webster 2

32 Type*Block Webster 3
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Output 46.1.1 continued

Design Points

Observation
Number StemLength

1 32.7

2 32.3

3 31.5

4 32.1

5 29.7

6 29.1

7 35.7

8 35.9

9 33.1

10 36.0

11 34.2

12 31.2

13 31.8

14 28.0

15 29.2

16 38.2

17 37.8

18 31.9

19 32.5

20 31.1

21 29.7
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Output 46.1.1 continued

Design Points

Column Number

Observation
Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1 1 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

8 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

9 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

10 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

11 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

12 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

13 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

15 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

16 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

17 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

18 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

19 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

20 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

21 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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Output 46.1.2 The OUTPARM= Data Set

Obs _COLNUM_ EFFNAME Type Block

1 1 Intercept

2 2 Type Clarion

3 3 Type Clinton

4 4 Type Compost

5 5 Type Knox

6 6 Type O'Neill

7 7 Type Wabash

8 8 Type Webster

9 9 Block 1

10 10 Block 2

11 11 Block 3

12 12 Type*Block Clarion 1

13 13 Type*Block Clarion 2

14 14 Type*Block Clarion 3

15 15 Type*Block Clinton 1

16 16 Type*Block Clinton 2

17 17 Type*Block Clinton 3

18 18 Type*Block Compost 1

19 19 Type*Block Compost 2

20 20 Type*Block Compost 3

21 21 Type*Block Knox 1

22 22 Type*Block Knox 2

23 23 Type*Block Knox 3

24 24 Type*Block O'Neill 1

25 25 Type*Block O'Neill 2

26 26 Type*Block O'Neill 3

27 27 Type*Block Wabash 1

28 28 Type*Block Wabash 2

29 29 Type*Block Wabash 3

30 30 Type*Block Webster 1

31 31 Type*Block Webster 2

32 32 Type*Block Webster 3
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Output 46.1.3 The OUTDESIGN= Data Set

Obs StemLength Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8 Col9 Col10 Col11 Col12 Col13 Col14 Col15 Col16

1 32.7 1 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0

2 32.3 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0

3 31.5 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0

4 32.1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0

5 29.7 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1

6 29.1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

7 35.7 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

8 35.9 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0

9 33.1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0

10 36.0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0

11 34.2 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0

12 31.2 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0

13 31.8 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0

14 28.0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0

15 29.2 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0

16 38.2 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0

17 37.8 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

18 31.9 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0

19 32.5 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

20 31.1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0

21 29.7 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

Obs Col17 Col18 Col19 Col20 Col21 Col22 Col23 Col24 Col25 Col26 Col27 Col28 Col29 Col30 Col31 Col32

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

13 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

17 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

18 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

19 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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Example 46.2: Factorial Screening
Screening experiments are undertaken to select from among the many possible factors that might affect
a response the few that actually do, either simply (main effects) or in conjunction with other factors
(interactions). One method of selecting significant factors is forward model selection, in which the model is
built by successively adding the most statistically significant effects. Forward selection is an option in the
REG procedure, but the REG procedure does not allow you to specify interactions directly (as the GLM
procedure does, for example). You can use the GLMMOD procedure to create the screening model for a
design and then use the REG procedure on the results to perform the screening.

The following statements create the SAS data set Screening, which contains the results of a screening
experiment:

title 'PROC GLMMOD and PROC REG for Forward Selection Screening';
data Screening;

input a b c d e y;
datalines;

-1 -1 -1 -1 1 -6.688
-1 -1 -1 1 -1 -10.664
-1 -1 1 -1 -1 -1.459
-1 -1 1 1 1 2.042
-1 1 -1 -1 -1 -8.561
-1 1 -1 1 1 -7.095
-1 1 1 -1 1 0.553
-1 1 1 1 -1 -2.352
1 -1 -1 -1 -1 -4.802
1 -1 -1 1 1 5.705
1 -1 1 -1 1 14.639
1 -1 1 1 -1 2.151
1 1 -1 -1 1 5.884
1 1 -1 1 -1 -3.317
1 1 1 -1 -1 4.048
1 1 1 1 1 15.248

;

The data set contains a single dependent variable (y) and five independent factors (a, b, c, d, and e). The
design is a half-fraction of the full 25 factorial, the precise half-fraction having been chosen to provide
uncorrelated estimates of all main effects and two-factor interactions.

The following statements use the GLMMOD procedure to create a design matrix data set containing all the
main effects and two-factor interactions for the preceding screening design.

ods output DesignPoints = DesignMatrix;
proc glmmod data=Screening;

model y = a|b|c|d|e@2;
run;
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Notice that the preceding statements use ODS to create the design matrix data set, instead of the OUTDE-
SIGN= option in the PROC GLMMOD statement. The results are equivalent, but the columns of the data set
produced by ODS have names that are directly related to the names of their corresponding effects.

Finally, the following statements use the REG procedure to perform forward model selection for the screening
design. Two MODEL statements are used, one without the selection options (which produces the regression
analysis for the full model) and one with the selection options. Output 46.2.1 and Output 46.2.2 show the
results of the PROC REG analysis.

proc reg data=DesignMatrix;
model y = a--d_e;
model y = a--d_e / selection = forward

details = summary
slentry = 0.05;

run;

Output 46.2.1 PROC REG Full Model Fit

PROC GLMMOD and PROC REG for Forward Selection Screening

The REG Procedure
Model: MODEL1

Dependent Variable: y

PROC GLMMOD and PROC REG for Forward Selection Screening

The REG Procedure
Model: MODEL1

Dependent Variable: y

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 15 861.48436 57.43229 . .

Error 0 0 .

Corrected Total 15 861.48436

Root MSE . R-Square 1.0000

Dependent Mean 0.33325 Adj R-Sq .

Coeff Var .
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Output 46.2.1 continued

Parameter Estimates

Variable Label DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept Intercept 1 0.33325 . . .

a 1 4.61125 . . .

b 1 0.21775 . . .

a_b a*b 1 0.30350 . . .

c 1 4.02550 . . .

a_c a*c 1 0.05150 . . .

b_c b*c 1 -0.20225 . . .

d 1 -0.11850 . . .

a_d a*d 1 0.12075 . . .

b_d b*d 1 0.18850 . . .

c_d c*d 1 0.03200 . . .

e 1 3.45275 . . .

a_e a*e 1 1.97175 . . .

b_e b*e 1 -0.35625 . . .

c_e c*e 1 0.30900 . . .

d_e d*e 1 0.30750 . . .

Output 46.2.2 PROC REG Screening Results

Summary of Forward Selection

Step
Variable
Entered Label

Number
Vars In

Partial
R-Square

Model
R-Square C(p) F Value Pr > F

1 a 1 0.3949 0.3949 . 9.14 0.0091

2 c 2 0.3010 0.6959 . 12.87 0.0033

3 e 3 0.2214 0.9173 . 32.13 0.0001

4 a_e a*e 4 0.0722 0.9895 . 75.66 <.0001

The full model has 16 parameters (the intercept + 5 main effects + 10 interactions). These are all estimable,
but since there are only 16 observations in the design, there are no degrees of freedom left to estimate error;
consequently, there is no way to use the full model to test for the statistical significance of effects. However,
the forward selection method chooses only four effects for the model: the main effects of factors a, c, and e,
and the interaction between a and e. Using this reduced model enables you to estimate the underlying level
of noise, although note that the selection method biases this estimate somewhat.
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Overview: GLMPOWER Procedure
Power and sample size analysis optimizes the resource usage and design of a study, improving chances of
conclusive results with maximum efficiency. The GLMPOWER procedure performs prospective power and
sample size analysis for linear models, with a variety of goals:

• determining the sample size required to get a significant result with adequate probability (power)

• characterizing the power of a study to detect a meaningful effect

• conducting what-if analyses to assess sensitivity of the power or required sample size to other factors

Here prospective indicates that the analysis pertains to planning for a future study. This is in contrast to
retrospective analysis for a past study, which is not supported by this procedure.

The statistical analyses that are covered include Type III F tests and contrasts of fixed effects in univariate
and multivariate linear models. For univariate models, you can specify covariates, which can be continuous
or categorical. For multivariate models, you can choose among Wilks’ likelihood ratio, Hotelling-Lawley
trace, and Pillai’s trace F tests for multivariate analysis of variance (MANOVA) and among uncorrected,
Greenhouse-Geisser, Huynh-Feldt, and Box conservative F tests for the univariate approach to repeated
measures. Tests and contrasts that involve random effects are not supported. For power and sample size
analyses in a variety of other statistical situations, see Chapter 77, “The POWER Procedure.”

Input for PROC GLMPOWER includes the following components, which are considered in study planning:

• design (including subject profiles and their allocation weights)

• statistical model and test

• between-subject contrasts of class effects

• within-subject contrasts (for multivariate models)

• significance level (alpha)

• surmised response means for subject profiles (often called “cell means”)

• surmised variability (and correlation for multivariate models)

• power

• sample size

In order to identify power or sample size as the result parameter, you designate it by a missing value in the
input. The procedure calculates this result value over one or more scenarios of input values for all other
components.

You specify the design and the cell means by using an exemplary data set, a data set of artificial values that is
constructed to represent the intended sampling design and the surmised response means in the underlying
population. You specify the model and between-subject contrasts by using MODEL and CONTRAST
statements similar to those in the GLM, ANOVA, and MIXED procedures. For multivariate models, you
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specify the within-subject contrasts by using MANOVA and REPEATED statements similar to those in the
GLM and MIXED procedures. You specify the remaining parameters by using the POWER statement, which
is similar to analysis statements in the POWER procedure.

In addition to tabular results, PROC GLMPOWER produces graphs. You can produce the most common types
of plots easily with default settings and use a variety of options for more customized graphics. For example,
you can control the choice of axis variables, axis ranges, number of plotted points, mapping of graphical
features (such as color, line style, symbol, and panel) to analysis parameters, and legend appearance.

If ODS Graphics is enabled, then PROC GLMPOWER uses ODS Graphics to create graphs; otherwise,
traditional graphs are produced.

For more information about enabling and disabling ODS Graphics, see the section “Enabling and Disabling
ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

For specific information about the statistical graphics and options available with the GLMPOWER procedure,
see the PLOT statement and the section “ODS Graphics” on page 3641.

The GLMPOWER procedure is one of several tools available in SAS/STAT software for power and sample
size analysis. PROC POWER covers a variety of other analyses such as t tests, equivalence tests, confidence
intervals, binomial proportions, multiple regression, one-way ANOVA, survival analysis, logistic regression,
and the Wilcoxon rank-sum test. The Power and Sample Size application provides a user interface and
implements many of the analyses supported in the procedures. See Chapter 77, “The POWER Procedure,”
and Chapter 78, “The Power and Sample Size Application,” for details.

The following sections of this chapter describe how to use PROC GLMPOWER and discuss the underlying
statistical methodology. The section “Getting Started: GLMPOWER Procedure” on page 3599 introduces
PROC GLMPOWER with examples of power computation for a two-way analysis of variance. The section
“Syntax: GLMPOWER Procedure” on page 3605 describes the syntax of the procedure. The section “Details:
GLMPOWER Procedure” on page 3626 summarizes the methods employed by PROC GLMPOWER and
provides details on several special topics. The section “Examples: GLMPOWER Procedure” on page 3641
illustrates the use of the GLMPOWER procedure with several applications.

For an overview of methodology and SAS tools for power and sample size analysis, see Chapter 18,
“Introduction to Power and Sample Size Analysis.” For more discussion and examples for linear models, see
Castelloe and O’Brien (2001); O’Brien and Shieh (1992); Muller and Benignus (1992); O’Brien and Muller
(1993). For additional discussion of general power and sample size concepts, see O’Brien and Castelloe
(2007); Castelloe (2000); Muller and Benignus (1992); Lenth (2001).

Getting Started: GLMPOWER Procedure

Simple Two-Way ANOVA
This example demonstrates how to use PROC GLMPOWER to compute and plot power for each effect test
in a two-way analysis of variance (ANOVA).

Suppose you are planning an experiment to study the effect of light exposure at three levels on the growth
of two varieties of flowers. The planned data analysis is a two-way ANOVA with flower height (measured
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at two weeks) as the response and a model consisting of the effects of light exposure, flower variety, and
their interaction. You want to calculate the power of each effect test for a balanced design with a total of 60
specimens (10 for each combination of exposure and variety) with ˛ = 0.05 for each test.

As a first step, create an exemplary data set describing your conjectures about the underlying population
means. You believe that the mean flower height for each combination of variety and exposure level (that is,
for each design profile, or for each cell in the design) roughly follows Table 47.1.

Table 47.1 Mean Flower Height (in cm) by Variety and Exposure

Exposure
Variety 1 2 3

1 14 16 21
2 10 15 16

The following statements create a data set named Exemplary containing these cell means.

data Exemplary;
do Variety = 1 to 2;

do Exposure = 1 to 3;
input Height @@;
output;

end;
end;
datalines;

14 16 21
10 15 16

;

You also conjecture that the error standard deviation is about 5 cm.

Use the DATA= option in the PROC GLMPOWER statement to specify Exemplary as the exemplary data
set. Identify the classification variables (Variety and Exposure) by using the CLASS statement. Specify the
model by using the MODEL statement. Use the POWER statement to specify power as the result parameter
and provide values for the other analysis parameters, error standard deviation and total sample size. The
following SAS statements perform the power analysis:

proc glmpower data=Exemplary;
class Variety Exposure;
model Height = Variety | Exposure;
power

stddev = 5
ntotal = 60
power = .;

run;

The MODEL statement defines the full model including both main effects and the interaction. The POWER=
option in the POWER statement identifies power as the result parameter with a missing value (POWER=.).
The STDDEV= option specifies an error standard deviation of 5, and the NTOTAL= option specifies a total
sample size of 60. The default value for the ALPHA= option sets the significance level to ˛ = 0.05.

Figure 47.1 shows the output.
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Figure 47.1 Sample Size Analysis for Two-Way ANOVA

The GLMPOWER ProcedureThe GLMPOWER Procedure

Fixed Scenario Elements

Dependent Variable Height

Error Standard Deviation 5

Total Sample Size 60

Alpha 0.05

Error Degrees of Freedom 54

Computed Power

Index Source
Test

DF Power

1 Variety 1 0.718

2 Exposure 2 0.957

3 Variety*Exposure 2 0.191

The power is about 0.72 for the test of the Variety effect. In other words, there is a probability of 0.72 that
the test of the Variety effect will produce a significant result (given the assumptions for the means and error
standard deviation). The power is 0.96 for the test of the Exposure effect and 0.19 for the interaction test.

Now, suppose you want to account for some of your uncertainty in conjecturing the true error standard
deviation by evaluating the power at reasonable low and high values, 4 and 6.5. You also want to plot power
for sample sizes between 30 and 90. The following statements perform the analysis:

ods graphics on;

proc glmpower data=Exemplary;
class Variety Exposure;
model Height = Variety | Exposure;
power

stddev = 4 6.5
ntotal = 60
power = .;

plot x=n min=30 max=90;
run;

ods graphics off;

The PLOT statement with the X=N option requests a plot with sample size on the X axis. (The result
parameter—in this case, power—is always plotted on the other axis.) The MIN= and MAX= options in the
PLOT statement specify the sample size range. The ODS GRAPHICS ON statement enables ODS Graphics.

Figure 47.2 shows the output, and Figure 47.3 shows the plot.
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Figure 47.2 Sample Size Analysis for Two-Way ANOVA with Input Ranges

The GLMPOWER ProcedureThe GLMPOWER Procedure

Fixed Scenario Elements

Dependent Variable Height

Total Sample Size 60

Alpha 0.05

Error Degrees of Freedom 54

Computed Power

Index Source
Std
Dev

Test
DF Power

1 Variety 4.0 1 0.887

2 Variety 6.5 1 0.496

3 Exposure 4.0 2 0.996

4 Exposure 6.5 2 0.793

5 Variety*Exposure 4.0 2 0.280

6 Variety*Exposure 6.5 2 0.130

Figure 47.2 reveals that the power ranges from about 0.130 to 0.996 for the different effect tests and scenarios
for standard deviation, with a sample size of 60. In Figure 47.3, the line style identifies the effect test, and
the plotting symbol identifies the standard deviation. The locations of the plotting symbols identify actual
computed powers; the curves are linear interpolations of these points. Note that the computed points in the
plot occur at sample size multiples of 6, because there are 6 cells in the design (and by default, sample sizes
are rounded to produce integer cell sizes).
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Figure 47.3 Plot of Power versus Sample Size for Two-Way ANOVA with Input Ranges

Incorporating Contrasts, Unbalanced Designs, and Multiple Means
Scenarios
Suppose you want to compute power for the two-way ANOVA described in the section “Simple Two-Way
ANOVA” on page 3599, but you want to additionally perform the following tasks:

• try an unbalanced sample size allocation with respect to Exposure, using twice as many samples for
levels 2 and 3 as for level 1

• consider an additional, less optimistic scenario for the cell means, shown in Table 47.2

• test a contrast of Exposure comparing levels 1 and 3
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Table 47.2 Additional Cell Means Scenario

Exposure
Variety 1 2 3

1 15 16 20
2 11 14 15

To specify the unbalanced design and the additional cell means scenario, you can add two new variables to
the exemplary data set (Weight for the sample size weights, and HeightNew for the new cell means scenario).
Change the name of the original cell means scenario to HeightOrig. The following statements define the
exemplary data set:

data Exemplary;
input Variety $ Exposure $ HeightOrig HeightNew Weight;
datalines;

1 1 14 15 1
1 2 16 16 2
1 3 21 20 2
2 1 10 11 1
2 2 15 14 2
2 3 16 15 2

;

In PROC GLMPOWER, specify the name of the weight variable by using the WEIGHT statement, and
specify the name of the cell means variables as dependent variables in the MODEL statement. Use the
CONTRAST statement to specify the contrast as you would in PROC GLM. The following statements
perform the sample size analysis.

proc glmpower data=Exemplary;
class Variety Exposure;
model HeightOrig HeightNew = Variety | Exposure;
weight Weight;
contrast 'Exposure=1 vs Exposure=3' Exposure 1 0 -1;
power

stddev = 5
ntotal = 60
power = .;

run;

Figure 47.4 shows the output.

Figure 47.4 Sample Size Analysis for More Complex Two-Way ANOVA

The GLMPOWER ProcedureThe GLMPOWER Procedure

Fixed Scenario Elements

Weight Variable Weight

Error Standard Deviation 5

Total Sample Size 60

Alpha 0.05

Error Degrees of Freedom 54
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Figure 47.4 continued

Computed Power

Index Dependent Type Source
Test

DF Power

1 HeightOrig Effect Variety 1 0.672

2 HeightOrig Effect Exposure 2 0.911

3 HeightOrig Effect Variety*Exposure 2 0.217

4 HeightOrig Contrast Exposure=1 vs Exposure=3 1 0.951

5 HeightNew Effect Variety 1 0.754

6 HeightNew Effect Exposure 2 0.633

7 HeightNew Effect Variety*Exposure 2 0.137

8 HeightNew Contrast Exposure=1 vs Exposure=3 1 0.705

The power of the contrast of Exposure levels 1 and 3 is about 0.95 for the original cell means scenario
(HeightOrig) and only 0.71 for the new one (HeightNew). The power is higher for the test of Variety, but
lower for the tests of Exposure and of Variety*Exposure for the new cell means scenario compared to the
original one. Note also for the HeightOrig scenario that the power for the unbalanced design (Figure 47.4)
compared to the balanced design (Figure 47.1) is slightly lower for the tests of Variety and Exposure, but
slightly higher for the test of Variety*Exposure.

Syntax: GLMPOWER Procedure
The following statements are available in the GLMPOWER procedure:

PROC GLMPOWER < options > ;
BY variables ;
CLASS variables ;
CONTRAST ’label’ effect values < . . . effect values > < / options > ;
MANOVA ’label’ < test-options > < / detail-options > ;
MODEL dependent-variables = independent-effects ;
PLOT < plot-options > < / graph-options > ;
POWER < options > ;
REPEATED factor-specification ;
WEIGHT variable ;

The PROC GLMPOWER statement, the MODEL statement, and the POWER statement are required. If your
model contains classification effects, the classification variables must be listed in a CLASS statement, and
the CLASS statement must appear before the MODEL statement. In addition, CONTRAST and POWER
statements must appear after the MODEL statement. PLOT statements must appear after the POWER
statement that defines the analysis for the plot.

If you specify one or more MANOVA or REPEATED statements, then the model is assumed to be multivariate.
Otherwise, a univariate model is assumed, in which case multiple dependent variables represent cell means
scenarios for a single response.

You can use multiple CONTRAST, MANOVA, REPEATED, POWER, and PLOT statements. Each CON-
TRAST statement defines a separate between-subject contrast. Each MANOVA or REPEATED statement
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defines a separate within-subject contrast for a multivariate model. Each POWER statement produces a
separate analysis and uses the information that is contained in the CLASS, MODEL, WEIGHT, CONTRAST,
MANOVA, and REPEATED statements. Each PLOT statement refers to the previous POWER statement and
generates a separate graph (or set of graphs).

Table 47.3 summarizes the basic functions of each statement in PROC GLMPOWER. The syntax of each
statement in Table 47.3 is described in the following pages.

Table 47.3 Statements in the GLMPOWER Procedure

Statement Description

PROC GLMPOWER Invokes procedure and specifies exemplary data set

BY Specifies variables to define subgroups for the
analysis

CLASS Declares classification variables

CONTRAST Defines between-subject linear tests of model
parameters

MANOVA Defines within-subject linear tests of model param-
eters for multivariate models, in terms of contrast
matrix coefficients

MODEL Defines model and specifies dependent variables;
for univariate models, multiple dependent variables
represent cell means scenarios for a single response

PLOT Displays graphs for preceding POWER statement

POWER Identifies parameter to solve for and provides one
or more scenarios for values of other analysis
parameters

REPEATED Defines within-subject linear tests of model param-
eters for multivariate models, in terms of common
repeated measures transformations of the dependent
variables

WEIGHT Specifies variable for allocating sample sizes to
different subject profiles

PROC GLMPOWER Statement
PROC GLMPOWER < options > ;

The PROC GLMPOWER statement invokes the GLMPOWER procedure. You can specify the following
options.
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DATA=SAS-data-set
names a SAS data set to be used as the exemplary data set, which is an artificial data set constructed
to represent the intended sampling design and the conjectured response means for the underlying
population.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of the classification variables (which are specified in the CLASS
statement).

This option applies to the levels for all classification variables, except when you use the (default)
ORDER=FORMATTED option with numeric classification variables that have no explicit format. In
that case, the levels of such variables are ordered by their internal value.

The ORDER= option can take the following values:

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set

FORMATTED External formatted value, except for numeric variables with
no explicit format, which are sorted by their unformatted
(internal) value

FREQ Descending frequency count; levels with the most observa-
tions come first in the order

INTERNAL Unformatted value

By default, ORDER=FORMATTED. For ORDER=FORMATTED and ORDER=INTERNAL, the sort
order is machine-dependent.

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

PLOTONLY
specifies that only graphical results from the PLOT statement be produced.

BY Statement
BY variables ;

You can specify a BY statement with PROC GLMPOWER to obtain separate analyses of observations in
groups that are defined by the BY variables. When a BY statement appears, the procedure expects the input
data set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last
one specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the GLMPOWER
procedure. The NOTSORTED option does not mean that the data are unsorted but rather that the
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data are arranged in groups (according to values of the BY variables) and that these groups are not
necessarily in alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

Because sorting the data changes the order in which PROC GLMPOWER reads observations, the sort order
for the levels of the classification variables might be affected if you have also specified ORDER=DATA in
the PROC GLMPOWER statement. This, in turn, affects specifications in CONTRAST statements.

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

CLASS Statement
CLASS variables ;

The CLASS statement names the classification variables to be used in the analysis. If you use the CLASS
statement, it must appear before the MODEL statement.

Classification variables can be either character or numeric. By default, class levels are determined from the
entire set of formatted values of the CLASS variables.

CONTRAST Statement
CONTRAST ’label’ effect values < . . . effect values > < / options > ;

The CONTRAST statement enables you to define custom Type III hypothesis tests by specifying an L vector
or matrix for testing either the hypothesis Lˇ D 0 (for univariate models) or the hypothesis LBM D 0 (for
multivariate models). The L matrix consists of one or more between-subject contrasts.

To use this feature, you must be familiar with the details of the model parameterization that PROC GLM uses.
For more information, see the section “Parameterization of PROC GLM Models” on page 3456 in Chapter 45,
“The GLM Procedure.” All the elements of the L matrix can be given, or if only certain portions of the L
matrix are given, PROC GLMPOWER constructs the remaining elements from the context (in a manner
similar to that in rule 4 in the section “Construction of Least Squares Means” on page 3489 in Chapter 45,
“The GLM Procedure”).

There is no limit to the number of CONTRAST statements that you can specify, but they must appear after
the MODEL statement. Each power analysis includes tests for all CONTRAST statements.

You can specify the following arguments:

label identifies the contrast in the output. A label is required for every contrast that is specified. Labels
must be enclosed in single or double quotation marks.

effect identifies an effect that appears in the MODEL statement, or the INTERCEPT effect. You do not
need to include all effects that appear in the MODEL statement.

values are constants that are elements of the L matrix associated with the effect.

You can specify the following option in the CONTRAST statement after a slash (/):
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SINGULAR=number
tunes the estimability checking. If ABS.L � LH/ > C� number for any row in the contrast, then L is
declared nonestimable. H is the .X0X/�X0X matrix, and C is ABS.L/ except for rows where L is zero,
and then it is 1. The default value for the SINGULAR= option is 10�4. Values for the SINGULAR=
option must be between 0 and 1.

As stated previously, the CONTRAST statement enables you to define custom hypothesis tests. If the
hypothesis is testable in a univariate model, then the hypothesis sum of squares, SS(H0WLˇ D 0), is
computed as

.Lb/0.L.X0X/�L0/�1.Lb/

where b D .X0X/�X0y.

For testable hypotheses in a multivariate model, the usual multivariate tests are defined by using

H DM0.LB/0.L.X0X/�L0/�1.LB/M

where B D .X0X/�X0Y and Y is the matrix of multivariate responses or dependent variables.

The degrees of freedom associated with the hypothesis are equal to the row rank of L. The sum of
squares computed in this situation is equivalent to the sum of squares computed using an L matrix with
any row deleted that is a linear combination of previous rows.

Multiple-degrees-of-freedom hypotheses can be specified by separating the rows of the L matrix with
commas.

MANOVA Statement
MANOVA ’label’ < test-options > < / detail-options > ;

If the MODEL statement includes more than one dependent variable, you can indicate a multivariate model
and define transformations of dependent variables by using the MANOVA statement.

The MANOVA statement enables you to define custom Type III hypothesis tests by specifying an M vector or
matrix for testing the hypothesis LˇM D 0. The L matrix consists of one or more between-subject contrasts
that involve the model effects, and the M matrix consists of one or more within-subject contrasts.

To use this feature, you must be familiar with the details of multivariate model and contrast parameterizations
that are used in PROC GLM. For more information, see the sections “Multivariate Analysis of Variance”
on page 3492 and “Repeated Measures Analysis of Variance” on page 3493 in Chapter 45, “The GLM
Procedure.” For information about the power and sample size computational methods and formulas, see the
section “Contrasts in Fixed-Effect Multivariate Models” on page 3633.

You can use either the MANOVA statement or the REPEATED statement with any of the tests for multivariate
models that are supported in the MTEST= option in the POWER statement. For handling repeated measures
on the same experimental unit, you would usually use the REPEATED statement instead of the MANOVA
statement. But you can use the MANOVA statement in repeated measures situations, in addition to situations
where you have clusters or multiple outcome variables. The differences between the MANOVA and
REPEATED statements are as follows:
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• You can use the MANOVA statement to construct any M matrix, but you must specify the coefficients
explicitly (except for the default identity matrix).

• You can use the REPEATED statement to specify commonly used contrasts by using keywords rather
than coefficients, but you are limited to only those forms of the M matrix.

There is no limit to the number of MANOVA statements that you can specify. Each power analysis includes
tests for all MANOVA statements.

The label identifies the dependent variable transformation in the output. The label serves the same purpose
as the factor-name in the REPEATED statement, enabling you to use the MANOVA statement for tests
of within-subject effects and within-subject-by-between-subject interactions. A label is required for every
transformation that is specified. Labels must be enclosed in single or double quotation marks.

Test Options

You can specify the following test-option in the MANOVA statement:

M=equation, . . . , equation | (row-of-matrix, . . . , row-of-matrix)
specifies a transformation matrix for the dependent variables that are listed in the MODEL statement.

The equations in the M= specification are of the form

c1 � dependent-variable ˙ c2 � dependent-variable

� � � ˙ cn � dependent-variable

where the ci values are coefficients of the various dependent-variables. If the value of a given ci is
1, it can be omitted; in other words, 1 � Y is the same as Y. Equations should involve two or more
dependent variables.

Alternatively, you can input the transformation matrix directly by entering the elements of the matrix,
using commas to separate the rows and parentheses to surround the matrix. When you use this alternate
form of input, the number of elements in each row must equal the number of dependent variables.
Although these combinations actually represent the columns of the M matrix, they are displayed by
rows.

When you include an M= specification, the tests are based on the variables that are defined by the
equations in the specification, not the original dependent variables. If you omit the M= option, the tests
are based on the original dependent variables in the MODEL statement. Omitting the M= option is
equivalent to specifying an identity matrix, as in the following example, which assumes three dependent
variables:

MANOVA 'Identity' M=(1 0 0,
0 1 0,
0 0 1);

For more examples of the M= option, see the section “Examples” on page 3431 in Chapter 45, “The
GLM Procedure.” The syntax and functionality of the M= option in PROC GLM are the same as in
PROC GLMPOWER.
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Detail Options

You can specify the following detail-option in the MANOVA statement after a slash (/):

ORTH
requests that the transformation matrix in the M= specification of the MANOVA statement be orthogo-
nalized by rows before the analysis.

MODEL Statement
MODEL dependent-variables = independent-effects ;

The MODEL statement names the dependent variables and independent effects. If one or more MANOVA
or REPEATED statements are specified, then multiple dependent variables define a multivariate model. In
the absence of the MANOVA and REPEATED statements, a univariate model is assumed, and multiple
dependent variables represent different scenarios for the cell means.

The independent-effects can involve classification variables, continuous variables, or both. You can include
main effects and interactions by using the effects notation of PROC GLM; for more information, see the
section “Specification of Effects” on page 3453 in Chapter 45, “The GLM Procedure.” For any model effect
that involves classification variables (main effects and interactions), the number of levels cannot exceed
32,767. If no independent effects are specified, only an intercept term is fit. You can specify only one
MODEL statement, and it must appear before the POWER statement if the EFFECTS= option is specified in
the POWER statement.

For a univariate model, you can account for covariates without specifying them explicitly in the model by
using the NCOVARIATES= option and either the CORRXY= or PROPVARREDUCTION= option in the
POWER statement. For a multivariate model, you must explicitly specify any covariates in the MODEL
statement.

The values of dependent variables in the exemplary data set (the data set named by the DATA= option in the
PROC GLMPOWER statement) are surmised response means across subject profiles. For a univariate model,
multiple dependent variables correspond to multiple scenarios for these cell means.

The MODEL statement is required. You can specify only one MODEL statement.

PLOT Statement
PLOT < plot-options > < / graph-options > ;

The PLOT statement produces a graph or set of graphs for the sample size analysis defined by the previous
POWER statement. The plot-options define the plot characteristics, and the graph-options are like those in
SAS/GRAPH software. If ODS Graphics is enabled, then the PLOT statement uses ODS Graphics to create
graphs. For example:
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ods graphics on;

proc glmpower data=Exemplary;
class Variety Exposure;
model Height = Variety | Exposure;
power

stddev = 4 6.5
ntotal = 60
power = .;

plot x=n min=30 max=90;
run;

ods graphics off;

Otherwise, traditional graphics are produced. For example:

ods graphics off;

proc glmpower data=Exemplary;
class Variety Exposure;
model Height = Variety | Exposure;
power

stddev = 4 6.5
ntotal = 60
power = .;

plot x=n min=30 max=90;
run;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and Disabling
ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

Table 47.4 summarizes the options available in the PLOT statement.

Table 47.4 PLOT Statement Options

Option Description

Plot Options
INTERPOL= Specifies the type of curve to draw
KEY= Specifies the style of key for the plot
MARKERS= Specifies the locations for plotting symbols
MAX= Specifies the maximum of the range of values
MIN= Specifies the minimum of the range of values
NPOINTS= Specifies the number of values
STEP= Specifies the increment between values
VARY Specifies how plot features should be linked to varying analysis parameters
X= Specifies a plot with the requested type of parameter on the X axis
XOPTS= Specifies plot characteristics pertaining to the X axis
Y= Specifies a plot with the requested type of parameter on the Y axis
YOPTS= Specifies plot characteristics pertaining to the Y axis

Graph Options
DESCRIPTION= Specifies a descriptive string
NAME= Specifies a name for the catalog entry for the plot
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Options

You can specify the following plot-options in the PLOT statement.

INTERPOL=JOIN | NONE
specifies the type of curve to draw through the computed points. The INTERPOL=JOIN option
connects computed points with straight lines. The INTERPOL=NONE option leaves computed points
unconnected.

KEY=BYCURVE < (bycurve-options) >

KEY=BYFEATURE < (byfeature-options) >

KEY=ONCURVES
specifies the style of key (or “legend”) for the plot. The default is KEY=BYFEATURE, which specifies
a key with a column of entries for each plot feature (line style, color, and/or symbol). Each entry shows
the mapping between a value of the feature and the value(s) of the analysis parameter(s) linked to that
feature. The KEY=BYCURVE option specifies a key with each row identifying a distinct curve in the
plot. The KEY=ONCURVES option places a curve-specific label adjacent to each curve.

You can specify the following byfeature-options in parentheses after the KEY=BYCURVE option.

NUMBERS=OFF | ON
specifies how the key should identify curves. If NUMBERS=OFF, then the key includes symbol,
color, and line style samples to identify the curves. If NUMBERS=ON, then the key includes
numbers matching numeric labels placed adjacent to the curves. The default is NUMBERS=ON.

POS=BOTTOM | INSET
specifies the position of the key. The POS=BOTTOM option places the key below the X axis.
The POS=INSET option places the key inside the plotting region and attempts to choose the least
crowded corner. The default is POS=BOTTOM.

You can specify the following byfeature-options in parentheses after KEY=BYFEATURE option.

POS=BOTTOM | INSET
specifies the position of the key. The POS=BOTTOM option places the key below the X axis.
The POS=INSET option places the key inside the plotting region and attempts to choose the least
crowded corner. The default is POS=BOTTOM.

MARKERS=ANALYSIS | COMPUTED | NICE | NONE
specifies the locations for plotting symbols.

The MARKERS=ANALYSIS option places plotting symbols at locations corresponding to the values
of the relevant input parameter from the POWER statement preceding the PLOT statement.

The MARKERS=COMPUTED option (the default) places plotting symbols at the locations of actual
computed points from the sample size analysis.

The MARKERS=NICE option places plotting symbols at tick mark locations (corresponding to the
argument axis).

The MARKERS=NONE option disables plotting symbols.
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MAX=number | DATAMAX
specifies the maximum of the range of values for the parameter associated with the “argument” axis
(the axis that is not representing the parameter being solved for). The default is DATAMAX, which
specifies the maximum value that occurs for this parameter in the POWER statement that precedes the
PLOT statement.

MIN=number | DATAMIN
specifies the minimum of the range of values for the parameter associated with the “argument” axis
(the axis that is not representing the parameter being solved for). The default is DATAMIN, which
specifies the minimum value that occurs for this parameter in the POWER statement that precedes the
PLOT statement.

NPOINTS=number

NPTS=number
specifies the number of values for the parameter associated with the “argument” axis (the axis that is
not representing the parameter being solved for). You cannot use the NPOINTS= and STEP= options
simultaneously. The default value for typical situations is 20.

STEP=number
specifies the increment between values of the parameter associated with the “argument” axis (the axis
that is not representing the parameter being solved for). You cannot use the STEP= and NPOINTS=
options simultaneously. By default, the NPOINTS= option is used instead of the STEP= option.

VARY ( feature < BY parameter-list > < , . . . , feature < BY parameter-list > > )
specifies how plot features should be linked to varying analysis parameters. Available features are
COLOR, LINESTYLE, PANEL, and SYMBOL. A “panel” refers to a separate plot with a heading
identifying the subset of values represented in the plot.

The parameter-list is a list of one or more names, separated by spaces. Each name must match the
name of an analysis option used in the POWER statement preceding the PLOT statement, or one of the
following keywords:

• SOURCE, which represents the model effects and contrasts in a univariate model and the between-
subject effects and contrasts in a multivariate model

• DEPENDENT, which represents the cell means scenarios in a univariate model or the dependent
variable transformations in a multivariate model

If the name represents an analysis option that is specified in the POWER statement, then it must be the
primary name for the analysis option—that is, the one that is listed first in the syntax description.

If you omit the < BY parameter-list > portion for a feature, then one or more multivalued parameters
from the analysis are automatically selected for you.

X=N | POWER
specifies a plot with the requested type of parameter on the X axis and the parameter being solved for
on the Y axis. When X=N, sample size is assigned to the X axis. When X=POWER, power is assigned
to the X axis. You cannot use the X= and Y= options simultaneously. The default is X=POWER,
unless the result parameter is power, in which case the default is X=N.
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XOPTS= ( x-options )
specifies plot characteristics pertaining to the X axis.

You can specify the following x-options in parentheses.

CROSSREF=NO | YES
specifies whether the reference lines defined by the REF= x-option should be crossed with a
reference line on the Y axis that indicates the solution point on the curve.

REF=number-list
specifies locations for reference lines extending from the X axis across the entire plotting region.
For information about specifying the number-list , see the section “Specifying Value Lists in the
POWER Statement” on page 3626.

Y=N | POWER
specifies a plot with the requested type of parameter on the Y axis and the parameter being solved for
on the X axis. When Y=N, sample size is assigned to the Y axis. When Y=POWER, power is assigned
to the Y axis. You cannot use the Y= and X= options simultaneously. By default, the X= option is used
instead of the Y= option.

YOPTS= ( y-options )
specifies plot characteristics pertaining to the Y axis.

You can specify the following y-options in parentheses.

CROSSREF=NO | YES
specifies whether the reference lines defined by the REF= y-option should be crossed with a
reference line on the X axis that indicates the solution point on the curve.

REF=number-list
specifies locations for reference lines extending from the Y axis across the entire plotting region.
For information about specifying the number-list , see the section “Specifying Value Lists in the
POWER Statement” on page 3626.

You can specify the following graph-options in the PLOT statement after a slash (/).

DESCRIPTION=’string ’
specifies a descriptive string of up to 40 characters that appears in the “Description” field of the
graphics catalog. The description does not appear on the plots. By default, PROC GLMPOWER
assigns a description either of the form “Y versus X” (for a single-panel plot) or of the form “Y versus
X (S),” where Y is the parameter on the Y axis, X is the parameter on the X axis, and S is a description
of the subset represented on the current panel of a multipanel plot.

NAME=’string ’
specifies a name of up to eight characters for the catalog entry for the plot. The default name is PLOTn,
where n is the number of the plot statement within the current invocation of PROC GLMPOWER. If the
name duplicates the name of an existing entry, SAS/GRAPH software adds a number to the duplicate
name to create a unique entry—for example, PLOT11 and PLOT12 for the second and third panels of
a multipanel plot generated in the first PLOT statement in an invocation of PROC GLMPOWER.
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POWER Statement
POWER < options > ;

The POWER statement performs power and sample size analyses for the Type III F tests that are specified
in the MTEST= option, for each effect in the model that is defined by the MODEL statement, and for
the contrasts that are defined by all CONTRAST, MANOVA, and REPEATED statements. The POWER
statement must appear after the MODEL statement if the EFFECTS= option is used in the POWER statement.

For information about the power and sample size computational methods and formulas, see the section
“Computational Methods and Formulas” on page 3630.

Summary of Options

Table 47.5 summarizes the options available in the POWER statement.

Table 47.5 POWER Statement Options

Option Description

Specify test statistic
MTEST= Specifies the test statistic for a multivariate model
UEPSDEF= Specifies the form of the Huynh-Feldt epsilon for MTEST=HF
Specify analysis information
ALPHA= Specifies the level of significance of each test
EFFECTS Specifies the model effects
Specify covariates for a univariate model
CORRXY= Specifies multiple correlation (�) between covariates and response
NCOVARIATES= Specifies additional degrees of freedom due to covariates
PROPVARREDUCTION= Specifies proportional variance reduction (r) due to covariates
Specify variability
CORRMAT= Specifies the correlation matrix of the dependent variables in a multivariate

model
CORRS= Specifies the correlations among the dependent variables in a multivariate

model
COVMAT= Specifies the covariance matrix of the dependent variables in a multivariate

model
MATRIX= Defines a matrix or vector
SQRTVAR= Specifies the vector of error standard deviations for each dependent variable

in a multivariate model
STDDEV= Specifies the common error standard deviation
Specify sample size
NFRACTIONAL Enables fractional input and output for sample sizes
NTOTAL= Specifies the sample size
Specify power
POWER= Specifies power
Choose computational method
METHOD= Specifies the computational method for multivariate tests
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Table 47.5 continued

Option Description

Control ordering in output
DEPENDENT Specifies the location of the Dependent or Transformation column in the

output
OUTPUTORDER= Controls ordering in output

Table 47.6 summarizes the valid result parameters.

Table 47.6 Summary of Result Parameters in the POWER
Statement

Solve for Syntax

Power POWER = .

Sample size NTOTAL = .

Dictionary of Options

ALPHA=number-list
specifies the level of significance of each test. The default is 0.05, corresponding to the usual 0.05 �
100% = 5% level of significance. Note that this is a test-wise significance level with the same value for
all tests, not incorporating any corrections for multiple testing. For information about specifying the
number-list , see the section “Specifying Value Lists in the POWER Statement” on page 3626.

CORRMAT=name-list
specifies the correlation matrix of the dependent variables in a multivariate model, by using labels that
are specified in the MATRIX= option. The corresponding matrices that are defined in the MATRIX=
option must have either a lower triangular form that includes the diagonal of 1’s or a linear exponent
autoregressive (LEAR) correlation structure. The matrix must be positive definite. You can use the
CORRMAT= option only when you have a multivariate model—that is, in the presence of one or more
MANOVA or REPEATED statements. For information about specifying the name-list , see the section
“Specifying Value Lists in the POWER Statement” on page 3626.

CORRS=name-list
specifies the correlations among the dependent variables in a multivariate model, by using labels that
are specified in the MATRIX= option. The corresponding matrices that are defined in the MATRIX=
option must have either a lower triangular form that excludes the diagonal of 1’s or a LEAR correlation
structure. The matrix must be positive definite. You can use the CORRS= option only when you have
a multivariate model—that is, in the presence of one or more MANOVA or REPEATED statements.
For information about specifying the name-list , see the section “Specifying Value Lists in the POWER
Statement” on page 3626.
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COVMAT=name-list
specifies the covariance matrix of the dependent variables in a multivariate model, by using labels that
are specified in the MATRIX= option. The corresponding matrices that are defined in the MATRIX=
option must have a lower triangular form that includes the diagonal of error variances. The matrix
must be positive definite. You can use the COVMAT= option only when you have a multivariate
model—that is, in the presence of one or more MANOVA or REPEATED statements. For information
about specifying the name-list , see the section “Specifying Value Lists in the POWER Statement” on
page 3626.

CORRXY=number-list
specifies the multiple correlation (�) between all covariates and the response for a univariate model. The
error standard deviation that is given by the STDDEV= option is consequently reduced by multiplying it
by a factor of .1��2/

1
2 , provided that the number of covariates (as determined by the NCOVARIATES=

option) is greater than 0. You cannot use the CORRXY= and PROPVARREDUCTION= options
simultaneously. You cannot use the CORRXY= option when you have a multivariate model—that
is, in the presence of a MANOVA or REPEATED statement. For information about specifying the
number-list , see the section “Specifying Value Lists in the POWER Statement” on page 3626.

DEPENDENT
specifies the location of the Dependent column (for a univariate model) or the Transformation column
(for a multivariate model) in the output when you specify the OUTPUTORDER=REVERSE option or
OUTPUTORDER=SYNTAX option, according to its relative position in the POWER statement.

EFFECTS < = < ( effect . . . effect ) > >
specifies the model effects to include in the power analysis. By default, or if the EFFECTS keyword is
specified without the equal sign (=), all model effects are included. Specify EFFECTS=() to exclude all
model effect tests from the power analysis. You can include main effects and interactions by using the
effects notation of PROC GLM; see the section “Specification of Effects” on page 3453 in Chapter 45,
“The GLM Procedure” for further details. The MODEL statement must appear before the POWER
statement if the EFFECTS option is used.

MATRIX('label ')=matrix-specification
defines a matrix or vector that you can use along with the CORRMAT=, CORRS=, COVMAT=, and
SQRTVAR= options when you have a multivariate model.

The matrix-specification can have one of the following three forms:

1. Raw values

(values )

specifies the values of a matrix or vector in one of the following forms:

• a matrix in lower triangular form, for use with the CORRMAT= or COVMAT= option

• a matrix in strictly lower triangular form, for use with the CORRS= option

• a vector, for use with the SQRTVAR= option

A matrix in lower triangular form contains the diagonal the and values below it. For example, you can
represent a 3 � 3 correlation matrix for use with the CORRMAT= option as follows:
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MATRIX ('MyCorrMat') = ( 1
0.5 1
0.2 0.5 1)

You can represent the same correlation matrix in strictly lower triangular form for use with the CORRS=
option as follows:

MATRIX ('MyCorrs') = (0.5
0.2 0.5)

An example of a vector for use with the SQRTVAR= option is as follows:

MATRIX ('MySqrtVar') = (3.2 4.5 3.7)

2. Linear exponent autoregressive (LEAR) correlation structure

LEAR (base-corr , corr-decay < , nlevels < , level-values > > )

specifies a LEAR correlation structure for use with the CORRMAT= or CORRS= option. The LEAR
structure is useful for characterizing exponentially decaying within-subject correlation that decays at a
rate slower or faster than AR(1). Special cases include compound symmetry, first-order autoregressive
(AR(1)), and first-order moving average correlation structures.

The LEAR correlation structure is related to the spatial covariance structures in PROC MIXED and is
discussed in Simpson et al. (2010).

The base-corr (�) is the correlation between variables whose level-values are one unit apart, and it
must satisfy 0 � � < 1. The corr-decay (ı) is the correlation decay rate, which must be nonnegative.
The default value for the number of levels, nlevels (n), is the number of dependent variables. The n
level-values, denoted fl1; : : : ; lng, must be distinct. The default level-values are f1; : : : ; ng. Let djk
denote the distance between levels j and k, .djk Dj lj � lk j/. Let dmin D min.djk W j ¤ k/ and
dmax D max.djk W j ¤ k/. The .i; j /th element of the correlation matrix according to the LEAR
model is defined as

�jk D

8̂<̂
:
1 if j = k
�dminCıŒ.djk�dmin/=.dmax�dmin/� if j ¤ k and dmin ¤ dmax

� if j ¤ k and dmin D dmax

Compound symmetry is the special case ı = 0. AR(1) is the special case ı D dmax�dmin. As ı !1,
the model approaches the first-order moving average model.

3. Kronecker product

‘matrix-name’ @ ‘matrix-name’ < @ . . . @ ‘matrix-name’ >

specifies a direct (Kronecker) product of two or more matrices for use with the CORRMAT=, CORRS=,
or COVMAT= option. This form is useful when you have more than one type of distinction among
dependent variables. For example, suppose you have a three-level repeated measurement factor with
correlation that is 0.4 for neighboring measurements and that decays slightly more slowly than AR(1)
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across more distant measurements. You also have four clusters that you believe satisfy compound
symmetry with a correlation of 0.3. Your level values are the same as the default for the LEAR model.
You can specify this correlation structure as follows:

MATRIX ('RepMeasures') = LEAR (0.4, 1.5, 3)
MATRIX ('Clusters') = LEAR (0.3, 0, 4)
MATRIX ('FullCorr') = 'RepMeasures' @ 'Clusters'
CORRMAT = 'FullCorr'

You can use the MATRIX option only when you have a multivariate model—that is, in the presence of
one or more MANOVA or REPEATED statements.

METHOD=MULLERPETERSON | MP

METHOD=OBRIENSHIEH | OS
specifies the power computation method for the multivariate tests (MTEST=HLT, MTEST=PT, and
MTEST=WILKS). METHOD=OBRIENSHIEH (the default) is based on O’Brien and Shieh (1992),
and METHOD=MULLERPETERSON is based on Muller and Peterson (1984). For information
about the associated power and sample size computational methods and formulas, see the section
“Multivariate Tests” on page 3635.

If the dependent variable transformation consists of a single contrast (rM = 1), then the two methods
are identical and compute exact power. If rM > 1 but the model effect or between-subject contrast has
only one degree of freedom (rL = 1), then METHOD=OBRIENSHIEH computes exact results and
METHOD=MULLERPETERSON computes approximate results. If rM > 1 and rL > 1, then both
methods compute approximate results.

You can use the METHOD= option only when you have a multivariate model—that is, in the presence
of one or more MANOVA or REPEATED statements.

MTEST=test-list
specifies the form of the F test for a multivariate model. Seven keywords are available, as discussed in
the following paragraphs: BOX, GG, HF, HLT, PT, UNCORR, and WILKS. For information about
specifying the keyword-list , see the section “Specifying Value Lists in the POWER Statement” on
page 3626.

Three of these tests are multivariate, corresponding to the default MSTAT=FAPPROX option in the
MANOVA and REPEATED statements in PROC GLM:

• MTEST=HLT (the default) is the Hotelling-Lawley trace

• MTEST=PT is Pillai’s trace

• MTEST=WILKS is Wilks’ lambda

For more information about these multivariate tests, see the section “Multivariate Tests” on page 90 in
Chapter 4, “Introduction to Regression Procedures.” For information about the associated power and
sample size computational methods and formulas, see the section “Multivariate Tests” on page 3635.

The other four tests are univariate, corresponding to the univariate approach to repeated measures in
the REPEATED statement in PROC GLM:

• MTEST=UNCORR is the uncorrected univariate F test, assuming sphericity (" = 1).
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• MTEST=GG is the F test with the Greenhouse-Geisser adjustment, estimating " by its maximum
likelihood estimate O".

• MTEST=HF is the F test with the Huynh-Feldt adjustment as specified by the UEPSDEF= option,
using an approximately unbiased estimate Q".

• MTEST=BOX is the F test with Box’s conservative adjustment, estimating sphericity by its small-
est possible value 1=rM , where rM is the number of within-subject contrasts in the dependent
variable transformation.

For more information about these univariate tests, see the section “Hypothesis Testing in Repeated
Measures Analysis” on page 3496 in Chapter 45, “The GLM Procedure.” For information about the
associated power and sample size computational methods and formulas, see the section “Univariate
Tests” on page 3638.

These tests are all of the form LˇM D 0, where L is a between-subject contrast, ˇ is the matrix of
model parameters, and M is a within-subject contrast.

You can use the MTEST= option only when you have a multivariate model—that is, in the presence of
one or more MANOVA or REPEATED statements.

NCOVARIATES=number-list

NCOVARIATE=number-list

NCOVS=number-list

NCOV=number-list
specifies the number of additional degrees of freedom to accommodate covariate effects—both class
and continuous—not listed in the MODEL statement, for a univariate model. The error degrees of
freedom are consequently reduced by the value of the NCOVARIATES= option, and the error standard
deviation (whose unadjusted value is provided with the STDDEV= option) is reduced according to the
value of the CORRXY= or PROPVARREDUCTION= option. You cannot use the NCOVARIATES=
option when you have a multivariate model—that is, in the presence of a MANOVA or REPEATED
statement. For information about specifying the number-list , see the section “Specifying Value Lists in
the POWER Statement” on page 3626.

NFRACTIONAL

NFRAC
enables fractional input and output for sample sizes. See the section “Sample Size Adjustment
Options” on page 3627 for information about the ramifications of the presence (and absence) of the
NFRACTIONAL option.

NTOTAL=number-list
specifies the sample size or requests a solution for the sample size with a missing value (NTOTAL=.).
The term “sample size” here refers to the number of independent sampling units. Values for the
sample size for a univariate model must be no smaller than the model degrees of freedom (counting the
covariates if present). The minimum required sample size for a multivariate model depends on the
analysis and computational method; for more information, see the section “Contrasts in Fixed-Effect
Multivariate Models” on page 3633. For information about specifying the number-list , see the section
“Specifying Value Lists in the POWER Statement” on page 3626.
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OUTPUTORDER=INTERNAL | REVERSE | SYNTAX
controls how the input and default analysis parameters are ordered in the output. OUT-
PUTORDER=INTERNAL (the default) arranges the parameters in the output according to the following
order of their corresponding options:

• DEPENDENT

• EFFECTS

• weight variable (from the WEIGHT statement)

• ALPHA=

• NCOVARIATES=

• CORRXY=

• PROPVARREDUCTION=

• STDDEV=

• NTOTAL=

• POWER=

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the same or-
der in which their corresponding options are specified in the POWER statement. The OUT-
PUTORDER=REVERSE option arranges the parameters in the output in the reverse of the order
in which their corresponding options are specified in the POWER statement.

POWER=number-list
specifies the desired power of each test or requests a solution for the power with a missing value
(POWER=.). The power is expressed as a probability (for example, 0.9) rather than a percentage. Note
that this is a test-wise power with the same value for all tests, without any correction for multiple
testing. For information about specifying the number-list , see the section “Specifying Value Lists in
the POWER Statement” on page 3626.

PROPVARREDUCTION=number-list

PVRED=number-list
specifies the proportional reduction (r) in total R square incurred by the covariates—in other words, the
amount of additional variation explained by the covariates—for a univariate model. The error standard
deviation that is given by the STDDEV= option is consequently reduced by multiplying it by a factor
of .1 � r/

1
2 , provided that the number of covariates (as determined by the NCOVARIATES= option) is

greater than 0. You cannot use the PROPVARREDUCTION= and CORRXY= options simultaneously.
You cannot use the PROPVARREDUCTION= option when you have a multivariate model—that
is, in the presence of a MANOVA or REPEATED statement. For information about specifying the
number-list , see the section “Specifying Value Lists in the POWER Statement” on page 3626.

SQRTVAR=name-list
specifies the vector of standard deviations—that is, the square roots of the variances—of the dependent
variables in a multivariate model, by using labels that are specified using the MATRIX= option. The
standard deviation values must be positive. You can use the SQRTVAR= option only when you have a
multivariate model—that is, in the presence of one or more MANOVA or REPEATED statements. For
information about specifying the name-list , see the section “Specifying Value Lists in the POWER
Statement” on page 3626.
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STDDEV=number-list
specifies the error standard deviation, or root MSE. For a multivariate model, each value in the number-
list is taken to be a common value for all dependent variables. If covariates are specified by using
the NCOVARIATES= option, then the STDDEV= option denotes the error standard deviation before
accounting for these covariates. For information about specifying the number-list , see the section
“Specifying Value Lists in the POWER Statement” on page 3626.

UEPSDEF=unbiased-epsilon-definition
specifies the type of adjustment for MTEST=HF. The default is UEPSDEF=HFL, corresponding to
the corrected form of the Huynh-Feldt adjustment (Huynh and Feldt 1976; Lecoutre 1991). Other
alternatives are UEPSDEF=HF; the uncorrected Huynh-Feldt adjustment; and UEPSDEF=CM, the
adjustment of Chi et al. (2012). For more information about these adjustments, see the section “Hy-
pothesis Testing in Repeated Measures Analysis” on page 3496 in Chapter 45, “The GLM Procedure.”
You can use the UEPSDEF= option only when you have a multivariate model—that is, in the presence
of one or more MANOVA or REPEATED statements. For information about the associated power and
sample size computational methods and formulas, see the section “Univariate Tests” on page 3638.

Restrictions on Option Combinations

To specify the variability in a multivariate model, choose one of the following parameterizations:

• covariance matrix (using the MATRIX= and COVMAT= options)

• standard deviations and correlations (using the MATRIX=, SQRTVAR=, and CORRS= options)

• common standard deviation and correlations (using the STDDEV=, MATRIX=, and CORRS= options)

• standard deviations and correlation matrix (using the MATRIX=, SQRTVAR=, and CORRMAT=
options)

• common standard deviation and correlation matrix (using the STDDEV=, MATRIX=, and CORRMAT=
options)

For the relationship between covariates and response in a univariate model, specify either the multiple
correlation (by using the CORRXY= option) or the proportional reduction in total R square (by using the
PROPVARREDUCTION= option).

REPEATED Statement
REPEATED factor-specification ;

If the MODEL statement includes more than one dependent variable, you can indicate a multivariate model
and define transformations of dependent variables by using the REPEATED statement.

The REPEATED statement enables you to define custom Type III hypothesis tests by choosing from among
several transformations of the dependent variables: contrast, Helmert, identity, mean, polynomial, and profile.
You can specify a transformation for each repeated factor (often called a within-subject factor), and each
combination of repeated factors produces an M vector or matrix for testing the hypothesis LˇM D 0. The L
matrix consists of one or more between-subject contrasts that involve the model effects, and the M matrix
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consists of one or more within-subject contrasts that involve the repeated factors. There is no limit to the
number of repeated factors that you can specify.

Usually, the variables on the left side of the equation in the MODEL statement represent one repeated response
variable. This does not mean that you are limited to listing only one factor in the REPEATED statement. For
example, one repeated response variable (wellness rating) might be measured six times (implying variables
Y1 to Y6 on the left side of the equal sign in the MODEL statement), with the associated within-subject
factors rater and time (implying two factors listed in the REPEATED statement). However, designs that have
two or more repeated response variables can be handled by using the IDENTITY transformation.

To use this feature, you must be familiar with the details of multivariate model and contrast parameterizations
that PROC GLM uses. For more information, see the sections “Repeated Measures Analysis of Variance” on
page 3493 and “Multivariate Analysis of Variance” on page 3492 in Chapter 45, “The GLM Procedure.” For
information about the power and sample size computational methods and formulas, see the section “Contrasts
in Fixed-Effect Multivariate Models” on page 3633.

If you specify one or more REPEATED statements, then a “Mean(Dep)” transformation is added to the power
analysis. This transformation is the mean of the dependent variables, the same transformation that is used
implicitly in the “Tests of Hypotheses for Between Subjects Effects” table in PROC GLM. In addition, the
Intercept model effect is included in the power analysis. If the REPEATED statement is not specified, then
tests that involve the Intercept are excluded from the power analysis.

You can use either the REPEATED statement or the MANOVA statement along with any of the tests for
multivariate models that are supported in the MTEST= option in the POWER statement. The REPEATED
statement is usually used for handling repeated measurements on the same experimental unit, but you can
also use the REPEATED statement for other situations, such as clusters or multiple outcome variables. The
differences between the REPEATED and MANOVA statements are as follows:

• You can use the REPEATED statement to specify commonly used contrasts by using keywords rather
than coefficients, but you are limited to only those forms of the M matrix.

• You can use the MANOVA statement to construct any M matrix, but you must specify the coefficients
explicitly (except for the default identity matrix).

There is no limit to the number of REPEATED statements that you can specify. Each power analysis includes
tests for all REPEATED statements and also (if you specify at least one REPEATED statement) the extra
“Mean(Dep)” transformation that was previously mentioned.

The simplest form of the REPEATED statement requires only a factor-name. When you have two or
more repeated factors, you must specify the factor-name and number of levels (levels) for each factor.
Optionally, you can specify the actual values for the levels (level-values) and a transformation that defines
single-degree-of-freedom contrasts. When you specify more than one within-subject factor, the factor-names
(and associated level and transformation information) must be separated by a comma in the REPEATED
statement.

The factor-specification for the REPEATED statement can include any number of individual factor specifica-
tions, separated by commas, of the following form:

factor-name levels < (level-values) > < transformation >

where
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factor-name names a factor to be associated with the dependent variables. The name should not be the
same as any variable name that already exists in the data set being analyzed and should
conform to the usual conventions of SAS variable names.

When you specify more than one factor, list the dependent variables in the MODEL
statement so that the within-subject factors that you define in the REPEATED statement
are nested; that is, the first factor you define in the REPEATED statement should be the
one whose values change least frequently.

levels gives the number of levels associated with the factor being defined. When there is only one
within-subject factor, the number of levels is equal to the number of dependent variables.
In this case, levels is optional. When more than one within-subject factor is defined,
however, levels is required, and the product of the number of levels of all the factors must
equal the number of dependent variables in the MODEL statement.

(level-values) gives values that correspond to levels of a repeated measures factor. These values are
used as spacings for constructing orthogonal polynomial contrasts if you specify a POLY-
NOMIAL transformation. The number of values that you specify must correspond to the
number of levels for that factor in the REPEATED statement. Enclose the level-values in
parentheses.

The following transformation keywords define single-degree-of-freedom contrasts for factors that you specify
in the REPEATED statement. Because the number of contrasts that are generated is always one less than
the number of levels of the factor, you have some control over which contrast is omitted from the analysis
by which transformation you select. The only exception is the IDENTITY transformation, which is not
composed of contrasts and has the same degrees of freedom as the factor has levels. By default, PROC
GLMPOWER uses the CONTRAST transformation.

CONTRAST< (ordinal-reference-level) >
generates contrasts between levels of the factor and a reference level. By default, PROC GLMPOWER
uses the last level as the reference level; you can optionally specify a reference level in parentheses
after the keyword CONTRAST. The reference level corresponds to the ordinal value of the level rather
than the level value that is specified. For example, to generate contrasts between the first level of a
factor and the other levels, specify CONTRAST(1).

HELMERT
generates contrasts between each level of the factor and the mean of subsequent levels.

IDENTITY
generates an identity transformation that corresponds to the associated factor. This transformation is
not composed of contrasts; it has n degrees of freedom for an n-level factor, instead of n – 1 degrees of
freedom.

MEAN< (ordinal-reference-level) >
generates contrasts between levels of the factor and the mean of all other levels of the factor. Specifying
a reference level eliminates the contrast between that level and the mean. When no reference level
is specified, the contrast that involves the last level is omitted. For an example, see the CONTRAST
transformation.
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POLYNOMIAL
generates orthogonal polynomial contrasts. Level values, if provided, are used as spacings in the
construction of the polynomials; otherwise, equal spacing is assumed.

PROFILE
generates contrasts between adjacent levels of the factor.

Examples

When you specify more than one factor, list the dependent variables in the MODEL statement so that the
within-subject factors that you define in the REPEATED statement are nested; that is, the first factor you
define in the REPEATED statement should be the one whose values change least frequently. For example,
assume that two raters submit a wellness rating at each of three times, for a total of six dependent variables
for each subject. Consider the following statements:

proc glm;
class treatment;
model Y1-Y6 = treatment;
repeated rater 2, time 3;

run;

The variables are listed in the MODEL statement as Y1 through Y6, so the REPEATED statement in the
preceding statements implies the following structure:

Dependent Variables
Y1 Y2 Y3 Y4 Y5 Y6

Value of rater 1 1 1 2 2 2

Value of time 1 2 3 1 2 3

WEIGHT Statement
WEIGHT variable ;

The WEIGHT statement names a variable that provides a profile weight (“cell weight”) for each observation
in the exemplary data set specified by the DATA= option in the PROC GLMPOWER statement.

If the WEIGHT statement is not used, then a balanced design is assumed with default cell weights of 1.

Details: GLMPOWER Procedure

Specifying Value Lists in the POWER Statement
To specify one or more scenarios for an analysis parameter (or set of parameters) in the POWER statement,
you provide a list of values for the option that corresponds to the parameter(s). To identify the parameter you
want to solve for, you place a missing value in the appropriate list.
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There are three basic types of such lists: number-lists, name-lists, and keyword-lists. Scenarios for scalar-
valued parameters, such as power, are represented by a number-list . Scenarios for named parameters, such
as correlation matrices, are represented by a name-list . Some parameters, such as the test statistic for a
multivariate model, have values that are represented by one or more keywords in a keyword-list .

Number-Lists

A number-list can be one of two things: a series of one or more numbers expressed in the form of one or
more DOLISTs, or a missing value indicator ( . ).

The DOLIST format is the same as in the DATA step. For example, you can specify four scenarios (30, 50,
70, and 100) for a total sample size in either of the following ways:

NTOTAL = 30 50 70 100
NTOTAL = 30 to 70 by 20 100

A missing value identifies a parameter as the result parameter; it is valid only with options representing
parameters you can solve for in a given analysis. For example, you can request a solution for NTOTAL as
follows:

NTOTAL = .

Name-Lists

A name-list is a list of one or more names that are enclosed in single or double quotation marks and separated
by spaces. For example, you can specify two scenarios for the correlation matrix in a multivariate model as
follows:

CORRMAT = "Corr A" "Corr B"

Keyword-Lists

A keyword-list is a list of one or more keywords, separated by spaces. For example, you can specify both the
multivariate Hotelling-Lawley trace and uncorrected univariate F test for a multivariate model as follows:

MTEST = HLT UNCORR

Sample Size Adjustment Options
By default, PROC GLMPOWER rounds sample sizes conservatively (down in the input, up in the output) so
that all total sizes and sample sizes for individual design profiles are integers. This is generally considered
conservative because it selects the closest realistic design providing at most the power of the (possibly
fractional) input or mathematically optimized design. In addition, all design profile sizes are adjusted to
be multiples of their corresponding weights. If a design profile is present more than once in the exemplary
data set, then the weights for that design profile are summed. For example, if a particular design profile
is present twice in the exemplary data set with weight values 2 and 6, then all sample sizes for this design
profile become multiples of 2 + 6 = 8.
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With the NFRACTIONAL option, sample size input is not rounded, and sample size output is reported in two
versions, a raw “fractional” version and a “ceiling” version rounded up to the nearest integer.

Whenever an input sample size is adjusted, both the original (“nominal”) and adjusted (“actual”) sample
sizes are reported. Whenever computed output sample sizes are adjusted, both the original input (“nominal”)
power and the achieved (“actual”) power at the adjusted sample size are reported.

Error and Information Output
The Error column in the main output table explains reasons for missing results and flags numerical results
that are bounds rather than exact answers.

The Info column provides further information about Error entries, warnings about any boundary conditions
detected, and notes about any adjustments to input. Note that the Info column is hidden by default in the
main output. You can view it by using the ODS OUTPUT statement to save the output as a data set and the
PRINT procedure. For example, the following SAS statements print both the Error and Info columns for a
power computation in a one-way ANOVA:

data MyExemp;
input A $ Y1 Y2;
datalines;

1 10 11
2 12 11
3 15 11

;

proc glmpower data=MyExemp;
class A;
model Y1 Y2 = A;
power

stddev = 2
ntotal = 3 10
power = .;

ods output output=Power;
run;

proc print noobs data=Power;
var NominalNTotal NTotal Dependent Power Error Info;

run;

The output is shown in Figure 47.5.

Figure 47.5 Error and Information Columns

NominalNTotal NTotal Dependent Power Error Info

3 3 Y1 . Invalid input Error DF=0

10 9 Y1 0.557 Input N adjusted

3 3 Y2 . Invalid input Error DF=0 / No effect

10 9 Y2 0.050 Input N adjusted / No effect

The sample size of 3 specified with the NTOTAL= option causes an “Invalid input” message in the Error
column and an “Error DF=0” message in the Info column, because a sample size of 3 is so small that there
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are no degrees of freedom left for the error term. The sample size of 10 causes an “Input N adjusted” message
in the Info column, because it is rounded down to 9 to produce integer group sizes of 3 per cell. The cell
means scenario represented by the dependent variable Y2 causes a “No effect” message to appear in the Info
column, because the means in this scenario are all equal.

Displayed Output
If you use the PLOTONLY option in the PROC GLMPOWER statement, the procedure displays only
graphical output. Otherwise, the displayed output of the GLMPOWER procedure includes the following:

• the “Fixed Scenario Elements” table, which shows all applicable single-valued analysis parameters, in
the following order: the dependent variable that represents the cell means scenario (for a univariate
model) or the dependent variable transformation (for a multivariate model), the source of the test
(that is, the model effect or between-subject contrast), the weight variable, parameters that are input
explicitly, parameters that are supplied with defaults, and ancillary results

• an output table that shows the following when applicable (in order): the index of the scenario, the
dependent variable that represents the cell means scenario (for a univariate model) or the dependent
variable transformation (for a multivariate model), the type of the test, the source of the test (that
is, the model effect or between-subject contrast), all multivalued input, ancillary results, the primary
computed result, and error descriptions

• plots (if requested)

The exception to these ordering conventions is that the DEPENDENT and EFFECTS= options can be
used along with the OUTPUTORDER=SYNTAX or OUTPUTORDER=REVERSE option in the POWER
statement to specify the relative location of the output for dependent variable and type and source of test.

Ancillary results include the following:

• Actual Power, the achieved power, if it differs from the input (Nominal) power value

• Actual Alpha, the achieved significance level, if it differs from the input (Nominal) alpha value

• fractional sample size, if the NFRACTIONAL option is used in the POWER statement

• test or numerator degrees of freedom in the test’s critical value

• error or denominator degrees of freedom in the test’s critical value

• Effect, the combination of the within-subject Transformation contrast and between-subject Source test
or contrast in a multivariate model

If sample size is the result parameter and the NFRACTIONAL option is used in the POWER statement, then
both “Fractional” and “Ceiling” sample size results are displayed. Fractional sample sizes correspond to the
“Nominal” values of power. Ceiling sample sizes are simply the fractional sample sizes rounded up to the
nearest integer; they correspond to “Actual” values of power.
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The noncentrality parameter is computed and stored in a hidden column called Noncentrality in the “Output”
table. If a univariate test for a multivariate model is specified (that is, one of MTEST=BOX, MTEST=GG,
MTEST=HF, or MTEST=UNCORR), then the numerator and denominator degrees of freedom that are used
in the noncentral F approximation of the test statistic distribution are computed and stored in hidden columns
called NumNCDF and DenNCDF, respectively, in the “Output” table. These are the only tests for which
the degrees of freedom in the noncentral F approximation of the test statistic are different from those in the
critical value.

ODS Table Names
PROC GLMPOWER assigns a name to each table that it creates. You can use these names to reference
the table when using the Output Delivery System (ODS) to select tables and create output data sets. These
names are listed in Table 47.7. For more information about ODS, see Chapter 20, “Using the Output Delivery
System.”

Table 47.7 ODS Tables Produced by PROC GLMPOWER

ODS Table Name Description Statement

FixedElements Factoid with single-valued analysis parameters Default
Output All input and computed analysis parameters, error

messages, and information messages for each scenario
Default

PlotContent Data contained in plots, including analysis parameters
and indices identifying plot features. (NOTE: This
table is saved as a data set and not displayed in PROC
GLMPOWER output.)

PLOT

Computational Methods and Formulas
This section describes the approaches that PROC GLMPOWER uses to compute power and sample size.

Contrasts in Fixed-Effect Univariate Models

The univariate linear model has the form

y D Xˇ C �

where y is the N � 1 vector of responses, X is the N � k design matrix, ˇ is the k � 1 vector of model
parameters corresponding to the columns of X, and � is an N � 1 vector of errors with

�1; : : : ; �N � N.0; �2/ .iid/

In PROC GLMPOWER, the model parameters ˇ are not specified directly, but rather indirectly as y?, which
represents either conjectured response means or typical response values for each design profile. The y?

values are manifested as the dependent variable in the MODEL statement. The vector ˇ is obtained from y?

according to the least squares equation,

ˇ D .X0X/�X0y?
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Note that, in general, there is not a one-to-one mapping between y? and ˇ. Many different scenarios for y?

might lead to the same ˇ. If you specify y? with the intention of representing cell means, keep in mind that
PROC GLMPOWER allows scenarios that are not valid cell means according to the model that is specified in
the MODEL statement. For example, if y? exhibits an interaction effect but the corresponding interaction
term is left out of the model, then the cell means (Xˇ) that are derived from ˇ differ from y?. In particular,
the cell means that are derived in this way are the projection of y? onto the model space.

It is convenient in power analysis to parameterize the design matrix X in three parts, f RX;w; N g, defined as
follows:

1. The q � k essence design matrix RX is the collection of unique rows of X. Its rows are sometimes
referred to as “design profiles.” Here, q � N is defined simply as the number of unique rows of X.

2. The q � 1 weight vector w reveals the relative proportions of design profiles, and W D diag.w/. Row
i of RX is to be included in the design wi times for every wj times that row j is included. The weights
are assumed to be standardized (that is, they sum up to 1).

3. The total sample size is N. This is the number of rows in X. If you gather Nwi D ni copies of the ith
row of RX, for i D 1; : : : ; q, then you end up with X.

The preceding quantities are derived from PROC GLMPOWER syntax as follows:

• Values for RX, y?, and w are specified in the exemplary data set (from using the DATA= option in
the PROC GLMPOWER statement), and the corresponding variables are identified in the CLASS,
MODEL, and WEIGHT statements.

• N is specified in the NTOTAL= option in the POWER statement.

It is useful to express the crossproduct matrix X0X in terms of these three parts,

X0X D N RX0W RX

because this expression factors out the portion (N) that depends on sample size and the portion ( RX0W RX) that
depends only on the design structure.

A general linear hypothesis for the univariate model has the form

H0WLˇ D �0
HAWLˇ ¤ �0

where L is an l � k contrast matrix with rank rL and �0 is the null value (usually just a vector of zeros).

Note that model effect tests are just contrasts that use special forms of L. Thus, this scheme covers both effect
tests (which are specified in the MODEL statement and the EFFECTS= option in the POWER statement) and
custom contrasts (which are specified in the CONTRAST statement).

The model degrees of freedom DFM are equal to the rank of X, denoted rX . The error degrees of freedom
DFE are equal to N – rX . The sample size N must be at least DFM plus the number of covariates.

The test statistic is

F D

�
SSH
rL

�
O�2



3632 F Chapter 47: The GLMPOWER Procedure

where

SSH D
1

N

�
L Ǒ � �0

�0 �
L
�
X0X

�� L0��1 �L Ǒ � �0�
Ǒ D .X0X/�X0y

O�2 D
1

DFE

�
y �X Ǒ

�0 �
y �X Ǒ

�
Under H0, F � F.rL;DFE/. Under HA, F is distributed as F.rL;DFE; �/ with noncentrality

� D N .Lˇ � �0/0
�
L
�
RX0W RX

��1
L0
��1

.Lˇ � �0/ ��2

The value of � is specified in the STDDEV= option in the POWER statement.

Muller and Peterson (1984) give the exact power of the test as

power D P .F.rL;DFE; �/ � F1�˛.rL;DFE//

The value of ˛ is specified in the ALPHA= option in the POWER statement.

Sample size is computed by inverting the power equation.

See Muller and Benignus (1992) and O’Brien and Shieh (1992) for additional discussion.

Adjustments for Covariates in Univariate Models

If you specify covariates in a univariate model (whether continuous or categorical), then two adjustments
are made in order to compute approximate power in the presence of the covariates. Let n� denote the
number of covariates (counting dummy variables for categorical covariates individually) as specified in the
NCOVARIATES= option in the POWER statement. In other words, n� is the total degrees of freedom used
by the covariates. The adjustments are as follows:

1. The error degrees of freedom decrease by n� .

2. The error standard deviation � shrinks by a factor of .1 � �2/
1
2 (if the CORRXY= option is used to

specify the correlation � between covariates and response) or .1�r/
1
2 (if the PROPVARREDUCTION=

option is used to specify the proportional reduction in total R2 incurred by the covariates). Let �?

represent the updated value of � .

As a result of these changes, the power is computed as

power D P
�
F.rL;DFE � n� ; �

?/ � F1�˛.rL; N � rx � n�/
�

where �? is calculated using �? rather than � :

�? D N .Lˇ � �0/0
�
L
�
RX0W RX

��1
L0
��1

.Lˇ � �0/ .�?/�2
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Contrasts in Fixed-Effect Multivariate Models

The multivariate model has the form

Y D Xˇ C �

where Y is the N � p vector of responses, for p > 1; X is the N � k design matrix; ˇ is the k � p matrix of
model parameters that correspond to the columns of X and Y; and � is an N � p vector of errors, where

�1; : : : ; �N � N.0;†/ .iid/

In PROC GLMPOWER, the model parameters ˇ are not specified directly, but rather indirectly as Y?, which
represents either conjectured response means or typical response values for each design profile. The Y?

values are manifested as the collection of dependent variables in the MODEL statement. The matrix ˇ is
obtained from Y? according to the least squares equation,

ˇ D .X0X/�X0Y?

Note that, in general, there is not a one-to-one mapping between Y? and ˇ. Many different scenarios for Y?

might lead to the same ˇ. If you specify Y? with the intention of representing cell means, keep in mind that
PROC GLMPOWER allows scenarios that are not valid cell means according to the model that is specified in
the MODEL statement. For example, if Y? exhibits an interaction effect but the corresponding interaction
term is left out of the model, then the cell means (Xˇ) that are derived from ˇ differ from Y?. In particular,
the cell means that are derived in this way are the projection of Y? onto the model space.

It is convenient in power analysis to parameterize the design matrix X in three parts, f RX;W; N g, defined as
follows:

1. The q � k essence design matrix RX is the collection of unique rows of X. Its rows are sometimes
referred to as “design profiles.” Here, q � N is defined simply as the number of unique rows of X.

2. The q � 1 weight vector w reveals the relative proportions of design profiles, and W D diag.w/. Row
i of RX is to be included in the design wi times for every wj times that row j is included. The weights
are assumed to be standardized (that is, they sum up to 1).

3. The total sample size is N. This is the number of rows in X. If you gather Nwi D ni copies of the ith
row of RX, for i = 1; : : : ; q, then you end up with X.

The preceding quantities are derived from PROC GLMPOWER syntax as follows:

• Values for RX, Y?, and w are specified in the exemplary data set (from using the DATA= option in
the PROC GLMPOWER statement), and the corresponding variables are identified in the CLASS,
MODEL, and WEIGHT statements.

• N is specified in the NTOTAL= option in the POWER statement.

It is useful to express the crossproduct matrix X0X in terms of these three parts,

X0X D N RX0W RX

because this expression factors out the portion (N) that depends on sample size and the portion ( RX0W RX) that
depends only on the design structure.
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A general linear hypothesis for the univariate model has the form

H0WLˇM D �0
HAWLˇM ¤ �0

where L is an l � k between-subject contrast matrix with rank rL, M is a p � m within-subject contrast matrix
with rank rM , and �0 is an l � m null contrast matrix (usually just a matrix of zeros).

Note that model effect tests are just between-subject contrasts that use special forms of L, combined with
an M that is the p � 1 mean transformation vector of the dependent variables (a vector of values all equal
to 1=p). Thus, this scheme covers both effect tests (which are specified in the MODEL statement and the
EFFECTS= option in the POWER statement) and custom between-subject contrasts (which are specified in
the CONTRAST statement).

The M matrix is often referred to as the dependent variable transformation and is specified in the MANOVA
or REPEATED statement.

The model degrees of freedom DFM are equal to the rank of X, denoted rX . The error degrees of freedom
DFE are equal to N – rX .

The hypothesis sum of squares SSH in the univariate model generalizes to the hypothesis SSCP matrix in the
multivariate model,

H D
�
L ǑM � �0

�0 �
L
�
X0X

��1 L0��1 �L ǑM � �0�
The error sum of squares O�2.N � rX / in the univariate model generalizes to the error SSCP matrix in the
multivariate model,

E D .N � rX /M0 O†M

where

O† D
�
Y �X Ǒ

�0 �
Y �X Ǒ

�
=.N � rX /

and

Ǒ D .X0X/�X0Y

The population counterpart of H=N is

H? D .LˇM � �0/0
�
L
�
RX0W RX

��
L0
��1

.LˇM � �0/

and the population counterpart of E=N is

E? DM0†M

The elements of † are specified in the MATRIX= and STDDEV= options and identified in the CORRMAT=,
CORRS=, COVMAT=, and SQRTVAR= options in the POWER statement.

The power and sample size computations for all the tests that are supported in the MTEST= option in the
POWER statement are based on H? and E?. The following two subsections cover the computational methods
and formulas for the multivariate and univariate tests that are supported in the MTEST= and UEPSDEF=
options in the POWER statement.
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Multivariate Tests
Power computations for multivariate tests are based on O’Brien and Shieh (1992) (for
METHOD=OBRIENSHIEH) and Muller and Peterson (1984) (for METHOD=MULLERPETERSON).

Let s = min.rL; rM /, the smaller of the between-subject and within-subject contrast degrees of freedom.
Critical value computations assume that under H0, the test statistic F is distributed as F.rLrM ; �2/, where
�2 D .N � rX /� rM C 1 if s = 1 but depends on the choice of test if s > 1. Power computations assume that
under HA, F is distributed as F.rLrM ; �2; �/, where the noncentrality � depends on rL, rM , the choice of
test, and the power computation method.

Formulas for the test statistic F, denominator degrees of freedom �2, and noncentrality � for all combinations
of dimensions, tests, and methods are given in the following subsections.

The power in each case is computed as

power D P .F.rLrM ; �2; �/ � F1�˛.rLrM ; �2//

Computed power is exact for some cases and approximate for others. Sample size is computed by inverting
the power equation.

Let � D E�1H, and define � as the s � 1 vector of ordered positive eigenvalues of �, � D f�1; : : : ; �sg,
where �1 � � � � � �s > 0. The population equivalent is

�? D E?�1H?

D
�
M0†M

��1
.LˇM � �0/0

�
L
�
RX0W RX

��1
L0
��1

.LˇM � �0/

where �? is the s � 1 vector of ordered positive eigenvalues of �?, �? D f�?1 ; : : : ; �
?
s g for �?1 � � � � �

�?s > 0.

Case 1: s = 1

When s = 1, all three multivariate tests (MTEST=HLT, MTEST=PT, and MTEST=WILKS) are equivalent.
The test statistic is F = �1�2=.rLrM /, where �2 D .N � rX / � rM C 1.

When the dependent variable transformation has a single degree of freedom (rM D 1),
METHOD=OBRIENSHIEH and METHOD=MULLERPETERSON are the same, computing exact
power by using noncentrality � D N�?. The sample size must satisfy N � rX C 1.

When the dependent variable transformation has more than one degree of freedom but the between-subject
contrast has a single degree of freedom (rM > 1; rL D 1), METHOD=OBRIENSHIEH computes exact
power by using noncentrality � D N�?1 , and METHOD=MULLERPETERSON computes approximate
power by using

� D
.N � rX / � rM C 1

.N � rX /
N�?1

The sample size must satisfy N � rX C rM .

Case 2: s > 1

When both the dependent variable transformation and the between-subject contrast have more than one
degree of freedom (s > 1), METHOD=OBRIENSHIEH computes the noncentrality as � D N�?, where �?

is the primary noncentrality. The form of �? depends on the choice of test statistic.
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METHOD=MULLERPETERSON computes the noncentrality as � D �2�
.MP/?, where �.MP/? has the

same form as �? except that �? is replaced by

�.MP/?
D

N

.N � rX /
�?

Computed power is approximate for both methods when s > 1.

Hotelling-Lawley Trace (MTEST=HLT) When s > 1

If N > rX C rM C 1, then the denominator degrees of freedom for the Hotelling-Lawley trace are �2 D �2a,

�2a D 4C .rLrM C 2/g

where

g D
.N � rX /

2 � .N � rX /.2rM C 3/C rM .rM C 3/

.N � rX /.rL C rM C 1/ � .rL C 2rM C r
2
M � 1/

which is the same as �.T2/2 in O’Brien and Shieh (1992) and is due to McKeon (1974).

If N � rX C rM C 1, then �2 D �2b ,

�2b D s..N � rX / � rM � 1/C 2

which is the same as both �.T1/2 in O’Brien and Shieh (1992) and �2 in Muller and Peterson (1984) and is
due to Pillai and Samson (1959).

The primary noncentrality is

�? D

sX
iD1

�?i

The sample size must satisfy

N � rX C rM C 1 � 1=s

If N > rX C rM C 1, then the test statistic is

F D
U=�1

c=�2a

where

U D trace.E�1H/

D

sX
iD1

�i

and

c D
2C .rLrM C 2/g

N � rX � rM � 1
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If N � rX C rM C 1, then the test statistic is

F D
U=�1

s=�2b

Pillai’s Trace (MTEST=PT) When s > 1

The denominator degrees of freedom for Pillai’s trace are

�2 D s..N � rX /C s � rM /

The primary noncentrality is

�? D s

0B@
Ps
iD1

�?
i

1C�?
i

s �
Ps
iD1

�?
i

1C�?
i

1CA
The sample size must satisfy

N � rX C rM C 1=s � s

The test statistic is

F D
V=�1

.s � V /=�2

where

V D trace
�
H.HC E/�1

�
D

sX
iD1

�i

1C �i

Wilks’ Lambda (MTEST=WILKS) When s > 1

The denominator degrees of freedom for Wilks’ lambda are

�2 D t Œ.N � rX / � 0:5.rM � rL C 1/� � 0:5.rLrM � 2/

where

t D

8̂<̂
:
1 if rLrM � 3�
.rLrM /

2�4

r2LCr
2
M�5

� 1
2

if rLrM � 4

The primary noncentrality is

�? D t

24 sY
iD1

�
.1C �?i /

�1
�!� 1t

� 1

35
The sample size must satisfy

N � .1C 0:5.rLrM � 2//=t C rX C .rM � rL C 1/=2
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The test statistic is

F D
.1 �ƒ1=t /=�1

ƒ1=t=�2

where

ƒ D det.E/=det.HC E/

D

sY
iD1

�
.1C �i /

�1
�

Univariate Tests
Power computations for univariate tests are based on Muller et al. (2007) and Muller and Barton (1989).

The test statistic is

F D
trace.H/=rL

trace.E/=.N � rX /

Critical value computations assume that under H0, F is distributed as F.�1; �2/, where �1 and �2 depend on
the choice of test.

The four tests for the univariate approach to repeated measures differ in their assumptions about the sphericity
" of E?,

" D
trace2.E?/
rM trace.E?2/

Power computations assume that under HA, F is distributed as F.�?1 ; �
?
2 ; �/.

Formulas for �1 and �2 for each test and formulas for �?1 , �?2 , and � are given in the following subsections.

The power in each case is approximated as

power D P
�
F.�?1 ; �

?
2 ; �/ � F1�˛.�1; �2/

�
Sample size is computed by inverting the power equation.

The sample size must be large enough to yield �1 > 0, �?1 > 0, �2 � 1, and �?2 � 1.

Because these univariate tests are biased, the achieved significance level might differ from the nominal
significance level. The actual alpha is computed in the same way as the power, except that the noncentrality
parameter � is set to 0.

Define �.E/ as the vector of ordered eigenvalues of E?, �.E/ D f�.E/1 ; : : : ; �
.E/
rM g, where �.E/1 � � � � � �

.E/
rM ,

and define .E/j as the jth eigenvector of E?. Critical values and power computations are based on the
following intermediate parameters:

!�j D N
�

.E/
j

�0
H?.E/j =�

.E/
j



Computational Methods and Formulas F 3639

St1 D

rMX
jD1

�
.E/
j

St2 D

rMX
jD1

�
.E/
j !�j

St3 D

rMX
jD1

�
�
.E/
j

�2
St4 D

rMX
jD1

�
�
.E/
j

�2
!�j

R�1 D
rLSt3 C 2St4

rLSt1 C 2St2

R�2 D
St3

St1

E.t1/ D 2.N � rX /St3 C .N � rX /2S2t1

E.t2/ D .N � rX /..N � rX /C 2/St3 C 2.N � rX /
rMX
j1D2

j1�1X
j2D1

�
.E/
j1
�
.E/
j2

The degrees of freedom and noncentrality in the noncentral F approximation of the test statistic are computed
as follows:

�?1 D
rLSt1

R�1

�?2 D
.N � rX /St1

R�2

� D
St2

R�1

Uncorrected Test

The uncorrected test assumes sphericity " D 1, in which case the null F distribution is exact, with the
following degrees of freedom:

�1 D rLrM

�2 D rM .N � rX /

Greenhouse-Geisser Adjustment (MTEST=UNCORR)

The Greenhouse-Geisser adjustment to the uncorrected test reduces degrees of freedom by the MLE O" of the
sphericity,

O" D
trace2.E/
rM trace.E2/
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An approximation for the expected value of O" is used to compute the degrees of freedom for the null F
distribution,

�1 D rLrME.O"/
�2 D rM .N � rX /E.O"/

where

E.O"/ D
E.t1/
rME.t2/

Huynh-Feldt Adjustments (MTEST=HF)

The Huynh-Feldt adjustment reduces degrees of freedom by a nearly unbiased estimate Q" of the sphericity,

Q" D

8̂̂<̂
:̂

NrM O"�2
rM Œ.N�rX /�rM O"�

if UEPSDEF=HF
.N�rXC1/rM O"�2
rM Œ.N�rX /�rM O"�

if UEPSDEF=HFL�
.�a�2/.�a�4/

�2a

� �
.N�rXC1/rM O"�2
rM Œ.N�rX /�rM O"�

�
if UEPSDEF=CM

where

�a D .N � rX � 1/C .N � rX /.N � rX � 1/=2

The value of Q" is truncated if necessary to be at least 1=rM and at most 1.

An approximation for the expected value of Q" is used to compute the degrees of freedom for the null F
distribution,

�1 D rLrMEt.Q"/

�2 D rM .N � rX /Et.Q"/

where

Et.Q"/ D min.max.E.Q"/; 1=rM /; 1/

and

E.Q"/ D

8̂̂<̂
:̂

NE.t1/�2E.t2/
rM Œ.N�rX /E.t2/�E.t1/�

if UEPSDEF=HF
.N�rXC1/E.t1/�2E.t2/
rM Œ.N�rX /E.t2/�E.t1/�

if UEPSDEF=HFL�
.�a�2/.�a�4/

�2a

� �
.N�rXC1/E.t1/�2E.t2/
rM Œ.N�rX /E.t2/�E.t1/�

�
if UEPSDEF=CM

Box Conservative Test (MTEST=BOX)

The Box conservative test assumes the worst case for sphericity, " D 1=rM , leading to the following degrees
of freedom for the null F distribution:

�1 D rL

�2 D .N � rX /
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ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

If ODS Graphics is not enabled, then PROC GLMPOWER creates traditional graphics.

You can reference every graph produced through ODS Graphics with a name. The names of the graphs that
PROC GLMPOWER generates are listed in Table 47.8, along with the required statements and options.

Table 47.8 Graphs Produced by PROC GLMPOWER

ODS Graph Name Plot Description Option

PowerPlot Plot with power and sample
size on the axes

PLOT

PowerAbort Empty plot that shows an error
message when a plot could not
be produced

PLOT

Examples: GLMPOWER Procedure

Example 47.1: One-Way ANOVA
This example deals with the same situation as in Example 77.1 in Chapter 77, “The POWER Procedure.”

Hocking (1985, p. 109) describes a study of the effectiveness of electrolytes in reducing lactic acid buildup
for long-distance runners. You are planning a similar study in which you will allocate five different fluids to
runners on a 10-mile course and measure lactic acid buildup immediately after the race. The fluids consist of
water and two commercial electrolyte drinks, EZDure and LactoZap, each prepared at two concentrations,
low (EZD1 and LZ1) and high (EZD2 and LZ2).

You conjecture that the standard deviation of lactic acid measurements given any particular fluid is about
3.75, and that the expected lactic acid values will correspond roughly to Table 47.9. You are least familiar
with the LZ1 drink and hence decide to consider a range of reasonable values for that mean.
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Table 47.9 Mean Lactic Acid Buildup by Fluid

Water EZD1 EZD2 LZ1 LZ2

35.6 33.7 30.2 29 or 28 25.9

You are interested in four different comparisons, shown in Table 47.10 with appropriate contrast coefficients.

Table 47.10 Planned Comparisons

Contrast Coefficients
Comparison Water EZD1 EZD2 LZ1 LZ2
Water versus electrolytes 4 -1 -1 -1 -1
EZD versus LZ 0 1 1 -1 -1
EZD1 versus EZD2 0 1 -1 0 0
LZ1 versus LZ2 0 0 0 1 -1

For each of these contrasts you want to determine the sample size required to achieve a power of 0.9 for
detecting an effect with magnitude in accord with Table 47.9. You are not yet attempting to choose a single
sample size for the study, but rather checking the range of sample sizes needed for individual contrasts. You
plan to test each contrast at ˛ = 0.025. In the interests of reducing costs, you will provide twice as many
runners with water as with any of the electrolytes; that is, you will use a sample size weighting scheme of
2:1:1:1:1.

Before calling PROC GLMPOWER, you need to create the exemplary data set to specify means and weights
for the design profiles:

data Fluids;
input Fluid $ LacticAcid1 LacticAcid2 CellWgt;
datalines;

Water 35.6 35.6 2
EZD1 33.7 33.7 1
EZD2 30.2 30.2 1
LZ1 29 28 1
LZ2 25.9 25.9 1

;

The variable LacticAcid1 represents the cell means scenario with the larger LZ1 mean (29), and LacticAcid2
represents the scenario with the smaller LZ1 mean (28). The variable CellWgt contains the sample size
allocation weights.

Use the DATA= option in the PROC GLMPOWER statement to specify Fluids as the exemplary data set. The
following statements perform the sample size analysis:

proc glmpower data=Fluids;
class Fluid;
model LacticAcid1 LacticAcid2 = Fluid;
weight CellWgt;
contrast "Water vs. others" Fluid -1 -1 -1 -1 4;
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contrast "EZD vs. LZ" Fluid 1 1 -1 -1 0;
contrast "EZD1 vs. EZD2" Fluid 1 -1 0 0 0;
contrast "LZ1 vs. LZ2" Fluid 0 0 1 -1 0;
power

stddev = 3.75
alpha = 0.025
ntotal = .
power = 0.9;

run;

The CLASS statement identifies Fluid as a classification variable. The MODEL statement specifies the model
and the two cell means scenarios LacticAcid1 and LacticAcid2. The WEIGHT statement identifies CellWgt
as the weight variable. The CONTRAST statement specifies the contrasts. Since PROC GLMPOWER by
default processes class levels in order of formatted values, the contrast coefficients correspond to the following
order: EZD1, EZD2, LZ1, LZ2, Water. (NOTE: You could use the ORDER=DATA option in the PROC
GLMPOWER statement to achieve the same ordering as in Table 47.10 instead.) The POWER statement
specifies total sample size as the result parameter and provides values for the other analysis parameters (error
standard deviation, alpha, and power).

Output 47.1.1 displays the results.

Output 47.1.1 Sample Sizes for One-Way ANOVA Contrasts

The GLMPOWER ProcedureThe GLMPOWER Procedure

Fixed Scenario Elements

Weight Variable CellWgt

Alpha 0.025

Error Standard Deviation 3.75

Nominal Power 0.9

Computed N Total

Index Dependent Type Source
Test

DF
Error

DF
Actual
Power

N
Total

1 LacticAcid1 Effect Fluid 4 25 0.958 30

2 LacticAcid1 Contrast Water vs. others 1 25 0.947 30

3 LacticAcid1 Contrast EZD vs. LZ 1 55 0.929 60

4 LacticAcid1 Contrast EZD1 vs. EZD2 1 169 0.901 174

5 LacticAcid1 Contrast LZ1 vs. LZ2 1 217 0.902 222

6 LacticAcid2 Effect Fluid 4 25 0.972 30

7 LacticAcid2 Contrast Water vs. others 1 19 0.901 24

8 LacticAcid2 Contrast EZD vs. LZ 1 43 0.922 48

9 LacticAcid2 Contrast EZD1 vs. EZD2 1 169 0.901 174

10 LacticAcid2 Contrast LZ1 vs. LZ2 1 475 0.902 480

The sample sizes range from 24 for the comparison of water versus electrolytes to 480 for the comparison
of LZ1 versus LZ2, both assuming the smaller LZ1 mean. The sample size for the latter comparison is
relatively large because the small mean difference of 28 - 25.9 = 2.1 is hard to detect. PROC GLMPOWER
also includes the effect test for Fluid. Note that, in this case, it is equivalent to TEST=OVERALL_F in the
ONEWAYANOVA statement of PROC POWER, since there is only one effect in the model.
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The Nominal Power of 0.9 in the “Fixed Scenario Elements” table in Output 47.1.1 represents the input
target power, and the Actual Power column in the “Computed N Total” table is the power at the sample size
(N Total) adjusted to achieve the specified sample weighting. Note that all of the sample sizes are rounded
up to multiples of 6 to preserve integer group sizes (since the group weights add up to 6). You can use the
NFRACTIONAL option in the POWER statement to compute raw fractional sample sizes.

Suppose you want to plot the required sample size for the range of power values from 0.5 to 0.95. First,
define the analysis by specifying the same statements as before, but add the PLOTONLY option to the
PROC GLMPOWER statement to disable the nongraphical results. Next, specify the PLOT statement with
X=POWER to request a plot with power on the X axis. (The result parameter—here sample size—is always
plotted on the other axis.) Use the MIN= and MAX= options in the PLOT statement to specify the power
range. The following statements produce the plot:

ods graphics on;

proc glmpower data=Fluids plotonly;
class Fluid;
model LacticAcid1 LacticAcid2 = Fluid;
weight CellWgt;
contrast "Water vs. others" Fluid -1 -1 -1 -1 4;
contrast "EZD vs. LZ" Fluid 1 1 -1 -1 0;
contrast "EZD1 vs. EZD2" Fluid 1 -1 0 0 0;
contrast "LZ1 vs. LZ2" Fluid 0 0 1 -1 0;
power

stddev = 3.75
alpha = 0.025
ntotal = .
power = 0.9;

plot x=power min=.5 max=.95;
run;
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Output 47.1.2 Plot of Sample Size versus Power for One-Way ANOVA Contrasts

In Output 47.1.2, the line style identifies the cell means scenario, and the plotting symbol identifies the test.
The plotting symbol locations identify actual computed powers; the curves are linear interpolations of these
points. The plot shows that the required sample size is highest for the test of LZ1 versus LZ2, which was
previously found to require the most resources.

Note that some of the plotted points in Output 47.1.2 are unevenly spaced. This is because the plotted points
are the rounded sample size results at their corresponding actual power levels. The range specified with
the MIN= and MAX= values in the PLOT statement corresponds to nominal power levels. In some cases,
actual power is substantially higher than nominal power. To obtain plots with evenly spaced points (but with
fractional sample sizes at the computed points), you can use the NFRACTIONAL option in the POWER
statement preceding the PLOT statement.
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Finally, suppose you want to plot the power for the range of sample sizes you will likely consider for the study
(the range of 24 to 480 that achieves 0.9 power for different comparisons). In the POWER statement, identify
power as the result (POWER=.), and specify any total sample size value (say, NTOTAL=100). Specify the
PLOT statement with X=N to request a plot with sample size on the X axis.

The following statements produce the plot:

proc glmpower data=Fluids plotonly;
class Fluid;
model LacticAcid1 LacticAcid2 = Fluid;
weight CellWgt;
contrast "Water vs. others" Fluid -1 -1 -1 -1 4;
contrast "EZD vs. LZ" Fluid 1 1 -1 -1 0;
contrast "EZD1 vs. EZD2" Fluid 1 -1 0 0 0;
contrast "LZ1 vs. LZ2" Fluid 0 0 1 -1 0;
power

stddev = 3.75
alpha = 0.025
ntotal = 24
power = .;

plot x=n min=24 max=480;
run;

ods graphics off;

Note that the value 100 specified with the NTOTAL=100 option is not used. It is overridden in the plot by the
MIN= and MAX= options in the PLOT statement, and the PLOTONLY option in the PROC GLMPOWER
statement disables nongraphical results. But the NTOTAL= option (along with a value) is still needed in the
POWER statement as a placeholder, to identify the desired parameterization for sample size.

See Output 47.1.3 for the plot.
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Output 47.1.3 Plot of Power versus Sample Size for One-Way ANOVA Contrasts

Although Output 47.1.2 and Output 47.1.3 surface essentially the same computations for practical power
ranges, they each provide a different quick visual assessment. Output 47.1.2 reveals the range of required
sample sizes for powers of interest, and Output 47.1.3 reveals the range of achieved powers for sample sizes
of interest.

Example 47.2: Two-Way ANOVA with Covariate
Suppose you can enhance the planned study discussed in Example 47.1 in two ways:

• incorporate results from races at two different altitudes (“high” and “low”)

• measure the body mass index of each runner before the race

This is equivalent to adding a second fixed effect and a continuous covariate to your model.

Since lactic acid buildup is more pronounced at higher altitudes, you will include altitude as a factor in the
model along with fluid, extending the one-way ANOVA to a two-way ANOVA. In doing so, you expect to
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lower the residual standard deviation from about 3.75 to 3.5 (in addition to generalizing the study results).
You assume there is negligible interaction between fluid and altitude and plan to use a main-effects-only
model. You conjecture that the mean lactic acid buildup follows Table 47.11.

Table 47.11 Mean Lactic Acid Buildup by Fluid and Altitude

Fluid
Altitude Water EZD1 EZD2 LZ1 LZ2
High 36.9 35.0 31.5 30 27.1
Low 34.3 32.4 28.9 27 24.7

By including a measurement of body mass index as a covariate in the study, you hope to further reduce the
error variability. The extent of this reduction in variability is commonly expressed in two alternative ways:
(1) the correlation between the covariates and the response or (2) the proportional reduction in total R square
incurred by the covariates. You prefer the former and guess that the correlation between body mass index
and lactic acid buildup is between 0.2 and 0.3. You specify these estimates with the NCOVARIATES= and
CORRXY= options in the POWER statement. The covariate is not included in the MODEL statement.

You are interested in the same four fluid comparisons as in Example 47.1, shown in Table 47.10, except this
time you want to marginalize over the effect of altitude.

For each of these contrasts, you want to determine the sample size required to achieve a power of 0.9 to
detect an effect with magnitude according to Table 47.11. You are not yet attempting to choose a single
sample size for the study, but rather checking the range of sample sizes needed by individual contrasts. You
plan to test each contrast at ˛ = 0.025. You will provide twice as many runners with water as with any of the
electrolytes, and you predict that you can study approximately two-thirds as many runners at high altitude
than at low altitude. The resulting planned sample size weighting scheme is shown in Table 47.12. Since the
scheme is only approximate, you use the NFRACTIONAL option in the POWER statement to disable the
rounding of sample sizes up to integers satisfying the weights exactly.

Table 47.12 Approximate Sample Size Allocation Weights

Fluid
Altitude Water EZD1 EZD2 LZ1 LZ2
High 4 2 2 2 2
Low 6 3 3 3 3

First, you create the exemplary data set to specify means and weights for the design profiles:

data Fluids2;
input Altitude $ Fluid $ LacticAcid CellWgt;
datalines;

High Water 36.9 4
High EZD1 35.0 2
High EZD2 31.5 2
High LZ1 30 2
High LZ2 27.1 2
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Low Water 34.3 6
Low EZD1 32.4 3
Low EZD2 28.9 3
Low LZ1 27 3
Low LZ2 24.7 3

;

The variables Altitude, Fluid, and LacticAcid specify the factors and cell means in Table 47.11. The variable
CellWgt contains the sample size allocation weights in Table 47.12.

Use the DATA= option in the PROC GLMPOWER statement to specify Fluids2 as the exemplary data set.
The following statements perform the sample size analysis:

proc glmpower data=Fluids2;
class Altitude Fluid;
model LacticAcid = Altitude Fluid;
weight CellWgt;
contrast "Water vs. others" Fluid -1 -1 -1 -1 4;
contrast "EZD vs. LZ" Fluid 1 1 -1 -1 0;
contrast "EZD1 vs. EZD2" Fluid 1 -1 0 0 0;
contrast "LZ1 vs. LZ2" Fluid 0 0 1 -1 0;
power

nfractional
stddev = 3.5
ncovariates = 1
corrxy = 0.2 0.3 0
alpha = 0.025
ntotal = .
power = 0.9;

run;

The CLASS statement identifies Altitude and Fluid as classification variables. The MODEL statement specifies
the model, and the WEIGHT statement identifies CellWgt as the weight variable. The CONTRAST statement
specifies the contrasts in Table 47.10. As in Example 47.1, the order of the contrast coefficients corresponds
to the formatted class levels (EZD1, EZD2, LZ1, LZ2, Water). The POWER statement specifies total sample
size as the result parameter and provides values for the other analysis parameters. The NCOVARIATES=
option specifies the single covariate (body mass index), and the CORRXY= option specifies the two scenarios
for its correlation with lactic acid buildup (0.2 and 0.3). Output 47.2.1 displays the results.

Output 47.2.1 Sample Sizes for Two-Way ANOVA Contrasts

The GLMPOWER ProcedureThe GLMPOWER Procedure

Fixed Scenario Elements

Dependent Variable LacticAcid

Weight Variable CellWgt

Alpha 0.025

Number of Covariates 1

Std Dev Without Covariate Adjustment 3.5

Nominal Power 0.9
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Output 47.2.1 continued

Computed Ceiling N Total

Index Type Source
Corr

XY

Adj
Std
Dev

Test
DF

Error
DF

Fractional
N Total

Actual
Power

Ceiling
N

Total

1 Effect Altitude 0.2 3.43 1 84 90.418451 0.902 91

2 Effect Altitude 0.3 3.34 1 79 85.862649 0.901 86

3 Effect Altitude 0.0 3.50 1 88 94.063984 0.903 95

4 Effect Fluid 0.2 3.43 4 16 22.446173 0.912 23

5 Effect Fluid 0.3 3.34 4 15 21.687544 0.908 22

6 Effect Fluid 0.0 3.50 4 17 23.055716 0.919 24

7 Contrast Water vs. others 0.2 3.43 1 15 21.720195 0.905 22

8 Contrast Water vs. others 0.3 3.34 1 14 20.848805 0.903 21

9 Contrast Water vs. others 0.0 3.50 1 16 22.422381 0.910 23

10 Contrast EZD vs. LZ 0.2 3.43 1 35 41.657424 0.903 42

11 Contrast EZD vs. LZ 0.3 3.34 1 33 39.674037 0.903 40

12 Contrast EZD vs. LZ 0.0 3.50 1 37 43.246415 0.906 44

13 Contrast EZD1 vs. EZD2 0.2 3.43 1 139 145.613657 0.901 146

14 Contrast EZD1 vs. EZD2 0.3 3.34 1 132 138.173983 0.902 139

15 Contrast EZD1 vs. EZD2 0.0 3.50 1 145 151.565917 0.901 152

16 Contrast LZ1 vs. LZ2 0.2 3.43 1 268 274.055008 0.901 275

17 Contrast LZ1 vs. LZ2 0.3 3.34 1 253 259.919126 0.900 260

18 Contrast LZ1 vs. LZ2 0.0 3.50 1 279 285.363976 0.901 286

The sample sizes in Output 47.2.1 range from 21 for the comparison of water versus electrolytes (assuming
a correlation of 0.3 between body mass and lactic acid buildup) to 275 for the comparison of LZ1 versus
LZ2 (assuming a correlation of 0.2). PROC GLMPOWER also includes the effect tests for Altitude and Fluid.
Note that the required sample sizes for this study are lower than those for the study in Example 47.1.

Note that the error standard deviation has been reduced from 3.5 to 3.43 (when correlation is 0.2) or 3.34
(when correlation is 0.3) in the approximation of the effect of the body mass index covariate. The error
degrees of freedom has also been automatically adjusted, lowered by 1 (the number of covariates).

Suppose you want to plot the required sample size for the range of power values from 0.5 to 0.95. First,
define the analysis by specifying the same statements as before, but add the PLOTONLY option to the
PROC GLMPOWER statement to disable the nongraphical results. Next, specify the PLOT statement with
X=POWER to request a plot with power on the X axis. Sample size is automatically placed on the Y axis. Use
the MIN= and MAX= options in the PLOT statement to specify the power range. The following statements
produce the plot:

ods graphics on;

proc glmpower data=Fluids2 plotonly;
class Altitude Fluid;
model LacticAcid = Altitude Fluid;
weight CellWgt;
contrast "Water vs. others" Fluid -1 -1 -1 -1 4;
contrast "EZD vs. LZ" Fluid 1 1 -1 -1 0;
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contrast "EZD1 vs. EZD2" Fluid 1 -1 0 0 0;
contrast "LZ1 vs. LZ2" Fluid 0 0 1 -1 0;
power

nfractional
stddev = 3.5
ncovariates = 1
corrxy = 0.2 0.3 0
alpha = 0.025
ntotal = .
power = 0.9;

plot x=power min=.5 max=.95;
run;

See Output 47.2.2 for the resulting plot.

Output 47.2.2 Plot of Sample Size versus Power for Two-Way ANOVA Contrasts

In Output 47.1.2, the line style identifies the test, and the plotting symbol identifies the scenario for the
correlation between covariate and response. The plotting symbol locations identify actual computed powers;
the curves are linear interpolations of these points. As in Example 47.1, the required sample size is highest
for the test of LZ1 versus LZ2.
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Finally, suppose you want to plot the power for the range of sample sizes you will likely consider for the
study (the range of 21 to 275 that achieves 0.9 power for different comparisons). In the POWER statement,
identify power as the result (POWER=.), and specify NTOTAL=21. Specify the PLOT statement with X=N
to request a plot with sample size on the X axis.

The following statements produce the plot:

proc glmpower data=Fluids2 plotonly;
class Altitude Fluid;
model LacticAcid = Altitude Fluid;
weight CellWgt;
contrast "Water vs. others" Fluid -1 -1 -1 -1 4;
contrast "EZD vs. LZ" Fluid 1 1 -1 -1 0;
contrast "EZD1 vs. EZD2" Fluid 1 -1 0 0 0;
contrast "LZ1 vs. LZ2" Fluid 0 0 1 -1 0;
power

nfractional
stddev = 3.5
ncovariates = 1
corrxy = 0.2 0.3 0
alpha = 0.025
ntotal = 21
power = .;

plot x=n min=21 max=275;
run;

ods graphics off;

The MAX=275 option in the PLOT statement sets the maximum sample size value. The MIN= option
automatically defaults to the value of 21 from the NTOTAL= option in the POWER statement.

See Output 47.2.3 for the plot.
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Output 47.2.3 Plot of Power versus Sample Size for Two-Way ANOVA Contrasts

Although Output 47.2.2 and Output 47.2.3 surface essentially the same computations for practical power
ranges, they each provide a different quick visual assessment. Output 47.2.2 reveals the range of required
sample sizes for powers of interest, and Output 47.2.3 reveals the range of powers achieved for sample sizes
of interest.

Example 47.3: Repeated Measures ANOVA
Logan, Baron, and Kohout (1995) and Guo et al. (2013) study the effect of a dental intervention on the
memory of pain after root canal therapy. The intervention is a sensory focus strategy, in which patients are
instructed to pay attention only to the physical sensations in their mouth during the root canal procedure.

Suppose you are interested in the long-term effects of this sensory focus intervention, because avoidance
behavior has been shown to build along with memory of pain. You are planning a study to compare
sensory focus to standard of care over a period of a year, asking patients to self-report their memory of pain
immediately after the procedure and then again at 1 week, 6 months, and 12 months. You use a scale from 0
(no pain remembered) to 5 (maximum pain remembered).
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The between-subject factor in your model is treatment, with two levels (sensory focus versus standard of
care), and you allocate each treatment equally for a balanced design. The within-subject factor is time, with
four levels (0, 1, 26, and 52 weeks).

You want to determine the number of patients who are needed in order to achieve a power of 0.9 at significance
level ˛ = 0.01 for the test of the interaction between time and treatment, where the contrast over time contains
all pairwise comparisons. You also want to generate a plot of power versus sample size that covers the power
range of 0.05 to 0.99.

The default Hotelling-Lawley F test is appropriate for this study, especially because it is the same as the Wald
test in PROC MIXED with the DDFM=KR Kenward-Roger degrees-of-freedom method and an unstructured
covariance model.

You conjecture that the mean memory of pain for each treatment follows the information in Table 47.13.

Table 47.13 Mean Memory of Pain by Treatment

Time Since Root Canal Therapy
Treatment Later on Same Day 1 Week 6 Months 12 Months

Sensory Focus 2.40 2.38 2.05 1.90
Standard of Care 2.40 2.39 2.36 2.30

The following statements create a data set named Pain that is to contain these means over treatment and time:

data Pain;
input Treatment $ PainMem0 PainMem1Wk PainMem6Mo PainMem12Mo;
datalines;

SensoryFocus 2.40 2.38 2.05 1.90
StandardOfCare 2.40 2.39 2.36 2.30

;

The variable Treatment specifies the two treatments. The four variables PainMem0, PainMem1Wk, Pain-
Mem6Mo, and PainMem12Mo specify the mean memory of pain scores in Table 47.13.

To characterize the variability, you must specify a set of parameters that defines the entire covariance matrix
of the residuals. You conjecture that the error standard deviation is the same at all four time points, with a
value somewhere between 0.92 and 1.04, and you account for your uncertainty by including both the lower
and upper ends of this range in the sample size analysis. You believe that the correlation has a linear exponent
autoregressive (LEAR) structure, with a correlation of about 0.6 between measurements one week apart and a
decay rate of about 0.8 over one-week intervals. The correlation matrix that contains these LEAR parameters,
rounded to three decimal places, is shown in Table 47.14.

Table 47.14 Conjectured Correlation Matrix

0 1 26 52
0 1 0.6 0.491 0.399
1 0.6 1 0.495 0.402
26 0.491 0.495 1 0.491
52 0.399 0.402 0.491 1
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Use the DATA= option in the PROC GLMPOWER statement to specify Pain as the exemplary data set. Specify
the between- and within-subject factors and the model by using the CLASS, MODEL, and REPEATED
statements just as you would in PROC GLM for the repeated measures data analysis. Use the POWER
statement to indicate sample size as the result parameter and specify the other analysis parameters, and use
the PLOT statement to generate the power curves. The following statements perform the sample size analysis:

ods graphics on;

proc glmpower data=Pain;
class Treatment;
model PainMem0 PainMem1Wk PainMem6Mo PainMem12Mo = Treatment;
repeated Time contrast;
power

mtest = hlt
alpha = 0.01
power = .9
ntotal = .
stddev = 0.92 1.04
matrix ("PainCorr") = lear(0.6, 0.8, 4, 0 1 26 52)
corrmat = "PainCorr";

plot y=power min=0.05 max=0.99 yopts=(ref=0.9)
vary (linestyle by stddev, symbol by dependent source);

run;
ods graphics off;

The STDDEV= option specifies the two scenarios for the common residual standard deviation, 0.92 and 1.04.
The MATRIX= option defines the LEAR correlation structure, and the CORRMAT= option specifies it as the
correlation matrix of the residuals. The Y=POWER option in the PLOT statement requests a plot that has
power on the Y axis. (The result parameter—in this case, total sample size—is always plotted on the other
axis.) The MIN= and MAX= options in the PLOT statement specify the power range. The YOPTS=(REF=)
option adds a reference line at the target power value of 0.9. The VARY option specifies that the line style
vary by the residual standard deviation and that the plotting symbol vary by the combination of within-subject
and between-subject effects. The ODS GRAPHICS ON statement enables ODS Graphics.

Output 47.3.1 shows the output, and Output 47.3.2 shows the plot.

Output 47.3.1 Sample Size Analysis for Repeated Measures

The GLMPOWER Procedure
F Test for Multivariate Model
The GLMPOWER Procedure
F Test for Multivariate Model

Fixed Scenario Elements

Wilks/HLT/PT Method O'Brien-Shieh

F Test Hotelling-Lawley Trace

Alpha 0.01

Correlation Matrix PainCorr

Nominal Power 0.9
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Output 47.3.1 continued

Computed N Total

Index Transformation Source
Std
Dev Effect

Num
DF

Den
DF

Actual
Power

N
Total

1 Time Intercept 0.92 Time 3 176 0.900 180

2 Time Intercept 1.04 Time 3 226 0.903 230

3 Time Treatment 0.92 Time*Treatment 3 346 0.901 350

4 Time Treatment 1.04 Time*Treatment 3 442 0.901 446

5 Mean(Dep) Intercept 0.92 Intercept 1 4 0.960 6

6 Mean(Dep) Intercept 1.04 Intercept 1 4 0.907 6

7 Mean(Dep) Treatment 0.92 Treatment 1 950 0.900 952

8 Mean(Dep) Treatment 1.04 Treatment 1 1214 0.900 1216

Output 47.3.1 reveals that the required sample size to achieve a power of 0.9 for the test of the Time*Treatment
interaction is 350 for the error standard deviation of 0.92 and 446 for the error standard deviation of 1.04.

Output 47.3.2 Plot of Power versus Sample Size for Repeated Measures Analysis
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Overview: GLMSELECT Procedure
The GLMSELECT procedure performs effect selection in the framework of general linear models. A
variety of model selection methods are available, including the LASSO method of Tibshirani (1996) and the
related LAR method of Efron et al. (2004). The procedure offers extensive capabilities for customizing the
selection with a wide variety of selection and stopping criteria, from traditional and computationally efficient
significance-level-based criteria to more computationally intensive validation-based criteria. The procedure
also provides graphical summaries of the selection search.

The GLMSELECT procedure compares most closely to REG and GLM. The REG procedure supports a
variety of model-selection methods but does not support a CLASS statement. The GLM procedure supports
a CLASS statement but does not include effect selection methods. The GLMSELECT procedure fills
this gap. GLMSELECT focuses on the standard independently and identically distributed general linear
model for univariate responses and offers great flexibility for and insight into the model selection algorithm.
GLMSELECT provides results (displayed tables, output data sets, and macro variables) that make it easy to
take the selected model and explore it in more detail in a subsequent procedure such as REG or GLM.

Features
The main features of the GLMSELECT procedure are as follows:

• Model Specification

– supports different parameterizations for classification effects

– supports any degree of interaction (crossed effects) and nested effects

– supports hierarchy among effects



Features F 3661

– supports partitioning of data into training, validation, and testing roles

– supports constructed effects including spline and multimember effects

• Selection Control

– provides multiple effect selection methods

– enables selection from a very large number of effects (tens of thousands)

– offers selection of individual levels of classification effects

– provides effect selection based on a variety of selection criteria

– provides stopping rules based on a variety of model evaluation criteria

– provides leave-one-out, k-fold cross validation, and k-fold external cross validation

– supports data resampling and model averaging

• Display and Output

– produces graphical representation of selection process

– produces output data sets containing predicted values and residuals

– produces an output data set containing the design matrix

– produces macro variables containing selected models

– supports parallel processing of BY groups

– supports multiple SCORE statements

The GLMSELECT procedure supports the following effect selection methods. For more information about
these methods, see the section “Model-Selection Methods” on page 3704.

forward selection starts with no effects in the model and adds effects.

backward elimination starts with all effects in the model and deletes effects.

stepwise regression is similar to forward selection except that effects already in the model do not
necessarily stay there.

least angle regression (LAR) is similar to forward selection in that it starts with no effects in the model
and adds effects. The parameter estimates at any step are “shrunk” when
compared to the corresponding least squares estimates.

LASSO adds and deletes parameters based on a version of ordinary least squares
where the sum of the absolute regression coefficients is constrained.

elastic net is an extension of LASSO that estimates parameters based on a version of
ordinary least squares in which both the sum of the absolute regression coef-
ficients and the sum of the squared regression coefficients are constrained.

PROC GLMSELECT also supports hybrid versions of the LAR and LASSO methods. They use LAR and
LASSO to select the model but then estimate the regression coefficients by ordinary weighted least squares.

The GLMSELECT procedure is intended primarily as a model selection procedure and does not include
regression diagnostics or other postselection facilities such as hypothesis testing, testing of contrasts, and
LS-means analyses. The intention is that you use PROC GLMSELECT to select a model or a set of candidate
models. Further investigation of these models can be done by using these models in existing regression
procedures.
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Getting Started: GLMSELECT Procedure
The Sashelp.Baseball data set contains salary and performance information for Major League Baseball
players who played at least one game in both the 1986 and 1987 seasons, excluding pitchers. The salaries
(Sports Illustrated, April 20, 1987) are for the 1987 season and the performance measures are from 1986
(Collier Books, The 1987 Baseball Encyclopedia Update). The following step displays in Figure 48.1 the
variables in the data set:

proc contents varnum data=sashelp.baseball;
ods select position;

run;

Figure 48.1 Sashelp.Baseball Data Set

The CONTENTS ProcedureThe CONTENTS Procedure

Variables in Creation Order

# Variable Type Len Label

1 Name Char 18 Player's Name

2 Team Char 14 Team at the End of 1986

3 nAtBat Num 8 Times at Bat in 1986

4 nHits Num 8 Hits in 1986

5 nHome Num 8 Home Runs in 1986

6 nRuns Num 8 Runs in 1986

7 nRBI Num 8 RBIs in 1986

8 nBB Num 8 Walks in 1986

9 YrMajor Num 8 Years in the Major Leagues

10 CrAtBat Num 8 Career Times at Bat

11 CrHits Num 8 Career Hits

12 CrHome Num 8 Career Home Runs

13 CrRuns Num 8 Career Runs

14 CrRbi Num 8 Career RBIs

15 CrBB Num 8 Career Walks

16 League Char 8 League at the End of 1986

17 Division Char 8 Division at the End of 1986

18 Position Char 8 Position(s) in 1986

19 nOuts Num 8 Put Outs in 1986

20 nAssts Num 8 Assists in 1986

21 nError Num 8 Errors in 1986

22 Salary Num 8 1987 Salary in $ Thousands

23 Div Char 16 League and Division

24 logSalary Num 8 Log Salary

Suppose you want to investigate whether you can model the players’ salaries for the 1987 season based on
performance measures for the previous season. The aim is to obtain a parsimonious model that does not
overfit this particular data, making it useful for prediction. This example shows how you can use PROC
GLMSELECT as a starting point for such an analysis. Since the variation of salaries is much greater for the
higher salaries, it is appropriate to apply a log transformation to the salaries before doing the model selection.
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The following code selects a model with the default settings:

ods graphics on;
proc glmselect data=sashelp.baseball plots=all;

class league division;
model logSalary = nAtBat nHits nHome nRuns nRBI nBB

yrMajor crAtBat crHits crHome crRuns crRbi
crBB league division nOuts nAssts nError

/ details=all stats=all;
run;
ods graphics off;

PROC GLMSELECT performs effect selection where effects can contain classification variables that you
specify in a CLASS statement. The “Class Level Information” table shown in Figure 48.2 lists the levels of
the classification variables Division and League.

Figure 48.2 Class Level Information

The GLMSELECT ProcedureThe GLMSELECT Procedure

Class Level Information

Class Levels Values

League 2 American National

Division 2 East West

When you specify effects that contain classification variables, the number of parameters is usually larger than
the number of effects. The “Dimensions” table in Figure 48.3 shows the number of effects and the number of
parameters considered.

Figure 48.3 Dimensions

Dimensions

Number of Effects 19

Number of Parameters 21

Figure 48.4 Model Information

The GLMSELECT ProcedureThe GLMSELECT Procedure

Data Set SASHELP.BASEBALL

Dependent Variable logSalary

Selection Method Stepwise

Select Criterion SBC

Stop Criterion SBC

Effect Hierarchy Enforced None
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You find details of the default search settings in the “Model Information” table shown in Figure 48.4. The
default selection method is a variant of the traditional stepwise selection where the decisions about what
effects to add or drop at any step and when to terminate the selection are both based on the Schwarz Bayesian
information criterion (SBC). The effect in the current model whose removal yields the maximal decrease in
the SBC statistic is dropped provided this lowers the SBC value. Once no decrease in the SBC value can be
obtained by dropping an effect in the model, the effect whose addition to the model yields the lowest SBC
statistic is added and the whole process is repeated. The method terminates when dropping or adding any
effect increases the SBC statistic.

Figure 48.5 Candidates for Entry at Step Two

Best 10 Entry
Candidates

Rank Effect SBC

1 nHits -252.5794

2 nAtBat -241.5789

3 nRuns -240.1010

4 nRBI -232.2880

5 nBB -223.3741

6 nHome -208.0565

7 nOuts -205.8107

8 Division -194.4688

9 CrBB -191.5141

10 nAssts -190.9425

The DETAILS=ALL option requests details of each step of the selection process. The “Best 10 Entry
Candidates” table at each step shows the candidates for inclusion or removal at that step ranked from best to
worst in terms of the selection criterion, which in this example is the SBC statistic. By default only the 10
best candidates are shown. Figure 48.5 shows the candidate table at step two.

To help in the interpretation of the selection process, you can use graphics supported by PROC GLMSELECT.
ODS Graphics must be enabled before requesting plots. For general information about ODS Graphics,
see Chapter 21, “Statistical Graphics Using ODS.” With ODS Graphics enabled, the PLOTS=ALL option
together with the DETAILS=STEPS option in the MODEL statement produces a needle plot view of the
“Candidates” tables. The plot corresponding to the “Candidates” table at step two is shown in Figure 48.6.
You can see that adding the effect 'nHits' yields the smallest SBC value, and so this effect is added at step
two.
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Figure 48.6 Needle Plot of Entry Candidates at Step Two

The “Stepwise Selection Summary” table in Figure 48.7 shows the effect that was added or dropped at each
step of the selection process together with fit statistics for the model at each step. The STATS=ALL option in
the MODEL statement requests that all the available fit statistics are displayed. See the section “Criteria Used
in Model Selection Methods” on page 3714 for descriptions and formulas. The criterion panel in Figure 48.8
provides a graphical view of the progression of these fit criteria as the selection process evolves. Note that
none of these criteria has a local optimum before step five.
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Figure 48.7 Selection Summary Table

The GLMSELECT ProcedureThe GLMSELECT Procedure

Stepwise Selection Summary

Step
Effect
Entered

Effect
Removed

Number
Effects In

Number
Parms In

Model
R-Square

Adjusted
R-Square AIC AICC BIC CP SBC

0 Intercept 1 1 0.0000 0.0000 204.2238 204.2699 -60.6397 375.9275 -57.2041

1 CrRuns 2 2 0.4187 0.4165 63.5391 63.6318 -200.7872 111.2315 -194.3166

2 nHits 3 3 0.5440 0.5405 1.7041 1.8592 -261.8807 33.4438 -252.5794

3 YrMajor 4 4 0.5705 0.5655 -12.0208 -11.7873 -275.3333 18.5870 -262.7322

4 CrRuns 3 3 0.5614 0.5581 -8.5517 -8.3967 -271.9095 22.3357 -262.8353

5 nBB 4 4 0.5818 0.5770* -19.0690* -18.8356* -282.1700* 11.3524* -269.7804*

* Optimal Value of Criterion

Stepwise Selection Summary

Step
Effect
Entered

Effect
Removed PRESS ASE F Value Pr > F

0 Intercept 208.7381 0.7877 0.00 1.0000

1 CrRuns 123.9195 0.4578 188.01 <.0001

2 nHits 97.6368 0.3592 71.42 <.0001

3 YrMajor 92.2998 0.3383 15.96 <.0001

4 CrRuns 93.1482 0.3454 5.44 0.0204

5 nBB 89.5434* 0.3294 12.62 0.0005

* Optimal Value of Criterion
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Figure 48.8 Criterion Panel

The stop reason and stop details tables in Figure 48.9 gives details of why the selection process terminated.
This table shows that at step five the best add candidate, 'Division', and the best drop candidate, 'nBB',
yield models with SBC values of –268.6094 and –262.8353, respectively. Both of these values are larger than
the current SBC value of –269.7804, and so the selection process stops at the model at step five.

Figure 48.9 Stopping Details

Selection stopped at a local minimum of the SBC criterion.

Stop Details

Candidate
For Effect

Candidate
SBC

Compare
SBC

Entry Division -268.6094 > -269.7804

Removal nBB -262.8353 > -269.7804
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The coefficient panel in Figure 48.10 enables you to visualize the selection process. In this plot, standardized
coefficients of all the effects selected at some step of the stepwise method are plotted as a function of the step
number. This enables you to assess the relative importance of the effects selected at any step of the selection
process as well as providing information as to when effects entered the model. The lower plot in the panel
shows how the criterion used to choose the selected model changes as effects enter or leave the model.

Figure 48.10 Coefficient Progression

The selected effects, analysis of variance, fit statistics, and parameter estimates tables shown in Figure 48.11
give details of the selected model.
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Figure 48.11 Details of the Selected Model

The GLMSELECT Procedure
Selected Model

The GLMSELECT Procedure
Selected Model

The selected model is the model at the last step (Step 5).

Effects: Intercept nHits nBB YrMajor

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value

Model 3 120.52553 40.17518 120.12

Error 259 86.62820 0.33447

Corrected Total 262 207.15373

Root MSE 0.57834

Dependent Mean 5.92722

R-Square 0.5818

Adj R-Sq 0.5770

AIC -19.06903

AICC -18.83557

BIC -282.17004

C(p) 11.35235

PRESS 89.54336

SBC -269.78041

ASE 0.32938

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value

Intercept 1 4.013911 0.111290 36.07

nHits 1 0.007929 0.000994 7.98

nBB 1 0.007280 0.002049 3.55

YrMajor 1 0.100663 0.007551 13.33

PROC GLMSELECT provides you with the flexibility to use several selection methods and many fit criteria
for selecting effects that enter or leave the model. You can also specify criteria to determine when to stop
the selection process and to choose among the models at each step of the selection process. You can find
continued exploration of the baseball data that uses a variety of these methods in Example 48.1.
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Syntax: GLMSELECT Procedure
The following statements are available in the GLMSELECT procedure:

PROC GLMSELECT < options > ;
BY variables ;
CLASS variable < (v-options) > < variable < (v-options . . . ) > > < / v-options > < options > ;
CODE < options > ;
EFFECT name = effect-type (variables < / options >) ;
FREQ variable ;
MODEL variable = < effects > < / options > ;
MODELAVERAGE < options > ;
OUTPUT < OUT=SAS-data-set > < keyword< =name > > < . . . keyword< =name > > ;
PARTITION < options > ;
PERFORMANCE < options > ;
SCORE < DATA=SAS-data-set > < OUT=SAS-data-set > ;
STORE < OUT= >item-store-name < / LABEL='label ' > ;
WEIGHT variable ;

All statements other than the MODEL statement are optional and multiple SCORE statements can be used.
CLASS and EFFECT statements, if present, must precede the MODEL statement.

The STORE and CODE statements are also used by many other procedures. A summary description of
functionality and syntax for these statements is also shown after the PROC GLMSELECT statement in
alphabetical order, but you can find full documentation about them in the section “STORE Statement” on
page 508 in Chapter 19, “Shared Concepts and Topics.”

PROC GLMSELECT Statement
PROC GLMSELECT < options > ;

The PROC GLMSELECT statement invokes the GLMSELECT procedure. Table 48.1 summarizes the
options available in the PROC GLMSELECT statement.

Table 48.1 PROC GLMSELECT Statement Options

Option Description

Data Set Options
DATA= Names a data set to use for the regression
MAXMACRO= Sets the maximum number of macro variables produced
TESTDATA= Names a data set that contains test data
VALDATA= Names a data set that contains validation data
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Table 48.1 continued

Option Description

ODS Graphics Options
PLOTS= Produces ODS graphical displays

Other Options
OUTDESIGN= Requests a data set that contains the design matrix
NAMELEN= Sets the length of effect names in tables and output data sets
NOPRINT Suppresses displayed output including plots
SEED= Sets the seed used for pseudo-random number generation

Following are explanations of the options that you can specify in the PROC GLMSELECT statement (in
alphabetical order).

DATA=SAS-data-set
names the SAS data set to be used by PROC GLMSELECT. If the DATA= option is not specified,
PROC GLMSELECT uses the most recently created SAS data set. If the named data set contains a
variable named _ROLE_, then this variable is used to assign observations for training, validation, and
testing roles. See the section “Using Validation and Test Data” on page 3724 for details on using the
_ROLE_ variable.

MAXMACRO=n
specifies the maximum number of macro variables with selected effects to create. By default, MAX-
MACRO=100. PROC GLMSELECT saves the list of selected effects in a macro variable, &_GLSIND.
Say your input effect list consists of x1-x10. Then &_GLSIND would be set to x1 x3 x4 x10 if, for
example, the first, third, fourth, and tenth effects were selected for the model. This list can be used,
for example, in the model statement of a subsequent procedure. If you specify the OUTDESIGN=
option in the PROC GLMSELECT statement, then PROC GLMSELECT saves the list of columns in
the design matrix in a macro variable named &_GLSMOD.

With BY processing, one macro variable is created for each BY group, and the macro variables are
indexed by the BY group number. The MAXMACRO= option can be used to either limit or increase
the number of these macro variables when you are processing data sets with many BY groups.

With no BY processing, PROC GLMSELECT creates the following:

_GLSIND selected effects
_GLSIND1 selected effects
_GLSMOD design matrix columns
_GLSMOD1 design matrix columns
_GLSNUMBYS number of BY groups
_GLSNUMMACROBYS number of _GLSINDi macro variables actually made
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With BY processing, PROC GLMSELECT creates the following:

_GLSIND selected effects for BY group 1
_GLSIND1 selected effects for BY group 1
_GLSIND2 selected effects for BY group 2
.
.
.
_GLSINDm selected effects for BY group m, where a number is

substituted for m
_GLSMOD design matrix columns for BY group 1
_GLSMOD1 design matrix columns for BY group 1
_GLSMOD2 design matrix columns for BY group 2
.
.
.
_GLSMODm design matrix columns for BY group m, where a number

is substituted for m
_GLSNUMBYS n, the number of BY groups
_GLSNUMMACROBYS the number m of _GLSINDi macro variables actually

made. This value can be less than _GLSNUMBYS = n,
and it is less than or equal to the MAXMACRO= value.

See the section “Macro Variables Containing Selected Models” on page 3718 for further details.

NOPRINT
suppresses all displayed output including plots.

NAMELEN=n
specifies the length of effect names in tables and output data sets to be n characters long, where n is a
value between 20 and 200 characters. The default length is 20 characters.

OUTDESIGN < (options) >< =SAS-data-set >
creates a data set that contains the design matrix. By default, the GLMSELECT procedure includes in
the OUTDESIGN data set the X matrix corresponding to the parameters in the selected model. Two
schemes for naming the columns of the design matrix are available. In the first scheme, names of the
parameters are constructed from the parameter labels that appear in the ParameterEstimates table. This
naming scheme is the default when you do not request BY processing and is not available when you do
use BY processing. In the second scheme, the design matrix column names consist of a prefix followed
by an index. The default naming prefix is _X.

You can specify the following options in parentheses to control the contents of the OUTDESIGN data
set:

ADDINPUTVARS
requests that all variables in the input data set be included in the OUTDESIGN= data set.

FULLMODEL
specifies that parameters corresponding to all the effects specified in the MODEL statement
be included in the OUTDESIGN= data set. By default, only parameters corresponding to the
selected model are included.
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NAMES
produces a table associating columns in the OUTDESIGN data set with the labels of the parame-
ters they represent.

PREFIX< =prefix >
requests that the design matrix column names consist of a prefix followed by an index. The
default naming prefix is _X. You can optionally specify a different prefix.

PARMLABELSTYLE=options
specifies how parameter names and labels are constructed for nested and crossed effects.

The following options are available:

INTERLACED < (SEPARATOR=quoted-string) >
forms parameter names and labels by positioning levels of classification variables and constructed
effects adjacent to the associated variable or constructed effect name and using “ * ” as the
delimiter for both crossed and nested effects. This style of naming parameters and labels is
used in the TRANSREG procedure. You can request truncation of the classification variable
names used in forming the parameter names and labels by using the CPREFIX= and LPREFIX=
options in the CLASS statement. You can use the SEPARATOR= suboption to change the
delimiter between the crossed variables in the effect. PARMLABELSTYLE=INTERLACED is
not supported if you specify the SPLIT option in an EFFECT statement or a CLASS statement.
The following are examples of the parameter labels in this style (Age is a continuous variable,
Gender and City are classification variables):

Age
Gender male * City Beijing
City London * Age

SEPARATE
specifies that in forming parameter names and labels, the effect name appears before the levels
associated with the classification variables and constructed effects in the effect. You can control
the length of the effect name by using the NAMELEN= option in the PROC GLMSELECT
statement. In forming parameter labels, the first level that is displayed is positioned so that it
starts at the same offset in every parameter label—this enables you to easily distinguish the effect
name from the levels when the parameter labels are displayed in a column in the “Parameter
Estimates” table. This style of labeling is used in the GLM procedure and is the default if you
do not specify the PARMLABELSTYLE option. The following are examples of the parameter
labels in this style (Age is a continuous variable, Gender and City are classification variables):

Age
Gender*City male Beijing
Age*City London

SEPARATECOMPACT
requests the same parameter naming and labeling scheme as PARMLABELSTYLE=SEPARATE
except that the first level in the parameter label is separated from the effect name by a single
blank. This style of labeling is used in the PLS procedure. The following are examples of the
parameter labels in this style (Age is a continuous variable, Gender and City are classification
variables):
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Age
Gender*City male Beijing
Age*City London

PLOTS < (global-plot-options) > < = plot-request < (options) > >

PLOTS < (global-plot-options) > < = (plot-request < (options) > < ... plot-request < (options) > >) >
controls the plots produced through ODS Graphics. When you specify only one plot request, you can
omit the parentheses around the plot request. Here are some examples:

plots=all
plots=coefficients(unpack)
plots(unpack)=(criteria candidates)

ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;

proc glmselect plots=all;
model y = x1-x100;

run;

ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

Global Plot Options

The global-options apply to all plots generated by the GLMSELECT procedure, unless it is altered by
a specific-plot-option.

ENDSTEP=n
specifies that the step ranges shown on the horizontal axes of plots terminates at specified step.
By default, the step range shown terminates at the final step of the selection process. If you
specify the ENDSTEP= option as both a global plot option and a specific plot option, then the
ENDSTEP= value on the specific plot is used.

LOGP | LOGPVALUE
displays the natural logarithm of the entry and removal significance levels when the SELECT=SL
option is specified.

MAXSTEPLABEL=n
specifies the maximum number of characters beyond which labels of effects on plots are truncated.
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MAXPARMLABEL= n
specifies the maximum number of characters beyond which parameter labels on plots are trun-
cated.

STARTSTEP=n
specifies that the step ranges shown on the horizontal axes of plots start at the specified step. By
default, the step range shown starts at the initial step of the selection process. If you specify
the STARTSTEP= option both as a global plot option and a specific plot option, then the
STARTSTEP= value on the specific plot is used.

STEPAXIS=EFFECT | NORMB | NUMBER
specifies the horizontal axis to be used on the plots, where this axis represents the sequence of
entering or departing effects.

STEPAXIS=EFFECT
requests that each step be labeled by a prefix followed by the name of the effect that enters
or leaves at that step. The prefix consists of the step number, followed by a “+” sign or a “-”
sign, depending on whether the effect enters (+) or leaves (-) at that step.

STEPAXIS=NORMB
is valid only with the LAR, LASSO, and elastic net selection methods and requests that the
horizontal axis value at step i be the L1 norm of the parameters at step i, normalized by the
L1 norm of the parameters at the final step.

STEPAXIS=NUMBER
requests that each step be labeled by the step number.

UNPACK
suppresses paneling. By default, multiple plots can appear in some output panels. Specify
UNPACK to see each plot individually. You can also specify UNPACK as a suboption of the
CRITERIA and COEFFICIENTS options.

Specific Plot Options

The following listing describes the specific plots and their options.

ALL
requests that all default plots be produced. Note that candidate plots are produced only if you
specify DETAILS=STEPS or DETAILS=ALL in the MODEL statement.

ASE | ASEPLOT < (aseplot-option) >
plots the progression of the average square error on the training data, and the test and validation
data whenever these data are provided with the TESTDATA= and VALDATA= options or are
produced by using a PARTITION statement. You can specify the following aseplot-option:

STEPAXIS=EFFECT | NORMB | NUMBER
specifies the horizontal axis to be used.
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CANDIDATES | CANDIDATESPLOT < (candidatesplot-options) >
produces a needle plot of the SELECT= criterion values for the candidates for entry or removal at
each step of the selection process, ordered from best to worst. Candidates plots are not available
if you specify SELECTION=NONE, SELECTION=LAR, SELECTION=LASSO, or SELEC-
TION=ELASTICNET in the MODEL statement, or if you have not specified DETAILS=ALL or
DETAILS=STEPS in the MODEL statement. The following candidatesplot-options are available:

LOGP | LOGPVALUE
displays the natural logarithm of the entry and removal significance levels when the SE-
LECT=SL option is specified.

SHOW=number
specifies the maximum number of candidates displayed at each step. The default is
SHOW=10.

COEFFICIENTS | COEFFICIENTPANEL < (coefficientPanel-options) >
plots a panel of two plots. The upper plot shows the progression of the parameter values as the
selection process proceeds. The lower plot shows the progression of the CHOOSE= criterion.
If no CHOOSE= criterion is in effect, then the AICC criterion is displayed. The following
coefficientPanel-options are available:

LABELGAP=percentage
specifies the percentage of the vertical axis range that forms the minimum gap between
successive parameter labels at the final step of the coefficient progression plot. If the values
of more than one parameter at the final step are closer than this gap, then the labels on all
but one of these parameters is suppressed. The default value is LABELGAP=5. Planned
enhancements to the automatic label collision avoidance algorithm will obviate the need for
this option in future releases of the GLMSELECT procedure.

LOGP | LOGPVALUE
displays the natural logarithm of the entry and removal significance levels when the SE-
LECT=SL option is specified.

STEPAXIS=EFFECT | NORMB | NUMBER
specifies the horizontal axis to be used.

UNPACK | UNPACKPANEL
displays the coefficient progression and the CHOOSE= criterion progression in separate
plots.

CRITERIA | CRITERIONPANEL < (criterionPanel-options) >
plots a panel of model fit criteria. The criteria that are displayed are ADJRSQ, AIC, AICC,
and SBC, as well as any other criteria that are named in the CHOOSE=, SELECT=, STOP=, or
STATS= option in the MODEL statement. The following criterionPanel-options are available:

STEPAXIS=EFFECT | NORMB | NUMBER
specifies the horizontal axis to be used.
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UNPACK | UNPACKPANEL
displays each criterion progression on a separate plot.

EFFECTSELECTPCT < (effectSelectPct-options) >
requests a bar chart whose bars correspond to effects that are selected in at least one sample when
you use the MODELAVERAGE statement. The length of a bar corresponds to the percentage of
samples where the selected model contains the effect the bar represents. The EFFECTSELECT-
PCT option is ignored if you do not specify a MODELAVERAGE statement. The following
effectSelectPct-options are available:

MINPCT=percent
specifies that effects that appear in fewer than the specified percentage of the sample selected
models not be included in the plot. By default, effects that are shown in the EffectSelectPct
table are displayed.

ORDER=ASCENDING | DESCENDING | MODEL
specifies the ordering of the effects in the bar chart. ORDER=MODEL specifies that
effects appear in the order in which they appear in the MODEL statement. OR-
DER=ASCENDING | DESCENDING specifies that the effects are shown in ascending
or descending order of the number of samples in which the effects appear in the selected
model. The default is ORDER=DESCENDING.

NONE
suppresses all plots.

PARMDIST < (parmDist-options) >
produces a panel that shows histograms and box plots of the parameter estimate values across
samples when you use a MODELAVERAGE statement. There is a histogram and box plot for
each parameter that appears in the AvgParmEst table. The PARMDIST option is ignored if you
do not specify a MODELAVERAGE statement. The following parmDist-options are available:

MINPCT=percent
specifies that distributions be shown only for parameters whose estimates are nonzero in at
least the specified percentage of the selected models. By default, distributions are shown for
the all parameters that appear in the AvgParmEst table.

ORDER=ASCENDING | DESCENDING | MODEL
specifies the ordering of the parameters in the panels. ORDER=MODEL specifies that
parameters be shown in the order in which the corresponding effects appear in the MODEL
statement. ORDER=ASCENDING | DESCENDING specifies that the parameters be shown
in an ascending or descending order of the number of samples in which the parameter
estimate is nonzero. The default is ORDER=DESCENDING.

NOBOXPLOTS
suppress the box plots.

PLOTSPERPANEL=number
specifies the maximum number of parameter distributions that appear in a panel. If the
number of relevant parameters is greater than number , then multiple panels are produced.
Valid values are 1–16 with 9 as the default.
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UNPACK
specifies that the distribution for each relevant parameter be shown in a separate plot.

SEED=number
specifies an integer used to start the pseudo-random number generator for resampling the data, random
cross validation, and random partitioning of data for training, testing, and validation. If you do not
specify a seed, or if you specify a value less than or equal to zero, the seed is generated from reading
the time of day from the computer’s clock.

TESTDATA=SAS-data-set
names a SAS data set containing test data. This data set must contain all the variables specified in the
MODEL statement. Furthermore, when a BY statement is used and the TESTDATA=data set contains
any of the BY variables, then the TESTDATA= data set must also contain all the BY variables sorted
in the order of the BY variables. In this case, only the test data for a specific BY group is used with the
corresponding BY group in the analysis data. If the TESTDATA= data set contains none of the BY
variables, then the entire TESTDATA = data set is used with each BY group of the analysis data.

If you specify a TESTDATA=data set, then you cannot also reserve observations for testing by using a
PARTITION statement.

VALDATA=SAS-data-set
names a SAS data set containing validation data. This data set must contain all the variables specified
in the MODEL statement. Furthermore, when a BY statement is used and the VALDATA=data set
contains any of the BY variables, then the VALDATA= data set must also contain all the BY variables
sorted in the order of the BY variables. In this case, only the validation data for a specific BY group are
used with the corresponding BY group in the analysis data. If the VALDATA= data set contains none
of the BY variables, then the entire VALDATA = data set is used with each BY group of the analysis
data.

If you specify a VALDATA=data set, then you cannot also reserve observations for validation by using
a PARTITION statement.

BY Statement
BY variables ;

You can specify a BY statement with PROC GLMSELECT to obtain separate analyses of observations in
groups that are defined by the BY variables. When a BY statement appears, the procedure expects the input
data set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last
one specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the GLMSELECT
procedure. The NOTSORTED option does not mean that the data are unsorted but rather that the
data are arranged in groups (according to values of the BY variables) and that these groups are not
necessarily in alphabetical or increasing numeric order.
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• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

CLASS Statement
CLASS variable < (v-options) > . . . < variable < (v-options) > > < / options > ;

The CLASS statement names the classification variables to be used in the analysis. The CLASS statement
must precede the MODEL statement.

Table 48.2 summarizes the options available in the CLASS statement.

Table 48.2 CLASS Statement Options

Option Description

CPREFIX= Specifies maximum number of CLASS variable name characters
DELIMITER= Specifies the delimiter
DESCENDING Reverses the sort order
LPREFIX= Labels design variables
MISSING Allows for missing values
ORDER= Specifies the sort order
PARAM= Specifies the parameterization method
REF= Specifies the reference level
SHOW Requests a table for each CLASS variable
SPLIT Splits CLASS variables into independent effects

The following options can be specified after a slash (/):

DELIMITER=quoted character
specifies the delimiter that is used between levels of classification variables in building parameter
names and lists of class level values. The default if you do not specify DELIMITER= is a space. This
option is useful if the levels of a classification variable contain embedded blanks.

SHOW | SHOWCODING
requests a table for each classification variable that shows the coding used for that variable.

You can specify various v-options for each variable by enclosing them in parentheses after the variable name.
You can also specify global v-options for the CLASS statement by placing them after a slash (/). Global
v-options are applied to all the variables specified in the CLASS statement. If you specify more than one
CLASS statement, the global v-options specified in any one CLASS statement apply to all CLASS statements.
However, individual CLASS variable v-options override the global v-options except for the PARAM=GLM
option. The global PARAM=GLM option overrides all individual PARAM= options.



3680 F Chapter 48: The GLMSELECT Procedure

The following v-options are available:

CPREFIX=n
specifies that, at most, the first n characters of a CLASS variable name be used in creating names for
the corresponding design variables. The default is 32 �min.32;max.2; f //, where f is the formatted
length of the CLASS variable. The CPREFIX= applies only when you specify the PARMLABEL-
STYLE=INTERLACED option in the PROC GLMSELECT statement.

DESCENDING

DESC
reverses the sort order of the classification variable.

LPREFIX=n
specifies that, at most, the first n characters of a CLASS variable label be used in creating labels for the
corresponding design variables. The default is 256 �min.256;max.2; f //, where f is the formatted
length of the CLASS variable. The LPREFIX= applies only when you specify the PARMLABEL-
STYLE=INTERLACED option in the PROC GLMSELECT statement.

MISSING
allows missing value (’.’ for a numeric variable and blanks for a character variables) as a valid value
for the CLASS variable.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of classification variables. This ordering determines which
parameters in the model correspond to each level in the data, so the ORDER= option might be useful
when you use the CONTRAST or ESTIMATE statement. If ORDER=FORMATTED for numeric
variables for which you have supplied no explicit format, the levels are ordered by their internal
values. Note that this represents a change from previous releases for how class levels are ordered.
Before SAS 8, numeric class levels with no explicit format were ordered by their BEST12. formatted
values, and in order to revert to the previous ordering you can specify this format explicitly for the
affected classification variables. The change was implemented because the former default behavior for
ORDER=FORMATTED often resulted in levels not being ordered numerically and usually required
the user to intervene with an explicit format or ORDER=INTERNAL to get the more natural ordering.
The following table shows how PROC GLMSELECT interprets values of the ORDER= option.

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set

FORMATTED External formatted value, except for numeric
variables with no explicit format, which are
sorted by their unformatted (internal) value

FREQ Descending frequency count; levels with the
most observations come first in the order

INTERNAL Unformatted value
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By default, ORDER=FORMATTED. For FORMATTED and INTERNAL, the sort order is machine
dependent.

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

PARAM=keyword
specifies the parameterization method for the classification variable or variables. Design matrix columns
are created from CLASS variables according to the following coding schemes. If the PARAM= option
is not specified with any individual CLASS variable, by default, PARAM=GLM. Otherwise, the default
is PARAM=EFFECT. If PARAM=ORTHPOLY or PARAM=POLY, and the CLASS levels are numeric,
then the ORDER= option in the CLASS statement is ignored, and the internal, unformatted values are
used. See the section “CLASS Variable Parameterization and the SPLIT Option” on page 3716 for
further details.

EFFECT specifies effect coding.

GLM specifies less-than-full-rank, reference-cell coding; this option can be used only
as a global option.

ORDINAL
THERMOMETER specifies the cumulative parameterization for an ordinal CLASS variable.
POLYNOMIAL
POLY specifies polynomial coding.
REFERENCE
REF specifies reference-cell coding.

ORTHEFFECT orthogonalizes PARAM=EFFECT.
ORTHORDINAL
ORTHOTHERM orthogonalizes PARAM=ORDINAL.

ORTHPOLY orthogonalizes PARAM=POLYNOMIAL.

ORTHREF orthogonalizes PARAM=REFERENCE.

The EFFECT, POLYNOMIAL, REFERENCE, and ORDINAL schemes and their orthogonal parame-
terizations are full rank. The REF= option in the CLASS statement determines the reference level for
the EFFECT and REFERENCE schemes and their orthogonal parameterizations.

REF=’level’ | keyword
specifies the reference level for PARAM=EFFECT, PARAM=REFERENCE, and their orthogonal-
izations. For an individual (but not a global) variable REF= option, you can specify the level of the
variable to use as the reference level. For a global or individual variable REF= option, you can use one
of the following keywords. The default is REF=LAST.

FIRST designates the first-ordered level as reference.

LAST designates the last-ordered level as reference.
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SPLIT
splits the columns of the design matrix that correspond to any effect that contains a split classification
variable so that they can enter or leave a model independently of the other design columns for that
effect. For example, suppose a variable named temp has three levels with values 'hot', 'warm',
and 'cold', and a variable named sex has two levels with values 'M' and 'F' are used in a PROC
GLMSELECT job as follows:

proc glmselect;
class temp sex/split;
model depVar = sex sex*temp;

run;

The two effects named in the MODEL statement are split into eight independent effects. The ef-
fect 'sex' is split into two effects labeled 'sex_M' and 'sex_F'. The effect 'sex*temp' is
split into six effects labeled 'sex_M*temp_hot', 'sex_F*temp_hot', 'sex_M*temp_warm',
'sex_F*temp_warm', 'sex_M*temp_cold', and 'sex_F*temp_cold'. Thus the previous
PROC GLMSELECT step is equivalent to the following step:

proc glmselect;
model depVar = sex_M sex_F sex_M*temp_hot sex_F*temp_hot

sex_M*temp_warm sex_F*temp_warm
sex_M*temp_cold sex_F*temp_cold;

run;

The split option can be used on individual classification variables. For example, consider the following
PROC GLMSELECT step:

proc glmselect;
class temp(split) sex;
model depVar = sex sex*temp;

run;

In this case the effect 'sex' is not split and the effect 'sex*temp' is split into three effects labeled
'sex*temp_hot', 'sex*temp_warm', and 'sex*temp_cold'. Furthermore each of these
three split effects now has two parameters that correspond to the two levels of 'sex', and the PROC
GLMSELECT step is equivalent to the following:

proc glmselect;
class sex;
model depVar = sex sex*temp_hot sex*temp_warm sex*temp_cold;

run;
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CODE Statement
CODE < options > ;

The CODE statement writes SAS DATA step code for computing predicted values of the fitted model either
to a file or to a catalog entry. This code can then be included in a DATA step to score new data.

Table 48.3 summarizes the options available in the CODE statement.

Table 48.3 CODE Statement Options

Option Description

CATALOG= Names the catalog entry where the generated code is saved
DUMMIES Retains the dummy variables in the data set
ERROR Computes the error function
FILE= Names the file where the generated code is saved
FORMAT= Specifies the numeric format for the regression coefficients
GROUP= Specifies the group identifier for array names and statement labels
IMPUTE Imputes predicted values for observations with missing or invalid

covariates
LINESIZE= Specifies the line size of the generated code
LOOKUP= Specifies the algorithm for looking up CLASS levels
RESIDUAL Computes residuals

For details about the syntax of the CODE statement, see the section “CODE Statement” on page 395 in
Chapter 19, “Shared Concepts and Topics.”

EFFECT Statement
EFFECT name=effect-type (variables < / options >) ;

The EFFECT statement enables you to construct special collections of columns for design matrices. These
collections are referred to as constructed effects to distinguish them from the usual model effects that are
formed from continuous or classification variables, as discussed in the section “GLM Parameterization of
Classification Variables and Effects” on page 387 in Chapter 19, “Shared Concepts and Topics.”

You can specify the following effect-types:

COLLECTION is a collection effect that defines one or more variables as a single effect with
multiple degrees of freedom. The variables in a collection are considered as
a unit for estimation and inference.

LAG is a classification effect in which the level that is used for a given period
corresponds to the level in the preceding period.

MULTIMEMBER | MM is a multimember classification effect whose levels are determined by one or
more variables that appear in a CLASS statement.
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POLYNOMIAL | POLY is a multivariate polynomial effect in the specified numeric variables.

SPLINE is a regression spline effect whose columns are univariate spline expansions
of one or more variables. A spline expansion replaces the original variable
with an expanded or larger set of new variables.

Table 48.4 summarizes the options available in the EFFECT statement.

Table 48.4 EFFECT Statement Options

Option Description

Collection Effects Options
DETAILS Displays the constituents of the collection effect

Lag Effects Options
DESIGNROLE= Names a variable that controls to which lag design an observation

is assigned

DETAILS Displays the lag design of the lag effect

NLAG= Specifies the number of periods in the lag

PERIOD= Names the variable that defines the period

WITHIN= Names the variable or variables that define the group within which
each period is defined

Multimember Effects Options
NOEFFECT Specifies that observations with all missing levels for the multi-

member variables should have zero values in the corresponding
design matrix columns

WEIGHT= Specifies the weight variable for the contributions of each of the
classification effects

Polynomial Effects Options
DEGREE= Specifies the degree of the polynomial
MDEGREE= Specifies the maximum degree of any variable in a term of the

polynomial
STANDARDIZE= Specifies centering and scaling suboptions for the variables that

define the polynomial

Spline Effects Options
BASIS= Specifies the type of basis (B-spline basis or truncated power func-

tion basis) for the spline effect
DEGREE= Specifies the degree of the spline effect
KNOTMETHOD= Specifies how to construct the knots for the spline effect

For more information about the syntax of these effect-types and how columns of constructed effects are
computed, see the section “EFFECT Statement” on page 397 in Chapter 19, “Shared Concepts and Topics.”
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FREQ Statement
FREQ variable ;

The variable that is specified in the FREQ statement identifies a variable in the input data set that contains the
frequency of occurrence of each observation. PROC GLMSELECT treats each observation as if it appears n
times, where n is the value of the FREQ variable for the observation. If it is not an integer, the frequency
value is truncated to an integer. If it is less than 1 or missing, the observation is not used.

MODEL Statement
MODEL dependent = < effects > / < options > ;

The MODEL statement names the dependent variable and the explanatory effects, including covariates,
main effects, constructed effects, interactions, and nested effects; for more information, see the section
“Specification of Effects” on page 3453 in Chapter 45, “The GLM Procedure.” If you omit the explanatory
effects, the procedure fits an intercept-only model.

After the keyword MODEL, the dependent (response) variable is specified, followed by an equal sign. The
explanatory effects follow the equal sign.

Table 48.5 summarizes the options available in the MODEL statement.

Table 48.5 MODEL Statement Options

Option Description

CVDETAILS= Requests details when cross validation is used
CVMETHOD= Specifies how subsets for cross validation are formed
DETAILS= Specifies details to be displayed
FUZZ= Specifies the tolerance range for criterion comparisons
HIERARCHY= Specifies the hierarchy of effects to impose
NOINT Specifies models without an explicit intercept
ORDERSELECT Requests that parameter estimates be displayed in the order in

which the parameters first entered the model
SELECTION= Specifies the model selection method
SHOWPVALUES Requests p-values in “ANOVA” and “Parameter Estimates” ta-

bles
STATS= Specifies additional statistics to be displayed
STB Adds standardized coefficients to “Parameter Estimates” tables

You can specify the following options in the MODEL statement after a slash (/).

CVDETAILS=ALL | COEFFS | CVPRESS
specifies the details that are produced when cross validation is requested as the CHOOSE=, SELECT=,
or STOP= criterion in the MODEL statement. If n-fold cross validation is being used, then the training
data are subdivided into n parts, and at each step of the selection process, models are obtained on
each of the n subsets of the data obtained by omitting one of these parts. CVDETAILS=COEFFS
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requests that the parameter estimates obtained for each of these n subsets be included in the parameter
estimates table. CVDETAILS=CVPRESS requests a table containing the predicted residual sum of
squares of each of these models scored on the omitted subset. CVDETAILS=ALL requests both
CVDETAILS=COEFFS and CVDETAILS=CVPRESS. If DETAILS=STEPS or DETAILS=ALL has
been specified in the MODEL statement, then the requested CVDETAILS are produced for every step
of the selection process.

CVMETHOD=BLOCK< (n) > | RANDOM< (n) > | SPLIT< (n) > | INDEX (variable)
specifies how the training data are subdivided into n parts when you request n-fold cross validation
by using any of the CHOOSE=CV, SELECT=CV, and STOP=CV suboptions of the SELECTION=
option in the MODEL statement.

• BLOCK requests that parts be formed of n blocks of consecutive training observations.

• SPLIT requests that the ith part consist of training observations i; i C n; i C 2n; : : :.

• RANDOM assigns each training observation randomly to one of the n parts.

• INDEX(variable) assigns observations to parts based on the formatted value of the named variable.
This input data set variable is treated as a classification variable and the number of parts n is
the number of distinct levels of this variable. By optionally naming this variable in a CLASS
statement you can use the CLASS statement options ORDER= and MISSING to control how the
levelization of this variable is done.

n defaults to 5 with CVMETHOD=BLOCK, CVMETHOD=SPLIT, or CVMETHOD=RANDOM.
If you do not specify the CVMETHOD= option, then the CVMETHOD defaults to
CVMETHOD=RANDOM(5).

DETAILS=level | STEPS < (step options) >
specifies the level of detail produced, where level can be ALL, STEPS, or SUMMARY. The default if
the DETAILS= option is omitted is DETAILS=SUMMARY. The DETAILS=ALL option produces the
following:

• entry and removal statistics for each variable selected in the model building process

• ANOVA, fit statistics, and parameter estimates

• entry and removal statistics for the top 10 candidates for inclusion or exclusion at each step

• a selection summary table

The DETAILS=SUMMARY option produces only the selection summary table.

The option DETAILS=STEPS < (step options) > provides the step information and the selection
summary table. The following options can be specified within parentheses after the DETAILS=STEPS
option:

ALL
requests ANOVA, fit statistics, parameter estimates, and entry or removal statistics for the top 10
candidates for inclusion or exclusion at each selection step.

ANOVA
requests ANOVA at each selection step.



MODEL Statement F 3687

FITSTATISTICS | FITSTATS | FIT
requests fit statistics at each selection step. The default set of statistics includes all the statistics
named in the CHOOSE=, SELECT=, and STOP= suboptions specified in the MODEL statement
SELECTION= option, but you can request additional statistics by specifying the STATS= option
in the MODEL statement.

PARAMETERESTIMATES | PARMEST
requests parameter estimates at each selection step.

CANDIDATES < (SHOW= ALL | n) >
requests entry or removal statistics for the best n candidate effects for inclusion or exclusion at
each step. If you specify SHOW=ALL, then all candidates are shown. If SHOW= is not specified.
then the best 10 candidates are shown. The entry or removal statistic is the statistic named in the
SELECT= option that is specified in the SELECTION= option in the MODEL statement.

FUZZ=value
specifies the tolerance range for criterion comparisons. Criterion values that differ by less than the
tolerance are regarded as equal. If you specify FUZZ=0, then the comparisons are based on simple
equality. The default is 10�12.

HIERARCHY=NONE | SINGLE | SINGLECLASS

HIER=NONE | SINGLE | SINGLECLASS
specifies whether and how the model hierarchy requirement is applied. This option also controls
whether a single effect or multiple effects are allowed to enter or leave the model in one step. You can
specify that only classification effects, or both classification and continuous effects, be subject to the hi-
erarchy requirement. The HIERARCHY= option is ignored unless you also specify one of the following
options: SELECTION=FORWARD, SELECTION=BACKWARD, or SELECTION=STEPWISE.

Model hierarchy refers to the requirement that for any term to be in the model, all model effects
contained in the term must be present in the model. For example, in order for the interaction A*B to
enter the model, the main effects A and B must be in the model. Likewise, neither effect A nor effect B
can leave the model while the interaction A*B is in the model.

You can specify the following values:

NONE
specifies that model hierarchy not be maintained. Any single effect can enter or leave the model
at any given step of the selection process.

SINGLE
specifies that only one effect enter or leave the model at one time, subject to the model hierarchy
requirement. For example, suppose that the model contains the main effects A and B and the
interaction A*B. In the first step of the selection process, either A or B can enter the model. In
the second step, the other main effect can enter the model. The interaction effect can enter the
model only when both main effects have already entered. Also, before A or B can be removed
from the model, the A*B interaction must first be removed. All effects (CLASS and interval) are
subject to the hierarchy requirement.
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SINGLECLASS
is the same as HIERARCHY=SINGLE except that only CLASS effects are subject to the hierarchy
requirement.

By default, HIERARCHY=NONE.

NOINT
suppresses the intercept term that is otherwise included in the model.

ORDERSELECT
specifies that for the selected model, effects be displayed in the order in which they first entered the
model. If you do not specify the ORDERSELECT option, then effects in the selected model are
displayed in the order in which they appeared in the MODEL statement.

SELECTION=method < (method-options) >
specifies the method used to select the model, optionally followed by parentheses enclosing options
applicable to the specified method. The default if the SELECTION= option is omitted is SELEC-
TION=STEPWISE.

You can specify the following methods, which are explained in detail in the section “Model-Selection
Methods” on page 3704:

NONE specifies no model selection.

FORWARD specifies forward selection. This method starts with no effects in the model and
adds effects.

BACKWARD specifies backward elimination. This method starts with all effects in the model and
deletes effects.

STEPWISE specifies stepwise regression. This is similar to the forward selection method except
that effects already in the model do not necessarily stay there.

LAR specifies least angle regression. This method, like forward selection, starts with
no effects in the model and adds effects. The parameter estimates at any step are
“shrunk” when compared to the corresponding least squares estimates. If the model
contains classification variables, then these classification variables are split. For
more information, see the SPLIT option in the CLASS statement.

LASSO specifies the LASSO method, which adds and deletes parameters based on a version
of ordinary least squares where the sum of the absolute regression coefficients is
constrained. If the model contains classification variables, then these classification
variables are split. For more information, see the SPLIT option in the CLASS
statement.

ELASTICNET specifies the elastic net method, an extension of LASSO that estimates parameters
based on a version of ordinary least squares in which both the sum of the abso-
lute regression coefficients and the sum of the squared regression coefficients are
constrained. If the model contains classification variables, then these classification
variables are split. For more information, see the SPLIT option in the CLASS
statement.
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Table 48.6 lists the applicable method-options for each of these methods.

Table 48.6 Applicable SELECTION= Options by Method

Option FORWARD BACKWARD STEPWISE LAR LASSO ELASTICNET

STOP= x x x x x x
CHOOSE= x x x x x x
STEPS= x x x x x x
MAXSTEP= x x x x x x
SELECT= x x x
INCLUDE= x x x
SLENTRY= x x x x x
SLSTAY= x x x x
DROP= x
ADAPTIVE x
LSCOEFFS x x
L1= x x
L1CHOICE= x x
L2= x
L2STEPS= x
L2LOW= x
L2HIGH= x
L2SEARCH= x
ENSCALE x
SCREEN= x x

The syntax of the method-options follows. Note that, as described in Table 48.6, not all selection
method-options are available for every SELECTION= method.

ADAPTIVE < (< GAMMA=nonnegative number > < INEST=SAS-data-set > ) >
requests that adaptive weights be applied to each of the coefficients in the LASSO method. You use
the optional INEST= option to name the SAS data set that contains estimates that are used to form
the adaptive weights for all the parameters in the model. If you do not specify an INEST= data set,
then ordinary least squares estimates of the parameters in the model are used in forming the adaptive
weights. You use the GAMMA= option to specify the power transformation that is applied to the
parameters in forming the adaptive weights. By default, GAMMA=1.

CHOOSE=criterion
specifies the criterion for choosing the model. The specified criterion is evaluated at each step of the
selection process, and the model that yields the best value of the criterion is chosen. If the optimal
value of the criterion occurs for models at more than one step, then the model that has the smallest
number of parameters is chosen. If you do not specify the CHOOSE= option, then the model at the
final step in the selection process is selected.

The criteria that you can specify in the CHOOSE= option are shown in Table 48.7. For more information
about these criteria, see the section “Criteria Used in Model Selection Methods” on page 3714.
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Table 48.7 Criteria for the CHOOSE= Option

Criterion Criterion

ADJRSQ Adjusted R-square statistic
AIC Akaike’s information criterion
AICC Corrected Akaike’s information criterion
BIC Sawa Bayesian information criterion
CP Mallows’ C(p) statistic
CV Predicted residual sum of square with k-fold cross validation
CVEX Predicted residual sum of square with k-fold external cross validation
PRESS Predicted residual sum of squares
SBC Schwarz Bayesian information criterion
VALIDATE Average square error for the validation data

For ADJRSQ, the chosen value is the largest one; for all other criteria, the smallest value is chosen.
You can use the CHOOSE=VALIDATE option only if you have specified a VALDATA= data set in
the PROC GLMSELECT statement or if you have reserved part of the input data for validation by
using either a PARTITION statement or a _ROLE_ variable in the input data. The PRESS criterion is
not available for SELECTION=ELASTICNET. The CHOOSE=PRESS option cannot be used with
SELECTION=LAR or SELECTION=LASSO unless the LSCOEFFS suboption is also specified.

DROP=BEFOREADD | COMPETITIVE
specifies when effects are eligible to be dropped in the STEPWISE method. You can specify the
following values:

BEFOREADD requests that currently in the model be examined to see if any meet the requirements
to be removed from the model. If so, the effect that gives the best value of the
removal criterion is dropped from the model and the stepwise method proceeds to
the next step. Only when no effect currently in the model meets the requirement to
be removed from the model are any effects added to the model.

COMPETITIVE requests that the SELECT= criterion be evaluated for all models in which an effect
currently in the model is dropped or an effect not yet in the model is added. The ef-
fect whose removal or addition to the model yields the maximum improvement to the
SELECT= criterion is dropped or added. You can specify DROP=COMPETITIVE
only if the SELECT= criterion is not SL.

By default, DROP=BEFOREADD. If SELECT=SL, PROC GLMSELECT uses the traditional stepwise
method as implemented in PROC REG.

ENSCALE
requests that the solution to SELECTION=ELASTICNET be scaled to offset bias because of the
double shrinkage inherent in the elastic net method (Zou and Hastie 2005). This option applies only
when SELECTION=ELASTICNET. The default is not to rescale the solution: this is the so-called
naive elastic net.
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INCLUDE=n
forces the first n effects listed in the MODEL statement to be included in all models. The selection meth-
ods are performed on the other effects in the MODEL statement. The INCLUDE= option is available
only when SELECTION=FORWARD, SELECTION=STEPWISE, and SELECTION=BACKWARD.

L1=value
specifies the LASSO regularization or constraint parameter that is used when SELECTION=LASSO
or SELECTION=ELASTICNET. This option is available only when you specify the STOP=L1 option
with SELECTION=LASSO or SELECTION=ELASTICNET.

L1CHOICE=NORM | RATIO | VALUE
specifies both the criterion used in the L1=value option and the criterion used in aggregating the results
of k-fold external cross validation for computing the CVEXPRESS statistic. This option is available
only when you specify SELECTION=LASSO or SELECTION=ELASTICNET. You can specify the
following values:

NORM indicates that the value specified in the L1=value option corresponds to the sum
of the absolute values of the coefficients (the so-called L1 norm), and the k-fold
external cross validation aggregation is based on the L1 norms.

RATIO indicates that the value specified in the L1=value option corresponds to the ratio
obtained by scaling the value of the LASSO regularization parameter to lie in the
interval [0,1], and the k-fold external cross validation aggregation is based on the
scaled ratios.

VALUE indicates that the value specified in the L1=value option corresponds to the ac-
tual value of the LASSO regularization parameter, and the k-fold external cross
validation aggregation is based on the actual LASSO regularization parameters.

By default, L1CHOICE=RATIO.

L2=value
specifies the ridge regularization parameter that is used when SELECTION=ELASTICNET. The
L2= option is available only when SELECTION=ELASTICNET. If you specify the L2= option, then
the value that you specify is used in defining the elastic net method, and the L2HIGH=, L2LOW=,
L2SEARCH=, and L2STEPS= options are ignored. If you do not specify the L2 = option with SELEC-
TION=ELASTICNET, then PROC GLMSELECT searches for the suitable value of L2 according to
the L2HIGH=, L2LOW=, L2SEARCH=, and L2STEPS= options.

L2HIGH=value
specifies the highest value used in the search of the ridge regression parameter L2 when SELEC-
TION=ELASTICNET. If you specify the L2= option, then the L2HIGH= option is ignored. By default,
L2HIGH=1.

L2LOW=value
specifies the lowest value used in the search of the ridge regression parameter L2 when SELEC-
TION=ELASTICNET. If you specify the L2= option, then the L2LOW= option is ignored. By default,
L2LOW=0.
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L2SEARCH=GOLDEN | GRID
specifies the approach for the search of the ridge regression parameter L2 for the SELEC-
TION=ELASTICNET option. You can specify the following values:

GOLDEN requests a golden section search of L2 in the range Œlow; high�, where low and high
are specified by the L2LOW= and L2HIGH= options, respectively.

GRID requests a log scale grid search of L2 in the range Œlow; high�, where low and high
are specified by the L2LOW= and L2HIGH= options, respectively. If L2LOW=0,
then the log scale grid search for L2 is in the range Œ10�8; high� plus 0.

If you specify the L2= option with SELECTION=ELASTICNET, then the L2SEARCH= option is
ignored. By default, L2SEARCH=GRID.

L2STEPS=n
specifies the number of steps in the search of the ridge regression parameter L2 when SELEC-
TION=ELASTICNET. If you specify the L2 = option, then the L2STEPS= option is ignored. By
default, L2STEPS=50.

LSCOEFFS
requests a hybrid version of the LAR or LASSO method, in which the sequence of models is determined
by the LAR or LASSO method but the coefficients of the parameters for the model at any step are
determined by using ordinary least squares.

MAXSTEP=n
specifies the maximum number of selection steps that are performed. The default value of n is the
number of effects in the model statement for the forward, backward, and LAR methods and is two
times the number of effects for the stepwise, LASSO, and elastic net methods.

SELECT=criterion
specifies the criterion that PROC GLMSELECT uses to determine the order in which effects enter
or leave at each step of the specified selection method. The SELECT= option is not valid with the
LAR, LASSO, and elastic net methods. The criteria that you can specify with the SELECT= option
are ADJRSQ, AIC, AICC, BIC, CP, CV, PRESS, RSQUARE, SBC, SL, and VALIDATE. For more
information about these criteria, see the section “Criteria Used in Model Selection Methods” on
page 3714. The default value of the SELECT= criterion is SELECT=SBC. You can use SELECT=SL
to request the traditional approach, in which effects enter and leave the model based on the significance
level. For other SELECT= criteria, the effect that is selected to enter or leave at a step of the
selection process is the effect whose addition to or removal from the current model gives the maximum
improvement in the specified criterion.

SCREEN=NONE | SASVI | SIS< (sis-options) >
specifies which screening method to apply. This option is ignored unless you also specify SELEC-
TION=LASSO or SELECTION=ELASTICNET. In addition, the SCREEN= option is ignored when
the SSCP matrix is computed in full. For more information about the SSCP matrix, see “Building the
SSCP Matrix” on page 3722.

You can specify the followings values:
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NONE
specifies no screening.

SASVI
uses the SASVI safe screening technique of Liu et al. (2014). The resulting solution is iden-
tical to the one that results from SCREEN=NONE, but it can often be several times faster to
obtain. For more information about the SASVI technique, see the section “Safe Screening via
SCREEN=SASVI” on page 3731.

SIS< (sis-options) >
uses the sure independence screening (SIS) technique of Fan and Lv (2008). Because SIS is a
heuristic screening rule, the resulting solution is not necessarily identical to the one that results
from SCREEN=NONE. However, it can be much faster to obtain when the number of potential
predictors is very large.

You can specify the following sis-options:

KEEPNUM=n
keeps n effects that have the largest screening statistic values. The kept effects are then
processed by the method that is specified in the SELECTION= option for model selection.

KEEPRATIO=p
specifies a value in the range 0 to 1 for p, and keeps (p*100)% effects that have the largest
screening statistic values. The kept effects are then processed by the method that is specified
in the SELECTION= option for model selection.

If you do not specify any sis-options, KEEPNUM=100 by default. If you specify both KEEP-
NUM=n and KEEPRATIO=value, KEEPRATIO=value is used.

By default, SCREEN=NONE, so that no screening is done. In this case, the LASSO or elastic net
method is performed on all the potential predictors.

SLENTRY=value

SLE=value
specifies the significance level for entry, which is used when the STOP=SL or SELECT=SL option
is specified. The default is 0.50 when SELECTION=BACKWARD, SELECTION=LAR, SELEC-
TION=LASSO or SELECTION=ELASTICNET. The default is 0.15 when SELECTION=STEPWISE.

SLSTAY=value

SLS=value
specifies the significance level for staying in the model, which is used when the STOP=SL or SE-
LECT=SL option is specified. The default is 0.10 when SELECTION=BACKWARD, SELEC-
TION=LAR, SELECTION=LASSO or SELECTION=ELASTICNET. The default is 0.15 when SE-
LECTION=STEPWISE.

STEPS=n
specifies the number of selection steps to be done. If the STEPS= option is specified, the STOP= and
MAXSTEP= options are ignored.
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STOP=n

STOP=criterion
specifies when PROC GLMSELECT is to stop the selection process. If the STEPS= option is specified,
then the STOP= option is ignored. If the STOP=option does not cause the selection process to stop
before the maximum number of steps for the selection method, then the selection process terminates at
the maximum number of steps.

If you do not specify the STOP= option but do specify the SELECT= option, then the criterion named
in the SELECT=option is also used as the STOP= criterion. If you do not specify either the STOP= or
SELECT= option, then by default STOP=SBC.

If you specify STOP=n, then PROC GLMSELECT stops selection at the first step for which the
selected model has n effects.

The nonnumeric arguments that you can specify in the STOP= option are shown in Table 48.8. For
more information about these criteria, see the section “Criteria Used in Model Selection Methods” on
page 3714.

Table 48.8 Nonnumeric Criteria for the STOP= Option

Option Criteria

NONE
ADJRSQ Adjusted R-square statistic
AIC Akaike’s information criterion
AICC Corrected Akaike’s information criterion
BIC Sawa Bayesian information criterion
CP Mallows’ C(p) statistic
CV Predicted residual sum of square with k-fold cross validation
L1 The LASSO regularization or constraint parameter
PRESS Predicted residual sum of squares
SBC Schwarz Bayesian information criterion
SL Significance level
VALIDATE Average square error for the validation data

When you use the SL criterion, selection stops at the step where the significance level for entry of
all the effects not yet in the model is greater than the SLE= value for addition steps in the forward
and stepwise methods and where the significance level for removal of any effect in the current model
is smaller than the SLS= value in the backward and stepwise methods. When you use the ADJRSQ
criterion, selection stops at the step where the next step would yield a model that has a smaller value
of the adjusted R-square statistic; for all other criteria, selection stops at the step where the next step
would yield a model that has a larger value of the criteria. You can use the VALIDATE option only
if you have specified a VALDATA= data set in the PROC GLMSELECT statement or if you have
reserved part of the input data for validation by using either a PARTITION statement or a _ROLE_
variable in the input data.

The L1 criterion is available only when SELECTION=LASSO or SELECTION=ELASTICNET.
When you use the L1 criterion, selection stops at the step where the LASSO regularization parameter
is equal to the value specified by the L1=value option. The PRESS criterion is not available for
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SELECTION=ELASTICNET. The STOP=PRESS option cannot be used with SELECTION=LAR or
SELECTION=LASSO unless the LSCOEFFS suboption is also specified.

STAT|STATS=name

STATS=(names)
specifies which model fit statistics are displayed in the fit summary table and fit statistics tables. If you
omit the STATS= option, the default set of statistics that are displayed in these tables includes all the
criteria specified in any of the CHOOSE=, SELECT=, and STOP= options specified in the MODEL
statement SELECTION= option.

You can specify the following statistics:

ADJRSQ specifies the adjusted R-square statistic.

AIC specifies Akaike’s information criterion.

AICC specifies corrected Akaike’s information criterion.

ASE specifies the average square errors for the training, test, and validation data. The
ASE statistics for the test and validation data are reported only if you specify
TESTDATA= or VALDATA= in the PROC GLMSELECT statement or if you have
reserved part of the input data for testing or validation by using either a PARTITION
statement or a _ROLE_ variable in the input data.

BIC specifies the Sawa Bayesian information criterion.

CP specifies the Mallows’ C(p) statistic.

FVALUE specifies the F statistic for entering or departing effects.

PRESS specifies the predicted residual sum of squares statistic.

RSQUARE specifies the R-square statistic.

SBC specifies the Schwarz Bayesian information criterion.

SL specifies the significance level of the F statistic for entering or departing effects.

The statistics ADJRSQ, AIC, AICC, FVALUE, RSQUARE, SBC, and SL can be computed with little
computation cost. However, computing BIC, CP, CVPRESS, PRESS, and ASE for test and validation
data when these are not used in any of the CHOOSE=, SELECT=, and STOP= options specified in the
MODEL statement SELECTION= option can hurt performance.

SHOWPVALUES

SHOWPVALS
displays p-values in the “ANOVA” and “Parameter Estimates” tables. These p-values are generally
liberal because they are not adjusted for the fact that the terms in the model have been selected.

STB
produces standardized regression coefficients. A standardized regression coefficient is computed by
dividing a parameter estimate by the ratio of the sample standard deviation of the dependent variable
to the sample standard deviation of the regressor.
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MODELAVERAGE Statement
MODELAVERAGE < options > ;

The MODELAVERAGE statement requests that model selection be repeated on resampled subsets of the
input data. An average model is produced by averaging the parameter estimates of the selected models that
are obtained for each resampled subset of the input data.

Table 48.9 summarizes the options available in the MODELAVERAGE statement.

Table 48.9 MODELAVERAGE Statement Options

Option Description

ALPHA= Specifies lower and upper quantiles of the sample parameter
DETAILS Displays model selection details
NSAMPLES= Specifies the number of samples used for the refit averaging
REFIT Performs a second round of model averaging
SAMPLING= Specifies how to generate the samples taken from the training data
SUBSET Uses only a subset of the selected models in forming the average model
TABLES Controls the displayed tables

The following options are available:

ALPHA=˛
controls which lower and upper quantiles of the sample parameter estimates are displayed. The
ALPHA= option also controls which quantiles of the predicted values are added to the output data set
when the LOWER= and UPPER= options are specified in the OUTPUT statement. The lower and
upper quantiles used are ˛=2 and 1 � ˛=2, respectively. The value specified must lie in the interval
Œ0; 1�. The default value is ALPHA=0.5.

DETAILS
requests that model selection details be displayed for each sample of the data. The level of detail shown
is controlled by the DETAILS= option in the MODEL statement.

NSAMPLES=n
specifies the number of samples to be used. The default value is NSAMPLES=100.

REFIT < (refit-options) >
requests that a second round of model averaging, referred to as the refit averaging, be performed.
Usually, the initial round of model averaging produces a model that contains a large number of effects.
You can use the refit option to obtain a more parsimonious model. For each data sample in the refit, a
least squares model is fit with no effect selection. The effects that are used in the refit depend on the
results of the initial round of model averaging. If you do not specify any refit-options, then effects that
are selected in at least twenty percent of the samples in the initial round of model averaging are used in
the refit model average. The following refit-options are available:
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BEST=n
specifies that the n most frequently selected effects in the initial round of model averaging be
used in the refit averaging.

MINPCT=percent
specifies that the effects that are selected at least the specified percentage of times in the initial
round of model averaging be used in the refit averaging.

NSAMPLES=n
specifies the number of samples to be used for the refit averaging. The default value is the number
of samples used in the initial round of model averaging.

SAMPLING=SRS | URS < (sampling-options) >
specifies how the samples of the usable observations in the training data are generated.
SAMPLING=SRS specifies simple random sampling in which samples are generated by randomly
drawing without replacement. SAMPLING=URS specifies unrestricted random sampling in which
samples are generated by randomly drawing with replacement. Model averaging with samples drawn
without replacement corresponds to the bootstrap methodology. The default is SAMPLING=URS. If
you specify a frequency variable by using a FREQ statement, then the ith observation is sampled fi
times, where fi is the frequency of the ith observation.

You can specify one of the following sampling-options:

PERCENT=percent
specifies the percentage of the training data that is used in each sample. The default value is 75%
for SAMPLING=SRS and 100% for SAMPLING=URS.

SIZE=n
specifies the sum of frequencies in each sample.

SUBSET(subset-options)
specifies that only a subset of the selected models be used in forming the average model and producing
predicted values. The following subset-options are available:

BEST=n
specifies that only the best n models be used, where the model ranking criterion used is the
frequency score. See the section “Model Selection Frequencies and Frequency Scores” on
page 3724 for the definition of the frequency score. If multiple models with the same frequency
score correspond to the nth best model, then all these tied models are used in forming the average
model and producing predicted values.

MINMODELFREQ=freq
specifies that only models that are selected at least freq times be used in forming the average
model and producing predicted values.

TABLES < (ONLY) > < =table-request < (options) > >

TABLES < (ONLY) > < = (table-request < (options) > < ... table-request < (options) > >) >
controls the displayed output that is produced in the initial round of model averaging. By default, the
following tables are produced:
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EFFECTSELECTPCT displays the percentage of times that effects appear in the selected models.

MODELSELECTFREQ displays the frequency with which models are selected.

AVGPARMEST displays the mean, standard deviation, and quantiles of the parameter estimates of
the parameters that appear in the selected models.

When you specify only one table-request , you can omit the outer parentheses. Here are some examples:

tables=none
tables=(all parmest(minpct=10))
tables(only)=effectselectpct(order=model minpct=15)

The following table-request options are available:

ALL
requests that all model averaging output tables be produced. You can specify other options with
ALL; for example, to request all tables and to require that effects are displayed in decreasing
order of selection frequency in the EffectSelectPct table, specify TABLES=(ALL EFFECTSE-
LECTPCT(ORDER=DESCENDING)).

EFFECTSELECTPCT < (effectSelectPct-options) >
specifies how the effects in the EffectSelectPct table are displayed. The following effectSelectPct-
options are available:

ALL
specifies that effects that appear in the selected model for any sample be displayed.

MINPCT=percent
specifies that the effects displayed must appear in the selected model for at least the specified
percentage of the samples. By default, this table includes effects that appear in at least
twenty percent of the selected models. The MINPCT= option is ignored if you also specify
the ALL option as a effectSelectPct-option.

ORDER=ASCENDING | DESCENDING | MODEL
specifies the order in which the effects are displayed. ORDER=MODEL specifies that
effects be displayed in the order in which they appear in the MODEL statement. ORDER=
ASCENDING | DESCENDING specifies that the effects be displayed in ascending or
descending order of their selection frequency.

MODELSELECTFREQ < (modelSelectFreq-options) >
specifies how the models in the ModelSelectFreq table are displayed. The following
modelSelectFreq-options are available:

ALL
specifies that all selected models be displayed in the ModelSelectFreq table.

BEST=n
specifies that only the best n models be displayed, where the model ranking criterion used is
the frequency score. See the section “Model Selection Frequencies and Frequency Scores”
on page 3724 for the definition of the frequency score. The default value is BEST=20. The
BEST= option is ignored if you also specify the ALL option as a modelSelectFreq-option.
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ONLY
suppresses the default output. If you specify the ONLY option within parentheses after the
TABLES option, then only the tables specifically requested are produced.

PARMEST < (parmEst-options) >
specifies how the parameters in the AvgParmEst table are displayed. The following parmEst-
options are available:

ALL
specifies that parameters that are nonzero in the selected model for any sample be displayed.

MINPCT=percent
specifies that the parameters displayed must have nonzero estimates in the selected model
for at least the specified percentage of the samples. By default, this table includes parameters
that appear in at least twenty percent of the selected models. The MINPCT= option is
ignored if you also specify the ALL option as a parmEst option.

NONZEROPARMS
specifies that for each parameter, the sample that is used to compute the estimate mean,
standard deviation, and quantiles consist of just the nonzero values of that parameter in the
selected models. If you do not specify the NONZEROPARMS option, then parameters that
do not appear in a selected model are assigned the value zero in that model and these zero
values are retained when computing the estimate means, standard deviations, and quantiles.

ORDER=ASCENDING | DESCENDING | MODEL
specifies the order in which the effects are displayed. ORDER=MODEL specifies that
effects are displayed in the order in which they appear in the MODEL statement. OR-
DER=ASCENDING | DESCENDING specifies that the effects are displayed in ascending
or descending order of their selection frequency.

OUTPUT Statement
OUTPUT < OUT=SAS-data-set > < keyword< =name > > . . . < keyword< =name > > ;

The OUTPUT statement creates a new SAS data set that saves diagnostic measures calculated for the selected
model. If you do not specify a keyword , then the only diagnostic included is the predicted response.

All the variables in the original data set are included in the new data set, along with variables created in the
OUTPUT statement. These new variables contain the values of a variety of statistics and diagnostic measures
that are calculated for each observation in the data set. If you specify a BY statement, then a variable _BY_
that indexes the BY groups is included. For each observation, the value of _BY_ is the index of the BY group
to which this observation belongs. This variable is useful for matching BY groups with macro variables that
PROC GLMSELECT creates. See the section “Macro Variables Containing Selected Models” on page 3718
for details.

If you have requested n-fold cross validation by requesting CHOOSE=CV, SELECT=CV, or STOP=CV in
the MODEL statement, then a variable _CVINDEX_ is included in the output data set. For each observation
used for model training the value of _CVINDEX_ is i if that observation is omitted in forming the ith subset
of the training data. See the CVMETHOD= for additional details. The value of _CVINDEX_ is 0 for all
observations in the input data set that are not used for model training.
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If you have partitioned the input data with a PARTITION statement, then a character variable _ROLE_ is
included in the output data set. For each observation the value of _ROLE_ is as follows:

_ROLE_ Observation Role
TEST testing
TRAIN training
VALIDATE validation

If you want to create a SAS data set in a permanent library, you must specify a two-level name. For more
information about permanent libraries and SAS data sets, see SAS Language Reference: Concepts.

Details on the specifications in the OUTPUT statement follow.

keyword< =name >
specifies the statistics to include in the output data set and optionally names the new variables that
contain the statistics. Specify a keyword for each desired statistic (see the following list of keywords),
followed optionally by an equal sign, and a variable to contain the statistic.

If you specify keyword=name, the new variable that contains the requested statistic has the specified
name. If you omit the optional =name after a keyword , then the new variable name is formed by using
a prefix of one or more characters that identify the statistic. For residuals and predicted values, the
prefix is followed by an underscore (_), followed by the dependent variable name.

The keywords allowed and the statistics they represent are as follows:

PREDICTED | PRED | P predicted values. The prefix for the default name is p.

RESIDUAL | RESID | R residual, calculated as ACTUAL – PREDICTED. The prefix for the default
name is r.

When you also use the MODELAVERAGE statement, the following keywords and the statistics that
they represent are also available:

LOWER ˛=2 percentile of the sample predicted values. By default, ˛ D 0:5, which yields
the 25th percentile. You can change the value of ˛ by using the ALPHA= option in
the MODELAVERAGE statement. The default name is LOWER.

MEDIAN median of the sample predicted values. The default name is median.

SAMPLEFREQ | SF sample frequencies. For the ith sample, a column that contains the frequencies
used for that sample is added. The name of this column is formed by appending an
index i to the name that you specify. If you do not specify a name, then the default
prefix is sf.

SAMPLEPRED | SP sample predictions. For the ith sample, a column that contains the predicted
values produced by the model selected for that sample is added. The name of this
column is formed by appending an index i to the name that you specify. If you do
not specify a name, then the default prefix is sp.

STANDARDDEVIATION | STDDEV standard deviation of the sample predicted values. The default
name is stdDev.

UPPER 1 � ˛=2 percentile of the sample predicted values. By default, ˛ D 0:5, which
yields the 75th percentile. You can change the value of ˛ by using the ALPHA=
option in the MODELAVERAGE statement. The default name is UPPER.
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OUT=SAS data set
specifies the name of the new data set. By default, the procedure uses the DATAn convention to name
the new data set.

PARTITION Statement
The PARTITION statement specifies how observations in the input data set are logically partitioned into
disjoint subsets for model training, validation, and testing. Either you can designate a variable in the input
data set and a set of formatted values of that variable to determine the role of each observation, or you can
specify proportions to use for random assignment of observations for each role.

An alternative to using a PARTITION statement is to provide a variable named _ROLE_ in the input data set
to define roles of observations in the input data. If you specify a PARTITION statement then the _ROLE_
variable if present in the input data set is ignored. If you do not use a PARTITION statement and the input
data do not contain a variable named _ROLE_, then all observations in the input data set are assigned to
model training.

The following mutually exclusive options are available:

ROLEVAR | ROLE=variable (< TEST=’value’ > < TRAIN=’value’ > < VALIDATE=’value’ >)
names the variable in the input data set whose values are used to assign roles to each observation.
The formatted values of this variable that are used to assign observations roles are specified in the
TEST=, TRAIN=, and VALIDATE= suboptions. If you do not specify the TRAIN= suboption, then all
observations whose role is not determined by the TEST= or VALIDATE= suboptions are assigned to
training. If you specify a TESTDATA= data set in the PROC GLMSELECT statement, then you cannot
also specify the TEST= suboption in the PARTITION statement. If you specify a VALDATA= data set
in the PROC GLMSELECT statement, then you cannot also specify the VALIDATE= suboption in the
PARTITION statement.

FRACTION(< TEST=fraction > < VALIDATE=fraction >)
requests that specified proportions of the observations in the input data set be randomly assigned
training and validation roles. You specify the proportions for testing and validation by using the TEST=
and VALIDATE= suboptions. If you specify both the TEST= and the VALIDATE= suboptions, then
the sum of the specified fractions must be less than one and the remaining fraction of the observations
are assigned to the training role. If you specify a TESTDATA= data set in the PROC GLMSELECT
statement, then you cannot also specify the TEST= suboption in the PARTITION statement. If you
specify a VALDATA= data set in the PROC GLMSELECT statement, then you cannot also specify the
VALIDATE= suboption in the PARTITION statement.

PERFORMANCE Statement
PERFORMANCE < options > ;

The PERFORMANCE statement is used to change default options that affect the performance of PROC
GLMSELECT and to request tables that show the performance options in effect and timing details.
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The following options are available:

DETAILS
requests the PerfSettings table that shows the performance settings in effect and the Timing table that
provides a broad timing breakdown of the PROC GLMSELECT step.

BUILDSSCP=FULL | INCREMENTAL
specifies whether the SSCP matrix is built incrementally as the selection process progresses or whether
the SCCP matrix for the full model is built at the outset. Building the SSCP matrix incrementally can
significantly reduce the memory required and the time taken to perform model selection in cases where
the number of parameters in the selected model is much smaller than the number of parameters in
the full model, but it can hurt performance in other cases since it requires at least one pass through
the model training data at each step. If you use backward selection or no selection, or if the BIC or
CP statistics are required in the selection process, then the BUILDSSCP=INCREMENTAL option is
ignored. In other cases, BUILDSSCP=INCREMENTAL is used by default if the number of effects is
greater than 100. See the section “Building the SSCP Matrix” on page 3722 for further details.

SCORE Statement
SCORE < DATA=SAS-data-set > < OUT=SAS-data-set > < keyword< =name > > . . . < keyword< =name > >

;

The SCORE statement creates a new SAS data set containing predicted values and optionally residuals for
data in a new data set that you name. If you do not specify a DATA= data set, then the input data are scored.
If you have multiple data sets to predict, you can specify multiple SCORE statements. If you want to create
a SAS data set in a permanent library, you must specify a two-level name. For more information about
permanent libraries and SAS data sets, see SAS Language Reference: Concepts.

When a BY statement is used, the score data set must either contain all the BY variables sorted in the order
of the BY variables or contain none of the BY variables. If the score data set contains all of the BY variables,
then the model selected for a given BY group is used to score just the matching observations in the score data
set. If the score data set contains none of the BY variables, then the entire score data set is scored for each
BY group.

All observations in the score data set are retained in the output data set. However, only those observations
that contain nonmissing values for all the continuous regressors in the selected model and whose levels of
the classification variables appearing in effects of the selected model are represented in the corresponding
classification variables in the procedure’s input data set are scored. All the variables in the input data set are
included in the output data set, along with variables containing predicted values and optionally residuals.

Details on the specifications in the SCORE statement follow:

DATA=SAS data set
names the data set to be scored. If you omit this option, then the input data set named in the DATA=
option in the PROC GLMSELECT statement is scored.
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keyword< =name >
specifies the statistics to include in the output data set and optionally names the new variables that
contain the statistics. Specify a keyword for each desired statistic (see the following list of keywords),
followed optionally by an equal sign, and a variable to contain the statistic.

If you specify keyword=name, the new variable that contains the requested statistic has the specified
name. If you omit the optional =name after a keyword , then the new variable name is formed by using
a prefix of one or more characters that identify the statistic, followed by an underscore (_), followed by
the dependent variable name.

The keywords allowed and the statistics they represent are as follows:

PREDICTED | PRED | P predicted values. The prefix for the default name is p.

RESIDUAL | RESID | R residual, calculated as ACTUAL – PREDICTED. The prefix for the default
name is r.

OUT=SAS data set
gives the name of the new output data set. By default, the procedure uses the DATAn convention to
name the new data set.

STORE Statement
STORE < OUT= >item-store-name < / LABEL='label ' > ;

The STORE statement requests that the procedure save the context and results of the statistical analysis. The
resulting item store has a binary file format that cannot be modified. The contents of the item store can be
processed with the PLM procedure.

For details about the syntax of the STORE statement, see the section “STORE Statement” on page 508 in
Chapter 19, “Shared Concepts and Topics.”

WEIGHT Statement
WEIGHT variable ;

A WEIGHT statement names a variable in the input data set with values that are relative weights for a
weighted least squares fit. If the weight value is proportional to the reciprocal of the variance for each
observation, then the weighted estimates are the best linear unbiased estimates (BLUE).

Values of the weight variable must be nonnegative. If an observation’s weight is zero, the observation is
deleted from the analysis. If a weight is negative or missing, it is set to zero, and the observation is excluded
from the analysis. A more complete description of the WEIGHT statement can be found in Chapter 45, “The
GLM Procedure.”
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Details: GLMSELECT Procedure

Model-Selection Methods
The model selection methods implemented in PROC GLMSELECT are specified with the SELECTION=
option in the MODEL statement.

Full Model Fitted (NONE)

The complete model specified in the MODEL statement is used to fit the model and no effect selection is
done. You request this by specifying SELECTION=NONE in the MODEL statement.

Forward Selection (FORWARD)

The forward selection technique begins with just the intercept and then sequentially adds the effect that most
improves the fit. The process terminates when no significant improvement can be obtained by adding any
effect.

In the traditional implementation of forward selection, the statistic used to gauge improvement in fit is an F
statistic that reflects an effect’s contribution to the model if it is included. At each step, the effect that yields
the most significant F statistic is added. Note that because effects can contribute different degrees of freedom
to the model, it is necessary to compare the p-values corresponding to these F statistics.

More precisely, if the current model has p parameters excluding the intercept, and if you denote its residual
sum of squares by RSSp and you add an effect with k degrees of freedom and denote the residual sum of
squares of the resulting model by RSSpCk , then the F statistic for entry with k numerator degrees of freedom
and n � .p C k/ � 1 denominator degrees of freedom is given by

F D
.RSSp � RSSpCk/=k

RSSpCk=.n � .p C k/ � 1/

where n is number of observations used in the analysis.

The process stops when the significance level for adding any effect is greater than some specified entry
significance level. A well-known problem with this methodology is that these F statistics do not follow an F
distribution (Draper, Guttman, and Kanemasu 1971). Hence these p-values cannot reliably be interpreted as
probabilities. Various ways to approximate this distribution are described by Miller (2002). Another issue
when you use significance levels of entering effects as a stopping criterion arises because the entry significance
level is an a priori specification that does not depend on the data. Thus, the same entry significance level can
result in overfitting for some data and underfitting for other data.

One approach to address the critical problem of when to stop the selection process is to assess the quality
of the models produced by the forward selection method and choose the model from this sequence that
“best” balances goodness of fit against model complexity. PROC GLMSELECT supports several criteria that
you can use for this purpose. These criteria fall into two groups—information criteria and criteria based on
out-of-sample prediction performance.

You use the CHOOSE= option of forward selection to specify the criterion for selecting one model from the
sequence of models produced. If you do not specify a CHOOSE= criterion, then the model at the final step is
the selected model.
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For example, if you specify

selection=forward(select=SL choose=AIC SLE=0.2)

then forward selection terminates at the step where no effect can be added at the 0.2 significance level.
However, the selected model is the first one with the minimal value of Akaike’s information criterion. Note
that in some cases this minimal value might occur at a step much earlier that the final step, while in other
cases the AIC criterion might start increasing only if more steps are done (that is, a larger value of SLE is
used). If what you are interested in is minimizing AIC, then too many steps are done in the former case and
too few in the latter case. To address this issue, PROC GLMSELECT enables you to specify a stopping
criterion with the STOP= option. With a stopping criterion specified, forward selection continues until a local
extremum of the stopping criterion in the sequence of models generated is reached. You can also specify
STOP= number, which causes forward selection to continue until there are the specified number of effects in
the model.

For example, if you specify

selection=forward(select=SL stop=AIC)

then forward selection terminates at the step where the effect to be added at the next step would produce
a model with an AIC statistic larger than the AIC statistic of the current model. Note that in most cases,
provided that the entry significance level is large enough that the local extremum of the named criterion
occurs before the final step, specifying

selection=forward(select=SL choose=CRITERION)

or

selection=forward(select=SL stop=CRITERION)

selects the same model, but more steps are done in the former case. In some cases there might be a better
local extremum that cannot be reached if you specify the STOP= option but can be found if you use the
CHOOSE= option. Also, you can use the CHOOSE= option in preference to the STOP= option if you want
examine how the named criterion behaves as you move beyond the step where the first local minimum of this
criterion occurs.

Note that you can specify both the CHOOSE= and STOP= options. You might want to consider models
generated by forward selection that have at most some fixed number of effects but select from within this set
based on a criterion you specify. For example, specifying

selection=forward(stop=20 choose=ADJRSQ)

requests that forward selection continue until there are 20 effects in the final model and chooses among the
sequence of models the one that has the largest value of the adjusted R-square statistic. You can also combine
these options to select a model where one of two conditions is met. For example,

selection=forward(stop=AICC choose=PRESS)

chooses whatever occurs first between a local minimum of the predicted residual sum of squares (PRESS)
and a local minimum of corrected Akaike’s information criterion (AICC).

It is important to keep in mind that forward selection bases the decision about what effect to add at any
step by considering models that differ by one effect from the current model. This search paradigm cannot
guarantee reaching a “best” subset model. Furthermore, the add decision is greedy in the sense that the effect
deemed most significant is the effect that is added. However, if your goal is to find a model that is best in
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terms of some selection criterion other than the significance level of the entering effect, then even this one
step choice might not be optimal. For example, the effect you would add to get a model with the smallest
value of the PRESS statistic at the next step is not necessarily the same effect that has the most significant
entry F statistic. PROC GLMSELECT enables you to specify the criterion to optimize at each step by using
the SELECT= option. For example,

selection=forward(select=CP)

requests that at each step the effect that is added be the one that gives a model with the smallest value of the
Mallows’ C.p/ statistic. Note that in the case where all effects are variables (that is, effects with one degree
of freedom and no hierarchy), using ADJRSQ, AIC, AICC, BIC, CP, RSQUARE, or SBC as the selection
criterion for forward selection produces the same sequence of additions. However, if the degrees of freedom
contributed by different effects are not constant, or if an out-of-sample prediction-based criterion is used,
then different sequences of additions might be obtained.

You can use SELECT= together with CHOOSE= and STOP=. If you specify only the SELECT= criterion,
then this criterion is also used as the stopping criterion. In the previous example where only the selection
criterion is specified, not only do effects enter based on the Mallows’ C.p/ statistic, but the selection
terminates when the C.p/ statistic first increases.

You can find discussion and references to studies about criteria for variable selection in Burnham and
Anderson (2002), along with some cautions and recommendations.

Examples of Forward Selection Specifications

selection=forward

adds effects that at each step give the lowest value of the SBC statistic and stops at the step where adding any
effect would increase the SBC statistic.

selection=forward(select=SL)

adds effects based on significance level and stops when all candidate effects for entry at a step have a
significance level greater than the default entry significance level of 0.15.

selection=forward(select=SL stop=validation)

adds effects based on significance level and stops at a step where adding any effect increases the error sum of
squares computed on the validation data.

selection=forward(select=AIC)

adds effects that at each step give the lowest value of the AIC statistic and stops at the step where adding any
effect would increase the AIC statistic.

selection=forward(select=ADJRSQ stop=SL SLE=0.2)

adds effects that at each step give the largest value of the adjusted R-square statistic and stops at the step
where the significance level corresponding to the addition of this effect is greater than 0.2.

Backward Elimination (BACKWARD)

The backward elimination technique starts from the full model including all independent effects. Then effects
are deleted one by one until a stopping condition is satisfied. At each step, the effect showing the smallest
contribution to the model is deleted. In traditional implementations of backward elimination, the contribution
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of an effect to the model is assessed by using an F statistic. At any step, the predictor producing the least
significant F statistic is dropped and the process continues until all effects remaining in the model have F
statistics significant at a stay significance level (SLS).

More precisely, if the current model has p parameters excluding the intercept, and if you denote its residual
sum of squares by RSSp and you drop an effect with k degrees of freedom and denote the residual sum of
squares of the resulting model by RSSp�k , then the F statistic for removal with k numerator degrees of
freedom and n � p � 1 denominator degrees of freedom is given by

F D
.RSSp�k � RSSp/=k

RSSp=.n � p � 1/

where n is number of observations used in the analysis.

Just as with forward selection, you can change the criterion used to assess effect contributions with the
SELECT= option. You can also specify a stopping criterion with the STOP= option and use a CHOOSE=
option to provide a criterion used to select among the sequence of models produced. See the discussion in the
section “Forward Selection (FORWARD)” on page 3704 for additional details.

Examples of Backward Selection Specifications

selection=backward

removes effects that at each step produce the largest value of the Schwarz Bayesian information criterion
(SBC) statistic and stops at the step where removing any effect increases the SBC statistic.

selection=backward(stop=press)

removes effects based on the SBC statistic and stops at the step where removing any effect increases the
predicted residual sum of squares (PRESS).

selection=backward(select=SL)

removes effects based on significance level and stops when all candidate effects for removal at a step have a
significance level less than the default stay significance level of 0.15.

selection=backward(select=SL choose=validate SLS=0.1)

removes effects based on significance level and stops when all effects in the model are significant at the 0.1
level. Finally, from the sequence of models generated, choose the one that gives the smallest average square
error when scored on the validation data.

Stepwise Selection(STEPWISE)

The stepwise method is a modification of the forward selection technique that differs in that effects already in
the model do not necessarily stay there.

In the traditional implementation of stepwise selection method, the same entry and removal F statistics for
the forward selection and backward elimination methods are used to assess contributions of effects as they
are added to or removed from a model. If at a step of the stepwise method, any effect in the model is not
significant at the SLSTAY= level, then the least significant of these effects is removed from the model and the
algorithm proceeds to the next step. This ensures that no effect can be added to a model while some effect
currently in the model is not deemed significant. Only after all necessary deletions have been accomplished
can another effect be added to the model. In this case the effect whose addition yields the most significant F
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value is added to the model and the algorithm proceeds to the next step. The stepwise process ends when
none of the effects outside the model has an F statistic significant at the SLENTRY= level and every effect in
the model is significant at the SLSTAY= level. In some cases, neither of these two conditions for stopping is
met and the sequence of models cycles. In this case, the stepwise method terminates at the end of the second
cycle.

Just as with forward selection and backward elimination, you can change the criterion used to assess effect
contributions, with the SELECT= option. You can also specify a stopping criterion with the STOP= option
and use a CHOOSE= option to provide a criterion used to select among the sequence of models produced.
See the discussion in the section “Forward Selection (FORWARD)” on page 3704 for additional details.

For selection criteria other than significance level, PROC GLMSELECT optionally supports a further
modification in the stepwise method. In the standard stepwise method, no effect can enter the model if
removing any effect currently in the model would yield an improved value of the selection criterion. In the
modification, you can use the DROP=COMPETITIVE option to specify that addition and deletion of effects
should be treated competitively. The selection criterion is evaluated for all models obtained by deleting
an effect from the current model or by adding an effect to this model. The action that most improves the
selection criterion is the action taken.

Examples of Stepwise Selection Specifications

selection=stepwise

requests stepwise selection based on the SBC criterion. First, if removing any effect yields a model with a
lower SBC statistic than the current model, then the effect producing the smallest SBC statistic is removed.
When removing any effect increases the SBC statistic, then provided that adding some effect lowers the SBC
statistic, the effect producing the model with the lowest SBC is added.

selection=stepwise(select=SL)

requests the traditional stepwise method. First, if the removal of any effect yields an F statistic that is not
significant at the default stay level of 0.15, then the effect whose removal produces the least significant F
statistic is removed and the algorithm proceeds to the next step. Otherwise the effect whose addition yields
the most significant F statistic is added, provided that it is significant at the default entry level of 0.15.

selection=stepwise(select=SL stop=SBC)

is the traditional stepwise method, where effects enter and leave based on significance levels, but with the
following extra check: If any effect to be added or removed yields a model whose SBC statistic is greater
than the SBC statistic of the current model, then the stepwise method terminates at the current model. Note
that in this case, the entry and stay significance levels still play a role as they determine whether an effect is
deleted from or added to the model. This might result in the selection terminating before a local minimum of
the SBC criterion is found.

selection=stepwise(select=SL SLE=0.1 SLS=0.08 choose=AIC)

selects effects to enter or drop as in the previous example except that the significance level for entry is now
0.1 and the significance level to stay is 0.08. From the sequence of models produced, the selected model is
chosen to yield the minimum AIC statistic.
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selection=stepwise(select=AICC drop=COMPETITIVE)

requests stepwise selection based on the AICC criterion with steps treated competitively. At any step, evaluate
the AICC statistics corresponding to the removal of any effect in the current model or the addition of any
effect to the current model. Choose the addition or removal that produced this minimum value, provided that
this minimum is lower than the AICC statistic of the current model.

selection=stepwise(select=SBC drop=COMPETITIVE stop=VALIDATE)

requests stepwise selection based on the SBC criterion with steps treated competitively and where stopping is
based on the average square error over the validation data. At any step, SBC statistics corresponding to the
removal of any effect from the current model or the addition of any effect to the current model are evaluated.
The addition or removal that produces the minimum SBC value is made. The average square error on the
validation data for the model with this addition or removal is evaluated. If this average square error is greater
than the average square error on the validation data prior to this addition or deletion, then the algorithm
terminates at this prior model.

Least Angle Regression (LAR)

Least angle regression was introduced by Efron et al. (2004). Not only does this algorithm provide a selection
method in its own right, but with one additional modification it can be used to efficiently produce LASSO
solutions. Just like the forward selection method, the LAR algorithm produces a sequence of regression
models where one parameter is added at each step, terminating at the full least squares solution when all
parameters have entered the model.

The algorithm starts by centering the covariates and response, and scaling the covariates so that they all
have the same corrected sum of squares. Initially all coefficients are zero, as is the predicted response. The
predictor that is most correlated with the current residual is determined and a step is taken in the direction of
this predictor. The length of this step determines the coefficient of this predictor and is chosen so that some
other predictor and the current predicted response have the same correlation with the current residual. At this
point, the predicted response moves in the direction that is equiangular between these two predictors. Moving
in this direction ensures that these two predictors continue to have a common correlation with the current
residual. The predicted response moves in this direction until a third predictor has the same correlation
with the current residual as the two predictors already in the model. A new direction is determined that is
equiangular between these three predictors and the predicted response moves in this direction until a fourth
predictor joins the set having the same correlation with the current residual. This process continues until all
predictors are in the model.

As with other selection methods, the issue of when to stop the selection process is crucial. You can specify a
criterion to use to choose among the models at each step with the CHOOSE= option. You can also specify
a stopping criterion with the STOP= option. See the section “Criteria Used in Model Selection Methods”
on page 3714 for details and Table 48.10 for the formulas for evaluating these criteria. These formulas use
the approximation that at step k of the LAR algorithm, the model has k degrees of freedom. See Efron et al.
(2004) for a detailed discussion of this so-called simple approximation.

A modification of LAR selection suggested in Efron et al. (2004) uses the LAR algorithm to select the set
of covariates in the model at any step, but uses ordinary least squares regression with just these covariates
to obtain the regression coefficients. You can request this hybrid method by specifying the LSCOEFFS
suboption of SELECTION=LAR.
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Lasso Selection (LASSO)

LASSO (least absolute shrinkage and selection operator) selection arises from a constrained form of ordinary
least squares regression where the sum of the absolute values of the regression coefficients is constrained to be
smaller than a specified parameter. More precisely let X D .x1; x2; : : : ; xm/ denote the matrix of covariates
and let y denote the response, where the xi s have been centered and scaled to have unit standard deviation
and mean zero, and y has mean zero. Then for a given parameter t, the LASSO regression coefficients
ˇ D .ˇ1; ˇ2; : : : ; ˇm/ are the solution to the constrained optimization problem

min jjy � Xˇjj2 subject to
mX
jD1

jˇj j � t

Provided that the LASSO parameter t is small enough, some of the regression coefficients will be exactly
zero. Hence, you can view the LASSO as selecting a subset of the regression coefficients for each LASSO
parameter. By increasing the LASSO parameter in discrete steps, you obtain a sequence of regression
coefficients where the nonzero coefficients at each step correspond to selected parameters.

Early implementations (Tibshirani 1996) of LASSO selection used quadratic programming techniques to
solve the constrained least squares problem for each LASSO parameter of interest. Later Osborne, Presnell,
and Turlach (2000) developed a “homotopy method” that generates the LASSO solutions for all values of t.
Efron et al. (2004) derived a variant of their algorithm for least angle regression that can be used to obtain a
sequence of LASSO solutions from which all other LASSO solutions can be obtained by linear interpolation.
This algorithm for SELECTION=LASSO is used in PROC GLMSELECT. It can be viewed as a stepwise
procedure with a single addition to or deletion from the set of nonzero regression coefficients at any step.

As with the other selection methods that PROC GLMSELECT supports, you can specify a criterion to choose
among the models at each step of the LASSO algorithm by using the CHOOSE= option. You can also specify
a stopping criterion by using the STOP= option. For more information, see the discussion in the section
“Forward Selection (FORWARD)” on page 3704. The model degrees of freedom that PROC GLMSELECT
uses at any step of the LASSO are simply the number of nonzero regression coefficients in the model at that
step. Efron et al. (2004) cite empirical evidence for doing this but do not give any mathematical justification
for this choice.

A modification of LASSO selection that is suggested in Efron et al. (2004) uses the LASSO algorithm to
select the set of covariates in the model at any step, but it uses ordinary least squares regression with just
these covariates to obtain the regression coefficients. You can request this hybrid method by specifying the
LSCOEFFS suboption of the SELECTION=LASSO option.

Adaptive LASSO Selection

Adaptive LASSO selection is a modification of LASSO selection; in adaptive LASSO selection, weights are
applied to each of the parameters in forming the LASSO constraint (Zou 2006). More precisely, suppose
that the response y has mean zero and the regressors x are scaled to have mean zero and common standard
deviation. Furthermore, suppose you can find a suitable estimator Ǒ of the parameters in the true model and
you define a weight vector by w D 1=j Ǒj , where  � 0. Then the adaptive LASSO regression coefficients
ˇ D .ˇ1; ˇ2; : : : ; ˇm/ are the solution to the constrained optimization problem
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min jjy � Xˇjj2 subject to
mX
jD1

jwjˇj j � t

You can specify Ǒ by using the INEST=suboption of the SELECTION=LASSO option in the MODEL
statement. The INEST= data set has the same structure as the OUTEST= data set that is produced by several
SAS/STAT procedures, including the REG and LOGISTIC procedures. The INEST= data set must contain
all explanatory variables in the MODEL statement. It must also contain an intercept variable named Intercept
unless you specify the NOINT option in the MODEL statement. If BY processing is used, the INEST= data
set must also include the BY variables, and there must be one observation for each BY group. If the INEST=
data set also contains the _TYPE_ variable, only observations whose _TYPE_ value is 'PARMS' are used.

If you do not specify an INEST= data set, then PROC GLMSELECT uses the solution to the unconstrained
least squares problem as the estimator Ǒ. This is appropriate unless collinearity is a concern. If the regressors
are collinear or nearly collinear, then Zou (2006) suggests using a ridge regression estimate to form the
adaptive weights.

Elastic Net Selection (ELASTICNET)

The elastic net method bridges the LASSO method and ridge regression. It balances having a parsimonious
model with borrowing strength from correlated regressors, by solving the least squares regression problem
with constraints on both the sum of the absolute coefficients and the sum of the squared coefficients. More
specifically, the elastic net coefficients ˇ D .ˇ1; ˇ2; : : : ; ˇm/ are the solution to the constrained optimization
problem

min jjy � Xˇjj2 subject to
mX
jD1

jˇj j � t1;

mX
jD1

ˇ2j � t2

The method can be written as the equivalent Lagrangian form

min jjy � Xˇjj2 C �1
mX
jD1

jˇj j C �2

mX
jD1

ˇ2j

If t1 is set to a very large value or, equivalently, if �1 is set to 0, then the elastic net method reduces to ridge
regression. If t2 is set to a very large value or, equivalently, if �2 is set to 0, then the elastic net method
reduces to LASSO. If t1 and t2 are both large or, equivalently, if �1 and �2 are both set to 0, then the elastic
net method reduces to ordinary least squares regression.



3712 F Chapter 48: The GLMSELECT Procedure

As stated by Zou and Hastie (2005), the elastic net method can overcome the limitations of LASSO in the
following three scenarios:

• In the case where you have more parameters than observations, m > n, the LASSO method selects at
most n variables before it saturates, because of the nature of the convex optimization problem. This
can be a defect for a variable selection method. By contrast, the elastic net method can select more
than n variables in this case because of the ridge regression regularization.

• If there is a group of variables that have high pairwise correlations, then whereas LASSO tends to
select only one variable from that group, the elastic net method can select more than one variable.

• In the n > m case, if there are high correlations between predictors, it has been empirically observed
that the prediction performance of LASSO is dominated by ridge regression. In this case, the elastic
net method can achieve better prediction performance by using ridge regression regularization.

An elastic net fit is achieved by building on LASSO estimation, in the following sense. Let QX be a matrix
obtained by augmenting X with a scaled identity matrix,

QX D ŒXI
p
�2I �

Let Qy be a vector correspondingly obtained by augmenting the response y with m 0’s,

Qy D ŒyI 0�

Then the Lagrangian form of the elastic net optimization problem can be reformulated as

min jj Qy � QXˇjj2 C �1
mX
jD1

jˇj j

In other words, you can solve the elastic net method in the same way as LASSO by using this augmented
design matrix QX and response Qy. Therefore, for given �2, the coefficients of the elastic net fit follow the same
piecewise linear path as LASSO. Zou and Hastie (2005) suggest rescaling the coefficients by 1C �2 to deal
with the double amount of shrinkage in the elastic net fit, and such rescaling is applied when you specify the
ENSCALE option in the MODEL statement.

If you have a good estimate of �2, you can specify the value in the L2= option. If you do not specify a value
for �2, then by default PROC GLMSELECT searches for a value between 0 and 1 that is optimal according
to the current CHOOSE= criterion. Figure 48.12 illustrates the estimation of the ridge regression parameter
�2 (L2). Meanwhile, if you do not specify the CHOOSE= option, then the model at the final step in the
selection process is selected for each �2 (L2), and the criterion value shown in Figure 48.12 is the one at the
final step that corresponds to the specified STOP= option (STOP=SBC by default).
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Figure 48.12 Estimation of the Ridge Regression Parameter �2 (L2) in the Elastic Net Method

Note that when you specify the L2SEARCH=GOLDEN, it is assumed that the criterion curve that corresponds
to the CHOOSE= option with respect to �2 is a smooth and bowl-shaped curve. However, this assumption is
not checked and validated. Hence, the default value for the L2SEARCH= option is set to GRID.

Model Selection Issues
Many authors caution against the use of “automatic variable selection” methods and describe pitfalls that
plague many such methods. For example, Harrell (2001) states that “stepwise variable selection has been a
very popular technique for many years, but if this procedure had just been proposed as a statistical method,
it would most likely be rejected because it violates every principle of statistical estimation and hypothesis
testing.” He lists and discusses several of these issues and cites a variety of studies that highlight these
problems. He also notes that many of these issues are not restricted to stepwise selection but affect forward
selection and backward elimination, as well as methods based on all-subset selection.

In their introductory chapter, Burnham and Anderson (2002) discuss many issues involved in model selection.
They also strongly warn against “data dredging,” which they describe as “the process of analyzing data with
few or no a priori questions, by subjectively and iteratively searching the data for patterns and ‘significance.”’
However, Burnham and Anderson also discuss the desirability of finding parsimonious models. They note that
using “full models” that contain many insignificant predictors might avoid some of the inferential problems
arising in models with automatically selected variables but will lead to overfitting the particular sample data
and produce a model that performs poorly in predicting data not used in training the model.

One problem in the traditional implementations of forward, backward, and stepwise selection methods is that
they are based on sequential testing with specified entry (SLE) and stay (SLS) significance levels. However,
it is known that the “F-to-enter” and “F-to-delete” statistics do not follow an F distribution (Draper, Guttman,
and Kanemasu 1971). Hence the SLE and SLS values cannot reliably be viewed as probabilities. One way
to address this difficulty is to replace hypothesis testing as a means of selecting a model with information
criteria or out-of-sample prediction criteria. While Harrell (2001) points out that information criteria were
developed for comparing only prespecified models, Burnham and Anderson (2002) note that AIC criteria
have routinely been used for several decades for performing model selection in time series analysis.
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Problems also arise when the selected model is interpreted as if it were prespecified. There is a “selection
bias” in the parameter estimates that is discussed in detail in Miller (2002). This bias occurs because a
parameter is more likely to be selected if it is above its expected value than if it is below its expected value.
Furthermore, because multiple comparisons are made in obtaining the selected model, the p-values obtained
for the selected model are not valid. When a single best model is selected, inference is conditional on that
model.

Model averaging approaches provide a way to make more stable inferences based on a set of models. PROC
GLMSELECT provides support for model averaging by averaging models that are selected on resampled
data. Other approaches for performing model averaging are presented in Burnham and Anderson (2002), and
Bayesian approaches are discussed in Raftery, Madigan, and Hoeting (1997).

Despite these difficulties, careful and informed use of variable selection methods still has its place in modern
data analysis. For example, Foster and Stine (2004) use a modified version of stepwise selection to build
a predictive model for bankruptcy from over 67,000 possible predictors and show that this yields a model
whose predictions compare favorably with other recently developed data mining tools. In particular, when the
goal is prediction rather than estimation or hypothesis testing, variable selection with careful use of validation
to limit both under and over fitting is often a useful starting point of model development.

Criteria Used in Model Selection Methods
PROC GLMSELECT supports a variety of fit statistics that you can specify as criteria for the CHOOSE=,
SELECT=, and STOP= options in the MODEL statement. The following statistics are available:

ADJRSQ adjusted R-square statistic (Darlington 1968; Judge et al. 1985)

AIC Akaike’s information criterion (Darlington 1968; Judge et al. 1985)

AICC corrected Akaike’s information criterion (Hurvich and Tsai 1989)

BIC Sawa Bayesian information criterion (Sawa 1978; Judge et al. 1985)

CP Mallows’ Cp statistic (Mallows 1973; Hocking 1976)

PRESS predicted residual sum of squares statistic

SBC Schwarz Bayesian information criterion (Schwarz 1978; Judge et al. 1985)

SL significance level of the F statistic used to assess an effect’s contribution to the fit when it
is added to or removed from a model

VALIDATE average square error over the validation data
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Table 48.10 provides formulas and definitions for the fit statistics.

Table 48.10 Formulas and Definitions for Model Fit Summary
Statistics

Statistic Definition or Formula

n Number of observations
p Number of parameters including the intercept
O�2 Estimate of pure error variance from fitting the full model
SST Total sum of squares corrected for the mean for the

dependent variable
SSE Error sum of squares

ASE
SSE
n

MSE
SSE
n � p

R2 1 �
SSE
SST

ADJRSQ 1 �
.n � 1/.1 �R2/

n � p

AIC n log
�

SSE
n

�
C 2p C nC 2

AICC n log
�

SSE
n

�
C
n.nC p/

n � p � 2

BIC n log
�

SSE
n

�
C 2.p C 2/q � 2q2 where q D n O�2

SSE

CP .Cp/
SSE
O�2
C 2p � n

PRESS
nX
iD1

r2i
.1 � hi /2

where

ri D residual at observation i and
hi D leverage of observation i D xi .X0X/�x0i

RMSE
p

MSE

SBC n log
�

SSE
n

�
C p log.n/

Formulas for AIC and AICC

There is some inconsistency in the literature on the precise definitions for the AIC and AICC statistics. The
definitions used in PROC GLMSELECT changed between the experimental and the production release of
the procedure in SAS 9.2. The definitions now used in PROC GLMSELECT yield the same final models
as before, but PROC GLMSELECT makes the connection between the AIC statistic and the AICC statistic
more transparent.

In the context of linear regression, several different versions of the formulas for AIC and AICC appear in the
statistics literature. However, for a fixed number of observations, these different versions differ by additive
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and positive multiplicative constants. Because the model selected to yield a minimum of a criterion is not
affected if the criterion is changed by additive and positive multiplicative constants, these changes in the
formula for AIC and AICC do not affect the selection process.

The following section provides details about these changes. Formulas used in the experimental download
release are denoted with a superscript of .d/ and n, p and SSE are defined in Table 48.10.

The experimental download release of PROC GLMSELECT used the following formulas for AIC (Darlington
1968; Judge et al. 1985) and AICC (Hurvich, Simonoff, and Tsai 1998):

AIC.d/ D n log
�

SSE
n

�
C 2p

and

AICC.d/ D log
�

SSE
n

�
C 1C

2.p C 1/

n � p � 2

PROC GLMSLECT now uses the definitions of AIC and AICC found in Hurvich and Tsai (1989):

AIC D n log
�

SSE
n

�
C 2p C nC 2

and

AICC D AICC
2.p C 1/.p C 2/

n � p � 2

Hurvich and Tsai (1989) show that the formula for AICC can also be written as

AICC D n log
�

SSE
n

�
C
n.nC p/

n � p � 2

The relationships between the alternative forms of the formulas are

AIC D AIC.d/ C nC 2

AICC D n AICC.d/

CLASS Variable Parameterization and the SPLIT Option
The GLMSELECT procedure supports nonsingular parameterizations for classification effects. A variety of
these nonsingular parameterizations are available. You use the PARAM= option in the CLASS statement to
specify the parameterization. See the section “Other Parameterizations” on page 391 in Chapter 19, “Shared
Concepts and Topics,” for details.
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PROC GLMSELECT also supports the ability to split classification effects. You can use the SPLIT option
in the CLASS statement to request that the columns of the design matrix that correspond to any effect that
contains a split classification variable can be selected to enter or leave a model independently of the other
design columns of that effect. The following statements illustrate the use of SPLIT option together with other
features of the CLASS statement:

data codingExample;
drop i;
do i=1 to 1000;

c1 = 1 + mod(i,6);
if i < 50 then c2 = 'very low ';
else if i < 250 then c2 = 'low';
else if i < 500 then c2 = 'medium';
else if i < 800 then c2 = 'high';
else c2 = 'very high';
x1 = ranuni(1);
x2 = ranuni(1);
y = x1 + 10*(c1=3) +5*(c1=5) +rannor(1);
output;

end;
run;
proc glmselect data=codingExample;

class c1(param=ref split) c2(param=ordinal order=data) /
delimiter = ',' showcoding;

model y = c1 c2 x1 x2/orderselect;
run;

The “Class Level Information” table shown in Figure 48.13 is produced by default whenever you specify a
CLASS statement.

Figure 48.13 Class Level Information

The GLMSELECT ProcedureThe GLMSELECT Procedure

Class Level Information

Class Levels Values

c1 6 * 1,2,3,4,5,6

c2 5 very low,low,medium,high,very high

* Associated Parameters Split

Note that because the levels of the variable c2 contain embedded blanks, the DELIMITER="; " option has
been specified. The SHOWCODING option requests the display of the “Class Level Coding” table shown in
Figure 48.14. An ordinal parameterization is used for c2 because its levels have a natural order. Furthermore,
because these levels appear in their natural order in the data, you can preserve this order by specifying the
ORDER=DATA option.
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Figure 48.14 Class Level Coding

Class Level Coding

Design
Variables

c1
Level 1 2 3 4 5

1 1 0 0 0 0

2 0 1 0 0 0

3 0 0 1 0 0

4 0 0 0 1 0

5 0 0 0 0 1

6 0 0 0 0 0

The SPLIT option has been specified for the classification variable c1. This permits the parameters associated
with the effect c1 to enter or leave the model individually. The “Parameter Estimates” table in Figure 48.15
shows that for this example the parameters that correspond to only levels 3 and 5 of c1 are in the selected
model. Finally, note that the ORDERSELECT option in the MODEL statement specifies that the parameters
are displayed in the order in which they first entered the model.

Figure 48.15 Parameter Estimates

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value

Intercept 1 -0.216680 0.068650 -3.16

c1_3 1 10.160900 0.087898 115.60

c1_5 1 5.018015 0.087885 57.10

x1 1 1.315468 0.109772 11.98

Macro Variables Containing Selected Models
Often you might want to perform postselection analysis by using other SAS procedures. To facilitate this,
PROC GLMSELECT saves the list of selected effects in a macro variable. This list does not explicitly include
the intercept so that you can use it in the MODEL statement of other SAS/STAT regression procedures.

The following table describes the macro variables that PROC GLMSELECT creates. Note that when BY
processing is used, one macro variable, indexed by the BY group number, is created for each BY group.

Macro Variable Description

No BY processing
_GLSIND1 Selected model

BY processing
_GLSNUMBYS Number of BY groups
_GLSIND1 Selected model for BY group 1
_GLSIND2 Selected model for BY group 2
. . .
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You can use the macro variable _GLSIND as a synonym for _GLSIND1. If you do not use BY processing,
_GLSNUMBYS is still defined and has the value 1.

To aid in associating indexed macro variables with the appropriate observations when BY processing is used,
PROC GLMSELECT creates a variable _BY_ in the output data set specified in an OUTPUT statement (see
the section “OUTPUT Statement” on page 3699) that tags observations with an index that matches the index
of the appropriate macro variable.

The following statements create a data set with two BY groups and run PROC GLMSELECT to select a
model for each BY group.

data one(drop=i j);
array x{5} x1-x5;
do i=1 to 1000;

classVar = mod(i,4)+1;
do j=1 to 5;

x{j} = ranuni(1);
end;
if i<400 then do;

byVar = 'group 1';
y = 3*classVar+7*x2+5*x2*x5+rannor(1);

end;
else do;

byVar = 'group 2';
y = 2*classVar+x5+rannor(1);

end;
output;

end;
run;

proc glmselect data=one;
by byVar;
class classVar;
model y = classVar x1|x2|x3|x4|x5 @2 /

selection=stepwise(stop=aicc);
output out=glmselectOutput;

run;
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The preceding PROC GLMSELECT step produces three macro variables:

Macro Variable Value Description

_GLSNUMBYS 2 Number of BY groups
_GLSIND1 classVar x2 x2*x5 Selected model for the first BY group
_GLSIND2 classVar x5 Selected model for the second BY group

You can now leverage these macro variables and the output data set created by PROC GLMSELECT to
perform postselection analyses that match the selected models with the appropriate BY-group observations.
For example, the following statements create and run a macro that uses PROC GLM to perform LSMeans
analyses.

%macro LSMeansAnalysis;
%do i=1 %to &_GLSNUMBYS;

title1 "Analysis Using the Selected Model for BY group number &i";
title2 "Selected Effects: &&_GLSIND&i";

ods select LSMeans;
proc glm data=glmselectOutput(where = (_BY_ = &i));

class classVar;
model y = &&_GLSIND&i;
lsmeans classVar;

run;quit;
%end;

%mend;
%LSMeansAnalysis;

The LSMeans analysis output from PROC GLM is shown in Output 48.16.

Figure 48.16 LS-Means Analyses for Selected Models

Analysis Using the Selected Model for BY group number 1
Selected Effects: classVar x2 x2*x5

The GLM Procedure
Least Squares Means

Analysis Using the Selected Model for BY group number 1
Selected Effects: classVar x2 x2*x5

The GLM Procedure
Least Squares Means

classVar y LSMEAN

1 7.8832052

2 10.9528618

3 13.9412216

4 16.7929355
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Figure 48.16 continued

Analysis Using the Selected Model for BY group number 2
Selected Effects: classVar x5

The GLM Procedure
Least Squares Means

Analysis Using the Selected Model for BY group number 2
Selected Effects: classVar x5

The GLM Procedure
Least Squares Means

classVar y LSMEAN

1 2.46805014

2 4.52102826

3 6.53369479

4 8.49354763

Using the STORE Statement
The preceding section shows how you can use macro variables to facilitate performing postselection analysis
by using other SAS procedures. An alternative approach is to use the STORE statement to save the results of
the PROC GLMSELECT step in an item store. You can then use the PLM procedure to obtain a rich set of
postselection analyses. The following statements show how you can use this approach to obtain the same
LSMeans analyses as shown in section “Macro Variables Containing Selected Models” on page 3718:

proc glmselect data=one;
by byVar;
class classVar;
model y = classVar x1|x2|x3|x4|x5 @2 /

selection=stepwise(stop=aicc);
store out=glmselectStore;

run;

proc plm source=glmselectStore;
lsmeans classVar;

run;

The LSMeans analysis output for the first BY group is shown in Figure 48.17.

Figure 48.17 LS-Means Analysis Produced by PROC PLM

The PLM ProcedureThe PLM Procedure

classVar Least Squares Means

classVar Estimate
Standard

Error DF t Value Pr > |t|

1 7.8832 0.1050 393 75.11 <.0001

2 10.9529 0.1043 393 104.99 <.0001

3 13.9412 0.1043 393 133.70 <.0001

4 16.7929 0.1042 393 161.09 <.0001
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Building the SSCP Matrix
Traditional implementations of FORWARD and STEPWISE selection methods start by computing the
augmented crossproduct matrix for all the specified effects. This initial crossproduct matrix is updated as
effects enter or leave the current model by sweeping the columns corresponding to the parameters of the
entering or departing effects. Building the starting crossproduct matrix can be done with a single pass through
the data and requires O.m2/ storage and O.nm2/ work, where n is the number of observations and m is
the number of parameters. If k selection steps are done, then the total work sweeping effects in and out
of the model is O.km2/. When n >> m, the work required is dominated by the time spent forming the
crossproduct matrix. However, when m is large (tens of thousands), just storing the crossproduct matrix
becomes intractable even though the number of selected parameters might be small. Note also that when
interactions of classification effects are considered, the number of parameters considered can be large, even
though the number of effects considered is much smaller.

When the number of selected parameters is smaller than the total number of parameters, it turns out that
many of the crossproducts are not needed in the selection process. Let y denote the dependent variable, and
suppose at some step of the selection process that X denotes the n � p design matrix columns corresponding
to the currently selected model. Let Z D z1; z2; : : : ; zm�p denote the design matrix columns corresponding
to the m � p effects not yet in the model. Then in order to compute the reduction in the residual sum of
squares when zj is added to the model, the only additional crossproducts needed are z0jy, z0jX, and z0j zj .
Note that it is not necessary to compute any of z0j zi with i ¤ j and if p << m, and this yields a substantial
saving in both memory required and computational work. Note, however, that this strategy does require a
pass through the data at any step where adding an effect to the model is considered.

PROC GLMSELECT supports both of these strategies for building the crossproduct matrix. You can choose
which of these strategies to use by specifying the BUILDSSCP=FULL or BUILDSSCP=INCREMENTAL
option in the PERFORMANCE statement. If you request BACKWARD selection, then the full SSCP matrix
is required. Similarly, if you request the BIC or CP criterion as the SELECT=, CHOOSE=, or STOP=
criterion, or if you request the display of one or both of these criteria with the STATS=BIC, STATS=CP, or
STATS=ALL option, then the full model needs to be computed. If you do not specify the BUILDSSCP=
option, then PROC GLMSELECT switches to the incremental strategy if the number of effects is greater
than one hundred. This default strategy is designed to give good performance when the number of selected
parameters is less than about 20% of the total number of parameters. Hence if you choose options that
you know will cause the selected model to contain a significantly higher percentage of the total number of
candidate parameters, then you should consider specifying BUILDSSCP=FULL. Conversely, if you specify
fewer than 100 effects in the MODEL statement but many of these effects have a large number of associated
parameters, then specifying BUILDSSCP=INCREMENTAL might result in improved performance.

Model Averaging
As discussed in the section “Model Selection Issues” on page 3713, some well-known issues arise in
performing model selection for inference and prediction. One approach to address these issues is to use
resampled data as a proxy for multiple samples that are drawn from some conceptual probability distribution.
A model is selected for each resampled set of data, and a predictive model is built by averaging the predictions
of these selected models. You can perform this method of model averaging by using the MODELAVERAGE
statement. Resampling-based methods, in which samples are obtained by drawing with replacement from
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your data, fall under the umbrella of the widely studied methodology known as the bootstrap (Efron and
Tibshirani 1993). For use of the bootstrap in the context of variable selection, see Breiman (1992).

By default, when the average is formed, models that are selected in multiple samples receive more weight
than infrequently selected models. Alternatively, you can start by fitting a prespecified set of models on your
data, then use information-theoretic approaches to assign a weight to each model in building a weighted
average model. You can find a detailed discussion of this methodology in Burnham and Anderson (2002), in
addition to some comparisons of this approach with bootstrap-based methods.

In the linear model context, the average prediction that you obtain from a set of models is the same as
the prediction that you obtain with the single model whose parameter estimates are the averages of the
corresponding estimates of the set of models. Hence, you can regard model averaging as a selection method
that selects this average model. To show this, denote by ˇ.i/ the parameter estimates for the sample i where
ˇ
.i/
j D 0 if parameter j is not in the selected model for sample i. Then the predicted values Oy.i/ for average

model i are given by

Oy.i/ D Xˇ.i/

where X is the design matrix of the data to be scored. Forming averages gives

Oy.�/ D
1

N

NX
iD1
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You can see that if a parameter estimate is nonzero for just a few of the sample models, then averaging the
estimates for this parameter shrinks this estimate towards zero. It is this shrinkage that ameliorates the bias
that a parameter is more likely to be selected if it is above its expected value rather than below it. This
reduction in bias often produces improved predictions on new data that you obtain with the average model.
However, the average model is not parsimonious since it has nonzero estimates for any parameter that is
selected in any sample.

One resampling-based approach for obtaining a parsimonious model is to use the number of times that
regressors are selected as an indication of importance and then to fit a new model that uses just the regressors
that you deem to be most important. This approach is not without risk. One possible problem is that you
might have several regressors that, for purposes of prediction, can be used as surrogates for one another. In
this case it is possible that none of these regressors individually appears in a large enough percentage of the
sample models to be deemed important, even though every model contains at least one of them. Despite
such potential problems, this strategy is often successful. You can implement this approach by using the
REFIT option in the MODELAVERAGE statement. By default, the REFIT option performs a second round
of model averaging, where a fixed model that consists of the effects that are selected in a least twenty percent
of the samples in the initial round of model averaging is used. The average model is obtained by averaging
the ordinary least squares estimates obtained for each sample in the refit. Note that the default selection
frequency cutoff of twenty percent is merely a heuristic guideline that often produces reasonable models.

Another approach to obtaining a parsimonious average model is to form the average of just the frequently
selected models. You can implement this strategy by using the SUBSET option in the MODELAVERAGE
statement. However, in situations where there are many irrelevant regressors, it is often the case that most
of the selected models are selected just once. In such situations, having a way to order the models that are
selected with the same frequency is desirable. The following section discusses a way to do this.
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Model Selection Frequencies and Frequency Scores

The model frequency score orders models by their selection frequency, but also uses effect selection
frequencies to order different models that are selected with the same frequency. Let xi denote the ith
effect and let fi denote the selection fraction for this effect. fi is computed as the number of samples whose
selected model contains effect xi divided by the number of samples. Suppose the jth model that consists of
the K effects xj1 ; xj2 ; : : : ; xjK is selected mj times. Then the model frequency score, sj , for this model is
computed as the sum of the model selection frequency and the average selection fraction for this model; that
is,

sj D mj C

PK
kD1 fjk
K

When you use the BEST=b suboption of the SUBSET option in the MODELAVERAGE statement, then the
average model is formed from the b models with the largest model frequency scores.

Using Validation and Test Data
When you have sufficient data, you can subdivide your data into three parts called the training, validation,
and test data. During the selection process, models are fit on the training data, and the prediction error for the
models so obtained is found by using the validation data. This prediction error on the validation data can be
used to decide when to terminate the selection process or to decide what effects to include as the selection
process proceeds. Finally, once a selected model has been obtained, the test set can be used to assess how the
selected model generalizes on data that played no role in selecting the model.

In some cases you might want to use only training and test data. For example, you might decide to use an
information criterion to decide what effects to include and when to terminate the selection process. In this
case no validation data are required, but test data can still be useful in assessing the predictive performance
of the selected model. In other cases you might decide to use validation data during the selection process
but forgo assessing the selected model on test data. Hastie, Tibshirani, and Friedman (2001) note that it is
difficult to give a general rule on how many observations you should assign to each role. They note that a
typical split might be 50% for training and 25% each for validation and testing.

PROC GLMSELECT provides several methods for partitioning data into training, validation, and test data.
You can provide data for each role in separate data sets that you specify with the DATA=, TESTDATA=, and
VALDATA= options in the PROC GLMSELECT procedure. An alternative method is to use a PARTITION
statement to logically subdivide the DATA= data set into separate roles. You can name the fractions of the
data that you want to reserve as test data and validation data. For example, specifying

proc glmselect data=inData;
partition fraction(test=0.25 validate=0.25);
...

run;

randomly subdivides the inData data set, reserving 50% for training and 25% each for validation and testing.

In some cases you might need to exercise more control over the partitioning of the input data set. You can do
this by naming a variable in the input data set as well as a formatted value of that variable that correspond to
each role. For example, specifying
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proc glmselect data=inData;
partition roleVar=group(test='group 1' train='group 2')
...

run;

assigns all roles observations in the inData data set based on the value of the variable named group in that
data set. Observations where the value of group is ’group 1’ are assigned for testing, and those with value
’group 2’ are assigned to training. All other observations are ignored.

You can also combine the use of the PARTITION statement with named data sets for specifying data roles.
For example,

proc glmselect data=inData testData=inTest;
partition fraction(validate=0.4);
...

run;

reserves 40% of the inData data set for validation and uses the remaining 60% for training. Data for testing is
supplied in the inTest data set. Note that in this case, because you have supplied a TESTDATA= data set, you
cannot reserve additional observations for testing with the PARTITION statement.

When you use a PARTITION statement, the output data set created with an OUTPUT statement contains a
character variable _ROLE_ whose values 'TRAIN', 'TEST', and 'VALIDATE' indicate the role of each
observation. _ROLE_ is blank for observations that were not assigned to any of these three roles. When the
input data set specified in the DATA= option in the PROC GLMSELECT statement contains an _ROLE_
variable and no PARTITION statement is used, and TESTDATA= and VALDATA= are not specified, then the
_ROLE_ variable is used to define the roles of each observation. This is useful when you want to rerun PROC
GLMSELECT but use the same data partitioning as in a previous PROC GLMSELECT step. For example,
the following statements use the same data for testing and training in both PROC GLMSELECT steps:

proc glmselect data=inData;
partition fraction(test=0.5);
model y=x1-x10/selection=forward;
output out=outDataForward;

run;

proc glmselect data=outDataForward;
model y=x1-x10/selection=backward;

run;

When you have reserved observations for training, validation, and testing, a model fit on the training data is
scored on the validation and test data, and the average squared error, denoted by ASE, is computed separately
for each of these subsets. The ASE for each data role is the error sum of squares for observations in that role
divided by the number of observations in that role.

Using the Validation ASE as the STOP= Criterion

If you have provided observations for validation, then you can specify STOP=VALIDATE as a suboption of
the SELECTION= option in the MODEL statement. At step k of the selection process, the best candidate
effect to enter or leave the current model is determined. Note that here “best candidate” means the effect that
gives the best value of the SELECT= criterion that need not be based on the validation data. The validation
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ASE for the model with this candidate effect added is computed. If this validation ASE is greater than the
validation ASE for the model at step k, then the selection process terminates at step k.

Using the Validation ASE as the CHOOSE= Criterion

When you specify the CHOOSE=VALIDATE suboption of the SELECTION= option in the MODEL
statement, the validation ASE is computed for the models at each step of the selection process. The model at
the first step yielding the smallest validation ASE is selected.

Using the Validation ASE as the SELECT= Criterion

You request the validation ASE as the selection criterion by specifying the SELECT=VALIDATE suboption
of the SELECTION= option in the MODEL statement. At step k of the selection process, the validation ASE
is computed for each model where a candidate for entry is added or candidate for removal is dropped. The
selected candidate for entry or removal is the one that yields a model with the minimal validation ASE.

Cross Validation
Deciding when to stop a selection method is a crucial issue in performing effect selection. Predictive
performance of candidate models on data not used in fitting the model is one approach supported by PROC
GLMSELECT for addressing this problem (see the section “Using Validation and Test Data” on page 3724).
However, in some cases, you might not have sufficient data to create a sizable training set and a validation set
that represent the predictive population well. In these cases, cross validation is an attractive alternative for
estimating prediction error.

In k-fold cross validation, the data are split into k roughly equal-sized parts. One of these parts is held out
for validation, and the model is fit on the remaining k � 1 parts. This fitted model is used to compute the
predicted residual sum of squares on the omitted part, and this process is repeated for each of k parts. The
sum of the k predicted residual sum of squares so obtained is the estimate of the prediction error that is
denoted by CVPRESS. Note that computing the CVPRESS statistic for k-fold cross validation requires fitting
k different models, and so the work and memory requirements increase linearly with the number of cross
validation folds.

You can use the CVMETHOD= option in the MODEL statement to specify the method for splitting the
data into k parts. CVMETHOD=BLOCK(k) requests that the k parts be made of blocks of floor.n=k/ or
floor.n=k/C 1 successive observations, where n is the number of observations. CVMETHOD=SPLIT(k)
requests that parts consist of observations f1; k C 1; 2k C 1; 3k C 1; : : :g, f2; k C 2; 2k C 2; 3k C 2; : : :g, . .
. , fk; 2k; 3k; : : :g. CVMETHOD=RANDOM(k) partitions the data into random subsets each with roughly
floor.n=k/ observations. Finally, you can use the formatted value of an input data set variable to define the
parts by specifying CVMETHOD=variable. This last partitioning method is useful in cases where you need
to exercise extra control over how the data are partitioned by taking into account factors such as important
but rare observations that you want to “spread out” across the various parts.

You can request details of the CVPRESS computations by specifying the CVDETAILS= option in the
MODEL statement. When you use cross validation, the output data set created with an OUTPUT statement
contains an integer-valued variable, _CVINDEX_, whose values indicate the subset to which an observation
is assigned.
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The widely used special case of n-fold cross validation when you have n observations is known as leave-one-
out cross validation. In this case, each omitted part consists of one observation, and CVPRESS statistic can
be efficiently obtained without refitting the model n times. In this case, the CVPRESS statistic is denoted
simply by PRESS and is given by

PRESS D
nX
iD1

�
ri

1 � hi

�2
where ri is the residual and hi is the leverage of the ith observation. You can request leave-one-out cross
validation by specifying PRESS instead of CV with the options SELECT=, CHOOSE=, and STOP= in the
MODEL statement. For example, if the number of observations in the data set is 100, then the following
two PROC GLMSELECT steps are mathematically equivalent, but the second step is computed much more
efficiently:

proc glmselect;
model y=x1-x10/selection=forward(stop=CV) cvMethod=split(100);

run;

proc glmselect;
model y=x1-x10/selection=forward(stop=PRESS);

run;

Hastie, Tibshirani, and Friedman (2001) include a discussion about choosing the cross validation fold. They
note that as an estimator of true prediction error, cross validation tends to have decreasing bias but increasing
variance as the number of folds increases. They recommend five- or tenfold cross validation as a good
compromise. By default, PROC GLMSELECT uses CVMETHOD=RANDOM(5) for cross validation.

Using Cross Validation as the STOP= Criterion

You request cross validation as the stopping criterion by specifying the STOP=CV suboption of the SELEC-
TION= option in the MODEL statement. At step k of the selection process, the best candidate effect to enter
or leave the current model is determined. Note that here “best candidate” means the effect that gives the best
value of the SELECT= criterion that need not be the CV criterion. The CVPRESS score for the model with
this candidate effect added or removed is determined. If this CVPRESS score is greater than the CVPRESS
score for the model at step k, then the selection process terminates at step k.

Using Cross Validation as the CHOOSE= Criterion

When you specify the CHOOSE=CV suboption of the SELECTION= option in the MODEL statement, the
CVPRESS score is computed for the models at each step of the selection process. The model at the first step
that yields the smallest CVPRESS score is selected.

Using Cross Validation as the SELECT= Criterion

You request cross validation as the selection criterion by specifying the SELECT=CV suboption of the
SELECTION= option in the MODEL statement. At step k of the selection process, the CVPRESS score
is computed for each model in which a candidate for entry is added or a candidate for removal is dropped.
The selected candidate for entry or removal is the one that yields a model that has the minimal CVPRESS
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score. At each step of the selection process, this requires forming the CVPRESS statistic for all possible
candidate models at the next step. Because forming the CVPRESS statistic for k-fold requires fitting k
models, using cross validation as the selection criterion is computationally very demanding compared to
using other selection criteria.

External Cross Validation
The method of cross validation that is discussed in the previous section judges models by their performance
with respect to ordinary least squares. An alternative to ordinary least squares is to use the penalized regression
that is defined by the LASSO or elastic net method. This method is called external cross validation, and you
can specify external cross validation with CHOOSE=CVEX, new in SAS/STAT 13.1. CHOOSE=CVEX
applies only when SELECTION=LASSO or SELECTION=ELASTICNET.

To understand how k-fold external cross validation works, first recall how k-fold cross validation works, as
shown in Figure 48.18. The first column in this figure illustrates dividing the training samples into four folds,
the second column illustrates the same training samples with reduced numbers of variables at a given step,
and the third column illustrates applying ordinary least squares to compute the CVPRESS statistic. For the
SELECTION=LASSO and SELECTION=ELASTICNET options, the CVPRESS statistic that is computed
by k-fold cross validation uses an ordinary least squares fit, and hence it does not directly depend on the
coefficients obtained by the penalized least squares regression.

Figure 48.18 Applying k-fold Cross Validation to Computing the CVPRESS Statistic

If you want a statistic that is directly based on the coefficients obtained by a penalized least squares regression,
you can specify CHOOSE=CVEX to use k-fold external cross validation. External cross validation directly
applies the coefficients obtained by a penalized least squares regression to computing the predicted residual
sum of squares. Figure 48.19 depicts k-fold external cross validation.
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Figure 48.19 k-fold External Cross Validation

In k-fold external cross validation, the data are split into k approximately equal-sized parts, as illustrated
in the first column of Figure 48.19. One of these parts is held out for validation, and the model is fit on the
remaining k � 1 parts by the LASSO method or the elastic net method. This fitted model is used to compute
the predicted residual sum of squares on the omitted part, and this process is repeated for each of the k parts.
More specifically, for the ith model fit (i D 1; 2; : : : ; k), let X�i denote the held-out part of the matrix of
covariates and y�i denote the corresponding response, and let Xi denote the remaining k � 1 parts of the
matrix of covariates and yi denote the corresponding response. The LASSO method is applied on Xi and yi
to solve the optimization problem

min jjyi � Xiˇjj2 C �1
mX
jD1

jˇj j

Note that, as discussed in the section “Elastic Net Selection (ELASTICNET)” on page 3711, the elastic net
method can be solved in the same way as LASSO, by augmenting the design matrix Xi and the response yi .

Following the piecewise linear solution path of LASSO, the coefficients

ˇi1;ˇi2; : : : ;ˇip; : : :

are computed to correspond to the LASSO regularization parameter

�i11 ; �
i2
1 ; : : : ; �

ip
1 ; : : :

Based on the computed coefficients, the predicted residual sum of squares is computed on the held-out part
X�i and y�i as

r ip D jjy�i � X�iˇipjj2
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The preceding process can be summarized as

.Xi ; yi /! .�
ip
1 ;ˇ

ip/! .�
ip
1 ; r

ip/; i D 1; 2; : : : ; k; p D 1; 2; : : :

For the illustration in Figure 48.19, the results .�ip1 ; r
ip/ correspond to four curves. The knots

�i11 ; �
i2
1 ; : : : ; �

ip
1 ; : : : are usually different among different model fits i D 1; 2; : : : ; k. To merge the re-

sults of the k model fits for computing the CVEXPRESS statistic, perform the following three steps:

1. Identify distinct knots among all �ip1 ; i D 1; 2; : : : ; k; p D 1; 2; : : :

2. Apply interpolation to compute the predicted residual sum of squares at all the knots. Here the
interpolation is done in a closed quadratic function by using the piecewise linear solutions of LASSO.

3. Add the predicted residual sum of squares of k model fits according to the identified knots, and the
sum of the k predicted residual sum of squares so obtained is the estimate of the prediction error that is
denoted by CVEXPRESS.

The bottom curve in Figure 48.19 illustrates the curve between the CVEXPRESS statistics and the value of
�1 (L1). Note that computing the CVEXPRESS statistic for k-fold external cross validation requires fitting k
different LASSO or elastic net models, and so the work and memory requirements increase linearly with the
number of cross validation folds.

In addition to characterizing the piecewise linear solutions of the coefficients ˇi1;ˇi2; : : : ;ˇip; : : : by the
LASSO regularization parameters �i11 ; �

i2
1 ; : : : ; �

ip
1 ; : : :, you can also characterize the solutions by the sum

of the absolute values of the coefficients or the scaled regularization parameter. For a detailed discussion of
the different options, see the L1CHOICE= option in the MODEL statement.

Like k-fold cross validation, you can use the CVMETHOD= option in the MODEL statement to specify
the method for splitting the data into k parts in k-fold external cross validation. CVMETHOD=BLOCK(k)
requests that the k parts be made of blocks of floor.n=k/ or floor.n=k/C 1 successive observations, where n
is the number of observations. CVMETHOD=SPLIT(k) requests that parts consist of observations f1; k C
1; 2k C 1; 3k C 1; : : :g, f2; k C 2; 2k C 2; 3k C 2; : : :g, . . . , fk; 2k; 3k; : : :g. CVMETHOD=RANDOM(k)
partitions the data into random subsets, each with approximately floor.n=k/ observations. Finally, you can
use the formatted value of an input data set variable to define the parts by specifying CVMETHOD=variable.
This last partitioning method is useful in cases where you need to exercise extra control over how the data are
partitioned by taking into account factors such as important but rare observations that you want to “spread out”
across the various parts. By default, PROC GLMSELECT uses CVMETHOD=RANDOM(5) for external
cross validation.

For the elastic net method, if the ridge regression parameter �2 is not specified by the L2= option and you use
k-fold external cross validation for the CHOOSE= option, then the optimal �2 is searched over an interval
(see Figure 48.12 for an illustration) and it is set to the value that achieves the minimum CVEXPRESS
statistic. You can use the L2SEARCH=, L2LOW=, L2HIGH=, and L2STEPS= options to control the search
of �2 (L2).

Difference between Cross Validation and External Cross Validation

If you specify SELECTION=LASSO or SELECTION=ELASTICNET, the penalized model is fit only once
using the same training samples in k-fold cross validation, whereas the penalized model is fit k times by
using different training samples in k-fold external cross validation. External cross validation also requires
identifying the knots that result from the different solution paths. The CVPRESS statistic that is computed in
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k-fold cross validation is based on ordinary least squares regression, whereas the CVEXPRESS statistic that
is computed in k-fold external cross validation is based on the penalized regression.

Using External Cross Validation as the CHOOSE= Criterion

When you specify the CHOOSE=CVEX suboption of the SELECTION= option in the MODEL statement,
the CVEXPRESS statistics are computed for the models at each step of the selection process. The model at
the first step that has the smallest CVEXPRESS score is selected.

Screening
Model selection from a very large number of effects is computationally demanding. For example, in analyzing
microarray data (where each dot in the array corresponds to a regressor), it is not uncommon to have 35,000
such regressors. Large regression problems also arise when you want to consider all possible interactions of
your main effects as candidates for inclusion in a selected model. For an example that uses this approach to
build a predictive model for bankruptcy, see Foster and Stine (2004).

In recent years, there has been a resurgence of interest in combining variable selection methods with a
screening approach that reduces the large number of regressors to a much smaller subset from which the
model selection is performed. There are two categories of screening methods:

• safe screening methods, by which the resulting solution is exactly the same as the solution when no
screening is performed

• heuristic screening methods, by which the resulting solution is not necessarily the same as the solution
when no screening is performed

The heuristic screening approaches are usually much faster than the safe screening methods, but they are not
guaranteed to reproduce the true LASSO or elastic net solution.

Safe Screening via SCREEN=SASVI

The safe screening approaches are developed mainly for the LASSO method and its extensions, which solve
a well-defined convex optimization problem. For these methods, safe screening works as follows:

1. Given a solution ˇ1 that corresponds to a regularization parameter �1, safe screening approaches aim to
identify the effects that are guaranteed to have zero coefficients in the solution ˇ2, which corresponds
to the regularization parameter �2 (0 < �2 < �1).

2. The computation of ˇ2 can exclude such inactive effects, thus saving computation cost.

The idea of safe screening was pioneered by El Ghaoui, Viallon, and Rabbani (2012), and improved
subsequently by other researchers (Liu et al. 2014; Wang et al. 2013; Xiang, Xu, and Ramadge 2011).

If you specify SCREEN=SASVI in the model statement, PROC GLMSELECT uses the SASVI technique
of Liu et al. (2014) to speed up LAR-type LASSO. The computation cost can usually be reduced while the
solution is the same when you specify SCREEN=NONE.
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Heuristic Screening via SCREEN=SIS

Heuristic screening approaches (Fan and Lv 2008; Tibshirani et al. 2012) use a screening statistic that is
inexpensive to compute in order to eliminate regressors that are unlikely to be selected. For linear regression,
you can use the magnitude of the correlation between each individual regressor and the response as such a
screening statistic. The square of the correlation between a regressor and the response is the R-square value
for the univariate regression of the response on this regressor. Hence, screening by the magnitude of the
pairwise correlations is equivalent to fitting univariate models to do the screening.

The SIS (sure independence screening) approach proposed by Fan and Lv (2008) is a well-known heuristic
screening approach that applies to model selection methods such as forward selection, backward selection,
LASSO, and so on. When you specify SCREEN=SIS in the MODEL statement, PROC GLMSELECT first
chooses only the subset of regressors whose screening statistics are among a specified number or percentage
of the largest screening statistic values. When you specify SCREEN=SIS, PROC GLMSELECT uses the
screening statistic that is the magnitude of the correlation between each individual regressor and the response.
Then it performs model selection for the response from this screened subset of the original regressors.

Displayed Output
The following sections describe the displayed output produced by PROC GLMSELECT. The output is
organized into various tables, which are discussed in order of appearance. Note that the contents of a table
might change depending on the options that you specify.

Model Information

The “Model Information” table displays basic information about the data sets and the settings used to control
effect selection. These settings include the following:

• the selection method

• the criteria used to select effects, stop the selection, and choose the selected model

• the effect hierarchy enforced

The ODS name of the “Model Information” table is ModelInfo.

Performance Settings

The “Performance Settings” table displays settings that affect performance. These settings include whether
threading is enabled and the number of CPUs available as well as the method used to build the crossproduct
matrices. This table is displayed only if you specify the DETAILS option in the PERFORMANCE statement.
The ODS name of the “Performance Settings” table is PerfSettings.

Number of Observations

The “Number of Observations” table displays the number of observations read from the input data set and the
number of observations used in the analysis. If you specify a FREQ statement, the table also displays the
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sum of frequencies read and used. If you use a PARTITION statement, the table also displays the number
of observations used for each data role. If you specify TESTDATA= or VALDATA= data sets in the PROC
GLMSELECT statement, then “Number of Observations” tables are also produced for these data sets. The
ODS name of the “Number of Observations” table is NObs.

Class Level Information

The “Class Level Information” table lists the levels of every variable specified in the CLASS statement. The
ODS name of the “Class Level Information” table is ClassLevelInfo.

Class Level Coding

The “Class Level Coding” table shows the coding used for variables specified in the CLASS statement. The
ODS name of the “Class Level Coding” table is ClassLevelCoding.

Dimensions

The “Dimensions” table displays information about the number of effects and the number of parameters from
which the selected model is chosen. If you use split classification variables, then this table also includes
the number of effects after splitting is taken into account. The ODS name of the “Dimensions” table is
Dimensions.

Candidates

The “Candidates” table displays the effect names and values of the criterion used to select entering or
departing effects at each step of the selection process. The effects are displayed in sorted order from best to
worst of the selection criterion. You request this table with the DETAILS= option in the MODEL statement.
The ODS name of the “Candidates” table is Candidates.

Selection Summary

The “Selection Summary” table displays details about the sequence of steps of the selection process. For
each step, the effect that was entered or dropped is displayed along with the statistics used to select the effect,
stop the selection, and choose the selected model. You can request that additional statistics be displayed
with the STATS= option in the MODEL statement. For all criteria that you can use for model selection, the
steps at which the optimal values of these criteria occur are also indicated. The ODS name of the “Selection
Summary” table is SelectionSummary.

Stop Reason

The “Stop Reason” table displays the reason why the selection stopped. To facilitate programmatic use of
this table, an integer code is assigned to each reason and is included if you output this table by using an ODS
OUTPUT statement. The reasons and their associated codes follow:
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Code Stop Reason

1 maximum number of steps done
2 specified number of steps done
3 specified number of effects in model
4 stopping criterion at local optimum
5 model is an exact fit
6 all entering effects are linearly dependent on those in the model
7 all effects are in the model
8 all effects have been dropped
9 requested full least squares fit completed
10 stepwise selection is cycling
11 dropping any effect does not improve the selection criterion
12 no effects are significant at the specified SLE or SLS levels
13 adding or dropping any effect does not improve the selection criterion
14 all remaining effects are required

The ODS name of the “Stop Reason” table is StopReason.

Stop Details

The “Stop Details” table compares the optimal value of the stopping criterion at the final model with how
it would change if the best candidate effect were to enter or leave the model. The ODS name of the “Stop
Details” table is StopDetails.

Selected Effects

The “Selected Effects” table displays a string containing the list of effects in the selected model. The ODS
name of the “Selected Effects” table is SelectedEffects.

ANOVA

The “ANOVA” table displays an analysis of variance for the selected model. This table includes the following:

• the Source of the variation, Model for the fitted regression, Error for the residual error, and C Total for
the total variation after correcting for the mean. The Uncorrected Total Variation is produced when the
NOINT option is used.

• the degrees of freedom (DF) associated with the source

• the Sum of Squares for the term

• the Mean Square, the sum of squares divided by the degrees of freedom

• the F Value for testing the hypothesis that all parameters are zero except for the intercept. This is
formed by dividing the mean square for Model by the mean square for Error.

• the Prob>F, the probability of getting a greater F statistic than that observed if the hypothesis is
true. Note that these p-values are displayed only if you specify the “SHOWPVALUES” option in the
MODEL statement. These p-values are generally liberal because they are not adjusted for the fact that
the terms in the model have been selected.
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You can request “ANOVA” tables for the models at each step of the selection process with the DETAILS=
option in the MODEL statement. The ODS name of the “ANOVA” table is ANOVA.

Fit Statistics

The “Fit Statistics” table displays fit statistics for the selected model. The statistics displayed include the
following:

• Root MSE, an estimate of the standard deviation of the error term. It is calculated as the square root of
the mean square error.

• Dep Mean, the sample mean of the dependent variable

• R-square, a measure between 0 and 1 that indicates the portion of the (corrected) total variation
attributed to the fit rather than left to residual error. It is calculated as SS(Model) divided by SS(Total).
It is also called the coefficient of determination. It is the square of the multiple correlation—in other
words, the square of the correlation between the dependent variable and the predicted values.

• Adj R-Sq, the adjusted R2, a version of R2 that has been adjusted for degrees of freedom. It is
calculated as

NR2 D 1 �
.n � i/.1 �R2/

n � p

where i is equal to 1 if there is an intercept and 0 otherwise, n is the number of observations used to fit
the model, and p is the number of parameters in the model.

• fit criteria AIC, AICC, BIC, CP, and PRESS if they are used in the selection process or are requested
with the STATS= option. See the section “Criteria Used in Model Selection Methods” on page 3714
for details and Table 48.10 for the formulas for evaluating these criteria.

• the CVPRESS statistic when cross validation is used in the selection process. See the section “Cross
Validation” on page 3726 for details.

• the average square errors (ASE) on the training, validation, and test data. See the section “Using
Validation and Test Data” on page 3724 for details.

You can request “Fit Statistics” tables for the models at each step of the selection process with the DETAILS=
option in the MODEL statement. The ODS name of the “Fit Statistics” table is FitStatistics.

Cross Validation Details

The “Cross Validation Details” table displays the following:

• the fold number

• the number of observations used for fitting

• the number of observations omitted

• the predicted residual sum of squares on the omitted observations

You can request this table with the CVDETAILS= option in the MODEL statement whenever cross validation
is used in the selection process. This table is displayed for the selected model, but you can request this table
at each step of the selection process by using the DETAILS= option in the MODEL statement. The ODS
name of the “Cross Validation Details” table is CVDetails.
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Parameter Estimates

The “Parameter Estimates” table displays the parameters in the selected model and their estimates. The
information displayed for each parameter in the selected model includes the following:

• the parameter label that includes the effect name and level information for effects containing classifica-
tion variables

• the degrees of freedom (DF) for the parameter. There is one degree of freedom unless the model is not
full rank.

• the parameter estimate

• the standard error, which is the estimate of the standard deviation of the parameter estimate

• T for H0: Parameter=0, the t test that the parameter is zero. This is computed as the parameter estimate
divided by the standard error.

• the Prob > |T|, the probability that a t statistic would obtain a greater absolute value than that observed
given that the true parameter is zero. This is the two-tailed significance probability. Note that these
p-values are displayed only if you specify the SHOWPVALUES option in the MODEL statement.
These p-values are generally liberal because they are not adjusted for the fact that the terms in the
model have been selected.

If cross validation is used in the selection process, then you can request that estimates of the parameters for
each cross validation fold be included in the “Parameter Estimates” table by using the CVDETAILS= option
in the MODEL statement. You can request “Parameter Estimates” tables for the models at each step of the
selection process with the DETAILS= option in the MODEL statement. The ODS name of the “Parameter
Estimates” table is ParameterEstimates.

Score Information

For each SCORE statement, the “Score Information” table displays the names of the score input and output
data sets, and the number of observations that were read and successfully scored. The ODS name of the
“Score Information” table is ScoreInfo.

Timing Breakdown

The “Timing Breakdown” table displays a broad breakdown of where time was spent in the PROC
GLMSELECT step. This table is displayed only if you specify the DETAILS option in the PERFOR-
MANCE statement. The ODS name of the “Timing Breakdown” table is Timing.

ODS Table Names
PROC GLMSELECT assigns a name to each table it creates. You can use these names to reference the table
when you use the Output Delivery System (ODS) to select tables and create output data sets. These names
are listed in Table 48.11.

For more information about ODS, see Chapter 20, “Using the Output Delivery System.”
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Table 48.11 ODS Tables Produced by PROC GLMSELECT

ODS Table Name Description Statement Option

ANOVA Selected model ANOVA table MODEL Default
AvgParmEst Average parameter estimates MODELAVERAGE Default
BSplineDetails B-spline basis details EFFECT DETAILS
Candidates Entry/removal effect ranking MODEL DETAILS=
ClassLevelCoding Classification variable coding CLASS SHOWCODING
ClassLevelInfo Classification variable levels CLASS Default
CollectionLevelInfo Levels of collection effects EFFECT DETAILS
CVDetails Cross validation PRESS by fold MODEL CVDETAILS=
Dimensions Number of effects and parameters MODEL Default
EffectSelectPct Effect selection percentages MODELAVERAGE Default
FitStatistics Selected model fit statistics MODEL Default
MMLevelInfo Levels of multimember effects EFFECT DETAILS
ModelAvgInfo Model averaging information MODELAVERAGE Default
ModelInfo Model information MODEL Default
ModelSelectFreq Model selection frequencies MODELAVERAGE Default
NObs Number of observations MODEL Default
ParameterNames Labels for column names in the

design matrix
PROC OUTDESIGN(names)

ParameterEstimates Selected model parameter esti-
mates

MODEL Default

PerfSettings Performance settings PERFORMANCE DETAILS
PolynomialDetails Polynomial details EFFECT DETAILS
PolynomialScaling Polynomial scaling EFFECT DETAILS
RefitAvgParmEst Refit average parameter estimates MODELAVERAGE REFIT
ScoreInfo Score request information SCORE Default
SelectedEffects List of selected effects MODEL Default
SelectionSummary Selection summary MODEL Default
StopDetails Stopping criterion details MODEL Default
StopReason Reason why selection stopped MODEL Default
Timing Timing details PERFORMANCE DETAILS
TPFSplineDeatils Truncated power function spline

basis details
EFFECT DETAILS

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”
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Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

You must also specify the PLOTS= option in the PROC GLMSELECT statement.

The following sections describe the ODS graphical displays produced by PROC GLMSELECT. The examples
use the Sashelp.Baseball data set that is described in the section “Getting Started: GLMSELECT Procedure”
on page 3662.

ODS Graph Names

PROC GLMSELECT assigns a name to each graph it creates using ODS. You can use these names to
reference the graphs when using ODS. The names are listed in Table 48.12.

Table 48.12 Graphs Produced by PROC GLMSELECT

ODS Graph Name Plot Description PLOTS Option

AdjRSqPlot Adjusted R-square by step CRITERIA(UNPACK)
AICCPlot Corrected Akaike’s information cri-

terion by step
CRITERIA(UNPACK)

AICPlot Akaike’s information criterion by
step

CRITERIA(UNPACK)

ASEPlot Average square errors by step ASE
BICPlot Sawa’s Bayesian information crite-

rion by step
CRITERIA(UNPACK)

CandidatesPlot SELECT= criterion by effect CANDIDATES
ChooseCriterionPlot CHOOSE= criterion by step COEFFICIENTS(UNPACK)
CoefficientPanel Coefficients and CHOOSE= criterion

by step
COEFFICIENTS

CoefficientPlot Coefficients by step COEFFICIENTS(UNPACK)
CPPlot Mallows’ Cp by step CRITERIA(UNPACK)
CriterionPanel Fit criteria by step CRITERIA
CVPRESSPlot Cross validation predicted RSS by

step
CRITERIA(UNPACK)

EffectSelectPctPlot Resampling effect selection percent-
ages

EFFECTSELECTPCT

ParmDistPanel Resampling parameter estimate dis-
tributions

PARMDIST

PRESSPlot Predicted RSS by step CRITERIA(UNPACK)
SBCPlot Schwarz Bayesian information crite-

rion by step
CRITERIA(UNPACK)

ValidateASEPlot Average square error on validation
data by step

CRITERIA(UNPACK)
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Candidates Plot

You request the “Candidates Plot” by specifying the PLOTS=CANDIDATES option in the PROC
GLMSELECT statement and the DETAILS=STEPS option in the MODEL statement. This plot shows
the values of selection criterion for the candidate effects for entry or removal, sorted from best to worst from
left to right across the plot. The leftmost candidate displayed is the effect selected for entry or removal at that
step. You can use this plot to see at what steps the decision about which effect to add or drop is clear-cut. See
Figure 48.6 for an example.

Coefficient Panel

When you specify the PLOTS=COEFFICIENTS option in the PROC GLMSELECT statement, PROC
GLMSELECT produces a panel of two plots showing how the standardized coefficients and the criterion used
to choose the final model evolve as the selection progresses. The following statements provide an example:

ods graphics on;

proc glmselect data=sashelp.baseball plots=coefficients;
class league division;
model logSalary = nAtBat nHits nHome nRuns nRBI nBB

yrMajor|yrMajor crAtBat|crAtBat crHits|crHits
crHome|crHome crRuns|crRuns crRbi|crRbi
crBB|crBB league division nOuts nAssts nError /
selection=forward(stop=AICC CHOOSE=SBC);

run;

Figure 48.20 shows the requested graphic. The upper plot in the panel displays the standardized coefficients
as a function of the step number. You can request standardized coefficients in the parameter estimates tables
by specifying the STB option in the MODEL statement, but this option is not required to produce this plot.
To help in tracing the changes in a parameter, the standardized coefficients for each parameter are connected
by lines. Coefficients corresponding to effects that are not in the selected model at a step are zero and
hence not observable. For example, consider the parameter CrAtBat*CrAtBat in Output 48.20. Because
CrAtBat*CrAtBat enters the model at step 2, the line that represents this parameter starts rising from zero at
step 1 when CrRuns enters the model. Parameters that are nonzero at the final step of the selection are labeled
if their magnitudes are greater than 1% of the range of the magnitudes of all the nonzero parameters at this
step. To avoid collision, labels corresponding to parameters with similar values at the final step might get
suppressed. You can control when this label collision avoidance occurs by using the LABELGAP= suboption
of the PLOTS=COEFFICIENTS option. Planned enhancements to the automatic label collision avoidance
algorithm will obviate the need for this option in future releases of the GLMSELECT procedure.
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Figure 48.20 Coefficient Panel

The lower plot in the panel shows how the criterion used to choose among the examined models progresses.
The selected step occurs at the optimal value of this criterion. In this example, this criterion is the SBC
criterion and it achieves its minimal value at step 9 of the forward selection.

In some cases, particularly when the final step contains a large number of parameters, you might be interested
in using this plot only to discern if and when the parameters in the model are essential unchanged beyond
a certain step. In such cases, you might want to suppress the labeling of the parameters and use a numeric
axis on the horizontal axis of the plot. You can do this using the STEPAXIS= and MAXPARMLABEL=
suboptions of the PLOTS=CRITERIA option. The following statements provide an example:

proc glmselect data=sashelp.baseball
plots(unpack maxparmlabel=0 stepaxis=number)=coefficients;

class league division;
model logSalary = nAtBat nHits nHome nRuns nRBI nBB

yrMajor|yrMajor crAtBat|crAtBat crHits|crHits
crHome|crHome crRuns|crRuns crRbi|crRbi
crBB|crBB league division nOuts nAssts nError /
selection=forward(stop=none);

run;
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The UNPACK = option requests that the plots of the coefficients and CHOOSE= criterion be shown in
separate plots. The STEPAXIS=NUMBER option requests a numeric horizontal axis showing step number,
and the MAXPAMLABEL=0 option suppresses the labels for the parameters. The “Coefficient Plot” is
shown in Figure 48.21. You can see that the standardized coefficients do not vary greatly after step 16.

Figure 48.21 Coefficient Plot

Criterion Panel

You request the criterion panel by specifying the PLOTS=CRITERIA option in the PROC GLMSELECT
statement. This panel displays the progression of the ADJRSQ, AIC, AICC, and SBC criteria, as well as
any other criteria that are named in the CHOOSE=, SELECT=, STOP=, or STATS= option in the MODEL
statement.

The following statements provide an example:

proc glmselect data=sashelp.baseball plots=criteria;
class league division;
model logSalary = nAtBat nHits nHome nRuns nRBI nBB

yrMajor|yrMajor crAtBat|crAtBat crHits|crHits
crHome|crHome crRuns|crRuns crRbi|crRbi
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crBB|crBB league division nOuts nAssts nError /
selection=forward(steps=15 choose=AICC)
stats=PRESS;

run;

Figure 48.22 shows the requested criterion panel. Note that the PRESS criterion is included in the panel
because it is named in the STATS= option in the MODEL statement. The selected step is displayed as a
vertical reference line on the plot of each criterion, and the legend indicates which of these criteria is used to
make the selection. If the selection terminates for a reason other than optimizing a criterion displayed on
this plot, then the legend will not report a reason for the selected step. The optimal value of each criterion is
indicated with the “Star” marker. Note that it is possible that a better value of a criterion might have been
reached had more steps of the selection process been done.

Figure 48.22 Criterion Panel
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Average Square Error Plot

You request the average square error plot by specifying the PLOTS=ASE option in the PROC GLMSELECT
statement. This plot shows the progression of the average square error (ASE) evaluated separately on the
training data, and the test and validation data whenever these data are provided with the TESTDATA= and
VALDATA= options or are produced by using a PARTITION statement. You use the plot to detect when
overfitting the training data occurs. The ASE decreases monotonically on the training data as parameters are
added to a model. However, the average square error on test and validation data typically starts increasing
when overfitting occurs. See Output 48.1.9 and Output 48.2.6 for examples.

Examining Specific Step Ranges

The coefficient panel, criterion panel, and average square error plot display information for all the steps
examined in the selection process. In some cases, you might want to focus attention on just a particular
step range. For example, it is hard to discern the variation in the criteria displayed in Figure 48.22 near the
selected step because the variation in these criteria in the steps close to the selected step is small relative
to the variation across all steps. You can request a range of steps to display using the STARTSTEP= and
ENDSTEP= suboptions of the PLOTS= option. You can specify these options as both global and specific plot
options, with the specific options taking precedence if both are specified. The following statements provide
an example:

proc glmselect data=sashelp.baseball plots=criteria(startstep=10 endstep=16);
class league division;
model logSalary = nAtBat nHits nHome nRuns nRBI nBB

yrMajor|yrMajor crAtBat|crAtBat crHits|crHits
crHome|crHome crRuns|crRuns crRbi|crRbi
crBB|crBB league division nOuts nAssts nError /
selection=forward(stop=none choose=AICC);

run;

ods graphics off;

Figure 48.23 shows the progression of the fit criteria between steps 10 and 16. Note that if the optimal value
of a criterion does not occur in this specified step range, then no optimal marker appears for that criterion.
The plot of the SBC criterion in Figure 48.23 is one such case.
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Figure 48.23 Criterion Panel for Specified Step Range
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Examples: GLMSELECT Procedure

Example 48.1: Modeling Baseball Salaries Using Performance Statistics
This example continues the investigation of the baseball data set introduced in the section “Getting Started:
GLMSELECT Procedure” on page 3662. In that example, the default stepwise selection method based on
the SBC criterion was used to select a model. In this example, model selection that uses other information
criteria and out-of-sample prediction criteria is explored.

PROC GLMSELECT provides several selection algorithms that you can customize by specifying criteria for
selecting effects, stopping the selection process, and choosing a model from the sequence of models at each
step. For more details on the criteria available, see the section “Criteria Used in Model Selection Methods”
on page 3714. The SELECT=SL suboption of the SELECTION= option in the MODEL statement in the
following code requests the traditional hypothesis test-based stepwise selection approach, where effects in
the model that are not significant at the stay significance level (SLS) are candidates for removal and effects
not yet in the model whose addition is significant at the entry significance level (SLE) are candidates for
addition to the model.

ods graphics on;

proc glmselect data=sashelp.baseball plot=CriterionPanel;
class league division;
model logSalary = nAtBat nHits nHome nRuns nRBI nBB

yrMajor crAtBat crHits crHome crRuns crRbi
crBB league division nOuts nAssts nError

/ selection=stepwise(select=SL) stats=all;
run;

The default SLE and SLS values of 0.15 might not be appropriate for these data. One way to investigate
alternative ways to stop the selection process is to assess the sequence of models in terms of model fit
statistics. The STATS=ALL option in the MODEL statement requests that all model fit statistics for assessing
the sequence of models of the selection process be displayed. To help in the interpretation of the selection
process, you can use graphics supported by PROC GLMSELECT. ODS Graphics must be enabled before
requesting plots. For general information about ODS Graphics, see Chapter 21, “Statistical Graphics Using
ODS.” With ODS Graphics enabled, the PLOTS=CRITERIONPANEL option in the PROC GLMSELECT
statement produces the criterion panel shown in Output 48.1.1.
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Output 48.1.1 Criterion Panel

You can see in Output 48.1.1 that this stepwise selection process would stop at an earlier step if you use the
Schwarz Bayesian information criterion (SBC) or predicted residual sum of squares (PRESS) to assess the
selected models as stepwise selection progresses. You can use the CHOOSE= suboption of the SELECTION=
option in the MODEL statement to specify the criterion you want to use to select among the evaluated models.
The following statements use the PRESS statistic to choose among the models evaluated during the stepwise
selection.

proc glmselect data=sashelp.baseball;
class league division;
model logSalary = nAtBat nHits nHome nRuns nRBI nBB

yrMajor crAtBat crHits crHome crRuns crRbi
crBB league division nOuts nAssts nError

/ selection=stepwise(select=SL choose=PRESS);
run;

Note that the selected model is the model at step 9. By default, PROC GLMSELECT displays the selected
model, ANOVA and fit statistics, and parameter estimates for the selected model. These are shown in
Output 48.1.2.
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Output 48.1.2 Details of Selected Model

The GLMSELECT Procedure
Selected Model

The GLMSELECT Procedure
Selected Model

The selected model, based on PRESS, is the model at Step 9.

Effects: Intercept nAtBat nHits nBB YrMajor CrHits Division nOuts

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value

Model 7 124.67715 17.81102 55.07

Error 255 82.47658 0.32344

Corrected Total 262 207.15373

Root MSE 0.56872

Dependent Mean 5.92722

R-Square 0.6019

Adj R-Sq 0.5909

AIC -23.98522

AICC -23.27376

PRESS 88.55275

SBC -260.40799

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value

Intercept 1 4.176133 0.150539 27.74

nAtBat 1 -0.001468 0.000946 -1.55

nHits 1 0.011078 0.002983 3.71

nBB 1 0.007226 0.002115 3.42

YrMajor 1 0.070056 0.018911 3.70

CrHits 1 0.000247 0.000143 1.72

Division  East 1 0.143082 0.070972 2.02

Division  West 0 0 . .

nOuts 1 0.000241 0.000134 1.81
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Even though the model that is chosen to give the smallest value of the PRESS statistic is the model at step 9,
the stepwise selection process continues to the step where the stopping condition based on entry and stay
significance levels is met. If you use the PRESS statistic as the stopping criterion, the stepwise selection
process stops at step 9. This ability to stop at the first extremum of the criterion you specify can significantly
reduce the amount of computation done, especially in the cases where you are selecting from a large number
of effects. The following statements request stopping based on the PRESS statistic. The stop reason and stop
details tables are shown in Output 48.1.3.

proc glmselect data=sashelp.baseball plot=Coefficients;
class league division;
model logSalary = nAtBat nHits nHome nRuns nRBI nBB

yrMajor crAtBat crHits crHome crRuns crRbi
crBB league division nOuts nAssts nError

/ selection=stepwise(select=SL stop=PRESS);
run;

Output 48.1.3 Stopping Based on PRESS Statistic

The GLMSELECT ProcedureThe GLMSELECT Procedure

Selection stopped at a local minimum of the PRESS criterion.

Stop Details

Candidate
For Effect

Candidate
PRESS

Compare
PRESS

Entry CrBB 88.6321 > 88.5528

Removal nAtBat 88.6866 > 88.5528

The PLOTS=COEFFICIENTS specification in the PROC GLMSELECT statement requests a plot that
enables you to visualize the selection process.
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Output 48.1.4 Coefficient Progression Plot

Output 48.1.4 shows the standardized coefficients of all the effects selected at some step of the stepwise
method plotted as a function of the step number. This enables you to assess the relative importance of the
effects selected at any step of the selection process as well as providing information as to when effects entered
the model. The lower plot in the panel shows how the criterion used to choose the selected model changes as
effects enter or leave the model.

Model selection is often done in order to obtain a parsimonious model that can be used for prediction on new
data. An ever-present danger is that of selecting a model that overfits the “training” data used in the fitting
process, yielding a model with poor predictive performance. Using cross validation is one way to assess the
predictive performance of the model. Using k-fold cross validation, the training data are subdivided into
k parts, and at each step of the selection process, models are obtained on each of the k subsets of the data
obtained by omitting one of these parts. The cross validation predicted residual sum of squares, denoted CV
PRESS, is obtained by summing the squares of the residuals when each of these submodels is scored on
the data omitted in fitting the submodel. Note that the PRESS statistic corresponds to the special case of
“leave-one-out” cross validation.
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In the preceding example, the PRESS statistic was used to choose among models that were chosen based
on entry and stay significance levels. In the following statements, the SELECT=CVPRESS suboption of
the SELECTION= option in the MODEL statement requests that the CV PRESS statistic itself be used
as the selection criterion. The DROP=COMPETITIVE suboption requests that additions and deletions be
considered simultaneously when deciding whether to add or remove an effect. At any step, the CV PRESS
statistic for all models obtained by deleting one effect from the model or adding one effect to the model is
computed. Among these models, the one yielding the smallest value of the CV PRESS statistic is selected
and the process is repeated from this model. The stepwise selection terminates if all additions or deletions
increase the CV PRESS statistic. The CVMETHOD=SPLIT(5) option requests five-fold cross validation
with the five subsets consisting of observations f1; 6; 11; : : :g, f2; 7; 12; : : :g, and so on.

proc glmselect data=sashelp.baseball plot=Candidates;
class league division;
model logSalary = nAtBat nHits nHome nRuns nRBI nBB

yrMajor crAtBat crHits crHome crRuns crRbi
crBB league division nOuts nAssts nError

/ selection=stepwise(select=CV drop=competitive)
cvMethod=split(5);

run;

The selection summary table is shown in Output 48.1.5. By comparing Output 48.1.5 and Output 48.7 you
can see that the sequence of models produced is different from the sequence when the stepwise selection is
based on the SBC statistic.

Output 48.1.5 Stepwise Selection Based on Cross Validation

The GLMSELECT ProcedureThe GLMSELECT Procedure

Stepwise Selection Summary

Step
Effect
Entered

Effect
Removed

Number
Effects In

Number
Parms In CV PRESS

0 Intercept 1 1 208.9638

1 CrRuns 2 2 122.5755

2 nHits 3 3 96.3949

3 YrMajor 4 4 92.2117

4 nBB 5 5 89.5242

5 CrRuns 4 4 88.6917

6 League 5 5 88.0417

7 nError 6 6 87.3170

8 Division 7 7 87.2147

9 nHome 8 8 87.0960*

* Optimal Value of Criterion
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If you have sufficient data, another way you can assess the predictive performance of your model is to reserve
part of your data for testing your model. You score the model obtained using the training data on the test data
and assess the predictive performance on these data that had no role in the selection process. You can also
reserve part of your data to validate the model you obtain in the training process. Note that the validation data
are not used in obtaining the coefficients of the model, but they are used to decide when to stop the selection
process to limit overfitting.

PROC GLMSELECT enables you to partition your data into disjoint subsets for training validation and
testing roles. This partitioning can be done by using random proportions of the data, or you can designate a
variable in your data set that defines which observations to use for each role. See the section “PARTITION
Statement” on page 3701 for more details.

The following statements randomly partition the baseball data set, using 50% for training, 30% for validation,
and 20% for testing. The model selected at each step is scored on the validation data, and the average residual
sums of squares (ASE) is evaluated. The model yielding the lowest ASE on the validation data is selected.
The ASE on the test data is also evaluated, but these data play no role in the selection process. Note that a
seed for the pseudo-random number generator is specified in the PROC GLMSELECT statement.

proc glmselect data=sashelp.baseball plots=(CriterionPanel ASE) seed=1;
partition fraction(validate=0.3 test=0.2);
class league division;
model logSalary = nAtBat nHits nHome nRuns nRBI nBB

yrMajor crAtBat crHits crHome crRuns crRbi
crBB league division nOuts nAssts nError

/ selection=forward(choose=validate stop=10);
run;

Output 48.1.6 Number of Observations Table

The GLMSELECT ProcedureThe GLMSELECT Procedure

Number of Observations Read 322

Number of Observations Used 263

Number of Observations Used for Training 132

Number of Observations Used for Validation 80

Number of Observations Used for Testing 51
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Output 48.1.6 shows the number of observation table. You can see that of the 263 observations that were used
in the analysis, 132 (50.2%) observations were used for model training, 80 (30.4%) for model validation, and
51 (19.4%) for model testing.

Output 48.1.7 Selection Summary and Stop Reason

The GLMSELECT ProcedureThe GLMSELECT Procedure

Forward Selection Summary

Step
Effect
Entered

Number
Effects In

Number
Parms In SBC ASE

Validation
ASE Test ASE

0 Intercept 1 1 -30.8531 0.7628 0.7843 0.8818

1 CrRuns 2 2 -93.9367 0.4558 0.4947 0.4210

2 nHits 3 3 -126.2647 0.3439 0.3248 0.4697

3 YrMajor 4 4 -128.7570 0.3252 0.2920* 0.4614

4 nBB 5 5 -132.2409* 0.3052 0.3065 0.4297

5 Division 6 6 -130.7794 0.2974 0.3050 0.4218

6 nOuts 7 7 -128.5897 0.2914 0.3028 0.4186

7 nRBI 8 8 -125.7825 0.2868 0.3097 0.4489

8 nHome 9 9 -124.7709 0.2786 0.3383 0.4533

9 nAtBat 10 10 -121.3767 0.2754 0.3337 0.4580

* Optimal Value of Criterion

Selection stopped at the first model containing the specified number of effects (10).
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Output 48.1.7 shows the selection summary table and the stop reason. The forward selection stops at step 9
since the model at this step contains 10 effects, and so it satisfies the stopping criterion requested with the
STOP=10 suboption. However, the selected model is the model at step 3, where the validation ASE, the
CHOOSE= criterion, achieves its minimum.

Output 48.1.8 Criterion Panel

The criterion panel in Output 48.1.8 shows how the various criteria evolved as the stepwise selection method
proceeded. Note that other than the ASE evaluated on the validation data, these criteria are evaluated on the
training data.
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Output 48.1.9 Average Square Errors by Role

Finally, the ASE plot in Output 48.1.9 shows how the average square error evolves on the training, validation,
and test data. Note that while the ASE on the training data continued decreasing as the selection steps
proceeded, the ASE on the test and validation data behave more erratically.

LASSO selection, pioneered by Tibshirani (1996), is a constrained least squares method that can be viewed
as a stepwise-like method where effects enter and leave the model sequentially. You can find additional
details about the LASSO method in the section “Lasso Selection (LASSO)” on page 3710. Note that when
classification effects are used with LASSO, the design matrix columns for all effects containing classification
variables can enter or leave the model individually. The following statements perform LASSO selection for
the baseball data. The LASSO selection summary table is shown in Output 48.1.10.

proc glmselect data=sashelp.baseball plot=CriterionPanel ;
class league division;
model logSalary = nAtBat nHits nHome nRuns nRBI nBB

yrMajor crAtBat crHits crHome crRuns crRbi
crBB league division nOuts nAssts nError

/ selection=LASSO(choose=CP steps=20);
run;

ods graphics off;
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Output 48.1.10 Selection Summary for LASSO Selection

The GLMSELECT ProcedureThe GLMSELECT Procedure

LASSO Selection Summary

Step
Effect
Entered

Effect
Removed

Number
Effects In CP

0 Intercept 1 375.9275

1 CrRuns 2 328.6492

2 CrHits 3 239.5392

3 nHits 4 134.0374

4 nBB 5 111.6638

5 CrRbi 6 81.7296

6 YrMajor 7 75.0428

7 nRBI 8 30.4494

8 Division_East 9 29.9913

9 nOuts 10 25.1656

10 CrRuns 9 18.7295

11 CrRbi 8 15.1683

12 nError 9 16.6233

13 nHome 10 16.3741

14 League_American 11 14.8794

15 nRBI 10 8.8477*

16 CrBB 11 9.2242

17 CrRuns 12 10.7608

18 nAtBat 13 11.6266

19 nAssts 14 11.8572

20 CrAtBat 15 13.4020

* Optimal Value of Criterion

Selection stopped at the specified number of steps (20).

Note that effects enter and leave sequentially. In this example, the STEPS= suboption of the SELECTION=
option specifies that 20 steps of LASSO selection be done. You can see how the various model fit statistics
evolved in Output 48.1.11.
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Output 48.1.11 Criterion Panel

The CHOOSE=CP suboption specifies that the selected model be the model at step 15 that yields the optimal
value of Mallows’ C(p) statistic. Details of this selected model are shown in Output 48.1.12.

Output 48.1.12 Selected Model

The GLMSELECT Procedure
Selected Model

The GLMSELECT Procedure
Selected Model

The selected model, based on C(p), is the model at Step 15.

Effects: Intercept nHits nHome nBB YrMajor CrHits League_American Division_East nOuts nError

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value

Model 9 125.24302 13.91589 42.98

Error 253 81.91071 0.32376

Corrected Total 262 207.15373
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Output 48.1.12 continued

Root MSE 0.56900

Dependent Mean 5.92722

R-Square 0.6046

Adj R-Sq 0.5905

AIC -21.79589

AICC -20.74409

BIC -283.91417

C(p) 8.84767

SBC -251.07435

Parameter Estimates

Parameter DF Estimate

Intercept 1 4.204236

nHits 1 0.006942

nHome 1 0.002785

nBB 1 0.005727

YrMajor 1 0.067054

CrHits 1 0.000249

League_American 1 -0.079607

Division_East 1 0.134723

nOuts 1 0.000183

nError 1 -0.007213

Example 48.2: Using Validation and Cross Validation
This example shows how you can use both test set and cross validation to monitor and control variable
selection. It also demonstrates the use of split classification variables.

The following statements produce analysis and test data sets. Note that the same statements are used to
generate the observations that are randomly assigned for analysis and test roles in the ratio of approximately
two to one.
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data analysisData testData;
drop i j c3Num;
length c3$ 7;

array x{20} x1-x20;

do i=1 to 1500;
do j=1 to 20;

x{j} = ranuni(1);
end;

c1 = 1 + mod(i,8);
c2 = ranbin(1,3,.6);

if i < 50 then do; c3 = 'tiny'; c3Num=1;end;
else if i < 250 then do; c3 = 'small'; c3Num=1;end;
else if i < 600 then do; c3 = 'average'; c3Num=2;end;
else if i < 1200 then do; c3 = 'big'; c3Num=3;end;
else do; c3 = 'huge'; c3Num=5;end;

y = 10 + x1 + 2*x5 + 3*x10 + 4*x20 + 3*x1*x7 + 8*x6*x7
+ 5*(c1=3)*c3Num + 8*(c1=7) + 5*rannor(1);

if ranuni(1) < 2/3 then output analysisData;
else output testData;

end;
run;

Suppose you suspect that the dependent variable depends on both main effects and two-way interactions.
You can use the following statements to select a model:

ods graphics on;

proc glmselect data=analysisData testdata=testData
seed=1 plots(stepAxis=number)=(criterionPanel ASEPlot);

partition fraction(validate=0.5);
class c1 c2 c3(order=data);
model y = c1|c2|c3|x1|x2|x3|x4|x5|x5|x6|x7|x8|x9|x10

|x11|x12|x13|x14|x15|x16|x17|x18|x19|x20 @2
/ selection=stepwise(choose = validate

select = sl)
hierarchy=single stb;

run;

Note that a TESTDATA= data set is named in the PROC GLMSELECT statement and that a PARTITION
statement is used to randomly assign half the observations in the analysis data set for model validation and the
rest for model training. You find details about the number of observations used for each role in the number of
observations tables shown in Output 48.2.1.
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Output 48.2.1 Number of Observations Tables

The GLMSELECT ProcedureThe GLMSELECT Procedure

Observation Profile for Analysis Data

Number of Observations Read 1010

Number of Observations Used 1010

Number of Observations Used for Training 510

Number of Observations Used for Validation 500

The “Class Level Information” and “Dimensions” tables are shown in Output 48.2.2. The “Dimensions” table
shows that at each step of the selection process, 278 effects are considered as candidates for entry or removal.
Since several of these effects have multilevel classification variables as members, there are 661 parameters.

Output 48.2.2 Class Level Information and Problem Dimensions

Class Level Information

Class Levels Values

c1 8 1 2 3 4 5 6 7 8

c2 4 0 1 2 3

c3 5 tiny small average big huge

Dimensions

Number of Effects 278

Number of Parameters 661

The model statement options request stepwise selection with the default entry and stay significance
levels used for both selecting entering and departing effects and stopping the selection method. The
CHOOSE=VALIDATE suboption specifies that the selected model is chosen to minimize the predicted resid-
ual sum of squares when the models at each step are scored on the observations reserved for validation. The
HIERARCHY=SINGLE option specifies that interactions can enter the model only if the corresponding main
effects are already in the model, and that main effects cannot be dropped from the model if an interaction with
such an effect is in the model. These settings are listed in the model information table shown in Output 48.2.3.

Output 48.2.3 Model Information

The GLMSELECT ProcedureThe GLMSELECT Procedure

Data Set WORK.ANALYSISDATA

Test Data Set WORK.TESTDATA

Dependent Variable y

Selection Method Stepwise

Select Criterion Significance Level

Stop Criterion Significance Level

Choose Criterion Validation ASE

Entry Significance Level (SLE) 0.15

Stay Significance Level (SLS) 0.15

Effect Hierarchy Enforced Single

Random Number Seed 1



3760 F Chapter 48: The GLMSELECT Procedure

The stop reason and stop details tables are shown in Output 48.2.4. Note that because the STOP= suboption
of the SELECTION= option was not explicitly specified, the stopping criterion used is the selection criterion,
namely significance level.

Output 48.2.4 Stop Details

Selection stopped because the candidate for entry has SLE > 0.15 and the candidate for removal has SLS < 0.15.

Stop Details

Candidate
For Effect

Candidate
Significance

Compare
Significance

Entry x2*x5 0.1742 > 0.1500 (SLE)

Removal x5*x10 0.0534 < 0.1500 (SLS)

The criterion panel in Output 48.2.5 shows how the various fit criteria evolved as the stepwise selection
method proceeded. Note that other than the ASE evaluated on the validation data, these criteria are evaluated
on the training data. You see that the minimum of the validation ASE occurs at step 9, and hence the model
at this step is selected.

Output 48.2.5 Criterion Panel



Example 48.2: Using Validation and Cross Validation F 3761

Output 48.2.6 shows how the average squared error (ASE) evolved on the training, validation, and test data.
Note that while the ASE on the training data decreases monotonically, the errors on both the validation and
test data start increasing beyond step 9. This indicates that models after step 9 are beginning to overfit the
training data.

Output 48.2.6 Average Squared Errors
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Output 48.2.7 shows the selected effects, analysis of variance, and fit statistics tables for the selected model.
Output 48.2.8 shows the parameter estimates table.

Output 48.2.7 Selected Model Details

The GLMSELECT Procedure
Selected Model

The GLMSELECT Procedure
Selected Model

The selected model, based on Validation ASE, is the model at Step 9.

Effects: Intercept c1 c3 c1*c3 x1 x5 x6 x7 x10 x20

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value

Model 44 22723 516.43621 20.49

Error 465 11722 25.20856

Corrected Total 509 34445

Root MSE 5.02081

Dependent Mean 21.09705

R-Square 0.6597

Adj R-Sq 0.6275

AIC 2200.75319

AICC 2210.09228

SBC 1879.30167

ASE (Train) 22.98427

ASE (Validate) 27.71105

ASE (Test) 24.82947
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Output 48.2.8 Parameter Estimates

Parameter Estimates

Parameter DF Estimate
Standardized

Estimate
Standard

Error t Value

Intercept 1 6.867831 0 1.524446 4.51

c1        1 1 0.226602 0.008272 2.022069 0.11

c1        2 1 -1.189623 -0.048587 1.687644 -0.70

c1        3 1 25.968930 1.080808 1.693593 15.33

c1        4 1 1.431767 0.054892 1.903011 0.75

c1        5 1 1.972622 0.073854 1.664189 1.19

c1        6 1 -0.094796 -0.004063 1.898700 -0.05

c1        7 1 5.971432 0.250037 1.846102 3.23

c1        8 0 0 0 . .

c3        tiny 1 -2.919282 -0.072169 2.756295 -1.06

c3        small 1 -4.635843 -0.184338 2.218541 -2.09

c3        average 1 0.736805 0.038247 1.793059 0.41

c3        big 1 -1.078463 -0.063580 1.518927 -0.71

c3        huge 0 0 0 . .

c1*c3     1 tiny 1 -2.449964 -0.018632 4.829146 -0.51

c1*c3     1 small 1 5.265031 0.069078 3.470382 1.52

c1*c3     1 average 1 -3.489735 -0.064365 2.850381 -1.22

c1*c3     1 big 1 0.725263 0.017929 2.516502 0.29

c1*c3     1 huge 0 0 0 . .

c1*c3     2 tiny 1 5.455122 0.050760 4.209507 1.30

c1*c3     2 small 1 7.439196 0.131499 2.982411 2.49

c1*c3     2 average 1 -0.739606 -0.014705 2.568876 -0.29

c1*c3     2 big 1 3.179351 0.078598 2.247611 1.41

c1*c3     2 huge 0 0 0 . .

c1*c3     3 tiny 1 -19.266847 -0.230989 3.784029 -5.09

c1*c3     3 small 1 -15.578909 -0.204399 3.266216 -4.77

c1*c3     3 average 1 -18.119398 -0.395770 2.529578 -7.16

c1*c3     3 big 1 -10.650012 -0.279796 2.205331 -4.83

c1*c3     3 huge 0 0 0 . .

c1*c3     4 tiny 0 0 0 . .

c1*c3     4 small 1 4.432753 0.047581 3.677008 1.21

c1*c3     4 average 1 -3.976295 -0.091632 2.625564 -1.51

c1*c3     4 big 1 -1.306998 -0.033003 2.401064 -0.54

c1*c3     4 huge 0 0 0 . .

c1*c3     5 tiny 1 6.714186 0.062475 4.199457 1.60

c1*c3     5 small 1 1.565637 0.022165 3.182856 0.49

c1*c3     5 average 1 -4.286085 -0.068668 2.749142 -1.56

c1*c3     5 big 1 -2.046468 -0.045949 2.282735 -0.90

c1*c3     5 huge 0 0 0 . .

c1*c3     6 tiny 1 5.135111 0.039052 4.754845 1.08

c1*c3     6 small 1 4.442898 0.081945 3.079524 1.44

c1*c3     6 average 1 -2.287870 -0.056559 2.601384 -0.88

c1*c3     6 big 1 1.598086 0.043542 2.354326 0.68

c1*c3     6 huge 0 0 0 . .

c1*c3     7 tiny 1 1.108451 0.010314 4.267509 0.26

c1*c3     7 small 1 7.441059 0.119214 3.135404 2.37

c1*c3     7 average 1 1.796483 0.038106 2.630570 0.68
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Output 48.2.8 continued

Parameter Estimates

Parameter DF Estimate
Standardized

Estimate
Standard

Error t Value

c1*c3     7 big 1 3.324160 0.095173 2.303369 1.44

c1*c3     7 huge 0 0 0 . .

c1*c3     8 tiny 0 0 0 . .

c1*c3     8 small 0 0 0 . .

c1*c3     8 average 0 0 0 . .

c1*c3     8 big 0 0 0 . .

c1*c3     8 huge 0 0 0 . .

x1 1 2.713527 0.091530 0.836942 3.24

x5 1 2.810341 0.098303 0.816290 3.44

x6 1 4.837022 0.167394 0.810402 5.97

x7 1 5.844394 0.207035 0.793775 7.36

x10 1 2.463916 0.087712 0.794599 3.10

x20 1 4.385924 0.156155 0.787766 5.57

The magnitudes of the standardized estimates and the t statistics of the parameters of the effect 'c1' reveal
that only levels '3' and '7' of this effect contribute appreciably to the model. This suggests that a more
parsimonious model with similar or better predictive power might be obtained if parameters corresponding to
the levels of 'c1' are allowed to enter or leave the model independently. You request this with the SPLIT
option in the CLASS statement as shown in the following statements:

proc glmselect data=analysisData testdata=testData
seed=1 plots(stepAxis=number)=all;

partition fraction(validate=0.5);
class c1(split) c2 c3(order=data);
model y = c1|c2|c3|x1|x2|x3|x4|x5|x5|x6|x7|x8|x9|x10

|x11|x12|x13|x14|x15|x16|x17|x18|x19|x20 @2
/ selection=stepwise(stop = validate

select = sl)
hierarchy=single;

output out=outData;
run;

The “Class Level Information” and “Dimensions” tables are shown in Output 48.2.9. The “Dimensions” table
shows that while the model statement specifies 278 effects, after splitting the parameters corresponding to the
levels of c1, there are 439 split effects that are considered for entry or removal at each step of the selection
process. Note that the total number of parameters considered is not affected by the split option.

Output 48.2.9 Class Level Information and Problem Dimensions

The GLMSELECT ProcedureThe GLMSELECT Procedure

Class Level Information

Class Levels Values

c1 8 * 1 2 3 4 5 6 7 8

c2 4 0 1 2 3

c3 5 tiny small average big huge

* Associated Parameters Split



Example 48.2: Using Validation and Cross Validation F 3765

Output 48.2.9 continued

Dimensions

Number of Effects 278

Number of Effects after Splits 439

Number of Parameters 661

The stop reason and stop details tables are shown in Output 48.2.10. Since the validation ASE is specified as
the stopping criterion, the selection stops at step 11, where the validation ASE achieves a local minimum and
the model at this step is the selected model.

Output 48.2.10 Stop Details

Selection stopped at a local minimum of the residual sum of squares of the validation data.

Stop Details

Candidate
For Effect

Candidate
Validation ASE

Compare
Validation ASE

Entry x18 25.9851 > 25.7462

Removal x6*x7 25.7611 > 25.7462

You find details of the selected model in Output 48.2.11. The list of selected effects confirms that parameters
corresponding to levels '3' and '7' only of c1 are in the selected model. Notice that the selected model
with classification variable c1 split contains 18 parameters, whereas the selected model without splitting c1
has 45 parameters. Furthermore, by comparing the fit statistics in Output 48.2.7 and Output 48.2.11, you see
that this more parsimonious model has smaller prediction errors on both the validation and test data.

Output 48.2.11 Details of the Selected Model

The GLMSELECT Procedure
Selected Model

The GLMSELECT Procedure
Selected Model

The selected model is the model at the last step (Step 11).

Effects: Intercept c1_3 c1_7 c3 c1_3*c3 x1 x5 x6 x7 x6*x7 x10 x20

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value

Model 17 22111 1300.63200 51.88

Error 492 12334 25.06998

Corrected Total 509 34445
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Output 48.2.11 continued

Root MSE 5.00699

Dependent Mean 21.09705

R-Square 0.6419

Adj R-Sq 0.6295

AIC 2172.72685

AICC 2174.27787

SBC 1736.94624

ASE (Train) 24.18515

ASE (Validate) 25.74617

ASE (Test) 22.57297

When you use a PARTITION statement to subdivide the analysis data set, an output data set created with the
OUTPUT statement contains a variable named _ROLE_ that shows the role each observation was assigned to.
See the section “OUTPUT Statement” on page 3699 and the section “Using Validation and Test Data” on
page 3724 for additional details.

The following statements use PROC PRINT to produce Output 48.2.12, which shows the first five observations
of the outData data set.

proc print data=outData(obs=5);
run;

Output 48.2.12 Output Data Set with _ROLE_ Variable

Obs c3 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

1 tiny 0.18496 0.97009 0.39982 0.25940 0.92160 0.96928 0.54298 0.53169 0.04979 0.06657 0.81932 0.52387

2 tiny 0.47579 0.84499 0.63452 0.59036 0.58258 0.37701 0.72836 0.50660 0.93121 0.92912 0.58966 0.29722

3 tiny 0.51132 0.43320 0.17611 0.66504 0.40482 0.12455 0.45349 0.19955 0.57484 0.73847 0.43981 0.04937

4 tiny 0.42071 0.07174 0.35849 0.71143 0.18985 0.14797 0.56184 0.27011 0.32520 0.56918 0.04259 0.43921

5 tiny 0.42137 0.03798 0.27081 0.42773 0.82010 0.84345 0.87691 0.26722 0.30602 0.39705 0.34905 0.76593

Obs x13 x14 x15 x16 x17 x18 x19 x20 c1 c2 y _ROLE_ p_y

1 0.85339 0.06718 0.95702 0.29719 0.27261 0.68993 0.97676 0.22651 2 1 11.4391 VALIDATE 18.5069

2 0.39104 0.47243 0.67953 0.16809 0.16653 0.87110 0.29879 0.93464 3 1 31.4596 TRAIN 26.2188

3 0.52238 0.34337 0.02271 0.71289 0.93706 0.44599 0.94694 0.71290 4 3 16.4294 VALIDATE 17.0979

4 0.91744 0.52584 0.73182 0.90522 0.57600 0.18794 0.33133 0.69887 5 3 15.4815 VALIDATE 16.1567

5 0.54340 0.61257 0.55291 0.73591 0.37186 0.64565 0.55718 0.87504 6 2 26.0023 TRAIN 24.6358

Cross validation is often used to assess the predictive performance of a model, especially for when you do
not have enough observations for test set validation. See the section “Cross Validation” on page 3726 for
further details. The following statements provide an example where cross validation is used as the CHOOSE=
criterion.

proc glmselect data=analysisData testdata=testData
plots(stepAxis=number)=(criterionPanel ASEPlot);

class c1(split) c2 c3(order=data);
model y = c1|c2|c3|x1|x2|x3|x4|x5|x5|x6|x7|x8|x9|x10

|x11|x12|x13|x14|x15|x16|x17|x18|x19|x20 @2
/ selection = stepwise(choose = cv
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select = sl)
stats = press
cvMethod = split(5)
cvDetails = all
hierarchy = single;

output out=outData;
run;

The CVMETHOD=SPLIT(5) option in the MODEL statement requests five-fold cross validation with the
five subsets consisting of observations f1; 6; 11; : : :g, f2; 7; 12; : : :g, and so on. The STATS=PRESS option
requests that the leave-one-out cross validation predicted residual sum of squares (PRESS) also be computed
and displayed at each step, even though this statistic is not used in the selection process.

Output 48.2.13 shows how several fit statistics evolved as the selection process progressed. The five-fold CV
PRESS statistic achieves its minimum at step 19. Note that this gives a larger model than was selected when
the stopping criterion was determined using validation data. Furthermore, you see that the PRESS statistic
has not achieved its minimum within 25 steps, so an even larger model would have been selected based on
leave-one-out cross validation.

Output 48.2.13 Criterion Panel



3768 F Chapter 48: The GLMSELECT Procedure

Output 48.2.14 shows how the average squared error compares on the test and training data. Note that the
ASE error on the test data achieves a local minimum at step 11 and is already slowly increasing at step 19,
which corresponds to the selected model.

Output 48.2.14 Average Squared Error Plot

Output 48.2.15 Breakdown of CV Press Statistic by Fold

Cross Validation Details

Observations

Index Fitted Left Out CV PRESS

1 808 202 5059.7375

2 808 202 4278.9115

3 808 202 5598.0354

4 808 202 4950.1750

5 808 202 5528.1846

Total 25293.5024

The CVDETAILS=ALL option in the MODEL statement requests the “Cross Validation Details” table in
Output 48.2.15 and the cross validation parameter estimates that are included in the “Parameter Estimates”
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table in Output 48.2.16. For each cross validation index, the predicted residual sum of squares on the
observations omitted is shown in the “Cross Validation Details” table and the parameter estimates of the
corresponding model are included in the “Parameter Estimates” table. By default, these details are shown
for the selected model, but you can request this information at every step with the DETAILS= option in the
MODEL statement. You use the _CVINDEX_ variable in the output data set shown in Output 48.2.17 to find
out which observations in the analysis data are omitted for each cross validation fold.

Output 48.2.16 Cross Validation Parameter Estimates

Parameter Estimates

Cross Validation Estimates

Parameter 1 2 3 4 5

Intercept 10.7617 10.1200 9.0254 13.4164 12.3352

c1_3 28.2715 27.2977 27.0696 28.6835 27.8070

c1_7 7.6530 7.6445 7.9257 7.4217 7.6862

c3        tiny -3.1103 -4.4041 -5.1793 -8.4131 -7.2096

c3        small 2.2039 1.5447 1.0121 -0.3998 1.4927

c3        average 0.3021 -1.3939 -1.2201 -3.3407 -2.1467

c3        big -0.9621 -1.2439 -1.6092 -3.7666 -3.4389

c3        huge 0 0 0 0 0

c1_3*c3   tiny -21.9104 -21.7840 -22.0173 -22.6066 -21.9791

c1_3*c3   small -20.8196 -20.2725 -19.5850 -20.4515 -20.7586

c1_3*c3   average -16.8500 -15.1509 -15.0134 -15.3851 -13.4339

c1_3*c3   big -12.7212 -12.1554 -12.0354 -12.3282 -13.0174

c1_3*c3   huge 0 0 0 0 0

x1 0.9238 1.7286 2.5976 -0.2488 1.2093

x1*c3     tiny -1.5819 -1.1748 -3.2523 -1.7016 -2.7624

x1*c3     small -3.7669 -3.2984 -2.9755 -1.8738 -4.0167

x1*c3     average 2.2253 2.4489 1.5675 4.0948 2.0159

x1*c3     big 0.9222 0.5330 0.7960 2.6061 1.2694

x1*c3     huge 0 0 0 0 0

x5 -1.3562 0.5639 0.3022 -0.4700 -2.5063

x6 -0.9165 -3.2944 -1.2163 -2.2063 -0.5696

x7 5.2295 5.3015 6.2526 4.1770 5.8364

x6*x7 6.4211 7.5644 6.1182 7.0020 5.8730

x10 1.9591 1.4932 0.7196 0.6504 -0.3989

x5*x10 3.6058 1.7274 4.3447 2.4388 3.8967

x15 -0.0079 0.6896 1.6811 0.0136 0.1799

x15*c1_3 -3.5022 -2.7963 -2.6003 -4.2355 -4.7546

x7*x15 -5.1438 -5.8878 -5.9465 -3.6155 -5.3337

x18 -2.1347 -1.5656 -2.4226 -4.0592 -1.4985

x18*c3    tiny 2.2988 1.1931 2.6491 6.1615 5.6204

x18*c3    small 4.6033 3.2359 4.4183 5.5923 1.7270

x18*c3    average -2.3712 -2.5392 -0.6361 -1.1729 -1.6481

x18*c3    big 2.3160 1.4654 2.7683 3.0487 2.5768

x18*c3    huge 0 0 0 0 0

x6*x18 3.0716 4.2036 4.1354 4.9196 2.7165

x20 4.1229 4.5773 4.5774 4.6555 4.2655

The following statements display the first eight observations in the outData data set.
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proc print data=outData(obs=8);
run;

Output 48.2.17 First Eight Observations in the Output Data Set

Obs c3 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

1 tiny 0.18496 0.97009 0.39982 0.25940 0.92160 0.96928 0.54298 0.53169 0.04979 0.06657 0.81932 0.52387

2 tiny 0.47579 0.84499 0.63452 0.59036 0.58258 0.37701 0.72836 0.50660 0.93121 0.92912 0.58966 0.29722

3 tiny 0.51132 0.43320 0.17611 0.66504 0.40482 0.12455 0.45349 0.19955 0.57484 0.73847 0.43981 0.04937

4 tiny 0.42071 0.07174 0.35849 0.71143 0.18985 0.14797 0.56184 0.27011 0.32520 0.56918 0.04259 0.43921

5 tiny 0.42137 0.03798 0.27081 0.42773 0.82010 0.84345 0.87691 0.26722 0.30602 0.39705 0.34905 0.76593

6 tiny 0.81722 0.65822 0.02947 0.85339 0.36285 0.37732 0.51054 0.71194 0.37533 0.22954 0.68621 0.55243

7 tiny 0.19480 0.81673 0.08548 0.18376 0.33264 0.70558 0.92761 0.29642 0.22404 0.14719 0.59064 0.46326

8 tiny 0.04403 0.51697 0.68884 0.45333 0.83565 0.29745 0.40325 0.95684 0.42194 0.78079 0.33106 0.17210

Obs x13 x14 x15 x16 x17 x18 x19 x20 c1 c2 y _CVINDEX_ p_y

1 0.85339 0.06718 0.95702 0.29719 0.27261 0.68993 0.97676 0.22651 2 1 11.4391 1 18.1474

2 0.39104 0.47243 0.67953 0.16809 0.16653 0.87110 0.29879 0.93464 3 1 31.4596 2 24.7930

3 0.52238 0.34337 0.02271 0.71289 0.93706 0.44599 0.94694 0.71290 4 3 16.4294 3 16.5752

4 0.91744 0.52584 0.73182 0.90522 0.57600 0.18794 0.33133 0.69887 5 3 15.4815 4 14.7605

5 0.54340 0.61257 0.55291 0.73591 0.37186 0.64565 0.55718 0.87504 6 2 26.0023 5 24.7479

6 0.58182 0.17472 0.04610 0.64380 0.64545 0.09317 0.62008 0.07845 7 1 16.6503 1 21.4444

7 0.41860 0.25631 0.23045 0.08034 0.43559 0.67020 0.42272 0.49827 1 1 14.0342 2 20.9661

8 0.91056 0.26897 0.95602 0.13720 0.27190 0.55692 0.65825 0.68465 2 3 14.9830 3 17.5644

This example demonstrates the usefulness of effect selection when you suspect that interactions of effects are
needed to explain the variation in your dependent variable. Ideally, a priori knowledge should be used to
decide what interactions to allow, but in some cases this information might not be available. Simply fitting a
least squares model allowing all interactions produces a model that overfits your data and generalizes very
poorly.

The following statements use forward selection with selection based on the SBC criterion, which is the
default selection criterion. At each step, the effect whose addition to the model yields the smallest SBC value
is added. The STOP=NONE suboption specifies that this process continue even when the SBC statistic grows
whenever an effect is added, and so it terminates at a full least squares model. The BUILDSSCP=FULL
option is specified in a PERFORMANCE statement, since building the SSCP matrix incrementally is
counterproductive in this case. See the section “BUILDSSCP=FULL | INCREMENTAL” on page 3702 for
details. Note that if all you are interested in is a full least squares model, then it is much more efficient to
simply specify SELECTION=NONE in the MODEL statement. However, in this example the aim is to add
effects in roughly increasing order of explanatory power.

proc glmselect data=analysisData testdata=testData plots=ASEPlot;
class c1 c2 c3(order=data);
model y = c1|c2|c3|x1|x2|x3|x4|x5|x5|x6|x7|x8|x9|x10

|x11|x12|x13|x14|x15|x16|x17|x18|x19|x20 @2
/ selection=forward(stop=none)
hierarchy=single;

performance buildSSCP = full;
run;

ods graphics off;
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The ASE plot shown in Output 48.2.18 clearly demonstrates the danger in overfitting the training data. As
more insignificant effects are added to the model, the growth in test set ASE shows how the predictions
produced by the resulting models worsen. This decline is particularly rapid in the latter stages of the forward
selection, because the use of the SBC criterion results in insignificant effects with lots of parameters being
added after insignificant effects with fewer parameters.

Output 48.2.18 Average Squared Error Plot

Example 48.3: Scatter Plot Smoothing by Selecting Spline Functions
This example shows how you can use model selection to perform scatter plot smoothing. It illustrates how
you can use the experimental EFFECT statement to generate a large collection of B-spline basis functions
from which a subset is selected to fit scatter plot data.

The data for this example come from a set of benchmarks developed by Donoho and Johnstone (1994) that
have become popular in the statistics literature. The particular benchmark used is the “Bumps” functions to
which random noise has been added to create the test data. The following DATA step, extracted from Sarle
(2001), creates the data. The constants are chosen so that the noise-free data have a standard deviation of 7.
The standard deviation of the noise is

p
5, yielding bumpsNoise with a signal-to-noise ratio of 3.13 (7=

p
5).
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%let random=12345;

data DoJoBumps;
keep x bumps bumpsWithNoise;

pi = arcos(-1);

do n=1 to 2048;
x=(2*n-1)/4096;
link compute;
bumpsWithNoise=bumps+rannor(&random)*sqrt(5);
output;

end;
stop;

compute:
array t(11) _temporary_ (.1 .13 .15 .23 .25 .4 .44 .65 .76 .78 .81);
array b(11) _temporary_ ( 4 5 3 4 5 4.2 2.1 4.3 3.1 5.1 4.2);
array w(11) _temporary_ (.005 .005 .006 .01 .01 .03 .01 .01 .005 .008 .005);

bumps=0;
do i=1 to 11;

bumps=bumps+b[i]*(1+abs((x-t[i])/w[i]))**-4;
end;
bumps=bumps*10.528514619;
return;

run;

The following statements use the SGPLOT procedure to produce the plot in Output 48.3.1. The plot shows
the bumps function superimposed on the function with added noise.

proc sgplot data=DoJoBumps;
yaxis display=(nolabel);
series x=x y=bumpsWithNoise/lineattrs=(color=black);
series x=x y=bumps/lineattrs=(color=red);

run;
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Output 48.3.1 Donoho-Johnstone Bumps Function

Suppose you want to smooth the noisy data to recover the underlying function. This problem is studied by
Sarle (2001), who shows how neural nets can be used to perform the smoothing. The following statements
use the LOESS statement in the SGPLOT procedure to show a loess fit superimposed on the noisy data
(Output 48.3.2). (See Chapter 59, “The LOESS Procedure,” for information about the loess method.)

proc sgplot data=DoJoBumps;
yaxis display=(nolabel);
series x=x y=bumps;
loess x=x y=bumpsWithNoise / lineattrs=(color=red) nomarkers;

run;

The algorithm selects a smoothing parameter that is small enough to enable bumps to be resolved. Because
there is a single smoothing parameter that controls the number of points for all local fits, the loess method
undersmooths the function in the intervals between the bumps.
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Output 48.3.2 Loess Fit

Another approach to doing nonparametric fitting is to approximate the unknown underlying function as a
linear combination of a set of basis functions. Once you specify the basis functions, then you can use least
squares regression to obtain the coefficients of the linear combination. A problem with this approach is that
for most data, you do not know a priori what set of basis functions to use. You need to supply a sufficiently
rich set to enable the features in the data to be approximated. However, if you use too rich a set of functions,
then this approach yields a fit that undersmooths the data and captures spurious features in the noise.

The penalized B-spline method (Eilers and Marx 1996) uses a basis of B-splines (see the section “EFFECT
Statement” on page 397 in Chapter 19, “Shared Concepts and Topics”) corresponding to a large number of
equally spaced knots as the set of approximating functions. To control the potential overfitting, their algorithm
modifies the least squares objective function to include a penalty term that grows with the complexity of the
fit.

The following statements use the PBSPLINE statement in the SGPLOT procedure to show a penalized
B-spline fit superimposed on the noisy data (Output 48.3.3). See Chapter 104, “The TRANSREG Procedure,”
for details about the implementation of the penalized B-spline method.
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proc sgplot data=DoJoBumps;
yaxis display=(nolabel);
series x=x y=bumps;
pbspline x=x y=bumpsWithNoise /

lineattrs=(color=red) nomarkers;
run;

As in the case of loess fitting, you see undersmoothing in the intervals between the bumps because there is
only a single smoothing parameter that controls the overall smoothness of the fit.

Output 48.3.3 Penalized B-spline Fit

An alternative to using a smoothness penalty to control the overfitting is to use variable selection to obtain an
appropriate subset of the basis functions. In order to be able to represent features in the data that occur at
multiple scales, it is useful to select from B-spline functions defined on just a few knots to capture large scale
features of the data as well as B-spline functions defined on many knots to capture fine details of the data.
The following statements show how you can use PROC GLMSELECT to implement this strategy:
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proc glmselect data=dojoBumps;
effect spl = spline(x / knotmethod=multiscale(endscale=8)

split details);
model bumpsWithNoise=spl;
output out=out1 p=pBumps;

run;

proc sgplot data=out1;
yaxis display=(nolabel);
series x=x y=bumps;
series x=x y=pBumps / lineattrs=(color=red);

run;

The KNOTMETHOD=MULTISCALE suboption of the EFFECT spl = SPLINE statement provides a con-
venient way to generate B-spline basis functions at multiple scales. The ENDSCALE=8 option requests that
the finest scale use B-splines defined on 28 equally spaced knots in the interval Œ0; 1�. Because the cubic
B-splines are nonzero over five adjacent knots, at the finest scale, the support of each B-spline basis function
is an interval of length about 0.02 (5/256), enabling the bumps in the underlying data to be resolved. The
default value is ENDSCALE=7. At this scale you will still be able to capture the bumps, but with less sharp
resolution. For these data, using a value of ENDSCALE= greater than eight provides unneeded resolution,
making it more likely that basis functions that fit spurious features in the noise are selected.

Output 48.3.4 shows the model information table. Since no options are specified in the MODEL statement,
PROC GLMSELECT uses the stepwise method with selection and stopping based on the SBC criterion.

Output 48.3.4 Model Settings

The GLMSELECT ProcedureThe GLMSELECT Procedure

Data Set WORK.DOJOBUMPS

Dependent Variable bumpsWithNoise

Selection Method Stepwise

Select Criterion SBC

Stop Criterion SBC

Effect Hierarchy Enforced None

The DETAILS suboption in the EFFECT statement requests the display of spline knots and spline basis
tables. These tables contain information about knots and basis functions at all scales. The results for scale
four are shown in Output 48.3.5 and Output 48.3.6.
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Output 48.3.5 Spline Knots

Knots for Spline Effect spl

Knot
Number Scale

Scale
Knot

Number Boundary x

40 4 1 * -0.11735

41 4 2 * -0.05855

42 4 3 * 0.00024414

43 4 4 0.05904

44 4 5 0.11783

45 4 6 0.17663

46 4 7 0.23542

47 4 8 0.29422

48 4 9 0.35301

49 4 10 0.41181

50 4 11 0.47060

51 4 12 0.52940

52 4 13 0.58819

53 4 14 0.64699

54 4 15 0.70578

55 4 16 0.76458

56 4 17 0.82337

57 4 18 0.88217

58 4 19 0.94096

59 4 20 * 0.99976

60 4 21 * 1.05855

61 4 22 * 1.11735
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Output 48.3.6 Spline Details

Basis Details for Spline Effect spl

Column Scale
Scale

Column Support
Support
Knots

32 4 1 -0.11735 0.05904 1-4

33 4 2 -0.11735 0.11783 1-5

34 4 3 -0.05855 0.17663 2-6

35 4 4 0.00024414 0.23542 3-7

36 4 5 0.05904 0.29422 4-8

37 4 6 0.11783 0.35301 5-9

38 4 7 0.17663 0.41181 6-10

39 4 8 0.23542 0.47060 7-11

40 4 9 0.29422 0.52940 8-12

41 4 10 0.35301 0.58819 9-13

42 4 11 0.41181 0.64699 10-14

43 4 12 0.47060 0.70578 11-15

44 4 13 0.52940 0.76458 12-16

45 4 14 0.58819 0.82337 13-17

46 4 15 0.64699 0.88217 14-18

47 4 16 0.70578 0.94096 15-19

48 4 17 0.76458 0.99976 16-20

49 4 18 0.82337 1.05855 17-21

50 4 19 0.88217 1.11735 18-22

51 4 20 0.94096 1.11735 19-22

The Dimensions table in Output 48.3.7 shows that at each step of the selection process, 548 effects are
considered as candidates for entry or removal. Note that although the MODEL statement specifies a single
constructed effect spl, the SPLIT suboption causes each of the parameters in this constructed effect to be
treated as an individual effect.

Output 48.3.7 Dimensions

Dimensions

Number of Effects 548

Number of Parameters 548

Output 48.3.8 shows the parameter estimates for the selected model. You can see that the selected model
contains 31 B-spline basis functions and that all the selected B-spline basis functions are from scales four
though eight. For example, the first basis function listed in the parameter estimates table is spl_S4:9—the
ninth B-spline function at scale 4. You see from Output 48.3.6 that this function is nonzero on the interval
.0:29; 0:52/.
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Output 48.3.8 Parameter Estimates

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value

Intercept 1 -0.009039 0.077412 -0.12

spl_S4:9 1 7.070207 0.586990 12.04

spl_S5:10 1 5.323121 1.199824 4.44

spl_S6:17 1 5.222808 1.728910 3.02

spl_S6:28 1 24.562103 1.490639 16.48

spl_S6:44 1 4.930829 1.243552 3.97

spl_S6:52 1 -7.046308 2.487700 -2.83

spl_S7:86 1 9.592742 2.626471 3.65

spl_S7:106 1 16.268550 3.334015 4.88

spl_S8:27 1 10.626586 1.752152 6.06

spl_S8:28 1 27.882444 2.004520 13.91

spl_S8:29 1 -6.129939 1.752151 -3.50

spl_S8:33 1 5.855648 1.766912 3.31

spl_S8:34 1 -11.782303 2.092484 -5.63

spl_S8:35 1 38.705178 2.092486 18.50

spl_S8:36 1 13.823256 1.766916 7.82

spl_S8:40 1 15.975124 1.691679 9.44

spl_S8:41 1 14.898716 1.691679 8.81

spl_S8:61 1 37.441965 2.084375 17.96

spl_S8:66 1 47.484506 1.883409 25.21

spl_S8:67 1 16.811502 1.910358 8.80

spl_S8:104 1 11.098484 1.958676 5.67

spl_S8:105 1 26.704556 2.042735 13.07

spl_S8:115 1 21.102920 1.576185 13.39

spl_S8:169 1 36.572294 2.914521 12.55

spl_S8:197 1 20.869716 1.882529 11.09

spl_S8:198 1 16.210987 2.693183 6.02

spl_S8:200 1 13.113942 3.458187 3.79

spl_S8:202 1 38.463549 2.462314 15.62

spl_S8:203 1 34.164644 1.757908 19.43

spl_S8:209 1 -22.645471 3.598587 -6.29

spl_S8:210 1 29.024741 2.557567 11.35

The OUTPUT statement captures the predicted values in a data set named out1, and Output 48.3.9 shows a fit
plot produced by PROC SGPLOT.
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Output 48.3.9 Fit by Selecting B-splines

Example 48.4: Multimember Effects and the Design Matrix
This example shows how you can use multimember effects to build predictive models. It also demonstrates
several features of the OUTDESIGN= option in the PROC GLMSELECT statement.

The simulated data for this example describe a two-week summer tennis camp. The tennis ability of each
camper was assessed and ratings were assigned at the beginning and end of the camp. The camp consisted of
supervised group instruction in the mornings with a number of different options in the afternoons. Campers
could elect to participate in unsupervised practice and play. Some campers paid for one or more individual
lessons from 30 to 90 minutes in length, focusing on forehand and backhand strokes and volleying. The aim
of this example is to build a predictive model for the rating improvement of each camper based on the times
the camper spent doing each activity and several other variables, including the age, gender, and initial rating
of the camper.
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The following statements produce the TennisCamp data set:

data TennisCamp;
length forehandCoach $6 backhandCoach $6 volleyCoach $6 gender $1;
input forehandCoach backhandCoach volleyCoach tLessons tPractice tPlay

gender inRating nPastCamps age tForehand tBackhand tVolley
improvement;

label forehandCoach = "Forehand lesson coach"
backhandCoach = "Backhand lesson coach"
volleyCoach = "Volley lesson coach"
tForehand = "time (1/2 hours) of forehand lesson"
tBackhand = "time (1/2 hours) of backhand lesson"
tVolley = "time (1/2 hours) of volley lesson"
tLessons = "time (1/2 hours) of all lessons"
tPractice = "total practice time (hours)"
tPlay = "total play time (hours)"
nPastCamps = "Number of previous camps attended"
age = "age (years)"
inRating = "Rating at camp start"
improvement = "Rating improvement at end of camp";

datalines;
. . Tom 1 30 19 f 44 0 13 0 0 1 6
Greg . . 2 12 33 f 48 2 15 2 0 0 14
. . Mike 2 12 24 m 53 0 15 0 0 2 13
. Mike . 1 12 28 f 48 0 13 0 1 0 11
. Bruna . 2 13 34 f 57 0 16 0 2 0 12

... more lines ...

. . . 0 12 38 m 47 1 15 0 0 0 8
Greg Tom Tom 6 3 41 m 48 2 15 2 1 3 19
. Greg Mike 5 30 16 m 52 0 13 0 2 3 18
;

A multimember effect (see the section “EFFECT Statement” on page 397 in Chapter 19, “Shared Concepts
and Topics”) is appropriate for modeling the effect of coaches on the campers’ improvement, because campers
might have worked with multiple coaches. Furthermore, since the time a coach spent with each camper
varies, it is appropriate to use these times to weight each coach’s contribution in the multimember effect. It is
also important not to exclude campers from the analysis if they did not receive any individual instruction.
You can accomplish all these goals by using a multimember effect defined as follows:

class forehandCoach backhandCoach volleyCoach;
effect coach = MM(forehandCoach backhandCoach volleyCoach/ noeffect

weight=(tForehand tBackhand tVolley));

Based on similar previous studies, it is known that the time spent practicing should not be included linearly,
because there are diminishing returns and perhaps even counterproductive effects beyond about 25 hours. A
spline effect with a single knot at 25 provides flexibility in modeling effect of practice time.
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The following statements use PROC GLMSELECT to select effects for the model.

proc glmselect data=TennisCamp outdesign=designCamp;
class forehandCoach backhandCoach volleyCoach gender;

effect coach = mm(forehandCoach backhandCoach volleyCoach / noeffect
details weight=(tForehand tBackhand tVolley));

effect practice = spline(tPractice/knotmethod=list(25) details);

model improvement = coach practice tLessons tPlay age gender
inRating nPastCamps;

run;

Output 48.4.1 shows the class level and MM level information. The levels of the constructed MM effect are
the union of the levels of its constituent classification variables. The MM level information is not displayed
by default—you request this table by specifying the DETAILS suboption in the relevant EFFECT statement.

Output 48.4.1 Levels of MM EFFECT Coach

The GLMSELECT ProcedureThe GLMSELECT Procedure

Class Level Information

Class Levels Values

forehandCoach 5 Bruna Elaine Greg Mike Tom

backhandCoach 5 Bruna Elaine Greg Mike Tom

volleyCoach 5 Andy Bruna Greg Mike Tom

gender 2 f m

The GLMSELECT ProcedureThe GLMSELECT Procedure

Level Details for MM Effect coach

Levels Values

6 Andy Bruna Elaine Greg Mike Tom
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Output 48.4.2 shows the parameter estimates for the selected model. You can see that the constructed
multimember effect coach and the spline effect practice are both included in the selected model. All coaches
provided benefit (all the parameters of the multimember effect coach are positive), with Greg and Mike being
the most effective.

Output 48.4.2 Parameter Estimates

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value

Intercept 1 0.379873 0.513431 0.74

coach     Andy 1 1.444370 0.318078 4.54

coach     Bruna 1 1.446063 0.110179 13.12

coach     Elaine 1 1.312290 0.281877 4.66

coach     Greg 1 3.042828 0.112256 27.11

coach     Mike 1 2.840728 0.121166 23.45

coach     Tom 1 1.248946 0.115266 10.84

practice  1 1 2.538938 1.015772 2.50

practice  2 1 3.837684 1.104557 3.47

practice  3 1 2.574775 0.930816 2.77

practice  4 1 -0.034747 0.717967 -0.05

practice  5 0 0 . .

tPlay 1 0.139409 0.023043 6.05

Suppose you want to examine regression diagnostics for the selected model. PROC GLMSELECT does not
support such diagnostics, so you might want to use the REG procedure to produce these diagnostics. You
can overcome the difficulty that PROC REG does not support CLASS and EFFECT statements by using the
OUTDESIGN= option in the PROC GLMSELECT statement to obtain the design matrix that you can use as
an input data set for further analysis with other SAS procedures.

The following statements use PROC PRINT to produce Output 48.4.3, which shows the first five observations
of the design matrix designCamp.

proc print data=designCamp(obs=5);
run;
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Output 48.4.3 First Five Observations of the designCamp Data Set

Obs Intercept coach_Andy coach_Bruna coach_Elaine coach_Greg coach_Mike coach_Tom tPlay

1 1 0 0 0 0 0 1 19

2 1 0 0 0 2 0 0 33

3 1 0 0 0 0 2 0 24

4 1 0 0 0 0 1 0 28

5 1 0 2 0 0 0 0 34

Obs practice_1 practice_2 practice_3 practice_4 practice_5 improvement

1 0.00000 0.00136 0.05077 0.58344 0.36443 6

2 0.20633 0.50413 0.25014 0.03940 0.00000 14

3 0.20633 0.50413 0.25014 0.03940 0.00000 13

4 0.20633 0.50413 0.25014 0.03940 0.00000 11

5 0.16228 0.49279 0.29088 0.05405 0.00000 12

To facilitate specifying the columns of the design matrix corresponding to the selected model, you can use the
macro variable named _GLSMOD that PROC GLMSELECT creates whenever you specify the OUTDESIGN=
option. The following statements use PROC REG to produce a panel of regression diagnostics corresponding
to the model selected by PROC GLMSELECT.

ods graphics on;

proc reg data=designCamp;
model improvement = &_GLSMOD;

quit;

ods graphics off;

The regression diagnostics shown in Output 48.4.4 indicate a reasonable model. However, they also reveal
the presence of one large outlier and several influential observations that you might want to investigate.
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Output 48.4.4 Fit Diagnostics

Sometimes you might want to use subsets of the columns of the design matrix. In such cases, it might be
convenient to produce a design matrix with generic names for the columns. You might also want a design
matrix containing the columns corresponding to the full model that you specify in the MODEL statement. By
default, the design matrix includes only the columns that correspond to effects in the selected model. The
following statements show how to do this.
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proc glmselect data=TennisCamp
outdesign(fullmodel prefix=parm names)=designCampGeneric;

class forehandCoach backhandCoach volleyCoach gender;

effect coach = mm(forehandCoach backhandCoach volleyCoach / noeffect
details weight=(tForehand tBackhand tVolley));

effect practice = spline(tPractice/knotmethod=list(25) details);

model improvement = coach practice tLessons tPlay age gender
inRating nPastCamps;

run;

The PREFIX=parm suboption of the OUTDESIGN= option specifies that columns in the design matrix be
given the prefix parm with a trailing index. The NAMES suboption requests the table in Output 48.4.5 that
associates descriptive labels with the names of columns in the design matrix. Finally, the FULLMODEL
suboption specifies that the design matrix include columns corresponding to all effects specified in the
MODEL statement.

Output 48.4.5 Descriptive Names of Design Matrix Columns

The GLMSELECT Procedure
Selected Model

The GLMSELECT Procedure
Selected Model

Parameter Names

Name Parameter

parm1 Intercept

parm2 coach Andy

parm3 coach Bruna

parm4 coach Elaine

parm5 coach Greg

parm6 coach Mike

parm7 coach Tom

parm8 practice 1

parm9 practice 2

parm10 practice 3

parm11 practice 4

parm12 practice 5

parm13 tLessons

parm14 tPlay

parm15 age

parm16 gender f

parm17 gender m

parm18 inRating

parm19 nPastCamps

The following statements produce Output 48.4.6, displaying the first five observations of the designCamp-
Generic data set:
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proc print data=designCampGeneric(obs=5);
run;

Output 48.4.6 First Five Observations of designCampGeneric Data Set

Obs parm1 parm2 parm3 parm4 parm5 parm6 parm7 parm8 parm9 parm10 parm11 parm12

1 1 0 0 0 0 0 1 0.00000 0.00136 0.05077 0.58344 0.36443

2 1 0 0 0 2 0 0 0.20633 0.50413 0.25014 0.03940 0.00000

3 1 0 0 0 0 2 0 0.20633 0.50413 0.25014 0.03940 0.00000

4 1 0 0 0 0 1 0 0.20633 0.50413 0.25014 0.03940 0.00000

5 1 0 2 0 0 0 0 0.16228 0.49279 0.29088 0.05405 0.00000

Obs parm13 parm14 parm15 parm16 parm17 parm18 parm19 improvement

1 1 19 13 1 0 44 0 6

2 2 33 15 1 0 48 2 14

3 2 24 15 0 1 53 0 13

4 1 28 13 1 0 48 0 11

5 2 34 16 1 0 57 0 12

Example 48.5: Model Averaging
This example shows how you can combine variable selection methods with model averaging to build
parsimonious predictive models. This example uses simulated data that consist of observations from the
model

y D Xˇ CN.0; �2/

where X is drawn from a multivariate normal distribution N.0;V/ with Vi;j D �ji�j j where 0 < � < 1. This
setup has been widely studied in investigations of variable selection methods. For examples, see Breiman
(1992); Tibshirani (1996); Zou (2006).

The following statements define a macro that uses the SIMNORMAL procedure to generate the regressors.
This macro prepares a TYPE=CORR data set that specifies the desired pairwise correlations. This data set is
used as the input data for PROC SIMNORMAL which produces the sampled regressors in an output data set
named Regressors.

%macro makeRegressorData(nObs=100,nVars=8,rho=0.5,seed=1);
data varCorr;

drop i j;
array x{&nVars};
length _NAME_ $8 _TYPE_ $8;
_NAME_ = '';

_TYPE_ = 'MEAN';
do j=1 to &nVars; x{j}=0; end;
output;

_TYPE_ = 'STD';
do j=1 to &nVars; x{j}=1;end;
output;
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_TYPE_ = 'N';
do j=1 to &nVars; x{j}=10000;end;
output;

_TYPE_ = 'CORR';
do i=1 to &nVars;

_NAME_="x" || trim(left(i));
do j= 1 to &nVars;

x{j}=&rho**(abs(i-j));
end;
output;

end;
run;

proc simnormal data=varCorr(type=corr) out=Regressors
numReal=&nObs seed=&seed;

var x1-x&nVars;
run;

%mend;

The following statements use the %makeRegressorData macro to generate a sample of 100 observations
with 10 regressors, where E.XiXj / D 0:5ji�j j, the true coefficients are ˇ0 D .3; 1:5; 0; 0; 2; 0; 0; 0; 0; 0/,
and � D 3.

%makeRegressorData(nObs=100,nVars=10,rho=0.5);

data simData;
set regressors;
yTrue = 3*x1 + 1.5*x2 + 2*x5;
y = yTrue + 3*rannor(2);

run;

The adaptive LASSO algorithm (see “Adaptive LASSO Selection” on page 3710) is a modification of the
standard LASSO algorithm in which weights are applied to each of the parameters in forming the LASSO
constraint. Zou (2006) shows that the adaptive LASSO has theoretical advantages over the standard LASSO.
Furthermore, simulation studies show that the adaptive LASSO tends to perform better than the standard
LASSO in selecting the correct regressors, particularly in high signal-to-noise ratio cases. The following
statements fit an adaptive LASSO model to the simData data:

proc glmselect data=simData;
model y=x1-x10/selection=LASSO(adaptive stop=none choose=sbc);

run;

The selected model and parameter estimates are shown in Output 48.5.1

Output 48.5.1 Model Selected by Adaptive Lasso

The GLMSELECT Procedure
Selected Model

The GLMSELECT Procedure
Selected Model

Effects: Intercept x1 x2 x5
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Output 48.5.1 continued

Parameter Estimates

Parameter DF Estimate

Intercept 1 -0.243219

x1 1 3.246129

x2 1 1.310514

x5 1 2.132416

You see that the selected model contains only the relevant regressors x1, x2, and x5. You might want to
investigate how frequently the adaptive LASSO method selects just the relevant regressors and how stable
the corresponding parameter estimates are. In a simulation study, you can do this by drawing new samples
and repeating this process many times. What can you do when you only have a single sample of the data
available? One approach is to repeatedly draw subsamples from the data that you have, and to fit models for
each of these samples. You can then form the average model and use this model for prediction. You can also
examine how frequently models are selected, and you can use the frequency of effect selection as a measure
of effect importance.

The following statements show how you can use the MODELAVERAGE statement to perform such an
analysis:

ods graphics on;

proc glmselect data=simData seed=3 plots=(EffectSelectPct ParmDistribution);
model y=x1-x10/selection=LASSO(adaptive stop=none choose=SBC);
modelAverage tables=(EffectSelectPct(all) ParmEst(all));

run;

The ModelAverageInfo table in Output 48.5.2 shows that the default sampling method is the bootstrap
approach of drawing 100 samples with replacement, where the sampling percentage of 100 means that each
sample has the same sum of frequencies as the input data. You can use the SAMPLING= and NSAMPLES=
options in the MODELAVERAGE statement to modify the sampling method and the number of samples
used.

Output 48.5.2 Model Averaging Information

The GLMSELECT ProcedureThe GLMSELECT Procedure

Model Averaging Information

Sampling Method Unrestricted (with replacement)

Sample Percentage 100

Number of Samples 100

Output 48.5.3 shows the percentage of samples where each effect is in the selected model. The ALL option
of the EFFECTSELECTPCT request in the TABLES= option specifies that effects that appear in any selected
model are shown. (By default, the “Effect Selection Percentage” table displays only those effects that are
selected at least 20 percent of the time.)
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Output 48.5.3 Effect Selection Percentages

Effect Selection
Percentage

Effect
Selection

Percentage

x1 100.0

x2 99.00

x3 33.00

x4 7.00

x5 100.0

x6 14.00

x7 25.00

x8 9.00

x9 7.00

x10 16.00

The EFFECTSELECTPCT request in the PLOTS= option in the PROC GLMSELECT statement produces
the bar chart shown in Output 48.5.4, which graphically displays the information in the EffectSelectPct table.

Output 48.5.4 Effect Selection Percentages
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Output 48.5.5 shows the frequencies with which models get selected. By default, only the “best” 20 models
are shown. See the section “Model Selection Frequencies and Frequency Scores” on page 3724 for details
about how these models are ordered.

Output 48.5.5 Model Selection Frequency

Model Selection Frequency

Times
Selected

Selection
Percentage

Number
of

Effects
Frequency

Score Effects in Model

44 44.00 4 45.00 Intercept x1 x2 x5

9 9.00 5 9.86 Intercept x1 x2 x3 x5

8 8.00 6 8.76 Intercept x1 x2 x3 x5 x7

4 4.00 5 4.82 Intercept x1 x2 x5 x8

4 4.00 7 4.67 Intercept x1 x2 x3 x5 x6 x7

3 3.00 5 3.85 Intercept x1 x2 x5 x7

2 2.00 5 2.83 Intercept x1 x2 x5 x10

2 2.00 5 2.81 Intercept x1 x2 x4 x5

2 2.00 6 2.74 Intercept x1 x2 x3 x5 x6

2 2.00 7 2.66 Intercept x1 x2 x3 x5 x6 x10

1 1.00 5 1.83 Intercept x1 x2 x5 x6

1 1.00 4 1.81 Intercept x1 x5 x7

1 1.00 5 1.81 Intercept x1 x2 x5 x9

1 1.00 6 1.75 Intercept x1 x2 x3 x5 x10

1 1.00 6 1.74 Intercept x1 x2 x3 x5 x8

1 1.00 6 1.73 Intercept x1 x2 x5 x6 x7

1 1.00 6 1.72 Intercept x1 x2 x5 x7 x9

1 1.00 6 1.71 Intercept x1 x2 x5 x8 x10

1 1.00 6 1.70 Intercept x1 x2 x4 x5 x10

1 1.00 7 1.68 Intercept x1 x2 x3 x5 x7 x10

You can see that the most frequently selected model is the model that contains just the true underlying
regressors. Although this model is selected in 44% of the samples, most of the selected models contain at
least one irrelevant regressor. This is not surprising because even though the true model has just a few large
effects in this example, the regressors have nontrivial pairwise correlations.

When your goal is simply to obtain a predictive model, then a good strategy is to average the predictions that
you get from all the selected models. In the linear model context, this corresponds to using the model whose
parameter estimates are the averages of the estimates that you get for each sample, where if a parameter is
not in a selected model, the corresponding estimate is defined to be zero. This has the effect of shrinking the
estimates of infrequently selected parameters towards zero.

Output 48.5.6 shows the average parameter estimates. The ALL option of the PARMEST request in the
TABLES= option specifies that all parameters that are nonzero in any selected model are shown. (By default,
the “Average Parameter Estimates” table displays only those parameters that are nonzero in at least 20 percent
of the selected models.)
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Output 48.5.6 Average Parameter Estimates

Average Parameter Estimates

Estimate Quantiles

Parameter
Number

Non-zero
Non-zero

Percentage
Mean

Estimate
Standard
Deviation 25% Median 75%

Intercept 100 100.00 -0.271262 0.308146 -0.489061 -0.249163 -0.058233

x1 100 100.00 3.196392 0.377771 2.951551 3.189078 3.446055

x2 99 99.00 1.439966 0.416054 1.209781 1.484064 1.710275

x3 33 33.00 -0.264831 0.412148 -0.536449 0 0

x4 7 7.00 -0.037810 0.142932 0 0 0

x5 100 100.00 2.253196 0.397032 2.036261 2.242240 2.489068

x6 14 14.00 -0.083823 0.261641 0 0 0

x7 25 25.00 0.184656 0.372813 0 0 0.143317

x8 9 9.00 0.060438 0.206621 0 0 0

x9 7 7.00 -0.043307 0.239940 0 0 0

x10 16 16.00 0.083411 0.199573 0 0 0

The average estimate for a parameter is computed by dividing the sum of the estimate values for that parameter
in each sample by the total number of samples. This corresponds to using zero as the estimate value for
the parameter in those samples where the parameter does not appear in the selected model. Similarly, these
zero estimates are included in the computation of the estimated standard deviation and quantiles that are
displayed in the AvgParmEst table. If you want see the estimates that you get if you do not use zero for
nonselected parameters, you can specify the NONZEROPARMS suboption of the PARMEST request in the
TABLES=option.

The PARMDISTRIBUTION request in the PLOTS= option in the PROC GLMSELECT statement requests
the panel in Output 48.5.7, which shows the distribution of the estimates for each parameter in the average
model. For each parameter in the average model, a histogram and box plot of the nonzero values of the
estimates are shown. You can use this plot to assess how the selected estimates vary across the samples.
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Output 48.5.7 Effect Selection Percentages

You can obtain details about the model selection for each sample by specifying the DETAILS option in
the MODELAVERAGE statement. You can use an OUTPUT statement to output the mean predicted value
and standard deviation, quantiles of the predicted values, as well as the individual sample frequencies and
predicted values for each sample. The following statements show how you do this:

proc glmselect data=simData seed=3;
model y=x1-x10/selection=LASSO(adaptive stop=none choose=SBC);
modelAverage details;
output out=simOut sampleFreq=sf samplePred=sp

p=p stddev=stddev lower=q25 upper=q75 median;
run;
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Output 48.5.8 shows the selection summary and parameter estimates for sample 1 of the model averaging.
Note that you can obtain all the model selection output, including graphs, for each sample.

Output 48.5.8 Selection Details for Sample 1

The GLMSELECT Procedure
Sample 1

The GLMSELECT Procedure
Sample 1

LASSO Selection Summary

Step
Effect
Entered

Effect
Removed

Number
Effects In SBC

0 Intercept 1 374.8287

1 x1 2 243.4087

2 x5 3 227.5991

3 x2 4 225.7356*

4 x7 5 229.9135

5 x3 6 233.3660

6 x6 7 237.7447

7 x10 8 235.2171

8 x4 9 238.8085

9 x9 10 239.8353

10 x8 11 244.4236

* Optimal Value of Criterion

Parameter Estimates

Parameter DF Estimate

Intercept 1 -0.092885

x1 1 4.079938

x2 1 0.505697

x5 1 1.473929

The following statements display the subset of the variables in the first five observations of the output data
set, as shown in Output 48.5.9.

proc print data=simOut(obs=5);
var p stddev q25 median q75 sf1-sf3 sp1-sp3;

run;



Example 48.5: Model Averaging F 3795

Output 48.5.9 Part of the Output Data Set

Obs p stddev q25 median q75 sf1 sf2 sf3 sp1 sp2 sp3

1 10.3569 0.82219 9.95992 10.3878 10.9194 1 0 1 10.1378 11.2104 11.0124

2 -5.5453 0.64544 -6.05563 -5.6455 -5.0829 1 1 1 -4.7517 -6.7191 -6.4413

3 6.5066 0.75289 6.05984 6.5077 6.9099 3 2 0 6.0838 7.4880 6.3466

4 -1.7527 0.85168 -2.26638 -1.8123 -1.3312 1 1 2 -2.1891 -1.4887 -1.7083

5 -7.5840 1.20687 -8.44679 -7.5716 -6.7386 3 1 1 -6.7051 -9.0558 -6.7949

By default, the LOWER and UPPER options in the OUTPUT statement produce the lower and upper quartiles
of the sample predicted values. You can change the quantiles produced by using the ALPHA= option in
the MODELAVERAGE statement. The variables sf1–sf100 contain the sample frequencies used for each
sample, and the variables sp1–sp100 hold the corresponding predicted values. Even if you do not specify the
DETAILS option in the MODELAVERAGE statement, you can use the sample frequencies in the output
data set to reproduce the selection results for any particular sample. For example, the following statements
recover the selection for sample 1:

proc glmselect data=simOut;
freq sf1;
model y=x1-x10/selection=LASSO(adaptive stop=none choose=SBC);

run;

The average model is not parsimonious—it includes shrunken estimates of infrequently selected parameters
which often correspond to irrelevant regressors. It is tempting to ignore the estimates of infrequently selected
parameters by setting their estimate values to zero in the average model. However, this can lead to a poorly
performing model. Even though a parameter might occur in only one selected model, it might be a very
important term in that model. Ignoring its estimate but including some of the estimates of the other parameters
in this model leads to biased predictions. One scenario where this might occur is when the data contains two
highly correlated regressors which are both strongly correlated with the response.

You can obtain a parsimonious model by using the frequency of effect selection as a measure of effect
importance and refitting a model that contains just the effects that you deem important. In this example,
Output 48.5.3 shows that the effects x1, x2, and x5 all get selected at least 99 percent of the time, whereas
all other effects get selected less than 34 percent of the time. This large gap suggests that using 35% as the
selection cutoff for this data will produce a parsimonious model that retains good predictive performance.
You can use the REFIT option to implement this strategy. The REFIT option requests a second round of
model averaging, where you use the MINPCT= suboption to specify the minimum percentage of times an
effect must be selected in the initial set of samples to be included in the second round of model averaging.
The average model is obtained by averaging the ordinary least squares estimates obtained for each sample.
The following statements show how you do this:
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proc glmselect data=simData seed=3 plots=(ParmDistribution);
model y=x1-x10/selection=LASSO(adaptive stop=none choose=SBC);
modelAverage refit(minpct=35 nsamples=1000) alpha=0.1;

run;

ods graphics off;

The NSAMPLES=1000 suboption of the REFIT option specifies that 1,000 samples be used in the refit, and
the MINPCT=35 suboption specifies the cutoff for inclusion in the refit. The ALPHA=0.1 option specifies
that the fifth and 95th percentiles of the estimates be displayed. Output 48.5.10 shows the effects that are
used in performing the refit and the resulting average parameter estimates.

Output 48.5.10 Refit Average Parameter Estimates

The GLMSELECT Procedure
Refit Model Averaging Results
The GLMSELECT Procedure

Refit Model Averaging Results

Effects: Intercept x1 x2 x5

Average Parameter Estimates

Estimate Quantiles

Parameter
Mean

Estimate
Standard
Deviation 5% Median 95%

Intercept -0.243514 0.315207 -0.762462 -0.230630 0.271510

x1 3.226252 0.299443 2.737843 3.226758 3.708131

x2 1.453584 0.308062 0.947059 1.454635 1.968231

x5 2.226044 0.345185 1.627491 2.228189 2.780034

Output 48.5.11 displays the distributions of the estimates that are obtained for each parameter in the refit
model. Because the distributions are approximately normal and a large number of samples are used, it is
reasonable to interpret the range between the fifth and 95th percentiles of each estimate as an approximate
90% confidence interval for that estimate.
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Output 48.5.11 Effect Selection Percentages
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Example 48.6: Elastic Net and External Cross Validation
This example shows how to use the elastic net method for model selection and compares it with the LASSO
method. The example also uses k-fold external cross validation as a criterion in the CHOOSE= option to
choose the best model based on the penalized regression fit.

This example uses a microarray data set called the leukemia (LEU) data set (Golub et al. 1999), which is
used in the paper by Zou and Hastie (2005) to demonstrate the performance of the elastic net method in
comparison with that of LASSO. The LEU data set consists of 7,129 genes and 72 samples, and 38 samples
are used as training samples. Among the 38 training samples, 27 are type 1 leukemia (acute lymphoblastic
leukemia) and 11 are type 2 leukemia (acute myeloid leukemia). The goal is to construct a diagnostic
rule based on the expression level of those 7,219 genes to predict the type of leukemia. The remaining 34
samples are used as the validation data for picking the appropriate model or as the test data for testing the
performance of the selected model. The training and validation data sets are available from Sashelp.Leutrain
and Sashelp.Leutest.

To have a basis for comparison, use the following statements to apply the LASSO method for model selection:

ods graphics on;
proc glmselect data=sashelp.Leutrain valdata=sashelp.Leutest

plots=coefficients;
model y = x1-x7129/

selection=LASSO(steps=120 choose=validate);
run;

The details about the number of observations for training and validation data are given in Output 48.6.1 and
Output 48.6.2, respectively.

Output 48.6.1 Number of Training Observations Table

The GLMSELECT ProcedureThe GLMSELECT Procedure

Observation Profile for Analysis Data

Number of Observations Read 38

Number of Observations Used 38

Number of Observations Used for Training 38

Output 48.6.2 Number of Validation Observations Table

Observation Profile for Validation
Data

Number of Observations Read 34

Number of Observations Used 34
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Output 48.6.3 shows the “LASSO Selection Summary” table. Although the STEPS= suboption of the
SELECTION= option specifies that 120 steps of LASSO selection be performed, the LASSO method
terminates at step 81 because the selected model is a perfect fit and the number of effects that can be selected
by LASSO is bounded by the number of training samples. Note that a VALDATA= data set is named in
the PROC GLMSELECT statement and that the minimum of the validation ASE occurs at step 68. Hence
the model at this step is selected, resulting in 35 selected effects. Output 48.6.4 shows the standardized
coefficients of all the effects selected at some step of the LASSO method, plotted as a function of the step
number.

Output 48.6.3 LASSO Selection Summary Table

The GLMSELECT Procedure

LASSO Selection Summary

The GLMSELECT Procedure

LASSO Selection Summary

Step
Effect
Entered

Effect
Removed

Number
Effects In ASE

Validation
ASE

0 Intercept 1 0.8227 1.0287

1 x4847 2 0.7884 0.9787

2 x3320 3 0.7610 0.9507

3 x2020 4 0.4935 0.7061

4 x5039 5 0.2838 0.5527

5 x1249 6 0.2790 0.5518

6 x2242 7 0.2255 0.5513

. . .

. . .

. . .

62 x2534 35 0.0016 0.1554

63 x3320 34 0.0016 0.1557

64 x5631 35 0.0013 0.1532

65 x6021 34 0.0012 0.1534

66 x1745 33 0.0012 0.1535

67 x6376 34 0.0012 0.1535

68 x4831 35 0.0010 0.1531*

69 x6184 34 0.0009 0.1539

70 x3820 35 0.0006 0.1588

71 x3171 36 0.0005 0.1615

72 x6376 35 0.0004 0.1640

73 x5142 36 0.0004 0.1659

74 x1745 37 0.0003 0.1688

75 x3605 38 0.0001 0.1821

76 x573 37 0.0001 0.1825

77 x3221 38 0.0001 0.1842

78 x1745 37 0.0001 0.1842

79 x6163 38 0.0000 0.1918

80 x4831 37 0.0000 0.1920

81 x1745 38 0.0000 0.1940

* Optimal Value of Criterion
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Output 48.6.4 LASSO Coefficient Progression Plot

As discussed earlier, the number of effects that can be selected by the LASSO method is upper-bounded
by the number of training samples. However, this is not a restriction for the elastic net method, which
incorporates an additional ridge regression penalty. You can use the following statements to apply the elastic
net method for model selection:

proc glmselect data=sashelp.Leutrain valdata=sashelp.Leutest
plots=coefficients;

model y = x1-x7129/
selection=elasticnet(steps=120 L2=0.001 choose=validate);

run;

The L2= suboption of the SELECTION= option in the MODEL statement specifies the value of the ridge
regression parameter. Output 48.6.5 shows the “Elastic Net Selection Summary” table. As in the example for
LASSO, the STEPS= suboption of the SELECTION= option specifies that 120 steps of elastic net selection
be performed. However, in contrast to the early termination in the LASSO method at step 81, the elastic net
method runs until the specified 120 steps are performed. With the same VALDATA= data set named in the
PROC GLMSELECT statement as in the LASSO example, the minimum of the validation ASE occurs at
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step 105, and hence the model at this step is selected, resulting in 54 selected effects. Compared with the
LASSO method, the elastic net method can select more variables, and the number of selected variables is not
restricted by the number of samples (38 for this example). Output 48.6.6 shows the standardized coefficients
of all the effects that are selected at some step of the elastic net method, plotted as a function of the step
number.

Output 48.6.5 Elastic Net Selection Summary Table

The GLMSELECT Procedure

Elastic Net Selection Summary

The GLMSELECT Procedure

Elastic Net Selection Summary

Step
Effect
Entered

Effect
Removed

Number
Effects In ASE

Validation
ASE

0 Intercept 1 0.8227 1.0287

1 x4847 2 0.7885 0.9790

2 x3320 3 0.7611 0.9510

3 x2020 4 0.4939 0.7065

4 x5039 5 0.2845 0.5533

5 x1249 6 0.2799 0.5525

6 x2242 7 0.2259 0.5517

. . .

. . .

. . .

100 x259 53 0.0000 0.1207

101 x1781 54 0.0000 0.1207

102 x7065 53 0.0000 0.1198

103 x4079 54 0.0000 0.1193

104 x6163 53 0.0000 0.1193

105 x6539 54 0.0000 0.1192*

106 x6071 55 0.0000 0.1192

107 x1829 56 0.0000 0.1192

108 x5598 55 0.0000 0.1192

109 x6169 56 0.0000 0.1192

110 x1529 57 0.0000 0.1194

111 x1306 58 0.0000 0.1194

112 x5954 59 0.0000 0.1202

113 x4271 60 0.0000 0.1203

114 x3312 61 0.0000 0.1207

115 x461 62 0.0000 0.1213

116 x4697 63 0.0000 0.1228

117 x259 62 0.0000 0.1231

118 x4186 63 0.0000 0.1252

119 x4271 62 0.0000 0.1258

120 x4939 63 0.0000 0.1261

* Optimal Value of Criterion
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Output 48.6.6 Elastic Net Coefficient Progression Plot

When you have a good estimate of the ridge regression parameter, you can specify the L2= suboption of the
SELECTION= option in the MODEL statement. However, when you do not have a good estimate of the
ridge regression parameter, you can leave the L2= option unspecified. In this case, PROC GLMSELECT
estimates this regression parameter based on the criterion specified in the CHOOSE= option.

If you have a validation data set, you can use the following statements to apply the elastic net method of
model selection:

proc glmselect data=sashelp.Leutrain valdata=sashelp.Leutest
plots=coefficients;

model y = x1-x7129/
selection=elasticnet(steps=120 choose=validate);

run;
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PROC GLMSELECT tries a series of candidate values for the ridge regression parameter, which you can
control by using the L2HIGH=, L2LOW=, and L2SEARCH= options. The ridge regression parameter is set
to the value that achieves the minimum validation ASE (see Figure 48.12 for an illustration). Output 48.6.7
shows the “Elastic Net Selection Summary” table. Compared to Output 48.6.5, where a ridge regression
parameter is specified by the L2= option, this table shows that a slightly lower validation ASE is achieved as
the value of the ridge regression parameter is optimized on the validation data set.

Output 48.6.7 Elastic Net Selection Summary Table

The GLMSELECT Procedure

Elastic Net Selection Summary

The GLMSELECT Procedure

Elastic Net Selection Summary

Step
Effect
Entered

Effect
Removed

Number
Effects In ASE

Validation
ASE

0 Intercept 1 0.8227 1.0287

1 x4847 2 0.7884 0.9787

2 x3320 3 0.7610 0.9508

3 x2020 4 0.4936 0.7061

4 x5039 5 0.2839 0.5527

5 x1249 6 0.2790 0.5519

6 x2242 7 0.2256 0.5513

. . .

. . .

. . .

110 x3605 49 0.0000 0.1252

111 x1975 50 0.0000 0.1241

112 x6757 51 0.0000 0.1224

113 x3221 50 0.0000 0.1206

114 x2183 51 0.0000 0.1205

115 x259 52 0.0000 0.1202

116 x157 53 0.0000 0.1201

117 x1781 54 0.0000 0.1197

118 x7065 53 0.0000 0.1194

119 x4079 54 0.0000 0.1187

120 x6539 55 0.0000 0.1186*

* Optimal Value of Criterion
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Output 48.6.8 shows the standardized coefficients of all the effects that are selected at some step of the elastic
net method, plotted as a function of the step number.

Output 48.6.8 Elastic Net Coefficient Progression Plot

When validation data are not available, you can use other criteria supported by the CHOOSE= option for
estimating the value of the ridge regression parameter. Criteria such as AIC, AICC, and BIC are defined
for the training samples only, and they tend to set the value of the ridge regression parameter to 0 when the
number of training samples is less than the number of variables. In this case, the elastic net method reduces to
the LASSO method. As an alternative to AIC, AICC, and BIC, you can use either k-fold cross validation or
k-fold external cross validation in the CHOOSE= option, where the criterion is computed for held-out data.

If you want to use k-fold cross validation for selecting the model and selecting the appropriate value for the
ridge regression parameter, you can use the following statements to apply the elastic net method of model
selection:

proc glmselect data=sashelp.Leutrain testdata=sashelp.Leutest
plots=coefficients;

model y = x1-x7129/
selection=elasticnet(steps=120 choose=cv)cvmethod=split(4);

run;
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Output 48.6.9 Elastic Net Selection Summary Table

The GLMSELECT Procedure

Elastic Net Selection Summary

The GLMSELECT Procedure

Elastic Net Selection Summary

Step
Effect
Entered

Effect
Removed

Number
Effects In ASE Test ASE CV PRESS

0 Intercept 1 0.8227 1.0287 31.4370

1 x4847 2 0.7884 0.9787 10.6957

2 x3320 3 0.7610 0.9507 10.2065

3 x2020 4 0.4935 0.7061 7.5478

4 x5039 5 0.2838 0.5527 5.7695

5 x1249 6 0.2790 0.5518 5.0187

6 x2242 7 0.2255 0.5513 5.4050

. . . .

. . . .

. . . .

80 x4831 37 0.0000 0.1919 24.0303

81 x1745 38 0.0000 0.1933 24.0303

82 x4831 39 0.0000 0.1937 24.0303

83 x2661 40 0.0000 0.1864 24.0303

84 x3605 39 0.0000 0.1857 24.0303

85 x464 38 0.0000 0.1857 7.2724

86 x5766 39 0.0000 0.1854 7.2724

87 x464 40 0.0000 0.1763 7.2724

88 x6376 41 0.0000 0.1735 7.2724

89 x464 40 0.0000 0.1675 7.2724

90 x4079 39 0.0000 0.1674 1.2851

91 x1987 40 0.0000 0.1625 1.2846*

* Optimal Value of Criterion

A TESTDATA= data set is named in the PROC GLMSELECT statement; this is the same as the validation
data set used earlier. Because the L2= option is not specified, PROC GLMSELECT tries a series of candidate
values for the ridge regression parameter according to the CHOOSE=CV option, and the ridge regression
parameter is set to the value that achieves the minimal CVPRESS score. Output 48.6.9 shows the “Elastic
Net Selection Summary” table, which corresponds to the ridge regression parameter selected by k-fold cross
validation. The elastic net method achieves the smallest CVPRESS score at step 91. Hence the model at this
step is selected, resulting in 40 selected effects.

Output 48.6.10 shows the standardized coefficients of all the effects selected at some step of the elastic net
method, plotted as a function of the step number. Note that k-fold cross validation uses a least squares fit to
compute the CVPRESS score. Thus the criterion does not directly depend on the penalized regression used
in the elastic net method, and the CVPRESS curve in Output 48.6.10 has abrupt jumps.
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Output 48.6.10 Elastic Net Coefficient Progression Plot

If you want to perform the selection of both the ridge regression parameter and the selected variables in the
model based on a criterion that directly depends on the regression used in the elastic net method, you can use
k-fold external cross validation by specifying the following statements:

proc glmselect data=sashelp.Leutrain testdata=sashelp.Leutest
plots=coefficients;

model y = x1-x7129/
selection=elasticnet(steps=120 choose=cvex)cvmethod=split(4);

run;
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Output 48.6.11 Elastic Net Coefficient Progression Plot

As earlier, a TESTDATA= data set is named in the PROC GLMSELECT statement to test the prediction
accuracy of the model on the training samples. Because the L2= option is not specified, PROC GLMSELECT
tries a series of candidate values for the ridge regression parameter. Output 48.6.11 shows the standardized
coefficients of all the effects selected at some step of the elastic net method, plotted as a function of the step
number, and also the curve of the CVEXPRESS statistic as a function of the step number. A comparison
between the criterion curves in Output 48.6.10 and Output 48.6.11 shows that the CVEXPRESS statistic is
smoother than the CVPRESS statistic. Note that the CVEXPRESS statistic is based on a penalized model,
whereas the CVPRESS statistic is based on an ordinary least squares model. Output 48.6.12 shows the
“Elastic Net Selection Summary” table, which corresponds to the ridge regression parameter selected by
k-fold external cross validation. The elastic net method achieves the smallest CVEXPRESS score at step 120,
and hence the model at this step is selected, resulting in 53 selected effects.
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Output 48.6.12 Elastic Net Selection Summary Table

The GLMSELECT Procedure

Elastic Net Selection Summary

The GLMSELECT Procedure

Elastic Net Selection Summary

Step
Effect
Entered

Effect
Removed

Number
Effects In ASE Test ASE CVEX PRESS

0 Intercept 1 0.8227 1.0287 0.8265

1 x4847 2 0.7884 0.9787 0.7940

2 x3320 3 0.7610 0.9507 0.7698

3 x2020 4 0.4936 0.7061 0.5195

4 x5039 5 0.2839 0.5527 0.3554

5 x1249 6 0.2790 0.5519 0.3526

6 x2242 7 0.2255 0.5513 0.3218

7 x6539 8 0.2161 0.5498 0.3166

8 x6055 9 0.2128 0.5488 0.3148

9 x1779 10 0.1968 0.5205 0.3096

10 x3847 11 0.1065 0.3765 0.2671

11 x4951 12 0.0891 0.3498 0.2586

12 x1834 13 0.0868 0.3458 0.2579

13 x1745 14 0.0837 0.3397 0.2570

14 x6021 15 0.0809 0.3355 0.2561

15 x6362 16 0.0667 0.3144 0.2510

16 x2238 17 0.0621 0.3075 0.2498

. . . .

. . . .

. . . .

100 x2121 45 0.0000 0.1402 0.2350

101 x6021 46 0.0000 0.1386 0.2334

102 x3171 45 0.0000 0.1377 0.2324

103 x4461 46 0.0000 0.1350 0.2302

104 x4697 47 0.0000 0.1338 0.2299

105 x3605 46 0.0000 0.1331 0.2293

106 x3221 47 0.0000 0.1330 0.2289

107 x5002 48 0.0000 0.1320 0.2282

108 x3820 47 0.0000 0.1319 0.2281

109 x4697 46 0.0000 0.1315 0.2278

110 x4052 47 0.0000 0.1276 0.2235

111 x6184 48 0.0000 0.1266 0.2229

112 x3605 49 0.0000 0.1252 0.2215

113 x1975 50 0.0000 0.1240 0.2212

114 x6757 51 0.0000 0.1222 0.2200

115 x3221 50 0.0000 0.1206 0.2185

116 x2183 51 0.0000 0.1205 0.2185

117 x259 52 0.0000 0.1202 0.2182

118 x157 53 0.0000 0.1201 0.2181

119 x1781 54 0.0000 0.1197 0.2177

120 x7065 53 0.0000 0.1194 0.2177*

* Optimal Value of Criterion
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Example 48.7: LASSO with Screening
This example shows how you can use the SCREEN= option to speed up model selection when you have a
large number of regressors. In order to demonstrate the efficiency in screening model selection, this example
uses simulated data in which the response y depends systematically on a relatively small subset of a much
larger set of regressors, which is described in Table 48.13.

Table 48.13 Complete Set of Regressors

Regressor Name Type Number of Levels In True Model

xIn1–xIn5 Continuous Yes
xOut1–xOut1000 Continuous No
cIn1–cIn2 Classification 2–5 Yes
cOut1–cOut1000 Classification 2–5 No

The labels In and Out, which are part of the regressor names, make it easy to identify whether the selected
model succeeds or fails in capturing the true underlying model.

The following DATA step generates the data:

%let nObs = 5000;
%let nContIn = 5;
%let nContOut = 1000;
%let nClassIn = 2;
%let nClassOut = 1000;
%let maxLevs = 5;
%let noiseScale= 1;

data ex7Data;
array xIn{&nContIn};
array xOut{&nContOut};
array cIn{&nClassIn};
array cOut{&nClassOut};

drop i j sign nLevs xBeta;

do i=1 to &nObs;
sign = -1;
xBeta = 0;
do j=1 to dim(xIn);

xIn{j} = ranuni(1);
xBeta = xBeta + sqrt(j)*sign*xIn{j};
sign = -sign;

end;
do j=1 to dim(xOut);

xOut{j} = ranuni(1);
end;

do j=1 to dim(cIn);
nLevs = 2 + mod(j,&maxlevs-1);
cIn{j} = 1+int(ranuni(1)*nLevs);
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xBeta = xBeta + j*sign*(cIn{j}-nLevs/2);
sign = -sign;

end;

do j=1 to dim(cOut);
nLevs = 2 + mod(j,&maxlevs-1);
cOut{j} = 1+int(ranuni(1)*nLevs);

end;

y = xBeta + &noiseScale*rannor(1);

output;
end;

run;

The following statements apply the LASSO method for model selection but do not specify any screening
technique:

proc glmselect data=ex7Data;
class c:;
model y = x: c:/

selection=lasso;
run;

Output 48.7.1 and Output 48.7.2 show the number of observations and the number of effects, respectively.
You can see that 5,000 observations are used for training and the number of effects after splits is 4,513.

Output 48.7.1 Number of Training Observations Table

The GLMSELECT ProcedureThe GLMSELECT Procedure

Number of Observations Read 5000

Number of Observations Used 5000

Output 48.7.2 Dimensions

Dimensions

Number of Effects 2008

Number of Effects after Splits 4513

Number of Parameters 4513

Output 48.7.3 shows the “LASSO Selection Summary” table. You can see that the selected model contains
all the predictive effects and successfully excludes all the noise effects.
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Output 48.7.3 LASSO Selection Summary Table

The GLMSELECT Procedure

Without the SCREEN= option

The GLMSELECT Procedure

Without the SCREEN= option

Step
Effect
Entered

Effect
Removed

Number
Effects In SBC

0 Intercept 1 10413.6418

1 cIn2_1 2 10335.5423

2 cIn2_4 3 7237.0701

3 cIn1_1 4 7186.9642

4 cIn1_3 5 6753.6076

5 xIn5 6 6609.0322

6 cIn2_3 7 6510.2639

7 xIn4 8 5797.1607

8 xIn3 9 5487.4432

9 xIn2 10 2894.0166

10 xIn1 11 310.9340*

* Optimal Value of Criterion

You can improve the computational performance of the LASSO method by using the SCREEN=SASVI
option as follows:

proc glmselect data=ex7Data;
class c:;
model y = x: c:/

selection=lasso(screen=sasvi);
run;

Output 48.7.4 shows that the safe screening approach SASVI is used.

Output 48.7.4 Screening Information

The GLMSELECT ProcedureThe GLMSELECT Procedure

Screening Information

Screening Method SASVI (safe screening)

Output 48.7.5 shows the “LASSO Selection Summary” table, which is exactly the same as Output 48.7.3.
If you compare the “Parameter Estimates” tables that correspond to Output 48.7.3 and Output 48.7.5, you
can see that the parameter estimates are exactly the same, because SASVI is a safe screening approach that
guarantees the same solution, usually in less time. PROC GLMSELECT runs about twice as fast when
SCREEN=SASVI as it runs when no screening is specified.
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Output 48.7.5 LASSO Selection Summary Table

The GLMSELECT Procedure

SCREEN=SASVI

The GLMSELECT Procedure

SCREEN=SASVI

Step
Effect
Entered

Effect
Removed

Number
Effects In SBC

0 Intercept 1 10413.6418

1 cIn2_1 2 10335.5423

2 cIn2_4 3 7237.0701

3 cIn1_1 4 7186.9642

4 cIn1_3 5 6753.6076

5 xIn5 6 6609.0322

6 cIn2_3 7 6510.2639

7 xIn4 8 5797.1607

8 xIn3 9 5487.4432

9 xIn2 10 2894.0166

10 xIn1 11 310.9340*

* Optimal Value of Criterion

As an alternative to screening by SASVI, you can specify SCREEN=SIS for sure independence screening as
follows:

proc glmselect data=ex7Data;
class c:;
model y = x: c:/

selection=lasso(screen=sis(keepnum=15));
run;

Output 48.7.6 shows that sure independence screening is used and that the number of effects to be kept before
applying LASSO for model selection is 15. The last two rows of Output 48.7.6 show the actual number of
kept effects and the corresponding ratio with the total number of effects.

Output 48.7.6 Screening Information

The GLMSELECT ProcedureThe GLMSELECT Procedure

Screening Information

Screening Method SIS (sure independence screening)

Screening Keep Number 15

Actual Kept Number 15

Actual Kept Ratio 0.003

Output 48.7.7 shows the absolute correlation between the effects and the response that corresponds to the
leading 20 effects. Because you specified KEEPNUM=15, only the leading 15 effects are kept for model
selection by LASSO. In this example, you can see that all the predictive effects are among the top 15. Note
that if the screening stage does not keep an effect, that effect has no chance of being selected in the final
model.
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Output 48.7.7 LASSO Selection Summary Table

The GLMSELECT Procedure

SCREEN=SIS

The GLMSELECT Procedure

SCREEN=SIS

Effect Screening by
Correlation

Rank Effect

Maximum
Absolute

Correlation

1 cIn2_1 0.621286

2 cIn2_4 0.611998

3 cIn1_1 0.261449

4 cIn1_3 0.259374

5 cIn2_3 0.215103

6 xIn5 0.212433

7 xIn4 0.201704

8 cIn2_2 0.195087

9 xIn3 0.174133

10 xIn2 0.170705

11 xIn1 0.083742

12 cOut447_4 0.061958

13 cOut238_1 0.052981

14 cOut538_4 0.052165

15 cOut747_5 0.051390

16 xOut345 0.050114*

17 cOut511_5 0.047524*

18 cOut630_2 0.047440*

19 cOut672_2 0.045937*

20 cOut672_1 0.045937*

* Screened Out Effect

Output 48.7.8 shows the “LASSO Selection Summary” table. As in Output 48.7.3, all the predictive effects
enter into the model. However, one noise effect also enters into the model, because SCREEN=SIS does not
necessarily guarantee the same solution as the solution that results when SCREEN=NONE. For this example,
PROC GLMSELECT runs only slightly faster when SCREEN=SIS than it does when SCREEN=SASVI,
although it runs about twice as fast as it does when SCREEN=NONE. However, for problems that have more
predictors or that use much more computationally intense CHOOSE= criterion, sure independence screening
(SIS) can run faster by orders of magnitude.
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Output 48.7.8 LASSO Selection Summary Table

The GLMSELECT Procedure

SCREEN=SIS

The GLMSELECT Procedure

SCREEN=SIS

Step
Effect
Entered

Effect
Removed

Number
Effects In SBC

0 Intercept 1 10413.6418

1 cIn2_1 2 10335.5423

2 cIn2_4 3 7237.0701

3 cIn1_1 4 7186.9642

4 cIn1_3 5 6753.6076

5 xIn5 6 6609.0322

6 cIn2_3 7 6510.2639

7 xIn4 8 5797.1607

8 xIn3 9 5487.4432

9 xIn2 10 2894.0166

10 xIn1 11 245.9693

11 cOut747_5 12 238.4427*

* Optimal Value of Criterion
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Overview: HPMIXED Procedure
The HPMIXED procedure uses a number of specialized high-performance techniques to fit linear mixed
models with variance component structure. The HPMIXED procedure is specifically designed to cope with
estimation problems involving a large number of fixed effects, a large number of random effects, or a large
number of observations.

The HPMIXED procedure complements the MIXED procedure and other SAS/STAT procedures for mixed
modeling. On the one hand, the models supported by the HPMIXED procedure are a subset of the models
that you can fit with the MIXED procedure, and the confirmatory inferences available in the HPMIXED
procedure are also a subset of the general analyses available with the MIXED procedure. On the other hand,
the HPMIXED procedure can have considerably better performance than other SAS/STAT mixed modeling
tools, in terms of memory requirements and computational speed.

A mixed model can be large in a number of ways, not all of which are suited for the specialized algorithms
and storage techniques implemented in the HPMIXED procedure. The following are examples of linear
mixed modeling problems for which the HPMIXED procedure has been specifically designed:

• linear mixed models with thousands of levels for the fixed and/or random effects

• linear mixed models with hierarchically nested fixed and/or random effects, possibly with hundreds or
thousands of levels at each level of the hierarchy

Basic Features
The HPMIXED procedure enables you to specify a linear mixed model with variance component structure, to
estimate the covariance parameters by restricted maximum likelihood, and to perform confirmatory inference
in such models. The HPMIXED procedure fits the specified linear mixed model and produces appropriate
statistics.

The following are some of the basic features of the HPMIXED procedure:

• capacity to handle large linear mixed model problems for balanced or unbalanced data

• MIXED-type MODEL and RANDOM statements for model specification and CONTRAST, ESTI-
MATE, LSMEANS, and TEST statements for inferences

• estimate covariance parameters by restricted maximum likelihood (REML)

• output statistics by using the OUTPUT statement
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• computation of appropriate standard errors for all specified estimable linear combinations of fixed and
random effects, and corresponding t and F tests

• subject and group effects that enable blocking and heterogeneity, respectively

• NLOPTIONS statement, which enables you to exercise control over the numerical optimization

The HPMIXED procedure uses the Output Delivery System (ODS), a SAS subsystem that provides capa-
bilities for displaying and controlling the output from SAS procedures. ODS enables you to convert any
of the output from the HPMIXED procedure into a SAS data set. See the section “ODS Table Names” on
page 3863 and Chapter 20, “Using the Output Delivery System,” for further information about using ODS
with the HPMIXED procedure.

Assumptions and Notation
The linear mixed models fit by the HPMIXED procedure can be represented as linear statistical models in the
following form:

y D Xˇ C Z C �

 � N.0;G/

� � N.0; �2I/

CovŒ; �� D 0

The symbols in these expressions denote the following:

y the .n � 1/ vector of responses

X the .n � k/ design matrix for the fixed effects

ˇ the .k � 1/ vector of fixed-effects parameters

Z the .n � q/ design matrix for the random effects

 the .q � 1/ vector of random effects

� the .n � 1/ vector of unobservable residual errors

As is customary for statistical models in the linear mixed model family, the random effects are assumed
normally distributed. The same holds for the residual errors and these are furthermore distributed indepen-
dently of the random effects. As a consequence, these assumptions imply that the response vector y has a
multivariate normal distribution.

Further assumptions, implicit in the preceding expression, are as follows:

• The conditional mean of the data—given the random effects—is linear in the fixed effects and the
random effects.

• The marginal mean of the data is linear in the fixed-effects parameters.
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Computational Approach
The computational methods to efficiently solve large mixed model problems with the HPMIXED procedure
rely on a combination of several techniques, including sparse matrix storage, specialized solving of sparse
linear systems, and dedicated nonlinear optimization.

Sparse Storage and Computation

One of the fundamental computational tasks in analyzing a linear mixed model is solving the mixed model
equations�

X0X X0Z
Z0X Z0ZC �2G�1

� �
ˇ



�
D

�
X0y
Z0y

�
where G denotes the variance matrix of the random effects. The mixed model crossproduct matrix�

X0X X0Z
Z0X Z0ZC �2G�1

�
is a key component of these equations, and it often has many zero values (George and Liu 1981). Sparse
storage techniques can result in significant savings in both memory and CPU resources. The HPMIXED
procedure draws on sparse matrix representation and storage where appropriate or necessary.

Conjugate Gradient Algorithm and Iteration-on-Data Technology

Solving the mixed model equations is a critical component of linear mixed model analysis. The two
main components of the preconditioned conjugate gradient (PCCG) algorithm are preconditioning and
matrix-vector product computing (Shewchuk 1994). The algorithm is guaranteed to converge to the solution
within ne iterations, where ne is equal to the number of distinct eigenvalues of the mixed model equations.
This simple yet powerful algorithm can be easily implemented with an iteration-on-data (IOD) technique
(Tsuruta, Misztal, and Stranden 2001) that can yield significant savings of memory resources.

The combination of the PCCG algorithm and iteration on data makes it possible to efficiently compute
best linear unbiased predictors (BLUPs) for the random effects in mixed models with large mixed model
equations.

Average Information Algorithm

The HPMIXED procedure estimates covariance parameters by restricted maximum likelihood. The default
optimization method is a quasi-Newton algorithm. When the Hessian or information matrix is required, the
HPMIXED procedure takes advantage of the computational simplifications that are available by averaging
information (AI). The AI algorithm (Johnson and Thompson 1995; Gilmour, Thompson, and Cullis 1995)
replaces the second derivative matrix with the average of the observed and expected information matrices.
The computationally intensive trace terms in these information matrices cancel upon averaging. Coarsely, the
AI algorithm can be viewed as a hybrid of a Newton-Raphson approach and Fisher scoring.
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The HPMIXED Procedure Contrasted with the MIXED Procedure
The HPMIXED procedure is designed to solve large mixed model problems by using sparse matrix techniques.
A mixed model can be large in many ways: a large number of observations, a large number of columns in the
X matrix, a large number of columns in the Z matrix, and a large number of covariance parameters. The aim
of the HPMIXED procedure is parameter estimation, inference, and prediction in linear mixed models with
large X and/or Z matrices and many observations, but with relatively few covariance parameters.

The models that you can fit with the HPMIXED procedure and the available postprocessing analyses are a
subset of the models and analyses available with the MIXED procedure. With the HPMIXED procedure
you can model only G-side random effects with variance component structure or an unstructured covariance
matrix in a Cholesky parameterization. R-side random effects and direct modeling of their covariance
structures are not supported.

The MIXED and HPMIXED procedures offer different balances for computing performance and statistical
generality. To some extent the generality of the MIXED procedure means that it cannot serve as a high-
performance computing tool for all of the model-data scenarios that it can potentially handle. For example,
although efficient sparse algorithms are available to estimate variance components in large linear mixed
models, the computational configuration changes profoundly when, for example, Kenward-Roger degree-of-
freedom adjustments are requested.

On the other hand, the HPMIXED procedure can handle only a small subset of the models that PROC MIXED
can fit. Invariably, some features of high-performance sparse computing methods might be surprising at
first. For example, the best computational path depends on the model and the data, so that in models with a
singular X0X matrix, the order in which singularities are detected and accounted for can change from one
data set to the next.

The following is a list of features available in the MIXED procedure, but not available in the HPMIXED
procedure:

• a variety of covariance structures by using the TYPE= option in the RANDOM statement

• automatic Type III tests of fixed effects. You request tests of fixed effects in the HPMIXED procedure
with the TEST statement.

• ODS statistical graphics

• advanced degree-of-freedom adjustments available by using the DDFM= option

• maximum likelihood or method-of-moments estimation for the covariance parameters

• a PRIOR statement for a sampling-based Bayesian analysis
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Getting Started: HPMIXED Procedure

Mixed Model with Large Number of Fixed and Random Effects
In animal breeding, it is common to model genetic and environmental effects with a random effect for the
animal. When there are many animals being studied, this can lead to very large mixed model equations to be
solved. In this example we present an analysis of simulated data with this structure.

Suppose you have 3000 animals from five different genetic species raised on 100 different farms. The
following DATA step simulates 40000 observations of milk yield (Yield) from a linear mixed model with
variables Species and Farm in the fixed-effect model and Animal as a random effect. The random effect
due to Animal is simulated with a variance of 4.0, while the residual error variance is 8.0. These variance
component values reflect the fact that variation in milk yield is typically genetically controlled to be no more
than 33% (4/(4+8)).

data Sim;
keep Species Farm Animal Yield;
array AnimalEffect{3000};
array AnimalFarm{3000};
array AnimalSpecies{3000};
do i = 1 to dim(AnimalEffect);

AnimalEffect{i} = sqrt(4.0)*rannor(12345);
AnimalFarm{i} = 1 + int(100*ranuni(12345));
AnimalSpecies{i} = 1 + int(5*ranuni(12345));

end;
do i = 1 to 40000;

Animal = 1 + int(3000*ranuni(12345));
Species = AnimalSpecies{Animal};
Farm = AnimalFarm{Animal};
Yield = 1 + Species + Farm/10 + AnimalEffect{Animal}

+ sqrt(8.0)*rannor(12345);
output;

end;
run;

A simple linear mixed model analysis is performed by using the following SAS statements:

proc hpmixed data=Sim;
class Species Farm Animal;
model Yield = Species Species*Farm;
random Animal;
test Species*Farm;
contrast 'Species1 = Species2 = Species3'

Species 1 0 -1,
Species 0 1 -1;

run;
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Selected results from the preceding SAS statements are shown in Figure 49.1 through Figure 49.4.

The “Class Level Information” table in Figure 49.1 shows that the three model effects have 5, 100, and 3000
levels, respectively. Only a portion of the levels are displayed by default. The “Dimensions” table shows that
the model contains a single G-side covariance parameter and a single R-side covariance parameter. R-side
covariance parameters are those associated with the covariance matrix R in the conditional distribution, given
the random effects. In the case of the HPMIXED procedure this matrix is simply R D �2I and the single
R-side covariance parameter corresponds to the residual variance. The G-side parameter is the variance of
the random Animal effect; the G matrix is a diagonal .3000� 3000/ matrix with the common variance on the
diagonal.

Figure 49.1 Class Levels and Dimensions

The HPMIXED ProcedureThe HPMIXED Procedure

Class Level Information

Class Levels Values

Species 5 1 2 3 4 5

Farm 100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ...

Animal 3000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ...

Dimensions

G-side Cov. Parameters 1

R-side Cov. Parameters 1

Columns in X 506

Columns in Z 3000

Subjects (Blocks in V) 1

Taking into account the intercept as well as the number of levels of the Species and Species*Farm effects,
the X matrix for this problem has 506 columns, so that the mixed model equations�

X0X X0Z
Z0X Z0ZC �2G�1

� �
ˇ



�
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Z0y

�
have 3506 rows and columns. This is a substantial computational problem: simply storing a single copy
of this matrix in dense format requires nearly 50 megabytes of memory. The sparse matrix techniques of
PROC HPMIXED use a small fraction of this amount of memory and a similarly small fraction of the CPU
time required to solve the equations with dense techniques. For more information about sparse versus dense
techniques, see the section “Sparse Matrix Techniques” on page 3860.
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Figure 49.2 displays the covariance parameter estimates at convergence of the REML algorithm. The variance
component estimate for animal effect isb�2a D 3:9889 and for residualb�2 D 7:9623. These estimates are
close to the simulated values (4.0 and 8.0).

Figure 49.2 Estimates of Variance Components

Covariance
Parameter
Estimates

Cov Parm Estimate

Animal 3.9889

Residual 7.9623

The TEST statement requests a Type III test of the fixed effect in the model. By default, the HPMIXED
procedure does not compute Type III tests, because they can be computationally demanding. The tests of the
Species*Farm effect is highly significant. That indicates animals of a genetic species perform differently in
different environments.

Figure 49.3 Type III Tests of Fixed Effect

Type III Tests of Fixed Effects

Effect
Num

DF
Den

DF F Value Pr > F

Species*Farm 495 39500 11.72 <.0001

You can use the CONTRAST or ESTIMATE statement to test custom linear hypotheses involving the fixed
and/or random effects. The CONTRAST statement in the preceding program tests the null hypothesis
that there are no differences among the first three genetic species. Results from this analysis are shown in
Figure 49.4. The small p-value indicates that there are significant differences among the first three genetics
species.

Figure 49.4 Result of CONTRAST Statement

Contrasts

Label
Num

DF
Den

DF F Value Pr > F

Species1 = Species2 = Species3 2 39500 92.93 <.0001
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Syntax: HPMIXED Procedure
The following statements are available in the HPMIXED procedure:

PROC HPMIXED < options > ;
BY variables ;
CLASS variable < (REF= option) > . . . < variable < (REF= option) > > < / global-options > ;
EFFECT name=effect-type (variables < / options >) ;
ID variables ;
MODEL dependent = < fixed-effects > < / options > ;
RANDOM random-effects < / options > ;
REPEATED repeated-effect < / options > ;
PARMS < (value-list). . . > < / options > ;
TEST fixed-effects < / options > ;
CONTRAST ’label’ contrast-specification < , contrast-specification > < , . . . > < / options > ;
ESTIMATE ’label’ contrast-specification < (divisor=n) >

< , ’label’ contrast-specification < (divisor=n) > > < , . . . > < / options > ;
LSMEANS fixed-effects < / options > ;
NLOPTIONS < options > ;
OUTPUT < OUT=SAS-data-set >

< keyword< (keyword-options) > < =name > > . . .
< keyword< (keyword-options) > < =name > > < / options > ;

WEIGHT variable ;

Items within angle brackets ( < > ) are optional. The CONTRAST, ESTIMATE, LSMEANS, RANDOM, and
TEST statements can appear multiple times; all other statements can appear only once.

The PROC HPMIXED and MODEL statements are required, and the MODEL statement must appear after
the CLASS statement if these statements are included. The BY, CLASS, MODEL, ID, OUTPUT, TEST,
RANDOM, REPEATED and WEIGHT statements are described in full after the PROC HPMIXED statement
in alphabetical order. The EFFECT, is shared with many other procedures. Summary descriptions of
functionality and syntax for this statement is also given after the PROC HPMIXED statement in alphabetical
order, but you can find full documentation on it in Chapter 19, “Shared Concepts and Topics.”

Table 49.1 summarizes the basic functions and important options of each PROC HPMIXED statement.

Table 49.1 Summary of PROC HPMIXED Statements

Statement Description Options

PROC HPMIXED Invokes the procedure DATA= specifies input data set, METHOD=
specifies estimation method

BY Performs multiple
PROC HPMIXED analy-
ses in one invocation

None

CLASS Declares qualitative vari-
ables that create indicator
variables in design matri-
ces

None
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Table 49.1 continued

Statement Description Options

ID Lists additional variables
to be included in pre-
dicted values tables

None

MODEL Specifies dependent vari-
able and fixed effects, set-
ting up X

S requests solution for fixed-effects parame-
ters, DDFM= specifies denominator degrees of
freedom method

RANDOM Specifies random effects,
setting up Z and G

SUBJECT= creates block-diagonality, TYPE=
specifies covariance structure, S requests solu-
tion for random-effects parameters

REPEATED Sets up R SUBJECT= creates block-diagonality, TYPE=
specifies covariance structure, R= displays esti-
mated blocks of R, GROUP= enables between-
subject heterogeneity

PARMS Specifies a grid of initial
values for the covariance
parameters

HOLD= and NOITER hold the covariance
parameters or their ratios constant, PARMS-
DATA= reads the initial values from a SAS
data set

CONTRAST Constructs custom hy-
pothesis tests

E displays the L matrix coefficients

ESTIMATE Constructs custom scalar
estimates

CL produces confidence limits

LSMEANS Computes least squares
means for classification
fixed effects

DIFF computes differences of the least
squares means, CL produces confidence limits,
SLICE= tests simple effects

WEIGHT Specifies a variable by
which to weight R

None

PROC HPMIXED Statement
PROC HPMIXED < options > ;

The PROC HPMIXED statement invokes the HPMIXED procedure. Table 49.2 summarizes the options
available in the PROC HPMIXED statement. These and other options in the PROC HPMIXED statement are
then described fully in alphabetical order.

Table 49.2 PROC HPMIXED Statement Options

Option Description

Basic Options
DATA= Specifies input data set
METHOD= Specifies the estimation method
NOPROFILE Includes scale parameter in optimization
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Table 49.2 continued

Option Description

ORDER= Determines the sort order of CLASS variables
BLUP Computes BLUP/BLUE only

Displayed Output
IC= Displays a table of information criteria
ITDETAILS Displays estimates and gradients added to “Iteration History”
MAXCLPRINT= Specifies the maximum levels of CLASS variables to print
LOGNOTE Writes periodic status notes to the log
MMEQ Displays mixed model equations
NOCLPRINT Suppresses “Class Level Information” completely or in parts
NOITPRINT Suppresses “Iteration History” table
RANKS Displays a table of ranks of matrices X, (XZ), and MMEQ
SIMPLE Displays “Descriptive Statistics” table

Singularity Tolerances
SINGCHOL= Tunes singularity for Cholesky decompositions
SINGRES= Tunes singularity for the residual variance
SINGULAR= Tunes general singularity criterion

You can specify the following options.

BLUP< (suboptions) >=SAS-data-set
creates a data set that contains the BLUE and BLUP solutions.The covariance parameters are assumed
to be known and given by PARMS statement. All hypothesis testing is ignored. The statements TEST,
ESTIMATE, CONTRAST, LSMEANS, and OUTPUT are all ignored. This option is designed for
users who need BLUP solutions for random effects with many levels, up to tens of millions.

You can specify the following suboptions:

ITPRINT=number specifies that the iteration history be displayed after every number of iterations.
This suboption applies only for iterative solving methods (IOC or IOD). The default
value is 10, which means the procedure displays the iteration history for every 10
iterations.

MAXITER=number specifies the maximum number of iterations allowed. This applies only for itera-
tive solving methods (IOC or IOD). The default value is the number of parameters
in the BLUE/BLUP plus two.

METHOD=DIRECT | IOC | IOD specifies the method used to solve for BLUP solutions.
METHOD=DIRECT requires storing mixed model equations (MMEQ) in memory
and computing the Cholesky decomposition of MMEQ. This method is the most ac-
curate, but it is the most inefficient in terms of speed and memory. METHOD=IOD
does not build mixed model equations; instead it iterates on data to solve for the
solutions. This method is most efficient in terms of memory. METHOD=IOC
requires storing mixed model equations in memory and iterates on MMEQ to solve
for the solutions. This method is the most efficient in terms of speed. The default
method is IOC.



3828 F Chapter 49: The HPMIXED Procedure

TOL=number specifies the tolerance value. This suboption applies only for iterative solving
methods (IOC or IOD). The default value is the square root of machine precision.

DATA=SAS-data-set
names the SAS data set to be used by PROC HPMIXED. The default is the most recently created data
set.

INFOCRIT=NONE | PQ | Q

IC=NONE | PQ | Q
determines the computation of information criteria in the “Fit Statistics” table. The criteria are all in
smaller-is-better form, and are described in Table 49.3.

Table 49.3 Information Criteria

Criteria Formula Reference

AIC �2`C 2d Akaike (1974)
AICC �2`C 2dn�=.n� � d � 1/ for n� � d C 2 Hurvich and Tsai (1989) and

�2`C 2d.d C 2/ for n� < d C 2 Burnham and Anderson (1998)
HQIC �2`C 2d log.log.n// for n > 1 Hannan and Quinn (1979)

BIC �2`C d log.n/ for n > 0 Schwarz (1978)
CAIC �2`C d.log.n/C 1/ for n > 0 Bozdogan (1987)

Here ` denotes the maximum value of the restricted log likelihood, d is the dimension of the model,
and n, n� reflect the size of the data. When n � 1, the value of the HQIC criterion is �2`. When n=0,
the values of the BIC and CAIC criteria are undefined.

The quantities d, n, and n� depend on the model and IC= option.

• models without random effects:
The IC=Q and IC=PQ options have no effect on the computation.

– d equals the number of parameters in the optimization whose solutions do not fall on the
boundary or are otherwise constrained.

– n equals the number of used observations minus rank(X).
– n� equals n, unless n < d + 2, in which case n� D d C 2.

• models with random effects:

– d equals the number of parameters in the optimization whose solutions do not fall on the
boundary or are otherwise constrained. If IC=PQ, this value is incremented by rank.X/.

– n equals the effective number of subjects as displayed in the “Dimensions” table, unless
this value equals 1, in which case n equals the number of levels of the first random effect
specified. The IC=Q and IC=PQ options have no effect.

– n� equals n, unless n < d + 2, in which case n� D d C 2. The IC=Q and IC=PQ options
have no effect.

The IC=NONE option suppresses the “Fit Statistics” table. IC=Q is the default.



PROC HPMIXED Statement F 3829

ITDETAILS
displays the parameter values at each iteration and enables the writing of notes to the SAS log pertaining
to “infinite likelihood” and “singularities” during optimization iterations.

LOGNOTE
writes to the log periodic notes that describe the current status of computations. This option is designed
for use with analyses that require extensive CPU resources.

MAXCLPRINT=number
specifies the maximum levels of CLASS variables to print in the ODS table ClassLevels. The default
value is 20. MAXCLPRINT=0 enables you to print all levels of each CLASS variable. However, the
option NOCLPRINT takes precedence over MAXCLPRINT.

METHOD=
specifies the estimation method for the covariance parameters. The REML specification performs
residual (restricted) maximum likelihood, and it is currently the only available method. This option
is therefore currently redundant for PROC HPMIXED, but it is included for consistency with other
mixed model procedures in SAS/STAT software.

MMEQ
displays coefficients of the mixed model equations. These are"

X0bR�1X X0bR�1Z
Z0bR�1X Z0bR�1ZC bG�1

#"
X0bR�1y
Z0bR�1y

#

assuming bG is nonsingular. If bG is singular, PROC HPMIXED produces the following coefficients"
X0bR�1X X0bR�1ZbGbGZ0bR�1X bGZ0bR�1ZbGC bG

#"
X0bR�1ybGZ0bR�1y

#

See the section “Model and Assumptions” on page 3857 for further information about these equations.

NAMELEN=number
specifies the length to which long effect names are shortened. The default and minimum value is 20.

NLPRINT
requests that optimization-related output options specified in the NLOPTIONS statement override cor-
responding options in the PROC HPMIXED statement. When you specify NLPRINT, the ITDETAILS
and NOITPRINT options in the PROC HPMIXED statement are ignored and the following six options
in the NLOPTIONS statement are enabled: NOPRINT, PHISTORY, PSUMMARY, PALL, PLONG,
and PHISTPARMS.

The syntax and options of the NLOPTIONS statement are described in the section “NLOPTIONS
Statement” on page 488 in Chapter 19, “Shared Concepts and Topics.”

NOCLPRINT< =number >
suppresses the display of the “Class Level Information” table if you do not specify number . If you do
specify number , only levels with totals that are less than number are listed in the table.
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NOFIT
suppresses fitting of the model. When the NOFIT option is in effect, PROC HPMIXED produces
the “Model Information,” “Class Level Information,” “Number of Observations,” “Dimensions,” and
“Descriptive Statistics” tables. These can be helpful in gauging the computational effort required to fit
the model.

NOINFO
suppresses the display of the “Model Information,” “Number of Observations,” and “Dimensions”
tables.

NOITPRINT
suppresses the display of the “Iteration History” table.

NOPRINT
suppresses the normal display of results. The NOPRINT option is useful when you want only to create
one or more output data sets with the procedure by using the OUTPUT statement. Note that this option
temporarily disables the Output Delivery System (ODS); see Chapter 20, “Using the Output Delivery
System,” for more information.

NOPROFILE
includes the residual variance as one of the covariance parameters in the optimization iterations. This
option applies only to models that have a residual variance parameter. By default, this parameter is
profiled out of the optimization iterations, except when you have specified the HOLD= option in the
PARMS statement.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of the classification variables (which are specified in the CLASS
statement).

This option applies to the levels for all classification variables, except when you use the (default)
ORDER=FORMATTED option with numeric classification variables that have no explicit format. In
that case, the levels of such variables are ordered by their internal value.

The ORDER= option can take the following values:

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set

FORMATTED External formatted value, except for numeric variables with
no explicit format, which are sorted by their unformatted
(internal) value

FREQ Descending frequency count; levels with the most observa-
tions come first in the order

INTERNAL Unformatted value

By default, ORDER=FORMATTED. For ORDER=FORMATTED and ORDER=INTERNAL, the sort
order is machine-dependent.

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.



BY Statement F 3831

RANKS
displays the ranks of design matrices X and (XZ) and the coefficient matrix of the mixed model
equations (MMEQ).

SIMPLE
displays the mean, standard deviation, coefficient of variation, minimum, and maximum for each
variable used in PROC HPMIXED that is not a classification variable.

SINGCHOL=number
tunes the singularity criterion in Cholesky decompositions. The default is 1E6 times the machine
epsilon; this product is approximately 1E–10 on most computers.

SINGRES=number
sets the tolerance for which the residual variance is considered to be zero. The default is 1E4 times the
machine epsilon; this product is approximately 1E–12 on most computers.

SINGULAR=number
tunes the general singularity criterion applied by the HPMIXED procedure in divisions and inversions.
The default is 1E4 times the machine epsilon; this product is approximately 1E–12 on most computers.

UPDATE
is an alias for the LOGNOTE option.

BY Statement
BY variables ;

You can specify a BY statement with PROC HPMIXED to obtain separate analyses of observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the HPMIXED procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

Since sorting the data changes the order in which PROC HPMIXED reads observations, the sort order for
the levels of the CLASS variable might be affected if you have specified ORDER=DATA in the PROC
HPMIXED statement. This, in turn, affects specifications in the CONTRAST and ESTIMATE statements.

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.
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CLASS Statement
CLASS variable < (REF= option) > . . . < variable < (REF= option) > > < / global-options > ;

The CLASS statement names the classification variables to be used in the model. Typical classification
variables are Treatment, Sex, Race, Group, and Replication. If you use the CLASS statement, it must appear
before the MODEL statement.

Classification variables can be either character or numeric. By default, class levels are determined from the
entire set of formatted values of the CLASS variables.

NOTE: Prior to SAS 9, class levels were determined by using no more than the first 16 characters of the
formatted values. To revert to this previous behavior, you can use the TRUNCATE option in the CLASS
statement.

In any case, you can use formats to group values into levels. See the discussion of the FORMAT procedure
in the Base SAS Procedures Guide and the discussions of the FORMAT statement and SAS formats in SAS
Formats and Informats: Reference. You can adjust the order of CLASS variable levels with the ORDER=
option in the PROC HPMIXED statement.

You can specify the following REF= option to indicate how the levels of an individual classification variable
are to be ordered by enclosing it in parentheses after the variable name:

REF=’level’ | FIRST | LAST
specifies a level of the classification variable to be put at the end of the list of levels. (In procedures that
solve mixed model equations by sequentially sweeping rows and columns, this level thus corresponds to
the reference level in the usual interpretation of the estimates of a singular parameterization. However,
since PROC HPMIXED does not necessarily solve mixed model equations in the original order, this
interpretation of the specified REF= level does not apply for this procedure.) You can specify the level
of the variable to use as the reference level; specify a value that corresponds to the formatted value of
the variable if a format is assigned. Alternatively, you can specify REF=FIRST to designate that the
first ordered level serve as the reference, or REF=LAST to designate that the last ordered level serve as
the reference. To specify that REF=FIRST or REF=LAST be used for all classification variables, use
the REF= global-option after the slash (/) in the CLASS statement.

You can specify the following global-options in the CLASS statement after a slash (/):

REF=FIRST | LAST
specifies a level of all classification variables to be put at the end of the list of levels. (In procedures that
solve mixed model equations by sequentially sweeping rows and columns, this level thus corresponds to
the reference level in the usual interpretation of the estimates of a singular parameterization. However,
since PROC HPMIXED does not necessarily solve mixed model equations in the original order, this
interpretation of the specified REF= level does not apply for this procedure.) Specify REF=FIRST
to designate that the first ordered level for each classification variable serve as the reference. Specify
REF=LAST to designate that the last ordered level serve as the reference. This option applies to all
the variables specified in the CLASS statement. To specify different reference levels for different
classification variables, use REF= options for individual variables.
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TRUNCATE
specifies that class levels be determined by using only up to the first 16 characters of the formatted
values of CLASS variables. When formatted values are longer than 16 characters, you can use this
option to revert to the levels as determined in releases prior to SAS 9.

CONTRAST Statement
CONTRAST ’label’ contrast-specification < , contrast-specification > < , . . . > < / options > ;

The CONTRAST statement provides a mechanism for obtaining custom hypothesis tests. It is patterned
after the CONTRAST statement in PROC MIXED and enables you to select an appropriate inference space
(McLean, Sanders, and Stroup 1991).

You can test the hypothesis L0� D 0, where L0 D ŒK0 M0� and �0 D Œˇ0  0�, in several inference spaces. The
inference space corresponds to the choice of M. When M D 0, your inferences apply to the entire population
from which the random effects are sampled; this is known as the broad inference space. When all elements
of M are nonzero, your inferences apply only to the observed levels of the random effects. This is known as
the narrow inference space, and you can also choose it by specifying all of the random effects as fixed. The
GLM procedure uses the narrow inference space. Finally, by zeroing portions of M corresponding to selected
main effects and interactions, you can choose intermediate inference spaces. The broad inference space is
usually the most appropriate, and it is used when you do not specify any random effects in the CONTRAST
statement.

In the CONTRAST statement,

label identifies the contrast in the table. A label is required for every contrast specified. Labels
can be up to 20 characters and must be enclosed in single quotes.

contrast-specification identifies the fixed effects and random effects and their coefficients from which the
L matrix is formed. The syntax representation of a contrast-specification is
< fixed-effect values . . . > < | random-effect values . . . >

fixed-effect identifies an effect that appears in the MODEL statement. The keyword INTERCEPT can
be used as an effect when an intercept is fitted in the model. You do not need to include
all effects that are in the MODEL statement.

random-effect identifies an effect that appears in the RANDOM statement. The first random effect must
follow a vertical bar (|); however, random effects do not have to be specified.

values are constants that are elements of the L matrix associated with the fixed and random
effects.

The rows of L0 are specified in order and are separated by commas. The rows of the K0 component of L0 are
specified on the left side of the vertical bars (|). These rows test the fixed effects and are, therefore, checked
for estimability. The rows of the M0 component of L0 are specified on the right side of the vertical bars. They
test the random effects, and no estimability checking is necessary.

If PROC HPMIXED finds the fixed-effects portion of the specified contrast to be nonestimable (see the
SINGULAR= option on page 3835), then it displays missing values for the test statistics and a note in the log.
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If the elements of L are not specified for an effect that contains a specified effect, then the elements of the
specified effect are automatically “filled in” over the levels of the higher-order effect. This feature is designed
to preserve estimability for cases where there are complex higher-order effects. The coefficients for the
higher-order effect are determined by equitably distributing the coefficients of the lower-level effect as in
the construction of least squares means. In addition, if the intercept is specified, it is distributed over all
classification effects that are not contained by any other specified effect. If an effect is not specified and does
not contain any specified effects, then all of its coefficients in L are set to 0. You can override this behavior
by specifying coefficients for the higher-order effect.

If too many values are specified for an effect, the extra ones are ignored; if too few are specified, the remaining
ones are set to 0. If no random effects are specified, the vertical bar can be omitted; otherwise, it must be
present. If a SUBJECT effect is used in the RANDOM statement, then the coefficients specified for the
effects in the RANDOM statement are equitably distributed across the levels of the SUBJECT effect. You
can use the E option to see exactly what L matrix is used.

The SUBJECT and GROUP options in the CONTRAST statement are useful for the case where a SUBJECT=
or GROUP= variable appears in the RANDOM statement, and you want to contrast different subjects or
groups. By default, CONTRAST statement coefficients about random effects are distributed equally across
subjects and groups.

PROC HPMIXED handles missing level combinations of CLASS variables similarly to the way PROC GLM
does. Both procedures delete fixed-effects parameters corresponding to missing levels in order to preserve
estimability. However, PROC HPMIXED does not delete missing level combinations for random-effects
parameters because linear combinations of the random-effects parameters are always estimable. These
conventions can affect the way you specify your CONTRAST coefficients.

The CONTRAST statement computes the statistic

F D

� b̌b
�0

L.L0bCL/�1L0
� b̌b

�
r

where r D rank.L0bCL/ and approximates its distribution with an F distribution. In this expression, bC is an
estimate of the generalized inverse of the coefficient matrix in the mixed model equations.

The numerator degree of freedom in the F approximation is r D rank.L0bCL/, and the denominator degree of
freedom is taken from the “Type III Tests of Fixed Effects” table and corresponds to the final effect you list
in the CONTRAST statement. You can change the denominator degrees of freedom by using the DF= option.

You can specify the following options in the CONTRAST statement after a slash (/).

CHISQ
requests that �2 tests be performed in addition to any F tests. A �2 statistic equals its corresponding F
statistic times the associate numerator degree of freedom, and this same degree of freedom is used
to compute the p-value for the �2 test. This p-value will always be less than that for the F test, as it
effectively corresponds to an F test with infinite denominator degrees of freedom.

DF=number
specifies the denominator degrees of freedom for the F test. The default is the denominator degrees of
freedom taken from the “Type III Tests of Fixed Effects” table and corresponds to the final effect you
list in the CONTRAST statement.
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E
requests that the L matrix coefficients for the contrast be displayed. The name of this “L Matrix
Coefficients” table is “Coef.”

GROUP coeffs
sets up random-effect contrasts between different groups when a GROUP= variable appears in the
RANDOM statement. By default, CONTRAST statement coefficients about random effects are
distributed equally across groups. If you enter a multi-row contrast, you can also enter multiple rows
for the GROUP coefficients. If the number of GROUP coefficients is less than the number of contrasts
in the CONTRAST statement, the HPMIXED procedure cycles through the GROUP coefficients. For
example, the following two statements are equivalent:

contrast 'Trt @ x=0.4 and 0.5' trt 1 -1 0 | x 0.4,
trt 1 0 -1 | x 0.4,
trt 1 -1 0 | x 0.5,
trt 1 0 -1 | x 0.5 /

group 1 -1, 1 0 -1, 1 -1, 1 0 -1;

contrast 'Trt @ x=0.4 and 0.5' trt 1 -1 0 | x 0.4,
trt 1 0 -1 | x 0.4,
trt 1 -1 0 | x 0.5,
trt 1 0 -1 | x 0.5 /

group 1 -1, 1 0 -1;

SINGULAR=number
tunes the estimability checking. If v is a vector, define ABS(v) to be the largest absolute value of the
element of v with the largest absolute value. If ABS(K0 �K0T) is greater than c*number for any row
of K0 in the contrast, then K is declared nonestimable. Here T is the Hermite form matrix .X0X/�X0X,
and c is ABS(K0) except when it equals 0, and then c is 1. The value for number must be between 0
and 1; the default is 1E–4.

SUBJECT coeffs
sets up random-effect contrasts between different subjects when a SUBJECT= variable appears in
the RANDOM statement. By default, CONTRAST statement coefficients about random effects are
distributed equally across subjects. Listing subject coefficients for multiple row CONTRASTS follows
the same rules as for GROUP coefficients.

EFFECT Statement
EFFECT name=effect-type (variables < / options >) ;

The EFFECT statement enables you to construct special collections of columns for design matrices. These
collections are referred to as constructed effects to distinguish them from the usual model effects that are
formed from continuous or classification variables, as discussed in the section “GLM Parameterization of
Classification Variables and Effects” on page 387 in Chapter 19, “Shared Concepts and Topics.”

You can specify the following effect-types:
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COLLECTION is a collection effect that defines one or more variables as a single effect with
multiple degrees of freedom. The variables in a collection are considered as
a unit for estimation and inference.

LAG is a classification effect in which the level that is used for a given period
corresponds to the level in the preceding period.

MULTIMEMBER | MM is a multimember classification effect whose levels are determined by one or
more variables that appear in a CLASS statement.

POLYNOMIAL | POLY is a multivariate polynomial effect in the specified numeric variables.

SPLINE is a regression spline effect whose columns are univariate spline expansions
of one or more variables. A spline expansion replaces the original variable
with an expanded or larger set of new variables.

Table 49.4 summarizes the options available in the EFFECT statement.

Table 49.4 EFFECT Statement Options

Option Description

Collection Effects Options
DETAILS Displays the constituents of the collection effect

Lag Effects Options
DESIGNROLE= Names a variable that controls to which lag design an observation

is assigned

DETAILS Displays the lag design of the lag effect

NLAG= Specifies the number of periods in the lag

PERIOD= Names the variable that defines the period

WITHIN= Names the variable or variables that define the group within which
each period is defined

Multimember Effects Options
NOEFFECT Specifies that observations with all missing levels for the multi-

member variables should have zero values in the corresponding
design matrix columns

WEIGHT= Specifies the weight variable for the contributions of each of the
classification effects

Polynomial Effects Options
DEGREE= Specifies the degree of the polynomial
MDEGREE= Specifies the maximum degree of any variable in a term of the

polynomial
STANDARDIZE= Specifies centering and scaling suboptions for the variables that

define the polynomial
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Table 49.4 continued

Option Description

Spline Effects Options
BASIS= Specifies the type of basis (B-spline basis or truncated power func-

tion basis) for the spline effect
DEGREE= Specifies the degree of the spline effect
KNOTMETHOD= Specifies how to construct the knots for the spline effect

For more information about the syntax of these effect-types and how columns of constructed effects are
computed, see the section “EFFECT Statement” on page 397 in Chapter 19, “Shared Concepts and Topics.”

The HPMIXED procedure does not support the SPLIT or SEPARATED option in spline effects and poly
effects.

ESTIMATE Statement
ESTIMATE ’label’ contrast-specification < (divisor=n) >

< , ’label’ contrast-specification < (divisor=n) > > < , . . . > < / options > ;

The ESTIMATE statement provides a mechanism for obtaining custom hypothesis tests. As in the CON-
TRAST statement, the basic element of the ESTIMATE statement is the contrast-specification, which consists
of MODEL and RANDOM effects and their coefficients. Specifically, a contrast-specification takes the form

< fixed-effect values . . . > < | random-effect values . . . >

Based on the contrast-specifications in your ESTIMATE statement, PROC HPMIXED constructs the matrix
L0 D ŒK0 M0�, as in the CONTRAST statement, where K is associated with the fixed effects and M is
associated with the G-side random effects.

PROC HPMIXED then produces for each row l of L0 an approximate t test of the hypothesis H W l� D 0,
where � D Œˇ0  0�0. Results from all ESTIMATE statement are combined in the “Estimates” ODS table.

Note that multi-row estimates are permitted. Unlike the CONTRAST statement, you need to specify a ’label’
for every row of the multi-row estimate, since PROC HPMIXED produces one test per row.

PROC HPMIXED selects the degrees of freedom to match those displayed in the “Type III Tests of Fixed
Effects” table for the final effect you list in the ESTIMATE statement. You can modify the degrees of freedom
by using the DF= option. If you select DDFM=NONE and do not modify the degrees of freedom by using the
DF= option, PROC HPMIXED uses infinite degrees of freedom, essentially computing approximate z tests.

If PROC HPMIXED finds the fixed-effects portion of the specified estimate to be nonestimable, then it
displays “Non-est” for the estimate entry.

The construction of the L matrix for an ESTIMATE statement follows the same rules as listed under the
CONTRAST statement.
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Table 49.5 summarizes the options available in the ESTIMATE statement.

Table 49.5 ESTIMATE Statement Options

Option Description

ALPHA= Specifies the confidence level
CL Constructs t-type confidence limits
DF= Specifies the degrees of freedom
DIVISOR= Specifies values to divide the coefficients
E Displays the matrix coefficients
GROUP Sets up random-effect contrasts between groups
SINGULAR= Tunes the estimability checking
SUBJECT Sets up random-effect estimates between subjects

You can specify the following options in the ESTIMATE statement after a slash (/).

ALPHA=number
requests that a t-type confidence interval be constructed with confidence level 1 � number . The value
of number must be between 0 and 1 exclusively; the default is 0.05. If DDFM=NONE and you do not
specify degrees of freedom with the DF= option, PROC HPMIXED uses infinite degrees of freedom,
essentially computing a z interval.

CL
requests that t-type confidence limits be constructed. If DDFM=NONE and you do not specify degrees
of freedom with the DF= option, PROC HPMIXED uses infinite degrees of freedom, essentially
computing a z interval. The confidence level is 0.95 by default.

DF=number
specifies the degrees of freedom for the t-test. The default is the denominator degrees of freedom
taken from the “Type III Tests of Fixed Effects” table and corresponds to the final effect you list in the
ESTIMATE statement.

DIVISOR=value-list
specifies a list of values by which to divide the coefficients so that fractional coefficients can be entered
as integer numerators. If you do not specify value-list , a default value of 1.0 is assumed. Missing
values in the value-list are converted to 1.0.

If the number of elements in value-list exceeds the number of rows of the estimate, the extra values are
ignored. If the number of elements in value-list is less than the number of rows of the estimate, the last
value in value-list is copied forward.

If you specify a row-specific divisor as part of the specification of the estimate row, this value multiplies
the corresponding divisor implied by the value-list . For example, the following statement divides the
coefficients in the first row by 8, and the coefficients in the third and fourth row by 3:

estimate 'One vs. two' A 2 -2 (divisor=2),
'One vs. three' A 1 0 -1 ,
'One vs. four' A 3 0 0 -3 ,
'One vs. five' A 1 0 0 0 -1 / divisor=4,.,3;
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E
requests that the matrix coefficients be displayed. For ODS purposes, the name of this “L Matrix
Coefficients” table is “Coef.”

GROUP coeffs
sets up random-effect contrasts between different groups when a GROUP= variable appears in the
RANDOM statement. By default, ESTIMATE statement coefficients about random effects are dis-
tributed equally across groups. If you enter a multi-row estimate, you can also enter multiple rows for
the GROUP coefficients. If the number of GROUP coefficients is less than the number of contrasts
in the ESTIMATE statement, the HPMIXED procedure cycles through the GROUP coefficients. For
example, the following two statements are equivalent:

estimate 'Trt 1 vs 2 @ x=0.4' trt 1 -1 0 | x 0.4,
'Trt 1 vs 3 @ x=0.4' trt 1 0 -1 | x 0.4,
'Trt 1 vs 2 @ x=0.5' trt 1 -1 0 | x 0.5,
'Trt 1 vs 3 @ x=0.5' trt 1 0 -1 | x 0.5 /

group 1 -1, 1 0 -1, 1 -1, 1 0 -1;

estimate 'Trt 1 vs 2 @ x=0.4' trt 1 -1 0 | x 0.4,
'Trt 1 vs 3 @ x=0.4' trt 1 0 -1 | x 0.4,
'Trt 1 vs 2 @ x=0.5' trt 1 -1 0 | x 0.5,
'Trt 1 vs 3 @ x=0.5' trt 1 0 -1 | x 0.5 /

group 1 -1, 1 0 -1;

SINGULAR=number
tunes the estimability checking as documented for the SINGULAR= in the CONTRAST statement.

SUBJECT coeffs
sets up random-effect estimates between different subjects when a SUBJECT= variable appears in
the RANDOM statement. By default, ESTIMATE statement coefficients about random effects are
distributed equally across subjects. Listing subject coefficients for an ESTIMATE statement with
multiple rows follows the same rules as for GROUP coefficients.

ID Statement
ID variables ;

The ID statement specifies which variables from the input data set are to be included in the OUT= data sets
from the OUTPUT statement. If you do not specify an ID statement, then all variables are included in these
data sets. Otherwise, only the variables you list in the ID statement are included. Specifying an ID statement
with no variables prevents any variables from being included in these data sets.

LSMEANS Statement
LSMEANS fixed-effects < / options > ;
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The LSMEANS statement computes least squares means (LS-means) of fixed effects. As in the GLM
procedure, LS-means are predicted population margins—that is, they estimate the marginal means over a
balanced population. In a sense, LS-means are to unbalanced designs as classification and subclassification
arithmetic means are to balanced designs. The L matrix constructed to compute them is the same as the L
matrix formed in PROC GLM; however, the standard errors are adjusted for the covariance parameters in the
model.

Each LS-mean is computed as L0b̌, where L is the coefficient matrix associated with the least squares mean
and b̌ is the estimate of the fixed-effects parameter vector. The approximate standard errors for the LS-mean
is computed as the square root of L0.X0bV�1X/

�
L.

LS-means can be computed for any effect in the MODEL statement that involves CLASS variables. You
can specify multiple effects in one LSMEANS statement or in multiple LSMEANS statements, and all
LSMEANS statements must appear after the MODEL statement. As in the ESTIMATE statement, the L
matrix is tested for estimability, and if this test fails, PROC HPMIXED displays “Non-est” for the LS-means
entries.

Assuming the LS-mean is estimable, PROC HPMIXED constructs an approximate t test to test the null
hypothesis that the associated population quantity equals zero. By default, the denominator degrees of
freedom for this test are the same as those displayed for the effect in the “Type III Tests of Fixed Effects”
table (see the section “TEST Statement” on page 3856).

Table 49.6 summarizes the options available in the LSMEANS statement.

Table 49.6 LSMEANS Statement Options

Option Description

ALPHA= Specifies the confidence level
CL Constructs t-type confidence limits
CORR Displays the estimated correlation matrix
COV Displays the estimated covariance matrix
DF= Specifies the degrees of freedom
DIFF or PDIFF Displays the differences of the LS-means
E Displays the matrix coefficients for LSMEANS effects
SINGULAR= Tunes the estimability checking
SLICE= Partitions interaction LSMEANS effects

You can specify the following options in the LSMEANS statement after a slash (/).

ALPHA=number
requests that a t-type confidence interval be constructed for each of the LS-means with confidence
level 1 � number . The value of number must be between 0 and 1; the default is 0.05.

CL
requests that t-type confidence limits be constructed for each of the LS-means. If DDFM=NONE, then
PROC HPMIXED uses infinite degrees of freedom for this test, essentially computing a z interval. The
confidence level is 0.95 by default; this can be changed with the ALPHA= option.
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CORR
displays the estimated correlation matrix of the least squares means as part of the “Least Squares
Means” table.

COV
displays the estimated covariance matrix of the least squares means as part of the “Least Squares
Means” table.

DF=number
specifies the degrees of freedom for the t test and confidence limits. The default is the denominator
degrees of freedom taken from the “Type III Tests of Fixed Effects” table corresponding to the LS-
means effect. For these DDFM= methods, degrees of freedom are determined separately for each test;
see the DDFM= option on page 3843 for more information.

DIFF< =difftype >

PDIFF< =difftype >
requests that differences of the LS-means be displayed. You can specify the following values for the
optional difftype.

ALL requests all pairwise differences; it is the default.

ANOM requests differences between each LS-mean and the average LS-mean, as in the
analysis of means (Ott 1967). The average is computed as a weighted mean of the
LS-means, with the weights being inversely proportional to the diagonal entries
of the L

�
X0X

�� L0 matrix. When a WEIGHT statement is specified, then the
preceding matrix is replaced with L

�
X0WX

�� L0 where W is the diagonal matrix
that contains the weights. If LS-means are nonestimable, this design-based weighted
mean is replaced with an equally weighted mean. Note that the ANOM procedure
in SAS/QC software implements both tables and graphics for the analysis of means
with a variety of response types. For one-way designs and normally distributed data,
the DIFF=ANOM computations are equivalent to the results of PROC ANOM.

CONTROL requests differences with a control; by default, the control is the first level of each
of the specified LSMEANS effects. To specify which levels of the effects are
the controls, list the quoted formatted values in parentheses after the CONTROL
keyword. For example, if the effects A, B, and C are classification variables, each
having two levels, 1 and 2, the following LSMEANS statement specifies the (1,2)
level of A*B and the (2,1) level of B*C as controls:

lsmeans A*B B*C / diff=control('1' '2' '2' '1');

For multiple effects, the results depend upon the order of the list, and so you should
check the output to make sure that the controls are correct.

CONTROL produces two-tailed tests and confidence limits.

CONTROLL requests one-tailed results and tests whether the noncontrol levels are significantly
smaller than the control. The upper confidence limits for the control minus the
noncontrol levels are considered to be infinity and are displayed as missing.

CONTROLU requests one-tailed results and tests whether the noncontrol levels are significantly
larger than the control. The upper confidence limits for the noncontrol levels minus
the control are considered to be infinity and are displayed as missing.
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The differences of the LS-means are displayed in a table titled “Differences of Least Squares Means.”
The table name is “Diffs.”

E
requests that the matrix coefficients for all LSMEANS effects be displayed. The name of this “Matrix
Coefficients” table is “Coef.”

PDIFF
is the same as the DIFF option. See the description of the DIFF option on page 3841.

SINGULAR=number
tunes the estimability checking as documented for the SINGULAR= in the CONTRAST statement.

SLICE=fixed-effect | (fixed-effects)
specifies effects by which to partition interaction LSMEANS effects. This can produce what are known
as tests of simple effects (Winer 1971). For example, suppose that A*B is significant, and you want to
test the effect of A for each level of B. The appropriate LSMEANS statement is

lsmeans A*B / slice=B;

This statement tests for the simple main effects of A for B, which are calculated by extracting the
appropriate rows from the coefficient matrix for the A*B LS-means and by using them to form an F
test.

The SLICE= option produces F tests that test the simultaneous equality of cell means at a fixed level
of the slice effect (Schabenberger, Gregoire, and Kong 2000).

The SLICE= option produces a table titled “Tests of Effect Slices.” The table name is “Slices.”

MODEL Statement
MODEL dependent = < fixed-effects > < / options > ;

The MODEL statement names a single dependent variable and the fixed effects, which determine the X
matrix of the mixed model. The specification of effects is the same as in the GLM procedure; however,
unlike PROC GLM, you do not specify random effects in the MODEL statement. The MODEL statement is
required.

An intercept is included in the fixed-effects model by default. If no fixed effects are specified, only this
intercept term is fit. The intercept can be removed by using the NOINT option.

You can specify the following options in the MODEL statement after a slash (/).

ALPHA=number
requests that a t-type confidence interval be constructed for each of the fixed-effects parameters with
confidence level 1 � number . The value of number must be between 0 and 1; the default is 0.05.

CL
requests that t-type confidence limits be constructed for each of the fixed-effects parameter estimates.
The confidence level is 0.95 by default; this can be changed with the ALPHA= option.



NLOPTIONS Statement F 3843

DDF=value-list
enables you to specify your own denominator degrees of freedom for the fixed effects. The value-list
specification is a list of numbers or missing values (.) separated by commas. The degrees of freedom
should be listed in the order in which the effects appear in the “Type III Tests of Fixed Effects” table.
If you want to retain the default degrees of freedom for a particular effect, use a missing value for its
location in the list. For example, the following statement assigns 3 denominator degrees of freedom to
A and 4.7 to A*B, while those for B remain the same:

model Y = A B A*B / ddf=3,.,4.7;

DDFM=RESIDUAL | NONE
specifies the method for computing the denominator degrees of freedom for the tests of fixed effects
resulting from the MODEL, CONTRAST, ESTIMATE, LSMEANS, and TEST statements.

The DDFM=RESIDUAL option performs all tests by using the residual degrees of freedom, n �
rank.X/, where n is the number of observations used. It is the default degrees of freedom method.

DDFM=NONE specifies that no denominator degrees of freedom be applied. PROC HPMIXED then
essentially assumes that infinite degrees of freedom are available in the calculation of p-values. The
p-values for t tests are then identical to p-values derived from the standard normal distribution. In
the case of F tests, the p-values equal those of chi-square tests determined as follows: if Fobs is the
observed value of the F test with l numerator degrees of freedom, then

p D PrfFl;1 > Fobsg D Prf�2l > lFobsg

NOINT
requests that no intercept be included in the model. An intercept is included by default.

SOLUTION | S
requests that a solution for the fixed-effects parameters be produced. Using notation from the section
“Model Assumptions” on page 3857, the fixed-effects parameter estimates are b̌ and their approximate
standard errors are the square roots of the diagonal elements of .X0bV�1X/�.

Along with the estimates and their approximate standard errors, a t statistic is computed as the estimate
divided by its standard error. The degree of freedom for this t statistic matches the one appearing in the
“Type III Tests of Fixed Effects” table under the effect containing the parameter. The “Pr > |t|” column
contains the two-tailed p-value corresponding to the t statistic and associated degrees of freedom.

ZETA=number
tunes the sensitivity in forming Type III functions. Any element in the estimable function basis with an
absolute value less than number is set to 0. The default is 1E–8.

NLOPTIONS Statement
NLOPTIONS < options > ;

For more information about the NLOPTIONS, see the section “NLOPTIONS Statement” on page 488 in
Chapter 19, “Shared Concepts and Topics.”

If you choose TECH=NEWRAP, then the default value of LSPRECISION is 0.4 in the HPMIXED procedure.
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OUTPUT Statement
OUTPUT < OUT=SAS-data-set >

< keyword< (keyword-options) > < =name > > . . .
< keyword< (keyword-options) > < =name > > < / options > ;

The OUTPUT statement creates a data set that contains predicted values and residual diagnostics, computed
after fitting the model. By default, all variables in the original data set are included in the output data set.

You can use the ID statement to select a subset of the variables from the input data set to be added to the
output data set.

For example, suppose that the data set Scores contains the variables score, machine, and person. The
following statements fit a model with fixed machine and random person effects and save the predicted and
residual values to the data set igausout:

proc hpmixed data = Scores;
class machine person score;
model score = machine;
random person;
output out=igausout pred=p resid=r;

run;

You can specify the following options in the OUTPUT statement before the slash (/).

OUT=SAS data set
specifies the name of the output data set. If the OUT= option is omitted, the procedure uses the DATAn
convention to name the output data set.

keyword < (keyword-options) >< =name >
specifies a statistic to include in the output data set and optionally assigns the variable the name
name. You can use the keyword-options to control which type of a particular statistic to compute. The
keyword-options can take on the following values:

BLUP uses the predictors of the random effects in computing the statistic.

NOBLUP does not use the predictors of the random effects in computing the statistic.

The default is to compute statistics by using BLUPs. For example, the following two OUTPUT
statements are equivalent:

output out=out1 pred=predicted lcl=lower;
output out=out1 pred(blup)=predicted lcl(blup)=lower;

If a particular combination of keyword and keyword-options is not supported, the statistic is not
computed and a message is produced in the SAS log.

A keyword can appear multiple times in the OUTPUT statement. Table 49.7 lists the keywords and
the default names assigned by the HPMIXED procedure if you do not specify a name. In this table, y
denotes the response variable.
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Table 49.7 Keywords for Output Statistics

Keyword Options Description Expression Name

PREDICTED BLUP Linear predictor b� D x0b̌C z0b Pred
NOBLUP Marginal linear predictor b�m D x0b̌ PredPA

STDERR BLUP Standard deviation of linear
predictor

p
VarŒb� � z0� StdErr

NOBLUP Standard deviation of marginal
linear predictor

p
VarŒb�m� StdErrPA

RESIDUAL BLUP Residual r D y �b� Resid
NOBLUP Marginal residual rm D y �b�m ResidPA

PEARSON BLUP Pearson-type residual r=

q
bVarŒyj� Pearson

NOBLUP Marginal Pearson-type residual rm=

q
bVarŒy� PearsonPA

STUDENT BLUP Studentized residual r=

q
bVarŒr� Student

NOBLUP Studentized marginal residual rm=

q
bVarŒrm� StudentPA

LCL BLUP Lower prediction limit for lin-
ear predictor

LCL

NOBLUP Lower confidence limit for
marginal linear predictor

LCLPA

UCL BLUP Upper prediction limit for lin-
ear predictor

UCL

NOBLUP Upper confidence limit for
marginal linear predictor

UCLPA

VARIANCE BLUP Conditional variance of re-
sponse variable

bVarŒyj� Variance

NOBLUP Marginal variance of response
variable

bVarŒy� VariancePA

You can use the following shortcuts to request statistics: PRED for PREDICTED, STD for STDERR,
RESID for RESIDUAL, VAR for VARIANCE.

You can specify the following options of the OUTPUT statement after the slash (/).

ALLSTATS
requests that all statistics are computed. If you do not use a keyword to assign a name, the HPMIXED
procedure uses the default name.

ALPHA=number
determines the coverage probability for two-sided confidence and prediction intervals. The coverage
probability is computed as 1 � number . The value of number must be between 0 and 1 inclusively;
the default is 0.05.
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NOMISS
requests that records from the input data set be written to the output data only for those observations
that were used in the analysis. By default, the HPMIXED procedure produces output statistics for all
observations in the input data set.

NOUNIQUE
requests that names not be made unique in the case of naming conflicts. By default, the HPMIXED
procedure avoids naming conflicts by assigning a unique name to each output variable. If you specify
the NOUNIQUE option, variables with conflicting names are not renamed. In that case, the first
variable added to the output data set takes precedence.

NOVAR
requests that variables from the input data set not be added to the output data set. This option ignores
ID statement but does not apply to variables listed in a BY statement.

PARMS Statement
PARMS < (value-list). . . > < / options > ;

The PARMS statement specifies initial values for the covariance parameters, or it requests a grid search over
several values of these parameters. You must specify the values in the order in which they appear in the
“Covariance Parameter Estimates” table.

The value-list specification can take any of several forms:

m a single value

m1; m2; : : : ; mn several values

m to n a sequence where m equals the starting value, n equals the ending value, and the increment
equals 1

m to n by i a sequence where m equals the starting value, n equals the ending value, and the increment
equals i

m1; m2 to m3 mixed values and sequences

You can use the PARMS statement to input known parameters. Suppose the three variance components are
known to be 2, 1, and 3. The SAS statements to fix the variance components at these values are as follows:

proc hpmixed noprofile;
class Family Gender;
model Height = Gender;
random Family Family*Gender;
parms (2) (1) (3) / noiter;

run;

The NOPROFILE option in the PROC HPMIXED statement suppresses profiling the residual variance
parameter during its calculations, thereby enabling its value to be held at 3 as specified in the PARMS
statement.

If you specify more than one set of initial values, PROC HPMIXED performs a grid search of the likelihood
surface and uses the best point on the grid for subsequent analysis. Specifying a large number of grid points
can result in long computing times. The grid search feature is also useful for exploring the likelihood surface.
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The results from the PARMS statement are the values of the parameters on the specified grid (denoted by
CovP1–CovPn), the residual variance (possibly estimated) for models with a residual variance parameter,
and various functions of the likelihood.

The name of the “Parameter Search” table is ParmSearch.

You can specify the following options in the PARMS statement after a slash (/).

HOLD=value-list

HOLD
specifies which parameter values PROC HPMIXED should hold to equal the specified values. To hold
all parameters, you can use the second form without giving the value-list. For example, the following
statement constrains the first and third covariance parameters to equal 5 and 2, respectively.

Specifying the HOLD= option implies the NOPROFILE option in the PROC HPMIXED statement:

parms (5) (3) (2) (3) / hold=1,3;

LOWERB=value-list
enables you to specify lower boundary constraints on the covariance parameters. The value-list
specification is a list of numbers or missing values (.) separated by commas. You must list the numbers
in the order that PROC HPMIXED uses for the covariance parameters, and each number corresponds to
the lower boundary constraint. A missing value instructs PROC HPMIXED to use its default constraint,
and if you do not specify numbers for all of the covariance parameters, PROC MIXED assumes the
remaining ones are missing.

NOITER
requests that no optimization iterations be performed and that PROC HPMIXED use the best value
from the grid search to perform inferences. By default, iterations begin at the best value from the
PARMS grid search. This option is ignored when you specify the HOLD= option.

If a residual variance is profiled, the parameter estimates can change from the initial values you provide
as the residual variance is recomputed. To prevent an update of the residual variance, combine the
NOITER option with the NOPROFILE option in the PROC HPMIXED statements, as in the following
program:

proc hpmixed noprofile;
class A B C rep mp sp;
model y = A | B | C;
random rep mp sp;
parms (180) (200) (170) (1000) / noiter;

run;

Specifying the NOITER option in the PARMS statement has the same effect as specifying TECH-
NIQUE=NONE in the NLOPTIONS statement.

Notice that the NOITER option can be useful if you want to obtain the starting values HPMIXED
computes. The following statements produce the starting values:
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proc hpmixed noprofile;
class A B;
model y = A;
random int / subject=B;
parms / noiter;

run;

PARMSDATA=SAS-data-set

PDATA=SAS data set
reads in covariance parameter values from a SAS data set. The data set should contain the numeri-
cal variable ESTIMATE or the numerical variables Covp1–Covpq, where q denotes the number of
covariance parameters.

If the PARMSDATA= data set contains multiple sets of covariance parameters, the HPMIXED pro-
cedure evaluates the initial objective function for each set and commences the optimization step by
using the set with the lowest function value as the starting values. For example, the following SAS
statements request that the objective function be evaluated for three sets of initial values:

data data_covp;
input covp1-covp4;
datalines;

180 200 170 1000
170 190 160 900
160 180 150 800
;
proc hpmixed;

class A B C rep;
model yield = A;
random rep B C;
parms / pdata=data_covp;

run;

Each set comprises four covariance parameters.

The order of the observations in a data set with the numerical variable Estimate corresponds to the
order of the covariance parameters in the “Covariance Parameter Estimates” table.

The PARMSDATA= data set must contain at least one set of covariance parameters with no missing
values.

If the HPMIXED procedure is processing the input data set in BY groups, you can add the BY variables
to the PARMSDATA= data set. If this data set is sorted by the BY variables, the HPMIXED procedure
matches the covariance parameter values to the current BY group. If the PARMSDATA= data set does
not contain all BY variables, the data set is processed in its entirety for every BY group and a message
is written to the log. This enables you to provide a single set of starting values across BY groups, as in
the following statements:

data data_covp;
input covp1-covp4;
datalines;
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180 200 170 1000
;
proc hpmixed;

class A B C rep;
model yield = A;
random rep B C;
parms / pdata=data_covp;
by year;

run;

The same set of starting values is used for each value of the year variable.

UPPERB=value-list
enables you to specify upper boundary constraints on the covariance parameters. The value-list
specification is a list of numbers or missing values (.) separated by commas. You must list the numbers
in the order that PROC HPMIXED uses for the covariance parameters, and each number corresponds to
the upper boundary constraint. A missing value instructs PROC HPMIXED to use its default constraint,
and if you do not specify numbers for all of the covariance parameters, PROC HPMIXED assumes
that the remaining ones are missing.

RANDOM Statement
RANDOM random-effects < / options > ;

The RANDOM statement defines the random effects in the mixed model. It can be used to specify traditional
variance component models (as in the VARCOMP procedure) and to specify random coefficients. The
random effects can be classification or continuous. Multiple RANDOM statements are possible. Random
effects specified in a RANDOM statement could be correlated with each other for certain types of covariance
structures (see the TYPE= option on page 3851). It is, however, assumed that random effects specified using
different RANDOM statements are not correlated.

Using notation from the section “Model Assumptions” on page 3857, the purpose of the RANDOM statement
is to define the Z matrix of the mixed model, the random effects in the  vector, and the structure of G. The
Z matrix is constructed exactly like the X matrix for the fixed effects, and the G matrix is constructed to
correspond to the effects constituting Z. The structure of G is defined by using the TYPE= option described
on page 3851.

You can specify INTERCEPT (or INT) as a random effect. PROC HPMIXED does not include the intercept
in the RANDOM statement by default, as it does in the MODEL statement.

You can specify the following options in the RANDOM statement after a slash (/).

ALPHA=number
requests that a t-type confidence interval with confidence level 1 � number be constructed for the
predictors of random effects in this statement. The value of number must be between 0 and 1
exclusively; the default is 0.05. Specifying the ALPHA= option implies the CL option.
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CL
requests that t-type confidence limits be constructed for each of the predictors of random effects in this
statement. The confidence level is 0.95 by default; this can be changed with the ALPHA= option. The
CL option implies the SOLUTION option.

GROUP=effect
defines an effect specifying heterogeneity in the covariance structure of G. All observations having the
same level of the group effect have the same covariance parameters. Each new level of the group effect
produces a new set of covariance parameters with the same structure as the original group. You should
exercise caution in defining the group effect, because strange covariance patterns can result from its
misuse. Also, the group effect can greatly increase the number of estimated covariance parameters,
which can adversely affect the optimization process.

Continuous variables are permitted as arguments to the GROUP= option. PROC HPMIXED does
not sort by the values of the continuous variable; rather, it considers the data to be from a new
group whenever the value of the continuous variable changes from the previous observation. Using
a continuous variable decreases execution time for models with a large number of groups and also
prevents the production of a large “Class Levels Information” table.

NOFULLZ
eliminates the columns in Z corresponding to missing levels of random effects involving CLASS
variables. By default, these columns are included in Z. It is sufficient to specify the NOFULLZ option
in any RANDOM statement.

SOLUTION
requests that the solution for the random-effects parameters be produced. Using notation from the
section “Model Assumptions” on page 3857, these estimates are the empirical best linear unbiased
predictors (BLUPs) b D bGZ0bV�1.y � Xb̌/. They can be useful for comparing the random effects
from different experimental units and can also be treated as residuals in performing diagnostics for
your mixed model.

The numbers displayed in the SE Pred column of the “Solution for Random Effects” table are not
the standard errors of theb displayed in the Estimate column; rather, they are the standard errors of
predictionsb i � i , whereb i is the ith BLUP and i is the ith random-effect parameter.

SUBJECT=effect
identifies the subjects in your mixed model. Complete independence is assumed across subjects; thus,
for the RANDOM statement, the SUBJECT= option produces a block-diagonal structure in G with
identical blocks. The Z matrix is modified to accommodate this block-diagonality. In fact, specifying a
subject effect is equivalent to nesting all other effects in the RANDOM statement within the subject
effect.

Continuous variables are permitted as arguments to the SUBJECT= option. PROC HPMIXED does
not sort by the values of the continuous variable; rather, it considers the data to be from a new
subject whenever the value of the continuous variable changes from the previous observation. Using
a continuous variable decreases execution time for models with a large number of subjects and also
prevents the production of a large “Class Levels Information” table.
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TYPE=covariance-structure
specifies the structure of the covariance matrix G for random effects. The default structure is VC.

If you want different covariance structures in different parts of G, you must use multiple RANDOM
statements with different TYPE= options.

Valid values for covariance-structure are listed in Table 49.8. Examples are shown in Table 49.9.

Table 49.8 Covariance Structures

Structure Description Parameters .i; j / element

AR(1) Autoregressive(1) 2 �2�ji�j j

CHOL Cholesky root t .t C 1/=2 lij

CS Compound symmetry (CS) 2 �1 C �
21.i D j /

CSH Heterogeneous CS t C 1 �i�j Œ�1.i ¤ j /C 1.i D j /�

UC Uniform correlation (UC) 2 �2Œ�1.i ¤ j /C 1.i D j /�

UCH Heterogeneous UC t C 1 �i�j Œ�1.i ¤ j /C 1.i D j /�

UN Unstructured t .t C 1/=2 �ij

VC Variance components q �2
k
1.i D j /

and i,j correspond to kth effect

In Table 49.8, t is the overall dimension of the covariance matrix, and 1.A/ equals 1 when A is true
and 0 otherwise. For example, 1(i = j) equals 1 when i = j and equals 0 otherwise. TYPE=UCH is the
same as TYPE=CSH.

Table 49.9 lists some examples of the structures in Table 49.8.

Table 49.9 Covariance Structure Examples

Description Structure Example

First-order
autoregressive

AR(1) �2

2664
1 � �2 �3

� 1 � �2

�2 � 1 �

�3 �2 � 1

3775

Cholesky
root

CHOL

2664
l11 0 0 0

l21 l22 0 0

l31 l32 l33 0

l41 l42 l43 l44

3775
2664
l11 l21 l31 l41
0 l22 l32 l42
0 0 l33 l43
0 0 0 l44

3775

Compound
symmetry

CS

2664
�2 C �1 �1 �1 �1
�1 �2 C �1 �1 �1
�1 �1 �2 C �1 �1
�1 �1 �1 �2 C �1

3775
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Table 49.9 continued

Description Structure Example

Uniform
correlation

UC �2

2664
1 � � �

� 1 � �

� � 1 �

� � � 1

3775

Heterogeneous
UC

UCH

2664
�21 �1�2� �1�3� �1�4�

�2�1� �22 �2�3� �2�4�

�3�1� �3�2� �23 �3�4�

�4�1� �4�2�
2 �4�3� �24

3775

Unstructured UN

2664
�21 �21 �31 �41
�21 �22 �32 �42
�31 �32 �23 �34
�41 �42 �43 �24

3775

Variance
components

VC (default)

2664
�2A 0 0 0

0 �2A 0 0

0 0 �2B 0

0 0 0 �2B

3775

The variances and covariances in the formulas that follow in the TYPE= descriptions are expressed in
terms of generic random variables �i and �j . They represent random effects for which the G matrices
are constructed.

The following list provides some further information about these covariance-structures:

AR(1) specifies a first-order autoregressive structure,

Cov
�
�i ; �j

�
D �2�ji�j j

The values i and j are derived for the ith and jth observations, respectively. For
example, in the following statements the values correspond to the class levels for
the time effect of the ith and jth observation within a particular subject:

proc hpmixed;
class time patient;
model y = x x*x;
random time / sub=patient type=ar(1);

run;

PROC HPMIXED imposes the constraint j�j < 1 for stationarity.

CHOL specifies an unstructured variance-covariance matrix parameterized through its
Cholesky root. All diagonal values are constrained to be positive. This parame-
terization guarantees a positive definite covariance matrix. For example, a 2 � 2
unstructured covariance matrix can be written as

VarŒ�� D
�
�21 �21
�21 �22

�
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Without imposing constraints on the three parameters, there is no guarantee that
the estimated variance matrix is positive definite. Even if �21 and �22 are nonzero, a
large value for �21 can lead to a negative eigenvalue of VarŒ��. The Cholesky root
of a positive definite matrix A is a lower triangular matrix L such that LL0 D A.
The Cholesky root of the above 2 � 2 matrix can be written as

L D
�
l11 0

l21 l22

�
The elements of the unstructured variance matrix are then simply �21 D l

2
11, �21 D

l21l11, and �22 D l
2
21Cl

2
22. Similar operations yield the generalization to covariance

matrices of higher orders.

For example, the following statements model the covariance matrix of each subject
as an unstructured matrix:

proc hpmixed;
class sub;
model y = x;
random time / sub=patient type=chol;

run;

The HPMIXED procedure constrains the diagonal elements of the Cholesky root to
be positive. This guarantees that the structure is positive definite.

CS specifies the compound-symmetry structure, which has constant variance and con-
stant covariance

Cov
�
�i ; �j

�
D

�
�2 C �1 i D j

�1 i 6D j

Under compound-symmetry, the G matrix is of form �2I C �1J. The variance
parameter �2 is constrained to be positive, and the covariance parameter �1 is
constrained to be greater than ��2=t where t is the dimension of the structure. This
guarantees the structure is positive definite. The compound-symmetry structure
arises naturally with nested random effects, such as when a subsampling error is
nested within an experimental error.

CSH specifies the heterogeneous compound-symmetry structure. This structure has a
different variance parameter for each diagonal element, and it uses the square roots
of these parameters in the off-diagonal entries. In Table 49.8, �2i is the ith variance
parameter that satisfies �2i > 0, and � is the correlation parameter that satisfies
� > �1=.t � 1/, where t is the dimension of the structure. This guarantees that the
structure is positive definite.

UC specifies the uniform correlation structure, which has constant variance and constant
correlation

Cov
�
�i ; �j

�
D

�
�2 i D j

�2� i 6D j

Under uniform correlation, the G matrix is of form �2Œ.1��/IC�J�. The variance
�2 is constrained to be positive, and the correlation � is constrained to be greater
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than �1=.t � 1/, where t is the dimension of the structure. This guarantees the
structure is positive definite. This structure is equivalent to the compound-symmetry
structure with a better numerical property in terms of optimization.

The uniform correlation structure arises frequently in agriculture and animal sci-
ences.

UCH specifies the heterogeneous uniform correlation structure. This structure has a
different variance parameter for each diagonal element, and it uses the square roots
of these parameters in the off-diagonal entries. In Table 49.8, �2i is the ith variance
parameter that satisfies �2i > 0, and � is the correlation parameter that satisfies
� > �1=.t � 1/, where t is the dimension of the structure. This guarantees that the
structure is positive definite.

UN specifies a completely general (unstructured) covariance matrix parameterized
directly in terms of variances and covariances. The variances are constrained to
be positive, and the covariances are unconstrained. In addition, this structure is
internally constrained to be positive definite.

VC specifies standard variance components and is the default structure for the RAN-
DOM and REPEATED statements. In the RANDOM statement, a distinct variance
component is assigned to each effect. In the REPEATED statement, this structure
is usually used only with the GROUP= option to specify a heterogeneous variance
model.

REPEATED Statement
REPEATED repeated-effect < / options > ;

The REPEATED statement defines the repeated effect and the residual covariance structure in the mixed
model. The residual variance-covariance matrix is denoted as R. The repeated-effect is required and consists
entirely of classification variables. The levels of the repeated-effect must be different for each observation
within a subject in order to avoid the singular R matrix. The SUBJECT= option is required. The data set
must be grouped by subject effect.

Table 49.10 summarizes the options available in the REPEATED statement.

Table 49.10 Summary of REPEATED Statement Options

Option Description

Construction of Covariance Structure
GROUP= Defines an effect that specifies heterogeneity in the residual covari-

ance structure
SUBJECT= Identifies the subjects in the residual covariance structure
TYPE= Specifies the residual covariance structure (the default is VC)

Statistical Output
R= Displays blocks of the estimated R matrix
RC= Display the Cholesky root (lower) of blocks of the estimated R

matrix
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Table 49.10 continued

Option Description

RCI= Displays the inverse Cholesky root (lower) of blocks of the esti-
mated R matrix

RCORR= Displays the correlation matrix that corresponds to blocks of the
estimated R matrix

RI= Displays the inverse of blocks of the estimated R matrix

You can specify the following options in the REPEATED statement after a slash (/).

GROUP=effect

GRP=effect
defines an effect that specifies heterogeneity in the residual covariance structure. All observations that
have the same level of the GROUP effect have the same covariance parameters. Each new level of the
GROUP effect produces a new set of covariance parameters with the same structure as the original
group. You should exercise caution in defining the GROUP effect, because strange covariance patterns
can result with its misuse. Also, the GROUP effect can greatly increase the number of estimated
covariance parameters, which can adversely affect the optimization process.

Continuous variables are permitted as arguments to the GROUP= option. PROC HPMIXED does not
sort by the values of the continuous variable; rather, it considers the data to be from a new subject or
group whenever the value of the continuous variable changes from the previous observation. Using a
continuous variable decreases execution time for models with a large number of subjects or groups and
also prevents the production of a large “Class Level Information” table.

R< =value-list >
requests that blocks of the estimated R matrix be displayed. The first block determined by the
SUBJECT= effect is the default displayed block.

The value-list indicates the subjects for which blocks of R are to be displayed. For example, the
following statement displays block matrices for the first, third, and fifth persons:

repeated time / type=un subject=person r=1,3,5;

See the PARMS statement for the possible forms of value-list .

RC< =value-list >
displays the Cholesky root of blocks of the estimated R matrix. The value-list specification is the same
as for the R= option.

RCI< =value-list >
displays the inverse Cholesky root of blocks of the estimated R matrix. The value-list specification is
the same as for the R= option.

RCORR< =value-list >
displays the correlation matrix that corresponds to blocks of the estimated R matrix. The value-list
specification is the same as for the R= option.
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RI< =value-list >
produces the inverse of blocks of the estimated R matrix. The value-list specification is the same as for
the R= option.

SUBJECT=effect

SUB=effect
identifies the subjects in your mixed model. Complete independence is assumed across subjects;
therefore, the SUBJECT= option produces a block-diagonal structure in R with identical blocks.
The SUBJECT= option is required. The data set must be grouped by SUBJECT= effect. When
the SUBJECT= effect consists entirely of classification variables, the blocks of R correspond to
observations that share the same level of that effect. These blocks are sorted according to this effect as
well.

Continuous variables are permitted as arguments to the SUBJECT= option. PROC HPMIXED does
not sort by the values of the continuous variable; rather, it considers the data to be from a new subject
or group whenever the value of the continuous variable changes from the previous observation. Using
a continuous variable decreases execution time for models with a large number of subjects or groups
and also prevents the production of a large “Class Level Information” table.

If you want to model nonzero covariance among all of the observations in your data, specify SUB-
JECT=INTERCEPT to treat the data as if they are all from one subject. However, be aware that in this
case PROC HPMIXED manipulates an R matrix with dimensions equal to the number of observations.

TYPE=covariance-structure
specifies the structure of the residual variance-covariance matrix R. The SUBJECT= option defines
the blocks of R, and the TYPE= option specifies the structure of these blocks. PROC HPMIXED
supports the following structures: TYPE=AR(1), TYPE=CHOL, TYPE=UN, and TYPE=VC. The
default structure is VC. See the description in the section “RANDOM Statement” on page 3849 for
more information about these covariance structure types.

TEST Statement
TEST fixed-effects < / options > ;

The TEST statement performs a hypothesis test on the fixed effects. You can specify multiple effects in one
TEST statement or in multiple TEST statements, and all TEST statements must appear after the MODEL
statement.

You can specify the following options in the TEST statement after a slash (/).

HTYPE=value-list
indicates the type of hypothesis test to perform on the specified effects. Valid entries for values in
the value-list are 3, corresponding to a Type III test. The default value is 3. The ODS table name is
“Tests3” for the Type III test.

E
requests that matrix coefficients associated with test types be displayed for specified effects.
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E3 | EIII
requests that Type III matrix coefficients be displayed if a Type III test is performed.

CHISQ
requests that �2 tests be performed in addition to any F tests. A �2 statistic equals its corresponding F
statistic times the associate numerator degree of freedom, and this same degree of freedom is used to
compute the p-value for the �2 test. This p-value will always be less than that for the F test, because it
effectively corresponds to an F test with infinite denominator degrees of freedom.

WEIGHT Statement
WEIGHT variable ;

The WEIGHT statement replaces R with W�1=2RW�1=2, where W is a diagonal matrix containing the
weights. Observations with nonpositive or missing weights are not included in the resulting PROC HPMIXED
analysis. If a WEIGHT statement is not included, all observations used in the analysis are assigned a weight
of 1.

If a computation in PROC MIXED involves R, then the WEIGHT statement replaces R with W�1=2RW�1=2.
For example, the covariance matrix V for the observations usually have the form V D ZGZ0 C R; therefore,
with the WEIGHT statement, this becomes V D ZGZ0 CW�1=2RW�1=2:

Details: HPMIXED Procedure

Model Assumptions
The following sections provide an overview of the approach used by the HPMIXED procedure for likelihood-
based analysis of linear mixed models with sparse matrix technique. Additional theory and examples are
provided in Littell et al. (1996); Verbeke and Molenberghs (1997, 2000); Brown and Prescott (1999).

The HPMIXED procedure fits models generally of the form

y D Xˇ C Z C �

Models of this form contain both fixed-effects parameters, ˇ, and random-effects parameters, ; hence, they
are called mixed models. See Henderson (1990) and Searle, Casella, and McCulloch (1992) for historical
developments of the mixed model. Note that the matrix Z can contain either continuous or dummy variables,
just like X.

So far this is the same general form of model fit by the MIXED procedure. The difference between the
models handled by the two procedures lies in the assumptions about the distributions of  and �. For both
procedures a key assumption is that  and � are normally distributed with

E
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�
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�
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The two procedures differ in their assumptions about the variance matrices G and R for  and �, respectively.
The MIXED procedure allows a variety of different structures for both G and R; while in HPMIXED
procedure, R is always assumed to be of the form R D I�2, and the structures available for modeling G are
only a small subset of the structures offered by the MIXED procedure.

Estimates of fixed effects and predictions for random effects are obtained by solving the so-called mixed
model equations:�

X0X=�2 X0Z=�2

Z0X=�2 Z0Z=�2 CG�1
� � b̌b

�
D

�
X0y=�2
Z0y=�2

�
Let C denote the coefficient matrix of the mixed model equations:

C D
�

X0X=�2 X0Z=�2

Z0X=�2 Z0Z=�2 CG�1
�

Under the assumptions given previously for the moments of  and �, the variance of y is V D ZGZ0 C I�2.
You can model V by setting up the random-effects design matrix Z and by specifying covariance structures
for G. Let � be a vector of all unknown parameters in G. Then the general form of the restricted likelihood
function for the mixed models that the HPMIXED procedure can fit is

L.�; �2/ D �2 log l D .n � p/ log.2�/C log jCj C log jGj C n log.�2/C y0Py

where

P D V�1 � V�1X.X0V�1X/�X0V�1

and p is the rank of X. The HPMIXED procedure minimizes L.�; �2/ over all unknown parameters in � and
�2 by using nonlinear optimization algorithms.

Computing and Maximizing the Likelihood
In computing the restricted likelihood function given previously, the determinants of the matrices C and G
can be obtained effectively by using Cholesky decomposition. The quadratic term y0Py can be expressed in
terms of solutions of mixed model equations as follows:

y0Py D
1

�2

�
y0y �

hb̌0;b 0i � X0y
Z0y

��
By default, the HPMIXED procedure profiles out the residual variance �2 from the parameter vector � . Let
�� be the new parameter vector such that ��i D �i=�

2. The profiled objective function becomes

L.��; �2/ D .n � p/ log.2�/C log jC�j C log jG�j � .rC � rG � n/ log.�2/C .n � p/

where C� D C�2 and G� D G�2 are the profiled versions of C and G, rC and rG are the ranks of C and G.
Minimizing analytically for �2 yields

b�2 D 1

n � p

�
y0y �

hb̌0;b 0i � X0y
Z0y

��



Computing Starting Values by EM-REML F 3859

Optimizing the likelihood calls for derivatives with respect to the parameters. The first and second derivatives
of the log-likelihood function L with respect to scalar variance components �i and �j are

@L

@�i
D tr

�
@V
@�i

P
�
� y0P

@V
@�i

Py

and

@2L

@�i�j
D �tr

�
@V
@�i

P
@V
@�j

P
�
C 2y0P

@V
@�i

P
@V
@�j

Py

The default quasi-Newton method of optimization for the HPMIXED procedure requires only first derivatives
of the log likelihood, and these are readily derived by solving the mixed model equations. For example,
when G D I�a, the first derivative of the log likelihood with respect to the parameter �2a can be computed as
follows:

@L

@�2a
D

q

�2a
�

tr.Caa/
�4a

�
b 0b
�4a

where q is the size of  vector and Caa is the part of the g-inverse of the mixed model equation coefficient
matrix C corresponding to the random effect  .

The second derivative of the log likelihood needs to be computed only if you specify certain nondefault
optimization techniques in the NLOPTIONS statement, namely TECH=NEWRAP, TECH=NRRIDG, or
TECH=TRUREG; see “NLOPTIONS Statement” on page 488 in Chapter 19, “Shared Concepts and Top-
ics,” for more information about optimization techniques. For these second-derivative-based optimization
techniques, the HPMIXED procedure does not actually use the true second derivative matrix, or observed
information matrix, as defined earlier. Instead, it uses an alternative matrix that is more efficient to compute
for large problems and that can be more stable. This alternative is called the average information matrix, and
it is defined as follows. The expected value of the second derivative is

E.
@2L

@�i�j
/ D tr

�
@V
@�i

P
@V
@�j

P
�

It is this trace that is computationally inefficient to evaluate. But if you average the expected information
matrix defined by this formula with the observed information matrix defined by the preceding formula for the
true second derivative, then the trace term cancels, leaving just a quadratic expression in y. This quadratic
expression defines the average information (Johnson and Thompson 1995) with respect to �i and �j :

AI.�i ; �j / D y0P
@V
@�i

P
@V
@�j

Py

Computing Starting Values by EM-REML
The EM-REML algorithm (Dempster, Laird, and Rubin 1977) iteratively alternates between an expectation
step and a maximization step to maximize the restricted log likelihood. The algorithm is based on augmenting
the observed data y with the unobservable random effects  , leading to a simplified form for the log likelihood.
For example, if G D I�2a then given the realized values Q of the unobservable random effects  , the REML
estimate of �2a satisfies

b�2a D Q 0 Q

q � �2=�2a tr.Caa/
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This corresponds to the maximization step of EM-REML. However, the true realized values Q are unknown
in practice. The expectation step of EM-REML replaces them with the conditional expected valuesb of the
random effects, given the observed data y and initial values for the parameters. The new estimate of �2a is
used in turn to recalculate the conditional expected values, and the iteration is repeated until convergence.

It is well known that EM-REML is generally more robust against a poor choice of starting values than general
nonlinear optimization methods such as Newton-Raphson, though it tends to converge slowly as it approaches
the optimum. The Newton-Raphson method, on the other hand, converges much faster when it has a good set
of starting values. The HPMIXED procedure, thus, employs a scheme that uses EM-REML initially in order
to get good starting values, and after a few iterations, when the decrease in log likelihood has significantly
slowed down, switching to a more general nonlinear optimization technique (by default, quasi-Newton).

Sparse Matrix Techniques
A key component of the HPMIXED procedure is the use of sparse matrix techniques for computing and
optimizing the likelihood expression given in the section “Model Assumptions” on page 3857. There are two
aspects to sparse matrix techniques, namely, sparse matrix storage and sparse matrix computations. Typically,
computer programs represent an N �M matrix in a dense form as an array of size NM , making row-wise
and column-wise arithmetic operations particularly efficient to compute. However, if many of these NM
numbers are zeros, then correspondingly many of these operations are unnecessary or trivial. Sparse matrix
techniques exploit this fact by representing a matrix not as a complete array, but as a set of nonzero elements
and their location (row and column) within the matrix. Sparse matrix techniques are more efficient if there
are enough zero-element operations in the dense form to make the extra time required to find and operate on
matrix elements in the sparse form worthwhile.

The following discussion illustrates sparse techniques. Let the symmetric matrix C be the matrix of mixed
model equations of size 5 � 5.

C D

266664
8:0 0 0 2:0 0

0 4:0 3:0 0 0

0 3:0 5:0 0 0

2:0 0 0 7:0 0

0 0 0 0 9:0

377775
There are 15 elements in the upper triangle of C, though eight of them are zeros. The row and column indices
and the values of seven nonzero elements are listed as follows:

i 1 1 2 2 3 4 5
j 1 4 2 3 3 4 5

Cij 8.0 2.0 4.0 3.0 5.0 7.0 9.0

The most elegant scheme to store these seven elements is to store them in a hash table with row and column
indices as a hash key. However, this scheme is not efficient as the number of non-zero elements gets very
large. The classical and widely used scheme, and the one the HPMIXED procedure employs, is the .ic ; jc ; c/
format, in which the nonzero elements are stored contiguously row by row in the vector c. To identify the
individual nonzero elements in each row, you need to know the column index of an element. These column
indices are stored in the vector jc ; that is, if c.k/ D Cij , then jc.k/ D j . To identify the individual rows, you
need to know where each row starts and ends. These row starting positions are stored in the vector ic . For
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instance, if Cij is the first nonzero element in the row i and c.k/ D Cij , then ic.i/ D k. The row i ending
position is one less than ic.i C 1/. Thus, the number of nonzero elements in the row i is ic.i C 1/ � ic.i/,
these elements in the row i are stored consecutively starting from the position ki D ic.i/

c.ki /; c.ki C 1/; c.ki C 2/; :::; c.kiC1 � 1/

and the corresponding columns indices are stored consecutively in

jc.ki /; jc.ki C 1/; jc.ki C 2/; :::; jc.kiC1 � 1/

For example, the seven nonzero elements in matrix C are stored in .ic ; jc ; c/ format as

ic 1 3 5 6 7 8
jc 1 4 2 3 3 4 5
c 8.0 2.0 4.0 3.0 5.0 7.0 9.0

Note that since matrices are stored row by row in the .ic ; jc ; c/ format, row-wise operations can be performed
efficiently but it is inefficient to retrieve elements column-wise. Thus, this representation will be inefficient
for matrix computations requiring column-wise operations. Fortunately, the likelihood calculations for mixed
models can usually avoid column-wise operations.

In mixed models, sparse matrices typically arise from a large number of levels for fixed effects and/or random
effects. If a linear model contains one or more large CLASS effects, then the mixed model equations are
usually very sparse. Storing zeros in mixed model equations not only requires significantly more memory
but also results in longer execution time and larger rounding error. As an illustration, the example in the
“Getting Started: HPMIXED Procedure” on page 3822 has 3506 mixed model equations. Storing just the
upper triangle of these equations in a dense form requires .1 C 3506/ � 3506=2 D 6; 147; 771 elements.
However, there are only 60,944 nonzero elements—less than 1% of what dense storage requires.

Note that as the density of the mixed model equations increases, the advantage of sparse matrix techniques
decreases. For instance, a classical regression model typically has a dense coefficient matrix, though the
dimension of the matrix is relatively small.

The HPMIXED procedure employs sparse matrix techniques to store the nonzero elements in the mixed
model equations and to compute a sparse Cholesky decomposition of these equations. A reordering of
the mixed model equations is required in order to keep the minimum memory consumption during the
factorization. This reordering process results in a different g-inverse from what is produced by most other
SAS/STAT procedures, for which the g-inverse is defined by sequential sweeping in the order defined by
the model. If mixed model equations are singular, this different g-inverse produces a different solution of
mixed model equations. However, estimable functions and tests based on them are invariant to the choice of
g-inverse, and are thus the same for the HPMIXED procedure as for other procedures.

Hypothesis Tests for Fixed Effects
Unlike most other SAS/STAT procedures for analyzing general linear models, the HPMIXED procedure does
not by default provide F tests for the fixed effects. This is because, for the large mixed model problems that
the HPMIXED procedure is designed to address, such tests are often computationally prohibitive to compute.
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The computation of Type III tests first constructs the Hermite matrix of the mixed model coefficient matrix C
and then forms the L coefficient matrix to obtain the F value as follows:

F D

� b̌b
�0

L0.LbC�1L0/�1L
� b̌b

�
r

where r D rank.LbC�1L0/: The coefficient matrix L corresponding to fixed effects with many levels can be
very large and dense, making them very difficult to work with. At the same time, Type III tests for effects
with many levels are relatively unlikely to be statistically useful.

For this reason, you must use the TEST statement in PROC HPMIXED to specifically ask for Type III tests
for any effects for which you want to compute them. An example of this is given in the section “Getting
Started: HPMIXED Procedure” on page 3822.

Default Output
The following sections describe the output PROC HPMIXED produces by default. This output is organized
into various tables, and they are discussed in order of appearance.

Model Information

The “Model Information” table describes the model, some of the variables it involves, and the method used
in fitting it. It also lists the method for computing the degrees of freedom.

The name of the “Model Information” table is ModelInfo.

Class Level Information

The “Class Level Information” table lists the first 20 levels of every variable specified in the CLASS statement.
You should check this information to make sure the data are correct. You can adjust the order of the CLASS
variable levels with the ORDER= option in the PROC HPMIXED statement. The name of the “Class Level
Information” table is ClassLevels.

Dimensions

The “Dimensions” table lists the sizes of relevant matrices. This table can be useful in determining CPU time
and memory requirements. The name of the “Dimensions” table is “Dimensions.”

Number of Observations

The “Number of Observations” table shows the number of observations read from the data set and the number
of observations used in fitting the model.

Descriptive Statistics

The “Descriptive Statistics” table lists simple statistics such as means and standard deviations for the
dependent variable, for each covariate in the MODEL statement, and for the weight variable in the WEIGHT
statement.
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Iteration History

The “Iteration History” table describes the optimization of the residual log likelihood. The function to be
minimized (the objective function) is �2l .

The name of the “Iteration History” table is IterHistory.

Covariance Parameter Estimates

The “Covariance Parameter Estimates” table contains the estimates of the parameters in G and R. Their
values are labeled in the “Cov Parm” table along with Subject and Group information if applicable. The
estimates are displayed in the Estimate column.

The name of the “Covariance Parameter Estimates” table is CovParms.

Convergence Status

The “Convergence Status” table contains a status message that describes the reason the optimization termi-
nated. The message is also written to the log. The name of the “Convergence Status” table is ConvergenceS-
tatus. You can query the nonprinting numeric variable Status to check for a successful optimization. This is
useful in batch processing, or when processing BY groups, such as in simulations. Successful optimizations
are indicated by the value 0 for the Status variable.

Fit Statistics

The “Fit Statistics” table provides some statistics about the estimated mixed model.

In addition, the “Fit Statistics” table lists three information criteria: AIC, AICC, and BIC, all in smaller-is-
better form. Expressions for these criteria are described under the IC= option on page 3828.

The name of the “Model Fitting Information” table is FitStatistics.

ODS Table Names
Each table created by PROC HPMIXED has a name associated with it, and you must use this name to
reference the table when using ODS statements. These names are listed in Table 49.11.

Table 49.11 ODS Tables Produced by PROC HPMIXED

Table Name Description Required Statement / Option

CholR Cholesky root of blocks of the esti-
mated R matrix

REPEATED / RC

ClassLevels Level information from the CLASS
statement

Default output

Coef L matrix coefficients E option in TEST,
CONTRAST, ESTIMATE,
or LSMEANS

Contrasts Results from the CONTRAST
statements

CONTRAST

ConvergenceStatus Convergence status Default
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Table 49.11 (continued)

Table Name Description Required Statement / Option

CovParms Estimated covariance parameters Default output
Diffs Differences of LS-means LSMEANS / DIFF (or PDIFF)
Dimensions Dimensions of the model Default output
Estimates Results from ESTIMATE statements ESTIMATE
FitStatistics Fit statistics Default
InvCholR Inverse Cholesky root of blocks of

the estimated R matrix
REPEATED / RCI=

InvR Inverse of blocks of the estimated R
matrix

REPEATED / RI=

IterHistory Iteration history Default output
LSMeans LS-means LSMEANS
MMEq Mixed model equations PROC HPMIXED MMEQ
ModelInfo Model information Default output
NObs Number of observations read and

used
Default output

OptInfo Optimization information Default output
OverallANOVA ANOVA table for model without ran-

dom effect
Default output for fixed models

ParameterEstimates Fixed-effects solution MODEL / SOLUTION
ParmSearch Parameter search values PARMS
Ranks Ranks of matrices X, (XZ), and

MMEQ
PROC HPMIXED RANKS

R Blocks of the estimated R matrix REPEATED / R=
RCorr Correlation matrix from blocks of the

estimated R matrix
REPEATED / RCORR=

SimpleStatistics Descriptive statistics for dependent
variable and covariate variables

PROC HPMIXED / SIMPLE

Slices Tests of LS-means slices LSMEANS / SLICE=
SolutionR Random-effect solution vector RANDOM / SOLUTION
Tests3 Type III tests of fixed effects TEST

Examples: HPMIXED Procedure

Example 49.1: Ranking Many Random-Effect Coefficients
In analyzing models with random effects that have many levels, a frequent goal is to estimate and rank the
predicted values of the coefficients corresponding to these levels. For example, in mixed models for animal
breeding, the predicted coefficient of the random effect for each animal is referred to as the estimated breeding
value (EBV) and animals with relatively high EBVs are chosen for breeding. This example demonstrates the
use of the HPMIXED procedure for computing EBVs and their precision. Although other mixed modeling
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tools in SAS/STAT can potentially compute EBVs, PROC HPMIXED is particularly suited for the large,
sparse matrix calculations involved. The typical performance of the HPMIXED procedure and other tools for
this problem is also discussed.

The data for this problem are generated by simulation. Suppose you are considering analyzing EBVs for
animals on 15 farms, with about 100 animals of 5 different species on each farm. The following DATA step
simulates data with this structure, where about 40 observations of the response variable Yield are made per
animal:

%let NFarm = 15;
%let NAnimal = %eval(&NFarm*100);
data Sim;

keep Species Farm Animal Yield;
array BV{&NAnimal};
array AnimalSpecies{&NAnimal};
array AnimalFarm{&NAnimal};
do i = 1 to &NAnimal;

BV {i} = sqrt(4.0)*rannor(12345);
AnimalSpecies{i} = 1 + int( 5 *ranuni(12345));
AnimalFarm {i} = 1 + int(&NFarm*ranuni(12345));

end;
do i = 1 to 40*&NAnimal;

Animal = 1 + int(&NAnimal*ranuni(12345));
Species = AnimalSpecies{Animal};
Farm = AnimalFarm {Animal};
Yield = 1 + Species

+ Farm
+ BV{Animal}
+ sqrt(8.0)*rannor(12345);

output;
end;

run;

In this simulation, the true breeding value for each animal (BV1–BV1500) has a variance component of 4.0,
while the level of background variance is 8.0.

In this type of experiment, the effect of Species and the interaction between Species and Farm are typically
modeled as fixed effects, while the effect of Animal is modeled as a random effect. The following statements
use the HPMIXED procedure to compute predictions for the Animal random effect and save them to the data
set EBV. This data set is then sorted and the 10 animals with the highest EBVs are displayed.

ods listing close;
proc hpmixed data=Sim;

class Species Farm Animal;
model Yield = Species Farm*Species;
random Animal/cl;
ods output SolutionR=EBV;

run;
ods listing;

proc sort data=EBV;
by descending estimate;

run;
proc print data=EBV(obs=10) noobs;

var Animal Estimate StdErrPred Lower Upper;
run;
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The preceding statements close the ODS listing destination for the duration of the PROC HPMIXED run.
This avoids displaying the long random-effects solution table, since only the top few EBVs are of interest.
Output 49.1.1 displays the EBVs of the top 10 animals, along with their precision and confidence bounds.

Output 49.1.1 Estimated Breeding Values: Top 10 Animals

Animal Estimate StdErrPred Lower Upper

1294 5.9703 0.6317 4.7321 7.2085

1219 5.0081 0.6396 3.7544 6.2618

1054 4.9452 0.5874 3.7939 6.0966

758 4.9340 0.6196 3.7195 6.1485

986 4.9329 0.5767 3.8025 6.0633

1150 4.7444 0.5806 3.6064 5.8824

962 4.6651 0.5794 3.5294 5.8008

225 4.5294 0.6137 3.3266 5.7322

1252 4.5012 0.5686 3.3868 5.6157

1033 4.4971 0.6080 3.3054 5.6889

Notice that animal 1294 is ranked as the top animal based on its EBV, but the precision of this estimate, as
measured by the standard error of prediction, is lower than that of other animals.

You can also use PROC MIXED and PROC GLIMMIX to compute EBVs, but the performance of these
general mixed modeling procedures for this specialized kind of data and model is quite different from that
of PROC HPMIXED. The MIXED and GLIMMIX procedures are engineered to have good performance
properties across a broad class of models and analyses, a class much broader than what PROC HPMIXED
can handle. The HPMIXED procedure, on the other hand, can have better performance, in terms of both
memory and run time, for certain specialized models and analyses, of which the current example is one.

For this example, an equivalent PROC GLIMMIX approach can take twice as long to complete, and PROC
MIXED three times as long. Precise relative timings are not feasible, since those of the MIXED and
GLIMMIX procedures are sensitive to the speed of disk access for writing to and reading from the utility file
that holds the underlying matrices. But the results on any system would be similar: for the limited class of
models to which it applies, the sparse matrix representation that the HPMIXED procedure employs should
provide better computational performance than a dense representation, in terms of both run time and memory
use.

Moreover, for a given analysis, if the size of the problem is increased in such a way that the underlying
matrices become sparser, the relative performance of PROC HPMIXED gets even better. As an illustration
of this, Output 49.1.2 shows relative performance of the three procedures for simulated data as the number
of farms increases. For this plot, each additional farm adds 500 levels of the Animal random effect to the
model—a substantial number.
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Output 49.1.2 Comparing Mixed Model Tools for Increasingly Sparse Problems

The vertical axis in Output 49.1.2 measures run time, but the units are omitted: relative performance is what
counts, and that is expected to be fairly invariant to machine architecture. The output shows that while the
performance of the MIXED and GLIMMIX procedures is relatively competitive with PROC HPMIXED
for up to 3000 or 4000 animals, both procedures’ relative performance decreases as the number of animals
increases into the tens of thousands.

As a caveat, note that PROC HPMIXED can be inefficient relative to PROC MIXED and PROC GLIMMIX
for models and data that are not sparse, because it can take many times longer to invert a large, dense matrix
by sparse techniques. For example, Output 49.1.3 shows relative performance of the three procedures for
simulated data like the preceding, but where the fixed part of the model consists of an increasing number of
continuous covariates and is thus dense.
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Output 49.1.3 Comparing Mixed Model Tools for Increasingly Dense Problems

As before, the HPMIXED procedure is more efficient than the MIXED and GLIMMIX procedures for few
covariates, but when the fixed-effect calculations dominate the run time, PROC HPMIXED rapidly becomes
relatively inefficient as the size of the dense fixed-effect matrix increases. Also note that while PROC MIXED
is more efficient than PROC GLIMMIX for small to moderate numbers of covariates, PROC GLIMMIX has
the best performance as the number of covariates get very large.

Example 49.2: Comparing Results from PROC HPMIXED and PROC MIXED
This example revisits the mixed model problem from the section “Getting Started: MIXED Procedure” on
page 5218, in Chapter 65, “The MIXED Procedure,” with the data set shown in the following statements:

data heights;
input Family Gender$ Height @@;
datalines;

1 F 67 1 F 66 1 F 64 1 M 71 1 M 72 2 F 63
2 F 63 2 F 67 2 M 69 2 M 68 2 M 70 3 F 63
3 M 64 4 F 67 4 F 66 4 M 67 4 M 67 4 M 69
;
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The response variable Height measures the heights (in inches) of 18 individuals. The individuals are classified
according to Family and Gender. The following statements fit a mixed model with random effects for Family
and the Family*Gender interaction with the MIXED procedure:

proc mixed;
class Family Gender;
model Height = Gender / s;
random Family Family*Gender / s;

run;

The “Iteration History” and “Fit Statistics” tables for the optimization in PROC MIXED are shown in
Output 49.2.1. The MIXED procedure converges after six iterations and achieves a –2 restricted log
likelihood of 71.02246.

Output 49.2.1 Iteration History and Fit Statistics: MIXED Procedure

The Mixed ProcedureThe Mixed Procedure

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 74.11074833

1 2 71.51614003 0.01441208

2 1 71.13845990 0.00412226

3 1 71.03613556 0.00058188

4 1 71.02281757 0.00001689

5 1 71.02245904 0.00000002

6 1 71.02245869 0.00000000

Fit Statistics

-2 Res Log Likelihood 71.0

AIC (Smaller is Better) 77.0

AICC (Smaller is Better) 79.0

BIC (Smaller is Better) 75.2

Output 49.2.2 displays the covariance parameter estimates and the solutions for the fixed and random effects.
Because the fixed-effect model contains a classification effect (Gender) and an intercept, the X0X matrix is
singular. Only two fixed-effect parameters can be estimated in this model. The MIXED procedure, relying
on a sweep operation in the order in which effects enter the model, determines that the last column of the
X0X matrix is a linear function of previous columns. Consequently, the coefficient for the second level of the
Gender variable is zero.

Output 49.2.2 Parameter Estimates and Solutions: MIXED Procedure

Covariance Parameter
Estimates

Cov Parm Estimate

Family 2.4010

Family*Gender 1.7657

Residual 2.1668
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Output 49.2.2 continued

Solution for Fixed Effects

Effect Gender Estimate
Standard

Error DF t Value Pr > |t|

Intercept 68.2114 1.1477 3 59.43 <.0001

Gender F -3.3621 1.1923 3 -2.82 0.0667

Gender M 0 . . . .

Solution for Random Effects

Effect Gender Family Estimate
Std Err

Pred DF t Value Pr > |t|

Family 1 1.2680 1.1201 10 1.13 0.2840

Family 2 0.08980 1.1121 10 0.08 0.9372

Family 3 -1.6660 1.1712 10 -1.42 0.1853

Family 4 0.3082 1.1201 10 0.28 0.7888

Family*Gender F 1 -0.3198 1.0810 10 -0.30 0.7734

Family*Gender M 1 1.2523 1.0933 10 1.15 0.2787

Family*Gender F 2 -0.4299 1.0774 10 -0.40 0.6983

Family*Gender M 2 0.4959 1.0774 10 0.46 0.6551

Family*Gender F 3 -0.08229 1.1409 10 -0.07 0.9439

Family*Gender M 3 -1.1429 1.1409 10 -1.00 0.3401

Family*Gender F 4 0.8320 1.0933 10 0.76 0.4642

Family*Gender M 4 -0.6053 1.0810 10 -0.56 0.5878

The “Type 3 Tests of Fixed Effects” table in Output 49.2.3 is produced by the MIXED procedure by default.

Output 49.2.3 Test of Gender Effect

Type 3 Tests of Fixed Effects

Effect
Num

DF
Den

DF F Value Pr > F

Gender 1 3 7.95 0.0667

The same linear mixed model is fit with the HPMIXED procedure with the following statements:

proc hpmixed;
class Family Gender;
model Height = Gender / s;
random Family Family*Gender / s;
test gender;

run;

Output 49.2.4 displays the “Iteration History” and “Fit Statistics” tables. The HPMIXED procedure, with its
default quasi-Newton algorithm, achieves the same –2 restricted log likelihood as the MIXED procedure
(71.02246; see Output 49.2.1).
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Output 49.2.4 Iteration History and Fit Statistics: HPMIXED Procedure

The HPMIXED ProcedureThe HPMIXED Procedure

Iteration History

Iteration Evaluations
Objective
Function Change

Max
Gradient

0 4 71.023177956 . 0.034074

1 3 71.022519936 0.00065802 0.007839

2 3 71.022477283 0.00004265 0.004674

3 2 71.0224587 0.00001858 0.000168

4 2 71.022458689 0.00000001 3.28E-6

Fit Statistics

-2 Res Log Likelihood 71.02246

AIC  (Smaller is Better) 77.02246

AICC (Smaller is Better) 79.02246

BIC  (Smaller is Better) 75.18134

CAIC (Smaller is Better) 78.18134

HQIC (Smaller is Better) 72.98226

Output 49.2.5 displays the results that correspond to those in Output 49.2.2 in the MIXED procedure.

Output 49.2.5 Parameter Estimates and Solutions: HPMIXED Procedure

Covariance Parameter
Estimates

Cov Parm Estimate

Family 2.4010

Family*Gender 1.7657

Residual 2.1668

Solution for Fixed Effects

Effect Gender Estimate
Standard

Error DF t Value Pr > |t|

Intercept 0 . . . .

Gender F 64.8493 1.1477 16 56.50 <.0001

Gender M 68.2114 1.1477 16 59.43 <.0001
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Output 49.2.5 continued

Solution for Random Effects

Effect Gender Family Estimate
Std Err

Pred DF t Value Pr > |t|

Family 1 1.2680 1.1201 16 1.13 0.2743

Family 2 0.08980 1.1121 16 0.08 0.9366

Family 3 -1.6660 1.1712 16 -1.42 0.1741

Family 4 0.3082 1.1201 16 0.28 0.7867

Family*Gender F 1 -0.3198 1.0810 16 -0.30 0.7712

Family*Gender M 1 1.2523 1.0933 16 1.15 0.2689

Family*Gender F 2 -0.4299 1.0774 16 -0.40 0.6951

Family*Gender M 2 0.4959 1.0774 16 0.46 0.6515

Family*Gender F 3 -0.08229 1.1409 16 -0.07 0.9434

Family*Gender M 3 -1.1429 1.1409 16 -1.00 0.3314

Family*Gender F 4 0.8320 1.0933 16 0.76 0.4577

Family*Gender M 4 -0.6053 1.0810 16 -0.56 0.5832

A number of points are noteworthy in comparing the results from the procedures. The covariance parameter
estimates are the same, yet the solutions for the fixed effects differ. In fact, both solutions are correct. Solving
a sparse system of linear equations requires reordering of the mixed model equations to minimize memory
consumption in the factorization process. As a consequence, the order in which singularities are detected
can differ from the order in which effects enter the model. Mathematically, the two sets of solutions simply
correspond to different choices for the generalized inverse in solving a singular linear system. See the
sections “Generalized Inverse Matrices” on page 42 and “Linear Model Theory” on page 51, in Chapter 3,
“Introduction to Statistical Modeling with SAS/STAT Software,” for more information about the role and
importance of generalized inverses in linear model analysis.

Although the two sets of solutions for the fixed effects correspond to different choices of generalized inverses,
many important results are invariant to the choice of the g-inverse. For example, the solutions for the random
effects in Output 49.2.5 and Output 49.2.2 are identical. Also, the test for the Gender effect yields the same F
value in both analyses (compare Output 49.2.6 and Output 49.2.3). However, note that the p-values associated
with both F tests and t tests differ between the two procedures. This is due to their different default methods
for computing the degrees of freedom. For this model, the HPMIXED procedure use the residual method
to determine the denominator degrees of freedom for tests of fixed effects, whereas the MIXED procedure
uses the containment method. The containment method is order-dependent, and thus not available in the
HPMIXED procedure.

Output 49.2.6 Parameter Estimates and Solutions: HPMIXED Procedure

Type III Tests of Fixed Effects

Effect
Num

DF
Den

DF F Value Pr > F

Gender 1 16 7.95 0.0123
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Example 49.3: Using PROC GLIMMIX for Further Analysis of PROC HPMIXED
Fit

The HPMIXED procedure handles only a subset of the analyses of the GLIMMIX procedure. However, you
can use the HPMIXED procedure to accelerate your GLIMMIX procedure analyses for large problems. The
idea is to use PROC HPMIXED to maximize the likelihood and produce parameter estimates more quickly
than PROC GLIMMIX, and then to pass these parameter estimates to PROC GLIMMIX for some further
analysis that is not available within PROC HPMIXED.

This example revisits the mixed model problem from the section “Getting Started: HPMIXED Procedure”
on page 3822 to illustrate how to obtain the covariance estimates from the HPMIXED procedure and, in
turn, how to use these estimates in PROC GLIMMIX’s PARMS statement. The following statements again
simulate data from animals of different species on different farms:

data Sim;
keep Species Farm Animal Yield;
array AnimalEffect{3000};
array AnimalSpecies{3000};
array AnimalFarm{3000};
do i = 1 to 3000;

AnimalEffect{i} = sqrt(4.0)*rannor(12345);
AnimalSpecies{i} = 1 + int(5*ranuni(12345));
AnimalFarm{i} = 1 + int(10*ranuni(12345));

end;
do i = 1 to 40000;

Animal = 1 + int(3000*ranuni(12345));
Species = AnimalSpecies{Animal};
Farm = AnimalFarm{Animal};
Yield = 1 + Species + int(Farm/2) + AnimalEffect{Animal}

+ sqrt(8.0)*rannor(12345);
output;

end;
run;

Note that in the preceding DATA step program, certain pairs of farms are simulated to have the same effect on
yield. Suppose that your goal is to determine which farms are significantly different. While the HPMIXED
procedure has an LSMEANS statement, it has no options for multiple comparisons. The following statements
first use the HPMIXED procedure to obtain the covariance estimates, saving them in the SAS data set
HPMEstimate. Then the GLIMMIX procedure is executed with the PARMS statement to initialize the
parameter values from the data set HPMEstimate and with the HOLD= and NOITER options to prevent
further optimization iterations. The LSMEANS statement is used in PROC GLIMMIX to perform multiple
comparisons of the LS-means for farms, and the results are displayed as a so-called diffogram.

proc hpmixed data=Sim;
class Species Farm Animal;
model Yield = Farm|Species;
random Animal;
test Species Species*Farm;
ods output CovParms=HPMEstimate;

run;
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ods graphics on;
proc glimmix data=Sim;

class Species Farm Animal;
model Yield = Farm|Species;
random int/sub=Animal;
parms /pdata=HPMEstimate hold=1,2 noiter;
lsmeans Farm / pdiff=all plot=diffplot;

run;

The iteration histories for the two procedures are shown in Output 49.3.1 and Output 49.3.2. Whereas PROC
HPMIXED requires several iterations in order to converge, PROC GLIMMIX “converges” to the same value
in one step, with no iteration since the options HOLD= and NOITER are used.

Output 49.3.1 Iteration History for the HPMIXED Procedure

The HPMIXED ProcedureThe HPMIXED Procedure

Iteration History

Iteration Evaluations
Objective
Function Change

Max
Gradient

0 4 202516.66891 . 0.841954

1 6 202516.66887 0.00004385 0.000641

2 1 202516.66887 -0.00000000 0.000641

Output 49.3.2 Iteration History for the GLIMMIX Procedure

The GLIMMIX ProcedureThe GLIMMIX Procedure

Iteration History

Iteration Restarts Evaluations
Objective
Function Change

Max
Gradient

0 0 4 202516.66887 . 0

The graphical multiple-comparisons analysis for the LS-means of farms is shown in Output 49.3.3. It confirms
the pairwise equalities between farm effects with which the data were simulated.
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Output 49.3.3 LS-Means Plot of Pairwise Farm Differences

For more information about the interpretation of the LS-means difference plot, see the section “ODS Graphics”
on page 3249, in Chapter 44, “The GLIMMIX Procedure.”

Example 49.4: Mixed Model Analysis of Microarray Data
Microarray experiments are an advanced genomic technique used in the discovery of new treatments for
diseases. Microarray analysis allows for the detection of tens of thousands of genes in a single DNA sample.
A microarray is a glass slide or membrane that has been spotted or “arrayed” with DNA fragments or
oligonucleotides representing specific genes. The response of the gene detected by a spot is proportional to
the intensity of fluorescence associated with that spot. These gene responses can indicate associations with
disease conditions, but they can also be affected by systematic biases and different treatments such as sex
and genotypes. Statistical models for microarray data attempt to assess the significance and magnitude of
gene effects across treatments while adjusting for these systematic biases and to evaluate the significance of
differences between treatments.

There are two statistical approaches frequently used in mixed model analysis for microarray data.
The first approach is to fit multiple gene-specific models to data normalized for systematic bi-
ases (Wolfinger et al. 2001; Gibson and Wolfinger 2004). This approach is based on assuming that



3876 F Chapter 49: The HPMIXED Procedure

the biases are independent from the gene effects. If this assumption is untenable, then a sec-
ond approach fits a single model that combines both the systematic biases and the gene effects
(Kerr, Martin, and Churchill 2000; Churchill 2002; Littell et al. 2006). When the number of genes is very
large, several hundreds to tens of thousands, this is an analysis for which the sparse matrix approach
implemented in the HPMIXED procedure is well suited.

The following SAS statements simulate a microarray experiment with a so-called loop design structure,
which is commonly used in such studies. There are 500 genes, each gene occurs in 6 arrays, and each array
has 2 dyes.

%let narray = 6;
%let ndye = 2;
%let nrow = 4;
%let ngene = 500;
%let ntrt = 6;
%let npin = 4;
%let ndip = 4;
%let no = %eval(&ndye*&nrow*&ngene);
%let tno = %eval(&narray*&no);

data microarray;
keep Gene MArray Dye Trt Pin Dip log2i;
array PinDist{&tno};
array DipDist{&tno};
array GeneDist{&tno};

array ArrayEffect{&narray};
array ArrayGeneEffect{%eval(&narray*&ngene)};
array ArrayDipEffect{%eval(&narray*&ndip)};
array ArrayPinEffect{%eval(&narray*&npin)};

do i = 1 to &tno;
PinDist{i} = 1 + int(&npin*ranuni(12345));
DipDist{i} = 1 + int(&ndip*ranuni(12345));
GeneDist{i} = 1 + int(&ngene*ranuni(12345));

end;

igene = 0;
idip = 0;
ipin = 0;
do i = 1 to &narray;

ArrayEffect{i} = sqrt(0.014)*rannor(12345);
do j = 1 to &ngene;

igene = igene+1;
ArrayGeneEffect{igene} = sqrt(0.0017)*rannor(12345);

end;
do j = 1 to &ndip;

idip = idip + 1;
ArrayDipEffect{idip} = sqrt(0.0033)*rannor(12345);

end;
do j = 1 to &npin;

ipin = ipin + 1;
ArrayPinEffect{ipin} = sqrt(0.037)*rannor(12345);
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end;
end;

i = 0;
do MArray = 1 to &narray;

do Dye = 1 to &ndye;
do Row = 1 to &nrow;

do k = 1 to &ngene;
if MArray=1 and Dye = 1 then do;

Trt = 0;
trtc = 0;

end;
else do;

if trtc >= &no then trtc = 0;
if trtc = 0 then do;

Trt = Trt + 1;
if Trt >= &ntrt then do;

Trt = 0;
trtc = 0;

end;
end;
trtc = trtc + 1;

end;
i = i + 1;
Pin = PinDist{i};
Dip = DipDist{i};
Gene = GeneDist{i};
a = ArrayEffect{MArray};
ag = ArrayGeneEffect{(MArray-1)*&ngene+Gene};
ad = ArrayDipEffect{(MArray-1)*&ndip+Dip};
ap = ArrayPinEffect{(MArray-1)*&npin+Pin};
log2i = 1 +

+ Dye
+ Trt
+ Gene/1000.0
+ Dye*Gene/1000.0
+ Trt*Gene/1000.0
+ Pin
+ a
+ ag
+ ad
+ ap
+ sqrt(0.02)*rannor(12345);

output;
end;

end;
end;

end;
run;
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A linear mixed model for fitting the log intensity data Yijkmnr from such a design is described by
Littell et al. (2006) as follows:

Yijkmnr D Fixed Effects
� Overall mean

C �i Gene
C �j Treatment
C ık Dye
C .��/ij Treatment-by-gene
C .ı�/ik Dye-by-gene
C pr Pin

Random Effects
C am Microarray
C .a�/im Microarray-by-gene
C d.a/mn Dip-within-microarray
C .ap/mr Microarray-by-pin
C eijkmnr Residual noise

You can use the HPMIXED procedure with the following statements to fit this model:

proc hpmixed data=microarray;
class marray dye trt gene pin dip;
model log2i = dye trt gene dye*gene trt*gene pin;
random marray marray*gene dip(marray) pin*marray;
test trt;

run;

The “Dimensions” table shown in Output 49.4.1 indicates that this is a very large model, with 4512 columns
in X matrix and 3054 columns in Z matrix. It will be computationally very inefficient to fit this model by
using dense matrix methods; the sparse matrix approach of the HPMIXED procedure is of critical importance.

Output 49.4.1 Mixed Model Dimensions

The HPMIXED ProcedureThe HPMIXED Procedure

Dimensions

G-side Cov. Parameters 4

R-side Cov. Parameters 1

Columns in X 4513

Columns in Z 3054

Subjects (Blocks in V) 1

The p-value in Output 49.4.2 indicates that there are significant differences between treatments.

Output 49.4.2 Type III Tests of Fixed Effects

Type III Tests of Fixed Effects

Effect
Num

DF
Den

DF F Value Pr > F

Trt 5 20497 370005 <.0001
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Example 49.5: Repeated Measures
The following data are from Pothoff and Roy (1964) and consist of growth measurements for 11 girls and 16
boys at ages 8, 10, 12, and 14. Some of the observations are suspect (for example, the third observation for
person 20); however, all of the data are used here for comparison purposes.

The analysis strategy employs a linear growth curve model for the boys and girls in addition to a variance-
covariance model that incorporates correlations for all of the observations that arise from the same person.
The PROC HPMIXED statements to fit an unstructured variance matrix are as follows:

data pr;
input Person Gender $ y1 y2 y3 y4;
y=y1; Time=1; Age=8; output;
y=y2; Time=2; Age=10; output;
y=y3; Time=3; Age=12; output;
y=y4; Time=4; Age=14; output;
drop y1-y4;
datalines;

1 F 21.0 20.0 21.5 23.0
2 F 21.0 21.5 24.0 25.5
3 F 20.5 24.0 24.5 26.0
4 F 23.5 24.5 25.0 26.5
5 F 21.5 23.0 22.5 23.5
6 F 20.0 21.0 21.0 22.5
7 F 21.5 22.5 23.0 25.0
8 F 23.0 23.0 23.5 24.0
9 F 20.0 21.0 22.0 21.5

10 F 16.5 19.0 19.0 19.5
11 F 24.5 25.0 28.0 28.0
12 M 26.0 25.0 29.0 31.0
13 M 21.5 22.5 23.0 26.5
14 M 23.0 22.5 24.0 27.5
15 M 25.5 27.5 26.5 27.0
16 M 20.0 23.5 22.5 26.0
17 M 24.5 25.5 27.0 28.5
18 M 22.0 22.0 24.5 26.5
19 M 24.0 21.5 24.5 25.5
20 M 23.0 20.5 31.0 26.0
21 M 27.5 28.0 31.0 31.5
22 M 23.0 23.0 23.5 25.0
23 M 21.5 23.5 24.0 28.0
24 M 17.0 24.5 26.0 29.5
25 M 22.5 25.5 25.5 26.0
26 M 23.0 24.5 26.0 30.0
27 M 22.0 21.5 23.5 25.0
;

proc hpmixed data=pr;
class Person Gender Time;
model y = Gender Age Gender*Age;
test Gender Age Gender*Age;
repeated Time / type=un subject=Person r;

run;
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The MODEL statement first lists the dependent variable Y. The fixed effects are then listed after the equal
sign. The variable Gender requests a different intercept for the girls and boys, Age models an overall linear
growth trend, and Gender*Age makes the slopes different over time. It is actually not necessary to specify
Age separately, but doing so enables PROC HPMIXED to carry out a test for heterogeneous slopes.

The REPEATED statement contains a repeated-effect Time. The TYPE=UN option models the covariance
as an unstructured block for each SUBJECT=Person. Each of the 27 subjects has a maximum of four
observations. Therefore, the R matrix is block diagonal with 27 blocks, each block consisting of identical
4�4 unstructured matrices. The 10 parameters of these unstructured blocks make up the covariance parameters
estimated by restricted maximum likelihood. The R= option requests that the first block of R be displayed.

The results from this analysis are shown in Output 49.5.1 through Output 49.5.5.

Output 49.5.1 Repeated Measures Analysis

The HPMIXED ProcedureThe HPMIXED Procedure

Dimensions

G-side Cov. Parameters 0

R-side Cov. Parameters 10

Columns in X 6

Columns in Z per Subject 0

Subjects (Blocks in V) 27

In Output 49.5.1, the 10 covariance parameters result from the 4 � 4 unstructured blocks of R. There is no Z
matrix for this model.

Output 49.5.2 Repeated Measures Analysis (continued)

Number of Observations Read 108

Number of Observations Used 108



Example 49.5: Repeated Measures F 3881

Output 49.5.2 continued

Iteration History

Iteration Evaluations
Objective
Function Change

Max
Gradient

0 4 483.55903028 . 18.65974

1 4 446.6618154 36.89721488 14.63195

2 5 430.2967104 16.36510500 10.93182

3 5 427.86149052 2.43521988 12.34361

4 2 426.16528163 1.69620890 8.094057

5 3 425.56874743 0.59653420 3.517822

6 2 424.91919206 0.64955537 2.492626

7 3 424.731766 0.18742606 2.110784

8 3 424.66856966 0.06319634 1.417574

9 2 424.63858357 0.02998609 1.468348

10 2 424.60787324 0.03071033 1.174872

11 2 424.5593949 0.04847834 0.601039

12 3 424.55305379 0.00634111 0.316659

13 2 424.54886941 0.00418438 0.170275

14 3 424.54696194 0.00190747 0.072622

15 3 424.5468178 0.00014413 0.019582

16 3 424.54680027 0.00001753 0.001888

17 3 424.5468002 0.00000007 0.000235

Convergence criterion (GCONV=1E-8) satisfied.

The 17 quasi-Newton iterations are used to find the maximum likelihood estimates (Output 49.5.2).

Output 49.5.3 Repeated Measures Analysis (continued)

Estimated R Matrix for Person 1

Row Col1 Col2 Col3 Col4

1 5.4252 2.7092 3.8411 2.7151

2 2.7092 4.1906 2.9745 3.3137

3 3.8411 2.9745 6.2632 4.1332

4 2.7151 3.3137 4.1332 4.9862

The 4�4 matrix in Output 49.5.3 is the estimated unstructured covariance matrix. It is the estimate of the first
block of R, and the other 26 blocks all have the same estimate.
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Output 49.5.4 Repeated Measures Analysis (continued)

Covariance Parameter
Estimates

Cov Parm Subject Estimate

UN(1,1) Person 5.4252

UN(2,1) Person 2.7092

UN(2,2) Person 4.1906

UN(3,1) Person 3.8411

UN(3,2) Person 2.9745

UN(3,3) Person 6.2632

UN(4,1) Person 2.7151

UN(4,2) Person 3.3137

UN(4,3) Person 4.1332

UN(4,4) Person 4.9862

The “Covariance Parameter Estimates” table in Output 49.5.4 lists the 10 estimated covariance parameters in
order; note their correspondence to the first block of R displayed in Output 49.5.3. The parameter estimates
are labeled according to their location in the block in the Cov Parm column, and all of these estimates are
associated with Person as the subject effect.

Output 49.5.5 Repeated Measures Analysis (continued)

Type III Tests of Fixed Effects

Effect
Num

DF
Den

DF F Value Pr > F

Gender 1 104 1.08 0.3011

Age 1 104 102.35 <.0001

Age*Gender 1 104 7.40 0.0076

The “Type III Tests of Fixed Effects” table in Output 49.5.5 displays Type III tests for all of the fixed effects.
These tests are partial in the sense that they account for all of the other fixed effects in the model.

Since the different levels of the repeated effect represent different years, it is natural to try fitting a time series
model to the data within each subject. To obtain time series structures in R, you can replace TYPE=UN with
TYPE=AR(1) to obtain the first-order autoregressive covariance matrices. For example, the statements to fit
an AR(1) structure are as follows:

proc hpmixed data=pr;
class Person Gender Time;
model y = Gender Age Gender*Age;
repeated Time / type=ar(1) sub=Person r;

run;

The estimated AR(1) structure covariance matrix of the first block of R is shown in Output 49.5.6
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Output 49.5.6 Repeated Measures Analysis

The HPMIXED ProcedureThe HPMIXED Procedure

Estimated R Matrix for Person 1

Row Col1 Col2 Col3 Col4

1 5.2144 3.2563 2.0335 1.2699

2 3.2563 5.2144 3.2563 2.0335

3 2.0335 3.2563 5.2144 3.2563

4 1.2699 2.0335 3.2563 5.2144
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Overview: ICLIFETEST Procedure
The ICLIFETEST procedure performs nonparametric survival analysis for interval-censored data. You can
use the ICLIFETEST procedure to compute nonparametric estimates of the survival functions and to examine
the equality of the survival functions through statistical tests.

The ICLIFETEST procedure compares most closely to the LIFETEST procedure. The two procedures share
the same analytic objectives: estimating and summarizing subjects’ survival experiences and comparing them
systematically. The distinction between these procedures lies in the types of data that they are designed to
handle. The ICLIFETEST procedure is intended primarily for handling interval-censored data, whereas the
LIFETEST procedure deals exclusively with right-censored data. You can use the ICLIFETEST procedure to
analyze data that are left-censored, interval-censored, or right-censored. However, if the data to be analyzed
contain only exact or right-censored observations, it is recommended that you use the LIFETEST procedure
because it provides specialized methods for dealing with right-censored data.

Features
The main features of the ICLIFETEST procedure are as follows:

• Nonparametric estimation

– uses the efficient EMICM algorithm (Wellner and Zhan 1997) to estimate survival functions by
default

– supports Turnbull’s algorithm (Turnbull 1976) and the iterative convex minorant (ICM) algorithm
(Groeneboom and Wellner 1992)

– computes standard errors of the survival estimates by using a multiple imputation method or a
bootstrap method

– supports several transformation-based confidence intervals

– produces survival plots

• Survival comparisons

– provides the weighted generalized log-rank test

– supports a variety of weight functions for testing early or late differences

– supports a stratified test for survival differences within predefined populations

– supports a trend test for ordered alternatives

– supports multiple-comparison functionalities

The ICLIFETEST procedure uses ODS Graphics to create graphs as part of its output. For general information
about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.”
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Getting Started: ICLIFETEST Procedure
This example illustrates the use of the ICLIFETEST procedure to estimate the survival function and test for
equality of survival functions by using interval-censored data from a breast cancer study.

The data consist of observations on 94 subjects from a retrospective study that compares the risks of breast
cosmetic deterioration after tumorectomy (Finkelstein 1986). There are two treatment groups: patients who
receive radiation alone (TRT=RT) and patients who receive radiation plus chemotherapy (TRT=RT+RCT).
Patients are followed up every four to six months, leading to interval-censored observations of deterioration
times. Of the 94 observation times, 38 are right-censored and the remaining 56 are censored into intervals of
finite length.

The following statements create a SAS data set named RT for the group that receives radiation alone. The
variable lTime provides the last follow-up time at which cosmetic deterioration has not occurred for the
patient, and the variable rTime provides the last follow-up time immediately after the event. Note that for
the ICLIFETEST procedure to recognize the observations as right-censored, their right bounds must be
represented by missing values in the input data set.

data RT;
input lTime rTime @@;
trt = 'RT ';
datalines;

45 . 25 37 37 .
6 10 46 . 0 5
0 7 26 40 18 .

46 . 46 . 24 .
46 . 27 34 36 .
7 16 36 44 5 11

17 . 46 . 19 35
7 14 36 48 17 25

37 44 37 . 24 .
0 8 40 . 32 .
4 11 17 25 33 .

15 . 46 . 19 26
11 15 11 18 37 .
22 . 38 . 34 .
46 . 5 12 36 .
46 .
;

The following statements create a SAS data set named RCT for patients who receive both radiation and
chemotherapy:

data RCT;
input lTime rTime @@;
trt = 'RT+RCT';
datalines;

8 12 0 5 30 34
0 22 5 8 13 .

24 31 12 20 10 17
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17 27 11 . 8 21
17 23 33 40 4 9
24 30 31 . 11 .
16 24 13 39 14 19
13 . 19 32 4 8
11 13 34 . 34 .
16 20 13 . 30 36
18 25 16 24 18 24
17 26 35 . 16 60
32 . 15 22 35 39
23 . 11 17 21 .
44 48 22 32 11 20
14 17 10 35 48 .
;

The following statements combine the data sets RT and RCT into a single data set named BCS that is to be
analyzed by the ICLIFETEST procedure:

data BCS;
set RT RCT;

run;

Suppose you want to gain insights into the incidence rate of cosmetic deterioration over time after the two
treatments. From the perspective of survival analysis, the tasks are to estimate the survival probabilities for
the two treatment groups and to test for a systematic difference between the groups.

The following statements invoke the ICLIFETEST procedure to estimate the survival functions for both
treatment groups:

ods graphics on;
proc iclifetest plots=(survival logsurv) data=BCS impute(seed=1234);

strata trt;
time (lTime, rTime);

run;

In the TIME statement, the variables that represent the interval boundaries, lTime and rTime, are enclosed
in parentheses and separated by a comma. Because the treatment indicator variable, Trt, is specified in
the STRATA statement, PROC ICLIFETEST conducts the analysis separately for each treatment group.
When you specify the keywords SURVIVAL and LOGSURV in the PLOTS= option, the procedure plots the
estimated survival functions and the negative of the log transformations of the estimates. You can specify
an integer seed for the random number generator that is used in creating imputed data sets for calculating
standard errors of the survival estimates. If the SEED= option is not specified, a random seed is obtained
from the computer’s clock. For more information about the IMPUTE option, see the section “IMPUTE
< (options) >” on page 3895.

Figure 50.1 displays the nonparametric survival estimates for the radiation group (TRT=RT).
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Figure 50.1 Nonparametric Survival Estimates

The ICLIFETEST Procedure

Stratum 1: trt = RT

The ICLIFETEST Procedure

Stratum 1: trt = RT

Nonparametric Survival Estimates

Probability
Estimate

Time
Interval Failure Survival

Imputation
Standard

Error

0 4 0.0000 1.0000 0.0000

5 6 0.0463 0.9537 0.0354

7 7 0.0797 0.9203 0.0458

8 11 0.1684 0.8316 0.0580

12 24 0.2391 0.7609 0.0629

25 33 0.3318 0.6682 0.0706

34 38 0.4136 0.5864 0.0739

40 46 0.5344 0.4656 0.0758

48 Inf 1.0000 0.0000 0.0000

Note that because interval censoring is present, the nonparametric estimates of failure probability and survival
probability are computed for a set of nonoverlapping intervals. These estimates are constant within each
interval. For example, consider the time interval .8; 11�. The estimated failure probability is 0.1684 between
8 and 11. The interval .11; 12�, which is not displayed, is an interval for which the survival estimate cannot
be uniquely determined; such intervals are referred to as Turnbull intervals. The failure probability increases
to 0.2391 at 12 and remains constant until 24. The table in Figure 50.1 also contains standard errors for the
estimates. For a plot of the survival probabilities, see Figure 50.4.

Figure 50.2 displays estimated quartiles of the deterioration time and corresponding 95% confidence limits
for the group that receives radiation only.

Figure 50.2 Quartile Estimates

Quartile Estimates

95% Confidence Interval

Percentile
Point

Estimate Transform [Lower Upper)

75 . LOGLOG . .

50 40 LOGLOG 34 48

25 25 LOGLOG 8 34

Because the estimated failure distribution is undefined inside the Turnbull intervals, the quartiles of deterio-
ration time and their confidence intervals are obtained by imputing probabilities within the intervals. This
approach is ad hoc in nature, so the results should be interpreted with caution. For more information, see the
section “Quartile Estimation” on page 3910.
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The ICLIFETEST procedure also produces a summary of the frequencies of various types of censoring
(Figure 50.3).

Figure 50.3 Summary of Various Censoring Types

Number of Censored and Uncensored Values

Type of Censoring

Stratum
ID trt Total Left Interval Right Uncensored

1 RT 46 3 (6.5%) 18 (39.1%) 25 (54.3%) 0 (0.0%)

2 RT+RCT 48 2 (4.2%) 33 (68.8%) 13 (27.1%) 0 (0.0%)

Total 94 5 (5.3%) 51 (54.3%) 38 (40.4%) 0 (0.0%)

The categories are exact times, left-censoring, right-censoring, and interval-censoring. The percentage of
each category within a stratum is also calculated.

Figure 50.4 displays the estimated survival functions for the two treatments.

Figure 50.4 Nonparametric Survival Estimates by Treatment

Clearly, the group that receives radiation alone tends to survive longer before experiencing cosmetic deterio-
ration than the group that receives both radiation and chemotherapy. As shown in Figure 50.1, the estimated
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survival probabilities are undetermined within the Turnbull intervals. For ease of visualization, dashed lines
are plotted across the Turnbull intervals for which the estimates are not defined. You can suppress plotting of
the dashed lines by specifying the NODASH option. For more information about options for customizing
the survival plots, see the section “SURVIVAL < (CL | FAILURE | NODASH | STRATA | TEST) >” on
page 3899.

Figure 50.5 displays log transformations of the survival estimates over time.

Figure 50.5 Negative Log of Nonparametric Survival Estimates

The following statements formally test whether patients in the two treatment groups have the same survival
rate. By default, the generalized log-rank test with constant weights over time is used. For more information
about alternative weight functions, see the section “Generalized Log-Rank Statistic” on page 3913. You
can specify an integer seed for the random number generator that is used in creating imputed data sets for
obtaining standard errors of the survival estimates and for calculating the generalized log-rank test. If the
SEED= option is not specified, a random seed is obtained from the computer’s clock.

proc iclifetest data=BCS impute(seed=1234);
time (lTime, rTime);
test trt;

run;
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Figure 50.6 displays results of the generalized log-rank test.

Figure 50.6 Generalized Log-Rank Statistics

The ICLIFETEST ProcedureThe ICLIFETEST Procedure

Test of Equality over Group

Weight Chi-Square DF
Pr >

Chi-Square

SUN 7.3349 1 0.0068

The chi-square statistic for the generalized log-rank test is 7.3349. The p-value of 0.0068 is computed using
the chi-square distribution with one degree of freedom.

Syntax: ICLIFETEST Procedure
The following statements are available in the ICLIFETEST procedure:

PROC ICLIFETEST < options > ;
BY variables ;
FREQ variable ;
STRATA variables ;
TEST variable < /options > ;
TIME (variable,variable ) ;

At a minimum, you must provide the PROC and TIME statements, and you must specify the left and right
boundaries of the intervals in the TIME statements. For instance, the following statements compute a
nonparametric estimate of the survival function:

proc iclifetest;
time (Left, Right);

run;

You use the STRATA statement to obtain separate survival estimates for different groups of the input data.
The ICLIFETEST procedure produces an individual survival estimate for each group that is formed by one or
more variables that you specify in the STRATA statement.

You use the TEST statement to test whether the underlying survival functions are the same between the
groups. When you specify both the TEST and STRATA statements, PROC ICLIFETEST produces a stratified
test in which the comparisons are conditional on the strata. The variables that you specify in the STRATA
statement must be different from the variables that you specify in the TEST statement. Note that this setup is
different from that of the LIFETEST procedure, in which survival comparisons are handled implicitly by the
STRATA statement.

The rest of this section provides detailed syntax information for each statement, beginning with the PROC
ICLIFETEST statement. The remaining statements are covered in alphabetical order.
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PROC ICLIFETEST Statement
PROC ICLIFETEST < options > ;

The PROC ICLIFETEST statement invokes the ICLIFETEST procedure. Table 50.1 summarizes the options
available in the PROC ICLIFETEST statement.

Table 50.1 Options Available in the PROC ICLIFETEST
Statement

Option Description

Input and Output Data Sets
DATA= Specifies the input SAS data set
OUTSURV= Names an output data set to contain survival estimates and confi-

dence limits

Nonparametric Estimation
BOOTSTRAP Requests that the simple bootstrap method be used for computing

standard errors of the survival estimates
IMPUTE Specifies details for multiple imputations used for computing stan-

dard errors and estimating covariance matrix of the generalized
log-rank statistic

ITHISTORY Displays the iteration history of nonparametric estimation
MAXITER= Set the maximum number of iterations allowed for the estimation

method
METHOD= Specifies the method to estimate the survival function
TOLLIKE= Sets the log-likelihood convergence criterion

Confidence Limits for Survival Function
ALPHA= Sets the level for confidence interval estimation
CONFTYPE= Specifies the transformation applied to the survival function for

computing confidence limits
ODS Graphics
MAXTIME= Specifies the maximum time value for plotting
PLOTS= Specifies plots to display

Control Output
NOPRINT Suppresses the display of printed output
NOSUMMARY Suppresses the display of summary of censored and uncensored

values
SHOWTI Displays the Turnbull intervals

Miscellaneous
ALPHAQT= Sets the level for confidence intervals for survival time quartiles
MISSING Treats missing values as a valid stratum or group for the variables

specified in the STRATA and TEST statements
SINGULAR= Sets the tolerance for testing singularity of the covariance matrix of

test statistics
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If no options are specified, PROC ICLIFETEST computes and displays a nonparametric estimate of the
survival function. If ODS Graphics is enabled, a plot of the estimated survival function is also displayed.

You can specify the following options.

ALPHA=˛
specifies the level ˛ for the 100.1 � ˛/% confidence intervals for the survival functions. For example,
ALPHA=0.05 requests 95% confidence limits. By default, ALPHA=0.05.

ALPHAQT=˛
specifies the level ˛ for the 100.1� ˛/% confidence intervals for the quartiles of the survival time. For
example, ALPHAQT=0.05 requests a 95% confidence interval. By default, ALPHAQT=0.05.

BOOTSTRAP < (options) >
BOOT < (options) >

performs simple bootstrap sampling and computes bootstrap standard errors of nonparametric survival
estimates. You can specify the following suboptions to control how the bootstrap samples are generated:

NBOOT
specifies the number of bootstrap samples to be generated. The default value is 1,000.

SEED
specifies the seed to generate bootstrap samples. The default seed is selected randomly.

CONFTYPE=ASINSQRT | LINEAR | LOG | LOGLOG
specifies the transformation to be applied to S.t/ to obtain pointwise confidence intervals for the
survival function in addition to the confidence intervals for the quartiles of the survival times. You can
specify the following keywords:

ASINSQRT specifies the arcsine–square root transformation,

g.x/ D sin�1.
p
x/

LOGLOG specifies the log–log transformation,

g.x/ D log.� log.x//

This is also referred to as the log cumulative hazard transformation, because it
applies the log transformation to the cumulative hazard function. Collett (1994)
and Lachin (2000) call it the complementary log-log transformation.

LINEAR specifies the identity transformation,

g.x/ D x

LOG specifies the log transformation,

g.x/ D log.x/

LOGIT specifies the logit transformation,

g.x/ D log
�

x

1 � x

�
By default, CONFTYPE=LOGLOG.
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DATA=SAS-data-set
names the SAS data set that PROC ICLIFETEST reads. By default, the most recently created SAS
data set is used.

IMPUTE < (options) >

IM < (options) >
specifies details for multiple imputations. You can specify the following two suboptions to control how
the samples are generated:

NIMSE
specifies the number of imputation samples to be generated for computing standard errors of the
survival estimates. The default value is 1,000.

NIMTEST
specifies the number of imputation samples to be generated for estimating the covariance matrix
of the generalized log-rank statistic. The default value is 1,000.

SEED
specifies the seed to generate imputation data sets. The default seed is selected randomly.

ITHISTORY
prints the iteration history of the nonparametric estimation, including the log likelihood, the probability
estimate that is associated with each Turnbull interval, and whether the EM or ICM method is used for
each iteration.

MAXITER=n

MAXIT=n
specifies the maximum number of iterations for estimating the survival function. The default value
depends on the estimation method as follows:

• EMICM method: 200

• ICM method: 200

• Turnbull method: 500

Note that you specify the method with the METHOD= option.

MAXTIME=value
specifies the maximum value of the time variable that is allowed in plots so that outlying points do not
determine the scale of the time axis of the plots. This option affects only the way in which plots are
displayed and has no effect on any calculations.

METHOD=TURNBULL | ICM | EMICM
specifies the method to be used for computing survival function estimates. You can specify the
following:

TURNBULL

EM
requests that the Turnbull method be used to estimate the survival function.
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EMICM
requests that the EMICM algorithm be used to estimate the survival function.

ICM
requests that the iterative convex minorant algorithm be used to estimate the survival function.

By default, METHOD=EMICM.

MISSING
allows missing values to be a stratum level or a valid group for the variables that are specified in the
STRATA and TEST statements.

NOPRINT
suppresses the display of output. This option is useful when only an output data set is needed.
It temporarily disables the Output Delivery System (ODS); for more information about ODS, see
Chapter 20, “Using the Output Delivery System.”

NOSUMMARY
suppresses the summary table of the number of censored and uncensored values.

OUTSURV=SAS-data-set

OUTS=SAS-data-set
creates an output SAS data set to contain the estimates of the survival function and corresponding
confidence limits for all the strata. For more information about the contents of the OUTSURV= data
set, see the section “OUTSURV= Data Set” on page 3918.

PLOTS< (global-plot-options) >=plot-request < (options) >
PLOTS< (global-plot-options) >=(plot-request < (options) > < . . . plot-request < (options) > >)

controls the plots that are produced by using ODS Graphics. When you specify only one plot-request ,
you can omit the parentheses around it. Here are some examples:

plots=none
plots=(survival(cl) logsurv)
plots(only)=hazard

ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;

proc iclifetest plots=survival;
time (Left,Right);

run;

ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

If ODS Graphics is enabled but you do not specify the PLOTS= option, then by default PROC
ICLIFETEST produces a plot of the estimated survival functions.

You can specify the following global-plot-option:
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ONLY
specifies that only the specified plots in the list be produced; otherwise, the default survival
function plot is also displayed.

You can specify the following plot-requests and their options:

ALL
produces all appropriate plots. Specifying PLOTS=ALL is equivalent to specifying
PLOTS=(SURVIVAL LOGSURV LOGLOGS HAZARD).

HAZARD < (hazard-options) >

H < hazard-options >
plots the kernel-smoothed hazard functions. You can specify the following hazard-options.

BANDWIDTH=value | numeric-list | RANGE(lower,upper )

BW=
specifies the bandwidth for kernel-smoothed estimation of the hazard function. You can
specify one of the following:

value
sets the bandwidth to the given value.

numeric-list
selects the bandwidth from the specified numeric-list that minimizes the cross validation
pseudo-likelihood.

RANGE(lower,upper )
selects from the interval (lower, upper ) the bandwidth that minimizes a cross valida-
tion pseudo-likelihood function. PROC ICLIFETEST uses the golden section search
algorithm to find the minimum. If the interval contains more than one local minimum,
there is no guarantee that the local minimum that the algorithm finds is also the global
minimum.

For more information about the cross validation pseudo-likelihood function, see the
section “Kernel-Smoothed Estimation” on page 3911. By default, BANDWIDTH=
RANGE(0.1b,0.25b), where b D gu � gl ; gl is the left boundary of the first Turnbull
interval; and gu is the right boundary of the last Turnbull interval if it is finite or the left
boundary of that interval multiplied by 1.1 otherwise.

SAMPLING=LEAVEONE | RANDOM
specifies how to partition the data set to form cross validation groups. You can specify the
following values:

LEAVEONE
partitions the data set into leave-one-out subsets.

RANDOM
randomly assigns observations to cross validation groups with equal probabilities.

By default, SAMPLING=RANDOM.
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GRIDL=number
specifies the lower grid limit for the kernel-smoothed estimate. The default value is the time
origin.

GRIDU=number
specifies the upper grid limit for the kernel-smoothed estimate. The default value is the
maximum input boundary value.

KERNEL=kernel-option
specifies the kernel to be used. You can specify the following values:

BIWEIGHT

BW
uses the following kernel: KBW .x/ D

15
16
.1 � x2/2; �1 � x � 1

EPANECHNIKOV

E
uses the following kernel: KE .x/ D 3

4
.1 � x2/; �1 � x � 1

UNIFORM

U
uses the following kernel: KU .x/ D 1

2
; �1 � x � 1

By default, KERNEL=EPANECHNIKOV.

CVFOLD=number
specifies the number of cross validation groups. This option is applicable only when
SAMPLING=RANDOM. The default number is either 5 or the sample size, whichever
value is less.

CVGRID=number
specifies the number of grid points to use in determining the cross validation pseudo-
likelihood. By default, CVGRID=51.

HGRID=number
specifies the number of grid points for discretizing the smoothed hazard function. By default,
HGRID=101.

LOGLOGS

LLS
plots the log of the negative log of the estimated survival function versus the log of time.

LOGSURV

LS
plots the negative log of the estimated survival function versus time.

NONE
suppresses all plots.
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SURVIVAL < (CL | FAILURE | NODASH | STRATA | TEST) >

S < (CL | FAILURE | STRATA | TEST) >
plots the estimated survival function. You can customize the display by specifying the following
values:

CL
displays pointwise confidence limits for the survival function.

FAILURE

F
changes all the displays for survival function to those for the failure function. For example,
if you specify both the FAILURE and CL options, the plot displays the failure curves in
addition to pointwise confidence limits for the failure function.

NODASH
suppresses the plotting of dashed lines as linear interpolations for the Turnbull intervals.

STRATA=INDIVIDUAL | OVERLAY | PANEL
specifies how to display the survival or failure curves for multiple strata. This option has no
effect if there is only one stratum. You can specify one of the following values:

INDIVIDUAL

UNPACK
requests that a separate plot be displayed for each stratum.

OVERLAY
requests that the survival or failure curves for the strata be overlaid on the same plot.

PANEL
requests that separate plots for the strata be organized into panels of two or four plots,
depending on the number of strata.

By default, STRATA=OVERLAY.

TEST
displays the p-value for a K-sample test that is specified in the TEST statement.

SHOWTI
presents the survival estimates in terms of Turnbull intervals.

SINGULAR=value
sets the tolerance for testing the singularity of the covariance matrix of test statistics.

TOLLIKE=value
sets the log-likelihood convergence criterion for the estimation algorithm. The default value depends
on the estimation method as follows:

• EMICM method: 10�10

• ICM method: 10�10

• Turnbull method: 10�8
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BY Statement
BY variables ;

You can specify a BY statement with PROC ICLIFETEST to obtain separate analyses of observations in
groups that are defined by the BY variables. When a BY statement appears, the procedure expects the input
data set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last
one specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the ICLIFETEST
procedure. The NOTSORTED option does not mean that the data are unsorted but rather that the
data are arranged in groups (according to values of the BY variables) and that these groups are not
necessarily in alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

FREQ Statement
FREQ variable ;

The FREQ statement names a variable that provides frequencies for each observation in the DATA= data set.
Specifically, if n is the value of the FREQ variable for a given observation, then that observation is used n
times.

The analysis that is produced by using a FREQ statement reflects the expanded number of observations. You
can produce the same analysis (without the FREQ statement) by first creating a new data set that contains
the expanded number of observations. For example, if the value of the FREQ variable is 5 for the first
observation, the first five observations in the new data set are identical. Each observation in the old data set is
replicated ni times in the new data set, where ni is the value of the FREQ variable for that observation.

If the value of the FREQ variable is missing or is less than 1, the observation is not used in the analysis. If
the value is not an integer, only the integer portion is used.

STRATA Statement
STRATA variables ;

The STRATA statement identifies the variables that determine the stratum levels. You can specify more than
one variable in the STRATA statement. By default, strata are formed according to the nonmissing values of
these variables. However, missing values are treated as a valid stratum level if you specify the MISSING
option in the PROC ICLIFETEST statement.
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The specification of several STRATA variables, such as

strata A B C;

is equivalent to the A*B*C syntax of the TABLES statement in the FREQ procedure. The number of stratum
levels usually grows very rapidly along with the number of STRATA variables, so you must be cautious when
specifying the list of STRATA variables.

If you specify the STRATA statement without specifying a TEST statement, the ICLIFETEST procedure
produces an individual survival estimate for each stratum. On the other hand, if you specify both the STRATA
and TEST statements, the ICLIFETEST procedure produces a stratified test in which the comparisons are
made among the groups that are formed by the levels of the TEST variable within strata. Also, individual
survival estimates are computed for all the groups that are formed by the levels of the TEST variable within a
stratum.

In contrast with the STRATA statement in the LIFETEST procedure, the STRATA statement in PROC
ICLIFETEST does not support the options for specifying various weight functions, stratified tests, or trend
tests and to make multiple-comparison adjustments for paired differences. Instead, PROC ICLIFETEST
provides these options in the TEST statement.

TEST Statement
TEST variable < /options > ;

In the preceding syntax, variable is a variable whose values determine the groups to be tested. The values for
variable can be formatted or unformatted. If variable is a character or numeric variable, then the groups are
defined by the unique values of the TEST variable. You can specify only one variable in the TEST statement.

When you are comparing more than two survival curves, a generalized log-rank test tells you whether
the curves are significantly different from each other, but it does not identify which pairs of curves are
different. A multiple-comparison adjustment of the p-values for the paired comparisons retains the same
overall probability of a Type I error as the K-sample test. Two types of paired comparisons can be made:
comparisons between all pairs of curves and comparisons between a control curve and all other curves. You
use the DIFF= option to specify the comparison type, and you use the ADJUST= option to select a method of
multiple-comparison adjustments.

Compared with the TEST statement in the LIFETEST procedure, the TEST statement in PROC ICLIFETEST
is designed for comparing survival between predefined groups. Unlike the LIFETEST procedure, PROC
ICLIFETEST does not support a similar test for detecting association with multiple covariates.

Table 50.2 summarizes the options available in the TEST statement.

Table 50.2 Options Available in the TEST Statement

Option Description

Homogeneity Tests
NOTEST Suppresses all tests
TREND Requests a trend test
WEIGHT= Specifies tests that correspond to various weight functions



3902 F Chapter 50: The ICLIFETEST Procedure

Table 50.2 continued

Option Description

Multiple Comparisons
ADJUST= Requests a multiple-comparison adjustment
DIFF= Specifies the type of differences to consider

You can specify the following options in the TEST statement after a slash (=).

ADJUST=method
specifies the multiple-comparison method to use for adjusting the p-values of the paired tests. For
mathematical details, see the section “Multiple-Comparison Adjustments” on page 3916; also see
Westfall et al. (1999). You can specify the following adjustment methods:

BONFERRONI

BON
applies the Bonferroni correction to the raw p-values.

DUNNETT
performs Dunnett’s two-tailed comparisons of the control group to all other groups. PROC
ICLIFETEST uses the factor-analytic covariance approximation that is described in Hsu (1992)
and identifies the adjustment in the results as “Dunnett-Hsu.” ADJUST=DUNNETT is incompat-
ible with DIFF=ALL.

SCHEFFE
performs Scheffé’s multiple-comparison adjustment.

SIDAK
applies the Šidák correction to the raw p-values.

SMM

GTE
performs the paired comparisons based on the studentized maximum modulus test.

TUKEY
performs the paired comparisons based on Tukey’s studentized range test. PROC ICLIFETEST
uses the approximation that is described in Kramer (1956) and identifies the adjustment as
“Tukey-Kramer” in the results. ADJUST=TUKEY is incompatible with DIFF=CONTROL.

SIMULATE < (simulate-options) >
computes the adjusted p-values from the simulated distribution of the maximum or maximum
absolute value of a multivariate normal random vector. The simulation estimates q, the true
.1 � ˛/ quantile, where ˛ is the value of the ALPHA= simulate-option.

The number of samples for the simulation adjustment is set so that the tail area for the simulated
q is within a certain accuracy radius  of 1 � ˛, with an accuracy confidence of 100.1 � �/%. In
equation form,

Pr.jF. Oq/ � .1 � ˛/j � / D 1 � �
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where Oq is the simulated q and F is the true distribution function of the maximum; for more
information, see Edwards and Berry (1987). By default,  = 0.005 and � = 0.01, so the tail area
of Oq is within 0.005 of 0.95 with 99% confidence.

You can specify the following simulate-options:

ACC=value
specifies the target accuracy radius  of a 100.1 � �/% confidence interval for the true
probability content of the estimated .1 � ˛/ quantile. By default, ACC=0.005.

ALPHA=value
specifies the value ˛ for estimating the .1 � ˛/ quantile. The default value is the ALPHA=
value in the PROC ICLIFETEST statement, or 0.05 if that option is not specified.

EPS=value
specifies the value � for a 100.1 � �/% confidence interval for the true probability content
of the estimated .1 � ˛/ quantile. The default value for the accuracy confidence is 99%,
corresponding to EPS=0.01.

NSAMP=n
specifies the sample size for the simulation. By default, n is set based on the values of the
target accuracy radius  and accuracy confidence 100.1 � �/% for an interval for the true
probability content of the estimated .1 � ˛/ quantile. With the default values for  , �, and ˛
(0.005, 0.01, and 0.05, respectively), by default NSAMP=12604.

REPORT
specifies that a report of the simulation be displayed, including a listing of the parame-
ters, such as  , �, and ˛, in addition to an analysis of various methods of estimating or
approximating the quantile.

SEED=number
specifies an integer used to start the pseudorandom number generator for the simulation.
If you do not specify a seed, or if you specify a value less than or equal to 0, the seed is
generated by default from reading the time of day from the computer’s clock.

DIFF=ALL | CONTROL< (’string’ < . . . , ’string’ >) >
specifies which pairs of survival curves to consider for the multiple comparisons. You can specify the
following values:

ALL
requests all paired comparisons.

CONTROL < (’string’ < . . . ’string’ >) >
requests comparisons of the control survival curve with all other survival curves. To specify
the control curve, you specify the quoted strings of formatted values that represent the curve in
parentheses. For example, if CELL=LARGE identifies the control group, you specify

DIFF=CONTROL('large')

If more than one variable is used to identify the curves (for example, if CELL=LARGE and
SEX=F represent the control), you specify
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DIFF=CONTROL('large' 'F')

The order of the quoted strings should correspond to the order of the TEST variable. If no string
is specified as the control, the first group value is used.

By default, DIFF=ALL unless you specify ADJUST= DUNNETT, in which case DIFF=CONTROL.

NOTEST
suppresses the K-sample tests, stratified tests, and trend tests.

TREND
computes the trend test for the null hypothesis that the survival rates are the same for the groups versus
an ordered alternative. If the TEST variable is numeric, the unformatted values of the variable are used
as the scores; otherwise, the scores are 1; 2; : : : ; in the order of the strata. For more information, see
the section “Trend Tests” on page 3918.

WEIGHT=test-request | (test-request < . . . test-request >)
requests weights to be applied to the generalized log-rank statistics to perform various tests. For more
information about the various weight functions that the ICLIFETEST procedure supports, see the
section “Generalized Log-Rank Statistic” on page 3913. You can specify the following test-requests:

FAY specifies the test that uses Fay’s weights (Fay 1999).

FINKELSTEIN specifies the test that uses Finkelstein’s weights (Finkelstein 1986).

FLEMING(�1, �2) specifies the family of tests in Harrington and Fleming (1982), where �1 and
�2 are nonnegative numbers. FLEMING(�1,�2) corresponds to the Fleming-
HarringtonG� family (Fleming and Harrington 1981) when �2=0. Alternatively,
you can specify a test in this family as FLEMING(�) with one argument. When
�=0, the test becomes the log-rank test. When �=1, the test should be very close
to the Peto-Peto test.

NONE suppresses all comparison tests. Specifying WEIGHT=NONE is equivalent to
specifying NOTEST.

SUN specifies the test that uses Sun’s weights (Sun 1996).

TIME Statement
TIME (variable, variable ) ;

The TIME statement names the variables that represent the interval-censored observations. The variables
should be numeric. For example, the following statement identifies Left as the lower bound and Right as the
upper bound of an observed interval:

time (Left, Right);

Observations for which Left < Right and both values are nonnegative are used. If the value for Left is missing
or 0 and the value for Right is not missing, then the observation is treated as left-censored. If the Right value
is missing and the value for Left is not missing, then the observation is treated as right-censored. Observations
for which both variables are missing are not analyzed.
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Details: ICLIFETEST Procedure

Statistical Methods

Nonparametric Estimation of the Survival Function

Suppose the event times for a total of n subjects, T1, T2, . . . , Tn, are independent random variables with
an underlying cumulative distribution function F.t/. Denote the corresponding survival function as S.t/.
Interval-censoring occurs when some or all Ti ’s cannot be observed directly but are known to be within the
interval .Li ; Ri �; Li � Ri .

The observed intervals might or might not overlap. It they do not overlap, then you can usually use
conventional methods for right-censored data, with minor modifications. On the other hand, if some intervals
overlap, you need special algorithms to compute an unbiased estimate of the underlying survival function.

To characterize the nonparametric estimate of the survival function, Peto (1973) and Turnbull (1976) show
that the estimate can jump only at the right endpoint of a set of nonoverlapping intervals (also known as
Turnbull intervals), fIj D .qj ; pj �; j D 1; : : : ; mg. A simple algorithm for finding these intervals is to order
all the boundary values fLi ; Ri ; i D 1; : : : ; ng with labels of L and R attached and then pick up the intervals
that have L as the left boundary and R as the right boundary. For example, suppose that the data set contains
only three intervals, .1; 3�, .2; 4�, and .5; 6�. The ordered values are 1.L/; 2.L/; 3.R/; 4.R/; 5.L/; 6.R/.
Then the Turnbull intervals are .2; 3� and .5; 6�.

For the exact observation Li D Ri D t , Ng (2002) suggests that it be represented by the interval .t � �; t/
for a positive small value �. If Rj D t for an observation .Lj ; Rj � (Lj < Rj ), then the observation is
represented by .Lj C �; Rj � �/.

Define �j D P.T 2 Ij /, j D 1; : : : ; m. Given the data, the survival function, S.t/, can be determined only
up to equivalence classes t, which are complements of the Turnbull intervals. S.t/ is undefined if t is within
some Ij . The likelihood function for � D f�j ; j D 1; : : : ; mg is then

L.�/ D

nY
iD1

� mX
jD1

˛ij �j

�
where ˛ij is 1 if Ij is contained in .Li ; Ri � and 0 otherwise.

Denote the maximum likelihood estimate for O� as O� D f O�j ; j D 1; : : : ; mg. The survival function can then
be estimated as

OS.t/ D
X

kWpk>t

O�k; t 62 any Ij ; j D 1; : : : ; m

Estimation Algorithms
Peto (1973) suggests maximizing this likelihood function by using a Newton-Raphson algorithm subject to
the constraint

Pm
iDj �j D 1. This approach has been implemented in the %ICE macro. Although feasible,

the optimization becomes less stable as the dimension of � increases.
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Treating interval-censored data as missing data, Turnbull (1976) derives a self-consistent equation for
estimating the �j ’s:

�j D
1

n

nX
iD1

�ij .�/ D
1

n

nX
iD1

˛ij �jPm
jD1 ˛ij �j

where �ij .�/ is the expected probability that the event Ti occurs within Ij for the ith subject, given the
observed data.

The algorithm is an expectation-maximization (EM) algorithm in the sense that it iteratively updates � and
�ij .�/. Convergence is declared if, for a chosen number � > 0,

mX
jD1

j O�
.l/
j �

O�
.l�1/
j j < �

where O� .l/j denotes the updated value for �j after the lth iteration.

An alternative criterion is to declare convergence when increments of the likelihood are small:

jL. O�
.l/
j I j D 1; : : : ; m/ � L.

O�
.l�1/
j I j D 1; : : : ; m/j < �

There is no guarantee that the converged values constitute a maximum likelihood estimate (MLE). Gentleman
and Geyer (1994) introduced the Kuhn-Tucker conditions based on constrained programming as a check of
whether the algorithm converges to a legitimate MLE. These conditions state that a sufficient and necessary
condition for the estimate to be a MLE is that the Lagrange multipliers j D n � cj are nonnegative for all
the �j ’s that are estimated to be zero, where cj is the derivative of the log-likelihood function with respect to
�j :

cj D
@ log.L/
@�j

D

nX
iD1

˛ijPm
jD1 ˛ij �j

You can use Turnbull’s method by specifying METHOD=TURNBULL in the ICLIFETEST statement. The
Lagrange multipliers are displayed in the “Nonparametric Survival Estimates” table.

Groeneboom and Wellner (1992) propose using the iterative convex minorant (ICM) algorithm to estimate
the underlying survival function as an alternative to Turnbull’s method. Define ˇj D F.pj /, j D 1; : : : ; m
as the cumulative probability at the right boundary of the jth Turnbull interval: ˇj D

Pj

kD1
�k . It follows

that ˇm D 1. Denote ˇ0 D 0 and ˇ D .ˇ1; : : : ; ˇm�1/0. You can rewrite the likelihood function as

L.ˇ/ D

nY
iD1

mX
jD1

˛ij .ˇj � ˇj�1/

Maximizing the likelihood with respect to the �j ’s is equivalent to maximizing it with respect to the ˇj ’s.
Because the ˇj ’s are naturally ordered, the optimization is subject to the following constraint:

C D fx D .ˇ1; : : : ; ˇm�1/ W 0 � ˇ1 � � � � � ˇm�1 � 1g
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Denote the log-likelihood function as l.ˇ/. Suppose its maximum occurs at Ǒ. Mathematically, it can be
proved that Ǒ equals the maximizer of the following quadratic function:

g�.xjy;W/ D �
1

2
.x � y/0W.x � y/

where y D Ǒ CW�1rl. Ǒ/, rl.�/ denotes the derivatives of l.�/ with respect to ˇ, and W is a positive
definite matrix of size .m � 1/ � .m � 1/ (Groeneboom and Wellner 1992).

An iterative algorithm is needed to determine Ǒ. For the lth iteration, the algorithm updates the quantity

y.l/ D Ǒ.l�1/ �W�1. Ǒ.l�1//rl. Ǒ.l�1//

where Ǒ.l�1/ is the parameter estimate from the previous iteration and W. Ǒ.l�1// D diag.wj ; j D
1; : : : ; m � 1/ is a positive definite diagonal matrix that depends on Ǒ.l�1/.

A convenient choice for W.ˇ/ is the negative of the second-order derivative of the log-likelihood function
l.ˇ/:

wj D wj .ˇ/ D �
@2

@ˇ2j
l.ˇ/

Given y D y.l/ D .y.l/1 ; : : : ; y
.l/
m�1/

0 and W DW. Ǒ.l�1//, the parameter estimate for the lth iteration Ǒ.l/

maximizes the quadratic function g�.xjy;W/.

Define the cumulative sum diagram fPk; k D 0; : : : ; m � 1g as a set of m points in the plane, where
P0 D .0; 0/ and

Pk D
� kX
iD1

wi ;

kX
iD1

wiy
.l/
i

�

Technically, Ǒ.l/ equals the left derivative of the convex minorant, or in other words, the largest convex
function below the diagram fPk; k D 0; : : : ; m � 1g. This optimization problem can be solved by the
pool-adjacent-violators algorithm (Groeneboom and Wellner 1992).

Occasionally, the ICM step might not increase the likelihood. Jongbloed (1998) suggests conducting a line
search to ensure that positive increments are always achieved. Alternatively, you can switch to the EM step,
exploiting the fact that the EM iteration never decreases the likelihood, and then resume iterations of the
ICM algorithm after the EM step. As with Turnbull’s method, convergence can be determined based on the
closeness of two consecutive sets of parameter values or likelihood values. You can use the ICM algorithm
by specifying METHOD=ICM in the PROC ICLIFETEST statement.

As its name suggests, the EMICM algorithm combines the self-consistent EM algorithm and the ICM
algorithm by alternating the two different steps in its iterations. Wellner and Zhan (1997) show that the
converged values of the EMICM algorithm always constitute an MLE if it exists and is unique. The
ICLIFETEST procedure uses the EMICM algorithm as the default.
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Variance Estimation of the Survival Estimator

Peto (1973) and Turnbull (1976) suggest estimating the variances of the survival estimates by inverting
the Hessian matrix, which is obtained by twice differentiating the log-likelihood function. This method
can become less stable when the number of �j ’s increase as n increases. Simulations have shown that
the confidence limits based on variances estimated with this method tend to have conservative coverage
probabilities that are greater than the nominal level (Goodall, Dunn, and Babiker 2004).

Sun (2001) proposes using two resampling techniques, simple bootstrap and multiple imputation, to estimate
the variance of the survival estimator. The undefined regions that the Turnbull intervals represent create a
special challenge using the bootstrap method. Because each bootstrap sample could have a different set of
Turnbull intervals, some time points to evaluate the variances based on the original Turnbull intervals might
be located within the intervals in a bootstrap sample, with the result that their survival probabilities become
unknown. A simple ad hoc solution is to shrink the Turnbull interval to its right boundary and modify the
survival estimates into a right continuous function:

OSm.t/ D
X

j Wpj>t

O�j

Let M denote the number of resampling data sets. Let Ak1 ; : : : ; A
k
n denote the n independent samples from the

original data with replacement, k D 1; : : : ;M . Let OSkm.t/ be the modified estimate of the survival function
computed from the kth resampling data set. Then you can estimate the variance of OS.t/ by the sample
variance as

O�2b .t/ D
1

M � 1

MX
kD1

Œ OSkm.t/ �
NSm.t/�

2

where

NSm.t/ D

PM
kD1
OSkm.t/

M

The method of multiple imputations exploits the fact that interval-censored data reduce to right-censored
data when all interval observations of finite length shrink to single points. Suppose that each finite interval
has been converted to one of the pj values it contains. For this right-censored data set, you can estimate the
variance of the survival estimates via the well-known Greenwood formula (1958) as

O�2G.t/ D
OS2KM .t/

X
qj<t

dj

nj .nj � dj /

where dj is the number of events at time pj and nj is the number of subjects at risk just prior to pj , and
OSKM .t/ is the Kaplan-Meier estimator of the survival function,

OSKM .t/ D
Y
qj<t

nj � dj

nj

Essentially, multiple imputation is used to account for the uncertainty of ranking overlapping intervals. The
kth imputed data set is obtained by substituting every interval-censored observation of finite length with an
exact event time randomly drawn from the conditional survival function:

OSi .t/ D
OSm.t/ � OSm.RiC/

OSm.Li / � OSm.RiC/
; t 2 .Li ; Ri �



Statistical Methods F 3909

Because OSm.t/ only jumps at the pj , this is a discrete function.

Denote the Kaplan-Meier estimate of each imputed data set as OSkKM .t/. The variance of OS.t/ is estimated by

O�2I .t/ D
OS2.t/

X
qj<t

d 0j

n0j .n
0
j � d

0
j /
C

1

M � 1

MX
kD1

Œ OSkKM .t/ �
NSKM .t/�

where

NSKM .t/ D
1

M

MX
kD1

OSkKM .t/

and

d 0j D

nX
iD1

˛ij Œ OS.pj�1/ � OS.pj /�Pm
jD1 ˛ij Œ

OS.pj�1/ � OS.pj /�

and

n0j D

mX
kDj

d 0j

Note that the first term in the formula for O�2I .t/ mimics the Greenwood formula but uses expected numbers
of deaths and subjects. The second term is the sample variance of the Kaplan-Meier estimates of imputed
data sets, which accounts for between-imputation contributions.

Pointwise Confidence Limits of the Survival Function

Pointwise confidence limits can be computed for the survival function given the estimated standard errors.
Let ˛ be specified by the ALPHA= option. Let z˛=2 be the critical value for the standard normal distribution.
That is, ˆ.�z˛=2/ D ˛=2, where ˆ is the cumulative distribution function of the standard normal random
variable.

Constructing the confidence limits for the survival function S.t/ as OS.t/˙ z˛=2 O�Œ OS.t/� might result in an
estimate that exceeds the range [0,1] at extreme values of t. This problem can be avoided by applying a
transformation to S.t/ so that the range is unrestricted. In addition, certain transformed confidence intervals
for S.t/ perform better than the usual linear confidence intervals (Borgan and Liestøl 1990). You can use
the CONFTYPE= option to set one of the following transformations: the log-log function (Kalbfleisch and
Prentice 1980), the arcsine–square root function (Nair 1984), the logit function (Meeker and Escobar 1998),
the log function, and the linear function.

Let g denote the transformation that is being applied to the survival function S.t/. Using the delta method,
you estimate the standard error of g. OS.t// by

�.t/ D O�
h
g. OS.t//

i
D g0

�
OS.t/

�
O�Œ OS.t/�

where g’ is the first derivative of the function g. The 100(1 – ˛)% confidence interval for S.t/ is given by

g�1
n
gŒ OS.t/�˙ z˛

2
g0Œ OS.t/� O�Œ OS.t/�

o
where g�1 is the inverse function of g. The choices for the transformation g are as follows:
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• arcsine–square root transformation: The estimated variance of sin�1
�q
OS.t/

�
is O�2.t/ D

O�2Œ OS.t/�

4 OS.t/Œ1� OS.t/�
: The 100(1 – ˛)% confidence interval for S.t/ is given by

sin2
�
max

�
0; sin�1.

q
OS.t// � z˛

2
O�.t/

��
� S.t/ � sin2

�
min

�
�

2
; sin�1.

q
OS.t//C z˛

2
O�.t/

��
• linear transformation: This is the same as the identity transformation. The 100(1 – ˛)% confidence

interval for S.t/ is given by

OS.t/ � z˛
2
O�
h
OS.t/

i
� S.t/ � OS.t/C z˛

2
O�
h
OS.t/

i
• log transformation: The estimated variance of log. OS.t// is O�2.t/ D O�2. OS.t//

OS2.t/
: The 100(1 – ˛)%

confidence interval for S.t/ is given by

OS.t/ exp
�
�z˛

2
O�.t/

�
� S.t/ � OS.t/ exp

�
z˛
2
O�.t/

�
• log-log transformation: The estimated variance of log.� log. OS.t// is O�2.t/ D O�2Œ OS.t/�

Œ OS.t/ log. OS.t//�2
: The

100(1 – ˛)% confidence interval for S.t/ is given byh
OS.t/

iexp�z˛
2
O�.t/

�
� S.t/ �

h
OS.t/

iexp��z˛
2
O�.t/

�

• logit transformation: The estimated variance of log
�
OS.t/

1� OS.t/

�
is

O�2.t/ D
O�2. OS.t//

OS2.t/Œ1 � OS.t/�2

The 100(1 – ˛)% confidence limits for S.t/ are given by

OS.t/

OS.t/C
h
1 � OS.t/

i
exp

�
z˛
2
O�.t/

� � S.t/ � OS.t/

OS.t/C
h
1 � OS.t/

i
exp

�
�z˛

2
O�.t/

�

Quartile Estimation

The first quartile (25th percentile) of the survival time is the time beyond which 75% of the subjects in the
population under study are expected to survive. For interval-censored data, it is problematic to define point
estimators of the quartiles based on the survival estimate OS.t/ because of its undefined regions of Turnbull
intervals. To overcome this problem, you need to impute survival probabilities within the Turnbull intervals.
The previously defined estimator OSm.t/ achieves this by placing all the estimated probabilities at the right
boundary of the interval. The first quartile is estimated by

q:25 D minftj j OSm.tj / < 0:75g

If OSm.t/ is exactly equal to 0.75 from tj to tjC1, the first quartile is taken to be .tj C tjC1/=2. If OSm.t/ is
greater than 0.75 for all values of t, the first quartile cannot be estimated and is represented by a missing
value in the printed output.
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The general formula for estimating the 100p percentile point is

qp D minftj j OSm.tj / < 1 � pg

The second quartile (the median) and the third quartile of survival times correspond to p = 0.5 and p = 0.75,
respectively.

Brookmeyer and Crowley (1982) constructed the confidence interval for the median survival time based
on the confidence interval for the survival function S.t/. The methodology is generalized to construct the
confidence interval for the 100p percentile based on a g-transformed confidence interval for S.t/ (Klein and
Moeschberger 1997). You can use the CONFTYPE= option to specify the g-transformation. The 100.1�˛/%
confidence interval for the first quantile survival time is the set of all points t that satisfyˇ̌̌̌

g. OSm.t// � g.1 � 0:25/

g0. OSm.t// O�. OS.t//

ˇ̌̌̌
� z1�˛

2

where g0.x/ is the first derivative of g.x/ and z1�˛
2

is the 100.1 � ˛
2
/ percentile of the standard normal

distribution.

Kernel-Smoothed Estimation

After you obtain the survival estimate OS.t/, you can construct a discrete estimator for the cumulative hazard
function. First, you compute the jumps of the discrete function as

O�j D
cj O�jPm
kDj ck

O�k
; j D 1; : : : ; m

where the cj ’s have been defined previously for calculating the Lagrange multiplier statistic.

Essentially, the numerator and denominator estimate the number of failures and the number at risks that are
associated with the Turnbull intervals. Thus these quantities estimate the increments of the cumulative hazard
function over the Turnbull intervals.

The estimator of the cumulative hazard function is

O�.t/ D
X

kWpk<t

O�k; t 62 any Ij

Like OS.t/, O�.t/ is undefined if t is located within some Turnbull interval Ij . To facilitate applying the
kernel-smoothed methods, you need to reformulate the estimator so that it has only point masses. An ad
hoc approach would be to place all the mass for a Turnbull interval at the right boundary. The kernel-based
estimate of the hazard function is computed as

Qh.t; b/ D �
1

b

mX
jD1

K
� t � pj

b

�
O�j

where K.�/ is a kernel function and b > 0 is the bandwidth. You can estimate the cumulative hazard function
by integrating Qh.t; b/ with respect to t.

Practically, an upper limit tD is usually imposed so that the kernel-smoothed estimate is defined on .0; tD/.
The ICLIFETEST procedure sets the value depending on whether the right boundary of the last Turnbull
interval is finite or not: tD D pm if pm <1 and tD D 1:2 � qm otherwise.

Typical choices of kernel function are as follows:
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• uniform kernel:

KU .x/ D
1

2
; �1 � x � 1

• Epanechnikov kernel:

KE .x/ D
3

4
.1 � x2/; �1 � x � 1

• biweight kernel:

KBW .x/ D
15

16
.1 � x2/2; �1 � x � 1

For t < b, the symmetric kernels K./ are replaced by the corresponding asymmetric kernels of Gasser and
Müller (1979). Let q D t

b
. The modified kernels are as follows:

• uniform kernel:

KU;q.x/ D
4.1C q3/

.1C q/4
C
6.1 � q/

.1C q/3
x; �1 � x � q

• Epanechnikov kernel:

KE;q.x/ D KE .x/
64.2 � 4q C 6q2 � 3q3/C 240.1 � q/2x

.1C q/4.19 � 18q C 3q2/
; �1 � x � q

• biweight kernel:

KBW ;q.x/ D KBW .x/
64.8 � 24q C 48q2 � 45q3 C 15q4/C 1120.1 � q/3x

.1C q/5.81 � 168q C 126q2 � 40q3 C 5q4/
; �1 � x � q

For tD � b � t � tD , let q D tD�t
b

. The asymmetric kernels for t < b are used, with x replaced by –x.

The bandwidth parameter b controls how much “smoothness” you want to have in the kernel-smoothed
estimate. For right-censored data, a commonly accepted method of choosing an optimal bandwidth is to use
the mean integrated square error(MISE) as an objective criteria. This measure becomes difficult to adapt to
interval-censored data because it no longer has a closed-form mathematical formula.

Pan (2000) proposes using a V-fold cross validation likelihood as a criterion for choosing the optimal
bandwidth for the kernel-smoothed estimate of the survival function. The ICLIFETEST procedure implements
this approach for smoothing the hazard function. Computing such a criterion entails a cross validation type
procedure. First, the original data D are partitioned into V almost balanced subsets D.v/, v D 1; : : : ; V .
Denote the kernel-smoothed estimate of the leave-one-subset-out data D �D.v/ as Oh�.�v/.t I b/. The optimal
bandwidth is defined as the one that maximizes the cross validation likelihood:

b0 D argmaxb

VX
vD1

L. Oh�.�v/.t I b/jD.v//
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Comparison of Survival between Groups

If the TEST statement is specified, the ICLIFETEST procedure compares the K groups formed by the levels
of the TEST variable using a generalized log-rank test. Let Sk.t/ be the underlying survival function of the
kth group, k D 1; : : : ; K. The null and alternative hypotheses to be tested are

H0WS1.t/ D S2.t/ D � � � D SK.t/ for all t

versus

H1W at least one of the Sk.t/’s is different for some t

Let Nk denote the number of subjects in group k, and let n denote the total number of subjects (n D
N1 C � � � CNK).

Generalized Log-Rank Statistic
For the ith subject, let zi D .zi1; : : : ; ziK/

0 be a vector of K indicators that represent whether or not the
subject belongs to the kth group. Denote ˇ D .ˇ1; : : : ; ˇK/0, where ˇk represents the treatment effect for
the kth group. Suppose that a model is specified and the survival function for the ith subject can be written as

S.t jzi / D S.t jz0iˇ;/

where  denotes the nuisance parameters.

It follows that the likelihood function is

L D

nY
iD1

ŒS.Li jz0iˇ;/ � S.Ri jz
0
iˇ;/�

where .Li ; Ri / denotes the interval observation for the ith subject.

Testing whether or not the survival functions are equal across the K groups is equivalent to testing whether
all the ˇj ’s are zero. It is natural to consider a score test based on the specified model (Finkelstein 1986).

The score statistics for ˇ are derived as the first-order derivatives of the log-likelihood function evaluated at
ˇ D 0 and O .

U D .U1; : : : ; UK/0 D
@ log.L/
@ˇ

ˇ̌̌
ˇD0; O

where O denotes the maximum likelihood estimate for the  , given that ˇ D 0.

Under the null hypothesis that ˇ D 0, all K groups share the same survival function S.t/. It is typical to
leave S.t/ unspecified and obtain a nonparametric maximum likelihood estimate OS.t/ using, for instance,
Turnbull’s method. In this case,  represents all the parameters to be estimated in order to determine OS.t/.

Suppose the given data generates m Turnbull intervals as fIj D .qj ; pj �; j D 1; : : : ; mg. Denote the
probability estimate at the right end point of the jth interval by O�j . The nonparametric survival estimate is
OS.t/ D

P
kWpk>t

O�k for t 62 any Ij .

Under the null hypothesis, Fay (1999) showed that the score statistics can be written in the form of a weighted
log-rank test as

Uk D

mX
jD1

Ukj D

mX
jD1

vj

 
d 0kj �

n0
kj

n0j
d 0j

!
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where

vj D
Œ OS.pj / � OS

0.pj�1/�Œ OS.pj�1/ � OS
0.pj /�

OS.pj /Œ OS.pj�1/ � OS.pj /�

and S 0.t/ denotes the derivative of S.t/ with respect to ˇ.

d 0
kj

estimates the expected number of events within Ij for the kth group, and it is computed as

d 0kj D

nX
iD1

zik
˛ij O�jPm
lD1 ˛il

O�l

d 0j is an estimate for the expected number of events within Ij for the whole sample, and it is computed as

d 0j D

KX
kD1

d 0kj

Similarly, n0
kj

estimates the expected number of subjects at risk before entering Ij for the kth group, and
can be estimated by n0

kj
D
Pm
lDj d

0
kl

. n0j is an estimate of the expected number of subjects at risk before

entering Ij for all the groups: n0j D
PK
kD1 n

0
kj

.

Assuming different survival models gives rise to different weight functions vj (Fay 1999). For example,
Finkelstein’s score test (1986) is derived assuming a proportional hazards model; Fay’s test (1996) is based
on a proportional odds model.

The choices of weight function are given in Table 50.3.

Table 50.3 Weight Functions for Various Tests

Test vj

Sun (1996) 1.0
Fay (1999) OS.pj�1/

Finkelstein (1986)
OS.pj�1/Œlog OS.pj�1/�log OS.pj /�

OS.pj�1/� OS.pj /

Harrington-Fleming (p,q) Œ OS.pj�1/�
pŒ1 � OS.pj�1/�

q; p � 0; q � 0

Variance Estimation of the Generalized Log-Rank Statistic
Sun (1996) proposed the use of multiple imputation to estimate the variance-covariance matrix of the
generalized log-rank statistic U. This approach is similar to the multiple imputation method as presented in
“Variance Estimation of the Survival Estimator” on page 3908. Both methods impute right-censored data from
interval-censored data and analyze the imputed data sets by using standard statistical techniques. Huang, Lee,
and Yu (2008) suggested improving the performance of the generalized log-rank test by slightly modifying
the variance calculation.

Suppose the given data generate m Turnbull intervals as fIj D .qj ; pj �; j D 1; : : : ; mg. Denote the
probability estimate for the jth interval as O�j , and denote the nonparametric survival estimate as OS.t/ DP
kWpk>t

O�k for t 62 any Ij .
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In order to generate an imputed data set, you need to randomly generate a survival time for every subject of
the sample. For the ith subject, a random time T �i is generated randomly based on the following discrete
survival function:

OSi .T
�
i D pj / D

OS.qj / � OS.RiC/

OS.Li / � OS.RiC/
; pj 2 .Li ; Ri �; j D 1; : : : ; m

where .Li ; Ri � denotes the interval observation for the subject.

For the hth imputed data set (h D 1; : : : ;H ), let dh
kj

and nh
kj

denote the numbers of failures and subjects at

risk by counting the imputed T �i ’s for group k. Let dhj and nhj denote the corresponding pooled numbers.

You can perform the standard weighted log-rank test for right-censored data on each of the imputed data sets
(Huang, Lee, and Yu 2008). The test statistic is

Uh D .U h1 ; : : : ; U
h
K/
0

where

U hk D

mX
jD1

vj

 
dhkj �

nh
kj

nhj

dhj

!

Its variance-covariance matrix is estimated by the Greenwood formula as

Vh D Vh1 C � � � CVhm

where

.Vhj /l1l2 D

(
v2jn

h
l1j
.nhj � n

h
l1j
dhj .n

h
j � d

h
j /.n

h
j /
�2.nhj � 1/

�1/ when l1 D l2
�v2jn

h
l1j
nh
l2j
dhj .n

h
j � d

h
j /.n

h
j /
�2.nhj � 1/

�1 when l1 ¤ l2

After analyzing each imputed data set, you can estimate the variance-covariance matrix of U by pooling the
results as

OV D
1

H

HX
hD1

Vh �
1

H � 1

HX
hD1

ŒUh � NU�ŒUh � NU�0

where

NU D
1

H

HX
hD1

Uh

The overall test statistic is formed as U0V�U, where V� is the generalized inverse of V. Under the null
hypothesis, the statistic has a chi-squared distribution with degrees of freedom equal to the rank of V. By
default, the ICLIFETEST procedure perform 1000 imputations. You can change the number of imputations
by the IMPUTE option in the PROC ICLIFETEST statement.
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Stratified Tests
Suppose the generalized log-rank test is to be stratified on the M levels that are formed from the variables
that you specify in the STRATA statement. Based only on the data of the sth stratum (s D 1; : : : ;M ), let
U.s/ be the test statistic for the sth stratum and let V.s/ be the corresponding covariance matrix as constructed
in the section “Variance Estimation of the Generalized Log-Rank Statistic” on page 3914. First, sum over the
stratum-specific estimates as follows:

U: D
MX
sD1

U.s/

V: D
MX
sD1

V.s/

Then construct the global test statistic as

U:0V:�U:

Under the null hypothesis, the test statistic has a chi-squared distribution with degrees of freedom equal to
the rank of V:. The ICLIFETEST procedure performs the stratified test only when the groups to be compared
are balanced across all the strata.

Multiple-Comparison Adjustments
When you have more than two groups, a generalized log-rank test tells you whether the survival curves are
significantly different from each other, but it does not identify which pairs of curves are different. Pairwise
comparisons can be performed based on the generalized log-rank statistic and the corresponding variance-
covariance matrix. However, reporting all pairwise comparisons is problematic because the overall Type I
error rate would be inflated. A multiple-comparison adjustment of the p-values for the paired comparisons
retains the same overall probability of a Type I error as the K-sample test.

The ICLIFETEST procedure supports two types of paired comparisons: comparisons between all pairs of
curves and comparisons between a control curve and all other curves. You use the DIFF= option to specify the
comparison type, and you use the ADJUST= option to select a method of multiple-comparison adjustments.

Let �2r denote a chi-square random variable with r degrees of freedom. Denote � and ˆ as the density
function and the cumulative distribution function of a standard normal distribution, respectively. Let m be the
number of comparisons; that is,

m D

�
k.k�1/
2

DIFF D ALL
k � 1 DIFF D CONTROL

For a two-sided test that compares the survival of the jth group with that of lth group, 1 � j ¤ l � r , the
test statistic is

z2jl D
.Uj � Ul/

2

Vjj C Vl l � 2Vjl

and the raw p-value is

p D Pr.�21 > z
2
jl/

For multiple comparisons of more than two groups (r > 2), adjusted p-values are computed as follows:
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• Bonferroni adjustment:

p D minf1;mPr.�21 > z
2
jl/g

• Dunnett-Hsu adjustment: With the first group defined as the control, there are r � 1 comparisons to be
made. Let C D .cij / be the .r � 1/ � r matrix of contrasts that represents the r � 1 comparisons; that
is,

cij D

8<:
1 i D 1; : : : ; r � 1; j D 2; : : : ; r

�1 j D i C 1; i D 2; : : : ; r

0 otherwise

Let † � .�ij / and R � .rij / be covariance and correlation matrices of Cv, respectively; that is,

† D CVC0

and

rij D
�ij

p
�i i�jj

The factor-analytic covariance approximation of Hsu (1992) is to find �1; : : : ; �r�1 such that

R D DC ��0

where D is a diagonal matrix whose jth diagonal element is 1 � �j and � D .�1; : : : ; �r�1/
0. The

adjusted p-value is

p D 1 �

Z 1
�1

�.y/

r�1Y
iD1

�
ˆ

�
�iy C zjlq
1 � �2i

�
�ˆ

�
�iy � zjlq
1 � �2i

��
dy

This value can be obtained in a DATA step as

p D PROBMC."DUNNETT2"; zij ; :; :; r � 1; �1; : : : ; �r�1/:

• Scheffé adjustment:

p D Pr.�2r�1 > z
2
jl/

• Šidák adjustment:

p D 1 � f1 � Pr.�21 > z
2
jl/g

m

• SMM adjustment:

p D 1 � Œ2ˆ.zjl/ � 1�
m

This can also be evaluated in a DATA step as

p D 1 � PROBMC."MAXMOD"; zjl ; :; :; m/:

• Tukey adjustment:

p D 1 �

Z 1
�1

r�.y/Œˆ.y/ �ˆ.y �
p
2zjl/�

r�1dy

This can be evaluated in a DATA step as

p D 1 � PROBMC."RANGE";
p
2zjl ; :; :; r/:
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Trend Tests
Trend tests for right-censored data (Klein and Moeschberger 1997, Section 7.4) can be extended to interval-
censored data in a straightforward way. Such tests are specifically designed to detect ordered alternatives
as

H1WS1.t/ � S2.t/ � � � � � SK.t/; t � �; with at least one inequality

or

H2WS1.t/ � S2.t/ � � � � � SK.t/; t � �; with at least one inequality

Let a1 < a2 < � � � < aK be a sequence of scores associated with the k samples. Let U D .U1; : : : ; UK/ be
the generalized log-rank statistic and V D .Vjl/ be the corresponding covariance matrix of size K �K as
constructed in the section “Variance Estimation of the Generalized Log-Rank Statistic” on page 3914. The
trend test statistic and its standard error are given by

Pk
jD1 ajUj and

Pk
jD1

PK
lD1 ajalVjl , respectively.

Under the null hypothesis that there is no trend, the following z-score has, asymptotically, a standard normal
distribution:

Z D

PK
jD1 ajUj

f
PK
jD1

PK
lD1 ajalVjlg

The ICLIFETEST procedure provides both one-tail and two-tail p-values for the test.

Missing Values
Observations that have a missing value for both the left boundary and the right boundary are not used in the
analysis. If a STRATA or FREQ variable value is missing, the observation is not used. However, you can treat
missing values as an independent stratum if you specify the MISSING option in the PROC ICLIFETEST
statement. If any variable that you specify in the TEST statement has a missing value, that observation is not
used in the calculation of test statistics unless you specify the MISSING option in the PROC ICLIFETEST
statement.

Output Data Sets

OUTSURV= Data Set

You can specify the OUTSURV= option in the PROC ICLIFETEST statement to create an output data set
that contains the following columns:

• any variables that are specified using the BY statement

• any variables that are specified using the STRATA statement

• any variable that is specified using the TEST statement

• LeftBoundary and RightBoundary, the two boundary variables that represent a Turnbull interval

• SurvProb, a variable that contains the survival function estimates at RightBoundary
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• FailProb, a variable that contains the failure probability estimates at RightBoundary

• IMStderr, a variable that contains the standard errors that are estimated by using multiple imputations

• BTStderr, a variable that contains the bootstrap standard errors

• ConfType, a variable that contains the name of the transformation applied to the survival time in the
computation of confidence intervals

• LagrangeMult, a variable that contains the Lagrange multiplier statistics for checking the Kuhn-Tucker
conditions

• SurvProb_LCL, a variable that contains the lower limits of the pointwise confidence intervals for the
survival function, using imputation standard errors

• SurvProb_UCL, a variable that contains the upper limits of the pointwise confidence intervals for the
survival function, using imputation standard errors

• SurvProb_LCL_BT, a variable that contains the lower limits of the pointwise confidence intervals for
the survival function, using bootstrap standard errors

• SurvProb_UCL_BT, a variable that contains the upper limits of the pointwise confidence intervals for
the survival function, using bootstrap standard errors

Displayed Output
If you use the NOPRINT option in the PROC ICLIFETEST statement, the procedure does not display any
output.

Data and Method Information

The “Data and Method Information” table is displayed each time PROC ICLIFETEST is called. The table
displays the following:

• input SAS data set name

• input left and right boundaries

• FREQ variable name

• method used to compute survival estimates

• number of observations read

• number of observations used

• number of bootstrap samples

• number of multiple imputation for calculating standard errors of the survival estimates

• number of multiple imputation for estimating covariance matrix of the generalized log-rank statistics
(if the TEST statement is specified)
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• seed for multiple imputation

• seed for bootstrap (if the BOOTSTRAP option is specified in the PROC ICLIFETEST statement)

The ODS name of this table is DataInfo.

Nonparametric Survival Estimates

The “Nonparametric Survival Estimates” table is displayed by default. The table displays the following:

• left boundary of time intervals

• right boundary of time intervals

• estimate of survival probability

• estimate of failure probability

• standard error of the survival estimate by the multiple imputation method

• bootstrapped standard error of the survival estimate (if the BOOTSTRAP option is specified in the
PROC ICLIFETEST statement)

• Lagrange multiplier (if METHOD=TURNBULL|EM is specified in the PROC ICLIFETEST statement)

The ODS name of this table is ProbabilityEstimates.

Estimates at Right Boundaries of Turnbull Intervals

The “Estimates at Right Boundaries of Turnbull Intervals” table is displayed when you specify the SHOWTI
option. The table displays the following:

• left boundary of Turnbull intervals

• right boundary of Turnbull intervals

• estimate of survival probability at the right boundary

• estimate of failure probability at the right boundary

• standard error of the survival estimate by the multiple imputation method

• bootstrapped standard error of the survival estimate (if the BOOTSTRAP option is specified in the
PROC ICLIFETEST statement)

• Lagrange multiplier (if METHOD=TURNBULL is specified in the PROC ICLIFETEST statement)

The ODS name of this table is TurnbullIntervals.
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Iteration History of Probability Estimates Associated with Turnbull Intervals

The “Iteration History of Probability Estimates Associated with Turnbull Intervals” table is displayed when
you specify the ITHISTORY option. The table displays the following:

• iteration index

• type of updating method (EM or ICM) for the current iteration

• nonparametric log likelihood at each iteration

• probability estimate that is associated with each Turnbull interval

The ODS name of this table is IterHistory.

Summary of Censored and Uncensored Values

The “Summary of Censored and Uncensored Values” table is displayed by default. The table displays the
following:

• STRATA variables, if there are any, and their values

• index of strata that are formed by the specified STRATA variables

• TEST variable, if there is one, and its values

• index of groups that are formed by the specified TEST variable

• frequency of exact observations

• frequency of left censorings

• frequency of interval censorings

• frequency of right censorings

• percentage of each type of censoring within a stratum

The ODS name of this table is CensoredSummary.

Quartile Estimates

The “Quartiles Estimates” table is displayed if nonparametric estimation finds an MLE successfully. The
table displays the following:

• point estimates of the quartiles of the survival times

• lower and upper confidence limits for the quartiles

The ODS name of this table is Quartiles.
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Generalized Log-Rank Statistics

The “Rank Statistics” table contains the test statistics of the nonparametric K-sample tests. The ODS name
of this table is HomStats.

Covariance Matrix for the Generalized Log-Rank Statistics

The “Covariance Matrix for the Log-Rank Statistics” table is displayed together with the generalized log-rank
statistics. The ODS name of this table is HomCov.

Test of Equality over Group

The “Test of Equality over Group” table is displayed if an unstratified K-sample test is performed. The table
contains the chi-square statistics, degrees of freedom, and p-value of the generalized log-rank test. The ODS
name of this table is HomTests.

Stratified Test of Equality over Group

The “Stratified Test of Equality over Group” table is displayed if a stratified test is carried out. The table
contains the chi-square statistics, degrees of freedom, and p-values of the stratified tests. The ODS name of
this table is HomTests2.

Scores for Trend Test

The “Scores for Trend Test” table is displayed if the TREND option is specified in the TEST statement.
The table contains the set of scores that are used to construct the trend test. The ODS name of this table is
TrendScores.

Trend Test

The “Trend Tests” table is displayed if the TREND option is specified in the TEST statement. The table
contains the results of the trend test. The ODS name of this table is TrendTest.

Pairwise Group Comparisons

The “Pairwise Group Comparisons” table is displayed if a multiple-comparison adjustment method is
specified. The table contains the chi-square statistics and the raw and adjusted p-values of the paired
comparisons. The ODS name of this table is SurvDiff.

ODS Table Names
PROC ICLIFETEST assigns a name to each table that it creates. You can use these names to refer to the table
when you use the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed in Table 50.4. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”
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Table 50.4 ODS Tables Produced by PROC ICLIFETEST

ODS Table Name Description Statement / Option

CensoredSummary Number of censored and uncen-
sored observations

Default

ConvergenceStatus Convergence status Default
DataInfo Data and methods information Default
HomCov Covariance matrix for the gener-

alized log-rank statistics
TEST

HomStats Generalized log-rank statistics TEST
HomTests Results of K-sample tests TEST | TEST / WEIGHT=
IterHistory Iteration history of nonparametric

estimation
ITHISTORY

ProbabilityEstimates Nonparametric survival estimates Default
Quartiles Quartile estimates Default
SurvivalDiff Adjustments for multiple compar-

isons
TEST / ADJUST= | TEST /
DIFF=

TrendScores Scores for trend test TEST / TREND
TrendTest Trend test results TEST / TREND
TurnbullIntervals Turnbull intervals SHOWTI

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

The survival plot is produced by default; other graphs are produced by specifying the PLOTS= option in the
PROC ICLIFETEST statement. You can refer by name to every graph produced through ODS Graphics. The
names of the graphs that PROC ICLIFETEST generates are listed in Table 50.5, along with the required
keywords for the PLOTS= option.

Table 50.5 Graphs Produced by PROC ICLIFETEST

ODS Graph Name Plot Description PLOTS=Option

FailurePlot Estimated failure function SURVIVAL(FAILURE)
LogNegLogSurvivalPlot Log of the negative log of the estimated

survival function
LOGLOGS
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Table 50.5 continued

ODS Graph Name Plot Description PLOTS=Option

NegLogSurvivalPlot Negative log of the estimated survival
function

LOGSURV

BandwidthGrid Cross validation pseudo log likelihood HAZARD(BW=numeric-list)
by bandwidth HAZARD(BW=RANGE(lower,upper ))

SmoothedHazard Kernel-smoothed hazard estimate HAZARD
SurvivalPlot Estimated survival function Default or SURVIVAL
SurvivalPlot Estimated survival function with point-

wise confidence limits
SURVIVAL(CL)

SurvivalPlot Estimated survival function with K-
sample test p-value

SURVIVAL(TEST)

Examples: ICLIFETEST Procedure
The following examples illustrate some of the capabilities of the ICLIFETEST procedure. They are not
intended to represent definitive analyses of the data sets that are presented here. See the references for
guidance on complete analysis of interval-censored data by appropriate statistical methods.

Example 50.1: Analyzing Data with Observations below a Limit of Detection
Data that have certain values below a limit of detection (LOD) are frequently encountered by toxicologists
and environmental scientists. Such data are usually analyzed by imputing the unobserved values by LOD/2
or LOD/

p
2. This type of practice often raises the question of whether the population distributions can

be estimated without bias. Gillespie et al. (2010) propose using a reverse Kaplan-Meier estimator, or
equivalently, Turnbull’s method (1976) by treating the unobserved data as left-censored. When the assumption
of independent censoring holds, these estimators can unbiasedly estimate the population distribution functions.

The following hypothetical data have two values, 3 and 10, that are below the limit of detection:

data temp;
input C1 C2;
datalines;
. 3
4 4
6 6
8 8
. 10
12 12

;
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The following statements invoke PROC ICLIFETEST to estimate the population distribution function by
using Turnbull’s method:

proc iclifetest data=temp method=turnbull plots=survival(failure)
impute(seed=1234);

time (c1,c2);
run;

Specifying the PLOTS=SURVIVAL(FAILURE) option requests a failure probability plot. Results are shown
in Output 50.1.1. Note that because the first Turnbull interval is .0; 3/, the failure probability function is
undefined within that interval.

Output 50.1.1 Failure Probability Plot for Fictitious Nondetection Data
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Output 50.1.2 presents the estimated failure probability, with standard errors that are estimated by the method
of multiple imputations.

Output 50.1.2 Cumulative Probability Estimates

The ICLIFETEST ProcedureThe ICLIFETEST Procedure

Nonparametric Survival Estimates

Probability
Estimate

Time
Interval Failure Survival

Imputation
Standard

Error
Lagrange
Multiplier

3 4 0.2083 0.7917 0.1811 0.0000

4 6 0.4167 0.5833 0.2179 0.0000

6 8 0.6250 0.3750 0.2099 0.0000

8 12 0.8333 0.1667 0.1521 0.0000

12 Inf 1.0000 0.0000 0.0000 0.0000

Example 50.2: Controlling the Plotting of Survival Estimates
Recall the breast cancer data in the example in the section “Getting Started: ICLIFETEST Procedure” on
page 3887. The following statements compute complementary log-log transformed pointwise confidence
limits for the two treatment groups and plot them:

proc iclifetest data=BCS plots=survival(cl) impute(seed=1234);
strata trt;
time (lTime, rTime);

run;

The two areas overlap a lot before the 20th month. After that, the radiation-only group tends to have higher
survival rate than the radiation-plus-chemotherapy group. That is, patients who receive only radiation tend to
survive longer to experience cosmetic deterioration than those who receive both treatments.
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Output 50.2.1 Nonparametric Survival Estimates for Breast Cancer Data

The dashed lines visually connect the survival estimates across Turnbull intervals for which the estimates are
not defined. You can choose not to display the dashed lines by specifying the NODASH option as follows:

proc iclifetest data=BCS plots=survival(cl nodash) impute(seed=1234);
strata trt;
time (lTime, rTime);

run;

In Output 50.2.2, the survival estimates are plotted only for the time intervals for which estimates can be
obtained.
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Output 50.2.2 Nonparametric Survival Estimates

If the overlaid plot becomes too busy, then it might be necessary to plot the survival estimates separately.
You can request a paneled display of individual survival estimate by specifying the STRATA=PANEL option
as follows:

proc iclifetest data=BCS plots=survival(cl strata=panel) impute(seed=1234);
strata trt;
time (lTime, rTime);

run;

Now the output survival estimates for different treatments are plotted in different panels, as shown in
Output 50.2.3.
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Output 50.2.3 Paneled Survival Plot

Example 50.3: Plotting Kernel-Smoothed Hazard Functions
The following statements compute the kernel-smoothed hazard functions of the two treatment groups for the
breast cancer data:

proc iclifetest data=BCS plots=hazard(bandwidth=15) impute(seed=1234);
strata trt;
time (lTime, rTime);

run;

A bandwidth of 15 is specified. By default, the ICLIFETEST procedure uses the Epanechnikov kernel.
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Output 50.3.1 Kernel-Smoothed Hazards for Breast Cancer Data
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Overview: ICPHREG Procedure
The ICPHREG procedure is designed to fit proportional hazards regression models to interval-censored data.
It can also fit proportional hazards regression models to failure time data that are uncensored, right censored,
or left censored. The survival time of each member of a population is assumed to follow its own hazard
function, �i .t/, which is expressed as

�i .t/ D �.t IZi / D �0.t/ exp.Z0iˇ/

where �0.t/ is the baseline hazard function, Zi is the vector of explanatory variables for the ith individual,
and ˇ is the vector of unknown regression coefficients that is associated with the explanatory variables. The
vector ˇ is assumed to be the same for all individuals.

The ICPHREG procedure enables you to use a variety of configurations with respect to the baseline function
to fit a proportional hazards model; these configurations include a piecewise constant model (Friedman 1982)
and a cubic spline model (Royston and Parmar 2002). To estimate the regression coefficients and the baseline
parameters, the ICPHREG procedure maximizes the full likelihood instead of the Cox partial likelihood.
Standard errors of the estimates are obtained by inverting the observed information matrix, which is derived
from the full likelihood.

The ICPHREG procedure also enables you to do the following: include an offset variable in the model,
weight the observations in the input data, test linear hypotheses about the regression coefficients, compute
customized hazard ratios, and estimate and plot the survival function and the cumulative hazard function for
a new set of covariates.

The ICPHREG procedure uses ODS Graphics to create graphs as part of its output. For general information
about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.”

Comparison with the PHREG Procedure
The ICPHREG procedure compares most closely to the PHREG procedure. Both procedures can fit propor-
tional hazards models. They differ in the types of censored data that they are designed to handle and the
forms of the baseline function. Table 51.1 matches the procedures with the types of censored data they can
analyze and the form of the baseline function.

Table 51.1 Proportional Hazards Modeling

Data Type Baseline PROC ICPHREG PROC PHREG

Interval-censored
Piecewise constant Y
Cubic splines Y
Unspecified

Right-censored
Piecewise constant Y Y
Cubic splines Y
Unspecified Y
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The PHREG procedure deals exclusively with right-censored data, and it mainly adopts a semiparametric
approach by leaving the baseline hazard function unspecified. The ICPHREG procedure is specifically
designed to handle interval-censored data and offers different options to parameterize the baseline hazard
function. You can use the ICPHREG procedure to analyze data that are left-censored, interval-censored, or
right-censored. However, if the data to be analyzed contain only exact or right-censored observations, it is
recommended that you use the PHREG procedure because it provides specialized methods for dealing with
right-censored data. For more information about PROC PHREG, see Chapter 73, “The PHREG Procedure.”

Both the LIFEREG procedure and the ICPHREG procedure can handle interval-censored data. The LIFEREG
procedure focuses on parametric analysis that uses accelerated failure time models, and it can fit only a
proportional hazards model that assumes a Weibull baseline hazard function.

Getting Started: ICPHREG Procedure
This example demonstrates how you can fit a proportional hazards model on an interval-censored data set.
By default, PROC ICPHREG uses a piecewise constant baseline hazard to fit the model.

The AIDS data (Larder, Darby, and Richman 1989) consist of observations from 31 patients who were
followed up for the development of drug resistance to zidovudine. The following DATA step creates the SAS
data set HIV:

data hiv;
input Left Right Stage Dose CdLow CdHigh;
if (Left=0) then Left=.;
if (Right>=26) then Right=.;
datalines;

0 16 0 0 0 1
15 26 0 0 0 1
12 26 0 0 0 1
17 26 0 0 0 1
13 26 0 0 0 1
0 24 0 0 1 0
6 26 0 1 1 0
0 15 0 1 1 0
14 26 0 1 1 0
12 26 0 1 1 0
13 26 0 1 0 1
12 26 0 1 1 0
12 26 0 1 1 0
0 18 0 1 0 1
0 14 0 1 0 1
0 17 0 1 1 0
0 15 0 1 1 0
3 26 1 0 0 1
4 26 1 0 0 1
1 11 1 0 0 1
13 19 1 0 0 1
0 6 1 0 0 1
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0 11 1 1 0 0
6 26 1 1 0 0
0 6 1 1 0 0
2 12 1 1 0 0
1 17 1 1 1 0
0 14 1 1 0 0
0 25 1 1 0 1
2 11 1 1 0 0
0 14 1 1 0 0
;

The data set HIV contains the variables Left and Right, which are the starting time and ending time, both in
months since the start of study; the variable Stage, which indicates the stage of disease (early (0) or late
(1)); the variable Dose, a binary variable that indicates whether the dose is low (0) or high (1); the variable
CdLow, which indicates whether the CD4 lymphocyte count is less than 100; and the variable CdHigh, which
indicates that a count greater than or equal to 400 is recorded.

The following statements use PROC ICPHREG to fit a proportional hazards model to these data:

proc icphreg data=hiv;
class Stage Dose / desc;
model (Left, Right) = Stage Dose;

run;

The CLASS statement specifies that the variables Stage and Dose are classification variables. The DESC
option sets the lower formatted value as the reference level for each CLASS variable. The MODEL statement
specifies that the observed intervals are formed by Left and Right.

By default, the preceding statements produce information about the input data and the fitted model, as shown
in Figure 51.1.

Figure 51.1 Model and Data Information from the ICPHREG Procedure

The ICPHREG ProcedureThe ICPHREG Procedure

Model Information

Data Set WORK.HIV

Left Boundary Left

Right Boundary Right

Baseline Hazard Piecewise Constant

Number of Observations Read 31

Number of Observations Used 31

Right Censored Observations 13

Interval Censored Observations 5

Left Censored Observations 13

Figure 51.1 shows 13 left-censored observations, 13 right-censored observations, and 5 interval-censored
observations.

Figure 51.2 displays the “Class Level Information” table, which identifies the levels of the classification
variables that are used in the model.
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Figure 51.2 CLASS Variables Information from the ICPHREG Procedure

Class Level
Information

Name Levels Values

Stage 2 1 0

Dose 2 1 0

By default, PROC ICPHREG uses a baseline hazard that is partitioned into five disjoint intervals to fit a
proportional hazards model. Figure 51.3 displays details about this partition.

Figure 51.3 Interval Partition

Constant Hazard Time
Intervals

Interval

[Lower Upper)
Hazard
Parameter

0 5.5 Haz1

5.5 8 Haz2

8 12.5 Haz3

12.5 17 Haz4

17 Infty Haz5

PROC ICPHREG determines the break points so that each time interval contains approximately an equal
number of imputed middle points and boundary values in the input data set after excluding the right-censored
observations. For more information about this method, see the section “Choosing Break Points” on page 3964.
You can supply your own partition by using the INTERVALS= option in the MODEL statement.

The “Fit Statistics” table, shown in Figure 51.4, contains several statistics that summarize how well the model
fits the data. These statistics are helpful in judging the adequacy of a model and in comparing it with other
models under consideration.

Figure 51.4 Model Fit Statistics from the ICPHREG Procedure

Fit Statistics

-2 Log Likelihood 21.813

AIC (Smaller is Better) 31.813

AICC (Smaller is Better) 34.213

BIC (Smaller is Better) 38.983

The table of parameter estimates is displayed in Figure 51.5. The columns display the parameter name, the
degrees of freedom that are associated with the parameter, the estimated parameter value, the standard error
of the parameter estimate, the confidence limits, the Wald chi-square statistic, and the associated p-value for
testing the significance of the parameter. If a parameter has been fixed during the optimization process, or if
a column of the Hessian matrix that corresponds to that parameter is found to linearly depend on columns
that correspond to proceeding model parameters, PROC ICPHREG assigns zero degrees of freedom to that
parameter and displays a value of zero for its standard error.
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Figure 51.5 Model Parameter Estimates from the ICPHREG Procedure

Analysis of Maximum Likelihood Parameter Estimates

Effect Stage Dose DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Haz1 0 0.0000

Haz2 1 0.0167 0.0205 0.0000 0.0568

Haz3 0 0.0000

Haz4 1 0.0842 0.0655 0.0000 0.2126

Haz5 1 2.5641 366.4263 0.0000 720.7464

Stage 1 1 2.9597 0.9358 1.1255 4.7939 10.00 0.0016

Stage 0 0 0.0000

Dose 1 1 1.6229 0.8410 -0.0255 3.2713 3.72 0.0537

Dose 0 0 0.0000

Two types of parameters are present in Figure 51.5: the hazard parameters (Haz1, Haz2, ..., Haz5) and the
regression coefficients for the covariates. PROC ICPHREG does not display the chi-square statistic and
associated p-value for the hazard parameters.

Two of the hazard parameters are constrained at 0, a sign of overparameterization that results from too
many hazard parameters in the model. For more information about how the constraints are constructed,
see the section “NOPOLISH” on page 3958. You can use fewer break points to fit the model by using the
NINTERVAL= option or the INTERVALS= option. For example, the following statements request a model
that has exactly two hazard parameters by specifying one break point at 10:

proc icphreg data=hiv ithistory;
class Stage Dose / desc;
model (Left, Right) = Stage Dose / basehaz=pch(intervals=(10));

run;

The table of parameter estimates is displayed in Figure 51.6. None of the hazard parameters are constrained.

Figure 51.6 Model Parameter Estimates from the ICPHREG Procedure

The ICPHREG ProcedureThe ICPHREG Procedure

Analysis of Maximum Likelihood Parameter Estimates

Effect Stage Dose DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Haz1 1 0.0042 0.0051 0.0000 0.0142

Haz2 1 0.0590 0.0360 0.0000 0.1296

Stage 1 1 2.0810 0.7298 0.6506 3.5114 8.13 0.0044

Stage 0 0 0.0000

Dose 1 1 1.0907 0.6766 -0.2354 2.4167 2.60 0.1069

Dose 0 0 0.0000

The ITHISTORY option outputs the iteration history of the fitting algorithm, which is shown in Figure 51.7.
This option also produces the gradient and Hessian of the likelihood function at the last evaluation. In
Figure 51.7, all values of the gradient are close to zero.
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Figure 51.7 Iteration History from the ICPHREG Procedure

Likelihood Optimization Iteration History

Parameter Values Gradient Values

Iteration Evaluations
-2 Log

Likelihood Change
Max

Gradient Stage1 Dose1 Haz1 Haz2 Stage1 Dose1 Haz1 Haz2

0 2 47.8895 . 74.9948 0 0 0.1245 0.0741 -1.8827 3.6394 74.9948 5.0972

1 10 39.1668 -8.7227 47.5072 0.1816 0.3012 0.0559 0.0848 -3.6580 0.5057 47.5072 -1.3723

2 6 37.6893 -1.4775 32.3796 0.2453 0.3347 0.0440 0.0944 -3.9790 -0.2883 32.3796 -1.7277

3 3 35.3576 -2.3317 50.9346 0.4701 0.4206 0.0185 0.1168 -4.6140 -2.0073 -50.9346 -3.9286

4 3 32.5990 -2.7586 6.4037 0.8039 0.5075 0.0200 0.1003 -2.8566 -0.7001 6.4037 0.3183

5 3 30.1026 -2.4964 94.9226 1.3800 0.7032 0.00785 0.0839 -2.1446 -1.3702 -94.9226 -6.0631

6 3 29.0224 -1.0802 23.8304 1.7623 0.8588 0.00724 0.0699 -0.3881 -0.2204 23.8304 -0.6369

7 3 28.8561 -0.1663 103.7 2.0115 1.0376 0.00384 0.0622 -0.5201 -0.4868 -103.7 -2.6791

8 3 28.7697 -0.0863 1.9794 2.0740 1.0858 0.00418 0.0593 -0.0194 -0.0145 -1.9794 -0.0585

9 3 28.7696 -0.00013 0.00309 2.0799 1.0898 0.00416 0.0590 -0.00170 -0.00121 0.00309 -0.00077

10 3 28.7696 -3.01E-6 0.000803 2.0809 1.0906 0.00416 0.0590 -0.00015 -0.00012 -0.00080 -0.00004

11 3 28.7696 -2.5E-8 6.991E-6 2.0810 1.0907 0.00416 0.0590 -6.99E-6 -5.67E-6 -6.93E-6 -1.38E-7

12 2 28.7696 0 6.991E-6 2.0810 1.0907 0.00416 0.0590 -6.99E-6 -5.67E-6 -6.93E-6 -1.38E-7

Last Evaluation of the Negative of
the Gradient

Haz1 Haz2 Stage1 Dose1

-6.93E-6 -1.38E-7 -6.99E-6 -5.67E-6

Last Evaluation of the Negative of the
Hessian

Haz1 Haz2 Stage1 Dose1

Haz1 139133 4906.9 605.6 626.1

Haz2 4906.9 1967.0 46.4218 78.7404

Stage1 605.6 46.4218 5.2554 2.5003

Dose1 626.1 78.7404 2.5003 7.2471

One reason for fitting a proportional hazards model is to evaluate the hazard ratios between various disease
groups. You can request customized hazard ratios by using the HAZARDRATIO statement, as follows:

proc icphreg data=hiv;
class Stage / desc;
model (Left, Right) = Stage / basehaz=pch(intervals=(10));
hazardratio Stage;

run;

Figure 51.8 shows the estimated hazard ratio between the values 1 and 0 of the Stage variable and the
corresponding 95% confidence limits.
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Figure 51.8 Hazard Ratio Estimate between Stage Values 1 and 0

The ICPHREG ProcedureThe ICPHREG Procedure

Hazard Ratios for Stage

Description
Point

Estimate

95%
Wald

Confidence
Limits

Stage 1 vs 0 5.624 1.734 18.241

The estimate of 5.624 indicates that patients who have Stage 1 disease tend to have a much higher risk of
developing AIDS than those who have Stage 0. However, the confidence limits are wide due to small sample
size.

Syntax: ICPHREG Procedure
The following statements are available in the ICPHREG procedure:

PROC ICPHREG < options > ;
BASELINE < OUT=SAS-data-set > < COVARIATES=SAS-data-set >< TIMELIST=list >

< keyword=name . . . keyword=name > < / options > ;
BY variables ;
CLASS variable < (options) > . . . < variable < (options) > > < / global-options > ;
FREQ variable < / option > ;
HAZARDRATIO < 'label ' > variable < / options > ;
MODEL (t1, t2)= effects < / options > ;
TEST < model-effects > < / options > ;

The MODEL statement is required, and only one MODEL statement is allowed. If multiple MODEL
statements are present, only the last one is used. You can specify main effects and interaction terms in the
MODEL statement, as in the GLM procedure. The CLASS statement, if present, must precede the MODEL
statement. The BASELINE and HAZARDRATIO statements, if present, must come after the MODEL
statement.

The following sections describe the PROC ICPHREG statement and then describe the other statements in
alphabetical order.

PROC ICPHREG Statement
PROC ICPHREG < options > ;

The PROC ICPHREG statement invokes the ICPHREG procedure. Table 51.2 summarizes the options
available in the PROC ICPHREG statement.
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Table 51.2 PROC ICPHREG Statement Options

Option Description

ALPHA= Specifies the level for confidence limits
DATA= Names the SAS data set to be analyzed
ITHISTORY Displays the iteration history, final gradient, and second derivative matrix
NAMELEN= Specifies the length of effect names
NLOPTIONS Specifies optimization parameters for fitting the specified model
NOPRINT Suppresses all displayed output
NOTHREADS Requests a single-threaded mode for the computation
PLOTS= Controls the plots that are produced through ODS Graphics
SINGULAR= Specifies the singularity tolerance
THREADS= Specifies the number of threads for the computation

You can specify the following options in the PROC ICPHREG statement.

ALPHA=number
specifies the ˛ level for 100.1 � ˛/% confidence limits. The number must be between 0 and 1;
the default value is 0.05, which results in 95% intervals. This value is used as the default level for
confidence limits that are computed by the BASELINE, HAZARDRATIO, and MODEL statements.
You can override this default by specifying the ALPHA= option in these statements.

DATA=SAS-data-set
names the SAS data set that contains the data to be analyzed. If you omit this option, the procedure
uses the most recently created SAS data set.

ITHISTORY
displays the iteration history for computing maximum likelihood estimates, the final evaluation of the
gradient, and the final evaluation of the negative of the second derivative matrix (that is, the negative of
the Hessian).

NAMELEN=n
specifies the maximum length of effect names in tables and output data sets to be n characters, where n
is a value between 20 and 200. By default, NAMELEN=20.

NLOPTIONS(options)
specifies options for the nonlinear optimization methods that are used for fitting the specified model.
You can specify the following options:

ABSCONV=r

ABSTOL=r
specifies an absolute function convergence criterion by which minimization stops when
f . .k// � r , where  is the vector of parameters in the optimization and f .�/ is the ob-
jective function. The default value of r is the negative square root of the largest double-precision
value, which serves only as a protection against overflows.
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ABSFCONV=r
ABSFTOL=r

specifies an absolute function difference convergence criterion. For all techniques except NM-
SIMP, termination requires a small change of the function value in successive iterations,

jf . .k�1// � f . .k//j � r

where  denotes the vector of parameters that participate in the optimization and f .�/ is the
objective function. The same formula is used for the NMSIMP technique, but  .k/ is defined
as the vertex that has the lowest function value, and  .k�1/ is defined as the vertex that has the
highest function value in the simplex. By default, ABSFCONV=0.

ABSGCONV=r
ABSGTOL=r

specifies an absolute gradient convergence criterion. Termination requires the maximum absolute
gradient element to be small,

max
j
jgj . 

.k//j � r

where  denotes the vector of parameters that participate in the optimization and gj .�/ is the
gradient of the objective function with respect to the jth parameter. This criterion is not used by
the NMSIMP technique. The default value is r = 1E–5.

FCONV=r
FTOL=r

specifies a relative function convergence criterion. For all techniques except NMSIMP, termina-
tion requires a small relative change of the function value in successive iterations,

jf . .k// � f . .k�1//j

jf . .k�1//j
� r

where  denotes the vector of parameters that participate in the optimization and f .�/ is the
objective function. The same formula is used for the NMSIMP technique, but  .k/ is defined
as the vertex that has the lowest function value, and  .k�1/ is defined as the vertex that has the
highest function value in the simplex. The default is r D 10�FDIGITS, where FDIGITS is by
default � log10f�g and � is the machine precision.

GCONV=r
GTOL=r

specifies a relative gradient convergence criterion. For all techniques except CONGRA and
NMSIMP, termination requires the normalized predicted function reduction to be small,

g. .k//0ŒH.k/��1g. .k//
jf . .k//j

� r

where denotes the vector of parameters that participate in the optimization, f .�/ is the objective
function, and g.�/ is the gradient. For the CONGRA technique (in which a reliable Hessian
estimate H is not available), the following criterion is used:

k g. .k// k22 k g. .k// k2
k g. .k// � g. .k�1// k2 jf . .k//j

� r

This criterion is not used by the NMSIMP technique. The default value is r = 1E–8.
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MAXFUNC=n

MAXFU=n
specifies the maximum number of function calls in the optimization process. The default
values are as follows, depending on the optimization technique (which you can specify in the
TECHNIQUE= option):

• TRUREG, NRRIDG, and NEWRAP: 125
• QUANEW and DBLDOG: 500
• CONGRA: 1000
• NMSIMP: 3000

The optimization can terminate only after completing a full iteration. Therefore, the number of
function calls that are actually performed can exceed n.

MAXITER=n

MAXIT=n
specifies the maximum number of iterations in the optimization process. The default values are as
follows, depending on the optimization technique (which you can specify in the TECHNIQUE=
option):

• TRUREG, NRRIDG, and NEWRAP: 50
• QUANEW and DBLDOG: 200
• CONGRA: 400
• NMSIMP: 1000

These default values also apply when n is specified as a missing value.

MAXTIME=r
specifies an upper limit of r seconds of CPU time for the optimization process. The time is
checked only at the end of each iteration. Therefore, the actual run time might be longer than r .
By default, CPU time is not limited.

MINITER=n

MINIT=n
specifies the minimum number of iterations. If you request more iterations than are actually
needed for convergence to a stationary point, the optimization algorithms can behave strangely.
For example, the effect of rounding errors can prevent the algorithm from continuing for the
required number of iterations. By default, MINITER=0.

TECHNIQUE=keyword
specifies the optimization technique to obtain maximum likelihood estimates. You can choose
from the following techniques:

CONGRA performs a conjugate-gradient optimization.

DBLDOG performs a version of double-dogleg optimization.

NEWRAP performs a Newton-Raphson optimization that combines a line-search algo-
rithm with ridging.

NMSIMP performs a Nelder-Mead simplex optimization.
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NONE performs no optimization.

NRRIDG performs a Newton-Raphson optimization with ridging.

QUANEW performs a dual quasi-Newton optimization.

TRUREG performs a trust-region optimization.

By default, TECHNIQUE=NEWRAP.

For more information about these optimization methods, see the section “Choosing an Optimiza-
tion Algorithm” on page 501 in Chapter 19, “Shared Concepts and Topics.”

NOPRINT
suppresses all displayed output. This option temporarily disables the Output Delivery System (ODS);
For more information, see Chapter 20, “Using the Output Delivery System.”

NOTHREADS
forces single-threaded execution of the analytic computations. This option overrides the SAS system
option THREADS | NOTHREADS. Specifying this option is equivalent to specifying the THREADS=1
option.

PLOTS< (global-plot-options) > = plot-request
PLOTS< (global-plot-options) > = (plot-request < . . . < plot-request > >)

requests plots of survival functions and cumulative hazard functions.

You can specify the following global-plot-options:

CL
displays the pointwise confidence limits for the plot.

OVERLAY < =overlay-option >
specifies how to overlay the functions that are plotted for the covariate sets. You can specify the
following overlay-options:

BYGROUP
GROUP

overlays onto the same plot all functions that are plotted for the covariate sets and have the
same GROUP= value in the COVARIATES= data set.

INDIVIDUAL
IND

displays a separate plot for each covariate set.

By default, OVERLAY=BYGROUP if the GROUP= option is specified in the BASELINE
statement or if the COVARIATES= data set contains the _GROUP_ variable; otherwise, by
default, OVERLAY=INDIVIDUAL.

TIMERANGE=(< min > < ,max >)
TIMERANGE=< min > < ,max >
RANGE=(< min > < ,max >)
RANGE=< min > < ,max >

specifies the range of values on the time axis to clip the display. The min and max values are the
lower and upper bounds of the range. By default, min is 0 and max is the largest boundary value.

You can specify the following plot-requests:
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CUMHAZ
plots the estimated cumulative hazard function for each set of covariates in the data set that is
specified in the COVARIATES= option in the BASELINE statement. If the COVARIATES= data
set is not specified, the estimated cumulative hazard function is plotted for the reference set of
covariates, which consists of reference levels for the CLASS variables and average values for the
continuous variables.

NONE
suppresses all the plots in the procedure. Specifying this option is equivalent to disabling ODS
Graphics for the entire procedure.

SURVIVAL

S

SURV

SUR
plots the estimated survival function for each set of covariates in the data set that is specified
in the COVARIATES= option in the BASELINE statement. If the COVARIATES= data set is
not specified, the estimated survival function is plotted for the reference set of covariates, which
consists of reference levels for the CLASS variables and average values for the continuous
variables.

Each observation in the data set that is specified in the COVARIATES= option in the BASELINE
statement provides a set of covariates for which a plot is produced for each plot-request . You can use
the ROWID= option in the BASELINE statement to specify a variable in the COVARIATES= data
set for identifying the functions that are plotted for the covariate sets. If the ROWID= option is not
specified, the plots are identified by the covariate values if there is only a single covariate or by the
observation numbers of the COVARIATES= data set if the model has two or more covariates. If the
COVARIATES= data set is not specified, a reference set of covariates that consists of the reference
levels for the CLASS variables and the average values for the continuous variables is used. When
plotting more than one function, you can use the OVERLAY= option to group the functions. When
you specify only one plot-request , you can omit the parentheses around the plot request. Here are
some examples:

plots=survival
plots=(survival cumhaz)

ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;
proc icphreg plots(cl)=survival;

model (Left, Right)=X1-X5;
baseline covariates=One;

run;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”
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SINGULAR=number

EPSILON=number
specifies the tolerance for testing the singularity of the Z0Z matrix that is formed from the design matrix
Z and for testing the singularity of the Hessian matrix upon convergence of the optimization algorithm.
Appropriately, the test requires that a pivot be at least this number times the original diagonal value.
By default, number is 107 times the machine epsilon. On most machines, the default number is
approximately 10�9.

THREADS=n

NTHREADS=n
specifies the number of threads for analytic computations and overrides the SAS system option
THREADS | NOTHREADS. If you do not specify the THREADS= option or if you specify
THREADS=0, the number of threads is determined based on the data size and the number of CPUs on
the host on which the analytic computations execute.

BASELINE Statement
BASELINE < OUT=SAS-data-set > < COVARIATES=SAS-data-set > < TIMELIST=list > < keyword=name

. . . keyword=name > < / options > ;

The BASELINE statement creates a SAS data set (named by the OUT= option) that contains the predicted
values at specified times that partition the time axis for every set of covariates in the COVARIATES= data
set. If the COVARIATES= data set is not specified, PROC ICPHREG uses a reference set of covariates that
consists of the reference levels for the CLASS variables and the average values for the continuous variables.

Table 51.3 summarizes the options that you can specify in the BASELINE statement.

Table 51.3 BASELINE Statement Options

Option Description

Data Set and Time List Options
OUT= Specifies the output BASELINE data set
COVARIATES= Specifies the SAS data set that contains the explanatory variables
TIMELIST= Specifies a list of time points for computing the predicted values

Keyword Options for Variables
CUMHAZ= Specifies the cumulative hazard function estimate
LOGLOGS= Specifies the log of the negative log of the survival function
LOGSURV= Specifies the log of the survival function
LOWERCUMHAZ= Specifies the lower pointwise confidence limit for the cumulative hazard

function
LOWER= Specifies the lower pointwise confidence limit for the survival function
STDCUMHAZ= Specifies the estimated standard error of the cumulative hazard function
STDERR= Specifies the standard error of the survival function
STDXBETA= Specifies the estimated standard error of the linear predictor estimator
SURVIVAL= Specifies the survival function estimate
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Table 51.3 continued

Options Description

UPPERCUMHAZ= Specifies the upper pointwise confidence limit for the cumulative hazard
function

UPPER= Specifies the upper pointwise confidence limit for the survival function
XBETA= Specifies the estimate of the linear predictor z0ˇ

Other Options
ALPHA= Specifies the level of the confidence interval for the survival function
CLTYPE= Specifies the transformation that is used to compute confidence limits

for the survival function
GROUP= Names a variable whose values identify or group predicted survival or

cumulative hazard functions in plots
ROWID= Names the variable in the COVARIATES= data set for identifying the

predicted survival or cumulative hazard functions in plots

You can specify the following options in the BASELINE statement.

OUT=SAS-data-set
names the output data set. If you omit the OUT= option, the data set is created and given a default
name by using the DATAn convention. For more information, see the section “OUT= Output Data Set
in the BASELINE Statement” on page 3969.

COVARIATES=SAS-data-set
names the SAS data set that contains the sets of explanatory variable values for which the functions
of interest are estimated. All variables in the COVARIATES= data set are copied to the OUT= data
set. Thus, any variable in the COVARIATES= data set can be used to identify the covariate sets in the
OUT= data set.

TIMELIST=list
specifies a list of time points at which the predicted values are computed. The following specifications
are equivalent:

timelist=5,20 to 50 by 10
timelist=5 20 30 40 50

If you do not specify this option, predicted values are computed at all the times that partition the time
axis.

keyword=name
specifies the statistics to be included in the OUT= data set and assigns names to the variables that
contain these statistics. Specify a keyword for each desired statistic, an equal sign, and the name of the
variable for the statistic. You can specify the following keywords:
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CUMHAZ=name
specifies the cumulative hazard function estimate. Specifying CUMHAZ=_ALL_
is equivalent to specifying CUMHAZ=CumHaz, STDCUMHAZ=StdErrCumHaz,
LOWERCUMHAZ=LowerCumHaz, and UPPERCUMHAZ=UpperCumHaz.

LOGLOGS=name

CLOGLOGS=name
specifies the log of the negative log of the estimated survival function.

LOGSURV=name
specifies the log of the estimated survival function.

LOWER=name

L=name

LOWERSDF=name
specifies the lower pointwise confidence limit for the survival function. The confidence level is
determined by the ALPHA= option.

LOWERCUMHAZ=name
specifies the lower pointwise confidence limit for the cumulative hazard function. The confidence
level is determined by the ALPHA= option.

STDERR=name

STDSDF=name
specifies the standard error of the survival function estimator.

STDCUMHAZ=name
specifies the estimated standard error of the cumulative hazard function estimator.

STDXBETA=name
specifies the estimated standard error of the linear predictor estimator.

SURVIVAL=name

SDF=name
specifies the estimated survival function (S.t/ D ŒS0.t/�

exp.z0ˇ/). Specifying
SURVIVAL=_ALL_ is equivalent to specifying SURVIVAL=Survival, STDERR=StdErrSurvival,
LOWER=LowerSurvival, and UPPER=UpperSurvival.

UPPER=name

U=name

UPPERSDF=name
specifies the upper pointwise confidence limit for the survival function. The confidence level is
determined by the ALPHA= option.

UPPERCUMHAZ=name
specifies the upper pointwise confidence limit for the cumulative hazard function. The confidence
level is determined by the ALPHA= option.
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XBETA=name
specifies the estimate of the linear predictor z0ˇ. If there is an offset, it is added to the predictor.

You can specify the following options after a slash (/).

ALPHA=value
specifies the level of the confidence interval for the survival function. The value must be between 0
and 1. The default is the value of the ALPHA= option in the PROC ICPHREG statement, or 0.05 if
that option is not specified.

CLTYPE=method

CITYPE=method

TYPE=method

CLTRANSFORM=method

TRANSFORM=method
specifies the transformation that is used to compute the confidence limits for S.t; z/, which is the
survival function for a subject that has a fixed covariate vector z at event time t. You can specify the
following methods:

LOG
uses normal theory approximation to compute the confidence limits for log.S.t; z//. The confi-
dence limits for S.t; z/ are obtained by back-transforming the confidence limits for log.S.t; z//.

LOGLOG
uses normal theory approximation to compute the confidence limits for the log.� log.S.t; z///.
The confidence limits for S.t; z/ are obtained by back-transforming the confidence limits for
log.� log.S.t; z///.

NORMAL

IDENTITY

LINEAR

PLAIN

DIRECT
uses normal theory approximation to compute the confidence limits for S.t; z/.

By default, CLTYPE=LOG.

GROUP=variable
names a variable whose values identify or group the predicted curves. The variable must be a numeric
variable in the COVARIATES= data set. Survival curves for observations that have the same value of
the variable are overlaid in the same plot.
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ROWID=variable

ID=variable

ROW=variable
names a variable in the COVARIATES= data set for identifying plotted survival functions and cumula-
tive hazard functions. This option has no effect if the PLOTS= option in the PROC ICPHREG statement
is not specified. Values of this variable are used to label the plotted functions for the corresponding
rows in the COVARIATES= data set. You can specify ROWID=_OBS_ to use the observation numbers
in the COVARIATES= data set for identification.

BY Statement
BY variables ;

You can specify a BY statement with PROC ICPHREG to obtain separate analyses of observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the ICPHREG procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

CLASS Statement
CLASS variable < (options) > . . . < variable < (options) > > < / global-options > ;

The CLASS statement names the classification variables to be used as explanatory variables in the analysis.

The CLASS statement must precede the MODEL statement. Most options can be specified either as individual
variable options or as global-options. You can specify options for each variable by enclosing the options in
parentheses after the variable name. You can also specify global-options for the CLASS statement by placing
them after a slash (/). Global-options are applied to all the variables specified in the CLASS statement. If you
specify more than one CLASS statement, the global-options specified in any one CLASS statement apply to
all CLASS statements. However, individual CLASS variable options override the global-options. You can
specify the following values for either an option or a global-option:
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CPREFIX=n
specifies that, at most, the first n characters of a CLASS variable name be used in creating names for
the corresponding design variables. The default is 32 �min.32;max.2; f //, where f is the formatted
length of the CLASS variable.

DESCENDING

DESC
reverses the sort order of the classification variable. If both the DESCENDING and ORDER= options
are specified, PROC ICPHREG orders the categories according to the ORDER= option and then
reverses that order.

LPREFIX=n
specifies that, at most, the first n characters of a CLASS variable label be used in creating labels for the
corresponding design variables. The default is 256 �min.256;max.2; f //, where f is the formatted
length of the CLASS variable.

MISSING
treats missing values (., ._, .A, . . . , .Z for numeric variables and blanks for character variables) as valid
values for the CLASS variable.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of classification variables. This ordering determines which param-
eters in the model correspond to each level in the data, so the ORDER= option can be useful when you
use the HAZARDRATIO statement. By default, ORDER=FORMATTED. For ORDER=FORMATTED
and ORDER=INTERNAL, the sort order is machine-dependent. When ORDER=FORMATTED is in
effect for numeric variables for which you have supplied no explicit format, the levels are ordered by
their internal values.

The following table shows how PROC ICPHREG interprets values of the ORDER= option.

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set
FORMATTED External formatted values, except for numeric

variables with no explicit format, which are sorted
by their unformatted (internal) values

FREQ Descending frequency count; levels with more
observations come earlier in the order

INTERNAL Unformatted value

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

PARAM=keyword
specifies the parameterization method for the classification variable or variables. You can specify any
of the keywords shown in the following table.

Design matrix columns are created from CLASS variables according to the corresponding coding
schemes:
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Value of PARAM= Coding

EFFECT Effect coding

GLM Less-than-full-rank reference cell coding (this
keyword can be used only in a global option)

ORDINAL
THERMOMETER

Cumulative parameterization for an ordinal
CLASS variable

POLYNOMIAL
POLY

Polynomial coding

REFERENCE
REF

Reference cell coding

ORTHEFFECT Orthogonalizes PARAM=EFFECT coding

ORTHORDINAL
ORTHOTHERM

Orthogonalizes PARAM=ORDINAL coding

ORTHPOLY Orthogonalizes PARAM=POLYNOMIAL coding

ORTHREF Orthogonalizes PARAM=REFERENCE coding

All parameterizations are full rank, except for the GLM parameterization. The REF= option in the
CLASS statement determines the reference level for EFFECT and REFERENCE coding and for their
orthogonal parameterizations. It also indirectly determines the reference level for a singular GLM
parameterization through the order of levels.

If PARAM=ORTHPOLY or PARAM=POLY and the classification variable is numeric, then the
ORDER= option in the CLASS statement is ignored, and the internal unformatted values are used. See
the section “Other Parameterizations” on page 391 in Chapter 19, “Shared Concepts and Topics,” for
further details.

REF=’level’ | keyword
specifies the reference level for PARAM=EFFECT, PARAM=REFERENCE, and their orthogonaliza-
tions. For PARAM=GLM, the REF= option specifies a level of the classification variable to be put at
the end of the list of levels. This level thus corresponds to the reference level in the usual interpretation
of the linear estimates with a singular parameterization.

For an individual variable REF= option (but not for a global REF= option), you can specify the level
of the variable to use as the reference level. Specify the formatted value of the variable if a format is
assigned. For a global or individual variable REF= option, you can use one of the following keywords.
The default is REF=LAST.

FIRST designates the first ordered level as reference.

LAST designates the last ordered level as reference.

TRUNCATE< =n >
specifies the length n of CLASS variable values to use in determining CLASS variable levels. The
default is to use the full formatted length of the CLASS variable. If you specify TRUNCATE without
the length n, the first 16 characters of the formatted values are used. When formatted values are longer
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than 16 characters, you can use this option to revert to the levels as determined in releases before SAS
9. The TRUNCATE option is available only as a global option.

Class Variable Default Parameterization

If you do not specify the PARAM= option, the default PARAM=GLM parameterization is used.

Class Variable Naming Convention

Parameter names for a CLASS predictor variable are constructed by concatenating the CLASS variable name
with the CLASS levels. However, for the POLYNOMIAL and orthogonal parameterizations, parameter
names are formed by concatenating the CLASS variable name and keywords that reflect the parameterization.
See the section “Other Parameterizations” on page 391 in Chapter 19, “Shared Concepts and Topics,” for
examples and further details.

Class Variable Parameterization with Unbalanced Designs

PROC ICPHREG initially parameterizes the CLASS variables by looking at the levels of the variables across
the complete data set. If you have an unbalanced replication of levels across variables or BY groups, then
the design matrix and the parameter interpretation might be different from what you expect. For instance,
suppose you have a model with one CLASS variable A with three levels (1, 2, and 3), and another CLASS
variable B with two levels (1 and 2). If the third level of A occurs only with the first level of B, if you use the
EFFECT parameterization, and if your model contains the effect A(B) and an intercept, then the design for A
within the second level of B is not a differential effect. In particular, the design looks like the following:

Design Matrix
A(B=1) A(B=2)

B A A1 A2 A1 A2

1 1 1 0 0 0
1 2 0 1 0 0
1 3 –1 –1 0 0
2 1 0 0 1 0
2 2 0 0 0 1

PROC ICPHREG detects linear dependency among the last two design variables and sets the parameter for
A2(B=2) to zero, resulting in an interpretation of these parameters as if they were reference- or dummy-coded.
The REFERENCE or GLM parameterization might be more appropriate for such problems.

FREQ Statement
FREQ variable < / option > ;

The FREQ statement identifies the variable (in the input data set) that contains the frequency of occurrence
of each observation. PROC ICPHREG treats each observation as if it appears n times, where n is the value of
the FREQ variable for the observation. If the frequency value is not an integer, it is truncated to an integer. If
the frequency value is missing, the observation is not used in the estimation of the regression coefficients.

You can specify the following option after a slash (/):
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NOTRUNCATE

NOTRUNC
specifies that frequency values are not truncated to integers.

HAZARDRATIO Statement
HAZARDRATIO < 'label ' > variable < / options > ;

The HAZARDRATIO statement enables you to request hazard ratios for any variable in the model at
customized settings. For example, if the model contains the interaction of a CLASS variable A and a
continuous variable X, the following specification displays a table of hazard ratios that compares the hazards
of each pair of levels of A at X = 3:

hazardratio A / at (X=3);

The HAZARDRATIO statement identifies the variable whose hazard ratios are to be evaluated. If the variable
is a continuous variable, the hazard ratio compares the hazards for a particular change (by default, an increase
of 1 unit) in the variable. For a CLASS variable, a hazard ratio compares the hazards of two levels of the
variable. You can specify more than one HAZARDRATIO statement, and you can provide an optional label
(specified as a quoted string) to identify the output.

Table 51.4 summarizes the options that you can specify in the HAZARDRATIO statement.

Table 51.4 HAZARDRATIO Statement Options

Option Description

ALPHA= Specifies the alpha level
AT Specifies the variables that interact with the variable of interest
DIFF= Specifies which differences to consider
E Displays the log-hazard ratio
UNITS= Specifies the units of change for a continuous variable of interest

You can specify the following options after a slash (/).

ALPHA=number
specifies the level of confidence intervals for the hazard ratios. The number must be between 0 and
1. The default is the value of the ALPHA= option in the PROC ICPHREG statement, or 0.05 if that
option is not specified.

AT (variable=ALL | REF | list < . . . variable=ALL | REF | list > )
specifies the variables that interact with the variable of interest and the corresponding values of the
interacting variables. If the interacting variable is continuous and you specify a numeric list after the
equal sign, hazard ratios are computed for each value in the list. If the interacting variable is a CLASS
variable, you can specify, after the equal sign, a list of quoted strings that correspond to various levels
of the CLASS variable, or you can specify the keyword ALL or REF. Hazard ratios are computed at
each value of the list if you specify a list , at each level of the interacting variable if you specify ALL,
or at the reference level of the interacting variable if you specify REF.
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If you do not specify the AT option, PROC ICPHREG finds all the variables that interact with the
variable of interest. If an interacting variable is a CLASS variable, variable=ALL is the default; if the
interacting variable is continuous, variable=m is the default, where m is the average of all the sampled
values of the continuous variable.

Suppose the model contains two interactions: an interaction A*B of CLASS variables A and B, and
another interaction A*X of A with a continuous variable X. If 3.5 is the average of the sampled values
of X, the following two HAZARDRATIO statements are equivalent:

hazardratio A;
hazardratio A / at (B=ALL X=3.5);

DIFF=diff-request
specifies which differences to consider for the level comparisons of a CLASS variable. This option
is ignored in the estimation of hazard ratios for a continuous variable. You can specify the following
diff-requests:

DISTINCT

DISTINCTPAIRS

ALL
requests all comparisons of only the distinct combinations of pairs.

PAIRWISE

PERM

PERMUTATIONS
requests all possible pairwise comparisons of levels.

REF

REFERENCE
requests comparisons between the reference level and all other levels of the CLASS variable.

For example, let A be a CLASS variable that has three levels (A1, A2, and A3), and suppose A3 is
specified as the reference level. The following table shows the hazard ratios that are displayed for the
three alternatives of the DIFF= option:

Hazard Ratios Displayed
DIFF=option A1 vs A2 A2 vs A1 A1 vs A3 A3 vs A1 A2 vs A3 A3 vs A2

DISTINCT
p p p

PAIRWISE
p p p p p p

REF
p p

By default, DIFF=DISTINCT.

E
displays the vector h of linear coefficients such that h0ˇ is the log-hazard ratio, where ˇ is the vector
of regression coefficients.
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UNITS=value
specifies the units of change in the continuous explanatory variable for which the customized hazard
ratio is estimated. By default, UNITS=1. This option is ignored in the computation of the hazard ratios
for a CLASS variable.

MODEL Statement
MODEL (t1, t2)= effects < / options > ;

The MODEL statement identifies the variables to be used as the failure-time variables and the explanatory
effects, including covariates, main effects, interactions, nested effects. For more information, see the section
“Specification of Effects” on page 3453 in Chapter 45, “The GLM Procedure.”

The MODEL syntax specifies two variables, t1 and t2, that contain values of the endpoints of the censoring
interval. Only nonnegative values are accepted. If the two values are the same (and not missing), it is assumed
that there is no censoring and the actual response value is observed. If the lower value is missing, then the
upper value is used as a left-censored value. If the upper value is missing, then the lower value is used as a
right-censored value. If both values are present and the lower value is less than the upper value, it is assumed
that the values specify a censoring interval. If the lower value is greater than the upper value or both values
are missing, then the observation is not used in the analysis.

The following table summarizes the ways of specifying censoring.

Lower Value Upper Value Comparison Interpretation
Not missing Not missing Equal No censoring

Not missing Not missing Lower < upper Censoring interval

Missing Not missing Upper used as left-
censoring value

Not missing Missing Lower used as right-
censoring value

Not missing Not missing Lower > upper Observation not used

Missing Missing Observation not used

Table 51.5 summarizes the options that you can specify in the MODEL statement.

Table 51.5 MODEL Statement Options

Option Description

Model Specification Options
ALPHA= Specifies the confidence level
BASE= Specifies the functional form for the baseline function
NOPOLISH Suppresses polishing of parameter estimates of the hazard function
OFFSET= Specifies an offset variable to be added to the linear predictor
HAZSCALE= Requests parameterization of the hazard function in the original scale or in

log scale
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Table 51.5 continued

Option Description

Output Options
CORRB Displays the estimated correlation matrix
COVB Displays the estimated covariance matrix

ALPHA=value
specifies the level for the confidence intervals for parameters. The value must be between 0 and 1. By
default, ALPHA=0.05.

CORRB
displays the estimated correlation matrix of the parameter estimates.

COVB
displays the estimated covariance matrix of the parameter estimates.

BASE=baseline-type

BASEHAZ=baseline-type

B=baseline-type
specifies a functional form for the baseline function. You can specify one of the following baseline-
types:

PCH (< NINTERVAL=number >, < INTERVALS=(numeric-list) >)

PIECEWISE (< NINTERVAL=number >, < INTERVALS=(numeric-list) >)

PIECEWISEEXPONENTIAL (< NINTERVAL=number >, < INTERVALS=(numeric-list) >)

PCBH (< NINTERVAL=number >, < INTERVALS=(numeric-list) >)
partitions the time scale into disjoint intervals and assumes the baseline hazard function is piece-
wise constant within intervals. The parameters are the piecewise constant values of the baseline
hazard functions and are named Haz1, Haz2, : : :, and so on. If HAZARDSCALE=LOGHAZ is
specified, the names are LogHaz1, LogHaz2, : : :, and so on.

You can specify one of the following two options to control how to partition the time axis into
intervals of constant baseline hazards:

NINTERVAL=number

N=number
specifies the number of intervals that have a constant hazard rate in each interval. PROC
ICPHREG partitions the time axis into the number of intervals so that each interval contains
an approximately equal number of unique boundary values and imputed middle points.

INTERVALS=(numeric-list)

INTERVAL=(numeric-list)
specifies a list of numbers that partition the time axis into disjoint intervals that have constant
hazard rate in each interval. For example, INTERVALS=(100, 150, 200, 250, 300) specifies
a model that has a constant hazard in the intervals [0,100), [100,150), [150,200), [200,250),
[250,300), and [300,1).

If you specify neither NINTERVAL= nor INTERVAL=, NINTERVAL=5 by default.
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SPLINES (< DF=number >)

CUBICSPLINES (< DF=number >)
models the baseline cumulative hazard function by cubic splines (Royston and Parmar 2002).
The parameters are the spline coefficients and are named Coef1, Coef2, : : :, and so on.

You can specify the degrees of freedom in the DF=number option, where number must be an
integer. The number of knots equals number plus one. The actual positions of the knots are
determined from an imputed data set as follows. First, PROC ICPHREG imputes a middle point
for each observation in the input data set that is not right-censored. Then, it sorts these imputed
times and the input boundary values in increasing order and selects only unique values. PROC
ICPHREG places the terminal knots at the minimum and maximum of this sequence and chooses
the interval knots by using the same method it uses to choose the break points for the piecewise
constant model. For more information, see the section “Choosing Break Points” on page 3964.

By default, DF=2.

If you do not specify the BASEHAZ= option, the ICPHREG procedure fits a piecewise constant model
as if NINTERVAL=5.

NOPOLISH
suppresses polishing of parameter estimates of the baseline function. Occasionally, the parameter
estimates of the baseline function can reach the default optimization lower bounds. This might indicate
that the model is overparameterized. By default, the ICPHREG procedure “polishes” the hazard
estimates by fixing these parameters at the lower bound value and refitting the model.

The lower bound values are set 0 if the baseline parameters are on the original scale (HAZS-
CALE=HAZARD). The values are set to –10.0 if they are on the log scale (HAZSCALE=LOGHAZ).

This option does not apply to the cubic spline model because its baseline parameters are unbounded.

OFFSET=variable
specifies a variable in the input data set to be used as an offset variable. This variable cannot be a
CLASS variable, the response variable, or any of the explanatory variables.

HAZSCALE=hazard-type
specifies a transformation to be applied to the baseline parameters for fitting the piecewise constant
model. You can choose either of the following two options:

LOGHAZ

LOG

LOGHAZARD
uses the log transformed baseline parameters.

HAZARD

HAZ
does not transform the baseline parameters. A lower bound of 0 is used for fitting the models.

This option does not apply to the cubic spline model.
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TEST Statement
TEST < model-effects > < / options > ;

The TEST statement enables you to perform Wald tests for model effects that test Type I, Type II, or Type
III hypotheses. For more information about constructing of Type I, II, and III estimable functions, see
Chapter 15, “The Four Types of Estimable Functions.”

Table 51.6 summarizes the options that you can specify in the TEST statement.

Table 51.6 TEST Statement Options

Option Description

E Requests Type I, Type II, and Type III coefficients
E1 Requests Type I coefficients
E2 Requests Type II coefficients
E3 Requests Type III coefficients
HTYPE= Indicates the type of hypothesis test to perform

For information about the syntax of the TEST statement, see the section “TEST Statement” on page 509 in
Chapter 19, “Shared Concepts and Topics.”

Details: ICPHREG Procedure

Model and Likelihood
Suppose that the observations to be analyzed consist of interval-censored outcomes fŒLi ; Ri �IZig, i D
1; :::; n, where n is the number of subjects. Zi denotes a p-dimensional vector of covariates for the ith subject.
This notation allows for exact event times, right-censored data and left-censored data as special cases. When
Li D Ri , the observation is an exact time; when Ri D1, the observation is right-censored; when Li D 0,
the observation is left-censored.

Let S.t IZi / denote the survival function for a subject whose covariate is Zi . Assuming that t is continuous,
denote f .t IZi / as the density function for the subject. The hazard function for the subject, �.t IZi /, is
defined as the instantaneous failure rate at time t. Mathematically, the hazard function is determined as a
ratio between the density function and the survival function:

�.t IZi / D f .t IZi /=S.t IZi /

A quantity that is closely related to the survival function is the cumulative hazard function, defined as

ƒ.t IZi / D
Z t

0

�.uIZi /du

In turn, the cumulative hazard function determines the survival function:

S.t IZi / D exp.�ƒ.t IZi //
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If some of the responses are left-, right-, or interval-censored, the log likelihood can be written as

log.L/ D
X

log Œf .Li IZi /�C
X

log ŒS.Li IZi /�

C

X
log Œ1 � S.Ri IZi /�C

X
log ŒS.Li IZi / � S.Ri IZi /�

where the first sum is the total of the uncensored observations, the second sum is the total of the right-censored
observations, the third sum is the total of the left-censored observations, and the last sum is the total of the
interval-censored observations.

For the ith subject, the proportional hazards model (Cox 1972) assumes that

�.t IZi / D �0.t/ exp.Z0iˇ/

where ˇ is a p-dimensional vector of coefficients for the covariate vector Zi and �0.t/ is the baseline hazard
function, which is the hazard rate when all the coefficients for the covariates are equal to 0.

Under the proportional hazards model, the cumulative hazard function for the ith subject is

ƒ.t IZi / D
Z t

0

�.uIZi /du D
Z t

0

�0.u/du exp.Z0iˇ/ D ƒ0.t/ exp.Z
0
iˇ/

The survival function for the ith subject is

S.t IZi / D expŒ�ƒ.t IZi /� D S0.t/exp.Z
0

iˇ/

where S0.t/ denotes the baseline survival function and S0.t/ D expŒ�ƒ0.t/�.

The density function for the subject is obtained by differentiating the survival function:

f .t IZi / D �
S.t IZi /
dt

D �.t IZi /S.t IZi / D �0.t/ exp.Z0iˇ/S0.t/
exp.Z0iˇ/

Given these quantities, the likelihood function under the proportional hazards model can be expressed as

log.L/ D
X

log
h
�0.Li / exp.Z0iˇ/S0.Li /

exp.Z0iˇ/
i
C

X
log

h
S0.Li /

exp.Z0iˇ/
i

C

X
log

h
1 � S0.Ri /

exp.Z0iˇ/
i
C

X
log

h
S0.Li /

exp.Z0iˇ/ � S0.Ri /exp.Z
0

iˇ/
i

where the first sum is the total of the uncensored observations, the second sum is the total of the right-censored
observations, the third sum is the total of the left-censored observations, and the last sum is the total of the
interval-censored observations.

This likelihood function is often referred as the full likelihood as compared to the partial likelihood (Cox
1972) because it involves parameters for the baseline hazard function in addition to the regression coefficients
ˇ. The full likelihood is often used for analyzing interval-censored data because constructing a likelihood
function that contains only the regression coefficients as conveniently as the Cox partial likelihood does for
right-censored data is not straightforward (Finkelstein 1986).
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Baseline Parameterization
Because any one of the baseline hazard, cumulative hazard, and survival functions determines the others,
it is sufficient to parameterize one of them. For the baseline function, PROC ICPHREG supports the
parameterizations that are described in the following subsections.

Piecewise Constant Model

As its name suggests, the piecewise constant hazard rate model parameterizes the baseline hazard function as
a union of several disjoint intervals, within each of which the hazard rate is constant:

�0.t/ D rj if aj�1 � t < aj ; j D 1; : : : ; J

It follows that the baseline cumulative hazard function is

ƒ0.t/ D

JX
jD1

rj�j .t/

where

�j .t/ D

8<:
0 t < aj�1
t � aj�1 aj�1 � t < aj
aj � aj�1 t � aj

To produce a meaningful hazard function, the rj need to be bounded below by 0. Such a constraint can be
removed by transforming the parameters to a natural log scale:

˛j D log.rj /; j D 1; : : : ; J

PROC ICPHREG uses either the original or the transformed scale to fit piecewise constant models. You can
change the scale by using the HAZSCALE= option. By default, the original scale is used.

Cubic Splines Model

For the proportional hazards model, Royston and Parmar (2002) propose modeling the log of the baseline
cumulative hazard function in terms of natural cubic splines,

logŒƒ0.t/� D 0 C 1x C 2v1.x/C � � � C mC1vJ .x/

where x D log.t/ represents the time on a log scale. The vj are the basis functions, which are computed as

vj .x/ D .x � kj /
3
C � ej .x � kmin/

3
C � .1 � ej /.x � kmax/

3
C

where

ej D
kmax � kj

kmax � kmin
.x � a/C D max.0; x � a/

Here, kmin and kmax are two terminal knots, and k1 < � � � < kJ are m interval knots that are placed between
kmin and kmax. The degrees of freedom equals mC 1. When m D 0, the log of the baseline hazard becomes
0 C 1x, which corresponds to a common form of the Weibull model. When 1 D 1, the Weibull model
further reduces to the exponential model.
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Specification of Effects
Each term in a model is called an effect. You specify effects in the MODEL statement by using a special
notation that uses variable names and operators. There are two types of variables: classification ( CLASS)
variables and continuous variables. There are two primary types of operators: crossing and nesting. A third
type, the bar operator, is used to simplify effect specification.

Variables that identify classification levels are called CLASS variables in SAS and are identified in a CLASS
statement. These might also be called categorical, qualitative, discrete, or nominal variables. CLASS
variables can be either character or numeric. The values of CLASS variables are called levels. For example,
the CLASS variable Sex could have the levels “male” and “female.”

In a model, an explanatory variable that is not declared in a CLASS statement is assumed to be continuous.
Continuous variables must be numeric. For example, the heights and weights of subjects in an experiment
are continuous variables.

The following list shows types of effects that are often useful in practice, where A, B, and C are classification
variables and X1 and X2 are continuous variables:

• Regressor effects are specified by writing continuous variables by themselves: X1, X2.

• Polynomial effects are specified by joining two or more continuous variables with asterisks: X1*X2.

• Main effects are specified by writing classification variables by themselves: A, B, C.

• Crossed effects (interactions) are specified by using asterisks to join two or more classification variables:
A*B, B*C, A*B*C.

• Nested effects are specified by following a main effect or crossed effect with a classification variable or
list of classification variables that are enclosed in parentheses: B(A), C(B A), A*B(C). In the preceding
example, B(A) is “B nested within A.”

• Combinations of continuous and classification variables can be specified in the same way by using the
crossing and nesting operators.

The bar operator uses a vertical bar (|) to join two effects. The bar operator is shorthand notation for including
the left-hand side, the right-hand side, and the cross between them as effects in the model. For example, A |
B is equivalent to A B A*B. The effects that are joined by the bar operator can be classification variables,
continuous variables, or combinations of effects that are defined by using operators. Multiple bars are
permitted. For example, A | B | C means A B C A*B A*C B*C A*B*C.

You can specify the maximum number of variables in any effect that results from bar evaluation by specifying
the maximum number, preceded by an @ sign. For example, A | B | C@2 results in effects that involve two or
fewer variables: A B C A*B A*C B*C.
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Computational Details

Design Matrix

The linear predictor part of a proportional hazards model is

� D Z0ˇ

where ˇ is a vector of unknown regression coefficients and Z is a known design matrix. The ordering of these
parameters is displayed in the “CLASS Level Information” table and in tables that display the parameter
estimates of the fitted model.

When you use the PARAM=GLM option in the CLASS statement to specify an overparameterized model,
some columns of Z can be linearly dependent on other columns. For example, when you specify a model that
consists of a classification variable, the column that corresponds to any one of the levels of the classification
variable is linearly dependent on the other columns of Z. The columns of Z0Z are checked in the order in
which the model is specified for dependence on preceding columns. If a dependency is found, the parameter
that corresponds to the dependent column and its standard error are set to 0 to indicate that it is not estimated.
The test for linear dependence is controlled by the SINGULAR= option in the MODEL statement. You can
use the ORDER= option in the CLASS statement to specify the order in which the levels of a classification
variable are checked for dependencies. For full-rank parameterizations, the columns of the Z matrix are
designed to be linearly independent.

Initial Values

The initial values of the regression coefficients ˇ are all set to 0.

For the piecewise constant model, the initial values of the hazard parameters are set equal to the exponential
rate that is estimated from an imputed data set. The data set is obtained by imputing a middle point for the
interval-censored and left-censored observations while retaining the right-censored and exact observations.
For the cubic spline model, the first spline coefficient, 0, is set to be the log of the exponential rate estimated
with the previous imputed data, and the second spline coefficient, 1, is set to 1. The remaining spline
coefficients, if there are any, are set to 0.

Maximum Likelihood Estimation

By default, the ICPHREG procedure uses a Newton-Raphson algorithm to maximize the log-likelihood
function with respect to the parameters.

Denote the set of parameters that need to be estimated as ! D f!j g, which consists of the parameters
that determine baseline hazard function ƒ0.t/ and the regression coefficients ˇ. On the rth iteration, the
algorithm updates the parameter vector !r with

!rC1 D !r �H�1g

where H is the Hessian (second derivative) matrix, and g is the gradient (first derivative) vector of the
log-likelihood function, both evaluated at the current value of the parameter vector. That is,

g D Œgj � D
�
@l

@!j

�
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and

H D Œhij � D
�

@2l

@!i@!j

�

The ICPHREG procedure also supports other optimization methods, such as quasi-Newton and Newton-
Raphson with ridging. These methods are described in the section “Choosing an Optimization Algorithm” on
page 501 in Chapter 19, “Shared Concepts and Topics.”

Covariance and Correlation Matrix

The estimated covariance matrix of the parameter estimator is

† D �H�1

where H is the Hessian matrix that is evaluated using the parameter estimates on the last iteration. If some
parameters in the baseline function are held fixed, they are not incorporated in H. Rows and columns that
correspond to aliased parameters are not included in †.

The correlation matrix is the normalized covariance matrix. That is, if �ij is an element of †, then the
corresponding element of the correlation matrix is �ij =�i�j , where �i D

p
�i i .

Choosing Break Points

There are no obvious ways to choose break points for parameterizing the baseline function in terms of a
piecewise constant function or a cubic spline curve. For right-censored data, PROC PHREG chooses a set of
points such that the resulting time intervals contain approximately equal numbers of event times. This is
difficult for interval-censored data because event times are not fully observed. Friedman (1982) recommends
choosing the points so that the expected number of events is comparable among the time intervals. For an
interval-censored spline model, Cai and Betensky (2003) propose an ad hoc approach that uses the quantile
values of the unique time points among fLi ; Ri ; .Li CRi /=2; i D 1; :::; ng for choosing the knot values.

Ibrahim, Chen, and Sinha (2001) propose the equally spaced quantile partition (ESQP) method for selecting
break points in the right-censored data to fit the piecewise constant model. Suppose there are Q break points
to be determined. The ICPHREG procedure modifies this method to handle interval-censored data. First, it
imputes a middle point for each observation that is not right-censored. Then, it merges these values with the
observed boundary values in the input data set, except for the right-censored observations. Next, it sorts these
values in increasing order.

Suppose the unique values of the sorted sequence are u1 < u2 < � � � < uM . First, PROC ICPHREG
computes the targeted quantile for each break point as qj D j=.QC 1/.j D 1; � � � ;Q/. Then, it chooses
the point umC1, where m equals the integer part of the product qjM . If qjM is already an integer, then
the chosen break point is set to be .um C umC1/=2. When there are no ties in the sorted sequence for
right-censored data, this method is identical to the original ESQP method.

Fit Statistics

Suppose that the model contains q estimated parameters and that n observations are used in model fitting.
The fit criteria displayed by the ICPHREG procedure are calculated as follows:
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• –2 log likelihood:

�2log.L/

where L is the maximized likelihood for the model.

• Akaike’s information criterion:

AIC D �2log.L/C 2q

• corrected Akaike’s information criterion:

AICC D AICC
2q.q C 1/

n � q � 1

• Bayesian information criterion:

BIC D �2log.L/C q log.n/

For more information about AIC and BIC, see Akaike (1981, 1979). For a discussion of using AIC, AICC,
and BIC in statistical modeling, see Simonoff (2003).

Predicted Values
Given a new vector of covariates Znew, the linear predictor is computed as O�Znew

D Z0new Ǒ, where Ǒ is the
maximum likelihood estimate of ˇ. The variance of O�Znew

is estimated by

O�2Znew
D Z0new† ǑZnew

where † Ǒ denotes the estimated covariance matrix for Ǒ.

Suppose the estimated baseline hazard is Oƒ0.t/. Given Znew, the cumulative hazard function can be predicted
by

Oƒ.t IZnew/ D Oƒ0.t/e
Z0new Ǒ

Denote the vector of parameters that is used for obtaining Oƒ0.t/ as �. It is apparent that � \ ˇ D ;. The
vector of parameters that need to be estimated can be represented as ! D .ˇ;�/.

The variance of Oƒ.t IZnew/ can be estimated by applying the delta method:

O�2. Oƒ.t IZnew// D P.t; O!/
0†P.t; O!/

where

P.t;!/ D
@ƒ.t IZnew/

@!

and † denotes the estimated covariance matrix for O!.
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Given Znew, the predicted survival function is estimated by

OS.t IZnew/ D exp. Oƒ.t IZnew//

The standard error of OS.t IZnew/ can be conveniently estimated by an application of the delta method:

O�. OS.t IZnew// D OS.t IZnew/ O�. Oƒ.t IZnew//

By default, a natural log transformation is applied to obtain the pointwise confidence limits for S.t IZnew/

and ƒ.t IZnew/. You can use the CLTYPE= option to specify a different transformation for S.t IZnew/.

Hazard Ratios
Consider a dichotomous risk factor variable X that takes the value 1 if the risk factor is present and 0 if the
risk factor is absent. The log-hazard function is

logŒ�.t jX/� D logŒ�0.t/�C ˇ1X

where �0.t/ is the baseline hazard function.

The hazard ratio  is defined as the ratio of the hazard for those who have the risk factor (X = 1) to the hazard
for those who do not have the risk factor (X = 0). The log of the hazard ratio is

log. / � logŒ .X D 1;X D 0/� D logŒ�.t jX D 1/� � logŒ�.t jX D 0/� D ˇ1

In general, the hazard ratio can be computed by exponentiating the difference of the log-hazard between any
two population profiles. This is the approach taken by the HAZARDRATIO statement, so the computations
are available regardless of parameterization, interactions, and nestings. However, as shown in the preceding
equation for log. /, hazard ratios of main effects can be computed as functions of the parameter estimates.
The remainder of this section is concerned with this methodology.

The parameter ˇ1 that is associated with X represents the change in the log-hazard from X = 0 to X = 1. So
the hazard ratio is obtained by simply exponentiating the value of the parameter that is associated with the
risk factor. The hazard ratio indicates how the hazard changes as you change X from 0 to 1. For example,
 D 2 means that the hazard when X = 1 is twice the hazard when X = 0.

Suppose the values of the dichotomous risk factor are coded as constants a and b instead of 0 and 1. The
hazard when X D a becomes �.t/ exp.aˇ1/, and the hazard when X D b becomes �.t/ exp.bˇ1/. The
hazard ratio that corresponds to an increase in X from a to b is

 D expŒ.b � a/ˇ1� D Œexp.ˇ1/�b�a � Œexp.ˇ1/�c

Note that for any a and b such that c D b � a D 1;  D exp.ˇ1/. So the hazard ratio can be interpreted as
the change in the hazard for any increase of one unit in the corresponding risk factor. However, the change in
hazard for some amount other than one unit is often of greater interest. For example, a change of one pound
in body weight might be too small to be considered important, whereas a change of 10 pounds might be more
meaningful. The hazard ratio for a change in X from a to b is estimated by raising the hazard ratio estimate
for a unit change in X to the power of c D b � a as shown previously.
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For a polytomous risk factor, the computation of hazard ratios depends on how the risk factor is parameterized.
For illustration, suppose that Cell is a risk factor that has four categories: Adeno, Large, Small, and Squamous.

For the effect parameterization scheme (PARAM=EFFECT) with Squamous as the reference group, the
design variables for Cell are as follows:

Design Variables
Cell X1 X2 X3

Adeno 1 0 0
Large 0 1 0
Small 0 0 1
Squamous –1 –1 –1

The log-hazard for Adeno is

logŒ�.t jAdeno/� D logŒ�0.t/�C ˇ1.X1 D 1/C ˇ2.X2 D 0/C ˇ3.X3 D 0/
D �0.t/C ˇ1

The log-hazard for Squamous is

logŒ�.t jSquamous/� D logŒ�0.t/�C ˇ1.X1 D �1/C ˇ2.X2 D �1/C ˇ3.X3 D �1//
D logŒ�0.t/� � ˇ1 � ˇ2 � ˇ3

Therefore, the log-hazard ratio of Adeno versus Squamous

logŒ .Adeno;Squamous/� D logŒ�.t jAdeno/� � logŒ�.t jSquamous/�

D 2ˇ1 C ˇ2 C ˇ3

For the reference cell parameterization scheme (PARAM=REF) in which Squamous is the reference cell, the
design variables for Cell are as follows:

Design Variables
Cell X1 X2 X3

Adeno 1 0 0
Large 0 1 0
Small 0 0 1
Squamous 0 0 0

The log-hazard ratio of Adeno versus Squamous is

log. .Adeno;Squamous//

D logŒ�.t jAdeno/� � logŒ�.t jSquamous/�

D .logŒ�0.t/�C ˇ1.X1 D 1/C ˇ2.X2 D 0/C ˇ3.X3 D 0// �
.logŒ�0.t/�C ˇ1.X1 D 0/C ˇ2.X2 D 0/C ˇ3.X3 D 0//

D ˇ1
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For the GLM parameterization scheme (PARAM=GLM), the design variables are as follows:

Design Variables
Cell X1 X2 X3 X4

Adeno 1 0 0 0
Large 0 1 0 0
Small 0 0 1 0
Squamous 0 0 0 1

The log-hazard ratio of Adeno versus Squamous is

log. .Adeno;Squamous//

D logŒ�.t jAdeno/� � logŒ�.t jSquamous/�

D logŒ�0.t/�C ˇ1.X1 D 1/C ˇ2.X2 D 0/C ˇ3.X3 D 0/C ˇ4.X4 D 0// �
.log.�0.t//C ˇ1.X1 D 0/C ˇ2.X2 D 0/C ˇ3.X3 D 0/C ˇ4.X4 D 1//

D ˇ1 � ˇ4

Consider Cell as the only risk factor. The computation of the hazard ratio of Adeno versus Squamous for
various parameterization schemes is shown in Table 51.7.

Table 51.7 Hazard Ratio of Adeno to Squamous

Parameter Estimates
PARAM= Ǒ

1
Ǒ
2

Ǒ
3

Ǒ
4 Hazard Ratio Estimates

EFFECT 0.5772 –0.2115 0.2454 exp.2 � 0:5772 � 0:2115C 0:2454/ D 3:281
REF 1.8830 0.3996 0.8565 exp.1:8830/ D 3:281
GLM 1.8830 0.3996 0.8565 0.0000 exp.1:8830/ D 3:281

The fact that the log-hazard ratio (log. /) is a linear function of the parameters enables the HAZARDRATIO
statement to compute the hazard ratio of the main effect even in the presence of interactions and nest effects.

To customize hazard ratios for specific units of change for a continuous risk factor, you can use the UNITS=
option in a HAZARDRATIO statement to specify a list of relevant units for each explanatory variable in
the model. Estimates of these customized hazard ratios are shown in a separate table. Let .Vj ; Uj / be a
confidence interval for log. /. The corresponding lower and upper confidence limits for the customized
hazard ratio exp.cˇj / are exp.cVj / and exp.cUj /, respectively for c > 0, or exp.cUj / and exp.cVj /,
respectively for c < 0.

Let ej be the jth unit vector—that is, the jth entry of the vector is 1 and all other entries are 0. The hazard
ratio for the explanatory variable with regression coefficient ˇj D e0jˇ is defined as exp.ˇj /. In general, a
log-hazard ratio can be written as h0ˇ (a linear combination of the regression coefficients), and the hazard
ratio exp.h0ˇ/ is obtained by replacing ej with h.
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Point Estimate

The hazard ratio exp.e0jˇ/ is estimated by exp.e0j Ǒ/, where Ǒ is the maximum likelihood estimate of the
regression coefficients ˇ.

Wald’s Confidence Limits

The 100.1 � ˛/% confidence limits for the hazard ratio are calculated as

exp
�
e0j Ǒ ˙ z˛=2

q
e0j† Ǒej

�
where † Ǒ is estimated covariance matrix and z˛=2 is the 100.1 � ˛=2/ percentile point of the standard
normal distribution.

Input and Output Data Sets

OUT= Output Data Set in the BASELINE Statement

The OUT= data set in the BASELINE statement contains all the variables in the COVARIATES= data set,
along with statistics you request by specifying keyword=name options. There are n observations in the OUT=
data set for each observation in the COVARIATES= data set, where n is the number of break points for the
fitted model.

Missing Values
Observations that contain a missing value for both the left boundary value and the right boundary value in the
response are not used in the analysis. If a FREQ variable value is missing or 0, the observation is not used.
If any explanatory variable that is specified in the MODEL statement has a missing value, that observation
is not used in the model fitting. Predicted values are computed for all observations that have no missing
explanatory variable values.

Displayed Output
PROC ICPHREG displays the following information as results of the model fitting.

Model Information

The “Model Information” table displays the two-level name of the input data set, the type of model fitted, the
parameterization type that is used for the baseline function, and the name and label of the dependent variables.
If you specify the FREQ statement, this table also displays the name and label of the frequency variable.
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Class Level Information

If you specify a CLASS statement, PROC ICPHREG outputs the “Class Level Information” table. This table
displays the design information for the classification variables when the parameterization is full rank.

Class Variable Levels

If you specify a CLASS statement, PROC ICPHREG outputs the “Class Variable Levels” table. This table
displays the levels of classification variables when the parameterization is not full rank.

Fit Statistics

The “Fit Statistics” table displays the negative of twice the log likelihood, Akaike’s information criterion
(AIC), the corrected Akaike’s information criterion (AICC), and the Bayesian information criterion (BIC).
This table is displayed by default.

Analysis of Maximum Likelihood Parameter Estimates

The “Analysis of Maximum Likelihood Parameter Estimates” table displays the parameter name, the degrees
of freedom for each parameter, the maximum likelihood estimate of each parameter, the estimated standard
error of the parameter estimator, confidence limits for each parameter, a chi-square statistic for testing
whether the parameter is 0, and the associated p-value for the statistic. This table is displayed by default.

Iteration History for Parameter Estimates

If you specify the ITHISTORY option in the PROC ICPHREG statement, the procedure outputs a table that
contains the following for each iteration in the iterative procedure for model fitting: the iteration number, the
negative of twice of the log likelihood, the gradient, and values of all parameters in the model.

Last Evaluation of the Gradient

If you specify the ITHISTORY option in the PROC ICPHREG statement, the procedure displays the last
evaluation of the gradient vector.

Last Evaluation of the Hessian

If you specify the ITHISTORY option in the PROC ICPHREG statement, the procedure displays the last
evaluation of the Hessian matrix.

Estimated Covariance Matrix

If you specify the COVB option in the MODEL statement, the procedure displays the estimated covariance
matrix. This matrix is defined as the inverse of the information matrix at the final iteration and is based on
the Hessian matrix that is used at the final iteration.

Estimated Correlation Matrix

If you specify the CORRB option in the MODEL statement, the procedure displays the estimated correlation
matrix, which is based on the Hessian matrix that is used at the final iteration.
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Hazard Ratios for label

If you specify the HAZARDRATIO statement, PROC ICPHREG outputs the “Hazard Ratios for label” table.
The table displays the estimate and confidence limits for each hazard ratio. The ODS name of the “Hazard
Ratios for label” table is HazardRatios.

Parameter Information

If you specify the ITHISTORY, COVB, or CORRB option in the MODEL statement, PROC ICPHREG outputs
the “Parameter Information” table. This table displays the names of the parameters and the corresponding
level information of effects that contain the CLASS variables. The ODS name of the “Parameter Information”
table is ParmInfo.

Constant Hazard Time Intervals

If a piecewise constant model is used (the default model), PROC ICPHREG outputs the “Constant Hazard
Time Intervals” table. This table displays information about the parameterization of the baseline function
under the piecewise constant model. The ODS name of the “Constant Hazard Time Intervals” table is
HazardParms.

Cubic Spline Parameters

If you fit a cubic spline model, PROC ICPHREG outputs the “Cubic Spline Parameters” table. This table
displays information about the parameterization of the baseline function under the cubic spline model. The
ODS name of the “Cubic Spline Parameters” table is HazardParms.

ODS Table Names
PROC ICPHREG assigns a name to each table it creates. You can use these names to refer to the table when
you use the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed in Table 51.8. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

Table 51.8 ODS Tables Produced by PROC ICPHREG

ODS Table Name Description Statement Option

ClassLevelInfo Design information for CLASS
variables

CLASS

ClassLevels Classification variables levels CLASS PARAM=GLM
ConvergenceStatus Convergence status MODEL
CorrB Parameter estimate correlation

matrix
MODEL CORRB

CovB Parameter estimate covariance
matrix

MODEL COVB

FitStatistics Fit statistics MODEL
HazardRatios Customized hazard ratio esti-

mates
HAZARDRATIO

LastGrad Last evaluation of the gradient PROC ITHISTORY
LastHess Last evaluation of the Hessian PROC ITHISTORY



3972 F Chapter 51: The ICPHREG Procedure

Table 51.8 continued

ODS Table Name Description Statement Option

IterHist Iteration history PROC ITHISTORY
ModelInfo Model and data information MODEL
NObs Number of observations MODEL
OptInfo Optimization Information MODEL
ParameterEstimates Parameter estimates MODEL
ParmInfo Regression effect names CLASS
HazardParms Baseline parameters MODEL

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

PROC ICPHREG assigns a name to each table that it creates. You can use these names to refer to the table
when you use the Output Delivery System (ODS) to select tables and create output data sets. These names
are listed separately in Table 51.9. For more information about ODS, see Chapter 20, “Using the Output
Delivery System.”

Table 51.9 Graphs Produced by PROC ICPHREG

ODS Graph Name Plot Description Statement Option

CumhazPlot Cumulative hazard func-
tion plot

PROC PLOTS=CUMHAZ

SurvivalPlot Survival function plot PROC PLOTS=SURVIVAL
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Examples: ICPHREG Procedure

Example 51.1: Fitting Cubic Spline Models
This example illustrates how to use a cubic spline baseline hazard to fit a proportional hazards model.

Consider the HIV data set in the section “Getting Started: ICPHREG Procedure” on page 3935. The following
statements request a cubic spline proportional hazards model and the hazard ratio between the two levels of
the Stage variable.

proc icphreg data=hiv;
class Stage / desc;
model (Left, Right) = Stage / basehaz=splines;
hazardratio Stage;

run;

Output 51.1.1 displays information about the fitted spline model.

Output 51.1.1 Model Information

The ICPHREG ProcedureThe ICPHREG Procedure

Model Information

Data Set WORK.HIV

Left Boundary Left

Right Boundary Right

Baseline Hazard Cubic Splines

If no suboption is specified for the spline model, PROC ICPHREG uses three knots, generating three spline
coefficients. Output 51.1.2 shows the selected knots.

Output 51.1.2 Cubic Spline Coefficients

Cubic Spline
Parameters

Coefficient Knot

Coef1 1

Coef2 11

Coef3 25

The table of parameter estimates for the spline model is displayed in Output 51.1.3.
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Output 51.1.3 Parameter Estimates for the Spline Model

Analysis of Maximum Likelihood Parameter Estimates

Effect Stage DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Coef1 1 -6.0630 3.2263 -12.3865 0.2605

Coef2 1 1.4921 2.2568 -2.9311 5.9152

Coef3 1 -0.3086 0.6708 -1.6233 1.0060

Stage 1 1 1.9016 0.6662 0.5959 3.2072 8.15 0.0043

Stage 0 0 0.0000

Output 51.1.4 shows the estimated hazard ratio between the two stages and the 95% confidence limits.

Output 51.1.4 Hazard Ratio Estimate for Stage Values 1 and 0

Hazard Ratios for Stage

Description
Point

Estimate

95%
Wald

Confidence
Limits

Stage 1 vs 0 6.697 1.815 24.711

The cubic spline model can be considered a generalization of the Weibull proportional hazards model. It
reduces to the Weibull model when there are only two knots, in which case the degrees of freedom is one
(DF=1). The Weibull model assumes that the cumulative hazard function is a straight line in the log time
scale whereas cubic splines offer a richer set of shapes that have more knots. The following statements fit the
spline model with DF=1:

proc icphreg data=hiv;
class Stage / desc;
model (Left, Right) = Stage / basehaz=splines(df=1);
hazardratio Stage;

run;

The “Fit Statistics” table is displayed in Output 51.1.5.

Output 51.1.5 Fit Statistics for the Spline Model When DF=1

The ICPHREG ProcedureThe ICPHREG Procedure

Fit Statistics

-2 Log Likelihood 30.025

AIC (Smaller is Better) 36.025

AICC (Smaller is Better) 36.914

BIC (Smaller is Better) 40.327

The table of parameter estimates for the fitted spline model is displayed in Output 51.1.6.
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Output 51.1.6 Parameter Estimates for the Spline Model When DF=1

Analysis of Maximum Likelihood Parameter Estimates

Effect Stage DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Coef1 1 -7.3481 2.4438 -12.1378 -2.5584

Coef2 1 2.5420 0.8974 0.7831 4.3008

Stage 1 1 1.8265 0.6132 0.6247 3.0283 8.87 0.0029

Stage 0 0 0.0000

You can request that PROC LIFEREG fit an accelerated failure lifetime model by using the default distribution
(Weibull). This would be equivalent to fitting the proportional hazards model by using a Weibull baseline
hazard (Klein and Moeschberger 1997). The following statements fit the Weibull model:

proc lifereg data=hiv;
class Stage;
model (Left, Right) = Stage;

run;

The table of fit statistics is displayed in Output 51.1.7.

Output 51.1.7 Fit Statistics That Are Produced by PROC LIFEREG

The LIFEREG ProcedureThe LIFEREG Procedure

Fit Statistics (Unlogged Response)

-2 Log Likelihood 30.025

Weibull AIC (smaller is better) 36.025

Weibull AICC (smaller is better) 36.914

Weibull BIC (smaller is better) 40.327

The table of parameter estimates for the Weibull model is displayed in Output 51.1.8.

Output 51.1.8 Parameter Estimates That Are Produced PROC LIFEREG

Analysis of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Intercept 1 2.1722 0.1791 1.8211 2.5233 147.06 <.0001

Stage 0 1 0.7185 0.2711 0.1871 1.2499 7.02 0.0080

Stage 1 0 0.0000 . . . . .

Scale 1 0.3934 0.1389 0.1969 0.7858

Weibull Shape 1 2.5420 0.8974 1.2726 5.0776

Comparing Output 51.1.7 with Output 51.1.5, you can see that the two model fits produce identical likelihood
values.

The Weibull shape estimate is equal to the second spline coefficient, but the rest of the parameter estimates
are different. This is because PROC LIFEREG fits the Weibull model under the configuration of accelerated
failure time models. The estimates of regression coefficients from PROC LIFEREG and PROC ICPHREG
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are proportional; their ratio equals the negative of the Weibull shape parameter. For example, the estimate
–0.7185 from PROC LIFEREG can also be obtained by dividing the estimate 1.8265 from PROC ICPHREG
by –2.5420.

Example 51.2: Plotting Predicted Survival and Cumulative Hazard Functions
This example illustrates how to plot the predicted survival and cumulative hazard functions for specified
covariate patterns.

The following statements request a plot of the estimated baseline survival function:

ods graphics on;
proc icphreg data=hiv plot=surv;

class Stage / desc;
model (Left, Right) = Stage / basehaz=splines;

run;

Output 51.2.1 shows the predicted survival curve at the reference level.

Output 51.2.1 Estimated Survival Curve for the Reference Set
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To produce curves for general covariate patterns, you can specify the COVARIATES= option in the BASE-
LINE statement. The following statements create observations for two levels of Stage and plot the corre-
sponding predicted curves:

data cov;
Stage=0; output;
Stage=1; output;

run;

proc icphreg data=hiv plot=surv;
class Stage / desc;
model (Left, Right) = Stage / basehaz=splines;
baseline covariates=cov;

run;

Under the proportional hazards assumption, the two curves do not cross each other. As shown in Output 51.2.2,
patients at Stage 1 have much lower survival rates than patients at Stage 0.

Output 51.2.2 Predicted Survival Curves for Specified Covariate Patterns

The following statements request a plot of the predicted cumulative hazard functions for the two levels of
Stage:
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proc icphreg data=hiv plot=cumhaz;
class Stage / desc;
model (Left, Right) = Stage / basehaz=splines;
baseline covariates=cov;

run;

Output 51.2.3 shows the plot.

Output 51.2.3 Predicted Cumulative Hazards for Specified Covariate Patterns
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Overview: INBREED Procedure
The INBREED procedure calculates the covariance or inbreeding coefficients for a pedigree. PROC IN-
BREED is unique in that it handles very large populations.

The INBREED procedure has two modes of operation. One mode carries out analysis on the assumption that
all the individuals belong to the same generation. The other mode divides the population into nonoverlapping
generations and analyzes each generation separately, assuming that the parents of individuals in the current
generation are defined in the previous generation.

PROC INBREED also computes averages of the covariance or inbreeding coefficients within sex categories
if the sex of individuals is known.
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Getting Started: INBREED Procedure
This section demonstrates how you can use the INBREED procedure to calculate the inbreeding or covariance
coefficients for a pedigree, how you can control the analysis mode if the population consists of nonoverlapping
generations, and how you can obtain averages within sex categories.

For you to use PROC INBREED effectively, your input data set must have a definite format. The following
sections first introduce this format for a fictitious population and then demonstrate how you can analyze this
population by using the INBREED procedure.

The Format of the Input Data Set
The SAS data set used as input to the INBREED procedure must contain an observation for each individual.
Each observation must include one variable identifying the individual and two variables identifying the
individual’s parents. Optionally, an observation can contain a known covariance coefficient and a character
variable defining the gender of the individual.

For example, consider the following data:

data Population;
input Individual $ Parent1 $ Parent2 $

Covariance Sex $ Generation;
datalines;

Mark George Lisa . M 1
Kelly Scott Lisa . F 1
Mike George Amy . M 1
. Mark Kelly 0.50 . 1
David Mark Kelly . M 2
Merle Mike Jane . F 2
Jim Mark Kelly 0.50 M 2
Mark Mike Kelly . M 2
;

It is important to order the pedigree observations so that individuals are defined before they are used as
parents of other individuals. The family relationships between individuals cannot be ascertained correctly
unless you observe this ordering. Also, older individuals must precede younger ones. For example, ‘Mark’
appears as the first parent of ‘David’ at observation 5; therefore, his observation needs to be defined prior
to observation 5. Indeed, this is the case (see observation 1). Also, ‘David’ is older than ‘Jim’, whose
observation appears after the observation for ‘David’, as is appropriate.

In populations with distinct, nonoverlapping generations, the older generation (parents) must precede the
younger generation. For example, the individuals defined in Generation=1 appear as parents of individuals
defined in Generation=2.

PROC INBREED produces warning messages when a parent cannot be found. For example, ‘Jane’ appears
as the second parent of the individual ‘Merle’ even though there are no previous observations defining her
own parents. If the population is treated as an overlapping population, that is, if the generation grouping
is ignored, then the procedure inserts an observation for ‘Jane’ with missing parents just before the sixth
observation, which defines ‘Merle’ as follows:
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Jane . . . F 2
Merle Mike Jane . F 2

However, if generation grouping is taken into consideration, then ‘Jane’ is defined as the last observation in
Generation=1, as follows:

Mike George Amy . M 1
Jane . . . F 1

In this latter case, however, the observation for ‘Jane’ is inserted after the computations are reported for
the first generation. Therefore, she does not appear in the covariance/inbreeding matrix, even though her
observation is used in computations for the second generation (see Figure 52.2).

If the data for an individual are duplicated, only the first occurrence of the data is used by the procedure, and
a warning message is displayed to note the duplication. For example, individual ‘Mark’ is defined twice, at
observations 1 and 8. If generation grouping is ignored, then this is an error and observation 8 is skipped.
However, if the population is processed with respect to two distinct generations, then ‘Mark’ refers to two
different individuals, one in Generation=1 and the other in Generation=2.

If a covariance is to be assigned between two individuals, then those individuals must be defined prior to
the assignment observation. For example, a covariance of 0.50 can be assigned between ‘Mark’ and ‘Kelly’
since they are previously defined. Note that assignment statements must have different formats depending
on whether the population is processed with respect to generations (see the section “DATA= Data Set” on
page 3991 for further information). For example, while observation 4 is valid for nonoverlapping generations,
it is invalid for a processing mode that ignores generation grouping. In this latter case, observation 7 indicates
a valid assignment, and observation 4 is skipped.

The latest covariance specification between any given two individuals overrides the previous one between the
same individuals.

Performing the Analysis
To compute the covariance coefficients for the overlapping generation mode, use the following statements:

proc inbreed data=Population covar matrix init=0.25;
run;

Here, the DATA= option names the SAS data set to be analyzed, and the COVAR and MATRIX options tell
the procedure to output the covariance coefficients matrix. If you omit the COVAR option, the inbreeding
coefficients are output instead of the covariance coefficients.

Note that the PROC INBREED statement also contains the INIT= option. This option gives an initial
covariance between any individual and unknown individuals. For example, the covariance between any
individual and ‘Jane’ would be 0.25, since ‘Jane’ is unknown, except when ‘Jane’ appears as a parent (see
Figure 52.4).
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Figure 52.1 Analysis for an Overlapping Population

The INBREED ProcedureThe INBREED Procedure

Covariance Coefficients

Individual Parent1 Parent2 George Lisa Mark Scott Kelly Amy Mike David Jane Merle Jim

George 1.1250 0.2500 0.6875 0.2500 0.2500 0.2500 0.6875 0.4688 0.2500 0.4688 0.4688

Lisa 0.2500 1.1250 0.6875 0.2500 0.6875 0.2500 0.2500 0.6875 0.2500 0.2500 0.6875

Mark George Lisa 0.6875 0.6875 1.1250 0.2500 0.5000 0.2500 0.4688 0.8125 0.2500 0.3594 0.8125

Scott 0.2500 0.2500 0.2500 1.1250 0.6875 0.2500 0.2500 0.4688 0.2500 0.2500 0.4688

Kelly Scott Lisa 0.2500 0.6875 0.5000 0.6875 1.1250 0.2500 0.2500 0.8125 0.2500 0.2500 0.8125

Amy 0.2500 0.2500 0.2500 0.2500 0.2500 1.1250 0.6875 0.2500 0.2500 0.4688 0.2500

Mike George Amy 0.6875 0.2500 0.4688 0.2500 0.2500 0.6875 1.1250 0.3594 0.2500 0.6875 0.3594

David Mark Kelly 0.4688 0.6875 0.8125 0.4688 0.8125 0.2500 0.3594 1.2500 0.2500 0.3047 0.8125

Jane 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 1.1250 0.6875 0.2500

Merle Mike Jane 0.4688 0.2500 0.3594 0.2500 0.2500 0.4688 0.6875 0.3047 0.6875 1.1250 0.3047

Jim Mark Kelly 0.4688 0.6875 0.8125 0.4688 0.8125 0.2500 0.3594 0.8125 0.2500 0.3047 1.2500

Number of Individuals 11

In the previous example, PROC INBREED treats the population as a single generation. However, you might
want to process the population with respect to distinct, nonoverlapping generations. To accomplish this, you
need to identify the generation variable in a CLASS statement, as shown by the following statements:

proc inbreed data=Population covar matrix init=0.25;
class Generation;

run;

Note that, in this case, the covariance matrix is displayed separately for each generation (see Figure 52.5).
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Figure 52.2 Analysis for a Nonoverlapping Population

The INBREED Procedure

Generation = 1

The INBREED Procedure

Generation = 1

Covariance Coefficients

Individual Parent1 Parent2 Mark Kelly Mike

Mark George Lisa 1.1250 0.5000 0.4688

Kelly Scott Lisa 0.5000 1.1250 0.2500

Mike George Amy 0.4688 0.2500 1.1250

Number of Individuals 3

The INBREED Procedure

Generation = 2

The INBREED Procedure

Generation = 2

Covariance Coefficients

Individual Parent1 Parent2 David Merle Jim Mark

David Mark Kelly 1.2500 0.3047 0.8125 0.5859

Merle Mike Jane 0.3047 1.1250 0.3047 0.4688

Jim Mark Kelly 0.8125 0.3047 1.2500 0.5859

Mark Mike Kelly 0.5859 0.4688 0.5859 1.1250

Number of Individuals 4

You might also want to see covariance coefficient averages within sex categories. This is accomplished
by indicating the variable defining the gender of individuals in a GENDER statement and by adding the
AVERAGE option to the PROC INBREED statement. For example, the following statements produce the
covariance coefficient averages shown in Figure 52.3:
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proc inbreed data=Population covar average init=0.25;
class Generation;
gender Sex;

run;

Figure 52.3 Averages within Sex Categories for a Nonoverlapping Generation

The INBREED Procedure

Generation = 1

The INBREED Procedure

Generation = 1

Averages of Covariance Coefficient Matrix in
Generation 1

On Diagonal Below Diagonal

Male X Male 1.1250 0.4688

Male X Female . 0.3750

Female X Female 1.1250 0.0000

Over Sex 1.1250 0.4063

Number of Males 2

Number of Females 1

Number of Individuals 3

The INBREED Procedure

Generation = 2

The INBREED Procedure

Generation = 2

Averages of Covariance Coefficient Matrix in
Generation 2

On Diagonal Below Diagonal

Male X Male 1.2083 0.6615

Male X Female . 0.3594

Female X Female 1.1250 0.0000

Over Sex 1.1875 0.5104

Number of Males 3

Number of Females 1

Number of Individuals 4
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Syntax: INBREED Procedure
The following statements are available in the INBREED procedure:

PROC INBREED < options > ;
BY variables ;
CLASS variable ;
GENDER variable ;
MATINGS individual-list1 / mate-list1 < , . . . , individual-listn / mate-listn > ;
VAR variables ;

The PROC INBREED statement is required. Items within angle brackets (< >) are optional. The syntax of
each statement is described in the following sections.

PROC INBREED Statement
PROC INBREED < options > ;

The PROC INBREED statement invokes the INBREED procedure. Table 52.1 summarizes the options
available in the PROC INBREED statement.

Table 52.1 PROC INBREED Statement Options

Option Description

Specify Data Sets
DATA= Names the SAS data set
OUTCOV= Names an output data set to contain the inbreeding coefficients

Control Type of Coefficient
COVAR Specifies that all coefficients output consist of covariance coefficients
SELFDIAG Includes an individual’s self-mating kinship coefficient

Control Displayed Tables
AVERAGE Produces a table of averages of coefficients
IND Displays the individuals’ inbreeding coefficients
MATRIX Displays the inbreeding coefficient matrix

Specify Default Covariance Value
INIT= Specifies the covariance value
Suppress Output
INDL Displays individuals’ coefficients for only the last generation
MATRIXL Displays coefficients for only the last generation
NOPRINT Suppresses the display of all output
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AVERAGE

A
produces a table of averages of coefficients for each pedigree of offspring. The AVERAGE option is
used together with the GENDER statement to average the inbreeding/covariance coefficients within
sex categories.

COVAR

C
specifies that all coefficients output consist of covariance coefficients rather than inbreeding coefficients.

DATA=SAS-data-set
names the SAS data set to be used by PROC INBREED. If you omit the DATA= option, the most
recently created SAS data set is used.

IND

I
displays the individuals’ inbreeding coefficients (diagonal of the inbreeding coefficients matrix) for
each pedigree of offspring.

If you also specify the COVAR option, the individuals’ covariance coefficients (diagonal of the
covariance coefficients matrix) are displayed.

INDL
displays individuals’ coefficients for only the last generation of a multiparous population.

INIT=cov
specifies the covariance value cov if any of the parents are unknown; a value of 0 is assumed if you do
not specify the INIT= option.

MATRIX

M
displays the inbreeding coefficient matrix for each pedigree of offspring.

If you also specify the COVAR option, the covariance matrices are displayed instead of inbreeding
coefficients matrices.

MATRIXL
displays coefficients for only the last generation of a multiparous population.

NOPRINT
suppresses the display of all output. Note that this option temporarily disables the Output Delivery
System (ODS). For more information on ODS, see Chapter 20, “Using the Output Delivery System.”

OUTCOV=SAS-data-set
names an output data set to contain the inbreeding coefficients. When the COVAR option is also
specified, covariance estimates are output to the OUTCOV= data set instead of inbreeding coefficients.

SELFDIAG
includes an individual’s self-mating kinship coefficient instead of the individual’s inbreeding coefficient
on the diagonal of the matrix in the OUTCOV= data set when the COVAR option is not specified.
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BY Statement
BY variables ;

You can specify a BY statement with PROC INBREED to obtain separate analyses of observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the INBREED procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

CLASS Statement
CLASS variable ;

To analyze the population within nonoverlapping generations, you must specify the variable that identifies
generations in a CLASS statement. Values of the generation variable, called generation numbers, must be
integers, but generations are assumed to occur in the order of their input in the input data set rather than in
numerical order of the generation numbers. The name of an individual needs to be unique only within its
generation.

When the MATRIXL option or the INDL option is specified, each generation requires a unique generation
number in order for the specified option to work correctly. If generation numbers are not unique, all the
generations with a generation number that is the same as the last generation’s are output.

GENDER Statement
GENDER variable ;

The GENDER statement specifies a variable that indicates the sex of the individuals. Values of the sex
variable must be character beginning with ‘M’ or ‘F’, for male or female. The GENDER statement is needed
only when you specify the AVERAGE option to average the inbreeding/covariance coefficients within sex
categories or when you want to include a gender variable in the OUTCOV= data set.
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PROC INBREED makes the following assumptions regarding the gender of individuals:

• The first parent is always assumed to be the male. See the section “VAR Statement” on page 3990.

• The second parent is always assumed to be the female. See the section “VAR Statement” on page 3990.

• If the gender of an individual is missing or invalid, this individual is assumed to be a female unless the
population is overlapping and this individual appears as the first parent in a later observation.

Any contradictions to these rules are reported in the SAS log.

MATINGS Statement
MATINGS individual-list1 / mate-list1 < , . . . , individual-listn / mate-listn > ;

You can specify the MATINGS statement with PROC INBREED to specify selected matings of individuals.
Each individual given in individual-list is mated with each individual given in mate-list. You can write
multiple mating specifications if you separate them by commas or asterisks. The procedure reports the
inbreeding coefficients or covariances for each pair of mates. For example, you can use the following
statement to specify the mating of an individual named ‘David’ with an individual named ‘Jane’:

matings david / jane;

VAR Statement
VAR individual parent1 parent2 < covariance > ;

The VAR statement specifies three or four variables: the first variable contains an individual’s name, the
second variable contains the name of the individual’s first parent, and the third variable contains the name of
the individual’s second parent. An optional fourth variable assigns a known value to the covariance of the
individual’s first and second parents in the current generation.

The first three variables in the VAR statement can be either numeric or character; however, only the first 12
characters of a character variable are recognized by the procedure. The fourth variable, if specified, must be
numeric.

If you omit the VAR statement, then the procedure uses the first three unaddressed variables as the names of
the individual and its parents. (Unaddressed variables are those that are not referenced in any other PROC
INBREED statement.) If the input data set contains an unaddressed fourth variable, then it becomes the
covariance variable.
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Details: INBREED Procedure

Missing Values
A missing value for a parent implies that the parent is unknown. Unknown parents are assumed to be
unrelated and not inbred unless you specify the INIT= option.

When the value of the variable identifying the individual is missing, the observation is not added to the list of
individuals. However, for a multiparous population, an observation with a missing individual is valid and is
used for assigning covariances.

Missing covariance values are determined from the INIT=cov option, if specified. Observations with missing
generation variables are excluded.

If the gender of an individual is missing, it is determined from the order in which it is listed on the first
observation defining its progeny for an overlapping population. If it appears as the first parent, it is set to
‘M’; otherwise, it is set to ‘F’. When the gender of an individual cannot be determined, it is assigned a default
value of ‘F’.

DATA= Data Set
Each observation in the input data set should contain necessary information such as the identification of an
individual and the first and second parents of an individual. In addition, if a CLASS statement is specified,
each observation should contain the generation identification; and, if a GENDER statement is specified, each
observation should contain the gender of an individual. Optionally, each observation might also contain the
covariance between the first and the second parents. Depending on how many statements are specified with
the procedure, there should be enough variables in the input data set containing this information.

If you omit the VAR statement, then the procedure uses the first three unaddressed variables in the input data
set as the names of the individual and his or her parents. Unaddressed variables in the input data set are those
variables that are not referenced by the procedure in any other statements, such as CLASS, GENDER, or BY
statements. If the input data set contains an unaddressed fourth variable, then the procedure uses it as the
covariance variable.

If the individuals given by the variables associated with the first and second parents are not in the population,
they are added to the population. However, if they are in the population, they must be defined prior to the
observation that gives their progeny.

When there is a CLASS statement, the functions of defining new individuals and assigning covariances
must be separated. This is necessary because the parents of any given individual are defined in the previous
generation, while covariances are assigned between individuals in the current generation.
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Therefore, there could be two types of observations for a multiparous population:

• one to define new individuals in the current generation whose parents have been defined in the previous
generation, as in the following, where the missing value is for the covariance variable:

Mark George Lisa . M 1
Kelly Scott Lisa . F 1

• one to assign covariances between two individuals in the current generation, as in the following, where
the individual’s name is missing, ‘Mark’ and ‘Kelly’ are in the current generation, and the covariance
coefficient between these two individuals is 0.50:

. Mark Kelly 0.50 . 1

Note that the observations defining individuals must precede the observation assigning a covariance value
between them. For example, if a covariance is to be assigned between ‘Mark’ and ‘Kelly’, then both of them
should be defined prior to the assignment observation.

Computational Details
This section describes the rules that the INBREED procedure uses to compute the covariance and inbreeding
coefficients. Each computational rule is explained by an example referring to the fictitious population
introduced in the section “Getting Started: INBREED Procedure” on page 3982.

Coancestry (or Kinship Coefficient)

To calculate the inbreeding coefficient and the covariance coefficients, use the degree of relationship by
descent between the two parents, which is called coancestry or kinship coefficient (Falconer and Mackay
1996, p.85), or coefficient of parentage (Kempthorne 1957, p.73). Denote the coancestry between individuals
X and Y by fXY. For information on how to calculate the coancestries among a population, see the section
“Calculation of Coancestry” on page 3993.

Covariance Coefficient (or Coefficient of Relationship)

The covariance coefficient between individuals X and Y is defined by

Cov.X;Y/ D 2fXY

where fXY is the coancestry between X and Y. The covariance coefficient is sometimes called the coefficient
of relationship or the theoretical correlation (Falconer and Mackay (1996, p.153); Crow and Kimura (1970,
p.134)). If a covariance coefficient cannot be calculated from the individuals in the population, it is assigned
to an initial value. The initial value is set to 0 if the INIT= option is not specified or to cov if INIT=cov.
Therefore, the corresponding initial coancestry is set to 0 if the INIT= option is not specified or to 1

2
cov if

INIT=cov.
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Inbreeding Coefficients

The inbreeding coefficient of an individual is the probability that the pair of alleles carried by the gametes that
produced it are identical by descent (Falconer and Mackay (1996, Chapter 5), Kempthorne (1957, Chapter
5)). For individual X, denote its inbreeding coefficient by FX. The inbreeding coefficient of an individual
is equal to the coancestry between its parents. For example, if X has parents A and B, then the inbreeding
coefficient of X is

FX D fAB

Calculation of Coancestry

Given individuals X and Y, assume that X has parents A and B and that Y has parents C and D. For
nonoverlapping generations, the basic rule to calculate the coancestry between X and Y is given by the
following formula (Falconer and Mackay 1996, p.86):

fXY D
1

4
.fAC C fAD C fBC C fBD/

And the inbreeding coefficient for an offspring of X and Y, called Z, is the coancestry between X and Y:

FZ D fXY

Figure 52.4 Inbreeding Relationship for Nonoverlapping Population

For example, in Figure 52.4, ‘Jim’ and ‘Mark’ from Generation 2 are progenies of ‘Mark’ and ‘Kelly’ and of
‘Mike’ and ‘Kelly’ from Generation 1, respectively. The coancestry between ‘Jim’ and ‘Mark’ is
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fJim;Mark D
1�

fMark;Mike C fMark;Kelly C fKelly;Mike C fKelly;Kelly
�

From the covariance matrix for Generation=1 in Figure 52.4 and the relationship that coancestry is half of
the covariance coefficient,

fJim;Mark D
1

4

�
0:4688

2
C
0:5

2
C
0:25

2
C
1:125

2

�
D 0:29298

For overlapping generations, if X is older than Y, then the basic rule can be simplified to

FZ D fXY D
1

2
.fXC C fXD/

That is, the coancestry between X and Y is the average of coancestries between older X with younger Y’s
parents. For example, in Figure 52.5, the coancestry between ‘Kelly’ and ‘David’ is

fKelly;David D
1

2

�
fKelly;Mark C fKelly;Kelly

�
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Figure 52.5 Inbreeding Relationship for Overlapping Population

This is so because ‘Kelly’ is defined before ‘David’; therefore, ‘Kelly’ is not younger than ‘David’, and
the parents of ‘David’ are ‘Mark’ and ‘Kelly’. The covariance coefficient values Cov(Kelly,Mark) and
Cov(Kelly,Kelly) from the matrix in Figure 52.5 yield that the coancestry between ‘Kelly’ and ‘David’ is

fKelly;David D
1

2

�
0:5

2
C
1:125

2

�
D 0:40625

The numerical values for some initial coancestries must be known in order to use these rule. Either the
parents of the first generation have to be unrelated, with f = 0 if the INIT= option is not specified in the
PROC INBREED statement, or their coancestries must have an initial value of 1

2
cov, where cov is set by the

INIT= option. Then the subsequent coancestries among their progenies and the inbreeding coefficients of
their progenies in the rest of the generations are calculated by using these initial values.

Special rules need to be considered in the calculations of coancestries for the following cases.
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Self-Mating
The coancestry for an individual X with itself, fXX, is the inbreeding coefficient of a progeny that is produced
by self-mating. The relationship between the inbreeding coefficient and the coancestry for self-mating is

fXX D
1

2
.1C FX/

The inbreeding coefficient FX can be replaced by the coancestry between X’s parents A and B, fAB, if A and
B are in the population:

fXX D
1

2
.1C fAB/

If X’s parents are not in the population, then FX is replaced by the initial value 1
2

cov if cov is set by the
INIT= option, or FX is replaced by 0 if the INIT= option is not specified. For example, the coancestry of
‘Jim’ with himself is

fJim;Jim D
1

2

�
1C fMark;Kelly

�
where ‘Mark’ and ‘Kelly’ are the parents of ‘Jim’. Since the covariance coefficient Cov(Mark,Kelly) is 0.5 in
Figure 52.5 and also in the covariance matrix for GENDER=1 in Figure 52.4, the coancestry of ‘Jim’ with
himself is

fJim;Jim D
1

2

�
1C

0:5

2

�
D 0:625

When INIT=0.25, then the coancestry of ‘Jane’ with herself is

fJane;Jane D
1

2

�
1C

0:25

2

�
D 0:5625

because ‘Jane’ is not an offspring in the population.

Offspring and Parent Mating
Assuming that X’s parents are A and B, the coancestry between X and A is

fXA D
1

2
.fAB C fAA/

The inbreeding coefficient for an offspring of X and A, denoted by Z, is
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FZ D fXA D
1

2
.fAB C fAA/

For example, ‘Mark’ is an offspring of ‘George’ and ‘Lisa’, so the coancestry between ‘Mark’ and ‘Lisa’ is

fMark;Lisa D
1

2

�
fLisa;George C fLisa;Lisa

�
From the covariance coefficient matrix in Figure 52.5, fLisa;George D 0:25=2 D 0:125, fLisa;Lisa D
1:125=2 D 0:5625; so that

fMark;Lisa D
1

2
.0:125C 0:5625/ D 0:34375

Thus, the inbreeding coefficient for an offspring of ‘Mark’ and ‘Lisa’ is 0.34375.

Full Sibs Mating
This is a special case for the basic rule given at the beginning of the section “Calculation of Coancestry” on
page 3993. If X and Y are full sibs with same parents A and B, then the coancestry between X and Y is

fXY D
1

4
.2fAB C fAA C fBB/

and the inbreeding coefficient for an offspring of A and B, denoted by Z, is

FZ D fXY D
1

4
.2fAB C fAA C fBB/

For example, ‘David’ and ‘Jim’ are full sibs with parents ‘Mark’ and ‘Kelly’, so the coancestry between
‘David’ and ‘Jim’ is

fDavid;Jim D
1

4

�
2fMark;Kelly C fMark;Mark C fKelly;Kelly

�
Since the coancestry is half of the covariance coefficient, from the covariance matrix in Figure 52.5,

fDavid;Jim D
1

4

�
2 �

0:5

2
C
1:125

2
C
1:125

2

�
D 0:40625
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Unknown or Missing Parents
When individuals or their parents are unknown in the population, their coancestries are assigned by the value
1
2

cov if cov is set by the INIT= option or by the value 0 if the INIT= option is not specified. That is, if either
A or B is unknown, then

fAB D
1

2
cov

For example, ‘Jane’ is not in the population, and since ‘Jane’ is assumed to be defined just before the
observation at which ‘Jane’ appears as a parent (that is, between observations 4 and 5), then ‘Jane’ is not
older than ‘Scott’. The coancestry between ‘Jane’ and ‘Scott’ is then obtained by using the simplified basic
rule (see the section “Calculation of Coancestry” on page 3993):

fScott;Jane D
1

2

�
fScott;� C fScott;�

�
Here, dots (�) indicate Jane’s unknown parents. Therefore, fScott;� is replaced by 1

2
cov, where cov is set by

the INIT= option. If INIT=0.25, then

fScott;Jane D
1

2

�
0:25

2
C
0:25

2

�
D 0:125

For a more detailed discussion on the calculation of coancestries, inbreeding coefficients, and covariance
coefficients, see Falconer and Mackay (1996); Kempthorne (1957); Crow and Kimura (1970).

OUTCOV= Data Set
The OUTCOV= data set has the following variables:

• a list of BY variables, if there is a BY statement

• the generation variable, if there is a CLASS statement

• the gender variable, if there is a GENDER statement

• _Type_, a variable indicating the type of observation. The valid values of the _Type_ variable are
‘COV’ for covariance estimates and ‘INBREED’ for inbreeding coefficients.

• _Panel_, a variable indicating the panel number used when populations delimited by BY groups
contain different numbers of individuals. If there are n individuals in the first BY group and if any
subsequent BY group contains a larger population, then its covariance/inbreeding matrix is divided into
panels, with each panel containing n columns of data. If you put these panels side by side in increasing
_Panel_ number order, then you can reconstruct the covariance or inbreeding matrix.
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• _Col_, a variable used to name columns of the inbreeding or covariance matrix. The values of this
variable start with ‘COL’, followed by a number indicating the column number. The names of the
individuals corresponding to any given column i can be found by reading the individual’s name across
the row that has a _Col_ value of ‘COLi’. When the inbreeding or covariance matrix is divided into
panels, all the rows repeat for the first n columns, all the rows repeat for the next n columns, and so on.

• the variable containing the names of the individuals, that is, the first variable listed in the VAR statement

• the variable containing the names of the first parents, that is, the second variable listed in the VAR
statement

• the variable containing the names of the second parents, that is, the third variable listed in the VAR
statement

• a list of covariance variables Col1–Coln, where n is the maximum number of individuals in the first
population

The functions of the variables _Panel_ and _Col_ can best be demonstrated by an example. Assume that
there are three individuals in the first BY group and that, in the current BY group (Byvar=2), there are five
individuals with the following covariance matrix.

COV 1 2 3 4 5

1 Cov(1,1) Cov(1,2) Cov(1,3) Cov(1,4) Cov(1,5)
2 Cov(2,1) Cov(2,2) Cov(2,3) Cov(2,4) Cov(2,5)
3 Cov(3,1) Cov(3,2) Cov(3,3) Cov(3,4) Cov(3,5)
4 Cov(4,1) Cov(4,2) Cov(4,3) Cov(4,4) Cov(4,5)
5 Cov(5,1) Cov(5,2) Cov(5,3) Cov(5,4) Cov(5,5)

Panel 1 Panel 2

Then the OUTCOV= data set appears as follows.

Byvar _Panel_ _Col_ Individual Parent Parent2 Col1 Col2 Col3

2 1 COL1 1 Cov(1,1) Cov(1,2) Cov(1,3)
2 1 COL2 2 Cov(2,1) Cov(2,2) Cov(2,3)
2 1 COL3 3 Cov(3,1) Cov(3,2) Cov(3,3)
2 1 4 Cov(4,1) Cov(4,2) Cov(4,3)
2 1 5 Cov(5,1) Cov(5,2) Cov(5,3)

2 2 1 Cov(1,4) Cov(1,5) .
2 2 2 Cov(2,4) Cov(2,5) .
2 2 3 Cov(3,4) Cov(3,5) .
2 2 COL1 4 Cov(4,4) Cov(4,5) .
2 2 COL2 5 Cov(5,4) Cov(5,5) .

Notice that the first three columns go to the first panel (_Panel_=1), and the remaining two go to the second
panel (_Panel_=2). Therefore, in the first panel, ‘COL1’, ‘COL2’, and ‘COL3’ correspond to individuals
1, 2, and 3, respectively, while in the second panel, ‘COL1’ and ‘COL2’ correspond to individuals 4 and 5,
respectively.
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Displayed Output
The INBREED procedure can output either covariance coefficients or inbreeding coefficients. Note that the
following items can be produced for each generation if generations do not overlap.

The output produced by PROC INBREED can be any or all of the following items:

• a matrix of coefficients

• coefficients of the individuals

• coefficients for selected matings

ODS Table Names
PROC INBREED assigns a name to each table it creates. You can use these names to reference the table
when using the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed in Table 52.2. For more information on ODS, see Chapter 20, “Using the Output Delivery System.”

Table 52.2 ODS Tables Produced by PROC INBREED

ODS Table Name Description Statement Option

AvgCovCoef Averages of covariance
coefficient matrix

GENDER COVAR and AVERAGE

AvgInbreedingCoef Averages of inbreeding
coefficient matrix

GENDER AVERAGE

CovarianceCoefficient Covariance coefficient ta-
ble

PROC COVAR and MATRIX

InbreedingCoefficient Inbreeding coefficient ta-
ble

PROC MATRIX

IndividualCovCoef Covariance coefficients
of individuals

PROC IND and COVAR

IndividualInbreedingCoef Inbreeding coefficients
of individuals

PROC IND

MatingCovCoef Covariance coefficients
of matings

MATINGS COVAR

MatingInbreedingCoef Inbreeding coefficients
of matings

MATINGS

NumberOfObservations Number of observations PROC
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Examples: INBREED Procedure

Example 52.1: Monoecious Population Analysis
The following example shows a covariance analysis within nonoverlapping generations for a monoecious
population. Parents of generation 1 are unknown and therefore assumed to be unrelated. The following
statements produce Output 52.1.1 through Output 52.1.3:

data Monoecious;
input Generation Individual Parent1 Parent2 Covariance @@;
datalines;

1 1 . . . 1 2 . . . 1 3 . . .
2 1 1 1 . 2 2 1 2 . 2 3 2 3 .
3 1 1 2 . 3 2 1 3 . 3 3 2 1 .
3 4 1 3 . 3 . 2 3 0.50 3 . 4 3 1.135
;

title 'Inbreeding within Nonoverlapping Generations';
proc inbreed ind covar matrix data=Monoecious;

class Generation;
run;

Output 52.1.1 Monoecious Population Analysis, Generation 1

Inbreeding within Nonoverlapping Generations

The INBREED Procedure

Generation = 1

Inbreeding within Nonoverlapping Generations

The INBREED Procedure

Generation = 1

Covariance Coefficients

Individual Parent1 Parent2 1 2 3

1 1.0000 . .

2 . 1.0000 .

3 . . 1.0000

Covariance Coefficients of Individuals

Individual Parent1 Parent2 Coefficient

1 1.0000

2 1.0000

3 1.0000

Number of Individuals 3
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Output 52.1.2 Monoecious Population Analysis, Generation 2

Inbreeding within Nonoverlapping Generations

The INBREED Procedure

Generation = 2

Inbreeding within Nonoverlapping Generations

The INBREED Procedure

Generation = 2

Covariance Coefficients

Individual Parent1 Parent2 1 2 3

1 1 1 1.5000 0.5000 .

2 1 2 0.5000 1.0000 0.2500

3 2 3 . 0.2500 1.0000

Covariance Coefficients of Individuals

Individual Parent1 Parent2 Coefficient

1 1 1 1.5000

2 1 2 1.0000

3 2 3 1.0000

Number of Individuals 3

Output 52.1.3 Monoecious Population Analysis, Generation 3

Inbreeding within Nonoverlapping Generations

The INBREED Procedure

Generation = 3

Inbreeding within Nonoverlapping Generations

The INBREED Procedure

Generation = 3

Covariance Coefficients

Individual Parent1 Parent2 1 2 3 4

1 1 2 1.2500 0.5625 0.8750 0.5625

2 1 3 0.5625 1.0000 1.1349 0.6250

3 2 1 0.8750 1.1349 1.2500 1.1349

4 1 3 0.5625 0.6250 1.1349 1.0000

Covariance Coefficients of Individuals

Individual Parent1 Parent2 Coefficient

1 1 2 1.2500

2 1 3 1.0000

3 2 1 1.2500

4 1 3 1.0000

Number of Individuals 4

Note that, since the parents of the first generation are unknown, off-diagonal elements of the covariance
matrix are all 0s and on-diagonal elements are all 1s. If there is an INIT=cov value, then the off-diagonal
elements would be equal to cov, while on-diagonal elements would be equal to 1C cov=2.
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In the third generation, individuals 2 and 4 are full siblings, so they belong to the same family. Since PROC
INBREED computes covariance coefficients between families, the second and fourth columns of inbreeding
coefficients are the same, except that their intersections with the second and fourth rows are reordered. Notice
that, even though there is an observation to assign a covariance of 0.50 between individuals 2 and 3 in the
third generation, the covariance between 2 and 3 is set to 1.135, the same value assigned between 4 and 3.
This is because families get the same covariances, and later specifications override previous ones.

Example 52.2: Pedigree Analysis
In the following example, an inbreeding analysis is performed for a complicated pedigree. This analysis
includes computing selective matings of some individuals and inbreeding coefficients of all individuals. Also,
inbreeding coefficients are averaged within sex categories. The following statements produce Output 52.2.1:

data Swine;
input Swine_Number $ Sire $ Dam $ Sex $;
datalines;

3504 2200 2501 M
3514 2521 3112 F
3519 2521 2501 F
2501 2200 3112 M
2789 3504 3514 F
3501 2521 3514 M
3712 3504 3514 F
3121 2200 3501 F
;

title 'Least Related Matings';
proc inbreed data=Swine ind average;

var Swine_Number Sire Dam;
matings 2501 / 3501 3504 ,

3712 / 3121;
gender Sex;

run;

Note the following from Output 52.2.1:

• Observation 4, which defines Swine_Number=2501, should precede the first and third observations
where the progeny for 2501 are given. PROC INBREED ignores observation 4 since it is given out of
order. As a result, the parents of 2501 are missing or unknown.

• The first column in the “Inbreeding Averages” table corresponds to the averages taken over the on-
diagonal elements of the inbreeding coefficients matrix, and the second column gives averages over the
off-diagonal elements.
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Output 52.2.1 Pedigree Analysis

Least Related Matings

The INBREED Procedure

Least Related Matings

The INBREED Procedure

Inbreeding Coefficients of Individuals

Swine_Number Sire Dam Coefficient

2200 .

2501 .

3504 2200 2501 .

2521 .

3112 .

3514 2521 3112 .

3519 2521 2501 .

2789 3504 3514 .

3501 2521 3514 0.2500

3712 3504 3514 .

3121 2200 3501 .

Inbreeding
Coefficients of

Matings

Sire Dam Coefficient

2501 3501 .

2501 3504 0.2500

3712 3121 0.1563

Averages of Inbreeding Coefficient
Matrix

Inbreeding Coancestry

Male X Male 0.0625 0.1042

Male X Female . 0.1362

Female X Female 0.0000 0.1324

Over Sex 0.0227 0.1313

Number of Males 4

Number of Females 7

Number of Individuals 11

Example 52.3: Pedigree Analysis with BY Groups
This example demonstrates the structure of the OUTCOV= data set created by PROC INBREED. Note that
the first BY group has three individuals, while the second has five. Therefore, the covariance matrix for the
second BY group is broken up into two panels. The following statements produce Output 52.3.1.

data Swine;
input Group Swine_Number $ Sire $ Dam $ Sex $;
datalines;

1 2789 3504 3514 F
2 2501 2200 3112 .
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2 3504 2501 3782 M
;

proc inbreed data=Swine covar noprint outcov=Covariance
init=0.4;

var Swine_Number Sire Dam;
gender Sex;
by Group;

run;

title 'Printout of OUTCOV= data set';
proc print data=Covariance;

format Col1-Col3 4.2;
run;

Output 52.3.1 Pedigree Analysis with BY Groups

Printout of OUTCOV= data setPrintout of OUTCOV= data set

Obs Group Sex _TYPE_ _PANEL_ _COL_ Swine_Number Sire Dam COL1 COL2 COL3

1 1 M COV 1 COL1 3504 1.20 0.40 0.80

2 1 F COV 1 COL2 3514 0.40 1.20 0.80

3 1 F COV 1 COL3 2789 3504 3514 0.80 0.80 1.20

4 2 M COV 1 COL1 2200 1.20 0.40 0.80

5 2 F COV 1 COL2 3112 0.40 1.20 0.80

6 2 M COV 1 COL3 2501 2200 3112 0.80 0.80 1.20

7 2 F COV 1 3782 0.40 0.40 0.40

8 2 M COV 1 3504 2501 3782 0.60 0.60 0.80

9 2 M COV 2 2200 0.40 0.60 .

10 2 F COV 2 3112 0.40 0.60 .

11 2 M COV 2 2501 2200 3112 0.40 0.80 .

12 2 F COV 2 COL1 3782 1.20 0.80 .

13 2 M COV 2 COL2 3504 2501 3782 0.80 1.20 .
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Overview: IRT Procedure
The item response theory (IRT) model was first proposed in the field of psychometrics for the purpose of
ability assessment. It is most widely used in education to calibrate and evaluate items in tests, questionnaires,
and other instruments and to score subjects on their abilities, attitudes, or other latent traits. Today, all major
psychological and educational tests are built using IRT, because the methodology can significantly improve
measurement accuracy and reliability while providing potential significant reductions in assessment time
and effort, especially via computerized adaptive testing. In a computerized adaptive test, items are optimally
selected for each subject. Different subjects might receive entirely different items during the test. IRT plays
an essential role in selecting the most appropriate items for each subject and equating scores for subjects
who receive different subsets of items. Notable examples of these tests include the Scholastic Aptitude Test
(SAT), Graduate Record Examination (GRE), and Graduate Management Admission Test (GMAT). In recent
years, IRT models have also become increasingly popular in health behavior, quality of life, and clinical
research. The Patient Reported Outcomes Measurement Information System (PROMIS) project, funded by
the US National Institutes of Health, is an excellent example. By using IRT, it aims to develop item banks
that clinicians and researchers can use to collect important information about therapeutic effects that is not
available from traditional clinical measures.

Early IRT models (such as the Rasch model and two-parameter model) concentrate mainly on dichotomous
responses. These models were later extended to incorporate other formats, such as ordinal responses, rating
scales, partial credit scoring, and multiple category scoring. Early applications of IRT focused primarily on
the unidimensional model, which assumes that subject responses are affected only by a single latent trait.
Multidimensional IRT models have been developed, but because of their greater complexity, the majority of
IRT applications still rely on unidimensional models.

For an introduction to IRT models, see De Ayala (2009) and Embretson and Reise (2000).

Basic Features
The IRT procedure enables you to estimate various item response theory models. The following list
summarizes some of the basic features of the IRT procedure:

• uses the Rasch model; one-, two-, three-, and four-parameter models; and graded response model with
logistic or probit link

• enables different items to have different response models

• performs multidimensional exploratory and confirmatory analysis

• performs multiple-group analysis, with fixed values and equality constraints within and between groups

• estimates factor scores by using maximum likelihood (ML), maximum a posteriori (MAP), and
expected a posteriori (EAP) methods
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Getting Started: IRT Procedure
This example shows how you can use all default settings in PROC IRT to fit an item response model. In this
example, there are 50 subjects and each subject responds to 10 items. These 10 items have binary responses:
1 indicates correct and 0 indicates incorrect.

The following DATA step creates the SAS data set IrtBinary:
data IrtBinary;

input item1-item10 @@;
datalines;

1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1 0 0 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1

... more lines ...

1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1
;

The following statements fit an IRT model:
proc irt data=IrtBinary;

var item1-item10;
run;

The PROC IRT statement invokes the procedure, and the DATA= option specifies the input data set IrtBinary.
The VAR statement names the variables to be used in the model. As you can see from the syntax in this
example, fitting a IRT model can be very simple when you use the default settings. These default settings are
chosen to reflect setups that are common in practice. Some of the important default settings follow:

• The number of factors is 1.

• The two-parameter logistic model is assumed for binary variables, and the graded response model is
assumed for ordinal variables.

• The link function is logistic link.

• The estimation method is based on marginal likelihood.

• The optimization method is the quasi-Newton algorithm.

• The quadrature method is adaptive Gauss-Hermite quadrature, in which the number of quadrature
points per dimension is determined adaptively.

As a result, the preceding statements fit two-parameter logistic (2PL) models for all the variables that are
listed in the VAR statement.

The first table that PROC IRT produces is the “Modeling Information” table, as shown in Figure 53.1. This
table displays basic information about the analysis, such as the name of the input data set, the link function,
the number of items and factors, the number of observations, and the estimation method. You can change the
link function by using the LINK= option in the PROC IRT statement. You can change the response model
for all the items by using the RESFUNC= option in the PROC IRT statement. You can specify different
response functions or models for different set of variables by including a MODEL statement. If you want
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to do multidimensional exploratory analysis, you can simply change the number of factors by using the
NFACTOR= option in the PROC IRT statement. For confirmatory analysis, you can use the FACTOR
statement to specify the confirmatory factor pattern; the number of factors is implicitly defined by the number
of distinctive factor names that you specify in the FACTOR statement.

Figure 53.1 Model Information

The IRT ProcedureThe IRT Procedure

Modeling Information

Data Set WORK.IRTBINARY

Link Function Logit

Response Model Two Parameter Model

Number of Items 10

Number of Factors 1

Number of Observations Read 100

Number of Observations Used 100

Estimation Method Marginal Maximum Likelihood

The “Item Information” table, shown in Figure 53.2, is displayed by default and can be used to check the
item-level information. In this case, each of the 10 variables has two levels, and the raw values for these two
levels are 0 and 1, respectively.

Figure 53.2 Item Information

Item Information

Item Levels Values

item1 2 0 1

item2 2 0 1

item3 2 0 1

item4 2 0 1

item5 2 0 1

item6 2 0 1

item7 2 0 1

item8 2 0 1

item9 2 0 1

item10 2 0 1

The eigenvalues of polychoric correlations are also computed by default and are shown in Figure 53.3. You
can use the information from these eigenvalues to assess a reasonable range for the number of factors. For this
example, you can observe that the first eigenvalue accounts for almost 50% of the variance, which suggests
that there is only one dominant eigenvalue and that a unidimensional model is reasonable for this example. To
produce the polychoric correlation table, you specify the POLYCHORIC option in the PROC IRT statement.
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Figure 53.3 Eigenvalues of Polychoric Correlation

Eigenvalues of the Polychoric Correlation Matrix

Eigenvalue Difference Proportion Cumulative

1 4.71105177 3.51149453 0.4711 0.4711

2 1.19955723 0.14183502 0.1200 0.5911

3 1.05772221 0.26577735 0.1058 0.6968

4 0.79194486 0.07204549 0.0792 0.7760

5 0.71989938 0.17782491 0.0720 0.8480

6 0.54207446 0.12713664 0.0542 0.9022

7 0.41493782 0.10631770 0.0415 0.9437

8 0.30862012 0.12256183 0.0309 0.9746

9 0.18605829 0.11792444 0.0186 0.9932

10 0.06813385 0.0068 1.0000

Next, the “Optimization Information” table, shown in Figure 53.4, lists the optimization technique, the
numeric quadrature method, and the number of quadrature points per dimension. If you want to use the
expectation-maximization (EM) technique, specify TECHNIQUE=EM in the PROC IRT statement. If you
specify the NOAD option in the PROC IRT statement, PROC IRT uses the nonadaptive Gauss-Hermite
quadrature to approximate the likelihood. You can change the number of quadrature points by specifying the
QPOINTS= option in the PROC IRT statement.

Figure 53.4 Optimization Information

Optimization Information

Optimization Technique Quasi-Newton

Likelihood Approximation Adaptive Gauss-Hermite Quadrature

Number of Quadrature Points 11

Number of Free Parameters 20

Figure 53.5 shows the “Iteration History” table. For each iteration, the table displays the current iteration
number, number of function evaluations, objective function value, change of object function value, and
maximum value of gradients. You can use this information to monitor the estimation status of the model. You
can turn off the display of the “Iteration History” table by specifying the NOITPRINT option in the PROC
IRT statement.

Following the “Iteration History” table is the convergence status table, shown in Figure 53.6. It shows
whether the optimization algorithm converges successfully or not. You should make sure that the optimization
converges successfully before you try to interpret the estimation results.
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Figure 53.5 Iteration History

Iteration History

Iteration Evaluations
Objective
Function Change

Max
Gradient

0 2 5.53319820 5.53319820 0.055036

1 4 5.43364722 -0.09955098 0.017483

2 6 5.41529856 -0.01834866 0.017061

3 8 5.40395721 -0.01134135 0.007767

4 10 5.40207771 -0.00187951 0.007106

5 12 5.40147004 -0.00060767 0.003499

6 15 5.40129723 -0.00017281 0.001441

7 18 5.40123492 -0.00006231 0.000867

8 21 5.40120879 -0.00002613 0.000798

9 24 5.40119848 -0.00001031 0.000448

10 27 5.40119212 -0.00000636 0.000145

11 30 5.40119134 -0.00000077 0.000159

12 33 5.40119081 -0.00000054 0.000081

13 36 5.40119060 -0.00000021 0.000045

14 39 5.40119057 -0.00000003 0.00002

15 42 5.40119057 -0.00000001 8.572E-6

Figure 53.6 Convergence Status

Convergence criterion (GCONV=.000000010) satisfied.

Next is the “Model Fit Statistics” table, shown in Figure 53.7, which includes the log likelihood, Akaike’s
information criterion (AIC), and the Bayesian information criterion (BIC). If all the response patterns
are observed, Pearson’s chi-square and likelihood ratio chi-square statistics are also included in this table.
Because some of the response patterns in this example are not observed, the Pearson’s chi-square and
likelihood ratio chi-square statistics are not included in the table.

Figure 53.7 Fit Statistics

Model Fit Statistics

Log Likelihood -540.1190565

AIC (Smaller is Better) 1120.238113

BIC (Smaller is Better) 1172.3415168

Finally, the “Item Parameter Estimates” table, shown in Figure 53.8, includes parameter estimates, standard
errors, and p-values. Parameters are organized and displayed within each item. The items are listed in the
order of their appearance in the modeling statements. For each item, there are two parameters: difficulty and
slope. Difficulty parameters measure the difficulties of the items. As the value of the difficulty parameter
increases, the item becomes more difficult. In Figure 53.8, you can observe that all the difficulty parameters
are less than 0, which suggests that all the items in this example are relatively easy. The slope parameter
values for this example range from 0.94 to 2.33, suggesting that all the items are adequate measures of the
latent trait.
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Figure 53.8 Parameter Estimates

Item Parameter Estimates

Item Parameter Estimate
Standard

Error Pr > |t|

item1 Difficulty -0.87121 0.20083 <.0001

Slope 2.20624 0.67941 0.0006

item2 Difficulty -1.02199 0.21318 <.0001

Slope 2.32649 0.76037 0.0011

item3 Difficulty -0.91668 0.20857 <.0001

Slope 2.17452 0.68330 0.0007

item4 Difficulty -0.92919 0.22707 <.0001

Slope 1.86354 0.57110 0.0006

item5 Difficulty -1.09791 0.30594 0.0002

Slope 1.33344 0.42511 0.0009

item6 Difficulty -0.49151 0.24385 0.0219

Slope 1.17140 0.36940 0.0008

item7 Difficulty -0.62129 0.30189 0.0198

Slope 0.94209 0.32563 0.0019

item8 Difficulty -0.51111 0.28477 0.0363

Slope 0.95367 0.32914 0.0019

item9 Difficulty -0.41404 0.24477 0.0454

Slope 1.11314 0.35530 0.0009

item10 Difficulty -0.62670 0.27982 0.0126

Slope 1.04867 0.34845 0.0013

Syntax: IRT Procedure
The following statements are available in the IRT procedure:

PROC IRT < options > ;
BY variables ;
COV covariance parameters ;
EQUALITY equality-constraints ;
FACTOR factor-variables-relations ;
FREQ variable ;
GROUP variable ;
MODEL model-specification ;
VAR variables ;
VARIANCE variance parameters ;
WEIGHT variable ;
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PROC IRT Statement
PROC IRT < options > ;

The PROC IRT statement invokes the IRT procedure. Table 53.1 summarizes the options available in the
PROC IRT statement. The sections that follow the table describe the PROC IRT statement options and then
describe the other statements in alphabetical order.

Table 53.1 PROC IRT Statement Options

Option Description

Basic Options
DATA= Specifies the input data set
DESCENDING Reverses the sort order of the levels of the response variable
ITEMFIT Computes the item fit statistics and displays them in a table
LINK= Specifies the link function
NFACTOR= Specifies the number of factors
OUT= Specifies the output data set for factor scores
RESFUNC= Specifies the response function
RORDER= Specifies the sort order of the response variables
SCOREMETHOD= Specifies the factor score estimation method

Computational Options
ABSFCONV= Specifies an absolute function difference convergence criterion
ABSGCONV= Specifies an absolute gradient convergence criterion
ABSPCONV= Specifies a maximum absolute parameter difference convergence

criterion
FCONV= Specifies a relative function convergence criterion
GCONV= Specifies a relative gradient convergence criterion
MAXFUNC= Specifies the maximum number of function calls in the optimization

process
MAXITER= Specifies the maximum number of iterations in the optimization

process
MAXMITER= Specifies the maximum number of iterations in the maximization

step of the EM algorithm
NOAD Specifies nonadaptive quadrature
QPOINTS= Specifies the number of quadrature points per dimension
TECHNIQUE= Specifies the optimization technique to obtain maximum likelihood

estimates.

Display Options
NOITPRINT Suppresses the display of the “Iteration History” table
NOPRINT Suppresses all ODS output
PINITIAL Displays initial parameter estimates
POLYCHORIC Displays the polychoric correlation matrix
PLOTS= Controls plots that are produced through ODS Graphics

Rotation Method and Properties
RCONVERGE= Specifies the convergence criterion for rotation cycles
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Table 53.1 continued

Option Description

RITER= Specifies the maximum number of rotation cycles
ROTATE= Specifies the rotation method

PROC IRT Statement Options

ABSFCONV=r

ABSFTOL=r
specifies an absolute function difference convergence criterion. Termination requires a small change of
the function value in successive iterations,

jf . .k�1// � f . .k//j � r

where  denotes the vector of parameters that participate in the optimization and f .�/ is the objective
function. This criterion is not used by the expectation-maximization (EM) algorithm. By default, r = 0.

ABSGCONV=r

ABSGTOL=r
specifies an absolute gradient convergence criterion. Termination requires the maximum absolute
gradient element to be small,

max
j
jgj . 

.k//j � r

where  denotes the vector of parameters that participate in the optimization and gj .�/ is the gradient
of the objective function with respect to the jth parameter. This criterion is not used by the EM
algorithm. By default, r = 1E–5.

ABSPCONV=r

ABSPTOL=r
specifies a maximum absolute parameter difference convergence criterion. This criterion is used only
by the EM algorithm. Termination requires the maximum absolute parameter change in successive
iterations to be small,

max
j
j 
.k�1/
j � 

.k/
j j � r

where  j denotes the jth parameter that participates in the optimization. By default, r = 1E–4.

DATA=SAS-data-set
specifies the SAS-data-set to be read by PROC IRT. The default value is the most recently created
data set.

DESCENDING

DESC
reverses the sorting order for the levels of the response variables. If both the DESCENDING and
RORDER= options are specified, PROC IRT orders the levels according to the RORDER= option and
then reverses that order.
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FCONV=r

FTOL=r
specifies a relative function convergence criterion. Termination requires a small relative change of the
function value in successive iterations,

jf . .k// � f . .k�1//j

jf . .k�1//j
� r

where  denotes the vector of parameters that participate in the optimization and f .�/ is the objective
function. This criterion is not used by the EM algorithm. By default, r D 10�FDIGITS, where FDIGITS
is, by default, � log10f�g and � is the machine precision.

GCONV=r

GTOL=r
specifies a relative gradient convergence criterion. For all techniques except CONGRA, termination
requires the normalized predicted function reduction to be small,

g. .k//0ŒH.k/��1g. .k//
jf . .k//j

� r

where  denotes the vector of parameters that participate in the optimization, f .�/ is the objective
function, and g.�/ is the gradient. For the CONGRA technique (for which a reliable Hessian estimate
H is not available), the following criterion is used:

k g. .k// k22 k s. .k// k2
k g. .k// � g. .k�1// k2 jf . .k//j

� r

This criterion is not used by the EM algorithm. By default, r = 1E–8.

ITEMFIT
displays the item fit statistics. These item fit statistics apply only to binary items that have one latent
factor.

LINK=name
specifies the link function. You can specify the following values:

LOGIT requests the logistic link function.

PROBIT requests the probit link function.

By default, LINK=LOGIT.

MAXFUNC=n

MAXFU=n
specifies the maximum number of function calls in the optimization process. This option is not used by
the EM algorithm. The default values are as follows, depending on which optimization technique is
specified in the TECHNIQUE= option:

• NRRIDG: 125
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• QUANEW: 500

• CONGRA: 1000

The optimization can terminate only after completing a full iteration. Therefore, the number of function
calls that are actually performed can exceed the number that is specified by this option.

MAXITER=n

MAXIT=n
specifies the maximum number of iterations in the optimization process. The default values are as
follows, depending on which optimization technique is specified in the TECHNIQUE= option:

• NRRIDG: 50

• QUANEW: 200

• CONGRA: 400

• EM: 500

MAXMITER=n

MAXMIT=n
specifies the maximum number of iterations in the maximization step of the EM algorithm. By default,
n = 1.

NFACTOR=i

NFACT=i
specifies the number of factors, i , in the model. You must specify the number of factors only for
exploratory analysis, in which all the slope parameters of the items are freely estimated without being
explicitly constrained by using the FACTOR statement. By default, NFACTOR=1. When you use
the FACTOR statement to specify the confirmatory factor pattern, the number of factors is implicitly
defined by the number of distinctive factor names that you specify in the statement.

NOAD
requests that the Gaussian quadrature be nonadaptive.

NOITPRINT
suppresses the display of the “Iteration History” table.

NOPRINT
suppresses all output displays.

TECHNIQUE=CONGRA | EM | NONE | NRRIDG | QUANEW

TECH=CONGRA | EM | NONE | NRRIDG | QUANEW

OMETHOD=CONGRA | EM | NONE | NRRIDG | QUANEW
specifies the optimization technique to obtain maximum likelihood estimates. You can specify the
following techniques:

CONGRA performs a conjugate-gradient optimization.

EM performs an EM optimization.

NONE performs no optimization.
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NRRIDG performs a Newton-Raphson optimization with ridging.

QUANEW performs a dual quasi-Newton optimization.

By default, TECHNIQUE=QUANEW.

For more information about these optimization methods (except EM), see the section “Choosing
an Optimization Algorithm” on page 501 in Chapter 19, “Shared Concepts and Topics.” For more
information about the EM algorithm, see “Expectation-Maximization (EM) Algorithm” in the section
“Details: IRT Procedure” on page 4038.

OUT=SAS-data-set
creates an output data set that contains all the data in the DATA= data set plus estimated factor scores.
For exploratory analysis, the factor scores are named _Factor1, _Factor2, and so on. For confirmatory
analysis, user-specified factor names are used.

PROC IRT provides three estimation methods for factor scores. You can specify the method by using
the SCOREMETHOD option. The default estimation method, maximum a posteriori (MAP), is used if
the SCOREMETHOD option is not specified.

POLYCHORIC
displays the polychoric correlation matrix.

PINITIAL
displays the initial parameter estimates.

PLOTS < (global-plot-options) > < = plot-request < (options) > >

PLOTS < (global-plot-options) > < = (plot-request < (options) > < . . . plot-request < (options) > >) >
controls the plots that are produced through ODS Graphics. When you specify only one plot-request ,
you can omit the parentheses around it. For example:

plots=all
plots=ICC(unpack)
plots(unpack)=(scree ICC)

ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;
proc irt plots=all;
run;
ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

You can specify the following global-plot-option, which applies to all plots that the IRT procedure
generates:
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UNPACK | UNPACKPANEL
suppresses paneling. By default, multiple plots can appear in some output panels. Specify
UNPACK to display each plot individually. You can also specify UNPACK as a suboption in the
ICC, IIC, and SCREE options.

You can specify the following plot-requests:

ALL
displays all default plots.

ICC < (UNPACK | UNPACKPANEL) >
displays item characteristic curves (ICCs). By default, multiple ICC plots appear in some output
panels. You can request an individual ICC plot for each item by specifying the UNPACK
suboption.

IIC < (UNPACK | UNPACKPANEL) >
displays item information curves (IICs). By default, multiple IIC plots appear in some output
panels. You can request an individual IIC plot for each item by specifying the UNPACK
suboption.

NONE
suppresses all plots.

POLYCHORIC < options >

PLCORR < options >
displays a heat map for the polychoric correlation matrix. You can specify one or both of the
following options:

OUTLINE=ON | OFF
specifies whether to display an outline of the regions in the polychoric correlation heat map.
By default, OUTLINE=ON.

FUZZ=p
displays polychoric correlations whose absolute values are less than p as 0 in the heat map.
This option is useful when you want to focus on the patterns of sizable correlations that are
larger than p in the heat map. By default, FUZZ = 0.

SCREE < (UNPACK | UNPACKPANEL) >
displays the scree and variance explained plots in the same panel. You can display these plots
individually by specifying the UNPACK suboption.

TIC
displays a test information curve (TIC) plot.

QPOINTS=i
specifies the number of quadrature points in each dimension of the integral. If there are d latent
factors and n quadrature points, the IRT procedure evaluates nd conditional log likelihoods for each
observation to compute one value of the objective function. Increasing the number of quadrature nodes
can substantially increase the computational burden. If you do not specify the number of quadrature
points, it is determined adaptively by using the initial parameter estimates.
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RCONVERGE=p

RCONV=p
specifies the convergence criterion for rotation cycles. Rotation stops when the scaled change of the
simplicity function value is less than the RCONVERGE= value. The default convergence criterion is

jfnew � fold j=K < �

where fnew and fold are simplicity function values of the current cycle and the previous cycle,
respectively; K D max.1; jfold j/ is a scaling factor; and � is 1E–9 by default and is modified by the
RCONVERGE= value.

RESFUNC=ONEP | TWOP | THREEP | FOURP | GRADED | RASCH
specifies the response functions for the variables that are included in the VAR statement. The response
functions correspond to different response models. You can specify the following values:

ONEP specifies the one-parameter model.

TWOP specifies the two-parameter model.

THREEP specifies the three-parameter model.

FOURP specifies the four-parameter model.

GRADED specifies the graded response model.

RASCH specifies the Rasch model.

By default, RESFUNC=TWOP for binary items and RESFUNC=GRADED for ordinal items. The
graded response model assumes that the response variables are ordinal-categorical up to 19 levels.
All other models assume binary responses. For more information about these response models, see
“Response Models” in the “Details: IRT Procedure” on page 4038 section.

RITER=n
specifies the maximum number of cycles for factor rotation. The default value is the maximum between
10 times the number of variables and 100.

ROTATE=name

R=name
specifies the rotation method.

You can specify the following orthogonal rotation methods:

BIQUARTIMAX | BIQMAX specifies orthogonal biquartimax rotation.

EQUAMAX | E specifies orthogonal equamax rotation.

NONE | N specifies that no rotation be performed, leaving the original orthogonal
solution.

PARSIMAX | PA specifies orthogonal parsimax rotation.

QUARTIMAX | QMAX | Q specifies orthogonal quartimax rotation.

VARIMAX | V specifies orthogonal varimax rotation.
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You can specify the following oblique rotation methods:

BIQUARTIMIN | BIQMIN specifies biquartimin rotation.

COVARIMIN | CVMIN specifies covarimin rotation.

OBBIQUARTIMAX | OBIQMAX specifies oblique biquartimax rotation.

OBEQUAMAX | OE specifies oblique equamax rotation.

OBPARSIMAX | OPA specifies oblique parsimax rotation.

OBQUARTIMAX | OQMAX specifies oblique quartimax rotation.

OBVARIMAX | OV specifies oblique varimax rotation.

QUARTIMIN | QMIN specifies quartimin rotation.

By default, ROTATE=VARIMAX.

RORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of the response variable. This order determines which threshold
parameter in the model corresponds to each level in the data. If RORDER=FORMATTED for numeric
variables for which you have supplied no explicit format, the levels are ordered by their internal values.
This option applies to all the responses in the model. When the default, RORDER=FORMATTED, is
in effect for numeric variables for which you have supplied no explicit format, the levels are ordered
by their internal values. You can specify the following sort orders:

Value of RORDER= Levels Sorted By
DATA Order of appearance in the input data set

FORMATTED External formatted value, except for numeric variables
that have no explicit format, which are sorted by their
unformatted (internal) value

FREQ Descending frequency count; levels that contain the most
observations come first in the order

INTERNAL Unformatted value

For FORMATTED and INTERNAL, the sort order is machine-dependent. For more information about
sort order, see the chapter on the SORT procedure in the SAS Procedures Guide and the discussion of
BY-group processing in SAS Language Reference: Concepts.

SCOREMETHOD=ML | EAP | MAP
specifies the method of factor score estimation. You can specify the following methods:

ML requests the maximum likelihood method.

EAP requests the expected a posteriori method.

MAP requests the maximum a posteriori method.
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BY Statement
BY variables ;

You can specify a BY statement with PROC IRT to obtain separate analyses of observations in groups that
are defined by the BY variables. When a BY statement appears, the procedure expects the input data set to be
sorted in order of the BY variables. If you specify more than one BY statement, only the last one specified is
used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the IRT procedure. The
NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

Because sorting the data changes the order in which PROC IRT reads observations, the sort order for the
levels of the response variables might be affected if you also specify RORDER=DATA in the PROC IRT
statement.

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

COV Statement
COV assignment < , assignment . . . > ;

where assignment represents

var-list < � var-list2 > < = parameter-spec >

The COV statement defines the factor covariances in confirmatory models. In each assignment of the COV
statement, you specify variables in the var-list and var-list2 lists, followed by the covariance parameter
specification in the parameter-spec list. The last two specifications are optional.

You can specify the following five types of the parameters for the covariances:

• an unnamed free parameter

• an initial value

• a fixed value

• a free parameter with a name provided

• a free parameter with a name and initial value provided
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Consider a multidimensional model that has the latent factors FACTOR1, FACTOR2, FACTOR3, and
FACTOR4. The following COV statement shows the five types of specifications in five assignments:

cov FACTOR2 FACTOR1 ,
FACTOR3 FACTOR1 = (0.3),
FACTOR3 FACTOR2 = 1.0,
FACTOR4 FACTOR1 = phi1,
FACTOR4 FACTOR2 = phi2(0.2);

In this statement, cov(FACTOR2,FACTOR1) is specified as an unnamed free parameter, cov(FACTOR3,FACTOR1)
is an unnamed free parameter but with an initial value of 0.3, and cov(FACTOR3,FACTOR2) is a fixed value
of 1.0. This value stays the same in the estimation. cov(FACTOR4,FACTOR1) is a free parameter named
phi1, and cov(FACTOR4,FACTOR2) is a free parameter named phi2 that has an initial value of 0.2.

Note that the var-list and var-list2 lists to the left of the equal sign in the COV statement should contain only
names of latent factors that are specified in the FACTOR statement.

If you specify only the var-list list, then you are specifying the so-called within-list covariances. If you
specify both the var-list and var-list2 lists, then you are specifying the so-called between-list covariances. An
asterisk is used to separate the two variable lists. You can use one of these two alternatives to specify the
covariance parameters. Figure 53.9 illustrates the within-list and between-list covariance specifications.

Figure 53.9 Within-List and Between-List Covariances

F1
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F3

F4

F1 F2 F3 F4

phi1

phi2 phi3

phi4 phi5 phi6

Within-List Covariances

F1

F2

F3 F4

phi1 phi2

phi3 phi4

Between-List Covariances

Within-List Covariances

The left panel of Figure 53.9 shows that the same set of four factors is used in both the rows and the columns.
This yields six nonredundant covariances (variances are not included) to specify. In general, for a var-list list
that has k variables in the COV statement, you can specify k.k � 1/=2 distinct covariance parameters. The
variable order of the var-list list is important. For example, the left panel of Figure 53.9 corresponds to the
following COV statement:
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cov F1-F4 = phi1-phi6;

This statement is equivalent to the following statement:

cov F2 F1 = phi1,
F3 F1 = phi2, F3 F2 = phi3,
F4 F1 = phi4, F4 F2 = phi5, F4 F3 = phi6;

Another way to assign distinct parameter names that have the same prefix is to use the so-called prefix name.
For example, the following COV statement is exactly the same as the preceding statement:

cov F1-F4 = 6*phi__; /* phi with two trailing underscores */

In the COV statement, phi_ _ is a prefix name that has the root phi. The notation 6* means that this prefix
name is applied six times, resulting in a generation of the six parameter names phi1, phi2, . . . , phi6 for the six
covariance parameters.

The root of the prefix name should have only a few characters so that the generated parameter name is not
longer than 32 characters. To avoid unintentional equality constraints, the prefix names should not conflict
with other parameter names.

You can also specify the within-list covariances as unnamed free parameters, as shown in the following
statement:

cov F1-F4;

This statement is equivalent to the following statement:

cov F2 F1,
F3 F1, F3 F2,
F4 F1, F4 F2, F4 F3;

Between-List Covariances

The right panel of Figure 53.9 illustrates the application of the between-list covariance specification. The set
of row variables is different from the set of column variables. You intend to specify the cross covariances of
the two sets of variables. There are four of these covariances in the figure. In general, for k1 and k2 variable
names in the two variable lists (separated by an asterisk) in a COV statement, there are k1 � k2 distinct
covariances to specify. Again, variable order is very important. For example, the right panel of Figure 53.9
corresponds to the following between-list covariance specification:

cov F1 F2 * F3 F4 = phi1-phi4;

This is equivalent to the following statement:

cov F1 F3 = phi1, F1 F4 = phi2,
F2 F3 = phi3, F2 F4 = phi4;

You can also use the prefix name specification for the same specification, as shown in the following statement:

cov F1 F2 * F3 F4 = 4*phi__ ; /* phi with two trailing underscores */
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Mixed Parameter Lists

You can specify different types of parameters for the list of covariances. For example, you use a list of
parameters that have mixed types in the following statement:

cov F1-F4 = phi1(0.1) 0.2 phi3 phi4(0.4) (0.5) phi6;

This statement is equivalent to the following statement:

cov F2 F1 = phi1(0.1) ,
F3 F1 = 0.2 , F3 F2 = phi3,
F4 F1 = phi4(0.4) , F4 F2 = (0.5), F4 F3 = phi6;

Notice that an initial value that follows a parameter name is associated with the free parameter. Therefore, in
the original mixed list specification, 0.1 is interpreted as the initial value of the parameter phi1, but not as the
initial estimate of the covariance between F3 and F1. Similarly, 0.4 is the initial value of the parameter phi4,
but not the initial estimate of the covariance between F4 and F2.

However, if you indeed want to specify that phi1 is a free parameter without an initial value and 0.1 is an
initial estimate of the covariance between F3 and F1 (while keeping all other things the same), you can use a
null initial value specification for the parameter phi1, as shown in the following statement:

cov F1-F4 = phi1() (0.1) phi3 phi4(0.4) (0.5) phi6;

This way, 0.1 becomes the initial estimate of the covariance between F3 and F1. Because a parameter list
that has mixed types might be confusing, you can break down the specifications into separate assignments to
remove ambiguities. For example, you can use the following equivalent statement:

cov F2 F1 = phi1 ,
F3 F1 = (0.1) , F3 F2 = phi3,
F4 F1 = phi4(0.4) , F4 F2 = (0.5), F4 F3 = phi6;

Shorter and Longer Parameter Lists

If you provide fewer parameters than the number of covariances in the variable lists, all the remaining
parameters are treated as unnamed free parameters. For example, the following statement assigns a fixed
value to cov(F1,F3) while treating all the other three covariances as unnamed free parameters:

cov F1 F2 * F3 F4 = 1.0;

This statement is equivalent to the following statement:

cov F1 F3 = 1.0, F1 F4, F2 F3, F2 F4;

If you intend to fill up all values by the last parameter specification in the list, you can use the continuation
syntax [...], [..], or [.], as in the following example:

cov F1 F2 * F3 F4 = 1.0 phi [...];

This means that cov(F1,F3) is a fixed value of 1 and all the remaining three covariances are free parameters
named phi. The last three covariances are thus constrained to be equal by having the same parameter name.

However, you must be careful not to provide too many parameters. For example, the following statement
results in an error:
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cov F1 F2 * F3 F4 = 1.0 phi2(2.0) phi3 phi4 phi5 phi6;

The parameters after phi4 are excessive.

Default Covariance Parameters

In exploratory analysis, all factor covariances are fixed at zero for the unrotated or orthogonally rotated
solutions. For confirmatory analysis, by default all factor covariances are free parameters. You can also
use the COV statement to override these default covariance parameters in situations where you want to set
parameter constraints or provide initial or fixed values.

EQUALITY Statement
EQUALITY | EQCON equality-constraints < , equality-constraints . . . > ;

where equality-constraints is defined as

variable-list < / constraint-options >

The EQUALITY statement provides a versatile way to specify various types of equality constraints
on the parameters in the model. You can specify within-group or between-group equality constraints on
specific sets of parameters for particular sets of variables or factors. In the variable-list , you specify the set of
variables that are subject to the equality constraints on their respective parameters. You can either specify the
names of the variables or use one of the support keywords (see list later in this section) for variable-list . In
the constraint-options, you specify the types of parameters, the specific groups (in multiple-group analysis),
and the specific factors (in multidimensional models) on which the equality constraints are imposed.

For example, the following statements specify that all related parameters of x1 through x5 are constrained to
be equal:

proc irt;
model x1-x10/resfunc=graded;
equality x1-x5;

run;

Because all items are fitted by the graded response model, all slopes for variables x1–x5 are constrained to be
the same and the intercepts for variables x1–x5 are also constrained to be the same. For example, if each of
these variables has five categories, there would be four set of constraints, respectively, for each of the four
intercept parameters over the five variables.

You can limit the set of parameters for the equality constraints by specifying the PARM= option (one of the
constraint-options). For example, the following statements constrain only the slope parameters of x1–x5,
instead of all related parameters in the graded response model:

proc irt;
model x1-x10/resfunc=graded;
equality x1-x5/parm=[slopes];

run;

There are various ways to specify the target set of variables that are subject to the equality constraints. You
can specify variables directly, or you can specify the following variable-list:



EQUALITY Statement F 4027

_ALL_
specifies all variables and factors in the analysis. Equality constraints on parameters related to factors
apply to multiple-group analysis only.

_ALLITEM_
specifies all variables in the analysis.

_ALLONEP_

_ALLONEPITEM_
specifies all variables that are fitted by the one-parameter model in the analysis.

_ALLTWOP_

_ALLTWOPITEM_
specifies all variables that are fitted by the two-parameter model in the analysis.

_ALLTHREEP_

_ALLTHREEPITEM_
specifies all variables that are fitted by the three-parameter model in the analysis.

_ALLFOURP_

_ALLFOURPITEM_
specifies all variables that are fitted by the four-parameter model in the analysis.

_ALLGR_

_ALLGRITEM_
specifies all variables that are fitted by the graded response model in the analysis.

_ALLRASCH_

_ALLRASCHITEM_
specifies all variables that are fitted by the Rasch model in the analysis.

You can also specify the following keywords, with a list of excluded-variables for variable-list:

_ALL_BUT_ [excluded-variables]
specifies all variables and factors except the excluded-variables in the analysis.

_ALLITEM_BUT_ [excluded-variables]
specifies all variables except the excluded-variables in the analysis.

_ALLONEP_BUT_ [ excluded-variables ]

_ALLONEPITEM_BUT_ [ excluded-variables ]
specifies all variables except the excluded-variables that are fitted by the one-parameter model in the
analysis.

_ALLTWOP_BUT_ [ excluded-variables ]

_ALLTWOPITEM_BUT_ [ excluded-variables ]
specifies all variables except the excluded-variables that are fitted by the two-parameter model in the
analysis.
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_ALLTHREEP_BUT_ [ excluded-variables ]
_ALLTHREEPITEM_BUT_ [ excluded-variables ]

specifies all variables except the excluded-variables that are fitted by the three-parameter model in the
analysis.

_ALLFOURP_BUT_ [ excluded-variables ]
_ALLFOURPITEM_BUT_ [ excluded-variables ]

specifies all variables except the excluded-variables that are fitted by the four-parameter model in the
analysis.

_ALLGR_BUT_ [ excluded-variables ]
_ALLGRITEM_BUT_ [ excluded-variables ]

specifies all variables except the excluded-variables that are fitted by the graded response model in the
analysis.

_ALLRASCH_BUT_ [ excluded-variables ]
_ALLRASCHITEM_BUT_ [ excluded-variables ]

specifies all variables except the excluded-variables that are fitted by the Rasch model in the analysis.

For example, if you have mixed model types for the item responses, the equality constraints might be set on a
particular set of response variables. The following example shows that the equality constraints are applied to
those variables that are fitted by the three-parameter model (that is, x7–x10):

proc irt;
model x1-x6/resfunc=graded,

x7-x10/resfunc=threep;
equality _allthreep_;

run;

Suppose that the preceding model does not fit well and you want to consider a less restricted model in which
the equality constraints are imposed on all variables except x10 in the three-parameter model. The following
statements achieve this purpose:

proc irt;
model x1-x6/resfunc=graded,

x7-x10/resfunc=threep;
equality _allthreep_but_(x10);

run;

In the constraint-options, you can specify options for parameter types (PARM= option), the set of groups
(BETWEEN_GP= and WITHIN_GP= options), and the set of factors. If you do not use these options, all
related parameter types, all groups, and all factors are subject to the constraints for the specified set of
variables. You can specify the following constraint-options:

BET < = [ group-list ] >
BETWEEN < = [ group-list ] >
BETWEEN_GP < = [ group-list ] >

specifies that the equality constraints be applied across or between groups in the multiple-group
analysis. Setting between-group constraints is the default when you fit multiple-group models. Hence,
it is not necessary to use this option when you want to set equality constraints between all groups.
When only a subset of groups is subject to the intended constraints, you can specify the groups in the
group-list . This option has no effect if you have only one group in the analysis.
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PARM < = [parameter-types] >
specifies the particular types of parameters that are subject to equality constraints. By default, all
related parameters are subject to the constraints. You can specify the following parameter-types:

CEIL

CEILING
indicates that the ceiling parameters are constrained.

GUESS

GUESSING
indicates that the guessing parameters are constrained.

INTERCEPT
indicates that the intercept parameters are constrained.

SLOPE < [ factor-list ] >

DISCRIMINATION < [ factor-list ] >
indicates that the slope or discrimination parameters are constrained. The optional factor-list
indicates the set of factors to which the constrained slope parameters pertain. The use of factor-list
is relevant only when you conduct a confirmatory analysis by specifying the factor pattern in the
FACTOR statement.

WIT < = [ group-list ] >

WITHIN < = [ group-list ] >

WITHIN_GP< = [ group-list ] >
specifies that the equality constraints be applied within groups in multiple-group analyses. Setting
within-group constraints is the default when you fit a single-group model. Hence, this option is not
necessary when you have only one group in the analysis. In multiple-group analyses, between-group
constraints are set by default. When you specify this option, within-group constraints are set instead of
between-group constraints. You can also specify the specific groups in the group-list that are subject to
the within-group constraints. The default is to apply the equality constraints to all groups.

You can combine the constraint-options to set various types of constraints for your model. You can also
specify more than one constraint in an EQUALITY statement. You can even use multiple EQUALITY
statements for better organization of the constraints.

For example, suppose that a single-group analysis is conducted using three different types of models (two-
parameter, graded responses, and three-parameter model) for the response variables. Consider the following
statements:

proc irt;
model x1-x10/resfunc=twop, x11-x20/resfunc=graded, x21-x30/resfunc=threep;
equality _alltwop_but_(x9-x10),

x11-x25 / parm=[slope],
_allthreep_ / parm=[guess];

run;

The first set of equality constraints applies to the intercept and slope parameters of x1–x8, leaving the
parameters of x9 and x10 freely estimated. The second set of equality constraints applies to the slope
parameters of variables x11–x25, even though x21–x25 have a different model type than x11–x20. The



4030 F Chapter 53: The IRT Procedure

third set of equality constraints applies to the guessing parameters of all variables that are fitted by the
three-parameter model (that is, x21–x30).

In multiple-group analysis, constraints are set across groups by default. But within-group constraints can also
be set by using the WITHIN_GP option. Suppose there are three groups in the analysis and the grouping
variable GP has three distinct values, 1, 2, and 3. Consider the following example:

proc irt;
group GP;
model x1-x10/resfunc=twop,

x11-x20/resfunc=graded,
x21-x30/resfunc=threep;

equality _alltwop_but_(x9-x10),
x11-x25 / parm=[slope] between_gp=[1 2],
_allthreep_ / parm=[guess] within_gp=[1 3];

run;

This example is quite similar to the preceding example, but with some modifications from using the BE-
TWEEN_GP and WITHIN_GP options.

The first set of equality constraints is specified exactly the same way as in the preceding example. However,
the effect is much different. In the current multiple-group example, the specification constrains the parameters
across groups by default. This means that the intercept and slope parameters of x1–x8 are constrained over
the three groups. So there would be 16 sets of equality constraints, respectively, for the 16 parameters in
variables over the three groups. However, if you use the WITHIN_GP option, the parameters for x1–x8
are the same within each group. This results in three separate sets of equality constraints on 16 intercept
parameters, respectively, for the three groups. Moreover, if you use the WITHIN_GP and BETWEEN_GP
options together, all 48 parameters in the groups are constrained to be the same.

The second set of equality constraints applies to the slope or discrimination parameters of variables x11–x25
across groups 1 and 2 only, but not all groups. This means that there are 15 equality constraints, respectively,
for the 15 slope or discrimination parameters in variables across groups 1 and 2. The discrimination
parameters for these variables are not constrained within groups.

The third set of equality constraints applies to the guessing parameters of variables x21–x30 (that is, all the
variables that are fitted by the three-parameter model) within groups 1 and 3, respectively. The guessing
parameters for these variables are not constrained across groups.

FACTOR Statement
FACTOR factor-variables-relation < , factor-variables-relation . . . > ;

where each factor-variables-relation is defined as

factor right-arrow var-list < = parameter-spec >

where factor is a name that represents an intended factor; right-arrow is ===>, --->, ==>, -->, =>,
->, or >; var-list is a list of variables that have nonzero slopes associated with the factor; and parameter-spec
represents the specifications of parameter name and values (fixed or initial).
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You use the FACTOR statement to specify the pattern of relationships between variables and factors in
confirmatory models. You do not need to use the FACTOR statement if you are fitting an exploratory model.
To complete the specification of a confirmatory model, you might need to use the VARIANCE and COV
statements to specify the variance and covariance parameters in the model, as shown in the following syntax:

FACTOR factor-variable-relation < , factor-variables-relation . . . > ;
VARIANCE variance-parameters ;
COV covariance-parameters ;

The specifications in the FACTOR statement concern the pattern in the slope matrix. More details follow
after a brief description of the VARIANCE and COV statements.

By default, the factor variances are fix parameters with a value of 1 in the confirmatory factor model. However,
you can override these default parameters by specifying them explicitly in the VARIANCE statement. For
example, in some confirmatory factor models, you might want to free some of these factor variances, or you
might want to set equality constraints by using the same parameter name at different parameter locations in
your model. Note that if you free some of the factor variances, you need to fix some slope parameters to
identify the model.

By default, factor covariances are free parameters in the confirmatory model. However, you can override
these default covariance parameters by specifying them explicitly in the COV statement.

Because the default parameterization of the confirmatory model already covers most commonly used
parameters, the specifications in the VARIANCE and COV statements are secondary to the specifications in
the FACTOR statement, which specifies the pattern of the slope matrix. The following example statement
illustrate the syntax of the confirmatory FACTOR statement. Suppose there are nine variables, V1–V9, in
your sample and you want to fit a confirmatory IRT model with four factors, as follows:

factor
g_factor ===> V1-V9 ,
factor_a ===> V1-V3 ,
factor_b ===> V4-V6 ,
factor_c ===> V7-V9 ;

In this factor model, you assume a general factor, g_factor, and three group factors, factor_a, factor_b, and
factor_c. The general factor, g_factor, is related to all variables in the sample, whereas each group factor is
related to only three variables. This example fits the following pattern of the slope matrix:

g_factor factor_a factor_b factor_c

V1 x x
V2 x x
V3 x x
V4 x x
V5 x x
V6 x x
V7 x x
V8 x x
V9 x x

Here an x represents an unnamed free parameter, and all other cells that are blank are fixed zeros.
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You can specify the following five types of parameters (parameter-spec) at the end of each factor-variables-
relation:

• an unnamed free parameter

• an initial value

• a fixed value

• a free parameter with a name provided

• a free parameter with a name and initial value provided

To illustrate these different types of parameter specifications, consider the following pattern of slopes:

g_factor factor_a factor_b factor_c

V1 g_load1 1.
V2 g_load2 x
V3 g_load3 x
V4 g_load4 1.
V5 g_load5 load_a
V6 g_load6 load_b
V7 g_load7 1.
V8 g_load8 load_c
V9 g_load9 load_c

Here an x represents an unnamed free parameter, a constant 1 represents a fixed value, and each name in a
cell represents a name for a free parameter. You can specify this pattern by using the following FACTOR
statement:

factor
g_factor ===> V1-V9 = g_load1-g_load9 (9*0.6),
factor_a ===> V1-V3 = 1. (.7 .8),
factor_b ===> V4-V6 = 1. load_a (.9) load_b,
factor_c ===> V7-V9 = 1. 2*load_c ;

In the first entry of the FACTOR statement, you specify that the slopes of V1–V9 on g_factor are the free
parameters g_load1–g_load9, all of which are given an initial estimate of 0.6. The syntax 9*0.6 means that
0.6 is repeated nine times. Because they are enclosed in parentheses, all these values are treated as initial
estimates but not as fixed values.

You can split the second entry of the FACTOR statement into the following specification:

factor_a ===> V1 = 1. ,
factor_a ===> V2 = (.7),
factor_a ===> V3 = (.8),

This means that the first slope is a fixed value of 1 and that the other slopes are unnamed free parameters that
have initial estimates of 0.7 and 0.8, respectively.

You can split the third entry of the FACTOR statement into the following specification:
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factor_b ===> V4 = 1. ,
factor_b ===> V5 = load_a (.9),
factor_b ===> V6 = load_b,

This means that the first slope is a fixed value of 1, the second slope is a free parameter named load_a with
an initial estimate of 0.9, and the third slope is a free parameter named load_b without an initial estimate.
PROC IRT generates the initial value of this free parameter.

The fourth entry of the FACTOR statement states that the first slope is a fixed 1 and the remaining two slopes
are free parameters named load_c. No initial estimate is given. But because the two slopes have the same
parameter name, they are constrained to be equal in the estimation.

Notice that an initial value that follows a parameter name is associated with the free parameter. For example,
in the third entry of the FACTOR statement, the specification (.9) after load_a is interpreted as the initial
value of the parameter load_a, but not as the initial estimate of the next slope of V6.

However, if you indeed want to specify that load_a is a free parameter without an initial value and (0.9) is
an initial estimate for the slope of V6, you can use a null initial value specification for the parameter load_a,
as shown in the following specification:

factor_b ===> V4-V6 = 1. load_a() (.9),

This way, 0.9 becomes the initial estimate of the slope of V6. Because a parameter list that contains mixed
parameter types might be confusing, you can split the specification into separate entries to remove ambiguities.
For example, you can use the following equivalent specification:

factor_b ===> V4 = 1.,
factor_b ===> V5 = load_a,
factor_b ===> V6 = (.9),

Shorter and Longer Parameter Lists

If you provide fewer parameters than the number of slopes that are specified in the corresponding factor-
variable-relation, all the remaining parameters are treated as unnamed free parameters. For example, the
following statement assigns a fixed value of 1.0 to the first slope, while treating the remaining two slopes as
unnamed free parameters:

factor
factor_a ===> V1-V3 = 1.;

This statement is equivalent to the following statement:

factor
factor_a ===> V1 = 1.,
factor_a ===> V2 V3 ;

If you intend to fill up all values with the last parameter specification in the list, you can use the continuation
syntax [...], [..], or [.], as shown in the following example:

factor
g_factor ===> V1-V30 = 1. (.5) [...];

This means that the slope of V1 on g_factor is a fixed value of 1.0 and that the remaining 29 slopes are
unnamed free parameters, all of which are given an initial estimate of 0.5.
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However, you must be careful not to provide too many parameters. For example, the following statement
results in an error:

factor
g_factor ===> V1-V3 = load1-load6;

The parameter list has six parameters for three slopes. Parameters after load3 are excessive.

Default Parameters

It is important to understand the default parameters in the FACTOR model. First, if you know which
parameters are default free parameters, you can make your specification more efficient by omitting the
specifications of those parameters that can be set by default.

FREQ Statement
FREQ variable ;

If one variable in your data set represents the frequency of occurrence for the other values in the observation,
specify the variable’s name in a FREQ statement. PROC IRT then treats the data set as if each observation
appears ni times, where ni is the value of the FREQ variable for observation i. Only the integer portion
of the value is used. If the value of the FREQ variable is less than 1 or is missing, that observation is not
included in the analysis. The total number of observations is considered to be the sum of the FREQ values.

GROUP Statement
GROUP variable ;

The GROUP statement specifies the grouping variable that defines the groups of the observations. This
statement is required if you intend to do a multiple-group analysis. The values of the grouping variable can
be either integers or character strings. PROC IRT analyzes the input data set and determines the number of
distinct groups in the data set by counting the number of distinct values in the grouping variable. Because
there is no other explicit way to specify the number of groups or the grouping values, you must make sure
that all (and only) the intended groups have been indexed properly by the grouping variable in the data set for
a multiple-group analysis.

MODEL Statement
MODEL model-specification < , model-specification . . . > ;

where model-specification is defined as

variable-list < / model-option >

The MODEL statement specifies the items and their response functions or models. You can specify
different response models for different items. In the variable-list , you specify the set of variables that use the
same model.
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You can specify the following model-option:

RESFUNC < = [ response-model-types ] >
specifies the response function or model. For available keywords, see the RESFUNC= option in the
PROC IRT statement. For technical details about these response models, see “Response Models” in
the section “Details: IRT Procedure” on page 4038.

You can specify mixed response models for different items as follows:

proc irt;
model x1-x10/resfunc=twop, x11-x20/resfunc=graded, x21-x30/resfunc=threep;

run;

For variables that are also listed in the VAR statement, the model that is specified here overwrites the default
model or the model that is specified by using the RESFUNC= option in the PROC IRT statement.

You can use the EQUALITY statement to set equality constraints on these parameters.

VAR Statement
VAR | VARIABLE variables ;

The VAR statement lists the analysis variables or items in the model. If you do a multiple-group analysis, the
same set of analysis variables is assumed for all groups. By default, all variables that you specify in the VAR
statement are fitted by the graded response model, which assumes that the analysis variables are ordinal and
have 2 to 19 levels.

You can overwrite the default response model for the analysis variables in the VAR statement by using the
RESFUNC= option in the PROC IRT statement. If you want to analyze the data by using a mixed type of
response model, you can use the MODEL statement.

VARIANCE Statement
VARIANCE assignment < , assignment . . . > ;

where assignment represents

var-list < =parameter-spec >

The VARIANCE statement specifies the factor variance parameters in connection with the FACTOR statement.
Notice that the VARIANCE statement is different from the VAR statement, which specifies variables for
analysis. You can list factors only in the var-list of the VARIANCE statement.

In each assignment of the VARIANCE statement, you include the var-list whose variances you want to
specify. Optionally, you can provide a list of parameter specifications (parameter-spec) after an equal sign
for each var-list .

You can specify the following five types of the parameters for the variances of the latent factor in the
VARIANCE statement:

• an unnamed free parameter



4036 F Chapter 53: The IRT Procedure

• an initial value

• a fixed value

• a free parameter with a name provided

• a free parameter with a name and initial value provided

Consider a confirmatory model that has the latent factors F1, F2, F3, F4, and F5.

The following VARIANCE statement illustrates the five types of parameter specifications in five assignments:

variance
F1 ,
F2 = (.5),
F3 = 1.0,
F4 = fvar,
F5 = fvar(0.7);

In this statement, the variance of F1 is specified as an unnamed free parameter. The variance of F2 is an
unnamed free parameter that has an initial value of 0.5. The variance of F3 is a fixed value of 1.0. This value
stays the same during the estimation. The variance of F4 is a free parameter named fvar1. The variance of F5
is a free parameter named fvar2 that has an initial value of 0.7.

Mixed Parameter Lists

You can specify different types of parameters for the list of variances. For example, the following statement
uses a list of parameters that have mixed types:

variance
F1-F6 = vp1 vp2(2.0) vp3 4. (.3) vp6(.4);

This is equivalent to the following statement:

variance
F1 = vp1
F2 = vp2(2.0),
F3 = vp3,
F4 = 4. ,
F5 = (.3),
F6 = vp6(.4);

As you can see, an initial value that follows a parameter name is associated with the free parameter. For
example, in the original mixed list specification, the specification (2.0) after vp2 is interpreted as the initial
value of the parameter vp2, but not as the initial estimate of the variance of F3.

However, if you indeed want to specify that vp2 is a free parameter without an initial value and 2.0 is an
initial estimate of the variance of F3 (while keeping all other things the same), you can use a null initial value
specification for the parameter vp2, as shown in the following statement:

variance
F1-F6 = vp1 vp2() (2.0) 4. (.3) vp6(.4);
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This way, 2.0 becomes the initial estimate of the variance of F3. Because a, parameter list that contains mixed
parameter types might be confusing, you can break down the specifications into separate assignments to
remove ambiguities. For example, you can use the following equivalent statement:

variance
F1 = vp1
F2 = vp2,
F3 = (2.),
F4 = 4. ,
F5 = (.3),
F6 = vp6(.4);

Shorter and Longer Parameter Lists

If you provide fewer parameters than the number of variances in the var-list , all the remaining parameters are
treated as unnamed free parameters. For example, the following statement assigns a fixed value of 1.0 to the
variance of F1 while treating the other three variances as unnamed free parameters:

variance
F1-F4 = 1.0;

This statement is equivalent to the following statement:

variance
F1 = 1.0, F2-F4;

If you intend to fill up all values with the last parameter specification in the list, you can use the continuation
syntax [...], [..], or [.], as shown in the following example:

variance
F1-F100 = 1.0 psi [...];

This means that the variance of F1 is fixed at 1.0 and that the variances of F1–F100 are all free parameters
named psi. All variances except that for F1 are thus constrained to be equal by having the same parameter
name.

However, you must be careful not to provide too many parameters. For example, the following statement
results in an error:

variance
F1-F6 = 1.0 psi2-psi6 extra;

The parameters after psi6 are excessive.

Default Variance Parameters

In the IRT model, by default, the factor variances are fixed at ones. You can also use the VARIANCE
statement to override these default variance parameters in situations where you want to specify parameter
constraints, provide initial or fixed values, or make parameter references.

WEIGHT Statement
WEIGHT variable ;
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The WEIGHT statement specifies the weight variable for the observations. The WEIGHT and FREQ
statements have a similar effect, except that the WEIGHT statement does not alter the number of observations.
An observation is used in the analysis only if the WEIGHT variable is greater than 0 and is not missing.

Details: IRT Procedure

Notation for the Item Response Theory Model
This section introduces the mathematical notation that is used throughout the chapter to describe the item
response theory (IRT) model. For a description of the fitting algorithms and the mathematical-statistical
details, see the section “Details: IRT Procedure” on page 4038.

A d-dimensional IRT model that has J ordinal responses can be expressed by the equations

yij D �j�i C �ij

pijk D Pr.uij D k/ D Pr.˛.j;k�1/ < yij < ˛.j;k//; k D 1; : : : ; K

where uij is the observed ordinal response from subject i for item j, yij is a continuous latent response that
underlies uij , ˛j D .˛.j;0/ D �1; ˛.j;1/; : : : ; ˛.j;K�1/; ˛.j;K/ D 1/ is a vector of threshold parameters
for item j, �j is a vector of slope (or discrimination) parameters for item j, �i D .�i1; : : : ; �id / is a vector of
latent factors for subject i, �i � Nd .�;†/, and �i D .�i1; : : : ; �iJ / is a vector of unique factors for subject
i. All the unique factors in �i are independent from one another, suggesting that yij ; j D 1; : : : ; J , are
independent conditional on the latent factor �i . This is the so-called local independence assumption. Finally,
�i and �i are also independent.

Based on the preceding model specification,

pijk D

Z ˛.j;k/

˛.j;k�1/

p.yI�j�i ; 1/dy D

Z ˛.j;k/��j�i

˛.j;k�1/��j�i

p.yI 0; 1/dy

where p is determined by the link function. It is the density function of the standard normal distribution if the
probit link is used, or the density function of the logistic distribution if the logistic link is used.

Let ƒ D .�T1 ; : : : ;�
T
J / denote the slope matrix. To identify the model in exploratory analysis, the upper

triangular elements of ƒ are fixed as zero, the factor means � is fixed as a zero vector, and the factor
variance covariance matrix † is fixed as an identity matrix. For confirmatory analysis, it is assumed that the
identification problem is solved by user-specified constraints.

The model that is specified in the preceding equation uses the latent response formulation. PROC IRT uses
this parameterization for computational convenience. When there is only one latent factor, a mathematically
equivalent parameterization for the model is

pijk D

Z �aj .�i�bj;k/
�aj .�i�bj;k�1/

p.yI 0; 1/dy

where aj is called the slope (discrimination) parameter and bj;k; k D 1; : : : ; K are called the threshold
parameters. The threshold parameters under these two parameterizations can be translated as bj;k D

˛j;k
�j

,
where k D 1; : : : ; K and cj;k D �˛j;k is often called the intercept parameter.



Assumptions F 4039

The preceding model is called a graded-response model. When the responses are binary, this model reduces
to the two-parameter model, which can be expressed as

yij D aj .�i � bj /C �ij

pij D Pr.uij D 1/ D Pr.yij > 0/

where bj is often called item difficulty parameter.

The two-parameter model reduces to a one-parameter model when slope parameters for all the items are
constrained to be equal. In the case where logistic link is used, the one- and two-parameter models are often
abbreviated as 1PL and 2PL. When all the slope parameters are set to 1 and the factor variance is set to a free
parameter, the Rasch model is obtained.

You can obtain three- and four-parameter models by introducing the guessing and ceiling parameters. Let
gj and cj denote the item-specific guessing and ceiling parameters. Then the four-parameter model can be
expressed as

pij D Pr.uij D 1/ D gj C .cj � gj /Pr.yij > 0/

This model reduces to the three-parameter model when cj D 1.

Assumptions
The primary statistical assumptions that underlie the analyses that PROC IRT performs are as follows:

• The number of latent factors is known.

• Latent factors are assumed to be normally distributed.

• Conditional on latent factors, observed responses (items) are assumed to be independent. This is the so
called local independence assumption.

These assumptions are necessary if you want to make statistical inferences. For exploratory analysis, these
assumptions do not apply.

PROC IRT Contrasted with Other SAS Procedures
IRT models are often referred to as latent trait models, especially in the field of sociology. The term latent trait
is used to emphasize that observed discrete responses are manifestations of hypothesized traits, constructs, or
attributes that cannot be directly observed. For that reason, IRT models belong to the more general modeling
framework called latent variable models. Other models that belong to the latent variable model framework
include factor analysis models, finite mixture models, and mixed effect models. The relationships between
these different latent variable models can be described as shown in Table 53.2.
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Table 53.2 Latent Variable Models

Latent Variable
Continuous Discrete

Observed Variable Continuous Factor analysis Finite mixture model
Discrete Item response theory Latent class analysis

This table suggests that latent variable models can be classified into four groups, based on the measurement
scale of observed and latent variables. These different latent variable models can be fitted by different SAS
procedures: PROC FACTOR for factor analysis models, PROC FMM for finite mixture models, and PROC
IRT for item response theory models. IRT models are more closely related to factor analysis models. They
can be considered a version of factor analysis models of discrete rather than continuous responses.

Response Models
PROC IRT supports several response models for binary and ordinal responses, and it allows different items to
have different response models. Details about these response models and their relationships follow:

• One-parameter model: This model assumes that items are binary. The distinctive feature of the
one-parameter model, compared with the two-parameter model, is that the slopes (or the discrimination
parameters) of the items are the same in the model. Statistically, the one-parameter model is equivalent
to the Rasch model. They give the same model fit for the same data set.

• Two-parameter model: This model assumes that items are binary. The slopes (or the discrimination
parameters) and the difficulty (or the intercept parameters) of the items are free parameters in the model.
If all slopes of the two-parameter model are constrained to be same, it reduces to the one-parameter
model.

• Three-parameter model: This model assumes that items are binary. The slopes (or the discrimination
parameters), the difficulty (or the intercept parameters), and the guessing parameters of the items are
free parameters in the model. If all the guessing parameters are fixed to 0, the three-parameter model
reduces to the two-parameter model.

• Four-parameter model: This model assumes that items are binary. The slopes (or the discrimination
parameters), the difficulty (or the intercept parameters), the guessing parameters, and the ceiling
parameters of the items are free parameters in the model. If all the guessing parameters are fixed to 0
and all the ceiling parameters are fixed to 1, the four-parameter model reduces to the two-parameter
model.

• Rasch model: This model assumes that items are binary. The distinctive feature of the Rasch model,
compared with the two-parameter model, is that the slopes (or the discrimination parameters) of the
items are all fixed to 1 (and with free factor variance parameters) in the model. Statistically, the Rasch
model is equivalent to the one-parameter model. They give the same model fit for the same data set.

• Graded response model: This model assumes that items are ordinal-categorical with at most 19 levels.
The slopes (or discrimination) the thresholds of the items are free parameters in the model.
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You can specify the response function or model for all the variables that are listed in the VAR statement by
using the RESFUNC= option in the PROC IRT statement. To specify different response functions or models
for different set of variables, you can use the MODEL statement.

Marginal Likelihood
Based on the model that is specified in the section “Notation for the Item Response Theory Model” on
page 4038, the marginal likelihood is

L.�jU/ D

NY
iD1

Z JY
jD1

KY
kD1

.Pijk/
vijk�.�I�;†/d� D

NY
iD1

Z
f .ui j�/�.�I�;†/d�

where vijk D I.uij D k/, �.�/ is the multivariate normal density function for the latent factor �, and � is a
set of all the model parameters. The corresponding log likelihood is

logL.�jU/ D
NX
iD1

log
Z JY
jD1

KY
kD1

.Pijk/
vijk�.�I�;†/d�

Integrations in the preceding equation cannot be solved analytically and need to be approximated by using
numerical integration,

log QL.�jU/ D
NX
iD1

log

24 GdX
gD1

24 JY
jD1

KY
kD1

.Pijk.xg//vijk
�.xg I�;†/
�.xg I 0; I /

35wg
35

where d is the number of factors, G is the number of quadrature points per dimension, and xg and wg are the
quadrature points and weights, respectively.

Approximating the Marginal Likelihood
As discussed in the section “Marginal Likelihood” on page 4041, integrations that are involved in the marginal
likelihood for IRT model cannot be solved analytically and need to be approximated by using numerical
integration, mostly Gauss-Hermite quadrature.

Gauss-Hermite (G-H) Quadrature

In general, the Gauss-Hermite (G-H) quadrature can be presented asZ 1
�1

g.x/dx D

Z 1
�1

f .x/�.x/dx �

GX
gD1

f .xg/wg

where G is the number of quadrature points and xg andwg are the integration points and weights, respectively,
which are uniquely determined by the integration domain and the weighting kernel �.x/. Traditional G-H
quadrature often uses e�x

2

as the weighting kernel. In the field of statistics, the density of standard normal
distribution is more widely used instead, because for estimating various statistical models, the Gaussian
density is often a factor of the integrand. In the case in which the Gaussian density is not a factor of the
integrand, the integral is transformed into the form by dividing and multiplying the original integrand by the
standard normal density.
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Adaptive Gauss-Hermite Quadrature

The G order G-H quadrature is exact if f .x/ is a 2K � 1 degree polynomial in x. However, as many
researchers (Lesaffre and Spiessens 2001; Rabe-Hesketh, Skrondal, and Pickles 2002) point out, integrands
f .ui j�/�.�I�;†/ often have sharp peaks and cannot be well approximated by low-degree polynomials in
�. Furthermore, the peak might be far from zero or be located between adjacent quadrature points so that
substantial contributions to the integral are lost.

Note that the integrands in the marginal likelihood are a product of the prior density of �, �.�I�;†/ and
the joint probability of responses given �, f .ui j�/. After normalization with respect to �, the integrand,
f .ui j�/�.�I�;†/, is just the posterior density of �, given the observed responses ui . This posterior density
is approximately normal when the number of items is large. Let �i and †i be the mean and covariance
matrix, respectively, of the posterior density. Then the ratio f .ui j�/�.�I�;†/

�.�I�i ;†i /
can be well approximated by a

low-degree polynomial if the number of items is relatively large. This suggests that the integral should be
transformed asZ

f .ui j�/�.�/d� D
Z
f .ui j�/�.�I�;†/
�.�I�i ;†i /

�.�I�i ;†i /d�

The integration points and weights that correspond to �.�I�i ;†i / are

zg D †
1=2
i xg C �i

vg D j†i j
1=2wg

The preceding transformations move and scale the quadrature points to the center of the integrands such that
the integrand can be better approximated using many fewer quadrature points.

Maximizing the Marginal Likelihood
You can obtain parameter estimates by maximizing the marginal likelihood by using either the expectation
maximization (EM) algorithm or a Newton-type algorithm. Both algorithms are available in PROC IRT.

The most widely used estimation method for IRT models is the Gauss-Hermite quadrature–based EM al-
gorithm, proposed by Bock and Aitkin (1981). However, this method has several important shortcomings,
the most serious of which is the lack of reliable convergence criteria. Without reliable convergence criteria,
estimates can be seriously biased because of spurious convergence. In comparison, gradient-based conver-
gence criteria is readily available for Newton-type algorithms. As a result, PROC IRT uses the quasi-Newton
algorithm instead of EM as the default optimization method.

Newton-Type Algorithms

Newton-type algorithms maximize the marginal likelihood directly, based on the first and second derivatives.
Two of the most widely used estimation algorithms are the Newton-Raphson and Fisher scoring algorithms,
which rely on the gradient and Hessian of the log likelihood. However, for latent variable models that contain
categorical responses, the Hessian matrix is often expensive to compute. As a result, several quasi-Newton
algorithms that require only gradients have been proposed. In the field of IRT, Bock and Lieberman (1970)
propose replacing the Hessian with the following information matrix:

I.�/ D E

24@ log QL.� jU/
@�

 
@ log QL.� jU/

@�

!T35 D 2JX
hD1

24@ log QLi
@�

 
@ log QLi
@�

!T35
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To calculate the preceding expectation, you need to sum over not just the observed but all 2J possible response
patterns; this becomes computationally very expensive when the number of items is large. Fortunately,
other quasi-Newton algorithms that do not have these computational difficulties have been proposed. The
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is one of the most popular quasi-Newton algorithms that
approximate the Hessian matrix with gradient.

For the objective function, log QL.�/, the first derivatives with respect to �j are

@ log QL.�jU/
@�j

D

NX
iD1

"
. QLi /

�1 @
QLi

@�j

#
D

NX
iD1

24. QLi /�1 GdX
gD1

�
@fi .xg/
@�j

w�g

�35
where

QLi D

GdX
gD1

24 JY
jD1

KY
kD1

.Pijk.xg//vijk
�.xg I�;†/
d.xg I 0; I /

35wg D GdX
gD1

fi .xg/wg

fi .xg/ D

JY
jD1

KY
kD1

.Pijk.xg//vijk
�.xg I�;†/
d.xg I 0; I /

and

@fi .xg/
@�Ij

D
@Œ.Pijk.xg//�

@�j

fi .xg/
.Pijk.xg//

@fi .xg/
@�f

D

JY
jD1

KY
kD1

.Pijk.xg//vijk
@�.xg I�;†/

@�f

where, in the preceding two equations, �Ij indicate parameters that are associated with item j and �f
represents parameters that are related to latent factors.

Expectation-Maximization (EM) Algorithm

The expectation-maximization (EM) algorithm starts from the complete data log likelihood that can be
expressed as follows:

logL.�jU;�/ D
NP
iD1

"
JP
jD1

KP
kD1

vijk logPijk C log �.�i I�;†/

#

D

JP
jD1

NP
iD1

"
KP
kD1

vijk logPijk

#
C

NP
iD1

log �.�i I�;†/

The expectation (E) step calculates the expectation of the complete data log likelihood with respect to the
conditional distribution of �i , f .�i jui ;�.t// as follows:

Q.�j�.t// D

JX
jD1

NX
iD1

"
KX
kD1

vijkE
h
logPijkjui ;�.t/

i#
C

NX
iD1

E
h
log �.�i I�;†/jui ;�.t/

i
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The conditional distribution f .�jui ; � .t// is

f .�jui ;�.t// D
f .ui j�;�.t//�.�I�.t/;†.t//R
f .ui j�;�.t//�.�I�.t/;†.t//d�

D
f .ui j�;�.t//�.�I�.t/;†.t//

f .ui /

These conditional expectations that are involved in the Q function can be expressed as follows:

EŒlogPijkjui ;�.t/� D
Z

logPijkf .�jui ;�.t//d�

EŒlog �.�I�;†/jui ;�.t/� D
Z

log �.�I�;†/f .�jui ;�.t//d�

Then

Q.�j�.t// D

JX
jD1

Z h
logPijkrjk.�.t//

i
�.�I�.t/;†.t//d�C

Z
log �.�j�/N.�.t//�.�I�.t/;†.t//d�

where

rjk.�
.t// D

NX
iD1

KX
kD1

vijk
f .ui j�;�.t//

f .ui /

and

N.�.t// D

NX
iD1

f .ui j�;�.t//
f .ui /

Integrations in the preceding equations can be approximated as follows by using G-H quadrature:

QQ.�j�.t// D

GX
gD1

h
logPijk.xg/rjk.xg ;�.t//C log �.xg j�/N.xg ;�.t//

i �.xg I�.t/;†.t//
d.xg I 0; I /

wg

In the maximization (M) step of the EM algorithm, parameters are updated by maximizing QQ.� j� .t//. To
summarize, the EM algorithm consists of the following two steps:

E step: Approximate Q.�j�.t// by using numerical integration.

M step: Update parameter estimates by maximizing QQ.�j�.t// with the one-step Newton-Raphson algo-
rithm.

Factor Score Estimation
PROC IRT provides three methods of estimating factor scores: maximum likelihood (ML), maximum a
posteriori (MAP), and expected a posteriori (EAP). You can specify them by using the SCOREMETHOD=
option in the PROC IRT statement.
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You can obtain the ML factor score by maximizing the likelihood for each observation with respect to the
latent factor. You can also compute the MAP or EAP factor score by maximizing or by taking the expectation
of the posterior distribution of latent factors for each observation. The likelihood and posterior distribution
for each observation, ui D .ui1; : : : ; uiJ /, can be expressed, respectively, as

l.�jui ; O�/ D

JY
jD1

KY
kD1

.Pijk/
vijk

and

p.�jui ; O�/ /

JY
jD1

KY
kD1

.Pijk/
vijk�.�I�;†/

Factor scores are restricted to the range from –99 to 99. For unidimensional models, the ML factor score
is not available for subjects whose response to all the items is either the lowest or the highest level. For
example, suppose there are five binary items in the model. For subjects whose response is 1 or 0 to all five
items, the ML factor score cannot be estimated. For subjects whose response to all items is the lowest level,
the ML factor score is set to –99, and for subjects whose response to all items is the highest level, the ML
factor score is set to 99.

Model and Item Fit
The IRT procedure includes five model fit statistics: log likelihood, Akaike’s information criterion (AIC),
Bayesian information criterion (BIC), likelihood ratio G2, and Pearson’s chi-square.

The following two equations compute the likelihood ratio chi-square G2 and Pearson’s chi-square,

G2 D 2

"
LX
lD1

rl log
rl

NPl

#

�2 D

LX
lD1

.rl �NPl/
2

NPl

where N is the number of subjects, L is number of possible response patterns, Pl is the estimated probability
of observing response pattern l, and rl is the number of subjects who have response pattern l. If the model
is true, these two statistics asymptotically follow central chi-square distribution with degrees of freedom
L � m � 1, where m is the number of free parameters in the model. When L (the number of possible
response patterns) is much greater than N, the frequency table is sparse. This invalidates the use of chi-square
distribution as the asymptotic distribution for these two statistics, and as a result the likelihood ratio chi-square
and Pearson’s chi-square statistics should not be used to evaluate overall model fit.

For item fit, PROC IRT computes the likelihood ratio G2 and Pearson’s chi-square. Pearson’s chi-square
statistic, proposed by Yen (1981), has the form

Q1j D

10X
kD1

Nk
.Ojk �Ejk/

2

Ejk.1 �Ejk/
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The likelihood ratio G2, proposed by McKinley and Mills (1985), uses the following equation:

G2 D 2

10X
kD1

Nk

�
Ojk log

Ojk

Eik
C .1 �Ojk/ log

1 �Ojk

1 �Eik

�
These two statistics approximately follow a central chi-square distribution with 10 �mj degrees of freedom,
where mj is the number of free parameters for item j.

To calculate these two statistics, first order all the subjects according to their estimated factor scores, and then
partition them into 10 intervals such that the number of subjects in each interval is approximately equal. Ojk
and Ejk are the observed proportion and expected proportion, respectively, of subjects in interval k who have
a correct response on item j. The expected proportions Ejk are computed as the mean predicted probability
of a correct response in interval k.

Item and Test information
Let Pjk.�/ be the probability of endorsing category k for item j for a subject whose ability score is � . Then
the item information function can be defined as

Ij .�/ D

KX
kD1

Ik.�/Pjk.�/

where

Ik.�/ D �
@2

@�2
logPjk.�/

The test information function is the sum of the information functions of the items in the test. The information
function of a test that has J items is

I.�/ D

JX
jD1

Ij .�/

ODS Table Names
PROC IRT assigns a name to each table that it creates. You can use these names to refer to the table when
you use the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed in Table 53.3. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

Table 53.3 ODS Tables Produced by PROC IRT

ODS Table Name Description Option

ConvergenceStatus Convergence Status Default output
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Table 53.3 continued

ODS Table Name Description Option

Eigenvalues Polychoric correlation–based eigen-
values

Default output

FactorCov Factor covariance estimates Default output; available only for
multidimensional models

FactorCovInit Initial factor covariance estimates PINITIAL option; available only for
multidimensional models

FactorCovRot Rotated factor covariance estimates ROTATE= oblique rotation methods;
available only for multidimensional
exploratory models

FitStatistics Model fit statistics Default output

GroupInfo Group information Default output; available only for
multiple group analysis

ItemFit Item fit statistics ITEMFIT option; available only for
binary responses that have one latent
factor

ItemInfo Item information Default output

IterHistory Iteration history Default output

ModelInfo Model information Default output

OptInfo Optimization information Default output

ParameterEstimates Item parameter (difficulty and slope)
estimates for unidimensional models
or intercept parameter estimates for
multidimensional models

Default output

ParameterEstimatesInit Initial item parameter (difficulty and
slope) estimates for unidimensional
model or initial intercept parameter
estimates for multidimensional mod-
els

PINITIAL option

PolyCorr Polychoric correlation matrix POLYCHORIC option

Slope Slope parameter estimates Default output; available only for
multidimensional confirmatory
models

SlopeInit Initial slope parameter estimates PINITIAL option; available only for
multidimensional models

SlopeRot Rotated slope parameter estimates Default output; available only
for multidimensional exploratory
models
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ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

You must also specify the PLOTS= option in the PROC IRT statement.

PROC IRT assigns a name to each graph that it creates using ODS. You can use these names to refer to the
graphs when using ODS. The names are listed in Table 53.4.

Table 53.4 Graphs Produced by PROC IRT

ODS Graph Name Plot Description PLOTS= Option

ItemCharCurve Item characteristic curves PLOTS=ICC. The plot panels by default;
specify PLOTS=UNPACK to produce an in-
dividual plot for each item.

ItemInfoCurve Item information curves PLOTS=IIC. The plot panels by default; spec-
ify PLOTS=UNPACK to produce an individ-
ual plot for each item.

PolyCorrHeatMap Heat map for polychoric cor-
relation matrix

PLOTS=POLYCHORIC|PLCORR

ScreePlot Scree and variance ex-
plained plots

PLOTS=SCREE

TestInfoCurve Test information curve PLOTS=TIC

VariancePlot Plot of explained variance PLOTS=SCREE(UNPACK)

Examples: IRT Procedure

Example 53.1: Unidimensional IRT Models
This example shows you the features that PROC IRT provides for unidimensional analysis. The data set
comes from the 1978 Quality of American Life Survey. The survey was administered to a sample of all U.S.
residents aged 18 years and older in 1978. In this survey, subjects were asked to rate their satisfaction with
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many different aspects of their lives. This example selects eight items. These items are designed to measure
people’s satisfaction in the following areas on a seven-point scale: community, neighborhood, dwelling unit,
life in the United States, amount of education received, own health, job, and how spare time is spent. For
illustration purposes, the first five items are dichotomized and the last three items are collapsed into three
levels.

The following DATA step creates the data set IrtUni.

data IrtUni;
input item1-item8 @@;
datalines;

1 0 0 0 1 1 2 1 1 1 1 1 1 3 3 3 0 1 0 0 1 1 1 1 1 0 0 1 0 1 2 3 0 0 0
0 0 1 1 1 1 0 0 1 0 1 3 3 0 0 0 0 0 1 1 3 0 0 1 0 0 1 2 2 0 1 0 0 1 1

... more lines ...

3 3 0 1 0 0 1 2 2 1
;

Because all the items are designed to measure subjects’ satisfaction in different aspects of their lives, it is
reasonable to start with a unidimensional IRT model. The following statements fit such a model by using
several user-specified options:

ods graphics on;
proc irt data=IrtUni link=probit pinitial itemfit plots=ICC;

var item1-item8;
model item1-item4/resfunc=twop, item5-item8/resfunc=graded;

run;
ods graphics off;

The ODS GRAPHICS ON statement invokes the ODS Graphics environment and displays the plots, such as
the item characteristic curve plot. For more information about ODS Graphics, see Chapter 21, “Statistical
Graphics Using ODS.”

The first option is the LINK= option, which specifies that the link function be the probit link. Next, you
request initial parameter estimates by using the PINITIAL option. Item fit statistics are displayed using the
ITEMFIT option. In the PROC IRT statement, you can use the PLOTS option to request different plots. In
this example, you request item characteristic curves by using the PLOTS=ICC option.

In this example, you use the MODEL statement to specify different response models for different items. The
specifications in the MODEL statement suggest that the first four items, item1 to item4, are fitted using the
two-parameter model, whereas the last four items, item5 to item8, are fitted using the graded response model.

Output 53.1.1 displays two tables. From the “Modeling Information” table, you can observe that the link
function has changed from the default LOGIT link to the specified PROBIT link. The “Item Information”
table shows that item1 to item5 each have two levels and item6 to item8 each have three levels. The last
column shows the raw values of these different levels.
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Output 53.1.1 Basic Information

The IRT ProcedureThe IRT Procedure

Modeling Information

Data Set WORK.IRTUNI

Link Function Probit

Number of Items 8

Number of Factors 1

Number of Observations Read 500

Number of Observations Used 500

Estimation Method Marginal Maximum Likelihood

Item Information

Response
Model Item Levels Values

TwoP item1 2 0 1

item2 2 0 1

item3 2 0 1

item4 2 0 1

Graded item5 2 0 1

item6 3 1 2 3

item7 3 1 2 3

item8 3 1 2 3

PROC IRT produces the “Eigenvalues of the Polychoric Correlation Matrix” table in Output 53.1.2 by default.
You can use these eigenvalues to assess the dimension of latent factors. For this example, the fact that only
the first eigenvalue is greater than 1 suggests that a one-factor model for the items is reasonable.

Output 53.1.2 Eigenvalues of Polychoric Correlations

The IRT ProcedureThe IRT Procedure

Eigenvalues of the Polychoric Correlation Matrix

Eigenvalue Difference Proportion Cumulative

1 3.11870486 2.12497677 0.3898 0.3898

2 0.99372809 0.10025986 0.1242 0.5141

3 0.89346823 0.03116998 0.1117 0.6257

4 0.86229826 0.10670185 0.1078 0.7335

5 0.75559640 0.17795713 0.0944 0.8280

6 0.57763928 0.10080017 0.0722 0.9002

7 0.47683911 0.15511333 0.0596 0.9598

8 0.32172578 0.0402 1.0000

The PINITIAL option in the PROC IRT statement displays the “Initial Item Parameter Estimates” table,
shown in Output 53.1.3.
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Output 53.1.3 Initial Parameter Estimates

The IRT ProcedureThe IRT Procedure

Initial Item Parameter Estimates

Response
Model Item Parameter Estimate

TwoP item1 Difficulty 0.26428

Slope 1.05346

item2 Difficulty 0.58640

Slope 0.93973

item3 Difficulty 0.44607

Slope 0.82826

item4 Difficulty 0.50157

Slope 0.50906

Graded item5 Threshold 1 -0.86792

Slope 0.41380

item6 Threshold 1 -0.59512

Threshold 2 2.00678

Slope 0.36063

item7 Threshold 1 -0.90743

Threshold 2 0.69335

Slope 0.64191

item8 Threshold 1 -1.18209

Threshold 2 0.26959

Slope 0.67591

Output 53.1.4 includes tables that are related to the optimization. The “Optimization Information” table
shows that the log likelihood is approximated by using seven adaptive Gauss-Hermite quadrature points and
then maximized by using the quasi-Newton algorithm. The number of free parameters in this example is
19. The “Iteration History” table shows the number of function evaluations, the objective function (–log
likelihood divided by number of subjects) values, the objective function change, and the maximum gradient
for each iteration. This information is very useful in monitoring the optimization status. Output 53.1.4 shows
the convergence status at the bottom. The optimization converges according to the GCONV=0.00000001
criterion.

Output 53.1.4 Optimization Information

The IRT ProcedureThe IRT Procedure

Optimization Information

Optimization Technique Quasi-Newton

Likelihood Approximation Adaptive Gauss-Hermite Quadrature

Number of Quadrature Points 9

Number of Free Parameters 19
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Output 53.1.4 continued

Iteration History

Iteration Evaluations
Objective
Function Change

Max
Gradient

0 2 6.19423730 6.19423730 0.015501

1 5 6.19269781 -0.00153950 0.005787

2 8 6.19256587 -0.00013194 0.003813

3 10 6.19249856 -0.00006732 0.003278

4 12 6.19245371 -0.00004485 0.004635

5 15 6.19243639 -0.00001732 0.001284

6 18 6.19242942 -0.00000696 0.00049

7 21 6.19242884 -0.00000058 0.000191

8 24 6.19242871 -0.00000013 0.000104

9 27 6.19242867 -0.00000004 0.000051

10 30 6.19242867 -0.00000001 0.000011

Convergence criterion (GCONV=.000000010) satisfied.

Output 53.1.5 displays the model fit and item fit statistics. Note that the item fit statistics apply only to the
binary items. That is why these fit statistics are missing for item6 to item8.

Output 53.1.5 Fit Statistics

The IRT ProcedureThe IRT Procedure

Model Fit Statistics

Log Likelihood -3096.214333

AIC (Smaller is Better) 6230.4286657

BIC (Smaller is Better) 6310.5062196

Item Fit Statistics

Response
Model Item DF

Pearson
Chi-Square Pr > P ChiSq

LR
Chi-Square Pr > LR ChiSq

TwoP item1 8 34.16545 <.0001 49.39743 <.0001

item2 8 30.34646 0.0002 37.52865 <.0001

item3 8 27.54546 0.0006 36.34505 <.0001

item4 8 22.75981 0.0037 26.13409 0.0010

Graded item5 8 18.32369 0.0189 19.68488 0.0116

item6 . . . . .

item7 . . . . .

item8 . . . . .
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The last table for this example is the “Item Parameter Estimates ” table in Output 53.1.6. This table contains
parameter estimates, standard errors, and p-values. These p-values suggest that all the parameters are
significantly different from zero.

Output 53.1.6 Parameter Estimates

The IRT ProcedureThe IRT Procedure

Item Parameter Estimates

Response
Model Item Parameter Estimate

Standard
Error Pr > |t|

TwoP item1 Difficulty 0.27342 0.08301 0.0005

Slope 0.98381 0.14145 <.0001

item2 Difficulty 0.60268 0.10047 <.0001

Slope 0.90009 0.13112 <.0001

item3 Difficulty 0.46110 0.10061 <.0001

Slope 0.79521 0.11392 <.0001

item4 Difficulty 0.50686 0.14410 0.0002

Slope 0.50431 0.08567 <.0001

Graded item5 Threshold -0.79750 0.18708 <.0001

Slope 0.45385 0.08238 <.0001

item6 Threshold 1 -0.59139 0.19858 0.0014

Threshold 2 2.02708 0.39593 <.0001

Slope 0.35770 0.06777 <.0001

item7 Threshold 1 -0.82130 0.12753 <.0001

Threshold 2 0.64441 0.11431 <.0001

Slope 0.72674 0.09312 <.0001

item8 Threshold 1 -1.08124 0.14132 <.0001

Threshold 2 0.25166 0.09535 0.0042

Slope 0.76383 0.09753 <.0001

Item characteristic curves (ICC) are also produced in this example. By default, these ICC plots are displayed
in panels. To display an individual ICC plot for each item, use the UNPACK suboption in the PLOTS= option
in the PROC IRT statement.
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Output 53.1.7 ICC Plots
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Output 53.1.7 continued

Now, suppose your research hypothesis includes some equality constraints on the model parameters—for
example, the slopes for the first four items are equal. Such equality constraints can be specified easily by
using the EQUALITY statement. In the following example, the slope parameters of the first four items are
equal:

proc irt data=IrtUni;
var item1-item8;
model item1-item4/resfunc=twop, item5-item8/resfunc=graded;
equality item1-item4/parm=[slope];

run;

To estimate the factor score for each subject and add these scores to the original data set, you can use
the OUT= option in the PROC IRT statement. PROC IRT provides three factor score estimation methods:
maximum likelihood (ML), maximum a posteriori (MAP), and expected a posteriori (EAP). You can choose
an estimation method by using the SCOREMETHOD= option in the PROC IRT statement. The default
method is maximum a posteriori. In the following, factor scores along with the original data are saved to a
SAS data set called IrtUniFscore:
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proc irt data=IrtUni out=IrtUniFscore;
var item1-item8;
model item1-item4/resfunc=twop,

item5-item8/resfunc=graded;
equality item1-item4/parm=[slope];

run;

Sometimes you might find it useful to sort the items based on the estimated difficulty or slope parameters.
You can do this by outputting the ODS tables for the estimates into data sets and then sorting the items by
using PROC SORT. A simulated data set is used to show the steps.

The following DATA step creates the data set IrtSimu:

data IrtSimu;
input item1-item25 @@;
datalines;

1 1 1 0 1 1 0 0 1 1 0 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 1 1 1 0 1 1 0 0
0 0 0 0 0 1 1 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 0 0 1 0 1 1 0 1 1 0 0 1 1 0
1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1

... more lines ...

1 1 0 1 1 1 1 1 1 1 0 1 1 0 0 0 1 1 0 1 1 1 1 1 1 0 0 1 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1
;

First, you build the model and output the parameter estimates table into a SAS data set by using the ODS
OUTPUT statement:

proc irt data=IrtSimu link=probit;
var item1-item25;
ods output ParameterEstimates=ParmEst;

run;

Output 53.1.8 shows the “Item Parameter Estimates” table. Notice that the difficulty and slope parameters
are in the same column. The reason for this is to avoid having an extremely wide table when each item has a
lot of parameters.
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Output 53.1.8 Basic Information

The IRT ProcedureThe IRT Procedure

Item Parameter Estimates

Item Parameter Estimate
Standard

Error Pr > |t|

item1 Difficulty -1.32543 0.09769 <.0001

Slope 1.44263 0.16091 <.0001

item2 Difficulty -0.99702 0.07431 <.0001

Slope 1.82221 0.19006 <.0001

item3 Difficulty -1.24965 0.08962 <.0001

Slope 1.58762 0.17495 <.0001

item4 Difficulty -1.09577 0.07727 <.0001

Slope 1.86821 0.20452 <.0001

item5 Difficulty -1.07857 0.07784 <.0001

Slope 1.78392 0.19080 <.0001

item6 Difficulty -0.95057 0.09377 <.0001

Slope 1.04203 0.10284 <.0001

item7 Difficulty -0.65085 0.06918 <.0001

Slope 1.45413 0.13473 <.0001

item8 Difficulty -0.76372 0.07583 <.0001

Slope 1.30444 0.12230 <.0001

item9 Difficulty -0.72281 0.07030 <.0001

Slope 1.50740 0.14242 <.0001

item10 Difficulty -0.50750 0.06091 <.0001

Slope 1.82387 0.17155 <.0001

item11 Difficulty -0.01360 0.06433 0.4163

Slope 1.26234 0.11287 <.0001

item12 Difficulty 0.04013 0.05537 0.2343

Slope 2.02257 0.20099 <.0001

item13 Difficulty 0.16034 0.06845 0.0096

Slope 1.13120 0.10199 <.0001

item14 Difficulty 0.01069 0.05625 0.4246

Slope 1.89082 0.18128 <.0001

item15 Difficulty 0.07152 0.07328 0.1645

Slope 0.96388 0.09050 <.0001

item16 Difficulty -0.81412 0.07905 <.0001

Slope 1.25375 0.11885 <.0001

item17 Difficulty -0.92046 0.09289 <.0001

Slope 1.02930 0.10125 <.0001

item18 Difficulty -0.59407 0.06606 <.0001

Slope 1.58443 0.14868 <.0001

item19 Difficulty -0.97598 0.09743 <.0001

Slope 0.97979 0.09761 <.0001

item20 Difficulty -0.48859 0.05960 <.0001

Slope 1.95710 0.18827 <.0001

item21 Difficulty -0.60655 0.06819 <.0001

Slope 1.45324 0.13427 <.0001

item22 Difficulty -0.51263 0.06188 <.0001

Slope 1.74472 0.16251 <.0001

item23 Difficulty -0.90928 0.08451 <.0001
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Output 53.1.8 continued

The IRT Procedure

Item Parameter Estimates

Item Parameter Estimate
Standard

Error Pr > |t|

Slope 1.20281 0.11623 <.0001

item24 Difficulty -0.56515 0.06295 <.0001

Slope 1.74437 0.16384 <.0001

item25 Difficulty -0.58905 0.06718 <.0001

Slope 1.48957 0.13785 <.0001

Output 53.1.9 The Difficulty Parameter SAS Data Set

Obs Item Difficulty

1 item1 -1.32543

2 item2 -0.99702

3 item3 -1.24965

4 item4 -1.09577

5 item5 -1.07857

6 item6 -0.95057

7 item7 -0.65085

8 item8 -0.76372

9 item9 -0.72281

10 item10 -0.50750

11 item11 -0.01360

12 item12 0.04013

13 item13 0.16034

14 item14 0.01069

15 item15 0.07152

16 item16 -0.81412

17 item17 -0.92046

18 item18 -0.59407

19 item19 -0.97598

20 item20 -0.48859

21 item21 -0.60655

22 item22 -0.51263

23 item23 -0.90928

24 item24 -0.56515

25 item25 -0.58905

Then you save the estimates of slopes and difficulties in the data set ParmEst and create two separate data
sets to store the difficulty and slope parameters:

data Diffs(keep=Item Difficulty);
set ParmEst;
Difficulty = Estimate;
if (Parameter = "Difficulty") then output;

run;
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proc print data=Diffs;
run;

data Slopes(keep=Item Slope);
set ParmEst;
Slope = Estimate;
if (Parameter = "Slope") then output;

run;
proc print data=Slopes;
run;

The two SAS data sets are shown in Output 53.1.9 and Output 53.1.10.

Output 53.1.10 The Slope Parameter SAS Data Set

Obs Item Slope

1 item1 1.44263

2 item2 1.82221

3 item3 1.58762

4 item4 1.86821

5 item5 1.78392

6 item6 1.04203

7 item7 1.45413

8 item8 1.30444

9 item9 1.50740

10 item10 1.82387

11 item11 1.26234

12 item12 2.02257

13 item13 1.13120

14 item14 1.89082

15 item15 0.96388

16 item16 1.25375

17 item17 1.02930

18 item18 1.58443

19 item19 0.97979

20 item20 1.95710

21 item21 1.45324

22 item22 1.74472

23 item23 1.20281

24 item24 1.74437

25 item25 1.48957

Now you can use PROC SORT to sort the items by either difficulty or slope as follows:

proc sort data=Diffs;
by Difficulty;

run;
proc print data=Diffs;
run;
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proc sort data=Slopes;
by Slope;

run;
proc print data=Slopes;
run;

Output 53.1.11 and Output 53.1.12 show the sorted data sets.

Output 53.1.11 Items Sorted by Difficulty

Obs Item Difficulty

1 item1 -1.32543

2 item3 -1.24965

3 item4 -1.09577

4 item5 -1.07857

5 item2 -0.99702

6 item19 -0.97598

7 item6 -0.95057

8 item17 -0.92046

9 item23 -0.90928

10 item16 -0.81412

11 item8 -0.76372

12 item9 -0.72281

13 item7 -0.65085

14 item21 -0.60655

15 item18 -0.59407

16 item25 -0.58905

17 item24 -0.56515

18 item22 -0.51263

19 item10 -0.50750

20 item20 -0.48859

21 item11 -0.01360

22 item14 0.01069

23 item12 0.04013

24 item15 0.07152

25 item13 0.16034
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Output 53.1.12 Items Sorted by Slope

Obs Item Slope

1 item15 0.96388

2 item19 0.97979

3 item17 1.02930

4 item6 1.04203

5 item13 1.13120

6 item23 1.20281

7 item16 1.25375

8 item11 1.26234

9 item8 1.30444

10 item1 1.44263

11 item21 1.45324

12 item7 1.45413

13 item25 1.48957

14 item9 1.50740

15 item18 1.58443

16 item3 1.58762

17 item24 1.74437

18 item22 1.74472

19 item5 1.78392

20 item2 1.82221

21 item10 1.82387

22 item4 1.86821

23 item14 1.89082

24 item20 1.95710

25 item12 2.02257

Notice that the sorting does not work correctly if any of the items have more than one threshold (ordinal
response) or slope (multidimensional model).

Now, suppose you want to group the items into subgroups based on their difficulty parameters and then sort
the items in each subgroup by their slope parameters. First, you need to merge the two data sets, Diffs and
Slopes, into one data set. Then, you add another variable, called DiffLevel, to indicate the subgroups. The
following statements show these steps:

proc sort data=Slopes;
by Item;

run;
proc sort data=Diffs;

by Item;
run;
data ItemEst;

merge Diffs Slopes;
by Item;
if Difficulty < -1.0 then DiffLevel = 1;
else if Difficulty < 0 then DiffLevel = 2;
else if Difficulty < 1 then DiffLevel = 3;
else DiffLevel = 4;

run;
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proc print data=ItemEst;
run;

Output 53.1.13 shows the merged data set.

Output 53.1.13 The Merged SAS Data Set

Obs Item Difficulty Slope DiffLevel

1 item1 -1.32543 1.44263 1

2 item10 -0.50750 1.82387 2

3 item11 -0.01360 1.26234 2

4 item12 0.04013 2.02257 3

5 item13 0.16034 1.13120 3

6 item14 0.01069 1.89082 3

7 item15 0.07152 0.96388 3

8 item16 -0.81412 1.25375 2

9 item17 -0.92046 1.02930 2

10 item18 -0.59407 1.58443 2

11 item19 -0.97598 0.97979 2

12 item2 -0.99702 1.82221 2

13 item20 -0.48859 1.95710 2

14 item21 -0.60655 1.45324 2

15 item22 -0.51263 1.74472 2

16 item23 -0.90928 1.20281 2

17 item24 -0.56515 1.74437 2

18 item25 -0.58905 1.48957 2

19 item3 -1.24965 1.58762 1

20 item4 -1.09577 1.86821 1

21 item5 -1.07857 1.78392 1

22 item6 -0.95057 1.04203 2

23 item7 -0.65085 1.45413 2

24 item8 -0.76372 1.30444 2

25 item9 -0.72281 1.50740 2

Then, you can sort the items by slope within each difficulty group as follows:

proc sort data=ItemEst;
by difflevel slope;

run;
proc print data=ItemEst;
run;

Output 53.1.14 shows the data set after sorting.
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Output 53.1.14 Item Sorted by Slope within Each Difficulty Group

Obs Item Difficulty Slope DiffLevel

1 item1 -1.32543 1.44263 1

2 item3 -1.24965 1.58762 1

3 item5 -1.07857 1.78392 1

4 item4 -1.09577 1.86821 1

5 item19 -0.97598 0.97979 2

6 item17 -0.92046 1.02930 2

7 item6 -0.95057 1.04203 2

8 item23 -0.90928 1.20281 2

9 item16 -0.81412 1.25375 2

10 item11 -0.01360 1.26234 2

11 item8 -0.76372 1.30444 2

12 item21 -0.60655 1.45324 2

13 item7 -0.65085 1.45413 2

14 item25 -0.58905 1.48957 2

15 item9 -0.72281 1.50740 2

16 item18 -0.59407 1.58443 2

17 item24 -0.56515 1.74437 2

18 item22 -0.51263 1.74472 2

19 item2 -0.99702 1.82221 2

20 item10 -0.50750 1.82387 2

21 item20 -0.48859 1.95710 2

22 item15 0.07152 0.96388 3

23 item13 0.16034 1.13120 3

24 item14 0.01069 1.89082 3

25 item12 0.04013 2.02257 3

Example 53.2: Multidimensional Exploratory and Confirmatory IRT Models
This example illustrates how to use the IRT procedure to fit multidimensional exploratory and confirmatory
IRT models. The data set that is introduced in Example 53.1 is also used here. Two more items, item9 and
item10, are added to the data set. These two items are designed to measure subjects’ satisfaction with their
friendships and their family life, respectively.

data IrtMulti;
input item1-item10 @@;
datalines;

1 0 0 0 1 1 2 1 2 1 1 1 1 1 1 3 3 3 3 3 0 1 0 0 1 1 1 1 1 1 1 0 0 1 0
1 2 3 2 2 0 0 0 0 0 1 1 1 1 1 1 0 0 1 0 1 3 3 1 2 0 0 0 0 0 1 1 3 3 2
0 0 1 0 0 1 2 2 3 2 0 1 0 0 1 1 1 2 2 2 0 0 0 0 0 2 2 3 3 2 0 1 0 1 0
2 3 3 3 3 0 0 1 0 1 1 2 3 2 3 1 1 1 1 1 2 2 3 2 2 0 0 0 0 1 1 2 2 3 1
1 0 1 1 1 2 3 3 2 3 0 1 0 0 1 1 2 3 3 3 1 0 1 1 1 2 3 3 3 3 0 1 0 1 1
3 2 3 3 2 1 1 1 0 0 1 3 3 2 1 1 1 0 0 1 2 3 3 3 3 0 1 1 1 1 1 2 1 2 3
1 0 0 1 1 3 1 1 1 1 1 0 0 0 1 1 1 3 3 1 0 0 0 0 1 1 3 3 3 3 0 0 0 0 0
1 1 1 3 2 1 0 0 0 0 1 3 3 3 3 1 1 0 1 1 3 1 1 3 3 1 0 1 1 1 1 3 1 1 1

... more lines ...
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3 3 1 3 2 0 0 0 1 0 1 3 2 2 1 0 0 0 0 1 1 2 2 2 3 1 0 1 0 1 2 2 3 2 1
1 0 0 1 1 1 2 2 3 1 0 1 0 1 0 1 3 1 1 1 0 1 1 0 1 3 3 3 3 2 1 0 1 0 0
1 2 1 1 1 1 0 1 1 0 1 3 3 1 3 1 1 0 1 0 2 2 2 2 3 1 1 0 1 1 3 2 3 2 2
0 0 0 1 0 2 2 3 1 2 0 0 0 1 0 2 3 3 3 2 0 1 0 0 1 2 2 1 2 1
;

Now, suppose that previous research results suggest that two latent factors underlie these 10 items. However,
knowledge about the factor structure is very limited. The first step you can take is to fit an exploratory IRT
model by using two factors. This can be accomplished easily by submitting the following statements:

ods graphics on;
proc irt data=IrtMulti nfactor=2 plots=scree;

var item1-item10;
run;

The first table that you want to check is the “Eigenvalue” table, shown in Output 53.2.1. There are only two
eigenvalues greater than 1 in this example. This result, to some extent, suggests that two factors might be
enough in this example. Output 53.2.2 include the scree and variance explained plots.

Output 53.2.1 Eigenvalues of the Polychoric Correlation matrix

The IRT ProcedureThe IRT Procedure

Eigenvalues of the Polychoric Correlation Matrix

Eigenvalue Difference Proportion Cumulative

1 3.65750431 2.47883117 0.3658 0.3658

2 1.17867314 0.23738137 0.1179 0.4836

3 0.94129177 0.04672399 0.0941 0.5777

4 0.89456778 0.07508308 0.0895 0.6672

5 0.81948471 0.14774320 0.0819 0.7492

6 0.67174151 0.12081203 0.0672 0.8163

7 0.55092948 0.01698300 0.0551 0.8714

8 0.53394648 0.08647230 0.0534 0.9248

9 0.44747418 0.14308753 0.0447 0.9696

10 0.30438664 0.0304 1.0000
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Output 53.2.2 Scree and Variance Explained Plots

If the optimization algorithm converges successfully, the original and rotated slope matrices are produced.
The default rotation method is varimax. You can use the ROTATE= option in the PROC IRT statement to
specify a different rotation method.

Output 53.2.3 Slope Matrix

Rotated Slope Matrix

_Factor1 _Factor2

item1 1.87474 0.63566

item2 1.71878 0.56368

item3 1.29600 0.54156

item4 0.74920 0.36351

item5 0.41017 0.63813

item6 0.44038 0.39948

item7 0.68674 1.18496

item8 0.74058 1.97319

item9 0.40213 1.26228

item10 0.40067 1.26536

This example uses the default varimax rotation. Output 53.2.3 shows the rotated slope matrices. The rotated
slope matrix is displayed in the standard matrix format. From the rotated slope matrix, you can see that the
first factor is mainly reflected by item1 to item4 and item6, and the second factor is mainly reflected by the
rest of the items. The exploratory results suggest a hypothesis about the factor structure of the items. In
practice, you might want to confirm this structure by a confirmatory analysis of the new data. However, for
illustration purposes, the same data set is used here to demonstrate the confirmatory model fitting by using
the following statements:



4066 F Chapter 53: The IRT Procedure

proc irt data=IrtMulti;
var item1-item4 item6 item5 item7-item10;
factor Factor1->item1-item4 item6,

Factor2->item5 item7-item10;
run;
ods graphics off;

Output 53.2.5 and Output 53.2.4 show the model fit statistics for the confirmatory model and the exploratory
model, respectively. Output 53.2.6 shows the slope matrix from this confirmatory analysis. Because the
number of response patterns in the data set, 500, is much lower than the total number of possible response
patterns, 25 � 35 D 7; 776, you cannot use Pearson’s chi-square or the likelihood ratio statistic to test the
overall fit of the confirmatory model.

If you have two nested models, you can still use the likelihood ratio statistic to test the difference between
these two models. For illustration purposes, assume that the exploratory model and the confirmatory model
are two independent models. Because the confirmatory model is nested within the exploratory model, you
can use the likelihood ratio test to compare the two models. The likelihood ratio test statistic is 132.4. The
degree of freedom is 9. The corresponding p-value is 0, which suggests that the difference between these two
models is significant. There are many options that you can use to improve the model fit. For this example,
you can try to free some of the fixed slope parameters or free the covariance between the factors.

Output 53.2.4 Model Fit Statistics for Exploratory Model

The IRT ProcedureThe IRT Procedure

Model Fit Statistics

Log Likelihood -3993.389529

AIC (Smaller is Better) 8054.7790586

BIC (Smaller is Better) 8198.075734

Output 53.2.5 Model Fit Statistics for Confirmatory Model

The IRT ProcedureThe IRT Procedure

Model Fit Statistics

Log Likelihood -4125.792484

AIC (Smaller is Better) 8301.5849679

BIC (Smaller is Better) 8406.9501703



Example 53.3: Multiple-Group Analysis F 4067

Output 53.2.6 Slope Matrix

Slope Matrix
Estimate/StdErr/p-value

Factor1 Factor2

item1 2.04932
0.41637
0.00000

0.00000
.
.

item2 1.77313
0.32285
0.00000

0.00000
.
.

item3 1.36097
0.22842
0.00000

0.00000
.
.

item4 0.80650
0.15641
0.00000

0.00000
.
.

item6 0.55226
0.12128
0.00000

0.00000
.
.

item5 0.00000
.
.

-0.75216
0.14089
0.00000

item7 0.00000
.
.

-1.36470
0.17608
0.00000

item8 0.00000
.
.

-2.29997
0.37170
0.00000

item9 0.00000
.
.

-1.33480
0.17139
0.00000

item10 0.00000
.
.

-1.34809
0.17566
0.00000

Example 53.3: Multiple-Group Analysis
This example shows how to use the IRT procedure to do multiple-group analysis. The following DATA step
creates the data set IrtGroup:

data IrtGroup;
input item1-item8 GroupVar @@;
datalines;

1 0 0 0 1 1 2 1 2 1 1 1 1 1 3 3 3 1 0 1 0 0 1 1 1 1 1 1 0 0 1 0 1 2 3
2 0 0 0 0 0 1 1 1 1 1 0 0 1 0 1 3 3 1 0 0 0 0 0 1 1 3 2 0 0 1 0 0 1 2
2 1 0 1 0 0 1 1 1 2 1 0 0 0 0 0 2 2 3 1 0 1 0 1 0 2 3 3 2 0 0 1 0 1 1
2 3 1 1 1 1 1 1 2 2 3 2 0 0 0 0 1 1 2 2 1 1 0 1 1 1 2 3 3 2 0 1 0 0 1
1 2 3 2 1 0 1 1 1 2 3 3 2 0 1 0 1 1 3 2 3 2 1 1 1 0 0 1 3 3 1 1 1 0 0
1 2 3 3 2 0 1 1 1 1 1 2 1 2 1 0 0 1 1 3 1 1 2 1 0 0 0 1 1 1 3 2 0 0 0
0 1 1 3 3 1 0 0 0 0 0 1 1 1 2 1 0 0 0 0 1 3 3 2 1 1 0 1 1 3 1 1 1 1 0
1 1 1 1 3 1 2 1 1 1 1 1 2 3 2 2 0 0 1 0 0 2 2 2 1 0 0 1 0 1 1 2 3 2 1

... more lines ...
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1 0 0 2 1 3 2 1 1 1 1 1 1 3 2 1 1 1 1 0 0 3 3 1 2 1 0 0 1 1 3 3 3 2 0
0 1 0 0 1 1 1 2 0 0 0 0 1 3 1 1 2 1 0 0 1 0 1 3 3 2 0 0 1 1 0 2 2 3 2
1 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 2 0 0 1 1 0 1 1 3 2 0 0 0 0 1 1 1 1
2 0 0 1 0 0 1 1 1 1
;

To set up a multiple-group IRT model, you need to specify the grouping variable by using the GROUP
statement. Very often you also want to specify cross-group equality constraints for different parameters. You
can accomplish this by using the EQUALITY statement.

The model that is specified in the following statements is an extension of the model in Example 53.1. The
group variable, GroupVar, is specified in the GROUP statement. It has two values, 1 and 2, to indicate group
membership. Equality constraints are specified in the EQUALITY statement.

proc irt data=IrtGroup;
var item1-item8;
group GroupVar;
model item1-item4/resfunc=twop,

item5-item8/resfunc=graded;
equality item1-item4/parm=[intercept] between_gp=[1 2],

_allgr_/parm=[slope] within_gp=[1];
run;

Two different sets of equality constraints have been specified. The first entry specifies equality constraints on
the intercept parameters for item1 to item4 between group 1 and group 2:

item1-item4/parm=[intercept] between_gp=[1 2]

Notice that 1 and 2 are the actual values for the group variable GroupVar. The second entry specifies equality
constraints on the slope parameters for all the graded response items within group 1:

_allgr_/parm=[slope] within_gp=[1]

Output 53.3.1 shows the “Modeling Information” table and the “Group Information” table for this example.
For multiple-group analysis, the “Modeling Information” table contains two extra pieces of information: the
group variable and the number of groups. The “Group Information” table contains information about the data
for each group. There are 272 observations that have been read and used for group 1; this number for group 2
is 328.

Output 53.3.1 Modeling and Group Information

The IRT ProcedureThe IRT Procedure

Modeling Information

Data Set WORK.IRTGROUP

Group Variable GroupVar

Link Function Logit

Number of Items 8

Number of Factors 1

Number of Groups 2

Number of Observations Read 600

Number of Observations Used 600

Estimation Method Marginal Maximum Likelihood
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Output 53.3.1 continued

Group Information

GroupVar
Nobs
Read

Nobs
Used

1 272 272

2 328 328

Because there are two groups in this example, the IRT procedure produces two “Item Information” tables.
For this example, these two tables contain the same information. That means that all the items have the same
levels for the two groups. It is possible that the same item might have different numbers of levels, or maybe
the same number of levels but different values. For example, an item has four levels, from 1 to 4, but one
group might observe only levels 1 and 2, and the other group might observe only levels 3 and 4.

Output 53.3.2 Item Information

The IRT ProcedureThe IRT Procedure

Item Information
GroupVar = 1

Response
Model Item Levels Values

TwoP item1 2 0 1

item2 2 0 1

item3 2 0 1

item4 2 0 1

Graded item5 2 0 1

item6 3 1 2 3

item7 3 1 2 3

item8 3 1 2 3

Item Information
GroupVar = 2

Response
Model Item Levels Values

TwoP item1 2 0 1

item2 2 0 1

item3 2 0 1

item4 2 0 1

Graded item5 2 0 1

item6 3 1 2 3

item7 3 1 2 3

item8 3 1 2 3

Output 53.3.3 includes “Item Parameter Estimates” tables for both groups. You can see that the intercept
parameters for item1 are the same for both groups. The same applies to item2 to item4. You can also see that
the slope parameters have the same value for item5 to item8 in group 1. These results suggest that equality
constraints that are specified in the EQUALITY statement have been fulfilled.
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Output 53.3.3 Parameter Estimates

The IRT ProcedureThe IRT Procedure

Item Parameter Estimates
GroupVar = 1

Response
Model Item Parameter Estimate

Standard
Error Pr > |t|

TwoP item1 Difficulty 0.24545 0.07800 0.0008

Slope 1.89309 0.37484 <.0001

item2 Difficulty 0.49512 0.10112 <.0001

Slope 2.00288 0.37954 <.0001

item3 Difficulty 0.41490 0.10687 <.0001

Slope 1.40433 0.26977 <.0001

item4 Difficulty 0.57754 0.16188 0.0002

Slope 0.90590 0.20213 <.0001

Graded item5 Threshold -0.71312 0.16145 <.0001

Slope 0.96099 0.10872 <.0001

item6 Threshold 1 -0.15789 0.14680 0.1411

Threshold 2 1.42434 0.21483 <.0001

Slope 0.96099 0.10872 <.0001

item7 Threshold 1 -0.86494 0.16861 <.0001

Threshold 2 0.81432 0.17160 <.0001

Slope 0.96099 0.10872 <.0001

item8 Threshold 1 -1.24131 0.19158 <.0001

Threshold 2 0.37597 0.15203 0.0067

Slope 0.96099 0.10872 <.0001

Item Parameter Estimates
GroupVar = 2

Response
Model Item Parameter Estimate

Standard
Error Pr > |t|

TwoP item1 Difficulty 0.31862 0.09331 0.0003

Slope 1.45833 0.28819 <.0001

item2 Difficulty 0.68599 0.12813 <.0001

Slope 1.44561 0.28659 <.0001

item3 Difficulty 0.51327 0.12276 <.0001

Slope 1.13519 0.22854 <.0001

item4 Difficulty 0.61629 0.16217 <.0001

Slope 0.84894 0.18964 <.0001

Graded item5 Threshold -0.90646 0.27324 0.0005

Slope 0.68749 0.17606 <.0001

item6 Threshold 1 -0.77880 0.29844 0.0045

Threshold 2 2.20837 0.57332 <.0001

Slope 0.54126 0.14327 <.0001

item7 Threshold 1 -0.84400 0.18217 <.0001

Threshold 2 0.80547 0.16743 <.0001

Slope 1.03946 0.18984 <.0001

item8 Threshold 1 -1.18570 0.20677 <.0001

Threshold 2 0.19876 0.12012 0.0490

Slope 1.15609 0.21044 <.0001
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Example 53.4: Quality of Life Survey
The data set in this example comes from the 1978 Quality of American Life Survey. The survey was
administered to a sample of US residents aged 18 years and older in 1978. Subjects were asked to rate their
satisfaction with many different aspects of their lives. This example includes 14 items. Some of the items are
as follows:

• satisfaction with community

• satisfaction with neighbors

• satisfaction with amount of education received

• satisfaction with health

• satisfaction with job

• satisfaction with income

Originally these items were designed with seven-point scales, where 1 indicates most unsatisfied and 7
indicates most satisfied. For illustration purposes, these items have been reorganized into a different number
of categories, which ranges from 2 to 7. This example uses 1,000 random samples from the original data set.
The following DATA step creates the data set IrtQls:

data IrtQls;
input item1-item14 @@;
datalines;

1 1 2 1 1 2 2 2 . 2 2 2 2 2
2 2 2 2 2 3 4 1 . 2 5 6 4 4

... more lines ...

1 1 1 1 2 2 2 2 . 1 1 1 1 3
;

By default, the IRT procedure uses the graded response model (GRM) and the logistic link for all the ordinal
items and uses the two-parameter logistic model for all the binary items. In PROC IRT, you can specify
different types of response models for different items by using the MODEL statement.

Because all the items in this example are designed to measure subjects’ satisfaction with their lives, it is
reasonable to start with a unidimensional IRT model. The following statements fit such a model by using the
default model options:

ods graphics on;
proc irt data=IrtQls plots=(IIC TIC);

var item1-item14;
run;
ods graphics off;

This example requests item information curves (IICs) and a test information curve (TIC) by using the
PLOTS=(IIC TIC) option.
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Output 53.4.1 Eigenvalues of Polychoric Correlations

The IRT ProcedureThe IRT Procedure

Eigenvalues of the Polychoric Correlation Matrix

Eigenvalue Difference Proportion Cumulative

1 5.57173396 4.19614614 0.3980 0.3980

2 1.37558781 0.29273244 0.0983 0.4962

3 1.08285537 0.12600033 0.0773 0.5736

4 0.95685504 0.09108909 0.0683 0.6419

5 0.86576595 0.09758221 0.0618 0.7038

6 0.76818374 0.12571683 0.0549 0.7586

7 0.64246691 0.06108305 0.0459 0.8045

8 0.58138386 0.04214553 0.0415 0.8461

9 0.53923833 0.10092835 0.0385 0.8846

10 0.43830998 0.07346977 0.0313 0.9159

11 0.36484021 0.04667935 0.0261 0.9419

12 0.31816085 0.03905135 0.0227 0.9647

13 0.27910950 0.06360101 0.0199 0.9846

14 0.21550849 0.0154 1.0000

Output 53.4.1 shows the eigenvalue table for this example. You can see that the first eigenvalue is much
greater than the others, suggesting that a unidimensional model is reasonable for the data.

In the context of item response theory, the amount of information that each item or the entire test provides
might not be evenly distributed across the entire continuum of latent constructs. The value of the slope
parameter indicates the amount of information that the item provides. For this example, parameter estimates
and item information curves are shown in Output 53.4.2 and Output 53.4.3, respectively. By examining the
parameter estimates and the item information curves, you can see that items that have high slope values have
tall, narrow information curves. For example, because the slope value of item9 is much larger than the slope
value of item1, the information curve is taller and narrower for item9 than it is for item1.
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Output 53.4.2 Parameter Estimates

The IRT ProcedureThe IRT Procedure

Item Parameter Estimates

Response
Model Item Parameter Estimate

Standard
Error Pr > |t|

Graded item1 Threshold 1 -2.09483 0.33839 <.0001

Threshold 2 3.20986 0.50260 <.0001

Slope 0.45899 0.07087 <.0001

item2 Threshold 1 -0.54935 0.07526 <.0001

Threshold 2 0.45190 0.07144 <.0001

Slope 1.22585 0.09826 <.0001

item5 Threshold 1 -0.71564 0.08937 <.0001

Threshold 2 0.59637 0.08419 <.0001

Slope 1.05329 0.08843 <.0001

item6 Threshold 1 -0.60606 0.11597 <.0001

Threshold 2 1.18041 0.15115 <.0001

Slope 0.71308 0.07648 <.0001

item7 Threshold 1 -0.78445 0.06313 <.0001

Threshold 2 0.24069 0.05178 <.0001

Threshold 3 0.87163 0.06538 <.0001

Slope 1.90616 0.12225 <.0001

item8 Threshold 1 -0.74471 0.07231 <.0001

Threshold 2 0.60159 0.06732 <.0001

The IRT Procedure

Item Parameter Estimates

Response
Model Item Parameter Estimate

Standard
Error Pr > |t|

Threshold 3 1.34996 0.09664 <.0001

Slope 1.43137 0.09921 <.0001

item10 Threshold 1 -0.33505 0.05731 <.0001

Threshold 2 0.67167 0.06498 <.0001

Slope 1.69974 0.12235 <.0001

item11 Threshold 1 -1.02908 0.07590 <.0001

Threshold 2 -0.03480 0.05564 0.2659

Threshold 3 0.64199 0.06410 <.0001

Threshold 4 1.34486 0.08998 <.0001

Slope 1.67107 0.10914 <.0001

item12 Threshold 1 -1.87573 0.13564 <.0001

Threshold 2 -0.80823 0.08484 <.0001

Threshold 3 -0.09862 0.06855 0.0751

Threshold 4 0.59884 0.07678 <.0001

Threshold 5 1.22786 0.10198 <.0001

Threshold 6 1.83256 0.13657 <.0001

Slope 1.19488 0.08609 <.0001

item13 Threshold 1 -0.81329 0.05663 <.0001
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Output 53.4.2 continued

The IRT Procedure

Item Parameter Estimates

Response
Model Item Parameter Estimate

Standard
Error Pr > |t|

Threshold 2 0.31547 0.04744 <.0001

Threshold 3 1.07939 0.06425 <.0001

Slope 2.49426 0.15672 <.0001

item14 Threshold 1 -1.37128 0.09688 <.0001

Threshold 2 0.35368 0.06259 <.0001

Threshold 3 1.35631 0.09724 <.0001

Slope 1.39958 0.09563 <.0001

TwoP item3 Difficulty -0.01166 0.09635 0.4519

Slope 0.73660 0.08604 <.0001

item4 Difficulty -0.36507 0.06875 <.0001

Slope 1.26289 0.11334 <.0001

item9 Difficulty 0.16315 0.06378 0.0053

Slope 1.89046 0.20555 <.0001

For individual items, most of the information concentrates around the area that is defined by the difficulty
parameters. The binary response item provides most of the information around the difficulty parameter.
For ordinal items, most of the information falls in the region between the lowest and the highest threshold
parameters. By comparing the information curves for item7 and item9, you can also see that when response
items have the same slope value, the ordinal item is more informative than the binary item.

Output 53.4.3 Item Information Curves
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Output 53.4.3 continued
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Output 53.4.4 Test Information Curves

When all items in a test are considered together, the information for measuring the latent trait is called the
test information. Test information is computed as a summation of the information that is provided by all the
items in the test. Output 53.4.4 includes the test information curve for this example.

Item and test information are very useful for item selection. One important purpose of item selection is to
maximize the test information across the continuum of latent construct of interest.

During the item selection process, ideally you want to select highly discriminating items whose threshold
parameters cover the range of latent construct of interest. However, in practice you often encounter situations
in which these highly discriminating items cannot provide enough information for a specific range of latent
construct of interest, especially when these items are binary. In these situations, you might need to select
some less discriminating items that can add information to the area that is not covered by these highly
discriminating items.

For this example, the slope parameters range from 0.46 to 2.49, and the threshold parameters range from –2.1
to 3.2. Among these 14 items, three of them (item1, item3, and item6) have slope values less than 1. The
slope value for item1 is less than 0.5, which is especially low. The item information curves suggest that these
three items provide much less information than the other items. As a result, you might consider dropping
these three items to economize future test administration. Output 53.4.5 shows the test information curves for
the original test, which has 14 items, and the shorter test, which excludes item1, item3, and item6. The two
information curves are almost identical, suggesting that the shorter test provides almost the same amount of
information as the longer test. Because the shorter test is more economical, it is preferred for future testing.
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Output 53.4.5 Test Information Curves
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Overview: KDE Procedure
The KDE procedure performs univariate and bivariate kernel density estimation. Statistical density estimation
involves approximating a hypothesized probability density function from observed data. Kernel density
estimation is a nonparametric technique for density estimation in which a known density function (the kernel)
is averaged across the observed data points to create a smooth approximation. PROC KDE uses a Gaussian
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density as the kernel, and its assumed variance determines the smoothness of the resulting estimate. See
Silverman (1986) for a thorough review and discussion.

You can use PROC KDE to compute a variety of common statistics, including estimates of the percentiles
of the hypothesized probability density function. You can produce a variety of plots, including univariate
and bivariate histograms, plots of the kernel density estimates, and contour plots. You can also save kernel
density estimates into SAS data sets.

Getting Started: KDE Procedure
The following example illustrates the basic features of PROC KDE. Assume that 1000 observations are
simulated from a bivariate normal density with means .0; 0/, variances .10; 10/, and covariance 9. The SAS
DATA step to accomplish this is as follows:

data bivnormal;
seed = 1283470;
do i = 1 to 1000;

z1 = rannor(seed);
z2 = rannor(seed);
z3 = rannor(seed);
x = 3*z1+z2;
y = 3*z1+z3;
output;

end;
drop seed;

run;

The following statements request a bivariate kernel density estimate for the variables x and y, with contour
and surface plots:

ods graphics on;
proc kde data=bivnormal;

bivar x y / plots=(contour surface);
run;
ods graphics off;

The contour plot and the surface plot of the estimate are displayed in Figure 54.1 and Figure 54.2, respectively.
Note that the correlation of 0.9 in the original data results in oval-shaped contours. These graphs are produced
by specifying the PLOTS= option in the BIVAR statement with ODS Graphics enabled. For general
information about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.” For specific information
about the graphics available in the KDE procedure, see the section “ODS Graphics” on page 4099.
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Figure 54.1 Contour Plot of Estimated Density
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Figure 54.2 Surface Plot of Estimated Density

The default output tables for this analysis are shown in Figure 54.3.

Figure 54.3 Default Bivariate Tables

The KDE ProcedureThe KDE Procedure

Inputs

Data Set WORK.BIVNORMAL

Number of Observations Used 1000

Variable 1 x

Variable 2 y

Bandwidth Method Simple Normal Reference

Controls

x y

Grid Points 60 60

Lower Grid Limit -11.25 -10.05

Upper Grid Limit 9.1436 9.0341

Bandwidth Multiplier 1 1
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The “Inputs” table lists basic information about the density fit, including the input data set, the number
of observations, and the variables. The bandwidth method is the technique used to select the amount of
smoothing in the estimate. A simple normal reference rule is used for bivariate smoothing.

The “Controls” table lists the primary numbers controlling the kernel density fit. Here a 60 � 60 grid is fit to
the entire range of the data, and no adjustment is made to the default bandwidth.

Syntax: KDE Procedure
The following statements are available in the KDE procedure:

PROC KDE < options > ;
BIVAR variable-list < / options > ;
UNIVAR variable-list < / options > ;
BY variables ;
FREQ variable ;
WEIGHT variable ;

The PROC KDE statement invokes the procedure. The BIVAR statement requests that one or more bivariate
kernel density estimates be computed. The UNIVAR statement requests one or more univariate kernel density
estimates. You can specify any number of BIVAR and UNIVAR statements.

PROC KDE Statement
PROC KDE < options > ;

The PROC KDE statement invokes the procedure. It also specifies the input data set.

DATA=SAS-data-set
specifies the input SAS data set to be used by PROC KDE. The default is the most recently created
data set.

BIVAR Statement
The BIVAR statement computes bivariate kernel density estimates. Table 54.1 summarizes the options
available in the BIVAR statement.

Table 54.1 BIVAR Statement Options

Option Description

BIVSTATS Produces a table for each density estimate
BWM= Specifies the bandwidth multiplier
GRIDL= Specifies the lower grid limit
GRIDU= Specifies the upper grid limit
LEVELS Requests a table of levels for contours of the bivariate density



4084 F Chapter 54: The KDE Procedure

Table 54.1 continued

Option Description

NGRID= Specifies the number of grid points associated with each variable
NOPRINT Suppresses output tables
OUT= Specifies the name of the output data set
PERCENTILES Requests that a table of percentiles be computed
PLOTS= Requests one or more plots
UNISTATS Produces a table for each density estimate containing standard univariate

statistics and the bandwidths

The basic syntax for the BIVAR statement specifies two variables:

BIVAR v1 < (v-options) > v2 < (v-options) > < / options > ;

This statement requests a bivariate kernel density estimate for the variables v1 and v2. The v-options optionally
specified in parentheses after a variable name apply only to that variable, and override corresponding global
options specified following a slash (/).

You can specify a list of more than two variables:

BIVAR v1 < (v-options) > v2 < (v-options) > . . . vN < (v-options) > < / options > ;

This statement requests a bivariate kernel density estimate for each distinct pair of variables in the list. For
example, if you specify

bivar x y z;

then a bivariate kernel density estimate is computed for each of the variable pairs (x, y), (x, z), and (y, z).

Alternatively, you can specify an explicit list of variable pairs, with each pair enclosed in parentheses:

BIVAR (v1 v2)(v3 v4). . . (vN-1 vN)< / options > ;

(You can also specify v-options following a variable name appearing in an explicit pair, but they are omitted
here for clarity.) This statement requests a bivariate kernel density estimate for each pair of variables. For
example, if you specify

bivar (x y) (y z);

then bivariate kernel density estimates are computed for (x, y) and (y, z).

NOTE: The VAR statement supported by PROC KDE in SAS 8 and earlier releases is now obsolete. The
VAR statement has been replaced by the UNIVAR and the BIVAR statements, which enable you to produce
multiple kernel density estimates with a single invocation of the procedure.

You can specify the following options in the BIVAR statement. As noted, some options can be used as
v-options.

BIVSTATS
produces a table for each density estimate containing the covariance and correlation between the two
variables.
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BWM=number
specifies the bandwidth multiplier applied to each variable in each kernel density estimate. The default
value is 1. Larger multipliers produce a smoother estimate, and smaller ones produce a rougher estimate.
To specify different bandwidth multipliers for different variables, specify BWM= as a v-option.

GRIDL=number
specifies the lower grid limit applied to each variable in each kernel density estimate. The default value
for a given variable is the minimum observed value of that variable. To specify different lower grid
limits for different variables, specify GRIDL= as a v-option.

GRIDU=number
specifies the upper grid limit applied to each variable in each kernel density estimate. The default value
for a given variable is the maximum observed value of that variable. To specify different upper grid
limits for different variables, specify GRIDU= as a v-option.

LEVELS

LEVELS=numlist
requests a table of levels for contours of the bivariate density. The contours are defined in such a way
that the density has a constant level along each contour, and the volume enclosed by each contour
corresponds to a specified percent. In other words, the contours correspond to slices or levels of the
density surface taken along the density axis. You can specify the percents used to define the contours.
The default values are 1, 5, 10, 50, 90, 95, 99, and 100. The “Levels” table also provides the minimum
and maximum values for each contour along the directions of the two data variables.

NGRID=number

NG=number
specifies the number of grid points associated with each variable in each kernel density estimate. The
default value is 60. To specify different numbers of grid points for different variables, specify NGRID=
as a v-option.

NOPRINT
suppresses output tables produced by the BIVAR statement. You can use the NOPRINT option when
you want to produce graphical output only.

OUT=SAS-data-set
specifies the name of the output data set in which kernel density estimates are saved. This output data
set contains the following variables:

• var1, whose value is the name of the first variable in a bivariate kernel density estimate

• var2, whose value is the name of the second variable in a bivariate kernel density estimate

• value1, with values corresponding to grid coordinates for the first variable

• value2, with values corresponding to grid coordinates for the second variable

• density, with values equal to kernel density estimates at the associated grid point

• count, containing the number of original observations contained in the bin corresponding to a
grid point
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PERCENTILES

PERCENTILES=numlist
requests that a table of percentiles be computed for each BIVAR variable. You can specify a list of
percentiles to be computed. The default percentiles are 0.5, 1, 2.5, 5, 10, 25, 50, 75, 90, 95, 97.5, 99,
and 99.5.

PLOTS=plot-request< (options) > | ALL | NONE

PLOTS=(plot-request< (options) > < ... plot-request < (options) > >)
requests one or more plots of the bivariate data and kernel density estimate. When you specify only
one plot request, you can omit the parentheses around the plot request.

ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;

proc kde data=octane;
bivar Rater Customer / plots=all;

run;

ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

By default, if ODS Graphics is enabled and you do not specify the PLOTS= option, then the BIVAR
statement creates a contour plot. If you specify the PLOTS= option, you get only the requested plots.

The following plot-requests are available.

ALL
produces all bivariate plots.

CONTOUR
produces a contour plot of the bivariate density estimate.

CONTOURSCATTER
produces a contour plot of the bivariate density estimate overlaid with a scatter plot of the data.

HISTOGRAM < (view-options) >
produces a bivariate histogram of the data. The following view-options can be specified:

ROTATE=angle
rotates the histogram angle degrees, where –180 < angle < 180. By default, angle = 54.

TILT=angle
tilts the histogram angle degrees, where –180 < angle < 180. By default, angle = 20.

HISTSURFACE < (view-options) >
produces a bivariate histogram of the data overlaid with a surface plot of the bivariate kernel
density estimate. The following view-options can be specified:
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ROTATE=angle
rotates the histogram and kernel density surface angle degrees, where –180 < angle < 180.
By default, angle = 54.

TILT=angle
tilts the histogram and kernel density surface angle degrees, where –180 < angle < 180. By
default, angle = 20.

NONE
suppresses all plots, including the contour plot that is produced by default when ODS Graphics is
enabled and the PLOTS= option is not specified.

SCATTER
produces a scatter plot of the data.

SURFACE < (view-options) >
produces a surface plot of the bivariate kernel density estimate. The following view-options can
be specified:

ROTATE=angle
rotates the kernel density surface angle degrees, where –180 < angle < 180. By default,
angle = 54.

TILT=angle
tilts the kernel density surface angle degrees, where –180 < angle < 180. By default, angle
= 20.

UNISTATS
produces a table for each density estimate containing standard univariate statistics for each of the two
variables and the bandwidths used to compute the kernel density estimate. The statistics listed are the
mean, variance, standard deviation, range, and interquartile range.

UNIVAR Statement
UNIVAR variable < (v-options) > < . . . variable < (v-options) > > < / options > ;

The UNIVAR statement computes univariate kernel density estimates. You can specify various v-options
for each variable by enclosing them in parentheses after the variable name. You can also specify global
options among the UNIVAR statement options following a slash (/). Global options apply to all the variables
specified in the UNIVAR statement. However, individual variable v-options override the global options.

NOTE: The VAR statement supported by PROC KDE in SAS 8 and earlier releases is now obsolete. The
VAR statement has been replaced by the UNIVAR and BIVAR statements, which enable you to produce
multiple kernel density estimates with a single invocation of the procedure.

Table 54.2 summarizes the options available in the UNIVAR statement.
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Table 54.2 UNIVAR Statement Options

Option Description

BWM= Specifies a bandwidth multiplier
GRIDL= Specifies a lower grid limit
GRIDU= Specifies an upper grid limit
METHOD= Specifies the method used to compute the bandwidth
NGRID= Specifies a number of grid points
NOPRINT Suppresses output tables produced
OUT= Specifies the output SAS data set containing the kernel density estimate
PERCENTILES Requests that a table of percentiles
PLOTS= Requests plots of the univariate kernel density estimate
SJPIMAX= Specifies the maximum grid value in determining the Sheather-Jones plug-in

bandwidth
SJPIMIN= Specifies the minimum grid value in determining the Sheather-Jones plug-in

bandwidth
SJPINUM= Specifies the number of grid values used in determining the Sheather-Jones

plug-in bandwidth
SJPITOL= Specifies the tolerance for termination of the bisection algorithm
UNISTATS Produces a table for each variable containing standard univariate statistics

and the bandwidth

You can specify the following options in the UNIVAR statement. As noted, some options can be used as
v-options.

BWM=number
specifies a bandwidth multiplier used for each kernel density estimate. The default value is 1. Larger
multipliers produce a smoother estimate, and smaller ones produce a rougher estimate. To specify
different bandwidth multipliers for different variables, specify BWM= as a v-option.

GRIDL=number
specifies a lower grid limit used for each kernel density estimate. The default value for a given variable
is the minimum observed value of that variable. To specify different lower grid limits for different
variables, specify GRIDL= as a v-option.

GRIDU=number
specifies an upper grid limit used for each kernel density estimate. The default value for a given
variable is the maximum observed value of that variable. To specify different upper grid limits for
different variables, specify GRIDU= as a v-option.

METHOD=SJPI | SNR | SNRQ | SROT | OS
specifies the method used to compute the bandwidth. Available methods are Sheather-Jones plug-in
(SJPI), simple normal reference (SNR), simple normal reference that uses the interquartile range
(SNRQ), Silverman’s rule of thumb (SROT), and oversmoothed (OS). See the section “Bandwidth
Selection” on page 4097 and see Jones, Marron, and Sheather (1996) for a description of these methods.
SJPI is the default method.
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NGRID=number

NG=number
specifies a number of grid points used for each kernel density estimate. The default value is 401. To
specify different numbers of grid points for different variables, specify NGRID= as a v-option.

NOPRINT
suppresses output tables produced by the UNIVAR statement. You can use the NOPRINT option when
you want to produce graphical output only.

OUT=SAS-data-set
specifies the output SAS data set containing the kernel density estimate. This output data set contains
the following variables:

• var, whose value is the name of the variable in the kernel density estimate

• value, with values corresponding to grid coordinates for the variable

• density, with values equal to kernel density estimates at the associated grid point

• count, containing the number of original observations contained in the bin corresponding to a
grid point

PERCENTILES

PERCENTILES=numlist
requests that a table of percentiles be computed for each UNIVAR variable. You can specify a list of
percentiles to be computed. The default percentiles are 0.5, 1, 2.5, 5, 10, 25, 50, 75, 90, 95, 97.5, 99,
and 99.5.

PLOTS=plot-request< (options) > | ALL | NONE

PLOTS=(plot-request< (options) > < ... plot-request < (options) > >)
requests plots of the univariate kernel density estimate. When you specify only one plot-request , you
can omit the parentheses around the plot-request .

ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;

proc kde data=channel;
univar length / plots=histdensity;

run;

ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The following table shows the available plot-requests.
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Keyword Description
ALL produces all plots
DENSITY univariate kernel density estimate curve
DENSITYOVERLAY overlaid univariate kernel density estimate curves
HISTDENSITY univariate histogram of data overlaid with kernel den-

sity estimate curve
HISTOGRAM univariate histogram of data
NONE suppresses all plots

By default, if you ODS Graphics is enabled and you do not specify the PLOTS= option, then the
UNIVAR statement creates a histogram overlaid with a kernel density estimate. If you specify the
PLOTS= option, you get only the requested plots.

If you specify more than one variable in the UNIVAR statement, the DENSITYOVERLAY keyword
overlays the density curves for all the variables on a single plot. The other keywords each produce a
separate plot for every variable listed in the UNIVAR statement.

SJPIMAX=number
specifies the maximum grid value in determining the Sheather-Jones plug-in bandwidth. The default
value is two times the oversmoothed estimate.

SJPIMIN=number
specifies the minimum grid value in determining the Sheather-Jones plug-in bandwidth. The default
value is the maximum value divided by 18.

SJPINUM=number
specifies the number of grid values used in determining the Sheather-Jones plug-in bandwidth. The
default is 21.

SJPITOL=number
specifies the tolerance for termination of the bisection algorithm used in computing the Sheather-Jones
plug-in bandwidth. The default value is 0.001.

UNISTATS
produces a table for each variable containing standard univariate statistics and the bandwidth used to
compute its kernel density estimate. The statistics listed are the mean, variance, standard deviation,
range, and interquartile range.

Examples

Suppose you have the variables x1, x2, x3, and x4 in the SAS data set MyData. You can request a univariate
kernel density estimate for each of these variables with the following statements:

proc kde data=MyData;
univar x1 x2 x3 x4;

run;

You can also specify different bandwidths and other options for each variable. For example, the following
statements request kernel density estimates that use Silverman’s rule of thumb (SROT) method for all
variables:
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proc kde data=MyData;
univar x1 (bwm=2)

x2 (bwm=0.5 ngrid=100)
x3 x4 / ngrid=200 method=srot;

run;

The option NGRID=200 applies to the variables x1, x3, and x4, but the v-option NGRID=100 is applied to x2.
Bandwidth multipliers of 2 and 0.5 are specified for the variables x1 and x2, respectively.

BY Statement
BY variables ;

You can specify a BY statement with PROC KDE to obtain separate analyses of observations in groups that
are defined by the BY variables. When a BY statement appears, the procedure expects the input data set to be
sorted in order of the BY variables. If you specify more than one BY statement, only the last one specified is
used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the KDE procedure. The
NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

FREQ Statement
FREQ variable ;

The FREQ statement specifies a variable that provides frequencies for each observation in the DATA= data
set. Specifically, if n is the value of the FREQ variable for a given observation, then that observation is used
n times. If the value of the FREQ variable is missing or is less than 1, the observation is not used in the
analysis. If the value is not an integer, only the integer portion is used.

WEIGHT Statement
WEIGHT variable ;

The WEIGHT statement specifies a variable that weights the observations in computing the kernel density
estimate. Observations with higher weights have more influence in the computations. If an observation has
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a nonpositive or missing weight, then the entire observation is omitted from the analysis. You should be
cautious in using data sets with extreme weights, because they can produce unreliable results.

Details: KDE Procedure

Computational Overview
The two main computational tasks of PROC KDE are automatic bandwidth selection and the construction
of a kernel density estimate once a bandwidth has been selected. The primary computational tools used to
accomplish these tasks are binning, convolutions, and the fast Fourier transform. The following sections
provide analytical details on these topics, beginning with the density estimates themselves.

Kernel Density Estimates
A weighted univariate kernel density estimate involves a variable X and a weight variable W. Let
.Xi ; Wi /; i D 1; 2; : : : ; n, denote a sample of X and W of size n. The weighted kernel density estimate of
f .x/, the density of X, is as follows:

Of .x/ D
1Pn

iD1Wi

nX
iD1

Wi'h.x �Xi /

where h is the bandwidth and

'h.x/ D
1

p
2�h

exp
�
�
x2

2h2

�
is the standard normal density rescaled by the bandwidth. If h! 0 and nh!1, then the optimal bandwidth
is

hAMISE D

�
1

2
p
�n

R
.f 00/2

�1=5
This optimal value is unknown, and so approximations methods are required. For a derivation and discussion
of these results, see Silverman (1986, Chapter 3) and Jones, Marron, and Sheather (1996).

For the bivariate case, let X D .X; Y / be a bivariate random element taking values in R2 with joint density
function

f .x; y/; .x; y/ 2 R2

and let Xi D .Xi ; Yi /; i D 1; 2; : : : ; n, be a sample of size n drawn from this distribution. The kernel density
estimate of f .x; y/ based on this sample is

Of .x; y/ D
1

n

nX
iD1

'h.x �Xi ; y � Yi /

D
1

nhXhY

nX
iD1

'

�
x �Xi

hX
;
y � Yi

hY

�
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where .x; y/ 2 R2, hX > 0 and hY > 0 are the bandwidths, and 'h.x; y/ is the rescaled normal density

'h.x; y/ D
1

hXhY
'

�
x

hX
;
y

hY

�
where '.x; y/ is the standard normal density function

'.x; y/ D
1

2�
exp

�
�
x2 C y2

2

�

Under mild regularity assumptions about f .x; y/, the mean integrated squared error (MISE) of Of .x; y/ is

MISE.hX ; hY / D E
Z
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�
as hX ! 0, hY ! 0 and nhXhY !1.

Now set

AMISE.hX ; hY / D
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which is the asymptotic mean integrated squared error (AMISE). For fixed n, this has a minimum at
.hAMISE_X ; hAMISE_Y / defined as

hAMISE_X D

24R .@2f@X2 /2
4n�

351=624R .@2f@X2 /2R
.@
2f

@Y 2
/2

352=3

and

hAMISE_Y D

24R .@2f@Y 2 /2
4n�

351=624R .@2f@Y 2 /2R
.@
2f

@X2
/2

352=3

These are the optimal asymptotic bandwidths in the sense that they minimize MISE. However, as in the
univariate case, these expressions contain the second derivatives of the unknown density f being estimated,
and so approximations are required. See Wand and Jones (1993) for further details.
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Binning
Binning, or assigning data to discrete categories, is an effective and fast method for large data sets (Fan and
Marron 1994). When the sample size n is large, direct evaluation of the kernel estimate Of at any point would
involve n kernel evaluations, as shown in the preceding formulas. To evaluate the estimate at each point of
a grid of size g would thus require ng kernel evaluations. When you use g = 401 in the univariate case or
g D 60 � 60 D 3600 in the bivariate case and n � 1000, the amount of computation can be prohibitively
large. With binning, however, the computational order is reduced to g, resulting in a much quicker algorithm
that is nearly as accurate as direct evaluation.

To bin a set of weighted univariate data X1; X2; : : : ; Xn to a grid x1; x2; : : : ; xg , simply assign each sample
Xi , together with its weight Wi , to the nearest grid point xj (also called the bin center). When binning is
completed, each grid point xi has an associated number ci , which is the sum total of all the weights that
correspond to sample points that have been assigned to xi . These ci s are known as the bin counts.

This procedure replaces the data .Xi ; Wi /; i D 1; 2; : : : ; n, with the smaller set .xi ; ci /; i D 1; 2; : : : ; g,
and the estimation is carried out with these new data. This is so-called simple binning, versus the finer
linear binning described in Wand (1994). PROC KDE uses simple binning for the sake of faster and easier
implementation. Also, it is assumed that the bin centers x1; x2; : : : ; xg are equally spaced and in increasing
order. In addition, assume for notational convenience that

Pn
iD1Wi D n and, therefore,

Pg
iD1 ci D n.

If you replace the data .Xi ; Wi /; i D 1; 2; : : : ; n, with .xi ; ci /; i D 1; 2; : : : ; g, the weighted estimator Of
then becomes

Of .x/ D
1

n

gX
iD1

ci'h.x � xi /

with the same notation as used previously. To evaluate this estimator at the g points of the same grid vector
grid D .x1; x2; : : : ; xg/0 is to calculate

Of .xi / D
1

n

gX
jD1

cj'h.xi � xj /

for i D 1; 2; : : : ; g. This can be rewritten as

Of .xi / D
1

n

gX
jD1

cj'h.ji � j jı/

where ı D x2 � x1 is the increment of the grid.

The same idea of binning works similarly with bivariate data, where you estimate Of over the grid matrix
grid D gridX � gridY as follows:

grid D

26664
x1;1 x1;2 : : : x1;gY
x2;1 x2;2 : : : x2;gY
:::

xgX ;1 xgX ;2 : : : xgX ;gY

37775
where xi;j D .xi ; yi /; i D 1; 2; : : : ; gX ; j D 1; 2; : : : ; gY , and the estimates are

Of .xi;j / D
1

n

gXX
kD1

gYX
lD1

ck;l'h.ji � kjıX ; jj � l jıY /

where ıX D x2 � x1 and ıY D y2 � y1 are the increments of the grid.
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Convolutions
The formulas for the binned estimator Of in the previous subsection are in the form of a convolution product
between two matrices, one of which contains the bin counts, the other of which contains the rescaled kernels
evaluated at multiples of grid increments. This section defines these two matrices explicitly, and shows that
Of is their convolution.

Beginning with the weighted univariate case, define the following matrices:

K D
1

n
.'h.0/; 'h.ı/; : : : ; 'h..g � 1/ı//

0

C D .c1; c2; : : : ; cg/
0

The first thing to note is that many terms in K are negligible. The term 'h.iı/ is taken to be 0 when
jiı=hj � 5, so you can define

l D min.g � 1; floor.5h=ı//

as the maximum integer multiple of the grid increment to get nonzero evaluations of the rescaled kernel.
Here floor.x/ denotes the largest integer less than or equal to x.

Next, let p be the smallest power of 2 that is greater than g C l C 1,

p D 2ceil.log2.gClC1//

where ceil.x/ denotes the smallest integer greater than or equal to x.

Modify K as follows:

K D
1

n
.'h.0/; 'h.ı/; : : : ; 'h.lı/; 0; : : : ; 0„ ƒ‚ …

p�2l�1

; 'h.lı/; : : : ; 'h.ı//
0

Essentially, the negligible terms of K are omitted, and the rest are symmetrized (except for one term). The
whole matrix is then padded to size p � 1 with zeros in the middle. The dimension p is a highly composite
number—that is, one that decomposes into many factors—leading to the most efficient fast Fourier transform
operation (see Wand 1994).

The third operation is to pad the bin count matrix C with zeros to the same size as K:

C D .c1; c2; : : : ; cg ; 0; : : : ; 0„ ƒ‚ …
p�g

/0

The convolution K � C is then a p � 1 matrix, and the preceding formulas show that its first g entries are
exactly the estimates Of .xi /; i D 1; 2; : : : ; g.
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For bivariate smoothing, the matrix K is defined similarly as

K D

26666666666664

�0;0 �0;1 : : : �0;lY 0 �0;lY : : : �0;1
�1;0 �1;1 : : : �1;lY 0 �1;lY : : : �1;1
:::

�lX ;0 �lX ;1 : : : �lX ;lY 0 �lX ;lY : : : �lX ;1
0 0 : : : 0 0 0 : : : 0

�lX ;0 �lX ;1 : : : �lX ;lY 0 �lX ;lY : : : �lX ;1
:::

�1;0 �1;1 : : : �1;lY 0 �1;lY : : : �1;1

37777777777775
pX�pY

where lX D min.gX � 1; floor.5hX=ıX //; pX D 2ceil.log2.gXClXC1//, and so forth, and �i;j D
1
n
'h.iıX ; jıY / i D 0; 1; : : : ; lX ; j D 0; 1; : : : ; lY .

The bin count matrix C is defined as

C D

266666666664

c1;1 c1;2 : : : c1;gY 0 : : : 0

c2;1 c2;2 : : : c2;gY 0 : : : 0
:::

cgX ;1 cgX ;2 : : : cgX ;gY 0 : : : 0

0 0 : : : 0 0 : : : 0
:::

0 0 : : : 0 0 : : : 0

377777777775
pX�pY

As with the univariate case, the gX � gY upper-left corner of the convolution K � C is the matrix of the
estimates Of .grid/.

Most of the results in this subsection are found in Wand (1994).

Fast Fourier Transform
As shown in the last subsection, kernel density estimates can be expressed as a submatrix of a certain
convolution. The fast Fourier transform (FFT) is a computationally effective method for computing such
convolutions. For a reference on this material, see Press et al. (1988).

The discrete Fourier transform of a complex vector z D .z0; : : : ; zN�1/ is the vector Z D .Z0; : : : ; ZN�1/,
where

Zj D

N�1X
lD0

zle
2�ilj=N ; j D 0; : : : ; N � 1

and i is the square root of –1. The vector z can be recovered from Z by applying the inverse discrete Fourier
transform formula

zl D N
�1

N�1X
jD0

Zj e
�2�ilj=N ; l D 0; : : : ; N � 1



Bandwidth Selection F 4097

Discrete Fourier transforms and their inverses can be computed quickly using the FFT algorithm, especially
when N is highly composite; that is, it can be decomposed into many factors, such as a power of 2. By the
discrete convolution theorem, the convolution of two vectors is the inverse Fourier transform of the element-
by-element product of their Fourier transforms. This, however, requires certain periodicity assumptions,
which explains why the vectors K and C require zero-padding. This is to avoid wrap-around effects (see Press
et al. 1988, pp. 410–411). The vector K is actually mirror-imaged so that the convolution of C and K will be
the vector of binned estimates. Thus, if S denotes the inverse Fourier transform of the element-by-element
product of the Fourier transforms of K and C, then the first g elements of S are the estimates.

The bivariate Fourier transform of an N1 �N2 complex matrix having .l1 C 1; l2 C 1/ entry equal to zl1l2 is
the N1 �N2 matrix with .j1 C 1; j2 C 1/ entry given by

Zj1j2 D

N1�1X
l1D0

N2�1X
l2D0

zl1l2e
2�i.l1j1=N1Cl2j2=N2/

and the formula of the inverse is

zl1l2 D .N1N2/
�1

N1�1X
j1D0

N2�1X
j2D0

Zj1j2e
�2�i.l1j1=N1Cl2j2=N2/

The same discrete convolution theorem applies, and zero-padding is needed for matrices C and K. In
the case of K, the matrix is mirror-imaged twice. Thus, if S denotes the inverse Fourier transform of the
element-by-element product of the Fourier transforms of K and C, then the upper-left gX � gY corner of S
contains the estimates.

Bandwidth Selection
Several different bandwidth selection methods are available in PROC KDE in the univariate case. Following
the recommendations of Jones, Marron, and Sheather (1996), the default method follows a plug-in formula
of Sheather and Jones.

This method solves the fixed-point equation

h D

24 R.'/

nR
�
Of
00

g.h/

� �R
x2'.x/dx

�2
351=5

where R.'/ D
R
'2.x/dx.

PROC KDE solves this equation by first evaluating it on a grid of values spaced equally on a log scale.
The largest two values from this grid that bound a solution are then used as starting values for a bisection
algorithm.

The simple normal reference rule works by assuming Of is Gaussian in the preceding fixed-point equation.
This results in

h D O�Œ4=.3n/�1=5

D 1:06 O�n�1=5

where O� is the sample standard deviation.
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Alternatively, the bandwidth can be computed using the interquartile range, Q:

h D 1:06 O�n�1=5

� 1:06 .Q=1:34/n�1=5

� 0:785 Qn�1=5

Silverman’s rule of thumb (Silverman 1986, Section 3.4.2) is computed as

h D 0:9minŒ O�;Q=1:34�n�1=5

The oversmoothed bandwidth is computed as

h D 3 O�Œ1=.70
p
�n/�1=5

When you specify a WEIGHT variable, PROC KDE uses weighted versions of Q3, Q1, and O� in the
preceding expressions. The weighted quartiles are computed as weighted order statistics, and the weighted
variance takes the form

O�2 D

Pn
iD1Wi .Xi �

NX/2Pn
iD1Wi

where NX D .
Pn
iD1WiXi /=.

Pn
iD1Wi / is the weighted sample mean.

For the bivariate case, Wand and Jones (1993) note that automatic bandwidth selection is both difficult and
computationally expensive. Their study of various ways of specifying a bandwidth matrix also shows that
using two bandwidths, one in each coordinate’s direction, is often adequate. PROC KDE enables you to
adjust the two bandwidths by specifying a multiplier for the default bandwidths recommended by Bowman
and Foster (1993):

hX D O�Xn
�1=6

hY D O�Y n
�1=6

Here O�X and O�Y are the sample standard deviations of X and Y, respectively. These are the optimal
bandwidths for two independent normal variables that have the same variances as X and Y. They are,
therefore, conservative in the sense that they tend to oversmooth the surface.

You can specify the BWM= option to adjust the aforementioned bandwidths to provide the appropriate
amount of smoothing for your application.

ODS Table Names
PROC KDE assigns a name to each table it creates. You can use these names to reference the table when
using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed
in Table 54.3. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”
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Table 54.3 ODS Tables Produced in PROC KDE
ODS Table Name Description Statement Option
BivariateStatistics Bivariate statistics BIVAR BIVSTATS
Controls Control variables default
Inputs Input information default
Levels Levels of density estimate BIVAR LEVELS
Percentiles Percentiles of data BIVAR / UNIVAR PERCENTILES
UnivariateStatistics Basic statistics BIVAR / UNIVAR UNISTATS

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

ODS Graph Names

PROC KDE assigns a name to each graph it creates using the Output Delivery System (ODS). You can use
these names to reference the graphs when using ODS. The names are listed in Table 54.4.

Table 54.4 Graphs Produced by PROC KDE
ODS Graph Name Plot Description Statement PLOTS= Option
BivariateHistogram Bivariate histogram of data BIVAR HISTOGRAM

ContourPlot Contour plot of bivariate kernel den-
sity estimate

BIVAR CONTOUR

ContourScatterPlot Contour plot of bivariate kernel den-
sity estimate overlaid with scatter
plot

BIVAR CONTOURSCATTER

DensityPlot Univariate kernel density estimate
curve

UNIVAR DENSITY

DensityOverlayPlot Overlaid univariate kernel density es-
timate curves

UNIVAR DENSITYOVERLAY

HistogramDensity Univariate histogram overlaid with
kernel density estimate curve

UNIVAR HISTDENSITY

Histogram Univariate histogram of data UNIVAR HISTOGRAM

HistogramSurface Bivariate histogram overlaid with sur-
face plot of bivariate kernel density
estimate

BIVAR HISTSURFACE
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Table 54.4 (continued)
ODS Graph Name Plot Description Statement PLOTS= Option
ScatterPlot Scatter plot of data BIVAR SCATTER

SurfacePlot Surface plot of bivariate kernel den-
sity estimate

BIVAR SURFACE

Bivariate Plots

You can specify the PLOTS= option in the BIVAR statement to request graphical displays of bivariate kernel
density estimates.

PLOTS= option1 < option2 . . . >
requests one or more plots of the bivariate kernel density estimate. The following table shows the
available plot options.

Option Description
ALL all available displays

CONTOUR contour plot of bivariate density estimate

CONTOURSCATTER contour plot of bivariate density estimate overlaid with
scatter plot of data

HISTOGRAM bivariate histogram of data

HISTSURFACE bivariate histogram overlaid with bivariate kernel den-
sity estimate

NONE suppresses all plots

SCATTER scatter plot of data

SURFACE surface plot of bivariate kernel density estimate

By default, if ODS Graphics is enabled and you do not specify the PLOTS= option, then the BIVAR statement
creates a contour plot. If you specify the PLOTS= option, you get only the requested plots.

Univariate Plots

You can specify the PLOTS= option in the UNIVAR statement to request graphical displays of univariate
kernel density estimates.

PLOTS= option1 < option2 . . . >
requests one or more plots of the univariate kernel density estimate. The following table shows the
available plot options.
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Option Description
ALL all available displays
DENSITY univariate kernel density estimate curve
DENSITYOVERLAY overlaid univariate kernel density estimate curves
HISTDENSITY univariate histogram of data overlaid with kernel den-

sity estimate curve
HISTOGRAM univariate histogram of data
NONE suppresses all plots

By default, if ODS Graphics is enabled and you do not specify the PLOTS= option, then the UNIVAR
statement creates a histogram overlaid with a kernel density estimate. If you specify the PLOTS= option, you
get only the requested plots.

Binning of Bivariate Histogram

Let .Xi ; Yi /; i D 1; 2; : : : ; n, be a sample of size n drawn from a bivariate distribution. For the marginal
distribution of Xi ; i D 1; 2; : : : ; n, the number of bins (NbinsX ) in the bivariate histogram is calculated
according to the formula

NbinsX D ceil .rangeX=widthX /

where ceil.x/ denotes the smallest integer greater than or equal to x,

rangeX D max
1�i�n

.Xi / � min
1�i�n

.Xi /

and the optimal bin width is obtained, following Scott (1992, p. 84), as

widthX D 3:504 O�X .1 � O�2/3=8n�1=4

Here, O�X and O� are the sample variance and the sample correlation coefficient, respectively. When you
specify a WEIGHT variable, PROC KDE uses weighted versions of O�X and O� in the preceding expressions.

Similar formulas are used to compute the number of bins for the marginal distribution of Yi ; i D 1; 2; : : : ; n.
Further details can be found in Scott (1992).

Notice that if j O�j > 0:99, then NbinsX is calculated as in the univariate case (see Terrell and Scott 1985). In
this case NbinsY D NbinsX .
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Examples: KDE Procedure

Example 54.1: Computing a Basic Kernel Density Estimate
This example illustrates the basic functionality of the UNIVAR statement. The effective channel length (in
microns) is measured for 1225 field effect transistors. The channel lengths are saved as values of the variable
length in a SAS data set named channel; see the file kdex1.sas in the SAS Sample Library. These statements
create the channel data set:

data channel;
input length @@;
datalines;

0.91 1.01 0.95 1.13 1.12 0.86 0.96 1.17 1.36 1.10
0.98 1.27 1.13 0.92 1.15 1.26 1.14 0.88 1.03 1.00
0.98 0.94 1.09 0.92 1.10 0.95 1.05 1.05 1.11 1.15
1.11 0.98 0.78 1.09 0.94 1.05 0.89 1.16 0.88 1.19

... more lines ...

2.13 2.05 1.90 2.07 2.15 1.96 2.15 1.89 2.15 2.04
1.95 1.93 2.22 1.74 1.91
;

The following statements request a kernel density estimate of the variable length:

ods graphics on;
proc kde data=channel;

univar length;
run;

Because ODS Graphics is enabled, PROC KDE produces a histogram with an overlaid kernel density estimate
by default, although the PLOTS= option is not specified. The resulting graph is shown in Output 54.1.1. For
general information about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.” For specific
information about the graphics available in the KDE procedure, see the section “ODS Graphics” on page 4099.
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Output 54.1.1 Histogram with Overlaid Kernel Density Estimate

The default output tables for this analysis are the “Inputs” and “Controls” tables, shown in Output 54.1.2.

Output 54.1.2 Univariate Inputs Table

The KDE ProcedureThe KDE Procedure

Inputs

Data Set WORK.CHANNEL

Number of Observations Used 1225

Variable length

Bandwidth Method Sheather-Jones Plug In

Controls

length

Grid Points 401

Lower Grid Limit 0.58

Upper Grid Limit 2.43

Bandwidth Multiplier 1
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The “Inputs” table lists basic information about the density fit, including the input data set, the number of
observations, the variable used, and the bandwidth method. The default bandwidth method is the Sheather-
Jones plug-in.

The “Controls” table lists the primary numbers controlling the kernel density fit. Here the default number of
grid points is used and no adjustment is made to the default bandwidth.

Example 54.2: Changing the Bandwidth
Continuing with Example 54.1, you can specify different bandwidth multipliers that determine the smoothness
of the kernel density estimate. The following statements show kernel density estimates for the variable length
by specifying two different bandwidth multipliers with the BWM= option:

proc kde data=channel;
univar length(bwm=2) length(bwm=0.25);

run;
ods graphics off;

Output 54.2.1 shows an oversmoothed estimate because the bandwidth multiplier is 2. Output 54.2.2 is
created by specifying BWM=0.25, so it is an undersmoothed estimate.

Output 54.2.1 Histogram with Oversmoothed Kernel Density Estimate
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Output 54.2.2 Histogram with Undersmoothed Kernel Density Estimate

Example 54.3: Changing the Bandwidth (Bivariate)
Recall the analysis from the section “Getting Started: KDE Procedure” on page 4080. Suppose you would
like a slightly smoother estimate. You could then rerun the analysis with a larger bandwidth:

ods graphics on;
proc kde data=bivnormal;

bivar x y / bwm=2;
run;

The BWM= option requests bandwidth multipliers of 2 for both x and y. With ODS Graphics enabled, the
BIVAR statement produces a contour plot, as shown in Output 54.3.1.
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Output 54.3.1 Contour Plot of Estimated Density with Additional Smoothing

Multiple Bandwidths

You can also specify multiple bandwidths with only one run of the KDE procedure. Notice that by specifying
pairs of variables inside parentheses, a kernel density estimate is computed for each pair. In the following
statements the first kernel density is computed with the default bandwidth, but the second kernel density
specifies a bandwidth multiplier of 0.5 for the variable x and a multiplier of 2 for the variable y:

proc kde data=bivnormal;
bivar (x y) (x (bwm=0.5) y (bwm=2));

run;
ods graphics off;

The contour plot of the second kernel density estimate is shown in Output 54.3.2.
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Output 54.3.2 Contour Plot of Estimated Density with Different Smoothing for x and y

Example 54.4: Requesting Additional Output Tables
This example illustrates how to request output tables with summary statistics in addition to the default output
tables. Using the same data as in the section “Getting Started: KDE Procedure” on page 4080, the following
statements request univariate and bivariate summary statistics, percentiles, and levels of the kernel density
estimate:

proc kde data=bivnormal;
bivar x y / bivstats levels percentiles unistats;

run;

The resulting output is shown in Output 54.4.1.
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Output 54.4.1 Bivariate Kernel Density Estimate Tables

The KDE ProcedureThe KDE Procedure

Inputs

Data Set WORK.BIVNORMAL

Number of Observations Used 1000

Variable 1 x

Variable 2 y

Bandwidth Method Simple Normal Reference

Controls

x y

Grid Points 60 60

Lower Grid Limit -11.25 -10.05

Upper Grid Limit 9.1436 9.0341

Bandwidth Multiplier 1 1

Univariate Statistics

x y

Mean -0.075 -0.070

Variance 9.73 9.93

Standard Deviation 3.12 3.15

Range 20.39 19.09

Interquartile Range 4.46 4.51

Bandwidth 0.99 1.00

Bivariate
Statistics

Covariance 8.88

Correlation 0.90

Percentiles

x y

0.5 -7.71 -8.44

1.0 -7.08 -7.46

2.5 -6.17 -6.31

5.0 -5.28 -5.23

10.0 -4.18 -4.11

25.0 -2.24 -2.30

50.0 -0.11 -0.058

75.0 2.22 2.21

90.0 3.81 3.94

95.0 4.88 5.22

97.5 6.03 5.94

99.0 6.90 6.77

99.5 7.71 7.07
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Output 54.4.1 continued

Levels

Percent Density
Lower

for x
Upper

for x
Lower

for y
Upper

for y

1 0.001181 -8.14 8.45 -8.76 8.39

5 0.003031 -7.10 7.07 -7.14 6.77

10 0.004989 -6.41 5.69 -6.49 6.12

50 0.01591 -3.64 3.96 -3.58 3.86

90 0.02388 -1.22 1.19 -1.32 0.95

95 0.02525 -0.88 0.50 -0.99 0.62

99 0.02608 -0.53 0.16 -0.67 0.30

100 0.02629 -0.19 -0.19 -0.35 -0.35

The “Univariate Statistics” table contains standard univariate statistics for each variable, as well as statistics
associated with the density estimate. Note that the estimated variances for both x and y are fairly close to the
true values of 10.

The “Bivariate Statistics” table lists the covariance and correlation between the two variables. Note that the
estimated correlation is equal to its true value to two decimal places.

The “Percentiles” table lists percentiles for each variable.

The “Levels” table lists contours of the density corresponding to percentiles of the bivariate data, and the
minimum and maximum values of each variable on those contours. For example, 5% of the observed
data have a density value less than 0.0030. The minimum x and y values on this contour are –7.10 and
–7.14, respectively (the Lower for x and Lower for y columns), and the maximum values are 7.07 and 6.77,
respectively (the Upper for x and Upper for y columns).

You can also request “Percentiles” or “Levels” tables with specific percentiles:

proc kde data=bivnormal;
bivar x y / levels=2.5, 50, 97.5

percentiles=2.5, 25, 50, 75, 97.5;
run;

The resulting “Percentiles” and “Levels” tables are shown in Output 54.4.2.

Output 54.4.2 Customized Percentiles and Levels Tables

The KDE ProcedureThe KDE Procedure

Percentiles

x y

2.5 -6.17 -6.31

25.0 -2.24 -2.30

50.0 -0.11 -0.058

75.0 2.22 2.21

97.5 6.03 5.94
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Output 54.4.2 continued

Levels

Percent Density
Lower

for x
Upper

for x
Lower

for y
Upper

for y

2.5 0.001914 -7.79 8.11 -7.79 7.74

50.0 0.01591 -3.64 3.96 -3.58 3.86

97.5 0.02573 -0.88 0.50 -0.99 0.30

Example 54.5: Univariate KDE Graphics
This example uses data from the section “Getting Started: KDE Procedure” to illustrate the use of ODS
Graphics. The following statements request the available univariate plots in PROC KDE:

ods graphics on;
proc kde data=bivnormal;

univar x / plots=(density histogram histdensity);
univar x y / plots=densityoverlay;

run;
ods graphics off;

Graphs are requested by specifying the PLOTS= option in the UNIVAR statement with ODS Graphics
enabled. Output 54.5.1, Output 54.5.2, and Output 54.5.3 show the kernel density estimate, histogram, and
histogram with kernel density estimate overlaid, respectively, produced by the first UNIVAR statement.
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Output 54.5.1 Kernel Density Estimate
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Output 54.5.2 Histogram
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Output 54.5.3 Histogram with Overlaid Kernel Density Estimate

Output 54.5.4 shows the plot produced by the second UNIVAR statement, in which the kernel density
estimates for x and y are overlaid.
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Output 54.5.4 Overlaid Kernel Density Estimates

For general information about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.” For specific
information about the graphics available in the KDE procedure, see the section “ODS Graphics” on page 4099.
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Example 54.6: Bivariate KDE Graphics
This example illustrates the available bivariate graphics in PROC KDE. The octane data set comes from
Rodriguez and Taniguchi (1980), where it is used for predicting customer octane satisfaction by using
trained-rater observations. The variables in this data set are Rater and Customer. Either variable might have
missing values. See the file kdex3.sas in the SAS Sample Library. The following statements create the octane
data set:

data octane;
input Rater Customer;
label Rater = 'Rater'

Customer = 'Customer';
datalines;

94.5 92.0
94.0 88.0
94.0 90.0
93.0 93.0

... more lines ...

88.0 84.0
.H 90.0

;

The following statements request all the available bivariate plots in PROC KDE:

ods graphics on;
proc kde data=octane;

bivar Rater Customer / plots=all;
run;
ods graphics off;

Output 54.6.1 shows a scatter plot of the data, Output 54.6.2 shows a bivariate histogram of the data,
Output 54.6.3 shows a contour plot of bivariate density estimate, Output 54.6.4 shows a contour plot of
bivariate density estimate overlaid with a scatter plot of data, Output 54.6.5 shows a surface plot of bivariate
kernel density estimate, and Output 54.6.6 shows a bivariate histogram overlaid with a bivariate kernel density
estimate. These graphical displays are requested by specifying the PLOTS= option in the BIVAR statement
with ODS Graphics enabled. For general information about ODS Graphics, see Chapter 21, “Statistical
Graphics Using ODS.” For specific information about the graphics available in the KDE procedure, see the
section “ODS Graphics” on page 4099.
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Output 54.6.1 Scatter Plot
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Output 54.6.2 Bivariate Histogram
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Output 54.6.3 Contour Plot
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Output 54.6.4 Contour Plot with Overlaid Scatter Plot
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Output 54.6.5 Surface Plot
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Output 54.6.6 Bivariate Histogram with Overlaid Surface Plot
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Overview: KRIGE2D Procedure
The KRIGE2D procedure performs ordinary kriging in two dimensions. PROC KRIGE2D can handle
anisotropic and nested semivariogram models. Eight semivariogram models are supported: the Gaussian,
exponential, spherical, power, cubic, pentaspherical, sine hole effect, and Matérn models. A single nugget
effect is also supported. You can specify the correlation model by naming the form and supplying the
associated parameters, or by using the contents of an item store file that was previously created by PROC
VARIOGRAM.

You can specify the locations of kriging predictions in a GRID statement, or they can be read from a SAS
data set. The grid specification is most suitable for a regular grid; the data set specification can handle any
irregular pattern of points.

Local kriging is supported through the specification of a radius around a grid point or the specification of the
number of nearest neighbors to use in the kriging system. When you perform local kriging, a separate kriging
system is solved at each grid point by using a neighborhood of the data point established by the radius or
number specification.

The KRIGE2D procedure writes the kriging predictions and associated standard errors for each grid to an
output data set. When you perform local kriging, PROC KRIGE2D writes the neighborhood information for
each grid point to an additional, optional data set. The KRIGE2D procedure does not produce any displayed
output.

The KRIGE2D procedure uses ODS Graphics to create graphs as part of its output. For general information
about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.” For more information about the
graphics available in PROC KRIGE2D, see the section “ODS Graphics” on page 4175.

Introduction to Spatial Prediction
Many activities in science and technology involve measurements of one or more quantities at given spatial
locations, with the goal of predicting the measured quantities at unsampled locations. Application areas
include reservoir prediction in mining and petroleum exploration, in addition to modeling in a broad spectrum
of fields (for example, environmental health, environmental pollution, natural resources and energy, hydrology,
and risk analysis). Often, the unsampled locations are on a regular grid, and the predictions are used to
produce surface plots or contour maps.

The preceding tasks fall within the scope of spatial prediction, which, in general, is any prediction method
that incorporates spatial dependence. The study of these tasks involves naturally occurring uncertainties
that cannot be ignored. Stochastic analysis frameworks and methods are often used to account for these
uncertainties. Hence, the terms stochastic spatial prediction and stochastic modeling are also used to
characterize this type of analysis.

A popular method of spatial prediction is ordinary kriging, which produces both predicted values and
associated standard errors. Ordinary kriging requires the complete specification (the form and parameter
values) of the spatial dependence that characterizes the spatial process. For this purpose, models for the
spatial dependence are expressed in terms of the distance between any two locations in the spatial domain of
interest. These models take the form of a covariance or semivariance function.
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Spatial prediction, then, involves two steps. First, you model the covariance or semivariance of the spatial
process. These measures are typically not known in advance. This step involves computing an empirical
estimate, in addition to determining both the mathematical form and the values of any parameters for a
theoretical form of the dependence model. Second, you use this dependence model to solve the kriging
system at a specified set of spatial points, resulting in predicted values and associated standard errors.

The KRIGE2D procedure performs the second of these steps by using ordinary kriging of two-dimensional
data.

This introduction concludes with a note on terminology. You might commonly encounter the terms estimation
and prediction used interchangeably by experts in different fields; this could be a source of confusion. A
precise statistical vernacular uses the term estimation to refer to inferences about the value of fixed but
unknown parameters, whereas prediction concerns inferences about the value of random variables—see,
for example, Cressie (1993, p. 106). In light of these definitions, kriging methods are clearly predictive
techniques, since they are concerned with making inferences about the value of a spatial random field at
observed or unobserved locations. The SAS/STAT suite of procedures for spatial analysis and prediction
(VARIOGRAM, KRIGE2D, and SIM2D) follows the statistical vernacular in the use of the terms estimation
and prediction.

Getting Started: KRIGE2D Procedure

Spatial Prediction Using Kriging, Contour Plots
After an appropriate semivariogram model is chosen, a number of choices are involved in producing the
kriging surface. In order to illustrate these choices, you use the theoretical semivariogram model that was
fitted to the coal seam thickness data empirical semivariogram in “Theoretical Semivariogram Model Fitting”
on page 8922 in Chapter 109, “The VARIOGRAM Procedure.” This model is Gaussian,

z.h/ D c0

"
1 � exp

 
�
h2

a20

!#

with a scale of c0 D 7:4599 (that is, the model sill) and a range of a0 D 30:1111, based on the weighted
least squares fitting results in the PROC VARIOGRAM example.

The first choice is whether to use local or global kriging. Local kriging uses only data points in the
neighborhood of a grid point, and you choose this type of analysis by specifying a data search radius around
the grid point. Global kriging uses all data points.

The most important consideration in this decision is the spatial covariance structure. Global kriging is
appropriate when the correlation range � is approximately equal to the length of the spatial domain. The
correlation range � is the distance r� (also known as effective or practical range) at which the covariance is
5% of its value at zero. That is,

CZ.r�/ D 0:05Cz.0/
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For a Gaussian model, r� is
p
3a0 � 52,000 feet. The data points are scattered uniformly throughout

a 100 � 100 (106 ft2) area. Hence, the linear dimension of the data is nearly double the r� range. This
indicates that local kriging rather than global kriging is appropriate because data that are farther away than r�
essentially add to the computational burden without significant contribution to the prediction. The following
DATA step inputs the thickness data set thick, which is available from the Sashelp library. In the thick data
set, thickness is represented by the Thick variable.

title 'Spatial Prediction With Kriging';

data thick;
input East North Thick @@;
label Thick='Coal Seam Thickness';
datalines;
0.7 59.6 34.1 2.1 82.7 42.2 4.7 75.1 39.5
4.8 52.8 34.3 5.9 67.1 37.0 6.0 35.7 35.9
6.4 33.7 36.4 7.0 46.7 34.6 8.2 40.1 35.4

13.3 0.6 44.7 13.3 68.2 37.8 13.4 31.3 37.8
17.8 6.9 43.9 20.1 66.3 37.7 22.7 87.6 42.8
23.0 93.9 43.6 24.3 73.0 39.3 24.8 15.1 42.3
24.8 26.3 39.7 26.4 58.0 36.9 26.9 65.0 37.8
27.7 83.3 41.8 27.9 90.8 43.3 29.1 47.9 36.7
29.5 89.4 43.0 30.1 6.1 43.6 30.8 12.1 42.8
32.7 40.2 37.5 34.8 8.1 43.3 35.3 32.0 38.8
37.0 70.3 39.2 38.2 77.9 40.7 38.9 23.3 40.5
39.4 82.5 41.4 43.0 4.7 43.3 43.7 7.6 43.1
46.4 84.1 41.5 46.7 10.6 42.6 49.9 22.1 40.7
51.0 88.8 42.0 52.8 68.9 39.3 52.9 32.7 39.2
55.5 92.9 42.2 56.0 1.6 42.7 60.6 75.2 40.1
62.1 26.6 40.1 63.0 12.7 41.8 69.0 75.6 40.1
70.5 83.7 40.9 70.9 11.0 41.7 71.5 29.5 39.8
78.1 45.5 38.7 78.2 9.1 41.7 78.4 20.0 40.8
80.5 55.9 38.7 81.1 51.0 38.6 83.8 7.9 41.6
84.5 11.0 41.5 85.2 67.3 39.4 85.5 73.0 39.8
86.7 70.4 39.6 87.2 55.7 38.8 88.1 0.0 41.6
88.4 12.1 41.3 88.4 99.6 41.2 88.8 82.9 40.5
88.9 6.2 41.5 90.6 7.0 41.5 90.7 49.6 38.9
91.5 55.4 39.0 92.9 46.8 39.1 93.4 70.9 39.7
55.8 50.5 38.1 96.2 84.3 40.3 98.2 58.2 39.5

;

Local kriging is performed by using only data points within a specified radius of each grid point. In this
example, a radius of 60,000 feet is used. Other choices involved in local kriging are the minimum and
maximum number of data points in each neighborhood (around a grid point). The minimum number is left at
the default value of 20; the maximum number defaults to all observations in the data set within the specified
radius.
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The last step in contouring the data is to define the prediction grid point (node) locations. The prediction grid
is typically rectangular, and you decide on the grid points population and spacing based on your available
data in addition to your application needs. A convenient area that encompasses all the data points is a square
of side length 100,000 feet. In the present analysis, a distance of 2,500 feet between nodes in the prediction
grid is selected to obtain a smooth contour plot. Based on this choice, you obtain predictions on a square grid
with 41 nodes on each side, which yields a total of 1681 grid points.

You can visualize the outcome of your analysis by using the PLOTS option in the PROC KRIGE2D statement.
By default, PROC KRIGE2D produces one plot that displays the kriging prediction and its corresponding
standard error at each output grid point. The locations of the Thick observations are displayed too, as outlines
in the default plot. You can also ask for a plot of the thick data set observations and their values by specifying
the OBSERV option in the PLOTS option.

The kriging analysis with the KRIGE2D procedure requires that you provide the prediction parameters in
the PREDICT statement. You use the VAR= option to specify that you want to use the Thick variable in
the kriging system, and the RADIUS= option to specify the radius of the local kriging regression. In this
scenario you want to consider for your predictions all the neighboring data within a radius of 60,000 feet
from each prediction location. You can specify more than one PREDICT statements; for example, you can
do this when you want predictions for different variables in your DATA= data set.

The coordinates of your variable are specified in the COORDINATES statement. The MODEL statement
contains the parameters that describe your data spatial correlation. Namely, the FORM= option specifies the
model type, based on its mathematical form. The SCALE= and RANGE= options specify the model sill and
range, respectively. You can specify more than one MODEL statement for the same PREDICT statement in
order to obtain predictions based on different correlation models.

When you use the RADIUS= option to perform local kriging, as in the present example, it is suggested
that the radius parameter be at least as large as your model range, so that you include data points that can
contribute to your prediction.

Eventually, you specify the region of predictions with the GRID statement. The following SAS statements
compute the kriged surface by using the preceding options and grid choice:

ods graphics on;

proc krige2d data=thick;
coordinates xc=East yc=North;
predict var=Thick radius=60;
model scale=7.4599 range=30.1111 form=gauss;
grid x=0 to 100 by 2.5 y=0 to 100 by 2.5;

run;

ods graphics off;
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The table in Figure 55.1 shows the number of observations read and used in the kriging prediction. This table
provides you with useful information in case you have missing values in the input data.

Figure 55.1 Number of Observations for the thick Data Set

Spatial Prediction With Kriging

The KRIGE2D Procedure

Dependent Variable: Thick

Spatial Prediction With Kriging

The KRIGE2D Procedure

Dependent Variable: Thick

Number of Observations Read 75

Number of Observations Used 75

Figure 55.2 shows some general information about the kriging analysis. This includes the count of the output
grid points. You have specified the RADIUS= option; therefore you also see that local kriging is requested.
Because this is a local analysis, the table also displays the parameters related to the neighborhood search
around the grid points.

Figure 55.2 Kriging Analysis Information

Kriging Information

Prediction Grid Points 1681

Type of Analysis Local

Neighborhood Search Radius 60

Minimum Neighbors 20

Maximum Neighbors All Within Radius

The covariance model parameters, including the effective range of the Gaussian model you specified, are
shown in Figure 55.3.

Figure 55.3 Kriging Covariance Model Information

Spatial Prediction With Kriging

The KRIGE2D Procedure

Dependent Variable: Thick
Prediction: Pred1, Model: Model1

Spatial Prediction With Kriging

The KRIGE2D Procedure

Dependent Variable: Thick
Prediction: Pred1, Model: Model1

Covariance Model
Information

Type Gaussian

Sill 7.4599

Range 30.1111

Effective Range 52.153955

Nugget Effect 0
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Figure 55.4 shows a map of the kriging prediction contours based on the Thick observations in the specified
spatial domain. The prediction error is displayed as a surface in the background.

Figure 55.4 Contour Plot of Kriged Coal Seam Thickness

Note the locations of the observed data in Figure 55.4. The figure suggests that the Thick sampling locations
are not ideally spread around the prediction area; however, there are no extended areas lacking measurements.

Based on the spatial distribution of the Thick data and the range r� of your covariance model, you can roughly
see that for each prediction location there are at least several neighboring data points that contribute to the
prediction value. Except perhaps for the nodes close to the boundaries of the prediction grid, you can then
expect the prediction errors to be reasonably low compared to the predicted Thick values.

The kriging outcome in Figure 55.4 indicates that the standard errors are smaller in the neighborhoods where
data are available. The size of these neighborhoods depends on the range of the specified covariance model
that characterizes the spatial continuity of the domain, and on the prediction radius, if one is specified as in
this example. The standard errors tend to increase toward the borders of the prediction area, beyond which
no observations are available.
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Syntax: KRIGE2D Procedure
The following statements are available in the KRIGE2D procedure:

PROC KRIGE2D options ;
BY variables ;
COORDINATES | COORD coordinate-variables ;
GRID grid-options ;
ID variable ;
PREDICT | PRED | P predict-options ;
MODEL model-options ;
RESTORE restore-options ;

The PREDICT and MODEL statements are hierarchical; the PREDICT statement is followed by a MODEL
statement. If more than one MODEL statement is given, only the last one is used for the analysis. The
MODEL statement following a PREDICT statement uses the variable and neighborhood specifications in
that PREDICT statement.

You must specify at least one PREDICT statement and one MODEL statement. You must supply a single
COORDINATES statement to identify the x and y coordinate variables in the input data set. You must also
specify a single GRID statement to include the grid information.

Table 55.1 outlines the options available in PROC KRIGE2D classified by function.

Table 55.1 Options Available in the KRIGE2D Procedure

Task Statement Option

Data Set Options
Specifies input data set PROC KRIGE2D DATA=
Specifies grid data set GRID GDATA=
Specifies labels for individual grid points or in 1-D GRID LABEL
Specifies model data set MODEL MDATA=
Writes kriging predictions and standard errors PROC KRIGE2D OUTEST=
Writes neighborhood information for each grid point PROC KRIGE2D OUTNBHD=
Specifies plot display and options PROC KRIGE2D PLOTS

Declaring the Role of Variables
Specifies variables to define analysis subgroups BY
Specifies variable with observation labels ID
Specifies the variables to be predicted (kriged) PREDICT VAR=
Specifies the x and y coordinate variables in the DATA=
data set

COORDINATES XC= YC=

Specifies the x and y coordinate variables in the GDATA=
data set

GRID XC= YC=

Controlling the Prediction
Specifies the number of grid points in one-dimensional
cases

GRID NPTS=
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Table 55.1 continued

Task Statement Option

Controlling Kriging Neighborhoods
Specifies the radius of a neighborhood for all grid points PREDICT RADIUS=
Specifies the number of neighbors for all grid points PREDICT NUMPOINTS=
Specifies the maximum of neighbors for all grid points PREDICT MAXPOINTS=
Specifies the minimum of neighbors for all grid points PREDICT MINPOINTS=
Specifies the action when maximum not met PREDICT NODECREMENT
Specifies the action when minimum not met PREDICT NOINCREMENT

Controlling the Semivariogram Model
Specifies an angle for an anisotropic model MODEL ANGLE=
Specifies a type with a functional form MODEL FORM=
Specifies an item store with correlation information RESTORE IN=
Specifies a nugget effect MODEL NUGGET=
Allows power exponent values outside [0,2) MODEL POWNOBOUND
Specifies a range parameter MODEL RANGE=
Specifies a minor-major axis ratio for an anisotropic
model

MODEL RATIO=

Specifies a scale parameter MODEL SCALE=
Specifies model and parameters from an item store MODEL STORESELECT

PROC KRIGE2D Statement
PROC KRIGE2D options ;

The PROC KRIGE2D statement invokes the KRIGE2D procedure. Table 55.2 summarizes the options
available in the PROC KRIGE2D statement.

Table 55.2 PROC KRIGE2D Statement Options

Option Description

DATA= Specifies input data set
IDGLOBAL Uses ascending observation numbers as observation labels across BY groups
IDNUM Uses observation number as observation labels
NOPRINT Suppresses the normal display of results
OUTEST= Writes kriging predictions and standard errors
OUTNBHD= Writes neighborhood information for each grid point
PLOTS Specifies plot display and options
PREDICTION Produces the kriging prediction plot
SEMIVARIOGRAM Produces the semivariogram used for the kriging prediction
SINGULARMSG= Controls the number of warning messages displayed for a singular matrix



4132 F Chapter 55: The KRIGE2D Procedure

You can specify the following options in the PROC KRIGE2D statement.

DATA=SAS-data-set
specifies a SAS data set that contains the x and y coordinate variables and the VAR= variables in the
PREDICT statement.

IDGLOBAL
specifies that ascending observation numbers be used across BY groups for the observation labels in
the appropriate output data sets and the OBSERVATIONS plot, instead of resetting the observation
number in the beginning of each BY group. The IDGLOBAL option is ignored if no BY variables are
specified. Also, if you specify the ID statement, then the IDGLOBAL option is ignored unless you
also specify the IDNUM option in the PROC KRIGE2D statement.

IDNUM
specifies that the observation number be used for the observation labels in the appropriate output
data sets and the OBSERVATIONS plot. The IDNUM option takes effect when you specify the ID
statement; otherwise, it is ignored.

NOPRINT
suppresses the normal display of results. The NOPRINT option is useful when you want only to create
one or more output data sets with the procedure. NOTE: This option temporarily disables the Output
Delivery System (ODS); see the section “ODS Graphics” on page 4175 for more information.

OUTEST=SAS-data-set

OUTE=SAS-data-set
specifies a SAS data set in which to store the kriging predictions, standard errors, and grid location.
For details, see the section “OUTEST=SAS-data-set” on page 4173.

OUTNBHD=SAS-data-set

OUTN=SAS-data-set
specifies a SAS data set in which to store the neighborhood information for each grid point. Information
is written to this data set only if one or more PREDICT statements have options that specify local
kriging. For details, see the section “OUTNBHD=SAS-data-set” on page 4174.

PLOTS < (global-plot-option) > < = plot-request < (options) > >

PLOTS < (global-plot-option) > < = (plot-request < (options) > < ... plot-request < (options) > >) >
controls the plots produced through ODS Graphics. When you specify only one plot request, you can
omit the parentheses around the plot request. Here are some examples:

plots=none
plots=observ
plots=(observ(outl) prediction)
plots=(prediction(fill=pred line=se obs=grad) prediction(fill=se))
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ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;

proc krige2d data=thick;
coordinates xc=East yc=North;
predict var=thick r=60;
model scale=7.4599 range=30.1111 form=gauss;
grid x=0 to 100 by 10 y=0 to 100 by 10;

run;

ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

If ODS Graphics is enabled but you omitted the PLOTS option or have specified PLOTS=ALL, then
PROC KRIGE2D produces a default plot for each MODEL statement of every PREDICT statement
that you specify. The default PROC KRIGE2D plot displays a contour plot of the kriging prediction
and the gradient of the kriging prediction standard error at every location of the prediction grid, in
addition to empty circles that indicate the observation locations. See Figure 55.4 for an example of the
default KRIGE2D plot.

The following global-plot-option is available:

ONLY
suppresses the default plot. Only plots that are specifically requested are displayed.

The following individual plot-requests and plot options are available:

ALL
produces all appropriate plots. You can specify other options with ALL. For example, to request
the default plot and an additional plot of the predictions, specify PLOTS=(ALL PREDICTION).

EQUATE
specifies that all appropriate plots be produced in a way that the axes coordinates have equal size
units.

NONE
suppresses all plots.

OBSERVATIONS < (observations-plot-options) >

OBSERV < (observations-plot-options) >

OBS < (observations-plot-options) >
produces the observed data plot. Only one observations plot is created if you specify the
OBSERVATIONS option more than once within a PLOTS option.
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The OBSERVATIONS option has the following suboptions:

GRADIENT
specifies that observations be displayed as circles colored by the observed measurement.

LABEL < ( label-option ) >
labels the observations. The label is the ID variable if the ID statement is specified; otherwise,
it is the observation number. The label-option can be one of the following:

EQ=number
specifies that labels show for any observation whose value is equal to the specified
number .

MAX=number
specifies that labels show for observations with values smaller than or equal to the
specified number .

MIN=number
specifies that labels show for observations with values equal to or greater than the
specified number .

If you specify multiple instances of the OBSERVATIONS option and you specify the LABEL
suboption in any of those, then the resulting observations plot displays the observations
labels. If more than one label-option is specified in multiple LABEL suboptions, then the
prevailing label-option in the resulting OBSERVATIONS plot emerges by adhering to the
choosing order: MIN, MAX, EQ.

OUTLINE
specifies that observations be displayed as circles with a border but with a completely
transparent fill.

OUTLINEGRADIENT
is the same as OBSERVATIONS(GRADIENT) except that a border is shown around each
observation.

SHOWMISSING
specifies that observations with missing values be displayed in addition to the observations
with nonmissing values. By default, missing values locations are not shown on the plot.
If you specify multiple instances of the OBSERVATIONS option and you specify the
SHOWMISSING suboption in any of those, then the resulting observations plot displays the
observations with missing values.

If you omit any of the GRADIENT, OUTLINE, and OUTLINEGRADIENT suboptions, the
OUTLINEGRADIENT is the default suboption. If you specify multiple instances of the OBSER-
VATIONS option or multiple suboptions for OBSERVATIONS, then the resulting observations
plot honors the last specified GRADIENT, OUTLINE, or OUTLINEGRADIENT suboption.

PREDICTION < (prediction-plot-options) >

PRED < (prediction-plot-options) >
specifies that the kriging prediction plot be produced. You can specify the PREDICTION
option multiple times in the same PLOTS option to request instances of plots with the following
prediction-plot-options:
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ALPHA=number
specifies a parameter to obtain the confidence level for constructing confidence limits based
on the prediction standard error. The value of number must be between 0 and 1, and
the confidence level is 1�number . The default is ALPHA=0.05; this corresponds to the
confidence level of 95%, or about 1.96 times the prediction standard error. The ALPHA=
suboption is used only for prediction plots in one dimension, and it is incompatible with the
FILL and LINE suboptions.

CLONLY
specifies that only the confidence limits be shown in a prediction plot without the predicted
values. This suboption can be useful for identifying confidence limits when the prediction
standard error is small at the prediction locations. CLONLY is used only for prediction plots
in one dimension, and it is incompatible with the FILL and LINE suboptions.

CONNP
specifies that grid points that you provide as individual prediction locations be connected
with a line on the area map. This suboption is ignored when you have a single grid point, a
prediction grid in two dimensions, or when you also specify the NOMAP suboption. The
CONNP suboption is incompatible with the FILL and LINE suboptions.

FILL=NONE | PRED | SE
produces a surface plot for either the predicted values or the standard errors. FILL=SE is
the default. However, if you omit the FILL suboption, the behavior depends on the LINE
suboption as follows: If you specify LINE=NONE or entirely omit the LINE suboption, then
the FILL suboption is set to its default value. If LINE=PRED or LINE=SE, then the FILL
suboption is set to the same value as the LINE suboption.

LINE=NONE | PRED | SE
produces a contour line plot for either the predicted values or the standard errors.
LINE=PRED is the default. However, if you omit the LINE suboption the behavior depends
on the FILL suboption as follows: If you specify FILL=NONE or entirely omit the FILL
suboption, then the LINE suboption is set to its default value. If FILL=PRED or FILL=SE,
then the LINE suboption is set to the same value as the FILL suboption.

NOMAP
specifies that the prediction plot be produced without a map of the domain where you have
observations. The NOMAP suboption is used in the case of prediction in one dimension or
at individual points. It is incompatible with the FILL and LINE suboptions.

OBS=obs-options
produces an overlaid scatter plot of the observations in addition to the specified contour plots.
The following obs-options are available:

GRAD
specifies that observations be displayed as circles colored by the observed measurement.
The same color gradient displays the prediction surface and the observations. Obser-
vations where the prediction is close to the observed values have similar colors—the
greater the contrast between the color of an observation and the surface, the larger the
prediction standard error is at that point.
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LINEGRAD
is the same as OBS=GRAD except that a border is shown around each observation. This
option is useful for identifying the location of observations where the standard errors are
small, because at these points the color of the observations and the color of the surface
are indistinguishable.

NONE
specifies that no observations be displayed.

OUTL
specifies that observations be displayed as circles with a border but with a completely
transparent fill.

OBS=NONE is the default when you specify a grid in two dimensions, and
OBS=LINEGRAD is the default used in the area map when you have a grid in one
dimension. However, the default PROC KRIGE2D plot for a surface grid displays the
observations locations as outlines.

SHOWD
specifies that the horizontal axis in scatter plots of linear prediction grids show the distance
between grid points instead of the grid points’ coordinates. When the area map is displayed,
the prediction locations are also connected with a line. In all other grid configurations the
SHOWD suboption is ignored, and it is incompatible with the FILL and LINE suboptions.

SHOWP
specifies that the grid points in band plots of linear prediction grids be shown as marks on
the band plot. In all other grid configurations the SHOWP suboption is ignored, and it is
incompatible with the FILL and LINE suboptions.

TYPE=BAND | SCAT
requests a particular type of plot when you have a linear grid, regardless of the default
PREDICTION plot behavior in this case. The TYPE suboption is incompatible with the
FILL and LINE suboptions.

If you specify multiple instances of the ALPHA, FILL, LINE, OBS, or TYPE suboptions in the
same PREDICTION option, then the resulting predictions plot honors the last value specified for
any of the suboptions. Any combination where you specify FILL=NONE and LINE=NONE is
not available. When the prediction grid is in two dimensions, only the FILL, LINE, and OBS
suboptions apply. If you specify incompatible suboptions in the same PREDICTION plot, then
the plot instance is skipped.

The PREDICTION option produces a surface or contour line plot for grids in two dimensions
and a band plot or scatter plot with error bars for grids in one dimension or individual points. In
two dimensions the plot illustrates the predicted values and prediction error at each grid point.
By default, when you specify a linear grid with fewer than 10 points, PROC KRIGE2D produces
a PREDICTION scatter plot for each one of the prediction grid points. For 10 or more points in a
linear grid, the PREDICTION plot is a band plot of the predicted means and the confidence limits
at the 95% confidence level. You can override the default behavior in linear grids with the TYPE
suboption. Prediction at individual locations always produces a PREDICTION scatter plot.
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In cases of prediction in one dimension or at individual points, an area map is produced that
shows the observations and the grid points. Band plots of linear grids display the grid points as a
line on the map. When you specify individual prediction locations, the grid points are indicated
with marks on the area map. The area map appears on the side of the prediction band plot or
scatter plot, unless you specify the NOMAP suboption. You can also label the individual grid
points or the ends of linear grid segments with the LABEL option of the GRID statement.

SEMIVARIOGRAM < (semivar-plot-option) >
SEMIVAR < (semivar-plot-option) >

specifies that the semivariogram used for the kriging prediction be produced. You can use the
following semivar-plot-option:

MAXD=number
specifies a positive value for the upper limit of the semivariogram horizontal axis of distance.
The SEMIVARIOGRAM plot extends by default to a distance that depends on the correlation
model range. You can use the MAXD= option to adjust the default maximum distance value
for the plot.

The SEMIVARIOGRAM option produces a plot for each correlation model that you specify for
your prediction tasks. In an anisotropic case, the plot is not produced if you assign different
anisotropy angles for different model components. The only exception is when you specify zonal
components at right angles with the nonzonal model components. Also, the SEMIVARIOGRAM
option is ignored for models that consist of purely zonal components.

SINGULARMSG=number
SMSG=number

controls the number of warning messages displayed for a singular matrix. When local kriging is
performed, a separate kriging system is solved for each grid point. Anytime a singular matrix is
encountered, a warning message is displayed up to a total of number times. The default is SINGU-
LARMSG=10.

BY Statement
BY variables ;

You can specify a BY statement with PROC KRIGE2D to obtain separate analyses of observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the KRIGE2D procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
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in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

COORDINATES Statement
COORDINATES | COORD coordinate-variables ;

The following two options specify the names of the variables in the DATA= data set that contains the values
of the x and y coordinates of the data.

Only one COORDINATES statement is allowed, and it is applied to all PREDICT statements. In other words,
it is assumed that all the VAR= variables in all PREDICT statements have the same x and y coordinates.

This is not a limitation. Since each VAR= variable is processed separately, observations for which the current
VAR= variable is missing are excluded. With the next VAR= variable, the entire data are read again, this
time excluding missing values in this next variable. Hence, a single run of PROC KRIGE2D can be used for
variables measured at different locations without overlap.

XCOORD= (variable-name)

XC= (variable-name)
specifies the name of the variable that contains the x coordinate of the data locations in the DATA=
data set.

YCOORD= (variable-name)

YC= (variable-name)
specifies the name of the variable that contains the y coordinate of the data locations in the DATA=
data set.

GRID Statement
GRID grid-options < / option > ;

The GRID statement specifies the grid of spatial locations for kriging predictions. The grid specification is
applied to all PREDICT and MODEL statements. Specify the grid in one of the following three ways:

• Specify the x and y coordinates explicitly for a grid in two dimensions.

• Specify the NPTS= option in addition to the x and y coordinates to define a grid of individual points or
in one dimension.

• Specify the coordinates by using a SAS data set for a grid of individual points or in one dimension.
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The GRID statement has the following grid-options:

NPTS=number | ALL
controls specification of a grid in one dimension or a grid of individual prediction locations.

When you specify the NPTS=number option and the coordinates of two points in the GRIDDATA=
data set or in both the X= and Y= options, you request a linear prediction grid. Its direction is across
the line defined by the specified points. The grid size is equal to the number of points that you specify
in the NPTS= option, where number � 2.

When you specify the NPTS=ALL option and the coordinates for any number of points in the
GRIDDATA= data set or in each of the X= and Y= options, the KRIGE2D procedure performs
prediction only at the specified individual locations. Use the NPTS=ALL option to examine a set of
individual points anywhere on the XY plane or to specify a custom grid in one dimension.

If the number of x coordinates and the number of y coordinates in the X= and Y= options, respectively,
are different, then the NPTS= option is ignored; in that case, a two-dimensional grid is used according
to the specified X= and Y= options.

If you specify a prediction grid with any number of points other than two in the GRIDDATA= data set,
then the option NPTS=ALL has the same effect as omitting the NPTS= option.

X=number
X=x1; : : : ; xm
X=x1 to xm
X=x1 to xm by ıx

specifies the x coordinate of the grid locations.

Y=number
Y=y1; : : : ; ym
Y=y1 to ym
Y=y1 to ym by ıy

specifies the y coordinate of the grid locations.

Use the X= and Y= options of the GRID statement to specify a grid in one or two dimensions, or a
grid of individual prediction locations.

For example, the following two GRID statements are equivalent.

grid x=1,2,3,4,5 y=0,2,4,6,8,10;

grid x=1 to 5 y=0 to 10 by 2;

In the following example, the first GRID statement produces a grid in two dimensions. The second
statement produces predictions only for the four individual points at the locations (1,0), (2,5), (3,7),
and (4,10) on the XY plane.
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grid x=1 to 4 y=0,5,7,10;

grid x=1 to 4 y=0,5,7,10 npts=all;

In the next example, the first GRID statement specifies a 2-by-2 grid in two dimensions. The second
GRID statement specifies a linear grid of eight points. The grid is in the direction of the line defined by
the specified points (2,8) and (3,5) on the XY plane and it extends between these two points.

grid x=2,3 y=8,5;

grid x=2,3 y=8,5 npts=8;

The last example shows a GRID statement that specifies a linear grid made of seven points across the
Y axis. In this case, the syntax is sufficient to fully define a linear grid without the NPTS= option.

grid x=5 y=3 to 9;

To specify grid locations from a SAS data set, you must provide the name of the data set and the
variables that contain the values of the x and y coordinates.

GRIDDATA=SAS-data-set

GDATA=SAS-data-set
specifies a SAS data set that contains the x and y grid coordinates. Use the GRIDDATA= option of the
GRID statement to specify a grid in one dimension or a grid of individual prediction locations.

XCOORD= (variable-name)

XC= (variable-name)
specifies the name of the variable that contains the x coordinate of the grid locations in the GRIDDATA=
data set.

YCOORD= (variable-name)

YC= (variable-name)
specifies the name of the variable that contains the y coordinate of the grid locations in the GRIDDATA=
data set.

You can specify the following option in the GRID statement after a slash (/):

LABEL < (suboption) > = (character-list)
specifies labels to tag grid points in prediction plots when you use grids in one dimension. You can
specify one or more such labels as quoted strings in the character-list.
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When the number of labels in the character-list exceeds the number of points in your grid, the labels in
the list are used sequentially and any labels in excess are ignored. When the number of labels in the
character-list is smaller than the number of points in your grid, the behavior is as follows:

• If an area map is included in the prediction plot, then blank labels are assigned to the remaining
nonlabeled grid points on the map.

• For the prediction band and scatter plots, the coordinates of nonlabeled grid points are automati-
cally assigned as their labels.

If the grid points are collinear and the horizontal axis displays distance, then two labels appear by
default in the prediction plot. These are assigned to the first and the last points of the grid to help
identify the ends of the linear grid segment on the plot map. This label pair is shown only when the
plot includes an area map. Specifically, the two labels appear when you request prediction band plots,
or prediction scatter plots for which you specify the PREDICTION(SHOWD) suboption, if applicable.
The two labels do not appear if you specify explicitly the NOMAP suboption in the PLOTS=PRED
option.

The two labels have default values, unless you choose to specify your own labels with the LABEL=
option. If you specify more than two labels in the character-list under these conditions, then only the
first and last labels in the list are used; any additional labels in between are ignored.

The LABEL= option has the following suboption:

ALL
specifies that all individual points in the grid be assigned sequentially the labels you specify in the
LABEL(ALL)= option when the PREDICTION(SHOWD) suboption is applicable and specified
in a prediction scatter plot. In all other cases, the ALL suboption is ignored.

The ALL suboption enables you to override the default behavior when the PREDICTION(SHOWD)
suboption is specified (the default behavior is to display labels only for the first and last grid
points). As a result, you can use the ALL suboption to label grid points regardless of whether
you specify the NOMAP suboption in the PLOTS=PRED option.

The LABEL= option is ignored when you produce prediction plots of grids in two dimensions.

ID Statement
ID variable ;

The ID statement specifies which variable to include for identification of the observations in the OUTNBHD=
output data set. The ID statement variable is also used for the labels and tool tips in the OBSERVATIONS
plot and the tool tips in the PREDICTION plot.

In the KRIGE2D procedure you can specify only one ID variable in the ID statement. If no ID statement is
given, then PROC KRIGE2D uses the observation number in the data sets and the plots.
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PREDICT Statement
PREDICT | PRED | P predict-options ;

You can specify the following options in a PREDICT statement.

MAXPOINTS=number
MAXP=number
MAX=number

specifies the maximum number of data points in a neighborhood. You specify this option in conjunction
with the RADIUS= option. When the number of data points in the neighborhood formed at a given
grid point by the RADIUS= option is greater than the MAXPOINTS= value, the RADIUS= value is
decreased just enough to honor the MAXPOINTS= value unless you specify the NODECREMENT
option. The default is to include all data points within the specified RADIUS= value. Neighborhoods
with very large numbers of data points might lead to unnecessarily slow execution times and potential
lack of memory issues, depending on the problem setup and your computational resources. In that
case, you could use the MAXPOINTS= option to set a cap for your neighborhood size. For details
about numerical considerations, see the section “Computational Resources” on page 4173. Unless the
RADIUS= option is also specified, when the MAXPOINTS= and NUMPOINTS= options are specified
in the same PREDICT statement the MAXPOINTS= option is ignored.

MINPOINTS=number
MINP=number
MIN=number

specifies the minimum number of data points in a neighborhood. You specify this option in conjunction
with the RADIUS= option. When the number of data points in the neighborhood formed at a given grid
point by the RADIUS= option is less than the MINPOINTS= value, the RADIUS= value is increased
just enough to honor the MINPOINTS= value unless you specify the NOINCREMENT option. The
default is MINPOINTS=20. When enough data are available, you might improve prediction if you
increase this value. When the MINPOINTS= and NUMPOINTS= options are specified in the same
PREDICT statement, the MINPOINTS= option is set to the value of NUMPOINTS=.

NODECREMENT | NODECR
requests that the RADIUS= value not be decremented when the MAXPOINTS= value is exceeded at a
grid point. This option is relevant only when you specify both a RADIUS= value and a MAXPOINTS=
value. In this case, when the number of points in the neighborhood constructed from the RADIUS=
specification is greater than the MAXPOINTS= value, the RADIUS= value is decremented enough to
honor the MAXPOINTS= value, and the kriging system is solved for this grid point. If you specify
the NODECREMENT option, no decrementing is done, prediction is skipped at this grid point, and a
message is written to the log.

NOINCREMENT | NOINCR
requests that the RADIUS= value not be incremented when the MINPOINTS= value is not met at a
grid point. This option is relevant only when you specify both a RADIUS= value and a MINPOINTS=
number. In this case, when the number of points in the neighborhood constructed from the RADIUS=
specification is less than the MINPOINTS= value, the RADIUS= value is incremented enough to
honor the MINPOINTS= value, and the kriging system is solved for this grid point. If you specify
the NOINCREMENT option, no incrementing is done, prediction is skipped at this grid point, and a
message is written to the log.
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NUMPOINTS=number

NPOINTS=number

NPTS=number

NP=number
specifies the exact size of a neighborhood. This option is incompatible with all other PREDICT
statement options that control the neighborhood; it must appear by itself. In particular, if you specify
both NUMPOINTS= and the RADIUS= option in the same PREDICT statement, then RADIUS= is
honored, instead. In this event the value of the MINPOINTS= option is set to NUMPOINTS=, and
the value of the MAXPOINTS= option is set to default, regardless of whether these options have
been specified or not. If you specify any of the MINPOINTS= or MAXPOINTS= option without the
RADIUS= option in the same PREDICT statement as NUMPOINTS=, then the NUMPOINTS= option
is honored.

RADIUS=number

R=number
specifies the radius to use in a local kriging regression. When you specify this option, a separate kriging
system is solved at each grid point by finding the neighborhood of this grid point that consists of all
data points within the distance specified by the RADIUS= value. Thus, you can avoid unnecessary
computational burden in your analysis by specifying the RADIUS= value to include data points situated
within the extent of your problem’s spatial correlation. For additional control on the neighborhood, see
the MAXPOINTS= and MINPOINTS= options. When you specify the RADIUS= and NUMPOINTS=
options in the same PREDICT statement, then RADIUS= is honored.

VAR= variable-name
specifies the single numeric variable used in the kriging system.

MODEL Statement
MODEL model-options ;

The MODEL statement specifies details about the correlation model that you use in the kriging system
for prediction. The specified model is used in the kriging system defined by the most previous PREDICT
statement. You can specify a semivariogram or covariance model in three ways:

• You specify the required parameters SCALE, RANGE, FORM, and SMOOTH (if you specify the
MATERN form), and possibly the optional parameters NUGGET, ANGLE, and RATIO, explicitly in
the MODEL statement.

• You specify an MDATA= data set. This data set contains variables that correspond to the required
parameters SCALE, RANGE, FORM and SMOOTH (if you specify the MATERN form), and optionally
variables for the NUGGET, ANGLE, and RATIO parameters.

• You can specify an input item store in the RESTORE statement. The item store contains one or
more correlation models for one or more direction angles. You can specify these models in the
STORESELECT option of the MODEL statement to perform a prediction task.
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The three methods are mutually exclusive: you specify all parameters explicitly, they are all are read from the
MDATA= data set, or you select a model and its parameters from an input item store.

Table 55.3 summarizes the options available in the MODEL statement.

Table 55.3 MODEL Statement Options

Option Description

ANGLE= Specifies the angle of the major axis
FORM= Specifies the functional form (type)
MDATA= Specifies the input data set containing parameter values
NUGGET= Specifies the nugget effect for the model
POWNOBOUND Allows values for the power model exponent parameter outside the range of

Œ0; 2/

RANGE= Specifies the range parameter
RATIO= Specifies the ratio of the length of the minor axis
SCALE= Specifies the scale parameter
SINGULAR= Gives the singularity criterion for solving kriging systems
SMOOTH= Specifies the smoothness parameter
STORESELECT Uses the information from an input item store

You can use the following model-options with the MODEL statement:

ANGLE=angle | (angle1, . . . , anglek )
specifies the angle of the major axis for anisotropic models, measured in degrees clockwise from the
N-S axis. The default is ANGLE=0.

In the case of a nested semivariogram model with k nestings, you have the following two ways to
specify the anisotropy major axis: you can specify only one angle which is then applied to all nested
forms, or you can specify one angle for each of the k nestings.

NOTE: The syntax makes it possible to specify different angles for different forms of the nested model,
but this practice is rarely used.

FORM=form | (form1, . . . , formk )
specifies the functional form (type) of the semivariogram model. Use the syntax with the single form
to specify a non-nested model. Use the syntax with forms formi, i D 1; : : : ; k, to specify a nested
model with k structures. Each of the forms can be any of the following:

CUBIC | EXPONENTIAL | GAUSSIAN | MATERN |

PENTASPHERICAL | POWER | SINEHOLEEFFECT | SPHERICAL

CUB | EXP | GAU | MAT | PEN | POW | SHE | SPH
Usage examples follow.
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For example, the syntax

FORM=GAU

specifies a model with a single Gaussian structure. Also, the syntax

FORM=(EXP,SHE,MAT)

specifies a nested model with an exponential, a sine hole effect, and a Matérn structure. Finally

FORM=(EXP,EXP)

specifies a nested model with two structures both of which are exponential.

NOTE: In the documentation, models are named either by using their full names or by using the first
three letters of their structures. Also, the names of different structures in a nested model are separated
by a hyphen (-). According to this convention, the previous examples illustrate how to specify a GAU,
an EXP-SHE-MAT, and an EXP-EXP model, respectively, with the FORM= option.

All the supported model forms have two parameters specified by the SCALE= and RANGE= options,
except for the MATERN model which has a third parameter specified by the SMOOTH= option. A
FORM= value is required, unless you specify the MDATA= option or the STORESELECT option.

Computation of the MATERN covariance is numerically demanding. As a result, predictions that use
Matérn covariance structures can be time-consuming.

See the section “Theoretical Semivariogram Models” on page 4153 for details about how the FORM=
forms are determined.

MDATA=SAS-data-set
specifies the input data set that contains parameter values for the covariance or semivariogram model.
The MDATA= option cannot be combined with any of the FORM= or STORESELECT options.

The MDATA= data set must contain variables named SCALE, RANGE, and FORM, and it can optionally
contain variables NUGGET, ANGLE, and RATIO. If you specify the MATERN form, then you must
also include a variable named SMOOTH in the MDATA= data set.

The FORM variable must be a character variable, and it can assume only the values allowed in the
explicit FORM= syntax described previously. The RANGE, SCALE and SMOOTH variables must be
numeric. The optional variables ANGLE, RATIO, and NUGGET must also be numeric if present.

The number of observations present in the MDATA= data set corresponds to the level of nesting of the
covariance or semivariogram model. For example, to specify a non-nested model that uses a spherical
covariance, an MDATA= data set might be given by the following statement:

data md1;
input scale range form $;
datalines;
25 10 SPH

run;
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The PROC KRIGE2D statement to use the MDATA= specification is of the form shown in the following:

proc krige2d data=...;
predict var=....;
model mdata=md1;

run;

This is equivalent to the following explicit specification of the covariance model parameters:

proc krige2d data=...;
predict var=....;
model scale=25 range=10 form=sph;

run;

The following MDATA= data set is an example of an anisotropic nested model:

data md1;
input scale range form $ nugget angle ratio;
datalines;
20 8 SPH 5 35 0.7 .
12 3 MAT 5 0 0.8 2.8
4 1 GAU 5 45 0.5 .

;

This is equivalent to the following explicit specification of the covariance model parameters:

proc krige2d data=...;
predict var=....;
model scale=(20,12,4) range=(8,3,1) form=(SPH,MAT,GAU)

angle=(35,0,45) ratio=(0.7,0.8,0.5) nugget=5 smooth=2.8;
run;

This example is somewhat artificial in that it is usually hard to detect different anisotropy directions
and ratios for different nestings by using an empirical semivariogram. NOTE: The NUGGET variable
value is the same for all nestings. This is always the case; the nugget effect is a single additive term for
all models. For further details, see the section “The Nugget Effect” on page 4160.

The example also shows that if you specify a MATERN form in the nested model, then the SMOOTH
variable must be specified for all nestings in the MDATA= data set. You simply specify the SMOOTH
value as missing for nestings other than MATERN.

NUGGET=number
specifies the nugget effect for the model. The nugget effect is due to a discontinuity in the semivari-
ogram as determined by plotting the sample semivariogram. For details, see the section “The Nugget
Effect” on page 4160 and Chapter 109, “The VARIOGRAM Procedure.” For models without any
nugget effect, this option is left out; the default is NUGGET=0.
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POWNOBOUND
specifies that values for the power model exponent parameter outside the range of Œ0; 2/ be allowed.
The POWNOBOUND option applies only when you specify a power form in the MODEL statement.

Power models yield permissible covariance models only when the exponent parameter is nonnegative
and less than 2. By default, PROC KRIGE2D produces an error if you specify a negative power
exponent or one that is equal to or larger than 2 in the RANGE= option of the MODEL statement.

See the section “The Power Semivariogram Model” on page 4158 for more details about the power
model form and its exponent parameter.

RANGE=range | (range1, . . . , rangek )
specifies the range parameter in semivariogram models. If you have anisotropy, you must specify the
range of the major anisotropy axis, or the range of the minor anisotropy axis for any zonal components.
In the case of a nested semivariogram model with k nestings, you must specify a range for each nested
structure.

The range parameter has units of distance, and it is related to the correlation scale for the underlying
spatial process.

NOTE: If you specify this parameter for a power model, then it does not correspond to a range. For
power models, the parameter you specify in the RANGE option is a dimensionless power exponent
whose value must range within [0,2) so that the power model is a valid semivariance function. See also
the POWNOBOUND option of the MODEL statement.

See the section “Theoretical Semivariogram Models” on page 4153 for details about how the RANGE=
values are determined.

RATIO=ratio | (ratio1, . . . , ratiok )
specifies the ratio of the length of the minor axis to the length of the major axis for anisotropic models.
The value of the RATIO= option must be between 0 and 1. An exception is the case of zonal anisotropy,
where the ratio of zonal components must be designated by a very large number for the RATIO= option.
For further details, see the section “Zonal Anisotropy” on page 4165.

In the case of a nested semivariogram model with k nestings, you can specify a ratio for each nesting.
The default is RATIO=1.

SCALE=scale | (scale1, . . . , scalek )
specifies the scale parameter in semivariogram models. In the case of a nested semivariogram model
with k nestings, you must specify a scale for each nesting.

The scale parameter is the multiplicative factor in all supported models; it has the same units as the
variance of the VAR= variable in the preceding PREDICT statement.

In power models the SCALE= parameter does not correspond to a sill because the power model has no
sill. Instead, PROC KRIGE2D uses the SCALE= option to designate the slope (or scaling factor) in
power model forms. The power model slope has the same variance units as the VAR= variable.

See the section “Theoretical Semivariogram Models” on page 4153 for details about how the SCALE=
values are determined.
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SINGULAR=number
gives the singularity criterion for solving kriging systems. The larger the value of the SINGULAR=
option, the easier it is for a kriging system to be declared singular. The default is SINGULAR=1E–7.
See the section “Ordinary Kriging” on page 4170 for more detailed information.

SMOOTH=smooth | (smooth1, . . . , smoothm)
specifies the smoothness parameter � > 0 in the Matérn type of semivariance structures. The special
case � D 0:5 is equivalent to the exponential model, whereas � !1 gives the Gaussian model.

When you specify m different MATERN forms in the FORM= option, you must also provide m
smoothness values in the SMOOTH option. If you must specify more than one smoothness value, the
values are assigned sequentially to the MATERN nestings in the order the nestings are specified. If
you specify more smoothness values than necessary, then values in excess are ignored.

STORESELECT(ssel-options)

SSEL(ssel-options)
specifies that information from an input item store be used for the prediction. You cannot combine the
STORESELECT option with any of the FORM= or MDATA= options. The STORESELECT option
has the following ssel-options:

TYPE=field-type
specifies whether to perform isotropic or anisotropic prediction. You can choose the field-type
from one of the following:

ISO
specifies an isotropic field for the prediction.

ANIGEO | GEO
specifies a field with geometric anisotropy for the prediction.

ANIZON(zonal-form1, . . . , zonal-formn)

ZON(zonal-form1, . . . , zonal-formn)
specifies a field with zonal anisotropy for the prediction. Each zonal-formi, i D 1; : : : ; n,
can be any of the following:

CUB | EXP | GAU | MAT | PEN | POW | SHE | SPH
Each zonal-formi, i D 1; : : : ; n, is a structure in the purely zonal component of the
correlation model in the direction angle of the minor anisotropy axis. For this reason,
when you specify the TYPE=ANIZON suboption you must also specify the nonzonal
component of the correlation model in the MODEL= suboption of the STORESELECT
option.

Assume the nonzonal component has k structures; these are common across all directions
and each one has the same scale in all directions. In that sense, you use the TYPE=ANIZON
suboption to specify only the n zonal anisotropy structures of an input store (k C n)-structure
nested model in the direction angle of the minor anisotropy axis.

Given this specification, kCnmust be up to the maximum number of nested model structures
that is supported by the item store. See also the MODEL= suboption of the STORESELECT
option.
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In conclusion, you can use an input item store for prediction with zonal anisotropy if you
know that every structure in the nonzonal model component has the same scale across all
directions. When this condition does not apply for the item store models, specify the model
parameters explicitly in the MODEL statement. For more details, see the examples in the
section “Zonal Anisotropy” on page 4165.

Computation of the MATERN covariance is numerically demanding. As a result, predictions that
use Matérn covariance structures can be time-consuming.

If you omit the TYPE= option, the default behavior is TYPE=ISO when the input item store
contains information for only one angle or for the omnidirectional case. If you specify an item
store with information for more than one direction, then the default behavior is TYPE=ANIGEO.

When you specify TYPE=ISO to request isotropic analysis in the presence of an item store
with information for multiple directions, you must specify the ANGLEID= suboption of the
STORESELECT option with one argument. This argument specifies which of the direction
angles information to use for the isotropic analysis.

When you indicate the presence of anisotropy with the TYPE=ANIGEO or TYPE=ANIZON
suboptions of the STORESELECT option, the following conditions apply:

• You must specify the ANGLEID= suboption of the STORESELECT option to designate the
major and minor anisotropy axes. See the ANGLEID= suboption of the STORESELECT
option for details.

• – For TYPE=ANIGEO, ensure that you have the same scale in all anisotropy directions.
– For TYPE=ANIZON, ensure that the nonzonal component scale is the same in all

anisotropy directions.
If you import a nested model, these rules also apply to each one of the nested structures.

• Model ranges in the major anisotropy axis must be longer than ranges in the minor anisotropy
axis.

• Any Matérn covariance structure must maintain its smoothness parameter value in all
anisotropy directions.

ANGLEID=angleid1 | (angleid1, angleid2)
specifies which direction angles in the input item store be used for prediction. The angles are
identified by the corresponding number in the AngleID column of the “Store Models Information”
table, or by the AngleID parameter in the table title when you specify the INFO(DETAILS) option
in the RESTORE statement.

If you request isotropic prediction in the TYPE= suboption of the STORESELECT option and the
item store has omnidirectional contents or information about only one angle, then the ANGLEID=
option is ignored. The prediction input comes from the omnidirectional information. In the case
of a single angle, you still perform isotropic prediction and the model parameters are provided
by the model in the single direction angle in the item store. However, if the item store contains
information for more than one angle, then you must specify one angle ID in angleid1. The model
information from the corresponding angle is then used in your isotropic prediction.

When you specify an anisotropic prediction in the TYPE= option of the STORESELECT option,
you need to have information about two perpendicular direction angles. One of them is the major
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and the other is the minor anisotropy axis. You must always specify the major anisotropy axis
angle ID in angleid1 and the minor anisotropy axis angle ID in angleid2. This means that the
range parameters of the model forms in the angle designated by the angleid1 need to be larger
than the corresponding ranges of the forms in the angle designated by the angleid2. Conveniently,
if the item store has only two angles, then you only need to specify the ID angleid1 of the major
anisotropy axis angle. If the item store has only one angle, then you cannot perform anisotropic
prediction with input from the item store.

NOTE: You can perform geometric anisotropic analysis even if the item store does not contain
information about a direction that is perpendicular to the one specified by angleid1. This is
possible due to the geometry of the ellipse. In particular, when you specify the major axis with
angleid1 and an angle ID for a second direction with a corresponding smaller range, then PROC
KRIGE2D automatically computes the minor anisotropy axis range and the necessary range ratio
parameter.

Anisotropic analysis is not possible when you specify instances of the same angle in the input
item store. It is possible that PROC VARIOGRAM produces an item store in which two or
more directions can be the same if their corresponding correlation models were obtained for
different angle tolerances or bandwidths in the VARIOGRAM procedure. Consequently, you
cannot specify anisotropic prediction if the input store contains only two angles that are the same
or if you specify angleid1 and angleid2 that correspond to equal angles.

MODEL=form | (form1, . . . , formk )
specifies the theoretical semivariogram model selection to use for the prediction. Use any
combination of one, two, or three forms to describe a model in the input item store because up to
three nested structures are supported. Each formi, i D 1; : : : ; k, can be any of the following:

CUB | EXP | GAU | MAT | PEN | POW | SHE | SPH
Computation of the MATERN covariance is numerically demanding. As a result, predictions
that use Matérn covariance structures can be time-consuming.

All fitted models that are stored in the input item store contain information about their component
parameters and also about the nugget effect if any. The KRIGE2D procedure retrieves this
information when you make a model selection in the MODEL= option, and you do not need to
individually specify a nugget effect or any other parameter of the model.

By default, the model that is ranked first among the models for a given angle in the item store is
used for the prediction task. If more than one model is available in the item store, then you can
specify the MODEL= option to use a different model for the prediction.

In an anisotropic prediction, the default selection is the model that is ranked first in the direction
angle of the major anisotropy axis. If you specify the TYPE=ANIGEO option, then a model that
consists of identical structures needs to be present in the selected minor anisotropy axis angle in
the item store. If you specify the TYPE=ANIZON option, then a model with the exact same first
k structures must be present in the selected minor anisotropy axis angle, and it must feature at
least one more structure as a zonal component. The zonal component is specified separately in
the TYPE=ANIZON suboption of the STORESELECT option. Consequently, remember that
in zonal anisotropy the MODEL= suboption designates only the nonzonal component of the
correlation model in the minor anisotropy axis direction. In all, if there are k common structures
and n structures in the purely zonal component, then k C n must be up to the maximum number
of nested model structures that is supported by the item store.
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In comparison to the other two ways of specifying a correlation model in PROC KRIGE2D, the
STORESELECT option is quite different because you can avoid explicit specification of all parameter
values of a model. When you specify the STORESELECT option, then the corresponding scale, range,
nugget effect, and smoothness (if appropriate) parameter values are invoked as saved attributes of the
model that you select from the item store.

In the case of anisotropy, you specify the angles indirectly with the ANGLEID= option of the
STORESELECT option, and the ratios are computed implicitly by using the selected model ranges.
Explore how to specify valid anisotropical models imported from an input item store with the two
examples that follow.

In the first example, assume the input item store InStoreGeo contains exponential models in the
angles �1 D 0ı, �2 D 45ı, and �3 D 90ı. You know in advance that all models have the same scale
c1 D c2 D c3 across these directions and that the respective ranges are a1 D 15, a2 D 20, and
a3 D 25 in distance units. Hence, you have a case of geometric anisotropy where the major anisotropy
axis is in the direction of angle �3 and the minor anisotropy axis is in the direction of angle �1. The
following statements in PROC KRIGE2D use the information in the item store InStoreGeo to perform
simulation under the assumption of geometric anisotropy:

proc krige2d data=...;
restore in=InStoreGeo;
predict var=....;
model storeselect(model=exp type=anigeo angleid=(3,1));

run;

For the second example, assume a case of zonal anisotropy. Consider the input item store InStoreZon,
which contains models in the two angles, �1 D 30ı and �2 D 120ı. Specifically, in �1 you have an
exponential-spherical model: the exponential structure has scale c1E D 3 and range a1E D 10; the
spherical structure has scale c1S D 1 and range a1S D 6. In direction �2 you have an exponential
model with scale c1E D 3 and range a1E D 12. Hence, the zonal anisotropy major axis is in the
direction of the lowest total variance, which is in angle �2; then, the minor axis is in the direction of
angle �1. The following statements in PROC KRIGE2D use the information in the store InStoreZon to
perform prediction under the assumption of zonal anisotropy:

proc krige2d data=...;
restore in=InStoreZon;
predict var=....;
model storeselect(model=exp type=anizon(sph) angleid=(2,1));

run;

RESTORE Statement
RESTORE IN=store-name < / option > ;

The RESTORE statement specifies an item store that provides spatial correlation model input for the PROC
KRIGE2D prediction tasks. An item store is a binary file defined by the SAS System. You cannot modify the
contents of an item store. The KRIGE2D procedure can use only item stores created by PROC VARIOGRAM.
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Item stores enable you to use saved correlation models without having to repeat specification of these models
in the MODEL statement. In principle, an item store contains the chosen model from a model fitting process
in PROC VARIOGRAM. If more than one model form is fitted, then all successful fits are included in
the item store. In this case, you can choose any of the available models to use for prediction with the
STORESELECT(MODEL=) option in the MODEL statement. Successfully fitted models might include
questionable fits, which are so flagged when you specify the INFO option to display model names.

The store-name is a usual one- or two-level SAS name, as for SAS data sets. If you specify a one-level
name, then the item store resides in the WORK library and is deleted at the end of the SAS session. Since
item stores are often used for postprocessing tasks, typical usage specifies a two-level name of the form
libname.membername.

When you specify the RESTORE statement, the default output contains some general information about the
input item store. This information includes the store name, label (if assigned), the data set that was used to
create the store, BY group information, the procedure that created the store, and the creation date.

You can specify the following option in the RESTORE statement after a slash (/):

INFO < ( info-options ) >
specifies that additional information about the input item store be printed. This information is provided
in two ODS tables. One table displays the variables in the item store, in addition to the mean and
standard deviation for each of them. These statistics are based on the observations that were used to
produce the store results. The second table shows the model on top of the list of all fitted models for
each direction angle in the item store. The INFO option has the following info-options:

DETAILS

DET
specifies that more detailed information be displayed about the input item store. This option
produces the full list of models for each direction angle in the item store, in addition to the model
equivalence class. For more information about classes of equivalence, see the section “Classes
of Equivalence” on page 8984 in Chapter 109, “The VARIOGRAM Procedure.” The DETAILS
option is ignored if the input item store contains information about a single fitted model.

ONLY
specifies that only information about the input item store without any prediction tasks be dis-
played.

When you specify an input item store with the RESTORE statement in PROC KRIGE2D, all the DATA=
input data set variables must match input item store variables. If there are BY groups in the input DATA= set
or in the input RESTORE variables, then PROC KRIGE2D handles the different cases as follows:

• If both PROC KRIGE2D has BY groups and the RESTORE statement has BY groups, then the analysis
variables must match. This matching assumes implicitly that in each BY group of PROC KRIGE2D
and the item store, the corresponding set of observations and correlation model comes from the same
random field. This assumption is valid if you use the same data set, first in PROC VARIOGRAM to fit
a model and save it in the item store, and then in PROC KRIGE2D to perform predictions with the
resulting correlation models.

• If PROC KRIGE2D has BY groups but the item store does not, then the item store is accepted only
if the procedure and the item store analysis variables match. In this case, the same item store model
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choice iterates across the BY groups of the input data. You are advised to proceed with caution: each
BY group in the input DATA= set corresponds to a different realization of a random field. Hence, by
using the same correlation model for prediction purposes, you implicitly assume that all these different
realizations are instances of the same random field.

• If PROC KRIGE2D has no BY groups but the item store does, then the item store is rejected.

Details: KRIGE2D Procedure

Theoretical Semivariogram Models
Consider a stochastic spatial process represented by the stationary spatial random field (SRF) {Z.s/; s 2
D � R2} (Christakos 1992). The VARIOGRAM procedure computes the empirical (also known as sample
or experimental) semivariance of Z.s/. Prediction of the spatial process Z.s/ at unsampled locations by
techniques such as ordinary kriging requires a theoretical semivariogram or covariance.

When you use PROC VARIOGRAM and PROC KRIGE2D to perform spatial prediction, you must determine
a suitable theoretical semivariogram based on the sample semivariogram. Various methods exist to fit
semivariogram models, such as least squares, maximum likelihood, and robust methods (Cressie 1993,
section 2.6). You can use PROC VARIOGRAM to perform automated fitting of a semivariogram model
with weighted or ordinary least squares. A different approach is manual fitting, in which a theoretical
semivariogram is chosen based on visual inspection of the empirical estimate; see, for example, Hohn (1988,
p. 25).

In some cases, a plot of the experimental semivariogram suggests that a single theoretical model is inadequate.
Nested models, anisotropic models, and the nugget effect increase the scope of theoretical models available.
All of these concepts are discussed in this section. The specification of the final theoretical model is provided
by the syntax of PROC KRIGE2D.

Figure 55.5 shows the general flow of investigation. The empirical semivariogram is computed after a
suitable choice is made for the LAGDISTANCE= and MAXLAGS= options in PROC VARIOGRAM, and
possibly the NDIR= option or the DIRECTIONS statement for computations in more than one directions.
Potential theoretical models (which can also incorporate nesting, anisotropy, and the nugget effect) are then
plotted against the empirical semivariogram and evaluated. A suitable theoretical model is found by using the
methodology presented in the section “Examples: VARIOGRAM Procedure” on page 8997 in Chapter 109,
“The VARIOGRAM Procedure.”

Eight theoretical models are supported by PROC KRIGE2D: the Gaussian, exponential, Matérn, spherical,
cubic, pentaspherical, sine hole effect and power models. See also the section “Theoretical Semivariogram
Models” on page 8958 in Chapter 109, “The VARIOGRAM Procedure.” These eight model forms are now
examined in more detail: the Gaussian, exponential, and Matérn forms are examined as one group; the
spherical, cubic, and pentaspherical as a second group; and the remaining power and sine hole effect models
are examined individually. For comparison purposes, the axes in the forms’ illustrations are kept the same
across the plots, and the corresponding parameters of the different forms have the same values.

In PROC KRIGE2D the parameters a0 and c0 for all forms correspond to the RANGE= and SCALE= options,
respectively, in the MODEL statement. For all model forms, the dimension of c0 is the same as the dimension
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of the variance of the spatial process Z.s/. For all forms but the power model, the dimension of a0 is length
with same units as the distance h in the semivariance z.h/. See the section “The Power Semivariogram
Model” on page 4158 for more details about interpretation of the power model a0 parameter.

Figure 55.5 Flowchart for Semivariogram Selection

The Gaussian Semivariogram Model

The form of the Gaussian model is

z.h/ D c0

"
1 � exp

 
�
h2

a20

!#

The shape is displayed in Figure 55.6, using range a0 D 1 and scale c0 D 4.

The vertical line at h D r� D
p
3a0 shows the effective (or practical) range as defined by Deutsch and

Journel (1992) or the range � defined by Christakos (1992). The effective range is the h-value where the
covariance is approximately 5% of its value at zero. Alternatively, the stationarity assumption implies that
the effective range is the h value where the semivariance is approximately 5% of the sill value, as shown in
Figure 55.6.

In the Gaussian model the semivariance z.h/ approaches the sill asymptotically at c0.
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The Exponential Semivariogram Model

The form of the exponential model is

z.h/ D c0

�
1 � exp

�
�
h

a0

��

The shape is displayed in Figure 55.6, using range a0 D 1 and scale c0 D 4.

The vertical line at h D r� D 3a0 is the effective (or practical) range or the range � (that is, the h-value
where the covariance is approximately 5% of its value at zero).

As in the Gaussian model, the sill in this example is at 4.0 variance units (corresponding to c0 D 4) and is
approached asymptotically.

The major distinguishing feature of the Gaussian and exponential forms is the shape in the neighborhood of
the origin h = 0, as Figure 55.6 illustrates. In general, small lags are important in determining an appropriate
theoretical form based on an empirical semivariogram.

The Matérn Semivariogram Model

The form of the Matérn model is

z.h/ D c0

"
1 �

2

�.�/

�
h
p
�

a0

��
K�

�
2
h
p
�

a0

�#

where � > 0 is the smoothness factor parameter. Figure 55.6 shows an example of the Matérn form, where
range a0 D 1, scale c0 D 4, and � D 1:5.

The Matérn semivariance z.h/ is a class of semivariance models that emerge for different values of the
smoothing parameter �. The Matérn form reaches its sill value c0 asymptotically.

The Gaussian and exponential semivariances are two frequently used members of the Matérn class of
semivariances. In particular, the exponential semivariance model is derived from the Matérn class of models
for � D 0:5. Also, when � !1 then the Matérn semivariance gives the Gaussian model. In Figure 55.6 the
selected value of � D 1:5 places the Matérn form in between the Gaussian and the exponential. The Matérn
semivariance typically begins to look and behave as the Gaussian for values of � > 10.
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Figure 55.6 Gaussian, Exponential, and Matérn Semivariograms with Parameters a0 D 1, c0 D 4, and
� D 1:5

The Spherical Semivariogram Model

The form of the spherical model is

z.h/ D

(
c0

h
3
2
h
a0
�
1
2
. h
a0
/3
i

for h � a0
c0 for h > a0

The shape is displayed in Figure 55.7, using range a0 D 1 and scale c0 D 4.

The vertical line at h = 1 shows the range a0 of the model.

In the case of the spherical model, z.h/ actually reaches the sill value at c0, unlike the Gaussian and
exponential types where the sill is a horizontal asymptote.

The Cubic Semivariogram Model

The form of the cubic model is

z.h/ D

(
c0

h
7. h
a0
/2 � 35

4
. h
a0
/3 C 7

2
. h
a0
/5 � 3

4
. h
a0
/7
i

for h � a0
c0 for h > a0

The cubic form shape is displayed in Figure 55.7, using range a0 D 1 and scale c0 D 4.

The vertical line at h = 1 shows the range a0 of the model.

Similarly to the spherical model, the cubic model, z.h/ reaches the sill value at c0 and maintains this value
after a distance h equal to the model range.
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The Pentaspherical Semivariogram Model

The form of the pentaspherical model is

z.h/ D

(
c0

h
15
8
h
a0
�
5
4
. h
a0
/3 C 3

8
. h
a0
/5
i

for h � a0
c0 for h > a0

The pentaspherical form shape is displayed in Figure 55.7, using range a0 D 1 and scale c0 D 4.

The vertical line at h = 1 shows the range a0 of the model.

The pentaspherical semivariance behaves like the spherical and cubic semivariances, in that z.h/ increases
with distance until it reaches the sill value c0 at the distance h equal to the model range a0.

Figure 55.7 accents the differences in the behavior of the featured semivariances. Specifically, the cubic and
pentaspherical forms reach the sill value faster than the spherical form. Also, the spherical and pentaspherical
forms exhibit a more linear behavior at distances close to the origin h = 0.

Figure 55.7 Spherical, Cubic, and Pentaspherical Semivariograms with Parameters a0 D 1 and c0 D 4

The Sine Hole Effect Semivariogram Model

The form of the sine hole effect model is

z.h/ D c0

�
1 �

sin.�h=a0/
�h=a0

�
Figure 55.8 shows an example of the sine hole effect form, where range a0 D 1 and scale c0 D 4.

The vertical line at h = 1 shows the range a0 of the model.
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The sine hole effect semivariance z.h/ increases with distance. It has the distinct characteristic that it
reaches the sill at a distance h D a0 equal to the model range and then it oscillates around the sill value with
a decreasing amplitude as it moves to higher values of h.

The Power Semivariogram Model

The form of the power model is

z.h/ D c0h
a0

For this model, the parameter a0 is known as the power exponent. This is a dimensionless quantity which
must range within 0 � a0 < 2 so that the power model is a permissible semivariance model.

The KRIGE2D procedure enables you to specify power exponent values that are outside this range when you
also explicitly specify the POWNOBOUND option in the MODEL statement. However, parameter values
equal to or greater than 2 can result in singular covariance matrices or negative prediction errors.

For the special case of a0 D 1 the form yields a straight line. In this case the power model reduces to the
linear model. The parameter c0 designates the slope of the power form and has dimensions of the variance as
in the other models.

The power model has no sill; this differentiates it from the rest of the models presented earlier. Spatial
correlation that is described by a power model indicates that the stochastic process variance increases
constantly with distance. The shape of the power model with a0 D 0:4 and c0 D 4 is displayed in
Figure 55.8.

Figure 55.8 Sine Hole Effect Semivariogram with Range a0 D 1 and Scale c0 D 4, and Power Semivari-
ogram with Exponent a0 D 0:4 and Slope c0 D 4
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For comparison purposes, Figure 55.9 displays all eight semivariance forms that you can use with PROC
KRIGE2D. The figure displays a composition of the different forms with the parameter values selected earlier
throughout this section. Depending on the empirical semivariogram, these models provide you with flexibility
to select an appropriate theoretical semivariance model for prediction.

Figure 55.9 Semivariogram Forms Used in PROC KRIGE2D

Nested Models

For a given set of spatial data, a plot of an experimental semivariogram might not seem to fit any of the
individual theoretical models. In such a case, you might obtain a more accurate fit if you consider your
covariance model to be the sum of two or more covariance structures. Such covariance models are called
nested models. Nesting is common in geologic applications where correlations can exist at different length
scales. At small lag distances h, the smaller scale correlations dominate, while the large scale correlations
dominate at larger lag distances.

Nested models are permissible covariances if they are the sum of permissible models. Therefore, you
can include in a sum any combination of the models presented in the preceding subsections and produce
permissible covariance models. As an illustration, consider two semivariogram models: an exponential and a
spherical,

z;1.h/ D c0;1 exp.�
h

a0;1
/

and

z;2.h/ D

(
c0;2

h
3
2
h
a0;2
�
1
2
. h
a0;2

/3
i
; for h � a0;2

c0;2; for h > a0;2

)
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with c0;1 D 1; a0;1 D 2:5; c0;2 D 2, and a0;2 D 1. If both of these correlation structures are present in a
spatial process {Z.s/; s 2 D}, then the semivariance z.h/ of this process can be expressed as

z.h/ D z;1.h/C z;2.h/

In this case, the experimental semivariogram z.h/ for the process Z.s/ resembles the semivariogram of the
sum of z;1.h/ and z;2.h/. This is illustrated in Figure 55.10.

The sum of z;1.h/ and z;2.h/ in Figure 55.10 does not resemble any single theoretical semivariogram;
however, its shape at h = 1 is similar to a spherical form. The asymptotic approach to a sill at three variance
units, along with the shape around h = 0, indicates an exponential structure. The sill value c0 of the sum is
the sum of the individual sills c0;1 D 1 and c0;2 D 2. In general, a nested model has a sill equal to the sum
of the sills of its nested structures plus the nugget effect, if present.

See Hohn (1988, p. 38ff) for further examples of nested correlation structures.

Figure 55.10 Sum of Exponential and Spherical Structures at Different Scales

The Nugget Effect
For all the semivariogram models considered previously, the following property holds:

z.0/ D lim
h#0

z.h/ D 0

However, a plot of the experimental semivariogram might indicate a discontinuity at h = 0; that is, z.h/!
cn > 0 as h ! 0, while z.0/ D 0. The quantity cn is called the nugget effect; this term is from mining
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geostatistics where nuggets literally exist, and it represents variations at a much smaller scale than any of the
measured pairwise distances—that is, at distances h� hmin , where

hmin D min
i;j

hij D min
i;j
j si � sj j

Nonzero nugget effects have been associated with conceptual and theoretical difficulties; see Cressie (1993,
section 2.3.1) and Christakos (1992, section 7.4.3) for details. There is no practical difficulty, however; you
simply visually extrapolate the experimental semivariogram as h! 0. The importance of availability of data
at small lag distances is again illustrated.

As an example, an exponential semivariogram with a nugget effect cn has the form

z.h/ D cn C �0
2

�
1 � exp

�
�
h

a0

��
; h > 0

and

z.0/ D 0

where the factor �02 is called the partial sill and the sill c0 D cn C �02.

This is illustrated in Figure 55.11 for the parameters a0 D 1, �02 D 4, and nugget effect cn D 1:5.

You can specify the nugget effect in PROC KRIGE2D with the NUGGET= option in the MODEL statement.
It is a separate, additive term independent of direction; that is, it is isotropic. The way to approximate an
anisotropic nugget effect is described in the following section.

Figure 55.11 Exponential Semivariogram Model with a Nugget Effect cn D 1:5
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Anisotropic Models
In all of the theoretical models considered previously, the lag distance h is entered as a scalar value. This
implies that the correlation between the spatial process at two point pairs P1; P2 is dependent only on the
separation distance h Dj P1P2 j, not on the orientation of the vector h. A spatial process described by
an SRF {Z.s/; s 2 D � R2} with this property is called isotropic, as is the associated covariance or
semivariogram.

However, real spatial phenomena often show directional effects. Particularly in geologic applications,
measurements along a particular direction might be highly correlated, while typically the perpendicular
direction shows little or no correlation. Such processes are called anisotropic; see, for example, Journel and
Huijbregts (1978, section III.B.4).

When the correlation structure varies across different directions, you need different models for each direction
so that you can account correctly for the continuity within the SRF. The following subsections describe how
techniques are applied to override the anisotropy effects for computational purposes. First, characteristics of
anisotropy are examined.

The semivariogram sill is a measure of the process variability; hence the direction of the highest continuity
is perpendicular to the direction where the highest sill occurs. If the sill is the same in all directions, then
the direction with the highest range indicates highest continuity. The directions in which the spatial process
fZ.s/; s 2 Dg is most and least correlated are called the major and minor axis of anisotropy, respectively.

In some cases, these directions are known a priori. This can occur in mining applications where the geology of
a region is known in advance. In most cases however, nothing is known about possible anisotropy. Depending
on the amount of data available, using several directions is usually sufficient to determine the presence of
anisotropy and to find the approximate major and minor axis directions; see the discussion in the section
“Anisotropy” on page 8966 in Chapter 109, “The VARIOGRAM Procedure,” documentation. You can find a
detailed example of anisotropy investigation in the section “Example 109.2: An Anisotropic Case Study with
Surface Trend in the Data” on page 9007 in Chapter 109, “The VARIOGRAM Procedure,” documentation.

After you explore an anisotropic process and you identify the minor and major axis directions, you can
compute the anisotropy factor parameter R which is defined as

R D
a0

min

a0max

where a0min is the semivariogram range in the direction of the minor axis and a0max is the semivariogram
range in the direction of the major axis.

There are two types of anisotropy, depending on which semivariogram characteristics change in different
directions. These types are the geometric and the zonal anisotropy, and either or both can be present. Both
are examined in detail in the following subsections.
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Geometric Anisotropy

Geometric anisotropy is the simplest type of anisotropy. It occurs when the same sill (or scale) parameter c0
is present in all directions but the range a0 changes with direction. In geometric anisotropy the covariance
model uses the same forms in all directions.

Therefore, geometric anisotropy features one single sill value, and depending on the direction the semivari-
ogram reaches the sill within a different distance. This is illustrated in Figure 55.12, where an anisotropic
exponential semivariogram is plotted. Assume that the two curves displayed in this figure have the same sill
c0 D 1:5 and are generated using the ranges a0;1 D 3 in the direction �1 D 30ı (effective range is r�;1 D 9)
and a0;2 D 1 in the direction �2 D 120ı (effective range is r�;2 D 3).

As you can see from the figure, the ratio of the shorter to longer range is R D 1=3. The anisotropy factor
R is the value to use in the RATIO= parameter in the MODEL statement in PROC KRIGE2D. When you
model geometric anisotropy R � 1. In fact, isotropy is a partial case of geometric anisotropy for which
a0

min D a0
max and R D 1.

Figure 55.12 Geometric Anisotropy with Major Axis in the Direction �1 D 30ı

The values of the RANGE= and ANGLE= parameters in the MODEL statement in PROC KRIGE2D are
set based on the major anisotropy axis characteristics. Specifically, the RANGE= parameter is the value of
the major axis range a0max D a0;1, and the ANGLE= parameter is the angle �1 of the major axis measured
clockwise from north (angles measured in this way are also known as azimuths). You can then specify the
following MODEL statement in PROC KRIGE2D to approximate the covariance structure:

model form=exp range=3 scale=1.5 angle=30 ratio=0.3333;
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If you use a nested model, provide the type for each one of the nested structures with the FORM= option,
and assign the individual SCALE= parameters so that they add up to the total sill (include in the sum the
nugget effect, if present). In the typical case, all of your nested structures have the same anisotropy axes.
This means that you specify the same ANGLE= parameter value for all structures. Each structure likely has
its own values for the RANGE= and RATIO= parameters depending on the degree of its contribution to the
nested model.

The terminology associated with geometric anisotropy is that of ellipses. To see how this comes about,
consider the following hypothetical set of calculations. Let {Z.s/; s 2 D � R2} be a geometrically
anisotropic process, and assume sufficient data points are present to calculate an experimental semivariogram
at a large number of angle classes � 2 f0; ı�; 2ı�; � � � ; 180ı}. At each of these angles � , the experimental
semivariogram is plotted and the range a0 is recorded. A diagram in polar coordinates .a0; �/ yields an
ellipse with the major axis a0max in the direction of the largest a0 and the minor axis a0min perpendicular to
it. For the example in Figure 55.12, the ellipse is shown in Figure 55.13(a). Its major axis has size a0max

situated at angle �1 clockwise from north, and the minor axis has size a0min oriented at angle �2 clockwise
from north.

The KRIGE2D procedure handles geometric anisotropy by applying a reversible transformation in two steps
that converts geometric anisotropy into isotropic conditions.

The first step is to align your coordinates axes with the anisotropy ellipse axes. Specifically, you choose
to rotate by an angle ' the standard Cartesian orientation of the .x; y/ coordinates system shown in Fig-
ure 55.13(a) so that the Y axis coincides with the ellipse minor axis. The rotation result is illustrated in
Figure 55.13(b). The second step is to elongate the minor axis so its length equals that of the major axis of
the ellipse. You can see the result in Figure 55.13(c). The computational details are shown in the following.

Figure 55.13 Transformation Applied to Geometric Anisotropy

The transformation angle ' is measured in standard Cartesian orientation counterclockwise from the X axis
(east). If the major axis azimuth is �1, then the Cartesian system of .x; y/ needs to be rotated by ' D 90ı��1
so that the Y axis can coincide with the ellipse minor axis; see Figure 55.13(a).
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Let us call the ellipse major axis X’ and the minor axis Y’. The transformation that converts any coordinates
in the .x; y/ system into .x0; y0/ coordinates in terms of ' is given by the matrix:

H D
�

cos.'/ sin.'/
� sin.'/ cos.'/

�

The elongation of the minor axis in the second step is performed with the matrix:

DR D
�
1 0

0 1=R

�

NOTE: These two steps are sequential and their order cannot be reversed. For any point pair P1 and P2 with
respective coordinates s1 D .x1; y1/ and s2 D .x2; y2/ in the .x; y/ axes, their distance is given by

j PiPj j.x;y/ D h D

q
.ıx/2 C .ıy/2

where the distance components ıx D x2 � x1 and ıy D y2 � y1. Based on the previous, the corresponding
distances ıx0 and ıy0 in the .x0; y0/ coordinates system are given by the vector:�

ıx0

ıy0

�
D DR H

�
ıx

ıy

�
D

�
cos.'/ sin.'/
� sin.'/=R cos.'/=R

��
ıx

ıy

�

The transformed interpair distance is then:

j PiPj j.x0;y0/ D h
0
D

q
.ıx0/2 C .ıy0/2

As a result, the original anisotropic semivariogram in Figure 55.12 that was a function .h/ D .h; �/ of
both h and � is then transformed to an equivalent function O.h0/ only of h0:

O.h0/ D .h/

This single isotropic semivariogram O.h0/ is then used for kriging purposes.

The two steps used by PROC KRIGE2D in the previous analysis can also be performed in a different manner.
For instance, you might equivalently choose to rotate the .x; y/ Cartesian coordinates so that the Y axis
coincides with the ellipse major axis, rather than with the minor axis as was shown earlier. Also, you might
prefer to compress the major axis rather than elongating the short one. In any case, you need to perform the
appropriate computations for the transformation of your choice.

Zonal Anisotropy

In zonal anisotropy, the sill (or scale) parameter c0 is different for different directions. It is not possible to
transform such a structure into an isotropic semivariogram. Instead, nesting and geometric anisotropy are
used together to approximate zonal anisotropy.

When the scale varies with direction, the lowest scale (that is, the lowest variance) naturally corresponds to
the maximum continuity direction. The same direction has the longest range, as also discussed in the section
“Geometric Anisotropy” on page 4163.
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A varying scale with direction can be interpreted as having one or more model components whose individual
contributions to the total variance differ with direction. For each such component, its contribution (scale)
ranges between zero and a maximum value. This makes it unlikely that you can describe a natural process
with a pure zonal model, because doing so would imply zero continuity in the direction of zero contribution;
see also Chilès and Delfiner (1999, p. 96).

In a simple case of zonal anisotropy, a model includes one zonal component. The zonal component makes
its highest contribution in a direction perpendicular to the maximum continuity direction, and it contributes
zero to the maximum continuity direction. This is necessary; otherwise, there would be a direction with a
total scale less than the scale in the maximum continuity direction. Following a similar reasoning, the zonal
component’s direction of maximum contribution cannot coincide with the one of maximum continuity. In the
general case, there can be multiple zonal components, each making its highest contribution in a different
direction.

The following describes how to deal with zonal anisotropy in your analysis; see also Goovaerts (1997, p. 96)
and Deutsch and Journel (1992, pp. 27–32). If you start with an empirical semivariogram, you can investigate
zonal anisotropy by identifying whether a maximum and a minimum scale exist in two specific directions.
If they exist, typically these two directions might be perpendicular. Then proceed to identify the zonal
component that causes the difference in scale by fitting the empirical semivariogram. You represent zonal
component as an additional nested structure in the direction of maximum total scale.

If the minimum and maximum sills are not in perpendicular directions, then you might be seeing the combined
effects of multiple zonal components in different directions. In that case you might be able to approximate
the continuity behavior by assuming a single zonal component in the direction that is perpendicular to the one
of maximum continuity. Alternatively, you might decide to investigate a more elaborate configuration for the
model components. In this case, you need to maintain a geometrical anisotropy part across all directions and
add zonal components in an appropriate way to match your empirical semivariance in different directions.

After you have a theoretical semivariance model with zonal anisotropy, the next step is to include zonal
components in your prediction or simulation analysis. In PROC KRIGE2D you can specify zonal components
either explicitly or with the use of results previously saved in item stores produced by the VARIOGRAM
procedure.

Specifying a zonal component explicitly in the MODEL statement has the following implications:

• The RANGE= parameter for the zonal component refers to the range value in the direction of maximum
zonal contribution, unlike the case of ranges specified for nonzonal components that refer to the
direction of maximum continuity.

• The anisotropy factor R in the RATIO= parameter for the zonal component should be specified as a
large positive value to designate zero contribution in the perpendicular direction.

To explain the previous point, remember that R is defined as R D a0
min=a0

max . Its value specifies how
much to elongate the minor anisotropy axis to make it equal to the major anisotropy axis, in order to transform
geometric anisotropy into isotropy. Intuitively, an infinite R value makes it impossible for the minor axis to
become as large as the major axis. This is equivalent to having a very large major anisotropy axis; hence, it
indicates a very large range across the major axis direction. Indeed, you can consider a zero zonal contribution
in the major anisotropy axis as a very large range of the zonal component along this direction. The particular
range is so large that the zonal component practically never reaches its scale along this direction, and this is
interpreted as zero contribution.
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In the case where you specify zonal anisotropy by using the contents of an item store, you only need to
specify the geometric anisotropy components in the SSEL(MODEL=) option, and the zonal components as
suboptions of the SSEL(TYPE=ANIZON) option. Then, the KRIGE2D or SIM2D procedure checks whether
the item store contains models that are suitable to use, based on your specifications.

The following two examples illustrate different instances of zonal anisotropy and how to specify the corre-
sponding covariance model parameters in PROC KRIGE2D.

Example 1
The first example shows that if you can model the direction with the highest sill as a nested model, then you
can treat the case as a composition of geometric anisotropy and an additional structure that acts only in the
direction of the increased sill.

Consider a spatial process in which the fitting of theoretical models in your experimental semivariogram
produces a correlation structure like the one shown in Figure 55.14. In the direction �1 D 40ı, the covariance
model has a single exponential structure 1.h/ D Exp.a0;1E ; c0;1E / with range a0;1E D 2 and sill c0;1E D
1:5. In the direction �2 D 130ı, the covariance model 2.h/ D Exp.a0;2E ; c0;2E /C Sph.a0;2S ; c0;2S / has
two nested structures: an exponential structure with range a0;2E D 0:5 and sill c0;2E D 1:5 and a spherical
structure with range a0;2S D 1 and sill c0;2S D 0:5.

Figure 55.14 Zonal Anisotropy in Two Directions

The total sill in the direction �2 of highest variance is the sum of the nested structures’ sills c0;2ECc0;2S D 2.
You can consider that your process is characterized by a geometrically anisotropic exponential structure with
common sill c0;E D 1:5 across all directions and major axis range a0;1E D 2, and by a spherical structure
which is a zonal anisotropy component that contributes only in the �2 direction. Based on the remarks in
this section, the RATIO= parameter for the exponential structure is RE D 0:5=2 D 0:25, whereas for the
spherical structure you choose a large value, such as RS D 108.

Then, you can approximate this structure in PROC KRIGE2D by specifying the two structures with the
following MODEL statement:
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model form=(exp,sph) range=(2,1) scale=(1.5,0.5)
angle=(40,130) ratio=(0.25,1e8);

You can handle more elaborate cases in a similar way, where the covariance models in different directions
might all be nested models. Your goal is to model the continuity by starting with a sum of isotropic or
geometrically anisotropic structures whose total sill is the lowest sill in all directions. Then, in each of the
directions with higher sills you add a zonal anisotropy component to the corresponding sum to compensate
for the increased variability in that direction.

Example 2
The second example provides important perspective about the physics of zonal anisotropy analysis. It is
an extreme case of the general guidelines for zonal anisotropy. You examine what happens when each of
the directions is modeled with a single-form, non-nested model, and the sills for these models are clearly
different.

Consider a spatial process with a continuity description almost identical to the one in the previous
example. In the direction �1 D 40ı, the covariance model has again a single exponential structure
1.h/ D Exp.a0;1E ; c0;1E / with range a0;1E D 2 and sill c0;1E D 1:5. However, this time in the di-
rection �2 D 130ı you have fit the experimental semivariogram by using a single exponential structure
2.h/ D Exp.a0;2E ; c0;2E / with range a0;2E D 1 and sill c0;2E D 2. These models are shown in
Figure 55.15.

Figure 55.15 Zonal Anisotropy in Two Directions

In this case you have a simplified situation with a single covariance structure in each direction, and the two
structures have different scale parameter values. This is a case of zonal anisotropy in which all directions
have no shared component. Hence, you have a case with two pure zonal components, where both structures
can be practically approximated by specifying two models with large RATIO= values. You could then use
the following MODEL statement in PROC KRIGE2D to describe the covariance in this example:
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model form=(exp,exp) range=(2,1) scale=(1.5,2)
angle=(40,130) ratio=(1e8,1e8);

The semivariogram of the specified model is accurately shown in Figure 55.15, because the angles �1 and
�2 are perpendicular and each component has a contribution to all directions except for the one that is
perpendicular to its angle. In the general case, �1 and �2 might not be perpendicular; hence the maximum
and minimum scale values can be different from those displayed in Figure 55.15.

In general, avoid configurations with pure zonal components. Correlation models with pure zonal components
might imply zero continuity along some direction, which is a very unlikely occurrence in natural processes.
For that reason, in similar cases try to use the analysis illustrated in the previous example. In particular,
try to model the highest sill direction as a nested structure (such that it contains a geometrical anisotropy
component whose cumulative sill is equal to the lower sill) and a zonal anisotropy component that accounts
for the sill difference.

Anisotropic Nugget Effect

Isotropic nugget effects can be approximated with nested models, where one of the nested structures has
a very small range. Applying a geometric anisotropy specification to this nested structure results in an
anisotropic nugget effect.

Details of Ordinary Kriging

Introduction

Three common characteristics are often observed with spatial data (that is, data indexed by their spatial
locations):

(i) slowly varying, large-scale variations in the measured values

(ii) irregular, small-scale variations

(iii) similarity of measurements at locations close together

As an illustration, consider a hypothetical example in which an organic solvent leaks from an industrial site
and spreads over a large area. Assume the solvent is absorbed and immobilized into the subsoil above any
groundwater level, so you can ignore any time dependence.

To find the areal extent and the concentration values of the solvent, you need measurements. Although the
problem is inherently three-dimensional, if you measure total concentration in a column of soil or take a
depth-averaged concentration, it can be handled reasonably well with two-dimensional techniques.

You usually assume that measured concentrations are higher closer to the source and decrease at larger
distances from the source. On top of this smooth variation, measured concentrations typically have small-scale
variations, due perhaps to the inherent variability of soil properties.

You also tend to suspect that measurements made close together yield similar concentration values, while
measurements made far apart can have very different values.
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These physically reasonable qualitative statements have no explicit probabilistic content. A number of numer-
ical smoothing techniques, such as inverse distance weighting and splines, make use of large-scale variations
and “close distance-close value” characteristics of spatial data to interpolate the measured concentrations for
contouring purposes.

While characteristics (i) and (iii) are handled by such smoothing methods, characteristic (ii), the small-scale
residual variation in the concentration field, is not accounted for.

There can be situations, due to the use of the prediction map or the relative magnitude of the irregular
fluctuations, where you cannot ignore these small-scale irregular fluctuations. In other words, the smoothed
or predicted values of the concentration field alone are not a sufficient characterization; you also need the
possible spread around these contoured values.

Spatial Random Fields

One method of incorporating characteristic (ii) into the construction of a contour map is to model the
concentration field as a spatial random field (SRF). The mathematical details of SRF models are given in
a number of texts, such as Cressie (1993) and Christakos (1992). The mathematics of SRFs is formidable.
However, under certain simplifying assumptions, it produces classical linear predictors with very simple
properties, enabling easy implementation for prediction purposes. These predictors, primarily ordinary
kriging (OK), give both a prediction and a standard error of prediction at unsampled locations. This allows
the construction of a map of both predicted values and level of uncertainty about the predicted values.

The key assumption in applying the SRF formalism is that the measurements come from a single realization
of the SRF. However, in most geostatistical applications, the focus is on a single, unique realization. This is
unlike most other situations in stochastic modeling in which there will be future experiments or observational
activities (at least conceptually) under similar circumstances. This renders many traditional ideas of statistical
inference ambiguous and somewhat counterintuitive.

Additional logical and methodological problems could stand in the way of applying a stochastic model to
a unique but partly unknown natural process; see the introduction in Matheron (1971) and Cressie (1993,
section 2.3). These difficulties have resulted in attempts to frame the prediction problem in a completely
deterministic way (Isaaks and Srivastava 1988; Journel 1985). Also, some issues with kriging, and with
spatial prediction methods in general, are related to the necessary assumption of ergodicity of the spatial
process. This assumption is required to estimate the covariance or semivariogram from sample data. Details
are provided in Cressie (1993, pp. 52–58).

Despite these difficulties, ordinary kriging remains a popular and widely used tool in modeling spatial data,
especially in generating surface plots and contour maps. An abbreviated derivation of the OK predictor for
point prediction and the associated standard error is discussed in the following section. Full details are given
in Journel and Huijbregts (1978); Christakos (1992); Cressie (1993).

Ordinary Kriging

Denote the SRF by Z.s/; s 2 D � R2. Following the notation in Cressie (1993), the following model for
Z.s/ is assumed:

Z.s/ D �C ".s/

Here, � is the fixed, unknown mean of the process, and ".s/ is a zero mean SRF, which represents the
variation around the mean.



Details of Ordinary Kriging F 4171

In most practical applications, an additional assumption is required in order to estimate the covariance Cz of
the Z.s/ process. This assumption is second-order stationarity:

Cz.s1; s2/ D EŒ".s1/".s2/� D Cz.s1 � s2/ D Cz.h/

This requirement can be relaxed slightly when you are using the semivariogram instead of the covariance. In
this case, second-order stationarity is required of the differences ".s1/ � ".s2/ rather than ".s/:

z.s1; s2/ D
1

2
EŒ.".s1/ � ".s2//2� D z.s1 � s2/ D z.h/

By performing local kriging, the spatial processes represented by the previous equation for Z.s/ are more
general than they appear. In local kriging, at an unsampled location s0, a separate model is fit using only data
in a neighborhood of s0. This has the effect of fitting a separate mean � at each point, and it is similar to the
kriging with trend (KT) method discussed in Journel and Rossi (1989).

Given the N measurementsZ.s1/; : : : ; Z.sN / at known locations s1; : : : ; sN , you want to obtain a prediction
of Z at an unsampled location s0. When the following three requirements are imposed on the predictor OZ,
the OK predictor is obtained:

(i) OZ is linear in Z.s1/; � � � ; Z.sN /

(ii) OZ is unbiased

(ii) OZ minimizes the mean square prediction error EŒ.Z.s0/ � OZ.s0//2�

Linearity requires the following form for OZ.s0/:

OZ.s0/ D

NX
iD1

�iZ.si /

Applying the unbiasedness condition to the preceding equation yields

EŒ OZ.s0/� D �)
NX
iD1

�iEŒZ.si /� D �)
NX
iD1

�i� D �)

NX
iD1

�i D 1

Finally, the third condition requires a constrained linear optimization that involves �1; � � � ; �N and a La-
grange parameter 2m. This constrained linear optimization can be expressed in terms of the function
L.�1; � � � ; �N ; m/ given by

L D E

24 Z.s0/ � NX
iD1

�iZ.si /

!235 � 2m NX
iD1

�i � 1

!

Define the N � 1 column vector � by

� D .�1; � � � ; �N /
0
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and the .N C 1/ � 1 column vector �0 by

�0 D .�1; � � � ; �N ; m/
0
D

�
�

m

�
The optimization is performed by solving

@L

@�0
D 0

in terms of �1; � � � ; �N and m.

The resulting matrix equation can be expressed in terms of either the covariance Cz.h/ or semivariogram
z.h/. In terms of the covariance, the preceding equation results in the matrix equation

C�0 D C0

where

C D

0BBBBB@
Cz.0/ Cz.s1 � s2/ � � � Cz.s1 � sN / 1

Cz.s2 � s1/ Cz.0/ � � � Cz.s2 � sN / 1
: : :

Cz.sN � s1/ Cz.sN � s2/ � � � Cz.0/ 1

1 1 � � � 1 0

1CCCCCA
and

C0 D

0BBBBB@
Cz.s0 � s1/

Cz.s0 � s2/
:::

Cz.s0 � sN /

1

1CCCCCA
The solution to the previous matrix equation is

O�0 D C�1C0

Using this solution for � and m, the ordinary kriging prediction at r0 is

OZ.s0/ D �1Z.s1/C � � � C �NZ.sN /

with associated prediction error the square root of the variance

�z
2.s0/ D Cz.0/ � �

0c0 Cm

where c0 is C0 with the 1 in the last row removed, making it an N � 1 vector.

These formulas are used in the best linear unbiased prediction (BLUP) of random variables (Robinson 1991).
Further details are provided in Cressie (1993, pp. 119–123).

Because of possible numeric problems when solving the previous matrix equation, Deutsch and Journel
(1992) suggest replacing the last row and column of 1s in the preceding matrix C by Cz.0/, keeping the 0 in
the .N C 1;N C 1/ position and similarly replacing the last element in the preceding right-hand vector C0
with Cz.0/. This results in an equivalent system but avoids numeric problems when Cz.0/ is large or small
relative to 1.
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Computational Resources
To generate a predicted value at a single grid point by using N data points, PROC KRIGE2D must solve the
kriging system

C�0 D C0

where the dimensions of C are .N C 1/ � .N C 1/ and the right-hand-side C0 has one column.

Holding the matrix and vector associated with this system in core requires approximately 8N 2=2 bytes. The
CPU time used in solving the system is proportional to N 3. For large N, this time dominates the O(N 2) time
to compute the elements of the covariance matrix C from the specified covariance or semivariogram model.

For local kriging, the kriging system is set up and solved for each grid point. Part of the setup process involves
determining the neighborhood of each grid point. A fast K-D tree algorithm determines neighborhoods.
For G grid points, the dominant CPU time factor is setting up and solving the G kriging systems. The N
in the algorithm of the section “Ordinary Kriging” on page 4170 is the number of data points in a given
neighborhood, and it can differ for each grid point.

In global kriging, the entire input data set and all grid points set up and solve the single system

C�0 D C0

Again C has dimensions .N C 1/� .N C 1/, but �0 and C0 now have G columns, where G is the number of
grid points. Memory requirements are approximately 8Œ.N 2=2/CGN� bytes. The CPU time used in solving
the system is still dominated by the N 3 factorization of the left-hand side.

Output Data Sets
The KRIGE2D procedure produces two data sets: the OUTEST=SAS-data-set and the OUTNBHD=SAS-
data-set. These data sets are described as follows.

OUTEST=SAS-data-set

The OUTEST= data set contains the kriging predictions and the associated standard errors. The OUTEST=
data set contains the following variables:

• ESTIMATE, which is the kriging prediction for the current variable.

• GXC, which is the x coordinate of the grid point at which the kriging prediction is made.

• GYC, which is the y coordinate of the grid point at which the kriging prediction is made.

• LABEL, which is the label for the current PREDICT/MODEL combination that produces the kriging
prediction. If you do not specify a label, default labels of the form Predj.Modelk are used.

• NPOINTS, which is the number of points used in the prediction. This number varies for each grid point
if local kriging is performed.

• STDERR, which is the standard error of the kriging predict.

• VARNAME, which is the variable name.
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OUTNBHD=SAS-data-set

When you specify the RADIUS= option or the NUMPOINTS= option in the PREDICT statement, local
kriging is performed. Local kriging is simply ordinary kriging at a given grid location, using only those data
points in a neighborhood defined by the RADIUS= value or the NUMPOINTS= value.

The OUTNBHD= data set contains one observation for each data point in each neighborhood. Hence, this
data set can be large. For example, if the grid specification results in 1,000 grid points and each grid point
has a neighborhood of 100 points, the resulting OUTNBHD= data set contains 100,000 points.

The OUTNBHD= data set contains the following variables:

• GXC, which is the x coordinate of the grid point.

• GYC, which is the y coordinate of the grid point.

• ID, which is the ID variable value or observation. number of the current data point

• LABEL, which is the label for the current PREDICT/MODEL combination. If you do not specify a
label, default labels of the form Predj.Modelk are used.

• NPOINTS, which is the number of points used in the prediction.

• RADIUS, which is the radius used for each neighborhood.

• VALUE, which is the value of the variable at the current data point.

• VARNAME, which is the variable name of the current variable.

• XC, which is the x coordinate of the current data point.

• YC, which is the y coordinate of the current data point.

If no ID statement is specified, then the corresponding observation number is assigned to the variable ID,
instead.

Displayed Output
In addition to the output data sets, the KRIGE2D procedure produces output objects as well. The KRIGE2D
procedure output objects are the following:

• a default “Number of Observations” table that displays the number of observations read from the input
data set and the number of observations used in the analysis.

• a map that shows the spatial distribution of the observations of the current VAR= variable in the
PREDICT statement. The observations are displayed by default with circled markers whose color
indicates the VAR= value at the corresponding location.

• a default table for each PREDICT statement that sums up basic information about the kriging analysis.

• a default table for each MODEL statement that shows the covariance model parameters for the
corresponding PREDICT statement.
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• plots of the kriging prediction and the prediction standard error at each point of the specified output grid
or at specified individual locations. The KRIGE2D procedure produces by default a plot of the kriging
prediction and the corresponding prediction error for each MODEL statement of every PREDICT
statement that you specify. You can produce more of these plots with styles that you can specify by
using the available suboptions of the PLOTS=PREDICTION option.

• a “Store Info” table with basic information about the input item store. This table is produced by default
when you specify the RESTORE statement.

• a “Store Variables Information” table that describes the analysis variables of an input item store. The
table is produced by default when you specify an item store with the RESTORE statement.

• a “Store Models Information” table with detailed information about the models and direction angles
that are contained in an input item store. The table is produced by default when you specify an item
store with the RESTORE statement.

ODS Table Names
Each table created by PROC KRIGE2D has a name associated with it, and you must use this name to
reference the table when using ODS Graphics. These names are listed in Table 55.4.

Table 55.4 ODS Tables Produced by PROC KRIGE2D

ODS Table Name Description Statement Option

KrigInfo Kriging analysis general information PROC Default output

ModelInfo Parameters of the covariance model used
in current kriging analysis

PROC Default output

NObs Number of observations read and used PROC Default output

StoreInfo Input item store identity information RESTORE Default output

StoreModelInfo Input item direction angles and models
information

RESTORE INFO

StoreVarInfo Input item store variables and their statis-
tics

RESTORE INFO

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”
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For additional control of the graphics that are displayed, see the PLOTS option in the section “PROC
KRIGE2D Statement” on page 4131.

ODS Graph Names

PROC KRIGE2D assigns a name to each graph it creates by using ODS Graphics. You can use these names
to reference the graphs when using ODS Graphics. You must also specify the PLOTS= option indicated in
Table 55.5.

Table 55.5 Graphs Produced by PROC KRIGE2D

ODS Graph Name Plot Description Statement Option

ObservationsPlot Scatter plot of observed data and colored
markers indicating observed values

PROC PLOTS=OBSERV

PredictionPlot Contour plots of the kriging prediction,
surface of the prediction error, and out-
lines of the observation locations

PROC PLOTS=PREDICTION

Semivariogram Plots of the semivariogram models used
for all prediction tasks

PROC PLOTS=SEMIVAR

Examples: KRIGE2D Procedure

Example 55.1: Spatial Prediction of Pollutant Concentration
The example in the section “Example 109.1: Aspects of Semivariogram Model Fitting” on page 8997
in Chapter 109, “The VARIOGRAM Procedure,” investigates fitting of a theoretical model to describe
spatial correlation in a study of 138 simulated arsenic logarithm concentration (logAs) observations. These
observations form the logAsData data set, which is treated as actual data for illustration in the examples.

In this example, you use the logAsData data set and the semivariogram analysis results to predict the logAs
variable values across space in a specified square region of size 500 km � 500 km. Your goal is to answer
scientific questions in your analysis by means of your prediction results. This application highlights the
impact of the correlation model choice on predictions. The example in section “Example 55.2: Investigating
the Effect of Model Specification on Spatial Prediction” on page 4186 examines additional aspects of this
impact.

The World Health Organization (WHO) standard for maximum arsenic concentration in drinking water is 10
�g/lt. Assume that you want to answer the following question: In what percentage of the study area does the
Arsenic concentration exceed the WHO regulatory standard?

First, you read the logAsData data set with the following DATA step:

title 'Spatial Prediction of Log-Arsenic Concentration';

data logAsData;
input East North logAs @@;
label logAs='log(As) Concentration';
datalines;
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193.0 296.6 -0.68153 232.6 479.1 0.96279 268.7 312.5 -1.02908
43.6 4.9 0.65010 152.6 54.9 1.87076 449.1 395.8 0.95932

310.9 493.6 -1.66208 287.8 164.9 -0.01779 330.0 8.0 2.06837
225.7 241.7 0.15899 452.3 83.4 -1.21217 156.5 462.5 -0.89031
11.5 84.4 -0.24496 144.4 335.7 0.11950 149.0 431.8 -0.57251

234.3 123.2 -1.33642 37.8 197.8 -0.27624 183.1 173.9 -2.14558
149.3 426.7 -1.06506 434.4 67.5 -1.04657 439.6 237.0 -0.09074
36.4 175.2 -1.21211 370.6 244.0 3.28091 452.0 96.5 -0.77081

247.0 86.8 0.04720 413.6 373.2 1.78235 253.5 291.7 0.56132
129.7 111.9 1.34000 352.7 42.1 0.23621 279.3 82.7 2.12350
382.6 290.7 0.86756 188.2 222.8 -1.23308 382.8 154.5 -0.94094
304.4 309.2 -1.95158 337.5 387.2 -1.31294 490.7 189.8 0.40206
159.0 100.1 -0.22272 245.5 329.2 -0.26082 372.1 379.5 -1.89078
417.8 84.1 -1.25176 173.9 407.6 -0.24240 121.5 107.7 1.54509
453.5 313.6 0.65895 143.5 346.7 -0.87196 157.4 125.5 -1.96165
371.8 353.2 -0.59464 358.9 338.2 -1.07133 8.6 437.8 1.44203
395.9 394.2 -0.24144 149.5 58.9 1.17459 453.5 420.6 -0.63951
182.3 85.0 1.00005 21.0 290.1 0.31016 11.1 352.2 -0.88418
131.2 238.4 -0.57184 104.9 6.3 1.12054 247.3 256.0 0.14019
428.4 383.7 0.92448 327.8 481.1 -2.72543 199.2 92.8 -0.05717
453.9 230.1 0.16571 205.0 250.6 0.07581 459.5 271.6 0.93700
229.5 262.8 1.83590 370.4 228.6 2.96611 330.2 281.9 1.79723
354.8 388.3 -3.18262 406.2 222.7 2.41594 254.4 393.1 2.03221
96.7 85.2 -0.47156 407.2 256.8 0.66747 498.5 273.8 1.03041

417.2 471.4 -1.42766 368.8 424.3 -0.70506 303.0 59.1 1.43070
403.1 264.1 1.64554 21.2 360.8 0.67094 148.2 78.1 2.15323
305.5 310.7 -1.47985 228.5 180.3 -0.68386 161.1 143.3 1.07901
70.5 155.1 0.54652 363.1 282.6 -0.43051 86.0 472.5 -1.18855

175.9 105.3 -2.08112 96.8 426.3 1.56592 475.1 453.1 -1.53776
125.7 485.4 1.40054 277.9 201.6 -0.54565 406.2 125.0 -1.38657
60.0 275.5 -0.59966 431.3 494.6 -0.36860 399.9 399.0 -0.77265
28.8 311.1 0.91693 166.1 348.2 -0.49056 266.6 83.5 0.67277
54.7 356.3 0.49596 433.5 460.3 -1.61309 201.7 167.6 -1.40678

158.1 203.6 -1.32499 67.6 230.4 1.14672 81.9 250.0 0.63378
372.0 50.7 0.72445 26.4 264.6 1.00862 300.1 91.7 -0.74089
303.0 447.4 1.74589 108.4 386.2 1.12847 55.6 191.7 0.95175
36.3 273.2 1.78880 94.5 298.3 -2.43320 366.1 187.3 -0.80526

130.7 389.2 -0.31513 37.2 324.2 0.24489 295.5 211.8 0.41899
58.6 206.2 0.18495 346.3 142.8 -0.92038 484.2 215.9 0.08012

451.4 415.7 0.02773 58.9 86.5 0.17652 212.6 363.9 0.17215
378.7 407.6 0.51516 265.9 305.0 -0.30718 123.2 314.8 -0.90591
26.9 471.7 1.70285 16.5 7.1 0.51736 255.1 472.6 2.02381

111.5 148.4 -0.09658 440.4 375.0 1.23285 406.4 19.5 1.01181
321.2 65.8 -0.02095 466.4 357.1 -0.49272 2.0 484.6 0.50994
200.9 205.1 0.43543 30.3 337.0 1.60882 297.0 12.7 1.79824
158.2 450.7 0.05295 122.8 105.3 1.53936 417.8 329.7 -2.08124

;

For prediction of the logAs values in the specified area, assume a rectangular grid of nodes with an equal
spacing of 5 km between neighboring nodes in the north and east directions. This produces a total of
101 � 101 D 10201 prediction locations.
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In the section “Example 109.1: Aspects of Semivariogram Model Fitting” on page 8997 in Chapter 109, “The
VARIOGRAM Procedure,” you saved the selected fitted model that resulted from the correlation analysis
into the SemivAsStore item store as shown in the following statements:

ods graphics on;

proc variogram data=logAsData plots=none;
store out=SemivAsStore / label='LogAs Concentration Models';
compute lagd=5 maxlag=40;
coord xc=East yc=North;
model form=auto(mlist=(exp,gau,mat) nest=1 to 2);
var logAs;

run;

In the KRIGE2D procedure you specify the name of the item store you want to use for prediction input in the
IN= option of the RESTORE statement. You request use of the selected model for prediction by specifying
the STORESELECT option in the MODEL statement.

The INFO option of the RESTORE statement produces a table with information about the selected fitted
model in the item store. To review all models in the input item store, specify the two INFO option suboptions.
In particular, specify the DET suboption to request details about all additional fitted models that are included
in the item store and the ONLY suboption to suppress prediction and produce only the tables about the item
store, as shown in the following statements:

proc krige2d data=logAsData outest=pred plots=none;
restore in=SemivAsStore / info(det only);
coordinates xc=East yc=North;
predict var=logAs;
model storeselect;
grid x=0 to 500 by 5 y=0 to 500 by 5;

run;

PROC KRIGE2D produces a table with general information about the input item store identity, as shown in
Output 55.1.1.

Output 55.1.1 PROC KRIGE2D and Input Item Store General Information

Spatial Prediction of Log-Arsenic Concentration

The KRIGE2D Procedure

Spatial Prediction of Log-Arsenic Concentration

The KRIGE2D Procedure

Correlation Model Item Store Information

Input Item Store WORK.SEMIVASSTORE

Item Store Label LogAs Concentration Models

Data Set Created From WORK.LOGASDATA

By-group Information No By-groups Present

Created By PROC VARIOGRAM
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The second table in Output 55.1.2 itemizes the variables in the item store and displays the sample mean
and standard deviation of their data set of origin. Hence, the values shown in Output 55.1.2 refer to the
observations in the logAsData data set.

Output 55.1.2 Variables in the Input Item Store

Item Store Variables

Variable Mean
Std

Deviation

logAs 0.084309 1.527707

The table in Output 55.1.3 presents all the correlation models fitted to the arsenic logarithm logAs empirical
semivariance that are saved in the SemivAsStore item store.

Output 55.1.3 Angle and Models Information in the Input Item Store

Item Store
Models For

logAs

Class Model

1 Gau-Gau

Gau-Mat

2 Exp-Gau

3 Exp-Mat

4 Mat

5 Gau

6 Exp

Exp-Exp

Mat-Exp

Gau-Exp

According to Output 55.1.3, the Gaussian-Gaussian model is the selected model for the empirical semivariance
fit based on the specific weighted least squares fit and ranking criteria. In the section “Example 109.1: Aspects
of Semivariogram Model Fitting” on page 8997 in Chapter 109, “The VARIOGRAM Procedure,” it is noted
that all fitted models in the first five equivalence classes produce very similar semivariograms, and this is
likely to lead to similar results in prediction analysis. For comparison purposes, you choose to examine
the selected model, in addition to the exponential model in the SemivAsStore item store. As shown in
Output 55.1.3, the exponential model is one of the least well-fit models based on the criteria used for the
specific fit. You are interested in comparing the predictions from each one of these two models, and you
examine their impact on your analysis.

The default item store model selection is the model on top of the list in Output 55.1.3. Hence, you specify
the STORESELECT option in the MODEL statement without any suboptions, and it invokes the Gaussian-
Gaussian model from the SemivAsStore item store. You assign the label SELMODEL to the corresponding
MODEL statement.
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You also specify a second MODEL statement with the label EXPMODEL to request prediction based on the
exponential correlation form. In this case you specify the STORESELECT(MODEL=) option in the MODEL
statement to request the desired form.

You omit the INFO option from the RESTORE statement. You specify the PRED and the SEMIVAR options
in the PLOTS option of the PROC KRIGE2D statement to produce plots of the predicted values and the
semivariance model, respectively, for each MODEL statement. You request that the prediction output be
saved in the Pred output data set.

You satisfy the preceding requests by specifying the following statements:

proc krige2d data=logAsData outest=Pred plots(only)=(pred semivar);
restore in=SemivAsStore;
coordinates xc=East yc=North;
predict var=logAs;
SelModel: model storeselect;
ExpModel: model storeselect(model=exp);
grid x=0 to 500 by 5 y=0 to 500 by 5;

run;

When you run these statements, in addition to the input item store information table, PROC KRIGE2D also
produces the number of observations table and general kriging process information, as shown in Output 55.1.4.

Output 55.1.4 Number of Observations and Kriging Information Tables

Spatial Prediction of Log-Arsenic Concentration

The KRIGE2D Procedure

Dependent Variable: logAs

Spatial Prediction of Log-Arsenic Concentration

The KRIGE2D Procedure

Dependent Variable: logAs

Number of Observations Read 138

Number of Observations Used 138

Kriging Information

Prediction Grid Points 10201

Type of Analysis Global

PROC KRIGE2D first uses the Gaussian-Gaussian model. The table in Output 55.1.5 shows the saved
parameter values of the fitted Gaussian-Gaussian model in the SemivAsStore item store. PROC KRIGE2D
uses these parameters for the prediction based on the selected model.
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Output 55.1.5 Information about the Gaussian-Gaussian Model

Spatial Prediction of Log-Arsenic Concentration

The KRIGE2D Procedure

Dependent Variable: logAs
Prediction: Pred1, Model: SelModel

Spatial Prediction of Log-Arsenic Concentration

The KRIGE2D Procedure

Dependent Variable: logAs
Prediction: Pred1, Model: SelModel

Covariance Model Information for SelModel

Nested Structure 1 Type Gaussian

Nested Structure 1 Sill 0.3276646

Nested Structure 1 Range 62.312728

Nested Structure 1 Effective Range 107.92881

Nested Structure 2 Type Gaussian

Nested Structure 2 Sill 1.261545

Nested Structure 2 Range 21.459563

Nested Structure 2 Effective Range 37.169053

Nugget Effect 0.0830758

The semivariogram of the Gaussian-Gaussian model with the parameters shown in Output 55.1.5 is depicted
in Output 55.1.6.

Output 55.1.6 Gaussian-Gaussian Semivariogram Model Used in Kriging Predictions
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Output 55.1.7 is a map of the kriging prediction of the arsenic concentration values logAs in the specified
domain. The prediction error surface shows a naturally increasing error as you move farther away from the
observation locations. Interestingly, kriging predicts a small area of increased arsenic concentration values
located in the central-eastern part of the domain. The WHO threshold of 10 �g/lt for the maximum allowed
arsenic concentration in water translates into about 2.3 in the log scale, and the particular area exhibits values
in excess of 3. Due to the suggested violation of the WHO standard, this particular area is very likely to be
the focus of further environmental risk analysis.

Output 55.1.7 Predicted Arsenic Logarithm Values with Gaussian-Gaussian Covariance

Next, PROC KRIGE2D performs prediction with the exponential model. The model parameters are also read
from the SemivAsStore item store and are shown in Output 55.1.8.
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Output 55.1.8 Information about the Exponential Model

Spatial Prediction of Log-Arsenic Concentration

The KRIGE2D Procedure

Dependent Variable: logAs
Prediction: Pred1, Model: ExpModel

Spatial Prediction of Log-Arsenic Concentration

The KRIGE2D Procedure

Dependent Variable: logAs
Prediction: Pred1, Model: ExpModel

Covariance Model
Information for ExpModel

Type Exponential

Sill 1.6779788

Range 24.537294

Effective Range 73.611882

Nugget Effect 0

Output 55.1.9 illustrates the semivariogram of the nested exponential model where its parameter values are
those shown in Output 55.1.8.

Output 55.1.9 Exponential Semivariogram Model Used in Kriging Predictions
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The prediction plot for the exponential model is shown in Output 55.1.10. Prediction values and spatial
patterns are similar overall to those of the Gaussian-Gaussian case. Clearly, although both models predict
the same basic characteristics for the arsenic logarithm concentration distribution, the exponential model
suggests a more limited spatial variability in closely neighboring locations. The lack of a nugget effect in
the exponential model justifies this behavior. Also, the exponential model predictions seem less inclined to
deviate farther away from the near-zero mean than the Gaussian-Gaussian model predictions.The prediction
error reaches about the same upper values for both models, though its low values are slightly smaller in the
exponential model.

Output 55.1.10 Predicted Arsenic Logarithm Values with Exponential Covariance

In the following two-step computation, you proceed to compute the percentage of the study area where the
arsenic concentration exceeds the WHO regulatory standard according to your predictions. First, a DATA
step marks the arsenic predicted values in excess of the WHO concentration threshold of 10 �g/lt and saves
the outcome into an indicator variable OverLimit. The DATA step input is the prediction Pred output data set,
where the logarithm arsenic prediction is stored in the estimate variable. The DATA step also transforms the
arsenic logarithm values back into arsenic concentration values to compare them to the threshold value. You
use the following statements:
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data AsOverLimit;
set Pred;
OverLimit = (exp(estimate) > 10) * 100;

run;

The second step uses the MEANS procedure to express the selected nodes population, where the WHO
arsenic concentration limit violation occurs, as a percentage of the entire domain area. You study the results
of each correlation model separately by specifying the BY statement in the PROC MEANS. The BY variable
is the Label variable in the AsOverLimit and Pred data sets. You need to sort the AsOverLimit data prior to
using PROC MEANS. You run the following statements:

proc sort data=AsOverLimit;
by Label;

run;
proc means data=AsOverLimit mean;

var OverLimit;
by label;
label Overlimit="Percent above WHO threshold";

run;

ods graphics off;

The Gaussian-Gaussian model prediction produces the result in Output 55.1.11. The analysis suggests a
minimal occurrence of excessive arsenic concentration in drinking water in about 0.43% of the study region.

Output 55.1.11 Violation of Arsenic Concentration Threshold Using Gaussian-Gaussian Model

Spatial Prediction of Log-Arsenic Concentration

The MEANS Procedure

Spatial Prediction of Log-Arsenic Concentration

The MEANS Procedure

Label for the PREDICT/MODEL combination=Pred1.SelModel

Analysis
Variable : OverLimit

Percent above
WHO threshold

Mean

0.4313303

The exponential model predicts that the WHO arsenic concentration threshold is exceeded in about 0.27%
of the domain, as shown in Output 55.1.12. Although this is still a minimal occurrence of the threshold
violation across the region, the exponential model estimates the impact to be at about two thirds of the
Gaussian-Gaussian model percentage.
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Output 55.1.12 Violation of Arsenic Concentration Threshold Using Exponential Model

Spatial Prediction of Log-Arsenic Concentration

The MEANS Procedure

Spatial Prediction of Log-Arsenic Concentration

The MEANS Procedure

Label for the PREDICT/MODEL combination=Pred1.ExpModel

Analysis
Variable : OverLimit

Percent above
WHO threshold

Mean

0.2744829

The results in Output 55.1.11 and Output 55.1.12 suggest that it might not be possible to provide a unique
answer about the area percentage that is affected by increased arsenic concentration. You chose to examine
two different correlation models whose performance is relatively similar, and they provide impact estimates
that differ by about 37%.

You might conclude that the answer to the initial question about the percentage value lies in the neighborhood
of the results given by the two correlation models. Further analysis with more models is necessary to validate
this assumption. It is important to note that apart from the continuity model choice, additional factors
contribute to this investigation. Such factors could be the use of local instead of global kriging, or even going
back to the empirical semivariogram computation stage and repeating the analysis for different possible
spatial continuity empirical estimates. A sensible approach to tackle this analysis would be to investigate the
range of the impact suggested by all candidate correlation models and to proceed by defining the best and
worst case scenarios for the size of the affected area.

Eventually, when it comes to using your findings, it is important to account for the subjective nature of
stochastic analysis and multiple possible answers to your questions. In that sense, some scientific questions
might be more sensible than others to interpret your results correctly. For instance, you might want to
investigate only whether the adversely affected domain percentage is below 1%, rather than attempting
to provide a specific value for it. Then, you might consider the preceding findings sufficient, despite any
fluctuations in the estimated percentage. In a different scenario, the areas with high pollutant concentration
could be populated. Hence, any local health standard violation is probably unacceptable, and it can be crucial
that you provide solid and more detailed assessment in that case.

The section “Example 91.3: Risk Analysis with Simulation” on page 7739 in Chapter 91, “The SIM2D
Procedure,” investigates a different aspect of this study and offers additional perspective about spatial analysis.

Example 55.2: Investigating the Effect of Model Specification on Spatial
Prediction

It is generally believed that spatial prediction is robust against model specification, while the standard error
computation is not so robust. This example investigates the effect of using these different models on the
prediction and associated standard errors.

In the section “Theoretical Semivariogram Model Fitting” on page 8922 in Chapter 109, “The VARIOGRAM
Procedure,” a particular theoretical semivariogram is fitted to the coal seam thickness data empirical semi-



Example 55.2: Investigating the Effect of Model Specification on Spatial Prediction F 4187

variogram. The chosen semivariogram is Gaussian with a scale (sill) of c0 D 7:2881 and a range of
a0 D 30:6239.

Another possible model choice could be the spherical semivariogram. First, use a DATA step to input the
thickness data:

title 'Effect of Model Specification on Prediction';

data thick;
input East North Thick @@;
label Thick='Coal Seam Thickness';
datalines;
0.7 59.6 34.1 2.1 82.7 42.2 4.7 75.1 39.5
4.8 52.8 34.3 5.9 67.1 37.0 6.0 35.7 35.9
6.4 33.7 36.4 7.0 46.7 34.6 8.2 40.1 35.4

13.3 0.6 44.7 13.3 68.2 37.8 13.4 31.3 37.8
17.8 6.9 43.9 20.1 66.3 37.7 22.7 87.6 42.8
23.0 93.9 43.6 24.3 73.0 39.3 24.8 15.1 42.3
24.8 26.3 39.7 26.4 58.0 36.9 26.9 65.0 37.8
27.7 83.3 41.8 27.9 90.8 43.3 29.1 47.9 36.7
29.5 89.4 43.0 30.1 6.1 43.6 30.8 12.1 42.8
32.7 40.2 37.5 34.8 8.1 43.3 35.3 32.0 38.8
37.0 70.3 39.2 38.2 77.9 40.7 38.9 23.3 40.5
39.4 82.5 41.4 43.0 4.7 43.3 43.7 7.6 43.1
46.4 84.1 41.5 46.7 10.6 42.6 49.9 22.1 40.7
51.0 88.8 42.0 52.8 68.9 39.3 52.9 32.7 39.2
55.5 92.9 42.2 56.0 1.6 42.7 60.6 75.2 40.1
62.1 26.6 40.1 63.0 12.7 41.8 69.0 75.6 40.1
70.5 83.7 40.9 70.9 11.0 41.7 71.5 29.5 39.8
78.1 45.5 38.7 78.2 9.1 41.7 78.4 20.0 40.8
80.5 55.9 38.7 81.1 51.0 38.6 83.8 7.9 41.6
84.5 11.0 41.5 85.2 67.3 39.4 85.5 73.0 39.8
86.7 70.4 39.6 87.2 55.7 38.8 88.1 0.0 41.6
88.4 12.1 41.3 88.4 99.6 41.2 88.8 82.9 40.5
88.9 6.2 41.5 90.6 7.0 41.5 90.7 49.6 38.9
91.5 55.4 39.0 92.9 46.8 39.1 93.4 70.9 39.7
55.8 50.5 38.1 96.2 84.3 40.3 98.2 58.2 39.5

;

Fitting of the Gaussian model is performed in the section “Theoretical Semivariogram Model Fitting” on
page 8922 in Chapter 109, “The VARIOGRAM Procedure,” and the fitting parameters are saved in the
SemivStoreGau item store with the following statements:

ods graphics on;

proc variogram data=thick noprint;
store out=SemivStoreGau / label='Thickness Gaussian Model';
compute lagd=7 maxlag=10;
coord xc=East yc=North;
model form=gau;
var Thick;

run;
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For prediction with the saved Gaussian model, you use the following statements to run the KRIGE2D
procedure with input from the SemivStoreGau item store. You invoke the item store with the RESTORE
statement. The STORESELECT option in the MODEL statement that specifies that you want to use the
selected model in the item store as input for your prediction.

proc krige2d data=thick outest=pred1 noprint;
restore in=SemivStoreGau;
coordinates xc=East yc=North;
predict var=Thick r=60;
model storeselect;
grid x=0 to 100 by 10 y=0 to 100 by 10;

run;

Then, you run the KRIGE2D procedure by using a spherical model. Start by using the VARIOGRAM
procedure to fit a spherical model to the thick data set empirical semivariogram. You specify the STORE
statement again in PROC VARIOGRAM to save the spherical model estimated parameters in an item store
with the name SemivStoreSph. You use the following statements:

proc variogram data=thick plots(only)=fit;
store out=SemivStoreSph / label='Thickness Sph Model';
compute lagd=7 maxlag=10;
coord xc=East yc=North;
model form=sph;
var Thick;

run;

The VARIOGRAM procedure fits the spherical model successfully, and the estimated parameters for this fit
are shown in Output 55.2.1.

Output 55.2.1 Spherical Model Fitting Parameter Estimates

Effect of Model Specification on Prediction

The VARIOGRAM Procedure

Dependent Variable: Thick
Angle: Omnidirectional

Current Model: Spherical

Effect of Model Specification on Prediction

The VARIOGRAM Procedure

Dependent Variable: Thick
Angle: Omnidirectional

Current Model: Spherical

Parameter Estimates

Parameter Estimate
Approx

Std Error DF t Value
Approx
Pr > |t|

Nugget 0 0 8 . .

Scale 7.1914 0.2827 8 25.44 <.0001

Range 63.2351 4.1050 8 15.40 <.0001

The fit summary is displayed in Output 55.2.2. When compared to the corresponding result in the section
“Theoretical Semivariogram Model Fitting” on page 8922 in Chapter 109, “The VARIOGRAM Procedure,”
the goodness-of-fit criteria indicate a worse statistical fit for the spherical model compared to the Gaussian.
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Output 55.2.2 Spherical Model Fit Summary

Fit Summary

Model
Weighted

SSE AIC

Sph 52.26791 23.14336

Output 55.2.3 suggests an acceptable fit of the spherical model to the thick data set. Obviously, the fit
of the spherical model in the sensitive area near the semivariogram origin is less faithful to the empirical
semivariance than the Gaussian model. The following analysis explores the consequence in the kriging
prediction of this discrepancy.

Output 55.2.3 Fitted Spherical and Empirical Thick Semivariogram

For the next step, you run the KRIGE2D procedure by using the spherical model parameters stored in the
SemivStoreSph item store. You use the following statements:
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proc krige2d data=thick outest=pred2 noprint;
restore in=SemivStoreSph;
coordinates xc=East yc=North;
predict var=Thick r=60;
model storeselect;
grid x=0 to 100 by 10 y=0 to 100 by 10;

run;

Eventually, you compare the prediction results and errors of the two models. You use a DATA step to compute
the relative difference of the predicted values and the prediction error for each one of the Gaussian and the
spherical models. You store the prediction relative difference in the prdRelDiff variable and the prediction
relative error in the stdRelDiff variable. You save the output in the compare data set with the following
statements:

data compare;
merge pred1(rename=(estimate=g_prd stderr=g_std))

pred2(rename=(estimate=s_prd stderr=s_std));
prdRelDif = ((g_prd-s_prd) / s_prd) * 100;
stdRelDif = ((g_std-s_std) / s_std) * 100;

run;

The MEANS procedure uses the compare data set to produce statistics about the prediction relative difference
and error for each one of the prdRelDiff and stdRelDiff variables with the following statements:

proc means data=compare;
var prdRelDif stdRelDif;

run;

ods graphics off;

Output 55.2.4 shows that on average the predicted values are very close for the two semivariogram models.
The mean relative difference in the prediction values is close to zero with a low standard deviation, whereas
the relative difference values fluctuate with an absolute maximum of about 5%.

However, note that the mean relative standard error is about -96%. According to the definition of the
stdRelDiff variable, the high negative value indicates that the prediction error difference between the two
models is very close to the spherical model prediction error. Hence, the prediction standard error of the
spherical model is substantially larger than that of the Gaussian model. In fact, the prediction relative error
never gets smaller than about 66% for the two models, where the negative sign in the Minimum and Maximum
columns in Output 55.2.4 means that the prediction error is always greater for the spherical model.

Output 55.2.4 Comparison of Gaussian and Spherical Models

Effect of Model Specification on Prediction

The MEANS Procedure

Effect of Model Specification on Prediction

The MEANS Procedure

Variable N Mean Std Dev Minimum Maximum

prdRelDif
stdRelDif

121
121

-0.0544593
-96.2515099

1.3384023
5.9400029

-5.0751449
-99.8974418

5.1926236
-65.9275907
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Example 55.3: Data Quality and Prediction with Missing Values
Kriging methods depend primarily on your data. The quantity and quality of your observations are important
factors in minimizing prediction errors and increasing accuracy in your prediction analysis.

A typical aspect of data quality is measurement accuracy. In principle, the accuracy level of your data is
not a parameter in kriging prediction; kriging assumes by definition that your data are perfectly accurate
(hard) measurements. Whether you accept this assumption depends on your application. For example, an
instrumentation error of˙1% in the data values might be regarded as considerable in one case, whereas the
same level of uncertainty might be trivial within a different framework. Your experience and judgment are
crucial when you consider whether observations in a data set might be too noisy for kriging predictions to be
useful.

A second aspect of data quality involves the spatial arrangement of your observations. You need to have a
sufficient number of observations in order to perform spatial prediction. Also, a key element in minimizing
prediction errors is an adequate sampling density. Interpretation of the expressions “sufficient number” and
“adequate sampling” is again case-specific. In any event, you want enough measurements so that you can
deduce the underlying spatial correlation in the working domain; see also the discussion in the section
“Choosing the Size of Classes” on page 8973 in Chapter 109, “The VARIOGRAM Procedure.”

This example focuses on the effects of different sampling densities on the prediction analysis. The demonstra-
tion is a slight variation of the example in the section “Getting Started: KRIGE2D Procedure” on page 4125.
Specifically, you use the same correlation structure and prediction grid. However, the thick data set, is modi-
fied as follows: three values in the central area of the grid are assumed missing, namely the observation values
at locations s1 D .x1; y1/ D .55:8; 50:5/, s2 D .x2; y2/ D .52:8; 68:9/, and s3 D .x3; y3/ D .52:9; 32:7/.
These locations have been selected so that an extended area without observations is created in the domain.
The following DATA step is the input for the modified thick data set:

title 'Kriging Prediction in the Presence of Missing Values';

data thick;
input East North Thick @@;
label Thick='Coal Seam Thickness';
datalines;
0.7 59.6 34.1 2.1 82.7 42.2 4.7 75.1 39.5
4.8 52.8 34.3 5.9 67.1 37.0 6.0 35.7 35.9
6.4 33.7 36.4 7.0 46.7 34.6 8.2 40.1 35.4

13.3 0.6 44.7 13.3 68.2 37.8 13.4 31.3 37.8
17.8 6.9 43.9 20.1 66.3 37.7 22.7 87.6 42.8
23.0 93.9 43.6 24.3 73.0 39.3 24.8 15.1 42.3
24.8 26.3 39.7 26.4 58.0 36.9 26.9 65.0 37.8
27.7 83.3 41.8 27.9 90.8 43.3 29.1 47.9 36.7
29.5 89.4 43.0 30.1 6.1 43.6 30.8 12.1 42.8
32.7 40.2 37.5 34.8 8.1 43.3 35.3 32.0 38.8
37.0 70.3 39.2 38.2 77.9 40.7 38.9 23.3 40.5
39.4 82.5 41.4 43.0 4.7 43.3 43.7 7.6 43.1
46.4 84.1 41.5 46.7 10.6 42.6 49.9 22.1 40.7
51.0 88.8 42.0 52.8 68.9 . 52.9 32.7 .
55.5 92.9 42.2 56.0 1.6 42.7 60.6 75.2 40.1
62.1 26.6 40.1 63.0 12.7 41.8 69.0 75.6 40.1
70.5 83.7 40.9 70.9 11.0 41.7 71.5 29.5 39.8



4192 F Chapter 55: The KRIGE2D Procedure

78.1 45.5 38.7 78.2 9.1 41.7 78.4 20.0 40.8
80.5 55.9 38.7 81.1 51.0 38.6 83.8 7.9 41.6
84.5 11.0 41.5 85.2 67.3 39.4 85.5 73.0 39.8
86.7 70.4 39.6 87.2 55.7 38.8 88.1 0.0 41.6
88.4 12.1 41.3 88.4 99.6 41.2 88.8 82.9 40.5
88.9 6.2 41.5 90.6 7.0 41.5 90.7 49.6 38.9
91.5 55.4 39.0 92.9 46.8 39.1 93.4 70.9 39.7
55.8 50.5 . 96.2 84.3 40.3 98.2 58.2 39.5

;

ods graphics on;

NOTE: Here you assume prior knowledge of the correlation structure model, because its parameters are
based on the complete thick data set. A covariance model extracted from the incomplete set with the missing
values would be a covariance model coming from a different data set; hence, it is likely to have different
parameters.

After you define the modified data set, you run PROC KRIGE2D and request the OBSERVATIONS plot with
the SHOWMISSING suboption. You also request two instances of the PREDICTION plot: one that displays
the prediction surface and contours, and another that plots the kriging standard error surface and contours.
In both of these PREDICTION plots you specify that the observations be shown as gradient markers with
outlines. The following statements compute the kriged predictions and produce the requested graphics:

proc krige2d data=thick outest=predictions
plots(only)=(observ(showmissing)

pred(fill=pred line=pred obs=linegrad)
pred(fill=se line=se obs=linegrad));

coordinates xc=East yc=North;
predict var=Thick r=60;
model scale=7.4599 range=30.1111 form=gauss;
grid x=0 to 100 by 2.5 y=0 to 100 by 2.5;

run;

ods graphics off;

The number of observations table indicates the three missing values in Output 55.3.1.

Output 55.3.1 Number of Observations for the Modified thick Data Set

Kriging Prediction in the Presence of Missing Values

The KRIGE2D Procedure

Dependent Variable: Thick

Kriging Prediction in the Presence of Missing Values

The KRIGE2D Procedure

Dependent Variable: Thick

Number of Observations Read 75

Number of Observations Used 72
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Output 55.3.2 is a scatter plot of the modified observed data. The SHOWMISSING suboption produces
marks in the observations plot that conveniently indicate the locations s1, s2, and s3 of the missing values.
Consequently, Output 55.3.2 displays an extended area with no observed Thick values in the central part of
the domain.

Output 55.3.2 Scatter Plot of the Observations Spatial Distribution

Predictions at grid points with few neighboring data points rely heavily on the underlying covariance structure.
The covariance model has a range of about 30,000 feet, which suggests that within this range a grid point
might have no data neighbors at all and still obtain a prediction value on the basis of the correlation structure
alone. This type of behavior is demonstrated in the Output 55.3.3, which shows a circular region in the
center of the plot that has no data points. Predictions at the nodes in this area are mostly influenced by the
covariance structure.

You can see the impact of this effect on the predictions if you compare the prediction contours in the
Output 55.3.3 to the ones in Figure 55.4. Despite the contribution of the neighboring Thick data values to the
predictions within the area of no observations, the outcome is clearly altered by the absence of observations
at the locations s1, s2, and s3.
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Output 55.3.3 Surface Plot and Contours of Kriged Coal Seam Thickness

A noticeable difference is also apparent in the plot of the prediction standard errors. Output 55.3.4 displays
these errors, and you can compare it to the standard error surface in Figure 55.4. The comparison shows a
slight difference in the color gradient within the area of the missing data values. Output 55.3.4 uses standard
error contours to enhance the effect of this difference.

The lack of information from the removed data results in an increase of the prediction uncertainty at the grid
nodes that are most remotely situated from any observation in the central part of the domain. According to
Output 55.3.4, the standard error at these nodes is almost comparable to the error observed near the borders
of the domain, where the nodes of the prediction grid have relatively fewer data neighbors than other nodes
in the domain.



References F 4195

Output 55.3.4 Surface Plot and Contours of Prediction Standard Errors

On a side note, PREDICTION plots display only observations with nonmissing values, as the plots in
Output 55.3.3 and Output 55.3.4 demonstrate.
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Overview: LATTICE Procedure
The LATTICE procedure computes the analysis of variance and analysis of simple covariance for data from
an experiment with a lattice design. PROC LATTICE analyzes balanced square lattices, partially balanced
square lattices, and some rectangular lattices.

In balanced square lattices, the number of treatments is equal to the square of the number of units per block.
Incomplete blocks are grouped to form mutually orthogonal replications. The number of replicates in the
basic plan is always 1 plus the number of units per block.

Partially balanced square lattices are similar to balanced lattices, although the number of replicates can vary.
Partially balanced designs are constructed of the replicates in the basic plan, but not all replicates are included
the same number of times, and some might not be included at all.

In rectangular lattices, there are k units per block and k (k +1) treatments. As in square lattices, blocks
are grouped to form mutually orthogonal replicates in the basic plan. PROC LATTICE can analyze simple
rectangular lattices (two orthogonal replications) and triple rectangular lattices (three orthogonal replications).
The experiment can include several repetitions of the basic plan.

The LATTICE procedure determines from the data set which type of design has been used. It also checks to
see whether the design is valid and displays an appropriate message if it is not.
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Getting Started: LATTICE Procedure
An example of a balanced square design is an experiment to investigate the effects of nine diets on the growth
rate of pigs.

In some breeds of pigs, past experience has shown that a large part of the total variation in growth rates
between animals can be attributed to the litter. Therefore, this experiment is planned so that litter differences
do not contribute to the intrablock error.

First, the pigs are separated into sets of three litter-mates. Each block is assigned two sets of the three
litter-mates. In a given block, one pig from each set receives a diet. Therefore, the experimental unit is a pair
of pigs feeding in a particular pen on one of the nine diets. The response variable, growth rate, is the sum
of the growth rates for the two pigs in a particular pen. To get the adjusted diet mean per pig, the adjusted
treatment mean for the pen must be divided by 2.

The special numeric SAS variables named Group, Block, Treatment, and Rep must be used to define the
design. In this example, the Treatment variable ranges from 1 to 9 and indicates the particular diet. The Block
variable is 1, 2, or 3 and indicates the pen containing the two pigs. The Group variable ranges from 1 to 4
and specifies which replication within the basic plan includes the experimental unit. In this example, you
would not use the Rep variable since the entire basic plan is not replicated.

You can use the following DATA step and PROC LATTICE statement to analyze this experiment. The
response variable is Weight.

title 'Examining the Growth Rate of Pigs';

data Pigs;
input Group Block Treatment Weight @@;
datalines;

1 1 1 2.20 1 1 2 1.84 1 1 3 2.18 1 2 4 2.05 1 2 5 0.85
1 2 6 1.86 1 3 7 0.73 1 3 8 1.60 1 3 9 1.76
2 1 1 1.19 2 1 4 1.20 2 1 7 1.15 2 2 2 2.26 2 2 5 1.07
2 2 8 1.45 2 3 3 2.12 2 3 6 2.03 2 3 9 1.63
3 1 1 1.81 3 1 5 1.16 3 1 9 1.11 3 2 2 1.76 3 2 6 2.16
3 2 7 1.80 3 3 3 1.71 3 3 4 1.57 3 3 8 1.13
4 1 1 1.77 4 1 6 1.57 4 1 8 1.43 4 2 2 1.50 4 2 4 1.60
4 2 9 1.42 4 3 3 2.04 4 3 5 0.93 4 3 7 1.78
;

proc lattice data=Pigs;
var Weight;

run;

The SAS code produces the output shown in Figure 56.1.
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Figure 56.1 Output from Example LATTICE Procedure

Examining the Growth Rate of Pigs

The Lattice Procedure

Examining the Growth Rate of Pigs

The Lattice Procedure

Analysis of Variance for Weight

Source DF
Sum of

Squares
Mean

Square

Replications 3 0.07739 0.02580

Blocks within Replications (Adj.) 8 1.4206 0.1776

Component B 8 1.4206 0.1776

Treatments (Unadj.) 8 3.2261 0.4033

Intra Block Error 16 1.2368 0.07730

Randomized Complete Block Error 24 2.6574 0.1107

Total 35 5.9609 0.1703

Additional Statistics for Weight

Variance of Means in Same Block 0.04593

LSD at .01 Level 0.6259

LSD at .05 Level 0.4543

Efficiency Relative to RCBD 120.55

Adjusted
Treatment Means

for Weight

Treatment Mean

1 1.8035

2 1.7544

3 1.9643

4 1.7267

5 0.9393

6 1.8448

7 1.3870

8 1.4347

9 1.5004

Diet 3 yields the highest mean growth rate at 1.9643 pounds for the two pigs (0.9822 per pig), while diet
5 has the lowest rate at 0.9393 (0.4696 per pig). The efficiency of the experiment relative to a randomized
complete block design is 120.55 percent, so using the lattice design increased precision, producing more
accurate estimates of the treatment effects. The different elements of the LATTICE procedure’s output are
discussed in the “Displayed Output” on page 4202 section.
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Syntax: LATTICE Procedure
The following statements are available in the LATTICE procedure:

PROC LATTICE < options > ;
BY variables ;
VAR variables ;

Three specific numeric SAS variables, Group, Block, and Treatment, must be present in the data set to which
PROC LATTICE is applied. For compatibility with previous releases, the variable Treatment can alternatively
be named Treatmnt. A fourth numeric variable named Rep must be present when the design involves
repetition of the entire basic plan. (See the “Input Data Set” on page 4201 section for more information.)

Every numeric variable other than Group, Block, Treatment, or Rep in the input SAS data set may be
considered a response variable. A VAR statement tells PROC LATTICE that only the variables listed in the
VAR statement are to be considered response variables. If the VAR statement is omitted, then all numeric
variables, excluding Group, Block, Treatment, and Rep, are considered response variables. PROC LATTICE
performs an analysis for each response variable.

PROC LATTICE Statement
PROC LATTICE < options > ;

The PROC LATTICE statement invokes the LATTICE procedure.

DATA=SAS-data-set
names the SAS data set to be used by PROC LATTICE. If you omit the DATA= option, the most
recently created SAS data set is used.

COVARIANCE

COV
calculates sums of products for every possible pair of response variables. A sum of products is given
for each source of variation in the analysis of variance table. For each pair of response variables, the
one appearing later in the data set (or in the VAR statement) is the covariable.

BY Statement
BY variables ;

You can specify a BY statement with PROC LATTICE to obtain separate analyses of observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.
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• Specify the NOTSORTED or DESCENDING option in the BY statement for the LATTICE procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

VAR Statement
VAR variables ;

The VAR statement specifies the response variables. If you do not include a VAR statement, all numeric
variables in the data set are considered response variables (except Group, Block, Treatment, and Rep).

Details: LATTICE Procedure

Input Data Set
Four numeric SAS variables, Group, Block, Treatment, and Rep, are used in the input data set to define
the lattice design. The Group, Block, and Treatment variables are required in the data set to which PROC
LATTICE is applied. For compatibility with previous releases, the third variable can alternatively be named
Treatmnt. The Rep variable must be present when the design involves repetition of the entire basic plan.

Group specifies which orthogonal replication in the basic plan includes the experimental unit. Values
of Group must be 1; 2; : : : ; n, where n is the number of replicates in the basic plan.

Block specifies the block in which the experimental unit is present. Values of Block must be
1; 2; : : : ; m, where m is the number of blocks in a replication.

Treatment specifies which treatment was applied to the experimental unit. Values of Treatment must be
1; 2; : : : ; i , where i is the number of treatments in a replication.

Rep specifies which repetition of the basic plan includes the experimental unit. Values of Rep
must be 1; 2; : : : ; p , where p is the number of replications of the entire basic plan. Thus, the
experiment has a total of np replicates.

Missing Values
If a value of Group, Block, Treatment, or Rep is missing, the analysis is not performed and an appropriate
error message is displayed.
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If a value of a response variable is missing, this entire variable is dropped from the analysis. If other response
variables exist that do not have missing values, they are analyzed.

Displayed Output
For each response variable, PROC LATTICE displays the following

• an “Analysis of Variance” table and related statistics, including the following as separate sources of
variations:

– Replications

– Blocks within Replications (adjusted for treatments)

– Treatments (unadjusted)

– Intra-block Error

– Randomized Complete Block Error

The Blocks within Replications sum of squares is further broken down into “Component A” and
“Component B.” If there is no repetition of the basic plan, the Component B sum of squares is the
same as the Blocks within Replications sum of squares. If there is repetition of the basic plan, the
Component A sum of squares reflects the variation among blocks that contain the same treatments.

The source of variation called Randomized Complete Block Error is the sum of the Blocks within
Replications sum of squares and the Intra-block Error sum of squares. It is the appropriate error term if
the experimental design is a randomized complete block design, with the replications filling the roles
of complete blocks.

• two values for the Variance of Means. For some lattice designs, these are only approximations. The
first value is applicable when the two treatments appear in the same block; the other (when it appears)
applies when the two treatments never appear in the same block (a possibility in partially balanced and
rectangular designs).

• an Average of Variance. Except with small designs, it is sufficient to use this average variance of means
for tests between treatments (whether the two treatments appear in the same block or not); see Cochran
and Cox (1957).

• the Least Significant Differences (LSDs) at the 0.01 and 0.05 levels of significance, based on the
Average of Variance

• Efficiency Relative to RCBD, the efficiency of the lattice design relative to a randomized complete
block design. The efficiency is the ratio of the randomized complete block mean squared error to the
effective error variance; see Cochran and Cox (1957).

• the Adjusted Treatment Means. These are adjusted for blocks if the relative precision is greater than
105%.

When you specify the COVARIANCE option, PROC LATTICE produces sums of products and the mean
product for each source of variation in the analysis of variance table.
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ODS Table Names
PROC LATTICE assigns a name to each table it creates. You can use these names to reference the table when
using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed
in Table 56.1. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

Table 56.1 ODS Tables Produced by PROC LATTICE

ODS Table Name Description PROC LATTICE Option

ANOVA Analysis of variance default
AdjTreatmentMeans Adjusted treatment means default
Statistics Additional statistics default

Example: LATTICE Procedure

Example 56.1: Analysis of Variance through PROC LATTICE
In the following example, from Cochran and Cox (1957, p. 406), the data are yields (Yield) in bushels per acre
of 25 varieties (Treatment) of soybeans. The data are collected in two replications (Group) of 25 varieties in
five blocks (Block) containing five varieties each. This is an example of a partially balanced square lattice
design.

data Soy(drop=plot);
do Group = 1 to 2;

do Block = 1 to 5;
do Plot = 1 to 5;

input Treatment Yield @@;
output;

end;
end;

end;
datalines;

1 6 2 7 3 5 4 8 5 6 6 16 7 12 8 12 9 13 10 8
11 17 12 7 13 7 14 9 15 14 16 18 17 16 18 13 19 13 20 14
21 14 22 15 23 11 24 14 25 14 1 24 6 13 11 24 16 11 21 8
2 21 7 11 12 14 17 11 22 23 3 16 8 4 13 12 18 12 23 12
4 17 9 10 14 30 19 9 24 23 5 15 10 15 15 22 20 16 25 19

;

proc lattice data=Soy;
run;

The results from these statements are shown in Output 56.1.1.
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Output 56.1.1 Displayed Output from PROC LATTICE

The Lattice ProcedureThe Lattice Procedure

Analysis of Variance for Yield

Source DF
Sum of

Squares
Mean

Square

Replications 1 212.18 212.18

Blocks within Replications (Adj.) 8 501.84 62.7300

Component B 8 501.84 62.7300

Treatments (Unadj.) 24 559.28 23.3033

Intra Block Error 16 218.48 13.6550

Randomized Complete Block Error 24 720.32 30.0133

Total 49 1491.78 30.4445

Additional Statistics for Yield

Variance of Means in Same Block 15.7915

Variance of Means in Different Bloc 17.9280

Average of Variance 17.2159

LSD at .01 Level 12.1189

LSD at .05 Level 8.7959

Efficiency Relative to RCBD 174.34
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Output 56.1.1 continued

Adjusted
Treatment Means

for Yield

Treatment Mean

1 19.0681

2 16.9728

3 14.6463

4 14.7687

5 12.8470

6 13.1701

7 9.0748

8 6.7483

9 8.3707

10 8.4489

11 23.5511

12 12.4558

13 12.6293

14 20.7517

15 19.3299

16 12.6224

17 10.5272

18 10.7007

19 7.3231

20 11.4013

21 11.6259

22 18.5306

23 12.2041

24 17.3265

25 15.4048

The efficiency of the experiment relative to a randomized complete block design is 174.34%. Precision is
gained using the lattice design via the recovery of intra-block error information, enabling more accurate
estimates of the treatment effects. Variety 8 of soybean had the lowest adjusted treatment mean (6.7483
bushels per acre), while variety 11 of soybean had the highest adjusted treatment mean (23.5511 bushels per
acre).



4206 F Chapter 56: The LATTICE Procedure

References

Cochran, W. G. and Cox, G. M. (1957), Experimental Designs, 2nd Edition, New York: John Wiley & Sons.

Comstock, R. E., Peterson, W. J., and Stewart, H. A. (1948), “An Application of the Balanced Lattice Design
in a Feeding Trial with Swine,” Journal of Animal Science, 7, 320–331.

Cornelius, P. L. (1983), “Lattice Designs,” in S. Kotz, N. L. Johnson, and C. B. Read, eds., Encyclopedia of
Statistical Sciences, volume 4, 510–518, New York: John Wiley & Sons.

Robinson, H. F. and Watson, G. S. (1949), Analysis of Simple and Triple Rectangular Designs, Technical
Report 88, North Carolina Agricultural Experiment Station.



Chapter 57

The LIFEREG Procedure

Contents
Overview: LIFEREG Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4208
Getting Started: LIFEREG Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4211

Modeling Right-Censored Failure Time Data . . . . . . . . . . . . . . . . . . . . . . 4211
Bayesian Analysis of Right-Censored Data . . . . . . . . . . . . . . . . . . . . . . . 4215

Syntax: LIFEREG Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4222
PROC LIFEREG Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4223
BAYES Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4225
BY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4235
CLASS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4235
EFFECTPLOT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4236
ESTIMATE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4237
INSET Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4238
LSMEANS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4240
LSMESTIMATE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4241
MODEL Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4242
OUTPUT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4247
PROBPLOT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4249
SLICE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4260
STORE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4260
TEST Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4260
WEIGHT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4260

Details: LIFEREG Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4261
Missing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4261
Model Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4261
Computational Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4261
Supported Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4263
Predicted Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4267
Confidence Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4268
Fit Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4269
Probability Plotting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4270
INEST= Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4275
OUTEST= Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4276
XDATA= Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4277
Computational Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4277
Bayesian Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4278
Displayed Output for Classical Analysis . . . . . . . . . . . . . . . . . . . . . . . . 4281



4208 F Chapter 57: The LIFEREG Procedure

Displayed Output for Bayesian Analysis . . . . . . . . . . . . . . . . . . . . . . . . 4282
ODS Table Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4284
ODS Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4286

Examples: LIFEREG Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4287
Example 57.1: Motorette Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4287
Example 57.2: Computing Predicted Values for a Tobit Model . . . . . . . . . . . . . 4292
Example 57.3: Overcoming Convergence Problems by Specifying Initial Values . . . 4296
Example 57.4: Analysis of Arbitrarily Censored Data with Interaction Effects . . . . 4301
Example 57.5: Probability Plotting—Right Censoring . . . . . . . . . . . . . . . . . 4306
Example 57.6: Probability Plotting—Arbitrary Censoring . . . . . . . . . . . . . . . 4308
Example 57.7: Bayesian Analysis of Clinical Trial Data . . . . . . . . . . . . . . . . 4311
Example 57.8: Model Postfitting Analysis . . . . . . . . . . . . . . . . . . . . . . . 4320

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4325

Overview: LIFEREG Procedure
The LIFEREG procedure fits parametric models to failure time data that can be uncensored, right censored,
left censored, or interval censored. The models for the response variable consist of a linear effect composed of
the covariates and a random disturbance term. The distribution of the random disturbance can be taken from
a class of distributions that includes the extreme value, normal, logistic, and, by using a log transformation,
the exponential, Weibull, lognormal, log-logistic, and three-parameter gamma distributions.

The model assumed for the response y is

y D Xˇ C ��

where y is a vector of response values, often the log of the failure times, X is a matrix of covariates or
independent variables (usually including an intercept term), ˇ is a vector of unknown regression parameters,
� is an unknown scale parameter, and � is a vector of errors assumed to come from a known distribution
(such as the standard normal distribution). If an offset variable O is specified, the form of the model is
y D XˇCOC ��, where O is a vector of values of the offset variable O. The distribution might also depend
on additional shape parameters. These models are equivalent to accelerated failure time models when the
log of the response is the quantity being modeled. The effect of the covariates in an accelerated failure time
model is to change the scale, and not the location, of a baseline distribution of failure times.

The LIFEREG procedure estimates the parameters by maximum likelihood with a Newton-Raphson algorithm.
PROC LIFEREG estimates the standard errors of the parameter estimates from the inverse of the observed
information matrix.

The accelerated failure time model assumes that the effect of independent variables on an event time
distribution is multiplicative on the event time. Usually, the scale function is exp.x0cˇc/, where xc is the
vector of covariate values (not including the intercept term) and ˇc is a vector of unknown parameters.
Thus, if T0 is an event time sampled from the baseline distribution corresponding to values of zero for the
covariates, then the accelerated failure time model specifies that, if the vector of covariates is xc , the event
time is T D exp.x0cˇc/T0. If y D log.T / and y0 D log.T0/, then

y D x0cˇc C y0
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This is a linear model with y0 as the error term.

In terms of survival or exceedance probabilities, this model is

Pr.T > t j xc/ D Pr.T0 > exp.�x0cˇc/t/

The probability on the left-hand side of the equal sign is evaluated given the value xc for the covariates,
and the right-hand side is computed using the baseline probability distribution but at a scaled value of the
argument. The right-hand side of the equation represents the value of the baseline survival function evaluated
at exp.�x0cˇc/t .

Models usually have an intercept parameter and a scale parameter. In terms of the original untransformed
event times, the effects of the intercept term and the scale term are to scale the event time and to raise the
event time to a power, respectively. That is, if

log.T0/ D �C � log.T�/

then

T0 D exp.�/T ��

Although it is possible to fit these models to the original response variable by using the NOLOG option, it is
more common to model the log of the response variable. Because of this log transformation, zero values for
the observed failure times are not allowed unless the NOLOG option is specified. Similarly, small values for
the observed failure times lead to large negative values for the transformed response. The NOLOG option
should be used only if you want to fit a distribution appropriate for the untransformed response, such as the
extreme value instead of the Weibull. If you specify the normal or logistic distributions, the responses are not
log transformed; that is, the NOLOG option is implicitly assumed.

Parameter estimates for the normal distribution are sensitive to large negative values, and care must be taken
that the fitted model is not unduly influenced by them. Large negative values for the normal distribution can
occur when fitting the lognormal distribution by log transforming the response, and some response values
are near zero. Likewise, values that are extremely large after the log transformation have a strong influence
in fitting the Weibull distribution (that is, the extreme value distribution for log responses). You should
examine the residuals and check the effects of removing observations with large residuals or extreme values
of covariates on the model parameters. The logistic distribution gives robust parameter estimates in the sense
that the estimates have a bounded influence function.

The standard errors of the parameter estimates are computed from large sample normal approximations by
using the observed information matrix. In small samples, these approximations might be poor. See Lawless
(2003) for additional discussion and references. You can sometimes construct better confidence intervals
by transforming the parameters. For example, large sample theory is often more accurate for log.�/ than � .
Therefore, it might be more accurate to construct confidence intervals for log.�/ and transform these into
confidence intervals for � . The parameter estimates and their estimated covariance matrix are available in an
output SAS data set and can be used to construct additional tests or confidence intervals for the parameters.
Alternatively, tests of parameters can be based on log-likelihood ratios. See Cox and Oakes (1984) for a
discussion of the merits of some possible test methods including score, Wald, and likelihood ratio tests.
Likelihood ratio tests are generally more reliable for small samples than tests based on the information matrix.

The log-likelihood function is computed using the log of the failure time as a response. This log likelihood
differs from the log likelihood obtained using the failure time as the response by an additive term of

P
log.ti /,
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where the sum is over the uncensored failure times. This term does not depend on the unknown parameters
and does not affect parameter or standard error estimates. However, many published values of log likelihoods
use the failure time as the basic response variable and, hence, differ by the additive term from the value
computed by the LIFEREG procedure.

The classic Tobit model also fits into this class of models but with data usually censored on the left. The
data considered by Tobin (1958) in his original paper came from a survey of consumers where the response
variable is the ratio of expenditures on durable goods to the total disposable income. The two explanatory
variables are the age of the head of household and the ratio of liquid assets to total disposable income.
Because many observations in this data set have a value of zero for the response variable, the model fit by
Tobin is

y D max.x0ˇ C �; 0/

which is a regression model with left censoring, where x0 D .1; x0c/:

Bayesian analysis of parametric survival models can be requested by using the BAYES statement in the
LIFEREG procedure. In Bayesian analysis, the model parameters are treated as random variables, and
inference about parameters is based on the posterior distribution of the parameters, given the data. The
posterior distribution is obtained using Bayes’ theorem as the likelihood function of the data weighted
with a prior distribution. The prior distribution enables you to incorporate knowledge or experience of
the likely range of values of the parameters of interest into the analysis. If you have no prior knowledge
of the parameter values, you can use a noninformative prior distribution, and the results of the Bayesian
analysis will be very similar to a classical analysis based on maximum likelihood. A closed form of the
posterior distribution is often not feasible, and a Markov chain Monte Carlo method by Gibbs sampling is
used to simulate samples from the posterior distribution. See Chapter 7, “Introduction to Bayesian Analysis
Procedures,” for an introduction to the basic concepts of Bayesian statistics. Also see the section “Bayesian
Analysis: Advantages and Disadvantages” on page 130 in Chapter 7, “Introduction to Bayesian Analysis
Procedures,” for a discussion of the advantages and disadvantages of Bayesian analysis. See Ibrahim, Chen,
and Sinha (2001) and Gilks, Richardson, and Spiegelhalter (1996) for more information about Bayesian
analysis, including guidance in choosing prior distributions.

For Bayesian analysis, PROC LIFEREG generates a Gibbs chain for the posterior distribution of the
model parameters. Summary statistics (mean, standard deviation, quartiles, HPD and credible intervals,
correlation matrix) and convergence diagnostics (autocorrelations; Gelman-Rubin, Geweke, Raftery-Lewis,
and Heidelberger and Welch tests; and the effective sample size) are computed for each parameter, as well
as the correlation matrix of the posterior sample. Trace plots, posterior density plots, and autocorrelation
function plots that are created using ODS Graphics are also provided for each parameter.

The LIFEREG procedure uses ODS Graphics to create graphs as part of its output. For general information
about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.”
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Getting Started: LIFEREG Procedure
The following examples demonstrate how you can use the LIFEREG procedure to fit a parametric model to
failure time data.

Suppose you have a response variable y that represents failure time; a binary variable, censor, with censor=0
indicating censored values; and two linearly independent variables, x1 and x2. The following statements
perform a typical accelerated failure time model analysis. Higher-order effects such as interactions and nested
effects are allowed in the independent variables list, but they are not shown in this example.

proc lifereg;
model y*censor(0) = x1 x2;

run;

PROC LIFEREG can fit models to interval-censored data. The syntax for specifying interval-censored data is
as follows:

proc lifereg;
model (begin, end) = x1 x2;

run;

You can also model binomial data by using the events/trials syntax for the response, as illustrated in the
following statements:

proc lifereg;
model r/n=x1 x2;

run;

The variable n represents the number of trials, and the variable r represents the number of events.

Modeling Right-Censored Failure Time Data
The following example demonstrates how you can use the LIFEREG procedure to fit a model to right-censored
failure time data.

Suppose you conduct a study of two headache pain relievers. You divide patients into two groups, with each
group receiving a different type of pain reliever. You record the time taken (in minutes) for each patient to
report headache relief. Because some of the patients never report relief for the entire study, some of the
observations are censored.

The following DATA step creates the SAS data set headache:
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data Headache;
input Minutes Group Censor @@;
datalines;

11 1 0 12 1 0 19 1 0 19 1 0
19 1 0 19 1 0 21 1 0 20 1 0
21 1 0 21 1 0 20 1 0 21 1 0
20 1 0 21 1 0 25 1 0 27 1 0
30 1 0 21 1 1 24 1 1 14 2 0
16 2 0 16 2 0 21 2 0 21 2 0
23 2 0 23 2 0 23 2 0 23 2 0
25 2 1 23 2 0 24 2 0 24 2 0
26 2 1 32 2 1 30 2 1 30 2 0
32 2 1 20 2 1
;

The data set Headache contains the variable Minutes, which represents the reported time to headache relief;
the variable Group, the group to which the patient is assigned; and the variable Censor, a binary variable
indicating whether the observation is censored. Valid values of the variable Censor are 0 (no) and 1 (yes).
Figure 57.1 shows the first five records of the data set Headache.

Figure 57.1 Headache Data

Obs Minutes Group Censor

1 11 1 0

2 12 1 0

3 19 1 0

4 19 1 0

5 19 1 0

The following statements invoke the LIFEREG procedure:

proc lifereg data=Headache;
class Group;
model Minutes*Censor(1)=Group;
output out=New cdf=Prob;

run;

The CLASS statement specifies the variable Group as the classification variable. The MODEL statement
syntax indicates that the response variable Minutes is right censored when the variable Censor takes the
value 1. The MODEL statement specifies the variable Group as the single explanatory variable. Because the
MODEL statement does not specify the DISTRIBUTION= option, the LIFEREG procedure fits the default
type 1 extreme-value distribution by using log.Minutes/ as the response. This is equivalent to fitting the
Weibull distribution.

The OUTPUT statement creates the output data set New. In addition to containing the variables in the original
data set Headache, the SAS data set New also contains the variable Prob. This new variable is created by
the CDF= option to contain the estimates of the cumulative distribution function evaluated at the observed
response.
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The results of this analysis are displayed in the following figures.

Figure 57.2 Model Fitting Information from the LIFEREG Procedure

The LIFEREG ProcedureThe LIFEREG Procedure

Model Information

Data Set WORK.HEADACHE

Dependent Variable Log(Minutes)

Censoring Variable Censor

Censoring Value(s) 1

Number of Observations 38

Noncensored Values 30

Right Censored Values 8

Left Censored Values 0

Interval Censored Values 0

Number of Parameters 3

Name of Distribution Weibull

Log Likelihood -9.37930239

Class Level
Information

Name Levels Values

Group 2 1 2

Figure 57.2 displays the class level information and model fitting information. There are 30 uncensored
observations and 8 right-censored observations. The log likelihood for the Weibull distribution is –9.3793.
The log-likelihood value can be used to compare the goodness of fit for nested models with different
covariates, but with the same distribution.

Figure 57.3 Model Fit Statistics from the LIFEREG Procedure

Fit Statistics

-2 Log Likelihood 18.759

AIC (smaller is better) 24.759

AICC (smaller is better) 25.464

BIC (smaller is better) 29.671

Fit Statistics (Unlogged Response)

-2 Log Likelihood 199.747

Weibull AIC (smaller is better) 205.747

Weibull AICC (smaller is better) 206.453

Weibull BIC (smaller is better) 210.660

Figure 57.3 displays fit statistics for the model. The “Fit Statistics” table displays statistics based on the
maximum extreme-value log likelihood fit by using log.Minutes/ as the response. These statistics are useful
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in comparing the fit of a different model when the fit criteria from the model that you compare is also based
on the log likelihood using log.Minutes/ as the response.

The “Fit Statistics (Unlogged Response)” table is based on the maximum Weibull log likelihood using
Minutes as the response. The AIC, BIC, and AICC statistics in this table can be used to compare models
with different covariates, in addition to models with different distributions, as long as the fit statistics for the
models that you compare use Minutes as the response.

Figure 57.4 Model Parameter Estimates from the LIFEREG Procedure

Analysis of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Intercept 1 3.3091 0.0589 3.1938 3.4245 3161.70 <.0001

Group 1 1 -0.1933 0.0786 -0.3473 -0.0393 6.05 0.0139

Group 2 0 0.0000 . . . . .

Scale 1 0.2122 0.0304 0.1603 0.2809

Weibull Shape 1 4.7128 0.6742 3.5604 6.2381

The table of parameter estimates is displayed in Figure 57.4. Both the intercept and the slope parameter for
the variable group are significantly different from 0 at the 0.05 level. Because the variable group has only
one degree of freedom, parameter estimates are given for only one level of the variable group (group=1).
However, the estimate for the intercept parameter provides a baseline for group=2.

The resulting model is as follows:

log.minutes/ D
�
3:30911843 � 0:1933025 for group D 1
3:30911843 for group D 2

Note that the Weibull shape parameter for this model is the reciprocal of the extreme-value scale parameter
estimate shown in Figure 57.4 (1=0:21219 D 4:7128).

The following statements produce a graph of the cumulative distribution values versus the variable Minutes.

proc sgplot data=New;
scatter x=Minutes y=Prob / group=Group;
discretelegend;

run;
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Figure 57.5 displays the estimated cumulative distribution function values contained in the output data set
New for each group.

Figure 57.5 Plot of the Estimated Cumulative Distribution Function

Bayesian Analysis of Right-Censored Data
Nelson (1982) describes a study of the lifetimes of locomotive engine fans. This example shows how to
use PROC LIFEREG to carry out a Bayesian analysis of the engine fan data. In this example, a lognormal
distribution is used to model the engine lifetimes, but other survival time distributions, such as the Weibull,
can also be used.
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The following SAS statements create the SAS data set Fan. This data set contains a censoring indicator
variable and right-censored survival times for the 70 locomotive engine fans in the study.

data Fan;
input Lifetime Censor@@;
datalines;

450 0 460 1 1150 0 1150 0 1560 1
1600 0 1660 1 1850 1 1850 1 1850 1
1850 1 1850 1 2030 1 2030 1 2030 1
2070 0 2070 0 2080 0 2200 1 3000 1
3000 1 3000 1 3000 1 3100 0 3200 1
3450 0 3750 1 3750 1 4150 1 4150 1
4150 1 4150 1 4300 1 4300 1 4300 1
4300 1 4600 0 4850 1 4850 1 4850 1
4850 1 5000 1 5000 1 5000 1 6100 1
6100 0 6100 1 6100 1 6300 1 6450 1
6450 1 6700 1 7450 1 7800 1 7800 1
8100 1 8100 1 8200 1 8500 1 8500 1
8500 1 8750 1 8750 0 8750 1 9400 1
9900 1 10100 1 10100 1 10100 1 11500 1
;

Some of the fans had not failed at the time the data were collected, and the unfailed units have right-censored
lifetimes. The variable Lifetime represents either a failure time or a censoring time. The variable Censor is
equal to 0 if the value of Lifetime is a failure time, and it is equal to 1 if the value is a censoring time.

The following SAS statements specify a Bayesian analysis that uses a lognormal model for the engine
lifetimes. There are no covariates, so the model is an intercept-only model. The OUTPOST= option saves
the samples from the posterior distribution in the SAS data set Post for further processing.

ods graphics on;
proc lifereg data=Fan;

model Lifetime*Censor( 1 )= / dist=lognormal;
bayes seed=1 outpost=Post;

run;
ods graphics off;

The SEED= option is specified to maintain reproducibility; no other options are specified in the BAYES
statement. By default, a uniform prior distribution is assumed for the intercept coefficient. The uniform
prior is a flat prior on the real line with a distribution that reflects ignorance of the location of the parameter,
placing equal probability on all possible values the regression coefficient can take. Using the uniform prior
in the following example, you would expect the Bayesian estimates to resemble the classical results of
maximizing the likelihood. If you can elicit an informative prior on the regression coefficients, you should
use the COEFFPRIOR= option to specify it. A default noninformative gamma prior is used for the lognormal
scale parameter � .

You should make sure that the posterior distribution samples have achieved convergence before using them
for Bayesian inference. If you do not specify additional options, PROC LIFEREG produces by default three
convergence diagnostics: autocorrelations of the posterior sample, effective sample size, and the Geweke
statistic. See the section “Assessing Markov Chain Convergence” on page 137 in Chapter 7, “Introduction to
Bayesian Analysis Procedures,” for information about assessing the convergence of the chain of posterior
samples. Trace plots, posterior density plots, and autocorrelation function plots that are created using ODS
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Graphics are also provided for each parameter. See the section “Visual Analysis via Trace Plots” on page 137
in Chapter 7, “Introduction to Bayesian Analysis Procedures,” for help in interpreting these plots.

The “Analysis of Maximum Likelihood Parameter Estimates” table in Figure 57.6 summarizes maximum
likelihood estimates of the lognormal intercept and scale parameters.

Figure 57.6 Maximum Likelihood Estimates from the LIFEREG Procedure

The LIFEREG Procedure

Bayesian Analysis

The LIFEREG Procedure

Bayesian Analysis

Analysis of Maximum Likelihood Parameter
Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits

Intercept 1 10.1432 0.5211 9.1219 11.1646

Scale 1 1.6796 0.3893 1.0664 2.6453

Since no prior distribution for the intercept was specified, the default uniform improper distribution shown in
the “Uniform Prior for Regression Coefficients” table in Figure 57.7 is used.

Noninformative prior distributions are appropriate if you have no prior knowledge of the likely range of
values of the parameters, and if you want to make probability statements about the parameters or functions of
the parameters. Refer, for example, to Ibrahim, Chen, and Sinha (2001) for more information about choosing
prior distributions.

The default noninformative gamma prior distribution for the lognormal scale parameter is shown in the
“Independent Prior Distributions for Model Parameters” table in Figure 57.7.

Figure 57.7 Noninformative Prior Distributions

The LIFEREG Procedure

Bayesian Analysis

The LIFEREG Procedure

Bayesian Analysis

Uniform Prior for
Regression
Coefficients

Parameter Prior

Intercept Constant

Independent Prior Distributions for Model Parameters

Parameter
Prior
Distribution Hyperparameters

Scale Gamma Shape 0.001 Inverse Scale 0.001
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By default, posterior mode estimates of the model parameters are used as the starting value for the simulation.
These are listed in the “Initial Values of the Chain” table in Figure 57.8.

Figure 57.8 Markov Chain Initial Values

Initial Values of the Chain

Chain Seed Intercept Scale

1 1 10.0501 1.59544

Summary statistics for the posterior sample are displayed in the “Fit Statistics,” “Descriptive Statistics for the
Posterior Sample,” “Interval Statistics for the Posterior Sample,” and “Posterior Correlation Matrix” tables
in Figure 57.9. Since noninformative prior distributions were used, these results are consistent with the
maximum likelihood estimates shown in Figure 57.6.

Figure 57.9 Posterior Sample Summary Statistics

Fit Statistics

DIC (smaller is better) 87.245

pD (effective number of parameters) 1.823

The LIFEREG Procedure

Bayesian Analysis

The LIFEREG Procedure

Bayesian Analysis

Posterior Summaries

Percentiles

Parameter N Mean
Standard
Deviation 25% 50% 75%

Intercept 10000 10.4196 0.6172 9.9670 10.3259 10.7959

Scale 10000 1.9196 0.4809 1.5675 1.8476 2.1931

Posterior Intervals

Parameter Alpha
Equal-Tail

Interval HPD Interval

Intercept 0.050 9.4477 11.8994 9.3216 11.6752

Scale 0.050 1.1906 3.0570 1.1104 2.8834

Posterior Correlation
Matrix

Parameter Intercept Scale

Intercept 1.0000 0.8297

Scale 0.8297 1.0000
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By default, PROC LIFEREG computes three convergence diagnostics: the lag1, lag5, lag10, and lag50
autocorrelations; the Geweke diagnostic; and the effective sample size. These are displayed in Figure 57.10.
There is no indication that the Markov chain has not converged. See the section “Assessing Markov
Chain Convergence” on page 137 in Chapter 7, “Introduction to Bayesian Analysis Procedures,” for more
information about convergence diagnostics and their interpretation.

Figure 57.10 Posterior Sample Summary Statistics

The LIFEREG Procedure

Bayesian Analysis

The LIFEREG Procedure

Bayesian Analysis

Posterior Autocorrelations

Parameter Lag 1 Lag 5 Lag 10 Lag 50

Intercept 0.6973 0.1765 0.0190 -0.0017

Scale 0.6955 0.1713 0.0172 -0.0002

Geweke Diagnostics

Parameter z Pr > |z|

Intercept -0.9183 0.3585

Scale -0.9233 0.3559

Effective Sample Sizes

Parameter ESS
Autocorrelation

Time Efficiency

Intercept 1772.8 5.6408 0.1773

Scale 1805.0 5.5400 0.1805

Summary statistics of the posterior distribution samples are produced by default. However, these statistics
might not be sufficient for carrying out your Bayesian inference. The samples from the posterior distribution
saved in the SAS data set Post created with the OUTPOST= option can be used for further analysis.
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Trace, autocorrelation, and density plots for the three model parameters shown in Figure 57.11 and Fig-
ure 57.12 are useful in diagnosing whether the Markov chain of posterior samples has converged. These
plots show no evidence that the chain has not converged. See the section “Visual Analysis via Trace Plots”
on page 137 in Chapter 7, “Introduction to Bayesian Analysis Procedures,” for more information about
interpreting these types of diagnostic plots.

Figure 57.11 Diagnostic Plots
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Figure 57.12 Diagnostic Plots

The fraction failing in the first 8000 hours of operation might be a quantity of interest. This kind of
information could be useful, for example, in determining whether to improve the reliability of the engine
components due to warranty considerations. The following SAS statements compute the mean and percentiles
of the distribution of the fraction failing in the first 8000 hours from the posterior sample data set Post:

data Prob;
set Post;
Frac = ProbNorm(( log(8000) - Intercept ) / Scale );
label Frac= 'Fraction Failing in 8000 Hours';

run;

proc means data = Prob(keep=Frac) n mean p10 p25 p50 p75 p90;
run;
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The mean fraction of failures in the first 8000 hours, shown in Figure 57.13, is about 0.24, which could be
used in further analysis of warranty costs. The 10th percentile is about 0.16 and the 90th percentile is about
0.32, which gives an assessment of the probable range of the fraction failing in the first 8000 hours.

Figure 57.13 Fraction Failing in 8000 Hours

The MEANS ProcedureThe MEANS Procedure

Analysis Variable : Frac Fraction Failing in 8000 Hours

N Mean 10th Pctl 25th Pctl 50th Pctl 75th Pctl 90th Pctl

10000 0.2381467 0.1628591 0.1953691 0.2336756 0.2766051 0.3190883

Syntax: LIFEREG Procedure
The following statements are available in the LIFEREG procedure:

PROC LIFEREG < options > ;
BAYES < options > ;
BY variables ;
CLASS variables ;
ESTIMATE < 'label ' > estimate-specification < (divisor=n) >

< , . . . < 'label ' > estimate-specification < (divisor=n) > > < / options > ;
EFFECTPLOT < plot-type < (plot-definition-options) > > < / options > ;
INSET < keyword-list > < / options > ;
LSMEANS < model-effects > < / options > ;
LSMESTIMATE model-effect < 'label ' > values < (divisor=n) >

< , . . . < 'label ' > values < (divisor=n) > > < / options > ;
MODEL response = < effects > < / options > ;
OUTPUT < OUT=SAS-data-set > < keyword=name . . . keyword=name > < options > ;
PROBPLOT < / options > ;
SLICE model-effect < / options > ;
STORE < OUT= >item-store-name < / LABEL='label ' > ;
TEST < model-effects > < / options > ;
WEIGHT variable ;

The MODEL statement is required; it specifies both the variables that are used in the regression part of the
model and the distribution that is used for the error (random) component of the model. Each invocation of the
LIFEREG procedure can use only one MODEL statement. If multiple MODEL statements are present, only
the last is used. You can specify main effects and interaction terms in the MODEL statement, as in the GLM
procedure. You can specify initial values in the MODEL statement or in an INEST= data set. If no initial
values are specified, the starting estimates are obtained by ordinary least squares. The CLASS statement
determines which explanatory variables are treated as categorical. The WEIGHT statement identifies a
variable with values that are used to weight the observations. Observations with zero or negative weights
are not used to fit the model, although predicted values can be computed for them. The OUTPUT statement
creates an output data set that contains predicted values and residuals.
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The ESTIMATE, EFFECTPLOT, LSMEANS, LSMESTIMATE, SLICE, STORE, and TEST statements are
common to many procedures. Summary descriptions of functionality and syntax for these statements are
also given after the PROC LIFEREG statement in alphabetical order, and full documentation about them is
available in Chapter 19, “Shared Concepts and Topics.”

PROC LIFEREG Statement
PROC LIFEREG < options > ;

The PROC LIFEREG statement invokes the LIFEREG procedure. Table 57.1 summarizes the options
available in the PROC LIFEREG statement.

Table 57.1 PROC LIFEREG Statement Options

Option Description

COVOUT Writes the estimated covariance matrix to the OUTEST= data set
DATA= Specifies the input SAS data set
GOUT= Specifies a graphics catalog
INEST= Specifies an input SAS data set that contains initial estimates
NAMELEN= Specifies the length of effect names
NOPRINT Suppresses the display of the output
ORDER= Specifies the sort order for the levels of the classification variables
OUTEST= Specifies an output SAS data set
PLOTS= Controls graphics created by ODS Graphics
XDATA= Specifies a SAS input data containing values for the independent variables

You can specify the following options in the PROC LIFEREG statement.

COVOUT
writes the estimated covariance matrix to the OUTEST= data set if convergence is attained.

DATA=SAS-data-set
specifies the input SAS data set used by PROC LIFEREG. By default, the most recently created SAS
data set is used.

GOUT=graphics-catalog
specifies a graphics catalog in which to save graphics output.

INEST=SAS-data-set
specifies an input SAS data set that contains initial estimates for all the parameters in the model. See
the section “INEST= Data Set” on page 4275 for a detailed description of the contents of the INEST=
data set.
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NAMELEN=n
specifies the length of effect names in tables and output data sets to be n characters, where n is a value
between 20 and 200. The default length is 20 characters.

NOPRINT
suppresses the display of the output. Note that this option temporarily disables the Output Delivery
System (ODS). For more information, see Chapter 20, “Using the Output Delivery System.”

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of the classification variables (which are specified in the CLASS
statement).

This option applies to the levels for all classification variables, except when you use the (default)
ORDER=FORMATTED option with numeric classification variables that have no explicit format. In
that case, the levels of such variables are ordered by their internal value.

The ORDER= option can take the following values:

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set

FORMATTED External formatted value, except for numeric variables with
no explicit format, which are sorted by their unformatted
(internal) value

FREQ Descending frequency count; levels with the most observa-
tions come first in the order

INTERNAL Unformatted value

By default, ORDER=FORMATTED. For ORDER=FORMATTED and ORDER=INTERNAL, the sort
order is machine-dependent.

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

OUTEST=SAS-data-set
specifies an output SAS data set containing the parameter estimates, the maximized log likelihood,
and, if the COVOUT option is specified, the estimated covariance matrix. See the section “OUTEST=
Data Set” on page 4276 for a detailed description of the contents of the OUTEST= data set.

PLOTS=NONE | PROBPLOT
specifies options that control graphics created by ODS Graphics.
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ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;

proc lifereg plots=probplot;
model y = x;

run;

ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The following plot-requests are available.

NONE suppresses any plots created by ODS Graphics specified in other
LIFEREG statements, such as the BAYES or PROBPLOT state-
ment.

PROBPLOT creates a default probability plot based on information in the
MODEL statement. If a PROBPLOT option is also specified, the
probability plot specified in the PROBPLOT statement is created,
and this option is ignored.

XDATA=SAS-data-set
specifies an input SAS data set that contains values for all the independent variables in the MODEL
statement and variables in the CLASS statement for probability plotting. If there are covariates
specified in a MODEL statement and a probability plot is requested with a PROBPLOT statement,
you specify fixed values for the effects in the MODEL statement with the XDATA= data set. See the
section “XDATA= Data Set” on page 4277 for a detailed description of the contents of the XDATA=
data set.

BAYES Statement
BAYES < options > ;

The BAYES statement requests a Bayesian analysis of the regression model by using Gibbs sampling. The
Bayesian posterior samples (also known as the chain) for the regression parameters are not tabulated. The
Bayesian posterior samples (also known as the chain) for the model parameters can be output to a SAS data
set.

Table 57.2 summarizes the options available in the BAYES statement.

Table 57.2 BAYES Statement Options

Option Description

Monte Carlo Options
INITIAL= Specifies initial values of the chain
INITIALMLE Specifies that maximum likelihood estimates be used as

initial values of the chain
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Table 57.2 (continued)

Option Description

METROPOLIS= Specifies the use of a Metropolis step
NBI= Specifies the number of burn-in iterations
NMC= Specifies the number of iterations after burn-in
SEED= Specifies the random number generator seed
THINNING= Controls the thinning of the Markov chain

Model and Prior Options
COEFFPRIOR= Specifies the prior of the regression coefficients
EXPONENTIALSCALEPRIOR= Specifies the prior of the exponential scale parameter
GAMMASHAPEPRIOR= Specifies the prior of the three-parameter gamma shape

parameter
SCALEPRIOR= Specifies the prior of the scale parameter
WEIBULLSCALEPRIOR= Specifies the prior of the Weibull scale parameter
WEIBULLSHAPEPRIOR= Specifies the prior of the Weibull shape parameter

Summary Statistics and Convergence Diagnostics
DIAGNOSTICS= Displays convergence diagnostics
PLOTS= Displays diagnostic plots
STATISTICS= Displays summary statistics of the posterior samples

Posterior Samples
OUTPOST= Names a SAS data set for the posterior samples

The following list describes these options and their suboptions.

COEFFPRIOR=UNIFORM | NORMAL < (normal-options) >

CPRIOR=UNIFORM | NORMAL < (option) >

COEFF=UNIFORM | NORMAL < (option) >
specifies the prior distribution for the regression coefficients. The default is COEFFPRIOR=UNIFORM.
The available prior distributions are as follows:

NORMAL< (normal-option) >
specifies a normal distribution. The normal-options include the following:

CONDITIONAL
specifies that the normal prior, conditional on the current Markov chain value of the location-
scale model precision parameter � D 1

�2
, is N.�; ��1†/, where � and † are the mean and

covariance of the normal prior specified by other normal options.

INPUT= SAS-data-set
specifies a SAS data set that contains the mean and covariance information of the normal
prior. The data set must have a _TYPE_ variable to represent the type of each observation and
a variable for each regression coefficient. If the data set also contains a _NAME_ variable,
the values of this variable are used to identify the covariances for the _TYPE_=’COV’
observations; otherwise, the _TYPE_=’COV’ observations are assumed to be in the same
order as the explanatory variables in the MODEL statement. PROC LIFEREG reads the



BAYES Statement F 4227

mean vector from the observation with _TYPE_=’MEAN’ and reads the covariance matrix
from observations with _TYPE_=’COV’. For an independent normal prior, the variances can
be specified with _TYPE_=’VAR’; alternatively, the precisions (inverse of the variances) can
be specified with _TYPE_=’PRECISION’.

RELVAR< =c >
specifies the normal prior N.0; cJ/, where J is a diagonal matrix with diagonal elements
equal to the variances of the corresponding ML estimator. By default, c D 106.

VAR< =c >
specifies the normal prior N.0; cI/, where I is the identity matrix.

If you do not specify an option, the normal prior N.0; 106I/, where I is the identity matrix, is
used. See the section “Normal Prior” on page 4279 for more details.

UNIFORM
specifies a flat prior—that is, the prior that is proportional to a constant (p.ˇ1; : : : ; ˇk/ / 1 for
all �1 < ˇi <1).

DIAGNOSTICS=ALL | NONE | (keyword-list)

DIAG=ALL | NONE | (keyword-list)
controls the number of diagnostics produced. You can request all the following diagnostics by
specifying DIAGNOSTICS=ALL. If you do not want any of these diagnostics, specify DIAGNOS-
TICS=NONE. If you want some but not all of the diagnostics, or if you want to change certain
settings of these diagnostics, specify a subset of the following keywords. The default is DIAGNOS-
TICS=(AUTOCORR ESS GEWEKE).

AUTOCORR < (LAGS= numeric-list) >
computes the autocorrelations of lags given by LAGS= list for each parameter. Elements in
the list are truncated to integers and repeated values are removed. If the LAGS= option is not
specified, autocorrelations of lags 1, 5, 10, and 50 are computed for each variable. See the section
“Autocorrelations” on page 150 in Chapter 7, “Introduction to Bayesian Analysis Procedures,” for
details.

ESS
computes Carlin’s estimate of the effective sample size, the correlation time, and the efficiency of
the chain for each parameter. See the section “Effective Sample Size” on page 150 in Chapter 7,
“Introduction to Bayesian Analysis Procedures,” for details.

GELMAN < (gelman-options) >
computes the Gelman and Rubin convergence diagnostics. You can specify one or more of the
following gelman-options:

NCHAIN=number

N=number
specifies the number of parallel chains used to compute the diagnostic, and must be 2 or
larger. The default is NCHAIN=3. If an INITIAL= data set is used, NCHAIN defaults to the
number of rows in the INITIAL= data set. If any number other than this is specified with the
NCHAIN= option, the NCHAIN= value is ignored.
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ALPHA=value
specifies the significance level for the upper bound. The default is ALPHA=0.05, resulting
in a 97.5% bound.

See the section “Gelman and Rubin Diagnostics” on page 143 in Chapter 7, “Introduction to
Bayesian Analysis Procedures,” for details.

GEWEKE < (geweke-options) >
computes the Geweke spectral density diagnostics, which are essentially a two-sample t test
between the first f1 portion and the last f2 portion of the chain. The default is f1 D 0:1 and
f2 D 0:5, but you can choose other fractions by using the following geweke-options:

FRAC1=value
specifies the fraction f1 for the first window.

FRAC2=value
specifies the fraction f2 for the second window.

See the section “Geweke Diagnostics” on page 144 in Chapter 7, “Introduction to Bayesian
Analysis Procedures,” for details.

HEIDELBERGER < (heidel-options) >
computes the Heidelberger and Welch diagnostic for each variable, which consists of a stationarity
test of the null hypothesis that the sample values form a stationary process. If the stationarity test
is not rejected, a halfwidth test is then carried out. Optionally, you can specify one or more of the
following heidel-options:

SALPHA=value
specifies the ˛ level .0 < ˛ < 1/ for the stationarity test.

HALPHA=value
specifies the ˛ level .0 < ˛ < 1/ for the halfwidth test.

EPS=value
specifies a positive number � such that if the halfwidth is less than � times the sample mean
of the retained iterates, the halfwidth test is passed.

See the section “Heidelberger and Welch Diagnostics” on page 146 in Chapter 7, “Introduction
to Bayesian Analysis Procedures,” for details.

MCSE

MCERROR
computes the Monte Carlo standard error for each parameter. The Monte Caro standard error,
which measures the simulation accuracy, is the standard error of the posterior mean estimate
and is calculated as the posterior standard deviation divided by the square root of the effective
sample size. See the section “Standard Error of the Mean Estimate” on page 151 in Chapter 7,
“Introduction to Bayesian Analysis Procedures,” for details.

RAFTERY< (raftery-options) >
computes the Raftery and Lewis diagnostics that evaluate the accuracy of the estimated quantile
( O�Q for a given Q 2 .0; 1/) of a chain. O�Q can achieve any degree of accuracy when the
chain is allowed to run for a long time. A stopping criterion is when the estimated probability
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OPQ D Pr.� � O�Q/ reaches within˙R of the value Q with probability S; that is, Pr.Q �R �
OPQ � Q C R/ D S . The following raftery-options enable you to specify Q;R; S , and a

precision level � for the test:

QUANTILE | Q=value
specifies the order (a value between 0 and 1) of the quantile of interest. The default is 0.025.

ACCURACY | R=value
specifies a small positive number as the margin of error for measuring the accuracy of
estimation of the quantile. The default is 0.005.

PROBABILITY | S=value
specifies the probability of attaining the accuracy of the estimation of the quantile. The
default is 0.95.

EPSILON | EPS=value
specifies the tolerance level (a small positive number) for the stationary test. The default is
0.001.

See the section “Raftery and Lewis Diagnostics” on page 147 in Chapter 7, “Introduction to
Bayesian Analysis Procedures,” for details.

EXPSCALEPRIOR=GAMMA< (options) > | IMPROPER

ESCALEPRIOR=GAMMA< (options) > | IMPROPER

ESCPRIOR=GAMMA< (options) > | IMPROPER
specifies that Gibbs sampling be performed on the exponential distribution scale parameter and the
prior distribution for the scale parameter. This prior distribution applies only when the exponential
distribution and no covariates are specified.

A gamma priorG.a; b/with density f .t/ D b.bt/a�1e�bt
�.a/

is specified by EXPSCALEPRIOR=GAMMA,
which can be followed by one of the following gamma-options enclosed in parentheses. The hyperpa-
rameters a and b are the shape and inverse-scale parameters of the gamma distribution, respectively.
See the section “Gamma Prior” on page 4279 for more details. The default is G.10�4; 10�4/.

RELSHAPE< =c >
specifies independent G.c Ǫ ; c/ distribution, where Ǫ is the MLE of the exponential scale parame-
ter. With this choice of hyperparameters, the mean of the prior distribution is Ǫ and the variance
is Ǫ
c2

. By default, c=10�4.

SHAPE=a

ISCALE=b
when both specified, results in a G.a; b/ prior.

SHAPE=c
when specified alone, results in a G.c; c/ prior.

ISCALE=c
when specified alone, results in a G.c; c/ prior.

An improper prior with density f .t/ proportional to t�1 is specified with EXPSCALEPRIOR=IMPROPER.
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GAMMASHAPEPRIOR=NORMAL< (options) >

GAMASHAPEPRIOR=NORMAL< (options) >

SHAPE1PRIOR=NORMAL< (options) >
specifies the prior distribution for the gamma distribution shape parameter. If you do not specify any
options in a gamma model, the N.0; 106/ prior for the shape is used. You can specify MEAN= and
VAR= or RELVAR= options, either alone or together, to specify the mean and variance of the normal
prior for the gamma shape parameter.

MEAN=a
specifies a normal prior N.a; 106/. By default, a=0.

RELVAR< =b >
specifies the normal prior N.0; bJ /, where J is the variance of the MLE of the shape parameter.
By default, b=106.

VAR=c
specifies the normal prior N.0; c/. By default, c=106.

INITIAL=SAS-data-set
specifies the SAS data set that contains the initial values of the Markov chains. The INITIAL= data set
must contain all the variables of the model. You can specify multiple rows as the initial values of the
parallel chains for the Gelman-Rubin statistics, but posterior summaries, diagnostics, and plots are
computed only for the first chain. If the data set also contains the variable _SEED_, the value of the
_SEED_ variable is used as the seed of the random number generator for the corresponding chain.

INITIALMLE
specifies that maximum likelihood estimates of the model parameters be used as initial values of
the Markov chain. If this option is not specified, estimates of the mode of the posterior distribution
obtained by optimization are used as initial values.

METROPOLIS=YES | NO
specifies the use of a Metropolis step to generate Gibbs samples for posterior distributions that are not
log concave. The default value is METROPOLIS=YES.

NBI=number
specifies the number of burn-in iterations before the chains are saved. The default is 2000.

NMC=number
specifies the number of iterations after the burn-in. The default is 10000.

OUTPOST=SAS-data-set

OUT=SAS-data-set
names the SAS data set that contains the posterior samples. See the section “OUTPOST= Output Data
Set” on page 4281 for more information. Alternatively, you can create the output data set by specifying
an ODS OUTPUT statement as follows:

ODS OUTPUT POSTERIORSAMPLE=SAS-data-set
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PLOTS< (global-plot-options) >= plot-request

PLOTS< (global-plot-options) >= (plot-request < . . . plot-request >)
controls the display of diagnostic plots. Three types of plots can be requested: trace plots, autocorrela-
tion function plots, and kernel density plots. By default, the plots are displayed in panels unless the
global plot option UNPACK is specified. Also, when specifying more than one type of plots, the plots
are displayed by parameters unless the global plot option GROUPBY is specified. When you specify
only one plot request, you can omit the parentheses around the plot request. For example:

plots=none
plots(unpack)=trace
plots=(trace autocorr)

ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;
proc lifereg;

model y=x;
bayes plots=trace;

run;
ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The global-plot-options are as follows:

FRINGE
creates a fringe plot on the X axis of the density plot.

GROUPBY=PARAMETER | TYPE
specifies how the plots are grouped when there is more than one type of plot.

GROUPBY=TYPE
specifies that the plots be grouped by type.

GROUPBY=PARAMETER
specifies that the plots be grouped by parameter.

GROUPBY=PARAMETER is the default.

LAGS=n
specifies that autocorrelations be plotted up to lag n. If this option is not specified, autocorrelations
are plotted up to lag 50.

SMOOTH
displays a fitted penalized B-spline curve for each trace plot.

UNPACKPANEL

UNPACK
specifies that all paneled plots be unpacked, meaning that each plot in a panel is displayed
separately.
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The plot-requests include the following:

ALL
specifies all types of plots. PLOTS=ALL is equivalent to specifying PLOTS=(TRACE AUTO-
CORR DENSITY).

AUTOCORR
displays the autocorrelation function plots for the parameters.

DENSITY
displays the kernel density plots for the parameters.

NONE
suppresses all diagnostic plots.

TRACE
displays the trace plots for the parameters. See the section “Visual Analysis via Trace Plots” on
page 137 in Chapter 7, “Introduction to Bayesian Analysis Procedures,” for details.

SCALEPRIOR=GAMMA< (options) >
specifies that Gibbs sampling be performed on the location-scale model scale parameter and the prior
distribution for the scale parameter.

A gamma prior G.a; b/ with density f .t/ D b.bt/a�1e�bt
�.a/

is specified by SCALEPRIOR=GAMMA,
which can be followed by one of the following gamma-options enclosed in parentheses. The hyperpa-
rameters a and b are the shape and inverse-scale parameters of the gamma distribution, respectively.
See the section “Gamma Prior” on page 4279 for details. The default is G.10�4; 10�4/.

RELSHAPE< =c >
specifies independent G.c O�; c/ distribution, where O� is the MLE of the scale parameter. With
this choice of hyperparameters, the mean of the prior distribution is O� and the variance is O�

c
. By

default, c=10�4.

SHAPE=a

ISCALE=b
when both specified, results in a G.a; b/ prior.

SHAPE=c
when specified alone, results in a G.c; c/ prior.

ISCALE=c
when specified alone, results in a G.c; c/ prior.

SEED=number
specifies an integer seed in the range 1 to 231 � 1 for the random number generator in the simulation.
Specifying a seed enables you to reproduce identical Markov chains for the same specification. If the
SEED= option is not specified, or if you specify a nonpositive seed, a random seed is derived from the
time of day.



BAYES Statement F 4233

STATISTICS < (global-options) > = ALL | NONE | keyword | (keyword-list)

STATS < (global-statoptions) > = ALL | NONE | keyword | (keyword-list)
controls the number of posterior statistics produced. Specifying STATISTICS=ALL is equivalent to
specifying STATISTICS= (SUMMARY INTERVAL COV CORR). If you do not want any posterior
statistics, you specify STATISTICS=NONE. The default is STATISTICS=(SUMMARY INTERVAL).
See the section “Summary Statistics” on page 151 in Chapter 7, “Introduction to Bayesian Analysis
Procedures,” for details. The global-options include the following:

ALPHA=numeric-list
controls the probabilities of the credible intervals. The ALPHA= values must be between 0 and
1. Each ALPHA= value produces a pair of 100(1–ALPHA)% equal-tail and HPD intervals for
each parameters. The default is ALPHA=0.05, which yields the 95% credible intervals for each
parameter.

PERCENT=numeric-list
requests the percentile points of the posterior samples. The PERCENT= values must be between
0 and 100. The default is PERCENT=25, 50, 75, which yields the 25th, 50th, and 75th percentile
points, respectively, for each parameter.

The list of keywords includes the following:

CORR
produces the posterior correlation matrix.

COV
produces the posterior covariance matrix.

SUMMARY
produces the means, standard deviations, and percentile points for the posterior samples. The
default is to produce the 25th, 50th, and 75th percentile points, but you can use the global
PERCENT= option to request specific percentile points.

INTERVAL
produces equal-tail credible intervals and HPD intervals. The default is to produce the 95%
equal-tail credible intervals and 95% HPD intervals, but you can use the global ALPHA= option
to request intervals of any probabilities.

NONE
suppresses printing all summary statistics.

THINNING=number

THIN=number
controls the thinning of the Markov chain. Only one in every k samples is used when THINNING=k,
and if NBI=n0 and NMC=n, the number of samples kept is�

n0 C n

k

�
�

�
n0

k

�
where [a] represents the integer part of the number a. The default is THINNING=1.
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WEIBULLSCALEPRIOR=GAMMA< (options) >

WSCALEPRIOR=GAMMA< (options) >

WSCPRIOR=GAMMA< (options) >
specifies that Gibbs sampling be performed on the Weibull model scale parameter and the prior
distribution for the scale parameter. This option applies only when a Weibull distribution and no
covariates are specified. When this option is specified, PROC LIFEREG performs Gibbs sampling on
the Weibull scale parameter, which is defined as exp.�/, where � is the intercept term.

A gamma prior G.a; b/ is specified by WEIBULLSCALEPRIOR=GAMMA, which can be followed
by one of the following gamma-options enclosed in parentheses. The gamma probability density is
given by g.t/ D b.bt/a�1e�bt

�.a/
. The hyperparameters a and b are the shape and inverse-scale parameters

of the gamma distribution, respectively. See the section “Gamma Prior” on page 4279 for details about
the gamma prior. The default is G.10�4; 10�4/.

RELSHAPE< =c >
specifies independent G.c Ǫ ; c/ distribution, where Ǫ is the MLE of the Weibull scale parameter.
With this choice of hyperparameters, the mean of the prior distribution is Ǫ and the variance is Ǫ

c
.

By default, c=10�4.

SHAPE=a

ISCALE=b
when both specified, results in a G.a; b/ prior.

SHAPE=c
when specified alone, results in a G.c; c/ prior.

ISCALE=c
when specified alone, results in a G.c; c/ prior.

WEIBULLSHAPEPRIOR=GAMMA< (options) >

WSHAPEPRIOR=GAMMA< (options) >

WSHPRIOR=GAMMA< (options) >
specifies that Gibbs sampling be performed on the Weibull model shape parameter and the prior
distribution for the shape parameter. When this option is specified, PROC LIFEREG performs Gibbs
sampling on the Weibull shape parameter, which is defined as ��1, where � is the location-scale model
scale parameter.

A gamma prior G.a; b/ with density f .t/ D b.bt/a�1e�bt
�.a/

is specified by WEIBULL-
SHAPEPRIOR=GAMMA, which can be followed by one of the following gamma-options enclosed in
parentheses. The hyperparameters a and b are the shape and inverse-scale parameters of the gamma
distribution, respectively. See the section “Gamma Prior” on page 4279 for details about the gamma
prior. The default is G.10�4; 10�4/.

RELSHAPE< =c >
specifies independent G.c Ǒ; c/ distribution, where Ǒ is the MLE of the Weibull shape parameter.

With this choice of hyperparameters, the mean of the prior distribution is Ǒ and the variance is
Ǒ

c
.

By default, c=10�4.
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SHAPE< =a >
ISCALE=b

when both specified, results in a G.a; b/ prior.

SHAPE=c
when specified alone, results in a G.c; c/ prior.

ISCALE=c
when specified alone, results in a G.c; c/ prior.

BY Statement
BY variables ;

You can specify a BY statement with PROC LIFEREG to obtain separate analyses of observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the LIFEREG procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

CLASS Statement
CLASS variables < / TRUNCATE > ;

The CLASS statement names the classification variables to be used in the model. Typical classification
variables are Treatment, Sex, Race, Group, and Replication. If you use the CLASS statement, it must appear
before the MODEL statement.

Classification variables can be either character or numeric. By default, class levels are determined from the
entire set of formatted values of the CLASS variables.

NOTE: Prior to SAS 9, class levels were determined by using no more than the first 16 characters of the
formatted values. To revert to this previous behavior, you can use the TRUNCATE option in the CLASS
statement.

In any case, you can use formats to group values into levels. See the discussion of the FORMAT procedure
in the Base SAS Procedures Guide and the discussions of the FORMAT statement and SAS formats in SAS
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Formats and Informats: Reference. You can adjust the order of CLASS variable levels with the ORDER=
option in the PROC LIFEREG statement.

You can specify the following option in the CLASS statement after a slash (/):

TRUNCATE
specifies that class levels should be determined by using only up to the first 16 characters of the
formatted values of CLASS variables. When formatted values are longer than 16 characters, you can
use this option to revert to the levels as determined in releases prior to SAS 9.

EFFECTPLOT Statement
EFFECTPLOT < plot-type < (plot-definition-options) > > < / options > ;

The EFFECTPLOT statement produces a display of the fitted model and provides options for changing and
enhancing the displays. Table 57.3 describes the available plot-types and their plot-definition-options.

Table 57.3 Plot-Types and Plot-Definition-Options

Plot-Type and Description Plot-Definition-Options

BOX
Displays a box plot of continuous response data at each
level of a CLASS effect, with predicted values
superimposed and connected by a line. This is an
alternative to the INTERACTION plot-type.

PLOTBY= variable or CLASS effect
X= CLASS variable or effect

CONTOUR
Displays a contour plot of predicted values against two
continuous covariates

PLOTBY= variable or CLASS effect
X= continuous variable
Y= continuous variable

FIT
Displays a curve of predicted values versus a
continuous variable

PLOTBY= variable or CLASS effect
X= continuous variable

INTERACTION
Displays a plot of predicted values (possibly with error
bars) versus the levels of a CLASS effect. The
predicted values are connected with lines and can be
grouped by the levels of another CLASS effect.

PLOTBY= variable or CLASS effect
SLICEBY= variable or CLASS effect
X= CLASS variable or effect

MOSAIC
Displays a mosaic plot of predicted values by using up
to three CLASS effects

PLOTBY= variable or CLASS effect
X= CLASS effects

SLICEFIT
Displays a curve of predicted values versus a
continuous variable, grouped by the levels of a
CLASS effect

PLOTBY= variable or CLASS effect
SLICEBY= variable or CLASS effect
X= continuous variable
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For full details about the syntax and options of the EFFECTPLOT statement, see the section “EFFECTPLOT
Statement” on page 416 in Chapter 19, “Shared Concepts and Topics.”

ESTIMATE Statement
ESTIMATE < 'label ' > estimate-specification < (divisor=n) >

< , . . . < 'label ' > estimate-specification < (divisor=n) > >
< / options > ;

The ESTIMATE statement provides a mechanism for obtaining custom hypothesis tests. Estimates are
formed as linear estimable functions of the form Lˇ. You can perform hypothesis tests for the estimable
functions, construct confidence limits, and obtain specific nonlinear transformations.

Table 57.4 summarizes the options available in the ESTIMATE statement.

Table 57.4 ESTIMATE Statement Options

Option Description

Construction and Computation of Estimable Functions
DIVISOR= Specifies a list of values to divide the coefficients
NOFILL Suppresses the automatic fill-in of coefficients for higher-order

effects
SINGULAR= Tunes the estimability checking difference

Degrees of Freedom and p-values
ADJUST= Determines the method for multiple comparison adjustment of

estimates
ALPHA=˛ Determines the confidence level (1 � ˛)
LOWER Performs one-sided, lower-tailed inference
STEPDOWN Adjusts multiplicity-corrected p-values further in a step-down fash-

ion
TESTVALUE= Specifies values under the null hypothesis for tests
UPPER Performs one-sided, upper-tailed inference

Statistical Output
CL Constructs confidence limits
CORR Displays the correlation matrix of estimates
COV Displays the covariance matrix of estimates
E Prints the L matrix
JOINT Produces a joint F or chi-square test for the estimable functions
PLOTS= Requests ODS statistical graphics if the analysis is sampling-based
SEED= Specifies the seed for computations that depend on random numbers

For details about the syntax of the ESTIMATE statement, see the section “ESTIMATE Statement” on
page 444 in Chapter 19, “Shared Concepts and Topics.”
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INSET Statement
INSET < keyword-list > < / options > ;

The box or table of summary information produced on plots made with the PROBPLOT statement is called
an inset. You can use the INSET statement to customize the information that is displayed in the inset box
as well as to customize the appearance of the inset box. To supply the information that is displayed in the
inset box, you specify keywords corresponding to the information that you want shown. For example, the
following statements produce a probability plot with the number of observations, the number of right-censored
observations, the name of the distribution, and the estimated Weibull shape parameter in the inset:

proc lifereg data=epidemic;
model life = dose / dist = Weibull;
probplot;
inset nobs right dist shape;

run;

By default, inset entries are identified with appropriate labels. However, you can provide a customized label
by specifying the keyword for that entry followed by the equal sign (=) and the label in quotes. For example,
the following INSET statement produces an inset containing the number of observations and the name of the
distribution, labeled “Sample Size” and “Distribution” in the inset:

inset nobs='Sample Size' dist='Distribution';

If you specify a keyword that does not apply to the plot you are creating, then the keyword is ignored.

If you specify more than one INSET statement, only the first one is used.

Table 57.5 lists keywords available in the INSET statement to display summary statistics, distribution
parameters, and distribution fitting information.

Table 57.5 INSET Statement Keywords

Keyword Description

CONFIDENCE Confidence coefficient for all confidence intervals

DIST Name of the distribution

INTERVAL Number of interval-censored observations

LEFT Number of left-censored observations

NOBS Number of observations

NMISS Number of observations with missing values

RIGHT Number of right-censored observations

SCALE Value of the scale parameter

SHAPE Value of the shape parameter

UNCENSORED Number of uncensored observations

The following options control the appearance of the box when you use traditional graphics. These options
are not available if ODS Graphics is enabled. Table 57.6 summarizes the options available in the INSET
statement.



INSET Statement F 4239

Table 57.6 INSET Statement Options

Option Description

CFILL= Specifies the color for the filling box
CFILLH= Specifies the color for the filling box header
CFRAME= Specifies the color for the frame
CHEADER= Specifies the color for text in the header
CTEXT= Specifies the color for the text
FONT= Specifies the software font for the text
HEIGHT= Specifies the height of the text
HEADER= Specifies the text for the header or box title
NOFRAME Omits the frame around the box
POS= Determines the position of the inset
REFPOINT= Specifies the reference point for an inset

All options are specified after the slash (/) in the INSET statement.

CFILL=color
specifies the color for the filling box.

CFILLH=color
specifies the color for the filling box header.

CFRAME=color
specifies the color for the frame.

CHEADER=color
specifies the color for text in the header.

CTEXT=color
specifies the color for the text.

FONT=font
specifies the software font for the text.

HEIGHT=value
specifies the height of the text.

HEADER=’quoted string’
specifies the text for the header or box title.

NOFRAME
omits the frame around the box.

POS=value < DATA | PERCENT >
determines the position of the inset. The value can be a compass point (N, NE, E, SE, S, SW, W, NW)
or a pair of coordinates (x, y) enclosed in parentheses. The coordinates can be specified in screen
percentage units or axis data units. The default is screen percentage units.
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REFPOINT=name
specifies the reference point for an inset that is positioned by a pair of coordinates with the POS=
option. You use the REFPOINT= option in conjunction with the POS= coordinates. The REFPOINT=
option specifies which corner of the inset frame you have specified with coordinates (x, y), and it can
take the value of BR (bottom right), BL (bottom left), TR (top right), or TL (top left). The default is
REFPOINT=BL. If the inset position is specified as a compass point, then the REFPOINT= option is
ignored.

LSMEANS Statement
LSMEANS < model-effects > < / options > ;

The LSMEANS statement computes and compares least squares means (LS-means) of fixed effects. LS-means
are predicted population margins—that is, they estimate the marginal means over a balanced population. In a
sense, LS-means are to unbalanced designs as class and subclass arithmetic means are to balanced designs.

Table 57.7 summarizes the options available in the LSMEANS statement.

Table 57.7 LSMEANS Statement Options

Option Description

Construction and Computation of LS-Means
AT Modifies the covariate value in computing LS-means
BYLEVEL Computes separate margins
DIFF Requests differences of LS-means
OM= Specifies the weighting scheme for LS-means computation as de-

termined by the input data set
SINGULAR= Tunes estimability checking

Degrees of Freedom and p-values
ADJUST= Determines the method for multiple-comparison adjustment of LS-

means differences
ALPHA=˛ Determines the confidence level (1 � ˛)
STEPDOWN Adjusts multiple-comparison p-values further in a step-down

fashion

Statistical Output
CL Constructs confidence limits for means and mean differences
CORR Displays the correlation matrix of LS-means
COV Displays the covariance matrix of LS-means
E Prints the L matrix
LINES Produces a “Lines” display for pairwise LS-means differences
MEANS Prints the LS-means
PLOTS= Requests graphs of means and mean comparisons
SEED= Specifies the seed for computations that depend on random numbers
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For details about the syntax of the LSMEANS statement, see the section “LSMEANS Statement” on page 460
in Chapter 19, “Shared Concepts and Topics.”

LSMESTIMATE Statement
LSMESTIMATE model-effect < 'label ' > values < divisor=n >

< , . . . < 'label ' > values < divisor=n > >
< / options > ;

The LSMESTIMATE statement provides a mechanism for obtaining custom hypothesis tests among least
squares means.

Table 57.8 summarizes the options available in the LSMESTIMATE statement.

Table 57.8 LSMESTIMATE Statement Options

Option Description

Construction and Computation of LS-Means
AT Modifies covariate values in computing LS-means
BYLEVEL Computes separate margins
DIVISOR= Specifies a list of values to divide the coefficients
OM= Specifies the weighting scheme for LS-means computation as de-

termined by a data set
SINGULAR= Tunes estimability checking

Degrees of Freedom and p-values
ADJUST= Determines the method for multiple-comparison adjustment of LS-

means differences
ALPHA=˛ Determines the confidence level (1 � ˛)
LOWER Performs one-sided, lower-tailed inference
STEPDOWN Adjusts multiple-comparison p-values further in a step-down fash-

ion
TESTVALUE= Specifies values under the null hypothesis for tests
UPPER Performs one-sided, upper-tailed inference

Statistical Output
CL Constructs confidence limits for means and mean differences
CORR Displays the correlation matrix of LS-means
COV Displays the covariance matrix of LS-means
E Prints the L matrix
ELSM Prints the K matrix
JOINT Produces a joint F or chi-square test for the LS-means and LS-

means differences
PLOTS= Requests graphs of means and mean comparisons
SEED= Specifies the seed for computations that depend on random numbers



4242 F Chapter 57: The LIFEREG Procedure

For details about the syntax of the LSMESTIMATE statement, see the section “LSMESTIMATE Statement”
on page 476 in Chapter 19, “Shared Concepts and Topics.”

MODEL Statement
< label: > MODEL response<�censor (list) > = effects < / options > ;

< label: > MODEL (lower ,upper )= effects < / options > ;

< label: > MODEL events/trials = effects < / options > ;

Only a single MODEL statement can be used with one invocation of the LIFEREG procedure. If multiple
MODEL statements are present, only the last is used. The optional label is used to label the model estimates
in the output SAS data set and OUTEST= data set.

The first MODEL syntax is appropriate for right censoring. The variable response is possibly right censored.
If the response variable can be right censored, then a second variable, denoted censor , must appear after the
response variable with a list of parenthesized values, separated by commas or blanks, to indicate censoring.
That is, if the censor variable takes on a value given in the list, the response is a right-censored value;
otherwise, it is an observed value.

The second MODEL syntax specifies two variables, lower and upper , that contain values of the endpoints
of the censoring interval. If the two values are the same (and not missing), it is assumed that there is no
censoring and the actual response value is observed. If the lower value is missing, then the upper value is
used as a left-censored value. If the upper value is missing, then the lower value is taken as a right-censored
value. If both values are present and the lower value is less than the upper value, it is assumed that the values
specify a censoring interval. If the lower value is greater than the upper value or both values are missing,
then the observation is not used in the analysis, although predicted values can still be obtained if none of the
covariates are missing.

The following table summarizes the ways of specifying censoring.

lower upper Comparison Interpretation
Not missing Not missing Equal No censoring

Not missing Not missing Lower < upper Censoring interval

Missing Not missing Upper used as left-
censoring value

Not missing Missing Lower used as right-
censoring value

Not missing Not missing Lower > upper Observation not used

Missing Missing Observation not used

The third MODEL syntax specifies two variables that contain count data for a binary response. The value of
the first variable, events, is the number of successes. The value of the second variable, trials, is the number
of tries. The values of both events and (trials-events) must be nonnegative, and trials must be positive for the
response to be valid. The values of the two variables do not need to be integers and are not modified to be
integers.
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The effects following the equal sign are the covariates in the model. Higher-order effects, such as interactions
and nested terms, are allowed in the list, similar to the GLM procedure. Variable names and combinations of
variable names representing higher-order terms are allowed to appear in this list. Classification, or CLASS,
variables can be used as effects, and indicator variables are generated for the class levels. If you do not
specify any covariates following the equal sign, an intercept-only model is fit.

Examples of three valid MODEL statements follow:

a: model time*flag(1,3)=temp;

b: model (start, finish)=;

c: model r/n=dose;

MODEL statement a indicates that the response is contained in a variable named time and that, if the variable
flag takes on the values 1 or 3, the observation is right censored. The explanatory variable is temp, which
could be a CLASS variable. MODEL statement b indicates that the response is known to be in the interval
between the values of the variables start and finish and that there are no covariates except for a default
intercept term. MODEL statement c indicates a binary response, with the variable r containing the number of
responses and the variable n containing the number of trials.

Table 57.9 summarizes the options available in the MODEL statement.

Table 57.9 MODEL Statement Options

Option Description

Model specification
ALPHA= Sets the significance level
DISTRIBUTION= Specifies the distribution type for failure time
NOLOG Requests no log transformation of response
INTERCEPT= Specifies initial estimate for intercept term
NOINT Holds the intercept term fixed
INITIAL= Specifies initial estimates for regression parameters
OFFSET= Specifies an offset variable
SCALE= Initializes the scale parameter
NOSCALE Holds the scale parameter fixed
SHAPE1= Initializes the first shape parameter
NOSHAPE1 Holds the first shape parameter fixed

Model fitting
CONVERGE= Sets the convergence criterion
MAXITER= Sets the maximum number of iterations
SINGULAR= Sets the tolerance for testing singularity

Output
CORRB Displays the estimated correlation matrix
COVB Displays the estimated covariance matrix
ITPRINT Displays the iteration history, final gradient, and second derivative matrix
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The following options can appear in the MODEL statement.

ALPHA=value
sets the significance level for the confidence intervals for regression parameters and estimated survival
probabilities. The value must be between 0 and 1. By default, ALPHA=0.05.

CONVERGE=value
sets the convergence criterion. Convergence is declared when the maximum change in the parameter
estimates between Newton-Raphson steps is less than the value specified. The change is a relative
change if the parameter is greater than 0.01 in absolute value; otherwise, it is an absolute change. By
default, CONVERGE=1E–8.

CONVG=value
sets the relative Hessian convergence criterion; value must be between 0 and 1. After convergence
is determined with the change in parameter criterion specified with the CONVERGE= option, the
quantity tc D g0H�1g

jf j
is computed and compared to value, where g is the gradient vector, H is the

Hessian matrix for the model parameters, and f is the log-likelihood function. If tc is greater than
value, a warning that the relative Hessian convergence criterion has been exceeded is displayed. This
criterion detects the occasional case where the change in parameter convergence criterion is satisfied,
but a maximum in the log-likelihood function has not been attained. By default, CONVG=1E–4.

CORRB
produces the estimated correlation matrix of the parameter estimates.

COVB
produces the estimated covariance matrix of the parameter estimates.

DISTRIBUTION=distribution-type

DIST=distribution-type

D=distribution-type
specifies the distribution type assumed for the failure time. By default, PROC LIFEREG fits a type
1 extreme-value distribution to the log of the response. This is equivalent to fitting the Weibull
distribution, since the scale parameter for the extreme-value distribution is related to a Weibull shape
parameter and the intercept is related to the Weibull scale parameter in this case. When the NOLOG
option is specified, PROC LIFEREG models the untransformed response with a type 1 extreme-value
distribution as the default. See the section “Supported Distributions” on page 4263 for descriptions of
the distributions. The following are valid values for distribution-type:

EXPONENTIAL the exponential distribution, which is treated as a restricted Weibull distribution

GAMMA a generalized gamma distribution (Lawless 2003, p. 240). The standard two-
parameter gamma distribution is not available in PROC LIFEREG.

LLOGISTIC a log-logistic distribution

LNORMAL a lognormal distribution

LOGISTIC a logistic distribution (equivalent to LLOGISTIC when the NOLOG option is
specified)

NORMAL a normal distribution (equivalent to LNORMAL when the NOLOG option is
specified)
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WEIBULL a Weibull distribution. If NOLOG is specified, it fits a type 1 extreme-value
distribution to the raw, untransformed data.

By default, PROC LIFEREG transforms the response with the natural logarithm before fitting the
specified model when you specify the GAMMA, LLOGISTIC, LNORMAL, or WEIBULL option.
You can suppress the log transformation with the NOLOG option. The following table summarizes
the resulting distributions when the preceding distribution options are used in combination with the
NOLOG option.

NOLOG
DISTRIBUTION= Specified? Resulting Distribution
EXPONENTIAL No Exponential
EXPONENTIAL Yes One-parameter extreme value
GAMMA No Generalized log-gamma using the log of the response.

(This is the same as fitting the generalized gamma
using the untransformed response.)

GAMMA Yes Generalized log-gamma with untransformed responses
LOGISTIC No Logistic
LOGISTIC Yes Logistic (NOLOG has no effect)
LLOGISTIC No Log-logistic
LLOGISTIC Yes Logistic
LNORMAL No Lognormal
LNORMAL Yes Normal
NORMAL No Normal
NORMAL Yes Normal (NOLOG has no effect)
WEIBULL No Weibull
WEIBULL Yes Extreme value

INITIAL=values
sets initial values for the regression parameters. This option can be helpful in the case of convergence
difficulty. Specified values are used to initialize the regression coefficients for the covariates specified
in the MODEL statement. The intercept parameter is initialized with the INTERCEPT= option and is
not included here. The values are assigned to the variables in the MODEL statement in the same order
in which they are listed in the MODEL statement. Note that a CLASS variable requires k � 1 values
when the CLASS variable takes on k different levels. The order of the CLASS levels is determined by
the ORDER= option. If there is no intercept term, the first CLASS variable requires k initial values. If
a BY statement is used, all CLASS variables must take on the same number of levels in each BY group
or no meaningful initial values can be specified. The INITIAL= option can be specified as follows.

Type of List Specification
List separated by blanks initial=3 4 5

List separated by commas initial=3,4,5

x to y initial=3 to 5

x to y by z initial=3 to 5 by 1

Combination of methods initial=1,3 to 5,9

By default, PROC LIFEREG computes initial estimates with ordinary least squares. See the section
“Computational Method” on page 4261 for details.
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NOTE: The INITIAL= option is overwritten by the INEST= option. See the section “INEST= Data
Set” on page 4275 for details.

INTERCEPT=value
initializes the intercept term to value. By default, the intercept is initialized by an ordinary least squares
estimate.

ITPRINT
displays the iteration history for computing maximum likelihood estimates, the final evaluation of the
gradient, and the final evaluation of the negative of the second derivative matrix—that is, the negative
of the Hessian. If you perform a Bayesian analysis by specifying the BAYES statement, the iteration
history for computing the mode of the posterior distribution is also displayed.

MAXITER=n
sets the maximum allowable number of iterations during the model estimation. By default, MAX-
ITER=50.

NOINT
holds the intercept term fixed. Because of the usual log transformation of the response, the intercept
parameter is usually a scale parameter for the untransformed response, or a location parameter for a
transformed response.

NOLOG
requests that no log transformation of the response variable be performed. By default, PROC LIF-
EREG models the log of the response variable for the GAMMA, LLOGISTIC, LOGNORMAL, and
WEIBULL distribution options. NOLOG is implicitly assumed for the NORMAL and LOGISTIC
distribution options.

NOSCALE
holds the scale parameter fixed. Note that if the log transformation has been applied to the response,
the effect of the scale parameter is a power transformation of the original response. If no SCALE=
value is specified, the scale parameter is fixed at the value 1.

NOSHAPE1
holds the first shape parameter, SHAPE1, fixed. If no SHAPE1= value is specified, SHAPE1 is fixed at
a value that depends on the DISTRIBUTION type.

OFFSET=variable
specifies a variable in the input data set to be used as an offset variable. This variable cannot be a
CLASS variable, and it cannot be the response variable or one of the explanatory variables.

SCALE=value
initializes the scale parameter to value. If the Weibull distribution is specified, this scale parameter is
the scale parameter of the type 1 extreme-value distribution, not the Weibull scale parameter. Note
that, with a log transformation, the exponential model is the same as a Weibull model with the scale
parameter fixed at the value 1.

SHAPE1=value
initializes the first shape parameter to value. If the specified distribution does not depend on this
parameter, then this option has no effect. The only distribution that depends on this shape parameter
is the generalized gamma distribution. See the section “Supported Distributions” on page 4263 for
descriptions of the parameterizations of the distributions.
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SINGULAR=value
sets the tolerance for testing singularity of the information matrix and the crossproducts matrix for the
initial least squares estimates. Roughly, the test requires that a pivot be at least this value times the
original diagonal value. By default, SINGULAR=1E–12.

OUTPUT Statement
OUTPUT < OUT=SAS-data-set > < keyword=name > . . . < keyword=name > ;

The OUTPUT statement creates a new SAS data set containing statistics calculated after fitting the model. At
least one specification of the form keyword=name is required.

All variables in the original data set are included in the new data set, along with the variables created as
options for the OUTPUT statement. These new variables contain fitted values and estimated quantiles. If
you want to create a SAS data set in a permanent library, you must specify a two-level name. For more
information about permanent libraries and SAS data sets, see SAS Language Reference: Concepts. Each
OUTPUT statement applies to the preceding MODEL statement. See Example 57.1 for illustrations of the
OUTPUT statement.

The following specifications can appear in the OUTPUT statement:

OUT=SAS-data-set
specifies the new data set. By default, the procedure uses the DATAn convention to name the new data
set.

keyword=name
specifies the statistics to include in the output data set and gives names to the new variables. Specify a
keyword for each desired statistic (see the following list of keywords), an equal sign, and the variable
to contain the statistic.

The keywords allowed and the statistics they represent are as follows:

CENSORED=variable
specifies a variable to signal whether an observation is censored, and the type of censoring. The
variable takes on values according to Table 57.10.

Table 57.10 Censoring Variable Values

Type of Response CENSORED Variable Value

Uncensored 0
Right-censored 1
Left-censored 2
Interval-censored 3

CDF=variable
specifies a variable to contain the estimates of the cumulative distribution function evaluated at the
observed response. If the data are interval censored, then the cumulative distribution function is
evaluated at the response lower interval endpoint. See the section “Predicted Values” on page 4267 for
more information.
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CONTROL=variable
specifies a variable in the input data set to control the estimation of quantiles. See Example 57.1
for an illustration. If the specified variable has the value 1, estimates for all the values listed in the
QUANTILE= list are computed for that observation in the input data set; otherwise, no estimates are
computed. If no CONTROL= variable is specified, all quantiles are estimated for all observations. If
the response variable in the MODEL statement is binomial, then this option has no effect.

CRESIDUAL | CRES=variable
specifies a variable to contain the Cox-Snell residuals

� log.S.ui //

where S is the standard survival function and

ui D
yi � x0ib

�

If the data are interval censored, residuals are computed for yi values corresponding to lower interval
endpoints. If the response variable in the corresponding model statement is binomial, then the residuals
are not computed, and this variable contains missing values.

SRESIDUAL | SRES=variable
specifies a variable to contain the standardized residuals

yi � x0ib
�

If the data are interval censored, residuals are computed for yi values corresponding to lower interval
endpoints. If the response variable in the corresponding model statement is binomial, then the residuals
are not computed, and this variable contains missing values.

PREDICTED | P=variable
specifies a variable to contain the quantile estimates. If the response variable in the corresponding
model statement is binomial, then this variable contains the estimated probabilities, 1 � F.�x0b/.

QUANTILES | QUANTILE | Q=value-list
gives a list of values for which quantiles are calculated. The values must be between 0 and 1,
noninclusive. For each value, a corresponding quantile is estimated. This option is not used if the
response variable in the corresponding MODEL statement is binomial.

By default, QUANTILES=0.5. When the response is not binomial, a numeric variable, _PROB_,
is added to the OUTPUT data set whenever the QUANTILES= option is specified. The variable
_PROB_ gives the probability value for the quantile estimates. These are the values taken from the
QUANTILES= list and are given as values between 0 and 1, not as values between 0 and 100. The list
of QUANTILES values can be specified as in Table 57.11.
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Table 57.11 Types of Value Lists

Type of List Specification

List separated by blanks .2 .4 .6 .8

List separated by commas .2,.4,.6,.8

x to y .2 to .8

x to y by z .2 to .8 by .1

Combination of methods .1,.2 to .8 by .2

STD_ERR | STD=variable
specifies a variable to contain the estimates of the standard errors of the estimated quantiles or x0b. If
the response used in the MODEL statement is a binomial response, then these are the standard errors
of x0b. Otherwise, they are the standard errors of the quantile estimates. These estimates can be used
to compute confidence intervals for the quantiles. However, if the model is fit to the log of the event
time, better confidence intervals can usually be computed by transforming the confidence intervals for
the log response. See Example 57.1 for such a transformation.

XBETA=variable
specifies a variable to contain the computed value of x0b, where x is the covariate vector and b is the
vector of parameter estimates.

PROBPLOT Statement
PROBPLOT | PPLOT < /options > ;

You can use the PROBPLOT statement to create a probability plot from lifetime data. The data can be
uncensored, right censored, or arbitrarily censored. You can specify any number of PROBPLOT statements
after a MODEL statement. The syntax used for the response in the MODEL statement determines the type of
censoring assumed in creating the probability plot. The model fit with the MODEL statement is plotted along
with the data. If there are covariates in the model, they are set to constant values specified in the XDATA=
data set when creating the probability plot. If no XDATA= data set is specified, continuous variables are
set to their overall mean values and categorical variables specified in the CLASS statement are set to their
highest levels.

Table 57.12 summarizes the options available in the PROBPLOT statement.

Table 57.12 PROBPLOT Statement Options

Option Description

Traditional Graphics
ANNOTATE= Specifies an Annotate data set
CAXIS= Specifies the color used for the axes and tick marks
CCENSOR= Specifies the color for filling the censor plot area
CENBIN Plots censored data as frequency counts
CENCOLOR= Specifies the color for the censor symbol
CENSYMBOL= Specifies symbols for censored values
CFIT= Specifies the color for the fitted probability line and confidence curves
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Table 57.12 continued

Option Description

CFRAME= Specifies the color for the area enclosed by the axes and frame
CGRID= Specifies the color for grid lines
CHREF= Specifies the color for lines requested by the HREF= option
CTEXT= Specifies the color for tick mark values and axis labels
CVREF= Specifies the color for lines requested by the VREF= option
DESCRIPTION= Specifies a description that appears in the PROC GREPLAY master menu
FONT= Specifies a software font for reference line and axis labels
HCL Computes and draws confidence limits
HEIGHT= Specifies the height of text used outside framed areas
HLOWER= Specifies the lower limit on the lifetime axis scale
HOFFSET= Specifies the offset for the horizontal axis
HUPPER= Specifies value as the upper lifetime axis tick mark
HREF Draws reference lines perpendicular to the horizontal axis
HREFLABELS= Specifies labels for the lines requested by the HREF= option
HREFLABPOS= Specifies the vertical position of labels for HREF= lines
INBORDER Requests a border around probability plots
INTERTILE= Specifies the distance between tiles
ITPRINTEM Displays the iteration history for the Turnbull algorithm
JITTER= Specifies the amount to jitter overlaying plot symbols, in units of symbol

width
LFIT= Specifies a line style for fitted curves and confidence limits
LGRID= Specifies a line style for all grid lines
LHREF= Specifies the line type for lines requested by the HREF= option
LVREF= Specifies the line type for lines requested by the VREF= option
MAXITEM= Specifies the maximum number of iterations for the Turnbull algorithm
NAME= Specifies a name for the plot
NOCENPLOT Suppresses the plotting of censored data points
NOCONF Suppresses the default confidence bands
NODATA Suppresses plotting of the estimated empirical probability plot
NOFIT Suppresses the fitted probability (percentile) line and confidence bands
NOFRAME Suppresses the frame around plotting areas
NOGRID Suppresses grid lines
NOHLABEL Suppresses horizontal label
NOHTICK Suppresses horizontal tick marks
NOPOLISH Suppresses setting small interval probabilities to zero
NOVLABEL Suppresses vertical labels
NOVTICK Suppresses vertical tick marks
NPINTERVALS= Displays one of the two kinds of confidence limit
PCTLIST= Specifies the list of percentages for which to compute percentile estimates
PLOWER= Specifies the lower limit on the probability axis scale
PRINTPROBS Displays intervals and associated probabilities for the Turnbull algorithm
PUPPER= Specifies the upper limit on the probability axis scale
PPOS= Specifies the plotting position type
PPOUT Displays a table of the cumulative probabilities
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Table 57.12 continued

Option Description

PROBLIST= Specifies the list of initial values for the Turnbull algorithm
ROTATE Requests probability plots with probability scale on the horizontal axis
SQUARE Makes the layout of the probability plots square
TOLLIKE= Specifies the criterion for convergence in the Turnbull algorithm
TOLPROB= Specifies the criterion for setting the interval probability to zero in the

Turnbull algorithm
VAXISLABEL= Specifies a label for the vertical axis
VREF Draws reference lines perpendicular to the vertical axis
VREFLABELS= Specifies labels for the lines requested by the VREF= option
VREFLABPOS= Specifies the horizontal position of labels for VREF= lines
WAXIS= Specifies line thickness for axes and frame
WFIT= Specifies line thickness for fitted curves
WGRID= Specifies line thickness for grids
WREFL= Specifies line thickness for reference lines

ODS Graphics
HCL Computes and draws confidence limits for the predicted probabilities
HLOWER= Specifies value as the lower lifetime axis tick mark
HUPPER= Specifies value as the upper lifetime axis tick mark
HREF Draws reference lines perpendicular to the horizontal axis
HREFLABELS= Specifies labels for the lines requested by the HREF= option
ITPRINTEM Displays the iteration history for the Turnbull algorithm
MAXITEM= Specifies the maximum number of iterations for the Turnbull algorithm
NOCENPLOT Suppresses the plotting of censored data points
NOCONF Suppresses the default confidence bands
NODATA Suppresses plotting of the estimated empirical probability plot
NOFIT Suppresses the fitted probability (percentile) line and confidence bands
NOFRAME Suppresses the frame around plotting areas
NOGRID Suppresses grid lines
NOPOLISH Suppresses setting small interval probabilities to zero in the Turnbull algo-

rithm
NPINTERVALS= Displays one of the two kinds of confidence limits
PCTLIST= Specifies the list of percentages for which to compute percentile estimates
PLOWER= Specifies the lower limit on the probability axis scale
PRINTPROBS Displays intervals and associated probabilities for the Turnbull algorithm
PUPPER= Specifies the upper limit on the probability axis scale
PPOS= Specifies the plotting position type
PPOUT Displays a table of the cumulative probabilities
PROBLIST= Specifies the list of initial values for the Turnbull algorithm
ROTATE Requests probability plots with probability scale on the horizontal axis
SQUARE Makes the layout of the probability plots square
TOLLIKE= Specifies the criterion for convergence in the Turnbull algorithm
TOLPROB= Specifies the criterion for setting the interval probability to zero in the

Turnbull algorithm
VREF Draws reference lines perpendicular to the vertical axis
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You can specify the following options to control the content, layout, and appearance of a probability plot.

Traditional Graphics

The following options are available if you use traditional graphics—that is, if ODS Graphics is not enabled.

ANNOTATE=SAS-data-set

ANNO=SAS-data-set
specifies an Annotate data set, as described in SAS/GRAPH: Reference, that enables you to add features
to the probability plot. The data set you specify with the ANNOTATE= option in the PROBPLOT
statement provides the Annotate data set for all plots created by the statement.

CAXIS=color

CAXES=color
specifies the color used for the axes and tick marks. This option overrides any COLOR= specifications
in an AXIS statement. The default is the first color in the device color list.

CCENSOR=color
specifies the color for filling the censor plot area. The default is the first color in the device color list.

CENBIN
plots censored data as frequency counts (rounding for noninteger frequency) rather than as individual
points.

CENCOLOR=color
specifies the color for the censor symbol. The default is the first color in the device color list.

CENSYMBOL=symbol | (symbol list)
specifies symbols for censored values. The symbol is one of the symbol names (plus, star, square,
diamond, triangle, hash, paw, point, dot, and circle) or a letter (A–Z). If you do not specify the
CENSYMBOL= option, the symbol used for censored values is the same as for failures.

CFIT=color
specifies the color for the fitted probability line and confidence curves. The default is the first color in
the device color list.

CFRAME=color

CFR=color
specifies the color for the area enclosed by the axes and frame. This area is not shaded by default.

CGRID=color
specifies the color for grid lines. The default is the first color in the device color list.

CHREF=color

CH=color
specifies the color for lines requested by the HREF= option. The default is the first color in the device
color list.

CTEXT=color
specifies the color for tick mark values and axis labels. The default is the color specified for the
CTEXT= option in the most recent GOPTIONS statement.
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CVREF=color

CV=color
specifies the color for lines requested by the VREF= option. The default is the first color in the device
color list.

DESCRIPTION=’string’

DES=’string’
specifies a description, up to 40 characters, that appears in the PROC GREPLAY master menu. The
default is the variable name.

FONT=font
specifies a software font for reference line and axis labels. You can also specify fonts for axis labels in
an AXIS statement. The FONT= font takes precedence over the FTEXT= font specified in the most
recent GOPTIONS statement. Hardware characters are used by default.

HCL
computes and draws confidence limits for the predicted probabilities based on distribution percentiles
instead of the default CDF limits. See the section “Confidence Limits for Percentiles” on page 4275
for details of the computation.

HEIGHT=value
specifies the height of text used outside framed areas. The default value is 3.846 (in percentage).

HLOWER=value
specifies the lower limit on the lifetime axis scale. The HLOWER= option specifies value as the lower
lifetime axis tick mark. The tick mark interval and the upper axis limit are determined automatically.

HOFFSET=value
specifies the offset for the horizontal axis. The default value is 1.

HUPPER=value
specifies value as the upper lifetime axis tick mark. The tick mark interval and the lower axis limit are
determined automatically.

HREF < (INTERSECT) > =value-list
requests reference lines perpendicular to the horizontal axis be drawn at horizontal axis values in the
value-list . If (INTERSECT) is specified, a second reference line perpendicular to the vertical axis is
drawn that intersects the fit line at the same point as the horizontal axis reference line. If a horizontal
axis reference line label is specified with the HREFLABELS= option, the intersecting vertical axis
reference line is labeled with the vertical axis value. See also the CHREF=, HREFLABELS=, and
LHREF= options.

HREFLABELS=’label1’ . . . ’labeln’

HREFLABEL=’label1’ . . . ’labeln’

HREFLAB=’label1’ . . . ’labeln’
specifies labels for the lines requested by the HREF= option. The number of labels must equal the
number of lines. Enclose each label in quotes. Labels can be up to 16 characters.
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HREFLABPOS=n
specifies the vertical position of labels for HREF= lines. The following table shows the valid values
for n and the corresponding label placements.

n Label Placement
1 Top
2 Staggered from top
3 Bottom
4 Staggered from bottom
5 Alternating from top
6 Alternating from bottom

INBORDER
requests a border around probability plots.

INTERTILE=value
specifies the distance between tiles.

ITPRINTEM
displays the iteration history for the Turnbull algorithm.

JITTER=value
specifies the amount to jitter overlaying plot symbols, in units of symbol width.

LFIT=linetype
specifies a line style for fitted curves and confidence limits. By default, fitted curves are drawn by
connecting solid lines (linetype = 1), and confidence limits are drawn by connecting dashed lines
(linetype = 3).

LGRID=linetype
specifies a line style for all grid lines; linetype is between 1 and 46. The default is 35.

LHREF=linetype

LH=linetype
specifies the line type for lines requested by the HREF= option. The default is 2, which produces a
dashed line.

LVREF=linetype

LV=linetype
specifies the line type for lines requested by the VREF= option. The default is 2, which produces a
dashed line.

MAXITEM=n1 < ,n2 >
specifies the maximum number of iterations for the Turnbull algorithm. Iteration history will be
displayed in increments of n2 if requested with the ITPRINTEM option. See the section “Arbitrarily
Censored Data” on page 4272 for details.

NAME=’string’
specifies a name for the plot, up to eight characters, that appears in the PROC GREPLAY master menu.
The default is ’LIFEREG’.
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NOCENPLOT
suppresses the plotting of censored data points.

NOCONF
suppresses the default confidence bands on the probability plot.

NODATA
suppresses plotting of the estimated empirical probability plot.

NOFIT
suppresses the fitted probability (percentile) line and confidence bands.

NOFRAME
suppresses the frame around plotting areas.

NOGRID
suppresses grid lines.

NOHLABEL
suppresses horizontal labels.

NOHTICK
suppresses horizontal tick marks.

NOPOLISH
suppresses setting small interval probabilities to zero in the Turnbull algorithm.

NOVLABEL
suppresses vertical labels.

NOVTICK
suppresses vertical tick marks.

NPINTERVALS=interval type
specifies one of the two kinds of confidence limits for the estimated cumulative probabilities, pointwise
(NPINTERVALS=POINT) or simultaneous (NPINTERVALS=SIMUL), requested by the PPOUT
option to be displayed in the tabular output.

PCTLIST=value-list
specifies the list of percentages for which to compute percentile estimates; value-list must be a list of
values separated by blanks or commas. Each value in the list must be between 0 and 100.

PLOWER=value
specifies the lower limit on the probability axis scale. The PLOWER= option specifies value as the
lower probability axis tick mark. The tick mark interval and the upper axis limit are determined
automatically.

PRINTPROBS
displays intervals and associated probabilities for the Turnbull algorithm.
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PUPPER=value
specifies the upper limit on the probability axis scale. The PUPPER= option specifies value as the
upper probability axis tick mark. The tick mark interval and the lower axis limit are determined
automatically.

PPOS=character-list
specifies the plotting position type. See the section “Probability Plotting” on page 4270 for details.

PPOS= Method
EXPRANK Expected ranks
MEDRANK Median ranks
MEDRANK1 Median ranks (exact formula)
KM Kaplan-Meier
MKM Modified Kaplan-Meier (default)

PPOUT
specifies that a table of the cumulative probabilities plotted on the probability plot be displayed.
Kaplan-Meier estimates of the cumulative probabilities are also displayed, along with standard errors
and confidence limits. The confidence limits can be pointwise or simultaneous, as specified by the
NPINTERVALS= option.

PROBLIST=value-list
specifies the list of initial values for the Turnbull algorithm.

ROTATE
requests probability plots with probability scale on the horizontal axis.

SQUARE
makes the layout of the probability plots square.

TOLLIKE=value
specifies the criterion for convergence in the Turnbull algorithm.

TOLPROB=value
specifies the criterion for setting the interval probability to zero in the Turnbull algorithm.

VAXISLABEL=‘string’
specifies a label for the vertical axis.

VREF< (INTERSECT) >=value-list
requests reference lines perpendicular to the vertical axis be drawn at vertical axis values in the value-
list . If (INTERSECT) is specified, a second reference line perpendicular to the horizontal axis is drawn
that intersects the fit line at the same point as the vertical axis reference line. If a vertical axis reference
line label is specified with the VREFLABELS= option, the intersecting horizontal axis reference line is
labeled with the horizontal axis value. See also the CVREF=, LVREF=, and VREFLABELS= options.
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VREFLABELS=’label1’ . . . ’labeln’

VREFLABEL=’label1’ . . . ’labeln’

VREFLAB=’label1’ . . . ’labeln’
specifies labels for the lines requested by the VREF= option. The number of labels must equal the
number of lines. Enclose each label in quotes. Labels can be up to 16 characters.

VREFLABPOS=n
specifies the horizontal position of labels for VREF= lines. The valid values for n and the corresponding
label placements are shown in the following table.

n Label Placement
1 Left
2 Right

WAXIS=n
specifies line thickness for axes and frame. The default value is 1.

WFIT=n
specifies line thickness for fitted curves. The default value is 1.

WGRID=n
specifies line thickness for grids. The default value is 1.

WREFL=n
specifies line thickness for reference lines. The default value is 1.

ODS Graphics

The following options are available if ODS Graphics is enabled.

HCL
computes and draws confidence limits for the predicted probabilities in the horizontal direction.

HLOWER=value
specifies the lower limit on the lifetime axis scale. The HLOWER= option specifies value as the lower
lifetime axis tick mark. The tick mark interval and the upper axis limit are determined automatically.

HUPPER=value
specifies value as the upper lifetime axis tick mark. The tick mark interval and the lower axis limit are
determined automatically.

HREF < (INTERSECT) > =value-list
requests reference lines perpendicular to the horizontal axis be drawn at horizontal axis values in the
value-list . If (INTERSECT) is specified, a second reference line perpendicular to the vertical axis is
drawn that intersects the fit line at the same point as the horizontal axis reference line. If a horizontal
axis reference line label is specified with the HREFLABELS= option, the intersecting vertical axis
reference line is labeled with the vertical axis value. See also the CHREF=, HREFLABELS=, and
LHREF= options.
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HREFLABELS=’label1’ . . . ’labeln’

HREFLABEL=’label1’ . . . ’labeln’

HREFLAB=’label1’ . . . ’labeln’
specifies labels for the lines requested by the HREF= option. The number of labels must equal the
number of lines. Enclose each label in quotes. Labels can be up to 16 characters.

ITPRINTEM
displays the iteration history for the Turnbull algorithm.

MAXITEM=n1 < ,n2 >
specifies the maximum number of iterations for the Turnbull algorithm. Iteration history will be
displayed in increments of n2 if requested with the ITPRINTEM option. See the section “Arbitrarily
Censored Data” on page 4272 for details.

NOCENPLOT
suppresses the plotting of censored data points.

NOCONF
suppresses the default confidence bands on the probability plot.

NODATA
suppresses plotting of the estimated empirical probability plot.

NOFIT
suppresses the fitted probability (percentile) line and confidence bands.

NOFRAME
suppresses the frame around plotting areas.

NOGRID
suppresses grid lines.

NOPOLISH
suppresses setting small interval probabilities to zero in the Turnbull algorithm.

NPINTERVALS=interval type
specifies one of the two kinds of confidence limits for the estimated cumulative probabilities, pointwise
(NPINTERVALS=POINT) or simultaneous (NPINTERVALS=SIMUL), requested by the PPOUT
option to be displayed in the tabular output.

PCTLIST=value-list
specifies the list of percentages for which to compute percentile estimates; value-list must be a list of
values separated by blanks or commas. Each value in the list must be between 0 and 100.

PLOWER=value
specifies the lower limit on the probability axis scale. The PLOWER= option specifies value as the
lower probability axis tick mark. The tick mark interval and the upper axis limit are determined
automatically.
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PRINTPROBS
displays intervals and associated probabilities for the Turnbull algorithm.

PUPPER=value
specifies the upper limit on the probability axis scale. The PUPPER= option specifies value as the
upper probability axis tick mark. The tick mark interval and the lower axis limit are determined
automatically.

PPOS=plotting-position-type
specifies the plotting position type. See the section “Probability Plotting” on page 4270 for details.

PPOS= Method
EXPRANK Expected ranks
MEDRANK Median ranks
MEDRANK1 Median ranks (exact formula)
KM Kaplan-Meier
MKM Modified Kaplan-Meier (default)

PPOUT
specifies that a table of the cumulative probabilities plotted on the probability plot be displayed.
Kaplan-Meier estimates of the cumulative probabilities are also displayed, along with standard errors
and confidence limits. The confidence limits can be pointwise or simultaneous, as specified by the
NPINTERVALS= option.

PROBLIST=value-list
specifies the list of initial values for the Turnbull algorithm.

ROTATE
requests probability plots with probability scale on the horizontal axis.

SQUARE
makes the layout of the probability plots square.

TOLLIKE=value
specifies the criterion for convergence in the Turnbull algorithm.

TOLPROB=value
specifies the criterion for setting the interval probability to zero in the Turnbull algorithm.

VREF< (INTERSECT) >=value-list
requests reference lines perpendicular to the vertical axis be drawn at vertical axis values in the value-
list . If (INTERSECT) is specified, a second reference line perpendicular to the horizontal axis is drawn
that intersects the fit line at the same point as the vertical axis reference line. If a vertical axis reference
line label is specified with the VREFLABELS= option, the intersecting horizontal axis reference line is
labeled with the horizontal axis value. See also the CVREF=, LVREF=, and VREFLABELS= options.

VREFLABELS=’label1’ . . . ’labeln’
VREFLABEL=’label1’ . . . ’labeln’
VREFLAB=’label1’ . . . ’labeln’

specifies labels for the lines requested by the VREF= option. The number of labels must equal the
number of lines. Enclose each label in quotes. Labels can be up to 16 characters.
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SLICE Statement
SLICE model-effect < / options > ;

The SLICE statement provides a general mechanism for performing a partitioned analysis of the LS-means
for an interaction. This analysis is also known as an analysis of simple effects.

The SLICE statement uses the same options as the LSMEANS statement, which are summarized in Ta-
ble 19.21. For details about the syntax of the SLICE statement, see the section “SLICE Statement” on
page 505 in Chapter 19, “Shared Concepts and Topics.”

STORE Statement
STORE < OUT= >item-store-name < / LABEL='label ' > ;

The STORE statement requests that the procedure save the context and results of the statistical analysis. The
resulting item store has a binary file format that cannot be modified. The contents of the item store can be
processed with the PLM procedure.

For details about the syntax of the STORE statement, see the section “STORE Statement” on page 508 in
Chapter 19, “Shared Concepts and Topics.”

TEST Statement
TEST < model-effects > < / options > ;

The TEST statement enables you to perform chi-square tests for model effects that test Type I, Type II, or
Type III hypotheses. By default, the Type III tests are performed. For more information, see Chapter 19,
“Shared Concepts and Topics.”

WEIGHT Statement
WEIGHT variable ;

If you want to use weights for each observation in the input data set, place the weights in a variable in
the data set and specify the name in a WEIGHT statement. The values of the WEIGHT variable can be
nonintegral and are not truncated. Observations with nonpositive or missing values for the weight variable do
not contribute to the fit of the model. The WEIGHT variable multiplies the contribution to the log likelihood
for each observation.
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Details: LIFEREG Procedure

Missing Values
Any observation with missing values for the dependent variable is not used in the model estimation unless it
is one and only one of the values in an interval specification. Also, if one of the explanatory variables or the
censoring variable is missing, the observation is not used. For any observation to be used in the estimation
of a model, only the variables needed in that model have to be nonmissing. Predicted values are computed
for all observations with no missing explanatory variable values. If the censoring variable is missing, the
CENSORED= variable in the OUT= SAS data set is also missing.

Model Specification
Main effects as well as interaction terms are allowed in the model specification, similar to the GLM procedure.
For numeric variables, a main effect is a linear term equal to the value of the variable unless the variable
appears in the CLASS statement. For variables listed in the CLASS statement, PROC LIFEREG creates
indicator variables (variables taking the values zero or one) for every level of the variable except the last level.
If there is no intercept term, the first CLASS variable has indicator variables created for all levels including
the last level. The levels are ordered according to the ORDER= option. Estimates of a main effect depend
upon other effects in the model and, therefore, are adjusted for the presence of other effects in the model.

Computational Method
By default, the LIFEREG procedure computes initial values for the parameters by using ordinary least squares
(OLS) and ignoring censoring. This might not be the best set of starting values for a given set of data. For
example, if there are extreme values in your data, the OLS fit might be excessively influenced by the extreme
observations, causing an overflow or convergence problems. See Example 57.3 for one way to deal with
convergence problems.

You can specify the INITIAL= option in the MODEL statement to override these starting values. You
can also specify the INTERCEPT=, SCALE=, and SHAPE= options to set initial values of the intercept,
scale, and shape parameters. For models with multilevel interaction effects, it is a little difficult to use the
INITIAL= option to provide starting values for all parameters. In this case, you can use the INEST= data set.
See the section “INEST= Data Set” on page 4275 for details. The INEST= data set overrides all previous
specifications for starting values of parameters.

The rank of the design matrix X is estimated before the model is fit. Columns of X that are judged linearly
dependent on other columns have the corresponding parameters set to zero. The test for linear dependence is
controlled by the SINGULAR= option in the MODEL statement. Variables are included in the model in the
order in which they are listed in the MODEL statement with the continuous variables included in the model
before any classification variables.

The log-likelihood function is maximized by means of a ridge-stabilized Newton-Raphson algorithm. The
maximized value of the log likelihood can take positive or negative values, depending on the specified model
and the values of the maximum likelihood estimates of the model parameters.
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If convergence of the maximum likelihood estimates is attained, a Type III chi-square test statistic is computed
for each effect, testing whether there is any contribution from any of the levels of the effect. This statistic is
computed as a quadratic form in the appropriate parameter estimates by using the corresponding submatrix
of the asymptotic covariance matrix estimate. See Chapter 45, “The GLM Procedure,” and Chapter 15,
“The Four Types of Estimable Functions,” for more information about Type III estimable functions. The
asymptotic covariance matrix is computed as the inverse of the observed information matrix. Note that if the
NOINT option is specified and CLASS variables are used, the first CLASS variable contains a contribution
from an intercept term. The results are displayed in an ODS table named “Type3Analysis.” Chi-square
tests for individual parameters are Wald tests based on the observed information matrix and the parameter
estimates. If an effect has a single degree of freedom in the parameter estimates table, the chi-square test for
this parameter is equivalent to the Type III test for this effect.

Before SAS 8.2, a multiple-degree-of-freedom statistic was computed for each effect to test for contribution
from any level of the effect. In general, the Type III test statistic in a main-effect-only model (no interaction
terms) will be equal to the previously computed effect statistic, unless there are collinearities among the
effects. If there are collinearities, the Type III statistic will adjust for them, and the value of the Type III
statistic and the number of degrees of freedom might not be equal to those of the previous effect statistic.

Suppose there are n observations from the model y D Xˇ C �� (or y D Xˇ COC �� if there is an offset
variable), where X is an n � k matrix of covariate values (including the intercept), y is a vector of responses,
O is a vector of offset variable values, and � is a vector of errors with survival function S, cumulative
distribution function F, and probability density function f. That is, S.t/ D Pr.�i > t/, F.t/ D Pr.�i � t /,
and f .t/ D dF.t/=dt , where �i is a component of the error vector. Then, if all the responses are observed,
the log likelihood, L, can be written as

L D
X

log
�
f .ui /

�

�
where ui D 1

�
.yi � x0iˇ/.

If some of the responses are left, right, or interval censored, the log likelihood can be written as

L D
X

log
�
f .ui /

�

�
C

X
log .S.ui //C

X
log .F.ui //C

X
log .F.ui / � F.vi //

with the first sum over uncensored observations, the second sum over right-censored observations, the third
sum over left-censored observations, the last sum over interval-censored observations, and

vi D
1

�
.zi � x0iˇ/

where zi is the lower end of a censoring interval.

If the response is specified in the binomial format, events/trials, then the log-likelihood function is

L D
X

ri log.Pi /C .ni � ri / log.1 � Pi /

where ri is the number of events and ni is the number of trials for the ith observation. In this case,
Pi D 1 � F.�x0iˇ/. For the symmetric distributions, logistic and normal, this is the same as F.x0iˇ/.
Additional information about censored and limited dependent variable models can be found in Kalbfleisch
and Prentice (1980) and Maddala (1983).

The estimated covariance matrix of the parameter estimates is computed as the negative inverse of I, which
is the information matrix of second derivatives of L with respect to the parameters evaluated at the final
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parameter estimates. If I is not positive definite, a positive-definite submatrix of I is inverted, and the
remaining rows and columns of the inverse are set to zero. If some of the parameters, such as the scale
and intercept, are restricted, the corresponding elements of the estimated covariance matrix are set to zero.
The standard error estimates for the parameter estimates are taken as the square roots of the corresponding
diagonal elements.

For restrictions placed on the intercept, scale, and shape parameters, one-degree-of-freedom Lagrange
multiplier test statistics are computed. These statistics are computed as

�2 D
g2

V

where g is the derivative of the log likelihood with respect to the restricted parameter at the restricted
maximum and

V D I11 � I12I�122 I21

where the 1 subscripts refer to the restricted parameter and the 2 subscripts refer to the unrestricted parameters.
The information matrix is evaluated at the restricted maximum. These statistics are asymptotically distributed
as chi-squares with one degree of freedom under the null hypothesis that the restrictions are valid, provided
that some regularity conditions are satisfied. See Rao (1973, p. 418) for a more complete discussion. It
is possible for these statistics to be missing if the observed information matrix is not positive definite.
Higher-degree-of-freedom tests for multiple restrictions are not currently computed.

A Lagrange multiplier test statistic is computed to test this constraint. Notice that this test statistic is
comparable to the Wald test statistic for testing that the scale is one. The Wald statistic is the result of
squaring the difference of the estimate of the scale parameter from one and dividing this by the square of its
estimated standard error.

Supported Distributions
For most distributions, the baseline survival function (S) and the probability density function(f ) are listed for
the additive random disturbance (y0 or log.T0/) with location parameter � and scale parameter � . See the
section “Overview: LIFEREG Procedure” on page 4208 for more information. These distributions apply
when the log of the response is modeled (this is the default analysis). The corresponding survival function
(G) and its density function (g) are given for the untransformed baseline distribution (T0).

For the normal and logistic distributions, the response is not log transformed by PROC LIFEREG, and the
survival functions and probability density functions listed apply to the untransformed response.

For example, for the WEIBULL distribution, S.w/ and f .w/ are the survival function and the probability
density function for the extreme-value distribution (distribution of the log of the response), while G.t/
and g.t/ are the survival function and the probability density function of a Weibull distribution (using the
untransformed response).

The chosen baseline functions define the meaning of the intercept, scale, and shape parameters. Only the
gamma distribution has a free shape parameter in the following parameterizations. Notice that some of
the distributions do not have mean zero and that � is not, in general, the standard deviation of the baseline
distribution.
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For the Weibull distribution, the accelerated failure time model is also a proportional-hazards model. However,
the parameterization for the covariates differs by a multiple of the scale parameter from the parameterization
commonly used for the proportional hazards model.

The distributions supported in the LIFEREG procedure follow. If there are no covariates in the model, � =
Intercept in the output; otherwise, � D x0ˇ. � = Scale in the output.

Exponential

S.w/ D exp.� exp.w � �//

f .w/ D exp.w � �/ exp.� exp.w � �//

G.t/ D exp.�˛t/

g.t/ D ˛ exp.�˛t/

where exp.��/ D ˛.

Generalized Gamma

S.w/ D S 0.u/, f .w/ D ��1f 0.u/, G.t/ D G0.v/, g.t/ D v
t�
g0.v/, u D w��

�
, v D exp. log.t/��

�
/, and

S 0.u/ D

8̂<̂
:
1 �

�.ı�2;ı�2 exp.ıu//
�.ı�2/

if ı > 0

�.ı�2;ı�2 exp.ıu//
�.ı�2/

if ı < 0

f 0.u/ D
jıj

�
�
ı�2

� �ı�2 exp.ıu/�ı�2 exp �� exp.ıu/ı�2
�

G0.v/ D

8̂<̂
:
1 �

�.ı�2;ı�2vı/
�.ı�2/

if ı > 0

�.ı�2;ı�2vı/
�.ı�2/

if ı < 0

g0.v/ D
jıj

v�
�
ı�2

� �ı�2vı�ı�2 exp ��vıı�2�

where �.a/ denotes the complete gamma function, �.a; z/ denotes the incomplete gamma function, and ı is
a free shape parameter. The ı parameter is called Shape by PROC LIFEREG. See Lawless (2003, p. 240),
and Klein and Moeschberger (1997, p. 386) for a description of the generalized gamma distribution.
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Logistic

S.w/ D
�
1C exp

�w � �
�

���1
f .w/ D

exp
�w��
�

�
�
�
1C exp

�w��
�

��2

Log-Logistic

S.w/ D
�
1C exp

�w � �
�

���1
f .w/ D

exp
�w��
�

�
�
�
1C exp

�w��
�

��2
G.t/ D

1

1C ˛t

g.t/ D
˛t�1

.1C ˛t /2

where  D 1=� and ˛ D exp.��=�/.

Lognormal

S.w/ D 1 �ˆ
�w � �

�

�
f .w/ D

1
p
2��

exp
�
�
1

2

�w � �
�

�2�

G.t/ D 1 �ˆ

�
log.t/ � �

�

�

g.t/ D
1

p
2��t

exp

 
�
1

2

�
log.t/ � �

�

�2!

where ˆ is the cumulative distribution function for the normal distribution.
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Normal

S.w/ D 1 �ˆ
�w � �

�

�
f .w/ D

1
p
2��

exp
�
�
1

2

�w � �
�

�2�

where ˆ is the cumulative distribution function for the normal distribution.

Weibull

S.w/ D exp
�
� exp

�w � �
�

��
f .w/ D

1

�
exp

�w � �
�

�
exp

�
� exp

�w � �
�

��
G.t/ D exp

�
�˛t

�
g.t/ D ˛t�1 exp

�
�˛t

�

where � D 1= and ˛ D exp.��=�/.

If your parameterization is different from the ones shown here, you can still use the procedure to fit your
model. For example, a common parameterization for the Weibull distribution is

g.t I�; ˇ/ D

�
ˇ

�

��
t

�

�ˇ�1
exp

 
�

�
t

�

�ˇ!

G.t I�; ˇ/ D exp

 
�

�
t

�

�ˇ!

so that � D exp.�/ and ˇ D 1=� .

Again note that the expected value of the baseline log response is, in general, not zero and that the distributions
are not symmetric in all cases. Thus, for a given set of covariates, x, the expected value of the log response is
not always x0ˇ.

Some relations among the distributions are as follows:

• The gamma with Shape=1 is a Weibull distribution.

• The gamma with Shape=0 is a lognormal distribution.

• The Weibull with Scale=1 is an exponential distribution.
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Predicted Values
For a given set of covariates, x (including the intercept term), the pth quantile of the log response, yp, is
given by

yp D x0ˇ C �up

if no offset variable has been specified, or

yp D x0ˇ C oC �up

for a given value o of an offset variable, where up is the pth quantile of the baseline distribution. The
estimated quantile is computed by replacing the unknown parameters with their estimates, including any
shape parameters on which the baseline distribution might depend. The estimated quantile of the original
response is obtained by taking the exponential of the estimated log quantile unless the NOLOG option is
specified in the preceding MODEL statement.

The following table shows how up is computed from the baseline distribution F.u/:

Table 57.13 Baseline Probability Functions and up

Distribution F.u/ up

Exponential 1 � exp.� exp.u// log.� log.1 � p//

Generalized Gamma

8̂<̂
:

�.ı�2;ı�2 exp.ıu//
�.ı�2/

if ı > 0

1 �
�.ı�2;ı�2 exp.ıu//

�.ı�2/
if ı < 0

F�1.p/

Logistic 1 � .1C exp.u//�1 log.p=.1 � p//
Log-logistic 1 � .1C exp.u//�1 log.p=.1 � p//
Lognormal ˆ.u/ ˆ�1.p/

Normal ˆ.u/ ˆ�1.p/

Weibull 1 � exp.� exp.u// log.� log.1 � p//

For the generalized gamma distribution, up is computed numerically.

The standard errors of the quantile estimates are computed using the estimated covariance matrix of the
parameter estimates and a Taylor series expansion of the quantile estimate. The standard error is computed as

STD D
p
z0Vz

where V is the estimated covariance matrix of the parameter vector .ˇ0; �; ı/0, and z is the vector

z D

264 x

Oup

O�
@up
@ı

375
where ı is the vector of the shape parameters. Unless the NOLOG option is specified, this standard error
estimate is converted into a standard error estimate for exp.yp/ as exp. Oyp/STD. It might be more desirable
to compute confidence limits for the log response and convert them back to the original response variable
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than to use the standard error estimates for exp.yp/ directly. See Example 57.1 for a 90% confidence interval
of the response constructed by exponentiating a confidence interval for the log response.

The variable CDF is computed as

CDFi D F.ui /

where the residual is defined by

ui D

�
yi � x0ib
O�

�
and F is the baseline cumulative distribution function. If the data are interval-censored, then the cumulative
distribution function, CDFi D F.ui /, is evaluated at the lower interval endpoint.

Confidence Intervals
Confidence intervals are computed for all model parameters and are reported in the “Analysis of Parameter
Estimates” table. The confidence coefficient can be specified with the ALPHA=˛ MODEL statement option,
resulting in a .1 � ˛/ � 100% two-sided confidence coefficient. The default confidence coefficient is 95%,
corresponding to ˛ D 0:05.

Regression Parameters

A two-sided .1 � ˛/ � 100% confidence interval ŒˇiL; ˇiU � for the regression parameter ˇi is based on the
asymptotic normality of the maximum likelihood estimator Ǒi and is computed by

ˇiL D Ǒi � z1�˛=2.SE Ǒ
i
/

ˇiU D Ǒi C z1�˛=2.SE Ǒ
i
/

where SE Ǒ
i

is the estimated standard error of Ǒi , and zp is the p � 100% percentile of the standard normal
distribution.

Scale Parameter

A two-sided .1 � ˛/ � 100% confidence interval Œ�L; �U � for the scale parameter � in the location-scale
model is based on the asymptotic normality of the logarithm of the maximum likelihood estimator log. O�/,
and is computed by

�L D O�= expŒz1�˛=2.SE O� /= O��

�U D O� expŒz1�˛=2.SE O� /= O��

See Meeker and Escobar (1998) for more information.
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Weibull Scale and Shape Parameters

The Weibull distribution scale parameter � and shape parameter ˇ are obtained by transforming the extreme-
value location parameter � and scale parameter � :

� D exp.�/

ˇ D 1=�

Consequently, two-sided .1� ˛/� 100% confidence intervals for the Weibull scale and shape parameters are
computed as

Œ�L; �U � D Œexp.�L/; exp.�U /�

ŒˇL; ˇU � D Œ1=�U ; 1=�L�

Gamma Shape Parameter

A two-sided .1�˛/�100% confidence interval for the three-parameter gamma shape parameter ı is computed
by

ŒıL; ıU � D Œ Oı � z1�˛=2.SE Oı/;
Oı C z1�˛=2.SE Oı/�

Fit Statistics
Suppose that the model contains p parameters and that n observations are used in model fitting. The fit
criteria displayed by the LIFEREG procedure are calculated as follows:

• –2 log likelihood:

�2log.L/

where L is the maximized likelihood for the model.

• Akaike’s information criterion:

AIC D �2log.L/C 2p

• corrected Akaike’s information criterion:

AICC D AICC
2p.p C 1/

n � p � 1

• Bayesian information criterion:

BIC D �2log.L/C p log.n/
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If you specify the Weibull, exponential, lognormal, log-logistic, or gamma distribution, then maximum
likelihood estimates of model parameters are computed by maximizing the log likelihood of the distribution of
the logarithm of the response. This is equivalent to computing maximum likelihood parameter estimates based
on the response on the original, rather than log, scale. If you specify the Weibull, exponential, lognormal,
log-logistic, or gamma distribution, then fit statistics based on the maximized log likelihood log.L/ of the
log of the response are reported in the “Fit Statistics” table. Fit criteria computed in this way cannot be
meaningfully compared with fit criteria that are based on the log likelihood of the unlogged response. If you
specify the normal or logistic distribution, or if you specify the NOLOG option in the MODEL statement,
then the fit criteria reported in the “Fit Statistics” table are based on the response on the original, rather than
log, scale.

In addition to the “Fit Statistics” table described previously, if you specify the Weibull, exponential, lognormal,
log-logistic, or gamma distribution, fit criteria that are based on the distribution of the response on the original
scale, rather than the log of the response, are reported in the “Fit Statistics (Unlogged Response)” table.

When comparing models, you should compare fit criteria based on the log likelihood that is computed by
using the response on the same scale, either always based on the log of the response or always based on the
response on the original scale.

See Akaike (1981, 1979) for details of AIC and BIC. See Simonoff (2003) for a discussion of using AIC,
AICC, and BIC in statistical modeling.

Probability Plotting
Probability plots are useful tools for the display and analysis of lifetime data. Probability plots use an inverse
distribution scale so that a cumulative distribution function (CDF) plots as a straight line. A nonparametric
estimate of the CDF of the lifetime data will plot approximately as a straight line, thus providing a visual
assessment of goodness of fit.

You can use the PROBPLOT statement in PROC LIFEREG to create probability plots of data that are
complete, right censored, interval censored, or a combination of censoring types (arbitrarily censored). A line
representing the maximum likelihood fit from the MODEL statement and pointwise parametric confidence
bands for the cumulative probabilities are also included in the plot.

A random variable Y belongs to a location-scale family of distributions if its CDF F is of the form

PrfY � yg D F.y/ D G
�y � �

�

�
where � is the location parameter and � is the scale parameter. Here, G is a CDF that cannot depend on any
unknown parameters, and G is the CDF of Y if � D 0 and � D 1. For example, if Y is a normal random
variable with mean � and standard deviation � ,

G.u/ D ˆ.u/ D

Z u

�1

1
p
2�

exp
�
�
u2

2

�
du

and

F.y/ D ˆ
�y � �

�

�
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The normal, extreme-value, and logistic distributions are location-scale models. The three-parameter gamma
distribution is a location-scale model if the shape parameter ı is fixed. If T has a lognormal, Weibull, or
log-logistic distribution, then log.T / has a distribution that is a location-scale model. These distributions are
said to be of type log-location-scale. Probability plots are constructed for lognormal, Weibull, and log-logistic
distributions by using log.T / instead of T in the plots.

Let y.1/ � y.2/ � : : : � y.n/ be ordered observations of a random sample with distribution function F.y/.
A probability plot is a plot of the points y.i/ against mi D G�1.ai /, where ai D OF .yi / is an estimate of the
CDF F.y.i// D G

�y.i/��
�

�
. The nonparametric CDF estimates ai are sometimes called plotting positions.

The axis on which the points mi are plotted is usually labeled with a probability scale (the scale of ai ).

If F is one of the location-scale distributions, then y is the lifetime; otherwise, the log of the lifetime is used
to transform the distribution to a location-scale model.

If the data actually have the stated distribution, then OF � F ,

mi D G
�1. OF .yi // � G

�1
�
G
�y.i/ � �

�

��
D
y.i/ � �

�

and points .y.i/; mi / should fall approximately in a straight line.

There are several ways to compute the nonparametric CDF estimates used in probability plots from lifetime
data. These are discussed in the next two sections.

Complete and Right-Censored Data

The censoring times must be taken into account when you compute plotting positions for right-censored data.
The modified Kaplan-Meier method described in the following section is the default method for computing
nonparametric CDF estimates for display on probability plots. See Abernethy (1996), Meeker and Escobar
(1998), and Nelson (1982) for discussions of the methods described in the following sections.

Expected Ranks, Kaplan-Meier, and Modified Kaplan-Meier Methods
Let y.1/ � y.2/ � : : : � y.n/ be ordered observations of a random sample including failure times and censor
times. Order the data in increasing order. Label all the data with reverse ranks ri , with r1 D n; : : : ; rn D 1.
For the lifetime (not censoring time) corresponding to reverse rank ri , compute the survival function estimate

Si D

�
ri

ri C 1

�
Si�1

with S0 D 1. The expected rank plotting position is computed as ai D 1�Si . The option PPOS=EXPRANK
specifies the expected rank plotting position.

For the Kaplan-Meier method,

Si D

�
ri � 1

ri

�
Si�1

The Kaplan-Meier plotting position is then computed as a0i D 1 � Si . The option PPOS=KM specifies the
Kaplan-Meier plotting position.

For the modified Kaplan-Meier method, use

S 0i D
Si C Si�1

2
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where Si is computed from the Kaplan-Meier formula with S0 D 1. The plotting position is then computed
as a00i D 1�S

0
i . The option PPOS=MKM specifies the modified Kaplan-Meier plotting position. If the PPOS

option is not specified, the modified Kaplan-Meier plotting position is used as the default method.

For complete samples, ai D i=.nC1/ for the expected rank method, a0i D i=n for the Kaplan-Meier method,
and a00i D .i � 0:5/=n for the modified Kaplan-Meier method. If the largest observation is a failure for the
Kaplan-Meier estimator, then Fn D 1 and the point is not plotted.

Median Ranks
Let y.1/ � y.2/ � : : : � y.n/ be ordered observations of a random sample including failure times and
censor times. A failure order number ji is assigned to the ith failure: ji D ji�1 C�, where j0 D 0. The
increment � is initially 1 and is modified when a censoring time is encountered in the ordered sample. The
new increment is computed as

� D
.nC 1/ � previous failure order number

1C number of items beyond previous censored item

The plotting position is computed for the ith failure time as

ai D
ji � 0:3

nC 0:4

For complete samples, the failure order number ji is equal to i, the order of the failure in the sample. In
this case, the preceding equation for ai is an approximation of the median plotting position computed as
the median of the ith-order statistic from the uniform distribution on (0, 1). In the censored case, ji is not
necessarily an integer, but the preceding equation still provides an approximation to the median plotting
position. The PPOS=MEDRANK option specifies the median rank plotting position.

Arbitrarily Censored Data

The LIFEREG procedure can create probability plots for data that consist of combinations of exact, left-
censored, right-censored, and interval-censored lifetimes—that is, arbitrarily censored data. The LIFEREG
procedure uses an iterative algorithm developed by Turnbull (1976) to compute a nonparametric maximum
likelihood estimate of the cumulative distribution function for the data. Since the technique is maximum
likelihood, standard errors of the cumulative probability estimates are computed from the inverse of the
associated Fisher information matrix. This algorithm is an example of the expectation-maximization (EM)
algorithm. The default initial estimate assigns equal probabilities to each interval. You can specify different
initial values with the PROBLIST= option. Convergence is determined if the change in the log likelihood
between two successive iterations is less than delta, where the default value of delta is 10�8. You can specify
a different value for delta with the TOLLIKE= option. Iterations will be terminated if the algorithm does not
converge after a fixed number of iterations. The default maximum number of iterations is 1000. Some data
might require more iterations for convergence. You can specify the maximum allowed number of iterations
with the MAXITEM= option in the PROBPLOT statement. The iteration history of the log likelihood is
displayed if you specify the ITPRINTEM option. The iteration history of the estimated interval probabilities
are also displayed if you specify both options ITPRINTEM and PRINTPROBS.

If an interval probability is smaller than a tolerance (10�6 by default) after convergence, the probability is set
to zero, the interval probabilities are renormalized so that they add to one, and iterations are restarted. Usually
the algorithm converges in just a few more iterations. You can change the default value of the tolerance with
the TOLPROB= option. You can specify the NOPOLISH option to avoid setting small probabilities to zero
and restarting the algorithm.
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If you specify the ITPRINTEM option, a table summarizing the Turnbull estimate of the interval probabilities
is displayed. The columns labeled “Reduced Gradient” and “Lagrange Multiplier” are used in checking final
convergence of the maximum likelihood estimate. The Lagrange multipliers must all be greater than or equal
to zero, or the solution is not maximum likelihood. See Gentleman and Geyer (1994) for more details of the
convergence checking. Also see Meeker and Escobar (1998, Chapter 3) for more information.

See Example 57.6 for an illustration.

Nonparametric Confidence Intervals

You can use the PPOUT option in the PROBPLOT statement to create a table containing the nonparametric
CDF estimates computed by the selected method, Kaplan-Meier CDF estimates, standard errors of the
Kaplan-Meier estimator, and nonparametric confidence limits for the CDF. The confidence limits are either
pointwise or simultaneous, depending on the value of the NPINTERVALS= option in the PROBPLOT
statement. The method used in the LIFEREG procedure for computation of approximate pointwise and
simultaneous confidence intervals for cumulative failure probabilities relies on the Kaplan-Meier estimator of
the cumulative distribution function of failure time and approximate standard deviation of the Kaplan-Meier
estimator. For the case of arbitrarily censored data, the Turnbull algorithm, discussed previously, provides an
extension of the Kaplan-Meier estimator. Both the Kaplan-Meier and the Turnbull estimators provide an
estimate of the standard error of the CDF estimator, se OF , that is used in computing confidence intervals.

Pointwise Confidence Intervals
Approximate .1 � ˛/100% pointwise confidence intervals are computed as in Meeker and Escobar (1998,
Section 3.6) as

ŒFL; FU � D

"
OF

OF C .1 � OF /w
;

OF

OF C .1 � OF /=w

#

where

w D exp

"
z1�˛=2se OF
. OF .1 � OF //

#

where zp is the pth quantile of the standard normal distribution.

Simultaneous Confidence Intervals
Approximate .1�˛/100% simultaneous confidence bands valid over the lifetime interval .ta; tb/ are computed
as the “Equal Precision” case of Nair (1984) and Meeker and Escobar (1998, Section 3.8) as

ŒFL; FU � D

"
OF

OF C .1 � OF /w
;

OF

OF C .1 � OF /=w

#
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where

w D exp

"
ea;b;1�˛=2se OF
. OF .1 � OF //

#

where the factor x D ea;b;1�˛=2 is the solution of

x exp.�x2=2/ log
�
.1 � a/b

.1 � b/a

�
=
p
8� D ˛=2

The time interval .ta; tb/ over which the bands are valid depends in a complicated way on the constants a and
b defined in Nair (1984), 0 < a < b < 1. The constants a and b are chosen by default so that the confidence
bands are valid between the lowest and highest times corresponding to failures in the case of multiply
censored data, or to the lowest and highest intervals for which probabilities are computed for arbitrarily
censored data. You can optionally specify a and b directly with the NPINTERVALS=SIMULTANEOUS(a,
b) option in the PROBPLOT statement.

Parametric Confidence Intervals

Pointwise parametric confidence bands are displayed in a probability plot, unless you specify the NOCONF
option in the PROBPLOT statement. Two kinds of confidence intervals are available for display in a
probability plot: confidence limits for the estimated cumulative distribution function (CDF) and confidence
limits for estimated distribution percentiles.

Confidence Limits for the Estimated CDF
If the distribution is of type log-location-scale, let y D log.t/ where t is the value of time at which the
confidence limits are to be computed. If the distribution is of type location-scale, let y be the value at which
you want to evaluate confidence limits for the estimated CDF OF .y/. Let

Ou D
y � x0 Ǒ

O�

where the column vector x of covariate values is determined by the rules summarized in the section “XDATA=
Data Set” on page 4277. If an offset variable is specified, the mean of the offset variable values is included in
x0ˇ.

The CDF estimate is given by

OF .y/ D G. Ou/

where G is the baseline distribution. The approximate standard error of OF .y/ is computed as in Meeker and
Escobar (1998, Section 8.4.3) as

SE OF D
g. Ou/

O�

h
Var.x0 Ǒ/C 2 OuCov.x0 Ǒ; O�/C Ou2Var. O�/

i 1
2
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where g is the probability density function corresponding to G. Two-sided .1 � ˛/ � 100% confidence limits
are given by

ŒFL; FU � D

"
OF

OF C .1 � OF / � w
;

OF

OF C .1 � OF /=w

#
where

w D exp

"
z1�˛=2SE OF
OF .1 � OF /

#

and zp is the p� 100% percentile of the standard normal distribution. The quantities Var.x0 Ǒ/, Cov.x0 Ǒ; O�/,
and Var. O�/ are computed based on the covariance matrix of the estimated parameter vector . Ǒ; O�/.

Confidence Limits for Percentiles
If the HCL option is specified in the PROBPLOT statement, confidence limits based on estimated distribution
percentiles instead of the default CDF limits are displayed in the probability plot.

For location-scale distributions, the estimated p � 100% percentile of the distribution F is given by

yp D x0 Ǒ CG�1.p/ O�

where G is the baseline distribution and the column vector x of covariate values is determined by the rules
summarized in the section “XDATA= Data Set” on page 4277. The standard error of yp is estimated by
SEy D z0†z where z D .x0; G�1.p//0 and † is the covariance matrix of the parameter estimates . Ǒ0; O�/0.
Two-sided .1 � ˛/ � 100% confidence limits for yp are given by

ŒyL; yU � D Œyp � z1�˛=2SEy ; yp C z1�˛=2SEy �

For distributions of type log-location-scale, the confidence limits are computed as

ŒtL D exp.yL/; tU D exp.yU /�

For example, if T has the Weibull distribution, G is the standardized extreme value distribution, ŒyL; yU �
are confidence limits for the p � 100% percentile of the extreme value distribution for log.T /, and ŒtL D
exp.yL/; tU D exp.yU /� are confidence limits for the p � 100% percentile of the Weibull distribution for
T.

INEST= Data Set
If specified, the INEST= data set specifies initial estimates for all the parameters in the model. The INEST=
data set must contain the intercept variable (named Intercept) and all independent variables in the MODEL
statement.

If BY processing is used, the INEST= data set should also include the BY variables, and there must be at
least one observation for each BY group. If there is more than one observation in one BY group, the first
observation read is used for that BY group.

If the INEST= data set also contains the _TYPE_ variable, only observations with _TYPE_ value ’PARMS’
are used as starting values. Combining the INEST= data set and the MAXITER= option in the MODEL
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statement, partial scoring can be done, such as predicting on a validation data set by using the model built
from a training data set.

You can specify starting values for the iterative algorithm in the INEST= data set. This data set overwrites the
INITIAL= option in the MODEL statement, which is a little difficult to use for models including multilevel
interaction effects. The INEST= data set has the same structure as the OUTEST= data set but is not required
to have all the variables or observations that appear in the OUTEST= data set. One simple use of the INEST=
option is passing the previous OUTEST= data set directly to the next model as an INEST= data set, assuming
that the two models have the same parameterization. See Example 57.3 for an illustration.

OUTEST= Data Set
The OUTEST= data set contains parameter estimates and the log likelihood for the model. You can specify a
label in the MODEL statement to distinguish between the estimates for different models fit with the LIFEREG
procedure. If the COVOUT option is specified, the OUTEST= data set also contains the estimated covariance
matrix of the parameter estimates. Note that, if the LIFEREG procedure does not converge, the parameter
estimates are set to missing in the OUTEST data set.

The OUTEST= data set contains all variables specified in the MODEL statement and the BY statement. One
observation consists of parameter values for the model with the dependent variable having the value –1. If
the COVOUT option is specified, there are additional observations containing the rows of the estimated
covariance matrix. For these observations, the dependent variable contains the parameter estimate for the
corresponding row variable. The following variables are also added to the data set:

_MODEL_ a character variable containing the label of the MODEL statement, if present. Otherwise,
the variable’s value is blank.

_NAME_ a character variable containing the name of the dependent variable for the parameter
estimates observations or the name of the row for the covariance matrix estimates

_TYPE_ a character variable containing the type of the observation, either PARMS for parameter
estimates or COV for covariance estimates

_DIST_ a character variable containing the name of the distribution modeled

_LNLIKE_ a numeric variable containing the last computed value of the log likelihood

INTERCEPT a numeric variable containing the intercept parameter estimates and covariances

_SCALE_ a numeric variable containing the scale parameter estimates and covariances

_SHAPE1_ a numeric variable containing the first shape parameter estimates and covariances if the
specified distribution has additional shape parameters

Any BY variables specified are also added to the OUTEST= data set.
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XDATA= Data Set
The XDATA= data set is used for plotting the predicted probability when there are covariates specified in a
MODEL statement and a probability plot is specified with a PROBPLOT statement. See Example 57.4 for an
illustration.

The XDATA= data set is an input SAS data set that contains values for all the independent variables in the
MODEL statement and variables in the CLASS statement. The XDATA= data set has the same structure as
the DATA= data set but is not required to have all the variables or observations that appear in the DATA=
data set.

The XDATA= data set must contain all the independent variables in the MODEL statement and variables in
the CLASS statement. Even though variables in the CLASS statement might not be used, valid values are
required for these variables in the XDATA= data set. Missing values are not allowed. Missing values are not
allowed in the XDATA= data set for any of the independent variables, either. Missing values are allowed for
the dependent variables and other variables if they are included in the XDATA= data set.

If BY processing is used, the XDATA= data set should also include the BY variables, and there must be at
least one valid observation for each BY group. If there is more than one valid observation in a BY group, the
last one read is used for that BY group.

If there is no XDATA= data set in the PROC LIFEREG statement, by default, the LIFEREG procedure will
use the overall mean for effects containing a continuous variable (or variables) and the highest level of a
single classification variable as reference level. The rules are summarized as follows:

• If the effect contains a continuous variable (or variables), the overall mean of this effect (not the
variables) is used.

• If the effect is a single classification variable, the highest level of the variable is used.

Computational Resources
Let p be the number of parameters estimated in the model. The minimum working space (in bytes) needed is

16p2 C 100p

However, if sufficient space is available, the input data set is also kept in memory; otherwise, the input data
set is reread for each evaluation of the likelihood function and its derivatives, with the resulting execution
time of the procedure substantially increased.

Let n be the number of observations used in the model estimation. Each evaluation of the likelihood
function and its first and second derivatives requires O.np2/ multiplications and additions, n individual
function evaluations for the log density or log distribution function, and n evaluations of the first and second
derivatives of the function. The calculation of each updating step from the gradient and Hessian requires
O.p3/ multiplications and additions. The O.v/ notation means that, for large values of the argument, v,
O.v/ is approximately a constant times v.
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Bayesian Analysis

Gibbs Sampling

This section provides details about Bayesian analysis by Gibbs sampling in the location-scale models for
survival data available in PROC LIFEREG. See the section “Gibbs Sampler” on page 133 in Chapter 7,
“Introduction to Bayesian Analysis Procedures,” for a general discussion of Gibbs sampling. PROC LIFEREG
fits parametric location-scale survival models. That is, the probability density of the response Y can expressed
in the general form

f .y/ D g
�y � �

�

�
where Y D log.T / for lifetimes T. The function g determines the specific distribution. The location parameter
�i is modeled through regression parameters as �i D x0iˇ. The LIFEREG procedure can provide Bayesian
estimates of the regression parameters and � . The OUTPUT and PROBPLOT statements, if specified, are
ignored. The PLOTS=PROBPLOT option in the PROC LIFEREG statement and the CORRB and COVB
options in the MODEL statement are also ignored.

For the Weibull distribution, you can specify that Gibbs sampling be performed on the Weibull shape
parameter ˇ D ��1 instead of the scale parameter � by specifying a prior distribution for the shape
parameter with the WEIBULLSHAPEPRIOR= option. In addition, if there are no covariates in the model,
you can specify Gibbs sampling on the Weibull scale parameter ˛ D exp.�/, where � is the intercept term,
with the WEIBULLSCALEPRIOR= option.

In the case of the exponential distribution with no covariates, you can specify Gibbs sampling on the
exponential scale parameter ˛ D exp.�/, where � is the intercept term, with the EXPSCALEPRIOR=
option.

Let � D .�1; : : : ; �k/0 be the parameter vector. For location-scale models, the �i ’s are the regression
coefficients ˇi ’s and the scale parameter � . In the case of the three-parameter gamma distribution, there is an
additional gamma shape parameter � . Let L.Dj�/ be the likelihood function, where D is the observed data.
Let �.�/ be the prior distribution. The full conditional distribution of Œ�i j�j ; i ¤ j � is proportional to the
joint distribution; that is,

�.�i j�j ; i ¤ j;D/ / L.Dj�/p.�/

For instance, the one-dimensional conditional distribution of �1 given �j D ��j ; 2 � j � k, is computed as

�.�1j�j D �
�
j ; 2 � j � k;D/ D L.Dj.� D .�1; �

�
2 ; : : : ; �

�
k /
0/p.� D .�1; �

�
2 ; : : : ; �

�
k /
0/

Suppose you have a set of arbitrary starting values f� .0/1 ; : : : ; �
.0/

k
g. Using the ARMS (adaptive rejection

Metropolis sampling) algorithm of Gilks and Wild (1992) and Gilks, Best, and Tan (1995), you can do the
following:

draw �
.1/
1 from Œ�1j�

.0/
2 ; : : : ; �

.0/

k
�

draw �
.1/
2 from Œ�2j�

.1/
1 ; �

.0/
3 ; : : : ; �

.0/

k
�
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: : :

draw �
.1/

k
from Œ�kj�

.1/
1 ; : : : ; �

.1/

k�1
�

This completes one iteration of the Gibbs sampler. After one iteration, you have f� .1/1 ; : : : ; �
.1/

k
g. After n

iterations, you have f� .n/1 ; : : : ; �
.n/

k
g. PROC LIFEREG implements the ARMS algorithm based on a program

provided by Gilks (2003) to draw a sample from a full conditional distribution. See the section “Assessing
Markov Chain Convergence” on page 137 in Chapter 7, “Introduction to Bayesian Analysis Procedures,” for
information about assessing the convergence of the chain of posterior samples.

You can output these posterior samples into a SAS data set. The following option in the BAYES statement
outputs the posterior samples into the SAS data set Post: OUTPOST=Post. The data set also includes
the variables LogPost and LogLike, which represent the log of the posterior distribution and the log of the
likelihood, respectively.

Priors for Model Parameters

The model parameters are the regression coefficients and the dispersion parameter (or the precision or scale),
if the model has one. The priors for the dispersion parameter and the priors for the regression coefficients
are assumed to be independent, while you can have a joint multivariate normal prior for the regression
coefficients.

Scale and Shape Parameters
Gamma Prior The gamma distribution G.a; b/ has a PDF

fa;b.u/ D
b.bu/a�1e�bu

�.a/
; u > 0

where a is the shape parameter and b is the inverse-scale parameter. The mean is a
b

and the variance is a
b2

.

Improper Prior The joint prior density is given by

p.u/ / u�1; u > 0

Regression Coefficients
Let ˇ be the regression coefficients.

Normal Prior Assume ˇ has a multivariate normal prior with mean vector ˇ0 and covariance matrix †0.
The joint prior density is given by

p.ˇ/ / e�
1
2
.ˇ�ˇ0/

0†�10 .ˇ�ˇ0/

Uniform Prior The joint prior density is given by

p.ˇ/ / 1
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Posterior Distribution

Denote the observed data by D.

The posterior distribution is

�.�jD/ / LP .Dj�/p.�/

where LP .Dj�/ is the likelihood function with regression coefficients and any additional parameters, such
as scale or shape, � as parameters; and p.�/ is the joint prior distribution of the parameters.

Deviance Information Criterion

Let �i be the model parameters at iteration i of the Gibbs sampler, and let LL(�i ) be the corresponding model
log likelihood. PROC LIFEREG computes the following fit statistics defined by Spiegelhalter et al. (2002):

• effective number of parameters:

pD D LL.�/ � LL. N�/

• deviance information criterion (DIC):

DIC D LL.�/C pD

where

LL.�/ D
1

n

nX
iD1

LL.�i /

N� D
1

n

nX
iD1

�i

and n is the number of Gibbs samples.

Starting Values of the Markov Chains

When the BAYES statement is specified, PROC LIFEREG generates one Markov chain containing the
approximate posterior samples of the model parameters. Additional chains are produced when the Gelman-
Rubin diagnostics are requested. Starting values (or initial values) can be specified in the INITIAL= data set
in the BAYES statement. If INITIAL= option is not specified, PROC LIFEREG picks its own initial values
for the chains.

Denote Œx� as the integral value of x. Denote Os.X/ as the estimated standard error of the estimator X.

Regression Coefficients and Gamma Shape Parameter
For the first chain that the summary statistics and regression diagnostics are based on, the default initial
values are estimates of the mode of the posterior distribution. If the INITIALMLE option is specified, the
initial values are the maximum likelihood estimates; that is,

ˇ
.0/
i D

Ǒ
i

Initial values for the rth chain (r � 2) are given by

ˇ
.0/
i D

Ǒ
i ˙

�
2C

�
r

2

��
Os. Ǒi /

with the plus sign for odd r and minus sign for even r.
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Scale, Exponential Scale, Weibull Scale, or Weibull Shape Parameter �
Let � be the parameter sampled.

For the first chain that the summary statistics and diagnostics are based on, the initial values are estimates of
the mode of the posterior distribution; or the maximum likelihood estimates if the INITIALMLE option is
specified; that is,

�.0/ D O�

The initial values of the rth chain (r � 2) are given by

�.0/ D O�e
˙

�
Œ r
2
�C2

�
Os. O�/

with the plus sign for odd r and minus sign for even r.

OUTPOST= Output Data Set

The OUTPOST= data set contains the generated posterior samples. There are 2+n variables, where n is the
number of model parameters. The variable Iteration represents the iteration number and the variable LogPost
contains the log posterior likelihood values. The other n variables represent the draws of the Markov chain
for the model parameters.

Displayed Output for Classical Analysis
For each model, PROC LIFEREG displays the following.

Model Information

The “Model Information” table displays the two-level name of the input data set, the distribution name,
and the name and label of the dependent variable; the name and label of the censor indicator variable, for
right-censored data; if you specify the WEIGHT statement, the name and label of the weight variable; and
the maximum value of the log likelihood.

Number of Observations

The “Number of Observations” table displays the number of observations read from the input data set, and
the number of observations used in the analysis.

Class Level Information

The “Class Level Information” table displays the levels of classification variables if you specify a CLASS
statement.

Fit Statistics

The “Fit Statistics” table displays the negative of twice the log likelihood, Akaike’s information criterion
(AIC), the corrected Akaike’s information criterion (AICC), and the Bayesian information criterion (BIC). If
the specified distribution is Weibull, lognormal, log-logistic, or gamma, the fit criteria are based on the log
likelihood for the log of the response, rather than for the response on the original scale.
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Fit Statistics (Unlogged Response)

If the specified distribution is Weibull, lognormal, log-logistic, or gamma, the “Fit Statistics (Unlogged
Response)” table displays fit criteria that are based on the log likelihood for the response on the original,
rather than log, scale. The negative of twice the log likelihood, Akaike’s information criterion (AIC), the
corrected Akaike’s information criterion (AICC), and the Bayesian information criterion (BIC) are displayed.

Type III Analysis of Effects

The “Type III Analysis of Effects” table displays, for each effect in the model, the effect name, the degrees of
freedom associated with the type III contrast for the effect, the chi-square statistic for the contrast, and the
p-value for the statistic.

Analysis of Maximum Likelihood Parameter Estimates

The “Analysis of Maximum Likelihood Parameter Estimates” table displays the parameter name, the degrees
of freedom for each parameter, the maximum likelihood estimate of each parameter, the estimated standard
error of the parameter estimator, confidence limits for each parameter, a chi-square statistic for testing
whether the parameter is zero, and the associated p-value for the statistic.

Lagrange Multiplier Statistics

If there are constrained parameters in the model, such as the scale or intercept, then the “Lagrange Multiplier
Statistics” table displays a Lagrange multiplier test for the constraint.

Displayed Output for Bayesian Analysis
If a Bayesian analysis is requested with a BAYES statement, the displayed output includes the following.

Model Information

The “Model Information” table displays the two-level name of the input data set, the number of burn-in
iterations, the number of iterations after the burn-in, the number of thinning iterations, the distribution name,
and the name and label of the dependent variable; the name and label of the censor indicator variable, for
right-censored data; if you specify the WEIGHT statement, the name and label of the weight variable; and
the maximum value of the log likelihood.

Class Level Information

The “Class Level Information” table displays the levels of classification variables if you specify a CLASS
statement.

Maximum Likelihood Estimates

The “Analysis of Maximum Likelihood Parameter Estimates” table displays the maximum likelihood estimate
of each parameter, the estimated standard error of the parameter estimator, and confidence limits for each
parameter.
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Coefficient Prior

The “Coefficient Prior” table displays the prior distribution of the regression coefficients.

Independent Prior Distributions for Model Parameters

The “Independent Prior Distributions for Model Parameters” table displays the prior distributions of additional
model parameters (scale, exponential scale, Weibull scale, Weibull shape, gamma shape).

Initial Values and Seeds

The “Initial Values and Seeds” table displays the initial values and random number generator seeds for the
Gibbs chains.

Fit Statistics

The “Fit Statistics” table displays the deviance information criterion (DIC) and the effective number of
parameters.

Posterior Summaries

The “Posterior Summaries” table contains the size of the sample, the mean, the standard deviation, and the
quartiles for each model parameter.

Posterior Intervals

The “Posterior Intervals” table contains the HPD intervals and the credible intervals for each model parameter.

Correlation Matrix of the Posterior Samples

The “Correlation Matrix of the Posterior Samples” table is produced if you include the CORR suboption in
the SUMMARY= option in the BAYES statement. This table displays the sample correlation of the posterior
samples.

Covariance Matrix of the Posterior Samples

The “Covariance Matrix of the Posterior Samples” table is produced if you include the COV suboption in the
SUMMARY= option in the BAYES statement. This table displays the sample covariance of the posterior
samples.

Autocorrelations of the Posterior Samples

The “Autocorrelations of the Posterior Samples” table displays the lag1, lag5, lag10, and lag50 autocorrela-
tions for each parameter.

Gelman and Rubin Diagnostics

The “Gelman and Rubin Diagnostics” table is produced if you include the GELMAN suboption in the
DIAGNOSTIC= option in the BAYES statement. This table displays the estimate of the potential scale
reduction factor and its 97.5% upper confidence limit for each parameter.
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Geweke Diagnostics

The “Geweke Diagnostics” table displays the Geweke statistic and its p-value for each parameter.

Raftery and Lewis Diagnostics

The “Raftery Diagnostics” tables is produced if you include the RAFTERY suboption in the DIAGNOSTIC=
option in the BAYES statement. This table displays the Raftery and Lewis diagnostics for each variable.

Heidelberger and Welch Diagnostics

The “Heidelberger and Welch Diagnostics” table is displayed if you include the HEIDELBERGER suboption
in the DIAGNOSTIC= option in the BAYES statement. This table shows the results of a stationary test and a
halfwidth test for each parameter.

Effective Sample Size

The “Effective Sample Size” table displays, for each parameter, the effective sample size, the correlation
time, and the efficiency.

Monte Carlo Standard Errors

The “Monte Carlo Standard Errors” table displays, for each parameter, the Monte Carlo standard error, the
posterior sample standard deviation, and the ratio of the two.

ODS Table Names
PROC LIFEREG assigns a name to each table it creates. You can use these names to reference the table
when using the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed separately in Table 57.14 for a maximum likelihood analysis and in Table 57.15 for a Bayesian analysis.
For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

Table 57.14 ODS Tables Produced in PROC LIFEREG for a
Classical Analysis

ODS Table Name Description Statement Option

ClassLevels Classification variable levels CLASS Default�

ConvergenceStatus Convergence status MODEL Default
CorrB Parameter estimate correlation matrix MODEL CORRB
CovB Parameter estimate covariance matrix MODEL COVB
IterEM Iteration history for Turnbull algorithm PROBPLOT ITPRINTEM
FitStatistics Fit statistics MODEL Default
FitStatisticsUL Fit statistics for unlogged response MODEL DISTRIBUTION=WEIBULL,

LOGNORMAL, LLO-
GISTIC, or GAMMA

IterHistory Iteration history MODEL ITPRINT
LagrangeStatistics Lagrange statistics MODEL NOINT | NOSCALE
LastGrad Last evaluation of the gradient MODEL ITPRINT
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Table 57.14 continued

ODS Table Name Description Statement Option

LastHess Last evaluation of the Hessian MODEL ITPRINT
ModelInfo Model information MODEL Default
NObs Number of observations MODEL Default
ParameterEstimates Parameter estimates MODEL Default
ParmInfo Parameter indices MODEL Default
ProbabilityEstimates Nonparametric CDF estimates PROBPLOT PPOUT
TConvergenceStatus Convergence status for Turnbull algorithm PROBPLOT Default
Turnbull Probability estimates from Turnbull algo-

rithm
PROBPLOT ITPRINTEM

Type3Analysis Type 3 tests MODEL Default�

� Depending on the data.

Table 57.15 ODS Tables Produced in PROC LIFEREG for a
Bayesian Analysis

ODS Table Name Description Statement Option

AutoCorr Autocorrelations of the posterior samples BAYES Default
ClassLevels Classification variable levels CLASS Default�

CoeffPrior Prior distribution of the regression coeffi-
cients

BAYES Default

ConvergenceStatus Convergence status of maximum likeli-
hood estimation

MODEL Default

Corr Correlation matrix of the posterior sam-
ples

BAYES SUMMARY=CORR

ESS Effective sample size BAYES Default
FitStatistics Fit statistics BAYES Default
Gelman Gelman and Rubin convergence diagnos-

tics
BAYES DIAG=GELMAN

Geweke Geweke convergence diagnostics BAYES Default
Heidelberger Heidelberger and Welch convergence di-

agnostics
BAYES DIAG=HEIDELBERGER

InitialValues Initial values of the Markov chains BAYES Default
MCError Monte Carlo standard errors BAYES DIAG=MCSE
ModelInfo Model information MODEL Default
NObs Number of observations MODEL Default
ParameterEstimates Maximum likelihood estimates of model

parameters
MODEL Default

ParmPrior Prior distribution for scale and shape BAYES Default
PostIntervals HPD and equal-tail intervals of the poste-

rior samples
BAYES Default

PosteriorSample Posterior samples (for output data set
only)

BAYES
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Table 57.15 continued

ODS Table Name Description Statement Option

PostSummaries Summary statistics of the posterior sam-
ples

BAYES Default

Raftery Raftery and Lewis convergence diagnos-
tics

BAYES DIAG=RAFTERY

� Depending on the data.

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

Some graphs are produced by default; other graphs are produced by using statements and options.

ODS Graph Names

PROC LIFEREG assigns a name to each graph it creates using ODS. You can use these names to reference the
graphs when using ODS. The names of the graphs that PROC LIFEREG generates are listed in Table 57.16,
along with the required statements and options.

Table 57.16 Graphs Produced by PROC LIFEREG

ODS Graph Name Description Statement Option

ADPanel Autocorrelation function
and density panel

BAYES PLOTS=(AUTOCORR DENSITY)

AutocorrPanel Autocorrelation function
panel

BAYES PLOTS= AUTOCORR

AutocorrPlot Autocorrelation function
plot

BAYES PLOTS(UNPACK)=AUTOCORR

ProbPlot Probability plot PROBPLOT Default
TAPanel Trace and autocorrela-

tion function panel
BAYES PLOTS=(TRACE AUTOCORR)

TADPanel Trace, autocorrelation,
and density function
panel

BAYES Default

TDPanel Trace and density panel BAYES PLOTS=(TRACE DENSITY)
TracePanel Trace panel BAYES PLOTS=TRACE
TracePlot Trace plot BAYES PLOTS(UNPACK)=TRACE
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Examples: LIFEREG Procedure

Example 57.1: Motorette Failure
This example fits a Weibull model and a lognormal model to the example given in Kalbfleisch and Prentice
(1980, p. 5). An output data set called models is specified to contain the parameter estimates. By default, the
natural log of the variable time is used by the procedure as the response. After this log transformation, the
Weibull model is fit using the extreme-value baseline distribution, and the lognormal is fit using the normal
baseline distribution.

Since the extreme-value and normal distributions do not contain any shape parameters, the variable SHAPE1
is missing in the models data set. An additional output data set, out, is created that contains the predicted
quantiles and their standard errors for values of the covariate corresponding to temp=130 and temp=150.
This is done with the control variable, which is set to 1 for only two observations.

Using the standard error estimates obtained from the output data set, approximate 90% confidence limits for
the predicted quantities are then created in a subsequent DATA step for the log response. The logs of the
predicted values are obtained because the values of the P= variable in the OUT= data set are in the same units
as the original response variable, time. The standard errors of the quantiles of log(time) are approximated
(using a Taylor series approximation) by the standard deviation of time divided by the mean value of time.
These confidence limits are then converted back to the original scale by the exponential function.

The following statements produce Output 57.1.1:

title 'Motorette Failures With Operating Temperature as a Covariate';
data motors;

input time censor temp @@;
if _N_=1 then

do;
temp=130;
time=.;
control=1;
z=1000/(273.2+temp);
output;
temp=150;
time=.;
control=1;
z=1000/(273.2+temp);
output;

end;
if temp>150;
control=0;
z=1000/(273.2+temp);
output;
datalines;

8064 0 150 8064 0 150 8064 0 150 8064 0 150 8064 0 150
8064 0 150 8064 0 150 8064 0 150 8064 0 150 8064 0 150
1764 1 170 2772 1 170 3444 1 170 3542 1 170 3780 1 170
4860 1 170 5196 1 170 5448 0 170 5448 0 170 5448 0 170
408 1 190 408 1 190 1344 1 190 1344 1 190 1440 1 190
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1680 0 190 1680 0 190 1680 0 190 1680 0 190 1680 0 190
408 1 220 408 1 220 504 1 220 504 1 220 504 1 220
528 0 220 528 0 220 528 0 220 528 0 220 528 0 220

;

proc print data=motors;
run;

Output 57.1.1 Motorette Failure Data

Motorette Failures With Operating Temperature as a CovariateMotorette Failures With Operating Temperature as a Covariate

Obs time censor temp control z

1 . 0 130 1 2.48016

2 . 0 150 1 2.36295

3 1764 1 170 0 2.25632

4 2772 1 170 0 2.25632

5 3444 1 170 0 2.25632

6 3542 1 170 0 2.25632

7 3780 1 170 0 2.25632

8 4860 1 170 0 2.25632

9 5196 1 170 0 2.25632

10 5448 0 170 0 2.25632

11 5448 0 170 0 2.25632

12 5448 0 170 0 2.25632

13 408 1 190 0 2.15889

14 408 1 190 0 2.15889

15 1344 1 190 0 2.15889

16 1344 1 190 0 2.15889

17 1440 1 190 0 2.15889

18 1680 0 190 0 2.15889

19 1680 0 190 0 2.15889

20 1680 0 190 0 2.15889

21 1680 0 190 0 2.15889

22 1680 0 190 0 2.15889

23 408 1 220 0 2.02758

24 408 1 220 0 2.02758

25 504 1 220 0 2.02758

26 504 1 220 0 2.02758

27 504 1 220 0 2.02758

28 528 0 220 0 2.02758

29 528 0 220 0 2.02758

30 528 0 220 0 2.02758

31 528 0 220 0 2.02758

32 528 0 220 0 2.02758
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The following statements produce Output 57.1.2 and Output 57.1.3:

proc lifereg data=motors outest=modela covout;
a: model time*censor(0)=z;

output out=outa quantiles=.1 .5 .9 std=std p=predtime
control=control;

run;

proc lifereg data=motors outest=modelb covout;
b: model time*censor(0)=z / dist=lnormal;

output out=outb quantiles=.1 .5 .9 std=std p=predtime
control=control;

run;

Output 57.1.2 Motorette Failure: Model A

Motorette Failures With Operating Temperature as a Covariate

The LIFEREG Procedure

Motorette Failures With Operating Temperature as a Covariate

The LIFEREG Procedure

Model Information

Data Set WORK.MOTORS

Dependent Variable Log(time)

Censoring Variable censor

Censoring Value(s) 0

Number of Observations 30

Noncensored Values 17

Right Censored Values 13

Left Censored Values 0

Interval Censored Values 0

Number of Parameters 3

Name of Distribution Weibull

Log Likelihood -22.95148315

Type III Analysis of Effects

Effect DF
Wald

Chi-Square Pr > ChiSq

z 1 99.5239 <.0001

Analysis of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Intercept 1 -11.8912 1.9655 -15.7435 -8.0389 36.60 <.0001

z 1 9.0383 0.9060 7.2626 10.8141 99.52 <.0001

Scale 1 0.3613 0.0795 0.2347 0.5561

Weibull Shape 1 2.7679 0.6091 1.7982 4.2605
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Output 57.1.3 Motorette Failure: Model B

Motorette Failures With Operating Temperature as a Covariate

The LIFEREG Procedure

Motorette Failures With Operating Temperature as a Covariate

The LIFEREG Procedure

Model Information

Data Set WORK.MOTORS

Dependent Variable Log(time)

Censoring Variable censor

Censoring Value(s) 0

Number of Observations 30

Noncensored Values 17

Right Censored Values 13

Left Censored Values 0

Interval Censored Values 0

Number of Parameters 3

Name of Distribution Lognormal

Log Likelihood -24.47381031

Type III Analysis of Effects

Effect DF
Wald

Chi-Square Pr > ChiSq

z 1 42.0001 <.0001

Analysis of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Intercept 1 -10.4706 2.7719 -15.9034 -5.0377 14.27 0.0002

z 1 8.3221 1.2841 5.8052 10.8389 42.00 <.0001

Scale 1 0.6040 0.1107 0.4217 0.8652

The following statements produce Output 57.1.4:

data models;
set modela modelb;

run;

proc print data=models;
id _model_;
title 'Fitted Models';

run;
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Output 57.1.4 Motorette Failure: Fitted Models

Fitted ModelsFitted Models

_MODEL_ _NAME_ _TYPE_ _DIST_ _STATUS_ _LNLIKE_ time Intercept z _SCALE_

a time PARMS Weibull 0 Converged -22.9515 -1.0000 -11.8912 9.03834 0.36128

a Intercept COV Weibull 0 Converged -22.9515 -11.8912 3.8632 -1.77878 0.03448

a z COV Weibull 0 Converged -22.9515 9.0383 -1.7788 0.82082 -0.01488

a Scale COV Weibull 0 Converged -22.9515 0.3613 0.0345 -0.01488 0.00632

b time PARMS Lognormal 0 Converged -24.4738 -1.0000 -10.4706 8.32208 0.60403

b Intercept COV Lognormal 0 Converged -24.4738 -10.4706 7.6835 -3.55566 0.03267

b z COV Lognormal 0 Converged -24.4738 8.3221 -3.5557 1.64897 -0.01285

b Scale COV Lognormal 0 Converged -24.4738 0.6040 0.0327 -0.01285 0.01226

The following statements produce Output 57.1.5:

data out;
set outa outb;

run;

data out1;
set out;
ltime=log(predtime);
stde=std/predtime;
upper=exp(ltime+1.64*stde);
lower=exp(ltime-1.64*stde);

run;

title 'Quantile Estimates and Confidence Limits';
proc print data=out1;

id temp;
run;
title;

Output 57.1.5 Motorette Failure: Quantile Estimates and Confidence Limits

Quantile Estimates and Confidence LimitsQuantile Estimates and Confidence Limits

temp time censor control z _PROB_ predtime std ltime stde upper lower

130 . 0 1 2.48016 0.1 16519.27 5999.85 9.7123 0.36320 29969.51 9105.47

130 . 0 1 2.48016 0.5 32626.65 9874.33 10.3929 0.30265 53595.71 19861.63

130 . 0 1 2.48016 0.9 50343.22 15044.35 10.8266 0.29884 82183.49 30838.80

150 . 0 1 2.36295 0.1 5726.74 1569.34 8.6529 0.27404 8976.12 3653.64

150 . 0 1 2.36295 0.5 11310.68 2299.92 9.3335 0.20334 15787.62 8103.28

150 . 0 1 2.36295 0.9 17452.49 3629.28 9.7672 0.20795 24545.37 12409.24

130 . 0 1 2.48016 0.1 12033.19 5482.34 9.3954 0.45560 25402.68 5700.09

130 . 0 1 2.48016 0.5 26095.68 11359.45 10.1695 0.43530 53285.36 12779.95

130 . 0 1 2.48016 0.9 56592.19 26036.90 10.9436 0.46008 120349.65 26611.42

150 . 0 1 2.36295 0.1 4536.88 1443.07 8.4200 0.31808 7643.71 2692.83

150 . 0 1 2.36295 0.5 9838.86 2901.15 9.1941 0.29487 15957.38 6066.36

150 . 0 1 2.36295 0.9 21336.97 7172.34 9.9682 0.33615 37029.72 12294.62
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Example 57.2: Computing Predicted Values for a Tobit Model
The LIFEREG procedure can be used to perform a Tobit analysis. The Tobit model, described by Tobin
(1958), is a regression model for left-censored data assuming a normally distributed error term. The model
parameters are estimated by maximum likelihood. PROC LIFEREG provides estimates of the parameters
of the distribution of the uncensored data. See Greene (1993) and Maddala (1983) for a more complete
discussion of censored normal data and related distributions. This example shows how you can use PROC
LIFEREG and the DATA step to compute two of the three types of predicted values discussed there.

Consider a continuous random variable Y and a constant C. If you were to sample from the distribution
of Y but discard values less than (greater than) C, the distribution of the remaining observations would be
truncated on the left (right). If you were to sample from the distribution of Y and report values less than
(greater than) C as C, the distribution of the sample would be left (right) censored.

The probability density function of the truncated random variable Y0 is given by

fY0.y/ D
fY.y/

Pr.Y > C/
for y > C

where fY.y/ is the probability density function of Y. PROC LIFEREG cannot compute the proper likelihood
function to estimate parameters or predicted values for a truncated distribution. Suppose the model being fit
is specified as follows:

Y�i D x0iˇ C �i

where �i is a normal error term with zero mean and standard deviation � .

Define the censored random variable Yi as

Yi D 0 if Y�i � 0

Yi D Y�i if Y�i > 0

This is the Tobit model for left-censored normal data. Y�i is sometimes called the latent variable. PROC
LIFEREG estimates parameters of the distribution of Y�i by maximum likelihood.

You can use the LIFEREG procedure to compute predicted values based on the mean functions of the latent
and observed variables. The mean of the latent variable Y�i is x0iˇ, and you can compute values of the mean
for different settings of xi by specifying XBETA=variable-name in an OUTPUT statement. Estimates of
x0iˇ for each observation will be written to the OUT= data set. Predicted values of the observed variable Yi
can be computed based on the mean

E.Yi / D ˆ
�
x0iˇ
�

�
.x0iˇ C ��i /

where

�i D
�.x0iˇ=�/
ˆ.x0iˇ=�/

� and ˆ represent the normal probability density and cumulative distribution functions.
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Although the distribution of �i in the Tobit model is often assumed normal, you can use other distributions for
the Tobit model in the LIFEREG procedure by specifying a distribution with the DISTRIBUTION= option
in the MODEL statement. One distribution that should be mentioned is the logistic distribution. For this
distribution, the MLE has bounded influence function with respect to the response variable, but not the design
variables. If you believe your data have outliers in the response direction, you might try this distribution for
some robust estimation of the Tobit model.

With the logistic distribution, the predicted values of the observed variable Yi can be computed based on the
mean of Y�i ,

E.Yi / D � ln.1C exp.x0iˇ=�//

The following table shows a subset of the Mroz (1987) data set. In these data, Hours is the number of hours
the wife worked outside the household in a given year, Yrs_Ed is the years of education, and Yrs_Exp is
the years of work experience. A Tobit model will be fit to the hours worked with years of education and
experience as covariates.

Hours Yrs_Ed Yrs_Exp

0 8 9
0 8 12
0 9 10
0 10 15
0 11 4
0 11 6
1000 12 1
1960 12 29
0 13 3
2100 13 36
3686 14 11
1920 14 38
0 15 14
1728 16 3
1568 16 19
1316 17 7
0 17 15

If the wife was not employed (worked 0 hours), her hours worked will be left censored at zero. In order
to accommodate left censoring in PROC LIFEREG, you need two variables to indicate censoring status of
observations. You can think of these variables as lower and upper endpoints of interval censoring. If there
is no censoring, set both variables to the observed value of Hours. To indicate left censoring, set the lower
endpoint to missing and the upper endpoint to the censored value, zero in this case.

The following statements create a SAS data set with the variables Hours, Yrs_Ed, and Yrs_Exp from the
preceding data. A new variable, Lower, is created such that Lower=. if Hours=0 and Lower=Hours if Hours>0.
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data subset;
input Hours Yrs_Ed Yrs_Exp @@;
if Hours eq 0

then Lower=.;
else Lower=Hours;

datalines;
0 8 9 0 8 12 0 9 10 0 10 15 0 11 4 0 11 6
1000 12 1 1960 12 29 0 13 3 2100 13 36
3686 14 11 1920 14 38 0 15 14 1728 16 3
1568 16 19 1316 17 7 0 17 15
;

The following statements fit a normal regression model to the left-censored Hours data with Yrs_Ed and
Yrs_Exp as covariates. You need the estimated standard deviation of the normal distribution to compute the
predicted values of the censored distribution from the preceding formulas. The data set OUTEST contains
the standard deviation estimate in a variable named _SCALE_. You also need estimates of x0iˇ. These are
contained in the data set OUT as the variable Xbeta.

proc lifereg data=subset outest=OUTEST(keep=_scale_);
model (lower, hours) = yrs_ed yrs_exp / d=normal;
output out=OUT xbeta=Xbeta;

run;

Output 57.2.1 shows the results of the model fit. These tables show parameter estimates for the uncensored,
or latent variable, distribution.

Output 57.2.1 Parameter Estimates from PROC LIFEREG

The LIFEREG ProcedureThe LIFEREG Procedure

Model Information

Data Set WORK.SUBSET

Dependent Variable Lower

Dependent Variable Hours

Number of Observations 17

Noncensored Values 8

Right Censored Values 0

Left Censored Values 9

Interval Censored Values 0

Number of Parameters 4

Name of Distribution Normal

Log Likelihood -74.9369977

Analysis of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error
95%

Confidence Limits Chi-Square Pr > ChiSq

Intercept 1 -5598.64 2850.248 -11185.0 -12.2553 3.86 0.0495

Yrs_Ed 1 373.1477 191.8872 -2.9442 749.2397 3.78 0.0518

Yrs_Exp 1 63.3371 38.3632 -11.8533 138.5276 2.73 0.0987

Scale 1 1582.870 442.6732 914.9433 2738.397
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The following statements combine the two data sets created by PROC LIFEREG to compute predicted values
for the censored distribution. The OUTEST= data set contains the estimate of the standard deviation from the
uncensored distribution, and the OUT= data set contains estimates of x0iˇ.

data predict;
drop lambda _scale_ _prob_;
set out;
if _n_ eq 1 then set outest;
lambda = pdf('NORMAL',Xbeta/_scale_)

/ cdf('NORMAL',Xbeta/_scale_);
Predict = cdf('NORMAL', Xbeta/_scale_)

* (Xbeta + _scale_*lambda);
label Xbeta='MEAN OF UNCENSORED VARIABLE'

Predict = 'MEAN OF CENSORED VARIABLE';
run;

Output 57.2.2 shows the original variables, the predicted means of the uncensored distribution, and the
predicted means of the censored distribution.

Output 57.2.2 Predicted Means from PROC LIFEREG

Hours Lower Yrs_Ed Yrs_Exp

MEAN OF
UNCENSORED

VARIABLE

MEAN OF
CENSORED

VARIABLE

0 . 8 9 -2043.42 73.46

0 . 8 12 -1853.41 94.23

0 . 9 10 -1606.94 128.10

0 . 10 15 -917.10 276.04

0 . 11 4 -1240.67 195.76

0 . 11 6 -1113.99 224.72

1000 1000 12 1 -1057.53 238.63

1960 1960 12 29 715.91 1052.94

0 . 13 3 -557.71 391.42

2100 2100 13 36 1532.42 1672.50

3686 3686 14 11 322.14 805.58

1920 1920 14 38 2032.24 2106.81

0 . 15 14 885.30 1170.39

1728 1728 16 3 561.74 951.69

1568 1568 16 19 1575.13 1708.24

1316 1316 17 7 1188.23 1395.61

0 . 17 15 1694.93 1809.97
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Example 57.3: Overcoming Convergence Problems by Specifying Initial
Values

This example illustrates the use of parameter initial value specification to help overcome convergence
difficulties.

The following statements create a SAS data set.

data raw;
input censor x c1 @@;
datalines;

0 16 0.00 0 17 0.00 0 18 0.00
0 17 0.04 0 18 0.04 0 18 0.04
0 23 0.40 0 22 0.40 0 22 0.40
0 33 4.00 0 34 4.00 0 35 4.00
1 54 40.00 1 54 40.00 1 54 40.00
1 54 400.00 1 54 400.00 1 54 400.00
;

Output 57.3.1 shows the contents of the data set raw.

Output 57.3.1 Contents of the Data Set

Obs censor x c1

1 0 16 0.00

2 0 17 0.00

3 0 18 0.00

4 0 17 0.04

5 0 18 0.04

6 0 18 0.04

7 0 23 0.40

8 0 22 0.40

9 0 22 0.40

10 0 33 4.00

11 0 34 4.00

12 0 35 4.00

13 1 54 40.00

14 1 54 40.00

15 1 54 40.00

16 1 54 400.00

17 1 54 400.00

18 1 54 400.00
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The following SAS statements request that a Weibull regression model be fit to the data:

title 'OLS (Default) Initial Values';
proc lifereg data=raw;

model x*censor(1) = c1 / distribution = Weibull itprint;
run;

Convergence was not attained in 50 iterations for this model, as the following messages to the log indicate:

WARNING: Convergence was not attained in 50 iterations. You might want to
increase the maximum number of iterations (MAXITER= option) or
change the convergence criteria (CONVERGE = value) in the MODEL
statement.

WARNING: The procedure is continuing in spite of the above warning. Results
shown are based on the last maximum likelihood iteration. Validity
of the model fit is questionable.

The first line (iter=0) of the iteration history table, shown in Output 57.3.2, shows the default initial ordinary
least squares (OLS) estimates of the parameters.
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Output 57.3.2 Initial Least Squares

OLS (Default) Initial Values

The LIFEREG Procedure

OLS (Default) Initial Values

The LIFEREG Procedure

Iteration History for Parameter Estimates

Iter Ridge Loglikelihood Intercept c1 Scale

0 0 -22.891088 3.2324769714 0.0020664542 0.3995754195

1 0 -16.427074 3.5337141598 0.0028713635 0.3283544365

2 0 -13.216768 3.4480787541 0.0052801225 0.3816964358

3 0 -5.0786635 3.1966395335 0.0191439929 0.2325418958

4 0 -2.0018885 3.1848047525 0.0275425402 0.1963590539

5 0 -0.1814984 3.1478989655 0.0374731819 0.2103607621

6 0 2.90712131 3.0858183316 0.0659946149 0.1818245261

7 0.063 2.9991781 3.1014479187 0.0661096622 0.1648677081

8 0.063 3.01557837 3.0995493638 0.0662333056 0.1670552505

9 0.063 3.0301815 3.0992317977 0.0663580659 0.1669529486

10 0.063 3.0448013 3.0989901232 0.0664827053 0.1667371524

11 0.063 3.05941254 3.0987507448 0.0666071514 0.1665197313

12 0.063 3.07401474 3.0985118143 0.0667314052 0.1663026517

13 0.063 3.08860788 3.0982732928 0.066855467 0.1660859472

14 0.063 3.10319193 3.0980351787 0.0669793371 0.1658696184

15 0.063 3.11776689 3.0977974713 0.0671030156 0.1656536651

16 0.063 3.13233272 3.0975601698 0.0672265029 0.1654380873

17 0.063 3.1468894 3.0973232737 0.0673497993 0.165222885

18 0.063 3.16143692 3.0970867821 0.0674729049 0.1650080579

19 0.063 3.17597526 3.0968506943 0.06759582 0.1647936061

20 0.063 3.19050439 3.0966150098 0.0677185449 0.1645795293

21 0.063 3.2050243 3.0963797277 0.0678410799 0.1643658275

22 0.063 3.21953496 3.0961448474 0.0679634252 0.1641525006

23 0.063 3.23403635 3.0959103682 0.068085581 0.1639395483

24 0.063 3.24852845 3.0956762896 0.0682075476 0.1637269705

25 0.063 3.26301123 3.0954426107 0.0683293253 0.1635147672

26 0.063 3.27748468 3.095209331 0.0684509143 0.163302938

27 0.063 3.29194878 3.0949764498 0.0685723149 0.1630914829

28 0.063 3.3064035 3.0947439665 0.0686935273 0.1628804017

29 0.063 3.32084881 3.0945118805 0.0688145517 0.1626696942

30 0.063 3.3352847 3.0942801911 0.0689353885 0.1624593601

31 0.063 3.34971114 3.0940488977 0.0690560378 0.1622493994

32 0.063 3.36412812 3.0938179997 0.0691765 0.1620398118

33 0.063 3.3785356 3.0935874965 0.0692967752 0.1618305971

34 0.063 3.39293356 3.0933573875 0.0694168637 0.161621755

35 0.063 3.40732199 3.093127672 0.0695367658 0.1614132855

36 0.063 3.42170085 3.0928983495 0.0696564816 0.1612051882

37 0.063 3.43607013 3.0926694194 0.0697760116 0.1609974629

38 0.063 3.45042979 3.0924408811 0.0698953558 0.1607901095

39 0.063 3.46477983 3.092212734 0.0700145146 0.1605831276

40 0.063 3.4791202 3.0919849776 0.0701334882 0.160376517

41 0.063 3.4934509 3.0917576112 0.0702522768 0.1601702775

42 0.063 3.50777188 3.0915306343 0.0703708808 0.1599644088

43 0.063 3.52208314 3.0913040464 0.0704893002 0.1597589108



Example 57.3: Overcoming Convergence Problems by Specifying Initial Values F 4299

Output 57.3.2 continued

OLS (Default) Initial Values

The LIFEREG Procedure

Iteration History for Parameter Estimates

Iter Ridge Loglikelihood Intercept c1 Scale

44 0.063 3.53638465 3.0910778468 0.0706075354 0.159553783

45 0.063 3.55067637 3.0908520349 0.0707255867 0.1593490254

46 0.063 3.5649583 3.0906266104 0.0708434542 0.1591446376

47 0.063 3.57923039 3.0904015725 0.0709611382 0.1589406193

48 0.063 3.59349263 3.0901769207 0.0710786389 0.1587369703

49 0.063 3.607745 3.0899526546 0.0711959567 0.1585336903

50 0.063 3.62198746 3.0897287734 0.0713130916 0.1583307791

The log-logistic distribution is more robust to large values of the response than the Weibull distribution,
so one approach to improving the convergence performance is to fit a log-logistic distribution, and if this
converges, use the resulting parameter estimates as initial values in a subsequent fit of a model with the
Weibull distribution.

The following statements fit a log-logistic distribution to the data:

proc lifereg data=raw;
model x*censor(1) = c1 / distribution = llogistic;

run;

The algorithm converges, and the maximum likelihood estimates for the log-logistic distribution are shown in
Output 57.3.3

Output 57.3.3 Estimates from the Log-Logistic Distribution

OLS (Default) Initial Values

The LIFEREG Procedure

OLS (Default) Initial Values

The LIFEREG Procedure

Analysis of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Intercept 1 2.8983 0.0318 2.8360 2.9606 8309.43 <.0001

c1 1 0.1592 0.0133 0.1332 0.1852 143.85 <.0001

Scale 1 0.0498 0.0122 0.0308 0.0804

The following statements refit the Weibull model by using the maximum likelihood estimates from the
log-logistic fit as initial values:

proc lifereg data=raw outest=outest;
model x*censor(1) = c1 / itprint distribution = weibull

intercept=2.898 initial=0.16 scale=0.05;
output out=out xbeta=xbeta;

run;
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Examination of the resulting output in Output 57.3.4 shows that the convergence problem has been solved by
specifying different initial values.

Output 57.3.4 Final Estimates from the Weibull Distribution

OLS (Default) Initial Values

The LIFEREG Procedure

OLS (Default) Initial Values

The LIFEREG Procedure

Model Information

Data Set WORK.RAW

Dependent Variable Log(x)

Censoring Variable censor

Censoring Value(s) 1

Number of Observations 18

Noncensored Values 12

Right Censored Values 6

Left Censored Values 0

Interval Censored Values 0

Number of Parameters 3

Name of Distribution Weibull

Log Likelihood 11.232023272

Algorithm converged.

Analysis of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Intercept 1 2.9699 0.0326 2.9059 3.0338 8278.86 <.0001

c1 1 0.1435 0.0165 0.1111 0.1758 75.43 <.0001

Scale 1 0.0844 0.0189 0.0544 0.1308

Weibull Shape 1 11.8526 2.6514 7.6455 18.3749

As an example of an alternative way of specifying initial values, the following invocation of PROC LIFEREG,
using the INEST= data set to provide starting values for the three parameters, is equivalent to the previous
invocation:

data in;
input intercept c1 scale;
datalines;

2.898 0.16 0.05
;

proc lifereg data=raw inest=in outest=outest;
model x*censor(1) = c1 / itprint distribution = weibull;
output out=out xbeta=xbeta;

run;
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Example 57.4: Analysis of Arbitrarily Censored Data with Interaction Effects
The artificial data in this example are from a study of the natural recovery time of mice after injection of a
certain toxin. Twenty mice were grouped by sex (sex: 1 = Male, 2 = Female) with equal sizes. Their ages (in
days) were recorded at the injection. Their recovery times (in minutes) were also recorded. Toxin density in
blood was used to decide whether a mouse recovered. Mice were checked at two times for recovery. If a
mouse had recovered at the first time, the observation is left censored, and no further measurement is made.
The variable time1 is set to missing and time2 is set to the measurement time to indicate left censoring. If
a mouse had not recovered at the first time, it was checked later at a second time. If it had recovered by
the second measurement time, the observation is interval censored, and the variable time1 is set to the first
measurement time and time2 is set to the second measurement time. If there was no recovery at the second
measurement, the observation is right censored, and time1 is set to the second measurement time and time2 is
set to missing to indicate right censoring.

The following statements create a SAS data set containing the data from the experiment:

title 'Natural Recovery Time';
data mice;

input sex age time1 time2;
datalines;

1 57 631 631
1 45 . 170
1 54 227 227
1 43 143 143
1 64 916 .
1 67 691 705
1 44 100 100
1 59 730 .
1 47 365 365
1 74 1916 1916
2 79 1326 .
2 75 837 837
2 84 1200 1235
2 54 . 365
2 74 1255 1255
2 71 1823 .
2 65 537 637
2 33 583 683
2 77 955 .
2 46 577 577
;
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The following SAS statements create the SAS data sets xrow1 and xrow2:

data xrow1;
input sex age time1 time2;
datalines;

1 50 . .
;

data xrow2;
input sex age time1 time2;
datalines;

2 60.6 . .
;

The following SAS statements fit a Weibull model with age, sex, and an age-by-sex interaction term as
covariates, and create a plot of predicted probabilities against recovery time for the fixed values of age and
sex specified in the SAS data set xrow1:

ods graphics on;
proc lifereg data=mice xdata=xrow1;

class sex;
model (time1, time2) = age sex age*sex / dist=Weibull;

probplot / nodata
plower=.5
vref(intersect) = 75
vreflab = '75 Percent';

inset;
run;

Standard output is shown in Output 57.4.1. Tables containing general model information, Type III tests for
the main effects and interaction terms, and parameter estimates are created.
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Output 57.4.1 Parameter Estimates for the Interaction Model

Natural Recovery Time

The LIFEREG Procedure

Natural Recovery Time

The LIFEREG Procedure

Model Information

Data Set WORK.MICE

Dependent Variable Log(time1)

Dependent Variable Log(time2)

Number of Observations 20

Noncensored Values 9

Right Censored Values 5

Left Censored Values 2

Interval Censored Values 4

Number of Parameters 5

Name of Distribution Weibull

Log Likelihood -25.91033295

Type III Analysis of Effects

Effect DF
Wald

Chi-Square Pr > ChiSq

age 1 33.8496 <.0001

sex 1 14.0245 0.0002

age*sex 1 10.7196 0.0011

Analysis of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Intercept 1 5.4110 0.5549 4.3234 6.4986 95.08 <.0001

age 1 0.0250 0.0086 0.0081 0.0419 8.42 0.0037

sex 1 1 -3.9808 1.0630 -6.0643 -1.8974 14.02 0.0002

sex 2 0 0.0000 . . . . .

age*sex 1 1 0.0613 0.0187 0.0246 0.0980 10.72 0.0011

age*sex 2 0 0.0000 . . . . .

Scale 1 0.4087 0.0900 0.2654 0.6294

Weibull Shape 1 2.4468 0.5391 1.5887 3.7682
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The following two plots display the predicted probability against the recovery time for two different popu-
lations. Output 57.4.2 is created with the PROBPLOT statement with the option XDATA= xrow1, which
specifies the population with sex = 1, age = 50. Output 57.4.3 is created with the PROBPLOT statement
with the option XDATA= xrow2, which specifies the population with sex = 2, age = 60.6. These are the
default values that the LIFEREG procedure would use for the probability plot if the XDATA= option had not
been specified. Reference lines are used to display specified predicted probability points and their relative
locations in the plot.

Output 57.4.2 Probability Plot for Recovery Time with sex = 1, age = 50
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The following SAS statements fit a Weibull model with age, sex, and an age-by-sex interaction term as
covariates, and create the plot of predicted probabilities against recovery time shown in Output 57.4.3, for the
fixed values of age and sex specified in the SAS data set xrow2:

proc lifereg data=mice xdata=xrow2;
class sex;
model (time1, time2) = age sex age*sex / dist=Weibull;

probplot / nodata
plower=.5
vref(intersect) = 75
vreflab = '75 Percent';

inset;
run;
title;
ods graphics off;

Output 57.4.3 Probability Plot for Recovery Time with sex = 2, age = 60.6
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Example 57.5: Probability Plotting—Right Censoring
The following statements create a SAS data set containing observed and right-censored lifetimes of 70 diesel
engine fans (Nelson 1982):

data Fan;
input Lifetime Censor@@;
Lifetime = Lifetime / 1000;
datalines;

450 0 460 1 1150 0 1150 0 1560 1
1600 0 1660 1 1850 1 1850 1 1850 1
1850 1 1850 1 2030 1 2030 1 2030 1
2070 0 2070 0 2080 0 2200 1 3000 1
3000 1 3000 1 3000 1 3100 0 3200 1
3450 0 3750 1 3750 1 4150 1 4150 1
4150 1 4150 1 4300 1 4300 1 4300 1
4300 1 4600 0 4850 1 4850 1 4850 1
4850 1 5000 1 5000 1 5000 1 6100 1
6100 0 6100 1 6100 1 6300 1 6450 1
6450 1 6700 1 7450 1 7800 1 7800 1
8100 1 8100 1 8200 1 8500 1 8500 1
8500 1 8750 1 8750 0 8750 1 9400 1
9900 1 10100 1 10100 1 10100 1 11500 1
;

Some of the fans had not failed at the time the data were collected, and the unfailed units have right-censored
lifetimes. The variable LIFETIME represents either a failure time or a censoring time, in thousands of hours.
The variable CENSOR is equal to 0 if the value of LIFETIME is a failure time, and it is equal to 1 if the
value is a censoring time. The following statements use the LIFEREG procedure to produce the probability
plot with an inset for the engine lifetimes:

ods graphics on;
proc lifereg data=Fan;

model Lifetime*Censor( 1 ) = / d = Weibull;
probplot
ppout
npintervals=simul;
inset;

run;
ods graphics off;

The resulting graphical output is shown in Output 57.5.1. The estimated CDF, a line representing the
maximum likelihood fit, and pointwise parametric confidence bands are plotted in the body of Output 57.5.1.
The values of right-censored observations are plotted along the bottom of the graph. The “Cumulative
Probability Estimates” table is also created in Output 57.5.2.
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Output 57.5.1 Probability Plot for the Fan Data
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Output 57.5.2 CDF Estimates

Cumulative Probability Estimates

Simultaneous
95%

Confidence
Limits

Lifetime
Cumulative
Probability Lower Upper

Kaplan-Meier
Estimate

Kaplan-Meier
Standard

Error

0.45 0.0071 0.0007 0.2114 0.0143 0.0142

1.15 0.0215 0.0033 0.2114 0.0288 0.0201

1.15 0.0360 0.0073 0.2168 0.0433 0.0244

1.6 0.0506 0.0125 0.2304 0.0580 0.0282

2.07 0.0666 0.0190 0.2539 0.0751 0.0324

2.07 0.0837 0.0264 0.2760 0.0923 0.0361

2.08 0.1008 0.0344 0.2972 0.1094 0.0392

3.1 0.1189 0.0436 0.3223 0.1283 0.0427

3.45 0.1380 0.0535 0.3471 0.1477 0.0460

4.6 0.1602 0.0653 0.3844 0.1728 0.0510

6.1 0.1887 0.0791 0.4349 0.2046 0.0581

8.75 0.2488 0.0884 0.6391 0.2930 0.0980

Example 57.6: Probability Plotting—Arbitrary Censoring
Table 57.17 contains microprocessor failure data (Nelson 1990). Units were inspected at predetermined
time intervals. The data consist of inspection interval endpoints (in hours) and the number of units failing in
each interval. A missing (.) lower endpoint indicates left censoring, and a missing upper endpoint indicates
right censoring. These can be thought of as semi-infinite intervals with a lower (upper) endpoint of negative
(positive) infinity for left (right) censoring.

Table 57.17 Interval-Censored Data

Lower Endpoint Upper Endpoint Number Failed

. 6 6
6 12 2
24 48 2
24 . 1
48 168 1
48 . 839
168 500 1
168 . 150
500 1000 2
500 . 149
1000 2000 1
1000 . 147
2000 . 122
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The following SAS statements create the SAS data set Micro:

data Micro;
input t1 t2 f;
datalines;

. 6 6
6 12 2
12 24 0
24 48 2
24 . 1
48 168 1
48 . 839
168 500 1
168 . 150
500 1000 2
500 . 149
1000 2000 1
1000 . 147
2000 . 122
;

The following SAS statements compute the nonparametric Turnbull estimate of the cumulative distribution
function and create a lognormal probability plot:

ods graphics on;
proc lifereg data=Micro;

model ( t1 t2 ) = / d=lognormal intercept=25 scale=5;
weight f;
probplot
pupper = 10
itprintem
printprobs
maxitem = (1000,25)
ppout;
inset;

run;
ods graphics off;

The two initial values INTERCEPT=25 and SCALE=5 in the MODEL statement are used to aid convergence
in the model-fitting algorithm.

The following tables are created by the PROBPLOT statement in addition to the standard tabular output from
the MODEL statement. Output 57.6.1 shows the iteration history for the Turnbull estimate of the CDF for
the microprocessor data. With both options ITPRINTEM and PRINTPROBS specified in the PROBPLOT
statement, this table contains the log likelihoods and interval probabilities for every 25th iteration and the last
iteration. It would contain only the log likelihoods if the option PRINTPROBS were not specified.
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Output 57.6.1 Iteration History for the Turnbull Estimate

The LIFEREG ProcedureThe LIFEREG Procedure

Iteration History for the Turnbull Estimate of the CDF

Iteration Loglikelihood (., 6) (6, 12) (24, 48) (48, 168) (168, 500) (500, 1000) (1000, 2000) (2000, .)

0 -1133.4051 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125

25 -104.16622 0.00421644 0.00140548 0.00140648 0.00173338 0.00237846 0.00846094 0.04565407 0.93474475

50 -101.15151 0.00421644 0.00140548 0.00140648 0.00173293 0.00234891 0.00727679 0.01174486 0.96986811

75 -101.06641 0.00421644 0.00140548 0.00140648 0.00173293 0.00234891 0.00727127 0.00835638 0.9732621

100 -101.06534 0.00421644 0.00140548 0.00140648 0.00173293 0.00234891 0.00727125 0.00801814 0.97360037

125 -101.06533 0.00421644 0.00140548 0.00140648 0.00173293 0.00234891 0.00727125 0.00798438 0.97363413

130 -101.06533 0.00421644 0.00140548 0.00140648 0.00173293 0.00234891 0.00727125 0.007983 0.97363551

The table in Output 57.6.2 summarizes the Turnbull estimates of the interval probabilities, the reduced
gradients, and Lagrange multipliers as described in the section “Arbitrarily Censored Data” on page 4272.

Output 57.6.2 Summary for the Turnbull Algorithm

Lower
Lifetime

Upper
Lifetime Probability

Reduced
Gradient

Lagrange
Multiplier

. 6 0.0042 0 0

6 12 0.0014 0 0

24 48 0.0014 0 0

48 168 0.0017 0 0

168 500 0.0023 0 0

500 1000 0.0073 -7.219342E-9 0

1000 2000 0.0080 -0.037063236 0

2000 . 0.9736 0.0003038877 0

Output 57.6.3 shows the final estimate of the CDF, along with standard errors and nonparametric confidence
limits. Two kinds of nonparametric confidence limits, pointwise or simultaneous, are available. The default is
the pointwise nonparametric confidence limits. You can specify the simultaneous nonparametric confidence
limits by using the NPINTERVALS=SIMUL option.

Output 57.6.3 Final CDF Estimates for Turnbull Algorithm

Cumulative Probability Estimates

Pointwise
95%

Confidence
Limits

Lower
Lifetime

Upper
Lifetime

Cumulative
Probability Lower Upper

Standard
Error

6 6 0.0042 0.0019 0.0094 0.0017

12 24 0.0056 0.0028 0.0112 0.0020

48 48 0.0070 0.0038 0.0130 0.0022

168 168 0.0088 0.0047 0.0164 0.0028

500 500 0.0111 0.0058 0.0211 0.0037

1000 1000 0.0184 0.0094 0.0357 0.0063

2000 2000 0.0264 0.0124 0.0553 0.0101
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Output 57.6.4 shows the CDF estimates, maximum likelihood fit, and pointwise parametric confidence limits
plotted on a lognormal probability plot.

Output 57.6.4 Lognormal Probability Plot for the Microprocessor Data

Example 57.7: Bayesian Analysis of Clinical Trial Data
Consider the data on melanoma patients from a clinical trial described in Ibrahim, Chen, and Sinha (2001). A
partial listing of the data is shown in Output 57.7.1.

The survival time is modeled by a Weibull regression model with three covariates. An analysis of the right-
censored survival data is performed with PROC LIFEREG to obtain Bayesian estimates of the regression
coefficients by using the following SAS statements:

ods graphics on;
proc lifereg data=e1684;

class Sex;
model Survtime*Survcens(1)=Age Sex Perform / dist=Weibull;
bayes WeibullShapePrior=gamma seed=9999;

run;
ods graphics off;
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Output 57.7.1 Clinical Trial Data

Obs survtime survcens age sex perform

1 1.57808 2 35.9945 1 0

2 1.48219 2 41.9014 1 0

3 7.33425 1 70.2164 2 0

4 0.65479 2 58.1753 2 1

5 2.23288 2 33.7096 1 0

6 9.38356 1 47.9726 1 0

7 3.27671 2 31.8219 2 0

8 0.00000 1 72.3644 2 0

9 0.80274 2 40.7151 2 0

10 9.64384 1 32.9479 1 0

11 1.66575 2 35.9205 1 0

12 0.94247 2 40.5068 2 0

13 1.68767 2 57.0384 1 0

14 5.94247 2 63.1452 1 0

15 2.34247 2 62.0630 1 0

16 0.89863 2 56.5342 1 1

17 9.03288 1 22.9945 2 0

18 9.63014 1 18.4712 1 0

19 0.52603 2 41.2521 1 0

20 1.82192 2 29.5178 1 0

Maximum likelihood estimates of the model parameters shown in Output 57.7.2 are displayed by default.

Output 57.7.2 Maximum Likelihood Parameter Estimates

The LIFEREG Procedure

Bayesian Analysis

The LIFEREG Procedure

Bayesian Analysis

Analysis of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits

Intercept 1 2.4402 0.3716 1.7119 3.1685

age 1 -0.0115 0.0070 -0.0253 0.0023

sex 1 1 -0.1170 0.1978 -0.5046 0.2707

sex 2 0 0.0000 . . .

perform 1 0.2905 0.3222 -0.3411 0.9220

Scale 1 1.2537 0.0824 1.1021 1.4260

Weibull Shape 1 0.7977 0.0524 0.7012 0.9073

Since no prior distributions for the regression coefficients were specified, the default uniform improper
distributions shown in the “Uniform Prior for Regression Coefficients” table in Output 57.7.3 are used. The
specified gamma prior for the Weibull shape parameter is also shown in Output 57.7.3.
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Output 57.7.3 Model Parameter Priors

The LIFEREG Procedure

Bayesian Analysis

The LIFEREG Procedure

Bayesian Analysis

Uniform Prior for
Regression
Coefficients

Parameter Prior

Intercept Constant

age Constant

sex1 Constant

perform Constant

Independent Prior Distributions for Model Parameters

Parameter
Prior
Distribution Hyperparameters

Weibull Shape Gamma Shape 0.001 Inverse Scale 0.001

Fit statistics, descriptive statistics, interval statistics, and the sample parameter correlation matrix for the
posterior sample are displayed in the tables in Output 57.7.4. Since noninformative prior distributions for
the regression coefficients were used, the mean and standard deviations of the posterior distributions for the
model parameters are close to the maximum likelihood estimates and standard errors.

Output 57.7.4 Posterior Sample Statistics

Fit Statistics

DIC (smaller is better) 875.251

pD (effective number of parameters) 4.984

The LIFEREG Procedure

Bayesian Analysis

The LIFEREG Procedure

Bayesian Analysis

Posterior Summaries

Percentiles

Parameter N Mean
Standard
Deviation 25% 50% 75%

Intercept 10000 2.4668 0.3862 2.1989 2.4621 2.7256

age 10000 -0.0115 0.00733 -0.0163 -0.0115 -0.00652

sex1 10000 -0.1255 0.2004 -0.2584 -0.1247 0.00817

perform 10000 0.3304 0.3317 0.1071 0.3188 0.5470

WeibShape 10000 0.7834 0.0518 0.7481 0.7815 0.8178

Posterior Intervals

Parameter Alpha
Equal-Tail

Interval HPD Interval

Intercept 0.050 1.7279 3.2368 1.7234 3.2264

age 0.050 -0.0260 0.00263 -0.0261 0.00244

sex1 0.050 -0.5197 0.2676 -0.5260 0.2583

perform 0.050 -0.2898 1.0072 -0.3200 0.9726

WeibShape 0.050 0.6846 0.8905 0.6805 0.8849
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Output 57.7.4 continued

Posterior Correlation Matrix

Parameter Intercept age sex1 perform WeibShape

Intercept 1.0000 -.9018 -.3099 -.0888 -.1140

age -.9018 1.0000 -.0259 -.0363 0.0493

sex1 -.3099 -.0259 1.0000 0.1248 0.0371

perform -.0888 -.0363 0.1248 1.0000 -.0355

WeibShape -.1140 0.0493 0.0371 -.0355 1.0000

The default diagnostic statistics are displayed in Output 57.7.5. See the section “Assessing Markov Chain
Convergence” on page 137 in Chapter 7, “Introduction to Bayesian Analysis Procedures,” for more details on
Bayesian convergence diagnostics.

Output 57.7.5 Convergence Diagnostics

The LIFEREG Procedure

Bayesian Analysis

The LIFEREG Procedure

Bayesian Analysis

Posterior Autocorrelations

Parameter Lag 1 Lag 5 Lag 10 Lag 50

Intercept 0.0564 0.0030 0.0082 0.0234

age -0.0079 -0.0184 -0.0015 0.0239

sex1 0.6293 0.0700 0.0055 -0.0199

perform 0.6514 0.0773 0.0397 -0.0123

WeibShape 0.0719 -0.0083 -0.0062 0.0112

Geweke Diagnostics

Parameter z Pr > |z|

Intercept 0.4962 0.6198

age -0.4119 0.6804

sex1 -0.2519 0.8011

perform -0.1049 0.9165

WeibShape -0.6573 0.5110

Effective Sample Sizes

Parameter ESS
Autocorrelation

Time Efficiency

Intercept 7476.1 1.3376 0.7476

age 10000.0 1.0000 1.0000

sex1 2482.1 4.0288 0.2482

perform 2174.0 4.5998 0.2174

WeibShape 8538.8 1.1711 0.8539
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Trace, autocorrelation, and density plots for the seven model parameters are shown in Output 57.7.6 through
Output 57.7.10. These plots show no indication that the Markov chains have not converged. See the sections
“Assessing Markov Chain Convergence” on page 137 and “Visual Analysis via Trace Plots” on page 137
in Chapter 7, “Introduction to Bayesian Analysis Procedures,” for more information about assessing the
convergence of the chain of posterior samples.

Output 57.7.6 Diagnostic Plots
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Output 57.7.7 Diagnostic Plots
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Output 57.7.8 Diagnostic Plots
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Output 57.7.9 Diagnostic Plots
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Output 57.7.10 Diagnostic Plots
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Example 57.8: Model Postfitting Analysis
PROC LIFEREG enables you to make model-based inferences. This example uses the larynx cancer data
(Klein and Moeschberger 1997) to illustrate usage of the LSMEANS, LSMESTIMATE, and EFFECTPLOT
statements for model postfitting analysis.

The survival time is modeled by a proportional odds model with two covariates: patient age and cancer stage
(1, 2, 3, 4). The following statements use PROC LIFEREG to fit this model:

ods graphics on;

proc sort data=Larynx;
by DESCENDING Stage;

run;

proc lifereg data=Larynx order=data;
class Stage;
model Time*Death(0) = Age Stage / dist = llogistic;
lsmeans Stage / diff adjust=Sidak;
effectplot / noobs;

run;

The LSMEANS statement compares pairwise differences in survival times among the four different cancer
stages, while adjusting for age. The ADJUST=SIDAK option uses the Sidak method to control the overall
Type I error rate of these comparisons. Results are displayed in Output 57.8.1.

Output 57.8.1 LS-Means Differences between Disease Stages

The LIFEREG ProcedureThe LIFEREG Procedure

Differences of Stage Least Squares Means
Adjustment for Multiple Comparisons: Sidak

Stage _Stage Estimate
Standard

Error z Value Pr > |z| Adj P

4 3 -0.9604 0.4379 -2.19 0.0283 0.1581

4 2 -1.6404 0.4931 -3.33 0.0009 0.0053

4 1 -1.7661 0.4257 -4.15 <.0001 0.0002

3 2 -0.6800 0.4316 -1.58 0.1151 0.5199

3 1 -0.8057 0.3539 -2.28 0.0228 0.1292

2 1 -0.1257 0.4152 -0.30 0.7621 0.9998

All the LS-means differences and their significance are displayed by the mean-mean scatter plot in Out-
put 57.8.2.
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Output 57.8.2 Plot of Pairwise LS-Means Differences

Suppose you want to jointly test whether the effects of stages 2, 3, and 4 are different from stage 1. The
following LSMESTIMATE statement contrasts the LS-means of stages 2, 3, and 4 against the LS-means of
stage 1:

proc lifereg data=Larynx order=data;
class Stage year;
model Time*Death(0) = Age Stage / dist = llogistic;
lsmestimate Stage 'Stage 4 vs 1' 1 0 0 -1,

'Stage 3 vs 1' 0 1 0 -1,
'Stage 2 vs 1' 0 0 1 -1 / cl adjust=Sidak;

run;
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The CL option produces 95% confidence limits, including both unadjusted ones and those adjusted for
multiple comparisons according to the ADJUST= option. Results are displayed in Output 57.8.3.

Output 57.8.3 Custom LS-Means Tests and Relative Odds

The LIFEREG ProcedureThe LIFEREG Procedure

Least Squares Means Estimates
Adjustment for Multiplicity: Sidak

Effect Label Estimate
Standard

Error z Value Pr > |z| Adj P Alpha Lower Upper
Adj

Lower
Adj

Upper

Stage Stage 4 vs 1 -1.7661 0.4257 -4.15 <.0001 0.0001 0.05 -2.6004 -0.9319 -2.7825 -0.7498

Stage Stage 3 vs 1 -0.8057 0.3539 -2.28 0.0228 0.0668 0.05 -1.4993 -0.1122 -1.6507 0.03921

Stage Stage 2 vs 1 -0.1257 0.4152 -0.30 0.7621 0.9865 0.05 -0.9395 0.6881 -1.1171 0.8657

As displayed in Output 57.8.4, the EFFECTPLOT statement generates a plot of age effects on survival time
on a natural logarithm scale by four disease stages.

Output 57.8.4 Age Effects by Disease Stages
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You can also perform the preceding analysis for a Bayesian model. The following statements generate
posterior samples from a Bayesian model and request an LS-means analysis to compare the stage effects:

proc lifereg data=Larynx order=data;
class Stage;
model Time*Death(0) = Age Stage / dist = llogistic;
bayes seed=100 nmc=500 nbi=500 diagnostic=none outpost=OOO;
lsmeans Stage / diff exp;
lsmestimate Stage 'Stage 4 vs 1' 1 0 0 -1,

'Stage 3 vs 1' 0 1 0 -1,
'Stage 2 vs 1' 0 0 1 -1

/ cl plots=boxplot(orient=horizontal);
run;

Because no prior distributions for the regression coefficients were specified, the default uniform improper
distributions shown in the “Uniform Prior for Regression Coefficients” table in Output 57.8.5 are used. The
specified gamma prior for the scale parameter is also shown in Output 57.8.5.

Output 57.8.5 Model Parameter Priors

The LIFEREG Procedure

Bayesian Analysis

The LIFEREG Procedure

Bayesian Analysis

Uniform Prior for
Regression
Coefficients

Parameter Prior

Intercept Constant

Age Constant

Stage4 Constant

Stage3 Constant

Stage2 Constant

Independent Prior Distributions for Model Parameters

Parameter
Prior
Distribution Hyperparameters

Scale Gamma Shape 0.001 Inverse Scale 0.001

Under the Bayesian framework, the LS-means differences are treated as random variables for which posterior
samples are readily available according to the linear relationship of LS-means and the regression coefficients.
Output 57.8.6 lists the sample mean, standard deviation, and percentiles for each LS-means difference.
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Output 57.8.6 LS-Means Differences between Disease Stages

Sample Differences of Stage Least Squares Means

Percentiles
Percentiles for
Exponentiated

Stage _Stage N Estimate
Standard
Deviation 25th 50th 75th Exponentiated

Standard
Error of

Exponentiated 25th 50th 75th

4 3 500 -0.9307 0.4752 -1.2743 -0.9446 -0.6086 0.4426 0.232690 0.2796 0.3888 0.5441

4 2 500 -1.6591 0.5327 -2.0161 -1.6573 -1.2861 0.2181 0.115808 0.1332 0.1907 0.2763

4 1 500 -1.8001 0.4321 -2.0951 -1.7943 -1.5491 0.1815 0.082975 0.1231 0.1663 0.2124

3 2 500 -0.7284 0.4828 -1.0488 -0.7219 -0.3975 0.5410 0.268735 0.3504 0.4858 0.6720

3 1 500 -0.8694 0.3727 -1.1199 -0.8541 -0.6149 0.4488 0.168055 0.3263 0.4257 0.5407

2 1 500 -0.1410 0.4413 -0.4126 -0.1417 0.1363 0.9585 0.462376 0.6619 0.8679 1.1461

The LSMESTIMATE statement produces summary statistics of the posterior samples for the specified
LS-means contrasts. Results are presented in Output 57.8.7; they are very similar to the results based on
maximum likelihood in Output 57.8.3.

Output 57.8.7 Summary Statistics of Custom LS-Means Differences

Sample Least Squares Means Estimates

Percentiles

Effect Label N Estimate
Standard
Deviation 25th 50th 75th Alpha

Lower
HPD

Upper
HPD

Stage Stage 4 vs 1 500 -1.8001 0.4321 -2.0951 -1.7943 -1.5491 0.05 -2.6279 -0.8897

Stage Stage 3 vs 1 500 -0.8694 0.3727 -1.1199 -0.8541 -0.6149 0.05 -1.6033 -0.2031

Stage Stage 2 vs 1 500 -0.1410 0.4413 -0.4126 -0.1417 0.1363 0.05 -1.1401 0.6252
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The PLOTS= option uses ODS Graphics to display the Bayesian samples. A box plot is presented in
Output 57.8.8.

Output 57.8.8 Box Plot of Sampled LS-Means Differences
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Overview: LIFETEST Procedure
A common feature of lifetime or survival data is the presence of right-censored observations due either to
withdrawal of experimental units or to termination of the experiment. For such observations, you know only
that the lifetime exceeded a given value; the exact lifetime remains unknown. Such data cannot be analyzed by
ignoring the censored observations because, among other considerations, the longer-lived units are generally
more likely to be censored. The analysis methodology must correctly use the censored observations in
addition to the uncensored observations.

Texts that discuss the survival analysis methodology include Collett (1994), Cox and Oakes (1984);
Kalbfleisch and Prentice (1980); Klein and Moeschberger (1997); Lawless (1982); Lee (1992). Users
interested in the theory should consult Fleming and Harrington (1991); Andersen et al. (1992).

Usually, a first step in the analysis of survival data is the estimation of the distribution of the survival times.
Survival times are often called failure times, and event times are uncensored survival times. The survival
distribution function (SDF), also known as the survivor function, is used to describe the lifetimes of the
population of interest. The SDF evaluated at t is the probability that an experimental unit from the population
will have a lifetime that exceeds t—that is,

S.t/ D Pr.T > t/

where S.t/ denotes the survivor function and T is the lifetime of a randomly selected experimental unit. The
LIFETEST procedure can be used to compute nonparametric estimates of the survivor function either by
the product-limit method (also called the Kaplan-Meier method) or by the life-table method (also called the
actuarial method). The life-table estimator is a grouped-data analog of the Kaplan-Meier estimator. The
procedure can also compute the Breslow estimator or the Fleming-Harrington estimator, which are asymptotic
equivalent alternatives to the Kaplan-Meier estimator.

Some functions closely related to the SDF are the cumulative distribution function (CDF), the probability
density function (PDF), and the hazard function. The CDF, denoted F.t/, is defined as 1 � S.t/ and is the
probability that a lifetime does not exceed t. The PDF, denoted f .t/, is defined as the derivative of F.t/, and
the hazard function, denoted h.t/, is defined as f .t/=S.t/. If the life-table method is chosen, the estimates
of the probability density function can also be computed. Plots of these estimates can be produced with ODS
Graphics.

An important task in the analysis of survival data is the comparison of survival curves. It is of interest to
determine whether the underlying populations of k (k � 2) samples have identical survivor functions. PROC
LIFETEST provides nonparametric k-sample tests based on weighted comparisons of the estimated hazard
rate of the individual population under the null and alternative hypotheses. Corresponding to various weight
functions, a variety of tests can be specified, which include the log-rank test, Wilcoxon test, Tarone-Ware test,
Peto-Peto test, modified Peto-Peto test, and Fleming-Harrington G� family of tests. PROC LIFETEST also
provides corresponding trend tests to detect ordered alternatives. Stratified tests can be specified to adjust for
prognostic factors that affect the events rates in the various populations. A likelihood ratio test, based on an
underlying exponential model, is also included to compare the survival curves of the samples.



Getting Started: LIFETEST Procedure F 4329

There are other prognostic variables, called covariates, that are thought to be related to the failure time. These
covariates can also be used to construct statistics to test for association between the covariates and the lifetime
variable. PROC LIFETEST can compute two such test statistics: censored data linear rank statistics based on
the exponential scores and the Wilcoxon scores. The corresponding tests are known as the log-rank test and
the Wilcoxon test, respectively. These tests are computed by pooling over any defined strata, thus adjusting
for the stratum variables.

One change in SAS 9.2 and later is that the calculation of confidence limits for the quartiles of survival
time is based on the transformation specified by the CONFTYPE= option. Another change is that the
SURVIVAL statement in SAS 9.1 is folded into the PROC LIFETEST statement; that is, options that were
in the SURVIVAL statement can now be specified in the PROC LIFETEST statement. The SURVIVAL
statement is no longer needed and it is not documented.

Getting Started: LIFETEST Procedure
You can use the LIFETEST procedure to compute nonparametric estimates of the survivor functions, to
compare survival curves, and to compute rank tests for association of the failure time variable with covariates.

For simple analyses, only the PROC LIFETEST and TIME statements are required. Consider a sample of
survival data. Suppose that the time variable is T and the censoring variable is C with value 1 indicating
censored observations. The following statements compute the product-limit estimate for the sample:

proc lifetest;
time t*c(1);

run;

You can use the STRATA statement to divide the data into various strata. A separate survivor function is then
estimated for each stratum, and tests of the homogeneity of strata are performed. However, if the GROUP=
option is also specified in the STRATA statement, the GROUP= variable is used to identify the samples
whose survivor functions are to be compared, and the STRATA variables are used to define the strata for
the stratified tests. You can specify covariates (prognostic variables) in the TEST statement, and PROC
LIFETEST computes linear rank statistics to test the effects of these covariates on survival.

For example, consider the results of a small randomized trial on rats. Suppose you randomize 40 rats that
have been exposed to a carcinogen into two treatment groups (Drug X and Placebo). The event of interest is
death from cancer induced by the carcinogen. The response is the time from randomization to death. Four
rats died of other causes; their survival times are regarded as censored observations. Interest lies in whether
the survival distributions differ between the two treatments.

The following DATA step creates the data set Exposed, which contains four variables: Days (survival time
in days from treatment to death), Status (censoring indicator variable: 0 if censored and 1 if not censored),
Treatment (treatment indicator), and Sex (gender: F if female and M if male).
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proc format;
value Rx 1='Drug X' 0='Placebo';

run;
data exposed;

input Days Status Treatment Sex $ @@;
format Treatment Rx.;
datalines;

179 1 1 F 378 0 1 M
256 1 1 F 355 1 1 M
262 1 1 M 319 1 1 M
256 1 1 F 256 1 1 M
255 1 1 M 171 1 1 F
224 0 1 F 325 1 1 M
225 1 1 F 325 1 1 M
287 1 1 M 217 1 1 F
319 1 1 M 255 1 1 F
264 1 1 M 256 1 1 F
237 0 0 F 291 1 0 M
156 1 0 F 323 1 0 M
270 1 0 M 253 1 0 M
257 1 0 M 206 1 0 F
242 1 0 M 206 1 0 F
157 1 0 F 237 1 0 M
249 1 0 M 211 1 0 F
180 1 0 F 229 1 0 F
226 1 0 F 234 1 0 F
268 0 0 M 209 1 0 F
;

PROC LIFETEST is invoked as follows to compute the product-limit estimate of the survivor function for
each treatment and to compare the survivor functions between the two treatments:

ods graphics on;
proc lifetest data=Exposed plots=(survival(atrisk) logsurv);

time Days*Status(0);
strata Treatment;

run;
ods graphics off;

In the TIME statement, the survival time variable, Days, is crossed with the censoring variable, Status, with
the value 0 indicating censoring. That is, the values of Days are considered censored if the corresponding
values of Status are 0; otherwise, they are considered as event times. In the STRATA statement, the variable
Treatment is specified, which indicates that the data are to be divided into strata based on the values of
Treatment. ODS Graphics must be enabled before producing graphs. Two plots are requested through the
PLOTS= option—a plot of the survival curves with at risk numbers and a plot of the negative log of the
survival curves.

The results of the analysis are displayed in the following figures.

Figure 58.1 displays the product-limit survival estimate for the Drug X group (Treatment=1). The figure lists,
for each observed time, the survival estimate, failure rate, standard error of the estimate, cumulative number
of failures, and number of subjects remaining in the study.
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Figure 58.1 Survivor Function Estimate for the Drug X-Treated Rats

The LIFETEST Procedure

Stratum 1: Treatment = Drug X

The LIFETEST Procedure

Stratum 1: Treatment = Drug X

Product-Limit Survival Estimates

Days Survival Failure

Survival
Standard

Error
Number
Failed

Number
Left

0.000 1.0000 0 0 0 20

171.000 0.9500 0.0500 0.0487 1 19

179.000 0.9000 0.1000 0.0671 2 18

217.000 0.8500 0.1500 0.0798 3 17

224.000 * . . . 3 16

225.000 0.7969 0.2031 0.0908 4 15

255.000 . . . 5 14

255.000 0.6906 0.3094 0.1053 6 13

256.000 . . . 7 12

256.000 . . . 8 11

256.000 . . . 9 10

256.000 0.4781 0.5219 0.1146 10 9

262.000 0.4250 0.5750 0.1135 11 8

264.000 0.3719 0.6281 0.1111 12 7

287.000 0.3187 0.6813 0.1071 13 6

319.000 . . . 14 5

319.000 0.2125 0.7875 0.0942 15 4

325.000 . . . 16 3

325.000 0.1062 0.8938 0.0710 17 2

355.000 0.0531 0.9469 0.0517 18 1

378.000 * 0.0531 . . 18 0

Note: The marked survival times are censored observations.

Figure 58.2 displays summary statistics of survival times for the Drug X group. It contains estimates of the
25th, 50th, and 75th percentiles and the corresponding 95% confidence limits. The median survival time for
rats in this treatment is 256 days. The mean and standard error are also displayed; however, these values are
underestimated because the largest observed time is censored and the estimation is restricted to the largest
event time.

Figure 58.2 Summary Statistics of Survival Times for Drug X-Treated Rats

Quartile Estimates

95% Confidence Interval

Percent
Point

Estimate Transform [Lower Upper)

75 319.000 LOGLOG 256.000 355.000

50 256.000 LOGLOG 255.000 319.000

25 255.000 LOGLOG 171.000 256.000

Mean
Standard

Error

271.131 11.877

Note: The mean survival time and its standard error were underestimated because the largest observation was censored and the
estimation was restricted to the largest event time.
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Figure 58.3 and Figure 58.4 display the survival estimates and the summary statistics of the survival times for
Placebo (Treatment=0). The median survival time for rats in this treatment is 235 days.

Figure 58.3 Survivor Function Estimate for Placebo-Treated Rats

The LIFETEST Procedure

Stratum 2: Treatment = Placebo

The LIFETEST Procedure

Stratum 2: Treatment = Placebo

Product-Limit Survival Estimates

Days Survival Failure

Survival
Standard

Error
Number
Failed

Number
Left

0.000 1.0000 0 0 0 20

156.000 0.9500 0.0500 0.0487 1 19

157.000 0.9000 0.1000 0.0671 2 18

180.000 0.8500 0.1500 0.0798 3 17

206.000 . . . 4 16

206.000 0.7500 0.2500 0.0968 5 15

209.000 0.7000 0.3000 0.1025 6 14

211.000 0.6500 0.3500 0.1067 7 13

226.000 0.6000 0.4000 0.1095 8 12

229.000 0.5500 0.4500 0.1112 9 11

234.000 0.5000 0.5000 0.1118 10 10

237.000 0.4500 0.5500 0.1112 11 9

237.000 * . . . 11 8

242.000 0.3938 0.6063 0.1106 12 7

249.000 0.3375 0.6625 0.1082 13 6

253.000 0.2813 0.7188 0.1038 14 5

257.000 0.2250 0.7750 0.0971 15 4

268.000 * . . . 15 3

270.000 0.1500 0.8500 0.0891 16 2

291.000 0.0750 0.9250 0.0693 17 1

323.000 0 1.0000 . 18 0

Note: The marked survival times are censored observations.

Figure 58.4 Summary Statistics of Survival Times for Placebo-Treated Rats

Quartile Estimates

95% Confidence Interval

Percent
Point

Estimate Transform [Lower Upper)

75 257.000 LOGLOG 237.000 323.000

50 235.500 LOGLOG 206.000 253.000

25 207.500 LOGLOG 156.000 229.000

Mean
Standard

Error

235.156 10.211
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A summary of the number of censored and event observations is shown in Figure 58.5. The figure lists, for
each stratum, the number of event and censored observations, and the percentage of censored observations.

Figure 58.5 Number of Event and Censored Observations

Summary of the Number of Censored and
Uncensored Values

Stratum Treatment Total Failed Censored
Percent

Censored

1 Drug X 20 18 2 10.00

2 Placebo 20 18 2 10.00

Total 40 36 4 10.00

Figure 58.6 displays the graph of the product-limit survivor function estimates versus survival time. The two
treatments differ primarily at larger survival times. Note the number of subjects at risk in the plot. You can
display the number of subjects at risk at specific time points by using the ATRISK= option.

Figure 58.6 Plot of Estimated Survivor Functions

Figure 58.7 displays the graph of the log survivor function estimates versus survival time. Neither curve
approximates a straight line through the origin—the exponential model is not appropriate for the survival
data.
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Note that these graphical displays are generated through ODS. For general information about ODS Graphics,
see Chapter 21, “Statistical Graphics Using ODS.”

Figure 58.7 Plot of Estimated Negative Log Survivor Functions

Results of the comparison of survival curves between the two treatments are shown in Figure 58.8. The rank
tests for homogeneity indicate a significant difference between the treatments (p = 0.0175 for the log-rank test
and p = 0.0249 for the Wilcoxon test). Rats treated with Drug X live significantly longer than those treated
with Placebo. Since the survival curves for the two treatments differ primarily at longer survival times, the
Wilcoxon test, which places more weight on shorter survival times, becomes less significant than the log-rank
test. As noted earlier, the exponential model is not appropriate for the given survival data; consequently, the
result of the likelihood ratio test should be ignored.

Figure 58.8 Results of the Two-Sample Tests

Test of Equality over Strata

Test Chi-Square DF
Pr >

Chi-Square

Log-Rank 5.6485 1 0.0175

Wilcoxon 5.0312 1 0.0249

-2Log(LR) 0.1983 1 0.6561
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Next, suppose male rats and female rats are thought to have different survival rates, and you want to assess
the treatment effect while adjusting for the gender differences. By specifying the variable Sex in the STRATA
statement as a stratifying variable and by specifying the variable Treatment in the GROUP= option, you can
carry out a stratified test to test Treatment while adjusting for Sex. The test statistics are computed by pooling
over the strata defined by the values of Sex, thus controlling for the effect of Sex. The NOTABLE option is
added to the PROC LIFETEST statement as follows to avoid estimating a survival curve for each gender:

proc lifetest data=Exposed notable;
time Days*Status(0);
strata Sex / group=Treatment;

run;

Results of the stratified tests are shown in Figure 58.9. The treatment effect is statistically significant for
both the log-rank test (p = 0.0071) and the Wilcoxon test (p = 0.0150). As compared to the results of the
unstratified tests in Figure 58.8, the significance of the treatment effect has been sharpened by controlling for
the effect of the gender of the subjects.

Figure 58.9 Results of the Stratified Two-Sample Tests

The LIFETEST ProcedureThe LIFETEST Procedure

Stratified Test of Equality over Group

Test Chi-Square DF
Pr >

Chi-Square

Log-Rank 7.2466 1 0.0071

Wilcoxon 5.9179 1 0.0150

Since Treatment is a binary variable, another way to study the effect of Treatment is to carry out a censored
linear rank test with Treatment as an independent variable. This test is less popular than the two-sample
test; nevertheless, in situations where the independent variables are continuous and are difficult to discretize,
it might be infeasible to perform a k-sample test. To compute the censored linear rank statistics to test the
Treatment effect, Treatment is specified in the TEST statement as follows:

proc lifetest data=Exposed notable;
time Days*Status(0);
test Treatment;

run;

Results of the linear rank tests are shown Figure 58.10. The p-values are very similar to those of the
two-sample tests in Figure 58.8.
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Figure 58.10 Results of Linear Rank Tests of Treatment

The LIFETEST ProcedureThe LIFETEST Procedure

Univariate Chi-Squares for the Wilcoxon Test

Variable
Test

Statistic
Standard

Error Chi-Square
Pr >

Chi-Square

Treatment 3.9525 1.7524 5.0875 0.0241

Univariate Chi-Squares for the Log-Rank Test

Variable
Test

Statistic
Standard

Error Chi-Square
Pr >

Chi-Square

Treatment 6.2708 2.6793 5.4779 0.0193

With Sex as a prognostic factor that you want to control, you can compute a stratified linear rank statistic to
test the effect of Treatment by specifying Sex in the STRATA statement and Treatment in the TEST statement
as in the following program. The TEST=NONE option is specified in the STRATA statement to suppress the
two-sample tests for Sex.

proc lifetest data=Exposed notable;
time Days*Status(0);
strata Sex / test=none;
test Treatment;

run;

Results of the stratified linear rank tests are shown in Figure 58.11. The p-values are very similar to those of
the stratified tests in Figure 58.9.

Figure 58.11 Results of Stratified Linear Rank Tests of Treatment

The LIFETEST ProcedureThe LIFETEST Procedure

Univariate Chi-Squares for the Wilcoxon Test

Variable
Test

Statistic
Standard

Error Chi-Square
Pr >

Chi-Square

Treatment 4.2372 1.7371 5.9503 0.0147

Univariate Chi-Squares for the Log-Rank Test

Variable
Test

Statistic
Standard

Error Chi-Square
Pr >

Chi-Square

Treatment 6.8021 2.5419 7.1609 0.0075
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Syntax: LIFETEST Procedure
The following statements are available in the LIFETEST procedure:

PROC LIFETEST < options > ;
BY variables ;
FREQ variable ;
ID variables ;
STRATA variable < (list) > < . . . variable < (list) > > < / options > ;
TEST variables ;
TIME variable <� censor (list) > ;
WEIGHT variable ;

The simplest use of PROC LIFETEST is to request the nonparametric estimates of the survivor function for
a sample of survival times. In such a case, only the PROC LIFETEST statement and the TIME statement
are required. You can use the STRATA statement to divide the data into various strata. A separate survivor
function is then estimated for each stratum, and tests of the homogeneity of strata are performed. However, if
the GROUP= option is also specified in the STRATA statement, stratified tests are carried out to test the k
samples that are defined by the GROUP= variable while controlling for the effect of the STRATA variables.
You can specify covariates in the TEST statement. PROC LIFETEST computes linear rank statistics to test
the effects of these covariates on survival.

The PROC LIFETEST statement invokes the procedure. All statements except the TIME statement are
optional, and there is no required order for the statements that follow the PROC LIFETEST statement. The
TIME statement specifies the variables that define the survival time and censoring indicator. The STRATA
statement specifies a variable or set of variables that define the strata for the analysis. The TEST statement
specifies a list of numeric covariates to be tested for their association with the response survival time. Each
variable is tested individually, and a joint test statistic is also computed. The ID statement provides a list of
variables whose values identify observations in the product-limit, Breslow, or Fleming-Harrington estimates.
When only the TIME statement appears, no strata are defined and no tests of homogeneity are performed.

PROC LIFETEST Statement
PROC LIFETEST < options > ;

The PROC LIFETEST statement invokes the LIFETEST procedure. Optionally, this statement identifies an
input data set and an output data set, and specifies the computation details of the survivor function estimation.
Table 58.1 summarizes the options available in the PROC LIFETEST statement. These options are described
in alphabetic order.

ODS Graphics is the preferred method of creating graphs. Many new features have been added to the ODS
Graphics plots. For example, you can display the number of subjects at risk in a survival plot. For information
about ODS Graphics options, see the PLOTS= option.

If no plotting options are specified, PROC LIFETEST displays a table that shows the product-limit estimate
of the survivor function. If ODS Graphics is enabled, PROC LIFETEST also displays a plot of the estimated
survivor function. Other options for displaying the estimated survivor function are documented in the section
“Plot Options Superseded by ODS Graphics” on page 4381.
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Table 58.1 Options Available in the PROC LIFETEST Statement

Option Description

Input and Output Data Sets
DATA= Specifies the input SAS data set
OUTSURV= Names an output data set to contain survival estimates and confi-

dence limits
OUTTEST= Names an output data set to contain rank test statistics for associa-

tion of survival time with covariates

Nonparametric Estimation
INTERVALS= Specifies interval endpoints for life-table estimates
NELSON Adds the Nelson-Aalen estimates
METHOD= Specifies the method to compute survivor function
NINTERVAL= Specifies the number of intervals for life-table estimates
WIDTH= Specifies the width of intervals for life-table estimates

Confidence Limits for Survivorship
ALPHA= Sets the confidence level for interval estimation estimates
BANDMAXTIME= Specifies the maximum time for confidence band
BANDMINTIME= Specifies the minimum time for confidence band
CONFBAND= Specifies the type of confidence band in the OUTSURV= data set
CONFTYPE= Specifies the transformation applied to the survivor function to

obtain confidence limits
ODS Graphics
MAXTIME= Specifies the maximum time value for plotting
PLOTS= Specifies plots to display

Control Output
ATRISK Adds the number of subjects at risk to the survival estimate table
NOPRINT Suppresses the display of printed output
NOTABLE Suppresses the display of survival function estimates
INTERVALS= Displays only the estimate for the smallest time in each interval
NOLEFT Suppresses the Number Left column in the survival estimate table
TIMELIST= Specifies a list of time points to display the survival estimate
REDUCEOUT Specifies that only INTERVAL= or TIMELIST= observations be

listed in the OUTSURV= data set

Miscellaneous
ALPHAQT= Sets the confidence level for survival time quartiles
MISSING Allows missing values to be a stratum level
SINGULAR= Sets the tolerance for testing singularity of covariance matrix of

rank statistics
STDERR Outputs the standard error for the survival estimators to the OUT-

SURV= data set
TIMELIM= Specifies the time limit used to estimate the mean survival time and

its standard error
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ALPHA=˛
specifies the level of significance ˛ for the 100.1 � ˛/% confidence intervals for the survivor, hazard,
and density functions. For example, the option ALPHA=0.05 requests the 95% confidence limits for
the survivor function. The default value is 0.05.

ALPHAQT=˛
specifies the significance level ˛ for the 100.1 � ˛/% confidence intervals for the quartiles of the
survival time. For example, the option ALPHAQT=0.05 requests a 95% confidence interval for the
quartiles of the survival time. The default value is 0.05.

ATRISK
adds a column that represents the number of subjects at risk to the survival estimate table. Also added
is a column that represents the number of events at each observed time. This option has no effect for
the life-table method.

BANDMAXTIME=value

BANDMAX=value
specifies the maximum time for the confidence bands. The default is the largest observed event time.
If the specified BANDMAX= time exceeds the largest observed event time, it is truncated to the largest
observed event time.

BANDMINTIME=value

BANDMIN=value
specifies the minimum time for the confidence bands. The default is the smallest observed event time.
For the equal-precision band, if the BANDMIN= value is less than the smallest observed event time, it
is defaulted to the smallest observed event time.

CONFBAND=keyword
specifies the confidence bands to be output to the OUTSURV= data set. Confidence bands are available
for METHOD=KM, METHOD=BRESLOW, or METHOD=FH. You can use the following keywords:

ALL outputs both the Hall-Wellner and the equal-precision confidence bands.

EP outputs the equal-precision confidence bands.

HW outputs the Hall-Wellner confidence bands.

CONFTYPE=keyword
specifies the transformation applied to S.t/ to obtain the pointwise confidence intervals and the
confidence bands for the survivor function in addition to the confidence intervals for the quartiles of
the survival times. The following keywords can be used; the default is CONFTYPE=LOGLOG.

ASINSQRT the arcsine-square root transformation,

g.x/ D sin�1.
p
x/

LOGLOG the log-log transformation,

g.x/ D log.� log.x//

This is also referred to as the log cumulative hazard transformation since it applies
the logarithmic function to the cumulative hazard function. Collett (1994) and
Lachin (2000) refer to it as the complementary log-log transformation.
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LINEAR the identity transformation,

g.x/ D x

LOG the logarithmic transformation,

g.x/ D log.x/

LOGIT the logit transformation,

g.x/ D log
�

x

1 � x

�

DATA=SAS-data-set
names the SAS data set used by PROC LIFETEST. By default, the most recently created SAS data set
is used.

INTERVALS=values
specifies a list of interval endpoints for the life-table method. These endpoints must all be nonnegative
numbers. The initial interval is assumed to start at zero whether or not zero is specified in the list. Each
interval contains its lower endpoint but does not contain its upper endpoint. When this option is used
with METHOD=KM, METHOD=BRESLOW, or METHOD=FH, it reduces the number of survival
estimates displayed by showing only the estimates for the smallest time within each specified interval.
The INTERVALS= option can be specified in any of the following ways:

� A list separated by blanks INTERVALS=1 3 5 7

� A list separated by commas INTERVALS=1,3,5,7

� x to y INTERVALS=1 to 7

� x to y BY z INTERVALS=1 to 7 by 1

� A combination of the above INTERVALS=1,3 to 5,7

For example, the specification

intervals=5,10 to 30 by 10

produces the set of intervals

fŒ0; 5/; Œ5; 10/; Œ10; 20/; Œ20; 30/; Œ30;1/g

MAXTIME=value
specifies the maximum value of the time variable allowed on the plots so that outlying points do not
determine the scale of the time axis of the plots. This option affects only the displayed plots and has
no effect on any calculations.

METHOD=type
specifies the method to be used to compute the survival function estimates. Valid values for type are as
follows:
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BRESLOW
specifies that the Breslow estimates be computed. The Breslow estimator is the exponentiation of
the negative Nelson-Aalen estimator of the cumulative hazard function.

FH
specifies that the Fleming-Harrington (FH) estimates be computed. The FH estimator is a tie-
breaking modification of the Breslow estimator. If there are no tied event times, this estimator is
the same as the Breslow estimator.

KM

PL
specifies that Kaplan-Meier estimates (also known as the product-limit estimates) be computed.

ACT

LIFE

LT
specifies that life-table estimates (also known as actuarial estimates) be computed.

By default, METHOD=KM.

MISSING
allows missing values for numeric variables and blank values for character variables as valid stratum
levels. See the section “Missing Values” on page 4354 for details.

By default, PROC LIFETEST does not use observations with missing values for any stratum variables.

NELSON

AALEN
produces the Nelson-Aalen estimates of the cumulative hazards and the corresponding standard errors.
This option is ignored if METHOD=LT is specified.

NINTERVAL=value
specifies the number of intervals used to compute the life-table estimates of the survivor function. This
parameter is overridden by the WIDTH= option or the INTERVALS= option. When you specify the
NINTERVAL= option, PROC LIFETEST tries to find an interval that results in round numbers for the
endpoints. Consequently, the number of intervals can be different from the number requested. Use the
INTERVALS= option to control the interval endpoints. The default is NINTERVAL=10.

NOLEFT
suppresses the Number Left and Number Event columns in the survival estimate table. This option has
no effect for the life-table estimate.

NOPRINT
suppresses the display of output. This option is useful when only an output data set is needed. It
temporarily disables the Output Delivery System (ODS); see Chapter 20, “Using the Output Delivery
System” for more information.

NOTABLE
suppresses the display of survival function estimates. Only the number of censored and event times,
plots, and test results is displayed.
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OUTSURV=SAS-data-set

OUTS=SAS-data-set
creates an output SAS data set to contain the estimates of the survival function and corresponding
confidence limits for all strata. See the section “OUTSURV= Data Set” on page 4372 for more
information about the contents of the OUTSURV= data set.

OUTTEST=SAS-data-set

OUTT=SAS-data-set
creates an output SAS data set to contain the overall chi-square test statistic for association with failure
time for the variables in the TEST statement, the values of the univariate rank test statistics for each
variable in the TEST statement, and the estimated covariance matrix of the univariate rank test statistics.
See the section “OUTTEST= Data Set” on page 4374 for more information about the contents of the
OUTTEST= data set.

PLOTS< (global-plot-options) >=plot-request < (options) >

PLOTS< (global-plot-options) >=(plot-request < (options) > < ... plot-request < (options) > >)
controls the plots produced using ODS Graphics. When you specify only one plot-request , you can
omit the parentheses around the plot-request . Here are some examples:

plots=none
plots=(survival(atrisk=100 to 350 by 50) logsurv)
plots(only)=hazard

ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;

proc lifetest plots=survival(atrisk);
time T*Status(0);

run;

ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

If ODS Graphics is enabled but you do not specify the PLOTS= option, then PROC LIFETEST
produces a plot of the estimated survivor functions by default.

The only global-plot-option follows:

ONLY
specifies that only the specified plots in the list be produced; otherwise, the default survivor
function plot is also displayed.
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The plot-requests and plot-request options include the following.

ALL
produces all appropriate plots. For METHOD=KM, METHOD=BRESLOW, or METHOD=FH,
specifying PLOTS=ALL is equivalent to specifying PLOTS=(SURVIVAL LOGSURV
LOGLOGLS HAZARD); for the life-table method, PLOTS=ALL is equivalent to specifying
PLOTS=(SURVIVAL LOGSURV LOGLOGS DENSITY HAZARD).

HAZARD < (hazard-options) >

H < hazard-options >
plots the estimated hazard functions. Kernel-smoothed estimates are produced for
METHOD=KM, METHOD=BRESLOW, or METHOD=FH. You can specify the follow-
ing hazard-options, but only the CL option can be used for the life-table method:

BANDWIDTH=bandwidth-option

BW=bandwidth-option
specifies what bandwidth is chosen for the kernel-smoothing and how it is chosen. You can
specify one of the following bandwidth-options.

value
sets the bandwidth to the given value.

numeric-list
selects the bandwidth from the given numeric-list that minimizes the mean integrated
squared error.

RANGE(lower,upper )
selects the bandwidth from the interval (lower, upper ) that minimizes the mean integrated
squared error. PROC LIFETEST uses the golden section search algorithm to find the
minimum. If there is more than one local minimum in the interval, there is no guarantee
that the local minimum found is also the global minimum.

See the section “Optimal Bandwidth” on page 4365 for details about the mean integrated
squared error. If the BANDWIDTH= option is not specified, the default is BANDWIDTH=
RANGE(0.2b,20b), where b D gu�gl

8n:2
, gl and gu are the values of the GRIDL= and

GRIDU= options, respectively, and n is the total number of noncensored observations.

GRIDL=number
specifies the lower grid limit for the kernel-smoothed estimate. The default value is the time
origin.

GRIDU=number
specifies the upper grid limit for the kernel-smoothed estimate. The default value equals the
maximum event time.

KERNEL=kernel-option
specifies the kernel used. The choices are as follows:
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BIWEIGHT

BW
KBW .x/ D

15
16
.1 � x2/2; �1 � x � 1

EPANECHNIKOV

E
KE .x/ D

3
4
.1 � x2/; �1 � x � 1

UNIFORM

U
KU .x/ D

1
2
; �1 � x � 1

The default is KERNEL=EPANECHNIKOV.

NMINGRID=number
specifies the number of grid points in determining the mean integrated square error (MISE).
The default value is 51.

NGRID=number
specifies the number of grid points. The default is 101.

CL
displays the pointwise confidence limits for the smoothed hazard.

LOGLOGS

LLS
plots the log of negative log of estimated survivor functions versus the log of time.

LOGSURV

LS
plots the negative log of estimated survivor functions versus time.

NONE
suppresses all plots.

PDF < (CL) >

P < (CL) >
plots the estimated probability density functions (life-table method only). Pointwise confidence
limits are displayed optionally by specifying the CL option.

SURVIVAL < (survival-options) >

S < (survival-options) >
plots the estimated survivor functions. Censored times are plotted as a plus sign on the Kaplan-
Meier, Breslow, or Fleming-Harrington survival curves unless the NOCENSOR option is spec-
ified. You can customize the display by using the following survival-options. If these options
are not sufficient for your purposes, you can customize the survival plot by modifying its graph
template (see the section “Modifying the Survival Plots” on page 4388 for more information).
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ATRISK < (options) > < =number-list >
displays the numbers of subjects at risk at the given times. You can specify the following
options:

ATRISKTICK

ATRISKLABEL
guarantees that tick values are shown on the time axis for those times when the numbers
of subjects at risk are displayed. If this option is not specified, you might not be
able to tell at exactly which times the number of subjects at risk are displayed. If the
ATRISKTICKONLY option is also specified, it takes precedence over the ATRISKTICK
option.

ATRISKTICKONLY
specifies that tick values on the time axis be shown only at the times that are given in
the ATRISK= list . If the ATRISKTICK option is also specified, it is ignored; that is,
ATRISKTICKONLY takes precedence over ATRISKTICK.

MAXLEN=n
specifies the number of characters n that are allowed for displaying the stratum labels. If
n is greater than or equal to the maximum length of the stratum labels, the stratum labels
are used in the at-risk display; otherwise, the stratum numbers are used. The default is
MAXLEN=12.

OUTSIDE< (p) >
specifies that the at-risk table be drawn outside the plot area. PROC LIFETEST uses a
graph template that has a two-row lattice layout. The upper cell displays the survival
plot, and the bottom cell displays the at-risk table. You can specify an optional number p
that represents the fractional proportion of the at-risk table height relative to the overall
grid height, but that specification is not necessary. By default, p is the preferred row
weight in the GTL layout lattice statement that ensures that the plot displays well. If
you specify a value of p too small for the table to be properly displayed, some of the
rows might get cut off.

The number-list identifies the times when the numbers at risk are displayed. If the number-
list is not specified, PROC LIFETEST displays the number of subjects at risk at each default
tick value on the time axis of the survival plot.

CB < =keyword >
displays the confidence bands (that is, simultaneous confidence intervals) for the survivor
functions. You can specify one of the following keywords. The default is CB=HW.

ALL
displays both the equal-precision and the Hall-Wellner bands.

EP
displays the equal-precision band.

HW
displays the Hall-Wellner confidence band.
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CL
displays the pointwise confidence limits for the survivor functions.

FAILURE

F
changes all the displays for survivor functions to those for the failure functions. For example,
if both the FAILURE and CL options are specified, the plot displays the failure curves in
addition to the pointwise confidence limits for the failure functions.

NOCENSOR
suppresses the plotting of the censored times on a Kaplan-Meier, Breslow, or Fleming-
Harrington survival curve.

STRATA=strata-option
specifies how to display the survival/failure curves for multiple strata. This option has no
effect if there is only one stratum. You can choose one of the following strata options:

INDIVIDUAL

UNPACK
specifies that a separate plot be displayed for each stratum.

OVERLAY
specifies that the survival/failure curves for the strata be overlaid in one plot.

PANEL
specifies that separate plots for the strata be organized into panels of two or four plots,
depending on the number of strata.

The default is STRATA=OVERLAY.

TEST
displays the p-value of a homogeneity test specified in the STRATA statement. If more than
one test is produced, the test is chosen in the following order: LOGRANK, WILCOXON,
TARONE, PETO, MODPETO, FLEMING, and LR.

REDUCEOUT
specifies that the OUTSURV= data set contain only those observations that are included in the
INTERVALS= or TIMELIST= option. This option has no effect if the OUTSURV= option is not
specified. It also has no effect if neither the INTERVALS= option nor the TIMELIST= option is
specified.

SINGULAR=value
specifies the tolerance for testing singularity of the covariance matrix for the rank test statistics. The
test requires that a pivot for sweeping a covariance matrix be at least this number times a norm of the
matrix. The default value is 1E–12.

STDERR
specifies that the standard error of the survivor function (SDF_STDERR) be output to the OUTSURV=
data set. If the life-table method is used, the standard error of the density function (PDF_STDERR)
and the standard error of the hazard function (HAZ_STDERR) are also output.
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TIMELIM=time-limit
specifies the time limit used in the estimation of the mean survival time and its standard error. The
mean survival time can be shown to be the area under the Kaplan-Meier survival curve. However, if
the largest observed time in the data is censored, the area under the survival curve is not a closed area.
In such a situation, you can choose a time limit L and estimate the mean survival curve limited to a
time L (Lee 1992, pp. 72–76). This option is ignored if the largest observed time is an event time.
Valid time-limit values are as follows:

EVENT

LET
specifies that the time limit L be the largest event time in the data. TIMELIM=EVENT is the
default.

OBSERVED

LOT
specifies that the time limit L be the largest observed time in the data.

number
specifies that the time limit L be the given number . The number must be positive and at least as
large as the largest event time in the data.

TIMELIST=number-list
specifies a list of time points at which the Kaplan-Meier estimates are displayed. The time points
are listed in the column labeled Timelist. Since the Kaplan-Meier survival curve is a decreasing step
function, each given time point falls in an interval that has a constant survival estimate. The event time
that corresponds to the beginning of the time interval is displayed along with its survival estimate.

WIDTH=value
sets the width of the intervals used in the life-table calculation of the survival function. This parameter
is overridden by the INTERVALS= option.

BY Statement
BY variables ;

You can specify a BY statement with PROC LIFETEST to obtain separate analyses of observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the LIFETEST procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.
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• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

The BY statement is more efficient than the STRATA statement for defining strata in large data sets. However,
if you use the BY statement to define strata, PROC LIFETEST does not pool over strata for testing the
association of survival time with covariates, nor does it test for homogeneity across the BY groups.

When the life-table method is used to estimate survivor functions, each BY group might have a different set
of intervals. To make intervals the same across BY groups, use the INTERVALS= or WIDTH= option in the
PROC LIFETEST statement.

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

FREQ Statement
FREQ variable < / option > ;

The FREQ statement identifies a variable that contains the frequency of occurrence of each observation.
PROC LIFETEST treats each observation as if it appeared n times, where n is the value of the FREQ variable
for the observation. The FREQ statement is useful for producing life tables when the data are already in the
form of a summary data set. If it is not an integer, it is truncated to an integer unless the NOTRUNCATE
option is specified. If it is missing or less than or equal zero, the observation is not used.

The following option can be specified in the FREQ statement after a slash (/):

NOTRUNCATE

NOTRUNC
specifies that the frequency values are not truncated to integers. This option does not apply to the
Fleming-Harrington estimator (METHOD=FH).

ID Statement
ID variables ;

The ID statement identifies variables whose values are used to label the observations of the Kaplan-Meier,
Breslow, or Fleming-Harrington survivor function estimates. SAS format statements can be used to format
the values of the ID variables.

STRATA Statement
STRATA variable < (list) > < . . . variable < (list) > > < / options > ;

The STRATA statement identifies the variables that determine the strata levels. Strata are formed according
to the nonmissing values of these variables. The MISSING option can be used to allow missing values as a
valid stratum level. Other options enable you to specify various k-sample tests, stratified tests, or trend tests
and to make multiple-comparison adjustments for paired differences.
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In the preceding syntax, variable is a variable whose values determine the stratum levels, and list is a list
of endpoints for a numeric variable. The values for variable can be formatted or unformatted. If variable is
a character variable, or if variable is numeric and no list appears, then the strata are defined by the unique
values of the STRATA variable. More than one variable can be specified in the STRATA statement, and
each numeric variable can be followed by a list. Each interval contains its lower endpoint but not its upper
endpoint. The corresponding strata are formed by the combination of levels. If a variable is numeric and is
followed by a list, then the levels for that variable correspond to the intervals defined by the list. The initial
interval is assumed to start at �1, and the final interval is assumed to end at1.

The specification of a STRATA variable can have any of the following forms:

� A list separated by blanks Age(5 10 20 30)

� A list separated by commas Age(5,10,20,30)

� x to y Age(5 to 10)

� x to y by z Age(5 to 30 by 10)

� A combination of the above Age(5,10 to 50 by 10)

For example, the specification

strata Age(5,20 to 50 by 10) Sex;

indicates the following levels for the Age variable:

f.�1; 5/; Œ5; 20/; Œ20; 30/; Œ30; 40/; Œ40; 50/; Œ50;1/g

This statement also specifies that the Age strata be further subdivided by values of the variable Sex. In this
example, there are six age groups by two sex groups, forming a total of 12 strata.

The specification of several STRATA variables, such as

strata A B C;

is equivalent to the A*B*C syntax of the TABLES statement in the FREQ procedure. The number of strata
levels usually grows very rapidly with the number of STRATA variables, so you must be cautious when
specifying the list of STRATA variables.

When comparing more than two survival curves, a k-sample test tells you whether the curves are significantly
different from each other, but it does not identify which pairs of curves are different. A multiple-comparison
adjustment of the p-values for the paired comparisons retains the same overall false positives as the k-sample
test. Two types of paired comparisons can be made: comparisons between all pairs of curves and comparisons
between a control curve and all other curves. You use the DIFF= option to specify the comparison type, and
you use the ADJUST= option to select a method of multiple-comparison adjustments.

Table 58.2 summarizes the options available in the STRATA statement.

Table 58.2 Options Available in the STRATA Statement

Option Description

Homogeneity Tests
GROUP= Specifies the group variable for stratified tests
NODETAIL Suppresses printing the test statistic and covariance matrix
NOTEST Suppresses any tests
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Table 58.2 continued

Option Description

TEST= Specifies tests corresponding to various weight functions
TREND Requests a trend test
Multiple Comparisons
ADJUST= Requests a multiple-comparison adjustment
DIFF= Specifies the type of differences to consider
Missing Strata Value
MISSING Allows missing values as valid stratum values
Display Option
NOLABEL Uses the names of the STRATA variables in the display

You can specify the following options in the STRATA statement after a slash (“/”).

ADJUST=method
specifies the multiple-comparison method for adjusting the p-values of the paired tests. See the section
“Multiple-Comparison Adjustments” on page 4368 for mathematical details; also see Westfall et al.
(1999). The adjustment methods include the following:

BONFERRONI

BON
applies the Bonferroni correction to the raw p-values.

DUNNETT
performs Dunnett’s two-tailed comparisons of the control group with all other groups. PROC
LIFETEST uses the factor-analytic covariance approximation described in Hsu (1992) and
identifies the adjustment in the results as “Dunnett-Hsu.” Note that ADJUST=DUNNETT is
incompatible with DIFF=ALL.

SCHEFFE
performs Scheffé’s multiple-comparison adjustment.

SIDAK
applies the Šidák correction to the raw p-values.

SMM

GTE
performs the paired comparisons based on the studentized maximum modulus test.

TUKEY
performs the paired comparisons based on Tukey’s studentized range test. PROC LIFETEST uses
the approximation described in Kramer (1956) and identifies the adjustment as "Tukey-Kramer"
in the results. Note that ADJUST=TUKEY is incompatible with DIFF=CONTROL.

SIMULATE < (simulate-options) >
computes the adjusted p-values from the simulated distribution of the maximum or maximum
absolute value of a multivariate normal random vector. The simulation estimates q, the true
.1 � ˛/ quantile, where ˛ is the value of the ALPHA= simulate-option.
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The number of samples for the SIMULATE adjustment is set so that the tail area for the simulated
q is within a certain accuracy radius  of 1 � ˛ with an accuracy confidence of 100.1 � �/%. In
equation form,

Pr.jF. Oq/ � .1 � ˛/j � / D 1 � �

where Oq is the simulated q and F is the true distribution function of the maximum; see Edwards
and Berry (1987) for details. By default,  = 0.005 and � = 0.01 so that the tail area of Oq is within
0.005 of 0.95 with 99% confidence.

The simulate-options include the following:

ACC=value
specifies the target accuracy radius  of a 100.1 � �/% confidence interval for the true
probability content of the estimated .1 � ˛/ quantile. The default value is ACC=0.005.

ALPHA=value
specifies the value ˛ for estimating the .1 � ˛/ quantile. The default value is the ALPHA=
value in the PROC LIFETEST statement, or 0.05 if that option is not specified.

EPS=value
specifies the value � for a 100.1 � �/% confidence interval for the true probability content
of the estimated .1 � ˛/ quantile. The default value for the accuracy confidence is 99%,
corresponding to EPS=0.01.

NSAMP=n
specifies the sample size for the simulation. By default, n is set based on the values of the
target accuracy radius  and accuracy confidence 100.1 � �/% for an interval for the true
probability content of the estimated .1 � ˛/ quantile. With the default values for  , �, and ˛
(0.005, 0.01, and 0.05, respectively), NSAMP=12604 by default.

REPORT
specifies that a report on the simulation should be displayed, including a listing of the
parameters, such as  , �, and ˛, in addition to an analysis of various methods for estimating
or approximating the quantile.

SEED=number
specifies an integer used to start the pseudorandom number generator for the simulation. If
you do not specify a seed, or if you specify a value less than or equal to zero, the seed is
generated by default from reading the time of day from the computer’s clock.

DIFF=ALL | CONTROL< (’string’ < . . . , ’string’ >) >
specifies which pairs of survival curves are considered for the multiple comparisons.

DIFF=ALL
requests all paired comparisons

DIFF=CONTROL < (’string’ < . . . ’string’ >) >
requests comparisons of the control curve with all other curves. To specify the control curve,
you specify the quotes strings of formatted values that represent the curve in parentheses. For
example, if Cell=’large’ identifies the control group, you specify
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DIFF=CONTROL('large')

If more than one variable is used to identify the curves (for example, if Cell=’large’ and Sex=’F’
represent the control), you specify

DIFF=CONTROL('large' 'F')

The order of the quoted strings should correspond to the order of the stratum variables. If no
specific curve is specified as the control, the first stratum or group value is used.

By default, DIFF=ALL unless you specify ADJUST= DUNNETT, in which case DIFF=CONTROL.

GROUP=variable
specifies the variable whose formatted values identify the various samples whose underlying survival
curves are to be compared. The tests are stratified on the levels of the STRATA variables. For example,
in a multicenter trial in which two forms of therapy are to be compared, you specify the variable that
identifies therapies as the GROUP= variable and the variable that identifies centers as the STRATA
variable, in order to perform a stratified test to compare the therapies while controlling the effect of the
centers.

MISSING
allows missing values to be a stratum level or a valid value of the GROUP= variable.

NODETAIL
suppresses the display of the rank statistics and the corresponding covariance matrices for various
strata. If you specified the TREND option, the display of the scores for computing the trend tests is
suppressed.

NOLABEL
specifies that the names instead of the labels of the STRATA variables be used in the display of the
survival estimate table and in the legend of the survival plot.

NOTEST
suppresses the k-sample tests, stratified tests, and trend tests.

ORDER=FORMATTED | INTERNAL
specifies the sorting order of the values of the STRATA variables. The strata are presented in the
specified order in the analysis results. You can use this option, for example, to display the curve labels
in your preferred order in the survival plot legend (see Example 58.2 for an illustration). The default is
ORDER=FORMATTED, which sorts the strata according to their external formatted values, except
for numeric variable with no explicit format, which are sorted by the unformatted (internal) values.
ORDER=INTERNAL sorts the strata by their internal values. The ORDER= option has no effect on a
stratum variable with cutpoints specified.

TREND
computes the trend tests for testing the null hypothesis that the k population hazards rate are the same
versus an ordered alternatives. If there is only one STRATA variable and the variable is numeric, the
unformatted values of the variable are used as the scores; otherwise, the scores are 1; 2; : : : ; in the
given order of the strata.
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TEST=test-request | (test-request < . . . test-request >)
controls the tests produced. Each test corresponds to a different weight function (see the section
“Nonparametric Tests” on page 4366 for the weight functions). The test-requests include the following:

ALL specifies all the nonparametric tests with �1=1 and �2=0 for the Fleming and
Harrington test—FLEMING(1,0).

FLEMING(�1, �2) specifies the family of tests in Harrington and Fleming (1982), where �1 and �2
are nonnegative numbers. FLEMING(�1,�2) reduces to the Fleming-Harrington
G� family (Fleming and Harrington 1981) when �2=0, which you can specify
as FLEMING(�) with one argument. When �=0, the test becomes the log-rank
test. When �=1, the test should be very close to the Peto-Peto test.

LOGRANK specifies the log-rank test.

NONE suppresses all comparison tests. Specifying TEST=NONE is equivalent to
specify NOTEST.

LR specifies the likelihood ratio test based on the exponential model.

MODPETO specifies the modified Peto-Peto test.

PETO specifies the Peto-Peto test. The test is also referred to as the Peto-Peto-Prentice
test.

WILCOXON specifies the Wilcoxon test. The test is also referred to as the Gehan test or the
Breslow test.

TARONE specifies the Tarone-Ware test.

By default, TEST=(LOGRANK WILCOXON LR) for the k-sample tests, and TEST=(LOGRANK
WILCOXON) for stratified and trend tests.

TEST Statement
TEST variables ;

The TEST statement specifies a list of numeric covariates (prognostic variables) that you want tested for
association with the failure time.

Two sets of rank statistics are computed. These rank statistics and their variances are pooled over all strata.
Univariate (marginal) test statistics are displayed for each of the covariates.

Additionally, a sequence of test statistics for joint effects of covariates is displayed. The first element of the
sequence is the largest univariate test statistic. Other variables are then added on the basis of the largest
increase in the joint test statistic. The process continues until all the variables have been added or until the
remaining variables are linearly dependent on the previously added variables.

See the section “Rank Tests for the Association of Survival Time with Covariates” on page 4370 for more
information.
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TIME Statement
TIME variable <� censor (list) > ;

The TIME statement is required. It is used to indicate the failure time variable, where variable is the name of
the failure time variable that can be optionally followed by an asterisk, the name of the censoring variable,
and a parenthetical list of values that correspond to right censoring. The censoring values should be numeric,
nonmissing values. For example, the statement

time T*Flag(1,2);

identifies the variable T as containing the observed failure times (event or censored). If the variable Flag has
the value 1 or 2, the corresponding value of T is a right-censored value.

WEIGHT Statement
WEIGHT variable ;

The variable in the WEIGHT statement identifies the variable in the input data set that contains the weights
of the subjects. Values of the WEIGHT variable can be nonintegral and are not truncated. Observations with
negative, zero, or missing values for the WEIGHT variable are not used in the computation.

The implementation of weights in PROC LIFETEST is based on Xie and Liu (2005, 2011), who use inverse
probability of treatment weights to reduce confounding effects. A weight is assigned to each subject as the
inverse probability of being in a certain group. If a subject has a higher probability of being in a group, it is
considered as overrepresented and is therefore assigned a lower weight; on the other hand, if the subject has a
smaller probability of being in a group, it is considered as underrepresented and is assigned a higher weight.

Details: LIFETEST Procedure

Missing Values
Observations with a missing value for either the failure time or the censoring variable are not used in the
analysis. If a stratum variable value is missing, the observation is not used; however, the MISSING option
can be used to request that missing values be treated as valid stratum values. If any variable specified in the
TEST statement has a missing value, that observation is not used in the calculation of the rank statistics.



Computational Formulas F 4355

Computational Formulas

Breslow, Fleming-Harrington, and Kaplan-Meier Methods

Let t1 < t2 < � � � < tD represent the distinct event times. For each i D 1; : : : ;D, let Yi be the number of
surviving units (the size of the risk set) just prior to ti and let di be the number of units that fail at ti . If the
NOTRUNCATE option is specified in the FREQ statement, Yi and dican be nonintegers.

The Breslow estimate of the survivor function is

OS.ti / D exp
�
�

iX
jD1

dj

Yj

�
Note that the Breslow estimate is the exponentiation of the negative Nelson-Aalen estimate of the cumulative
hazard function.

The Fleming-Harrington estimate (Fleming and Harrington 1984) of the survivor function is

OS.ti / D exp
�
�

iX
kD1

dk�1X
jD0

1

Yk � j

�
If the frequency values are not integers, the Fleming-Harrington estimate cannot be computed.

The Kaplan-Meier (product-limit) estimate of the survivor function at ti is the cumulative product

OS.ti / D

iY
jD1

�
1 �

dj

Yj

�

Notice that all the estimators are defined to be right continuous; that is, the events at ti are included in the
estimate of S.ti /. The corresponding estimate of the standard error is computed using Greenwood’s formula
(Kalbfleisch and Prentice 1980) as

O�
�
OS.ti /

�
D OS.ti /

vuut iX
jD1

dj

Yj .Yj � dj /

The first quartile (or the 25th percentile) of the survival time is the time beyond which 75% of the subjects in
the population under study are expected to survive. It is estimated by

q:25 D minftj j OS.tj / < 0:75g

If OS.t/ is exactly equal to 0.75 from tj to tjC1, the first quartile is taken to be .tj C tjC1/=2. If it happens
that OS.t/ is greater than 0.75 for all values of t, the first quartile cannot be estimated and is represented by a
missing value in the printed output.

The general formula for estimating the 100p percentile point is

qp D minftj j OS.tj / < 1 � pg

The second quartile (the median) and the third quartile of survival times correspond to p = 0.5 and p = 0.75,
respectively.
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Brookmeyer and Crowley (1982) have constructed the confidence interval for the median survival time based
on the confidence interval for the S.t/. The methodology is generalized to construct the confidence interval
for the 100p percentile based on a g-transformed confidence interval for S.t/ (Klein and Moeschberger 1997).
You can use the CONFTYPE= option to specify the g-transformation. The 100.1 � ˛/% confidence interval
for the first quantile survival time is the set of all points t that satisfyˇ̌̌̌

g. OS.t// � g.1 � 0:25/

g0. OS.t// O�. OS.t//

ˇ̌̌̌
� z1�˛

2

where g0.x/ is the first derivative of g.x/ and z1�˛
2

is the 100.1 � ˛
2
/ percentile of the standard normal

distribution.

Consider the bone marrow transplant data described in Example 58.2. The following table illustrates the

construction of the confidence limits for the first quartile in the ALL group. Values of g.
OS.t//�g.1�0:25/

g 0. OS.t// O�. OS.t//
that

lie between˙z1� 0:05
2

=˙ 1.965 are highlighted.

Constructing 95% Confidence Limits for the 25th Percentile
g. OS.t//�g.1�0:25/

g 0. OS.t// O�. OS.t//

t OS.t/ O�. OS.t// LINEAR LOGLOG LOG ASINSQRT LOGIT

1 0.97368 0.025967 8.6141 2.37831 9.7871 4.44648 2.47903
55 0.94737 0.036224 5.4486 2.36375 6.1098 3.60151 2.46635
74 0.92105 0.043744 3.9103 2.16833 4.3257 2.94398 2.25757
86 0.89474 0.049784 2.9073 1.89961 3.1713 2.38164 1.97023

104 0.86842 0.054836 2.1595 1.59196 2.3217 1.87884 1.64297
107 0.84211 0.059153 1.5571 1.26050 1.6490 1.41733 1.29331
109 0.81579 0.062886 1.0462 0.91307 1.0908 0.98624 0.93069
110 0.78947 0.066135 0.5969 0.55415 0.6123 0.57846 0.56079
122 0.73684 0.071434 –0.1842 –0.18808 –0.1826 –0.18573 –0.18728
129 0.71053 0.073570 –0.5365 –0.56842 –0.5222 –0.54859 –0.56101
172 0.68421 0.075405 –0.8725 –0.95372 –0.8330 –0.90178 –0.93247
192 0.65789 0.076960 –1.1968 –1.34341 –1.1201 –1.24712 –1.30048
194 0.63158 0.078252 –1.5133 –1.73709 –1.3870 –1.58613 –1.66406
230 0.60412 0.079522 –1.8345 –2.14672 –1.6432 –1.92995 –2.03291
276 0.57666 0.080509 –2.1531 –2.55898 –1.8825 –2.26871 –2.39408
332 0.54920 0.081223 –2.4722 –2.97389 –2.1070 –2.60380 –2.74691
383 0.52174 0.081672 –2.7948 –3.39146 –2.3183 –2.93646 –3.09068
418 0.49428 0.081860 –3.1239 –3.81166 –2.5177 –3.26782 –3.42460
466 0.46682 0.081788 –3.4624 –4.23445 –2.7062 –3.59898 –3.74781
487 0.43936 0.081457 –3.8136 –4.65971 –2.8844 –3.93103 –4.05931
526 0.41190 0.080862 –4.1812 –5.08726 –3.0527 –4.26507 –4.35795
609 0.38248 0.080260 –4.5791 –5.52446 –3.2091 –4.60719 –4.64271
662 0.35306 0.079296 –5.0059 –5.96222 –3.3546 –4.95358 –4.90900

Consider the LINEAR transformation where g.x/ D x. The event times that satisfy
ˇ̌̌̌
g. OS.t//�g.1�p/

g 0. OS.t//
p
OV . OS.t//

ˇ̌̌̌
�

1:9599 include 107, 109, 110, 122, 129, 172, 192, 194, and 230. The confidence of the interval [107, 230]
is less than 95%. Brookmeyer and Crowley (1982) suggest extending the confidence interval to but not
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including the next event time. As such the 95% confidence interval for the first quartile based on the linear
transform is [107, 276). The following table lists the confidence intervals for the various transforms.

95% CI’s for the 25th Percentile
CONFTYPE [Lower Upper)
LINEAR 107 276
LOGLOG 86 230
LOG 107 332
ASINSQRT 104 276
LOGIT 104 230

Sometimes, the confidence limits for the quartiles cannot be estimated. For convenience of explanation,
consider the linear transform g.x/ D x. If the curve that represents the upper confidence limits for the
survivor function lies above 0.75, the upper confidence limit for first quartile cannot be estimated. On the
other hand, if the curve that represents the lower confidence limits for the survivor function lies above 0.75,
the lower confidence limit for the quartile cannot be estimated.

The estimated mean survival time is

O� D

DX
iD1

OS.ti�1/.ti � ti�1/

where t0 is defined to be zero. When the largest observed time is censored, this sum underestimates the mean.
The standard error of O� is estimated as

O�. O�/ D

vuut m

m � 1

D�1X
iD1

A2i
Yi .Yi � di

where

Ai D

D�1X
jDi

OS.tj /.tjC1 � tj /

m D

DX
jD1

dj

If the largest observed time is not an event, you can use the TIMELIM= option to specify a time limit L
and estimate the mean survival time limited to the time L and its standard error by replacing k by k + 1 with
tkC1 D L.

Nelson-Aalen Estimate of the Cumulative Hazard Function
The Nelson-Aalen cumulative hazard estimator, defined up to the largest observed time on study, is

QH.t/ D
X
ti�t

di

Yi
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and its estimated variance is

O�2
�
QH.t/

�
D

X
ti�t

di

Y 2i

Adjusted Kaplan-Meier Estimate
PROC LIFETEST computes the adjusted Kaplan-Meier estimate (AKME) of the survivor function if
you specify both METHOD=KM and the WEIGHT statement. Let (Ti ; ıi ; wi /; i D 1; : : : ; n; denote an
independent sample of right-censored survival data, where Ti is the possibly right-censored time, ıi is the
censoring indicator (ıi D 0 if Ti is censored and ıi D 1 if Ti is an event time), and wi is the weight
(from the WEIGHT statement). Let t1 < t2; : : : < tD be the D distinct event times in the sample. At
time tj ; j D 1; : : : ;D, there are dj D

P
i ıiI.Ti D tj / events out of Yj D

P
i I.Ti � tj / subjects.

The weighted number of events and the weighted number at risk are dwj D
P
i wiıiI.Ti D tj / and

Y wj D
P
i wiI.Ti � tj /, respectively. The AKME (Xie and Liu 2005) is

OS.t/ D

(
1 if t < t1Q
tj�t

h
1 �

dw
j

Yw
j

i
if t � t1

The estimated variance of OS.t/ is

O�2
�
OS.t/

�
D

�
OS.t/

�2 X
j Wtj�t

dwj =Y
w
j

Mj .1 � d
w
j =Y

w
j /

where

Mj D

�P
i WTi�tj

wi

�2
P
i WTi�tj

w2i

Life-Table Method

The life-table estimates are computed by counting the numbers of censored and uncensored observations that
fall into each of the time intervals Œti�1; ti /, i D 1; 2; : : : ; k C 1, where t0 D 0 and tkC1 D1. Let ni be the
number of units that enter the interval Œti�1; ti /, and let di be the number of events that occur in the interval.
Let bi D ti � ti�1, and let n0i D ni � wi=2, where wi is the number of units censored in the interval. The
effective sample size of the interval Œti�1; ti / is denoted by n0i . Let tmi denote the midpoint of Œti�1; ti /.

The conditional probability of an event in Œti�1; ti / is estimated by

Oqi D
di

n0i

and its estimated standard error is

O� . Oqi / D

s
Oqi Opi

n0i

where Opi D 1 � Oqi .
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The estimate of the survival function at ti is

OS.ti / D

�
1 i D 0
OS.ti�1/pi�1 i > 0

and its estimated standard error is

O�
�
OS.ti /

�
D OS.ti /

vuut i�1X
jD1

Oqj

n0j Opj

The density function at tmi is estimated by

Of .tmi / D
OS.ti / Oqi

bi

and its estimated standard error is

O�
�
Of .tmi /

�
D Of .tmi /

vuut i�1X
jD1

Oqj

n0j Opj
C
Opi

n0i Oqi

The estimated hazard function at tmi is

Oh.tmi / D
2 Oqi

bi .1C Opi /

and its estimated standard error is

O�
�
Oh.tmi /

�
D Oh.tmi /

s
1 � .bi Oh.tmi /=2/2

n0i Oqi

Let Œtj�1; tj / be the interval in which OS.tj�1/ � OS.ti /=2 > OS.tj /. The median residual lifetime at ti is
estimated by

OMi D tj�1 � ti C bj
OS.tj�1/ � OS.ti /=2

OS.tj�1/ � OS.tj /

and the corresponding standard error is estimated by

O�. OMi / D
OS.ti /

2 Of .tmj /
q
n0i

Interval Determination
If you want to determine the intervals exactly, use the INTERVALS= option in the PROC LIFETEST
statement to specify the interval endpoints. Use the WIDTH= option to specify the width of the intervals,
thus indirectly determining the number of intervals. If neither the INTERVALS= option nor the WIDTH=
option is specified in the life-table estimation, the number of intervals is determined by the NINTERVAL=
option. The width of the time intervals is 2, 5, or 10 times an integer (possibly a negative integer) power of 10.
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Let c D log10(maximum observed time/number of intervals), and let b be the largest integer not exceeding c.
Let d D 10c�b and let

a D 2 � I.d � 2/C 5 � I.2 < d � 5/C 10 � I.d > 5/

with I being the indicator function. The width is then given by

width D a � 10b

By default, NINTERVAL=10.

Pointwise Confidence Limits in the OUTSURV= Data Set

Pointwise confidence limits are computed for the survivor function, and for the density function and hazard
function when the life-table method is used. Let ˛ be specified by the ALPHA= option. Let z˛=2 be the
critical value for the standard normal distribution. That is, ˆ.�z˛=2/ D ˛=2, where ˆ is the cumulative
distribution function of the standard normal random variable.

Survivor Function
When the computation of confidence limits for the survivor function S.t/ is based on the asymptotic normality
of the survival estimator OS.t/, the approximate confidence interval might include impossible values outside
the range [0,1] at extreme values of t. This problem can be avoided by applying the asymptotic normality
to a transformation of S.t/ for which the range is unrestricted. In addition, certain transformed confidence
intervals for S.t/ perform better than the usual linear confidence intervals (Borgan and Liestøl 1990).
The CONFTYPE= option enables you to pick one of the following transformations: the log-log function
(Kalbfleisch and Prentice 1980), the arcsine-square root function (Nair 1984), the logit function (Meeker and
Escobar 1998), the log function, and the linear function.

Let g be the transformation that is being applied to the survivor function S.t/. By the delta method, the
standard error of g. OS.t// is estimated by

�.t/ D O�
h
g. OS.t//

i
D g0

�
OS.t/

�
O�Œ OS.t/�

where g0 is the first derivative of the function g. The 100(1–˛)% confidence interval for S.t/ is given by

g�1
n
gŒ OS.t/�˙ z˛

2
g0Œ OS.t/� O�Œ OS.t/�

o
where g�1 is the inverse function of g. That choices of the transformation g are as follows:

• arcsine-square root transformation: The estimated variance of sin�1
�q
OS.t/

�
is O�2.t/ D

O�2Œ OS.t/�

4 OS.t/Œ1� OS.t/�
: The 100(1–˛)% confidence interval for S.t/ is given by

sin2
�
max

�
0; sin�1.

q
OS.t// � z˛

2
O�.t/

��
� S.t/ � sin2

�
min

�
�

2
; sin�1.

q
OS.t//C z˛

2
O�.t/

��
• linear transformation: This is the same as having no transformation in which g is the identity. The

100(1–˛)% confidence interval for S.t/ is given by

OS.t/ � z˛
2
O�
h
OS.t/

i
� S.t/ � OS.t/C z˛

2
O�
h
OS.t/

i



Computational Formulas F 4361

• log transformation: The estimated variance of log. OS.t// is O�2.t/ D O�2. OS.t//
OS2.t/

: The 100(1–˛)% confi-

dence interval for S.t/ is given by

OS.t/ exp
�
�z˛

2
O�.t/

�
� S.t/ � OS.t/ exp

�
z˛
2
O�.t/

�
• log-log transformation: The estimated variance of log.� log. OS.t// is O�2.t/ D O�2Œ OS.t/�

Œ OS.t/ log. OS.t//�2
: The

100(1–˛)% confidence interval for S.t/ is given by

h
OS.t/

iexp�z˛
2
O�.t/

�
� S.t/ �

h
OS.t/

iexp��z˛
2
O�.t/

�

• logit transformation: The estimated variance of log
�
OS.t/

1� OS.t/

�
is

O�2.t/ D
O�2. OS.t//

OS2.t/Œ1 � OS.t/�2
:

The 100(1–˛)% confidence limits for S.t/ are given by

OS.t/

OS.t/C
h
1 � OS.t/

i
exp

�
z˛
2
O�.t/

� � S.t/ � OS.t/

OS.t/C
h
1 � OS.t/

i
exp

�
�z˛

2
O�.t/

�

Density and Hazard Functions
For the life-table method, a 100(1–˛)% confidence interval for hazard function or density function at time t
is computed as

Og.t/˙ z˛=2 O�Œ Og.t/�

where Og.t/ is the estimate of either the hazard function or the density function at time t, and O�Œ Og.t/� is the
corresponding standard error estimate.

Simultaneous Confidence Intervals for Kaplan-Meier Curves

The pointwise confidence interval for the survivor function S.t/ is valid for a single fixed time at which
the inference is to be made. In some applications, it is of interest to find the upper and lower confidence
bands that guarantee, with a given confidence level, that the survivor function falls within the band for all t in
some interval. Hall and Wellner (1980) and Nair (1984) provide two different approaches for deriving the
confidence bands. An excellent review can be found in Klein and Moeschberger (1997). You can use the
CONFBAND= option in the PROC LIFETEST statement to select the confidence bands. The EP confidence
band provides confidence bounds that are proportional to the pointwise confidence interval, while those of
the HW band are not proportional to the pointwise confidence bounds. The maximum time, tU , for the bands
can be specified by the BANDMAX= option; the minimum time, tL, can be specified by the BANDMIN=
option. Transformations that are used to improve the pointwise confidence intervals can be applied to improve
the confidence bands. It might turn out that the upper and lower bounds of the confidence bands are not
decreasing in tL < t < tU , which is contrary to the nonincreasing characteristic of survivor function. Meeker
and Escobar (1998) suggest making an adjustment so that the bounds do not increase: if the upper bound
is increasing on the right, it is made flat from the minimum to tU ; if the lower bound is increasing from
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the right, it is made flat from tL to the maximum. PROC LIFETEST does not make any adjustment for the
nondecreasing behavior of the confidence bands in the OUTSURV= data set. However, the adjustment was
made in the display of the confidence bands by using ODS Graphics.

For Kaplan-Meier estimation, let t1 < t2 < : : : < tD be the D distinct events times, and at time ti , there are
di events. Let Yi be the number of individuals who are at risk at time ti . The variance of OS.t/, given by the
Greenwood formula, is O�2Œ OS.t/� D �2S .t/ OS

2.t/, where

�2S .t/ D
X
ti�t

di

Yi .Yi � di /

Let tL < tU be the time range for the confidence band so that tU is less than or equal to the largest event
time. For the Hall-Wellner band, tL can be zero, but for the equal-precision band, tL is greater than or equal
to the smallest event time. Let

aL D
n�2S .tL/

1C n�2S .tL/
and aU D

n�2S .tU /

1C n�2S .tU /

Let fW 0.u/; 0 � u � 1g be a Brownian bridge.

Hall-Wellner Band
The 100(1–˛)% HW band of Hall and Wellner (1980) is

OS.t/ � h˛.aL; aU /n
� 1
2 Œ1C n�2S .t/�

OS.t/ � S.t/ � OS.t/C h˛.aL; aU /n
� 1
2 Œ1C n�2S .t/�

OS.t/

for all tL � t � tU , where the critical value h˛.aL; aU / is given by

˛ D Prf sup
aL�u�aU

jW 0.u/j > h˛.aL; aU /g

The critical values are computed from the results in Chung (1986).

Note that the given confidence band has a formula similar to that of the (linear) pointwise confidence interval,
where h˛.aL; aU / and n�

1
2 Œ1 C n�2S .t/�

OS.t/ in the former correspond to z˛
2

and O�. OS.t// in the latter,
respectively. You can obtain the other transformations (arcsine-square root, log-log, log, and logit) for the
confidence bands by replacing z˛

2
and O�.t/ in the corresponding pointwise confidence interval formula by

h˛.aL; aU / and the following O�.t/, respectively:

• arcsine-square root transformation:

O�.t/ D
1C n�2S .t/

2

s
S.t/

nŒ1 � S.t/�

• log transformation:

O�.t/ D
1C n�2S .t/
p
n
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• log-log transformation:

O�.t/ D
1C n�2S .t/
p
nj logŒ OS.t/�j

• logit transformation:

O�.t/ D
1C n�2S .t/
p
nŒ1 � OS.t/�

Equal-Precision Band
The 100(1–˛)% EP band of Nair (1984) is

OS.t/ � e˛.aL; aU / OS.t/�S .t/ � S.t/ � OS.t/C e˛.aL; aU / OS.t/�S .t/

for all tL � t � tU , where e˛.aL; aU / is given by

˛ D Prf sup
aL�u�aU

jW 0.u/j

Œu.1 � u/�
1
2

> e˛.aL; aU /g

PROC LIFETEST uses the approximation of Miller and Siegmund (1982, Equation 8) to approximate the tail
probability in which e˛.aL; aU / is obtained by solving x in

4x�.x/

x
C �.x/

�
x �

1

x

�
log

�
aU .1 � aL/

aL.1 � aU /

�
D ˛

where �.x/ is the standard normal density function evaluated at x. Note that the confidence bounds given are
proportional to the pointwise confidence intervals. As a matter of fact, this confidence band and the (linear)
pointwise confidence interval have the same formula except for the critical values (z˛

2
for the pointwise

confidence interval and e˛.aL; aU / for the band). You can obtain the other transformations (arcsine-square
root, log-log, log, and logit) for the confidence bands by replacing z˛

2
by e˛.aL; aU / in the formula of the

pointwise confidence intervals.

Kernel-Smoothed Hazard Estimate

Kernel-smoothed estimators of the hazard function h.t/ are based on the Nelson-Aalen estimator QH.t/ and
its variance OV . QH.t//. Consider the jumps of QH.t/ and OV . QH.t// at the event times t1 < t2 < : : : < tD as
follows:

� QH.ti / D QH.ti / � QH.ti�1/

OV . QH.ti // D OV . QH.ti // � OV . QH.ti�1//

where t0=0.

The kernel-smoothed estimator of h.t/ is a weighted average of � QH.t/ over event times that are within a
bandwidth distance b of t. The weights are controlled by the choice of kernel function, K./, defined on the
interval [–1,1]. The choices are as follows:
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• uniform kernel:

KU .x/ D
1

2
; �1 � x � 1

• Epanechnikov kernel:

KE .x/ D
3

4
.1 � x2/; �1 � x � 1

• biweight kernel:

KBW .x/ D
15

16
.1 � x2/2; �1 � x � 1

The kernel-smoothed hazard rate estimator is defined for all time points on .0; tD/. For time points t for
which b � t � tD � b, the kernel-smoothed estimated of h.t/ based on the kernel K./ is given by

Oh.t/ D
1

b

DX
iD1

K

�
t � ti

b

�
� QH.ti /

The variance of Oh.t/ is estimated by

O�2. Oh.t// D
1

b2

DX
iD1

K

�
t � ti

b

�2
� OV . QH.ti //

For t < b, the symmetric kernels K./ are replaced by the corresponding asymmetric kernels of Gasser and
Müller (1979). Let q D t

b
. The modified kernels are as follows:

• uniform kernel:

KU;q.x/ D
4.1C q3/

.1C q/4
C
6.1 � q/

.1C q/3
x; �1 � x � q

• Epanechnikov kernel:

KE;q.x/ D KE .x/
64.2 � 4q C 6q2 � 3q3/C 240.1 � q/2x

.1C q/4.19 � 18q C 3q2/
; �1 � x � q

• biweight kernel:

KBW ;q.x/ D KBW .x/
64.8 � 24q C 48q2 � 45q3 C 15q4/C 1120.1 � q/3x

.1C q/5.81 � 168q C 126q2 � 40q3 C 5q4/
; �1 � x � q

For tD � b � t � tD , let q D tD�t
b

. The asymmetric kernels for t < b are used with x replaced by –x.

Using the log transform on the smoothed hazard rate, the 100(1–˛)% pointwise confidence interval for the
smoothed hazard rate h.t/ is given by

Oh.t/ D Oh.t/ exp
�
˙
z1�˛=2 O�. Oh.t//

Oh.t/

�
where z1�˛

2
is the 100(1–˛

2
)th percentile of the standard normal distribution.
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Optimal Bandwidth
The following mean integrated squared error (MISE) over the range �L and �U is used as a measure of the
global performance of the kernel function estimator:

MISE.b/ D E

Z �U

�L

. Oh.i/ � h.u//2du

D E

Z �U

�L

Oh2.u/du � 2E

Z �U

�L

Oh.u/h.u/duCE

Z �U

�L

h2.u/du

The last term is independent of the choice of the kernel and bandwidth and can be ignored when you are
looking for the best value of b. The first integral can be approximated by using the trapezoid rule by evaluating
Oh.t/ at a grid of points �L D u1 < : : : < uM D �U . You can specify �L; �R, and M by using the options
GRIDL=, GRIDU=, and NMINGRID=, respectively, of the HAZARD plot. The second integral can be
estimated by the Ramlau-Hansen (1983a, b) cross-validation estimate:

1

b

X
i¤j

K

�
ti � tj

b

�
� OH.ti /� OH.tj /

Therefore, for a fixed kernel, the optimal bandwidth is the quantity b that minimizes

g.b/ D

M�1X
iD1

�
uiC1 � uk

2

�
Oh2.ui /C Oh

2.uiC1/

��
�
2

b

X
i¤j

K

�
ti � tj

b

�
� OH.ti /� OH.tj /

The minimization is carried out by the golden section search algorithm.

Comparison of Two or More Groups of Survival Data

Let K be the number of groups. Let Sk.t/ be the underlying survivor function of the kth group, k D 1; : : : ; K.
The null and alternative hypotheses to be tested are

H0 W S1.t/ D S2.t/ D : : : D SK.t/ for all t � �

versus

H1 W at least one of the Sk.t/’s is different for some t � �

respectively, where � is the largest observed time.

Likelihood Ratio Test
The likelihood ratio test statistic (Lawless 1982) for test H0 versus H1 assumes that the data in the various
samples are exponentially distributed and tests that the scale parameters are equal. The test statistic is
computed as

�2 D 2N log
�
T

N

�
� 2

KX
kD1

Nk log
�
Tk

Nk

�

where Nk is the total number of events in the kth group, N D
Pk
kD1Nk , Tk is the total time on test in the

kth stratum, and T D
PK
kD1 Tk . The approximate probability value is computed by treating �2 as having a

chi-square distribution with K – 1 degrees of freedom.
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Nonparametric Tests
Let (Ti ; ıi ; Xi /; i D 1; : : : ; n; denote an independent sample of right-censored survival data, where Ti
is the possibly right-censored time, ıi is the censoring indicator (ıi=0 if Ti is censored and ıi=1 if Ti
is an event time), and Xi D 1; : : : ; K for K different groups. Let t1 < t2 < : : : < tD be the distinct
event times in the sample. At time tj ; j D 1; : : : ;D; let W.tj / be a positive weight function, and let
Yjk D

P
i WTi�tj

I.Xi D k/ and djk D
P
i WTiDtj

ıiI.Xi D k/ be the size of the risk set and the number of

events in the kth group, respectively. Let Yj D
PK
kD1 Yjk , dj D

PK
kD1 djk .

The choices of the weight function W.tj / are given in Table 58.3.

Table 58.3 Weight Functions for Various Tests

Test W.ti /

Log-rank 1.0
Wilcoxon Yj
Tarone-Ware

p
Yj

Peto-Peto QS.tj /

Modified Peto-Peto QS.tj /
Yj
YjC1

Harrington-Fleming (p,q) Œ OS.tj�1/�
pŒ1 � OS.tj�1/�

q; p � 0; q � 0

In Table 58.3, OS.t/ is the product-limit estimate at t for the pooled sample, and QS.t/ is a survivor function
estimate close to OS.t/ given by

QS.t/ D
Y
tj�t

�
1 �

dj

Yj C 1

�

Unstratified Tests The rank statistics (Klein and Moeschberger 1997, Section 7.3) for testing H0 versus
H1 have the form of a K-vector v D .v1; v2; : : : ; vK/0 with

vk D

DX
jD1

�
W.tj /

�
djk � Yjk

dj

Yj

��
and the variance of vk and the covariance of vk and vh are, respectively,

Vkk D

DX
jD1

"
W 2.tj /

dj .Yj � dj /Yjk.Yj � Yjk/

Y 2j .Yj � 1/

#
; 1 � k � K

Vkh D �

DX
jD1

"
W 2.tj /

dj .Yj � dj /YjkYjh

Y 2j .Yj � 1/

#
; 1 � k ¤ h � K

The statistic vk can be interpreted as a weighted sum of observed minus expected numbers of failure for the
kth group under the null hypothesis of identical survival curves. Let V D .Vkh/. The overall test statistic
for homogeneity is v0V�v, where V� denotes a generalized inverse of V. This statistic is treated as having
a chi-square distribution with degrees of freedom equal to the rank of V for the purposes of computing an
approximate probability level.
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Adjusted Log-Rank Test PROC LIFETEST computes the weighted log-rank test (Xie and Liu 2005, 2011)
if you specify the WEIGHT statement. Let (Ti ; ıi ; Xi ; wi /; i D 1; : : : ; n; denote an independent sample of
right-censored survival data, where Ti is the possibly right-censored time, ıi is the censoring indicator (ıi=0
if Ti is censored and ıi=1 if Ti is an event time), Xi D 1; : : : ; K for K different groups, and wi is the weight
from the WEIGHT statement. Let t1 < t2 < : : : < tD be the distinct event times in the sample. At each
tj ; j D 1; : : : ;D, and for each 1 � k � K, let

djk D
X

i WTiDtj

I.Xi D k/ dwjk D
X

i WTiDtj

wiI.Xi D k/

Yjk D
X

i WTi�tj

I.Xi D k/ Y wjk D
X

i WTi�tj

wiI.Xi D k/

Let dj D
PK
kD1 djk and Yj D

PK
kD1 Yjk denote the number of events and the number at risk, respectively,

in the combined sample at time tj . Similarly, let dwj D
PK
kD1 d

w
jk

and Y wj D
PK
kD1 Y

w
jk

denote the
weighted number of events and the weighted number at risk, respectively, in the combined sample at time tj .
The test statistic is

vk D

DX
jD1

 
dwjk � Y

w
jk

dwj

Y wj

!
k D 1; : : : ; K

and the variance of vk and the covariance of vk and vh are, respectively,

Vkk D

DX
jD1

8<:dj .Yj � dj /Yj .Yj � 1/

YjX
iD1

24 Y wjk
Y wj

!2
w2i I fXi ¤ kg C

 
Y wj � Y

w
jk

Y wj

!2
w2i I fXi D kg

359=; ; 1 � k � K

Vkh D

DX
jD1

8<:dj .Yj � dj /Yj .Yj � 1/

YjX
iD1

"
Y w
jk
Y w
jh

.Y wj /
2
w2i I fXi ¤ k; hg �

.Y wj � Y
w
jk
/Y w
jh

.Y wj /
2

w2i I fXi D kg

�

.Y wj � Y
w
jh
/Y w
jk

.Y wj /
2

w2i I fXi D hg

#)
; 1 � k ¤ h � K

Let V D .Vkh/. Under H0, the weighted K-sample test has a �2 statistic given by

�2 D .v1; : : : ; vK/V�.v1; : : : ; vK/0

with K – 1 degrees of freedom.

Stratified Tests Suppose the test is to be stratified on M levels of a set of STRATA variables. Based
only on the data of the sth stratum (s D 1 : : :M ), let vs be the test statistic (Klein and Moeschberger 1997,
Section 7.5) for the sth stratum, and let Vs be its covariance matrix. Let

v D

MX
sD1

vs

V D

MX
sD1

Vs
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A global test statistic is constructed as

�2 D v0V�v

Under the null hypothesis, the test statistic has a �2 distribution with the same degrees of freedom as the
individual test for each stratum.

Multiple-Comparison Adjustments Let �2r denote a chi-square random variable with r degrees of free-
dom. Denote � and ˆ as the density function and the cumulative distribution function of a standard normal
distribution, respectively. Let m be the number of comparisons; that is,

m D

�
k.k�1/
2

DIFF D ALL
k � 1 DIFF D CONTROL

For a two-sided test that compares the survival of the jth group with that of lth group, 1 � j ¤ l � r , the
test statistic is

z2jl D
.vj � vl/

2

Vjj C Vl l � 2Vjl

and the raw p-value is

p D Pr.�21 > z
2
jl/

Adjusted p-values for various multiple-comparison adjustments are computed as follows:

• Bonferroni adjustment:

p D minf1;mPr.�21 > z
2
jl/g

• Dunnett-Hsu adjustment: With the first group being the control, let C D .cij / be the .r � 1/� r matrix
of contrasts; that is,

cij D

8<:
1 i D 1; : : : ; r � 1; j D 2; : : : ; r

�1 j D i C 1; i D 2; : : : ; r

0 otherwise

Let † � .�ij / and R � .rij / be covariance and correlation matrices of Cv, respectively; that is,

† D CVC0

and

rij D
�ij

p
�i i�jj

The factor-analytic covariance approximation of Hsu (1992) is to find �1; : : : ; �r�1 such that

R D DC ��0
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where D is a diagonal matrix with the jth diagonal element being 1 � �j and � D .�1; : : : ; �r�1/
0.

The adjusted p-value is

p D 1 �

Z 1
�1

�.y/

r�1Y
iD1

�
ˆ

�
�iy C zjlq
1 � �2i

�
�ˆ

�
�iy � zjlq
1 � �2i

��
dy

which can be obtained in a DATA step as

p D PROBMC."DUNNETT2"; zij ; :; :; r � 1; �1; : : : ; �r�1/:

• Scheffé adjustment:

p D Pr.�2r�1 > z
2
jl/

• Šidák adjustment:

p D 1 � f1 � Pr.�21 > z
2
jl/g

m

• SMM adjustment:

p D 1 � Œ2ˆ.zjl/ � 1�
m

which can also be evaluated in a DATA step as

p D 1 � PROBMC."MAXMOD"; zjl ; :; :; m/:

• Tukey adjustment:

p D 1 �

Z 1
�1

r�.y/Œˆ.y/ �ˆ.y �
p
2zjl/�

r�1dy

which can also be evaluated in a DATA step as

p D 1 � PROBMC."RANGE";
p
2zjl ; :; :; r/:

Trend Tests Trend tests (Klein and Moeschberger 1997, Section 7.4) have more power to detect ordered
alternatives as

H2 W S1.t/ � S2.t/ � : : : � Sk.t/; t � �; with at least one inequality

or

H2 W S1.t/ � S2.t/ � : : : � Sk.t/; t � �; with at least one inequality

Let a1 < a2 < : : : < ak be a sequence of scores associated with the k samples. The test statistic and its
standard error are given by

Pk
jD1 aj vj and

Pk
jD1

Pk
lD1 ajalVjl , respectively. Under H0, the z-score

Z D

Pk
jD1 aj vjp

f
Pk
jD1

Pk
lD1 ajalVjlg

has, asymptotically, a standard normal distribution. PROC LIFETEST provides both one-tail and two-tail
p-values for the test.
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Rank Tests for the Association of Survival Time with Covariates

The rank tests for the association of covariates (Kalbfleisch and Prentice 1980, Chapter 6) are more general
cases of the rank tests for homogeneity. In this section, the index ˛ is used to label all observations, ˛ D
1; 2; : : : ; n, and the indices i; j range only over the observations that correspond to events, i; j D 1; 2; : : : ; k.
The ordered event times are denoted as t.i/, the corresponding vectors of covariates are denoted as z.i/, and
the ordered times, both censored and event times, are denoted as t˛.

The rank test statistics have the form

v D
nX
˛D1

c˛;ı˛z˛

where n is the total number of observations, c˛;ı˛ are rank scores, which can be either log-rank or Wilcoxon
rank scores, ı˛ is 1 if the observation is an event and 0 if the observation is censored, and z˛ is the vector
of covariates in the TEST statement for the ˛th observation. Notice that the scores, c˛;ı˛ , depend on the
censoring pattern and that the terms are summed up over all observations.

The log-rank scores are

c˛;ı˛ D
X

.j Wt.j/�t˛/

�
1

nj
� ı˛

�

and the Wilcoxon scores are

c˛;ı˛ D 1 � .1C ı˛/
Y

.j Wt.j/�t˛/

nj

nj C 1

where nj is the number at risk just prior to t.j /.

The estimates used for the covariance matrix of the log-rank statistics are

V D
kX
iD1

Vi
ni

where Vi is the corrected sum of squares and crossproducts matrix for the risk set at time t.i/; that is,

Vi D
X

.˛Wt˛�t.i//

.z˛ � Nzi /0.z˛ � Nzi /

where

Nzi D
X

.˛Wt˛�t.i//

z˛
ni

The estimate used for the covariance matrix of the Wilcoxon statistics is

V D
kX
iD1

24ai .1 � a�i /.2z.i/z0.i/ C Si / � .a�i � ai /

0@aixix0i C kX
jDiC1

aj .xix0j C xjx0i /

1A35



Computer Resources F 4371

where

ai D

iY
jD1

nj

nj C 1

a�i D

iY
jD1

nj C 1

nj C 2

Si D
X

.˛Wt.iC1/>t˛>t.i//

z˛z0˛

xi D 2z.i/ C
X

.˛Wt.iC1/>t˛>t.i//

z˛

In the case of tied failure times, the statistics v are averaged over the possible orderings of the tied failure
times. The covariance matrices are also averaged over the tied failure times. Averaging the covariance
matrices over the tied orderings produces functions with appropriate symmetries for the tied observations;
however, the actual variances of the v statistics would be smaller than the preceding estimates. Unless the
proportion of ties is large, it is unlikely that this will be a problem.

The univariate tests for each covariate are formed from each component of v and the corresponding diagonal
element of V as v2i =Vi i . These statistics are treated as coming from a chi-square distribution for calculation
of probability values.

The statistic v0V�v is computed by sweeping each pivot of the V matrix in the order of greatest increase to
the statistic. The corresponding sequence of partial statistics is tabulated. Sequential increments for including
a given covariate and the corresponding probabilities are also included in the same table. These probabilities
are calculated as the tail probabilities of a chi-square distribution with one degree of freedom. Because of the
selection process, these probabilities should not be interpreted as p-values.

If desired for data screening purposes, the output data set requested by the OUTTEST= option can be treated
as a sum of squares and crossproducts matrix and processed by the REG procedure by using the option
METHOD=RSQUARE. Then the sets of variables of a given size can be found that give the largest test
statistics. Output 58.1 illustrates this process.

Computer Resources
The data are first read and sorted into strata. If the data are originally sorted by failure time and censoring
state, with smaller failure times coming first and event values preceding censored values in cases of ties, the
data can be processed by strata without additional sorting. Otherwise, the data are read into memory by strata
and sorted.
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Memory Requirements

For a given BY group, define the following:

N the total number of observations

V the number of STRATA variables

C the number of covariates listed in the TEST statement

L total length of the ID variables in bytes

S number of strata

n maximum number of observations within strata

b 12C 8C C L

m1 .112C 16V / � S

m2 50 � b � S

m3 .50C n/ � .b C 4/

m4 8.C C 4/2

m5 20N C 8S � .S C 4/

The memory, in bytes, required to process the BY group is at least

m1Cmax.m2;m3/Cm4

The test of equality of survival functions across strata requires additional memory (m5 bytes). However, if
this additional memory is not available, PROC LIFETEST skips the test for equality of survival functions and
finishes the other computations. Additional memory is required for the PLOTS= option. Temporary storage
of 16n bytes is required to store the product-limit estimates for plotting.

Output Data Sets

OUTSURV= Data Set

You can specify the OUTSURV= option in the PROC LIFETEST statement to create an output data set that
contains the following columns:

• any specified BY variables

• any specified STRATA variables, their values coming from either their original values or the midpoints
of the stratum intervals if endpoints are used to define strata (semi-infinite intervals are labeled by their
finite endpoint)

• STRATUM, a numeric variable that numbers the strata
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• the time variable as given in the TIME statement. For METHOD=KM, METHOD=BRESLOW, or
METHOD=FH, it contains the observed failure or censored times. For the life-table estimates, it
contains the lower endpoints of the time intervals.

• SURVIVAL, a variable that contains the survivor function estimates

• CONFTYPE, a variable that contains the name of the transformation applied to the survival time in
the computation of confidence intervals (if the OUT= option is specified in the PROC LIFETEST
statement)

• SDF_LCL, a variable that contains the lower limits of the pointwise confidence intervals for the survivor
function

• SDF_UCL, a variable that contains the upper limits of the pointwise confidence intervals for the
survivor function

If the estimation uses the product-limit, Breslow, or Fleming-Harrington method, then the data set also
contains the following:

• _CENSOR_, an indicator variable that has a value 1 for a censored observation and a value 0 for an
event observation

• SDF_STDERR, a variable that contains the standard error of the survivor function estimator (if the
STDERR option is specified in the PROC LIFETEST statement)

• HW_LCL, a variable that contains the lower limits of the Hall-Wellner confidence bands (if the
CONFBAND=HW option or the CONFBAND=ALL option is specified in the PROC LIFETEST
statement)

• HW_UCL, a variable that contains the upper limits of the Hall-Wellner confidence bands (if the
CONFBAND=HW option or the CONFBAND=ALL option is specified in the PROC LIFETEST
statement)

• EP_LCL, a variable that contains the lower limits of the equal-precision confidence bands (if the
CONFBAND=EP option or the CONFBAND=ALL option is specified in the PROC LIFETEST
statement)

• EP_UCL, a variable that contains the upper limits of the equal-precision confidence bands (if the
CONFBAND=EP option or the CONFBAND=ALL option is specified in the PROC LIFETEST
statement)

If the estimation uses the life-table method, then the data set also contains the following:

• MIDPOINT, a variable that contains the value of the midpoint of the time interval

• PDF, a variable that contains the density function estimates

• PDF_LCL, a variable that contains the lower endpoints of the PDF confidence intervals

• PDF_UCL, a variable that contains the upper endpoints of the PDF confidence intervals
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• HAZARD, a variable that contains the hazard estimates

• HAZ_LCL, a variable that contains the lower endpoints of the hazard confidence intervals

• HAZ_UCL, a variable that contains the upper endpoints of the hazard confidence intervals

Each survival function contains an initial observation with the value 1 for the SDF and the value 0 for the
time. The output data set contains an observation for each distinct failure time if the product-limit, Breslow,
or Fleming-Harrington method is used, or it contains an observation for each time interval if the life-table
method is used. The product-limit, Breslow, or Fleming-Harrington survival estimates are defined to be right
continuous; that is, the estimates at a given time include the factor for the failure events that occur at that
time.

Labels are assigned to all the variables in the output data set except the BY variable and the STRATA variable.

OUTTEST= Data Set

The OUTTEST= option in the LIFETEST statement creates an output data set that contains the rank statistics
for testing the association of failure time with covariates. It contains the following:

• any specified BY variables

• _TYPE_, a character variable of length 8 that labels the type of rank test, either “LOG-RANK” or
“WILCOXON”

• _NAME_, a character variable of length 8 that labels the rows of the covariance matrix and the test
statistics

• the TIME variable, containing the overall test statistic in the observation that has _NAME_ equal to the
name of the time variable and the univariate test statistics under their respective covariates.

• all variables listed in the TEST statement

The output is in the form of a symmetric matrix formed by the covariance matrix of the rank statistics
bordered by the rank statistics and the overall chi-square statistic. If the value of _NAME_ is the name of a
variable in the TEST statement, the observation contains a row of the covariance matrix and the value of the
rank statistic in the time variable. If the value of _NAME_ is the name of the TIME variable, the observation
contains the values of the rank statistics in the variables from the TEST list and the value of the overall
chi-square test statistic in the TIME variable.

Two complete sets of statistics labeled by the _TYPE_ variable are produced, one for the log-rank test and
one for the Wilcoxon test.

Displayed Output
If you use the NOPRINT option in the PROC LIFETEST statement, the procedure does not display any
output.
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Product-Limit Survival Estimates

The “Product-Limit Survival Estimates” table is displayed if you request the product-limit method of
estimation. The table displays the following:

• the observed (event or censored) time

• the number of units at risk (if you specify the ATRISK option in the PROC LIFETEST statement)

• the number of events (if you specify the ATRISK option in the PROC LIFETEST statement)

• the product-limit estimate of the survivor function

• the corresponding estimate of the cumulative distribution function of the failure time

• the standard error estimate of the survivor function estimator

• the Nelson-Aalen cumulative hazard function estimate (if the NELSON option is specified in the PROC
LIFETEST statement)

• the standard error of the Nelson-Aalen estimator (if the NELSON option is specified in the PROC
LIFETEST statement)

• the number of event times that have been observed

• the number of event or censored times that remain to be observed

• the frequency of the observed times (if you specify the FREQ statement)

• values of the ID variables (if you specify the ID statement)

The ODS name of this table is ProductLimitEstimates.

Breslow Survival Estimates

The “Breslow Survival Estimates” table is displayed if you request the Breslow method of estimation. The
table displays the following:

• the observed (event or censored) time

• the number of units at risk (if you specify the ATRISK option in the PROC LIFETEST statement)

• the number of events (if you specify the ATRISK option in the PROC LIFETEST statement)

• the Breslow estimate of the survivor function

• the corresponding estimate of the cumulative distribution function of the failure time

• the standard error estimate of the survivor function estimator

• the Nelson-Aalen cumulative hazard function estimate (if the NELSON option is specified in the PROC
LIFETEST statement)

• the standard error of the Nelson-Aalen estimator (if the NELSON option is specified in the PROC
LIFETEST statement)
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• the number of event times that have been observed

• the number of event or censored times that remain to be observed

• the frequency of the observed times (if you specify the FREQ statement)

• values of the ID variables (if you specify the ID statement)

The ODS name of this table is BreslowEstimates.

Fleming-Harrington Survival Estimates

The “Fleming-Harrington Survival Estimates” table is displayed if you request the Fleming-Harrington
method of estimation. The table displays the following:

• the observed (event or censored) time

• the number of units at risk (if you specify the ATRISK option in the PROC LIFETEST statement)

• the number of events (if you specify the ATRISK option in the PROC LIFETEST statement)

• the Fleming-Harrington estimate of the survivor function

• the corresponding estimate of the cumulative distribution function of the failure time

• the standard error estimate of the survivor function estimator

• the Nelson-Aalen cumulative hazard function estimate (if the NELSON option is specified in the PROC
LIFETEST statement)

• the standard error of the Nelson-Aalen estimator (if the NELSON option is specified in the PROC
LIFETEST statement)

• the number of event times that have been observed

• the number of event or censored times that remain to be observed

• the frequency of the observed times (if you specify the FREQ statement)

• values of the ID variables (if you specify the ID statement)

The ODS name of this table is FlemingEstimates.

Quartile Estimates

The “Quartiles Estimates” table is displayed if you request the product-limit, Breslow, or Fleming-Harrington
method of estimation. The table displays the following:

• point estimates of the quartiles of the survival times

• the lower and upper confidence limits for the quartiles

The ODS name of this table is Quartiles.
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Mean Estimate

The “Mean Estimate” table is displayed if you request the product-limit, Breslow, or Fleming-Harrington
method of estimation. The table displays the following:

• the estimated mean survival time

• the estimated standard error of the mean estimator

The ODS name of this table is Means.

Life-Table Survival Estimates

The “Life-Table Survival Estimates” table is displayed if you request the life-table method of estimation. The
table displays the following:

• the time intervals into which the failure and censored times are distributed. Each interval is from the
lower limit, up to but not including the upper limit; if the upper limit is infinity, the missing value is
printed.

• the number of events that occur in the interval

• the number of censored observations that fall into the interval

• the effective sample size for the interval

• the estimate of conditional probability of events (failures) in the interval

• the standard error of the conditional probability estimator

• the estimate of the survival function at the beginning of the interval

• the estimate of the cumulative distribution function of the failure time at the beginning of the interval

• the standard error estimate of the survivor function estimator

• the estimate of the median residual lifetime, which is the amount of time elapsed before reducing the
number of at-risk units to one-half. This is also known as the median future lifetime in Elandt-Johnson
and Johnson (1980)).

• the estimated standard error of the median residual lifetime estimator

• the density function estimated at the midpoint of the interval

• the standard error estimate of the density estimator

• the hazard rate estimated at the midpoint of the interval

• the standard error estimate of the hazard estimator

The ODS name of this table is LifetableEstimates.
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Summary of the Number of Censored and Uncensored Values

The “Summary of the Number of Censored and Uncensored Values” table displays following:

• the stratum identification (if the STRATA statement is specified)

• the total number of observations

• the number of event observations

• the number of censored observations

• the percentage of censored observations

The ODS name of this table is CensoredSummary.

Rank Statistics

The “Rank Statistics” table contains the test statistics of the nonparametric k-sample tests. The ODS name of
this table is HomStats.

Covariance Matrix for the Log-Rank Statistics

The “Covariance Matrix for the Log-Rank Statistics” table is displayed if the log-rank k-sample test is
requested. The ODS name of this table is LogrankHomCov.

Covariance Matrix for the Wilcoxon Statistics

The “Covariance Matrix for the Wilcoxon Statistics” table is displayed if the Wilcoxon k-sample test is
requested. The ODS name of this table is WilHomCov.

Covariance Matrix for the Tarone Statistics

The “Covariance Matrix for the Tarone Statistics” table is displayed if the Tarone-Ware k-sample test is
requested. The ODS name of this table is TaroneHomCov.

Covariance Matrix for the Peto Statistics

The “Covariance Matrix for the Peto Statistics” table is displayed if the Peto-Peto k-sample test is requested.
The ODS name of this table is PetoHomCov.

Covariance Matrix for the ModPeto Statistics

The “Covariance Matrix for the ModPeto Statistics” table is displayed if the modified Peto-Peto k-sample
test is requested. The ODS name of this table is ModPetoHomCov.

Covariance Matrix for the Fleming Statistics

The “Covariance Matrix for the Fleming Statistics” table is displayed if the Fleming-Harrington k-sample
test is requested. The ODS name of this table is FlemingHomCov.
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Test of Equality over Strata

The “Test of Equality over Strata” table is displayed if an unstratified k-sample test is carried out. The
table contains the chi-square statistics, degrees of freedom, and p-values of the nonparametric tests and
the likelihood ratio test (which is based on the exponential distribution). The ODS name of this table is
HomTests.

Stratified Test of Equality over Group

The “Stratified Test of Equality over Group” table is displayed if a stratified test is carried out. The tables
contains the chi-square statistics, degrees of freedom, and p-values of the stratified tests. The ODS name of
this table is HomTests.

Scores for Trend Test

The “Scores for Trend Test” table is displayed if the TREND option is specified in the STRATA statement.
The table contains the set of scores used to construct the trend tests. The ODS name of this table is
TrendScores.

Trend Tests

The “Trend Tests” table is displayed if the TREND option is specified in the STRATA statement. The table
contains the results of the trend tests. The ODS name of this table is TrendTests.

Adjustment for Multiple Comparisons for the Log-Rank Test

The “Adjustment for Multiple Comparisons for the Log-Rank Test” table is displayed if the log-rank test and
a multiple-comparison adjustment method are specified. The table contains the chi-square statistics and the
raw and adjusted p-values of the paired comparisons. The ODS name of this table is SurvDiff.

Adjustment for Multiple Comparisons for the Wilcoxon Test

The “Adjustment for Multiple Comparisons for the Wilcoxon Test” table is displayed if the Wilcoxon test
and a multiple-comparison method are specified. The table contains the chi-square statistics and the raw and
adjusted p-values of the paired comparisons. The ODS name of this table is SurvDiff.

Adjustment for Multiple Comparisons for the Tarone Test

The “Adjustment for Multiple Comparisons for the Tarone Test” table is displayed if the Tarone-Ware test
and a multiple-comparison method are specified. The table contains the chi-square statistics and the raw and
adjusted p-values of the paired comparisons. The ODS name of this table is SurvDiff.

Adjustment for Multiple Comparisons for the Peto Test

The “Adjustment for Multiple Comparisons for the Peto Test” table is displayed if the Peto-Peto test and
a multiple-comparison method are specified. The table contains the chi-square statistics and the raw and
adjusted p-values of the paired comparisons. The ODS name of this table is SurvDiff.
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Adjustment for Multiple Comparisons for the ModPeto Test

The “Adjustment for Multiple Comparisons for the ModPeto Test” table is displayed if the modified Peto-Peto
test and a multiple-comparison method are specified. The table contains the chi-square statistics and the raw
and adjusted p-values of the paired comparisons. The ODS name of this table is SurvDiff.

Adjustment for Multiple Comparisons for the Fleming Test

The “Adjustment for Multiple Comparisons for the Fleming Test” table is displayed if the Fleming-Harrington
test and a multiple-comparison method are specified. The table contains the chi-square statistics and the raw
and adjusted p-values of the paired comparisons. The ODS name of this table is SurvDiff.

Univariate Chi-Squares for the Log-Rank Test

The “Univariate Chi-Squares for the Log-Rank Test” table is displayed if the TEST statement is specified.
The table displays the log-rank test results for individual variables in the TEST statement. The ODS name of
this table is LogUniChiSq.

Covariance Matrix of the Log-Rank Statistics

The “Covariance Matrix of the Log-Rank Statistics” table is displayed if the TEST statement is specified.
The table displays the estimated covariance matrix of the log-rank statistics for association. The ODS name
of this table is LogTestCov.

Forward Stepwise Sequence of Chi-Squares for the Log-Rank Test

The “Forward Stepwise Sequence of Chi-Squares for the Log-Rank Test” table is displayed if the TEST
statement is specified. The table contains the sequence of partial chi-square statistics for the log-rank test in
the order of the greatest increase to the overall test statistic, the degrees of freedom of the partial chi-square
statistics, the approximate probability values of the partial chi-square statistics, the chi-square increments for
including the given variables, and the probability values of the chi-square increments. The ODS name of this
table is LogForStepSeq.

Univariate Chi-Squares for the Wilcoxon Test

The “Univariate Chi-Squares for the Wilcoxon Test” table displays the Wilcoxon test results for individual
variables in the TEST statement. The ODS name of this table is WilUniChiSq.

Covariance Matrix of the Wilcoxon Statistics

The “Covariance Matrix of the Wilcoxon Statistics” table is displayed if the TEST statement is specified.
The table displays the estimated covariance matrix of the Wilcoxon statistics for association. The ODS name
of this table is WilTestCov.

Forward Stepwise Sequence of Chi-Squares for the Wilcoxon Test

The “Forward Stepwise Sequence of Chi-Squares for the Wilcoxon Test” table is displayed if the TEST
statement is specified. The table contains the sequence of partial chi-square statistics for the Wilcoxon test in
the order of the greatest increase to the overall test statistic, the degrees of freedom of the partial chi-square
statistics, the approximate probability values of the partial chi-square statistics, the chi-square increments for
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including the given variables, and the probability values of the chi-square increments. The ODS name of this
table is WilForStepSeq.

Plot Options Superseded by ODS Graphics
You can select one of the following three types of graphics in PROC LIFETEST: ODS, traditional, and line
printer. ODS Graphics is the preferred method of creating graphs, superseding the other two.

When ODS Graphics is enabled, you can use the PLOTS= option in the PROC LIFETEST statement to create
plots by using ODS Graphics. For more information about ODS Graphics options see the PLOTS= option in
the section “PROC LIFETEST Statement” on page 4337.

If ODS Graphics is not enabled and you specify the LINEPRINTER option, line printer plots are produced;
otherwise traditional graphics are produced.

Table 58.4 summarizes the ways in which you can request graphics.

Table 58.4 Ways of Displaying Graphics

PLOTS= LINEPRINTER
Graphics Result ODS Graphics Option Specified? Option Specified?
ODS Graphics Enabled Yes No
ODS Graphics survival plot Enabled No No

Traditional graphics Disabled Yes No

Line printer plot Enabled Yes Yes
Line printer plot Disabled Yes Yes

No graphics Disabled No No
No graphics Disabled No Yes
No graphics Enabled No Yes

Table 58.5 summarizes the options available in the PROC LIFETEST statement for line printer and traditional
graphics.

Table 58.5 Line Printer and Traditional Graphics Options
Available in the PROC LIFETEST Statement

Option Description

Line Printer Plots
FORMCHAR(1,2,7,9)= Defines the characters to be used for line printer plot axes
LINEPRINTER Specifies that plots be produced by a line printer
MAXTIME= Specifies the maximum time value for plotting
NOCENSPLOT Suppresses the plot of censored observations
PLOTS= Specifies the plots to display

Traditional Graphics
ANNOTATE= Specifies an Annotate data set that adds features to plots
CENSOREDSYMBOL= Defines the symbol to be used for censored observations in plots
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Table 58.5 continued

Option Description

DESCRIPTION= Specifies the string that appears in the description field of the PROC
GREPLAY master menu for the plots

EVENTSYMBOL= Specifies the symbol to be used for event observations in plots
GOUT= Specifies the graphics catalog name for saving graphics output
LANNOTATE= Specifies an input data set that contains variables for local annota-

tion
MAXTIME= Specifies the maximum time value for plotting
PLOTS= Specifies the plots to display

The following options are used to produce line printer and traditional graphics:

ANNOTATE=SAS-data-set

ANNO=SAS-data-set
specifies an input data set that contains appropriate variables for annotation of the traditional graphics.
The ANNOTATE= option enables you to add features (for example, labels that explain extreme
observations) to plots produced on graphics devices. The ANNOTATE= option cannot be used if the
LINEPRINTER option is specified or if ODS Graphics is enabled. The data set specified must be an
ANNOTATE= type data set, as described in SAS/GRAPH: Reference.

The data set specified with the ANNOTATE= option in the PROC LIFETEST statement is “global” in
the sense that the information in this data set is displayed in every plot produced by a single invocation
of PROC LIFETEST.

CENSOREDSYMBOL=name | ’string’

CS=name | ’string’
specifies the symbol value for the censored observations in traditional graphics. The value, name
or ’string’ , is the symbol value specification allowed in SAS/GRAPH software. The default is
CS=CIRCLE. If you want to omit plotting the censored observations, specify CS=NONE. The
CENSOREDSYMBOL= option cannot be used if the LINEPRINTER option is specified or if ODS
Graphics is enabled.

DESCRIPTION=‘string’

DES=‘string’
specifies a descriptive string of up to 256 characters that appears in the “Description” field of the
traditional graphics catalog. The description does not appear in the plots. By default, PROC LIFETEST
assigns a description of the form PLOT OF vname versus hname, where vname and hname are the
names of the y variable and the x variable, respectively. The DESCRIPTION= option cannot be used if
the LINEPRINTER option is specified or if ODS Graphics is enabled.

EVENTSYMBOL=name | ‘string’

ES=name | ‘string’
specifies the symbol value for the event observations in traditional graphics. The value, name or
’string’ , is the symbol value specification allowed in SAS/GRAPH software. The default is ES=NONE.
The EVENTSYMBOL= option cannot be used if the LINEPRINTER option is specified or if ODS
Graphics is enabled.
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FORMCHAR(1,2,7,9)=’string’
defines the characters to be used for constructing the vertical and horizontal axes of the line printer
plots. The string should be four characters. The first and second characters define the vertical and
horizontal bars, respectively, which are also used in drawing the steps of the Kaplan-Meier, Breslow, or
Fleming-Harrington survival curve. The third character defines the tick mark for the axes, and the fourth
character defines the lower left corner of the plot. The default is FORMCHAR(1,2,7,9)=‘|-+-’. Any
character or hexadecimal string can be used to customize the plot appearance. If you use hexadecimals,
you must put an x after the closing quote. For example, to send the plot output to a printer with the
IBM graphics character set (1 or 2), specify the following:

formchar(1,2,7,9)='B3C4C5C0'x

See the chapter titled “The PLOT Procedure” in the Base SAS Procedures Guide for further information.

GOUT=graphics-catalog
specifies the graphics catalog for saving traditional graphics output from PROC LIFETEST. The default
is Work.Gseg. The GOUT= option cannot be used if the LINEPRINTER option is specified or if
ODS Graphics is enabled. For more information, see the chapter titled “The GREPLAY Procedure” in
SAS/GRAPH: Reference.

LANNOTATE=SAS-data-set

LANN=SAS-data-set
specifies an input data set that contains variables for local annotation of traditional graphics. You can
use the LANNOTATE= option to specify a different annotation for each BY group, in which case the
BY variables must be included in the LANNOTATE= data set. The LANNOTATE= option cannot be
used if the LINEPRINTER option is specified or if ODS Graphics is enabled. The data set specified
must be an ANNOTATE= type data set, as described in SAS/GRAPH: Reference.

If there is no BY-group processing, the ANNOTATE= and LANNOTATE= options have the same
effects.

LINEPRINTER

LS
specifies that plots are produced by a line printer instead of by a graphical device.

MAXTIME=value
specifies the maximum value of the time variable allowed on the plots so that outlying points do not
determine the scale of the time axis of the plots. This option affects only the displayed plots and has
no effect on any calculations.

NOCENSPLOT

NOCENS
requests that the plot of censored observations be suppressed when the LINEPRINTER and PLOTS=
options are specified. This option is not needed when the life-table method is used to compute the
survival estimates, because the plot of censored observations is not produced.
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Line Printer PLOTS= Option

PLOTS=plot-request

PLOTS=(plot-requests)
controls the line printer plots produced. You must also specify the LINEPRINTER option to obtain
line printer plots. When you specify only one plot-request , you can omit the parentheses around the
plot-request . Here are some examples:

plots=s
plots=(s ls lls)

The plot-requests include the following:

CENSORED

C
specifies a plot of censored observations. This option is available for METHOD=KM,
METHOD=BRESLOW, or METHOD=FH only.

SURVIVAL

S
specifies a plot of the estimated SDF versus time.

LOGSURV

LS
specifies a plot of the negative log of the estimated SDF versus time.

LOGLOGS

LLS
specifies a plot of the log of the negative log of the estimated SDF versus the log of time.

HAZARD

H
specifies a plot of the estimated hazard function versus time (life-table method only).

PDF

P
specifies a plot of the estimated probability density function versus time (life-table method only).

Traditional Graphics PLOTS= Option

PLOTS=plot-request < (NAME=name | ’string’) >

PLOTS=(plot-request < (NAME=name | ’string’) > < , . . . , plot-request < (NAME=name | ’string’) > >)
controls plots produced in traditional graphics. To obtain traditional graphics, you must neither enable
ODS Graphics nor specify the LINEPRINTER option. For each plot-request , you can use the NAME=
option to specify a name to identify the plot. The name can be specified as a SAS name or as a quoted
string of up to 256 characters. Only the first eight characters are used as the entry name in the GOUT=
catalog. The plot-requests include the following:
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SURVIVAL

S
plots the estimated survivor functions versus time.

LOGSURV

LS
plots the negative log of estimated survivor functions versus time.

LOGLOGS

LLS
plots the log of negative log of estimated survivor functions versus the log of time.

HAZARD

H
plots estimated hazard function versus time (life-table method only).

PDF

P
plots the estimated probability density function versus time (life-table method only).

When you specify only one plot-request , you can omit the parentheses around the plot-request . Here
are some examples:

plots=s
plots=(s(name=Surv2), h(name=Haz2))

The latter requests a plot of the estimated survivor function versus time and a plot of the estimated
hazard function versus time, with Surv2 and Haz2 as their names in the GOUT= catalog, respectively.

ODS Table Names
PROC LIFETEST assigns a name to each table it creates. You can use these names to reference the table
when using the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed in Table 58.6. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

Table 58.6 ODS Tables Produced by PROC LIFETEST

ODS Table Name Description Statement / Option

BreslowEstimates Breslow estimates PROC LIFETEST METHOD=B
CensoredSummary Number of event and censored ob-

servations
PROC LIFETEST
METHOD=PL | B | FH

FlemingEstimates Fleming-Harrington estimates PROC LIFETEST
METHOD=FH

FlemingHomCov Covariance matrix for k-sample
FLEMING statistics

STRATA / TEST=FLEMING

HomStats Test statistics for k-sample tests STRATA / TEST=



4386 F Chapter 58: The LIFETEST Procedure

Table 58.6 continued

ODS Table Name Description Statement / Option

HomTests Results of k-sample tests STRATA / TEST=
LifetableEstimates Life-table survival estimates PROC LIFETEST

METHOD=LT
LogForStepSeq Forward stepwise sequence for

the log-rank statistics for associa-
tion

TEST

LogrankHomCov Covariance matrix for k-sample
LOGRANK statistics

STRATA / TEST=LOGRANK

LogTestCov Covariance matrix for log-rank
statistics for association

TEST

LogUniChisq Univariate chi-squares for log-
rank statistics for association

TEST

Means Mean and standard error of sur-
vival times

PROC LIFETEST
METHOD=PL

ModPetoHomCov Covariance matrix for k-sample
MODPETO statistics

STRATA / TEST=MODPETO

PetoHomCov Covariance matrix for k-sample
PETO statistics

STRATA / TEST=PETO

ProductLimitEstimates Product-limit survival estimates PROC LIFETEST
METHOD=PL

Quartiles Quartiles of the survival times PROC LIFETEST
METHOD=PL | B | FH

SimDetails Details of quantile simulations STRATA / ADJUST=SIMULATE
SimResults Quantile simulation results STRATA / ADJUST=SIMULATE
SurvDiff Adjustments for multiple compar-

isons
STRATA / ADJUST= and DIFF=

TaroneHomCov Covariance matrix for k-sample
TARONE statistics

STRATA / TEST=TARONE

TrendScores Scores used to construct trend
tests

STRATA / TREND

TrendTests Results of trend tests STRATA / TREND
WilForStepSeq Forward stepwise sequence for

the log-rank statistics for associa-
tion

TEST

WilcoxonHomCov Covariance matrix for k-sample
WILCOXON statistics

STRATA / TEST=WILCOXON

WilTestCov Covariance matrix for log-rank
statistics for association

TEST

WilUniChiSq Univariate chi-squares for
Wilcoxon statistics for associa-
tion

TEST
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ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

The survival plot is produced by default; other graphs are produced by using the PLOTS= option in the
PROC LIFETEST statement. You can reference every graph produced through ODS Graphics with a name.
The names of the graphs that PROC LIFETEST generates are listed in Table 58.7, along with the required
keywords for the PLOTS= option.

Table 58.7 Graphs Produced by PROC LIFETEST

ODS Graph Name Plot Description PLOTS=Option

DensityPlot Estimated density for life-table method PDF
FailurePlot Estimated failure function SURVIVAL(FAILURE)
HazardPlot Estimated hazard function for life-table

method or smoothed hazard for product-
limit, Breslow, or Fleming-Harrington
method

HAZARD

LogNegLogSurvivalPlot Log of negative log of the estimated sur-
vivor function

LOGLOGS

NegLogSurvivalPlot Negative log of the estimated survivor
function

LOGSURV

SurvivalPlot Estimated survivor function SURVIVAL
SurvivalPlot Estimated survivor function with number

of subjects at risk
SURVIVAL(ATRISK=)

SurvivalPlot Estimated survivor function with point-
wise confidence limits

SURVIVAL(CL)

SurvivalPlot Estimated survivor function with equal-
precision band

SURVIVAL(CB=EP)

SurvivalPlot Estimated survivor function with Hall-
Wellner band

SURVIVAL(CB=HW)

SurvivalPlot Estimated survivor function with homo-
geneity test p-value

SURVIVAL(TEST)

Additional Dynamic Variables for Survival Plots Using ODS Graphics

PROC LIFETEST passes a number of summary statistics as dynamic variables to the ODS Graphics for
survival plots. Table 58.8 and Table 58.9 list these additional dynamic variables for the Kaplan-Meier curves
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and the life-table curves, respectively. These dynamic variables are not declared in the templates for the
survival curves, but you can declare them and use them to enhance the default plots. The names of the dynamic
variables depend on the STRATA= suboption of the PLOTS=SURVIVAL option: STRATA=INDIVIDUAL
produces a separate plot for each stratum, and STRATA=OVERALL produces one plot with overlaid curves.

Table 58.8 Additional Dynamic Variables for
Stat.Graphics.ProductLimitSurvival

STRATA= Dynamic Description

OVERLAY StrValj Label for the jth stratum
NObsj Number of observations in the jth stratum
NEventj Number of events in the jth stratum
Medianj Median survival time of the jth stratum
LowerMedianj Lower median survival time of the jth stratum
UpperMedianj Upper median survival time of the jth stratum
PctMedianConfid Confidence of the median intervals in percent

INDIVIDUAL NObs Number of observations
NEvent Number of events
Median Median survival time
LowerMedian Lower median survival time
UpperMedian Upper median survival time
PctMedianConfid Confidence of the median interval in percent

Table 58.9 Additional Dynamic Variables for
Stat.Graphics.LifetableSurvival

STRATA= Dynamic Description

OVERLAY StrValj Label for the jth stratum
NObsj Number of observations in the jth stratum
NEventj Number of events in the jth stratum

INDIVIDUAL NObs Number of observations
NEvent Number of events

See the section “Dynamic Variables” on page 839 in Chapter 23, “Customizing the Kaplan-Meier Survival
Plot,” for information about all of the dynamic variables that are available for use in the ODS Graphics survival
plot. For the use of the particular dynamic variables shown in this section, see the sections “Adding a Small
Inset Table with Event Information” on page 820 and “Adding an External Table with Event Information” on
page 822 in Chapter 23, “Customizing the Kaplan-Meier Survival Plot.”

Modifying the Survival Plots
PROC LIFETEST, like other statistical procedures, provides a PLOTS= option and other options for modify-
ing its graphical output without requiring template changes. Those options are sufficient for most purposes,
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and the following subsections of the section “Controlling the Survival Plot by Specifying Procedure Options”
on page 783 in Chapter 23, “Customizing the Kaplan-Meier Survival Plot” provide examples:

• “Enabling ODS Graphics and the Default Kaplan-Meier Plot” on page 783
• “Individual Survival Plots” on page 785
• “Hall-Wellner Confidence Bands and Homogeneity Test” on page 787
• “Equal-Precision Bands” on page 788
• “Displaying the Patients-at-Risk Table inside the Plot” on page 790
• “Displaying the Patients-at-Risk Table outside the Plot” on page 792
• “Modifying At-Risk Table Times” on page 793
• “Reordering the Groups” on page 796
• “Suppressing the Censored Observations” on page 799
• “Failure Plots” on page 800

When those options are not sufficient, you can use a set of macros and macro variables to modify the graph
templates. Using these macros and macro variables is easier than directly modifying the graph templates.
The following subsections of the section “Controlling the Survival Plot by Modifying Graph Templates” on
page 801 in Chapter 23, “Customizing the Kaplan-Meier Survival Plot” provide examples:

• “Changing the Plot Title” on page 803
• “Modifying the Axis” on page 805
• “Changing the Line Thickness” on page 807
• “Changing the Group Color” on page 808
• “Changing the Line Pattern” on page 809
• “Changing the Font” on page 810
• “Changing the Legend and Inset Position” on page 812
• “Changing How the Censored Points Are Displayed” on page 814
• “Adding a Y-Axis Reference Line” on page 815
• “Changing the Homogeneity Test Inset” on page 817
• “Suppressing the Second Title and Adding a Footnote” on page 819
• “Adding a Small Inset Table with Event Information” on page 820
• “Adding an External Table with Event Information” on page 822
• “Suppressing the Legend” on page 824
• “Kaplan-Meier Plot with Event Table and Other Customizations” on page 825

Examples: LIFETEST Procedure

Example 58.1: Product-Limit Estimates and Tests of Association
The data presented in Appendix I of Kalbfleisch and Prentice (1980) are coded in the following DATA step.
The response variable, SurvTime, is the survival time in days of a lung cancer patient. Negative values
of SurvTime are censored values. The covariates are Cell (type of cancer cell), Therapy (type of therapy:
standard or test), Prior (prior therapy: 0=no, 10=yes), Age (age in years), DiagTime (time in months from
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diagnosis to entry into the trial), and Kps (performance status). A censoring indicator variable Censor is
created from the data, with the value 1 indicating a censored time and the value 0 indicating an event time.
Since there are only two types of therapy, an indicator variable, Treatment, is constructed for therapy type,
with value 0 for standard therapy and value 1 for test therapy.

data VALung;
drop check m;
retain Therapy Cell;
infile cards column=column;
length Check $ 1;
label SurvTime='Failure or Censoring Time'

Kps='Karnofsky Index'
DiagTime='Months till Randomization'
Age='Age in Years'
Prior='Prior Treatment?'
Cell='Cell Type'
Therapy='Type of Treatment'
Treatment='Treatment Indicator';

M=Column;
input Check $ @@;
if M>Column then M=1;
if Check='s'|Check='t' then input @M Therapy $ Cell $ ;
else input @M SurvTime Kps DiagTime Age Prior @@;
if SurvTime > .;
censor=(SurvTime<0);
SurvTime=abs(SurvTime);
Treatment=(Therapy='test');
datalines;

standard squamous
72 60 7 69 0 411 70 5 64 10 228 60 3 38 0 126 60 9 63 10

118 70 11 65 10 10 20 5 49 0 82 40 10 69 10 110 80 29 68 0
314 50 18 43 0 -100 70 6 70 0 42 60 4 81 0 8 40 58 63 10
144 30 4 63 0 -25 80 9 52 10 11 70 11 48 10
standard small
30 60 3 61 0 384 60 9 42 0 4 40 2 35 0 54 80 4 63 10
13 60 4 56 0 -123 40 3 55 0 -97 60 5 67 0 153 60 14 63 10
59 30 2 65 0 117 80 3 46 0 16 30 4 53 10 151 50 12 69 0
22 60 4 68 0 56 80 12 43 10 21 40 2 55 10 18 20 15 42 0

139 80 2 64 0 20 30 5 65 0 31 75 3 65 0 52 70 2 55 0
287 60 25 66 10 18 30 4 60 0 51 60 1 67 0 122 80 28 53 0
27 60 8 62 0 54 70 1 67 0 7 50 7 72 0 63 50 11 48 0

392 40 4 68 0 10 40 23 67 10
standard adeno

8 20 19 61 10 92 70 10 60 0 35 40 6 62 0 117 80 2 38 0
132 80 5 50 0 12 50 4 63 10 162 80 5 64 0 3 30 3 43 0
95 80 4 34 0

standard large
177 50 16 66 10 162 80 5 62 0 216 50 15 52 0 553 70 2 47 0
278 60 12 63 0 12 40 12 68 10 260 80 5 45 0 200 80 12 41 10
156 70 2 66 0 -182 90 2 62 0 143 90 8 60 0 105 80 11 66 0
103 80 5 38 0 250 70 8 53 10 100 60 13 37 10
test squamous
999 90 12 54 10 112 80 6 60 0 -87 80 3 48 0 -231 50 8 52 10
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242 50 1 70 0 991 70 7 50 10 111 70 3 62 0 1 20 21 65 10
587 60 3 58 0 389 90 2 62 0 33 30 6 64 0 25 20 36 63 0
357 70 13 58 0 467 90 2 64 0 201 80 28 52 10 1 50 7 35 0
30 70 11 63 0 44 60 13 70 10 283 90 2 51 0 15 50 13 40 10

test small
25 30 2 69 0 -103 70 22 36 10 21 20 4 71 0 13 30 2 62 0
87 60 2 60 0 2 40 36 44 10 20 30 9 54 10 7 20 11 66 0
24 60 8 49 0 99 70 3 72 0 8 80 2 68 0 99 85 4 62 0
61 70 2 71 0 25 70 2 70 0 95 70 1 61 0 80 50 17 71 0
51 30 87 59 10 29 40 8 67 0

test adeno
24 40 2 60 0 18 40 5 69 10 -83 99 3 57 0 31 80 3 39 0
51 60 5 62 0 90 60 22 50 10 52 60 3 43 0 73 60 3 70 0
8 50 5 66 0 36 70 8 61 0 48 10 4 81 0 7 40 4 58 0

140 70 3 63 0 186 90 3 60 0 84 80 4 62 10 19 50 10 42 0
45 40 3 69 0 80 40 4 63 0

test large
52 60 4 45 0 164 70 15 68 10 19 30 4 39 10 53 60 12 66 0
15 30 5 63 0 43 60 11 49 10 340 80 10 64 10 133 75 1 65 0

111 60 5 64 0 231 70 18 67 10 378 80 4 65 0 49 30 3 37 0
;

In the following statements, PROC LIFETEST is invoked to compute the product-limit estimate of the
survivor function for each type of cancer cell and to analyze the effects of the variables Age, Prior, DiagTime,
Kps, and Treatment on the survival of the patients. These prognostic factors are specified in the TEST
statement, and the variable Cell is specified in the STRATA statement. ODS Graphics must be enabled before
producing graphs. Graphical displays of the product-limit estimates (S), the negative log estimates (LS), and
the log of negative log estimates (LLS) are requested through the PLOTS= option in the PROC LIFETEST
statement. Because of a few large survival times, a MAXTIME of 600 is used to set the scale of the time
axis; that is, the time scale extends from 0 to a maximum of 600 days in the plots. The variable Therapy is
specified in the ID statement to identify the type of therapy for each observation in the product-limit estimates.
The OUTTEST option specifies the creation of an output data set named Test to contain the rank test matrices
for the covariates.

ods graphics on;
proc lifetest data=VALung plots=(s,ls,lls) outtest=Test maxtime=600;

time SurvTime*Censor(1);
id Therapy;
strata Cell;
test Age Prior DiagTime Kps Treatment;

run;
ods graphics off;

Output 58.1.1 through Output 58.1.4 display the product-limit estimates of the survivor functions for the four
cell types. Summary statistics of the survival times are also shown. The median survival times are 51 days,
156 days, 51 days, and 118 days for patients with adeno cells, large cells, small cells, and squamous cells,
respectively.
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Output 58.1.1 Estimation Results for Adeno Cells

The LIFETEST Procedure

Stratum 1: Cell Type = adeno

The LIFETEST Procedure

Stratum 1: Cell Type = adeno

Product-Limit Survival Estimates

SurvTime Survival Failure

Survival
Standard

Error
Number
Failed

Number
Left Therapy

0.000 1.0000 0 0 0 27

3.000 0.9630 0.0370 0.0363 1 26 standard

7.000 0.9259 0.0741 0.0504 2 25 test

8.000 . . . 3 24 standard

8.000 0.8519 0.1481 0.0684 4 23 test

12.000 0.8148 0.1852 0.0748 5 22 standard

18.000 0.7778 0.2222 0.0800 6 21 test

19.000 0.7407 0.2593 0.0843 7 20 test

24.000 0.7037 0.2963 0.0879 8 19 test

31.000 0.6667 0.3333 0.0907 9 18 test

35.000 0.6296 0.3704 0.0929 10 17 standard

36.000 0.5926 0.4074 0.0946 11 16 test

45.000 0.5556 0.4444 0.0956 12 15 test

48.000 0.5185 0.4815 0.0962 13 14 test

51.000 0.4815 0.5185 0.0962 14 13 test

52.000 0.4444 0.5556 0.0956 15 12 test

73.000 0.4074 0.5926 0.0946 16 11 test

80.000 0.3704 0.6296 0.0929 17 10 test

83.000 * . . . 17 9 test

84.000 0.3292 0.6708 0.0913 18 8 test

90.000 0.2881 0.7119 0.0887 19 7 test

92.000 0.2469 0.7531 0.0850 20 6 standard

95.000 0.2058 0.7942 0.0802 21 5 standard

117.000 0.1646 0.8354 0.0740 22 4 standard

132.000 0.1235 0.8765 0.0659 23 3 standard

140.000 0.0823 0.9177 0.0553 24 2 test

162.000 0.0412 0.9588 0.0401 25 1 standard

186.000 0 1.0000 . 26 0 test

Note: The marked survival times are censored observations.
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Output 58.1.2 Estimation Results for Large Cells

The LIFETEST Procedure

Stratum 2: Cell Type = large

The LIFETEST Procedure

Stratum 2: Cell Type = large

Product-Limit Survival Estimates

SurvTime Survival Failure

Survival
Standard

Error
Number
Failed

Number
Left Therapy

0.000 1.0000 0 0 0 27

12.000 0.9630 0.0370 0.0363 1 26 standard

15.000 0.9259 0.0741 0.0504 2 25 test

19.000 0.8889 0.1111 0.0605 3 24 test

43.000 0.8519 0.1481 0.0684 4 23 test

49.000 0.8148 0.1852 0.0748 5 22 test

52.000 0.7778 0.2222 0.0800 6 21 test

53.000 0.7407 0.2593 0.0843 7 20 test

100.000 0.7037 0.2963 0.0879 8 19 standard

103.000 0.6667 0.3333 0.0907 9 18 standard

105.000 0.6296 0.3704 0.0929 10 17 standard

111.000 0.5926 0.4074 0.0946 11 16 test

133.000 0.5556 0.4444 0.0956 12 15 test

143.000 0.5185 0.4815 0.0962 13 14 standard

156.000 0.4815 0.5185 0.0962 14 13 standard

162.000 0.4444 0.5556 0.0956 15 12 standard

164.000 0.4074 0.5926 0.0946 16 11 test

177.000 0.3704 0.6296 0.0929 17 10 standard

182.000 * . . . 17 9 standard

200.000 0.3292 0.6708 0.0913 18 8 standard

216.000 0.2881 0.7119 0.0887 19 7 standard

231.000 0.2469 0.7531 0.0850 20 6 test

250.000 0.2058 0.7942 0.0802 21 5 standard

260.000 0.1646 0.8354 0.0740 22 4 standard

278.000 0.1235 0.8765 0.0659 23 3 standard

340.000 0.0823 0.9177 0.0553 24 2 test

378.000 0.0412 0.9588 0.0401 25 1 test

553.000 0 1.0000 . 26 0 standard

Note: The marked survival times are censored observations.
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Output 58.1.3 Estimation Results for Small Cells

The LIFETEST Procedure

Stratum 3: Cell Type = small

The LIFETEST Procedure

Stratum 3: Cell Type = small

Product-Limit Survival Estimates

SurvTime Survival Failure

Survival
Standard

Error
Number
Failed

Number
Left Therapy

0.000 1.0000 0 0 0 48

2.000 0.9792 0.0208 0.0206 1 47 test

4.000 0.9583 0.0417 0.0288 2 46 standard

7.000 . . . 3 45 standard

7.000 0.9167 0.0833 0.0399 4 44 test

8.000 0.8958 0.1042 0.0441 5 43 test

10.000 0.8750 0.1250 0.0477 6 42 standard

13.000 . . . 7 41 standard

13.000 0.8333 0.1667 0.0538 8 40 test

16.000 0.8125 0.1875 0.0563 9 39 standard

18.000 . . . 10 38 standard

18.000 0.7708 0.2292 0.0607 11 37 standard

20.000 . . . 12 36 standard

20.000 0.7292 0.2708 0.0641 13 35 test

21.000 . . . 14 34 standard

21.000 0.6875 0.3125 0.0669 15 33 test

22.000 0.6667 0.3333 0.0680 16 32 standard

24.000 0.6458 0.3542 0.0690 17 31 test

25.000 . . . 18 30 test

25.000 0.6042 0.3958 0.0706 19 29 test

27.000 0.5833 0.4167 0.0712 20 28 standard

29.000 0.5625 0.4375 0.0716 21 27 test

30.000 0.5417 0.4583 0.0719 22 26 standard

31.000 0.5208 0.4792 0.0721 23 25 standard

51.000 . . . 24 24 standard

51.000 0.4792 0.5208 0.0721 25 23 test

52.000 0.4583 0.5417 0.0719 26 22 standard

54.000 . . . 27 21 standard

54.000 0.4167 0.5833 0.0712 28 20 standard

56.000 0.3958 0.6042 0.0706 29 19 standard

59.000 0.3750 0.6250 0.0699 30 18 standard

61.000 0.3542 0.6458 0.0690 31 17 test

63.000 0.3333 0.6667 0.0680 32 16 standard

80.000 0.3125 0.6875 0.0669 33 15 test

87.000 0.2917 0.7083 0.0656 34 14 test

95.000 0.2708 0.7292 0.0641 35 13 test

97.000 * . . . 35 12 standard

99.000 . . . 36 11 test

99.000 0.2257 0.7743 0.0609 37 10 test

103.000 * . . . 37 9 test

117.000 0.2006 0.7994 0.0591 38 8 standard

122.000 0.1755 0.8245 0.0567 39 7 standard

123.000 * . . . 39 6 standard
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Output 58.1.3 continued

The LIFETEST Procedure

Stratum 3: Cell Type = small

Product-Limit Survival Estimates

SurvTime Survival Failure

Survival
Standard

Error
Number
Failed

Number
Left Therapy

139.000 0.1463 0.8537 0.0543 40 5 standard

151.000 0.1170 0.8830 0.0507 41 4 standard

153.000 0.0878 0.9122 0.0457 42 3 standard

287.000 0.0585 0.9415 0.0387 43 2 standard

384.000 0.0293 0.9707 0.0283 44 1 standard

392.000 0 1.0000 . 45 0 standard

Note: The marked survival times are censored observations.
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Output 58.1.4 Estimation Results for Squamous Cells

The LIFETEST Procedure

Stratum 4: Cell Type = squamous

The LIFETEST Procedure

Stratum 4: Cell Type = squamous

Product-Limit Survival Estimates

SurvTime Survival Failure

Survival
Standard

Error
Number
Failed

Number
Left Therapy

0.000 1.0000 0 0 0 35

1.000 . . . 1 34 test

1.000 0.9429 0.0571 0.0392 2 33 test

8.000 0.9143 0.0857 0.0473 3 32 standard

10.000 0.8857 0.1143 0.0538 4 31 standard

11.000 0.8571 0.1429 0.0591 5 30 standard

15.000 0.8286 0.1714 0.0637 6 29 test

25.000 0.8000 0.2000 0.0676 7 28 test

25.000 * . . . 7 27 standard

30.000 0.7704 0.2296 0.0713 8 26 test

33.000 0.7407 0.2593 0.0745 9 25 test

42.000 0.7111 0.2889 0.0772 10 24 standard

44.000 0.6815 0.3185 0.0794 11 23 test

72.000 0.6519 0.3481 0.0813 12 22 standard

82.000 0.6222 0.3778 0.0828 13 21 standard

87.000 * . . . 13 20 test

100.000 * . . . 13 19 standard

110.000 0.5895 0.4105 0.0847 14 18 standard

111.000 0.5567 0.4433 0.0861 15 17 test

112.000 0.5240 0.4760 0.0870 16 16 test

118.000 0.4912 0.5088 0.0875 17 15 standard

126.000 0.4585 0.5415 0.0876 18 14 standard

144.000 0.4257 0.5743 0.0873 19 13 standard

201.000 0.3930 0.6070 0.0865 20 12 test

228.000 0.3602 0.6398 0.0852 21 11 standard

231.000 * . . . 21 10 test

242.000 0.3242 0.6758 0.0840 22 9 test

283.000 0.2882 0.7118 0.0820 23 8 test

314.000 0.2522 0.7478 0.0793 24 7 standard

357.000 0.2161 0.7839 0.0757 25 6 test

389.000 0.1801 0.8199 0.0711 26 5 test

411.000 0.1441 0.8559 0.0654 27 4 standard

467.000 0.1081 0.8919 0.0581 28 3 test

587.000 0.0720 0.9280 0.0487 29 2 test

991.000 0.0360 0.9640 0.0352 30 1 test

999.000 0 1.0000 . 31 0 test

Note: The marked survival times are censored observations.
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The distribution of event and censored observations among the four cell types is summarized in Output 58.1.5.

Output 58.1.5 Summary of Censored and Uncensored Values

Summary of the Number of Censored and
Uncensored Values

Stratum Cell Total Failed Censored
Percent

Censored

1 adeno 27 26 1 3.70

2 large 27 26 1 3.70

3 small 48 45 3 6.25

4 squamous 35 31 4 11.43

Total 137 128 9 6.57

The graph of the estimated survivor functions is shown in Output 58.1.6. The adeno cell curve and the small
cell curve are much closer to each other than they are to the large cell curve or the squamous cell curve. The
survival rates of the adeno cell patients and the small cell patients decrease rapidly to approximately 29%
in 90 days. Shapes of the large cell curve and the squamous cell curve are quite different, although both
decrease less rapidly than those of the adeno and small cells. The squamous cell curve decreases more rapidly
initially than the large cell curve, but the role is reversed in the later period.

Output 58.1.6 Graph of the Estimated Survivor Functions
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The graph of the negative log of the estimated survivor functions is displayed in Output 58.1.7. Output 58.1.8
displays the log of the negative log of the estimated survivor functions against the log of time.

Output 58.1.7 Graph of Negative Log of the Estimated Survivor Functions



Example 58.1: Product-Limit Estimates and Tests of Association F 4399

Output 58.1.8 Graph of Log of the Negative Log of the Estimated Survivor Functions

Results of the homogeneity tests across cell types are given in Output 58.1.9. The log-rank and Wilcoxon
statistics and their corresponding covariance matrices are displayed. Also given is a table that consists of
the approximate chi-square statistics, degrees of freedom, and p-values for the log-rank, Wilcoxon, and
likelihood ratio tests. All three tests indicate strong evidence of a significant difference among the survival
curves for the four types of cancer cells (p < 0.0001).

Output 58.1.9 Homogeneity Tests across Cell Types

Rank Statistics

Cell Log-Rank Wilcoxon

adeno 10.306 697.0

large -8.549 -1085.0

small 14.898 1278.0

squamous -16.655 -890.0
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Output 58.1.9 continued

Covariance Matrix for the Log-Rank Statistics

Cell adeno large small squamous

adeno 12.9662 -4.0701 -4.4087 -4.4873

large -4.0701 24.1990 -7.8117 -12.3172

small -4.4087 -7.8117 21.7543 -9.5339

squamous -4.4873 -12.3172 -9.5339 26.3384

Covariance Matrix for the Wilcoxon Statistics

Cell adeno large small squamous

adeno 121188 -34718 -46639 -39831

large -34718 151241 -59948 -56576

small -46639 -59948 175590 -69002

squamous -39831 -56576 -69002 165410

Test of Equality over Strata

Test Chi-Square DF
Pr >

Chi-Square

Log-Rank 25.4037 3 <.0001

Wilcoxon 19.4331 3 0.0002

-2Log(LR) 33.9343 3 <.0001

Results of the log-rank test of the prognostic variables are shown in Output 58.1.10. The univariate test results
correspond to testing each prognostic factor marginally. The joint covariance matrix of these univariate
test statistics is also displayed. In computing the overall chi-square statistic, the partial chi-square statistics
following a forward stepwise entry approach are tabulated.

Consider the log-rank test in Output 58.1.10. Since the univariate test for Kps has the largest chi-square
(43.4747) among all the covariates, Kps is entered first. At this stage, the partial chi-square and the chi-
square increment for Kps are the same as the univariate chi-square. Among all the covariates not in the
model (Age, Prior, DiagTime, Treatment), Treatment has the largest approximate chi-square increment
(1.7261) and is entered next. The approximate chi-square for the model that contains Kps and Treatment
is 43.4747+1.7261=45.2008 with 2 degrees of freedom. The third covariate entered is Age. The fourth is
Prior, and the fifth is DiagTime. The overall chi-square statistic in the last line of the output is the partial
chi-square for including all the covariates. It has a value of 46.4200 with 5 degrees of freedom, which is
highly significant (p < 0.0001).

Output 58.1.10 Log-Rank Test of the Prognostic Factors

Univariate Chi-Squares for the Log-Rank Test

Variable
Test

Statistic
Standard

Error Chi-Square
Pr >

Chi-Square Label

Age -40.7383 105.7 0.1485 0.7000 Age in Years

Prior -19.9435 46.9836 0.1802 0.6712 Prior Treatment?

DiagTime -115.9 97.8708 1.4013 0.2365 Months till Randomization

Kps 1123.1 170.3 43.4747 <.0001 Karnofsky Index

Treatment -4.2076 5.0407 0.6967 0.4039 Treatment Indicator



Example 58.1: Product-Limit Estimates and Tests of Association F 4401

Output 58.1.10 continued

Covariance Matrix for the Log-Rank Statistics

Variable Age Prior DiagTime Kps Treatment

Age 11175.4 -301.2 -892.2 -2948.4 119.3

Prior -301.2 2207.5 2010.9 78.6 13.9

DiagTime -892.2 2010.9 9578.7 -2295.3 21.9

Kps -2948.4 78.6 -2295.3 29015.6 61.9

Treatment 119.3 13.9 21.9 61.9 25.4

Forward Stepwise Sequence of Chi-Squares for the Log-Rank Test

Variable DF Chi-Square
Pr >

Chi-Square
Chi-Square
Increment

Pr >
Increment Label

Kps 1 43.4747 <.0001 43.4747 <.0001 Karnofsky Index

Treatment 2 45.2008 <.0001 1.7261 0.1889 Treatment Indicator

Age 3 46.3012 <.0001 1.1004 0.2942 Age in Years

Prior 4 46.4134 <.0001 0.1122 0.7377 Prior Treatment?

DiagTime 5 46.4200 <.0001 0.00665 0.9350 Months till Randomization

You can establish this forward stepwise entry of prognostic factors by passing the matrix corresponding to
the log-rank test to the RSQUARE method in the REG procedure, as follows. PROC REG finds the sets of
variables that yield the largest chi-square statistics.

data RSq;
set Test;
if _type_='LOG RANK';
_type_='cov';

run;
proc print data=RSq;
run;
proc reg data=RSq(type=COV);

model SurvTime=Age Prior DiagTime Kps Treatment
/ selection=rsquare;

title 'All Possible Subsets of Covariates for the log-rank Test';
run;

Output 58.1.11 displays the univariate statistics and their covariance matrix for the log-rank test.

Output 58.1.11 Log-Rank Statistics and Covariance Matrix

Obs _TYPE_ _NAME_ SurvTime Age Prior DiagTime Kps Treatment

1 cov SurvTime 46.42 -40.74 -19.94 -115.86 1123.14 -4.208

2 cov Age -40.74 11175.44 -301.23 -892.24 -2948.45 119.297

3 cov Prior -19.94 -301.23 2207.46 2010.85 78.64 13.875

4 cov DiagTime -115.86 -892.24 2010.85 9578.69 -2295.32 21.859

5 cov Kps 1123.14 -2948.45 78.64 -2295.32 29015.62 61.945

6 cov Treatment -4.21 119.30 13.87 21.86 61.95 25.409

Results of the best subset regression are shown in Output 58.1.12. The variable Kps generates the largest
univariate test statistic among all the covariates, the pair Kps and Age generate the largest test statistic among
any other pairs of covariates, and so on. The entry order of covariates is identical to that of PROC LIFETEST.
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Output 58.1.12 Best Subset Regression from the REG Procedure

All Possible Subsets of Covariates for the log-rank Test

The REG Procedure
Model: MODEL1

Dependent Variable: SurvTime

R-Square Selection Method

All Possible Subsets of Covariates for the log-rank Test

The REG Procedure
Model: MODEL1

Dependent Variable: SurvTime

R-Square Selection Method

Number in
Model R-Square Variables in Model

1 0.9366 Kps

1 0.0302 DiagTime

1 0.0150 Treatment

1 0.0039 Prior

1 0.0032 Age

2 0.9737 Kps Treatment

2 0.9472 Age Kps

2 0.9417 Prior Kps

2 0.9382 DiagTime Kps

2 0.0434 DiagTime Treatment

2 0.0353 Age DiagTime

2 0.0304 Prior DiagTime

2 0.0181 Prior Treatment

2 0.0159 Age Treatment

2 0.0075 Age Prior

3 0.9974 Age Kps Treatment

3 0.9774 Prior Kps Treatment

3 0.9747 DiagTime Kps Treatment

3 0.9515 Age Prior Kps

3 0.9481 Age DiagTime Kps

3 0.9418 Prior DiagTime Kps

3 0.0456 Age DiagTime Treatment

3 0.0438 Prior DiagTime Treatment

3 0.0355 Age Prior DiagTime

3 0.0192 Age Prior Treatment

4 0.9999 Age Prior Kps Treatment

4 0.9976 Age DiagTime Kps Treatment

4 0.9774 Prior DiagTime Kps Treatment

4 0.9515 Age Prior DiagTime Kps

4 0.0459 Age Prior DiagTime Treatment

5 1.0000 Age Prior DiagTime Kps Treatment

Example 58.2: Enhanced Survival Plot and Multiple-Comparison Adjustments
This example highlights a number of features in the survival plot that uses ODS Graphics. Also shown in
this example are comparisons of survival curves based on multiple comparison adjustments. Data of 137
bone marrow transplant patients extracted from Klein and Moeschberger (1997) have been saved in the
data set BMT in the Sashelp library. At the time of transplant, each patient is classified into one of three
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risk categories: ALL (acute lymphoblastic leukemia), AML (acute myelocytic leukemia)-Low Risk, and
AML-High Risk. The endpoint of interest is the disease-free survival time, which is the time to death or
relapse or to the end of the study in days. In this data set, the variable Group represents the patient’s risk
category, the variable T represents the disease-free survival time, and the variable Status is the censoring
indicator, with the value 1 indicating an event time and the value 0 a censored time.

The following step displays the first 10 observations of the BMT data set in Output 58.2.1. The data set is
available in the Sashelp library.

proc print data=Sashelp.BMT(obs=10);
run;

Output 58.2.1 A Subset of the Bone Marrow Transplant Data

Obs Group T Status

1 ALL 2081 0

2 ALL 1602 0

3 ALL 1496 0

4 ALL 1462 0

5 ALL 1433 0

6 ALL 1377 0

7 ALL 1330 0

8 ALL 996 0

9 ALL 226 0

10 ALL 1199 0

In the following statements, PROC LIFETEST is invoked to compute the product-limit estimate of the
survivor function for each risk category. Using ODS Graphics, you can display the number of subjects at
risk in the survival plot. The PLOTS= option requests that the survival curves be plotted, and the ATRISK=
suboption specifies the time points at which the at-risk numbers are displayed. In the STRATA statement,
the ADJUST=SIDAK option requests the Šidák multiple-comparison adjustment, and by default, all paired
comparisons are carried out.

ods graphics on;

proc lifetest data=sashelp.BMT plots=survival(atrisk=0 to 2500 by 500);
time T * Status(0);
strata Group / test=logrank adjust=sidak;

run;

Output 58.2.2 displays the estimated disease-free survival for the three leukemia groups with the number
of subjects at risk at 0, 500, 1,000, 1,500, 2,000, and 2,500 days. Patients in the AML-Low Risk group
experience a longer disease-free survival than those in the ALL group, who in turn fare better than those in
the AML-High Risk group.
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Output 58.2.2 Estimated Disease-Free Survival for 137 Bone Marrow Transplant Patients

The log-rank test (Output 58.2.3) shows that the disease-free survival times for these three risk groups are
significantly different (p = 0.001).

Output 58.2.3 Log-Rank Test of Disease Group Homogeneity

Test of Equality over Strata

Test Chi-Square DF
Pr >

Chi-Square

Log-Rank 13.8037 2 0.0010

The Šidák multiple-comparison results are shown in Output 58.2.4. There is no significant difference in
disease-free survivor functions between the ALL and AML-High Risk groups (p = 0.2779). The difference
between the ALL and AML-Low Risk groups is marginal (p = 0.0685), but the AML-Low Risk and
AML-High Risk groups have significantly different disease-free survivor functions (p = 0.0006).
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Output 58.2.4 All Paired Comparsions

Adjustment for Multiple Comparisons for the Logrank
Test

Strata Comparison p-Values

Group Group Chi-Square Raw Sidak

ALL AML-High Risk 2.6610 0.1028 0.2779

ALL AML-Low Risk 5.1400 0.0234 0.0685

AML-High Risk AML-Low Risk 13.8011 0.0002 0.0006

Suppose you consider the AML-Low Risk group as the reference group. You can use the DIFF= option in the
STRATA statement to designate this risk group as the control and apply a multiple-comparison adjustment to
the p-values for the paired comparison between the AML-Low Risk group with each of the other groups.
Consider the Šidák correction again. You specify the ADJUST= and DIFF= options as in the following
statements:

proc lifetest data=sashelp.BMT notable plots=none;
time T * Status(0);
strata Group / test=logrank adjust=sidak diff=control('AML-Low Risk');

run;

Output 58.2.5 shows that although both the ALL and AML-High Risk groups differ from the AML-Low Risk
group at the 0.05 level, the difference between the AML-High Risk and the AML-Low Risk group is highly
significant (p = 0.0004).

Output 58.2.5 Comparisons with the Reference Group

The LIFETEST ProcedureThe LIFETEST Procedure

Adjustment for Multiple Comparisons for the Logrank
Test

Strata Comparison p-Values

Group Group Chi-Square Raw Sidak

ALL AML-Low Risk 5.1400 0.0234 0.0462

AML-High Risk AML-Low Risk 13.8011 0.0002 0.0004

The survival plot that is displayed in Output 58.2.2 might be sufficient for many purposes, but you might
have other preferences. Typical alternatives include displaying the number of subjects at risk outside the plot
area, reordering the stratum labels in the survival plot legend, and displaying the strata in the at-risk table by
using their full labels. PROC LIFETEST provides options that you can use to make these changes without
requiring template changes. In the sashelp.BMT data set, the variable Group that represents the strata is a
character variable with three values, namely (in alphabetical order), ALL, AML-High Risk, and AML-Low
Risk. It might be desirable to present the strata in the order ALL, AML-Low Risk, and AML-High Risk.
The ORDER=INTERNAL option in the STRATA statement enables you to order the strata by their internal
values. In the following statements, the new dataset Bmt2 is a copy of sashelp.BMT with the variable Group
changed to a a numeric variable with values 1, 2, and 3 representing ALL, AML-Low Risk, and AML-High
Risk, respectively. The original character values of Group are kept as the formatted values, which are used to
label the strata in the printed output.
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proc format;
invalue $bmtifmt 'ALL' = 1 'AML-Low Risk' = 2 'AML-High Risk' = 3;
value bmtfmt 1 = 'ALL' 2 = 'AML-Low Risk' 3 = 'AML-High Risk';

run;

data Bmt2;
set sashelp.BMT(rename=(Group=G));
Group = input(input(G, $bmtifmt.), 1.);
label Group = 'Disease Group';
format Group bmtfmt.;
run;

The following statements produce a survival plot that has all the aforementioned modifications. The new
data set Bmt2 is used as the input data. The OUTSIDE and MAXLEN= options are specified in the PLOTS=
option. The OUTSIDE option draws the at-risk table outside the plot area. Because the longest label of the
strata has 13 characters, specifying MAXLEN=13 is sufficient to display all the stratum labels in the at-risk
table. The ORDER=INTERNAL option in the STRATA statement orders the strata by their numerical values
1, 2, and 3, which represent the order ALL, AML-Low Risk, and AML-High Risk, respectively.

proc LIFETEST data=Bmt2 plots=s(atrisk(outside maxlen=13)=0 to 2500 by 500);
time T*Status(0);
strata Group / order=internal;

run;

The modified survival plot is displayed in Output 58.2.6. The most noticeable change from Output 58.2.2 is
that the number of subjects at risk is displayed below the time axis. Other changes include displaying the
full labels of the strata in the at-risk table and presenting the strata in the order ALL, AML-Low Risk, and
AML-High Risk.
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Output 58.2.6 Modified Disease-Free Survival for Bone Marrow Transplant Patients

Klein and Moeschberger (1997, Section 4.4) describe in detail how to compute the Hall-Wellner (HW)
and equal-precision (EP) confidence bands for the survivor function. You can output these simultaneous
confidence intervals to a SAS data set by using the CONFBAND= and OUTSURV= options in the PROC
LIFETEST statement. You can display survival curves with pointwise and simultaneous confidence limits
through ODS Graphics. When the survival data are stratified, displaying all the survival curves and their
confidence limits in the same plot can make the plot appear cluttered. In the following statements, the
PLOTS= specification requests that the survivor functions be displayed along with their pointwise confidence
limits (CL) and Hall-Wellner confidence bands (CB=HW). The STRATA=PANEL specification requests that
the survival curves be displayed in a panel of three plots, one for each risk group.

proc lifetest data=Bmt2 plots=survival(cl cb=hw strata=panel);
time T * Status(0);
strata Group/order=internal;

run;

ods graphics off;
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The panel plot is shown in Output 58.2.7.

Output 58.2.7 Estimated Disease-Free Survivor Functions with Confidence Limits

Example 58.3: Life-Table Estimates for Males with Angina Pectoris
The data in this example come from Lee (1992, p. 91) and represent the survival rates of males with angina
pectoris. Survival time is measured as years from the time of diagnosis. In the following DATA step, the data
are read as number of events and number of withdrawals in each one-year time interval for 16 intervals. Three
variables are constructed from the data: Years (an artificial time variable with values that are the midpoints of
the time intervals), Censored (a censoring indicator variable with the value 1 indicating censored observations
and the value 0 indicating event observations), and Freq (the frequency variable). Two observations are
created for each interval, one representing the event observations and the other representing the censored
observations.
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title 'Survival of Males with Angina Pectoris';
data Males;

keep Freq Years Censored;
retain Years -.5;
input fail withdraw @@;
Years + 1;
Censored=0;
Freq=fail;
output;
Censored=1;
Freq=withdraw;
output;
datalines;

456 0 226 39 152 22 171 23 135 24 125 107
83 133 74 102 51 68 42 64 43 45 34 53
18 33 9 27 6 23 0 30

;

In the following statements, the ODS GRAPHICS ON specification enables ODS Graphics. PROC LIFETEST
is invoked to compute the various life-table survival estimates, the median residual time, and their standard
errors. The life-table method of computing estimates is requested by specifying METHOD=LT. The intervals
are specified by the INTERVAL= option. Graphical displays of the life-table survivor function estimate,
negative log of the estimate, log of negative log of the estimate, estimated density function, and estimated
hazard function are requested by the PLOTS= option. No tests for homogeneity are carried out because the
data are not stratified.

ods graphics on;
proc lifetest data=Males method=lt intervals=(0 to 15 by 1)

plots=(s,ls,lls,h,p);
time Years*Censored(1);
freq Freq;

run;
ods graphics off;

Results of the life-table estimation are shown in Output 58.3.1. The five-year survival rate is 0.5193 with
a standard error of 0.0103. The estimated median residual lifetime, which is 5.33 years initially, reaches a
maximum of 6.34 years at the beginning of the second year and decreases gradually to a value lower than the
initial 5.33 years at the beginning of the seventh year.
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Output 58.3.1 Life-Table Survivor Function Estimate

Survival of Males with Angina Pectoris

The LIFETEST Procedure

Survival of Males with Angina Pectoris

The LIFETEST Procedure

Life Table Survival Estimates

Interval

[Lower, Upper)
Number

Failed
Number

Censored

Effective
Sample

Size

Conditional
Probability

of Failure

Conditional
Probability

Standard
Error Survival Failure

Survival
Standard

Error

Median
Residual
Lifetime

Median
Standard

Error

0 1 456 0 2418.0 0.1886 0.00796 1.0000 0 0 5.3313 0.1749

1 2 226 39 1942.5 0.1163 0.00728 0.8114 0.1886 0.00796 6.2499 0.2001

2 3 152 22 1686.0 0.0902 0.00698 0.7170 0.2830 0.00918 6.3432 0.2361

3 4 171 23 1511.5 0.1131 0.00815 0.6524 0.3476 0.00973 6.2262 0.2361

4 5 135 24 1317.0 0.1025 0.00836 0.5786 0.4214 0.0101 6.2185 0.1853

5 6 125 107 1116.5 0.1120 0.00944 0.5193 0.4807 0.0103 5.9077 0.1806

6 7 83 133 871.5 0.0952 0.00994 0.4611 0.5389 0.0104 5.5962 0.1855

7 8 74 102 671.0 0.1103 0.0121 0.4172 0.5828 0.0105 5.1671 0.2713

8 9 51 68 512.0 0.0996 0.0132 0.3712 0.6288 0.0106 4.9421 0.2763

9 10 42 64 395.0 0.1063 0.0155 0.3342 0.6658 0.0107 4.8258 0.4141

10 11 43 45 298.5 0.1441 0.0203 0.2987 0.7013 0.0109 4.6888 0.4183

11 12 34 53 206.5 0.1646 0.0258 0.2557 0.7443 0.0111 . .

12 13 18 33 129.5 0.1390 0.0304 0.2136 0.7864 0.0114 . .

13 14 9 27 81.5 0.1104 0.0347 0.1839 0.8161 0.0118 . .

14 15 6 23 47.5 0.1263 0.0482 0.1636 0.8364 0.0123 . .

15 . 0 30 15.0 0 0 0.1429 0.8571 0.0133 . .

Interval
Evaluated at the Midpoint of the

Interval

[Lower, Upper) PDF

PDF
Standard

Error Hazard

Hazard
Standard

Error

0 1 0.1886 0.00796 0.208219 0.009698

1 2 0.0944 0.00598 0.123531 0.008201

2 3 0.0646 0.00507 0.09441 0.007649

3 4 0.0738 0.00543 0.119916 0.009154

4 5 0.0593 0.00495 0.108043 0.009285

5 6 0.0581 0.00503 0.118596 0.010589

6 7 0.0439 0.00469 0.1 0.010963

7 8 0.0460 0.00518 0.116719 0.013545

8 9 0.0370 0.00502 0.10483 0.014659

9 10 0.0355 0.00531 0.112299 0.017301

10 11 0.0430 0.00627 0.155235 0.023602

11 12 0.0421 0.00685 0.17942 0.030646

12 13 0.0297 0.00668 0.149378 0.03511

13 14 0.0203 0.00651 0.116883 0.038894

14 15 0.0207 0.00804 0.134831 0.054919

15 . . . . .
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The breakdown of event and censored observations in the data is shown in Output 58.3.2. Note that 32.8% of
the patients have withdrawn from the study.

Output 58.3.2 Summary of Censored and Event Observations

Summary of the Number of
Censored and Uncensored

Values

Total Failed Censored
Percent

Censored

2418 1625 793 32.80

Note: 2 observations with invalid time, censoring, or frequency values were deleted.

Output 58.3.3 displays the graph of the life-table survivor function estimate. The median survival time, read
from the survivor function curve, is 5.33 years, and the 25th and 75th percentiles are 1.04 and 11.13 years,
respectively.

Output 58.3.3 Life-Table Survivor Function Estimate
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An exponential model might be appropriate for the survival of these male patients with angina pectoris
since the curve of the negative log of the survivor function estimate versus the survival time (Output 58.3.4)
approximates a straight line through the origin. Note that the graph of the log of the negative log of the
survivor function estimate versus the log of time (Output 58.3.5) is practically a straight line.

Output 58.3.4 Negative Log of Survivor Function Estimate

As discussed in Lee (1992), the graph of the estimated hazard function (Output 58.3.6) shows that the death
rate is highest in the first year of diagnosis. From the end of the first year to the end of the tenth year, the
death rate remains relatively constant, fluctuating between 0.09 and 0.12. The death rate is generally higher
after the tenth year. This could indicate that a patient who has survived the first year has a better chance
than a patient who has just been diagnosed. The profile of the median residual lifetimes also supports this
interpretation.
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Output 58.3.5 Log of Negative Log of Survivor Function Estimate
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Output 58.3.6 Hazard Function Estimate

The density estimate is shown in (Output 58.3.7). Visually, it resembles the density function of an exponential
distribution.
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Output 58.3.7 Density Function Estimate
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Overview: LOESS Procedure
The LOESS procedure implements a nonparametric method for estimating regression surfaces pioneered by
Cleveland, Devlin, and Grosse (1988); Cleveland and Grosse (1991); Cleveland, Grosse, and Shyu (1992).
The LOESS procedure allows great flexibility because no assumptions about the parametric form of the
regression surface are needed.

The SAS System provides many regression procedures such as the GLM, REG, and NLIN procedures for
situations in which you can specify a reasonable parametric model for the regression surface. You can use
the LOESS procedure for situations in which you do not know a suitable parametric form of the regression
surface. Furthermore, the LOESS procedure is suitable when there are outliers in the data and a robust fitting
method is necessary.

The main features of the LOESS procedure are as follows:

• fits nonparametric models

• supports the use of multidimensional data

• supports multiple dependent variables

• supports both direct and interpolated fitting that uses k-d trees

• performs statistical inference

• performs automatic smoothing parameter selection

• performs iterative reweighting to provide robust fitting when there are outliers in the data

• produces graphs with ODS Graphics

Local Regression and the Loess Method
Assume that for i = 1 to n, the ith measurement yi of the response y and the corresponding measurement xi
of the vector x of p predictors are related by

yi D g.xi /C �i

where g is the regression function and �i is a random error. The idea of local regression is that at a predictor
x, the regression function g.x/ can be locally approximated by the value of a function in some specified
parametric class. Such a local approximation is obtained by fitting a regression surface to the data points
within a chosen neighborhood of the point xi .

In the loess method, weighted least squares is used to fit linear or quadratic functions of the predictors at the
centers of neighborhoods. The radius of each neighborhood is chosen so that the neighborhood contains a
specified percentage of the data points. The fraction of the data, called the smoothing parameter, in each local
neighborhood controls the smoothness of the estimated surface. Data points in a given local neighborhood
are weighted by a smooth decreasing function of their distance from the center of the neighborhood.
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In a direct implementation, such fitting is done at each point at which the regression surface is to be estimated.
A much faster computational procedure is to perform such local fitting at a selected sample of points in
predictor space and then to blend these local polynomials to obtain a regression surface.

You can use the LOESS procedure to perform statistical inference provided that the error distribution satisfies
some basic assumptions. In particular, such analysis is appropriate when the �i are iid normal random
variables with mean 0. By using the iterative reweighting, the LOESS procedure can also provide statistical
inference when the error distribution is symmetric but not necessarily normal. Furthermore, by doing iterative
reweighting, you can use the LOESS procedure to perform robust fitting in the presence of outliers in the
data.

While all output of the LOESS procedure can be optionally displayed, most often the LOESS procedure
is used to produce output data sets that will be viewed and manipulated by other SAS procedures. PROC
LOESS uses the Output Delivery System (ODS) to place results in output data sets. Alternatively, PROC
LOESS also provides an OUTPUT statement to create SAS data sets from analysis results.

Getting Started: LOESS Procedure

Scatter Plot Smoothing
The following data from the Connecticut Tumor Registry presents age-adjusted numbers of melanoma
incidences per 100,000 people for the 37 years from 1936 to 1972 (Houghton, Flannery, and Viola 1980).

data Melanoma;
input Year Incidences @@;
format Year d4.0;
datalines;

1936 0.9 1937 0.8 1938 0.8 1939 1.3
1940 1.4 1941 1.2 1942 1.7 1943 1.8
1944 1.6 1945 1.5 1946 1.5 1947 2.0
1948 2.5 1949 2.7 1950 2.9 1951 2.5
1952 3.1 1953 2.4 1954 2.2 1955 2.9
1956 2.5 1957 2.6 1958 3.2 1959 3.8
1960 4.2 1961 3.9 1962 3.7 1963 3.3
1964 3.7 1965 3.9 1966 4.1 1967 3.8
1968 4.7 1969 4.4 1970 4.8 1971 4.8
1972 4.8
;

The following PROC SGPLOT statements produce the simple scatter plot of these data displayed in Fig-
ure 59.1.

proc sgplot data=Melanoma;
scatter y=Incidences x=Year;

run;
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Figure 59.1 Scatter Plot of the Melanoma Data

Suppose that you want to smooth the response variable Incidences as a function of the variable Year. The
following PROC LOESS statements request this analysis with the default settings:

ods graphics on;

proc loess data=Melanoma;
model Incidences=Year;

run;

You use the PROC LOESS statement to invoke the procedure and specify the data set. The MODEL statement
names the dependent and independent variables.



Scatter Plot Smoothing F 4423

Figure 59.2 Default Loess Fit for the Melanoma Data

When ODS Graphics is enabled, PROC LOESS produces several default plots. Figure 59.2 shows the “Fit
Plot” that overlays the loess fit on a scatter plot of the data. You can see that the loess fit captures the
increasing trend in the data as well as the periodic pattern in the data, which is related to an 11-year sunspot
activity cycle.
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Figure 59.3 Fit Summary

The LOESS Procedure
Selected Smoothing Parameter: 0.257

Dependent Variable: Incidences

The LOESS Procedure
Selected Smoothing Parameter: 0.257

Dependent Variable: Incidences

Fit Summary

Fit Method kd Tree

Blending Linear

Number of Observations 37

Number of Fitting Points 37

kd Tree Bucket Size 1

Degree of Local Polynomials 1

Smoothing Parameter 0.25676

Points in Local Neighborhood 9

Residual Sum of Squares 2.03105

Trace[L] 8.62243

GCV 0.00252

AICC -1.17277

Figure 59.3 shows the “Fit Summary” table. This table details the settings used and provides statistics about
the fit that is produced. You can see that smoothing parameter value for this loess fit is 0.257. This smoothing
parameter determines the fraction of the data in each local neighborhood. In this example, there are 37 data
points and so the smoothing parameter value of 0.257 yields local neighborhoods containing 9 observations.

Figure 59.4 Smoothing Parameter Selection

Optimal Smoothing
Criterion

AICC
Smoothing
Parameter

-1.17277 0.25676
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The “Smoothing Criterion” table provides information about how this smoothing parameter value is selected.
The default method implemented in PROC LOESS chooses the smoothing parameter that minimizes the
AICC criterion (Hurvich, Simonoff, and Tsai 1998) that strikes a balance between the residual sum of squares
and the complexity of the fit.

You use options in the MODEL statement to change the default settings and request optionally displayed
tables. For example, the following statements request that the “Model Summary” and “Output Statistics”
tables be included in the displayed output. By default, these tables are not displayed.

proc loess data=Melanoma;
model Incidences=Year / details(ModelSummary OutputStatistics);

run;

Figure 59.5 Model Summary Table

The LOESS Procedure
Dependent Variable: Incidences

The LOESS Procedure
Dependent Variable: Incidences

Model Summary

Smoothing
Parameter

Local
Points Residual SS GCV AICC

0.41892 15 3.42229 0.00339 -0.96252

0.68919 25 4.05838 0.00359 -0.93459

0.31081 11 2.51054 0.00279 -1.12034

0.20270 7 1.58513 0.00239 -1.12221

0.17568 6 1.56896 0.00241 -1.09706

0.28378 10 2.50487 0.00282 -1.10402

0.20270 7 1.58513 0.00239 -1.12221

0.25676 9 2.03105 0.00252 -1.17277

0.22973 8 2.02965 0.00256 -1.15145

0.25676 9 2.03105 0.00252 -1.17277

The “Model Summary” table shown in Figure 59.5 provides information about all the models that PROC
LOESS evaluated in choosing the smoothing parameter value.
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Figure 59.6 AICC Criterion by Smoothing Parameter

Figure 59.6 shows the “Criterion Plot” that provides a graphical display of the smoothing parameter selection
process.
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Figure 59.7 Output Statistics

The LOESS Procedure
Selected Smoothing Parameter: 0.257

Dependent Variable: Incidences

The LOESS Procedure
Selected Smoothing Parameter: 0.257

Dependent Variable: Incidences

Output Statistics

Obs Year Incidences
Predicted

Incidences Residual

1 1936 0.90000 0.76235 0.13765

2 1937 0.80000 0.88992 -0.08992

3 1938 0.80000 1.01764 -0.21764

4 1939 1.30000 1.14303 0.15697

5 1940 1.40000 1.28654 0.11346

6 1941 1.20000 1.44528 -0.24528

7 1942 1.70000 1.53482 0.16518

8 1943 1.80000 1.57895 0.22105

9 1944 1.60000 1.62058 -0.02058

10 1945 1.50000 1.68627 -0.18627

11 1946 1.50000 1.82449 -0.32449

12 1947 2.00000 2.04976 -0.04976

13 1948 2.50000 2.30981 0.19019

14 1949 2.70000 2.53653 0.16347

15 1950 2.90000 2.68921 0.21079

16 1951 2.50000 2.70779 -0.20779

17 1952 3.10000 2.64837 0.45163

18 1953 2.40000 2.61468 -0.21468

19 1954 2.20000 2.58792 -0.38792

20 1955 2.90000 2.57877 0.32123

21 1956 2.50000 2.71078 -0.21078

22 1957 2.60000 2.96981 -0.36981

23 1958 3.20000 3.26005 -0.06005

24 1959 3.80000 3.54143 0.25857

25 1960 4.20000 3.73482 0.46518

26 1961 3.90000 3.78186 0.11814

27 1962 3.70000 3.74362 -0.04362

28 1963 3.30000 3.70904 -0.40904

29 1964 3.70000 3.72917 -0.02917

30 1965 3.90000 3.82382 0.07618

31 1966 4.10000 4.00515 0.09485

32 1967 3.80000 4.18573 -0.38573

33 1968 4.70000 4.35152 0.34848

34 1969 4.40000 4.50284 -0.10284

35 1970 4.80000 4.64413 0.15587

36 1971 4.80000 4.78291 0.01709

37 1972 4.80000 4.91602 -0.11602

Figure 59.7 show the “Output Statistics” table that contains the predicted loess fit value at each observation
in the input data set.
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Although the default method for selecting the smoothing parameter value is often satisfactory, it is often a
good practice to examine how the loess fit varies with the smoothing parameter. In some cases, fits with
different smoothing parameters might reveal important features of the data that cannot be discerned by
looking at a fit with just a single “best” smoothing parameter. Example 59.4 provides such an example. You
can produce the loess fits for a range of smoothing parameters by using the SMOOTH= option in the MODEL
statement as follows:

proc loess data=Melanoma;
model Incidences=Year/smooth=0.1 0.25 0.4 0.6 residual;
ods output OutputStatistics=Results;

run;

The RESIDUAL option causes the residuals to be added to the “Output Statistics” table. Note that, even
if you do not specify the DETAILS option in the MODEL statement to request the display of the “Output
Statistics” table, you can use an ODS OUTPUT statement to output this and other optionally displayed tables
as data sets.

PROC PRINT displays the first five observations of the Results data set:

proc print data=Results(obs=5);
id obs;

run;

Figure 59.8 PROC PRINT Output of the Results Data Set

Obs SmoothingParameter Year DepVar Pred Residual

1 0.1 1936 0.9 0.90000 0

2 0.1 1937 0.8 0.80000 0

3 0.1 1938 0.8 0.80000 0

4 0.1 1939 1.3 1.30000 0

5 0.1 1940 1.4 1.40000 0

Note that the fits for all the smoothing parameters are placed in single data set. A variable named Smoothing-
Parameter that you use to distinguish each fit is included in this data set.

When you specify a list of smoothing parameters for a model and ODS Graphics is enabled, PROC LOESS
produces a panel containing up to six plots that show the fit obtained for each value of the smoothing parameter
that you specify. If you specify more than six smoothing values, then multiple panels are produced. For
each regressor, PROC LOESS also produces panels of the residuals versus each regressor by the smoothing
parameters that you specify.



Scatter Plot Smoothing F 4429

Figure 59.9 Loess Fits for a Range of Smoothing Parameters

If you examine the plots in Figure 59.9, you see that a visually reasonable fit is obtained with smoothing
parameter values of 0.25. With smoothing parameter value 0.1, there is gross overfitting in the sense that
the original data are exactly interpolated. When the smoothing parameter value is 0.4, you obtain an overly
smooth fit where the contribution of the sunspot cycle has been mostly averaged away. At smoothing
parameter value 0.6 the fit shows just the increasing trend in the data.

It is also instructive to look at scatter plots of the residuals for each of the fits. These are also produced by
default by PROC LOESS when ODS Graphics is enabled.
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Figure 59.10 Residuals of Loess Fits for a Range of Smoothing Parameters

Figure 59.10 shows a scatter plot of the residuals by year for each smoothing parameter value. One
way to discern patterns in these residuals is to superimpose a loess fit on each plot in the panel. You
request loess fits on the residual plots in this panel by specifying the SMOOTH= suboption of the
PLOTS=RESIDUALSBYSMOOTH option in the PROC LOESS statement. Note that the loess fits that
are displayed on each of the residual plots are obtained independently of the loess fit that produces these
residuals. The following statements show how you do this for the Melanoma data.

proc loess data=Melanoma plots=ResidualsBySmooth(smooth);
model Incidences=Year/smooth=0.1 0.25 0.4 0.6;

run;
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Figure 59.11 Residuals with Superimposed Loess Fits

The loess fits shown on the plots in Figure 59.11 help confirm the conclusions obtained when you look at
Figure 59.9. Note that residuals for smoothing parameter value 0.25 do not exhibit any pattern, confirming
that at this value the loess fit of the melanoma data has successfully modeled the variation in this data. By
contrast, the residuals for the fit with smoothing parameter 0.6 retain the variation caused by the sunspot
cycle.

The examination of the fits and residuals obtained with a range of smoothing parameter values confirms that
the value of 0.257 that PROC LOESS selects automatically is appropriate for these data. The next step in this
analysis is to examine fit diagnostics and produce confidence limit for the fit. If ODS Graphics is enabled,
then a panel of fit diagnostics is produced. Furthermore, you can request prediction confidence limits by
adding the CLM option in the MODEL statement. By default 95% limits are produced, but you can use the
ALPHA= option in the MODEL statement to change the significance level. The following statements request
90% confidence limits.

proc loess data=Melanoma;
model Incidences=Year/clm alpha=0.1;

run;

ods graphics off;
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Figure 59.12 Fit Diagnostics

Figure 59.12 shows the fit diagnostics panel. The histogram of the residuals with overlaid normal density
estimator and the normal quantile plot show that the residuals do exhibit some small departure from normality.
The “Residual-Fit” spread plot shows that the spread in the centered fit is much wider that the spread in the
residuals. This indicates that the fit has accounted for most of the variation in the incidences of melanoma in
this data. This conclusion is supported by the absence of any clear pattern in the scatter plot of residuals by
predicted values and the closeness of the points to the 45-degree reference line in the plot of observed by
predicted values.
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Figure 59.13 Loess Fit of Melanoma Data with 90% Confidence Limits

Finally, Figure 59.13 shows the selected loess fit with 90% confidence limits.

Syntax: LOESS Procedure
The following statements are available in the LOESS procedure:

PROC LOESS < DATA=SAS-data-set > ;
MODEL dependents = regressors < / options > ;
OUTPUT < OUT=SAS-data-set > < keyword < =name > > < . . . keyword < =name > > < / options > ;
ID variables ;
BY variables ;
WEIGHT variable ;
SCORE DATA=SAS-data-set < ID=(variable-list) > < / options > ;

The PROC LOESS and MODEL statements are required. The OUTPUT, BY, WEIGHT, and ID statements
are optional. The SCORE statement is optional, and more than one SCORE statement can be used.

The statements used with the LOESS procedure, in addition to the PROC LOESS statement, are as follows.



4434 F Chapter 59: The LOESS Procedure

BY specifies variables to define subgroups for the analysis.

ID names variables to identify observations in the displayed output.

MODEL specifies the dependent and independent variables in the loess model, details and parame-
ters for the computational algorithm, and the required output.

OUTPUT creates an output data set containing predicted values, residuals, and results of statistical
inference.

SCORE specifies a data set containing observations to be scored.

WEIGHT declares a variable to weight observations.

PROC LOESS Statement
PROC LOESS < options > ;

The PROC LOESS statement invokes the LOESS procedure. The PROC LOESS statement is required. You
can specify the following options in the PROC LOESS statement:

DATA=SAS-data-set
names the SAS data set to be used by PROC LOESS. If the DATA= option is not specified, PROC
LOESS uses the most recently created SAS data set.

PLOTS < (global-plot-options) > < = plot-request < (options) > >

PLOTS < (global-plot-options) > < = (plot-request < (options) > < ... plot-request < (options) > >) >
controls the plots produced through ODS Graphics. When you specify only one plot request, you can
omit the parentheses around the plot request. Here are some examples:

plots=none
plots=residuals(smooth)
plots(unpack)=diagnostics
plots(only)=(fit residualHistogram)

ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;

proc loess;
model y = x;

run;

ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

If ODS Graphics is enabled but you but do not specify the PLOTS= option, then PROC LOESS
produces a default set of plots. The following table lists the default set of plots produced.
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Table 59.1 Default Graphs Produced

Plot Conditional On

ContourFitPanel SMOOTH= option specified in the MODEL statement
ContourFit Model with two regressors
CriterionPlot Smoothing parameter selection performed
DiagnosticsPanel Unconditional
ResidualsBySmooth SMOOTH= option specified in the MODEL statement
ResidualPanel Unconditional
FitPanel SMOOTH= option specified in the MODEL statement
FitPlot Model with one regressor
ScorePlot One or more SCORE statements and a model with one regressor

For models with multiple dependent variables, separate plots are produced for each dependent variable.
For models where multiple smoothing parameters are requested with the SMOOTH= option in the
MODEL statement and smoothing parameter value selection is not requested, separate plots are
produced for each smoothing parameter. If smoothing parameter value selection is requested with the
SELECT= option in the MODEL statement, then the plots are produced for the selected model only.
However, if you specify the STEPS suboption of the SELECT= option, then plots are produced for all
smoothing parameters examined in the selection process.

The global-plot-options apply to all relevant plots generated by the LOESS procedure, unless they are
overridden with a specific-plot-option. The global-plot-options supported by the LOESS procedure
follow.

Global Plot Options

MAXPOINTS=NONE | number
specifies that plots with elements that require processing more than number points are suppressed. The
default is MAXPOINTS=5000. This cutoff is ignored if you specify MAXPOINTS=NONE.

ONLY
suppresses the default plots. Only the plots specifically requested are produced.

UNPACK
suppresses paneling. By default, multiple plots can appear in some output panels. Specify UNPACK
to get each plot individually. You can specify PLOTS(UNPACK) to unpack the default plots. You
can also specify UNPACK as a suboption with CONTOURFITPANEL, DIAGNOSTICS, FITPANEL,
RESIDUALS and RESIDUALSBYSMOOTH.

Specific Plot Options

The following listing describes the specific plots and their options.

ALL
requests that all plots appropriate for the particular analysis be produced. You can specify other options
with ALL; for example, to request all plots and unpack only the residuals, specify PLOTS=(ALL
RESIDUALS(UNPACK)).
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CONTOURFIT < (contour-options) >
produces a contour plot of the fitted surface overlaid with a scatter plot of the data for models with
two regressors. Contour plots are not produced if you specify the DIRECT option in the MODEL
statement. You can use the following contour-options to control how the observations are displayed:

OBS=GRADIENT
specifies that observations be displayed as circles colored by the observed response. The same
color gradient is used to display the fitted surface and the observations. Observations where
the predicted response is close to the observed response have similar colors—the greater the
contrast between the color of an observation and the surface, the larger the residual is at that
point. OBS=GRADIENT is the default if you do not specify any contour-options.

OBS=NONE
suppresses the observations.

OBS=OUTLINE
specifies that observations be displayed as circles with a border but with a completely transparent
fill.

OBS=OUTLINEGRADIENT
is the same as OBS=GRADIENT except that a border is shown around each observation. This
option is useful to identify the location of observations where the residuals are small, because at
these points the color of the observations and the color of the surface are indistinguishable.

CONTOURFITPANEL < (< UNPACK > < contour-options > ) >
produces panels of contour plots overlaid with a scatter plot of the data for each smoothing parameter
specified in the SMOOTH= option in the MODEL statement, for models with two regressors. This plot
is not produced if you specify the DIRECT option in the MODEL statement. If you do not specify the
SMOOTH= option or if the model does not have two regressors, then this plot is not produced. If you
specify the SELECT= option in addition to the SMOOTH= option in the MODEL statement, then you
need to additionally specify the STEPS suboption of the SELECT= option to obtain this plot. Note that
each panel contains at most six plots, and multiple panels are used in the case that there are more than
six smoothing parameters in the SMOOTH= option in the MODEL statement. See the CONTOURFIT
option for a description of the individual plots in this panel. The UNPACK option suppresses paneling,
and the contour-options are the same as for the CONTOURFIT option.

CRITERIONPLOT | CRITERION
displays a scatter plot of the value of the SELECT= criterion versus the smoothing parameter value
for all smoothing parameter values examined in the selection process. This plot is not produced if
smoothing parameter selection is not done.

DIAGNOSTICSPANEL | DIAGNOSTICS < (UNPACK) >
produces a summary panel of fit diagnostics consisting of the following:

• residuals versus the predicted values

• histogram of the residuals

• normal quantile plot of the residuals

• a “Residual-Fit” (or RF) plot consisting of side-by-side quantile plots of the centered fit and the
residuals.

• dependent variable values versus the predicted values
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You can request the five plots in this panel as individual plots by specifying the UNPACK option. You
can also request individual plots in the panel by name without having to unpack the panel. Note that
the fit diagnostics panel is produced by default whenever ODS Graphics is enabled.

FITPANEL < (UNPACK) >
produces panels of plots showing the fitted LOESS curve overlaid on a scatter plot of the input data for
each smoothing parameter specified in the SMOOTH= option in the MODEL statement. If you do not
specify the SMOOTH= option or the model has more than one regressor, then this plot is not produced.
If you specify the SELECT= option in addition to the SMOOTH= option in the MODEL statement,
then you need to additionally specify the STEPS suboption of the SELECT= option to obtain this plot.
Note that each panel contains at most six plots, and multiple panels are used in the case that there are
more than six smoothing parameters in the SMOOTH= option in the MODEL statement. If the CLM
option is specified in the MODEL statement, then a confidence band at the significance level specified
in the ALPHA= option is included in each plot in the panels. If you specify the UNPACK option, then
all fit panels are unpacked.

FITPLOT | FIT
produces a scatter plot of the input data with the fitted LOESS curve overlaid for models with a single
regressor. If the CLM option is specified in the MODEL statement, then a confidence band at the
significance level specified in the ALPHA= option is included in the plot.

NONE
suppresses all plots.

OBSERVEDBYPREDICTED
produces a scatter plot of the dependent variable values by the predicted values.

QQPLOT | QQ
produces a normal quantile plot of the residuals.

RESIDUALSBYSMOOTH < (< UNPACK > < SMOOTH > ) >
produces for each regressor panels of plots showing the residuals of the LOESS fit versus the regressor
for each smoothing parameter specified in the SMOOTH= option in the MODEL statement. If you
do not specify the SMOOTH= option, then this plot is not produced. If you specify the SELECT=
option in addition to the SMOOTH= option in the MODEL statement, then you need to additionally
specify the STEPS suboption of the SELECT= option to obtain this plot. Note that each panel contains
at most six plots, and multiple panels are used in the case that there are more than six smoothing
parameters in the SMOOTH= option in the MODEL statement. If you specify the UNPACK option,
then all RESIDUALSBYSMOOTH panels are unpacked.

The SMOOTH option requests that a nonparametric fit line be shown in each plot in the panel. The type
of nonparametric fit and the options used are controlled by the template that underlies this plot. In the
standard template that is provided, the nonparametric smooth is specified to be a loess fit corresponding
to the default options of PROC LOESS, except that the PRESEARCH suboption is always used. It is
important to note that the loess fit that is shown in each of the residual plots is computed independently
of the loess fit that is used to obtain the residuals.

RESIDUALBYPREDICTED
produces a scatter plot of the residuals by the predicted values.
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RESIDUALHISTOGRAM
produces a histogram of the residuals.

RESIDUALPANEL | RESIDUALS < (residual-options ) >
produces panels of the residuals versus the regressors in the model. Note that each panel contains at
most six plots, and multiple panels are used when there are more than six regressors in the model.

The following residual-options are available:

SMOOTH
requests that a nonparametric fit line be shown in each plot in the panel. The type of nonparametric
fit and the options used are controlled by the template that underlies this plot. In the standard
template that is provided, the nonparametric smooth is specified to be a loess fit corresponding to
the default options of PROC LOESS, except that the PRESEARCH suboption is always used.
It is important to note that the loess fit that is shown in each of the residual plots is computed
independently of the loess fit that is used to obtain the residuals.

UNPACK
suppresses paneling.

RFPLOT | RF
produces a “Residual-Fit” (or RF) plot consisting of side-by-side quantile plots of the centered fit and
the residuals. This plot “shows how much variation in the data is explained by the fit and how much
remains in the residuals” (Cleveland 1993).

SCOREPLOT | SCORE
produces a scatter plot of the scored values at the score points for each SCORE statement. SCORE
plots are not produced for models with more than one regressor. If the CLM option is specified in the
MODEL statement, then confidence bars at the significance level specified in the ALPHA= option are
shown at score data points.

BY Statement
BY variables ;

You can specify a BY statement with PROC LOESS to obtain separate analyses of observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the LOESS procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).
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For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

ID Statement
ID variables ;

The ID statement is optional, and more than one ID statement can be used. The variables listed in any of the
ID statements are displayed in the “Output Statistics” table beside each observation. Any variables specified
as a regressor or dependent variable in the MODEL statement already appear in the “Output Statistics” table
and are not treated as ID variables, even if they appear in the variable list of an ID statement.

MODEL Statement
MODEL dependents = regressors < / options > ;

The MODEL statement names the dependent variables and the independent variables. Variables specified in
the MODEL statement must be numeric variables in the data set being analyzed.

Table 59.2 summarizes the options available in the MODEL statement.

Table 59.2 Summary of MODEL Statement Options

Option Description

Fit Options
BUCKET= specifies the number of points in k-d tree buckets
DEGREE= specifies the degree of local polynomials (1 or 2)
DFMETHOD= specifies the method of computing lookup degrees of freedom
DIRECT specifies direct fitting at every data point
DROPSQUARE= specifies the variables whose squares are to be dropped from local

quadratic polynomials
INTERP= specifies the interpolating polynomials (linear or cubic)
ITERATIONS= specifies the number of reweighting iterations
SCALE= specifies the method used to scale the regressor variables
SELECT= specifies that automatic smoothing parameter selection be done
SMOOTH= specifies the list of smoothing values

Output Statistics Table Options
ALL requests CLM, RESIDUAL, SCALEDINDEP, STD, and T options
CLM displays confidence limits for mean predictions
RESIDUAL displays residuals
SCALEDINDEP displays scaled independent variable coordinates
STD displays standard errors of the mean predicted values
T displays t statistics

Other options
ALPHA= sets significance level for confidence intervals
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Table 59.2 continued

Option Description

DETAILS= specifies which tables are to be displayed
TRACEL displays the trace of the smoothing matrix

The following options are available in the MODEL statement after a slash (/).

ALL
requests all these options: CLM, RESIDUAL, SCALEDINDEP, STD, and T.

ALPHA=number
sets the significance level used for the construction of confidence intervals for the current MODEL
statement. The value must be between 0 and 1; the default value of 0.05 results in 95% intervals.

BUCKET=number
specifies the maximum number of points in the leaf nodes of the k-d tree. The default value used is
s � n=5, where s is a smoothing parameter value specified using the SMOOTH= option and n is the
number of observations being used in the current BY group. The BUCKET= option is ignored if the
DIRECT option is specified.

CLM
requests that 100.1 � ˛/% confidence limits on the mean predicted value be added to the “Output
Statistics” table. By default, 95% limits are computed; the ALPHA= option in the MODEL statement
can be used to change the significance level. The use of this option implicitly selects the model option
DFMETHOD=EXACT if the DFMETHOD= option has not been explicitly used.

DEGREE=1 | 2
sets the degree of the local polynomials to use for each local regression. The valid values are 1 for
local linear fitting and 2 for local quadratic fitting, with 1 being the default.

DETAILS < ( tables ) >
selects which tables to display, where tables is one or more of the specifications KDTREE, MODEL-
SUMMARY, OUTPUTSTATISTICS, and PREDATVERTICES:

• KDTREE displays the k-d tree structure.

• MODELSUMMARY displays the fit criteria for all smoothing parameter values that are specified
in the SMOOTH= option in the MODEL statement, or that are fit with automatic smoothing
parameter selection.

• OUTPUTSTATISTICS displays the predicted values and other requested statistics at the points
in the input data set.

• PREDATVERTICES displays fitted values and coordinates of the k-d tree vertices where the
local least squares fitting is done.

The KDTREE and PREDATVERTICES specifications are ignored if the DIRECT option is specified
in the MODEL statement. Specifying the option DETAILS with no qualifying list outputs all tables.
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DFMETHOD=NONE | EXACT | APPROX < (approx-options) >
specifies the method used to calculate the lookup degrees of freedom used in performing statistical
inference. The default is DFMETHOD=NONE, unless you specify any of the MODEL statement
options ALL, CLM, STD, and T, or any SCORE statement CLM option, in which case the default is
DFMETHOD=EXACT.

You can specify the following approx-options in parentheses after the DFMETHOD=APPROX option:

QUANTILE=number
specifies that the smallest 100(number )% of the nonzero coefficients in the smoothing matrix
be set to zero in computing the approximate lookup degrees of freedom. The default value is
QUANTILE=0.9.

CUTOFF=number
specifies that coefficients in the smoothing matrix whose magnitude is less than the specified value
be set to zero in computing the approximate lookup degrees of freedom. Using the CUTOFF=
option overrides the QUANTILE= option.

See the section “Sparse and Approximate Degrees of Freedom Computation” on page 4456 for a
description of the method used when the DFMETHOD=APPROX option is specified.

DIRECT
specifies that local least squares fits are to be done at every point in the input data set. When the direct
option is not specified, a computationally faster method is used. This faster method performs local
fitting at vertices of a k-d tree decomposition of the predictor space followed by blending of the local
polynomials to obtain a regression surface.

DROPSQUARE=(variables)
specifies the quadratic monomials to exclude from the local quadratic fits. This option is ignored unless
the DEGREE=2 option has been specified.

For example,

model z=x y / degree=2 dropsquare=(y)

uses the monomials 1, x, y, x2, and xy in performing the local fitting.

INTERP=LINEAR | CUBIC
specifies the degree of the interpolating polynomials used for blending local polynomial fits at the
k-d tree vertices. This option is ignored if the DIRECT option is specified in the model statement.
INTERP=CUBIC is not supported for models with more than two regressors. The default is IN-
TERP=LINEAR.

ITERATIONS=number
specifies the total number of iterations to be done. The first iteration performs an initial LOESS fit.
Subsequent iterations perform iterative reweighting. Such iterations are appropriate when there are
outliers in the data or when the error distribution is a symmetric long-tailed distribution. The default
number of iterations is 1.
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RESIDUAL | R
specifies that residuals be included in the “Output Statistics” table.

SCALE=NONE | SD < (number ) >
specifies the scaling method to be applied to scale the regressors. The default is NONE, in which case
no scaling is applied. A specification of SD(number ) indicates that a trimmed standard deviation is to
be used as a measure of scale, where number is the trimming fraction. A specification of SD with no
qualification defaults to 10% trimmed standard deviation.

SCALEDINDEP
specifies that scaled regressor coordinates be included in the output tables. This option is ignored if the
SCALE= model option is not used or if SCALE=NONE is specified.

SELECT=criterion < (< GLOBAL > < PRESEARCH > < STEPS > < RANGE(lower ,upper ) > ) >
SELECT=DFCriterion < (target < GLOBAL > < PRESEARCH > < STEPS > < RANGE(lower ,upper ) > ) >

specifies that automatic smoothing parameter selection be done using the named criterion or DFCriterion.
Valid values for the criterion are as follows:

AICC specifies the AICC criterion (Hurvich, Simonoff, and Tsai 1998).

AICC1 specifies the AICC1 criterion (Hurvich, Simonoff, and Tsai 1998).

GCV specifies the generalized cross validation criterion (Craven and Wahba 1979).

The DFCriterion specifies the measure used to estimate the model degrees of freedom. The measures
implemented in PROC LOESS all depend on prediction matrix L relating the observed and predicted
values of the dependent variable. Valid values for the DFCriterion are as follows:

DF1 specifies Trace.L/.

DF2 specifies Trace.L0L/.

DF3 specifies 2Trace.L/ � Trace.L0L/.

For both types of selection, the smoothing parameter value is selected to yield a minimum of an
optimization criterion. If you specify criterion as one of AICC, AICC1, or GCV, the optimization
criterion is the specified criterion. If you specify DFCriterion as one of DF1, DF2, or DF3, the
optimization criterion is jDFCriterion � targetj, where target is a specified target degree of freedom
value. Note that if you specify a DFCriterion, then you must also specify a target value. See the
section “Automatic Smoothing Parameter Selection” on page 4453 for definitions and properties of the
selection criteria.

The selection is done as follows:

• If you specify the SMOOTH=value-list option, then PROC LOESS selects the largest value in
this list that yields the global minimum of the specified optimization criterion.

• If you do not specify the SMOOTH= option, then PROC LOESS finds a local minimum of the
specified optimization criterion by using a golden section search of values less than or equal to
one.

You can specify the following suboptions in parentheses after the specified criterion to alter the behavior
of the SELECT= option:
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GLOBAL
specifies that a global minimum be found within the range of smoothing parameter values
examined. This suboption has no effect if you also specify the SMOOTH= option in the MODEL
statement.

PRESEARCH
requests an initial grid search to find a smoothing parameter range within which the subsequent
golden section search is done. The initial point in this grid is the smoothing parameter value
corresponding to the smallest number of points, n, in the local neighborhoods that yields a fit that
does not interpolate all the data points. Subsequent fits with number of local points n + 1, n + 2,
n + 4, n + 8, ... are evaluated until either the number of local points exceeds the number of fitting
points or the SELECT=criterion starts increasing. This suboption is ignored if you additionally
specify the GLOBAL suboption of the SELECT= option or if you specify the SMOOTH= option
in the MODEL statement. If you additionally specify the RANGE= suboption, then the golden
section search is done on the intersection of the range found by this grid search and the range
that you specify in the RANGE= suboption. This option is useful for data exhibiting features at
multiple scales, because in such cases the SELECT= criterion often has multiple local minima.
Using the PRESEARCH option increases the likelihood that the golden section search will find
the global minimum of the SELECT= criterion. See Example 59.4 for such an example.

RANGE(lower ,upper )
specifies that only smoothing parameter values greater than or equal to lower and less than or
equal to upper be examined.

STEPS
specifies that all models evaluated in the selection process be displayed.

For models with one dependent variable, if you specify neither the SELECT= nor the SMOOTH=
options in the MODEL statement, then PROC LOESS uses SELECT=AICC.

The following table summarizes how the smoothing parameter values are chosen for various combina-
tions of the SMOOTH= option, the SELECT= option, and the SELECT= option modifiers.

Table 59.3 Smoothing Parameter Value(s) Used for
Combinations of SMOOTH= and SELECT=
OPTIONS for Models with One Dependent Variable

Syntax Search Method Search Domain

default golden section using AICC .0; 1�

SMOOTH=list no selection values in list
SMOOTH=list SELECT=criterion global values in list
SMOOTH=list SELECT=criterion ( RANGE(l; u) ) global values in list within Œl; u�
SELECT=criterion golden section .0; 1�

SELECT=criterion (RANGE(l,u) ) golden section Œl; u�

SELECT=criterion ( GLOBAL ) global .0; 1�

SELECT=criterion ( GLOBAL RANGE(l; u) ) global Œl; u�
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Some examples of using the SELECT= option follow:

SELECT=GCV specifies selection that uses the GCV criterion.

SELECT=DF1(6.3) specifies selection that uses the DF1 DFCriterion with target value 6.3.

SELECT=AICC(STEPS) specifies selection that uses the AICC criterion, showing all step details.

SELECT=DF2(7 GLOBAL) specifies selection that uses a global search algorithm to find the
smoothing parameter that yields the DF2 DFCriterion closest to the
target value 7.

NOTE: The SELECT= option cannot be used for models with more than one dependent variable.

SMOOTH=value-list
specifies a list of positive smoothing parameter values. If you do not specify the SELECT= option
in the MODEL statement, then a separate fit is obtained for each SMOOTH= value specified. If you
do specify the SELECT= option, then models with all values specified in the SMOOTH= list are
examined, and PROC LOESS selects the value that minimizes the criterion specified in the SELECT=
option.

For models with two or more dependent variables, if the SMOOTH= option is not specified in the
MODEL statement, then SMOOTH=0.5 is used as a default.

STD
specifies that standard errors of the mean predicted values be included in the “Output Statistics” table.
The use of this option implicitly selects the model option DFMETHOD=EXACT if the DFMETHOD=
option has not been explicitly used.

T
specifies that t statistics are to be included in the “Output Statistics” table. The use of this option
implicitly selects the model option DFMETHOD=EXACT if the DFMETHOD= option has not been
explicitly used.

TRACEL
specifies that the trace of the prediction matrix as well as the GCV and AICC statistics be in-
cluded in the “Fit Summary” table. The use of any of the MODEL statement options ALL, CLM,
DFMETHOD=EXACT, DIRECT, SELECT=, STD, and T implicitly selects the TRACEL option.

OUTPUT Statement
OUTPUT < OUT= SAS-data-set > < keyword < = name > > < . . . keyword < =name > > < / options > ;

The OUTPUT statement creates a new SAS data set that saves the predicted values and other requested
statistics that are calculated after models for all smoothing parameter values that are specified in the
SMOOTH= option in the MODEL statement have been fit. If you do not specify a keyword , then only the
predicted response is included.

All the variables in the original data set are included in the new data set, along with variables created by the
OUTPUT statement. These new variables contain the predicted values and a variety of other statistics that
are calculated for each observation in the data set.
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If you want to create a SAS data set in a permanent library, you must specify a two-level name. For more
information about permanent libraries and SAS data sets, see SAS Language Reference: Concepts.

You can specify the following options in the OUTPUT statement:

OUT=SAS data set
specifies the name of the new data set. By default, the procedure uses the DATAn convention to name
the new data set.

keyword < =name >
specifies the statistics to include in the output data set as new variables and optionally names the new
variables. Specify a keyword for each desired statistic (see the following list of keywords), followed
optionally by an equal sign and a variable to contain the statistic.

The new variables are named as follows: If you specify keyword=name, the new variable has the
specified name. If you omit the optional =name after a keyword , then the new variable name is formed
by using a default character string that identifies the statistic. In either case, if you also specify the
ROWWISE option after a slash and you specify more than one dependent variable or smoothing value
in the MODEL statement, the variable name is appended with an order number. For details, see the
ROWWISE option.

The keywords allowed and the statistics they represent are as follows:

PREDICTED | P creates a new variable that contains predicted values. The default name is Predicted.

RESIDUAL | R creates a new variable that contains residual values, which are calculated as AC-
TUAL – PREDICTED. The default name is Residual.

STD creates a new variable that contains standard errors of the mean predicted values.
The use of this option implicitly selects the model option DFMETHOD=EXACT
even if the DFMETHOD= option has not been explicitly used. The default name is
StdErr.

T creates a new variable that contains t statistics. The use of this option implicitly
selects the model option DFMETHOD=EXACT even if the DFMETHOD= option
has not been explicitly used. The default name is tValue.

LCLM creates a new variable that contains the lower part of 100.1�˛/% confidence limits
on the mean predicted value. By default, the 95% limits are computed; the ALPHA=
option in the MODEL statement can be used to change the significance level. The
use of this option implicitly selects the model option DFMETHOD=EXACT even
if the DFMETHOD= option has not been explicitly used. The default name is
LowerCL.

UCLM creates a new variable that contains the upper part of 100.1�˛/% confidence limits
on the mean predicted value. By default, the 95% limits are computed; the ALPHA=
option in the MODEL statement can be used to change the significance level. The
use of this option implicitly selects the model option DFMETHOD=EXACT even
if the DFMETHOD= option has not been explicitly used. The default name is
UpperCL.

You can specify the following options in the OUTPUT statement after a slash (/).
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ALL
requests all these keywords: PREDICTED, RESIDUAL, STD, T, LCLM, and UCLM.

ROWWISE | ROW
arranges the created OUTPUT data set in rowwise format. For each dependent variable and each
smoothing value specified in the SMOOTH= option in the MODEL statement, one variable is generated
for each specified keyword and the variable name is appended with an order number if there are
multiple occurrences of the requested statistic. Those variables appear in an order that corresponds to
the specified order of the dependent variables and the smoothing values in the MODEL statement. For
each variable generated, a label is also created automatically; the label contains the default name of the
represented statistic, the name of the dependent variable selected to be modeled, and the smoothing
value used for calculating the represented statistic.

By default, the OUTPUT data set is created in columnwise format, where the input data is repeated for
each dependent variable and for each smoothing value. Three extra columns, named SmoothingParam-
eter for smoothing parameter values, DepVar for dependent variable names, and Obs for observation
numbers, are also added to the OUTPUT data set to distinguish each model.

SCORE Statement
SCORE DATA=SAS-data-set < ID=(variable-list) > < / options > ;

The fitted loess model is used to score the data in the specified SAS data set. This data set must contain
all the regressor variables specified in the MODEL statement. Furthermore, when a BY statement is used,
the score data set must also contain all the BY variables sorted in the order of the BY variables. A SCORE
statement is optional, and more than one SCORE statement can be used. SCORE statements cannot be used
if the DIRECT option is specified in the MODEL statement. The optional ID= (variable-list) specifies ID
variables to be included in the “Score Results” table.

You find the results of the SCORE statement in the “Score Results” table. This table contains all the data
in the data set named in the SCORE statement, including observations with missing values. However, only
those observations with nonmissing regressor variables are scored. If no data set is named in the SCORE
statement, the data set named in the PROC LOESS statement is scored. You use the PRINT option in the
SCORE statement to request that the “Score Results” table be displayed. You can place the “Score Results”
table in an output data set by using an ODS OUTPUT statement even if this table is not displayed.

You can specify the following options in the SCORE statement after a slash (/).

CLM
requests that 100.1 � ˛/% confidence limits on the mean predicted value be added to the “Score
Results” table. By default the 95% limits are computed; the ALPHA= option in the MODEL statement
can be used to change the significance level. The use of this option implicitly selects the model option
DFMETHOD=EXACT if the DFMETHOD= option has not been explicitly used.

PRINT < (VAR=variables ) >
specifies that the “Score Results” table be displayed. By default only the variables named in the
MODEL statement, the variables listed in the ID list in the SCORE statement, and the scored dependent
variables are displayed. You can use the VAR= option to specify additional variables in the score data
set that are to be included in the displayed output. Note, however, that all columns in the SCORE
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data set are placed in the SCORE results table, even if you do not request that they be included in the
displayed output.

RESIDUAL | R
requests that residuals be added to the “Score Results” table. If the data set you specify in DATA=
option in the SCORE statement does not contain one or more of the model dependent variables, then
the corresponding residual values in the “Score Results” table are set to missing.

SCALEDINDEP
specifies that scaled regressor coordinates be included in the “Score Results” table. This option is
ignored if the SCALE= option is not specified in the MODEL statement.

STEPS
requests that all models evaluated during smoothing parameter value selection be scored, provided
that the SELECT= option together with the STEPS modifier is specified in the MODEL statement. By
default only the selected model is scored.

WEIGHT Statement
WEIGHT variable ;

The WEIGHT statement specifies a variable in the input data set that contains values to be used as a priori
weights for a loess fit.

The values of the weight variable must be nonnegative. If an observation’s weight is zero, negative, or
missing, the observation is deleted from the analysis.

Details: LOESS Procedure

Missing Values
PROC LOESS deletes any observation with missing values for any variable specified in the MODEL
statement. This enables the procedure to reuse the k-d tree for all the dependent variables that appear in the
MODEL statement. If you have multiple dependent variables with different missing value structures for the
same set of independent variables, you might want to use separate PROC LOESS steps for each dependent
variable.

Output Data Sets
PROC LOESS assigns a name to each table it creates. You can use the ODS OUTPUT statement to place one
or more of these tables in output data sets. See the section “ODS Table Names” on page 4457 for a list of
the table names created by PROC LOESS. For detailed information about ODS, see Chapter 20, “Using the
Output Delivery System.”
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For example, the following statements create an output data set named MyOutStats containing the “Output
Statistics” table and an output data set named MySummary containing the “Fit Summary” table.

proc loess data=Melanoma;
model Incidences=Year;
ods output OutputStatistics = MyOutStats

FitSummary = MySummary;
run;

Often, a single MODEL statement describes more than one model. For example, the following statements fit
eight different models (four smoothing parameter values for each dependent variable).

proc loess;
model y1 y2 = x1 x2 x3/smooth =0.1 to 0.7 by 0.2;
ods output OutputStatistics = MyOutStats;

run;

The eight “Output Statistics” tables for these models are stacked in a single data set called MyOutStats. The
data set contains a column named DepVarName and a column named SmoothingParameter that distinguish
each model (see Figure 59.8 for an example). If you want the “Output Statistics” table for each model to be
in its own data set, you can use the MATCH_ALL option in the ODS OUTPUT statement. The following
statements create eight data sets named MyOutStats, MyOutStats1, . . . , MyOutStats7.

proc loess;
model y1 y2 = x1 x2 x3/smooth =0.1 to 0.7 by 0.2;
ods output OutputStatistics(match_all) = MyOutStats;

run;

For further options available in the ODS OUTPUT statement, see Chapter 20, “Using the Output Delivery
System.”

Only the “Scale Details” and “Fit Summary” tables are displayed by default. The other tables are optionally
displayed by using the DETAILS option in the MODEL statement and the PRINT option in the SCORE
statement. Note that it is not necessary to display a table in order for that table to be used in an ODS OUTPUT
statement. For example, the following statements display the “Output Statistics” and “k-d Tree” tables but
place the “Output Statistics” and “Prediction at Vertices” tables in output data sets.

proc loess data=Melanoma;
model Incidences=Year/details(OutputStatistics kdTree);
ods output OutputStatistics = MyOutStats

PredAtVertices = MyVerticesOut;
run;

Using the DETAILS option alone causes all tables to be displayed.

The MODEL statement options CLM, RESIDUAL, STD, SCALEDINDEP, and T control which optional
columns are added to the OutputStatistics table. For example, to obtain an OutputStatistics output data set
containing residuals and confidence limits in addition to the model variables and predicted value, you need to
specify the RESIDUAL and CLM options in the MODEL statement as in the following example:
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proc loess data=Melanoma;
model Incidences=Year/residual clm;
ods output OutputStatistics = MyOutStats;

run;

Finally, note that using the ALL option in the MODEL statement causes all optional columns to be included
in the output. Also, ID columns can be added to the OutputStatistics table by using the ID statement.

Data Scaling
The loess algorithm to obtain a predicted value at a given point in the predictor space proceeds by doing a
least squares fit that uses all data points close to the given point. Thus the algorithm depends critically on the
metric used to define closeness. This has the consequence that if you have more than one predictor variable
and these predictor variables have significantly different scales, then closeness depends almost entirely on the
variable with the largest scaling. It also means that merely changing the units of one of your predictors can
significantly change the loess model fit.

To circumvent this problem, it is necessary to standardize the scale of the independent variables in the loess
model. The SCALE= option in the MODEL statement is provided for this purpose. PROC LOESS uses a
symmetrically trimmed standard deviation as the scale estimate for each independent variable of the loess
model. This is a robust scale estimator in that extreme values of a variable are discarded before estimating
the data scaling. For example, to compute a 10% trimmed standard deviation of a sample, you discard the
smallest and largest 5% of the data and compute the standard deviation of the remaining 90% of the data
points. In this case, the trimming fraction is 0.1.

For example, the following statement specifies that the variables Temperature and Catalyst are scaled before
performing the loess fitting. In this case, because the trimming fraction is 0.1, the scale estimate used for
each of these variables is a 10% trimmed standard deviation.

model Yield=Temperature Catalyst / scale = SD(0.1);

The default trimming fraction used by PROC LOESS is 0.1 and need not be specified by the SCALE= option.
Thus the following MODEL statement is equivalent to the previous MODEL statement.

model Yield=Temperature Catalyst / scale = SD;

If the SCALE= option is not specified, no scaling of the independent variables is done. This is appropriate
when there is only a single independent variable or when all the independent variables are a priori scaled
similarly.

When the SCALE= option is specified, the scaling details for each independent variable are added to the
ScaleDetails table (see Output 59.3.2 for an example). By default, this table contains only the minimum
and maximum values of each independent variable in the model. Finally, note that when the SCALE=
option is used, specifying the SCALEDINDEP option in the MODEL statement adds the scaled values of
the independent variables to the OutputStatistics and PredAtVertices tables. If the SCALEDINDEP option
is specified in the SCORE statement, then scaled values of the independent variables are included in the
ScoreResults table. By default, only the unscaled values are placed in these tables.
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Direct versus Interpolated Fitting
Local regression to obtain a predicted value at a given point in the predictor space is done by doing a least
squares fit that uses all data points in a local neighborhood of the given point. This method is computationally
expensive because a local neighborhood must be determined and a least squares problem must be solved for
each point at which a fitted value is required. A faster method is to obtain such fits at a representative sample
of points in the predictor space and to obtain fitted values at all other points by interpolation.

PROC LOESS can fit models by using either of these two methods. By default, PROC LOESS uses fitting
at a sample of points and interpolation. The method fitting a local model at every data point is selected by
specifying the DIRECT option in the MODEL statement.

k-d Trees and Blending
PROC LOESS uses a k-d tree to divide the box (also called the initial cell or bucket) enclosing all the
predictor data points into rectangular cells. The vertices of these cells are the points at which local least
squares fitting is done.

Starting from the initial cell, the direction of the longest cell edge is selected as the split direction. The
median of this coordinate of the data in the cell is the split value. The data in the starting cell are partitioned
into two child cells. The left child consists of all data from the parent cell whose coordinate in the split
direction is less than the split value. This procedure is repeated for each child cell that has more than a
prespecified number of points, called the bucket size of the k-d tree.

You can specify the bucket size with the BUCKET= option in the MODEL statement. If you do not specify
the BUCKET= option, the default value used is the largest integer less than or equal to ns=5, where n is the
number of observations and s is the value of the smoothing parameter. Note that if fitting is being done for a
range of smoothing parameter values, the bucket size can change for each value.

The set of vertices of all the cells of the k-d tree are the points at which PROC LOESS performs its local
fitting. The fitted value at an original data point (or at any other point within the original data cell) is obtained
by blending the fitted values at the vertices of the k-d tree cell that contains that data point.

The univariate blending methods available in PROC LOESS are linear and cubic polynomial interpola-
tion, with linear interpolation being the default. You can request cubic interpolation by specifying the
INTERP=CUBIC option in the MODEL statement. In this case, PROC LOESS uses the unique cubic
polynomial whose values and first derivatives match those of the fitted local polynomials evaluated at the two
endpoints of the k-d tree cell edge.

In the multivariate case, such univariate interpolating polynomials are computed on each edge of the k-d tree
cells and are combined using blending functions (Gordon 1971). In the case of two regressors, if you specify
INTERP=CUBIC in the MODEL statement, PROC LOESS uses Hermite cubic polynomials as blending
functions. If you do not specify INTERP=CUBIC, or if you specify a model with more than two regressors,
then PROC LOESS uses linear polynomials as blending functions. In these cases, the blending method
reduces to tensor product interpolation from the 2p vertices of each k-d tree cell, where p is the number of
regressors.

While the details of the k-d tree and the fitted values at the vertices of the k-d tree are implementation
details that seldom need to be examined, PROC LOESS does provide options for their display. Each k-d
tree subdivision of the data used by PROC LOESS is placed in the kdTree table. The predicted values at the
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vertices of each k-d tree are placed in the PredAtVertices table. You can request these tables by using the
DETAILS option in the MODEL statement.

Local Weighting
The size of the local neighborhoods that PROC LOESS uses in performing local fitting is determined by the
smoothing parameter value s. When s < 1, the local neighborhood used at a point xi contains the s fraction of
the data points closest to the point xi . When s � 1, all data points are used.

Suppose q denotes the number of points in the local neighborhoods and d1; d2; : : : ; dq denote the distances
in increasing order of the q points closest to xi . The point at distance di from xi is given a weight wi in
the local regression that decreases as the distance from xi increases. PROC LOESS uses a tricube weight
function to define

wi D
32

5

 
1 �

�
di

dq

�3!3

If s > 1, then dq is replaced by dqs1=p in the previous formula, where p is the number of predictors in the
model.

Finally, note that if a weight variable has been specified using a WEIGHT statement, then wi is multiplied by
the corresponding value of the specified weight variable.

Iterative Reweighting
PROC LOESS can do iterative reweighting to improve the robustness of the fit in the presence of outliers
in the data. Iterative reweighting is also appropriate when statistical inference is requested and the error
distribution is symmetric but not Gaussian.

The number of iterations is specified by the ITERATIONS= option in the MODEL statement. The default is
ITERATIONS=1, which corresponds to no reweighting.

At iterations beyond the first iteration, the local weights wi of the previous section are replaced by riwi ,
where ri is a weight that decreases as the residual of the fitted value at the previous iteration at the point
corresponding to di increases. See Cleveland and Grosse (1991) and Cleveland, Grosse, and Shyu (1992) for
details.

Specifying the Local Polynomials
PROC LOESS uses linear or quadratic polynomials in doing the local least squares fitting. The option
DEGREE = in the MODEL statement is used to specify the degree of the local polynomials used by PROC
LOESS, with DEGREE = 1 being the default. In addition, when DEGREE = 2 is specified, the MODEL
statement DROPSQUARE= option can be used to exclude specific monomials during the least squares fitting.

For example, the following statements use the monomials 1, x1, x2, x1*x2, and x2*x2 for the local least
squares fitting.
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proc loess;
model y= x1 x2/ degree=2 dropsquare=(x1);

run;

Smoothing Matrix
When no iterative reweighting is done, the “Smoothing Matrix” denoted by L defines the linear relationship
between the fitted and observed dependent variable values of a loess model. You can obtain the predicted
values of a loess fit from the observed values via

Oy D Ly

where y is the vector of observed values and Oy is the corresponding vector of predicted values of the dependent
variable. Note that L is an n by n matrix, where n is the number of observations in the analysis. PROC
LOESS does not explicitly form L if the DFMETHOD=EXACT option is not explicitly or implicitly selected.

Model Degrees of Freedom
The approximate model degrees of freedom in a nonparametric fit is a number that is analogous to the number
of free parameters in a parametric model. There are three commonly used measures of model degrees of
freedom in nonparametric models. These criteria are as follows:

DF1 � Trace.L/
DF2 � Trace.L0L/
DF3 � 2TraceL � Trace.L0L/

A discussion of their properties can be found in Hastie and Tibshirani (1990). DF2 is also referred to as the
“Equivalent Number of Parameters,” and this is the name that PROC LOESS uses for DF2 when it appears in
the “Fit Summary” table.

Statistical Inference and Lookup Degrees of Freedom
If you denote the ith measurement of the response by yi and the corresponding measurement of predictors by
xi , then

yi D g.xi /C �i

where g is the regression function and �i are independent random errors with mean zero. If the errors are
normally distributed with constant variance, then you can obtain confidence intervals for the predictions from
PROC LOESS. You can also obtain confidence limits in the case where �i is heteroscedastic but ai�i has



Automatic Smoothing Parameter Selection F 4453

constant variance and ai are a priori weights that are specified using the WEIGHT statement of PROC LOESS.
You can do inference in the case in which the error distribution is symmetric by using iterative reweighting.
Formulas for doing statistical inference under the preceding conditions can be found in Cleveland and Grosse
(1991) and Cleveland, Grosse, and Shyu (1992). Cleveland and Grosse (1991) show that standardized
residuals for a loess model follow a t distribution with � degrees of freedom where

ı1 � Trace.I � L/0.I � L/

ı2 � Trace
�
.I � L/0.I � L/

�2
� � Lookup Degrees of Freedom

� ı21=ı2

The residual standard error that you find in the “Fit Summary” table is defined by

Residual Standard Error �
p

Residual SS=ı1

The determination of � is computationally expensive and is not done by default. It is computed if you specify
the DFMETHOD=EXACT or DFMETHOD=APPROX option in the MODEL statement. It is also computed
if you specify any of the options CLM, STD, and T in the MODEL statement. Note that the values of ı1, ı2,
and � are reported in the “Fit Summary” table.

If you specify the CLM option in the MODEL statement, confidence limits are added to the OutputStatistics
table. By default, 95% limits are computed, but you can change this by using the ALPHA= option in the
MODEL statement.

Automatic Smoothing Parameter Selection
There are several methodologies for automatic smoothing parameter selection. One class of methods chooses
the smoothing parameter value to minimize a criterion that incorporates both the tightness of the fit and
model complexity. Such a criterion can usually be written as a function of the error mean square, O�2, and a
penalty function designed to decrease with increasing smoothness of the fit. This penalty function is usually
defined in terms of the smoothing matrix L (see the section “Smoothing Matrix” on page 4452).

Examples of specific criteria are generalized cross validation (Craven and Wahba 1979) and the Akaike
information criterion (Akaike 1973). These classical selectors have two undesirable properties when used
with local polynomial and kernel estimators: they tend to undersmooth small data sets and tend to be
nonrobust in the sense that small variations of the input data can change the choice of smoothing parameter
value significantly. Hurvich, Simonoff, and Tsai (1998) obtained several corrected AIC criteria that address
the small-sample bias and perform comparably with the plug-in selectors (Ruppert, Sheather, and Wand
1995). PROC LOESS provides automatic smoothing parameter selection that uses two of these corrected AIC
criteria, named AICC1 and AICC in Hurvich, Simonoff, and Tsai (1998), and generalized cross validation,
denoted by GCV.
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The relevant formulas are

AICC1 D n log. O�2/C n
ı1=ı2.nC �1/

ı21=ı2 � 2

AICC D log. O�2/C 1C
2 .Trace.L/C 1/
n � Trace.L/ � 2

GCV D
n O�2

.n � Trace.L//2

where n is the number of observations and

ı1 � Trace.I � L/0.I � L/

ı2 � Trace
�
.I � L/0.I � L/

�2
�1 � Equivalent Number of Parameters

� Trace.L0L/

You invoke these methods for automatic smoothing parameter selection by specifying the SELECT=criterion
option in the MODEL statement, where criterion is AICC1, AICC, or GCV. The LOESS procedure evaluates
the specified criterion for a sequence of smoothing parameter values and selects the value in this sequence
that minimizes the specified criterion. If multiple values yield the optimum, then the largest of these values is
selected.

A second class of methods seeks to set an approximate measure of model degrees of freedom to a specified
target value. These methods are useful for making meaningful comparisons between loess fits and other
nonparametric and parametric fits. Three approximate model degrees of freedom for a loess model are
defined in the section “Model Degrees of Freedom” on page 4452. You invoke these methods by specifying
the SELECT=DFCriterion(target) option in the MODEL statement, where DFCriterion is DF1, DF2, or DF3.
The criterion that is minimized is given in the following table.

Table 59.4 Minimization Criteria

Syntax Minimization Criterion

SELECT=DF1(target) j Trace.L/ � targetj
SELECT=DF2(target) j Trace.L0L/ � targetj
SELECT=DF3(target) j2Trace.L/ � Trace.L0L/ � targetj

The results are summarized in the “Smoothing Criterion” table. This table is displayed whenever automatic
smoothing parameter selection is performed. You can obtain details of the sequence of models examined
by specifying the DETAILS(MODELSUMMARY) option in the MODEL statement to display the “Model
Summary” table.

There are several ways in which you can control the sequence of models examined by PROC LOESS. If
you specify the SMOOTH=value-list option in the MODEL statement, then only the values in this list are
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examined in performing the selection. For example, the following statements select the model that minimizes
the AICC1 criterion among the three models with smoothing parameter values 0.1, 0.3, and 0.4:

proc loess;
model y= x1/ smooth=0.1 0.3 0.4 select=AICC1;

run;

If you do not specify the SMOOTH= option in the MODEL statement, then by default PROC LOESS uses a
golden section search method to find a local minimum of the specified criterion in the range .0; 1�. You can
use the RANGE(lower ,upper ) modifier in the SELECT= option to change the interval in which the golden
section search is performed. For example, the following statements request a golden section search to find a
local minimizer of the GCV criterion for smoothing parameter values in the interval [0.1,0.5]:

proc loess;
model y= x1/select=GCV( range(0.1,0.5) );

run;

If you want to be sure of obtaining a global minimum in the range of smoothing parameter values examined,
you can specify the GLOBAL modifier in the SELECT= option. For example, the following statements
request that a global minimizer of the AICC criterion be obtained for smoothing parameter values in the
interval Œ0:2; 0:8�:

proc loess;
model y= x1/select=AICC( global range(0.2,0.8) );

run;

Note that even though the smoothing parameter is a continuous variable, a given range of smoothing parameter
values corresponds to a finite set of local models. For example, for a data set with 100 observations, the range
Œ0:2; 0:4� corresponds to models with 20; 21; 22; : : : ; 40 points in the local neighborhoods. If the GLOBAL
modifier is specified, all possible models in the range are evaluated sequentially.

Note that by default PROC LOESS displays a “Fit Summary” and other optionally requested tables only for
the selected model. You can request that these tables be displayed for all models in the selection process
by adding the STEPS modifier in the SELECT= option. Also note that by default scoring requested with
SCORE statements is done only for the selected model. However, if you specify the STEPS in both the
MODEL and SCORE statements, then all models evaluated in the selection process are scored.

In terms of computation, AICC , GCV, and DF1 depend on the smoothing matrix L only through its trace.
In the direct method, this trace can be computed efficiently. In the interpolated method that uses k-d trees,
there is some additional computational cost but the overall work is not significant compared to the rest
of the computation. In contrast, the quantities ı1, ı2, and �1 that appear in the AICC1 criterion, and the
DF2 and DF3 criteria, depend on the entire L matrix and for this reason, the time needed to compute these
quantities dominates the time required for the model fitting. Hence SELECT=AICC1, SELECT=DF2,
and SELECT=DF3 are much more computationally expensive than SELECT=AICC, SELECT=GCV, and
SELECT=DF1, especially when combined with the GLOBAL modifier. Hurvich, Simonoff, and Tsai (1998)
note that AICC can be regarded as an approximation of AICC1 and that “the AICC selector generally
performs well in all circumstances.”

For models with one dependent variable, PROC LOESS uses SELECT=AICC as its default, if you specify
neither the SMOOTH= nor the SELECT= option in the MODEL statement. With two or more dependent
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variables, automatic smoothing parameter selection needs to be done separately for each dependent variable.
For this reason automatic smoothing parameter selection is not available for models with multiple dependent
variables. In such cases you should use a separate PROC LOESS step for each dependent variable, if you
want to use automatic smoothing parameter selection.

Sparse and Approximate Degrees of Freedom Computation
As noted in the section “Statistical Inference and Lookup Degrees of Freedom” on page 4452, obtaining
confidence limits in loess models requires the computation of the lookup degrees of freedom. This in turn
requires the computation of

ı2 � Trace
�
.I � L/0.I � L/

�2
where L is the loess smoothing matrix (see the section “Smoothing Matrix” on page 4452).

The work in a direct implementation of this formula grows as n3, where n is the number of observations
in analysis. For large n, this work dominates the time needed to fit the loess model itself. To alleviate this
computational bottleneck, Cleveland and Grosse (1991) and Cleveland, Grosse, and Shyu (1992) developed
approximate methods for estimating this quantity in terms of more readily computable statistics. A different
approach to obtaining a computationally cheap estimate of ı2 has been implemented in PROC LOESS.

For large data sets with significant local structure, the loess model is often used with small values of the
smoothing parameter. Recalling that the smoothing parameter defines the fraction of the data used in each
local regression, this means that the loess fit at any point in regressor space depends on only a small fraction
of the data. This is reflected in the smoothing matrix L whose .i; j / entry is nonzero only if the ith and jth
observations lie in at least one common local neighborhood. Hence the smoothing matrix is a sparse matrix
(has mostly zero entries) in such cases. By exploiting this sparsity, PROC LOESS now computes ı2 orders of
magnitude faster than in previous implementations.

When each local neighborhood contains a large subset of the data—i.e., when the smoothing parameter
is large—then it is no longer true that the smoothing matrix is sparse. However, since a point in a local
neighborhood is given a local weight that decreases with its distance from the center of the neighborhood,
many of the coefficients in the smoothing matrix turn out to be nonzero but with orders of magnitude smaller
than that of the larger coefficients in the matrix. The approximate method for computing ı2 that has been
implemented in PROC LOESS exploits these disparities in magnitudes of the elements in the smoothing
matrix by setting the small elements to zero. This creates a sparse approximation of the smoothing matrix to
which the fast sparse methods can be applied.

In order to decide the threshold at which elements in the smoothing matrix are set to zero, PROC LOESS
samples the elements in the smoothing matrix to obtain the value of the element in a specified lower
quantile in this sample. The magnitude of the element at this quantile is used as a cutoff value, and all
elements in the smoothing matrix whose magnitude is less than this cutoff are set to zero for the approximate
computation. By default all elements in the lower ninetieth percentile are set to zero. You can use the
DFMETHOD=APPROX(QUANTILE= ) option in the MODEL statement to change this value. As you
increase the value for the quantile to be zeroed, you speed up the degrees of freedom computation at the
expense of increasing approximation errors. You can also use the DFMETHOD=APPROX(CUTOFF= )
option in the MODEL statement to specify the cutoff value directly.
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For small data sets, the approximate computation is not needed and would be rougher than for larger data
sets. Hence PROC LOESS performs the exact computation for analyses with fewer than 500 points, even
if DFMETHOD=APPROX is specified in the model statement. Also, for small values of the smoothing
parameter, elements in the lower specified quantile might already all be zero. In such cases the approximate
method is the same as the exact method. PROC LOESS labels as approximate any statistics that depend on
the approximate computation of ı2 only in the cases where the approximate computation was used and is
different from the exact computation.

Scoring Data Sets
One or more SCORE statements can be used with PROC LOESS. A data set that includes all the variables
specified in the MODEL and BY statements must be specified in each SCORE statement. Score results are
placed in the ScoreResults table. This table is not displayed by default, but specifying the PRINT option in
the SCORE statement produces the table. If you specify the CLM option in the SCORE statement, confidence
intervals are included in the ScoreResults table.

Note that scoring is not supported when the DIRECT option is specified in the MODEL statement. Scoring
at a point specified in a score data set is done by first finding the cell in the k-d tree containing this point and
then interpolating the scored value from the predicted values at the vertices of this cell. This methodology
precludes scoring any points that are not contained in the box that surrounds the data used in fitting the loess
model.

ODS Table Names
PROC LOESS assigns a name to each table it creates. You can use these names to reference the table when
using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in
the following table. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

Table 59.5 ODS Tables Produced by PROC LOESS

ODS Table Name Description Statement Option

FitSummary Specified fit parameters and
fit summary

default

kdTree Structure of k-d tree used MODEL DETAILS(kdTree)
ModelSummary Summary of all models eval-

uated
MODEL DETAILS(ModelSummary)

OutputStatistics Coordinates and fit results at
input data points

MODEL DETAILS(OutputStatistics)

PredAtVertices Coordinates and fitted values
at k-d tree vertices

MODEL DETAILS(PredAtVertices)

ScaleDetails Extent and scaling of the in-
dependent variables

default

ScoreResults Coordinates and fit results at
scoring points

SCORE PRINT
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Table 59.5 continued

ODS Table Name Description Statement Option

SmoothingCriterion Criterion value and selected
smoothing parameter

MODEL SELECT

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

You can reference every graph produced through ODS Graphics with a name. The names of the graphs that
PROC LOESS generates are listed in Table 59.6, along with the relevant PLOTS= options.

Table 59.6 Graphs Produced by PROC LOESS

ODS Graph Name Plot Description PLOTS Option

ContourFitPanel Panel of loess contour surfaces over-
laid on scatter plots of data

CONTOURFITPANEL

ContourFit Loess contour surface overlaid on
scatter plot of data

CONTOURFITPANEL

DiagnosticsPanel Panel of fit diagnostics DIAGNOSTICS
FitPanel Panel of loess curves overlaid on scat-

ter plots of data
FITPANEL

FitPlot Loess curve overlaid on scatter plot
of data

FIT

ObservedByPredicted Dependent variable versus loess fit OBSERVEDBYPREDICTED
QQPlot Normal quantile plot of residuals QQPLOT
ResidualsBySmooth Panel of residuals versus regressor by

smoothing parameter values
RESIDUALSBYSMOOTH

ResidualByPredicted Residuals versus loess fit RESIDUALBYPREDICTED
ResidualHistogram Histogram of fit residuals RESIDUALHISTOGRAM
ResidualPanel Panel of residuals versus regressors

for fixed smoothing parameter value
RESIDUALS

ResidualPlot Plot of residuals versus regressor RESIDUALS
RFPlot Side-by-side plots of quantiles of cen-

tered fit and residuals
RFPLOT
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Table 59.6 continued

ODS Graph Name Plot Description PLOTS Option

ScorePlot Loess fit evaluated at scoring points SCOREPLOT
CriterionPlot Selection criterion versus smoothing

parameter
CRITERION

Examples: LOESS Procedure

Example 59.1: Engine Exhaust Emissions
Investigators studied the exhaust emissions of a one-cylinder engine (Brinkman 1981). The SAS data set
Gas contains the results data. The dependent variable, NOx, measures the concentration, in micrograms per
joule, of nitric oxide and nitrogen dioxide normalized by the amount of work of the engine. The independent
variable, E, is a measure of the richness of the air and fuel mixture.

data Gas;
input NOx E @@;
format NOx f3.1;
format E f3.1;
datalines;

4.818 0.831 2.849 1.045
3.275 1.021 4.691 0.97
4.255 0.825 5.064 0.891
2.118 0.71 4.602 0.801
2.286 1.074 0.97 1.148
3.965 1 5.344 0.928
3.834 0.767 1.99 0.701
5.199 0.807 5.283 0.902
3.752 0.997 0.537 1.224
1.64 1.089 5.055 0.973
4.937 0.98 1.561 0.665
;

The following PROC SGPLOT statements produce the simple scatter plot of these data displayed in Out-
put 59.1.1.

proc sgplot data=Gas;
scatter x=E y=NOx;

run;
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Output 59.1.1 Scatter Plot of the Gas Data

The following statements fit two loess models for these data. Because this is a small data set, it is reasonable
to do direct fitting at every data point. As there is substantial curvature in the data, quadratic local polynomials
are used. An ODS OUTPUT statement creates two output data sets containing the “Output Statistics” and
“Fit Summary” tables.

ods graphics on;

proc loess data=Gas;
ods output OutputStatistics = GasFit

FitSummary=Summary;
model NOx = E / degree=2 select=AICC(steps) smooth = 0.6 1.0

direct alpha=.01 all details;
run;

ods graphics off;
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Output 59.1.2 Fit Summary Table

The LOESS Procedure
Selected Smoothing Parameter: 0.6

Dependent Variable: NOx

The LOESS Procedure
Selected Smoothing Parameter: 0.6

Dependent Variable: NOx

Fit Summary

Fit Method Direct

Number of Observations 22

Degree of Local Polynomials 2

Smoothing Parameter 0.60000

Points in Local Neighborhood 13

Residual Sum of Squares 1.71852

Trace[L] 6.42184

GCV 0.00708

AICC -0.45637

AICC1 -9.39715

Delta1 15.12582

Delta2 14.73089

Equivalent Number of Parameters 5.96950

Lookup Degrees of Freedom 15.53133

Residual Standard Error 0.33707

The “Fit Summary” table for smoothing parameter value 0.6, shown in Output 59.1.2, records the fitting
parameters specified and some overall fit statistics. See the section “Smoothing Matrix” on page 4452 for
a definition of the smoothing matrix L, and the sections “Model Degrees of Freedom” on page 4452 and
“Statistical Inference and Lookup Degrees of Freedom” on page 4452 for definitions of the statistics that
appear this table.

The “Output Statistics” table for smoothing parameter value 0.6 is shown in Output 59.1.3. Note that, because
the ALL option is specified in the MODEL statement, this table includes all the relevant optional columns.
Furthermore, because the ALPHA=0.01 option is specified in the MODEL statement, the confidence limits
in this table are 99% limits.
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Output 59.1.3 Output Statistics Table

The LOESS Procedure
Selected Smoothing Parameter: 0.6

Dependent Variable: NOx

The LOESS Procedure
Selected Smoothing Parameter: 0.6

Dependent Variable: NOx

Output Statistics

Obs E NOx
Predicted

NOx

Estimated
Prediction

Std Deviation Residual t Value

99%
Confidence

Limits

1 0.8 4.8 4.87377 0.15528 -0.05577 -0.36 4.41841 5.32912

2 1.0 2.8 2.81984 0.15380 0.02916 0.19 2.36883 3.27085

3 1.0 3.3 3.48153 0.15187 -0.20653 -1.36 3.03617 3.92689

4 1.0 4.7 4.73249 0.13923 -0.04149 -0.30 4.32419 5.14079

5 0.8 4.3 4.82305 0.15278 -0.56805 -3.72 4.37503 5.27107

6 0.9 5.1 5.18561 0.19337 -0.12161 -0.63 4.61855 5.75266

7 0.7 2.1 2.51120 0.15528 -0.39320 -2.53 2.05585 2.96655

8 0.8 4.6 4.48267 0.15285 0.11933 0.78 4.03444 4.93089

9 1.1 2.3 2.12619 0.16683 0.15981 0.96 1.63697 2.61541

10 1.1 1.0 0.97120 0.18134 -0.00120 -0.01 0.43942 1.50298

11 1.0 4.0 4.09987 0.13477 -0.13487 -1.00 3.70467 4.49507

12 0.9 5.3 5.31258 0.17283 0.03142 0.18 4.80576 5.81940

13 0.8 3.8 3.84572 0.14929 -0.01172 -0.08 3.40794 4.28350

14 0.7 2.0 2.26578 0.16712 -0.27578 -1.65 1.77571 2.75584

15 0.8 5.2 4.58394 0.15363 0.61506 4.00 4.13342 5.03445

16 0.9 5.3 5.24741 0.19319 0.03559 0.18 4.68089 5.81393

17 1.0 3.8 4.16979 0.13478 -0.41779 -3.10 3.77457 4.56502

18 1.2 0.5 0.53059 0.32170 0.00641 0.02 -0.41278 1.47397

19 1.1 1.6 1.83157 0.17127 -0.19157 -1.12 1.32933 2.33380

20 1.0 5.1 4.66733 0.13735 0.38767 2.82 4.26456 5.07010

21 1.0 4.9 4.52385 0.13556 0.41315 3.05 4.12632 4.92139

22 0.7 1.6 1.19888 0.26774 0.36212 1.35 0.41375 1.98401

Output 59.1.4 Output Statistics Table

Optimal Smoothing
Criterion

AICC
Smoothing
Parameter

-0.45637 0.60000

The combination of the options SELECT=AICC and SMOOTH=0.6 1 in the MODEL statement specifies that
PROC LOESS fit models with smoothing parameters of 0.6 and 1 and select the model that yields the smaller
value of the AICC statistic. The “Smoothing Criterion” shown in Output 59.1.4 shows that PROC LOESS
selects the model with smoothing parameter value 0.6 as it yields the smaller value of the AICC statistic.

With ODS Graphics enabled, PROC LOESS produces a panel of fit plots whenever you specify the SMOOTH=
option in the MODEL statement. These fit plots include confidence limits if you additionally specify the
CLM option in the MODEL statement.
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Output 59.1.5 Loess Fits with 99% Confidence Limits for the Gas Data

Output 59.1.5 shows the “Fit Panel” that displays the fitted models with 99% confidence limits overlaid on
scatter plots of the data.

Based on the AICC criterion, the model with smoothing parameter 0.6 is preferred. You can address the
question of whether the differences between these models are significant using analysis of variance. You do
this by using the model with smoothing parameter value 1 as the null model.

The statistic

F D
.rss.n/ � rss/=.ı.n/1 � ı1/

rss=ı1

has a distribution that is well approximated by an F distribution with

� D
.ı
.n/
1 � ı1/

2

ı
.n/
2 � ı2

numerator degrees of freedom and � denominator degrees of freedom (Cleveland and Grosse 1991). Here
quantities with superscript n refer to the null model, rss is the residual sum of squares, and ı1, ı2, and � are
defined in the section “Statistical Inference and Lookup Degrees of Freedom” on page 4452.

The “Fit Summary” tables contain the information needed to carry out such an analysis. These tables have
been captured in the output data set named Summary by using an ODS OUTPUT statement. The following
statements extract the relevant information from this data set and carry out the analysis of variance:
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data h0 h1;
set Summary(keep=SmoothingParameter Label1 nValue1

where=(Label1 in ('Residual Sum of Squares','Delta1',
'Delta2','Lookup Degrees of Freedom')));

if SmoothingParameter = 1 then output h0;
else output h1;

run;

proc transpose data=h0(drop=SmoothingParameter Label1) out=h0;
run;

data h0(drop=_NAME_);
set h0;
rename Col1 = RSSNull

Col2 = delta1Null
Col3 = delta2Null;

run;

proc transpose data=h1(drop=SmoothingParameter Label1) out=h1;
run;

data h1(drop=_NAME_);
set h1;
rename Col1 = RSS Col2 = delta1

Col3 = delta2 Col4 = rho;
run;

data ftest;
merge h0 h1;
nu = (delta1Null - delta1)**2 / (delta2Null - delta2);
Numerator = (RSSNull - RSS)/(delta1Null - delta1);
Denominator = RSS/delta1;
FValue = Numerator / Denominator;
PValue = 1 - ProbF(FValue, nu, rho);
label nu = 'Num DF' rho = 'Den DF'

FValue = 'F Value' PValue = 'Pr > F';
run;

proc print data=ftest label;
var nu rho Numerator Denominator FValue PValue;
format nu rho FValue 7.2 PValue 6.4;

run;

The results are shown in Output 59.1.6.

Output 59.1.6 Test ANOVA for Loess Models of Gas Data

Obs Num DF Den DF Numerator Denominator F Value Pr > F

1 2.67 15.53 1.05946 0.11362 9.32 0.0012

The small p-value confirms that the fit with smoothing parameter value 0.6 is significantly different from the
loess model with smoothing parameter value 1.
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Alternatively, you can use the OUTPUT statement to generate the statistics you want to include in the output
data set. The following statements produce essentially the same results as the ODS OUTPUT statement does,
except all the statistics for each of the two smoothing parameter values are included because the SELECT=
option is not specified in the MODEL statement. In addition, with the ROW option specified, the output data
set is arranged in rowwise format which enables you to compare statistics side-by-side for a sequence of
smoothing values. The ALL option after the slash produces all the statistics (predicted values, residual values,
standard errors of the mean predicted values, t statistics, and the lower and upper parts of 100.1 � ˛/%
confidence limits on the mean predicted value). All these requested statistics are given their respective default
names in the output data set except the predicted value. The P=PREDVAL option causes the name for the
predicted value to start with predval.

proc loess data=Gas;
model NOx = E / degree=2 smooth = 0.6 1.0

direct alpha=.01;
output out=GasFit p=predval /all row;

run;

Example 59.2: Sulfate Deposits in the U.S. for 1990
The following data set contains measurements in grams per square meter of sulfate (SO4) deposits during
1990 at 179 sites throughout the 48 contiguous states.

data SO4;
input Latitude Longitude SO4 @@;
format Latitude f4.0;
format Longitude f4.0;
format SO4 f4.1;
datalines;

32.45833 87.24222 1.403 34.28778 85.96889 2.103
33.07139 109.86472 0.299 36.07167 112.15500 0.304
31.95056 112.80000 0.263 33.60500 92.09722 1.950
34.17944 93.09861 2.168 36.08389 92.58694 1.578

... more lines ...

43.87333 104.19222 0.306 44.91722 110.42028 0.210
45.07611 72.67556 2.646
;

As longitudes decrease from west to east in the western hemisphere, the roles of east and west get interchanged
if you use these longitudes on the horizontal axis of a plot. You can address this by using negative values to
represent longitudes in the western hemisphere. The following statements change the sign of longitude in the
SO4 data set and define a format to display these negative values with a suffix of “W”.
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proc format;
picture latitude -90 - 0 = '000S'

0 - 90 = '000N';
picture longitude -180 - 0 = '000W'

0 - 180 = '000E';
run;
data SO4;

set SO4;
format longitude longitude. latitude latitude.;
longitude = -longitude;

run;

The following statements use ODS Graphics to plot the locations of the sulfate measurements. The circles
indicating the locations are colored using a gradient that denotes the value of SO4.

proc template;
define statgraph gradientScatter;

beginGraph;
layout overlay;

scatterPlot x=longitude y=latitude /
markercolorgradient = SO4
markerattrs = (symbol=circleFilled)
colormodel = ThreeColorRamp
name = "Scatter";

scatterPlot x=longitude y=latitude /
markerattrs = (symbol=circle);

continuousLegend "Scatter"/title= "SO4";
endlayout;

endgraph;
end;

run;

proc sgrender data=SO4 template=gradientScatter;
run;
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Output 59.2.1 Sulfate Measurements

Figure 59.2.1 shows that the largest concentrations of sulfate deposits occur in the northeastern United States.

The following statements fit a loess model.

ods graphics on;

proc loess data=SO4;
model SO4=Longitude Latitude / degree=2 interp=cubic;

run;

ods graphics off;
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Output 59.2.2 Fit Plot for the SO4 Data

Figure 59.2.2 shows a contour plot of the fitted loess surface overlaid with a scatter plot of the data. The
data are colored by the observed sulfate concentrations, using the same color gradient as the gradient-filled
contour plot of the fitted surface. Note that for observations where the residual is small, the observations
blend in with the contour plot. The greater the size of the residual, the greater the contrast between the
observation color and the surface color.
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The sulfate measurements are irregularly spaced. To facilitate producing a plot of the fitted loess surface, you
can create a data set containing a regular grid of longitudes and latitudes and then use the SCORE statement
to evaluate the loess surface at these points. The following statements show how you do this:

data PredPoints;
format longitude longitude.

latitude latitude.;
do Latitude = 26 to 46 by 1;

do Longitude = -79 to -123 by -1;
output;

end;
end;

run;

proc loess data=SO4;
model SO4=Longitude Latitude;
score data=PredPoints / print;
ods Output ScoreResults=ScoreOut;

run;

The PRINT option in the SCORE statement requests that the “Score Results” table be displayed as part of the
PROC LOESS output. The ODS OUTPUT statement outputs this table to a data set named ScoreOut. If you
do not want to display the score results but you do want the score results in an output data set, then you can
omit the PRINT option from the SCORE statement. To plot the surface shown in Figure 59.2.3 by using
ODS Graphics, use the following statements:

proc template;
define statgraph surface;

begingraph;
layout overlay3d / rotate=340 tilt=30 cube=false;

surfaceplotparm x=Longitude y=Latitude z=p_SO4;
endlayout;

endgraph;
end;

run;

proc sgrender data=ScoreOut template=surface;
run;
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Output 59.2.3 Loess Fit of SO4 Surface
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Example 59.3: Catalyst Experiment
The following data set records the results of an experiment to determine how the yield of a chemical reaction
varies with temperature and amount of a catalyst used.

data Experiment;
input Temperature Catalyst MeasuredYield;
if ranuni(1) < 0.1

then CorruptedYield = MeasuredYield + 10 * ranuni(1);
else CorruptedYield = MeasuredYield;

datalines;
80 0.000 6.85601
80 0.002 7.26355
80 0.004 7.41448
80 0.006 7.82640

... more lines ...

140 0.078 5.20562
140 0.080 5.49371
;

The aim of this example is to show how you can use PROC LOESS for robust fitting in the presence of
outliers. To simulate an intermittent equipment malfunction, the variable CorruptedYield is the same as the
variable MeasuredYield except for about 10% of the observations where an offset has been added. This
example shows how you can use PROC LOESS obtain a fit for CorruptedYield that is close to the fit you
obtain for MeasuredYield.

The following statements produce a scatter plot of Temperature by Catalyst where the observations are
colored by CorruptedYield:

proc template;
define statgraph gradientScatter;

beginGraph;
layout overlay;

scatterPlot x=Catalyst y=Temperature /
markercolorgradient = CorruptedYield
markerattrs = (symbol=circleFilled)
colormodel = ThreeColorRamp
name = "Yield";

scatterPlot x=Catalyst y=Temperature /
markerattrs = (symbol=circle);

continuousLegend "Yield" / title= "CorruptedYield";
endlayout;

endgraph;
end;

run;

proc sgrender data=Experiment template=gradientScatter;
run;
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Output 59.3.1 Scatter Plot of Experiment Data Colored by CorruptedYield

Output 59.3.1 shows a scatter plot of the data where the observations are shaded by the value of CorruptedYield.
The darkly shaded points that are surrounded by lightly shaded points are points where the simulated incorrect
measurements occur.
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The following code fits a loess model to the measured data:

ods graphics on;

proc loess data=Experiment;
model MeasuredYield = Temperature Catalyst / scale=sd(0.1);

run;

Output 59.3.2 Scale Details for the Experiment Data

The LOESS ProcedureThe LOESS Procedure

Independent Variable Scaling

Scaling applied: 10% trimmed standard deviation

Statistic Temperature Catalyst

Minimum Value 80.00000 0

Maximum Value 140.00000 0.08000

Trimmed Mean 110.00000 0.04000

Trimmed Standard Deviation 14.32149 0.01894

The SCALE=SD(0.1) option in the MODEL statement specifies that the independent variables in the model
are to be divided by their respective 10% trimmed standard deviations before the fitted model is computed.
This is appropriate because the independent variables Temperature and Catalyst are not similarly scaled. The
“Scale Details” table in Output 59.3.2 displays the details of ranges of the regressors and the scale factors
applied to each regressor.

Output 59.3.3 displays the loess fit. Because the fitted surface is a good fit of the observed data, the
observations on this plot are not clearly distinguishable from the fitted surface. The results are dramatically
different when the outliers are included. The following statements fit a loess model to the corrupted response,
using the same smoothing parameter that was selected for the measured response.
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Output 59.3.3 Fit for MeasuredYield

proc loess data=Experiment;
model CorruptedYield = Temperature Catalyst /

scale=sd(0.1) smooth=0.018;
run;
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Output 59.3.4 Fit for CorruptedYield

Output 59.3.4 displays the loess fit. The fit is pulled upward in the neighborhoods of these outliers. If you
use a larger smoothing parameter value, then these local perturbations in the fit get smoothed out, but at the
expense of smoothing away the information in the underlying measured response. In such cases a robust
fitting method is indicated. The following statements show how you do this:

proc loess data=Experiment;
model CorruptedYield = Temperature Catalyst /

scale = sd(0.1)
smooth = 0.018
iterations=4;

run;

The ITERATIONS=4 option in the MODEL statement requests the initial loess fit followed by three iteratively
reweighted iterations.
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Output 59.3.5 Robust Fit for CorruptedYield

You can see the impact of the robust fitting by comparing the robust fit shown in Output 59.3.5 with the
nonrobust fit in Output 59.3.4. In the robust fit you see that the local perturbations caused by the outliers
have been eliminated as these the outlying observations get down-weighted during the robustness iterations.
By comparing the labeled contours on the fit plot for the uncorrupted response shown in Output 59.3.3 with
the labeled contours for the corrupted response shown in Output 59.3.4, you can see that the robust fit has
produced a reasonable fit for the underlying measured data. The color gradient in Output 59.3.5 is chosen to
accommodate the outliers that are present in the observed data, and so you cannot easily compare the color
gradient in this plot with that in Output 59.3.3. The following statements repeat the robust analysis with an
option added to suppress the display of the observations on the fit plot:

proc loess data=Experiment plots=contourFit(obs=none);
model CorruptedYield = Temperature Catalyst /

scale = sd(0.1)
smooth = 0.018
iterations=4;

run;

ods graphics off;
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Output 59.3.6 Robust Fit for CorruptedYield with Observations Suppressed

Output 59.3.6 shows the robust fit with the observations suppressed. The range of the fitted surface values
in this plot is similar to the range in Output 59.3.3. By comparing this contour plot with the contour plot
in Output 59.3.3, you clearly see that the robust loess fit has successfully modeled the underlying surface
despite the presence of the outliers.
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Example 59.4: El Niño Southern Oscillation
The data set sashelp.ENSO, which is available in the Sashelp library, contains measurements of monthly
averaged atmospheric pressure differences between Easter Island and Darwin, Australia, for a period of 168
months (National Institute of Standards and Technology 1998).

The following PROC SGPLOT statements produce the simple scatter plot of the ENSO data, displayed in
Output 59.4.1.

proc sgplot data=sashelp.ENSO;
scatter y=Pressure x=Month;

run;

Output 59.4.1 Scatter Plot of ENSO Data
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You can compute a loess fit and obtain graphical results for these data by using the following statements:

ods graphics on;

proc loess data=sashelp.ENSO plots=residuals(smooth);
model Pressure=Month;

run;

The “Smoothing Criterion” and “Fit Summary” tables are shown in Output 59.4.2, and the fit plot is shown in
Output 59.4.3.

Output 59.4.2 Output from PROC LOESS

The LOESS Procedure
Dependent Variable: Pressure

The LOESS Procedure
Dependent Variable: Pressure

Optimal Smoothing
Criterion

AICC
Smoothing
Parameter

3.41105 0.22321

The LOESS Procedure
Selected Smoothing Parameter: 0.223

Dependent Variable: Pressure

The LOESS Procedure
Selected Smoothing Parameter: 0.223

Dependent Variable: Pressure

Fit Summary

Fit Method kd Tree

Blending Linear

Number of Observations 168

Number of Fitting Points 33

kd Tree Bucket Size 7

Degree of Local Polynomials 1

Smoothing Parameter 0.22321

Points in Local Neighborhood 37

Residual Sum of Squares 1654.27725

Trace[L] 8.74180

GCV 0.06522

AICC 3.41105
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Output 59.4.3 Oversmoothed Loess Fit for the ENSO Data

This weather-related data should exhibit an annual cycle. However, the loess fit in Output 59.4.3 indicates
a longer cycle but no annual cycle. This suggests that the loess fit is oversmoothed. One way to detect
oversmoothing is to look for patterns in the fit residuals. With ODS Graphics enabled, PROC LOESS
produces a scatter plot of the residuals versus each regressor in the model. To aid in visually detecting
patterns in these scatter plots, it is useful to superimpose a nonparametric fit on these scatter plots. You can
request this by specifying the SMOOTH suboption of the PLOTS=RESIDUALS option in the PROC LOESS
statement. The nonparametric fit that is produced is again a loess fit that is produced independently of the
loess fit used to obtain these residuals.

With the superimposed loess fit shown in Output 59.4.4, you can clearly identify an annual cycle in the
residuals, which confirms that the loess fit for the ENSO is oversmoothed. What accounts for this poor fit?
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Output 59.4.4 Residuals for the Loess Fit for the ENSO Data

The smoothing parameter value used for the loess fit shown in Output 59.4.3 was chosen using the default
method of PROC LOESS, namely a golden section minimization of the AICC criterion over the interval
.0; 1�. One possibility is that the golden section search has found a local rather than a global minimum of
the AICC criterion. You can test this by redoing the fit requesting a global minimum. You do this with the
following statements:

proc loess data=sashelp.ENSO;
model Pressure=Month/select=AICC(global);

run;
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Output 59.4.5 AICC versus Smoothing Parameter Showing Local Minima

The explanation for the oversmoothed fit in Output 59.4.3 is now apparent. Output 59.4.5 shows that the
golden section search algorithm found the local minimum that occurs near the value 0.22 of the smoothing
parameter rather than the global minimum that occurs near 0.06. Note that if you restrict the range of
smoothing parameter values examined to lie below 0.2, then the golden section search finds the global
minimum, as the following statements demonstrate:

proc loess data=sashelp.ENSO;
model Pressure=Month/select=AICC(range(0.03,0.2));

run;
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Output 59.4.6 Selected Smoothing Parameter Value

The LOESS Procedure
Dependent Variable: Pressure

The LOESS Procedure
Dependent Variable: Pressure

Optimal Smoothing
Criterion

AICC
Smoothing
Parameter

2.86660 0.05655

Output 59.4.6 shows that with the restricted range of smoothing parameter values examined, PROC LOESS
finds the global minimum of the AICC criterion. Often you might not know an appropriate range of smoothing
parameter values to examine. In such cases, you can use the PRESEARCH suboption of the SELECT=
option in the MODEL statement. When you specify this option, PROC LOESS does a preliminary search to
try to locate a smoothing parameter value range that contains just the first local minimum of the criterion
being used for the selection. The following statements provide an example.

proc loess data=sashelp.ENSO plots=residuals(smooth);
model Pressure=Month/select=AICC(presearch);

run;

ods graphics off;

Output 59.4.7 Selected Smoothing Parameter Value When Presearch Is Specified

The LOESS Procedure
Dependent Variable: Pressure

The LOESS Procedure
Dependent Variable: Pressure

Optimal Smoothing
Criterion

AICC
Smoothing
Parameter

2.86660 0.05655

Output 59.4.7 shows that with the PRESEARCH suboption specified, PROC LOESS selects the smoothing
parameter value that yields the global minimum of the AICC criterion. The fit obtained is shown in
Output 59.4.8, and a plot of the residuals with a superimposed loess fit is shown in Output 59.4.9.
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Output 59.4.8 Loess Fit Showing an Annual Cycle



Example 59.4: El Niño Southern Oscillation F 4485

Output 59.4.9 Residuals of the Selected Model

In contrast to the residual plot show in Output 59.4.4, the residuals plotted in Output 59.4.9 do not exhibit
any pattern, indicating that the corresponding loess fit has captured all the systematic variation in the data.

An interesting question is whether there is some phenomenon captured in the data that would explain the
presence of the local minimum near 0.22 in the AICC curve. Note that there is some evidence of a cycle of
about 42 months in the oversmoothed fit in Output 59.4.3. You can see this cycle because the strong annual
cycle in Output 59.4.8 has been smoothed out. The physical phenomenon that accounts for the existence of
this cycle has been identified as the periodic warming of the Pacific Ocean known as “El Niño.”
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Overview: LOGISTIC Procedure
Binary responses (for example, success and failure), ordinal responses (for example, normal, mild, and
severe), and nominal responses (for example, major TV networks viewed at a certain hour) arise in many
fields of study. Logistic regression analysis is often used to investigate the relationship between these discrete
responses and a set of explanatory variables. Texts that discuss logistic regression include Agresti (2013);
Allison (2012); Collett (2003); Cox and Snell (1989); Hosmer and Lemeshow (2013); Stokes, Davis, and
Koch (2012).

For binary response models, the response, Y, of an individual or an experimental unit can take on one of two
possible values, denoted for convenience by 1 and 2 (for example, Y = 1 if a disease is present, otherwise Y =
2). Suppose x is a vector of explanatory variables and � D Pr.Y D 1 j x/ is the response probability to be
modeled. The linear logistic model has the form

logit.�/ � log
� �

1 � �

�
D ˛ C ˇ0x

where ˛ is the intercept parameter and ˇ D .ˇ1; : : : ; ˇs/0 is the vector of s slope parameters. Notice that the
LOGISTIC procedure, by default, models the probability of the lower response levels.

The logistic model shares a common feature with a more general class of linear models: a function g D g.�/
of the mean of the response variable is assumed to be linearly related to the explanatory variables. Because
the mean � implicitly depends on the stochastic behavior of the response, and the explanatory variables are
assumed to be fixed, the function g provides the link between the random (stochastic) component and the
systematic (deterministic) component of the response variable Y. For this reason, Nelder and Wedderburn
(1972) refer to g.�/ as a link function. One advantage of the logit function over other link functions is that
differences on the logistic scale are interpretable regardless of whether the data are sampled prospectively
or retrospectively (McCullagh and Nelder 1989, Chapter 4). Other link functions that are widely used in
practice are the probit function and the complementary log-log function. The LOGISTIC procedure enables
you to choose one of these link functions, resulting in fitting a broader class of binary response models of the
form

g.�/ D ˛ C ˇ0x

For ordinal response models, the response, Y, of an individual or an experimental unit might be restricted to
one of a (usually small) number of ordinal values, denoted for convenience by 1; : : : ; k; k C 1. For example,
the severity of coronary disease can be classified into three response categories as 1=no disease, 2=angina
pectoris, and 3=myocardial infarction. The LOGISTIC procedure fits a common slopes cumulative model,
which is a parallel lines regression model based on the cumulative probabilities of the response categories
rather than on their individual probabilities. The cumulative model has the form

g.Pr.Y � i j x// D ˛i C ˇ0x; i D 1; : : : ; k

where ˛1; : : : ; ˛k are k intercept parameters, and ˇ is the vector of slope parameters. This model has been
considered by many researchers. Aitchison and Silvey (1957) and Ashford (1959) employ a probit scale
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and provide a maximum likelihood analysis; Walker and Duncan (1967) and Cox and Snell (1989) discuss
the use of the log odds scale. For the log odds scale, the cumulative logit model is often referred to as the
proportional odds model.

The LOGISTIC procedure provides options that enable you to relax the parallel lines assumption by specifying
constrained and unconstrained parameters as in Peterson and Harrell (1990) and Agresti (2010). These
models have the form

g.Pr.Y � i j x// D ˛i C ˇ01x1 C ˇ
0
2ix2 C .�iˇ3/

0x3; i D 1; : : : ; k

where the ˇ1 are the parallel line (equal slope) parameters, the ˇ21; : : : ;ˇ2k are k vectors of unequal slope
(unconstrained) parameters, and the ˇ3 are the constrained slope parameters whose constraints are provided
by the diagonal �i matrix. To fit these models, you specify the EQUALSLOPES and UNEQUALSLOPES
options in the MODEL statement. Models that have cumulative logits and both equal and unequal slopes
parameters are called partial proportional odds models.

For nominal response logistic models, where the k C 1 possible responses have no natural ordering, the logit
model can also be extended to a multinomial model known as a generalized or baseline-category logit model,
which has the form

log
�

Pr.Y D i j x/
Pr.Y D k C 1 j x/

�
D ˛i C ˇ

0
ix; i D 1; : : : ; k

where the ˛1; : : : ; ˛k are k intercept parameters, and the ˇ1; : : : ;ˇk are k vectors of slope parameters. These
models are a special case of the discrete choice or conditional logit models introduced by McFadden (1974).

The LOGISTIC procedure fits linear logistic regression models for discrete response data by the method of
maximum likelihood. It can also perform conditional logistic regression for binary response data and exact
logistic regression for binary and nominal response data. The maximum likelihood estimation is carried out
with either the Fisher scoring algorithm or the Newton-Raphson algorithm, and you can perform the bias-
reducing penalized likelihood optimization as discussed by Firth (1993) and Heinze and Schemper (2002).
You can specify starting values for the parameter estimates. The logit link function in the logistic regression
models can be replaced by the probit function, the complementary log-log function, or the generalized logit
function.

Any term specified in the model is referred to as an effect. The LOGISTIC procedure enables you to
specify categorical variables (also known as classification or CLASS variables) and continuous variables as
explanatory effects. You can also specify more complex model terms such as interactions and nested terms
in the same way as in the GLM procedure. You can create complex constructed effects with the EFFECT
statement. An effect in the model that is not an interaction or a nested term or a constructed effect is referred
to as a main effect.

The LOGISTIC procedure allows either a full-rank parameterization or a less-than-full-rank parameterization
of the CLASS variables. The full-rank parameterization offers eight coding methods: effect, reference,
ordinal, polynomial, and orthogonalizations of these. The effect coding is the same method that is used in
the CATMOD procedure. The less-than-full-rank parameterization, often called dummy coding, is the same
coding as that used in the GLM procedure.

The LOGISTIC procedure provides four effect selection methods: forward selection, backward elimination,
stepwise selection, and best subset selection. The best subset selection is based on the likelihood score
statistic. This method identifies a specified number of best models containing one, two, three effects, and so
on, up to a single model containing effects for all the explanatory variables.
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The LOGISTIC procedure has some additional options to control how to move effects in and out of a model
with the forward selection, backward elimination, or stepwise selection model-building strategies. When there
are no interaction terms, a main effect can enter or leave a model in a single step based on the p-value of the
score or Wald statistic. When there are interaction terms, the selection process also depends on whether you
want to preserve model hierarchy. These additional options enable you to specify whether model hierarchy is
to be preserved, how model hierarchy is applied, and whether a single effect or multiple effects can be moved
in a single step.

Odds ratio estimates are displayed along with parameter estimates. You can also specify the change in the
continuous explanatory main effects for which odds ratio estimates are desired. Confidence intervals for the
regression parameters and odds ratios can be computed based either on the profile-likelihood function or on
the asymptotic normality of the parameter estimators. You can also produce odds ratios for effects that are
involved in interactions or nestings, and for any type of parameterization of the CLASS variables.

Various methods to correct for overdispersion are provided, including Williams’ method for grouped binary
response data. The adequacy of the fitted model can be evaluated by various goodness-of-fit tests, including
the Hosmer-Lemeshow test for binary response data.

Like many procedures in SAS/STAT software that enable the specification of CLASS variables, the LOGIS-
TIC procedure provides a CONTRAST statement for specifying customized hypothesis tests concerning
the model parameters. The CONTRAST statement also provides estimation of individual rows of contrasts,
which is particularly useful for obtaining odds ratio estimates for various levels of the CLASS variables.
The LOGISTIC procedure also provides testing capability through the ESTIMATE and TEST statements.
Analyses of LS-means are enabled with the LSMEANS, LSMESTIMATE, and SLICE statements.

You can perform a conditional logistic regression on binary response data by specifying the STRATA
statement. This enables you to perform matched-set and case-control analyses. The number of events and
nonevents can vary across the strata. Many of the features available with the unconditional analysis are also
available with a conditional analysis.

The LOGISTIC procedure enables you to perform exact logistic regression, also known as exact conditional
logistic regression, by specifying one or more EXACT statements. You can test individual parameters or
conduct a joint test for several parameters. The procedure computes two exact tests: the exact conditional
score test and the exact conditional probability test. You can request exact estimation of specific parameters
and corresponding odds ratios where appropriate. Point estimates, standard errors, and confidence intervals
are provided. You can perform stratified exact logistic regression by specifying the STRATA statement.

Further features of the LOGISTIC procedure enable you to do the following:

• control the ordering of the response categories
• compute a generalized R Square measure for the fitted model
• reclassify binary response observations according to their predicted response probabilities
• test linear hypotheses about the regression parameters
• create a data set for producing a receiver operating characteristic (ROC) curve for each fitted model
• specify contrasts to compare several receiver operating characteristic curves
• create a data set containing the estimated response probabilities, residuals, and influence diagnostics
• score a data set by using a previously fitted model

The LOGISTIC procedure uses ODS Graphics to create graphs as part of its output. For general information
about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.” For more information about the
plots implemented in PROC LOGISTIC, see the section “ODS Graphics” on page 4621.
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The remaining sections of this chapter describe how to use PROC LOGISTIC and discuss the underlying
statistical methodology. The section “Getting Started: LOGISTIC Procedure” on page 4492 introduces
PROC LOGISTIC with an example for binary response data. The section “Syntax: LOGISTIC Procedure” on
page 4498 describes the syntax of the procedure. The section “Details: LOGISTIC Procedure” on page 4563
summarizes the statistical technique employed by PROC LOGISTIC. The section “Examples: LOGISTIC
Procedure” on page 4623 illustrates the use of the LOGISTIC procedure.

For more examples and discussion on the use of PROC LOGISTIC, see Stokes, Davis, and Koch (2012);
Allison (1999); SAS Institute Inc. (1995).

Getting Started: LOGISTIC Procedure
The LOGISTIC procedure is similar in use to the other regression procedures in the SAS System. To
demonstrate the similarity, suppose the response variable y is binary or ordinal, and x1 and x2 are two
explanatory variables of interest. To fit a logistic regression model, you can specify a MODEL statement
similar to that used in the REG procedure. For example:

proc logistic;
model y=x1 x2;

run;

The response variable y can be either character or numeric. PROC LOGISTIC enumerates the total number
of response categories and orders the response levels according to the response variable option ORDER= in
the MODEL statement.

You can also input binary response data that are grouped. In the following statements, n represents the
number of trials and r represents the number of events:

proc logistic;
model r/n=x1 x2;

run;

The following example illustrates the use of PROC LOGISTIC. The data, taken from Cox and Snell (1989, pp.
10–11), consist of the number, r, of ingots not ready for rolling, out of n tested, for a number of combinations
of heating time and soaking time.

data ingots;
input Heat Soak r n @@;
datalines;

7 1.0 0 10 14 1.0 0 31 27 1.0 1 56 51 1.0 3 13
7 1.7 0 17 14 1.7 0 43 27 1.7 4 44 51 1.7 0 1
7 2.2 0 7 14 2.2 2 33 27 2.2 0 21 51 2.2 0 1
7 2.8 0 12 14 2.8 0 31 27 2.8 1 22 51 4.0 0 1
7 4.0 0 9 14 4.0 0 19 27 4.0 1 16
;

The following invocation of PROC LOGISTIC fits the binary logit model to the grouped data. The continuous
covariates Heat and Soak are specified as predictors, and the bar notation (“|”) includes their interaction,
Heat*Soak. The ODDSRATIO statement produces odds ratios in the presence of interactions, and a graphical
display of the requested odds ratios is produced when ODS Graphics is enabled.
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ods graphics on;
proc logistic data=ingots;

model r/n = Heat | Soak;
oddsratio Heat / at(Soak=1 2 3 4);

run;
ods graphics off;

The results of this analysis are shown in the following figures. PROC LOGISTIC first lists background
information in Figure 60.1 about the fitting of the model. Included are the name of the input data set, the
response variable(s) used, the number of observations used, and the link function used.

Figure 60.1 Binary Logit Model

The LOGISTIC ProcedureThe LOGISTIC Procedure

Model Information

Data Set WORK.INGOTS

Response Variable (Events) r

Response Variable (Trials) n

Model binary logit

Optimization Technique Fisher's scoring

Number of Observations Read 19

Number of Observations Used 19

Sum of Frequencies Read 387

Sum of Frequencies Used 387

The “Response Profile” table (Figure 60.2) lists the response categories (which are Event and Nonevent when
grouped data are input), their ordered values, and their total frequencies for the given data.

Figure 60.2 Response Profile with Events/Trials Syntax

Response Profile

Ordered
Value

Binary
Outcome

Total
Frequency

1 Event 12

2 Nonevent 375

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

The “Model Fit Statistics” table (Figure 60.3) contains Akaike’s information criterion (AIC), the Schwarz
criterion (SC), and the negative of twice the log likelihood (–2 Log L) for the intercept-only model and the
fitted model. AIC and SC can be used to compare different models, and the ones with smaller values are
preferred. Results of the likelihood ratio test and the efficient score test for testing the joint significance of the
explanatory variables (Soak, Heat, and their interaction) are included in the “Testing Global Null Hypothesis:
BETA=0” table (Figure 60.3); the small p-values reject the hypothesis that all slope parameters are equal to
zero.
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Figure 60.3 Fit Statistics and Hypothesis Tests

Model Fit Statistics

Intercept and
Covariates

Criterion
Intercept

Only
Log

Likelihood
Full Log

Likelihood

AIC 108.988 103.222 35.957

SC 112.947 119.056 51.791

-2 Log L 106.988 95.222 27.957

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 11.7663 3 0.0082

Score 16.5417 3 0.0009

Wald 13.4588 3 0.0037

The “Analysis of Maximum Likelihood Estimates” table in Figure 60.4 lists the parameter estimates, their
standard errors, and the results of the Wald test for individual parameters. Note that the Heat*Soak parameter
is not significantly different from zero (p=0.727), nor is the Soak variable (p=0.6916).

Figure 60.4 Parameter Estimates

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept 1 -5.9901 1.6666 12.9182 0.0003

Heat 1 0.0963 0.0471 4.1895 0.0407

Soak 1 0.2996 0.7551 0.1574 0.6916

Heat*Soak 1 -0.00884 0.0253 0.1219 0.7270

The “Association of Predicted Probabilities and Observed Responses” table (Figure 60.5) contains four
measures of association for assessing the predictive ability of a model. They are based on the number of pairs
of observations with different response values, the number of concordant pairs, and the number of discordant
pairs, which are also displayed. Formulas for these statistics are given in the section “Rank Correlation of
Observed Responses and Predicted Probabilities” on page 4579.

Figure 60.5 Association Table

Association of Predicted Probabilities and
Observed Responses

Percent Concordant 70.9 Somers' D 0.537

Percent Discordant 17.3 Gamma 0.608

Percent Tied 11.8 Tau-a 0.032

Pairs 4500 c 0.768

The ODDSRATIO statement produces the “Odds Ratio Estimates and Wald Confidence Intervals” table
(Figure 60.6), and a graphical display of these estimates is shown in Figure 60.7. The differences between
the odds ratios are small compared to the variability shown by their confidence intervals, which confirms the
previous conclusion that the Heat*Soak parameter is not significantly different from zero.
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Figure 60.6 Odds Ratios of Heat at Several Values of Soak

Odds Ratio Estimates and Wald Confidence
Intervals

Odds Ratio Estimate 95% Confidence Limits

Heat at Soak=1 1.091 1.032 1.154

Heat at Soak=2 1.082 1.028 1.139

Heat at Soak=3 1.072 0.986 1.166

Heat at Soak=4 1.063 0.935 1.208

Figure 60.7 Plot of Odds Ratios of Heat at Several Values of Soak

Because the Heat*Soak interaction is nonsignificant, the following statements fit a main-effects model:

proc logistic data=ingots;
model r/n = Heat Soak;

run;

The results of this analysis are shown in the following figures. The model information and response profiles
are the same as those in Figure 60.1 and Figure 60.2 for the saturated model. The “Model Fit Statistics” table
in Figure 60.8 shows that the AIC and SC for the main-effects model are smaller than for the saturated model,
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indicating that the main-effects model might be the preferred model. As in the preceding model, the “Testing
Global Null Hypothesis: BETA=0” table indicates that the parameters are significantly different from zero.

Figure 60.8 Fit Statistics and Hypothesis Tests

The LOGISTIC ProcedureThe LOGISTIC Procedure

Model Fit Statistics

Intercept and
Covariates

Criterion
Intercept

Only
Log

Likelihood
Full Log

Likelihood

AIC 108.988 101.346 34.080

SC 112.947 113.221 45.956

-2 Log L 106.988 95.346 28.080

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 11.6428 2 0.0030

Score 15.1091 2 0.0005

Wald 13.0315 2 0.0015

The “Analysis of Maximum Likelihood Estimates” table in Figure 60.9 again shows that the Soak parameter
is not significantly different from zero (p=0.8639). The odds ratio for each effect parameter, estimated
by exponentiating the corresponding parameter estimate, is shown in the “Odds Ratios Estimates” table
(Figure 60.9), along with 95% Wald confidence intervals. The confidence interval for the Soak parameter
contains the value 1, which also indicates that this effect is not significant.

Figure 60.9 Parameter Estimates and Odds Ratios

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept 1 -5.5592 1.1197 24.6503 <.0001

Heat 1 0.0820 0.0237 11.9454 0.0005

Soak 1 0.0568 0.3312 0.0294 0.8639

Odds Ratio Estimates

Effect
Point

Estimate
95% Wald

Confidence Limits

Heat 1.085 1.036 1.137

Soak 1.058 0.553 2.026

Association of Predicted Probabilities and
Observed Responses

Percent Concordant 64.4 Somers' D 0.460

Percent Discordant 18.4 Gamma 0.555

Percent Tied 17.2 Tau-a 0.028

Pairs 4500 c 0.730
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Using these parameter estimates, you can calculate the estimated logit of � as

�5:5592C 0:082 � HeatC 0:0568 � Soak

For example, if Heat=7 and Soak=1, then logit.b�/ D �4:9284. Using this logit estimate, you can calculateb� as follows:

b� D 1=.1C e4:9284/ D 0:0072

This gives the predicted probability of the event (ingot not ready for rolling) for Heat=7 and Soak=1. Note that
PROC LOGISTIC can calculate these statistics for you; use the OUTPUT statement with the PREDICTED=
option, or use the SCORE statement.

To illustrate the use of an alternative form of input data, the following program creates the ingots data set
with the new variables NotReady and Freq instead of n and r. The variable NotReady represents the response
of individual units; it has a value of 1 for units not ready for rolling (event) and a value of 0 for units ready
for rolling (nonevent). The variable Freq represents the frequency of occurrence of each combination of
Heat, Soak, and NotReady. Note that, compared to the previous data set, NotReady=1 implies Freq=r, and
NotReady=0 implies Freq=n–r.

data ingots;
input Heat Soak NotReady Freq @@;
datalines;

7 1.0 0 10 14 1.0 0 31 14 4.0 0 19 27 2.2 0 21 51 1.0 1 3
7 1.7 0 17 14 1.7 0 43 27 1.0 1 1 27 2.8 1 1 51 1.0 0 10
7 2.2 0 7 14 2.2 1 2 27 1.0 0 55 27 2.8 0 21 51 1.7 0 1
7 2.8 0 12 14 2.2 0 31 27 1.7 1 4 27 4.0 1 1 51 2.2 0 1
7 4.0 0 9 14 2.8 0 31 27 1.7 0 40 27 4.0 0 15 51 4.0 0 1
;

The following statements invoke PROC LOGISTIC to fit the main-effects model by using the alternative
form of the input data set:

proc logistic data=ingots;
model NotReady(event='1') = Heat Soak;
freq Freq;

run;

Results of this analysis are the same as the preceding single-trial main-effects analysis. The displayed output
for the two runs are identical except for the background information of the model fit and the “Response
Profile” table shown in Figure 60.10.

Figure 60.10 Response Profile with Single-Trial Syntax

The LOGISTIC ProcedureThe LOGISTIC Procedure

Response Profile

Ordered
Value NotReady

Total
Frequency

1 0 375

2 1 12

Probability modeled is NotReady=1.
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By default, Ordered Values are assigned to the sorted response values in ascending order, and PROC
LOGISTIC models the probability of the response level that corresponds to the Ordered Value 1. There
are several methods to change these defaults; the preceding statements specify the response variable option
EVENT= to model the probability of NotReady=1 as displayed in Figure 60.10. For more information, see
the section “Response Level Ordering” on page 4564.

Syntax: LOGISTIC Procedure
The following statements are available in the LOGISTIC procedure:

PROC LOGISTIC < options > ;
BY variables ;
CLASS variable < (options) > < variable < (options) > . . . > < / options > ;
CODE < options > ;
CONTRAST 'label ' effect values< , effect values, . . . > < / options > ;
EFFECT name=effect-type(variables < / options >) ;
EFFECTPLOT < plot-type < (plot-definition-options) > > < / options > ;
ESTIMATE < 'label ' > estimate-specification < / options > ;
EXACT < 'label ' > < INTERCEPT > < effects > < / options > ;
EXACTOPTIONS options ;
FREQ variable ;
ID variables ;
LSMEANS < model-effects > < / options > ;
LSMESTIMATE model-effect lsmestimate-specification < / options > ;
< label: > MODEL variable < (variable_options) > = < effects > < / options > ;
< label: > MODEL events/trials = < effects > < / options > ;
NLOPTIONS options ;
ODDSRATIO < 'label ' > variable < / options > ;
OUTPUT < OUT=SAS-data-set > < keyword=name < keyword=name . . . > > < / option > ;
ROC < 'label ' > < specification > < / options > ;
ROCCONTRAST < 'label ' > < contrast > < / options > ;
SCORE < options > ;
SLICE model-effect < / options > ;
STORE < OUT= >item-store-name < / LABEL='label ' > ;
STRATA effects < / options > ;
< label: > TEST equation1 < ,equation2, . . . > < / option > ;
UNITS < independent1=list1 < independent2=list2 . . . > > < / option > ;
WEIGHT variable < / option > ;

The PROC LOGISTIC and MODEL statements are required. The CLASS and EFFECT statements (if
specified) must precede the MODEL statement, and the CONTRAST, EXACT, and ROC statements (if
specified) must follow the MODEL statement.

The PROC LOGISTIC, MODEL, and ROCCONTRAST statements can be specified at most once. If a FREQ
or WEIGHT statement is specified more than once, the variable specified in the first instance is used. If a BY,
OUTPUT, or UNITS statement is specified more than once, the last instance is used.
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The rest of this section provides detailed syntax information for each of the preceding statements, beginning
with the PROC LOGISTIC statement. The remaining statements are covered in alphabetical order. The CODE,
EFFECT, EFFECTPLOT, ESTIMATE, LSMEANS, LSMESTIMATE, SLICE, and STORE statements are
also available in many other procedures. Summary descriptions of functionality and syntax for these
statements are provided, but you can find full documentation on them in the corresponding sections of
Chapter 19, “Shared Concepts and Topics.”

PROC LOGISTIC Statement
PROC LOGISTIC < options > ;

The PROC LOGISTIC statement invokes the LOGISTIC procedure. Optionally, it identifies input and output
data sets, suppresses the display of results, and controls the ordering of the response levels. Table 60.1
summarizes the options available in the PROC LOGISTIC statement.

Table 60.1 PROC LOGISTIC Statement Options

Option Description

Input/Output Data Set Options
COVOUT Displays the estimated covariance matrix in the OUTEST= data set
DATA= Names the input SAS data set
INEST= Specifies the initial estimates SAS data set
INMODEL= Specifies the model information SAS data set
NOCOV Does not save covariance matrix in the OUTMODEL= data set
OUTDESIGN= Specifies the design matrix output SAS data set
OUTDESIGNONLY Outputs the design matrix only
OUTEST= Specifies the parameter estimates output SAS data set
OUTMODEL= Specifies the model output data set for scoring
Response and CLASS Variable Options
DESCENDING Reverses the sort order of the response variable
NAMELEN= Specifies the maximum length of effect names
ORDER= Specifies the sort order of the response variable
TRUNCATE Truncates class level names
Displayed Output Options
ALPHA= Specifies the significance level for confidence intervals
NOPRINT Suppresses all displayed output
PLOTS Specifies options for plots
SIMPLE Displays descriptive statistics
Large Data Set Option
MULTIPASS Does not copy the input SAS data set for internal computations
Control of Other Statement Options
EXACTONLY Performs exact analysis only
EXACTOPTIONS Specifies global options for EXACT statements
ROCOPTIONS Specifies global options for ROC statements
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ALPHA=number
specifies the level of significance ˛ for 100.1 � ˛/% confidence intervals. The value number must be
between 0 and 1; the default value is 0.05, which results in 95% intervals. This value is used as the
default confidence level for limits computed by the following options:

Statement Options

CONTRAST ESTIMATE=
EXACT ESTIMATE=
MODEL CLODDS= CLPARM=
ODDSRATIO CL=
OUTPUT LOWER= UPPER=
PROC LOGISTIC PLOTS=EFFECT(CLBAR CLBAND)
ROCCONTRAST ESTIMATE=
SCORE CLM

You can override the default in most of these cases by specifying the ALPHA= option in the separate
statements.

COVOUT
adds the estimated covariance matrix to the OUTEST= data set. For the COVOUT option to have
an effect, the OUTEST= option must be specified. See the section “OUTEST= Output Data Set” on
page 4605 for more information.

DATA=SAS-data-set
names the SAS data set containing the data to be analyzed. If you omit the DATA= option, the
procedure uses the most recently created SAS data set. The INMODEL= option cannot be specified
with this option.

DESCENDING

DESC
reverses the sort order for the levels of the response variable. If both the DESCENDING and ORDER=
options are specified, PROC LOGISTIC orders the levels according to the ORDER= option and then
reverses that order. This option has the same effect as the response variable option DESCENDING in
the MODEL statement. See the section “Response Level Ordering” on page 4564 for more detail.

EXACTONLY
requests only the exact analyses. The asymptotic analysis that PROC LOGISTIC usually performs is
suppressed.

EXACTOPTIONS (options)
specifies options that apply to every EXACT statement in the program. The available options are
summarized here, and full descriptions are available in the EXACTOPTIONS statement.
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Option Description

ADDTOBS Adds the observed sufficient statistic to the sampled exact distribution
BUILDSUBSETS Builds every distribution for sampling
EPSILON= Specifies the comparison fuzz for partial sums of sufficient statistics
MAXTIME= Specifies the maximum time allowed in seconds
METHOD= Specifies the DIRECT, NETWORK, or NETWORKMC algorithm
N= Specifies the number of Monte Carlo samples
ONDISK Uses disk space
SEED= Specifies the initial seed for sampling
STATUSN= Specifies the sampling interval for printing a status line
STATUSTIME= Specifies the time interval for printing a status line

INEST=SAS-data-set
names the SAS data set that contains initial estimates for all the parameters in the model. If BY-group
processing is used, it must be accommodated in setting up the INEST= data set. See the section
“INEST= Input Data Set” on page 4607 for more information.

INMODEL=SAS-data-set
specifies the name of the SAS data set that contains the model information needed for scoring new
data. This INMODEL= data set is the OUTMODEL= data set saved in a previous PROC LOGISTIC
call. The OUTMODEL= data set should not be modified before its use as an INMODEL= data set.

The DATA= option cannot be specified with this option; instead, specify the data sets to be scored
in the SCORE statements. FORMAT statements are not allowed when the INMODEL= data set is
specified; variables in the DATA= and PRIOR= data sets in the SCORE statement should be formatted
within the data sets.

You can specify the BY statement provided that the INMODEL= data set is created under the same
BY-group processing.

The CLASS, EFFECT, EFFECTPLOT, ESTIMATE, EXACT, LSMEANS, LSMESTIMATE, MODEL,
OUTPUT, ROC, ROCCONTRAST, SLICE, STORE, TEST, and UNIT statements are not available
with the INMODEL= option.

MULTIPASS
forces the procedure to reread the DATA= data set as needed rather than require its storage in memory
or in a temporary file on disk. By default, the data set is cleaned up and stored in memory or in a
temporary file. This option can be useful for large data sets. All exact analyses are ignored in the
presence of the MULTIPASS option. If a STRATA statement is specified, then the data set must first
be grouped or sorted by the strata variables.

NAMELEN=number
specifies the maximum length of effect names in tables and output data sets to be number characters,
where number is a value between 20 and 200. The default length is 20 characters.

NOCOV
specifies that the covariance matrix not be saved in the OUTMODEL= data set. The covariance matrix
is needed for computing the confidence intervals for the posterior probabilities in the OUT= data set in
the SCORE statement. Specifying this option will reduce the size of the OUTMODEL= data set.



4502 F Chapter 60: The LOGISTIC Procedure

NOPRINT
suppresses all displayed output. Note that this option temporarily disables the Output Delivery System
(ODS); see Chapter 20, “Using the Output Delivery System,” for more information.

ORDER=DATA | FORMATTED | FREQ | INTERNAL

RORDER=DATA | FORMATTED | INTERNAL
specifies the sort order for the levels of the response variable. See the response variable option
ORDER= in the MODEL statement for more information. For ordering of CLASS variable levels, see
the ORDER= option in the CLASS statement.

OUTDESIGN=SAS-data-set
specifies the name of the data set that contains the design matrix for the model. The data set contains
the same number of observations as the corresponding DATA= data set and includes the response
variable (with the same format as in the DATA= data set), the FREQ variable, the WEIGHT variable,
the OFFSET= variable, and the design variables for the covariates, including the Intercept variable of
constant value 1 unless the NOINT option in the MODEL statement is specified.

OUTDESIGNONLY
suppresses the model fitting and creates only the OUTDESIGN= data set. This option is ignored if the
OUTDESIGN= option is not specified.

OUTEST=SAS-data-set
creates an output SAS data set that contains the final parameter estimates and, optionally, their estimated
covariances (see the preceding COVOUT option). The output data set also includes a variable named
_LNLIKE_, which contains the log likelihood. See the section “OUTEST= Output Data Set” on
page 4605 for more information.

OUTMODEL=SAS-data-set
specifies the name of the SAS data set that contains the information about the fitted model. This data
set contains sufficient information to score new data without having to refit the model. It is solely used
as the input to the INMODEL= option in a subsequent PROC LOGISTIC call. The OUTMODEL=
option is not available with the STRATA statement. Information in this data set is stored in a very
compact form, so you should not modify it manually.

NOTE: The STORE statement can also be used to save your model. See the section “STORE Statement”
on page 4559 for more information.

PLOTS < (global-plot-options) > < =plot-request < (options) > >

PLOTS < (global-plot-options) > =(plot-request < (options) > < . . . plot-request < (options) > >)
controls the plots produced through ODS Graphics. When you specify only one plot-request , you can
omit the parentheses from around the plot-request . For example:

PLOTS = ALL
PLOTS = (ROC EFFECT INFLUENCE(UNPACK))
PLOTS(ONLY) = EFFECT(CLBAR SHOWOBS)

ODS Graphics must be enabled before plots can be requested. For example:
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ods graphics on;
proc logistic plots=all;

model y=x;
run;
ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

If the PLOTS option is not specified or is specified with no plot-requests, then graphics are produced
by default in the following situations:

• If the INFLUENCE or IPLOTS option is specified in the MODEL statement, then the INFLU-
ENCE plots are produced unless the MAXPOINTS= cutoff is exceeded.

• If you specify the OUTROC= option in the MODEL statement, then ROC curves are produced.
If you also specify a SELECTION= method, then an overlaid plot of all the ROC curves for each
step of the selection process is displayed.

• If the OUTROC= option is specified in a SCORE statement, then the ROC curve for the scored
data set is displayed.

• If you specify ROC statements, then an overlaid plot of the ROC curves for the model (or the
selected model if a SELECTION= method is specified) and for all the ROC statement models is
displayed.

• If you specify the CLODDS= option in the MODEL statement or if you specify the ODDSRATIO
statement, then a plot of the odds ratios and their confidence limits is displayed.

For general information about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.”

The following global-plot-options are available:

LABEL
displays a label on diagnostic plots to aid in identifying the outlying observations. This option
enhances the plots produced by the DFBETAS, DPC, INFLUENCE, LEVERAGE, and PHAT
options. If an ID statement is specified, then the plots are labeled with the ID variables. Otherwise,
the observation number is displayed.

MAXPOINTS=NONE | number
suppresses the plots produced by the DFBETAS, DPC, INFLUENCE, LEVERAGE, and PHAT
options if there are more than number observations. Also, observations are not displayed on the
EFFECT plots when the cutoff is exceeded. The default is MAXPOINTS=5000. The cutoff is
ignored if you specify MAXPOINTS=NONE.

ONLY
specifically requested plot-requests are displayed.

UNPACKPANELS | UNPACK
suppresses paneling. By default, multiple plots can appear in some output panels. Specify
UNPACKPANEL to display each plot separately.
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The following plot-requests are available:

ALL
produces all appropriate plots. You can specify other options with ALL. For example, to display
all plots and unpack the DFBETAS plots you can specify plots=(all dfbetas(unpack)).

DFBETAS < (UNPACK) >
displays plots of DFBETAS versus the case (observation) number. This displays the statistics
generated by the DFBETAS=_ALL_ option in the OUTPUT statement. The UNPACK option
displays the plots separately. See Output 60.6.5 for an example of this plot.

DPC< (dpc-options) >
displays plots of DIFCHISQ and DIFDEV versus the predicted event probability, and displays
the markers according to the value of the confidence interval displacement C. See Output 60.6.8
for an example of this plot. You can specify the following dpc-options:

MAXSIZE=Smax
specifies the maximum size when TYPE=BUBBLE or TYPE=LABEL. For
TYPE=BUBBLE, the size is the bubble radius and MAXSIZE=21 by default; for
TYPE=LABEL, the size is the font size and MAXSIZE=20 by default. This dpc-option is
ignored if TYPE=GRADIENT.

MAXVALUE=Cmax
displays all observations for which C � Cmax at the value of the MAXSIZE= option when
TYPE=BUBBLE or TYPE=LABEL. By default, Cmax=maxi .Ci /. This dpc-option is
ignored if TYPE=GRADIENT.

MINSIZE=Smin
specifies the minimum size when TYPE=BUBBLE or TYPE=LABEL. Any observation
that maps to a smaller size is displayed at this size. For TYPE=BUBBLE, the size is the
bubble radius and MINSIZE=3.5 by default; for TYPE=LABEL, the size is the font size and
MINSIZE=2 by default. This dpc-option is ignored if TYPE=GRADIENT.

TYPE=BUBBLE | GRADIENT | LABEL
specifies how the C statistic is displayed. You can specify the following values:

BUBBLE displays circular markers whose areas are proportional to C and whose colors
are determined by their response.

GRADIENT colors the markers according to the value of C.

LABEL displays the ID variables (if an ID statement is specified) or the observation
number. The colors of the ID variable or observation numbers are determined
by their response, and their font sizes are proportional to Ci

maxi .Ci /
.

By default, TYPE=GRADIENT.

UNPACKPANELS | UNPACK
displays the plots separately.
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EFFECT< (effect-options) >
displays and enhances the effect plots for the model. For more information about effect plots and
the available effect-options, see the section “PLOTS=EFFECT Plots” on page 4507.

NOTE: The EFFECTPLOT statement provides much of the same functionality and more options
for creating effect plots. See Outputs 60.2.11, 60.3.5, 60.4.8, 60.7.4, and 60.16.4 for examples of
effect plots.

INFLUENCE< (UNPACK | STDRES) >
displays index plots of RESCHI, RESDEV, leverage, confidence interval displacements C and
CBar, DIFCHISQ, and DIFDEV. These plots are produced by default when any plot-request is
specified and the MAXPOINTS= cutoff is not exceeded. The UNPACK option displays the plots
separately. The STDRES option also displays index plots of STDRESCHI, STDRESDEV, and
RESLIK. See Outputs 60.6.3 and 60.6.4 for examples of these plots.

LEVERAGE< (UNPACK) >
displays plots of DIFCHISQ, DIFDEV, confidence interval displacement C, and the predicted
probability versus the leverage. The UNPACK option displays the plots separately. See Out-
put 60.6.7 for an example of this plot.

NONE
suppresses all plots.

ODDSRATIO < (oddsratio-options) >
displays and enhances the odds ratio plots for the model. For more information about odds ratio
plots and the available oddsratio-options, see the section “Odds Ratio Plots” on page 4510. See
Outputs 60.7,60.2.9, 60.3.3, and 60.4.5 for examples of this plot.

PHAT< (UNPACK) >
displays plots of DIFCHISQ, DIFDEV, confidence interval displacement C, and leverage ver-
sus the predicted event probability. The UNPACK option displays the plots separately. See
Output 60.6.6 for an example of this plot.

ROC< (ID< =keyword >) >
displays the ROC curve. If you also specify a SELECTION= method, then an overlaid plot
of all the ROC curves for each step of the selection process is displayed. If you specify ROC
statements, then an overlaid plot of the model (or the selected model if a SELECTION= method
is specified) and the ROC statement models is displayed. If the OUTROC= option is specified in
a SCORE statement, then the ROC curve for the scored data set is displayed.

The ID= option labels certain points on the ROC curve. Typically, the labeled points are closest
to the upper-left corner of the plot, and points directly below or to the right of a labeled point are
suppressed. This option is identical to, and has the same keywords as, the ID= suboption of the
ROCOPTIONS option.

See Output 60.7.3 and Example 60.8 for examples of these ROC plots.
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ROCOPTIONS (options)
specifies options that apply to every model specified in a ROC statement. Some of these options also
apply to the SCORE statement. The following options are available:

ALPHA=number
sets the significance level for creating confidence limits of the areas and the pairwise differences.
The ALPHA= value specified in the PROC LOGISTIC statement is the default. If neither
ALPHA= value is specified, then ALPHA=0.05 by default.

EPS=value
is an alias for the ROCEPS= option in the MODEL statement. This value is used to determine
which predicted probabilities are equal. The default value is the square root of the machine
epsilon, which is about 1E–8.

ID< =keyword >
displays labels on certain points on the individual ROC curves and also on the SCORE statement’s
ROC curve. This option overrides the ID= suboption of the PLOTS=ROC option. If several
observations lie at the same place on the ROC curve, the value for the last observation is displayed.
If you specify the ID option with no keyword , any variables that are listed in the ID statement
are used. If no ID statement is specified, the observation number is displayed. The following
keywords are available:

PROB displays the model predicted probability.

OBS displays the (last) observation number.

SENSIT displays the true positive fraction (sensitivity).

1MSPEC displays the false positive fraction (1–specificity).

FALPOS displays the fraction of nonevents that are predicted as events.

FALNEG displays the fraction of events that are predicted as nonevents.

POSPRED displays the positive predictive value (1–FALPOS).

NEGPRED displays the negative predictive value (1–FALNEG).

MISCLASS displays the misclassification rate.

ID displays the ID variables.

The SENSIT, 1MSPEC, FALPOS, and FALNEG statistics are defined in the section “Receiver
Operating Characteristic Curves” on page 4586. The misclassification rate is the number of
events that are predicted as nonevents and the number of nonevents that are predicted as events
as calculated by using the given cutpoint (predicted probability) divided by the number of
observations. If the PEVENT= option is also specified, then FALPOS and FALNEG are computed
using the first PEVENT= value and Bayes’ theorem, as discussed in the section “Predicted
Probability of an Event for Classification” on page 4582.

NODETAILS
suppresses the display of the model fitting information for the models specified in the ROC
statements.
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OUT=SAS-data-set-name
is an alias for the OUTROC= option in the MODEL statement.

WEIGHTED
uses frequency�weight in the ROC computations (Izrael et al. 2002) instead of just frequency.
Typically, weights are considered in the fit of the model only, and hence are accounted for in the
parameter estimates. The “Association of Predicted Probabilities and Observed Responses” table
uses frequency (unless the BINWIDTH=0 option is also specified on the MODEL statement), and
is suppressed when ROC comparisons are performed. This option also affects SCORE statement
ROC and area under the ROC curve (AUC) computations.

SIMPLE
displays simple descriptive statistics (mean, standard deviation, minimum and maximum) for each
continuous explanatory variable. For each CLASS variable involved in the modeling, the frequency
counts of the classification levels are displayed. The SIMPLE option generates a breakdown of the
simple descriptive statistics or frequency counts for the entire data set and also for individual response
categories.

TRUNCATE
determines class levels by using no more than the first 16 characters of the formatted values of CLASS,
response, and strata variables. When formatted values are longer than 16 characters, you can use this
option to revert to the levels as determined in releases previous to SAS 9.0. This option invokes the
same option in the CLASS statement.

PLOTS=EFFECT Plots

Only one PLOTS=EFFECT plot is produced by default; you must specify other effect-options to produce
multiple plots. For binary response models, the following plots are produced when an EFFECT option is
specified with no effect-options:

• If you only have continuous covariates in the model, then a plot of the predicted probability versus
the first continuous covariate fixing all other continuous covariates at their means is displayed. See
Output 60.7.4 for an example with one continuous covariate.

• If you only have classification covariates in the model, then a plot of the predicted probability versus
the first CLASS covariate at each level of the second CLASS covariate, if any, holding all other CLASS
covariates at their reference levels is displayed.

• If you have CLASS and continuous covariates, then a plot of the predicted probability versus the first
continuous covariate at up to 10 cross-classifications of the CLASS covariate levels, while fixing all
other continuous covariates at their means and all other CLASS covariates at their reference levels, is
displayed. For example, if your model has four binary covariates, there are 16 cross-classifications of
the CLASS covariate levels. The plot displays the 8 cross-classifications of the levels of the first three
covariates while the fourth covariate is fixed at its reference level.

For polytomous response models, similar plots are produced by default, except that the response levels are
used in place of the CLASS covariate levels. Plots for polytomous response models involving OFFSET=
variables with multiple values are not available.

The following effect-options specify the type of graphic to produce:
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AT(variable=value-list | ALL< . . . variable=value-list | ALL >)
specifies fixed values for a covariate. For continuous covariates, you can specify one or more numbers
in the value-list . For classification covariates, you can specify one or more formatted levels of the
covariate enclosed in single quotes (for example, A=’cat’ ’dog’), or you can specify the keyword
ALL to select all levels of the classification variable. You can specify a variable at most once in the
AT option. By default, continuous covariates are set to their means when they are not used on an
axis, while classification covariates are set to their reference level when they are not used as an X=,
SLICEBY=, or PLOTBY= effect. For example, for a model that includes a classification variable
A={cat,dog} and a continuous covariate X, specifying AT(A=’cat’ X=7 9) will set A to ‘cat’ when A
does not appear in the plot. When X does not define an axis it first produces plots setting X = 7 and
then produces plots setting X = 9. Note in this example that specifying AT( A=ALL ) is the same as
specifying the PLOTBY=A option.

FITOBSONLY
computes the predicted values only at the observed data. If the FITOBSONLY option is omitted and the
X-axis variable is continuous, the predicted values are computed at a grid of points extending slightly
beyond the range of the data (see the EXTEND= option for more information). If the FITOBSONLY
option is omitted and the X-axis effect is categorical, the predicted values are computed at all possible
categories.

INDIVIDUAL
displays the individual probabilities instead of the cumulative probabilities. This option is available
only with cumulative models, and it is not available with the LINK option.

LINK
displays the linear predictors instead of the probabilities on the Y axis. For example, for a binary
logistic regression, the Y axis will be displayed on the logit scale. The INDIVIDUAL and POLYBAR
options are not available with the LINK option.

PLOTBY=effect
displays an effect plot at each unique level of the PLOTBY= effect. You can specify effect as one
CLASS variable or as an interaction of classification covariates. For polytomous-response models, you
can also specify the response variable as the lone PLOTBY= effect. For nonsingular parameterizations,
the complete cross-classification of the CLASS variables specified in the effect define the different
PLOTBY= levels. When the GLM parameterization is used, the PLOTBY= levels can depend on the
model and the data.

SLICEBY=effect
displays predicted probabilities at each unique level of the SLICEBY= effect. You can specify effect
as one CLASS variable or as an interaction of classification covariates. For polytomous-response
models, you can also specify the response variable as the lone SLICEBY= effect. For nonsingular
parameterizations, the complete cross-classification of the CLASS variables specified in the effect
define the different SLICEBY= levels. When the GLM parameterization is used, the SLICEBY= levels
can depend on the model and the data.

X=effect

X=(effect. . . effect)
specifies effects to be used on the X axis of the effect plots. You can specify several different X axes:
continuous variables must be specified as main effects, while CLASS variables can be crossed. For
nonsingular parameterizations, the complete cross-classification of the CLASS variables specified in
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the effect define the axes. When the GLM parameterization is used, the X= levels can depend on the
model and the data. The response variable is not allowed as an effect .

NOTE: Any variable not specified in a SLICEBY= or PLOTBY= option is available to be displayed on the X
axis. A variable can be specified in at most one of the SLICEBY=, PLOTBY=, and X= options.

The following effect-options enhance the graphical output:

ALPHA=number
specifies the size of the confidence limits. The ALPHA= value specified in the PROC LOGISTIC
statement is the default. If neither ALPHA= value is specified, then ALPHA=0.05 by default.

CLBAND< =YES | NO >
displays confidence limits on the plots. This option is not available with the INDIVIDUAL option.
If you have CLASS covariates on the X axis, then error bars are displayed (see the CLBAR option)
unless you also specify the CONNECT option.

CLBAR
displays the error bars on the plots when you have CLASS covariates on the X axis; if the X axis is
continuous, then this invokes the CLBAND option. For polytomous-response models with CLASS
covariates only and with the POLYBAR option specified, the stacked bar charts are replaced by
side-by-side bar charts with error bars.

CLUSTER< =percent >
displays the levels of the SLICEBY= effect in a side-by-side fashion instead of stacking them. This
option is available when you have CLASS covariates on the X axis. You can specify percent as a
percentage of half the distance between X levels. The percent value must be between 0.1 and 1; the
default percent depends on the number of X levels and the number of SLICEBY= levels. Default
clustering can be removed by specifying the NOCLUSTER option.

CONNECT< =YES | NO >

JOIN< =YES | NO >
connects the predicted values with a line. This option is available when you have CLASS covariates on
the X axis. Default connecting lines can be suppressed by specifying the NOCONNECT option.

EXTEND=value
extends continuous X axes by a factor of value=2 in each direction. By default, EXTEND=0.2.

MAXATLEN=length
specifies the maximum number of characters used to display the levels of all the fixed variables. If
the text is too long, it is truncated and ellipses (“. . . ”) are appended. By default, length is equal to its
maximum allowed value, 256.

NOCLUSTER
prevents clustering of the levels of the SLICEBY= effect. This option is available when you have
CLASS covariates on the X axis.

NOCONNECT
removes the line that connects the predicted values. This option is available when you have CLASS
covariates on the X axis.
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POLYBAR
replaces scatter plots of polytomous response models with bar charts. This option has no effect on
binary-response models, and it is overridden by the CONNECT option. By default, the X axis is chosen
to be a crossing of available classification variables so that there are no more than 16 levels; if no such
crossing is possible then the first available classification variable is used. You can override this default
by specifying the X= option.

SHOWOBS< =YES | NO >
displays observations on the plot when the MAXPOINTS= cutoff is not exceeded. For events/trials
notation, the observed proportions are displayed; for single-trial binary-response models, the observed
events are displayed at Op D 1 and the observed nonevents are displayed at Op D 0. For polytomous
response models the predicted probabilities at the observed values of the covariate are computed and
displayed.

YRANGE=(< min >< ,max >)
displays the Y axis as [min,max]. Note that the axis might extend beyond your specified values. By
default, the entire Y axis, [0,1], is displayed for the predicted probabilities. This option is useful if
your predicted probabilities are all contained in some subset of this range.

Odds Ratio Plots

The odds ratios and confidence limits from the default “Odds Ratio Estimates” table and from the tables
produced by the CLODDS= option or the ODDSRATIO statement can be displayed in a graphic. If you have
many odds ratios, you can produce multiple graphics, or panels, by displaying subsets of the odds ratios.
Odds ratios that have duplicate labels are not displayed. See Outputs 60.2.9 and 60.3.3 for examples of odds
ratio plots.

The following oddsratio-options modify the default odds ratio plot:

CLDISPLAY=SERIF | SERIFARROW | LINE | LINEARROW | BAR< width >
controls the look of the confidence limit error bars. The default CLDISPLAY=SERIF displays the
confidence limits as lines with serifs, and the CLDISPLAY=LINE option removes the serifs from
the error bars. The CLDISPLAY=SERIFARROW and CLDISPLAY=LINEARROW options display
arrowheads on any error bars that are clipped by the RANGE= option; if the entire error bar is cut from
the graphic, then an arrowhead is displayed that points toward the odds ratio. The CLDISPLAY=BAR
< width > option displays the limits along with a bar whose width is equal to the size of the marker.
You can control the width of the bars and the size of the marker by specifying the width value as a
percentage of the distance between the bars, 0 < width � 1.

NOTE: Your bar might disappear if you have small values of width.

DOTPLOT
displays dotted gridlines on the plot.

GROUP
displays the odds ratios in panels that are defined by the ODDSRATIO statements. The NPANELPOS=
option is ignored when this option is specified.
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LOGBASE=2 | E | 10
displays the odds ratio axis on the specified log scale.

NPANELPOS=number
breaks the plot into multiple graphics that have at most |number | odds ratios per graphic. If number
is positive, then the number of odds ratios per graphic is balanced; if number is negative, then no
balancing of the number of odds ratios takes place. By default, number = 0 and all odds ratios are
displayed in a single plot. For example, suppose you want to display 21 odds ratios. Then specifying
NPANELPOS=20 displays two plots, the first with 11 odds ratios and the second with 10; but specifying
NPANELPOS=-20 displays 20 odds ratios in the first plot and only 1 odds ratio in the second plot.

ORDER=ASCENDING | DESCENDING
displays the odds ratios in sorted order. By default the odds ratios are displayed in the order in which
they appear in the corresponding table.

RANGE=(< min >< ,max >) | CLIP
specifies the range of the displayed odds ratio axis. Specifying the RANGE=CLIP option has the same
effect as specifying the minimum odds ratio as min and the maximum odds ratio as max . By default,
all odds ratio confidence intervals are displayed.

TYPE=HORIZONTAL | HORIZONTALSTAT | VERTICAL | VERTICALBLOCK
controls the look of the graphic. The default TYPE=HORIZONTAL option places the odds ratio values
on the X axis, while the TYPE=HORIZONTALSTAT option also displays the values of the odds ratios
and their confidence limits on the right side of the graphic. The TYPE=VERTICAL option places the
odds ratio values on the Y axis, while the TYPE=VERTICALBLOCK option (available only with the
CLODDS= option) places the odds ratio values on the Y axis and puts boxes around the labels.

BY Statement
BY variables ;

You can specify a BY statement with PROC LOGISTIC to obtain separate analyses of observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the LOGISTIC procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

If a SCORE statement is specified, then define the training data set to be the DATA= data set or the
INMODEL= data set in the PROC LOGISTIC statement, and define the scoring data set to be the DATA=
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data set and PRIOR= data set in the SCORE statement. The training data set contains all of the BY variables,
and the scoring data set must contain either all of them or none of them. If the scoring data set contains all
the BY variables, matching is carried out between the training and scoring data sets. If the scoring data set
does not contain any of the BY variables, the entire scoring data set is used for every BY group in the training
data set and the BY variables are added to the output data sets that are specified in the SCORE statement.

CAUTION: The order of the levels in the response and classification variables is determined from all the data
regardless of BY groups. However, different sets of levels might appear in different BY groups. This might
affect the value of the reference level for these variables, and hence your interpretation of the model and the
parameters.

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

CLASS Statement
CLASS variable < (options) > . . . < variable < (options) > > < / global-options > ;

The CLASS statement names the classification variables to be used as explanatory variables in the analysis.
Response variables do not need to be specified in the CLASS statement.

The CLASS statement must precede the MODEL statement. Most options can be specified either as individual
variable options or as global-options. You can specify options for each variable by enclosing the options in
parentheses after the variable name. You can also specify global-options for the CLASS statement by placing
them after a slash (/). Global-options are applied to all the variables specified in the CLASS statement. If you
specify more than one CLASS statement, the global-options specified in any one CLASS statement apply to
all CLASS statements. However, individual CLASS variable options override the global-options. You can
specify the following values for either an option or a global-option:

CPREFIX=n
specifies that, at most, the first n characters of a CLASS variable name be used in creating names for
the corresponding design variables. The default is 32 �min.32;max.2; f //, where f is the formatted
length of the CLASS variable.

DESCENDING

DESC
reverses the sort order of the classification variable. If both the DESCENDING and ORDER= options
are specified, PROC LOGISTIC orders the categories according to the ORDER= option and then
reverses that order.

LPREFIX=n
specifies that, at most, the first n characters of a CLASS variable label be used in creating labels for the
corresponding design variables. The default is 256 �min.256;max.2; f //, where f is the formatted
length of the CLASS variable.

MISSING
treats missing values (., ._, .A, . . . , .Z for numeric variables and blanks for character variables) as valid
values for the CLASS variable.
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ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of classification variables. This ordering determines which
parameters in the model correspond to each level in the data, so the ORDER= option can be useful when
you use the CONTRAST statement. By default, ORDER=FORMATTED. For ORDER=FORMATTED
and ORDER=INTERNAL, the sort order is machine-dependent. When ORDER=FORMATTED is in
effect for numeric variables for which you have supplied no explicit format, the levels are ordered by
their internal values.

The following table shows how PROC LOGISTIC interprets values of the ORDER= option.

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set
FORMATTED External formatted values, except for numeric

variables with no explicit format, which are sorted
by their unformatted (internal) values

FREQ Descending frequency count; levels with more
observations come earlier in the order

INTERNAL Unformatted value

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

PARAM=keyword
specifies the parameterization method for the classification variable or variables. You can specify any
of the keywords shown in the following table;

the default is PARAM=EFFECT. Design matrix columns are created from CLASS variables according
to the corresponding coding schemes:

Value of PARAM= Coding

EFFECT Effect coding

GLM Less-than-full-rank reference cell coding (this
keyword can be used only in a global option)

ORDINAL
THERMOMETER

Cumulative parameterization for an ordinal
CLASS variable

POLYNOMIAL
POLY

Polynomial coding

REFERENCE
REF

Reference cell coding

ORTHEFFECT Orthogonalizes PARAM=EFFECT coding

ORTHORDINAL
ORTHOTHERM

Orthogonalizes PARAM=ORDINAL coding

ORTHPOLY Orthogonalizes PARAM=POLYNOMIAL coding

ORTHREF Orthogonalizes PARAM=REFERENCE coding
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All parameterizations are full rank, except for the GLM parameterization. The REF= option in the
CLASS statement determines the reference level for EFFECT and REFERENCE coding and for their
orthogonal parameterizations. It also indirectly determines the reference level for a singular GLM
parameterization through the order of levels.

If PARAM=ORTHPOLY or PARAM=POLY and the classification variable is numeric, then the
ORDER= option in the CLASS statement is ignored, and the internal unformatted values are used. See
the section “Other Parameterizations” on page 391 in Chapter 19, “Shared Concepts and Topics,” for
further details.

REF=’level’ | keyword
specifies the reference level for PARAM=EFFECT, PARAM=REFERENCE, and their orthogonaliza-
tions. For PARAM=GLM, the REF= option specifies a level of the classification variable to be put at
the end of the list of levels. This level thus corresponds to the reference level in the usual interpretation
of the linear estimates with a singular parameterization.

For an individual variable REF= option (but not for a global REF= option), you can specify the level
of the variable to use as the reference level. Specify the formatted value of the variable if a format is
assigned. For a global or individual variable REF= option, you can use one of the following keywords.
The default is REF=LAST.

FIRST designates the first ordered level as reference.

LAST designates the last ordered level as reference.

TRUNCATE< =n >
specifies the length n of CLASS variable values to use in determining CLASS variable levels. The
default is to use the full formatted length of the CLASS variable. If you specify TRUNCATE without
the length n, the first 16 characters of the formatted values are used. When formatted values are longer
than 16 characters, you can use this option to revert to the levels as determined in releases before SAS
9. The TRUNCATE option is available only as a global option.

Class Variable Naming Convention

Parameter names for a CLASS predictor variable are constructed by concatenating the CLASS variable name
with the CLASS levels. However, for the POLYNOMIAL and orthogonal parameterizations, parameter
names are formed by concatenating the CLASS variable name and keywords that reflect the parameterization.
See the section “Other Parameterizations” on page 391 in Chapter 19, “Shared Concepts and Topics,” for
examples and further details.

Class Variable Parameterization with Unbalanced Designs

PROC LOGISTIC initially parameterizes the CLASS variables by looking at the levels of the variables across
the complete data set. If you have an unbalanced replication of levels across variables or BY groups, then
the design matrix and the parameter interpretation might be different from what you expect. For instance,
suppose you have a model with one CLASS variable A with three levels (1, 2, and 3), and another CLASS
variable B with two levels (1 and 2). If the third level of A occurs only with the first level of B, if you use the
EFFECT parameterization, and if your model contains the effect A(B) and an intercept, then the design for A
within the second level of B is not a differential effect. In particular, the design looks like the following:
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Design Matrix
A(B=1) A(B=2)

B A A1 A2 A1 A2

1 1 1 0 0 0
1 2 0 1 0 0
1 3 –1 –1 0 0
2 1 0 0 1 0
2 2 0 0 0 1

PROC LOGISTIC detects linear dependency among the last two design variables and sets the parameter for
A2(B=2) to zero, resulting in an interpretation of these parameters as if they were reference- or dummy-coded.
The REFERENCE or GLM parameterization might be more appropriate for such problems.

CODE Statement
CODE < options > ;

The CODE statement writes SAS DATA step code for computing predicted values of the fitted model either
to a file or to a catalog entry. This code can then be included in a DATA step to score new data.

Table 60.2 summarizes the options available in the CODE statement.

Table 60.2 CODE Statement Options

Option Description

CATALOG= Names the catalog entry where the generated code is saved
DUMMIES Retains the dummy variables in the data set
ERROR Computes the error function
FILE= Names the file where the generated code is saved
FORMAT= Specifies the numeric format for the regression coefficients
GROUP= Specifies the group identifier for array names and statement labels
IMPUTE Imputes predicted values for observations with missing or invalid

covariates
LINESIZE= Specifies the line size of the generated code
LOOKUP= Specifies the algorithm for looking up CLASS levels
RESIDUAL Computes residuals

For details about the syntax of the CODE statement, see the section “CODE Statement” on page 395 in
Chapter 19, “Shared Concepts and Topics.”
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CONTRAST Statement
CONTRAST 'label ' row-description< , . . . , row-description > < / options > ;

where a row-description is defined as follows:

effect values< , . . . , effect values >

The CONTRAST statement provides a mechanism for obtaining customized hypothesis tests. It is similar to
the CONTRAST and ESTIMATE statements in other modeling procedures.

The CONTRAST statement enables you to specify a matrix, L, for testing the hypothesis Lˇ D 0, where
ˇ is the vector of intercept and slope parameters. You must be familiar with the details of the model
parameterization that PROC LOGISTIC uses (for more information, see the PARAM= option in the section
“CLASS Statement” on page 4512). Optionally, the CONTRAST statement enables you to estimate each
row, l 0iˇ, of Lˇ and test the hypothesis l 0iˇ D 0. Computed statistics are based on the asymptotic chi-square
distribution of the Wald statistic.

There is no limit to the number of CONTRAST statements that you can specify, but they must appear after
the MODEL statement.

The following parameters are specified in the CONTRAST statement:

label identifies the contrast in the displayed output. A label is required for every contrast specified, and
it must be enclosed in quotes.

effect identifies an effect that appears in the MODEL statement. The name INTERCEPT can be used as
an effect when one or more intercepts are included in the model. You do not need to include all
effects that are included in the MODEL statement.

values are constants that are elements of the L matrix associated with the effect. To correctly specify
your contrast, it is crucial to know the ordering of parameters within each effect and the variable
levels associated with any parameter. The “Class Level Information” table shows the ordering
of levels within variables. The E option, described later in this section, enables you to verify the
proper correspondence of values to parameters. If too many values are specified for an effect, the
extra ones are ignored. If too few values are specified, the remaining ones are set to 0.

Multiple degree-of-freedom hypotheses can be tested by specifying multiple row-descriptions; the rows of
L are specified in order and are separated by commas. The degrees of freedom is the number of linearly
independent constraints implied by the CONTRAST statement—that is, the rank of L.

More details for specifying contrasts involving effects with full-rank parameterizations are given in the
section “Full-Rank Parameterized Effects” on page 4517, while details for less-than-full-rank parameterized
effects are given in the section “Less-Than-Full-Rank Parameterized Effects” on page 4518.

You can specify the following options after a slash (/):

ALPHA=number
specifies the level of significance ˛ for the 100.1� ˛/% confidence interval for each contrast when the
ESTIMATE option is specified. The value of number must be between 0 and 1. By default, number is
equal to the value of the ALPHA= option in the PROC LOGISTIC statement, or 0.05 if that option is
not specified.
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E
displays the L matrix.

ESTIMATE=keyword
estimates and tests each individual contrast (that is, each row, l 0iˇ, of Lˇ), exponentiated contrast
(el
0
i
ˇ), or predicted probability for the contrast (g�1.l 0iˇ/). PROC LOGISTIC displays the point

estimate, its standard error, a Wald confidence interval, and a Wald chi-square test. The significance
level of the confidence interval is controlled by the ALPHA= option. You can estimate the individual
contrast, the exponentiated contrast, or the predicted probability for the contrast by specifying one of
the following keywords:

PARM
estimates the individual contrast.

EXP
estimates the exponentiated contrast.

BOTH
estimates both the individual contrast and the exponentiated contrast.

PROB
estimates the predicted probability of the contrast.

ALL
estimates the individual contrast, the exponentiated contrast, and the predicted probability of the
contrast.

For more information about the computations of the standard errors and confidence limits, see the
section “Linear Predictor, Predicted Probability, and Confidence Limits” on page 4580.

SINGULAR=number
tunes the estimability check. This option is ignored when a full-rank parameterization is specified. If
v is a vector, define ABS.v/ to be the largest absolute value of the elements of v. For a row vector
l 0 of the contrast matrix L, define c D ABS.l/ if ABS.l/ is greater than 0; otherwise, c = 1. If
ABS.l 0� l 0T/ is greater than c�number , then l is declared nonestimable. The T matrix is the Hermite
form matrix I�0 I0, where I�0 represents a generalized inverse of the (observed or expected) information
matrix I0 of the null model. The value for number must be between 0 and 1; the default value is 1E–4.

Full-Rank Parameterized Effects

If an effect involving a CLASS variable with a full-rank parameterization does not appear in the CONTRAST
statement, then all of its coefficients in the L matrix are set to 0.

If you use effect coding by default or by specifying PARAM=EFFECT in the CLASS statement, then all
parameters are directly estimable and involve no other parameters. For example, suppose an effect-coded
CLASS variable A has four levels. Then there are three parameters (ˇ1; ˇ2; ˇ3) representing the first three
levels, and the fourth parameter is represented by

�ˇ1 � ˇ2 � ˇ3

To test the first versus the fourth level of A, you would test

ˇ1 D �ˇ1 � ˇ2 � ˇ3
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or, equivalently,

2ˇ1 C ˇ2 C ˇ3 D 0

which, in the form Lˇ D 0, is

�
2 1 1

�24 ˇ1
ˇ2
ˇ3

35 D 0
Therefore, you would use the following CONTRAST statement:

contrast '1 vs. 4' A 2 1 1;

To contrast the third level with the average of the first two levels, you would test

ˇ1 C ˇ2

2
D ˇ3

or, equivalently,

ˇ1 C ˇ2 � 2ˇ3 D 0

Therefore, you would use the following CONTRAST statement:

contrast '1&2 vs. 3' A 1 1 -2;

Other CONTRAST statements are constructed similarly. For example:

contrast '1 vs. 2 ' A 1 -1 0;
contrast '1&2 vs. 4 ' A 3 3 2;
contrast '1&2 vs. 3&4' A 2 2 0;
contrast 'Main Effect' A 1 0 0,

A 0 1 0,
A 0 0 1;

Less-Than-Full-Rank Parameterized Effects

When you use the less-than-full-rank parameterization (by specifying PARAM=GLM in the CLASS state-
ment), each row is checked for estimability; see the section “Estimable Functions” on page 55 in Chapter 3,
“Introduction to Statistical Modeling with SAS/STAT Software,” for more information. If PROC LOGISTIC
finds a contrast to be nonestimable, it displays missing values in corresponding rows in the results. PROC
LOGISTIC handles missing level combinations of classification variables in the same manner as PROC GLM:
parameters corresponding to missing level combinations are not included in the model. This convention
can affect the way in which you specify the L matrix in your CONTRAST statement. If the elements of L
are not specified for an effect that contains a specified effect, then the elements of the specified effect are
distributed over the levels of the higher-order effect just as the GLM procedure does for its CONTRAST and
ESTIMATE statements. For example, suppose that the model contains effects A and B and their interaction
A*B. If you specify a CONTRAST statement involving A alone, the L matrix contains nonzero terms for
both A and A*B, because A*B contains A. For more information, see rule 4 in the section “Construction of
Least Squares Means” on page 3489 in Chapter 45, “The GLM Procedure.”
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EFFECT Statement
EFFECT name=effect-type (variables < / options >) ;

The EFFECT statement enables you to construct special collections of columns for design matrices. These
collections are referred to as constructed effects to distinguish them from the usual model effects that are
formed from continuous or classification variables, as discussed in the section “GLM Parameterization of
Classification Variables and Effects” on page 387 in Chapter 19, “Shared Concepts and Topics.”

You can specify the following effect-types:

COLLECTION is a collection effect that defines one or more variables as a single effect with
multiple degrees of freedom. The variables in a collection are considered as
a unit for estimation and inference.

LAG is a classification effect in which the level that is used for a given period
corresponds to the level in the preceding period.

MULTIMEMBER | MM is a multimember classification effect whose levels are determined by one or
more variables that appear in a CLASS statement.

POLYNOMIAL | POLY is a multivariate polynomial effect in the specified numeric variables.

SPLINE is a regression spline effect whose columns are univariate spline expansions
of one or more variables. A spline expansion replaces the original variable
with an expanded or larger set of new variables.

Table 60.3 summarizes the options available in the EFFECT statement.

Table 60.3 EFFECT Statement Options

Option Description

Collection Effects Options
DETAILS Displays the constituents of the collection effect

Lag Effects Options
DESIGNROLE= Names a variable that controls to which lag design an observation

is assigned

DETAILS Displays the lag design of the lag effect

NLAG= Specifies the number of periods in the lag

PERIOD= Names the variable that defines the period

WITHIN= Names the variable or variables that define the group within which
each period is defined

Multimember Effects Options
NOEFFECT Specifies that observations with all missing levels for the multi-

member variables should have zero values in the corresponding
design matrix columns

WEIGHT= Specifies the weight variable for the contributions of each of the
classification effects
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Table 60.3 continued

Option Description

Polynomial Effects Options
DEGREE= Specifies the degree of the polynomial
MDEGREE= Specifies the maximum degree of any variable in a term of the

polynomial
STANDARDIZE= Specifies centering and scaling suboptions for the variables that

define the polynomial

Spline Effects Options
BASIS= Specifies the type of basis (B-spline basis or truncated power func-

tion basis) for the spline effect
DEGREE= Specifies the degree of the spline effect
KNOTMETHOD= Specifies how to construct the knots for the spline effect

For more information about the syntax of these effect-types and how columns of constructed effects are
computed, see the section “EFFECT Statement” on page 397 in Chapter 19, “Shared Concepts and Topics.”

EFFECTPLOT Statement
EFFECTPLOT < plot-type < (plot-definition-options) > > < / options > ;

The EFFECTPLOT statement produces a display of the fitted model and provides options for changing and
enhancing the displays. Table 60.4 describes the available plot-types and their plot-definition-options.

Table 60.4 Plot-Types and Plot-Definition-Options

Plot-Type and Description Plot-Definition-Options

BOX
Displays a box plot of continuous response data at each
level of a CLASS effect, with predicted values
superimposed and connected by a line. This is an
alternative to the INTERACTION plot-type.

PLOTBY= variable or CLASS effect
X= CLASS variable or effect

CONTOUR
Displays a contour plot of predicted values against two
continuous covariates

PLOTBY= variable or CLASS effect
X= continuous variable
Y= continuous variable

FIT
Displays a curve of predicted values versus a
continuous variable

PLOTBY= variable or CLASS effect
X= continuous variable
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Table 60.4 continued

Plot-Type and Description Plot-Definition-Options

INTERACTION
Displays a plot of predicted values (possibly with error
bars) versus the levels of a CLASS effect. The
predicted values are connected with lines and can be
grouped by the levels of another CLASS effect.

PLOTBY= variable or CLASS effect
SLICEBY= variable or CLASS effect
X= CLASS variable or effect

MOSAIC
Displays a mosaic plot of predicted values by using up
to three CLASS effects

PLOTBY= variable or CLASS effect
X= CLASS effects

SLICEFIT
Displays a curve of predicted values versus a
continuous variable, grouped by the levels of a
CLASS effect

PLOTBY= variable or CLASS effect
SLICEBY= variable or CLASS effect
X= continuous variable

For full details about the syntax and options of the EFFECTPLOT statement, see the section “EFFECTPLOT
Statement” on page 416 in Chapter 19, “Shared Concepts and Topics.”

See Outputs 60.2.11, 60.2.12, 60.3.5, 60.4.8, 60.7.4, and 60.16.4 for examples of plots produced by this
statement.

ESTIMATE Statement
ESTIMATE < 'label ' > estimate-specification < (divisor=n) >

< , . . . < 'label ' > estimate-specification < (divisor=n) > >
< / options > ;

The ESTIMATE statement provides a mechanism for obtaining custom hypothesis tests. Estimates are
formed as linear estimable functions of the form Lˇ. You can perform hypothesis tests for the estimable
functions, construct confidence limits, and obtain specific nonlinear transformations.

Table 60.5 summarizes the options available in the ESTIMATE statement.

Table 60.5 ESTIMATE Statement Options

Option Description

Construction and Computation of Estimable Functions
DIVISOR= Specifies a list of values to divide the coefficients
NOFILL Suppresses the automatic fill-in of coefficients for higher-order

effects
SINGULAR= Tunes the estimability checking difference
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Table 60.5 continued

Option Description

Degrees of Freedom and p-values
ADJUST= Determines the method for multiple comparison adjustment of

estimates
ALPHA=˛ Determines the confidence level (1 � ˛)
LOWER Performs one-sided, lower-tailed inference
STEPDOWN Adjusts multiplicity-corrected p-values further in a step-down fash-

ion
TESTVALUE= Specifies values under the null hypothesis for tests
UPPER Performs one-sided, upper-tailed inference

Statistical Output
CL Constructs confidence limits
CORR Displays the correlation matrix of estimates
COV Displays the covariance matrix of estimates
E Prints the L matrix
JOINT Produces a joint F or chi-square test for the estimable functions
SEED= Specifies the seed for computations that depend on random numbers

Generalized Linear Modeling
CATEGORY= Specifies how to construct estimable functions with multinomial

data
EXP Exponentiates and displays estimates
ILINK Computes and displays estimates and standard errors on the inverse

linked scale

For details about the syntax of the ESTIMATE statement, see the section “ESTIMATE Statement” on
page 444 in Chapter 19, “Shared Concepts and Topics.”

EXACT Statement
EXACT < 'label ' > < INTERCEPT > < effects > < / options > ;

The EXACT statement performs exact tests of the parameters for the specified effects and optionally estimates
the parameters and outputs the exact conditional distributions. You can specify the keyword INTERCEPT
and any effects in the MODEL statement. Inference on the parameters of the specified effects is performed
by conditioning on the sufficient statistics of all the other model parameters (possibly including the intercept).

You can specify several EXACT statements, but they must follow the MODEL statement. Each statement can
optionally include an identifying label . If several EXACT statements are specified, any statement without
a label is assigned a label of the form “Exactn,” where n indicates the nth EXACT statement. The label is
included in the headers of the displayed exact analysis tables.

If a STRATA statement is also specified, then a stratified exact logistic regression is performed. The model
contains a different intercept for each stratum, and these intercepts are conditioned out of the model along
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with any other nuisance parameters (parameters for effects specified in the MODEL statement that are not in
the EXACT statement).

If the LINK=GLOGIT option is specified in the MODEL statement, then the METHOD=DIRECT option is
invoked in the EXACTOPTIONS statement by default and a generalized logit model is fit. Since each effect
specified in the MODEL statement adds k parameters to the model (where k + 1 is the number of response
levels), exact analysis of the generalized logit model by using this method is limited to rather small problems.

The CONTRAST, ESTIMATE, LSMEANS, LSMESTIMATE, ODDSRATIO, OUTPUT, ROC, ROCCON-
TRAST, SCORE, SLICE, STORE, TEST, and UNITS statements are not available with an exact analysis;
results from these statements are based on the asymptotic results. Exact analyses are not performed when you
specify a WEIGHT statement, a link other than LINK=LOGIT or LINK=GLOGIT, an offset variable, the
NOFIT option, or a model selection method. Exact estimation is not available for ordinal response models.

For classification variables, use of the reference parameterization is recommended.

The following options can be specified in each EXACT statement after a slash (/):

ALPHA=number
specifies the level of significance ˛ for 100.1 � ˛/% confidence limits for the parameters or odds
ratios. The value of number must be between 0 and 1. By default, number is equal to the value of the
ALPHA= option in the PROC LOGISTIC statement, or 0.05 if that option is not specified.

CLTYPE=EXACT | MIDP
requests either the exact or mid-p confidence intervals for the parameter estimates. By default, the exact
intervals are produced. The confidence coefficient can be specified with the ALPHA= option. The
mid-p interval can be modified with the MIDPFACTOR= option. See the section “Exact Conditional
Logistic Regression” on page 4601 for details.

ESTIMATE < =keyword >
estimates the individual parameters (conditioned on all other parameters) for the effects specified in the
EXACT statement. For each parameter, a point estimate, a standard error, a confidence interval, and a
p-value for a two-sided test that the parameter is zero are displayed. Note that the two-sided p-value is
twice the one-sided p-value. You can optionally specify one of the following keywords:

PARM specifies that the parameters be estimated. This is the default.

ODDS specifies that the odds ratios be estimated. If you have classification variables, then you
must also specify the PARAM=REF option in the CLASS statement.

BOTH specifies that both the parameters and odds ratios be estimated.

JOINT
performs the joint test that all of the parameters are simultaneously equal to zero, performs individual
hypothesis tests for the parameter of each continuous variable, and performs joint tests for the parame-
ters of each classification variable. The joint test is indicated in the “Conditional Exact Tests” table by
the label “Joint.”

JOINTONLY
performs only the joint test of the parameters. The test is indicated in the “Conditional Exact Tests”
table by the label “Joint.” When this option is specified, individual tests for the parameters of each
continuous variable and joint tests for the parameters of the classification variables are not performed.
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MIDPFACTOR=ı1 | (ı1; ı2)
sets the tie factors used to produce the mid-p hypothesis statistics and the mid-p confidence intervals.
ı1 modifies both the hypothesis tests and confidence intervals, while ı2 affects only the hypothesis
tests. By default, ı1 D 0:5 and ı2 D 1:0. See the section “Exact Conditional Logistic Regression” on
page 4601 for details.

ONESIDED
requests one-sided confidence intervals and p-values for the individual parameter estimates and odds
ratios. The one-sided p-value is the smaller of the left- and right-tail probabilities for the observed
sufficient statistic of the parameter under the null hypothesis that the parameter is zero. The two-sided
p-values (default) are twice the one-sided p-values. See the section “Exact Conditional Logistic
Regression” on page 4601 for more details.

OUTDIST=SAS-data-set
names the SAS data set that contains the exact conditional distributions. This data set contains all of
the exact conditional distributions that are required to process the corresponding EXACT statement.
This data set contains the possible sufficient statistics for the parameters of the effects specified
in the EXACT statement, the counts, and, when hypothesis tests are performed on the parameters,
the probability of occurrence and the score value for each sufficient statistic. When you request an
OUTDIST= data set, the observed sufficient statistics are displayed in the “Sufficient Statistics” table.
See the section “OUTDIST= Output Data Set” on page 4608 for more information.

EXACT Statement Examples

In the following example, two exact tests are computed: one for x1 and the other for x2. The test for x1 is
based on the exact conditional distribution of the sufficient statistic for the x1 parameter given the observed
values of the sufficient statistics for the intercept, x2, and x3 parameters; likewise, the test for x2 is conditional
on the observed sufficient statistics for the intercept, x1, and x3.

proc logistic;
model y= x1 x2 x3;
exact x1 x2;

run;

PROC LOGISTIC determines, from all the specified EXACT statements, the distinct conditional distributions
that need to be evaluated. For example, there is only one exact conditional distribution for the following two
EXACT statements:

exact 'One' x1 / estimate=parm;
exact 'Two' x1 / estimate=parm onesided;

For each EXACT statement, individual tests for the parameters of the specified effects are computed unless
the JOINTONLY option is specified. Consider the following EXACT statements:

exact 'E12' x1 x2 / estimate;
exact 'E1' x1 / estimate;
exact 'E2' x2 / estimate;
exact 'J12' x1 x2 / joint;
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In the E12 statement, the parameters for x1 and x2 are estimated and tested separately. Specifying the E12
statement is equivalent to specifying both the E1 and E2 statements. In the J12 statement, the joint test for
the parameters of x1 and x2 is computed in addition to the individual tests for x1 and x2.

EXACTOPTIONS Statement
EXACTOPTIONS options ;

The EXACTOPTIONS statement specifies options that apply to every EXACT statement in the program.
The following options are available:

ABSFCONV=value
specifies the absolute function convergence criterion. Convergence requires a small change in the
log-likelihood function in subsequent iterations,

jli � li�1j < value

where li is the value of the log-likelihood function at iteration i.

By default, ABSFCONV=1E–12. You can also specify the FCONV= and XCONV= criteria; optimiza-
tions are terminated as soon as one criterion is satisfied.

ADDTOBS
adds the observed sufficient statistic to the sampled exact distribution if the statistic was not sampled.
This option has no effect unless the METHOD=NETWORKMC option is specified and the ESTIMATE
option is specified in the EXACT statement. If the observed statistic has not been sampled, then the
parameter estimate does not exist; by specifying this option, you can produce (biased) estimates.

BUILDSUBSETS
builds every distribution for sampling. By default, some exact distributions are created by taking a
subset of a previously generated exact distribution. When the METHOD=NETWORKMC option is
invoked, this subsetting behavior has the effect of using fewer than the desired n samples; see the N=
option for more details. Use the BUILDSUBSETS option to suppress this subsetting.

EPSILON=value
controls how the partial sums

Pj
iD1 yixi are compared. value must be between 0 and 1; by default,

value=1E–8.

FCONV=value
specifies the relative function convergence criterion. Convergence requires a small relative change in
the log-likelihood function in subsequent iterations,

jli � li�1j

jli�1j C 1E–6
< value

where li is the value of the log likelihood at iteration i.

By default, FCONV=1E–8. You can also specify the ABSFCONV= and XCONV= criteria; if more
than one criterion is specified, then optimizations are terminated as soon as one criterion is satisfied.
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MAXTIME=seconds
specifies the maximum clock time (in seconds) that PROC LOGISTIC can use to calculate the exact
distributions. If the limit is exceeded, the procedure halts all computations and prints a note to the
LOG. The default maximum clock time is seven days.

METHOD=keyword
specifies which exact conditional algorithm to use for every EXACT statement specified. You can
specify one of the following keywords:

DIRECT invokes the multivariate shift algorithm of Hirji, Mehta, and Patel (1987). This method
directly builds the exact distribution, but it can require an excessive amount of memory in its
intermediate stages. METHOD=DIRECT is invoked by default when you are conditioning
out at most the intercept, or when the LINK=GLOGIT option is specified in the MODEL
statement.

NETWORK invokes an algorithm described in Mehta, Patel, and Senchaudhuri (1992). This method
builds a network for each parameter that you are conditioning out, combines the networks,
then uses the multivariate shift algorithm to create the exact distribution. The NETWORK
method can be faster and require less memory than the DIRECT method. The NETWORK
method is invoked by default for most analyses.

NETWORKMC invokes the hybrid network and Monte Carlo algorithm of Mehta, Patel, and Sen-
chaudhuri (1992). This method creates a network, then samples from that network; this
method does not reject any of the samples at the cost of using a large amount of memory
to create the network. METHOD=NETWORKMC is most useful for producing parameter
estimates for problems that are too large for the DIRECT and NETWORK methods to
handle and for which asymptotic methods are invalid—for example, for sparse data on a
large grid.

N=n
specifies the number of Monte Carlo samples to take when the METHOD=NETWORKMC option is
specified. By default, n = 10,000. If the procedure cannot obtain n samples due to a lack of memory,
then a note is printed in the SAS log (the number of valid samples is also reported in the listing) and
the analysis continues.

The number of samples used to produce any particular statistic might be smaller than n. For example,
let X1 and X2 be continuous variables, denote their joint distribution by f (X1,X2), and let f (X1 | X2 =
x2) denote the marginal distribution of X1 conditioned on the observed value of X2. If you request
the JOINT test of X1 and X2, then n samples are used to generate the estimate Of (X1,X2) of f (X1,X2),
from which the test is computed. However, the parameter estimate for X1 is computed from the subset
of Of (X1,X2) that has X2 = x2, and this subset need not contain n samples. Similarly, the distribution
for each level of a classification variable is created by extracting the appropriate subset from the joint
distribution for the CLASS variable.

In some cases, the marginal sample size can be too small to admit accurate estimation of a particular
statistic; a note is printed in the SAS log when a marginal sample size is less than 100. Increasing n
increases the number of samples used in a marginal distribution; however, if you want to control the
sample size exactly, you can either specify the BUILDSUBSETS option or do both of the following:

• Remove the JOINT option from the EXACT statement.
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• Create dummy variables in a DATA step to represent the levels of a CLASS variable, and specify
them as independent variables in the MODEL statement.

NOLOGSCALE
specifies that computations for the exact conditional models be computed by using normal scaling.
Log scaling can handle numerically larger problems than normal scaling; however, computations in the
log scale are slower than computations in normal scale.

ONDISK
uses disk space instead of random access memory to build the exact conditional distribution. Use this
option to handle larger problems at the cost of slower processing.

SEED=seed
specifies the initial seed for the random number generator used to take the Monte Carlo samples when
the METHOD=NETWORKMC option is specified. The value of the SEED= option must be an integer.
If you do not specify a seed, or if you specify a value less than or equal to zero, then PROC LOGISTIC
uses the time of day from the computer’s clock to generate an initial seed.

STATUSN=number
prints a status line in the SAS log after every number of Monte Carlo samples when the
METHOD=NETWORKMC option is specified. The number of samples taken and the current exact
p-value for testing the significance of the model are displayed. You can use this status line to track the
progress of the computation of the exact conditional distributions.

STATUSTIME=seconds
specifies the time interval (in seconds) for printing a status line in the LOG. You can use this status line
to track the progress of the computation of the exact conditional distributions. The time interval you
specify is approximate; the actual time interval varies. By default, no status reports are produced.

XCONV=value
specifies the relative parameter convergence criterion. Convergence requires a small relative parameter
change in subsequent iterations,

max
j
jı
.i/
j j < value

where

ı
.i/
j D

8<: ˇ
.i/
j � ˇ

.i�1/
j jˇ

.i�1/
j j < 0:01

ˇ
.i/

j
�ˇ

.i�1/

j

ˇ
.i�1/

j

otherwise

and ˇ.i/j is the estimate of the jth parameter at iteration i.

By default, XCONV=1E–4. You can also specify the ABSFCONV= and FCONV= criteria; if more
than one criterion is specified, then optimizations are terminated as soon as one criterion is satisfied.
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FREQ Statement
FREQ variable ;

The FREQ statement identifies a variable that contains the frequency of occurrence of each observation.
PROC LOGISTIC treats each observation as if it appears n times, where n is the value of the FREQ variable
for the observation. If it is not an integer, the frequency value is truncated to an integer. If the frequency
value is less than 1 or missing, the observation is not used in the model fitting. When the FREQ statement is
not specified, each observation is assigned a frequency of 1. If you specify more than one FREQ statement,
then the first statement is used.

If a SCORE statement is specified, then the FREQ variable is used for computing fit statistics and the ROC
curve, but they are not required for scoring. If the DATA= data set in the SCORE statement does not contain
the FREQ variable, the frequency values are assumed to be 1 and a warning message is issued in the LOG.
If you fit a model and perform the scoring in the same run, the same FREQ variable is used for fitting and
scoring. If you fit a model in a previous run and input it with the INMODEL= option in the current run, then
the FREQ variable can be different from the one used in the previous run. However, if a FREQ variable was
not specified in the previous run, you can still specify a FREQ variable in the current run.

ID Statement
ID variable< variable,. . . > ;

The ID statement specifies variables in the DATA= data set that are used for labeling ROC curves and influence
diagnostic plots. If more than one ID variable is specified, then the plots are labeled by concatenating the ID
variable values together. For more information, see the PLOTS(LABEL) and ROCOPTIONS(ID) options in
the PROC LOGISTIC statement.

LSMEANS Statement
LSMEANS < model-effects > < / options > ;

The LSMEANS statement computes and compares least squares means (LS-means) of fixed effects. LS-means
are predicted population margins—that is, they estimate the marginal means over a balanced population. In a
sense, LS-means are to unbalanced designs as class and subclass arithmetic means are to balanced designs.

Table 60.6 summarizes the options available in the LSMEANS statement.
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Table 60.6 LSMEANS Statement Options

Option Description

Construction and Computation of LS-Means
AT Modifies the covariate value in computing LS-means
BYLEVEL Computes separate margins
DIFF Requests differences of LS-means
OM= Specifies the weighting scheme for LS-means computation as de-

termined by the input data set
SINGULAR= Tunes estimability checking

Degrees of Freedom and p-values
ADJUST= Determines the method for multiple-comparison adjustment of LS-

means differences
ALPHA=˛ Determines the confidence level (1 � ˛)
STEPDOWN Adjusts multiple-comparison p-values further in a step-down

fashion

Statistical Output
CL Constructs confidence limits for means and mean differences
CORR Displays the correlation matrix of LS-means
COV Displays the covariance matrix of LS-means
E Prints the L matrix
LINES Produces a “Lines” display for pairwise LS-means differences
MEANS Prints the LS-means
PLOTS= Requests graphs of means and mean comparisons
SEED= Specifies the seed for computations that depend on random numbers

Generalized Linear Modeling
EXP Exponentiates and displays estimates of LS-means or LS-means

differences
ILINK Computes and displays estimates and standard errors of LS-means

(but not differences) on the inverse linked scale
ODDSRATIO Reports (simple) differences of least squares means in terms of

odds ratios if permitted by the link function

For details about the syntax of the LSMEANS statement, see the section “LSMEANS Statement” on page 460
in Chapter 19, “Shared Concepts and Topics.”

NOTE: If you have classification variables in your model, then the LSMEANS statement is allowed only if
you also specify the PARAM=GLM option.
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LSMESTIMATE Statement
LSMESTIMATE model-effect < 'label ' > values < divisor=n >

< , . . . < 'label ' > values < divisor=n > >
< / options > ;

The LSMESTIMATE statement provides a mechanism for obtaining custom hypothesis tests among least
squares means.

Table 60.7 summarizes the options available in the LSMESTIMATE statement.

Table 60.7 LSMESTIMATE Statement Options

Option Description

Construction and Computation of LS-Means
AT Modifies covariate values in computing LS-means
BYLEVEL Computes separate margins
DIVISOR= Specifies a list of values to divide the coefficients
OM= Specifies the weighting scheme for LS-means computation as de-

termined by a data set
SINGULAR= Tunes estimability checking

Degrees of Freedom and p-values
ADJUST= Determines the method for multiple-comparison adjustment of LS-

means differences
ALPHA=˛ Determines the confidence level (1 � ˛)
LOWER Performs one-sided, lower-tailed inference
STEPDOWN Adjusts multiple-comparison p-values further in a step-down fash-

ion
TESTVALUE= Specifies values under the null hypothesis for tests
UPPER Performs one-sided, upper-tailed inference

Statistical Output
CL Constructs confidence limits for means and mean differences
CORR Displays the correlation matrix of LS-means
COV Displays the covariance matrix of LS-means
E Prints the L matrix
ELSM Prints the K matrix
JOINT Produces a joint F or chi-square test for the LS-means and LS-

means differences
SEED= Specifies the seed for computations that depend on random numbers

Generalized Linear Modeling
CATEGORY= Specifies how to construct estimable functions with multinomial

data
EXP Exponentiates and displays LS-means estimates
ILINK Computes and displays estimates and standard errors of LS-means

(but not differences) on the inverse linked scale



MODEL Statement F 4531

For details about the syntax of the LSMESTIMATE statement, see the section “LSMESTIMATE Statement”
on page 476 in Chapter 19, “Shared Concepts and Topics.”

NOTE: If you have classification variables in your model, then the LSMESTIMATE statement is allowed
only if you also specify the PARAM=GLM option.

MODEL Statement
< label: > MODEL variable< (variable_options) > = < effects > < / options > ;

< label: > MODEL events/trials = < effects > < / options > ;

The MODEL statement names the response variable and the explanatory effects, including covariates, main
effects, interactions, and nested effects; see the section “Specification of Effects” on page 3453 in Chapter 45,
“The GLM Procedure,” for more information. If you omit the explanatory effects, the procedure fits an
intercept-only model. You must specify exactly one MODEL statement.

Two forms of the MODEL statement can be specified. The first form, referred to as single-trial syntax, is
applicable to binary, ordinal, and nominal response data. The second form, referred to as events/trials syntax,
is restricted to the case of binary response data. The single-trial syntax is used when each observation in
the DATA= data set contains information about only a single trial, such as a single subject in an experiment.
When each observation contains information about multiple binary-response trials, such as the counts of the
number of subjects observed and the number responding, then events/trials syntax can be used.

In the events/trials syntax, you specify two variables that contain count data for a binomial experiment. These
two variables are separated by a slash. The value of the first variable, events, is the number of positive
responses (or events). The value of the second variable, trials, is the number of trials. The values of both
events and (trials–events) must be nonnegative and the value of trials must be positive for the response to be
valid.

In the single-trial syntax, you specify one variable (on the left side of the equal sign) as the response variable.
This variable can be character or numeric. Variable_options specific to the response variable can be specified
immediately after the response variable with parentheses around them.

For both forms of the MODEL statement, explanatory effects follow the equal sign. Variables can be either
continuous or classification variables. Classification variables can be character or numeric, and they must be
declared in the CLASS statement. When an effect is a classification variable, the procedure inserts a set of
coded columns into the design matrix instead of directly entering a single column containing the values of
the variable.

Response Variable Options

DESCENDING | DESC
reverses the order of the response categories. If both the DESCENDING and ORDER= options are
specified, PROC LOGISTIC orders the response categories according to the ORDER= option and then
reverses that order. See the section “Response Level Ordering” on page 4564 for more detail.

EVENT=’category ’ | keyword
specifies the event category for the binary response model. PROC LOGISTIC models the probability
of the event category. The EVENT= option has no effect when there are more than two response
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categories. You can specify the value (formatted if a format is applied) of the event category in quotes,
or you can specify one of the following keywords. The default is EVENT=FIRST.

FIRST
designates the first ordered category as the event.

LAST
designates the last ordered category as the event.

One of the most common sets of response levels is {0,1}, with 1 representing the event for which the
probability is to be modeled. Consider the example where Y takes the values 1 and 0 for event and
nonevent, respectively, and Exposure is the explanatory variable. To specify the value 1 as the event
category, use the following MODEL statement:

model Y(event='1') = Exposure;

ORDER= DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of the response variable. The following table displays the available
ORDER= options:

ORDER= Levels Sorted By

DATA order of appearance in the input data set
FORMATTED external formatted value, except for numeric

variables with no explicit format, which are sorted
by their unformatted (internal) value

FREQ descending frequency count; levels with the most
observations come first in the order

INTERNAL unformatted value

By default, ORDER=FORMATTED. For ORDER=FORMATTED and ORDER=INTERNAL, the
sort order is machine dependent. When ORDER=FORMATTED is in effect for numeric variables for
which you have supplied no explicit format, the levels are ordered by their internal values.

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

REFERENCE=’category ’ | keyword

REF=’category ’ | keyword
specifies the reference category for the generalized logit model and the binary response model. For the
generalized logit model, each logit contrasts a nonreference category with the reference category. For
the binary response model, specifying one response category as the reference is the same as specifying
the other response category as the event category. You can specify the value (formatted if a format is
applied) of the reference category in quotes, or you can specify one of the following keywords:

FIRST designates the first ordered category as the reference.

LAST designates the last ordered category as the reference. This is the default.
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Model Options

Table 60.8 summarizes the options available in the MODEL statement. These options can be specified after a
slash (/).

Table 60.8 Model Statement Options

Option Description

Model Specification Options
EQUALSLOPES Specifies equal slope parameters
LINK= Specifies the link function
NOFIT Suppresses model fitting
NOINT Suppresses the intercept
OFFSET= Specifies the offset variable
SELECTION= Specifies the effect selection method
UNEQUALSLOPES Specifies unequal slope parameters

Effect Selection Options
BEST= Controls the number of models displayed for SCORE

selection
DETAILS Requests detailed results at each step
FAST Uses the fast elimination method
HIERARCHY= Specifies whether and how hierarchy is maintained and

whether a single effect or multiple effects are allowed to
enter or leave the model per step

INCLUDE= Specifies the number of effects included in every model
MAXSTEP= Specifies the maximum number of steps for STEPWISE

selection
SEQUENTIAL Adds or deletes effects in sequential order
SLENTRY= Specifies the significance level for entering effects
SLSTAY= Specifies the significance level for removing effects
START= Specifies the number of variables in the first model
STOP= Specifies the number of variables in the final model
STOPRES Adds or deletes variables by the residual chi-square

criterion

Model-Fitting Specification Options
ABSFCONV= Specifies the absolute function convergence criterion
FCONV= Specifies the relative function convergence criterion
FIRTH Specifies Firth’s penalized likelihood method
GCONV= Specifies the relative gradient convergence criterion
MAXFUNCTION= Specifies the maximum number of function calls for the

conditional analysis
MAXITER= Specifies the maximum number of iterations
NOCHECK Suppresses checking for infinite parameters
RIDGING= Specifies the technique used to improve the log-likelihood

function when its value is worse than that of the previous
step

SINGULAR= Specifies the tolerance for testing singularity
TECHNIQUE= Specifies the iterative algorithm for maximization
XCONV= Specifies the relative parameter convergence criterion
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Table 60.8 continued

Option Description

Confidence Interval Options
ALPHA= Specifies ˛ for the 100.1 � ˛/% confidence intervals
CLODDS= Computes confidence intervals for odds ratios
CLPARM= Computes confidence intervals for parameters
PLCONV= Specifies the profile-likelihood convergence criterion

Classification Options
CTABLE Displays the classification table
PEVENT= Specifies prior event probabilities
PPROB= Specifies probability cutpoints for classification

Overdispersion and Goodness-of-Fit Test Options
AGGREGATE= Determines subpopulations for Pearson chi-square and

deviance
LACKFIT Requests the Hosmer and Lemeshow goodness-of-fit test
SCALE= Specifies the method to correct overdispersion

ROC Curve Options
OUTROC= Names the output ROC data set
ROCEPS= Specifies the probability grouping criterion

Regression Diagnostics Options
INFLUENCE Displays influence statistics
IPLOTS Displays influence statistics

Display Options
CORRB Displays the correlation matrix
COVB Displays the covariance matrix
EXPB Displays exponentiated values of the estimates
ITPRINT Displays the iteration history
NODUMMYPRINT Suppresses the “Class Level Information” table
NOODDSRATIO Suppresses the default “Odds Ratio” table
PARMLABEL Displays parameter labels
PCORR Displays the partial correlation statistic
RSQUARE Displays the generalized R Square
STB Displays standardized estimates
Computational Options
BINWIDTH= Specifies the bin size for estimating association statistics
NOLOGSCALE Performs calculations by using normal scaling

The following list describes these options.
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ABSFCONV=value
specifies the absolute function convergence criterion. Convergence requires a small change in the
log-likelihood function in subsequent iterations,

jli � li�1j < value

where li is the value of the log-likelihood function at iteration i. See the section “Convergence Criteria”
on page 4569 for more information.

AGGREGATE< =(variable-list) >
specifies the subpopulations on which the Pearson chi-square test statistic and the likelihood ratio
chi-square test statistic (deviance) are calculated. Observations with common values in the given
list of variables are regarded as coming from the same subpopulation. Variables in the list can be
any variables in the input data set. Specifying the AGGREGATE option is equivalent to specifying
the AGGREGATE= option with a variable list that includes all explanatory variables in the MODEL
statement. The deviance and Pearson goodness-of-fit statistics are calculated only when the SCALE=
option is specified. Thus, the AGGREGATE (or AGGREGATE=) option has no effect if the SCALE=
option is not specified.

See the section “Rescaling the Covariance Matrix” on page 4584 for more information.

ALPHA=number
sets the level of significance ˛ for 100.1 � ˛/% confidence intervals for regression parameters or odds
ratios. The value of number must be between 0 and 1. By default, number is equal to the value of
the ALPHA= option in the PROC LOGISTIC statement, or 0.05 if the option is not specified. This
option has no effect unless confidence limits for the parameters (CLPARM= option) or odds ratios
(CLODDS= option or ODDSRATIO statement) are requested.

BEST=number
specifies that number models with the highest score chi-square statistics are to be displayed for each
model size. It is used exclusively with the SCORE model selection method. If the BEST= option
is omitted and there are no more than 10 explanatory variables, then all possible models are listed
for each model size. If the option is omitted and there are more than 10 explanatory variables, then
the number of models selected for each model size is, at most, equal to the number of explanatory
variables listed in the MODEL statement.

BINWIDTH=width
specifies the size of the bins used for estimating the association statistics. For more information, see
the section “Rank Correlation of Observed Responses and Predicted Probabilities” on page 4579. Valid
values are 0 � width < 1 (for polytomous response models, 0 < width < 1). The default width is
0.002. If the width does not evenly divide the unit interval, it is reduced to a valid value and a message
is displayed in the SAS log. The width is also constrained by the amount of memory available on your
machine; if you specify a width that is too small, it is adjusted to a value for which memory can be
allocated and a note is displayed in the SAS log.

If you have a binary response and specify BINWIDTH=0, then no binning is performed and the exact
values of the statistics are computed; this method is a bit slower and might require more memory than
the binning approach.

The BINWIDTH= option is ignored and no binning is performed when a ROC statement is specified,
when ROC graphics are produced, or when the SCORE statement computes an ROC area.
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CLODDS=PL | WALD | BOTH
produces confidence intervals for odds ratios of main effects not involved in interactions or nestings.
Computation of these confidence intervals is based on the profile likelihood (CLODDS=PL) or based on
individual Wald tests (CLODDS=WALD). By specifying CLODDS=BOTH, the procedure computes
two sets of confidence intervals for the odds ratios, one based on the profile likelihood and the other
based on the Wald tests. The confidence coefficient can be specified with the ALPHA= option. The
CLODDS=PL option is not available with the STRATA statement. Classification main effects that use
parameterizations other than REF, EFFECT, or GLM are ignored. Specifying the CLODDS option
suppresses the display of the default odds ratio table. If you need to compute odds ratios for an effect
involved in interactions or nestings, or using some other parameterization, then you should specify an
ODDSRATIO statement for that effect.

CLPARM=PL | WALD | BOTH
requests confidence intervals for the parameters. Computation of these confidence intervals is based
on the profile likelihood (CLPARM=PL) or individual Wald tests (CLPARM=WALD). If you specify
CLPARM=BOTH, the procedure computes two sets of confidence intervals for the parameters, one
based on the profile likelihood and the other based on individual Wald tests. The confidence coefficient
can be specified with the ALPHA= option. The CLPARM=PL option is not available with the STRATA
statement.

See the section “Confidence Intervals for Parameters” on page 4575 for more information.

CORRB
displays the correlation matrix of the parameter estimates.

COVB
displays the covariance matrix of the parameter estimates.

CTABLE
classifies the input binary response observations according to whether the predicted event probabilities
are above or below some cutpoint value z in the range .0; 1/. An observation is predicted as an event if
the predicted event probability exceeds or equals z. You can supply a list of cutpoints other than the
default list by specifying the PPROB= option (page 4543). Also, false positive and negative rates can
be computed as posterior probabilities by using Bayes’ theorem. You can use the PEVENT= option to
specify prior probabilities for computing these rates. The CTABLE option is ignored if the data have
more than two response levels. The CTABLE option is not available with the STRATA statement.

For more information, see the section “Classification Table” on page 4581.

DETAILS
produces a summary of computational details for each step of the effect selection process. It produces
the “Analysis of Effects Eligible for Entry” table before displaying the effect selected for entry for
forward or stepwise selection. For each model fitted, it produces the “Joint Tests” or “Type 3 Analysis
of Effects” table if the fitted model involves CLASS variables, the “Analysis of Maximum Likelihood
Estimates” table, and measures of association between predicted probabilities and observed responses.
For the statistics included in these tables, see the section “Displayed Output” on page 4613. The
DETAILS option has no effect when SELECTION=NONE.
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EQUALSLOPES< =effect | (effect-list) >
specifies one or more effects that have the same parameters for each response function in a polytomous
response model. If you specify more than one effect, enclose the effects in parentheses. The effects
must be explanatory effects that are specified in the MODEL statement.

If you do not specify this option, the generalized logit model makes the unequal slopes assumption,
F.Pr.Y D i// D ˛i C x0ˇi , where the response functions have different slope parameters ˇi . If you
specify this option without an effect or effect-list , all slope parameters are shared across the response
functions, resulting in the model F.Pr.Y D i// D ˛i C x0ˇ. Specifying an effect or effect-list enables
you to choose which effects have the same parameters across the response functions. For any specified
selection method, equal slope parameters can contain and be contained in only other equal slope
parameters; for more information, see the HIERARCHY= option.

You can specify the EQUALSLOPES option along with the UNEQUALSLOPES option to create an
effect that has both equal and unequal slopes. In this case, the parameters that have equal slopes model
the mean effect across the response functions, whereas the parameters that have unequal slopes model
deviations from the mean. For more information, see the UNEQUALSLOPES option.

For an example that uses this option, see Example 60.18. If you specify the EQUALSLOPES option,
you cannot specify any of the EFFECTPLOT, ESTIMATE, EXACT, LSMEANS, LSMESTIMATE,
ROC, ROCCONTRAST, SLICE, STORE, and STRATA statements, and you cannot specify the follow-
ing options: CTABLE, FIRTH, OUTROC=, PEVENT=, PPROB=, RIDGING=, and TECHNIQUE=.

EXPB

EXPEST
displays the exponentiated values (eb̌i ) of the parameter estimates b̌i in the “Analysis of Maximum
Likelihood Estimates” table for the logit model. These exponentiated values are the estimated odds
ratios for parameters corresponding to the continuous explanatory variables, and for CLASS effects
that use reference or GLM parameterizations.

FAST
uses a computational algorithm of Lawless and Singhal (1978) to compute a first-order approximation
to the remaining slope estimates for each subsequent elimination of a variable from the model. Variables
are removed from the model based on these approximate estimates. The FAST option is extremely
efficient because the model is not refitted for every variable removed. The FAST option is used when
SELECTION=BACKWARD and in the backward elimination steps when SELECTION=STEPWISE.
The FAST option is ignored when SELECTION=FORWARD or SELECTION=NONE.

FCONV=value
specifies the relative function convergence criterion. Convergence requires a small relative change in
the log-likelihood function in subsequent iterations,

jli � li�1j

jli�1j C 1E–6
< value

where li is the value of the log likelihood at iteration i. See the section “Convergence Criteria” on
page 4569 for more information.
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FIRTH
performs Firth’s penalized maximum likelihood estimation to reduce bias in the parameter estimates
(Heinze and Schemper 2002; Firth 1993). This method is useful in cases of separability, as often occurs
when the event is rare, and is an alternative to performing an exact logistic regression. See the section
“Firth’s Bias-Reducing Penalized Likelihood” on page 4569 for more information.

NOTE: The intercept-only log likelihood is modified by using the full-model Hessian, computed with
the slope parameters equal to zero. When fitting a model and scoring a data set in the same PROC
LOGISTIC step, the model is fit using Firth’s penalty for parameter estimation purposes, but the
penalty is not applied to the scored log likelihood.

GCONV=value
specifies the relative gradient convergence criterion. Convergence requires that the normalized predic-
tion function reduction is small,

g0i I
�1
i gi

jli j C 1E–6
< value

where li is the value of the log-likelihood function, gi is the gradient vector, and Ii is the negative
(expected) Hessian matrix, all at iteration i. This is the default convergence criterion, and the default
value is 1E–8. See the section “Convergence Criteria” on page 4569 for more information.

HIERARCHY=keyword

HIER=keyword
specifies whether and how the model hierarchy requirement is applied and whether a single effect or
multiple effects are allowed to enter or leave the model in one step. You can specify that only CLASS ef-
fects, or both CLASS and interval effects, be subject to the hierarchy requirement. The HIERARCHY=
option is ignored unless you also specify one of the following options: SELECTION=FORWARD,
SELECTION=BACKWARD, or SELECTION=STEPWISE.

Model hierarchy refers to the requirement that, for any term to be in the model, all effects contained
in the term must be present in the model. For example, in order for the interaction A*B to enter the
model, the main effects A and B must be in the model. Likewise, neither effect A nor B can leave the
model while the interaction A*B is in the model.

The keywords you can specify in the HIERARCHY= option are as follows:

NONE indicates that the model hierarchy is not maintained. Any single effect can enter or leave
the model at any given step of the selection process.

SINGLE indicates that only one effect can enter or leave the model at one time, subject to the model
hierarchy requirement. For example, suppose that you specify the main effects A and B
and the interaction A*B in the model. In the first step of the selection process, either A
or B can enter the model. In the second step, the other main effect can enter the model.
The interaction effect can enter the model only when both main effects have already been
entered. Also, before A or B can be removed from the model, the A*B interaction must first
be removed. All effects (CLASS and interval) are subject to the hierarchy requirement.

SINGLECLASS is the same as HIERARCHY=SINGLE except that only CLASS effects are subject
to the hierarchy requirement.

MULTIPLE indicates that more than one effect can enter or leave the model at one time, subject
to the model hierarchy requirement. In a forward selection step, a single main effect can
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enter the model, or an interaction can enter the model together with all the effects that are
contained in the interaction. In a backward elimination step, an interaction itself, or the
interaction together with all the effects that the interaction contains, can be removed. All
effects (CLASS and continuous) are subject to the hierarchy requirement.

MULTIPLECLASS is the same as HIERARCHY=MULTIPLE except that only CLASS effects are
subject to the hierarchy requirement.

The default value is HIERARCHY=SINGLE, which means that model hierarchy is to be maintained
for all effects (that is, both CLASS and continuous effects) and that only a single effect can enter or
leave the model at each step.

INCLUDE=number | EQUALSLOPES
specifies effects in the MODEL statement to include in every model during model selection. You can
specify the following values:

number requests that the first number effects be included in every model.

EQUALSLOPES enables you to include all the equal slope effects in every model and perform the
selection process on the unequal slope effects.

By default, INCLUDE=0. The INCLUDE= option has no effect when SELECTION=NONE. You
cannot specify the INCLUDE=EQUALSLOPES option if you specify SELECTION=SCORE.

If you specify the same effect in both the EQUALSLOPES and UNEQUALSLOPES options, then
that effect is treated as two separate effects. For example, suppose you specify the following MODEL
statement:

model Y=X1 X2 / equalslopes unequalslopes selection=forward;

The X1 and X2 variables both generate an equal slope effect and an unequal slope effect. Specifying IN-
CLUDE=1 includes the equal slope effect for X1 in every model; specifying INCLUDE=2 includes both
the equal and unequal slope effects for X1 in every model; specifying INCLUDE=EQUALSLOPES
includes the equal slope effects for X1 and for X2 in every model.

Note that the INCLUDE= and START= options perform different tasks: the INCLUDE= option
includes effects in every model, whereas the START= option requires only that the effects appear in
the first model.

INFLUENCE< (STDRES) >
displays diagnostic measures for identifying influential observations in the case of a binary response
model. For each observation, the INFLUENCE option displays the case number (which is the sequence
number of the observation), the values of the explanatory variables included in the final model, and
the regression diagnostic measures developed by Pregibon (1981). The STDRES option includes
standardized and likelihood residuals in the display.

For a discussion of these diagnostic measures, see the section “Regression Diagnostics” on page 4590.
When a STRATA statement is specified, the diagnostics are computed following Storer and Crowley
(1985); for more information, see the section “Regression Diagnostic Details” on page 4599.
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IPLOTS
produces an index plot for the regression diagnostic statistics developed by Pregibon (1981). An index
plot is a scatter plot with the regression diagnostic statistic represented on the Y axis and the case
number on the X axis. See Example 60.6 for an illustration.

ITPRINT
displays the iteration history of the maximum-likelihood model fitting. The ITPRINT option also
displays the last evaluation of the gradient vector and the final change in the –2 Log Likelihood.

LACKFIT< (number ) >
performs the Hosmer and Lemeshow goodness-of-fit test (Hosmer and Lemeshow 2000) for the case of
a binary response model. The subjects are divided into approximately 10 groups of roughly the same
size based on the percentiles of the estimated probabilities. The discrepancies between the observed
and expected number of observations in these groups are summarized by the Pearson chi-square
statistic, which is then compared to a chi-square distribution with t degrees of freedom, where t is the
number of groups minus number. By default, number = 2. A small p-value suggests that the fitted
model is not an adequate model. The LACKFIT option is not available with the STRATA statement.
See the section “The Hosmer-Lemeshow Goodness-of-Fit Test” on page 4585 for more information.

LINK=keyword

L=keyword
specifies the link function linking the response probabilities to the linear predictors. You can specify
one of the following keywords. The default is LINK=LOGIT.

CLOGLOG is the complementary log-log function. PROC LOGISTIC fits the binary complementary
log-log model when there are two response categories and fits the cumulative complemen-
tary log-log model when there are more than two response categories. The aliases are
CCLOGLOG, CCLL, and CUMCLOGLOG.

GLOGIT is the generalized logit function. PROC LOGISTIC fits the generalized logit model where
each nonreference category is contrasted with the reference category. You can use the
response variable option REF= to specify the reference category.

LOGIT is the log odds function. PROC LOGISTIC fits the binary logit model when there are
two response categories and fits the cumulative logit model when there are more than two
response categories. The aliases are CLOGIT and CUMLOGIT.

PROBIT is the inverse standard normal distribution function. PROC LOGISTIC fits the binary probit
model when there are two response categories and fits the cumulative probit model when
there are more than two response categories. The aliases are NORMIT, CPROBIT, and
CUMPROBIT.

The LINK= option is not available with the STRATA statement.

For more information, see the section “Link Functions and the Corresponding Distributions” on
page 4565.

MAXFUNCTION=number
specifies the maximum number of function calls to perform when maximizing the conditional likelihood.
This option is valid only when you specify an EQUALSLOPES or UNEQUALSLOPES option, or you
specify a STRATA statement. The default values are as follows:
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• 125 when the number of parameters p < 40
• 500 when 40 � p < 400
• 1,000 when p � 400

Because the optimization is terminated only after completing a full iteration, the number of function
calls that are actually performed can exceed number . If convergence is not attained, the displayed
output and all output data sets that PROC LOGISTIC creates contain results that are based on the last
maximum likelihood iteration.

MAXITER=number
specifies the maximum number of iterations to perform. By default, MAXITER=25. If convergence is
not attained in number iterations, the displayed output and all output data sets created by the procedure
contain results that are based on the last maximum likelihood iteration.

MAXSTEP=number
specifies the maximum number of times any explanatory variable is added to or removed from the
model when SELECTION=STEPWISE. The default number is twice the number of explanatory
variables in the MODEL statement. When the MAXSTEP= limit is reached, the stepwise selection
process is terminated. All statistics displayed by the procedure (and included in output data sets) are
based on the last model fitted. The MAXSTEP= option has no effect when SELECTION=NONE,
FORWARD, or BACKWARD.

NOCHECK
disables the checking process to determine whether maximum likelihood estimates of the regression
parameters exist. If you are sure that the estimates are finite, this option can reduce the execution time
if the estimation takes more than eight iterations. For more information, see the section “Existence of
Maximum Likelihood Estimates” on page 4569.

NODUMMYPRINT

NODESIGNPRINT

NODP
suppresses the “Class Level Information” table, which shows how the design matrix columns for the
CLASS variables are coded.

NOINT
suppresses the intercept for the binary response model, the first intercept for the ordinal response model
(which forces all intercepts to be nonnegative), or all intercepts for the generalized logit model. This
can be particularly useful in conditional logistic analysis; see Example 60.11.

NOFIT
performs the global score test without fitting the model. The global score test evaluates the joint
significance of the effects in the MODEL statement. No further analyses are performed. If the NOFIT
option is specified along with other MODEL statement options, NOFIT takes effect and all other
options except FIRTH, LINK=, NOINT, OFFSET=, and TECHNIQUE= are ignored. The NOFIT
option is not available with the STRATA statement.

NOLOGSCALE
specifies that computations for the conditional and exact logistic regression models should be computed
by using normal scaling. Log scaling can handle numerically larger problems than normal scaling;
however, computations in the log scale are slower than computations in normal scale.
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NOODDSRATIO

NOOR
suppresses the default “Odds Ratio” table.

OFFSET=name
names the offset variable. The regression coefficient for this variable will be fixed at 1. For an example
that uses this option, see Example 60.14. You can also use the OFFSET= option to restrict parameters to
a fixed value. For example, if you want to restrict the parameter for variable X1 to 1 and the parameter
for X2 to 2, compute RestrictD X1C 2 �X2 in a DATA step, specify the option offset=Restrict,
and leave X1 and X2 out of the model.

OUTROC=SAS-data-set

OUTR=SAS-data-set
creates, for binary response models, an output SAS data set that contains the data necessary to produce
the receiver operating characteristic (ROC) curve. The OUTROC= option is not available with the
STRATA statement. See the section “OUTROC= Output Data Set” on page 4610 for the list of variables
in this data set.

PARMLABEL
displays the labels of the parameters in the “Analysis of Maximum Likelihood Estimates” table.

PCORR

computes the partial correlation statistic sign.ˇi /

r
�2
i
�2

�2 logL0
for each parameter i, where �2i is the

Wald chi-square statistic for the parameter and logL0 is the log-likelihood of the intercept-only model
(Hilbe 2009, p. 101). If �2i < 2 then the partial correlation is set to 0. The partial correlation for the
intercept terms is set to missing.

PEVENT=value| (list)
specifies one prior probability or a list of prior probabilities for the event of interest. The false positive
and false negative rates are then computed as posterior probabilities by Bayes’ theorem. The prior
probability is also used in computing the rate of correct prediction. For each prior probability in the
given list, a classification table of all observations is computed. By default, the prior probability is
the total sample proportion of events. The PEVENT= option is useful for stratified samples. It has no
effect if the CTABLE option is not specified. For more information, see the section “False Positive,
False Negative, and Correct Classification Rates Using Bayes’ Theorem” on page 4582. Also see the
PPROB= option for information about how the list is specified.

PLCL
is the same as specifying CLPARM=PL.

PLCONV=value
controls the convergence criterion for confidence intervals based on the profile-likelihood function.
The quantity value must be a positive number, with a default value of 1E–4. The PLCONV= option
has no effect if profile-likelihood confidence intervals (CLPARM=PL) are not requested.

PLRL
is the same as specifying CLODDS=PL.
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PPROB=value | (list)
specifies one critical probability value (or cutpoint) or a list of critical probability values for classifying
observations with the CTABLE option. Each value must be between 0 and 1. A response that has a
cross validated predicted probability greater than or equal to the current PPROB= value is classified as
an event response. The PPROB= option is ignored if the CTABLE option is not specified.

A classification table for each of several cutpoints can be requested by specifying a list. For example,
the following statement requests a classification of the observations for each of the cutpoints 0.3, 0.5,
0.6, 0.7, and 0.8:

pprob= (0.3, 0.5 to 0.8 by 0.1)

If the PPROB= option is not specified, the default is to display the classification for a range of
probabilities from the smallest estimated probability (rounded down to the nearest 0.02) to the highest
estimated probability (rounded up to the nearest 0.02) with 0.02 increments.

RIDGING=ABSOLUTE | RELATIVE | NONE
specifies the technique used to improve the log-likelihood function when its value in the current
iteration is less than that in the previous iteration. If you specify the RIDGING=ABSOLUTE option,
the diagonal elements of the negative (expected) Hessian are inflated by adding the ridge value. If you
specify the RIDGING=RELATIVE option, the diagonal elements are inflated by a factor of 1 plus the
ridge value. If you specify the RIDGING=NONE option, the crude line search method of taking half a
step is used instead of ridging. By default, RIDGING=RELATIVE.

RISKLIMITS

RL

WALDRL
is the same as specifying CLODDS=WALD.

ROCEPS=number
specifies a criterion for the ROC curve used for grouping estimated event probabilities that are close
to each other. In each group, the difference between the largest and the smallest estimated event
probabilities does not exceed the given value. The value for number must be between 0 and 1; the
default value is the square root of the machine epsilon, which is about 1E–8 (in releases prior to
9.2, the default was 1E–4). The smallest estimated probability in each group serves as a cutpoint for
predicting an event response. The ROCEPS= option has no effect unless the OUTROC= option, the
BINWIDTH=0 option, or a ROC statement is specified.

RSQUARE

RSQ
requests a generalized R Square measure for the fitted model. For more information, see the section
“Generalized Coefficient of Determination” on page 4573.

SCALE=scale
enables you to supply the value of the dispersion parameter or to specify the method for estimating
the dispersion parameter. It also enables you to display the “Deviance and Pearson Goodness-of-Fit
Statistics” table. To correct for overdispersion or underdispersion, the covariance matrix is multiplied
by the estimate of the dispersion parameter. Valid values for scale are as follows:
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D | DEVIANCE specifies that the dispersion parameter be estimated by the deviance divided by its
degrees of freedom.

P | PEARSON specifies that the dispersion parameter be estimated by the Pearson chi-square
statistic divided by its degrees of freedom.

WILLIAMS < (constant) > specifies that Williams’ method be used to model overdispersion. This
option can be used only with the events/trials syntax. An optional constant can be specified
as the scale parameter; otherwise, a scale parameter is estimated under the full model. A
set of weights is created based on this scale parameter estimate. These weights can then be
used in fitting subsequent models of fewer terms than the full model. When fitting these
submodels, specify the computed scale parameter as constant . See Example 60.10 for an
illustration.

N | NONE specifies that no correction is needed for the dispersion parameter; that is, the dispersion
parameter remains as 1. This specification is used for requesting the deviance and the
Pearson chi-square statistic without adjusting for overdispersion.

constant sets the estimate of the dispersion parameter to be the square of the given constant . For
example, SCALE=2 sets the dispersion parameter to 4. The value constant must be a
positive number.

You can use the AGGREGATE (or AGGREGATE=) option to define the subpopulations for calcu-
lating the Pearson chi-square statistic and the deviance. In the absence of the AGGREGATE (or
AGGREGATE=) option, each observation is regarded as coming from a different subpopulation. For
the events/trials syntax, each observation consists of n Bernoulli trials, where n is the value of the trials
variable. For single-trial syntax, each observation consists of a single response, and for this setting it is
not appropriate to carry out the Pearson or deviance goodness-of-fit analysis. Thus, PROC LOGISTIC
ignores specifications SCALE=P, SCALE=D, and SCALE=N when single-trial syntax is specified
without the AGGREGATE (or AGGREGATE=) option.

The “Deviance and Pearson Goodness-of-Fit Statistics” table includes the Pearson chi-square statistic,
the deviance, the degrees of freedom, the ratio of each statistic divided by its degrees of freedom, and
the corresponding p-value. The SCALE= option is not available with the STRATA statement. For
more information, see the section “Overdispersion” on page 4583.

SELECTION=BACKWARD | B

| FORWARD | F

| NONE | N

| STEPWISE | S

| SCORE
specifies the method used to select the variables in the model. BACKWARD requests backward
elimination, FORWARD requests forward selection, NONE fits the complete model specified in the
MODEL statement, and STEPWISE requests stepwise selection. SCORE requests best subset selection.
By default, SELECTION=NONE.

For more information, see the section “Effect-Selection Methods” on page 4571.
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SEQUENTIAL

SEQ
forces effects to be added to the model in the order specified in the MODEL statement or eliminated
from the model in the reverse order of that specified in the MODEL statement. The model-building
process continues until the next effect to be added has an insignificant adjusted chi-square statistic or
until the next effect to be deleted has a significant Wald chi-square statistic. The SEQUENTIAL option
has no effect when SELECTION=NONE.

SINGULAR=value
specifies the tolerance for testing the singularity of the Hessian matrix (Newton-Raphson algorithm) or
the expected value of the Hessian matrix (Fisher scoring algorithm). The Hessian matrix is the matrix
of second partial derivatives of the log-likelihood function. The test requires that a pivot for sweeping
this matrix be at least this number times a norm of the matrix. Values of the SINGULAR= option must
be numeric. By default, value is the machine epsilon times 1E7, which is approximately 1E–9.

SLENTRY=value

SLE=value
specifies the significance level of the score chi-square for entering an effect into the model in the FOR-
WARD or STEPWISE method. Values of the SLENTRY= option should be between 0 and 1, inclusive.
By default, SLENTRY=0.05. The SLENTRY= option has no effect when SELECTION=NONE,
SELECTION=BACKWARD, or SELECTION=SCORE.

SLSTAY=value

SLS=value
specifies the significance level of the Wald chi-square for an effect to stay in the model in a back-
ward elimination step. Values of the SLSTAY= option should be between 0 and 1, inclusive. By
default, SLSTAY=0.05. The SLSTAY= option has no effect when SELECTION=NONE, SELEC-
TION=FORWARD, or SELECTION=SCORE.

START=number | EQUALSLOPES
specifies which effects in the MODEL statement are included in the initial model. You can specify the
following values:

number requests that the first number effects be included in the initial model. The
value of number ranges from 0 to s, where s is the total number of effects
that are specified in the MODEL statement. The default value of number is
s when SELECTION=BACKWARD and 0 when SELECTION=FORWARD
or SELECTION=STEPWISE. When SELECTION=SCORE, START=number
specifies that the smallest models contain number effects, where number ranges
from 1 to s; the default value is 1.

EQUALSLOPES enables you to begin the model selection process with all the equal slope effects
in the model.

The START= option has no effect when SELECTION=NONE. You cannot specify the
START=EQUALSLOPES option if you specify SELECTION=SCORE.

If you specify the same effect in both the EQUALSLOPES and UNEQUALSLOPES options, then
that effect is treated as two separate effects. For example, suppose you specify the following MODEL
statement:
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model Y=X1 X2 / equalslopes unequalslopes selection=forward;

The X1 and X2 variables both generate an equal slope effect and an unequal slope effect. Specifying
START=1 includes the equal slope effect for X1 in the initial model; specifying START=2 includes both
the equal and unequal slope effects for X1 in the initial model; specifying START=EQUALSLOPES
includes the equal slope effects for X1 and for X2 in the initial model.

Note that the INCLUDE= and START= options perform different tasks: the INCLUDE= option
includes effects in every model, whereas the START= option requires only that the effects appear in
the first model.

STB

displays the standardized estimates for the parameters in the “Analysis of Maximum Likelihood
Estimates” table. The standardized estimate of ˇi is given by b̌i=.s=si /, where si is the total sample
standard deviation for the ith explanatory variable and

s D

8<:
�=
p
3 Logistic

1 Normal
�=
p
6 Extreme-value

The sample standard deviations for parameters associated with CLASS and EFFECT variables are
computed using their codings. For the intercept parameters, the standardized estimates are set to
missing.

STOP=number
specifies the maximum (SELECTION=FORWARD) or minimum (SELECTION=BACKWARD)
number of effects to be included in the final model. The effect selection process is stopped when
number effects are found. The value of number ranges from 0 to s, where s is the total number of
effects in the MODEL statement. The default value of number is s for the FORWARD method and
0 for the BACKWARD method. For the SCORE method, STOP=number specifies that the largest
models contain number effects, where number ranges from 1 to s; the default value of number is s.
The STOP= option has no effect when SELECTION=NONE or STEPWISE.

STOPRES

SR
specifies that the removal or entry of effects be based on the value of the residual chi-square. If
SELECTION=FORWARD, then the STOPRES option adds the effects into the model one at a time
until the residual chi-square becomes insignificant (until the p-value of the residual chi-square exceeds
the SLENTRY= value). If SELECTION=BACKWARD, then the STOPRES option removes effects
from the model one at a time until the residual chi-square becomes significant (until the p-value of the
residual chi-square becomes less than the SLSTAY= value). The STOPRES option has no effect when
SELECTION=NONE or SELECTION=STEPWISE.

TECHNIQUE=FISHER | NEWTON

TECH=FISHER | NEWTON
specifies the optimization technique for estimating the regression parameters. NEWTON (or NR) is
the Newton-Raphson algorithm and FISHER (or FS) is the Fisher scoring algorithm. Both techniques
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yield the same estimates, but the estimated covariance matrices are slightly different except for the case
when the LOGIT link is specified for binary response data. The default is TECHNIQUE=FISHER.
If the LINK=GLOGIT option is specified, then Newton-Raphson is the default and only available
method. The TECHNIQUE= option is not applied to conditional and exact conditional analyses. This
option is not available when the EQUALSLOPES or UNEQUALSLOPES option is specified. For
more information, see the section “Iterative Algorithms for Model Fitting” on page 4567.

UNEQUALSLOPES< =effect >

UNEQUALSLOPES< =(effect-list) >
specifies one or more effects in a model for which you want a different set of parameters for each
response function. If you specify more than one effect, enclose the effects in parentheses. The effects
must be explanatory effects that are specified in the MODEL statement. Each member of the effect-list
can have one of the following forms:

effect
effect=numberlist
_C_=numberlist

where the numberlist enables you to specify constrained parameters (Peterson and Harrell 1990). To
assign a default numberlist for all the explanatory effects in this option, specify the _C_=numberlist
form. Constrained parameters are not currently available when LINK=GLOGIT.

For example, suppose your ordinal response variable Y has three levels, {0, 1, 2}, so that you have two
response functions. Let the CLASS variable A have three levels, {a, b, c}, with reference coding. The
following table shows how the numberlist is distributed across the models:

If You Specify Then You Fit This Model

unequalslopes=(A=1 2 3 4) F.Pr.Y D 0// D ˛0 C 1.A D ’a’/ˇ1 C 3.A D ’b’/ˇ2
F.Pr.Y � 1// D ˛1 C 2.A D ’a’/ˇ1 C 4.A D ’b’/ˇ2

unequalslopes=(_C_=1 2) F.Pr.Y D 0// D ˛0 C 1.A D ’a’/ˇ1 C 1.A D ’b’/ˇ2
F.Pr.Y � 1// D ˛1 C 2.A D ’a’/ˇ1 C 2.A D ’b’/ˇ2

If you do not specify this option, the cumulative response models make the parallel lines assumption,
F.Pr.Y � i// D ˛i C x0ˇ, where each response function has the same slope parameters ˇ. If
you specify this option without an effect or effect-list , all slope parameters vary across the response
functions, resulting in the model F.Pr.Y � i// D ˛iCx0ˇi . Specifying an effect or effect-list enables
you to choose which effects have different parameters across the response functions, and whether
the parameters are constrained or unconstrained. For any specified selection method, unconstrained
parameters can contain and be contained in only other unconstrained parameters, and constrained
parameters can contain and be contained in only other constrained parameters; for more information, see
the HIERARCHY= option. If you select the first x1 parameters to have equal slopes and the remaining
x2 parameters to have unequal slopes, the model can be written as F.Pr.Y � i// D ˛iCx01ˇ1Cx02ˇ2i .
Such a model that uses the CLOGIT link is called a partial proportional odds model (Peterson and
Harrell 1990).

You can specify this option along with the EQUALSLOPES option to create an effect that has both
equal and unequal slopes. In this case, the parameters that have equal slopes model the mean effect
across the response functions, whereas the parameters that have unequal slopes model deviations from
the mean. To distinguish between these two types of parameters, the unconstrained unequal slope
parameters are prefixed with “U_” and the constrained parameters are prefixed with “C_”. You can use
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the “Joint Tests” or “Type 3 Analysis of Effects” table to test whether the unequal slope parameters are
zero.

For an example that uses this option, see Example 60.18. If you specify the UNEQUALSLOPES option,
you cannot specify any of the EFFECTPLOT, ESTIMATE, EXACT, LSMEANS, LSMESTIMATE,
ROC, ROCCONTRAST, SLICE, STORE, and STRATA statements, and you cannot specify the follow-
ing options: CTABLE, FIRTH, OUTROC=, PEVENT=, PPROB=, RIDGING=, and TECHNIQUE=.

WALDCL

CL
is the same as specifying CLPARM=WALD.

XCONV=value
specifies the relative parameter convergence criterion. Convergence requires a small relative parameter
change in subsequent iterations,

max
j
jı
.i/
j j < value

where

ı
.i/
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ˇ
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otherwise

and ˇ.i/j is the estimate of the jth parameter at iteration i. See the section “Convergence Criteria” on
page 4569 for more information.

NLOPTIONS Statement
NLOPTIONS < options > ;

The NLOPTIONS statement controls the optimization process for conditional analyses (which result from
specifying a STRATA statement) and for partial parallel slope models (which result from specifying the
EQUALSLOPES or UNEQUALSLOPES option in the MODEL statement). An option that is specified in the
NLOPTIONS statement takes precedence over the same option specified in the MODEL statement.

The default optimization techniques are chosen according to the number of parameters, p, as follows:

• Newton-Raphson with ridging when p < 40
• quasi-Newton when 40 � p < 400
• conjugate gradient when p � 400

The available options are described in the section “NLOPTIONS Statement” on page 488 in Chapter 19,
“Shared Concepts and Topics.”
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ODDSRATIO Statement
ODDSRATIO < 'label ' > variable < / options > ;

The ODDSRATIO statement produces odds ratios for variable even when the variable is involved in inter-
actions with other covariates, and for classification variables that use any parameterization. You can also
specify variables on which constructed effects are based, in addition to the names of COLLECTION or
MULTIMEMBER effects. You can specify several ODDSRATIO statements.

If variable is continuous, then the odds ratios honor any values specified in the UNITS statement. If variable
is a classification variable, then odds ratios comparing each pairwise difference between the levels of variable
are produced. If variable interacts with a continuous variable, then the odds ratios are produced at the mean
of the interacting covariate by default. If variable interacts with a classification variable, then the odds ratios
are produced at each level of the interacting covariate by default. The computed odds ratios are independent
of the parameterization of any classification variable.

The odds ratios are uniquely labeled by concatenating the following terms to variable:

1. If this is a polytomous response model, then prefix the response variable and the level describing the
logit followed by a colon; for example, “Y 0:”.

2. If variable is continuous and the UNITS statement provides a value that is not equal to 1, then append
“Units=value”; otherwise, if variable is a classification variable, then append the levels being contrasted;
for example, “cat vs dog”.

3. Append all interacting covariates preceded by “At”; for example, “At X=1.2 A=cat”.

If you are also creating odds ratio plots, then this label is displayed on the plots (see the PLOTS option for
more information). If you specify a 'label' in the ODDSRATIO statement, then the odds ratios produced by
this statement are also labeled: 'label', 'label 2', 'label 3',. . . , and these are the labels used in the plots. If there
are any duplicated labels across all ODDSRATIO statements, then the corresponding odds ratios are not
displayed on the plots.

The following options are available:

AT(covariate=value-list | REF | ALL< . . . covariate=value-list | REF | ALL >)
specifies fixed levels of the interacting covariates. If a specified covariate does not interact with the
variable, then its AT list is ignored.

For continuous interacting covariates, you can specify one or more numbers in the value-list . For
classification covariates, you can specify one or more formatted levels of the covariate enclosed in
single quotes (for example, A=’cat’ ’dog’), you can specify the keyword REF to select the reference-
level, or you can specify the keyword ALL to select all levels of the classification variable. By default,
continuous covariates are set to their means, while CLASS covariates are set to ALL. For a model that
includes a classification variable A={cat,dog} and a continuous covariate X, specifying AT(A=’cat’

X=7 9) will set A to ’cat’, and X to 7 and then 9.

CL=WALD | PL | BOTH
specifies whether to create Wald or profile-likelihood confidence limits, or both. By default, Wald
confidence limits are produced.
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DIFF=REF | ALL
specifies whether the odds ratios for a classification variable are computed against the reference level,
or all pairs of variable are compared. By default, DIFF=ALL. The DIFF= option is ignored when
variable is continuous.

PLCONV=value
controls the convergence criterion for confidence intervals based on the profile-likelihood function.
The quantity value must be a positive number, with a default value of 1E–4. The PLCONV= option
has no effect if profile-likelihood confidence intervals (CL=PL) are not requested.

PLMAXITER=number
specifies the maximum number of iterations to perform. By default, PLMAXITER=25. If conver-
gence is not attained in number iterations, the odds ratio or the confidence limits are set to missing.
The PLMAXITER= option has no effect if profile-likelihood confidence intervals (CL=PL) are not
requested.

PLSINGULAR=value
specifies the tolerance for testing the singularity of the Hessian matrix (Newton-Raphson algorithm) or
the expected value of the Hessian matrix (Fisher scoring algorithm). The test requires that a pivot for
sweeping this matrix be at least this number times a norm of the matrix. Values of the PLSINGULAR=
option must be numeric. By default, value is the machine epsilon times 1E7, which is approximately
1E–9. The PLSINGULAR= option has no effect if profile-likelihood confidence intervals (CL=PL) are
not requested.

OUTPUT Statement
OUTPUT < OUT=SAS-data-set > < options > ;

The OUTPUT statement creates a new SAS data set that contains all the variables in the input data set and,
optionally, the estimated linear predictors and their standard error estimates, the estimates of the cumulative
or individual response probabilities, and the confidence limits for the cumulative probabilities. Regression
diagnostic statistics and estimates of cross validated response probabilities are also available for binary
response models. If you specify more than one OUTPUT statement, only the last one is used. Formulas for
the statistics are given in the sections “Linear Predictor, Predicted Probability, and Confidence Limits” on
page 4580 and “Regression Diagnostics” on page 4590, and, for conditional logistic regression, in the section
“Conditional Logistic Regression” on page 4598.

If you use the single-trial syntax, the data set also contains a variable named _LEVEL_, which indicates the
level of the response that the given row of output is referring to. For instance, the value of the cumulative
probability variable is the probability that the response variable is as large as the corresponding value of
_LEVEL_. For more information, see the section “OUT= Output Data Set in the OUTPUT Statement” on
page 4607.

The estimated linear predictor, its standard error estimate, all predicted probabilities, and the confidence
limits for the cumulative probabilities are computed for all observations in which the explanatory variables
have no missing values, even if the response is missing. By adding observations with missing response values
to the input data set, you can compute these statistics for new observations or for settings of the explanatory
variables not present in the data without affecting the model fit. Alternatively, the SCORE statement can be
used to compute predicted probabilities and confidence intervals for new observations.
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Table 60.9 summarizes the options available in the OUTPUT statement. These options can be specified
after a slash (/). The statistic and diagnostic options specify the statistics to be included in the output data
set and name the new variables that contain the statistics. If a STRATA statement is specified, only the
PREDICTED=, RESCHI=, STDRESCHI=, DFBETAS=, and H= options are available; for more information,
see the section “Regression Diagnostic Details” on page 4599.

Table 60.9 OUTPUT Statement Options

Option Description

ALPHA= Specifies ˛ for the 100.1 � ˛/% confidence intervals
OUT= Names the output data set
Statistic Options
LOWER= Names the lower confidence limit
PREDICTED= Names the predicted probabilities
PREDPROBS= Requests the individual, cumulative, or cross validated predicted probabili-

ties
STDXBETA= Names the standard error estimate of the linear predictor
UPPER= Names the upper confidence limit
XBETA= Names the linear predictor
Diagnostic Options for Binary Response
C= Names the confidence interval displacement
CBAR= Names the confidence interval displacement
DFBETAS= Names the standardized deletion parameter differences
DIFCHISQ= Names the deletion chi-square goodness-of-fit change
DIFDEV= Names the deletion deviance change
H= Names the leverage
RESCHI= Names the Pearson chi-square residual
RESDEV= Names the deviance residual
RESLIK= Names the likelihood residual
STDRESCHI= Names the standardized Pearson chi-square residual
STDRESDEV= Names the standardized deviance residual

The following list describes these options.

ALPHA=number
sets the level of significance ˛ for 100.1 � ˛/% confidence limits for the appropriate response
probabilities. The value of number must be between 0 and 1. By default, number is equal to the value
of the ALPHA= option in the PROC LOGISTIC statement, or 0.05 if that option is not specified.

C=name
specifies the confidence interval displacement diagnostic that measures the influence of individual
observations on the regression estimates.

CBAR=name
specifies the confidence interval displacement diagnostic that measures the overall change in the global
regression estimates due to deleting an individual observation.
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DFBETAS=_ALL_ | var-list
specifies the standardized differences in the regression estimates for assessing the effects of individual
observations on the estimated regression parameters in the fitted model. You can specify a list of up
to s C 1 variable names, where s is the number of explanatory variables in the MODEL statement,
or you can specify just the keyword _ALL_. In the former specification, the first variable contains
the standardized differences in the intercept estimate, the second variable contains the standardized
differences in the parameter estimate for the first explanatory variable in the MODEL statement,
and so on. In the latter specification, the DFBETAS statistics are named DFBETA_xxx, where xxx
is the name of the regression parameter. For example, if the model contains two variables X1 and
X2, the specification DFBETAS=_ALL_ produces three DFBETAS statistics: DFBETA_Intercept,
DFBETA_X1, and DFBETA_X2. If an explanatory variable is not included in the final model, the
corresponding output variable named in DFBETAS=var-list contains missing values.

DIFCHISQ=name
specifies the change in the chi-square goodness-of-fit statistic attributable to deleting the individual
observation.

DIFDEV=name
specifies the change in the deviance attributable to deleting the individual observation.

H=name
specifies the diagonal element of the hat matrix for detecting extreme points in the design space.

LOWER=name

L=name
names the variable containing the lower confidence limits for � , where � is the probability of the event
response if events/trials syntax or single-trial syntax with binary response is specified; for a cumulative
model, � is the cumulative probability (that is, the probability that the response is less than or equal
to the value of _LEVEL_); for the generalized logit model, it is the individual probability (that is, the
probability that the response category is represented by the value of _LEVEL_). See the ALPHA=
option to set the confidence level.

OUT=SAS-data-set
names the output data set. If you omit the OUT= option, the output data set is created and given a
default name by using the DATAn convention.

PREDICTED=name

PRED=name

PROB=name

P=name
names the variable containing the predicted probabilities. For the events/trials syntax or single-trial
syntax with binary response, it is the predicted event probability. For a cumulative model, it is the
predicted cumulative probability (that is, the probability that the response variable is less than or equal
to the value of _LEVEL_); and for the generalized logit model, it is the predicted individual probability
(that is, the probability of the response category represented by the value of _LEVEL_).
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PREDPROBS=(keywords)
requests individual, cumulative, or cross validated predicted probabilities. Descriptions of the keywords
are as follows.

INDIVIDUAL | I requests the predicted probability of each response level. For a response variable Y
with three levels, 1, 2, and 3, the individual probabilities are Pr(Y=1), Pr(Y=2), and Pr(Y=3).

CUMULATIVE | C requests the cumulative predicted probability of each response level. For a
response variable Y with three levels, 1, 2, and 3, the cumulative probabilities are Pr(Y�1),
Pr(Y�2), and Pr(Y�3). The cumulative probability for the last response level always has
the constant value of 1. For generalized logit models, the cumulative predicted probabilities
are not computed and are set to missing.

CROSSVALIDATE | XVALIDATE | X requests the cross validated individual predicted probability
of each response level. These probabilities are derived from the leave-one-out principle—
that is, dropping the data of one subject and reestimating the parameter estimates. PROC
LOGISTIC uses a less expensive one-step approximation to compute the parameter estimates.
This option is valid only for binary response models; for nominal and ordinal models, the
cross validated probabilities are not computed and are set to missing.

For more information, see the section “Details of the PREDPROBS= Option” on page 4554 at the end
of this section.

RESCHI=name
specifies the Pearson (chi-square) residual for identifying observations that are poorly accounted for by
the model.

RESDEV=name
specifies the deviance residual for identifying poorly fitted observations.

RESLIK=name
specifies the likelihood residual for identifying poorly fitted observations.

STDRESCHI=name
specifies the standardized Pearson (chi-square) residual for identifying observations that are poorly
accounted for by the model.

STDRESDEV=name
specifies the standardized deviance residual for identifying poorly fitted observations.

STDXBETA=name
names the variable containing the standard error estimates of XBETA. For more information, see the
section “Linear Predictor, Predicted Probability, and Confidence Limits” on page 4580.

UPPER=name

U=name
names the variable containing the upper confidence limits for � , where � is the probability of the event
response if events/trials syntax or single-trial syntax with binary response is specified; for a cumulative
model, � is cumulative probability (that is, the probability that the response is less than or equal to
the value of _LEVEL_); for the generalized logit model, it is the individual probability (that is, the
probability that the response category is represented by the value of _LEVEL_). See the ALPHA=
option to set the confidence level.
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XBETA=name
names the variable containing the estimates of the linear predictor ˛iCˇ0x, where i is the corresponding
ordered value of _LEVEL_.

Details of the PREDPROBS= Option

You can request any of the three types of predicted probabilities. For example, you can request both the
individual predicted probabilities and the cross validated probabilities by specifying PREDPROBS=(I X).

When you specify the PREDPROBS= option, two automatic variables, _FROM_ and _INTO_, are included
for the single-trial syntax and only one variable, _INTO_, is included for the events/trials syntax. The variable
_FROM_ contains the formatted value of the observed response. The variable _INTO_ contains the formatted
value of the response level with the largest individual predicted probability.

If you specify PREDPROBS=INDIVIDUAL, the OUT= data set contains k additional variables representing
the individual probabilities, one for each response level, where k is the maximum number of response levels
across all BY groups. The names of these variables have the form IP_xxx, where xxx represents the particular
level. The representation depends on the following situations:

• If you specify events/trials syntax, xxx is either ‘Event’ or ‘Nonevent’. Thus, the variable containing
the event probabilities is named IP_Event and the variable containing the nonevent probabilities is
named IP_Nonevent.

• If you specify the single-trial syntax with more than one BY group, xxx is 1 for the first ordered level
of the response, 2 for the second ordered level of the response, and so forth, as given in the “Response
Profile” table. The variable containing the predicted probabilities Pr(Y=1) is named IP_1, where Y is
the response variable. Similarly, IP_2 is the name of the variable containing the predicted probabilities
Pr(Y=2), and so on.

• If you specify the single-trial syntax with no BY-group processing, xxx is the left-justified formatted
value of the response level (the value might be truncated so that IP_xxx does not exceed 32 characters).
For example, if Y is the response variable with response levels ‘None’, ‘Mild’, and ‘Severe’, the
variables representing individual probabilities Pr(Y=’None’), P(Y=’Mild’), and P(Y=’Severe’) are
named IP_None, IP_Mild, and IP_Severe, respectively.

If you specify PREDPROBS=CUMULATIVE, the OUT= data set contains k additional variables representing
the cumulative probabilities, one for each response level, where k is the maximum number of response
levels across all BY groups. The names of these variables have the form CP_xxx, where xxx represents the
particular response level. The naming convention is similar to that given by PREDPROBS=INDIVIDUAL.
The PREDPROBS=CUMULATIVE values are the same as those output by the PREDICT= option, but are
arranged in variables on each output observation rather than in multiple output observations.

If you specify PREDPROBS=CROSSVALIDATE, the OUT= data set contains k additional variables repre-
senting the cross validated predicted probabilities of the k response levels, where k is the maximum number
of response levels across all BY groups. The names of these variables have the form XP_xxx, where xxx
represents the particular level. The representation is the same as that given by PREDPROBS=INDIVIDUAL
except that for the events/trials syntax there are four variables for the cross validated predicted probabilities
instead of two:
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XP_EVENT_R1E is the cross validated predicted probability of an event when a single event is removed
from the current observation.

XP_NONEVENT_R1E is the cross validated predicted probability of a nonevent when a single event is
removed from the current observation.

XP_EVENT_R1N is the cross validated predicted probability of an event when a single nonevent is removed
from the current observation.

XP_NONEVENT_R1N is the cross validated predicted probability of a nonevent when a single nonevent is
removed from the current observation.

The cross validated predicted probabilities are precisely those used in the CTABLE option. For more
information about the computation, see the section “Predicted Probability of an Event for Classification” on
page 4582.

ROC Statement
ROC < 'label ' > < specification > < / options > ;

The ROC statements specify models to be used in the ROC comparisons. You can specify more than one
ROC statement. ROC statements are identified by their label—if you do not specify a label , the ith ROC
statement is labeled “ROCi”. Additionally, the specified or selected model is labeled with the MODEL
statement label or “Model” if the MODEL label is not present. The specification can be either a list of effects
that have previously been specified in the MODEL statement, or PRED=variable, where the variable does not
have to be specified in the MODEL statement. The PRED= option enables you to input a criterion produced
outside PROC LOGISTIC; for example, you can fit a random-intercept model by using PROC GLIMMIX
or use survey weights in PROC SURVEYLOGISTIC, then use the predicted values from those models to
produce an ROC curve for the comparisons. If you do not make a specification, then an intercept-only model
is fit to the data, resulting in a noninformative ROC curve that can be used for comparing the area under
another ROC curve to 0.5.

You can specify a ROCCONTRAST statement and a ROCOPTIONS option in the PROC LOGISTIC
statement to control how the models are compared, while the PLOTS=ROC option controls the ODS Graphics
displays. See Example 60.8 for an example that uses the ROC statement.

If you specify any options, then a “ROC Model Information” table summarizing the new ROC model is
displayed. The options are ignored for the PRED= specification. The following options are available:

NOOFFSET
does not include an offset variable if the OFFSET= option is specified in the MODEL statement.
A constant offset has no effect on the ROC curve, although the cutpoints might be different, but a
nonconstant offset can affect the parameter estimates and hence the ROC curve.

LINK=keyword
specifies the link function to be used in the model. The available keywords are LOGIT, NORMIT, and
CLOGLOG. The logit link is the default. Note that the LINK= option in the MODEL statement is
ignored.
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ROCCONTRAST Statement
ROCCONTRAST < 'label ' > < contrast > < / options > ;

The ROCCONTRAST statement compares the different ROC models. You can specify only one ROCCON-
TRAST statement. The ROCOPTIONS options in the PROC LOGISTIC statement control how the models
are compared. You can specify one of the following contrast specifications:

REFERENCE< (MODEL | ’roc-label’) >
produces a contrast matrix of differences between each ROC curve and a reference curve. The MODEL
keyword specifies that the reference curve is that produced from the MODEL statement; the roc-label
specifies the label of the ROC curve that is to be used as the reference curve. If neither the MODEL
keyword nor the roc-label label is specified, then the reference ROC curve is either the curve produced
from the MODEL statement, the selected model if a selection method is specified, or the model from
the first ROC statement if the NOFIT option is specified.

ADJACENTPAIRS
produces a contrast matrix of each ROC curve minus the succeeding curve.

matrix
specifies the contrast in the form row1,row2,..., where each row contains the coefficients used to
compare the ROC curves. Each row must contain the same number of entries as there are ROC curves
being compared. The elements of each row refer to the ROC statements in the order in which they are
specified. However, the first element of each row refers either to the fitted model, the selected model
if a SELECTION= method is specified, or the first specified ROC statement if the NOFIT option is
specified.

If no contrast is specified, then the REFERENCE contrast with the default reference curve is used. See the
section “Comparing ROC Curves” on page 4587 for more information about comparing ROC curves, and see
Example 60.8 for an example.

The following options are available:

E
displays the contrast.

ESTIMATE < = ROWS | ALLPAIRS >
produces estimates of each row of the contrast when ESTIMATE or ESTIMATE=ROWS is specified.
If the ESTIMATE=ALLPAIRS option is specified, then estimates of every pairwise difference of ROC
curves are produced.

The row contrasts are labeled “ModelLabel1 – ModelLabel2”, where the model labels are as described
in the ROC statement; in particular, for the REFERENCE contrast, ModelLabel2 is the reference model
label. If you specify your own contrast matrix, then the ith contrast row estimate is labeled “Rowi”.

COV
displays covariance matrices used in the computations.
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SCORE Statement
SCORE < options > ;

The SCORE statement creates a data set that contains all the data in the DATA= data set together with
posterior probabilities and, optionally, prediction confidence intervals. Fit statistics are displayed on request.
If you have binary response data, the SCORE statement can be used to create a data set containing data for
the ROC curve. You can specify several SCORE statements. FREQ, WEIGHT, and BY statements can be
used with the SCORE statements. Weights do not affect the computation of predicted probabilities, their
confidence limits, or the predicted response level. Weights affect some fit statistics as described in “Fit
Statistics for Scored Data Sets” on page 4594. The SCORE statement is not available with the STRATA
statement.

If a SCORE statement is specified in the same run as fitting the model, FORMAT statements should be
specified after the SCORE statement in order for the formats to apply to all the DATA= and PRIOR= data
sets in the SCORE statement.

See the section “Scoring Data Sets” on page 4593 for more information, and see Example 60.16 for an
illustration of how to use this statement.

Table 60.10 summarizes the options available in the SCORE statement.

Table 60.10 SCORE Statement Options

Option Description

ALPHA= Specifies the significance level
CLM Outputs the Wald-test-based confidence limits
CUMULATIVE Outputs the cumulative predicted probabilities
DATA= Names the SAS data that you want to score
FITSTAT Displays fit statistics
OUT= Names the SAS data set that contains the predicted information
OUTROC= Names the SAS data set that contains the ROC curve
PRIOR= Names the SAS data set that contains the priors of the response categories
PRIOREVENT= Specifies the prior event probability
ROCEPS= Specifies the criterion for grouping estimated event probabilities

You can specify the following options:

ALPHA=number
specifies the significance level ˛ for 100.1 � ˛/% confidence intervals. By default, the value of
number is equal to the ALPHA= option in the PROC LOGISTIC statement, or 0.05 if that option is
not specified. This option has no effect unless the CLM option in the SCORE statement is requested.

CLM
outputs the Wald-test-based confidence limits for the predicted probabilities. This option is not available
when the INMODEL= data set is created with the NOCOV option.
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CUMULATIVE
outputs the cumulative predicted probabilities Pr.Y � i/; i D 1; : : : ; k C 1, to the OUT= data set.
This option is valid only when you have more than two response levels; otherwise, the option is ignored
and a note is printed in the SAS log. These probabilities are named CP_level_i, where level_i is the ith
response level.

If the CLM option is also specified in the SCORE statement, then the Wald-based confidence limits for
the cumulative predicted probabilities are also output. The confidence limits are named CLCL_level_i
and CUCL_level_i. In particular, for the lowest response level, the cumulative values (CP, CLCL,
CUCL) should be identical to the individual values (P, LCL, UCL), and for the highest response level
CP=CLCL=CUCL=1.

DATA=SAS-data-set
names the SAS data set that you want to score. If you omit the DATA= option in the SCORE statement,
then scoring is performed on the DATA= input data set in the PROC LOGISTIC statement, if specified;
otherwise, the DATA=_LAST_ data set is used.

It is not necessary for the DATA= data set in the SCORE statement to contain the response variable
unless you are specifying the FITSTAT or OUTROC= option.

Only those variables involved in the fitted model effects are required in the DATA= data set in the
SCORE statement. For example, the following statements use forward selection to select effects:

proc logistic data=Neuralgia outmodel=sasuser.Model;
class Treatment Sex;
model Pain(event='Yes')= Treatment|Sex Age

/ selection=forward sle=.01;
run;

Suppose Treatment and Age are the effects selected for the final model. You can score a data set that
does not contain the variable Sex because the effect Sex is not in the model that the scoring is based
on. For example, the following statements score the Neuralgia data set after dropping the Sex variable:

proc logistic inmodel=sasuser.Model;
score data=Neuralgia(drop=Sex);

run;

FITSTAT
displays fit statistics for the data set you are scoring. The data set must contain the response variable.
For more information, see the section “Fit Statistics for Scored Data Sets” on page 4594.

OUT=SAS-data-set
names the SAS data set that contains the predicted information. If you omit the OUT= option, the
output data set is created and given a default name by using the DATAn convention.

OUTROC=SAS-data-set
names the SAS data set that contains the ROC curve for the DATA= data set. The ROC curve is
computed only for binary response data. See the section “OUTROC= Output Data Set” on page 4610
for the list of variables in this data set.
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PRIOR=SAS-data-set
names the SAS data set that contains the priors of the response categories. The priors can be values
proportional to the prior probabilities; thus, they do not necessarily sum to one. This data set should
include a variable named _PRIOR_ that contains the prior probabilities. For events/trials MODEL
statement syntax, this data set should also include an _OUTCOME_ variable that contains the values
EVENT and NONEVENT; for single-trial syntax, this data set should include the response variable
that contains the unformatted response categories. See Example 60.16 for an example.

PRIOREVENT=value
specifies the prior event probability for a binary response model. If both PRIOR= and PRIOREVENT=
options are specified, the PRIOR= option takes precedence.

ROCEPS=value
specifies the criterion for grouping estimated event probabilities that are close to each other for the ROC
curve. In each group, the difference between the largest and the smallest estimated event probability
does not exceed the given value. The value must be between 0 and 1; the default value is the square
root of the machine epsilon, which is about 1E–8 (in releases prior to 9.2, the default was 1E–4). The
smallest estimated probability in each group serves as a cutpoint for predicting an event response. The
ROCEPS= option has no effect if the OUTROC= option is not specified in the SCORE statement.

SLICE Statement
SLICE model-effect < / options > ;

The SLICE statement provides a general mechanism for performing a partitioned analysis of the LS-means
for an interaction. This analysis is also known as an analysis of simple effects.

The SLICE statement uses the same options as the LSMEANS statement, which are summarized in Ta-
ble 19.21. For details about the syntax of the SLICE statement, see the section “SLICE Statement” on
page 505 in Chapter 19, “Shared Concepts and Topics.”

NOTE: If you have classification variables in your model, then the SLICE statement is allowed only if you
also specify the PARAM=GLM option.

STORE Statement
STORE < OUT= >item-store-name < / LABEL='label ' > ;

The STORE statement requests that the procedure save the context and results of the statistical analysis. The
resulting item store has a binary file format that cannot be modified. The contents of the item store can be
processed with the PLM procedure.

For details about the syntax of the STORE statement, see the section “STORE Statement” on page 508 in
Chapter 19, “Shared Concepts and Topics.”
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STRATA Statement
STRATA variable < (option) > . . . < variable < (option) > > < / options > ;

The STRATA statement names the variables that define strata or matched sets to use in stratified logistic
regression of binary response data.

Observations that have the same variable values are in the same matched set. For a stratified logistic model,
you can analyze 1W 1, 1W n, mW n, and general mi W ni matched sets where the number of cases and controls
varies across strata. At least one variable must be specified to invoke the stratified analysis, and the usual
unconditional asymptotic analysis is not performed. The stratified logistic model has the form

logit.�hi / D ˛h C x0hiˇ

where �hi is the event probability for the ith observation in stratum h with covariates xhi and where the
stratum-specific intercepts ˛h are the nuisance parameters that are to be conditioned out.

STRATA variables can also be specified in the MODEL statement as classification or continuous covariates;
however, the effects are nondegenerate only when crossed with a nonstratification variable. Specifying several
STRATA statements is the same as specifying one STRATA statement that contains all the strata variables.
The STRATA variables can be either character or numeric, and the formatted values of the STRATA variables
determine the levels. Thus, you can also use formats to group values into levels; see the discussion of the
FORMAT procedure in the Base SAS Procedures Guide.

The “Strata Summary” table is displayed by default. For an exact logistic regression, it displays the number
of strata that have a specific number of events and non-events. For example, if you are analyzing a 1W 5
matched study, this table enables you to verify that every stratum in the analysis has exactly one event and
five non-events. Strata that contain only events or only non-events are reported in this table, but such strata
are uninformative and are not used in the analysis.

If an EXACT statement is also specified, then a stratified exact logistic regression is performed.

The EFFECTPLOT, SCORE, and WEIGHT statements are not available with a STRATA statement. The
following MODEL options are also not supported with a STRATA statement: CLPARM=PL, CLODDS=PL,
CTABLE, FIRTH, LACKFIT, LINK=, NOFIT, OUTMODEL=, OUTROC=, ROC, and SCALE=.

The following option can be specified for a stratification variable by enclosing the option in parentheses after
the variable name, or it can be specified globally for all STRATA variables after a slash (/).

MISSING
treats missing values (‘.’, ._, .A, . . . , .Z for numeric variables and blanks for character variables) as
valid STRATA variable values.

The following strata options are also available after the slash:

CHECKDEPENDENCY | CHECK=keyword
specifies which variables are to be tested for dependency before the analysis is performed. The available
keywords are as follows:
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NONE performs no dependence checking. Typically, a message about a singular information matrix
is displayed if you have dependent variables. Dependent variables can be identified after the
analysis by noting any missing parameter estimates.

COVARIATES checks dependence between covariates and an added intercept. Dependent covariates
are removed from the analysis. However, covariates that are linear functions of the strata
variable might not be removed, which results in a singular information matrix message
being displayed in the SAS log. This is the default.

ALL checks dependence between all the strata and covariates. This option can adversely affect
performance if you have a large number of strata.

NOSUMMARY
suppresses the display of the “Strata Summary” table.

INFO
displays the “Strata Information” table, which includes the stratum number, levels of the STRATA
variables that define the stratum, the number of events, the number of non-events, and the total
frequency for each stratum. Since the number of strata can be very large, this table is displayed only
by request.

TEST Statement
< label: > TEST equation1 < , equation2, . . . > < / option > ;

The TEST statement tests linear hypotheses about the regression coefficients. The Wald test is used to
perform a joint test of the null hypotheses H0WLˇ D c specified in a single TEST statement, where ˇ is the
vector of intercept and slope parameters. When c D 0 you should specify a CONTRAST statement instead.

Each equation specifies a linear hypothesis (a row of the L matrix and the corresponding element of the c
vector). Multiple equations are separated by commas. The label , which must be a valid SAS name, is used
to identify the resulting output and should always be included. You can submit multiple TEST statements.

The form of an equation is as follows:

term<˙ term : : :> <D ˙term <˙term: : :> >

where term is a parameter of the model, or a constant, or a constant times a parameter. Intercept and CLASS
variable parameter names should be specified as described in the section “Parameter Names in the OUTEST=
Data Set” on page 4606. For multinomial response models, this form enables you to construct tests of
parameters from specific logits. When no equal sign appears, the expression is set to 0. The following
statements illustrate possible uses of the TEST statement:

proc logistic;
model y= a1 a2 a3 a4;
test1: test intercept + .5 * a2 = 0;
test2: test intercept + .5 * a2;
test3: test a1=a2=a3;
test4: test a1=a2, a2=a3;

run;
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Note that the first and second TEST statements are equivalent, as are the third and fourth TEST statements.

You can specify the following option in the TEST statement after a slash(/):

PRINT
displays intermediate calculations in the testing of the null hypothesis H0WLˇ D c. These calculations
include LbV.b̌/L0 bordered by .Lb̌� c/ and ŒLbV.b̌/L0��1 bordered by ŒLbV.b̌/L0��1.Lb̌� c/, whereb̌ is the maximum likelihood estimator of ˇ and bV.b̌/ is the estimated covariance matrix of b̌.

For more information, see the section “Testing Linear Hypotheses about the Regression Coefficients”
on page 4589.

UNITS Statement
UNITS < independent1=list1 < independent2=list2: : : > > < / option > ;

The UNITS statement enables you to specify units of change for the continuous explanatory variables so
that customized odds ratios can be estimated. If you specify more than one UNITS statement, only the last
one is used. An estimate of the corresponding odds ratio is produced for each unit of change specified for
an explanatory variable. The UNITS statement is ignored for CLASS variables. Odds ratios are computed
only for main effects that are not involved in interactions or nestings, unless an ODDSRATIO statement is
also specified. If the CLODDS= option is specified in the MODEL statement, the corresponding confidence
limits for the odds ratios are also displayed, as are odds ratios and confidence limits for any CLASS main
effects that are not involved in interactions or nestings. The CLASS effects must use the GLM, reference, or
effect coding.

The UNITS statement also enables you to customize the odds ratios for effects specified in ODDSRATIO
statements, in which case interactions and nestings are allowed, and CLASS variables can be specified with
any parameterization.

The term independent is the name of an explanatory variable and list represents a list of units of change,
separated by spaces, that are of interest for that variable. Each unit of change in a list has one of the following
forms:

• number
• SD or –SD
• number * SD

where number is any nonzero number, and SD is the sample standard deviation of the corresponding
independent variable. For example, X D �2 requests an odds ratio that represents the change in the odds
when the variable X is decreased by two units. X D 2�SD requests an estimate of the change in the odds
when X is increased by two sample standard deviations.

You can specify the following option in the UNITS statement after a slash(/):

DEFAULT=list
gives a list of units of change for all explanatory variables that are not specified in the UNITS statement.
Each unit of change can be in any of the forms described previously. If the DEFAULT= option is not
specified, PROC LOGISTIC does not produce customized odds ratio estimates for any continuous
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explanatory variable that is not listed in the UNITS statement. For more information, see the section
“Odds Ratio Estimation” on page 4577.

WEIGHT Statement
WEIGHT variable < / option > ;

When a WEIGHT statement appears, each observation in the input data set is weighted by the value of the
WEIGHT variable. Unlike a FREQ variable, the values of the WEIGHT variable can be nonintegral and are
not truncated. Observations with negative, zero, or missing values for the WEIGHT variable are not used
in the model fitting. When the WEIGHT statement is not specified, each observation is assigned a weight
of 1. The WEIGHT statement is not available with the STRATA statement. If you specify more than one
WEIGHT statement, then the first WEIGHT variable is used.

If a SCORE statement is specified, then the WEIGHT variable is used for computing fit statistics (see the
section “Fit Statistics for Scored Data Sets” on page 4594) and the ROC curve (see the WEIGHTED option
of the ROCOPTIONS option), but it is not required for scoring. Weights do not affect the computation of
predicted probabilities, their confidence limits, or the predicted response level. If the DATA= data set in the
SCORE statement does not contain the WEIGHT variable, the weights are assumed to be 1 and a warning
message is issued in the SAS log. If you fit a model and perform the scoring in the same run, the same
WEIGHT variable is used for fitting and scoring. If you fit a model in a previous run and input it with the
INMODEL= option in the current run, then the WEIGHT variable can be different from the one used in the
previous run; however, if a WEIGHT variable was not specified in the previous run, you can still specify a
WEIGHT variable in the current run.

CAUTION: PROC LOGISTIC does not compute the proper variance estimators if you are analyzing survey
data and specifying the sampling weights through the WEIGHT statement. The SURVEYLOGISTIC
procedure is designed to perform the necessary, and correct, computations.

The following option can be added to the WEIGHT statement after a slash (/):

NORMALIZE

NORM
causes the weights specified by the WEIGHT variable to be normalized so that they add up to the
actual sample size. Weights wi are normalized by multiplying them by nPn

iD1wi
, where n is the sample

size. With this option, the estimated covariance matrix of the parameter estimators is invariant to the
scale of the WEIGHT variable.

Details: LOGISTIC Procedure

Missing Values
Any observation with missing values for the response, offset, strata, or explanatory variables is excluded
from the analysis; however, missing values are valid for variables specified with the MISSING option in the
CLASS or STRATA statement. Observations with a nonpositive or missing weight or with a frequency less
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than 1 are also excluded. The estimated linear predictor and its standard error estimate, the fitted probabilities
and confidence limits, and the regression diagnostic statistics are not computed for any observation with
missing offset or explanatory variable values. However, if only the response value is missing, the linear
predictor, its standard error, the fitted individual and cumulative probabilities, and confidence limits for the
cumulative probabilities can be computed and output to a data set by using the OUTPUT statement.

Response Level Ordering
Response level ordering is important because, by default, PROC LOGISTIC models the probability of
response levels with lower Ordered Value. Ordered Values are assigned to response levels in ascending sorted
order (that is, the lowest response level is assigned Ordered Value 1, the next lowest is assigned Ordered
Value 2, and so on) and are displayed in the “Response Profiles” table. If your response variable Y takes
values in f1; : : : ; k C 1g, then, by default, the functions modeled with the binary or cumulative model are

logit.Pr.Y � i jx//; i D 1; : : : ; k

and for the generalized logit model the functions modeled are

log
�

Pr.Y D i jx/
Pr.Y D k C 1jx/

�
; i D 1; : : : ; k

where the highest Ordered Value Y D k C 1 is the reference level. You can change which probabilities are
modeled by specifying the EVENT=, REF=, DESCENDING, or ORDER= response variable options in the
MODEL statement.

For binary response data with event and nonevent categories, if your event category has a higher Ordered
Value, then by default the nonevent is modeled. Because the default response function modeled is

logit.�/ D log
� �

1 � �

�
where � is the probability of the response level assigned Ordered Value 1, and because

logit.�/ D �logit.1 � �/

the effect of modeling the nonevent is to change the signs of ˛ and ˇ in the model for the event, logit.�/ D
˛ C ˇ0x.

For example, suppose the binary response variable Y takes the values 1 and 0 for event and nonevent,
respectively, and Exposure is the explanatory variable. By default, PROC LOGISTIC assigns Ordered Value
1 to response level Y=0, and Ordered Value 2 to response level Y=1. As a result, PROC LOGISTIC models
the probability of the nonevent (Ordered Value=1) category, and your parameter estimates have the opposite
sign from those in the model for the event. To model the event without using a DATA step to change the
values of the variable Y, you can control the ordering of the response levels or select the event or reference
level, as shown in the following list:

• Explicitly state which response level is to be modeled by using the response variable option EVENT=
in the MODEL statement:
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model Y(event='1') = Exposure;

• Specify the nonevent category for the response variable in the response variable option REF= in the
MODEL statement. This option is most useful for generalized logit models where the EVENT= option
cannot be used.

model Y(ref='0') = Exposure;

• Specify the response variable option DESCENDING in the MODEL statement to assign the lowest
Ordered Value to Y=1:

model Y(descending)=Exposure;

• Assign a format to Y such that the first formatted value (when the formatted values are put in sorted
order) corresponds to the event. In the following example, Y=1 is assigned the formatted value ‘event’
and Y=0 is assigned the formatted value ‘nonevent’. Because ORDER=FORMATTED by default,
Ordered Value 1 is assigned to response level Y=1, so the procedure models the event.

proc format;
value Disease 1='event' 0='nonevent';

run;
proc logistic;

format Y Disease.;
model Y=Exposure;

run;

Link Functions and the Corresponding Distributions
Four link functions are available in the LOGISTIC procedure. The logit function is the default. To specify
a different link function, use the LINK= option in the MODEL statement. The link functions and the
corresponding distributions are as follows:

• The logit function

g.p/ D log.p=.1 � p//

is the inverse of the cumulative logistic distribution function, which is

F.x/ D 1=.1C exp.�x// D exp.x/=.1C exp.x//

• The probit (or normit) function

g.p/ D ˆ�1.p/
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is the inverse of the cumulative standard normal distribution function, which is

F.x/ D ˆ.x/ D .2�/�1=2
Z x

�1

exp.�z2=2/dz

Traditionally, the probit function contains the additive constant 5, but throughout PROC LOGISTIC,
the terms probit and normit are used interchangeably.

• The complementary log-log function

g.p/ D log.� log.1 � p//

is the inverse of the cumulative extreme-value function (also called the Gompertz distribution), which
is

F.x/ D 1 � exp.� exp.x//

• The generalized logit function extends the binary logit link to a vector of levels .p1; : : : ; pkC1/ by
contrasting each level with a fixed level

g.pi / D log.pi=pkC1/ i D 1; : : : ; k

The variances of the normal, logistic, and extreme-value distributions are not the same. Their respective
means and variances are shown in the following table:

Distribution Mean Variance

Normal 0 1
Logistic 0 �2=3

Extreme-value � �2=6

Here  is the Euler constant. In comparing parameter estimates from different link functions, you need to
take into account the different scalings of the corresponding distributions and, for the complementary log-log
function, a possible shift in location. For example, if the fitted probabilities are in the neighborhood of 0.1 to
0.9, then the parameter estimates from the logit link function should be about �=

p
3 larger than the estimates

from the probit link function.

Determining Observations for Likelihood Contributions
If you use events/trials MODEL statement syntax, split each observation into two observations. One has
response value 1 with a frequency equal to the frequency of the original observation (which is 1 if the FREQ
statement is not used) times the value of the events variable. The other observation has response value 2 and
a frequency equal to the frequency of the original observation times the value of (trials–events). These two
observations will have the same explanatory variable values and the same FREQ and WEIGHT values as the
original observation.

For either single-trial or events/trials syntax, let j index all observations. In other words, for single-trial syntax,
j indexes the actual observations. And, for events/trials syntax, j indexes the observations after splitting (as
described in the preceding paragraph). If your data set has 30 observations and you use single-trial syntax, j
has values from 1 to 30; if you use events/trials syntax, j has values from 1 to 60.
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Suppose the response variable in a cumulative response model can take on the ordered values 1; : : : ; k; kC 1,
where k is an integer � 1. The likelihood for the jth observation with ordered response value yj and
explanatory variables vector xj is given by

Lj D

8<:
F.˛1 C ˇ

0xj / yj D 1

F.˛i C ˇ
0xj / � F.˛i�1 C ˇ0xj / 1 < yj D i � k

1 � F.˛k C ˇ
0xj / yj D k C 1

where F.�/ is the logistic, normal, or extreme-value distribution function, ˛1; : : : ; ˛k are ordered intercept
parameters, and ˇ is the common slope parameter vector.

For the generalized logit model, letting the k C 1st level be the reference level, the intercepts ˛1; : : : ; ˛k are
unordered and the slope vector ˇi varies with each logit. The likelihood for the jth observation with response
value yj and explanatory variables vector xj is given by

Lj D Pr.Y D yj jxj / D

8̂̂̂<̂
ˆ̂:

e˛iCx0
j
ˇi

1C
Pk
mD1 e

˛mCx0
j
ˇm

1 � yj D i � k

1

1C
Pk
mD1 e

˛mCx0
j
ˇm

yj D k C 1

Iterative Algorithms for Model Fitting
This section describes the two iterative maximum likelihood algorithms that are available in PROC LOGISTIC
for fitting an unconditional logistic regression. For information about available optimization techniques for
conditional logistic regression and models that specify the EQUALSLOPES or UNEQUALSLOPES options,
see the section “NLOPTIONS Statement” on page 4548. Exact logistic regression uses a special algorithm,
which is described in the section “Exact Conditional Logistic Regression” on page 4601.

The default maximum likelihood algorithm is the Fisher scoring method, which is equivalent to fitting
by iteratively reweighted least squares. The alternative algorithm is the Newton-Raphson method. For
generalized logit models and models that specify the EQUALSLOPES or UNEQUALSLOPES options,
only the Newton-Raphson technique is available. Both algorithms produce the same parameter estimates.
However, the estimated covariance matrix of the parameter estimators can differ slightly because Fisher
scoring is based on the expected information matrix whereas the Newton-Raphson method is based on the
observed information matrix. For a binary logit model, the observed and expected information matrices
are identical, resulting in identical estimated covariance matrices for both algorithms. You can specify the
TECHNIQUE= option to select a fitting algorithm, and you can specify the FIRTH option to perform a
bias-reducing penalized maximum likelihood fit.

Iteratively Reweighted Least Squares Algorithm (Fisher Scoring)

Consider the multinomial variable Zj D .Z1j ; : : : ; ZkC1;j /0 such that

Zij D

�
1 if Yj D i
0 otherwise
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With �ij denoting the probability that the jth observation has response value i, the expected value of Zj
is �j D .�1j ; : : : ; �kC1;j /0 where �kC1;j D 1 �

Pk
iD1 �ij . The covariance matrix of Zj is Vj , which is

the covariance matrix of a multinomial random variable for one trial with parameter vector �j . Let ˇ be
the vector of regression parameters; in other words, ˇ D .˛1; : : : ; ˛k; ˇ1; : : : ; ˇs/0. Let Dj be the matrix of
partial derivatives of �j with respect to ˇ. The estimating equation for the regression parameters isX

j

D0jWj .Zj � �j / D 0

where Wj D wjfjV�j , wj and fj are the weight and frequency of the jth observation, and V�j is a
generalized inverse of Vj . PROC LOGISTIC chooses V�j as the inverse of the diagonal matrix with �j as
the diagonal.

With a starting value of ˇ.0/, the maximum likelihood estimate of ˇ is obtained iteratively as

ˇ.mC1/ D ˇ.m/ C .
X
j

D0jWjDj /�1
X
j

D0jWj .Zj � �j /

where Dj , Wj , and �j are evaluated at ˇ.m/. The expression after the plus sign is the step size. If the
likelihood evaluated at ˇ.mC1/ is less than that evaluated at ˇ.m/, then ˇ.mC1/ is recomputed by step-halving
or ridging as determined by the value of the RIDGING= option. The iterative scheme continues until
convergence is obtained—that is, until ˇ.mC1/ is sufficiently close to ˇ.m/. Then the maximum likelihood
estimate of ˇ is b̌D ˇ.mC1/.
The covariance matrix of b̌ is estimated by

bCov.b̌/ D .X
j

bD0j bWj
bDj /�1 DbI�1

where bDj and bWj are, respectively, Dj and Wj evaluated at b̌.bI is the information matrix, or the negative
expected Hessian matrix, evaluated at b̌.

By default, starting values are zero for the slope parameters, and for the intercept parameters, starting
values are the observed cumulative logits (that is, logits of the observed cumulative proportions of response).
Alternatively, the starting values can be specified with the INEST= option.

Newton-Raphson Algorithm

For cumulative models, let the parameter vector be ˇ D .˛1; : : : ; ˛k; ˇ1; : : : ; ˇs/0, and for the generalized
logit model let ˇ D .˛1; : : : ; ˛k;ˇ

0
1; : : : ;ˇ

0
k
/0. The gradient vector and the Hessian matrix are given,

respectively, by

g D
X
j

wjfj
@lj

@ˇ

H D

X
j

wjfj
@2lj

@ˇ2

where lj D logLj is the log likelihood for the jth observation. With a starting value of ˇ.0/, the maximum
likelihood estimate b̌ of ˇ is obtained iteratively until convergence is obtained:

ˇ.mC1/ D ˇ.m/ �H�1g
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where H and g are evaluated at ˇ.m/. If the likelihood evaluated at ˇ.mC1/ is less than that evaluated at ˇ.m/,
then ˇ.mC1/ is recomputed by step-halving or ridging.

The covariance matrix of b̌ is estimated by

bCov.b̌/ DbI�1
where the observed information matrixbI D �bH is computed by evaluating H at b̌.

Firth’s Bias-Reducing Penalized Likelihood

Firth’s method is currently available only for binary logistic models. It replaces the usual score (gradient)
equation

g.ˇj / D

nX
iD1

.yi � �i /xij D 0 .j D 1; : : : ; p/

where p is the number of parameters in the model, with the modified score equation

g.ˇj /
�
D

nX
iD1

fyi � �i C hi .0:5 � �i /gxij D 0 .j D 1; : : : ; p/

where the his are the ith diagonal elements of the hat matrix W1=2X.X0WX/�1X0W1=2 and W D

diagf�i .1 � �i /g. The Hessian matrix is not modified by this penalty, and the optimization method is
performed in the usual manner.

Convergence Criteria
Four convergence criteria are available: ABSFCONV=, FCONV=, GCONV=, and XCONV=. If you specify
more than one convergence criterion, the optimization is terminated as soon as one of the criteria is satisfied.
If none of the criteria is specified, the default is GCONV=1E–8.

If you specify a STRATA statement or the EQUALSLOPES or UNEQUALSLOPES options in the MODEL
statement, all unspecified (or nondefault) criteria are also compared to zero. For example, specifying only the
criterion XCONV=1E–8 but attaining FCONV=0 terminates the optimization even if the XCONV= criterion
is not satisfied, because the log likelihood has reached its maximum. More convergence criteria are also
available; for more information, see the section “NLOPTIONS Statement” on page 4548.

Existence of Maximum Likelihood Estimates
The likelihood equation for a logistic regression model does not always have a finite solution. Sometimes
there is a nonunique maximum on the boundary of the parameter space, at infinity. The existence, finiteness,
and uniqueness of maximum likelihood estimates for the logistic regression model depend on the patterns of
data points in the observation space (Albert and Anderson 1984; Santner and Duffy 1986). Existence checks
are not performed for conditional logistic regression.



4570 F Chapter 60: The LOGISTIC Procedure

Consider a binary response model. Let Yj be the response of the jth subject, and let xj be the vector of
explanatory variables (including the constant 1 associated with the intercept). There are three mutually
exclusive and exhaustive types of data configurations: complete separation, quasi-complete separation, and
overlap.

Complete Separation There is a complete separation of data points if there exists a vector b that correctly
allocates all observations to their response groups; that is,�

b0xj > 0 Yj D 1

b0xj < 0 Yj D 2

This configuration gives nonunique infinite estimates. If the iterative process of maximizing the
likelihood function is allowed to continue, the log likelihood diminishes to zero, and the dispersion
matrix becomes unbounded.

Quasi-complete Separation The data are not completely separable, but there is a vector b such that�
b0xj � 0 Yj D 1

b0xj � 0 Yj D 2

and equality holds for at least one subject in each response group. This configuration also yields
nonunique infinite estimates. If the iterative process of maximizing the likelihood function is
allowed to continue, the dispersion matrix becomes unbounded and the log likelihood diminishes
to a nonzero constant.

Overlap If neither complete nor quasi-complete separation exists in the sample points, there is an overlap
of sample points. In this configuration, the maximum likelihood estimates exist and are unique.

Complete separation and quasi-complete separation are problems typically encountered with small data sets.
Although complete separation can occur with any type of data, quasi-complete separation is not likely with
truly continuous explanatory variables.

The LOGISTIC procedure uses a simple empirical approach to recognize the data configurations that lead
to infinite parameter estimates. The basis of this approach is that any convergence method of maximizing
the log likelihood must yield a solution giving complete separation, if such a solution exists. In maximizing
the log likelihood, there is no checking for complete or quasi-complete separation if convergence is attained
in eight or fewer iterations. Subsequent to the eighth iteration, the probability of the observed response is
computed for each observation. If the predicted response equals the observed response for every observation,
there is a complete separation of data points and the iteration process is stopped. If the complete separation of
data has not been determined and an observation is identified to have an extremely large probability (�0.95)
of predicting the observed response, there are two possible situations. First, there is overlap in the data set,
and the observation is an atypical observation of its own group. The iterative process, if allowed to continue,
will stop when a maximum is reached. Second, there is quasi-complete separation in the data set, and the
asymptotic dispersion matrix is unbounded. If any of the diagonal elements of the dispersion matrix for the
standardized observations vectors (all explanatory variables standardized to zero mean and unit variance)
exceeds 5000, quasi-complete separation is declared and the iterative process is stopped. If either complete
separation or quasi-complete separation is detected, a warning message is displayed in the procedure output.

Checking for quasi-complete separation is less foolproof than checking for complete separation. The
NOCHECK option in the MODEL statement turns off the process of checking for infinite parameter
estimates. In cases of complete or quasi-complete separation, turning off the checking process typically
results in the procedure failing to converge.
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To address the separation issue, you can change your model, specify the FIRTH option to use Firth’s penalized
likelihood method, or for small data sets specify an EXACT statement to perform an exact logistic regression.

Effect-Selection Methods
Five effect-selection methods are available by specifying the SELECTION= option in the MODEL statement.
The simplest method (and the default) is SELECTION=NONE, for which PROC LOGISTIC fits the complete
model as specified in the MODEL statement. The other four methods are FORWARD for forward selection,
BACKWARD for backward elimination, STEPWISE for stepwise selection, and SCORE for best subsets
selection. Intercept parameters are forced to stay in the model unless the NOINT option is specified.

When SELECTION=FORWARD, PROC LOGISTIC first estimates parameters for effects forced into the
model. These effects are the intercepts and the first n explanatory effects in the MODEL statement, where n
is the number specified by the START= or INCLUDE= option in the MODEL statement (n is zero by default).
Next, the procedure computes the score chi-square statistic for each effect not in the model and examines the
largest of these statistics. If it is significant at the SLENTRY= level, the corresponding effect is added to the
model. Once an effect is entered in the model, it is never removed from the model. The process is repeated
until none of the remaining effects meet the specified level for entry or until the STOP= value is reached.

When SELECTION=BACKWARD, parameters for the complete model as specified in the MODEL statement
are estimated unless the START= option is specified. In that case, only the parameters for the intercepts and
the first n explanatory effects in the MODEL statement are estimated, where n is the number specified by
the START= option. Results of the Wald test for individual parameters are examined. The least significant
effect that does not meet the SLSTAY= level for staying in the model is removed. Once an effect is removed
from the model, it remains excluded. The process is repeated until no other effect in the model meets the
specified level for removal or until the STOP= value is reached. Backward selection is often less successful
than forward or stepwise selection because the full model fit in the first step is the model most likely to
result in a complete or quasi-complete separation of response values as described in the section “Existence of
Maximum Likelihood Estimates” on page 4569.

The SELECTION=STEPWISE option is similar to the SELECTION=FORWARD option except that effects
already in the model do not necessarily remain. Effects are entered into and removed from the model in such
a way that each forward selection step can be followed by one or more backward elimination steps. The
stepwise selection process terminates if no further effect can be added to the model or if the current model is
identical to a previously visited model.

For SELECTION=SCORE, PROC LOGISTIC uses the branch-and-bound algorithm of Furnival and Wilson
(1974) adapted to find a specified number of models with the highest likelihood score (chi-square) statistic
for all possible model sizes, from 1, 2, 3 effect models, and so on, up to the single model containing all of the
explanatory effects. The number of models displayed for each model size is controlled by the BEST= option.
You can use the START= option to impose a minimum model size, and you can use the STOP= option to
impose a maximum model size. For instance, with BEST=3, START=2, and STOP=5, the SCORE selection
method displays the best three models (that is, the three models with the highest score chi-squares) containing
2, 3, 4, and 5 effects. The SELECTION=SCORE option is not available for models with CLASS variables.

The options FAST, SEQUENTIAL, and STOPRES can alter the default criteria for entering or removing
effects from the model when they are used with the FORWARD, BACKWARD, or STEPWISE selection
method.
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Model Fitting Information
For the jth observation, let b�j be the estimated probability of the observed response. The three criteria
displayed by the LOGISTIC procedure are calculated as follows:

• –2 log likelihood:

�2 Log L D �2
X
j

wj

�2
fj log.b�j /

where wj and fj are the weight and frequency values of the jth observation, and �2 is the dispersion
parameter, which equals 1 unless the SCALE= option is specified. For binary response models that use
events/trials MODEL statement syntax, this is

�2 Log L D �2
X
j

wj

�2
fj Œlog

 
nj

rj

!
C rj log.b�j /C .nj � rj / log.1 �b�j /�

where rj is the number of events, nj is the number of trials, b�j is the estimated event probability, and
the statistic is reported both with and without the constant term.

• Akaike’s information criterion:

AIC D �2 Log LC 2p

where p is the number of parameters in the model. For cumulative response models, p D k C s, where
k is the total number of response levels minus one and s is the number of explanatory effects. For the
generalized logit model, p D k.s C 1/.

• Schwarz (Bayesian information) criterion:

SC D �2 Log LC p log.
X
j

fjnj /

where p is the number of parameters in the model, nj is the number of trials when events/trials syntax
is specified, and nj D 1 with single-trial syntax.

The AIC and SC statistics give two different ways of adjusting the –2 Log L statistic for the number of terms
in the model and the number of observations used. These statistics can be used when comparing different
models for the same data (for example, when you use the SELECTION=STEPWISE option in the MODEL
statement). The models being compared do not have to be nested; lower values of the statistics indicate a
more desirable model.

The difference in the –2 Log L statistics between the intercepts-only model and the specified model has a
p � k degree-of-freedom chi-square distribution under the null hypothesis that all the explanatory effects
in the model are zero, where p is the number of parameters in the specified model and k is the number of
intercepts. The likelihood ratio test in the “Testing Global Null Hypothesis: BETA=0” table displays this
difference and the associated p-value for this statistic. The score and Wald tests in that table test the same
hypothesis and are asymptotically equivalent; for more information, see the sections “Residual Chi-Square”
on page 4573 and “Testing Linear Hypotheses about the Regression Coefficients” on page 4589.
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Generalized Coefficient of Determination
Cox and Snell (1989, pp. 208–209) propose the following generalization of the coefficient of determination
to a more general linear model:

R2 D 1 �

�
L.0/

L.b̌/
� 2
n

where L.0/ is the likelihood of the intercept-only model, L.b̌/ is the likelihood of the specified model,
n D

P
j fjnj is the sample size, fj is the frequency of the jth observation, and nj is the number of trials

when events/trials syntax is specified or nj D 1 with single-trial syntax.

The quantity R2 achieves a maximum of less than one for discrete models, where the maximum is given by

R2max D 1 � fL.0/g
2
n

Nagelkerke (1991) proposes the following adjusted coefficient, which can achieve a maximum value of one:

QR2 D
R2

R2max

Specifying the NORMALIZE option in the WEIGHT statement makes these coefficients invariant to the
scale of the weights.

Like the AIC and SC statistics described in the section “Model Fitting Information” on page 4572, R2 and
QR2 are most useful for comparing competing models that are not necessarily nested—larger values indicate

better models. More properties and interpretation of R2 and QR2 are provided in Nagelkerke (1991). In
the “Testing Global Null Hypothesis: BETA=0” table, R2 is labeled as “RSquare” and QR2 is labeled as
“Max-rescaled RSquare.” Use the RSQUARE option to request R2 and QR2.

Score Statistics and Tests
To understand the general form of the score statistics, let g.ˇ/ be the vector of first partial derivatives of the
log likelihood with respect to the parameter vector ˇ, and let H.ˇ/ be the matrix of second partial derivatives
of the log likelihood with respect to ˇ. That is, g.ˇ/ is the gradient vector, and H.ˇ/ is the Hessian matrix.
Let I.ˇ/ be either �H.ˇ/ or the expected value of �H.ˇ/. Consider a null hypothesis H0. Let b̌H0 be the
MLE of ˇ under H0. The chi-square score statistic for testing H0 is defined by

g0.b̌H0/I�1.b̌H0/g.b̌H0/
and it has an asymptotic �2 distribution with r degrees of freedom under H0, where r is the number of
restrictions imposed on ˇ by H0.

Residual Chi-Square

When you use SELECTION=FORWARD, BACKWARD, or STEPWISE, the procedure calculates a residual
chi-square score statistic and reports the statistic, its degrees of freedom, and the p-value. This section
describes how the statistic is calculated.
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Suppose there are s explanatory effects of interest. The full cumulative response model has a parameter
vector

ˇ D .˛1; : : : ; ˛k; ˇ1; : : : ; ˇs/
0

where ˛1; : : : ; ˛k are intercept parameters, and ˇ1; : : : ; ˇs are the common slope parameters for the s
explanatory effects. The full generalized logit model has a parameter vector

ˇ D .˛1; : : : ; ˛k;ˇ
0
1; : : : ;ˇ

0
k/
0 with

ˇ0i D .ˇi1; : : : ; ˇis/; i D 1; : : : ; k

where ˇij is the slope parameter for the jth effect in the ith logit.

Consider the null hypothesisH0WˇtC1 D � � � D ˇs D 0, where t < s for the cumulative response model, and
H0Wˇi;tC1 D � � � D ˇis D 0; t < s; i D 1; : : : ; k, for the generalized logit model. For the reduced model
with t explanatory effects, let b̨1; : : : ;b̨k be the MLEs of the unknown intercept parameters, let b̌1; : : : ; b̌t
be the MLEs of the unknown slope parameters, and let b̌0

i.t/
D .b̌i1; : : : ; b̌it /; i D 1; : : : ; k, be those for the

generalized logit model. The residual chi-square is the chi-square score statistic testing the null hypothesis
H0; that is, the residual chi-square is

g0.b̌H0/I�1.b̌H0/g.b̌H0/
where for the cumulative response model b̌H0 D .b̨1; : : : ;b̨k; b̌1; : : : ; b̌t ; 0; : : : ; 0/0, and for the generalized

logit model b̌H0 D .b̨1; : : : ;b̨k; b̌1.t/0; 00.s�t/; : : : b̌k.t/0; 00.s�t//0, where 0.s�t/ denotes a vector of s � t
zeros.

The residual chi-square has an asymptotic chi-square distribution with s � t degrees of freedom (k.s � t / for
the generalized logit model). A special case is the global score chi-square, where the reduced model consists
of the k intercepts and no explanatory effects. The global score statistic is displayed in the “Testing Global
Null Hypothesis: BETA=0” table. The table is not produced when the NOFIT option is used, but the global
score statistic is displayed.

Testing Individual Effects Not in the Model

These tests are performed when you specify SELECTION=FORWARD or STEPWISE, and are displayed
when the DETAILS option is specified. In the displayed output, the tests are labeled “Score Chi-Square” in
the “Analysis of Effects Eligible for Entry” table and in the “Summary of Stepwise (Forward) Selection”
table. This section describes how the tests are calculated.

Suppose that k intercepts and t explanatory variables (say v1; : : : ; vt ) have been fit to a model and that vtC1
is another explanatory variable of interest. Consider a full model with the k intercepts and t C 1 explanatory
variables (v1; : : : ; vt ; vtC1) and a reduced model with vtC1 excluded. The significance of vtC1 adjusted
for v1; : : : ; vt can be determined by comparing the corresponding residual chi-square with a chi-square
distribution with one degree of freedom (k degrees of freedom for the generalized logit model).

Testing the Parallel Lines Assumption

For an ordinal response, PROC LOGISTIC performs a test of the parallel lines assumption. In the displayed
output, this test is labeled “Score Test for the Equal Slopes Assumption” when the LINK= option is NORMIT
or CLOGLOG. When LINK=LOGIT, the test is labeled as “Score Test for the Proportional Odds Assumption”
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in the output. For small sample sizes, this test might be too liberal (Stokes, Davis, and Koch 2000, p. 249).
This section describes the methods used to calculate the test.

For this test the number of response levels, k C 1, is assumed to be strictly greater than 2. Let Y be the
response variable taking values 1; : : : ; k; k C 1. Suppose there are s explanatory variables. Consider the
general cumulative model without making the parallel lines assumption

g.Pr.Y � i j x// D .1; x0/ˇi ; 1 � i � k

where g.�/ is the link function, and ˇi D .˛i ; ˇi1; : : : ; ˇis/0 is a vector of unknown parameters consisting of
an intercept ˛i and s slope parameters ˇi1; : : : ; ˇis . The parameter vector for this general cumulative model
is

ˇ D .ˇ01; : : : ;ˇ
0
k/
0

Under the null hypothesis of parallelism H0Wˇ1m D ˇ2m D � � � D ˇkm; 1 � m � s, there is a single
common slope parameter for each of the s explanatory variables. Let ˇ1; : : : ; ˇs be the common slope
parameters. Let b̨1; : : : ;b̨k and b̌1; : : : ; b̌s be the MLEs of the intercept parameters and the common slope
parameters. Then, under H0, the MLE of ˇ is

b̌
H0 D .

b̌0
1; : : : ;

b̌0
k/
0 with b̌

i D .b̨i ; b̌1; : : : ; b̌s/0 1 � i � k

and the chi-square score statistic g0.b̌H0/I�1.b̌H0/g.b̌H0/ has an asymptotic chi-square distribution with
s.k � 1/ degrees of freedom. This tests the parallel lines assumption by testing the equality of separate slope
parameters simultaneously for all explanatory variables.

Confidence Intervals for Parameters
There are two methods of computing confidence intervals for the regression parameters. One is based on the
profile-likelihood function, and the other is based on the asymptotic normality of the parameter estimators.
The latter is not as time-consuming as the former, because it does not involve an iterative scheme; however, it
is not thought to be as accurate as the former, especially with small sample size. You use the CLPARM=
option to request confidence intervals for the parameters.

Likelihood Ratio-Based Confidence Intervals

The likelihood ratio-based confidence interval is also known as the profile-likelihood confidence interval.
The construction of this interval is derived from the asymptotic �2 distribution of the generalized likelihood
ratio test (Venzon and Moolgavkar 1988). Suppose that the parameter vector is ˇ D .ˇ0; ˇ1; : : : ; ˇs/0 and
you want to compute a confidence interval for ˇj . The profile-likelihood function for ˇj D  is defined as

l�j ./ D max
ˇ2Bj ./

l.ˇ/
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where Bj ./ is the set of all ˇ with the jth element fixed at  , and l.ˇ/ is the log-likelihood function for ˇ.
If lmax D l.b̌/ is the log likelihood evaluated at the maximum likelihood estimate b̌, then 2.lmax � l

�
j .ˇj //

has a limiting chi-square distribution with one degree of freedom if ˇj is the true parameter value. Let
l0 D lmax � 0:5�

2
1.1 � ˛/, where �21.1 � ˛/ is the 100.1 � ˛/ percentile of the chi-square distribution with

one degree of freedom. A 100.1 � ˛/% confidence interval for ˇj is

f W l�j ./ � l0g

The endpoints of the confidence interval are found by solving numerically for values of ˇj that satisfy
equality in the preceding relation. To obtain an iterative algorithm for computing the confidence limits, the
log-likelihood function in a neighborhood of ˇ is approximated by the quadratic function

Ql.ˇ C ı/ D l.ˇ/C ı0gC
1

2
ı0Vı

where g D g.ˇ/ is the gradient vector and V D V.ˇ/ is the Hessian matrix. The increment ı for the next
iteration is obtained by solving the likelihood equations

d

dı
fQl.ˇ C ı/C �.e0j ı � /g D 0

where � is the Lagrange multiplier, ej is the jth unit vector, and  is an unknown constant. The solution is

ı D �V�1.gC �ej /

By substituting this ı into the equation Ql.ˇ C ı/ D l0, you can estimate � as

� D ˙

�
2.l0 � l.ˇ/C

1
2
g0V�1g/

e0jV�1ej

� 1
2

The upper confidence limit for ˇj is computed by starting at the maximum likelihood estimate of ˇ and
iterating with positive values of � until convergence is attained. The process is repeated for the lower
confidence limit by using negative values of �.

Convergence is controlled by the value � specified with the PLCONV= option in the MODEL statement (the
default value of � is 1E–4). Convergence is declared on the current iteration if the following two conditions
are satisfied:

jl.ˇ/ � l0j � �

and

.gC �ej /0V�1.gC �ej / � �

Wald Confidence Intervals

Wald confidence intervals are sometimes called the normal confidence intervals. They are based on the
asymptotic normality of the parameter estimators. The 100.1� ˛/% Wald confidence interval for ˇj is given
by b̌

j ˙ z1�˛=2b�j
where zp is the 100p percentile of the standard normal distribution, b̌j is the maximum likelihood estimate
of ˇj , andb�j is the standard error estimate of b̌j .
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Odds Ratio Estimation
Consider a dichotomous response variable with outcomes event and nonevent. Consider a dichotomous risk
factor variable X that takes the value 1 if the risk factor is present and 0 if the risk factor is absent. According
to the logistic model, the log odds function, logit.X/, is given by

logit.X/ � log
�

Pr.event j X/
Pr.nonevent j X/

�
D ˛ CXˇ

The odds ratio  is defined as the ratio of the odds for those with the risk factor (X = 1) to the odds for those
without the risk factor (X = 0). The log of the odds ratio is given by

log. / � log. .X D 1;X D 0// D logit.X D 1/� logit.X D 0/ D .˛C 1 � ˇ/� .˛C 0 � ˇ/ D ˇ

In general, the odds ratio can be computed by exponentiating the difference of the logits between any two
population profiles. This is the approach taken by the ODDSRATIO statement, so the computations are
available regardless of parameterization, interactions, and nestings. However, as shown in the preceding
equation for log. /, odds ratios of main effects can be computed as functions of the parameter estimates,
and the remainder of this section is concerned with this methodology.

The parameter, ˇ, associated with X represents the change in the log odds from X D 0 to X D 1. So the
odds ratio is obtained by simply exponentiating the value of the parameter associated with the risk factor.
The odds ratio indicates how the odds of the event change as you change X from 0 to 1. For instance,  D 2
means that the odds of an event when X = 1 are twice the odds of an event when X = 0. You can also express
this as follows: the percent change in the odds of an event from X = 0 to X = 1 is . � 1/100% D 100%.

Suppose the values of the dichotomous risk factor are coded as constants a and b instead of 0 and 1. The
odds when X D a become exp.˛ C aˇ/, and the odds when X D b become exp.˛ C bˇ/. The odds ratio
corresponding to an increase in X from a to b is

 D expŒ.b � a/ˇ� D Œexp.ˇ/�b�a � Œexp.ˇ/�c

Note that for any a and b such that c D b � a D 1;  D exp.ˇ/. So the odds ratio can be interpreted as the
change in the odds for any increase of one unit in the corresponding risk factor. However, the change in
odds for some amount other than one unit is often of greater interest. For example, a change of one pound in
body weight might be too small to be considered important, while a change of 10 pounds might be more
meaningful. The odds ratio for a change in X from a to b is estimated by raising the odds ratio estimate for a
unit change in X to the power of c D b � a as shown previously.

For a polytomous risk factor, the computation of odds ratios depends on how the risk factor is parameterized.
For illustration, suppose that Race is a risk factor with four categories: White, Black, Hispanic, and Other.

For the effect parameterization scheme (PARAM=EFFECT) with White as the reference group
(REF=’White’), the design variables for Race are as follows:

Design Variables
Race X1 X2 X3

Black 1 0 0
Hispanic 0 1 0

Other 0 0 1
White –1 –1 –1
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The log odds for Black is

logit.Black/ D ˛ C .X1 D 1/ˇ1 C .X2 D 0/ˇ2 C .X3 D 0/ˇ3

D ˛ C ˇ1

The log odds for White is

logit.White/ D ˛ C .X1 D �1/ˇ1 C .X2 D �1/ˇ2 C .X3 D �1/ˇ3

D ˛ � ˇ1 � ˇ2 � ˇ3

Therefore, the log odds ratio of Black versus White becomes

log. .Black;White// D logit.Black/ � logit.White/

D 2ˇ1 C ˇ2 C ˇ3

For the reference cell parameterization scheme (PARAM=REF) with White as the reference cell, the design
variables for race are as follows:

Design Variables
Race X1 X2 X3

Black 1 0 0
Hispanic 0 1 0

Other 0 0 1
White 0 0 0

The log odds ratio of Black versus White is given by

log. .Black;White// D logit.Black/ � logit.White/

D .˛ C .X1 D 1/ˇ1 C .X2 D 0/ˇ2 C .X3 D 0/ˇ3/ �

.˛ C .X1 D 0/ˇ1 C .X2 D 0/ˇ2 C .X3 D 0/ˇ3/

D ˇ1

For the GLM parameterization scheme (PARAM=GLM), the design variables are as follows:

Design Variables
Race X1 X2 X3 X4

Black 1 0 0 0
Hispanic 0 1 0 0

Other 0 0 1 0
White 0 0 0 1

The log odds ratio of Black versus White is

log. .Black;White// D logit.Black/ � logit.White/

D .˛ C .X1 D 1/ˇ1 C .X2 D 0/ˇ2 C .X3 D 0/ˇ3 C .X4 D 0/ˇ4/ �

.˛ C .X1 D 0/ˇ1 C .X2 D 0/ˇ2 C .X3 D 0/ˇ3 C .X4 D 1/ˇ4/

D ˇ1 � ˇ4
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Consider the hypothetical example of heart disease among race in Hosmer and Lemeshow (2000, p. 56). The
entries in the following contingency table represent counts:

Race
Disease Status White Black Hispanic Other

Present 5 20 15 10
Absent 20 10 10 10

The computation of odds ratio of Black versus White for various parameterization schemes is tabulated in
Table 60.11.

Table 60.11 Odds Ratio of Heart Disease Comparing Black to White

Parameter Estimates
PARAM= b̌

1
b̌
2

b̌
3

b̌
4 Odds Ratio Estimates

EFFECT 0.7651 0.4774 0.0719 exp.2 � 0:7651C 0:4774C 0:0719/ D 8
REF 2.0794 1.7917 1.3863 exp.2:0794/ D 8
GLM 2.0794 1.7917 1.3863 0.0000 exp.2:0794/ D 8

Because the log odds ratio (log. /) is a linear function of the parameters, the Wald confidence interval
for log. / can be derived from the parameter estimates and the estimated covariance matrix. Confidence
intervals for the odds ratios are obtained by exponentiating the corresponding confidence limits for the log
odd ratios. In the displayed output of PROC LOGISTIC, the “Odds Ratio Estimates” table contains the odds
ratio estimates and the corresponding 95% Wald confidence intervals. For continuous explanatory variables,
these odds ratios correspond to a unit increase in the risk factors.

To customize odds ratios for specific units of change for a continuous risk factor, you can use the UNITS
statement to specify a list of relevant units for each explanatory variable in the model. Estimates of these
customized odds ratios are given in a separate table. Let .Lj ; Uj / be a confidence interval for log. /. The
corresponding lower and upper confidence limits for the customized odds ratio exp.cˇj / are exp.cLj /
and exp.cUj /, respectively (for c > 0), or exp.cUj / and exp.cLj /, respectively (for c < 0). You use the
CLODDS= option or ODDSRATIO statement to request the confidence intervals for the odds ratios.

For a generalized logit model, odds ratios are computed similarly, except k odds ratios are computed for each
effect, corresponding to the k logits in the model.

Rank Correlation of Observed Responses and Predicted Probabilities
The predicted mean score of an observation is the sum of the Ordered Values (shown in the “Response
Profile” table) minus one, weighted by the corresponding predicted probabilities for that observation; that is,
the predicted means score D

PkC1
iD1 .i � 1/b� i , where k C 1 is the number of response levels and b� i is the

predicted probability of the ith (ordered) response.

A pair of observations with different observed responses is said to be concordant if the observation with
the lower ordered response value has a lower predicted mean score than the observation with the higher
ordered response value. If the observation with the lower ordered response value has a higher predicted mean
score than the observation with the higher ordered response value, then the pair is discordant. If the pair is
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neither concordant nor discordant, it is a tie. Enumeration of the total numbers of concordant and discordant
pairs is carried out by categorizing the predicted mean score into intervals of length k=500 and accumulating
the corresponding frequencies of observations. Note that the length of these intervals can be modified by
specification of the BINWIDTH= option in the MODEL statement.

Let N be the sum of observation frequencies in the data. Suppose there are a total of t pairs with different
responses: nc of them are concordant, nd of them are discordant, and t � nc � nd of them are tied. PROC
LOGISTIC computes the following four indices of rank correlation for assessing the predictive ability of a
model:

c D .nc C 0:5.t � nc � nd //=t

Somers’ D(Gini coefficient) D .nc � nd /=t

Goodman-Kruskal Gamma D .nc � nd /=.nc C nd /

Kendall’s Tau-a D .nc � nd /=.0:5N.N � 1//

If there are no ties, then Somers’ D (Gini’s coefficient)D 2c � 1. Note that the concordance index, c, also
gives an estimate of the area under the receiver operating characteristic (ROC) curve when the response is
binary (Hanley and McNeil 1982). See the section “ROC Computations” on page 4588 for more information
about this area.

For binary responses, the predicted mean score is equal to the predicted probability for Ordered Value 2. As
such, the preceding definition of concordance is consistent with the definition used in previous releases for
the binary response model.

These statistics are not available when the STRATA statement is specified.

Linear Predictor, Predicted Probability, and Confidence Limits
This section describes how predicted probabilities and confidence limits are calculated by using the maximum
likelihood estimates (MLEs) obtained from PROC LOGISTIC. For a specific example, see the section
“Getting Started: LOGISTIC Procedure” on page 4492. Predicted probabilities and confidence limits can be
output to a data set with the OUTPUT statement.

Binary and Cumulative Response Models

For a vector of explanatory variables x, the linear predictor

�i D g.Pr.Y � i j x// D ˛i C x0ˇ 1 � i � k

is estimated by

O�i D b̨i C x0b̌
where b̨i and b̌ are the MLEs of ˛i and ˇ. The estimated standard error of �i is O�. O�i /, which can be
computed as the square root of the quadratic form .1; x0/bVb.1; x0/0, where bVb is the estimated covariance
matrix of the parameter estimates. The asymptotic 100.1 � ˛/% confidence interval for �i is given by

O�i ˙ z˛=2 O�. O�i /

where z˛=2 is the 100.1 � ˛=2/ percentile point of a standard normal distribution.
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The predicted probability and the 100.1 � ˛/% confidence limits for �i D Pr.Y � i j x/ are obtained by
back-transforming the corresponding measures for the linear predictor, as shown in the following table:

Link Predicted Probability 100(1–˛)% Confidence Limits

LOGIT 1=.1C exp.�O�i // 1=.1C exp.�O�i ˙ z˛=2 O�. O�i ///
PROBIT ˆ. O�i / ˆ. O�i ˙ z˛=2 O�. O�i //

CLOGLOG 1 � exp.� exp. O�i // 1� exp.� exp. O�i ˙ z˛=2 O�. O�i ///

The CONTRAST statement also enables you to estimate the exponentiated contrast, e O�i . The corresponding
standard error is e O�i O�. O�i /, and the confidence limits are computed by exponentiating those for the linear
predictor: expf O�i ˙ z˛=2 O�. O�i /g.

Generalized Logit Model

For a vector of explanatory variables x, define the linear predictors �i D ˛i C x0ˇi , and let �i denote the
probability of obtaining the response value i:

�i D

8<:
�kC1e

�i 1 � i � k
1

1C
Pk
jD1 e

�j
i D k C 1

By the delta method,

�2.�i / D

�
@�i

@ˇ

�0
V.ˇ/

@�i

@ˇ

A 100(1�˛)% confidence level for �i is given by

b� i ˙ z˛=2 O�.b� i /
where b� i is the estimated expected probability of response i, and O�.b� i / is obtained by evaluating �.�i / at
ˇ D b̌.

Note that the contrast O�i and exponentiated contrast e O�i , their standard errors, and their confidence intervals
are computed in the same fashion as for the cumulative response models, replacing ˇ with ˇi .

Classification Table
For binary response data, the response is either an event or a nonevent. In PROC LOGISTIC, the response
with Ordered Value 1 is regarded as the event, and the response with Ordered Value 2 is the nonevent.
PROC LOGISTIC models the probability of the event. From the fitted model, a predicted event probability
can be computed for each observation. A method to compute a reduced-bias estimate of the predicted
probability is given in the section “Predicted Probability of an Event for Classification” on page 4582. If the
predicted event probability exceeds or equals some cutpoint value z 2 Œ0; 1�, the observation is predicted to
be an event observation; otherwise, it is predicted as a nonevent. A 2 � 2 frequency table can be obtained
by cross-classifying the observed and predicted responses. The CTABLE option produces this table, and
the PPROB= option selects one or more cutpoints. Each cutpoint generates a classification table. If the
PEVENT= option is also specified, a classification table is produced for each combination of PEVENT= and
PPROB= values.
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The accuracy of the classification is measured by its sensitivity (the ability to predict an event correctly) and
specificity (the ability to predict a nonevent correctly). Sensitivity is the proportion of event responses that
were predicted to be events. Specificity is the proportion of nonevent responses that were predicted to be
nonevents. PROC LOGISTIC also computes three other conditional probabilities: false positive rate, false
negative rate, and rate of correct classification. The false positive rate is the proportion of predicted event
responses that were observed as nonevents. The false negative rate is the proportion of predicted nonevent
responses that were observed as events. Given prior probabilities specified with the PEVENT= option, these
conditional probabilities can be computed as posterior probabilities by using Bayes’ theorem.

Predicted Probability of an Event for Classification

When you classify a set of binary data, if the same observations used to fit the model are also used to estimate
the classification error, the resulting error-count estimate is biased. One way of reducing the bias is to
remove the binary observation to be classified from the data, reestimate the parameters of the model, and
then classify the observation based on the new parameter estimates. However, it would be costly to fit the
model by leaving out each observation one at a time. The LOGISTIC procedure provides a less expensive
one-step approximation to the preceding parameter estimates. Let b̌ be the MLE of the parameter vector
.˛; ˇ1; : : : ; ˇs/

0 based on all observations. Let b̌.j / denote the MLE computed without the jth observation.
The one-step estimate of b̌.j / is given by

b̌1
.j / D

b̌� wj .yj �b�j /
1 � hj

bV.b̌/� 1

xj

�
where

yj is 1 for an observed event response and 0 otherwise

wj is the weight of the observationb�j is the predicted event probability based on b̌
hj is the hat diagonal element (defined on page 4591) with nj D 1 and rj D yjbV.b̌/ is the estimated covariance matrix of b̌

False Positive, False Negative, and Correct Classification Rates Using Bayes’ Theorem

Suppose n1 of n individuals experience an event, such as a disease. Let this group be denoted by C1, and let
the group of the remaining n2 D n � n1 individuals who do not have the disease be denoted by C2. The jth
individual is classified as giving a positive response if the predicted probability of disease (b��.j /) is large.
The probability b��.j / is the reduced-bias estimate based on the one-step approximation given in the preceding
section. For a given cutpoint z, the jth individual is predicted to give a positive response if b��.j / � z.

Let B denote the event that a subject has the disease, and let NB denote the event of not having the disease. Let
A denote the event that the subject responds positively, and let NA denote the event of responding negatively.
Results of the classification are represented by two conditional probabilities, Pr.AjB/ and Pr.Aj NB/, where
Pr.AjB/ is the sensitivity and Pr.Aj NB/ is one minus the specificity.
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These probabilities are given by

Pr.AjB/ D

P
j2C1 I.b��.j / � z/

n1

Pr.Aj NB/ D

P
j2C2 I.b��.j / � z/

n2

where I.�/ is the indicator function.

Bayes’ theorem is used to compute several rates of the classification. For a given prior probability Pr.B/ of
the disease, the false positive rate PFC, the false negative rate PF�, and the correct classification rate PC
are given by Fleiss (1981, pp. 4–5) as follows:

PFC D Pr. NBjA/ D
Pr.Aj NB/Œ1 � Pr.B/�

Pr.Aj NB/C Pr.B/ŒPr.AjB/ � Pr.Aj NB/�

PF� D Pr.Bj NA/ D
Œ1 � Pr.AjB/�Pr.B/

1 � Pr.Aj NB/ � Pr.B/ŒPr.AjB/ � Pr.Aj NB/�
PC D Pr.BjA/C Pr. NBj NA/ D Pr.AjB/Pr.B/C Pr. NAj NB/Œ1 � Pr.B/�

The prior probability Pr.B/ can be specified by the PEVENT= option. If the PEVENT= option is not
specified, the sample proportion of diseased individuals is used; that is, Pr.B/ D n1=n. In such a case, the
false positive rate and the false negative rate reduce to

PFC D

P
j2C2 I.b��.j / � z/P

j2C1 I.b��.j / � z/CPj2C2 I.b��.j / � z/
PF� D

P
j2C1 I.b��.j / < z/P

j2C1 I.b��.j / < z/CPj2C2 I.b��.j / < z/
PC D

P
j2C1 I.b��.j / � z/CPj2C2 I.b��.j / < z/

n

Note that for a stratified sampling situation in which n1 and n2 are chosen a priori, n1=n is not a desirable
estimate of Pr.B/. For such situations, the PEVENT= option should be specified.

Overdispersion
For a correctly specified model, the Pearson chi-square statistic and the deviance, divided by their degrees of
freedom, should be approximately equal to one. When their values are much larger than one, the assumption
of binomial variability might not be valid and the data are said to exhibit overdispersion. Underdispersion,
which results in the ratios being less than one, occurs less often in practice.

When fitting a model, there are several problems that can cause the goodness-of-fit statistics to exceed their
degrees of freedom. Among these are such problems as outliers in the data, using the wrong link function,
omitting important terms from the model, and needing to transform some predictors. These problems should
be eliminated before proceeding to use the following methods to correct for overdispersion.
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Rescaling the Covariance Matrix

One way of correcting overdispersion is to multiply the covariance matrix by a dispersion parameter. This
method assumes that the sample sizes in each subpopulation are approximately equal. You can supply the
value of the dispersion parameter directly, or you can estimate the dispersion parameter based on either the
Pearson chi-square statistic or the deviance for the fitted model.

The Pearson chi-square statistic �2P and the deviance �2D are given by

�2P D

mX
iD1

kC1X
jD1

.rij � nib� ij /2
nib� ij

�2D D 2

mX
iD1

kC1X
jD1

rij log
�
rij

nib� ij
�

where m is the number of subpopulation profiles, k C 1 is the number of response levels, rij is the total
weight (sum of the product of the frequencies and the weights) associated with jth level responses in the
ith profile, ni D

PkC1
jD1 rij , and b� ij is the fitted probability for the jth level at the ith profile. Each of these

chi-square statistics has mk � p degrees of freedom, where p is the number of parameters estimated. The
dispersion parameter is estimated by

c�2 D
8<:
�2P =.mk � p/ SCALE=PEARSON
�2D=.mk � p/ SCALE=DEVIANCE
.constant/2 SCALE=constant

In order for the Pearson statistic and the deviance to be distributed as chi-square, there must be sufficient
replication within the subpopulations. When this is not true, the data are sparse, and the p-values for these
statistics are not valid and should be ignored. Similarly, these statistics, divided by their degrees of freedom,
cannot serve as indicators of overdispersion. A large difference between the Pearson statistic and the deviance
provides some evidence that the data are too sparse to use either statistic.

You can use the AGGREGATE (or AGGREGATE=) option to define the subpopulation profiles. If you do not
specify this option, each observation is regarded as coming from a separate subpopulation. For events/trials
syntax, each observation represents n Bernoulli trials, where n is the value of the trials variable; for single-trial
syntax, each observation represents a single trial. Without the AGGREGATE (or AGGREGATE=) option,
the Pearson chi-square statistic and the deviance are calculated only for events/trials syntax.

Note that the parameter estimates are not changed by this method. However, their standard errors are adjusted
for overdispersion, affecting their significance tests.

Williams’ Method

Suppose that the data consist of n binomial observations. For the ith observation, let ri=ni be the observed
proportion and let xi be the associated vector of explanatory variables. Suppose that the response probability
for the ith observation is a random variable Pi with mean and variance

E.Pi / D �i and V.Pi / D ��i .1 � �i /

where pi is the probability of the event, and � is a nonnegative but otherwise unknown scale parameter. Then
the mean and variance of ri are

E.ri / D ni�i and V.ri / D ni�i .1 � �i /Œ1C .ni � 1/��
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Williams (1982) estimates the unknown parameter � by equating the value of Pearson’s chi-square statistic
for the full model to its approximate expected value. Suppose w�i is the weight associated with the ith
observation. The Pearson chi-square statistic is given by

�2 D

nX
iD1

w�i .ri � nib� i /2
nib� i .1 �b� i /

Let g0.�/ be the first derivative of the link function g.�/. The approximate expected value of �2 is

E�2 D

nX
iD1

w�i .1 � w
�
i vidi /Œ1C �.ni � 1/�

where vi D ni=.�i .1 � �i /Œg
0.�i /�

2/ and di is the variance of the linear predictor b̨i C x0ib̌. The scale
parameter � is estimated by the following iterative procedure.

At the start, let w�i D 1 and let �i be approximated by ri=ni , i D 1; 2; : : : ; n. If you apply these weights
and approximated probabilities to �2 and E�2 and then equate them, an initial estimate of � is

O�0 D
�2 � .n � p/P

i .ni � 1/.1 � vidi /

where p is the total number of parameters. The initial estimates of the weights become Ow�i0 D Œ1C .ni �
1/ O�0�

�1. After a weighted fit of the model, the b̨i and b̌ are recalculated, and so is �2. Then a revised
estimate of � is given by

O�1 D
�2 �

P
i w
�
i .1 � w

�
i vidi /

w�i .ni � 1/.1 � w
�
i vidi /

The iterative procedure is repeated until �2 is very close to its degrees of freedom.

Once � has been estimated by O� under the full model, weights of .1C .ni � 1/ O�/�1 can be used to fit models
that have fewer terms than the full model. See Example 60.10 for an illustration.

NOTE: If the WEIGHT statement is specified with the NORMALIZE option, then the initial w�i values are
set to the normalized weights, and the weights resulting from Williams’ method will not add up to the actual
sample size. However, the estimated covariance matrix of the parameter estimates remains invariant to the
scale of the WEIGHT variable.

The Hosmer-Lemeshow Goodness-of-Fit Test
Sufficient replication within subpopulations is required to make the Pearson and deviance goodness-of-fit
tests valid. When there are one or more continuous predictors in the model, the data are often too sparse to
use these statistics. Hosmer and Lemeshow (2000) proposed a statistic that they show, through simulation, is
distributed as chi-square when there is no replication in any of the subpopulations. This test is available only
for binary response models.

First, the observations are sorted in increasing order of their estimated event probability. The event is the
response level specified in the response variable option EVENT=, or the response level that is not specified in
the REF= option, or, if neither of these options was specified, then the event is the response level identified in
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the “Response Profiles” table as “Ordered Value 1”. The observations are then divided into approximately 10
groups according to the following scheme. Let N be the total number of subjects. Let M be the target number
of subjects for each group given by

M D Œ0:1 �N C 0:5�

where Œx� represents the integral value of x. If the single-trial syntax is used, blocks of subjects are formed
of observations with identical values of the explanatory variables. Blocks of subjects are not divided when
being placed into groups.

Suppose there are n1 subjects in the first block and n2 subjects in the second block. The first block of subjects
is placed in the first group. Subjects in the second block are added to the first group if

n1 < M and n1 C Œ0:5 � n2� �M

Otherwise, they are placed in the second group. In general, suppose subjects of the (j – 1) block have been
placed in the kth group. Let c be the total number of subjects currently in the kth group. Subjects for the jth
block (containing nj subjects) are also placed in the kth group if

c < M and c C Œ0:5 � nj � �M

Otherwise, the nj subjects are put into the next group. In addition, if the number of subjects in the last group
does not exceed Œ0:05 �N� (half the target group size), the last two groups are collapsed to form only one
group.

Note that the number of groups, g, can be smaller than 10 if there are fewer than 10 patterns of explanatory
variables. There must be at least three groups in order for the Hosmer-Lemeshow statistic to be computed.

The Hosmer-Lemeshow goodness-of-fit statistic is obtained by calculating the Pearson chi-square statistic
from the 2 � g table of observed and expected frequencies, where g is the number of groups. The statistic is
written

�2HL D

gX
iD1

.Oi �Ni N�i /
2

Ni N�i .1 � N�i /

where Ni is the total frequency of subjects in the ith group, Oi is the total frequency of event outcomes in the
ith group, and N�i is the average estimated predicted probability of an event outcome for the ith group. (Note
that the predicted probabilities are computed as shown in the section “Linear Predictor, Predicted Probability,
and Confidence Limits” on page 4580 and are not the cross validated estimates discussed in the section
“Classification Table” on page 4581.) The Hosmer-Lemeshow statistic is then compared to a chi-square
distribution with .g � n/ degrees of freedom, where the value of n can be specified in the LACKFIT option
in the MODEL statement. The default is n = 2. Large values of �2HL (and small p-values) indicate a lack of
fit of the model.

Receiver Operating Characteristic Curves
ROC curves are used to evaluate and compare the performance of diagnostic tests; they can also be used to
evaluate model fit. An ROC curve is just a plot of the proportion of true positives (events predicted to be
events) versus the proportion of false positives (nonevents predicted to be events).
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In a sample of n individuals, suppose n1 individuals are observed to have a certain condition or event. Let
this group be denoted by C1, and let the group of the remaining n2 D n� n1 individuals who do not have the
condition be denoted by C2. Risk factors are identified for the sample, and a logistic regression model is fitted
to the data. For the jth individual, an estimated probability b�j of the event of interest is calculated. Note that
theb�j are computed as shown in the section “Linear Predictor, Predicted Probability, and Confidence Limits”
on page 4580 and are not the cross validated estimates discussed in the section “Classification Table” on
page 4581.

Suppose the n individuals undergo a test for predicting the event and the test is based on the estimated
probability of the event. Higher values of this estimated probability are assumed to be associated with the
event. A receiver operating characteristic (ROC) curve can be constructed by varying the cutpoint that
determines which estimated event probabilities are considered to predict the event. For each cutpoint z, the
following measures can be output to a data set by specifying the OUTROC= option in the MODEL statement
or the OUTROC= option in the SCORE statement:

_POS_.z/ D
X
i2C1

I.b� i � z/
_NEG_.z/ D

X
i2C2

I.b� i < z/
_FALPOS_.z/ D

X
i2C2

I.b� i � z/
_FALNEG_.z/ D

X
i2C1

I.b� i < z/
_SENSIT_.z/ D

_POS_.z/
n1

_1MSPEC_.z/ D
_FALPOS_.z/

n2

where I.�/ is the indicator function.

Note that _POS_(z) is the number of correctly predicted event responses, _NEG_(z) is the number of
correctly predicted nonevent responses, _FALPOS_(z) is the number of falsely predicted event responses,
_FALNEG_(z) is the number of falsely predicted nonevent responses, _SENSIT_(z) is the sensitivity of the
test, and _1MSPEC_(z) is one minus the specificity of the test.

The ROC curve is a plot of sensitivity (_SENSIT_) against 1–specificity (_1MSPEC_). The plot can be
produced by using the PLOTS option or by using the GPLOT or SGPLOT procedure with the OUTROC= data
set. See Example 60.7 for an illustration. The area under the ROC curve, as determined by the trapezoidal
rule, is estimated by the concordance index, c, in the “Association of Predicted Probabilities and Observed
Responses” table.

Comparing ROC Curves

ROC curves can be created from each model fit in a selection routine, from the specified model in the MODEL
statement, from specified models in ROC statements, or from input variables which act as b� in the preceding
discussion. Association statistics are computed for these models, and the models are compared when the
ROCCONTRAST statement is specified. The ROC comparisons are performed by using a contrast matrix to
take differences of the areas under the empirical ROC curves (DeLong, DeLong, and Clarke-Pearson 1988).
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For example, if you have three curves and the second curve is the reference, the contrast used for the overall
test is

L1 D
�
l 01
l 02

�
D

�
1 �1 0

0 �1 1

�
and you can optionally estimate and test each row of this contrast, in order to test the difference between
the reference curve and each of the other curves. If you do not want to use a reference curve, the global test
optionally uses the following contrast:

L2 D
�
l 01
l 02

�
D

�
1 �1 0

0 1 �1

�
You can also specify your own contrast matrix. Instead of estimating the rows of these contrasts, you can
request that the difference between every pair of ROC curves be estimated and tested. Demler, Pencina, and
D’Agostino (2012) caution that testing the difference in the AUC between two nested models is not a valid
approach if the added predictor is not significantly associated with the response; in any case, if you use this
approach, you are more likely to fail to reject the null.

By default for the reference contrast, the specified or selected model is used as the reference unless the
NOFIT option is specified in the MODEL statement, in which case the first ROC model is the reference.

In order to label the contrasts, a name is attached to every model. The name for the specified or selected
model is the MODEL statement label, or “Model” if the MODEL label is not present. The ROC statement
models are named with their labels, or as “ROCi” for the ith ROC statement if a label is not specified.
The contrast L1 is labeled as “Reference = ModelName”, where ModelName is the reference model name,
while L2 is labeled “Adjacent Pairwise Differences”. The estimated rows of the contrast matrix are labeled
“ModelName1 – ModelName2”. In particular, for the rows of L1, ModelName2 is the reference model name.
If you specify your own contrast matrix, then the contrast is labeled “Specified” and the ith contrast row
estimates are labeled “Rowi”.

If ODS Graphics is enabled, then all ROC curves are displayed individually and are also overlaid in a final
display. If a selection method is specified, then the curves produced in each step of the model selection
process are overlaid onto a single plot and are labeled “Stepi”, and the selected model is displayed on a
separate plot and on a plot with curves from specified ROC statements. See Example 60.8 for an example.

ROC Computations

The trapezoidal area under an empirical ROC curve is equal to the Mann-Whitney two-sample rank measure
of association statistic (a generalized U-statistic) applied to two samples, fXig; i D 1; : : : ; n1, in C1 and
fYig; i D 1; : : : ; n2, in C2. PROC LOGISTIC uses the predicted probabilities in place of X and Y; however,
in general any criterion could be used. Denote the frequency of observation i in Ck as fki , and denote the
total frequency in Ck as Fk . The WEIGHTED option replaces fki with fkiwki , where wki is the weight of
observation i in group Ck . The trapezoidal area under the curve is computed as

Oc D
1

F1F2

n1X
iD1

n2X
jD1

 .Xi ; Yj /f1if2j

 .X; Y / D

8<:
1 Y < X
1
2

Y D X

0 Y > X
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so that E. Oc/ D Pr.Y < X/C 1
2
Pr.Y D X/. Note that the concordance index, c, in the “Association of

Predicted Probabilities and Observed Responses” table does not use weights unless both the WEIGHTED
and BINWIDTH=0 options are specified. Also, in this table, c is computed by creating 500 bins and binning
the Xi and Yj ; this results in more ties than the preceding method (unless the BINWIDTH=0 or ROCEPS=0
option is specified), so c is not necessarily equal to E. Oc/.

To compare K empirical ROC curves, first compute the trapezoidal areas. Asymptotic normality of the
estimated area follows from U-statistic theory, and a covariance matrix S can be computed; For more
information, see DeLong, DeLong, and Clarke-Pearson (1988). A Wald confidence interval for the rth area,
1 � r � K, can be constructed as

Ocr ˙ z1�˛
2
sr;r

where sr;r is the rth diagonal of S.

For a contrast of ROC curve areas, Lc, the statistic

.Oc � c/0L0
�
LSL0

��1 L.Oc � c/

has a chi-square distribution with df=rank(LSL0). For a row of the contrast, l 0c,

l 0 Oc � l 0c

Œl 0Sl �1=2

has a standard normal distribution. The corresponding confidence interval is

l 0 Oc˙ z1�˛
2

�
l 0Sl

�1=2

Testing Linear Hypotheses about the Regression Coefficients
Linear hypotheses for ˇ are expressed in matrix form as

H0WLˇ D c

where L is a matrix of coefficients for the linear hypotheses, and c is a vector of constants. The vector of
regression coefficients ˇ includes slope parameters as well as intercept parameters. The Wald chi-square
statistic for testing H0 is computed as

�2W D .Lb̌� c/0ŒLbV.b̌/L0��1.Lb̌� c/

where bV.b̌/ is the estimated covariance matrix. Under H0, �2W has an asymptotic chi-square distribution
with r degrees of freedom, where r is the rank of L.

Joint Tests and Type 3 Tests
For models that use less-than-full-rank parameterization (as specified by the PARAM=GLM option in the
CLASS statement), a Type 3 test of an effect of interest (main effect or interaction) is a test of the Type III
estimable functions that are defined for that effect. When the model contains no missing cells, the Type 3 test
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of a main effect corresponds to testing the hypothesis of equal marginal means. For more information about
Type III estimable functions, see Chapter 45, “The GLM Procedure,” and Chapter 15, “The Four Types of
Estimable Functions.” Also see Littell, Freund, and Spector (1991).

For models that use full-rank parameterization, all parameters are estimable when there are no missing
cells, so it is unnecessary to define estimable functions. The standard test of an effect of interest in this
case is the joint test that the values of the parameters associated with that effect are zero. For a model that
uses effects parameterization (as specified by the PARAM=EFFECT option in the CLASS statement), the
joint test for a main effect is equivalent to testing the equality of marginal means. For a model that uses
reference parameterization (as specified by the PARAM=REF option in the CLASS statement), the joint test
is equivalent to testing the equality of cell means at the reference level of the other model effects. For more
information about the coding scheme and the associated interpretation of results, see Muller and Fetterman
(2002, Chapter 14).

If there is no interaction term, the Type 3 test of an effect for a model with GLM parameterization is the same
as the joint test of the effect for the model with full-rank parameterization. In this situation, the joint test is
also called the Type 3 test. For a model that contains an interaction term and no missing cells, the Type 3 test
for a component main effect under GLM parameterization is the same as the joint test of the component main
effect under effect parameterization. Both test the equality of cell means. But this Type 3 test differs from the
joint test under reference parameterization, which tests the equality of cell means at the reference level of the
other component main effect. If some cells are missing, you can obtain meaningful tests only by testing a
Type III estimation function, so in this case you should use GLM parameterization.

The results of a Type 3 test or a joint test do not depend on the order in which the terms are specified in the
MODEL statement.

Regression Diagnostics
For binary response data, regression diagnostics developed by Pregibon (1981) can be requested by specifying
the INFLUENCE option. For diagnostics available with conditional logistic regression, see the section
“Regression Diagnostic Details” on page 4599. These diagnostics can also be obtained from the OUTPUT
statement.

This section uses the following notation:

rj ; nj rj is the number of event responses out of nj trials for the jth observation. If events/trials syntax
is used, rj is the value of events and nj is the value of trials. For single-trial syntax, nj D 1, and
rj D 1 if the ordered response is 1, and rj D 0 if the ordered response is 2.

wj is the weight of the jth observation.

�j is the probability of an event response for the jth observation given by �j D F.˛ C ˇ0xj /, where
F.�/ is the inverse link function defined on page 4565.b̌ is the maximum likelihood estimate (MLE) of .˛; ˇ1; : : : ; ˇs/0.bV.b̌/ is the estimated covariance matrix of b̌.

Opj ; Oqj Opj is the estimate of �j evaluated at b̌, and Oqj D 1 � Opj .

Pregibon (1981) suggests using the index plots of several diagnostic statistics to identify influential ob-
servations and to quantify the effects on various aspects of the maximum likelihood fit. In an index plot,



Regression Diagnostics F 4591

the diagnostic statistic is plotted against the observation number. In general, the distributions of these
diagnostic statistics are not known, so cutoff values cannot be given for determining when the values are
large. However, the IPLOTS and INFLUENCE options in the MODEL statement and the PLOTS option in
the PROC LOGISTIC statement provide displays of the diagnostic values, allowing visual inspection and
comparison of the values across observations. In these plots, if the model is correctly specified and fits all
observations well, then no extreme points should appear.

The next five sections give formulas for these diagnostic statistics.

Hat Matrix Diagonal (Leverage)

The diagonal elements of the hat matrix are useful in detecting extreme points in the design space where they
tend to have larger values. The jth diagonal element is

hj D

( ewj .1; x0j /bV.b̌/.1; x0j /0 Fisher scoringbwj .1; x0j /bV.b̌/.1; x0j /0 Newton-Raphson

where

ewj D wjnj

Opj Oqj Œg0. Opj /�2

bwj D ewj C wj .rj � nj Opj /Œ Opj Oqjg
00. Opj /C . Oqj � Opj /g

0. Opj /�

. Opj Oqj /2Œg0. Opj /�3

and g0.�/ and g00.�/ are the first and second derivatives of the link function g.�/, respectively.

For a binary response logit model, the hat matrix diagonal elements are

hj D wjnj Opj Oqj .1; x0j /bV.b̌/� 1

xj

�
If the estimated probability is extreme (less than 0.1 and greater than 0.9, approximately), then the hat
diagonal might be greatly reduced in value. Consequently, when an observation has a very large or very small
estimated probability, its hat diagonal value is not a good indicator of the observation’s distance from the
design space (Hosmer and Lemeshow 2000, p. 171).

Residuals

Residuals are useful in identifying observations that are not explained well by the model. Pearson residuals
are components of the Pearson chi-square statistic and deviance residuals are components of the deviance.
The Pearson residual for the jth observation is

�j D

p
wj .rj � nj Opj /p

nj Opj Oqj

The Pearson chi-square statistic is the sum of squares of the Pearson residuals.

The deviance residual for the jth observation is

dj D

8̂<̂
:
�
p
�2wjnj log. Oqj / if rj D 0

˙

q
2wj Œrj log.

rj
nj Opj

/C .nj � rj / log.
nj�rj
nj Oqj

/� if 0 < rj < njp
�2wjnj log. Opj / if rj D nj
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where the plus (minus) in˙ is used if rj =nj is greater (less) than Opj . The deviance is the sum of squares of
the deviance residuals.

The STDRES option in the INFLUENCE and PLOTS=INFLUENCE options computes three more residuals
(Collett 2003). The Pearson and deviance residuals are standardized to have approximately unit variance:

epj D
�jp
1 � hj

edj D
djp
1 � hj

The likelihood residuals, which estimate components of a likelihood ratio test of deleting an individual
observation, are a weighted combination of the standardized Pearson and deviance residuals

elj D sign.rj � nj Opj /
q
hj e2pj C .1 � hj /e

2
dj

DFBETAS

For each parameter estimate, the procedure calculates a DFBETAS diagnostic for each observation. The
DFBETAS diagnostic for an observation is the standardized difference in the parameter estimate due to
deleting the observation, and it can be used to assess the effect of an individual observation on each estimated
parameter of the fitted model. Instead of reestimating the parameter every time an observation is deleted,
PROC LOGISTIC uses the one-step estimate. See the section “Predicted Probability of an Event for
Classification” on page 4582. For the jth observation, the DFBETAS are given by

DFBETASij D �ib̌1j = O�i
where i D 0; 1; : : : ; s; O�i is the standard error of the ith component of b̌, and�ib̌1j is the ith component of
the one-step difference

�b̌1j D wj .rj � nj Opj /

1 � hj
bV.b̌/� 1

xj

�
�b̌1j is the approximate change (b̌� b̌1j ) in the vector of parameter estimates due to the omission of the jth
observation. The DFBETAS are useful in detecting observations that are causing instability in the selected
coefficients.

C and CBAR

C and CBAR are confidence interval displacement diagnostics that provide scalar measures of the influence
of individual observations on b̌. These diagnostics are based on the same idea as the Cook distance in
linear regression theory (Cook and Weisberg 1982), but use the one-step estimate. C and CBAR for the jth
observation are computed as

Cj D �
2
jhj =.1 � hj /

2

and

C j D �
2
jhj =.1 � hj /

respectively.

Typically, to use these statistics, you plot them against an index and look for outliers.
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DIFDEV and DIFCHISQ

DIFDEV and DIFCHISQ are diagnostics for detecting ill-fitted observations; in other words, observations
that contribute heavily to the disagreement between the data and the predicted values of the fitted model.
DIFDEV is the change in the deviance due to deleting an individual observation while DIFCHISQ is the
change in the Pearson chi-square statistic for the same deletion. By using the one-step estimate, DIFDEV
and DIFCHISQ for the jth observation are computed as

DIFDEV D d2j C C j

and

DIFCHISQ D C j =hj

Scoring Data Sets
Scoring a data set, which is especially important for predictive modeling, means applying a previously fitted
model to a new data set in order to compute the conditional, or posterior, probabilities of each response
category given the values of the explanatory variables in each observation.

The SCORE statement enables you to score new data sets and output the scored values and, optionally, the
corresponding confidence limits into a SAS data set. If the response variable is included in the new data set,
then you can request fit statistics for the data, which is especially useful for test or validation data. If the
response is binary, you can also create a SAS data set containing the receiver operating characteristic (ROC)
curve. You can specify multiple SCORE statements in the same invocation of PROC LOGISTIC.

By default, the posterior probabilities are based on implicit prior probabilities that are proportional to the
frequencies of the response categories in the training data (the data used to fit the model). Explicit prior
probabilities should be specified with the PRIOR= or PRIOREVENT= option when the sample proportions
of the response categories in the training data differ substantially from the operational data to be scored. For
example, to detect a rare category, it is common practice to use a training set in which the rare categories
are overrepresented; without prior probabilities that reflect the true incidence rate, the predicted posterior
probabilities for the rare category will be too high. By specifying the correct priors, the posterior probabilities
are adjusted appropriately.

The model fit to the DATA= data set in the PROC LOGISTIC statement is the default model used for the
scoring. Alternatively, you can save a model fit in one run of PROC LOGISTIC and use it to score new
data in a subsequent run. The OUTMODEL= option in the PROC LOGISTIC statement saves the model
information in a SAS data set. Specifying this data set in the INMODEL= option of a new PROC LOGISTIC
run will score the DATA= data set in the SCORE statement without refitting the model.

The STORE statement can also be used to save your model. The PLM procedure can use this model to score
new data sets; see Chapter 75, “The PLM Procedure,” for more information. You cannot specify priors in
PROC PLM.
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Fit Statistics for Scored Data Sets

Specifying the FITSTAT option displays the following fit statistics when the data set being scored includes
the response variable:

Statistic Description

Total frequency F D
P
i fini

Total weight W D
P
i fiwini

Log likelihood logL D
P
i fiwi log.b� i /

Full log likelihood logLf D constantC logL

Misclassification (error) rate
P
i 1fF_Yi ¤ I_Yigfini

F
AIC �2 logLf C 2p

AICC �2 logLf C
2pn

n � p � 1
BIC �2 logLf C p log.n/
SC �2 logLf C p log.F /

R-square R2 D 1 �

�
L0

L

�2=F
Maximum-rescaled R-square

R2

1 � L
2=F
0

AUC Area under the ROC curve
Brier score (polytomous response) 1

W

P
i fiwi

P
j .yij �b� ij /2

Brier score (binary response) 1
W

P
i fiwi .ri .1 �b� i /2 C .ni � ri /b�2i /

Brier reliability (events/trials syntax) 1
W

P
i fiwi .ri=ni �b� i /2

In the preceding table, fi is the frequency of the ith observation in the data set being scored, wi is the weight
of the observation, and n D

P
i fi . The number of trials when events/trials syntax is specified is ni , and

with single-trial syntax ni D 1. The values F_Yi and I_Yi are described in the section “OUT= Output Data
Set in a SCORE Statement” on page 4608. The indicator function 1fAg is 1 if A is true and 0 otherwise. The
likelihood of the model is L, and L0 denotes the likelihood of the intercept-only model. For polytomous
response models, yi is the observed polytomous response level, b� ij is the predicted probability of the jth
response level for observation i, and yij D 1fyi D j g. For binary response models, b� i is the predicted
probability of the observation, ri is the number of events when you specify events/trials syntax, and ri D yi
when you specify single-trial syntax.

The log likelihood, Akaike’s information criterion (AIC), and Schwarz criterion (SC) are described in the
section “Model Fitting Information” on page 4572. The full log likelihood is displayed for models specified
with events/trials syntax, and the constant term is described in the section “Model Fitting Information”
on page 4572. The AICC is a small-sample bias-corrected version of the AIC (Hurvich and Tsai 1993;
Burnham and Anderson 1998). The Bayesian information criterion (BIC) is the same as the SC except when
events/trials syntax is specified. The area under the ROC curve for binary response models is defined in
the section “ROC Computations” on page 4588. The R-square and maximum-rescaled R-square statistics,
defined in “Generalized Coefficient of Determination” on page 4573, are not computed when you specify
both an OFFSET= variable and the INMODEL= data set. The Brier score (Brier 1950) is the weighted
squared difference between the predicted probabilities and their observed response levels. For events/trials
syntax, the Brier reliability is the weighted squared difference between the predicted probabilities and the
observed proportions (Murphy 1973).
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Posterior Probabilities and Confidence Limits

Let F be the inverse link function. That is,

F.t/ D

8<:
1

1Cexp.�t/ logistic
ˆ.t/ normal
1 � exp.� exp.t// complementary log-log

The first derivative of F is given by

F 0.t/ D

8̂<̂
:

exp.�t/
.1Cexp.�t//2 logistic
�.t/ normal
exp.t/ exp.� exp.t// complementary log-log

Suppose there are k C 1 response categories. Let Y be the response variable with levels 1; : : : ; k C 1. Let
x D .x0; x1; : : : ; xs/0 be a .s C 1/-vector of covariates, with x0 � 1. Let ˇ be the vector of intercept and
slope regression parameters.

Posterior probabilities are given by

p.Y D i jx/ D
po.Y D i jx/ep.YDi/po.YDi/P
j po.Y D j jx/

ep.YDj /
po.YDj /

i D 1; : : : ; k C 1

where the old posterior probabilities (po.Y D i jx/; i D 1; : : : ; k C 1) are the conditional probabilities of
the response categories given x, the old priors (po.Y D i/; i D 1; : : : ; k C 1) are the sample proportions of
response categories of the training data, and the new priors (ep.Y D i/; i D 1; : : : ; k C 1) are specified in the
PRIOR= or PRIOREVENT= option. To simplify notation, absorb the old priors into the new priors; that is

p.Y D i/ D
ep.Y D i/
po.Y D i/

i D 1; : : : ; k C 1

Note if the PRIOR= and PRIOREVENT= options are not specified, then p.Y D i/ D 1.

The posterior probabilities are functions of ˇ and their estimates are obtained by substituting ˇ by its MLEb̌. The variances of the estimated posterior probabilities are given by the delta method as follows:

Var.bp.Y D i jx// D �@p.Y D i jx/
@ˇ

�0
Var.b̌/�@p.Y D i jx/

@ˇ

�
where

@p.Y D i jx/
@ˇ

D

@po.YDi jx/
@ˇ

p.Y D i/P
j po.Y D j jx/p.Y D j /

�

po.Y D i jx/p.Y D i/
P
j
@po.YDj jx/

@ˇ
p.Y D j /

Œ
P
j po.Y D j jx/p.Y D j /�2

and the old posterior probabilities po.Y D i jx/ are described in the following sections.

A 100(1 � ˛)% confidence interval for p.Y D i jx/ is

bp.Y D i jx/˙ z1�˛=2qcVar.bp.Y D i jx//
where z� is the upper 100� percentile of the standard normal distribution.
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Binary and Cumulative Response Models
Let ˛1; : : : ; ˛k be the intercept parameters and let ˇs be the vector of slope parameters. Denote ˇ D
.˛1; : : : ; ˛k;ˇ

0
s/
0. Let

�i D �i .ˇ/ D ˛i C x0ˇs; i D 1; : : : ; k

Estimates of �1; : : : ; �k are obtained by substituting the maximum likelihood estimate b̌ for ˇ.

The predicted probabilities of the responses are

cpo.Y D i jx/ D bPr.Y D i/ D
8<:
F. O�1/ i D 1

F. O�i / � F. O�i�1/ i D 2; : : : ; k

1 � F. O�k/ i D k C 1

For i D 1; : : : ; k, let ıi .x/ be a (k + 1) column vector with ith entry equal to 1, k + 1 entry equal to x, and all
other entries 0. The derivative of po.Y D i jx/ with respect to ˇ are

@po.Y D i jx/
@ˇ

D

8<:
F 0.˛1 C x0ˇs/ı1.x/ i D 1

F 0.˛i C x0ˇs/ıi .x/ � F 0.˛i�1 C x0ˇs/ıi�1.x/ i D 2; : : : ; k

�F 0.˛k C x0ˇs/ık.x/ i D k C 1

The cumulative posterior probabilities are

p.Y � i jx/ D

Pi
jD1 po.Y D j jx/p.Y D j /PkC1
jD1 po.Y D j jx/p.Y D j /

D

iX
jD1

p.Y D j jx/ i D 1; : : : ; k C 1

Their derivatives are

@p.Y � i jx/
@ˇ

D

iX
jD1

@p.Y D j jx/
@ˇ

i D 1; : : : ; k C 1

In the delta-method equation for the variance, replace p.Y D �jx/ with p.Y � �jx/.

Finally, for the cumulative response model, use

cpo.Y � i jx/ D F. O�i / i D 1; : : : ; kcpo.Y � k C 1jx/ D 1

@po.Y � i jx/
@ˇ

D F 0.˛i C x0ˇs/ıi .x/ i D 1; : : : ; k

@po.Y � k C 1jx/
@ˇ

D 0



Scoring Data Sets F 4597

Generalized Logit Model
Consider the last response level (Y=k+1) as the reference. Let ˇ1; : : : ;ˇk be the (intercept and slope)
parameter vectors for the first k logits, respectively. Denote ˇ D .ˇ01; : : : ;ˇ

0
k
/0. Let � D .�1; : : : ; �k/0 with

�i D �i .ˇ/ D x0ˇi i D 1; : : : ; k

Estimates of �1; : : : ; �k are obtained by substituting the maximum likelihood estimate b̌ for ˇ.

The predicted probabilities are

cpo.Y D k C 1jx/ � Pr.Y D k C 1jx/ D
1

1C
Pk
lD1 exp. O�l/cpo.Y D i jx/ � Pr.Y D i jx/ D cpo.Y D k C 1jx/ exp.�i /; i D 1; : : : ; k

The derivative of po.Y D i jx/ with respect to ˇ are

@po.Y D i jx/
@ˇ

D
@�

@ˇ

@po.Y D i jx/
@�

D .Ik ˝ x/
�
@po.Y D i jx/

@�1
; � � � ;

@po.Y D i jx/
@�k

�0
where

@po.Y D i jx/
@�j

D

�
po.Y D i jx/.1 � po.Y D i jx// j D i

�po.Y D i jx/po.Y D j jx/ otherwise

Special Case of Binary Response Model with No Priors
Let ˇ be the vector of regression parameters. Let

� D �.ˇ/ D x0ˇ

The variance of O� is given by

Var. O�/ D x0Var.b̌/x
A 100(1 � ˛) percent confidence interval for � is

O�˙ z1�˛=2

qcVar. O�/

Estimates of po.Y D 1jx/ and confidence intervals for the po.Y D 1jx/ are obtained by back-transforming
O� and the confidence intervals for �, respectively. That is,

cpo.Y D 1jx/ D F. O�/
and the confidence intervals are

F

�
O�˙ z1�˛=2

qcVar. O�/
�
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Conditional Logistic Regression
The method of maximum likelihood described in the preceding sections relies on large-sample asymptotic
normality for the validity of estimates and especially of their standard errors. When you do not have a large
sample size compared to the number of parameters, this approach might be inappropriate and might result
in biased inferences. This situation typically arises when your data are stratified and you fit intercepts to
each stratum so that the number of parameters is of the same order as the sample size. For example, in
a 1W 1 matched pairs study with n pairs and p covariates, you would estimate n � 1 intercept parameters
and p slope parameters. Taking the stratification into account by “conditioning out” (and not estimating)
the stratum-specific intercepts gives consistent and asymptotically normal MLEs for the slope coefficients.
See Breslow and Day (1980) and Stokes, Davis, and Koch (2012) for more information. If your nuisance
parameters are not just stratum-specific intercepts, you can perform an exact conditional logistic regression.

Computational Details

For each stratum h, h D 1; : : : ;H , number the observations as i D 1; : : : ; nh so that hi indexes the ith
observation in stratum h. Denote the p covariates for the hith observation as xhi and its binary response
as yhi , and let y D .y11; : : : ; y1n1 ; : : : ; yH1; : : : ; yHnH /

0, Xh D .xh1 : : : xhnh/
0, and X D .X01 : : :X

0
H /
0.

Let the dummy variables zh; h D 1; : : : ;H , be indicator functions for the strata (zh D 1 if the observation
is in stratum h), and denote zhi D .z1; : : : ; zH / for the hith observation, Zh D .zh1 : : : zhnh/

0, and Z D
.Z01 : : :Z

0
H /
0. Denote X

�

D .ZjX) and x�
hi
D .z0

hi
jx0
hi
/0. Arrange the observations in each stratum h so

that yhi D 1 for i D 1; : : : ; mh, and yhi D 0 for i D mhC1; : : : ; nh. Suppose all observations have unit
frequency.

Consider the binary logistic regression model on page 4489 written as

logit.�/ D X
�

�

where the parameter vector � D .˛0;ˇ0/0 consists of ˛ D .˛1; : : : ; ˛H /
0, ˛h is the intercept for stratum

h; h D 1; : : : ;H , and ˇ is the parameter vector for the p covariates.

From the section “Determining Observations for Likelihood Contributions” on page 4566, you can write the
likelihood contribution of observation hi; i D 1; : : : ; nh; h D 1; : : : ;H; as

Lhi .�/ D
eyhix

�
hi

0
�

1C ex
�
hi

0
�

where yhi D 1 when the response takes Ordered Value 1, and yhi D 0 otherwise.

The full likelihood is

L.�/ D

HY
hD1

nhY
iD1

Lhi .�/ D
ey
0X
�

�QH
hD1

Qnh
iD1

�
1C ex

�
hi

0
�
�

Unconditional likelihood inference is based on maximizing this likelihood function.
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When your nuisance parameters are the stratum-specific intercepts .˛1; : : : ; ˛H /0, and the slopes ˇ are
your parameters of interest, “conditioning out” the nuisance parameters produces the conditional likelihood
(Lachin 2000)

L.ˇ/ D

HY
hD1

Lh.ˇ/ D

HY
hD1

Qmh
iD1 exp.x

0
hi
ˇ/PQjmh

jDj1
exp.x0

hj
ˇ/

where the summation is over all
�
nh
mh

�
subsets fj1; : : : ; jmhg of mh observations chosen from the nh observa-

tions in stratum h. Note that the nuisance parameters have been factored out of this equation.

For conditional asymptotic inference, maximum likelihood estimates b̌ of the regression parameters are
obtained by maximizing the conditional likelihood, and asymptotic results are applied to the conditional
likelihood function and the maximum likelihood estimators. A relatively fast method of computing this
conditional likelihood and its derivatives is given by Gail, Lubin, and Rubinstein (1981) and Howard (1972).
The optimization techniques can be controlled by specifying the NLOPTIONS statement.

Sometimes the log likelihood converges but the estimates diverge. This condition is flagged by having
inordinately large standard errors for some of your parameter estimates, and can be monitored by specifying
the ITPRINT option. Unfortunately, broad existence criteria such as those discussed in the section “Existence
of Maximum Likelihood Estimates” on page 4569 do not exist for this model. It might be possible to
circumvent such a problem by standardizing your independent variables before fitting the model.

Regression Diagnostic Details

Diagnostics are used to indicate observations that might have undue influence on the model fit or that might
be outliers. Further investigation should be performed before removing such an observation from the data set.

The derivations in this section use an augmentation method described by Storer and Crowley (1985), which
provides an estimate of the “one-step” DFBETAS estimates advocated by Pregibon (1984). The method
also provides estimates of conditional stratum-specific predicted values, residuals, and leverage for each
observation. The augmentation method can take a lot of time and memory.

Following Storer and Crowley (1985), the log-likelihood contribution can be written as

lh D log.Lh/ D y0hh � a.h/ where

a.h/ D log

24X jmhY
jDj1

exp.hj /

35
and the h subscript on matrices indicates the submatrix for the stratum, h D .h1; : : : ; hnh/

0, and hi D
x0
hi
ˇ. Then the gradient and information matrix are

g.ˇ/ D
�
@lh

@ˇ

�H
hD1

D X0.y � �/

ƒ.ˇ/ D

�
@2lh

@ˇ2

�H
hD1

D X0diag.U1; : : : ;UH /X
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where

�hi D
@a.h/

@hi
D

P
j.i/

Qjmh
jDj1

exp.hj /PQjmh
jDj1

exp.hj /
�h D .�h1; : : : ; �hnh/

Uh D
@2a.h/

@2
h

D

�
@2a.h/

@hi@hj

�
D faij g

aij D

P
k.i;j /

Qkmh
kDk1

exp.hk/PQkmh
kDk1

exp.hk/
�
@a.h/

@hi

@a.h/

@hj
D �hij � �hi�hj

and where �hi is the conditional stratum-specific probability that subject i in stratum h is a case, the
summation on j.i/ is over all subsets from f1; : : : ; nhg of sizemh that contain the index i, and the summation
on k.i; j / is over all subsets from f1; : : : ; nhg of size mh that contain the indices i and j.

To produce the true one-step estimate ˇ1
hi

, start at the MLE b̌, delete the hith observation, and use this
reduced data set to compute the next Newton-Raphson step. Note that if there is only one event or one
nonevent in a stratum, deletion of that single observation is equivalent to deletion of the entire stratum. The
augmentation method does not take this into account.

The augmented model is

logit.Pr.yhi D 1jxhi // D x0hiˇ C z0hi

where zhi D .0; : : : ; 0; 1; 0; : : : ; 0/0 has a 1 in the hith coordinate, and use ˇ0 D .b̌0; 0/0 as the initial estimate
for .ˇ0; /0. The gradient and information matrix before the step are

g.ˇ0/ D
�

X0

z0
hi

�
.y � �/ D

�
0

yhi � �hi

�
ƒ.ˇ0/ D

�
X0

z0
hi

�
U ŒX zhi � D

�
ƒ.ˇ/ X0Uzhi
z0
hi

UX z0
hi

Uzhi

�
Inserting the ˇ0 and .X0; z0

hi
/0 into the Gail, Lubin, and Rubinstein (1981) algorithm provides the appropriate

estimates of g.ˇ0/ and ƒ.ˇ0/. Indicate these estimates with b� D �.b̌/, bU D U.b̌/,bg, and bƒ.

DFBETA is computed from the information matrix as

�hiˇ D ˇ0 � ˇ1hi

D �bƒ�1.ˇ0/bg.ˇ0/
D �bƒ�1.b̌/.X0bUzhi /M�1z0hi .y �b�/

where

M D .z0hibUzhi / � .z0hibUX/bƒ�1.b̌/.X0bUzhi /

For each observation in the data set, a DFBETA statistic is computed for each parameter ˇj , 1 � j � p, and
standardized by the standard error of ˇj from the full data set to produce the estimate of DFBETAS.
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The estimated leverage is defined as

hhi D
tracef.z0

hi
bUX/bƒ�1.b̌/.X0bUzhi /g

tracefz0
hi
bUzhig

This definition of leverage produces different values from those defined by Pregibon (1984); Moolgavkar,
Lustbader, and Venzon (1985); Hosmer and Lemeshow (2000); however, it has the advantage that no extra
computations beyond those for the DFBETAS are required.

The estimated residuals ehi D yhi �b�hi are obtained frombg.ˇ0/, and the weights, or predicted probabilities,
are then b�hi D yhi � ehi . The residuals are standardized and reported as (estimated) Pearson residuals:

rhi � nhib�hip
nhib�hi .1 �b�hi /

where rhi is the number of events in the observation and nhi is the number of trials.

The STDRES option in the INFLUENCE option computes the standardized Pearson residual:

es;hi D
ehip
1 � hhi

For events/trials MODEL statement syntax, treat each observation as two observations (the first for the
nonevents and the second for the events) with frequencies fh;2i�1 D nhi �rhi and fh;2i D rhi , and augment
the model with a matrix Zhi D Œzh;2i�1zh;2i � instead of a single zhi vector. Writing hi D x0

hi
ˇfhi in the

preceding section results in the following gradient and information matrix:

g.ˇ0/ D

24 0

fh;2i�1.yh;2i�1 � �h;2i�1/

fh;2i .yh;2i � �h;2i /

35
ƒ.ˇ0/ D

�
ƒ.ˇ/ X0diag.f/Udiag.f/Zhi

Z0hidiag.f/Udiag.f/X Z0hidiag.f/Udiag.f/Zhi

�
The predicted probabilities are then b�hi D yh;2i � eh;2i=rh;2i , while the leverage and the DFBETAS are
produced from ƒ.ˇ0/ in a fashion similar to that for the preceding single-trial equations.

Exact Conditional Logistic Regression
The theory of exact logistic regression, also known as exact conditional logistic regression, was originally
laid out by Cox (1970), and the computational methods employed in PROC LOGISTIC are described in Hirji,
Mehta, and Patel (1987); Hirji (1992); Mehta, Patel, and Senchaudhuri (1992). Other useful references for
the derivations include Cox and Snell (1989); Agresti (1990); Mehta and Patel (1995).

Exact conditional inference is based on generating the conditional distribution for the sufficient statistics of
the parameters of interest. This distribution is called the permutation or exact conditional distribution. Using
the notation in the section “Computational Details” on page 4598, follow Mehta and Patel (1995) and first
note that the sufficient statistics T D .T1; : : : ; Tp/ for the parameter vector of intercepts and slopes, ˇ, are

Tj D

nX
iD1

yixij ; j D 1; : : : ; p
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Denote a vector of observable sufficient statistics as t D .t1; : : : ; tp/0.

The probability density function (PDF) for T can be created by summing over all binary sequences y that
generate an observable t and letting C.t/ D jjfy W y0X D t0gjj denote the number of sequences y that
generate t

Pr.T D t/ D
C.t/ exp.t0ˇ/Qn
iD1Œ1C exp.x0iˇ/�

In order to condition out the nuisance parameters, partition the parameter vector ˇ D .ˇ0N;ˇ
0
I/
0, where ˇN is

a pN � 1 vector of the nuisance parameters, and ˇI is the parameter vector for the remaining pI D p � pN
parameters of interest. Likewise, partition X into XN and XI, T into TN and TI, and t into tN and tI. The
nuisance parameters can be removed from the analysis by conditioning on their sufficient statistics to create
the conditional likelihood of TI given TN D tN,

Pr.TI D tIjTN D tN/ D
Pr.T D t/

Pr.TN D tN/

D fˇI.tIjtN/ D
C.tN; tI/ exp.t0IˇI/P
u C.tN; u/ exp.u0ˇI/

where C.tN; u/ is the number of vectors y such that y0XN D tN and y0XI D u. Note that the nuisance
parameters have factored out of this equation, and that C.tN; tI/ is a constant.

The goal of the exact conditional analysis is to determine how likely the observed response y0 is with respect
to all 2n possible responses y D .y1; : : : ; yn/0. One way to proceed is to generate every y vector for which
y0XN D tN, and count the number of vectors y for which y0XI is equal to each unique tI. Generating the
conditional distribution from complete enumeration of the joint distribution is conceptually simple; however,
this method becomes computationally infeasible very quickly. For example, if you had only 30 observations,
you would have to scan through 230 different y vectors.

Several algorithms are available in PROC LOGISTIC to generate the exact distribution. All of the algorithms
are based on the following observation. Given any y D .y1; : : : ; yn/

0 and a design X D .x1; : : : ; xn/0, let
y.i/ D .y1; : : : ; yi /0 and X.i/ D .x1; : : : ; xi /0 be the first i rows of each matrix. Write the sufficient statistic
based on these i rows as t0

.i/
D y0

.i/
X.i/. A recursion relation results: t.iC1/ D t.i/ C yiC1xiC1.

The following methods are available:

• The multivariate shift algorithm developed by Hirji, Mehta, and Patel (1987), which steps through the
recursion relation by adding one observation at a time and building an intermediate distribution at each
step. If it determines that t.i/ for the nuisance parameters could eventually equal t, then t.i/ is added
to the intermediate distribution.

• An extension of the multivariate shift algorithm to generalized logit models by Hirji (1992). Because
the generalized logit model fits a new set of parameters to each logit, the number of parameters in the
model can easily get too large for this algorithm to handle. Note for these models that the hypothesis
tests for each effect are computed across the logit functions, while individual parameters are estimated
for each logit function.

• A network algorithm described in Mehta, Patel, and Senchaudhuri (1992), which builds a network for
each parameter that you are conditioning out in order to identify feasible yi for the y vector. These
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networks are combined and the set of feasible yi is further reduced, and then the multivariate shift
algorithm uses this knowledge to build the exact distribution without adding as many intermediate
t.iC1/ as the multivariate shift algorithm does.

• A hybrid Monte Carlo and network algorithm described by Mehta, Patel, and Senchaudhuri (2000),
which extends their 1992 algorithm by sampling from the combined network to build the exact
distribution.

The bulk of the computation time and memory for these algorithms is consumed by the creation of the
networks and the exact joint distribution. After the joint distribution for a set of effects is created, the
computational effort required to produce hypothesis tests and parameter estimates for any subset of the effects
is (relatively) trivial. See the section “Computational Resources for Exact Logistic Regression” on page 4611
for more computational notes about exact analyses.

NOTE: An alternative to using these exact conditional methods is to perform Firth’s bias-reducing penalized
likelihood method (see the FIRTH option in the MODEL statement); this method has the advantage of being
much faster and less memory intensive than exact algorithms, but it might not converge to a solution.

Hypothesis Tests

Consider testing the null hypothesis H0WˇI D 0 against the alternative HAWˇI ¤ 0, conditional on TN D tN.
Under the null hypothesis, the test statistic for the exact probability test is just fˇID0.tIjtN/, while the
corresponding p-value is the probability of getting a less likely (more extreme) statistic,

p.tIjtN/ D
X
u2�p

f0.ujtN/

where �p D fuW there exist y with y0XI D u, y0XN D tN, and f0.ujtN/ � f0.tIjtN/g.

For the exact conditional scores test, the conditional mean �I and variance matrix †I of the TI (conditional
on TN D tN) are calculated, and the score statistic for the observed value,

s D .tI � �I/
0†�1I .tI � �I/

is compared to the score for each member of the distribution

S.TI/ D .TI � �I/
0†�1I .TI � �I/

The resulting p-value is

p.tIjtN/ D Pr.S � s/ D
X
u2�s

f0.ujtN/

where �s D fuW there exist y with y0XI D u, y0XN D tN, and S.u/ � sg.

The mid-p statistic, defined as

p.tIjtN/ �
1

2
f0.tIjtN/

was proposed by Lancaster (1961) to compensate for the discreteness of a distribution. See Agresti (1992) for
more information. However, to allow for more flexibility in handling ties, you can write the mid-p statistic as
(based on a suggestion by Lamotte (2002) and generalizing Vollset, Hirji, and Afifi (1991))X

u2�<

f0.ujtN/C ı1f0.tIjtN/C ı2
X
u2�D

f0.ujtN/
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where, for i 2 fp; sg, �< is �i using strict inequalities, and �D is �i using equalities with the added
restriction that u ¤ tI. Letting .ı1; ı2/ D .0:5; 1:0/ yields Lancaster’s mid-p.

CAUTION: When the exact distribution has ties and METHOD=NETWORKMC is specified, the Monte
Carlo algorithm estimates p.tjtN/ with error, and hence it cannot determine precisely which values contribute
to the reported p-values. For example, if the exact distribution has densities f0:2; 0:2; 0:2; 0:4g and if the
observed statistic has probability 0.2, then the exact probability p-value is exactly 0.6. Under Monte Carlo
sampling, if the densities after N samples are f0:18; 0:21; 0:23; 0:38g and the observed probability is 0.21,
then the resulting p-value is 0.39. Therefore, the exact probability test p-value for this example fluctuates
between 0.2, 0.4, and 0.6, and the reported p-values are actually lower bounds for the true p-values. If you
need more precise values, you can specify the OUTDIST= option, determine appropriate cutoff values for
the observed probability and score, and then construct the true p-value estimates from the OUTDIST= data
set and display them in the SAS log by using the following statements:

data _null_;
set outdist end=end;
retain pvalueProb 0 pvalueScore 0;
if prob < ProbCutOff then pvalueProb+prob;
if score > ScoreCutOff then pvalueScore+prob;
if end then put pvalueProb= pvalueScore=;

run;

Inference for a Single Parameter

Exact parameter estimates are derived for a single parameter ˇi by regarding all the other parameters
ˇN D .ˇ1; : : : ; ˇi�1; ˇiC1; : : : ; ˇpNCpI/

0 as nuisance parameters. The appropriate sufficient statistics are
TI D Ti and TN D .T1; : : : ; Ti�1; TiC1; : : : ; TpNCpI/

0, with their observed values denoted by the lowercase
t. Hence, the conditional PDF used to create the parameter estimate for ˇi is

fˇi .ti jtN/ D
C.tN; ti / exp.tiˇi /P
u2� C.tN; u/ exp.uˇi /

for � D fuW there exist y with Ti D u and TN D tNg.

The maximum exact conditional likelihood estimate is the quantity b̌i , which maximizes the conditional
PDF. A Newton-Raphson algorithm is used to perform this search. However, if the observed ti attains
either its maximum or minimum value in the exact distribution (that is, either ti D minfu W u 2 �g or
ti D maxfu W u 2 �g), then the conditional PDF is monotonically increasing in ˇi and cannot be maximized.
In this case, a median unbiased estimate (Hirji, Tsiatis, and Mehta 1989) b̌i is produced that satisfies
fb̌i .ti jtN/ D 0:5, and a Newton-Raphson algorithm is used to perform the search.

The standard error of the exact conditional likelihood estimate is just the negative of the inverse of the second
derivative of the exact conditional log likelihood (Agresti 2002).

Likelihood ratio tests based on the conditional PDF are used to test the nullH0Wˇi D 0 against the alternative
HAWˇi > 0. The critical region for this UMP test consists of the upper tail of values for Ti in the exact
distribution. Thus, the one-sided significance level pC.ti I 0/ is

pC.ti I 0/ D
X
u�ti

f0.ujtN/

Similarly, the one-sided significance level p�.ti I 0/ against HAWˇi < 0 is

p�.ti I 0/ D
X
u�ti

f0.ujtN/
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The two-sided significance level p.ti I 0/ against HAWˇi ¤ 0 is calculated as

p.ti I 0/ D 2minŒp�.ti I 0/; pC.ti I 0/�

An upper 100.1� 2�/% exact confidence limit for b̌i corresponding to the observed ti is the solution ˇU .ti /
of � D p�.ti ; ˇU .ti //, while the lower exact confidence limit is the solution ˇL.ti / of � D pC.ti ; ˇL.ti //.
Again, a Newton-Raphson procedure is used to search for the solutions. Note that one of the confidence
limits for a median unbiased estimate is set to infinity, but the other is still computed at �. This results in the
display of a one-sided 100.1 � �/% confidence interval; if you want the 2� limit instead, you can specify the
ONESIDED option.

Specifying the ONESIDED option displays only one p-value and one confidence interval, because small
values of pC.ti I 0/ and p�.ti I 0/ support different alternative hypotheses and only one of these p-values can
be less than 0.50.

The mid-p confidence limits are the solutions to minfp�.ti ; ˇ.ti //; pC.ti ; ˇ.ti //g�.1�ı1/fˇ.ti /.ti jtN/ D �
for � D ˛=2; 1� ˛=2 (Vollset, Hirji, and Afifi 1991). ı1 D 1 produces the usual exact (or max-p) confidence
interval, ı1 D 0:5 yields the mid-p interval, and ı1 D 0 gives the min-p interval. The mean of the endpoints
of the max-p and min-p intervals provides the mean-p interval as defined by Hirji, Mehta, and Patel (1988).

Estimates and confidence intervals for the odds ratios are produced by exponentiating the estimates and
interval endpoints for the parameters.

Notes about Exact p-Values

In the “Conditional Exact Tests” table, the exact probability test is not necessarily a sum of tail areas and can
be inflated if the distribution is skewed. The more robust exact conditional scores test is a sum of tail areas
and is generally preferred over the exact probability test.

The p-value reported for a single parameter in the “Exact Parameter Estimates” table is twice the one-sided
tail area of a likelihood ratio test against the null hypothesis of the parameter equaling zero.

Input and Output Data Sets

OUTEST= Output Data Set

The OUTEST= data set contains one observation for each BY group containing the maximum likelihood
estimates of the regression coefficients. If you also use the COVOUT option in the PROC LOGISTIC
statement, there are additional observations containing the rows of the estimated covariance matrix. If you
specify SELECTION=FORWARD, BACKWARD, or STEPWISE, only the estimates of the parameters and
covariance matrix for the final model are output to the OUTEST= data set.

Variables in the OUTEST= Data Set
The OUTEST= data set contains the following variables:

• any BY variables specified

• _LINK_, a character variable of length 8 with four possible values: CLOGLOG for the complementary
log-log function, LOGIT for the logit function, NORMIT for the probit (alias normit) function, and
GLOGIT for the generalized logit function
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• _TYPE_, a character variable of length 8 with two possible values: PARMS for parameter estimates
or COV for covariance estimates. If an EXACT statement is also specified, then two other values are
possible: EPARMMLE for the exact maximum likelihood estimates and EPARMMUE for the exact
median unbiased estimates.

• _NAME_, a character variable containing the name of the response variable when _TYPE_=PARMS,
EPARMMLE, and EPARMMUE, or the name of a model parameter when _TYPE_=COV

• _STATUS_, a character variable that indicates whether the estimates have converged

• one variable for each intercept parameter

• one variable for each slope parameter and one variable for the offset variable if the OFFSET= option if
specified. If an effect is not included in the final model in a model building process, the corresponding
parameter estimates and covariances are set to missing values.

• _LNLIKE_, the log likelihood

Parameter Names in the OUTEST= Data Set
If there are only two response categories in the entire data set, the intercept parameter is named Intercept.
If there are more than two response categories in the entire data set, the intercept parameters are named
Intercept_xxx, where xxx is the value (formatted if a format is applied) of the corresponding response
category.

For continuous explanatory variables, the names of the parameters are the same as the corresponding variables.
For CLASS variables, the parameter names are obtained by concatenating the corresponding CLASS variable
name with the CLASS category; for more information, see the section “Class Variable Naming Convention”
on page 4514. For interaction and nested effects, the parameter names are created by concatenating the names
of each effect.

For multinomial response functions, names of unconstrained unequal slope parameters that correspond to
each nonreference response category contain _xxx as the suffix, where xxx is the value (formatted if a format
is applied) of the corresponding nonreference response category. For example, suppose the variable Net3
represents the television network (ABC, CBS, and NBC) that is viewed at a certain time. The following
statements fit a generalized logit model that uses Age and Gender (a CLASS variable that has values Female
and Male) as explanatory variables:

proc logistic;
class Gender;
model Net3 = Age Gender / link=glogit;

run;

There are two logit functions, one that contrasts ABC with NBC and one that contrasts CBS with NBC.
For each logit, there are three parameters: an intercept parameter, a slope parameter for Age, and a slope
parameter for Gender (because there are only two gender levels and the EFFECT parameterization is used by
default). The names of the parameters and their descriptions are as follows:

Intercept_ABC intercept parameter for the logit that contrasts ABC with NBC

Intercept_CBS intercept parameter for the logit that contrasts CBS with NBC

Age_ABC Age slope parameter for the logit that contrasts ABC with NBC
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Age_CBS Age slope parameter for the logit that contrasts CBS with NBC

GenderFemale_ABC Gender=Female slope parameter for the logit that contrasts ABC with NBC

GenderFemale_CBS Gender=Female slope parameter for the logit that contrasts CBS with NBC

In a cumulative response model, if an effect is specified in both the EQUALSLOPES and UNEQUALSLOPES
options, then its unequal slope parameter names are prefixed with “U_” if they are unconstrained or “C_” if
they are constrained.

INEST= Input Data Set

You can specify starting values for the iterative algorithm in the INEST= data set. The INEST= data set has
the same structure as the OUTEST= data set but is not required to have all the variables or observations that
appear in the OUTEST= data set. A previous OUTEST= data set can be used as, or modified for use as, an
INEST= data set.

The INEST= data set must contain the intercept variables (named Intercept for binary response models and
Intercept, Intercept_2, Intercept_3, and so forth, for ordinal and nominal response models) and all explanatory
variables in the MODEL statement. If BY processing is used, the INEST= data set should also include the
BY variables, and there must be one observation for each BY group. If the INEST= data set also contains the
_TYPE_ variable, only observations with _TYPE_ value ’PARMS’ are used as starting values.

OUT= Output Data Set in the OUTPUT Statement

The OUT= data set in the OUTPUT statement contains all the variables in the input data set along with
statistics you request by specifying keyword=name options or the PREDPROBS= option in the OUTPUT
statement. In addition, if you use the single-trial syntax and you request any of the XBETA=, STDXBETA=,
PREDICTED=, LCL=, and UCL= options, the OUT= data set contains the automatic variable _LEVEL_.
The value of _LEVEL_ identifies the response category upon which the computed values of XBETA=,
STDXBETA=, PREDICTED=, LCL=, and UCL= are based.

When there are more than two response levels, only variables named by the XBETA=, STDXBETA=,
PREDICTED=, LOWER=, and UPPER= options and the variables given by PREDPROBS=(INDIVIDUAL
CUMULATIVE) have their values computed; the other variables have missing values. If you fit a generalized
logit model, the cumulative predicted probabilities are not computed.

When there are only two response categories, each input observation produces one observation in the OUT=
data set.

If there are more than two response categories and you specify only the PREDPROBS= option, then each
input observation produces one observation in the OUT= data set. However, if you fit an ordinal (cumulative)
model and specify options other than the PREDPROBS= options, each input observation generates as many
output observations as one fewer than the number of response levels, and the predicted probabilities and their
confidence limits correspond to the cumulative predicted probabilities. If you fit a generalized logit model
and specify options other than the PREDPROBS= options, each input observation generates as many output
observations as the number of response categories; the predicted probabilities and their confidence limits
correspond to the probabilities of individual response categories.

For observations in which only the response variable is missing, values of the XBETA=, STDXBETA=,
PREDICTED=, UPPER=, LOWER=, and the PREDPROBS= options are computed even though these
observations do not affect the model fit. This enables, for instance, predicted probabilities to be computed for
new observations.
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OUT= Output Data Set in a SCORE Statement

The OUT= data set in a SCORE statement contains all the variables in the data set being scored. The data
set being scored can be either the input DATA= data set in the PROC LOGISTIC statement or the DATA=
data set in the SCORE statement. The DATA= data set in the SCORE statement does not need to contain the
response variable.

If the data set being scored contains the response variable, then denote the normalized levels (left-justified,
formatted values of 16 characters or less) of your response variable Y by Y1; : : : ; YkC1. For each response
level, the OUT= data set also contains the following:

• F_Y, the normalized levels of the response variable Y in the data set being scored. If the events/trials
syntax is used, the F_Y variable is not created.

• I_Y, the normalized levels that the observations are classified into. Note that an observation is classified
into the level with the largest probability. If the events/trials syntax is used, the _INTO_ variable is
created instead, and it contains the values EVENT and NONEVENT.

• P_Yi , the posterior probabilities of the normalized response level Yi

• If the CLM option is specified in the SCORE statement, the OUT= data set also includes the following:

– LCL_Yi , the lower 100(1 � ˛)% confidence limits for P_Yi
– UCL_Yi , the upper 100(1 � ˛)% confidence limits for P_Yi

OUTDIST= Output Data Set

The OUTDIST= data set contains every exact conditional distribution necessary to process the corresponding
EXACT statement. For example, the following statements create one distribution for the x1 parameter and
another for the x2 parameters, and produce the data set dist shown in Table 60.12:

data test;
input y x1 x2 count;
datalines;

0 0 0 1
1 0 0 1
0 1 1 2
1 1 1 1
1 0 2 3
1 1 2 1
1 2 0 3
1 2 1 2
1 2 2 1
;

proc logistic data=test exactonly;
class x2 / param=ref;
model y=x1 x2;
exact x1 x2/ outdist=dist;

run;
proc print data=dist;
run;
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Table 60.12 OUTDIST= Data Set

Obs x1 x20 x21 Count Score Prob

1 . 0 0 3 5.81151 0.03333
2 . 0 1 15 1.66031 0.16667
3 . 0 2 9 3.12728 0.10000
4 . 1 0 15 1.46523 0.16667
5 . 1 1 18 0.21675 0.20000
6 . 1 2 6 4.58644 0.06667
7 . 2 0 19 1.61869 0.21111
8 . 2 1 2 3.27293 0.02222
9 . 3 0 3 6.27189 0.03333

10 2 . . 6 3.03030 0.12000
11 3 . . 12 0.75758 0.24000
12 4 . . 11 0.00000 0.22000
13 5 . . 18 0.75758 0.36000
14 6 . . 3 3.03030 0.06000

The first nine observations in the dist data set contain an exact distribution for the parameters of the x2
effect (hence the values for the x1 parameter are missing), and the remaining five observations are for the
x1 parameter. If a joint distribution was created, there would be observations with values for both the x1
and x2 parameters. For CLASS variables, the corresponding parameters in the dist data set are identified by
concatenating the variable name with the appropriate classification level.

The data set contains the possible sufficient statistics of the parameters for the effects specified in the EXACT
statement, and the Count variable contains the number of different responses that yield these statistics. In
particular, there are six possible response vectors y for which the dot product y0x1 was equal to 2, and for
which y0x20, y0x21, and y01 were equal to their actual observed values (displayed in the “Sufficient Statistics”
table).

When hypothesis tests are performed on the parameters, the Prob variable contains the probability of obtaining
that statistic (which is just the count divided by the total count), and the Score variable contains the score for
that statistic.

The OUTDIST= data set can contain a different exact conditional distribution for each specified EXACT
statement. For example, consider the following EXACT statements:

exact 'O1' x1 / outdist=o1;
exact 'OJ12' x1 x2 / jointonly outdist=oj12;
exact 'OA12' x1 x2 / joint outdist=oa12;
exact 'OE12' x1 x2 / estimate outdist=oe12;

The O1 statement outputs a single exact conditional distribution. The OJ12 statement outputs only the joint
distribution for x1 and x2. The OA12 statement outputs three conditional distributions: one for x1, one for x2,
and one jointly for x1 and x2. The OE12 statement outputs two conditional distributions: one for x1 and the
other for x2. Data set oe12 contains both the x1 and x2 variables; the distribution for x1 has missing values
in the x2 column while the distribution for x2 has missing values in the x1 column.
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OUTROC= Output Data Set

The OUTROC= data set contains data necessary for producing the ROC curve, and can be created by
specifying the OUTROC= option in the MODEL statement or the OUTROC= option in the SCORE statement:
It has the following variables:

• any BY variables specified

• _STEP_, the model step number. This variable is not included if model selection is not requested.

• _PROB_, the estimated probability of an event. These estimated probabilities serve as cutpoints for
predicting the response. Any observation with an estimated event probability that exceeds or equals
_PROB_ is predicted to be an event; otherwise, it is predicted to be a nonevent. Predicted probabilities
that are close to each other are grouped together, with the maximum allowable difference between the
largest and smallest values less than a constant that is specified by the ROCEPS= option. The smallest
estimated probability is used to represent the group.

• _POS_, the number of correctly predicted event responses

• _NEG_, the number of correctly predicted nonevent responses

• _FALPOS_, the number of falsely predicted event responses

• _FALNEG_, the number of falsely predicted nonevent responses

• _SENSIT_, the sensitivity, which is the proportion of event observations that were predicted to have an
event response

• _1MSPEC_, one minus specificity, which is the proportion of nonevent observations that were predicted
to have an event response

Note that none of these statistics are affected by the bias-correction method discussed in the section “Classifi-
cation Table” on page 4581. An ROC curve is obtained by plotting _SENSIT_ against _1MSPEC_.

For more information, see the section “Receiver Operating Characteristic Curves” on page 4586.

Computational Resources
The memory needed to fit an unconditional model is approximately 8n.p C 2/C 24.p C 2/2 bytes, where p
is the number of parameters estimated and n is the number of observations in the data set. For cumulative
response models with more than two response levels, a test of the parallel lines assumption requires an
additional memory of approximately 4k2.mC 1/2 C 24.mC 2/2 bytes, where k is the number of response
levels and m is the number of slope parameters. However, if this additional memory is not available, the
procedure skips the test and finishes the other computations. You might need more memory if you use the
SELECTION= option for model building.

The data that consist of relevant variables (including the design variables for model effects) and observations
for fitting the model are stored in a temporary utility file. If sufficient memory is available, such data will also
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be kept in memory; otherwise, the data are reread from the utility file for each evaluation of the likelihood
function and its derivatives, with the resulting execution time of the procedure substantially increased.
Specifying the MULTIPASS option in the MODEL statement avoids creating this utility file and also does
not store the data in memory; instead, the DATA= data set is reread when needed. This saves approximately
8n.p C 2/ bytes of memory but increases the execution time.

If a conditional logistic regression is performed, then approximately 4.m2 CmC 4/maxh.mh/C .8sH C
36/H C 12sH additional bytes of memory are needed, where mh is the number of events in stratum
h, H is the total number of strata, and sH is the number of variables used to define the strata. If the
CHECKDEPENDENCY=ALL option is specified in the STRATA statement, then an extra 4.mCH/.mC
H C 1/ bytes are required, and the resulting execution time of the procedure might be substantially increased.

Computational Resources for Exact Logistic Regression

Many problems require a prohibitive amount of time and memory for exact computations, depending on the
speed and memory available on your computer. For such problems, consider whether exact methods are
really necessary. Stokes, Davis, and Koch (2012) suggest looking at exact p-values when the sample size is
small and the approximate p-values from the unconditional analysis are less than 0.10, and they provide rules
of thumb for determining when various models are valid.

A formula does not exist that can predict the amount of time and memory necessary to generate the exact
conditional distributions for a particular problem. The time and memory required depends on several
factors, including the total sample size, the number of parameters of interest, the number of nuisance
parameters, and the order in which the parameters are processed. To provide a feel for how these factors affect
performance, 19 data sets containing Nobs 2 f10; : : : ; 500g observations consisting of up to 10 independent
uniform binary covariates (X1,. . . ,XN) and a binary response variable (Y), are generated, and the following
statements create exact conditional distributions for X1 conditional on the other covariates by using the
default METHOD=NETWORK. Figure 60.11 displays results obtained on a 400Mhz PC with 768MB RAM
running Microsoft Windows NT.

data one;
do obs=1 to HalfNobs;

do Y=0 to 1;
X1=round(ranuni(0));
...
XN=round(ranuni(0));
output;

end;
end;

options fullstimer;
proc logistic exactonly;

exactoptions method=network maxtime=1200;
class X1...XN / param=ref;
model Y=X1...XN;
exact X1 / outdist=dist;

run;
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Figure 60.11 Mean Time and Memory Required

At any time while PROC LOGISTIC is deriving the distributions, you can terminate the computations by
pressing the system interrupt key sequence (see the SAS Companion for your system) and choosing to stop
computations. If you run out of memory, see the SAS Companion for your system to see how to allocate
more.

You can use the EXACTOPTIONS option MAXTIME= to limit the total amount of time PROC LOGISTIC
uses to derive all of the exact distributions. If PROC LOGISTIC does not finish within that time, the procedure
terminates.

Calculation of frequencies are performed in the log scale by default. This reduces the need to check for
excessively large frequencies but can be slower than not scaling. You can turn off the log scaling by specifying
the NOLOGSCALE option in the EXACTOPTIONS statement. If a frequency in the exact distribution
is larger than the largest integer that can be held in double precision, a warning is printed to the SAS log.
Because inaccuracies due to adding small numbers to these large frequencies might have little or no effect on
the statistics, the exact computations continue.

You can monitor the progress of the procedure by submitting your program with the EXACTOPTIONS option
STATUSTIME=. If the procedure is too slow, you can try another method by specifying the EXACTOPTIONS
option METHOD=, you can try reordering the variables in the MODEL statement (note that CLASS variables
are always processed before continuous covariates), or you can try reparameterizing your classification
variables as in the following statement:

class class-variables / param=ref ref=first order=freq;

If you condition out CLASS variables that use reference or GLM coding but you are not using the STRATA
statement, then you can speed up the analysis by specifying one of the nuisance CLASS variables in the



Displayed Output F 4613

STRATA statement. This performance gain occurs because STRATA variables partition your data set into
smaller pieces. However, moving two (or more) nuisance CLASS variables into the STRATA statement
results in a different model, because the sufficient statistics for the second CLASS variable are actually
computed across the levels of the first CLASS variable.

Displayed Output
If you use the NOPRINT option in the PROC LOGISTIC statement, the procedure does not display any
output. Otherwise, the tables displayed by the LOGISTIC procedure are discussed in the following section
in the order in which they appear in the output. Some of the tables appear only in conjunction with certain
options or statements; for more information, see the section “ODS Table Names” on page 4618.

NOTE: The EFFECT, ESTIMATE, LSMEANS, LSMESTIMATE, and SLICE statements also create tables,
which are not listed in this section. For information about these tables, see the corresponding sections of
Chapter 19, “Shared Concepts and Topics.”

Table Summary

Model Information and the Number of Observations
See the section “Missing Values” on page 4563 for information about missing-value handling, and the
sections “FREQ Statement” on page 4528 and “WEIGHT Statement” on page 4563 for information about
valid frequencies and weights.

Response Profile
Displays the Ordered Value assigned to each response level. For more information, see the section “Response
Level Ordering” on page 4564.

Class Level Information
Displays the design values for each CLASS explanatory variable. For more information, see the section
“Other Parameterizations” on page 391 in Chapter 19, “Shared Concepts and Topics.”

Simple Statistics Tables
The following tables are displayed if you specify the SIMPLE option in the PROC LOGISTIC statement:

• Descriptive Statistics for Continuous Explanatory Variables

• Frequency Distribution of Class Variables

• Weight Distribution of Class Variables
Displays if you also specify a WEIGHT statement.

Strata Tables for (Exact) Conditional Logistic Regression
The following tables are displayed if you specify a STRATA statement:

• Strata Summary
Shows the pattern of the number of events and the number of nonevents in a stratum. See the section
“STRATA Statement” on page 4560 for more information.
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• Strata Information
Displays if you specify the INFO option in a STRATA statement.

Maximum Likelihood Iteration History
Displays if you specify the ITPRINT option in the MODEL statement. For more information, see the sections
“Iterative Algorithms for Model Fitting” on page 4567, “Convergence Criteria” on page 4569, and “Existence
of Maximum Likelihood Estimates” on page 4569.

Deviance and Pearson Goodness-of-Fit Statistics
Displays if you specify the SCALE= option in the MODEL statement. Small p-values reject the null
hypothesis that the fitted model is adequate. For more information, see the section “Overdispersion” on
page 4583.

Score Test for the Equal Slopes (Proportional Odds) Assumption
Tests the parallel lines assumption if you fit an ordinal response model with the LINK=CLOGLOG or
LINK=PROBIT options. If you specify LINK=LOGIT, this is called the “Proportional Odds” assumption.
The table is not displayed if you specify the EQUALSLOPES or UNEQUALSLOPES option in the MODEL
statement. Small p-values reject the null hypothesis that the slope parameters for each explanatory variable
are constant across all the response functions. For more information, see the section “Testing the Parallel
Lines Assumption” on page 4574.

Model Fit Statistics
Computes various fit criteria based on a model with intercepts only and a model with intercepts and
explanatory variables. If you specify the NOINT option in the MODEL statement, these statistics are
calculated without considering the intercept parameters. For more information, see the section “Model Fitting
Information” on page 4572.

Testing Global Null Hypothesis: BETA=0
Tests the joint effect of the explanatory variables included in the model. Small p-values reject the null
hypothesis that all slope parameters are equal to zero, H0Wˇ D 0. For more information, see the sections
“Model Fitting Information” on page 4572, “Residual Chi-Square” on page 4573, and “Testing Linear
Hypotheses about the Regression Coefficients” on page 4589. If you also specify the RSQUARE option
in the MODEL statement, two generalized R Square measures are included; for more information, see the
section “Generalized Coefficient of Determination” on page 4573.

Score Test for Global Null Hypothesis
Displays instead of the “Testing Global Null Hypothesis: BETA=0” table if the NOFIT option is specified in
the MODEL statement. The global score test evaluates the joint significance of the effects in the MODEL
statement. Small p-values reject the null hypothesis that all slope parameters are equal to zero, H0Wˇ D 0.
For more information, see the section “Residual Chi-Square” on page 4573.

Model Selection Tables
The tables in this section are produced when the SELECTION= option is specified in the MODEL statement.
See the section “Effect-Selection Methods” on page 4571 for more information.
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• Residual Chi-Square Test
Displays if you specify SELECTION=FORWARD, BACKWARD, or STEPWISE in the MODEL
statement. Small p-values reject the null hypothesis that the reduced model is adequate. For more
information, see the section “Residual Chi-Square” on page 4573.

• Analysis of Effects Eligible for Entry
Displays if you specify the DETAILS option and the SELECTION=FORWARD or STEPWISE option
in the MODEL statement. Small p-values rejectH0Wˇi ¤ 0. The score chi-square is used to determine
entry; for more information, see the section “Testing Individual Effects Not in the Model” on page 4574.

• Analysis of Effects Eligible for Removal
Displays if you specify the SELECTION=BACKWARD or STEPWISE option in the MODEL state-
ment. Small p-values reject H0Wˇi D 0. The Wald chi-square is used to determine removal; for
more information, see the section “Testing Linear Hypotheses about the Regression Coefficients” on
page 4589.

• Analysis of Effects Removed by Fast Backward Elimination
Displays if you specify the FAST option and the SELECTION=BACKWARD or STEPWISE option in
the MODEL statement. This table gives the approximate chi-square statistic for the variable removed,
the corresponding p-value with respect to a chi-square distribution with one degree of freedom, the
residual chi-square statistic for testing the joint significance of the variable and the preceding ones, the
degrees of freedom, and the p-value of the residual chi-square with respect to a chi-square distribution
with the corresponding degrees of freedom.

• Summary of Forward, Backward, and Stepwise Selection
Displays if you specify SELECTION=FORWARD, BACKWARD, or STEPWISE in the MODEL
statement. The score chi-square is used to determine entry; for more information, see the section
“Testing Individual Effects Not in the Model” on page 4574. The Wald chi-square is used to determine
removal; for more information, see the section “Testing Linear Hypotheses about the Regression
Coefficients” on page 4589.

• Regression Models Selected by Score Criterion
Displays the score chi-square for all models if you specify the SELECTION=SCORE option in the
MODEL statement. Small p-values reject the null hypothesis that the fitted model is adequate. For
more information, see the section “Effect-Selection Methods” on page 4571.

Joint Tests or Type 3 Analysis of Effects
Displays if the model contains a CLASS variable and performs Wald chi-square tests of the joint effect of the
parameters for each CLASS variable in the model. Small p-values reject H0Wˇi D 0. The title of this table
for main-effects models or models that use GLM parameterization is “Type 3 Analysis of Effects”; for all
other models the title is “Joint Tests.” For more information, see the sections “Testing Linear Hypotheses
about the Regression Coefficients” on page 4589 and “Joint Tests and Type 3 Tests” on page 4589.

Analysis of Maximum Likelihood Estimates
CLASS effects are identified by their (nonreference) level. For generalized logit models, a response variable
column displays the nonreference level of the logit. The table includes the following:

• the estimated standard error of the parameter estimate, computed as the square root of the corresponding
diagonal element of the estimated covariance matrix
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• the Wald chi-square statistic, computed by squaring the ratio of the parameter estimate divided by its
standard error estimate. For more information, see the section “Testing Linear Hypotheses about the
Regression Coefficients” on page 4589.

• the p-value tests the null hypothesis H0Wˇi D 0; small values reject the null.

• the standardized estimate for the slope parameter, if you specify the STB option in the MODEL
statement. For more information, see the STB option on page 4546.

• exponentiated values of the estimates of the slope parameters, if you specify the EXPB option in the
MODEL statement. For more information, see the EXPB option on page 4537.

• the label of the variable, if you specify the PARMLABEL option in the MODEL statement and if
space permits. Due to constraints on the line size, the variable label might be suppressed in order to
display the table in one panel. Use the SAS system option LINESIZE= to specify a larger line size to
accommodate variable labels. A shorter line size can break the table into two panels allowing labels to
be displayed.

Odds Ratio Estimates
Displays the odds ratio estimates and the corresponding 95% Wald confidence intervals for variables that are
not involved in nestings or interactions. For continuous explanatory variables, these odds ratios correspond
to a unit increase in the risk factors. For more information, see the section “Odds Ratio Estimation” on
page 4577.

Association of Predicted Probabilities and Observed Responses
For more information, see the section “Rank Correlation of Observed Responses and Predicted Probabilities”
on page 4579.

Parameter Estimates and Profile-Likelihood or Wald Confidence Intervals
Displays if you specify the CLPARM= option in the MODEL statement. For more information, see the
section “Confidence Intervals for Parameters” on page 4575.

Odds Ratio Estimates and Profile-Likelihood or Wald Confidence Intervals
Displays if you specify the ODDSRATIO statement for any effects with any class parameterizations. Also
displays if you specify the CLODDS= option in the MODEL statement, except odds ratios are computed
only for main effects not involved in interactions or nestings, and if the main effect is a CLASS variable, the
parameterization must be EFFECT, REFERENCE, or GLM. For more information, see the section “Odds
Ratio Estimation” on page 4577.

Estimated Covariance or Correlation Matrix
Displays if you specify the COVB or CORRB option in the MODEL statement. For more information, see
the section “Iterative Algorithms for Model Fitting” on page 4567.

Contrast Test Results
Displays the Wald test for each specified CONTRAST statement. Small p-values reject H0WLˇ D 0. The
“Coefficients of Contrast” table displays the contrast matrix if you specify the E option, and the “Contrast
Estimation and Testing Results by Row” table displays estimates and Wald tests for each row of the contrast
matrix if you specify the ESTIMATE= option. For more information, see the sections “CONTRAST
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Statement” on page 4516, “Testing Linear Hypotheses about the Regression Coefficients” on page 4589, and
“Linear Predictor, Predicted Probability, and Confidence Limits” on page 4580.

Linear Hypotheses Testing Results
Displays the Wald test for each specified TEST statement. For more information, see the sections “Testing
Linear Hypotheses about the Regression Coefficients” on page 4589 and “TEST Statement” on page 4561.

Hosmer and Lemeshow Goodness-of-Fit Test
Displays if you specify the LACKFIT option in the MODEL statement. Small p-values reject the null
hypothesis that the fitted model is adequate. The “Partition for the Hosmer and Lemeshow Test” table
displays the grouping used in the test. For more information, see the section “The Hosmer-Lemeshow
Goodness-of-Fit Test” on page 4585.

Classification Table
Displays if you use the CTABLE option in the MODEL statement. If you specify a list of cutpoints with the
PPROB= option, then the cutpoints are displayed in the Prob Level column. If you specify the prior event
probabilities with the PEVENT= option, then the probabilities are displayed in the Prob Event column. The
Correct column displays the number of correctly classified events and nonevents, the Incorrect Event column
displays the number of nonevents incorrectly classified as events, and the Incorrect Nonevent column gives
the number of events incorrectly classified as nonevents. For more information, see the section “Classification
Table” on page 4581.

Regression Diagnostics
Displays if you specify the INFLUENCE option in the MODEL statement. See the section “Regression
Diagnostics” on page 4590 for more information about diagnostics from an unconditional analysis, and the
section “Regression Diagnostic Details” on page 4599 for information about diagnostics from a conditional
analysis.

Fit Statistics for SCORE Data
Displays if you specify the FITSTAT option in the SCORE statement. For more information, see the section
“Scoring Data Sets” on page 4593.

ROC Association Statistic and Contrast Tables
Displayed if a ROC statement or a ROCCONTRAST statement is specified. For more information, about the
Mann-Whitney statistics and the test and estimation computations, see the section “ROC Computations” on
page 4588. For more information about the other statistics, see the section “Rank Correlation of Observed
Responses and Predicted Probabilities” on page 4579.

Exact Conditional Logistic Regression Tables
The tables in this section are produced when the EXACT statement is specified. If the
METHOD=NETWORKMC option is specified, the test and estimate tables are renamed “Monte Carlo”
tables and a Monte Carlo standard error column (

p
p.1 � p/=n) is displayed.

• Sufficient Statistics
Displays if you request an OUTDIST= data set in an EXACT statement. The table lists the parameters
and their observed sufficient statistics.
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• (Monte Carlo) Conditional Exact Tests
For more information, see the section “Hypothesis Tests” on page 4603.

• (Monte Carlo) Exact Parameter Estimates
Displays if you specify the ESTIMATE option in the EXACT statement. This table gives individual
parameter estimates for each variable (conditional on the values of all the other parameters in the
model), confidence limits, and a two-sided p-value (twice the one-sided p-value) for testing that
the parameter is zero. For more information, see the section “Inference for a Single Parameter” on
page 4604.

• (Monte Carlo) Exact Odds Ratios
Displays if you specify the ESTIMATE=ODDS or ESTIMATE=BOTH option in the EXACT statement.
For more information, see the section “Inference for a Single Parameter” on page 4604.

ODS Table Names
PROC LOGISTIC assigns a name to each table it creates. You can use these names to reference the table
when using the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed in Table 60.13. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

The EFFECT, ESTIMATE, LSMEANS, LSMESTIMATE, and SLICE statements also create tables, which
are not listed in Table 60.13. For information about these tables, see the corresponding sections of Chapter 19,
“Shared Concepts and Topics.”

Table 60.13 ODS Tables Produced by PROC LOGISTIC

ODS Table Name Description Statement Option

Association Association of predicted
probabilities and observed
responses

MODEL
(without STRATA)

Default

BestSubsets Best subset selection MODEL SELECTION=SCORE
ClassFreq Frequency breakdown of

CLASS variables
PROC Simple

(with CLASS vars)
ClassLevelInfo CLASS variable levels and

design variables
MODEL Default

(with CLASS vars)
Classification Classification table MODEL CTABLE
ClassWgt Weight breakdown of

CLASS variables
PROC, WEIGHT Simple

(with CLASS vars)
CLOddsPL Odds ratio estimates and

profile-likelihood confidence
intervals

MODEL CLODDS=PL

CLOddsWald Odds ratio estimates and
Wald confidence intervals

MODEL CLODDS=WALD

CLParmPL Parameter estimates and
profile-likelihood confidence
intervals

MODEL CLPARM=PL
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Table 60.13 continued

ODS Table Name Description Statement Option

CLParmWald Parameter estimates and
Wald confidence intervals

MODEL CLPARM=WALD

ContrastCoeff L matrix from CONTRAST CONTRAST E
ContrastEstimate Estimates from CONTRAST CONTRAST ESTIMATE=
ContrastTest Wald test for CONTRAST CONTRAST Default
ConvergenceStatus Convergence status MODEL Default
CorrB Estimated correlation matrix

of parameter estimators
MODEL CORRB

CovB Estimated covariance matrix
of parameter estimators

MODEL COVB

CumulativeModelTest Test of the cumulative model
assumption

MODEL (Ordinal response)

EffectInModel Test for effects in model MODEL SELECTION=S|B
EffectNotInModel Test for effects not in model MODEL SELECTION=S|F
ExactOddsRatio Exact odds ratios EXACT ESTIMATE=ODDS,

ESTIMATE=BOTH
ExactParmEst Parameter estimates EXACT ESTIMATE,

ESTIMATE=PARM,
ESTIMATE=BOTH

ExactTests Conditional exact tests EXACT Default
FastElimination Fast backward elimination MODEL SELECTION=B,FAST
FitStatistics Model fit statistics MODEL Default
GlobalScore Global score test MODEL NOFIT
GlobalTests Test for global null

hypothesis
MODEL Default

GoodnessOfFit Pearson and deviance
goodness-of-fit tests

MODEL SCALE

IndexPlots Batch capture of the index
plots

MODEL IPLOTS

Influence Regression diagnostics MODEL INFLUENCE
IterHistory Iteration history MODEL ITPRINT
LackFitChiSq Hosmer-Lemeshow

chi-square test results
MODEL LACKFIT

LackFitPartition Partition for the Hosmer-
Lemeshow test

MODEL LACKFIT

LastGradient Last evaluation of gradient MODEL ITPRINT
Linear Linear combination PROC Default
LogLikeChange Final change in the log

likelihood
MODEL ITPRINT

ModelANOVA Joint or Type 3 tests of
effects

MODEL Default
(with CLASS variables)

ModelBuildingSummary Summary of model building MODEL SELECTION=B|F|S
ModelInfo Model information PROC Default
NObs Number of observations PROC Default
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Table 60.13 continued

ODS Table Name Description Statement Option

OddsEst Adjusted odds ratios UNITS Default
OddsRatios Odds ratio estimates MODEL Default
OddsRatiosWald Odds ratio estimates and

Wald confidence intervals
ODDSRATIOS CL=WALD

OddsRatiosPL Odds ratio estimates and PL
confidence intervals

ODDSRATIOS CL=PL

ParameterEstimates Maximum likelihood
estimates of model
parameters

MODEL Default

RSquare R-square MODEL RSQUARE
ResidualChiSq Residual chi-square MODEL SELECTION=F|B
ResponseProfile Response profile PROC Default
ROCAssociation Association table for ROC

models
ROC Default

ROCContrastCoeff L matrix from
ROCCONTRAST

ROCCONTRAST E

ROCContrastCov Covariance of
ROCCONTRAST rows

ROCCONTRAST COV

ROCContrastEstimate Estimates from
ROCCONTRAST

ROCCONTRAST ESTIMATE=

ROCContrastTest Wald test from
ROCCONTRAST

ROCCONTRAST Default

ROCCov Covariance between ROC
curves

ROCCONTRAST COV

ScoreFitStat Fit statistics for Scored data SCORE FITSTAT
SimpleStatistics Summary statistics for

explanatory variables
PROC SIMPLE

StrataSummary Number of strata with
specific response frequencies

STRATA Default

StrataInfo Event and nonevent
frequencies for each stratum

STRATA INFO

SuffStats Sufficient statistics EXACT OUTDIST=
TestPrint1 L[Cov(b)]L’ and Lb-c TEST PRINT
TestPrint2 Ginv(L[Cov(b)]L’) and

Ginv(L[Cov(b)]L’)(Lb-c)
TEST PRINT

TestStmts Linear hypotheses testing
results

TEST Default
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ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

You must also specify the options in the PROC LOGISTIC statement that are indicated in Table 60.14.

When ODS Graphics is enabled, then the EFFECT, EFFECTPLOT, ESTIMATE, LSMEANS, LSMESTI-
MATE, and SLICE statements can produce plots that are associated with their analyses. For information
about these plots, see the corresponding sections of Chapter 19, “Shared Concepts and Topics.”

PROC LOGISTIC assigns a name to each graph it creates using ODS. You can use these names to reference
the graphs when using ODS. The names are listed in Table 60.14.

Table 60.14 Graphs Produced by PROC LOGISTIC

ODS Graph Name Plot Description Statement or Option

DfBetasPlot Panel of dfbetas by case number PLOTS=DFBETAS
or MODEL / INFLUENCE or IPLOTS

Effect dfbetas by case number PLOTS=DFBETAS(UNPACK)
DPCPlot Difchisq and/or difdev by predicted

probability by CI displacement C
PLOTS=DPC

EffectPlot Predicted probability PLOTS=EFFECT
InfluencePlots Panel of influence statistics by case

number
PLOTS=INFLUENCE
or MODEL / INFLUENCE or IPLOTS

CBarPlot CI displacement Cbar by case
number

PLOTS=INFLUENCE(UNPACK)

CPlot CI displacement C by case number PLOTS=INFLUENCE(UNPACK)
DevianceResidualPlot Deviance residual by case number PLOTS=INFLUENCE(UNPACK)
DifChisqPlot Difchisq by case number PLOTS=INFLUENCE(UNPACK)
DifDeviancePlot Difdev by case number PLOTS=INFLUENCE(UNPACK)
LeveragePlot Hat diagonal by case number PLOTS=INFLUENCE(UNPACK)
LikelihoodResidualPlot Likelihood residual by case number PLOTS=INFLUENCE(UNPACK

STDRES)
PearsonResidualPlot Pearson chi-square residual by case

number
PLOTS=INFLUENCE(UNPACK)

StdDevianceResidualPlot Standardized deviance residual by
case number

PLOTS=INFLUENCE(UNPACK
STDRES)

StdPearsonResidualPlot Standardized Pearson chi-square
residual by case number

PLOTS=INFLUENCE(UNPACK
STDRES)
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Table 60.14 continued

ODS Graph Name Plot Description Statement or Option

LeveragePlots Panel of influence statistics by
leverage

PLOTS=LEVERAGE

LeverageCPlot CI displacement C by leverage PLOTS=LEVERAGE(UNPACK)
LeverageDifChisqPlot Difchisq by leverage PLOTS=LEVERAGE(UNPACK)
LeverageDifDevPlot Difdev by leverage PLOTS=LEVERAGE(UNPACK)
LeveragePhatPlot Predicted probability by leverage PLOTS=LEVERAGE(UNPACK)

ORPlot Odds ratios Default or
PLOTS=ODDSRATIO and
MODEL / CLODDS=
or ODDSRATIO

PhatPlots Panel of influence by predicted
probability

PLOTS=PHAT

PhatCPlot CI displacement C by predicted
probability

PLOTS=PHAT(UNPACK)

PhatDifChisqPlot Difchisq by predicted probability PLOTS=PHAT(UNPACK)
PhatDifDevPlot Difdev by predicted probability PLOTS=PHAT(UNPACK)
PhatLeveragePlot Leverage by predicted probability PLOTS=PHAT(UNPACK)

ROCCurve Receiver operating characteristics
curve

PLOTS=ROC
or MODEL / OUTROC=
or SCORE OUTROC=
or ROC

ROCOverlay ROC curves for comparisons PLOTS=ROC and
MODEL / SELECTION=
or ROC
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Examples: LOGISTIC Procedure

Example 60.1: Stepwise Logistic Regression and Predicted Values
Consider a study on cancer remission (Lee 1974). The data consist of patient characteristics and whether or
not cancer remission occurred. The following DATA step creates the data set Remission containing seven
variables. The variable remiss is the cancer remission indicator variable with a value of 1 for remission and
a value of 0 for nonremission. The other six variables are the risk factors thought to be related to cancer
remission.

data Remission;
input remiss cell smear infil li blast temp;
label remiss='Complete Remission';
datalines;

1 .8 .83 .66 1.9 1.1 .996
1 .9 .36 .32 1.4 .74 .992
0 .8 .88 .7 .8 .176 .982
0 1 .87 .87 .7 1.053 .986
1 .9 .75 .68 1.3 .519 .98
0 1 .65 .65 .6 .519 .982
1 .95 .97 .92 1 1.23 .992
0 .95 .87 .83 1.9 1.354 1.02
0 1 .45 .45 .8 .322 .999
0 .95 .36 .34 .5 0 1.038
0 .85 .39 .33 .7 .279 .988
0 .7 .76 .53 1.2 .146 .982
0 .8 .46 .37 .4 .38 1.006
0 .2 .39 .08 .8 .114 .99
0 1 .9 .9 1.1 1.037 .99
1 1 .84 .84 1.9 2.064 1.02
0 .65 .42 .27 .5 .114 1.014
0 1 .75 .75 1 1.322 1.004
0 .5 .44 .22 .6 .114 .99
1 1 .63 .63 1.1 1.072 .986
0 1 .33 .33 .4 .176 1.01
0 .9 .93 .84 .6 1.591 1.02
1 1 .58 .58 1 .531 1.002
0 .95 .32 .3 1.6 .886 .988
1 1 .6 .6 1.7 .964 .99
1 1 .69 .69 .9 .398 .986
0 1 .73 .73 .7 .398 .986
;

The following invocation of PROC LOGISTIC illustrates the use of stepwise selection to identify the
prognostic factors for cancer remission. A significance level of 0.3 is required to allow a variable into
the model (SLENTRY=0.3), and a significance level of 0.35 is required for a variable to stay in the model
(SLSTAY=0.35). A detailed account of the variable selection process is requested by specifying the DETAILS
option. The Hosmer and Lemeshow goodness-of-fit test for the final selected model is requested by specifying
the LACKFIT option. The OUTEST= and COVOUT options in the PROC LOGISTIC statement create a
data set that contains parameter estimates and their covariances for the final selected model. The response
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variable option EVENT= chooses remiss=1 (remission) as the event so that the probability of remission is
modeled. The OUTPUT statement creates a data set that contains the cumulative predicted probabilities and
the corresponding confidence limits, and the individual and cross validated predicted probabilities for each
observation.

title 'Stepwise Regression on Cancer Remission Data';
proc logistic data=Remission outest=betas covout;

model remiss(event='1')=cell smear infil li blast temp
/ selection=stepwise

slentry=0.3
slstay=0.35
details
lackfit;

output out=pred p=phat lower=lcl upper=ucl
predprob=(individual crossvalidate);

run;

proc print data=betas;
title2 'Parameter Estimates and Covariance Matrix';

run;

proc print data=pred;
title2 'Predicted Probabilities and 95% Confidence Limits';

run;

In stepwise selection, an attempt is made to remove any insignificant variables from the model before adding
a significant variable to the model. Each addition or deletion of a variable to or from a model is listed as a
separate step in the displayed output, and at each step a new model is fitted. Details of the model selection
steps are shown in Outputs 60.1.1 through 60.1.5.

Prior to the first step, the intercept-only model is fit and individual score statistics for the potential variables
are evaluated (Output 60.1.1).

Output 60.1.1 Startup Model

Stepwise Regression on Cancer Remission Data

The LOGISTIC Procedure

Stepwise Regression on Cancer Remission Data

The LOGISTIC Procedure

Step  0. Intercept entered:

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

-2 Log L = 34.372

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept 1 -0.6931 0.4082 2.8827 0.0895

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

9.4609 6 0.1493
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Output 60.1.1 continued

Analysis of Effects Eligible for
Entry

Effect DF
Score

Chi-Square Pr > ChiSq

cell 1 1.8893 0.1693

smear 1 1.0745 0.2999

infil 1 1.8817 0.1701

li 1 7.9311 0.0049

blast 1 3.5258 0.0604

temp 1 0.6591 0.4169

In Step 1 (Output 60.1.2), the variable li is selected into the model because it is the most significant variable
among those to be chosen (p D 0:0049 < 0:3). The intermediate model that contains an intercept and li is
then fitted. li remains significant (p D 0:0146 < 0:35) and is not removed.

Output 60.1.2 Step 1 of the Stepwise Analysis

Step  1. Effect li entered:

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Criterion
Intercept

Only

Intercept
and

Covariates

AIC 36.372 30.073

SC 37.668 32.665

-2 Log L 34.372 26.073

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 8.2988 1 0.0040

Score 7.9311 1 0.0049

Wald 5.9594 1 0.0146

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept 1 -3.7771 1.3786 7.5064 0.0061

li 1 2.8973 1.1868 5.9594 0.0146

Odds Ratio Estimates

Effect
Point

Estimate
95% Wald

Confidence Limits

li 18.124 1.770 185.563
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Output 60.1.2 continued

Association of Predicted Probabilities and
Observed Responses

Percent Concordant 84.0 Somers' D 0.710

Percent Discordant 13.0 Gamma 0.732

Percent Tied 3.1 Tau-a 0.328

Pairs 162 c 0.855

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

3.1174 5 0.6819

Analysis of Effects Eligible for
Removal

Effect DF
Wald

Chi-Square Pr > ChiSq

li 1 5.9594 0.0146

Note: No effects for the model in Step 1 are removed.

Analysis of Effects Eligible for
Entry

Effect DF
Score

Chi-Square Pr > ChiSq

cell 1 1.1183 0.2903

smear 1 0.1369 0.7114

infil 1 0.5715 0.4497

blast 1 0.0932 0.7601

temp 1 1.2591 0.2618

In Step 2 (Output 60.1.3), the variable temp is added to the model. The model then contains an intercept and
the variables li and temp. Both li and temp remain significant at 0.35 level; therefore, neither li nor temp is
removed from the model.

Output 60.1.3 Step 2 of the Stepwise Analysis

Step  2. Effect temp entered:

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Criterion
Intercept

Only

Intercept
and

Covariates

AIC 36.372 30.648

SC 37.668 34.535

-2 Log L 34.372 24.648
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Output 60.1.3 continued

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 9.7239 2 0.0077

Score 8.3648 2 0.0153

Wald 5.9052 2 0.0522

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept 1 47.8448 46.4381 1.0615 0.3029

li 1 3.3017 1.3593 5.9002 0.0151

temp 1 -52.4214 47.4897 1.2185 0.2697

Odds Ratio Estimates

Effect
Point

Estimate
95% Wald

Confidence Limits

li 27.158 1.892 389.856

temp <0.001 <0.001 >999.999

Association of Predicted Probabilities and
Observed Responses

Percent Concordant 87.0 Somers' D 0.747

Percent Discordant 12.3 Gamma 0.752

Percent Tied 0.6 Tau-a 0.345

Pairs 162 c 0.873

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

2.1429 4 0.7095

Analysis of Effects Eligible for
Removal

Effect DF
Wald

Chi-Square Pr > ChiSq

li 1 5.9002 0.0151

temp 1 1.2185 0.2697

Note: No effects for the model in Step 2 are removed.

Analysis of Effects Eligible for
Entry

Effect DF
Score

Chi-Square Pr > ChiSq

cell 1 1.4700 0.2254

smear 1 0.1730 0.6775

infil 1 0.8274 0.3630

blast 1 1.1013 0.2940

In Step 3 (Output 60.1.4), the variable cell is added to the model. The model then contains an intercept and
the variables li, temp, and cell. None of these variables are removed from the model because all are significant
at the 0.35 level.
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Output 60.1.4 Step 3 of the Stepwise Analysis

Step  3. Effect cell entered:

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Criterion
Intercept

Only

Intercept
and

Covariates

AIC 36.372 29.953

SC 37.668 35.137

-2 Log L 34.372 21.953

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 12.4184 3 0.0061

Score 9.2502 3 0.0261

Wald 4.8281 3 0.1848

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept 1 67.6339 56.8875 1.4135 0.2345

cell 1 9.6521 7.7511 1.5507 0.2130

li 1 3.8671 1.7783 4.7290 0.0297

temp 1 -82.0737 61.7124 1.7687 0.1835

Odds Ratio Estimates

Effect
Point

Estimate
95% Wald

Confidence Limits

cell >999.999 0.004 >999.999

li 47.804 1.465 >999.999

temp <0.001 <0.001 >999.999

Association of Predicted Probabilities and
Observed Responses

Percent Concordant 88.9 Somers' D 0.778

Percent Discordant 11.1 Gamma 0.778

Percent Tied 0.0 Tau-a 0.359

Pairs 162 c 0.889

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

0.1831 3 0.9803
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Output 60.1.4 continued

Analysis of Effects Eligible for
Removal

Effect DF
Wald

Chi-Square Pr > ChiSq

cell 1 1.5507 0.2130

li 1 4.7290 0.0297

temp 1 1.7687 0.1835

Note: No effects for the model in Step 3 are removed.

Analysis of Effects Eligible for
Entry

Effect DF
Score

Chi-Square Pr > ChiSq

smear 1 0.0956 0.7572

infil 1 0.0844 0.7714

blast 1 0.0208 0.8852

Finally, none of the remaining variables outside the model meet the entry criterion, and the stepwise selection
is terminated. A summary of the stepwise selection is displayed in Output 60.1.5.

Output 60.1.5 Summary of the Stepwise Selection

Summary of Stepwise Selection

Effect

Step Entered Removed DF
Number

In
Score

Chi-Square
Wald

Chi-Square Pr > ChiSq

1 li 1 1 7.9311 0.0049

2 temp 1 2 1.2591 0.2618

3 cell 1 3 1.4700 0.2254

Results of the Hosmer and Lemeshow test are shown in Output 60.1.6. There is no evidence of a lack of fit in
the selected model .p D 0:5054/.

Output 60.1.6 Display of the LACKFIT Option

Partition for the Hosmer and Lemeshow Test

remiss = 1 remiss = 0

Group Total Observed Expected Observed Expected

1 3 0 0.00 3 3.00

2 3 0 0.01 3 2.99

3 3 0 0.19 3 2.81

4 3 0 0.56 3 2.44

5 4 1 1.09 3 2.91

6 3 2 1.35 1 1.65

7 3 2 1.84 1 1.16

8 3 3 2.15 0 0.85

9 2 1 1.80 1 0.20
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Output 60.1.6 continued

Hosmer and Lemeshow
Goodness-of-Fit Test

Chi-Square DF Pr > ChiSq

6.2983 7 0.5054

The data set betas created by the OUTEST= and COVOUT options is displayed in Output 60.1.7. The
data set contains parameter estimates and the covariance matrix for the final selected model. Note that all
explanatory variables listed in the MODEL statement are included in this data set; however, variables that are
not included in the final model have all missing values.

Output 60.1.7 Data Set of Estimates and Covariances

Stepwise Regression on Cancer Remission Data
Parameter Estimates and Covariance Matrix

Stepwise Regression on Cancer Remission Data
Parameter Estimates and Covariance Matrix

Obs _LINK_ _TYPE_ _STATUS_ _NAME_ Intercept cell smear infil li blast temp _LNLIKE_ _ESTTYPE_

1 LOGIT PARMS 0 Converged remiss 67.63 9.652 . . 3.8671 . -82.07 -10.9767 MLE

2 LOGIT COV 0 Converged Intercept 3236.19 157.097 . . 64.5726 . -3483.23 -10.9767 MLE

3 LOGIT COV 0 Converged cell 157.10 60.079 . . 6.9454 . -223.67 -10.9767 MLE

4 LOGIT COV 0 Converged smear . . . . . . . -10.9767 MLE

5 LOGIT COV 0 Converged infil . . . . . . . -10.9767 MLE

6 LOGIT COV 0 Converged li 64.57 6.945 . . 3.1623 . -75.35 -10.9767 MLE

7 LOGIT COV 0 Converged blast . . . . . . . -10.9767 MLE

8 LOGIT COV 0 Converged temp -3483.23 -223.669 . . -75.3513 . 3808.42 -10.9767 MLE

The data set pred created by the OUTPUT statement is displayed in Output 60.1.8. It contains all the variables
in the input data set, the variable phat for the (cumulative) predicted probability, the variables lcl and ucl
for the lower and upper confidence limits for the probability, and four other variables (IP_1, IP_0, XP_1,
and XP_0) for the PREDPROBS= option. The data set also contains the variable _LEVEL_, indicating
the response value to which phat, lcl, and ucl refer. For instance, for the first row of the OUTPUT data
set, the values of _LEVEL_ and phat, lcl, and ucl are 1, 0.72265, 0.16892, and 0.97093, respectively; this
means that the estimated probability that remiss=1 is 0.723 for the given explanatory variable values, and
the corresponding 95% confidence interval is (0.16892, 0.97093). The variables IP_1 and IP_0 contain the
predicted probabilities that remiss=1 and remiss=0, respectively. Note that values of phat and IP_1 are
identical because they both contain the probabilities that remiss=1. The variables XP_1 and XP_0 contain
the cross validated predicted probabilities that remiss=1 and remiss=0, respectively.
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Output 60.1.8 Predicted Probabilities and Confidence Intervals

Stepwise Regression on Cancer Remission Data
Predicted Probabilities and 95% Confidence Limits
Stepwise Regression on Cancer Remission Data

Predicted Probabilities and 95% Confidence Limits

Obs remiss cell smear infil li blast temp _FROM_ _INTO_ IP_0 IP_1 XP_0 XP_1 _LEVEL_ phat lcl ucl

1 1 0.80 0.83 0.66 1.9 1.100 0.996 1 1 0.27735 0.72265 0.43873 0.56127 1 0.72265 0.16892 0.97093

2 1 0.90 0.36 0.32 1.4 0.740 0.992 1 1 0.42126 0.57874 0.47461 0.52539 1 0.57874 0.26788 0.83762

3 0 0.80 0.88 0.70 0.8 0.176 0.982 0 0 0.89540 0.10460 0.87060 0.12940 1 0.10460 0.00781 0.63419

4 0 1.00 0.87 0.87 0.7 1.053 0.986 0 0 0.71742 0.28258 0.67259 0.32741 1 0.28258 0.07498 0.65683

5 1 0.90 0.75 0.68 1.3 0.519 0.980 1 1 0.28582 0.71418 0.36901 0.63099 1 0.71418 0.25218 0.94876

6 0 1.00 0.65 0.65 0.6 0.519 0.982 0 0 0.72911 0.27089 0.67269 0.32731 1 0.27089 0.05852 0.68951

7 1 0.95 0.97 0.92 1.0 1.230 0.992 1 0 0.67844 0.32156 0.72923 0.27077 1 0.32156 0.13255 0.59516

8 0 0.95 0.87 0.83 1.9 1.354 1.020 0 1 0.39277 0.60723 0.09906 0.90094 1 0.60723 0.10572 0.95287

9 0 1.00 0.45 0.45 0.8 0.322 0.999 0 0 0.83368 0.16632 0.80864 0.19136 1 0.16632 0.03018 0.56123

10 0 0.95 0.36 0.34 0.5 0.000 1.038 0 0 0.99843 0.00157 0.99840 0.00160 1 0.00157 0.00000 0.68962

11 0 0.85 0.39 0.33 0.7 0.279 0.988 0 0 0.92715 0.07285 0.91723 0.08277 1 0.07285 0.00614 0.49982

12 0 0.70 0.76 0.53 1.2 0.146 0.982 0 0 0.82714 0.17286 0.63838 0.36162 1 0.17286 0.00637 0.87206

13 0 0.80 0.46 0.37 0.4 0.380 1.006 0 0 0.99654 0.00346 0.99644 0.00356 1 0.00346 0.00001 0.46530

14 0 0.20 0.39 0.08 0.8 0.114 0.990 0 0 0.99982 0.00018 0.99981 0.00019 1 0.00018 0.00000 0.96482

15 0 1.00 0.90 0.90 1.1 1.037 0.990 0 1 0.42878 0.57122 0.35354 0.64646 1 0.57122 0.25303 0.83973

16 1 1.00 0.84 0.84 1.9 2.064 1.020 1 1 0.28530 0.71470 0.47213 0.52787 1 0.71470 0.15362 0.97189

17 0 0.65 0.42 0.27 0.5 0.114 1.014 0 0 0.99938 0.00062 0.99937 0.00063 1 0.00062 0.00000 0.62665

18 0 1.00 0.75 0.75 1.0 1.322 1.004 0 0 0.77711 0.22289 0.73612 0.26388 1 0.22289 0.04483 0.63670

19 0 0.50 0.44 0.22 0.6 0.114 0.990 0 0 0.99846 0.00154 0.99842 0.00158 1 0.00154 0.00000 0.79644

20 1 1.00 0.63 0.63 1.1 1.072 0.986 1 1 0.35089 0.64911 0.42053 0.57947 1 0.64911 0.26305 0.90555

21 0 1.00 0.33 0.33 0.4 0.176 1.010 0 0 0.98307 0.01693 0.98170 0.01830 1 0.01693 0.00029 0.50475

22 0 0.90 0.93 0.84 0.6 1.591 1.020 0 0 0.99378 0.00622 0.99348 0.00652 1 0.00622 0.00003 0.56062

23 1 1.00 0.58 0.58 1.0 0.531 1.002 1 0 0.74739 0.25261 0.84423 0.15577 1 0.25261 0.06137 0.63597

24 0 0.95 0.32 0.30 1.6 0.886 0.988 0 1 0.12989 0.87011 0.03637 0.96363 1 0.87011 0.40910 0.98481

25 1 1.00 0.60 0.60 1.7 0.964 0.990 1 1 0.06868 0.93132 0.08017 0.91983 1 0.93132 0.44114 0.99573

26 1 1.00 0.69 0.69 0.9 0.398 0.986 1 0 0.53949 0.46051 0.62312 0.37688 1 0.46051 0.16612 0.78529

27 0 1.00 0.73 0.73 0.7 0.398 0.986 0 0 0.71742 0.28258 0.67259 0.32741 1 0.28258 0.07498 0.65683

Next, a different variable selection method is used to select prognostic factors for cancer remission, and an
efficient algorithm is employed to eliminate insignificant variables from a model. The following statements
invoke PROC LOGISTIC to perform the backward elimination analysis:

title 'Backward Elimination on Cancer Remission Data';
proc logistic data=Remission;

model remiss(event='1')=temp cell li smear blast
/ selection=backward fast slstay=0.2 ctable;

run;

The backward elimination analysis (SELECTION=BACKWARD) starts with a model that contains all
explanatory variables given in the MODEL statement. By specifying the FAST option, PROC LOGISTIC
eliminates insignificant variables without refitting the model repeatedly. This analysis uses a significance level
of 0.2 to retain variables in the model (SLSTAY=0.2), which is different from the previous stepwise analysis
where SLSTAY=.35. The CTABLE option is specified to produce classifications of input observations based
on the final selected model.
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Results of the fast elimination analysis are shown in Output 60.1.9 and Output 60.1.10. Initially, a full model
containing all six risk factors is fit to the data (Output 60.1.9). In the next step (Output 60.1.10), PROC
LOGISTIC removes blast, smear, cell, and temp from the model all at once. This leaves li and the intercept
as the only variables in the final model. Note that in this analysis, only parameter estimates for the final
model are displayed because the DETAILS option has not been specified.

Output 60.1.9 Initial Step in Backward Elimination

Backward Elimination on Cancer Remission Data

The LOGISTIC Procedure

Backward Elimination on Cancer Remission Data

The LOGISTIC Procedure

Model Information

Data Set WORK.REMISSION

Response Variable remiss Complete Remission

Number of Response Levels 2

Model binary logit

Optimization Technique Fisher's scoring

Number of Observations Read 27

Number of Observations Used 27

Response Profile

Ordered
Value remiss

Total
Frequency

1 0 18

2 1 9

Probability modeled is remiss=1.

Backward Elimination Procedure

Step  0. The following effects were entered:

Backward Elimination Procedure

Step  0. The following effects were entered:

Intercept  temp  cell  li  smear  blast

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Criterion
Intercept

Only

Intercept
and

Covariates

AIC 36.372 33.857

SC 37.668 41.632

-2 Log L 34.372 21.857

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 12.5146 5 0.0284

Score 9.3295 5 0.0966

Wald 4.7284 5 0.4499
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Output 60.1.10 Fast Elimination Step

Step  1. Fast Backward Elimination:

Analysis of Effects Removed by Fast Backward Elimination

Effect
Removed Chi-Square DF Pr > ChiSq

Residual
Chi-Square DF

Pr >
Residual

ChiSq

blast 0.0008 1 0.9768 0.0008 1 0.9768

smear 0.0951 1 0.7578 0.0959 2 0.9532

cell 1.5134 1 0.2186 1.6094 3 0.6573

temp 0.6535 1 0.4189 2.2628 4 0.6875

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Criterion
Intercept

Only

Intercept
and

Covariates

AIC 36.372 30.073

SC 37.668 32.665

-2 Log L 34.372 26.073

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 8.2988 1 0.0040

Score 7.9311 1 0.0049

Wald 5.9594 1 0.0146

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

2.8530 4 0.5827

Summary of Backward Elimination

Step
Effect
Removed DF

Number
In

Wald
Chi-Square Pr > ChiSq

1 blast 1 4 0.0008 0.9768

1 smear 1 3 0.0951 0.7578

1 cell 1 2 1.5134 0.2186

1 temp 1 1 0.6535 0.4189

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept 1 -3.7771 1.3786 7.5064 0.0061

li 1 2.8973 1.1868 5.9594 0.0146

Odds Ratio Estimates

Effect
Point

Estimate
95% Wald

Confidence Limits

li 18.124 1.770 185.563
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Output 60.1.10 continued

Association of Predicted Probabilities and
Observed Responses

Percent Concordant 84.0 Somers' D 0.710

Percent Discordant 13.0 Gamma 0.732

Percent Tied 3.1 Tau-a 0.328

Pairs 162 c 0.855

Note that you can also use the FAST option when SELECTION=STEPWISE. However, the FAST option
operates only on backward elimination steps. In this example, the stepwise process only adds variables, so
the FAST option would not be useful.

Results of the CTABLE option are shown in Output 60.1.11.
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Output 60.1.11 Classifying Input Observations

Classification Table

Correct Incorrect Percentages

Prob
Level Event

Non-
Event Event

Non-
Event Correct

Sensi-
tivity

Speci-
ficity

False
POS

False
NEG

0.060 9 0 18 0 33.3 100.0 0.0 66.7 .

0.080 9 2 16 0 40.7 100.0 11.1 64.0 0.0

0.100 9 4 14 0 48.1 100.0 22.2 60.9 0.0

0.120 9 4 14 0 48.1 100.0 22.2 60.9 0.0

0.140 9 7 11 0 59.3 100.0 38.9 55.0 0.0

0.160 9 10 8 0 70.4 100.0 55.6 47.1 0.0

0.180 9 10 8 0 70.4 100.0 55.6 47.1 0.0

0.200 8 13 5 1 77.8 88.9 72.2 38.5 7.1

0.220 8 13 5 1 77.8 88.9 72.2 38.5 7.1

0.240 8 13 5 1 77.8 88.9 72.2 38.5 7.1

0.260 6 13 5 3 70.4 66.7 72.2 45.5 18.8

0.280 6 13 5 3 70.4 66.7 72.2 45.5 18.8

0.300 6 13 5 3 70.4 66.7 72.2 45.5 18.8

0.320 6 14 4 3 74.1 66.7 77.8 40.0 17.6

0.340 5 14 4 4 70.4 55.6 77.8 44.4 22.2

0.360 5 14 4 4 70.4 55.6 77.8 44.4 22.2

0.380 5 15 3 4 74.1 55.6 83.3 37.5 21.1

0.400 5 15 3 4 74.1 55.6 83.3 37.5 21.1

0.420 5 15 3 4 74.1 55.6 83.3 37.5 21.1

0.440 5 15 3 4 74.1 55.6 83.3 37.5 21.1

0.460 4 16 2 5 74.1 44.4 88.9 33.3 23.8

0.480 4 16 2 5 74.1 44.4 88.9 33.3 23.8

0.500 4 16 2 5 74.1 44.4 88.9 33.3 23.8

0.520 4 16 2 5 74.1 44.4 88.9 33.3 23.8

0.540 3 16 2 6 70.4 33.3 88.9 40.0 27.3

0.560 3 16 2 6 70.4 33.3 88.9 40.0 27.3

0.580 3 16 2 6 70.4 33.3 88.9 40.0 27.3

0.600 3 16 2 6 70.4 33.3 88.9 40.0 27.3

0.620 3 16 2 6 70.4 33.3 88.9 40.0 27.3

0.640 3 16 2 6 70.4 33.3 88.9 40.0 27.3

0.660 3 16 2 6 70.4 33.3 88.9 40.0 27.3

0.680 3 16 2 6 70.4 33.3 88.9 40.0 27.3

0.700 3 16 2 6 70.4 33.3 88.9 40.0 27.3

0.720 2 16 2 7 66.7 22.2 88.9 50.0 30.4

0.740 2 16 2 7 66.7 22.2 88.9 50.0 30.4

0.760 2 16 2 7 66.7 22.2 88.9 50.0 30.4

0.780 2 16 2 7 66.7 22.2 88.9 50.0 30.4

0.800 2 17 1 7 70.4 22.2 94.4 33.3 29.2

0.820 2 17 1 7 70.4 22.2 94.4 33.3 29.2

0.840 0 17 1 9 63.0 0.0 94.4 100.0 34.6

0.860 0 17 1 9 63.0 0.0 94.4 100.0 34.6

0.880 0 17 1 9 63.0 0.0 94.4 100.0 34.6

0.900 0 17 1 9 63.0 0.0 94.4 100.0 34.6

0.920 0 17 1 9 63.0 0.0 94.4 100.0 34.6

0.940 0 17 1 9 63.0 0.0 94.4 100.0 34.6

0.960 0 18 0 9 66.7 0.0 100.0 . 33.3
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Each row of the “Classification Table” corresponds to a cutpoint applied to the predicted probabilities, which
is given in the Prob Level column. The 2 � 2 frequency tables of observed and predicted responses are given
by the next four columns. For example, with a cutpoint of 0.5, 4 events and 16 nonevents were classified
correctly. On the other hand, 2 nonevents were incorrectly classified as events and 5 events were incorrectly
classified as nonevents. For this cutpoint, the correct classification rate is 20/27 (=74.1%), which is given
in the sixth column. Accuracy of the classification is summarized by the sensitivity, specificity, and false
positive and negative rates, which are displayed in the last four columns. You can control the number of
cutpoints used, and their values, by using the PPROB= option.

Example 60.2: Logistic Modeling with Categorical Predictors
Consider a study of the analgesic effects of treatments on elderly patients with neuralgia. Two test treatments
and a placebo are compared. The response variable is whether the patient reported pain or not. Researchers
recorded the age and gender of 60 patients and the duration of complaint before the treatment began. The
following DATA step creates the data set Neuralgia:

data Neuralgia;
input Treatment $ Sex $ Age Duration Pain $ @@;
datalines;

P F 68 1 No B M 74 16 No P F 67 30 No
P M 66 26 Yes B F 67 28 No B F 77 16 No
A F 71 12 No B F 72 50 No B F 76 9 Yes
A M 71 17 Yes A F 63 27 No A F 69 18 Yes
B F 66 12 No A M 62 42 No P F 64 1 Yes
A F 64 17 No P M 74 4 No A F 72 25 No
P M 70 1 Yes B M 66 19 No B M 59 29 No
A F 64 30 No A M 70 28 No A M 69 1 No
B F 78 1 No P M 83 1 Yes B F 69 42 No
B M 75 30 Yes P M 77 29 Yes P F 79 20 Yes
A M 70 12 No A F 69 12 No B F 65 14 No
B M 70 1 No B M 67 23 No A M 76 25 Yes
P M 78 12 Yes B M 77 1 Yes B F 69 24 No
P M 66 4 Yes P F 65 29 No P M 60 26 Yes
A M 78 15 Yes B M 75 21 Yes A F 67 11 No
P F 72 27 No P F 70 13 Yes A M 75 6 Yes
B F 65 7 No P F 68 27 Yes P M 68 11 Yes
P M 67 17 Yes B M 70 22 No A M 65 15 No
P F 67 1 Yes A M 67 10 No P F 72 11 Yes
A F 74 1 No B M 80 21 Yes A F 69 3 No
;

The data set Neuralgia contains five variables: Treatment, Sex, Age, Duration, and Pain. The last variable,
Pain, is the response variable. A specification of Pain=Yes indicates there was pain, and Pain=No indicates
no pain. The variable Treatment is a categorical variable with three levels: A and B represent the two test
treatments, and P represents the placebo treatment. The gender of the patients is given by the categorical
variable Sex. The variable Age is the age of the patients, in years, when treatment began. The duration of
complaint, in months, before the treatment began is given by the variable Duration.

The following statements use the LOGISTIC procedure to fit a two-way logit with interaction model for the
effect of Treatment and Sex, with Age and Duration as covariates. The categorical variables Treatment and
Sex are declared in the CLASS statement.
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proc logistic data=Neuralgia;
class Treatment Sex;
model Pain= Treatment Sex Treatment*Sex Age Duration / expb;

run;

In this analysis, PROC LOGISTIC models the probability of no pain (Pain=No). By default, effect coding is
used to represent the CLASS variables. Two design variables are created for Treatment and one for Sex, as
shown in Output 60.2.1.

Output 60.2.1 Effect Coding of CLASS Variables

The LOGISTIC ProcedureThe LOGISTIC Procedure

Class Level Information

Class Value
Design

Variables

Treatment A 1 0

B 0 1

P -1 -1

Sex F 1

M -1

PROC LOGISTIC displays a table of the Type 3 analysis of effects based on the Wald test (Output 60.2.2).
Note that the Treatment*Sex interaction and the duration of complaint are not statistically significant (p =
0.9318 and p = 0.8752, respectively). This indicates that there is no evidence that the treatments affect pain
differently in men and women, and no evidence that the pain outcome is related to the duration of pain.

Output 60.2.2 Wald Tests of Individual Effects

Joint Tests

Effect DF
Wald

Chi-Square Pr > ChiSq

Treatment 2 11.9886 0.0025

Sex 1 5.3104 0.0212

Treatment*Sex 2 0.1412 0.9318

Age 1 7.2744 0.0070

Duration 1 0.0247 0.8752

Note: Under full-rank parameterizations, Type 3 effect tests are replaced by joint tests. The joint test for an effect is a test that all the
parameters associated with that effect are zero. Such joint tests might not be equivalent to Type 3 effect tests under GLM
parameterization.

Parameter estimates are displayed in Output 60.2.3. The Exp(Est) column contains the exponentiated
parameter estimates requested with the EXPB option. These values can, but do not necessarily, represent odds
ratios for the corresponding variables. For continuous explanatory variables, the Exp(Est) value corresponds
to the odds ratio for a unit increase of the corresponding variable. For CLASS variables that use effect coding,
the Exp(Est) values have no direct interpretation as a comparison of levels. However, when the reference
coding is used, the Exp(Est) values represent the odds ratio between the corresponding level and the reference
level. Following the parameter estimates table, PROC LOGISTIC displays the odds ratio estimates for those
variables that are not involved in any interaction terms. If the variable is a CLASS variable, the odds ratio
estimate comparing each level with the reference level is computed regardless of the coding scheme. In this
analysis, because the model contains the Treatment*Sex interaction term, the odds ratios for Treatment and
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Sex were not computed. The odds ratio estimates for Age and Duration are precisely the values given in the
Exp(Est) column in the parameter estimates table.

Output 60.2.3 Parameter Estimates with Effect Coding

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq Exp(Est)

Intercept 1 19.2236 7.1315 7.2661 0.0070 2.232E8

Treatment A 1 0.8483 0.5502 2.3773 0.1231 2.336

Treatment B 1 1.4949 0.6622 5.0956 0.0240 4.459

Sex F 1 0.9173 0.3981 5.3104 0.0212 2.503

Treatment*Sex A F 1 -0.2010 0.5568 0.1304 0.7180 0.818

Treatment*Sex B F 1 0.0487 0.5563 0.0077 0.9302 1.050

Age 1 -0.2688 0.0996 7.2744 0.0070 0.764

Duration 1 0.00523 0.0333 0.0247 0.8752 1.005

Odds Ratio Estimates

Effect
Point

Estimate
95% Wald

Confidence Limits

Age 0.764 0.629 0.929

Duration 1.005 0.942 1.073

The following PROC LOGISTIC statements illustrate the use of forward selection on the data set Neuralgia
to identify the effects that differentiate the two Pain responses. The option SELECTION=FORWARD is
specified to carry out the forward selection. The term Treatment|Sex@2 illustrates another way to specify
main effects and two-way interactions. (Note that, in this case, the “@2” is unnecessary because no
interactions besides the two-way interaction are possible).

proc logistic data=Neuralgia;
class Treatment Sex;
model Pain=Treatment|Sex@2 Age Duration

/selection=forward expb;
run;

Results of the forward selection process are summarized in Output 60.2.4. The variable Treatment is selected
first, followed by Age and then Sex. The results are consistent with the previous analysis (Output 60.2.2) in
which the Treatment*Sex interaction and Duration are not statistically significant.

Output 60.2.4 Effects Selected into the Model

The LOGISTIC ProcedureThe LOGISTIC Procedure

Summary of Forward Selection

Step
Effect
Entered DF

Number
In

Score
Chi-Square Pr > ChiSq

1 Treatment 2 1 13.7143 0.0011

2 Age 1 2 10.6038 0.0011

3 Sex 1 3 5.9959 0.0143

Output 60.2.5 shows the Type 3 analysis of effects, the parameter estimates, and the odds ratio estimates
for the selected model. All three variables, Treatment, Age, and Sex, are statistically significant at the 0.05
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level (p=0.0018, p=0.0213, and p=0.0057, respectively). Because the selected model does not contain the
Treatment*Sex interaction, odds ratios for Treatment and Sex are computed. The estimated odds ratio is
24.022 for treatment A versus placebo, 41.528 for Treatment B versus placebo, and 6.194 for female patients
versus male patients. Note that these odds ratio estimates are not the same as the corresponding values in the
Exp(Est) column in the parameter estimates table because effect coding was used. From Output 60.2.5, it is
evident that both Treatment A and Treatment B are better than the placebo in reducing pain; females tend to
have better improvement than males; and younger patients are faring better than older patients.

Output 60.2.5 Type 3 Effects and Parameter Estimates with Effect Coding

Type 3 Analysis of Effects

Effect DF
Wald

Chi-Square Pr > ChiSq

Treatment 2 12.6928 0.0018

Sex 1 5.3013 0.0213

Age 1 7.6314 0.0057

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq Exp(Est)

Intercept 1 19.0804 6.7882 7.9007 0.0049 1.9343E8

Treatment A 1 0.8772 0.5274 2.7662 0.0963 2.404

Treatment B 1 1.4246 0.6036 5.5711 0.0183 4.156

Sex F 1 0.9118 0.3960 5.3013 0.0213 2.489

Age 1 -0.2650 0.0959 7.6314 0.0057 0.767

Odds Ratio Estimates

Effect
Point

Estimate
95% Wald

Confidence Limits

Treatment A vs P 24.022 3.295 175.121

Treatment B vs P 41.528 4.500 383.262

Sex       F vs M 6.194 1.312 29.248

Age 0.767 0.636 0.926

Finally, the following statements refit the previously selected model, except that reference coding is used for
the CLASS variables instead of effect coding:

ods graphics on;
proc logistic data=Neuralgia plots(only)=(oddsratio(range=clip));

class Treatment Sex /param=ref;
model Pain= Treatment Sex Age / noor;
oddsratio Treatment;
oddsratio Sex;
oddsratio Age;
contrast 'Pairwise A vs P' Treatment 1 0 / estimate=exp;
contrast 'Pairwise B vs P' Treatment 0 1 / estimate=exp;
contrast 'Pairwise A vs B' Treatment 1 -1 / estimate=exp;
contrast 'Female vs Male' Sex 1 / estimate=exp;
effectplot / at(Sex=all) noobs;
effectplot slicefit(sliceby=Sex plotby=Treatment) / noobs;

run;
ods graphics off;
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The ODDSRATIO statements compute the odds ratios for the covariates, and the NOOR option suppresses
the default odds ratio table. Four CONTRAST statements are specified; they provide another method of
producing the odds ratios. The three contrasts labeled ‘Pairwise’ specify a contrast vector, L, for each of
the pairwise comparisons between the three levels of Treatment. The contrast labeled ‘Female vs Male’
compares female to male patients. The option ESTIMATE=EXP is specified in all CONTRAST statements
to exponentiate the estimates of L0ˇ. With the given specification of contrast coefficients, the first of the
‘Pairwise’ CONTRAST statements corresponds to the odds ratio of A versus P, the second corresponds to B
versus P, and the third corresponds to A versus B. You can also specify the ‘Pairwise’ contrasts in a single
contrast statement with three rows. The ‘Female vs Male’ CONTRAST statement corresponds to the odds
ratio that compares female to male patients.

The PLOTS(ONLY)= option displays only the requested odds ratio plot when ODS Graphics is enabled.
The EFFECTPLOT statements do not honor the ONLY option, and display the fitted model. The first
EFFECTPLOT statement by default produces a plot of the predicted values against the continuous Age
variable, grouped by the Treatment levels. The AT option produces one plot for males and another for females;
the NOOBS option suppresses the display of the observations. In the second EFFECTPLOT statement, a
SLICEFIT plot is specified to display the Age variable on the X axis, the fits are grouped by the Sex levels,
and the PLOTBY= option produces a panel of plots that displays each level of the Treatment variable.

The reference coding is shown in Output 60.2.6. The Type 3 analysis of effects and the parameter estimates for
the reference coding are displayed in Output 60.2.7. Although the parameter estimates are different because
of the different parameterizations, the “Type 3 Analysis of Effects” table remains the same as in Output 60.2.5.
With effect coding, the treatment A parameter estimate (0.8772) estimates the effect of treatment A compared
to the average effect of treatments A, B, and placebo. The treatment A estimate (3.1790) under the reference
coding estimates the difference in effect of treatment A and the placebo treatment.

Output 60.2.6 Reference Coding of CLASS Variables

The LOGISTIC ProcedureThe LOGISTIC Procedure

Class Level Information

Class Value
Design

Variables

Treatment A 1 0

B 0 1

P 0 0

Sex F 1

M 0

Output 60.2.7 Type 3 Effects and Parameter Estimates with Reference Coding

Type 3 Analysis of Effects

Effect DF
Wald

Chi-Square Pr > ChiSq

Treatment 2 12.6928 0.0018

Sex 1 5.3013 0.0213

Age 1 7.6314 0.0057
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Output 60.2.7 continued

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept 1 15.8669 6.4056 6.1357 0.0132

Treatment A 1 3.1790 1.0135 9.8375 0.0017

Treatment B 1 3.7264 1.1339 10.8006 0.0010

Sex F 1 1.8235 0.7920 5.3013 0.0213

Age 1 -0.2650 0.0959 7.6314 0.0057

The ODDSRATIO statement results are shown in Output 60.2.8, and the resulting plot is displayed in
Output 60.2.9. Note in Output 60.2.9 that the odds ratio confidence limits are truncated due to specifying the
RANGE=CLIP option; this enables you to see which intervals contain “1” more clearly. The odds ratios are
identical to those shown in the “Odds Ratio Estimates” table in Output 60.2.5 with the addition of the odds
ratio for “Treatment A vs B”. Both treatments A and B are highly effective over placebo in reducing pain, as
can be seen from the odds ratios comparing treatment A against P and treatment B against P (the second
and third rows in the table). However, the 95% confidence interval for the odds ratio comparing treatment A
to B is (0.0932, 3.5889), indicating that the pain reduction effects of these two test treatments are not very
different. Again, the ’Sex F vs M’ odds ratio shows that female patients fared better in obtaining relief from
pain than male patients. The odds ratio for Age shows that a patient one year older is 0.77 times as likely to
show no pain; that is, younger patients have more improvement than older patients.

Output 60.2.8 Results from the ODDSRATIO Statements

Odds Ratio Estimates and Wald Confidence
Intervals

Odds Ratio Estimate 95% Confidence Limits

Treatment A vs B 0.578 0.093 3.589

Treatment A vs P 24.022 3.295 175.121

Treatment B vs P 41.528 4.500 383.262

Sex F vs M 6.194 1.312 29.248

Age 0.767 0.636 0.926
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Output 60.2.9 Plot of the ODDSRATIO Statement Results

Output 60.2.10 contains two tables: the “Contrast Test Results” table and the “Contrast Estimation and
Testing Results by Row” table. The former contains the overall Wald test for each CONTRAST statement.
The latter table contains estimates and tests of individual contrast rows. The estimates for the first two rows
of the ’Pairwise’ CONTRAST statements are the same as those given in the two preceding odds ratio tables
(Output 60.2.7 and Output 60.2.8). The third row estimates the odds ratio comparing A to B, agreeing with
Output 60.2.8, and the last row computes the odds ratio comparing pain relief for females to that for males.

Output 60.2.10 Results of CONTRAST Statements

Contrast Test Results

Contrast DF
Wald

Chi-Square Pr > ChiSq

Pairwise A vs P 1 9.8375 0.0017

Pairwise B vs P 1 10.8006 0.0010

Pairwise A vs B 1 0.3455 0.5567

Female vs Male 1 5.3013 0.0213
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Output 60.2.10 continued

Contrast Estimation and Testing Results by Row

Contrast Type Row Estimate
Standard

Error Alpha
Confidence

Limits
Wald

Chi-Square Pr > ChiSq

Pairwise A vs P EXP 1 24.0218 24.3473 0.05 3.2951 175.1 9.8375 0.0017

Pairwise B vs P EXP 1 41.5284 47.0877 0.05 4.4998 383.3 10.8006 0.0010

Pairwise A vs B EXP 1 0.5784 0.5387 0.05 0.0932 3.5889 0.3455 0.5567

Female vs Male EXP 1 6.1937 4.9053 0.05 1.3116 29.2476 5.3013 0.0213

ANCOVA-style plots of the model-predicted probabilities against the Age variable for each combination of
Treatment and Sex are displayed in Output 60.2.11 and Output 60.2.12. These plots confirm that females
always have a higher probability of pain reduction in each treatment group, the placebo treatment has a lower
probability of success than the other treatments, and younger patients respond to treatment better than older
patients.

Output 60.2.11 Model-Predicted Probabilities by Sex
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Output 60.2.12 Model-Predicted Probabilities by Treatment
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Example 60.3: Ordinal Logistic Regression
Consider a study of the effects on taste of various cheese additives. Researchers tested four cheese additives
and obtained 52 response ratings for each additive. Each response was measured on a scale of nine categories
ranging from strong dislike (1) to excellent taste (9). The data, given in McCullagh and Nelder (1989, p. 175)
in the form of a two-way frequency table of additive by rating, are saved in the data set Cheese by using the
following program. The variable y contains the response rating. The variable Additive specifies the cheese
additive (1, 2, 3, or 4). The variable freq gives the frequency with which each additive received each rating.

data Cheese;
do Additive = 1 to 4;

do y = 1 to 9;
input freq @@;
output;

end;
end;
label y='Taste Rating';
datalines;

0 0 1 7 8 8 19 8 1
6 9 12 11 7 6 1 0 0
1 1 6 8 23 7 5 1 0
0 0 0 1 3 7 14 16 11
;

The response variable y is ordinally scaled. A cumulative logit model is used to investigate the effects of
the cheese additives on taste. The following statements invoke PROC LOGISTIC to fit this model with
y as the response variable and three indicator variables as explanatory variables, with the fourth additive
as the reference level. With this parameterization, each Additive parameter compares an additive to the
fourth additive. The COVB option displays the estimated covariance matrix, and the NOODDSRATIO
option suppresses the default odds ratio table. The ODDSRATIO statement computes odds ratios for all
combinations of the Additive levels. The PLOTS option produces a graphical display of the odds ratios, and
the EFFECTPLOT statement displays the predicted probabilities.

ods graphics on;
proc logistic data=Cheese plots(only)=oddsratio(range=clip);

freq freq;
class Additive (param=ref ref='4');
model y=Additive / covb nooddsratio;
oddsratio Additive;
effectplot / polybar;
title 'Multiple Response Cheese Tasting Experiment';

run;
ods graphics off;

The “Response Profile” table in Output 60.3.1 shows that the strong dislike (y=1) end of the rating scale is
associated with lower Ordered Values in the “Response Profile” table; hence the probability of disliking the
additives is modeled.

The score chi-square for testing the proportional odds assumption is 17.287, which is not significant with
respect to a chi-square distribution with 21 degrees of freedom .p D 0:694/. This indicates that the
proportional odds assumption is reasonable. The positive value (1.6128) for the parameter estimate for
Additive1 indicates a tendency toward the lower-numbered categories of the first cheese additive relative
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to the fourth. In other words, the fourth additive tastes better than the first additive. The second and third
additives are both less favorable than the fourth additive. The relative magnitudes of these slope estimates
imply the preference ordering: fourth, first, third, second.

Output 60.3.1 Proportional Odds Model Regression Analysis

Multiple Response Cheese Tasting Experiment

The LOGISTIC Procedure

Multiple Response Cheese Tasting Experiment

The LOGISTIC Procedure

Model Information

Data Set WORK.CHEESE

Response Variable y Taste Rating

Number of Response Levels 9

Frequency Variable freq

Model cumulative logit

Optimization Technique Fisher's scoring

Number of Observations Read 36

Number of Observations Used 28

Sum of Frequencies Read 208

Sum of Frequencies Used 208

Response Profile

Ordered
Value y

Total
Frequency

1 1 7

2 2 10

3 3 19

4 4 27

5 5 41

6 6 28

7 7 39

8 8 25

9 9 12

Probabilities modeled are cumulated over the lower Ordered Values.

Note: 8 observations having nonpositive frequencies or weights were excluded since they do not contribute to the
analysis.

Class Level Information

Class Value
Design

Variables

Additive 1 1 0 0

2 0 1 0

3 0 0 1

4 0 0 0

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.
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Output 60.3.1 continued

Score Test for the
Proportional Odds

Assumption

Chi-Square DF Pr > ChiSq

17.2866 21 0.6936

Model Fit Statistics

Criterion
Intercept

Only

Intercept
and

Covariates

AIC 875.802 733.348

SC 902.502 770.061

-2 Log L 859.802 711.348

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 148.4539 3 <.0001

Score 111.2670 3 <.0001

Wald 115.1504 3 <.0001

Type 3 Analysis of Effects

Effect DF
Wald

Chi-Square Pr > ChiSq

Additive 3 115.1504 <.0001

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept 1 1 -7.0801 0.5624 158.4851 <.0001

Intercept 2 1 -6.0249 0.4755 160.5500 <.0001

Intercept 3 1 -4.9254 0.4272 132.9484 <.0001

Intercept 4 1 -3.8568 0.3902 97.7087 <.0001

Intercept 5 1 -2.5205 0.3431 53.9704 <.0001

Intercept 6 1 -1.5685 0.3086 25.8374 <.0001

Intercept 7 1 -0.0669 0.2658 0.0633 0.8013

Intercept 8 1 1.4930 0.3310 20.3439 <.0001

Additive 1 1 1.6128 0.3778 18.2265 <.0001

Additive 2 1 4.9645 0.4741 109.6427 <.0001

Additive 3 1 3.3227 0.4251 61.0931 <.0001

Association of Predicted Probabilities and
Observed Responses

Percent Concordant 67.6 Somers' D 0.578

Percent Discordant 9.8 Gamma 0.746

Percent Tied 22.6 Tau-a 0.500

Pairs 18635 c 0.789

The odds ratio results in Output 60.3.2 show the preferences more clearly. For example, the “Additive 1 vs
4” odds ratio says that the first additive has 5.017 times the odds of receiving a lower score than the fourth
additive; that is, the first additive is 5.017 times more likely than the fourth additive to receive a lower score.
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Output 60.3.3 displays the odds ratios graphically; the range of the confidence limits is truncated by the
RANGE=CLIP option, so you can see that “1” is not contained in any of the intervals.

Output 60.3.2 Odds Ratios of All Pairs of Additive Levels

Odds Ratio Estimates and Wald Confidence
Intervals

Odds Ratio Estimate 95% Confidence Limits

Additive 1 vs 2 0.035 0.015 0.080

Additive 1 vs 3 0.181 0.087 0.376

Additive 1 vs 4 5.017 2.393 10.520

Additive 2 vs 3 5.165 2.482 10.746

Additive 2 vs 4 143.241 56.558 362.777

Additive 3 vs 4 27.734 12.055 63.805

Output 60.3.3 Plot of Odds Ratios for Additive

The estimated covariance matrix of the parameters is displayed in Output 60.3.4.
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Output 60.3.4 Estimated Covariance Matrix

Estimated Covariance Matrix

Parameter Intercept_1 Intercept_2 Intercept_3 Intercept_4 Intercept_5 Intercept_6 Intercept_7 Intercept_8 Additive1 Additive2 Additive3

Intercept_1 0.316291 0.219581 0.176278 0.147694 0.114024 0.091085 0.057814 0.041304 -0.09419 -0.18686 -0.13565

Intercept_2 0.219581 0.226095 0.177806 0.147933 0.11403 0.091081 0.057813 0.041304 -0.09421 -0.18161 -0.13569

Intercept_3 0.176278 0.177806 0.182473 0.148844 0.114092 0.091074 0.057807 0.0413 -0.09427 -0.1687 -0.1352

Intercept_4 0.147694 0.147933 0.148844 0.152235 0.114512 0.091109 0.05778 0.041277 -0.09428 -0.14717 -0.13118

Intercept_5 0.114024 0.11403 0.114092 0.114512 0.117713 0.091821 0.057721 0.041162 -0.09246 -0.11415 -0.11207

Intercept_6 0.091085 0.091081 0.091074 0.091109 0.091821 0.09522 0.058312 0.041324 -0.08521 -0.09113 -0.09122

Intercept_7 0.057814 0.057813 0.057807 0.05778 0.057721 0.058312 0.07064 0.04878 -0.06041 -0.05781 -0.05802

Intercept_8 0.041304 0.041304 0.0413 0.041277 0.041162 0.041324 0.04878 0.109562 -0.04436 -0.0413 -0.04143

Additive1 -0.09419 -0.09421 -0.09427 -0.09428 -0.09246 -0.08521 -0.06041 -0.04436 0.142715 0.094072 0.092128

Additive2 -0.18686 -0.18161 -0.1687 -0.14717 -0.11415 -0.09113 -0.05781 -0.0413 0.094072 0.22479 0.132877

Additive3 -0.13565 -0.13569 -0.1352 -0.13118 -0.11207 -0.09122 -0.05802 -0.04143 0.092128 0.132877 0.180709

Output 60.3.5 displays the probability of each taste rating y within each additive. You can see that Additive=1
mostly receives ratings of 5 to 7, Additive=2 mostly receives ratings of 2 to 5, Additive=3 mostly receives
ratings of 4 to 6, and Additive=4 mostly receives ratings of 7 to 9, which also confirms the previously
discussed preference orderings.

Output 60.3.5 Model-Predicted Probabilities
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Example 60.4: Nominal Response Data: Generalized Logits Model
Over the course of one school year, third graders from three different schools are exposed to three different
styles of mathematics instruction: a self-paced computer-learning style, a team approach, and a traditional
class approach. The students are asked which style they prefer and their responses, classified by the type
of program they are in (a regular school day versus a regular day supplemented with an afternoon school
program), are displayed in Table 60.15. The data set is from Stokes, Davis, and Koch (2012), and is also
analyzed in the section “Generalized Logits Model” on page 1892 in Chapter 32, “The CATMOD Procedure.”

Table 60.15 School Program Data

Learning Style Preference
School Program Self Team Class

1 Regular 10 17 26
1 Afternoon 5 12 50
2 Regular 21 17 26
2 Afternoon 16 12 36
3 Regular 15 15 16
3 Afternoon 12 12 20

The levels of the response variable (self, team, and class) have no essential ordering, so a logistic regression
is performed on the generalized logits. The model to be fit is

log
�
�hij

�hir

�
D ˛j C x0hiˇj

where �hij is the probability that a student in school h and program i prefers teaching style j, j ¤ r , and style
r is the baseline style (in this case, class). There are separate sets of intercept parameters ˛j and regression
parameters ˇj for each logit, and the vector xhi is the set of explanatory variables for the hith population.
Thus, two logits are modeled for each school and program combination: the logit comparing self to class and
the logit comparing team to class.

The following statements create the data set school and request the analysis. The LINK=GLOGIT option
forms the generalized logits. The response variable option ORDER=DATA means that the response variable
levels are ordered as they exist in the data set: self, team, and class; thus, the logits are formed by comparing
self to class and by comparing team to class. The ODDSRATIO statement produces odds ratios in the
presence of interactions, and a graphical display of the requested odds ratios is produced when ODS Graphics
is enabled.

data school;
length Program $ 9;
input School Program $ Style $ Count @@;
datalines;

1 regular self 10 1 regular team 17 1 regular class 26
1 afternoon self 5 1 afternoon team 12 1 afternoon class 50
2 regular self 21 2 regular team 17 2 regular class 26
2 afternoon self 16 2 afternoon team 12 2 afternoon class 36
3 regular self 15 3 regular team 15 3 regular class 16
3 afternoon self 12 3 afternoon team 12 3 afternoon class 20
;
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ods graphics on;
proc logistic data=school;

freq Count;
class School Program(ref=first);
model Style(order=data)=School Program School*Program / link=glogit;
oddsratio program;

run;
ods graphics off;

Summary information about the model, the response variable, and the classification variables are displayed in
Output 60.4.1.

Output 60.4.1 Analysis of Saturated Model

The LOGISTIC ProcedureThe LOGISTIC Procedure

Model Information

Data Set WORK.SCHOOL

Response Variable Style

Number of Response Levels 3

Frequency Variable Count

Model generalized logit

Optimization Technique Newton-Raphson

Number of Observations Read 18

Number of Observations Used 18

Sum of Frequencies Read 338

Sum of Frequencies Used 338

Response Profile

Ordered
Value Style

Total
Frequency

1 self 79

2 team 85

3 class 174

Logits modeled use Style='class' as the reference category.

Class Level Information

Class Value
Design

Variables

School 1 1 0

2 0 1

3 -1 -1

Program afternoon -1

regular 1

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

The “Testing Global Null Hypothesis: BETA=0” table in Output 60.4.2 shows that the parameters are
significantly different from zero.
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Output 60.4.2 Analysis of Saturated Model

Model Fit Statistics

Criterion
Intercept

Only

Intercept
and

Covariates

AIC 699.404 689.156

SC 707.050 735.033

-2 Log L 695.404 665.156

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 30.2480 10 0.0008

Score 28.3738 10 0.0016

Wald 25.6828 10 0.0042

However, the “Type 3 Analysis of Effects” table in Output 60.4.3 shows that the interaction effect is clearly
nonsignificant.

Output 60.4.3 Analysis of Saturated Model

Joint Tests

Effect DF
Wald

Chi-Square Pr > ChiSq

School 4 14.5522 0.0057

Program 2 10.4815 0.0053

School*Program 4 1.7439 0.7827

Note: Under full-rank parameterizations, Type 3 effect tests are replaced by joint tests. The joint test for an effect is a test that all the
parameters associated with that effect are zero. Such joint tests might not be equivalent to Type 3 effect tests under GLM
parameterization.

Analysis of Maximum Likelihood Estimates

Parameter Style DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept self 1 -0.8097 0.1488 29.5989 <.0001

Intercept team 1 -0.6585 0.1366 23.2449 <.0001

School 1 self 1 -0.8194 0.2281 12.9066 0.0003

School 1 team 1 -0.2675 0.1881 2.0233 0.1549

School 2 self 1 0.2974 0.1919 2.4007 0.1213

School 2 team 1 -0.1033 0.1898 0.2961 0.5863

Program regular self 1 0.3985 0.1488 7.1684 0.0074

Program regular team 1 0.3537 0.1366 6.7071 0.0096

School*Program 1 regular self 1 0.2751 0.2281 1.4547 0.2278

School*Program 1 regular team 1 0.1474 0.1881 0.6143 0.4332

School*Program 2 regular self 1 -0.0998 0.1919 0.2702 0.6032

School*Program 2 regular team 1 -0.0168 0.1898 0.0079 0.9293

The table produced by the ODDSRATIO statement is displayed in Output 60.4.4. The differences between
the program preferences are small across all the styles (logits) compared to their variability as displayed by
the confidence limits in Output 60.4.5, confirming that the interaction effect is nonsignificant.
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Output 60.4.4 Odds Ratios for Style

Odds Ratio Estimates and Wald Confidence Intervals

Odds Ratio Estimate 95% Confidence Limits

Style self: Program regular vs afternoon at School=1 3.846 1.190 12.435

Style team: Program regular vs afternoon at School=1 2.724 1.132 6.554

Style self: Program regular vs afternoon at School=2 1.817 0.798 4.139

Style team: Program regular vs afternoon at School=2 1.962 0.802 4.799

Style self: Program regular vs afternoon at School=3 1.562 0.572 4.265

Style team: Program regular vs afternoon at School=3 1.562 0.572 4.265

Output 60.4.5 Plot of Odds Ratios for Style

Because the interaction effect is clearly nonsignificant, a main-effects model is fit with the following
statements. The EFFECTPLOT statement creates a plot of the predicted values versus the levels of the School
variable at each level of the Program variables. The CLM option adds confidence bars, and the NOOBS
option suppresses the display of the observations.
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ods graphics on;
proc logistic data=school;

freq Count;
class School Program(ref=first);
model Style(order=data)=School Program / link=glogit;
effectplot interaction(plotby=Program) / clm noobs;

run;
ods graphics off;

All of the global fit tests in Output 60.4.6 suggest the model is significant, and the Type 3 tests show that the
school and program effects are also significant.

Output 60.4.6 Analysis of Main-Effects Model

The LOGISTIC ProcedureThe LOGISTIC Procedure

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Criterion
Intercept

Only

Intercept
and

Covariates

AIC 699.404 682.934

SC 707.050 713.518

-2 Log L 695.404 666.934

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 28.4704 6 <.0001

Score 27.1190 6 0.0001

Wald 25.5881 6 0.0003

Type 3 Analysis of Effects

Effect DF
Wald

Chi-Square Pr > ChiSq

School 4 14.8424 0.0050

Program 2 10.9160 0.0043
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The parameter estimates, tests for individual parameters, and odds ratios are displayed in Output 60.4.7. The
Program variable has nearly the same effect on both logits, while School=1 has the largest effect of the
schools.

Output 60.4.7 Estimates

Analysis of Maximum Likelihood Estimates

Parameter Style DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept self 1 -0.7978 0.1465 29.6502 <.0001

Intercept team 1 -0.6589 0.1367 23.2300 <.0001

School 1 self 1 -0.7992 0.2198 13.2241 0.0003

School 1 team 1 -0.2786 0.1867 2.2269 0.1356

School 2 self 1 0.2836 0.1899 2.2316 0.1352

School 2 team 1 -0.0985 0.1892 0.2708 0.6028

Program regular self 1 0.3737 0.1410 7.0272 0.0080

Program regular team 1 0.3713 0.1353 7.5332 0.0061

Odds Ratio Estimates

Effect Style
Point

Estimate
95% Wald

Confidence Limits

School  1 vs 3 self 0.269 0.127 0.570

School  1 vs 3 team 0.519 0.267 1.010

School  2 vs 3 self 0.793 0.413 1.522

School  2 vs 3 team 0.622 0.317 1.219

Program regular vs afternoon self 2.112 1.215 3.670

Program regular vs afternoon team 2.101 1.237 3.571

The interaction plots in Output 60.4.8 show that School=1 and Program=afternoon have a preference for
the traditional classroom style. Of course, because these are not simultaneous confidence intervals, the
nonoverlapping 95% confidence limits do not take the place of an actual test.
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Output 60.4.8 Model-Predicted Probabilities
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Example 60.5: Stratified Sampling
Consider the hypothetical example in Fleiss (1981, pp. 6–7), in which a test is applied to a sample of 1,000
people known to have a disease and to another sample of 1,000 people known not to have the same disease.
In the diseased sample, 950 test positive; in the nondiseased sample, only 10 test positive. If the true disease
rate in the population is 1 in 100, specifying PEVENT=0.01 results in the correct false positive and negative
rates for the stratified sampling scheme. Omitting the PEVENT= option is equivalent to using the overall
sample disease rate (1000/2000 = 0.5) as the value of the PEVENT= option, which would ignore the stratified
sampling.

The statements to create the data set and perform the analysis are as follows:

data Screen;
do Disease='Present','Absent';

do Test=1,0;
input Count @@;
output;

end;
end;
datalines;

950 50
10 990

;

proc logistic data=Screen;
freq Count;
model Disease(event='Present')=Test

/ pevent=.5 .01 ctable pprob=.5;
run;

The response variable option EVENT= indicates that Disease=’Present’ is the event. The CTABLE option is
specified to produce a classification table. Specifying PPROB=0.5 indicates a cutoff probability of 0.5. A
list of two probabilities, 0.5 and 0.01, is specified for the PEVENT= option; 0.5 corresponds to the overall
sample disease rate, and 0.01 corresponds to a true disease rate of 1 in 100.

The classification table is shown in Output 60.5.1.

Output 60.5.1 False Positive and False Negative Rates

The LOGISTIC ProcedureThe LOGISTIC Procedure

Classification Table

Correct Incorrect Percentages

Prob
Event

Prob
Level Event

Non-
Event Event

Non-
Event Correct

Sensi-
tivity

Speci-
ficity

False
POS

False
NEG

0.500 0.500 950 990 10 50 97.0 95.0 99.0 1.0 4.8

0.010 0.500 950 990 10 50 99.0 95.0 99.0 51.0 0.1

In the classification table, the column “Prob Level” represents the cutoff values (the settings of the PPROB=
option) for predicting whether an observation is an event. The “Correct” columns list the numbers of subjects
that are correctly predicted as events and nonevents, respectively, and the “Incorrect” columns list the number
of nonevents incorrectly predicted as events and the number of events incorrectly predicted as nonevents,
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respectively. For PEVENT=0.5, the false positive rate is 1% and the false negative rate is 4.8%. These results
ignore the fact that the samples were stratified and incorrectly assume that the overall sample proportion of
disease (which is 0.5) estimates the true disease rate. For a true disease rate of 0.01, the false positive rate and
the false negative rate are 51% and 0.1%, respectively, as shown in the second line of the classification table.

Example 60.6: Logistic Regression Diagnostics
In a controlled experiment to study the effect of the rate and volume of air intake on a transient reflex
vasoconstriction in the skin of the digits, 39 tests under various combinations of rate and volume of air
intake were obtained (Finney 1947). The endpoint of each test is whether or not vasoconstriction occurred.
Pregibon (1981) uses this set of data to illustrate the diagnostic measures he proposes for detecting influential
observations and to quantify their effects on various aspects of the maximum likelihood fit.

The vasoconstriction data are saved in the data set vaso:

data vaso;
length Response $12;
input Volume Rate Response @@;
LogVolume=log(Volume);
LogRate=log(Rate);
datalines;

3.70 0.825 constrict 3.50 1.09 constrict
1.25 2.50 constrict 0.75 1.50 constrict
0.80 3.20 constrict 0.70 3.50 constrict
0.60 0.75 no_constrict 1.10 1.70 no_constrict
0.90 0.75 no_constrict 0.90 0.45 no_constrict
0.80 0.57 no_constrict 0.55 2.75 no_constrict
0.60 3.00 no_constrict 1.40 2.33 constrict
0.75 3.75 constrict 2.30 1.64 constrict
3.20 1.60 constrict 0.85 1.415 constrict
1.70 1.06 no_constrict 1.80 1.80 constrict
0.40 2.00 no_constrict 0.95 1.36 no_constrict
1.35 1.35 no_constrict 1.50 1.36 no_constrict
1.60 1.78 constrict 0.60 1.50 no_constrict
1.80 1.50 constrict 0.95 1.90 no_constrict
1.90 0.95 constrict 1.60 0.40 no_constrict
2.70 0.75 constrict 2.35 0.03 no_constrict
1.10 1.83 no_constrict 1.10 2.20 constrict
1.20 2.00 constrict 0.80 3.33 constrict
0.95 1.90 no_constrict 0.75 1.90 no_constrict
1.30 1.625 constrict
;

In the data set vaso, the variable Response represents the outcome of a test. The variable LogVolume
represents the log of the volume of air intake, and the variable LogRate represents the log of the rate of air
intake.

The following statements invoke PROC LOGISTIC to fit a logistic regression model to the vasoconstriction
data, where Response is the response variable, and LogRate and LogVolume are the explanatory variables.
Regression diagnostics are displayed when ODS Graphics is enabled, and the INFLUENCE option is specified
to display a table of the regression diagnostics.
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ods graphics on;
title 'Occurrence of Vasoconstriction';
proc logistic data=vaso;

model Response=LogRate LogVolume/influence;
run;
ods graphics off;

Results of the model fit are shown in Output 60.6.1. Both LogRate and LogVolume are statistically significant
to the occurrence of vasoconstriction (p = 0.0131 and p = 0.0055, respectively). Their positive parameter
estimates indicate that a higher inspiration rate or a larger volume of air intake is likely to increase the
probability of vasoconstriction.

Output 60.6.1 Logistic Regression Analysis for Vasoconstriction Data

Occurrence of Vasoconstriction

The LOGISTIC Procedure

Occurrence of Vasoconstriction

The LOGISTIC Procedure

Model Information

Data Set WORK.VASO

Response Variable Response

Number of Response Levels 2

Model binary logit

Optimization Technique Fisher's scoring

Number of Observations Read 39

Number of Observations Used 39

Response Profile

Ordered
Value Response

Total
Frequency

1 constrict 20

2 no_constrict 19

Probability modeled is Response='constrict'.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Criterion
Intercept

Only

Intercept
and

Covariates

AIC 56.040 35.227

SC 57.703 40.218

-2 Log L 54.040 29.227

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 24.8125 2 <.0001

Score 16.6324 2 0.0002

Wald 7.8876 2 0.0194
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Output 60.6.1 continued

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept 1 -2.8754 1.3208 4.7395 0.0295

LogRate 1 4.5617 1.8380 6.1597 0.0131

LogVolume 1 5.1793 1.8648 7.7136 0.0055

Odds Ratio Estimates

Effect
Point

Estimate
95% Wald

Confidence Limits

LogRate 95.744 2.610 >999.999

LogVolume 177.562 4.592 >999.999

Association of Predicted Probabilities and
Observed Responses

Percent Concordant 93.7 Somers' D 0.874

Percent Discordant 6.3 Gamma 0.874

Percent Tied 0.0 Tau-a 0.448

Pairs 380 c 0.937

The INFLUENCE option displays the values of the explanatory variables (LogRate and LogVolume) for
each observation, a column for each diagnostic produced, and the case number that represents the sequence
number of the observation (Output 60.6.2).
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Output 60.6.2 Regression Diagnostics from the INFLUENCE Option

Regression Diagnostics

Covariates

Case
Number LogRate LogVolume

Pearson
Residual

Deviance
Residual

Hat
Matrix

Diagonal
Intercept

DfBeta
LogRate

DfBeta
LogVolume

DfBeta

Confidence
Interval

Displacement
C

Confidence
Interval

Displacement
CBar

Delta
Deviance

Delta
Chi-Square

1 -0.1924 1.3083 0.2205 0.3082 0.0927 -0.0165 0.0193 0.0556 0.00548 0.00497 0.1000 0.0536

2 0.0862 1.2528 0.1349 0.1899 0.0429 -0.0134 0.0151 0.0261 0.000853 0.000816 0.0369 0.0190

3 0.9163 0.2231 0.2923 0.4049 0.0612 -0.0492 0.0660 0.0589 0.00593 0.00557 0.1695 0.0910

4 0.4055 -0.2877 3.5181 2.2775 0.0867 1.0734 -0.9302 -1.0180 1.2873 1.1756 6.3626 13.5523

5 1.1632 -0.2231 0.5287 0.7021 0.1158 -0.0832 0.1411 0.0583 0.0414 0.0366 0.5296 0.3161

6 1.2528 -0.3567 0.6090 0.7943 0.1524 -0.0922 0.1710 0.0381 0.0787 0.0667 0.6976 0.4376

7 -0.2877 -0.5108 -0.0328 -0.0464 0.00761 -0.00280 0.00274 0.00265 8.321E-6 8.258E-6 0.00216 0.00109

8 0.5306 0.0953 -1.0196 -1.1939 0.0559 -0.1444 0.0613 0.0570 0.0652 0.0616 1.4870 1.1011

9 -0.2877 -0.1054 -0.0938 -0.1323 0.0342 -0.0178 0.0173 0.0153 0.000322 0.000311 0.0178 0.00911

10 -0.7985 -0.1054 -0.0293 -0.0414 0.00721 -0.00245 0.00246 0.00211 6.256E-6 6.211E-6 0.00172 0.000862

11 -0.5621 -0.2231 -0.0370 -0.0523 0.00969 -0.00361 0.00358 0.00319 0.000014 0.000013 0.00274 0.00138

12 1.0116 -0.5978 -0.5073 -0.6768 0.1481 -0.1173 0.0647 0.1651 0.0525 0.0447 0.5028 0.3021

13 1.0986 -0.5108 -0.7751 -0.9700 0.1628 -0.0931 -0.00946 0.1775 0.1395 0.1168 1.0577 0.7175

14 0.8459 0.3365 0.2559 0.3562 0.0551 -0.0414 0.0538 0.0527 0.00404 0.00382 0.1307 0.0693

15 1.3218 -0.2877 0.4352 0.5890 0.1336 -0.0940 0.1408 0.0643 0.0337 0.0292 0.3761 0.2186

16 0.4947 0.8329 0.1576 0.2215 0.0402 -0.0198 0.0234 0.0307 0.00108 0.00104 0.0501 0.0259

17 0.4700 1.1632 0.0709 0.1001 0.0172 -0.00630 0.00701 0.00914 0.000089 0.000088 0.0101 0.00511

18 0.3471 -0.1625 2.9062 2.1192 0.0954 0.9595 -0.8279 -0.8477 0.9845 0.8906 5.3817 9.3363

19 0.0583 0.5306 -1.0718 -1.2368 0.1315 -0.2591 0.2024 -0.00488 0.2003 0.1740 1.7037 1.3227

20 0.5878 0.5878 0.2405 0.3353 0.0525 -0.0331 0.0421 0.0518 0.00338 0.00320 0.1156 0.0610

21 0.6931 -0.9163 -0.1076 -0.1517 0.0373 -0.0180 0.0158 0.0208 0.000465 0.000448 0.0235 0.0120

22 0.3075 -0.0513 -0.4193 -0.5691 0.1015 -0.1449 0.1237 0.1179 0.0221 0.0199 0.3437 0.1956

23 0.3001 0.3001 -1.0242 -1.1978 0.0761 -0.1961 0.1275 0.0357 0.0935 0.0864 1.5212 1.1355

24 0.3075 0.4055 -1.3684 -1.4527 0.0717 -0.1281 0.0410 -0.1004 0.1558 0.1447 2.2550 2.0171

25 0.5766 0.4700 0.3347 0.4608 0.0587 -0.0403 0.0570 0.0708 0.00741 0.00698 0.2193 0.1190

26 0.4055 -0.5108 -0.1595 -0.2241 0.0548 -0.0366 0.0329 0.0373 0.00156 0.00147 0.0517 0.0269

27 0.4055 0.5878 0.3645 0.4995 0.0661 -0.0327 0.0496 0.0788 0.0101 0.00941 0.2589 0.1423

28 0.6419 -0.0513 -0.8989 -1.0883 0.0647 -0.1423 0.0617 0.1025 0.0597 0.0559 1.2404 0.8639

29 -0.0513 0.6419 0.8981 1.0876 0.1682 0.2367 -0.1950 0.0286 0.1961 0.1631 1.3460 0.9697

30 -0.9163 0.4700 -0.0992 -0.1400 0.0507 -0.0224 0.0227 0.0159 0.000554 0.000526 0.0201 0.0104

31 -0.2877 0.9933 0.6198 0.8064 0.2459 0.1165 -0.0996 0.1322 0.1661 0.1253 0.7755 0.5095

32 -3.5066 0.8544 -0.00073 -0.00103 0.000022 -3.22E-6 3.405E-6 2.48E-6 1.18E-11 1.18E-11 1.065E-6 5.324E-7

33 0.6043 0.0953 -1.2062 -1.3402 0.0510 -0.0882 -0.0137 -0.00216 0.0824 0.0782 1.8744 1.5331

34 0.7885 0.0953 0.5447 0.7209 0.0601 -0.0425 0.0877 0.0671 0.0202 0.0190 0.5387 0.3157

35 0.6931 0.1823 0.5404 0.7159 0.0552 -0.0340 0.0755 0.0711 0.0180 0.0170 0.5295 0.3091

36 1.2030 -0.2231 0.4828 0.6473 0.1177 -0.0867 0.1381 0.0631 0.0352 0.0311 0.4501 0.2641

37 0.6419 -0.0513 -0.8989 -1.0883 0.0647 -0.1423 0.0617 0.1025 0.0597 0.0559 1.2404 0.8639

38 0.6419 -0.2877 -0.4874 -0.6529 0.1000 -0.1395 0.1032 0.1397 0.0293 0.0264 0.4526 0.2639

39 0.4855 0.2624 0.7053 0.8987 0.0531 0.0326 0.0190 0.0489 0.0295 0.0279 0.8355 0.5254
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Because ODS Graphics is enabled, influence plots are displayed in Outputs 60.6.3 through 60.6.5. For general
information about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.” For specific information
about the graphics available in the LOGISTIC procedure, see the section “ODS Graphics” on page 4621.
The vertical axis of an index plot represents the value of the diagnostic, and the horizontal axis represents the
sequence (case number) of the observation. The index plots are useful for identification of extreme values.

The index plots of the Pearson residuals and the deviance residuals (Output 60.6.3) indicate that case 4 and
case 18 are poorly accounted for by the model. The index plot of the diagonal elements of the hat matrix
(Output 60.6.3) suggests that case 31 is an extreme point in the design space. The index plots of DFBETAS
(Output 60.6.5) indicate that case 4 and case 18 are causing instability in all three parameter estimates. The
other four index plots in Outputs 60.6.3 and 60.6.4 also point to these two cases as having a large impact on
the coefficients and goodness of fit.

Output 60.6.3 Residuals, Hat Matrix, and CI Displacement C
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Output 60.6.4 CI Displacement CBar, Change in Deviance and Pearson Chi-Square

Output 60.6.5 DFBETAS Plots
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Other versions of diagnostic plots can be requested by specifying the appropriate options in the PLOTS=
option. For example, the following statements produce three other sets of influence diagnostic plots: the
PHAT option plots several diagnostics against the predicted probabilities (Output 60.6.6), the LEVERAGE
option plots several diagnostics against the leverage (Output 60.6.7), and the DPC option plots the deletion
diagnostics against the predicted probabilities and colors the observations according to the confidence interval
displacement diagnostic (Output 60.6.8). The LABEL option displays the observation numbers on the plots.
In all plots, you are looking for the outlying observations, and again cases 4 and 18 are noted.

ods graphics on;
proc logistic data=vaso plots(only label)=(phat leverage dpc);

model Response=LogRate LogVolume;
run;
ods graphics off;

Output 60.6.6 Diagnostics versus Predicted Probability
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Output 60.6.7 Diagnostics versus Leverage

Output 60.6.8 Three Diagnostics
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Example 60.7: ROC Curve, Customized Odds Ratios, Goodness-of-Fit
Statistics, R-Square, and Confidence Limits

This example plots an ROC curve, estimates a customized odds ratio, produces the traditional goodness-of-fit
analysis, displays the generalized R Square measures for the fitted model, calculates the normal confidence
intervals for the regression parameters, and produces a display of the probability function and prediction
curves for the fitted model. The data consist of three variables: n (number of subjects in the sample), disease
(number of diseased subjects in the sample), and age (age for the sample). A linear logistic regression model
is used to study the effect of age on the probability of contracting the disease. The statements to produce the
data set and perform the analysis are as follows:

data Data1;
input disease n age;
datalines;

0 14 25
0 20 35
0 19 45
7 18 55
6 12 65

17 17 75
;

ods graphics on;
proc logistic data=Data1 plots(only)=roc(id=obs);

model disease/n=age / scale=none
clparm=wald
clodds=pl
rsquare;

units age=10;
effectplot;

run;
ods graphics off;

The option SCALE=NONE is specified to produce the deviance and Pearson goodness-of-fit analysis without
adjusting for overdispersion. The RSQUARE option is specified to produce generalized R Square measures
of the fitted model. The CLPARM=WALD option is specified to produce the Wald confidence intervals for
the regression parameters. The UNITS statement is specified to produce customized odds ratio estimates for a
change of 10 years in the age variable, and the CLODDS=PL option is specified to produce profile-likelihood
confidence limits for the odds ratio. The PLOTS= option with ODS Graphics enabled produces a graphical
display of the ROC curve, and the EFFECTPLOT statement displays the model fit.

The results in Output 60.7.1 show that the deviance and Pearson statistics indicate no lack of fit in the model.
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Output 60.7.1 Deviance and Pearson Goodness-of-Fit Analysis

The LOGISTIC ProcedureThe LOGISTIC Procedure

Deviance and Pearson Goodness-of-Fit
Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 7.7756 4 1.9439 0.1002

Pearson 6.6020 4 1.6505 0.1585

Number of events/trials observations: 6

Output 60.7.2 shows that the R-square for the model is 0.74. The odds of an event increases by a factor of
7.9 for each 10-year increase in age.

Output 60.7.2 R-Square, Confidence Intervals, and Customized Odds Ratio

Model Fit Statistics

Intercept and
Covariates

Criterion
Intercept

Only
Log

Likelihood
Full Log

Likelihood

AIC 124.173 52.468 18.075

SC 126.778 57.678 23.285

-2 Log L 122.173 48.468 14.075

R-Square 0.5215 Max-rescaled R-Square 0.8925

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 73.7048 1 <.0001

Score 55.3274 1 <.0001

Wald 23.3475 1 <.0001

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept 1 -12.5016 2.5555 23.9317 <.0001

age 1 0.2066 0.0428 23.3475 <.0001

Association of Predicted Probabilities and
Observed Responses

Percent Concordant 92.6 Somers' D 0.906

Percent Discordant 2.0 Gamma 0.958

Percent Tied 5.4 Tau-a 0.384

Pairs 2100 c 0.953

Parameter Estimates and Wald Confidence
Intervals

Parameter Estimate 95% Confidence Limits

Intercept -12.5016 -17.5104 -7.4929

age 0.2066 0.1228 0.2904
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Output 60.7.2 continued

Odds Ratio Estimates and Profile-Likelihood
Confidence Intervals

Effect Unit Estimate 95% Confidence Limits

age 10.0000 7.892 3.881 21.406

Because ODS Graphics is enabled, a graphical display of the ROC curve is produced as shown in Out-
put 60.7.3.

Output 60.7.3 Receiver Operating Characteristic Curve

Note that the area under the ROC curve is estimated by the statistic c in the “Association of Predicted
Probabilities and Observed Responses” table. In this example, the area under the ROC curve is 0.953.
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Because there is only one continuous covariate and because ODS Graphics is enabled, the EFFECTPLOT
statement produces a graphical display of the predicted probability curve with bounding 95% confidence
limits as shown in Output 60.7.4.

Output 60.7.4 Predicted Probability and 95% Prediction Limits
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Example 60.8: Comparing Receiver Operating Characteristic Curves
DeLong, DeLong, and Clarke-Pearson (1988) report on 49 patients with ovarian cancer who also suffer from
an intestinal obstruction. Three (correlated) screening tests are measured to determine whether a patient will
benefit from surgery. The three tests are the K-G score and two measures of nutritional status: total protein
and albumin. The data are as follows:

data roc;
input alb tp totscore popind @@;
totscore = 10 - totscore;
datalines;

3.0 5.8 10 0 3.2 6.3 5 1 3.9 6.8 3 1 2.8 4.8 6 0
3.2 5.8 3 1 0.9 4.0 5 0 2.5 5.7 8 0 1.6 5.6 5 1
3.8 5.7 5 1 3.7 6.7 6 1 3.2 5.4 4 1 3.8 6.6 6 1
4.1 6.6 5 1 3.6 5.7 5 1 4.3 7.0 4 1 3.6 6.7 4 0
2.3 4.4 6 1 4.2 7.6 4 0 4.0 6.6 6 0 3.5 5.8 6 1
3.8 6.8 7 1 3.0 4.7 8 0 4.5 7.4 5 1 3.7 7.4 5 1
3.1 6.6 6 1 4.1 8.2 6 1 4.3 7.0 5 1 4.3 6.5 4 1
3.2 5.1 5 1 2.6 4.7 6 1 3.3 6.8 6 0 1.7 4.0 7 0
3.7 6.1 5 1 3.3 6.3 7 1 4.2 7.7 6 1 3.5 6.2 5 1
2.9 5.7 9 0 2.1 4.8 7 1 2.8 6.2 8 0 4.0 7.0 7 1
3.3 5.7 6 1 3.7 6.9 5 1 3.6 6.6 5 1
;

In the following statements, the NOFIT option is specified in the MODEL statement to prevent PROC
LOGISTIC from fitting the model with three covariates. Each ROC statement lists one of the covariates, and
PROC LOGISTIC then fits the model with that single covariate. Note that the original data set contains six
more records with missing values for one of the tests, but PROC LOGISTIC ignores all records with missing
values; hence there is a common sample size for each of the three models. The ROCCONTRAST statement
implements the nonparametric approach of DeLong, DeLong, and Clarke-Pearson (1988) to compare the
three ROC curves, the REFERENCE option specifies that the K-G Score curve is used as the reference curve
in the contrast, the E option displays the contrast coefficients, and the ESTIMATE option computes and
tests each comparison. With ODS Graphics enabled, the plots=roc(id=prob) specification in the PROC
LOGISTIC statement displays several plots, and the plots of individual ROC curves have certain points
labeled with their predicted probabilities.

ods graphics on;
proc logistic data=roc plots=roc(id=prob);

model popind(event='0') = alb tp totscore / nofit;
roc 'Albumin' alb;
roc 'K-G Score' totscore;
roc 'Total Protein' tp;
roccontrast reference('K-G Score') / estimate e;

run;
ods graphics off;

The initial model information is displayed in Output 60.8.1.
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Output 60.8.1 Initial LOGISTIC Output

The LOGISTIC ProcedureThe LOGISTIC Procedure

Model Information

Data Set WORK.ROC

Response Variable popind

Number of Response Levels 2

Model binary logit

Optimization Technique Fisher's scoring

Number of Observations Read 43

Number of Observations Used 43

Response Profile

Ordered
Value popind

Total
Frequency

1 0 12

2 1 31

Probability modeled is popind=0.

Score Test for Global Null
Hypothesis

Chi-Square DF Pr > ChiSq

10.7939 3 0.0129

For each ROC model, the model fitting details in Outputs 60.8.2, 60.8.4, and 60.8.6 can be suppressed with
the ROCOPTIONS(NODETAILS) option; however, the convergence status is always displayed.

The ROC curves for the three models are displayed in Outputs 60.8.3, 60.8.5, and 60.8.7. Note that the labels
on the ROC curve are produced by specifying the ID=PROB option, and are the predicted probabilities for
the cutpoints.

Output 60.8.2 Fit Tables for Popind=Alb

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Criterion
Intercept

Only

Intercept
and

Covariates

AIC 52.918 49.384

SC 54.679 52.907

-2 Log L 50.918 45.384

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 5.5339 1 0.0187

Score 5.6893 1 0.0171

Wald 4.6869 1 0.0304
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Output 60.8.2 continued

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept 1 2.4646 1.5913 2.3988 0.1214

alb 1 -1.0520 0.4859 4.6869 0.0304

Odds Ratio Estimates

Effect
Point

Estimate
95% Wald

Confidence Limits

alb 0.349 0.135 0.905

Output 60.8.3 ROC Curve for Popind=Alb
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Output 60.8.4 Fit Tables for Popind=Totscore

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Criterion
Intercept

Only

Intercept
and

Covariates

AIC 52.918 46.262

SC 54.679 49.784

-2 Log L 50.918 42.262

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 8.6567 1 0.0033

Score 8.3613 1 0.0038

Wald 6.3845 1 0.0115

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept 1 2.1542 1.2477 2.9808 0.0843

totscore 1 -0.7696 0.3046 6.3845 0.0115

Odds Ratio Estimates

Effect
Point

Estimate
95% Wald

Confidence Limits

totscore 0.463 0.255 0.841
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Output 60.8.5 ROC Curve for Popind=Totscore
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Output 60.8.6 Fit Tables for Popind=Tp

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Criterion
Intercept

Only

Intercept
and

Covariates

AIC 52.918 51.794

SC 54.679 55.316

-2 Log L 50.918 47.794

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 3.1244 1 0.0771

Score 3.1123 1 0.0777

Wald 2.9059 1 0.0883

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept 1 2.8295 2.2065 1.6445 0.1997

tp 1 -0.6279 0.3683 2.9059 0.0883

Odds Ratio Estimates

Effect
Point

Estimate
95% Wald

Confidence Limits

tp 0.534 0.259 1.099
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Output 60.8.7 ROC Curve for Popind=Tp

All ROC curves being compared are also overlaid on the same plot, as shown in Output 60.8.8.
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Output 60.8.8 Overlay of All Models Being Compared

Output 60.8.9 displays the association statistics, and displays the area under the ROC curve along with its
standard error and a confidence interval for each model in the comparison. The confidence interval for Total
Protein contains 0.50; hence it is not significantly different from random guessing, which is represented by
the diagonal line in the preceding ROC plots.

Output 60.8.9 ROC Association Table

ROC Association Statistics

Mann-Whitney

ROC Model Area
Standard

Error
95% Wald

Confidence Limits
Somers' D

(Gini) Gamma Tau-a

Albumin 0.7366 0.0927 0.5549 0.9182 0.4731 0.4809 0.1949

K-G Score 0.7258 0.1028 0.5243 0.9273 0.4516 0.5217 0.1860

Total Protein 0.6478 0.1000 0.4518 0.8439 0.2957 0.3107 0.1218
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Output 60.8.10 shows that the contrast used ’K-G Score’ as the reference level. This table is produced by
specifying the E option in the ROCCONTRAST statement.

Output 60.8.10 ROC Contrast Coefficients

ROC Contrast
Coefficients

ROC Model Row1 Row2

Albumin 1 0

K-G Score -1 -1

Total Protein 0 1

Output 60.8.11 shows that the 2-degrees-of-freedom test that the ’K-G Score’ is different from at least one
other test is not significant at the 0.05 level.

Output 60.8.11 ROC Test Results (2 Degrees of Freedom)

ROC Contrast Test Results

Contrast DF Chi-Square Pr > ChiSq

Reference = K-G Score 2 2.5340 0.2817

Output 60.8.12 is produced by specifying the ESTIMATE option in the ROCCONTRAST statement. Each
row shows that the curves are not significantly different.

Output 60.8.12 ROC Contrast Row Estimates (1-Degree-of-Freedom Tests)

ROC Contrast Estimation and Testing Results by Row

Contrast Estimate
Standard

Error
95% Wald

Confidence Limits Chi-Square Pr > ChiSq

Albumin - K-G Score 0.0108 0.0953 -0.1761 0.1976 0.0127 0.9102

Total Protein - K-G Score -0.0780 0.1046 -0.2830 0.1271 0.5554 0.4561
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Example 60.9: Goodness-of-Fit Tests and Subpopulations
A study is done to investigate the effects of two binary factors, A and B, on a binary response, Y. Subjects are
randomly selected from subpopulations defined by the four possible combinations of levels of A and B. The
number of subjects responding with each level of Y is recorded, and the following DATA step creates the data
set One:

data One;
do A=0,1;

do B=0,1;
do Y=1,2;

input F @@;
output;

end;
end;

end;
datalines;

23 63 31 70 67 100 70 104
;

The following statements fit a full model to examine the main effects of A and B as well as the interaction
effect of A and B:

proc logistic data=One;
freq F;
model Y=A B A*B;

run;

Results of the model fit are shown in Output 60.9.1. Notice that neither the A*B interaction nor the B main
effect is significant.

Output 60.9.1 Full Model Fit

The LOGISTIC ProcedureThe LOGISTIC Procedure

Model Information

Data Set WORK.ONE

Response Variable Y

Number of Response Levels 2

Frequency Variable F

Model binary logit

Optimization Technique Fisher's scoring

Number of Observations Read 8

Number of Observations Used 8

Sum of Frequencies Read 528

Sum of Frequencies Used 528
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Output 60.9.1 continued

Response Profile

Ordered
Value Y

Total
Frequency

1 1 191

2 2 337

Probability modeled is Y=1.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Criterion
Intercept

Only

Intercept
and

Covariates

AIC 693.061 691.914

SC 697.330 708.990

-2 Log L 691.061 683.914

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 7.1478 3 0.0673

Score 6.9921 3 0.0721

Wald 6.9118 3 0.0748

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept 1 -1.0074 0.2436 17.1015 <.0001

A 1 0.6069 0.2903 4.3714 0.0365

B 1 0.1929 0.3254 0.3515 0.5533

A*B 1 -0.1883 0.3933 0.2293 0.6321

Pearson and deviance goodness-of-fit tests cannot be obtained for this model because a full model containing
four parameters is fit, leaving no residual degrees of freedom. For a binary response model, the goodness-of-
fit tests have m � q degrees of freedom, where m is the number of subpopulations and q is the number of
model parameters. In the preceding model, m D q D 4, resulting in zero degrees of freedom for the tests.

The following statements fit a reduced model containing only the A effect, so two degrees of freedom become
available for testing goodness of fit. Specifying the SCALE=NONE option requests the Pearson and deviance
statistics. With single-trial syntax, the AGGREGATE= option is needed to define the subpopulations in the
study. Specifying AGGREGATE=(A B) creates subpopulations of the four combinations of levels of A and B.
Although the B effect is being dropped from the model, it is still needed to define the original subpopulations
in the study. If AGGREGATE=(A) were specified, only two subpopulations would be created from the levels
of A, resulting in m D q D 2 and zero degrees of freedom for the tests.

proc logistic data=One;
freq F;
model Y=A / scale=none aggregate=(A B);

run;
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The goodness-of-fit tests in Output 60.9.2 show that dropping the B main effect and the A*B interaction
simultaneously does not result in significant lack of fit of the model. The tests’ large p-values indicate
insufficient evidence for rejecting the null hypothesis that the model fits.

Output 60.9.2 Reduced Model Fit

The LOGISTIC ProcedureThe LOGISTIC Procedure

Deviance and Pearson Goodness-of-Fit
Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 0.3541 2 0.1770 0.8377

Pearson 0.3531 2 0.1765 0.8382

Number of unique profiles: 4

Example 60.10: Overdispersion
In a seed germination test, seeds of two cultivars were planted in pots of two soil conditions. The following
statements create the data set seeds, which contains the observed proportion of seeds that germinated for
various combinations of cultivar and soil condition. The variable n represents the number of seeds planted in
a pot, and the variable r represents the number germinated. The indicator variables cult and soil represent the
cultivar and soil condition, respectively.

data seeds;
input pot n r cult soil;
datalines;

1 16 8 0 0
2 51 26 0 0
3 45 23 0 0
4 39 10 0 0
5 36 9 0 0
6 81 23 1 0
7 30 10 1 0
8 39 17 1 0
9 28 8 1 0

10 62 23 1 0
11 51 32 0 1
12 72 55 0 1
13 41 22 0 1
14 12 3 0 1
15 13 10 0 1
16 79 46 1 1
17 30 15 1 1
18 51 32 1 1
19 74 53 1 1
20 56 12 1 1
;

PROC LOGISTIC is used as follows to fit a logit model to the data, with cult, soil, and cult � soil interaction
as explanatory variables. The option SCALE=NONE is specified to display goodness-of-fit statistics.
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proc logistic data=seeds;
model r/n=cult soil cult*soil/scale=none;
title 'Full Model With SCALE=NONE';

run;

Results of fitting the full factorial model are shown in Output 60.10.1. Both Pearson �2 and deviance are
highly significant (p < 0:0001), suggesting that the model does not fit well.

Output 60.10.1 Results of the Model Fit for the Two-Way Layout

Full Model With SCALE=NONE

The LOGISTIC Procedure

Full Model With SCALE=NONE

The LOGISTIC Procedure

Deviance and Pearson Goodness-of-Fit
Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 68.3465 16 4.2717 <.0001

Pearson 66.7617 16 4.1726 <.0001

Number of events/trials observations: 20

Model Fit Statistics

Intercept and
Covariates

Criterion
Intercept

Only
Log

Likelihood
Full Log

Likelihood

AIC 1256.852 1213.003 156.533

SC 1261.661 1232.240 175.769

-2 Log L 1254.852 1205.003 148.533

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 49.8488 3 <.0001

Score 49.1682 3 <.0001

Wald 47.7623 3 <.0001

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept 1 -0.3788 0.1489 6.4730 0.0110

cult 1 -0.2956 0.2020 2.1412 0.1434

soil 1 0.9781 0.2128 21.1234 <.0001

cult*soil 1 -0.1239 0.2790 0.1973 0.6569

If the link function and the model specification are correct and if there are no outliers, then the lack
of fit might be due to overdispersion. Without adjusting for the overdispersion, the standard errors are
likely to be underestimated, causing the Wald tests to be too sensitive. In PROC LOGISTIC, there are
three SCALE= options to accommodate overdispersion. With unequal sample sizes for the observations,
SCALE=WILLIAMS is preferred. The Williams model estimates a scale parameter � by equating the value
of Pearson �2 for the full model to its approximate expected value. The full model considered in the following
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statements is the model with cultivar, soil condition, and their interaction. Using a full model reduces the risk
of contaminating � with lack of fit due to incorrect model specification.

proc logistic data=seeds;
model r/n=cult soil cult*soil / scale=williams;
title 'Full Model With SCALE=WILLIAMS';

run;

Results of using Williams’ method are shown in Output 60.10.2. The estimate of � is 0.075941 and is given
in the formula for the Weight Variable at the beginning of the displayed output.

Output 60.10.2 Williams’ Model for Overdispersion

Full Model With SCALE=WILLIAMS

The LOGISTIC Procedure

Full Model With SCALE=WILLIAMS

The LOGISTIC Procedure

Model Information

Data Set WORK.SEEDS

Response Variable (Events) r

Response Variable (Trials) n

Weight Variable 1 / ( 1 + 0.075941 * (n - 1) )

Model binary logit

Optimization Technique Fisher's scoring

Number of Observations Read 20

Number of Observations Used 20

Sum of Frequencies Read 906

Sum of Frequencies Used 906

Sum of Weights Read 198.3216

Sum of Weights Used 198.3216

Response Profile

Ordered
Value

Binary
Outcome

Total
Frequency

Total
Weight

1 Event 437 92.95346

2 Nonevent 469 105.36819

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Deviance and Pearson Goodness-of-Fit
Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 16.4402 16 1.0275 0.4227

Pearson 16.0000 16 1.0000 0.4530

Number of events/trials observations: 20

Note: Since the Williams method was used to accommodate overdispersion, the Pearson chi-squared statistic and the deviance can
no longer be used to assess the goodness of fit of the model.



4684 F Chapter 60: The LOGISTIC Procedure

Output 60.10.2 continued

Model Fit Statistics

Intercept and
Covariates

Criterion
Intercept

Only
Log

Likelihood
Full Log

Likelihood

AIC 276.155 273.586 44.579

SC 280.964 292.822 63.815

-2 Log L 274.155 265.586 36.579

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 8.5687 3 0.0356

Score 8.4856 3 0.0370

Wald 8.3069 3 0.0401

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept 1 -0.3926 0.2932 1.7932 0.1805

cult 1 -0.2618 0.4160 0.3963 0.5290

soil 1 0.8309 0.4223 3.8704 0.0491

cult*soil 1 -0.0532 0.5835 0.0083 0.9274

Because neither cult nor cult � soil is statistically significant (p = 0.5290 and p = 0.9274, respectively),
a reduced model that contains only the soil condition factor is fitted, with the observations weighted by
1=.1 C 0:075941.N � 1//. This can be done conveniently in PROC LOGISTIC by including the scale
estimate in the SCALE=WILLIAMS option as follows:

proc logistic data=seeds;
model r/n=soil / scale=williams(0.075941);
title 'Reduced Model With SCALE=WILLIAMS(0.075941)';

run;

Results of the reduced model fit are shown in Output 60.10.3. Soil condition remains a significant factor (p =
0.0064) for the seed germination.

Output 60.10.3 Reduced Model with Overdispersion Controlled

Reduced Model With SCALE=WILLIAMS(0.075941)

The LOGISTIC Procedure

Reduced Model With SCALE=WILLIAMS(0.075941)

The LOGISTIC Procedure

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept 1 -0.5249 0.2076 6.3949 0.0114

soil 1 0.7910 0.2902 7.4284 0.0064
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Example 60.11: Conditional Logistic Regression for Matched Pairs Data
In matched pairs, or case-control, studies, conditional logistic regression is used to investigate the relationship
between an outcome of being an event (case) or a nonevent (control) and a set of prognostic factors.

The following data are a subset of the data from the Los Angeles Study of the Endometrial Cancer Data
in Breslow and Day (1980). There are 63 matched pairs, each consisting of a case of endometrial cancer
(Outcome=1) and a control (Outcome=0). The case and corresponding control have the same ID. Two
prognostic factors are included: Gall (an indicator variable for gall bladder disease) and Hyper (an indicator
variable for hypertension). The goal of the case-control analysis is to determine the relative risk for gall
bladder disease, controlling for the effect of hypertension.

data Data1;
do ID=1 to 63;

do Outcome = 1 to 0 by -1;
input Gall Hyper @@;
output;

end;
end;
datalines;

0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1
0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 1 0 0 1 1 0 1 0 1 0 0 1
0 1 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 0
0 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 1 1
0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0
0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 0 0 0
0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0
1 0 1 0 0 1 0 0 1 0 0 0
;

There are several ways to approach this problem with PROC LOGISTIC:

• Specify the STRATA statement to perform a conditional logistic regression.

• Specify EXACT and STRATA statements to perform an exact logistic regression on the original data
set, if you believe the data set is too small or too sparse for the usual asymptotics to hold.

• Transform each matched pair into a single observation, and then specify a PROC LOGISTIC statement
on this transformed data without a STRATA statement; this also performs a conditional logistic
regression and produces essentially the same results.

• Specify an EXACT statement on the transformed data.

SAS statements and selected results for these four approaches are given in the remainder of this example.
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Conditional Analysis Using the STRATA Statement

In the following statements, PROC LOGISTIC is invoked with the ID variable declared in the STRATA
statement to obtain the conditional logistic model estimates for a model containing Gall as the only predictor
variable:

proc logistic data=Data1;
strata ID;
model outcome(event='1')=Gall;

run;

Results from the conditional logistic analysis are shown in Output 60.11.1. Note that there is no intercept
term in the “Analysis of Maximum Likelihood Estimates” tables.

The odds ratio estimate for Gall is 2.60, which is marginally significant (p = 0.0694) and which is an estimate
of the relative risk for gall bladder disease. A 95% confidence interval for this relative risk is (0.927, 7.293).

Output 60.11.1 Conditional Logistic Regression (Gall as Risk Factor)

The LOGISTIC Procedure

Conditional Analysis

The LOGISTIC Procedure

Conditional Analysis

Model Information

Data Set WORK.DATA1

Response Variable Outcome

Number of Response Levels 2

Number of Strata 63

Model binary logit

Optimization Technique Newton-Raphson ridge

Number of Observations Read 126

Number of Observations Used 126

Response Profile

Ordered
Value Outcome

Total
Frequency

1 0 63

2 1 63

Probability modeled is Outcome=1.

Strata Summary

Outcome

Response
Pattern 0 1

Number of
Strata Frequency

1 1 1 63 126

Newton-Raphson Ridge OptimizationNewton-Raphson Ridge Optimization

Without Parameter Scaling

Convergence criterion (GCONV=1E-8) satisfied.
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Output 60.11.1 continued

Model Fit Statistics

Criterion
Without

Covariates
With

Covariates

AIC 87.337 85.654

SC 87.337 88.490

-2 Log L 87.337 83.654

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 3.6830 1 0.0550

Score 3.5556 1 0.0593

Wald 3.2970 1 0.0694

Analysis of Conditional Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Gall 1 0.9555 0.5262 3.2970 0.0694

Odds Ratio Estimates

Effect
Point

Estimate
95% Wald

Confidence Limits

Gall 2.600 0.927 7.293

Exact Analysis Using the STRATA Statement

When you believe there are not enough data or that the data are too sparse, you can perform a stratified exact
logistic regression. The following statements perform stratified exact logistic regressions on the original data
set by specifying both the STRATA and EXACT statements:

proc logistic data=Data1 exactonly;
strata ID;
model outcome(event='1')=Gall;
exact Gall / estimate=both;

run;

Output 60.11.2 Exact Logistic Regression (Gall as Risk Factor)

The LOGISTIC Procedure

Exact Conditional Analysis

The LOGISTIC Procedure

Exact Conditional Analysis

Exact Conditional Tests

p-Value

Effect Test Statistic Exact Mid

Gall Score 3.5556 0.0963 0.0799

Probability 0.0327 0.0963 0.0799
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Output 60.11.2 continued

Exact Parameter Estimates

Parameter Estimate
Standard

Error

95%
Confidence

Limits
Two-sided

p-Value

Gall 0.9555 0.5262 -0.1394 2.2316 0.0963

Exact Odds Ratios

Parameter Estimate

95%
Confidence

Limits
Two-sided

p-Value

Gall 2.600 0.870 9.315 0.0963

Note that the score statistic in the “Conditional Exact Tests” table in Output 60.11.2 is identical to the score
statistic in Output 60.11.1 from the conditional analysis. The exact odds ratio confidence interval is much
wider than its conditional analysis counterpart, but the parameter estimates are similar. The exact analysis
confirms the marginal significance of Gall as a predictor variable.

Conditional Analysis Using Transformed Data

When each matched set consists of one event and one nonevent, the conditional likelihood is given byY
i

.1C exp.�ˇ0.xi1 � xi0///�1

where xi1 and xi0 are vectors representing the prognostic factors for the event and nonevent, respectively, of
the ith matched set. This likelihood is identical to the likelihood of fitting a logistic regression model to a set
of data with constant response, where the model contains no intercept term and has explanatory variables
given by di D xi1 � xi0 (Breslow 1982).

To apply this method, the following DATA step transforms each matched pair into a single observation, where
the variables Gall and Hyper contain the differences between the corresponding values for the case and the
control (case–control). The variable Outcome, which will be used as the response variable in the logistic
regression model, is given a constant value of 0 (which is the Outcome value for the control, although any
constant, numeric or character, will suffice).

data Data2;
set Data1;
drop id1 gall1 hyper1;
retain id1 gall1 hyper1 0;
if (ID = id1) then do;

Gall=gall1-Gall; Hyper=hyper1-Hyper;
output;

end;
else do;

id1=ID; gall1=Gall; hyper1=Hyper;
end;

run;

Note that there are 63 observations in the data set, one for each matched pair. Because the number of
observations n is halved, statistics that depend on n such as R Square (see the “Generalized Coefficient of
Determination” on page 4573 section) will be incorrect. The variable Outcome has a constant value of 0.
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In the following statements, PROC LOGISTIC is invoked with the NOINT option to obtain the conditional
logistic model estimates. Because the option CLODDS=PL is specified, PROC LOGISTIC computes a 95%
profile-likelihood confidence interval for the odds ratio for each predictor variable; note that profile-likelihood
confidence intervals are not currently available when a STRATA statement is specified.

proc logistic data=Data2;
model outcome=Gall / noint clodds=PL;

run;

The results are not displayed here.

Exact Analysis Using Transformed Data

Sometimes the original data set in a matched-pairs study is too large for the exact methods to handle. In such
cases it might be possible to use the transformed data set. The following statements perform exact logistic
regressions on the transformed data set. The results are not displayed here.

proc logistic data=Data2 exactonly;
model outcome=Gall / noint;
exact Gall / estimate=both;

run;

Example 60.12: Exact Conditional Logistic Regression
The following data, from Hand et al. (1994), contain the results of a study of 49 anxious or depressed children.
The Diagnosis variable indicates whether the child was anxious or depressed when the study began, the
Friendships variable indicates whether the child has good friendships, the Total variable represents the total
number of children in the study who exhibit the specified values for Diagnosis and Friendships, and the
Recovered variable represents the number of children whose mothers believe that their child has recovered at
the end of the study.

data one;
length Diagnosis $ 9;
input Diagnosis $ Friendships $ Recovered Total @@;
datalines;

Anxious Poor 0 0 Anxious Good 13 21
Depressed Poor 0 8 Depressed Good 15 20
;

Notice that no children in the study are both anxious and have poor friendships and that no children who are
depressed and have poor friendships have recovered. The following statements fit an unconditional logistic
regression model to these data.

proc logistic data=one;
class Diagnosis Friendships / param=ref;
model Recovered/Total = Diagnosis Friendships;

run;

Because the data set has quasi-complete separation, the unconditional logistic regression results are not
reliable and Output 60.12.1 is displayed.
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Output 60.12.1 Unconditional Logistic Regression Results

The LOGISTIC ProcedureThe LOGISTIC Procedure

Model Convergence Status

Quasi-complete separation of data points detected.

The sparseness of the data and the separability of the data set make this a good candidate for an exact logistic
regression. In the following code, the EXACTONLY option suppresses the unconditional logistic regression
results, the EXACT statement requests an exact analysis of the two covariates, the OUTDIST= option outputs
the exact distribution into a SAS data set, the JOINT option computes a joint test for the significance of the
two covariates in the model, and the ESTIMATE option produces parameter estimates for the two covariates.

proc logistic data=one exactonly;
class Diagnosis Friendships / param=ref;
model Recovered/Total = Diagnosis Friendships;
exact Diagnosis Friendships

/ outdist=dist joint estimate;
run;

proc print data=dist(obs=10);
run;

proc print data=dist(firstobs=162 obs=175);
run;

proc print data=dist(firstobs=176 obs=184);
run;

Tests for the joint significance of the Diagnosis and Friendships covariates are labeled “Joint” in Out-
put 60.12.2. Both of these tests reject the null hypothesis that all the parameters are identically zero.

Output 60.12.2 Exact Tests

The LOGISTIC Procedure

Exact Conditional Analysis

The LOGISTIC Procedure

Exact Conditional Analysis

Exact Conditional Tests

p-Value

Effect Test Statistic Exact Mid

Joint Score 13.1905 0.0008 0.0008

Probability 0.000081 0.0007 0.0007

Diagnosis Score 0.7915 0.5055 0.4159

Probability 0.1791 0.5055 0.4159

Friendships Score 12.4615 0.0004 0.0002

Probability 0.000414 0.0004 0.0002

In Output 60.12.2, the joint probability statistic (0.000081) is the probability of the observed sufficient
statistics (Friendships=28 and Diagnosis=13) in the joint exact distribution (part of which is displayed in
Output 60.12.3). Note that the joint exact distribution has sufficient statistics displayed for both covariates;
the marginal distributions have sufficient statistics displayed for only one covariate. The associated exact
p-value (0.0007) in Output 60.12.2 is the sum of the probabilities of all sufficient statistics in the joint exact



Example 60.12: Exact Conditional Logistic Regression F 4691

distribution that have probabilities less than or equal to 0.000081. The mid-p-value (0.0007) adjusts the
exact p-value for the discreteness of the exact distribution by subtracting half the probability of the observed
sufficient statistic (Hirji 2006). The score statistic (13.1905) is a weighted distance of the observed sufficient
statistics from the mean sufficient statistics, and the score p-value (0.0008) is the sum of all probabilities in
the Dist data set for sufficient statistics that are no closer to the mean.

Output 60.12.3 First 10 Observations in the Joint Exact Distribution

Obs DiagnosisAnxious FriendshipsGood Count Score Prob

1 0 20 1 48.0000 2.5608E-14

2 1 20 420 40.3905 1.0755E-11

3 1 21 168 40.6905 4.3022E-12

4 2 20 39900 33.5619 1.02177E-9

5 2 21 33600 33.4619 8.6044E-10

6 2 22 5880 34.7619 1.5058E-10

7 3 20 1516200 27.5143 3.88272E-8

8 3 21 2021600 27.0143 5.17696E-8

9 3 22 744800 27.9143 1.9073E-8

10 3 23 74480 30.2143 1.9073E-9

For the univariate tests of the Diagnosis variable, PROC LOGISTIC extracts the part of the joint exact
distribution for which Friendships=28; this is displayed in Output 60.12.4. In addition, PROC LOGISTIC
computes the probability and score tests in Output 60.12.2 in the same fashion as the joint tests. Both of the
tests do not reject the null hypothesis that the parameter is zero.

Output 60.12.4 Marginal Exact Distribution for Diagnosis

Obs DiagnosisAnxious FriendshipsGood Count Score Prob

162 8 . 203490 17.6871 0.00001

163 9 . 5878600 12.5487 0.00033

164 10 . 67016040 8.2899 0.00380

165 11 . 402096240 4.9108 0.02282

166 12 . 1424090850 2.4113 0.08082

167 13 . 3154908960 0.7915 0.17905

168 14 . 4507012800 0.0513 0.25579

169 15 . 4206545280 0.1907 0.23874

170 16 . 2563363530 1.2098 0.14548

171 17 . 1005240600 3.1086 0.05705

172 18 . 245725480 5.8870 0.01395

173 19 . 35271600 9.5450 0.00200

174 20 . 2645370 14.0827 0.00015

175 21 . 77520 19.5000 0.00000

For the univariate tests of the Friendships variable, PROC LOGISTIC extracts the part of the exact distribution
for which Diagnosis=13; this is displayed in Output 60.12.5. Both tests in Output 60.12.2 reject the null
hypothesis that the parameter is zero.
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Output 60.12.5 Marginal Exact Distribution for Friendships

Obs DiagnosisAnxious FriendshipsGood Count Score Prob

176 . 20 15774544800 9.3600 0.00207

177 . 21 205069082400 4.9985 0.02692

178 . 22 956989051200 1.9938 0.12560

179 . 23 2.1053759E12 0.3462 0.27633

180 . 24 2.3924726E12 0.0554 0.31401

181 . 25 1.4354836E12 1.1215 0.18841

182 . 26 441687254400 3.5446 0.05797

183 . 27 63098179200 7.3246 0.00828

184 . 28 3154908960 12.4615 0.00041

The parameter estimates are displayed in Output 60.12.6. Similar to the univariate tests, the parameter
estimates are derived from the marginal exact distributions.

The Diagnosis parameter estimate (–0.5981) is computed by an iterative search for the parameter that
maximizes the univariate conditional probability density function, as described in the section “Inference for a
Single Parameter” on page 4604. The Diagnosis parameter is not significantly different from zero.

Because the observed sufficient statistic for the Friendships parameter is on the edge of its distribution, the
Friendships parameter estimate is the value for which the univariate conditional probability density function
is equal to 0.5. In a similar fashion, the confidence limits for both the Diagnosis and Friendships parameters
are created by finding values to make the two tail probabilities equal to 0.025.

Output 60.12.6 Exact Parameter Estimates

Exact Parameter Estimates

Parameter Estimate
Standard

Error

95%
Confidence

Limits
Two-sided

p-Value

Diagnosis Anxious -0.5981 0.6760 -2.1970 0.9103 0.5737

Friendships Good 3.2612 * . 1.4948 Infinity 0.0008

Note: * indicates a median unbiased estimate.

To conclude, you find that the Friendships variable is a significant effect for explaining how mothers perceive
the recovery of their children.

You can also use the exact parameter estimates to compute predicted probabilities for any data. This facility
is not built into PROC LOGISTIC for exact logistic regression, because exact methods can be very expensive
and the computations can fail. But this example is well behaved, so you can use the following statements to
score the data:
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proc logistic data=one exactonly outest=est;
class Diagnosis Friendships / param=ref;
model Recovered/Total = Diagnosis Friendships;
exact Intercept Diagnosis Friendships / estimate;

run;
proc means data=est noprint;

output out=out;
run;
data out; set out; if _STAT_='MEAN'; drop _TYPE_; run;
data est(type=est); set out; _TYPE_='PARMS'; run;

You specify the INTERCEPT keyword in the EXACT statement to compute an exact estimate for the
intercept in addition to the other parameters. The parameter estimates are stored in the OUTEST= data set.
Because there are both maximum-likelihood and median-unbiased estimates, the PROC MEANS statement
accumulates the estimates into one observation, and then a TYPE=EST data set is formed.

The following program uses the scoring facility for unconditional logistic regression to score the original
data set by using the exact parameter estimates:

proc logistic data=one inest=est;
class Diagnosis Friendships / param=ref;
model Recovered/Total = Diagnosis Friendships / maxiter=0;
score out=score;

run;

proc print data=score;
var Diagnosis Friendships P_Event;

run;

Output 60.12.7 shows that good friendships correspond to high recovery probabilities.

Output 60.12.7 Data Scored by Using Exact Parameter Estimates

Obs Diagnosis Friendships P_Event

1 Anxious Poor 0.04741

2 Anxious Good 0.56484

3 Depressed Poor 0.08300

4 Depressed Good 0.70243
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Example 60.13: Firth’s Penalized Likelihood Compared with Other
Approaches

Firth’s penalized likelihood approach is a method of addressing issues of separability, small sample sizes,
and bias of the parameter estimates. This example performs some comparisons between results from using
the FIRTH option to results from the usual unconditional, conditional, and exact logistic regression analyses.
When the sample size is large enough, the unconditional estimates and the Firth penalized-likelihood
estimates should be nearly the same. These examples show that Firth’s penalized likelihood approach
compares favorably with unconditional, conditional, and exact logistic regression; however, this is not an
exhaustive analysis of Firth’s method. For more detailed analyses with separable data sets, see Heinze
(2006, 1999) and Heinze and Schemper (2002).

Comparison on 2x2 Tables with One Zero Cell

A 2�2 table with one cell having zero frequency, where the rows of the table are the levels of a covariate
while the columns are the levels of the response variable, is an example of a quasi-completely separated
data set. The parameter estimate for the covariate under unconditional logistic regression will move off to
infinity, although PROC LOGISTIC will stop the iterations at an earlier point in the process. An exact logistic
regression is sometimes performed to determine the importance of the covariate in describing the variation in
the data, but the median-unbiased parameter estimate, while finite, might not be near the true value, and one
confidence limit (for this example, the upper) is always infinite.

The following DATA step produces 1000 different 2�2 tables, all following an underlying probability
structure, with one cell having a near zero probability of being observed:

%let beta0=-15;
%let beta1=16;
data one;

keep sample X y pry;
do sample=1 to 1000;

do i=1 to 100;
X=rantbl(987987,.4,.6)-1;
xb= &beta0 + X*&beta1;
exb=exp(xb);
pry= exb/(1+exb);
cut= ranuni(393993);
if (pry < cut) then y=1; else y=0;
output;

end;
end;

run;
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The following statements perform the bias-corrected and exact logistic regression on each of the 1000
different data sets, output the odds ratio tables by using the ODS OUTPUT statement, and compute various
statistics across the data sets by using the MEANS procedure:

ods exclude all;
proc logistic data=one;

by sample;
class X(param=ref);
model y(event='1')=X / firth clodds=pl;
ods output cloddspl=firth;

run;
proc logistic data=one exactonly;

by sample;
class X(param=ref);
model y(event='1')=X;
exact X / estimate=odds;
ods output exactoddsratio=exact;

run;
ods select all;
proc means data=firth;

var LowerCL OddsRatioEst UpperCL;
run;
proc means data=exact;

var LowerCL Estimate UpperCL;
run;

The results of the PROC MEANS statements are summarized in Table 60.16. You can see that the odds ratios
are all quite large; the confidence limits on every table suggest that the covariate X is a significant factor in
explaining the variability in the data.

Table 60.16 Odds Ratio Results

Method Mean Estimate Standard Error Minimum Lower CL Maximum Upper CL

Firth 231.59 83.57 10.40 111317
Exact 152.02 52.30 11.16 1

Comparison on Case-Control Data

Case-control models contain an intercept term for every case-control pair in the data set. This means that
there are a large number of parameters compared to the number of observations. Breslow and Day (1980)
note that the estimates from unconditional logistic regression are biased with the corresponding odds ratios
off by a power of 2 from the true value; conditional logistic regression was developed to remedy this.
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The following DATA step produces 1000 case-control data sets, with pair indicating the strata:

%let beta0=1;
%let beta1=2;
data one;

do sample=1 to 1000;
do pair=1 to 20;

ran=ranuni(939393);
a=3*ranuni(9384984)-1;
pdf0= pdf('NORMAL',a,.4,1);
pdf1= pdf('NORMAL',a,1,1);
pry0= pdf0/(pdf0+pdf1);
pry1= 1-pry0;
xb= log(pry0/pry1);
x= (xb-&beta0*pair/100) / &beta1;
y=0;
output;
x= (-xb-&beta0*pair/100) / &beta1;
y=1;
output;

end;
end;

run;

Unconditional, conditional, exact, and Firth-adjusted analyses are performed on the data sets, and the mean,
minimum, and maximum odds ratios and the mean upper and lower limits for the odds ratios are displayed in
Table 60.17. CAUTION: Due to the exact analyses, this program takes a long time and a lot of resources to
run. You might want to reduce the number of samples generated.

ods exclude all;
proc logistic data=one;

by sample;
class pair / param=ref;
model y=x pair / clodds=pl;
ods output cloddspl=oru;

run;
data oru;

set oru;
if Effect='x';
rename lowercl=lclu uppercl=uclu oddsratioest=orestu;

run;
proc logistic data=one;

by sample;
strata pair;
model y=x / clodds=wald;
ods output cloddswald=orc;

run;
data orc;

set orc;
if Effect='x';
rename lowercl=lclc uppercl=uclc oddsratioest=orestc;
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run;
proc logistic data=one exactonly;

by sample;
strata pair;
model y=x;
exact x / estimate=both;
ods output ExactOddsRatio=ore;

run;
proc logistic data=one;

by sample;
class pair / param=ref;
model y=x pair / firth clodds=pl;
ods output cloddspl=orf;

run;
data orf;

set orf;
if Effect='x';
rename lowercl=lclf uppercl=uclf oddsratioest=orestf;

run;
data all;

merge oru orc ore orf;
run;
ods select all;
proc means data=all;
run;

You can see from Table 60.17 that the conditional, exact, and Firth-adjusted results are all comparable, while
the unconditional results are several orders of magnitude different.

Table 60.17 Odds Ratio Estimates

Method N Minimum Mean Maximum

Unconditional 1000 0.00045 112.09 38038
Conditional 1000 0.021 4.20 195
Exact 1000 0.021 4.20 195
Firth 1000 0.018 4.89 71

Further examination of the data set all shows that the differences between the square root of the unconditional
odds ratio estimates and the conditional estimates have mean –0.00019 and standard deviation 0.0008,
verifying that the unconditional odds ratio is about the square of the conditional odds ratio. The conditional
and exact conditional odds ratios are also nearly equal, with their differences having mean 3E–7 and standard
deviation 6E–6. The differences between the Firth and the conditional odds ratios can be large (mean 0.69,

standard deviation 5.40), but their relative differences,
Firth � Conditional

Conditional
, have mean 0.20 with standard

deviation 0.19, so the largest differences occur with the larger estimates.
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Example 60.14: Complementary Log-Log Model for Infection Rates
Antibodies produced in response to an infectious disease like malaria remain in the body after the individual
has recovered from the disease. A serological test detects the presence or absence of such antibodies. An
individual with such antibodies is called seropositive. In geographic areas where the disease is endemic, the
inhabitants are at fairly constant risk of infection. The probability of an individual never having been infected
in Y years is exp.��Y /, where � is the mean number of infections per year (see the appendix of Draper,
Voller, and Carpenter 1972). Rather than estimating the unknown �, epidemiologists want to estimate the
probability of a person living in the area being infected in one year. This infection rate  is given by

 D 1 � e��

The following statements create the data set sero, which contains the results of a serological survey of malarial
infection. Individuals of nine age groups (Group) were tested. The variable A represents the midpoint of the
age range for each age group. The variable N represents the number of individuals tested in each age group,
and the variable R represents the number of individuals that are seropositive.

data sero;
input Group A N R;
X=log(A);
label X='Log of Midpoint of Age Range';
datalines;

1 1.5 123 8
2 4.0 132 6
3 7.5 182 18
4 12.5 140 14
5 17.5 138 20
6 25.0 161 39
7 35.0 133 19
8 47.0 92 25
9 60.0 74 44
;

For the ith group with the age midpoint Ai , the probability of being seropositive is pi D 1 � exp.��Ai /. It
follows that

log.� log.1 � pi // D log.�/C log.Ai /

By fitting a binomial model with a complementary log-log link function and by using X=log(A) as an offset
term, you can estimate ˛ D log.�/ as an intercept parameter. The following statements invoke PROC
LOGISTIC to compute the maximum likelihood estimate of ˛. The LINK=CLOGLOG option is specified to
request the complementary log-log link function. Also specified is the CLPARM=PL option, which requests
the profile-likelihood confidence limits for ˛.
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proc logistic data=sero;
model R/N= / offset=X

link=cloglog
clparm=pl
scale=none;

title 'Constant Risk of Infection';
run;

Results of fitting this constant risk model are shown in Output 60.14.1.

Output 60.14.1 Modeling Constant Risk of Infection

Constant Risk of Infection

The LOGISTIC Procedure

Constant Risk of Infection

The LOGISTIC Procedure

Model Information

Data Set WORK.SERO

Response Variable (Events) R

Response Variable (Trials) N

Offset Variable X Log of Midpoint of Age Range

Model binary cloglog

Optimization Technique Fisher's scoring

Number of Observations Read 9

Number of Observations Used 9

Sum of Frequencies Read 1175

Sum of Frequencies Used 1175

Response Profile

Ordered
Value

Binary
Outcome

Total
Frequency

1 Event 193

2 Nonevent 982

Intercept-Only Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

-2 Log L = 967.1158

Deviance and Pearson Goodness-of-Fit
Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 41.5032 8 5.1879 <.0001

Pearson 50.6883 8 6.3360 <.0001

Number of events/trials observations: 9

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept 1 -4.6605 0.0725 4133.5626 <.0001

X 0 1.0000 0 . .
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Output 60.14.1 continued

Parameter Estimates and Profile-Likelihood
Confidence Intervals

Parameter Estimate 95% Confidence Limits

Intercept -4.6605 -4.8057 -4.5219

Output 60.14.1 shows that the maximum likelihood estimate of ˛ D log.�/ and its estimated standard error
are b̨D �4:6605 andb�b̨D 0:0725, respectively. The infection rate is estimated as

b D 1 � e�b� D 1 � e�eb̌0 D 1 � e�e�4:6605 D 0:00942
The 95% confidence interval for  , obtained by back-transforming the 95% confidence interval for ˛, is
(0.0082, 0.0108); that is, there is a 95% chance that, in repeated sampling, the interval of 8 to 11 infections
per thousand individuals contains the true infection rate.

The goodness-of-fit statistics for the constant risk model are statistically significant (p < 0:0001), indicating
that the assumption of constant risk of infection is not correct. You can fit a more extensive model by
allowing a separate risk of infection for each age group. Suppose �i is the mean number of infections per
year for the ith age group. The probability of seropositive for the ith group with the age midpoint Ai is
pi D 1 � exp.��iAi /, so that

log.� log.1 � pi // D log.�i /C log.Ai /

In the following statements, a complementary log-log model is fit containing Group as an explanatory
classification variable with the GLM coding (so that a dummy variable is created for each age group), no
intercept term, and X=log(A) as an offset term. The ODS OUTPUT statement saves the estimates and
their 95% profile-likelihood confidence limits to the ClparmPL data set. Note that log.�i / is the regression
parameter associated with GroupD i .

proc logistic data=sero;
ods output ClparmPL=ClparmPL;
class Group / param=glm;
model R/N=Group / noint

offset=X
link=cloglog
clparm=pl;

title 'Infectious Rates and 95% Confidence Intervals';
run;

Results of fitting the model with a separate risk of infection are shown in Output 60.14.2.
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Output 60.14.2 Modeling Separate Risk of Infection

Infectious Rates and 95% Confidence Intervals

The LOGISTIC Procedure

Infectious Rates and 95% Confidence Intervals

The LOGISTIC Procedure

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Group 1 1 -3.1048 0.3536 77.0877 <.0001

Group 2 1 -4.4542 0.4083 119.0164 <.0001

Group 3 1 -4.2769 0.2358 328.9593 <.0001

Group 4 1 -4.7761 0.2674 319.0600 <.0001

Group 5 1 -4.7165 0.2238 443.9920 <.0001

Group 6 1 -4.5012 0.1606 785.1350 <.0001

Group 7 1 -5.4252 0.2296 558.1114 <.0001

Group 8 1 -4.9987 0.2008 619.4666 <.0001

Group 9 1 -4.1965 0.1559 724.3157 <.0001

X 0 1.0000 0 . .

Parameter Estimates and Profile-Likelihood
Confidence Intervals

Parameter Estimate 95% Confidence Limits

Group 1 -3.1048 -3.8880 -2.4833

Group 2 -4.4542 -5.3769 -3.7478

Group 3 -4.2769 -4.7775 -3.8477

Group 4 -4.7761 -5.3501 -4.2940

Group 5 -4.7165 -5.1896 -4.3075

Group 6 -4.5012 -4.8333 -4.2019

Group 7 -5.4252 -5.9116 -5.0063

Group 8 -4.9987 -5.4195 -4.6289

Group 9 -4.1965 -4.5164 -3.9037

For the first age group (Group=1), the point estimate of log.�1/ is –3.1048, which transforms into an infection
rate of 1 � exp.� exp.�3:1048// D 0:0438. A 95% confidence interval for this infection rate is obtained by
transforming the 95% confidence interval for log.�1/. For the first age group, the lower and upper confidence
limits are 1� exp.� exp.�3:8880/ D 0:0203 and 1� exp.� exp.�2:4833// D 0:0801, respectively; that is,
there is a 95% chance that, in repeated sampling, the interval of 20 to 80 infections per thousand individuals
contains the true infection rate. The following statements perform this transformation on the estimates and
confidence limits saved in the ClparmPL data set; the resulting estimated infection rates in one year’s time
for each age group are displayed in Table 60.18. Note that the infection rate for the first age group is high
compared to that of the other age groups.

data ClparmPL;
set ClparmPL;
Estimate=round( 1000*( 1-exp(-exp(Estimate)) ) );
LowerCL =round( 1000*( 1-exp(-exp(LowerCL )) ) );
UpperCL =round( 1000*( 1-exp(-exp(UpperCL )) ) );

run;
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Table 60.18 Infection Rate in One Year

Number Infected per 1,000 People
Age Point 95% Confidence Limits

Group Estimate Lower Upper

1 44 20 80
2 12 5 23
3 14 8 21
4 8 5 14
5 9 6 13
6 11 8 15
7 4 3 7
8 7 4 10
9 15 11 20

Example 60.15: Complementary Log-Log Model for Interval-Censored
Survival Times

Often survival times are not observed more precisely than the interval (for instance, a day) within which
the event occurred. Survival data of this form are known as grouped or interval-censored data. A discrete
analog of the continuous proportional hazards model (Prentice and Gloeckler 1978; Allison 1982) is used to
investigate the relationship between these survival times and a set of explanatory variables.

Suppose Ti is the discrete survival time variable of the ith subject with covariates xi . The discrete-time
hazard rate �it is defined as

�it D Pr.Ti D t j Ti � t; xi /; t D 1; 2; : : :

Using elementary properties of conditional probabilities, it can be shown that

Pr.Ti D t / D �it
t�1Y
jD1

.1 � �ij / and Pr.Ti > t/ D
tY

jD1

.1 � �ij /

Suppose ti is the observed survival time of the ith subject. Suppose ıi D 1 if Ti D ti is an event time and 0
otherwise. The likelihood for the grouped survival data is given by

L D

Y
i

ŒPr.Ti D ti /�ıi ŒPr.Ti > ti /�1�ıi

D

Y
i

�
�iti

1 � �iti

�ıi tiY
jD1

.1 � �ij /

D

Y
i

tiY
jD1

�
�ij

1 � �ij

�yij
.1 � �ij /

where yij D 1 if the ith subject experienced an event at time Ti D j and 0 otherwise.
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Note that the likelihood L for the grouped survival data is the same as the likelihood of a binary response
model with event probabilities �ij . If the data are generated by a continuous-time proportional hazards
model, Prentice and Gloeckler (1978) have shown that

�ij D 1 � exp.� exp.˛j C ˇ0xi //

which can be rewritten as

log.� log.1 � �ij // D ˛j C ˇ0xi

where the coefficient vector ˇ is identical to that of the continuous-time proportional hazards model, and
˛j is a constant related to the conditional survival probability in the interval defined by Ti D j at xi D 0.
The grouped data survival model is therefore equivalent to the binary response model with complementary
log-log link function. To fit the grouped survival model by using PROC LOGISTIC, you must treat each
discrete time unit for each subject as a separate observation. For each of these observations, the response is
dichotomous, corresponding to whether or not the subject died in the time unit.

Consider a study of the effect of insecticide on flour beetles. Four different concentrations of an insecticide
were sprayed on separate groups of flour beetles. The following DATA step saves the number of male and
female flour beetles dying in successive intervals in the data set Beetles:

data Beetles(keep=time sex conc freq);
input time m20 f20 m32 f32 m50 f50 m80 f80;
conc=.20; freq= m20; sex=1; output;

freq= f20; sex=2; output;
conc=.32; freq= m32; sex=1; output;

freq= f32; sex=2; output;
conc=.50; freq= m50; sex=1; output;

freq= f50; sex=2; output;
conc=.80; freq= m80; sex=1; output;

freq= f80; sex=2; output;
datalines;

1 3 0 7 1 5 0 4 2
2 11 2 10 5 8 4 10 7
3 10 4 11 11 11 6 8 15
4 7 8 16 10 15 6 14 9
5 4 9 3 5 4 3 8 3
6 3 3 2 1 2 1 2 4
7 2 0 1 0 1 1 1 1
8 1 0 0 1 1 4 0 1
9 0 0 1 1 0 0 0 0

10 0 0 0 0 0 0 1 1
11 0 0 0 0 1 1 0 0
12 1 0 0 0 0 1 0 0
13 1 0 0 0 0 1 0 0
14 101 126 19 47 7 17 2 4
;

The data set Beetles contains four variables: time, sex, conc, and freq. The variable time represents the
interval death time; for example, time=2 is the interval between day 1 and day 2. Insects surviving the
duration (13 days) of the experiment are given a time value of 14. The variable sex represents the sex of
the insects (1=male, 2=female), conc represents the concentration of the insecticide (mg/cm2), and freq
represents the frequency of the observations.
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To use PROC LOGISTIC with the grouped survival data, you must expand the data so that each beetle has a
separate record for each day of survival. A beetle that died in the third day (time=3) would contribute three
observations to the analysis, one for each day it was alive at the beginning of the day. A beetle that survives
the 13-day duration of the experiment (time=14) would contribute 13 observations.

The following DATA step creates a new data set named Days containing the beetle-day observations from the
data set Beetles. In addition to the variables sex, conc, and freq, the data set contains an outcome variable y
and a classification variable day. The variable y has a value of 1 if the observation corresponds to the day that
the beetle died, and it has a value of 0 otherwise. An observation for the first day will have a value of 1 for
day; an observation for the second day will have a value of 2 for day, and so on. For instance, Output 60.15.1
shows an observation in the Beetles data set with time=3, and Output 60.15.2 shows the corresponding
beetle-day observations in the data set Days.

data Days;
set Beetles;
do day=1 to time;

if (day < 14) then do;
y= (day=time);
output;

end;
end;

run;

Output 60.15.1 An Observation with Time=3 in Beetles Data Set

Obs time conc freq sex

17 3 0.2 10 1

Output 60.15.2 Corresponding Beetle-Day Observations in Days

Obs time conc freq sex day y

25 3 0.2 10 1 1 0

26 3 0.2 10 1 2 0

27 3 0.2 10 1 3 1

The following statements invoke PROC LOGISTIC to fit a complementary log-log model for binary data with
the response variable Y and the explanatory variables day, sex, and Variableconc. Specifying the EVENT=
option ensures that the event (y=1) probability is modeled. The GLM coding in the CLASS statement creates
an indicator column in the design matrix for each level of day. The coefficients of the indicator effects for
day can be used to estimate the baseline survival function. The NOINT option is specified to prevent any
redundancy in estimating the coefficients of day. The Newton-Raphson algorithm is used for the maximum
likelihood estimation of the parameters.

proc logistic data=Days outest=est1;
class day / param=glm;
model y(event='1')= day sex conc

/ noint link=cloglog technique=newton;
freq freq;

run;
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Results of the model fit are given in Output 60.15.3. Both sex and conc are statistically significant for the
survival of beetles sprayed by the insecticide. Female beetles are more resilient to the chemical than male
beetles, and increased concentration of the insecticide increases its effectiveness.

Output 60.15.3 Parameter Estimates for the Grouped Proportional Hazards Model

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

day 1 1 -3.9314 0.2934 179.5602 <.0001

day 2 1 -2.8751 0.2412 142.0596 <.0001

day 3 1 -2.3985 0.2299 108.8833 <.0001

day 4 1 -1.9953 0.2239 79.3960 <.0001

day 5 1 -2.4920 0.2515 98.1470 <.0001

day 6 1 -3.1060 0.3037 104.5799 <.0001

day 7 1 -3.9704 0.4230 88.1107 <.0001

day 8 1 -3.7917 0.4007 89.5233 <.0001

day 9 1 -5.1540 0.7316 49.6329 <.0001

day 10 1 -5.1350 0.7315 49.2805 <.0001

day 11 1 -5.1131 0.7313 48.8834 <.0001

day 12 1 -5.1029 0.7313 48.6920 <.0001

day 13 1 -5.0951 0.7313 48.5467 <.0001

sex 1 -0.5651 0.1141 24.5477 <.0001

conc 1 3.0918 0.2288 182.5665 <.0001

The coefficients of parameters for the day variable are the maximum likelihood estimates of ˛1; : : : ; ˛13,
respectively. The baseline survivor function S0.t/ is estimated by

OS0.t/ D bPr.T > t/ DY
j�t

exp.� exp.b̨j //
and the survivor function for a given covariate pattern (sex=x1 and conc=x2) is estimated by

OS.t/ D Œ OS0.t/�
exp.�0:5651x1C3:0918x2/
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The following statements compute the survival curves for male and female flour beetles exposed to the
insecticide in concentrations of 0.20 mg/cm2 and 0.80 mg/cm2:

data one (keep=day survival element s_m20 s_f20 s_m80 s_f80);
array dd day1-day13;
array sc[4] m20 f20 m80 f80;
array s_sc[4] s_m20 s_f20 s_m80 s_f80 (1 1 1 1);
set est1;
m20= exp(sex + .20 * conc);
f20= exp(2 * sex + .20 * conc);
m80= exp(sex + .80 * conc);
f80= exp(2 * sex + .80 * conc);
survival=1;
day=0;
output;
do over dd;

element= exp(-exp(dd));
survival= survival * element;
do i=1 to 4;

s_sc[i] = survival ** sc[i];
end;
day + 1;
output;

end;
run;

Instead of plotting the curves as step functions, the following statements use the PBSPLINE statement in
the SGPLOT procedure to smooth the curves with a penalized B-spline. For more information about the
implementation of the penalized B-spline method, see Chapter 104, “The TRANSREG Procedure.” The SAS
autocall macro %MODSTYLE is specified to change the marker symbols for the plot. For more information
about the %MODSTYLE macro, see the section “Style Template Modification Macro” on page 673 in
Chapter 21, “Statistical Graphics Using ODS.” The smoothed survival curves are displayed in Output 60.15.4.

%modstyle(name=LogiStyle,parent=htmlblue,markers=circlefilled);
ods listing style=LogiStyle;
proc sgplot data=one;

title 'Flour Beetles Sprayed with Insecticide';
xaxis grid integer;
yaxis grid label='Survival Function';
pbspline y=s_m20 x=day /

legendlabel = "Male at 0.20 conc." name="pred1";
pbspline y=s_m80 x=day /

legendlabel = "Male at 0.80 conc." name="pred2";
pbspline y=s_f20 x=day /

legendlabel = "Female at 0.20 conc." name="pred3";
pbspline y=s_f80 x=day /

legendlabel = "Female at 0.80 conc." name="pred4";
discretelegend "pred1" "pred2" "pred3" "pred4" / across=2;

run;
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Output 60.15.4 Predicted Survival at Insecticide Concentrations of 0.20 and 0.80 mg/cm2

The probability of survival is displayed on the vertical axis. Notice that most of the insecticide effect occurs
by day 6 for both the high and low concentrations.
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Example 60.16: Scoring Data Sets
This example first illustrates the syntax used for scoring data sets, then uses a previously scored data set
to score a new data set. A generalized logit model is fit to the remote-sensing data set used in the section
“Example 35.4: Linear Discriminant Analysis of Remote-Sensing Data on Crops” on page 2239 in Chapter 35,
“The DISCRIM Procedure,” to illustrate discrimination and classification methods. In the following DATA
step, the response variable is Crop and the prognostic factors are x1 through x4:

data Crops;
length Crop $ 10;
infile datalines truncover;
input Crop $ @@;
do i=1 to 3;

input x1-x4 @@;
if (x1 ^= .) then output;

end;
input;
datalines;

Corn 16 27 31 33 15 23 30 30 16 27 27 26
Corn 18 20 25 23 15 15 31 32 15 32 32 15
Corn 12 15 16 73
Soybeans 20 23 23 25 24 24 25 32 21 25 23 24
Soybeans 27 45 24 12 12 13 15 42 22 32 31 43
Cotton 31 32 33 34 29 24 26 28 34 32 28 45
Cotton 26 25 23 24 53 48 75 26 34 35 25 78
Sugarbeets 22 23 25 42 25 25 24 26 34 25 16 52
Sugarbeets 54 23 21 54 25 43 32 15 26 54 2 54
Clover 12 45 32 54 24 58 25 34 87 54 61 21
Clover 51 31 31 16 96 48 54 62 31 31 11 11
Clover 56 13 13 71 32 13 27 32 36 26 54 32
Clover 53 08 06 54 32 32 62 16
;

In the following statements, you specify a SCORE statement to use the fitted model to score the Crops
data. The data together with the predicted values are saved in the data set Score1. The output from the
EFFECTPLOT statement is discussed at the end of this section.

ods graphics on;
proc logistic data=Crops;

model Crop=x1-x4 / link=glogit;
score out=Score1;
effectplot slicefit(x=x3);

run;
ods graphics off;

In the following statements, the model is fit again, and the data and the predicted values are saved into the
data set Score2. The OUTMODEL= option saves the fitted model information in the permanent SAS data
set sasuser.CropModel, and the STORE statement saves the fitted model information into the SAS data set
CropModel2. Both the OUTMODEL= option and the STORE statement are specified to illustrate their use;
you would usually specify only one of these model-storing methods.
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proc logistic data=Crops outmodel=sasuser.CropModel;
model Crop=x1-x4 / link=glogit;
score data=Crops out=Score2;
store CropModel2;

run;

To score data without refitting the model, specify the INMODEL= option to identify a previously saved SAS
data set of model information. In the following statements, the model is read from the sasuser.CropModel
data set, and the data and the predicted values are saved in the data set Score3. Note that the data set being
scored does not have to include the response variable.

proc logistic inmodel=sasuser.CropModel;
score data=Crops out=Score3;

run;

Another method available to score the data without refitting the model is to invoke the PLM procedure. In
the following statements, the stored model is named in the SOURCE= option. The PREDICTED= option
computes the linear predictors, and the ILINK option transforms the linear predictors to the probability scale.
The SCORE statement scores the Crops data set, and the predicted probabilities are saved in the data set
ScorePLM. See Chapter 75, “The PLM Procedure,” for more information.

proc plm source=CropModel2;
score data=Crops out=ScorePLM predicted=p / ilink;

run;

For each observation in the Crops data set, the ScorePLM data set contains 5 observations—one for each
level of the response variable. The following statements transform this data set into a form that is similar to
the other scored data sets in this example:

proc transpose data=ScorePLM out=Score4 prefix=P_ let;
id _LEVEL_;
var p;
by x1-x4 notsorted;

run;
data Score4(drop=_NAME_ _LABEL_);

merge Score4 Crops(keep=Crop x1-x4);
F_Crop=Crop;

run;
proc summary data=ScorePLM nway;

by x1-x4 notsorted;
var p;
output out=into maxid(p(_LEVEL_))=I_Crop;

run;
data Score4;

merge Score4 into(keep=I_Crop);
run;

To set prior probabilities on the responses, specify the PRIOR= option to identify a SAS data set containing
the response levels and their priors. In the following statements, the Prior data set contains the values of the
response variable (because this example uses single-trial MODEL statement syntax) and a _PRIOR_ variable
containing values proportional to the default priors. The data and the predicted values are saved in the data
set Score5.
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data Prior;
length Crop $10.;
input Crop _PRIOR_;
datalines;

Clover 11
Corn 7
Cotton 6
Soybeans 6
Sugarbeets 6
;

proc logistic inmodel=sasuser.CropModel;
score data=Crops prior=prior out=Score5 fitstat;

run;

The “Fit Statistics for SCORE Data” table displayed in Output 60.16.1 shows that 47.22% of the observations
are misclassified.

Output 60.16.1 Fit Statistics for Data Set Prior

Fit Statistics for SCORE Data

Data Set
Total

Frequency
Log

Likelihood
Error
Rate AIC AICC BIC SC R-Square

Max-Rescaled
R-Square AUC

Brier
Score

WORK.CROPS 36 -32.2247 0.4722 104.4493 160.4493 136.1197 136.1197 0.744081 0.777285 . 0.492712

The data sets Score1, Score2, Score3, Score4, and Score5 are identical. The following statements display
the scoring results in Output 60.16.2:

proc freq data=Score1;
table F_Crop*I_Crop / nocol nocum nopercent;

run;

Output 60.16.2 Classification of Data Used for Scoring

Frequency
Row Pct

Table of F_Crop by I_Crop

F_Crop(From:
Crop)

I_Crop(Into: Crop)

Clover Corn Cotton Soybeans Sugarbeets Total

Clover 6
54.55

0
0.00

2
18.18

2
18.18

1
9.09

11

Corn 0
0.00

7
100.00

0
0.00

0
0.00

0
0.00

7

Cotton 4
66.67

0
0.00

1
16.67

1
16.67

0
0.00

6

Soybeans 1
16.67

1
16.67

1
16.67

3
50.00

0
0.00

6

Sugarbeets 2
33.33

0
0.00

0
0.00

2
33.33

2
33.33

6

Total 13 8 4 8 3 36
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The following statements use the previously fitted and saved model in the sasuser.CropModel data set to
score the observations in a new data set, Test. The results of scoring the test data are saved in the ScoredTest
data set and displayed in Output 60.16.3.

data Test;
input Crop $ 1-10 x1-x4;
datalines;

Corn 16 27 31 33
Soybeans 21 25 23 24
Cotton 29 24 26 28
Sugarbeets 54 23 21 54
Clover 32 32 62 16
;

proc logistic noprint inmodel=sasuser.CropModel;
score data=Test out=ScoredTest;

run;

proc print data=ScoredTest label noobs;
var F_Crop I_Crop P_Clover P_Corn P_Cotton P_Soybeans P_Sugarbeets;

run;

Output 60.16.3 Classification of Test Data

From: Crop
Into:
Crop

Predicted
Probability:

Crop=Clover

Predicted
Probability:
Crop=Corn

Predicted
Probability:

Crop=Cotton

Predicted
Probability:

Crop=Soybeans

Predicted
Probability:

Crop=Sugarbeets

Corn Corn 0.00342 0.90067 0.00500 0.08675 0.00416

Soybeans Soybeans 0.04801 0.03157 0.02865 0.82933 0.06243

Cotton Clover 0.43180 0.00015 0.21267 0.07623 0.27914

Sugarbeets Clover 0.66681 0.00000 0.17364 0.00000 0.15955

Clover Cotton 0.41301 0.13386 0.43649 0.00033 0.01631

The EFFECTPLOT statement that is specified in the first PROC LOGISTIC invocation produces a plot
of the model-predicted probabilities versus X3 while holding the other three covariates at their means
(Output 60.16.4). This plot shows how the value of X3 affects the probabilities of the various crops when
the other prognostic factors are fixed at their means. If you are interested in the effect of X3 when the other
covariates are fixed at a certain level—say, 10—specify the following EFFECTPLOT statement.

effectplot slicefit(x=x3) / at(x1=10 x2=10 x4=10)
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Output 60.16.4 Model-Predicted Probabilities
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Example 60.17: Using the LSMEANS Statement
Recall the main-effects model fit to the Neuralgia data set in Example 60.2. The Treatment*Sex interaction,
which was previously shown to be nonsignificant, is added back into the model for this discussion.

In the following statements, the ODDSRATIO statement is specified to produce odds ratios of pairwise
differences of the Treatment parameters in the presence of the Sex interaction. The LSMEANS statement is
specified with several options: the E option displays the coefficients that are used to compute the LS-means
for each Treatment level, the DIFF option takes all pairwise differences of the LS-means for the levels of
the Treatment variable, the ODDSRATIO option computes odds ratios of these differences, the CL option
produces confidence intervals for the differences and odds ratios, and the ADJUST=BON option performs a
very conservative adjustment of the p-values and confidence intervals.

proc logistic data=Neuralgia;
class Treatment Sex / param=glm;
model Pain= Treatment|Sex Age;
oddsratio Treatment;
lsmeans Treatment / e diff oddsratio cl adjust=bon;

run;

The results from the ODDSRATIO statement are displayed in Output 60.17.1. All pairwise differences of
levels of the Treatment effect are compared. However, because of the interaction between the Treatment and
Sex variables, each difference is computed at each of the two levels of the Sex variable. These results show
that the difference between Treatment levels A and B is insignificant for both genders.

To compute these odds ratios, you must first construct a linear combination of the parameters, l 0ˇ, for each
level that is compared with all other levels fixed at some value. For example, to compare Treatment=A with
B for Sex=F, you fix the Age variable at its mean, 70.05, and construct the following l vectors:

Treatment Sex Treatment*Sex
Intercept A B P F M AF AM BF BM PF PM Age

l 0A 1 1 0 0 1 0 1 0 0 0 0 0 70.05
l 0B 1 0 1 0 1 0 0 0 1 0 0 0 70.05
l 0A � l

0
B 0 1 –1 0 0 0 1 0 –1 0 0 0 0

Then the odds ratio for Treatment A versus B at Sex=F is computed as exp..l 0A � l
0
B/ˇ/. Different l vectors

must be similarly constructed when Sex=M because the resulting odds ratio will be different due to the
interaction.

Output 60.17.1 Odds Ratios from the ODDSRATIO Statement

Odds Ratio Estimates and Wald Confidence Intervals

Odds Ratio Estimate 95% Confidence Limits

Treatment A vs B at Sex=F 0.398 0.016 9.722

Treatment A vs P at Sex=F 16.892 1.269 224.838

Treatment B vs P at Sex=F 42.492 2.276 793.254

Treatment A vs B at Sex=M 0.663 0.078 5.623

Treatment A vs P at Sex=M 34.766 1.807 668.724

Treatment B vs P at Sex=M 52.458 2.258 >999.999
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The results from the LSMEANS statement are displayed in Output 60.17.2 through Output 60.17.4.

The LS-means are computed by constructing each of the l coefficient vectors shown in Output 60.17.2,
and then computing l 0ˇ. The LS-means are not estimates of the event probabilities; they are estimates
of the linear predictors on the logit scale and therefore are estimated log odds. In order to obtain event
probabilities, you need to apply the inverse-link transformation by specifying the ILINK option in the
LSMEANS statement. Notice in Output 60.17.2 that the Sex rows of the coefficient vectors do not select
either Sex=F or Sex=M. Instead, the LS-means are computed at an average of these two levels, so only
one result needs to be reported. For more information about the construction of LS-means, see the section
“Construction of Least Squares Means” on page 3489 in Chapter 45, “The GLM Procedure.”

Output 60.17.2 Treatment LS-Means Coefficients

Coefficients for Treatment Least Squares Means

Parameter Treatment Sex Row1 Row2 Row3

Intercept: Pain=No 1 1 1

Treatment A A 1

Treatment B B 1

Treatment P P 1

Sex F F 0.5 0.5 0.5

Sex M M 0.5 0.5 0.5

Treatment A * Sex F A F 0.5

Treatment A * Sex M A M 0.5

Treatment B * Sex F B F 0.5

Treatment B * Sex M B M 0.5

Treatment P * Sex F P F 0.5

Treatment P * Sex M P M 0.5

Age 70.05 70.05 70.05

The Treatment LS-means shown in Output 60.17.3 are all significantly nonzero at the 0.05 level. These
LS-means are predicted population margins of the logits; that is, they estimate the marginal means over a
balanced population, and they are effectively the within-Treatment means appropriately adjusted for the other
effects in the model. The LS-means are not event probabilities; in order to obtain event probabilities, you
need to apply the inverse-link transformation by specifying the ILINK option in the LSMEANS statement.
For more information about LS-means, see the section “LSMEANS Statement” on page 460 in Chapter 19,
“Shared Concepts and Topics.”

Output 60.17.3 Treatment LS-Means

Treatment Least Squares Means

Treatment Estimate
Standard

Error z Value Pr > |z| Alpha Lower Upper

A 1.3195 0.6664 1.98 0.0477 0.05 0.01331 2.6257

B 1.9864 0.7874 2.52 0.0116 0.05 0.4431 3.5297

P -1.8682 0.7620 -2.45 0.0142 0.05 -3.3618 -0.3747

Pairwise differences between the Treatment LS-means, requested with the DIFF option, are displayed in
Output 60.17.4. The LS-mean for the level that is displayed in the _Treatment column is subtracted from the
LS-mean for the level in the Treatment column, so the first row displays the LS-mean for Treatment level A
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minus the LS-mean for Treatment level B. The difference (–0.6669) is the estimated difference in log odds,
or equivalently the log odds ratio of the two treatments. The Pr > |z| column indicates that the A and B levels
are not significantly different; however, both of these levels are significantly different from level P. If the
inverse-link transformation is specified by the ILINK option, then these differences do not transform back to
differences in probabilities.

There are two odds ratios for Treatment level A versus B in Output 60.17.1; these are constructed at each
level of the interacting covariate Sex. In contrast, there is only one LS-means odds ratio for Treatment
level A versus B in Output 60.17.4. This odds ratio is computed at an average of the interacting effects by
creating the l vectors shown in Output 60.17.2 (the Row1 column corresponds to lA, and the Row2 column
corresponds to lB ) and computing exp.l 0Aˇ � l

0
Bˇ/.

Because multiple tests are performed, you can protect yourself from falsely significant results by adjusting
your p-values for multiplicity. The ADJUST=BON option performs the very conservative Bonferroni
adjustment, and adds the columns labeled with ‘Adj’ to Output 60.17.4. By comparing the Pr > |z| column to
the Adj P column, you can see that the p-values are adjusted upwards; in this case, there is no change in your
conclusions. The confidence intervals are also adjusted for multiplicity—all adjusted intervals are wider than
the unadjusted intervals, but again your conclusions in this example are unchanged. You can specify other
adjustment methods by using the ADJUST= option.

Output 60.17.4 Differences and Odds Ratios for the Treatment LS-Means

Differences of Treatment Least Squares Means
Adjustment for Multiple Comparisons: Bonferroni

Treatment _Treatment Estimate
Standard

Error z Value Pr > |z| Adj P Alpha Lower Upper
Adj

Lower
Adj

Upper
Odds
Ratio

A B -0.6669 1.0026 -0.67 0.5059 1.0000 0.05 -2.6321 1.2982 -3.0672 1.7334 0.513

A P 3.1877 1.0376 3.07 0.0021 0.0064 0.05 1.1541 5.2214 0.7037 5.6717 24.234

B P 3.8547 1.2126 3.18 0.0015 0.0044 0.05 1.4780 6.2313 0.9517 6.7576 47.213

Differences of Treatment Least Squares Means
Adjustment for Multiple Comparisons: Bonferroni

Treatment _Treatment

Lower
Confidence

Limit for
Odds Ratio

Upper
Confidence

Limit for
Odds Ratio

Adj Lower
Odds Ratio

Adj Upper
Odds Ratio

A B 0.072 3.663 0.047 5.660

A P 3.171 185.195 2.021 290.542

B P 4.384 508.441 2.590 860.612

If you want to jointly test whether the active treatments are different from the placebo, you can specify
a custom hypothesis test among LS-means by using the LSMESTIMATE statement. In the following
statements, the LS-means for the two treatments are contrasted against the LS-mean of the placebo, and the
JOINT option performs a joint test that the two treatments are not different from placebo.

proc logistic data=Neuralgia;
class Treatment Sex / param=glm;
model Pain= Treatment|Sex Age;
lsmestimate treatment 1 0 -1, 0 1 -1 / joint;

run;
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Output 60.17.5 displays the results from the LSMESTIMATE statement. The “Least Squares Means Estimates”
table displays the differences of the two active treatments against the placebo, and the results are identical
to the second and third rows of Output 60.17.4. The “Chi-Square Test for Least Squares Means Estimates”
table displays the joint test. In all of these tests, you reject the null hypothesis that the treatment has the same
effect as the placebo.

Output 60.17.5 Custom LS-Mean Tests

Least Squares Means Estimates

Effect Label Estimate
Standard

Error z Value Pr > |z|

Treatment Row 1 3.1877 1.0376 3.07 0.0021

Treatment Row 2 3.8547 1.2126 3.18 0.0015

Chi-Square Test for Least Squares
Means Estimates

Effect
Num

DF Chi-Square Pr > ChiSq

Treatment 2 12.13 0.0023

If you want to work with LS-means but you prefer to compute the Treatment odds ratios within the Sex
levels in the same fashion as the ODDSRATIO statement does, you can specify the SLICE statement. In
the following statements, you specify the same options in the SLICE statement as you do in the LSMEANS
statement, except that you also specify the SLICEBY= option to perform an LS-means analysis partitioned
into sets that are defined by the Sex variable:

proc logistic data=Neuralgia;
class Treatment Sex / param=glm;
model Pain= Treatment|Sex Age;
slice Treatment*Sex / sliceby=Sex diff oddsratio cl adjust=bon;

run;

The results for Sex=F are displayed in Output 60.17.6 and Output 60.17.7. The joint test in Output 60.17.6
tests the equality of the LS-means of the levels of Treatment for Sex=F, and rejects equality at level 0.05. In
Output 60.17.7, the odds ratios and confidence intervals match those reported for Sex=F in Output 60.17.1,
and multiplicity adjustments are performed.

Output 60.17.6 Joint Test of Treatment Equality for Females

Chi-Square Test for Treatment*Sex
Least Squares Means Slice

Slice
Num

DF Chi-Square Pr > ChiSq

Sex F 2 8.22 0.0164
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Output 60.17.7 Differences of the Treatment LS-Means for Females

Simple Differences of Treatment*Sex Least Squares Means
Adjustment for Multiple Comparisons: Bonferroni

Slice Treatment _Treatment Estimate
Standard

Error z Value Pr > |z| Adj P Alpha Lower Upper
Adj

Lower
Adj

Upper
Odds
Ratio

Sex F A B -0.9224 1.6311 -0.57 0.5717 1.0000 0.05 -4.1193 2.2744 -4.8272 2.9824 0.398

Sex F A P 2.8269 1.3207 2.14 0.0323 0.0970 0.05 0.2384 5.4154 -0.3348 5.9886 16.892

Sex F B P 3.7493 1.4933 2.51 0.0120 0.0361 0.05 0.8225 6.6761 0.1744 7.3243 42.492

Simple Differences of Treatment*Sex Least Squares Means
Adjustment for Multiple Comparisons: Bonferroni

Slice Treatment _Treatment

Lower
Confidence

Limit for
Odds Ratio

Upper
Confidence

Limit for
Odds Ratio

Adj Lower
Odds Ratio

Adj Upper
Odds Ratio

Sex F A B 0.016 9.722 0.008 19.734

Sex F A P 1.269 224.838 0.715 398.848

Sex F B P 2.276 793.254 1.190 >999.999

Similarly, the results for Sex=M are shown in Output 60.17.8 and Output 60.17.9.

Output 60.17.8 Joint Test of Treatment Equality for Males

Chi-Square Test for Treatment*Sex
Least Squares Means Slice

Slice
Num

DF Chi-Square Pr > ChiSq

Sex M 2 6.64 0.0361

Output 60.17.9 Differences of the Treatment LS-Means for Males

Simple Differences of Treatment*Sex Least Squares Means
Adjustment for Multiple Comparisons: Bonferroni

Slice Treatment _Treatment Estimate
Standard

Error z Value Pr > |z| Adj P Alpha Lower Upper
Adj

Lower
Adj

Upper
Odds
Ratio

Sex M A B -0.4114 1.0910 -0.38 0.7061 1.0000 0.05 -2.5496 1.7268 -3.0231 2.2003 0.663

Sex M A P 3.5486 1.5086 2.35 0.0187 0.0560 0.05 0.5919 6.5054 -0.06286 7.1601 34.766

Sex M B P 3.9600 1.6049 2.47 0.0136 0.0408 0.05 0.8145 7.1055 0.1180 7.8021 52.458

Simple Differences of Treatment*Sex Least Squares Means
Adjustment for Multiple Comparisons: Bonferroni

Slice Treatment _Treatment

Lower
Confidence

Limit for
Odds Ratio

Upper
Confidence

Limit for
Odds Ratio

Adj Lower
Odds Ratio

Adj Upper
Odds Ratio

Sex M A B 0.078 5.623 0.049 9.028

Sex M A P 1.807 668.724 0.939 >999.999

Sex M B P 2.258 >999.999 1.125 >999.999
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Example 60.18: Partial Proportional Odds Model
Cameron and Trivedi (1998, p. 68) studied the number of doctor visits from the Australian Health Survey
1977–78. The data set contains a dependent variable, dvisits, which contains the number of doctor visits
in the past two weeks (0, 1, or 2, where 2 represents two or more visits) and the following explanatory
variables: sex, which indicates whether the patient is female; age, which contains the patient’s age in years
divided by 100; income, which contains the patient’s annual income (in units of $10,000); levyplus, which
indicates whether the patient has private health insurance; freepoor, which indicates that the patient has
free government health insurance due to low income; freerepa, which indicates that the patient has free
government health insurance for other reasons; illness, which contains the number of illnesses in the past two
weeks; actdays, which contains the number of days the illness caused reduced activity; hscore, which is a
questionnaire score; chcond1, which indicates a chronic condition that does not limit activity; and chcond2,
which indicates a chronic condition that limits activity.

data docvisit;
input sex age agesq income levyplus freepoor freerepa

illness actdays hscore chcond1 chcond2 dvisits;
if ( dvisits > 2) then dvisits = 2;
datalines;

1 0.19 0.0361 0.55 1 0 0 1 4 1 0 0 1
1 0.19 0.0361 0.45 1 0 0 1 2 1 0 0 1
0 0.19 0.0361 0.90 0 0 0 3 0 0 0 0 1

... more lines ...

1 0.37 0.1369 0.25 0 0 1 1 0 1 0 0 0
1 0.52 0.2704 0.65 0 0 0 0 0 0 0 0 0
0 0.72 0.5184 0.25 0 0 1 0 0 0 0 0 0
;

Because the response variable dvisits has three levels, the proportional odds model constructs two response
functions. There is an intercept parameter for each of the two response functions, ˛1 < ˛2, and common
slope parameters ˇ D .ˇ1; : : : ; ˇ12/ across the functions. The model can be written as

logit.Pr.Y � i j x// D ˛i C ˇ0x; i D 1; 2

The following statements fit a proportional odds model to this data:

proc logistic data=docvisit;
model dvisits = sex age agesq income levyplus

freepoor freerepa illness actdays hscore
chcond1 chcond2;

run;

Selected results are displayed in Output 60.18.1.
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Output 60.18.1 Test of Proportional Odds Assumption

Score Test for the
Proportional Odds

Assumption

Chi-Square DF Pr > ChiSq

27.4256 12 0.0067

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 734.2971 12 <.0001

Score 811.8964 12 <.0001

Wald 690.7156 12 <.0001

The test of the proportional odds assumption in Output 60.18.1 rejects the null hypothesis that all the slopes
are equal across the two response functions. This test is very anticonservative; that is, it tends to reject the
null hypothesis even when the proportional odds assumption is reasonable.

The proportional odds assumption for ordinal response models can be relaxed by specifying the
UNEQUALSLOPES option in the MODEL statement. A general (nonproportional odds) model has different
slope parameters ˇi D .ˇ1;i ; : : : ; ˇ12;i / for every logit i:

logit.Pr.Y � i j x// D ˛i C ˇ0ix; i D 1; 2

The following statements fit the general model:

proc logistic data=docvisit;
model dvisits = sex age agesq income levyplus

freepoor freerepa illness actdays hscore
chcond1 chcond2 / unequalslopes;

sex: test sex_0 =sex_1;
age: test age_0 =age_1;
agesq: test agesq_0 =agesq_1;
income: test income_0 =income_1;
levyplus: test levyplus_0=levyplus_1;
freepoor: test freepoor_0=freepoor_1;
freerepa: test freerepa_0=freerepa_1;
illness: test illness_0 =illness_1;
actdays: test actdays_0 =actdays_1;
hscore: test hscore_0 =hscore_1;
chcond1: test chcond1_0 =chcond1_1;
chcond2: test chcond2_0 =chcond2_1;

run;

The TEST statements test the proportional odds assumption for each of the covariates in the model. The
parameter names are constructed by appending the response level that identifies the response function, as
described in the section “Parameter Names in the OUTEST= Data Set” on page 4606. Selected results from
fitting the general model to the data are displayed in Output 60.18.2.
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Output 60.18.2 Results for the General Model

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 761.4797 24 <.0001

Score 957.6793 24 <.0001

Wald 688.2306 24 <.0001

Analysis of Maximum Likelihood Estimates

Parameter dvisits DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept 0 1 2.3238 0.2754 71.2018 <.0001

Intercept 1 1 4.2862 0.4890 76.8368 <.0001

sex 0 1 -0.2637 0.0818 10.3909 0.0013

sex 1 1 -0.1232 0.1451 0.7210 0.3958

age 0 1 1.7489 1.5115 1.3389 0.2472

age 1 1 -2.0974 2.6003 0.6506 0.4199

agesq 0 1 -2.4718 1.6636 2.2076 0.1373

agesq 1 1 2.6883 2.8398 0.8961 0.3438

income 0 1 -0.00857 0.1266 0.0046 0.9460

income 1 1 0.6464 0.2375 7.4075 0.0065

levyplus 0 1 -0.2658 0.0997 7.0999 0.0077

levyplus 1 1 -0.2869 0.1820 2.4848 0.1150

freepoor 0 1 0.6773 0.2601 6.7811 0.0092

freepoor 1 1 0.9020 0.4911 3.3730 0.0663

freerepa 0 1 -0.4044 0.1382 8.5637 0.0034

freerepa 1 1 -0.0958 0.2361 0.1648 0.6848

illness 0 1 -0.2645 0.0287 84.6792 <.0001

illness 1 1 -0.3083 0.0499 38.1652 <.0001

actdays 0 1 -0.1521 0.0116 172.2764 <.0001

actdays 1 1 -0.1863 0.0134 193.7700 <.0001

hscore 0 1 -0.0620 0.0172 12.9996 0.0003

hscore 1 1 -0.0568 0.0252 5.0940 0.0240

chcond1 0 1 -0.1140 0.0909 1.5721 0.2099

chcond1 1 1 -0.2478 0.1743 2.0201 0.1552

chcond2 0 1 -0.2660 0.1255 4.4918 0.0341

chcond2 1 1 -0.3146 0.2116 2.2106 0.1371
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Output 60.18.2 continued

Linear Hypotheses Testing Results

Label
Wald

Chi-Square DF Pr > ChiSq

sex 1.0981 1 0.2947

age 2.5658 1 0.1092

agesq 3.8309 1 0.0503

income 8.8006 1 0.0030

levyplus 0.0162 1 0.8989

freepoor 0.2569 1 0.6122

freerepa 2.0099 1 0.1563

illness 0.8630 1 0.3529

actdays 6.9407 1 0.0084

hscore 0.0476 1 0.8273

chcond1 0.6906 1 0.4060

chcond2 0.0615 1 0.8042

The preceding general model fits 12 � 2 D 24 slope parameters, and according to the “Linear Hypotheses
Testing Results” table in Output 60.18.2, several variables are unnecessarily allowing nonproportional odds.
You can obtain a more parsimonious model by specifying a subset of the parameters to have nonproportional
odds. The following statements allow the parameters for the variables in the “Linear Hypotheses Testing
Results” table that have p-values less than 0.1 (actdays, agesq, and income) to vary across the response
functions:

proc logistic data=docvisit;
model dvisits= sex age agesq income levyplus freepoor

freerepa illness actdays hscore chcond1 chcond2
/ unequalslopes=(actdays agesq income);

run;

Selected results from fitting this partial proportional odds model are displayed in Output 60.18.3.

Output 60.18.3 Results for Partial Proportional Odds Model

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 752.5512 15 <.0001

Score 947.3269 15 <.0001

Wald 683.4719 15 <.0001
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Output 60.18.3 continued

Analysis of Maximum Likelihood Estimates

Parameter dvisits DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept 0 1 2.3882 0.2716 77.2988 <.0001

Intercept 1 1 3.7597 0.3138 143.5386 <.0001

sex 1 -0.2485 0.0807 9.4789 0.0021

age 1 1.3000 1.4864 0.7649 0.3818

agesq 0 1 -2.0110 1.6345 1.5139 0.2186

agesq 1 1 -0.8789 1.6512 0.2833 0.5945

income 0 1 0.0209 0.1261 0.0275 0.8683

income 1 1 0.4283 0.2221 3.7190 0.0538

levyplus 1 -0.2703 0.0989 7.4735 0.0063

freepoor 1 0.6936 0.2589 7.1785 0.0074

freerepa 1 -0.3648 0.1358 7.2155 0.0072

illness 1 -0.2707 0.0281 92.7123 <.0001

actdays 0 1 -0.1522 0.0115 173.5696 <.0001

actdays 1 1 -0.1868 0.0129 209.7134 <.0001

hscore 1 -0.0609 0.0166 13.5137 0.0002

chcond1 1 -0.1200 0.0901 1.7756 0.1827

chcond2 1 -0.2628 0.1227 4.5849 0.0323

You can also specify the following code to let stepwise selection determine which parameters have unequal
slopes:

proc logistic data=docvisit;
model dvisits= sex age agesq income levyplus freepoor

freerepa illness actdays hscore chcond1 chcond2
/ equalslopes unequalslopes selection=stepwise details;

run;

This selection process chooses sex, freepoor, illness, and hscore as the proportional odds effects and chooses
U_actdays and U_agesq as the unconstrained general effects. For more information about model selection
for partial proportional odds models, see Derr (2013).

The partial proportional odds model can be written in the same form as the general model by letting
x D .x1; : : : ; xq; xqC1; : : : ; x12/ and ˇi D .ˇ1; : : : ; ˇq; ˇqC1;i ; : : : ; ˇ12;i /. So the first q parameters have
proportional odds and the remaining parameters do not. The last 12 – q parameters can be rewritten to have a
common slope plus an increment from the common slope: ˇqCj C qCj;i ; j D 1; : : : ; 12 � q, where the
new parameters i contain the increments from the common slopes. The model in this form makes it obvious
that the proportional odds model is a submodel of the partial proportional odds model, and both of these are
submodels of the general model. This means that you can use likelihood ratio tests to compare models.

You can use the following statements to compute the likelihood ratio tests from the Likelihood Ratio row of
the “Testing Global Null hypothesis: BETA=0” tables in the preceding outputs:
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data a;
label p='Pr>ChiSq';
format p 8.6;
input Test $10. ChiSq1 DF1 ChiSq2 DF2;
ChiSq= ChiSq1-ChiSq2;
DF= DF1-DF2;
p=1-probchi(ChiSq,DF);
keep Test Chisq DF p;
datalines;

Gen vs PO 761.4797 24 734.2971 12
PPO vs PO 752.5512 15 734.2971 12
Gen vs PPO 761.4797 24 752.5512 15
;

proc print data=a label noobs;
var Test ChiSq DF p;

run;

Output 60.18.4 Likelihood Ratio Tests

Test ChiSq DF Pr>ChiSq

Gen vs PO 27.1826 12 0.007273

PPO vs PO 18.2541 3 0.000390

Gen vs PPO 8.9285 9 0.443900

Therefore, you reject the proportional odds model in favor of both the general model and the partial
proportional odds model, and the partial proportional odds model fits as well as the general model. The
likelihood ratio test of the general model versus the proportional odds model is very similar to the score test
of the proportional odds assumption in Output 60.18.1 because of the large sample size (Stokes, Davis, and
Koch 2000, p. 249).

NOTE: The proportional odds model has increasing intercepts, which ensures the increasing nature of
the cumulative response functions. However, none of the parameters in the partial proportional odds or
general models are constrained. Because of this, sometimes during the optimization process a predicted
individual probability can be negative; the optimization continues because it might recover from this situation.
Sometimes your final model will predict negative individual probabilities for some of the observations; in this
case a message is displayed, and you should check your data for outliers and possibly redefine your model.
Other times the model fits your data well, but if you try to score new data you can get negative individual
probabilities. This means the model is not appropriate for the data you are trying to score, a message is
displayed, and the estimates are set to missing.
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Overview: MCMC Procedure
The MCMC procedure is a general purpose Markov chain Monte Carlo (MCMC) simulation procedure that
is designed to fit Bayesian models. Bayesian statistics is different from traditional statistical methods such as
frequentist or classical methods. For a short introduction to Bayesian analysis and related basic concepts, see
Chapter 7, “Introduction to Bayesian Analysis Procedures.” Also see the section “A Bayesian Reading List”
on page 154 in Chapter 7, “Introduction to Bayesian Analysis Procedures,” for a guide to Bayesian textbooks
of varying degrees of difficulty.

In essence, Bayesian statistics treats parameters as unknown random variables, and it makes inferences based
on the posterior distributions of the parameters. There are several advantages associated with this approach to
statistical inference. Some of the advantages include its ability to use prior information and to directly answer
specific scientific questions that can be easily understood. For further discussions of the relative advantages
and disadvantages of Bayesian analysis, see the section “Bayesian Analysis: Advantages and Disadvantages”
on page 130 in Chapter 7, “Introduction to Bayesian Analysis Procedures.”

It follows from Bayes’ theorem that a posterior distribution is the product of the likelihood function and the
prior distribution of the parameter. In all but the simplest cases, it is very difficult to obtain the posterior
distribution directly and analytically. Often, Bayesian methods rely on simulations to generate sample from
the desired posterior distribution and use the simulated draws to approximate the distribution and to make all
of the inferences.

PROC MCMC is a flexible, simulation-based procedure that is suitable for fitting a wide range of Bayesian
models. To use PROC MCMC, you need to specify a likelihood function for the data and a prior distribution
for the parameters. If you are fitting hierarchical models, you can specify a hyperprior distribution or
distributions for the random-effects parameters. PROC MCMC then obtains samples from the corresponding
posterior distributions, produces summary and diagnostic statistics, and saves the posterior samples in an
output data set that can be used for further analysis. Although PROC MCMC supports a suite of standard
distributions, you can analyze data that have any likelihood, prior, or hyperprior, as long as these functions
are programmable using the SAS DATA step functions. There are no constraints on how the parameters can
enter the model, in either linear or any nonlinear functional form.

The MODEL statement in PROC MCMC can automatically model missing data, response variables, or
covariates. In releases before SAS/STAT 12.1, observations with missing values were discarded prior to
the analysis. Now, PROC MCMC treats the missing values as unknown parameters and incorporates the
sampling of the missing values as part of the simulation.

PROC MCMC selects a sampling method for each parameter or a block of parameters. For example, when
conjugacy is available, samples are drawn directly from the full conditional distribution by using standard
random number generators. In other cases, PROC MCMC uses an adaptive blocked random walk Metropolis
algorithm that uses a normal proposal distribution. You can also choose alternative sampling algorithms, such
as the slice sampler.

PROC MCMC Compared with Other SAS Procedures
PROC MCMC is unlike most other SAS/STAT procedures in that the nature of the statistical inference is
Bayesian. You specify prior distributions for the parameters with PRIOR statements and the likelihood
function for the data with MODEL statements. PROC MCMC derives inferences from simulation rather than
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through analytic or numerical methods. You should expect slightly different answers from each run for the
same problem, unless the same random number seed is used. The model specification is similar to PROC
NLIN, and PROC MCMC shares some of the syntax of PROC NLMIXED.

You can also carry out a Bayesian analysis with the BCHOICE, GENMOD, PHREG, LIFEREG, and FMM
procedures for discrete choice models, generalized linear models, accelerated life failure models, Cox
regression models, piecewise constant baseline hazard models (also known as piecewise exponential models),
and finite mixture models. See Chapter 27, “The BCHOICE Procedure,” Chapter 43, “The GENMOD
Procedure,” Chapter 73, “The PHREG Procedure,” Chapter 57, “The LIFEREG Procedure,” and Chapter 39,
“The FMM Procedure.”

Getting Started: MCMC Procedure
There are three examples in this “Getting Started” section: a simple linear regression, the Behrens-Fisher
estimation problem, and a random-effects model. The regression model is chosen for its simplicity; the
Behrens-Fisher problem illustrates some advantages of the Bayesian approach; and the random-effects model
is one of the most prevalently used models.

Keep in mind that PARMS statements declare the parameters in the model, PRIOR statements declare the
prior distributions, MODEL statements declare the likelihood for the data, and RANDOM statements declare
the random effects. In most cases, you do not need to supply initial values. PROC MCMC advises you if it is
unable to generate starting values for the Markov chain.

Simple Linear Regression
This section illustrates some basic features of PROC MCMC by using a linear regression model. The model
is as follows:

Yi D ˇ0 C ˇ1Xi C �i

for the observations i D 1; 2; : : : ; n.

The following statements create a SAS data set with measurements of Height and Weight for a group of
children:

title 'Simple Linear Regression';

data Class;
input Name $ Height Weight @@;
datalines;

Alfred 69.0 112.5 Alice 56.5 84.0 Barbara 65.3 98.0
Carol 62.8 102.5 Henry 63.5 102.5 James 57.3 83.0
Jane 59.8 84.5 Janet 62.5 112.5 Jeffrey 62.5 84.0
John 59.0 99.5 Joyce 51.3 50.5 Judy 64.3 90.0
Louise 56.3 77.0 Mary 66.5 112.0 Philip 72.0 150.0
Robert 64.8 128.0 Ronald 67.0 133.0 Thomas 57.5 85.0
William 66.5 112.0
;
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The equation of interest is as follows:

Weighti D ˇ0 C ˇ1Heighti C �i

The observation errors, �i , are assumed to be independent and identically distributed with a normal distribution
with mean zero and variance �2.

Weighti � normal.ˇ0 C ˇ1Heighti ; �
2/

The likelihood function for each of the Weight, which is specified in the MODEL statement, is as follows:

p.Weightjˇ0; ˇ1; �2;Heighti / D �.ˇ0 C ˇ1Heighti ; �
2/

where p.�j�/ denotes a conditional probability density and � is the normal density. There are three parameters
in the likelihood: ˇ0, ˇ1, and �2. You use the PARMS statement to indicate that these are the parameters in
the model.

Suppose you want to use the following three prior distributions on each of the parameters:

�.ˇ0/ D �.0; var D 1e6/

�.ˇ1/ D �.0; var D 1e6/

�.�2/ D fi�.shape D 3=10; scale D 10=3/

where �.�/ indicates a prior distribution and fi� is the density function for the inverse-gamma distribution.
The normal priors on ˇ0 and ˇ1 have large variances, expressing your lack of knowledge about the regression
coefficients. The priors correspond to an equal-tail 95% credible intervals of approximately (-2000, 2000) for
ˇ0 and ˇ1. Priors of this type are often called vague or diffuse priors. See the section “Prior Distributions”
on page 125 in Chapter 7, “Introduction to Bayesian Analysis Procedures,” for more information. Typically
diffuse prior distributions have little influence on the posterior distribution and are appropriate when stronger
prior information about the parameters is not available.

A frequently used prior for the variance parameter �2 is the inverse-gamma distribution. See Table 61.22 in
the section “Standard Distributions” on page 4798 for the density definition. The inverse-gamma distribution
is a conjugate prior (see the section “Conjugate Sampling” on page 4795) for the variance parameter in a
normal distribution. Also see the section “Gamma and Inverse-Gamma Distributions” on page 4836 for
typical usages of the gamma and inverse-gamma prior distributions. With a shape parameter of 3/10 and a
scale parameter of 10/3, this prior corresponds to an equal-tail 95% credible interval of (1.7, 1E6), with the
mode at 2.5641 for �2. Alternatively, you can use any other prior distribution with positive support on this
variance component. For example, you can use the gamma prior.

According to Bayes’ theorem, the likelihood function and prior distributions determine the posterior (joint)
distribution of ˇ0, ˇ1, and �2 as follows:

�.ˇ0; ˇ1; �
2
jWeight;Height/ / �.ˇ0/�.ˇ1/�.�

2/p.Weightjˇ0; ˇ1; �2;Height/

You do not need to know the form of the posterior distribution when you use PROC MCMC. PROC MCMC
automatically obtains samples from the desired posterior distribution, which is determined by the prior and
likelihood you supply.
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The following statements fit this linear regression model with diffuse prior information:

ods graphics on;
proc mcmc data=class outpost=classout nmc=10000 thin=2 seed=246810;

parms beta0 0 beta1 0;
parms sigma2 1;
prior beta0 beta1 ~ normal(mean = 0, var = 1e6);
prior sigma2 ~ igamma(shape = 3/10, scale = 10/3);
mu = beta0 + beta1*height;
model weight ~ n(mu, var = sigma2);

run;
ods graphics off;

When ODS Graphics is enabled, diagnostic plots, such as the trace and autocorrelation function plots of the
posterior samples, are displayed. For more information about ODS Graphics, see Chapter 21, “Statistical
Graphics Using ODS.”

The PROC MCMC statement invokes the procedure and specifies the input data set Class. The output data
set Classout contains the posterior samples for all of the model parameters. The NMC= option specifies
the number of posterior simulation iterations. The THIN= option controls the thinning of the Markov chain
and specifies that one of every 2 samples is kept. Thinning is often used to reduce the correlations among
posterior sample draws. In this example, 5,000 simulated values are saved in the Classout data set. The
SEED= option specifies a seed for the random number generator, which guarantees the reproducibility of
the random stream. For more information about Markov chain sample size, burn-in, and thinning, see the
section “Burn-in, Thinning, and Markov Chain Samples” on page 136 in Chapter 7, “Introduction to Bayesian
Analysis Procedures.”

The PARMS statements identify the three parameters in the model: beta0, beta1, and sigma2. Each statement
also forms a block of parameters, where the parameters are updated simultaneously in each iteration. In this
example, beta0 and beta1 are sampled jointly, conditional on sigma2; and sigma2 is sampled conditional on
fixed values of beta0 and beta1. In simple regression models such as this, you expect the parameters beta0
and beta1 to have high posterior correlations, and placing them both in the same block improves the mixing
of the chain—that is, the efficiency that the posterior parameter space is explored by the Markov chain. For
more information, see the section “Blocking of Parameters” on page 4789. The PARMS statements also
assign initial values to the parameters (see the section “Initial Values of the Markov Chains” on page 4796).
The regression parameters are given 0 as their initial values, and the scale parameter sigma2 starts at value 1.
If you do not provide initial values, PROC MCMC chooses starting values for every parameter.

The PRIOR statements specify prior distributions for the parameters. The parameters beta0 and beta1
both share the same prior—a normal prior with mean 0 and variance 1e6. The parameter sigma2 has an
inverse-gamma distribution with a shape parameter of 3/10 and a scale parameter of 10/3. For a list of
standard distributions that PROC MCMC supports, see the section “Standard Distributions” on page 4798.

The MU assignment statement calculates the expected value of Weight as a linear function of Height. The
MODEL statement uses the shorthand notation, n, for the normal distribution to indicate that the response
variable, Weight, is normally distributed with parameters mu and sigma2. The functional argument MEAN=
in the normal distribution is optional, but you have to indicate whether sigma2 is a variance (VAR=), a
standard deviation (SD=), or a precision (PRECISION=) parameter. See Table 61.2 in the section “MODEL
Statement” on page 4766 for distribution specifications.
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The distribution parameters can contain expressions. For example, you can write the MODEL statement as
follows:

model weight ~ n(beta0 + beta1*height, var = sigma2);

Before you do any posterior inference, it is essential that you examine the convergence of the Markov chain
(see the section “Assessing Markov Chain Convergence” on page 137 in Chapter 7, “Introduction to Bayesian
Analysis Procedures”). You cannot make valid inferences if the Markov chain has not converged. A very
effective convergence diagnostic tool is the trace plot. Although PROC MCMC produces graphs at the end of
the procedure output (see Figure 61.5), you should visually examine the convergence graph first.

The first table that PROC MCMC produces is the “Number of Observations” table, as shown in Figure 61.1.
This table lists the number of observations read from the DATA= data set and the number of observations
used in the analysis.

Figure 61.1 Observation Information

Simple Linear Regression

The MCMC Procedure

Simple Linear Regression

The MCMC Procedure

Number of Observations Read
Number of Observations Used

19
19

The “Parameters” table, shown in Figure 61.2, lists the names of the parameters, the blocking information, the
sampling method used, the starting values, and the prior distributions. For more information about blocking
information, see the section “Blocking of Parameters” on page 4789; for more information about starting
values, see the section “Initial Values of the Markov Chains” on page 4796. The first block, which consists of
the parameters beta0 and beta1, uses a random walk Metropolis algorithm. The second block, which consists
of the parameter sigma2, is updated via its full conditional distribution in conjugacy. You should check this
table to ensure that you have specified the parameters correctly, especially for complicated models.

Figure 61.2 Parameter Information

Parameters

Block Parameter
Sampling
Method

Initial
Value Prior Distribution

1 beta0 N-Metropolis 0 normal(mean = 0, var = 1e6)

beta1 0 normal(mean = 0, var = 1e6)

2 sigma2 Conjugate 1.0000 igamma(shape = 3/10, scale = 10/3)

For each posterior distribution, PROC MCMC also reports summary and interval statistics (posterior means,
standard deviations, and 95% highest posterior density credible intervals), as shown in Figure 61.3. For
more information about posterior statistics, see the section “Summary Statistics” on page 151 in Chapter 7,
“Introduction to Bayesian Analysis Procedures.”
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Figure 61.3 MCMC Summary and Interval Statistics

Simple Linear Regression

The MCMC Procedure

Simple Linear Regression

The MCMC Procedure

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

beta0 5000 -142.8 33.4326 -210.8 -81.6714

beta1 5000 3.8924 0.5333 2.9056 4.9545

sigma2 5000 137.3 51.1030 59.2362 236.3

By default, PROC MCMC computes the effective sample sizes (ESSs) as a convergence diagnostic test to
help you determine whether the chain has converged. The ESSs are shown in Figure 61.4. For details and
interpretations of ESS and additional convergence diagnostics, see the section “Assessing Markov Chain
Convergence” on page 137 in Chapter 7, “Introduction to Bayesian Analysis Procedures.”

Figure 61.4 MCMC Convergence Diagnostics

Simple Linear Regression

The MCMC Procedure

Simple Linear Regression

The MCMC Procedure

Effective Sample Sizes

Parameter ESS
Autocorrelation

Time Efficiency

beta0 1102.2 4.5366 0.2204

beta1 1119.0 4.4684 0.2238

sigma2 2910.1 1.7182 0.5820

PROC MCMC produces a number of graphs, shown in Figure 61.5, which also aid convergence diagnostic
checks. With the trace plots, there are two important aspects to examine. First, you want to check whether
the mean of the Markov chain has stabilized and appears constant over the graph. Second, you want to check
whether the chain has good mixing and is “dense,” in the sense that it quickly traverses the support of the
distribution to explore both the tails and the mode areas efficiently. The plots show that the chains appear to
have reached their stationary distributions.

Next, you should examine the autocorrelation plots, which indicate the degree of autocorrelation for each of
the posterior samples. High correlations usually imply slow mixing. Finally, the kernel density plots estimate
the posterior marginal distributions for each parameter.
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Figure 61.5 Diagnostic Plots for ˇ0, ˇ1 and �2
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Figure 61.5 continued

In regression models such as this, you expect the posterior estimates to be very similar to the maximum
likelihood estimators with noninformative priors on the parameters, The REG procedure produces the
following fitted model (code not shown):

Weight D �143:0C 3:9 � Height

These are very similar to the means show in Figure 61.3. With PROC MCMC, you can carry out informative
analysis that uses specifications to indicate prior knowledge on the parameters. Informative analysis is likely
to produce different posterior estimates, which are the result of information from both the likelihood and the
prior distributions. Incorporating additional information in the analysis is one major difference between the
classical and Bayesian approaches to statistical inference.

The Behrens-Fisher Problem
One of the famous examples in the history of statistics is the Behrens-Fisher problem (Fisher 1935). Consider
the situation where there are two independent samples from two different normal distributions:

y11; y12; � � � ; y1n1 � normal.�1; �21 /

y21; y22; � � � ; y2n2 � normal.�2; �22 /

Note that n1 ¤ n2. When you do not want to assume that the variances are equal, testing the hypothesis
H0 W �1 D �2 is a difficult problem in the classical statistics framework, because the distribution under H0
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is not known. Within the Bayesian framework, this problem is straightforward because you can estimate the
posterior distribution of �1 � �2 while taking into account the uncertainties in all of parameters by treating
them as random variables.

Suppose you have the following set of data:

title 'The Behrens-Fisher Problem';

data behrens;
input y ind @@;
datalines;

121 1 94 1 119 1 122 1 142 1 168 1 116 1
172 1 155 1 107 1 180 1 119 1 157 1 101 1
145 1 148 1 120 1 147 1 125 1 126 2 125 2
130 2 130 2 122 2 118 2 118 2 111 2 123 2
126 2 127 2 111 2 112 2 121 2
;

The response variable is y, and the ind variable is the group indicator, which takes two values: 1 and 2. There
are 19 observations that belong to group 1 and 14 that belong to group 2.

The likelihood functions for the two samples are as follows:

p.y1i j�1; �
2
1 / D �.y1i I�1; �

2
1 / for i D 1; � � � ; 19

p.y2j j�2; �
2
2 / D �.y2j I�2; �

2
2 / for j D 1; � � � ; 14

Berger (1985) showed that a uniform prior on the support of the location parameter is a noninformative prior.
The distribution is invariant under location transformations—that is, � D �C c. You can use this prior for
the mean parameters in the model:

�.�1/ / 1

�.�2/ / 1

In addition, Berger (1985) showed that a prior of the form 1=�2 is noninformative for the scale parameter,
and it is invariant under scale transformations (that is � D c�2). You can use this prior for the variance
parameters in the model:

�.�21 / / 1=�21

�.�22 / / 1=�22

The log densities of the prior distributions on �21 and �22 are:

log.�.�21 // D � log.�21 /
log.�.�22 // D � log.�22 /
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The following statements generate posterior samples of �1; �2; �21 ; �
2
2 , and the difference in the means:

�1 � �2:

proc mcmc data=behrens outpost=postout seed=123
nmc=40000 monitor=(_parms_ mudif)
statistics(alpha=0.01);

ods select PostSumInt;
parm mu1 0 mu2 0;
parm sig21 1;
parm sig22 1;
prior mu: ~ general(0);
prior sig21 ~ general(-log(sig21), lower=0);
prior sig22 ~ general(-log(sig22), lower=0);
mudif = mu1 - mu2;
if ind = 1 then do;

mu = mu1;
s2 = sig21;

end;
else do;

mu = mu2;
s2 = sig22;

end;
model y ~ normal(mu, var=s2);

run;

The PROC MCMC statement specifies an input data set (Behrens), an output data set containing the posterior
samples (Postout), a random number seed, and the simulation size. The MONITOR= option specifies a list
of symbols, which can be either parameters or functions of the parameters in the model, for which inference
is to be done. The symbol _parms_ is a shorthand for all model parameters—in this case, mu1, mu2, sig21,
and sig22. The symbol mudif is defined in the program as the difference between �1 and �2.

The global suboption ALPHA=0.01 in the STATISTICS= option specifies 99% highest posterior density
(HPD) credible intervals for all parameters.

The ODS SELECT statement displays the summary statistics and interval statistics tables while excluding all
other output. For a complete list of ODS tables that PROC MCMC can produce, see the sections “Displayed
Output” on page 4856 and “ODS Table Names” on page 4860.

The PARMS statements assign the parameters mu1 and mu2 to the same block, and sig21 and sig22 each to
their own separate blocks. There are a total of three blocks. The PARMS statements also assign an initial
value to each parameter.

The PRIOR statements specify prior distributions for the parameters. Because the priors are all nonstandard
(uniform on the real axis for �1 and �2 and 1=�2 for �21 and �22 ), you must use the GENERAL function here.
The argument in the GENERAL function is an expression for the log of the distribution, up to an additive
constant. This distribution can have any functional form, as long as it is programmable using SAS functions
and expressions. The function specifies a distribution on the log scale, not on the original scale. The log of
the prior on mu1 and mu2 is 0, and the log of the priors on sig21 and sig22 are –log(sig21) and –log(sig22)
respectively. See the section “Specifying a New Distribution” on page 4813 for more information about how
to specify an arbitrary distribution. The LOWER= option indicates that both variance terms must be strictly
positive.
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The MUDIF assignment statement calculates the difference between mu1 and mu2. The IF-ELSE statements
enable different y’s to have different mean and variance, depending on their group indicator ind. The MODEL
statement specifies the normal likelihood function for each observation in the model.

Figure 61.6 displays the posterior summary and interval statistics.

Figure 61.6 Posterior Summary and Interval Statistics

The Behrens-Fisher Problem

The MCMC Procedure

The Behrens-Fisher Problem

The MCMC Procedure

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

99%
HPD Interval

mu1 40000 134.8 6.0092 119.1 152.3

mu2 40000 121.4 1.9119 116.1 126.6

sig21 40000 685.0 255.3 260.0 1580.5

sig22 40000 51.1811 23.8675 14.2322 136.0

mudif 40000 13.3730 6.3095 -3.3609 30.7938

The mean difference has a posterior mean value of 13.37, and the lower endpoints of the 99% credible
intervals are negative. This suggests that the mean difference is positive with a high probability. However, if
you want to estimate the probability that �1 � �2 > 0, you can do so as follows.

The following statements produce Figure 61.7:

proc format;
value diffmt low-0 = 'mu1 - mu2 <= 0' 0<-high = 'mu1 - mu2 > 0';

run;

proc freq data = postout;
tables mudif /nocum;
format mudif diffmt.;

run;

The sample estimate of the posterior probability that �1 � �2 > 0 is 0.98. This example illustrates an
advantage of Bayesian analysis. You are not limited to making inferences based on model parameters only.
You can accurately quantify uncertainties with respect to any function of the parameters, and this allows for
flexibility and easy interpretations in answering many scientific questions.

Figure 61.7 Estimated Probability of �1 � �2 > 0.

The Behrens-Fisher Problem

The FREQ Procedure

The Behrens-Fisher Problem

The FREQ Procedure

mudif Frequency Percent

mu1 - mu2 <= 0 753 1.88

mu1 - mu2 > 0 39247 98.12
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Random-Effects Model
This example illustrates how you can fit a normal likelihood random-effects model in PROC MCMC.
PROC MCMC offers you the ability to model beyond the normal likelihood (see “Example 61.7: Logistic
Regression Random-Effects Model” on page 4901, “Example 61.8: Nonlinear Poisson Regression Multilevel
Random-Effects Model” on page 4903, and “Example 61.16: Piecewise Exponential Frailty Model” on
page 4948).

Consider a scenario in which data are collected in groups and you want to model group-specific effects. You
can use a random-effects model (sometimes also known as a variance-components model):

yij D ˇ0 C ˇ1xij C i C eij ; eij � normal.0; �2/

where i D 1; 2; � � � ; I is the group index and j D 1; 2; � � � ; ni indexes the observations in the ith group.
In the regression model, the fixed effects ˇ0 and ˇ1 are the intercept and the coefficient for variable xij ,
respectively. The random effect i is the mean for the ith group, and eij are the error term.

Consider the following SAS data set:

title 'Random-Effects Model';

data heights;
input Family G$ Height @@;
datalines;

1 F 67 1 F 66 1 F 64 1 M 71 1 M 72 2 F 63
2 F 63 2 F 67 2 M 69 2 M 68 2 M 70 3 F 63
3 M 64 4 F 67 4 F 66 4 M 67 4 M 67 4 M 69
;

The response variable Height measures the heights (in inches) of 18 individuals. The covariate x is the
gender (variable G), and the individuals are grouped according to Family (group index). Since the variable
G is a character variable and PROC MCMC does not support a CLASS statement, you need to create the
corresponding design matrix. In this example, the design matrix for a factor variable of level 2 (M and F) can
be constructed using the following statement:

data input;
set heights;
if g eq 'F' then gf = 1;
else gf = 0;
drop g;

run;

The data set variable gf is a numeric variable and can be used in the regression model in PROC MCMC.

In data sets with factor variables that have more levels, you can consider using PROC TRANSREG to
construct the design matrix. See the section “Create Design Matrix” on page 4825 for more information.

To model the data, you can assume that Height is normally distributed:

yij � normal.�ij ; �2/; �ij D ˇ0 C ˇ1gfij C i

The priors on the parameters ˇ0, ˇ1, i are also assumed to be normal:

ˇ0; ˇ1 � normal.0; var D 1e5/

i � normal.0; var D �2 /
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Priors on the variance terms, �2 and �2 , are inverse-gamma:

�2; �2 � igamma.shape D 0:01; scale D 0:01/

The inverse-gamma distribution is a conjugate prior for the variance in the normal likelihood and the variance
in the prior distribution of the random effect.

The following statements fit a linear random-effects model to the data and produce the output shown in
Figure 61.9 and Figure 61.10:

ods graphics on;
proc mcmc data=input outpost=postout nmc=50000 seed=7893 plots=trace;

ods select Parameters REparameters PostSumInt tracepanel;
parms b0 0 b1 0 s2 1 s2g 1;

prior b: ~ normal(0, var = 10000);
prior s: ~ igamma(0.01, scale = 0.01);
random gamma ~ normal(0, var = s2g) subject=family monitor=(gamma);
mu = b0 + b1 * gf + gamma;
model height ~ normal(mu, var = s2);

run;
ods graphics off;

Some of the statements are very similar to those shown in the previous two examples. The ODS GRAPHICS
ON statement enables ODS Graphics. The PROC MCMC statement specifies the input and output data sets,
the simulation size, and a random number seed. The ODS SELECT statement displays the model parameter
and random-effects parameter information tables, summary statistics table, the interval statistics table, and
the trace plots.

The PARMS statement lumps all four model parameters in a single block. They are b0 (overall intercept), b1
(main effect for gf), s2 (variance of the likelihood function), and s2g (variance of the random effect). If a
random walk Metropolis sampler is the only applicable sampler for all parameters, then these four parameters
are updated in a single block. However, because PROC MCMC updates the parameters s2 and s2g via
conjugacy, these parameters are separated into individual blocks. (See the Block column in “Parameters”
table in Figure 61.8.)

The PRIOR statements specify priors for all the parameters. The notation b: is a shorthand for all symbols
that start with the letter ‘b’. In this example, b: includes b0 and b1. Similarly, s: stands for both s2 and s2g.
This shorthand notation can save you some typing, and it keeps your statements tidy.

The RANDOM statement specifies a single random effect to be gamma, and specifies that it has a normal
prior centered at 0 with variance s2g. The SUBJECT= argument in the RANDOM statement defines a
group index (family) in the model, where all observations from the same family should have the same group
indicator value. The MONITOR= option outputs analysis for all the random-effects parameters.

Finally, the MU assignment statement calculates the expected value of the height of the model. The calculation
includes the random-effects term gamma. The MODEL statement specifies the likelihood function for height.

The “Parameters” and “Random-Effects Parameters” tables, shown in Figure 61.8, contain information about
the model parameters and the four random-effects parameters.
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Figure 61.8 Model and Random-Effects Parameter Information

Random-Effects Model

The MCMC Procedure

Random-Effects Model

The MCMC Procedure

Parameters

Block Parameter
Sampling
Method

Initial
Value Prior Distribution

1 s2 Conjugate 1.0000 igamma(0.01, scale = 0.01)

2 s2g Conjugate 1.0000 igamma(0.01, scale = 0.01)

3 b0 N-Metropolis 0 normal(0, var = 10000)

b1 0 normal(0, var = 10000)

Random Effect Parameters

Parameter
Sampling
Method Subject

Number of
Subjects

Subject
Values

Prior
Distribution

gamma N-Metropolis Family 4 1 2 3 4 normal(0, var = s2g)

The posterior summary and interval statistics for the model parameters and the random-effects parameters
are shown in Figure 61.9.

Figure 61.9 Posterior Summary and Interval Statistics

Random-Effects Model

The MCMC Procedure

Random-Effects Model

The MCMC Procedure

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

b0 50000 68.4687 1.2757 65.9159 71.1771

b1 50000 -3.5502 0.9762 -5.4269 -1.5257

s2 50000 4.1446 1.9506 1.3768 7.9151

s2g 50000 4.9378 19.2469 0.00105 18.7219

gamma_1 50000 0.9383 1.3255 -1.0078 4.1195

gamma_2 50000 0.0139 1.1956 -2.6746 2.4767

gamma_3 50000 -1.3470 1.6495 -4.7168 1.0744

gamma_4 50000 0.0966 1.1971 -2.4108 2.7432

Trace plots for all the parameters are shown in Figure 61.10. The mixing looks very reasonable, suggesting
convergence.
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Figure 61.10 Plots for b1 and Log of the Posterior Density
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Figure 61.10 continued

From the interval statistics table, you see that both the equal-tail and HPD intervals for ˇ0 are positive,
strongly indicating the positive effect of the parameter. On the other hand, both intervals for ˇ1 cover the
value zero, indicating that gf does not have a strong impact on predicting height in this model.

Syntax: MCMC Procedure
The following statements are available in the MCMC procedure. Items within < > are optional.

PROC MCMC < options > ;
ARRAY arrayname [ dimensions ] < $ > < variables-and-constants > ;
BEGINCNST/ENDCNST ;
BEGINNODATA/ENDNODATA ;
BY variables ;
MODEL variable Ï distribution < options > ;
PARMS parameter < = > number < / options > ;
PREDDIST < 'label ' > OUTPRED=SAS-data-set < options > ;
PRIOR/HYPERPRIOR parameter Ï distribution ;
Programming statements ;
RANDOM random-effects-specification < / options > ;
UDS subroutine-name (subroutine-argument-list) ;
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The PARMS statements declare parameters in the model and assign optional starting values for the Markov
chain. The PRIOR/HYPERPRIOR statements specify the prior distributions of the parameters. The MODEL
statements specify the log-likelihood functions for the response variables. These statements form the basis of
most Bayesian models.

In addition, you can use the ARRAY statement to define constant or parameter arrays, the BEGINC-
NST/ENDCNST and BEGINNODATA/ENDNODATA statements to omit unnecessary evaluation and reduce
simulation time, the PREDDIST statement to generate samples from the posterior predictive distribution,
the program statements to specify more complicated models that you want to fit, the RANDOM statement
to specify random effects and their prior distributions, and the UDS statement to define your own Gibbs
samplers to sample parameters in the model.

The following sections provide a description of each of these statements.

PROC MCMC Statement
PROC MCMC options ;

The PROC MCMC statement invokes the MCMC procedure. Table 61.1 summarizes the options available in
the PROC MCMC statement.

Table 61.1 PROC MCMC Statement Options

Option Description

Basic options
DATA= Names the input data set
OUTPOST= Names the output data set for posterior samples of parameters

Debugging output
LIST Displays model program and variables
LISTCODE Displays compiled model program
TRACE Displays detailed model execution messages

Frequently used MCMC options
MAXTUNE= Specifies the maximum number of tuning loops
MINTUNE= Specifies the minimum number of tuning loops
NBI= Specifies the number of burn-in iterations
NMC= Specifies the number of MCMC iterations, excluding the burn-in iterations
NTHREADS= Specifies the number of threads to use
NTU= Specifies the number of tuning iterations
PROPCOV= Controls options for constructing the initial proposal covariance matrix
SEED= Specifies the random seed for simulation
THIN= Specifies the thinning rate

Less frequently used MCMC options
ACCEPTTOL= Specifies the acceptance rate tolerance
DISCRETE= Controls sampling discrete parameters
INIT= Controls generating initial values
MCHISTORY= Displays Markov chain sampling history
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Table 61.1 (continued)

Option Description

MAXINDEXPRINT= Specifies the maximum number of observation indices to print in models
with missing data

MAXSUBVALUEPRINT= Specifies the maximum number of subject values to print in the “Random
Effects Parameters” table

PROPDIST= Specifies the proposal distribution
REOBSINFO Displays more detailed information about each random effect
SCALE= Specifies the initial scale applied to the proposal distribution
TARGACCEPT= Specifies the target acceptance rate for random walk sampler
TARGACCEPTI= Specifies the target acceptance rate for independence sampler
TUNEWT= Specifies the weight used in covariance updating

Summary, diagnostics, and plotting options
AUTOCORLAG= Specifies the number of autocorrelation lags used to compute effective

sample sizes and Monte Carlo errors
DIAGNOSTICS= Controls the convergence diagnostics
DIC Computes deviance information criterion (DIC)
MONITOR= Outputs analysis for a list of symbols of interest
PLOTS= Controls plotting
STATISTICS= Controls posterior statistics

Other Options
INF= Specifies the machine numerical limit for infinity
JOINTMODEL Specifies joint log-likelihood function
MISSING= Indicates how missing values are handled.
NOLOGDIST Omits the calculation of the logarithm of the joint distribution of the param-

eters
SIMREPORT= Controls the frequency of report for expected run time
SINGDEN= Specifies the singularity tolerance

These options are described in alphabetical order.

ACCEPTTOL=n
specifies a tolerance for acceptance probabilities. By default, ACCEPTTOL=0.075.

AUTOCORLAG=n

ACLAG=n
specifies the maximum number of autocorrelation lags used in computing the effective sample size;
see the section “Effective Sample Size” on page 150 in Chapter 7, “Introduction to Bayesian Analysis
Procedures,” for more details. The value is used in the calculation of the Monte Carlo standard error; see
the section “Standard Error of the Mean Estimate” on page 151 in Chapter 7, “Introduction to Bayesian
Analysis Procedures.” By default, AUTOCORLAG=MIN(500, MCsample/4), where MCsample is the
Markov chain sample size kept after thinning—that is, MCsampleD

h
NMC

NTHIN

i
. If AUTOCORLAG=

is set too low, you might observe significant lags, and the effective sample size cannot be calculated
accurately. A WARNING message appears, and you can either increase AUTOCORLAG= or NMC=,
accordingly.
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DISCRETE=keyword
specifies the proposal distribution used in sampling discrete parameters. The default is DIS-
CRETE=BINNING.

The keyword values are as follows:

BINNING
uses continuous proposal distributions for all discrete parameter blocks. The proposed sample is
then discretized (binned) before further calculations. This sampling method approximates the
correlation structure among the discrete parameters in the block and could improve mixing in
some cases.

GEO
uses independent symmetric geometric proposal distributions for all discrete parameter blocks.
This proposal does not take parameter correlations into account. However, it can work better than
the BINNING option in cases where the range of the parameters is relatively small and a normal
approximation can perform poorly.

DIAGNOSTICS=NONE | (keyword-list)

DIAG=NONE | (keyword-list)
specifies options for MCMC convergence diagnostics. By default, PROC MCMC computes the Geweke
test, sample autocorrelations, effective sample sizes, and Monte Carlo errors. The Raftery-Lewis and
Heidelberger-Welch tests are also available. See the section “Assessing Markov Chain Convergence” on
page 137 in Chapter 7, “Introduction to Bayesian Analysis Procedures,” for more details on convergence
diagnostics. You can request all of the diagnostic tests by specifying DIAGNOSTICS=ALL. You can
suppress all the tests by specifying DIAGNOSTICS=NONE.

You can use postprocessing autocall macros to calculate convergence diagnostics of the posterior
samples after PROC MCMC has exited. See the section “Autocall Macros for Postprocessing” on
page 4833.

The following options are available.

ALL
computes all diagnostic tests and statistics. You can combine the option ALL with any other
specific tests to modify test options. For example DIAGNOSTICS=(ALL AUTOCORR(LAGS=(1
5 35))) computes all tests with default settings and autocorrelations at lags 1, 5, and 35.

AUTOCORR < (autocorr-options) >
computes default autocorrelations at lags 1, 5, 10, and 50 for each variable. You can choose other
lags by using the following autocorr-options:

LAGS | AC=numeric-list
specifies autocorrelation lags. The numeric-list must take positive integer values.

ESS
computes the effective sample sizes (Kass et al. (1998)) of the posterior samples of each parameter.
It also computes the correlation time and the efficiency of the chain for each parameter. Small
values of ESS might indicate a lack of convergence. See the section “Effective Sample Size” on
page 150 in Chapter 7, “Introduction to Bayesian Analysis Procedures,” for more details.
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GEWEKE < (Geweke-options) >
computes the Geweke spectral density diagnostics; this is a two-sample t-test between the first f1
portion and the last f2 portion of the chain. See the section “Geweke Diagnostics” on page 144
in Chapter 7, “Introduction to Bayesian Analysis Procedures,” for more details. The default
is FRAC1=0.1 and FRAC2=0.5, but you can choose other fractions by using the following
Geweke-options:

FRAC1 | F1=value

specifies the beginning FRAC1 proportion of the Markov chain. By default, FRAC1=0.1.

FRAC2 | F2=value

specifies the end FRAC2 proportion of the Markov chain. By default, FRAC2=0.5.

HEIDELBERGER | HEIDEL < (Heidel-options) >
computes the Heidelberger and Welch diagnostic (which consists of a stationarity test and a
halfwidth test) for each variable. The stationary diagnostic test tests the null hypothesis that
the posterior samples are generated from a stationary process. If the stationarity test is passed,
a halfwidth test is then carried out. See the section “Heidelberger and Welch Diagnostics” on
page 146 in Chapter 7, “Introduction to Bayesian Analysis Procedures,” for more details.

These diagnostics are not performed by default. You can specify the DIAGNOS-
TICS=HEIDELBERGER option to request these diagnostics, and you can also specify
suboptions, such as DIAGNOSTICS=HEIDELBERGER(EPS=0.05), as follows:

SALPHA=value

specifies the ˛ level .0 < ˛ < 1/ for the stationarity test. By default, SALPHA=0.05.

HALPHA=value

specifies the ˛ level .0 < ˛ < 1/ for the halfwidth test. By default, HALPHA=0.05.

EPS=value

specifies a small positive number � such that if the halfwidth is less than � times the sample
mean of the retaining iterates, the halfwidth test is passed. By default, EPS=0.1.

MCSE

MCERROR
computes the Monte Carlo standard error for the posterior samples of each parameter.

NONE
suppresses all of the diagnostic tests and statistics. This is not recommended.

RAFTERY | RL < (Raftery-options) >
computes the Raftery and Lewis diagnostics, which evaluate the accuracy of the estimated
quantile ( O�Q for a given Q 2 .0; 1/) of a chain. O�Q can achieve any degree of accuracy when
the chain is allowed to run for a long time. The algorithm stops when the estimated probability
OPQ D Pr.� � O�Q/ reaches within ˙R of the value Q with probability S; that is, Pr.Q � R �
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OPQ � QC R/ D S. See the section “Raftery and Lewis Diagnostics” on page 147 in Chapter 7,
“Introduction to Bayesian Analysis Procedures,” for more details. The Raftery-options enable
you to specify Q, R, S, and a precision level � for a stationary test.

These diagnostics are not performed by default. You can specify the DIAGNOSTICS=RAFERTY
option to request these diagnostics, and you can also specify suboptions, such as DIAGNOS-
TICS=RAFERTY(QUANTILE=0.05), as follows:

QUANTILE | Q=value

specifies the order (a value between 0 and 1) of the quantile of interest. By default, QUAN-
TILE=0.025.

ACCURACY | R=value

specifies a small positive number as the margin of error for measuring the accuracy of
estimation of the quantile. By default, ACCURACY=0.005.

PROB | S=value

specifies the probability of attaining the accuracy of the estimation of the quantile. By
default, PROB=0.95.

EPS=value

specifies the tolerance level (a small positive number) for the stationary test. By default,
EPS=0.001.

DIC
computes the Deviance Information Criterion (DIC). DIC is calculated using the posterior mean
estimates of the parameters. See the section “Deviance Information Criterion (DIC)” on page 153 in
Chapter 7, “Introduction to Bayesian Analysis Procedures,” for more details.

DATA=SAS-data-set
specifies the input data set. Observations in this data set are used to compute the log-likelihood function
that you specify with PROC MCMC statements.

INF=value
specifies the numerical definition of infinity in PROC MCMC. The default is INF=1E15. For example,
PROC MCMC considers 1E16 to be outside of the support of the normal distribution and assigns a
missing value to the log density evaluation. You can select a larger value with the INF= option. The
minimum value allowed is 1E10.

INIT=(keyword-list)
specifies options for generating the initial values for the parameters. These options apply only to
prior distributions that are recognized by PROC MCMC. See the section “Standard Distributions” on
page 4798 for a list of these distributions. If either of the functions GENERAL or DGENERAL is used,
you must supply explicit initial values for the parameters. By default, INIT=MODE. The following
keywords are used:
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MODE
uses the mode of the prior density as the initial value of the parameter, if you did not provide one.
If the mode does not exist or if it is on the boundary of the support of the density, the mean value
is used. If the mean is outside of the support or on the boundary, which can happen if the prior
distribution is truncated, a random number drawn from the prior is used as the initial value.

PINIT
tabulates parameter values after the tuning phase. This option also tabulates the tuned proposal
parameters used by the Metropolis algorithm. These proposal parameters include covariance
matrices for continuous parameters and probability vectors for discrete parameters for each block.
By default, PROC MCMC does not display the initial values or the tuned proposal parameters
after the tuning phase.

RANDOM
generates a random number from the prior density and uses it as the initial value of the parameter,
if you did not provide one.

REINIT
resets the parameters, after the tuning phase, with the initial values that you provided explicitly
or that were assigned by PROC MCMC. By default, PROC MCMC does not reset the parameters
because the tuning phase usually moves the Markov chains to a more favorable place in the
posterior distribution.

LIST
displays the model program and variable lists. The LIST option is a debugging feature and is not
normally needed.

LISTCODE
displays the compiled program code. The LISTCODE option is a debugging feature and is not normally
needed.

JOINTMODEL
JOINTLLIKE

specifies how the likelihood function is calculated. By default, PROC MCMC assumes that the
observations in the data set are independent so that the joint log-likelihood function is the sum of the
individual log-likelihood functions for the observations, where the individual log-likelihood function
is specified in the MODEL statement. When your data are not independent, you can specify the
JOINTMODEL option to modify the way that PROC MCMC computes the joint log-likelihood
function. In this situation, PROC MCMC no longer steps through the input data set to sum the
individual log likelihood.

To use this option correctly, you need to do the following two things:

• create ARRAY symbols to store all data set variables that are used in the program. This can be
accomplished with the BEGINCNST and ENDCNST statements.

• program the joint log-likelihood function by using these ARRAY symbols only. The MODEL
statement specifies the joint log-likelihood function for the entire data set. Typically, you use the
function GENERAL in the MODEL statement.

See the sections “BEGINCNST/ENDCNST Statement” on page 4763 and “Modeling Joint Likelihood”
on page 4827 for details.
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MAXTUNE=n
specifies an upper limit for the number of proposal tuning loops. By default, MAXTUNE=24. See the
section “Covariance Tuning” on page 4793 for more details.

MAXINDEXPRINT=number | ALL

MAXIPRINT=number | ALL
specifies the maximum number of observation indices to print in the ODS tables “Missing Response
Information” table and “Missing Covariates Information” table. This option applies only to programs
that model missing data. The default value is 20. MAXINDEXPRINT=ALL prints all observation
indices for every missing variable that is modeled in PROC MCMC.

MAXSUBVALUEPRINT=number | ALL

MAXSVPRINT=number | ALL
specifies the maximum number of subject values to display in the “Subject Values” column of the
ODS table “Random Effects Parameters.” This option applies only to programs that have RANDOM
statements. The default value is 20. MAXSUBVALUEPRINT=ALL prints all subject values for every
random effect in the program.

MCHISTORY=keyword

MCHIST=keyword
controls the display of the Markov chain sampling history.

BRIEF
produces a summary output for the tuning, burn-in, and sampling history tables. The tables show
the following when applicable:

• “RWM Scale” shows the scale, or the range of the scales, used in each random walk
Metropolis block that is normal or is based on a t distribution.

• “Probability” shows the proposal probability parameter, or the range of the parameters, used
in each random walk Metropolis block that is based on a geometric distribution.

• “RWM Acceptance Rate” shows the acceptance rate, or the range of the acceptance rates,
for each random walk Metropolis block.

• “IM Acceptance Rate” shows the acceptance rate, or the range of the acceptance rates, for
each independent Metropolis block.

DETAILED
produces detailed output of the tuning, burn-in, and sampling history tables, including scale
values, acceptance probabilities, blocking information, and so on. Use this option with caution,
especially in random-effects models that have a large number of random-effects groups. This
option can produce copious output.

NONE
produces none of the tuning history, burn-in history, and sampling history tables.

The default is MCHISTORY=NONE.

MINTUNE=n
specifies a lower limit for the number of proposal tuning loops. By default, MINTUNE=2. See the
section “Covariance Tuning” on page 4793 for more details.
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MISSING=keyword

MISS=keyword
specifies how missing values are handled (see the section “Handling of Missing Data” on page 4842
for more details). The default is MISSING=COMPLETECASE.

ALLCASE | AC
gives you the option to model the missing values in an all-case analysis. You can use any
techniques that you see fit, for example, fully Bayesian or multiple imputation.

COMPLETECASE | CC
assumes a complete case analysis, so all observations with missing variable values are discarded
prior to the simulation.

MONITOR= (symbol-list)
outputs analysis for selected symbols of interest in the program. The symbols can be any of the
following: model parameters (symbols in the PARMS statement), secondary parameters (assigned
using the operator “=”), the log of the posterior density (LOGPOST), the log of the prior density
(LOGPRIOR), the log of the hyperprior density (LOGHYPER) if the HYPER statement is used, or the
log of the likelihood function (LOGLIKE). You can use the keyword _PARMS_ as a shorthand for all
of the model parameters. PROC MCMC performs only posterior analyses (such as plotting, diagnostics,
and summaries) on the symbols selected with the MONITOR= option. You can also choose to monitor
an entire array by specifying the name of the array. By default MONITOR=_PARMS_.

Posterior samples of any secondary parameters listed in the MONITOR= option are saved in the
OUTPOST= data set. Posterior samples of model parameters are always saved to the OUTPOST= data
set, regardless of whether they appear in the MONITOR= option.

NBI=n
specifies the number of burn-in iterations to perform before beginning to save parameter estimate
chains. By default, NBI=1000. See the section “Burn-in, Thinning, and Markov Chain Samples” on
page 136 in Chapter 7, “Introduction to Bayesian Analysis Procedures,” for more details.

NMC=n
specifies the number of iterations in the main simulation loop. This is the MCMC sample size if
THIN=1. By default, NMC=1000.

NOLOGDIST
omits the calculation of the logarithm of the joint distribution of the model parameters at each iteration.
The option applies only if all parameters in the model are updated directly from their target distribution,
either from the full conditional posterior via conjugacy or from the marginal distribution. Such
algorithms do not require the calculation of the joint posterior distribution; hence PROC MCMC runs
faster by avoiding these unnecessary calculations. As a result, the OUTPOST= data set does not
contain the LOGPRIOR, LOGLIKE, and LOGPOST variables.

NTHREADS=n
specifies the number of threads for simulation. PROC MCMC performs two types of threading. In
sampling model parameters, PROC MCMC allocates data to different threads and calculates the
objective function by accumulating values from each thread; in sampling of random-effects parameters
and missing data variables, each thread generates a subset of these parameters simultaneously at each
iteration. Most sampling algorithms are threaded. NTHREADS=–1 sets the number of available
threads to the number of hyperthreaded cores available on the system. By default, NTHREADS=1.
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NTU=n
specifies the number of iterations to use in each proposal tuning phase. By default, NTU=500.

OUTPOST=SAS-data-set
specifies an output data set that contains the posterior samples of all model parameters, the iteration
numbers (variable name ITERATION), the log of the posterior density (LOGPOST), the log of the
prior density (LOGPRIOR), the log of the hyperprior density (LOGHYPER), if the HYPER statement
is used, and the log likelihood (LOGLIKE). Any secondary parameters (assigned using the operator
“=”) listed in the MONITOR= option are saved to this data set. By default, no OUTPOST= data set is
created.

PLOTS< (global-plot-options) >= (plot-request < . . . plot-request >)

PLOT< (global-plot-options) >= (plot-request < . . . plot-request >)
controls the display of diagnostic plots. Three types of plots can be requested: trace plots, autocorrela-
tion function plots, and kernel density plots. By default, the plots are displayed in panels unless the
global plot option UNPACK is specified. Also when more than one type of plot is specified, the plots
are grouped by parameter unless the global plot option GROUPBY=TYPE is specified. When you
specify only one plot request, you can omit the parentheses around the plot-request, as shown in the
following example:

plots=none
plots(unpack)=trace
plots=(trace density)

ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;
proc mcmc data=exi seed=7 outpost=p1 plots=all;

parm mu;
prior mu ~ normal(0, sd=10);
model y ~ normal(mu, sd=1);

run;
ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

If ODS Graphics is enabled but you do not specify the PLOTS= option, then PROC MCMC produces,
for each parameter, a panel that contains the trace plot, the autocorrelation function plot, and the density
plot. This is equivalent to specifying PLOTS=(TRACE AUTOCORR DENSITY).

The global-plot-options include the following:

FRINGE
adds a fringe plot to the horizontal axis of the density plot.

GROUPBY|GROUP=PARAMETER | TYPE
specifies how the plots are grouped when there is more than one type of plot.
GROUPBY=PARAMETER is the default. The choices are as follows:
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TYPE
specifies that the plots are grouped by type.

PARAMETER
specifies that the plots are grouped by parameter.

LAGS=n
specifies the number of autocorrelation lags used in plotting the ACF graph. By default,
LAGS=50.

SMOOTH
smooths the trace plot with a fitted penalized B-spline curve (Eilers and Marx 1996).

UNPACKPANEL

UNPACK
specifies that all paneled plots are to be unpacked, so that each plot in a panel is displayed
separately.

The plot-requests are as follows:

ALL
requests all types of plots. PLOTS=ALL is equivalent to specifying PLOTS=(TRACE AUTO-
CORR DENSITY).

AUTOCORR | ACF
displays the autocorrelation function plots for the parameters.

DENSITY | D | KERNEL | K
displays the kernel density plots for the parameters.

NONE
suppresses the display of all plots.

TRACE | T
displays the trace plots for the parameters.

Consider a model with four parameters, X1–X4. Displays for various specifications are depicted as
follows.

• PLOTS=(TRACE AUTOCORR) displays the trace and autocorrelation plots for each parameter
side by side with two parameters per panel:

Display 1 Trace(X1) Autocorr(X1)
Trace(X2) Autocorr(X2)

Display 2 Trace(X3) Autocorr(X3)
Trace(X4) Autocorr(X4)

• PLOTS(GROUPBY=TYPE)=(TRACE AUTOCORR) displays all the paneled trace plots, fol-
lowed by panels of autocorrelation plots:
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Display 1 Trace(X1)
Trace(X2)

Display 2 Trace(X3)
Trace(X4)

Display 3 Autocorr(X1) Autocorr(X2)
Autocorr(X3) Autocorr(X4)

• PLOTS(UNPACK)=(TRACE AUTOCORR) displays a separate trace plot and a separate correla-
tion plot, parameter by parameter:

Display 1 Trace(X1)

Display 2 Autocorr(X1)

Display 3 Trace(X2)

Display 4 Autocorr(X2)

Display 5 Trace(X3)

Display 6 Autocorr(X3)

Display 7 Trace(X4)

Display 8 Autocorr(X4)

• PLOTS(UNPACK GROUPBY=TYPE)=(TRACE AUTOCORR) displays all the separate trace
plots followed by the separate autocorrelation plots:

Display 1 Trace(X1)

Display 2 Trace(X2)

Display 3 Trace(X3)

Display 4 Trace(X4)

Display 5 Autocorr(X1)

Display 6 Autocorr(X2)

Display 7 Autocorr(X3)

Display 8 Autocorr(X4)
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PROPCOV=value
specifies the method used in constructing the initial covariance matrix for the Metropolis-Hastings
algorithm. The QUANEW and NMSIMP methods find numerically approximated covariance matrices
at the optimum of the posterior density function with respect to all continuous parameters. The
optimization does not apply to discrete parameters. The tuning phase starts at the optimized values; in
some problems, this can greatly increase convergence performance. If the approximated covariance
matrix is not positive definite, then an identity matrix is used instead. Valid values are as follows:

IND
uses the identity covariance matrix. This is the default. See the section “Tuning the Proposal
Distribution” on page 4792.

CONGRA< (optimize-options) >
performs a conjugate-gradient optimization.

DBLDOG< (optimize-options) >
performs a double-dogleg optimization.

QUANEW< (optimize-options) >
performs a quasi-Newton optimization.

NMSIMP | SIMPLEX< (optimize-options) >
performs a Nelder-Mead simplex optimization.

The optimize-options are as follows:

ITPRINT

prints optimization iteration steps and results.

PROPDIST=value
specifies a proposal distribution for the Metropolis algorithm. See the section “Metropolis and
Metropolis-Hastings Algorithms” on page 132 in Chapter 7, “Introduction to Bayesian Analysis
Procedures.” You can also use PARMS statement option (see the section “PARMS Statement” on
page 4773) to change the proposal distribution for a particular block of parameters. Valid values are as
follows:

NORMAL

N
specifies a normal distribution as the proposal distribution. This is the default.

T< (df ) >
specifies a t distribution with the degrees of freedom df . By default, df = 3. If df > 100, the
normal distribution is used since the two distributions are almost identical.

REOBSINFO < (display-options) >
displays the ODS table “Random Effect Observation Information.” The table lists the name of each
random effect, the unique values in the corresponding subject variable, the number of observations in
each subject, and the observation indices for each subject value.
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To understand how this option works, consider the following statements:

data input;
array names{*} $ n1-n10 ("John" "Mary" "Chris" "Rob" "Greg"

"Jen" "Henry" "Alice" "James" "Toby");
call streaminit(17);
do i = 1 to 20;

j = ceil(rand("uniform") * 10 );
index = names[j];
output;

end;
drop n: j;

run;

proc print data=input;
run;

The input data set (Figure 61.11) contains the index variable, which indicates subjects in a hypothetical
random-effects model.

Figure 61.11 Subject Variable in an Input Data Set

Obs i index

1 1 Mary

2 2 James

3 3 Mary

4 4 Greg

5 5 Chris

6 6 James

7 7 James

8 8 Chris

9 9 James

10 10 James

11 11 Chris

12 12 Rob

13 13 Rob

14 14 Greg

15 15 Greg

16 16 Alice

17 17 Jen

18 18 Alice

19 19 John

20 20 Chris

The following statements illustrate the use of the REOBSINFO option:

ods select reobsinfo;
proc mcmc data=input reobsinfo stats=none diag=none;

random u ~ normal(0, sd=1) subject=index;
model general(0);

run;
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Figure 61.12 displays the “Random Effect Observation Information” table. The table contains the
name of the random-effect parameter (u), the values of the subject variable index, the total number of
observations, and the row index of these observations in each of the subject values.

Figure 61.12 Random Effect Observation Information

The MCMC ProcedureThe MCMC Procedure

Random Effect Observation Information

Parameter
Subject
Values

Number of
Observations

in Subject
Observation
Indices

u Mary 2 1 3

James 5 2 6 7 9 10

Greg 3 4 14 15

Chris 4 5 8 11 20

Rob 2 12 13

Alice 2 16 18

Jen 1 17

John 1 19

The display-options are as follows:

MAXVALUEPRINT=number | ALL

MAXVPRINT=number | ALL
prints the number of subject values for each random effect (that is, the number of rows that are
displayed in the “Random Effect Observation Information” table for each random effect). The
default value is 20. MAXVALUEPRINT=ALL displays all subject values.

MAXOBSPRINT=number | ALL

MAXOPRINT=number | ALL
prints the number of observation indices for each subject value of every random effect (that is,
the maximum number of indices that are displayed in the “Observation Indices” column in the
“Random Effect Observation Information” table). The default value is 20. MAXOBSPRINT=ALL
displays indices for every subject value.

SCALE=value
controls the initial multiplicative scale to the covariance matrix of the proposal distribution. By default,
SCALE=2.38. See the section “Scale Tuning” on page 4792 for more details.

SEED=n
specifies the random number seed. By default, SEED=0, and PROC MCMC gets a random number
seed from the clock.

SIMREPORT=n
controls the number of times that PROC MCMC reports the expected run time of the simulation.
This can be useful for monitoring the progress of CPU-intensive programs. For example, with
SIMREPORT=2, PROC MCMC reports the simulation progress twice. By default, SIMREPORT=0,
and there is no reporting. The expected run times are displayed in the log file.
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SINGDEN=value
defines the singularity criterion in PROC MCMC. By default, SINGDEN=1E-11. The value indicates
the exclusion of an endpoint in an interval. The mathematical notation “.0” is equivalent to “Œvalue” in
PROC MCMC—that is, x < 0 is treated as x � value in PROC MCMC. The maximum SINGDEN
allowed is 1E-6.

STATISTICS< (global-stats-options) > = NONE | ALL |stats-request

STATS< (global-stats-options) > = NONE | ALL |stats-request
specifies options for posterior statistics. By default, PROC MCMC computes the posterior mean,
standard deviation, quantiles, and two 95% credible intervals: equal-tail and highest posterior density
(HPD). Other available statistics include the posterior correlation and covariance. See the section
“Summary Statistics” on page 151 in Chapter 7, “Introduction to Bayesian Analysis Procedures,” for
more details. You can request all of the posterior statistics by specifying STATS=ALL. You can
suppress all the calculations by specifying STATS=NONE.

You can use postprocessing autocall macros to calculate posterior summary statistics of the posterior
samples after PROC MCMC has exited. See the section “Autocall Macros for Postprocessing” on
page 4833.

The global-stats-options includes the following:

ALPHA=numeric-list
specifies the ˛ level for the equal-tail and HPD intervals. The value ˛ must be between 0 and 0.5.
By default, ALPHA=0.05.

PERCENTAGE | PERCENT=numeric-list
calculates the posterior percentages. The numeric-list contains values between 0 and 100. By
default, PERCENTAGE=(25 50 75).

The stats-requests include the following:

ALL
computes all posterior statistics. You can combine the option ALL with any other options. For
example STATS(ALPHA=(0.02 0.05 0.1))=ALL computes all statistics with the default settings
and intervals at ˛ levels of 0.02, 0.05, and 0.1.

CORR
computes the posterior correlation matrix.

COV
computes the posterior covariance matrix.

SUMMARY

SUM
computes the posterior means, standard deviations, and percentile points for each variable. By
default, the 25th, 50th, and 75th percentile points are produced, but you can use the global
PERCENT= option to request specific percentile points.
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INTERVAL

INT
computes the 100.1 � ˛/% equal-tail and HPD credible intervals for each variable. See the
sections “Equal-Tail Credible Interval” on page 152 in Chapter 7, “Introduction to Bayesian
Analysis Procedures,” and “Highest Posterior Density (HPD) Interval” on page 152 in Chapter 7,
“Introduction to Bayesian Analysis Procedures,” for details. By default, ALPHA=0.05, but you
can use the global ALPHA= option to request other intervals of any probabilities.

NONE
suppresses all of the statistics.

TARGACCEPT=value
specifies the target acceptance rate for the random walk based Metropolis algorithm. See the section
“Metropolis and Metropolis-Hastings Algorithms” on page 132 in Chapter 7, “Introduction to Bayesian
Analysis Procedures.” The numeric value must be between 0.01 and 0.99. By default, TARGAC-
CEPT=0.45 for models with 1 parameter; TARGACCEPT=0.35 for models with 2, 3, or 4 parameters;
and TARGACCEPT=0.234 for models with more than 4 parameters (Roberts, Gelman, and Gilks 1997;
Roberts and Rosenthal 2001).

TARGACCEPTI=value
specifies the target acceptance rate for the independence sampler algorithm. The independence sampler
is used for blocks of binary parameters. See the section “Independence Sampler” on page 135 in
Chapter 7, “Introduction to Bayesian Analysis Procedures,” for more details. The numeric value must
be between 0 and 1. By default, TARGACCEPTI=0.6.

THIN=n

NTHIN=n
controls the thinning rate of the simulation. PROC MCMC keeps every nth simulation sample and
discards the rest. All of the posterior statistics and diagnostics are calculated using the thinned samples.
By default, THIN=1. See the section “Burn-in, Thinning, and Markov Chain Samples” on page 136 in
Chapter 7, “Introduction to Bayesian Analysis Procedures,” for more details.

TRACE
displays the result of each operation in each statement in the model program as it is executed. This
debugging option is very rarely needed, and it produces voluminous output. If you use this option, also
use small NMC=, NBI=, MAXTUNE=, and NTU= numbers.

TUNEWT=value
specifies the multiplicative weight used in updating the covariance matrix of the proposal distribution.
The numeric value must be between 0 and 1. By default, TUNEWT=0.75. See the section “Covariance
Tuning” on page 4793 for more details.

ARRAY Statement
ARRAY arrayname [ dimensions ] < $ > < variables-and-constants > ;

The ARRAY statement associates a name (of no more than eight characters) with a list of variables and
constants. The ARRAY statement is similar to, but not the same as, the ARRAY statement in the DATA step,
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and it is the same as the ARRAY statements in the NLIN, NLP, NLMIXED, and MODEL procedures. The
array name is used with subscripts in the program to refer to the array elements, as illustrated in the following
statements:

array r[8] r1-r8;

do i = 1 to 8;
r[i] = 0;

end;

The ARRAY statement does not support all the features of the ARRAY statement in the DATA step. Implicit
indexing of variables cannot be used; all array references must have explicit subscript expressions. Only exact
array dimensions are allowed; lower-bound specifications are not supported. A maximum of six dimensions
is allowed.

Both variables and constants can be array elements. Constant array elements cannot have values assigned
to them while variables can. Both the dimension specification and the list of elements are optional, but at
least one must be specified. When the list of elements is not specified or fewer elements than the size of the
array are listed, array variables are created by appending element numbers to the array name to complete the
element list. You can index array elements by enclosing a subscript in braces .f g/ or brackets .Œ �/, but not in
parentheses .. //. The parentheses are reserved for function calls only.

For example, the following statement names an array day:

array day[365];

By default, the variables names are day1 to day365. However, since day is a SAS function, any subscript
that uses parentheses gives you the wrong results. The expression day(4) returns the value 5 and does not
reference the array element day4.

BEGINCNST/ENDCNST Statement
BEGINCNST ;

ENDCNST ;

The BEGINCNST and ENDCNST statements define a block within which PROC MCMC processes the
programming statements only during the setup stage of the simulation. You can use the BEGINCNST and
ENDCNST statements to define constants or import data set variables into arrays. Storing data in arrays
enables you to work with data that are not identically distributed (see the section “Modeling Joint Likelihood”
on page 4827) or to implement your own Markov chain sampler (see the section “UDS Statement” on
page 4785). You can also use the BEGINCNST and ENDCNST statements to assign initial values to the
parameters (see the section “Assignments of Parameters” on page 4797).

Assign Constants

Whenever you have programming statements that calculate constants that do not need to be evaluated multiple
times throughout the simulation, you should put them within the BEGINCNST and ENDCNST statements.
Using these statements can reduce redundant processing. For example, you can assign a constant to a symbol
or fill in an array with numbers:
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array cnst[17];
begincnst;

offset = 17;
do i = 1 to 17;

cnst[i] = i * i;
end;

endcnst;

During the setup process, PROC MCMC evaluates the programming statements within the BEGINC-
NST/ENDCNST once for each observation in the data set and ignores the statements in the rest of the
simulation.

READ_ARRAY Function

Sometimes you might need to store variables, either from the current input data set or from a different data
set, in arrays and use these arrays to specify your model. The READ_ARRAY function is convenient for that
purpose.

The following two forms of the READ_ARRAY function are available:

rc = READ_ARRAY (data-set , array ) ;

rc = READ_ARRAY (data-set , array < , "col-name1" > < , "col-name2" > < , . . . >) ;

where

• rc returns 0 if the function is able to successfully read the data set.

• data-set specifies the name of the data set from which the array data is read. The value specified for
data-set must be a character literal or a variable that contains the member name (libname.memname)
of the data set to be read from.

• array specifies the PROC MCMC array variable into which the data is read. The value specified for
array must be a local temporary array variable because the function might need to grow or shrink its
size to accommodate the size of the data set.

• col-name specifies optional names for the specific columns of the data set that are read. If specified,
col-name must be a literal string enclosed in quotation marks. In addition, col-name cannot be a PROC
MCMC variable. If column names are not specified, PROC MCMC reads all of the columns in the
data set.

When SAS translates between an array and a data set, the array is indexed as [row,column].

The READ_ARRAY function attempts to dynamically resize the array to match the dimensions of the input
data set. Therefore, the array must be dynamic; that is, the array must be declared with the /NOSYMBOLS
option.

For examples that use the READ_ARRAY function, see “Modeling Joint Likelihood” on page 4827, “Exam-
ple 61.14: Time Independent Cox Model” on page 4936, and “Example 61.19: Implement a New Sampling
Algorithm” on page 4962.
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BEGINNODATA/ENDNODATA Statements
BEGINNODATA ;

ENDNODATA ;

BEGINPRIOR ;

ENDPRIOR ;

The BEGINNODATA and ENDNODATA statements define a block within which PROC MCMC processes
the programming statements without stepping through the entire data set. The programming statements are
executed only twice: at the first and the last observation of the data set. The BEGINNODATA and ENDNO-
DATA statements are best used to reduce unnecessary observation-level computations. Any computations
that are identical to every observation, such as transformation of parameters, should be enclosed in these
statements.

At the first observation, PROC MCMC executes all programming statements, including those that are enclosed
by these two statements. This enables a quick update of all the symbols enclosed by the BEGINNODATA
and ENDNODATA statements. The goal is to ensure that subsequent statements (for example, the MODEL
statement) use symbol values that have been calculated correctly. At the last observation, PROC MCMC
executes the enclosed programming statements again and adds the log of the prior density to the log of the
posterior density.

The BEGINPRIOR and ENDPRIOR statements are aliases for the BEGINNODATA and ENDNODATA
statements, respectively. You can enclose PRIOR statements in the BEGINNODATA and ENDNODATA
statements.

BY Statement
BY variables ;

You can specify a BY statement with PROC MCMC to obtain separate analyses of observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the MCMC procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.
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MODEL Statement
MODEL dependent-variable-list Ï distribution < options > ;

The MODEL statement specifies the conditional distribution of the data given the parameters (the likelihood
function). You specify a single dependent variable or a list of dependent variables, a tilde Ï, and then a
distribution with its arguments. The dependent variables can be variables from the input data set or functions
of the symbols in the program. You must specify the dependent variables unless you use the GENERAL
function or the DGENERAL function (see the section “Specifying a New Distribution” on page 4813 for
more details).

The MODEL statement assumes that the observations are independent of each other, conditional on the
model parameters. If you want to model dependent data—that is, f .yi j�; yj / for j ¤ i—you can use the
JOINTMODEL option in the PROC MCMC statement. See the section “Modeling Joint Likelihood” on
page 4827 for more details. By default, the log-likelihood value is the sum of the individual log-likelihood
value for each observation.

You can specify multiple MODEL statements. You can define likelihood functions that are independent of
each other. For example, in the following statements, the dependent variables y1 and y2 are independent of
each other:

model y1 ~ normal(alpha, var=s21);
model y2 ~ normal(beta, var=s22);

Alternatively, you can use marginal and conditional distributions to define a joint log-likelihood function
for multiple dependent variables. For example, the following statements jointly define a distribution over
.y1; y2/. They specify a marginal distribution for the dependent variable y1 and a conditional distribution for
the dependent variable y2:

model y1 ~ normal(alpha, var=s21);
model y2 ~ normal(beta * y1, var=s22);

Every program must have at least one MODEL statement. If you want to run a Monte Carlo simulation that
does not require a response variable, use the GENERAL function in the MODEL statement:

model general(0);

PROC MCMC interprets the statement as a flat likelihood function with a constant log-likelihood value of 0.

PROC MCMC is a programming language that is similar to the DATA step, and the order of statement
evaluation is important. For example, the MODEL statement must come after any SAS programming
statements that define or modify arguments used in the construction of the log likelihood. In PROC MCMC, a
symbol can be defined multiple times and used at different places. Using an expression out of order produces
erroneous results that can also be hard to detect.

Do not embed the MODEL statement within programming statements. For example, suppose you have
three response variables, y1, y2, and y3, and want to model each with a normal distribution. The following
statements lead to erroneous output:

array Y[3] y1 y2 y3;
do i = 1 to 3;

model y[i] ~ normal(mu, sd=s);
end;
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Instead, you should do one of the following.

• Use separate MODEL statements:

model y1 ~ normal(mu, sd=s);
model y2 ~ normal(mu, sd=s);
model y3 ~ normal(mu, sd=s);

• Use the GENERAL function to construct a joint distribution of the three dependent variables and use a
single MODEL statement to specify the log-likelihood function:

llike = logpdf("normal", y1, mu, s) +
logpdf("normal", y2, mu, s) +
logpdf("normal", y3, mu, s);

model y1 y2 y3 ~ general(llike);

See the section “Specifying a New Distribution” on page 4813 for more information about how to use
the GENERAL function to specify an arbitrary distribution.

Missing data are allowed in the response variables; the MODEL statement augments missing data automati-
cally. (In releases before SAS/STAT 12.1, observations with missing values were discarded prior to analysis
and PROC MCMC did not attempt to model these values.) In each iteration, PROC MCMC samples missing
values from their posterior distributions and incorporates them as part of the simulation. PROC MCMC
creates one variable for each missing response value. There are two ways to create the missing value variable
names; see the NAMESUFFIX= option for the naming convention of the variables.

Distributions in MODEL Statement

Standard distributions that the MODEL statement supports are listed in the Table 61.2 (univariate) and
Table 61.3 (multivariate). See the section “Standard Distributions” on page 4798 for density specifications.
You can also specify all distributions except the multinomial distribution in the PRIOR and HYPERPRIOR
statements. The RANDOM statement supports only a subset of the distributions (see Table 61.4).

PROC MCMC allows some distributions to be parameterized in multiple ways. For example, you can specify
a normal distribution with a variance, standard deviation, or precision parameter. For distributions that
have different parameterizations, you must specify an option to clearly name the ambiguous parameter. For
example, in the normal distribution, you must indicate whether the second argument represents variance,
standard deviation, or precision.

All univariate distributions, with the exception of binary and uniform, can have the optional LOWER= and
UPPER= arguments, which specify a truncated density. See the section “Truncation and Censoring” on
page 4817 for more details. Truncation is not supported for multivariate distributions.

Table 61.2 Univariate Distributions

Distribution Name Definition

beta(< a= >˛, < b= >ˇ) Beta distribution with shape parameters ˛ and ˇ
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Table 61.2 (continued)

Distribution Name Definition

binary(< prob|p= > p) Binary (Bernoulli) distribution with probability of
success p. You can use the alias bern for this
distribution.

binomial (< n= > n, < prob|p= > p) Binomial distribution with count n and probability
of success p

cauchy (< location|loc|l= >� , < scale|s= >�) Cauchy distribution with location � and scale �

chisq(< df= > �) �2 distribution with � degrees of freedom

dgeneral(ll) General log-likelihood function that you construct
using SAS programming statements for single or
multiple discrete parameters. Also see the function
general. The name dlogden is an alias for this
function.

expchisq(< df= > �) Log transformation of a �2 distribution with �
degrees of freedom: � � chisq.�/ , log.�/ �
expchisq.�/. You can use the alias echisq for
this distribution.

expexpon(scale|s= �)
expexpon(iscale|is= �)

Log transformation of an exponential distribution
with scale or inverse-scale parameter �: � �

expon.�/ , log.�/ � expexpon.�/. You can
use the alias eexpon for this distribution.

expGamma(< shape|sp= > a, scale|s= �)
expGamma(< shape|sp= > a, iscale|is= �)

Log transformation of a gamma distribution with
shape a and scale or inverse-scale �: � �

gamma.a; �/ , log.�/ � expgamma.a; �/.
You can use the alias egamma for this distribution.

expichisq(< df= > �) Log transformation of an inverse �2 distribution
with � degrees of freedom: � � ichisq.�/ ,
log.�/ � expichisq.�/. You can use the alias
eichisq for this distribution.

expiGamma(< shape|sp= > a, scale|s= �)
expiGamma(< shape|sp= > a, iscale|is= �)

Log transformation of an inverse-gamma dis-
tribution with shape a and scale or inverse-
scale �: � � igamma.a; �/ , log.�/ �
expigamma.a; �/. You can use the alias
eigamma for this distribution.

expsichisq(< df= > �, < scale|s= > s) Log transformation of a scaled inverse �2 distribu-
tion with � degrees of freedom and scale parameter
s: � � sichisq.�/ , log.�/ � expsichisq.�/.
You can use the alias esichisq for this distribution.
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Table 61.2 (continued)

Distribution Name Definition

expon(scale|s= �)
expon(iscale|is= �)

Exponential distribution with scale or inverse-scale
parameter �

gamma(< shape|sp= > a, scale|s= �)
gamma(< shape|sp= > a, iscale|is= �)

Gamma distribution with shape a and scale or
inverse-scale �

geo(< prob|p= > p) Geometric distribution with probability p

general(ll) General log-likelihood function that you construct
using SAS programming statements for a single or
multiple continuous parameters. The argument ll
is an expression for the log of the distribution. If
there are multiple variables specified before the
tilde in a MODEL, PRIOR, or HYPERPRIOR
statement, ll is interpreted as the log of the joint
distribution for these variables. Note that in the
MODEL statement, the response variable speci-
fied before the tilde is just a place holder and is of
no consequence; the variable must have appeared
in the construction of ll in the programming state-
ments. general(constant) is equivalent to a uni-
form distribution on the real line. You can use the
alias logden for this distribution.

ichisq(< df= >�) Inverse �2 distribution with � degrees of freedom

igamma(< shape|sp= > a, scale|s= �)
igamma(< shape|sp= > a, iscale|is= �)

Inverse-gamma distribution with shape a and scale
or inverse-scale �

laplace(< location|loc|l= > � , scale|s= �)
laplace(< location|loc|l= > � , iscale|is= �)

Laplace distribution with location � and scale or
inverse-scale �. This is also known as the double
exponential distribution. You can use the alias
dexpon for this distribution.

logistic(< location|loc|l= > a, < scale|s= > b) Logistic distribution with location a and scale b

lognormal(< mean|m= > �, sd= �)
lognormal(< mean|m= > �, var|v= �)
lognormal(< mean|m= > �, prec= �)

Log-normal distribution with mean � and a value
of � for the standard deviation, variance, or preci-
sion. You can use the aliases lognormal or lnorm
for this distribution.

negbin(< n= > n, < prob|p= > p) Negative binomial distribution with count n and
probability of success p. You can use the alias nb
for this distribution.
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Table 61.2 (continued)

Distribution Name Definition

normal(< mean|m= > �, sd= �)
normal(< mean|m= > �, var|v= �)
normal(< mean|m= > �, prec= �)

Normal (Gaussian) distribution with mean � and
a value of � for the standard deviation, variance,
or precision. You can use the aliases gaussian,
norm, or n for this distribution.

pareto(< shape|sp= > a, < scale|s= > b) Pareto distribution with shape a and scale b

poisson(< mean|m= > � ) Poisson distribution with mean �

sichisq(< df= > �, < scale|s= > s) Scaled inverse �2 distribution with � degrees of
freedom and scale parameter s

t(< mean|m= > �, sd= �, < df= > � )
t(< mean|m= > �, var|v= �, < df= > � )
t(< mean|m= > �, prec= �, < df= > � )

T distribution with mean �, standard deviation or
variance or precision �, and � degrees of freedom

table(< p= > p) Table (categorical) distribution with probability
vector p. You can also use the alias cat for this
distribution.

uniform(< left|l= > a, < right|r= > b) Uniform distribution with range a and b. You can
use the alias unif for this distribution.

wald(< mean|m= > �, < iscale|is= > �) Wald distribution with mean parameter � and in-
verse scale parameter �. This is also known as
the Inverse Gaussian distribution. You can use the
alias igaussian for this distribution.

weibull(�; c; � ) Weibull distribution with location (threshold) pa-
rameter �, shape parameter c, and scale parameter
� .

Table 61.3 Multivariate Distributions

Distribution Name Definition

dirichlet(< alpha= >˛) Dirichlet distribution with parameter vector ˛,
where ˛ must be a one-dimensional array of length
greater than 1

iwish(< df= >�, < scale= >S) Inverse Wishart distribution with � degrees of free-
dom and symmetric positive definite scale array
S

mvn(< mu= >�, < cov= >†) Multivariate normal distribution with mean vector
� and covariance matrix †
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Table 61.3 (continued)

Distribution Name Definition

mvnar(< mu= >�, sd= �, < rho= >�)
mvnar(< mu= >�, var= �, < rho= >�)
mvnar(< mu= >�, prec= �, < rho= >�)

Multivariate normal distribution with mean vector
� and a covariance matrix †. The covariance
matrix † is a multiple of the scale and a matrix
with a first-order autoregressive structure. When
rho=0, this distribution becomes a multivariate
normal distribution with shared variance.

multinom(< p= >p) Multinomial distribution with probability vector p

Options for the MODEL Statement

The options in the MODEL statement apply only when there are missing values in the response variable.
You can specify the following options:

INITIAL=SAS-data-set | constant | numeric-list
specifies the initial values of the missing values. By default, PROC MCMC uses a sample average
of the nonmissing values of a response variable as the starting values for all missing values in the
simulation for that variable. You can use the INITIAL= option to start the Markov chain at a different
place.

If you use a SAS-data-set to store initial values, the data set must consist of variable names that agree
with the missing variable names that are used by PROC MCMC. The easiest way to find the names of
the internally created variables is to run a default analysis with a very small number of simulations and
check the variable names in the OUTPOST= data set. You can provide a subset of the initial values in
the SAS-data-set , and PROC MCMC uses a default mechanism to fill in the rest of the missing initial
values.

For example, the following statement creates a data set with initial values for the first three missing
values of a response variable:

data RandomInit;
input y_1 y_2 y_3;
datalines;
2.3 3 -3

;

The following MODEL statement uses the values in the RandomInit data set as the initial values of the
corresponding missing values in the model:

model y ~ normal(0,var=s2u) init=randominit;
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Specifying a constant assigns that constant as the initial value to all missing values in that response
variable. For example, the following statement assigns the value 5 to be used as an initial value for all
missing yi in the model:

model y ~ normal(0,var=s2u) init=5;

If you have a multidimensional response variable, you can provide a list of numbers that have the
same length as the dimension of your response array. Each number is then given to all corresponding
missing variables in order. For example, the following statement assigns the value 2 to be used as an
initial value for all missing w1i and the value 3 to be used for all missing w2i in the model:

array w[2] w1 w2;
model w ~ mvn(mu, cov) init=(2 3);

MONITOR= (symbol-list | number-list | RANDOM(number ))
outputs analysis for selected missing data variables. You can choose to monitor the missing values by
listing the response variable names, the missing data variable names, or indices, or you can have them
randomly selected by PROC MCMC.

For example, suppose that the data set contains 10 observations and the response variable y has missing
values in observations 2, 3, 7, 9, and 10. To monitor all missing data variables (five in total), you
specify the response variable name in the MONITOR= option:

model y ~ normal(0,var=s2u) monitor=(y);

Suppose you want to monitor the missing data variables that correspond to the missing values in
observations 2, 3, and 10. You have two options: provide either a list of variable names or a list of
indices.

The following statement selects monitored variables by their variable names:

model y ~ normal(0,var=s2u) monitor=(y_2 y_3 y_10);

The variable names must match the internally created variable names for each missing value. See
NAMESUFFIX= option for the naming convention of the variables. By default, the names are created
by concatenating the response variable with the observation index; hence you use the name_obs format
to construct the names. The numbers 2, 3, and 10 are the corresponding observation indices to the
missing values in the input data set.

The following statement selects monitored variables by indices:

model y ~ normal(0,var=s2u) monitor=(1 2 5);

The indices are not a list of the observation numbers, but rather the order by which the missing values
appear in the data set: PROC MCMC reports back the first, the second, and the fifth missing value
variables that it creates. The actual variable names that appear in the output are still y_2, y_3, and
y_10, honoring the control of the NAMESUFFIX= option.
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Lastly, PROC MCMC can randomly choose a subset of the variables to monitor. The following
statement randomly selects 3 variables to monitor:

model y ~ normal(0,var=s2u) monitor=(random(3));

The list of the random indices is controlled by the SEED= option in the PROC MCMC statement.
Therefore, the selected variables will be the same when the SEED= option is the same.

NAMESUFFIX=OBSERVATION | POSITION | ORDER
specifies how the names of the missing data variables are created. By default, the names are created by
concatenating the response variable symbol, an underscore (“_”), and the observation number of the
missing value.

NAMESUFFIX=OBSERVATION constructs the parameter names by appending the observation
number to the response variable symbol. This is the default. NAMESUFFIX=POSITION or NAME-
SUFFIX=ORDER construct the parameter names by appending the numbers 1, 2, 3, and so on, where
the number indicates the order in which the missing values appear in the data set.

For example, suppose you have a response variable y with 10 observations in total, of which five are
missing (observations 2, 3, 7, 9, and 10). By default, PROC MCMC creates five variable names y_2,
y_3, y_7, y_9, and y_10. Using NAMESUFFIX=POSITION changes the names to y_1, y_2, y_3, y_4,
and y_5.

NOOUTPOST
suppresses the output of the posterior samples of missing data variables to the posterior output data set
(which is specified in the OUTPOST= option in the PROC MCMC statement). In models with a large
number of missing values (for example, tens of thousands), PROC MCMC can run faster if it does not
save the posterior samples.

When you specify both the NOOUTPOST option and the MONITOR= option, PROC MCMC outputs
the list of variables that are monitored.

The maximum number of variables that can be saved to an OUTPOST= data set is 32,767. If the total
number of parameters in your model, including the number of missing data variables, exceeds the limit,
the NOOUTPOST option is evoked automatically and PROC MCMC does not save the missing value
draws to the posterior output data set. You can use the MONITOR= option to select a subset of the
parameters to store in the OUTPOST= data set.

PARMS Statement
PARMS name |(name-list)< = > < { > number | number-list < } >

< name |(name-list)< = > < { > number | number-list < } > . . . >
< / options > ;

The PARMS statement lists the names of the parameters in the model and specifies optional initial values
for these parameters. These parameters are referred to as the model parameters. You can specify multiple
PARMS statements. Each PARMS statement defines a block of parameters, and the blocked Metropolis
algorithm updates the parameters in each block simultaneously. See the section “Blocking of Parameters”
on page 4789 for more details. PROC MCMC generates missing initial values from the prior distributions
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whenever needed, as long as they are the standard distributions and not the GENERAL or DGENERAL
function.

If your model contains a multidimensional parameter (for example, a parameter with a multivariate normal
prior distribution), you must declare the parameter as an array (using the ARRAY statement). You can use
braces f g after the parameter name in the PARM statement to assign initial values. For example:

array mu[3];
parms mu {1 2 3};

You cannot use the ARRAY statement to assign initial values. If you use the ARRAY statement to store
values in array elements, the declared array becomes a constant array and cannot be used as parameters in the
PARMS statement. For example, the following statement assigns three numbers to mu:

array mu[3] (1 2 3);

The array mu can no longer be a model parameter.

Every parameter in the PARMS statement must have a corresponding prior distribution in the PRIOR
statement. The program exits if this one-to-one requirement is not satisfied.

You can specify the following options to control different samplers explicitly for that block of parameters.

NORMAL | N
uses the normal proposal distribution in the random walk Metropolis. This is the default.

T < (df ) >
uses the t distribution with df degrees of freedom as an alternative proposal distribution. A t distribution
with a small number of degrees of freedom has thicker tails and can sometimes improve the mixing of
the Markov chain. When df > 100, the normal distribution is used instead.

SLICE
applies the slice sampler to each parameter in the PARMS statement individually. See the section“Slice
Sampler” on page 135 in Chapter 7, “Introduction to Bayesian Analysis Procedures,” for details. PROC
MCMC does not implement a multidimensional version of the slice sampler. Because the slice sampler
usually requires multiple evaluations of the objective function (the posterior distribution) in each
iteration, the associated computational cost could be potentially high with this sampling algorithm.

UDS
implements a user-defined sampler for any of the parameters in the block. See the section “UDS
Statement” on page 4785 for details and “Example 61.19: Implement a New Sampling Algorithm” on
page 4962 for a realistic example. When you specify the UDS option, PROC MCMC hands off the
sampling of these parameters to you at each iteration and relies on your sampler to return a random
draw from the conditional posterior distribution. This option is useful if you have a model-specific
sampler that you want to implement or a new algorithm that can improve the convergence and mixing
of the Markov chain. This functionality is for advanced users, and you should proceed with caution.
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PREDDIST Statement
PREDDIST < 'label ' > OUTPRED=SAS-data-set < NSIM=n > < COVARIATES=SAS-data-set >

< STATISTICS=options > ;

The PREDDIST statement creates a new SAS data set that contains random samples from the posterior
predictive distribution of the response variable. The posterior predictive distribution is the distribution of
unobserved observations (prediction) conditional on the observed data. Let y be the observed data, X be the
covariates, � be the parameter, and ypred be the unobserved data. The posterior predictive distribution is
defined to be the following:

p.ypredjy;X/ D
Z
p.ypred; � jy;X/d�

D

Z
p.ypredj�; y;X/p.� jy;X/d�

Given the assumption that the observed and unobserved data are conditional independent given � , the
posterior predictive distribution can be further simplified as the following:

p.ypredjy;X/ D
Z
p.ypredj�/p.� jy;X/d�

The posterior predictive distribution is an integral of the likelihood function p.ypredj�/ with respect to
the posterior distribution p.� jy/. The PREDDIST statement generates samples from a posterior predictive
distribution based on draws from the posterior distribution of � .

The PREDDIST statement works only on response variables that have standard distributions, and it does not
support either the GENERAL or DGENERAL functions. Multiple PREDDIST statements can be specified,
and an optional label (specified as a quoted string) helps identify the output.

The following list explains specifications in the PREDDIST statement:

COVARIATES=SAS-data-set
names the SAS data set that contains the sets of explanatory variable values for which the predictions
are established. This data set must contain data with the same variable names as are used in the
likelihood function. If you omit the COVARIATES= option, the DATA= data set specified in the PROC
MCMC statement is used instead.

NSIM=n
specifies the number of simulated predicted values. By default, NSIM= uses the NMC= option value
specified in the PROC MCMC statement.

OUTPRED=SAS-data-set
creates an output data set to contain the samples from the posterior predictive distribution. The output
variable names are listed as resp_1–resp_m, where resp is the name of the response variable and m
is the number of observations in the COVARIATES= data set in the PREDDIST statement. If the
COVARIATES= data set is not specified, m is the number of observations in the DATA= data set
specified in the PROC statement.
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STATISTICS< (global-stats-options) > = NONE | ALL |stats-request

STATS< (global-stats-options) > = NONE | ALL |stats-request
specifies options for calculating posterior statistics. This option works identically to the STATISTICS=
option in the PROC statement. By default, this option takes the specification of the STATISTICS=
option in the PROC MCMC statement.

For an example that uses the PREDDIST statement, see “Posterior Predictive Distribution” on page 4838.

PRIOR/HYPERPRIOR Statement
PRIOR parameter-list Ï distribution ;

HYPERPRIOR parameter-list Ï distribution ;

HYPER parameter-list Ï distribution ;

The PRIOR statement specifies the prior distribution of the model parameters. You must specify a single
parameter or a list of parameters, a tilde Ï, and then a distribution with its parameters.

You can specify multiple PRIOR statements to define models with multiple prior components. Your model
can have as many hierarchical levels as you want. But in many cases, such as random-effects models, it
is better to use the RANDOM statements to build up the model hierarchy. The log of the prior is the sum
of the log prior values from each of the PRIOR statements. Similar to the MODEL statement, you can
use the PRIOR statement to specify marginal or conditional prior distributions. See the section “MODEL
Statement” on page 4766 for the names of the standard distributions and the section “Standard Distributions”
on page 4798 for density specification.

The PRIOR statements are processed twice at every Markov chain simulation—that is, twice per pass
through the data set. The statements are called at the first and the last observation of the data set, just as the
BEGINNODATA and ENDNODATA statements are processed. If you run a Monte Carlo simulation that
is data-independent, you can specify the NOLOGDIST option in the PROC MCMC statement to omit the
calculation of the prior distribution. Omitting this calculation enables PROC MCMC to run faster.

The HYPERPRIOR statement is treated internally the same as the PRIOR statement. It provides a notational
convenience in case you want to fit a multilevel hierarchical model. It specifies the hyperprior distribution of
the prior distribution parameters. The log of the hyperprior is the sum of the log hyperprior values from each
of the HYPERPRIOR statements.

Parameters in the PRIOR statements can appear as hyperparameters in the RANDOM statement. The reverse
is not allowed: random-effects parameters cannot be hyperparameters in a PRIOR statement.

You can have a program that contains a RANDOM statement but no PRIOR statements. (In SAS 9.3 and
earlier, each program had to contain a PRIOR statement.) A program that contains a RANDOM statement but
no PRIOR statements could be a random-effects model with no fixed-effects parameters or hyperparameters
to the random effects. A MODEL statement is still required in every program.
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Programming Statements
This section lists the programming statements available in PROC MCMC to compute the priors and log-
likelihood functions. This section also documents the differences between programming statements in PROC
MCMC and programming statements in the DATA step. The syntax of programming statements used in PROC
MCMC is identical to that used in the NLMIXED procedure (see Chapter 70, “The NLMIXED Procedure”)
and the MODEL procedure (see Chapter 19, “The MODEL Procedure” (SAS/ETS User’s Guide),). Most of
the programming statements that can be used in the DATA step can also be used in PROC MCMC. See SAS
Language Reference: Dictionary for a description of SAS programming statements.

There are also a number of unique functions in PROC MCMC that calculate the log density of various
distributions in the procedure. You can find them at the section “Using Density Functions in the Programming
Statements” on page 4814.

For the list of matrix-based functions that is supported in PROC MCMC, see the section “Matrix Functions
in PROC MCMC” on page 4821.

The following are valid statements:

ABORT;
ARRAY arrayname < [ dimensions ] > < $ > < variables-and-constants >;
CALL name < (expression < , expression . . . >) >;
DELETE;
DO < variable = expression < TO expression > < BY expression > >

< , expression < TO expression > < BY expression > > . . .
< WHILE expression > < UNTIL expression >;

END;
GOTO statement-label;
IF expression;
IF expression THEN program-statement;

ELSE program-statement;
variable = expression;
variable + expression;
LINK statement-label;
PUT < variable > < = > . . . ;
RETURN;
SELECT < (expression) >;
STOP;
SUBSTR(variable, index , length)= expression;
WHEN (expression)program-statement;

OTHERWISE program-statement;

For the most part, the SAS programming statements work the same as they do in the DATA step, as
documented in SAS Language Reference: Concepts. However, there are several differences:

• The ABORT statement does not allow any arguments.

• The DO statement does not allow a character index variable. Thus

do i = 1,2,3;
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is supported; however, the following statement is not supported:

do i = 'A','B','C';

• The PUT statement, used mostly for program debugging in PROC MCMC (see the section “Handling
Error Messages” on page 4853), supports only some of the features of the DATA step PUT statement,
and it has some features that are not available with the DATA step PUT statement:

– The PROC MCMC PUT statement does not support line pointers, factored lists, iteration factors,
overprinting, _INFILE_, _OBS_, the colon (:) format modifier, or “$”.

– The PROC MCMC PUT statement does support expressions, but the expression must be enclosed
in parentheses. For example, the following statement displays the square root of x:

put (sqrt(x));

• The WHEN and OTHERWISE statements enable you to specify more than one target statement. That
is, DO/END groups are not necessary for multiple statement WHENs. For example, the following
syntax is valid:

select;
when (exp1) stmt1;

stmt2;
when (exp2) stmt3;

stmt4;
end;

You should avoid defining variables that begin with an underscore (_). They might conflict with internal
variables created by PROC MCMC. The MODEL statement must come after any SAS programming
statements that define or modify terms used in the construction of the log likelihood.

RANDOM Statement
RANDOM random-effect Ï distribution SUBJECT=variable < options > ;

The RANDOM statement defines a single random effect and its prior distribution or an array of random
effects and their prior distribution. The random-effect must be represented by either a symbol or an array.
The RANDOM statement must consist of the random-effect , a tilde (Ï), the distribution for the random
effect, and then a SUBJECT= variable.

SUBJECT=variable | _OBS_
identifies the subjects in the random-effects model. The variable must be part of the input data set,
and it can be either a numeric variable or character literal. The variable does not need to be sorted,
and the input data set does not need to be clustered according to it. SUBJECT=_OBS_ enables you
fit an observation-level random-effects model (each observation has its own random effect) without
specifying a subject variable in the input data set.

The random-effects parameters associated with each subject in the same RANDOM statement are assumed to
be conditionally independent of each other, given other parameters and data set variables in the model. The
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other parameters include model parameters (declared in the PARMS statements), random-effects parameters
(from other RANDOM statements), and missing data variables.

Table 61.4 shows the distributions that you can specify in the RANDOM statement.

Table 61.4 Valid Distributions in the RANDOM Statement

Distribution Name Definition

beta(< a= >˛, < b= >ˇ) Beta distribution with shape parameters ˛ and ˇ

binary(< prob|p= > p) Binary (Bernoulli) distribution with probability of
success p. You can use the alias bern for this
distribution.

gamma(< shape|sp= > a, scale|s= �)
gamma(< shape|sp= > a, iscale|is= �)

Gamma distribution with shape a and scale or
inverse-scale �

dgeneral(ll) General log-prior function that you construct us-
ing SAS programming statements for univariate or
multivariate discrete random effects. See the sec-
tion “Specifying a New Distribution” on page 4813
for more details.

general(ll) General log-prior function that you construct us-
ing SAS programming statements for univariate
or multivariate continuous random effects. See
the section “Specifying a New Distribution” on
page 4813 for more details.

igamma(< shape|sp= > a, scale|s= �)
igamma(< shape|sp= > a, iscale|is= �)

Inverse-gamma distribution with shape a and scale
or inverse-scale �

laplace(< location|loc|l= > � , scale|s= �)
laplace(< location|loc|l= > � , iscale|is= �)

Laplace distribution with location � and scale or
inverse-scale �. This is also known as the double
exponential distribution. You can use the alias
dexpon for this distribution.

normal(< mean|m= > �, sd= �)
normal(< mean|m= > �, var|v= �)
normal(< mean|m= > �, prec= �)

Normal (Gaussian) distribution with mean � and
a value of � for the standard deviation, variance,
or precision. You can use the aliases gaussian,
norm, or n for this distribution.

poisson(< mean|m= > � ) Poisson distribution with mean �

table(< p= > p) Table (categorical) distribution with probability
vector p. You can also use the alias cat for this
distribution

uniform(< left|l= > a, < right|r= > b) Uniform distribution with range a and b. You can
use the alias unif for this distribution.
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Table 61.4 (continued)

Distribution Name Definition

mvn(< mu= >�, < cov= >†) Multivariate normal distribution with mean vector
� and covariance matrix †

mvnar(< mu= >�, sd= �, < rho= >�)
mvnar(< mu= >�, var= �, < rho= >�)
mvnar(< mu= >�, prec= �, < rho= >�)

Multivariate normal distribution with mean vector
� and a covariance matrix †. The covariance
matrix † is a multiple of the scale and a matrix
with a first-order autoregressive structure

The following RANDOM statement specifies a scale effect, where s2u can be a constant or a model parameter
and index is a data set variable that indicates group membership of the random effect u:

random u ~ normal(0,var=s2u) subject=index;

The following statements specify multidimensional effects, where mu and cov can be either parameters in the
model or constant arrays:

array w[2];
array mu[2];
array cov[2,2];
random w ~ mvn(mu, cov) subject=index;

You can specify multiple RANDOM statements. Hyperparameters in the prior distribution of a random effect
can be other random effects in the model. For example, the following statements are allowed because the
random effect g appears in the distribution for the random effect u:

random g ~ normal(0,var=s2g) subject=month;
random u ~ normal(g,var=s2u) subject=day;

These two RANDOM statements specify a nested hierarchical model in which the random-effects g is the
hyperparameter of the random-effects u. You can build the hierarchical structure as deep as you want. You
can also use multiple RANDOM statements to build non-nested random-effects models, where the effects
could enter the model on different levels but not in the same hierarchy of each other.

The number of random-effects parameters in each RANDOM statement is determined by the number of
unique values in the SUBJECT= variable, which can be either unsorted numeric or unsorted character literal.
Unlike the model parameters that are explicitly declared in the PARMS statement (with therefore a fixed total
number), the number of random-effects parameters in a program depends on the values of the SUBJECT=
data set variable. That number can change from one BY group to another.

The order of the RANDOM statements, or their relative placement with respect to other statements in the
program (such as the PRIOR statement or the MODEL statement), is not important. The programming order
becomes relevant if any hyperparameters are defined variables in the program. For example, in the following
statements, the hyperparameter s is defined as a function of some variable or parameter in the model:

s = sqrt(s2g);
random g ~ normal(0,sd=s) subject=month;
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That definition of s must appear before the RANDOM statement that requires it. If you switched the order of
the statements as follows, PROC MCMC would not be able to calculate the prior density for some subjects
correctly and would produce erroneous results.

random g ~ normal(0,sd=s) subject=month;
s = sqrt(s2g);

The names of the random-effects parameters are created internally. See the NAMESUFFIX= option for
the naming convention of the random-effects parameters. The random-effects parameters are updated
conditionally in the simulation. All posterior draws are saved to the OUTPOST= output data set by default,
and you can use the MONITOR= option to monitor any of the parameters. For more information about
available sampling algorithms, see the ALGORITHM= option. For more information about how to set a
random-effects parameter to a constant (also known as corner-point constraint), see the CONSTRAINT
option.

You can specify the following options in the RANDOM statement:

ALGORITHM=option

ALG=option
specifies the algorithm to use to sample the posterior distribution. The following options are available:

RWM
uses the random-walk Metropolis algorithm with normal proposal.

SLICE
uses the slice sampling algorithm.

GEO
uses the discrete random-walk Metropolis with symmetric geometric proposal.

When possible, PROC MCMC samples directly from the full conditional distribution. Otherwise, the
default sampling algorithm is the RWM.

CONSTRAINT(VALUE=value) = FIRST | LAST | NONE | ’formatted-value’

ZERO=FIRST | LAST | NONE | ’formatted-value’
sets one of the random-effects parameters to a fixed value. The default is ZERO=NONE, which
does not fix any of the parameters to be a constant. This option enables you to eliminate one of the
parameters.

For example, this option could be useful if you want to fit a regression model with categorical
covariates and, instead of creating a design matrix, you treat the parameters as “random effects” and fit
an equivalent random-effects model.

Suppose you have a regression that includes a categorical variable X with J levels. You can construct a
full-rank design matrix with J–1 dummy variables (X2 � � �XJ with X1 being the base group) and fit a
regression such as the following:

�i D ˇ0 C ˇ2 �X2 � � �ˇJ �XJ
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The following statements in a PROC MCMC step fit such a hypothetical regression model:

parms beta0 betax2 ... betaxJ;
prior beta: ~ n(0, sd=100);
mu = beta0 + betax2 * x2 + ... betaxJ * xJ;
...

Equivalently, you can also treat this model as a random-effects model such as the following, where ˇj
are random effects for each category in X:

�i D ˇ0 C ˇj for j D 1; � � � ; J

However, this random-effects model is over-parameterized. The ZERO= option rids the model with
one random-effects parameter of choice and fixes it to be zero. The following example statements fit
such a hypothetical random-effects model:

parms beta0;
prior beta0 ~ n(0, sd=100);
random beta ~ n(0, sd=100) subject=x zero=first;
mu = beta0 + beta;
...

The specification ZERO=FIRST sets the first random-effects parameter to 0, implying ˇ1 D 0. This
random-effects parameter corresponds to the first category in the SUBJECT= variable. The category is
what the first observation of the SUBJECT= variable takes.

The specification ZERO=LAST sets the last random-effects parameter to be 0, implying ˇJ D 0. This
random-effects parameter corresponds to the last category in the SUBJECT= variable. The category is
not necessarily the same category that the last observation of the SUBJECT= variable takes because
the SUBJECT= variable does not need to be sorted.

The specification ZERO=‘formatted-value’ sets the random-effects parameter for the category (in
the SUBJECT= variable) with a formatted value that matches ‘formatted-value’ to 0. For example,
ZERO=‘3’ sets ˇ3 D 0.

The CONSTRAINT(VALUE=value) option works similarly to the ZERO= option. You can assign
an arbitrary value to any one of the random-effects parameter. For example, the specification CON-
STRAINT(VALUE=0)=FIRST is equivalent to ZERO=FIRST.

INITIAL=SAS-data-set | constant | numeric-list
specifies the initial values of the random-effects parameters. By default, PROC MCMC uses the same
option as specified in the INIT= option to generate initial values for the random-effects parameter:
either it uses the mode of the prior density or it randomly draws a sample from that distribution. You
can start the Markov chain at different places by providing a SAS-data-set , a constant, or a numeric-list
for multivariate random-effects parameters.

If you use a SAS-data-set , the data set must consist of variable names that agree with the random-
effects parameters in the model (see the NAMESUFFIX= option for the naming convention of the
random-effects parameters). The easiest way to find the names of the internally created parameter
names is to run a default analysis with a very small number of simulations and check the variable



RANDOM Statement F 4783

names in the OUTPOST= data set. You can provide a subset of the initial values in the SAS-data-set
and PROC MCMC will use the default mechanism to fill in the rest of the random-effects parameters.

For example, the following statement creates a data set with initial values for the random-effects
parameters u_1, u_2, and u_3:

data RandomInit;
input u_1 u_2 u_3;
datalines;
2.3 3 -3

;

The following RANDOM statement takes the values in the RandomInit data set to be the initial values
of the corresponding random-effects parameters in the model:

random u ~ normal(0,var=s2u) subject=index init=randominit;

Specifying a constant assigns that constant as the initial value to all random-effects parameters in the
statement. For example, the following statement assigns the value 5 to be used as an initial value for
all ui in the model:

random u ~ normal(0,var=s2u) subject=index init=5;

If you have multiple effects, you can provide a list of numbers, where the length of the list the same as
the dimension of your random-effects array. Each number is then given to all corresponding random-
effects parameters in order. For example, the following statement assigns the value 2 to be used as an
initial value for all w1i and the value 3 to be used for all w2i in the model:

array w[2] w1 w2;
random w ~ mvn(mu, cov) subject=index init=(2 3);

If you use the GENERAL or DGENERAL functions in the RANDOM statement, you must provide
initial values for these parameters.

MONITOR= (symbol-list | number-list | RANDOM(number ))
outputs analysis for selected random-effects parameters. You can choose to monitor the random-effects
parameters by listing the effect names or effect indices, or you can have them randomly selected by
PROC MCMC.

To monitor all random-effects parameters, you specify the effect name in the MONITOR= option:

random u ~ normal(0,var=s2u) subject=index monitor=(u);

You have three options for monitoring a subset of the random-effects parameters. You can provide a
list of the parameter names, you can provide a number list of the parameter indices, or you can have
PROC MCMC randomly choose a subset of parameters for you.
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For example, if you want to monitor analysis for parameters u_1 through u_10, u_23, and u_57, you
can provide the names as follows:

random u ~ normal(0,var=s2u) subject=index monitor=(u_1-u_10 u_23 u_57);

The naming convention in the symbol-list must agree with the NAMESUFFIX= option, which controls
how the parameter names of the random-effect are created. By default, NAMESUFFIX=SUBJECT,
and the symbol-list must use suffixes that correspond to the formatted values1 in the SUBJECT= data
set variable. With the NAMESUFFIX=POSITION option, the symbol-list must use suffixes that agree
with the input order of the SUBJECT= variable. If the SUBJECT= variable has a character value, you
cannot use the hyphen (-) in the symbol-list to indicate a range of variables.

To monitor the same list of random-effects parameters, you can provide their indices:

random u ~ normal(0,var=s2u) subject=index monitor=(1 to 10 by 1 23 57);

PROC MCMC can also randomly choose a subset of the parameters to monitor:

random u ~ normal(0,var=s2u) subject=index monitor=(random(12));

The sequence of the random indices is controlled by the SEED= option in the PROC MCMC statement.

By default, PROC MCMC does not monitor any random-effects parameters. When you specify this
option, it takes the specification of the STATISTICS= and PLOTS= options in the PROC MCMC
statement. By default, PROC MCMC outputs all the posterior samples of all random-effects parameters
to the OUTPOST= output data set. You can use the NOOUTPOST option to suppress the saving of the
random-effects parameters.

NAMESUFFIX=option
specifies how the names of the random-effects parameters are internally created from the SUBJECT=
variable that is specified in the RANDOM statement. PROC MCMC creates the names by concatenating
the random-effect symbol with an underscore and a series of numbers or characters. The following
options control the type of methods that are used in such construction:

SUBJECT
constructs the parameter names by appending the formatted values of the SUBJECT= variable in
the input data set2.

POSITION
constructs the parameter names by appending the numbers 1, 2, 3, and so on, where the number
indicates the order in which the SUBJECT= variable appears in the data set.

For example, suppose you have an input data set with four observations and the SUBJECT= variable
zipcode has four values (with three of them unique): 27513, 01440, 27513, and 15217. The following
SAS statement creates three random-effects parameters named u_27513, u_01440, and u_15217:

1In SAS/STAT 9.3, the random-effects parameters were created using the unformatted values of the SUBJECT= variable.
2In SAS/STAT 9.3, the random-effects parameters were created using the unformatted values of the SUBJECT= variable.



UDS Statement F 4785

random u ~ normal(0,var=10) subject=zipcode namesuffix=subject;

On the other hand, using NAMESUFFIX=POSITION creates three parameters named as u_1, u_2,
and u_3:

random u ~ normal(0,var=10) subject=zipcode namesuffix=position;

By default, NAMESUFFIX=SUBJECT.

NOOUTPOST
suppresses the output of the posterior samples of random-effects parameters to the OUTPOST= data
set. In models with a large number of random-effects parameters (for example, tens of thousands),
PROC MCMC can run faster if it does not save the posterior samples of the random-effects parameters.

When you specify both the NOOUTPOST option and the MONITOR= option, PROC MCMC outputs
the list of variables that are monitored.

The maximum number of variables that can be saved to an OUTPOST= data set is 32,767. If you run a
large-scale random-effects model with the number of parameters exceeding the limit, the NOOUTPOST
option is evoked automatically and PROC MCMC does not save the random-effects parameter draws to
the posterior output data set. You can use the MONITOR= option to select a subset of the parameters
to store in the OUTPOST= data set.

UDS Statement
UDS subroutine-name (subroutine-argument-list) ;

UDS stands for user defined sampler. The UDS statement enables you to use a separate algorithm, other than
the default random walk Metropolis, to update parameters in the model. The purpose of the UDS statement is
to give you a greater amount of flexibility and better control over the updating schemes of the Markov chain.
Multiple UDS statements are allowed.

For the UDS statement to work properly, you have to do the following:

• write a subroutine by using PROC FCMP (see the FCMP Procedure in the Base SAS Procedures
Guide) and save it to a SAS catalog (see the example in this section). The subroutine must update some
parameters in the model. These are the UDS parameters. The subroutine is called the UDS subroutine.

• declare any UDS parameters in the PARMS statement with a sampling option, as in < / UDS > (see the
section “PARMS Statement” on page 4773).

• specify the prior distributions for all UDS parameters, using the PRIOR statements.

NOTE: All UDS parameters must appear in three places: the UDS statement, the PARMS statement, and the
PRIOR statement. Otherwise, PROC MCMC exits.

To obtain a valid Markov chain, a UDS subroutine must update a parameter from its full posterior conditional
distribution and not the posterior marginal distribution. The posterior conditional is something that you
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need to provide. This conditional is implicitly based on a prior distribution. PROC MCMC has no means to
verify that the implied prior in the UDS subroutine is the same as the prior that you specified in the PRIOR
statement. You need to make sure that the two distributions agree; otherwise, you will get misleading results.

The priors in the PRIOR statements do not directly affect the sampling of the UDS parameters. They could
affect the sampling of the other parameters in the model, which, in turn, changes the behavior of the Markov
chain. You can see this by noting cases where the hyperparameters of the UDS parameters are model
parameters; the priors should be part of the posterior conditional distributions of these hyperparameters, and
they cannot be omitted.

Some additional information is listed to help you better understand the UDS statement:

• Most features of the SAS programming language can be used in subroutines processed by PROC
FCMP (see the FCMP Procedure in the Base SAS Procedures Guide).

• The UDS statement does not support FCMP functions—a FCMP function returns a value, while a
subroutine does not. A subroutine updates some of its subroutine arguments. These arguments are
called OUTARGS arguments.

• The UDS parameters cannot be in the same block as other parameters. The optional argument < /
UDS > in the PARMS statement prevents parameters that use the default Metropolis from being mixed
with those that are updated by the UDS subroutines.

• You can put all the UDS parameters in the same PARMS statement or have a separate UDS statement
for each of them.

• The same subroutine can be used in multiple UDS statements. This feature comes in handy if you have
a generic sampler that can be applied to different parameters.

• PROC MCMC updates the UDS parameters by calling the UDS subroutines directly. At every iteration,
PROC MCMC first samples parameters that use the Metropolis algorithm, then the UDS parameters.
Sampling of the UDS parameters proceeds in the order in which the UDS statements are listed.

• A UDS subroutine accepts any symbols in the program as well as any input data set variables as its
arguments.

• Only the OUTARGS arguments in a UDS subroutine are updated in PROC MCMC. You can modify
other arguments in the subroutine, but the changes are not global in PROC MCMC.

• If a UDS subroutine has an argument that is a SAS data set variable, PROC MCMC steps through the
data set while updating the UDS parameters. The subroutine is called once per observation in the data
set for every iteration.

• If a UDS subroutine does not have any arguments that are data set variables, PROC MCMC does not
access the data set while executing the subroutine. The subroutine is called once per iteration.

• To reduce the overhead in calling the UDS subroutine and accessing the data set repeatedly, you might
consider reading all the input data set variables into arrays and using the arrays as the subroutine
arguments. See the section “BEGINCNST/ENDCNST Statement” on page 4763 about how to use the
BEGINCNST and ENDCNST statements to store data set variables.

For an example that uses the UDS statement, see “Example 61.19: Implement a New Sampling Algorithm”
on page 4962.
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Details: MCMC Procedure

How PROC MCMC Works
PROC MCMC is a simulation-based procedure that applies a variety of sampling algorithms to the program
at hand. The default sampling methods include conjugate sampling (from full conditional), direct sampling
from the marginal distribution, inverse cumulative distribution function, random walk Metropolis with normal
proposal, and discretized random walk Metropolis with normal proposal. You can request alternate sampling
algorithms, such as random walk Metropolis with t distribution proposal, discretized random walk Metropolis
with symmetric geometric proposal, and the slice sampling algorithm.

PROC MCMC applies the more efficient sampling algorithms first, whenever possible. When a parameter
does not appear in the conditional distributions of other random variables in the program, PROC MCMC
generates samples directly from its prior distribution (which is also its marginal distribution). This usually
occurs in data-independent Monte Carlo simulation programs (see “Example 61.1: Simulating Samples
From a Known Density” on page 4863 for an example) or missing data problems, where the missing response
variables are generated directly from the conditional sampling distribution (or the conditional likelihood).
When conjugacy is detected, PROC MCMC uses random number generators to draw values from the full
conditional distribution. (For information about detecting conjugacy, see the section “Conjugate Sampling”
on page 4795.) In other situations, PROC MCMC resorts to the random walk Metropolis with normal
proposal to generate posterior samples for continuous parameters and a discretized version for discrete
parameters. See the section “Metropolis and Metropolis-Hastings Algorithms” on page 132 in Chapter 7,
“Introduction to Bayesian Analysis Procedures,” for details about the Metropolis algorithm. For the actual
implementation details of the Metropolis algorithm in PROC MCMC, such as tuning of the covariance
matrices, see the section “Tuning the Proposal Distribution” on page 4792.

A key component of the Metropolis algorithm is the calculation of the objective function. In most cases,
the objective function that PROC MCMC uses in a Metropolis step is the logarithm of the joint posterior
distribution, which is calculated with the inclusion of all data and parameters. The rest of this section describes
how PROC MCMC calculates the objective function for parameters that use the Metropolis algorithm.

Model Parameters

To calculate the log of the posterior density, PROC MCMC assumes that all observations in the data set are
independent,

log.p.� jy// D log.�.�//C
nX
iD1

log.f .yi j�//

where � is a parameter or a vector of parameters that are defined in the PARMS statements (referred to
as the model parameters). The term log.�.�// is the sum of the log of the prior densities specified in the
PRIOR and HYPERPRIOR statements. The term log.f .yi j�// is the log likelihood specified in the MODEL
statement. The MODEL statement specifies the log likelihood for a single observation in the data set.

If you want to model dependent data—that is, log.f .yj�// ¤
P
i log.f .yi j�//—you can use the JOINT-

MODEL option in the PROC MCMC statement. See the section “Modeling Joint Likelihood” on page 4827
for more details.
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The statements in PROC MCMC are similar to DATA step statements; PROC MCMC evaluates every
statement in order for each observation. At the beginning of the data set, the log likelihood is set to be 0.
As PROC MCMC steps through the data set, it cumulatively adds the log likelihood for each observation.
Statements between the BEGINNODATA and ENDNODATA statements are evaluated only at the first and
the last observations. At the last observation, the log of the prior and hyperprior distributions is added to the
sum of the log likelihood to obtain the log of the posterior distribution.

Calculation of the log.p.� jy// objective function involves a complete pass through the data set, making it
potentially computationally expensive. If � D f�1; �2g is multidimensional, you can choose to update a
portion of the parameters at each iteration step by declaring them in separate PARMS statements (see the
section “Blocking of Parameters” on page 4789 for more information). PROC MCMC updates each block of
parameters while holding others constant. The objective functions that are used in each update are the same
as the log of the joint posterior density:

log.p.�1jy; �2// D log.p.�2jy; �1// D log.p.� jy//

In other words, PROC MCMC does not derive the conditional distribution explicitly for each block of
parameters, and it uses the full joint distribution in the Metropolis step for every block update.

Random-Effects Models

For programs that require RANDOM statements, PROC MCMC includes the sum of the density evaluation
of the random-effects parameters in the calculation of the objective function for � ,

log.p.� j; y// D log.�.�//C
JX
jD1

log.�.j j�//C
nX
iD1

log.f .yi j�;//

where  D f1; � � � ; J g are random-effects parameters and �.j j�/ is the prior distribution of the random-
effects parameters. The likelihood function can be conditional on  , but the prior distributions of � , which
must be independent of  , cannot.

The objective function used in the Metropolis step for the random-effects parameter j contains only the
portion of the data that belong to the jth cluster:

log.p.j j�; y// D log.�.j j�//C
X

i2fj th clusterg
log.f .yi j�; j //

The calculation does not include log.�/, the prior density piece, because that is a known constant. Evaluation
of this objective function involves only a portion of the data set, making it more computationally efficient.
In fact, updating every random-effects parameters in a single RANDOM statement involves only one pass
through the data set.

You can have multiple RANDOM statements in a program, which adds more pieces to the posterior calculation,
such as

log.p.� j;˛; y// D log.�.�//C
JX
jD1

log.�.j j�//C
KX
kD1

log.�.˛kj�//C
nX
iD1

log.f .yi j�;;˛//

where ˛ D f˛1; � � � ; ˛Kg is another random effect. The random effects  and ˛ can form their own hierarchy
(as in a nested model), or they can enter the program in a non-nested fashion. The objective functions for j
and ˛k are calculated using only observations that belong to their respective clusters.
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Models with Missing Values

Missing values in the response variables of the MODEL statement are treated as random variables, and they
add another layer in the conditional updates in the simulation. Suppose that

y D fyobs; ymisg

The response variable y consists of n1 observed values yobs and n2 missing values ymis. The log of the
posterior distribution is thus formed by

log.p.� j; ymis; yobs// D log.�.�//C
JX
jD1

log.�.j j�//C
n2X
iD1

log.f .ymis;i j�;//

n1X
iD1

log.f .yobs;i j�;//

where the expression is evaluated at the drawn  and yobs values.

The conditional distribution of the random-effects parameter j is

log.p.j j�; y// D log.�.j j�//C
X

i2fj th clusterg
log.f .yi j�; j //

where the yi are either the observed or the imputed values of the response variable.

The missing values are usually sampled directly from the sampling distribution and do not require the
Metropolis sampler. When a response variable takes on a GENERAL function, the objective function is
simply the likelihood function: log

�
f .ymis;i j�; j /

�
.

Blocking of Parameters
In a multivariate parameter model, if all k parameters are proposed with one joint distribution q.�j�/, acceptance
or rejection would occur for all of them. This can be rather inefficient, especially when parameters have vastly
different scales. A way to avoid this difficulty is to allocate the k parameters into d blocks and update them
separately. The PARMS statement puts model parameters in separate blocks, and each block of parameters is
updated sequentially in the procedure.

Suppose you want to sample from a multivariate distribution with probability density function p.� jy/ where
� D f�1; �2; : : : ; �kg: Now suppose that these k parameters are separated into d blocks—for example,
p.� jx/ D fd .z/ where z D fz1; z2; : : : ; zd g, where each zj contains a nonempty subset of the f�ig, and
where each �i is contained in one and only one zj . In the MCMC context, the z’s are blocks of parameters.
In the blocked algorithm, a proposal consists of several parts. Instead of proposing a simultaneous move for
all the �’s, a proposal is made for the �i ’s in z1 only, then for the �i ’s in z2, and so on for d subproposals.
Any accepted proposal can involve any number of the blocks moving. The parameters do not necessarily all
move at once as in the all-at-once Metropolis algorithm.

Formally, the blocked Metropolis algorithm is as follows. Let wj be the collection of �i that are in block zj ,
and let qj .�jwj / be a symmetric multivariate distribution that is centered at the current values of wj .

1. Let t D 0. Choose points for all wtj . A point can be an arbitrary point as long as p.wtj jy/ > 0.

2. For j D 1; � � � ; d :
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a) Generate a new sample, wj;new, using the proposal distribution qj .�jwtj /.

b) Calculate the following quantity:

r D min

(
p.wj;newjwt1; � � � ; w

t
j�1; w

t�1
jC1; � � � ; w

t
d
; y/

p.wtj jw
t
1; � � � ; w

t
j�1; w

tC1
j�1; � � � ; w

t
d
; y/

; 1

)
:

c) Sample u from the uniform distribution U.0; 1/.

d) Set wtC1j D wj;new if r < a; wtC1j D wtj otherwise.

3. Set t D t C 1. If t < T , the number of desired samples, go back to Step 2; otherwise, stop.

With PROC MCMC, you can sample all parameters simultaneously by putting them all in a single PARMS
statement, you can sample parameters individually by putting each parameter in its own PARMS statement, or
you can sample certain subsets of parameters together by grouping each subset in its own PARMS statements.
For example, if the model you are interested in has five parameters, alpha, beta, gamma, phi, sigma, the
all-at-once strategy is as follows:

parms alpha beta gamma phi sigma;

The one-at-a-time strategy is as follows:

parms alpha;
parms beta;
parms gamma;
parms phi;
parms sigma;

A two-block strategy could be as follows:

parms alpha beta gamma;
parms phi sigma;

The exceptions to the previously described blocking strategies are parameters that are sampled directly (either
from their full conditional or marginal distributions) and parameters that are array-based (with multivariate
prior distributions). In these cases, the parameters are taken out of an existing block and are updated
individually. You can use the sampling options in the PARMS statement to override the default behavior.

One of the greatest challenges in MCMC sampling is achieving good mixing of the chains—the chains should
quickly traverse the support of the stationary distribution. A number of factors determine the behavior of a
Metropolis sampler; blocking is one of them, so you want to be extremely careful when you choose a good
design. Generally speaking, forming blocks of parameters has its advantages, but it is not true that the larger
the block the faster the convergence.

When simultaneously sampling a large number of parameters, the algorithm might find it difficult to achieve
good mixing. As the number of parameters gets large, it is much more likely to have (proposal) samples that
fall well into the tails of the target distribution, producing too small a test ratio. As a result, few proposed
values are accepted and convergence is slow. On the other hand, when the algorithm samples each parameter
individually, the computational cost increases linearly. Each block of Metropolis parameters requires one
additional pass through the data set, so a five-block updating strategy could take five times longer than
a single-block updating strategy. In addition, there is a chance that the chain might mix far too slowly
because the conditional distributions (of �i given all other � ’s) might be very “narrow,” as a result of posterior
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correlation among the parameters. When that happens, it takes a long time for the chain to fully explore
that dimension alone. There are no theoretical results that can help determine an optimal “blocking” for an
arbitrary parametric model. A rule followed in practice is to form small groups of correlated parameters
that belong to the same context in the formulation of the model. The best mixing is usually obtained with a
blocking strategy somewhere between the all-at-once and one-at-a-time strategies.

Sampling Methods
When suitable, PROC MCMC chooses the optimal sampling method for each parameter. That involves
direct sampling either from the conditional posterior via conjugacy (see the section “Conjugate Sampling” on
page 4795) or via the marginal posterior (see the section “Direct Sampling” on page 4794). Alternatively,
PROC MCMC samples according to Table 61.5. Each block of parameters is classified by the nature of the
prior distributions. “Continuous” means all priors of the parameters in the same block have a continuous
distribution. “Discrete” means all priors are discrete. “Mixed” means that some parameters are continuous
and others are discrete. Parameters that have binary priors are treated differently, as indicated in the table.

Table 61.5 Sampling Methods in PROC MCMC

Blocks Default Method Alternative Method

Continuous Multivariate normal (MVN) Multivariate t (MVT); slice sampler
Discrete (other than binary) Binned MVN Binned MVT or symmetric geometric
Mixed MVN MVT
Binary (single dimensional) Inverse CDF
Binary (multidimensional) Independence sampler

For a block of continuous parameters, PROC MCMC uses a multivariate normal distribution as the default
proposal distribution. In the tuning phase, PROC MCMC finds an optimal scale c and a tuning covariance
matrix †.

For a discrete block of parameters, PROC MCMC uses a discretized multivariate normal distribution as the
default proposal distribution. The scale c and covariance matrix † are tuned. Alternatively, you can use an
independent symmetric geometric proposal distribution. The density has form p.1�p/j�j

2.1�p/
and has variance

.2�p/.1�p/

p2
. In the tuning phase, the procedure finds an optimal proposal probability p for every parameter in

the block.

You can change the proposal distribution, from the normal to a t distribution. You can either use the PROC
option PROPDIST=T(df ) or PARMS statement option < / T(df ) > to make the change. The t distributions
have thicker tails, and they can propose to the tail areas more efficiently than the normal distribution.
It can help with the mixing of the Markov chain if some of the parameters have a skewed tails. See
“Example 61.6: Nonlinear Poisson Regression Models” on page 4893. The independence sampler (see the
section “Independence Sampler” on page 135 in Chapter 7, “Introduction to Bayesian Analysis Procedures,”)
is used for a block of binary parameters. The inverse CDF method is used for a block that consists of a single
binary parameter.

For parameters with continuous prior distributions, you can use the slice sampler as an alternative sampling
algorithm. To do so, specify the SLICE option in the PARMS. When you specify the SLICE option, all
parameters are updated individually. PROC MCMC does not support a multivariate version of the slice
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sampler. For more in information about the slice sampler, see the section“Slice Sampler” on page 135 in
Chapter 7, “Introduction to Bayesian Analysis Procedures.”

The sampling algorithms for the random-effects parameters are chosen in a similar fashion. The preferred
algorithms are the direct method either from the full conditional or the marginal. When these are not
attainable, Metropolis with normal proposal becomes the default for continuous random-effects parameters,
and discrete Metropolis with normal proposal becomes the default for discrete random-effects parameters.
You can use the ALGORITHM= option in the RANDOM statement to choose the slice sampler or discrete
Metropolis with symmetric geometric as the alternatives.

The sampling preference of the missing data variables is the same as the random-effects parameters. The
reserve sampling algorithm is the Metropolis. There is no alternative sampling method available for the
missing data variables.

Tuning the Proposal Distribution
One key factor in achieving high efficiency of a Metropolis-based Markov chain is finding a good proposal
distribution for each block of parameters. This process is referred to as tuning. The tuning phase consists of a
number of loops. The minimum number of loops is controlled by the option MINTUNE=, with a default
value of 2. The option MAXTUNE= controls the maximum number of tuning loops, with a default value
of 24. Each loop lasts for NTU= iterations, where by default NTU= 500. At the end of every loop, PROC
MCMC examines the acceptance probability for each block. The acceptance probability is the percentage of
NTU= proposals that have been accepted. If the probability falls within the acceptance tolerance range (see
the section “Scale Tuning” on page 4792), the current configuration of c/† or p is kept. Otherwise, these
parameters are modified before the next tuning loop.

Continuous Distribution: Normal or t Distribution

A good proposal distribution should resemble the actual posterior distribution of the parameters. Large
sample theory states that the posterior distribution of the parameters approaches a multivariate normal
distribution (see Gelman et al. 2004, Appendix B, and Schervish 1995, Section 7.4). That is why a normal
proposal distribution often works well in practice. The default proposal distribution in PROC MCMC
is the normal distribution: qj .�newj� t / D MVN.�newj� t ; c2†/. As an alternative, you can choose a
multivariate t distribution as the proposal distribution. It is a good distribution to use if you think that the
posterior distribution has thick tails and a t distribution can improve the mixing of the Markov chain. See
“Example 61.6: Nonlinear Poisson Regression Models” on page 4893.

Scale Tuning
The acceptance rate is closely related to the sampling efficiency of a Metropolis chain. For a random
walk Metropolis, high acceptance rate means that most new samples occur right around the current data
point. Their frequent acceptance means that the Markov chain is moving rather slowly and not exploring
the parameter space fully. On the other hand, a low acceptance rate means that the proposed samples are
often rejected; hence the chain is not moving much. An efficient Metropolis sampler has an acceptance
rate that is neither too high nor too low. The scale c in the proposal distribution q.�j�/ effectively controls
this acceptance probability. Roberts, Gelman, and Gilks (1997) showed that if both the target and proposal
densities are normal, the optimal acceptance probability for the Markov chain should be around 0.45 in a
single dimensional problem, and asymptotically approaches 0.234 in higher dimensions. The corresponding
optimal scale is 2.38, which is the initial scale set for each block.
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Due to the nature of stochastic simulations, it is impossible to fine-tune a set of variables such that the
Metropolis chain has the exact desired acceptance rate. In addition, Roberts and Rosenthal (2001) empirically
demonstrated that an acceptance rate between 0.15 and 0.5 is at least 80% efficient, so there is really no
need to fine-tune the algorithms to reach acceptance probability that is within small tolerance of the optimal
values. PROC MCMC works with a probability range, determined by the PROC options TARGACCEPT
˙ ACCEPTTOL. The default value of TARGACCEPT is a function of the number of parameters in the
model, as outlined in Roberts, Gelman, and Gilks (1997). The default value of ACCEPTTOL= is 0.075. If
the observed acceptance rate in a given tuning loop is less than the lower bound of the range, the scale is
reduced; if the observed acceptance rate is greater than the upper bound of the range, the scale is increased.
During the tuning phase, a scale parameter in the normal distribution is adjusted as a function of the observed
acceptance rate and the target acceptance rate. The following updating scheme is used in PROC MCMC 3:

cnew D
ccur �ˆ�1.popt=2/

ˆ�1.pcur=2/

where ccur is the current scale, pcur is the current acceptance rate, popt is the optimal acceptance probability.

Covariance Tuning
To tune a covariance matrix, PROC MCMC takes a weighted average of the old proposal covariance matrix
and the recent observed covariance matrix, based on NTU samples in the current loop. The TUNEWT=w
option determines how much weight is put on the recently observed covariance matrix. The formula used to
update the covariance matrix is as follows:

COVnew D w COVcur C .1 � w/COVold

There are two ways to initialize the covariance matrix:

• The default is an identity matrix multiplied by the initial scale of 2.38 (controlled by the PROC option
SCALE=) and divided by the square root of the number of estimated parameters in the model. It can
take a number of tuning phases before the proposal distribution is tuned to its optimal stage, since the
Markov chain needs to spend time learning about the posterior covariance structure. If the posterior
variances of your parameters vary by more than a few orders of magnitude, if the variances of your
parameters are much different from 1, or if the posterior correlations are high, then the proposal tuning
algorithm might have difficulty with forming an acceptable proposal distribution.

• Alternatively, you can use a numerical optimization routine, such as the quasi-Newton method, to find
a starting covariance matrix. The optimization is performed on the joint posterior distribution, and the
covariance matrix is a quadratic approximation at the posterior mode. In some cases this is a better
and more efficient way of initializing the covariance matrix. However, there are cases, such as when
the number of parameters is large, where the optimization could fail to find a matrix that is positive
definite. In that case, the tuning covariance matrix is reset to the identity matrix.

A side product of the optimization routine is that it also finds the maximum a posteriori (MAP) estimates with
respect to the posterior distribution. The MAP estimates are used as the initial values of the Markov chain.

3 Roberts, Gelman, and Gilks (1997) and Roberts and Rosenthal (2001) demonstrate that the relationship between acceptance
probability and scale in a random walk Metropolis is p D 2ˆ

�
�
p
Ic=2

�
, where c is the scale, p is the acceptance rate, ˆ is the

CDF of a standard normal, and I � Ef Œ.f 0.x/=f .x//2�, f .x/ is the density function of samples. This relationship determines the
updating scheme, with I being replaced by the identity matrix to simplify calculation.



4794 F Chapter 61: The MCMC Procedure

If any of the parameters are discrete, then the optimization is performed conditional on these discrete
parameters at their respective fixed initial values. On the other hand, if all parameters are continuous, you
can in some cases skip the tuning phase (by setting MAXTUNE=0) or the burn-in phase (by setting NBI=0).

Discrete Distribution: Symmetric Geometric

By default, PROC MCMC uses the normal density as the proposal distribution in all Metropolis random walks.
For parameters that have discrete prior distributions, PROC MCMC discretizes proposed samples. You can
choose an alternative symmetric geometric proposal distribution by specifying the option DISCRETE=GEO.

The density of the symmetric geometric proposal distribution is as follows:

pg.1 � pg/
j� j

2.1 � pg/

where the symmetry centers at � . The distribution has a variance of

�2 D
.2 � pg/.1 � pg/

p2g

Tuning for the proposal pg uses the following formula:

�new
�cur

D
ˆ�1.popt=2/

ˆ�1.pcur=2/

where �new is the standard deviation of the new proposal geometric distribution, �cur is the standard
deviation of the current proposal distribution, popt is the target acceptance probability, and pcur is the
current acceptance probability for the discrete parameter block.

The updated pg is the solution to the following equation that is between 0 and 1 :s
.2 � pg/.1 � pg/

p2g
D
�cur �ˆ�1.popt=2/

ˆ�1.pcur=2/

Binary Distribution: Independence Sampler

Blocks consisting of a single parameter with a binary prior do not require any tuning; the inverse-CDF method
applies. Blocks that consist of multiple parameters with binary prior are sampled by using an independence
sampler with binary proposal distributions. See the section “Independence Sampler” on page 135 in Chapter 7,
“Introduction to Bayesian Analysis Procedures.” During the tuning phase, the success probability p of the
proposal distribution is taken to be the probability of acceptance in the current loop. Ideally, an independence
sampler works best if the acceptance rate is 100%, but that is rarely achieved. The algorithm stops when the
probability of success exceeds the TARGACCEPTI=value, which has a default value of 0.6.

Direct Sampling
The word “direct” is reserved for sampling that is done directly from the prior distribution of a model or a
random-effects parameter or from the sampling distribution of a missing data variable. If the parameter is
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updated via sampling from its full conditional posterior distribution, the sampling method is referred to as
conjugate sampling. (See the section “Conjugate Sampling” on page 4795.)

Whenever a parameter does not appear in the hierarchy of another parameter in the model, PROC MCMC
samples directly from its distribution. For a model parameter or a random-effects parameter, this distribution
is its prior distribution. For a missing data variable, this distribution is the sampling distribution of the
response variable. Therefore, direct sampling takes place most frequently in data-independent Monte Carlo
simulations or the sampling of missing response variables.

Conjugate Sampling
Conjugate prior is a family of prior distributions in which the prior and the posterior distributions are of the
same family of distributions. For example, if you model an independently and identically distributed random
variable yi using a normal likelihood with known variance �2,

yi � normal.�; �2/

a normal prior on �

� � normal.�0; �20 /

is a conjugate prior because the posterior distribution of � is also a normal distribution given y D fyig, �2,
�0, and �20 :

�jy � normal

0@ 1

�20
C

n

�2

!�1
�

 
�0

�20
C
n � Ny
�2

!
;

 
1

�20
C

n

�2

!�11A
Conjugate sampling is efficient because it enables the Markov chain to obtain samples from the target
distribution directly. When appropriate, PROC MCMC uses conjugate sampling methods to draw conditional
posterior samples. Table 61.6 lists scenarios that lead to conjugate sampling in PROC MCMC.

Table 61.6 Conjugate Sampling in PROC MCMC

Family Parameter Prior

Normal with known � Variance �2 Inverse gamma family
Normal with known � Precision � Gamma family
Normal with known scale parameter (�2, � , or � ) Mean � Normal
Multivariate normal with known † Mean � Multivariate normal
Multivariate normal with known � Covariance † Inverse Wishart
Multinomial p Dirichlet
Binomial/binary p Beta
Poisson � Gamma family

In most cases, Family in Output 61.6 refers to the likelihood function. However, it does not necessarily have
to be the case. The Family is a distribution that is conditional on the parameter of interest, and it can appear
in any level of the hierarchical model, including on the random-effects level.
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PROC MCMC can detect conjugacy only if the model parameter (not a function or a transformation of the
model parameter) is used in the prior and Family distributions. For example, the following statements lead to
a conjugate sampler being used on the parameter mu:

parm mu;
prior mu ~ n(0, sd=1000);
model y ~ n(mu, var=s2);

However, if you modify the program slightly in the following way, although the conjugacy still holds in
theory, PROC MCMC cannot detect conjugacy on mu because the parameter enters the normal likelihood
function through the symbol w:

parm mu;
prior mu ~ n(0, sd=1000);
w = mu;
model y ~ n(w, var=s2);

In this case, PROC MCMC resorts to the default sampling algorithm, which is a random walk Metropolis
based on a normal kernel.

Similarly, the following statements also prevent PROC MCMC from detecting conjugacy on the parameter
mu:

parm mu;
prior mu ~ n(0, sd=1000);
model y ~ n(mu + 2, var=s2);

In a normal family, an often-used and often-confused conjugate prior on the variance is the inverse gamma
distribution, and a conjugate prior on the precision is the gamma distribution. See “Gamma and Inverse-
Gamma Distributions” on page 4836 for typical usages of these prior distributions.

When conjugacy is detected in a model, PROC MCMC performs a numerical optimization on the joint
posterior distribution at the start of the MCMC simulation. If the only sampling methods required in the
program are conjugate samplers or direct samplers, PROC MCMC omits this optimization step. To turn off
this optimization routine, use the PROPCOV=IND option in the PROC MCMC statement.

Initial Values of the Markov Chains
There are three types of parameters in a PROC MCMC program: the model parameters in the PARMS
statement, the random-effects parameters in the RANDOM statement, and the missing data variables in the
MODEL statement. The last category is used to model missing values in the input data set.

When the model parameters and random-effects parameters have missing initial values, PROC MCMC
generates initial values based on the prior distributions. PROC MCMC either uses the mode value (the
default) or draws a random number (if the INIT=RANDOM option is specified). For distributions that do
not have modes, such as the uniform distribution, PROC MCMC uses the mean instead. In general, PROC
MCMC avoids using starting values that are close to the boundary of support of the prior distribution. For
example, the exponential prior has a mode at 0, and PROC MCMC starts an initial value at the mean. This
avoids some potential numerical problems. If you use the GENERAL or DGENERAL function in the PRIOR
statements, you must provide initial values for those parameters.
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With missing data variables, PROC MCMC uses the sample average of the nonmissing values (of the response
variable) as the initial value. If all values of a particular variable are missing, PROC MCMC resorts to
using the mode value or a random number from the sampling distribution (the likelihood), depending on the
specification of the INIT= option.

To assign a different set of initial values to the model parameters, you use either the PARMS statements
or programming statements within the BEGINCNST and ENDCNST statements. See the section “Assign-
ments of Parameters” on page 4797 for more information about how to assign parameter values within the
BEGINCNST and ENDCNST statements.

To assign initial values to the random-effects parameters, you can use the INIT= option in the RANDOM
statement. Either you can give a constant value to all random-effects parameters that are associated with that
statement (for example, use init=3), or you can assign values individually by providing a data set that stores
different values for different parameters.

A mirroring INIT= option in the MODEL statement enables you to assign different initial values to the
missing data variables.

If you use the PROPCOV= optimization option in the PROC MCMC statement, PROC MCMC starts the
tuning at the optimized values. PROC MCMC overwrites the initial values that you might have provided at
the beginning of the Markov chain unless you use the option INIT=REINIT.

Assignments of Parameters
In general, you cannot alter the values of any model parameters in PROC MCMC. For example, the following
assignment statement produces an error:

parms alpha;
alpha = 27;

This restriction prevents incorrect calculation of the posterior density—assignments of parameters in the
program would override the parameter values generated by PROC MCMC and lead to an incorrect value of
the density function.

However, you can modify parameter values and assign initial values to parameters within the block defined
by the BEGINCNST and ENDCNST statements. The following syntax is allowed:

parms alpha;
begincnst;

alpha = 27;
endcnst;

The initial value of alpha is 27. Assignments within the BEGINCNST/ENDCNST block override initial
values specified in the PARMS statement. For example, with the following statements, the Markov chain
starts at alpha = 27, not 23.

parms alpha 23;
begincnst;

alpha = 27;
endcnst;
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This feature enables you to systematically assign initial values. Suppose that z is an array parameter of the
same length as the number of observations in the input data set. You want to start the Markov chain with
each zi having a different value depending on the data set variable y. The following statements set zi D jyj
for the first half of the observations and zi D 2:3 for the rest:

/* a rather artificial input data set. */
data inputdata;

do ind = 1 to 10;
y = rand('normal');
output;

end;
run;

proc mcmc data=inputdata;
array z[10];
begincnst;

if ind <= 5 then z[ind] = abs(y);
else z[ind] = 2.3;

endcnst;
parms z:;
prior z: ~ normal(0, sd=1);
model general(0);

run;

Elements of z are modified as PROC MCMC executes the programming statements between the BEGINCNST
and ENDCNST statements. This feature could be useful when you use the GENERAL function and you find
that the PARMS statements are too cumbersome for assigning starting values.

Standard Distributions
The section “Univariate Distributions” on page 4799 (Table 61.7 through Table 61.35) lists all univariate
distributions that PROC MCMC recognizes. The section “Multivariate Distributions” on page 4809 (Ta-
ble 61.36 through Table 61.40) lists all multivariate distributions that PROC MCMC recognizes. With the
exception of the multinomial distribution, all these distributions can be used in the MODEL, PRIOR, and
HYPERPRIOR statements. The multinomial distribution is supported only in the MODEL statement. The
RANDOM statement supports a limited number of distributions; see Table 61.4 for the complete list.

See the section “Using Density Functions in the Programming Statements” on page 4814 for information
about how to use distributions in the programming statements. To specify an arbitrary distribution, you
can use the GENERAL and DGENERAL functions. See the section “Specifying a New Distribution” on
page 4813 for more details. See the section “Truncation and Censoring” on page 4817 for tips about how to
work with truncated distributions and censoring data.
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Univariate Distributions

Table 61.7 Beta Distribution

PROC specification beta(a, b)

Density �.aCb/
�.a/�.b/

�a�1.1 � �/b�1

Parameter restriction a > 0, b > 0

Range

8̂̂̂̂
<̂̂
ˆ̂̂̂:
Œ0; 1� when a D 1; b D 1

Œ0; 1/ when a D 1; b ¤ 1

.0; 1� when a ¤ 1; b D 1

.0; 1/ otherwise

Mean a
aCb

Variance ab
.aCb/2.aCbC1/

Mode

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

a�1
aCb�2

a > 1; b > 1

0 and 1 a < 1; b < 1

0

(
a < 1; b � 1

a D 1; b > 1

1

(
a � 1; b < 1

a > 1; b D 1

does not exist uniquely a D b D 1

Random number If min.a; b/ > 1, see (Cheng 1978); if max.a; b/ < 1, see (Atkin-
son and Whittaker 1976) and (Atkinson 1979); if min.a; b/ < 1

and max.a; b/ > 1, see (Cheng 1978); if a = 1 or b = 1, use the
inversion method; if a D b D 1, use a uniform random number
generator.

Table 61.8 Binary Distribution

PROC specification binary(p)

Density p� .1 � p/1��

Parameter restriction 0 � p � 1

Range

8̂̂<̂
:̂
f0g when p D 0

f1g when p D 1

f0; 1g otherwise

Mean round.p/

Variance p.1 � p/

Mode

(
f1g when p D 1

f0g otherwise

Random number Generate u � uniform.0; 1/. If u � p, � D 1; else, � D 0:
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Table 61.9 Binomial Distribution

PROC specification binomial(n, p)

Density

 
n

�

!
p� .1 � p/n��

Parameter restriction n D 0; 1; 2; � � � 0 � p � 1

Range � 2 f0; � � � ; ng

Mean bnpc

Variance np.1 � p/

Mode b.nC 1/pc

Table 61.10 Cauchy Distribution

PROC specification cauchy(a, b)

Density 1
�

�
b

b2C.��a/2

�
Parameter restriction b > 0

Range � 2 .�1;1/

Mean Does not exist.

Variance Does not exist.

Mode a

Random number Generate u1; u2 � uniform.0; 1/; let v D 2u2 � 1. Repeat the
procedure until u21 C v2 < 1. y D v=u1 is a draw from the
standard Cauchy, and � D aC by (Ripley 1987).

Table 61.11 �2 Distribution

PROC specification chisq(�)

Density 1
�.�=2/2�=2

� .�=2/�1e��=2

Parameter restriction � > 0

Range � 2 Œ0;1/ if � D 2; .0;1/ otherwise.

Mean �

Variance 2�

Mode � � 2 if � � 2; does not exist otherwise.

Random number �2 is a special case of the gamma distribution: � �

gamma.�=2; scale=2/ is a draw from the �2 distribution.
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Table 61.12 Exponential �2 Distribution

PROC specification expchisq(�)

Density 1
�.�=2/2�=2

exp.�/�=2 exp.� exp.�/=2/

Parameter restriction � > 0

Range � 2 .�1;1/

Mode log.�/

Random number Generate x1 � �2.�/, and � D log.x1/ is a draw from the expo-
nential �2 distribution.

Relationship to the �2

distribution
� � �2.�/, log.�/ � exp�2.�/

Table 61.13 Exponential Exponential Distribution

PROC specification expexpon(scale = b ) expexpon(iscale = ˇ )

Density 1
b
exp.�/ exp.� exp.�/=b/ ˇ exp.�/ exp.� exp.�/ � ˇ/

Parameter restriction b > 0 ˇ > 0

Range � 2 .�1;1/ Same

Mode log.b/ log.1=ˇ/

Random number Generate x1 � expon.scale=b/, and � D log.x1/ is a draw from
the exponential exponential distribution. Note that an exponential
exponential distribution is not the same as the double exponential
distribution.

Relationship to the ex-
ponential distribution

� � expon.b/, log.�/ � expExpon.b/

Table 61.14 Exponential Gamma Distribution

PROC specification expgamma(a, scale = b ) expgamma(a, iscale = ˇ )

Density 1
ba�.a/

ea� exp.�e�=b/ ˇa

�.a/
ea� exp.�e� � ˇ/

Parameter restriction a > 0; b > 0 a > 0; ˇ > 0

Range � 2 .�1;1/ Same

Mode log.ab/ log.a=ˇ/

Random number Generate x1 � gamma.a; scale D b/, and � D log.x1/ is a draw
from the exponential gamma distribution.

Relationship to the �
distribution

� � gamma.a; b/, log.�/ � expGamma.a; b/
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Table 61.15 Exponential Inverse �2 Distribution

PROC specification expichisq(�)

Density 1
�.�
2
/2�=2

exp.���=2/ exp.�1=.2 exp.�///

Parameter restriction � > 0

Range � 2 .�1;1/

Mode � log.�/

Random number Generate x1 � i�2.�/, and � D log.x1/ is a draw from the expo-
nential inverse �2 distribution.

Relationship to the i�2

distribution
� � i�2.�/, log.�/ � exp i�2.�/

Table 61.16 Exponential Inverse-Gamma Distribution

PROC specification expigamma(a, scale = b ) expigamma(a, iscale = ˇ )

Density ba

�.a/
exp.�˛�/ exp.�b= exp.�// 1

ˇ˛�.a/
exp.�˛�/ exp.� 1

ˇ exp.�//

Parameter restriction a > 0; b > 0 a > 0; ˇ > 0

Range � 2 .�1;1/ Same

Mode � log.a=b/ � log.aˇ/

Random number Generate x1 � igamma.a; scale D b/, and � D log.x1/ is a draw
from the exponential inverse-gamma distribution.

Relationship to the
i� distribution

� � igamma.a; b/, log.�/ � eigamma.a; b/

Table 61.17 Exponential Scaled Inverse �2 Distribution

PROC specification expsichisq(�, s)

Density .�
2
/�=2

�.�
2
/
s� exp.���=2/ exp.��s2=.2 exp.�///

Parameter restriction � > 0; s > 0

Range � 2 .�1;1/

Mode log.s2/

Random number Generate x1 � si�2.�; s/, and � D log.x1/ is a draw from the
exponential scaled inverse �2 distribution.

Relationship to the si�2

distribution
� � si�2.�; s/, log.�/ � exp si�2.�; s/
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Table 61.18 Exponential Distribution

PROC specification expon(scale = b ) expon(iscale = ˇ )

Density 1
b
e��=b ˇe�ˇ�

Parameter restriction b > 0 ˇ > 0

Range � 2 Œ0;1/ Same

Mean b 1=ˇ

Variance b2 1=ˇ2

Mode 0 0

Random number The exponential distribution is a special case of the gamma distri-
bution: � � gamma.1; scale D b/ is a draw from the exponential
distribution.

Table 61.19 Gamma Distribution

PROC specification gamma(a, scale = b ) gamma(a, iscale = ˇ )

Density 1
ba�.a/

�a�1e��=b ˇa

�.a/
�a�1e�ˇ�

Parameter restriction a > 0; b > 0 a > 0; ˇ > 0

Range � 2 Œ0;1/ if a D 1I .0;1/ oth-
erwise.

Same

Mean ab a=ˇ

Variance ab2 a=ˇ2

Mode .a � 1/b if a � 1 .a � 1/=ˇ if a � 1

Random number See (McGrath and Irving 1973).

Table 61.20 Geometric Distribution

PROC specification geo(p)

Density * p.1 � p/�

Parameter restriction 0 < p � 1

Range � 2

(
f0; 1; 2; : : :g 0 < p < 1

f0g p D 1

Mean round(1�p
p

)

Variance 1�p

p2

Mode 0

Random number Based on samples obtained from a Bernoulli distribution with prob-
ability p until the first success.

*The random variable � is the total number of failures in an experiment before the first success. This density function is
not to be confused with another popular formulation, p.1 � p/��1, which counts the total number of trials until the first
success.
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Table 61.21 Inverse �2 Distribution

PROC specification ichisq(�)

Density 1
�.�=2/2�=2

��.�=2C1/e�1=.2�/

Parameter restriction � > 0

Range � 2 .0;1/

Mean 1
��2

if � > 2

Variance 2
.��2/2.��4/

if � > 4

Mode 1
�C2

Random number Inverse �2 is a special case of the inverse-gamma distribution:
� � igamma.�=2; iscale D 2/ is a draw from the inverse �2 distri-
bution.

Table 61.22 Inverse-Gamma Distribution

PROC specification igamma(a, scale = b ) igamma(a, iscale = ˇ )

Density ba

�.a/
��.aC1/e�b=� 1

ˇa�.a/
��.aC1/e�1=ˇ�

Parameter restriction a > 0; b > 0 a > 0; ˇ > 0

Range � 2 .0;1/ Same

Mean b
a�1

if a > 1 1
ˇ.a�1/

if a > 1

Variance b2

.a�1/2.a�2/
1

ˇ2.a�1/2.a�2/

Mode b
aC1

1
ˇ.aC1/

Random number Generate x1 � gamma.a; scale D b/, and � D 1=x1 is a draw
from the igamma.a; iscale D b/ distribution.

Relationship to the
gamma distribution

� � gamma.a; iscale D b/, 1=� � igamma.a; scale D b/
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Table 61.23 Laplace (Double Exponential) Distribution

PROC specification laplace(a, scale = b) laplace(a, iscale = ˇ)

Density 1
2b
e�j��aj=b ˇ

2
e�ˇ j��aj

Parameter restriction b > 0 ˇ > 0

Range � 2 .�1;1/ Same

Mean a a

Variance 2b2 2=ˇ2

Mode a a

Random number Inverse CDF. F.�/ D

8<:
1
2
exp

�
�
a��
b

�
� < a

1 � 1
2
exp

�
�
��a
b

�
� � a

:

Generate u1; u2 � uniform.0; 1/. If u1 < 0:5; � D aC b log.u2/I
else � D a � b log.u2/. � is a draw from the Laplace distribution.

Table 61.24 Logistic Distribution

PROC specification logistic(a, b)

Density exp.� ��ab /

b.1Cexp.� ��ab //
2

Parameter restriction b > 0

Range � 2 .�1;1/

Mean a

Variance �2b2

3

Mode a

Random number Inverse CDF method withF.�/ D
�
1C exp.���a

b
/
��1

. Generate
u � uniform.0; 1/, and � D a� b log.1=u� 1/ is a draw from the
logistic distribution.

Table 61.25 Lognormal Distribution

PROC speci-
fication

lognormal(�, sd = s) lognormal(�, var = v) lognormal(�, prec = � )

Density 1

�s
p
2�

exp
�
�
.log ���/2

2s2

�
1

�
p
2�v

exp
�
�
.log ���/2

2v

�
1
�

q
�
2�

exp
�
�
�.log ���/2

2

�
Parameter re-
striction

s > 0 v > 0 � > 0

Range � 2 .0;1/ Same Same

Mean exp.�C s2=2/ exp.�C v=2/ exp.�C 1=.2�//
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Variance
exp .2.�C s2//

� exp .2�C s2/

exp .2.�C v//

� exp .2�C v/

exp .2.�C 1=�//

� exp .2�C 1=�/

Mode exp.� � s2/ exp.� � v/ exp.� � 1=�/

Random
number

Generate x1 � normal.0; 1/, and � D exp.� C sx1/ is a draw from the
lognormal distribution.

Table 61.26 Negative Binomial Distribution

PROC specification negbin(n, p)

Density

 
� C n � 1

n � 1

!
pn.1 � p/�

Parameter restriction n D 1; 2; � � �; and0 < p � 1

Range � 2

(
f0; 1; 2; : : :g 0 < p < 1

f0g p D 1

Mean round
�
n.1�p/
p

�
Variance n.1�p/

p2

Mode

8<: 0 n D 1

round
�
.n�1/.1�p/

p

�
n > 1

Random number Generate x1 � gamma.n; 1/, and � � Poisson.x1 � .1 � p/=p/
(Fishman 1996).

Table 61.27 Normal Distribution

PROC speci-
fication

normal(�, sd = s) normal(�, var = v) normal(�, prec = � )

Density 1

s
p
2�

exp
�
�
.���/2

2s2

�
1p
2�v

exp
�
�
.���/2

2v

� q
�
2�

exp
�
�
�.���/2

2

�
Parameter re-
striction

s > 0 v > 0 � > 0

Range � 2 .�1;1/ Same Same

Mean � Same Same

Variance s2 v 1=�

Mode � Same Same
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Table 61.28 Pareto Distribution

PROC specification pareto(a, b)

Density a
b

�
b
�

�aC1
Parameter restriction a > 0; b > 0

Range � 2 Œb;1/

Mean ab
a�1

if a > 1

Variance b2a
.a�1/2.a�2/

if a > 2

Mode b

Random number Inverse CDF method with F.�/ D 1 � .b=�/a . Generate u �
uniform.0; 1/, and � D b

u1=a
is a draw from the Pareto distribution.

Useful transformation x D 1=� is Beta(a, 1)I{x < 1=b}.

Table 61.29 Poisson Distribution

PROC specification poisson(�)

Density ��

�Š
exp.��/

Parameter restriction � � 0

Range � 2

(
f0; 1; : : :g if � > 0

f0g if � D 0

Mean �

Variance �, if � > 0

Mode round.�/

Table 61.30 Scaled Inverse �2 Distribution

PROC specification sichisq(�; s2)

Density .s2�=2/�=2

�.�=2/
��.�=2C1/e��s

2=.2�/

Parameter restriction � > 0; s > 0

Range � 2 .0;1/

Mean �
��2

s2 if � > 2

Variance 2�2

.��2/2.��4/
s4 if � > 4

Mode �
�C2

s2

Random number Scaled inverse �2 is a special case of the inverse-gamma distri-
bution: � � igamma.�=2; scale D .�s2/=2/ is a draw from the
scaled inverse �2 distribution.
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Table 61.31 t Distribution

PROC
specifica-
tion

t(�, sd = s, �) t(�, var = v, �) t(�, prec = � , �)

Density �.�C1
2
/

�.�
2
/s
p
��
.1C .���/2

�s2
/�

�C1
2

�.�C1
2
/

�.�
2
/
p
��v

.1C .���/2

�v
/�

�C1
2

�.�C1
2
/
p
�

�.�
2
/
p
��
.1C �.���/2

�
/�

�C1
2

Parm re-
striction

s > 0, � > 0 v > 0, � > 0 � > 0, � > 0

Range � 2 .�1;1/ Same Same

Mean � if � > 1 Same Same

Variance �
��2

s2 if � > 2 �
��2

v if � > 2 �
��2

1
�

if � > 2

Mode � Same Same

Random
number

x1 � normal.0; 1/; x2 � �2.d/; and � D m C �x1
p
d=x2 is a draw from the t

distribution.

Table 61.32 Table (Categorical) Distribution

PROC specification table(p), where p D fpig, for i D 1; 2; � � � ; k

Density f .� D i/ D pi

Parameter restriction
Pk
i pi D 1 with all pi > 0

Range � 2 f1; 2; � � � ; kg

Mode i such that pi D max.p1; � � � ; pk/

Random number Inverse CDF method with F.� D i/ D
Pi
jD1 pj .

Table 61.33 Uniform Distribution

PROC specification uniform(a, b)

Density

8̂̂<̂
:̂

1
a�b

if a > b
1
b�a

if b > a

1 if a D b

Parameter restriction none

Range � 2 Œa; b�

Mean aCb
2

Variance jb�aj2

12

Mode Does not exist

Random number Mersenne Twister (Matsumoto and Kurita 1992, 1994; Matsumoto
and Nishimura 1998)
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Table 61.34 Wald Distribution

PROC specification wald(�, �)

Density
q

�
2��3

exp
�
��.���/2

2�2�

�
Parameter restriction � > 0; � > 0

Range � 2 .0;1/

Mean �

Variance �3=�

Mode �

��
1C 9�2

4�2

�1=2
�
3�
2�

�
Random number Generate �0 � �2.1/. Let x1 D �C �2�0

2�
�

�
2�

q
4���0 C �2�

2
0

and x2 D �2=x1. Perform a Bernoulli trial, w � Bernoulli. �
�Cx1

/.
If w D 1, choose � D x1; otherwise, choose � D x2 (Michael,
Schucany, and Haas 1976).

Table 61.35 Weibull Distribution

PROC specification weibull(�, c, � )

Density exp
�
�

�
���
�

�c�
c
�

�
���
�

�c�1
Parameter restriction c > 0; � > 0

Range � 2 Œ�;1/ if c D 1I .�;1/ otherwise

Mean �C ��.1C 1=c/

Variance �2Œ�.1C 2=c/ � �2.1C 1=c/�

Mode �C �.1 � 1=c/1=c if c > 1

Random number Inverse CDF method with F.�/ D 1� exp
�
�

�
�
���
�

�c�
. Gener-

ate u � uniform.0; 1/, and � D �C � � .� lnu/1=c is a draw from
the Weibull distribution.

Multivariate Distributions

Table 61.36 Dirichlet Distribution
PROC specification � � dirich(˛), where � D f�ig ;˛ D f˛ig, for i D 1; 2; � � � ; k

Density �.˛0/Qk
iD1 �.˛i /

Qk
iD1 �

˛i�1
i , where ˛0 D

Pk
iD1 ˛i

Parameter restriction ˛i > 0

Range �i > 0,
Pk
iD1 �i D 1

Mean ˛j =˛0
Mode

�
˛j � 1

�
=.˛0 � k/
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Table 61.37 Inverse Wishart Distribution
PROC specification � � iwishart(�, S), both � and S are k � k matrices

Density
�
2
�k
2 �

k.k�1/
4

Qk
iD1 �

�
�C1�i
2

���1
jSj

�
2 j�j�

�CkC1
2 exp

�
�
1
2
tr.S��1/

�
Parameter restriction S must be symmetric and positive definite; � > k � 1
Range � is symmetric and positive definite
Mean S =.� � k � 1/
Mode S =.� C k C 1/

Table 61.38 Multivariate Normal Distribution
PROC specification � �mvn(�,†), where � D f�kg ;� D f�kg, for i D 1; 2; � � � ; k,

and † is a k � k variance matrix

Density exp
�
�
1
2
.� � �/0†�1.� � �/

�.p
.2�/k j†j

Parameter restriction † must be symmetric and positive definite
Range �1 < �i <1

Mean �

Mode �

Table 61.39 Autoregressive Multivariate Normal
Distribution

PROC speci-
fication

� �mvnar(�, sd=� ,�) � �mvnar(�, var=�2,�) � �mvnar(�, prec=1=�2, �)

Density exp
�
�
1
2
.� � �/0.�2†/�1.� � �/

�.q
.2�/k

ˇ̌
.�2†/

ˇ̌
where

† D

266666664

1 � �2 �3 � � � �k

� 1 � �2 � � � �k�1

�2 � 1 � � � � �k�2

�3 �2 � 1 � � � �k�3

:::
:::

:::
:::

: : :
:::

�k �k�1 �k�2 �k�3 � � � 1

377777775
Parameter re-
striction

� > 0 and �1 < � < 1

Range �1 < �i <1

Mean �

Mode �

Special Case When � D 0, the distribution simplifies to mvn(�, �2 � Ik), where Ik denotes the
k � k identity matrix
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Table 61.40 Multinomial Distribution
PROC specification � � multinom(p), where � D f�ig and p D fpig, for i D

1; 2; � � � ; k

Density nŠ
�1����k

p
�1
1 � � �p

�k
k

, where
Pk
i �i D n

Parameter restriction
Pk
i pi D 1 with all pi > 0

Range �i 2 f0; � � � ; ng, nonnegative integers
Mean n � p

Usage of Multivariate Distributions
The following simple example illustrates the usage of the multivariate distributions in PROC MCMC. Suppose
you are interested in estimating the mean and covariance of multivariate data using this multivariate normal
model:�

x1
x2

�
� MVN

�
� D

�
�1
�2

�
;† D

�
�11 �12
�21 �22

��

where

� D

�
1

2

�
† D

�
2:4 3

3 8:1

�

You can use the following independent prior on � and †:

� � MVN
�
�0 D

�
0

0

�
;†0 D

�
100 0

0 100

��
† � iWishart

�
� D 2; S D

�
1 0

0 1

��
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The following IML procedure statements simulate 100 random multivariate normal samples:

title 'An Example that Uses Multivariate Distributions';
proc iml;

N = 100;
Mean = {1 2};
Cov = {2.4 3, 3 8.1};
call randseed(1);
x = RANDNORMAL( N, Mean, Cov );

SampleMean = x[:,];
n = nrow(x);
y = x - repeat( SampleMean, n );
SampleCov = y`*y / (n-1);
print SampleMean Mean, SampleCov Cov;

cname = {"x1", "x2"};
create inputdata from x [colname = cname];
append from x;
close inputdata;

quit;

Figure 61.13 prints the sample mean and covariance of the simulated data, in addition to the true mean and
covariance matrix.

Figure 61.13 Simulated Multivariate Normal Data

An Example that Uses Multivariate DistributionsAn Example that Uses Multivariate Distributions

SampleMean Mean

0.9987751 2.115693 1 2

SampleCov Cov

2.8252975 3.7190704 2.4 3

3.7190704 9.2916805 3 8.1

The following PROC MCMC statements estimate the posterior mean and covariance of the multivariate
normal data:

proc mcmc data=inputdata seed=17 nmc=3000 diag=none;
ods select PostSumInt;
array data[2] x1 x2;
array mu[2];
array Sigma[2,2];
array mu0[2] (0 0);
array Sigma0[2,2] (100 0 0 100);
array S[2,2] (1 0 0 1);
parm mu Sigma;
prior mu ~ mvn(mu0, Sigma0);
prior Sigma ~ iwish(2, S);
model data ~ mvn(mu, Sigma);

run;
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To use the multivariate distribution, you must specify parameters (or random variables in the MODEL
statement) in an array form. The first ARRAY statement creates an one-dimensional array data, which
contains two numeric variables, x1 and x2, from the input data set. The data variable is your response
variable. The subsequent statements defines two array-parameters (mu and Sigma) and three constant
array-hyperparameters (mu0, Sigma0, and S). The PARMS statement declares mu and Sigma to be model
parameters. The two PRIOR statements specify the multivariate normal and inverse Wishart distributions as
the prior for mu and Sigma, respectively. The MODEL statement specifies the multivariate normal likelihood
with data as the random variable, mu as the mean, and Sigma as the covariance matrix.

Figure 61.14 lists the estimated posterior statistics for the parameters.

Figure 61.14 Estimated Mean and Covariance

The MCMC ProcedureThe MCMC Procedure

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

mu1 3000 0.9941 0.1763 0.6338 1.3106

mu2 3000 2.1135 0.3112 1.4939 2.7165

Sigma1 3000 2.8726 0.4084 2.1001 3.6723

Sigma2 3000 3.7573 0.6418 2.5791 5.0223

Sigma3 3000 3.7573 0.6418 2.5791 5.0223

Sigma4 3000 9.3987 1.3224 7.0155 12.0969

Specifying a New Distribution
To work with a new density that is not listed in the section “Standard Distributions” on page 4798, you can
use the GENERAL and DGENERAL functions. The letter “D” stands for discrete. The new distributions
have to be specified on the logarithm scale.

Suppose you want to use the inverse-beta distribution:

p.˛ja; b/ D
�.aC b/

�.a/C �.b/
� ˛.a�1/ � .1C ˛/�.aCb/

The following statements in PROC MCMC define the density on its log scale:

a = 3; b = 5;
const = lgamma(a + b) - lgamma(a) - lgamma(b);
lp = const + (a - 1) * log(alpha) - (a + b) * log(1 + alpha);
prior alpha ~ general(lp);

The symbol lp is the expression for the log of an inverse-beta (a = 3, b = 5). The function general(lp)

assigns that distribution to alpha. The constant term, const, can be omitted because the Markov simulation
requires only the log of the density kernel.
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You can use the GENERAL function to specify a distribution for a single variable or for multiple variables. It
is important to emphasize that the argument lp is an expression for the log of the joint distribution for these
variables. On the contrary, any standard distribution is applied separately to each random variable in the
statement.

When you use the GENERAL function in the MODEL statement, you do not need to specify the dependent
variable on the left of the tilde Ï. The log-likelihood function takes the dependent variable into account;
hence, there is no need to explicitly state the dependent variable in the MODEL statement. However, in the
PRIOR and RANDOM statements, you need to explicitly state the parameter names and a tilde with the
GENERAL function.

You can specify any distribution function by using the GENERAL and DGENERAL functions as long as
the distribution function is programmable with SAS statements. When the function is used in the PRIOR
statements, you must supply initial values in either the PARMS statement or within the BEGINCNST and
ENDCNST statements. See the sections “PARMS Statement” on page 4773 and “BEGINCNST/ENDCNST
Statement” on page 4763. When the function is used in the RANDOM statement, you must use the INITIAL=
option in the RANDOM statement to supply initial values

NOTE: PROC MCMC does not verify that the GENERAL function you specify is a valid distribution—that
is, an integrable density. You must use the function with caution.

Using Density Functions in the Programming Statements

Density Functions in PROC MCMC

PROC MCMC has a number of internally defined log-density functions for univariate and multivariate
distributions. These functions have the basic form of LPDFdist(x , parm-list), where dist is the name of the
distribution (see Table 61.41 for univariate distributions and Table 61.42 for multivariate distributions). The
argument x is the random variable, and parm-list is the list of parameters.

In addition, the univariate functions allow for optional boundary arguments, such as LPDFdist(x , parm-list ,
< lower >, < upper >), where lower and upper are optional but positional boundary arguments. With the
exception of the Bernoulli and uniform distribution, you can specify limits on all univariate distributions.

To set a lower bound on the normal density:

lpdfnorm(x, 0, 1, -2);

To set just an upper bound, specify a missing value for the lower bound argument:

lpdfnorm(x, 0, 1, ., 2);

Leaving both limits out gives you the unbounded density. You can also specify both bounds:

lpdfnorm(x, 0, 1);
lpdfnorm(x, 0, 1, -3, 4);
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See Table 61.41 for the function names of univariate distributions and Table 61.42 for multivariate distribu-
tions.

Table 61.41 Logarithm of Univariate Density Functions in PROC
MCMC

Distribution Name Function Call

Beta lpdfbeta(x, a, b,< lower >, < upper >);

Binary lpdfbern(x, p);

Binomial lpdfbin(x, n,p, < lower >, < upper >);

Cauchy lpdfcau(x, loc, scale, < lower >, < upper >);

�2 lpdfchisq(x, df,< lower >, < upper >);

Exponential �2 lpdfechisq(x, df, < lower >, < upper >);

Exponential gamma lpdfegamma(x, sp,scale, < lower >, < upper >);

Exponential expo-
nential

lpdfeexpon(x, scale,< lower >, < upper >);

Exponential inverse
�2

lpdfeichisq(x, df, < lower >, < upper >);

Exponential inverse-
gamma

lpdfeigamma(x, sp, scale, < lower >, < upper >);

Exponential scaled
inverse �2

lpdfesichisq(x, df, scale, < lower >, < upper >);

Exponential lpdfexpon(x, scale, < lower >, < upper >);

Gamma lpdfgamma(x, sp, scale, < lower >, < upper >);

Geometric lpdfgeo(x, p, < lower >, < upper >);

Inverse �2 lpdfichisq(x, df, < lower >, < upper >);

Inverse-gamma lpdfigamma(x, sp, scale, < lower >, < upper >);

Laplace lpdfdexp(x, loc, scale, < lower >, < upper >);

Logistic lpdflogis(x, loc, scale, < lower >, < upper >);

Lognormal lpdflnorm(x, loc, sd, < lower >, < upper >);

Negative binomial lpdfnegbin(x, n, p, < lower >, < upper >);
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Table 61.41 (continued)

Distribution Name Function Call

Normal lpdfnorm(x, mu, sd, < lower >, < upper >);

Pareto lpdfpareto(x, sp, scale, < lower >, < upper >);

Poisson lpdfpoi(x, mean, < lower >, < upper >);

Scaled inverse �2 lpdfsichisq(x, df, scale, < lower >, < upper >);

t lpdft(x, mu, sd, df, < lower >,< upper >);

Uniform lpdfunif(x, a, b);

Wald lpdfwald(x, mean, scale, < lower >, < upper >);

Weibull lpdfwei(x, loc, sp, scale, < lower >, < upper >);

In the multivariate log-density functions, arrays must be used in place for the random variable and parameters
in the model.

Table 61.42 Logarithm of Multivariate Density Functions in
PROC MCMC

Distribution Name Function Call

Dirichlet lpdfdirich(x_array, alpha_array );

Inverse Wishart lpdfiwish(x_array, df, S_array );

Multivariate normal lpdfmvn(x_array, mu_array, cov_array );

Multinomial lpdfmnom(x_array, p_array );

Standard Distributions, the LOGPDF Functions, and the LPDFdist Functions

Standard distributions listed in the section “Standard Distributions” on page 4798 are names only, and they
can be used only in the MODEL, PRIOR, and HYPERPRIOR statements to specify either a prior distribution
or a conditional distribution of the data given parameters. They do not return any values, and you cannot use
them in the programming statements.

The LOGPDF functions are DATA step functions that compute the logarithm of various probability density
(mass) functions. For example,
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logpdf("beta", x, 2, 15);

returns the log of a beta density with parameters a = 2 and b = 15, evaluated at x. All the LOGPDF functions
are supported in PROC MCMC.

The LPDFdist functions are unique to PROC MCMC. They compute the logarithm of various probability
density (mass) functions. The functions are the same as the LOGPDF functions when it comes to calculating
the log density. For example,

lpdfbeta(x, 2,15);

returns the same value as

logpdf("beta", x, 2, 15);

The LPDFdist functions cover a greater class of probability density functions, and the univariate distribution
functions take the optional but positional boundary arguments. There are no corresponding LCDFdist or
LSDFdist functions in PROC MCMC. To work with the cumulative probability function or the survival
functions, you need to use the LOGCDF and the LOGSDF DATA step functions.

Truncation and Censoring

Truncated Distributions

To specify a truncated distribution, you can use the LOWER= and/or UPPER= options. Almost all of the
standard distributions, including the GENERAL and DGENERALfunctions, take these optional truncation
arguments. The exceptions are the binary and uniform distributions.

For example, you can specify the following:

prior alpha ~ normal(mean = 0, sd = 1, lower = 3, upper = 45);

or

parms beta;
a = 3; b = 7;
ll = (a + 1) * log(b / beta);
prior beta ~ general(ll, upper = b + 17);

The preceding statements state that if beta is less than b+17, the log of the prior density is ll, as calculated by
the equation; otherwise, the log of the prior density is missing—the log of zero.

When the same distribution is applied to multiple parameters in a PRIOR statement, the LOWER= and
UPPER= truncations apply to all parameters in that statement. For example, the following statements define
a Poisson density for theta and gamma:

parms theta gamma;
lambda = 7;
l1 = theta * log(lambda) - lgamma(1 + theta);
l2 = gamma * log(lambda) - lgamma(1 + gamma);
ll = l1 + l2;
prior theta gamma ~ dgeneral(ll, lower = 1);



4818 F Chapter 61: The MCMC Procedure

The LOWER=1 condition is applied to both theta and gamma, meaning that for the assignment to ll to be
meaningful, both theta and gamma have to be greater than 1. If either of the parameters is less than 1, the log
of the joint prior density becomes a missing value.

In releases before SAS/STAT 13.1, only three distributions support parameters (or functions of parameters)
in the LOWER= and UPPER= options. These are the normal distribution, the GENERAL function, and the
DGENERAL function. Appropriate normalizing constants, which are required if the truncations involve
model parameters, are not calculated. Starting with SAS/STAT 13.1, PROC MCMC calculates the normalizing
constant in all truncated distributions, and you can use parameters in the LOWER= or UPPER= option.

Note that if you use either the GENERAL or DGENERAL function, you must compute the normalizing
constant in cases where it is required. A truncated distribution has the probability distribution

p.� ja < � < b/ D
p.�/

F.a/ � F.b/

where p.�/ is the density function and F.�/ is the cumulative distribution function. In SAS functions, p.�/
is the probability density function and F.�/ is the cumulative distribution function. The following example
shows how to construct a truncated gamma prior on theta, with SHAPE=3, SCALE=2, LOWER=A, and
UPPER=B:

lp = logpdf('gamma', theta, 3, 2)
- log(cdf('gamma', a, 3, 2) - cdf('gamma', b, 3, 2));

prior theta ~ general(lp);

This density specification is different from the following more naive definition, without taking into account
the normalizing constant:

lp = logpdf('gamma', theta, 3, 2);
prior theta ~ general(lp, lower=a, upper=b);

If a or b is a parameter, you get very different results from the two formulations.

Censoring

There is no built-in mechanism in PROC MCMC that models censoring automatically. You need to construct
the density function (using a combination of the LOGPDF, LOGCDF, and LOGSDF functions and IF-ELSE
statements) for the censored data.

Suppose you partition the data into four categories: uncensored (with observation x), left censored (with
observation xl), right censored (with observation xr), and interval censored (with observations xl and xr). The
likelihood is the normal with mean mu and standard deviation s. The following statements construct the
corresponding log likelihood for the observed data:

if uncensored then
ll = logpdf('normal', x, mu, s);

else if leftcensored then
ll = logcdf('normal', xl, mu, s);

else if rightcensored then
ll = logsdf('normal', xr, mu, s);

else /* this is the case of interval censored. */
ll = log(cdf('normal', xr, mu, s) - cdf('normal', xl, mu, s));

model general(ll);

See “Example 61.17: Normal Regression with Interval Censoring” on page 4955.
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Some Useful SAS Functions

Table 61.43 Some Useful SAS Functions

SAS Function Definition

abs(x); jxj

airy(x); Returns the value of the AIRY function.
beta(x1, x2);

R 1
0 z

x1�1.1 � z/x2�1dz

call logistic(x); exp.x/
1Cexp.x/

call softmax(x1,...,xn); Each element is replaced by exp.xj /=
P

exp.xj /
call stdize(x1,...,xn); Standardize values
cdf(); Cumulative distribution function
cdf(’normal’, x, 0, 1); Standard normal cumulative distribution function
comb(x1, x2); x1Š

x2Š.x1�x2/Š

constant(’.’); Calculate commonly used constants
cos(x); cosine(x)
css(x1, ..., xn);

P
i .xi � Nx/

2

cv(x1, ..., xn); std(x) / mean(x) * 100
dairy(x); Derivative of the AIRY function
dimN(m); Returns the numbers of elements in the Nth dim of array m
x1 eq x2 Returns 1 if x1 = x2; 0 otherwise
x1**x2 x1x2

geomean(x1, ..., xn); exp
�
log.x1/C���Clog.xn/

n

�
difN(x); Returns differences between the argument and its Nth lag
digamma(x1); � 0.x1/

�.x1/

erf(x); 2p
�

R x
0 exp.�z2/dz

erfc(x); 1 - erf(x)
fact(x); xŠ

floor(x); Greatest integer � x
gamma(x);

R1
0 zx�1 exp.�1/dz

harmean(x1, ..., xn); n
1=x1C���1=xn

ibessel(nu, x, kode); Modified Bessel function of order nu evaluated at x
jbessel(nu, x); Bessel function of order nu evaluated at x
lagN(x); Returns values from a queue
largest(k, x1, ..., xn); Returns the kth largest element
lgamma(x); ln.�.x//
lgamma(x+1); ln.xŠ/
log(x, logN(x)); ln.x/
logbeta(x1, x2); lgamma(x1) + lgamma(x2) - lgamma(x1 C x2)
logcdf(); Log of a left cumulative distribution function
logpdf(); Log of a probability density (mass) function
logsdf(); Log of a survival function
max(x1, x2); Returns x1 if x1 > x2; x2 otherwise
mean(of x1-xn);

P
i xi=n
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Table 61.43 (continued)

SAS Function Definition

median(of x1-xn); Returns the median of nonmissing values
min(x1, x2); Returns x1 if x1 < x2; x2 otherwise
missing(x); Returns 1 if x is missing; 0 otherwise
mod(x1, x2); Returns the remainder from x1=x2
n(x1, ..., xn); Returns number of nonmissing values
nmiss(of y1-yn); Number of missing values
quantile(); Computes the quantile from a specific distribution
pdf(); Probability density (mass) functions
perm(n, r ); nŠ

.n�r/Š

put(); Returns a value that uses a specified format
round(x); Rounds x

rms(of x1-xn);
q
x21C���x

2
n

n

sdf(); Survival function
sign(x); Returns –1 if x < 0; 0 if x D 0; 1 if x > 0
sin(x); sine(x)
smallest(s, x1, ..., en ); Returns the sth smallest component of x1; � � � ; xn
sortn(of x1-xn); Sorts the values of the variables
sqrt(x);

p
x

std(x1, ..., xn) ); Standard deviation of x1; � � � ; xn (n-1 in denominator)
sum(of x:);

P
i xi

trigamma(x); Derivative of the DIGAMMA(x) function
uss(of x1-xn); Uncorrected sum of squares

Here are examples of some commonly used transformations:

• logit

mu = beta0 + beta1 * z1;
call logistic(mu);

• log

w = beta0 + beta1 * z1;
mu = exp(w);

• probit

w = beta0 + beta1 * z1;
mu = cdf(`normal', w, 0, 1);
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• cloglog

w = beta0 + beta1 * z1;
mu = 1 - exp(-exp(w));

Matrix Functions in PROC MCMC
The MCMC procedure provides you with a number of CALL routines for performing simple matrix operations
on declared arrays. With the exception of FILLMATRIX, IDENTITY, and ZEROMATRIX, the CALL
routines listed in Table 61.44 do not support matrices or arrays that contain missing values.

Table 61.44 Matrix Functions in PROC MCMC
CALL Routine Description
ADDMATRIX Performs an element-wise addition of two matrices or of a matrix and a

scalar.
CHOL Calculates the Cholesky decomposition for a particular symmetric matrix.
DET Calculates the determinant of a specified matrix, which must be square.
ELEMMULT Performs an element-wise multiplication of two matrices.
FILLMATRIX Replaces all of the element values of the input matrix with the specified

value. You can use this routine with multidimensional numeric arrays.
IDENTITY Converts the input matrix to an identity matrix. Diagonal element values of

the matrix are set to 1, and the rest of the values are set to 0.
INV Calculates a matrix that is the inverse of the input matrix. The input matrix

must be a square, nonsingular matrix.
MULT Calculates the matrix product of two input matrices.
SUBTRACTMATRIX Performs an element-wide subtraction of two matrices or of a matrix and a

scalar.
TRANSPOSE Returns the transpose of a matrix.
ZEROMATRIX Replaces all of the element values of the numeric input matrix with 0.

ADDMATRIX CALL Routine

The ADDMATRIX CALL routine performs an element-wise addition of two matrices or of a matrix and a
scalar.

The syntax of the ADDMATRIX CALL routine is

CALL ADDMATRIX (X , Y , Z ) ;

where

X specifies a scalar or an input matrix with dimensions m � n (that is, X [m; n])

Y specifies a scalar or an input matrix with dimensions m � n (that is, Y [m; n])

Z specifies an output matrix with dimensions m � n (that is, Z [m; n])



4822 F Chapter 61: The MCMC Procedure

such that

Z D X C Y

CHOL CALL Routine

The CHOL CALL routine calculates the Cholesky decomposition for a particular symmetric matrix.

The syntax of the CHOL CALL routine is

CALL CHOL (X , Y < , validate >) ;

where

X specifies a symmetric positive-definite input matrix with dimensions m �m (that is, X [m, m])

Y is a variable that contains the Cholesky decomposition and specifies an output matrix with dimensions
m �m (that is, Y [m;m])

validate specifies an optional argument that can increase the processing speed by avoiding error
checking:

If validate = 0 or is not specified, then the matrix X is checked for symmetry.

If validate = 1, then the matrix X is assumed to be symmetric.

such that

X D YY�

where Y is a lower triangular matrix with strictly positive diagonal entries and Y� denotes the conjugate
transpose of Y .

Both input and output matrices must be square and have the same dimensions. If X is symmetric positive-
definite, Y is a lower triangle matrix. If X is not symmetric positive-definite, Y is filled with missing
values.

DET CALL Routine

The determinant, the product of the eigenvalues, is a single numeric value. If the determinant of a matrix
is zero, then that matrix is singular (that is, it does not have an inverse). The routine performs an LU
decomposition and collects the product of the diagonals.

The syntax of the DET CALL routine is

CALL DET (X , a) ;

where

X specifies an input matrix with dimensions m �m (that is, X [m;m])

a specifies the returned determinate value

such that

a D jX j
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ELEMMULT CALL Routine

The ELEMMULT CALL routine performs an element-wise multiplication of two matrices.

The syntax of the ELEMMULT CALL routine is

CALL ELEMMULT (X , Y , Z ) ;

where

X specifies an input matrix with dimensions m � n (that is, X [m; n])

Y specifies an input matrix with dimensions m � n (that is, Y [m; n])

Z specifies an output matrix with dimensions m � n (that is, Z [m; n])

FILLMATRIX CALL Routine

The FILLMATRIX CALL routine replaces all of the element values of the input matrix with the specified
value. You can use the FILLMATRIX CALL routine with multidimensional numeric arrays.

The syntax of the FILLMATRIX CALL routine is

CALL FILLMATRIX (X , Y ) ;

where

X specifies an input numeric matrix

Y specifies the numeric value that is used to fill the matrix

IDENTITY CALL Routine

The IDENTITY CALL routine converts the input matrix to an identity matrix. Diagonal element values of
the matrix are set to 1, and the rest of the values are set to 0.

The syntax of the IDENTITY CALL routine is

CALL IDENTITY (X ) ;

where

X specifies an input matrix with dimensions m �m (that is, X [m;m])

INV CALL Routine

The INV CALL routine calculates a matrix that is the inverse of the input matrix. The input matrix must be a
square, nonsingular matrix.

The syntax of the INV CALL routine is

CALL INV (X , Y ) ;

where
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X specifies an input matrix with dimensions m �m (that is, X [m;m])

Y specifies an output matrix with dimensions m �m (that is, Y [m;m])

MULT CALL Routine

The MULT CALL routine calculates the matrix product of two input matrices.

The syntax of the MULT CALL routine is

CALL MULT (X , Y , Z ) ;

where

X specifies an input matrix with dimensions m � n (that is, X [m; n])

Y specifies an input matrix with dimensions n � p (that is, Y [n; p])

Z specifies an output matrix with dimensions m � p (that is, Z [m;p])

The number of columns for the first input matrix must be the same as the number of rows for the second
matrix. The calculated matrix is the last argument.

SUBTRACTMATRIX CALL Routine

The SUBTRACTMATRIX CALL routine performs an element-wide subtraction of two matrices or of a
matrix and a scalar.

The syntax of the SUBTRACTMATRIX CALL routine is

CALL SUBTRACTMATRIX (X , Y , Z ) ;

where

X specifies a scalar or an input matrix with dimensions m � n (that is, X [m; n])

Y specifies a scalar or an input matrix with dimensions m � n (that is, Y [m; n])

Z specifies an output matrix with dimensions m � n (that is, Z [m; n])

such that

Z D X � Y

TRANSPOSE CALL Routine

The TRANSPOSE CALL routine returns the transpose of a matrix.

The syntax of the TRANSPOSE CALL routine is

CALL TRANSPOSE (X , Y ) ;

where

X specifies an input matrix with dimensions m � n (that is, X [m; n])

Y specifies an output matrix with dimensions n �m (that is, Y [n;m])
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ZEROMATRIX CALL Routine

The ZEROMATRIX CALL routine replaces all of the element values of the numeric input matrix with 0.
You can use the ZEROMATRIX CALL routine with multidimensional numeric arrays.

The syntax of the ZEROMATRIX CALL routine is

CALL ZEROMATRIX (X ) ;

where

X specifies a numeric input matrix.

Create Design Matrix
PROC MCMC does not support a CLASS statement; therefore you need to construct the right design matrix
(with dummy or indicator variables) prior to calling PROC MCMC. The best tool to use is the TRANSREG
procedure (see Chapter 104, “The TRANSREG Procedure”). This procedure offers both indicator and effects
coding methods. You can specify any categorical variables in the CLASS expansion, and use the ZERO=
option to select a reference category. You can also specify any other data set variables (predictors, the
responses, and so on) to the output data set in the ID statement.

For example, the following statements create a data set that contains two categorical variables (City and G),
and two continuous variables (x and resp):

title 'Create Design Matrix';
data categorical;

input City$ G$ x resp @@;
datalines;

Chicago F 69.0 112.5 Chicago F 56.5 84.0
Chicago M 65.3 98.0 Chicago M 59.8 84.5
NewYork M 62.8 102.5 NewYork M 63.5 102.5
NewYork F 57.3 83.0 NewYork M 57.5 85.0
;

Suppose you are interested in creating a design matrix that uses dummy variable coding for the categorical
variables City, G and their interaction City * G. You can use the following PROC TRANSREG statements:

proc transreg data=categorical design;
model class(city g city*g / zero=last);
id x resp;
output out=input_mcmc(drop=_: Int:);

run;

The DESIGN option specifies that the primary goal is to code the design matrix. The MODEL statement
indicates the variable of interest. The CLASS option in the MODEL statement expands the variables of
interest to a list of “dummy” variables. The ZERO=LAST option sets the reference level. The ID statement
includes x and resp in the OUT= data set. And the OUTPUT statement creates a new data set Input_MCMC
that stores the design matrix and original variables from the original data set.
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A quick call of the PRINT procedure shows the output from the PROC TRANSREG call:

proc print data=input_mcmc;
run;

Figure 61.15 prints the design matrix that is generated by PROC TRANSREG. The Input_mcmc data set
contains all the variables from the original Categorical data set, in addition to corresponding dummy variables
(CityChicago, GF, and CityChicagoGF) for the categorical variables.

Figure 61.15 Design Matrix Generated by PROC TRANSREG

Create Design MatrixCreate Design Matrix

Obs CityChicago GF CityChicagoGF City G x resp

1 1 1 1 Chicago F 69.0 112.5

2 1 1 1 Chicago F 56.5 84.0

3 1 0 0 Chicago M 65.3 98.0

4 1 0 0 Chicago M 59.8 84.5

5 0 0 0 NewYork M 62.8 102.5

6 0 0 0 NewYork M 63.5 102.5

7 0 1 0 NewYork F 57.3 83.0

8 0 0 0 NewYork M 57.5 85.0

You can now proceed to call PROC MCMC using this input data set Input_mcmc and the corresponding
dummy variables.

PROC TRANSREG automatically creates a macro variable, &_TRGIND, which contains a list of variable
names that it creates. The %put &_trgind; statement prints the following:

CityChicago GF CityChicagoGF

The macro variable &_TRGIND can come handy if you want to build a regression model; you can refer to
&_TRGIND in the following way:

proc mcmc data=input_mcmc;
array data[5] 1 &_trgind x;
array beta[5] beta0-beta4;
...;
call mult(beta, data, mu);
...;

The first ARRAY statement defines a one-dimensional array of length 5, and it takes on five values: a constant
1 and variables CityChicago, GF, CityChicagoGF, and x. The second ARRAY statement defines an array
of beta, which are the model parameters. Later in the program, you can use the CALL MULT function to
calculate the regression mean and store the value in the symbol mu.
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Modeling Joint Likelihood
PROC MCMC assumes that the input observations are independent and that the joint log likelihood is the
sum of individual log-likelihood functions. You specify the log likelihood of one observation in the MODEL
statement. PROC MCMC evaluates that function for each observation in the data set and cumulatively
sums them up. If observations are not independent of each other, this summation produces the incorrect log
likelihood.

There are two ways to model dependent data. You can either use the DATA step LAG function or use the
PROC option JOINTMODEL. The LAG function returns values of a variable from a queue. As PROC
MCMC steps through the data set, the LAG function queues each data set variable, and you have access to the
current value as well as to all previous values of any variable. If the log likelihood for observation xi depends
only on observations 1 to i in the data set, you can use this SAS function to construct the log-likelihood
function for each observation. Note that the LAG function enables you to access observations from different
rows, but the log-likelihood function in the MODEL statement must be generic enough that it applies to all
observations. See “Example 61.14: Time Independent Cox Model” on page 4936 and “Example 61.15: Time
Dependent Cox Model” on page 4942 for how to use this LAG function.

A second option is to create arrays, store all relevant variables in the arrays, and construct the joint log
likelihood for the entire data set instead of for each observation. Following is a simple example that illustrates
the usage of this option. For a more realistic example that models dependent data, see “Example 61.14: Time
Independent Cox Model” on page 4936 and “Example 61.15: Time Dependent Cox Model” on page 4942.

/* allocate the sample size. */
data exi;

call streaminit(17);
do ind = 1 to 100;

y = rand("normal", 2.3, 1);
output;

end;
run;

The log-likelihood function for each observation is as follows:

log.f .yi j�; �// D log.�.yi I�; var D �2//

The joint log-likelihood function is as follows:

log.f .yj�; �// D
X
i

log.�.yi I�; var D �2//

The following statements fit a simple model with an unknown mean (mu) in PROC MCMC, with the variance
in the likelihood assumed known. The MODEL statement indicates a normal likelihood for each observation
y.

proc mcmc data=exi seed=7 outpost=p1;
parm mu;
prior mu ~ normal(0, sd=10);
model y ~ normal(mu, sd=1);

run;
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The following statements show how you can specify the log-likelihood function for the entire data set:

data a;
run;

proc mcmc data=a seed=7 outpost=p2 jointmodel;
array data[1] / nosymbols;
begincnst;

rc = read_array("exi", data, "y");
n = dim(data, 1);

endcnst;

parm mu;
prior mu ~ normal(0, sd=10);
ll = 0;
do i = 1 to n;

ll = ll + lpdfnorm(data[i], mu, 1);
end;
model general(ll);

run;

The JOINTMODEL option indicates that the function used in the MODEL statement calculates the log
likelihood for the entire data set, rather than just for one observation. Given this option, PROC MCMC no
longer steps through the input data during the simulation. Consequently, you can no longer use any data set
variables to construct the log-likelihood function. Instead, you store the data set in arrays and use arrays
instead of data set variables to calculate the log likelihood.

The ARRAY statement allocates a temporary array (data). The READ_ARRAY function selects the y
variable from the exi data set and stores it in the data array. See the section “READ_ARRAY Function” on
page 4764. In the programming statements, you use a DO loop to construct the joint log likelihood. The
expression ll in the GENERAL function now takes the value of the joint log likelihood for all data.

You can run the following statements to see that two PROC MCMC runs produce identical results.

proc compare data=p1 compare=p2;
var mu;

run;

Regenerating Diagnostics Plots
By default, PROC MCMC generates three plots: the trace plot, the autocorrelation plot, and the kernel density
plot. Unless ODS Graphics is enabled before calling the procedure, it is hard to generate the same graph
afterwards. Directly using the Stat.MCMC.Graphics.TraceAutocorrDensity template is not feasible.
The easiest way to regenerate the same graph is with the %TADPlot autocall macro. The %TADPlot macro
requires you to specify an input data set (which usually is the output data set from a previous PROC MCMC
call) and a list of variables that you want to plot.
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For more information about enabling and disabling ODS Graphics, see the section “Enabling and Disabling
ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

A simple regression example, with three parameters, is used here for illustrational purposes. For an explana-
tion of the regression model and the data involved, see the section “Simple Linear Regression” on page 4732.
The following statements generate a SAS data set and fit a regression model:

title 'Regenerating Diagnostics Plots';

data Class;
input Name $ Height Weight @@;
datalines;

Alfred 69.0 112.5 Alice 56.5 84.0 Barbara 65.3 98.0
Carol 62.8 102.5 Henry 63.5 102.5 James 57.3 83.0
Jane 59.8 84.5 Janet 62.5 112.5 Jeffrey 62.5 84.0
John 59.0 99.5 Joyce 51.3 50.5 Judy 64.3 90.0
Louise 56.3 77.0 Mary 66.5 112.0 Philip 72.0 150.0
Robert 64.8 128.0 Ronald 67.0 133.0 Thomas 57.5 85.0
William 66.5 112.0
;

ods select none;
proc mcmc data=class nmc=50000 thin=5 outpost=classout seed=246810;

parms beta0 0 beta1 0;
parms sigma2 1;
prior beta0 beta1 ~ normal(0, var = 1e6);
prior sigma2 ~ igamma(3/10, scale = 10/3);
mu = beta0 + beta1*height;
model weight ~ normal(mu, var = sigma2);

run;
ods select all;

The output data set Classout contains posterior draws for beta0, beta1, and sigma2. It also stores the log of
the prior density (LogPrior), log of the likelihood (LogLike), and the log of the posterior density (LogPost). If
you want to examine the beta0 and LogPost variable, you can use the following statements to generate the
graphs:

ods graphics on;
%tadplot(data=classout, var=beta0 logpost);
ods graphics off;

Figure 61.16 displays the regenerated diagnostics plots for variables beta0 and Logpost from the data set
Classout.
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Figure 61.16 Regenerated Diagnostics Plots for beta0 and Logpost
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Caterpillar Plot
The caterpillar plot is a side-by-side bar plot of 95% intervals for multiple parameters. Typically, it is used to
visualize and compare random-effects parameters, which can come in large numbers in certain models. You
can use the %CATER autocall macro to create a caterpillar plot. The %CATER macro requires you specify
an input data set and a list of variables that you want to plot.

A random-effects model that has 21 random-effects parameters is used here for illustrational purpose. For an
explanation of the random-effects model and the data involved, see “Example 61.7: Logistic Regression
Random-Effects Model” on page 4901. The following statements generate a SAS data set and fit the model:

title 'Create a Caterpillar Plot';

data seeds;
input r n seed extract @@;
ind = _N_;
datalines;

10 39 0 0 23 62 0 0 23 81 0 0 26 51 0 0
17 39 0 0 5 6 0 1 53 74 0 1 55 72 0 1
32 51 0 1 46 79 0 1 10 13 0 1 8 16 1 0
10 30 1 0 8 28 1 0 23 45 1 0 0 4 1 0
3 12 1 1 22 41 1 1 15 30 1 1 32 51 1 1
3 7 1 1

;

ods select none;
proc mcmc data=seeds outpost=postout seed=332786 nmc=20000;

parms beta0 0 beta1 0 beta2 0 beta3 0 s2 1;
prior s2 ~ igamma(0.01, s=0.01);
prior beta: ~ general(0);
w = beta0 + beta1*seed + beta2*extract + beta3*seed*extract;
random delta ~ normal(w, var=s2) subject=ind;
pi = logistic(delta);
model r ~ binomial(n = n, p = pi);

run;
ods select all;

The output data set Postout contains posterior draws for all 21 random-effects parameters, delta_1 � � �
delta_21. You can use the following statements to generate a caterpillar plot for the 21 parameters:

ods graphics on;
%CATER(data=postout, var=delta:);
ods graphics off;
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Figure 61.17 is a caterpillar plot of the random-effects parameters delta_1–delta_21.

Figure 61.17 Caterpillar Plot of the Random-Effects Parameters

If you want to change the display of the caterpillar plot, such as using a different line pattern, color, or size of
the markers, you need to first modify the Stat.MCMC.Graphics.Caterpillar template and then call the
%CATER macro again.

You can use the following statements to view the source of the Stat.MCMC.Graphics.Caterpillar

template:

proc template;
path sashelp.tmplmst;
source Stat.MCMC.Graphics.Caterpillar;

run;
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Figure 61.18 lists the source statements of the template that is used to generate the template for the caterpillar
plot.

Figure 61.18 Source Statements for Stat.MCMC.Graphics.Caterpillar Template

define statgraph Stat.MCMC.Graphics.Caterpillar;                                
   dynamic _OverallMean _VarName _VarMean _XLower _XUpper _byline_ _bytitle_    
      _byfootnote_;                                                             
   begingraph;                                                                  
      entrytitle "Caterpillar Plot";                                            
      layout overlay / yaxisopts=(offsetmin=0.05 offsetmax=0.05 display=(line   
         ticks tickvalues)) xaxisopts=(display=(line ticks tickvalues));        
         referenceline x=_OVERALLMEAN / lineattrs=(color=                       
            GraphReference:ContrastColor);                                      
         HighLowPlot y=_VARNAME high=_XUPPER low=_XLOWER / lineattrs=           
            GRAPHCONFIDENCE;                                                    
         scatterplot y=_VARNAME x=_VARMEAN / markerattrs=(size=5 symbol=        
            circlefilled);                                                      
      endlayout;                                                                
      if (_BYTITLE_)                                                            
         entrytitle _BYLINE_ / textattrs=GRAPHVALUETEXT;                        
      else                                                                      
         if (_BYFOOTNOTE_)                                                      
            entryfootnote halign=left _BYLINE_;                                 
         endif;                                                                 
      endif;                                                                    
   endgraph;                                                                    
end;                                                                            

You can use the TEMPLATE procedure (see Chapter 21, “Statistical Graphics Using ODS”) to run any
modified SAS/GRAPH graph template definition and then call the %CATER macro again. The %CATER
macro picks up the change you made to the Caterpillar template and displays the new graph accordingly.

Autocall Macros for Postprocessing
Although PROC MCMC provides a number of convergence diagnostic tests and posterior summary statistics,
PROC MCMC performs the calculations only if you specify the options in advance. If you wish to analyze
the posterior draws of unmonitored parameters or functions of the parameters that are calculated in later
DATA step calls, you can use the autocall macros in Table 61.45.
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Table 61.45 Postprocessing Autocall Macros

Macro Description

%ESS Effective sample sizes
%GEWEKE* Geweke diagnostic
%HEIDEL* Heidelberger-Welch diagnostic
%MCSE Monte Carlo standard errors
%RAFTERY Raftery diagnostic
%POSTACF Autocorrelation
%POSTCOR Correlation matrix
%POSTCOV Covariance matrix
%POSTINT Equal-tail and HPD intervals
%POSTSUM Summary statistics
%SUMINT Mean, standard deviation, and HPD interval
*The %GEWEKE and %HEIDEL macros use a different optimization routine
than that used in PROC MCMC. As a result, there might be numerical differences
in some cases, especially when the sample size is small.

Table 61.46 lists options that are shared by all postprocessing autocall macros. See Table 61.47 for macro-
specific options.

Table 61.46 Shared Options

Option Description

DATA=SAS-data-set Input data set that contains posterior samples
VAR=variable-list Specifies the variables on which you want to carry out the calcula-

tion.
PRINT=YES | NO Displays the results. The default is YES.
OUT=SAS-data-set Specifies a name for the output SAS data set to contain the results.

Suppose that the data set that contains posterior samples is called post and that the variables of interest are
defined in the macro variable &PARMS. The following statements call the %ESS macro and calculates the
effective sample sizes for each variable:

%let parms = alpha beta u_1-u_17;
%ESS(data=post, var=&parms);

By default, the ESS estimates are displayed. You can choose not to display the result and save the output to a
data set with the following statement:

%ESS(data=post, var=&parms, print=NO, out=eout);

Some of the macros can take additional options, which are listed in Table 61.47.
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Table 61.47 Macro-Specific Options

Macro Option Description

%ESS AUTOCORLAG=numeric Specifies the maximum number of autocorrelation lags used
in computing the ESS estimates. By default, AUTOCOR-
LAG=MIN(500, NOBS/4), where NOBS is the sample size
of the input data set.

HIST=YES|NO Displays a histogram of all ESS estimates. The default is NO.
%HEIDEL SALPHA=numeric Specifies the ˛ level for the stationarity test. By default,

SALPHA=0.05.
HALPHA=numeric Specifies the ˛ level for the halfwidth test. By default,

HALPHA=0.05.
EPS=numeric Specifies a small positive number � such that if the halfwidth is

less than � times the sample mean of the remaining iterations,
the halfwidth test is passed. By default, EPS=0.1.

%GEWEKE FRAC1=numeric Specifies the earlier portion of the Markov chain used in the test.
By default, FRAC1=0.1.

FRAC2=numeric Specifies the latter portion of the Markov chain used in the test.
By default, FRAC2=0.5.

%MCSE AUTOCORLAG=numeric Specifies the maximum number of autocorrelation lags used
in computing the Monte Carlo standard error estimates. By
default, AUTOCORLAG=MIN(500, NOBS/4), where NOBS is
the sample size of the input data set.

%RAFTERY Q=numeric Specifies the order of the quantile of interest. By default,
Q=0.025.

R=numeric Specifies the margin of error for measuring the accuracy of
estimation of the quantile. By default, R=0.005.

S=numeric Specifies the probability of attaining the accuracy of the estima-
tion of the quantile. By default, S=0.95.

EPS=numeric Specifies the tolerance level for the stationary test. By default,
EPS=0.001.

%POSTACF LAGS=%str(numeric-list) Specifies autocorrelation lags calculated. The default values are
1, 5, 10, and 50.

%POSTINT ALPHA=value Specifies the ˛ level .0 < ˛ < 1/ for the interval estimates. By
default, ALPHA=0.05.

For example, the following statement calculates and displays autocorrelation at lags 1, 6, 11, 50, and 100.
Note that the lags in the numeric-list need to be separated by commas “,”.

%PostACF(data=post, var=&parms, lags=%str(1 to 15 by 5, 50, 100));
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Gamma and Inverse-Gamma Distributions
The gamma and inverse gamma distributions are widely used in Bayesian analysis. With their respective
scale and inverse scale parameterizations, they are a frequent source of confusion in the field. This section
aims to clarify their parameterizations and common usages.

The gamma distribution is often used as the conjugate prior for the precision parameter (� D 1=�2) in a
normal distribution. See Table 61.19 in the section “Standard Distributions” on page 4798 for the density
definitions. You can specify the distribution in two ways:

• gamma(shape=, scale=) which has mean shape�scale and variance shape � scale2

• gamma(shape=, iscale=) which has mean shape
iscale and variance shape

iscale2

The parameterization of the gamma distribution that is preferred by most Bayesian analysts is to have the
same number in both hyperparameter positions, which results in a prior distribution that has mean 1. To do
this, you should use the iscale= parameterization. In addition, if you choose a small value (for example,
0.01), the prior distribution takes on a large variance (100 in this example). To specify this prior in PROC
MCMC, use gamma(shape=0.01, iscale=0.01)4, not gamma(shape=0.01, scale=0.01).

If you specify the scale= parameterization, as in gamma(shape=0.01, scale=0.01), you would get a
prior distribution that has mean 0.0001 and variance 0.000001. This would lead to a completely different
posterior inference: the prior would push the precision parameter estimate close to 0, or the variance estimate
to a large value.

The inverse-gamma distribution is often used as the conjugate prior of the variance parameter (�2) in a
normal distribution. See Table 61.22 in the section “Standard Distributions” on page 4798 for the density
definitions. Similar to the gamma distribution, you can specify the inverse-gamma distribution in two ways:

• igamma(shape=, scale=)

• igamma(shape=, iscale=)

The inverse gamma distribution does not have a mean when the shape parameter is less than or equal to 1 and
does not have a variance when the shape parameter is less than or equal to 2.

A gamma prior distribution on the precision is the equivalent to an inverse gamma prior distribution on the
variance. The equivalency is the following:

� � gamma(shape=0.01, iscale=0.01), �2 � igamma(shape=0.01, scale=0.01)

NOTE: This mnemonic might help you remember the parameterization scheme of the distributions. If you
prefer to have identical hyperparameter values in the distribution, you should specify one and only one
“i.”. When the “i” appears in the igamma distribution name for the variance parameter, choose the scale=
parameterization; when the “i” appears in the iscale= parameterization, choose the gamma distribution for
the precision parameter.

4Specifying the same number at both positions and choosing a small value has been popularized by the WinBUGS
software program. The WinBUGS’s distribution specification of dgamma(0.01, 0.01) is equivalent to specifying
gamma(shape=0.01, iscale=0.01) in PROC MCMC.
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If you are not sure about the choices of other hyperparameter values and what type of prior distributions they
induce, you can write a simple PROC MCMC program and see the distributions as in the following example:

data a;
run;

ods graphics on;
ods select DensityPanel;
proc mcmc data=a stats=none diag=none nmc=10000 outpost=gout

plots=density seed=1;
parms gamma_3_is2 gamma_001_sc4 igamma_12_sc001 igamma_2_is01;
prior gamma_3_is2 ~ gamma(shape=3, iscale=2);
prior gamma_001_sc4 ~ gamma(shape=0.01, scale=4);
prior igamma_12_sc001 ~ igamma(shape=12, scale=0.01);
prior igamma_2_is01 ~ igamma(shape=2, iscale=0.1);
model general(0);

run;
ods graphics off;

The preceding statements specify four different gamma and inverse gamma distributions with various scale
and inverse scale parameter values. The output of kernel density plots of these four prior distributions is
shown in Figure 61.19. Note how the X axis scales vary across different distributions.

Figure 61.19 Density Plots of Different Gamma and Inverse Gamma Distributions



4838 F Chapter 61: The MCMC Procedure

Posterior Predictive Distribution
The posterior predictive distribution

p.ypredjy/ D
Z
p.ypredj�/p.� jy/d�

can often be used to check whether the model is consistent with data. For more information about using
predictive distribution as a model checking tool, see Gelman et al. 2004, Chapter 6 and the bibliography in
that chapter. The idea is to generate replicate data from p.ypredjy/—call them yipred, for i D 1; � � � ;M ,
where M is the total number of replicates—and compare them to the observed data to see whether there
are any large and systematic differences. Large discrepancies suggest a possible model misfit. One way to
compare the replicate data to the observed data is to first summarize the data to some test quantities, such as
the mean, standard deviation, order statistics, and so on. Then compute the tail-area probabilities of the test
statistics (based on the observed data) with respect to the estimated posterior predictive distribution that uses
the M replicate ypred samples.

Let T .�/ denote the function of the test quantity, T .y/ the test quantity that uses the observed data, and
T .yipred/ the test quantity that uses the ith replicate data from the posterior predictive distribution. You
calculate the tail-area probability by using the following formula:

Pr.T .ypred/ > T .y/j�/

The following example shows how you can use PROC MCMC to estimate this probability.

An Example for the Posterior Predictive Distribution

This example uses a normal mixed model to analyze the effects of coaching programs for the scholastic
aptitude test (SAT) in eight high schools. For the original analysis of the data, see Rubin (1981). The
presentation here follows the analysis and posterior predictive check presented in Gelman et al. (2004). The
data are as follows:

title 'An Example for the Posterior Predictive Distribution';

data SAT;
input effect se @@;
ind=_n_;
datalines;

28.39 14.9 7.94 10.2 -2.75 16.3
6.82 11.0 -0.64 9.4 0.63 11.4

18.01 10.4 12.16 17.6
;

The variable effect is the reported test score difference between coached and uncoached students in eight
schools. The variable se is the corresponding estimated standard error for each school. In a normal mixed
effect model, the variable effect is assumed to be normally distributed:

effecti � normal.�i ; se2/ for i D 1; � � � ; 8

The parameter �i has a normal prior with hyperparameters .m; v/:

�i � normal.m; var = v/
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The hyperprior distribution on m is a uniform prior on the real axis, and the hyperprior distribution on v is a
uniform prior from 0 to infinity.

The following statements fit a normal mixed model and use the PREDDIST statement to generate draws from
the posterior predictive distribution.

ods listing close;
proc mcmc data=SAT outpost=out nmc=40000 seed=12;

parms m 0;
parms v 1 /slice;
prior m ~ general(0);
prior v ~ general(1,lower=0);
random mu ~ normal(m,var=v) subject=ind monitor=(mu);
model effect ~ normal(mu,sd=se);
preddist outpred=pout nsim=5000;

run;
ods listing;

The ODS LISTING CLOSE statement disables the listing output because you are primarily interested in the
samples of the predictive distribution. The HYPER, PRIOR, and MODEL statements specify the Bayesian
model of interest. The PREDDIST statement generates samples from the posterior predictive distribution and
stores the samples in the Pout data set. The predictive variables are named effect_1, � � � , effect_8. When no
COVARIATES option is specified, the covariates in the original input data set SAT are used in the prediction.
The NSIM= option specifies the number of predictive simulation iterations.

The following statements use the Pout data set to calculate the four test quantities of interest: the average
(mean), the sample standard deviation (sd), the maximum effect (max), and the minimum effect (min). The
output is stored in the Pred data set.

data pred;
set pout;
mean = mean(of effect:);
sd = std(of effect:);
max = max(of effect:);
min = min(of effect:);

run;

The following statements compute the corresponding test statistics, the mean, standard deviation, and the
minimum and maximum statistics on the real data and store them in macro variables. You then calculate
the tail-area probabilities by counting the number of samples in the data set Pred that are greater than the
observed test statistics based on the real data.

proc means data=SAT noprint;
var effect;
output out=stat mean=mean max=max min=min stddev=sd;

run;

data _null_;
set stat;
call symputx('mean',mean);
call symputx('sd',sd);
call symputx('min',min);
call symputx('max',max);

run;
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data _null_;
set pred end=eof nobs=nobs;
ctmean + (mean>&mean);
ctmin + (min>&min);
ctmax + (max>&max);
ctsd + (sd>&sd);
if eof then do;

pmean = ctmean/nobs; call symputx('pmean',pmean);
pmin = ctmin/nobs; call symputx('pmin',pmin);
pmax = ctmax/nobs; call symputx('pmax',pmax);
psd = ctsd/nobs; call symputx('psd',psd);

end;
run;

You can plot histograms of each test quantity to visualize the posterior predictive distributions. In addition,
you can see where the estimated p-values fall on these densities. Figure 61.20 shows the histograms. To put
all four histograms on the same panel, you need to use PROC TEMPLATE to define a new graph template.
(See Chapter 21, “Statistical Graphics Using ODS.”) The following statements define the template twobytwo:

proc template;
define statgraph twobytwo;

begingraph;
layout lattice / rows=2 columns=2;

layout overlay / yaxisopts=(display=none)
xaxisopts=(label="mean");

layout gridded / columns=2 border=false
autoalign=(topleft topright);

entry halign=right "p-value =";
entry halign=left eval(strip(put(&pmean, 12.2)));

endlayout;
histogram mean / binaxis=false;
lineparm x=&mean y=0 slope=. /

lineattrs=(color=red thickness=5);
endlayout;
layout overlay / yaxisopts=(display=none)

xaxisopts=(label="sd");
layout gridded / columns=2 border=false

autoalign=(topleft topright);
entry halign=right "p-value =";
entry halign=left eval(strip(put(&psd, 12.2)));

endlayout;
histogram sd / binaxis=false;
lineparm x=&sd y=0 slope=. /

lineattrs=(color=red thickness=5);
endlayout;
layout overlay / yaxisopts=(display=none)

xaxisopts=(label="max");
layout gridded / columns=2 border=false

autoalign=(topleft topright);
entry halign=right "p-value =";
entry halign=left eval(strip(put(&pmax, 12.2)));

endlayout;
histogram max / binaxis=false;
lineparm x=&max y=0 slope=. /

lineattrs=(color=red thickness=5);
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endlayout;
layout overlay / yaxisopts=(display=none)

xaxisopts=(label="min");
layout gridded / columns=2 border=false

autoalign=(topleft topright);
entry halign=right "p-value =";
entry halign=left eval(strip(put(&pmin, 12.2)));

endlayout;
histogram min / binaxis=false;
lineparm x=&min y=0 slope=. /

lineattrs=(color=red thickness=5);
endlayout;

endlayout;
endgraph;

end;
run;

You call PROC SGRENDER to create the graph, which is shown in Figure 61.20. (See the SGRENDER
procedure in the SAS ODS Graphics: Procedures Guide.) There are no extreme p-values observed; this
supports the notion that the predicted results are similar to the actual observations and that the model fits the
data.

proc sgrender data=pred template=twobytwo;
run;

Figure 61.20 Posterior Predictive Distribution Check for the SAT example

Note that the posterior predictive distribution is not the same as the prior predictive distribution. The prior
predictive distribution is p.y/, which is also known as the marginal distribution of the data. The prior
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predictive distribution is an integral of the likelihood function with respect to the prior distribution

p.ypred/ D
Z
p.ypredj�/p.�/d�

and the distribution is not conditional on observed data.

Handling of Missing Data
PROC MCMC automatically augments missing values5 via the use of the MODEL statement. PROC MCMC
treats missing values as unknown parameters, assigns distributions to the variables, and incorporates the
sampling of the missing data as part of Markov chain.

(In SAS/STAT 9.3 and earlier releases, by default, PROC MCMC discarded all observations that had missing
or partial missing values. PROC MCMC could not model missing values.)

You can use the MISSING= option in the PROC MCMC statement to specify how you want PROC MCMC
to handle the missing values. If you specify MISSING=CC (CC stands for complete cases), PROC MCMC
discards all observations that have missing or partial missing values before carrying out the simulation. If
you specify MISSING=AC (AC stands for all cases), PROC MCMC neither discards any missing values nor
augments them.

Generally speaking, there are three types of missing data models, as discussed by Rubin (1976). Also see
Little and Rubin (2002) for a comprehensive treatment of missing data analysis. The rest of this section
provides an overview of these three types of missing data models and explains how to use PROC MCMC to
fit them.

Missing Completely at Random (MCAR)

Data are said to be MCAR if the probability of a missing value (or the failure of observing a value) does
not depend on any other observations in the data set, regardless of whether they are observed or missing.
That is, the observed and unobserved values are independent of each other: if yi is missing, it is MCAR if
the probability of observing yi is independent of other yj (and other covariates xi ) in the data set. Under
this assumption, both the observed and unobserved data are random samples of all the data; hence, fitting
a model based only on the observed data does not introduce any biases. This type of analysis is called a
complete-case analysis. To carry out a complete-case analysis, you must specify MISSING=CC in the PROC
MCMC statement. (In SAS/STAT 9.3 and earlier, PROC MCMC performed a complete-case analysis when
the data contained missing values.)

Missing at Random (MAR)

Data are said to be MAR if the probability of a missing value can depend on some observed quantities but
does not depend on any unobserved data. For example, suppose that xi are completely observed for all
observations and some yi are missing. MAR states that the probability of observing yi is independent of
other missing yi (values that could have been observed) and that it depends only on xi (and, potentially,
observed yi ).

The MAR assumption states that the missing yi are no longer random samples and that they need to be
modeled (via the likelihood specification of the missing values). At the same time, the independence

5A missing value is usually, although not necessarily, represented by a single period (.) in the input data set.
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assumption of the missing values on the unobserved quantities states that the missing mechanism (usually an
binary indicator variable such that ri D 1 if yi is missing and ri D 0 otherwise) can be ignored and does
not need to be taken into account. Hence, MAR is sometimes referred to as ignorably missing. It is not the
missing values that can be ignored, it is the missing mechanism that can be ignored.

By default, PROC MCMC treats the missing data as MAR (this assumes that you do not input a binary
indicator variable ri and model it specifically): each missing value becomes an extra parameter and PROC
MCMC updates it in every iteration. PROC MCMC assumes that both the missing values and observed
values arise from the same distribution (which is specified in the MODEL statement),

y D fyobs; ymisg � f .yj�/

where y consists of observed (yobs) and missing (ymis) values, and f .yj�/ is the likelihood function with
parameters � .

You can use the MODEL statement to model missing covariates. Using multiple MODEL statements enables
you to specify, for example, a marginal distribution for missing values in covariate x and a conditional
distribution for the response variable y given x as follows:

model x ~ normal(alpha, var=s2_x);
model y ~ normal(beta * x, var=s2_y);

In each iteration, PROC MCMC draws samples for every missing value in variable x, then every missing
value in variable y, conditional on the drawn values of the x variable.

Missing Not at Random (MNAR)

Data are said to be MNAR if the probability of a missing value depends on unobserved data (or data that
could have been observed): the probability that yi is missing depends on the missing values of other yi . This
is a very general scenario that assumes that the missing mechanism is no longer ignorable (it is sometimes
referred to as nonignorably missing) and that a model for the missing mechanism is required in order to make
correct inferences about the model parameters.

Let R D .r1; � � � ; rn/ be the missing value indicator for Y D .y1; � � � ; yn/, where ri D 1 if yi is missing
and ri D 0 otherwise. This R is usually part of an input data set where you preprocess the response variable
and create this missing value indicator variable. Modeling MNAR data implies that you must specify a
joint likelihood function over R and Y W f .R;YjX;�/, where X represents the covariates and � represents
the model parameters. This joint distribution can be factored in two ways: a pattern-mixture model and a
selection model.

The selection model factors the joint distribution R and Y into a marginal distribution for Y and a conditional
distribution for R,

f .R;YjX;�/ / f .YjX;˛/ � f .RjY;X;ˇ/

where � D .˛;ˇ/, f .RjY;X;˛/ is usually a binary model with a logit or probit link that involves regression
parameters ˛, and f .YjX;ˇ/ is the sampling distribution that generates yi with model parameters ˇ.

The pattern-mixture model factors the opposite way, a marginal distribution for R and a conditional distribu-
tion for Y,

f .R;YjX;�/ / f .RjX;/ � f .YjR;X; ı/

where � D .; ı/.
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You can use PROC MCMC to fit either model by specifying multiple MODEL statements: one for the
marginal distribution and one for the conditional distribution. Suppose that the variable r is the missing data
indicator, which is modeled using a logit model, and that the response variable y is a Poisson regression that
includes the missing variable indicator as one of its covariates. The following statements are a PROC MCMC
program that fits a pattern-mixture model:

pi = logistic(alpha * x1);
model r ~ binary(pi);
mu = beta0 + beta1 * x2 + beta3 * r;
model y ~ poisson(exp(mu));

The first MODEL statement uses a binary model with logit link to model the missing mechanism, and the
second MODEL statement models the response variable with a Poisson regression that includes the missing
value indicator as one of its covariates. Each of the two sets of regression has its covariates and regression
coefficients. If this hypothetical data set contained missing values in covariates x1 and x2, you could add two
more MODEL statements to handle each variable as follows:

model x1 ~ normal(mu1, var=s2_x1);
pi = logistic(alpha * x1);
model r ~ binary(pi);
model x2 ~ normal(mu2, var=s2_x2);
mu = beta0 + beta1 * x2 + beta3 * r;
model y ~ poisson(exp(mu));

Functions of Random-Effects Parameters
When you specify a RANDOM statement in a program, PROC MCMC internally creates a random-effects
parameter for every unique value in the SUBJECT= variable. You can calculate any transformations of these
random-effects parameters by applying SAS functions to the effect, and you can use the transformed variable
in the subsequent statements. For example, the following statements perform a logit transformation of an
effect:

random u ~ normal(mu, var=s2) subject=students;
p = logistic(u);
...

The value of the variable p changes with u as the procedure steps through the input data set: for different
unique values of the students variable, u takes on a different parameter value, and p changes accordingly.

To save all the transformed values in p to the OUTPOST= data set, you cannot just specify the MONITOR=(p)
option in the PROC MCMC statement. With such a specification, PROC MCMC can save only one value of
p (usually the value associated with the last observation in the data set); it cannot save all values. To output
all transformed values, you must create an array to store every transformation and use the MONITOR=
option to save the entire array to the OUTPOST= data set. The difficult part of the programming involves
the creation of the correct array index to use in different types of the SUBJECT= variables. The rest of this
section describes how to monitor functions of random-effects parameters in different situations.
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Indexing Subject Variable

This subsection describes how to monitor transformation of an effect u when the students variable is an
indexing subject variable. An indexing subject variable is an integer variable that takes value from one to the
total number of unique subjects in a variable. In other words, the variable can be used as an index in a SAS
array. The indexing subject variable does not need to be sorted for the example code in this section to work.
An example of an indexing variable takes the values of (1 2 3 4 5 1 2 3 4 5), where the total number of
observation is n=10 and the number of unique values is m=5.

The following statements create an indexing variable students in the data set a:

data a;
input students @@;
datalines;
1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10

;

The following statements run a random-effects model without any response variables. There are only random-
effects parameters in the model; the program calculates the logit transformation of each effect, saves the
results to the OUTPOST= data set, and produces Figure 61.21:

proc mcmc data=a monitor=(p) diag=none stats=none outpost=a1
plots=none seed=1;
array p[10];
random u ~ n(0, sd=1) subject=students;
p[students] = logistic(u);
model general(0);

run;

proc print data=a1(obs=3);
run;

The ARRAY statement creates an array p of size 10, which is the number of unique values in students.
The p array stores all the transformed values. The RANDOM statement declares u to be an effect with the
subject variable students. The P[STUDENTS] assignment statement calculates the logit transformations
of u and saves them in appropriate array elements—this is why the students variable must be an indexing
variable. Because the students variable used in the p[] array is also the subject variable in the RANDOM
statement, PROC MCMC can match each random-effects parameter with the corresponding element in array
p. The MONITOR= option monitors all elements in p and saves the output to the a1 data set. The a1 data set
contains variables p1–p10. Figure 61.21 shows the first three observations of the OUTPOST= data set.

Figure 61.21 Monitor Functions of Random Effect u

Obs Iteration p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 u_1 u_2

1 1 0.5050 0.7334 0.5375 0.5871 0.6862 0.4944 0.5740 0.5991 0.6812 0.8678 0.0198 1.0120

2 2 0.5563 0.4254 0.7260 0.5280 0.4593 0.5797 0.5813 0.7360 0.9079 0.3351 0.2261 -0.3006

3 3 0.6132 0.8031 0.4735 0.3135 0.7047 0.5273 0.6761 0.2379 0.2938 0.3986 0.4607 1.4058

Obs u_3 u_4 u_5 u_6 u_7 u_8 u_9 u_10 LogReff LogLike LogPost

1 0.1504 0.3521 0.7826 -0.0225 0.2983 0.4019 0.7595 1.8819 -12.2658 0 -12.2658

2 0.9742 0.1120 -0.1630 0.3213 0.3281 1.0253 2.2887 -0.6854 -13.2393 0 -13.2393

3 -0.1060 -0.7837 0.8698 0.1092 0.7361 -1.1641 -0.8772 -0.4112 -12.3984 0 -12.3984
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The variable p1 is the logit transformation of the variable u_1, p2 is the logit transformation of the variable
u_2, and so on.

The same idea works for a students variable that is unsorted. The following statements create an un-
sorted indexing variable students with repeated measures in each subject, fit the same model, and produce
Figure 61.22:

data a;
input students @@;
datalines;
1 1 1 3 5 3 4 5 3 1 5 5 4 4 2 2 2 2 4 3

;
proc mcmc data=a monitor=(p) diag=none stats=none outpost=a1

plots=none seed=1;
array p[5];
random u ~ n(0, sd=1) subject=students;
p[students] = logistic(u);
model general(0);

run;

proc print data=a1(obs=3);
run;

Figure 61.22 Monitor Functions of Random Effect u When the students Variable is Unsorted

Obs Iteration p1 p2 p3 p4 p5 u_1 u_3 u_5 u_4 u_2 LogReff LogLike LogPost

1 1 0.5050 0.6862 0.7334 0.5871 0.5375 0.0198 1.0120 0.1504 0.3521 0.7826 -5.4865 0 -5.4865

2 2 0.4944 0.8678 0.5740 0.6812 0.5991 -0.0225 0.2983 0.4019 0.7595 1.8819 -6.7793 0 -6.7793

3 3 0.5563 0.4593 0.4254 0.5280 0.7260 0.2261 -0.3006 0.9742 0.1120 -0.1630 -5.1595 0 -5.1595

There are five random-effects parameters in this example, and the array p also has five elements. The values
p1–p5 are the transformations of u_1–u_5, respectively. The u variables are not sorted from u_1 to u_5
because PROC MCMC creates the names according to the order by which the subject variable appears
in the input data set. Nevertheless, because students is an indexing variable, the first element p[1] stores
the transformation that corresponds to students=1 (which is u_1), the second element p[2] stores the
transformation that corresponds to students=2, and so on.

Non-Indexing Subject Variable

A non-indexing subject variable can take values of character literals (for example, names) or numerals (for
example, ZIP code or a person’s weight). This section illustrates how to monitor functions of random-effects
parameters in these situations.

Suppose you have unsorted character literals as the subject variable:

data a;
input students$ @@;
datalines;
smith john john mary kay smith lizzy ben ben dylan
ben toby abby mary kay kay lizzy ben dylan mary

;
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A statement such as following does not work anymore because a character variable cannot be used as an
array index:

p[students] = logistic(u);

In this situation, you usually need to do two things: (1) find out the number of unique values in the subject
variable, and (2) create a numeric index variable that replaces the students array index. You can use the
following statements to do the first task:

proc sql noprint;
select count(distinct(students)) into :nuniq from a;

quit;
%put &nuniq;

The PROC SQL call counts the distinct values in the students variable and saves the count to the macro
variable &nuniq. The macro variable is used later to specify the element size of the p array. In this example,
the a data set contains 20 observations and 9 unique elements (the value of &nuinq).

The following statements create an Index variable in the a data set that is in the order by which the students
names appear in the data set:

proc freq data=a order=data noprint;
tables students / out=_f(keep=students);

run;

proc print data=_f;
run;

data a(drop=n);
set a;
do i = 1 to nobs until(students=n);

set _f(keep=students rename=(students=n)) point=i nobs=nobs;
Index = i;

end;
run;

proc print data=a;
run;

The PROC FREQ call identifies the unique students names and saves them to the _f data set, which is
displayed in Figure 61.23.

Figure 61.23 Unique Names in the Variable Students

Obs students

1 smith

2 john

3 mary

4 kay

5 lizzy

6 ben

7 dylan

8 toby

9 abby



4848 F Chapter 61: The MCMC Procedure

The DATA step steps through the a data set and creates an Index variable to match the order in which the
students names appear in the data set. The new a data set6 is displayed in Figure 61.24.

Figure 61.24 New Index Variable in the a Data Set

Obs students Index

1 smith 1

2 john 2

3 john 2

4 mary 3

5 kay 4

6 smith 1

7 lizzy 5

8 ben 6

9 ben 6

10 dylan 7

11 ben 6

12 toby 8

13 abby 9

14 mary 3

15 kay 4

16 kay 4

17 lizzy 5

18 ben 6

19 dylan 7

20 mary 3

Student smith is the first subject, and his Index value is one. The same student appears again in the sixth
observation, which is given the same Index value. Now, this Index variable can be used to index the p array,
in a similar fashion as demonstrated in previous programs:

data _f;
set _f;
subj = compress('p_'||students);

run;
proc sql noprint;

select subj into :pnames separated by ' ' from _f;
quit;
%put &pnames;

proc mcmc data=a monitor=(p) diag=none stats=none outpost=a1
plots=none seed=1;
array p[&nuniq] &pnames;
random u ~ n(0, sd=1) subject=students;
p[index] = logistic(u);
model general(0);

run;

proc print data=a1(obs=3);
run;

6The programming code that creates and adds the Index variable to the data set a keeps all variables from the original data set
and does not discard them.
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The first part of the DATA step and the PROC SQL call create array names for the p array that match the
subject names in the students variable. It is not necessary to include these steps for the PROC MCMC
program to work, but it makes the output more readable. The first DATA step steps through the _f data set
and creates a subj variable that concatenates the prefix characters p_ with the names of the students. The
PROC SQL calls put all the subj values to a macro called &pnames, which looks like the following:

p_smith p_john p_mary p_kay p_lizzy p_ben p_dylan p_toby p_abby

In the PROC MCMC program, the ARRAY statement defines an p array with size &nuniq (9), and use the
macro variable &pnames to name the array elements. The P[INDEX] assignment statement uses the Index
variable to find the correct array element to store the transformation. Figure 61.25 displays the first few
observations of the OUTPOST=a1 data set.

Figure 61.25 First Few Observations of the Outpost Data Set

Obs Iteration p_smith p_john p_mary p_kay p_lizzy p_ben p_dylan p_toby p_abby u_smith u_john

1 1 0.5050 0.7334 0.5375 0.5871 0.6862 0.4944 0.5740 0.5991 0.6812 0.0198 1.0120

2 2 0.8678 0.5563 0.4254 0.7260 0.5280 0.4593 0.5797 0.5813 0.7360 1.8819 0.2261

3 3 0.9079 0.3351 0.6132 0.8031 0.4735 0.3135 0.7047 0.5273 0.6761 2.2887 -0.6854

Obs u_mary u_kay u_lizzy u_ben u_dylan u_toby u_abby LogReff LogLike LogPost

1 0.1504 0.3521 0.7826 -0.0225 0.2983 0.4019 0.7595 -9.5761 0 -9.5761

2 -0.3006 0.9742 0.1120 -0.1630 0.3213 0.3281 1.0253 -11.2370 0 -11.2370

3 0.4607 1.4058 -0.1060 -0.7837 0.8698 0.1092 0.7361 -13.1867 0 -13.1867

There are nine random-effects parameters (u_smith, u_john, and so on). There are nine elements of the p
array (p_smith, p_john, and so on); each is the logit transformation of corresponding u elements.

You can use the same statements for subject variables that are numeric non-indexing variables. The following
statements create a students variable that take large numbers that cannot be used as indices to an array. The
rest of the program monitors functions of the effect u. The output is not displayed here.

data a;
call streaminit(1);
do i = 1 to 20;

students = rand("poisson", 20);
output;

end;
drop i;

run;

proc sql noprint;
select count(distinct(students)) into :nuniq from a;

quit;
%put &nuniq;

proc freq data=a order=data noprint;
tables students / out=_f(keep=students);

run;
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data a(drop=n);
set a;
do i = 1 to nobs until(students=n);

set _f(keep=students rename=(students=n)) point=i nobs=nobs;
Index = i;

end;
run;

data _f;
set _f;
subj = compress('p_'||students);

proc sql noprint;
select subj into :pnames separated by ' ' from _f;
quit;

%put &pnames;

proc mcmc data=a monitor=(p) diag=none stats=none outpost=a1
plots=none seed=1;
array p[&nuniq] &pnames;
random u ~ n(0, sd=1) subject=students;
p[index] = logistic(u);
model general(0);

run;

proc print data=a1(obs=3);
run;

Floating Point Errors and Overflows
When performing a Markov chain Monte Carlo simulation, you must calculate a proposed jump and an
objective function (usually a posterior density). These calculations might lead to arithmetic exceptions and
overflows. A typical cause of these problems is parameters with widely varying scales. If the posterior
variances of your parameters vary by more than a few orders of magnitude, the numerical stability of the
optimization problem can be severely reduced and can result in computational difficulties. A simple remedy
is to rescale all the parameters so that their posterior variances are all approximately equal. Changing the
SCALE= option might help if the scale of your parameters is much different than one. Another source of
numerical instability is highly correlated parameters. Often a model can be reparameterized to reduce the
posterior correlations between parameters.

If parameter rescaling does not help, consider the following actions:

• provide different initial values or try a different seed value

• use boundary constraints to avoid the region where overflows might happen

• change the algorithm (specified in programming statements) that computes the objective function



Floating Point Errors and Overflows F 4851

Problems Evaluating Code for Objective Function

The initial values must define a point for which the programming statements can be evaluated. However,
during simulation, the algorithm might iterate to a point where the objective function cannot be evaluated.
If you program your own likelihood, priors, and hyperpriors by using SAS statements and the GENERAL
function in the MODEL, PRIOR, AND HYPERPRIOR statements, you can specify that an expression cannot
be evaluated by setting the value you pass back through the GENERAL function to missing. This tells the
PROC MCMC that the proposed set of parameters is invalid, and the proposal will not be accepted. If you
use the shorthand notation that the MODEL, PRIOR, AND HYPERPRIOR statements provide, this error
checking is done for you automatically.

Long Run Times

PROC MCMC can take a long time to run for problems with complex models, many parameters, or large
input data sets. Although the techniques used by PROC MCMC are some of the best available, they are not
guaranteed to converge or proceed quickly for all problems. Ill-posed or misspecified models can cause the
algorithms to use more extensive calculations designed to achieve convergence, and this can result in longer
run times. You should make sure that your model is specified correctly, that your parameters are scaled to the
same order of magnitude, and that your data reasonably match the model that you are specifying.

To speed general computations, you should check over your programming statements to minimize the
number of unnecessary operations. For example, you can use the proportional kernel in the priors or the
likelihood and not add constants in the densities. You can also use the BEGINCNST and ENDCNST to
reduce unnecessary computations on constants, and the BEGINNODATA and ENDNODATA statements to
reduce observation-level calculations.

Reducing the number of blocks (the number of the PARMS statements) can speed up the sampling process. A
single-block program is approximately three times faster than a three-block program for the same number of
iterations. On the other hand, you do not want to put too many parameters in a single block, because blocks
with large size tend not to produce well-mixed Markov chains.

If some parameters satisfy the conditional independence assumption, such as in the random-effects models or
latent variable models, consider using the RANDOM statement to model these parameters. This statement
takes advantage of the conditional independence assumption and can sample a larger number of parameters
at a more efficient pace.

Slow or No Convergence

If the simulator is slow or fails to converge, you can try changing the model as follows:

• Change the number of Monte Carlo iterations (NMC=), or the number of burn-in iterations (NBI=), or
both. Perhaps the chain just needs to run a little longer. Note that after the simulation, you can always
use the DATA step or the FIRSTOBS data set option to throw away initial observations where the
algorithm has not yet burned in, so it is not always necessary to set NBI= to a large value.

• Increase the number of tuning. The proposal tuning can often work better in large models (models that
have more parameters) with larger values of NTU=. The idea of tuning is to find a proposal distribution
that is a good approximation to the posterior distribution. Sometimes 500 iterations per tuning phase
(the default) is not sufficient to find a good approximating covariance.
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• Change the initial values to more feasible starting values. Sometimes the proposal tuning starts badly
if the initial values are too far away from the main mass of the posterior density, and it might not be
able to recover.

• Use the PROPCOV= option to start the Markov chain at better starting values. With the PROP-
COV=QUANEW option, PROC MCMC optimizes the object function and uses the posterior mode as
the starting value of the Markov chain. In addition, a quadrature approximation to the posterior mode
is used as the proposal covariance matrix. This option works well in many cases and can improve the
mixing of the chain and shorten the tuning and burn-in time.

• Parameterize your model to include conjugacy, such as using the gamma prior on the precision
parameter in a normal distribution or using an inverse gamma on the variance parameter. For a list of
conjugate sampling methods that PROC MCMC supports, see the section “Conjugate Sampling” on
page 4795.

• Change the blocking by using the PARMS statements. Sometimes poor mixing and slow convergence
can be attributed to highly correlated parameters being in different parameter blocks.

• Modify the target acceptance rate. A target acceptance rate of about 25% works well for many
multi-parameter problems, but if the mixing is slow, a lower target acceptance rate might be better.

• Change the initial scaling or the TUNEWT= option to possibly help the proposal tuning.

• Consider using a different proposal distribution. If from a trace plot you see that a chain traverses to
the tail area and sometimes takes quite a few simulations before it comes back, you can consider using
a t proposal distribution. You can do this by either using the PROC option PROPDIST=T or using a
PARMS statement option T.

• Transform parameters and sample on a different scale. For example, if a parameter has a gamma
distribution, sample on the logarithm scale instead. A parameter a that has a gamma distribution is
equivalent to log.a/ that has an egamma distribution, with the same distribution specification. For
example, the following two formulations are equivalent:

parm a;
prior a ~ gamma(shape = 0.001, scale = 0.001);

and

parm la;
prior la ~ egamma(shape = 0.001, scale = 0.001);
a = exp(la);

See “Example 61.6: Nonlinear Poisson Regression Models” on page 4893 and “Example 61.20: Using
a Transformation to Improve Mixing” on page 4971. You can also use the logit transformation on
parameters that have uniform.0; 1/ priors. This prior is often used on probability parameters. The logit
transformation is as follows: q D log. p

1�p
/. The distribution on q is the Jacobian of the transformation:

exp.�q/.1C exp.�q//�2. Again, the following two formulations are equivalent:
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parm p;
prior p ~ uniform(0, 1);

and

parm q;
lp = -q - 2 * log(1 + exp(-q));
prior q ~ general(lp);
p = 1/(1+exp(-q));

Precision of Solution

In some applications, PROC MCMC might produce parameter values that are not precise enough. Usually,
this means that there were not enough iterations in the simulation. At best, the precision of MCMC estimates
increases with the square of the simulation sample size. Autocorrelation in the parameter values deflate the
precision of the estimates. For more information about autocorrelations in Markov chains, see the section
“Autocorrelations” on page 150 in Chapter 7, “Introduction to Bayesian Analysis Procedures.”

Handling Error Messages
PROC MCMC does not have a debugger. This section covers a few ways to debug and resolve error messages.

Using the PUT Statement

Adding the PUT statement often helps to find errors in a program. The following statements produce an error:

data a;
run;

proc mcmc data=a seed=1;
parms sigma lt w;

beginnodata;
prior sigma ~ unif(0.001,100);
s2 = sigma*sigma;
prior lt ~ gamma(shape=1, iscale=0.001);
t = exp(lt);
c = t/s2;
d = 1/(s2);
prior w ~ gamma(shape=c, iscale=d);
endnodata;

model general(0);
run;
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ERROR: PROC MCMC is unable to generate an initial value for the
parameter w. The first parameter in the prior distribution is
missing.

To find out why the shape parameter c is missing, you can add the put statement and examine all the
calculations that lead up to the assignment of c:

proc mcmc data=a seed=1;
parms sigma lt w;

beginnodata;
prior sigma ~ unif(0.001,100);
s2 = sigma*sigma;
prior lt ~ gamma(shape=1, iscale=0.001);
t = exp(lt);
c = t/s2;
d = 1/(s2);
put c= t= s2= lt=; /* display the values of these symbols. */
prior w ~ gamma(shape=c, iscale=d);
endnodata;

model general(0);
run;

In the log file, you see the following:

c=. t=. s2=. lt=.
c=. t=. s2=2500.0500003 lt=1000
c=. t=. s2=2500.0500003 lt=1000
ERROR: PROC MCMC is unable to generate an initial value for the parameter w.

The first parameter in the prior distribution is missing.

You can ignore the first few lines. They are the results of initial set up by PROC MCMC. The last line is
important. The variable c is missing because t is the exponential of a very large number, 1000, in lt. The
value 1000 is assigned to lt by PROC MCMC because none was given. The gamma prior with shape of 1
and inverse scale of 0.001 has mode 0 (see “Standard Distributions” on page 4798 for more details). PROC
MCMC avoids starting the Markov chain at the boundary of the support of the distribution, and it uses the
mean value here instead. The mean of the gamma prior is 1000, hence the problem. You can change how
the initial value is generated by using the PROC statement INIT=RANDOM. Remember to take out the put
statement once you identify the problem. Otherwise, you will see a voluminous output in the log file.

Using the HYPER Statement

You can use the HYPER statement to narrow down possible errors in the prior distribution specification.
With multiple PRIOR statements in a program, you might see the following error message if one of the prior
distributions is not specified correctly:

ERROR: The initial prior parameter specifications must yield log
of positive prior density values.
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This message is displayed when PROC MCMC detects an error in the prior distribution calculation but cannot
pinpoint the specific parameter at fault. It is frequently, although not necessarily, associated with parameters
that have GENERAL or DGENERAL distributions. If you have a complicated model with many PRIOR
statements, finding the parameter at fault can be time consuming. One way is to change a subset of the
PRIOR statements to HYPER statements. The two statements are treated the same in PROC MCMC and
the simulation is not affected, but you get a different message if the hyperprior distributions are calculated
incorrectly:

ERROR: The initial hyperprior parameter specifications must yield
log of positive hyperprior density values.

This message can help you identify more easily which distributions are producing the error, and you can then
use the PUT statement to further investigate.

Computational Resources
It is impossible to estimate how long it will take for a general Markov chain to converge to its stationary
distribution. It takes a skilled and thoughtful analysis of the chain to decide whether it has converged to
the target distribution and whether the chain is mixing rapidly enough. In some cases, you might be able
to estimate how long a particular simulation might take. The running time of a program that does not have
RANDOM statements is approximately linear to the following factors: the number of samples in the input
data set, the number of simulations, the number of blocks in the program, and the speed of your computer.
For an analysis that uses a data set of size nsamples, a simulation length of nsim, and a block design of
nblocks, PROC MCMC evaluates the log-likelihood function the following number of times, excluding the
tuning phase:

nsamples � nsim � nblocks

The faster your computer evaluates a single log-likelihood function, the faster this program runs. Suppose
you have nsamples equal to 200, nsim equal to 55,000, and nblocks equal to 3. PROC MCMC evaluates the
log-likelihood function approximately 3:3 � 107 times. If your computer can evaluate the log likelihood for
one observation 106 times per second, this program takes approximately a half a minute to run. If you want
to increase the number of simulations five-fold, the run time increases approximately five-fold.

Each RANDOM statement adds one pass through the input data at each iteration. If the Metropolis algorithm
is used to sample the random-effects parameter, the conditional density (objective function) is calculated
twice per pass through the data, which requires a computational resource that is approximately equivalent to
adding two blocks of parameters.

Of course, larger problems take longer than shorter ones, and if your model is amenable to frequentist
treatment, then one of the other SAS procedures might be more suitable. With “regular” likelihoods and
a lot of data, the results of standard frequentist analysis are often asymptotically equivalent to a Bayesian
approach. If PROC MCMC requires too much CPU time, then perhaps another SAS/STAT tool would be
suitable.
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Displayed Output
This section describes the output that PROC MCMC displays. For a quick reference of all ODS table
names, see the section “ODS Table Names” on page 4860. ODS tables are arranged under four groups,
which are listed in the following sections: “Model and Data Related ODS Tables” on page 4856, “Sampling
Related ODS Tables” on page 4856, “Posterior Statistics Related ODS Tables” on page 4857, “Convergence
Diagnostics Related ODS Tables” on page 4858, and “Optimization Related ODS Tables” on page 4859.

Model and Data Related ODS Tables

Missing Data Information Table
The “Missing Data Information” table (ODS table name MISSDATAINFO) displays the name of the response
variable that contains missing values, the number of missing observations, the corresponding observation
indices in the input data set, and the sampling method used in the simulation for the missing values.

Number of Observation Table
The “NObs” table (ODS table name NOBS) shows the number of observations that is in the data set and
the number of observations that is used in the analysis. By default, observations with missing values are not
used (see the section “Handling of Missing Data” on page 4842 for more details). This table is displayed by
default.

Parameters
The “Parameters” table (ODS table name Parameters) shows the name of each parameter, the block number
of each parameter, the sampling method used for the block, the initial values, and the prior or hyperprior
distributions. This table is displayed by default.

REObsInfo
The “Random Effect Observation Information” table (ODS table name REObsInfo) lists the name of the
random effect, each subject value, the number of observations in each subject, and their corresponding
observation indices in the input data set. You can request this table by specifying the REOBSINFO option.

REParameters
The “REParameters” table (ODS table name REParameters) lists the name of the random effect, sampling
algorithm, the subject variable, the number of subjects, unique values of the subject variable, and the prior
distribution. This table is displayed by default if a RANDOM statement is used in the program.

Sampling Related ODS Tables

Burn-In History
The “Burn-In History” table (ODS table name BurnInHistory) shows the scales and acceptance rates for
each parameter block in the burn-in phase. The table is not displayed by default and can be requested by
specifying the option MCHISTORY=BRIEF | DETAILED.

Parameters Initial Value Table
The “Parameters Initial” table (ODS table name ParametersInit) shows the value of each parameter after
the tuning phase. This table is not displayed by default and can be requested by specifying the option
INIT=PINIT.
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Posterior Samples
The “Posterior Samples” table (ODS table name PosteriorSample) stores posterior draws of all parameters.
It is not printed by PROC MCMC. You can create an ODS output data set of the chain by specifying the
following:

ODS OUTPUT PosteriorSample = SAS-data-set;

Sampling History
The “Sampling History” table (ODS table name SamplingHistory) shows the scales and acceptance rates for
each parameter block in the main sampling phase. The table is not displayed by default and can be requested
by specifying the option MCHISTORY=BRIEF | DETAILED.

Tuning Covariance
The “Tuning Covariance” table (ODS table name TuneCov) shows the proposal covariance matrices for
each parameter block after the tuning phase. The table is not displayed by default and can be requested
by specifying the option INIT=PINIT. For more details about proposal tuning, see the section “Tuning the
Proposal Distribution” on page 4792.

Tuning History
The “Tuning History” table (ODS table name TuningHistory) shows the number of tuning phases used
in establishing the proposal distribution. The table also displays the scales and acceptance rates for each
parameter block at each of the tuning phases. For more information about the self-adapting proposal tuning
algorithm used by PROC MCMC, see the section “Tuning the Proposal Distribution” on page 4792. The
table is not displayed by default and can be requested by specifying the option MCHISTORY=BRIEF |
DETAILED.

Tuning Probability Vector
The “Tuning Probability” table (ODS table name TuneP) shows the proposal probability vector for each
discrete parameter block (when the option DISCRETE=GEO is specified and the geometric proposal distribu-
tion is used for discrete parameters) after the tuning phase. The table is not displayed by default and can be
requested by specifying the option INIT=PINIT. For more information about proposal tuning, see the section
“Tuning the Proposal Distribution” on page 4792.

Posterior Statistics Related ODS Tables

PROC MCMC calculates some essential posterior statistics and outputs them to a number of ODS tables that
you can request and save individually. For details of the calculations, see the section “Summary Statistics” on
page 151 in Chapter 7, “Introduction to Bayesian Analysis Procedures.”

Summary and Interval Statistics
The “Posterior Summaries and Intervals” table (ODS table name PostSumInt) contains a summary of basic
point and interval statistics for each parameter. The table lists the number of posterior samples, the posterior
mean and standard deviation estimates, and the 95% HPD interval estimates. This table is displayed by
default.
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Summary Statistics
The “Posterior Summaries” table (ODS table name PostSummaries) contains basic statistics for each
parameter. The table lists the number of posterior samples, the posterior mean and standard deviation
estimates, and the percentile estimates. The table is not displayed by default and can be requested by
specifying the option STATISTICS=SUMMARY.

Correlation Matrix
The “Posterior Correlation Matrix” table (ODS table name Corr) contains the posterior correlation of
model parameters. The table is not displayed by default and can be requested by specifying the option
STATISTICS=CORR.

Covariance Matrix
The “Posterior Covariance Matrix” table (ODS table name Cov) contains the posterior covariance of model
parameters. The table is not displayed by default and can be requested by specifying the option STATIS-
TICS=COV.

Deviance Information Criterion
The “Deviance Information Criterion” table (ODS table name DIC) contains the DIC of the model. The table
is not displayed by default and can be requested by specifying the option DIC. For details of the calculations,
see the section “Deviance Information Criterion (DIC)” on page 153 in Chapter 7, “Introduction to Bayesian
Analysis Procedures.”

Interval Statistics
The “Posterior Intervals” table (ODS table name PostIntervals) contains the equal-tail and highest posterior
density (HPD) interval estimates for each parameter. The default ˛ value is 0.05, and you can change it to
other levels by using the STATISTICS= option. The table is not displayed by default and can be requested by
specifying the option STATISTICS=INTERVAL.

Convergence Diagnostics Related ODS Tables

PROC MCMC has convergence diagnostic tests that check for Markov chain convergence. PROC MCMC
produces a number of ODS tables that you can request and save individually. For details in calculation,
see the section “Statistical Diagnostic Tests” on page 142 in Chapter 7, “Introduction to Bayesian Analysis
Procedures.”

Autocorrelation
The “Autocorrelations” table (ODS table name AUTOCORR) contains the first order autocorrelations of the
posterior samples for each parameter. The “Parameter” column states the name of the parameter. By default,
PROC MCMC displays lag 1, 5, 10, and 50 estimates of the autocorrelations. You can request different
autocorrelations by using the DIAGNOSTICS = AUTOCORR(LAGS=) option. The table is not displayed by
default and can be requested by specifying the option DIAGNOSTICS=AUTOCORR.

Effective Sample Size
The “Effective Sample Sizes” table (ODS table name ESS) calculates the effective sample size of each
parameter. See the section “Effective Sample Size” on page 150 in Chapter 7, “Introduction to Bayesian
Analysis Procedures,” for more details. The table is displayed by default.
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Monte Carlo Standard Errors
The “Monte Carlo Standard Errors” table (ODS table name MCSE) calculates the standard errors of the
posterior mean estimate. See the section “Standard Error of the Mean Estimate” on page 151 in Chapter 7,
“Introduction to Bayesian Analysis Procedures,” for more details. The table is not displayed by default and
can be requested by specifying the option DIAGNOSTICS=MCSE.

Geweke Diagnostics
The “Geweke Diagnostics” table (ODS table name Geweke) lists the result of the Geweke diagnostic test. See
the section “Geweke Diagnostics” on page 144 in Chapter 7, “Introduction to Bayesian Analysis Procedures,”
for more details. The table is not displayed by default and can be requested by specifying the option
DIAGNOSTICS=GEWEKE.

Heidelberger-Welch Diagnostics
The “Heidelberger-Welch Diagnostics” table (ODS table name Heidelberger) lists the result of the
Heidelberger-Welch diagnostic test. The test is consisted of two parts: a stationary test and a half-width
test. See the section “Heidelberger and Welch Diagnostics” on page 146 in Chapter 7, “Introduction to
Bayesian Analysis Procedures,” for more details. The table is not displayed by default and can be requested
by specifying DIAGNOSTICS = HEIDEL.

Raftery-Lewis Diagnostics
The “Raftery-Lewis Diagnostics” table (ODS table name Raftery) lists the result of the Raftery-Lewis
diagnostic test. See the section “Raftery and Lewis Diagnostics” on page 147 in Chapter 7, “Introduction to
Bayesian Analysis Procedures,” for more details. The table is not displayed by default and can be requested
by specifying DIAGNOSTICS = RAFTERY.

Summary Statistics for Prediction
The “Posterior Summaries for Prediction” table (ODS table name PredSummaries) contains basic statistics
for each prediction. The table lists the number of posterior samples, the posterior mean and standard deviation
estimates, and the percentile estimates. This table is displayed by default if any PREDDIST statement is used
in the program.

Interval Statistics for Prediction
The “Posterior Intervals for Prediction” table (ODS table name PredIntervals) contains the equal-tail and
highest posterior density (HPD) interval estimates for each prediction. The default ˛ value is 0.05, and
you can change it to other levels by using the STATISTICS option in a PREDDIST statement, or the
STATISTICS= option in the PROC MCMC statement if the option is not specified in a statement. This table
is displayed by default if any PREDDIST statement is used in the program.

Optimization Related ODS Tables

PROC MCMC can perform optimization on the joint posterior distribution. This is requested by the
PROPCOV= option. The most commonly used optimization method is the quasi-Newton method: PROP-
COV=QUANEW(ITPRINT). The ITPRINT option displays the ODS tables, listed as follows:

Input Options
The “Input Options” table (ODS table name InputOptions) lists optimization options used in the procedure.
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Optimization Start
The “Optimization Start” table (ODS table name ProblemDescription) shows the initial state of the optimiza-
tion.

Iteration History
The “Iteration History” table (ODS table name IterHist) shows iteration history of the optimization.

Optimization Results
The “Optimization Results” table (ODS table name IterStop) shows the results of the optimization, includes
information about the number of function calls, and the optimized objective function, which is the joint log
posterior density.

Convergence Status
The “Convergence Status” table (ODS table name ConvergenceStatus) shows whether the convergence
criterion is satisfied.

Parameters Value After Optimization Table
The “Parameter Values After Optimization” table (ODS table name OptiEstimates) lists the parameter values
that maximize the joint log posterior. These are the maximum a posteriori point estimates, and they are used
to start the Markov chain.

Covariance Matrix After Optimization Table
The “Proposal Covariance” table (ODS table name OptiCov) lists covariance matrices for each block
parameter by using quadrature approximation at the posterior mode. These covariance matrices are used in
the proposal distribution.

ODS Table Names
PROC MCMC assigns a name to each table it creates. You can use these names to refer to the table when you
use the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in
Table 61.48. For more information about ODS, see Chapter 21, “Statistical Graphics Using ODS.”

Table 61.48 ODS Tables Produced in PROC MCMC

ODS Table Name Description Statement or Option

AutoCorr Autocorrelation statistics for each pa-
rameter

DIAGNOSTICS=AUTOCORR

BurnInHistory History of burn-in phase sampling MCHISTORY=BRIEF | DETAILED
ConvergenceStatus Optimization convergence status PROPCOV=method(ITPRINT)
Corr Correlation matrix of the posterior

samples
STATS=CORR

Cov Covariance matrix of the posterior sam-
ples

STATS=COV

DIC Deviance information criterion DIC
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Table 61.48 (continued)

ODS Table Name Description Statement or Option

ESS Effective sample size for each parame-
ter

Default

MCSE Monte Carlo standard error for each
parameter

DIAGNOSTICS=MCSE

Geweke Geweke diagnostics for each parame-
ter

DIAGNOSTICS=GEWEKE

Heidelberger Heidelberger-Welch diagnostics for
each parameter

DIAGNOSTICS=HEIDEL

InputOptions Optimization input table PROPCOV=method(ITPRINT)
IterHist Optimization iteration history PROPCOV=method(ITPRINT)
IterStop Optimization results table PROPCOV=method(ITPRINT)
MissDataInfo Response variable, number of missing

observations, missing observation in-
dices, and sampling algorithm

Default with sampling of missing values

NObs Number of observations Default
OptiEstimates Parameter values after either optimiza-

tion
PROPCOV=method(ITPRINT)

OptiCov Covariance used in proposal distribu-
tion after optimization

PROPCOV=method(ITPRINT)

Parameters Summary of the PARMS, BLOCK-
ING, PRIOR, sampling method, and
initial value specification

Default

ParametersInit Parameter values after the tuning phase INIT=PINIT
PosteriorSample Posterior samples for each parameter (For ODS output data set only)
PostIntervals Equal-tail and HPD intervals for each

parameter
STATISTICS=INTERVAL

PostSumInt Basic posterior statistics for each pa-
rameter, including sample size, mean,
standard deviation, and HPD intervals

Default

PostSummaries Basic posterior statistics for each pa-
rameter, including sample size, mean,
standard deviation, and percentiles

STATISTICS=SUMMARY

PredIntervals Equal-tail and HPD intervals for each
prediction

Default with any PREDDIST statement

PredSummaries Basic posterior statistics for each pre-
diction

Default with any PREDDIST statement

ProblemDescription Optimization table PROPCOV=method(ITPRINT)
REObsInfo Random effect, subject values, number

of observations in each unique subject
value, and corresponding observation
indices

REOBSINFO
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Table 61.48 (continued)

ODS Table Name Description Statement or Option

REParameters Random effect, sampling method, sub-
ject variable, number of subjects,
unique values of the subject variable,
and prior distribution of the random
effect

Default with any RANDOM statement

Raftery Raftery-Lewis diagnostics for each pa-
rameter

DIAGNOSTICS=RAFTERY

SamplingHistory History of main phase sampling MCHISTORY=BRIEF | DETAILED
TuneCov Proposal covariance matrix (for contin-

uous parameters) after the tuning phase
INIT=PINIT

TuneP Proposal probability vector (for dis-
crete parameters) after the tuning
phase

INIT=PINIT and DISCRETE=GEO

TuningHistory History of proposal distribution tuning MCHISTORY=BRIEF | DETAILED

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

You can reference every graph produced through ODS Graphics with a name. The names of the graphs that
PROC MCMC generates are listed in Table 61.49.

Table 61.49 Graphs Produced by PROC MCMC

ODS Graph Name Plot Description Statement & Option

ADPanel Autocorrelation function
and density panel

PLOTS=(AUTOCORR DENSITY)

AutocorrPanel Autocorrelation function
panel

PLOTS=AUTOCORR

AutocorrPlot Autocorrelation function
plot

PLOTS(UNPACK)=AUTOCORR

DensityPanel Density panel PLOTS=DENSITY
DensityPlot Density plot PLOTS(UNPACK)=DENSITY
TAPanel Trace and autocorrelation

function panel
PLOTS=(TRACE AUTOCORR)
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Table 61.49 continued

ODS Graph Name Plot Description Statement & Option

TADPanel Trace, density, and autocor-
relation function panel

PLOTS=(TRACE AUTOCORR DENSITY)

TDPanel Trace and density panel PLOTS=(TRACE DENSITY)
TracePanel Trace panel PLOTS=TRACE
TracePlot Trace plot PLOTS(UNPACK)=TRACE

Examples: MCMC Procedure

Example 61.1: Simulating Samples From a Known Density
This example illustrates how you can obtain random samples from a known function. The target distributions
are the normal distribution (a standard distribution) and a mixture of the normal distributions (a nonstandard
distribution). For more information, see the sections “Standard Distributions” on page 4798 and “Specifying
a New Distribution” on page 4813). This example also shows how you can use PROC MCMC to estimate an
integral (area under a curve). Monte Carlo simulation is data-independent; hence, you do not need an input
data set from which to draw random samples from the desired distribution.

Sampling from a Normal Density

When you run a simulation without an input data set, the posterior distribution is the same as the prior
distribution. Hence, if you want to generate samples from a distribution, you declare the distribution in the
PRIOR statement and set the likelihood function to a constant. Although there is no contribution from any
data set variable to the likelihood calculation, you still must specify a data set and the MODEL statement
needs a distribution. You can input an empty data set and use the GENERAL function to provide a flat
likelihood. The following statements generate 10,000 samples from a standard normal distribution:

title 'Simulating Samples from a Normal Density';
data x;
run;

ods graphics on;
proc mcmc data=x outpost=simout seed=23 nmc=10000 diagnostics=none;

ods exclude nobs;
parm alpha 0;
prior alpha ~ normal(0, sd=1);
model general(0);

run;
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The ODS GRAPHICS ON statement enables ODS Graphics. The PROC MCMC statement specifies the
input and output data sets, a random number seed, and the size of the simulation sample. The STATISTICS=
option displays only the summary and interval statistics. The ODS EXCLUDE statement excludes the display
of the NObs table. PROC MCMC draws independent samples from the normal distribution directly (see
Output 61.1.1). Therefore, the simulation does not require any tuning, and PROC MCMC omits the default
burn-in phrase.

Output 61.1.1 Parameters Information

Simulating Samples from a Normal Density

The MCMC Procedure

Simulating Samples from a Normal Density

The MCMC Procedure

Parameters

Block Parameter
Sampling
Method

Initial
Value Prior Distribution

1 alpha Direct 0 normal(0, sd=1)

The summary statistics (Output 61.1.2) are what you would expect from a standard normal distribution.

Output 61.1.2 MCMC Summary and Interval Statistics from a Normal Target Distribution

Simulating Samples from a Normal Density

The MCMC Procedure

Simulating Samples from a Normal Density

The MCMC Procedure

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

alpha 10000 0.00195 0.9949 -1.9664 1.9302

The trace plot (Output 61.1.3) shows perfect mixing with no autocorrelation in the lag plot. This is expected
because these are independent draws.
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Output 61.1.3 Diagnostics Plots for ˛

You can overlay the estimated kernel density with the true density to visually compare the densities, as
displayed in Output 61.1.4. To create the kernel comparison plot, you first call PROC KDE (see Chapter 54,
“The KDE Procedure”) to obtain a kernel density estimate of the posterior density on alpha. Then you
evaluate a grid of alpha values on a normal density. The following statements evaluate kernel density and
compute the corresponding normal density:

proc kde data=simout;
ods exclude inputs controls;
univar alpha /out=sample;

run;

data den;
set sample;
alpha = value;
true = pdf('normal', alpha, 0, 1);
keep alpha density true;

run;
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Next you plot the two curves on top of each other by using PROC SGPLOT (see Chapter 21, “Statistical
Graphics Using ODS”) as follows:

proc sgplot data=den;
yaxis label="Density";
series y=density x=alpha / legendlabel = "MCMC Kernel";
series y=true x=alpha / legendlabel = "True Density";
discretelegend;

run;

Output 61.1.4 shows the result. You can see that the kernel estimate and the true density are very similar to
each other.

Output 61.1.4 Estimated Density versus the True Density

Density Visualization Macro

In programs that do not involve any data set variables, PROC MCMC samples directly from the (joint)
prior distributions of the parameters. The modification makes the sampling from a known distribution more
efficient and more precise. For example, you can write simple programs, such as the following macro, to
understand different aspects of a prior distribution of interest, such as its moments, intervals, shape, spread,
and so on:
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%macro density(dist=, seed=0);
%let savenote = %sysfunc(getoption(notes));
options nonotes;
title "&dist distribution.";
data _a;
run;

ods select densitypanel postsumint;
proc mcmc data=_a nmc=10000 diag=none nologdist

plots=density seed=&seed;
parms alpha;
prior alpha ~ &dist;
model general(0);

run;

proc datasets nolist;
delete _a;

run;
options &savenote;

%mend;

%density(dist=beta(4, 12), seed=1);

The macro %density creates an empty data set, invokes PROC MCMC, draws 10,000 samples from a beta(4,
12) distribution, displays summary and interval statistics, and generates a kernel density plot. Summary and
interval statistics from the beta distribution are displayed in Output 61.1.5.

Output 61.1.5 Beta Distribution Statistics

beta(4, 12) distribution.

The MCMC Procedure

beta(4, 12) distribution.

The MCMC Procedure

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

alpha 10000 0.2494 0.1039 0.0657 0.4590

The distribution is displayed in Output 61.1.6.
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Output 61.1.6 Density Plot

Calculation of Integrals

One advantage of MCMC methods is to estimate any integral under the curve of a target distribution. This
can be done fairly easily using the MCMC procedure. Suppose you are interested in estimating the following
cumulative probability:Z 1:3

˛D0

�.˛j0; 1/d˛

To estimate this integral, PROC MCMC draws samples from the distribution and counts the portion of the
simulated values that fall within the desired range of [0, 1.3]. This becomes a Monte Carlo estimate of the
integral. The following statements simulate samples from a standard normal distribution and estimate the
integral:

proc mcmc data=x outpost=simout seed=23 nmc=10000 nologdist
monitor=(int) diagnostics=none;
ods select postsumint;
parm alpha 0;
prior alpha ~ normal(0, sd=1);
int = (0 <= alpha <= 1.3);
model general(0);

run;

The ODS SELECT statement displays the posterior summary statistics table. The MONITOR= option outputs
analysis on the variable int (the integral estimate). The STATISTICS= option computes the summary statistics.
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The NOLOGDIST option omits the calculation of the log of the prior distribution at each iteration, shortening
the simulation time7. The INT assignment statement sets int to be 1 if the simulated alpha value falls between
0 and 1.3, and 0 otherwise. PROC MCMC supports the usage of the IF-ELSE logical control if you need to
account for more complex conditions. Output 61.1.7 displays the estimated integral value:

Output 61.1.7 Monte Carlo Integral from a Normal Distribution

beta(4, 12) distribution.

The MCMC Procedure

beta(4, 12) distribution.

The MCMC Procedure

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD

Interval

int 10000 0.4079 0.4915 0 1.0000

In this simulation, 4079 samples fall between 0 and 1.3, making the expected probability 0.4079. In this
example, you can verify the actual cumulative probability by calling the CDF function in the DATA step:

data _null_;
int = cdf("normal", 1.3, 0, 1) - cdf("normal", 0, 0, 1);
put int=;

run;

The value is 0.4032.

Sampling from a Mixture of Normal Densities

Suppose you are interested in generating samples from a three-component mixture of normal distributions,
with the density specified as follows:

p.˛/ D 0:3 � �.�3; � D 2/C 0:4 � �.2; � D 1/C 0:3 � �.10; � D 4/

You can either specify the distribution directly or use a latent variable approach to generate samples from the
normal mixture.

To specify the normal mixture density directly in PROC MCMC, you need to construct the function because
the normal mixture distribution is not one of the standard distributions that PROC MCMC supports. The
following statements generate random samples from the normal mixture density:

7In this example, the NOLOGDIST option saves only a fraction of the time. But in more complex simulation schemes that
involve a larger number of distributions and parameters, the time reduction could be significant.



4870 F Chapter 61: The MCMC Procedure

title 'Simulating Samples from a Mixture of Normal Densities';
data x;
run;

proc mcmc data=x outpost=simout seed=1234 nmc=30000;
ods select TADpanel;
parm alpha 0.3;
lp = logpdf('normalmix', alpha, 3, 0.3, 0.4, 0.3, -3, 2, 10, 2, 1, 4);
prior alpha ~ general(lp);
model general(0);

run;

The ODS SELECT statement displays the diagnostic plots. All other tables, such as the NObs tables, are
excluded. The PROC MCMC statement uses the input data set X, saves output to the Simout data set, sets a
random number seed, and draws 30,000 samples.

The LP assignment statement evaluates the log density of alpha at the mixture density, using the SAS function
LOGPDF. The number 3 after alpha in the LOGPDF function indicates that the density is a three-component
normal mixture. The following three numbers, 0.3, 0.4, and 0.3, are the weights in the mixture; –3, 2, and 10
are the means; 2, 1, and 4 are the standard deviations. The PRIOR statement assigns this log density function
to alpha as its prior. Note that the GENERAL function interprets the density on the log scale, and not the
original scale–you must use the LOGPDF function, not the PDF function. Output 61.1.8 displays the results.
The kernel density clearly shows three modes.

Output 61.1.8 Plots of Posterior Samples from a Mixture Normal Distribution
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Alternatively, the normal mixture distribution can also decomposed into a marginal distribution for the
component (call it Z) and a conditional model of the response variable Y given Z, as

z � categorical.p1; p2; : : : ; pK/

yjz � normal.�z; �2z /

where K is the total number of mixture components, z is the component indicator, and �z and �2z are the
model parameters for the zth component.

Starting with SAS/STAT 13.2, PROC MCMC supports a categorical distribution that can be used to model
the discrete random variable for components. You can use PRIOR statements to specify a normal mixture
distribution and generate samples accordingly:

proc mcmc data=x outpost=simout_m seed=1234 nmc=30000;
array p[3] (0.3 0.4 0.3);
array mu[3] (-3 2 10);
array sd[3] (2 1 4);
parm z alpha;
prior z ~ table(p);
prior alpha ~ normal(mu[z], sd=sd[z]);
model general(0);

run;

The ARRAY statements define one array p for the mixture weights, one array mu for the means of the normal
distributions, and one array sd for the corresponding standard deviations. The PRIOR statements specify
a categorical prior on the parameter z and a conditional normal prior on alpha. The mean and standard
deviation of the alpha parameter depend on the component indicator z. No output is created.

You can use the following set of statements, which are similar to the previous example, to overlay the
estimated kernel density with the true density. The comparison is shown in Output 61.1.9.

proc kde data=simout_m;
ods exclude inputs controls;
univar alpha /out=sample;

run;

data den;
set sample;
alpha = value;
true = pdf('normalmix', alpha, 3, 0.3, 0.4, 0.3, -3, 2, 10, 2, 1, 4);
keep alpha density true;

run;

proc sgplot data=den;
yaxis label="Density";
series y=density x=alpha /

legendlabel = "MCMC Kernel - Latent Variable Approach";
series y=true x=alpha / legendlabel = "True Density";
discretelegend;

run;
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Output 61.1.9 Estimated Density (Latent Variable Approach) versus the True Density

Example 61.2: Box-Cox Transformation
Box-Cox transformations (Box and Cox 1964) are often used to find a power transformation of a dependent
variable to ensure the normality assumption in a linear regression model. This example illustrates how you
can use PROC MCMC to estimate a Box-Cox transformation for a linear regression model. Two different
priors on the transformation parameter � are considered: a continuous prior and a discrete prior. You can
estimate the probability of � being 0 with a discrete prior but not with a continuous prior. The IF-ELSE
statements are demonstrated in the example.

Using a Continuous Prior on �

The following statements create a SAS data set with measurements of y (the response variable) and x (a
single dependent variable):

title 'Box-Cox Transformation, with a Continuous Prior on Lambda';
data boxcox;

input y x @@;
datalines;

10.0 3.0 72.6 8.3 59.7 8.1 20.1 4.8 90.1 9.8 1.1 0.9
78.2 8.5 87.4 9.0 9.5 3.4 0.1 1.4 0.1 1.1 42.5 5.1
57.0 7.5 9.9 1.9 0.5 1.0 121.1 9.9 37.5 5.9 49.5 6.7

... more lines ...
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2.6 1.8 58.6 7.9 81.2 8.1 37.2 6.9
;

The Box-Cox transformation of y takes on the form of:

y.�/ D

(
y��1
�

if � ¤ 0I
log.y/ if � D 0:

The transformed response y.�/ is assumed to be normally distributed:

yi .�/ � normal.ˇ0 C ˇ1xi ; �2/

The likelihood with respect to the original response yi is as follows:

p.yi j�; ˇ; �
2; xi / / �.yi jˇ0 C ˇ1xi ; �

2/ � J.�; yi /

where J.�; yi / is the Jacobian:

J.�; y/ D

�
y��1i if � ¤ 0I
1=yi if � D 0:

And on the log-scale, the Jacobian becomes:

log.J.�; y// D
�
.� � 1/ � log.yi / if � ¤ 0I
� log.yi / if � D 0:

There are four model parameters: �;ˇ D fˇ0; ˇ1g; and �2. You can considering using a flat prior on ˇ and
a gamma prior on �2.

To consider only power transformations (� ¤ 0), you can use a continuous prior (for example, a uniform
prior from –2 to 2) on �. One issue with using a continuous prior is that you cannot estimate the probability
of � D 0. To do so, you need to consider a discrete prior that places positive probability mass on the point 0.
See “Modeling � D 0” on page 4878.

The following statements fit a Box-Cox transformation model:

ods graphics on;
proc mcmc data=boxcox nmc=50000 propcov=quanew seed=12567

monitor=(lda);
ods select PostSumInt TADpanel;
parms beta0 0 beta1 0 lda 1 s2 1;

beginnodata;
prior beta: ~ general(0);
prior s2 ~ gamma(shape=3, scale=2);
prior lda ~ unif(-2,2);
sd = sqrt(s2);
endnodata;

ys = (y**lda-1)/lda;
mu = beta0+beta1*x;
ll = (lda-1)*log(y)+lpdfnorm(ys, mu, sd);
model general(ll);

run;
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The PROPCOV= option initializes the Markov chain at the posterior mode and uses the estimated inverse
Hessian matrix as the initial proposal covariance matrix. The MONITOR= option selects � as the variable to
report. The ODS SELECT statement displays the summary statistics table, the interval statistics table, and
the diagnostic plots.

The PARMS statement puts all four parameters, ˇ0, ˇ1, �, and �2, in a single block and assigns initial values
to each of them. Three PRIOR statements specify previously stated prior distributions for these parameters.
The assignment to sd transforms a variance to a standard deviation. It is better to place the transformation
inside the BEGINNODATA and ENDNODATA statements to save computational time.

The assignment to the symbol ys evaluates the Box-Cox transformation of y, where mu is the regression
mean and ll is the log likelihood of the transformed variable ys. Note that the log of the Jacobian term is
included in the calculation of ll.

Summary statistics and interval statistics for lda are listed in Output 61.2.1.

Output 61.2.1 Box-Cox Transformation

Box-Cox Transformation, with a Continuous Prior on Lambda

The MCMC Procedure

Box-Cox Transformation, with a Continuous Prior on Lambda

The MCMC Procedure

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

lda 50000 0.4703 0.0287 0.4156 0.5284

The posterior mean of � is 0.47, with a 95% equal-tail interval of Œ0:42; 0:53� and a similar HPD interval.
The preferred power transformation would be 0.5 (rounding � up to the square root transformation).

Output 61.2.2 shows diagnostics plots for lda. The chain appears to converge, and you can proceed to make
inferences. The density plot shows that the posterior density is relatively symmetric around its mean estimate.
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Output 61.2.2 Diagnostic Plots for �

To verify the results, you can use PROC TRANSREG (see Chapter 104, “The TRANSREG Procedure”) to
find the estimate of �.

proc transreg data=boxcox details pbo;
ods output boxcox = bc;
model boxcox(y / convenient lambda=-2 to 2 by 0.01) = identity(x);
output out=trans;

run;

Output from PROC TRANSREG is shown in Output 61.2.5 and Output 61.2.4. PROC TRANSREG produces
a similar point estimate of � D 0:46, and the 95% confidence interval is shown in Output 61.2.5.
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Output 61.2.3 Box-Cox Transformation Using PROC TRANSREG

Output 61.2.4 Estimates Reported by PROC TRANSREG

Box-Cox Transformation, with a Continuous Prior on Lambda

The TRANSREG Procedure

Box-Cox Transformation, with a Continuous Prior on Lambda

The TRANSREG Procedure

Model Statement Specification Details

Type DF Variable Description Value

Dep 1 BoxCox(y) Lambda Used 0.5

Lambda 0.46

Log Likelihood -167.0

Conv. Lambda 0.5

Conv. Lambda LL -168.3

CI Limit -169.0

Alpha 0.05

Options Convenient Lambda Used

Ind 1 Identity(x) DF 1
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The ODS data set Bc contains the 95% confidence interval estimates produced by PROC TRANSREG. This
ODS table is rather large, and you want to see only the relevant portion. The following statements generate
the part of the table that is important and display Output 61.2.5:

proc print noobs label data=bc(drop=rmse);
title2 'Confidence Interval';
where ci ne ' ' or abs(lambda - round(lambda, 0.5)) < 1e-6;
label convenient = '00'x ci = '00'x;

run;

The estimated 90% confidence interval is Œ0:41; 0:51�, which is very close to the reported Bayesian credible
intervals. The resemblance of the intervals is probably due to the noninformative prior that you used in this
analysis.

Output 61.2.5 Estimated Confidence Interval on �

Box-Cox Transformation, with a Continuous Prior on Lambda
Confidence Interval

Box-Cox Transformation, with a Continuous Prior on Lambda
Confidence Interval

Dependent Lambda R-Square
Log

Likelihood

BoxCox(y) -2.00 0.14 -1030.56

BoxCox(y) -1.50 0.17 -810.50

BoxCox(y) -1.00 0.22 -602.53

BoxCox(y) -0.50 0.39 -415.56

BoxCox(y) 0.00 0.78 -257.92

BoxCox(y) 0.41 0.95 -168.40 *

BoxCox(y) 0.42 0.95 -167.86 *

BoxCox(y) 0.43 0.95 -167.46 *

BoxCox(y) 0.44 0.95 -167.19 *

BoxCox(y) 0.45 0.95 -167.05 *

BoxCox(y) 0.46 0.95 -167.04 <

BoxCox(y) 0.47 0.95 -167.16 *

BoxCox(y) 0.48 0.95 -167.41 *

BoxCox(y) 0.49 0.95 -167.79 *

BoxCox(y) 0.50 + 0.95 -168.28 *

BoxCox(y) 0.51 0.95 -168.89 *

BoxCox(y) 1.00 0.89 -253.09

BoxCox(y) 1.50 0.79 -345.35

BoxCox(y) 2.00 0.70 -435.01
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Modeling � D 0

With a continuous prior on �, you can get only a continuous posterior distribution, and this makes the
probability of Pr.� D 0jdata/ equal to 0 by definition. To consider � D 0 as a viable solution to the Box-Cox
transformation, you need to use a discrete prior that places some probability mass on the point 0 and allows
for a meaningful posterior estimate of Pr.� D 0jdata/.

This example uses a simulation study where the data are generated from an exponential likelihood. The
simulation implies that the correct transformation should be the logarithm and � should be 0. Consider the
following exponential model:

y D exp.x C �/;

where � � normal.0; 1/. The transformed data can be fitted with a linear model:

log.y/ D x C �

The following statements generate a SAS data set with a gridded x and corresponding y:

title 'Box-Cox Transformation, Modeling Lambda = 0';
data boxcox;

do x = 1 to 8 by 0.025;
ly = x + normal(7);
y = exp(ly);
output;

end;
run;

The log-likelihood function, after taking the Jacobian into consideration, is as follows:

logp.yi j�; xi / D

8̂<̂
: .� � 1/ log.yi / � 1

2

�
log �2 C ..y�i �1/=��xi/

2

�2

�
C C1 if � ¤ 0I

� log.yi / � 1
2

�
log �2 C .log.yi /�xi /2

�2

�
C C2 if � D 0:

where C1 and C2 are two constants.

You can use the function DGENERAL to place a discrete prior on �. The function is similar to the function
GENERAL, except that it indicates a discrete distribution. For example, you can specify a discrete uniform
prior from –2 to 2 using

prior lda ~ dgeneral(1, lower=-2, upper=2);

This places equal probability mass on five points, –2, –1, 0, 1, and 2. This prior might not work well here
because the grid is too coarse. To consider smaller values of �, you can sample a parameter that takes a
wider range of integer values and transform it back to the � space. For example, set alpha as your model
parameter and give it a discrete uniform prior from –200 to 200. Then define � as alpha/100 so � can take
values between –2 and 2 but on a finer grid.
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The following statements fit a Box-Cox transformation by using a discrete prior on �:

proc mcmc data=boxcox outpost=simout nmc=50000 seed=12567
monitor=(lda);

ods select PostSumInt;
parms s2 1 alpha 10;
beginnodata;
prior s2 ~ gamma(shape=3, scale=2);
if alpha=0 then lp = log(2);

else lp = log(1);
prior alpha ~ dgeneral(lp, lower=-200, upper=200);
lda = alpha * 0.01;
sd = sqrt(s2);
endnodata;
if alpha=0 then

ll = -ly+lpdfnorm(ly, x, sd);
else do;

ys = (y**lda - 1)/lda;
ll = (lda-1)*ly+lpdfnorm(ys, x, sd);

end;
model general(ll);

run;

There are two parameters, s2 and alpha, in the model. They are placed in a single PARMS statement so that
they are sampled in the same block.

The parameter s2 takes a gamma distribution, and alpha takes a discrete prior. The IF-ELSE statements
state that alpha takes twice as much prior density when it is 0 than otherwise. Note that on the original
scale, Pr.alpha D 0/ D 2 � Pr.alpha ¤ 0/. Translating that to the log scale, the densities become log.2/ and
log.1/, respectively. The LDA assignment statement transforms alpha to the parameter of interest: lda takes
values between –2 and 2. You can model lda on a even smaller scale by dividing alpha by a larger constant.
However, an increment of 0.01 in the Box-Cox transformation is usually sufficient. The SD assignment
statement calculates the square root of the variance term.

The log-likelihood function uses another set of IF-ELSE statements, separating the case of � D 0 from the
others. The formulas are stated previously. The output of the program is shown in Output 61.2.6.

Output 61.2.6 Box-Cox Transformation

Box-Cox Transformation, Modeling Lambda = 0

The MCMC Procedure

Box-Cox Transformation, Modeling Lambda = 0

The MCMC Procedure

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD

Interval

lda 50000 -0.00001 0.00199 0 0

From the summary statistics table, you see that the point estimate for � is 0 and both of the 95% equal-tail
and HPD credible intervals are 0. This strongly suggests that � D 0 is the best estimate for this problem. In
addition, you can also count the frequency of � among posterior samples to get a more precise estimate on
the posterior probability of � being 0.
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The following statements use PROC FREQ to produce Output 61.2.7 and Output 61.2.8:

proc freq data=simout;
ods select onewayfreqs freqplot;
tables lda /nocum plot=freqplot(scale=percent);

run;
ods graphics off;

Output 61.2.7 shows the frequency count table. An estimate of Pr.� D 0jdata/ is 96%. The conclusion is that
the log transformation should be the appropriate transformation used here, which agrees with the simulation
setup. Output 61.2.8 shows the histogram of �.

Output 61.2.7 Frequency Counts of �

Box-Cox Transformation, Modeling Lambda = 0

The FREQ Procedure

Box-Cox Transformation, Modeling Lambda = 0

The FREQ Procedure

lda Frequency Percent

-0.0100 1011 2.02

0 48029 96.06

0.0100 960 1.92

Output 61.2.8 Histogram of �
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Example 61.3: Logistic Regression Model with a Diffuse Prior
This example illustrates how to fit a logistic regression model with a diffuse prior in PROC MCMC. You can
also use the BAYES statement in PROC GENMOD. See Chapter 43, “The GENMOD Procedure.”

The following statements create a SAS data set with measurements of the number of deaths, y, among n
beetles that have been exposed to an environmental contaminant x:

title 'Logistic Regression Model with a Diffuse Prior';
data beetles;

input n y x @@;
datalines;

6 0 25.7 8 2 35.9 5 2 32.9 7 7 50.4 6 0 28.3
7 2 32.3 5 1 33.2 8 3 40.9 6 0 36.5 6 1 36.5
6 6 49.6 6 3 39.8 6 4 43.6 6 1 34.1 7 1 37.4
8 2 35.2 6 6 51.3 5 3 42.5 7 0 31.3 3 2 40.6
;

You can model the data points yi with a binomial distribution,

yi jpi � binomial.ni ; pi /

where pi is the success probability and links to the regression covariate xi through a logit transformation:

logit.pi / D log
�

pi

1 � pi

�
D ˛ C ˇxi

The priors on ˛ and ˇ are both diffuse normal:

˛ � normal.0; var D 10000/

ˇ � normal.0; var D 10000/

These statements fit a logistic regression with PROC MCMC:

ods graphics on;
proc mcmc data=beetles ntu=1000 nmc=20000 propcov=quanew

diag=(mcse ess) outpost=beetleout seed=246810;
ods select PostSumInt mcse ess TADpanel;
parms (alpha beta) 0;
prior alpha beta ~ normal(0, var = 10000);
p = logistic(alpha + beta*x);
model y ~ binomial(n,p);

run;

The key statement in the program is the assignment to p that calculates the probability of death. The SAS
function LOGISTIC does the proper transformation. The MODEL statement specifies that the response
variable, y, is binomially distributed with parameters n (from the input data set) and p. The summary statistics
table, interval statistics table, the Monte Carlo standard error table, and the effective sample sizes table are
shown in Output 61.3.1.
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Output 61.3.1 MCMC Results

Logistic Regression Model with a Diffuse Prior

The MCMC Procedure

Logistic Regression Model with a Diffuse Prior

The MCMC Procedure

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

alpha 20000 -11.7689 2.0942 -15.9412 -7.7491

beta 20000 0.2919 0.0541 0.1901 0.4029

Logistic Regression Model with a Diffuse Prior

The MCMC Procedure

Logistic Regression Model with a Diffuse Prior

The MCMC Procedure

Monte Carlo Standard Errors

Parameter MCSE
Standard
Deviation MCSE/SD

alpha 0.0418 2.0942 0.0200

beta 0.00109 0.0541 0.0201

Effective Sample Sizes

Parameter ESS
Autocorrelation

Time Efficiency

alpha 2507.0 7.9778 0.1253

beta 2478.5 8.0694 0.1239

The summary statistics table shows that the sample mean of the output chain for the parameter alpha is
–11.77. This is an estimate of the mean of the marginal posterior distribution for the intercept parameter
alpha. The estimated posterior standard deviation for alpha is 2.09. The two 95% credible intervals for
alpha are both negative, which indicates with very high probability that the intercept term is negative. On the
other hand, you observe a positive effect on the regression coefficient beta. Exposure to the environment
contaminant increases the probability of death.

The Monte Carlo standard errors of each parameter are significantly small relative to the posterior standard
deviations. A small MCSE/SD ratio indicates that the Markov chain has stabilized and the mean estimates do
not vary much over time. Note that the precision in the parameter estimates increases with the square of the
MCMC sample size, so if you want to double the precision, you must quadruple the MCMC sample size.

MCMC chains do not produce independent samples. Each sample point depends on the point before it. In this
case, the correlation time estimate, read from the effective sample sizes table, is roughly 8. This means that it
takes four observations from the MCMC output to make inferences about alpha with the same precision that
you would get from using an independent sample. The effective sample size of around 2500 reflects this loss
of efficiency. The coefficient beta has similar efficiency. You can often observe that some parameters have
significantly better mixing (better efficiency) than others, even in a single Markov chain run.
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Output 61.3.2 Plots for Parameters in the Logistic Regression Example
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Trace plots and autocorrelation plots of the posterior samples are shown in Output 61.3.2. Convergence looks
good in both parameters; there is good mixing in the trace plot and quick drop-off in the ACF plot.

One advantage of Bayesian methods is the ability to directly answer scientific questions. In this example, you
might want to find out the posterior probability that the environmental contaminant increases the probability
of death—that is, Pr.ˇ > 0jy/. This can be estimated using the following steps:

proc format;
value betafmt low-0 = 'beta <= 0' 0<-high = 'beta > 0';

run;

proc freq data=beetleout;
tables beta /nocum;
format beta betafmt.;

run;

Output 61.3.3 Frequency Counts

Logistic Regression Model with a Diffuse Prior

The FREQ Procedure

Logistic Regression Model with a Diffuse Prior

The FREQ Procedure

beta Frequency Percent

beta > 0 20000 100.00

All of the simulated values for ˇ are greater than zero, so the sample estimate of the posterior probability
that ˇ > 0 is 100%. The evidence overwhelmingly supports the hypothesis that increased levels of the
environmental contaminant increase the probability of death.

If you are interested in making inference based on any quantities that are transformations of the random
variables, you can either do it directly in PROC MCMC or by using the DATA step after you run the simulation.
Transformations sometimes can make parameter inference quite formidable using direct analytical methods,
but with simulated chains, it is easy to compute chains for any set of parameters. Suppose you are interested
in the lethal dose and want to estimate the level of the covariate x that corresponds to a probability of death,
p. Abbreviate this quantity as ldp. In other words, you want to solve the logit transformation with a fixed
value p. The lethal dose is as follows:

ldp D
log

�
p
1�p

�
� ˛

ˇ

You can obtain an estimate of any ldp by using the posterior mean estimates for ˛ and ˇ. For example, lp95,
which corresponds to p D 0:95, is calculated as follows:

lp95 D
log

�
0:95
1�0:95

�
C 11:77

0:29
D 50:79

where –11.77 and 0.29 are the posterior mean estimates of ˛ and ˇ, respectively, and 50.79 is the estimated
lethal dose that leads to a 95% death rate.
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While it is easy to obtain the point estimates, it is harder to estimate other posterior quantities, such as the
standard deviation directly. However, with PROC MCMC, you can trivially get estimates of any posterior
quantities of lp95. Consider the following program in PROC MCMC:

proc mcmc data=beetles ntu=1000 nmc=20000 propcov=quanew
outpost=beetleout seed=246810 plot=density
monitor=(pi30 ld05 ld50 ld95);

ods select PostSumInt densitypanel;
parms (alpha beta) 0;
begincnst;

c1 = log(0.05 / 0.95);
c2 = -c1;

endcnst;

beginnodata;
prior alpha beta ~ normal(0, var = 10000);
pi30 = logistic(alpha + beta*30);
ld05 = (c1 - alpha) / beta;
ld50 = - alpha / beta;
ld95 = (c2 - alpha) / beta;
endnodata;
pi = logistic(alpha + beta*x);
model y ~ binomial(n,pi);

run;
ods graphics off;

The program estimates four additional posterior quantities. The three lpd quantities, ld05, ld50, and ld95, are
the three levels of the covariate that kills 5%, 50%, and 95% of the population, respectively. The predicted
probability when the covariate x takes the value of 30 is pi30. The MONITOR= option selects the quantities
of interest. The PLOTS= option selects kernel density plots as the only ODS graphical output, excluding the
trace plot and autocorrelation plot.

Programming statements between the BEGINCNST and ENDCNST statements define two constants. These
statements are executed once at the beginning of the simulation. The programming statements between the
BEGINNODATA and ENDNODATA statements evaluate the quantities of interest. The symbols, pi30, ld05,
ld50, and ld95, are functions of the parameters alpha and beta only. Hence, they should not be processed
at the observation level and should be included in the BEGINNODATA and ENDNODATA statements.
Output 61.3.4 lists the posterior summary and Output 61.3.5 shows the density plots of these posterior
quantities.

Output 61.3.4 PROC MCMC Results

Logistic Regression Model with a Diffuse Prior

The MCMC Procedure

Logistic Regression Model with a Diffuse Prior

The MCMC Procedure

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

pi30 20000 0.0524 0.0252 0.0126 0.1022

ld05 20000 29.9310 1.8731 26.2170 33.2648

ld50 20000 40.3781 0.9371 38.5334 42.1808

ld95 20000 50.8251 2.5327 46.2349 55.7958
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The posterior mean estimate of lp95 is 50.82, which is close to the estimate of 50.79 by using the posterior
mean estimates of the parameters. With PROC MCMC, in addition to the mean estimate, you can get the
standard deviation, quantiles, and interval estimates at any level of significance.

From the density plots, you can see, for example, that the sample distribution for �30 is skewed to the right,
and almost all of your posterior belief concerning �30 is concentrated in the region between zero and 0.15.

Output 61.3.5 Density Plots of Quantities of Interest in the Logistic Regression Example

It is easy to use the DATA step to calculate these quantities of interest. The following DATA step uses the
simulated values of ˛ and ˇ to create simulated values from the posterior distributions of ld05, ld50, ld95,
and �30:

data transout;
set beetleout;
pi30 = logistic(alpha + beta*30);
ld05 = (log(0.05 / 0.95) - alpha) / beta;
ld50 = (log(0.50 / 0.50) - alpha) / beta;
ld95 = (log(0.95 / 0.05) - alpha) / beta;

run;

Subsequently, you can use SAS/INSIGHT, or the UNIVARIATE, CAPABILITY, or KDE procedures to
analyze the posterior sample. If you want to regenerate the default ODS graphs from PROC MCMC, see
“Regenerating Diagnostics Plots” on page 4828.
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Example 61.4: Logistic Regression Model with Jeffreys’ Prior
A controlled experiment was run to study the effect of the rate and volume of air inspired on a transient reflex
vasoconstriction in the skin of the fingers. Thirty-nine tests under various combinations of rate and volume of
air inspired were obtained (Finney 1947). The result of each test is whether or not vasoconstriction occurred.
Pregibon (1981) uses this set of data to illustrate the diagnostic measures he proposes for detecting influential
observations and to quantify their effects on various aspects of the maximum likelihood fit. The following
statements create the data set Vaso:

title 'Logistic Regression Model with Jeffreys Prior';
data vaso;

input vol rate resp @@;
lvol = log(vol);
lrate = log(rate);
ind = _n_;
cnst = 1;
datalines;

3.7 0.825 1 3.5 1.09 1 1.25 2.5 1 0.75 1.5 1
0.8 3.2 1 0.7 3.5 1 0.6 0.75 0 1.1 1.7 0
0.9 0.75 0 0.9 0.45 0 0.8 0.57 0 0.55 2.75 0
0.6 3.0 0 1.4 2.33 1 0.75 3.75 1 2.3 1.64 1
3.2 1.6 1 0.85 1.415 1 1.7 1.06 0 1.8 1.8 1
0.4 2.0 0 0.95 1.36 0 1.35 1.35 0 1.5 1.36 0
1.6 1.78 1 0.6 1.5 0 1.8 1.5 1 0.95 1.9 0
1.9 0.95 1 1.6 0.4 0 2.7 0.75 1 2.35 0.03 0
1.1 1.83 0 1.1 2.2 1 1.2 2.0 1 0.8 3.33 1
0.95 1.9 0 0.75 1.9 0 1.3 1.625 1
;

The variable resp represents the outcome of a test. The variable lvol represents the log of the volume of air
intake, and the variable lrate represents the log of the rate of air intake. You can model the data by using
logistic regression. You can model the response with a binary likelihood:

respi � binary.pi /

with

pi D
1

1C exp.�.ˇ0 C ˇ1lvoli C ˇ2lratei //

Let X be the design matrix in the regression. Jeffreys’ prior for this model is

p.ˇ/ / jX0MXj1=2

where M is a 39 by 39 matrix with off-diagonal elements being 0 and diagonal elements being pi .1 � pi /.
For details on Jeffreys’ prior, see “Jeffreys’ Prior” on page 127 in Chapter 7, “Introduction to Bayesian
Analysis Procedures.” You can use a number of matrix functions, such as the determinant function, in PROC
MCMC to construct Jeffreys’ prior. The following statements illustrate how to fit a logistic regression with
Jeffreys’ prior:
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%let n = 39;
proc mcmc data=vaso nmc=10000 outpost=mcmcout seed=17;

ods select PostSumInt;

array beta[3] beta0 beta1 beta2;
array m[&n, &n];
array x[1] / nosymbols;
array xt[3, &n];
array xtm[3, &n];
array xmx[3, 3];
array p[&n];

parms beta0 1 beta1 1 beta2 1;

begincnst;
if (ind eq 1) then do;

rc = read_array("vaso", x, "cnst", "lvol", "lrate");
call transpose(x, xt);
call zeromatrix(m);

end;
endcnst;

beginnodata;
call mult(x, beta, p); /* p = x * beta */
do i = 1 to &n;

p[i] = 1 / (1 + exp(-p[i])); /* p[i] = 1/(1+exp(-x*beta)) */
m[i,i] = p[i] * (1-p[i]);

end;
call mult (xt, m, xtm); /* xtm = xt * m */
call mult (xtm, x, xmx); /* xmx = xtm * x */
call det (xmx, lp); /* lp = det(xmx) */
lp = 0.5 * log(lp); /* lp = -0.5 * log(lp) */
prior beta: ~ general(lp);
endnodata;

model resp ~ bern(p[ind]);
run;

The first ARRAY statement defines an array beta with three elements: beta0, beta1, and beta2. The
subsequent statements define arrays that are used in the construction of Jeffreys’ prior. These include m (the
M matrix), x (the design matrix), xt (the transpose of x), and some additional work spaces.

The explanatory variables lvol and lrate are saved in the array x in the BEGINCNST and ENDCNST
statements. See “BEGINCNST/ENDCNST Statement” on page 4763 for details. After all the variables
are read into x, you transpose the x matrix and store it to xt. The ZEROMATRIX function call assigns all
elements in matrix m the value zero. To avoid redundant calculation, it is best to perform these calculations
as the last observation of the data set is processed—that is, when ind is 39.



Example 61.4: Logistic Regression Model with Jeffreys’ Prior F 4889

You calculate Jeffreys’ prior in the BEGINNODATA and ENDNODATA statements. The probability vector p
is the product of the design matrix x and parameter vector beta. The diagonal elements in the matrix m are
pi .1� pi /. The expression lp is the logarithm of Jeffreys’ prior. The PRIOR statement assigns lp as the prior
for the ˇ regression coefficients. The MODEL statement assigns a binary likelihood to resp, with probability
p[ind]. The p array is calculated earlier using the matrix function MULT. You use the ind variable to pick out
the right probability value for each resp.

Posterior summary statistics are displayed in Output 61.4.1.

Output 61.4.1 PROC MCMC Results, Jeffreys’ prior

Logistic Regression Model with Jeffreys Prior

The MCMC Procedure

Logistic Regression Model with Jeffreys Prior

The MCMC Procedure

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

beta0 10000 -2.9587 1.3258 -5.5936 -0.6027

beta1 10000 5.2905 1.8193 1.8590 8.7222

beta2 10000 4.6889 1.8189 1.3611 8.2490

You can also use PROC GENMOD to fit the same model by using the following statements:

proc genmod data=vaso descending;
ods select PostSummaries PostIntervals;
model resp = lvol lrate / d=bin link=logit;
bayes seed=17 coeffprior=jeffreys nmc=20000 thin=2;

run;

The MODEL statement indicates that resp is the response variable and lvol and lrate are the covariates. The
options in the MODEL statement specify a binary likelihood and a logit link function. The BAYES statement
requests Bayesian capability. The SEED=, NMC=, and THIN= arguments work in the same way as in PROC
MCMC. The COEFFPRIOR=JEFFREYS option requests Jeffreys’ prior in this analysis.

The PROC GENMOD statements produce Output 61.4.2, with estimates very similar to those reported in
Output 61.4.1. Note that you should not expect to see identical output from PROC GENMOD and PROC
MCMC, even with the simulation setup and identical random number seed. The two procedures use different
sampling algorithms. PROC GENMOD uses the adaptive rejection metropolis algorithm (ARMS) (Gilks and
Wild 1992; Gilks 2003) while PROC MCMC uses a random walk Metropolis algorithm. The asymptotic
answers, which means that you let both procedures run an very long time, would be the same as they both
generate samples from the same posterior distribution.
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Output 61.4.2 PROC GENMOD Results

Logistic Regression Model with Jeffreys Prior

The GENMOD Procedure

Bayesian Analysis

Logistic Regression Model with Jeffreys Prior

The GENMOD Procedure

Bayesian Analysis

Posterior Summaries

Percentiles

Parameter N Mean
Standard
Deviation 25% 50% 75%

Intercept 10000 -2.8773 1.3213 -3.6821 -2.7326 -1.9097

lvol 10000 5.2059 1.8707 3.8535 4.9574 6.3337

lrate 10000 4.5525 1.8140 3.2281 4.3722 5.6643

Posterior Intervals

Parameter Alpha
Equal-Tail

Interval HPD Interval

Intercept 0.050 -5.7447 -0.6877 -5.4593 -0.5488

lvol 0.050 2.2066 9.4415 2.0729 9.2343

lrate 0.050 1.5906 8.5272 1.3351 8.1152

Example 61.5: Poisson Regression
You can use the Poisson distribution to model the distribution of cell counts in a multiway contingency
table. Aitkin et al. (1989) have used this method to model insurance claims data. Suppose the following
hypothetical insurance claims data are classified by two factors: age group (with two levels) and car type
(with three levels). The following statements create the data set:

title 'Poisson Regression';
data insure;

input n c car $ age;
ln = log(n);
datalines;
500 42 small 0
1200 37 medium 0
100 1 large 0
400 101 small 1
500 73 medium 1
300 14 large 1

;

proc transreg data=insure design;
model class(car / zero=last);
id n c age ln;
output out=input_insure(drop=_: Int:);
run;
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The variable n represents the number of insurance policy holders and the variable c represents the number of
insurance claims. The variable car is the type of car involved (classified into three groups), and it is coded
into two levels. The variable age is the age group of a policy holder (classified into two groups).

Assume that the number of claims c has a Poisson probability distribution and that its mean, �i , is related to
the factors car and age for observation i by

log.�i / D log.ni /C x0ˇ
D log.ni /C ˇ0 C

cari .1/ˇ1 C cari .2/ˇ2 C cari .3/ˇ3 C

agei .1/ˇ4 C agei .2/ˇ5

The indicator variables cari .j / is associated with the jth level of the variable car for observation i in the
following way:

cari .j / D
�
1 if car D j
0 if car ¤ j

A similar coding applies to age. The ˇ’s are parameters. The logarithm of the variable n is used as an
offset—that is, a regression variable with a constant coefficient of 1 for each observation. Having the offset
constant in the model is equivalent to fitting an expanded data set with 3000 observations, each with response
variable y observed on an individual level. The log link relates the mean and the factors car and age.

The following statements run PROC MCMC:

proc mcmc data=input_insure outpost=insureout nmc=5000 propcov=quanew
maxtune=0 seed=7;

ods select PostSumInt;
array data[4] 1 &_trgind age;
array beta[4] alpha beta_car1 beta_car2 beta_age;
parms alpha beta:;
prior alpha beta: ~ normal(0, prec = 1e-6);
call mult(data, beta, mu);
model c ~ poisson(exp(mu+ln));

run;

The analysis uses a relatively flat prior on all the regression coefficients, with mean at 0 and precision at 10�6.
The option MAXTUNE=0 skips the tuning phase because the optimization routine (PROPCOV=QUANEW)
provides good initial values and proposal covariance matrix.

There are four parameters in the model: alpha is the intercept; beta_car1 and beta_car2 are coefficients for
the CLASS variable car, which has three levels; and beta_age is the coefficient for age. The symbol mu
connects the regression model and the Poisson mean by using the log link. The MODEL statement specifies
a Poisson likelihood for the response variable c.
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Posterior summary and interval statistics are shown in Output 61.5.1.

Output 61.5.1 MCMC Results

Poisson Regression

The MCMC Procedure

Poisson Regression

The MCMC Procedure

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

alpha 5000 -2.6403 0.1344 -2.9133 -2.3831

beta_car1 5000 -1.8335 0.2917 -2.4692 -1.3336

beta_car2 5000 -0.6931 0.1255 -0.9485 -0.4589

beta_age 5000 1.3151 0.1386 1.0387 1.5812

To fit the same model by using PROC GENMOD, you can do the following. Note that the default normal
prior on the coefficients ˇ is N.0; prec D 1e � 6/, the same as used in the PROC MCMC. The following
statements run PROC GENMOD and create Output 61.5.2:

proc genmod data=insure;
ods select PostSummaries PostIntervals;
class car age(descending);
model c = car age / dist=poisson link=log offset=ln;
bayes seed=17 nmc=5000 coeffprior=normal;

run;

To compare, posterior summary and interval statistics from PROC GENMOD are reported in Output 61.5.2,
and they are very similar to PROC MCMC results in Output 61.5.1.

Output 61.5.2 PROC GENMOD Results

Poisson Regression

The GENMOD Procedure

Bayesian Analysis

Poisson Regression

The GENMOD Procedure

Bayesian Analysis

Posterior Summaries

Percentiles

Parameter N Mean
Standard
Deviation 25% 50% 75%

Intercept 5000 -2.6424 0.1336 -2.7334 -2.6391 -2.5547

carlarge 5000 -1.8040 0.2764 -1.9859 -1.7929 -1.6101

carmedium 5000 -0.6908 0.1311 -0.7797 -0.6898 -0.6044

age1 5000 1.3207 0.1384 1.2264 1.3209 1.4140

Posterior Intervals

Parameter Alpha
Equal-Tail

Interval HPD Interval

Intercept 0.050 -2.9154 -2.3893 -2.8997 -2.3850

carlarge 0.050 -2.3668 -1.2891 -2.2992 -1.2378

carmedium 0.050 -0.9437 -0.4231 -0.9434 -0.4230

age1 0.050 1.0455 1.5871 1.0266 1.5629
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Note that the descending option in the CLASS statement reverses the sort order of the CLASS variable age
so that the results agree with PROC MCMC. If this option is not used, the estimate for age has a reversed
sign as compared to Output 61.5.2.

Example 61.6: Nonlinear Poisson Regression Models
This example illustrates how to fit a nonlinear Poisson regression with PROC MCMC. In addition, it shows
how you can improve the mixing of the Markov chain by selecting a different proposal distribution or by
sampling on the transformed scale of a parameter. This example shows how to analyze count data for calls to
a technical support help line in the weeks immediately following a product release. This information could
be used to decide upon the allocation of technical support resources for new products. You can model the
number of daily calls as a Poisson random variable, with the average number of calls modeled as a nonlinear
function of the number of weeks that have elapsed since the product’s release. The data are input into a SAS
data set as follows:

title 'Nonlinear Poisson Regression';
data calls;

input weeks calls @@;
datalines;

1 0 1 2 2 2 2 1 3 1 3 3
4 5 4 8 5 5 5 9 6 17 6 9
7 24 7 16 8 23 8 27
;

During the first several weeks after a new product is released, the number of questions that technical support
receives concerning the product increases in a sigmoidal fashion. The expression for the mean value in the
classic Poisson regression involves the log link. There is some theoretical justification for this link, but with
MCMC methodologies, you are not constrained to exploring only models that are computationally convenient.
The number of calls to technical support tapers off after the initial release, so in this example you can use a
logistic-type function to model the mean number of calls received weekly for the time period immediately
following the initial release. The mean function �.t/ is modeled as follows:

�i D


1C exp Œ�.˛ C ˇti /�

The likelihood for every observation callsi is

callsi � Poisson .�i /

Past experience with technical support data for similar products suggests the following prior distributions:

 � gamma.shape D 3:5; scale D 12/

˛ � normal.�5; sd D 0:5/

ˇ � normal.0:75; sd D 0:5/
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The following PROC MCMC statements fit this model:

ods graphics on;
proc mcmc data=calls outpost=callout seed=53197 ntu=1000 nmc=20000

propcov=quanew stats=none diag=ess;
ods select TADpanel ess;
parms alpha -4 beta 1 gamma 2;
prior gamma ~ gamma(3.5, scale=12);
prior alpha ~ normal(-5, sd=0.25);
prior beta ~ normal(0.75, sd=0.5);
lambda = gamma*logistic(alpha+beta*weeks);
model calls ~ poisson(lambda);

run;

The one PARMS statement defines a block of all parameters and sets their initial values individually. The
PRIOR statements specify the informative prior distributions for the three parameters. The assignment
statement defines �, the mean number of calls. Instead of using the SAS function LOGISTIC, you can use
the following statement to calculate � and get the same result:

lambda = gamma / (1 + exp(-(alpha+beta*weeks)));

Mixing is not particularly good with this run of PROC MCMC. The ODS SELECT statement displays the
diagnostic graphs and effective sample sizes (ESS) calculation while excluding all other output. The graphical
output is shown in Output 61.6.1, and the ESS of each parameters are all relatively low (Output 61.6.2).

Output 61.6.1 Plots for Parameters
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Output 61.6.1 continued
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Output 61.6.2 Effective Sample Sizes

Nonlinear Poisson Regression

The MCMC Procedure

Nonlinear Poisson Regression

The MCMC Procedure

Effective Sample Sizes

Parameter ESS
Autocorrelation

Time Efficiency

alpha 897.4 22.2870 0.0449

beta 231.6 86.3540 0.0116

gamma 162.9 122.8 0.0081

Often a simple scatter plot of the posterior samples can reveal a potential cause of the bad mixing. You can
use PROC SGSCATTER to generate pairwise scatter plots of the three model parameters. The following
statements generate Output 61.6.3:

proc sgscatter data=callout;
matrix alpha beta gamma;

run;

Output 61.6.3 Pairwise Scatter Plots of the Parameters
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The nonlinearity in parameters beta and gamma stands out immediately. This explains why a random walk
Metropolis with normal proposal has a difficult time exploring the joint distribution efficiently—the algorithm
works best when the target distribution is unimodal and symmetric (normal-like). When there is nonlinearity
in the parameters, it is impossible to find a single proposal scale parameter that optimally adapts to different
regions of the joint parameter space. As a result, the Markov chain can be inefficient in traversing some parts
of the distribution. This is evident in examining the trace plot of the gamma parameter. You see that the
Markov chain sometimes gets stuck in the far-right tail and does not travel back to the high-density area
quickly. This effect can be seen around the simulations 8,000 and 18,000 in Output 61.6.1.

Reparameterization can often improve the mixing of the Markov chain. Note that the parameter gamma has
a positive support and that the posterior distribution is right-skewed. This suggests that the chain might mix
more rapidly if you sample on the logarithm of the parameter gamma.

Let ı D log./, and reparameterize the mean function as follows:

�i D
exp.ı/

1C exp Œ�.˛ C ˇti /�

To obtain the same inference, you use an induced prior on delta based on the gamma prior on the gamma
parameter. This involves a transformation of variables, and you can obtain the following equivalency, where
j exp.ı/j is the Jacobian:

�./ D gamma. I a; scale D b/ D
1

ba�.a/
a�1 exp .�=b/

, �.ı/ D gamma. D exp.ı/I a; scale D b/ � jexp.ı/j

The distribution on ı simplifies to the following:

�.ı/ D
1

ba�.a/
exp .aı/ exp .� exp .ı/ =b/

PROC MCMC supports such a distribution on the logarithm transformation of a gamma random variable. It
is called the ExpGamma distribution.

In the original model, you specify a prior on gamma:

prior gamma ~ gamma(3.5, scale=12);

You can obtain the same inference by specifying an ExpGamma prior on delta and take an exponential
transformation to get back to gamma:

prior delta ~ egamma(3.5, scale=12);
gamma = exp(delta);
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The following statements produce Output 61.6.6 and Output 61.6.4:

proc mcmc data=calls outpost=tcallout seed=53197 ntu=1000 nmc=20000
propcov=quanew diag=ess plots=(trace) monitor=(alpha beta gamma);

ods select PostSumInt ESS TRACEpanel;
parms alpha -4 beta 1 delta 2;
prior alpha ~ normal(-5, sd=0.25);
prior beta ~ normal(0.75, sd=0.5);
prior delta ~ egamma(3.5, scale=12);
gamma = exp(delta);
lambda = gamma*logistic(alpha+beta*weeks);
model calls ~ poisson(lambda);

run;

The PARMS statement declares delta, instead of gamma, as a model parameter. The prior distribution of
delta is egamma, as opposed to the gamma distribution. The GAMMA assignment statement transforms delta
to gamma. The LAMBDA assignment statement calculates the mean for the Poisson by using the gamma
parameter. The MODEL statement specifies a Poisson likelihood for the calls response.

The trace plots in Output 61.6.4 show better mixing of the parameters, and the effective sample sizes in
Output 61.6.5 show substantial improvements over the original formulation of the model. The improvements
are especially obvious in beta and gamma, where the increase is fivefold to tenfold.

Output 61.6.4 Plots for Parameters, Sampling on the Log Scale of Gamma
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Output 61.6.5 Effective Sample Sizes, Sampling on the Log Scale of Gamma

Nonlinear Poisson Regression

The MCMC Procedure

Nonlinear Poisson Regression

The MCMC Procedure

Effective Sample Sizes

Parameter ESS
Autocorrelation

Time Efficiency

alpha 1338.4 14.9430 0.0669

beta 1254.9 15.9379 0.0627

gamma 1073.4 18.6320 0.0537

Output 61.6.6 shows the posterior summary and interval statistics of the nonlinear Poisson regression.

Output 61.6.6 MCMC Results, Sampling on the Log Scale of Gamma

Nonlinear Poisson Regression

The MCMC Procedure

Nonlinear Poisson Regression

The MCMC Procedure

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

alpha 20000 -4.9040 0.2234 -5.3217 -4.4544

beta 20000 0.6899 0.1154 0.4841 0.9169

gamma 20000 46.7199 19.4977 19.6588 86.2425

Note that the delta parameter has a more symmetric density than the skewed gamma parameter. A pairwise
scatter plot (Output 61.6.7) shows a more linear relationship between beta and delta. The Metropolis
algorithm always works better if the target distribution is approximately normal.

proc sgscatter data=tcallout;
matrix alpha beta delta;

run;
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Output 61.6.7 Pairwise Scatter Plots of the Transformed Parameters

If you are still unsatisfied with the slight nonlinearity in the parameters beta and delta, you can try another
transformation on beta. Normally you would not want to do a logarithm transformation on a parameter
that has support on the real axis, because you would risk taking the logarithm of negative values. However,
because all the beta samples are positive and the marginal posterior distribution is away from 0, you can try a
such a transformation.

Let � D log.ˇ/. The prior distribution on � is the following:

�.�/ D normal.ˇ D exp.�/I�; �2/ � jexp.�/j

You can specify the prior distribution in PROC MCMC by using a GENERAL function:

parms kappa;
lprior = logpdf("normal", exp(kappa), 0.75, 0.5) + kappa;
prior kappa ~ general(lp);
beta = exp(kappa);
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The PARMS statement declares the transformed parameter kappa, which will be sampled. The LPRIOR
assignment statement defines the logarithm of the prior distribution on kappa. The LOGPDF function is
used here to simplify the specification of the distribution. The PRIOR statement specifies the nonstandard
distribution as the prior on kappa. Finally, the BETA assignment statement transforms kappa back to the
beta parameter.

Applying logarithm transformations on both beta and gamma yields the best mixing. (The results are not
shown here, but you can find the code in the file mcmcex6.sas in the SAS Sample Library.) The transformed
parameters kappa and delta have much clearer linear correlation. However, the improvement over the case
where gamma alone is transformed is only marginally significant (50% increase in ESS).

This example illustrates that PROC MCMC can fit Bayesian nonlinear models just as easily as Bayesian
linear models. More importantly, transformations can sometimes improve the efficiency of the Markov chain,
and that is something to always keep in mind. Also see “Example 61.20: Using a Transformation to Improve
Mixing” on page 4971 for another example of how transformations can improve mixing of the Markov
chains.

Example 61.7: Logistic Regression Random-Effects Model
This example illustrates how you can use PROC MCMC to fit random-effects models. In the example
“Random-Effects Model” on page 4742 in “Getting Started: MCMC Procedure” on page 4732, you already
saw PROC MCMC fit a linear random-effects model. This example shows how to fit a logistic random-effects
model in PROC MCMC. Although you can use PROC MCMC to analyze random-effects models, you might
want to first consider some other SAS procedures. For example, you can use PROC MIXED (see Chapter 65,
“The MIXED Procedure”) to analyze linear mixed effects models, PROC NLMIXED (see Chapter 70, “The
NLMIXED Procedure”) for nonlinear mixed effects models, and PROC GLIMMIX (see Chapter 44, “The
GLIMMIX Procedure”) for generalized linear mixed effects models. In addition, a sampling-based Bayesian
analysis is available in the MIXED procedure through the PRIOR statement (see “PRIOR Statement” on
page 5268 in Chapter 65, “The MIXED Procedure,”).

The data are taken from Crowder (1978). The Seeds data set is a 2 � 2 factorial layout, with two types
of seeds, O. aegyptiaca 75 and O. aegyptiaca 73, and two root extracts, bean and cucumber. You observe
r, which is the number of germinated seeds, and n, which is the total number of seeds. The independent
variables are seed and extract.

The following statements create the data set:

title 'Logistic Regression Random-Effects Model';
data seeds;

input r n seed extract @@;
ind = _N_;
datalines;

10 39 0 0 23 62 0 0 23 81 0 0 26 51 0 0
17 39 0 0 5 6 0 1 53 74 0 1 55 72 0 1
32 51 0 1 46 79 0 1 10 13 0 1 8 16 1 0
10 30 1 0 8 28 1 0 23 45 1 0 0 4 1 0
3 12 1 1 22 41 1 1 15 30 1 1 32 51 1 1
3 7 1 1

;
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You can model each observation ri as having its own probability of success pi , and the likelihood is as
follows:

ri � binomial.ni ; pi /

You can use the logit link function to link the covariates of each observation, seed and extract, to the
probability of success,

�i D ˇ0 C ˇ1 � seedi C ˇ2 � extracti C ˇ3 � seedi � extracti
pi D logistic.�i C ıi /

where ıi is assumed to be an iid random effect with a normal prior:

ıi � normal.0; var D �2/

The four ˇ regression coefficients and the standard deviation �2 in the random effects are model parameters;
they are given noninformative priors as follows:

�.ˇ0; ˇ1; ˇ2; ˇ3/ / 1

�2 � igamma.shape D 0:01; scale D 0:01/

Another way of expressing the same model is as

pi D logistic.ıi /

where

ıi � normal.ˇ0 C ˇ1 � seedi C ˇ2 � extracti C ˇ3 � seedi � extracti ; �2/

The two models are equivalent. In the first model, the random effects ıi centers at 0 in the normal distribution,
and in the second model, ıi centers at the regression mean. This hierarchical centering can sometimes
improve mixing.

The following statements fit the second model and generate Output 61.7.1:

proc mcmc data=seeds outpost=postout seed=332786 nmc=20000;
ods select PostSumInt;
parms beta0 0 beta1 0 beta2 0 beta3 0 s2 1;
prior s2 ~ igamma(0.01, s=0.01);
prior beta: ~ general(0);
w = beta0 + beta1*seed + beta2*extract + beta3*seed*extract;
random delta ~ normal(w, var=s2) subject=ind;
pi = logistic(delta);
model r ~ binomial(n = n, p = pi);

run;

The PROC MCMC statement specifies the input and output data sets, sets a seed for the random number
generator, and requests a large simulation size. The ODS SELECT statement displays the summary statistics
and interval statistics tables. The PARMS statement declares the model parameters, and the PRIOR statements
specify the prior distributions for ˇ and �2.
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The symbol w calculates the regression mean, and the RANDOM statement specifies the random effect, with
a normal prior distribution, centered at w with variance �2. Note that the variable w is a function of the input
data set variables. You can use data set variable in constructing the hyperparameters of the random-effects
parameters, as long as the hyperparameters remain constant within each subject group. The SUBJECT=
option indicates the group index for the random-effects parameters.

The symbol pi is the logit transformation. The MODEL specifies the response variable r as a binomial
distribution with parameters n and pi.

Output 61.7.1 lists the posterior mean and interval estimates of the regression parameters.

Output 61.7.1 Logistic Regression Random-Effects Model

Logistic Regression Random-Effects Model

The MCMC Procedure

Logistic Regression Random-Effects Model

The MCMC Procedure

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

beta0 20000 -0.5570 0.1929 -0.9422 -0.1816

beta1 20000 0.0776 0.3276 -0.5690 0.7499

beta2 20000 1.3667 0.2923 0.8463 1.9724

beta3 20000 -0.8469 0.4718 -1.7741 0.0742

s2 20000 0.1171 0.0993 0.00163 0.3045

Example 61.8: Nonlinear Poisson Regression Multilevel Random-Effects
Model

This example uses the pump failure data of Gaver and O’Muircheartaigh (1987) to illustrate how to fit a
multilevel random-effects model with PROC MCMC. The number of failures and the time of operation are
recorded for 10 pumps. Each of the pumps is classified into one of two groups that correspond to either
continuous or intermittent operation. The following statements generate the data set:

title 'Nonlinear Poisson Regression Random-Effects Model';
data pump;

input y t group @@;
pump = _n_;
logtstd = log(t) - 2.4564900;
datalines;

5 94.320 1 1 15.720 2 5 62.880 1
14 125.760 1 3 5.240 2 19 31.440 1
1 1.048 2 1 1.048 2 4 2.096 2

22 10.480 2
;

Each row denotes data for a single pump, and the variable logtstd contains the centered operation times.
Letting yij denote the number of failures for the jth pump in the ith group, Draper (1996) considers the
following hierarchical model for these data, where the data set variable logtstd is log tij � log t :

yij j�ij � Poisson.�ij /

log �ij D ˛i C ˇi .log tij � log t /C eij
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This model specifies different intercepts and slopes for each group (i = 1, 2), and the random effect eij is a
mechanism for accounting for overdispersion. You can use noninformative priors on the parameters ˛i , ˇi ,
and �2, and a normal prior on eij ,

ui D

�
˛i
ˇi

�
� mvn

��
0

0

�
;

�
1e6 0

0 1e6

��
for i D 1; 2

�2 � igamma .shape D 0:01; scale D 0:01/

eij j�
2
� normal.0; �2/

where ui is a multidimensional random effect. The following statements fit such a random-effects model:

ods graphics on;
proc mcmc data=pump outpost=postout seed=248601 nmc=10000

plots=trace stats=none diag=none;
ods select tracepanel;
array u[2] alpha beta;
array mu[2] (0 0);
parms s2;
prior s2 ~ igamma(0.01, scale=0.01);
random u ~ mvnar(mu, sd=1e6, rho=0) subject=group monitor=(u);
random e ~ normal(0, var=s2) subject=pump monitor=(random(1));
w = alpha + beta * logtstd;
lambda = exp(w+e);
model y ~ poisson(lambda);

run;

The PROC MCMC statement specifies the input data set (Pump), the output data set (Postout), a seed for the
random number generator, and a simulation sample size of 10,000. The program requests that only trace
plots be produced, disabling all posterior calculations and convergence diagnostics tests. The ODS SELECT
statement displays the trace plots, which are the primary focus.

The first ARRAY statement declares an array u of size 2 and names the elements alpha and beta. The array u
stores the random-effects parameters alpha and beta. The next ARRAY statement defines the mean of the
multivariate normal prior on u.

The PARMS statement declares the only model parameter here, the variance s2 in the prior distribution for
the random effect eij . The PRIOR statement specifies an inverse-gamma prior on the variance. The first
RANDOM statement specifies a multivariate normal prior on u. The mvnar distribution is a multivariate
normal distribution with a first-order autoregressive covariance. When the argument rho is set to 0, this
distribution simplifies to a multivariate normal distribution with a shared variance. The RANDOM statement
also indicates the group variable as its subject index and monitors all elements u. The second RANDOM
statement specifies a normal prior on the effect e, where the subject index variable is pump. The MONITOR=
option requests that PROC MCMC randomly choose one of the 10 e random-effects parameters to monitor.

Next, programming statements construct the mean of the Poisson likelihood, and the MODEL statement
specifies the likelihood function for each observation.
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Output 61.8.1 shows trace plots for �2; ˛1; ˛2; ˇ1; ˇ2; and e8. You can see that the chains are mixing poorly.

Output 61.8.1 Trace Plots of �2, ˛, ˇ, and e8 without Hierarchical Centering
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To improve mixing, you can repeat the same analysis by using a hierarchical centering technique, where
instead of using a normal prior centered at 0 on eij , you center the random effects on the group means:

yij j�ij � Poisson.�ij /

log �ij � normal
�
˛i C ˇi .log tij � log t /; var D �2

�
The following statements illustrate how to fit a multilevel hierarchical centering random-effects model:

proc mcmc data=pump outpost=postout_c seed=248601 nmc=10000
plots=trace diag=none;
ods select tracepanel postsumint;
array u[2] alpha beta;
array mu[2] (0 0);
parms s2 1;
prior s2 ~ igamma(0.01, scale=0.01);
random u ~ mvnar(mu, sd=1e6, rho=0) subject=group monitor=(u);
w = alpha + beta * logtstd;
random llambda ~ normal(w, var = s2) subject=pump monitor=(random(1));
lambda = exp(llambda);
model y ~ poisson(lambda);

run;

The difference between these statements and the previous statements on page 4904 is that these statements
have the variable w as the prior mean of the random effect llambda. The symbol lambda is the exponential of
the corresponding log �ij (llambda), and the MODEL statement assigns the response variable y a Poisson
likelihood with a mean parameter lambda, the same way it did in the previous statements.

The trace plots of the monitored parameters are shown in Output 61.8.2. The mixing is significantly improved
over the previous model. The posterior summary and interval statistics tables are shown in Output 61.8.3.
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Output 61.8.2 Trace Plots of �2, ˛, and ˇ with Hierarchical Centering
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Output 61.8.3 Posterior Summary Statistics

Nonlinear Poisson Regression Random-Effects Model

The MCMC Procedure

Nonlinear Poisson Regression Random-Effects Model

The MCMC Procedure

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

s2 10000 1.7606 2.2022 0.1039 4.7631

alpha_1 10000 2.9286 2.4247 -1.9416 7.4115

beta_1 10000 -0.4018 1.3110 -2.9323 2.0623

alpha_2 10000 1.6105 0.8801 -0.0436 3.2985

beta_2 10000 0.5652 0.5804 -0.5469 1.7381

llambda_8 10000 -0.0560 0.8395 -1.6933 1.4612

You can generate a caterpillar plot (Output 61.8.4) of the random-effects parameters by calling the %CATER
macro:

%CATER(data=postout_c, var=llambda_:);
ods graphics off;

Varying llambda indicates nonconstant dispersion in the Poisson model.

Output 61.8.4 Caterpillar Plots of the Random-Effects Parameters
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Example 61.9: Multivariate Normal Random-Effects Model
Gelfand et al. (1990) use a multivariate normal hierarchical model to estimate growth regression coefficients
for the growth of 30 young rats in a control group over a period of 5 weeks. The following statements create
a SAS data set with measurements of Weight, Age (in days), and Subject.

title 'Multivariate Normal Random-Effects Model';
data rats;

array days[5] (8 15 22 29 36);
input weight @@;
subject = ceil(_n_/5);
index = mod(_n_-1, 5) + 1;
age = days[index];
drop index days:;
datalines;

151 199 246 283 320 145 199 249 293 354
147 214 263 312 328 155 200 237 272 297
135 188 230 280 323 159 210 252 298 331
141 189 231 275 305 159 201 248 297 338
177 236 285 350 376 134 182 220 260 296
160 208 261 313 352 143 188 220 273 314
154 200 244 289 325 171 221 270 326 358
163 216 242 281 312 160 207 248 288 324
142 187 234 280 316 156 203 243 283 317
157 212 259 307 336 152 203 246 286 321
154 205 253 298 334 139 190 225 267 302
146 191 229 272 302 157 211 250 285 323
132 185 237 286 331 160 207 257 303 345
169 216 261 295 333 157 205 248 289 316
137 180 219 258 291 153 200 244 286 324
;

The model assumes normal measurement errors,

Weightij � normal
�
˛i C ˇiAgeij ; �

2
�
; i D 1 � � � 30I j D 1 � � � 5

where i indexes rat (Subject variable), j indexes the time period, Weightij and Ageij denote the weight and
age of the ith rat in week j, and �2 is the variance in the normal likelihood. The individual intercept and slope
coefficients are modeled as the following:

�i D

�
˛i
ˇi

�
� MVN

�
�c D

�
˛c
ˇc

�
;†c

�
; i D 1; � � � ; 30

You can use the following independent prior distributions on �c , †c , and �2:

�c � MVN
�
�0 D

�
0

0

�
;†0 D

�
1000 0

0 1000

��
†c � iwishart

�
� D 2; S D � �

�
0:01 0

0 10

��
�2 � igamma .shape D 0:01; scale D 0:01/
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The following statements fit this multivariate normal random-effects model:

proc mcmc data=rats nmc=10000 outpost=postout
seed=17 init=random;
ods select Parameters REParameters PostSumInt;
array theta[2] alpha beta;
array theta_c[2];
array Sig_c[2,2];
array mu0[2] (0 0);
array Sig0[2,2] (1000 0 0 1000);
array S[2,2] (0.02 0 0 20);

parms theta_c Sig_c {121 0 0 0.26} var_y;
prior theta_c ~ mvn(mu0, Sig0);
prior Sig_c ~ iwish(2, S);
prior var_y ~ igamma(0.01, scale=0.01);

random theta ~ mvn(theta_c, Sig_c) subject=subject
monitor=(alpha_9 beta_9 alpha_25 beta_25);

mu = alpha + beta * age;
model weight ~ normal(mu, var=var_y);

run;

The ODS SELECT statement displays information about model parameters, random-effects parameters,
and the posterior summary statistics. The ARRAY statements allocate memory space for the multivariate
parameters and hyperparameters in the model. The parameters are � (theta where the variable name of each
element is alpha or beta), �c (theta_c), and †c (Sig_c). The hyperparameters are �0 (mu0), †0 (Sig0), and
S (S). The multivariate hyperparameters are assigned with constant values using parentheses . /.

The PARMS statement declares model parameters and assigns initial values to Sig_c using braces f g.
The PRIOR statements specify the prior distributions. The RANDOM statement defines an array random
effect theta and specifies a multivariate normal prior distribution. The SUBJECT= option indicates cluster
membership for each of the random-effects parameter. The MONITOR= option monitors the individual
intercept and slope coefficients of subjects 9 and 25.

You can use the following syntax in the RANDOM statement to monitor all parameters in an array random
effect:

monitor=(theta)

This would produce posterior summary statistics on ˛1 � � �˛30 and ˇ1 � � �ˇ30.

The following syntax monitors all ˛i parameters:

monitor=(alpha)

If you did not name elements of theta to be alpha and beta, the SAS System creates variable names
automatically in a consecutive fashion, as in theta1 and theta2.
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Output 61.9.1 Parameter and Random-Effects Parameter Information Table

Multivariate Normal Random-Effects Model

The MCMC Procedure

Multivariate Normal Random-Effects Model

The MCMC Procedure

Parameters

Block Parameter
Array
Index

Sampling
Method

Initial
Value Prior Distribution

1 theta_c1 Conjugate -4.5834 MVNormal(mu0, Sig0)

theta_c2 5.7930

2 Sig_c1 [1,1] Conjugate 121.0 iWishart(2, S)

Sig_c2 [1,2] 0

Sig_c3 [2,1] 0

Sig_c4 [2,2] 0.2600

3 var_y Conjugate 2806714 igamma(0.01, scale=0.01)

Random Effect Parameters

Parameter
Sampling
Method Subject

Number of
Subjects

Subject
Values

Prior
Distribution

theta N-Metropolis subject 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... MVNormal(theta_c, Sig_c)

Output 61.9.1 displays the parameter and random-effects parameter information tables. The Array Index
column in “Parameters” table shows the index reference of the elements in the array parameter Sig_c. The
total number of subjects in the study is 30.

Output 61.9.2 Multivariate Normal Random-Effects Model

Multivariate Normal Random-Effects Model

The MCMC Procedure

Multivariate Normal Random-Effects Model

The MCMC Procedure

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

theta_c1 10000 106.1 2.2486 101.7 110.6

theta_c2 10000 6.1975 0.1988 5.8058 6.5815

Sig_c1 10000 110.8 45.9169 37.9670 203.8

Sig_c2 10000 -1.4267 2.3320 -6.2878 2.7756

Sig_c3 10000 -1.4267 2.3320 -6.2878 2.7756

Sig_c4 10000 1.0591 0.2979 0.5549 1.6538

var_y 10000 37.6855 5.9591 27.0943 49.4449

alpha_9 10000 119.4 5.6756 108.1 130.5

beta_9 10000 7.4670 0.2382 7.0146 7.9278

alpha_25 10000 86.5673 6.3694 74.4247 99.9007

beta_25 10000 6.7804 0.2612 6.2529 7.2906

Output 61.9.2 displays posterior summary statistics for model parameters and the random-effects parameters
for subjects 9 and 25. You can see that there is a substantial difference in the intercepts and growth rates
between the two rats.
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A seemingly confusing message might occur if a symbol name matches an internally generated variable
name for elements of an array. For example, if, instead of using the symbol var_y in the SAS program for the
model variance �2, you used s2, the SAS System produces the following error message:

ERROR: The initial value 0 for the parameter S2 is outside of the prior
distribution support set.

This is confusing because the program does not assign an initial value for the parameter s2 in the PARMS
statement, and you might expect that PROC MCMC would not generate an invalid initial value. The confusion
is caused by the ARRAY statement that defines the array variable S:

array S[2,2] (0.02 0 0 20);

Elements of S are automatically given names s1–s4. PROC MCMC interprets s2 as an element in S that was
given a value of 0, hence producing this error message.

Example 61.10: Missing at Random Analysis
This example illustrates how PROC MCMC treats missing at random (MAR) data. For a short overview of
missing data problems, see the section “Handling of Missing Data” on page 4842.

Researchers studied the effects of air pollution on respiratory disease in children. The response variable (y)
represented whether a child exhibited wheezing symptoms; it was recorded as 1 for symptoms exhibited and
0 for no symptoms exhibited. City of residency (x1) and maternal smoking status (x2) were the explanatory
variables. The variable x1 was coded as 1 if the child lived in the more polluted city, Steel City, and 0 if the
child lived in Green Hills. The variable x2 was the number of cigarettes the mother reported that she smoked
per day. Both the covariates contain missing values: 17 for x1 and 30 for x2, respectively. The total number
of observations in the data set is 390. The following statements generate the data set air:

title 'Missing at Random Analysis';
data air;

input y x1 x2 @@;
datalines;

0 0 0 0 0 0 0 1 0 0 0 0 0 0 11 0 1 7
0 0 8 0 1 10 0 1 9 0 0 0 1 1 6 0 1 10
0 1 12 0 0 . 0 0 0 0 1 0 0 1 7 1 1 15
0 0 8 0 0 0 1 1 0 1 0 6 0 0 0 1 1 11
0 0 0 1 0 0 1 0 5 0 0 8 0 0 0 0 1 9

... more lines ...

0 0 11 0 0 0 0 0 6 0 0 12 0 0 10 0 1 10
0 1 11 0 0 9 1 0 11 0 1 7 0 0 7 0 0 0
0 . 11 1 1 6 0 0 8 0 0 0 0 1 12 0 0 0
0 1 0 1 1 8 0 0 0 0 1 11 0 1 0 0 1 8
0 . 0 1 0 0 1 1 10 0 . 4 1 1 16 0 . 13

;
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Suppose you want to fit a logistic regression model for whether the subject develops wheezing symptoms
with density for the i D 1; :::; 390 subjects as follows:

yi � binary.pi /

logit.pi / D ˇ0 C ˇ1 � x1i C ˇ2 � x2i
�.ˇ0/; �.ˇ1/; �.ˇ2/ D normal.0; �2 D 10/

Suppose you specify a joint distribution of x1 and x2 in terms of the product of a conditional and marginal
distribution; that is,

p.x1; x2j˛/ D p.x1jx2; ˛10; ˛11/p.x2j˛20/

where p.x1i jx2i ; ˛10; ˛11/ could be a logistic model and p.x2i j˛20/ could be a Poisson distribution that
models the following counts:

p.x1i jx2i ; ˛10; ˛11/ D binary.pc;i /

logit.pc;i / D ˛10 C ˛11 � x2i
�.˛10/; �.˛11/ D normal.0; �2 D 10/

p.x2i j˛20/ D Poisson.e˛20/

�.˛20/ D normal.0; �2 D 2/

The researchers are interested in interpreting how the odds of developing a wheeze changes for a child living
in the more polluted city. The odds ratio can be written as the follows:

ORx1 D exp .ˇ1/

Similarly, the odds ratio for the maternal smoking effect can be written as follows:

ORx2 D exp .ˇ2/

The following statements fit a Bayesian logistic regression with missing covariates:

proc mcmc data=air seed=1181 nmc=10000 monitor=(_parms_ orx1 orx2)
diag=none plots=none;
parms beta0 -1 beta1 0.1 beta2 .01;
parms alpha10 0 alpha11 0 alpha20 0;

prior beta: alpha1: ~ normal(0,var=10);
prior alpha20 ~ normal(0,var=2);

beginnodata;
pm = exp(alpha20);
orx1 = exp(beta1);
orx2 = exp(beta2);
endnodata;
model x2 ~ poisson(pm) monitor=(1 3 10);
p1 = logistic(alpha10 + alpha11 * x2);
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model x1 ~ binary(p1) monitor=(random(3));
p = logistic(beta0 + beta1*x1 + beta2*x2);
model y ~ binary(p);

run;

The PARMS statements specify the parameters in the model and assign initial values to each of them. The
PRIOR statements specify priors for all the model parameters. The notations beta: and alpha: in the PRIOR
statements are shorthand for all variables that start with “beta,” and “alpha,” respectively. The shorthand
notation is not necessary, but it keeps your code succinct.

The BEGINNODATA and ENDNODATA statements enclose three programming statements that calculate the
Poisson mean (pm) and the two odds ratios (ORX1 and ORX2). These enclosed statements are independent
of any data set variables, and they are run only once per iteration to reduce unnecessary observation-level
computations.

The first MODEL statement assigns a Poisson likelihood with mean pm to x2. The statement models
missing values in x2 automatically, creating one variable for each of the missing values, and augments them
accordingly. By default, PROC MCMC does not output analyses of the posterior samples of the missing
values. You can use the MONITOR= option to choose the missing values that you want to monitor. In the
example, the first, third, and tenth missing values are monitored.

The P1 assignment statement calculates pc:i . The second MODEL statement assigns a binary likelihood with
probability p1 and requests a random choice of three missing data variables of x1 to monitor.

The P assignment statement calculates pi in the logistic model. The third MODEL statement specifies the
complete data likelihood function for Y.

Output 61.10.1 displays the number of observations read from the DATA= data set, the number of observations
used in the analysis, and the “Missing Data Information” table. No observations were omitted from the data
set in the analysis.

The “Missing Data Information” table lists the variables that contain missing values, which are x1 and x2, the
number of missing observations in each variable, the observation indices of these missing values, and the
sampling algorithms used. By default, the first 20 observation indices of each variable are printed in the table.

Output 61.10.1 Observation Information and Missing Data Information

Missing at Random Analysis

The MCMC Procedure

Missing at Random Analysis

The MCMC Procedure

Number of Observations Read
Number of Observations Used

390
390

Missing Data Information Table

Variable
Number of

Missing Obs
Observation
Indices

Sampling
Method

x2 30 14 41 50 55 59 66 71 83 88 90 118 158 174 175 178 183 196 203 210 212 ... N-Metropolis

x1 17 50 92 93 167 194 231 273 296 303 304 308 330 349 373 385 388 390 Inverse CDF

There are 30 missing values in the variable x2, and 17 in x1. Internally, PROC MCMC creates 30 and 17
variables for the missing values in x2 and x1, respectively. The default naming convention for these missing
values is to concatenate the response variable and the observation number. For example, the first missing
value in x2 is the fourteenth observation, and the corresponding variable is x2_14.
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Output 61.10.2 displays the summary and interval statistics for each parameter, the odds ratios, and the
monitored missing values.

Output 61.10.2 Posterior Summary and Interval Statistics

Missing at Random Analysis

The MCMC Procedure

Missing at Random Analysis

The MCMC Procedure

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

beta0 10000 -1.3732 0.2078 -1.7909 -0.9676

beta1 10000 0.4797 0.2387 0.0268 0.9491

beta2 10000 0.0156 0.0227 -0.0265 0.0642

alpha10 10000 -0.2166 0.1422 -0.4662 0.0874

alpha11 10000 0.0126 0.0201 -0.0267 0.0521

alpha20 10000 1.5635 0.0235 1.5199 1.6105

orx1 10000 1.6627 0.4094 0.9205 2.4493

orx2 10000 1.0160 0.0231 0.9739 1.0663

x2_14 10000 4.9022 2.2083 1.0000 9.0000

x2_50 10000 4.8924 2.1626 1.0000 9.0000

x2_90 10000 4.8263 2.0816 1.0000 8.0000

x1_296 10000 0.4160 0.4929 0 1.0000

x1_304 10000 0.4460 0.4971 0 1.0000

x1_373 10000 0.4443 0.4969 0 1.0000

The odds ratio for x1 is the multiplicative change in the odds of a child wheezing in Steel City compared
to the odds of the child wheezing in Green Hills. The estimated odds ratio (ORX1) value is 1.6736 with a
corresponding 95% equal-tail credible interval of .1:0248; 2:5939/. City of residency is a significant factor
in a child’s wheezing status. The estimated odds ratio for x2 is the multiplicative change in the odds of
developing a wheeze for each additional reported cigarette smoked per day. The odds ratio of ORX2 indicates
that the odds of a child developing a wheeze is 1.0150 times higher for each reported cigarette a mother
smokes. The corresponding 95% equal-tail credible interval is .0:9695; 1:0619/. Since this interval contains
the value 1, maternal smoking is not considered to be an influential effect.

Example 61.11: Nonignorably Missing Data (MNAR) Analysis
This example illustrates how to fit a nonignorably missing data model (MNAR) with PROC MCMC. For a
short overview of missing data problems, see the section “Handling of Missing Data” on page 4842.

This data set comes from an environmental study that involve workers in a cotton factory. A similar data
set was analyzed from Ibrahim, Chen, and Lipsitz (2001). There are 912 workers in the data set, and the
response variable of interest is whether they develop dyspnea (difficult or labored respiration). The data are
collected over three time points, and there are six covariates. The following statements create the data set:
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title 'Nonignorably Missing Data Analysis';
data dyspnea;

input smoke1 smoke2 smoke3 y1 y2 y3 yrswrk1 yrswrk2 yrswrk3
age expd sex hgt;

datalines;
0 0 0 0 0 0 28.1 33.1 39.1 48 1 1 165.0
0 0 0 0 . 0 5.1 10.1 16.1 45 1 0 147.0
0 0 0 0 . 0 26.0 31.0 37.0 46 1 0 156.0

... more lines ...

1 1 1 0 . . 6.0 11.0 17.0 25 0 1 180.0
0 0 0 0 . . 20.0 25.0 31.0 42 0 0 159.0

;

The following variables are included in the data set:

• y1, y2, and y3: dichotomous outcome at the three time periods, which takes the value 1 if the worker
has dyspnea, 0 if not (there are missing values in y2 and y3)

• smoke1, smoke2, smoke3: smoking status (0=no, and 1=yes)

• yrswrk1, yrswrk2, yrswrk3: years worked at the cotton factory

• age: age of the worker

• expd: cotton dust exposure (0=no, 1=yes)

• sex: gender (0=female, 1=male)

• hgt: height of the worker

Prior to the analysis, three missing data indicator variables (r1, r2, and r3, one for each of the response
variables) are created, and they are set to 1 if the response variable is missing, and 0 otherwise. The covariates
age, hgt, yrswrk1, yrswkr2, and yrswrk3 are standardized:

data dyspnea;
array y[3] y1-y3;
array r[3];
set dyspnea;
do i = 1 to 3;

if y[i] = . then r[i] = 1;
else r[i] = 0;

end;
output;

run;

proc standard data=dyspnea out=dyspnea mean=0 std=1;
var age hgt yrswrk:;

run;
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There are no missing values in response variable y1, 128 missing values in y2, and 131 in y3. Ibrahim, Chen,
and Lipsitz (2001) used a logistic regression for each of the response variables, where ıi is a scalar random
effect on the observational level:

yki � binary.pki / k D 1; 2; 3I i D 1; � � � ; 912

pki D logistic.�ki C ıi /

�ki D ˇ1 C ˇ2 � expdi C ˇ3 � sexi C ˇ4 � hgti C ˇ5 � agei C ˇ6 � yrswrkki C ˇ7 � smokeki
ıi � n.0; �2/

Ibrahim, Chen, and Lipsitz (2001) noted that taking ıi to be higher dimensional (3) would make the model
either not identifiable or nearly not identifiable because of the multiple missing values for some subjects.

The first response variable y1 does not contain any missing values, making it meaningless to model the
corresponding r1 because every value is 1. Hence, only r2 and r3 are considered in the missing mechanism
part of the model. Ibrahim, Chen, and Lipsitz (2001) suggest the following logistic regression for r2 and
r3, where the regression mean for each r depends not only on the current response variable y but also the
response from previous time period:

rki � binary.qki / k D 2; 3I i D 1; � � � ; 912

qki D logistic.�ki /

�c D �1 C �2 � expdi C �3 � sexi C �4 � hgti C �5 � agei C �6 � yrswrkki C �7 � smokeki
�2i D �c C �8 � y1i C �9 � y2i
�3i D �c C �9 � y2i C �10 � y3i

The missing mechanism model introduces an additional 10 parameters to the model. Normal priors with
large standard deviations are used here.

The following statements fit a nonignorably missing model to the dyspnea data set:

ods select MissDataInfo REParameters Postsumint;
proc mcmc data=dyspnea seed=17 outpost=dysp2 nmc=20000

propcov=simplex diag=none monitor=(beta1-beta7);
array p[3];
array yrswrk[3];
array smoke[3];

parms beta1-beta7 s2;
parms phi1-phi10;
prior beta: phi: ~ n(0, var=1e6);
prior s2 ~ igamma(2, scale=2);
random d ~ n(0, var=s2) subject=_obs_;
mu = beta1 + beta2*expd + beta3*sex + beta4*hgt + beta5*age + d;
do i = 1 to 3;

p[i] = logistic(mu + beta6*yrswrk[i] + beta7*smoke[i]);
end;
model y1 ~ binary(p1);
model y2 ~ binary(p2);
model y3 ~ binary(p3);
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nu = phi1 + phi2*expd + phi3*sex + phi4*hgt + phi5*age;
q2 = logistic(nu + phi6*yrswrk[2] + phi7*smoke[2] +

phi8*y1 + phi9*y2);
model r2 ~ binary(q2);
q3 = logistic(nu + phi6*yrswrk[3] + phi7*smoke[3] +

phi9*y2 + phi10*y3);
model r3 ~ binary(q3);

run;

The first ARRAY statement declares an array p of size 3. This arrays stores three binary probabilities of the
response variables. The next two ARRAY statements create storage arrays for some of yrswrk and smoke
variables for later programming convenience. The first PARMS statement declares eight parameters, ˇ1 � ˇ7
and �2. The second PARMS statement declares the 10 � parameters for the missing mechanism model. The
PRIOR statements assign prior distributions to these parameters.

The RANDOM statement defines an observational-level random effect d that has a normal prior with variance
s2. The SUBJECT=_OBS_ option enables the specification of individual random effects without an explicit
input data set variable.

The MU assignment statement and the following DO loop statements calculate the binary probabilities for
the three response variables. Note that different yrswrk and smoke variables are used in the DO loop for
different years. The three MODEL statements assign three binary distributions to the response variables.

The NU assignment statement starts the calculation for the regression mean in the logistic model for r2 and r3.
The variables q2 and q3 are the binary probabilities for the missing mechanisms. Note that their calculations
are conditional on the response variables y (pattern mixture model). The last two MODEL statements for r2
and r3 complete the specification of the models.

Missing data information and random-effects parameters information are displayed in Output 61.11.1. You
can read the total number of missing observations from each variable and its indices from the table. The
missing values are sampled using the inverse CDF method. There are 912 random-effects parameters in the
model.

Output 61.11.1 Missing Data and Random-Effects Information

Nonignorably Missing Data Analysis

The MCMC Procedure

Nonignorably Missing Data Analysis

The MCMC Procedure

Missing Data Information Table

Variable
Number of

Missing Obs
Observation
Indices

Sampling
Method

y2 128 2 3 9 11 13 19 20 21 30 31 32 35 39 40 43 56 58 71 75 95 ... Inverse CDF

y3 131 9 14 16 20 21 29 31 32 43 45 56 72 86 115 117 121 124 142 149 160 ... Inverse CDF

Random Effect Parameters

Parameter
Sampling
Method Subject

Number of
Subjects

Subject
Values

Prior
Distribution

d N-Metropolis _OBS_ 912 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... normal(0, var=s2)

The posterior summary and interval statistics of all the ˇ parameters are shown in Output 61.11.2. There are
a number of significant regression coefficients in modeling the probability of a worker developing dyspnea,
including those for expd (ˇ2), sex (ˇ3), age (ˇ5), and smoke (ˇ7).



Example 61.12: Change Point Models F 4919

Output 61.11.2 Posterior Summary Statistics for ˇ

Nonignorably Missing Data Analysis

The MCMC Procedure

Nonignorably Missing Data Analysis

The MCMC Procedure

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

beta1 20000 -2.3256 0.1771 -2.6670 -1.9826

beta2 20000 0.5327 0.1530 0.2306 0.8193

beta3 20000 -0.5966 0.2593 -1.0906 -0.0691

beta4 20000 -0.0682 0.1061 -0.2734 0.1462

beta5 20000 0.6252 0.1640 0.2992 0.9490

beta6 20000 -0.1776 0.1574 -0.4971 0.1218

beta7 20000 0.5862 0.2214 0.1433 1.0051

Example 61.12: Change Point Models
Consider the data set from Bacon and Watts (1971), where yi is the logarithm of the height of the stagnant
surface layer and the covariate xi is the logarithm of the flow rate of water. The following statements create
the data set:

title 'Change Point Model';
data stagnant;

input y x @@;
ind = _n_;
datalines;

1.12 -1.39 1.12 -1.39 0.99 -1.08 1.03 -1.08
0.92 -0.94 0.90 -0.80 0.81 -0.63 0.83 -0.63
0.65 -0.25 0.67 -0.25 0.60 -0.12 0.59 -0.12
0.51 0.01 0.44 0.11 0.43 0.11 0.43 0.11
0.33 0.25 0.30 0.25 0.25 0.34 0.24 0.34
0.13 0.44 -0.01 0.59 -0.13 0.70 -0.14 0.70

-0.30 0.85 -0.33 0.85 -0.46 0.99 -0.43 0.99
-0.65 1.19
;

A scatter plot (Output 61.12.1) shows the presence of a nonconstant slope in the data. This suggests a change
point regression model (Carlin, Gelfand, and Smith 1992). The following statements generate the scatter plot
in Output 61.12.1:

ods graphics on;
proc sgplot data=stagnant;

scatter x=x y=y;
run;
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Output 61.12.1 Scatter Plot of the Stagnant Data Set

Let the change point be cp. Following formulation by Spiegelhalter et al. (1996b), the regression model is as
follows:

yi �

�
normal.˛ C ˇ1.xi � cp/; �2/ if xi < cp
normal.˛ C ˇ2.xi � cp/; �2/ if xi >D cp

You might consider the following diffuse prior distributions:

cp � uniform.�1:3; 1:1/

˛; ˇ1; ˇ2 � normal.0; var D 1e6/

�2 � uniform.0; 5/

The following statements generate Output 61.12.2:

proc mcmc data=stagnant outpost=postout seed=24860 ntu=1000
nmc=20000;

ods select PostSumInt;
ods output PostSumInt=ds;

array beta[2];
parms alpha cp beta1 beta2;
parms s2;

prior cp ~ unif(-1.3, 1.1);
prior s2 ~ uniform(0, 5);
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prior alpha beta: ~ normal(0, v = 1e6);

j = 1 + (x >= cp);
mu = alpha + beta[j] * (x - cp);
model y ~ normal(mu, var=s2);

run;

The PROC MCMC statement specifies the input data set (Stagnant), the output data set (Postout), a random
number seed, a tuning sample of 1000, and an MCMC sample of 20000. The ODS SELECT statement
displays only the summary statistics table. The ODS OUTPUT statement saves the summary statistics table
to the data set Ds.

The ARRAY statement allocates an array of size 2 for the beta parameters. You can use beta1 and beta2 as
parameter names without allocating an array, but having the array makes it easier to construct the likelihood
function. The two PARMS statements put the five model parameters in two blocks. The three PRIOR
statements specify the prior distributions for these parameters.

The symbol j indicates the segment component of the regression. When x is less than the change point, (x >=
cp) returns 0 and j is assigned the value 1; if x is greater than or equal to the change point, (x >= cp) returns 1
and j is 2. The symbol mu is the mean for the jth segment, and beta[j] changes between the two regression
coefficients depending on the segment component. The MODEL statement assigns the normal model to the
response variable y.

Posterior summary statistics are shown in Output 61.12.2.

Output 61.12.2 MCMC Estimates of the Change Point Regression Model

Change Point Model

The MCMC Procedure

Change Point Model

The MCMC Procedure

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation 95% HPD Interval

alpha 20000 0.5349 0.0249 0.4843 0.5813

cp 20000 0.0283 0.0314 -0.0353 0.0846

beta1 20000 -0.4200 0.0146 -0.4482 -0.3911

beta2 20000 -1.0136 0.0167 -1.0476 -0.9817

s2 20000 0.000451 0.000145 0.000220 0.000735

You can use PROC SGPLOT to visualize the model fit. Output 61.12.3 shows the fitted regression lines
over the original data. In addition, on the bottom of the plot is the kernel density of the posterior marginal
distribution of cp, the change point. The kernel density plot shows the relative variability of the posterior
distribution on the data plot. You can use the following statements to create the plot:

data _null_;
set ds;
call symputx(parameter, mean);

run;

data b;
missing A;
input x1 @@;
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if x1 eq .A then x1 = &cp;
if _n_ <= 2 then y1 = &alpha + &beta1 * (x1 - &cp);
else y1 = &alpha + &beta2 * (x1 - &cp);
datalines;
-1.5 A 1.2

;

proc kde data=postout;
univar cp / out=m1 (drop=count);

run;

data m1;
set m1;
density = (density / 25) - 0.653;

run;

data all;
set stagnant b m1;

run;

proc sgplot data=all noautolegend;
scatter x=x y=y;
series x=x1 y=y1 / lineattrs = graphdata2;
series x=value y=density / lineattrs = graphdata1;

run;
ods graphics off;

The macro variables &alpha, &beta1, &beta2, and &cp store the posterior mean estimates from the data
set Ds. The data set b contains three predicted values, at the minimum and maximum values of x and the
estimated change point &cp. These input values give you fitted values from the regression model. Data set
M1 contains the kernel density estimates of the parameter cp. The density is scaled down so the curve would
fit in the plot. Finally, you use PROC SGPLOT to overlay the scatter plot, regression line and kernel density
plots in the same graph.
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Output 61.12.3 Estimated Fit to the Stagnant Data Set

Example 61.13: Exponential and Weibull Survival Analysis
This example covers two commonly used survival analysis models: the exponential model and the Weibull
model. The deviance information criterion (DIC) is used to do model selections, and you can also find
programs that visualize posterior quantities. Exponential and Weibull models are widely used for survival
analysis. This example shows you how to use PROC MCMC to analyze the treatment effect for the E1684
melanoma clinical trial data. These data were collected to assess the effectiveness of using interferon alpha-2b
in chemotherapeutic treatment of melanoma. The following statements create the data set:

data e1684;
input t t_cen treatment @@;
if t = . then do;

t = t_cen;
v = 0;

end;
else

v = 1;
ifn = treatment - 1;
et = exp(t);
lt = log(t);
drop t_cen;
datalines;

1.57808 0.00000 2 1.48219 0.00000 2 . 7.33425 1
2.23288 0.00000 1 . 9.38356 2 3.27671 0.00000 1
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. 9.64384 1 1.66575 0.00000 2 0.94247 0.00000 1
1.68767 0.00000 2 2.34247 0.00000 2 0.89863 0.00000 1

... more lines ...

3.39178 0.00000 1 . 4.36164 2 . 4.81918 2
;

The data set E1684 contains the following variables: t is the failure time that equals the censoring time
whether the observation was censored, v indicates whether the observation is an actual failure time or a
censoring time, treatment indicates two levels of treatments, and ifn indicates the use of interferon as a
treatment. The variables et and lt are the exponential and logarithm transformation of the time t. The
published data contains other potential covariates that are not listed here. This example concentrates on the
effectiveness of the interferon treatment.

Exponential Survival Model

The density function for exponentially distributed survival times is as follows:

p.ti j�i / D �i exp .��i ti /

Note that this formulation of the exponential distribution is different from what is used in the SAS probability
function PDF. The definition used in PDF for the exponential distributions is as follows:

p.ti j�i / D
1

�i
exp.�

ti

�i
/

The relationship between � and � is as follows:

�i D
1

�i

The corresponding survival function, using the �i formulation, is as follows:

S.ti j�i / D exp .��i ti /

If you have a sample ftig of n independent exponential survival times, each with mean �i , then the likelihood
function in terms of � is as follows:

L.�jt / D …niD1p.ti j�i /
�iS.ti j�i /

1��i

D …niD1.�i exp.��i ti //
�i .exp.��i ti //1��i

D …niD1�
�i
i exp.��i ti /

If you link the covariates to � with �i D exp x0iˇ, where xi is the vector of covariates corresponding to the
ith observation and ˇ is a vector of regression coefficients, then the log-likelihood function is as follows:

l.ˇjt; x/ D
nX
iD1

�ix0iˇ � ti exp.x
0
iˇ/
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In the absence of prior information about the parameters in this model, you can choose diffuse normal priors
for the ˇ:

ˇ � normal.0; sd =10000/

There are two ways to program the log-likelihood function in PROC MCMC. You can use the SAS functions
LOGPDF and LOGSDF. Alternatively, you can use the simplified log-likelihood function, which is more
computationally efficient. You get identical results by using either approaches.

The following PROC MCMC statements fit an exponential model with simplified log-likelihood function:

title 'Exponential Survival Model';
ods graphics on;
proc mcmc data=e1684 outpost=expsurvout nmc=10000 seed=4861

diag=(mcse ess);
ods select PostSumInt TADpanel

ess mcse;
parms (beta0 beta1) 0;
prior beta: ~ normal(0, sd = 10000);
/*****************************************************/
/* (1) the logpdf and logsdf functions are not used */
/*****************************************************/
/* nu = 1/exp(beta0 + beta1*ifn);

llike = v*logpdf("exponential", t, nu) +
(1-v)*logsdf("exponential", t, nu);

*/
/****************************************************/
/* (2) the simplified likelihood formula is used */
/****************************************************/
l_h = beta0 + beta1*ifn;
llike = v*(l_h) - t*exp(l_h);
model general(llike);

run;

The two assignment statements that are commented out calculate the log-likelihood function by using the
SAS functions LOGPDF and LOGSDF for the exponential distribution. The next two assignment statements
calculate the log likelihood by using the simplified formula. The first approach is slower because of the
redundant calculation involved in calling both LOGPDF and LOGSDF.

An examination of the trace plots for ˇ0 and ˇ1 (see Output 61.13.1) reveals that the sampling has gone well
with no particular concerns about the convergence or mixing of the chains.
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Output 61.13.1 Posterior Plots for ˇ0 and ˇ1 in the Exponential Survival Analysis
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The MCMC results are shown in Output 61.13.2.

Output 61.13.2 Posterior Summary and Interval Statistics

Exponential Survival Model

The MCMC Procedure

Exponential Survival Model

The MCMC Procedure

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

beta0 10000 -1.6715 0.1091 -1.8930 -1.4673

beta1 10000 -0.2879 0.1615 -0.6104 0.0169

The Monte Carlo standard errors and effective sample sizes are shown in Output 61.13.3. The posterior
means for ˇ0 and ˇ1 are estimated with high precision, with small standard errors with respect to the standard
deviation. This indicates that the mean estimates have stabilized and do not vary greatly in the course of the
simulation. The effective sample sizes are roughly the same for both parameters.

Output 61.13.3 MCSE and ESS

Exponential Survival Model

The MCMC Procedure

Exponential Survival Model

The MCMC Procedure

Monte Carlo Standard Errors

Parameter MCSE
Standard
Deviation MCSE/SD

beta0 0.00302 0.1091 0.0277

beta1 0.00485 0.1615 0.0301

Effective Sample Sizes

Parameter ESS
Autocorrelation

Time Efficiency

beta0 1304.1 7.6682 0.1304

beta1 1107.2 9.0319 0.1107

The next part of this example shows fitting a Weibull regression to the data and then comparing the two
models with DIC to see which one provides a better fit to the data.

Weibull Survival Model

The density function for Weibull distributed survival times is as follows:

p.ti j˛; �i / D ˛t
˛�1
i exp.�i � exp.�i /t˛i /
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Note that this formulation of the Weibull distribution is different from what is used in the SAS probability
function PDF. The definition used in PDF is as follows:

p.ti j˛; i / D exp
�
�

�
ti

i

�˛� ˛

i

�
ti

i

�˛�1
The relationship between � and  in these two parameterizations is as follows:

�i D �˛ log i

The corresponding survival function, using the �i formulation, is as follows:

S.ti j˛; �i / D exp.� exp.�i /t˛i /

If you have a sample ftig of n independent Weibull survival times, with parameters ˛, and �i , then the
likelihood function in terms of ˛ and � is as follows:

L.˛; �jt / D …niD1p.ti j˛; �i /
�iS.ti j˛; �i /

1��i

D …niD1.˛t
˛�1
i exp.�i � exp.�i /t˛i //

�i .exp.� exp.�i /t˛i //
1��i

D …niD1.˛t
˛�1
i exp.�i //�i .exp.� exp.�i /t˛i //

If you link the covariates to � with �i D x0iˇ, where xi is the vector of covariates corresponding to the ith
observation and ˇ is a vector of regression coefficients, the log-likelihood function becomes this:

l.˛;ˇjt; x/ D
nX
iD1

�i .log.˛/C .˛ � 1/ log.ti /C x0iˇ/ � exp.x0iˇ/t
˛
i /

As with the exponential model, in the absence of prior information about the parameters in this model, you
can use diffuse normal priors on ˇ: You might want to choose a diffuse gamma distribution for ˛: Note that
when ˛ D 1, the Weibull survival likelihood reduces to the exponential survival likelihood. Equivalently, by
looking at the posterior distribution of ˛, you can conclude whether fitting an exponential survival model
would be more appropriate than the Weibull model.

PROC MCMC also enables you to make inference on any functions of the parameters. Quantities of interest
in survival analysis include the value of the survival function at specific times for specific treatments and the
relationship between the survival curves for different treatments. With PROC MCMC, you can compute a
sample from the posterior distribution of the interested survival functions at any number of points. The data
in this example range from about 0 to 10 years, and the treatment of interest is the use of interferon.

Like in the previous exponential model example, there are two ways to fit this model: using the SAS functions
LOGPDF and LOGSDF, or using the simplified log likelihood functions. The example uses the latter method.
The following statements run PROC MCMC and produce Output 61.13.4:
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title 'Weibull Survival Model';
proc mcmc data=e1684 outpost=weisurvout nmc=10000 seed=1234

monitor=(_parms_ surv_ifn surv_noifn) stats=(summary intervals);
ods select PostSummaries;
ods output PostSummaries=ds PostIntervals=is;
array surv_ifn[10];
array surv_noifn[10];
parms alpha 1 (beta0 beta1) 0;
prior beta: ~ normal(0, var=10000);
prior alpha ~ gamma(0.001,is=0.001);

beginnodata;
do t1 = 1 to 10;

surv_ifn[t1] = exp(-exp(beta0+beta1)*t1**alpha);
surv_noifn[t1] = exp(-exp(beta0)*t1**alpha);

end;
endnodata;

lambda = beta0 + beta1*ifn;
/*****************************************************/
/* (1) the logpdf and logsdf functions are not used */
/*****************************************************/
/* gamma = exp(-lambda /alpha);

llike = v*logpdf('weibull', t, alpha, gamma) +
(1-v)*logsdf('weibull', t, alpha, gamma);

*/
/****************************************************/
/* (2) the simplified likelihood formula is used */
/****************************************************/
llike = v*(log(alpha) + (alpha-1)*log(t) + lambda) -

exp(lambda)*(t**alpha);
model general(llike);

run;

The MONITOR= option indicates the parameters and quantities of interest that PROC MCMC tracks. The
symbol _PARMS_ specifies all model parameters. The array surv_ifn stores the expected survival probabilities
for patients who received interferon over a period of 10 years. Similarly, surv_noifn stores the expected
survival probabilities for patients who did not received interferon.

The BEGINNODATA and ENDNODATA statements enclose the calculations for the survival probabilities.
The assignment statements proceeding the MODEL statement calculate the log likelihood for the Weibull
survival model. The MODEL statement specifies the log likelihood that you programmed.

An examination of the trace plots for ˛, ˇ0, and ˇ1 (not displayed here) reveals that the sampling has gone
well, with no particular concerns about the convergence or mixing of the chains.

Output 61.13.4 displays the posterior summary statistics.
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Output 61.13.4 Posterior Summary Statistics

Weibull Survival Model

The MCMC Procedure

Weibull Survival Model

The MCMC Procedure

Posterior Summaries

Percentiles

Parameter N Mean
Standard
Deviation 25 50 75

alpha 10000 0.7891 0.0539 0.7514 0.7880 0.8260

beta0 10000 -1.3581 0.1369 -1.4519 -1.3597 -1.2624

beta1 10000 -0.2512 0.1541 -0.3541 -0.2606 -0.1521

surv_ifn1 10000 0.8175 0.0227 0.8027 0.8187 0.8331

surv_ifn2 10000 0.7066 0.0291 0.6874 0.7072 0.7265

surv_ifn3 10000 0.6203 0.0331 0.5983 0.6205 0.6436

surv_ifn4 10000 0.5495 0.0360 0.5253 0.5497 0.5747

surv_ifn5 10000 0.4899 0.0381 0.4635 0.4895 0.5170

surv_ifn6 10000 0.4390 0.0396 0.4118 0.4382 0.4666

surv_ifn7 10000 0.3949 0.0406 0.3669 0.3934 0.4223

surv_ifn8 10000 0.3564 0.0413 0.3281 0.3551 0.3840

surv_ifn9 10000 0.3225 0.0416 0.2940 0.3212 0.3505

surv_ifn10 10000 0.2926 0.0416 0.2638 0.2911 0.3208

surv_noifn1 10000 0.7719 0.0274 0.7535 0.7736 0.7913

surv_noifn2 10000 0.6401 0.0339 0.6171 0.6415 0.6635

surv_noifn3 10000 0.5415 0.0374 0.5161 0.5428 0.5662

surv_noifn4 10000 0.4635 0.0395 0.4365 0.4636 0.4890

surv_noifn5 10000 0.4001 0.0406 0.3725 0.3995 0.4261

surv_noifn6 10000 0.3475 0.0411 0.3195 0.3459 0.3745

surv_noifn7 10000 0.3034 0.0411 0.2758 0.3012 0.3299

surv_noifn8 10000 0.2661 0.0406 0.2384 0.2630 0.2921

surv_noifn9 10000 0.2342 0.0399 0.2069 0.2311 0.2592

surv_noifn10 10000 0.2069 0.0389 0.1803 0.2035 0.2312

An examination of the ˛ parameter reveals that the exponential model might not be inappropriate here. The
estimated posterior mean of ˛ is 0.7856 with a posterior standard deviation of 0.0533. As noted previously, if
˛ D 1, then the Weibull survival distribution is the exponential survival distribution. With these data, you can
see that the evidence is in favor of ˛ < 1. The value 1 is almost 4 posterior standard deviations away from
the posterior mean. The following statements compute the posterior probability of the hypothesis that ˛ < 1::

proc format;
value alphafmt low-<1 = 'alpha < 1' 1-high = 'alpha >= 1';

run;

proc freq data=weisurvout;
tables alpha /nocum;
format alpha alphafmt.;

run;
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The PROC FREQ results are shown in Output 61.13.5.

Output 61.13.5 Frequency Analysis of ˛

Weibull Survival Model

The FREQ Procedure

Weibull Survival Model

The FREQ Procedure

alpha Frequency Percent

alpha < 1 9998 99.98

alpha >= 1 2 0.02

The output from PROC FREQ shows that 100% of the 10000 simulated values for ˛ are less than 1. This is a
very strong indication that the exponential model is too restrictive to model these data well.

You can examine the estimated survival probabilities over time individually, either through the posterior
summary statistics or by looking at the kernel density plots. Alternatively, you might find it more informative
to examine these quantities in relation with each other. For example, you can use a side-by-side box plot
to display these posterior distributions by using PROC SGPLOT (“Statistical Graphics Using ODS” on
page 585 in Chapter 21, “Statistical Graphics Using ODS,”). First you need to take the posterior output
data set Weisurvout and stack variables that you want to plot. For example, to plot all the survival times for
patients who received interferon, you want to stack surv_inf1–surv_inf10. The macro %Stackdata takes an
input data set dataset, stacks the wanted variables vars, and outputs them into the output data set.

The following statements define the macro stackdata:

/* define macro stackdata */
%macro StackData(dataset,output,vars);

data &output;
length var $ 32;
if 0 then set &dataset nobs=nnn;
array lll[*] &vars;
do jjj=1 to dim(lll);

do iii=1 to nnn;
set &dataset point=iii;
value = lll[jjj];
call vname(lll[jjj],var);
output;

end;
end;
stop;
keep var value;

run;
%mend;

/* stack the surv_ifn variables and saved them to survifn. */
%StackData(weisurvout, survifn, surv_ifn1-surv_ifn10);
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Once you stack the data, use PROC SGPLOT to create the side-by-side box plots. The following statements
generate Output 61.13.6:

proc sgplot data=survifn;
yaxis label='Survival Probability' values=(0 to 1 by 0.2);
xaxis label='Time' discreteorder=data;
vbox value / category=var;

run;

Output 61.13.6 Side-by-Side Box Plots of Estimated Survival Probabilities

There is a clear decreasing trend over time of the survival probabilities for patients who receive the treatment.
You might ask how does this group compare to those who did not receive the treatment? In this case, you
want to overlay the two predicted curves for the two groups of patients and add the corresponding credible
interval. See Output 61.13.7. To generate the graph, you first take the posterior mean estimates from the
ODS output table ds and the lower and upper HPD interval estimates is, store them in the data set Surv, and
draw the figure by using PROC SGPLOT.
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The following statements generate data set Surv:

data surv;
set ds;
if _n_ >= 4 then do;

set is point=_n_;
group = 'with interferon ';
time = _n_ - 3;
if time > 10 then do;

time = time - 10;
group = 'without interferon';

end;
output;

end;
keep time group mean hpdlower hpdupper;

run;

The following SGPLOT statements generate Output 61.13.7:

proc sgplot data=surv;
yaxis label="Survival Probability" values=(0 to 1 by 0.2);
series x=time y=mean / group = group name='i';
band x=time lower=hpdlower upper=hpdupper / group = group transparency=0.7;
keylegend 'i';

run;
ods graphics off;

In Output 61.13.7, the solid line is the survival curve for patients who received interferon; the shaded region
centers at the solid line is the 95% HPD intervals; the medium-dashed line is the survival curve for patients
who did not receive interferon; and the shaded region around the dashed line is the corresponding 95% HPD
intervals.

Output 61.13.7 Predicted Survival Probability Curves with 95% HPD Intervals
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The plot suggests that there is an effect of using interferon because patients who received interferon have
sustained better survival probabilities than those who did not. However, the effect might not be very
significant, as the 95% credible intervals of the two groups do overlap. For more on these interferon studies,
see Ibrahim, Chen, and Lipsitz (2001).

Weibull or Exponential?

Although the evidence from the Weibull model fit shows that the posterior distribution of ˛ has a significant
amount of density mass less than 1, suggesting that the Weibull model is a better fit to the data than the
exponential model, you might still be interested in comparing the two models more formally. You can use the
Bayesian model selection criterion (see the section “Deviance Information Criterion (DIC)” on page 153 in
Chapter 7, “Introduction to Bayesian Analysis Procedures,”) to determine which model fits the data better.

The PROC MCMC DIC option requests the calculation of DIC, and the procedure displays the ODS output
table DIC. The table includes the posterior mean of the deviation, D.�/, deviation at the estimate, D.�/,
effective number of parameters, pD , and DIC. It is important to remember that the standardizing term,
p.y/, which is a function of the data alone, is not taken into account in calculating the DIC. This term is
irrelevant only if you compare two models that have the same likelihood function. If you do not have identical
likelihood functions, using DIC for model selection purposes without taking this standardizing term into
account can produce incorrect results. In addition, you want to be careful in interpreting the DIC whenever
you use the GENERAL function to construct the log-likelihood, as the case in this example. Using the
GENERAL function, you can obtain identical posterior samples with two log-likelihood functions that differ
only by a constant. This difference translates to a difference in the DIC calculation, which could be very
misleading.

If ˛ D 1, the Weibull likelihood is identical to the exponential likelihood. It is safe in this case to directly
compare DICs from these two models. However, if you do not want to work out the mathematical detail or
you are uncertain of the equivalence, a better way of comparing the DICs is to run the Weibull model twice:
once with ˛ being a parameter and once with ˛ D 1. This ensures that the likelihood functions are the same,
and the DIC comparison is meaningful.

The following statements fit a Weibull model:

title 'Model Comparison between Weibull and Exponential';
proc mcmc data=e1684 outpost=weisurvout nmc=10000 seed=4861 dic;

ods select dic;
parms alpha 1 (beta0 beta1) 0;
prior beta: ~ normal(0, var=10000);
prior alpha ~ gamma(0.001,is=0.001);

lambda = beta0 + beta1*ifn;
llike = v*(log(alpha) + (alpha-1)*log(t) + lambda) -

exp(lambda)*(t**alpha);
model general(llike);

run;
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The DIC option requests the calculation of DIC, and the table is displayed in Output 61.13.8.

Output 61.13.8 DIC Table from the Weibull Model

Model Comparison between Weibull and Exponential

The MCMC Procedure

Model Comparison between Weibull and Exponential

The MCMC Procedure

Deviance Information Criterion

Dbar (posterior mean of deviance) 858.623

Dmean (deviance evaluated at posterior mean) 855.633

pD (effective number of parameters) 2.990

DIC (smaller is better) 861.614

The GENERAL or DGENERAL function is used in
this program. To make meaningful comparisons,
you must ensure that all GENERAL or DGENERAL
functions include appropriate normalizing
constants. Otherwise,
DIC comparisons can be misleading.

The note in Output 61.13.8 reminds you of the importance of ensuring identical likelihood functions when
you use the GENERAL function. The DIC value is 861.6.

Based on the same set of code, the following statements fit an exponential model by setting ˛ D 1:

proc mcmc data=e1684 outpost=expsurvout nmc=10000 seed=4861 dic;
ods select dic;
parms beta0 beta1 0;
prior beta: ~ normal(0, var=10000);
begincnst;

alpha = 1;
endcnst;

lambda = beta0 + beta1*ifn;
llike = v*(log(alpha) + (alpha-1)*log(t) + lambda) -

exp(lambda)*(t**alpha);
model general(llike);

run;

Output 61.13.9 displays the DIC table.

Output 61.13.9 DIC Table from the Exponential Model

Model Comparison between Weibull and Exponential

The MCMC Procedure

Model Comparison between Weibull and Exponential

The MCMC Procedure

Deviance Information Criterion

Dbar (posterior mean of deviance) 870.133

Dmean (deviance evaluated at posterior mean) 868.190

pD (effective number of parameters) 1.943

DIC (smaller is better) 872.075

The GENERAL or DGENERAL function is used in
this program. To make meaningful comparisons,
you must ensure that all GENERAL or DGENERAL
functions include appropriate normalizing
constants. Otherwise,
DIC comparisons can be misleading.
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The DIC value of 872.075 is greater than 861. A smaller DIC indicates a better fit to the data; hence, you
can conclude that the Weibull model is more appropriate for this data set. You can see the equivalencing of
the exponential model you fitted in “Exponential Survival Model” on page 4924 by running the following
comparison.

The following statements are taken from the section “Exponential Survival Model” on page 4924, and they fit
the same exponential model:

proc mcmc data=e1684 outpost=expsurvout1 nmc=10000 seed=4861 dic;
ods select none;
parms (beta0 beta1) 0;
prior beta: ~ normal(0, sd = 10000);
l_h = beta0 + beta1*ifn;
llike = v*(l_h) - t*exp(l_h);
model general(llike);

run;

proc compare data=expsurvout compare=expsurvout1;
var beta0 beta1;

run;

The posterior samples of beta0 and beta1 in the data set Expsurvout1 are identical to those in the data set
Expsurvout. The comparison results are not shown here.

Example 61.14: Time Independent Cox Model
This example has two purposes. One is to illustrate how to use PROC MCMC to fit a Cox proportional hazard
model. Specifically, the time independent model. See “Example 61.15: Time Dependent Cox Model” on
page 4942 for an example on fitting time dependent Cox model. Note that it is much easier to fit a Bayesian
Cox model by specifying the BAYES statement in PROC PHREG (see Chapter 73, “The PHREG Procedure”).
If you are interested only in fitting a Cox regression survival model, you should use PROC PHREG.

The second objective of this example is to demonstrate how to model data that are not independent. That is
the case where the likelihood for observation i depends on other observations in the data set. In other words,
if you work with a likelihood function that cannot be broken down simply as L.y/ D

Qn
i L.yi /, you can use

this example for illustrative purposes. By default, PROC MCMC assumes that the programming statements
and model specification is intended for a single row of observations in the data set. The Cox model is chosen
because the complexity in the data structure requires more elaborate coding.

The Cox proportional hazard model is widely used in the analysis of survival time, failure time, or other
duration data to explain the effect of exogenous explanatory variables. The data set used in this example
is taken from Krall, Uthoff, and Harley (1975), who analyzed data from a study on myeloma in which
researchers treated 65 patients with alkylating agents. Of those patients, 48 died during the study and 17
survived. The following statements generate the data set that is used in this example:

data Myeloma;
input Time Vstatus LogBUN HGB Platelet Age LogWBC Frac

LogPBM Protein SCalc;
label Time='survival time'

VStatus='0=alive 1=dead';
datalines;
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1.25 1 2.2175 9.4 1 67 3.6628 1 1.9542 12 10
1.25 1 1.9395 12.0 1 38 3.9868 1 1.9542 20 18
2.00 1 1.5185 9.8 1 81 3.8751 1 2.0000 2 15
2.00 1 1.7482 11.3 0 75 3.8062 1 1.2553 0 12

... more lines ...

77.00 0 1.0792 14.0 1 60 3.6812 0 0.9542 0 12
;

proc sort data = Myeloma;
by descending time;

run;

data _null_;
set Myeloma nobs=_n;
call symputx('N', _n);
stop;

run;

The variable Time represents the survival time in months from diagnosis. The variable VStatus consists
of two values, 0 and 1, indicating whether the patient was alive or dead, respectively, at the end of the
study. If the value of VStatus is 0, the corresponding value of Time is censored. The variables thought
to be related to survival are LogBUN (log.BUN/ at diagnosis), HGB (hemoglobin at diagnosis), Platelet
(platelets at diagnosis: 0=abnormal, 1=normal), Age (age at diagnosis in years), LogWBC (log(WBC) at
diagnosis), Frac (fractures at diagnosis: 0=none, 1=present), LogPBM (log percentage of plasma cells in
bone marrow), Protein (proteinuria at diagnosis), and SCalc (serum calcium at diagnosis). Interest lies in
identifying important prognostic factors from these explanatory variables. In addition, there are 65 (&n)
observations in the data set Myeloma. The likelihood used in these examples is the Breslow likelihood:

L.ˇ/ D

nY
iD1

24 diY
jD1

exp.ˇ0Zj .ti //P
l2Ri exp.ˇ

0Zl.ti //

35vi

where

• ˇ is the vector parameters

• n is the total number of observations in the data set

• ti is the ith time, which can be either event time or censored time

• Zl.t/ is the vector explanatory variables for the lth individual at time t

• di is the multiplicity of failures at ti . If there are no ties in time, di is 1 for all i.

• Ri is the risk set for the ith time ti , which includes all observations that have survival time greater than
or equal to ti

• vi indicates whether the patient is censored. The value 0 corresponds to censoring. Note that the
censored time ti enters the likelihood function only through the formation of the risk set Ri .
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Priors on the coefficients are independent normal priors with very large variance (1e6). Throughout this
example, the symbol bZ represents the regression term ˇ0Zj .ti / in the likelihood, and the symbol S represents
the term

P
l2Ri exp.ˇ

0Zl.ti //.

The regression model considered in this example uses the following formula:

ˇ0Zj D ˇ1logbunC ˇ2hgbC ˇ3plateletC ˇ4ageC

ˇ5logwbcC ˇ6fracC ˇ7logpbmC ˇ8proteinC ˇ9scalc

The hard part of coding this in PROC MCMC is the construction of the risk set Ri . Ri contains all
observations that have survival time greater than or equal to ti . First suppose that there are no ties in
time. Sorting the data set by the variable time into descending order gives you Ri that is in the right order.
Observation i’s risk set consists of all data points j such that j <D i in the data set. You can cumulatively
increment S in the SAS statements.

With potential ties in time, at observation i, you need to know whether any subsequent observations, i + 1
and so on, have the same survival time as ti . Suppose that the ith, the i + 1, and the i + 2 observations all
have the same survival time; all three of them need to be included in the risk set calculation. This means
that to calculate the likelihood for some observations, you need to access both the previous and subsequent
observations in the data set. There are two ways to do this. One is to use the LAG function; the other is to
use the option JOINTMODEL.

The LAG function returns values from a queue (see SAS Language Reference: Dictionary). So for the ith
observation, you can use LAG1 to access variables from the previous row in the data set. You want to
compare the lag1 value of time with the current time value. Depending on whether the two time values are
equal, you can add correction terms in the calculation for the risk set S.

The following statements sort the data set by time into descending order, with the largest survival time on top:

title 'Cox Model with Time Independent Covariates';
proc freq data=myeloma;

ods select none;
tables time / out=freqs;

run;

proc sort data = freqs;
by descending time;

run;

data myelomaM;
set myeloma;
ind = _N_;

run;
ods select all;

The following statements run PROC MCMC and produce Output 61.14.1:

proc mcmc data=myelomaM outpost=outi nmc=50000 ntu=3000 seed=1;
ods select PostSumInt;
array beta[9];
parms beta: 0;
prior beta: ~ normal(0, var=1e6);
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bZ = beta1 * LogBUN + beta2 * HGB + beta3 * Platelet
+ beta4 * Age + beta5 * LogWBC + beta6 * Frac +
beta7 * LogPBM + beta8 * Protein + beta9 * SCalc;

if ind = 1 then do; /* first observation */
S = exp(bZ);
l = vstatus * bZ;
v = vstatus;

end;
else if (1 < ind < &N) then do;

if (lag1(time) ne time) then do;
l = vstatus * bZ;
l = l - v * log(S); /* correct the loglike value */
v = vstatus; /* reset v count value */
S = S + exp(bZ);

end;
else do; /* still a tie */

l = vstatus * bZ;
S = S + exp(bZ);
v = v + vstatus; /* add # of nonsensored values */

end;
end;
else do; /* last observation */

if (lag1(time) ne time) then do;
l = - v * log(S); /* correct the loglike value */
S = S + exp(bZ);
l = l + vstatus * (bZ - log(S));

end;
else do;

S = S + exp(bZ);
l = vstatus * bZ - (v + vstatus) * log(S);

end;
end;
model general(l);

run;

The symbol bZ is the regression term, which is independent of the time variable. The symbol ind indexes
observation numbers in the data set. The symbol S keeps track of the risk set term for every observation. The
symbol l calculates the log likelihood for each observation. Note that the value of l for observation ind is not
necessarily the correct log likelihood value for that observation, especially in cases where the observation ind
is in the tied times. Correction terms are added to subsequent values of l when the time variable becomes
different in order to make up the difference. The total sum of l calculated over the entire data set is correct.
The symbol v keeps track of the sum of vstatus, as censored data do not enter the likelihood and need to be
taken out.

You use the function LAG1 to detect if two adjacent time values are different. If they are, you know that
the current observation is in a different risk set than the last one. You then need to add a correction term
to the log likelihood value of l. The IF-ELSE statements break the observations into three parts: the first
observation, the last observation and everything in the middle.
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Output 61.14.1 Summary Statistics on Cox Model with Time Independent Explanatory Variables and Ties
in the Survival Time, Using PROC MCMC

Cox Model with Time Independent Covariates

The MCMC Procedure

Cox Model with Time Independent Covariates

The MCMC Procedure

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

beta1 50000 1.7600 0.6441 0.5117 3.0465

beta2 50000 -0.1308 0.0720 -0.2746 0.00524

beta3 50000 -0.2017 0.5148 -1.2394 0.7984

beta4 50000 -0.0126 0.0194 -0.0512 0.0245

beta5 50000 0.3373 0.7256 -1.1124 1.7291

beta6 50000 0.3992 0.4337 -0.4385 1.2575

beta7 50000 0.3749 0.4861 -0.5423 1.3689

beta8 50000 0.0106 0.0271 -0.0451 0.0616

beta9 50000 0.1272 0.1064 -0.0763 0.3406

An alternative to using the LAG function is to use the PROC option JOINTMODEL. With this option,
the log-likelihood function you specify applies not to a single observation but to the entire data set. See
“Modeling Joint Likelihood” on page 4827 for details on how to properly use this option. The basic idea is
that you store all necessary data set variables in arrays and use only the arrays to construct the log likelihood
of the entire data set. This approach works here because for every observation i, you can use index to access
different values of arrays to construct the risk set S. To use the JOINTMODEL option, you need to do some
additional data manipulation. You want to create a stop variable for each observation, which indicates the
observation number that should be included in S for that observation. For example, if observations 4, 5, 6 all
have the same survival time, the stop value for all of them is 6.

The following statements generate a new data set MyelomaM that contains the stop variable:

data myelomaM;
merge myelomaM freqs(drop=percent);
by descending time;
retain stop;
if first.time then do;

stop = _n_ + count - 1;
end;

run;

The following SAS program fits the same Cox model by using the JOINTMODEL option:

data a;
run;

proc mcmc data=a outpost=outa nmc=50000 ntu=3000 seed=1 jointmodel;
ods select none;
array beta[9];
array data[1] / nosymbols;
array timeA[1] / nosymbols;
array vstatusA[1] / nosymbols;
array stopA[1] / nosymbols;
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array bZ[&n];
array S[&n];

begincnst;
rc = read_array("myelomam", data, "logbun", "hgb", "platelet",

"age", "logwbc", "frac", "logpbm", "protein", "scalc");
rc = read_array("myelomam", timeA, "time");
rc = read_array("myelomam", vstatusA, "vstatus");
rc = read_array("myelomam", stopA, "stop");
endcnst;

parms (beta:) 0;
prior beta: ~ normal(0, var=1e6);

jl = 0;
/* calculate each bZ and cumulatively adding S as if there are no ties.*/
call mult(data, beta, bZ);
S[1] = exp(bZ[1]);
do i = 2 to &n;

S[i] = S[i-1] + exp(bZ[i]);
end;

do i = 1 to &n;
/* correct the S[i] term, when needed. */
if(stopA[i] > i) then do;

do j = (i+1) to stopA[i];
S[i] = S[i] + exp(bZ[j]);

end;
end;
jl = jl + vstatusA[i] * (bZ[i] - log(S[i]));

end;
model general(jl);

run;
ods select all;

No output tables were produced because this PROC MCMC run produces identical posterior samples as does
the previous example.

Because the JOINTMODEL option is specified here, you do not need to specify myelomaM as the input data
set. An empty data set a is used to speed up the procedure run.

Multiple ARRAY statements allocate array symbols that are used to store the parameters (beta), the response
and the covariates (data, timeA, vstatusA, and stopA), and the work space (bZ and S). The data, timeA,
vstatusA, and stopA arrays are declared with the /NOSYMBOLS option. This option enables PROC
MCMC to dynamically resize these arrays to match the dimensions of the input data set. See the section
“READ_ARRAY Function” on page 4764. The bZ and S arrays store the regression term and the risk set
term for every observation.

The BEGINCNST and ENDCNST statements enclose programming statements that read the data set variables
into these arrays. The rest of the programming statements construct the log likelihood for the entire data set.

The CALL MULT function calculates the regression term in the model and stores the result in the array bZ. In
the first DO loop, you sum the risk set term S as if there are no ties in time. This underevaluates some of the
S elements. For observations that have a tied time, you make the necessary correction to the corresponding
S values. The correction takes place in the second DO loop. Any observation that has a tied time also has
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a stopA[i] that is different from i. You add the right terms to S and sum up the joint log likelihood jl. The
MODEL statement specifies that the log likelihood takes on the value of jl.

To see that you get identical results from these two approaches, use PROC COMPARE to compare the
posterior samples from two runs:

proc compare data=outi compare=outa;
ods select comparesummary;
var beta1-beta9;

run;

The output is not shown here.

Generally, the JOINTMODEL option can be slightly faster than using the default setup. The savings come
from avoiding the overhead cost of accessing the data set repeatedly at every iteration. However, the speed
gain is not guaranteed because it largely depends on the efficiency of your programs.

PROC PHREG fits the same model, and you get very similar results to PROC MCMC. The following
statements fit the model using PROC PHREG and produce Output 61.14.2:

proc phreg data=Myeloma;
ods select PostSumInt;
model Time*VStatus(0)=LogBUN HGB Platelet Age LogWBC

Frac LogPBM Protein Scalc;
bayes seed=1 nmc=10000 outpost=phout;

run;

Output 61.14.2 Summary Statistics for Cox Model with Time Independent Explanatory Variables and Ties
in the Survival Time, Using PROC PHREG

Cox Model with Time Independent Covariates

The PHREG Procedure

Bayesian Analysis

Cox Model with Time Independent Covariates

The PHREG Procedure

Bayesian Analysis

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

LogBUN 10000 1.7610 0.6593 0.4107 2.9958

HGB 10000 -0.1279 0.0727 -0.2801 0.00599

Platelet 10000 -0.2179 0.5169 -1.1871 0.8341

Age 10000 -0.0130 0.0199 -0.0519 0.0251

LogWBC 10000 0.3150 0.7451 -1.1783 1.7483

Frac 10000 0.3766 0.4152 -0.4273 1.2021

LogPBM 10000 0.3792 0.4909 -0.5939 1.3241

Protein 10000 0.0102 0.0267 -0.0405 0.0637

SCalc 10000 0.1248 0.1062 -0.0846 0.3322

Example 61.15: Time Dependent Cox Model
This example uses the same Myeloma data set as in “Example 61.14: Time Independent Cox Model” on
page 4936, and illustrates the fitting of a time dependent Cox model. The following statements generate the
data set once again:
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data Myeloma;
input Time Vstatus LogBUN HGB Platelet Age LogWBC Frac

LogPBM Protein SCalc;
label Time='survival time'

VStatus='0=alive 1=dead';
datalines;

1.25 1 2.2175 9.4 1 67 3.6628 1 1.9542 12 10
1.25 1 1.9395 12.0 1 38 3.9868 1 1.9542 20 18
2.00 1 1.5185 9.8 1 81 3.8751 1 2.0000 2 15
2.00 1 1.7482 11.3 0 75 3.8062 1 1.2553 0 12

... more lines ...

77.00 0 1.0792 14.0 1 60 3.6812 0 0.9542 0 12
;

To model Zi .ti / as a function of the survival time, you can relate time ti to covariates by using this formula:

ˇ0Zj .ti / D .ˇ1 C ˇ2ti /logbunC .ˇ3 C ˇ4ti /hgbC .ˇ5 C ˇ6ti /platelet

For illustrational purposes, only three explanatory variables, LOGBUN, HBG, and PLATELET, are used in
this example.

Since Zj .ti / depends on ti , every term in the summation of
P
l2Ri exp.ˇ

0Zl.ti // is a product of the current
time ti and all observations that are in the risk set. You can use the JOINTMODEL option, as in the last
example, or you can modify the input data set such that every row contains not only the current observation
but also all observations that are in the corresponding risk set. When you construct the log likelihood for
each observation, you have all the relevant data at your disposal.

The following statements illustrate how you can create a new data set with different risk sets at different rows:

title 'Cox Model with Time Dependent Covariates';
proc sort data = Myeloma;

by descending time;
run;

data _null_;
set Myeloma nobs=_n;
call symputx('N', _n);
stop;

run;

ods select none;
proc freq data=myeloma;

tables time / out=freqs;
run;
ods select all;

proc sort data = freqs;
by descending time;

run;
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data myelomaM;
set myeloma;
ind = _N_;

run;

data myelomaM;
merge myelomaM freqs(drop=percent); by descending time;
retain stop;
if first.time then do;

stop = _n_ + count - 1;
end;

run;

%macro array(list);
%global mcmcarray;
%let mcmcarray = ;
%do i = 1 %to 32000;

%let v = %scan(&list, &i, %str( ));
%if %nrbquote(&v) ne %then %do;

array _&v[&n];
%let mcmcarray = &mcmcarray array _&v[&n] _&v.1 - _&v.&n%str(;);
do i = 1 to stop;

set myelomaM(keep=&v) point=i;
_&v[i] = &v;

end;
%end;
%else %let i = 32001;

%end;
%mend;

data z;
set myelomaM;
%array(logbun hgb platelet);
drop vstatus logbun hgb platelet count stop;

run;

data myelomaM;
merge myelomaM z; by descending time;

run;

The data set MyelomaM contains 65 observations and 209 variables. For each observation, you see added
variables stop, _logbun1 through _logbun65, _hgb1 through _hgb65, and _platelet1 through _platelet65.
The variable stop indicates the number of observations that are in the risk set of the current observation.
The rest are transposed values of model covariates of the entire data set. The data set contains a number
of missing values. This is due to the fact that only the relevant observations are kept, such as _logbun1 to
_logbunstop. The rest of the cells are filled in with missing values. For example, the first observation has a
unique survival time of 92 and stop is 1, making it a risk set of itself. You see nonmissing values only in
_logbun1, _hgb1, and _platelet1.
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The following statements fit the Cox model by using PROC MCMC:

proc mcmc data=myelomaM outpost=outi nmc=50000 ntu=3000 seed=17
missing=ac;

ods select PostSumInt;
array beta[6];
&mcmcarray
parms (beta:) 0;
prior beta: ~ normal(0, prec=1e-6);

b = (beta1 + beta2 * time) * logbun +
(beta3 + beta4 * time) * hgb +
(beta5 + beta6 * time) * platelet;

S = 0;
do i = 1 to stop;

S = S + exp( (beta1 + beta2 * time) * _logbun[i] +
(beta3 + beta4 * time) * _hgb[i] +
(beta5 + beta6 * time) * _platelet[i]);

end;
loglike = vstatus * (b - log(S));

model general(loglike);
run;

Note that the option MISSING= is set to AC. This is due to missing cells in the input data set. You must use
this option so that PROC MCMC retains observations that contain missing values.

The macro variable &mcmcarray is defined in the earlier part in this example. You can use a %put statement
to print its value:

%put &mcmcarray;

This statement prints the following:

array _logbun[65] _logbun1 - _logbun65; array _hgb[65] _hgb1 - _hgb65; array
_platelet[65] _platelet1 - _platelet65;

The macro uses the ARRAY statement to allocate three arrays, each of which links their corresponding data
set variables. This makes it easier to reference these data set variables in the program. The PARMS statement
puts all the parameters in the same block. The PRIOR statement gives them normal priors with large variance.
The symbol b is the regression term, and S is cumulatively added from 1 to stop for each observation in
the DO loop. The symbol loglike completes the construction of log likelihood for each observation and the
MODEL statement completes the model specification.

Posterior summary and interval statistics are shown in Output 61.15.1.
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Output 61.15.1 Summary Statistics on Cox Model with Time Dependent Explanatory Variables and Ties in
the Survival Time, Using PROC MCMC

Cox Model with Time Dependent Covariates

The MCMC Procedure

Cox Model with Time Dependent Covariates

The MCMC Procedure

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

beta1 50000 3.2397 0.8226 1.6664 4.8752

beta2 50000 -0.1411 0.0471 -0.2294 -0.0458

beta3 50000 -0.0369 0.1017 -0.2272 0.1685

beta4 50000 -0.00409 0.00360 -0.0112 0.00264

beta5 50000 0.3548 0.7359 -1.0394 1.8100

beta6 50000 -0.0417 0.0359 -0.1122 0.0269

You can also use the option JOINTMODEL to get the same inference and avoid transposing the data for
every observation:

proc mcmc data=myelomaM outpost=outa nmc=50000 ntu=3000 seed=17 jointmodel;
ods select none;
array beta[6]; array timeA[&n]; array vstatusA[&n];
array logbunA[&n]; array hgbA[&n]; array plateletA[&n];
array stopA[&n]; array bZ[&n]; array S[&n];

begincnst;
timeA[ind]=time; vstatusA[ind]=vstatus;
logbunA[ind]=logbun; hgbA[ind]=hgb;
plateletA[ind]=platelet; stopA[ind]=stop;

endcnst;

parms (beta:) 0;
prior beta: ~ normal(0, prec=1e-6);

jl = 0;
do i = 1 to &n;

v1 = beta1 + beta2 * timeA[i];
v2 = beta3 + beta4 * timeA[i];
v3 = beta5 + beta6 * timeA[i];
bZ[i] = v1 * logbunA[i] + v2 * hgbA[i] + v3 * plateletA[i];

/* sum over risk set without considering ties in time. */
S[i] = exp(bZ[i]);
if (i > 1) then do;

do j = 1 to (i-1);
b1 = v1 * logbunA[j] + v2 * hgbA[j] + v3 * plateletA[j];
S[i] = S[i] + exp(b1);

end;
end;

end;
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/* make correction to the risk set due to ties in time. */
do i = 1 to &n;

if(stopA[i] > i) then do;
v1 = beta1 + beta2 * timeA[i];
v2 = beta3 + beta4 * timeA[i];
v3 = beta5 + beta6 * timeA[i];
do j = (i+1) to stopA[i];

b1 = v1 * logbunA[j] + v2 * hgbA[j] + v3 * plateletA[j];
S[i] = S[i] + exp(b1);

end;
end;
jl = jl + vstatusA[i] * (bZ[i] - log(S[i]));

end;
model general(jl);

run;

The multiple ARRAY statements allocate array symbols that are used to store the parameters (beta), the
response (timeA), the covariates (vstatusA, logbunA, hgbA, plateletA, and stopA), and work space (bZ and
S). The bZ and S arrays store the regression term and the risk set term for every observation. Programming
statements in the BEGINCNST and ENDCNST statements input the response and covariates from the data
set to the arrays.

Using the same technique shown in the example “Example 61.14: Time Independent Cox Model” on
page 4936, the next DO loop calculates the regression term and corresponding S for every observation,
pretending that there are no ties in time. This means that the risk set for observation i involves only observation
1 to i. The correction terms are added to the corresponding S[i] in the second DO loop, conditional on whether
the stop variable is greater than the observation count itself. The symbol jl cumulatively adds the log
likelihood for the entire data set, and the MODEL statement specifies the joint log-likelihood function.

The following statements run PROC COMPARE and show that the output data set outa contains identical
posterior samples as outi:

proc compare data=outi compare=outa;
ods select comparesummary;
var beta1-beta6;

run;

The results are not shown here.

The following statements use PROC PHREG to fit the same time dependent Cox model:

proc phreg data=Myeloma;
ods select PostSumInt;
model Time*VStatus(0)=LogBUN z2 hgb z3 platelet z4;
z2 = Time*logbun;
z3 = Time*hgb;
z4 = Time*platelet;
bayes seed=1 nmc=10000 outpost=phout;

run;

Coding is simpler than PROC MCMC. See Output 61.15.2 for posterior summary and interval statistics:
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Output 61.15.2 Summary Statistics on Cox Model with Time Dependent Explanatory Variables and Ties in
the Survival Time, Using PROC PHREG

Cox Model with Time Dependent Covariates

The PHREG Procedure

Bayesian Analysis

Cox Model with Time Dependent Covariates

The PHREG Procedure

Bayesian Analysis

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

LogBUN 10000 3.2423 0.8311 1.5925 4.8582

z2 10000 -0.1401 0.0482 -0.2354 -0.0492

HGB 10000 -0.0382 0.1009 -0.2331 0.1603

z3 10000 -0.00407 0.00363 -0.0109 0.00322

Platelet 10000 0.3778 0.7524 -1.1342 1.7968

z4 10000 -0.0419 0.0364 -0.1142 0.0274

Example 61.16: Piecewise Exponential Frailty Model
This example illustrates how to fit a piecewise exponential frailty model using PROC MCMC. Part of the
notation and presentation in this example follows Clayton (1991) and the Luek example in Spiegelhalter et al.
(1996a).

Generally speaking, the proportional hazards model assumes the hazard function,

�i .t jzi / D �0.t/ exp
˚
ˇ0zi

	
where i D 1 � � �n indexes subject, �0.t/ is the baseline hazard function, and zi are the covariates for subject
i. If you define Ni .t/ to be the number of observed failures of the ith subject up to time t, then the hazard
function for the ith subject can be seen as a special case of a multiplicative intensity model (Clayton 1991).
The intensity process for Ni .t/ becomes

Ii .t/ D Yi .t/�0.t/ exp.ˇ0zi /

where Yi .t/ indicates observation of the subject at time t (taking the value of 1 if the subject is observed and
0 otherwise). Under noninformative censoring, the corresponding likelihood is proportional to

nY
iD1

24Y
t�0

Ii .t/

35dNi .t/ exp �� Z
t�0

Ii .t/dt

�

where dNi .t/ is the increment of Ni .t/ over the small time interval Œt; t C dt/: it takes a value of 1 if the
subject i fails in the time interval, 0 otherwise. This is a Poisson kernel with the random variable being the
increments of dNi and the means Ii .t/dt

dNi .t/ � Poisson.Ii .t/dt/

where

Ii .t/dt D Yi .t/ exp.ˇ0z/dƒ0.t/
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and

ƒ0.t/ D

Z t

0

�0.u/du:

The integral is the increment in the integrated baseline hazard function that occurs during the time interval
Œt; t C dt/.

This formulation provides an alternative way to fit a piecewise exponential model. You partition the time axis
to a few intervals, where each interval has its own hazard rate, ƒ0.t/. You count the Yi .t/ and dNi .t/ in
each interval, and fit a Poisson model to each count.

The following DATA step creates the data set Blind (Lin 1994) that represents 197 diabetic patients who have
a high risk of experiencing blindness in both eyes as defined by DRS criteria:

title 'Piecewise Exponential Model';
data Blind;

input ID Time Status DiabeticType Treatment @@;
datalines;
5 46.23 0 1 1 5 46.23 0 1 0 14 42.50 0 0 1 14 31.30 1 0 0
16 42.27 0 0 1 16 42.27 0 0 0 25 20.60 0 0 1 25 20.60 0 0 0
29 38.77 0 0 1 29 0.30 1 0 0 46 65.23 0 0 1 46 54.27 1 0 0
49 63.50 0 0 1 49 10.80 1 0 0 56 23.17 0 0 1 56 23.17 0 0 0

... more lines ...

1705 8.00 0 0 1 1705 8.00 0 0 0 1717 51.60 0 1 1 1717 42.33 1 1 0
1727 49.97 0 1 1 1727 2.90 1 1 0 1746 45.90 0 0 1 1746 1.43 1 0 0
1749 41.93 0 1 1 1749 41.93 0 1 0
;

One eye of each patient is treated with laser photocoagulation. The hypothesis of interest is whether the laser
treatment delays the occurrence of blindness. The following variables are included in Blind:

• ID, patient’s identification

• Time, failure time

• Status, event indicator (0=censored and 1=uncensored)

• Treatment, treatment received (1=laser photocoagulation and 0=otherwise)

• DiabeticType, type of diabetes (0=juvenile onset with age of onset at 20 or under, and 1= adult onset
with age of onset over 20)

For illustrational purposes, a piecewise exponential model that ignores the patient-level frailties is first fit
to the entire data set. The formulation of the Poisson counting process makes it straightforward to add the
frailty terms, as it is demonstrated later.
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The following statements create a partition (of length 8) along the time axis, with s0 < s1 < s2 < � � � < sJ ,
with s0 D 0:1 < yi and sJ D 80 > yi for all i. The time intervals are stored in the Partition data set:

data partition;
input int_1-int_9;
datalines;
0.1 6.545 13.95 26.47 38.8 45.88 54.35 62 80

;

To obtain reasonable estimates, placing an equal number of observations in each interval is recommended.
You can find the partition points by calculating the percentile statistics of the time variable (for example, by
using the UNIVARIATE procedure).

The following regression model and prior distributions are used in the analysis:

ˇ0zi D ˇ1treatmentC ˇ2diabetictypeC ˇ3treatment * diabetictype

ˇ1; ˇ2; ˇ3 � normal.0; var D 1e6/

�j � gamma.shape D 0:01; iscale D 0:01/ for j D 1 � � � 8

The following statements calculate Yi .t/ for each observation i, at every time point t in the Partition data set.
The statements also find the observed failure time interval, dNi .t/, for each observation:

%let n = 8;
data _a;

set blind;
if _n_ eq 1 then set partition;
array int[*] int_:;
array Y[&n];
array dN[&n];
do k = 1 to (dim(int)-1);

Y[k] = (time - int[k] + 0.001 >= 0);
dN[k] = Y[k] * ( int[k+1] - time - 0.001 >= 0) * status;

end;
output;
drop int_: k;

run;

The DATA step reads in the Blind data set. At the first observation, it also reads in the Partition data set.
The first ARRAY statement creates the int array and name the elements int_:. Because the names match the
variable names in the Partition data set, all values of the int_: variables (there is only one observation) in the
Partition data set are therefore stored in the int array. The next two ARRAY statements create arrays Y and
dN, each with length 8. They store values of Yi .t/ and dNi .t/, resulting from each failure time in the Blind
data set.

The following statements print the first 10 observations of the constructed data set _a and display them in
Output 61.16.1:

proc print data=_a(obs=10);
run;
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Output 61.16.1 First 10 Observations of the Data Set _a

Piecewise Exponential ModelPiecewise Exponential Model

Obs ID Time Status DiabeticType Treatment Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 dN1 dN2 dN3 dN4 dN5 dN6 dN7 dN8

1 5 46.23 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

2 5 46.23 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

3 14 42.50 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

4 14 31.30 1 0 0 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0

5 16 42.27 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

6 16 42.27 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

7 25 20.60 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

8 25 20.60 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

9 29 38.77 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

10 29 0.30 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

The first subject in _a experienced blindness in the left eye at time 46.23, and the time falls in the sixth
interval as defined in the Partition data set. Therefore, Y1 through Y6 all take a value of 1, and Y7 and Y8 are
0. The variable dN# takes on a value of 1 if the subject is observed to go blind in that interval. Since the
first observation is censored (status == 1), the actual failure time is unknown. Hence all dN# are 0. The first
observed failure time occurs in observation number 4 (the right eye of the second subject), where the time
variable takes a value of 31.30, Y1 through Y4 are 1, and dN4 is 1.

Note that each observation in the _a data set has 8 Y and 8 dN, meaning that you would need eight MODEL
statements in a PROC MCMC call, each for a Poisson likelihood. Alternatively, you can expand _a, put one
Y and one dN in every observation, and fit the data using a single MODEL statement in PROC MCMC. The
following statements expand the data set _a and save the results in the data set _b:

data _b;
set _a;
array y[*] y:;
array dn[*] dn:;
do i = 1 to (dim(y));

y_val = y[i];
dn_val = dn[i];
int_index = i;
output;

end;
keep y_: dn_: diabetictype treatment int_index id;

run;

data _b;
set _b;
rename y_val=Y dn_val=dN;

run;

You can use the following PROC PRINT statements to see the first few observations in _b:

proc print data=_b(obs=10);
run;
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Output 61.16.2 First 20 Observations of the Data Set _b

Obs ID DiabeticType Treatment Y dN int_index

1 5 1 1 1 0 1

2 5 1 1 1 0 2

3 5 1 1 1 0 3

4 5 1 1 1 0 4

5 5 1 1 1 0 5

6 5 1 1 1 0 6

7 5 1 1 0 0 7

8 5 1 1 0 0 8

9 5 1 0 1 0 1

10 5 1 0 1 0 2

The data set _b now contains 3,152 observations (see Output 61.16.2 for the first few observations). The
Time and Status variables are no longer needed; hence they are discarded from the data set. The int_index
variable is an index variable that indicates interval membership of each observation.

Because the variable Y does not contribute to the likelihood calculation when it takes a value of 0 (it
amounts to a Poisson likelihood that has a mean and response variable that are both 0), you can remove these
observations. This speeds up the calculation in PROC MCMC:

data inputdata;
set _b;
if Y > 0;

run;

The data set Inputdata has 1,775 observations, as opposed to 3,152 observations in _b. The following
statements fit a piecewise exponential model in PROC MCMC:

proc mcmc data=inputdata nmc=10000 outpost=postout seed=12351
maxtune=5;

ods select PostSumInt ESS;
parms beta1-beta3 0;
prior beta: ~ normal(0, var = 1e6);
random lambda ~ gamma(0.01, iscale = 0.01) subject=int_index;
bZ = beta1*treatment + beta2*diabetictype + beta3*treatment*diabetictype;
idt = exp(bz) * lambda;
model dN ~ poisson(idt);

run;

The PARMS statement declares three regression parameters, beta1–beta3. The PRIOR statement specifies a
noninformative normal prior on the regression coefficients. The RANDOM statement specifies the random
effect, lambda, its prior distribution, and interval membership which is indexed by the data set variable
int_index.
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The symbol bZ calculates the regression mean, and the symbol idt is the mean of the Poisson likelihood. It
corresponds to the equation

Ii .t/dt D Yi .t/ exp.ˇ0z/dƒ0.t/

Note that the Yi .t/ term is omitted in the assignment statement because Y takes only the value of 1 in the
input data set.

Output 61.16.3 displays posterior estimates of the three regression parameters.

Output 61.16.3 Posterior Summary Statistics

The MCMC ProcedureThe MCMC Procedure

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

beta1 10000 -0.4174 0.2129 -0.8121 0.0203

beta2 10000 0.3138 0.1956 -0.0885 0.6958

beta3 10000 -0.7899 0.3308 -1.4300 -0.1046

To understand the results, you can create a 2 � 2 table (Table 61.50) and plug in the posterior mean estimates
to the regression model. A –0.41 estimate for subjects who received laser treatment and had juvenile diabetes
suggests that the laser treatment is effective in delaying blindness. And the effect is much more pronounced
(–0.80) for adult subjects who have diabetes and received treatment.

Table 61.50 Estimates of Regression Effects in the Survival Model

Ǒ0Z
Diabetic Type

0 1

Treatment
0 0 0.32
1 –0.41 –0.80

You can also use the macro %CATER (“Caterpillar Plot” on page 4831) to draw a caterpillar plot to visualize
the eight hazards in the model:

ods graphics on;
%cater(data=postout, var=lambda_:);
ods graphics off;
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Output 61.16.4 Caterpillar Plot of the Hazards in the Piecewise Exponential Model

The fitted hazards show a nonconstant underlying hazard function (read along the y-axis as lambda_# are
hazards along the time-axis) in the model.

Now suppose you want to include patient-level information and fit a frailty model to the blind data set, where
the random effect enters the model through the regression term, where the subject is indexed by the variable
ID in the data.

ˇ0zi D ˇ1treatmentC ˇ2diabetictypeC ˇ3treatment * diabetictypeC uid
uid � normal.0; var D �2/

�2 � igamma.shape D 0:01; scale D 0:01/

where id indexes patient.

The actual coding in PROC MCMC of a piecewise exponential frailty model is rather straightforward:

ods select none;
proc mcmc data=inputdata nmc=10000 outpost=postout seed=12351

stats=summary diag=none;
parms beta1-beta3 0 s2;
prior beta: ~ normal(0, var = 1e6);
prior s2 ~ igamma(0.01, scale=0.01);
random lambda ~ gamma(0.01, iscale = 0.01) subject=int_index;
random u ~ normal(0, var=s2) subject=id;
bZ = beta1*treatment + beta2*diabetictype + beta3*treatment*diabetictype + u;
idt = exp(bZ) * lambda;
model dN ~ poisson(idt);

run;
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A second RANDOM statement defines a subject-level random effect u, and the random-effects parameters
enter the model in the term for the regression mean, bZ. An additional model parameter, s2, the variance of
the random-effects parameters, is needed for the model. The results are not shown here.

Example 61.17: Normal Regression with Interval Censoring
You can use PROC MCMC to fit failure time data that can be right, left, or interval censored. To illustrate, a
normal regression model is used in this example.

Assume that you have the following simple regression model with no covariates:

y D �C ��

where y is a vector of response values (the failure times), � is the grand mean, � is an unknown scale
parameter, and � are errors from the standard normal distribution. Instead of observing yi directly, you only
observe a truncated value ti . If the true yi occurs after the censored time ti , it is called right censoring. If yi
occurs before the censored time, it is called left censoring. A failure time yi can be censored at both ends,
and this is called interval censoring. The likelihood for yi is as follows:

p.yi j�/ D

8̂̂<̂
:̂
�.yi j�; �/ if yi is uncensored
S.tl;i j�/ if yi is right censored by tl;i
1 � S.tr;i j�/ if yi is left censored by tr;i
S.tl;i j�/ � S.tr;i j�/ if yi is interval censored by tl;i and tr;i

where S.�/ is the survival function, S.t/ D Pr.T > t/.

Gentleman and Geyer (1994) uses the following data on cosmetic deterioration for early breast cancer patients
treated with radiotherapy:

title 'Normal Regression with Interval Censoring';
data cosmetic;

label tl = 'Time to Event (Months)';
input tl tr @@;
datalines;

45 . 6 10 . 7 46 . 46 . 7 16 17 . 7 14
37 44 . 8 4 11 15 . 11 15 22 . 46 . 46 .
25 37 46 . 26 40 46 . 27 34 36 44 46 . 36 48
37 . 40 . 17 25 46 . 11 18 38 . 5 12 37 .
. 5 18 . 24 . 36 . 5 11 19 35 17 25 24 .

32 . 33 . 19 26 37 . 34 . 36 .
;

The data consist of time interval endpoints (in months). Nonmissing equal endpoints (tl = tr) indicates
noncensoring; a nonmissing lower endpoint (tl ¤ .) and a missing upper endpoint (tr = .) indicates right
censoring; a missing lower endpoint (tl = .) and a nonmissing upper endpoint (tr¤ .) indicates left censoring;
and nonmissing unequal endpoints (tl¤ tr) indicates interval censoring.

With this data set, you can consider using proper but diffuse priors on both � and � , for example:

� � normal.0; sd D 1000/

� � gamma.0:001; iscale D 0:001/
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The following SAS statements fit an interval censoring model and generate Output 61.17.1:

proc mcmc data=cosmetic outpost=postout seed=1 nmc=20000 missing=AC;
ods select PostSumInt;
parms mu 60 sigma 50;

prior mu ~ normal(0, sd=1000);
prior sigma ~ gamma(shape=0.001,iscale=0.001);

if (tl^=. and tr^=. and tl=tr) then
llike = logpdf('normal',tr,mu,sigma);

else if (tl^=. and tr=.) then
llike = logsdf('normal',tl,mu,sigma);

else if (tl=. and tr^=.) then
llike = logcdf('normal',tr,mu,sigma);

else
llike = log(sdf('normal',tl,mu,sigma) -

sdf('normal',tr,mu,sigma));

model general(llike);
run;

Because there are missing cells in the input data, you want to use the MISSING=AC option so that PROC
MCMC does not delete any observations that contain missing values. The IF-ELSE statements distinguish
different censoring cases for yi , according to the likelihood. The SAS functions LOGCDF, LOGSDF,
LOGPDF, and SDF are useful here. The MODEL statement assigns llike as the log likelihood to the response.
The Markov chain appears to have converged in this example (evidence not shown here), and the posterior
estimates are shown in Output 61.17.1.

Output 61.17.1 Interval Censoring

Normal Regression with Interval Censoring

The MCMC Procedure

Normal Regression with Interval Censoring

The MCMC Procedure

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

mu 20000 41.7807 5.7882 31.3604 53.6115

sigma 20000 29.1122 6.0503 19.4041 41.6742

Example 61.18: Constrained Analysis
Conjoint analysis uses regression techniques to model consumer preferences and to estimate consumer utility
functions. A problem with conventional conjoint analysis is that sometimes your estimated utilities do not
make sense. Your results might suggest, for example, that the consumers would prefer to spend more on
a product than to spend less. With PROC MCMC, you can specify constraints on the part-worth utilities
(parameter estimates). Suppose that the consumer product being analyzed is an off-road motorcycle. The
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relevant attributes are how large each motorcycle is (less than 300cc, 301–550cc, and more than 551cc),
how much it costs (less than $5000, $5001–$6000, $6001–$7000, and more than $7000), whether or not it
has an electric starter, whether or not the engine is counter-balanced, and whether the bike is from Japan or
Europe. The preference variable is a ranking of the bikes. You could perform an ordinary conjoint analysis
with PROC TRANSREG (see Chapter 104, “The TRANSREG Procedure”) as follows:

options validvarname=any;
proc format;

value sizef 1 = '< 300cc' 2 = '300-550cc' 3 = '> 551cc';
value pricef 1 = '< $5000' 2 = '$5000 - $6000'

3 = '$6001 - $7000' 4 = '> $7000';
value startf 1 = 'Electric Start' 2 = 'Kick Start';
value balf 1 = 'Counter Balanced' 2 = 'Unbalanced';
value orif 1 = 'Japanese' 2 = 'European';

run;

data bikes;
input Size Price Start Balance Origin Rank @@;
format size sizef. price pricef. start startf.

balance balf. origin orif.;
datalines;

2 1 2 1 2 3 1 4 2 2 2 7 1 2 1 1 2 6
3 3 1 1 2 1 1 3 2 1 1 5 3 4 2 2 2 12
2 3 2 2 1 9 1 1 1 2 1 8 2 2 1 2 2 10
2 4 1 1 1 4 3 1 1 2 1 11 3 2 2 1 1 2
;

title 'Ordinary Conjoint Analysis by PROC TRANSREG';
proc transreg data=bikes utilities cprefix=0 lprefix=0;

ods select Utilities;
model identity(rank / reflect) =

class(size price start balance origin / zero=sum);
output out=coded(drop=intercept) replace;

run;

The DATA step reads the experimental design and dependent variable Rank and assigns formats to label the
factor levels. PROC TRANSREG is run specifying UTILITIES, which requests a conjoint analysis. The rank
variable is reflected around its mean (1! 12, 2! 11, . . . , 12! 1) so that in the analysis, larger part-worth
utilities correspond to higher preference. The OUT=CODED data set contains the reflected ranks and a
binary coding of the factors that can be used in other analyses. See Kuhfeld (2010) for more information
about conjoint analysis and coding with PROC TRANSREG.

The Utilities table from the conjoint analysis is shown in Output 61.18.1. Notice the part-worth utilities
for price. The part-worth utility for < $5000 is 0.25. As price increases to the $5000–$6000 range, utility
decreases to –0.5. Then as price increases to the $6001–$7000 range, part-worth utility increases to 0.5.
Finally, for the most expensive bikes, utility decreases again to –0.25. In cases like this, you might want to
impose constraints on the solution so that the part-worth utility for price never increases as prices go up.



4958 F Chapter 61: The MCMC Procedure

Output 61.18.1 Ordinary Conjoint Analysis by PROC TRANSREG

Ordinary Conjoint Analysis by PROC TRANSREG

The TRANSREG Procedure

Ordinary Conjoint Analysis by PROC TRANSREG

The TRANSREG Procedure

Utilities Table Based on the Usual Degrees of Freedom

Label Utility
Standard

Error

Importance
(% Utility

Range) Variable

Intercept 6.5000 0.95743 Intercept

< 300cc -0.0000 1.35401 0.000 Class.< 300cc

300-550cc -0.0000 1.35401 Class.300-550cc

> 551cc 0.0000 1.35401 Class.> 551cc

< $5000 0.2500 1.75891 13.333 Class.< $5000

$5000 - $6000 -0.5000 1.75891 Class.$5000 - $6000

$6001 - $7000 0.5000 1.75891 Class.$6001 - $7000

> $7000 -0.2500 1.75891 Class.> $7000

Electric Start -0.1250 1.01550 3.333 Class.Electric Start

Kick Start 0.1250 1.01550 Class.Kick Start

Counter Balanced 3.0000 1.01550 80.000 Class.Counter Balanced

Unbalanced -3.0000 1.01550 Class.Unbalanced

Japanese -0.1250 1.01550 3.333 Class.Japanese

European 0.1250 1.01550 Class.European

You could run PROC TRANSREG again, specifying monotonicity constraints on the part-worth utilities for
price:

title 'Constrained Conjoint Analysis by PROC TRANSREG';
proc transreg data=bikes utilities cprefix=0 lprefix=0;

ods select ConservUtilities;
model identity(rank / reflect) =

monotone(price / tstandard=center)
class(size start balance origin / zero=sum);

run;

The output from this PROC TRANSREG step is shown in Output 61.18.2.
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Output 61.18.2 Constrained Conjoint Analysis by PROC TRANSREG

Constrained Conjoint Analysis by PROC TRANSREG

The TRANSREG Procedure

Constrained Conjoint Analysis by PROC TRANSREG

The TRANSREG Procedure

Utilities Table Based on Conservative Degrees of Freedom

Label Utility
Standard

Error

Importance
(% Utility

Range) Variable

Intercept 6.5000 0.97658 Intercept

Price -0.1581 . 7.143 Monotone(Price)

< $5000 0.2500 .

$5000 - $6000 0.0000 .

$6001 - $7000 0.0000 .

> $7000 -0.2500 .

< 300cc -0.0000 1.38109 0.000 Class.< 300cc

300-550cc 0.0000 1.38109 Class.300-550cc

> 551cc 0.0000 1.38109 Class.> 551cc

Electric Start -0.2083 1.00663 5.952 Class.Electric Start

Kick Start 0.2083 1.00663 Class.Kick Start

Counter Balanced 3.0000 0.97658 85.714 Class.Counter Balanced

Unbalanced -3.0000 0.97658 Class.Unbalanced

Japanese -0.0417 1.00663 1.190 Class.Japanese

European 0.0417 1.00663 Class.European

This monotonicity constraint is one of the few constraints on the part-worth utilities that you can specify in
PROC TRANSREG. In contrast, PROC MCMC enables you to specify any constraint that can be written in
the DATA step language. You can perform the restricted conjoint analysis with PROC MCMC by using the
coded factors that were output from PROC TRANSREG. The data set is Coded.

The likelihood is a simple regression model:

ranki � normal.x0iˇ; �/

where rank is the response, the covariates are ‘< 300cc’n, ‘300-500cc’n, ‘< $5000’n, ‘$5000 - $6000’n,
‘$6001 - $7000’n, ‘Electric Start’n, ‘Counter Balanced’n, and Japanese. Note that OPTIONS VALIDVAR-
NAME=ANY enables PROC TRANSREG to create names for the coded variables with blanks and special
characters. That is why the name-literal notation (‘variable-name’n) is used for the input data set variables.

Suppose that there are two constraints you want to put on some of the parameters: one is that the parameters
for ‘< $5000’n, ‘$5000 - $6000’n, and ‘$6001 - $7000’n decrease in order, and the other is that the parameter
for ‘Counter Balanced’n is strictly positive. You can consider a truncated multivariate normal prior as follows:

.ˇ‘< $5000’n; ˇ‘$5000 - $6000’n; ˇ‘$6001 - $7000’n; ˇ‘Counter Balanced’n/ � MVN.0; �I/

with the following set of constraints:

ˇ‘< $5000’n > ˇ‘$5000 - $6000’n > ˇ‘$6001 - $7000’n > 0

ˇ‘Counter Balanced’n > 0
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The condition that ˇ‘$6001 - $7000’n > 0 reflects an implied constraint that, by definition, 0 is the utility for the
highest price range, > $7000, which is the reference level for the binary coded price variable. The following
statements fit the desired model:

title 'Bayesian Constrained Conjoint Analysis by PROC MCMC';
proc mcmc data=coded outpost=bikesout ntu=3000 nmc=50000

propcov=quanew seed=448 diag=none;
ods select PostSumInt;
array pw[4] pw5000 pw5000_6000 pw6001_7000 pwCounterBalanced;
array sigma[4,4];
array mu[4];

begincnst;
call identity(sigma);
call mult(sigma, 100, sigma);
call zeromatrix(mu);

endcnst;

parms intercept pw300cc pw300_550cc pwElectricStart pwJapanese tau 1;
parms pw5000 0.3 pw5000_6000 0.2 pw6001_7000 0.1 pwCounterBalanced 1;

beginnodata;
prior intercept pw300: pwE: pwJ: ~ normal(0, var=100);
if (pw5000 >= pw5000_6000 & pw5000_6000 >= pw6001_7000 &

pw6001_7000 >= 0 & pwCounterBalanced > 0) then
lp = lpdfmvn(pw, mu, sigma);

else
lp = .;

prior pw5000 pw5000_6000 pw6001_7000 pwC: ~ general(lp);
prior tau ~ gamma(0.01, iscale=0.01);
endnodata;

mean = intercept +
pw300cc * '< 300cc'n +
pw300_550cc * '300-550cc'n +
pw5000 * '< $5000'n +
pw5000_6000 * '$5000 - $6000'n +
pw6001_7000 * '$6001 - $7000'n +
pwElectricStart * 'Electric Start'n +
pwCounterBalanced * 'Counter Balanced'n +
pwJapanese * Japanese;

model rank ~ normal(mean, prec=tau);
run;

The two ARRAY statements allocate a 4� 4 dimensional array for the prior covariance and an array of size 4
for the prior means. In the BEGINCNST and ENDCNST statements, the CALL IDENTITY function sets
sigma to be an identity matrix; the CALL MULT function sets sigma’s diagonal elements to be 100 (the
diagonal variance terms); and the CALL ZEROMATRIX function sets mu to be a vector of zeros (the prior
means). For matrix functions in PROC MCMC, see the section “Matrix Functions in PROC MCMC” on
page 4821.

There are two PARMS statements, with each of them naming a block of parameters. The first PARMS
statement blocks the following: the intercept, the two size parameters, the one start-type parameter, the one
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origin parameter, and the precision. The second PARMS statement blocks the three price parameters and the
one balance parameter, parameters that have the constraint multivariate normal prior. The second PARMS
statement also specifies initial values for the parameter estimates. The initial values reflect the constraints on
these parameters. The initial part-worth utilities all decrease from 0.3 to 0.2 to 0.1 to 0.0 (for the implicit
reference level) as the prices increase. Also, the initial part-worth utility for the counter-balanced engine is
set to a positive value, 1.

In the PRIOR statements, regression coefficients without constraints are given an independent normal prior
with mean at 0 and variance of 100. The next IF-ELSE construction imposes the constraints. When these
constraints are met, pw5000, pw5000_6000, pw6001_7000, pwCounterBalanced are jointly distributed as a
multivariate normal prior with mean mu and covariance sigma. Otherwise, the prior is not defined and lp
is assigned a missing value. The parameter tau is given a gamma prior, which is a conjugate prior for that
parameter.

The model specification is linear. The mean is comprised of an intercept and the sum of terms like pw300cc *
‘< 300cc’n, which is a parameter times an input data set variable. The MODEL statement specifies that the
linear model for rank is normally distributed with mean mean and precision tau.

The MCMC results are shown in Output 61.18.3.

Output 61.18.3 MCMC Results

Bayesian Constrained Conjoint Analysis by PROC MCMC

The MCMC Procedure

Bayesian Constrained Conjoint Analysis by PROC MCMC

The MCMC Procedure

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

intercept 50000 2.2570 2.5131 -2.9083 7.1760

pw300cc 50000 0.00983 2.4903 -4.8014 5.3161

pw300_550cc 50000 0.0549 2.5097 -5.1371 4.9766

pwElectricStart 50000 -1.1319 2.1195 -5.6257 2.9663

pwJapanese 50000 -0.4567 2.1232 -4.9020 3.6599

tau 50000 0.1135 0.0765 0.00885 0.2643

pw5000 50000 4.1614 2.1803 0.5751 8.3740

pw5000_6000 50000 2.6147 1.6188 0.0587 5.6001

pw6001_7000 50000 1.5040 1.2530 0.000104 3.9803

pwCounterBalanced 50000 5.8880 2.0638 1.7161 9.9558

The estimates of the part-worth utility for the price categories are ordered as expected. This agrees with the
intuition that there is a higher preference for a less expensive motor bike when all other things are equal, and
that is what you see when you look at the estimated posterior means for the price part-worths. The estimated
standard deviations of the price part-worths in this model are of approximately the same order of magnitude
as the posterior means. This indicates that the part-worth utilities for this subject are not significantly far from
each other, and that this subject’s ranking of the options was not significantly influenced by the difference in
price.

One advantage of Bayesian analysis is that you can incorporate prior information in the data analysis.
Constraints on the parameter space are one possible source of information that you might have before you
examine the data. This example shows that it can be accomplished in PROC MCMC.
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Example 61.19: Implement a New Sampling Algorithm
This example illustrates using the UDS statement to implement a new Markov chain sampler. The algorithm
demonstrated here is proposed by Holmes and Held (2006), hereafter referred to as HH. They presented a
Gibbs sampling algorithm for generating draws from the posterior distribution of the parameters in a probit
regression model. The notation follows closely to HH.

The data used here is the remission data set from a PROC LOGISTIC example:

title 'Implement a New Sampling Algorithm';
data inputdata;

input remiss cell smear infil li blast temp;
ind = _n_;
cnst = 1;
label remiss='Complete Remission';
datalines;
1 0.8 0.83 0.66 1.9 1.1 0.996

... more lines ...

0 1 0.73 0.73 0.7 0.398 0.986
;

The variable remiss is the cancer remission indicator variable with a value of 1 for remission and a value of 0
for nonremission. There are six explanatory variables: cell, smear, infil, li, blast, and temp. These variables
are the risk factors thought to be related to cancer remission. The binary regression model is as follows:

remissi � binary.pi /

where the covariates are linked to pi through a probit transformation:

probit.pi / D x0ˇ

ˇ are the regression coefficients and x0 the explanatory variables. Suppose you want to use independent
normal priors on the regression coefficients:

ˇi � normal.0; var D 25/
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Fitting a probit model with PROC MCMC is straightforward. You can use the following statements:

proc mcmc data=inputdata nmc=100000 propcov=quanew seed=17
outpost=mcmcout;

ods select PostSumInt ess;
parms beta0-beta6;
prior beta: ~ normal(0,var=25);
mu = beta0 + beta1*cell + beta2*smear +

beta3*infil + beta4*li + beta5*blast + beta6*temp;
p = cdf('normal', mu, 0, 1);
model remiss ~ bern(p);

run;

The expression mu is the regression mean, and the CDF function links mu to the probability of remission p in
the binary likelihood.

The summary statistics and effective sample sizes tables are shown in Output 61.19.1. There are high
autocorrelations among the posterior samples, and efficiency is relatively low. The correlation time is reduced
only after a large amount of thinning.

Output 61.19.1 Random Walk Metropolis

Implement a New Sampling Algorithm

The MCMC Procedure

Implement a New Sampling Algorithm

The MCMC Procedure

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

beta0 100000 -2.0531 3.8299 -9.5480 5.4131

beta1 100000 2.6300 2.8270 -2.7934 8.2334

beta2 100000 -0.8426 3.2108 -7.0459 5.4269

beta3 100000 1.5933 3.5491 -5.5342 8.3307

beta4 100000 2.0390 0.8796 0.4133 3.8654

beta5 100000 -0.3184 0.9543 -2.1420 1.5567

beta6 100000 -3.2611 3.7806 -10.7053 4.1000

Implement a New Sampling Algorithm

The MCMC Procedure

Implement a New Sampling Algorithm

The MCMC Procedure

Effective Sample Sizes

Parameter ESS
Autocorrelation

Time Efficiency

beta0 4280.8 23.3602 0.0428

beta1 4496.5 22.2398 0.0450

beta2 3434.1 29.1199 0.0343

beta3 3856.6 25.9294 0.0386

beta4 3659.7 27.3245 0.0366

beta5 3229.9 30.9610 0.0323

beta6 4430.7 22.5696 0.0443
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As an alternative to the random walk Metropolis, you can use the Gibbs algorithm to sample from the posterior
distribution. The Gibbs algorithm is described in the section “Gibbs Sampler” on page 133 in Chapter 7,
“Introduction to Bayesian Analysis Procedures.” While the Gibbs algorithm generally applies to a wide range
of statistical models, the actual implementation can be problem-specific. In this example, performing a
Gibbs sampler involves introducing a class of auxiliary variables (also known as latent variables). You first
reformulate the model by adding a zi for each observation in the data set:

yi D

�
1 if zi > 0
0 otherwise

zi D x0iˇ C �i
� � normal.0; 1/

ˇ � �.ˇ/

If ˇ has a normal prior, such as �.ˇ/ D N.b; v/, you can work out a closed form solution to the full
conditional distribution of ˇ given the data and the latent variables zi . The full conditional distribution is also
a multivariate normal, due to the conjugacy of the problem. See the section “Conjugate Priors” on page 127
in Chapter 7, “Introduction to Bayesian Analysis Procedures.” The formula is shown here:

ˇjz; x � normal.B;V/
B D V..v/�1bC x0z/
V D .v�1 C x0x/�1

The advantage of creating the latent variables is that the full conditional distribution of z is also easy to work
with. The distribution is a truncated normal distribution:

zi jˇ; xi ; yi �
�

normal.xiˇ; 1/I.zi > 0/ if yi D 1
normal.xiˇ; 1/I.zi � 0/ otherwise

You can sample ˇ and z iteratively, by drawing ˇ given z and vice verse. HH point out that a high degree
of correlation could exist between ˇ and z, and it makes this iterative way of sampling inefficient. As an
improvement, HH proposed an algorithm that samples ˇ and z jointly. At each iteration, you sample zi from
the posterior marginal distribution (this is the distribution that is conditional only on the data and not on any
parameters) and then sample ˇ from the same posterior full conditional distribution as described previously:

1. Sample zi from its posterior marginal distribution:

zi jz�i ; yi �
�

normal.mi ; vi /I.zi > 0/ if yi D 1
normal.mi ; vi /I.zi � 0/ otherwise

mi D xiB � wi .zi � xiB/
vi D 1C wi

wi D hi=.1 � hi /

hi D .H/i i;H D xVx0

2. Sample ˇ from the same posterior full conditional distribution described previously.
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For a detailed description of each of the conditional terms, refer to the original paper.

PROC MCMC cannot sample from the probit model by using this sampling scheme but you can implement
the algorithm by using the UDS statement. To sample zi from its marginal, you need a function that draws
random variables from a truncated normal distribution. The functions, RLTNORM and RRTNORM, generate
left- and right-truncated normal variates, respectively. The algorithm is taken from Robert (1995).

The functions are written in PROC FCMP (see the FCMP Procedure in the Base SAS Procedures Guide):

proc fcmp outlib=sasuser.funcs.uds;
/******************************************/
/* Generate left-truncated normal variate */
/******************************************/
function rltnorm(mu,sig,lwr);
if lwr<mu then do;

ans = lwr-1;
do while(ans<lwr);

ans = rand('normal',mu,sig);
end;

end;
else do;

mul = (lwr-mu)/sig;
alpha = (mul + sqrt(mul**2 + 4))/2;
accept=0;
do while(accept=0);

z = mul + rand('exponential')/alpha;
lrho = -(z-alpha)**2/2;
u = rand('uniform');
lu = log(u);
if lu <= lrho then accept=1;

end;
ans = sig*z + mu;

end;
return(ans);
endsub;

/*******************************************/
/* Generate right-truncated normal variate */
/*******************************************/
function rrtnorm(mu,sig,uppr);
ans = 2*mu - rltnorm(mu,sig, 2*mu-uppr);
return(ans);
endsub;

run;

The function call to RLTNORM(mu,sig,lwr) generates a random number from the left-truncated normal
distribution:

� � normal.mu; sd D sig/I.� > lwr/



4966 F Chapter 61: The MCMC Procedure

Similarly, the function call to RRTNORM(mu,sig,uppr) generates a random number from the right-truncated
normal distribution:

� � normal.mu; sd D sig/I.� < uppr/

These functions are used to generate the latent variables zi .

Using the algorithm A1 from the HH paper as an example, Output 61.51 lists a line-by-line implementation
with the PROC MCMC coding style. The table is broken into three portions: set up the constants, initialize
the parameters, and sample one draw from the posterior distribution. The left column of the table is identical
to the A1 algorithm stated in the appendix of HH. The right column of the table lists SAS statements.

Table 61.51 Holmes and Held (2006), algorithm A1.
Side-by-Side Comparison to SAS

Define Constants In the BEGINCNST/ENDCNST Statements

V  .X 0X C v�1/�1

call transpose(x,xt); /* xt = transpose(x) */

call mult(xt,x,xtx);

call inv(v,v); /* v = inverse(v) */

call addmatrix(xtx,v,xtx); /* xtx = xtx+v */

call inv(xtx,v); /* v = inverse(xtx) */

L Chol.V / call chol(v,L);

S  VX 0 call mult(v,xt,S);

FOR j = 1 to n
HŒj � XŒj; �SŒ; j �

W Œj � HŒj �=.1 �HŒj �/

QŒj � W Œj �C 1

END

call mult(x,S,HatMat);

do j=1 to &n;

H = HatMat[j,j];

W[j] = H/(1-H);

sQ[j] = sqrt(W[j] + 1); /* use s.d. in SAS */

end;

Initial Values In the BEGINCNST/ENDCNST Statements

Z � normal.0; In/Ind.Y;Z/

do j=1 to &n;

if(y[j]=1) then

Z[j] = rltnorm(0,1,0);

else

Z[j] = rrtnorm(0,1,0);

end;

B  SZ call mult(S,Z,B);
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Table 61.51 (continued)

Draw One Sample Subroutine HH

FOR j = 1 to n
zold  ZŒj �

m XŒj; �B

m m �W Œj �.ZŒj � �m/

ZŒj � � normal.m;QŒj �/Ind.Y Œj �; ZŒj �/
B  B C .ZŒj � � zold /SŒ; j �

END
T � normal.0; Ip/
ˇŒ; i � B C LT

do j=1 to &n;

zold = Z[j];

m = 0;

do k= 1 to &p;

m = m + X[j,k] * B[k];

end;

m = m - W[j]*(Z[j]-m);

if (y[j]=1) then

Z[j] = rltnorm(m,sQ[j],0);

else

Z[j] = rrtnorm(m,sQ[j],0);

diff = Z[j] - zold;

do k= 1 to &p;

B[k] = B[k] + diff * S[k,j];

end;

end;

do j = 1 to &p;

T[j] = rand(’normal’);

end;

call mult(L,T,T);

call addmatrix(B,T,beta);

The following statements define the subroutine HH (algorithm A1) in PROC FCMP and store it in library
sasuser.funcs.uds:

/* define the HH algorithm in PROC FCMP. */
%let n = 27;
%let p = 7;
options cmplib=sasuser.funcs;
proc fcmp outlib=sasuser.funcs.uds;

subroutine HH(beta[*],Z[*],B[*],x[*,*],y[*],W[*],sQ[*],S[*,*],L[*,*]);
outargs beta, Z, B;
array T[&p] / nosym;
do j=1 to &n;

zold = Z[j];
m = 0;
do k = 1 to &p;

m = m + X[j,k] * B[k];
end;
m = m - W[j]*(Z[j]-m);
if (y[j]=1) then

Z[j] = rltnorm(m,sQ[j],0);
else

Z[j] = rrtnorm(m,sQ[j],0);
diff = Z[j] - zold;
do k = 1 to &p;
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B[k] = B[k] + diff * S[k,j];
end;

end;
do j=1 to &p;

T[j] = rand('normal');
end;
call mult(L,T,T);
call addmatrix(B,T,beta);
endsub;

run;

Note that one-dimensional array arguments take the form of name[*] and two-dimensional array arguments
take the form of name[*,*]. Three variables, beta, Z, and B, are OUTARGS variables, making them the only
arguments that can be modified in the subroutine. For the UDS statement to work, all OUTARGS variables
have to be model parameters. Technically, only beta and Z are model parameters, and B is not. The reason
that B is declared as an OUTARGS is because the array must be updated throughout the simulation, and
this is the only way to modify its values. The input array x contains all of the explanatory variables, and the
array y stores the response. The rest of the input arrays, W, sQ, S, and L, store constants as detailed in the
algorithm. The following statements illustrate how to fit a Bayesian probit model by using the HH algorithm:

options cmplib=sasuser.funcs;

proc mcmc data=inputdata nmc=5000 monitor=(beta) outpost=hhout;
ods select PostSumInt ess;
array xtx[&p,&p]; /* work space */
array xt[&p,&n]; /* work space */
array v[&p,&p]; /* work space */
array HatMat[&n,&n]; /* work space */
array S[&p,&n]; /* V * Xt */
array W[&n];
array y[1]/ nosymbols; /* y stores the response variable */
array x[1]/ nosymbols; /* x stores the explanatory variables */
array sQ[&n]; /* sqrt of the diagonal elements of Q */
array B[&p]; /* conditional mean of beta */
array L[&p,&p]; /* Cholesky decomp of conditional cov */
array Z[&n]; /* latent variables Z */
array beta[&p] beta0-beta6; /* regression coefficients */

begincnst;
call streaminit(83101);
if ind=1 then do;

rc = read_array("inputdata", x, "cnst", "cell", "smear", "infil",
"li", "blast", "temp");

rc = read_array("inputdata", y, "remiss");
call identity(v);
call mult(v, 25, v);
call transpose(x,xt);
call mult(xt,x,xtx);
call inv(v,v);
call addmatrix(xtx,v,xtx);
call inv(xtx,v);
call chol(v,L);
call mult(v,xt,S);
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call mult(x,S,HatMat);
do j=1 to &n;

H = HatMat[j,j];
W[j] = H/(1-H);
sQ[j] = sqrt(W[j] + 1);

end;

do j=1 to &n;
if(y[j]=1) then

Z[j] = rltnorm(0,1,0);
else

Z[j] = rrtnorm(0,1,0);
end;
call mult(S,Z,B);

end;
endcnst;

uds HH(beta,Z,B,x,y,W,sQ,S,L);
parms z: beta: 0 B1-B7 / uds;
prior z: beta: B1-B7 ~ general(0);

model general(0);
run;

The OPTIONS statement names the catalog of FCMP subroutines to use. The cmplib library stores the
subroutine HH. You do not need to set a random number seed in the PROC MCMC statement because all
random numbers are generated from the HH subroutine. The initialization of the rand function is controlled
by the streaminit function, which is called in the program with a seed value of 83101.

A number of arrays are allocated. Some of them, such as xtx, xt, v, and HatMat, allocate work space for
constant arrays. Other arrays are used in the subroutine sampling. Explanations of the arrays are shown in
comments in the statements.

In the BEGINCNST and ENDCNST statement block, you read data set variables in the arrays x and y,
calculate all the constant terms, and assign initial values to Z and B. For the READ_ARRAY function, see
the section “READ_ARRAY Function” on page 4764. For listings of all array functions and their definitions,
see the section “Matrix Functions in PROC MCMC” on page 4821.

The UDS statement declares that the subroutine HH is used to sample the parameters beta, Z, and B. You
also specify the UDS option in the PARMS statement. Because all parameters are updated through the UDS
interface, it is not necessary to declare the actual form of the prior for any of the parameters. Each parameter
is declared to have a prior of general(0). Similarly, it is not necessary to declare the actual form of the
likelihood. The MODEL statement also takes a flat likelihood of the form general(0).

Summary statistics and effective sample sizes are shown in Output 61.19.2. The posterior estimates are
very close to what was shown in Output 61.19.1. The HH algorithm produces samples that are much less
correlated.
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Output 61.19.2 Holms and Held

Implement a New Sampling Algorithm

The MCMC Procedure

Implement a New Sampling Algorithm

The MCMC Procedure

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

beta0 5000 -2.0567 3.8260 -9.4031 5.2733

beta1 5000 2.7254 2.8079 -2.3940 8.5828

beta2 5000 -0.8318 3.2017 -6.6219 5.8170

beta3 5000 1.6319 3.5108 -5.7117 7.9353

beta4 5000 2.0567 0.8800 0.3155 3.7289

beta5 5000 -0.3473 0.9490 -2.1478 1.5889

beta6 5000 -3.3787 3.7991 -10.6821 4.1930

Implement a New Sampling Algorithm

The MCMC Procedure

Implement a New Sampling Algorithm

The MCMC Procedure

Effective Sample Sizes

Parameter ESS
Autocorrelation

Time Efficiency

beta0 3651.3 1.3694 0.7303

beta1 1563.8 3.1973 0.3128

beta2 5005.9 0.9988 1.0012

beta3 4853.2 1.0302 0.9706

beta4 2611.2 1.9148 0.5222

beta5 3049.2 1.6398 0.6098

beta6 3503.2 1.4273 0.7006

It is interesting to compare the two approaches of fitting a generalized linear model. The random walk
Metropolis on a seven-dimensional parameter space produces autocorrelations that are substantially higher
than the HH algorithm. A much longer chain is needed to produce roughly equivalent effective sample sizes.
On the other hand, the Metropolis algorithm is faster to run. The running time of these two examples is
roughly the same, with the random walk Metropolis with 100000 samples, a 20-fold increase over that in
the HH algorithm example. The speed difference can be attributed to a number of factors, ranging from
the implementation of the software and the overhead cost of calling PROC FCMP subroutine and functions.
In addition, the HH algorithm requires more parameters by creating an equal number of latent variables as
the sample size. Sampling more parameters takes time. A larger number of parameters also increases the
challenge in convergence diagnostics, because it is imperative to have convergence in all parameters before
you make valid posterior inferences. Finally, you might feel that coding in PROC MCMC is easier. However,
this really is not a fair comparison to make here. Writing a Metropolis algorithm from scratch would have
probably taken just as much, if not more, effort than the HH algorithm.
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Example 61.20: Using a Transformation to Improve Mixing
Proper transformations of parameters can often improve the mixing in PROC MCMC. You already saw this
in “Example 61.6: Nonlinear Poisson Regression Models” on page 4893, which sampled using the log scale
of parameters that priors that are strictly positive, such as the gamma priors. This example shows another
useful transformation: the logit transformation on parameters that take a uniform prior on [0, 1].

The data set is taken from Sharples (1990). It is used in Chaloner and Brant (1988) and Chaloner (1994) to
identify outliers in the data set in a two-level hierarchical model. Congdon (2003) also uses this data set to
demonstrates the same technique. This example uses the data set to illustrate how mixing can be improved
using transformation and does not address the question of outlier detection as in those papers. The following
statements create the data set:

data inputdata;
input nobs grp y @@;
ind = _n_;
datalines;

1 1 24.80 2 1 26.90 3 1 26.65
4 1 30.93 5 1 33.77 6 1 63.31
1 2 23.96 2 2 28.92 3 2 28.19
4 2 26.16 5 2 21.34 6 2 29.46
1 3 18.30 2 3 23.67 3 3 14.47
4 3 24.45 5 3 24.89 6 3 28.95
1 4 51.42 2 4 27.97 3 4 24.76
4 4 26.67 5 4 17.58 6 4 24.29
1 5 34.12 2 5 46.87 3 5 58.59
4 5 38.11 5 5 47.59 6 5 44.67
;

There are five groups (grp, j D 1; � � � ; 5) with six observations (nobs, i D 1; � � � ; 6) in each. The two-level
hierarchical model is specified as follows:

yij � normal.�j ; prec D �w/

�j � normal.�; prec D �b/

� � normal.0; prec D 1e � 6/

� � gamma.0:001; iscale D 0:001/

p � uniform.0; 1/

with the precision parameters related to each other in the following way:

�b D �=p

�w D �b � �

The total number of parameters in this model is eight: �1; � � � ; �5; �; � , and p.
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The following statements fit the model:

ods graphics on;
proc mcmc data=inputdata nmc=50000 thin=10 outpost=m1 seed=17

plot=trace;
ods select ess tracepanel;
parms p;
parms tau;
parms mu;

prior p ~ uniform(0,1);
prior tau ~ gamma(shape=0.001,iscale=0.001);
prior mu ~ normal(0,prec=0.00000001);
beginnodata;
taub = tau/p;
tauw = taub-tau;
endnodata;

random theta ~ normal(mu, prec=taub) subject=grp monitor=(theta);
model y ~ normal(theta,prec=tauw);

run;

The ODS SELECT statement displays the effective sample size table and the trace plots. The ODS GRAPH-
ICS ON statement enables ODS Graphics. The PROC MCMC statement specifies the usual options for the
procedure run and produces trace plots (PLOTS=TRACE). The three PARMS statements put three model pa-
rameters, p, tau, and mu, in three different blocks. The PRIOR statements specify the prior distributions, and
the programming statements enclosed with the BEGINNODATA and ENDNODATA statements calculate the
transformation to taub and tauw. The RANDOM statement specifies the random effect, its prior distribution,
and the subject variable. The resulting trace plots are shown in Output 61.20.1, and the effective sample size
table is shown in Output 61.20.2.
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Output 61.20.1 Trace Plots
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Output 61.20.1 continued

Output 61.20.2 Bad Effective Sample Sizes

Implement a New Sampling Algorithm

The MCMC Procedure

Implement a New Sampling Algorithm

The MCMC Procedure

Effective Sample Sizes

Parameter ESS
Autocorrelation

Time Efficiency

p 81.3 61.5342 0.0163

tau 61.2 81.7440 0.0122

mu 5000.0 1.0000 1.0000

theta_1 4839.9 1.0331 0.9680

theta_2 2739.7 1.8250 0.5479

theta_3 1346.6 3.7130 0.2693

theta_4 4897.5 1.0209 0.9795

theta_5 338.1 14.7866 0.0676
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The trace plots show that most parameters have relatively good mixing. Two exceptions appear to be p
and � . The trace plot of p shows a slow periodic movement. The � parameter does not have good mixing
either. When the values are close to zero, the chain stays there for periods of time. An inspection of the
effective sample sizes table reveals the same conclusion: p and � have much smaller ESSs than the rest of the
parameters.

A scatter plot of the posterior samples of p and � reveals why mixing is bad in these two dimensions. The
following statements generate the scatter plot in Output 61.20.3:

title 'Scatter Plot of Parameters on Original Scales';

proc sgplot data=m1;
yaxis label = 'p';
xaxis label = 'tau' values=(0 to 0.4 by 0.1);
scatter x = tau y = p;

run;

Output 61.20.3 Scatter Plot of � versus p
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The two parameters clearly have a nonlinear relationship. It is not surprising that the Metropolis algorithm
does not work well here. The algorithm is designed for cases where the parameters are linearly related with
each other.

To improve on mixing, you can sample on the log of � , instead of sampling on � . The formulation is:

� � gamma.shape D 0:001; iscale D 0:001/

log.�/ � egamma.shape D 0:001; iscale D 0:001/

See the section “Standard Distributions” on page 4798 for the definitions of the gamma and egamma
distributions. In addition, you can sample on the logit of p. Note that

p � uniform.0; 1/

is equivalent to

lgp D logit.p/ � logistic.0; 1/

The following statements fit the same model by using transformed parameters:

proc mcmc data=inputdata nmc=50000 thin=10 outpost=m2 seed=17
monitor=(p tau mu) plot=trace;

ods select ess tracepanel;
parms ltau lgp mu ;

prior ltau ~ egamma(shape=0.001,iscale=0.001);
prior lgp ~ logistic(0,1);
prior mu ~ normal(0,prec=0.00000001);

beginnodata;
tau = exp(ltau);
p = logistic(lgp);
taub = tau/p;
tauw = taub-tau;
endnodata;

random theta ~ normal(mu, prec=taub) subject=grp monitor=(theta);
model y ~ normal(theta,prec=tauw);

run;

The variable lgp is the logit transformation of p, and ltau is the log transformation of � . The prior for ltau is
egamma, and the prior for lgp is logistic. The TAU and P assignment statements transform the parameters
back to their original scales. The rest of the programs remain unchanged. Trace plots (Output 61.20.4) and
effective sample size (Output 61.20.5) both show significant improvements in the mixing for both p and � .
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Output 61.20.4 Trace Plots after Transformation
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Output 61.20.4 continued

Output 61.20.5 Effective Sample Sizes after Transformation

The MCMC ProcedureThe MCMC Procedure

Effective Sample Sizes

Parameter ESS
Autocorrelation

Time Efficiency

p 3119.4 1.6029 0.6239

tau 2588.0 1.9320 0.5176

mu 5000.0 1.0000 1.0000

theta_1 4866.0 1.0275 0.9732

theta_2 5244.5 0.9534 1.0489

theta_3 5000.0 1.0000 1.0000

theta_4 5000.0 1.0000 1.0000

theta_5 4054.8 1.2331 0.8110
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The following statements generate Output 61.20.6 and Output 61.20.7:

title 'Scatter Plot of Parameters on Transformed Scales';

proc sgplot data=m2;
yaxis label = 'logit(p)';
xaxis label = 'log(tau)';
scatter x = ltau y = lgp;

run;

title 'Scatter Plot of Parameters on Original Scales';

proc sgplot data=m2;
yaxis label = 'p';
xaxis label = 'tau' values=(0 to 5.0 by 1);
scatter x = tau y = p;

run;
ods graphics off;

Output 61.20.6 Scatter Plot of log.�/ versus logit.p/, After Transformation
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Output 61.20.7 Scatter Plot of � versus p, After Transformation

The scatter plot of log.�/ versus logit.p/ shows a linear relationship between the two transformed parameters,
and this explains the improvement in mixing. In addition, the transformations also help the Markov chain
better explore in the original parameter space. Output 61.20.7 shows a scatter plot of � versus p. The plot is
similar to Output 61.20.3. However, note that tau has a far longer tail in Output 61.20.7, extending all the
way to 5 as opposed to 0.15 in Output 61.20.3. This means that the second Markov chain can explore this
dimension of the parameter more efficiently, and as a result, you are able to draw more precise inference with
an equal number of simulations.

Example 61.21: Gelman-Rubin Diagnostics
PROC MCMC does not have the Gelman-Rubin test (see the section “Gelman and Rubin Diagnostics” on
page 143 in Chapter 7, “Introduction to Bayesian Analysis Procedures,”) as a part of its diagnostics. The
Gelman-Rubin diagnostics rely on parallel chains to test whether they all converge to the same posterior
distribution. This example demonstrates how you can carry out this convergence test. The regression model
from the section “Simple Linear Regression” on page 4732 is used. The model has three parameters: ˇ0 and
ˇ1 are the regression coefficients, and �2 is the variance of the error distribution.
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The following statements generate the data set:

title 'Simple Linear Regression, Gelman-Rubin Diagnostics';

data Class;
input Name $ Height Weight @@;
datalines;

Alfred 69.0 112.5 Alice 56.5 84.0 Barbara 65.3 98.0
Carol 62.8 102.5 Henry 63.5 102.5 James 57.3 83.0
Jane 59.8 84.5 Janet 62.5 112.5 Jeffrey 62.5 84.0
John 59.0 99.5 Joyce 51.3 50.5 Judy 64.3 90.0
Louise 56.3 77.0 Mary 66.5 112.0 Philip 72.0 150.0
Robert 64.8 128.0 Ronald 67.0 133.0 Thomas 57.5 85.0
William 66.5 112.0
;

To run a Gelman-Rubin diagnostic test, you want to start Markov chains at different places in the parameter
space. Suppose you want to start ˇ0 at 10, –15, and 0; ˇ1 at –5, 10, and 0; and �2 at 1, 20, and 50. You can
put these starting values in the following Init SAS data set:

data init;
input Chain beta0 beta1 sigma2;
datalines;
1 10 -5 1
2 -15 10 20
3 0 0 50

;

The following statements run PROC MCMC three times, each with starting values specified in the data set
Init:

/* define constants */
%let nchain = 3;
%let nparm = 3;
%let nsim = 50000;
%let var = beta0 beta1 sigma2;

%macro gmcmc;
%do i=1 %to &nchain;

data _null_;
set init;
if Chain=&i;
%do j = 1 %to &nparm;

call symputx("init&j", %scan(&var, &j));
%end;
stop;

run;

proc mcmc data=class outpost=out&i init=reinit nbi=0 nmc=&nsim
stats=none seed=7;

parms beta0 &init1 beta1 &init2;
parms sigma2 &init3 / n;
prior beta0 beta1 ~ normal(0, var = 1e6);
prior sigma2 ~ igamma(3/10, scale = 10/3);
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mu = beta0 + beta1*height;
model weight ~ normal(mu, var = sigma2);

run;
%end;

%mend;

ods listing close;
%gmcmc;
ods listing;

The macro variables nchain, nparm, nsim, and var define the number of chains, the number of parameters,
the number of Markov chain simulations, and the parameter names, respectively. The macro GMCMC gets
initial values from the data set Init, assigns them to the macro variables init1, init2 and init3, starts the Markov
chain at these initial values, and stores the posterior draws to three output data sets: Out1, Out2, and Out3.

In the PROC MCMC statement, the INIT=REINIT option restarts the Markov chain after tuning at the
assigned initial values. No burn-in is requested.

You can use the autocall macro GELMAN to calculate the Gelman-Rubin statistics by using the three chains.
The GELMAN macro has the following arguments:

%macro gelman(dset, nparm, var, nsim, nc=3, alpha=0.05);

The argument dset is the name of the data set that stores the posterior samples from all the runs, nparm is the
number of parameters, var is the name of the parameters, nsim is the number of simulations, nc is the number
of chains with a default value of 3, and alpha is the ˛ significant level in the test with a default value of 0.05.
This macro creates two data sets: _Gelman_Ests stores the diagnostic estimates and _Gelman_Parms stores
the names of the parameters.

The following statements calculate the Gelman-Rubin diagnostics:

data all;
set out1(in=in1) out2(in=in2) out3(in=in3);
if in1 then Chain=1;
if in2 then Chain=2;
if in3 then Chain=3;

run;

%gelman(all, &nparm, &var, &nsim);

data GelmanRubin(label='Gelman-Rubin Diagnostics');
merge _Gelman_Parms _Gelman_Ests;

run;

proc print data=GelmanRubin;
run;

The Gelman-Rubin statistics are shown in Output 61.21.1.
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Output 61.21.1 Gelman-Rubin Diagnostics of the Regression Example

Simple Linear Regression, Gelman-Rubin DiagnosticsSimple Linear Regression, Gelman-Rubin Diagnostics

Obs Parameter Between-chain Within-chain Estimate UpperBound

1 beta0 5384.76 1168.64 1.0002 1.0001

2 beta1 1.20 0.30 1.0002 1.0002

3 sigma2 8034.41 2890.00 1.0010 1.0011

The Gelman-Rubin statistics do not reveal any concerns about the convergence or the mixing of the multiple
chains. To get a better visual picture of the multiple chains, you can draw overlapping trace plots of these
parameters from the three Markov chains runs.

The following statements create Output 61.21.2:

/* plot the trace plots of three Markov chains. */
%macro trace;

%do i = 1 %to &nparm;
proc sgplot data=all cycleattrs;

series x=Iteration y=%scan(&var, &i) / group=Chain;
run;

%end;
%mend;
%trace;

Output 61.21.2 Trace Plots of Three Chains for Each of the Parameters
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Output 61.21.2 continued
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The trace plots show that three chains all eventually converge to the same regions even though they started
at very different locations. In addition to the trace plots, you can also plot the potential scale reduction
factor (PSRF). See the section “Gelman and Rubin Diagnostics” on page 143 in Chapter 7, “Introduction to
Bayesian Analysis Procedures,” for definition and details.

The following statements calculate PSRF for each parameter. They use the GELMAN macro repeatedly and
can take a while to run:

/* define sliding window size */
%let nwin = 200;
data PSRF;
run;

%macro PSRF(nsim);
%do k = 1 %to %sysevalf(&nsim/&nwin, floor);

%gelman(all, &nparm, &var, nsim=%sysevalf(&k*&nwin));
data GelmanRubin;

merge _Gelman_Parms _Gelman_Ests;
run;

data PSRF;
set PSRF GelmanRubin;

run;
%end;

%mend PSRF;

options nonotes;
%PSRF(&nsim);
options notes;

data PSRF;
set PSRF;
if _n_ = 1 then delete;

run;

proc sort data=PSRF;
by Parameter;

run;

%macro sepPSRF(nparm=, var=, nsim=);
%do k = 1 %to &nparm;

data save&k; set PSRF;
if _n_ > %sysevalf(&k*&nsim/&nwin, floor) then delete;
if _n_ < %sysevalf((&k-1)*&nsim/&nwin + 1, floor) then delete;
Iteration + &nwin;

run;

proc sgplot data=save&k(firstobs=10) cycleattrs;
series x=Iteration y=Estimate;
series x=Iteration y=upperbound;
yaxis label="%scan(&var, &k)";

run;
%end;

%mend sepPSRF;

%sepPSRF(nparm=&nparm, var=&var, nsim=&nsim);
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Output 61.21.3 PSRF Plot for Each Parameter
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Output 61.21.3 continued

PSRF is the square root of the ratio of the between-chain variance and the within-chain variance. A large
PSRF indicates that the between-chain variance is substantially greater than the within-chain variance, so
that longer simulation is needed. You want the PSRF to converge to 1 eventually, as it appears to be the case
in this simulation study.
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Overview: MDS Procedure
Multidimensional scaling (MDS) refers to a class of methods. These methods estimate coordinates for a set
of objects in a space of specified dimensionality. The input data are measurements of distances between pairs
of objects. A variety of models can be used that include different ways of computing distances and various
functions relating the distances to the actual data. The MDS procedure fits two- and three-way, metric and
nonmetric multidimensional scaling models.

The data for the MDS procedure consist of one or more square symmetric or asymmetric matrices of
similarities or dissimilarities between objects or stimuli (Kruskal and Wish 1978, pp. 7–11). Such data are
also called proximity data. In psychometric applications, each matrix typically corresponds to a subject, and
models that fit different parameters for each subject are called individual difference models.

Missing values are permitted. In particular, if the data are all missing except within some off-diagonal
rectangle, the analysis is called unfolding. There are, however, many difficulties intrinsic to unfolding models
(Heiser 1981). PROC MDS does not perform external unfolding; for analyses requiring external unfolding,
use the TRANSREG procedure instead.

The MDS procedure estimates the following parameters by nonlinear least squares:

configuration the coordinates of each object in a Euclidean (Kruskal and
Wish 1978, pp. 17–19) or weighted Euclidean space (Kruskal
and Wish 1978, pp. 61–63) of one or more dimensions

dimension coefficients for each data matrix, the coefficients that multiply each coor-
dinate of the common or group weighted Euclidean space to
yield the individual unweighted Euclidean space. These coeffi-
cients are the square roots of the subject weights (Kruskal and
Wish 1978, pp. 61–63). A plot of the dimension coefficients
is directly interpretable in that it shows how a unit square in
the group space is transformed to a rectangle in each individual
space. A plot of subject weights has no such simple interpreta-
tion. The weighted Euclidean model is related to the INDSCAL
model (Carroll and Chang 1970).

transformation parameters intercept, slope, or exponent in a linear, affine, or power trans-
formation relating the distances to the data (Kruskal and Wish
1978, pp. 19–22). For a nonmetric analysis, monotone trans-
formations involving no explicit parameters are used (Kruskal
and Wish 1978, pp. 22–25). For a discussion of metric versus
nonmetric transformations, see Kruskal and Wish (1978, pp.
76–78).
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Depending on the LEVEL= option, PROC MDS fits either a regression model of the form

fit.datum/ D fit.trans.distance//C error

or a measurement model of the form

fit.trans.datum// D fit.distance/C error

where

fit is a predetermined power or logarithmic transformation specified by the FIT= option.

trans is an estimated (“optimal”) linear, affine, power, or monotone transformation specified by the
LEVEL= option.

datum is a measure of the similarity or dissimilarity of two objects or stimuli.

distance is a distance computed from the estimated coordinates of the two objects and estimated
dimension coefficients in a space of one or more dimensions. If there are no dimension
coefficients (COEF=IDENTITY), this is an unweighted Euclidean distance. If dimension
coefficients are used (COEF=DIAGONAL), this is a weighted Euclidean distance where the
weights are the squares of the dimension coefficients; alternatively, you can multiply each
dimension by its coefficient and compute an unweighted Euclidean distance.

error is an error term assumed to have an approximately normal distribution and to be independently
and identically distributed for all data. Under these assumptions, least-squares estimation is
statistically appropriate.

For an introduction to multidimensional scaling, see Kruskal and Wish (1978) and Arabie, Carroll, and
DeSarbo (1987). A more advanced treatment is given by Young (1987). Many practical issues of data
collection and analysis are discussed in Schiffman, Reynolds, and Young (1981). The fundamentals of
psychological measurement, including both unidimensional and multidimensional scaling, are expounded by
Torgerson (1958). Nonlinear least-squares estimation of PROC MDS models is discussed in Null and Sarle
(1982).
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Getting Started: MDS Procedure
The simplest application of PROC MDS is to reconstruct a map from a table of distances between points on
the map (Kruskal and Wish 1978, pp. 7–9). A data set containing a table of flying mileages between 10 U.S.
cities is available in the Sashelp library.

Since the flying mileages are very good approximations to Euclidean distance, no transformation is needed
to convert distances from the model to data. The analysis can therefore be done at the absolute level
of measurement, as displayed in the following PROC MDS step (LEVEL=ABSOLUTE). The following
statements produce Figure 62.1 and Figure 62.2:

title 'Analysis of Flying Mileages between Ten U.S. Cities';

ods graphics on;

proc mds data=sashelp.mileages level=absolute;
id city;

run;

PROC MDS first displays the iteration history. In this example, only one iteration is required. The badness-
of-fit criterion 0.001689 indicates that the data fit the model extremely well. You can also see that the fit is
excellent in the fit plot in Figure 62.2.

Figure 62.1 Iteration History from PROC MDS

Analysis of Flying Mileages between Ten U.S. Cities

Multidimensional Scaling:  Data=SASHELP.MILEAGES.DATA
Shape=TRIANGLE Condition=MATRIX Level=ABSOLUTE

Coef=IDENTITY Dimension=2 Formula=1 Fit=1

Analysis of Flying Mileages between Ten U.S. Cities

Multidimensional Scaling:  Data=SASHELP.MILEAGES.DATA
Shape=TRIANGLE Condition=MATRIX Level=ABSOLUTE

Coef=IDENTITY Dimension=2 Formula=1 Fit=1

Gconverge=0.01 Maxiter=100 Over=1 Ridge=0.0001

Iteration Type

Badness-
of-Fit

Criterion
Change in

Criterion
Convergence

Measure

0 Initial 0.003273 . 0.8562

1 Lev-Mar 0.001689 0.001584 0.005128

Convergence criterion is satisfied.
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While PROC MDS can recover the relative positions of the cities, it cannot determine absolute location or
orientation. In this case, north is toward the bottom of the plot. (See the first plot in Figure 62.2.)

Figure 62.2 Plot of Estimated Configuration and Fit
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Figure 62.2 continued

Syntax: MDS Procedure
The following statements are available in the MDS procedure:

PROC MDS < options > ;
VAR variables ;
INVAR variables ;
ID | OBJECT variable ;
MATRIX | SUBJECT variable ;
WEIGHT variables ;
BY variables ;

The PROC MDS statement is required. All other statements are optional.
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PROC MDS Statement
PROC MDS < options > ;

The PROC MDS statement invokes the MDS procedure. PROC MDS produces an iteration history by default.
Graphical displays are produced when ODS Graphics is enabled. Additional displayed output is controlled
by the interaction of the PCONFIG, PCOEF, PTRANS, PFIT, and PFITROW options with the PININ, PINIT,
PITER, and PFINAL options. The PCONFIG, PCOEF, PTRANS, PFIT, and PFITROW options specify
which estimates and fit statistics are to be displayed. The PININ, PINIT, PITER, and PFINAL options specify
when the estimates and fit statistics are to be displayed. If you specify at least one of the PCONFIG, PCOEF,
PTRANS, PFIT, and PFITROW options but none of the PININ, PINIT, PITER, and PFINAL options, the final
results (PFINAL) are displayed. If you specify at least one of the PININ, PINIT, PITER, and PFINAL options
but none of the PCONFIG, PCOEF, PTRANS, PFIT, and PFITROW options, all estimates (PCONFIG,
PCOEF, PTRANS) and the fit statistics for each matrix and for the entire sample (PFIT) are displayed. If you
do not specify any of these nine options, no estimates or fit statistics are displayed (except the badness-of-fit
criterion in the iteration history).

The types of estimates written to the OUT= data set are determined by the OCONFIG, OCOEF, OTRANS,
and OCRIT options. If you do not specify any of these four options, the estimates of all the parameters of the
PROC MDS model and the value of the badness-of-fit criterion appear in the OUT= data set. If you specify
one or more of these options, only the information requested by the specified options appears in the OUT=
data set. Also, the OITER option causes these statistics to be written to the OUT= data set after initialization
and on each iteration, as well as after the iterations have terminated.

Table 62.2 summarizes the options available in the PROC MDS statement.

Table 62.2 Summary of PROC MDS Statement Options

Option Description

Data Set Options
DATA= Specifies the input SAS data set
INITIAL= Specifies the input SAS data set containing initial values
OUT= Specifies the output data set
OUTFIT= Specifies the output fit data set
OUTRES= Specifies the output residual data set

Input Control
CUTOFF= Replaces data values with missing values
SHAPE= Specifies the shape of the input data matrices
SIMILAR= Specifies that the data are similarity measurements

Model
COEF= Specifies the type of matrix for the coefficients
CONDITION= Specifies the conditionality of the data
DIMENSION= Specifies the number of dimensions
LEVEL= Specifies the measurement level
NEGATIVE Permits slopes or powers to be negative
UNTIE Permits tied data to be untied
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Table 62.2 continued

Option Description

Initialization
INAV= Affects the computation of initial coordinates
NOULB Specifies the missing data initialization
RANDOM= Specifies initial random coordinates

Estimation
ALTERNATE= Specifies the alternating-least-squares algorithm
CONVERGE= Specifies the convergence criterion
EPSILON= Specifies the amount added to squared distances
FIT= Specifies a predetermined transformation
FORMULA= Specifies the badness-of-fit formula
GCONVERGE= Specifies the gradient convergence criterion
MAXITER= Specifies the maximum number of iterations
MCONVERGE= Specifies the monotone convergence criterion
MINCRIT= Specifies the minimum badness-of-fit criterion
NONORM Suppresses normalization of the initial and final estimates
OVER= Specifies the maximum overrelaxation factor
RIDGE= Specifies the initial ridge value
SINGULAR= Specifies the singularity criterion

Control Output Data Set Contents
OCOEF Writes the dimension coefficients to the OUT= data set
OCONFIG Writes the coordinates of the objects to the OUT= data set
OCRIT Writes the badness-of-fit criterion to the OUT= data set
OITER Writes current values after initialization and on every iteration
OTRANS Writes the transformation parameter estimates to the OUT= data set

Control Displayed Output
DECIMALS= Specifies how many decimal places to use
NOPHIST Suppresses the iteration history
PCOEF Displays the estimated dimension coefficients
PCONFIG Displays the estimated coordinates
PDATA Displays each data matrix
PFINAL Displays final estimates
PFIT Displays the badness-of-fit criterion
PFITROW Displays the badness-of-fit criterion for each row
PINAVDATA Displays INAV= data set information
PINEIGVAL Displays the initial eigenvalues
PINEIGVEC Displays the initial eigenvectors
PININ Displays values read from the INITIAL= data set
PINIT Displays initial values
PITER Displays estimates on each iteration
PLOTS= Controls the graphical displays
PTRANS Displays the estimated transformation parameters
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ALTERNATE=NONE | NO | N

ALTERNATE=MATRIX | MAT | M | SUBJECT | SUB | S

ALTERNATE=ROW | R < =n >

ALT=N | M| S | R < =n >
determines what form of alternating-least-squares algorithm is used. The default depends on the
amount of memory available. The following ALTERNATE= options are listed in order of decreasing
memory requirements:

NONE causes all parameters to be adjusted simultaneously on each iteration. This option is
usually best for a small number of subjects and objects.

MATRIX adjusts all the parameters for the first subject, then all the parameters for the second
subject, and so on, and finally adjusts all parameters that do not correspond to a subject,
such as coordinates and unconditional transformations. This option usually works best
for a large number of subjects with a small number of objects.

ROW treats subject parameters the same way as the ALTERNATE=MATRIX option but also
includes separate stages for unconditional parameters and for subsets of the objects.
The ALT=ROW option usually works best for a large number of objects. Specifying
ALT=ROW=n divides the objects into subsets of n objects each, except possibly for
one subset when n does not divide the number of objects evenly. If you omit =n, the
number of objects in the subsets is determined from the amount of memory available.
The smaller the value of n, the less memory is required.

When you specify the LEVEL=ORDINAL option, the monotone transformation is always computed in
a separate stage and is listed as a separate iteration in the iteration history. In this case, estimation is
done by iteratively reweighted least squares. The weights are recomputed according to the FORMULA=
option on each monotone iteration; hence, it is possible for the badness-of-fit criterion to increase after
a monotone iteration.

COEF=IDENTITY | IDEN | I

COEF=DIAGONAL | DIAG | D
specifies the type of matrix for the dimension coefficients.

IDENTITY is the default, which yields Euclidean distances.

DIAGONAL produces weighted Euclidean distances, in which each subject can have different
weights for the dimensions. The dimension coefficients that PROC MDS outputs
are related to the square roots of what are called subject weights in PROC ALSCAL;
the normalization in PROC MDS also differs from that in PROC ALSCAL. The
weighted Euclidean model is related to the INDSCAL model (Carroll and Chang
1970).
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CONDITION=UN | U

CONDITION=MATRIX | MAT | M | SUBJECT | SUB | S

CONDITION=ROW | R

COND=U | M | S | R
specifies the conditionality of the data (Young 1987, pp. 60–63). The data are divided into disjoint
subsets called partitions. Within each partition, a separate transformation is applied, as specified by
the LEVEL= option. The three types of conditionality are as follows:

UN (unconditional) puts all the data into a single partition.

MATRIX (matrix conditional) makes each data matrix a partition.

ROW (row conditional) makes each row of each data matrix a partition.

The default is CONDITION=MATRIX. The CONDITION= option also determines the default value for
the SHAPE= option. If you specify the CONDITION=ROW option and omit the SHAPE= option, each
data matrix is stored as a square and possibly asymmetric matrix. If you specify the CONDITION=UN
or CONDITION=MATRIX option and omit the SHAPE= option, only one triangle is stored. See the
SHAPE= option for details.

CONVERGE | CONV=p
sets both the gradient convergence criterion and the monotone convergence criterion to p, where
0 � p � 1. The default is CONVERGE=0.01; smaller values might greatly increase the number of
iterations required. Values less than 0.0001 might be impossible to satisfy because of the limits of
machine precision. (See the GCONVERGE= and MCONVERGE= options.)

CUTOFF=n
replaces data values less than n with missing values. The default is CUTOFF=0.

DATA=SAS-data-set
specifies the SAS data set containing one or more square matrices to be analyzed. In typical psychome-
tric data, each matrix contains judgments from one subject, so there is a one-to-one correspondence
between data matrices and subjects.

The data matrices contain similarity or dissimilarity measurements to be modeled and, optionally,
weights for these data. The data are generally assumed to be dissimilarities unless you use the SIMILAR
option. However, if there are nonmissing diagonal values and these values are predominantly larger
than the off-diagonal values, the data are assumed to be similarities and are treated as if the SIMILAR
option is specified. The diagonal elements are not otherwise used in fitting the model.

Each matrix must have exactly the same number of observations as the number of variables specified
by the VAR statement or determined by defaults. This number is the number of objects or stimuli.

The first observation and variable are assumed to contain data for the first object, the second observation
and variable are assumed to contain data for the second object, and so on.

When there are two or more matrices, the observations in each matrix must correspond to the same
objects in the same order as in the first matrix.

The matrices can be symmetric or asymmetric, as specified by the SHAPE= option.
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DECIMALS | DEC=n
specifies how many decimal places to use when displaying the parameter estimates and fit statis-
tics. The default is DECIMALS=2, which is generally reasonable except in conjunction with the
LEVEL=ABSOLUTE option and very large or very small data.

DIMENSION | DIMENS | DIM=n < TO m < BY=i > >

specifies the number of dimensions to use in the MDS model, where 1 � n;m < number of objects.
The parameter i can be either positive or negative but not zero. If you specify different values for n
and m, a separate model is fitted for each requested dimension. If you specify only DIMENSION=n,
then only n dimensions are fitted. The default is DIMENSION=2 if there are three or more objects;
otherwise, DIMENSION=1 is the only valid specification. The analyses for each number of dimensions
are done independently. For information about choosing the dimensionality, see Kruskal and Wish
(1978 , pp. 48–60).

EPSILON | EPS=n
specifies a number n, 0 < n < 1, that determines the amount added to squared distances computed from
the model to avoid numerical problems such as division by 0. This amount is computed as � equal to n
times the mean squared distance in the initial configuration. The distance in the MDS model is thus
computed as

distance D
p
sqdist C �

where sqdist is the squared Euclidean distance or the weighted squared Euclidean distance.

The default is EPSILON=1E–12, which is small enough to have no practical effect on the estimates
unless the FIT= value is nonpositive and there are dissimilarities that are very close to 0. Hence, when
the FIT= value is nonpositive, dissimilarities less than n times 100 times the maximum dissimilarity
are not permitted.

FIT=DISTANCE | DIS | D
FIT=SQUARED | SQU | S
FIT=LOG | L
FIT=n

specifies a predetermined (not estimated) transformation to apply to both sides of the MDS model
before the error term is added.

The default is FIT=DISTANCE or, equivalently, FIT=1, which fits data to distances.

The option FIT=SQUARED or FIT=2 fits squared data to squared distances. This gives greater
importance to large data and distances and lesser importance to small data and distances in fitting the
model.

The FIT=LOG or FIT=0 option fits log data to log distances. This gives lesser importance to large data
and distances and greater importance to small data and distances in fitting the model.

In general, the FIT=n option fits nth-power data to nth-power distances. Values of n that are large in
absolute value can cause floating-point overflows.

If the FIT= value is 0 or negative, the data must be strictly positive (see the EPSILON= option).
Negative data might produce strange results with any value other than FIT=1.
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FORMULA=0 | OLS | O

FORMULA=1 | USS | U

FORMULA=2 | CSS | C

FOR=O | U | C
determines how the badness-of-fit criterion is standardized in correspondence with stress formulas 1
and 2 (Kruskal and Wish 1978, pp. 24–26). The default is FORMULA=1 unless you specify FIT=LOG,
in which case the default is FORMULA=2. Data partitions are defined by the CONDITION= option.

0 fits a regression model by ordinary least squares (Null and Sarle 1982) without standardizing the
partitions; this option cannot be used with the LEVEL=ORDINAL option. The badness-of-fit
criterion is the square root of the error sum of squares.

1 standardizes each partition by the uncorrected sum of squares of the (possibly transformed)
data; this option should not be used with the FIT=LOG option. With the FIT=DISTANCE
and LEVEL=ORDINAL options, this is equivalent to Kruskal’s stress formula 1 or an obvious
generalization thereof. With the FIT=SQUARED and LEVEL=ORDINAL options, this is
equivalent to Young’s s-stress formula 1 or an obvious generalization thereof. The badness-of-fit
criterion is analogous to

p
1 � R2, where R is a multiple correlation about the origin.

2 standardizes each partition by the corrected sum of squares of the (possibly transformed)
data; this option is the recommended method for unfolding. With the FIT=DISTANCE and
LEVEL=ORDINAL options, this is equivalent to Kruskal’s stress formula 2 or an obvious
generalization thereof. With the FIT=SQUARED and LEVEL=ORDINAL options, this is
equivalent to Young’s s-stress formula 2 or an obvious generalization thereof. The badness-
of-fit criterion is analogous to

p
1 � R2, where R is a multiple correlation computed with a

denominator corrected for the mean.

GCONVERGE | GCONV=p
sets the gradient convergence criterion to p, where 0 � p � 1. The default is GCONVERGE=0.01;
smaller values might greatly increase the number of iterations required. Values less than 0.0001 might
be impossible to satisfy because of the limits of machine precision.

The gradient convergence measure is the multiple correlation of the Jacobian matrix with the residual
vector, uncorrected for the mean. (See the CONVERGE= and MCONVERGE= options.)

INAV=DATA | D

INAV=SSCP | S
affects the computation of initial coordinates. The default is INAV=DATA.

DATA computes a weighted average of the data matrices. Its value is estimated only if an element
is missing from every data matrix. The weighted average of the data matrices with missing
values filled in is then converted to a scalar products matrix (or what would be a scalar
products matrix if the fit were perfect), from which the initial coordinates are computed.

SSCP estimates missing values in each data matrix and converts each data matrix to a scalar
products matrix. The initial coordinates are computed from the unweighted average of the
scalar products matrices.
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INITIAL | IN=SAS-data-set
specifies a SAS data set containing initial values for some or all of the parameters of the MDS model.
If the INITIAL= option is omitted, the initial values are computed from the data.

LEVEL=ABSOLUTE | ABS | A

LEVEL=RATIO | RAT | R

LEVEL=INTERVAL | INT | I

LEVEL=LOGINTERVAL | LOG | L

LEVEL=ORDINAL | ORD | O
specifies the measurement level of the data and hence the type of estimated (optimal) transformations
applied to the data or distances (Young 1987, pp. 57–60; Krantz et al. 1971, pp. 9–12) within each
partition as specified by the CONDITION= option. LEVEL=ORDINAL specifies a nonmetric analysis,
while all other LEVEL= options specify metric analyses. The default is LEVEL=ORDINAL.

ABSOLUTE permits no optimal transformations. Hence, the distinction between regression
and measurement models is irrelevant.

RATIO fits a regression model in which the distances are multiplied by a slope parameter
in each partition (a linear transformation). In this case, the regression model is
equivalent to the measurement model with the slope parameter reciprocated.

INTERVAL fits a regression model in which the distances are multiplied by a slope parameter
and added to an intercept parameter in each partition (an affine transformation).
In this case, the regression and measurement models differ if there is more than
one partition.

LOGINTERVAL fits a regression model in which the distances are raised to a power and multiplied
by a slope parameter in each partition (a power transformation).

ORDINAL fits a measurement model in which a least-squares monotone increasing transfor-
mation is applied to the data in each partition. At the ordinal measurement level,
the regression and measurement models differ.

MAXITER | ITER=n
specifies the maximum number of iterations, where n � 0. The default is MAXITER=100.

MCONVERGE | MCONV=p
sets the monotone convergence criterion to p, where 0 � p � 1, for use with the LEVEL=ORDINAL
option. The default is MCONVERGE=0.01; if you want greater precision, MCONVERGE=0.001 is
usually reasonable, but smaller values might greatly increase the number of iterations required.

The monotone convergence criterion is the Euclidean norm of the change in the optimally scaled data
divided by the Euclidean norm of the optimally scaled data, averaged across partitions defined by the
CONDITION= option. (See the CONVERGE= and GCONVERGE= options.)

MINCRIT | CRITMIN=n
causes iteration to terminate when the badness-of-fit criterion is less than or equal to n, where n � 0.
The default is MINCRIT=1E–6.
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NEGATIVE
permits slopes or powers to be negative with the LEVEL=RATIO, INTERVAL, or LOGINTERVAL
option.

NONORM
suppresses normalization of the initial and final estimates.

NOPHIST | NOPRINT | NOP
suppresses the output of the iteration history.

NOULB
causes missing data to be estimated during initialization by the average nonmissing value, where
the average is computed according to the FIT= option. Otherwise, missing data are estimated by
interpolating between the Rabinowitz (1976) upper and lower bounds.

OCOEF
writes the dimension coefficients to the OUT= data set. See the OUT= option for interactions with
other options.

OCONFIG
writes the coordinates of the objects to the OUT= data set. See the OUT= option for interactions with
other options.

OCRIT
writes the badness-of-fit criterion to the OUT= data set. See the OUT= option for interactions with
other options.

OITER | OUTITER
writes current values to the output data sets after initialization and on every iteration. Otherwise, only
the final values are written to any output data sets. (See the OUT=, OUTFIT=, and OUTRES= options.)

OTRANS
writes the transformation parameter estimates to the OUT= data set if any such estimates are computed.
There are no transformation parameters with the LEVEL=ORDINAL option. See the OUT= option for
interactions with other options.

OUT=SAS-data-set
creates a SAS data set containing, by default, the estimates of all the parameters of the PROC MDS
model and the value of the badness-of-fit criterion. However, if you specify one or more of the
OCONFIG, OCOEF, OTRANS, and OCRIT options, only the information requested by the specified
options appears in the OUT= data set. (See also the OITER option.)

OUTFIT=SAS-data-set
creates a SAS data set containing goodness-of-fit and badness-of-fit measures for each partition as well
as for the entire data set. (See also the OITER option.)

OUTRES=SAS-data-set
creates a SAS data set containing one observation for each nonmissing data value from the DATA=
data set. Each observation contains the original data value, the estimated distance computed from the
MDS model, transformed data and distances, and the residual. (See also the OITER option.)
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OVER=n
specifies the maximum overrelaxation factor, where n � 1. Values between 1 and 2 are generally
reasonable. The default is OVER=2 with the LEVEL=ORDINAL, ALTERNATE=MATRIX, or
ALTERNATE=ROW option; otherwise, the default is OVER=1. Use this option only if you have
convergence problems.

PCOEF
produces the estimated dimension coefficients.

PCONFIG
produces the estimated coordinates of the objects in the configuration.

PDATA
displays each data matrix.

PFINAL
displays final estimates.

PFIT
displays the badness-of-fit criterion and various types of correlations between the data and fitted values
for each data matrix, as well as for the entire sample.

PFITROW
displays the badness-of-fit criterion and various types of correlations between the data and fitted values
for each row, as well as for each data matrix and for the entire sample. This option works only with the
CONDITION=ROW option.

PINAVDATA
displays the sum of the weights and the weighted average of the data matrices computed during
initialization with the INAV=DATA option.

PINEIGVAL
displays the eigenvalues computed during initialization.

PINEIGVEC
displays the eigenvectors computed during initialization.

PININ
displays values read from the INITIAL= data set. Since these values might be incomplete, the PFIT
and PFITROW options do not apply.

PINIT
displays initial values.

PITER
displays estimates on each iteration.

PLOTS< (global-plot-option) > < = plot-request< (options) > >
PLOTS< (global-plot-options) > < = (plot-request< (options) > < ... plot-request< (options) > >) >

specifies options that control the details of the plots. When you specify only one plot request, you can
omit the parentheses around the plot request.

ODS Graphics must be enabled before plots can be requested. For example:
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ods graphics on;

proc mds plots(flip);
run;

ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The global plot option is as follows:

FLIP
flips or interchanges the X-axis and Y-axis dimensions for configuration and coefficient plots.

The plot requests include the following:

COEFFICIENTS(ONE)
combines the INDSCAL coefficients panel of plots into a single plot. By default, the display
consists of a panel with two plots. The vectors are displayed in the left plot, and the labels are
displayed in the right plot. The right plot provides a magnification of the region of the vector
endpoints. In contrast, the single display, requested by COEFFICIENTS(ONE), is more compact,
but there is less room for vector labels. It is often easier to identify the vectors in the default
display.

NONE
suppresses all plots.

By default, a fit plot is produced. When more then one dimension is requested, plots of the configuration
are also plotted. For individual differences models with more than one dimension, the subject weights
or coefficients are plotted. When more than one value is specified for the DIMENSION= option, the
badness-of-fit plot is produced.

PTRANS
displays the estimated transformation parameters if any are computed. There are no transformation
parameters with the LEVEL=ORDINAL option.

RANDOM< =seed >
causes initial coordinate values to be pseudo-random numbers. In one dimension, the pseudo-random
numbers are uniformly distributed on an interval. In two or more dimensions, the pseudo-random
numbers are uniformly distributed on the circumference of a circle or the surface of a (hyper)sphere.
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RIDGE=n
specifies the initial ridge value, where n � 0. The default is RIDGE=1E–4.

If you get a floating-point overflow in the first few iterations, specify a larger value such as RIDGE=0.01,
RIDGE=1, or RIDGE=100.

If you know that the initial estimates are very good, using RIDGE=0 might speed convergence.

SHAPE=TRIANGULAR | TRIANGLE | TRI | T

SHAPE=SQUARE | SQU | S
determines whether the entire data matrix for each subject or only one triangle of the matrix is
stored and analyzed. If you specify the CONDITION=ROW option, the default is SHAPE=SQUARE.
Otherwise, the default is SHAPE=TRIANGLE.

SQUARE causes the entire matrix to be stored and analyzed. The matrix can be asymmetric.

TRIANGLE causes only one triangle to be stored. However, PROC MDS reads both upper and
lower triangles to look for nonmissing values and to symmetrize the data if needed.
If corresponding elements in the upper and lower triangles both contain nonmissing
values, only the average of the two values is stored and analyzed (Kruskal and Wish
1978 , p. 74). Also, if an OUTRES= data set is requested, only the average of the
two corresponding elements is output.

SIMILAR | SIM< =max >
causes the data to be treated as similarity measurements rather than dissimilarities. If =max is not
specified, each data value is converted to a dissimilarity by subtracting it from the maximum value in
the data set or BY group. If =max is specified, each data value is subtracted from the maximum of
max and the data. The diagonal data are included in computing these maxima.

By default, the data are assumed to be dissimilarities unless there are nonmissing diagonal values and
these values are predominantly larger than the off-diagonal values. In this case, the data are assumed
to be similarities and are treated as if the SIMILAR option is specified.

SINGULAR=p
specifies the singularity criterion p, 0 � p � 1. The default is SINGULAR=1E–8.

UNTIE
permits tied data to be assigned different optimally scaled values with the LEVEL=ORDINAL option.
Otherwise, tied data are assigned equal optimally scaled values. The UNTIE option has no effect with
values of the LEVEL= option other than LEVEL=ORDINAL.
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BY Statement
BY variables ;

You can specify a BY statement with PROC MDS to obtain separate analyses of observations in groups that
are defined by the BY variables. When a BY statement appears, the procedure expects the input data set to be
sorted in order of the BY variables. If you specify more than one BY statement, only the last one specified is
used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the MDS procedure. The
NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

If the INITIAL= data set contains the BY variables, the BY groups must appear in the same order as in the
DATA= data set. If the BY variables are not in the INITIAL= data set, the entire data set is used to provide
initial values for each BY group in the DATA= data set.

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

ID Statement
ID | OBJECT | OBJ variable ;

The ID statement specifies a variable in the DATA= data set that contains descriptive labels for the objects.
The labels are used in the output and are copied to the OUT= data set. If there is more than one data matrix,
only the ID values from the observations containing the first data matrix are used.

The ID variable is not used to establish any correspondence between observations and variables.

If the ID statement is omitted, the variable labels or names are used as object labels.

INVAR Statement
INVAR variables ;

The INVAR statement specifies the numeric variables in the INITIAL= data set that contain initial parameter
estimates. The first variable corresponds to the first dimension, the second variable to the second dimension,
and so on.
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If the INVAR statement is omitted, the variables Dim1, . . . , Dimm are used, where m is the maximum number
of dimensions.

MATRIX Statement
MATRIX | MAT | SUBJECT | SUB variable ;

The MATRIX statement specifies a variable in the DATA= data set that contains descriptive labels for the
data matrices or subjects. The labels are used in the output and are copied to the OUT= and OUTRES= data
sets. Only the first observation from each data matrix is used to obtain the label for that matrix.

If the MATRIX statement is omitted, the matrices are labeled 1, 2, 3, and so on.

VAR Statement
VAR variables ;

The VAR statement specifies the numeric variables in the DATA= data set that contain similarity or dissimi-
larity measurements on a set of objects or stimuli. Each variable corresponds to one object.

If the VAR statement is omitted, all numeric variables that are not specified in another statement are used.

To analyze a subset of the objects in a data set, you can specify the variable names corresponding to the
columns in the subset, but you must also use a DATA step or a WHERE clause to specify the rows in the
subset. PROC MDS expects to read one or more square matrices, and you must ensure that the rows in the
data set correctly correspond to the columns in number and order.

WEIGHT Statement
WEIGHT variables ;

The WEIGHT statement specifies numeric variables in the DATA= data set that contain weights for each
similarity or dissimilarity measurement. These weights are used to compute weighted least-squares estimates.
The number of WEIGHT variables must be the same as the number of VAR variables, and the variables in
the WEIGHT statement must be in the same order as the corresponding variables in the VAR statement.

If the WEIGHT statement is omitted, all data within a partition are assigned equal weights.

Data with zero or negative weights are ignored in fitting the model but are included in the OUTRES= data set
and in monotone transformations.
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Details: MDS Procedure

Formulas
The following notation is used:

Ap intercept for partition p

Bp slope for partition p

Cp power for partition p

Drcs distance computed from the model between objects r and c for subject s

Frcs data weight for objects r and c for subject s obtained from the cth WEIGHT variable, or 1 if there
is no WEIGHT statement

f value of the FIT= option

N number of objects

Orcs observed dissimilarity between objects r and c for subject s

Prcs partition index for objects r and c for subject s

Qrcs dissimilarity after applying any applicable estimated transformation for objects r and c for subject
s

Rrcs residual for objects r and c for subject s

Sp standardization factor for partition p

Tp.�/ estimated transformation for partition p

Vsd coefficient for subject s on dimension d

Xnd coordinate for object n on dimension d

Summations are taken over nonmissing values.

Distances are computed from the model as

Drcs D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

pP
d .Xrd �Xcd /

2 for COEF=IDENTITY:
Euclidean distanceqP

d V
2
sd
.Xrd �Xcd /

2 for COEF=DIAGONAL:

weighted Euclidean distance

Partition indexes are

Prcs D 1 for CONDITION=UN
D s for CONDITION=MATRIX
D .s � 1/N C r for CONDITION=ROW
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The estimated transformation for each partition is

Tp.d/ D d for LEVEL=ABSOLUTE
D Bpd for LEVEL=RATIO
D Ap C Bpd for LEVEL=INTERVAL
D Bpd

Cp for LEVEL=LOGINTERVAL

For LEVEL=ORDINAL, Tp.�/ is computed as a least-squares monotone transformation.

For LEVEL=ABSOLUTE, RATIO, or INTERVAL, the residuals are computed as

Qrcs D Orcs

Rrcs D Qfrcs � ŒTPrcs .Drcs/�
f

For LEVEL=ORDINAL, the residuals are computed as

Qrcs D TPrcs .Orcs/

Rrcs D Qfrcs �D
f
rcs

If f is 0, then natural logarithms are used in place of the f th powers.

For each partition, let

Up D

X
r;c;s

FrcsX
r;c;sjPrcsDp

Frcs

and

Qp D

X
r;c;sjPrcsDp

QrcsFrcsX
r;c;sjPrcsDp

Frcs

Then the standardization factor for each partition is

Sp D 1 for FORMULA=0
D Up

X
r;c;sjPrcsDp

Q2rcsFrcs for FORMULA=1

D Up
X

r;c;sjPrcsDp

.Qrcs �Qp/
2Frcs for FORMULA=2

The badness-of-fit criterion that the MDS procedure tries to minimize isvuutX
r;c;s

R2rcsFrcs

SPrcs
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OUT= Data Set
The OUT= data set contains the following variables:

• BY variables, if any

• _ITER_ (if the OUTITER option is specified), a numeric variable containing the iteration number

• _DIMENS_, a numeric variable containing the number of dimensions

• _MATRIX_ or the variable in the MATRIX statement, identifying the data matrix or subject to which
the observation pertains. This variable contains a missing value for observations that pertain to the
data set as a whole and not to a particular matrix, such as the coordinates (_TYPE_='CONFIG').

• _TYPE_, a character variable of length 10 identifying the type of information in the observation

The values of _TYPE_ are as follows:

CONFIG the estimated coordinates of the configuration of objects

DIAGCOEF the estimated dimension coefficients for COEF=DIAGONAL

INTERCEPT the estimated intercept parameters

SLOPE the estimated slope parameters

POWER the estimated power parameters

CRITERION the badness-of-fit criterion

• _LABEL_ or the variable in the ID statement, containing the variable label or value of the ID variable
of the object to which the observation pertains. This variable contains a missing value for observations
that do not pertain to a particular object or dimension.

• _NAME_, a character variable containing the variable name of the object or dimension to which the
observation pertains. This variable contains a missing value for observations that do not pertain to a
particular object or dimension.

• Dim1, . . . , Dimm, where m is the maximum number of dimensions

OUTFIT= Data Set
The OUTFIT= data set contains various measures of goodness and badness of fit. There is one observation
for the entire sample plus one observation for each matrix. For the CONDITION=ROW option, there is also
one observation for each row.

The OUTFIT= data set contains the following variables:

• BY variables, if any

• _ITER_ (if the OUTITER option is specified), a numeric variable containing the iteration number
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• _DIMENS_, a numeric variable containing the number of dimensions

• _MATRIX_ or the variable in the MATRIX statement, identifying the data matrix or subject to which
the observation pertains

• _LABEL_ or the variable in the ID statement, containing the variable label or value of the ID variable
of the object to which the observation pertains when CONDITION=ROW

• _NAME_, a character variable containing the variable name of the object or dimension to which the
observation pertains when CONDITION=ROW

• N, the number of nonmissing data

• WEIGHT, the weight of the partition

• CRITER, the badness-of-fit criterion

• DISCORR, the correlation between the transformed data and the distances for LEVEL=ORDINAL or
the correlation between the data and the transformed distances otherwise

• UDISCORR, the correlation uncorrected for the mean between the transformed data and the distances
for LEVEL=ORDINAL or the correlation between the data and the transformed distances otherwise

• FITCORR, the correlation between the fit-transformed data and the fit-transformed distances

• UFITCORR, the correlation uncorrected for the mean between the fit-transformed data and the fit-
transformed distances

OUTRES= Data Set
The OUTRES= data set has one observation for each nonmissing data value. It contains the following
variables:

• BY variables, if any

• _ITER_ (if the OUTITER option is specified), a numeric variable containing the iteration number

• _DIMENS_, a numeric variable containing the number of dimensions

• _MATRIX_ or the variable in the MATRIX statement, identifying the data matrix or subject to which
the observation pertains

• _ROW_, containing the variable label or value of the ID variable of the row to which the observation
pertains

• _COL_, containing the variable label or value of the ID variable of the column to which the observation
pertains

• DATA, the original data value

• TRANDATA, the optimally transformed data value when LEVEL=ORDINAL
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• DISTANCE, the distance computed from the PROC MDS model

• TRANSDIST, the optimally transformed distance when the LEVEL= option is not
ORDINAL or ABSOLUTE

• FITDATA, the data value further transformed according to the FIT= option

• FITDIST, the distance further transformed according to the FIT= option

• WEIGHT, the combined weight of the data value based on the WEIGHT variable(s), if any, and the
standardization specified by the FORMULA= option

• RESIDUAL, FITDATA minus FITDIST

If you assign a nonmissing data value a weight of zero, PROC MDS will ignore it when the model is fit, but
the value will still appear in the OUTRES= data set (see the section “WEIGHT Statement” on page 5009).

INITIAL= Data Set
The INITIAL= data set has the same structure as the OUT= data set but is not required to have all of the
variables or observations that appear in the OUT= data set. You can use an OUT= data set previously created
by PROC MDS (without the OUTITER option) as an INITIAL= data set in a subsequent invocation of the
procedure.

The only variables that are required are Dim1, . . . , Dimm (where m is the maximum number of dimensions)
or equivalent variables specified in the INVAR statement. If these are the only variables, then all the
observations are assumed to contain coordinates of the configuration; you cannot read dimension coefficients
or transformation parameters.

To read initial values for the dimension coefficients or transformation parameters, the INITIAL= data set
must contain the _TYPE_ variable and either the variable specified in the ID statement or, if no ID statement
is used, the variable _NAME_. In addition, if there is more than one data matrix, either the variable specified
in the MATRIX statement or, if no MATRIX statement is used, the variable _MATRIX_ or _MATNUM_ is
required.

If the INITIAL= data set contains the variable _DIMENS_, initial values are obtained from observations with
the corresponding number of dimensions. If there is no _DIMENS_ variable, the same observations are used
for each number of dimensions analyzed.

If you want PROC MDS to read initial values from some but not all of the observations in the INITIAL= data
set, use the WHERE= data set option to select the desired observations.

Missing Values
Missing data in the similarity or dissimilarity matrices are ignored in fitting the model and are omitted from
the OUTRES= data set. Any matrix that is completely missing is omitted from the analysis.

Missing weights are treated as 0.

Missing values are also permitted in the INITIAL= data set, but a large number of missing values might yield
a degenerate initial configuration.
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Normalization of the Estimates
In multidimensional scaling models, the parameter estimates are not uniquely determined; the estimates
can be transformed in various ways without changing their badness of fit. The initial and final estimates
from PROC MDS are, therefore, normalized (unless you specify the NONORM option) to make it easier to
compare results from different analyses.

The configuration always has a mean of 0 for each dimension.

With the COEF=IDENTITY option, the configuration is rotated to a principal-axis orientation. Unless you
specify the LEVEL=ABSOLUTE option, the entire configuration is scaled so that the root-mean-square
element is 1, and the transformations are adjusted to compensate.

With the COEF=DIAGONAL option, each dimension is scaled to a root-mean-square value of 1, and the
dimension coefficients are adjusted to compensate. Unless you specify the LEVEL=ABSOLUTE option, the
dimension coefficients are normalized as follows. If you specify the CONDITION=UN option, all of the
dimension coefficients are scaled to a root-mean-square value of 1. For other values of the CONDITION=
option, the dimension coefficients are scaled separately for each subject to a root-mean-square value of 1. In
either case, the transformations are adjusted to compensate.

Each dimension is reflected to give a positive rank correlation with the order of the objects in the data set.

For the LEVEL=ORDINAL option, if the intercept, slope, or power parameters are fitted, the transformed
data are normalized to eliminate these parameters if possible.

Comparison with Earlier Procedures
PROC MDS shares many of the features of the ALSCAL procedure (Young, Lewyckyj, and Takane 1986;
Young 1982), as well as some features of the MLSCALE procedure (Ramsay 1986). Both PROC ALSCAL
and PROC MLSCALE are no longer a part of SAS; however, they are described in the SUGI Supplemental
Library User’s Guide, Version 5 Edition. The MDS procedure generally produces results similar to those
from the ALSCAL procedure (Young, Lewyckyj, and Takane 1986; Young 1982) if you use the following
options in PROC MDS:

• FIT=SQUARED

• FORMULA=1 except for unfolding data, which require FORMULA=2

• PFINAL to get output similar to that from PROC ALSCAL

Running the MDS procedure with certain options generally produces results similar to those from using the
MLSCALE procedure (Ramsay 1986) with other options. This is illustrated with the following statements:

proc mds fit=log level=loginterval ... ;

proc mlscale stvarnce=constant suvarnce=constant ... ;

Alternatively, using the FIT=DISTANCE option in the PROC MDS statement produces results similar to
those from specifying the NORMAL option in the PROC MLSCALE statement.
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Displayed Output
Unless you specify the NOPHIST option, PROC MDS displays the iteration history containing the following:

• Iteration number

• Type of iteration:

Initial initial configuration

Monotone monotone transformation

Gau-New Gauss-Newton step

Lev-Mar Levenberg-Marquardt step

• Badness-of-Fit Criterion

• Change in Criterion

• Convergence Measures:

Monotone the Euclidean norm of the change in the optimally scaled data divided by the
Euclidean norm of the optimally scaled data, averaged across partitions

Gradient the multiple correlation of the Jacobian matrix with the residual vector, uncorrected
for the mean

Depending on what options are specified, PROC MDS can also display the following tables:

• Data Matrix and possibly Weight Matrix for each subject

• Eigenvalues from the computation of the initial coordinates

• Sum of Data Weights and Pooled Data Matrix computed during initialization with INAV=DATA

• Configuration, the estimated coordinates of the objects

• Dimension Coefficients

• A table of transformation parameters, including one or more of the following:

Intercept

Slope

Power

• A table of fit statistics for each matrix and possibly each row, including the following:

Number of Nonmissing Data

Weight of the matrix or row, permitting both observation weights and standardization factors

Badness-of-Fit Criterion

Distance Correlation computed between the distances and data with optimal transformation
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Uncorrected Distance Correlation not corrected for the mean

Fit Correlation computed after applying the FIT= transformation to both distances and data

Uncorrected Fit Correlation not corrected for the mean

ODS Table Names
PROC MDS assigns a name to each table it creates. You can use these names to reference the table when
using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed
in Table 62.3. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

Table 62.3 ODS Tables Produced by PROC MDS

ODS Table Name Description Option

ConvergenceStatus Convergence status default
DimensionCoef Dimension coefficients PCOEF with COEF= not IDENTITY
FitMeasures Measures of fit PFIT
IterHistory Iteration history default
PConfig Configuration of coordinates PCONFIG
PData Data matrices PDATA
PInAvData INAV= data set information PINAVDATA
PInEigval Initial eigenvalues PINEIGVAL
PInEigvec Initial eigenvectors PINEIGVEC
PInWeight Initialization weights PINWEIGHT
Transformations Transformation parameters PTRANS with LEVEL=RATIO,

INTERVAL, LOGINTERVAL

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

All graphs are produced by default when they are appropriate. You can reference every graph produced
through ODS Graphics with a name. The names of the graphs that PROC MDS generates are listed in
Table 62.4, along with the required options.
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Table 62.4 Graphs Produced by PROC MDS

ODS Graph Name Plot Description Option

BadnessPlot Badness of fit DIMENSION=range
CoefficientsPlot Individual coefficients DIMENSION=n, n > 1

COEF=DIAGONAL
ConfigPlot Configuration DIMENSION=n, n > 1
FitPlot Fit default

Example: MDS Procedure

Example 62.1: Jacobowitz Body Parts Data from Children and Adults
Jacobowitz (1975) collected conditional rank-order data regarding perceived similarity of parts of the body
from children of ages 6, 8, and 10 years and from college sophomores. The data set includes data from 15
children (6-year-olds) and 15 sophomores. The method of data collection and some results of an analysis are
also described by Young (1987, pp. 4–10). The following statements create the input data set:

data body;
title 'Jacobowitz Body Parts Data from 6-Year-Olds and Adults';
title2 'First 15 Subjects (obs 1-225) Are Children';
title3 'Second 15 Subjects (obs 226-450) Are Adults';
input (Cheek Face Mouth Head Ear Body Arm Elbow Hand

Palm Finger Leg Knee Foot Toe) (2.);
if _n_ <= 225 then Subject='C'; else subject='A';
datalines;

0 2 1 3 4 10 5 9 6 7 8 11 12 13 14
2 0 12 1 13 3 8 10 11 9 7 4 5 6 14
3 2 0 1 4 9 5 11 6 7 8 10 13 12 14
2 1 3 0 4 9 5 6 11 7 8 10 12 13 14

... more lines ...

10 12 11 13 9 14 8 7 4 6 2 3 5 1 0
;

The data are analyzed as row conditional (CONDITION=ROW) at the ordinal level of measurement
(LEVEL=ORDINAL) by using the weighted Euclidean model (COEF=DIAGONAL) in three dimensions
(DIMENSION=3). The final estimates are displayed (PFINAL). The estimates (OUT=OUT) and fitted values
(OUTRES=RES) are saved in output data sets. The following statements produce Output 62.1.1:
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ods graphics on;

proc mds data=body condition=row level=ordinal coef=diagonal
dimension=3 pfinal out=out outres=res;

subject subject;
title5 'Nonmetric Weighted MDS';

run;

Output 62.1.1 Analysis of Body Parts Data

Jacobowitz Body Parts Data from 6-Year-Olds and Adults
First 15 Subjects (obs 1-225) Are Children

Second 15 Subjects (obs 226-450) Are Adults

Nonmetric Weighted MDS

Multidimensional Scaling:  Data=WORK.BODY.DATA
Shape=SQUARE Condition=ROW Level=ORDINAL

Coef=DIAGONAL Dimension=3 Formula=1 Fit=1

Jacobowitz Body Parts Data from 6-Year-Olds and Adults
First 15 Subjects (obs 1-225) Are Children

Second 15 Subjects (obs 226-450) Are Adults

Nonmetric Weighted MDS

Multidimensional Scaling:  Data=WORK.BODY.DATA
Shape=SQUARE Condition=ROW Level=ORDINAL

Coef=DIAGONAL Dimension=3 Formula=1 Fit=1

Mconverge=0.01 Gconverge=0.01 Maxiter=100 Over=2 Ridge=0.0001 Alternate=MATRIX

Convergence
Measures

Iteration Type

Badness-
of-Fit

Criterion
Change in

Criterion Monotone Gradient

0 Initial 0.5938 . . .

1 Monotone 0.2344 0.3594 0.4693 0.4028

2 Gau-New 0.2080 0.0264 . .

3 Monotone 0.1963 0.0118 0.0556 0.2630

4 Gau-New 0.1927 0.003592 . .

5 Monotone 0.1797 0.0130 0.0463 0.1544

6 Gau-New 0.1779 0.001809 . .

7 Monotone 0.1744 0.003430 0.0225 0.1210

8 Gau-New 0.1736 0.000807 . .

9 Monotone 0.1717 0.001929 0.0161 0.1128

10 Gau-New 0.1712 0.000474 . .

11 Monotone 0.1698 0.001413 0.0135 0.1119

12 Gau-New 0.1696 0.000188 . .

13 Monotone 0.1684 0.001261 0.0121 0.1121

14 Gau-New 0.1683 0.000117 . .

15 Monotone 0.1672 0.001096 0.0111 0.1064

16 Gau-New 0.1670 0.000131 . .

17 Monotone 0.1661 0.000902 0.0103 0.0965

18 Gau-New 0.1660 0.000160 . .

19 Monotone 0.1652 0.000736 0.009740 0.0980

20 Gau-New 0.1651 0.000169 . 0.1062

21 Gau-New 0.1645 0.000542 . 0.0161

22 Gau-New 0.1645 4.2645E-6 . 0.009969

Convergence criteria are satisfied.
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Output 62.1.1 continued

Configuration

Dim1 Dim2 Dim3

Cheek 0.25 1.47 2.06

Face 0.36 0.32 0.33

Mouth 0.78 0.08 1.08

Head 2.10 1.07 -0.01

Ear 0.26 0.72 -0.34

Body 1.51 -0.61 -0.68

Arm -0.74 2.07 -0.59

Elbow -0.51 -0.21 0.01

Hand 0.46 -1.50 -0.60

Palm -1.44 -0.81 1.48

Finger -0.24 -0.24 -0.81

Leg -1.68 0.26 -0.05

Knee -1.19 -1.19 -1.36

Foot 0.16 -0.03 -1.56

Toe -0.10 -1.39 1.02
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Output 62.1.1 continued

Dimension Coefficients

Subject 1 2 3

C 1.00 1.12 0.86

C 0.96 1.02 1.01

C 0.98 1.05 0.98

C 1.02 1.08 0.89

C 0.95 1.04 1.01

C 0.99 1.12 0.89

C 1.07 1.00 0.93

C 1.04 1.02 0.94

C 0.99 1.15 0.83

C 0.89 1.11 0.99

C 1.04 1.03 0.92

C 1.06 1.01 0.93

C 0.92 1.24 0.78

C 0.97 0.98 1.05

C 1.03 1.00 0.97

A 0.93 1.17 0.88

A 0.89 1.12 0.97

A 0.88 1.17 0.94

A 0.81 1.14 1.02

A 0.90 1.11 0.98

A 0.90 1.17 0.91

A 0.92 1.17 0.88

A 0.97 1.19 0.80

A 0.95 1.16 0.87

A 1.08 1.07 0.83

A 0.95 1.20 0.81

A 1.00 0.97 1.02

A 0.89 1.18 0.91

A 0.97 1.15 0.86

A 0.93 1.21 0.82
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Output 62.1.1 continued

Subject

Number of
Nonmissing

Data Weight
Badness-of-Fit

Criterion
Distance

Correlation

Uncorrected
Distance

Correlation

C 160 0.03 0.15 0.86 0.99

C 163 0.03 0.19 0.78 0.98

C 166 0.03 0.20 0.79 0.98

C 158 0.03 0.16 0.84 0.99

C 173 0.03 0.18 0.83 0.98

C 164 0.03 0.14 0.90 0.99

C 158 0.03 0.20 0.77 0.98

C 170 0.03 0.18 0.83 0.98

C 156 0.03 0.15 0.88 0.99

C 165 0.03 0.18 0.79 0.98

C 153 0.03 0.19 0.79 0.98

C 162 0.03 0.17 0.83 0.98

C 161 0.03 0.14 0.90 0.99

C 164 0.03 0.17 0.83 0.99

C 161 0.03 0.18 0.81 0.98

A 163 0.03 0.15 0.87 0.99

A 174 0.04 0.17 0.85 0.99

A 172 0.03 0.15 0.89 0.99

A 175 0.04 0.17 0.85 0.98

A 171 0.03 0.15 0.87 0.99

A 163 0.03 0.16 0.86 0.99

A 173 0.03 0.14 0.90 0.99

A 160 0.03 0.14 0.89 0.99

A 164 0.03 0.14 0.90 0.99

A 158 0.03 0.16 0.86 0.99

A 165 0.03 0.16 0.87 0.99

A 168 0.03 0.18 0.82 0.98

A 175 0.04 0.15 0.89 0.99

A 172 0.03 0.16 0.88 0.99

A 175 0.04 0.15 0.90 0.99

- All - 4962 1.00 0.16 0.85 0.99
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Output 62.1.1 continued
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Output 62.1.1 continued
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Output 62.1.1 continued
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Output 62.1.1 continued
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Output 62.1.1 continued
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Often the output of greatest interest in an MDS analysis is the graphical output. The first plots show two-
dimensional view of the three-dimensional configuration. Next, the coefficients are plotted. The last plot is
the fit plot.

In the fit plot, the transformed data are plotted on the vertical axis, and the distances from the model are
plotted on the horizontal axis. If the model fits perfectly, all points lie on a diagonal line from lower left
to upper right. The vertical departure of each point from this diagonal line represents the residual of the
corresponding observation.

The configuration has a tripodal shape with Body at the apex. The three legs of the tripod can be distinguished
in the plot of dimension 2 by dimension 1, which shows three distinct clusters with Body in the center.
Dimension 1 separates head parts from arm and leg parts. Dimension 2 separates arm parts from leg parts.
The plot of dimension 3 by dimension 1 shows the tripod from the side. Dimension 3 distinguishes the more
inclusive body parts (at the top) from the less inclusive body parts (at the bottom).

The plots of dimension coefficients show that children differ from adults primarily in the emphasis given to
dimension 2. Children give about the same weight (approximately 1) to each dimension. Adults are much
more variable than children, but all have coefficients less than 1.0 for dimension 2, with an average of about
0.7. Referring back to the configuration plot, you can see that adults consider arm parts to be more similar to
leg parts than children do. Many adults also give a high weight to dimension 1, indicating that they consider
head parts to be more dissimilar from arm and leg parts than children do. Dimension 3 shows considerable
variability for both children and adults.
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Overview: MI Procedure
Missing values are an issue in a substantial number of statistical analyses. Most SAS statistical procedures
exclude observations with any missing variable values from the analysis. These observations are called
incomplete cases. While using only complete cases is simple, you lose information that is in the incomplete
cases. Excluding observations with missing values also ignores the possible systematic difference between
the complete cases and incomplete cases, and the resulting inference might not be applicable to the population
of all cases, especially with a smaller number of complete cases.

Some SAS procedures use all the available cases in an analysis—that is, cases with useful information. For
example, the CORR procedure estimates a variable mean by using all cases with nonmissing values for this
variable, ignoring the possible missing values in other variables. The CORR procedure also estimates a
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correlation by using all cases with nonmissing values for this pair of variables. This estimation might make
better use of the available data, but the resulting correlation matrix might not be positive definite.

Another strategy is single imputation, in which you substitute a value for each missing value. Standard
statistical procedures for complete data analysis can then be used with the filled-in data set. For example,
each missing value can be imputed from the variable mean of the complete cases. This approach treats
missing values as if they were known in the complete-data analyses. Single imputation does not reflect the
uncertainty about the predictions of the unknown missing values, and the resulting estimated variances of the
parameter estimates are biased toward zero (Rubin 1987, p. 13).

Instead of filling in a single value for each missing value, multiple imputation replaces each missing value
with a set of plausible values that represent the uncertainty about the right value to impute (Rubin 1976, 1987).
The multiply imputed data sets are then analyzed by using standard procedures for complete data and
combining the results from these analyses. No matter which complete-data analysis is used, the process of
combining results from different data sets is essentially the same.

Multiple imputation does not attempt to estimate each missing value through simulated values, but rather
to represent a random sample of the missing values. This process results in valid statistical inferences that
properly reflect the uncertainty due to missing values; for example, valid confidence intervals for parameters.

Multiple imputation inference involves three distinct phases:

1. The missing data are filled in m times to generate m complete data sets.

2. The m complete data sets are analyzed by using standard procedures.

3. The results from the m complete data sets are combined for the inference.

The MI procedure is a multiple imputation procedure that creates multiply imputed data sets for incomplete
p-dimensional multivariate data. It uses methods that incorporate appropriate variability across the m
imputations. The imputation method of choice depends on the patterns of missingness in the data and the
type of the imputed variable.

A data set with variables Y1, Y2, . . . , Yp (in that order) is said to have a monotone missing pattern when the
event that a variable Yj is missing for a particular individual implies that all subsequent variables Yk , k > j ,
are missing for that individual.

For data sets with monotone missing patterns, the variables with missing values can be imputed sequentially
with covariates constructed from their corresponding sets of preceding variables. To impute missing values
for a continuous variable, you can use a regression method (Rubin 1987, pp. 166–167), a predictive mean
matching method (Heitjan and Little 1991; Schenker and Taylor 1996), or a propensity score method (Rubin
1987, pp. 124, 158; Lavori, Dawson, and Shera 1995). To impute missing values for a classification variable,
you can use a logistic regression method when the classification variable has a binary, nominal, or ordinal
response, or you can use a discriminant function method when the classification variable has a binary or
nominal response.

For data sets with arbitrary missing patterns, you can use either of the following methods to impute missing
values: a Markov chain Monte Carlo (MCMC) method (Schafer 1997) that assumes multivariate normality,
or a fully conditional specification (FCS) method (Brand 1999; Van Buuren 2007) that assumes the existence
of a joint distribution for all variables.
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You can use the MCMC method to impute either all the missing values or just enough missing values to
make the imputed data sets have monotone missing patterns. With a monotone missing data pattern, you
have greater flexibility in your choice of imputation models, such as the monotone regression method that do
not use Markov chains. You can also specify a different set of covariates for each imputed variable.

An FCS method does not start with an explicitly specified multivariate distribution for all variables, but rather
uses a separate conditional distribution for each imputed variable. For each imputation, the process contains
two phases: the preliminary filled-in phase followed by the imputation phase. At the filled-in phase, the
missing values for all variables are filled in sequentially over the variables taken one at a time. These filled-in
values provide starting values for these missing values at the imputation phase. At the imputation phase,
the missing values for each variable are imputed sequentially for a number of burn-in iterations before the
imputation.

As in methods for data sets with monotone missing patterns, you can use a regression method or a predictive
mean matching method to impute missing values for a continuous variable, a logistic regression method
to impute missing values for a classification variable with a binary or ordinal response, and a discriminant
function method to impute missing values for a classification variable with a binary or nominal response.

After the m complete data sets are analyzed using standard SAS procedures, the MIANALYZE procedure
can be used to generate valid statistical inferences about these parameters by combining results from the m
analyses.

Often, as few as three to five imputations are adequate in multiple imputation (Rubin 1996, p. 480). The
relative efficiency of the small m imputation estimator is high for cases with little missing information (Rubin
1987, p. 114). (Also see the section “Multiple Imputation Efficiency” on page 5093.)

Multiple imputation inference assumes that the model (variables) you used to analyze the multiply imputed
data (the analyst’s model) is the same as the model used to impute missing values in multiple imputation (the
imputer’s model). But in practice, the two models might not be the same. The consequences for different
scenarios (Schafer 1997, pp. 139–143) are discussed in the section “Imputer’s Model Versus Analyst’s Model”
on page 5093.

Multiple imputation usually assumes that the data are missing at random (MAR). That is, for a variable Y,
the probability that an observation is missing depends only on the observed values of other variables, not
on the unobserved values of Y. The MAR assumption cannot be verified, because the missing values are
not observed. For a study that assumes MAR, the sensitivity of inferences to departures from the MAR
assumption should be examined.

The pattern-mixture model approach to sensitivity analysis models the distribution of a response as the
mixture of a distribution of the observed responses and a distribution of the missing responses. Missing values
can then be imputed under a plausible scenario for which the missing data are missing not at random (MNAR).
If this scenario leads to a conclusion different from inference under MAR, then the MAR assumption is
questionable.
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Getting Started: MI Procedure
The Fitness data described in the REG procedure are measurements of 31 individuals in a physical fitness
course. See Chapter 85, “The REG Procedure,” for more information.

The Fitness1 data set is constructed from the Fitness data set and contains three variables: Oxygen, RunTime,
and RunPulse. Some values have been set to missing, and the resulting data set has an arbitrary pattern of
missingness in these three variables.

*---------------------Data on Physical Fitness-------------------------*
| These measurements were made on men involved in a physical fitness |
| course at N.C. State University. Certain values have been set to |
| missing and the resulting data set has an arbitrary missing pattern. |
| Only selected variables of |
| Oxygen (intake rate, ml per kg body weight per minute), |
| Runtime (time to run 1.5 miles in minutes), |
| RunPulse (heart rate while running) are used. |

*----------------------------------------------------------------------*;
data Fitness1;

input Oxygen RunTime RunPulse @@;
datalines;

44.609 11.37 178 45.313 10.07 185
54.297 8.65 156 59.571 . .
49.874 9.22 . 44.811 11.63 176

. 11.95 176 . 10.85 .
39.442 13.08 174 60.055 8.63 170
50.541 . . 37.388 14.03 186
44.754 11.12 176 47.273 . .
51.855 10.33 166 49.156 8.95 180
40.836 10.95 168 46.672 10.00 .
46.774 10.25 . 50.388 10.08 168
39.407 12.63 174 46.080 11.17 156
45.441 9.63 164 . 8.92 .
45.118 11.08 . 39.203 12.88 168
45.790 10.47 186 50.545 9.93 148
48.673 9.40 186 47.920 11.50 170
47.467 10.50 170
;

Suppose that the data are multivariate normally distributed and the missing data are missing at random (MAR).
That is, the probability that an observation is missing can depend on the observed variable values of the
individual, but not on the missing variable values of the individual. See the section “Statistical Assumptions
for Multiple Imputation” on page 5065 for a detailed description of the MAR assumption.

The following statements invoke the MI procedure and impute missing values for the Fitness1 data set:

proc mi data=Fitness1 seed=501213 mu0=50 10 180 out=outmi;
mcmc;
var Oxygen RunTime RunPulse;

run;
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The “Model Information” table in Figure 63.1 describes the method used in the multiple imputation process.
By default, the MCMC statement uses the Markov chain Monte Carlo (MCMC) method with a single
chain to create five imputations. The posterior mode, the highest observed-data posterior density, with a
noninformative prior, is computed from the expectation-maximization (EM) algorithm and is used as the
starting value for the chain.

Figure 63.1 Model Information

The MI ProcedureThe MI Procedure

Model Information

Data Set WORK.FITNESS1

Method MCMC

Multiple Imputation Chain Single Chain

Initial Estimates for MCMC EM Posterior Mode

Start Starting Value

Prior Jeffreys

Number of Imputations 5

Number of Burn-in Iterations 200

Number of Iterations 100

Seed for random number generator 501213

The MI procedure takes 200 burn-in iterations before the first imputation and 100 iterations between
imputations. In a Markov chain, the information in the current iteration influences the state of the next
iteration. The burn-in iterations are iterations in the beginning of each chain that are used both to eliminate
the series of dependence on the starting value of the chain and to achieve the stationary distribution. The
between-imputation iterations in a single chain are used to eliminate the series of dependence between the
two imputations.

The “Missing Data Patterns” table in Figure 63.2 lists distinct missing data patterns with their corresponding
frequencies and percentages. An “X” means that the variable is observed in the corresponding group, and a “.”
means that the variable is missing. The table also displays group-specific variable means. The MI procedure
sorts the data into groups based on whether the analysis variables are observed or missing. For a detailed
description of missing data patterns, see the section “Missing Data Patterns” on page 5066.

Figure 63.2 Missing Data Patterns

Missing Data Patterns

Group Means

Group Oxygen RunTime RunPulse Freq Percent Oxygen RunTime RunPulse

1 X X X 21 67.74 46.353810 10.809524 171.666667

2 X X . 4 12.90 47.109500 10.137500 .

3 X . . 3 9.68 52.461667 . .

4 . X X 1 3.23 . 11.950000 176.000000

5 . X . 2 6.45 . 9.885000 .
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After the completion of m imputations, the “Variance Information” table in Figure 63.3 displays the between-
imputation variance, within-imputation variance, and total variance for combining complete-data inferences.
It also displays the degrees of freedom for the total variance. The relative increase in variance due to missing
values, the fraction of missing information, and the relative efficiency (in units of variance) for each variable
are also displayed. A detailed description of these statistics is provided in the section “Combining Inferences
from Multiply Imputed Data Sets” on page 5092.

Figure 63.3 Variance Information

Variance Information

Variance

Variable Between Within Total DF

Relative
Increase

in Variance

Fraction
Missing

Information
Relative

Efficiency

Oxygen 0.056930 0.954041 1.022356 25.549 0.071606 0.068898 0.986408

RunTime 0.000811 0.064496 0.065469 27.721 0.015084 0.014968 0.997015

RunPulse 0.922032 3.269089 4.375528 15.753 0.338455 0.275664 0.947748

The “Parameter Estimates” table in Figure 63.4 displays the estimated mean and standard error of the mean
for each variable. The inferences are based on the t distribution. The table also displays a 95% confidence
interval for the mean and a t statistic with the associated p-value for the hypothesis that the population mean
is equal to the value specified with the MU0= option. A detailed description of these statistics is provided in
the section “Combining Inferences from Multiply Imputed Data Sets” on page 5092.

Figure 63.4 Parameter Estimates

Parameter Estimates

Variable Mean Std Error 95% Confidence Limits DF Minimum Maximum Mu0
t for H0:

Mean=Mu0 Pr > |t|

Oxygen 47.094040 1.011116 45.0139 49.1742 25.549 46.783898 47.395550 50.000000 -2.87 0.0081

RunTime 10.572073 0.255870 10.0477 11.0964 27.721 10.526392 10.599616 10.000000 2.24 0.0336

RunPulse 171.787793 2.091776 167.3478 176.2278 15.753 170.774818 173.122002 180.000000 -3.93 0.0012

In addition to the output tables, the procedure also creates a data set with imputed values. The imputed data
sets are stored in the Outmi data set, with the index variable _Imputation_ indicating the imputation numbers.
The data set can now be analyzed using standard statistical procedures with _Imputation_ as a BY variable.

The following statements list the first 10 observations of data set Outmi:

proc print data=outmi (obs=10);
title 'First 10 Observations of the Imputed Data Set';

run;
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The table in Figure 63.5 shows that the precision of the imputed values differs from the precision of the
observed values. You can use the ROUND= option to make the imputed values consistent with the observed
values.

Figure 63.5 Imputed Data Set

First 10 Observations of the Imputed Data SetFirst 10 Observations of the Imputed Data Set

Obs _Imputation_ Oxygen RunTime RunPulse

1 1 44.6090 11.3700 178.000

2 1 45.3130 10.0700 185.000

3 1 54.2970 8.6500 156.000

4 1 59.5710 8.0747 155.925

5 1 49.8740 9.2200 176.837

6 1 44.8110 11.6300 176.000

7 1 42.8857 11.9500 176.000

8 1 46.9992 10.8500 173.099

9 1 39.4420 13.0800 174.000

10 1 60.0550 8.6300 170.000

Syntax: MI Procedure
The following statements are available in the MI procedure:

PROC MI < options > ;
BY variables ;
CLASS variables ;
EM < options > ;
FCS < options > ;
FREQ variable ;
MCMC < options > ;
MNAR options ;
MONOTONE < options > ;
TRANSFORM transform (variables< / options >) < . . . transform (variables< / options >) > ;
VAR variables ;

The BY statement specifies groups in which separate multiple imputation analyses are performed.

The CLASS statement lists the classification variables in the VAR statement. If the MNAR statement is spec-
ified, the CLASS statement also includes the identification variables in the MNAR statement. Classification
variables can be either character or numeric.

The EM statement uses the EM algorithm to compute the maximum likelihood estimate (MLE) of the data
with missing values, assuming a multivariate normal distribution for the data.

The FREQ statement specifies the variable that represents the frequency of occurrence for other values in the
observation.

For a data set with a monotone missing pattern, you can use the MONOTONE statement to specify applicable
monotone imputation methods; otherwise, you can use either the MCMC statement assuming multivariate



PROC MI Statement F 5039

normality or the FCS method assuming a joint distribution for variables exists. Note that you can specify no
more than one of these statements. When none of these three statements is specified, the MCMC method
with its default options is used.

The FCS statement uses a multivariate imputation by chained equations method to impute values for a data
set with an arbitrary missing pattern, assuming a joint distribution exists for the data.

The MCMC statement uses a Markov chain Monte Carlo method to impute values for a data set with an
arbitrary missing pattern, assuming a multivariate normal distribution for the data.

The MNAR statement imputes missing values, assuming that the missing data are missing not at random
(MNAR). The MNAR statement is applicable only if you also specify either an FCS or MONOTONE
statement.

The MONOTONE statement specifies monotone methods to impute continuous and classification variables
for a data set with a monotone missing pattern.

The TRANSFORM statement specifies the variables to be transformed before the imputation process; the
imputed values of these transformed variables are reverse-transformed to the original forms before the
imputation.

The VAR statement lists the numeric variables to be analyzed. If you omit the VAR statement, all numeric
variables not listed in other statements are used.

The PROC MI statement is the only required statement for the MI procedure. The rest of this section provides
detailed syntax information for each of these statements, beginning with the PROC MI statement. The
remaining statements are presented in alphabetical order.

PROC MI Statement
PROC MI < options > ;

The PROC MI statement invokes the MI procedure. Table 63.1 summarizes the options available in the PROC
MI statement.

Table 63.1 Summary of PROC MI Options

Option Description

Data Sets
DATA= Specifies the input data set
OUT= Specifies the output data set with imputed values

Imputation Details
NIMPUTE= Specifies the number of imputations
SEED= Specifies the seed to begin random number generator
ROUND= Specifies units to round imputed variable values
MAXIMUM= Specifies maximum values for imputed variable values
MINIMUM= Specifies minimum values for imputed variable values
MINMAXITER= Specifies the maximum number of iterations to impute values in the specified range
SINGULAR= Specifies the singularity criterion
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Table 63.1 continued

Option Description

Statistical Analysis
ALPHA= Specifies the level for the confidence interval, .1 � ˛/
MU0= Specifies means under the null hypothesis

Printed Output
NOPRINT Suppresses all displayed output
SIMPLE Displays univariate statistics and correlations

The following options can be used in the PROC MI statement. They are listed in alphabetical order.

ALPHA=˛
specifies that confidence limits be constructed for the mean estimates with confidence level 100.1�˛/%,
where 0 < ˛ < 1. The default is ALPHA=0.05.

DATA=SAS-data-set
names the SAS data set to be analyzed by PROC MI. By default, the procedure uses the most recently
created SAS data set.

MAXIMUM=numbers
specifies maximum values for imputed variables. When an intended imputed value is greater than
the maximum, PROC MI redraws another value for imputation. If only one number is specified, that
number is used for all variables. If more than one number is specified, you must use a VAR statement,
and the specified numbers must correspond to variables in the VAR statement. The default number is a
missing value, which indicates no restriction on the maximum for the corresponding variable

The MAXIMUM= option is related to the MINIMUM= and ROUND= options, which are used to
make the imputed values more consistent with the observed variable values. These options apply only
if you use the MCMC method, the monotone regression method, or the FCS regression method. For
more information about these methods, see the section “Imputation Methods” on page 5067.

When you specify a maximum for the first variable only, you must also specify a missing value after
the maximum. Otherwise, the maximum is used for all variables. For example, “MAXIMUM= 100 .”
sets a maximum of 100 only for the first analysis variable and no maximum for the remaining variables.
“MAXIMUM= . 100” sets a maximum of 100 only for the second analysis variable and no maximum
for the other variables.

MINIMUM=numbers
specifies the minimum values for imputed variables. When an intended imputed value is less than
the minimum, PROC MI redraws another value for imputation. If only one number is specified, that
number is used for all variables. If more than one number is specified, you must use a VAR statement,
and the specified numbers must correspond to variables in the VAR statement. The default number is a
missing value, which indicates no restriction on the minimum for the corresponding variable

MINMAXITER=number
specifies the maximum number of iterations for imputed values to be in the specified range when the
option MINIMUM or MAXIMUM is also specified. The default is MINMAXITER=100.
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MU0=numbers

THETA0=numbers
specifies the parameter values �0 under the null hypothesis � D �0 for the population means
corresponding to the analysis variables. Each hypothesis is tested with a t test. If only one number is
specified, that number is used for all variables. If more than one number is specified, you must use a
VAR statement, and the specified numbers must correspond to variables in the VAR statement. The
default is MU0=0.

If a variable is transformed as specified in a TRANSFORM statement, then the same transformation
for that variable is also applied to its corresponding specified MU0= value in the t test. If the parameter
values �0 for a transformed variable are not specified, then a value of zero is used for the resulting �0
after transformation.

NIMPUTE=number
specifies the number of imputations. The default is NIMPUTE=5. You can specify NIMPUTE=0 to
skip the imputation. In this case, only tables of model information, missing data patterns, descriptive
statistics (SIMPLE option), and MLE from the EM algorithm (EM statement) are displayed.

NOPRINT
suppresses the display of all output. Note that this option temporarily disables the Output Delivery
System (ODS); see Chapter 20, “Using the Output Delivery System,” for more information.

OUT=SAS-data-set
creates an output SAS data set that contains imputation results. The data set includes an index variable,
_Imputation_, to identify the imputation number. For each imputation, the data set contains all variables
in the input data set with missing values being replaced by the imputed values. See the section “Output
Data Sets” on page 5090 for a description of this data set.

ROUND=numbers
specifies the units to round variables in the imputation. If only one number is specified, that number is
used for all continuous variables. If more than one number is specified, you must use a VAR statement,
and the specified numbers must correspond to variables in the VAR statement. When the classification
variables are listed in the VAR statement, their corresponding roundoff units are not used. The default
number is a missing value, which indicates no rounding for imputed variables.

When specifying a roundoff unit for the first variable only, you must also specify a missing value
after the roundoff unit. Otherwise, the roundoff unit is used for all variables. For example, the option
“ROUND= 10 .” sets a roundoff unit of 10 for the first analysis variable only and no rounding for the
remaining variables. The option “ROUND= . 10” sets a roundoff unit of 10 for the second analysis
variable only and no rounding for other variables.

The ROUND= option sets the precision of imputed values. For example, with a roundoff unit of 0.001,
each value is rounded to the nearest multiple of 0.001. That is, each value has three significant digits
after the decimal point. See Example 63.3 for an illustration of this option.

SEED=number
specifies a positive integer to start the pseudo-random number generator. The default is a value
generated from reading the time of day from the computer’s clock. However, in order to duplicate the
results under identical situations, you must use the same value of the seed explicitly in subsequent runs
of the MI procedure.
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The seed information is displayed in the “Model Information” table so that the results can be reproduced
by specifying this seed with the SEED= option. You need to specify the same seed number in the
future to reproduce the results.

SIMPLE
displays simple descriptive univariate statistics and pairwise correlations from available cases. For a
detailed description of these statistics, see the section “Descriptive Statistics” on page 5063.

SINGULAR=p
specifies the criterion for determining the singularity of a covariance matrix based on standardized
variables, where 0 < p < 1. The default is SINGULAR=1E–8.

Suppose that S is a covariance matrix and v is the number of variables in S. Based on the spectral
decomposition S D �ƒ� 0, where ƒ is a diagonal matrix of eigenvalues �j , j D 1; : : :, v, where
�i � �j when i < j , and � is a matrix with the corresponding orthonormal eigenvectors of S
as columns, S is considered singular when an eigenvalue �j is less than p N�, where the average
N� D

Pv
kD1 �k=v.

BY Statement
BY variables ;

You can specify a BY statement with PROC MI to obtain separate analyses of observations in groups that are
defined by the BY variables. When a BY statement appears, the procedure expects the input data set to be
sorted in order of the BY variables. If you specify more than one BY statement, only the last one specified is
used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the MI procedure. The
NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

CLASS Statement
CLASS variables ;

The CLASS statement specifies the classification variables in the VAR statement. Classification variables can
be either character or numeric. The CLASS statement must be used in conjunction with either an FCS or
MONOTONE statement.
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Classification levels are determined from the formatted values of the classification variables. See “The
FORMAT Procedure” in the Base SAS Procedures Guide for details.

EM Statement
EM < options > ;

The expectation-maximization (EM) algorithm is a technique for maximum likelihood estimation in paramet-
ric models for incomplete data. The EM statement uses the EM algorithm to compute the MLE for .�;†/,
the means and covariance matrix, of a multivariate normal distribution from the input data set with missing
values. Either the means and covariances from complete cases or the means and standard deviations from
available cases can be used as the initial estimates for the EM algorithm. You can also specify the correlations
for the estimates from available cases.

You can also use the EM statement with the NIMPUTE=0 option in the PROC MI statement to compute the
EM estimates without multiple imputation, as shown in Example 63.1.

The following seven options are available with the EM statement (in alphabetical order):

CONVERGE=p

XCONV=p
sets the convergence criterion. The value must be between 0 and 1. The iterations are considered to
have converged when the change in the parameter estimates between iteration steps is less than p for
each parameter—that is, for each of the means and covariances. For each parameter, the change is
a relative change if the parameter is greater than 0.01 in absolute value; otherwise, it is an absolute
change. By default, CONVERGE=1E–4.

INITIAL=CC | AC | AC(R=r )
sets the initial estimates for the EM algorithm. The INITIAL=CC option uses the means and covariances
from complete cases; the INITIAL=AC option uses the means and standard deviations from available
cases, and the correlations are set to zero; and the INITIAL=AC( R= r ) option uses the means and
standard deviations from available cases with correlation r, where �1=.p � 1/ < r < 1 and p is the
number of variables to be analyzed. The default is INITIAL=AC.

ITPRINT
prints the iteration history in the EM algorithm.

MAXITER=number
specifies the maximum number of iterations used in the EM algorithm. The default is MAXITER=200.

OUT=SAS-data-set
creates an output SAS data set that contains results from the EM algorithm. The data set contains all
variables in the input data set, with missing values being replaced by the expected values from the EM
algorithm. See the section “Output Data Sets” on page 5090 for a description of this data set.

OUTEM=SAS-data-set
creates an output SAS data set of TYPE=COV that contains the MLE of the parameter vector .�;†/.
These estimates are computed with the EM algorithm. See the section “Output Data Sets” on page 5090
for a description of this output data set.
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OUTITER < ( options ) > =SAS-data-set
creates an output SAS data set of TYPE=COV that contains parameters for each iteration. The data set
includes a variable named _Iteration_ to identify the iteration number. The parameters in the output
data set depend on the options specified. You can specify the MEAN and COV options to output the
mean and covariance parameters. When no options are specified, the output data set contains the mean
parameters for each iteration. See the section “Output Data Sets” on page 5090 for a description of this
data set.

FCS Statement
FCS < options > ;

The FCS statement specifies a multivariate imputation by fully conditional specification methods. If you
specify an FCS statement, you must also specify a VAR statement.

Table 63.2 summarizes the options available for the FCS statement.

Table 63.2 Summary of Options in FCS

Option Description

Imputation Details
NBITER= Specifies the number of burn-in iterations
Data Set
OUTITER= Outputs parameter estimates used in iterations

ODS Output Graphics
PLOTS=TRACE Displays trace plots

Imputation Methods
DISCRIM Specifies the discriminant function method
LOGISTIC Specifies the logistic regression method
REG Specifies the regression method
REGPMM Specifies the predictive mean matching method

The following options are available for the FCS statement in addition to the imputation methods specified (in
alphabetical order):

NBITER=number
specifies the number of burn-in iterations before each imputation. The default is NBITER=20.

OUTITER < ( options ) > =SAS-data-set
creates an output SAS data set of TYPE=COV that contains parameters used in the imputation step
for each iteration. The data set includes variables named _Imputation_ and _Iteration_ to identify the
imputation number and iteration number.

The parameters in the output data set depend on the options specified. You can specify the options
MEAN and STD to output parameters of means and standard deviations, respectively. When no options
are specified, the output data set contains the mean parameters used in the imputation step for each
iteration. See the section “Output Data Sets” on page 5090 for a description of this data set.
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PLOTS < ( LOG ) > < = TRACE < ( trace-options ) > >
requests statistical graphics of trace plots from iterations via the Output Delivery System (ODS).

ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;
proc mi data=Fitness1 seed=501213 mu0=50 10 180;

mcmc plots=(trace(mean(Oxygen)) acf(mean(Oxygen)));
var Oxygen RunTime RunPulse;

run;
ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The global plot option LOG requests that the logarithmic transformations of parameters be used. The
default is PLOTS=TRACE(MEAN).

The available trace-options are as follows:

MEAN < ( variables ) >
displays plots of means for continuous variables in the list. When the MEAN option is specified
without variables, all continuous variables are used.

STD < ( variables ) >
displays plots of standard deviations for continuous variables in the list. When the STD option is
specified without variables, all continuous variables are used.

The discriminant function, logistic regression, regression, and predictive mean matching methods are available
in the FCS statement. You specify each method with the syntax

method < (< imputed < = effects > > < / options >) >

That is, for each method, you can specify the imputed variables and, optionally, a set of effects to impute
these variables. Each effect is a variable or a combination of variables in the VAR statement. The syntax for
the specification of effects is the same as for the GLM procedure. See Chapter 45, “The GLM Procedure,”
for more information.

One general form of an effect involving several variables is

X1 * X2 * A * B * C ( D E )

where A, B, C, D, and E are classification variables and X1 and X2 are continuous variables.

When an FCS statement is used without specifying any methods, the regression method is used for all imputed
continuous variables and the discriminant function method is used for all imputed classification variables.
In this case, for each imputed continuous variable, all other variables in the VAR statement are used as the
covariates, and for each imputed classification variable, all other continuous variables in the VAR statement
are used as the covariates.

When a method for continuous variables is specified without imputed variables, the method is used for all
continuous variables in the VAR statement that are not specified in other methods. Similarly, when a method
for classification variables is specified without imputed variables, the method is used for all classification
variables in the VAR statement that are not specified in other methods.
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For each imputed variable that does not use the discriminant function method, if no covariates are specified,
then all other variables in the VAR statement are used as the covariates. That is, each continuous variable is
used as a regressor effect, and each classification variable is used as a main effect. For an imputed variable
that uses the discriminant function method, if no covariates are specified, then all other variables in the VAR
statement are used as the covariates with the CLASSEFFECTS=INCLUDE option, and all other continuous
variables in the VAR statement are used as the covariates with the CLASSEFFECTS=EXCLUDE option
(which is the default).

With an FCS statement, the variables are imputed sequentially in the order specified in the VAR statement.
For a continuous variable, you can use a regression method or a regression predicted mean matching method
to impute missing values. For a nominal classification variable, you can use either a discriminant function
method or a logistic regression method (generalized logit model) to impute missing values without using the
ordering of the class levels. For an ordinal classification variable, you can use a logistic regression method
(cumulative logit model) to impute missing values by using the ordering of the class levels. For a binary
classification variable, either a discriminant function method or a logistic regression method can be used. By
default, a regression method is used for a continuous variable, and a discriminant function method is used for
a classification variable.

Note that except for the regression method, all other methods impute values from the observed values. See the
section “FCS Methods for Data Sets with Arbitrary Missing Patterns” on page 5077 for a detailed description
of the FCS methods.

You can specify the following imputation methods in an FCS statement (in alphabetical order):

DISCRIM < ( imputed < = effects > < / options > ) >
specifies the discriminant function method of classification variables. The available options are as
follows:

CLASSEFFECTS=EXCLUDE | INCLUDE
specifies whether the CLASS variables are used as covariate effects. The CLASSEF-
FECTS=EXCLUDE option excludes the CLASS variables from covariate effects and the CLASS-
EFFECTS=INCLUDE option includes the CLASS variables as covariate effects. The default is
CLASSEFFECTS=EXCLUDE.

DETAILS
displays the group means and pooled covariance matrix used in each imputation.

PCOV=FIXED | POSTERIOR
specifies the pooled covariance used in the discriminant method. The PCOV=FIXED option uses
the observed-data pooled covariance matrix for each imputation and the PCOV=POSTERIOR
option draws a pooled covariance matrix from its posterior distribution. The default is
PCOV=POSTERIOR.

PRIOR=EQUAL | JEFFREYS < =c > | PROPORTIONAL | RIDGE < =d >
specifies the prior probabilities of group membership. The PRIOR=EQUAL option sets the prior
probabilities equal for all groups; the PRIOR=JEFFREYS < =c > option specifies a noninforma-
tive prior, 0 < c < 1; the PRIOR=PROPORTIONAL option sets the prior probabilities proportion
to the group sample sizes; and the PRIOR=RIDGE < =d > option specifies a ridge prior, d > 0.
If the noninformative prior c is not specified, c=0.5 is used. If the ridge prior d is not specified,
d=0.25 is used. The default is PRIOR=JEFFREYS.
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See the section “Monotone and FCS Discriminant Function Methods” on page 5071 for a detailed
description of the method.

LOGISTIC < ( imputed < = effects > < / options > ) >
specifies the logistic regression method of classification variables. The available options are as follows:

DESCENDING
reverses the sort order for the levels of the response variables.

DETAILS
displays the regression coefficients in the logistic regression model used in each imputation.

LINK=GLOGIT | LOGIT
specifies the link function that links the response probabilities to the linear predictors. The
LINK=LOGIT option (which is the default) uses the log odds function to fit the binary logit
model when there are two response categories and to fit the cumulative logit model when there
are more than two response categories. The LINK=GLOGIT option uses the generalized logit
function to fit the generalized logit model, in which each nonreference category is contrasted
with the last category.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of the response variable. The ORDER=DATA sorts by
the order of appearance in the input data set; the ORDER=FORMATTED sorts by their exter-
nal formatted values; the ORDER=FREQ sorts by the descending frequency counts; and the
ORDER=INTERNAL sorts by the unformatted values. The default is ORDER=FORMATTED.

See the section “Monotone and FCS Logistic Regression Methods” on page 5073 for a detailed
description of the method.

REG | REGRESSION < ( imputed < = effects > < / DETAILS > ) >
specifies the regression method of continuous variables. The DETAILS option displays the regression
coefficients in the regression model used in each imputation.

With a regression method, the MAXIMUM=, MINIMUM=, and ROUND= options can be used to
make the imputed values more consistent with the observed variable values.

See the section “Monotone and FCS Regression Methods” on page 5070 for a detailed description of
the method.

REGPMM < ( imputed < = effects > < / options > ) >

REGPREDMEANMATCH < ( imputed < = effects > < / options > ) >
specifies the predictive mean matching method for continuous variables. This method is similar to
the regression method except that it imputes a value randomly from a set of observed values whose
predicted values are closest to the predicted value for the missing value from the simulated regression
model (Heitjan and Little 1991; Schenker and Taylor 1996).

The available options are DETAILS and K=. The DETAILS option displays the regression coefficients
in the regression model used in each imputation. The K= option specifies the number of closest
observations to be used in the selection. The default is K=5.

See the section “Monotone and FCS Predictive Mean Matching Methods” on page 5070 for a detailed
description of the method.
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With an FCS statement, the missing values of variables in the VAR statement are imputed. After the initial
filled in, these variables with missing values are imputed sequentially in the order specified in the VAR
statement in each iteration. For example, the following MI procedure statements use the regression method
to impute variable y1 from effect y2, the regression method to impute variable y3 from effects y1 and y2, the
logistic regression method to impute variable c1 from effects y1, y2, and y1 � y2, and the default regression
method for continuous variables to impute variable y2 from effects y1, y3, and c1:

proc mi;
class c1;
fcs reg(y1= y2);
fcs reg(y3= y1 y2);
fcs logistic(c1= y1 y2 y1*y2);
var y1 y2 y3 c1;

run;

FREQ Statement
FREQ variable ;

To run a procedure on an input data set that contains observations that occur multiple times, you can use a
variable in the data set to represent how frequently observations occur and specify a FREQ statement with
the name of that variable as its argument (variable) when you run the procedure.

When you specify a FREQ statement in other SAS procedures, they treat the data set as if each observation
appeared n times, where n is the value of variable in the observation. However, PROC MI treats the data
set differently because as PROC MI imputes each missing value in each observation, it generates only one
imputed value for that missing value. That is, when you specify a FREQ variable, each imputed observation
(with its imputed value in place of the missing value) is treated as if it appeared n times. In contrast, if an
observation actually occurs n times in the data set, the missing value at each occurrence is imputed separately,
and the resulting n observations are not identical.

PROC MI uses only the integer portion of each value of variable; if any value is less than 1, PROC MI does
not use the corresponding observation in the analysis. When PROC MI calculates significance probabilities,
it considers the total number of observations to be equal to the sum of the values of variable.

MCMC Statement
MCMC < options > ;

The MCMC statement specifies the details of the MCMC method for imputation.

Table 63.3 summarizes the options available for the MCMC statement.

Table 63.3 Summary of Options in MCMC

Option Description

Data Sets
INEST= Inputs parameter estimates for imputations
OUTEST= Outputs parameter estimates used in imputations
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Table 63.3 continued

Option Description

OUTITER= Outputs parameter estimates used in iterations

Imputation Details
IMPUTE= Specifies monotone or full imputation
CHAIN= Specifies single or multiple chain
NBITER= Specifies the number of burn-in iterations for each chain
NITER= Specifies the number of iterations between imputations in a chain
INITIAL= Specifies initial parameter estimates for MCMC
PRIOR= Specifies the prior parameter information
START= Specifies starting parameters

ODS Output Graphics
PLOTS=TRACE Displays trace plots
PLOTS=ACF Displays autocorrelation plots

Traditional Graphics
TIMEPLOT Displays trace plots
ACFPLOT Displays autocorrelation plots
GOUT= Specifies the graphics catalog name for saving graphics output

Printed Output
WLF Displays the worst linear function
DISPLAYINIT Displays initial parameter values for MCMC

The following options are available for the MCMC statement (in alphabetical order).

ACFPLOT < (options< / display-options >) >
displays the traditional autocorrelation function plots of parameters from iterations. The ACFPLOT
option is applicable only if ODS Graphics is not enabled.

The available options are as follows.

COV < ( < variables > < variable1*variable2 > < . . . variable1*variable2 > ) >
displays plots of variances for variables in the list and covariances for pairs of variables in the list.
When the option COV is specified without variables, variances for all variables and covariances
for all pairs of variables are used.

MEAN < ( variables ) >
displays plots of means for variables in the list. When the option MEAN is specified without
variables, all variables are used.

WLF
displays the plot for the worst linear function.

When the ACFPLOT is specified without the preceding options, the procedure displays plots of means
for all variables that are used.

The display options provide additional information for the autocorrelation function plots. The available
display options are as follows:
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CCONF=color
specifies the color of the displayed confidence limits. The default is CCONF=BLACK.

CFRAME=color
specifies the color for filling the area enclosed by the axes and the frame. By default, this area is
not filled.

CNEEDLES=color
specifies the color of the vertical line segments (needles) that connect autocorrelations to the
reference line. The default is CNEEDLES=BLACK.

CREF=color
specifies the color of the displayed reference line. The default is CREF=BLACK.

CSYMBOL=color
specifies the color of the displayed data points. The default is CSYMBOL=BLACK.

HSYMBOL=number
specifies the height of data points in percentage screen units. The default is HSYMBOL=1.

LCONF=linetype
specifies the line type for the displayed confidence limits. The default is LCONF=1, a solid line.

LOG
requests that the logarithmic transformations of parameters be used to compute the autocorrela-
tions; it is generally used for the variances of variables. When a parameter has values less than or
equal to zero, the corresponding plot is not created.

LREF=linetype
specifies the line type for the displayed reference line. The default is LREF=3, a dashed line.

NAME=’string’
specifies a descriptive name, up to eight characters, that appears in the name field of the PROC
GREPLAY master menu. The default is NAME=’MI’.

NLAG=number
specifies the maximum lag of the series. The default is NLAG=20. The autocorrelations at each
lag are displayed in the graph.

SYMBOL=value
specifies the symbol for data points in percentage screen units. The default is SYMBOL=STAR.

TITLE=’string’
specifies the title to be displayed in the autocorrelation function plots. The default is TI-
TLE=’Autocorrelation Plot’.

WCONF=number
specifies the width of the displayed confidence limits in percentage screen units. If you specify
the WCONF=0 option, the confidence limits are not displayed. The default is WCONF=1.
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WNEEDLES=number
specifies the width of the displayed needles that connect autocorrelations to the reference line, in
percentage screen units. If you specify the WNEEDLES=0 option, the needles are not displayed.
The default is WNEEDLES=1.

WREF=number
specifies the width of the displayed reference line in percentage screen units. If you specify the
WREF=0 option, the reference line is not displayed. The default is WREF=1.

For example, the following statement requests autocorrelation function plots for the means and
variances of the variable y1, respectively:

acfplot( mean( y1) cov(y1) /log);

Logarithmic transformations of both the means and variances are used in the plots. For a detailed
description of the autocorrelation function plot, see the section “Autocorrelation Function Plot”
on page 5088; see also Schafer (1997, pp. 120–126) and the SAS/ETS User’s Guide.

CHAIN=SINGLE | MULTIPLE
specifies whether a single chain is used for all imputations or a separate chain is used for each
imputation. The default is CHAIN=SINGLE.

DISPLAYINIT
displays initial parameter values in the MCMC method for each imputation.

GOUT=graphics-catalog
specifies the graphics catalog for saving graphics output from PROC MI. The default is WORK.GSEG.
For more information, see “The GREPLAY Procedure” in SAS/GRAPH: Reference.

IMPUTE=FULL | MONOTONE
specifies whether a full-data imputation is used for all missing values or a monotone-data imputation is
used for a subset of missing values to make the imputed data sets have a monotone missing pattern.
The default is IMPUTE=FULL. When IMPUTE=MONOTONE is specified, the order in the VAR
statement is used to complete the monotone pattern.

INEST=SAS-data-set
names a SAS data set of TYPE=EST that contains parameter estimates for imputations. These estimates
are used to impute values for observations in the DATA= data set. A detailed description of the data set
is provided in the section “Input Data Sets” on page 5088.

INITIAL=EM < (options) >

INITIAL=INPUT=SAS-data-set
specifies the initial mean and covariance estimates for the MCMC method. The default is INI-
TIAL=EM.

You can specify INITIAL=INPUT=SAS-data-set to read the initial estimates of the mean and covari-
ance matrix for each imputation from a SAS data set. See the section “Input Data Sets” on page 5088
for a description of this data set.

With INITIAL=EM, PROC MI derives parameter estimates for a posterior mode, the highest observed-
data posterior density, from the EM algorithm. The MLE from the EM algorithm is used to start the
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EM algorithm for the posterior mode, and the resulting EM estimates are used to begin the MCMC
method. The prior information specified in the PRIOR= option is also used in the process to compute
the posterior mode.

The following four options are available with INITIAL=EM:

BOOTSTRAP < =number >
requests bootstrap resampling, which uses a simple random sample with replacement from the
input data set for the initial estimate. You can explicitly specify the number of observations in
the random sample. Alternatively, you can implicitly specify the number of observations in the
random sample by specifying the proportion p; 0 < p <D 1, to request [np] observations in the
random sample, where n is the number of observations in the data set and [np] is the integer part
of np. This produces an overdispersed initial estimate that provides different starting values for
the MCMC method. If you specify the BOOTSTRAP option without the number, p = 0.75 is
used by default.

CONVERGE=p

XCONV=p
sets the convergence criterion. The value must be between 0 and 1. The iterations are considered
to have converged when the change in the parameter estimates between iteration steps is less than
p for each parameter—that is, for each of the means and covariances. For each parameter, the
change is a relative change if the parameter is greater than 0.01 in absolute value; otherwise, it is
an absolute change. By default, CONVERGE=1E–4.

ITPRINT
prints the iteration history in the EM algorithm for the posterior mode.

MAXITER=number
specifies the maximum number of iterations used in the EM algorithm. The default is MAX-
ITER=200.

NBITER=number
specifies the number of burn-in iterations before the first imputation in each chain. The default is
NBITER=200.

NITER=number
specifies the number of iterations between imputations in a single chain. The default is NITER=100.

OUTEST=SAS-data-set
creates an output SAS data set of TYPE=EST. The data set contains parameter estimates used in
each imputation. The data set also includes a variable named _Imputation_ to identify the imputation
number. See the section “Output Data Sets” on page 5090 for a description of this data set.

OUTITER < ( options ) > =SAS-data-set
creates an output SAS data set of TYPE=COV that contains parameters used in the imputation step
for each iteration. The data set includes variables named _Imputation_ and _Iteration_ to identify the
imputation number and iteration number.

The parameters in the output data set depend on the options specified. You can specify the options
MEAN, STD, COV, LR, LR_POST, and WLF to output parameters of means, standard deviations,
covariances, –2 log LR statistic, –2 log LR statistic of the posterior mode, and the worst linear function,
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respectively. When no options are specified, the output data set contains the mean parameters used
in the imputation step for each iteration. See the section “Output Data Sets” on page 5090 for a
description of this data set.

PLOTS < ( LOG ) > < = plot-request >

PLOTS < ( LOG ) > < = ( plot-request < . . . plot-request > ) >
requests statistical graphics via the Output Delivery System (ODS). To request these graphs, ODS
Graphics must be enabled and you must specify options in the MCMC statement. For more information
about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.”

The global plot option LOG requests that the logarithmic transformations of parameters be used. The
plot request options include the following:

ACF < ( acf-options ) >
displays plots of the autocorrelation function of parameters from iterations. The default is ACF(
MEAN).

ALL
produces all appropriate plots.

NONE
suppresses all plots.

TRACE < ( trace-options ) >
displays trace plots of parameters from iterations. The default is TRACE( MEAN).

The available acf-options are as follows:

NLAG=n
specifies the maximum lag of the series. The default is NLAG=20. The autocorrelations at each
lag are displayed in the graph.

COV < ( < variables > < variable1*variable2 > . . . ) >
displays plots of variances for variables in the list and covariances for pairs of variables in the list.
When the option COV is specified without variables, variances for all variables and covariances
for all pairs of variables are used.

MEAN < ( variables ) >
displays plots of means for variables in the list. When the option MEAN is specified without
variables, all variables are used.

WLF
displays the plot for the worst linear function.

The available trace-options are as follows:

COV < ( < variables > < variable1*variable2 > . . . ) >

displays plots of variances for variables in the list and covariances for pairs of variables in the list.
When the option COV is specified without variables, variances for all variables and covariances
for all pairs of variables are used.
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MEAN < ( variables ) >
displays plots of means for variables in the list. When the option MEAN is specified without
variables, all variables are used.

WLF
displays the plot of the worst linear function.

PRIOR=name

PRIOR=JEFFREYS | RIDGE=number | INPUT=SAS-data-set
specifies the prior information for the means and covariances. The PRIOR=JEFFREYS option specifies
a noninformative prior, the RIDGE=number option specifies a ridge prior, and the INPUT=SAS-data-
set option specifies a data set that contains prior information.

For a detailed description of the prior information, see the section “Bayesian Estimation of the Mean
Vector and Covariance Matrix” on page 5081 and the section “Posterior Step” on page 5082. If you do
not specify the PRIOR= option, the default is PRIOR=JEFFREYS.

The PRIOR=INPUT= option specifies a TYPE=COV data set from which the prior information of the
mean vector and the covariance matrix is read. See the section “Input Data Sets” on page 5088 for a
description of this data set.

START=VALUE | DIST
specifies that the initial parameter estimates are used either as the starting value (START=VALUE)
or as the starting distribution (START=DIST) in the first imputation step of each chain. If the
IMPUTE=MONOTONE option is specified, then START=VALUE is used in the procedure. The
default is START=VALUE.

TIMEPLOT < ( options < / display-options > ) >
displays the traditional trace (time series) plots of parameters from iterations. The TIMEPLOT option
is applicable only if ODS Graphics is not enabled.

The available options are as follows:

COV < ( < variables > < variable1*variable2 > . . . ) >

displays plots of variances for variables in the list and covariances for pairs of variables in the list.
When the option COV is specified without variables, variances for all variables and covariances
for all pairs of variables are used.

MEAN < (variables) >
displays plots of means for variables in the list. When the option MEAN is specified without
variables, all variables are used.

WLF
displays the plot of the worst linear function.

When the TIMEPLOT is specified without the preceding options, the procedure displays plots of means
for all variables that are used.
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The display options provide additional information for the trace plots. The available display options
are as follows:

CCONNECT=color
specifies the color of the line segments that connect data points in the trace plots. The default is
CCONNECT=BLACK.

CFRAME=color
specifies the color for filling the area enclosed by the axes and the frame. By default, this area is
not filled.

CSYMBOL=color
specifies the color of the data points to be displayed in the trace plots. The default is CSYM-
BOL=BLACK.

HSYMBOL=number
specifies the height of data points in percentage screen units. The default is HSYMBOL=1.

LCONNECT=linetype
specifies the line type for the line segments that connect data points in the trace plots. The default
is LCONNECT=1, a solid line.

LOG
requests that the logarithmic transformations of parameters be used; it is generally used for the
variances of variables. When a parameter value is less than or equal to zero, the value is not
displayed in the corresponding plot.

NAME=’string’
specifies a descriptive name, up to eight characters, that appears in the name field of the PROC
GREPLAY master menu. The default is NAME=’MI’.

SYMBOL=value
specifies the symbol for data points in percentage screen units. The default is SYMBOL=PLUS.

TITLE=’string’
specifies the title to be displayed in the trace plots. The default is TITLE=’Trace Plot’.

WCONNECT=number
specifies the width of the line segments that connect data points in the trace plots, in percentage
screen units. If you specify the WCONNECT=0 option, the data points are not connected. The
default is WCONNECT=1.

For a detailed description of the trace plot, see the section “Trace Plot” on page 5087 and Schafer
(1997, pp. 120–126).

WLF
displays the worst linear function of parameters. This scalar function of parameters � and† is “worst”
in the sense that its values from iterations converge most slowly among parameters. For a detailed
description of this statistic, see the section “Worst Linear Function of Parameters” on page 5087.
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MNAR Statement
MNAR options ;

The MNAR statement imputes missing values by using the pattern-mixture model approach, assuming the
missing data are missing not at random (MNAR), which is described in the section “Multiple Imputation
with Pattern-Mixture Models” on page 5096. By comparing inferential results for these values to results
for imputed values that are obtained under the missing at random (MAR) assumption, you can assess the
sensitivity of the conclusions to the MAR assumption. The MAR assumption is questionable if it leads to
results that are different from the results for the MNAR scenarios.

There are two main options in the MNAR statement, MODEL and ADJUST. You use the MODEL option to
specify a subset of observations from which imputation models are to be derived for specified variables. You
use the ADJUST option to specify an imputed variable and adjustment parameters (such as shift and scale)
for adjusting the imputed variable values for a specified subset of observations.

The MNAR statement is applicable only if it is used along with a MONOTONE statement or an FCS
statement. For a detailed explanation of the imputation process for the MNAR statement and how this process
is implemented differently using the MONOTONE and FCS statements, see the section “Multiple Imputation
with Pattern-Mixture Models” on page 5096.

MODEL( imputed-variables / model-options )
specifies a set of imputed-variables in the VAR statement and the subset of observations from which
the imputation models for these variables are to be derived. You can specify multiple MODEL options
in the MNAR statement, but only one MODEL option for each imputed variable.

When an imputed variable that is listed in the VAR statement is not specified as an imputed-variable in
the MODEL option, all available observations are used to construct the imputation for that variable.

The following model-options provide various ways to specify the subset of observations:

MODELOBS=CCMV < ( K= k ) >
MODELOBS=NCMV < ( K= k ) >
MODELOBS=( obs-variable=character-list)

identifies the subset of observations that are used to derive the imputation models.

When you use the MNAR statement along with an FCS statement, only the MODELOBS=(
obs-variable=character-list) model-option is applicable. When you use the MNAR statement
along with a MONOTONE statement, all three model-options are applicable.

MODELOBS=CCMV specifies the complete-case missing values method (Little 1993; Molen-
berghs and Kenward 2007, p. 35). This method derives the imputation model from the group of
observations for which all the variables are observed.

MODELOBS=CCMV(K=k) uses the k groups of observations together with as many observed
variables as possible to derive the imputation models. For a data set that has a monotone missing
pattern and p variables, there are at most p groups of observations for which the same number of
variables is observed. The default is K=1, which uses observations from the group for which all
the variables in the VAR statement are observed (this corresponds to MODELOBS=CCMV).

MODELOBS=NCMV specifies the neighboring-case missing values method (Molenberghs and
Kenward 2007, pp. 35–36). For an imputed variable Yj , this method uses the observations for
which Yj is observed and YjC1 is missing.
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For an imputed variable Yj , MODELOBS=NCMV( K=k) uses the k closest groups of observations
for which Yj is observed and for which YjCk is missing. The default is K=1, which corresponds
to MODELOBS=NCMV.

MODELOBS=( obs-variable=character-list) identifies the subset of observations from which the
imputation models are to be derived in terms of specified levels of the obs-variable. You must
also specify the obs-variable in the CLASS statement. If you include the obs-variable in the VAR
statement, it must be completely observed.

For a detailed description of the options for specifying the observations for deriving the imputation
model. see the section “Specifying Sets of Observations for Imputation in Pattern-Mixture Models”
on page 5098.

ADJUST( imputed-variable / adjust-options )
ADJUST( imputed-variable (EVENT=’level ’) / adjust-options )

specifies an imputed-variable in the VAR statement and the subset of observations from which the
imputed values for the variable are to be adjusted. If the imputed-variable is a classification variable,
you must specify the EVENT= option to identify the response category to which the adjustments are
applied. The adjust-options specify the subset of observations and the adjustment parameters.

You can specify multiple ADJUST options. Each ADJUST option adjusts the imputed values of an
imputed-variable for the subset of observations that are specified in the option. The ADJUST option
applies only to continuous imputed-variables whose values are imputed using the regression and
predictive mean matching methods, and to classification imputed-variables whose values are imputed
using the logistic regression method.

You can use the following adjust-option to specify the subset of observations to be adjusted:

ADJUSTOBS= ( obs-variable=character-list )
identifies the subset of observations for which the imputed values of imputed-variable are to be
adjusted in terms of specified levels of the obs-variable. You must also specify the obs-variable
in the CLASS statement. If the obs-variable appears in the VAR statement, it must be completely
observed.

If you do not specify the ADJUSTOBS= option, all the imputed values of imputed-variable are
adjusted.

You can use the following adjust-options to explicitly specify adjustment parameters:

SCALE=c
specifies a scale parameter for adjusting imputed values of a continuous imputed-variable. The
value of c must be positive. By default, c= 1 (no scale adjustment is made). The SCALE= option
does not apply to adjusting imputed values of classification variables.

SHIFT | DELTA=ı
specifies the shift parameter for imputed values of imputed-variable. By default, ı = 0 (no shift
adjustment is made).

SIGMA=�
specifies the sigma parameter for imputed values of imputed-variable, where � � 0. For a
specified � > 0, a simulated shift parameter is generated from the normal distribution, with mean
ı and standard deviation � in each imputation. By default, � = 0, which means that the same
shift adjustment ı is made for imputed values of imputed-variable.
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You can use the following adjust-option to adjust imputed values by using parameters that are stored in
a data set:

PARMS( parms-options )=SAS-data-set
names the SAS data set that contains the adjustment parameters at each imputation for imputed
values of imputed-variable. You can specify the following parms-options:

SHIFT | DELTA=variable
identifies the variable for the shift parameter.

SCALE=variable
identifies the variable for the scale parameter of a continuous imputed-variable.

When the PARMS= data set does not contain a variable named _IMPUTATION_, the same
adjustment parameters are used for each imputation. When the PARMS= data set contains
a variable named _IMPUTATION_, whose values are 1, 2, . . . , n, where n is the number of
imputations, the adjustment parameters are used for the corresponding imputations.

For a classification imputed-variable whose values are imputed by using an ordinal logistic regression
method, you cannot specify the SHIFT= and SIGMA= parameters for more than one EVENT= level if
the imputed variable has more than two response levels. For a detailed description of imputed value
adjustments, see the section “Adjusting Imputed Values in Pattern-Mixture Models” on page 5098.

MONOTONE Statement
MONOTONE < method < (< imputed < = effects > > < / options >) > >

< . . . method < (< imputed < = effects > > < / options >) > > ;

The MONOTONE statement specifies imputation methods for data sets with monotone missingness. You
must also specify a VAR statement, and the data set must have a monotone missing pattern with variables
ordered in the VAR list.

Table 63.4 summarizes the options available for the MONOTONE statement.

Table 63.4 Summary of Imputation Methods in MONOTONE
Statement

Option Description

DISCRIM Specifies the discriminant function method
LOGISTIC Specifies the logistic regression method
PROPENSITY Specifies the propensity scores method
REG Specifies the regression method
REGPMM Specifies the predictive mean matching method

For each method, you can specify the imputed variables and, optionally, a set of the effects to impute these
variables. Each effect is a variable or a combination of variables preceding the imputed variable in the VAR
statement. The syntax for specification of effects is the same as for the GLM procedure. See Chapter 45,
“The GLM Procedure,” for more information.
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One general form of an effect involving several variables is

X1 * X2 * A * B * C ( D E )

where A, B, C, D, and E are classification variables and X1 and X2 are continuous variables.

When a MONOTONE statement is used without specifying any methods, the regression method is used for
all imputed continuous variables and the discriminant function method is used for all imputed classification
variables. In this case, for each imputed continuous variable, all preceding variables in the VAR statement
are used as the covariates, and for each imputed classification variable, all preceding continuous variables in
the VAR statement are used as the covariates.

When a method for continuous variables is specified without imputed variables, the method is used for all
continuous variables in the VAR statement that are not specified in other methods. Similarly, when a method
for classification variables is specified without imputed variables, the method is used for all classification
variables in the VAR statement that are not specified in other methods.

For each imputed variable that does not use the discriminant function method, if no covariates are specified,
then all preceding variables in the VAR statement are used as the covariates. That is, each preceding
continuous variable is used as a regressor effect, and each preceding classification variable is used as a main
effect. For an imputed variable that uses the discriminant function method, if no covariates are specified, then
all preceding variables in the VAR statement are used as the covariates with the CLASSEFFECTS=INCLUDE
option, and all preceding continuous variables in the VAR statement are used as the covariates with the
CLASSEFFECTS=EXCLUDE option (which is the default).

With a MONOTONE statement, the variables are imputed sequentially in the order given by the VAR
statement. For a continuous variable, you can use a regression method, a regression predicted mean matching
method, or a propensity score method to impute missing values. For a nominal classification variable, you
can use either a discriminant function method or a logistic regression method (generalized logit model) to
impute missing values without using the ordering of the class levels. For an ordinal classification variable,
you can use a logistic regression method (cumulative logit model) to impute missing values by using the
ordering of the class levels. For a binary classification variable, either a discriminant function method or a
logistic regression method can be used.

Note that except for the regression method, all other methods impute values from the observed observation
values. You can specify the following methods in a MONOTONE statement.

DISCRIM < ( imputed < = effects > < / options > ) >
specifies the discriminant function method of classification variables. The available options are as
follows:

CLASSEFFECTS=EXCLUDE | INCLUDE
specifies whether the CLASS variables are used as covariate effects. The CLASSEF-
FECTS=EXCLUDE option excludes the CLASS variables from covariate effects and the CLASS-
EFFECTS=INCLUDE option includes the CLASS variables as covariate effects. The default is
CLASSEFFECTS=EXCLUDE.

DETAILS
displays the group means and pooled covariance matrix used in each imputation.
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PCOV=FIXED | POSTERIOR
specifies the pooled covariance used in the discriminant method. The PCOV=FIXED option uses
the observed-data pooled covariance matrix for each imputation and the PCOV=POSTERIOR
option draws a pooled covariance matrix from its posterior distribution. The default is
PCOV=POSTERIOR.

PRIOR=EQUAL | JEFFREYS < =c > | PROPORTIONAL | RIDGE < =d >
specifies the prior probabilities of group membership. The PRIOR=EQUAL option sets the prior
probabilities equal for all groups; the PRIOR=JEFFREYS < =c > option specifies a noninforma-
tive prior, 0 < c < 1; the PRIOR=PROPORTIONAL option sets the prior probabilities proportion
to the group sample sizes; and the PRIOR=RIDGE < =d > option specifies a ridge prior, d > 0.
If the noninformative prior c is not specified, c=0.5 is used. If the ridge prior d is not specified,
d=0.25 is used. The default is PRIOR=JEFFREYS.

See the section “Monotone and FCS Discriminant Function Methods” on page 5071 for a detailed
description of the method.

LOGISTIC < ( imputed < = effects > < / options > ) >
specifies the logistic regression method of classification variables.

The available options are as follows:

DESCENDING
reverses the sort order for the levels of the response variables.

DETAILS
displays the regression coefficients in the logistic regression model used in each imputation.

LINK=GLOGIT | LOGIT
specifies the link function linking the response probabilities to the linear predictors. The default
is LINK=LOGIT. The LINK=LOGIT option uses the log odds function to fit the binary logit
model when there are two response categories and to fit the cumulative logit model when there
are more than two response categories; and the LINK=GLOGIT option uses the generalized logit
function to fit the generalized logit model where each nonreference category is contrasted with
the last category.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of the response variable. The ORDER=DATA sorts by
the order of appearance in the input data set; the ORDER=FORMATTED sorts by their exter-
nal formatted values; the ORDER=FREQ sorts by the descending frequency counts; and the
ORDER=INTERNAL sorts by the unformatted values. The default is ORDER=FORMATTED.

See the section “Monotone and FCS Logistic Regression Methods” on page 5073 for a detailed
description of the method.

PROPENSITY < ( imputed < = effects > < / options > ) >
specifies the propensity scores method of variables. Each variable is either a classification variable
or a continuous variable. The available options are DETAILS and NGROUPS=. The DETAILS
option displays the regression coefficients in the logistic regression model for propensity scores. The
NGROUPS= option specifies the number of groups created based on propensity scores. The default is
NGROUPS=5.
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See the section “Monotone Propensity Score Method” on page 5076 for a detailed description of the
method.

REG | REGRESSION < ( imputed < = effects > < / DETAILS > ) >
specifies the regression method of continuous variables. The DETAILS option displays the regression
coefficients in the regression model used in each imputation.

With a regression method, the MAXIMUM=, MINIMUM=, and ROUND= options can be used to
make the imputed values more consistent with the observed variable values.

See the section “Monotone and FCS Regression Methods” on page 5070 for a detailed description of
the method.

REGPMM < ( imputed < = effects > < / options > ) >

REGPREDMEANMATCH < ( imputed < = effects > < / options > ) >
specifies the predictive mean matching method for continuous variables. This method is similar to
the regression method except that it imputes a value randomly from a set of observed values whose
predicted values are closest to the predicted value for the missing value from the simulated regression
model (Heitjan and Little 1991; Schenker and Taylor 1996).

The available options are DETAILS and K=. The DETAILS option displays the regression coefficients
in the regression model used in each imputation. The K= option specifies the number of closest
observations to be used in the selection. The default is K=5.

See the section “Monotone and FCS Predictive Mean Matching Methods” on page 5070 for a detailed
description of the method.

With a MONOTONE statement, the variables with missing values are imputed sequentially in the order
specified in the VAR statement. For example, the following MI procedure statements use the default regression
method for continuous variables to impute variable y2 from the effect y1, the logistic regression method to
impute variable c1 from effects y1, y2, and y1 � y2, and the regression method to impute variable y3 from
effects y1, y2, and c1:

proc mi;
class c1;
var y1 y2 c1 y3;
monotone logistic(c1= y1 y2 y1*y2);
monotone reg(y3= y1 y2 c1);

run;

The variable y1 is not imputed since it is the leading variable in the VAR statement.

TRANSFORM Statement
TRANSFORM transform (variables< / options >)< . . . transform (variables< / options >) > ;

The TRANSFORM statement lists the transformations and their associated variables to be transformed. The
options are transformation options that provide additional information for the transformation.

The MI procedure assumes that the data are from a multivariate normal distribution when either the regression
method or the MCMC method is used. When some variables in a data set are clearly non-normal, it is useful
to transform these variables to conform to the multivariate normality assumption. With a TRANSFORM



5062 F Chapter 63: The MI Procedure

statement, variables are transformed before the imputation process, and these transformed variable values are
displayed in all of the results. When you specify an OUT= option, the variable values are back-transformed
to create the imputed data set.

The following transformations can be used in the TRANSFORM statement:

BOXCOX
specifies the Box-Cox transformation of variables. The variable Y is transformed to .YCc/��1

�
, where

c is a constant such that each value of YC c must be positive. If the specified constant � D 0, the
logarithmic transformation is used.

EXP
specifies the exponential transformation of variables. The variable Y is transformed to e.YCc/, where c
is a constant.

LOG
specifies the logarithmic transformation of variables. The variable Y is transformed to log.Y C c/,
where c is a constant such that each value of YC c must be positive.

LOGIT
specifies the logit transformation of variables. The variable Y is transformed to log. Y=c

1�Y=c /, where the
constant c>0 and the values of Y=c must be between 0 and 1.

POWER
specifies the power transformation of variables. The variable Y is transformed to .YC c/�, where c is
a constant such that each value of YC c must be positive and the constant � ¤ 0.

The following options provide the constant c and � values in the transformations.

C=number
specifies the c value in the transformation. The default is c = 1 for logit transformation and c = 0 for
other transformations.

LAMBDA=number
specifies the � value in the power and Box-Cox transformations. You must specify the � value for
these two transformations.

For example, the following statement requests that variables log.y1/, a logarithmic transformation for
the variable y1, and

p
y2C 1, a power transformation for the variable y2, be used in the imputation:

transform log(y1) power(y2/c=1 lambda=.5);

If the MU0= option is used to specify a parameter value �0 for a transformed variable, the same
transformation for the variable is also applied to its corresponding MU0= value in the t test. Otherwise,
�0 D 0 is used for the transformed variable. See Example 63.10 for a usage of the TRANSFORM
statement.



VAR Statement F 5063

VAR Statement
VAR variables ;

The VAR statement lists the variables to be analyzed. The variables can be either character or numeric.
If you omit the VAR statement, all continuous variables not mentioned in other statements are used. The
VAR statement is required if you specify either an FCS statement, a MONOTONE statement, an IM-
PUTE=MONOTONE option in the MCMC statement, or more than one number in the MU0=, MAXIMUM=,
MINIMUM=, or ROUND= option.

The classification variables in the VAR statement, which can be either character or numeric, are further
specified in the CLASS statement.

Details: MI Procedure

Descriptive Statistics
Suppose Y D .y1; y2; : : : ; yn/

0

is the .n�p/ matrix of complete data, which might not be fully observed, n0
is the number of observations fully observed, and nj is the number of observations with observed values for
variable Yj .

With complete cases, the sample mean vector is

y D
1

n0

X
yi

and the CSSCP matrix isX
.yi � y/.yi � y/

0

where each summation is over the fully observed observations.

The sample covariance matrix is

S D
1

n0 � 1

X
.yi � y/.yi � y/

0

and is an unbiased estimate of the covariance matrix.

The correlation matrix R, which contains the Pearson product-moment correlations of the variables, is derived
by scaling the corresponding covariance matrix:

R D D�1SD�1

where D is a diagonal matrix whose diagonal elements are the square roots of the diagonal elements of S.
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With available cases, the corrected sum of squares for variable Yj isX
.yj i � yj /

2

where yj D
1
nj

P
yj i is the sample mean and each summation is over observations with observed values

for variable Yj .

The variance is

s2jj D
1

nj � 1

X
.yj i � yj /

2

The correlations for available cases contain pairwise correlations for each pair of variables. Each correlation
is computed from all observations that have nonmissing values for the corresponding pair of variables.

EM Algorithm for Data with Missing Values
The EM algorithm (Dempster, Laird, and Rubin 1977) is a technique that finds maximum likelihood estimates
in parametric models for incomplete data. For a detailed description and applications of the EM algorithm,
see the books by Little and Rubin (2002); Schafer (1997); McLachlan and Krishnan (1997).

The EM algorithm is an iterative procedure that finds the MLE of the parameter vector by repeating the
following steps:

1. The expectation E-step
Given a set of parameter estimates, such as a mean vector and covariance matrix for a multivariate normal
distribution, the E-step calculates the conditional expectation of the complete-data log likelihood given the
observed data and the parameter estimates.

2. The maximization M-step
Given a complete-data log likelihood, the M-step finds the parameter estimates to maximize the complete-data
log likelihood from the E-step.

The two steps are iterated until the iterations converge.

In the EM process, the observed-data log likelihood is nondecreasing at each iteration. For multivariate
normal data, suppose there are G groups with distinct missing patterns. Then the observed-data log likelihood
being maximized can be expressed as

logL.� jYobs/ D
GX
gD1

logLg.�jYobs/

where logLg.�jYobs/ is the observed-data log likelihood from the gth group, and

logLg.�jYobs/ D �
ng

2
log j†g j �

1

2

X
ig

.yig � �g/0†g�1.yig � �g/

where ng is the number of observations in the gth group, the summation is over observations in the gth group,
yig is a vector of observed values corresponding to observed variables, �g is the corresponding mean vector,
and †g is the associated covariance matrix.



Statistical Assumptions for Multiple Imputation F 5065

A sample covariance matrix is computed at each step of the EM algorithm. If the covariance matrix is
singular, the linearly dependent variables for the observed data are excluded from the likelihood function.
That is, for each observation with linear dependency among its observed variables, the dependent variables
are excluded from the likelihood function. Note that this can result in an unexpected change in the likelihood
between iterations prior to the final convergence.

See Schafer (1997, pp. 163–181) for a detailed description of the EM algorithm for multivariate normal data.

By default, PROC MI uses the means and standard deviations from available cases as the initial estimates
for the EM algorithm. The correlations are set to zero. These estimates provide a good starting value with
positive definite covariance matrix. For a discussion of suggested starting values for the algorithm, see
Schafer (1997, p. 169).

You can specify the convergence criterion with the CONVERGE= option in the EM statement. The iterations
are considered to have converged when the maximum change in the parameter estimates between iteration
steps is less than the value specified. You can also specify the maximum number of iterations used in the EM
algorithm with the MAXITER= option.

The MI procedure displays tables of the initial parameter estimates used to begin the EM process and the
MLE parameter estimates derived from EM. You can also display the EM iteration history with the ITPRINT
option. PROC MI lists the iteration number, the likelihood –2 log L, and the parameter values � at each
iteration. You can also save the MLE derived from the EM algorithm in a SAS data set by specifying the
OUTEM= option.

Statistical Assumptions for Multiple Imputation
The MI procedure assumes that the data are from a multivariate distribution and contain missing values that
can occur for any of the variables. It also assumes that the data are from a multivariate normal distribution
when either the regression method or the MCMC method is used.

Suppose Y is the n�p matrix of complete data, which is not fully observed, and denote the observed part of
Y by Yobs and the missing part by Ymis . The MI and MIANALYZE procedures assume that the missing
data are missing at random (MAR); that is, the probability that an observation is missing can depend on Yobs ,
but not on Ymis (Rubin 1976, 1987, p. 53).

To be more precise, suppose that R is the n�p matrix of response indicators whose elements are zero or one
depending on whether the corresponding elements of Y are missing or observed. Then the MAR assumption
is that the distribution of R can depend on Yobs but not on Ymis :

pr.RjYobs ; Ymis/ D pr.RjYobs/

For example, consider a trivariate data set with variables Y1 and Y2 fully observed, and a variable Y3 that
has missing values. MAR assumes that the probability that Y3 is missing for an individual can be related to
the individual’s values of variables Y1 and Y2, but not to its value of Y3. On the other hand, if a complete
case and an incomplete case for Y3 with exactly the same values for variables Y1 and Y2 have systematically
different values, then there exists a response bias for Y3, and MAR is violated.

The MAR assumption is not the same as missing completely at random (MCAR), which is a special case of
MAR. Under the MCAR assumption, the missing data values are a simple random sample of all data values;
the missingness does not depend on the values of any variables in the data set.
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Although the MAR assumption cannot be verified with the data and it can be questionable in some situations,
the assumption becomes more plausible as more variables are included in the imputation model (Schafer
1997, pp. 27–28; Van Buuren, Boshuizen, and Knook 1999, p. 687).

Furthermore, the MI and MIANALYZE procedures assume that the parameters � of the data model and
the parameters � of the model for the missing-data indicators are distinct. That is, knowing the values of
� does not provide any additional information about �, and vice versa. If both the MAR and distinctness
assumptions are satisfied, the missing-data mechanism is said to be ignorable Rubin 1987, pp. 50–54; Schafer
1997, pp. 10–11).

Missing Data Patterns
The MI procedure sorts the data into groups based on whether the analysis variables are observed or missing.
Note that the input data set does not need to be sorted in any order.

For example, with variables Y1, Y2, and Y3 (in that order) in a data set, up to eight groups of observations
can be formed from the data set. Figure 63.6 displays the eight groups of observations and an unique missing
pattern for each group.

Figure 63.6 Missing Data Patterns

Missing Data PatternsMissing Data Patterns

Group Y1 Y2 Y3

1 X X X

2 X X .

3 X . X

4 X . .

5 . X X

6 . X .

7 . . X

8 . . .

An “X” in Figure 63.6 means that the variable is observed in the corresponding group and a “.” means that
the variable is missing. The MI procedure denotes variables that have missing values by “.” or “O”. The
value “.” means that the variable is missing and will be imputed, and the value “O” means that the variable is
missing and will not be imputed.

The variable order is used to derive the order of the groups from the data set, and thus determines the order of
missing values in the data to be imputed. If you specify a different order of variables in the VAR statement,
then the results are different even if the other specifications remain the same.

A data set with variables Y1, Y2, . . . , Yp (in that order) is said to have a monotone missing pattern when the
event that a variable Yj is missing for a particular individual implies that all subsequent variables Yk , k > j ,
are missing for that individual. Alternatively, when a variable Yj is observed for a particular individual, it is
assumed that all previous variables Yk , k < j , are also observed for that individual.
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For example, Figure 63.7 displays a data set of three variables with a monotone missing pattern.

Figure 63.7 Monotone Missing Patterns

Monotone Missing Data PatternsMonotone Missing Data Patterns

Group Y1 Y2 Y3

1 X X X

2 X X .

3 X . .

Figure 63.8 displays a data set of three variables with a non-monotone missing pattern.

Figure 63.8 Non-monotone Missing Patterns

Non-monotone Missing Data PatternsNon-monotone Missing Data Patterns

Group Y1 Y2 Y3

1 X X X

2 X . X

3 . X .

4 . . X

A data set with an arbitrary missing pattern is a data set with either a monotone missing pattern or a
non-monotone missing pattern.

Imputation Methods
This section describes the methods for multiple imputation that are available in the MI procedure. The
method of choice depends on the pattern of missingness in the data and the type of the imputed variable, as
summarized in Table 63.5.

Table 63.5 Imputation Methods in PROC MI

Pattern of Type of Type of Available Methods
Missingness Imputed Variable Covariates

Monotone Continuous Arbitrary �Monotone regression
�Monotone predicted mean matching
�Monotone propensity score

Monotone Classification (ordinal) Arbitrary �Monotone logistic regression

Monotone Classification (nominal) Arbitrary �Monotone discriminant function

Arbitrary Continuous Continuous �MCMC full-data imputation
�MCMC monotone-data imputation

Arbitrary Continuous Arbitrary � FCS regression
� FCS predicted mean matching
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Table 63.5 continued

Pattern of Type of Type of Available Methods
Missingness Imputed Variable Covariates

Arbitrary Classification (ordinal) Arbitrary � FCS logistic regression

Arbitrary Classification (nominal) Arbitrary � FCS discriminant function

To impute missing values for a continuous variable in data sets with monotone missing patterns, you should
use either a parametric method that assumes multivariate normality or a nonparametric method that uses
propensity scores Rubin 1987, pp. 124, 158; Lavori, Dawson, and Shera 1995). Parametric methods available
include the regression method (Rubin 1987, pp. 166–167) and the predictive mean matching method (Heitjan
and Little 1991; Schenker and Taylor 1996).

To impute missing values for a classification variable in data sets with monotone missing patterns, you should
use the logistic regression method or the discriminant function method. Use the logistic regression method
when the classification variable has a binary or ordinal response, and use the discriminant function method
when the classification variable has a binary or nominal response.

For data sets with arbitrary missing patterns, you can use either of the following methods to impute missing
values: a Markov chain Monte Carlo (MCMC) method (Schafer 1997) that assumes multivariate normality,
or a fully conditional specification (FCS) method (Van Buuren 2007; Brand 1999) that assumes the existence
of a joint distribution for all variables.

For continuous variables in data sets with arbitrary missing patterns, you can use the MCMC method to
impute either all the missing values or just enough missing values to make the imputed data sets have
monotone missing patterns. With a monotone missing data pattern, you have greater flexibility in your choice
of imputation models. In addition to the MCMC method, you can implement other methods, such as the
regression method, that do not use Markov chains. You can also specify a different set of covariates for each
imputed variable.

Although the regression and MCMC methods assume multivariate normality, inferences based on multiple
imputation can be robust to departures from multivariate normality if the amount of missing information is
not large, because the imputation model is effectively applied not to the entire data set but only to its missing
part (Schafer 1997, pp.147–148).

To impute missing values for both continuous and classification variables in data sets with arbitrary missing
patterns, you can use FCS methods to impute missing values for all variables assuming a joint distribution
for these variables exists (Brand 1999; Van Buuren 2007). Similar to the methods of imputing missing values
for variables in data sets with monotone missing patterns, you can use the regression and predictive mean
matching methods to impute missing values for a continuous variable, and use the logistic regression method
to impute missing values for a classification variable when the variable has a binary or ordinal response, or
use the discriminant function method when the variable has a binary or nominal response.

You can also use a TRANSFORM statement to transform variables to conform to the multivariate normality
assumption. Variables are transformed before the imputation process and then are reverse-transformed to
create the imputed data set. All continuous variables are standardized before the imputation process and then
are transformed back to the original scale after the imputation process.

Li (1988) presents a theoretical argument for convergence of the MCMC method in the continuous case
and uses it to create imputations for incomplete multivariate continuous data. In practice, however, it is not
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easy to check the convergence of a Markov chain, especially for a large number of parameters. PROC MI
generates statistics and plots that you can use to check for convergence of the MCMC method. The details
are described in the section “Checking Convergence in MCMC” on page 5086.

Monotone Methods for Data Sets with Monotone Missing Patterns
For data sets with monotone missing data patterns, you can use monotone methods to impute missing values
for the variables. A monotone method creates multiple imputations by imputing missing values sequentially
over the variables taken one at a time.

For example, with variables Y1, Y2, . . . , Yp (in that order) in the VAR statement, a monotone method
sequentially simulates a draw for missing values for variables Y2, . . . , Yp. That is, the missing values are
imputed by using the sequence

�
.�/
2 � P.�2 jY1.obs/; Y2.obs//

Y
.�/
2 � P. Y2 j�

.�/
2 /

: : :

: : :

�.�/p � P.�p jY1.obs/; : : : ; Yp.obs/ /

Y .�/p � P. Yp j�
.�/
p /

where Yj.obs/ is the set of observed Yj values, �.�/j is the set of simulated parameters for the conditional

distribution of Yj given covariates constructed from variables Y1, Y2, . . . , Yj�1, and Y .�/j is the set of
imputed Yj values.

The missing values for the leading variable Y1 are not imputed, and missing values for Y2, . . . , Yp are
not imputed for those observations with missing Y1 values. For each subsequent variable Yj with missing
values, the corresponding imputation method is used to fit a model with covariates constructed from its
preceding variables Y1; Y2; : : : ; Yj�1. The observed observations for Yj , which include only observations
with observed values for Y1; Y2; : : : ; Yj�1, are used in the model fitting. With this resulting model, a new
model is drawn and then used to impute missing values for Yj .

You can specify a separate monotone method for each imputed variable. If a method is not specified for
the variable, then the default method is used. That is, a regression method is used for a continuous variable
and a discriminant function method is used for a classification variable. For each imputed variable, you can
also specify a set of covariates that are constructed from its preceding variables. If a set of covariates is not
specified for the variable, all preceding variables in the VAR list are used as covariates.

You can use a regression method, a predictive mean matching method, or a propensity score method to impute
missing values for a continuous variable; a logistic regression method for a classification variable with a
binary or ordinal response; and a discriminant function method for a classification variable with a binary or
nominal response. See the sections “Monotone and FCS Regression Methods” on page 5070, “Monotone
and FCS Predictive Mean Matching Methods” on page 5070, “Monotone Propensity Score Method” on
page 5076, “Monotone and FCS Discriminant Function Methods” on page 5071, and “Monotone and FCS
Logistic Regression Methods” on page 5073 for these methods.
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Monotone and FCS Regression Methods
The regression method is the default imputation method in the MONOTONE and FCS statements for
continuous variables.

In the regression method, a regression model is fitted for a continuous variable with the covariates constructed
from a set of effects. Based on the fitted regression model, a new regression model is simulated from the
posterior predictive distribution of the parameters and is used to impute the missing values for each variable
(Rubin 1987, pp. 166–167). That is, for a continuous variable Yj with missing values, a model

Yj D ˇ0 C ˇ1X1 C ˇ2X2 C : : :C ˇk Xk

is fitted using observations with observed values for the variable Yj and its covariates X1, X2, . . . , Xk .

The fitted model includes the regression parameter estimates Ǒ D . Ǒ0; Ǒ1; : : : ; Ǒk/ and the associated
covariance matrix O�2jVj , where Vj is the usual X0X inverse matrix derived from the intercept and covariates
X1, X2, . . . , Xk .

The following steps are used to generate imputed values for each imputation:

1. New parameters ˇ� D .ˇ�0; ˇ�1; : : : ; ˇ�.k// and �2
�j are drawn from the posterior predictive distribu-

tion of the parameters. That is, they are simulated from . Ǒ0; Ǒ1; : : : ; Ǒk/, �2j , and Vj . The variance is
drawn as

�2�j D O�
2
j .nj � k � 1/=g

where g is a �2
nj�k�1

random variate and nj is the number of nonmissing observations for Yj . The
regression coefficients are drawn as

ˇ� D Ǒ C ��jV0hjZ

where Vhj is the upper triangular matrix in the Cholesky decomposition, Vj D V0
hj
Vhj , and Z is a

vector of k C 1 independent random normal variates.

2. The missing values are then replaced by

ˇ�0 C ˇ�1 x1 C ˇ�2 x2 C : : :C ˇ�.k/ xk C zi ��j

where x1; x2; : : : ; xk are the values of the covariates and zi is a simulated normal deviate.

Monotone and FCS Predictive Mean Matching Methods
The predictive mean matching method is also an imputation method available for continuous variables. It is
similar to the regression method except that for each missing value, it imputes a value randomly from a set
of observed values whose predicted values are closest to the predicted value for the missing value from the
simulated regression model (Heitjan and Little 1991; Schenker and Taylor 1996).

Following the description of the model in the section “Monotone and FCS Regression Methods” on page 5070,
the following steps are used to generate imputed values:
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1. New parameters ˇ� D .ˇ�0; ˇ�1; : : : ; ˇ�.k// and �2
�j are drawn from the posterior predictive distribu-

tion of the parameters. That is, they are simulated from . Ǒ0; Ǒ1; : : : ; Ǒk/, �2j , and Vj . The variance is
drawn as

�2�j D O�
2
j .nj � k � 1/=g

where g is a �2
nj�k�1

random variate and nj is the number of nonmissing observations for Yj . The
regression coefficients are drawn as

ˇ� D Ǒ C ��jV0hjZ

where Vhj is the upper triangular matrix in the Cholesky decomposition, Vj D V0
hj
Vhj , and Z is a

vector of k C 1 independent random normal variates.

2. For each missing value, a predicted value

yi� D ˇ�0 C ˇ�1 x1 C ˇ�2 x2 C : : :C ˇ�.k/ xk

is computed with the covariate values x1; x2; : : : ; xk .

3. A set of k0 observations whose corresponding predicted values are closest to yi� is generated. You
can specify k0 with the K= option.

4. The missing value is then replaced by a value drawn randomly from these k0 observed values.

The predictive mean matching method requires the number of closest observations to be specified. A smaller
k0 tends to increase the correlation among the multiple imputations for the missing observation and results in
a higher variability of point estimators in repeated sampling. On the other hand, a larger k0 tends to lessen
the effect from the imputation model and results in biased estimators (Schenker and Taylor 1996, p. 430).

The predictive mean matching method ensures that imputed values are plausible; it might be more appropriate
than the regression method if the normality assumption is violated (Horton and Lipsitz 2001, p. 246).

Monotone and FCS Discriminant Function Methods
The discriminant function method is the default imputation method in the MONOTONE and FCS statements
for classification variables.

For a nominal classification variable Yj with responses 1, . . . , g and a set of effects from its preceding
variables, if the covariates X1, X2, . . . , Xk associated with these effects within each group are approximately
multivariate normal and the within-group covariance matrices are approximately equal, the discriminant
function method (Brand 1999, pp. 95–96) can be used to impute missing values for the variable Yj .

Denote the group-specific means for covariates X1, X2, . . . , Xk by

Xt D .X t1; X t2; : : : ; X tk/; t D 1; 2; : : : ; g

then the pooled covariance matrix is computed as

S D
1

n � g

gX
tD1

.nt � 1/St

where St is the within-group covariance matrix, nt is the group-specific sample size, and n D
Pg
tD1 nt is

the total sample size.

In each imputation, new parameters of the group-specific means (m�t ), pooled covariance matrix (S�), and
prior probabilities of group membership (q�t ) can be drawn from their corresponding posterior distributions
(Schafer 1997, p. 356).
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Pooled Covariance Matrix and Group-Specific Means

For each imputation, the MI procedure uses either the fixed observed pooled covariance matrix
(PCOV=FIXED) or a drawn pooled covariance matrix (PCOV=POSTERIOR) from its posterior distri-
bution with a noninformative prior. That is,

†jX � W �1 . n � g; .n � g/S/

where W �1 is an inverted Wishart distribution.

The group-specific means are then drawn from their posterior distributions with a noninformative prior

�t j.†;Xt / � N

�
Xt ;

1

nt
†

�

See the section “Bayesian Estimation of the Mean Vector and Covariance Matrix” on page 5081 for a
complete description of the inverted Wishart distribution and posterior distributions that use a noninformative
prior.

Prior Probabilities of Group Membership

The prior probabilities are computed through the drawing of new group sample sizes. When the total sample
size n is considered fixed, the group sample sizes .n1; n2; : : : ; ng/ have a multinomial distribution. New
multinomial parameters (group sample sizes) can be drawn from their posterior distribution by using a
Dirichlet prior with parameters .˛1; ˛2; : : : ; ˛g/.

After the new sample sizes are drawn from the posterior distribution of .n1; n2; : : : ; ng/, the prior probabilities
q�t are computed proportionally to the drawn sample sizes.

See Schafer (1997, pp. 247–255) for a complete description of the Dirichlet prior.

Imputation Steps

The discriminant function method uses the following steps in each imputation to impute values for a nominal
classification variable Yj with g responses:

1. Draw a pooled covariance matrix S� from its posterior distribution if the PCOV=POSTERIOR option
is used.

2. For each group, draw group means m�t from the observed group mean Xt and either the ob-
served pooled covariance matrix (PCOV=FIXED) or the drawn pooled covariance matrix S�
(PCOV=POSTERIOR).

3. For each group, compute or draw q�t , prior probabilities of group membership, based on the PRIOR=
option:

• PRIOR=EQUAL, q�t D 1=g, prior probabilities of group membership are all equal.

• PRIOR=PROPORTIONAL, q�t D nt=n, prior probabilities are proportional to their group
sample sizes.
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• PRIOR=JEFFREYS=c, a noninformative Dirichlet prior with ˛t D c is used.

• PRIOR=RIDGE=d , a ridge prior is used with ˛t D d � nt=n for d � 1 and ˛t D d � nt for
d < 1.

4. With the group means m�t , the pooled covariance matrix S�, and the prior probabilities of group
membership q�t , the discriminant function method derives linear discriminant function and computes
the posterior probabilities of an observation belonging to each group

pt .x/ D
exp.�0:5D2t .x//Pg
uD1 exp.�0:5D2u.x//

where D2t .x/ D .x �m�t /0S�1� .x �m�t / � 2 log.q�t / is the generalized squared distance from x to
group t.

5. Draw a random uniform variate u, between 0 and 1, for each observation with missing group value.
With the posterior probabilities, p1.x/C p2.x/C : : : ;Cpg.x/ D 1, the discriminant function method
imputes Yj D 1 if the value of u is less than p1.x/, Yj D 2 if the value is greater than or equal to
p1.x/ but less than p1.x/C p2.x/, and so on.

Monotone and FCS Logistic Regression Methods
The logistic regression method is another imputation method available for classification variables. In the
logistic regression method, a logistic regression model is fitted for a classification variable with a set of
covariates constructed from the effects, where the classification variable is an ordinal response or a nominal
response variable.

In the MI procedure, ordered values are assigned to response levels in ascending sorted order. If the response
variable Y takes values in f1; : : : ; Kg, then for ordinal response models, the cumulative model has the form

logit.Pr.Y � j jx// D log
�

Pr.Y � j jx/
1 � Pr.Y � j jx/

�
D ˛j C ˇ

0x; j D 1; : : : ; K � 1

where ˛1; : : : ; ˛K�1 are K-1 intercept parameters, and ˇ is the vector of slope parameters.

For nominal response logistic models, where the K possible responses have no natural ordering, the general-
ized logit model has the form

log
�
Pr.Y D j j x/
Pr.Y D K j x/

�
D ˛j C ˇ

0
jx; j D 1; : : : ; K � 1

where the ˛1; : : : ; ˛K�1 are K-1 intercept parameters, and the ˇ1; : : : ;ˇK�1 are K-1 vectors of slope
parameters.

Binary Response Logistic Regression

For a binary classification variable, based on the fitted regression model, a new logistic regression model
is simulated from the posterior predictive distribution of the parameters and is used to impute the missing
values for each variable (Rubin 1987, pp. 167–170).
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For a binary variable Y with responses 1 and 2, a logistic regression model is fitted using observations with
observed values for the imputed variable Y:

logit.p1/ D ˇ0 C ˇ1X1 C ˇ2X2 C : : :C ˇp Xp

where X1; X2; : : : ; Xp are covariates for Y, p1 D Pr.Y D 1jX1; X2; : : : ; Xp/, and logit.p1/ D
log.p1=.1 � p1//

The fitted model includes the regression parameter estimates Ǒ D . Ǒ0; Ǒ1; : : : ; Ǒp/ and the associated
covariance matrix V.

The following steps are used to generate imputed values for a binary variable Y with responses 1 and 2:

1. New parameters ˇ� D .ˇ�0; ˇ�1; : : : ; ˇ�.p// are drawn from the posterior predictive distribution of
the parameters.

ˇ� D Ǒ CV0hZ

where Vh is the upper triangular matrix in the Cholesky decomposition, V D V0
h
Vh, and Z is a vector

of p C 1 independent random normal variates.

2. For an observation with missing Yj and covariates x1; x2; : : : ; xp, compute the predicted probability
that Y= 1:

p1 D
exp.�1/

1C exp.�1/

where �1 D ˇ�0 C ˇ�1 x1 C ˇ�2 x2 C : : :C ˇ�.p/ xp.

3. Draw a random uniform variate, u, between 0 and 1. If the value of u is less than p1, impute Y= 1;
otherwise impute Y= 2.

The binary logistic regression imputation method can be extended to include the ordinal classification
variables with more than two levels of responses, and the nominal classification variables. The LINK=LOGIT
and LINK=GLOGIT options can be used to specify the cumulative logit model and the generalized logit
model, respectively. The options ORDER= and DESCENDING can be used to specify the sort order for the
levels of the imputed variables.

Ordinal Response Logistic Regression

For an ordinal classification variable, based on the fitted regression model, a new logistic regression model
is simulated from the posterior predictive distribution of the parameters and is used to impute the missing
values for each variable.

For a variable Y with ordinal responses 1, 2, . . . , K, a logistic regression model is fitted using observations
with observed values for the imputed variable Y:

logit.pj / D ˛j C ˇ1X1 C ˇ2X2 C : : :C ˇp Xp

where X1; X2; : : : ; Xp are covariates for Y and pj D Pr.Y � j jX1; X2; : : : ; Xk/.

The fitted model includes the regression parameter estimates Ǫ D . Ǫ0; : : : ; ǪK�1/ and Ǒ D . Ǒ0; Ǒ1; : : : ; Ǒk/,
and their associated covariance matrix V.

The following steps are used to generate imputed values for an ordinal classification variable Y with responses
1, 2, . . . , K:
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1. New parameters � are drawn from the posterior predictive distribution of the parameters.

� D O CV0hZ

where O D . Ǫ ; Ǒ/, Vh is the upper triangular matrix in the Cholesky decomposition, V D V0
h
Vh, and

Z is a vector of p CK � 1 independent random normal variates.

2. For an observation with missing Y and covariates x1; x2; : : : ; xk , compute the predicted cumulative
probability for Y � j :

pj D pr.Y � j / D
e˛jCx0ˇ

e˛jCx0ˇ C 1

3. Draw a random uniform variate, u, between 0 and 1, then impute

Y D

8<:
1 if u < p1
k if pk�1 � u < pk
K if pK�1 � u

Nominal Response Logistic Regression

For a nominal classification variable, based on the fitted regression model, a new logistic regression model
is simulated from the posterior predictive distribution of the parameters and is used to impute the missing
values for each variable.

For a variable Y with nominal responses 1, 2, . . . , K, a logistic regression model is fitted using observations
with observed values for the imputed variable Y:

log
�
pj

pK

�
D ˛j C ˇj1X1 C ˇj2X2 C : : :C ˇjp Xp

where X1; X2; : : : ; Xp are covariates for Y and pj D Pr.Y D j jX1; X2; : : : ; Xp/.

The fitted model includes the regression parameter estimates Ǫ D . Ǫ0; : : : ; ǪK�1/ and Ǒ D . Ǒ0; : : : ; ǑK�1/,
and their associated covariance matrix V, where Ǒj D . Ǒj0; Ǒj1; : : : ; Ǒjp/,

The following steps are used to generate imputed values for a nominal classification variable Y with responses
1, 2, . . . , K:

1. New parameters � are drawn from the posterior predictive distribution of the parameters.

� D O CV0hZ

where O D . Ǫ ; Ǒ/, Vh is the upper triangular matrix in the Cholesky decomposition, V D V0
h
Vh, and

Z is a vector of p CK � 1 independent random normal variates.

2. For an observation with missing Y and covariates x1; x2; : : : ; xk , compute the predicted probability
for Y= j, j=1, 2, . . . , K-1:

pr.Y D j / D
e˛jCx0ˇjPK�1

kD1 e
˛kCx0ˇk C 1

and

pr.Y D K/ D
1PK�1

kD1 e
˛kCx0ˇk C 1
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3. Compute the cumulative probability for Y � j :

Pj D

jX
kD1

pr.Y D k/

4. Draw a random uniform variate, u, between 0 and 1, then impute

Y D

8<:
1 if u < p1
k if pk�1 � u < pk
K if pK�1 � u

Monotone Propensity Score Method
The propensity score method is another imputation method available for continuous variables when the data
set has a monotone missing pattern.

A propensity score is generally defined as the conditional probability of assignment to a particular treatment
given a vector of observed covariates (Rosenbaum and Rubin 1983). In the propensity score method, for a
variable with missing values, a propensity score is generated for each observation to estimate the probability
that the observation is missing. The observations are then grouped based on these propensity scores, and an
approximate Bayesian bootstrap imputation (Rubin 1987, p. 124) is applied to each group (Lavori, Dawson,
and Shera 1995).

The propensity score method uses the following steps to impute values for variable Yj with missing values:

1. Creates an indicator variable Rj with the value 0 for observations with missing Yj and 1 otherwise.

2. Fits a logistic regression model

logit.pj / D ˇ0 C ˇ1X1 C ˇ2X2 C : : :C ˇk Xk

where X1; X2; : : : ; Xk are covariates for Yj , pj D Pr.Rj D 0jX1; X2; : : : ; Xk/, and logit.p/ D
log.p=.1 � p//:

3. Creates a propensity score for each observation to estimate the probability that it is missing.

4. Divides the observations into a fixed number of groups (typically assumed to be five) based on these
propensity scores.

5. Applies an approximate Bayesian bootstrap imputation to each group. In group k, suppose that Yobs
denotes the n1 observations with nonmissing Yj values and Ymis denotes the n0 observations with
missing Yj . The approximate Bayesian bootstrap imputation first draws n1 observations randomly
with replacement from Yobs to create a new data set Y �obs . This is a nonparametric analog of drawing
parameters from the posterior predictive distribution of the parameters. The process then draws the n0
values for Ymis randomly with replacement from Y �obs .

Steps 1 through 5 are repeated sequentially for each variable with missing values.

The propensity score method was originally designed for a randomized experiment with repeated measures
on the response variables. The goal was to impute the missing values on the response variables. The method
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uses only the covariate information that is associated with whether the imputed variable values are missing; it
does not use correlations among variables. It is effective for inferences about the distributions of individual
imputed variables, such as a univariate analysis, but it is not appropriate for analyses that involve relationship
among variables, such as a regression analysis (Schafer 1999, p. 11). It can also produce badly biased
estimates of regression coefficients when data on predictor variables are missing (Allison 2000).

FCS Methods for Data Sets with Arbitrary Missing Patterns
For a data set with an arbitrary missing data pattern, you can use FCS methods to impute missing values
for all variables, assuming the existence of a joint distribution for these variables (Brand 1999; Van Buuren
2007). FCS method involves two phases in each imputation: the preliminary filled-in phase followed by the
imputation phase.

At the filled-in phase, the missing values for all variables are filled in sequentially over the variables taken
one at a time. The missing values for each variable are filled in using the specified method, or the default
method for the variable if a method is not specified, with preceding variables serving as the covariates. These
filled-in values provide starting values for these missing values at the imputation phase.

At the imputation phase, the missing values for each variable are imputed using the specified method and
covariates at each iteration. The default method for the variable is used if a method is not specified, and the
remaining variables are used as covariates if the set of covariates is not specified. After a number of iterations,
as specified with the NBITER= option, the imputed values in each variable are used for the imputation. At
each iteration, the missing values are imputed sequentially over the variables taken one at a time.

The MI procedure orders the variables as they are ordered in the VAR statement. For example, if the order of
the p variables in the VAR statement is Y1, Y2, . . . , Yp, then Y1, Y2, . . . , Yp (in that order) are used in the
filled-in and imputation phases.

The filled-in phase replaces missing values with filled-in values for each variable. That is, with p variables
Y1, Y2, . . . , Yp (in that order), the missing values are filled in by using the sequence,

�
.0/
1 � P.�1 jY1.obs//

Y
.0/

1.�/
� P. Y1 j�

.0/
1 /

Y
.0/
1 D .Y1.obs/; Y

.0/

1.�/
/

: : :

: : :

�.0/p � P.�p jY
.0/
1 ; : : : ; Y

.0/
p�1; Yp.obs/ /

Y
.0/

p.�/
� P. Yp j�

.0/
p /

Y .0/p D .Yp.obs/; Y
.0/

p.�/
/

where Yj.obs/ is the set of observed Yj values, Y .0/
j.�/

is the set of filled-in Yj values, Y .0/j is the set of both

observed and filled-in Yj values, and �.0/j is the set of simulated parameters for the conditional distribution
of Yj given variables Y1, Y2, . . . , Yj�1.
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For each variable Yj with missing values, the corresponding imputation method is used to fit the model
with covariates Y1; Y2; : : : ; Yj�1. The observed observations for Yj , which might include observations with
filled-in values for Y1; Y2; : : : ; Yj�1, are used in the model fitting. With this resulting model, a new model is
drawn and then used to impute missing values for Yj .

The imputation phase replaces these filled-in values Y .0/
j.�/

with imputed values for each variable sequentially
at each iteration. That is, with p variables Y1, Y2, . . . , Yp (in that order), the missing values are imputed with
the sequence at iteration t + 1,

�
.tC1/
1 � P.�1 jY1.obs/; Y

.t/
2 ; : : : ; Y .t/p /

Y
.tC1/

1.�/
� P. Y1 j�

.tC1/
1 /

Y
.tC1/
1 D .Y1.obs/; Y

.tC1/

1.�/
/

: : :

: : :

�.tC1/p � P.�p jY
.tC1/
1 ; : : : ; Y

.tC1/
p�1 ; Yp.obs/ /

Y
.tC1/

p.�/
� P. Yp j�

.tC1/
p /

Y .tC1/p D .Yp.obs/; Y
.tC1/

p.�/
/

where Yj.obs/ is the set of observed Yj values, Y .tC1/
j.�/

is the set of imputed Yj values at iteration t + 1, Y .t/
j.�/

is the set of filled-in Yj values (t = 0) or the set of imputed Yj values at iteration t (t > 0), Y .tC1/j is the set of

both observed and imputed Yj values at iteration t + 1, and �.tC1/j is the set of simulated parameters for the
conditional distribution of Yj given covariates constructed from Y1, . . . , Yj�1, YjC1, . . . , Yp.

At each iteration, a specified model is fitted for each variable with missing values by using observed
observations for that variable, which might include observations with imputed values for other variables.
With this resulting model, a new model is drawn and then used to impute missing values for the imputed
variable.

The steps are iterated long enough for the results to reliably simulate an approximately independent draw of
the missing values for an imputed data set.

The imputation methods used in the filled-in and imputation phases are similar to the corresponding monotone
methods for monotone missing data. You can use a regression method or a predictive mean matching method
to impute missing values for a continuous variable, a logistic regression method for a classification variable
with a binary or ordinal response, and a discriminant function method for a classification variable with a
binary or nominal response. See the sections “Monotone and FCS Regression Methods” on page 5070,
“Monotone and FCS Predictive Mean Matching Methods” on page 5070, “Monotone and FCS Discriminant
Function Methods” on page 5071, and “Monotone and FCS Logistic Regression Methods” on page 5073 for
these methods.

The FCS method requires fewer iterations than the MCMC method (Van Buuren 2007). Often, as few as five
or 10 iterations are enough to produce satisfactory results (Van Buuren 2007; Brand 1999).
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Checking Convergence in FCS Methods
The parameters used in the imputation step at each iteration can be saved in an output data set with the
OUTITER= option. These include the means and standard deviations. You can then monitor the convergence
by displaying trace plots for those parameter values with the PLOTS=TRACE option.

A trace plot for a parameter � is a scatter plot of successive parameter estimates �i against the iteration
number i. The plot provides a simple way to examine the convergence behavior of the estimation algorithm
for � . Long-term trends in the plot indicate that successive iterations are highly correlated and that the series
of iterations has not converged.

You can display trace plots for the variable means and standard deviations. You can also request logarithmic
transformations for positive parameters in the plots with the LOG option. With the LOG option, if a parameter
value is less than or equal to zero, then the value is not displayed in the corresponding plot.

See Example 63.8 for a usage of the trace plot.

MCMC Method for Arbitrary Missing Multivariate Normal Data
The Markov chain Monte Carlo (MCMC) method originated in physics as a tool for exploring equilibrium
distributions of interacting molecules. In statistical applications, it is used to generate pseudorandom draws
from multidimensional and otherwise intractable probability distributions via Markov chains. A Markov
chain is a sequence of random variables in which the distribution of each element depends only on the value
of the previous element.

In MCMC simulation, you constructs a Markov chain long enough for the distribution of the elements to
stabilize to a stationary distribution, which is the distribution of interest. Repeatedly simulating steps of the
chain simulates draws from the distribution of interest. See Schafer (1997) for a detailed discussion of this
method.

In Bayesian inference, information about unknown parameters is expressed in the form of a posterior
probability distribution. This posterior distribution is computed using Bayes’ theorem,

p.�jy/ D
p.yj�/p.�/R
p.yj�/p.�/d�

MCMC has been applied as a method for exploring posterior distributions in Bayesian inference. That is,
through MCMC, you can simulate the entire joint posterior distribution of the unknown quantities and obtain
simulation-based estimates of posterior parameters that are of interest.

In many incomplete-data problems, the observed-data posterior p.�jYobs/ is intractable and cannot easily be
simulated. However, when Yobs is augmented by an estimated or simulated value of the missing data Ymis ,
the complete-data posterior p.�jYobs ; Ymis/ is much easier to simulate. Assuming that the data are from a
multivariate normal distribution, data augmentation can be applied to Bayesian inference with missing data
by repeating the following steps:

1. The imputation I-step
Given an estimated mean vector and covariance matrix, the I-step simulates the missing values for each
observation independently. That is, if you denote the variables with missing values for observation i by
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Yi.mis/ and the variables with observed values by Yi.obs/, then the I-step draws values for Yi.mis/ from a
conditional distribution for Yi.mis/ given Yi.obs/.

2. The posterior P-step
Given a complete sample, the P-step simulates the posterior population mean vector and covariance matrix.
These new estimates are then used in the next I-step. Without prior information about the parameters, a
noninformative prior is used. You can also use other informative priors. For example, a prior information
about the covariance matrix can help to stabilize the inference about the mean vector for a near singular
covariance matrix.

That is, with a current parameter estimate �.t/ at the tth iteration, the I-step draws Y .tC1/mis from
p.Ymis jYobs ;�

.t// and the P-step draws �.tC1/ from p.�jYobs ; Y
.tC1/
mis /. The two steps are iterated long

enough for the results to reliably simulate an approximately independent draw of the missing values for a
multiply imputed data set (Schafer 1997).

This creates a Markov chain .Y
.1/
mis ;�

.1// , .Y .2/mis ;�
.2// , . . . , which converges in distribution to

p.Ymis ;�jYobs/. Assuming the iterates converge to a stationary distribution, the goal is to simulate an
approximately independent draw of the missing values from this distribution.

To validate the imputation results, you should repeat the process with different random number generators
and starting values based on different initial parameter estimates.

The next three sections provide details for the imputation step, Bayesian estimation of the mean vector and
covariance matrix, and the posterior step.

Imputation Step

In each iteration, starting with a given mean vector � and covariance matrix †, the imputation step draws
values for the missing data from the conditional distribution Ymis given Yobs .

Suppose � D
�
�01;�

0
2

�0 is the partitioned mean vector of two sets of variables, Yobs and Ymis , where �1 is
the mean vector for variables Yobs and �2 is the mean vector for variables Ymis .

Also suppose

† D

�
†11 †12
†012 †22

�
is the partitioned covariance matrix for these variables, where†11 is the covariance matrix for variables Yobs ,
†22 is the covariance matrix for variables Ymis , and †12 is the covariance matrix between variables Yobs
and variables Ymis .

By using the sweep operator (Goodnight 1979) on the pivots of the †11 submatrix, the matrix becomes�
†�111 †�111†12

�†012†
�1
11 †22:1

�

where †22:1 D †22 �†012†
�1
11†12 can be used to compute the conditional covariance matrix of Ymis after

controlling for Yobs .
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For an observation with the preceding missing pattern, the conditional distribution of Ymis given Yobs D y1
is a multivariate normal distribution with the mean vector

�2:1 D �2 C†
0
12†

�1
11 .y1 � �1/

and the conditional covariance matrix

†22:1 D †22 �†
0
12†

�1
11†12

Bayesian Estimation of the Mean Vector and Covariance Matrix

Suppose that Y D . y01; y
0
2; : : : ; y

0
n /
0 is an .n�p/ matrix made up of n .p�1/ independent vectors yi , each of

which has a multivariate normal distribution with mean zero and covariance matrixƒ. Then the SSCP matrix

A D Y0Y D
X
i

yiy0i

has a Wishart distribution W.n;ƒ/.

When each observation yi is distributed with a multivariate normal distribution with an unknown mean �,
then the CSSCP matrix

A D
X
i

.yi � y/.yi � y/0

has a Wishart distribution W.n � 1;ƒ/.

If A has a Wishart distribution W.n;ƒ/, then B D A�1 has an inverted Wishart distribution W �1.n;‰/,
where n is the degrees of freedom and ‰ D ƒ�1 is the precision matrix (Anderson 1984).

Note that, instead of using the parameter ‰ D ƒ�1 for the inverted Wishart distribution, Schafer (1997) uses
the parameter ƒ.

Suppose that each observation in the data matrix Y has a multivariate normal distribution with mean � and
covariance matrix †. Then with a prior inverted Wishart distribution for † and a prior normal distribution
for �

† � W �1 .m; ‰/

�j† � N

�
�0;

1

�
†

�
where � > 0 is a fixed number.

The posterior distribution (Anderson 1984, p. 270; Schafer 1997, p. 152) is

†jY � W �1
�
nCm; .n � 1/SC‰ C

n�

nC �
.y � �0/.y � �0/0

�
�j.†;Y/ � N

�
1

nC �
.nyC ��0/;

1

nC �
†

�
where .n � 1/S is the CSSCP matrix.
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Posterior Step

In each iteration, the posterior step simulates the posterior population mean vector � and covariance matrix
† from prior information for � and †, and the complete sample estimates.

You can specify the prior parameter information by using one of the following methods:

• PRIOR=JEFFREYS, which uses a noninformative prior

• PRIOR=INPUT=, which provides a prior information for† in the data set. Optionally, it also provides
a prior information for � in the data set.

• PRIOR=RIDGE=, which uses a ridge prior

The next four subsections provide details of the posterior step for different prior distributions.

1. A Noninformative Prior
Without prior information about the mean and covariance estimates, you can use a noninformative prior by
specifying the PRIOR=JEFFREYS option. The posterior distributions (Schafer 1997, p. 154) are

†.tC1/jY � W �1 . n � 1; .n � 1/S/

�.tC1/j.†.tC1/;Y/ � N

�
y;

1

n
†.tC1/

�

2. An Informative Prior for � and †
When prior information is available for the parameters � and †, you can provide it with a SAS data set that
you specify with the PRIOR=INPUT= option:

† � W �1
�
d�; d�S�

�
�j† � N

�
�0;

1

n0
†

�

To obtain the prior distribution for †, PROC MI reads the matrix S� from observations in the data set with
_TYPE_=‘COV’, and it reads n� D d� C 1 from observations with _TYPE_=‘N’.

To obtain the prior distribution for �, PROC MI reads the mean vector �0 from observations with
_TYPE_=‘MEAN’, and it reads n0 from observations with _TYPE_=‘N_MEAN’. When there are no
observations with _TYPE_=‘N_MEAN’, PROC MI reads n0 from observations with _TYPE_=‘N’.

The resulting posterior distribution, as described in the section “Bayesian Estimation of the Mean Vector and
Covariance Matrix” on page 5081, is given by

†.tC1/jY � W �1
�
nC d�; .n � 1/SC d�S� C Sm

�
�.tC1/ j

�
†.tC1/;Y

�
� N

�
1

nC n0
.nyC n0�0/;

1

nC n0
†.tC1/

�
where

Sm D
nn0

nC n0
.y � �0/.y � �0/0
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3. An Informative Prior for †
When the sample covariance matrix S is singular or near singular, prior information about† can also be used
without prior information about � to stabilize the inference about �. You can provide it with a SAS data set
that you specify with the PRIOR=INPUT= option.

To obtain the prior distribution for †, PROC MI reads the matrix S� from observations in the data set with
_TYPE_=‘COV’, and it reads n� from observations with _TYPE_=‘N’.

The resulting posterior distribution for .�;†/ (Schafer 1997, p. 156) is

†.tC1/jY � W �1
�
nC d�; .n � 1/SC d�S�

�
�.tC1/ j

�
†.tC1/;Y

�
� N

�
y;

1

n
†.tC1/

�

Note that if the PRIOR=INPUT= data set also contains observations with _TYPE_=‘MEAN’, then a complete
informative prior for both � and † will be used.

4. A Ridge Prior
A special case of the preceding adjustment is a ridge prior with S� = Diag .S/ (Schafer 1997, p. 156). That
is, S� is a diagonal matrix with diagonal elements equal to the corresponding elements in S.

You can request a ridge prior by using the PRIOR=RIDGE= option. You can explicitly specify the number
d� � 1 in the PRIOR=RIDGE=d� option. Or you can implicitly specify the number by specifying the
proportion p in the PRIOR=RIDGE=p option to request d� D .n � 1/p.

The posterior is then given by

†.tC1/jY � W �1
�
nC d�; .n � 1/SC d�Diag.S/

�
�.tC1/

ˇ̌̌ �
†.tC1/;Y

�
� N

�
y;

1

n
†.tC1/

�

Producing Monotone Missingness with the MCMC Method
The monotone data MCMC method was first proposed by Li (1988) and Liu (1993) described the algorithm.
The method is useful especially when a data set is close to having a monotone missing pattern. In this case,
the method needs to impute only a few missing values to the data set to have a monotone missing pattern
in the imputed data set. Compared to a full data imputation that imputes all missing values, the monotone
data MCMC method imputes fewer missing values in each iteration and achieves approximate stationarity in
fewer iterations (Schafer 1997, p. 227).

You can request the monotone MCMC method by specifying the option IMPUTE=MONOTONE in the
MCMC statement. The “Missing Data Patterns” table now denotes the variables with missing values by “.” or
“O”. The value “.” means that the variable is missing and will be imputed, and the value “O” means that the
variable is missing and will not be imputed. The “Variance Information” and “Parameter Estimates” tables
are not created.
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You must specify the variables in the VAR statement. The variable order in the list determines the monotone
missing pattern in the imputed data set. With a different order in the VAR list, the results will be different
because the monotone missing pattern to be constructed will be different.

Assuming that the data are from a multivariate normal distribution, then like the MCMC method, the
monotone MCMC method repeats the following steps:

1. The imputation I-step
Given an estimated mean vector and covariance matrix, the I-step simulates the missing values for each
observation independently. Only a subset of missing values are simulated to achieve a monotone pattern of
missingness.

2. The posterior P-step
Given a new sample with a monotone pattern of missingness, the P-step simulates the posterior population
mean vector and covariance matrix with a noninformative Jeffreys prior. These new estimates are then used
in the next I-step.

Imputation Step

The I-step is almost identical to the I-step described in the section “MCMC Method for Arbitrary Missing
Multivariate Normal Data” on page 5079 except that only a subset of missing values need to be simulated.
To state this precisely, denote the variables with observed values for observation i by Yi.obs/ and the variables
with missing values by Yi.mis/ D .Yi.m1 /; Yi.m2 //, where Yi.m1 / is a subset of the missing variables that
will cause a monotone missingness when their values are imputed. Then the I-step draws values for Yi.m1 /
from a conditional distribution for Yi.m1 / given Yi.obs/.

Posterior Step

The P-step is different from the P-step described in the section “MCMC Method for Arbitrary Missing
Multivariate Normal Data” on page 5079. Instead of simulating the � and † parameters from the full
imputed data set, this P-step simulates the � and † parameters through simulated regression coefficients
from regression models based on the imputed data set with a monotone pattern of missingness. The step is
similar to the process described in the section “Monotone and FCS Regression Methods” on page 5070.

That is, for the variable Yj , a model

Yj D ˇ0 C ˇ1 Y1 C ˇ2 Y2 C : : :C ˇj�1 Yj�1

is fitted using nj nonmissing observations for variable Yj in the imputed data sets.

The fitted model consists of the regression parameter estimates Ǒ D . Ǒ0; Ǒ1; : : : ; Ǒj�1/ and the associ-
ated covariance matrix O�2jVj , where Vj is the usual X0X inverse matrix from the intercept and variables
Y1; Y2; : : : ; Yj�1.

For each imputation, new parameters ˇ� D .ˇ�0; ˇ�1; : : : ; ˇ�.j�1// and �2
�j are drawn from the posterior

predictive distribution of the parameters. That is, they are simulated from . Ǒ0; Ǒ1; : : : ; Ǒj�1/, �2j , and Vj .
The variance is drawn as

�2�j D O�
2
j .nj � j /=g

where g is a �2nj�pCj�1 random variate and nj is the number of nonmissing observations for Yj . The
regression coefficients are drawn as

ˇ� D Ǒ C ��jV0hjZ
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where Vhj is the upper triangular matrix in the Cholesky decomposition, Vj D V0
hj
Vhj , and Z is a vector of

j independent random normal variates.

These simulated values of ˇ� and �2
�j are then used to re-create the parameters � and †. For a detailed

description of how to produce monotone missingness with the MCMC method for a multivariate normal data,
see Schafer (1997, pp. 226–235).

MCMC Method Specifications
With the MCMC method, you can impute either all missing values (IMPUTE=FULL) or just enough missing
values to make the imputed data set have a monotone missing pattern (IMPUTE=MONOTONE). In the
process, either a single chain for all imputations (CHAIN=SINGLE) or a separate chain for each imputation
(CHAIN=MULTIPLE) is used. The single chain might be somewhat more precise for estimating a single
quantity such as a posterior mean (Schafer 1997, p. 138). See Schafer (1997, pp. 137–138) for a discussion
of single versus multiple chains.

You can specify the number of initial burn-in iterations before the first imputation with the NBITER= option.
This number is also used for subsequent chains for multiple chains. For a single chain, you can also specify
the number of iterations between imputations with the NITER= option.

You can explicitly specify initial parameter values for the MCMC method with the INITIAL=INPUT= data
set option. Alternatively, you can use the EM algorithm to derive a set of initial parameter values for MCMC
with the option INITIAL=EM. These estimates are used as either the starting value (START=VALUE) or
the starting distribution (START=DIST) for the MCMC method. For multiple chains, these estimates are
used again as either the starting value (START=VALUE) or the starting distribution (START=DIST) for the
subsequent chains.

You can specify the prior parameter information in the PRIOR= option. You can use a noninformative
prior (PRIOR=JEFFREYS), a ridge prior (PRIOR=RIDGE), or an informative prior specified in a data set
(PRIOR=INPUT).

The parameter estimates used to generate imputed values in each imputation can be saved in a data set with
the OUTEST= option. Later, this data set can be read with the INEST= option to provide the reference
distribution for imputing missing values for a new data set.

By default, the MCMC method uses a single chain to produce five imputations. It completes 200 burn-in
iterations before the first imputation and 100 iterations between imputations. The posterior mode computed
from the EM algorithm with a noninformative prior is used as the starting values for the MCMC method.

INITIAL=EM Specifications

The EM algorithm is used to find the maximum likelihood estimates for incomplete data in the EM statement.
You can also use the EM algorithm to find a posterior mode, the parameter estimates that maximize the
observed-data posterior density. The resulting posterior mode provides a good starting value for the MCMC
method.

With the INITIAL=EM option, PROC MI uses the MLE of the parameter vector as the initial estimates in the
EM algorithm for the posterior mode. You can use the ITPRINT option within the INITIAL=EM option to
display the iteration history for the EM algorithm.
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You can use the CONVERGE= option to specify the convergence criterion in deriving the EM posterior
mode. The iterations are considered to have converged when the maximum change in the parameter estimates
between iteration steps is less than the value specified. By default, CONVERGE=1E–4.

You can also use the MAXITER= option to specify the maximum number of iterations of the EM algorithm.
By default, MAXITER=200.

With the BOOTSTRAP option, you can use overdispersed starting values for the MCMC method. In this
case, PROC MI applies the EM algorithm to a bootstrap sample, a simple random sample with replacement
from the input data set, to derive the initial estimates for each chain (Schafer 1997, p. 128).

Checking Convergence in MCMC
The theoretical convergence of the MCMC method has been explored under various conditions, as described
in Schafer (1997, p. 70). However, in practice, verification of convergence is not a simple matter.

The parameters used in the imputation step for each iteration can be saved in an output data set with the
OUTITER= option. These include the means, standard deviations, covariances, worst linear function, and
observed-data LR statistics. You can then monitor the convergence in a single chain by displaying trace
plots and autocorrelations for those parameter values (Schafer 1997, p. 120). The trace and autocorrelation
function plots for parameters such as variable means, covariances, and the worst linear function can be
displayed by specifying the TIMEPLOT and ACFPLOT options, respectively.

You can apply the EM algorithm to a bootstrap sample to obtain overdispersed starting values for multiple
chains (Gelman and Rubin 1992). This provides a conservative estimate of the number of iterations needed
before each imputation.

The next four subsections describe useful statistics and plots that can be used to check the convergence of the
MCMC method.

LR Statistics

You can save the observed-data likelihood ratio (LR) statistic in each iteration with the LR option in the
OUTITER= data set. The statistic is based on the observed-data likelihood with parameter values used in the
iteration and the observed-data maximum likelihood derived from the EM algorithm.

In each iteration, the LR statistic is given by

�2 log

 
f . O�i /

f . O�/

!

where f . O�/ is the observed-data maximum likelihood derived from the EM algorithm and f . O�i / is the
observed-data likelihood for O�i used in the iteration.

Similarly, you can also save the observed-data LR posterior mode statistic for each iteration with the
LR_POST option. This statistic is based on the observed-data posterior density with parameter values used
in each iteration and the observed-data posterior mode derived from the EM algorithm for posterior mode.

For large samples, these LR statistics tends to be approximately �2 distributed with degrees of freedom equal
to the dimension of � (Schafer 1997, p. 131). For example, with a large number of iterations, if the values of
the LR statistic do not behave like a random sample from the described �2 distribution, then there is evidence
that the MCMC method has not converged.
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Worst Linear Function of Parameters

The worst linear function (WLF) of parameters (Schafer 1997, pp. 129–131) is a scalar function of parameters
� and † that is “worst” in the sense that its function values converge most slowly among parameters in the
MCMC method. The convergence of this function is evidence that other parameters are likely to converge as
well.

For linear functions of parameters � D .�;†/, a worst linear function of � has the highest asymptotic rate
of missing information. The function can be derived from the iterative values of � near the posterior mode in
the EM algorithm. That is, an estimated worst linear function of � is

w.�/ D v0 .� � O�/

where O� is the posterior mode and the coefficients v D O�.�1/ � O� are the difference between the estimated
value of � one step prior to convergence and the converged value O� .

You can display the coefficients of the worst linear function, v, by specifying the WLF option in the MCMC
statement. You can save the function value from each iteration in an OUTITER= data set by specifying
the WLF option within the OUTITER option. You can also display the worst linear function values from
iterations in an autocorrelation plot or a trace plot by specifying WLF as an ACFPLOT or TIMEPLOT option,
respectively.

Note that when the observed-data posterior is nearly normal, the WLF is one of the slowest functions to
approach stationarity. When the posterior is not close to normal, other functions might take much longer than
the WLF to converge, as described in Schafer (1997, p.130).

Trace Plot

A trace plot for a parameter � is a scatter plot of successive parameter estimates �i against the iteration
number i. The plot provides a simple way to examine the convergence behavior of the estimation algorithm
for � . Long-term trends in the plot indicate that successive iterations are highly correlated and that the series
of iterations has not converged.

You can display trace plots for worst linear function, variable means, variable variances, and covariances of
variables. You can also request logarithmic transformations for positive parameters in the plots with the LOG
option. When a parameter value is less than or equal to zero, the value is not displayed in the corresponding
plot.

By default, the MI procedure uses solid line segments to connect data points in a trace plot. You can use the
CCONNECT=, LCONNECT=, and WCONNECT= options to change the color, line type, and width of the
line segments, respectively. When WCONNECT=0 is specified, the data points are not connected, and the
procedure uses the plus sign (+) as the plot symbol to display the points with a height of one (percentage
screen unit) in a trace plot. You can use the SYMBOL=, CSYMBOL=, and HSYMBOL= options to change
the shape, color, and height of the plot symbol, respectively.

By default, the plot title “Trace Plot” is displayed in a trace plot. You can request another title by using the
TITLE= option in the TIMEPLOT option. When another title is also specified in a TITLE statement, this title
is displayed as the main title and the plot title is displayed as a subtitle in the plot.

You can use options in the GOPTIONS statement to change the color and height of the title. See the
chapter “The SAS/GRAPH Statements” in SAS/GRAPH: Reference for an illustration of title options. See
Example 63.11 for a usage of the trace plot.
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Autocorrelation Function Plot

To examine relationships of successive parameter estimates �, the autocorrelation function (ACF) can be
used. For a stationary series, �i ; i � 1, in trace data, the autocorrelation function at lag k is

�k D
Cov.�i ; �iCk/

Var.�i /

The sample kth order autocorrelation is computed as

rk D

Pn�k
iD1 .�i � �/.�iCk � �/Pn

iD1.�i � �/
2

You can display autocorrelation function plots for the worst linear function, variable means, variable variances,
and covariances of variables. You can also request logarithmic transformations for parameters in the plots
with the LOG option. When a parameter has values less than or equal to zero, the corresponding plot is not
created.

You specify the maximum number of lags of the series with the NLAG= option. The autocorrelations at
each lag less than or equal to the specified lag are displayed in the graph. In addition, the plot also displays
approximate 95% confidence limits for the autocorrelations. At lag k, the confidence limits indicate a set of
approximate 95% critical values for testing the hypothesis �j D 0; j � k:

By default, the MI procedure uses the star (*) as the plot symbol to display the points with a height of
one (percentage screen unit) in the plot, a solid line to display the reference line of zero autocorrelation,
vertical line segments to connect autocorrelations to the reference line, and a pair of dashed lines to display
approximately 95% confidence limits for the autocorrelations.

You can use the SYMBOL=, CSYMBOL=, and HSYMBOL= options to change the shape, color, and height
of the plot symbol, respectively, and the CNEEDLES= and WNEEDLES= options to change the color and
width of the needles, respectively. You can also use the LREF=, CREF=, and WREF= options to change the
line type, color, and width of the reference line, respectively. Similarly, you can use the LCONF=, CCONF=,
and WCONF= options to change the line type, color, and width of the confidence limits, respectively.

By default, the plot title “Autocorrelation Plot” is displayed in a autocorrelation function plot. You can
request another title by using the TITLE= option within the ACFPLOT option. When another title is also
specified in a TITLE statement, this title is displayed as the main title and the plot title is displayed as a
subtitle in the plot.

You can use options in the GOPTIONS statement to change the color and height of the title. See the
chapter “The SAS/GRAPH Statements” in SAS/GRAPH: Reference for a description of title options. See
Example 63.8 for an illustration of the autocorrelation function plot.

Input Data Sets
You can specify the input data set with missing values by using the DATA= option in the PROC MI statement.
When an MCMC method is used, you can specify the data set that contains the reference distribution
information for imputation with the INEST= option, the data set that contains initial parameter estimates for
the MCMC method with the INITIAL=INPUT= option, and the data set that contains information for the
prior distribution with the PRIOR=INPUT= option in the MCMC statement.
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When the ADJUST option is specified in the MNAR statement, you can use the PARMS= option to specify
the data set that contains adjustment parameters for the sensitivity analysis.

DATA=SAS-data-set

The input DATA= data set is an ordinary SAS data set that contains multivariate data with missing values.

INEST=SAS-data-set

The input INEST= data set is a TYPE=EST data set and contains a variable _Imputation_ to identify
the imputation number. For each imputation, PROC MI reads the point estimate from the observations
with _TYPE_=‘PARM’ or _TYPE_=‘PARMS’ and the associated covariances from the observations with
_TYPE_=‘COV’ or _TYPE_=‘COVB’. These estimates are used as the reference distribution to impute
values for observations in the DATA= data set. When the input INEST= data set also contains observations
with _TYPE_=‘SEED’, PROC MI reads the seed information for the random number generator from these
observations. Otherwise, the SEED= option provides the seed information.

INITIAL=INPUT=SAS-data-set

The input INITIAL=INPUT= data set is a TYPE=COV or CORR data set and provides initial parameter
estimates for the MCMC method. The covariances derived from the TYPE=COV/CORR data set are divided
by the number of observations to get the correct covariance matrix for the point estimate (sample mean).

If TYPE=COV, PROC MI reads the number of observations from the observations with _TYPE_=‘N’, the
point estimate from the observations with _TYPE_=‘MEAN’, and the covariances from the observations
with _TYPE_=‘COV’.

If TYPE=CORR, PROC MI reads the number of observations from the observations with _TYPE_=‘N’, the
point estimate from the observations with _TYPE_=‘MEAN’, the correlations from the observations with
_TYPE_=‘CORR’, and the standard deviations from the observations with _TYPE_=‘STD’.

PARMS= SAS-data-set

The input PARMS= data set is an ordinary SAS data set that contains adjustment parameters for imputed
values of the specified imputed variables.

The PARMS= data set contains variables _Imputation_ for the imputation number, the SHIFT= or DELTA=
variable for the shift parameter, and the SCALE= variable for the scale parameter. Either the shift or scale
variable must be included in the data set.

PRIOR=INPUT=SAS-data-set

The input PRIOR=INPUT= data set is a TYPE=COV data set that provides information for the prior
distribution. You can use the data set to specify a prior distribution for † of the form

† � W �1
�
d�; d�S�

�
where d� D n� � 1 is the degrees of freedom. PROC MI reads the matrix S� from observations with
_TYPE_=‘COV’ and reads n� from observations with _TYPE_=‘N’.
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You can also use this data set to specify a prior distribution for � of the form

� � N

�
�0;

1

n0
†

�
PROC MI reads the mean vector �0 from observations with _TYPE_=‘MEAN’ and reads n0 from observa-
tions with _TYPE_=‘N_MEAN’. When there are no observations with _TYPE_=‘N_MEAN’, PROC MI
reads n0 from observations with _TYPE_=‘N’.

Output Data Sets
You can specify the output data set of imputed values with the OUT= option in the PROC MI statement.
When an EM statement is used, you can specify the data set that contains the original data set with missing
values being replaced by the expected values from the EM algorithm by using the OUT= option in the EM
statement. You can also specify the data set that contains MLE computed with the EM algorithm by using
the OUTEM= option.

When an MCMC method is used, you can specify the data set that contains parameter estimates used in each
imputation with the OUTEST= option in the MCMC statement, and you can specify the data set that contains
parameters used in the imputation step for each iteration with the OUTITER option in the MCMC statement.

OUT=SAS-data-set in the PROC MI statement

The OUT= data set contains all the variables in the original data set and a new variable named _Imputation_
that identifies the imputation. For each imputation, the data set contains all variables in the input DATA=
data set with missing values being replaced by imputed values. Note that when the NIMPUTE=1 option is
specified, the variable _Imputation_ is not created.

OUT=SAS-data-set in an EM statement

The OUT= data set contains the original data set with missing values being replaced by expected values from
the EM algorithm.

OUTEM=SAS-data-set

The OUTEM= data set is a TYPE=COV data set and contains the MLE computed with the EM algorithm. The
observations with _TYPE_=‘MEAN’ contain the estimated mean and the observations with _TYPE_=‘COV’
contain the estimated covariances.

OUTEST=SAS-data-set

The OUTEST= data set is a TYPE=EST data set and contains parameter estimates used in each imputation in
the MCMC method. It also includes an index variable named _Imputation_, which identifies the imputation.

The observations with _TYPE_=‘SEED’ contain the seed information for the random number generator. The
observations with _TYPE_=‘PARM’ or _TYPE_=‘PARMS’ contain the point estimate, and the observations
with _TYPE_=‘COV’ or _TYPE_=‘COVB’ contain the associated covariances. These estimates are used as
the parameters of the reference distribution to impute values for observations in the DATA= dataset.

Note that these estimates are the values used in the I-step before each imputation. These are not the parameter
values simulated from the P-step in the same iteration. See Example 63.12 for a usage of this option.
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OUTITER < (options) > =SAS-data-set in an EM statement

The OUTITER= data set in an EM statement is a TYPE=COV data set and contains parameters for each
iteration. It also includes a variable _Iteration_ that provides the iteration number.

The parameters in the output data set depend on the options specified. You can specify the MEAN and
COV options for OUTITER. With the MEAN option, the output data set contains the mean parameters
in observations with the variable _TYPE_=‘MEAN’. Similarly, with the COV option, the output data set
contains the covariance parameters in observations with the variable _TYPE_=‘COV’. When no options are
specified, the output data set contains the mean parameters for each iteration.

OUTITER < (options) > =SAS-data-set in an FCS statement

The OUTITER= data set in an FCS statement is a TYPE=COV data set and contains parameters for each
iteration. It also includes variables named _Imputation_ and _Iteration_, which provide the imputation
number and iteration number.

The parameters in the output data set depend on the options specified. You can specify the MEAN and STD
options for OUTITER. With the MEAN option, the output data set contains the mean parameters used in the
imputation in observations with the variable _TYPE_=‘MEAN’. Similarly, with the STD option, the output
data set contains the standard deviation parameters used in the imputation in observations with the variable
_TYPE_=‘STD’. When no options are specified, the output data set contains the mean parameters for each
iteration.

OUTITER < (options) > =SAS-data-set in an MCMC statement

The OUTITER= data set in an MCMC statement is a TYPE=COV data set and contains parameters used in
the imputation step for each iteration. It also includes variables named _Imputation_ and _Iteration_, which
provide the imputation number and iteration number.

The parameters in the output data set depend on the options specified. Table 63.6 summarizes the options
available for OUTITER and the corresponding values for the output variable _TYPE_.

Table 63.6 Summary of Options for OUTITER in an MCMC
statement

Option Output Parameters _TYPE_

MEAN mean parameters MEAN
STD standard deviations STD
COV covariances COV
LR –2 log LR statistic LOG_LR
LR_POST –2 log LR statistic of the posterior mode LOG_POST
WLF worst linear function WLF

When no options are specified, the output data set contains the mean parameters used in the imputation step
for each iteration. For a detailed description of the worst linear function and LR statistics, see the section
“Checking Convergence in MCMC” on page 5086.
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Combining Inferences from Multiply Imputed Data Sets
With m imputations, m different sets of the point and variance estimates for a parameter Q can be computed.
Suppose OQi and OWi are the point and variance estimates from the ith imputed data set, i = 1, 2, . . . , m. Then
the combined point estimate for Q from multiple imputation is the average of the m complete-data estimates:

Q D
1

m

mX
iD1

OQi

Suppose W is the within-imputation variance, which is the average of the m complete-data estimates,

W D
1

m

mX
iD1

OWi

and B is the between-imputation variance

B D
1

m � 1

mX
iD1

. OQi �Q/
2

Then the variance estimate associated with Q is the total variance (Rubin 1987)

T D W C .1C
1

m
/B

The statistic .Q �Q/T �.1=2/ is approximately distributed as t with vm degrees of freedom (Rubin 1987),
where

vm D .m � 1/

"
1C

W

.1Cm�1/B

#2

The degrees of freedom vm depend on m and the ratio

r D
.1Cm�1/B

W

The ratio r is called the relative increase in variance due to nonresponse (Rubin 1987). When there is no
missing information about Q, the values of r and B are both zero. With a large value of m or a small value of
r, the degrees of freedom vm will be large and the distribution of .Q �Q/T �.1=2/ will be approximately
normal.

Another useful statistic is the fraction of missing information about Q:

O� D
r C 2=.vm C 3/

r C 1
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Both statistics r and � are helpful diagnostics for assessing how the missing data contribute to the uncertainty
about Q.

When the complete-data degrees of freedom v0 are small, and there is only a modest proportion of missing
data, the computed degrees of freedom, vm, can be much larger than v0, which is inappropriate. For example,
with m = 5 and r = 10%, the computed degrees of freedom vm D 484, which is inappropriate for data sets
with complete-data degrees of freedom less than 484.

Barnard and Rubin (1999) recommend the use of adjusted degrees of freedom

v�m D

�
1

vm
C

1

Ovobs

��1
where Ovobs D .1 � / v0.v0 C 1/=.v0 C 3/ and  D .1Cm�1/B=T .

Note that the MI procedure uses the adjusted degrees of freedom, v�m, for inference.

Multiple Imputation Efficiency
The relative efficiency (RE) of using the finite m imputation estimator, rather than using an infinite number
for the fully efficient imputation, in units of variance, is approximately a function of m and � (Rubin 1987, p.
114):

RE D
�
1C

�

m

��1
Table 63.7 shows relative efficiencies with different values of m and �.

Table 63.7 Relative Efficiencies

�

m 10% 20% 30% 50% 70%
3 0.9677 0.9375 0.9091 0.8571 0.8108
5 0.9804 0.9615 0.9434 0.9091 0.8772

10 0.9901 0.9804 0.9709 0.9524 0.9346
20 0.9950 0.9901 0.9852 0.9756 0.9662

The table shows that for situations with little missing information, only a small number of imputations are
necessary. In practice, the number of imputations needed can be informally verified by replicating sets of m
imputations and checking whether the estimates are stable between sets (Horton and Lipsitz 2001, p. 246).

Imputer’s Model Versus Analyst’s Model
Multiple imputation inference assumes that the model you used to analyze the multiply imputed data (the
analyst’s model) is the same as the model used to impute missing values in multiple imputation (the imputer’s
model). But in practice, the two models might not be the same (Schafer 1997, p. 139).
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Schafer (1997, pp. 139–143) provides comprehensive coverage of this topic, and the following example is
based on his work.

Consider a trivariate data set with variables Y1 and Y2 fully observed, and a variable Y3 with missing values.
An imputer creates multiple imputations with the model Y3 D Y1 Y2. However, the analyst can later use the
simpler model Y3 D Y1. In this case, the analyst assumes more than the imputer. That is, the analyst assumes
there is no relationship between variables Y3 and Y2.

The effect of the discrepancy between the models depends on whether the analyst’s additional assumption
is true. If the assumption is true, the imputer’s model still applies. The inferences derived from multiple
imputations will still be valid, although they might be somewhat conservative because they reflect the
additional uncertainty of estimating the relationship between Y3 and Y2.

On the other hand, suppose that the analyst models Y3 D Y1, and there is a relationship between variables Y3
and Y2. Then the model Y3 D Y1 will be biased and is inappropriate. Appropriate results can be generated
only from appropriate analyst models.

Another type of discrepancy occurs when the imputer assumes more than the analyst. For example, suppose
that an imputer creates multiple imputations with the model Y3 D Y1, but the analyst later fits a model
Y3 D Y1 Y2. When the assumption is true, the imputer’s model is a correct model and the inferences still
hold.

On the other hand, suppose there is a relationship between Y3 and Y2. Imputations created under the incorrect
assumption that there is no relationship between Y3 and Y2 will make the analyst’s estimate of the relationship
biased toward zero. Multiple imputations created under an incorrect model can lead to incorrect conclusions.

Thus, generally you should include as many variables as you can when doing multiple imputation. The
precision you lose with included unimportant predictors is usually a relatively small price to pay for the
general validity of analyses of the resultant multiply imputed data set (Rubin 1996). But at the same time,
you need to keep the model building and fitting feasible (Barnard and Meng 1999, pp. 19–20).

To produce high-quality imputations for a particular variable, the imputation model should also include
variables that are potentially related to the imputed variable and variables that are potentially related to the
missingness of the imputed variable (Schafer 1997, p. 143).

Similar suggestions were also given by Van Buuren, Boshuizen, and Knook (1999, p. 687). They recommend
that the imputation model include three sets of covariates: variables in the analyst’s model, variables
associated with the missingness of the imputed variable, and variables correlated with the imputed variable.
They also recommend the removal of the covariates not in the analyst’s model if they have too many missing
values for observations with missing imputed variables.

Note that it is good practice to include a description of the imputer’s model with the multiply imputed data
set (Rubin 1996, p. 479). That way, the analysts will have information about the variables involved in the
imputation and which relationships among the variables have been implicitly set to zero.

Parameter Simulation versus Multiple Imputation
As an alternative to multiple imputation, parameter simulation can also be used to analyze the data for many
incomplete-data problems. Although the MI procedure does not offer parameter simulation, the trade-offs
between the two methods (Schafer 1997, pp. 89–90, 135–136) are examined in this section.
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The parameter simulation method simulates random values of parameters from the observed-data posterior
distribution and makes simple inferences about these parameters (Schafer 1997, p. 89). When a set of
well-defined population parameters � are of interest, parameter simulation can be used to directly examine
and summarize simulated values of � . This usually requires a large number of iterations, and involves
calculating appropriate summaries of the resulting dependent sample of the iterates of the � . If only a small
set of parameters are involved, parameter simulation is suitable (Schafer 1997).

Multiple imputation requires only a small number of imputations. Generating and storing a few imputations
can be more efficient than generating and storing a large number of iterations for parameter simulation.

When fractions of missing information are low, methods that average over simulated values of the missing
data, as in multiple imputation, can be much more efficient than methods that average over simulated values
of � as in parameter simulation (Schafer 1997).

Sensitivity Analysis for the MAR Assumption
Multiple imputation usually assumes that the data are missing at random (MAR). Suppose the data set
contains variables Y D .Yobs ; Ymis/, where Yobs are fully observed variables and Ymis is a variable that
contains missing observations. Also suppose R is a response indicator whose element is 0 or 1, depending
on whether Ymis is missing or observed. Then the MAR assumption is that the probability that a Ymis
observation is missing can depend on Yobs but not on Ymis . That is,

pr.R j Yobs ; Ymis / D pr.R j Yobs /

The MAR assumption cannot be verified, because the missing values are not observed. In clinical trials, for a
study that assumes MAR, the sensitivity of inferences to departures from the MAR assumption should be
examined, as recommended by the National Research Council (2010, p. 111):

Recommendation 15: Sensitivity analysis should be part of the primary reporting of findings
from clinical trials. Examining sensitivity to the assumptions about the missing data mechanism
should be a mandatory component of reporting.

If it is plausible that the missing data are not MAR, you can perform sensitivity analysis under the missing
not at random (MNAR) assumption. You can generate inferences for various scenarios under MNAR and
then examine the results. If the results under MNAR differ from the results under MAR, then the conclusion
under MAR is in question.

Based on the factorization of the joint distribution pr. Y;R /, there are two common strategies for sensitivity
analysis under MNAR: the pattern-mixture model approach and the selection model approach. The pattern-
mixture model approach is implemented in the MI procedure because it is natural and straightforward.

Pattern-Mixture Model Approach

In the pattern-mixture model approach (Little 1993; Molenberghs and Kenward 2007, pp. 30, 34–37; National
Research Council 2010, pp. 88–89), the joint distribution is factorized as

pr. Y;R / D pr. Y j R/ pr.R /
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This allows for different distributions for missing values and for observed values. For example,

pr. Y;R / D pr. Y j R/ pr.R / D pr. Y j R D 1/ pr.R D 1 /C pr. Y j R D 0/ pr.R D 0 /

which is a mixture of distributions for two different patterns. Here, the “pattern” refers to a group of
observations that have the same distribution; the term is not used in the same sense as “missing data pattern.”

In the pattern-mixture model approach, the joint distribution is factored as

pr.Yobs ; Ymis ;R/ D pr.Ymis j Yobs ;R/ pr.Yobs ;R/

and under the MNAR assumption,

pr. Ymis j Yobs ;R D 0 / ¤ pr. Ymis j Yobs ;R D 1 /

It is straightforward to create imputations by using pattern-mixture models. The next three sections provide
details for this approach.

Selection Model Approach

In the selection model approach (Rubin 1987, p. 207; Little and Rubin 2002, pp. 313–314; Molenberghs and
Kenward 2007, p. 30), the joint distribution is factorized as

pr.Y;R/ D pr.R j Y / pr.Y /

where Y D .Yobs ; Ymis/, pr. Y / is the marginal distribution of Y, and pr.R j Y / is the conditional
distribution of the missing mechanism R given Y. The term “selection” comes from the specification of R
that selects individuals to be observed in the conditional distribution pr.R j Y /. Both distributions, pr.Y /
and pr.R j Y /, must be specified for the analysis. The MI procedure does not provide this approach.

Multiple Imputation with Pattern-Mixture Models
For Y D .Yobs ; Ymis/, the joint distribution of Y and R can be expressed as

pr. Yobs ; Ymis ;R / D pr. Ymis j Yobs ;R / pr. Yobs ;R /

Under the MAR assumption,

pr.R j Yobs ; Ymis/ D pr.R j Yobs/

and it can be shown that

pr. Ymis j Yobs ;R / D pr. Ymis j Yobs /

That is,

pr. Ymis j Yobs ;R D 0 / D pr. Ymis j Yobs ;R D 1 /

Thus the posterior distribution pr. Ymis j Yobs ;R D 1 / can be used to create imputations for missing data.
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Under the MNAR assumption, each pattern that has missing Ymis values might have a different distribution
than the corresponding pattern that has observed Ymis values. For example, in a clinical trial, suppose the
data set contains an indicator variable Trt, with a value of 1 for patients in the treatment group and a value of
0 for patients in the placebo control group, a variable Y0 for the baseline efficacy score, and a variable Y for
the efficacy score at a follow-up visit. Assume that Trt and Y0 are fully observed and Y is not fully observed.
The indicator variable R is 0 or 1, depending on whether Y is missing or observed.

Then, under the MAR assumption,

pr. Y j Trt D 0; Y0;R D 0 / D pr. Y j Trt D 0; Y0;R D 1 /

and

pr. Y j Trt D 1; Y0;R D 0 / D pr. Y j Trt D 1; Y0;R D 1 /

Under the MNAR assumption,

pr. Y j Trt D 0; Y0;R D 0 / ¤ pr. Y j Trt D 0; Y0;R D 1 /

or

pr. Y j Trt D 1; Y0;R D 0 / ¤ pr. Y j Trt D 1; Y0;R D 1 /

Thus, under MNAR, missing Y values in the treatment group can be imputed from a posterior distribution
generated from observations in the control group, and the imputed values can be adjusted to reflect the
systematic difference between the distributions for missing and observed Y values.

Multiple imputation inference, under either the MAR or MNAR assumption, involves three distinct phases:

1. The missing data are filled in m times to generate m complete data sets.

2. The m complete data sets are analyzed by using other SAS procedures.

3. The results from the m complete data sets are combined for the inference.

For sensitivity analysis, you must specify the MNAR statement together with a MONOTONE statement or
an FCS statement. When you specify a MONOTONE statement, the variables that have missing values are
imputed sequentially in each imputation. When you specify an FCS statement, each imputation is carried out
in two phases: the preliminary filled-in phase, followed by the imputation phase. The variables that have
missing values are imputed sequentially for a number of burn-in iterations before the imputation.

Under the MNAR assumption, the following steps are used to impute missing values for each imputed
variable in each imputation (when you specify a MONOTONE statement) or in each iteration (when you
specify an FCS statement):

1. For each imputed variable, a conditional model, such as a regression model for continuous variables, is
fitted using either all applicable observations or a specified subset of observations.

2. A new model is simulated from the posterior predictive distribution of the fitted model.

3. Missing values of the variable are imputed based on the new model, and the imputed values for a
specified subset of observations can be adjusted using specified shift and scale parameters.

The next two sections provide details for specifying subsets of observations for imputation models and for
adjusting imputed values.
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Specifying Sets of Observations for Imputation in Pattern-Mixture Models
By default, all available observations are used to derive the imputation model. By using the MODEL option
in the MNAR statement, you can specify the set of observations that are used to derive the model. You
specify a classification variable (obs-variable) by using the option MODELOBS= (obs-variable= ’level1’
< ’level2’ . . . >). The MI procedure uses the group of observations for which obs-variable equals one of the
specified classification levels.

When you use the MNAR statement together with a MONOTONE statement, you can also use the MOD-
ELOBS=CCMV and MODELOBS=NCMV options to specify the set of observations for deriving the
imputation model. For a monotone missing pattern data set that contains the variables Y1, Y2, . . . , Yp (in that
order), there are at most p groups of observations such that the same number of variables is observed for
observations in each group. The complete-case missing values (CCMV) method (Little 1993; Molenberghs
and Kenward 2007, p. 35) uses the group of observations for which all variables are observed (complete
cases) to derive the imputation model. The neighboring-case missing values (NCMV) method (Molenberghs
and Kenward 2007, pp. 35–36) uses only the neighboring group of observations (that is, for Yj , the group of
observations with Yj observed and YjC1 missing).

In PROC MI, the option MODELOBS=CCMV(K=k) uses the k groups of observations together with as
many observed variables as possible to derive the imputation model. For instance, specifying K=1 (which is
the default) uses observations from the group that has all variables observed (complete cases). Specifying
K=2 uses observations from the two groups that have the most variables observed (the group of observations
that has all variables observed and the group of observations that has Yp�1 observed but Yp missing).

For an imputed variable Yj , the option MODELOBS=NCMV(K=k) uses the k closest groups of observations
that have observed Yj but have as few observed variables as possible to derive the imputation model. For
instance, specifying K=1 (which is the default) uses the group of observations that has Yj observed but YjC1
missing (neighboring cases). Specifying K=2 uses observations from the two closest groups that have Yj
observed (the group of observations that has Yj observed but YjC1 missing, and the group of observations
that has YjC1 observed and YjC2 missing).

When you use the MNAR statement together with an FCS statement, the MODEL option applies only after
the preliminary filled-in phase in each of the imputations.

For an illustration of the MODEL option, see Example 63.15.

Adjusting Imputed Values in Pattern-Mixture Models
It is straightforward to specify pattern-mixture models under the MNAR assumption. When you impute
continuous variables by using the regression and predictive mean matching methods, you can adjust the
imputed values directly (Carpenter and Kenward 2013, pp. 237–239; Van Buuren 2012, pp. 88–89). When
you impute classification variables by using the logistic regression method, you can adjust the imputed
classification levels by modifying the log odds ratios for the classification levels (Carpenter and Kenward
2013, pp. 240–241; Van Buuren 2012, pp. 88–89). By modifying the log odds ratios, you modify the
predicted probabilities for the classification levels.
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For each imputed variable, you can use the ADJUST option to do the following:

• specify a subset of observations for which imputed values are adjusted. Otherwise, all imputed values
are adjusted.

• adjust imputed continuous variable values by using the SHIFT=, SCALE=, and SIGMA= options.
These options add a constant, multiply by a constant factor, and add a simulated value to the imputed
values, respectively.

• adjust imputed classification variable levels by adjusting predicted probabilities for the classification
levels by using the SHIFT= and SIGMA= options. These options add a constant and add a simulated
constant value, respectively, to the log odds ratios for the classification levels.

In addition, you can provide the shift and scale parameters for each imputation by using a PARMS= data set.

When you use the MNAR statement together with a MONOTONE statement, the variables are imputed
sequentially. For each imputed variable, the values can be adjusted using the ADJUST option, and these
adjusted values are used to impute values for subsequent variables.

When you use the MNAR statement together with an FCS statement, there are two phases in each imputation:
the preliminary filled-in phase, followed by the imputation phase. For each imputed variable, the values can
be adjusted using the ADJUST option in the imputation phase in each of the imputations. These adjusted
values are used to impute values for other variables in the imputation phase.

For illustrations of adjusting imputed continuous values, adjusting log odds ratio for imputed classification
levels, and adjusting imputed continuous values by using parameters that are stored in an input data set, see
Example 63.16, Example 63.17, and Example 63.18, respectively.

Specifying the Imputed Values to Be Adjusted

By default, all available imputed values are adjusted. You can specify a subset of imputed values to be
adjusted by using the ADJUSTOBS= suboption in the ADJUST option.

You can specify a classification variable to identify the subset of imputed values to be adjusted by using the
ADJUSTOBS= (obs-variable= ’level1’ < ’level2’ . . . >) option. This subset consists of the imputed values in
the set of observations for which obs-variable equals one of the specified levels.

Adjusting Imputed Continuous Variables

For an imputed continuous variable, the SCALE=c option specifies the scale parameter, c > 0, for imputed
values; the SHIFT=ı option specifies the shift parameter, ı, for imputed values; and the SIGMA=� option
specifies the sigma parameter, � > 0, for imputed values.

When the sigma parameter is not specified, the adjusted value for each imputed value y is given by

y� D c y C ı

where c is the scale parameter and ı is the shift parameter.

When you specify a sigma parameter � , a simulated shift parameter is generated from the normal distribution
that has mean ı and standard deviation � in each imputation

ı� � N
�
ı; �2

�
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The adjusted value is then given by

y� D c y C ı�

Adjusting Imputed Classification Variables

For an imputed classification variable, you can specify adjustment parameters for the response level. The
SHIFT=ı option specifies the shift parameter ı, the SIGMA=� option specifies the sigma parameter � > 0,
and the EVENT=’level’ option identifies the response level.

When the sigma parameter is not specified, the shift parameter ı is used in all imputations. When you specify
a sigma parameter � , a simulated shift parameter is generated from the normal distribution that has mean ı
and standard deviation � for each imputation

ı� � N
�
ı; �2

�
The next three sections provide details for adjusting imputed binary, ordinal, and nominal response variables.

Adjusting Imputed Binary Response Variables

For an imputed binary classification variable Y, the shift parameter ı is applied to the logit function values
for the corresponding response level.

For instance, if Y has binary responses 1 and 2, a simulated logit model

logit. pr.Y D 1 j x/ / D ˛ C x0ˇ

is used to impute the missing response values. For a detailed description of this simulated logit model, see
the section “Binary Response Logistic Regression” on page 5073.

For an observation that has missing Y and covariates x0, the predicted probabilities that Y=1 and Y=2 are
then given by

pr.Y D 1/ D
e˛Cx0

0ˇ

e˛Cx00ˇ C 1
D

ed1

ed1 C ed2

pr.Y D 2/ D
1

e˛Cx00ˇ C 1
D

ed2

ed1 C ed2

where d1 D ˛ C x0
0ˇ and and d2 D 0.

When you provide the shift parameters ı1 for the response Y=1 and ı2 for the response Y=2, the predicted
probabilities are

pr.Y D 1/ D
ed
�
1

ed
�
1 C ed

�
2

pr.Y D 2/ D
ed
�
2

ed
�
1 C ed

�
2

where d�1 D d1 C ı1 and d�2 D d2 C ı2 D ı2.
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For example, the following statement specifies the shift parameters ı1 D 0:8 and ı2 D 1:6:

mnar adjust( y(event='1') / shift=0.8)
adjust( y(event='2') / shift=1.6);

The statement

mnar adjust( y(event='1') / shift=0.8 sigma=0.2);

simulates a shift parameter ı1 from

ı � N
�
0:8; 0:22

�
in each imputation. Because an adjustment is not specified for Y=2, the corresponding shift parameter is
ı2 D 0.

Adjusting Imputed Ordinal Response Variables

For an imputed ordinal classification variable Y, the shift parameter ı is applied to the cumulative logit
function values for the corresponding response level.

For instance, if Y has ordinal responses 1, 2, . . . , K, a simulated cumulative logit model that has covariates x,

logit. pr.Y � k j x/ / D ˛k C x0ˇ

is used to impute the missing response values, where k = 1, 2, . . . , K–1. For a detailed description of this
model, see the section “Ordinal Response Logistic Regression” on page 5074.

For an observation that has missing Y and covariates x0, the predicted cumulative probability for Y � j , j =
1, 2, . . . , K–1, is then given by

pr.Y � j / D
e˛jCx0

0ˇ

e˛jCx00ˇ C 1
D

edj

edj C edK

where dj D ˛j C x0
0ˇ and dK D 0.

The predicted probabilities for Y D k are

pr.Y D k/ D

8̂̂<̂
:̂

ed1

ed1CedK
if k D 1

edk

edkCedK
�

e
d.k�1/

e
d.k�1/CedK

if 1 < k < K
edK

e
d.K�1/CedK

if k D K

For an ordinal logistic regression method that has two response levels, the section “Adjusting Imputed
Binary Response Variables” on page 5100 explains how the predicted probabilities are adjusted using shift
parameters.

For an ordinal logistic regression method that has more than two response levels, only one classification
level can be adjusted. When you provide the shift parameter ı for the response level Y D k, the predicted
probability for Y D k is then given by

pr.Y D k/ D

8̂̂̂̂
<̂
ˆ̂̂:

e
d�
1

e
d�
1 CedK

if k D 1

e
d�
k

e
d�
kCedK

�
e
d.k�1/

e
d.k�1/CedK

if 1 < k < K

e
d�
K

e
d.K�1/Ce

d�
K

if k D K

where d�
k
D dk C ı.

The predicted probabilities for the remaining Y ¤ k are then adjusted proportionally. When the shift
parameter ı is less than 0, the value d�

k
can be less than dk�1 for 1 < k < K. In this case, pr.Y D k/ is set

to 0.
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Adjusting Imputed Nominal Response Variables

For an imputed nominal classification variable Y, the shift parameter ı is applied to the generalized logit
model function values for the corresponding response level.

For instance, if
VariableY has nominal responses 1, 2, . . . , K, a simulated generalized logit model

log
�

pr. Y D k j x/
pr. Y D K j x/

�
D ˛k C x0ˇk

is used to impute the missing response values, where k=1, 2, . . . , K–1. For a detailed description of this
model, see the section “Nominal Response Logistic Regression” on page 5075.

For an observation with missing Y and covariates x0, the predicted probability for Y = j, j < K, is then given
by

pr.Y D j / D
e˛jCx0

0ˇjPK�1
kD1 e

˛kCx00ˇk C 1
D

edjPK
kD1 e

dk

and

pr.Y D K/ D
1PK�1

kD1 e
˛kCx00ˇk C 1

D
edKPK
kD1 e

dk

where dk D ˛k C x0ˇk for k < K and dK D 0.

When you use the shift parameters ık for Y D k; k D 1; 2; : : : ; K, the predicted probabilities are

pr.Y D j / D
ed
�
jPK

kD1 e
d�
k

where d�
k
D dk C ık .

Summary of Issues in Multiple Imputation
This section summarizes issues that are encountered in applications of the MI procedure.

The MAR Assumption

Multiple imputation usually assumes that the data are missing at random (MAR). But the assumption cannot
be verified, because the missing values are not observed. Although the MAR assumption becomes more
plausible as more variables are included in the imputation model (Schafer 1997, pp. 27–28; Van Buuren,
Boshuizen, and Knook 1999, p. 687), it is important to examine the sensitivity of inferences to departures
from the MAR assumption.

Number of Imputations

Based on the theory of multiple imputation, only a small number of imputations are needed for a data set
with little missing information (Rubin 1987, p. 114). The number of imputations can be informally verified
by replicating sets of m imputations and checking whether the estimates are stable (Horton and Lipsitz 2001,
p. 246).
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Imputation Model

Generally you should include as many variables as you can in the imputation model (Rubin 1996), At the
same time, however, it is important to keep the number of variables in control, as discussed by Barnard and
Meng (1999, pp. 19–20). For the imputation of a particular variable, the model should include variables
in the complete-data model, variables that are correlated with the imputed variable, and variables that are
associated with the missingness of the imputed variable Schafer 1997, p. 143; Van Buuren, Boshuizen, and
Knook 1999, p. 687).

Multivariate Normality Assumption

Although the regression and MCMC methods assume multivariate normality, inferences based on multiple
imputation can be robust to departures from the multivariate normality if the amount of missing information
is not large (Schafer 1997, pp. 147–148).

You can use variable transformations to make the normality assumption more tenable. Variables are trans-
formed before the imputation process and then back-transformed to create imputed values.

Monotone Regression Method

With the multivariate normality assumption, either the regression method or the predictive mean matching
method can be used to impute continuous variables in data sets with monotone missing patterns.

The predictive mean matching method ensures that imputed values are plausible and might be more ap-
propriate than the regression method if the normality assumption is violated (Horton and Lipsitz 2001, p.
246).

Monotone Propensity Score Method

The propensity score method can also be used to impute continuous variables in data sets with monotone
missing patterns.

The propensity score method does not use correlations among variables and is not appropriate for analyses
involving relationship among variables, such as a regression analysis (Schafer 1999, p. 11). It can also
produce badly biased estimates of regression coefficients when data on predictor variables are missing
(Allison 2000).

MCMC Monotone-Data Imputation

The MCMC method is used to impute continuous variables in data sets with arbitrary missing patterns,
assuming a multivariate normal distribution for the data. It can also be used to impute just enough missing
values to make the imputed data sets have a monotone missing pattern. Then, a more flexible monotone
imputation method can be used for the remaining missing values.

Checking Convergence in MCMC

In an MCMC method, parameters are drawn after the MCMC is run long enough to converge to its stationary
distribution. In practice, however, it is not simple to verify the convergence of the process, especially for a
large number of parameters.

You can check for convergence by examining the observed-data likelihood ratio statistic and worst linear
function of the parameters in each iteration. You can also check for convergence by examining a plot of
autocorrelation function, as well as a trace plot of parameters (Schafer 1997, p. 120).
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EM Estimates

The EM algorithm can be used to compute the MLE of the mean vector and covariance matrix of the data
with missing values, assuming a multivariate normal distribution for the data. However, the covariance matrix
associated with the estimate of the mean vector cannot be derived from the EM algorithm.

In the MI procedure, you can use the EM algorithm to compute the posterior mode, which provides a good
starting value for the MCMC method (Schafer 1997, p. 169).

Sensitivity Analysis

Multiple imputation inference often assumes that the data are missing at random (MAR). But the MAR
assumption cannot be verified, because the missing values are not observed. For a study that assumes MAR,
the sensitivity of inferences to departures from the MAR assumption should be examined.

In the MI procedure, you can use the MNAR statement to imputes missing values for scenarios under the
MNAR assumption. You can then generate inferences and examine the results. If the results under MNAR
differ from the results under MAR, then the conclusion under MAR is in question.

ODS Table Names
PROC MI assigns a name to each table it creates. You must use these names to reference tables when using
the Output Delivery System (ODS). These names are listed in Table 63.8. For more information about ODS,
see Chapter 20, “Using the Output Delivery System.”

Table 63.8 ODS Tables Produced by PROC MI

ODS Table Name Description Statement Option

Corr Pairwise correlations SIMPLE
EMEstimates EM (MLE) estimates EM
EMInitEstimates EM initial estimates EM
EMIterHistory EM (MLE) iteration EM ITPRINT

history
EMPostEstimates EM (posterior mode) MCMC INITIAL=EM

estimates
EMPostIterHistory EM (posterior mode) MCMC INITIAL=EM (ITPRINT)

iteration history
EMWLF Worst linear function MCMC WLF
FCSDiscrim Discriminant model FCS DISCRIM (/DETAILS)

group means
FCSLogistic Logistic model FCS LOGISTIC (/DETAILS)
FCSModel FCS models FCS
FCSReg Regression model FCS REG (/DETAILS)
FCSRegPMM Predicted mean matching FCS REGPMM (/DETAILS)

model
MCMCInitEstimates MCMC initial estimates MCMC DISPLAYINIT
MissPattern Missing data patterns
MNARModel Observations that are used MNAR MODEL

for imputation model
under MNAR
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Table 63.8 continued

ODS Table Name Description Statement Option

MNARAdjust Adjustment parameters and MNAR ADJUST
imputed values to be adjusted
under MNAR

ModelInfo Model information
MonoDiscrim Discriminant model MONOTONE DISCRIM (/DETAILS)

group means
MonoLogistic Logistic model MONOTONE LOGISTIC (/DETAILS)
MonoModel Monotone models MONOTONE
MonoPropensity Propensity score model MONOTONE PROPENSITY (/DETAILS)

logistic function
MonoReg Regression model MONOTONE REG (/DETAILS)
MonoRegPMM Predicted mean matching MONOTONE REGPMM (/DETAILS)

model
ParameterEstimates Parameter estimates
Transform Variable transformations TRANSFORM
Univariate Univariate statistics SIMPLE
VarianceInfo Between, within, and

total variances

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

PROC MI assigns a name to each graph it creates using ODS. You can use these names to reference the
graphs when using ODS. To request these graphs, ODS Graphics must be enabled and you must specify the
options indicated in Table 63.9.

Table 63.9 Graphs Produced by PROC MI

ODS Graph Name Description Statement Option

ACFPlot ACF plot MCMC PLOTS=ACF
TracePlot Trace plot MCMC PLOTS= TRACE

FCS PLOTS= TRACE
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Examples: MI Procedure
The Fish data described in the STEPDISC procedure are measurements of 159 fish of seven species caught in
Finland’s Lake Laengelmaevesi. For each fish, the length, height, and width are measured. Three different
length measurements are recorded: from the nose of the fish to the beginning of its tail (Length1), from the
nose to the notch of its tail (Length2), and from the nose to the end of its tail (Length3). See Chapter 96,
“The STEPDISC Procedure,” for more information.

The Fish1 data set is constructed from the Fish data set and contains only one species of the fish and the
three length measurements. Some values have been set to missing, and the resulting data set has a monotone
missing pattern in the variables Length1, Length2, and Length3. The Fish1 data set is used in Example 63.2
with the propensity score method and in Example 63.3 with the regression method.

The Fish2 data set is also constructed from the Fish data set and contains two species of fish. Some values
have been set to missing, and the resulting data set has a monotone missing pattern in the variables Length,
Width, and Species. The Fish2 data set is used in Example 63.4 with the logistic regression method and in
Example 63.5 with the discriminant function method. Note that some values of the variable Species have
also been altered in the data set.

The Fish3 data set is similar to the data set Fish2 except some additional values have been set to missing
and the resulting data set has an arbitrary missing pattern. The Fish3 data set is used in Example 63.7 and in
Example 63.8.

The Fitness1 data set created in the section “Getting Started: MI Procedure” on page 5035 is used in other
examples.

The following statements create the Fish1 data set:

*-----------------------------Fish1 Data-----------------------------*
| The data set contains one species of the fish (Bream) and |
| three measurements: Length1, Length2, Length3. |
| Some values have been set to missing, and the resulting data set |
| has a monotone missing pattern in the variables |
| Length1, Length2, and Length3. |

*--------------------------------------------------------------------*;
data Fish1;

title 'Fish Measurement Data';
input Length1 Length2 Length3 @@;
datalines;

23.2 25.4 30.0 24.0 26.3 31.2 23.9 26.5 31.1
26.3 29.0 33.5 26.5 29.0 . 26.8 29.7 34.7
26.8 . . 27.6 30.0 35.0 27.6 30.0 35.1
28.5 30.7 36.2 28.4 31.0 36.2 28.7 . .
29.1 31.5 . 29.5 32.0 37.3 29.4 32.0 37.2
29.4 32.0 37.2 30.4 33.0 38.3 30.4 33.0 38.5
30.9 33.5 38.6 31.0 33.5 38.7 31.3 34.0 39.5
31.4 34.0 39.2 31.5 34.5 . 31.8 35.0 40.6
31.9 35.0 40.5 31.8 35.0 40.9 32.0 35.0 40.6
32.7 36.0 41.5 32.8 36.0 41.6 33.5 37.0 42.6
35.0 38.5 44.1 35.0 38.5 44.0 36.2 39.5 45.3
37.4 41.0 45.9 38.0 41.0 46.5
;
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The Fish2 data set contains two of the seven species in the Fish data set. For each of the two species (Bream
and Pike), the length from the nose of the fish to the end of its tail and the width of each fish are measured.

The following statements create the Fish2 data set:

*-----------------------------Fish2 Data-----------------------------*
| The data set contains two species of the fish (Parkki and Perch) |
| and two measurements: Length and Width. |
| Some values have been set to missing, and the resulting data set |
| has a monotone missing pattern in the variables |
| Length, Width, and Species. |

*--------------------------------------------------------------------*;
data Fish2;

title 'Fish Measurement Data';
input Species $ Length Width @@;
datalines;

Parkki 16.5 2.3265 Parkki 17.4 2.3142 . 19.8 .
Parkki 21.3 2.9181 Parkki 22.4 3.2928 . 23.2 3.2944
Parkki 23.2 3.4104 Parkki 24.1 3.1571 . 25.8 3.6636
Parkki 28.0 4.1440 Parkki 29.0 4.2340 Perch 8.8 1.4080
. 14.7 1.9992 Perch 16.0 2.4320 Perch 17.2 2.6316
Perch 18.5 2.9415 Perch 19.2 3.3216 . 19.4 .
Perch 20.2 3.0502 Perch 20.8 3.0368 Perch 21.0 2.7720
Perch 22.5 3.5550 Perch 22.5 3.3075 . 22.5 .
Perch 22.8 3.5340 . 23.5 . Perch 23.5 3.5250
Perch 23.5 3.5250 Perch 23.5 3.5250 Perch 23.5 3.9950
. 24.0 . Perch 24.0 3.6240 Perch 24.2 3.6300
Perch 24.5 3.6260 Perch 25.0 3.7250 . 25.5 3.7230
Perch 25.5 3.8250 Perch 26.2 4.1658 Perch 26.5 3.6835
. 27.0 4.2390 Perch 28.0 4.1440 Perch 28.7 5.1373
. 28.9 4.3350 . 28.9 . . 28.9 4.5662
Perch 29.4 4.2042 Perch 30.1 4.6354 Perch 31.6 4.7716
Perch 34.0 6.0180 . 36.5 6.3875 . 37.3 7.7957
. 39.0 . . 38.3 . Perch 39.4 6.2646
Perch 39.3 6.3666 Perch 41.4 7.4934 Perch 41.4 6.0030
Perch 41.3 7.3514 . 42.3 . Perch 42.5 7.2250
Perch 42.4 7.4624 Perch 42.5 6.6300 Perch 44.6 6.8684
Perch 45.2 7.2772 Perch 45.5 7.4165 Perch 46.0 8.1420
Perch 46.6 7.5958
;
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The following statements create the Fish3 data set:

*-----------------------------Fish3 Data-----------------------------*
| The data set contains three species of the fish |
| (Parkki, Perch, and Roach) and two measurements: Length and Width. |
| Some values have been set to missing, and the resulting data set |
| has an arbitrary missing pattern in the variables |
| Length, Width, and Species. |

*--------------------------------------------------------------------*;
data Fish3;

title 'Fish Measurement Data';
input Species $ Length Width @@;
datalines;

Roach 16.2 2.2680 Roach 20.3 2.8217 Roach 21.2 .
Roach . 3.1746 Roach 22.2 3.5742 Roach 22.8 3.3516
Roach 23.1 3.3957 . 23.7 . Roach 24.7 3.7544
Roach 24.3 3.5478 Roach 25.3 . Roach 25.0 3.3250
Roach 25.0 3.8000 Roach 27.2 3.8352 Roach 26.7 3.6312
Roach 26.8 4.1272 Roach 27.9 3.9060 Roach 29.2 4.4968
Roach 30.6 4.7736 Roach 35.0 5.3550 Parkki 16.5 2.3265
Parkki 17.4 . Parkki 19.8 2.6730 Parkki 21.3 2.9181
Parkki 22.4 3.2928 Parkki 23.2 3.2944 Parkki 23.2 3.4104
Parkki 24.1 3.1571 . . 3.6636 Parkki 28.0 4.1440
Parkki 29.0 4.2340 Perch 8.8 1.4080 . 14.7 1.9992
Perch 16.0 2.4320 Perch 17.2 2.6316 Perch 18.5 2.9415
Perch 19.2 3.3216 . 19.4 3.1234 Perch 20.2 .
Perch 20.8 3.0368 Perch 21.0 2.7720 Perch 22.5 3.5550
Perch 22.5 3.3075 Perch 22.5 3.6675 Perch . 3.5340
Perch 23.5 3.4075 Perch 23.5 3.5250 Perch 23.5 3.5250
. 23.5 3.5250 Perch 23.5 3.9950 Perch 24.0 3.6240
Perch 24.0 3.6240 Perch 24.2 3.6300 Perch 24.5 3.6260
Perch 25.0 3.7250 Perch . 3.7230 Perch 25.5 3.8250
Perch . 4.1658 Perch 26.5 3.6835 . 27.0 4.2390
Perch . 4.1440 Perch 28.7 5.1373 . 28.9 4.3350
Perch 28.9 4.3350 Perch 28.9 4.5662 Perch 29.4 4.2042
Perch 30.1 4.6354 Perch 31.6 4.7716 Perch 34.0 6.0180
Perch 36.5 6.3875 Perch 37.3 7.7957 Perch 39.0 .
Perch 38.3 6.7408 Perch . 6.2646 . 39.3 .
Perch 41.4 7.4934 Perch 41.4 6.0030 Perch 41.3 7.3514
Perch 42.3 7.1064 Perch 42.5 7.2250 Perch 42.4 7.4624
Perch 42.5 6.6300 Perch 44.6 6.8684 Perch 45.2 7.2772
Perch 45.5 7.4165 Perch 46.0 8.1420 . 46.6 7.5958
;

Example 63.1: EM Algorithm for MLE
This example uses the EM algorithm to compute the maximum likelihood estimates for parameters of
multivariate normally distributed data with missing values. The following statements invoke the MI procedure
and request the EM algorithm to compute the MLE for .�;†/ of a multivariate normal distribution from the
input data set Fitness1:
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proc mi data=Fitness1 seed=1518971 simple nimpute=0;
em itprint outem=outem;
var Oxygen RunTime RunPulse;

run;

Note that when you specify the NIMPUTE=0 option, the missing values are not imputed.

The “Model Information” table in Output 63.1.1 describes the method and options used in the procedure if a
positive number is specified in the NIMPUTE= option.

Output 63.1.1 Model Information

The MI ProcedureThe MI Procedure

Model Information

Data Set WORK.FITNESS1

Method MCMC

Multiple Imputation Chain Single Chain

Initial Estimates for MCMC EM Posterior Mode

Start Starting Value

Prior Jeffreys

Number of Imputations 0

Number of Burn-in Iterations 200

Number of Iterations 100

Seed for random number generator 1518971

The “Missing Data Patterns” table in Output 63.1.2 lists distinct missing data patterns with corresponding
frequencies and percentages. Here, a value of “X” means that the variable is observed in the corresponding
group and a value of “.” means that the variable is missing. The table also displays group-specific variable
means.

Output 63.1.2 Missing Data Patterns

Missing Data Patterns

Group Means

Group Oxygen RunTime RunPulse Freq Percent Oxygen RunTime RunPulse

1 X X X 21 67.74 46.353810 10.809524 171.666667

2 X X . 4 12.90 47.109500 10.137500 .

3 X . . 3 9.68 52.461667 . .

4 . X X 1 3.23 . 11.950000 176.000000

5 . X . 2 6.45 . 9.885000 .
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With the SIMPLE option, the procedure displays simple descriptive univariate statistics for available cases
in the “Univariate Statistics” table in Output 63.1.3 and correlations from pairwise available cases in the
“Pairwise Correlations” table in Output 63.1.4.

Output 63.1.3 Univariate Statistics

Univariate Statistics

Missing Values

Variable N Mean Std Dev Minimum Maximum Count Percent

Oxygen 28 47.11618 5.41305 37.38800 60.05500 3 9.68

RunTime 28 10.68821 1.37988 8.63000 14.03000 3 9.68

RunPulse 22 171.86364 10.14324 148.00000 186.00000 9 29.03

Output 63.1.4 Pairwise Correlations

Pairwise Correlations

Oxygen RunTime RunPulse

Oxygen 1.000000000 -0.849118562 -0.343961742

RunTime -0.849118562 1.000000000 0.247258191

RunPulse -0.343961742 0.247258191 1.000000000

When you use the EM statement, the MI procedure displays the initial parameter estimates for the EM
algorithm in the “Initial Parameter Estimates for EM” table in Output 63.1.5.

Output 63.1.5 Initial Parameter Estimates for EM

Initial Parameter Estimates for EM

_TYPE_ _NAME_ Oxygen RunTime RunPulse

MEAN 47.116179 10.688214 171.863636

COV Oxygen 29.301078 0 0

COV RunTime 0 1.904067 0

COV RunPulse 0 0 102.885281

When you use the ITPRINT option in the EM statement, the “EM (MLE) Iteration History” table in
Output 63.1.6 displays the iteration history for the EM algorithm.
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Output 63.1.6 EM (MLE) Iteration History

EM (MLE) Iteration History

_Iteration_ -2 Log L Oxygen RunTime RunPulse

0 289.544782 47.116179 10.688214 171.863636

1 263.549489 47.116179 10.688214 171.863636

2 255.851312 47.139089 10.603506 171.538203

3 254.616428 47.122353 10.571685 171.426790

4 254.494971 47.111080 10.560585 171.398296

5 254.483973 47.106523 10.556768 171.389208

6 254.482920 47.104899 10.555485 171.385257

7 254.482813 47.104348 10.555062 171.383345

8 254.482801 47.104165 10.554923 171.382424

9 254.482800 47.104105 10.554878 171.381992

10 254.482800 47.104086 10.554864 171.381796

11 254.482800 47.104079 10.554859 171.381708

12 254.482800 47.104077 10.554858 171.381669

The “EM (MLE) Parameter Estimates” table in Output 63.1.7 displays the maximum likelihood estimates for
� and † of a multivariate normal distribution from the data set Fitness1.

Output 63.1.7 EM (MLE) Parameter Estimates

EM (MLE) Parameter Estimates

_TYPE_ _NAME_ Oxygen RunTime RunPulse

MEAN 47.104077 10.554858 171.381669

COV Oxygen 27.797931 -6.457975 -18.031298

COV RunTime -6.457975 2.015514 3.516287

COV RunPulse -18.031298 3.516287 97.766857

You can also output the EM (MLE) parameter estimates to an output data set with the OUTEM= option. The
following statements list the observations in the output data set Outem:

proc print data=outem;
title 'EM Estimates';

run;

The output data set Outem in Output 63.1.8 is a TYPE=COV data set. The observation with _TYPE_=‘MEAN’
contains the MLE for the parameter �, and the observations with _TYPE_=‘COV’ contain the MLE for the
parameter † of a multivariate normal distribution from the data set Fitness1.

Output 63.1.8 EM Estimates

EM EstimatesEM Estimates

Obs _TYPE_ _NAME_ Oxygen RunTime RunPulse

1 MEAN 47.1041 10.5549 171.382

2 COV Oxygen 27.7979 -6.4580 -18.031

3 COV RunTime -6.4580 2.0155 3.516

4 COV RunPulse -18.0313 3.5163 97.767
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Example 63.2: Monotone Propensity Score Method
This example uses the propensity score method to impute missing values for variables in a data set with a
monotone missing pattern. The following statements invoke the MI procedure and request the propensity
score method. The resulting data set is named Outex2.

proc mi data=Fish1 seed=899603 out=outex2;
monotone propensity;
var Length1 Length2 Length3;

run;

Note that the VAR statement is required and the data set must have a monotone missing pattern with variables
as ordered in the VAR statement.

The “Model Information” table in Output 63.2.1 describes the method and options used in the multiple
imputation process. By default, five imputations are created for the missing data.

Output 63.2.1 Model Information

The MI ProcedureThe MI Procedure

Model Information

Data Set WORK.FISH1

Method Monotone

Number of Imputations 5

Seed for random number generator 899603

When monotone methods are used in the imputation, MONOTONE is displayed as the method. The
“Monotone Model Specification” table in Output 63.2.2 displays the detailed model specification. By default,
the observations are sorted into five groups based on their propensity scores.

Output 63.2.2 Monotone Model Specification

Monotone Model Specification

Method
Imputed
Variables

Propensity( Groups= 5) Length2 Length3

Without covariates specified for imputed variables Length2 and Length3, the variable Length1 is used as the
covariate for Length2, and the variables Length1 and Length2 are used as covariates for Length3.

The “Missing Data Patterns” table in Output 63.2.3 lists distinct missing data patterns with corresponding
frequencies and percentages. Here, values of “X” and “.” indicate that the variable is observed or missing,
respectively, in the corresponding group. The table confirms a monotone missing pattern for these three
variables.
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Output 63.2.3 Missing Data Patterns

Missing Data Patterns

Group Means

Group Length1 Length2 Length3 Freq Percent Length1 Length2 Length3

1 X X X 30 85.71 30.603333 33.436667 38.720000

2 X X . 3 8.57 29.033333 31.666667 .

3 X . . 2 5.71 27.750000 . .

For the imputation process, first, missing values of Length2 in group 3 are imputed using observed values
of Length1. Then the missing values of Length3 in group 2 are imputed using observed values of Length1
and Length2. And finally, the missing values of Length3 in group 3 are imputed using observed values of
Length1 and imputed values of Length2.

After the completion of m imputations, the “Variance Information” table in Output 63.2.4 displays the
between-imputation variance, within-imputation variance, and total variance for combining complete-data
inferences. It also displays the degrees of freedom for the total variance. The relative increase in variance
due to missingness, the fraction of missing information, and the relative efficiency for each variable are also
displayed. A detailed description of these statistics is provided in the section “Combining Inferences from
Multiply Imputed Data Sets” on page 5092.

Output 63.2.4 Variance Information

Variance Information

Variance

Variable Between Within Total DF

Relative
Increase

in Variance

Fraction
Missing

Information
Relative

Efficiency

Length2 0.001500 0.465422 0.467223 32.034 0.003869 0.003861 0.999228

Length3 0.049725 0.547434 0.607104 27.103 0.108999 0.102610 0.979891

The “Parameter Estimates” table in Output 63.2.5 displays the estimated mean and standard error of the
mean for each variable. The inferences are based on the t distributions. For each variable, the table also
displays a 95% mean confidence interval and a t statistic with the associated p-value for the hypothesis that
the population mean is equal to the value specified in the MU0= option, which is 0 by default.

Output 63.2.5 Parameter Estimates

Parameter Estimates

Variable Mean Std Error 95% Confidence Limits DF Minimum Maximum Mu0
t for H0:

Mean=Mu0 Pr > |t|

Length2 33.006857 0.683537 31.61460 34.39912 32.034 32.957143 33.060000 0 48.29 <.0001

Length3 38.361714 0.779169 36.76328 39.96015 27.103 38.080000 38.545714 0 49.23 <.0001
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The following statements list the first 10 observations of the data set Outex2, as shown in Output 63.2.6. The
missing values are imputed from observed values with similar propensity scores.

proc print data=outex2(obs=10);
title 'First 10 Observations of the Imputed Data Set';

run;

Output 63.2.6 Imputed Data Set

First 10 Observations of the Imputed Data SetFirst 10 Observations of the Imputed Data Set

Obs _Imputation_ Length1 Length2 Length3

1 1 23.2 25.4 30.0

2 1 24.0 26.3 31.2

3 1 23.9 26.5 31.1

4 1 26.3 29.0 33.5

5 1 26.5 29.0 38.6

6 1 26.8 29.7 34.7

7 1 26.8 29.0 35.0

8 1 27.6 30.0 35.0

9 1 27.6 30.0 35.1

10 1 28.5 30.7 36.2

Example 63.3: Monotone Regression Method
This example uses the regression method to impute missing values for all variables in a data set with a
monotone missing pattern. The following statements invoke the MI procedure and request the regression
method for the variable Length2 and the predictive mean matching method for variable Length3. The resulting
data set is named Outex3.

proc mi data=Fish1 round=.1 mu0= 0 35 45
seed=13951639 out=outex3;

monotone reg(Length2/ details)
regpmm(Length3= Length1 Length2 Length1*Length2/ details);

var Length1 Length2 Length3;
run;

The ROUND= option is used to round the imputed values to the same precision as observed values. The
values specified with the ROUND= option are matched with the variables Length1, Length2, and Length3 in
the order listed in the VAR statement. The MU0= option requests t tests for the hypotheses that the population
means corresponding to the variables in the VAR statement are Length2=35 and Length3=45.

The “Missing Data Patterns” table lists distinct missing data patterns with corresponding frequencies and
percentages. It is identical to the table in Output 63.2.3 in Example 63.2.
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The “Monotone Model Specification” table in Output 63.3.1 displays the model specification.

Output 63.3.1 Monotone Model Specification

The MI ProcedureThe MI Procedure

Monotone Model Specification

Method
Imputed
Variables

Regression Length2

Regression-PMM( K= 5) Length3

When you use the DETAILS option, the parameters estimated from the observed data and the parameters
used in each imputation are displayed in Output 63.3.2 and Output 63.3.3.

Output 63.3.2 Regression Model

Regression Models for Monotone Method

Imputation

Imputed
Variable Effect Obs-Data 1 2 3 4 5

Length2 Intercept -0.04249 -0.049184 -0.055470 -0.051346 -0.064193 -0.030719

Length2 Length1 0.98587 1.001934 0.995275 0.992294 0.983122 0.995883

Output 63.3.3 Regression Predicted Mean Matching Model

Regression Models for Monotone Predicted Mean Matching Method

Imputation

Imputed
Variable Effect Obs Data 1 2 3 4 5

Length3 Intercept -0.01304 0.004134 -0.011417 -0.034177 -0.010532 0.004685

Length3 Length1 -0.01332 0.025320 -0.037494 0.308765 0.156606 -0.147118

Length3 Length2 0.98918 0.955510 1.025741 0.673374 0.828384 1.146440

Length3 Length1*Length2 -0.02521 -0.034964 -0.022017 -0.017919 -0.029335 -0.034671

After the completion of five imputations by default, the “Variance Information” table in Output 63.3.4
displays the between-imputation variance, within-imputation variance, and total variance for combining
complete-data inferences. The relative increase in variance due to missingness, the fraction of missing
information, and the relative efficiency for each variable are also displayed. These statistics are described in
the section “Combining Inferences from Multiply Imputed Data Sets” on page 5092.

Output 63.3.4 Variance Information

Variance Information

Variance

Variable Between Within Total DF

Relative
Increase

in Variance

Fraction
Missing

Information
Relative

Efficiency

Length2 0.000133 0.439512 0.439672 32.15 0.000363 0.000363 0.999927

Length3 0.000386 0.486913 0.487376 32.131 0.000952 0.000951 0.999810
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The “Parameter Estimates” table in Output 63.3.5 displays a 95% mean confidence interval and a t statistic
with its associated p-value for each of the hypotheses requested with the MU0= option.

Output 63.3.5 Parameter Estimates

Parameter Estimates

Variable Mean Std Error 95% Confidence Limits DF Minimum Maximum Mu0
t for H0:

Mean=Mu0 Pr > |t|

Length2 33.104571 0.663078 31.75417 34.45497 32.15 33.088571 33.117143 35.000000 -2.86 0.0074

Length3 38.424571 0.698123 37.00277 39.84637 32.131 38.397143 38.445714 45.000000 -9.42 <.0001

The following statements list the first 10 observations of the data set Outex3 in Output 63.3.6. Note that the
imputed values of Length2 are rounded to the same precision as the observed values.

proc print data=outex3(obs=10);
title 'First 10 Observations of the Imputed Data Set';

run;

Output 63.3.6 Imputed Data Set

First 10 Observations of the Imputed Data SetFirst 10 Observations of the Imputed Data Set

Obs _Imputation_ Length1 Length2 Length3

1 1 23.2 25.4 30.0

2 1 24.0 26.3 31.2

3 1 23.9 26.5 31.1

4 1 26.3 29.0 33.5

5 1 26.5 29.0 34.7

6 1 26.8 29.7 34.7

7 1 26.8 28.8 34.7

8 1 27.6 30.0 35.0

9 1 27.6 30.0 35.1

10 1 28.5 30.7 36.2

Example 63.4: Monotone Logistic Regression Method for CLASS Variables
This example uses logistic regression method to impute values for a binary variable in a data set with a
monotone missing pattern.

In the following statements, the logistic regression method is used for the binary CLASS variable Species:

proc mi data=Fish2 seed=1305417 out=outex4;
class Species;
monotone reg( Width/ details)

logistic( Species= Length Width Length*Width/ details);
var Length Width Species;

run;

The “Model Information” table in Output 63.4.1 describes the method and options used in the multiple
imputation process.
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Output 63.4.1 Model Information

The MI ProcedureThe MI Procedure

Model Information

Data Set WORK.FISH2

Method Monotone

Number of Imputations 5

Seed for random number generator 1305417

The “Monotone Model Specification” table in Output 63.4.2 describes methods and imputed variables in the
imputation model. The procedure uses the logistic regression method to impute the variable Species in the
model. Missing values in other variables are not imputed.

Output 63.4.2 Monotone Model Specification

Monotone Model
Specification

Method
Imputed
Variables

Regression Width

Logistic Regression Species

The “Missing Data Patterns” table in Output 63.4.3 lists distinct missing data patterns with corresponding
frequencies and percentages. The table confirms a monotone missing pattern for these variables.

Output 63.4.3 Missing Data Patterns

Missing Data Patterns

Group Means

Group Length Width Species Freq Percent Length Width

1 X X X 49 73.13 28.595918 4.482518

2 X X . 9 13.43 27.533333 4.444844

3 X . . 9 13.43 28.633333 .

When you use the DETAILS option, parameters estimated from the observed data and the parameters used in
each imputation are displayed in the “Logistic Models for Monotone Method” table in Output 63.4.4.

Output 63.4.4 Regression Model

Regression Models for Monotone Method

Imputation

Imputed
Variable Effect Obs-Data 1 2 3 4 5

Width Intercept 0.00284 -0.029987 0.049363 -0.015273 -0.064915 0.059375

Width Length 0.96212 0.981287 0.906104 0.962814 0.978103 0.952034
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Output 63.4.5 Logistic Regression Model

Logistic Models for Monotone Method

Imputation

Imputed
Variable Effect Obs-Data 1 2 3 4 5

Species Intercept -3.93577 -5.016163 -3.422209 -4.706398 -2.049090 -4.568278

Species Length 10.41940 16.262215 6.082966 9.832246 4.992717 11.886805

Species Width -14.56630 -21.856472 -8.653119 -15.534802 -7.401465 -15.621272

Species Length*Width -0.48936 -0.208880 0.795883 -0.011135 -0.461227 0.080406

The following statements list the first 10 observations of the data set Outex4 in Output 63.4.6:

proc print data=outex4(obs=10);
title 'First 10 Observations of the Imputed Data Set';

run;

Output 63.4.6 Imputed Data Set

First 10 Observations of the Imputed Data SetFirst 10 Observations of the Imputed Data Set

Obs _Imputation_ Species Length Width

1 1 Parkki 16.5 2.32650

2 1 Parkki 17.4 2.31420

3 1 Parkki 19.8 2.20482

4 1 Parkki 21.3 2.91810

5 1 Parkki 22.4 3.29280

6 1 Perch 23.2 3.29440

7 1 Parkki 23.2 3.41040

8 1 Parkki 24.1 3.15710

9 1 Perch 25.8 3.66360

10 1 Parkki 28.0 4.14400

Note that a missing value of the variable Species is not imputed if the corresponding covariates are missing
and not imputed, as shown by observation 4 in the table.

Example 63.5: Monotone Discriminant Function Method for CLASS Variables
This example uses discriminant monotone methods to impute values of a CLASS variable from the observed
observation values in a data set with a monotone missing pattern.

The following statements impute the continuous variables Height and Width with the regression method and
the classification variable Species with the discriminant function method:

proc mi data=Fish2 seed=7545417 nimpute=3 out=outex5;
class Species;
monotone discrim( Species= Length Width/ details);
var Length Width Species;

run;



Example 63.5: Monotone Discriminant Function Method for CLASS Variables F 5119

The “Model Information” table in Output 63.5.1 describes the method and options used in the multiple
imputation process.

Output 63.5.1 Model Information

The MI ProcedureThe MI Procedure

Model Information

Data Set WORK.FISH2

Method Monotone

Number of Imputations 3

Seed for random number generator 7545417

The “Monotone Model Specification” table in Output 63.5.2 describes methods and imputed variables in the
imputation model. The procedure uses the regression method to impute the variables Height and Width, and
uses the logistic regression method to impute the variable Species in the model.

Output 63.5.2 Monotone Model Specification

Monotone Model Specification

Method
Imputed
Variables

Regression Width

Discriminant Function Species

The “Missing Data Patterns” table in Output 63.5.3 lists distinct missing data patterns with corresponding
frequencies and percentages. The table confirms a monotone missing pattern for these variables.

Output 63.5.3 Missing Data Patterns

Missing Data Patterns

Group Means

Group Length Width Species Freq Percent Length Width

1 X X X 49 73.13 28.595918 4.482518

2 X X . 9 13.43 27.533333 4.444844

3 X . . 9 13.43 28.633333 .

When you use the DETAILS option, the parameters estimated from the observed data and the parameters
used in each imputation are displayed in Output 63.5.4.

Output 63.5.4 Discriminant Model

Group Means for Monotone Discriminant Method

Imputation

Species Variable Obs-Data 1 2 3

Parkki Length -0.62249 -0.917467 -0.909076 -0.146825

Parkki Width -0.71787 -0.921200 -1.036075 -0.343058

Perch Length 0.13937 0.042471 0.219096 0.079881

Perch Width 0.14408 0.047041 0.197736 0.082832
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The following statements list the first 10 observations of the data set Outex5 in Output 63.5.5. Note that all
missing values of the variables Width and Species are imputed.

proc print data=outex5(obs=10);
title 'First 10 Observations of the Imputed Data Set';

run;

Output 63.5.5 Imputed Data Set

First 10 Observations of the Imputed Data SetFirst 10 Observations of the Imputed Data Set

Obs _Imputation_ Species Length Width

1 1 Parkki 16.5 2.32650

2 1 Parkki 17.4 2.31420

3 1 Perch 19.8 3.03975

4 1 Parkki 21.3 2.91810

5 1 Parkki 22.4 3.29280

6 1 Perch 23.2 3.29440

7 1 Parkki 23.2 3.41040

8 1 Parkki 24.1 3.15710

9 1 Perch 25.8 3.66360

10 1 Parkki 28.0 4.14400

Example 63.6: FCS Method for Continuous Variables
This example uses FCS regression methods to impute values for all continuous variables in a data set with an
arbitrary missing pattern.

The following statements invoke the MI procedure and impute missing values for the Fitness1 data set:

proc mi data=Fitness1 seed=1213 nimpute=4 mu0=50 10 180 out=outex6;
fcs nbiter=20 reg(/details);
var Oxygen RunTime RunPulse;

run;

The NIMPUTE=4 option specifies the total number of imputations. The FCS statement requests multivariate
imputations by FCS methods, and the NBITER=20 option (which is the default) specifies the number of
burn-in iterations before each imputation.

The “Model Information” table in Output 63.6.1 describes the method and options used in the multiple
imputation process.

Output 63.6.1 Model Information

The MI ProcedureThe MI Procedure

Model Information

Data Set WORK.FITNESS1

Method FCS

Number of Imputations 4

Number of Burn-in Iterations 20

Seed for random number generator 1213
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The “FCS Model Specification” table in Output 63.6.2 describes methods and imputed variables in the
imputation model. With the REG option in the FCS statement, the procedure uses the regression method to
impute variables RunTime, RunPulse, and Oxygen in the model.

Output 63.6.2 FCS Model Specification

FCS Model Specification

Method Imputed Variables

Regression Oxygen RunTime RunPulse

The “Missing Data Patterns” table in Output 63.6.3 lists distinct missing data patterns with corresponding
frequencies and percentages.

Output 63.6.3 Missing Data Patterns

Missing Data Patterns

Group Means

Group Oxygen RunTime RunPulse Freq Percent Oxygen RunTime RunPulse

1 X X X 21 67.74 46.353810 10.809524 171.666667

2 X X . 4 12.90 47.109500 10.137500 .

3 X . . 3 9.68 52.461667 . .

4 . X X 1 3.23 . 11.950000 176.000000

5 . X . 2 6.45 . 9.885000 .

When you use the DETAILS option, the parameters used in each imputation are displayed in Output 63.6.4,
Output 63.6.5, and Output 63.6.6.

Output 63.6.4 FCS Regression Model for Oxygen

Regression Models for FCS Method

Imputation

Imputed
Variable Effect 1 2 3 4

Oxygen Intercept -0.132359 0.093555 0.078587 0.063256

Oxygen RunTime -0.908663 -0.753423 -1.125549 -0.634844

Oxygen RunPulse -0.134745 0.052640 -0.135864 -0.158692

Output 63.6.5 FCS Regression Model for RunTime

The MI ProcedureThe MI Procedure

Regression Models for FCS Method

Imputation

Imputed
Variable Effect 1 2 3 4

RunTime Intercept -0.127880 -0.125666 -0.074802 0.058724

RunTime Oxygen -0.592047 -1.067554 -1.020216 -0.827592

RunTime RunPulse 0.110865 -0.311273 -0.158049 0.060715
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Output 63.6.6 FCS Regression Model for RunPulse

The MI ProcedureThe MI Procedure

Regression Models for FCS Method

Imputation

Imputed
Variable Effect 1 2 3 4

RunPulse Intercept -0.072862 -0.089964 0.049778 0.082088

RunPulse Oxygen 0.226951 -0.439850 -0.440705 -0.353438

RunPulse RunTime 0.545914 0.067482 0.234528 -0.273761

The following statements list the first 10 observations of the data set Outex6 in Output 63.6.7. Note that all
missing values of all variables are imputed.

proc print data=outex6(obs=10);
title 'First 10 Observations of the Imputed Data Set';

run;

Output 63.6.7 Imputed Data Set

First 10 Observations of the Imputed Data SetFirst 10 Observations of the Imputed Data Set

Obs _Imputation_ Oxygen RunTime RunPulse

1 1 44.6090 11.3700 178.000

2 1 45.3130 10.0700 185.000

3 1 54.2970 8.6500 156.000

4 1 59.5710 10.1985 185.842

5 1 49.8740 9.2200 173.379

6 1 44.8110 11.6300 176.000

7 1 44.6299 11.9500 176.000

8 1 47.4258 10.8500 183.926

9 1 39.4420 13.0800 174.000

10 1 60.0550 8.6300 170.000

After the completion of the specified four imputations, the “Variance Information” table in Output 63.6.8
displays the between-imputation variance, within-imputation variance, and total variance for combining
complete-data inferences. The relative increase in variance due to missingness, the fraction of missing
information, and the relative efficiency for each variable are also displayed. These statistics are described in
the section “Combining Inferences from Multiply Imputed Data Sets” on page 5092.

Output 63.6.8 Variance Information

Variance Information

Variance

Variable Between Within Total DF

Relative
Increase

in Variance

Fraction
Missing

Information
Relative

Efficiency

Oxygen 0.044012 0.936794 0.991809 25.911 0.058727 0.057401 0.985853

RunTime 0.002518 0.063583 0.066730 26.328 0.049500 0.048575 0.988002

RunPulse 3.552893 3.488832 7.929948 5.3995 1.272952 0.630073 0.863917
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The “Parameter Estimates” table in Output 63.6.9 displays a 95% mean confidence interval and a t statistic
with its associated p-value for each of the hypotheses requested with the MU0= option.

Output 63.6.9 Parameter Estimates

Parameter Estimates

Variable Mean Std Error 95% Confidence Limits DF Minimum Maximum Mu0
t for H0:

Mean=Mu0 Pr > |t|

Oxygen 47.200681 0.995896 45.1532 49.2481 25.911 47.075129 47.512585 50.000000 -2.81 0.0093

RunTime 10.578418 0.258322 10.0478 11.1091 26.328 10.526891 10.627704 10.000000 2.24 0.0338

RunPulse 171.368390 2.816016 164.2877 178.4490 5.3995 168.633931 172.932612 180.000000 -3.07 0.0253

Example 63.7: FCS Method for CLASS Variables
This example uses FCS methods to impute missing values in both continuous and CLASS variables in a data
set with an arbitrary missing pattern. The following statements invoke the MI procedure and impute missing
values for the Fish3 data set:

proc mi data=Fish3 seed=1305417 out=outex7;
class Species;
fcs nbiter=10 discrim(Species/details) reg(Width/details);
var Species Length Width;

run;

The DISCRIM option uses the discriminant function method to impute the classification variable Species,
and the REG option uses the regression method to impute the continuous variable Height. By default, the
regression method is also used to impute other continuous variables, Length and Width.

The “Model Information” table in Output 63.7.1 describes the method and options used in the multiple
imputation process.

Output 63.7.1 Model Information

The MI ProcedureThe MI Procedure

Model Information

Data Set WORK.FISH3

Method FCS

Number of Imputations 5

Number of Burn-in Iterations 10

Seed for random number generator 1305417
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The “FCS Model Specification” table in Output 63.7.2 describes methods and imputed variables in the
imputation model. The procedure uses the discriminant function method to impute the variable Species, and
the regression method to impute other variables.

Output 63.7.2 FCS Model Specification

FCS Model Specification

Method
Imputed
Variables

Regression Length Width

Discriminant Function Species

The “Missing Data Patterns” table in Output 63.7.3 lists distinct missing data patterns with corresponding
frequencies and percentages.

Output 63.7.3 Missing Data Patterns

Missing Data Patterns

Group Means

Group Species Length Width Freq Percent Length Width

1 X X X 67 77.01 27.910448 4.361860

2 X X . 5 5.75 24.620000 .

3 X . X 6 6.90 . 4.167667

4 . X X 6 6.90 26.683333 4.136233

5 . X . 2 2.30 31.500000 .

6 . . X 1 1.15 . 3.663600

With the specified DETAILS option for variables Species and Height, parameters used in each imputation for
these two variables are displayed in the “Group Means for FCS Discriminant Method” table in Output 63.7.4
and in the “Regression Models for FCS Method” table in Output 63.7.5.

Output 63.7.4 FCS Discrim Model for Species

Group Means for FCS Discriminant Method

Imputation

Species Variable 1 2 3 4 5

Parkki Length -0.268298 -0.611484 -0.430752 -0.508489 -1.096890

Parkki Width -0.374514 -0.920031 -0.695627 -0.444730 -1.183297

Perch Length 0.073272 0.281238 0.135766 0.105996 0.280959

Perch Width 0.104187 0.345404 0.211220 0.109806 0.365960

Roach Length -0.293847 -0.296757 -0.485885 0.094638 -0.028394

Roach Width -0.507327 -0.352964 -0.626142 -0.033285 -0.243456
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Output 63.7.5 FCS Regression Model for Height

Regression Models for FCS Method

Imputation

Imputed
Variable Effect Species 1 2 3 4 5

Width Intercept -0.080952 -0.008262 -0.040466 -0.083230 -0.047121

Width Species Parkki -0.100521 -0.096675 -0.022778 -0.160418 -0.092341

Width Species Perch 0.150457 0.119791 0.108795 0.132785 0.152929

Width Length 0.928032 0.939600 1.039315 0.975903 0.961029

The following statements list the first 10 observations of the data set Outex7 in Output 63.7.6:

proc print data=outex7(obs=10);
title 'First 10 Observations of the Imputed Data Set';

run;

Output 63.7.6 Imputed Data Set

First 10 Observations of the Imputed Data SetFirst 10 Observations of the Imputed Data Set

Obs _Imputation_ Species Length Width

1 1 Roach 16.2000 2.26800

2 1 Roach 20.3000 2.82170

3 1 Roach 21.2000 2.40895

4 1 Roach 18.6497 3.17460

5 1 Roach 22.2000 3.57420

6 1 Roach 22.8000 3.35160

7 1 Roach 23.1000 3.39570

8 1 Perch 23.7000 3.88340

9 1 Roach 24.7000 3.75440

10 1 Roach 24.3000 3.54780

After the completion of five imputations by default, the “Variance Information” table in Output 63.7.7 displays
the between-imputation variance, within-imputation variance, and total variance for combining complete-data
inferences for continuous variables. The relative increase in variance due to missingness, the fraction of
missing information, and the relative efficiency for each variable are also displayed. These statistics are
described in the section “Combining Inferences from Multiply Imputed Data Sets” on page 5092.

Output 63.7.7 Variance Information

Variance Information

Variance

Variable Between Within Total DF

Relative
Increase

in Variance

Fraction
Missing

Information
Relative

Efficiency

Length 0.003204 0.813872 0.817717 83.633 0.004724 0.004713 0.999058

Width 0.000326 0.029149 0.029540 82.653 0.013427 0.013336 0.997340
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The “Parameter Estimates” table in Output 63.7.8 displays a 95% mean confidence interval and a t statistic
with its associated p-value for each of the hypotheses requested with the default MU0=0 option.

Output 63.7.8 Parameter Estimates

Parameter Estimates

Variable Mean Std Error 95% Confidence Limits DF Minimum Maximum Mu0
t for H0:

Mean=Mu0 Pr > |t|

Length 27.533359 0.904277 25.73499 29.33173 83.633 27.447764 27.581915 0 30.45 <.0001

Width 4.299028 0.171873 3.95716 4.64090 82.653 4.275600 4.320615 0 25.01 <.0001

Example 63.8: FCS Method with Trace Plot
This example uses FCS methods to impute missing values in both continuous and classification variables in
a data set with an arbitrary missing pattern. The following statements use a logistic regression method to
impute values of the classification variable Species:

ods graphics on;
proc mi data=Fish3 seed=1305417 out=outex8;

class Species;
fcs plots=trace

logistic(Species= Length Width Length*Width /details link=glogit);
var Species Length Width;

run;
ods graphics off;

The “Model Information” table in Output 63.8.1 describes the method and options used in the multiple
imputation process. By default, a regression method is used to impute missing values in each continuous
variable.

Output 63.8.1 Model Information

The MI ProcedureThe MI Procedure

Model Information

Data Set WORK.FISH3

Method FCS

Number of Imputations 5

Number of Burn-in Iterations 20

Seed for random number generator 1305417

The “FCS Model Specification” table in Output 63.8.2 describes methods and imputed variables in the
imputation model. The procedure uses the logistic regression method to impute the variable Species, and the
regression method to impute variables Height and Width.

Output 63.8.2 FCS Model Specification

FCS Model Specification

Method
Imputed
Variables

Regression Length Width

Logistic Regression Species
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The “Missing Data Patterns” table in Output 63.8.3 lists distinct missing data patterns with corresponding
frequencies and percentages.

Output 63.8.3 Missing Data Patterns

Missing Data Patterns

Group Means

Group Species Length Width Freq Percent Length Width

1 X X X 67 77.01 27.910448 4.361860

2 X X . 5 5.75 24.620000 .

3 X . X 6 6.90 . 4.167667

4 . X X 6 6.90 26.683333 4.136233

5 . X . 2 2.30 31.500000 .

6 . . X 1 1.15 . 3.663600

When you use the DETAILS keyword in the LOGISTIC option, parameters estimated from the observed data
and the parameters used in each imputation are displayed in the “Logistic Models for FCS Method” table in
Output 63.8.4.

Output 63.8.4 FCS Logistic Regression Model for Species

Logistic Models for FCS Method

Imputation

Imputed
Variable Effect Species 1 2 3 4 5

Species Intercept Parkki -2.172588 -2.324226 -2.418362 -1.832884 -0.929242

Species Intercept Perch 1.878263 0.445966 1.585375 0.919562 1.547549

Species Length Parkki 6.107448 6.377145 2.447654 -1.004869 2.363073

Species Length Perch -5.493897 -4.711566 -7.778194 -5.400749 -0.053788

Species Width Parkki -8.624156 -6.965179 -5.718729 -0.997851 -2.978868

Species Width Perch 8.111323 5.608314 9.426901 5.502755 1.241239

Species Length*Width Parkki -0.006404 2.138551 0.883903 0.072525 -0.152662

Species Length*Width Perch 1.151183 1.278025 1.117492 -0.195462 0.672738
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With ODS Graphics enabled, the PLOTS=TRACE option displays trace plots of means for all continuous
variables by default, as shown in Output 63.8.5 and Output 63.8.6. The dashed vertical lines indicate the
imputed iterations—that is, the variable values used in the imputations. The plot shows no apparent trends
for the two variables.

Output 63.8.5 Trace Plot for Length
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Output 63.8.6 Trace Plot for Width

The following statements list the first 10 observations of the data set Outex8 in Output 63.8.7:

proc print data=outex8(obs=10);
title 'First 10 Observations of the Imputed Data Set';

run;

Output 63.8.7 Imputed Data Set

First 10 Observations of the Imputed Data SetFirst 10 Observations of the Imputed Data Set

Obs _Imputation_ Species Length Width

1 1 Roach 16.2000 2.26800

2 1 Roach 20.3000 2.82170

3 1 Roach 21.2000 3.40493

4 1 Roach 22.4203 3.17460

5 1 Roach 22.2000 3.57420

6 1 Roach 22.8000 3.35160

7 1 Roach 23.1000 3.39570

8 1 Roach 23.7000 3.73166

9 1 Roach 24.7000 3.75440

10 1 Roach 24.3000 3.54780
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After the completion of five imputations by default, the “Variance Information” table in Output 63.8.8 displays
the between-imputation variance, within-imputation variance, and total variance for combining complete-data
inferences for continuous variables. The relative increase in variance due to missingness, the fraction of
missing information, and the relative efficiency for each variable are also displayed. These statistics are
described in the section “Combining Inferences from Multiply Imputed Data Sets” on page 5092.

Output 63.8.8 Variance Information

Variance Information

Variance

Variable Between Within Total DF

Relative
Increase

in Variance

Fraction
Missing

Information
Relative

Efficiency

Length 0.005177 0.815388 0.821601 83.332 0.007620 0.007590 0.998484

Width 0.000108 0.028944 0.029074 83.656 0.004496 0.004486 0.999104

The “Parameter Estimates” table in Output 63.8.9 displays a 95% mean confidence interval and a t statistic
with its associated p-value for each of the hypotheses requested with the default MU0=0 option.

Output 63.8.9 Parameter Estimates

Parameter Estimates

Variable Mean Std Error 95% Confidence Limits DF Minimum Maximum Mu0
t for H0:

Mean=Mu0 Pr > |t|

Length 27.606967 0.906422 25.80424 29.40970 83.332 27.485512 27.675952 0 30.46 <.0001

Width 4.307702 0.170510 3.96860 4.64680 83.656 4.297146 4.321571 0 25.26 <.0001

Example 63.9: MCMC Method
This example uses the MCMC method to impute missing values for a data set with an arbitrary missing pattern.
The following statements invoke the MI procedure and specify the MCMC method with six imputations:

proc mi data=Fitness1 seed=21355417 nimpute=6 mu0=50 10 180 ;
mcmc chain=multiple displayinit initial=em(itprint);
var Oxygen RunTime RunPulse;

run;

The “Model Information” table in Output 63.9.1 describes the method used in the multiple imputation process.
When you use the CHAIN=MULTIPLE option, the procedure uses multiple chains and completes the default
200 burn-in iterations before each imputation. The 200 burn-in iterations are used to make the iterations
converge to the stationary distribution before the imputation.
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Output 63.9.1 Model Information

The MI ProcedureThe MI Procedure

Model Information

Data Set WORK.FITNESS1

Method MCMC

Multiple Imputation Chain Multiple Chains

Initial Estimates for MCMC EM Posterior Mode

Start Starting Value

Prior Jeffreys

Number of Imputations 6

Number of Burn-in Iterations 200

Seed for random number generator 21355417

By default, the procedure uses a noninformative Jeffreys prior to derive the posterior mode from the EM
algorithm as the starting values for the MCMC method.

The “Missing Data Patterns” table in Output 63.9.2 lists distinct missing data patterns with corresponding
statistics.

Output 63.9.2 Missing Data Patterns

Missing Data Patterns

Group Means

Group Oxygen RunTime RunPulse Freq Percent Oxygen RunTime RunPulse

1 X X X 21 67.74 46.353810 10.809524 171.666667

2 X X . 4 12.90 47.109500 10.137500 .

3 X . . 3 9.68 52.461667 . .

4 . X X 1 3.23 . 11.950000 176.000000

5 . X . 2 6.45 . 9.885000 .

When you use the ITPRINT option within the INITIAL=EM option, the procedure displays the “EM
(Posterior Mode) Iteration History” table in Output 63.9.3.

Output 63.9.3 EM (Posterior Mode) Iteration History

EM (Posterior Mode) Iteration History

_Iteration_ -2 Log L
-2 Log

Posterior Oxygen RunTime RunPulse

0 254.482800 282.909549 47.104077 10.554858 171.381669

1 255.081168 282.051584 47.104077 10.554857 171.381652

2 255.271408 282.017488 47.104077 10.554857 171.381644

3 255.318622 282.015372 47.104002 10.554523 171.381842

4 255.330259 282.015232 47.103861 10.554388 171.382053

5 255.333161 282.015222 47.103797 10.554341 171.382150

6 255.333896 282.015222 47.103774 10.554325 171.382185

7 255.334085 282.015222 47.103766 10.554320 171.382196

When you use the DISPLAYINIT option in the MCMC statement, the “Initial Parameter Estimates for
MCMC” table in Output 63.9.4 displays the starting mean and covariance estimates used in the MCMC
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method. The same starting estimates are used in the MCMC method for multiple chains because the EM
algorithm is applied to the same data set in each chain. You can explicitly specify different initial estimates
for different imputations, or you can use the bootstrap method to generate different parameter estimates from
the EM algorithm for the MCMC method.

Output 63.9.4 Initial Parameter Estimates

Initial Parameter Estimates for MCMC

_TYPE_ _NAME_ Oxygen RunTime RunPulse

MEAN 47.103766 10.554320 171.382196

COV Oxygen 24.549967 -5.726112 -15.926036

COV RunTime -5.726112 1.781407 3.124798

COV RunPulse -15.926036 3.124798 83.164045

Output 63.9.5 and Output 63.9.6 display variance information and parameter estimates, respectively, from
the multiple imputation.

Output 63.9.5 Variance Information

Variance Information

Variance

Variable Between Within Total DF

Relative
Increase

in Variance

Fraction
Missing

Information
Relative

Efficiency

Oxygen 0.051560 0.928170 0.988323 25.958 0.064809 0.062253 0.989731

RunTime 0.003979 0.070057 0.074699 25.902 0.066262 0.063589 0.989513

RunPulse 4.118578 4.260631 9.065638 7.5938 1.127769 0.575218 0.912517

Output 63.9.6 Parameter Estimates

Parameter Estimates

Variable Mean Std Error 95% Confidence Limits DF Minimum Maximum Mu0
t for H0:

Mean=Mu0 Pr > |t|

Oxygen 47.164819 0.994145 45.1212 49.2085 25.958 46.858020 47.363540 50.000000 -2.85 0.0084

RunTime 10.549936 0.273312 9.9880 11.1118 25.902 10.476886 10.659412 10.000000 2.01 0.0547

RunPulse 170.969836 3.010920 163.9615 177.9782 7.5938 168.252615 172.894991 180.000000 -3.00 0.0182

Example 63.10: Producing Monotone Missingness with MCMC
This example uses the MCMC method to impute just enough missing values for a data set with an arbitrary
missing pattern so that each imputed data set has a monotone missing pattern based on the order of variables
in the VAR statement.

The following statements invoke the MI procedure and specify the IMPUTE=MONOTONE option to create
the imputed data set with a monotone missing pattern. You must specify a VAR statement to provide the
order of variables in order for the imputed data to achieve a monotone missing pattern.

proc mi data=Fitness1 seed=17655417 out=outex10;
mcmc impute=monotone;
var Oxygen RunTime RunPulse;

run;
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The “Model Information” table in Output 63.10.1 describes the method used in the multiple imputation
process.

Output 63.10.1 Model Information

The MI ProcedureThe MI Procedure

Model Information

Data Set WORK.FITNESS1

Method Monotone-data MCMC

Multiple Imputation Chain Single Chain

Initial Estimates for MCMC EM Posterior Mode

Start Starting Value

Prior Jeffreys

Number of Imputations 5

Number of Burn-in Iterations 200

Number of Iterations 100

Seed for random number generator 17655417

The “Missing Data Patterns” table in Output 63.10.2 lists distinct missing data patterns with corresponding
statistics. Here, an “X” means that the variable is observed in the corresponding group, a “.” means that the
variable is missing and will be imputed to achieve the monotone missingness for the imputed data set, and
an “O” means that the variable is missing and will not be imputed. The table also displays group-specific
variable means.

Output 63.10.2 Missing Data Patterns

Missing Data Patterns

Group Means

Group Oxygen RunTime RunPulse Freq Percent Oxygen RunTime RunPulse

1 X X X 21 67.74 46.353810 10.809524 171.666667

2 X X O 4 12.90 47.109500 10.137500 .

3 X O O 3 9.68 52.461667 . .

4 . X X 1 3.23 . 11.950000 176.000000

5 . X O 2 6.45 . 9.885000 .

As shown in the table in Output 63.10.2, the MI procedure needs to impute only three missing values from
group 4 and group 5 to achieve a monotone missing pattern for the imputed data set.

When you use the MCMC method to produce an imputed data set with a monotone missing pattern, tables of
variance information and parameter estimates are not created.

The following statements are used just to show the monotone missingness of the output data set Outex10:

proc mi data=outex10 seed=15541 nimpute=0;
var Oxygen RunTime RunPulse;

run;
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The “Missing Data Patterns” table in Output 63.10.3 displays a monotone missing data pattern.

Output 63.10.3 Monotone Missing Data Patterns

The MI ProcedureThe MI Procedure

Missing Data Patterns

Group Means

Group Oxygen RunTime RunPulse Freq Percent Oxygen RunTime RunPulse

1 X X X 110 70.97 46.152428 10.861364 171.863636

2 X X . 30 19.35 47.796038 10.053333 .

3 X . . 15 9.68 52.461667 . .

The following statements impute one value for each missing value in the monotone missingness data set
Outex10:

proc mi data=outex10 nimpute=1 seed=51343672 out=outex10a;
monotone method=reg;
var Oxygen RunTime RunPulse;
by _Imputation_;

run;

You can then analyze these data sets by using other SAS procedures and combine these results by using the
MIANALYZE procedure. Note that the VAR statement is required with a MONOTONE statement to provide
the variable order for the monotone missing pattern.

Example 63.11: Checking Convergence in MCMC
This example uses the MCMC method with a single chain. It also displays trace and autocorrelation plots to
check convergence for the single chain.

The following statements use the MCMC method to create an iteration plot for the successive estimates of
the mean of Oxygen. These statements also create an autocorrelation function plot for the variable Oxygen.

ods graphics on;
proc mi data=Fitness1 seed=501213 mu0=50 10 180;

mcmc plots=(trace(mean(Oxygen)) acf(mean(Oxygen)));
var Oxygen RunTime RunPulse;

run;
ods graphics off;

With ODS Graphics enabled, the TRACE(MEAN(OXYGEN)) option in the PLOTS= option displays the
trace plot of means for the variable Oxygen, as shown in Output 63.11.1. The dashed vertical lines indicate
the imputed iterations—that is, the Oxygen values used in the imputations. The plot shows no apparent trends
for the variable Oxygen.
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Output 63.11.1 Trace Plot for Oxygen

The ACF(MEAN(OXYGEN)) option in the PLOTS= option displays the autocorrelation plot of means for
the variable Oxygen, as shown in Output 63.11.2. The autocorrelation function plot shows no significant
positive or negative autocorrelation.
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Output 63.11.2 Autocorrelation Function Plot for Oxygen

You can also create plots for the worst linear function, the means of other variables, the variances of variables,
and the covariances between variables. Alternatively, you can use the OUTITER option to save statistics
such as the means, standard deviations, covariances, –2 log LR statistic, –2 log LR statistic of the posterior
mode, and worst linear function from each iteration in an output data set. Then you can do a more in-depth
trace (time series) analysis of the iterations with other procedures, such as PROC AUTOREG and PROC
ARIMA in the SAS/ETS User’s Guide.

For general information about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.” For specific
information about the graphics available in the MI procedure, see the section “ODS Graphics” on page 5105.
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Example 63.12: Saving and Using Parameters for MCMC
This example uses the MCMC method with multiple chains as specified in Example 63.9. It saves the
parameter values used for each imputation in an output data set of type EST called Miest. This output data set
can then be used to impute missing values in other similar input data sets. The following statements invoke
the MI procedure and specify the MCMC method with multiple chains to create three imputations:

proc mi data=Fitness1 seed=21355417 nimpute=6 mu0=50 10 180;
mcmc chain=multiple initial=em outest=miest;
var Oxygen RunTime RunPulse;

run;

The following statements list the parameters used for the imputations in Output 63.12.1. Note that the data
set includes observations with _TYPE_=‘SEED’ which contains the seed to start the next random number
generator.

proc print data=miest(obs=15);
title 'Parameters for the Imputations';

run;

Output 63.12.1 OUTEST Data Set

Parameters for the ImputationsParameters for the Imputations

Obs _Imputation_ _TYPE_ _NAME_ Oxygen RunTime RunPulse

1 1 SEED 825240167.00 825240167.00 825240167.00

2 1 PARM 46.77 10.47 169.41

3 1 COV Oxygen 30.59 -8.32 -50.99

4 1 COV RunTime -8.32 2.90 17.03

5 1 COV RunPulse -50.99 17.03 200.09

6 2 SEED 1895925872.00 1895925872.00 1895925872.00

7 2 PARM 47.41 10.37 173.34

8 2 COV Oxygen 22.35 -4.44 -21.18

9 2 COV RunTime -4.44 1.76 1.25

10 2 COV RunPulse -21.18 1.25 125.67

11 3 SEED 137653011.00 137653011.00 137653011.00

12 3 PARM 48.21 10.36 170.52

13 3 COV Oxygen 23.59 -5.25 -19.76

14 3 COV RunTime -5.25 1.66 5.00

15 3 COV RunPulse -19.76 5.00 110.99

The following statements invoke the MI procedure and use the INEST= option in the MCMC statement:

proc mi data=Fitness1 mu0=50 10 180;
mcmc inest=miest;
var Oxygen RunTime RunPulse;

run;
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The “Model Information” table in Output 63.12.2 describes the method used in the multiple imputation
process. The remaining tables for the example are identical to the tables in Output 63.9.2, Output 63.9.4,
Output 63.9.5, and Output 63.9.6 in Example 63.9.

Output 63.12.2 Model Information

The MI ProcedureThe MI Procedure

Model Information

Data Set WORK.FITNESS1

Method MCMC

INEST Data Set WORK.MIEST

Number of Imputations 6

Example 63.13: Transforming to Normality
This example applies the MCMC method to the Fitness1 data set in which the variable Oxygen is transformed.
Assume that Oxygen is skewed and can be transformed to normality with a logarithmic transformation. The
following statements invoke the MI procedure and specify the transformation. The TRANSFORM statement
specifies the log transformation for Oxygen. Note that the values displayed for Oxygen in all of the results
correspond to transformed values.

proc mi data=Fitness1 seed=32937921 mu0=50 10 180 out=outex13;
transform log(Oxygen);
mcmc chain=multiple displayinit;
var Oxygen RunTime RunPulse;

run;

The “Missing Data Patterns” table in Output 63.13.1 lists distinct missing data patterns with corresponding
statistics for the Fitness1 data. Note that the values of Oxygen shown in the tables are transformed values.

Output 63.13.1 Missing Data Patterns

The MI ProcedureThe MI Procedure

Missing Data Patterns

Group Means

Group Oxygen RunTime RunPulse Freq Percent Oxygen RunTime RunPulse

1 X X X 21 67.74 3.829760 10.809524 171.666667

2 X X . 4 12.90 3.851813 10.137500 .

3 X . . 3 9.68 3.955298 . .

4 . X X 1 3.23 . 11.950000 176.000000

5 . X . 2 6.45 . 9.885000 .

Transformed Variables: Oxygen
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The “Variable Transformations” table in Output 63.13.2 lists the variables that have been transformed.

Output 63.13.2 Variable Transformations

Variable
Transformations

Variable _Transform_

Oxygen LOG

The “Initial Parameter Estimates for MCMC” table in Output 63.13.3 displays the starting mean and
covariance estimates used in the MCMC method.

Output 63.13.3 Initial Parameter Estimates

Initial Parameter Estimates for MCMC

_TYPE_ _NAME_ Oxygen RunTime RunPulse

MEAN 3.846122 10.557605 171.382949

COV Oxygen 0.010827 -0.120891 -0.328772

COV RunTime -0.120891 1.744580 3.011180

COV RunPulse -0.328772 3.011180 82.747609

Transformed Variables: Oxygen

Output 63.13.4 displays variance information from the multiple imputation.

Output 63.13.4 Variance Information

Variance Information

Variance

Variable Between Within Total DF

Relative
Increase

in Variance

Fraction
Missing

Information
Relative

Efficiency

* Oxygen 0.000016175 0.000401 0.000420 26.499 0.048454 0.047232 0.990642

RunTime 0.001762 0.065421 0.067536 27.118 0.032318 0.031780 0.993684

RunPulse 0.205979 3.116830 3.364004 25.222 0.079303 0.075967 0.985034

* Transformed Variables

Output 63.13.5 displays parameter estimates from the multiple imputation. Note that the parameter value of
�0 has also been transformed using the logarithmic transformation.

Output 63.13.5 Parameter Estimates

Parameter Estimates

Variable Mean
Std

Error 95% Confidence Limits DF Minimum Maximum Mu0
t for H0:

Mean=Mu0 Pr > |t|

* Oxygen 3.845175 0.020494 3.8031 3.8873 26.499 3.838599 3.848456 3.912023 -3.26 0.0030

RunTime 10.560131 0.259876 10.0270 11.0932 27.118 10.493031 10.600498 10.000000 2.16 0.0402

RunPulse 171.802181 1.834122 168.0264 175.5779 25.222 171.251777 172.498626 180.000000 -4.47 0.0001

* Transformed Variables
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The following statements list the first 10 observations of the data set Outex13 in Output 63.13.6. Note that
the values for Oxygen are in the original scale.

proc print data=outex13(obs=10);
title 'First 10 Observations of the Imputed Data Set';

run;

Output 63.13.6 Imputed Data Set in Original Scale

First 10 Observations of the Imputed Data SetFirst 10 Observations of the Imputed Data Set

Obs _Imputation_ Oxygen RunTime RunPulse

1 1 44.6090 11.3700 178.000

2 1 45.3130 10.0700 185.000

3 1 54.2970 8.6500 156.000

4 1 59.5710 7.1440 167.012

5 1 49.8740 9.2200 170.092

6 1 44.8110 11.6300 176.000

7 1 38.5834 11.9500 176.000

8 1 43.7376 10.8500 158.851

9 1 39.4420 13.0800 174.000

10 1 60.0550 8.6300 170.000

Note that the results in Output 63.13.6 can also be produced from the following statements without using a
TRANSFORM statement. A transformed value of log(50)=3.91202 is used in the MU0= option.

data temp;
set Fitness1;
LogOxygen= log(Oxygen);

run;
proc mi data=temp seed=14337921 mu0=3.91202 10 180 out=outtemp;

mcmc chain=multiple displayinit;
var LogOxygen RunTime RunPulse;

run;
data outex13;

set outtemp;
Oxygen= exp(LogOxygen);

run;

Example 63.14: Multistage Imputation
This example uses two separate imputation procedures to complete the imputation process. In the first case,
the MI procedure statements use the MCMC method to impute just enough missing values for a data set with
an arbitrary missing pattern so that each imputed data set has a monotone missing pattern. In the second
case, the MI procedure statements use a MONOTONE statement to impute missing values for data sets with
monotone missing patterns.

The following statements are identical to those in Example 63.10. The statements invoke the MI procedure
and specify the IMPUTE=MONOTONE option to create the imputed data set with a monotone missing
pattern.
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proc mi data=Fitness1 seed=17655417 out=outex14;
mcmc impute=monotone;
var Oxygen RunTime RunPulse;

run;

The “Missing Data Patterns” table in Output 63.14.1 lists distinct missing data patterns with corresponding
statistics. Here, an “X” means that the variable is observed in the corresponding group, a “.” means that the
variable is missing and will be imputed to achieve the monotone missingness for the imputed data set, and
an “O” means that the variable is missing and will not be imputed. The table also displays group-specific
variable means.

Output 63.14.1 Missing Data Patterns

The MI ProcedureThe MI Procedure

Missing Data Patterns

Group Means

Group Oxygen RunTime RunPulse Freq Percent Oxygen RunTime RunPulse

1 X X X 21 67.74 46.353810 10.809524 171.666667

2 X X O 4 12.90 47.109500 10.137500 .

3 X O O 3 9.68 52.461667 . .

4 . X X 1 3.23 . 11.950000 176.000000

5 . X O 2 6.45 . 9.885000 .

As shown in the table, the MI procedure needs to impute only three missing values from group 4 and group 5
to achieve a monotone missing pattern for the imputed data set. When the MCMC method is used to produce
an imputed data set with a monotone missing pattern, tables of variance information and parameter estimates
are not created.

The following statements impute one value for each missing value in the monotone missingness data set
Outex14:

proc mi data=outex14
nimpute=1 seed=51343672
out=outex14a;

monotone reg;
var Oxygen RunTime RunPulse;
by _Imputation_;

run;

You can then analyze these data sets by using other SAS procedures and combine these results by using the
MIANALYZE procedure. Note that the VAR statement is required with a MONOTONE statement to provide
the variable order for the monotone missing pattern.
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The “Model Information” table in Output 63.14.2 shows that a monotone method is used to generate imputed
values in the first BY group.

Output 63.14.2 Model Information

The MI ProcedureThe MI Procedure

Imputation Number=1

Model Information

Data Set WORK.OUTEX14

Method Monotone

Number of Imputations 1

Seed for random number generator 51343672

The “Monotone Model Specification” table in Output 63.14.3 describes methods and imputed variables in
the imputation model. The MI procedure uses the regression method to impute the variables RunTime and
RunPulse in the model.

Output 63.14.3 Monotone Model Specification

Imputation Number=1

Monotone Model
Specification

Method
Imputed
Variables

Regression RunTime RunPulse

The “Missing Data Patterns” table in Output 63.14.4 lists distinct missing data patterns with corresponding
statistics. It shows a monotone missing pattern for the imputed data set.

Output 63.14.4 Missing Data Patterns

Imputation Number=1

Missing Data Patterns

Group Means

Group Oxygen RunTime RunPulse Freq Percent Oxygen RunTime RunPulse

1 X X X 22 70.97 46.057479 10.861364 171.863636

2 X X . 6 19.35 46.745227 10.053333 .

3 X . . 3 9.68 52.461667 . .

The following statements list the first 10 observations of the data set Outex14a in Output 63.14.5:

proc print data=outex14a(obs=10);
title 'First 10 Observations of the Imputed Data Set';

run;
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Output 63.14.5 Imputed Data Set

First 10 Observations of the Imputed Data SetFirst 10 Observations of the Imputed Data Set

Obs _Imputation_ Oxygen RunTime RunPulse

1 1 44.6090 11.3700 178.000

2 1 45.3130 10.0700 185.000

3 1 54.2970 8.6500 156.000

4 1 59.5710 7.1569 169.914

5 1 49.8740 9.2200 159.315

6 1 44.8110 11.6300 176.000

7 1 39.8345 11.9500 176.000

8 1 45.3196 10.8500 151.252

9 1 39.4420 13.0800 174.000

10 1 60.0550 8.6300 170.000

This example presents an alternative to the full-data MCMC imputation, in which imputation of only a few
missing values is needed to achieve a monotone missing pattern for the imputed data set. The example uses
a monotone MCMC method that imputes fewer missing values in each iteration and achieves approximate
stationarity in fewer iterations (Schafer 1997, p. 227). The example also demonstrates how to combine the
monotone MCMC method with a method for monotone missing data, which does not rely on iterations of
steps.

Example 63.15: Creating Control-Based Pattern Imputation in Sensitivity
Analysis

This example illustrates the pattern-mixture model approach to multiple imputation under the MNAR
assumption by creating control-based pattern imputation.

Suppose that a pharmaceutical company is conducting a clinical trial to test the efficacy of a new drug. The
trial consists of two groups of equally allocated patients: a treatment group that receives the new drug and a
placebo control group. The variable Trt is an indicator variable, with a value of 1 for patients in the treatment
group and a value of 0 for patients in the control group. The variable Y0 is the baseline efficacy score, and
the variable Y1 is the efficacy score at a follow-up visit.

If the data set does not contain any missing values, then a regression model such as

Y1 D Trt Y0

can be used to test the the treatment effect.

Suppose that the variables Trt and Y0 are fully observed and the variable Y1 contains missing values in both
the treatment and control groups. Multiple imputation for missing values often assumes that the values
are missing at random. But if missing Y1 values for individuals in the treatment group imply that these
individuals no longer receive the treatment, then it is reasonable to assume that the conditional distribution of
Y1 given Y0 for individuals who have missing Y1 values in the treatment group is similar to the corresponding
distribution of individuals in the control group.

Ratitch and O’Kelly (2011) describe an implementation of the pattern-mixture model approach that uses a
control-based pattern imputation. That is, an imputation model for the missing observations in the treatment
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group is constructed not from the observed data in the treatment group but rather from the observed data in
the control group. This model is also the imputation model that is used to impute missing observations in the
control group.

Table 63.10 shows the variables in the data set. For the control-based pattern imputation, all missing Y1
values are imputed based on the model that is constructed using observed Y1 data from the control group
(Trt=0) only.

Table 63.10 Variables

Variables
Trt Y0 Y1

0 X X
1 X X

0 X .
1 X .

Suppose the data set Mono1 contains the data from the trial that have missing values in Y1. Output 63.15.1
lists the first 10 observations.

Output 63.15.1 Clinical Trial Data

First 10 Obs in the Trial DataFirst 10 Obs in the Trial Data

Obs Trt y0 y1

1 0 10.5212 11.3604

2 0 8.5871 8.5178

3 0 9.3274 .

4 0 9.7519 .

5 0 9.3495 9.4369

6 1 11.5192 13.2344

7 1 10.7841 .

8 1 9.7717 10.9407

9 1 10.1455 10.8279

10 1 8.2463 9.6844

The following statements implement the control-based pattern imputation:

proc mi data=Mono1 seed=14823 nimpute=10 out=outex15;
class Trt;
monotone reg (/details);
mnar model( y1 / modelobs= (Trt='0'));
var y0 y1;

run;

The MNAR statement imputes missing values for scenarios under the MNAR assumption. The MODEL
option specifies that only observations where TRT=0 are used to derive the imputation model for the variable
Y1. Thus, Y0 and Y1 (but not Trt) are specified in the VAR list.
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The “Model Information” table in Output 63.15.2 describes the method that is used in the multiple imputation
process.

Output 63.15.2 Model Information

The MI ProcedureThe MI Procedure

Model Information

Data Set WORK.MONO1

Method Monotone

Number of Imputations 10

Seed for random number generator 14823

The “Monotone Model Specification” table in Output 63.15.3 describes methods and imputed variables in
the imputation model. The MI procedure uses the regression method to impute the variable Y1.

Output 63.15.3 Monotone Model Specification

Monotone Model
Specification

Method
Imputed
Variables

Regression y1

The “Missing Data Patterns” table in Output 63.15.4 lists distinct missing data patterns and their correspond-
ing frequencies and percentages. The table confirms a monotone missing pattern for these variables.

Output 63.15.4 Missing Data Patterns

Missing Data Patterns

Group Means

Group y0 y1 Freq Percent y0 y1

1 X X 75 75.00 9.996993 10.709706

2 X . 25 25.00 10.181488 .

By default, for each imputed variable, all available observations are used in the imputation model. When you
specify the MODEL option in the MNAR statement, the “Observations Used for Imputation Models Under
MNAR Assumption” table in Output 63.15.5 lists the subset of observations that are used for the imputation
model for Y1.

Output 63.15.5 Observations Used for Imputation Models under MNAR Assumption

Observations Used
for Imputation Models

Under MNAR
Assumption

Imputed
Variable Observations

y1 Trt = 0
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When you specify the DETAILS option, the parameters that are estimated from the observed data and the
parameters that are used in each imputation are displayed in Output 63.15.6.

Output 63.15.6 Regression Model

Regression Models for
Monotone Method

Imputed
Variable Effect Obs-Data

y1 Intercept -0.30169

y1 y0 0.69364

Regression Models for Monotone Method

Imputation

Imputed
Variable Effect 1 2 3 4 5 6 7 8 9 10

y1 Intercept -0.174265 -0.280404 -0.275183 0.090601 -0.457480 -0.241909 -0.501351 -0.058460 -0.436650 -0.509949

y1 y0 0.641733 0.629970 0.507776 0.752283 0.831001 0.970075 0.724584 0.623638 0.563499 0.621280

The following statements list the first 10 observations of the output data set Outex15 in Output 63.15.7:

proc print data=outex15(obs=10);
title 'First 10 Observations of the Imputed Data Set';

run;

Output 63.15.7 Imputed Data Set

First 10 Observations of the Imputed Data SetFirst 10 Observations of the Imputed Data Set

Obs _Imputation_ Trt y0 y1

1 1 0 10.5212 11.3604

2 1 0 8.5871 8.5178

3 1 0 9.3274 9.5786

4 1 0 9.7519 9.6060

5 1 0 9.3495 9.4369

6 1 1 11.5192 13.2344

7 1 1 10.7841 10.7873

8 1 1 9.7717 10.9407

9 1 1 10.1455 10.8279

10 1 1 8.2463 9.6844

Example 63.16: Adjusting Imputed Continuous Values in Sensitivity Analysis
This example illustrates the pattern-mixture model approach to multiple imputation under the MNAR
assumption by using specified shift parameters to adjust imputed continuous values.

Suppose that a pharmaceutical company is conducting a clinical trial to test the efficacy of a new drug. The
trial consists of two groups of equally allocated patients: a treatment group that receives the new drug and a
placebo control group. The variable Trt is an indicator variable, with a value of 1 for patients in the treatment
group and a value of 0 for patients in the control group. The variable Y0 is the baseline efficacy score, and
the variables Y1 and Y2 are the efficacy scores at two successive follow-up visits.
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Suppose the data set Fcs1 contains the data from the trial that have possible missing values in Y1 and Y2.
Output 63.16.1 lists the first 10 observations in the data set Fcs1.

Output 63.16.1 Clinical Trial Data

First 10 Obs in the Trial DataFirst 10 Obs in the Trial Data

Obs Trt y0 y1 y2

1 0 11.4826 11.0428 13.1181

2 0 9.6775 11.0418 8.9792

3 0 9.9504 . 11.2598

4 0 11.0282 11.4097 .

5 0 10.7107 10.5782 .

6 1 9.0601 8.4791 10.6421

7 1 9.0467 9.4985 10.4719

8 1 10.6290 9.4941 .

9 1 10.1277 10.9886 11.1983

10 1 9.6910 8.4576 10.9535

Also suppose that for the treatment group, the distribution of missing Y1 responses has an expected value
that is 0.4 lower than that of the corresponding distribution of the observed Y1 responses. Similarly, the
distribution of missing Y2 responses has an expected value that is 0.5 lower than that of the corresponding
distribution of the observed Y1 responses.

The following statements adjust the imputed Y1 and Y2 values by –0.4 and –0.5, respectively, for observations
in the treatment group:

proc mi data=Fcs1 seed=52387 nimpute=5 out=outex16;
class Trt;
fcs nbiter=25 reg( /details);
mnar adjust( y1 /shift=-0.4 adjustobs=(Trt='1'))

adjust( y2 /shift=-0.5 adjustobs=(Trt='1'));
var Trt y0 y1 y2;

run;

The MNAR statement imputes missing values for scenarios under the MNAR assumption. The ADJUST
option specifies parameters for adjusting the imputed values for specified subsets of observations. The first
ADJUST option specifies the shift parameter ı D �0:4 for the imputed Y1 values for observations for which
TRT=1. The second ADJUST option specifies the shift parameter ı D �0:5 for the imputed Y2 values for
observations for which TRT=1.

Because Trt is listed in the VAR statement, it is used as a covariate for other imputed variables in the
imputation process. In addition, because Trt is specified in the ADJUSTOBS= suboption, it is also used to
select the subset of observations from which the imputed values for the variable are to be adjusted.
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The “Model Information” table in Output 63.16.2 describes the method that is used in the multiple imputation
process.

Output 63.16.2 Model Information

The MI ProcedureThe MI Procedure

Model Information

Data Set WORK.FCS1

Method FCS

Number of Imputations 5

Number of Burn-in Iterations 25

Seed for random number generator 52387

The “FCS Model Specification” table in Output 63.16.3 describes methods and imputed variables in the
imputation model. The MI procedure uses the regression method to impute all the variables.

Output 63.16.3 FCS Model Specification

FCS Model Specification

Method
Imputed
Variables

Regression y0 y1 y2

Discriminant Function Trt

The “Missing Data Patterns” table in Output 63.16.4 lists distinct missing data patterns and their correspond-
ing frequencies and percentages.

Output 63.16.4 Missing Data Patterns

Missing Data Patterns

Group Means

Group Trt y0 y1 y2 Freq Percent y0 y1 y2

1 X X X X 39 39.00 10.108397 10.380942 10.606255

2 X X X . 29 29.00 10.207179 10.626839 .

3 X X . X 32 32.00 9.604041 . 10.396557

The “MNAR Adjustments to Imputed Values” table in Output 63.16.5 lists the adjustment parameters for the
five imputations.

Output 63.16.5 MNAR Adjustments to Imputed Values

MNAR Adjustments to Imputed
Values

Imputed
Variable Observations Shift

y1 Trt = 1 -0.4000

y2 Trt = 1 -0.5000
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The following statements list the first 10 observations of the data set Outex16 in Output 63.16.6:

proc print data=outex16(obs=10);
var _Imputation_ Trt y0 y1 y2;
title 'First 10 Observations of the Imputed Data Set';

run;

Output 63.16.6 Imputed Data Set

First 10 Observations of the Imputed Data SetFirst 10 Observations of the Imputed Data Set

Obs _Imputation_ Trt y0 y1 y2

1 1 0 11.4826 11.0428 13.1181

2 1 0 9.6775 11.0418 8.9792

3 1 0 9.9504 11.1409 11.2598

4 1 0 11.0282 11.4097 10.8214

5 1 0 10.7107 10.5782 9.4899

6 1 1 9.0601 8.4791 10.6421

7 1 1 9.0467 9.4985 10.4719

8 1 1 10.6290 9.4941 10.7865

9 1 1 10.1277 10.9886 11.1983

10 1 1 9.6910 8.4576 10.9535

Example 63.17: Adjusting Imputed Classification Levels in Sensitivity
Analysis

This example illustrates the pattern-mixture model approach to multiple imputation under the MNAR
assumption by adjusting imputed classification levels.

Carpenter and Kenward (2013, pp. 240–241) describe an implementation of sensitivity analysis that adjusts
an imputed missing covariate, where the covariate is a nominal classification variable.

Suppose a high school class is conducting a study to analyze the effects of an extra web-based study class
and grade level on the improvement of test scores. The regression model that is used for the study is

Score D Grade Study Score0

where Grade is the grade level (with the values 6 to 8), Study is an indicator variable (with the values 1 for
“completes the study class” and 0 for “does not complete the study class”), Score0 is the current test score,
and Score is the test score for the subsequent test.



5150 F Chapter 63: The MI Procedure

Also suppose that Study, Score0, and Score are fully observed and the classification variable Grade contains
missing grade levels. Output 63.17.1 lists the first 10 observations in the data set Mono2.

Output 63.17.1 Student Test Data

First 10 Obs in the Student Test DataFirst 10 Obs in the Student Test Data

Obs Grade Score0 Score Study

1 6 64.4898 68.8210 1

2 6 72.0700 76.5328 1

3 6 65.7766 75.5567 1

4 . 70.2853 76.0180 1

5 6 74.3388 80.0617 1

6 6 70.2207 76.1606 1

7 6 68.6904 77.9770 1

8 . 72.6758 79.6895 1

9 6 64.8939 69.3889 1

10 6 66.6038 72.7793 1

The following statements use the MONOTONE and MNAR statements to impute missing values for Grade
under the MNAR assumption:

proc mi data=Mono2 seed=34857 nimpute=10 out=outex17;
class Study Grade;
monotone logistic (Grade / link=glogit);
mnar adjust( Grade (event='6') /shift=2);
var Study Score0 Score Grade;

run;

The LINK=GLOGIT suboption specifies that the generalized logit function be used in fitting the logistic
model for Grade. The ADJUST option specifies a shift parameter ı D 2 that is applied to the generalized
logit model function values for the response level GRADE=6. This assumes that students who have a missing
grade level are more likely to be students in grade 6.

The “Model Information” table in Output 63.17.2 describes the method that is used in the multiple imputation
process.

Output 63.17.2 Model Information

The MI ProcedureThe MI Procedure

Model Information

Data Set WORK.MONO2

Method Monotone

Number of Imputations 10

Seed for random number generator 34857

The “Monotone Model Specification” table in Output 63.17.3 describes methods and imputed variables in
the imputation model. The MI procedure uses the logistic regression method (generalized logit model) to
impute the variable Grade.
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Output 63.17.3 Monotone Model Specification

Monotone Model Specification

Method
Imputed
Variables

Regression Score0 Score

Logistic Regression Grade

The “Missing Data Patterns” table in Output 63.17.4 lists distinct missing data patterns and their correspond-
ing frequencies and percentages.

Output 63.17.4 Missing Data Patterns

Missing Data Patterns

Group Means

Group Study Score0 Score Grade Freq Percent Score0 Score

1 X X X X 128 85.33 70.418230 74.469573

2 X X X . 22 14.67 69.338503 73.666293

The “MNAR Adjustments to Imputed Values” table in Output 63.17.5 lists the adjustment parameter for the
10 imputations.

Output 63.17.5 MNAR Adjustments to Imputed Values

MNAR Adjustments to
Imputed Values

Imputed
Variable Event Shift

Grade 6 2.0000

The following statements list the first 10 observations of the data set Outex17 in Output 63.17.6:

proc print data=outex17(obs=10);
var _Imputation_ Grade Study Score0 Score;
title 'First 10 Observations of the Imputed Student Test Data Set';

run;

Output 63.17.6 Imputed Data Set

First 10 Observations of the Imputed Student Test Data SetFirst 10 Observations of the Imputed Student Test Data Set

Obs _Imputation_ Grade Study Score0 Score

1 1 6 1 64.4898 68.8210

2 1 6 1 72.0700 76.5328

3 1 6 1 65.7766 75.5567

4 1 6 1 70.2853 76.0180

5 1 6 1 74.3388 80.0617

6 1 6 1 70.2207 76.1606

7 1 6 1 68.6904 77.9770

8 1 6 1 72.6758 79.6895

9 1 6 1 64.8939 69.3889

10 1 6 1 66.6038 72.7793
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Example 63.18: Adjusting Imputed Values with Parameters in a Data Set
This example illustrates the pattern-mixture model approach in multiple imputation under the MNAR
assumption by adjusting imputed values, using parameters that are stored in a data set.

Suppose that a pharmaceutical company is conducting a clinical trial to test the efficacy of a new drug. The
trial consists of two groups of equally allocated patients: a treatment group that receives the new drug and a
placebo control group. The variable Trt is an indicator variable, with a value of 1 for patients in the treatment
group and a value of 0 for patients in the control group. The variable Y0 is the baseline efficacy score, and
the variable Y1 is the efficacy score at a follow-up visit.

If the data set does not contain any missing values, then a regression model such as

Y1 D Trt Y0

can be used to test the efficacy of the treatment effect.

Now suppose that the variables Trt and Y0 are fully observed and the variable Y1 contains missing values in
both the treatment and control groups. Table 63.11 shows the variables in the data set.

Table 63.11 Variables

Variables
Trt Y0 Y1

0 X X
1 X X

0 X .
1 X .

Suppose the data set Mono3 contains the data from the trial that have missing values in Y1. Output 63.18.1
lists the first 10 observations.

Output 63.18.1 Clinical Trial Data

First 10 Obs in the Trial DataFirst 10 Obs in the Trial Data

Obs Trt y0 y1

1 0 10.5212 11.3604

2 0 8.5871 8.5178

3 0 9.3274 .

4 0 9.7519 .

5 0 9.3495 9.4369

6 1 11.5192 13.1344

7 1 10.7841 .

8 1 9.7717 10.8407

9 1 10.1455 10.7279

10 1 8.2463 9.5844
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Multiple imputation often assumes that missing values are MAR. Here, however, it is plausible that the
distributions of missing Y1 responses in the treatment and control groups have lower expected values than
the corresponding distributions of the observed Y1 responses. Carpenter and Kenward (2013, pp. 129–130)
describe an implementation of the pattern-mixture model approach that uses different shift parameters for the
treatment and control groups, where the two parameters are correlated.

Assume that the expected shifts of the missing follow-up responses in the control and treatment groups, ıc
and ıt , have a multivariate normal distribution�

ıc
ıt

�
� N

��
�0:5

�1

�
;

�
0:01 0:001

0:001 0:01

��

The following statements generate shift parameters for the control and treatment groups for six imputations:

proc iml;

nimpute= 6;
call randseed( 15323);
mean= { -0.5 -1};
cov= { 0.01 0.001 , 0.001 0.01};

/*---- Simulate nimpute bivariate normal variates ----*/
d= randnormal( nimpute, mean, cov);

impu= j(nimpute, 1, 0);
do j=1 to nimpute; impu[j,]= j; end;
delta= impu || d;

/*--- Output shift parameters for groups ----*/
create parm1 from delta[colname={_Imputation_ Shift_C Shift_T}];
append from delta;

quit;

Output 63.18.2 lists the generated shift parameters in Parm1.

Output 63.18.2 Shift Parameters for Imputations

Shift Parameters for ImputationsShift Parameters for Imputations

Obs _IMPUTATION_ SHIFT_C SHIFT_T

1 1 -0.56986 -0.90494

2 2 -0.38681 -0.84523

3 3 -0.58342 -0.92793

4 4 -0.48210 -0.99031

5 5 -0.57188 -1.02095

6 6 -0.57604 -1.00853
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The following statements impute missing values for Y1 under the MNAR assumption. The shift parameters
for the 10 imputations that are stored in the Parm1 data set are used to adjust the imputed values.

proc mi data=Mono3 seed=1423741 nimpute=6 out=outex18;
class Trt;
monotone reg;
mnar adjust( y1 / adjustobs=(Trt='0') parms(shift=shift_c)=parm1)

adjust( y1 / adjustobs=(Trt='1') parms(shift=shift_t)=parm1);
var Trt y0 y1;

run;

The ADJUST option specifies parameters for adjusting the imputed values of Y1 for specified subsets of
observations. The first ADJUST option specifies that the shift parameters that are stored in the variable
SHIFT_C are to be applied to the imputed Y1 values of observations where TRT=0 for the corresponding
imputations. The second ADJUST option specifies that the shift parameters that are stored in the variable
SHIFT_T are to be applied to the imputed Y1 values of observations where TRT=1 for the corresponding
imputations.

The “Model Information” table in Output 63.18.3 describes the method that is used in the multiple imputation
process.

Output 63.18.3 Model Information

The MI ProcedureThe MI Procedure

Model Information

Data Set WORK.MONO3

Method Monotone

Number of Imputations 6

Seed for random number generator 1423741

The “Monotone Model Specification” table in Output 63.18.4 describes methods and imputed variables in
the imputation model. The MI procedure uses the regression method to impute the variable Y1.

Output 63.18.4 Monotone Model Specification

Monotone Model
Specification

Method
Imputed
Variables

Regression y0 y1

The “Missing Data Patterns” table in Output 63.18.5 lists distinct missing data patterns and their correspond-
ing frequencies and percentages. The table confirms a monotone missing pattern for these variables.

Output 63.18.5 Missing Data Patterns

Missing Data Patterns

Group Means

Group Trt y0 y1 Freq Percent y0 y1

1 X X X 75 75.00 9.996993 10.655039

2 X X . 25 25.00 10.181488 .
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The “MNAR Adjustments to Imputed Values” table in Output 63.18.6 lists the adjustment parameters for the
10 imputations.

Output 63.18.6 MNAR Adjustments to Imputed Values

MNAR Adjustments to Imputed Values

Imputed
Variable Imputation Observations Shift

y1 1 Trt = 0 -0.5699

1 Trt = 1 -0.9049

2 Trt = 0 -0.3868

2 Trt = 1 -0.8452

3 Trt = 0 -0.5834

3 Trt = 1 -0.9279

4 Trt = 0 -0.4821

4 Trt = 1 -0.9903

5 Trt = 0 -0.5719

5 Trt = 1 -1.0209

6 Trt = 0 -0.5760

6 Trt = 1 -1.0085

The following statements list the first 10 observations of the data set Outex18 in Output 63.18.7:

proc print data=outex18(obs=10);
var _Imputation_ Trt Y0 Y1;
title 'First 10 Observations of the Imputed Data Set';

run;

Output 63.18.7 Imputed Data Set

First 10 Observations of the Imputed Data SetFirst 10 Observations of the Imputed Data Set

Obs _Imputation_ Trt y0 y1

1 1 0 10.5212 11.3604

2 1 0 8.5871 8.5178

3 1 0 9.3274 8.2456

4 1 0 9.7519 10.5152

5 1 0 9.3495 9.4369

6 1 1 11.5192 13.1344

7 1 1 10.7841 9.4660

8 1 1 9.7717 10.8407

9 1 1 10.1455 10.7279

10 1 1 8.2463 9.5844
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Overview: MIANALYZE Procedure
The MIANALYZE procedure combines the results of the analyses of imputations and generates valid
statistical inferences. Multiple imputation provides a useful strategy for analyzing data sets with missing
values. Instead of filling in a single value for each missing value, Rubin’s (1976, 1987) multiple imputation
strategy replaces each missing value with a set of plausible values that represent the uncertainty about the
right value to impute.

Multiple imputation inference involves three distinct phases:

1. The missing data are filled in m times to generate m complete data sets.

2. The m complete data sets are analyzed using standard statistical analyses.

3. The results from the m complete data sets are combined to produce inferential results.

A companion procedure, PROC MI, creates multiply imputed data sets for incomplete multivariate data. It
uses methods that incorporate appropriate variability across the m imputations.

The analyses of imputations are obtained by using standard SAS procedures (such as PROC REG) for
complete data. No matter which complete-data analysis is used, the process of combining results from
different imputed data sets is essentially the same and results in valid statistical inferences that properly
reflect the uncertainty due to missing values. These results of analyses are combined in the MIANALYZE
procedure to derive valid inferences.

The MIANALYZE procedure reads parameter estimates and associated standard errors or covariance matrix
that are computed by the standard statistical procedure for each imputed data set. The MIANALYZE
procedure then derives valid univariate inference for these parameters. With an additional assumption about
the population between and within imputation covariance matrices, multivariate inference based on Wald
tests can also be derived.

The MODELEFFECTS statement lists the effects to be analyzed, and the CLASS statement lists the
classification variables in the MODELEFFECTS statement. The variables in the MODELEFFECTS statement
that are not specified in a CLASS statement are assumed to be continuous.

When each effect in the MODELEFFECTS statement is a continuous variable by itself, a STDERR statement
specifies the standard errors when both parameter estimates and associated standard errors are stored as
variables in the same data set.

For some parameters of interest, you can use TEST statements to test linear hypotheses about the parameters.
For others, it is not straightforward to compute estimates and associated covariance matrices with standard
statistical SAS procedures. Examples include correlation coefficients between two variables and ratios of
variable means. These special cases are described in the section “Examples of the Complete-Data Inferences”
on page 5178.
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Getting Started: MIANALYZE Procedure
The Fitness data described in the REG procedure are measurements of 31 individuals in a physical fitness
course. See Chapter 85, “The REG Procedure,” for more information. The Fitness1 data set is constructed
from the Fitness data set and contains three variables: Oxygen, RunTime, and RunPulse. Some values have
been set to missing, and the resulting data set has an arbitrary pattern of missingness in these three variables.

*----------------- Data on Physical Fitness -----------------*
| These measurements were made on men involved in a physical |
| fitness course at N.C. State University. |
| Only selected variables of |
| Oxygen (oxygen intake, ml per kg body weight per minute), |
| Runtime (time to run 1.5 miles in minutes), and |
| RunPulse (heart rate while running) are used. |
| Certain values were changed to missing for the analysis. |

*------------------------------------------------------------*;
data Fitness1;

input Oxygen RunTime RunPulse @@;
datalines;

44.609 11.37 178 45.313 10.07 185
54.297 8.65 156 59.571 . .
49.874 9.22 . 44.811 11.63 176

. 11.95 176 . 10.85 .
39.442 13.08 174 60.055 8.63 170
50.541 . . 37.388 14.03 186
44.754 11.12 176 47.273 . .
51.855 10.33 166 49.156 8.95 180
40.836 10.95 168 46.672 10.00 .
46.774 10.25 . 50.388 10.08 168
39.407 12.63 174 46.080 11.17 156
45.441 9.63 164 . 8.92 .
45.118 11.08 . 39.203 12.88 168
45.790 10.47 186 50.545 9.93 148
48.673 9.40 186 47.920 11.50 170
47.467 10.50 170
;

Suppose that the data are multivariate normally distributed and that the missing data are missing at random
(see the “Statistical Assumptions for Multiple Imputation” section in the chapter “The MI Procedure” for a
description of these assumptions). The following statements use the MI procedure to impute missing values
for the Fitness1 data set:

proc mi data=Fitness1 seed=3237851 noprint out=outmi;
var Oxygen RunTime RunPulse;

run;

The MI procedure creates imputed data sets, which are stored in the Outmi data set. A variable named
_Imputation_ indicates the imputation numbers. Based on m imputations, m different sets of the point and
variance estimates for a parameter can be computed. In this example, m = 5 is the default.
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The following statements generate regression coefficients for each of the five imputed data sets:

proc reg data=outmi outest=outreg covout noprint;
model Oxygen= RunTime RunPulse;
by _Imputation_;

run;

The following statements display (in Figure 64.1) output parameter estimates and covariance matrices from
PROC REG for the first two imputed data sets:

proc print data=outreg(obs=8);
var _Imputation_ _Type_ _Name_

Intercept RunTime RunPulse;
title 'Parameter Estimates from Imputed Data Sets';

run;

Figure 64.1 Parameter Estimates

Parameter Estimates from Imputed Data SetsParameter Estimates from Imputed Data Sets

Obs _Imputation_ _TYPE_ _NAME_ Intercept RunTime RunPulse

1 1 PARMS 86.544 -2.82231 -0.05873

2 1 COV Intercept 100.145 -0.53519 -0.55077

3 1 COV RunTime -0.535 0.10774 -0.00345

4 1 COV RunPulse -0.551 -0.00345 0.00343

5 2 PARMS 83.021 -3.00023 -0.02491

6 2 COV Intercept 79.032 -0.66765 -0.41918

7 2 COV RunTime -0.668 0.11456 -0.00313

8 2 COV RunPulse -0.419 -0.00313 0.00264

The following statements combine the five sets of regression coefficients:

proc mianalyze data=outreg;
modeleffects Intercept RunTime RunPulse;

run;

The “Model Information” table in Figure 64.2 lists the input data set(s) and the number of imputations.

Figure 64.2 Model Information Table

The MIANALYZE ProcedureThe MIANALYZE Procedure

Model Information

Data Set WORK.OUTREG

Number of Imputations 5

The “Variance Information” table in Figure 64.3 displays the between-imputation, within-imputation, and
total variances for combining complete-data inferences. It also displays the degrees of freedom for the total
variance, the relative increase in variance due to missing values, the fraction of missing information, and the
relative efficiency for each parameter estimate.
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Figure 64.3 Variance Information Table

Variance Information

Variance

Parameter Between Within Total DF

Relative
Increase

in Variance

Fraction
Missing

Information
Relative

Efficiency

Intercept 45.529229 76.543614 131.178689 23.059 0.713777 0.461277 0.915537

RunTime 0.019390 0.106220 0.129487 123.88 0.219051 0.192620 0.962905

RunPulse 0.001007 0.002537 0.003746 38.419 0.476384 0.355376 0.933641

The “Parameter Estimates” table in Figure 64.4 displays a combined estimate and standard error for each
regression coefficient (parameter). Inferences are based on t distributions. The table displays a 95%
confidence interval and a t test with the associated p-value for the hypothesis that the parameter is equal to
the value specified with the THETA0= option (in this case, zero by default). The minimum and maximum
parameter estimates from the imputed data sets are also displayed.

Figure 64.4 Parameter Estimates

Parameter Estimates

Parameter Estimate Std Error 95% Confidence Limits DF Minimum Maximum Theta0
t for H0:

Parameter=Theta0 Pr > |t|

Intercept 90.837440 11.453327 67.14779 114.5271 23.059 83.020730 100.839807 0 7.93 <.0001

RunTime -3.032870 0.359844 -3.74511 -2.3206 123.88 -3.204426 -2.822311 0 -8.43 <.0001

RunPulse -0.068578 0.061204 -0.19243 0.0553 38.419 -0.112840 -0.024910 0 -1.12 0.2695

Syntax: MIANALYZE Procedure
The following statements are available in the MIANALYZE procedure:

PROC MIANALYZE < options > ;
BY variables ;
CLASS variables ;
MODELEFFECTS effects ;
< label: > TEST equation1 < , . . . , < equationk > > < / options > ;
STDERR variables ;

The BY statement specifies groups in which separate analyses are performed.

The CLASS statement lists the classification variables in the MODELEFFECTS statement. Classification
variables can be either character or numeric.

The required MODELEFFECTS statement lists the effects to be analyzed. The variables in the statement that
are not specified in a CLASS statement are assumed to be continuous.

The STDERR statement lists the standard errors associated with the effects in the MODELEFFECTS
statement when both parameter estimates and standard errors are saved as variables in the same DATA= data
set. The STDERR statement can be used only when each effect in the MODELEFFECTS statement is a
continuous variable by itself.
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The TEST statement tests linear hypotheses about the parameters. An F statistic is used to jointly test the
null hypothesis (H0 W L˛ D c) specified in a single TEST statement. Several TEST statements can be used.

The PROC MIANALYZE and MODELEFFECTS statements are required for the MIANALYZE procedure.
The rest of this section provides detailed syntax information for each of these statements, beginning with the
PROC MIANALYZE statement. The remaining statements are in alphabetical order.

PROC MIANALYZE Statement
PROC MIANALYZE < options > ;

The PROC MIANALYZE statement invokes the MIANALYZE procedure. Table 64.1 summarizes the options
available in the PROC MIANALYZE statement.

Table 64.1 Summary of PROC MIANALYZE Options

Option Description

Input Data Sets
DATA= Specifies the COV, CORR, or EST type data set
DATA= Specifies the data set for parameter estimates and standard errors
PARMS= Specifies the data set for parameter estimates
PARMINFO= Specifies the data set for parameter information
COVB= Specifies the data set for covariance matrices
XPXI= Specifies the data set for .X0X/�1 matrices

Statistical Analysis
THETA0= Specifies parameters under the null hypothesis
ALPHA= Specifies the level for the confidence interval
EDF= Specifies the complete-data degrees of freedom

Printed Output
WCOV Displays the within-imputation covariance matrix
BCOV Displays the between-imputation covariance matrix
TCOV Displays the total covariance matrix
MULT Displays multivariate inferences

The following options can be used in the PROC MIANALYZE statement. They are listed in alphabetical
order.

ALPHA=˛
specifies that confidence limits are to be constructed for the parameter estimates with confidence level
100.1 � ˛/%, where 0 < ˛ < 1. The default is ALPHA=0.05.

BCOV
displays the between-imputation covariance matrix.
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COVB < (EFFECTVAR=STACKING | ROWCOL) > =SAS-data-set
names an input SAS data set that contains covariance matrices of the parameter estimates from imputed
data sets. If you provide a COVB= data set, you must also provide a PARMS= data set.

The EFFECTVAR= option identifies the variables for parameters displayed in the covariance matrix and
is used only when the PARMINFO= option is not specified. The default is EFFECTVAR= STACKING.

See the section “Input Data Sets” on page 5170 for a detailed description of the COVB= option.

DATA=SAS-data-set
names an input SAS data set.

If the input DATA= data set is not a specially structured SAS data set, the data set contains both
the parameter estimates and associated standard errors. The parameter estimates are specified in the
MODELEFFECTS statement and the standard errors are specified in the STDERR statement.

If the data set is a specially structured input SAS data set, it must have a TYPE of EST, COV, or CORR
that contains estimates from imputed data sets:

• If TYPE=EST, the data set contains the parameter estimates and associated covariance matrices.

• If TYPE=COV, the data set contains the sample means, sample sizes, and covariance matrices.
Each covariance matrix for variables is divided by the sample size n to create the covariance
matrix for parameter estimates.

• If TYPE=CORR, the data set contains the sample means, sample sizes, standard errors, and
correlation matrices. The covariance matrices are computed from the correlation matrices and
associated standard errors. Each covariance matrix for variables is divided by the sample size n
to create the covariance matrix for parameter estimates.

If you do not specify an input data set with the DATA= or PARMS= option, then the most recently
created SAS data set is used as an input DATA= data set. See the section “Input Data Sets” on
page 5170 for a detailed description of the input data sets.

EDF=number
specifies the complete-data degrees of freedom for the parameter estimates. This is used to compute
an adjusted degrees of freedom for each parameter estimate. By default, EDF=1 and the degrees of
freedom for each parameter estimate are not adjusted.

MULT

MULTIVARIATE
requests multivariate inference for the parameters. It is based on Wald tests and is a generalization
of the univariate inference. See the section “Multivariate Inferences” on page 5176 for a detailed
description of the multivariate inference.

PARMINFO=SAS-data-set
names an input SAS data set that contains parameter information associated with variables PRM1,
PRM2,. . . , and so on. These variables are used as variables for parameters in a COVB= data set. See
the section “Input Data Sets” on page 5170 for a detailed description of the PARMINFO= option.
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PARMS < (options) > =SAS-data-set
names an input SAS data set that contains parameter estimates computed from imputed data sets. When
a COVB= data set is not specified, the input PARMS= data set also contains standard errors associated
with these parameter estimates. If multivariate inference is requested, you must also provide a COVB=
or XPXI= data set.

The available options are as follows:

CLASSVAR=FULL | LEVEL | CLASSVAL
identifies the associated classification variables when reading the classification levels from
observations. The CLASSVAR= option is applicable only when the model effects contain
classification variables. The default is CLASSVAR= FULL.

LINK=NONE | LOGIT | GLOGIT
identifies the type of parameter estimates. The LINK=NONE option (which is the default)
indicates the parameter estimates that are derived from a procedure other than the LOGISTIC
procedure.

The LINK=LOGIT option indicates the parameter estimates that are derived from the LOGISTIC
procedure for ordinal responses. It is applicable only when the variable Intercept is in the MOD-
ELEFFECTS statement and the logistic model has more than two response levels. Otherwise,
LINK=NONE should be used.

The LINK=GLOGIT option indicates the parameter estimates that are derived from the LOGIS-
TIC procedure for nominal responses.

For a detailed description of the PARMS= option, see the section “PARMS < ( parms-options) >= Data
Set” on page 5171

TCOV
displays the total covariance matrix derived by assuming that the population between-imputation and
within-imputation covariance matrices are proportional to each other.

THETA0=numbers

MU0=numbers
specifies the parameter values �0 under the null hypothesis � D �0 in the t tests for location for the
effects. If only one number �0 is specified, that number is used for all effects. If more than one number
is specified, the specified numbers correspond to effects in the MODELEFFECTS statement in the
order in which they appear in the statement. When an effect contains classification variables, the
corresponding value is not used and the test is not performed.

WCOV
displays the within-imputation covariance matrices.

XPXI=SAS-data-set
names an input SAS data set that contains the .X0X/�1 matrices associated with the parameter estimates
computed from imputed data sets. If you provide an XPXI= data set, you must also provide a PARMS=
data set. In this case, PROC MIANALYZE reads the standard errors of the estimates from the PARMS=
data. The standard errors and .X0X/�1 matrices are used to derive the covariance matrices.
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BY Statement
BY variables ;

You can specify a BY statement with PROC MIANALYZE to obtain separate analyses of observations in
groups that are defined by the BY variables. When a BY statement appears, the procedure expects the input
data set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last
one specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the MIANALYZE
procedure. The NOTSORTED option does not mean that the data are unsorted but rather that the
data are arranged in groups (according to values of the BY variables) and that these groups are not
necessarily in alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

CLASS Statement
CLASS variables ;

The CLASS statement specifies the classification variables in the MODELEFFECTS statement. Classification
variables can be either character or numeric. Classification levels are determined from the formatted values
of the classification variables. See “The FORMAT Procedure” in the Base SAS Procedures Guide for details.

MODELEFFECTS Statement
MODELEFFECTS effects ;

The MODELEFFECTS statement lists the effects in the data set to be analyzed. Each effect is a variable or a
combination of variables, and is specified with a special notation that uses variable names and operators.

Each variable is either a classification (or CLASS) variable or a continuous variable. If a variable is not
declared in the CLASS statement, it is assumed to be continuous. Crossing and nesting operators can be used
in an effect to create crossed and nested effects.

One general form of an effect involving several variables is

X1 * X2 * A * B * C ( D E )

where A, B, C, D, and E are classification variables and X1 and X2 are continuous variables.

When the input DATA= data set is not a specially structured SAS data set, you must also specify standard
errors of the parameter estimates in an STDERR statement.
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STDERR Statement
STDERR variables ;

The STDERR statement lists standard errors associated with effects in the MODELEFFECTS statement,
when the input DATA= data set contains both parameter estimates and standard errors as variables in the data
set.

With the STDERR statement, only continuous effects are allowed in the MODELEFFECTS statement.
The specified standard errors correspond to parameter estimates in the order in which they appear in the
MODELEFFECTS statement.

For example, you can use the following MODELEFFECTS and STDERR statements to identify both the
parameter estimates and associated standard errors in a SAS data set:

proc mianalyze;
modeleffects y1-y3;
stderr sy1-sy3;

run;

TEST Statement
< label: > TEST equation1 < , . . . , < equationk > > < / options > ;

The TEST statement tests linear hypotheses about the parameters ˇ. An F test is used to jointly test the null
hypotheses (H0 W Lˇ D c) specified in a single TEST statement in which the MULT option is specified.

Each equation specifies a linear hypothesis (a row of the L matrix and the corresponding element of the c
vector); multiple equations are separated by commas. The label, which must be a valid SAS name, is used to
identify the resulting output. You can submit multiple TEST statements. When a label is not included in a
TEST statement, a label of “Test j” is used for the jth TEST statement.

The form of an equation is as follows:

term <˙ term : : : > < =˙ term < ˙ term : : : > >

where term is a parameter of the model, or a constant, or a constant times a parameter. When no equal sign
appears, the expression is set to 0. Only parameters for regressor effects (continuous variables by themselves)
are allowed.

For each TEST statement, PROC MIANALYZE displays a “Test Specification” table of the L matrix and
the c vector. The procedure also displays a “Variance Information” table of the between-imputation, within-
imputation, and total variances for combining complete-data inferences, and a “Parameter Estimates” table
of a combined estimate and standard error for each linear component. The linear components are labeled
TestPrm1, TestPrm2, ... in the tables.

The following statements illustrate possible uses of the TEST statement:
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proc mianalyze;
modeleffects intercept a1 a2 a3;
test1: test intercept + a2 = 0;
test2: test intercept + a2;
test3: test a1=a2=a3;
test4: test a1=a2, a2=a3;

run;

The first and second TEST statements are equivalent and correspond to the specification in Figure 64.5.

Figure 64.5 Test Specification for test1 and test2

The MIANALYZE Procedure
Test: test1

The MIANALYZE Procedure
Test: test1

Test Specification

L Matrix

Parameter intercept a1 a2 a3 C

TestPrm1 1.000000 0 1.000000 0 0

The third and fourth TEST statements are also equivalent and correspond to the specification in Figure 64.6.

Figure 64.6 Test Specification for test3 and test4

The MIANALYZE Procedure
Test: test3

The MIANALYZE Procedure
Test: test3

Test Specification

L Matrix

Parameter intercept a1 a2 a3 C

TestPrm1 0 1.000000 -1.000000 0 0

TestPrm2 0 0 1.000000 -1.000000 0

The ALPHA= and EDF options specified in the PROC MIANALYZE statement are also applied to the TEST
statement. You can specify the following options in the TEST statement after a slash(/):

BCOV
displays the between-imputation covariance matrix.

MULT
displays the multivariate inference for parameters.

TCOV
displays the total covariance matrix.

WCOV
displays the within-imputation covariance matrix.

For more information, see the section “Testing Linear Hypotheses about the Parameters” on page 5177.
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Details: MIANALYZE Procedure

Input Data Sets
You specify input data sets based on the type of inference you requested. For univariate inference, you can
use one of the following options:

• a DATA= data set, which provides both parameter estimates and the associated standard errors

• a DATA=EST, COV, or CORR data set, which provides both parameter estimates and the associated
standard errors either explicitly (type CORR) or through the covariance matrix (type EST, COV)

• PARMS= data set, which provides both parameter estimates and the associated standard errors

For multivariate inference, which includes the testing of linear hypotheses about parameters, you can use one
of the following option combinations:

• a DATA=EST, COV, or CORR data set, which provides parameter estimates and the associated
covariance matrix either explicitly (type EST, COV) or through the correlation matrix and standard
errors (type CORR) in a single data set

• PARMS= and COVB= data sets, which provide parameter estimates in a PARMS= data set and the
associated covariance matrix in a COVB= data set

• PARMS=, COVB=, and PARMINFO= data sets, which provide parameter estimates in a PARMS=
data set, the associated covariance matrix in a COVB= data set with variables named PRM1, PRM2,
. . . , and the effects associated with these variables in a PARMINFO= data set

• PARMS= and XPXI= data sets, which provide parameter estimates and the associated standard errors
in a PARMS= data set and the associated .X0X/�1 matrix in an XPXI= data set

The appropriate combination depends on the type of inference and the SAS procedure you used to create the
data sets. For instance, if you used PROC REG to create an OUTEST= data set that contains the parameter
estimates and covariance matrix, you would use the DATA= option to read the OUTEST= data set.

When the input DATA= data set is a specially structured SAS data set, the data set must contain the variable
_Imputation_ to identify the imputation by number. Otherwise, each observation corresponds to an imputation
and contains both parameter estimates and associated standard errors.

If you do not specify an input data set with the DATA= or PARMS= option, then the most recently created
SAS data set is used as an input DATA= data set. Note that with a DATA= data set, each effect repre-
sents a continuous variable; only regressor effects (continuous variables by themselves) are allowed in the
MODELEFFECTS statement.
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DATA= SAS Data Set

The DATA= data set provides both parameter estimates and the associated standard errors computed from
imputed data sets. Such data sets are typically created with an OUTPUT statement in procedures such as
PROC MEANS and PROC UNIVARIATE.

The MIANALYZE procedure reads parameter estimates from observations with variables in the MODEL-
EFFECTS statement, and standard errors for parameter estimates from observations with variables in the
STDERR statement. The order of the variables for standard errors must match the order of the variables for
parameter estimates.

DATA=EST, COV, or CORR SAS Data Set

The specially structured DATA= data set provides both parameter estimates and the associated covariance
matrix computed from imputed data sets. Such data sets are created by procedures such as PROC CORR
(type COV, CORR) and PROC REG (type EST).

With a DATA=EST data set, the MIANALYZE procedure reads parameter estimates from observations with
_TYPE_=‘PARM’, _TYPE_=‘PARMS’, _TYPE_=‘OLS’, or _TYPE_=‘FINAL’, and covariance matrices for
parameter estimates from observations with _TYPE_=‘COV’ or _TYPE_=‘COVB’.

With a DATA=COV data set, the procedure reads sample means from observations with _TYPE_=‘MEAN’,
sample size n from observations with _TYPE_=‘N’, and covariance matrices for variables from observations
with _TYPE_=‘COV’.

With a DATA=CORR data set, the procedure reads sample means from observations with _TYPE_=‘MEAN’,
sample size n from observations with _TYPE_=‘N’, correlation matrices for variables from observations with
_TYPE_=‘CORR’, and standard errors for variables from observations with _TYPE_=‘STD’. The standard
errors and correlation matrix are used to generate a covariance matrix for the variables.

Note that with a DATA=COV or DATA=CORR data set, each covariance matrix for the variables is divided
by n to create the covariance matrix for the sample means.

PARMS < ( parms-options) >= Data Set

The PARMS= data set contains both parameter estimates and the associated standard errors computed from
imputed data sets. Such data sets are typically created with an ODS OUTPUT statement in procedures such
as PROC GENMOD, PROC GLM, PROC LOGISTIC, and PROC MIXED.

The MIANALYZE procedure reads effect names from observations with the variable Parameter, Effect,
Variable, or Parm. It then reads parameter estimates from observations with the variable Estimate and
standard errors for parameter estimates from observations with the variable StdErr.

The available parms-options include the CLASSVAR= option to identify classification variables and the
LINK= option to input logistic regression results. When the parameter estimates are derived from the
LOGISTIC procedure, the LINK= option can be used to identify the variable required when the parameter
estimates are read from observations. The available options are as follows:

• LINK=NONE (which is the default), in which each model effect is completely identified from the
effect name. This option should be used for all procedures except PROC LOGISTIC.

• LINK=LOGIT, in which the variable ClassVal0 is used to identify response levels for Intercept from
PROC LOGISTIC for ordinal responses. This option is applicable only when the variable Intercept is in
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the MODELEFFECTS statement and the logistic model has more than two response levels. Otherwise,
LINK=NONE should be used.

• LINK=GLOGIT, in which the variable Response is used to identify response levels for the parameters
from PROC LOGISTIC for nominal responses.

When the effects contain classification variables, the CLASSVAR= option can be used to identify the variables
when reading the classification levels from observations. The available options are:

• CLASSVAR=FULL (which is the default), the data set contains the classification variables explic-
itly. PROC MIANALYZE reads the classification levels from observations with their corresponding
classification variables. PROC MIXED generates this type of table.

• CLASSVAR=LEVEL, PROC MIANALYZE reads the classification levels for the effect from observa-
tions with variables Level1, Level2, and so on, where the variable Level1 contains the classification
level for the first classification variable in the effect, and the variable Level2 contains the classification
level for the second classification variable in the effect. For each effect, the variables in the crossed list
are displayed before the variables in the nested list. The variable order in the CLASS statement is used
for variables inside each list. PROC GENMOD generates this type of table.

For example, with the following statements, the variable Level1 has the classification level of the
variable c2 for the effect c2:

proc mianalyze parms(classvar=Level)=dataparm;
class c1 c2 c3;
modeleffects c2 c3(c2 c1);

run;

For the effect c3(c2 c1), the variable Level1 has the classification level of the variable c3, Level2 has
the level of c1, and Level3 has the level of c2.

• CLASSVAR=CLASSVAL, PROC MIANALYZE reads the classification levels for the effect from
observations with variables ClassVal0, ClassVal1, and so on, where the variable ClassVal0 contains the
classification level for the first classification variable in the effect, and the variable ClassVal1 contains
the classification level for the second classification variable in the effect. For each effect, the variables
in the crossed list are displayed before the variables in the nested list. The variable order in the CLASS
statement is used for variables inside each list. PROC LOGISTIC generates this type of tables.

PARMS < ( parms-options) >= and COVB < (EFFECTVAR=etype) >= Data Sets

The PARMS= data set contains parameter estimates, and the COVB= data set contains associated covariance
matrices computed from imputed data sets. Such data sets are typically created with an ODS OUTPUT
statement in procedures such as PROC LOGISTIC, PROC MIXED, and PROC REG.

When you specify a PARMS= data set, the MIANALYZE procedure reads effect names from observations
with the variable Parameter, Effect, Variable, or Parm. It then reads parameter estimates from observations
with the variable Estimate.
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The available parms-options include the CLASSVAR= option to identify classification variables and the
LINK= option to input logistic regression results. For a detailed description of the PARMS= option, see the
section “PARMS < ( parms-options) >= Data Set” on page 5171.

The EFFECTVAR=etype option identifies the variables for parameters displayed in the covariance matrix.
The available types are STACKING and ROWCOL:

• EFFECTVAR=STACKING (which is the default), each parameter is displayed by stacking variables in
the effect. Begin with the variables in the crossed list, followed by the continuous list, then followed
by the nested list. Each classification variable is displayed with its classification level attached. PROC
LOGISTIC generates this type of table. When each effect is a continuous variable by itself, each
stacked parameter name reduces to the effect name. PROC REG generates this type of table.

The MIANALYZE procedure reads parameter names from observations with the variable Parameter,
Effect, Variable, Parm, or RowName. It then reads covariance matrices from observations with the
stacked variables in a COVB= data set.

• EFFECTVAR=ROWCOL, parameters are displayed by the variables Col1, Col2, ... The parameter
associated with the variable Col1 is identified by the observation with value 1 for the variable Row.
The parameter associated with the variable Col2 is identified by the observation with value 2 for the
variable Row. PROC MIXED generates this type of table.

The MIANALYZE procedure reads the parameter indices from observations with the variable Row and
the effect names from observations with the variable Parameter, Effect, Variable, Parm, or RowName.
It then reads covariance matrices from observations with the variables Col1, Col2, and so on in a
COVB= data set.

When the effects contain classification variables, the data set contains the classification variables
explicitly and the MIANALYZE procedure also reads the classification levels from their corresponding
classification variables.

PARMS < (CLASSVAR= ctype) > =, PARMINFO=, and COVB= Data Sets

The input PARMS= data set contains parameter estimates, the PARMINFO= data set identifies parameters
with the variables Prm1, Prm2, and so on, and the COVB= data set contains associated covariance matrices
with the variables Prm1, Prm2, and so on. Such data sets are typically created with an ODS OUTPUT
statement using procedure such as PROC GENMOD.

When you specify a PARMS= data set, the MIANALYZE procedure reads effect names from observations
with the variable Parameter, Effect, Variable, or Parm. It then reads parameter estimates from observations
with the variable Estimate.

When the effects contain classification variables, the option CLASSVAR= ctype can be used to identify the
associated classification variables when reading the classification levels from observations. The available
types are FULL, LEVEL, and CLASSVAL, and they are described in the section “PARMS < ( parms-
options) >= Data Set” on page 5171. The default is CLASSVAR= FULL.

When you specify a COVB= data set, the MIANALYZE procedure reads parameter names from observations
with the variable Parameter, Effect, Variable, Parm, or RowName. It then reads covariance matrices from
observations with the variables Prm1, Prm2, and so on.
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The parameters associated with the variables Prm1, Prm2, and so on are identified in the PARMINFO= data
set. PROC MIANALYZE reads the parameter names from observations with the variable Parameter and
the corresponding effect from observations with the variable Effect. When the effects contain classification
variables, the data set contains the classification variables explicitly and the MIANALYZE procedure also
reads the classification levels from observations with their corresponding classification variables.

PARMS= and XPXI= Data Sets

The input PARMS= data set contains parameter estimates, and the input XPXI= data set contains associated
.X0X/�1 matrices computed from imputed data sets. Such data sets are typically created with an ODS
OUTPUT statement in a procedure such as PROC GLM.

When you specify a PARMS= data set, the MIANALYZE procedure reads parameter names from observations
with the variable Parameter, Effect, Variable, or Parm. It then reads parameter estimates from observations
with the variable Estimate and standard errors for parameter estimates from observations with the variable
StdErr.

When you specify a XPXI= data set, the MIANALYZE procedure reads parameter names from observations
with the variable Parameter and .X0X/�1 matrices from observations with the parameter variables in the
data set.

Note that this combination can be used only when each effect is a continuous variable by itself.

Combining Inferences from Imputed Data Sets
With m imputations, m different sets of the point and variance estimates for a parameter Q can be computed.
Suppose that OQi and OWi are the point and variance estimates, respectively, from the ith imputed data set, i
= 1, 2, . . . , m. Then the combined point estimate for Q from multiple imputation is the average of the m
complete-data estimates:

Q D
1

m

mX
iD1

OQi

Suppose that W is the within-imputation variance, which is the average of the m complete-data estimates:

W D
1

m

mX
iD1

OWi

And suppose that B is the between-imputation variance:

B D
1

m � 1

mX
iD1

. OQi �Q/
2

Then the variance estimate associated with Q is the total variance (Rubin 1987)

T D W C .1C
1

m
/B
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The statistic .Q �Q/T �.1=2/ is approximately distributed as t with vm degrees of freedom (Rubin 1987),
where

vm D .m � 1/

"
1C

W

.1Cm�1/B

#2

The degrees of freedom vm depend on m and the ratio

r D
.1Cm�1/B

W

The ratio r is called the relative increase in variance due to nonresponse (Rubin 1987). When there is no
missing information about Q, the values of r and B are both zero. With a large value of m or a small value of
r, the degrees of freedom vm will be large and the distribution of .Q �Q/T �.1=2/ will be approximately
normal.

Another useful statistic is the fraction of missing information about Q:

O� D
r C 2=.vm C 3/

r C 1

Both statistics r and � are helpful diagnostics for assessing how the missing data contribute to the uncertainty
about Q.

When the complete-data degrees of freedom v0 are small, and there is only a modest proportion of missing
data, the computed degrees of freedom, vm, can be much larger than v0, which is inappropriate. For example,
with m = 5 and r = 10%, the computed degrees of freedom vm D 484, which is inappropriate for data sets
with complete-data degrees of freedom less than 484.

Barnard and Rubin (1999) recommend the use of adjusted degrees of freedom

v�m D

�
1

vm
C

1

Ovobs

��1
where Ovobs D .1 � / v0.v0 C 1/=.v0 C 3/ and  D .1Cm�1/B=T .

If you specify the complete-data degrees of freedom v0 with the EDF= option, the MIANALYZE procedure
uses the adjusted degrees of freedom, v�m, for inference. Otherwise, the degrees of freedom vm are used.

Multiple Imputation Efficiency
The relative efficiency (RE) of using the finite m imputation estimator, rather than using an infinite number
for the fully efficient imputation, in units of variance, is approximately a function of m and � (Rubin 1987, p.
114):

RE D .1C
�

m
/�1
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Table 64.2 shows relative efficiencies with different values of m and �.

Table 64.2 Relative Efficiencies

�

m 10% 20% 30% 50% 70%
3 0.9677 0.9375 0.9091 0.8571 0.8108
5 0.9804 0.9615 0.9434 0.9091 0.8772

10 0.9901 0.9804 0.9709 0.9524 0.9346
20 0.9950 0.9901 0.9852 0.9756 0.9662

The table shows that for situations with little missing information, only a small number of imputations are
necessary. In practice, the number of imputations needed can be informally verified by replicating sets of m
imputations and checking whether the estimates are stable between sets (Horton and Lipsitz 2001, p. 246).

Multivariate Inferences
Multivariate inference based on Wald tests can be done with m imputed data sets. The approach is a
generalization of the approach taken in the univariate case (Rubin 1987, p. 137; Schafer 1997, p. 113).
Suppose that OQi and OWi are the point and covariance matrix estimates for a p-dimensional parameter Q (such
as a multivariate mean) from the ith imputed data set, i = 1, 2, . . . , m. Then the combined point estimate for
Q from the multiple imputation is the average of the m complete-data estimates:

Q D
1

m

mX
iD1

OQi

Suppose that W is the within-imputation covariance matrix, which is the average of the m complete-data
estimates:

W D
1

m

mX
iD1

OWi

And suppose that B is the between-imputation covariance matrix:

B D
1

m � 1

mX
iD1

. OQi �Q/. OQi �Q/0

Then the covariance matrix associated with Q is the total covariance matrix

T0 DWC .1C
1

m
/B

The natural multivariate extension of the t statistic used in the univariate case is the F statistic

F0 D .Q �Q/0T�10 .Q �Q/
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with degrees of freedom p and

v D .m � 1/.1C 1=r/2

where

r D .1C
1

m
/ trace.BW

�1
/=p

is an average relative increase in variance due to nonresponse (Rubin 1987, p. 137; Schafer 1997, p. 114).

However, the reference distribution of the statistic F0 is not easily derived. Especially for small m, the
between-imputation covariance matrix B is unstable and does not have full rank for m � p (Schafer 1997, p.
113).

One solution is to make an additional assumption that the population between-imputation and within-
imputation covariance matrices are proportional to each other (Schafer 1997, p. 113). This assumption
implies that the fractions of missing information for all components of Q are equal. Under this assumption, a
more stable estimate of the total covariance matrix is

T D .1C r/W

With the total covariance matrix T, the F statistic (Rubin 1987, p. 137)

F D .Q �Q/0T�1.Q �Q/=p

has an F distribution with degrees of freedom p and v1, where

v1 D
1

2
.p C 1/.m � 1/.1C

1

r
/2

For t D p.m � 1/ � 4, PROC MIANALYZE uses the degrees of freedom v1 in the analysis. For
t D p.m� 1/ > 4, PROC MIANALYZE uses v2, a better approximation of the degrees of freedom given by
Li, Raghunathan, and Rubin (1991):

v2 D 4C .t � 4/

�
1C

1

r
.1 �

2

t
/

�2

Testing Linear Hypotheses about the Parameters
Linear hypotheses for parameters ˇ are expressed in matrix form as

H0 W Lˇ D c

where L is a matrix of coefficients for the linear hypotheses and c is a vector of constants.

Suppose that OQi and OUi are the point and covariance matrix estimates, respectively, for a p-dimensional
parameter Q from the ith imputed data set, i=1, 2, . . . , m. Then for a given matrix L, the point and covariance
matrix estimates for the linear functions LQ in the ith imputed data set are, respectively,

L OQi

L OUiL0
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The inferences described in the section “Combining Inferences from Imputed Data Sets” on page 5174 and
the section “Multivariate Inferences” on page 5176 are applied to these linear estimates for testing the null
hypothesis H0 W Lˇ D c.

For each TEST statement, the “Test Specification” table displays the L matrix and the c vector, the “Variance
Information” table displays the between-imputation, within-imputation, and total variances for combining
complete-data inferences, and the “Parameter Estimates” table displays a combined estimate and standard
error for each linear component.

With the WCOV and BCOV options in the TEST statement, the procedure displays the within-imputation
and between-imputation covariance matrices, respectively.

With the TCOV option, the procedure displays the total covariance matrix derived under the assumption that
the population between-imputation and within-imputation covariance matrices are proportional to each other.

With the MULT option in the TEST statement, the “Multivariate Inference” table displays an F test for the
null hypothesis Lˇ D c of the linear components.

Examples of the Complete-Data Inferences
For a given parameter of interest, it is not always possible to compute the estimate and associated covariance
matrix directly from a SAS procedure. This section describes examples of parameters with their estimates
and associated covariance matrices, which provide the input to the MIANALYZE procedure. Some are
straightforward, and others require special techniques.

Means

For a population mean vector �, the usual estimate is the sample mean vector

y D
1

n

X
yi

A variance estimate for y is 1
n
S, where S is the sample covariance matrix

S D
1

n � 1

X
.yi � y/.yi � y/0

These statistics can be computed from a procedure such as PROC CORR. This approach is illustrated in
Example 64.2.

Regression Coefficients

Many SAS procedures are available for regression analysis. Among them, PROC REG provides the most
general analysis capabilities, and others like PROC LOGISTIC and PROC MIXED provide more specialized
analyses.

Some regression procedures, such as REG and LOGISTIC, create an EST type data set that contains both the
parameter estimates for the regression coefficients and their associated covariance matrix. You can read an
EST type data set in the MIANALYZE procedure with the DATA= option. This approach is illustrated in
Example 64.3.
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Other procedures, such as GLM, MIXED, and GENMOD, do not generate EST type data sets for regression
coefficients. For PROC MIXED and PROC GENMOD, you can use ODS OUTPUT statement to save
parameter estimates in a data set and the associated covariance matrix in a separate data set. These data sets
are then read in the MIANALYZE procedure with the PARMS= and COVB= options, respectively. This
approach is illustrated in Example 64.4 for PROC MIXED and in Example 64.5 for PROC GENMOD.

PROC GLM does not display tables for covariance matrices. However, you can use the ODS OUTPUT
statement to save parameter estimates and associated standard errors in a data set and the associated .X0X/�1

matrix in a separate data set. These data sets are then read in the MIANALYZE procedure with the PARMS=
and XPXI= options, respectively. This approach is illustrated in Example 64.6.

For univariate inference, only parameter estimates and associated standard errors are needed. You can use the
ODS OUTPUT statement to save parameter estimates and associated standard errors in a data set. This data
set is then read in the MIANALYZE procedure with the PARMS= option. This approach is illustrated in
Example 64.4.

Correlation Coefficients

For the population correlation coefficient �, a point estimate is the sample correlation coefficient r. However,
for nonzero �, the distribution of r is skewed.

The distribution of r can be normalized through Fisher’s z transformation

z.r/ D
1

2
log

�
1C r

1 � r

�
z.r/ is approximately normally distributed with mean z.�/ and variance 1=.n � 3/.

With a point estimate Oz and an approximate 95% confidence interval .z1; z2/ for z.�/, a point estimate Or and
a 95% confidence interval .r1; r2/ for � can be obtained by applying the inverse transformation

r D tanh.z/ D
e2z � 1

e2z C 1

to z D Oz; z1, and z2.

This approach is illustrated in Example 64.10.

Ratios of Variable Means

For the ratio �1=�2 of means for variables Y1 and Y2, the point estimate is y1=y2, the ratio of the sample
means. The Taylor expansion and delta method can be applied to the function y1=y2 to obtain the variance
estimate (Schafer 1997, p. 196)

1

n

24 y1
y22

!2
s22 � 2

 
y1

y22

!�
1

y2

�
s12 C

�
1

y2

�2
s11

35
where s11 and s22 are the sample variances of Y1 and Y2, respectively, and s12 is the sample covariance
between Y1 and Y2.

A ratio of sample means will be approximately unbiased and normally distributed if the coefficient of variation
of the denominator (the standard error for the mean divided by the estimated mean) is 10% or less (Cochran
1977, p. 166; Schafer 1997, p. 196).
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ODS Table Names
PROC MIANALYZE assigns a name to each table it creates. You must use these names to reference tables
when using the Output Delivery System (ODS). These names are listed in Table 64.3. For more information
about ODS, see Chapter 20, “Using the Output Delivery System.”

Table 64.3 ODS Tables Produced by PROC MIANALYZE

ODS Table Name Description Statement Option

BCov Between-imputation covariance matrix BCOV
ModelInfo Model information
MultStat Multivariate inference MULT
ParameterEstimates Parameter estimates
TCov Total covariance matrix TCOV
TestBCov Between-imputation covariance matrix for Lˇ TEST BCOV
TestMultStat Multivariate inference for Lˇ TEST MULT
TestParameterEstimates Parameter estimates for Lˇ TEST
TestSpec Test specification, L and c TEST
TestTCov Total covariance matrix for Lˇ TEST TCOV
TestVarianceInfo Variance information for Lˇ TEST
TestWCov Within-imputation covariance matrix for Lˇ TEST WCOV
VarianceInfo Variance information
WCov Within-imputation covariance matrix WCOV

Examples: MIANALYZE Procedure
The following statements generate five imputed data sets to be used in this section. The data set Fitness1 was
created in the section “Getting Started: MIANALYZE Procedure” on page 5161. See “The MI Procedure”
chapter for details concerning the MI procedure.

proc mi data=Fitness1 seed=3237851 noprint out=outmi;
var Oxygen RunTime RunPulse;

run;

The Fish data described in the STEPDISC procedure are measurements of 159 fish of seven species caught in
Finland’s Lake Laengelmaevesi. For each fish, the length, height, and width are measured. See Chapter 96,
“The STEPDISC Procedure,” for more information.

The Fish2 data set is constructed from the Fish data set and contains two species of fish. Some values have
been set to missing, and the resulting data set has a monotone missing pattern in the variables Length, Width,
and Species.
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The following statements create the Fish2 data set. It contains two species of fish in the Fish data set.

*-----------------------------Fish2 Data-----------------------------*
| The data set contains two species of the fish (Parkki and Perch) |
| and two measurements: Length and Width. |
| Some values have been set to missing, and the resulting data set |
| has a monotone missing pattern in the variables |
| Length, Width, and Species. |

*--------------------------------------------------------------------*;
data Fish2;

title 'Fish Measurement Data';
input Species $ Length Width @@;
datalines;

Parkki 16.5 2.3265 Parkki 17.4 2.3142 . 19.8 .
Parkki 21.3 2.9181 Parkki 22.4 3.2928 . 23.2 3.2944
Parkki 23.2 3.4104 Parkki 24.1 3.1571 . 25.8 3.6636
Parkki 28.0 4.1440 Parkki 29.0 4.2340 Perch 8.8 1.4080
. 14.7 1.9992 Perch 16.0 2.4320 Perch 17.2 2.6316
Perch 18.5 2.9415 Perch 19.2 3.3216 . 19.4 .
Perch 20.2 3.0502 Perch 20.8 3.0368 Perch 21.0 2.7720
Perch 22.5 3.5550 Perch 22.5 3.3075 . 22.5 .
Perch 22.8 3.5340 . 23.5 . Perch 23.5 3.5250
Perch 23.5 3.5250 Perch 23.5 3.5250 Perch 23.5 3.9950
. 24.0 . Perch 24.0 3.6240 Perch 24.2 3.6300
Perch 24.5 3.6260 Perch 25.0 3.7250 . 25.5 3.7230
Perch 25.5 3.8250 Perch 26.2 4.1658 Perch 26.5 3.6835
. 27.0 4.2390 Perch 28.0 4.1440 Perch 28.7 5.1373
. 28.9 4.3350 . 28.9 . . 28.9 4.5662
Perch 29.4 4.2042 Perch 30.1 4.6354 Perch 31.6 4.7716
Perch 34.0 6.0180 . 36.5 6.3875 . 37.3 7.7957
. 39.0 . . 38.3 . Perch 39.4 6.2646
Perch 39.3 6.3666 Perch 41.4 7.4934 Perch 41.4 6.0030
Perch 41.3 7.3514 . 42.3 . Perch 42.5 7.2250
Perch 42.4 7.4624 Perch 42.5 6.6300 Perch 44.6 6.8684
Perch 45.2 7.2772 Perch 45.5 7.4165 Perch 46.0 8.1420
Perch 46.6 7.5958
;

The following statements generate five imputed data sets to be used in this section. The default regression
method is used to impute missing values in continuous variable Width, and the discriminant function method
is used to impute the variable Species.

proc mi data=Fish2 seed=1305417 out=outfish2;
class Species;
monotone logistic( Species= Length Width);
var Length Width Species;

run;

The Fish3 data set is constructed from the Fish data set and contains three species of fish. Some values have
been set to missing, and the resulting data set has an arbitrary missing pattern in the variables Length, Width,
and Species.
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The following statements create the Fish3 data set. It contains two species of fish in the Fish data set.

*-----------------------------Fish3 Data-----------------------------*
| The data set contains three species of the fish |
| (Parkki, Perch, and Roach) and two measurements: Length and Width. |
| Some values have been set to missing, and the resulting data set |
| has an arbitrary missing pattern in the variables |
| Length, Width, and Species. |

*--------------------------------------------------------------------*;
data Fish3;

title 'Fish Measurement Data';
input Species $ Length Width @@;
datalines;

Roach 16.2 2.2680 Roach 20.3 2.8217 Roach 21.2 .
Roach . 3.1746 Roach 22.2 3.5742 Roach 22.8 3.3516
Roach 23.1 3.3957 . 23.7 . Roach 24.7 3.7544
Roach 24.3 3.5478 Roach 25.3 . Roach 25.0 3.3250
Roach 25.0 3.8000 Roach 27.2 3.8352 Roach 26.7 3.6312
Roach 26.8 4.1272 Roach 27.9 3.9060 Roach 29.2 4.4968
Roach 30.6 4.7736 Roach 35.0 5.3550 Parkki 16.5 2.3265
Parkki 17.4 . Parkki 19.8 2.6730 Parkki 21.3 2.9181
Parkki 22.4 3.2928 Parkki 23.2 3.2944 Parkki 23.2 3.4104
Parkki 24.1 3.1571 . . 3.6636 Parkki 28.0 4.1440
Parkki 29.0 4.2340 Perch 8.8 1.4080 . 14.7 1.9992
Perch 16.0 2.4320 Perch 17.2 2.6316 Perch 18.5 2.9415
Perch 19.2 3.3216 . 19.4 3.1234 Perch 20.2 .
Perch 20.8 3.0368 Perch 21.0 2.7720 Perch 22.5 3.5550
Perch 22.5 3.3075 Perch 22.5 3.6675 Perch . 3.5340
Perch 23.5 3.4075 Perch 23.5 3.5250 Perch 23.5 3.5250
. 23.5 3.5250 Perch 23.5 3.9950 Perch 24.0 3.6240
Perch 24.0 3.6240 Perch 24.2 3.6300 Perch 24.5 3.6260
Perch 25.0 3.7250 Perch . 3.7230 Perch 25.5 3.8250
Perch . 4.1658 Perch 26.5 3.6835 . 27.0 4.2390
Perch . 4.1440 Perch 28.7 5.1373 . 28.9 4.3350
Perch 28.9 4.3350 Perch 28.9 4.5662 Perch 29.4 4.2042
Perch 30.1 4.6354 Perch 31.6 4.7716 Perch 34.0 6.0180
Perch 36.5 6.3875 Perch 37.3 7.7957 Perch 39.0 .
Perch 38.3 6.7408 Perch . 6.2646 . 39.3 .
Perch 41.4 7.4934 Perch 41.4 6.0030 Perch 41.3 7.3514
Perch 42.3 7.1064 Perch 42.5 7.2250 Perch 42.4 7.4624
Perch 42.5 6.6300 Perch 44.6 6.8684 Perch 45.2 7.2772
Perch 45.5 7.4165 Perch 46.0 8.1420 . 46.6 7.5958
;

The following statements generate five imputed data sets to be used in this section. The default regression
method is used to impute missing values in continuous variable Width, and the nominal logistic regression
method is used to impute the variable Species.

proc mi data=Fish3 seed=30535 out=outfish3;
class Species;
fcs logistic ( Species= Length Width / link=glogit);
var Length Width Species;

run;
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Example 64.1 through Example 64.7 use different input option combinations to combine parameter estimates
computed from different procedures. Example 64.8 combines parameter estimates with classification
variables, and Example 64.9 combines nominal logistic regression parameter estimates Example 64.10 shows
the use of a TEST statement, and Example 64.11 combines statistics that are not directly derived from
procedures.

The MI procedure provides sensitivity analysis for the MAR assumption. Example 64.12 illustrate sensitivity
analysis by using the pattern-mixture model approach, and Example 64.13 performs sensitivity analysis by
searching and examining the tipping point that reverses the study conclusion.

Example 64.1: Reading Means and Standard Errors from a DATA= Data Set
This example creates an ordinary SAS data set that contains sample means and standard errors computed
from imputed data sets. These estimates are then combined to generate valid univariate inferences about the
population means.

The following statements use the UNIVARIATE procedure to generate sample means and standard errors for
the variables in each imputed data set:

proc univariate data=outmi noprint;
var Oxygen RunTime RunPulse;
output out=outuni mean=Oxygen RunTime RunPulse

stderr=SOxygen SRunTime SRunPulse;
by _Imputation_;

run;

The following statements display the output data set from PROC UNIVARIATE shown in Output 64.1.1:

proc print data=outuni;
title 'UNIVARIATE Means and Standard Errors';

run;

Output 64.1.1 UNIVARIATE Output Data Set

UNIVARIATE Means and Standard ErrorsUNIVARIATE Means and Standard Errors

Obs _Imputation_ Oxygen RunTime RunPulse SOxygen SRunTime SRunPulse

1 1 47.0120 10.4441 171.216 0.95984 0.28520 1.59910

2 2 47.2407 10.5040 171.244 0.93540 0.26661 1.75638

3 3 47.4995 10.5922 171.909 1.00766 0.26302 1.85795

4 4 47.1485 10.5279 171.146 0.95439 0.26405 1.75011

5 5 47.0042 10.4913 172.072 0.96528 0.27275 1.84807

The following statements combine the means and standard errors from imputed data sets, The EDF= option
requests that the adjusted degrees of freedom be used in the analysis. For sample means based on 31
observations, the complete-data error degrees of freedom is 30.

proc mianalyze data=outuni edf=30;
modeleffects Oxygen RunTime RunPulse;
stderr SOxygen SRunTime SRunPulse;

run;
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The “Model Information” table in Output 64.1.2 lists the input data set(s) and the number of imputations. The
“Variance Information” table in Output 64.1.2 displays the between-imputation variance, within-imputation
variance, and total variance for each univariate inference. It also displays the degrees of freedom for the total
variance. The relative increase in variance due to missing values, the fraction of missing information, and
the relative efficiency for each imputed variable are also displayed. A detailed description of these statistics
is provided in the section “Combining Inferences from Imputed Data Sets” on page 5174 and the section
“Multiple Imputation Efficiency” on page 5175.

Output 64.1.2 Variance Information

The MIANALYZE ProcedureThe MIANALYZE Procedure

Model Information

Data Set WORK.OUTUNI

Number of Imputations 5

Variance Information

Variance

Parameter Between Within Total DF

Relative
Increase

in Variance

Fraction
Missing

Information
Relative

Efficiency

Oxygen 0.041478 0.930853 0.980626 26.298 0.053471 0.051977 0.989712

RunTime 0.002948 0.073142 0.076679 26.503 0.048365 0.047147 0.990659

RunPulse 0.191086 3.114442 3.343744 25.463 0.073626 0.070759 0.986046

The “Parameter Estimates” table in Output 64.1.3 displays the estimated mean and corresponding standard
error for each variable. The table also displays a 95% confidence interval for the mean and a t statistic with
the associated p-value for testing the hypothesis that the mean is equal to the value specified. You can use
the THETA0= option to specify the value for the null hypothesis, which is zero by default. The table also
displays the minimum and maximum parameter estimates from the imputed data sets.

Output 64.1.3 Parameter Estimates

Parameter Estimates

Parameter Estimate Std Error 95% Confidence Limits DF Minimum Maximum

Oxygen 47.180993 0.990266 45.1466 49.2154 26.298 47.004201 47.499541

RunTime 10.511906 0.276910 9.9432 11.0806 26.503 10.444149 10.592244

RunPulse 171.517500 1.828591 167.7549 175.2801 25.463 171.146171 172.071730

Parameter Estimates

Parameter Theta0
t for H0:

Parameter=Theta0 Pr > |t|

Oxygen 0 47.64 <.0001

RunTime 0 37.96 <.0001

RunPulse 0 93.80 <.0001

Note that the results in this example could also have been obtained with the MI procedure.
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Example 64.2: Reading Means and Covariance Matrices from a DATA= COV
Data Set

This example creates a COV-type data set that contains sample means and covariance matrices computed
from imputed data sets. These estimates are then combined to generate valid statistical inferences about the
population means.

The following statements use the CORR procedure to generate sample means and a covariance matrix for the
variables in each imputed data set:

proc corr data=outmi cov nocorr noprint out=outcov(type=cov);
var Oxygen RunTime RunPulse;
by _Imputation_;

run;

The following statements display (in Output 64.2.1) output sample means and covariance matrices from
PROC CORR for the first two imputed data sets:

proc print data=outcov(obs=12);
title 'CORR Means and Covariance Matrices'

' (First Two Imputations)';
run;

Output 64.2.1 COV Data Set

CORR Means and Covariance Matrices (First Two Imputations)CORR Means and Covariance Matrices (First Two Imputations)

Obs _Imputation_ _TYPE_ _NAME_ Oxygen RunTime RunPulse

1 1 COV Oxygen 28.5603 -7.2652 -11.812

2 1 COV RunTime -7.2652 2.5214 2.536

3 1 COV RunPulse -11.8121 2.5357 79.271

4 1 MEAN 47.0120 10.4441 171.216

5 1 STD 5.3442 1.5879 8.903

6 1 N 31.0000 31.0000 31.000

7 2 COV Oxygen 27.1240 -6.6761 -10.217

8 2 COV RunTime -6.6761 2.2035 2.611

9 2 COV RunPulse -10.2170 2.6114 95.631

10 2 MEAN 47.2407 10.5040 171.244

11 2 STD 5.2081 1.4844 9.779

12 2 N 31.0000 31.0000 31.000

Note that the covariance matrices in the data set Outcov are estimated covariance matrices of variables, V.y/.
The estimated covariance matrix of the sample means is V.y/ D V.y/=n, where n is the sample size, and is
not the same as an estimated covariance matrix for variables.

The following statements combine the results for the imputed data sets, and derive both univariate and
multivariate inferences about the means. The EDF= option is specified to request that the adjusted degrees of
freedom be used in the analysis. For sample means based on 31 observations, the complete-data error degrees
of freedom is 30.
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proc mianalyze data=outcov edf=30;
modeleffects Oxygen RunTime RunPulse;

run;

The “Variance Information” and “Parameter Estimates” tables display the same results as in Output 64.1.2
and Output 64.1.3, respectively, in Example 64.1.

With the WCOV, BCOV, and TCOV options, as in the following statements, the procedure displays the
between-imputation covariance matrix, within-imputation covariance matrix, and total covariance matrix
assuming that the between-imputation covariance matrix is proportional to the within-imputation covariance
matrix in Output 64.2.2.

proc mianalyze data=outcov edf=30 wcov bcov tcov mult;
modeleffects Oxygen RunTime RunPulse;

run;

Output 64.2.2 Covariance Matrices

The MIANALYZE ProcedureThe MIANALYZE Procedure

Within-Imputation Covariance Matrix

Oxygen RunTime RunPulse

Oxygen 0.930852655 -0.226506411 -0.461022083

RunTime -0.226506411 0.073141598 0.080316017

RunPulse -0.461022083 0.080316017 3.114441784

Between-Imputation Covariance Matrix

Oxygen RunTime RunPulse

Oxygen 0.0414778123 0.0099248946 0.0183701754

RunTime 0.0099248946 0.0029478891 0.0091684769

RunPulse 0.0183701754 0.0091684769 0.1910855259

Total Covariance Matrix

Oxygen RunTime RunPulse

Oxygen 1.202882661 -0.292700068 -0.595750001

RunTime -0.292700068 0.094516313 0.103787365

RunPulse -0.595750001 0.103787365 4.024598310

With the MULT option, the procedure assumes that the between-imputation covariance matrix is proportional
to the within-imputation covariance matrix and displays a multivariate inference for all the parameters taken
jointly.

Output 64.2.3 Multivariate Inference

Multivariate Inference
Assuming Proportionality of Between/Within Covariance Matrices

Avg Relative
Increase

in Variance Num DF Den DF
F for H0:

Parameter=Theta0 Pr > F

0.292237 3 122.68 12519.7 <.0001

The “Multivariate Inference” table in Output 64.2.3 shows a significant p-value for the null hypothesis that
the population means are all equal to zero.
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Example 64.3: Reading Regression Results from a DATA= EST Data Set
This example creates an EST-type data set that contains regression coefficients and their corresponding
covariance matrices computed from imputed data sets. These estimates are then combined to generate valid
statistical inferences about the regression model.

The following statements use the REG procedure to generate regression coefficients:

proc reg data=outmi outest=outreg covout noprint;
model Oxygen= RunTime RunPulse;
by _Imputation_;

run;

The following statements display (in Output 64.3.1) output regression coefficients and their covariance
matrices from PROC REG for the first two imputed data sets:

proc print data=outreg(obs=8);
var _Imputation_ _Type_ _Name_

Intercept RunTime RunPulse;
title 'REG Model Coefficients and Covariance Matrices'

' (First Two Imputations)';
run;

Output 64.3.1 EST-Type Data Set

REG Model Coefficients and Covariance Matrices (First Two Imputations)REG Model Coefficients and Covariance Matrices (First Two Imputations)

Obs _Imputation_ _TYPE_ _NAME_ Intercept RunTime RunPulse

1 1 PARMS 86.544 -2.82231 -0.05873

2 1 COV Intercept 100.145 -0.53519 -0.55077

3 1 COV RunTime -0.535 0.10774 -0.00345

4 1 COV RunPulse -0.551 -0.00345 0.00343

5 2 PARMS 83.021 -3.00023 -0.02491

6 2 COV Intercept 79.032 -0.66765 -0.41918

7 2 COV RunTime -0.668 0.11456 -0.00313

8 2 COV RunPulse -0.419 -0.00313 0.00264

The following statements combine the results for the imputed data sets. The EDF= option is specified to
request that the adjusted degrees of freedom be used in the analysis. For a regression model with three
independent variables (including the Intercept) and 31 observations, the complete-data error degrees of
freedom is 28.

proc mianalyze data=outreg edf=28;
modeleffects Intercept RunTime RunPulse;

run;
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Output 64.3.2 Variance Information

The MIANALYZE ProcedureThe MIANALYZE Procedure

Variance Information

Variance

Parameter Between Within Total DF

Relative
Increase

in Variance

Fraction
Missing

Information
Relative

Efficiency

Intercept 45.529229 76.543614 131.178689 9.1917 0.713777 0.461277 0.915537

RunTime 0.019390 0.106220 0.129487 18.311 0.219051 0.192620 0.962905

RunPulse 0.001007 0.002537 0.003746 12.137 0.476384 0.355376 0.933641

The “Variance Information” table in Output 64.3.2 displays the between-imputation, within-imputation, and
total variances for combining complete-data inferences.

The “Parameter Estimates” table in Output 64.3.3 displays the estimated mean and standard error of the
regression coefficients. The inferences are based on the t distribution. The table also displays a 95% mean
confidence interval and a t test with the associated p-value for the hypothesis that the regression coefficient is
equal to zero. Since the p-value for RunPulse is 0.1597, this variable can be removed from the regression
model.

Output 64.3.3 Parameter Estimates

Parameter Estimates

Parameter Estimate Std Error 95% Confidence Limits DF Minimum Maximum Theta0
t for H0:

Parameter=Theta0 Pr > |t|

Intercept 90.837440 11.453327 65.01034 116.6645 9.1917 83.020730 100.839807 0 7.93 <.0001

RunTime -3.032870 0.359844 -3.78795 -2.2778 18.311 -3.204426 -2.822311 0 -8.43 <.0001

RunPulse -0.068578 0.061204 -0.20176 0.0646 12.137 -0.112840 -0.024910 0 -1.12 0.2842

Example 64.4: Reading Mixed Model Results from PARMS= and COVB= Data
Sets

This example creates data sets that contains parameter estimates and covariance matrices computed by a
mixed model analysis for a set of imputed data sets. These estimates are then combined to generate valid
statistical inferences about the parameters.

The following PROC MIXED statements generate the fixed-effect parameter estimates and covariance matrix
for each imputed data set:

proc mixed data=outmi;
model Oxygen= RunTime RunPulse RunTime*RunPulse/solution covb;
by _Imputation_;
ods output SolutionF=mixparms CovB=mixcovb;

run;

The following statements display (in Output 64.4.1) output parameter estimates from PROC MIXED for the
first two imputed data sets:
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proc print data=mixparms (obs=8);
var _Imputation_ Effect Estimate StdErr;
title 'MIXED Model Coefficients (First Two Imputations)';

run;

Output 64.4.1 PROC MIXED Model Coefficients

MIXED Model Coefficients (First Two Imputations)MIXED Model Coefficients (First Two Imputations)

Obs _Imputation_ Effect Estimate StdErr

1 1 Intercept 148.09 81.5231

2 1 RunTime -8.8115 7.8794

3 1 RunPulse -0.4123 0.4684

4 1 RunTime*RunPulse 0.03437 0.04517

5 2 Intercept 64.3607 64.6034

6 2 RunTime -1.1270 6.4307

7 2 RunPulse 0.08160 0.3688

8 2 RunTime*RunPulse -0.01069 0.03664

The following statements display (in Output 64.4.2) the output covariance matrices associated with the
parameter estimates from PROC MIXED for the first two imputed data sets:

proc print data=mixcovb (obs=8);
var _Imputation_ Row Effect Col1 Col2 Col3 Col4;
title 'Covariance Matrices (First Two Imputations)';

run;

Output 64.4.2 PROC MIXED Covariance Matrices

Covariance Matrices (First Two Imputations)Covariance Matrices (First Two Imputations)

Obs _Imputation_ Row Effect Col1 Col2 Col3 Col4

1 1 1 Intercept 6646.01 -637.40 -38.1515 3.6542

2 1 2 RunTime -637.40 62.0842 3.6548 -0.3556

3 1 3 RunPulse -38.1515 3.6548 0.2194 -0.02099

4 1 4 RunTime*RunPulse 3.6542 -0.3556 -0.02099 0.002040

5 2 1 Intercept 4173.59 -411.46 -23.7889 2.3441

6 2 2 RunTime -411.46 41.3545 2.3414 -0.2353

7 2 3 RunPulse -23.7889 2.3414 0.1360 -0.01338

8 2 4 RunTime*RunPulse 2.3441 -0.2353 -0.01338 0.001343

Note that the variables Col1, Col2, Col3, and Col4 are used to identify the effects Intercept, RunTime,
RunPulse, and RunTime*RunPulse, respectively, through the variable Row.

For univariate inference, only parameter estimates and their associated standard errors are needed. The
following statements use the MIANALYZE procedure with the input PARMS= data set to produce univariate
results:

proc mianalyze parms=mixparms edf=28;
modeleffects Intercept RunTime RunPulse RunTime*RunPulse;

run;
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The “Variance Information” table in Output 64.4.3 displays the between-imputation, within-imputation, and
total variances for combining complete-data inferences.

Output 64.4.3 Variance Information

The MIANALYZE ProcedureThe MIANALYZE Procedure

Variance Information

Variance

Parameter Between Within Total DF

Relative
Increase

in Variance

Fraction
Missing

Information
Relative

Efficiency

Intercept 1972.654530 4771.948777 7139.134213 11.82 0.496063 0.365524 0.931875

RunTime 14.712602 45.549686 63.204808 13.797 0.387601 0.305893 0.942348

RunPulse 0.062941 0.156717 0.232247 12.046 0.481948 0.358274 0.933136

RunTime*RunPulse 0.000470 0.001490 0.002055 13.983 0.378863 0.300674 0.943276

The “Parameter Estimates” table in Output 64.4.4 displays the estimated mean and standard error of the
regression coefficients.

Output 64.4.4 Parameter Estimates

Parameter Estimates

Parameter Estimate Std Error 95% Confidence Limits DF Minimum Maximum

Intercept 136.071356 84.493397 -48.3352 320.4779 11.82 64.360719 186.549814

RunTime -7.457186 7.950145 -24.5322 9.6178 13.797 -11.514341 -1.127010

RunPulse -0.328104 0.481920 -1.3777 0.7215 12.046 -0.602162 0.081597

RunTime*RunPulse 0.025364 0.045328 -0.0719 0.1226 13.983 -0.010690 0.047429

Parameter Estimates

Parameter Theta0
t for H0:

Parameter=Theta0 Pr > |t|

Intercept 0 1.61 0.1337

RunTime 0 -0.94 0.3644

RunPulse 0 -0.68 0.5089

RunTime*RunPulse 0 0.56 0.5846

Since each covariance matrix contains variables Row, Col1, Col2, Col3, and Col4 for parameters, the
EFFECTVAR=ROWCOL option is needed when you specify the COVB= option. The following statements
illustrate the use of the MIANALYZE procedure with input PARMS= and COVB(EFFECTVAR=ROWCOL)=
data sets:

proc mianalyze parms=mixparms edf=28
covb(effectvar=rowcol)=mixcovb;

modeleffects Intercept RunTime RunPulse RunTime*RunPulse;
run;
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Example 64.5: Reading Generalized Linear Model Results
This example creates data sets that contains parameter estimates and corresponding covariance matrices
computed by a generalized linear model analysis for a set of imputed data sets. These estimates are then
combined to generate valid statistical inferences about the model parameters.

The following statements use PROC GENMOD to generate the parameter estimates and covariance matrix
for each imputed data set:

proc genmod data=outmi;
model Oxygen= RunTime RunPulse/covb;
by _Imputation_;
ods output ParameterEstimates=gmparms

ParmInfo=gmpinfo
CovB=gmcovb;

run;

The following statements print (in Output 64.5.1) the output parameter estimates and covariance matrix from
PROC GENMOD for the first two imputed data sets:

proc print data=gmparms (obs=8);
var _Imputation_ Parameter Estimate StdErr;
title 'GENMOD Model Coefficients (First Two Imputations)';

run;

Output 64.5.1 PROC GENMOD Model Coefficients

GENMOD Model Coefficients (First Two Imputations)GENMOD Model Coefficients (First Two Imputations)

Obs _Imputation_ Parameter Estimate StdErr

1 1 Intercept 86.5440 9.5107

2 1 RunTime -2.8223 0.3120

3 1 RunPulse -0.0587 0.0556

4 1 Scale 2.6692 0.3390

5 2 Intercept 83.0207 8.4489

6 2 RunTime -3.0002 0.3217

7 2 RunPulse -0.0249 0.0488

8 2 Scale 2.5727 0.3267

The following statements display the parameter information table in Output 64.5.2. The table identifies
parameter names used in the covariance matrices. The parameters Prm1, Prm2, and Prm3 are used for the
effects Intercept, RunTime, and RunPulse, respectively, in each covariance matrix.

proc print data=gmpinfo (obs=6);
title 'GENMOD Parameter Information (First Two Imputations)';

run;
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Output 64.5.2 PROC GENMOD Model Information

GENMOD Parameter Information (First Two Imputations)GENMOD Parameter Information (First Two Imputations)

Obs _Imputation_ Parameter Effect

1 1 Prm1 Intercept

2 1 Prm2 RunTime

3 1 Prm3 RunPulse

4 2 Prm1 Intercept

5 2 Prm2 RunTime

6 2 Prm3 RunPulse

The following statements display (in Output 64.5.3) the output covariance matrices from PROC GENMOD
for the first two imputed data sets. Note that the GENMOD procedure computes maximum likelihood
estimates for each covariance matrix.

proc print data=gmcovb (obs=8);
var _Imputation_ RowName Prm1 Prm2 Prm3;
title 'GENMOD Covariance Matrices (First Two Imputations)';

run;

Output 64.5.3 PROC GENMOD Covariance Matrices

GENMOD Covariance Matrices (First Two Imputations)GENMOD Covariance Matrices (First Two Imputations)

Obs _Imputation_ RowName Prm1 Prm2 Prm3

1 1 Prm1 90.453923 -0.483394 -0.497473

2 1 Prm2 -0.483394 0.0973159 -0.003113

3 1 Prm3 -0.497473 -0.003113 0.0030954

4 1 Scale 1.344E-15 -1.09E-17 -6.12E-18

5 2 Prm1 71.383332 -0.603037 -0.378616

6 2 Prm2 -0.603037 0.1034766 -0.002826

7 2 Prm3 -0.378616 -0.002826 0.0023843

8 2 Scale 1.602E-14 1.755E-16 -1.02E-16

The following statements use the MIANALYZE procedure with input PARMS=, PARMINFO=, and COVB=
data sets:

proc mianalyze parms=gmparms covb=gmcovb parminfo=gmpinfo;
modeleffects Intercept RunTime RunPulse;

run;

Since the GENMOD procedure computes maximum likelihood estimates for the covariance matrix, the
EDF= option is not used. The resulting model coefficients are identical to the estimates in Output 64.3.3
in Example 64.3. However, the standard errors are slightly different because in this example, maximum
likelihood estimates for the standard errors are combined without the EDF= option, whereas in Example 64.3,
unbiased estimates for the standard errors are combined with the EDF= option.
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Example 64.6: Reading GLM Results from PARMS= and XPXI= Data Sets
This example creates data sets that contains parameter estimates and corresponding .X0X/�1 matrices
computed by a general linear model analysis for a set of imputed data sets. These estimates are then combined
to generate valid statistical inferences about the model parameters.

The following statements use PROC GLM to generate the parameter estimates and .X0X/�1 matrix for each
imputed data set:

proc glm data=outmi;
model Oxygen= RunTime RunPulse/inverse;
by _Imputation_;
ods output ParameterEstimates=glmparms

InvXPX=glmxpxi;
quit;

The following statements display (in Output 64.6.1) the output parameter estimates and standard errors from
PROC GLM for the first two imputed data sets:

proc print data=glmparms (obs=6);
var _Imputation_ Parameter Estimate StdErr;
title 'GLM Model Coefficients (First Two Imputations)';

run;

Output 64.6.1 PROC GLM Model Coefficients

GLM Model Coefficients (First Two Imputations)GLM Model Coefficients (First Two Imputations)

Obs _Imputation_ Parameter Estimate StdErr

1 1 Intercept 86.5440339 10.00726811

2 1 RunTime -2.8223108 0.32824165

3 1 RunPulse -0.0587292 0.05854109

4 2 Intercept 83.0207303 8.88996885

5 2 RunTime -3.0002288 0.33847204

6 2 RunPulse -0.0249103 0.05137859

The following statements display (in Output 64.6.2) .X0X/�1 matrices from PROC GLM for the first two
imputed data sets:

proc print data=glmxpxi (obs=8);
var _Imputation_ Parameter Intercept RunTime RunPulse;
title 'GLM X''X Inverse Matrices (First Two Imputations)';

run;
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Output 64.6.2 PROC GLM .X0X/�1 Matrices

GLM X'X Inverse Matrices (First Two Imputations)GLM X'X Inverse Matrices (First Two Imputations)

Obs _Imputation_ Parameter Intercept RunTime RunPulse

1 1 Intercept 12.696250656 -0.067849956 -0.069826009

2 1 RunTime -0.067849956 0.0136594055 -0.000436938

3 1 RunPulse -0.069826009 -0.000436938 0.0004344762

4 1 Oxygen 86.544033929 -2.822310769 -0.058729234

5 2 Intercept 10.784620785 -0.091107072 -0.057201387

6 2 RunTime -0.091107072 0.0156332765 -0.000426902

7 2 RunPulse -0.057201387 -0.000426902 0.0003602208

8 2 Oxygen 83.020730343 -3.000228818 -0.024910305

The standard errors for the estimates in the output Glmparms data set are needed to create the covariance
matrix from the .X0X/�1 matrix. The following statements use the MIANALYZE procedure with input
PARMS= and XPXI= data sets to produce the same results as displayed in Output 64.3.2 and Output 64.3.3
in Example 64.3:

proc mianalyze parms=glmparms xpxi=glmxpxi edf=28;
modeleffects Intercept RunTime RunPulse;

run;

Example 64.7: Reading Logistic Model Results from a PARMS= Data Set
This example creates data sets that contains parameter estimates computed by a logistic regression analysis
for a set of imputed data sets. These estimates are then combined to generate valid statistical inferences about
the model parameters.

The following statements use PROC LOGISTIC to generate the parameter estimates for each imputed data
set:

proc logistic data=outfish2;
class Species;
model Species= Length Width / covb;
by _Imputation_;
ods output ParameterEstimates=lgsparms;

run;

The following statements display (in Output 64.7.1) the output logistic regression coefficients from PROC
LOGISTIC for the first two imputed data sets:

proc print data=lgsparms (obs=8);
title 'LOGISTIC Model Coefficients (First Two Imputations)';

run;
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Output 64.7.1 PROC LOGISTIC Model Coefficients

LOGISTIC Model Coefficients (First Two Imputations)LOGISTIC Model Coefficients (First Two Imputations)

Obs _Imputation_ Variable DF Estimate StdErr WaldChiSq ProbChiSq _ESTTYPE_

1 1 Intercept 1 0.1637 1.8405 0.0079 0.9291 MLE

2 1 Length 1 1.4543 0.5167 7.9231 0.0049 MLE

3 1 Width 1 -10.2950 3.4860 8.7216 0.0031 MLE

4 2 Intercept 1 0.6473 1.9003 0.1160 0.7334 MLE

5 2 Length 1 1.2831 0.4778 7.2123 0.0072 MLE

6 2 Width 1 -9.2991 3.2187 8.3469 0.0039 MLE

7 3 Intercept 1 -0.0408 1.8535 0.0005 0.9824 MLE

8 3 Length 1 0.9208 0.3978 5.3564 0.0206 MLE

The following statements displays the covariance matrices associated with parameter estimates derived from
the first two imputations in Output 64.7.2:

The following statements use the MIANALYZE procedure with input PARMS= data set:

proc mianalyze parms=lgsparms;
modeleffects Intercept Length Width;

run;

The “Variance Information” table in Output 64.7.2 displays the between-imputation, within-imputation, and
total variances for combining complete-data inferences.

Output 64.7.2 Variance Information

The MIANALYZE ProcedureThe MIANALYZE Procedure

Variance Information

Variance

Parameter Between Within Total DF

Relative
Increase

in Variance

Fraction
Missing

Information
Relative

Efficiency

Intercept 0.125100 3.174905 3.325025 1962.3 0.047283 0.046120 0.990860

Length 0.039992 0.201496 0.249486 108.11 0.238169 0.206894 0.960265

Width 1.895087 9.030840 11.304945 98.85 0.251815 0.216847 0.958433

The “Parameter Estimates” table in Output 64.7.3 displays the combined parameter estimates with associated
standard errors.

Output 64.7.3 Parameter Estimates

Parameter Estimates

Parameter Estimate Std Error 95% Confidence Limits DF Minimum Maximum Theta0
t for H0:

Parameter=Theta0 Pr > |t|

Intercept 0.073984 1.823465 -3.5021 3.65012 1962.3 -0.208872 0.647303 0 0.04 0.9676

Length 1.191908 0.499485 0.2019 2.18196 108.11 0.920752 1.454324 0 2.39 0.0188

Width -8.499960 3.362283 -15.1716 -1.82834 98.85 -10.294965 -6.703819 0 -2.53 0.0131
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Example 64.8: Reading Mixed Model Results with Classification Covariates
This example creates data sets that contains parameter estimates and corresponding covariance matrices with
classification variables computed by a mixed regression model analysis for a set of imputed data sets. These
estimates are then combined to generate valid statistical inferences about the model parameters.

The following statements use PROC MIXED to generate the parameter estimates and covariance matrix for
each imputed data set:

proc mixed data=outfish2;
class Species;
model Length= Species Width/ solution;
by _Imputation_;
ods output SolutionF=mxparms;

run;

The following statements display (in Output 64.8.1) the output mixed model coefficients from PROC MIXED
for the first two imputed data sets:

proc print data=mxparms (obs=10);
var _Imputation_ Effect Species Estimate StdErr;
title 'MIXED Model Coefficients (First Two Imputations)';

run;

Output 64.8.1 PROC MIXED Model Coefficients

MIXED Model Coefficients (First Two Imputations)MIXED Model Coefficients (First Two Imputations)

Obs _Imputation_ Effect Species Estimate StdErr

1 1 Intercept 4.5106 0.8244

2 1 Species Parkki 1.5774 0.7020

3 1 Species Perch 0 .

4 1 Width 5.2585 0.1599

5 2 Intercept 4.5250 0.8771

6 2 Species Parkki 1.4885 0.7693

7 2 Species Perch 0 .

8 2 Width 5.2389 0.1701

9 3 Intercept 4.8906 0.7724

10 3 Species Parkki 0.7972 0.7396

The following statements use the MIANALYZE procedure with an input PARMS= data set:

proc mianalyze parms(classvar=full)=mxparms;
class Species;
modeleffects Intercept Species Width;

run;

The “Variance Information” table in Output 64.8.2 displays the between-imputation, within-imputation, and
total variances for combining complete-data inferences.
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Output 64.8.2 Variance Information

The MIANALYZE ProcedureThe MIANALYZE Procedure

Variance Information

Variance

Parameter Species Between Within Total DF

Relative
Increase

in Variance

Fraction
Missing

Information
Relative

Efficiency

Intercept 0.035884 0.687242 0.730303 1150.5 0.062658 0.060595 0.988026

Species Parkki 0.097719 0.541354 0.658616 126.18 0.216610 0.190769 0.963248

Species Perch 0 . . . . . .

Width 0.000873 0.026312 0.027359 2726.5 0.039828 0.039007 0.992259

The “Parameter Estimates” table in Output 64.8.3 displays the combined parameter estimates with associated
standard errors.

Output 64.8.3 Parameter Estimates

Parameter Estimates

Parameter Species Estimate Std Error 95% Confidence Limits DF Minimum Maximum

Intercept 4.560311 0.854578 2.88360 6.237016 1150.5 4.419502 4.890594

Species Parkki 1.318070 0.811552 -0.28794 2.924083 126.18 0.797233 1.577380

Species Perch 0 . . . . 0 0

Width 5.265971 0.165407 4.94164 5.590307 2726.5 5.238887 5.313877

Parameter Estimates

Parameter Species Theta0
t for H0:

Parameter=Theta0 Pr > |t|

Intercept 0 5.34 <.0001

Species Parkki 0 1.62 0.1068

Species Perch 0 . .

Width 0 31.84 <.0001

Example 64.9: Reading Nominal Logistic Model Results
This example creates data sets to contain parameter estimates that are computed by a nominal logistic
regression analysis for a set of imputed data sets. These estimates are then combined to generate valid
statistical inferences about the model parameters.

The following statements use PROC LOGISTIC to generate the parameter estimates and covariance matrix
for each imputed data set:

proc logistic data=outfish3;
class Species;
model Species= Length Width / link=glogit covb;
by _Imputation_;
ods output ParameterEstimates=lgsparms

CovB=lgscovb;
run;
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The following statements display (in Output 64.9.1) the output logistic regression coefficients from PROC
LOGISTIC for the first two imputed data sets:

proc print data=lgsparms (obs=12);
title 'LOGISTIC Model Coefficients (First Two Imputations)';

run;

Output 64.9.1 PROC LOGISTIC Model Coefficients

LOGISTIC Model Coefficients (First Two Imputations)LOGISTIC Model Coefficients (First Two Imputations)

Obs _Imputation_ Variable Response DF Estimate StdErr WaldChiSq ProbChiSq _ESTTYPE_

1 1 Intercept Parkki 1 1.7737 1.7712 1.0029 0.3166 MLE

2 1 Intercept Perch 1 1.1036 1.3426 0.6757 0.4111 MLE

3 1 Length Parkki 1 -0.0353 0.2700 0.0171 0.8960 MLE

4 1 Length Perch 1 -0.8560 0.2635 10.5529 0.0012 MLE

5 1 Width Parkki 1 -0.3784 1.6650 0.0517 0.8202 MLE

6 1 Width Perch 1 5.6213 1.6333 11.8455 0.0006 MLE

7 2 Intercept Parkki 1 2.3507 1.7930 1.7188 0.1898 MLE

8 2 Intercept Perch 1 0.6321 1.3370 0.2235 0.6364 MLE

9 2 Length Parkki 1 -0.3479 0.2460 2.0004 0.1573 MLE

10 2 Length Perch 1 -0.6108 0.2130 8.2274 0.0041 MLE

11 2 Width Parkki 1 1.5786 1.5300 1.0645 0.3022 MLE

12 2 Width Perch 1 4.1610 1.3110 10.0734 0.0015 MLE

The following statements display the covariance matrices that are associated with parameter estimates derived
from the first two imputations in Output 64.9.2:

proc print data=lgscovb (obs=12);
title 'LOGISTIC Model Covariance Matrices (First Two Imputations)';

run;
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Output 64.9.2 PROC LOGISTIC Covariance Matrices

LOGISTIC Model Covariance Matrices (First Two Imputations)LOGISTIC Model Covariance Matrices (First Two Imputations)

Obs _Imputation_ Parameter Intercept_Parkki Intercept_Perch Length_Parkki

1 1 Intercept_Parkki 3.137016 1.150943 -0.25136

2 1 Intercept_Perch 1.150943 1.80259 -0.12448

3 1 Length_Parkki -0.25136 -0.12448 0.072903

4 1 Length_Perch -0.11416 -0.16709 0.028705

5 1 Width_Parkki 0.857307 0.557913 -0.43386

6 1 Width_Perch 0.484917 0.676397 -0.16464

7 2 Intercept_Parkki 3.214747 1.25981 -0.19425

8 2 Intercept_Perch 1.25981 1.787564 -0.11454

9 2 Length_Parkki -0.19425 -0.11454 0.060501

10 2 Length_Perch -0.10076 -0.13446 0.029263

11 2 Width_Parkki 0.436385 0.460885 -0.35903

12 2 Width_Perch 0.365388 0.463036 -0.17062

Obs Length_Perch Width_Parkki Width_Perch

1 -0.11416 0.857307 0.484917

2 -0.16709 0.557913 0.676397

3 0.028705 -0.43386 -0.16464

4 0.069437 -0.16666 -0.42309

5 -0.16666 2.77239 1.00217

6 -0.42309 1.00217 2.66758

7 -0.10076 0.436385 0.365388

8 -0.13446 0.460885 0.463036

9 0.029263 -0.35903 -0.17062

10 0.04535 -0.17499 -0.27173

11 -0.17499 2.34089 1.081586

12 -0.27173 1.081586 1.718756

The following statements use the MIANALYZE procedure with the input PARMS= and COVB= data sets:

proc mianalyze parms(link=glogit)=lgsparms
covb(effectvar=stacking)=lgscovb
mult;

modeleffects Intercept Length Width;
run;

The “Variance Information” table in Output 64.9.3 displays the between-imputation, within-imputation, and
total variances for combining complete-data inferences.
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Output 64.9.3 Variance Information

The MIANALYZE ProcedureThe MIANALYZE Procedure

Variance Information

Variance

Parameter Response Between Within Total DF

Relative
Increase

in Variance

Fraction
Missing

Information
Relative

Efficiency

Intercept Parkki 0.320907 3.413326 3.798414 389.17 0.112819 0.105964 0.979247

Intercept Perch 0.097847 1.581510 1.698927 837.44 0.074243 0.071327 0.985935

Length Parkki 0.104477 0.087087 0.212460 11.487 1.439631 0.646690 0.885474

Length Perch 0.027078 0.049462 0.081956 25.446 0.656949 0.438914 0.919301

Width Parkki 4.400264 3.544989 8.825306 11.174 1.489516 0.654995 0.884174

Width Perch 1.087492 1.846266 3.151257 23.325 0.706827 0.458630 0.915981

The “Parameter Estimates” table in Output 64.9.4 displays the combined parameter estimates and their
associated standard errors.

Output 64.9.4 Parameter Estimates

Parameter Estimates

Parameter Response Estimate Std Error 95% Confidence Limits DF Minimum Maximum

Intercept Parkki 1.524648 1.948952 -2.30714 5.35644 389.17 0.934503 2.350654

Intercept Perch 0.608234 1.303429 -1.95014 3.16661 837.44 0.250824 1.103603

Length Parkki 0.136487 0.460933 -0.87280 1.14577 11.487 -0.347887 0.420424

Length Perch -0.593458 0.286280 -1.18254 -0.00438 25.446 -0.856010 -0.449840

Width Parkki -1.543028 2.970742 -8.06920 4.98315 11.174 -3.363124 1.578570

Width Perch 3.988903 1.775178 0.31949 7.65831 23.325 3.073085 5.621285

Parameter Estimates

Parameter Response Theta0
t for H0:

Parameter=Theta0 Pr > |t|

Intercept Parkki 0 0.78 0.4345

Intercept Perch 0 0.47 0.6409

Length Parkki 0 0.30 0.7724

Length Perch 0 -2.07 0.0484

Width Parkki 0 -0.52 0.6136

Width Perch 0 2.25 0.0344

The “Multivariate Inference” table in Output 64.9.5 displays multivariate inference for the parameters
assuming proportionality of the between-imputation and within-imputation covariance matrices.

Output 64.9.5 Multivariate Inference

Multivariate Inference
Assuming Proportionality of Between/Within Covariance Matrices

Avg Relative
Increase

in Variance Num DF Den DF
F for H0:

Parameter=Theta0 Pr > F

0.403144 6 218.35 3.05 0.0069
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Example 64.10: Using a TEST statement
This example creates a DATA=EST data set to contain regression coefficients and their corresponding
covariance matrices that are computed from imputed data sets. These estimates are then combined to generate
valid statistical inferences about the regression model. A TEST statement is used to test linear hypotheses
about the parameters.

The following statements use the REG procedure to generate regression coefficients:

proc reg data=outmi outest=outreg covout noprint;
model Oxygen= RunTime RunPulse;
by _Imputation_;

run;

The following statements combine the results for the imputed data sets. A TEST statement is used to test
linear hypotheses of INTERCEPT=0 and RUNTIME=RUNPULSE.

proc mianalyze data=outreg edf=28;
modeleffects Intercept RunTime RunPulse;
test Intercept, RunTime=RunPulse / mult;

run;

The “Test Specification” table in Output 64.10.1 displays the L matrix and the c vector in a TEST statement.
Because no label is specified for the TEST statement, “Test 1” is used as the label.

Output 64.10.1 Test Specification

The MIANALYZE Procedure
Test: Test 1

The MIANALYZE Procedure
Test: Test 1

Test Specification

L Matrix

Parameter Intercept RunTime RunPulse C

TestPrm1 1.000000 0 0 0

TestPrm2 0 1.000000 -1.000000 0

The “Variance Information” table in Output 64.10.2 displays the between-imputation variance, within-
imputation variance, and total variance for each univariate inference. A detailed description of these statistics
is provided in the section “Combining Inferences from Imputed Data Sets” on page 5174 and the section
“Multiple Imputation Efficiency” on page 5175.

Output 64.10.2 Variance Information

Variance Information

Variance

Parameter Between Within Total DF

Relative
Increase

in Variance

Fraction
Missing

Information
Relative

Efficiency

TestPrm1 45.529229 76.543614 131.178689 9.1917 0.713777 0.461277 0.915537

TestPrm2 0.014715 0.114324 0.131983 20.598 0.154459 0.141444 0.972490
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The “Parameter Estimates” table in Output 64.10.3 displays the estimated mean and standard error of the
linear components. The inferences are based on the t distribution. The table also displays a 95% mean
confidence interval and a t test along with the associated p-value for the hypothesis that each linear component
of Lˇ is equal to 0.

Output 64.10.3 Parameter Estimates

Parameter Estimates

Parameter Estimate Std Error 95% Confidence Limits DF Minimum Maximum C
t for H0:

Parameter=C Pr > |t|

TestPrm1 90.837440 11.453327 65.01034 116.6645 9.1917 83.020730 100.839807 0 7.93 <.0001

TestPrm2 -2.964292 0.363294 -3.72070 -2.2079 20.598 -3.091586 -2.763582 0 -8.16 <.0001

When you specify the MULT option, PROC MIANALYZE assumes that the between-imputation covariance
matrix is proportional to the within-imputation covariance matrix and displays a multivariate inference for all
the linear components that are taken jointly in Output 64.10.4.

Output 64.10.4 Multivariate Inference

Multivariate Inference
Assuming Proportionality of Between/Within Covariance Matrices

Avg Relative
Increase

in Variance Num DF Den DF
F for H0:

Parameter=Theta0 Pr > F

0.419868 2 35.053 60.34 <.0001

Example 64.11: Combining Correlation Coefficients
This example combines sample correlation coefficients that are computed from a set of imputed data sets by
using Fisher’s z transformation.

Fisher’s z transformation of the sample correlation r is

z D
1

2
log

�
1C r

1 � r

�
The statistic z is approximately normally distributed, with mean

log
�
1C �

1 � �

�
and variance 1=.n � 3/, where � is the population correlation coefficient and n is the number of observations.

The following statements use the CORR procedure to compute the correlation r and its associated Fisher’s z
statistic between the variables Oxygen and RunTime for each imputed data set. The ODS statement is used
to save Fisher’s z statistic in an output data set.

proc corr data=outmi fisher(biasadj=no);
var Oxygen RunTime;
by _Imputation_;
ods output FisherPearsonCorr= outz;

run;
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The following statements display the number of observations and Fisher’s z statistic for each imputed data set
in Output 64.11.1:

proc print data=outz;
title 'Fisher''s Correlation Statistics';
var _Imputation_ NObs ZVal;

run;

Output 64.11.1 Output z Statistics

Fisher's Correlation StatisticsFisher's Correlation Statistics

Obs _Imputation_ NObs ZVal

1 1 31 -1.27869

2 2 31 -1.30715

3 3 31 -1.27922

4 4 31 -1.39243

5 5 31 -1.40146

The following statements generate the standard error associated with the z statistic, 1=
p
n � 3:

data outz;
set outz;
StdZ= 1. / sqrt(NObs-3);

run;

The following statements use the MIANALYZE procedure to generate a combined parameter estimate Oz and
its variance, as shown in Output 64.11.2. The ODS statement is used to save the parameter estimates in an
output data set.

proc mianalyze data=outz;
ods output ParameterEstimates=parms;
modeleffects ZVal;
stderr StdZ;

run;

Output 64.11.2 Combining Fisher’s z Statistics

The MIANALYZE ProcedureThe MIANALYZE Procedure

Parameter Estimates

Parameter Estimate Std Error 95% Confidence Limits DF Minimum Maximum Theta0
t for H0:

Parameter=Theta0 Pr > |t|

ZVal -1.331787 0.200327 -1.72587 -0.93771 330.23 -1.401459 -1.278686 0 -6.65 <.0001

In addition to the estimate for z, PROC MIANALYZE also generates 95% confidence limits for z, Oz:025 and
Oz:975. The following statements print the estimate and 95% confidence limits for z in Output 64.11.3:

proc print data=parms;
title 'Parameter Estimates with 95% Confidence Limits';
var Estimate LCLMean UCLMean;

run;
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Output 64.11.3 Parameter Estimates with 95% Confidence Limits

Parameter Estimates with 95% Confidence LimitsParameter Estimates with 95% Confidence Limits

Obs Estimate LCLMean UCLMean

1 -1.331787 -1.72587 -0.93771

An estimate of the correlation coefficient with its corresponding 95% confidence limits is then generated from
the following inverse transformation as described in the section “Correlation Coefficients” on page 5179:

r D tanh.z/ D
e2z � 1

e2z C 1

for z D Oz, Oz:025, and Oz:975.

The following statements generate and display an estimate of the correlation coefficient and its 95% confidence
limits, as shown in Output 64.11.4:

data corr_ci;
set parms;
r= tanh( Estimate);
r_lower= tanh( LCLMean);
r_upper= tanh( UCLMean);

run;
proc print data=corr_ci;

title 'Estimated Correlation Coefficient'
' with 95% Confidence Limits';

var r r_lower r_upper;
run;

Output 64.11.4 Estimated Correlation Coefficient

Estimated Correlation Coefficient with 95% Confidence LimitsEstimated Correlation Coefficient with 95% Confidence Limits

Obs r r_lower r_upper

1 -0.86969 -0.93857 -0.73417

Example 64.12: Sensitivity Analysis with Control-Based Pattern Imputation
This example illustrates sensitivity analysis in multiple imputation under the MNAR assumption by creating
control-based pattern imputation.

Suppose that a pharmaceutical company is conducting a clinical trial to test the efficacy of a new drug. The
trial consists of two groups of equally allocated patients: a treatment group that receives the new drug and a
placebo control group. The variable Trt is an indicator variable, with a value of 1 for patients in the treatment
group and a value of 0 for patients in the control group. The variable Y0 is the baseline efficacy score, and
the variable Y1 is the efficacy score at a follow-up visit.

If the data set does not contain any missing values, then a regression model such as

Y1 D Trt Y0

can be used to test the the treatment effect.



Example 64.12: Sensitivity Analysis with Control-Based Pattern Imputation F 5205

Suppose that the variables Trt and Y0 are fully observed and the variable Y1 contains missing values in both
the treatment and control groups, as shown in Table 64.4.

Table 64.4 Variables

Variables
Trt Y0 Y1

0 X X
1 X X

0 X .
1 X .

Suppose the data set Mono1 contains the data from the trial that have missing values in Y1. Output 64.12.1
lists the first 10 observations.

Output 64.12.1 Clinical Trial Data

First 10 Obs in the Trial DataFirst 10 Obs in the Trial Data

Obs Trt y0 y1

1 0 10.5212 11.3604

2 0 8.5871 8.5178

3 0 9.3274 .

4 0 9.7519 .

5 0 9.3495 9.4369

6 1 11.5192 13.2344

7 1 10.7841 .

8 1 9.7717 10.9407

9 1 10.1455 10.8279

10 1 8.2463 9.6844

Multiple imputation often assumes that missing values are missing at random (MAR), and the following
statements use the MI procedure to impute missing values under this assumption:

proc mi data=Mono1 seed=14823 nimpute=10 out=outex12a;
class Trt;
monotone reg;
var Trt y0 y1;

run;

The following statements generate regression coefficients for each of the 10 imputed data sets:

proc reg data=outex12a;
model y1= Trt y0;
by _Imputation_;
ods output parameterestimates=regparms;

run;
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The following statements combine the 10 sets of regression coefficients:

proc mianalyze parms=regparms;
modeleffects Trt;

run;

The “Parameter Estimates” table in Output 64.12.2 displays a combined estimate and standard error for the
regression coefficient for Trt. The table shows a t test statistic of 3.37, with the associated p-value 0.0011 for
the test that the regression coefficient is equal to 0.

Output 64.12.2 Parameter Estimates

The MIANALYZE ProcedureThe MIANALYZE Procedure

Parameter Estimates

Parameter Estimate Std Error 95% Confidence Limits DF Minimum Maximum Theta0
t for H0:

Parameter=Theta0 Pr > |t|

Trt 0.893577 0.265276 0.366563 1.420591 90.029 0.624115 1.121445 0 3.37 0.0011

The conclusion in Output 64.12.2 is based on the MAR assumption. But if missing Y1 values for individuals
in the treatment group imply that these individuals no longer receive the treatment, then it is reasonable to
assume that the conditional distribution of Y1, given Y0 for individuals who have missing Y1 values in the
treatment group, is similar to the corresponding distribution of individuals in the control group.

Ratitch and O’Kelly (2011) describe an implementation of the pattern-mixture model approach that uses a
control-based pattern imputation. That is, an imputation model for the missing observations in the treatment
group is constructed not from the observed data in the treatment group but rather from the observed data in
the control group. This model is also the imputation model that is used to impute missing observations in the
control group.

The following statements implement the control-based pattern imputation:

proc mi data=Mono1 seed=14823 nimpute=10 out=outex12b;
class Trt;
monotone reg;
mnar model( y1 /modelobs=(Trt='0'));
var y0 y1;

run;

The MNAR statement imputes missing values for scenarios under the MNAR assumption. The MODEL
option specifies that only observations where TRT=0 are used to derive the imputation model for the variable
Y1. Thus, Y0 and Y1 (but not Trt) are specified in the VAR list.

The following statements generate regression coefficients for each of the 10 imputed data sets:

proc reg data=outex12b;
model y1= Trt y0;
by _Imputation_;
ods output parameterestimates=regparms;

run;
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The following statements combine the 10 sets of regression coefficients:

proc mianalyze parms=regparms;
modeleffects Trt;

run;

Output 64.12.3 Parameter Estimates

The MIANALYZE ProcedureThe MIANALYZE Procedure

Parameter Estimates

Parameter Estimate Std Error 95% Confidence Limits DF Minimum Maximum Theta0
t for H0:

Parameter=Theta0 Pr > |t|

Trt 0.664712 0.297378 0.069701 1.259724 59.197 0.329363 0.892285 0 2.24 0.0292

The “Parameter Estimates” table in Output 64.12.3 shows a t test statistic of 2.24, with the p-value 0.0292 for
the test that the parameter is equal to 0. Thus, for a two-sided Type I error level of 0.05, the significance of
the treatment effect is not reversed by control-based pattern imputation.

Example 64.13: Sensitivity Analysis with Tipping-Point Approach
This example illustrates sensitivity analysis in multiple imputation under the MNAR assumption by searching
for a tipping point that reverses the study conclusion.

Suppose that a pharmaceutical company is conducting a clinical trial to test the efficacy of a new drug. The
trial consists of two groups of equally allocated patients: a treatment group that receives the new drug and a
placebo control group. The variable Trt is an indicator variable, with a value of 1 for patients in the treatment
group and a value of 0 for patients in the control group. The variable Y0 is the baseline efficacy score, and
the variable Y1 is the efficacy score at a follow-up visit.

If the data set does not contain any missing values, then a regression model such as

Y1 D Trt Y0

can be used to test the efficacy of the treatment effect.

Suppose that the variables Trt and Y0 are fully observed and the variable Y1 contains missing values in both
the treatment and control groups. Now suppose the data set Mono2 contains the data from a trial that have
missing values in Y1. Figure 64.13.1 lists the first 10 observations.
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Output 64.13.1 Clinical Trial Data

First 10 Obs in the Trial DataFirst 10 Obs in the Trial Data

Obs Trt y0 y1

1 0 11.4826 .

2 0 10.0090 10.8667

3 0 11.3643 10.6660

4 0 11.3098 10.8297

5 0 11.3094 .

6 1 10.3815 10.5587

7 1 11.2001 13.7616

8 1 9.7002 10.3460

9 1 10.0801 .

10 1 11.2667 11.0634

Multiple imputation often assumes that missing values are missing at random (MAR), and the following
statements use the MI procedure to impute missing values under this assumption:

proc mi data=Mono2 seed=14823 nimpute=10 out=outmi;
class Trt;
monotone reg;
var Trt y0 y1;

run;

The following statements generate regression coefficients for each of the 10 imputed data sets:

ods listing close;
proc reg data=outmi;

model y1= Trt y0;
by _Imputation_;
ods output parameterestimates=regparms;

run;

The following statements combine the 10 sets of regression coefficients:

ods listing;
proc mianalyze parms=regparms;

modeleffects Trt;
run;

The “Parameter Estimates” table in Output 64.13.2 displays a combined estimate and standard error for the
regression coefficient for Trt. The table displays a 95% confidence interval (0.2865, 1.2261), which does not
contain 0. The table also shows a t test statistic of 3.19, with the associated p-value 0.0019 for the test that
the regression coefficient is equal to 0.

Output 64.13.2 Parameter Estimates

The MIANALYZE ProcedureThe MIANALYZE Procedure

Parameter Estimates

Parameter Estimate Std Error 95% Confidence Limits DF Minimum Maximum Theta0
t for H0:

Parameter=Theta0 Pr > |t|

Trt 0.756280 0.236952 0.286493 1.226068 105.84 0.556144 0.964349 0 3.19 0.0019



Example 64.13: Sensitivity Analysis with Tipping-Point Approach F 5209

The conclusion in Output 64.13.2 is based on the MAR assumption. But if it is plausible that, for the treatment
group, the distribution of missing Y1 responses has a lower expected value than that of the corresponding
distribution of the observed Y1 responses, the conclusion under the MAR assumption should be examined.

The following macro performs multiple imputation analysis for a specified sequence of shift parameters,
which adjust the imputed values for observations in the treatment group (TRT=1):

/*---------------------------------------------------------*/
/*--- Performs multiple imputation analysis ---*/
/*--- for specified shift parameters: ---*/
/*--- data= input data set ---*/
/*--- smin= min shift parameter ---*/
/*--- smax= max shift parameter ---*/
/*--- sinc= increment of the shift parameter ---*/
/*--- outparms= output reg parameters ---*/
/*---------------------------------------------------------*/
%macro miparms( data=, smin=, smax=, sinc=, outparms=);

data &outparms;
set _null_;

run;

/*------------ # of shift values ------------*/
%let ncase= %sysevalf( (&smax-&smin)/&sinc, ceil );

/*---- Multiple imputation analysis for each shift ----*/
%do jc=0 %to &ncase;

%let sj= %sysevalf( &smin + &jc * &sinc);

/*---- Generates 10 imputed data sets ----*/
proc mi data=&data seed=14823 nimpute=10 out=outmi;

class Trt;
monotone reg;
mnar adjust( y1 / shift=&sj adjustobs=(Trt='1') );
var Trt y0 y1;

run;

/*------ Perform reg test -------*/
proc reg data=outmi;

model y1= Trt y0;
by _Imputation_;
ods output parameterestimates=regparm;

run;

/*------ Combine reg results -------*/
proc mianalyze parms=regparm;

modeleffects Trt;
ods output parameterestimates=miparm;

run;

data miparm;
set miparm;
Shift= &sj;

run;
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/*----- Output multiple imputation results ----*/
data &outparms;

set &outparms miparm;
run;

%end;
%mend miparms;

Assume that the tipping point that reverses the study conclusion is between –2 and 0. The following statements
perform multiple imputation analysis for each of the shift parameters –2.0, –1.8, . . . , 0.

ods listing close;
%miparms( data=Mono2, smin=-2, smax=0, sinc=0.2, outparms=parms1);

The following statements display the p-values that are associated with the shift parameters:

ods listing;
proc print label data=parms1;

var Shift Probt;
title 'P-values for Shift Parameters';
label Probt='Pr > |t|';
format Probt 8.4;

run;

Output 64.13.3 Finding Tipping Point for Shift Parameter between –2 and 0

P-values for Shift ParametersP-values for Shift Parameters

Obs Shift Pr > |t|

1 -2.0 0.1861

2 -1.8 0.1328

3 -1.6 0.0916

4 -1.4 0.0611

5 -1.2 0.0395

6 -1.0 0.0248

7 -0.8 0.0152

8 -0.6 0.0091

9 -0.4 0.0054

10 -0.2 0.0032

11 0.0 0.0019

For a two-sided Type I error level of 0.05, the tipping point for the shift parameter is between –1.4 and –1.2.
The following statements perform multiple imputation analysis for shift parameters –1.40, –1.39, . . . , –1.20.

ods listing close;
%miparms( data=Mono2, smin=-1.4, smax=-1.2, sinc=0.01, outparms=parms2);

The following statements display the p-values that are associated with the shift parameters:

ods listing;
proc print label data=parms2;

var Shift Probt;
title 'P-values for Shift Parameters';
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label Probt='Pr > |t|';
format Probt 8.4;

run;

Output 64.13.4 Finding Tipping Point for Shift between –1.40 and –1.20

P-values for Shift ParametersP-values for Shift Parameters

Obs Shift Pr > |t|

1 -1.40 0.0611

2 -1.39 0.0598

3 -1.38 0.0586

4 -1.37 0.0573

5 -1.36 0.0561

6 -1.35 0.0549

7 -1.34 0.0538

8 -1.33 0.0526

9 -1.32 0.0515

10 -1.31 0.0504

11 -1.30 0.0493

12 -1.29 0.0482

13 -1.28 0.0472

14 -1.27 0.0462

15 -1.26 0.0452

16 -1.25 0.0442

17 -1.24 0.0432

18 -1.23 0.0423

19 -1.22 0.0413

20 -1.21 0.0404

21 -1.20 0.0395

The study conclusion under MAR is reversed when the shift parameter is –1.31. Thus, if this shift parameter
–1.31 is plausible, the conclusion under MAR is questionable.
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Overview: MIXED Procedure
The MIXED procedure fits a variety of mixed linear models to data and enables you to use these fitted models
to make statistical inferences about the data. A mixed linear model is a generalization of the standard linear
model used in the GLM procedure, the generalization being that the data are permitted to exhibit correlation
and nonconstant variability. The mixed linear model, therefore, provides you with the flexibility of modeling
not only the means of your data (as in the standard linear model) but their variances and covariances as well.

The primary assumptions underlying the analyses performed by PROC MIXED are as follows:

• The data are normally distributed (Gaussian).

• The means (expected values) of the data are linear in terms of a certain set of parameters.

• The variances and covariances of the data are in terms of a different set of parameters, and they exhibit
a structure matching one of those available in PROC MIXED.

Since Gaussian data can be modeled entirely in terms of their means and variances/covariances, the two
sets of parameters in a mixed linear model actually specify the complete probability distribution of the data.
The parameters of the mean model are referred to as fixed-effects parameters, and the parameters of the
variance-covariance model are referred to as covariance parameters.

The fixed-effects parameters are associated with known explanatory variables, as in the standard linear model.
These variables can be either qualitative (as in the traditional analysis of variance) or quantitative (as in
standard linear regression). However, the covariance parameters are what distinguishes the mixed linear
model from the standard linear model.

The need for covariance parameters arises quite frequently in applications, the following being the two most
typical scenarios:

• The experimental units on which the data are measured can be grouped into clusters, and the data from
a common cluster are correlated.

• Repeated measurements are taken on the same experimental unit, and these repeated measurements are
correlated or exhibit variability that changes.
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The first scenario can be generalized to include one set of clusters nested within another. For example,
if students are the experimental unit, they can be clustered into classes, which in turn can be clustered
into schools. Each level of this hierarchy can introduce an additional source of variability and correlation.
The second scenario occurs in longitudinal studies, where repeated measurements are taken over time.
Alternatively, the repeated measures could be spatial or multivariate in nature.

PROC MIXED provides a variety of covariance structures to handle the previous two scenarios. The most
common of these structures arises from the use of random-effects parameters, which are additional unknown
random variables assumed to affect the variability of the data. The variances of the random-effects parameters,
commonly known as variance components, become the covariance parameters for this particular structure.
Traditional mixed linear models contain both fixed- and random-effects parameters, and, in fact, it is the
combination of these two types of effects that led to the name mixed model. PROC MIXED fits not only
these traditional variance component models but numerous other covariance structures as well.

PROC MIXED fits the structure you select to the data by using the method of restricted maximum likelihood
(REML), also known as residual maximum likelihood. It is here that the Gaussian assumption for the data is
exploited. Other estimation methods are also available, including maximum likelihood and MIVQUE0. The
details behind these estimation methods are discussed in subsequent sections.

After a model has been fit to your data, you can use it to draw statistical inferences via both the fixed-effects
and covariance parameters. PROC MIXED computes several different statistics suitable for generating
hypothesis tests and confidence intervals. The validity of these statistics depends upon the mean and variance-
covariance model you select, so it is important to choose the model carefully. Some of the output from PROC
MIXED helps you assess your model and compare it with others.

Basic Features
PROC MIXED provides easy accessibility to numerous mixed linear models that are useful in many common
statistical analyses. In the style of the GLM procedure, PROC MIXED fits the specified mixed linear model
and produces appropriate statistics.

Here are some basic features of PROC MIXED:

• covariance structures, including variance components, compound symmetry, unstructured, AR(1),
Toeplitz, spatial, general linear, and factor analytic

• GLM-type grammar, by using MODEL, RANDOM, and REPEATED statements for model specifica-
tion and CONTRAST, ESTIMATE, and LSMEANS statements for inferences

• appropriate standard errors for all specified estimable linear combinations of fixed and random effects,
and corresponding t and F tests

• subject and group effects that enable blocking and heterogeneity, respectively

• REML and ML estimation methods implemented with a Newton-Raphson algorithm

• capacity to handle unbalanced data

• ability to create a SAS data set corresponding to any table
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PROC MIXED uses the Output Delivery System (ODS), a SAS subsystem that provides capabilities for
displaying and controlling the output from SAS procedures. ODS enables you to convert any of the output
from PROC MIXED into a SAS data set. See the section “ODS Table Names” on page 5319.

The MIXED procedure uses ODS Graphics to create graphs as part of its output. For general information
about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.” For specific information about the
statistical graphics available with the MIXED procedure, see the PLOTS= option in the PROC MIXED
statement and the section “ODS Graphics” on page 5324.

Notation for the Mixed Model
This section introduces the mathematical notation used throughout this chapter to describe the mixed linear
model. You should be familiar with basic matrix algebra (see Searle 1982). A more detailed description of
the mixed model is contained in the section “Mixed Models Theory” on page 5291.

A statistical model is a mathematical description of how data are generated. The standard linear model, as
used by the GLM procedure, is one of the most common statistical models:

y D Xˇ C �

In this expression, y represents a vector of observed data, ˇ is an unknown vector of fixed-effects parameters
with known design matrix X, and � is an unknown random error vector modeling the statistical noise around
Xˇ. The focus of the standard linear model is to model the mean of y by using the fixed-effects parameters ˇ.
The residual errors � are assumed to be independent and identically distributed Gaussian random variables
with mean 0 and variance �2.

The mixed model generalizes the standard linear model as follows:

y D Xˇ C Z C �

Here,  is an unknown vector of random-effects parameters with known design matrix Z, and � is an unknown
random error vector whose elements are no longer required to be independent and homogeneous.

To further develop this notion of variance modeling, assume that  and � are Gaussian random variables that
are uncorrelated and have expectations 0 and variances G and R, respectively. The variance of y is thus

V D ZGZ0 CR

Note that, when R D �2I and Z D 0, the mixed model reduces to the standard linear model.

You can model the variance of the data, y, by specifying the structure (or form) of Z, G, and R. The model
matrix Z is set up in the same fashion as X, the model matrix for the fixed-effects parameters. For G and R,
you must select some covariance structure. Possible covariance structures include the following:

• variance components

• compound symmetry (common covariance plus diagonal)

• unstructured (general covariance)

• autoregressive
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• spatial

• general linear

• factor analytic

By appropriately defining the model matrices X and Z, as well as the covariance structure matrices G and R,
you can perform numerous mixed model analyses.

PROC MIXED Contrasted with Other SAS Procedures
PROC MIXED is a generalization of the GLM procedure in the sense that PROC GLM fits standard
linear models, and PROC MIXED fits the wider class of mixed linear models. Both procedures have
similar CLASS, MODEL, CONTRAST, ESTIMATE, and LSMEANS statements, but their RANDOM and
REPEATED statements differ (see the following paragraphs). Both procedures use the non-full-rank model
parameterization, although the sorting of classification levels can differ between the two. PROC MIXED
computes only Type I–Type III tests of fixed effects, while PROC GLM computes Types I–IV.

The RANDOM statement in PROC MIXED incorporates random effects constituting the  vector in the
mixed model. However, in PROC GLM, effects specified in the RANDOM statement are still treated as fixed
as far as the model fit is concerned, and they serve only to produce corresponding expected mean squares.
These expected mean squares lead to the traditional ANOVA estimates of variance components. PROC
MIXED computes REML and ML estimates of variance parameters, which are generally preferred to the
ANOVA estimates (Searle 1988; Harville 1988; Searle, Casella, and McCulloch 1992). Optionally, PROC
MIXED also computes MIVQUE0 estimates, which are similar to ANOVA estimates.

The REPEATED statement in PROC MIXED is used to specify covariance structures for repeated measure-
ments on subjects, while the REPEATED statement in PROC GLM is used to specify various transformations
with which to conduct the traditional univariate or multivariate tests. In repeated measures situations, the
mixed model approach used in PROC MIXED is more flexible and more widely applicable than either
the univariate or multivariate approach. In particular, the mixed model approach provides a larger class of
covariance structures and a better mechanism for handling missing values (Wolfinger and Chang 1995).

PROC MIXED subsumes the VARCOMP procedure. PROC MIXED provides a wide variety of covariance
structures, while PROC VARCOMP estimates only simple random effects. PROC MIXED carries out several
analyses that are absent in PROC VARCOMP, including the estimation and testing of linear combinations of
fixed and random effects.

The ARIMA and AUTOREG procedures provide more time series structures than PROC MIXED, although
they do not fit variance component models. The CALIS procedure fits general covariance matrices, but the
fixed effects structure of the model is formed differently than in PROC MIXED. The LATTICE and NESTED
procedures fit special types of mixed linear models that can also be handled in PROC MIXED, although
PROC MIXED might run slower because of its more general algorithm. The TSCSREG procedure analyzes
time series cross-sectional data, and it fits some structures not available in PROC MIXED.

The GLIMMIX procedure fits generalized linear mixed models (GLMMs). Linear mixed models—where the
data are normally distributed, given the random effects—are in the class of GLMMs. The MIXED procedure
can estimate covariance parameters with ANOVA methods that are not available in the GLIMMIX procedure
(see METHOD=TYPE1, METHOD=TYPE2, and METHOD=TYPE3 in the PROC MIXED statement).
Also, PROC MIXED can perform a sampling-based Bayesian analysis through the PRIOR statement, and
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the procedure supports certain Kronecker-type covariance structures. These features are not available in the
GLIMMIX procedure. The GLIMMIX procedure, on the other hand, accommodates nonnormal data and
offers a broader array of post-processing features than the MIXED procedure.

Getting Started: MIXED Procedure

Clustered Data Example
Consider the following SAS data set as an introductory example:

data heights;
input Family Gender$ Height @@;
datalines;

1 F 67 1 F 66 1 F 64 1 M 71 1 M 72 2 F 63
2 F 63 2 F 67 2 M 69 2 M 68 2 M 70 3 F 63
3 M 64 4 F 67 4 F 66 4 M 67 4 M 67 4 M 69
;

The response variable Height measures the heights (in inches) of 18 individuals. The individuals are classified
according to Family and Gender. You can perform a traditional two-way analysis of variance of these data
with the following PROC MIXED statements:

proc mixed data=heights;
class Family Gender;
model Height = Gender Family Family*Gender;

run;

The PROC MIXED statement invokes the procedure. The CLASS statement instructs PROC MIXED to
consider both Family and Gender as classification variables. Dummy (indicator) variables are, as a result,
created corresponding to all of the distinct levels of Family and Gender. For these data, Family has four levels
and Gender has two levels.

The MODEL statement first specifies the response (dependent) variable Height. The explanatory (independent)
variables are then listed after the equal (=) sign. Here, the two explanatory variables are Gender and Family,
and these are the main effects of the design. The third explanatory term, Family*Gender, models an interaction
between the two main effects.

PROC MIXED uses the dummy variables associated with Gender, Family, and Family*Gender to construct
the X matrix for the linear model. A column of 1s is also included as the first column of X to model a global
intercept. There are no Z or G matrices for this model, and R is assumed to equal �2I, where I is an 18 � 18
identity matrix.

The RUN statement completes the specification. The coding is precisely the same as with the GLM procedure.
However, much of the output from PROC MIXED is different from that produced by PROC GLM.

The output from PROC MIXED is shown in Figure 65.1–Figure 65.7.

The “Model Information” table in Figure 65.1 describes the model, some of the variables that it involves, and
the method used in fitting it. This table also lists the method (profile, factor, parameter, or none) for handling
the residual variance.
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Figure 65.1 Model Information

The Mixed ProcedureThe Mixed Procedure

Model Information

Data Set WORK.HEIGHTS

Dependent Variable Height

Covariance Structure Diagonal

Estimation Method REML

Residual Variance Method Profile

Fixed Effects SE Method Model-Based

Degrees of Freedom Method Residual

The “Class Level Information” table in Figure 65.2 lists the levels of all variables specified in the CLASS
statement. You can check this table to make sure that the data are correct.

Figure 65.2 Class Level Information

Class Level
Information

Class Levels Values

Family 4 1 2 3 4

Gender 2 F M

The “Dimensions” table in Figure 65.3 lists the sizes of relevant matrices. This table can be useful in
determining CPU time and memory requirements.

Figure 65.3 Dimensions

Dimensions

Covariance Parameters 1

Columns in X 15

Columns in Z 0

Subjects 1

Max Obs per Subject 18

The “Number of Observations” table in Figure 65.4 displays information about the sample size being
processed.

Figure 65.4 Number of Observations

Number of Observations

Number of Observations Read 18

Number of Observations Used 18

Number of Observations Not Used 0

The “Covariance Parameter Estimates” table in Figure 65.5 displays the estimate of �2 for the model.
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Figure 65.5 Covariance Parameter Estimates

Covariance
Parameter
Estimates

Cov Parm Estimate

Residual 2.1000

The “Fit Statistics” table in Figure 65.6 lists several pieces of information about the fitted mixed model,
including values derived from the computed value of the restricted/residual likelihood.

Figure 65.6 Fit Statistics

Fit Statistics

-2 Res Log Likelihood 41.6

AIC (Smaller is Better) 43.6

AICC (Smaller is Better) 44.1

BIC (Smaller is Better) 43.9

The “Type 3 Tests of Fixed Effects” table in Figure 65.7 displays significance tests for the three effects listed
in the MODEL statement. The Type 3 F statistics and p-values are the same as those produced by the GLM
procedure. However, because PROC MIXED uses a likelihood-based estimation scheme, it does not directly
compute or display sums of squares for this analysis.

Figure 65.7 Tests of Fixed Effects

Type 3 Tests of Fixed Effects

Effect
Num

DF
Den

DF F Value Pr > F

Gender 1 10 17.63 0.0018

Family 3 10 5.90 0.0139

Family*Gender 3 10 2.89 0.0889

The Type 3 test for Family*Gender effect is not significant at the 5% level, but the tests for both main effects
are significant.

The important assumptions behind this analysis are that the data are normally distributed and that they are
independent with constant variance. For these data, the normality assumption is probably realistic since
the data are observed heights. However, since the data occur in clusters (families), it is very likely that
observations from the same family are statistically correlated—that is, not independent.

The methods implemented in PROC MIXED are still based on the assumption of normally distributed data,
but you can drop the assumption of independence by modeling statistical correlation in a variety of ways.
You can also model variances that are heterogeneous—that is, nonconstant.

For the height data, one of the simplest ways of modeling correlation is through the use of random effects.
Here the family effect is assumed to be normally distributed with zero mean and some unknown variance.
This is in contrast to the previous model in which the family effects are just constants, or fixed effects.
Declaring Family as a random effect sets up a common correlation among all observations having the same
level of Family.
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Declaring Family*Gender as a random effect models an additional correlation between all observations that
have the same level of both Family and Gender. One interpretation of this effect is that a female in a certain
family exhibits more correlation with the other females in that family than with the other males, and likewise
for a male. With the height data, this model seems reasonable.

The statements to fit this correlation model in PROC MIXED are as follows:

proc mixed;
class Family Gender;
model Height = Gender;
random Family Family*Gender;

run;

Note that Family and Family*Gender are now listed in the RANDOM statement. The dummy variables
associated with them are used to construct the Z matrix in the mixed model. The X matrix now consists of a
column of 1s and the dummy variables for Gender.

The G matrix for this model is diagonal, and it contains the variance components for both Family and
Family*Gender. The R matrix is still assumed to equal �2I, where I is an identity matrix.

The output from this analysis is as follows.

Figure 65.8 Model Information

The Mixed ProcedureThe Mixed Procedure

Model Information

Data Set WORK.HEIGHTS

Dependent Variable Height

Covariance Structure Variance Components

Estimation Method REML

Residual Variance Method Profile

Fixed Effects SE Method Model-Based

Degrees of Freedom Method Containment

The “Model Information” table in Figure 65.8 shows that the containment method is used to compute the
degrees of freedom for this analysis. This is the default method when a RANDOM statement is used; see the
description of the DDFM= option for more information.

Figure 65.9 Class Level Information

Class Level
Information

Class Levels Values

Family 4 1 2 3 4

Gender 2 F M

The “Class Level Information” table in Figure 65.9 is the same as before. The “Dimensions” table in
Figure 65.10 displays the new sizes of the X and Z matrices.
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Figure 65.10 Dimensions and Number of Observations

Dimensions

Covariance Parameters 3

Columns in X 3

Columns in Z 12

Subjects 1

Max Obs per Subject 18

Number of Observations

Number of Observations Read 18

Number of Observations Used 18

Number of Observations Not Used 0

The “Iteration History” table in Figure 65.11 displays the results of the numerical optimization of the
restricted/residual likelihood. Six iterations are required to achieve the default convergence criterion of 1E–8.

Figure 65.11 REML Estimation Iteration History

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 74.11074833

1 2 71.51614003 0.01441208

2 1 71.13845990 0.00412226

3 1 71.03613556 0.00058188

4 1 71.02281757 0.00001689

5 1 71.02245904 0.00000002

6 1 71.02245869 0.00000000

Convergence criteria met.

The “Covariance Parameter Estimates” table in Figure 65.12 displays the results of the REML fit. The
Estimate column contains the estimates of the variance components for Family and Family*Gender, as well
as the estimate of �2.

Figure 65.12 Covariance Parameter Estimates (REML)

Covariance Parameter
Estimates

Cov Parm Estimate

Family 2.4010

Family*Gender 1.7657

Residual 2.1668

The “Fit Statistics” table in Figure 65.13 contains basic information about the REML fit.
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Figure 65.13 Fit Statistics

Fit Statistics

-2 Res Log Likelihood 71.0

AIC (Smaller is Better) 77.0

AICC (Smaller is Better) 79.0

BIC (Smaller is Better) 75.2

The “Type 3 Tests of Fixed Effects” table in Figure 65.14 contains a significance test for the lone fixed
effect, Gender. Note that the associated p-value is not nearly as significant as in the previous analysis. This
illustrates the importance of correctly modeling correlation in your data.

Figure 65.14 Type 3 Tests of Fixed Effects

Type 3 Tests of Fixed Effects

Effect
Num

DF
Den

DF F Value Pr > F

Gender 1 3 7.95 0.0667

An additional benefit of the random effects analysis is that it enables you to make inferences about gender
that apply to an entire population of families, whereas the inferences about gender from the analysis where
Family and Family*Gender are fixed effects apply only to the particular families in the data set.

PROC MIXED thus offers you the ability to model correlation directly and to make inferences about fixed
effects that apply to entire populations of random effects.

Syntax: MIXED Procedure
The following statements are available in the MIXED procedure:

PROC MIXED < options > ;
BY variables ;
CLASS variable < (REF= option) > . . . < variable < (REF= option) > > < / global-options > ;
CODE < options > ;
ID variables ;
MODEL dependent = < fixed-effects > < / options > ;
RANDOM random-effects < / options > ;
REPEATED < repeated-effect > < / options > ;
PARMS (value-list). . . < / options > ;
PRIOR < distribution > < / options > ;
CONTRAST ’label’ < fixed-effect values . . . >

< | random-effect values . . . >, . . . < / options > ;
ESTIMATE ’label’ < fixed-effect values . . . >

< | random-effect values . . . > < / options > ;
LSMEANS fixed-effects < / options > ;
LSMESTIMATE model-effect lsmestimate-specification < / options > ;
SLICE model-effect < / options > ;
STORE < OUT= >item-store-name < / LABEL=‘label’ > ;
WEIGHT variable ;
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Items within angle brackets ( < > ) are optional. The CONTRAST, ESTIMATE, LSMEANS, and RANDOM
statements can appear multiple times; all other statements can appear only once.

The PROC MIXED and MODEL statements are required, and the MODEL statement must appear after the
CLASS statement if a CLASS statement is included. The CONTRAST, ESTIMATE, LSMEANS, RANDOM,
and REPEATED statements must follow the MODEL statement. The CONTRAST and ESTIMATE state-
ments must also follow any RANDOM statements. The LSMESTIMATE, SLICE, and STORE statements
are shared with many procedures. Summary descriptions of functionality and syntax for these statements are
also given after the PROC MIXED statement in alphabetical order, but you can find full documentation on
them in Chapter 19, “Shared Concepts and Topics.”

Table 65.1 summarizes the basic functions and important options of each PROC MIXED statement. The
syntax of each statement in Table 65.1 is described in the following sections in alphabetical order after the
description of the PROC MIXED statement.

Table 65.1 Summary of PROC MIXED Statements

Statement Description Options

PROC MIXED Invokes the procedure DATA= specifies input data set, METHOD= speci-
fies estimation method

BY Performs multiple
PROC MIXED analyses
in one invocation

None

CLASS Declares qualitative vari-
ables that create indicator
variables in design matri-
ces

None

CODE Requests that the proce-
dure write SAS DATA
step code to a file or cata-
log entry

FILE= names the file where the generated code is
saved, CATALOG= names the catalog entry where
the generated code is saved, IMPUTE imputes
predicted values for observations with missing or
invalid covariates, RESIDUAL computes residuals

ID Lists additional variables
to be included in pre-
dicted values tables

None

MODEL Specifies dependent vari-
able and fixed effects, set-
ting up X

S requests solution for fixed-effects parameters,
DDFM= specifies denominator degrees of freedom
method, OUTP= outputs predicted values to a data
set, INFLUENCE computes influence diagnostics

RANDOM Specifies random effects,
setting up Z and G

SUBJECT= creates block-diagonality, TYPE=
specifies covariance structure, S requests solution
for random-effects parameters, G displays esti-
mated G

REPEATED Sets up R SUBJECT= creates block-diagonality, TYPE=
specifies covariance structure, R displays esti-
mated blocks of R, GROUP= enables between-
subject heterogeneity, LOCAL adds a diagonal
matrix to R
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Table 65.1 continued

Statement Description Options

PARMS Specifies a grid of initial
values for the covariance
parameters

HOLD= and NOITER hold the covariance parame-
ters or their ratios constant, PARMSDATA= reads
the initial values from a SAS data set

PRIOR Performs a sampling-
based Bayesian analysis
for variance component
models

NSAMPLE= specifies the sample size, SEED=
specifies the starting seed

CONTRAST Constructs custom hy-
pothesis tests

E displays the L matrix coefficients

ESTIMATE Constructs custom scalar
estimates

CL produces confidence limits

LSMEANS Computes least squares
means for classification
fixed effects

DIFF computes differences of the least squares
means, ADJUST= performs multiple compar-
isons adjustments, AT changes covariates, OM
changes weighting, CL produces confidence lim-
its, SLICE= tests simple effects

LSMESTIMATE Provides custom hypoth-
esis tests among the least
squares means

ADJUST= determines the method for multiple
comparison adjustment of LS-mean differences,
JOINT requests a joint F or chi-square test for the
rows of the estimate

SLICE Performs a partitioned
analysis of LS–means for
an interaction

ADJUST= determines the method for multiple
comparison adjustment of LS-mean differences,
DIFF requests differences of LS-means

STORE Saves the context and re-
sults of the analysis

LABEL= adds a custom label

WEIGHT Specifies a variable by
which to weight R

None

PROC MIXED Statement
PROC MIXED < options > ;

The PROC MIXED statement invokes the MIXED procedure. Table 65.2 summarizes the options available
in the PROC MIXED statement. These and other options in the PROC MIXED statement are then described
fully in alphabetical order.

Table 65.2 PROC MIXED Statement Options

Option Description

Basic Options
DATA= Specifies input data set
METHOD= Specifies the estimation method
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Table 65.2 continued

Option Description

NOPROFILE Includes scale parameter in optimization
ORDER= Determines the sort order of CLASS variables

Displayed Output
ASYCORR Displays asymptotic correlation matrix of covariance parameter

estimates
ASYCOV Displays asymptotic covariance matrix of covariance parameter

estimates
CL Requests confidence limits for covariance parameter estimates
COVTEST Displays asymptotic standard errors and Wald tests for covariance

parameters
IC Displays a table of information criteria
ITDETAILS Displays estimates and gradients added to “Iteration History”
LOGNOTE Writes periodic status notes to the log
MMEQ Displays mixed model equations
MMEQSOL Displays the solution to the mixed model equations
NOCLPRINT Suppresses “Class Level Information” completely or in parts
NOITPRINT Suppresses “Iteration History” table
PLOTS= Produces ODS statistical graphics
RANKS= Displays a table of ranks of design matrices X and (XZ)
RATIO Produces ratio of covariance parameter estimates with residual

variance

Optimization Options
MAXFUNC= Specifies the maximum number of likelihood evaluations
MAXITER= Specifies the maximum number of iterations

Computational Options
CONVF Requests and tunes the relative function convergence criterion
CONVG Requests and tunes the relative gradient convergence criterion
CONVH Requests and tunes the relative Hessian convergence criterion
DFBW Selects between-within degree of freedom method
EMPIRICAL Computes empirical (“sandwich”) estimators
NOBOUND Unbounds covariance parameter estimates
RIDGE= Specifies starting value for minimum ridge value
SCORING= Applies Fisher scoring where applicable

You can specify the following options.

ABSOLUTE
makes the convergence criterion absolute. By default, it is relative (divided by the current objective
function value). See the CONVF, CONVG, and CONVH options in this section for a description of
various convergence criteria.
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ALPHA=number
requests that confidence limits be constructed for the covariance parameter estimates with confidence
level 1 � number . The value of number must be between 0 and 1; the default is 0.05.

ANOVAF
The ANOVAF option computes F tests in models with REPEATED statement and without RANDOM
statement by a method similar to that of Brunner, Domhof, and Langer (2002). The method consists of
computing special F statistics and adjusting their degrees of freedom. The technique is a generalization
of the Greenhouse-Geisser adjustment in MANOVA models (Greenhouse and Geisser 1959). For more
details, see the section “F Tests With the ANOVAF Option” on page 5301.

ASYCORR
produces the asymptotic correlation matrix of the covariance parameter estimates. It is computed from
the corresponding asymptotic covariance matrix (see the description of the ASYCOV option, which
follows). The name of the “Asymptotic Correlation” table is AsyCorr.

ASYCOV
requests that the asymptotic covariance matrix of the covariance parameters be displayed. By default,
this matrix is the observed inverse Fisher information matrix, which equals 2H�1, where H is the
Hessian (second derivative) matrix of the objective function. See the section “Covariance Parameter
Estimates” on page 5317 for more information about this matrix. When you use the SCORING=
option and PROC MIXED converges without stopping the scoring algorithm, PROC MIXED uses the
expected Hessian matrix to compute the covariance matrix instead of the observed Hessian. The ODS
name of the “Asymptotic Covariance” table is AsyCov.

CL< =WALD >
requests confidence limits for the covariance parameter estimates. A Satterthwaite approximation is
used to construct limits for all parameters that have a lower boundary constraint of zero. These limits
take the form

�b�2
�2
�;1�˛=2

� �2 �
�b�2
�2
�;˛=2

where � D 2Z2, Z is the Wald statistic b�2=se.b�2/, and the denominators are quantiles of the �2-
distribution with � degrees of freedom. See Milliken and Johnson (1992) and Burdick and Graybill
(1992) for similar techniques.

For all other parameters, Wald Z-scores and normal quantiles are used to construct the limits. Wald
limits are also provided for variance components if you specify the NOBOUND option. The optional
=WALD specification requests Wald limits for all parameters.

The confidence limits are displayed as extra columns in the “Covariance Parameter Estimates” table.
The confidence level is 1 � ˛ D 0:95 by default; this can be changed with the ALPHA= option.

CONVF< =number >
requests the relative function convergence criterion with tolerance number . The relative function
convergence criterion is

jfk � fk�1j

jfkj
� number

where fk is the value of the objective function at iteration k. To prevent the division by jfkj, use the
ABSOLUTE option. The default convergence criterion is CONVH, and the default tolerance is 1E–8.
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CONVG < =number >
requests the relative gradient convergence criterion with tolerance number . The relative gradient
convergence criterion is

maxj jgjkj
jfkj

� number

where fk is the value of the objective function, and gjk is the jth element of the gradient (first derivative)
of the objective function, both at iteration k. To prevent division by jfkj, use the ABSOLUTE option.
The default convergence criterion is CONVH, and the default tolerance is 1E–8.

CONVH< =number >
requests the relative Hessian convergence criterion with tolerance number . The relative Hessian
convergence criterion is

gk 0H�1k gk
jfkj

� number

where fk is the value of the objective function, gk is the gradient (first derivative) of the objective
function, and Hk is the Hessian (second derivative) of the objective function, all at iteration k.

If Hk is singular, then PROC MIXED uses the following relative criterion:

g0
k
gk
jfkj

� number

To prevent the division by jfkj, use the ABSOLUTE option. The default convergence criterion is
CONVH, and the default tolerance is 1E–8.

COVTEST
produces asymptotic standard errors and Wald Z-tests for the covariance parameter estimates.

DATA=SAS-data-set
names the SAS data set to be used by PROC MIXED. The default is the most recently created data set.

DFBW
has the same effect as the DDFM=BW option in the MODEL statement.

EMPIRICAL
computes the estimated variance-covariance matrix of the fixed-effects parameters by using the
asymptotically consistent estimator described in Huber (1967); White (1980); Liang and Zeger (1986);
Diggle, Liang, and Zeger (1994). This estimator is commonly referred to as the “sandwich” estimator,
and it is computed as follows:

.X0bV�1X/�  SX
iD1

X0icVi�1b�ib�i 0cVi�1Xi
!
.X0bV�1X/�

Here, b�i D yi �Xib̌, S is the number of subjects, and matrices with an i subscript are those for the ith
subject. You must include the SUBJECT= option in either a RANDOM or REPEATED statement for
this option to take effect.

When you specify the EMPIRICAL option, PROC MIXED adjusts all standard errors and test statis-
tics involving the fixed-effects parameters. This changes output in the following tables (listed in
Table 65.26): Contrast, CorrB, CovB, Diffs, Estimates, InvCovB, LSMeans, Slices, SolutionF, Tests1–
Tests3. The OUTP= and OUTPM= data sets are also affected. Finally, the Satterthwaite and Kenward-
Roger degrees of freedom methods are not available if you specify the EMPIRICAL option.
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IC
displays a table of various information criteria. The criteria are all in smaller-is-better form, and are
described in Table 65.3.

Table 65.3 Information Criteria

Criterion Formula Reference

AIC �2`C 2d Akaike (1974)
AICC �2`C 2dn�=.n� � d � 1/ Hurvich and Tsai (1989)

Burnham and Anderson (1998)
HQIC �2`C 2d log log n for n > 1 Hannan and Quinn (1979)

BIC �2`C d log n for n > 0 Schwarz (1978)
CAIC �2`C d.log nC 1/ for n > 0 Bozdogan (1987)

Here ` denotes the maximum value of the (possibly restricted) log likelihood, d the dimension of the
model, and n the number of observations. In SAS 6 of SAS/STAT software, n equals the number of
valid observations for maximum likelihood estimation and n � p for restricted maximum likelihood
estimation, where p equals the rank of X. In later versions, n equals the number of effective subjects as
displayed in the “Dimensions” table, unless this value equals 1, in which case n equals the number
of levels of the first random effect you specify in a RANDOM statement. If the number of effective
subjects equals 1 and you have no RANDOM statements, then n reverts to the SAS 6 values. For AICC
(a finite-sample corrected version of AIC), n� equals the SAS 6 values of n, unless this number is less
than d + 2, in which case it equals d + 2. When n � 1, the value of the HQIC criterion is �2`. When
n=0, the values of the BIC and CAIC criteria are �2` and �2`C d , respectively.

For restricted likelihood estimation, d equals q, the effective number of estimated covariance parameters.
In SAS 6, when a parameter estimate lies on a boundary constraint, then it is still included in the
calculation of d, but in later versions it is not. The most common example of this behavior is when a
variance component is estimated to equal zero. For maximum likelihood estimation, d equals q C p
where p is by default the sum of the Type 3 degrees of freedom associated with each fixed effect or the
rank of X if you specify NOTEST option. The value of d is displayed in the “Information Criteria”
table as the value of Parms variable; see Table 65.27.

The ODS name of the “Information Criteria” table is InfoCrit.

INFO
is a default option. The creation of the “Model Information,” “Dimensions,” and “Number of Observa-
tions” tables can be suppressed by using the NOINFO option.

Note that in SAS 6 this option displays the “Model Information” and “Dimensions” tables.

ITDETAILS
displays the parameter values at each iteration and enables the writing of notes to the SAS log pertaining
to “infinite likelihood” and “singularities” during Newton-Raphson iterations.

LOGNOTE
writes periodic notes to the log describing the current status of computations. It is designed for use
with analyses requiring extensive CPU resources.
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MAXFUNC=number
specifies the maximum number of likelihood evaluations in the optimization process. The default is
150.

MAXITER=number
specifies the maximum number of iterations. The default is 50.

METHOD=REML | ML | MIVQUE0 | TYPE1 | TYPE2 | TYPE3
specifies the estimation method for the covariance parameters. The REML specification performs
residual (restricted) maximum likelihood, and it is the default method. The ML specification performs
maximum likelihood, and the MIVQUE0 specification performs minimum variance quadratic unbiased
estimation of the covariance parameters.

The METHOD=TYPEn specifications apply only to variance component models with no SUB-
JECT= effects and no REPEATED statement. An analysis of variance table is included in
the output, and the expected mean squares are used to estimate the variance components (see
Chapter 45, “The GLM Procedure,” for further explanation). The resulting method-of-moment vari-
ance component estimates are used in subsequent calculations, including standard errors computed
from ESTIMATE and LSMEANS statements. The ODS table names are Type1, Type2, and Type3,
respectively.

MMEQ
requests that the coefficient matrix and the right-hand side of the mixed model equations be displayed.
If bG is nonsingular, the coefficient matrix and the right-hand side have the following form:"

X0bR�1X X0bR�1Z
Z0bR�1X Z0bR�1ZC bG�1

#� b̌b
�
D

"
X0bR�1y
Z0bR�1y

#

If bG is singular, the coefficient matrix and right-hand side have the following modified form:"
X0bR�1X X0bR�1ZbGbG0Z0bR�1X bG0Z0bR�1ZbGCG

#� b̌b�
�
D

"
X0bR�1ybG0Z0bR�1y

#

See the section “Estimating Fixed and Random Effects in the Mixed Model” on page 5298 for further
information about these equations.

MMEQSOL
requests that a solution to the mixed model equations be produced, in addition to the inverted coefficients
matrix. If bG is nonsingular, the formula is the same as the preceding description of the MMEQ option.
If bG is singular, b̌ and Gb� are displayed in addition to the inverse of the modified coefficient matrix.

See the section “Estimating Fixed and Random Effects in the Mixed Model” on page 5298 for further
information about these equations and solution transformation.

NAMELEN< =number >
specifies the length to which long effect names are shortened. The default and minimum value is 20.

NOBOUND
has the same effect as the NOBOUND option in the PARMS statement.
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NOCLPRINT< =number >
suppresses the display of the “Class Level Information” table if you do not specify number . If you do
specify number , only levels with totals that are less than number are listed in the table.

NOINFO
suppresses the display of the “Model Information,” “Dimensions,” and “Number of Observations”
tables.

NOITPRINT
suppresses the display of the “Iteration History” table.

NOPROFILE
includes the residual variance as part of the Newton-Raphson iterations. This option applies only
to models that have a residual variance parameter. By default, this parameter is profiled out of the
likelihood calculations, except when you have specified the HOLD= option in the PARMS statement.

ORD
displays ordinates of the relevant distribution in addition to p-values. The ordinate can be viewed as an
approximate odds ratio of hypothesis probabilities.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of the classification variables (which are specified in the CLASS
statement).

This option applies to the levels for all classification variables, except when you use the (default)
ORDER=FORMATTED option with numeric classification variables that have no explicit format. In
that case, the levels of such variables are ordered by their internal value.

The ORDER= option can take the following values:

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set

FORMATTED External formatted value, except for numeric variables with
no explicit format, which are sorted by their unformatted
(internal) value

FREQ Descending frequency count; levels with the most observa-
tions come first in the order

INTERNAL Unformatted value

By default, ORDER=FORMATTED. For ORDER=FORMATTED and ORDER=INTERNAL, the sort
order is machine-dependent.

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

PLOTS < (global-plot-options ) > < =plot-request < (options ) > >

PLOTS < (global-plot-options ) > < = (plot-request< (options) >< . . . plot-request< (options) > >) >
requests that the MIXED procedure produce statistical graphics via the Output Delivery System,
provided that ODS Graphics is enabled.
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ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;
proc mixed data=heights plots=all;

class Family Gender;
model Height = Gender / residual;
random Family Family*Gender;

run;
ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

For examples of the basic statistical graphics produced by the MIXED procedure and aspects of their
computation and interpretation, see the section “ODS Graphics” on page 5324.

The global-plot-options apply to all relevant plots generated by the MIXED procedure. The global-plot-
options supported by the MIXED procedure follow.

Global Plot Options

OBSNO
uses the data set observation number to identify observations in tooltips, provided that the
observation number can be determined. Otherwise, the number displayed in tooltips is the index
of the observation as it is used in the analysis within the BY group.

ONLY
suppresses the default plots. Only the plots specifically requested are produced.

UNPACKPANEL

UNPACK
displays each graph separately. (By default, some graphs can appear together in a single panel.)

MAXPOINTS=NONE | number
specifies that plots with elements that require processing more than number points be sup-
pressed. The default is MAXPOINTS=5000. No plots are suppressed if you specify MAX-
POINTS=NONE.

Specific Plot Options

The following listing describes the specific plots and their options.

ALL
requests that all plots appropriate for the particular analysis be produced.
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BOXPLOT < (boxplot-options) >
requests box plots for the effects in your model that consist of classification effects only. Note that
these effects can involve more than one classification variable (interaction and nested effects), but
they cannot contain any continuous variables. By default, the BOXPLOT request produces box
plots based on (conditional) raw residuals for the qualifying effects in the MODEL, RANDOM,
and REPEATED statements. See the discussion of the boxplot-options in a later section for
information about how to tune your box plot request.

DISTANCE< (USEINDEX) >
requests a plot of the likelihood or restricted likelihood distance. When influence diagnostics are
requested with set selection according to an effect, the USEINDEX option enables you to replace
the formatted tick values on the horizontal axis with integer indices of the effect levels in order to
reduce the space taken up by the horizontal plot axis.

INFLUENCEESTPLOT< (options) >
requests panels of the deletion estimates in an influence analysis, provided that the INFLUENCE
option is specified in the MODEL statement. No plots are produced for fixed-effects parameters
associated with singular columns in the X matrix or for covariance parameters associated with
singularities in the ASYCOV matrix. By default, separate panels are produced for the fixed-
effects and covariance parameters delete estimates. The FIXED and RANDOM options enable
you to select these specific panels. The UNPACK option produces separate plots for each of the
parameter estimates. The USEINDEX option replaces formatted tick values for the horizontal
axis with integer indices.

INFLUENCESTATPANEL< (options) >
requests panels of influence statistics. For iterative influence analysis (see the INFLUENCE
option in the MODEL statement), the panel shows the Cook’s D and CovRatio statistics for
fixed-effects and covariance parameters, enabling you to gauge impact on estimates and precision
for both types of estimates. In noniterative analysis, only statistics for the fixed effects are plotted.
The UNPACK option produces separate plots from the elements in the panel. The USEINDEX
option replaces formatted tick values for the horizontal axis with integer indices.

RESIDUALPANEL < (residual-plot-options) >
requests a panel of raw residuals. By default, the conditional residuals are produced. See the
discussion of residual-plot-options in a later section for information about how to tune this panel.

STUDENTPANEL < (residual-plot-options) >
requests a panel of studentized residuals. By default, the conditional residuals are produced. See
the discussion of residual-plot-options in a later section for information about how to tune this
panel.

PEARSONPANEL < (residual-plot-options) >
requests a panel of Pearson residuals. By default, the conditional residuals are produced. See the
discussion of residual-plot-options in a later section for information about how to tune this panel.

PRESS< (USEINDEX) >
requests a plot of PRESS residuals or PRESS statistics. These are based on “leave-one-out” or
“leave-set-out” prediction of the marginal mean. When influence diagnostics are requested with
set selection according to an effect, the USEINDEX option enables you to replace the formatted
tick values on the horizontal axis with integer indices of the effect levels in order to reduce the
space taken up by the horizontal plot axis.
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VCIRYPANEL < (residual-plot-options) >
requests a panel of residual graphics based on the scaled residuals. See the VCIRY option in the
MODEL statement for details about these scaled residuals. Only the UNPACK and BOX options
of the residual-plot-options are available for this type of residual panel.

NONE
suppresses all plots.

Residual Plot Options

The residual-plot-options determine both the composition of the panels and the type of residuals
being plotted.

BOX

BOXPLOT
replaces the inset of summary statistics in the lower-right corner of the panel with a box plot
of the residual (the “PROC GLIMMIX look”).

CONDITIONAL

BLUP
constructs plots from conditional residuals.

MARGINAL

NOBLUP
constructs plots from marginal residuals.

UNPACK
produces separate plots from the elements of the panel. The inset statistics are not part of
the unpack operation.

Box Plot Options

The boxplot-options determine whether box plots are produced for residuals or for residuals
and observed values, and for which model effects the box plots are constructed. The available
boxplot-options are as follows.

CONDITIONAL

BLUP
constructs box plots from conditional residuals—that is, residuals using the estimated BLUPs
of random effects.

FIXED
produces box plots for all fixed effects (MODEL statement) consisting entirely of classifica-
tion variables
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GROUP
produces box plots for all GROUP= effects (RANDOM and REPEATED statement) consist-
ing entirely of classification variables

MARGINAL

NOBLUP
constructs box plots from marginal residuals.

NPANEL=number
provides the ability to break a box plot into multiple graphics. If number is negative, no
balancing of the number of boxes takes place and number is the maximum number of boxes
per graphic. If number is positive, the number of boxes per graphic is balanced. For example,
suppose variable A has 125 levels, and consider the following statements:

ods graphics on;
proc mixed plots=boxplot(npanel=20);

class A;
model y = A;

run;

The box balancing results in six plots with 18 boxes each and one plot with 17 boxes. If
number is zero, and this is the default, all levels of the effect are displayed in a single plot.

OBSERVED
adds box plots of the observed data for the selected effects.

RANDOM
produces box plots for all random effects (RANDOM statement) consisting entirely of clas-
sification variables. This does not include effects specified in the GROUP= or SUBJECT=
options of the RANDOM statement.

REPEATED
produces box plots for the repeated effects (REPEATED statement). This does not include
effects specified in the GROUP= or SUBJECT= options of the REPEATED statement.

STUDENT
constructs box plots from studentized residuals rather than from raw residuals.

SUBJECT
produces box plots for all SUBJECT= effects (RANDOM and REPEATED statement)
consisting entirely of classification variables.

USEINDEX
uses as the horizontal axis label the index of the effect level rather than the formatted
value(s). For classification variables with many levels or model effects that involve multiple
classification variables, the formatted values identifying the effect levels can take up too
much space as axis tick values, leading to extensive thinning. The USEINDEX option
replaces tick values constructed from formatted values with the internal level number.
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Multiple Plot Requests

You can list a plot request one or more times with different options. For example, the following
statements request a panel of marginal raw residuals, individual plots generated from a panel of the
conditional raw residuals, and a panel of marginal studentized residuals:

ods graphics on;
proc mixed plots(only)=(

ResidualPanel(marginal)
ResidualPanel(unpack conditional)
StudentPanel(marginal box));

The inset of residual statistics is replaced in this last panel by a box plot of the studentized residuals.
Similarly, if you specify the INFLUENCE option in the MODEL statement, then the following
statements request statistical graphics of fixed-effects deletion estimates (in a panel), covariance
parameter deletion estimates (unpacked in individual plots), and box plots for the SUBJECT= and
fixed classification effects based on residuals and observed values:

ods graphics on / imagefmt=staticmap;
proc mixed plots(only)=(

InfluenceEstPlot(fixed)
InfluenceEstPlot(random unpack)
BoxPlot(observed fixed subject));

The STATICMAP image format enables tooltips that show, for example, values of influence diagnostics
associated with a particular delete estimate.

This concludes the syntax section for the PLOTS= option in the PROC MIXED statement.

RANKS
displays the ranks of design matrices X and (XZ).

RATIO
produces the ratio of the covariance parameter estimates to the estimate of the residual variance when
the latter exists in the model.

RIDGE=number
specifies the starting value for the minimum ridge value used in the Newton-Raphson algorithm. The
default is 0.3125.

SCORING< =number >
requests that Fisher scoring be used in association with the estimation method up to iteration number ,
which is 0 by default. When you use the SCORING= option and PROC MIXED converges without
stopping the scoring algorithm, PROC MIXED uses the expected Hessian matrix to compute approxi-
mate standard errors for the covariance parameters instead of the observed Hessian. The output from
the ASYCOV and ASYCORR options is similarly adjusted.
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SIGITER
is an alias for the NOPROFILE option.

UPDATE
is an alias for the LOGNOTE option.

BY Statement
BY variables ;

You can specify a BY statement with PROC MIXED to obtain separate analyses of observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the MIXED procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

Because sorting the data changes the order in which PROC MIXED reads observations, the sort order for the
levels of the CLASS variable might be affected if you have specified ORDER=DATA in the PROC MIXED
statement. This, in turn, affects specifications in the CONTRAST or ESTIMATE statement.

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

CLASS Statement
CLASS variable < (REF= option) > . . . < variable < (REF= option) > > < / global-options > ;

The CLASS statement names the classification variables to be used in the model. Typical classification
variables are Treatment, Sex, Race, Group, and Replication. If you use the CLASS statement, it must appear
before the MODEL statement.

Classification variables can be either character or numeric. By default, class levels are determined from the
entire set of formatted values of the CLASS variables.

NOTE: Prior to SAS 9, class levels were determined by using no more than the first 16 characters of the
formatted values. To revert to this previous behavior, you can use the TRUNCATE option in the CLASS
statement.
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In any case, you can use formats to group values into levels. See the discussion of the FORMAT procedure
in the Base SAS Procedures Guide and the discussions of the FORMAT statement and SAS formats in SAS
Formats and Informats: Reference. You can adjust the order of CLASS variable levels with the ORDER=
option in the PROC MIXED statement.

You can specify the following REF= option to indicate how the levels of an individual classification variable
are to be ordered by enclosing it in parentheses after the variable name:

REF=’level’ | FIRST | LAST
specifies a level of the classification variable to be put at the end of the list of levels. This level thus
corresponds to the reference level in the usual interpretation of the estimates with PROC MIXED’s
singular parameterization. You can specify the level of the variable to use as the reference level; specify
a value that corresponds to the formatted value of the variable if a format is assigned. Alternatively, you
can specify REF=FIRST to designate that the first ordered level serve as the reference, or REF=LAST to
designate that the last ordered level serve as the reference. To specify that REF=FIRST or REF=LAST
be used for all classification variables, use the REF= global-option after the slash (/) in the CLASS
statement.

You can specify the following global-options in the CLASS statement after a slash (/):

REF=FIRST | LAST
specifies a level of all classification variables to be put at the end of the list of levels. This level thus
corresponds to the reference level in the usual interpretation of the estimates with PROC MIXED’s
singular parameterization. Specify REF=FIRST to designate that the first ordered level for each
classification variable serve as the reference. Specify REF=LAST to designate that the last ordered
level serve as the reference. This option applies to all the variables specified in the CLASS statement. To
specify different reference levels for different classification variables, use REF= options for individual
variables.

TRUNCATE
specifies that class levels be determined by using only up to the first 16 characters of the formatted
values of CLASS variables. When formatted values are longer than 16 characters, you can use this
option to revert to the levels as determined in releases prior to SAS 9.

CODE Statement
CODE < options > ;

The CODE statement writes SAS DATA step code for computing predicted values of the fitted model either
to a file or to a catalog entry. This code can then be included in a DATA step to score new data.

Table 65.4 summarizes the options available in the CODE statement.

Table 65.4 CODE Statement Options

Option Description

CATALOG= Names the catalog entry where the generated code is saved
DUMMIES Retains the dummy variables in the data set
ERROR Computes the error function
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Table 65.4 continued

Option Description

FILE= Names the file where the generated code is saved
FORMAT= Specifies the numeric format for the regression coefficients
GROUP= Specifies the group identifier for array names and statement labels
IMPUTE Imputes predicted values for observations with missing or invalid

covariates
LINESIZE= Specifies the line size of the generated code
LOOKUP= Specifies the algorithm for looking up CLASS levels
RESIDUAL Computes residuals

For details about the syntax of the CODE statement, see the section “CODE Statement” on page 395 in
Chapter 19, “Shared Concepts and Topics.”

CONTRAST Statement
CONTRAST ’label’ < fixed-effect values . . . >

< | random-effect values . . . >, . . . < / options > ;

The CONTRAST statement provides a mechanism for obtaining custom hypothesis tests. It is patterned after
the CONTRAST statement in PROC GLM, although it has been extended to include random effects. This
enables you to select an appropriate inference space (McLean, Sanders, and Stroup 1991).

You can test the hypothesis L0� D 0, where L0 D .K0M0/ and �0 D .ˇ0  0/, in several inference spaces.
The inference space corresponds to the choice of M. When M D 0, your inferences apply to the entire
population from which the random effects are sampled; this is known as the broad inference space. When all
elements of M are nonzero, your inferences apply only to the observed levels of the random effects. This is
known as the narrow inference space, and you can also choose it by specifying all of the random effects as
fixed. The GLM procedure uses the narrow inference space. Finally, by setting to zero the portions of M
corresponding to selected main effects and interactions, you can choose intermediate inference spaces. The
broad inference space is usually the most appropriate, and it is used when you do not specify any random
effects in the CONTRAST statement.

The CONTRAST statement has the following arguments:

label identifies the contrast in the table. A label is required for every contrast specified. Labels
can be up to 200 characters and must be enclosed in quotes.

fixed-effect identifies an effect that appears in the MODEL statement. The keyword INTERCEPT can
be used as an effect when an intercept is fitted in the model. You do not need to include
all effects that are in the MODEL statement.

random-effect identifies an effect that appears in the RANDOM statement. The first random effect must
follow a vertical bar (|); however, random effects do not have to be specified.

values are constants that are elements of the L matrix associated with the fixed and random
effects.
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The rows of L0 are specified in order and are separated by commas. The rows of the K0 component of L0 are
specified on the left side of the vertical bars (|). These rows test the fixed effects and are, therefore, checked
for estimability. The rows of the M0 component of L0 are specified on the right side of the vertical bars. They
test the random effects, and no estimability checking is necessary.

If PROC MIXED finds the fixed-effects portion of the specified contrast to be nonestimable (see the
SINGULAR= option), then it displays a message in the log.

The following CONTRAST statement reproduces the F test for the effect A in the split-plot example (see
Example 65.1):

contrast 'A broad'
A 1 -1 0 A*B .5 .5 -.5 -.5 0 0 ,
A 1 0 -1 A*B .5 .5 0 0 -.5 -.5 / df=6;

Note that no random effects are specified in the preceding contrast; thus, the inference space is broad. The
resulting F test has two numerator degrees of freedom because L0 has two rows. The denominator degrees
of freedom is, by default, the residual degrees of freedom (9), but the DF= option changes the denominator
degrees of freedom to 6.

The following CONTRAST statement reproduces the F test for A when Block and A*Block are considered
fixed effects (the narrow inference space):

contrast 'A narrow'
A 1 -1 0
A*B .5 .5 -.5 -.5 0 0 |
A*Block .25 .25 .25 .25

-.25 -.25 -.25 -.25
0 0 0 0 ,

A 1 0 -1
A*B .5 .5 0 0 -.5 -.5 |
A*Block .25 .25 .25 .25

0 0 0 0
-.25 -.25 -.25 -.25 ;

The preceding contrast does not contain coefficients for B and Block, because they cancel out in estimated
differences between levels of A. Coefficients for B and Block are necessary to estimate the mean of one of the
levels of A in the narrow inference space (see Example 65.1).

If the elements of L are not specified for an effect that contains a specified effect, then the elements of the
specified effect are automatically “filled in” over the levels of the higher-order effect. This feature is designed
to preserve estimability for cases where there are complex higher-order effects. The coefficients for the
higher-order effect are determined by equitably distributing the coefficients of the lower-level effect, as in
the construction of least squares means. In addition, if the intercept is specified, it is distributed over all
classification effects that are not contained by any other specified effect. If an effect is not specified and does
not contain any specified effects, then all of its coefficients in L are set to 0. You can override this behavior
by specifying coefficients for the higher-order effect.

If too many values are specified for an effect, the extra ones are ignored; if too few are specified, the remaining
ones are set to 0. If no random effects are specified, the vertical bar can be omitted; otherwise, it must be
present. If a SUBJECT= effect is used in the RANDOM statement, then the coefficients specified for the
effects in the RANDOM statement are equitably distributed across the levels of the SUBJECT effect. You
can use the E option to see exactly which L matrix is used.
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The SUBJECT and GROUP options in the CONTRAST statement are useful for the case when a SUBJECT=
or GROUP= variable appears in the RANDOM statement, and you want to contrast different subjects or
groups. By default, CONTRAST statement coefficients on random effects are distributed equally across
subjects and groups.

PROC MIXED handles missing level combinations of classification variables similarly to the way PROC
GLM does. Both procedures delete fixed-effects parameters corresponding to missing levels in order to
preserve estimability. However, PROC MIXED does not delete missing level combinations for random-
effects parameters because linear combinations of the random-effects parameters are always estimable. These
conventions can affect the way you specify your CONTRAST coefficients.

The CONTRAST statement computes the statistic

F D

� b̌b
�0
L.L0bCL/�1L0 � b̌b

�
r

where r D rank.L0bCL/, and approximates its distribution with an F distribution. In this expression, bC is an
estimate of the generalized inverse of the coefficient matrix in the mixed model equations. See the section
“Inference and Test Statistics” on page 5300 for more information about this F statistic.

The numerator degrees of freedom in the F approximation are r D rank.L0bCL/, and the denominator degrees
of freedom are taken from the “Tests of Fixed Effects” table and corresponds to the final effect you list in the
CONTRAST statement. You can change the denominator degrees of freedom by using the DF= option.

You can specify the following options in the CONTRAST statement after a slash (/).

CHISQ
requests that chi-square tests be performed in addition to any F tests. A chi-square statistic equals its
corresponding F statistic times the associate numerator degrees of freedom, and the same degrees of
freedom are used to compute the p-value for the chi-square test. This p-value is always less than that
for the F -test, as it effectively corresponds to an F test with infinite denominator degrees of freedom.

DF=number
specifies the denominator degrees of freedom for the F test. The default is the denominator degrees of
freedom taken from the “Tests of Fixed Effects” table and corresponds to the final effect you list in the
CONTRAST statement.

E
requests that the L matrix coefficients for the contrast be displayed. The ODS name of the “L Matrix
Coefficients” table is Coef.

GROUP coeffs

GRP coeffs
sets up random-effect contrasts between different groups when a GROUP= variable appears in the
RANDOM statement. By default, CONTRAST statement coefficients on random effects are distributed
equally across groups.

SINGULAR=number
tunes the estimability checking. If v is a vector, define ABS(v) to be the absolute value of the element
of v with the largest absolute value. If ABS(K0 �K0T) is greater than c*number for any row of K0 in
the contrast, then K is declared nonestimable. Here T is the Hermite form matrix .X0X/�X0X, and c
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is ABS(K0) except when it equals 0, and then c is 1. The value for number must be between 0 and 1;
the default is 1E–4.

SUBJECT coeffs

SUB coeffs
sets up random-effect contrasts between different subjects when a SUBJECT= variable appears in the
RANDOM statement. By default, CONTRAST statement coefficients on random effects are distributed
equally across subjects.

ESTIMATE Statement
ESTIMATE ’label’ < fixed-effect values . . . >

< | random-effect values . . . > < / options > ;

The ESTIMATE statement is exactly like a CONTRAST statement, except only one-row L matrices are
permitted. The actual estimate, L0bp, is displayed along with its approximate standard error. An approximate t
test that L0bp = 0 is also produced.

PROC MIXED selects the degrees of freedom to match those displayed in the “Tests of Fixed Effects” table
for the final effect you list in the ESTIMATE statement. You can modify the degrees of freedom by using the
DF= option.

If PROC MIXED finds the fixed-effects portion of the specified estimate to be nonestimable, then it displays
“Non-est” for the estimate entries.

The following examples of ESTIMATE statements compute the mean of the first level of A in the split-plot
example (see Example 65.1) for various inference spaces:

estimate 'A1 mean narrow' intercept 1
A 1 B .5 .5 A*B .5 .5 |
block .25 .25 .25 .25
A*Block .25 .25 .25 .25

0 0 0 0
0 0 0 0;

estimate 'A1 mean intermed' intercept 1
A 1 B .5 .5 A*B .5 .5 |
Block .25 .25 .25 .25;

estimate 'A1 mean broad' intercept 1
A 1 B .5 .5 A*B .5 .5;

The construction of the L vector for an ESTIMATE statement follows the same rules as listed under the
CONTRAST statement.

Table 65.5 summarizes the options available in the ESTIMATE statement.

Table 65.5 ESTIMATE Statement Options

Option Description

ALPHA= Specifies the confidence level
CL Constructs t-type confidence limits
DF= Specifies the degrees of freedom
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Table 65.5 continued

Option Description

DIVISOR= Specifies a value by which to divide all coefficients
E Displays the L matrix coefficients
GROUP Sets up random-effect contrasts between different groups
LOWER Performs lower-tailed tests
SINGULAR= Tunes the estimability checking
SUBJECT Sets up random-effect contrasts between different subjects
UPPER Performs upper-tailed tests

You can specify the following options in the ESTIMATE statement after a slash (/).

ALPHA=number
requests that a t-type confidence interval be constructed with confidence level 1 – number . The value
of number must be between 0 and 1; the default is 0.05.

CL
requests that t-type confidence limits be constructed. The confidence level is 0.95 by default; this can
be changed with the ALPHA= option.

DF=number
specifies the degrees of freedom for the t test and confidence limits. The default is the denominator
degrees of freedom taken from the “Tests of Fixed Effects” table and corresponds to the final effect
you list in the ESTIMATE statement.

DIVISOR=number
specifies a value by which to divide all coefficients so that fractional coefficients can be entered as
integer numerators.

E
requests that the L matrix coefficients be displayed. The ODS name of this “L Matrix Coefficients”
table is “Coef.”

GROUP coeffs

GRP coeffs
sets up random-effect contrasts between different groups when a GROUP= variable appears in the
RANDOM statement. By default, ESTIMATE statement coefficients on random effects are distributed
equally across groups.

LOWER

LOWERTAILED
requests that the p-value for the t test be based only on values less than the t statistic. A two-tailed test
is the default. A lower-tailed confidence limit is also produced if you specify the CL option.

SINGULAR=number
tunes the estimability checking as documented for the SINGULAR= option in the CONTRAST
statement.
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SUBJECT coeffs

SUB coeffs
sets up random-effect contrasts between different subjects when a SUBJECT= variable appears in
the RANDOM statement. By default, ESTIMATE statement coefficients on random effects are
distributed equally across subjects. For example, the ESTIMATE statement in the following code from
Example 65.5 constructs the difference between the random slopes of the first two batches.

proc mixed data=rc;
class batch;
model y = month / s;
random int month / type=un sub=batch s;
estimate 'slope b1 - slope b2' | month 1 / subject 1 -1;

run;

UPPER

UPPERTAILED
requests that the p-value for the t test be based only on values greater than the t statistic. A two-tailed
test is the default. An upper-tailed confidence limit is also produced if you specify the CL option.

ID Statement
ID variables ;

The ID statement specifies which variables from the input data set are to be included in the OUTP= and
OUTPM= data sets from the MODEL statement. If you do not specify an ID statement, then all variables are
included in these data sets. Otherwise, only the variables you list in the ID statement are included. Specifying
an ID statement with no variables prevents any variables from being included in these data sets.

LSMEANS Statement
LSMEANS fixed-effects < / options > ;

The LSMEANS statement computes least squares means (LS-means) of fixed effects. As in the GLM
procedure, LS-means are predicted population margins—that is, they estimate the marginal means over a
balanced population. In a sense, LS-means are to unbalanced designs as class and subclass arithmetic means
are to balanced designs. The L matrix constructed to compute them is the same as the L matrix formed in
PROC GLM; however, the standard errors are adjusted for the covariance parameters in the model.

Each LS-mean is computed as Lb̌, where L is the coefficient matrix associated with the least
squares mean and b̌ is the estimate of the fixed-effects parameter vector (see the section
“Estimating Fixed and Random Effects in the Mixed Model” on page 5298). The approximate standard
errors for the LS-mean is computed as the square root of L.X0bV�1X/�L0.
LS-means can be computed for any effect in the MODEL statement that involves CLASS variables. You
can specify multiple effects in one LSMEANS statement or in multiple LSMEANS statements, and all
LSMEANS statements must appear after the MODEL statement. As in the ESTIMATE statement, the L
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matrix is tested for estimability, and if this test fails, PROC MIXED displays “Non-est” for the LS-means
entries.

Assuming the LS-mean is estimable, PROC MIXED constructs an approximate t test to test the null hypothesis
that the associated population quantity equals zero. By default, the denominator degrees of freedom for
this test are the same as those displayed for the effect in the “Tests of Fixed Effects” table (see the section
“Default Output” on page 5316).

Table 65.6 summarizes the options available in the LSMEANS statement. All LSMEANS options are
subsequently discussed in alphabetical order.

Table 65.6 Summary of LSMEANS Statement Options

Option Description

Construction and Computation of LS-Means
AT Modifies covariate value in computing LS-means
BYLEVEL Computes separate margins
DIFF Requests differences of LS-means
OM Specifies weighting scheme for LS-mean computation
SINGULAR= Tunes estimability checking
SLICE= Partitions F tests (simple effects)

Degrees of Freedom and p-values
ADJDFE= Determines whether to compute row-wise denominator degrees of

freedom with DDFM=SATTERTHWAITE or
DDFM=KENWARDROGER

ADJUST= Determines the method for multiple comparison adjustment of
LS-mean differences

ALPHA=˛ Determines the confidence level (1 � ˛)
DF= Assigns specific value to degrees of freedom for tests and

confidence limits

Statistical Output
CL Constructs confidence limits for means and or mean differences
CORR Displays correlation matrix of LS-means
COV Displays covariance matrix of LS-means
E Prints the L matrix

You can specify the following options in the LSMEANS statement after a slash (/).

ADJDFE=SOURCE | ROW
specifies how denominator degrees of freedom are determined when p-values and confidence limits
are adjusted for multiple comparisons with the ADJUST= option. When you do not specify the
ADJDFE= option, or when you specify ADJDFE=SOURCE, the denominator degrees of freedom for
multiplicity-adjusted results are the denominator degrees of freedom for the LS-mean effect in the
“Type 3 Tests of Fixed Effects” table. When you specify ADJDFE=ROW, the denominator degrees of
freedom for multiplicity-adjusted results correspond to the degrees of freedom displayed in the DF
column of the “Differences of Least Squares Means” table.
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The ADJDFE=ROW setting is particularly useful if you want multiplicity adjustments to take into
account that denominator degrees of freedom are not constant across LS-mean differences. This
can be the case, for example, when the DDFM=SATTERTHWAITE or DDFM=KENWARDROGER
degrees-of-freedom method is in effect.

In one-way models with heterogeneous variance, combining certain ADJUST= options with the
ADJDFE=ROW option corresponds to particular methods of performing multiplicity adjustments in
the presence of heteroscedasticity. For example, the following statements fit a heteroscedastic one-way
model and perform Dunnett’s T3 method (Dunnett 1980), which is based on the studentized maximum
modulus (ADJUST=SMM):

proc mixed;
class A;
model y = A / ddfm=satterth;
repeated / group=A;
lsmeans A / adjust=smm adjdfe=row;

run;

If you combine the ADJDFE=ROW option with ADJUST=SIDAK, the multiplicity adjustment corre-
sponds to the T2 method of Tamhane (1979), while ADJUST=TUKEY corresponds to the method of
Games-Howell (Games and Howell 1976). Note that ADJUST=TUKEY gives the exact results for the
case of fractional degrees of freedom in the one-way model, but it does not take into account that the
degrees of freedom are subject to variability. A more conservative method, such as ADJUST=SMM,
might protect the overall error rate better.

Unless the ADJUST= option of the LSMEANS statement is specified, the ADJDFE= option has no
effect.

ADJUST=BON
ADJUST=DUNNETT
ADJUST=SCHEFFE
ADJUST=SIDAK
ADJUST=SIMULATE< (sim-options) >

ADJUST=SMM | GT2
ADJUST=TUKEY

requests a multiple comparison adjustment for the p-values and confidence limits for the differences
of LS-means. By default, PROC MIXED adjusts all pairwise differences unless you specify AD-
JUST=DUNNETT, in which case PROC MIXED analyzes all differences with a control level. The
ADJUST= option implies the DIFF option.

The BON (Bonferroni) and SIDAK adjustments involve correction factors described in
Chapter 45, “The GLM Procedure,” and Chapter 67, “The MULTTEST Procedure;” also see Westfall
and Young (1993) and Westfall et al. (1999). When you specify ADJUST=TUKEY and your data
are unbalanced, PROC MIXED uses the approximation described in Kramer (1956). Similarly,
when you specify ADJUST=DUNNETT and the LS-means are correlated, PROC MIXED uses the
factor-analytic covariance approximation described in Hsu (1992). The preceding references also
describe the SCHEFFE and SMM adjustments.

The SIMULATE adjustment computes adjusted p-values and confidence limits from the simulated
distribution of the maximum or maximum absolute value of a multivariate t random vector. All
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covariance parameters except the residual variance are fixed at their estimated values throughout the
simulation, potentially resulting in some underdispersion. The simulation estimates q, the true .1 � ˛/
quantile, where 1 � ˛ is the confidence coefficient. The default ˛ is 0.05, and you can change this
value with the ALPHA= option in the LSMEANS statement.

The number of samples is set so that the tail area for the simulated q is within  of 1 � ˛ with
100.1 � �/% confidence. In equation form,

P.jF.bq/ � .1 � ˛/j � / D 1 � �
where Oq is the simulated q and F is the true distribution function of the maximum; see Edwards and
Berry (1987) for details. By default,  = 0.005 and � = 0.01, placing the tail area of Oq within 0.005 of
0.95 with 99% confidence. The ACC= and EPS= sim-options reset  and �, respectively; the NSAMP=
sim-option sets the sample size directly; and the SEED= sim-option specifies an integer used to start
the pseudo-random number generator for the simulation. If you do not specify a seed, or if you specify
a value less than or equal to zero, the seed is generated from reading the time of day from the computer
clock. For additional descriptions of these and other simulation options, see the section “LSMEANS
Statement” on page 3419 in Chapter 45, “The GLM Procedure.”

ALPHA=number
requests that a t-type confidence interval be constructed for each of the LS-means with confidence
level 1 – number . The value of number must be between 0 and 1; the default is 0.05.

AT variable = value

AT (variable-list)= (value-list)

AT MEANS
enables you to modify the values of the covariates used in computing LS-means. By default, all
covariate effects are set equal to their mean values for computation of standard LS-means. The AT
option enables you to assign arbitrary values to the covariates. Additional columns in the output table
indicate the values of the covariates.

If there is an effect containing two or more covariates, the AT option sets the effect equal to the product
of the individual means rather than the mean of the product (as with standard LS-means calculations).
The AT MEANS option sets covariates equal to their mean values (as with standard LS-means) and
incorporates this adjustment to crossproducts of covariates.

As an example, consider the following invocation of PROC MIXED:

proc mixed;
class A;
model Y = A X1 X2 X1*X2;
lsmeans A;
lsmeans A / at means;
lsmeans A / at X1=1.2;
lsmeans A / at (X1 X2)=(1.2 0.3);

run;

For the first two LSMEANS statements, the LS-means coefficient for X1 is x1 (the mean of X1) and
for X2 is x2 (the mean of X2). However, for the first LSMEANS statement, the coefficient for X1*X2
is x1x2, but for the second LSMEANS statement, the coefficient is x1 � x2. The third LSMEANS
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statement sets the coefficient for X1 equal to 1.2 and leaves it at x2 for X2, and the final LSMEANS
statement sets these values to 1.2 and 0.3, respectively.

If a WEIGHT variable is present, it is used in processing AT variables. Also, observations with missing
dependent variables are included in computing the covariate means, unless these observations form a
missing cell and the FULLX option in the MODEL statement is not in effect. You can use the E option
in conjunction with the AT option to check that the modified LS-means coefficients are the ones you
want.

The AT option is disabled if you specify the BYLEVEL option.

BYLEVEL
requests PROC MIXED to process the OM data set by each level of the LS-mean effect (LSMEANS
effect) in question. For more details, see the OM option later in this section.

CL
requests that t-type confidence limits be constructed for each of the LS-means. The confidence level is
0.95 by default; this can be changed with the ALPHA= option.

CORR
displays the estimated correlation matrix of the least squares means as part of the “Least Squares
Means” table.

COV
displays the estimated covariance matrix of the least squares means as part of the “Least Squares
Means” table.

DF=number
specifies the degrees of freedom for the t test and confidence limits. The default is the denominator
degrees of freedom taken from the “Tests of Fixed Effects” table corresponding to the LS-means
effect unless the DDFM=SATTERTHWAITE or DDFM=KENWARDROGER option is in effect in the
MODEL statement. For these DDFM= methods, degrees of freedom are determined separately for
each test; see the DDFM= option for more information.

DIFF< =difftype >

PDIFF< =difftype >
requests that differences of the LS-means be displayed. The optional difftype specifies which differences
to produce, with possible values being ALL, CONTROL, CONTROLL, and CONTROLU. The difftype
ALL requests all pairwise differences, and it is the default. The difftype CONTROL requests the
differences with a control, which, by default, is the first level of each of the specified LSMEANS
effects.

To specify which levels of the effects are the controls, list the quoted formatted values in parentheses
after the keyword CONTROL. For example, if the effects A, B, and C are classification variables, each
having two levels, 1 and 2, the following LSMEANS statement specifies the (1,2) level of A*B and the
(2,1) level of B*C as controls:

lsmeans A*B B*C / diff=control('1' '2' '2' '1');
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For multiple effects, the results depend upon the order of the list, and so you should check the output
to make sure that the controls are correct.

Two-tailed tests and confidence limits are associated with the CONTROL difftype. For one-tailed results,
use either the CONTROLL or CONTROLU difftype. The CONTROLL difftype tests whether the
noncontrol levels are significantly smaller than the control; the upper confidence limits for the control
minus the noncontrol levels are considered to be infinity and are displayed as missing. Conversely, the
CONTROLU difftype tests whether the noncontrol levels are significantly larger than the control; the
upper confidence limits for the noncontrol levels minus the control are considered to be infinity and are
displayed as missing.

If you want to perform multiple comparison adjustments on the differences of LS-means, you must
specify the ADJUST= option.

The differences of the LS-means are displayed in a table titled “Differences of Least Squares Means.”
The ODS table name is Diffs.

E
requests that the L matrix coefficients for all LSMEANS effects be displayed. The ODS name of this
“L Matrix Coefficients” table is Coef.

OM< =OM-data-set >

OBSMARGINS< =OM-data-set >
specifies a potentially different weighting scheme for the computation of LS-means coefficients. The
standard LS-means have equal coefficients across classification effects; however, the OM option
changes these coefficients to be proportional to those found in OM-data-set . This adjustment is
reasonable when you want your inferences to apply to a population that is not necessarily balanced but
has the margins observed in OM-data-set .

By default, OM-data-set is the same as the analysis data set. You can optionally specify another data
set that describes the population for which you want to make inferences. This data set must contain all
model variables except for the dependent variable (which is ignored if it is present). In addition, the
levels of all CLASS variables must be the same as those occurring in the analysis data set. Specifying
an OM-data-set enables you to construct arbitrarily weighted LS-means.

In computing the observed margins, PROC MIXED uses all observations for which there are no missing
or invalid independent variables, including those for which there are missing dependent variables.
Also, if OM-data-set has a WEIGHT variable, PROC MIXED uses weighted margins to construct the
LS-means coefficients. If OM-data-set is balanced, the LS-means are unchanged by the OM option.

The BYLEVEL option modifies the observed-margins LS-means. Instead of computing the margins
across all of the OM-data-set , PROC MIXED computes separate margins for each level of the
LSMEANS effect in question. In this case the resulting LS-means are actually equal to raw means
for fixed-effects models and certain balanced random-effects models, but their estimated standard
errors account for the covariance structure that you have specified. If the AT option is specified, the
BYLEVEL option disables it.

You can use the E option in conjunction with either the OM or BYLEVEL option to check that the
modified LS-means coefficients are the ones you want. It is possible that the modified LS-means are
not estimable when the standard ones are, or vice versa. Nonestimable LS-means are noted as “Non-est”
in the output.
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PDIFF
is the same as the DIFF option.

SINGULAR=number
tunes the estimability checking as documented for the SINGULAR= option in the CONTRAST
statement.

SLICE= fixed-effect | (fixed-effects)
specifies effects by which to partition interaction LSMEANS effects. This can produce what are known
as tests of simple effects (Winer 1971). For example, suppose that A*B is significant, and you want to
test the effect of A for each level of B. The appropriate LSMEANS statement is as follows:

lsmeans A*B / slice=B;

This code tests for the simple main effects of A for B, which are calculated by extracting the appropriate
rows from the coefficient matrix for the A*B LS-means and by using them to form an F test. See the
section “Inference and Test Statistics” for more information about this F test.

The SLICE option produces a table titled “Tests of Effect Slices.” The ODS table name is Slices.

LSMESTIMATE Statement
LSMESTIMATE model-effect < 'label ' > values < divisor=n >

< , . . . < 'label ' > values < divisor=n > >
< / options > ;

The LSMESTIMATE statement provides a mechanism for obtaining custom hypothesis tests among least
squares means.

Table 65.7 summarizes the options available in the LSMESTIMATE statement.

Table 65.7 LSMESTIMATE Statement Options

Option Description

Construction and Computation of LS-Means
AT Modifies covariate values in computing LS-means
BYLEVEL Computes separate margins
DIVISOR= Specifies a list of values to divide the coefficients
OM= Specifies the weighting scheme for LS-means computation as de-

termined by a data set
SINGULAR= Tunes estimability checking



MODEL Statement F 5251

Table 65.7 continued

Option Description

Degrees of Freedom and p-values
ADJUST= Determines the method for multiple-comparison adjustment of LS-

means differences
ALPHA=˛ Determines the confidence level (1 � ˛)
LOWER Performs one-sided, lower-tailed inference
STEPDOWN Adjusts multiple-comparison p-values further in a step-down fash-

ion
TESTVALUE= Specifies values under the null hypothesis for tests
UPPER Performs one-sided, upper-tailed inference

Statistical Output
CL Constructs confidence limits for means and mean differences
CORR Displays the correlation matrix of LS-means
COV Displays the covariance matrix of LS-means
E Prints the L matrix
ELSM Prints the K matrix
JOINT Produces a joint F or chi-square test for the LS-means and LS-

means differences
SEED= Specifies the seed for computations that depend on random numbers

For details about the syntax of the LSMESTIMATE statement, see the section “LSMESTIMATE Statement”
on page 476 in Chapter 19, “Shared Concepts and Topics.”

MODEL Statement
MODEL dependent = < fixed-effects > < / options > ;

The MODEL statement names a single dependent variable and the fixed effects, which determine the X
matrix of the mixed model (see the section “Parameterization of Mixed Models” on page 5303 for details).
The specification of effects is the same as in the GLM procedure; however, unlike PROC GLM, you do not
specify random effects in the MODEL statement. The MODEL statement is required.

An intercept is included in the fixed-effects model by default. If no fixed effects are specified, only this
intercept term is fit. The intercept can be removed by using the NOINT option.

Table 65.8 summarizes the options available in the MODEL statement. These are subsequently discussed in
detail in alphabetical order.

Table 65.8 Summary of MODEL Statement Options

Option Description

Model Building
NOINT Excludes fixed-effect intercept from model
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Table 65.8 continued

Option Description

Statistical Computations
ALPHA=˛ Determines the confidence level (1 � ˛) for fixed effects
ALPHAP=˛ Determines the confidence level (1 � ˛) for predicted values
CHISQ Requests chi-square tests
DDF= Specifies denominator degrees of freedom (list)
DDFM= Specifies the method for computing denominator degrees of free-

dom
HTYPE= Selects the type of hypothesis test
INFLUENCE Requests influence and case-deletion diagnostics
NOTEST Suppresses hypothesis tests for the fixed effects
OUTP= Specifies output data set for predicted values and related quantities
OUTPM= Specifies output data set for predicted means and related quantities
RESIDUAL Adds Pearson-type and studentized residuals to output data sets
VCIRY Adds scaled marginal residual to output data sets

Statistical Output
CL Displays confidence limits for fixed-effects parameter estimates
CORRB Displays correlation matrix of fixed-effects parameter estimates
COVB Displays covariance matrix of fixed-effects parameter estimates
COVBI Displays inverse covariance matrix of fixed-effects parameter esti-

mates
E, E1, E2, E3 Displays L matrix coefficients
INTERCEPT Adds a row for the intercept to test tables
SOLUTION Displays fixed-effects parameter estimates (and scale parameter in

GLM models)

Singularity Tolerances
SINGCHOL= Tunes sensitivity in computing Cholesky roots
SINGRES= Tunes singularity criterion for residual variance
SINGULAR= Tunes the sensitivity in sweeping

ZETA= Tunes the sensitivity in forming Type 3 functions

You can specify the following options in the MODEL statement after a slash (/).

ALPHA=number
requests that a t-type confidence interval be constructed for each of the fixed-effects parameters with
confidence level 1 – number . The value of number must be between 0 and 1; the default is 0.05.

ALPHAP=number
requests that a t-type confidence interval be constructed for the predicted values with confidence level
1 – number . The value of number must be between 0 and 1; the default is 0.05.

CHISQ
requests that chi-square tests be performed for all specified effects in addition to the F tests. Type 3
tests are the default; you can produce the Type 1 and Type 2 tests by using the HTYPE= option.
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CL
requests that t-type confidence limits be constructed for each of the fixed-effects parameter estimates.
The confidence level is 0.95 by default; this can be changed with the ALPHA= option.

CONTAIN
has the same effect as the DDFM=CONTAIN option.

CORRB
produces the approximate correlation matrix of the fixed-effects parameter estimates. The ODS name
of this table is CorrB.

COVB
produces the approximate variance-covariance matrix of the fixed-effects parameter estimates b̌. By
default, this matrix equals .X0bV�1X/� and results from sweeping .X y/0bV�1.X y/ on all but its last
pivot and removing the y border. The EMPIRICAL option in the PROC MIXED statement changes this
matrix into “empirical sandwich” form. The ODS name of this table is CovB. If the degrees-of-freedom
method of Kenward and Roger (1997) is in effect (DDFM=KENWARDROGER), the COVB matrix
changes because the method entails an adjustment of the variance-covariance matrix of the fixed effects
by the method proposed by Prasad and Rao (1990); Harville and Jeske (1992). See also Kackar and
Harville (1984).

COVBI
produces the inverse of the approximate variance-covariance matrix of the fixed-effects parameter
estimates. The ODS name of this table is InvCovB.

DDF=value-list
enables you to specify your own denominator degrees of freedom for the fixed effects. The value-list
specification is a list of numbers or missing values (.) separated by commas. The degrees of freedom
should be listed in the order in which the effects appear in the “Tests of Fixed Effects” table. If you
want to retain the default degrees of freedom for a particular effect, use a missing value for its location
in the list. For example, the following statement assigns 3 denominator degrees of freedom to A and
4.7 to A*B, while those for B remain the same:

model Y = A B A*B / ddf=3,.,4.7;

If you specify DDFM=SATTERTHWAITE or DDFM=KENWARDROGER, the DDF= option has no
effect.

DDFM=
DDFM=CONTAIN
DDFM=BETWITHIN
DDFM=RESIDUAL
DDFM=SATTERTHWAITE
DDFM=KENWARDROGER< (FIRSTORDER) >
DDFM=KENWARDROGER< (LINEAR) >

specifies the method for computing the denominator degrees of freedom for the tests of fixed effects
resulting from the MODEL, CONTRAST, ESTIMATE, and LSMEANS statements.

Table 65.9 lists syntax aliases for the degrees-of-freedom methods.
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Table 65.9 Aliases for DDFM= Option

DDFM= Option Alias

BETWITHIN BW
CONTAIN CON
KENWARDROGER KENROG, KR
RESIDUAL RES
SATTERTHWAITE SATTERTH, SAT

The DDFM=CONTAIN option invokes the containment method to compute denominator degrees of
freedom, and it is the default when you specify a RANDOM statement. The containment method is
carried out as follows: Denote the fixed effect in question A, and search the RANDOM effect list for
the effects that syntactically contain A. For example, the random effect B(A) contains A, but the random
effect C does not, even if it has the same levels as B(A).

Among the random effects that contain A, compute their rank contribution to the (X Z) matrix. The
DDF assigned to A is the smallest of these rank contributions. If no effects are found, the DDF for A is
set equal to the residual degrees of freedom, N � rank.X Z/. This choice of DDF matches the tests
performed for balanced split-plot designs and should be adequate for moderately unbalanced designs.

CAUTION: If you have a Z matrix with a large number of columns, the overall memory requirements
and the computing time after convergence can be substantial for the containment method. If it is too
large, you might want to use the DDFM=BETWITHIN option.

The DDFM=BETWITHIN option is the default for REPEATED statement specifications (with no
RANDOM statements). It is computed by dividing the residual degrees of freedom into between-
subject and within-subject portions. PROC MIXED then checks whether a fixed effect changes within
any subject. If so, it assigns within-subject degrees of freedom to the effect; otherwise, it assigns
the between-subject degrees of freedom to the effect (see Schluchter and Elashoff 1990). If there
are multiple within-subject effects containing classification variables, the within-subject degrees of
freedom are partitioned into components corresponding to the subject-by-effect interactions.

One exception to the preceding method is the case where you have specified no RANDOM statements
and a REPEATED statement with the TYPE=UN option. In this case, all effects are assigned the
between-subject degrees of freedom to provide for better small-sample approximations to the relevant
sampling distributions. DDFM=KENWARDROGER might be a better option to try for this case.

The DDFM=RESIDUAL option performs all tests by using the residual degrees of freedom, n �
rank.X/, where n is the number of observations.

The DDFM=SATTERTHWAITE option performs a general Satterthwaite approximation for the
denominator degrees of freedom, computed as follows. Suppose � is the vector of unknown parameters
in V, and suppose C D .X0V�1X/�, where � denotes a generalized inverse. Let bC and b� be the
corresponding estimates.

Consider the one-dimensional case, and consider ` to be a vector defining an estimable linear combina-
tion of ˇ. The Satterthwaite degrees of freedom for the t statistic

t D
`b̌p
` OC`0
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is computed as

� D
2.` OC`0/2

g0Ag

where g is the gradient of `C`0 with respect to � , evaluated atb� , and A is the asymptotic variance-
covariance matrix ofb� obtained from the second derivative matrix of the likelihood equations.

For the multidimensional case, let L be an estimable contrast matrix and denote the rank of LbCL0 as q
> 1. The Satterthwaite denominator degrees of freedom for the F statistic

F D
b̌0L0.LbCL0/�1Lb̌

q

are computed by first performing the spectral decomposition LbCL0 D P0DP, where P is an orthogonal
matrix of eigenvectors and D is a diagonal matrix of eigenvalues, both of dimension q � q. Define `m
to be the mth row of PL, and let

�m D
2.Dm/

2

g0mAgm

where Dm is the mth diagonal element of D and gm is the gradient of `mC`0m with respect to � ,
evaluated atb� . Then let

E D

qX
mD1

�m

�m � 2
I.�m > 2/

where the indicator function eliminates terms for which �m � 2. The degrees of freedom for F are
then computed as

� D
2E

E � q

provided E > q; otherwise � is set to zero.

This method is a generalization of the techniques described in Giesbrecht and Burns (1985); McLean
and Sanders (1988); Fai and Cornelius (1996). The method can also include estimated random effects.
In this case, appendb to b̌ and change bC to be the inverse of the coefficient matrix in the mixed model
equations. The calculations require extra memory to hold c matrices that are the size of the mixed
model equations, where c is the number of covariance parameters. In the notation of Table 65.29,
this is approximately 8q.p C g/.p C g/=2 bytes. Extra computing time is also required to process
these matrices. The Satterthwaite method implemented here is intended to produce an accurate F
approximation; however, the results can differ from those produced by PROC GLM. Also, the small
sample properties of this approximation have not been extensively investigated for the various models
available with PROC MIXED.

The DDFM=KENWARDROGER option performs the degrees of freedom calculations detailed by
Kenward and Roger (1997). This approximation involves inflating the estimated variance-covariance
matrix of the fixed and random effects by the method proposed by Prasad and Rao (1990) and Harville
and Jeske (1992), see also Kackar and Harville (1984). Satterthwaite-type degrees of freedom are
then computed based on this adjustment. By default, the observed information matrix of the covari-
ance parameter estimates is used in the calculations. For covariance structures that have nonzero



5256 F Chapter 65: The MIXED Procedure

second derivatives with respect to the covariance parameters, the Kenward-Roger covariance matrix
adjustment includes a second-order term. This term can result in standard error shrinkage. Also,
the resulting adjusted covariance matrix can then be indefinite and is not invariant under reparam-
eterization. The FIRSTORDER or LINEAR suboption of the DDFM=KENWARDROGER option
eliminates the second derivatives from the calculation of the covariance matrix adjustment. The
LINEAR suboption is an alias for FIRSTORDER. For the case of scalar estimable functions, the
resulting estimator is referred to as the Prasad-Rao estimator em@ in Harville and Jeske (1992). The
following are examples of covariance structures that generally lead to nonzero second derivatives:
TYPE=ANTE(1), TYPE=AR(1), TYPE=ARH(1), TYPE=ARMA(1,1), TYPE=CSH, TYPE=FA,
TYPE=FA0(q), TYPE=TOEPH, TYPE=UNR, and all TYPE=SP() structures.

When the asymptotic variance matrix of the covariance parameters is found to be singular, a generalized
inverse is used. Covariance parameters with zero variance then do not contribute to the degrees-of-
freedom adjustment for DDFM=SATTERTHWAITE and DDFM=KENWARDROGER, and a message
is written to the log.

This method changes output in the following tables (listed in Table 65.26): Contrast, CorrB, CovB,
Diffs, Estimates, InvCovB, LSMeans, Slices, SolutionF, SolutionR, Tests1–Tests3. The OUTP= and
OUTPM= data sets are also affected.

E
requests that Type 1, Type 2, and Type 3 L matrix coefficients be displayed for all specified effects.
The ODS name of the table is Coef.

E1
requests that Type 1 L matrix coefficients be displayed for all specified effects. The ODS name of the
table is Coef.

E2
requests that Type 2 L matrix coefficients be displayed for all specified effects. The ODS name of the
table is Coef.

E3
requests that Type 3 L matrix coefficients be displayed for all specified effects. The ODS name of the
table is Coef.

FULLX
requests that columns of the X matrix that consist entirely of zeros not be eliminated from X; otherwise,
they are eliminated by default. For a column corresponding to a missing cell to be added to X, its
particular levels must be present in at least one observation in the analysis data set along with a
missing dependent variable. The use of the FULLX option can affect coefficient specifications in the
CONTRAST and ESTIMATE statements, as well as covariate coefficients from LSMEANS statements
specified with the AT MEANS option.

HTYPE=value-list
indicates the type of hypothesis test to perform on the fixed effects. Valid entries for values in the list
are 1, 2, and 3; the default value is 3. You can specify several types by separating the values with a
comma or a space. The ODS table names are Tests1 for the Type 1 tests, Tests2 for the Type 2 tests,
and Tests3 for the Type 3 tests.
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INFLUENCE< (influence-options) >
specifies that influence and case deletion diagnostics are to be computed.

The INFLUENCE option computes influence diagnostics by noniterative or iterative methods. The non-
iterative diagnostics rely on recomputation formulas under the assumption that covariance parameters
or their ratios remain fixed. With the possible exception of a profiled residual variance, no covariance
parameters are updated. This is the default behavior because of its computational efficiency. However,
the impact of an observation on the overall analysis can be underestimated if its effect on covariance
parameters is not assessed. Toward this end, iterative methods can be applied to gauge the overall
impact of observations and to obtain influence diagnostics for the covariance parameter estimates.

If you specify the INFLUENCE option without further suboptions, PROC MIXED computes single-
case deletion diagnostics and influence statistics for each observation in the data set by updating
estimates for the fixed-effects parameter estimates, and also the residual variance, if it is profiled. The
EFFECT=, SELECT=, ITER=, SIZE=, and KEEP= suboptions provide additional flexibility in the
computation and reporting of influence statistics. Table 65.10 briefly describes important suboptions
and their effect on the influence analysis.

Table 65.10 Summary of INFLUENCE Default and Suboptions

Description Suboption

Compute influence diagnostics for individual observations Default

Measure influence of sets of observations chosen according to a
classification variable or effect

EFFECT=

Remove pairs of observations and report the results sorted by degree
of influence

SIZE=2

Remove triples, quadruples of observations, etc. SIZE=

Allow selection of individual observations, observations sharing
specific levels of effects, and construction of tuples from specified
subsets of observations

SELECT=

Update fixed effects and covariance parameters by refitting the
mixed model, adding up to n iterations

ITER=n > 0

Compute influence diagnostics for the covariance parameters ITER=n > 0

Update only fixed effects and the residual variance, if it is profiled ITER=0

Add the reduced-data estimates to the data set created with ODS
OUTPUT

ESTIMATES

The modifiers and their default values are discussed in the following paragraphs. The set of computed
influence diagnostics varies with the suboptions. The most extensive set of influence diagnostics is
obtained when ITER=n with n > 0.

You can produce statistical graphics of influence diagnostics when ODS Graphics is enabled. For gen-
eral information about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.” For specific
information about the graphics available in the MIXED procedure, see the section “ODS Graphics” on
page 5324.

You can specify the following influence-options in parentheses:
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EFFECT=effect
specifies an effect according to which observations are grouped. Observations sharing the same
level of the effect are removed from the analysis as a group. The effect must contain only
classification variables, but they need not be contained in the model.

Removing observations can change the rank of the .X0V�1X/� matrix. This is particularly
likely to happen when multiple observations are eliminated from the analysis. If the rank of
the estimated variance-covariance matrix of b̌ changes or its singularity pattern is altered, no
influence diagnostics are computed.

ESTIMATES

EST
specifies that the updated parameter estimates should be written to the ODS output data set. The
values are not displayed in the “Influence” table, but if you use ODS OUTPUT to create a data
set from the listing, the estimates are added to the data set. If ITER=0, only the fixed-effects
estimates are saved. In iterative influence analyses, fixed-effects and covariance parameters are
stored. The p fixed-effects parameter estimates are named Parm1–Parmp, and the q covariance
parameter estimates are named CovP1–CovPq. The order corresponds to that in the “Solution
for Fixed Effects” and “Covariance Parameter Estimates” tables. If parameter updates fail—for
example, because of a loss of rank or a nonpositive definite Hessian—missing values are reported.

ITER=n
controls the maximum number of additional iterations PROC MIXED performs to update the
fixed-effects and covariance parameter estimates following data point removal. If you specify n >
0, then statistics such as DFFITS, MDFFITS, and the likelihood distances measure the impact
of observation(s) on all aspects of the analysis. Typically, the influence will grow compared to
values at ITER=0. In models without RANDOM or REPEATED effects, the ITER= option has
no effect.

This documentation refers to analyses when n > 0 simply as iterative influence analysis, even
if final covariance parameter estimates can be updated in a single step (for example, when
METHOD=MIVQUE0 or METHOD=TYPE3). This nomenclature reflects the fact that only if
n > 0 are all model parameters updated, which can require additional iterations. If n > 0 and
METHOD=REML (default) or METHOD=ML, the procedure updates fixed effects and variance-
covariance parameters after removing the selected observations with additional Newton-Raphson
iterations, starting from the converged estimates for the entire data. The process stops for each
observation or set of observations if the convergence criterion is satisfied or the number of further
iterations exceeds n. If n > 0 and METHOD=TYPE1, TYPE2, or TYPE3, ANOVA estimates of
the covariance parameters are recomputed in a single step.

Compared to noniterative updates, the computations are more involved. In particular for large
data sets or a large number of random effects (or both), iterative updates require considerably
more resources. A one-step (ITER=1) or two-step update might be a good compromise. The
output includes the number of iterations performed, which is less than n if the iteration converges.
If the process does not converge in n iterations, you should be careful in interpreting the results,
especially if n is fairly large.

Bounds and other restrictions on the covariance parameters carry over from the full-data model.
Covariance parameters that are not iterated in the model fit to the full data (the NOITER or
HOLD= option in the PARMS statement) are likewise not updated in the refit. In certain models,
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such as random-effects models, the ratios between the covariance parameters and the residual
variance are maintained rather than the actual value of the covariance parameter estimate (see the
section “Influence Diagnostics” on page 5310).

KEEP=n
determines how many observations are retained for display and in the output data set or how
many tuples if you specify SIZE=. The output is sorted by an influence statistic as discussed for
the SIZE= suboption.

SELECT=value-list
specifies which observations or effect levels are chosen for influence calculations. If the SELECT=
suboption is not specified, diagnostics are computed as follows:

• for all observations, if EFFECT= or SIZE= are not given
• for all levels of the specified effect, if EFFECT= is specified
• for all tuples of size k formed from the observations in value-list , if SIZE=k is specified

When you specify an effect with the EFFECT= option, the values in value-list represent indices of
the levels in the order in which PROC MIXED builds classification effects. Which observations
in the data set correspond to this index depends on the order of the variables in the CLASS
statement, not the order in which the variables appear in the interaction effect. See the section
“Parameterization of Mixed Models” on page 5303 to understand precisely how the procedure
indexes nested and crossed effects and how levels of classification variables are ordered. The
actual values of the classification variables involved in the effect are shown in the output so you
can determine which observations were removed.

If the EFFECT= suboption is not specified, the SELECT= value list refers to the sequence in
which observations are read from the input data set or from the current BY group if there is a BY
statement. This indexing is not necessarily the same as the observation numbers in the input data
set, for example, if a WHERE clause is specified or during BY processing.

SIZE=n
instructs PROC MIXED to remove groups of observations formed as tuples of size n. For
example, SIZE=2 specifies all n � .n � 1/=2 unique pairs of observations. The number of tuples
for SIZE=k is nŠ=.kŠ.n� k/Š/ and grows quickly with n and k. Using the SIZE= option can result
in considerable computing time. The MIXED procedure displays by default only the 50 tuples
with the greatest influence. Use the KEEP= option to override this default and to retain a different
number of tuples in the listing or ODS output data set. Regardless of the KEEP= specification, all
tuples are evaluated and the results are ordered according to an influence statistic. This statistic is
the (restricted) likelihood distance as a measure of overall influence if ITER= n > 0 or when a
residual variance is profiled. When likelihood distances are unavailable, the results are ordered
by the PRESS statistic.

To reduce computational burden, the SIZE= option can be combined with the SELECT=value-list
modifier. For example, the following statements evaluate all 15 D 6 � 5=2 pairs formed from
observations 13, 14, 18, 30, 31, and 33 and display the five pairs with the greatest influence:

proc mixed;
class a m f;
model penetration = a m /
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influence(size=2 keep=5
select=13,14,18,30,31,33);

random f(m);
run;

If any observation in a tuple contains missing values or has otherwise not contributed to the
analysis, the tuple is not evaluated. This guarantees that the displayed results refer to the same
number of observations, so that meaningful statistics are available by which to order the results.
If computations fail for a particular tuple—for example, because the .X0V�1X/� matrix changes
rank or the G matrix is not positive definite—no results are produced. Results are retained when
the maximum number of iterative updates is exceeded in iterative influence analyses.

The SIZE= suboption cannot be combined with the EFFECT= suboption. As in the case of the
EFFECT= suboption, the statistics being computed are those appropriate for removal of multiple
data points, even if SIZE=1.

The ODS name of the “Influence Diagnostics” table is Influence. The variables in this table depend on
whether you specify the EFFECT=, SIZE=, or KEEP= suboption and whether covariance parameters
are iteratively updated. When ITER=0 (the default), certain influence diagnostics are meaningful only
if the residual variance is profiled. Table 65.11 and Table 65.12 summarize the statistics obtained
depending on the model and modifiers. The last column in these tables gives the variable name in the
ODS OUTPUT INFLUENCE= data set. Restricted likelihood distances are reported instead of the
likelihood distance unless METHOD=ML. See the section “Influence Diagnostics” on page 5310 for
details about the individual statistics.

Table 65.11 Statistics Computed with INFLUENCE Option,
Noniterative Analysis (ITER=0)

Suboption �2 Statistic Variable
Profiled Name

Default Yes Observed value Observed
Predicted value Predicted
Marginal residual Residual
Leverage Leverage
PRESS residual PRESSRes
Internally studentized marginal residual Student
Externally studentized marginal residual RStudent
RMSE without deleted observations RMSE
Cook’s D CookD
DFFITS DFFITS
CovRatio COVRATIO
(Restricted) likelihood distance RLD, LD

Default No Observed value Observed
Predicted value Predicted
Marginal residual Residual
Leverage Leverage
PRESS residual PRESSRes
Internally studentized marginal residual Student
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Table 65.11 continued

Suboption �2 Statistic Variable
Profiled Name

Cook’s D CookD

EFFECT=, Yes Observations in level (tuple) Nobs
SIZE=, PRESS statistic PRESS
or KEEP= Cook’s D CookD

MDFFITS MDFFITS
CovRatio COVRATIO
COVTRACE COVTRACE
RMSE without deleted level (tuple) RMSE
(Restricted) likelihood distance RLD, LD

EFFECT=, No Observations in level (tuple) Nobs
SIZE=, PRESS statistic PRESS
or KEEP= Cook’s D CookD

Table 65.12 Statistics Computed with INFLUENCE Option,
Iterative Analysis (ITER=n > 0)

Suboption Statistic Variable
Name

Default Number of iterations Iter
Observed value Observed
Predicted value Predicted
Marginal residual Residual
Leverage Leverage
PRESS residual PRESSres
Internally studentized marginal residual Student
Externally studentized marginal residual RStudent
RMSE without deleted obs (if possible) RMSE
Cook’s D CookD
DFFITS DFFITS
CovRatio COVRATIO
Cook’s D CovParms CookDCP
CovRatio CovParms COVRATIOCP
MDFFITS CovParms MDFFITSCP
(Restricted) likelihood distance RLD, LD

EFFECT=, Observations in level (tuple) Nobs
SIZE=, Number of iterations Iter
or KEEP= PRESS statistic PRESS

RMSE without deleted level (tuple) RMSE
Cook’s D CookD
MDFFITS MDFFITS
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Table 65.12 continued

Suboption Statistic Variable
Name

CovRatio COVRATIO
COVTRACE COVTRACE
Cook’s D CovParms CookDCP
CovRatio CovParms COVRATIOCP
MDFFITS CovParms MDFFITSCP
(Restricted) likelihood distance RLD, LD

INTERCEPT
adds a row to the tables for Type 1, 2, and 3 tests corresponding to the overall intercept.

LCOMPONENTS
requests an estimate for each row of the L matrix used to form tests of fixed effects. Components
corresponding to Type 3 tests are the default; you can produce the Type 1 and Type 2 component
estimates with the HTYPE= option.

Tests of fixed effects involve testing of linear hypotheses of the form Lˇ D 0. The matrix L is
constructed from Type 1, 2, or 3 estimable functions. By default the MIXED procedure constructs
Type 3 tests. In many situations, the individual rows of the matrix L represent contrasts of interest.
For example, in a one-way classification model, the Type 3 estimable functions define differences
of factor-level means. In a balanced two-way layout, the rows of L correspond to differences of cell
means.

For example, suppose factors A and B have a and b levels, respectively. The following statements
produce (a – 1) one degree of freedom tests for the rows of L associated with the Type 1 and Type 3
estimable functions for factor A, (b – 1) tests for the rows of L associated with factor B, and a single
test for the Type 1 and Type 3 coefficients associated with regressor X:

class A B;
model y = A B x / htype=1,3 lcomponents;

The denominator degrees of freedom associated with a row of L are the same as those in
the corresponding “Tests of Fixed Effects” table, except for DDFM=KENWARDROGER and
DDFM=SATTERTHWAITE. For these degree of freedom methods, the denominator degrees of
freedom are computed separately for each row of L.

The ODS name of the table containing all requested component tests is LComponents. See Exam-
ple 65.9 for applications of the LCOMPONENTS option.

NOCONTAIN
has the same effect as the DDFM=RESIDUAL option.

NOINT
requests that no intercept be included in the model. An intercept is included by default.
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NOTEST
specifies that no hypothesis tests be performed for the fixed effects.

OUTP=SAS-data-set

OUTPRED=SAS-data-set
specifies an output data set containing predicted values and related quantities. This option replaces the
P option from SAS 6.

Predicted values are formed by using the rows from (X Z) as L matrices. Thus, predicted values from
the original data are Xb̌C Zb . Their approximate standard errors of prediction are formed from the
quadratic form of L with bC defined in the section “Statistical Properties” on page 5299. The L95 and
U95 variables provide a t-type confidence interval for the predicted values, and they correspond to the
L95M and U95M variables from the GLM and REG procedures for fixed-effects models. The residuals
are the observed minus the predicted values. Predicted values for data points other than those observed
can be obtained by using missing dependent variables in your input data set.

Specifications that have a REPEATED statement with the SUBJECT= option and missing dependent
variables compute predicted values by using empirical best linear unbiased prediction (EBLUP). Using
hats . O / to denote estimates, the EBLUP formula is

Om D Xm Ǒ C OCm OV�1.y �X Ǒ/

where m represents a hypothetical realization of a missing data vector with associated design matrix
Xm. The matrix Cm is the model-based covariance matrix between m and the observed data y, and
other notation is as presented in the section “Mixed Models Theory” on page 5291.

The estimated prediction variance is as follows:

bVar. Om �m/ D OVm � OCm OV�1 OC0mC

ŒXm � OCm OV�1X�.X0 OV�1X/�ŒXm � OCm OV�1X�0

where Vm is the model-based variance matrix of m. For further details, see Henderson (1984) and
Harville (1990). This feature can be useful for forecasting time series or for computing spatial
predictions.

By default, all variables from the input data set are included in the OUTP= data set. You can select a
subset of these variables by using the ID statement.

OUTPM=SAS-data-set

OUTPREDM=SAS-data-set
specifies an output data set containing predicted means and related quantities. This option replaces the
PM option from SAS 6.

The output data set is of the same form as that resulting from the OUTP= option, except that the
predicted values do not incorporate the EBLUP values Zb . They also do not use the EBLUPs for
specifications that have a REPEATED statement with the SUBJECT= option and missing dependent
variables. The predicted values are formed as Xb̌ in the OUTPM= data set, and standard errors are
quadratic forms in the approximate variance-covariance matrix of b̌ as displayed by the COVB option.

By default, all variables from the input data set are included in the OUTPM= data set. You can select a
subset of these variables by using the ID statement.
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RESIDUAL

RESIDUALS
requests that Pearson-type and (internally) studentized residuals be added to the OUTP= and OUTPM=
data sets. Studentized residuals are raw residuals standardized by their estimated standard error. When
residuals are internally studentized, the data point in question has contributed to the estimation of
the covariance parameter estimates on which the standard error of the residual is based. Externally
studentized marginal residuals can be computed with the INFLUENCE option. Pearson-type residuals
scale the residual by the standard deviation of the response.

The option has no effect unless the OUTP= or OUTPM= option is specified or un-
less ODS Graphics is enabled. For general information about ODS Graphics, see
Chapter 21, “Statistical Graphics Using ODS.” For specific information about the graphics avail-
able in the MIXED procedure, see the section “ODS Graphics” on page 5324. For computational
details about studentized and Pearson residuals in MIXED, see the section “Residual Diagnostics” on
page 5308.

SINGCHOL=number
tunes the sensitivity in computing Cholesky roots. If a diagonal pivot element is less than D*number
as PROC MIXED performs the Cholesky decomposition on a matrix, the associated column is declared
to be linearly dependent upon previous columns and is set to 0. The value D is the original diagonal
element of the matrix. The default for number is 1E4 times the machine epsilon; this product is
approximately 1E–12 on most computers.

SINGRES=number
sets the tolerance for which the residual variance is considered to be zero. The default is 1E4 times the
machine epsilon; this product is approximately 1E–12 on most computers.

SINGULAR=number
tunes the sensitivity in sweeping. If a diagonal pivot element is less than D*number as PROC MIXED
sweeps a matrix, the associated column is declared to be linearly dependent upon previous columns,
and the associated parameter is set to 0. The value D is the original diagonal element of the matrix.
The default is 1E4 times the machine epsilon; this product is approximately 1E–12 on most computers.

SOLUTION

S
requests that a solution for the fixed-effects parameters be produced. Using notation from the section
“Mixed Models Theory” on page 5291, the fixed-effects parameter estimates are b̌ and their approximate
standard errors are the square roots of the diagonal elements of .X0bV�1X/�. You can output this
approximate variance matrix with the COVB option or modify it with the EMPIRICAL option in the
PROC MIXED statement or the DDFM=KENWARDROGER option in the MODEL statement.

Along with the estimates and their approximate standard errors, a t statistic is computed as the estimate
divided by its standard error. The degrees of freedom for this t statistic matches the one appearing in the
“Tests of Fixed Effects” table under the effect containing the parameter. The “Pr > |t|” column contains
the two-tailed p-value corresponding to the t statistic and associated degrees of freedom. You can use
the CL option to request confidence intervals for all of the parameters; they are constructed around the
estimate by using a radius of the standard error times a percentage point from the t distribution.
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VCIRY
requests that responses and marginal residuals be scaled by the inverse Cholesky root of the marginal
variance-covariance matrix. The variables ScaledDep and ScaledResid are added to the OUTPM=
data set. These quantities can be important in bootstrapping of data or residuals. Examination of the
scaled residuals is also helpful in diagnosing departures from normality. Notice that the results of this
scaling operation can depend on the order in which the MIXED procedure processes the data.

The VCIRY option has no effect unless you also use the OUTPM= option or un-
less ODS Graphics is enabled. For general information about ODS Graphics, see
Chapter 21, “Statistical Graphics Using ODS.” For specific information about the graphics avail-
able in the MIXED procedure, see the section “ODS Graphics” on page 5324.

XPVIX
is an alias for the COVBI option.

XPVIXI
is an alias for the COVB option.

ZETA=number
tunes the sensitivity in forming Type 3 functions. Any element in the estimable function basis with an
absolute value less than number is set to 0. The default is 1E–8.

PARMS Statement
PARMS (value-list). . . < / options > ;

The PARMS statement specifies initial values for the covariance parameters, or it requests a grid search over
several values of these parameters. You must specify the values in the order in which they appear in the
“Covariance Parameter Estimates” table.

The value-list specification can take any of several forms:

m a single value

m1;m2; : : : ;mn several values

m to n a sequence where m equals the starting value, n equals the ending value, and the increment
equals 1

m to n by i a sequence where m equals the starting value, n equals the ending value, and the increment
equals i

m1;m2 to m3 mixed values and sequences

You can use the PARMS statement to input known parameters. Referring to the split-plot example (Exam-
ple 65.1), suppose the three variance components are known to be 60, 20, and 6. The SAS statements to fix
the variance components at these values are as follows:

proc mixed data=sp noprofile;
class Block A B;
model Y = A B A*B;
random Block A*Block;
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parms (60) (20) (6) / noiter;
run;

The NOPROFILE option requests PROC MIXED to refrain from profiling the residual variance parameter
during its calculations, thereby enabling its value to be held at 6 as specified in the PARMS statement. The
NOITER option prevents any Newton-Raphson iterations so that the subsequent results are based on the
given variance components. You can also specify known parameters of G by using the GDATA= option in
the RANDOM statement.

If you specify more than one set of initial values, PROC MIXED performs a grid search of the likelihood
surface and uses the best point on the grid for subsequent analysis. Specifying a large number of grid points
can result in long computing times. The grid search feature is also useful for exploring the likelihood surface.
(See Example 65.3.)

The results from the PARMS statement are the values of the parameters on the specified grid (denoted by
CovP1–CovPn), the residual variance (possibly estimated) for models with a residual variance parameter,
and various functions of the likelihood.

The ODS name of the “Parameter Search” table is ParmSearch.

Table 65.13 summarizes the options available in the PARMS statement.

Table 65.13 PARMS Statement Options

Option Description

HOLD= Holds parameter values equal to the specified values
LOGDETH Evaluates the log determinant of the Hessian matrix
LOWERB= Specifies lower boundary constraints
NOBOUND Removes boundary constraints on covariance parameters
NOITER Performs inferences using the best value from the grid search
NOPRINT Suppresses the “Parameter Search” table
NOPROFILE Specifies a different computational method for the residual variance
OLS Requests starting values corresponding to the usual general linear model
PARMSDATA= Reads in covariance parameter values from a SAS data set
RATIOS Indicates that ratios with the residual variance are specified
UPPERB= Specifies upper boundary constraints

You can specify the following options in the PARMS statement after a slash (/).

HOLD=value-list

EQCONS=value-list
specifies which parameter values PROC MIXED should hold to equal the specified values. For
example, the following statement constrains the first and third covariance parameters to equal 5 and 2,
respectively:

parms (5) (3) (2) (3) / hold=1,3;
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LOGDETH
evaluates the log determinant of the Hessian matrix for each point specified in the PARMS statement.
A Log Det H column is added to the “Parameter Search” table.

LOWERB=value-list
enables you to specify lower boundary constraints on the covariance parameters. The value-list
specification is a list of numbers or missing values (.) separated by commas. You must list the numbers
in the order that PROC MIXED uses for the covariance parameters, and each number corresponds to
the lower boundary constraint. A missing value instructs PROC MIXED to use its default constraint,
and if you do not specify numbers for all of the covariance parameters, PROC MIXED assumes the
remaining ones are missing.

An example for which this option is useful is when you want to constrain the G matrix to be positive
definite in order to avoid the more computationally intensive algorithms required when G becomes
singular. The corresponding statements for a random coefficients model are as follows:

proc mixed;
class person;
model y = time;
random int time / type=fa0(2) sub=person;
parms / lowerb=1e-4,.,1e-4;

run;

Here the TYPE=FA0(2) structure is used in order to specify a Cholesky root parameterization for the
2� 2 unstructured blocks in G. This parameterization ensures that the G matrix is nonnegative definite,
and the PARMS statement then ensures that it is positive definite by constraining the two diagonal
terms to be greater than or equal to 1E–4.

NOBOUND
requests the removal of boundary constraints on covariance parameters. For example, variance
components have a default lower boundary constraint of 0, and the NOBOUND option allows their
estimates to be negative.

NOITER
requests that no Newton-Raphson iterations be performed and that PROC MIXED use the best value
from the grid search to perform inferences. By default, iterations begin at the best value from the
PARMS grid search.

NOPRINT
suppresses the display of the “Parameter Search” table.

NOPROFILE
specifies a different computational method for the residual variance during the grid search. By default,
PROC MIXED estimates this parameter by using the profile likelihood when appropriate. This
estimate is displayed in the Variance column of the “Parameter Search” table. The NOPROFILE
option suppresses the profiling and uses the actual value of the specified variance in the likelihood
calculations.
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OLS
requests starting values corresponding to the usual general linear model. Specifically, all variances
and covariances are set to zero except for the residual variance, which is set equal to its ordinary least
squares (OLS) estimate. This option is useful when the default MIVQUE0 procedure produces poor
starting values for the optimization process.

PARMSDATA=SAS-data-set

PDATA=SAS-data-set
reads in covariance parameter values from a SAS data set. The data set should contain the Est or
Covp1–Covpn variables.

RATIOS
indicates that ratios with the residual variance are specified instead of the covariance parameters
themselves. The default is to use the individual covariance parameters.

UPPERB=value-list
enables you to specify upper boundary constraints on the covariance parameters. The value-list
specification is a list of numbers or missing values (.) separated by commas. You must list the numbers
in the order that PROC MIXED uses for the covariance parameters, and each number corresponds to
the upper boundary constraint. A missing value instructs PROC MIXED to use its default constraint,
and if you do not specify numbers for all of the covariance parameters, PROC MIXED assumes that
the remaining ones are missing.

PRIOR Statement
PRIOR < distribution > < / options > ;

The PRIOR statement enables you to carry out a sampling-based Bayesian analysis in PROC MIXED. It
currently operates only with variance component models. Other TYPE= structures are not supported. The
analysis produces a SAS data set containing a pseudo-random sample from the joint posterior density of the
variance components and other parameters in the mixed model.

The posterior analysis is performed after all other PROC MIXED computations. It begins with the “Posterior
Sampling Information” table, which provides basic information about the posterior sampling analysis,
including the prior densities, sampling algorithm, sample size, and random number seed. The ODS name of
this table is Posterior.

By default, PROC MIXED uses an independence chain algorithm in order to generate the posterior sample
(Tierney 1994). This algorithm works by generating a pseudo-random proposal from a convenient base
distribution, chosen to be as close as possible to the posterior. The proposal is then retained in the sample
with probability proportional to the ratio of weights constructed by taking the ratio of the true posterior to the
base density. If a proposal is not accepted, then a duplicate of the previous observation is added to the chain.

In selecting the base distribution, PROC MIXED makes use of the fact that the fixed-effects parameters can
be analytically integrated out of the joint posterior, leaving the marginal posterior density of the variance
components. In order to better approximate the marginal posterior density of the variance components, PROC
MIXED transforms them by using the MIVQUE(0) equations. You can display the selected transformation
with the PTRANS option or specify your own with the TDATA= option. The density of the transformed
parameters is then approximated by a product of inverted gamma densities (see Gelfand et al. 1990).
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To determine the parameters for the inverted gamma densities, PROC MIXED evaluates the logarithm of
the posterior density over a grid of points in each of the transformed parameters, and you can display the
results of this search with the PSEARCH option. PROC MIXED then performs a linear regression of these
values on the logarithm of the inverted gamma density. The resulting base densities are displayed in the
“Base Densities” table; the ODS name of this table is Base. You can input different base densities with the
BDATA= option.

At the end of the sampling, the “Acceptance Rates” table displays the acceptance rate computed as the number
of accepted samples divided by the total number of samples generated. The ODS name of the “Acceptance
Rates” table is AccRates.

The OUT= option specifies the output data set containing the posterior sample. PROC MIXED automatically
includes all variance component parameters in this data set (labeled COVP1–COVPn), the Type 3 F statistics
constructed as in Ghosh (1992) discussing Schervish (1992) (labeled T3Fn), the log values of the posterior
(labeled LOGF), the log of the base sampling density (labeled LOGG), and the log of their ratio (labeled
LOGRATIO). If you specify the SOLUTION option in the MODEL statement, the data set also contains
a random sample from the posterior density of the fixed-effects parameters (labeled BETAn); and if you
specify the SOLUTION option in the RANDOM statement, the table contains a random sample from the
posterior density of the random-effects parameters (labeled GAMn). PROC MIXED also generates additional
variables corresponding to any CONTRAST, ESTIMATE, or LSMEANS statement that you specify.

Subsequently, you can use SAS/INSIGHT or the UNIVARIATE, CAPABILITY, or KDE procedure to analyze
the posterior sample.

The prior density of the variance components is, by default, a noninformative version of Jeffreys’ prior (Box
and Tiao 1973). You can also specify informative priors with the DATA= option or a flat (equal to 1) prior for
the variance components. The prior density of the fixed-effects parameters is assumed to be flat (equal to
1), and the resulting posterior is conditionally multivariate normal (conditioning on the variance component
parameters) with mean .X0V�1X/�X0V�1y and variance .X0V�1X/�.

Table 65.14 summarizes the options available in the PRIOR statement.

Table 65.14 PRIOR Statement Options

Option Description

DATA= Inputs the prior densities of the variance components
JEFFREYS Specifies a noninformative reference version of Jeffreys’ prior
FLAT Specifies a prior density equal to 1 everywhere
ALG= Specifies the algorithm used for generating the posterior sample
BDATA= Inputs the base densities used by the sampling algorithm
GRID= Specifies a grid of values over which to evaluate the posterior density
GRIDT= Specifies a transformed grid of values over which to evaluate the posterior

density
IFACTOR= An alias for the SFACTOR= option
LOGNOTE= Writes a note to the log after generating the sample
LOGRBOUND= Specifies the bounding constant for rejection sampling
NSAMPLE= Specifies the number of posterior samples to generate
NSEARCH= Specifies the number of posterior evaluations
OUT= Creates an output data set containing the sample from the posterior density
OUTG= Creates an output data set from the grid evaluations
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Table 65.14 continued

Option Description

OUTGT= Creates an output data set from the transformed grid evaluations
PSEARCH Displays the search used to determine the parameters for the inverted gamma

densities
PTRANS Displays the transformation of the variance components
SEED= Specifies an integer used to start the pseudo-random number generator
SFACTOR= Adjusts the search range of the transformed parameters
TDATA= Inputs the transformation used by the sampling algorithm
TRANS= Specifies the algorithm that determines the transformation of the covariance

parameters
UPDATE= An alias for the LOGNOTE= option

The distribution argument in the PRIOR statement determines the prior density for the variance component
parameters of your mixed model. Valid values are as follows.

DATA=
enables you to input the prior densities of the variance components used by the sampling algorithm.
This data set must contain the Type and Parm1–Parmn variables, where n is the largest number of
parameters among each of the base densities. The format of the DATA= data set matches that created
by PROC MIXED in the “Base Densities” table, so you can output the densities from one run and use
them as input for a subsequent run.

JEFFREYS
specifies a noninformative reference version of Jeffreys’ prior constructed by using the square root of
the determinant of the expected information matrix as in (1.3.92) of Box and Tiao (1973). This is the
default prior.

FLAT
specifies a prior density equal to 1 everywhere, making the likelihood function the posterior.

You can specify the following options in the PRIOR statement after a slash (/).

ALG=IC | INDCHAIN

ALG=IS | IMPSAMP

ALG=RS | REJSAMP

ALG=RWC | RWCHAIN
specifies the algorithm used for generating the posterior sample. The ALG=IC option requests an
independence chain algorithm, and it is the default. The option ALG=IS requests importance sampling,
ALG=RS requests rejection sampling, and ALG=RWC requests a random walk chain. For more
information about these techniques, see Ripley (1987); Smith and Gelfand (1992); Tierney (1994).

BDATA=
enables you to input the base densities used by the sampling algorithm. This data set must contain the
Type and Parm1–Parmn variables, where n is the largest number of parameters among each of the base
densities. The format of the BDATA= data set matches that created by PROC MIXED in the “Base
Densities” table, so you can output the densities from one run and use them as input for a subsequent
run.
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GRID=(value-list)
specifies a grid of values over which to evaluate the posterior density. The value-list syntax is the same
as in the PARMS statement, and you must specify an output data set name with the OUTG= option.

GRIDT=(value-list)
specifies a transformed grid of values over which to evaluate the posterior density. The value-list
syntax is the same as in the PARMS statement, and you must specify an output data set name with the
OUTGT= option.

IFACTOR=number
is an alias for the SFACTOR= option.

LOGNOTE=number
instructs PROC MIXED to write a note to the SAS log after it generates the sample corresponding to
each multiple of number . This is useful for monitoring the progress of CPU-intensive runs.

LOGRBOUND=number
specifies the bounding constant for rejection sampling. The value of number equals the maximum of
logff=gg over the variance component parameter space, where f is the posterior density and g is the
product inverted gamma densities used to perform rejection sampling.

When performing the rejection sampling, you might encounter the following message:

WARNING: The log ratio bound of LL was violated at sample XX.

When this occurs, PROC MIXED reruns an optimization algorithm to determine a new log upper
bound and then restarts the rejection sampling. The resulting OUT= data set contains all observations
that have been generated; therefore, assuming that you have requested N samples, you should retain
only the final N observations in this data set for analysis purposes.

NSAMPLE=number
specifies the number of posterior samples to generate. The default is 1000, but more accurate results
are obtained with larger samples such as 10000.

NSEARCH=number
specifies the number of posterior evaluations PROC MIXED makes for each transformed parameter in
determining the parameters for the inverted gamma densities. The default is 20.

OUT=SAS-data-set
creates an output data set containing the sample from the posterior density.

OUTG=SAS-data-set
creates an output data set from the grid evaluations specified in the GRID= option.

OUTGT=SAS-data-set
creates an output data set from the transformed grid evaluations specified in the GRIDT= option.

PSEARCH
displays the search used to determine the parameters for the inverted gamma densities. The ODS name
of the table is Search.
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PTRANS
displays the transformation of the variance components. The ODS name of the table is Trans.

SEED=number
specifies an integer used to start the pseudo-random number generator for the simulation. If you do not
specify a seed, or if you specify a value less than or equal to zero, the seed is by default generated from
reading the time of day from the computer clock. You should use a positive seed (less than 231 � 1)
whenever you want to duplicate the sample in another run of PROC MIXED.

SFACTOR=number
enables you to adjust the range over which PROC MIXED searches the transformed parameters in
order to determine the parameters for the inverted gamma densities. PROC MIXED determines the
range by first transforming the estimates from the standard PROC MIXED analysis (REML, ML, or
MIVQUE0, depending upon which estimation method you select). It then multiplies and divides the
transformed estimates by 2�number to obtain upper and lower bounds, respectively. Transformed
values that produce negative variance components in the original scale are not included in the search.
The default value is 1; number must be greater than 0.5.

TDATA=SAS-data-set
enables you to input the transformation of the covariance parameters used by the sampling algorithm.
This data set should contain the CovP1–CovPn variables. The format of the TDATA= data set matches
that created by PROC MIXED in the Trans table, so you can output the transformation from one run
and use it as input for a subsequent run.

TRANS=EXPECTED | MIVQUE0 | OBSERVED
specifies the particular algorithm used to determine the transformation of the covariance parameters.
The default is MIVQUE0, indicating a transformation based on the MIVQUE(0) equations. The other
two options indicate the type of Hessian matrix used in constructing the transformation via a Cholesky
root.

UPDATE=number
is an alias for the LOGNOTE= option.

RANDOM Statement
RANDOM random-effects < / options > ;

The RANDOM statement defines the random effects constituting the  vector in the mixed model. It
can be used to specify traditional variance component models (as in the VARCOMP procedure) and to
specify random coefficients. The random effects can be classification or continuous, and multiple RANDOM
statements are possible.

Using notation from the section “Mixed Models Theory” on page 5291, the purpose of the RANDOM
statement is to define the Z matrix of the mixed model, the random effects in the  vector, and the structure of
G. The Z matrix is constructed exactly as the X matrix for the fixed effects, and the G matrix is constructed
to correspond with the effects constituting Z. The structure of G is defined by using the TYPE= option.

You can specify INTERCEPT (or INT) as a random effect to indicate the intercept. PROC MIXED does not
include the intercept in the RANDOM statement by default as it does in the MODEL statement.
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Table 65.15 summarizes the options available in the RANDOM statement. All options are subsequently
discussed in alphabetical order.

Table 65.15 Summary of RANDOM Statement Options

Option Description

Construction of Covariance Structure
GDATA= Requests that the G matrix be read from a SAS data set
GROUP= Varies covariance parameters by groups
LDATA= Specifies data set with coefficient matrices for TYPE=LIN
NOFULLZ Eliminates columns in Z corresponding to missing values
RATIOS Indicates that ratios are specified in the GDATA= data set
SUBJECT= Identifies the subjects in the model
TYPE= Specifies the covariance structure

Statistical Output
ALPHA=˛ Determines the confidence level (1 � ˛)
CL Requests confidence limits for predictors of random effects
G Displays the estimated G matrix
GC Displays the Cholesky root (lower) of estimated G matrix
GCI Displays the inverse Cholesky root (lower) of estimated G matrix
GCORR Displays the correlation matrix corresponding to estimated G ma-

trix
GI Displays the inverse of the estimated G matrix
SOLUTION Displays solutionsb of the G-side random effects
V Displays blocks of the estimated V matrix
VC Displays the lower-triangular Cholesky root of blocks of the esti-

mated V matrix
VCI Displays the inverse Cholesky root of blocks of the estimated V

matrix
VCORR Displays the correlation matrix corresponding to blocks of the

estimated V matrix
VI Displays the inverse of the blocks of the estimated V matrix

You can specify the following options in the RANDOM statement after a slash (/).

ALPHA=number
requests that a t-type confidence interval be constructed for each of the random-effect estimates with
confidence level 1 – number . The value of number must be between 0 and 1; the default is 0.05.

CL
requests that t-type confidence limits be constructed for each of the random-effect estimates. The
confidence level is 0.95 by default; this can be changed with the ALPHA= option.

G
requests that the estimated G matrix be displayed. PROC MIXED displays blanks for values that are 0.
If you specify the SUBJECT= option, then the block of the G matrix corresponding to the first subject
is displayed. The ODS name of the table is G.
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GC
displays the lower-triangular Cholesky root of the estimated G matrix according to the rules listed
under the G option. The ODS name of the table is CholG.

GCI
displays the inverse Cholesky root of the estimated G matrix according to the rules listed under the G
option. The ODS name of the table is InvCholG.

GCORR
displays the correlation matrix corresponding to the estimated G matrix according to the rules listed
under the G option. The ODS name of the table is GCorr.

GDATA=SAS-data-set
requests that the G matrix be read in from a SAS data set. This G matrix is assumed to be known;
therefore, only R-side parameters from effects in the REPEATED statement are included in the
Newton-Raphson iterations. If no REPEATED statement is specified, then only a residual variance is
estimated.

The information in the GDATA= data set can appear in one of two ways. The first is a sparse
representation for which you include Row, Col, and Value variables to indicate the row, column, and
value of G, respectively. All unspecified locations are assumed to be 0. The second representation
is for dense matrices. In it you include Row and Col1–Coln variables to indicate, respectively, the
row and columns of G, which is a symmetric matrix of order n. For both representations, you must
specify effects in the RANDOM statement that generate a Z matrix that contains n columns. (See
Example 65.4.)

If you have more than one RANDOM statement, only one GDATA= option is required in any one of
them, and the data set you specify must contain the entire G matrix defined by all of the RANDOM
statements.

If the GDATA= data set contains variance ratios instead of the variances themselves, then use the
RATIOS option.

Known parameters of G can also be input by using the PARMS statement with the HOLD= option.

GI
displays the inverse of the estimated G matrix according to the rules listed under the G option. The
ODS name of the table is InvG.

GROUP=effect
GRP=effect

defines an effect specifying heterogeneity in the covariance structure of G. All observations having the
same level of the group effect have the same covariance parameters. Each new level of the group effect
produces a new set of covariance parameters with the same structure as the original group. You should
exercise caution in defining the group effect, because strange covariance patterns can result from its
misuse. Also, the group effect can greatly increase the number of estimated covariance parameters,
which can adversely affect the optimization process.

Continuous variables are permitted as arguments to the GROUP= option. PROC MIXED does not
sort by the values of the continuous variable; rather, it considers the data to be from a new subject or
group whenever the value of the continuous variable changes from the previous observation. Using a
continuous variable decreases execution time for models with a large number of subjects or groups and
also prevents the production of a large “Class Level Information” table.
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LDATA=SAS-data-set
reads the coefficient matrices associated with the TYPE=LIN(number ) option. The data set must
contain the variables Parm, Row, Col1–Coln or Parm, Row, Col, Value. The Parm variable denotes
which of the number coefficient matrices is currently being constructed, and the Row, Col1–Coln, or
Row, Col, Value variables specify the matrix values, as they do with the GDATA= option. Unspecified
values of these matrices are set equal to 0.

NOFULLZ
eliminates the columns in Z corresponding to missing levels of random effects involving CLASS
variables. By default, these columns are included in Z.

RATIOS
indicates that ratios with the residual variance are specified in the GDATA= data set instead of the
covariance parameters themselves. The default GDATA= data set contains the individual covariance
parameters.

SOLUTION

S
requests that the solution for the random-effects parameters be produced. Using notation from the
section “Mixed Models Theory” on page 5291, these estimates are the empirical best linear unbiased
predictors (EBLUPs)b D bGZ0bV�1.y �Xb̌/. They can be useful for comparing the random effects
from different experimental units and can also be treated as residuals in performing diagnostics for
your mixed model.

The numbers displayed in the SE Pred column of the “Solution for Random Effects” table are not
the standard errors of theb displayed in the Estimate column; rather, they are the standard errors of
predictionsb i � i , whereb i is the ith EBLUP and i is the ith random-effect parameter.

SUBJECT=effect

SUB=effect
identifies the subjects in your mixed model. Complete independence is assumed across subjects; thus,
for the RANDOM statement, the SUBJECT= option produces a block-diagonal structure in G with
identical blocks. The Z matrix is modified to accommodate this block diagonality. In fact, specifying a
subject effect is equivalent to nesting all other effects in the RANDOM statement within the subject
effect.

Continuous variables are permitted as arguments to the SUBJECT= option. PROC MIXED does not
sort by the values of the continuous variable; rather, it considers the data to be from a new subject or
group whenever the value of the continuous variable changes from the previous observation. Using a
continuous variable decreases execution time for models with a large number of subjects or groups and
also prevents the production of a large “Class Level Information” table.

When you specify the SUBJECT= option and a classification random effect, computations are usually
much quicker if the levels of the random effect are duplicated within each level of the SUBJECT=
effect.

TYPE=covariance-structure
specifies the covariance structure of G. Valid values for covariance-structure and their descriptions are
listed in Table 65.17 and Table 65.18. Although a variety of structures are available, most applications
call for either TYPE=VC or TYPE=UN. The TYPE=VC (variance components) option is the default
structure, and it models a different variance component for each random effect.



5276 F Chapter 65: The MIXED Procedure

The TYPE=UN (unstructured) option is useful for correlated random coefficient models. For example,
the following statement specifies a random intercept-slope model that has different variances for the
intercept and slope and a covariance between them:

random intercept age / type=un subject=person;

You can also use TYPE=FA0(2) here to request a G estimate that is constrained to be nonnegative
definite.

If you are constructing your own columns of Z with continuous variables, you can use the
TYPE=TOEP(1) structure to group them together to have a common variance component. If you
want to have different covariance structures in different parts of G, you must use multiple RANDOM
statements with different TYPE= options.

V< =value-list >
requests that blocks of the estimated V matrix be displayed. The first block determined by the
SUBJECT= effect is the default displayed block. PROC MIXED displays entries that are 0 as blanks
in the table.

You can optionally use the value-list specification, which indicates the subjects for which blocks of V
are to be displayed. For example, the following statement displays block matrices for the first, third,
and seventh persons:

random int time / type=un subject=person v=1,3,7;

The ODS table name is V.

VC< =value-list >
displays the Cholesky root of the blocks of the estimated V matrix. The value-list specification is the
same as in the V option. The ODS table name is CholV.

VCI< =value-list >
displays the inverse of the Cholesky root of the blocks of the estimated V matrix. The value-list
specification is the same as in the V option. The ODS table name is InvCholV.

VCORR< =value-list >
displays the correlation matrix corresponding to the blocks of the estimated V matrix. The value-list
specification is the same as in the V option. The ODS table name is VCorr.

VI< =value-list >
displays the inverse of the blocks of the estimated V matrix. The value-list specification is the same as
in the V option. The ODS table name is InvV.

REPEATED Statement
REPEATED < repeated-effect > < / options > ;
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The REPEATED statement is used to specify the R matrix in the mixed model. Its syntax is different from
that of the REPEATED statement in PROC GLM. If no REPEATED statement is specified, R is assumed to
be equal to �2I.

For many repeated measures models, no repeated effect is required in the REPEATED statement. Simply use
the SUBJECT= option to define the blocks of R and the TYPE= option to define their covariance structure.
In this case, the repeated measures data must be similarly ordered for each subject, and you must indicate
all missing response variables with periods in the input data set unless they all fall at the end of a subject’s
repeated response profile. These requirements are necessary in order to inform PROC MIXED of the proper
location of the observed repeated responses.

Specifying a repeated effect is useful when you do not want to indicate missing values with periods in the
input data set. The repeated effect must contain only classification variables. Make sure that the levels of
the repeated effect are different for each observation within a subject; otherwise, PROC MIXED constructs
identical rows in R corresponding to the observations with the same level. This results in a singular R and an
infinite likelihood.

Whether you specify a REPEATED effect or not, the rows of R for each subject are constructed in the order
in which they appear in the input data set.

Table 65.16 summarizes the options available in the REPEATED statement. All options are subsequently
discussed in alphabetical order.

Table 65.16 Summary of REPEATED Statement Options

Option Description

Construction of Covariance Structure
GROUP= Defines an effect specifying heterogeneity in the R-side covariance

structure
LDATA= Specifies data set with coefficient matrices for TYPE=LIN
LOCAL Requests that a diagonal matrix be added to R
LOCALW Specifies that only the local effects are weighted
NONLOCALW Specifies that only the nonlocal effects are weighted
SUBJECT= Identifies the subjects in the R-side model
TYPE= Specifies the R-side covariance structure

Statistical Output
HLM Produces a table of Hotelling-Lawley-McKeon statistics (McKeon

1974)
HLPS Produces a table of Hotelling-Lawley-Pillai-Samson statistics (Pil-

lai and Samson 1959)
R Displays blocks of the estimated R matrix
RC Display the Cholesky root (lower) of blocks of the estimated R

matrix
RCI Displays the inverse Cholesky root (lower) of blocks of the esti-

mated R matrix
RCORR Displays the correlation matrix corresponding to blocks of the

estimated R matrix
RI Displays the inverse of blocks of the estimated R matrix
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You can specify the following options in the REPEATED statement after a slash (/).

GROUP=effect

GRP=effect
defines an effect that specifies heterogeneity in the covariance structure of R. All observations that
have the same level of the GROUP effect have the same covariance parameters. Each new level
of the GROUP effect produces a new set of covariance parameters with the same structure as the
original group. You should exercise caution in properly defining the GROUP effect, because strange
covariance patterns can result with its misuse. Also, the GROUP effect can greatly increase the number
of estimated covariance parameters, which can adversely affect the optimization process.

Continuous variables are permitted as arguments to the GROUP= option. PROC MIXED does not
sort by the values of the continuous variable; rather, it considers the data to be from a new subject or
group whenever the value of the continuous variable changes from the previous observation. Using a
continuous variable decreases execution time for models with a large number of subjects or groups and
also prevents the production of a large “Class Level Information” table.

HLM
produces a table of Hotelling-Lawley-McKeon statistics (McKeon 1974) for all fixed effects whose
levels change across data having the same level of the SUBJECT= effect (the within-subject fixed
effects). This option applies only when you specify a REPEATED statement with the TYPE=UN
option and no RANDOM statements. For balanced data, this model is equivalent to the multivariate
model for repeated measures in PROC GLM.

The Hotelling-Lawley-McKeon statistic has a slightly better F approximation than the Hotelling-
Lawley-Pillai-Samson statistic (see the description of the HLPS option, which follows). Both of
the Hotelling-Lawley statistics can perform much better in small samples than the default F statistic
(Wright 1994).

Separate tables are produced for Type 1, 2, and 3 tests, according to the ones you select. The ODS
table names are HLM1, HLM2, and HLM3, respectively.

HLPS
produces a table of Hotelling-Lawley-Pillai-Samson statistics (Pillai and Samson 1959) for all fixed
effects whose levels change across data having the same level of the SUBJECT= effect (the within-
subject fixed effects). This option applies only when you specify a REPEATED statement with the
TYPE=UN option and no RANDOM statements. For balanced data, this model is equivalent to
the multivariate model for repeated measures in PROC GLM, and this statistic is the same as the
Hotelling-Lawley Trace statistic produced by PROC GLM.

Separate tables are produced for Type 1, 2, and 3 tests, according to the ones you select. The ODS
table names are HLPS1, HLPS2, and HLPS3, respectively.

LDATA=SAS-data-set
reads the coefficient matrices associated with the TYPE=LIN(number ) option. The data set must
contain the variables Parm, Row, Col1–Coln or Parm, Row, Col, Value. The Parm variable denotes
which of the number coefficient matrices is currently being constructed, and the Row, Col1–Coln, or
Row, Col, Value variables specify the matrix values, as they do with the RANDOM statement option
GDATA=. Unspecified values of these matrices are set equal to 0.
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LOCAL

LOCAL=EXP(< effects >)

LOCAL=POM(POM-data-set)
requests that a diagonal matrix be added to R. With just the LOCAL option, this diagonal matrix
equals �2I, and �2 becomes an additional variance parameter that PROC MIXED profiles out of the
likelihood provided that you do not specify the NOPROFILE option in the PROC MIXED statement.
The LOCAL option is useful if you want to add an observational error to a time series structure (Jones
and Boadi-Boateng 1991) or a nugget effect to a spatial structure Cressie (1993).

The LOCAL=EXP(<effects>) option produces exponential local effects, also known as dispersion
effects, in a log-linear variance model. These local effects have the form

�2diagŒexp.Uı/�

where U is the full-rank design matrix corresponding to the effects that you specify and ı are the
parameters that PROC MIXED estimates. An intercept is not included in U because it is accounted for
by �2. PROC MIXED constructs the full-rank U in terms of 1s and –1s for classification effects. Be
sure to scale continuous effects in U sensibly.

The LOCAL=POM(POM-data-set) option specifies the power-of-the-mean structure. This structure
possesses a variance of the form �2jx0iˇ

�j� for the ith observation, where xi is the ith row of X (the
design matrix of the fixed effects) and ˇ� is an estimate of the fixed-effects parameters that you specify
in POM-data-set .

The SAS data set specified by POM-data-set contains the numeric variable Estimate (in previous
releases, the variable name was required to be EST), and it has at least as many observations as
there are fixed-effects parameters. The first p observations of the Estimate variable in POM-data-set
are taken to be the elements of ˇ�, where p is the number of columns of X. You must order these
observations according to the non-full-rank parameterization of the MIXED procedure. One easy way
to set up POM-data-set for a ˇ� corresponding to ordinary least squares is illustrated by the following
statements:

ods output SolutionF=sf;
proc mixed;

class a;
model y = a x / s;

run;

proc mixed;
class a;
model y = a x;
repeated / local=pom(sf);

run;

Note that the generalized least squares estimate of the fixed-effects parameters from the second PROC
MIXED step usually is not the same as your specified ˇ�. However, you can iterate the POM fitting
until the two estimates agree. Continuing from the previous example, the statements for performing
one step of this iteration are as follows:
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ods output SolutionF=sf1;
proc mixed;

class a;
model y = a x / s;
repeated / local=pom(sf);

run;

proc compare brief data=sf compare=sf1;
var estimate;

run;

data sf;
set sf1;

run;

Unfortunately, this iterative process does not always converge. For further details, see the description
of pseudo-likelihood in Chapter 3 of Carroll and Ruppert (1988).

LOCALW
specifies that only the local effects and no others be weighted. By default, all effects are weighted. The
LOCALW option is used in connection with the WEIGHT statement and the LOCAL option in the
REPEATED statement.

NONLOCALW
specifies that only the nonlocal effects and no others be weighted. By default, all effects are weighted.
The NONLOCALW option is used in connection with the WEIGHT statement and the LOCAL option
in the REPEATED statement.

R< =value-list >
requests that blocks of the estimated R matrix be displayed. The first block determined by the
SUBJECT= effect is the default displayed block. PROC MIXED displays blanks for value-lists that
are 0.

The value-list indicates the subjects for which blocks of R are to be displayed. For example, the
following statement displays block matrices for the first, third, and fifth persons:

repeated / type=cs subject=person r=1,3,5;

See the PARMS statement for the possible forms of value-list . The ODS table name is R.

RC< =value-list >
produces the Cholesky root of blocks of the estimated R matrix. The value-list specification is the
same as with the R option. The ODS table name is CholR.

RCI< =value-list >
produces the inverse Cholesky root of blocks of the estimated R matrix. The value-list specification is
the same as with the R option. The ODS table name is InvCholR.
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RCORR< =value-list >
produces the correlation matrix corresponding to blocks of the estimated R matrix. The value-list
specification is the same as with the R option. The ODS table name is RCorr.

RI< =value-list >
produces the inverse of blocks of the estimated R matrix. The value-list specification is the same as
with the R option. The ODS table name is InvR.

SSCP
requests that an unstructured R matrix be estimated from the sum-of-squares-and-crossproducts matrix
of the residuals. It applies only when you specify TYPE=UN and have no RANDOM statements. Also,
you must have a sufficient number of subjects for the estimate to be positive definite.

This option is useful when the size of the blocks of R is large (for example, greater than 10) and you
want to use or inspect an unstructured estimate that is much quicker to compute than the default REML
estimate. The two estimates will agree for certain balanced data sets when you have a classification
fixed effect defined across all time points within a subject.

SUBJECT=effect

SUB=effect
identifies the subjects in your mixed model. Complete independence is assumed across subjects;
therefore, the SUBJECT= option produces a block-diagonal structure in R with identical blocks.
When the SUBJECT= effect consists entirely of classification variables, the blocks of R correspond to
observations sharing the same level of that effect. These blocks are sorted according to this effect as
well.

Continuous variables are permitted as arguments to the SUBJECT= option. PROC MIXED does not
sort by the values of the continuous variable; rather, it considers the data to be from a new subject or
group whenever the value of the continuous variable changes from the previous observation. Using a
continuous variable decreases execution time for models with a large number of subjects or groups and
also prevents the production of a large “Class Level Information” table.

If you want to model nonzero covariance among all of the observations in your SAS data set, specify
SUBJECT=INTERCEPT to treat the data as if they are all from one subject. However, be aware that in
this case PROC MIXED manipulates an R matrix with dimensions equal to the number of observations.
If no SUBJECT= effect is specified, then every observation is assumed to be from a different subject
and R is assumed to be diagonal. For this reason, you usually want to use the SUBJECT= option in the
REPEATED statement.

TYPE=covariance-structure
specifies the covariance structure of the R matrix. The SUBJECT= option defines the blocks of R, and
the TYPE= option specifies the structure of these blocks. Valid values for covariance-structure and
their descriptions are provided in Table 65.17 and Table 65.18. The default structure is VC.

Table 65.17 Covariance Structures

Structure Description Parms .i; j / element

ANTE(1) Antedependence 2t � 1 �i�j
Qj�1

kDi
�k

AR(1) Autoregressive(1) 2 �2�ji�j j

ARH(1) Heterogeneous AR(1) t C 1 �i�j�
ji�j j
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Table 65.17 continued

Structure Description Parms .i; j / element

ARMA(1,1) ARMA(1,1) 3 �2Œ�ji�j j�11.i ¤ j /C 1.i D j /�

CS Compound symmetry 2 �1 C �
21.i D j /

CSH Heterogeneous CS t C 1 �i�j Œ�1.i ¤ j /C 1.i D j /�

FA(q) Factor analytic q
2
.2t � q C 1/C t †

min.i;j;q/
kD1

�ik�jk C �
2
i 1.i D j /

FA0(q) No diagonal FA q
2
.2t � q C 1/ †

min.i;j;q/
kD1

�ik�jk

FA1(q) Equal diagonal FA q
2
.2t � q C 1/C 1 †

min.i;j;q/
kD1

�ik�jk C �
21.i D j /

HF Huynh-Feldt t C 1 .�2i C �
2
j /=2C �1.i ¤ j /

LIN(q) General linear q †
q

kD1
�kAij

TOEP Toeplitz t �ji�j jC1

TOEP(q) Banded Toeplitz q �ji�j jC11.ji � j j < q/

TOEPH Heterogeneous TOEP 2t � 1 �i�j�ji�j j

TOEPH(q) Banded hetero TOEP t C q � 1 �i�j�ji�j j1.ji � j j < q/

UN Unstructured t .t C 1/=2 �ij

UN(q) Banded q
2
.2t � q C 1/ �ij 1.ji � j j < q/

UNR Unstructured corrs t .t C 1/=2 �i�j�max.i;j /min.i;j /

UNR(q) Banded correlations q
2
.2t � q C 1/ �i�j�max.i;j /min.i;j /

UN@AR(1) Direct product AR(1) t1.t1 C 1/=2C 1 �i1j1�
ji2�j2j

UN@CS Direct product CS t1.t1 C 1/=2C 1

8<:
�i1j1 i2 D j2
�2�i1j1 i2 6D j2
0 � �2 � 1

UN@UN Direct product UN t1.t1 C 1/=2C �1;i1j1�2;i2j2
t2.t2 C 1/=2 � 1

VC Variance components q �2
k
1.i D j /

and i corresponds to kth effect

In Table 65.17, “Parms” is the number of covariance parameters in the structure, t is the overall
dimension of the covariance matrix, and 1.A/ equals 1 when A is true and 0 otherwise. For example,
1.i D j / equals 1 when i D j and 0 otherwise, and 1.ji � j j < q/ equals 1 when ji � j j < q

and 0 otherwise. For the TYPE=TOEPH structures, �0 D 1, and for the TYPE=UNR structures,
�i i D 1 for all i. For the direct product structures, the subscripts “1” and “2” see the first and second
structure in the direct product, respectively, and i1 D int..i C t2 � 1/=t2/, j1 D int..j C t2 � 1/=t2/,
i2 D mod.i � 1; t2/C 1, and j2 D mod.j � 1; t2/C 1.

Table 65.18 Spatial Covariance Structures

Structure Description Parms .i; j / element

SP(EXP)(c-list ) Exponential 2 �2 expf�dij =�g
SP(EXPA)(c-list ) Anisotropic exponential 2c C 1 �2

Qc
kD1 expf��kd.i; j; k/

pkg
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Table 65.18 continued

Structure Description Parms .i; j / element

SP(EXPGA)(c1 c2) 2D exponential, 4 �2 expf�dij .�; �/=�g
geometrically anisotropic

SP(GAU)(c-list ) Gaussian 2 �2 expf�d2ij =�
2g

SP(GAUGA)(c1 c2) 2D Gaussian, 4 �2 expf�dij .�; �/2=�2g
geometrically anisotropic

SP(LIN)(c-list ) Linear 2 �2.1 � �dij / 1.�dij � 1/

SP(LINL)(c-list ) Linear log 2 �2.1 � � log.dij //
�1.� log.dij / � 1; dij > 0/

SP(MATERN)(c-list) Matérn 3 �2 1
�.�/

�
dij
2�

��
2K�.dij =�/

SP(MATHSW)(c-list) Matérn 3 �2 1
�.�/

�
dij
p
�

�

��
2K�

�
2dij
p
�

�

�
(Handcock-Stein-Wallis)

SP(POW)(c-list) Power 2 �2�dij

SP(POWA)(c-list) Anisotropic power c C 1 �2�
d.i;j;1/
1 �

d.i;j;2/
2 : : : �

d.i;j;c/
c

SP(SPH)(c-list ) Spherical 2 �2Œ1 � .
3dij
2�
/C .

d3
ij

2�3
/� 1.dij � �/

SP(SPHGA)(c1 c2) 2D Spherical, 4 �2Œ1 � .
3dij .�;�/

2�
/C .

dij .�;�/
3

2�3
/�

geometrically anisotropic �1.dij .�; �/ � �/

In Table 65.18, c-list contains the names of the numeric variables used as coordinates of the location
of the observation in space, and dij is the Euclidean distance between the ith and jth vectors of these
coordinates, which correspond to the ith and jth observations in the input data set. For SP(POWA)
and SP(EXPA), c is the number of coordinates, and d.i; j; k/ is the absolute distance between the kth
coordinate, k D 1; : : : ; c, of the ith and jth observations in the input data set. For the geometrically
anisotropic structures SP(EXPGA), SP(GAUGA), and SP(SPHGA), exactly two spatial coordinate
variables must be specified as c1 and c2. Geometric anisotropy is corrected by applying a rotation �
and scaling � to the coordinate system, and dij .�; �/ represents the Euclidean distance between two
points in the transformed space. SP(MATERN) and SP(MATHSW) represent covariance structures in
a class defined by Matérn (see Matérn 1986; Handcock and Stein 1993; Handcock and Wallis 1994).
The functionK� is the modified Bessel function of the second kind of (real) order � > 0; the parameter
� governs the smoothness of the process (see below for more details).

Table 65.19 lists some examples of the structures in Table 65.17 and Table 65.18.

Table 65.19 Covariance Structure Examples

Description Structure Example

Variance
components

VC (default)

2664
�2B 0 0 0

0 �2B 0 0

0 0 �2AB 0

0 0 0 �2AB

3775
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Table 65.19 continued

Description Structure Example

Compound
symmetry

CS

2664
�2 C �1 �1 �1 �1
�1 �2 C �1 �1 �1
�1 �1 �2 C �1 �1
�1 �1 �1 �2 C �1

3775

Unstructured UN

2664
�21 �21 �31 �41
�21 �22 �32 �42
�31 �32 �23 �43
�41 �42 �43 �24

3775

Banded main
diagonal

UN(1)

2664
�21 0 0 0

0 �22 0 0

0 0 �23 0

0 0 0 �24

3775

First-order
autoregressive

AR(1) �2

2664
1 � �2 �3

� 1 � �2

�2 � 1 �

�3 �2 � 1

3775

Toeplitz TOEP

2664
�2 �1 �2 �3
�1 �2 �1 �2
�2 �1 �2 �1
�3 �2 �1 �2

3775

Toeplitz with
two bands

TOEP(2)

2664
�2 �1 0 0

�1 �2 �1 0

0 �1 �2 �1
0 0 �1 �2

3775

Spatial
power

SP(POW)(c) �2

2664
1 �d12 �d13 �d14

�d21 1 �d23 �d24

�d31 �d32 1 �d34

�d41 �d42 �d43 1

3775

Heterogeneous
AR(1)

ARH(1)

2664
�21 �1�2� �1�3�

2 �1�4�
3

�2�1� �22 �2�3� �2�4�
2

�3�1�
2 �3�2� �23 �3�4�

�4�1�
3 �4�2� �4�3� �24

3775

First-order
autoregressive
moving average

ARMA(1,1) �2

2664
1  � �2

 1  �

�  1 

�2 �  1

3775

Heterogeneous
CS

CSH

2664
�21 �1�2� �1�3� �1�4�

�2�1� �22 �2�3� �2�4�

�3�1� �3�2� �23 �3�4�

�4�1� �4�2� �4�3� �24

3775
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Table 65.19 continued

Description Structure Example

First-order
factor
analytic

FA(1)

2664
�21 C d1 �1�2 �1�3 �1�4
�2�1 �22 C d2 �2�3 �2�4
�3�1 �3�2 �23 C d3 �3�4
�4�1 �4�2 �4�3 �24 C d4

3775

Huynh-Feldt HF

2664 �21
�21C�

2
2

2
� �

�21C�
2
3

2
� �

�22C�
2
1

2
� � �22

�22C�
2
3

2
� �

�23C�
2
1

2
� �

�23C�
2
2

2
� � �23

3775
First-order
antedependence

ANTE(1)

24 �21 �1�2�1 �1�3�1�2
�2�1�1 �22 �2�3�2
�3�1�2�1 �3�2�2 �23

35

Heterogeneous
Toeplitz

TOEPH

2664
�21 �1�2�1 �1�3�2 �1�4�3

�2�1�1 �22 �2�3�1 �2�4�2
�3�1�2 �3�2�1 �23 �3�4�1
�4�1�3 �4�2�2 �4�3�1 �24

3775

Unstructured
correlations

UNR

2664
�21 �1�2�21 �1�3�31 �1�4�41

�2�1�21 �22 �2�3�32 �2�4�42
�3�1�31 �3�2�32 �23 �3�4�43
�4�1�41 �4�2�42 �4�3�43 �24

3775
Direct product
AR(1)

UN@AR(1)
�
�21 �21
�21 �22

�
˝

24 1 � �2

� 1 �

�2 � 1

35 D
26666664

�21 �21� �21�
2 �21 �21� �21�

2

�21� �21 �21� �21� �21 �21�

�21�
2 �21� �21 �21�

2 �21� �21
�21 �21� �21�

2 �22 �22� �22�
2

�21� �21 �21� �22� �22 �22�

�21�
2 �21� �21 �22�

2 �22� �22

37777775

The following provides some further information about these covariance structures:

ANTE(1) specifies the first-order antedependence structure (see Kenward 1987; Patel 1991;
Macchiavelli and Arnold 1994). In Table 65.17, �2i is the ith variance parameter,
and �k is the kth autocorrelation parameter satisfying j�kj < 1.

AR(1) specifies a first-order autoregressive structure. PROC MIXED imposes the con-
straint j�j < 1 for stationarity.

ARH(1) specifies a heterogeneous first-order autoregressive structure. As with
TYPE=AR(1), PROC MIXED imposes the constraint j�j < 1 for stationar-
ity.



5286 F Chapter 65: The MIXED Procedure

ARMA(1,1) specifies the first-order autoregressive moving-average structure. In Table 65.17, �
is the autoregressive parameter,  models a moving-average component, and �2 is
the residual variance. In the notation of Fuller (1976, p. 68), � D �1 and

 D
.1C b1�1/.�1 C b1/

1C b21 C 2b1�1

The example in Table 65.19 and jb1j < 1 imply that

b1 D
ˇ �

p
ˇ2 � 4˛2

2˛

where ˛ D  � � and ˇ D 1C �2 � 2�. PROC MIXED imposes the constraints
j�j < 1 and j j < 1 for stationarity, although for some values of � and  in this
region the resulting covariance matrix is not positive definite. When the estimated
value of � becomes negative, the computed covariance is multiplied by cos.�dij /
to account for the negativity.

CS specifies the compound-symmetry structure, which has constant variance and con-
stant covariance.

CSH specifies the heterogeneous compound-symmetry structure. This structure has a
different variance parameter for each diagonal element, and it uses the square roots
of these parameters in the off-diagonal entries. In Table 65.17, �2i is the ith variance
parameter, and � is the correlation parameter satisfying j�j < 1.

FA(q) specifies the factor-analytic structure with q factors (Jennrich and Schluchter 1986).
This structure is of the form ƒƒ0 C D, where ƒ is a t � q rectangular matrix and
D is a t � t diagonal matrix with t different parameters. When q > 1, the elements
ofƒ in its upper-right corner (that is, the elements in the ith row and jth column for
j > i) are set to zero to fix the rotation of the structure.

FA0(q) is similar to the FA(q) structure except that no diagonal matrix D is included. When
q < t—that is, when the number of factors is less than the dimension of the matrix—
this structure is nonnegative definite but not of full rank. In this situation, you can
use it for approximating an unstructured G matrix in the RANDOM statement or for
combining with the LOCAL option in the REPEATED statement. When q = t, you
can use this structure to constrain G to be nonnegative definite in the RANDOM
statement.

FA1(q) is similar to the TYPE=FA(q) structure except that all of the elements in D are
constrained to be equal. This offers a useful and more parsimonious alternative to
the full factor-analytic structure.

HF specifies the Huynh-Feldt covariance structure (Huynh and Feldt 1970). This
structure is similar to the TYPE=CSH structure in that it has the same number of
parameters and heterogeneity along the main diagonal. However, it constructs the
off-diagonal elements by taking arithmetic rather than geometric means.

You can perform a likelihood ratio test of the Huynh-Feldt conditions by running
PROC MIXED twice, once with TYPE=HF and once with TYPE=UN, and then
subtracting their respective values of –2 times the maximized likelihood.

If PROC MIXED does not converge under your Huynh-Feldt model, you can specify
your own starting values with the PARMS statement. The default MIVQUE(0)
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starting values can sometimes be poor for this structure. A good choice for starting
values is often the parameter estimates corresponding to an initial fit that uses
TYPE=CS.

LIN(q) specifies the general linear covariance structure with q parameters. This structure
consists of a linear combination of known matrices that are input with the LDATA=
option. This structure is very general, and you need to make sure that the variance
matrix is positive definite. By default, PROC MIXED sets the initial values of the
parameters to 1. You can use the PARMS statement to specify other initial values.

LINEAR(q) is an alias for TYPE=LIN(q).

SIMPLE is an alias for TYPE=VC.

SP(EXPA)(c-list) specifies the spatial anisotropic exponential structure, where c-list is a list of
variables indicating the coordinates. This structure has .i; j / element equal to

�2
cY
kD1

expf��kd.i; j; k/pkg

where c is the number of coordinates and d.i; j; k/ is the absolute distance between
the kth coordinate (k D 1; : : : ; c) of the ith and jth observations in the input data
set. There are 2c + 1 parameters to be estimated: �k , pk (k D 1; : : : ; c), and �2.

You might want to constrain some of the EXPA parameters to known values. For
example, suppose you have three coordinate variables C1, C2, and C3 and you want
to constrain the powers pk to equal 2, as in Sacks et al. (1989). Suppose further
that you want to model covariance across the entire input data set and you suspect
the �k and �2 estimates are close to 3, 4, 5, and 1, respectively. Then specify the
following statements:

repeated / type=sp(expa)(c1 c2 c3)
subject=intercept;

parms (3) (4) (5) (2) (2) (2) (1) /
hold=4,5,6;

SP(EXPGA)(c1 c2) specify modification of the isotropic SP(EXP) covariance structure.

SP(GAUGA)(c1 c2) specify modification of the isotropic SP(GAU) covariance structure.

SP(SPHGA)(c1 c2) specify modification of the isotropic SP(SPH) covariance structure.

These are structures that allow for geometric anisotropy in two dimensions. The
coordinates are specified by the variables c1 and c2.

If the spatial process is geometrically anisotropic in c D Œci1; ci2�, then it is isotropic
in the coordinate system

Ac D
�
1 0

0 �

� �
cos � � sin �
sin � cos �

�
c D c�

for a properly chosen angle � and scaling factor �. Elliptical isocorrelation con-
tours are thereby transformed to spherical contours, adding two parameters to the
respective isotropic covariance structures. Euclidean distances (see Table 65.18)
are expressed in terms of c�.
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The angle � of the clockwise rotation is reported in radians, 0 � � � 2� . The
scaling parameter � represents the ratio of the range parameters in the direction of
the major and minor axis of the correlation contours. In other words, following a
rotation of the coordinate system by angle � , isotropy is achieved by compressing
or magnifying distances in one coordinate by the factor �.

Fixing � D 1:0 reduces the models to isotropic ones for any angle of rotation. If the
scaling parameter is held constant at 1.0, you should also hold constant the angle of
rotation, as in the following statements:

repeated / type=sp(expga)(gxc gyc)
subject=intercept;

parms (6) (1.0) (0.0) (1) / hold=2,3;

If � is fixed at any other value than 1.0, the angle of rotation can be estimated.
Specifying a starting grid of angles and scaling factors can considerably improve
the convergence properties of the optimization algorithm for these models. Only a
single random effect with geometrically anisotropic structure is permitted.

SP(MATERN)(c-list ) | SP(MATHSW)(c-list ) specifies covariance structures in the Matérn class of
covariance functions (Matérn 1986). Two observations for the same subject (block
of R) that are Euclidean distance dij apart have covariance

�2
1

�.�/

�
dij

2�

��
2K�.dij =�/ � > 0; � > 0

where K� is the modified Bessel function of the second kind of (real) order � > 0.
The smoothness (continuity) of a stochastic process with covariance function in
this class increases with �. The Matérn class thus enables data-driven estimation of
the smoothness properties. The covariance is identical to the exponential model for
� D 0:5 (TYPE=SP(EXP)(c-list)), while for � D 1 the model advocated by Whittle
(1954) results. As � !1 the model approaches the gaussian covariance structure
(TYPE=SP(GAU)(c-list)).

The MATHSW structure represents the Matérn class in the parameterization of
Handcock and Stein (1993) and Handcock and Wallis (1994),

�2
1

�.�/

�
dij
p
�

�

��
2K�

�
2dij
p
�

�

�
Since computation of the function K� and its derivatives is numerically very inten-
sive, fitting models with Matérn covariance structures can be more time-consuming
than with other spatial covariance structures. Good starting values are essential.

SP(POW)(c-list) | SP(POWA)(c-list) specifies the spatial power structures. When the estimated
value of � becomes negative, the computed covariance is multiplied by cos.�dij /
to account for the negativity.

TOEP< (q) > specifies a banded Toeplitz structure. This can be viewed as a moving-average
structure with order equal to q � 1. The TYPE=TOEP option is a full Toeplitz
matrix, which can be viewed as an autoregressive structure with order equal to the
dimension of the matrix. The specification TYPE=TOEP(1) is the same as �2I ,
where I is an identity matrix, and it can be useful for specifying the same variance
component for several effects.
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TOEPH< (q) > specifies a heterogeneous banded Toeplitz structure. In
Table 65.17, �2i is the ith variance parameter and �j is the jth correlation
parameter satisfying j�j j < 1. If you specify the order parameter q, then PROC
MIXED estimates only the first q bands of the matrix, setting all higher bands
equal to 0. The option TOEPH(1) is equivalent to both the TYPE=UN(1) and
TYPE=UNR(1) options.

UN< (q) > specifies a completely general (unstructured) covariance matrix parameterized
directly in terms of variances and covariances. The variances are constrained to be
nonnegative, and the covariances are unconstrained. This structure is not constrained
to be nonnegative definite in order to avoid nonlinear constraints; however, you
can use the TYPE=FA0 structure if you want this constraint to be imposed by a
Cholesky factorization. If you specify the order parameter q, then PROC MIXED
estimates only the first q bands of the matrix, setting all higher bands equal to 0.

UNR< (q) > specifies a completely general (unstructured) covariance matrix parameterized
in terms of variances and correlations. This structure fits the same model as
the TYPE=UN(q) option but with a different parameterization. The ith variance
parameter is �2i . The parameter �jk is the correlation between the jth and kth
measurements; it satisfies j�jkj < 1. If you specify the order parameter r, then
PROC MIXED estimates only the first q bands of the matrix, setting all higher
bands equal to zero.

UN@AR(1) | UN@CS | UN@UN specify direct (Kronecker) product structures designed for
multivariate repeated measures (see Galecki 1994). These structures are constructed
by taking the Kronecker product of an unstructured matrix (modeling covariance
across the multivariate observations) with an additional covariance matrix (model-
ing covariance across time or another factor). The upper-left value in the second
matrix is constrained to equal 1 to identify the model. See the SAS/IML User’s
Guide for more details about direct products.

To use these structures in the REPEATED statement, you must specify two distinct
REPEATED effects, both of which must be included in the CLASS statement. The
first effect indicates the multivariate observations, and the second identifies the
levels of time or some additional factor. Note that the input data set must still be
constructed in “univariate” format; that is, all dependent observations are still listed
observation-wise in one single variable. Although this construction provides for
general modeling possibilities, it forces you to construct variables indicating both
dimensions of the Kronecker product.

For example, suppose your observed data consist of heights and weights of several
children measured over several successive years. Your input data set should then
contain variables similar to the following:

• Y, all of the heights and weights, with a separate observation for each
• Var, indicating whether the measurement is a height or a weight
• Year, indicating the year of measurement
• Child, indicating the child on which the measurement was taken

Your PROC MIXED statements for a Kronecker AR(1) structure across years would
then be as follows:
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proc mixed;
class Var Year Child;
model Y = Var Year Var*Year;
repeated Var Year / type=un@ar(1)

subject=Child;
run;

You should nearly always want to model different means for the multivariate
observations; hence the inclusion of Var in the MODEL statement. The preceding
mean model consists of cell means for all combinations of VAR and YEAR.

VC specifies standard variance components and is the default structure for both the
RANDOM and REPEATED statements. In the RANDOM statement, a distinct
variance component is assigned to each effect. In the REPEATED statement, this
structure is usually used only with the GROUP= option to specify a heterogeneous
variance model.

Jennrich and Schluchter (1986) provide general information about the use of covariance structures,
and Wolfinger (1996) presents details about many of the heterogeneous structures. Modeling with
spatial covariance structures is discussed in many sources (Marx and Thompson 1987; Zimmerman
and Harville 1991; Cressie 1993; Brownie, Bowman, and Burton 1993; Stroup, Baenziger, and Mulitze
1994; Brownie and Gumpertz 1997; Gotway and Stroup 1997; Chilès and Delfiner 1999; Schabenberger
and Gotway 2005; Littell et al. 2006).

SLICE Statement
SLICE model-effect < / options > ;

The SLICE statement provides a general mechanism for performing a partitioned analysis of the LS-means
for an interaction. This analysis is also known as an analysis of simple effects.

The SLICE statement uses the same options as the LSMEANS statement, which are summarized in Ta-
ble 19.21. For details about the syntax of the SLICE statement, see the section “SLICE Statement” on
page 505 in Chapter 19, “Shared Concepts and Topics.”

NOTE: Use the section “LSMEANS Statement” on page 460 in Chapter 19, “Shared Concepts and Topics.”
only for definitions of the options that you can use with the SLICE statement. PROC MIXED uses a slightly
different syntax for the LSMEANS, which is described in the section “LSMEANS Statement” on page 5244.

STORE Statement
STORE < OUT= >item-store-name < / LABEL='label ' > ;

The STORE statement requests that the procedure save the context and results of the statistical analysis. The
resulting item store has a binary file format that cannot be modified. The contents of the item store can be
processed with the PLM procedure.

For details about the syntax of the STORE statement, see the section “STORE Statement” on page 508 in
Chapter 19, “Shared Concepts and Topics.”
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WEIGHT Statement
WEIGHT variable ;

If you do not specify a REPEATED statement, the WEIGHT statement operates exactly like the one in PROC
GLM. In this case PROC MIXED replaces X0X and Z0Z with X0WX and Z0WZ, where W is the diagonal
weight matrix. If you specify a REPEATED statement, then the WEIGHT statement replaces R with LRL,
where L is a diagonal matrix with elements W�1=2. Observations with nonpositive or missing weights are
not included in the PROC MIXED analysis.

If a computation in PROC MIXED involves R, then the WEIGHT statement replaces R with W�1=2RW�1=2.
For example, the covariance matrix V for the observations usually have the form V D ZGZ0 C R, which
with the WEIGHT statement becomes V D ZGZ0 CW�1=2RW�1=2:

Details: MIXED Procedure

Mixed Models Theory
This section provides an overview of a likelihood-based approach to general linear mixed models. This
approach simplifies and unifies many common statistical analyses, including those involving repeated
measures, random effects, and random coefficients. The basic assumption is that the data are linearly related
to unobserved multivariate normal random variables. For extensions to nonlinear and nonnormal situations
see the documentation of the GLIMMIX and NLMIXED procedures. Additional theory and examples are
provided in Littell et al. (2006); Verbeke and Molenberghs (1997, 2000); Brown and Prescott (1999).

Matrix Notation

Suppose that you observe n data points y1; : : : ; yn and that you want to explain them by using n values for
each of p explanatory variables x11; : : : ; x1p, x21; : : : ; x2p, : : : ; xn1; : : : ; xnp. The xij values can be either
regression-type continuous variables or dummy variables indicating class membership. The standard linear
model for this setup is

yi D

pX
jD1

xijˇj C �i i D 1; : : : ; n

where ˇ1; : : : ; ˇp are unknown fixed-effects parameters to be estimated and �1; : : : ; �n are unknown inde-
pendent and identically distributed normal (Gaussian) random variables with mean 0 and variance �2.

The preceding equations can be written simultaneously by using vectors and a matrix, as follows:26664
y1
y2
:::

yn

37775 D
26664
x11 x12 : : : x1p
x21 x22 : : : x2p
:::

:::
:::

xn1 xn2 : : : xnp

37775
26664
ˇ1
ˇ2
:::

ˇp

37775C
26664
�1
�2
:::

�n

37775
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For convenience, simplicity, and extendability, this entire system is written as

y D Xˇ C �

where y denotes the vector of observed yi ’s, X is the known matrix of xij ’s, ˇ is the unknown fixed-effects
parameter vector, and � is the unobserved vector of independent and identically distributed Gaussian random
errors.

In addition to denoting data, random variables, and explanatory variables in the preceding fashion, the
subsequent development makes use of basic matrix operators such as transpose (0), inverse (�1), generalized
inverse (�), determinant (j � j), and matrix multiplication. See Searle (1982) for details about these and other
matrix techniques.

Formulation of the Mixed Model

The previous general linear model is certainly a useful one (Searle 1971), and it is the one fitted by the GLM
procedure. However, many times the distributional assumption about � is too restrictive. The mixed model
extends the general linear model by allowing a more flexible specification of the covariance matrix of �. In
other words, it allows for both correlation and heterogeneous variances, although you still assume normality.

The mixed model is written as

y D Xˇ C Z C �

where everything is the same as in the general linear model except for the addition of the known design matrix,
Z, and the vector of unknown random-effects parameters,  . The matrix Z can contain either continuous
or dummy variables, just like X. The name mixed model comes from the fact that the model contains both
fixed-effects parameters, ˇ, and random-effects parameters,  . See Henderson (1990) and Searle, Casella,
and McCulloch (1992) for historical developments of the mixed model.

A key assumption in the foregoing analysis is that  and � are normally distributed with

E
�


�

�
D

�
0
0

�
Var

�


�

�
D

�
G 0
0 R

�
The variance of y is, therefore, V D ZGZ0 CR. You can model V by setting up the random-effects design
matrix Z and by specifying covariance structures for G and R.

Note that this is a general specification of the mixed model, in contrast to many texts and articles that discuss
only simple random effects. Simple random effects are a special case of the general specification with Z
containing dummy variables, G containing variance components in a diagonal structure, and R D �2In,
where In denotes the n� n identity matrix. The general linear model is a further special case with Z D 0 and
R D �2In.

The following two examples illustrate the most common formulations of the general linear mixed model.
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Example: Growth Curve with Compound Symmetry
Suppose that you have three growth curve measurements for s individuals and that you want to fit an overall
linear trend in time. Your X matrix is as follows:

X D

26666666664

1 1

1 2

1 3
:::

:::

1 1

1 2

1 3

37777777775
The first column (coded entirely with 1s) fits an intercept, and the second column (coded with times of 1; 2; 3)
fits a slope. Here, n D 3s and p D 2.

Suppose further that you want to introduce a common correlation among the observations from a single
individual, with correlation being the same for all individuals. One way of setting this up in the general mixed
model is to eliminate the Z and G matrices and let the R matrix be block diagonal with blocks corresponding
to the individuals and with each block having the compound-symmetry structure. This structure has two
unknown parameters, one modeling a common covariance and the other modeling a residual variance. The
form for R would then be as follows:

R D

26666666664

�21 C �
2 �21 �21

�21 �21 C �
2 �21

�21 �21 �21 C �
2

: : :

�21 C �
2 �21 �21

�21 �21 C �
2 �21

�21 �21 �21 C �
2

37777777775
where blanks denote zeros. There are 3s rows and columns altogether, and the common correlation is
�21=.�

2
1 C �

2/.

The PROC MIXED statements to fit this model are as follows:

proc mixed;
class indiv;
model y = time;
repeated / type=cs subject=indiv;

run;

Here, indiv is a classification variable indexing individuals. The MODEL statement fits a straight line for
time ; the intercept is fit by default just as in PROC GLM. The REPEATED statement models the R matrix:
TYPE=CS specifies the compound symmetry structure, and SUBJECT=INDIV specifies the blocks of R.
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An alternative way of specifying the common intra-individual correlation is to let

Z D

26666666666666664

1

1

1

1

1

1
: : :

1

1

1

37777777777777775

G D

26664
�21

�21
: : :

�21

37775
and R D �2In. The Z matrix has 3s rows and s columns, and G is s � s.

You can set up this model in PROC MIXED in two different but equivalent ways:

proc mixed;
class indiv;
model y = time;
random indiv;

run;

proc mixed;
class indiv;
model y = time;
random intercept / subject=indiv;

run;

Both of these specifications fit the same model as the previous one that used the REPEATED statement;
however, the RANDOM specifications constrain the correlation to be positive, whereas the REPEATED
specification leaves the correlation unconstrained.

Example: Split-Plot Design
The split-plot design involves two experimental treatment factors, A and B, and two different sizes of
experimental units to which they are applied (see Winer 1971; Snedecor and Cochran 1980; Milliken and
Johnson 1992; Steel, Torrie, and Dickey 1997). The levels of A are randomly assigned to the larger-sized
experimental unit, called whole plots, whereas the levels of B are assigned to the smaller-sized experimental
unit, the subplots. The subplots are assumed to be nested within the whole plots, so that a whole plot consists
of a cluster of subplots and a level of A is applied to the entire cluster.

Such an arrangement is often necessary by nature of the experiment, the classical example being the
application of fertilizer to large plots of land and different crop varieties planted in subdivisions of the large
plots. For this example, fertilizer is the whole-plot factor A and variety is the subplot factor B.

The first example is a split-plot design for which the whole plots are arranged in a randomized block design.
The appropriate PROC MIXED statements are as follows:
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proc mixed;
class a b block;
model y = a|b;
random block a*block;

run;

Here

R D �2I24

and X, Z, and G have the following form:

X D

26666666666666666666664

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1
:::

:::
:::

:::

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

37777777777777777777775

Z D

266666666666666666666666666666666666666666664

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

377777777777777777777777777777777777777777775
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G D

2666666666664

�2B
�2B

�2B
�2B

�2AB
�2AB

: : :

�2AB

3777777777775
where �2B is the variance component for Block and �2AB is the variance component for A*Block. Changing
the RANDOM statement as follows fits the same model, but with Z and G sorted differently:

random int a / subject=block;

Z D

266666666666666666666666666666666666666666664

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

377777777777777777777777777777777777777777775

G D

266666666666664

�2B
�2AB

�2AB
�2AB

: : :

�2B
�2AB

�2AB
�2AB

377777777777775
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Estimating Covariance Parameters in the Mixed Model

Estimation is more difficult in the mixed model than in the general linear model. Not only do you have ˇ as
in the general linear model, but you have unknown parameters in  , G, and R as well. Least squares is no
longer the best method. Generalized least squares (GLS) is more appropriate, minimizing

.y �Xˇ/0V�1.y �Xˇ/

However, it requires knowledge of V and, therefore, knowledge of G and R. Lacking such information, one
approach is to use estimated GLS, in which you insert some reasonable estimate for V into the minimization
problem. The goal thus becomes finding a reasonable estimate of G and R.

In many situations, the best approach is to use likelihood-based methods, exploiting the assumption that 
and � are normally distributed (Hartley and Rao 1967; Patterson and Thompson 1971; Harville 1977; Laird
and Ware 1982; Jennrich and Schluchter 1986). PROC MIXED implements two likelihood-based methods:
maximum likelihood (ML) and restricted/residual maximum likelihood (REML). A favorable theoretical
property of ML and REML is that they accommodate data that are missing at random (Rubin 1976; Little
1995).

PROC MIXED constructs an objective function associated with ML or REML and maximizes it over all
unknown parameters. Using calculus, it is possible to reduce this maximization problem to one over only the
parameters in G and R. The corresponding log-likelihood functions are as follows:

ML W l.G;R/ D �
1

2
log jVj �

1

2
r0V�1r �

n

2
log.2�/

REML W lR.G;R/ D �
1

2
log jVj �

1

2
log jX0V�1Xj �

1

2
r0V�1r �

n � p

2
log.2�/g

where r D y � X.X0V�1X/�X0V�1y and p is the rank of X. PROC MIXED actually minimizes –2
times these functions by using a ridge-stabilized Newton-Raphson algorithm. Lindstrom and Bates (1988)
provide reasons for preferring Newton-Raphson to the Expectation-Maximum (EM) algorithm (Dempster,
Laird, and Rubin 1977; Laird, Lange, and Stram 1987), as well as analytical details for implementing a
QR-decomposition approach to the problem. Wolfinger, Tobias, and Sall (1994) present the sweep-based
algorithms that are implemented in PROC MIXED.

One advantage of using the Newton-Raphson algorithm is that the second derivative matrix of the objective
function evaluated at the optima is available upon completion. Denoting this matrix H, the asymptotic theory
of maximum likelihood (see Serfling 1980) shows that 2H�1 is an asymptotic variance-covariance matrix of
the estimated parameters of G and R. Thus, tests and confidence intervals based on asymptotic normality can
be obtained. However, these can be unreliable in small samples, especially for parameters such as variance
components that have sampling distributions that tend to be skewed to the right.

If a residual variance �2 is a part of your mixed model, it can usually be profiled out of the likelihood.
This means solving analytically for the optimal �2 and plugging this expression back into the likelihood
formula (see Wolfinger, Tobias, and Sall 1994). This reduces the number of optimization parameters by
one and can improve convergence properties. PROC MIXED profiles the residual variance out of the log
likelihood whenever it appears reasonable to do so. This includes the case when R equals �2I and when it
has blocks with a compound symmetry, time series, or spatial structure. PROC MIXED does not profile the
log likelihood when R has unstructured blocks, when you use the HOLD= or NOITER option in the PARMS
statement, or when you use the NOPROFILE option in the PROC MIXED statement.

Instead of ML or REML, you can use the noniterative MIVQUE0 method to estimate G and R (Rao 1972;
LaMotte 1973; Wolfinger, Tobias, and Sall 1994). In fact, by default PROC MIXED uses MIVQUE0
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estimates as starting values for the ML and REML procedures. For variance component models, another
estimation method involves equating Type 1, 2, or 3 expected mean squares to their observed values and
solving the resulting system. However, Swallow and Monahan (1984) present simulation evidence favoring
REML and ML over MIVQUE0 and other method-of-moment estimators.

Estimating Fixed and Random Effects in the Mixed Model

ML, REML, MIVQUE0, or Type1–Type3 provide estimates of G and R, which are denoted bG and bR,
respectively. To obtain estimates of ˇ and  , the standard method is to solve the mixed model equations
(Henderson 1984):

"
X0bR�1X X0bR�1Z
Z0bR�1X Z0bR�1ZC bG�1

#� b̌b
�
D

"
X0bR�1y
Z0bR�1y

#

The solutions can also be written as

b̌D .X0bV�1X/�X0bV�1yb D bGZ0bV�1.y � Xb̌/
and have connections with empirical Bayes estimators (Laird and Ware 1982; Carlin and Louis 1996).

Note that the mixed model equations are extended normal equations and that the preceding expression
assumes that bG is nonsingular. For the extreme case where the eigenvalues of bG are very large, bG�1
contributes very little to the equations andb is close to what it would be if  actually contained fixed-effects
parameters. On the other hand, when the eigenvalues of bG are very small, bG�1 dominates the equations
andb is close to 0. For intermediate cases, bG�1 can be viewed as shrinking the fixed-effects estimates of 
toward 0 (Robinson 1991).

If bG is singular, then the mixed model equations are modified (Henderson 1984) as follows:"
X0bR�1X X0bR�1ZbGbG0Z0bR�1X bG0Z0bR�1ZbGCG

#� b̌b�
�
D

"
X0bR�1ybG0Z0bR�1y

#

Denote the generalized inverses of the nonsingular bG and singular bG forms of the mixed model equations by
C and M, respectively. In the nonsingular case, the solutionb estimates the random effects directly, but in
the singular case the estimates of random effects are achieved through a back-transformationb D bGb� whereb� is the solution to the modified mixed model equations. Similarly, while in the nonsingular case C itself is
the estimated covariance matrix for .b̌;b/, in the singular case the covariance estimate for .b̌;bGb�/ is given
by PMP where

P D
�

I bG
�

An example of when the singular form of the equations is necessary is when a variance component estimate
falls on the boundary constraint of 0.
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Model Selection

The previous section on estimation assumes the specification of a mixed model in terms of X, Z, G, and R.
Even though X and Z have known elements, their specific form and construction are flexible, and several
possibilities can present themselves for a particular data set. Likewise, several different covariance structures
for G and R might be reasonable.

Space does not permit a thorough discussion of model selection, but a few brief comments and references are
in order. First, subject matter considerations and objectives are of great importance when selecting a model;
see Diggle (1988) and Lindsey (1993).

Second, when the data themselves are looked to for guidance, many of the graphical methods and diagnostics
appropriate for the general linear model extend to the mixed model setting as well (Christensen, Pearson, and
Johnson 1992).

Finally, a likelihood-based approach to the mixed model provides several statistical measures for model
adequacy as well. The most common of these are the likelihood ratio test and Akaike’s and Schwarz’s criteria
(Bozdogan 1987; Wolfinger 1993; Keselman et al. 1998, 1999).

Statistical Properties

If G and R are known, b̌ is the best linear unbiased estimator (BLUE) of ˇ, andb is the best linear unbiased
predictor (BLUP) of  (Searle 1971; Harville 1988, 1990; Robinson 1991; McLean, Sanders, and Stroup
1991). Here, “best” means minimum mean squared error. The covariance matrix of .b̌� ˇ;b � / is

C D
�

X0R�1X X0R�1Z
Z0R�1X Z0R�1ZCG�1

��
where � denotes a generalized inverse (see Searle 1971).

However, G and R are usually unknown and are estimated by using one of the aforementioned methods.
These estimates, bG and bR, are therefore simply substituted into the preceding expression to obtain

bC D " X0bR�1X X0bR�1Z
Z0bR�1X Z0bR�1ZC bG�1

#�

as the approximate variance-covariance matrix of .b̌�ˇ;b�). In this case, the BLUE and BLUP acronyms
no longer apply, but the word empirical is often added to indicate such an approximation. The appropriate
acronyms thus become EBLUE and EBLUP.

McLean and Sanders (1988) show that bC can also be written as

bC D " bC11 bC021bC21 bC22
#

where

bC11 D .X0bV�1X/�bC21 D �bGZ0bV�1XbC11bC22 D .Z0bR�1ZC bG�1/�1 �bC21X0bV�1ZbG
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Note that bC11 is the familiar estimated generalized least squares formula for the variance-covariance matrix
of b̌.

As a cautionary note, bC tends to underestimate the true sampling variability of
(b̌ b) because no account is made for the uncertainty in estimating G and R. Although inflation fac-
tors have been proposed (Kackar and Harville 1984; Kass and Steffey 1989; Prasad and Rao 1990), they tend
to be small for data sets that are fairly well balanced. PROC MIXED does not compute any inflation factors
by default, but rather accounts for the downward bias by using the approximate t and F statistics described
subsequently. The DDFM=KENWARDROGER option in the MODEL statement prompts PROC MIXED to
compute a specific inflation factor along with Satterthwaite-based degrees of freedom.

Inference and Test Statistics

For inferences concerning the covariance parameters in your model, you can use likelihood-based statistics.
One common likelihood-based statistic is the Wald Z, which is computed as the parameter estimate divided
by its asymptotic standard error. The asymptotic standard errors are computed from the inverse of the second
derivative matrix of the likelihood with respect to each of the covariance parameters. The Wald Z is valid for
large samples, but it can be unreliable for small data sets and for parameters such as variance components,
which are known to have a skewed or bounded sampling distribution.

A better alternative is the likelihood ratio �2 statistic. This statistic compares two covariance models, one a
special case of the other. To compute it, you must run PROC MIXED twice, once for each of the two models,
and then subtract the corresponding values of –2 times the log likelihoods. You can use either ML or REML
to construct this statistic, which tests whether the full model is necessary beyond the reduced model.

As long as the reduced model does not occur on the boundary of the covariance parameter space, the �2

statistic computed in this fashion has a large-sample �2 distribution that is �2 with degrees of freedom equal
to the difference in the number of covariance parameters between the two models. If the reduced model does
occur on the boundary of the covariance parameter space, the asymptotic distribution becomes a mixture of
�2 distributions (Self and Liang 1987). A common example of this is when you are testing that a variance
component equals its lower boundary constraint of 0.

A final possibility for obtaining inferences concerning the covariance parameters is to simulate or resample
data from your model and construct empirical sampling distributions of the parameters. The SAS macro
language and the ODS system are useful tools in this regard.

F and t Tests for Fixed- and Random-Effects Parameters
For inferences concerning the fixed- and random-effects parameters in the mixed model, consider estimable
linear combinations of the following form:

L
�
ˇ



�
The estimability requirement (Searle 1971) applies only to the ˇ portion of L, because any linear combination
of  is estimable. Such a formulation in terms of a general L matrix encompasses a wide variety of common
inferential procedures such as those employed with Type 1–Type 3 tests and LS-means. The CONTRAST and
ESTIMATE statements in PROC MIXED enable you to specify your own L matrices. Typically, inference on
fixed effects is the focus, and, in this case, the  portion of L is assumed to contain all 0s.



Mixed Models Theory F 5301

Statistical inferences are obtained by testing the hypothesis

H W L
�
ˇ



�
D 0

or by constructing point and interval estimates.

When L consists of a single row, a general t statistic can be constructed as follows (see McLean and Sanders
1988; Stroup 1989a):

t D

L
� b̌b

�
p

LbCL0

Under the assumed normality of  and �, t has an exact t distribution only for data exhibiting certain
types of balance and for some special unbalanced cases. In general, t is only approximately t-distributed,
and its degrees of freedom must be estimated. See the DDFM= option for a description of the various
degrees-of-freedom methods available in PROC MIXED.

Withb� being the approximate degrees of freedom, the associated confidence interval is

L
� b̌b

�
˙ tb�;˛=2qLbCL0

where tb�;˛=2 is the .1 � ˛=2/100 percentile of the tb� distribution.

When the rank of L is greater than 1, PROC MIXED constructs the following general F statistic:

F D

� b̌b
�0

L0.LbCL0/�1L
� b̌b

�
r

where r D rank.LbCL0/. Analogous to t, F in general has an approximate F distribution with r numerator
degrees of freedom andb� denominator degrees of freedom.

The t and F statistics enable you to make inferences about your fixed effects, which account for the variance-
covariance model you select. An alternative is the �2 statistic associated with the likelihood ratio test. This
statistic compares two fixed-effects models, one a special case of the other. It is computed just as when
comparing different covariance models, although you should use ML and not REML here because the penalty
term associated with restricted likelihoods depends upon the fixed-effects specification.

F Tests With the ANOVAF Option
The ANOVAF option computes F tests by the following method in models with REPEATED statement and
without RANDOM statement. Let L denote the matrix of estimable functions for the hypothesis H WLˇ D 0,
where ˇ are the fixed-effects parameters. Let M D L0.LL0/�L, and suppose that bC denotes the estimated
variance-covariance matrix of b̌ (see the section “Statistical Properties” for the construction of bC).

The ANOVAF F statistics are computed as

FA D b̌0L0 �LL0
��1 Lb̌.t1 D b̌0Mb̌.t1

Notice that this is a modification of the usual F statistic where .LbCL0/�1 is replaced with .LL0/�1 and
rank.L/ is replaced with t1 D trace.MbC/; see, for example, Brunner, Domhof, and Langer (2002, Sec. 5.4).
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The p-values for this statistic are computed from either an F�1;�2 or an F�1;1 distribution. The respective
degrees of freedom are determined by the MIXED procedure as follows:

�1 D
t21

trace.MbCMbC/
��2 D

2t21
g0Ag

�2 D

�
maxfminf��2 ; dfeg; 1g g0Ag > 1E3 �MACEPS

1 otherwise

The term g0Ag in the term ��2 for the denominator degrees of freedom is based on approximating
VarŒtrace.MbC/� based on a first-order Taylor series about the true covariance parameters. This gener-
alizes results in the appendix of Brunner, Dette, and Munk (1997) to a broader class of models. The vector
g D Œg1; � � � ; gq� contains the partial derivatives

trace

 
L0
�
LL0

��1 L
@bC
@�i

!

and A is the asymptotic variance-covariance matrix of the covariance parameter estimates (ASYCOV option).

PROC MIXED reports �1 and �2 as “NumDF” and “DenDF” under the “ANOVA F” heading in the output.
The corresponding p-values are denoted as “Pr > F(DDF)” for F�1;�2 and “Pr > F(infty)” for F�1;1,
respectively.

P-values computed with the ANOVAF option can be identical to the nonparametric tests in Akritas, Arnold,
and Brunner (1997) and in Brunner, Domhof, and Langer (2002), provided that the response data consist
of properly created (and sorted) ranks and that the covariance parameters are estimated by MIVQUE0 in
models with REPEATED statement and properly chosen SUBJECT= and/or GROUP= effects.

If you model an unstructured covariance matrix in a longitudinal model with one or more repeated factors,
the ANOVAF results are identical to a multivariate MANOVA where degrees of freedom are corrected with
the Greenhouse-Geisser adjustment (Greenhouse and Geisser 1959). For example, suppose that factor A has
2 levels and factor B has 4 levels. The following two sets of statements produce the same p-values:

proc mixed data=Mydata anovaf method=mivque0;
class id A B;
model score = A | B / chisq;
repeated / type=un subject=id;
ods select Tests3;

run;

proc transpose data=MyData out=tdata;
by id;
var score;

run;
proc glm data=tdata;

model col: = / nouni;
repeated A 2, B 4;
ods output ModelANOVA=maov epsilons=eps;

run;
proc transpose data=eps(where=(substr(statistic,1,3)='Gre')) out=teps;
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var cvalue1;
run;

data aov; set maov;
if (_n_ = 1) then merge teps;
if (Source='A') then do;

pFddf = ProbF;
pFinf = 1 - probchi(df*Fvalue,df);
output;

end; else if (Source='B') then do;
pFddf = ProbFGG;
pFinf = 1 - probchi(df*col1*Fvalue,df*col1);
output;

end; else if (Source='A*B') then do;
pfddF = ProbFGG;
pFinf = 1 - probchi(df*col2*Fvalue,df*col2);
output;

end;
run;
proc print data=aov label noobs;

label Source = 'Effect'
df = 'NumDF'
Fvalue = 'Value'
pFddf = 'Pr > F(DDF)'
pFinf = 'Pr > F(infty)';

var Source df Fvalue pFddf pFinf;
format pF: pvalue6.;

run;

The PROC GLM code produces p-values that correspond to the ANOVAF p-values shown as Pr > F(DDF) in
the MIXED output. The subsequent DATA step computes the p-values that correspond to Pr > F(infty) in the
PROC MIXED output.

Parameterization of Mixed Models
Recall that a mixed model is of the form

y D Xˇ C Z C �

where y represents univariate data, ˇ is an unknown vector of fixed effects with known model matrix X,  is
an unknown vector of random effects with known model matrix Z, and � is an unknown random error vector.

PROC MIXED constructs a mixed model according to the specifications in the MODEL, RANDOM, and
REPEATED statements. Each effect in the MODEL statement generates one or more columns in the model
matrix X, and each effect in the RANDOM statement generates one or more columns in the model matrix Z.
Effects in the REPEATED statement do not generate model matrices; they serve only to index observations
within subjects. This section shows precisely how PROC MIXED builds X and Z.
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Intercept

By default, all models automatically include a column of 1s in X to estimate a fixed-effect intercept parameter
�. You can use the NOINT option in the MODEL statement to suppress this intercept. The NOINT option is
useful when you are specifying a classification effect in the MODEL statement and you want the parameter
estimate to be in terms of the mean response for each level of that effect, rather than in terms of a deviation
from an overall mean.

By contrast, the intercept is not included by default in Z. To obtain a column of 1s in Z, you must specify in
the RANDOM statement either the INTERCEPT effect or some effect that has only one level.

Regression Effects

Numeric variables, or polynomial terms involving them, can be included in the model as regression effects
(covariates). The actual values of such terms are included as columns of the model matrices X and Z. You
can use the bar operator with a regression effect to generate polynomial effects. For instance, X|X|X expands
to X X*X X*X*X, a cubic model.

Main Effects

If a classification variable has m levels, PROC MIXED generates m columns in the model matrix for its main
effect. Each column is an indicator variable for a given level. The order of the columns is the sort order of
the values of their levels and can be controlled with the ORDER= option in the PROC MIXED statement.
Table 65.20 is an example.

Table 65.20 Example of Main Effects

Data I A B

A B � A1 A2 B1 B2 B3
1 1 1 1 0 1 0 0
1 2 1 1 0 0 1 0
1 3 1 1 0 0 0 1
2 1 1 0 1 1 0 0
2 2 1 0 1 0 1 0
2 3 1 0 1 0 0 1

Typically, there are more columns for these effects than there are degrees of freedom for them. In other
words, PROC MIXED uses an overparameterized model.

Interaction Effects

Often a model includes interaction (crossed) effects. With an interaction, PROC MIXED first reorders the
terms to correspond to the order of the variables in the CLASS statement. Thus, B*A becomes A*B if A
precedes B in the CLASS statement. Then, PROC MIXED generates columns for all combinations of levels
that occur in the data. The order of the columns is such that the rightmost variables in the cross index faster
than the leftmost variables (Table 65.21). Empty columns (that would contain all 0s) are not generated for X,
but they are for Z.
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Table 65.21 Example of Interaction Effects

Data I A B A*B

A B � A1 A2 B1 B2 B3 A1B1 A1B2 A1B3 A2B1 A2B2 A2B3
1 1 1 1 0 1 0 0 1 0 0 0 0 0
1 2 1 1 0 0 1 0 0 1 0 0 0 0
1 3 1 1 0 0 0 1 0 0 1 0 0 0
2 1 1 0 1 1 0 0 0 0 0 1 0 0
2 2 1 0 1 0 1 0 0 0 0 0 1 0
2 3 1 0 1 0 0 1 0 0 0 0 0 1

In the preceding matrix, main-effects columns are not linearly independent of crossed-effects columns; in
fact, the column space for the crossed effects contains the space of the main effect.

When your model contains many interaction effects, you might be able to code them more parsimoniously by
using the bar operator ( | ). The bar operator generates all possible interaction effects. For example, A|B|C
expands to A B A*B C A*C B*C A*B*C. To eliminate higher-order interaction effects, use the at sign (@) in
conjunction with the bar operator. For instance, A|B|C|D @2 expands to A B A*B C A*C B*C D A*D B*D
C*D.

Nested Effects

Nested effects are generated in the same manner as crossed effects. Hence, the design columns generated by
the following two statements are the same (but the ordering of the columns is different):

model Y=A B(A);

model Y=A A*B;

The nesting operator in PROC MIXED is more a notational convenience than an operation distinct from
crossing. Nested effects are typically characterized by the property that the nested variables never appear as
main effects. The order of the variables within nesting parentheses is made to correspond to the order of these
variables in the CLASS statement. The order of the columns is such that variables outside the parentheses
index faster than those inside the parentheses, and the rightmost nested variables index faster than the leftmost
variables (Table 65.22).

Table 65.22 Example of Nested Effects

Data I A B(A)

A B � A1 A2 B1A1 B2A1 B3A1 B1A2 B2A2 B3A2
1 1 1 1 0 1 0 0 0 0 0
1 2 1 1 0 0 1 0 0 0 0
1 3 1 1 0 0 0 1 0 0 0
2 1 1 0 1 0 0 0 1 0 0
2 2 1 0 1 0 0 0 0 1 0
2 3 1 0 1 0 0 0 0 0 1
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Note that nested effects are often distinguished from interaction effects by the implied randomization structure
of the design. That is, they usually indicate random effects within a fixed-effects framework. The fact that
random effects can be modeled directly in the RANDOM statement might make the specification of nested
effects in the MODEL statement unnecessary.

Continuous-Nesting-Class Effects

When a continuous variable nests with a classification variable, the design columns are constructed by
multiplying the continuous values into the design columns for the class effect (Table 65.23).

Table 65.23 Example of Continuous-Nesting-Class Effects

Data I A X(A)

X A � A1 A2 X(A1) X(A2)
21 1 1 1 0 21 0
24 1 1 1 0 24 0
22 1 1 1 0 22 0
28 2 1 0 1 0 28
19 2 1 0 1 0 19
23 2 1 0 1 0 23

This model estimates a separate slope for X within each level of A.

Continuous-by-Class Effects

Continuous-by-class effects generate the same design columns as continuous-nesting-class effects. The two
models are made different by the presence of the continuous variable as a regressor by itself, as well as a
contributor to a compound effect. Table 65.24 shows an example.

Table 65.24 Example of Continuous-by-Class Effects

Data I X A X*A

X A � X A1 A2 X*A1 X*A2
21 1 1 21 1 0 21 0
24 1 1 24 1 0 24 0
22 1 1 22 1 0 22 0
28 2 1 28 0 1 0 28
19 2 1 19 0 1 0 19
23 2 1 23 0 1 0 23

You can use continuous-by-class effects to test for homogeneity of slopes.

General Effects

An example that combines all the effects is X1*X2*A*B*C (D E). The continuous list comes first, followed
by the crossed list, followed by the nested list in parentheses. You should be aware of the sequencing



Parameterization of Mixed Models F 5307

of parameters when you use the CONTRAST or ESTIMATE statement to compute some function of the
parameter estimates.

Effects might be renamed by PROC MIXED to correspond to ordering rules. For example, B*A(E D) might
be renamed A*B(D E) to satisfy the following:

• Classification variables that occur outside parentheses (crossed effects) are sorted in the order in which
they appear in the CLASS statement.

• Variables within parentheses (nested effects) are sorted in the order in which they appear in the CLASS
statement.

The sequencing of the parameters generated by an effect can be described by which variables have their
levels indexed faster:

• Variables in the crossed list index faster than variables in the nested list.

• Within a crossed or nested list, variables to the right index faster than variables to the left.

For example, suppose a model includes four effects—A, B, C, and D—each having two levels, 1 and 2.
Suppose the CLASS statement is as follows:

class A B C D;

Then the order of the parameters for the effect B*A(C D), which is renamed A*B (C D), is

A1B1C1D1 ! A1B2C1D1 ! A2B1C1D1 ! A2B2C1D1 !

A1B1C1D2 ! A1B2C1D2 ! A2B1C1D2 ! A2B2C1D2 !

A1B1C2D1 ! A1B2C2D1 ! A2B1C2D1 ! A2B2C2D1 !

A1B1C2D2 ! A1B2C2D2 ! A2B1C2D2 ! A2B2C2D2

Note that first the crossed effects B and A are sorted in the order in which they appear in the CLASS
statement so that A precedes B in the parameter list. Then, for each combination of the nested effects in turn,
combinations of A and B appear. The B effect moves fastest because it is rightmost in the cross list. Then A
moves next fastest, and D moves next fastest. The C effect is the slowest since it is leftmost in the nested list.

When numeric levels are used, levels are sorted by their character format, which might not correspond to their
numeric sort sequence (for example, noninteger levels). Therefore, it is advisable to include a desired format
for numeric levels or to use the ORDER=INTERNAL option in the PROC MIXED statement to ensure that
levels are sorted by their internal values.

Implications of the Non-Full-Rank Parameterization

For models with fixed effects involving classification variables, there are more design columns in X con-
structed than there are degrees of freedom for the effect. Thus, there are linear dependencies among the
columns of X. In this event, all of the parameters are not estimable; there is an infinite number of solutions to
the mixed model equations. PROC MIXED uses a generalized inverse (a g2-inverse, Pringle and Rayner
1971) to obtain values for the estimates (Searle 1971). The solution values are not displayed unless you
specify the SOLUTION option in the MODEL statement. The solution has the characteristic that estimates
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are 0 whenever the design column for that parameter is a linear combination of previous columns. With this
parameterization, hypothesis tests are constructed to test linear functions of the parameters that are estimable.

Some procedures (such as the CATMOD procedure) reparameterize models to full rank by using restrictions
on the parameters. PROC GLM and PROC MIXED do not reparameterize, making the hypotheses that are
commonly tested more understandable. See Goodnight (1978) for additional reasons for not reparameterizing.

Missing Level Combinations

PROC MIXED handles missing level combinations of classification variables similarly to the way PROC
GLM does. Both procedures delete fixed-effects parameters corresponding to missing levels in order to
preserve estimability. However, PROC MIXED does not delete missing level combinations for random-
effects parameters because linear combinations of the random-effects parameters are always estimable. These
conventions can affect the way you specify your CONTRAST and ESTIMATE coefficients.

Residuals and Influence Diagnostics

Residual Diagnostics

Consider a residual vector of the formee D PY, where P is a projection matrix, possibly an oblique projector.
A typical elementeei with variance vi and estimated variancebvi is said to be standardized as

eeip
VarŒeei � D eei

p
vi

and studentized aseeipbvi
External studentization uses an estimate of VarŒeei � that does not involve the ith observation. Externally
studentized residuals are often preferred over internally studentized residuals because they have well-known
distributional properties in standard linear models for independent data.

Residuals that are scaled by the estimated variance of the response, i.e.,eei=qbVarŒYi �, are referred to as
Pearson-type residuals.

Marginal and Conditional Residuals
The marginal and conditional means in the linear mixed model are EŒY� D Xˇ and EŒYj� D Xˇ C Z ,
respectively. Accordingly, the vector rm of marginal residuals is defined as

rm D Y �Xb̌
and the vector rc of conditional residuals is

rc D Y �Xb̌� Zb D rm � Zb
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Following Gregoire, Schabenberger, and Barrett (1995), let Q D X.X0bV�1X/�X0 and K D I � ZbGZ0bV�1.
Then

bVarŒrm� D bV �Q
bVarŒrc� D K.bV �Q/K0

For an individual observation the raw, studentized, and Pearson-type residuals computed by the MIXED
procedure are given in Table 65.25.

Table 65.25 Residual Types Computed by the MIXED Procedure

Type of Residual Marginal Conditional

Raw rmi D Yi � x0ib̌ rci D rmi � z0ib
Studentized rstudentmi D

rmiqcVarŒrmi � rstudentci D
rciqcVarŒrci �

Pearson r
pearson
mi D

rmiqcVarŒYi � r
pearson
ci D

rciqcVarŒYi j�
When the OUTPM= option is specified in addition to the RESIDUAL option in the MODEL statement,
rstudentmi and rpearsonmi are added to the data set as variables Resid, StudentResid, and PearsonResid, respec-
tively. When the OUTP= option is specified, rstudentci and rpearsonci are added to the data set. Raw residuals
are part of the OUTPM= and OUTP= data sets without the RESIDUAL option.

Scaled Residuals
For correlated data, a set of scaled quantities can be defined through the Cholesky decomposition of the
variance-covariance matrix. Since fitted residuals in linear models are rank-deficient, it is customary to
draw on the variance-covariance matrix of the data. If VarŒY� D V and C0C D V, then C0�1Y has uniform
dispersion and its elements are uncorrelated.

Scaled residuals in a mixed model are meaningful for quantities based on the marginal distribution of the
data. Let bC denote the Cholesky root of bV, so that bC0bC D bV, and define

Yc D bC0�1Y
rm.c/ D bC0�1rm

By analogy with other scalings, the inverse Cholesky decomposition can also be applied to the residual vector,bC0�1rm, although V is not the variance-covariance matrix of rm.

To diagnose whether the covariance structure of the model has been specified correctly can be difficult based
on Yc , since the inverse Cholesky transformation affects the expected value of Yc . You can draw on rm.c/ as
a vector of (approximately) uncorrelated data with constant mean.

When the OUTPM= option in the MODEL statement is specified in addition to the VCIRY option, Yc is
added as variable ScaledDep and rm.c/ is added as ScaledResid to the data set.
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Influence Diagnostics

Basic Idea and Statistics
The general idea of quantifying the influence of one or more observations relies on computing parameter
estimates based on all data points, removing the cases in question from the data, refitting the model, and
computing statistics based on the change between full-data and reduced-data estimation. Influence statistics
can be coarsely grouped by the aspect of estimation that is their primary target:

• overall measures compare changes in objective functions: (restricted) likelihood distance (Cook and
Weisberg 1982, Ch. 5.2)

• influence on parameter estimates: Cook’s D (Cook 1977, 1979), MDFFITS (Belsley, Kuh, and Welsch
1980, p. 32)

• influence on precision of estimates: CovRatio and CovTrace

• influence on fitted and predicted values: PRESS residual, PRESS statistic (Allen 1974), DFFITS
(Belsley, Kuh, and Welsch 1980, p. 15)

• outlier properties: internally and externally studentized residuals, leverage

For linear models for uncorrelated data, it is not necessary to refit the model after removing a data point in
order to measure the impact of an observation on the model. The change in fixed effect estimates, residuals,
residual sums of squares, and the variance-covariance matrix of the fixed effects can be computed based on
the fit to the full data alone. By contrast, in mixed models several important complications arise. Data points
can affect not only the fixed effects but also the covariance parameter estimates on which the fixed-effects
estimates depend. Furthermore, closed-form expressions for computing the change in important model
quantities might not be available.

This section provides background material for the various influence diagnostics available with the MIXED
procedure. See the section “Mixed Models Theory” on page 5291 for relevant expressions and definitions.
The parameter vector � denotes all unknown parameters in the R and G matrix.

The observations whose influence is being ascertained are represented by the set U and referred to simply as
“the observations in U.” The estimate of a parameter vector, such as ˇ, obtained from all observations except
those in the set U is denoted b̌.U /. In case of a matrix A, the notation A.U / represents the matrix with the
rows in U removed; these rows are collected in AU . If A is symmetric, then notation A.U / implies removal
of rows and columns. The vector YU comprises the responses of the data points being removed, and V.U / is
the variance-covariance matrix of the remaining observations. When k = 1, lowercase notation emphasizes
that single points are removed, such as A.u/.

Managing the Covariance Parameters
An important component of influence diagnostics in the mixed model is the estimated variance-covariance
matrix V D ZGZ0 CR. To make the dependence on the vector of covariance parameters explicit, write it as
V.�/. If one parameter, �2, is profiled or factored out of V, the remaining parameters are denoted as ��.
Notice that in a model where G is diagonal and R D �2I, the parameter vector �� contains the ratios of
each variance component and �2 (see Wolfinger, Tobias, and Sall 1994). When ITER=0, two scenarios are
distinguished:

1. If the residual variance is not profiled, either because the model does not contain a residual variance or
because it is part of the Newton-Raphson iterations, thenb�.U / � b� .
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2. If the residual variance is profiled, then b��
.U /
� b�� and b�2

.U /
6D b�2. Influence statistics such as

Cook’s D and internally studentized residuals are based on V.b�/, whereas externally studentized
residuals and the DFFITS statistic are based on V.b�U / D �2.U /V.b��/. In a random components model

with uncorrelated errors, for example, the computation of V.b�U / involves scaling of bG and bR by the
full-data estimateb�2 and multiplying the result with the reduced-data estimateb�2

.U /
.

Certain statistics, such as MDFFITS, CovRatio, and CovTrace, require an estimate of the variance of the
fixed effects that is based on the reduced number of observations. For example, V.b�U / is evaluated at the
reduced-data parameter estimates but computed for the entire data set. The matrix V.U /.b�.U //, on the other
hand, has rows and columns corresponding to the points in U removed. The resulting matrix is evaluated at
the delete-case estimates.

When influence analysis is iterative, the entire vector � is updated, whether the residual variance is profiled or
not. The matrices to be distinguished here are V.b�/, V.b�.U //, and V.U /.b�.U //, with unambiguous notation.

Predicted Values, PRESS Residual, and PRESS Statistic
An unconditional predicted value isbyi D x0ib̌, where the vector xi is the ith row of X. The (raw) residual is
given asb�i D yi �byi , and the PRESS residual is

b�i.U / D yi � x0ib̌.U /
The PRESS statistic is the sum of the squared PRESS residuals,

PRESS D
X
i2U

b� 2i.U /
where the sum is over the observations in U.

If EFFECT=, SIZE=, or KEEP= is not specified, PROC MIXED computes the PRESS residual for each
observation selected through SELECT= (or all observations if SELECT= is not given). If EFFECT=, SIZE=,
or KEEP= is specified, the procedure computes PRESS.

Leverage
For the general mixed model, leverage can be defined through the projection matrix that results from a
transformation of the model with the inverse of the Cholesky decomposition of V, or through an oblique
projector. The MIXED procedure follows the latter path in the computation of influence diagnostics. The
leverage value reported for the ith observation is the ith diagonal entry of the matrix

H D X.X0V.b�/�1X/�X0V.b�/�1
which is the weight of the observation in contributing to its own predicted value, H D dbY=dY.

While H is idempotent, it is generally not symmetric and thus not a projection matrix in the narrow sense.

The properties of these leverages are generalizations of the properties in models with diagonal variance-
covariance matrices. For example, bY D HY, and in a model with intercept and V D �2I, the leverage
values

hi i D x0i .X
0X/�xi
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are hli i D 1=n � hi i � 1 D huii and
Pn
iD1 hi i D rank.X/. The lower bound for hi i is achieved in an

intercept-only model, and the upper bound is achieved in a saturated model. The trace of H equals the rank
of X.

If �ij denotes the element in row i, column j of V�1, then for a model containing only an intercept the
diagonal elements of H are

hi i D

Pn
jD1 �ijPn

iD1

Pn
jD1 �ij

Because
Pn
jD1 �ij is a sum of elements in the ith row of the inverse variance-covariance matrix, hi i can

be negative, even if the correlations among data points are nonnegative. In case of a saturated model with
X D I, hi i D 1:0.

Internally and Externally Studentized Residuals
See the section “Residual Diagnostics” on page 5308 for the distinction between standardization, studen-
tization, and scaling of residuals. Internally studentized marginal and conditional residuals are computed
with the RESIDUAL option of the MODEL statement. The INFLUENCE option computes internally and
externally studentized marginal residuals.

The computation of internally studentized residuals relies on the diagonal entries of V.b�/ � Q.b�/, where
Q.b�/ D X.X0V.b�/�1X/�X0. Externally studentized residuals require iterative influence analysis or a
profiled residual variance. In the former case the studentization is based on V.b�U /; in the latter case it is
based on �2

.U /
V.b��/.

Cook’s D
Cook’s D statistic is an invariant norm that measures the influence of observations in U on a vector of
parameter estimates (Cook 1977). In case of the fixed-effects coefficients, let

ı.U / D b̌� b̌.U /
Then the MIXED procedure computes

D.ˇ/ D ı0.U /
bVarŒb̌��ı.U /=rank.X/

where bVarŒb̌�� is the matrix that results from sweeping .X0V.b�/�1X/�.

If V is known, Cook’s D can be calibrated according to a chi-square distribution with degrees of freedom
equal to the rank of X (Christensen, Pearson, and Johnson 1992). For estimated V the calibration can be
carried out according to an F.rank.X/; n � rank.X// distribution. To interpret D on a familiar scale, Cook
(1979) and Cook and Weisberg (1982, p. 116) refer to the 50th percentile of the reference distribution. If D is
equal to that percentile, then removing the points in U moves the fixed-effects coefficient vector from the
center of the confidence region to the 50% confidence ellipsoid (Myers 1990, p. 262).

In the case of iterative influence analysis, the MIXED procedure also computes a D-type statistic for the
covariance parameters. If � is the asymptotic variance-covariance matrix ofb� , then MIXED computes

D� D .b� �b�.U ///0b��1.b� �b�.U //
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DFFITS and MDFFITS
A DFFIT measures the change in predicted values due to removal of data points. If this change is standardized
by the externally estimated standard error of the predicted value in the full data, the DFFITS statistic of
Belsley, Kuh, and Welsch (1980, p. 15) results:

DFFITSi D .byi �byi.u//=ese.byi /
The MIXED procedure computes DFFITS when the EFFECT= or SIZE= modifier of the INFLUENCE
option is not in effect. In general, an external estimate of the estimated standard error is used. When ITER >
0, the estimate is

ese.byi / Dqx0i .X
0V.b�.u//�X/�1xi

When ITER=0 and �2 is profiled, then

ese.byi / D b� .u/qx0i .X
0V.b��/�1X/�xi

When the EFFECT=, SIZE=, or KEEP= modifier is specified, the MIXED procedure computes a multivariate
version suitable for the deletion of multiple data points. The statistic, termed MDFFITS after the MDFFIT
statistic of Belsley, Kuh, and Welsch (1980, p. 32), is closely related to Cook’s D. Consider the case
V D �2V.��/ so that

VarŒb̌� D �2.X0V.��/�1X/�
and let eVarŒb̌.U /� be an estimate of VarŒb̌.U /� that does not use the observations in U. The MDFFITS statistic
is then computed as

MDFFITS.ˇ/ D ı0.U /eVarŒb̌.U /��ı.U /=rank.X/
If ITER=0 and �2 is profiled, then eVarŒb̌.U /�� is obtained by sweeping

b�2.U /.X0.U /V.U /.b��/�X.U //�
The underlying idea is that if �� were known, then

.X0.U /V.U /.�
�/
�1X.U //�

would be VarŒb̌�=�2 in a generalized least squares regression with all but the data in U.

In the case of iterative influence analysis, eVarŒb̌.U /� is evaluated atb�.U /. Furthermore, a MDFFITS-type
statistic is then computed for the covariance parameters:

MDFFITS.�/ D .b� �b�.U //0bVarŒb�.U /��1.b� �b�.U //
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Covariance Ratio and Trace
These statistics depend on the availability of an external estimate of V, or at least of �2. Whereas Cook’s D
and MDFFITS measure the impact of data points on a vector of parameter estimates, the covariance-based
statistics measure impact on their precision. Following Christensen, Pearson, and Johnson (1992), the
MIXED procedure computes

CovTrace.ˇ/ D jtrace.bVarŒb̌�� eVarŒb̌.U /�/ � rank.X/j

CovRatio.ˇ/ D
detns.eVarŒb̌.U /�/
detns.bVarŒb̌�/

where detns.M/ denotes the determinant of the nonsingular part of matrix M.

In the case of iterative influence analysis these statistics are also computed for the covariance parameter
estimates. If q denotes the rank of VarŒb��, then

CovTrace.�/ D jtrace.bVarŒb��� bVarŒb�.U /�/ � qj
CovRatio.�/ D

detns.bVarŒb�.U /�/
detns.bVarŒb��/

Likelihood Distances
The log-likelihood function l and restricted log-likelihood function lR of the linear mixed model are given
in the section “Estimating Covariance Parameters in the Mixed Model” on page 5297. Denote as  the
collection of all parameters, i.e., the fixed effects ˇ and the covariance parameters � . Twice the difference
between the (restricted) log-likelihood evaluated at the full-data estimates b and at the reduced-data estimatesb .U / is known as the (restricted) likelihood distance:

RLD.U / D 2flR.b / � lR.b .U //g
LD.U / D 2fl.b / � l.b .U //g

Cook and Weisberg (1982, Ch. 5.2) refer to these differences as likelihood distances, Beckman, Nachtsheim,
and Cook (1987) call the measures likelihood displacements. If the number of elements in  that are subject
to updating following point removal is q, then likelihood displacements can be compared against cutoffs from
a chi-square distribution with q degrees of freedom. Notice that this reference distribution does not depend
on the number of observations removed from the analysis, but rather on the number of model parameters that
are updated. The likelihood displacement gives twice the amount by which the log likelihood of the full data
changes if one were to use an estimate based on fewer data points. It is thus a global, summary measure of
the influence of the observations in U jointly on all parameters.

Unless METHOD=ML, the MIXED procedure computes the likelihood displacement based on the residual
(=restricted) log likelihood, even if METHOD=MIVQUE0 or METHOD=TYPE1, TYPE2, or TYPE3.

Noniterative Update Formulas
Update formulas that do not require refitting of the model are available for the cases where V D �2I, V is
known, or V� is known. When ITER=0 and these update formulas can be invoked, the MIXED procedure uses
the computational devices that are outlined in the following paragraphs. It is then assumed that the variance-
covariance matrix of the fixed effects has the form .X0V�1X/�. When DDFM=KENWARDROGER, this is
not the case; the estimated variance-covariance matrix is then inflated to better represent the uncertainty in the
estimated covariance parameters. Influence statistics when DDFM=KENWARDROGER should iteratively
update the covariance parameters (ITER > 0). The dependence of V on � is suppressed in the sequel for
brevity.
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Updating the Fixed Effects Denote by U the .n � k/ matrix that is assembled from k columns of the
identity matrix. Each column of U corresponds to the removal of one data point. The point being targeted by
the ith column of U corresponds to the row in which a 1 appears. Furthermore, define

� D .X0V�1X/�

Q D X�X0

P D V�1.V �Q/V�1

The change in the fixed-effects estimates following removal of the observations in U isb̌� b̌.U / D �X0V�1U.U0PU/�1U0V�1.y �Xb̌/
Using results in Cook and Weisberg (1982, A2) you can further computee� D .X0.U /V�1.U /X.U //� D �C�X0V�1U.U0PU/�1U0V�1X�

If X is .n � p/ of rank m < p, then � is deficient in rank and the MIXED procedure computes needed
quantities in e� by sweeping (Goodnight 1979). If the rank of the .k � k/ matrix U0PU is less than k, the
removal of the observations introduces a new singularity, whether X is of full rank or not. The solution
vectors b̌ and b̌.U / then do not have the same expected values and should not be compared. When the
MIXED procedure encounters this situation, influence diagnostics that depend on the choice of generalized
inverse are not computed. The procedure also monitors the singularity criteria when sweeping the rows of
.X0V�1X/� and of .X0

.U /
V�1
.U /

X.U //�. If a new singularity is encountered or a former singularity disappears,
no influence statistics are computed.

Residual Variance When �2 is profiled out of the marginal variance-covariance matrix, a closed-form
estimate of �2 that is based on only the remaining observations can be computed provided V� D V.b��/ is
known. Hurtado (1993, Thm. 5.2) shows that

.n � q � r/b�2.U / D .n � q/b�2 �b�0U .b�2U0PU/�1b�U
andb�U D U0V��1.y �Xb̌/. In the case of maximum likelihood estimation q = 0 and for REML estimation
q D rank.X/. The constant r equals the rank of .U0PU/ for REML estimation and the number of effective
observations that are removed if METHOD=ML.

Likelihood Distances For noniterative methods the following computational devices are used to compute
(restricted) likelihood distances provided that the residual variance �2 is profiled.

The log likelihood function l.b�/ evaluated at the full-data and reduced-data estimates can be written as

l.b / D �n
2
log.b�2/ � 1

2
log jV�j �

1

2
.y �Xb̌/0V��1.y �Xb̌/=b�2 � n

2
log.2�/

l.b .U // D �n
2
log.b�2.U // � 12 log jV�j � 12.y �Xb̌.U //0V��1.y �Xb̌.U //=b�2.U / � n2 log.2�/

Notice that l.b�.U // evaluates the log likelihood for n data points at the reduced-data estimates. It is not the
log likelihood obtained by fitting the model to the reduced data. The likelihood distance is then

LD.U / D n log

(b�2
.U /b�2

)
� nC

�
y �Xb̌.U /�0V��1 �y �Xb̌.U /� =b�2.U /

Expressions for RLD.U / in noniterative influence analysis are derived along the same lines.
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Default Output
The following sections describe the output PROC MIXED produces by default. This output is organized into
various tables, and they are discussed in order of appearance.

Model Information

The “Model Information” table describes the model, some of the variables it involves, and the method used
in fitting it. It also lists the method (profile, factor, parameter, or none) for handling the residual variance in
the model. The profile method concentrates the residual variance out of the optimization problem, whereas
the parameter method retains it as a parameter in the optimization. The factor method keeps the residual
fixed, and none is displayed when a residual variance is not part of the model.

The “Model Information” table also has a row labeled Fixed Effects SE Method. This row describes the
method used to compute the approximate standard errors for the fixed-effects parameter estimates and related
functions of them. The two possibilities for this row are Model-Based, which is the default method, and
Empirical, which results from using the EMPIRICAL option in the PROC MIXED statement.

The ODS name of the “Model Information” table is ModelInfo.

Class Level Information

The “Class Level Information” table lists the levels of every variable specified in the CLASS statement. You
should check this information to make sure the data are correct. You can adjust the order of the CLASS
variable levels with the ORDER= option in the PROC MIXED statement. The ODS name of the “Class Level
Information” table is ClassLevels.

Dimensions

The “Dimensions” table lists the sizes of relevant matrices. This table can be useful in determining CPU time
and memory requirements. The ODS name of the “Dimensions” table is Dimensions.

Number of Observations

The “Number of Observations” table shows the number of observations read from the data set and the number
of observations used in fitting the model.

Iteration History

The “Iteration History” table describes the optimization of the residual log likelihood or log likelihood. The
function to be minimized (the objective function) is �2l for ML and �2lR for REML; the column name of
the objective function in the “Iteration History” table is “-2 Log Like” for ML and “-2 Res Log Like” for
REML. The minimization is performed by using a ridge-stabilized Newton-Raphson algorithm, and the rows
of this table describe the iterations that this algorithm takes in order to minimize the objective function.

The Evaluations column of the “Iteration History” table tells how many times the objective function is
evaluated during each iteration.
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The Criterion column of the “Iteration History” table is, by default, a relative Hessian convergence quantity
given by

g0
k
H�1
k

gk
jfkj

where fk is the value of the objective function at iteration k, gk is the gradient (first derivative) of fk , and Hk
is the Hessian (second derivative) of fk . If Hk is singular, then PROC MIXED uses the following relative
quantity:

g0
k
gk
jfkj

To prevent the division by jfkj, use the ABSOLUTE option in the PROC MIXED statement. To use a relative
function or gradient criterion, use the CONVF or CONVG option, respectively.

The Hessian criterion is considered superior to function and gradient criteria because it measures orthogonality
rather than lack of progress (Bates and Watts 1988). Provided the initial estimate is feasible and the maximum
number of iterations is not exceeded, the Newton-Raphson algorithm is considered to have converged when
the criterion is less than the tolerance specified with the CONVF, CONVG, or CONVH option in the PROC
MIXED statement. The default tolerance is 1E–8. If convergence is not achieved, PROC MIXED displays
the estimates of the parameters at the last iteration.

A convergence criterion that is missing indicates that a boundary constraint has been dropped; it is usually
not a cause for concern.

If you specify the ITDETAILS option in the PROC MIXED statement, then the covariance parameter
estimates at each iteration are included as additional columns in the “Iteration History” table.

The ODS name of the “Iteration History” table is IterHistory.

Convergence Status

The “Convergence Status” table informs about the status of the iterative estimation process at the end of the
Newton-Raphson optimization. It appears as a message in the listing, and this message is repeated in the
log. The ODS object ConvergenceStatus also contains several nonprinting columns that can be helpful in
checking the success of the iterative process, in particular during batch processing or when analyzing BY
groups. The Status variable takes on the value 0 for a successful convergence (even if the Hessian matrix
might not be positive definite). The values 1 and 2 of the Status variable indicate lack of convergence and
infeasible initial parameter values, respectively. The variables pdG and pdH can be used to check whether the
G and H (Hessian) matrices are positive definite.

For models that are not fit iteratively, such as models without random effects or when the NOITER option is
in effect, the “Convergence Status” is not produced.

Covariance Parameter Estimates

The “Covariance Parameter Estimates” table contains the estimates of the parameters in G and R (see the
section “Estimating Covariance Parameters in the Mixed Model” on page 5297). Their values are labeled in
the table along with Subject and Group information if applicable. The estimates are displayed in the Estimate
column and are the results of one of the following estimation methods: REML, ML, MIVQUE0, SSCP,
Type1, Type2, or Type3.
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If you specify the RATIO option in the PROC MIXED statement, the Ratio column is added to the table
listing the ratio of each parameter estimate to that of the residual variance.

Specifying the COVTEST option in the PROC MIXED statement produces the “Std Error,” “Z Value,” and
“Pr Z” columns. The “Std Error” column contains the approximate standard errors of the covariance parameter
estimates. These are the square roots of the diagonal elements of the observed inverse Fisher information
matrix, which equals 2H�1, where H is the Hessian matrix. The H matrix consists of the second derivatives
of the objective function with respect to the covariance parameters; see Wolfinger, Tobias, and Sall (1994)
for formulas. When you use the SCORING= option and PROC MIXED converges without stopping the
scoring algorithm, PROC MIXED uses the expected Hessian matrix to compute the covariance matrix instead
of the observed Hessian. The observed or expected inverse Fisher information matrix can be viewed as an
asymptotic covariance matrix of the estimates.

The “Z Value” column is the estimate divided by its approximate standard error, and the “Pr Z” column is
the one- or two-tailed area of the standard Gaussian density outside of the Z-value. The MIXED procedure
computes one-sided p-values for the residual variance and for covariance parameters with a lower bound
of 0. The procedure computes two-sided p-values otherwise. These statistics constitute Wald tests of the
covariance parameters, and they are valid only asymptotically.

CAUTION: Wald tests can be unreliable in small samples.

The ODS name of the “Covariance Parameter Estimates” table is CovParms.

Fit Statistics

The “Fit Statistics” table provides some statistics about the estimated mixed model. Expressions for the –2
times the log likelihood are provided in the section “Estimating Covariance Parameters in the Mixed Model”
on page 5297. If the log likelihood is an extremely large number, then PROC MIXED has deemed the
estimated V matrix to be singular. In this case, all subsequent results should be viewed with caution.

In addition, the “Fit Statistics” table lists three information criteria: AIC, AICC, and BIC, all in smaller-is-
better form. Expressions for these criteria are described under the IC option.

The ODS name of the “Model Fitting Information” table is FitStatistics.

Null Model Likelihood Ratio Test

If one covariance model is a submodel of another, you can carry out a likelihood ratio test for the significance
of the more general model by computing –2 times the difference between their log likelihoods. Then compare
this statistic to the �2 distribution with degrees of freedom equal to the difference in the number of parameters
for the two models.

This test is reported in the “Null Model Likelihood Ratio Test” table to determine whether it is necessary
to model the covariance structure of the data at all. The “Chi-Square” value is –2 times the log likelihood
from the null model minus –2 times the log likelihood from the fitted model, where the null model is the one
with only the fixed effects listed in the MODEL statement and R D �2I. This statistic has an asymptotic �2

distribution with q � 1 degrees of freedom, where q is the effective number of covariance parameters (those
not estimated to be on a boundary constraint). The “Pr > ChiSq” column contains the upper-tail area from
this distribution. This p-value can be used to assess the significance of the model fit.

This test is not produced for cases where the null hypothesis lies on the boundary of the parameter space,
which is typically for variance component models. This is because the standard asymptotic theory does not
apply in this case (Self and Liang 1987, Case 5).
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If you specify a PARMS statement, PROC MIXED constructs a likelihood ratio test between the best model
from the grid search and the final fitted model and reports the results in the “Parameter Search” table.

The ODS name of the “Null Model Likelihood Ratio Test” table is LRT.

Type 3 Tests of Fixed Effects

The “Type 3 Tests of Fixed Effects” table contains hypothesis tests for the significance of each of the fixed
effects—that is, those effects you specify in the MODEL statement. By default, PROC MIXED computes
these tests by first constructing a Type 3 L matrix (see Chapter 15, “The Four Types of Estimable Functions”)
for each effect. This L matrix is then used to compute the following F statistic:

F D
b̌0L0ŒL.X0bV�1X/�L0��Lb̌

r

where r D rank.L.X0bV�1X/�L0/. A p-value for the test is computed as the tail area beyond this statistic
from an F distribution with NDF and DDF degrees of freedom. The numerator degrees of freedom (NDF)
are the row rank of L, and the denominator degrees of freedom are computed by using one of the methods
described under the DDFM= option. Small values of the p-value (typically less than 0.05 or 0.01) indicate a
significant effect.

You can use the HTYPE= option in the MODEL statement to obtain tables of Type 1 (sequential) tests and
Type 2 (adjusted) tests in addition to or instead of the table of Type 3 (partial) tests.

You can use the CHISQ option in the MODEL statement to obtain Wald �2 tests of the fixed effects. These
are carried out by using the numerator of the F statistic and comparing it with the �2 distribution with NDF
degrees of freedom. It is more liberal than the F test because it effectively assumes infinite denominator
degrees of freedom.

The ODS names of the “Type 1 Tests of Fixed Effects” through the “Type 3 Tests of Fixed Effects” tables are
Tests1 through Tests3, respectively.

ODS Table Names
Each table created by PROC MIXED has a name associated with it, and you must use this name to reference
the table when using ODS statements. These names are listed in Table 65.26.

Table 65.26 ODS Tables Produced by PROC MIXED

Table Name Description Required Statement / Option

AccRates Acceptance rates for posterior sam-
pling

PRIOR

AsyCorr Asymptotic correlation matrix of
covariance parameters

PROC MIXED ASYCORR

AsyCov Asymptotic covariance matrix of
covariance parameters

PROC MIXED ASYCOV

Base Base densities used for posterior sam-
pling

PRIOR

Bound Computed bound for posterior rejec-
tion sampling

PRIOR
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Table 65.26 continued

Table Name Description Required Statement / Option

CholG Cholesky root of the estimated G ma-
trix

RANDOM / GC

CholR Cholesky root of blocks of the esti-
mated R matrix

REPEATED / RC

CholV Cholesky root of blocks of the esti-
mated V matrix

RANDOM / VC

ClassLevels Level information from the CLASS
statement

Default output

Coef L matrix coefficients E option in MODEL,
CONTRAST, ESTIMATE,
or LSMEANS

Contrasts Results from the CONTRAST
statements

CONTRAST

ConvergenceStatus Convergence status Default
CorrB Approximate correlation matrix of

fixed-effects parameter estimates
MODEL / CORRB

CovB Approximate covariance matrix of
fixed-effects parameter estimates

MODEL / COVB

CovParms Estimated covariance parameters Default output
Diffs Differences of LS-means LSMEANS / DIFF (or PDIFF)
Dimensions Dimensions of the model Default output
Estimates Results from ESTIMATE statements ESTIMATE
FitStatistics Fit statistics Default
G Estimated G matrix RANDOM / G
GCorr Correlation matrix from the

estimated G matrix
RANDOM / GCORR

HLM1 Type 1 Hotelling-Lawley-McKeon
tests of fixed effects

MODEL / HTYPE=1 and
REPEATED / HLM TYPE=UN

HLM2 Type 2 Hotelling-Lawley-McKeon
tests of fixed effects

MODEL / HTYPE=2 and
REPEATED / HLM TYPE=UN

HLM3 Type 3 Hotelling-Lawley-McKeon
tests of fixed effects

REPEATED / HLM TYPE=UN

HLPS1 Type 1 Hotelling-Lawley-Pillai-
Samson tests of fixed effects

MODEL / HTYPE=1 and
REPEATED / HLPS TYPE=UN

HLPS2 Type 2 Hotelling-Lawley-Pillai-
Samson tests of fixed effects

MODEL / HTYPE=1 and
REPEATED / HLPS TYPE=UN

HLPS3 Type 3 Hotelling-Lawley-Pillai-
Samson tests of fixed effects

REPEATED / HLPS TYPE=UN

Influence Influence diagnostics MODEL / INFLUENCE
InfoCrit Information criteria PROC MIXED IC
InvCholG Inverse Cholesky root of the

estimated G matrix
RANDOM / GCI

InvCholR Inverse Cholesky root of blocks of
the estimated R matrix

REPEATED / RCI
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Table 65.26 continued

Table Name Description Required Statement / Option

InvCholV Inverse Cholesky root of blocks of
the estimated V matrix

RANDOM / VCI

InvCovB Inverse of approximate covariance
matrix of fixed-effects parameter es-
timates

MODEL / COVBI

InvG Inverse of the estimated G
matrix

RANDOM / GI

InvR Inverse of blocks of the estimated R
matrix

REPEATED / RI

InvV Inverse of blocks of the estimated V
matrix

RANDOM / VI

IterHistory Iteration history Default output
LComponents Single-degree-of-freedom estimates

that correspond to rows of the L ma-
trix for fixed effects

MODEL / LCOMPONENTS

LRT Likelihood ratio test Default output
LSMeans LS-means LSMEANS
MMEq Mixed model equations PROC MIXED MMEQ
MMEqSol Mixed model equations solution PROC MIXED MMEQSOL
ModelInfo Model information Default output
NObs Number of observations read and

used
Default output

ParmSearch Parameter search values PARMS
Posterior Posterior sampling information PRIOR
Ranks Ranks of design matrices X and (XZ) PROC MIXED RANKS
R Blocks of the estimated R matrix REPEATED / R
RCorr Correlation matrix from blocks of the

estimated R matrix
REPEATED / RCORR

Search Posterior density search table PRIOR / PSEARCH
Slices Tests of LS-means slices LSMEANS / SLICE=
SolutionF Fixed-effects solution vector MODEL / S
SolutionR Random-effects solution vector RANDOM / S
Tests1 Type 1 tests of fixed effects MODEL / HTYPE=1
Tests2 Type 2 tests of fixed effects MODEL / HTYPE=2
Tests3 Type 3 tests of fixed effects Default output
Type1 Type 1 analysis of variance PROC MIXED METHOD=TYPE1
Type2 Type 2 analysis of variance PROC MIXED METHOD=TYPE2
Type3 Type 3 analysis of variance PROC MIXED METHOD=TYPE3
Trans Transformation of covariance param-

eters
PRIOR / PTRANS

V Blocks of the estimated V matrix RANDOM / V
VCorr Correlation matrix from blocks of the

estimated V matrix
RANDOM / VCORR
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In Table 65.26, “Coef” refers to multiple tables produced by the E, E1, E2, or E3 option in the MODEL
statement and the E option in the CONTRAST, ESTIMATE, and LSMEANS statements. You can create one
large data set of these tables with a statement similar to the following:

ods output Coef=c;

To create separate data sets, use the following statement:

ods output Coef(match_all)=c;

Here the resulting data sets are named C, C1, C2, etc. The same principles apply to data sets created from the
R, CholR, InvCholR, RCorr, InvR, V, CholV, InvCholV, VCorr, and InvV tables.

In Table 65.26, the following changes have occurred from SAS 6. The Predicted, PredMeans, and Sample
tables from SAS 6 no longer exist and have been replaced by output data sets; see descriptions of the MODEL
statement options OUTP= and OUTPM= and the PRIOR statement option OUT= for more details. The ML
and REML tables from SAS 6 have been replaced by the IterHistory table. The Tests, HLM, and HLPS tables
from SAS 6 have been renamed Tests3, HLM3, and HLPS3, respectively.

Table 65.27 lists the variable names associated with the data sets created when you use the ODS OUTPUT
option in conjunction with the preceding tables. In Table 65.27, n is used to denote a generic number that
depends on the particular data set and model you select, and it can assume a different value each time it is
used (even within the same table). The phrase model specific appears in rows of the affected tables to indicate
that columns in these tables depend on the variables you specify in the model.

CAUTION: There is a danger of name collisions with the variables in the model specific tables in Table 65.27
and variables in your input data set. You should avoid using input variables with the same names as the
variables in these tables.

Table 65.27 Variable Names for the ODS Tables Produced in
PROC MIXED

Table Name Variables

AsyCorr Row, CovParm, CovP1–CovPn
AsyCov Row, CovParm, CovP1–CovPn
Base Type, Parm1–Parmn
Bound Technique, Converge, Iterations, Evaluations, LogBound, CovP1–

CovPn, TCovP1–TCovPn
CholG Model specific, Effect, Subject, Sub1–Subn, Group, Group1–

Groupn, Row, Col1–Coln
CholR Index, Row, Col1–Coln
CholV Index, Row, Col1–Coln
ClassLevels Class, Levels, Values
Coef Model specific, LMatrix, Effect, Subject, Sub1–Subn, Group,

Group1–Groupn, Row1–Rown
Contrasts Label, NumDF, DenDF, ChiSquare, FValue, ProbChiSq, ProbF
CorrB Model specific, Effect, Row, Col1–Coln
CovB Model specific, Effect, Row, Col1–Coln
CovParms CovParm, Subject, Group, Estimate, StandardError, ZValue, ProbZ,

Alpha, Lower, Upper
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Table 65.27 continued

Table Name Variables

Diffs Model specific, Effect, Margins, ByLevel, AT variables, Diff, Stan-
dardError, DF, tValue, Tails, Probt, Adjustment, Adjp, Alpha,
Lower, Upper, AdjLow, AdjUpp

Dimensions Descr, Value
Estimates Label, Estimate, StandardError, DF, tValue, Tails, Probt, Alpha,

Lower, Upper
FitStatistics Descr, Value
G Model specific, Effect, Subject, Sub1–Subn, Group, Group1–

Groupn, Row, Col1–Coln
GCorr Model specific, Effect, Subject, Sub1–Subn, Group, Group1–

Groupn, Row, Col1–Coln
HLM1 Effect, NumDF, DenDF, FValue, ProbF
HLM2 Effect, NumDF, DenDF, FValue, ProbF
HLM3 Effect, NumDF, DenDF, FValue, ProbF
HLPS1 Effect, NumDF, DenDF, FValue, ProbF
HLPS2 Effect, NumDF, DenDF, FValue, ProbF
HLPS3 Effect, NumDF, DenDF, FValue, ProbF
Influence Dependent on option modifiers, Effect, Tuple, Obs1–Obsk, Level,

Iter, Index, Predicted, Residual, Leverage, PressRes, PRESS, Stu-
dent, RMSE, RStudent, CookD, DFFITS, MDFFITS, CovRatio,
CovTrace, CookDCP, MDFFITSCP, CovRatioCP, CovTraceCP, LD,
RLD, Parm1–Parmp, CovP1–CovPq, Notes

InfoCrit Neg2LogLike, Parms, AIC, AICC, HQIC, BIC, CAIC
InvCholG Model specific, Effect, Subject, Sub1–Subn, Group, Group1–

Groupn, Row, Col1–Coln
InvCholR Index, Row, Col1–Coln
InvCholV Index, Row, Col1–Coln
InvCovB Model specific, Effect, Row, Col1–Coln
InvG Model specific, Effect, Subject, Sub1–Subn, Group, Group1–

Groupn, Row, Col1–Coln
InvR Index, Row, Col1–Coln
InvV Index, Row, Col1–Coln
IterHistory CovP1–CovPn, Iteration, Evaluations, M2ResLogLike,

M2LogLike, Criterion
LComponents Effect, TestType, LIndex, Estimate, StdErr, DF, tValue, Probt
LRT DF, ChiSquare, ProbChiSq
LSMeans Model specific, Effect, Margins, ByLevel, AT variables, Estimate,

StandardError, DF, tValue, Probt, Alpha, Lower, Upper, Cov1–
Covn, Corr1–Corrn

MMEq Model specific, Effect, Subject, Sub1–Subn, Group, Group1–
Groupn, Row, Col1–Coln

MMEqSol Model specific, Effect, Subject, Sub1–Subn, Group, Group1–
Groupn, Row, Col1–Coln

ModelInfo Descr, Value
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Table 65.27 continued

Table Name Variables

Nobs Label, N, NObsRead, NObsUsed, SumFreqsRead, SumFreqsUsed
ParmSearch CovP1–CovPn, Var, ResLogLike, M2ResLogLike2, LogLike,

M2LogLike, LogDetH
Posterior Descr, Value
R Index, Row, Col1–Coln
RCorr Index, Row, Col1–Coln
Search Parm, TCovP1–TCovPn, Posterior
Slices Model specific, Effect, Margins, ByLevel, AT variables, NumDF,

DenDF, FValue, ProbF
SolutionF Model specific, Effect, Estimate, StandardError, DF, tValue, Probt,

Alpha, Lower, Upper
SolutionR Model specific, Effect, Subject, Sub1–Subn, Group, Group1–

Groupn, Estimate, StdErrPred, DF, tValue, Probt, Alpha, Lower,
Upper

Tests1 Effect, NumDF, DenDF, ChiSquare, FValue, ProbChiSq, ProbF
Tests2 Effect, NumDF, DenDF, ChiSquare, FValue, ProbChiSq, ProbF
Tests3 Effect, NumDF, DenDF, ChiSquare, FValue, ProbChiSq, ProbF
Type1 Source, DF, SS, MS, EMS, ErrorTerm, ErrorDF, FValue, ProbF
Type2 Source, DF, SS, MS, EMS, ErrorTerm, ErrorDF, FValue, ProbF
Type3 Source, DF, SS, MS, EMS, ErrorTerm, ErrorDF, FValue, ProbF
Trans Prior, TCovP, CovP1–CovPn
V Index, Row, Col1–Coln
VCorr Index, Row, Col1–Coln

Some of the variables listed in Table 65.27 are created only when you specify certain options in the relevant
PROC MIXED statements.

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

Some graphs are produced by default; other graphs are produced by using statements and options.
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ODS Graph Names

You can reference every graph produced through ODS Graphics with a name. The names of the graphs that
PROC MIXED generates are listed in Table 65.28, along with the required statements and options.

Table 65.28 Graphs Produced by PROC MIXED

ODS Graph Name Plot Description Statement or Option

Boxplot Box plots PLOTS=BOXPLOT

CovRatioPlot CovRatio statistics for fixed
effects or covariance parame-
ters

PLOTS=INFLUENCESTATPANEL(UNPACK)
and MODEL / INFLUENCE

CooksDPlot Cook’s D for fixed effects or
covariance parameters

PLOTS=INFLUENCESTATPANEL(UNPACK)
and MODEL / INFLUENCE

DistancePlot Likelihood or restricted likeli-
hood distance

MODEL / INFLUENCE

InfluenceEstPlot Panel of deletion estimates MODEL / INFLUENCE(EST)
or PLOTS=INFLUENCEESTPLOT and
MODEL / INFLUENCE

InfluenceEstPlot Parameter estimates after re-
moving observation or sets of
observations

PLOTS=INFLUENCEESTPLOT(UNPACK)
and MODEL / INFLUENCE

InfluenceStatPanel Panel of influence statistics MODEL / INFLUENCE

PearsonBoxPlot Box plot of Pearson residuals PLOTS=PEARSONPANEL(UNPACK BOX)

PearsonByPredicted Pearson residuals vs. pre-
dicted

PLOTS=PEARSONPANEL(UNPACK)

PearsonHistogram Histogram of Pearson residu-
als

PLOTS=PEARSONPANEL(UNPACK)

PearsonPanel Panel of Pearson residuals MODEL / RESIDUAL

PearsonQQplot Q-Q plot of Pearson residuals PLOTS=PEARSONPANEL(UNPACK)

PressPlot Plot of PRESS residuals or
PRESS statistic

PLOTS=PRESS and MODEL / INFLUENCE

ResidualBoxplot Box plot of (raw) residuals PLOTS=RESIDUALPANEL(UNPACK BOX)

ResidualByPredicted Residuals vs. predicted PLOTS=RESIDUALPANEL(UNPACK)

ResidualHistogram Histogram of raw residuals PLOTS=RESIDUALPANEL(UNPACK)

ResidualPanel Panel of (raw) residuals MODEL / RESIDUAL

ResidualQQplot Q-Q plot of raw residuals PLOTS=RESIDUALPANEL(UNPACK)

ScaledBoxplot Box plot of scaled residuals PLOTS=VCIRYPANEL(UNPACK BOX)

ScaledByPredicted Scaled residuals vs. predicted PLOTS=VCIRYPANEL(UNPACK)

ScaledHistogram Histogram of scaled residuals PLOTS=VCIRYPANEL(UNPACK)

ScaledQQplot Q-Q plot of scaled residuals PLOTS=VCIRYPANEL(UNPACK)

StudentBoxplot Box plot of studentized resid-
uals

PLOTS=STUDENTPANEL(UNPACK BOX)
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Table 65.28 continued

ODS Graph Name Plot Description Statement or Option

StudentByPredicted Studentized residuals vs. pre-
dicted

PLOTS=STUDENTPANEL(UNPACK)

StudentHistogram Histogram of studentized
residuals

PLOTS=STUDENTPANEL(UNPACK)

StudentPanel Panel of studentized residuals MODEL / RESIDUAL

StudentQQplot Q-Q plot of studentized resid-
uals

PLOTS=STUDENTPANEL(UNPACK)

VCIRYPanel Panel of scaled residuals MODEL / VCIRY

When ODS Graphics is enabled, the LSMESTIMATE and SLICE statements can produce plots that are
associated with their analyses. For information about these plots, see the sections “LSMESTIMATE
Statement” on page 476 and “SLICE Statement” on page 505 in Chapter 19, “Shared Concepts and Topics.”

Residual Plots

The MIXED procedure can generate panels of residual diagnostics. Each panel consists of a plot of residuals
versus predicted values, a histogram with normal density overlaid, a Q-Q plot, and summary residual and fit
statistics (Figure 65.15). The plots are produced even if the OUTP= and OUTPM= options in the MODEL
statement are not specified. Residual panels can be generated for marginal and conditional raw, studentized,
and Pearson residuals as well as for scaled residuals (see the section “Residual Diagnostics” on page 5308).

Recall the example in the section “Getting Started: MIXED Procedure” on page 5218. The following
statements generate several 2 � 2 panels of residual graphs:

ods graphics on;
proc mixed data=heights plots=studentpanel(marginal conditional);

class Family Gender;
model Height = Gender / residual;
random Family Family*Gender;

run;
ods graphics off;

The graphs are created when ODS Graphics is enabled. The panel of the studentized marginal residuals is
shown in Figure 65.15, and the panel of the studentized conditional residuals is shown in Figure 65.16.
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Figure 65.15 Panel of the Studentized (Marginal) Residuals

Since the fixed-effects part of the model comprises only an intercept and the gender effect, the marginal
mean takes on only two values, one for each gender. The “Residual Statistics” inset in the lower-right corner
provides descriptive statistics for the set of residuals that is displayed. Note that residuals in a mixed model
do not necessarily sum to zero, even if the model contains an intercept.
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Figure 65.16 Panel of the Conditional Studentized Residuals

Influence Plots

The graphical features of the MIXED procedure enable you to generate plots of influence diagnostics and of
deletion estimates. The type and number of plots produced depend on your modifiers of the INFLUENCE
option in the MODEL statement and on the PLOTS= option in the PROC MIXED statement. Plots related to
covariance parameters are produced only when diagnostics are computed by iterative methods (ITER=). The
estimates of the fixed effects—and covariance parameters when updates are iterative—are plotted when you
specify the ESTIMATES modifier or when you request PLOTS=INFLUENCEESTPLOT.

Two basic types of influence panels are shown in Figure 65.17 and Figure 65.18. The diagnostics panel
shows Cook’s D and CovRatio statistics for the fixed effects and the covariance parameters. For the SAS
statements that produce these influence panels, see Example 65.8. In this example, the impact of subjects
(Person) on the analysis is assessed. The Cook’s D statistic measures a subject’s impact on the estimates,
and the CovRatio statistic measures a subject’s impact on the precision of the estimates. Separate statistics
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are computed for the fixed effects and the covariance parameters. The CovRatio statistic has a threshold of
1.0. Values larger than 1.0 indicate that precision of the estimates is lost by exclusion of the observations
in question. Values smaller than 1.0 indicate that precision is gained by exclusion of the observations from
the analysis. For example, it is evident from Output 65.17 that person 20 has considerable impact on the
covariance parameter estimates and moderate influence on the fixed-effects estimates. Furthermore, exclusion
of this subject from the analysis increases the precision of the covariance parameters, whereas the effect on
the precision of the fixed effects is minor.

Output 65.18 shows another type of influence plot, a panel of the deletion estimates. Each plot within the
panel corresponds to one of the model parameters. A reference line is drawn at the estimate based on the full
data.

Figure 65.17 Influence Diagnostics



5330 F Chapter 65: The MIXED Procedure

Figure 65.18 Deletion Estimates

Computational Issues

Computational Method

In addition to numerous matrix-multiplication routines, PROC MIXED frequently uses the sweep operator
(Goodnight 1979) and the Cholesky root (Golub and Van Loan 1989). The routines perform a modified
W transformation (Goodnight and Hemmerle 1979) for G-side likelihood calculations and a direct method
for R-side likelihood calculations. For the Type 3 F tests, PROC MIXED uses the algorithm described in
Chapter 45, “The GLM Procedure.”

PROC MIXED uses a ridge-stabilized Newton-Raphson algorithm to optimize either a full (ML) or residual
(REML) likelihood function. The Newton-Raphson algorithm is preferred to the EM algorithm (Lindstrom
and Bates 1988). PROC MIXED profiles the likelihood with respect to the fixed effects and also with respect
to the residual variance whenever it appears reasonable to do so. The residual profiling can be avoided by
using the NOPROFILE option of the PROC MIXED statement. PROC MIXED uses the MIVQUE0 method
(Rao 1972; Giesbrecht 1989) to compute initial values.
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The likelihoods that PROC MIXED optimizes are usually well-defined continuous functions with a single
optimum. The Newton-Raphson algorithm typically performs well and finds the optimum in a few iterations.
It is a quadratically converging algorithm, meaning that the error of the approximation near the optimum
is squared at each iteration. The quadratic convergence property is evident when the convergence criterion
drops to zero by factors of 10 or more.

Table 65.29 Notation for Order Calculations

Symbol Number

p Columns of X
g Columns of Z
N Observations
q Covariance parameters
t Maximum observations per subject
S Subjects

Using the notation from Table 65.29, the following are estimates of the computational speed of the algorithms
used in PROC MIXED. For likelihood calculations, the crossproducts matrix construction is of order
N.p C g/2 and the sweep operations are of order .p C g/3. The first derivative calculations for parameters
in G are of order qg3 for ML and q.g3 C pg2 C p2g/ for REML. If you specify a subject effect in the
RANDOM statement and if you are not using the REPEATED statement, then replace g with g=S and q with
qS in these calculations. The first derivative calculations for parameters in R are of order qS.t3Cgt2Cg2t /
for ML and qS.t3 C .p C g/t2 C .p2 C g2/t/ for REML. For the second derivatives, replace q with
q.q C 1/=2 in the first derivative expressions. When you specify both G- and R-side parameters (that is,
when you use both the RANDOM and REPEATED statements), then additional calculations are required of
an order equal to the sum of the orders for G and R. Considerable execution times can result in this case.

For further details about the computational techniques used in PROC MIXED, see Wolfinger, Tobias, and
Sall (1994).

Parameter Constraints

By default, some covariance parameters are assumed to satisfy certain boundary constraints during the
Newton-Raphson algorithm. For example, variance components are constrained to be nonnegative, and
autoregressive parameters are constrained to be between –1 and 1. You can remove these constraints with
the NOBOUND option in the PARMS statement (or with the NOBOUND option in the PROC MIXED
statement), but this can lead to estimates that produce an infinite likelihood. You can also introduce or change
boundary constraints with the LOWERB= and UPPERB= options in the PARMS statement.

During the Newton-Raphson algorithm, a parameter might be set equal to one of its boundary constraints for
a few iterations and then it might move away from the boundary. You see a missing value in the Criterion
column of the “Iteration History” table whenever a boundary constraint is dropped.

For some data sets the final estimate of a parameter might equal one of its boundary constraints. This is
usually not a cause for concern, but it might lead you to consider a different model. For instance, a variance
component estimate can equal zero; in this case, you might want to drop the corresponding random effect
from the model. However, be aware that changing the model in this fashion can affect degrees-of-freedom
calculations.
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Convergence Problems

For some data sets, the Newton-Raphson algorithm can fail to converge. Nonconvergence can result from a
number of causes, including flat or ridged likelihood surfaces and ill-conditioned data.

It is also possible for PROC MIXED to converge to a point that is not the global optimum of the likelihood,
although this usually occurs only with the spatial covariance structures.

If you experience convergence problems, the following points might be helpful:

• One useful tool is the PARMS statement, which lets you input initial values for the covariance
parameters and performs a grid search over the likelihood surface.

• Sometimes the Newton-Raphson algorithm does not perform well when two of the covariance parame-
ters are on a different scale—that is, when they are several orders of magnitude apart. This is because
the Hessian matrix is processed jointly for the two parameters, and elements of it corresponding to
one of the parameters can become close to internal tolerances in PROC MIXED. In this case, you can
improve stability by rescaling the effects in the model so that the covariance parameters are on the
same scale.

• Data that are extremely large or extremely small can adversely affect results because of the internal
tolerances in PROC MIXED. Rescaling it can improve stability.

• For stubborn problems, you might want to specify ODS OUTPUT COVPARMS=data-set-name to
output the “Covariance Parameter Estimates” table as a precautionary measure. That way, if the
problem does not converge, you can read the final parameter values back into a new run with the
PARMSDATA= option in the PARMS statement.

• Fisher scoring can be more robust than Newton-Raphson with poor MIVQUE(0) starting values.
Specifying a SCORING= value of 5 or so might help to recover from poor starting values.

• Tuning the singularity options SINGULAR=, SINGCHOL=, and SINGRES= in the MODEL statement
can improve the stability of the optimization process.

• Tuning the MAXITER= and MAXFUNC= options in the PROC MIXED statement can save resources.
Also, the ITDETAILS option displays the values of all the parameters at each iteration.

• Using the NOPROFILE and NOBOUND options in the PROC MIXED statement might help conver-
gence, although they can produce unusual results.

• Although the CONVH convergence criterion usually gives the best results, you might want to try
CONVF or CONVG, possibly along with the ABSOLUTE option.

• If the convergence criterion reaches a relatively small value such as 1E–7 but never gets lower than
1E–8, you might want to specify CONVH=1E–6 in the PROC MIXED statement to get results; however,
interpret the results with caution.

• An infinite likelihood during the iteration process means that the Newton-Raphson algorithm has
stepped into a region where either the R or V matrix is nonpositive definite. This is usually no cause
for concern as long as iterations continue. If PROC MIXED stops because of an infinite likelihood,
recheck your model to make sure that no observations from the same subject are producing identical
rows in R or V and that you have enough data to estimate the particular covariance structure you
have selected. Any time that the final estimated likelihood is infinite, subsequent results should be
interpreted with caution.
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• A nonpositive definite Hessian matrix can indicate a surface saddlepoint or linear dependencies among
the parameters.

• A warning message about the singularities of X changing indicates that there is some linear dependency
in the estimate of X0bV�1X that is not found in X0X. This can adversely affect the likelihood calculations
and optimization process. If you encounter this problem, make sure that your model specification is
reasonable and that you have enough data to estimate the particular covariance structure you have
selected. Rearranging effects in the MODEL statement so that the most significant ones are first can
help, because PROC MIXED sweeps the estimate of X0V�1X in the order of the MODEL effects and
the sweep is more stable if larger pivots are dealt with first. If this does not help, specifying starting
values with the PARMS statement can place the optimization on a different and possibly more stable
path.

• Lack of convergence can indicate model misspecification or a violation of the normality assumption.

Memory

Let p be the number of columns in X, and let g be the number of columns in Z. For large models, most of the
memory resources are required for holding symmetric matrices of order p, g, and p C g. The approximate
memory requirement in bytes is

40.p2 C g2/C 32.p C g/2

If you have a large model that exceeds the memory capacity of your computer, see the suggestions listed
under “Computing Time.”

Computing Time

PROC MIXED is computationally intensive, and execution times can be long. In addition to the CPU time
used in collecting sums and crossproducts and in solving the mixed model equations (as in PROC GLM),
considerable CPU time is often required to compute the likelihood function and its derivatives. These latter
computations are performed for every Newton-Raphson iteration.

If you have a model that takes too long to run, the following suggestions can be helpful:

• Examine the “Model Information” table to find out the number of columns in the X and Z matrices.
A large number of columns in either matrix can greatly increase computing time. You might want to
eliminate some higher-order effects if they are too large.

• If you have a Z matrix with a lot of columns, use the DDFM=BW option in the MODEL statement to
eliminate the time required for the containment method.

• If possible, “factor out” a common effect from the effects in the RANDOM statement and make it the
SUBJECT= effect. This creates a block-diagonal G matrix and can often speed calculations.

• If possible, use the same or nested SUBJECT= effects in all RANDOM and REPEATED statements.

• If your data set is very large, you might want to analyze it in pieces. The BY statement can help
implement this strategy.
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• In general, specify random effects with a lot of levels in the REPEATED statement and those with a
few levels in the RANDOM statement.

• The METHOD=MIVQUE0 option runs faster than either the METHOD=REML or METHOD=ML
option because it is noniterative.

• You can specify known values for the covariance parameters by using the HOLD= or NOITER option
in the PARMS statement or the GDATA= option in the RANDOM statement. This eliminates the need
for iteration.

• The LOGNOTE option in the PROC MIXED statement writes periodic messages to the SAS log
concerning the status of the calculations. It can help you diagnose where the slowdown is occurring.

Examples: MIXED Procedure
The following are basic examples of the use of PROC MIXED. More examples and details can be found
in Littell et al. (2006); Wolfinger (1997); Verbeke and Molenberghs (1997, 2000); Murray (1998); Singer
(1998); Sullivan, Dukes, and Losina (1999), and Brown and Prescott (1999).

Example 65.1: Split-Plot Design
PROC MIXED can fit a variety of mixed models. One of the most common mixed models is the split-plot
design. The split-plot design involves two experimental factors, A and B. Levels of A are randomly assigned
to whole plots (main plots), and levels of B are randomly assigned to split plots (subplots) within each whole
plot. The design provides more precise information about B than about A, and it often arises when A can be
applied only to large experimental units. An example is where A represents irrigation levels for large plots of
land and B represents different crop varieties planted in each large plot.

Consider the following data from Stroup (1989a), which arise from a balanced split-plot design with the
whole plots arranged in a randomized complete-block design. The variable A is the whole-plot factor, and the
variable B is the subplot factor. A traditional analysis of these data involves the construction of the whole-plot
error (A*Block) to test A and the pooled residual error (B*Block and A*B*Block) to test B and A*B. To carry
out this analysis with PROC GLM, you must use a TEST statement to obtain the correct F test for A.

Performing a mixed model analysis with PROC MIXED eliminates the need for the error term construction.
PROC MIXED estimates variance components for Block, A*Block, and the residual, and it automatically
incorporates the correct error terms into test statistics.

The following statements create a DATA set for a split-plot design with four blocks, three whole-plot levels,
and two subplot levels:

data sp;
input Block A B Y @@;
datalines;

1 1 1 56 1 1 2 41
1 2 1 50 1 2 2 36
1 3 1 39 1 3 2 35
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2 1 1 30 2 1 2 25
2 2 1 36 2 2 2 28
2 3 1 33 2 3 2 30
3 1 1 32 3 1 2 24
3 2 1 31 3 2 2 27
3 3 1 15 3 3 2 19
4 1 1 30 4 1 2 25
4 2 1 35 4 2 2 30
4 3 1 17 4 3 2 18
;

The following statements fit the split-plot model assuming random block effects:

proc mixed;
class A B Block;
model Y = A B A*B;
random Block A*Block;

run;

The variables A, B, and Block are listed as classification variables in the CLASS statement. The columns of
model matrix X consist of indicator variables corresponding to the levels of the fixed effects A, B, and A*B
listed on the right side of the MODEL statement. The dependent variable Y is listed on the left side of the
MODEL statement.

The columns of the model matrix Z consist of indicator variables corresponding to the levels of the random
effects Block and A*Block. The G matrix is diagonal and contains the variance components of Block and
A*Block. The R matrix is also diagonal and contains the residual variance.

The SAS statements produce Output 65.1.1–Output 65.1.8.

The “Model Information” table in Output 65.1.1 lists basic information about the split-plot model. REML is
used to estimate the variance components, and the residual variance is profiled from the optimization.

Output 65.1.1 Results for Split-Plot Analysis

The Mixed ProcedureThe Mixed Procedure

Model Information

Data Set WORK.SP

Dependent Variable Y

Covariance Structure Variance Components

Estimation Method REML

Residual Variance Method Profile

Fixed Effects SE Method Model-Based

Degrees of Freedom Method Containment

The “Class Level Information” table in Output 65.1.2 lists the levels of all variables specified in the CLASS
statement. You can check this table to make sure that the data are correct.
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Output 65.1.2 Split-Plot Example (continued)

Class Level
Information

Class Levels Values

A 3 1 2 3

B 2 1 2

Block 4 1 2 3 4

The “Dimensions” table in Output 65.1.3 lists the magnitudes of various vectors and matrices. The X matrix
is seen to be 24 � 12, and the Z matrix is 24 � 16.

Output 65.1.3 Split-Plot Example (continued)

Dimensions

Covariance Parameters 3

Columns in X 12

Columns in Z 16

Subjects 1

Max Obs per Subject 24

The “Number of Observations” table in Output 65.1.4 shows that all observations read from the data set are
used in the analysis.

Output 65.1.4 Split-Plot Example (continued)

Number of Observations

Number of Observations Read 24

Number of Observations Used 24

Number of Observations Not Used 0

PROC MIXED estimates the variance components for Block, A*Block, and the residual by REML. The
REML estimates are the values that maximize the likelihood of a set of linearly independent error contrasts,
and they provide a correction for the downward bias found in the usual maximum likelihood estimates. The
objective function is –2 times the logarithm of the restricted likelihood, and PROC MIXED minimizes this
objective function to obtain the estimates.

The minimization method is the Newton-Raphson algorithm, which uses the first and second derivatives of
the objective function to iteratively find its minimum. The “Iteration History” table in Output 65.1.5 records
the steps of that optimization process. For this example, only one iteration is required to obtain the estimates.
The Evaluations column reveals that the restricted likelihood is evaluated once for each of the iterations. A
criterion of 0 indicates that the Newton-Raphson algorithm has converged.

Output 65.1.5 Split-Plot Analysis (continued)

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 139.81461222

1 1 119.76184570 0.00000000

Convergence criteria met.
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The REML estimates for the variance components of Block, A*Block, and the residual are 62.40, 15.38,
and 9.36, respectively, as listed in the Estimate column of the “Covariance Parameter Estimates” table in
Output 65.1.6.

Output 65.1.6 Split-Plot Analysis (continued)

Covariance
Parameter
Estimates

Cov Parm Estimate

Block 62.3958

A*Block 15.3819

Residual 9.3611

The “Fit Statistics” table in Output 65.1.7 lists several pieces of information about the fitted mixed model,
including the residual log likelihood. The Akaike (AIC) and Bayesian (BIC) information criteria can be used
to compare different models; the ones with smaller values are preferred. The AICC information criteria is a
small-sample bias-adjusted form of the Akaike criterion (Hurvich and Tsai 1989).

Output 65.1.7 Split-Plot Analysis (continued)

Fit Statistics

-2 Res Log Likelihood 119.8

AIC (Smaller is Better) 125.8

AICC (Smaller is Better) 127.5

BIC (Smaller is Better) 123.9

Finally, the fixed effects are tested by using Type 3 estimable functions (Output 65.1.8).

Output 65.1.8 Split-Plot Analysis (continued)

Type 3 Tests of Fixed Effects

Effect
Num

DF
Den

DF F Value Pr > F

A 2 6 4.07 0.0764

B 1 9 19.39 0.0017

A*B 2 9 4.02 0.0566

The tests match the one obtained from the following PROC GLM statements:

proc glm data=sp;
class A B Block;
model Y = A B A*B Block A*Block;
test h=A e=A*Block;

run;

You can continue this analysis by producing solutions for the fixed and random effects and then testing
various linear combinations of them by using the CONTRAST and ESTIMATE statements. If you use
the same CONTRAST and ESTIMATE statements with PROC GLM, the test statistics correspond to the
fixed-effects-only model. The test statistics from PROC MIXED incorporate the random effects.
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The various “inference space” contrasts given by Stroup (1989a) can be implemented via the ESTIMATE
statement. Consider the following examples:

proc mixed data=sp;
class A B Block;
model Y = A B A*B;
random Block A*Block;
estimate 'a1 mean narrow'

intercept 1 A 1 B .5 .5 A*B .5 .5 |
Block .25 .25 .25 .25
A*Block .25 .25 .25 .25 0 0 0 0 0 0 0 0;

estimate 'a1 mean intermed'
intercept 1 A 1 B .5 .5 A*B .5 .5 |
Block .25 .25 .25 .25;

estimate 'a1 mean broad'
intercept 1 a 1 b .5 .5 A*B .5 .5;

run;

These statements result in Output 65.1.9.

Output 65.1.9 Inference Space Results

The Mixed ProcedureThe Mixed Procedure

Estimates

Label Estimate
Standard

Error DF t Value Pr > |t|

a1 mean narrow 32.8750 1.0817 9 30.39 <.0001

a1 mean intermed 32.8750 2.2396 9 14.68 <.0001

a1 mean broad 32.8750 4.5403 9 7.24 <.0001

Note that all the estimates are equal, but their standard errors increase with the size of the inference space.
The narrow inference space consists of the observed levels of Block and A*Block, and the t-statistic value of
30.39 applies only to these levels. This is the same t statistic computed by PROC GLM, because it computes
standard errors from the narrow inference space. The intermediate inference space consists of the observed
levels of Block and the entire population of levels from which A*Block are sampled. The t-statistic value of
14.68 applies to this intermediate space. The broad inference space consists of arbitrary random levels of
both Block and A*Block, and the t-statistic value of 7.24 is appropriate. Note that the larger the inference
space, the weaker the conclusion. However, the broad inference space is usually the one of interest, and
even in this space conclusive results are common. The highly significant p-value for ’a1 mean broad’ is an
example. You can also obtain the ’a1 mean broad’ result by specifying A in an LSMEANS statement. For
more discussion of the inference space concept, see McLean, Sanders, and Stroup (1991).

The following statements illustrate another feature of the RANDOM statement. Recall that the basic
statements for a split-plot design with whole plots arranged in randomized blocks are as follows.

proc mixed;
class A B Block;
model Y = A B A*B;
random Block A*Block;

run;
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An equivalent way of specifying this model is as follows:

/* equivalent model */
proc mixed data=sp;

class A B Block;
model Y = A B A*B;
random intercept A / subject=Block;

run;

In general, if all of the effects in the RANDOM statement can be nested within one effect, you can specify
that one effect by using the SUBJECT= option. The subject effect is, in a sense, “factored out” of the
random effects. The specification that uses the SUBJECT= effect can result in faster execution times for large
problems because PROC MIXED is able to perform the likelihood calculations separately for each subject.

Example 65.2: Repeated Measures
The following data are from Pothoff and Roy (1964) and consist of growth measurements for 11 girls and 16
boys at ages 8, 10, 12, and 14. Some of the observations are suspect (for example, the third observation for
person 20); however, all of the data are used here for comparison purposes.

The analysis strategy employs a linear growth curve model for the boys and girls as well as a variance-
covariance model that incorporates correlations for all of the observations arising from the same person. The
data are assumed to be Gaussian, and their likelihood is maximized to estimate the model parameters. For
overviews of this approach to repeated measures, see Jennrich and Schluchter (1986); Louis (1988); Crowder
and Hand (1990); Diggle, Liang, and Zeger (1994); Everitt (1995). Jennrich and Schluchter present results
for the Pothoff and Roy data from various covariance structures. The PROC MIXED statements to fit an
unstructured variance matrix (their Model 2) are as follows:

data pr;
input Person Gender $ y1 y2 y3 y4;
y=y1; Age=8; output;
y=y2; Age=10; output;
y=y3; Age=12; output;
y=y4; Age=14; output;
drop y1-y4;
datalines;

1 F 21.0 20.0 21.5 23.0
2 F 21.0 21.5 24.0 25.5
3 F 20.5 24.0 24.5 26.0
4 F 23.5 24.5 25.0 26.5
5 F 21.5 23.0 22.5 23.5
6 F 20.0 21.0 21.0 22.5
7 F 21.5 22.5 23.0 25.0
8 F 23.0 23.0 23.5 24.0
9 F 20.0 21.0 22.0 21.5

10 F 16.5 19.0 19.0 19.5
11 F 24.5 25.0 28.0 28.0
12 M 26.0 25.0 29.0 31.0
13 M 21.5 22.5 23.0 26.5
14 M 23.0 22.5 24.0 27.5
15 M 25.5 27.5 26.5 27.0
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16 M 20.0 23.5 22.5 26.0
17 M 24.5 25.5 27.0 28.5
18 M 22.0 22.0 24.5 26.5
19 M 24.0 21.5 24.5 25.5
20 M 23.0 20.5 31.0 26.0
21 M 27.5 28.0 31.0 31.5
22 M 23.0 23.0 23.5 25.0
23 M 21.5 23.5 24.0 28.0
24 M 17.0 24.5 26.0 29.5
25 M 22.5 25.5 25.5 26.0
26 M 23.0 24.5 26.0 30.0
27 M 22.0 21.5 23.5 25.0
;

proc mixed data=pr method=ml covtest;
class Person Gender;
model y = Gender Age Gender*Age / s;
repeated / type=un subject=Person r;

run;

To follow Jennrich and Schluchter, this example uses maximum likelihood (METHOD=ML) instead of the
default REML to estimate the unknown covariance parameters. The COVTEST option requests asymptotic
tests of all the covariance parameters.

The MODEL statement first lists the dependent variable Y. The fixed effects are then listed after the equal sign.
The variable Gender requests a different intercept for the girls and boys, Age models an overall linear growth
trend, and Gender*Age makes the slopes different over time. It is actually not necessary to specify Age
separately, but doing so enables PROC MIXED to carry out a test for heterogeneous slopes. The SOLUTION
option requests the display of the fixed-effects solution vector.

The REPEATED statement contains no effects, taking advantage of the default assumption that the obser-
vations are ordered similarly for each subject. The TYPE=UN option requests an unstructured block for
each SUBJECT=Person. The R matrix is, therefore, block diagonal with 27 blocks, each block consisting of
identical 4�4 unstructured matrices. The 10 parameters of these unstructured blocks make up the covariance
parameters estimated by maximum likelihood. The R option requests that the first block of R be displayed.

The results from this analysis are shown in Output 65.2.1–Output 65.2.9.

Output 65.2.1 Repeated Measures Analysis with Unstructured Covariance Matrix

The Mixed ProcedureThe Mixed Procedure

Model Information

Data Set WORK.PR

Dependent Variable y

Covariance Structure Unstructured

Subject Effect Person

Estimation Method ML

Residual Variance Method None

Fixed Effects SE Method Model-Based

Degrees of Freedom Method Between-Within

In Output 65.2.1, the covariance structure is listed as “Unstructured,” and no residual variance is used with
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this structure. The default degrees-of-freedom method here is “Between-Within.”

Output 65.2.2 Repeated Measures Analysis (continued)

Class Level Information

Class Levels Values

Person 27 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Gender 2 F M

In Output 65.2.2, note that Person has 27 levels and Gender has 2.

Output 65.2.3 Repeated Measures Analysis (continued)

Dimensions

Covariance Parameters 10

Columns in X 6

Columns in Z 0

Subjects 27

Max Obs per Subject 4

In Output 65.2.3, the 10 covariance parameters result from the 4 � 4 unstructured blocks of R. There is no Z
matrix for this model, and each of the 27 subjects has a maximum of 4 observations.

Output 65.2.4 Repeated Measures Analysis (continued)

Number of Observations

Number of Observations Read 108

Number of Observations Used 108

Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 478.24175986

1 2 419.47721707 0.00000152

2 1 419.47704812 0.00000000

Convergence criteria met.

Three Newton-Raphson iterations are required to find the maximum likelihood estimates (Output 65.2.4).
The default relative Hessian criterion has a final value less than 1E–8, indicating the convergence of the
Newton-Raphson algorithm and the attainment of an optimum.

Output 65.2.5 Repeated Measures Analysis (continued)

Estimated R Matrix for Person 1

Row Col1 Col2 Col3 Col4

1 5.1192 2.4409 3.6105 2.5222

2 2.4409 3.9279 2.7175 3.0624

3 3.6105 2.7175 5.9798 3.8235

4 2.5222 3.0624 3.8235 4.6180
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The 4�4 matrix in Output 65.2.5 is the estimated unstructured covariance matrix. It is the estimate of the first
block of R, and the other 26 blocks all have the same estimate.

Output 65.2.6 Repeated Measures Analysis (continued)

Covariance Parameter Estimates

Cov Parm Subject Estimate
Standard

Error
Z

Value Pr Z

UN(1,1) Person 5.1192 1.4169 3.61 0.0002

UN(2,1) Person 2.4409 0.9835 2.48 0.0131

UN(2,2) Person 3.9279 1.0824 3.63 0.0001

UN(3,1) Person 3.6105 1.2767 2.83 0.0047

UN(3,2) Person 2.7175 1.0740 2.53 0.0114

UN(3,3) Person 5.9798 1.6279 3.67 0.0001

UN(4,1) Person 2.5222 1.0649 2.37 0.0179

UN(4,2) Person 3.0624 1.0135 3.02 0.0025

UN(4,3) Person 3.8235 1.2508 3.06 0.0022

UN(4,4) Person 4.6180 1.2573 3.67 0.0001

The “Covariance Parameter Estimates” table in Output 65.2.6 lists the 10 estimated covariance parameters in
order; note their correspondence to the first block of R displayed in Output 65.2.5. The parameter estimates
are labeled according to their location in the block in the Cov Parm column, and all of these estimates are
associated with Person as the subject effect. The Std Error column lists approximate standard errors of the
covariance parameters obtained from the inverse Hessian matrix. These standard errors lead to approximate
Wald Z statistics, which are compared with the standard normal distribution The results of these tests indicate
that all the parameters are significantly different from 0; however, the Wald test can be unreliable in small
samples.

To carry out Wald tests of various linear combinations of these parameters, use the following procedure. First,
run the statements again, adding the ASYCOV option and an ODS statement:

ods output CovParms=cp AsyCov=asy;
proc mixed data=pr method=ml covtest asycov;

class Person Gender;
model y = Gender Age Gender*Age / s;
repeated / type=un subject=Person r;

run;

This creates two data sets, cp and asy, which contain the covariance parameter estimates and their asymptotic
variance covariance matrix, respectively. Then read these data sets into the SAS/IML matrix programming
language as follows:

proc iml;
use cp;
read all var {Estimate} into est;
use asy;
read all var ('CovP1':'CovP10') into asy;

quit;

You can then construct your desired linear combinations and corresponding quadratic forms with the asy
matrix.
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Output 65.2.7 Repeated Measures Analysis (continued)

Fit Statistics

-2 Log Likelihood 419.5

AIC (Smaller is Better) 447.5

AICC (Smaller is Better) 452.0

BIC (Smaller is Better) 465.6

Null Model Likelihood Ratio
Test

DF Chi-Square Pr > ChiSq

9 58.76 <.0001

The null model likelihood ratio test (LRT) in Output 65.2.7 is highly significant for this model, indicating
that the unstructured covariance matrix is preferred to the diagonal matrix of the ordinary least squares null
model. The degrees of freedom for this test is 9, which is the difference between 10 and the 1 parameter for
the null model’s diagonal matrix.

Output 65.2.8 Repeated Measures Analysis (continued)

Solution for Fixed Effects

Effect Gender Estimate
Standard

Error DF t Value Pr > |t|

Intercept 15.8423 0.9356 25 16.93 <.0001

Gender F 1.5831 1.4658 25 1.08 0.2904

Gender M 0 . . . .

Age 0.8268 0.07911 25 10.45 <.0001

Age*Gender F -0.3504 0.1239 25 -2.83 0.0091

Age*Gender M 0 . . . .

The “Solution for Fixed Effects” table in Output 65.2.8 lists the solution vector for the fixed effects. The
estimate of the boys’ intercept is 15.8423, while that for the girls is 15:8423C 1:5831 D 17:0654. Similarly,
the estimate for the boys’ slope is 0.8268, while that for the girls is 0:8268 � 0:3504 D 0:4764. Thus the
girls’ starting point is larger than that for the boys, but their growth rate is about half that of the boys.

Note that two of the estimates equal 0; this is a result of the overparameterized model used by PROC MIXED.
You can obtain a full-rank parameterization by using the following MODEL statement:

model y = Gender Gender*Age / noint s;

Here, the NOINT option causes the different intercepts to be fit directly as the two levels of Gender. However,
this alternative specification results in different tests for these effects.

Output 65.2.9 Repeated Measures Analysis (continued)

Type 3 Tests of Fixed Effects

Effect
Num

DF
Den

DF F Value Pr > F

Gender 1 25 1.17 0.2904

Age 1 25 110.54 <.0001

Age*Gender 1 25 7.99 0.0091
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The “Type 3 Tests of Fixed Effects” table in Output 65.2.9 displays Type 3 tests for all of the fixed effects.
These tests are partial in the sense that they account for all of the other fixed effects in the model. In addition,
you can use the HTYPE= option in the MODEL statement to obtain Type 1 (sequential) or Type 2 (also
partial) tests of effects.

It is usually best to consider higher-order terms first, and in this case the Age*Gender test reveals a difference
between the slopes that is statistically significant at the 1% level. Note that the p-value for this test (0.0091) is
the same as the p-value in the “Age*Gender F” row in the “Solution for Fixed Effects” table (Output 65.2.8)
and that the F statistic (7.99) is the square of the t statistic (–2.83), ignoring rounding error. Similar
connections are evident among the other rows in these two tables.

The Age test is one for an overall growth curve accounting for possible heterogeneous slopes, and it is highly
significant. Finally, the Gender row tests the null hypothesis of a common intercept, and this hypothesis
cannot be rejected from these data.

As an alternative to the F tests shown here, you can carry out likelihood ratio tests of various hypotheses
by fitting the reduced models, subtracting –2 log likelihoods, and comparing the resulting statistics with �2

distributions.

Since the different levels of the repeated effect represent different years, it is natural to try fitting a time series
model to the data within each subject. To obtain time series structures in R, you can replace TYPE=UN
with TYPE=AR(1) or TYPE=TOEP to obtain the first- or nth-order autoregressive covariance matrices,
respectively. For example, the statements to fit an AR(1) structure are as follows:

/* first-order autoregressive */
proc mixed data=pr method=ml;

class Person Gender;
model y = Gender Age Gender*Age / s;
repeated / type=ar(1) sub=Person r;

run;

To fit a random coefficients model, use the following statements:

/* random coefficients model */
proc mixed data=pr method=ml;

class Person Gender;
model y = Gender Age Gender*Age / s;
random intercept Age / type=un sub=Person g;

run;

This specifies an unstructured covariance matrix for the random intercept and slope. In mixed model notation,
G is block diagonal with identical 2�2 unstructured blocks for each person. By default, R becomes �2I. See
Example 65.5 for further information about this model.

Finally, you can fit a compound symmetry structure by using TYPE=CS, as follows:

proc mixed data=pr method=ml covtest;
class Person Gender;
model y = Gender Age Gender*Age / s;
repeated / type=cs subject=Person r;

run;

The results from this analysis are shown in Output 65.2.10–Output 65.2.17.

The “Model Information” table in Output 65.2.10 is the same as before except for the change in “Covariance
Structure.”
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Output 65.2.10 Repeated Measures Analysis with Compound Symmetry Structure

The Mixed ProcedureThe Mixed Procedure

Model Information

Data Set WORK.PR

Dependent Variable y

Covariance Structure Compound Symmetry

Subject Effect Person

Estimation Method ML

Residual Variance Method Profile

Fixed Effects SE Method Model-Based

Degrees of Freedom Method Between-Within

The “Dimensions” table in Output 65.2.11 shows that there are only two covariance parameters in the
compound symmetry model; this covariance structure has common variance and common covariance.

Output 65.2.11 Analysis with Compound Symmetry (continued)

Class Level Information

Class Levels Values

Person 27 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Gender 2 F M

Dimensions

Covariance Parameters 2

Columns in X 6

Columns in Z 0

Subjects 27

Max Obs per Subject 4

Number of Observations

Number of Observations Read 108

Number of Observations Used 108

Number of Observations Not Used 0

Since the data are balanced, only one step is required to find the estimates (Output 65.2.12).

Output 65.2.12 Analysis with Compound Symmetry (continued)

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 478.24175986

1 1 428.63905802 0.00000000

Convergence criteria met.

Output 65.2.13 displays the estimated R matrix for the first subject. Note the compound symmetry structure
here, which consists of a common covariance with a diagonal enhancement.
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Output 65.2.13 Analysis with Compound Symmetry (continued)

Estimated R Matrix for Person 1

Row Col1 Col2 Col3 Col4

1 4.9052 3.0306 3.0306 3.0306

2 3.0306 4.9052 3.0306 3.0306

3 3.0306 3.0306 4.9052 3.0306

4 3.0306 3.0306 3.0306 4.9052

The common covariance is estimated to be 3.0306, as listed in the CS row of the “Covariance Parameter
Estimates” table in Output 65.2.14, and the residual variance is estimated to be 1.8746, as listed in the
Residual row. You can use these two numbers to estimate the intraclass correlation coefficient (ICC) for
this model. Here, the ICC estimate equals 3:0306=.3:0306C 1:8746/ D 0:6178. You can also obtain this
number by adding the RCORR option to the REPEATED statement.

Output 65.2.14 Analysis with Compound Symmetry (continued)

Covariance Parameter Estimates

Cov Parm Subject Estimate
Standard

Error
Z

Value Pr Z

CS Person 3.0306 0.9552 3.17 0.0015

Residual 1.8746 0.2946 6.36 <.0001

In the case shown in Output 65.2.15, the null model LRT has only one degree of freedom, corresponding to
the common covariance parameter. The test indicates that modeling this extra covariance is superior to fitting
the simple null model.

Output 65.2.15 Analysis with Compound Symmetry (continued)

Fit Statistics

-2 Log Likelihood 428.6

AIC (Smaller is Better) 440.6

AICC (Smaller is Better) 441.5

BIC (Smaller is Better) 448.4

Null Model Likelihood Ratio
Test

DF Chi-Square Pr > ChiSq

1 49.60 <.0001

Note that the fixed-effects estimates and their standard errors (Output 65.2.16) are not very different from
those in the preceding unstructured example (Output 65.2.8).
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Output 65.2.16 Analysis with Compound Symmetry (continued)

Solution for Fixed Effects

Effect Gender Estimate
Standard

Error DF t Value Pr > |t|

Intercept 16.3406 0.9631 25 16.97 <.0001

Gender F 1.0321 1.5089 25 0.68 0.5003

Gender M 0 . . . .

Age 0.7844 0.07654 79 10.25 <.0001

Age*Gender F -0.3048 0.1199 79 -2.54 0.0130

Age*Gender M 0 . . . .

The F tests shown in Output 65.2.17 are also similar to those from the preceding unstructured example
(Output 65.2.9). Again, the slopes are significantly different but the intercepts are not.

Output 65.2.17 Analysis with Compound Symmetry (continued)

Type 3 Tests of Fixed Effects

Effect
Num

DF
Den

DF F Value Pr > F

Gender 1 25 0.47 0.5003

Age 1 79 111.10 <.0001

Age*Gender 1 79 6.46 0.0130

You can fit the same compound symmetry model with the following specification by using the RANDOM
statement:

proc mixed data=pr method=ml;
class Person Gender;
model y = Gender Age Gender*Age / s;
random Person;

run;

Compound symmetry is the structure that Jennrich and Schluchter deemed best among the ones they fit. To
carry the analysis one step further, you can use the GROUP= option as follows to specify heterogeneity of
this structure across girls and boys:

proc mixed data=pr method=ml;
class Person Gender;
model y = Gender Age Gender*Age / s;
repeated / type=cs subject=Person group=Gender;

run;

The results from this analysis are shown in Output 65.2.18–Output 65.2.24. Note that in Output 65.2.18
Gender is listed as a “Group Effect.”
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Output 65.2.18 Repeated Measures Analysis with Heterogeneous Structures

The Mixed ProcedureThe Mixed Procedure

Model Information

Data Set WORK.PR

Dependent Variable y

Covariance Structure Compound Symmetry

Subject Effect Person

Group Effect Gender

Estimation Method ML

Residual Variance Method None

Fixed Effects SE Method Model-Based

Degrees of Freedom Method Between-Within

The four covariance parameters listed in Output 65.2.19 result from the two compound symmetry structures
corresponding to the two levels of Gender.

Output 65.2.19 Analysis with Heterogeneous Structures (continued)

Class Level Information

Class Levels Values

Person 27 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Gender 2 F M

Dimensions

Covariance Parameters 4

Columns in X 6

Columns in Z 0

Subjects 27

Max Obs per Subject 4

Number of Observations

Number of Observations Read 108

Number of Observations Used 108

Number of Observations Not Used 0

As Output 65.2.20 shows, even with the heterogeneity, only one iteration is required for convergence.

Output 65.2.20 Analysis with Heterogeneous Structures (continued)

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 478.24175986

1 1 408.81297228 0.00000000

Convergence criteria met.

The “Covariance Parameter Estimates” table in Output 65.2.21 lists the heterogeneous estimates. Note that
both the common covariance and the diagonal enhancement differ between girls and boys.
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Output 65.2.21 Analysis with Heterogeneous Structures (continued)

Covariance Parameter Estimates

Cov Parm Subject Group Estimate

Variance Person Gender F 0.5900

CS Person Gender F 3.8804

Variance Person Gender M 2.7577

CS Person Gender M 2.4463

As Output 65.2.22 shows, both Akaike’s information criterion (424.8) and Schwarz’s Bayesian information
criterion (435.2) are smaller for this model than for the homogeneous compound symmetry model (440.6
and 448.4, respectively). This indicates that the heterogeneous model is more appropriate. To construct the
likelihood ratio test between the two models, subtract the –2 log likelihood values: 428:6 � 408:8 D 19:8.
Comparing this value with the �2 distribution with two degrees of freedom yields a p-value less than 0.0001,
again favoring the heterogeneous model.

Output 65.2.22 Analysis with Heterogeneous Structures (continued)

Fit Statistics

-2 Log Likelihood 408.8

AIC (Smaller is Better) 424.8

AICC (Smaller is Better) 426.3

BIC (Smaller is Better) 435.2

Null Model Likelihood Ratio
Test

DF Chi-Square Pr > ChiSq

3 69.43 <.0001

Note that the fixed-effects estimates shown in Output 65.2.23 are the same as in the homogeneous case, but
the standard errors are different.

Output 65.2.23 Analysis with Heterogeneous Structures (continued)

Solution for Fixed Effects

Effect Gender Estimate
Standard

Error DF t Value Pr > |t|

Intercept 16.3406 1.1130 25 14.68 <.0001

Gender F 1.0321 1.3890 25 0.74 0.4644

Gender M 0 . . . .

Age 0.7844 0.09283 79 8.45 <.0001

Age*Gender F -0.3048 0.1063 79 -2.87 0.0053

Age*Gender M 0 . . . .

The fixed-effects tests shown in Output 65.2.24 are similar to those from previous models, although the
p-values do change as a result of specifying a different covariance structure. It is important for you to select a
reasonable covariance structure in order to obtain valid inferences for your fixed effects.
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Output 65.2.24 Analysis with Heterogeneous Structures (continued)

Type 3 Tests of Fixed Effects

Effect
Num

DF
Den

DF F Value Pr > F

Gender 1 25 0.55 0.4644

Age 1 79 141.37 <.0001

Age*Gender 1 79 8.22 0.0053

Example 65.3: Plotting the Likelihood
The data for this example are from Hemmerle and Hartley (1973) and are also used for an example in the
VARCOMP procedure. The response variable consists of measurements from an oven experiment, and the
model contains a fixed effect A and random effects B and A*B.

The SAS statements are as follows:

data hh;
input a b y @@;
datalines;

1 1 237 1 1 254 1 1 246
1 2 178 1 2 179
2 1 208 2 1 178 2 1 187
2 2 146 2 2 145 2 2 141
3 1 186 3 1 183
3 2 142 3 2 125 3 2 136
;

ods output ParmSearch=parms;
proc mixed data=hh asycov mmeq mmeqsol covtest;

class a b;
model y = a / outp=predicted;
random b a*b;
lsmeans a;
parms (17 to 20 by .1) (.3 to .4 by .005) (1.0);

run;
proc print data=predicted;
run;

The ASYCOV option in the PROC MIXED statement requests the asymptotic variance matrix of the
covariance parameter estimates. This matrix is the observed inverse Fisher information matrix, which equals
2H�1, where H is the Hessian matrix of the objective function evaluated at the final covariance parameter
estimates. The MMEQ and MMEQSOL options in the PROC MIXED statement request that the mixed
model equations and their solution be displayed.

The OUTP= option in the MODEL statement produces the data set predicted, containing the predicted
values. Least squares means (LSMEANS) are requested for A. The PARMS and ODS statements are used to
construct a data set containing the likelihood surface.

The results from this analysis are shown in Output 65.3.1–Output 65.3.13.

The “Model Information” table in Output 65.3.1 lists details about this variance components model.
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Output 65.3.1 Model Information

The Mixed ProcedureThe Mixed Procedure

Model Information

Data Set WORK.HH

Dependent Variable y

Covariance Structure Variance Components

Estimation Method REML

Residual Variance Method Profile

Fixed Effects SE Method Model-Based

Degrees of Freedom Method Containment

The “Class Level Information” table in Output 65.3.2 lists the levels for A and B.

Output 65.3.2 Class Level Information

Class Level
Information

Class Levels Values

a 3 1 2 3

b 2 1 2

The “Dimensions” table in Output 65.3.3 reveals that X is 16�4 and Z is 16�8. Since there are no SUBJECT=
effects, PROC MIXED considers the data to be effectively from one subject with 16 observations.

Output 65.3.3 Model Dimensions and Number of Observations

Dimensions

Covariance Parameters 3

Columns in X 4

Columns in Z 8

Subjects 1

Max Obs per Subject 16

Number of Observations

Number of Observations Read 16

Number of Observations Used 16

Number of Observations Not Used 0

Only a portion of the “Parameter Search” table is shown in Output 65.3.4 because the full listing has 651
rows.
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Output 65.3.4 Selected Results of Parameter Search

The Mixed ProcedureThe Mixed Procedure

CovP1 CovP2 CovP3 Variance Res Log Like
-2 Res

Log Like

17.0000 0.3000 1.0000 80.1400 -52.4699 104.9399

17.0000 0.3050 1.0000 80.0466 -52.4697 104.9393

17.0000 0.3100 1.0000 79.9545 -52.4694 104.9388

17.0000 0.3150 1.0000 79.8637 -52.4692 104.9384

17.0000 0.3200 1.0000 79.7742 -52.4691 104.9381

17.0000 0.3250 1.0000 79.6859 -52.4690 104.9379

17.0000 0.3300 1.0000 79.5988 -52.4689 104.9378

17.0000 0.3350 1.0000 79.5129 -52.4689 104.9377

17.0000 0.3400 1.0000 79.4282 -52.4689 104.9377

17.0000 0.3450 1.0000 79.3447 -52.4689 104.9378

. . . . . .

. . . . . .

. . . . . .

20.0000 0.3550 1.0000 78.2003 -52.4683 104.9366

20.0000 0.3600 1.0000 78.1201 -52.4684 104.9368

20.0000 0.3650 1.0000 78.0409 -52.4685 104.9370

20.0000 0.3700 1.0000 77.9628 -52.4687 104.9373

20.0000 0.3750 1.0000 77.8857 -52.4689 104.9377

20.0000 0.3800 1.0000 77.8096 -52.4691 104.9382

20.0000 0.3850 1.0000 77.7345 -52.4693 104.9387

20.0000 0.3900 1.0000 77.6603 -52.4696 104.9392

20.0000 0.3950 1.0000 77.5871 -52.4699 104.9399

20.0000 0.4000 1.0000 77.5148 -52.4703 104.9406

As Output 65.3.5 shows, convergence occurs quickly because PROC MIXED starts from the best value from
the grid search.

Output 65.3.5 Iteration History and Convergence Status

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

1 2 104.93416367 0.00000000

Convergence criteria met.

The “Covariance Parameter Estimates” table in Output 65.3.6 lists the variance components estimates. Note
that B is much more variable than A*B.
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Output 65.3.6 Estimated Covariance Parameters

Covariance Parameter Estimates

Cov Parm Estimate
Standard

Error
Z

Value Pr > Z

b 1464.36 2098.01 0.70 0.2426

a*b 26.9581 59.6570 0.45 0.3257

Residual 78.8426 35.3512 2.23 0.0129

The asymptotic covariance matrix in Output 65.3.7 also reflects the large variability of B relative to A*B.

Output 65.3.7 Asymptotic Covariance Matrix of Covariance Parameters

Asymptotic Covariance Matrix of
Estimates

Row Cov Parm CovP1 CovP2 CovP3

1 b 4401640 1.2831 -273.32

2 a*b 1.2831 3558.96 -502.84

3 Residual -273.32 -502.84 1249.71

As Output 65.3.8 shows, the PARMS likelihood ratio test (LRT) compares the best model from the grid
search with the final fitted model. Since these models are nearly the same, the LRT is not significant.

Output 65.3.8 Fit Statistics and Likelihood Ratio Test

Fit Statistics

-2 Res Log Likelihood 104.9

AIC (Smaller is Better) 110.9

AICC (Smaller is Better) 113.6

BIC (Smaller is Better) 107.0

PARMS Model Likelihood
Ratio Test

DF Chi-Square Pr > ChiSq

2 0.00 1.0000

The mixed model equations are analogous to the normal equations in the standard linear model. As
Output 65.3.9 shows, for this example, rows 1–4 correspond to the fixed effects, rows 5–12 correspond to the
random effects, and Col13 corresponds to the dependent variable.
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Output 65.3.9 Mixed Model Equations

Mixed Model Equations

Row Effect a b Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8 Col9 Col10 Col11 Col12

1 Intercept 0.2029 0.06342 0.07610 0.06342 0.1015 0.1015 0.03805 0.02537 0.03805 0.03805 0.02537 0.03805

2 a 1 0.06342 0.06342 0.03805 0.02537 0.03805 0.02537

3 a 2 0.07610 0.07610 0.03805 0.03805 0.03805 0.03805

4 a 3 0.06342 0.06342 0.02537 0.03805 0.02537 0.03805

5 b 1 0.1015 0.03805 0.03805 0.02537 0.1022 0.03805 0.03805 0.02537

6 b 2 0.1015 0.02537 0.03805 0.03805 0.1022 0.02537 0.03805 0.03805

7 a*b 1 1 0.03805 0.03805 0.03805 0.07515

8 a*b 1 2 0.02537 0.02537 0.02537 0.06246

9 a*b 2 1 0.03805 0.03805 0.03805 0.07515

10 a*b 2 2 0.03805 0.03805 0.03805 0.07515

11 a*b 3 1 0.02537 0.02537 0.02537 0.06246

12 a*b 3 2 0.03805 0.03805 0.03805 0.07515

Mixed Model
Equations

Row Col13

1 36.4143

2 13.8757

3 12.7469

4 9.7917

5 21.2956

6 15.1187

7 9.3477

8 4.5280

9 7.2676

10 5.4793

11 4.6802

12 5.1115

The solution matrix in Output 65.3.10 results from sweeping all but the last row of the mixed model equations
matrix. The final column contains a solution vector for the fixed and random effects. The first four rows
correspond to fixed effects and the last eight correspond to random effects.
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Output 65.3.10 Solutions of the Mixed Model Equations

Mixed Model Equations Solution

Row Effect a b Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8 Col9 Col10 Col11

1 Intercept 761.84 -29.7718 -29.6578 -731.14 -733.22 -0.4680 0.4680 -0.5257 0.5257 -12.4663

2 a 1 -29.7718 59.5436 29.7718 -2.0764 2.0764 -14.0239 -12.9342 1.0514 -1.0514 12.9342

3 a 2 -29.6578 29.7718 56.2773 -1.0382 1.0382 0.4680 -0.4680 -12.9534 -14.0048 12.4663

4 a 3

5 b 1 -731.14 -2.0764 -1.0382 741.63 722.73 -4.2598 4.2598 -4.7855 4.7855 -4.2598

6 b 2 -733.22 2.0764 1.0382 722.73 741.63 4.2598 -4.2598 4.7855 -4.7855 4.2598

7 a*b 1 1 -0.4680 -14.0239 0.4680 -4.2598 4.2598 22.8027 4.1555 2.1570 -2.1570 1.9200

8 a*b 1 2 0.4680 -12.9342 -0.4680 4.2598 -4.2598 4.1555 22.8027 -2.1570 2.1570 -1.9200

9 a*b 2 1 -0.5257 1.0514 -12.9534 -4.7855 4.7855 2.1570 -2.1570 22.5560 4.4021 2.1570

10 a*b 2 2 0.5257 -1.0514 -14.0048 4.7855 -4.7855 -2.1570 2.1570 4.4021 22.5560 -2.1570

11 a*b 3 1 -12.4663 12.9342 12.4663 -4.2598 4.2598 1.9200 -1.9200 2.1570 -2.1570 22.8027

12 a*b 3 2 -14.4918 14.0239 14.4918 4.2598 -4.2598 -1.9200 1.9200 -2.1570 2.1570 4.1555

Mixed Model Equations
Solution

Row Col12 Col13

1 -14.4918 159.61

2 14.0239 53.2049

3 14.4918 7.8856

4

5 4.2598 26.8837

6 -4.2598 -26.8837

7 -1.9200 3.0198

8 1.9200 -3.0198

9 -2.1570 -1.7134

10 2.1570 1.7134

11 4.1555 -0.8115

12 22.8027 0.8115

The A factor is significant at the 5% level (Output 65.3.11).

Output 65.3.11 Tests of Fixed Effects

Type 3 Tests of Fixed Effects

Effect
Num

DF
Den

DF F Value Pr > F

a 2 2 28.00 0.0345

Output 65.3.12 shows that the significance of A appears to be from the difference between its first level and
its other two levels.
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Output 65.3.12 Least Squares Means for A Effect

Least Squares Means

Effect a Estimate
Standard

Error DF t Value Pr > |t|

a 1 212.82 27.6014 2 7.71 0.0164

a 2 167.50 27.5463 2 6.08 0.0260

a 3 159.61 27.6014 2 5.78 0.0286

Output 65.3.13 lists the predicted values from the model. These values are the sum of the fixed-effects
estimates and the empirical best linear unbiased predictors (EBLUPs) of the random effects.

Output 65.3.13 Predicted Values

Obs a b y Pred StdErrPred DF Alpha Lower Upper Resid

1 1 1 237 242.723 4.72563 10 0.05 232.193 253.252 -5.7228

2 1 1 254 242.723 4.72563 10 0.05 232.193 253.252 11.2772

3 1 1 246 242.723 4.72563 10 0.05 232.193 253.252 3.2772

4 1 2 178 182.916 5.52589 10 0.05 170.603 195.228 -4.9159

5 1 2 179 182.916 5.52589 10 0.05 170.603 195.228 -3.9159

6 2 1 208 192.670 4.70076 10 0.05 182.196 203.144 15.3297

7 2 1 178 192.670 4.70076 10 0.05 182.196 203.144 -14.6703

8 2 1 187 192.670 4.70076 10 0.05 182.196 203.144 -5.6703

9 2 2 146 142.330 4.70076 10 0.05 131.856 152.804 3.6703

10 2 2 145 142.330 4.70076 10 0.05 131.856 152.804 2.6703

11 2 2 141 142.330 4.70076 10 0.05 131.856 152.804 -1.3297

12 3 1 186 185.687 5.52589 10 0.05 173.374 197.999 0.3134

13 3 1 183 185.687 5.52589 10 0.05 173.374 197.999 -2.6866

14 3 2 142 133.542 4.72563 10 0.05 123.013 144.072 8.4578

15 3 2 125 133.542 4.72563 10 0.05 123.013 144.072 -8.5422

16 3 2 136 133.542 4.72563 10 0.05 123.013 144.072 2.4578

To plot the likelihood surface by using ODS Graphics, use the following statements:

proc template;
define statgraph surface;

begingraph;
layout overlay3d;

surfaceplotparm x=CovP1 y=CovP2 z=ResLogLike;
endlayout;

endgraph;
end;

run;
proc sgrender data=parms template=surface;
run;

The results from this plot are shown in Output 65.3.14. The peak of the surface is the REML estimates for
the B and A*B variance components.
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Output 65.3.14 Plot of Likelihood Surface

Example 65.4: Known G and R
This animal breeding example from Henderson (1984, p. 48) considers multiple traits. The data are artificial
and consist of measurements of two traits on three animals, but the second trait of the third animal is missing.
Assuming an additive genetic model, you can use PROC MIXED to predict the breeding value of both traits
on all three animals and also to predict the second trait of the third animal. The data are as follows:

data h;
input Trait Animal Y;
datalines;

1 1 6
1 2 8
1 3 7
2 1 9
2 2 5
2 3 .
;
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Both G and R are known.

G D

26666664

2 1 1 2 1 1

1 2 :5 1 2 :5

1 :5 2 1 :5 2

2 1 1 3 1:5 1:5

1 2 :5 1:5 3 :75

1 :5 2 1:5 :75 3

37777775

R D

26666664

4 0 0 1 0 0

0 4 0 0 1 0

0 0 4 0 0 1

1 0 0 5 0 0

0 1 0 0 5 0

0 0 1 0 0 5

37777775
In order to read G into PROC MIXED by using the GDATA= option in the RANDOM statement, perform
the following DATA step:

data g;
input Row Col1-Col6;
datalines;

1 2 1 1 2 1 1
2 1 2 .5 1 2 .5
3 1 .5 2 1 .5 2
4 2 1 1 3 1.5 1.5
5 1 2 .5 1.5 3 .75
6 1 .5 2 1.5 .75 3
;

The preceding data are in the dense representation for a GDATA= data set. You can also construct a data
set with the sparse representation by using Row, Col, and Value variables, although this would require 21
observations instead of 6 for this example.

The PROC MIXED statements are as follows:

proc mixed data=h mmeq mmeqsol;
class Trait Animal;
model Y = Trait / noint s outp=predicted;
random Trait*Animal / type=un gdata=g g gi s;
repeated / type=un sub=Animal r ri;
parms (4) (1) (5) / noiter;

run;
proc print data=predicted;
run;

The MMEQ and MMEQSOL options request the mixed model equations and their solution. The variables
Trait and Animal are classification variables, and Trait defines the entire X matrix for the fixed-effects portion
of the model, since the intercept is omitted with the NOINT option. The fixed-effects solution vector and
predicted values are also requested by using the S and OUTP= options, respectively.

The random effect Trait*Animal leads to a Z matrix with six columns, the first five corresponding to the
identity matrix and the last consisting of 0s. An unstructured G matrix is specified by using the TYPE=UN
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option, and it is read into PROC MIXED from a SAS data set by using the GDATA=G specification. The G
and GI options request the display of G and G�1, respectively. The S option requests that the random-effects
solution vector be displayed.

Note that the preceding R matrix is block diagonal if the data are sorted by animals. The REPEATED
statement exploits this fact by requesting R to have unstructured 2�2 blocks corresponding to animals, which
are the subjects. The R and RI options request that the estimated 2�2 blocks for the first animal and its
inverse be displayed. The PARMS statement lists the parameters of this 2�2 matrix. Note that the parameters
from G are not specified in the PARMS statement because they have already been assigned by using the
GDATA= option in the RANDOM statement. The NOITER option prevents PROC MIXED from computing
residual (restricted) maximum likelihood estimates; instead, the known values are used for inferences.

The results from this analysis are shown in Output 65.4.1–Output 65.4.12.

The “Unstructured” covariance structure (Output 65.4.1) applies to both G and R here. The levels of Trait
and Animal have been specified correctly.

Output 65.4.1 Model and Class Level Information

The Mixed ProcedureThe Mixed Procedure

Model Information

Data Set WORK.H

Dependent Variable Y

Covariance Structure Unstructured

Subject Effect Animal

Estimation Method REML

Residual Variance Method None

Fixed Effects SE Method Model-Based

Degrees of Freedom Method Containment

Class Level
Information

Class Levels Values

Trait 2 1 2

Animal 3 1 2 3

The three covariance parameters indicated in Output 65.4.2 correspond to those from the R matrix. Those
from G are considered fixed and known because of the GDATA= option.

Output 65.4.2 Model Dimensions and Number of Observations

Dimensions

Covariance Parameters 3

Columns in X 2

Columns in Z 6

Subjects 1

Max Obs per Subject 5
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Output 65.4.2 continued

Number of Observations

Number of Observations Read 6

Number of Observations Used 5

Number of Observations Not Used 1

Because starting values for the covariance parameters are specified in the PARMS statement, the MIXED
procedure prints the residual (restricted) log likelihood at the starting values. Because of the NOITER option
in the PARMS statement, this is also the final log likelihood in this analysis (Output 65.4.3).

Output 65.4.3 REML Log Likelihood

Parameter Search

CovP1 CovP2 CovP3 Res Log Like -2 Res Log Like

4.0000 1.0000 5.0000 -7.3731 14.7463

The block of R corresponding to the first animal and the inverse of this block are shown in Output 65.4.4.

Output 65.4.4 Inverse R Matrix

Estimated R Matrix
for Animal 1

Row Col1 Col2

1 4.0000 1.0000

2 1.0000 5.0000

Estimated Inv(R)
Matrix for Animal 1

Row Col1 Col2

1 0.2632 -0.05263

2 -0.05263 0.2105

The G matrix as specified in the GDATA= data set and its inverse are shown in Output 65.4.5 and Out-
put 65.4.6.

Output 65.4.5 G Matrix

Estimated G Matrix

Row Effect Trait Animal Col1 Col2 Col3 Col4 Col5 Col6

1 Trait*Animal 1 1 2.0000 1.0000 1.0000 2.0000 1.0000 1.0000

2 Trait*Animal 1 2 1.0000 2.0000 0.5000 1.0000 2.0000 0.5000

3 Trait*Animal 1 3 1.0000 0.5000 2.0000 1.0000 0.5000 2.0000

4 Trait*Animal 2 1 2.0000 1.0000 1.0000 3.0000 1.5000 1.5000

5 Trait*Animal 2 2 1.0000 2.0000 0.5000 1.5000 3.0000 0.7500

6 Trait*Animal 2 3 1.0000 0.5000 2.0000 1.5000 0.7500 3.0000
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Output 65.4.6 Inverse G Matrix

Estimated Inv(G) Matrix

Row Effect Trait Animal Col1 Col2 Col3 Col4 Col5 Col6

1 Trait*Animal 1 1 2.5000 -1.0000 -1.0000 -1.6667 0.6667 0.6667

2 Trait*Animal 1 2 -1.0000 2.0000 0.6667 -1.3333

3 Trait*Animal 1 3 -1.0000 2.0000 0.6667 -1.3333

4 Trait*Animal 2 1 -1.6667 0.6667 0.6667 1.6667 -0.6667 -0.6667

5 Trait*Animal 2 2 0.6667 -1.3333 -0.6667 1.3333

6 Trait*Animal 2 3 0.6667 -1.3333 -0.6667 1.3333

The table of covariance parameter estimates in Output 65.4.7 displays only the parameters in R. Because of
the GDATA= option in the RANDOM statement, the G-side parameters do not participate in the parameter
estimation process. Because of the NOITER option in the PARMS statement, however, the R-side parameters
in this output are identical to their starting values.

Output 65.4.7 R-Side Covariance Parameters

Covariance Parameter
Estimates

Cov Parm Subject Estimate

UN(1,1) Animal 4.0000

UN(2,1) Animal 1.0000

UN(2,2) Animal 5.0000

The coefficients of the mixed model equations in Output 65.4.8 agree with Henderson (1984, p. 55). Recall
from Output 65.4.1 that there are 2 columns in X and 6 columns in Z. The first 8 columns of the mixed model
equations correspond to the X and Z components. Column 9 represents the Y border.

Output 65.4.8 Mixed Model Equations with Y Border

Mixed Model Equations

Row Effect Trait Animal Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8 Col9

1 Trait 1 0.7763 -0.1053 0.2632 0.2632 0.2500 -0.05263 -0.05263 4.6974

2 Trait 2 -0.1053 0.4211 -0.05263 -0.05263 0.2105 0.2105 2.2105

3 Trait*Animal 1 1 0.2632 -0.05263 2.7632 -1.0000 -1.0000 -1.7193 0.6667 0.6667 1.1053

4 Trait*Animal 1 2 0.2632 -0.05263 -1.0000 2.2632 0.6667 -1.3860 1.8421

5 Trait*Animal 1 3 0.2500 -1.0000 2.2500 0.6667 -1.3333 1.7500

6 Trait*Animal 2 1 -0.05263 0.2105 -1.7193 0.6667 0.6667 1.8772 -0.6667 -0.6667 1.5789

7 Trait*Animal 2 2 -0.05263 0.2105 0.6667 -1.3860 -0.6667 1.5439 0.6316

8 Trait*Animal 2 3 0.6667 -1.3333 -0.6667 1.3333

The solution to the mixed model equations also matches that given by Henderson (1984, p. 55). After solving
the augmented mixed model equations, you can find the solutions for fixed and random effects in the last
column (Output 65.4.9).
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Output 65.4.9 Solutions of the Mixed Model Equations with Y Border

Mixed Model Equations Solution

Row Effect Trait Animal Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8 Col9

1 Trait 1 2.5508 1.5685 -1.3047 -1.1775 -1.1701 -1.3002 -1.1821 -1.1678 6.9909

2 Trait 2 1.5685 4.5539 -1.4112 -1.3534 -0.9410 -2.1592 -2.1055 -1.3149 6.9959

3 Trait*Animal 1 1 -1.3047 -1.4112 1.8282 1.0652 1.0206 1.8010 1.0925 1.0070 0.05450

4 Trait*Animal 1 2 -1.1775 -1.3534 1.0652 1.7589 0.7085 1.0900 1.7341 0.7209 -0.04955

5 Trait*Animal 1 3 -1.1701 -0.9410 1.0206 0.7085 1.7812 1.0095 0.7197 1.7756 0.02230

6 Trait*Animal 2 1 -1.3002 -2.1592 1.8010 1.0900 1.0095 2.7518 1.6392 1.4849 0.2651

7 Trait*Animal 2 2 -1.1821 -2.1055 1.0925 1.7341 0.7197 1.6392 2.6874 0.9930 -0.2601

8 Trait*Animal 2 3 -1.1678 -1.3149 1.0070 0.7209 1.7756 1.4849 0.9930 2.7645 0.1276

The solutions for the fixed and random effects in Output 65.4.10 correspond to the last column in Output 65.4.9.
Note that the standard errors for the fixed effects and the prediction standard errors for the random effects are
the square root values of the diagonal entries in the solution of the mixed model equations (Output 65.4.9).

Output 65.4.10 Solutions for Fixed and Random Effects

Solution for Fixed Effects

Effect Trait Estimate
Standard

Error DF t Value Pr > |t|

Trait 1 6.9909 1.5971 3 4.38 0.0221

Trait 2 6.9959 2.1340 3 3.28 0.0465

Solution for Random Effects

Effect Trait Animal Estimate
Std Err

Pred DF t Value Pr > |t|

Trait*Animal 1 1 0.05450 1.3521 0 0.04 .

Trait*Animal 1 2 -0.04955 1.3262 0 -0.04 .

Trait*Animal 1 3 0.02230 1.3346 0 0.02 .

Trait*Animal 2 1 0.2651 1.6589 0 0.16 .

Trait*Animal 2 2 -0.2601 1.6393 0 -0.16 .

Trait*Animal 2 3 0.1276 1.6627 0 0.08 .

The estimates for the two traits are nearly identical, but the standard error of the second trait is larger because
of the missing observation.

The Estimate column in the “Solution for Random Effects” table lists the best linear unbiased predictions
(BLUPs) of the breeding values of both traits for all three animals. The p-values are missing because the
default containment method for computing degrees of freedom results in zero degrees of freedom for the
random effects parameter tests.

Output 65.4.11 Significance Test Comparing Traits

Type 3 Tests of Fixed Effects

Effect
Num

DF
Den

DF F Value Pr > F

Trait 2 3 10.59 0.0437
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The two estimated traits are significantly different from zero at the 5% level (Output 65.4.11).

Output 65.4.12 displays the predicted values of the observations based on the trait and breeding value
estimates—that is, the fixed and random effects.

Output 65.4.12 Predicted Observations

Obs Trait Animal Y Pred StdErrPred DF Alpha Lower Upper Resid

1 1 1 6 7.04542 1.33027 0 0.05 . . -1.04542

2 1 2 8 6.94137 1.39806 0 0.05 . . 1.05863

3 1 3 7 7.01321 1.41129 0 0.05 . . -0.01321

4 2 1 9 7.26094 1.72839 0 0.05 . . 1.73906

5 2 2 5 6.73576 1.74077 0 0.05 . . -1.73576

6 2 3 . 7.12015 2.99088 0 0.05 . . .

The predicted values are not the predictions of future records in the sense that they do not contain a component
corresponding to a new observational error. See Henderson (1984) for information about predicting future
records. The Lower and Upper columns usually contain confidence limits for the predicted values; they are
missing here because the random-effects parameter degrees of freedom equals 0.

Example 65.5: Random Coefficients
This example comes from a pharmaceutical stability data simulation performed by Obenchain (1990). The
observed responses are replicate assay results, expressed in percent of label claim, at various shelf ages,
expressed in months. The desired mixed model involves three batches of product that differ randomly in
intercept (initial potency) and slope (degradation rate). This type of model is also known as a hierarchical or
multilevel model (Singer 1998; Sullivan, Dukes, and Losina 1999).

The SAS statements are as follows:

data rc;
input Batch Month @@;
Monthc = Month;
do i = 1 to 6;

input Y @@;
output;

end;
datalines;

1 0 101.2 103.3 103.3 102.1 104.4 102.4
1 1 98.8 99.4 99.7 99.5 . .
1 3 98.4 99.0 97.3 99.8 . .
1 6 101.5 100.2 101.7 102.7 . .
1 9 96.3 97.2 97.2 96.3 . .
1 12 97.3 97.9 96.8 97.7 97.7 96.7
2 0 102.6 102.7 102.4 102.1 102.9 102.6
2 1 99.1 99.0 99.9 100.6 . .
2 3 105.7 103.3 103.4 104.0 . .
2 6 101.3 101.5 100.9 101.4 . .
2 9 94.1 96.5 97.2 95.6 . .
2 12 93.1 92.8 95.4 92.2 92.2 93.0
3 0 105.1 103.9 106.1 104.1 103.7 104.6
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3 1 102.2 102.0 100.8 99.8 . .
3 3 101.2 101.8 100.8 102.6 . .
3 6 101.1 102.0 100.1 100.2 . .
3 9 100.9 99.5 102.2 100.8 . .
3 12 97.8 98.3 96.9 98.4 96.9 96.5

;

proc mixed data=rc;
class Batch;
model Y = Month / s;
random Int Month / type=un sub=Batch s;

run;

In the DATA step, Monthc is created as a duplicate of Month in order to enable both a continuous and a
classification version of the same variable. The variable Monthc is used in a subsequent analysis

In the PROC MIXED statements, Batch is listed as the only classification variable. The fixed effect Month in
the MODEL statement is not declared as a classification variable; thus it models a linear trend in time. An
intercept is included as a fixed effect by default, and the S option requests that the fixed-effects parameter
estimates be produced.

The two random effects are Int and Month, modeling random intercepts and slopes, respectively. Note that
Intercept and Month are used as both fixed and random effects. The TYPE=UN option in the RANDOM
statement specifies an unstructured covariance matrix for the random intercept and slope effects. In mixed
model notation, G is block diagonal with unstructured 2�2 blocks. Each block corresponds to a different
level of Batch, which is the SUBJECT= effect. The unstructured type provides a mechanism for estimating
the correlation between the random coefficients. The S option requests the production of the random-effects
parameter estimates.

The results from this analysis are shown in Output 65.5.1–Output 65.5.9. The “Unstructured” covariance
structure in Output 65.5.1 applies to G here.

Output 65.5.1 Model Information in Random Coefficients Analysis

The Mixed ProcedureThe Mixed Procedure

Model Information

Data Set WORK.RC

Dependent Variable Y

Covariance Structure Unstructured

Subject Effect Batch

Estimation Method REML

Residual Variance Method Profile

Fixed Effects SE Method Model-Based

Degrees of Freedom Method Containment

Batch is the only classification variable in this analysis, and it has three levels (Output 65.5.2).
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Output 65.5.2 Random Coefficients Analysis (continued)

Class Level
Information

Class Levels Values

Batch 3 1 2 3

The “Dimensions” table in Output 65.5.3 indicates that there are three subjects (corresponding to batches).
The 24 observations not used correspond to the missing values of Y in the input data set.

Output 65.5.3 Random Coefficients Analysis (continued)

Dimensions

Covariance Parameters 4

Columns in X 2

Columns in Z per Subject 2

Subjects 3

Max Obs per Subject 28

Number of Observations

Number of Observations Read 108

Number of Observations Used 84

Number of Observations Not Used 24

As Output 65.5.4 shows, only one iteration is required for convergence.

Output 65.5.4 Random Coefficients Analysis (continued)

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 367.02768461

1 1 350.32813577 0.00000000

Convergence criteria met.

The Estimate column in Output 65.5.5 lists the estimated elements of the unstructured 2�2 matrix comprising
the blocks of G. Note that the random coefficients are negatively correlated.

Output 65.5.5 Random Coefficients Analysis (continued)

Covariance Parameter
Estimates

Cov Parm Subject Estimate

UN(1,1) Batch 0.9768

UN(2,1) Batch -0.1045

UN(2,2) Batch 0.03717

Residual 3.2932

The null model likelihood ratio test indicates a significant improvement over the null model consisting of no
random effects and a homogeneous residual error (Output 65.5.6).
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Output 65.5.6 Random Coefficients Analysis (continued)

Fit Statistics

-2 Res Log Likelihood 350.3

AIC (Smaller is Better) 358.3

AICC (Smaller is Better) 358.8

BIC (Smaller is Better) 354.7

Null Model Likelihood Ratio
Test

DF Chi-Square Pr > ChiSq

3 16.70 0.0008

The fixed-effects estimates represent the estimated means for the random intercept and slope, respectively
(Output 65.5.7).

Output 65.5.7 Random Coefficients Analysis (continued)

Solution for Fixed Effects

Effect Estimate
Standard

Error DF t Value Pr > |t|

Intercept 102.70 0.6456 2 159.08 <.0001

Month -0.5259 0.1194 2 -4.41 0.0478

The random-effects estimates represent the estimated deviation from the mean intercept and slope for each
batch (Output 65.5.8). Therefore, the intercept for the first batch is close to 102:7 � 1 D 101:7, while the
intercepts for the other two batches are greater than 102.7. The second batch has a slope less than the mean
slope of –0.526, while the other two batches have slopes greater than –0.526.

Output 65.5.8 Random Coefficients Analysis (continued)

Solution for Random Effects

Effect Batch Estimate
Std Err

Pred DF t Value Pr > |t|

Intercept 1 -1.0010 0.6842 78 -1.46 0.1474

Month 1 0.1287 0.1245 78 1.03 0.3047

Intercept 2 0.3934 0.6842 78 0.58 0.5669

Month 2 -0.2060 0.1245 78 -1.65 0.1021

Intercept 3 0.6076 0.6842 78 0.89 0.3772

Month 3 0.07731 0.1245 78 0.62 0.5365

The F statistic in the “Type 3 Tests of Fixed Effects” table in Output 65.5.9 is the square of the t statistic
used in the test of Month in the preceding “Solution for Fixed Effects” table (compare Output 65.5.7 and
Output 65.5.9). Both statistics test the null hypothesis that the slope assigned to Month equals 0, and this
hypothesis can barely be rejected at the 5% level.



Example 65.5: Random Coefficients F 5367

Output 65.5.9 Random Coefficients Analysis (continued)

Type 3 Tests of Fixed Effects

Effect
Num

DF
Den

DF F Value Pr > F

Month 1 2 19.41 0.0478

It is also possible to fit a random coefficients model with error terms that follow a nested structure (Fuller and
Battese 1973). The following SAS statements represent one way of doing this:

proc mixed data=rc;
class Batch Monthc;
model Y = Month / s;
random Int Month Monthc / sub=Batch s;

run;

The variable Monthc is added to the CLASS and RANDOM statements, and it models the nested errors. Note
that Month and Monthc are continuous and classification versions of the same variable. Also, the TYPE=UN
option is dropped from the RANDOM statement, resulting in the default variance components model instead
of correlated random coefficients. The results from this analysis are shown in Output 65.5.10.

Output 65.5.10 Random Coefficients with Nested Errors Analysis

The Mixed ProcedureThe Mixed Procedure

Model Information

Data Set WORK.RC

Dependent Variable Y

Covariance Structure Variance Components

Subject Effect Batch

Estimation Method REML

Residual Variance Method Profile

Fixed Effects SE Method Model-Based

Degrees of Freedom Method Containment

Class Level Information

Class Levels Values

Batch 3 1 2 3

Monthc 6 0 1 3 6 9 12

Dimensions

Covariance Parameters 4

Columns in X 2

Columns in Z per Subject 8

Subjects 3

Max Obs per Subject 28

Number of Observations

Number of Observations Read 108

Number of Observations Used 84

Number of Observations Not Used 24
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Output 65.5.10 continued

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 367.02768461

1 4 277.51945360 .

2 1 276.97551718 0.00104208

3 1 276.90304909 0.00003174

4 1 276.90100316 0.00000004

5 1 276.90100092 0.00000000

Convergence criteria met.

Covariance Parameter
Estimates

Cov Parm Subject Estimate

Intercept Batch 0

Month Batch 0.01243

Monthc Batch 3.7411

Residual 0.7969

For this analysis, the Newton-Raphson algorithm requires five iterations and nine likelihood evaluations to
achieve convergence. The missing value in the Criterion column in iteration 1 indicates that a boundary
constraint has been dropped.

The estimate for the Intercept variance component equals 0. This occurs frequently in practice and indicates
that the restricted likelihood is maximized by setting this variance component equal to 0. Whenever a zero
variance component estimate occurs, the following note appears in the SAS log:

NOTE: Estimated G matrix is not positive definite.

The remaining variance component estimates are positive, and the estimate corresponding to the nested errors
(MONTHC) is much larger than the other two.

A comparison of AIC and BIC for this model with those of the previous model favors the nested error model
(compare Output 65.5.11 and Output 65.5.6). Strictly speaking, a likelihood ratio test cannot be carried
out between the two models because one is not contained in the other; however, a cautious comparison of
likelihoods can be informative.

Output 65.5.11 Random Coefficients with Nested Errors Analysis (continued)

Fit Statistics

-2 Res Log Likelihood 276.9

AIC (Smaller is Better) 282.9

AICC (Smaller is Better) 283.2

BIC (Smaller is Better) 280.2

The better-fitting covariance model affects the standard errors of the fixed-effects parameter estimates more
than the estimates themselves (Output 65.5.12).
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Output 65.5.12 Random Coefficients with Nested Errors Analysis (continued)

Solution for Fixed Effects

Effect Estimate
Standard

Error DF t Value Pr > |t|

Intercept 102.56 0.7287 2 140.74 <.0001

Month -0.5003 0.1259 2 -3.97 0.0579

The random-effects solution provides the empirical best linear unbiased predictions (EBLUPs) for the
realizations of the random intercept, slope, and nested errors (Output 65.5.13). You can use these values to
compare batches and months.

Output 65.5.13 Random Coefficients with Nested Errors Analysis (continued)

Solution for Random Effects

Effect Batch Monthc Estimate
Std Err

Pred DF t Value Pr > |t|

Intercept 1 0 . . . .

Month 1 -0.00028 0.09268 66 -0.00 0.9976

Monthc 1 0 0.2191 0.7896 66 0.28 0.7823

Monthc 1 1 -2.5690 0.7571 66 -3.39 0.0012

Monthc 1 3 -2.3067 0.6865 66 -3.36 0.0013

Monthc 1 6 1.8726 0.7328 66 2.56 0.0129

Monthc 1 9 -1.2350 0.9300 66 -1.33 0.1888

Monthc 1 12 0.7736 1.1992 66 0.65 0.5211

Intercept 2 0 . . . .

Month 2 -0.07571 0.09268 66 -0.82 0.4169

Monthc 2 0 -0.00621 0.7896 66 -0.01 0.9938

Monthc 2 1 -2.2126 0.7571 66 -2.92 0.0048

Monthc 2 3 3.1063 0.6865 66 4.53 <.0001

Monthc 2 6 2.0649 0.7328 66 2.82 0.0064

Monthc 2 9 -1.4450 0.9300 66 -1.55 0.1250

Monthc 2 12 -2.4405 1.1992 66 -2.04 0.0459

Intercept 3 0 . . . .

Month 3 0.07600 0.09268 66 0.82 0.4152

Monthc 3 0 1.9574 0.7896 66 2.48 0.0157

Monthc 3 1 -0.8850 0.7571 66 -1.17 0.2466

Monthc 3 3 0.3006 0.6865 66 0.44 0.6629

Monthc 3 6 0.7972 0.7328 66 1.09 0.2806

Monthc 3 9 2.0059 0.9300 66 2.16 0.0347

Monthc 3 12 0.002293 1.1992 66 0.00 0.9985

Output 65.5.14 Random Coefficients with Nested Errors Analysis (continued)

Type 3 Tests of Fixed Effects

Effect
Num

DF
Den

DF F Value Pr > F

Month 1 2 15.78 0.0579
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The test of Month is similar to that from the previous model, although it is no longer significant at the 5%
level (Output 65.5.14).

Example 65.6: Line-Source Sprinkler Irrigation
These data appear in Hanks et al. (1980); Johnson, Chaudhuri, and Kanemasu (1983); Stroup (1989b). Three
cultivars (Cult) of winter wheat are randomly assigned to rectangular plots within each of three blocks (Block).
The nine plots are located side by side, and a line-source sprinkler is placed through the middle. Each plot is
subdivided into twelve subplots—six to the north of the line source, six to the south (Dir). The two plots
closest to the line source represent the maximum irrigation level (Irrig=6), the two next-closest plots represent
the next-highest level (Irrig=5), and so forth.

This example is a case where both G and R can be modeled. One of Stroup’s models specifies a diagonal G
containing the variance components for Block, Block*Dir, and Block*Irrig, and a Toeplitz R with four bands.
The SAS statements to fit this model and carry out some further analyses follow.

CAUTION: This analysis can require considerable CPU time.

data line;
length Cult$ 8;
input Block Cult$ @;
row = _n_;
do Sbplt=1 to 12;

if Sbplt le 6 then do;
Irrig = Sbplt;
Dir = 'North';

end; else do;
Irrig = 13 - Sbplt;
Dir = 'South';

end;
input Y @; output;

end;
datalines;

1 Luke 2.4 2.7 5.6 7.5 7.9 7.1 6.1 7.3 7.4 6.7 3.8 1.8
1 Nugaines 2.2 2.2 4.3 6.3 7.9 7.1 6.2 5.3 5.3 5.2 5.4 2.9
1 Bridger 2.9 3.2 5.1 6.9 6.1 7.5 5.6 6.5 6.6 5.3 4.1 3.1
2 Nugaines 2.4 2.2 4.0 5.8 6.1 6.2 7.0 6.4 6.7 6.4 3.7 2.2
2 Bridger 2.6 3.1 5.7 6.4 7.7 6.8 6.3 6.2 6.6 6.5 4.2 2.7
2 Luke 2.2 2.7 4.3 6.9 6.8 8.0 6.5 7.3 5.9 6.6 3.0 2.0
3 Nugaines 1.8 1.9 3.7 4.9 5.4 5.1 5.7 5.0 5.6 5.1 4.2 2.2
3 Luke 2.1 2.3 3.7 5.8 6.3 6.3 6.5 5.7 5.8 4.5 2.7 2.3
3 Bridger 2.7 2.8 4.0 5.0 5.2 5.2 5.9 6.1 6.0 4.3 3.1 3.1

;

proc mixed;
class Block Cult Dir Irrig;
model Y = Cult|Dir|Irrig@2;
random Block Block*Dir Block*Irrig;
repeated / type=toep(4) sub=Block*Cult r;
lsmeans Cult|Irrig;
estimate 'Bridger vs Luke' Cult 1 -1 0;
estimate 'Linear Irrig' Irrig -5 -3 -1 1 3 5;
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estimate 'B vs L x Linear Irrig' Cult*Irrig
-5 -3 -1 1 3 5 5 3 1 -1 -3 -5;

run;

The preceding statements use the bar operator ( | ) and the at sign (@) to specify all two-factor interactions
between Cult, Dir, and Irrig as fixed effects.

The RANDOM statement sets up the Z and G matrices corresponding to the random effects Block, Block*Dir,
and Block*Irrig.

In the REPEATED statement, the TYPE=TOEP(4) option sets up the blocks of the R matrix to be Toeplitz
with four bands below and including the main diagonal. The subject effect is Block*Cult, and it produces
nine 12�12 blocks. The R option requests that the first block of R be displayed.

Least squares means (LSMEANS) are requested for Cult, Irrig, and Cult*Irrig, and a few ESTIMATE
statements are specified to illustrate some linear combinations of the fixed effects.

The results from this analysis are shown in Output 65.6.1.

The “Covariance Structures” row in Output 65.6.1 reveals the two different structures assumed for G and R.

Output 65.6.1 Model Information in Line-Source Sprinkler Analysis

The Mixed ProcedureThe Mixed Procedure

Model Information

Data Set WORK.LINE

Dependent Variable Y

Covariance Structures Variance Components, Toeplitz

Subject Effect Block*Cult

Estimation Method REML

Residual Variance Method Profile

Fixed Effects SE Method Model-Based

Degrees of Freedom Method Containment

The levels of each classification variable are listed as a single string in the Values column, regardless of
whether the levels are numeric or character (Output 65.6.2).

Output 65.6.2 Class Level Information

Class Level Information

Class Levels Values

Block 3 1 2 3

Cult 3 Bridger Luke Nugaines

Dir 2 North South

Irrig 6 1 2 3 4 5 6

Even though there is a SUBJECT= effect in the REPEATED statement, the analysis considers all of the data
to be from one subject because there is no corresponding SUBJECT= effect in the RANDOM statement
(Output 65.6.3).
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Output 65.6.3 Model Dimensions and Number of Observations

Dimensions

Covariance Parameters 7

Columns in X 48

Columns in Z 27

Subjects 1

Max Obs per Subject 108

Number of Observations

Number of Observations Read 108

Number of Observations Used 108

Number of Observations Not Used 0

The Newton-Raphson algorithm converges successfully in seven iterations (Output 65.6.4).

Output 65.6.4 Iteration History and Convergence Status

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 226.25427252

1 4 187.99336173 .

2 3 186.62579299 0.10431081

3 1 184.38218213 0.04807260

4 1 183.41836853 0.00886548

5 1 183.25111475 0.00075353

6 1 183.23809997 0.00000748

7 1 183.23797748 0.00000000

Convergence criteria met.

The first block of the estimated R matrix has the TOEP(4) structure, and the observations that are three plots
apart exhibit a negative correlation (Output 65.6.5).

Output 65.6.5 Estimated R Matrix for the First Subject

Estimated R Matrix for Block*Cult 1 Bridger

Row Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8 Col9 Col10 Col11 Col12

1 0.2850 0.007986 0.001452 -0.09253

2 0.007986 0.2850 0.007986 0.001452 -0.09253

3 0.001452 0.007986 0.2850 0.007986 0.001452 -0.09253

4 -0.09253 0.001452 0.007986 0.2850 0.007986 0.001452 -0.09253

5 -0.09253 0.001452 0.007986 0.2850 0.007986 0.001452 -0.09253

6 -0.09253 0.001452 0.007986 0.2850 0.007986 0.001452 -0.09253

7 -0.09253 0.001452 0.007986 0.2850 0.007986 0.001452 -0.09253

8 -0.09253 0.001452 0.007986 0.2850 0.007986 0.001452 -0.09253

9 -0.09253 0.001452 0.007986 0.2850 0.007986 0.001452 -0.09253

10 -0.09253 0.001452 0.007986 0.2850 0.007986 0.001452

11 -0.09253 0.001452 0.007986 0.2850 0.007986

12 -0.09253 0.001452 0.007986 0.2850
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Output 65.6.6 lists the estimated covariance parameters from both G and R. The first three are the variance
components making up the diagonal G, and the final four make up the Toeplitz structure in the blocks of
R. The Residual row corresponds to the variance of the Toeplitz structure, and it represents the parameter
profiled out during the optimization process.

Output 65.6.6 Estimated Covariance Parameters

Covariance Parameter
Estimates

Cov Parm Subject Estimate

Block 0.2194

Block*Dir 0.01768

Block*Irrig 0.03539

TOEP(2) Block*Cult 0.007986

TOEP(3) Block*Cult 0.001452

TOEP(4) Block*Cult -0.09253

Residual 0.2850

The “–2 Res Log Likelihood” value in Output 65.6.7 is the same as the final value listed in the “Iteration
History” table (Output 65.6.4).

Output 65.6.7 Fit Statistics Based on the Residual Log Likelihood

Fit Statistics

-2 Res Log Likelihood 183.2

AIC (Smaller is Better) 197.2

AICC (Smaller is Better) 198.8

BIC (Smaller is Better) 190.9

Every fixed effect except for Dir and Cult*Irrig is significant at the 5% level (Output 65.6.8).

Output 65.6.8 Tests for Fixed Effects

Type 3 Tests of Fixed Effects

Effect
Num

DF
Den

DF F Value Pr > F

Cult 2 68 7.98 0.0008

Dir 1 2 3.95 0.1852

Cult*Dir 2 68 3.44 0.0379

Irrig 5 10 102.60 <.0001

Cult*Irrig 10 68 1.91 0.0580

Dir*Irrig 5 68 6.12 <.0001

The “Estimates” table lists the results from the various linear combinations of fixed effects specified in the
ESTIMATE statements (Output 65.6.9). Bridger is not significantly different from Luke, and Irrig possesses a
strong linear component. This strength appears to be influencing the significance of the interaction.
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Output 65.6.9 Estimates

Estimates

Label Estimate
Standard

Error DF t Value Pr > |t|

Bridger vs Luke -0.03889 0.09524 68 -0.41 0.6843

Linear Irrig 30.6444 1.4412 10 21.26 <.0001

B vs L x Linear Irrig -9.8667 2.7400 68 -3.60 0.0006

The least squares means shown in Output 65.6.10 are useful in comparing the levels of the various fixed
effects. For example, it appears that irrigation levels 5 and 6 have virtually the same effect.

Output 65.6.10 Least Squares Means for Cult, Irrig, and Their Interaction

Least Squares Means

Effect Cult Irrig Estimate
Standard

Error DF t Value Pr > |t|

Cult Bridger 5.0306 0.2874 68 17.51 <.0001

Cult Luke 5.0694 0.2874 68 17.64 <.0001

Cult Nugaines 4.7222 0.2874 68 16.43 <.0001

Irrig 1 2.4222 0.3220 10 7.52 <.0001

Irrig 2 3.1833 0.3220 10 9.88 <.0001

Irrig 3 5.0556 0.3220 10 15.70 <.0001

Irrig 4 6.1889 0.3220 10 19.22 <.0001

Irrig 5 6.4000 0.3140 10 20.38 <.0001

Irrig 6 6.3944 0.3227 10 19.81 <.0001

Cult*Irrig Bridger 1 2.8500 0.3679 68 7.75 <.0001

Cult*Irrig Bridger 2 3.4167 0.3679 68 9.29 <.0001

Cult*Irrig Bridger 3 5.1500 0.3679 68 14.00 <.0001

Cult*Irrig Bridger 4 6.2500 0.3679 68 16.99 <.0001

Cult*Irrig Bridger 5 6.3000 0.3463 68 18.19 <.0001

Cult*Irrig Bridger 6 6.2167 0.3697 68 16.81 <.0001

Cult*Irrig Luke 1 2.1333 0.3679 68 5.80 <.0001

Cult*Irrig Luke 2 2.8667 0.3679 68 7.79 <.0001

Cult*Irrig Luke 3 5.2333 0.3679 68 14.22 <.0001

Cult*Irrig Luke 4 6.5500 0.3679 68 17.80 <.0001

Cult*Irrig Luke 5 6.8833 0.3463 68 19.87 <.0001

Cult*Irrig Luke 6 6.7500 0.3697 68 18.26 <.0001

Cult*Irrig Nugaines 1 2.2833 0.3679 68 6.21 <.0001

Cult*Irrig Nugaines 2 3.2667 0.3679 68 8.88 <.0001

Cult*Irrig Nugaines 3 4.7833 0.3679 68 13.00 <.0001

Cult*Irrig Nugaines 4 5.7667 0.3679 68 15.67 <.0001

Cult*Irrig Nugaines 5 6.0167 0.3463 68 17.37 <.0001

Cult*Irrig Nugaines 6 6.2167 0.3697 68 16.81 <.0001

An interesting exercise is to fit other variance-covariance models to these data and to compare them to
this one by using likelihood ratio tests, Akaike’s information criterion, or Schwarz’s Bayesian information
criterion. In particular, some spatial models are worth investigating (Marx and Thompson 1987; Zimmerman
and Harville 1991). The following is one example of spatial model statements:
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proc mixed;
class Block Cult Dir Irrig;
model Y = Cult|Dir|Irrig@2;
repeated / type=sp(pow)(Row Sbplt) sub=intercept;

run;

The TYPE=SP(POW)(Row Sbplt) option in the REPEATED statement requests the spatial power structure,
with the two defining coordinate variables being Row and Sbplt. The SUBJECT=INTERCEPT option
indicates that the entire data set is to be considered as one subject, thereby modeling R as a dense 108�108
covariance matrix. See Wolfinger (1993) for further discussion of this example and additional analyses.

Example 65.7: Influence in Heterogeneous Variance Model
In this example from Snedecor and Cochran (1980, p. 216), a one-way classification model with heteroge-
neous variances is fit. The data, shown in the following DATA step, represent amounts of different types of
fat absorbed by batches of doughnuts during cooking, measured in grams.

data absorb;
input FatType Absorbed @@;
datalines;

1 164 1 172 1 168 1 177 1 156 1 195
2 178 2 191 2 197 2 182 2 185 2 177
3 175 3 193 3 178 3 171 3 163 3 176
4 155 4 166 4 149 4 164 4 170 4 168

;

The statistical model for these data can be written as

Yij D �C �i C �ij

i D 1; � � � ; t D 4

j D 1; � � � ; r D 6

�ij D N.0; �
2
i /

where Yij is the amount of fat absorbed by the jth batch of the ith fat type, and �i denotes the fat-type effects.
A quick glance at the data suggests that observations 6, 9, 14, and 21 might be influential on the analysis,
because these are extreme observations for the respective fat types.

The following SAS statements fit this model and request influence diagnostics for the fixed effects and
covariance parameters. ODS Graphics is used to create plots of the influence diagnostics in addition to the
tabular output. The ESTIMATES suboption requests plots of “leave-one-out” estimates for the fixed effects
and group variances.

ods graphics on;

proc mixed data=absorb asycov;
class FatType;
model Absorbed = FatType / s

influence(iter=10 estimates);
repeated / group=FatType;
ods output Influence=inf;
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run;

ods graphics off;

The “Influence” table is output to the SAS data set inf so that parameter estimates can be printed subsequently.
Results from this analysis are shown in Output 65.7.1.

Output 65.7.1 Heterogeneous Variance Analysis

The Mixed ProcedureThe Mixed Procedure

Model Information

Data Set WORK.ABSORB

Dependent Variable Absorbed

Covariance Structure Variance Components

Group Effect FatType

Estimation Method REML

Residual Variance Method None

Fixed Effects SE Method Model-Based

Degrees of Freedom Method Between-Within

Covariance Parameter
Estimates

Cov Parm Group Estimate

Residual FatType 1 178.00

Residual FatType 2 60.4000

Residual FatType 3 97.6000

Residual FatType 4 67.6000

Solution for Fixed Effects

Effect FatType Estimate
Standard

Error DF t Value Pr > |t|

Intercept 162.00 3.3566 20 48.26 <.0001

FatType 1 10.0000 6.3979 20 1.56 0.1337

FatType 2 23.0000 4.6188 20 4.98 <.0001

FatType 3 14.0000 5.2472 20 2.67 0.0148

FatType 4 0 . . . .

The fixed-effects solutions correspond to estimates of the following parameters:

Intercept W �C �4
FatType1 W �1 � �4
FatType2 W �2 � �4
FatType3 W �3 � �4
FatType4 W 0

You can easily verify that these estimates are simple functions of the arithmetic means yi: in the groups.
For example, 2�C �4 D y4: D 162:0, 2�1 � �4 D y1: � y4: D 10:0, and so forth. The covariance parameter
estimates are the sample variances in the groups and are uncorrelated.

The variances in the four groups are shown in the “Covariance Parameter Estimates” table (Output 65.7.1).
The estimated variance in the first group is two to three times larger than the variance in the other groups.
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Output 65.7.2 Asymptotic Variances of Group Variance Estimates

Asymptotic Covariance Matrix of Estimates

Row Cov Parm CovP1 CovP2 CovP3 CovP4

1 Residual 12674

2 Residual 1459.26

3 Residual 3810.30

4 Residual 1827.90

In groups where the residual variance estimate is large, the precision of the estimate is also small (Out-
put 65.7.2).

The following statements print the “leave-one-out” estimates for fixed effects and covariance parameters that
were written to the inf data set with the ESTIMATES suboption (Output 65.7.3):

proc print data=inf label;
var parm1-parm5 covp1-covp4;

run;

Output 65.7.3 Leave-One-Out Estimates

Obs Intercept
FatType

1
FatType

2
FatType

3
FatType

4

Residual
FatType

1

Residual
FatType

2

Residual
FatType

3

Residual
FatType

4

1 162.00 11.600 23.000 14.000 0 203.30 60.400 97.60 67.600

2 162.00 10.000 23.000 14.000 0 222.47 60.400 97.60 67.600

3 162.00 10.800 23.000 14.000 0 217.68 60.400 97.60 67.600

4 162.00 9.000 23.000 14.000 0 214.99 60.400 97.60 67.600

5 162.00 13.200 23.000 14.000 0 145.70 60.400 97.60 67.600

6 162.00 5.400 23.000 14.000 0 63.80 60.400 97.60 67.600

7 162.00 10.000 24.400 14.000 0 178.00 60.795 97.60 67.600

8 162.00 10.000 21.800 14.000 0 178.00 64.691 97.60 67.600

9 162.00 10.000 20.600 14.000 0 178.00 32.296 97.60 67.600

10 162.00 10.000 23.600 14.000 0 178.00 72.797 97.60 67.600

11 162.00 10.000 23.000 14.000 0 178.00 75.490 97.60 67.600

12 162.00 10.000 24.600 14.000 0 178.00 56.285 97.60 67.600

13 162.00 10.000 23.000 14.200 0 178.00 60.400 121.68 67.600

14 162.00 10.000 23.000 10.600 0 178.00 60.400 35.30 67.600

15 162.00 10.000 23.000 13.600 0 178.00 60.400 120.79 67.600

16 162.00 10.000 23.000 15.000 0 178.00 60.400 114.50 67.600

17 162.00 10.000 23.000 16.600 0 178.00 60.400 71.30 67.600

18 162.00 10.000 23.000 14.000 0 178.00 60.400 121.98 67.600

19 163.40 8.600 21.600 12.600 0 178.00 60.400 97.60 69.799

20 161.20 10.800 23.800 14.800 0 178.00 60.400 97.60 79.698

21 164.60 7.400 20.400 11.400 0 178.00 60.400 97.60 33.800

22 161.60 10.400 23.400 14.400 0 178.00 60.400 97.60 83.292

23 160.40 11.600 24.600 15.600 0 178.00 60.400 97.60 65.299

24 160.80 11.200 24.200 15.200 0 178.00 60.400 97.60 73.677
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The graphical displays in Output 65.7.4 and Output 65.7.5 are created when ODS Graphics is enabled. For
general information about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.” For specific
information about the graphics available in the MIXED procedure, see the section “ODS Graphics” on
page 5324.

Output 65.7.4 Fixed-Effects Deletion Estimates
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Output 65.7.5 Covariance Parameter Deletion Estimates

The estimate of the intercept is affected only when observations from the last group are removed. The
estimate of the “FatType 1” effect reacts to removal of observations in the first and last group (Output 65.7.4).

While observations can affect one or more fixed-effects solutions in this model, they can affect only one
covariance parameter, the variance in their group (Output 65.7.5). Observations 6, 9, 14, and 21, which are
extreme in their group, reduce the group variance considerably.

Diagnostics related to residuals and predicted values are printed with the following statements:

proc print data=inf label;
var observed predicted residual pressres

student Rstudent;
run;
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Output 65.7.6 Residual Diagnostics

Obs
Observed

Value
Predicted

Mean Residual
PRESS

Residual

Internally
Studentized

Residual

Externally
Studentized

Residual

1 164 172.0 -8.000 -9.600 -0.6569 -0.6146

2 172 172.0 0.000 0.000 0.0000 0.0000

3 168 172.0 -4.000 -4.800 -0.3284 -0.2970

4 177 172.0 5.000 6.000 0.4105 0.3736

5 156 172.0 -16.000 -19.200 -1.3137 -1.4521

6 195 172.0 23.000 27.600 1.8885 3.1544

7 178 185.0 -7.000 -8.400 -0.9867 -0.9835

8 191 185.0 6.000 7.200 0.8457 0.8172

9 197 185.0 12.000 14.400 1.6914 2.3131

10 182 185.0 -3.000 -3.600 -0.4229 -0.3852

11 185 185.0 0.000 -0.000 0.0000 0.0000

12 177 185.0 -8.000 -9.600 -1.1276 -1.1681

13 175 176.0 -1.000 -1.200 -0.1109 -0.0993

14 193 176.0 17.000 20.400 1.8850 3.1344

15 178 176.0 2.000 2.400 0.2218 0.1993

16 171 176.0 -5.000 -6.000 -0.5544 -0.5119

17 163 176.0 -13.000 -15.600 -1.4415 -1.6865

18 176 176.0 0.000 0.000 0.0000 0.0000

19 155 162.0 -7.000 -8.400 -0.9326 -0.9178

20 166 162.0 4.000 4.800 0.5329 0.4908

21 149 162.0 -13.000 -15.600 -1.7321 -2.4495

22 164 162.0 2.000 2.400 0.2665 0.2401

23 170 162.0 8.000 9.600 1.0659 1.0845

24 168 162.0 6.000 7.200 0.7994 0.7657

Observations 6, 9, 14, and 21 have large studentized residuals (Output 65.7.6). That the externally studentized
residuals are much larger than the internally studentized residuals for these observations indicates that the
variance estimate in the group shrinks when the observation is removed. Also important to note is that
comparisons based on raw residuals in models with heterogeneous variance can be misleading. Observation
5, for example, has a larger residual but a smaller studentized residual than observation 21. The variance for
the first fat type is much larger than the variance in the fourth group. A “large” residual is more “surprising”
in the groups with small variance.

A measure of the overall influence on the analysis is the (restricted) likelihood distance, shown in Out-
put 65.7.7. Observations 6, 9, 14, and 21 clearly displace the REML solution more than any other observa-
tions.
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Output 65.7.7 Restricted Likelihood Distance

The following statements list the restricted likelihood distance and various diagnostics related to the fixed-
effects estimates (Output 65.7.8):

proc print data=inf label;
var leverage observed CookD DFFITS CovRatio RLD;

run;



5382 F Chapter 65: The MIXED Procedure

Output 65.7.8 Restricted Likelihood Distance and Fixed-Effects Diagnostics

Obs Leverage
Observed

Value
Cook's

D DFFITS COVRATIO

Restr.
Likelihood
Distance

1 0.167 164 0.02157 -0.27487 1.3706 0.1178

2 0.167 172 0.00000 -0.00000 1.4998 0.1156

3 0.167 168 0.00539 -0.13282 1.4675 0.1124

4 0.167 177 0.00843 0.16706 1.4494 0.1117

5 0.167 156 0.08629 -0.64938 0.9822 0.5290

6 0.167 195 0.17831 1.41069 0.4301 5.8101

7 0.167 178 0.04868 -0.43982 1.2078 0.1935

8 0.167 191 0.03576 0.36546 1.2853 0.1451

9 0.167 197 0.14305 1.03446 0.6416 2.2909

10 0.167 182 0.00894 -0.17225 1.4463 0.1116

11 0.167 185 0.00000 -0.00000 1.4998 0.1156

12 0.167 177 0.06358 -0.52239 1.1183 0.2856

13 0.167 175 0.00061 -0.04441 1.4961 0.1151

14 0.167 193 0.17766 1.40175 0.4340 5.7044

15 0.167 178 0.00246 0.08915 1.4851 0.1139

16 0.167 171 0.01537 -0.22892 1.4078 0.1129

17 0.167 163 0.10389 -0.75423 0.8766 0.8433

18 0.167 176 0.00000 0.00000 1.4998 0.1156

19 0.167 155 0.04349 -0.41047 1.2390 0.1710

20 0.167 166 0.01420 0.21950 1.4148 0.1124

21 0.167 149 0.15000 -1.09545 0.6000 2.7343

22 0.167 164 0.00355 0.10736 1.4786 0.1133

23 0.167 170 0.05680 0.48500 1.1592 0.2383

24 0.167 168 0.03195 0.34245 1.3079 0.1353

In this example, observations with large likelihood distances also have large values for Cook’s D and values
of CovRatio far less than one (Output 65.7.8). The latter indicates that the fixed effects are estimated more
precisely when these observations are removed from the analysis.

The following statements print the values of the D statistic and the CovRatio for the covariance parameters:

proc print data=inf label;
var iter CookDCP CovRatioCP;

run;

The same conclusions as for the fixed-effects estimates hold for the covariance parameter estimates. Observa-
tions 6, 9, 14, and 21 change the estimates and their precision considerably (Output 65.7.9, Output 65.7.10).
All iterative updates converged within at most four iterations.
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Output 65.7.9 Covariance Parameter Diagnostics

Obs Iterations
Cook's D

CovParms
COVRATIO
CovParms

1 3 0.05050 1.6306

2 3 0.15603 1.9520

3 3 0.12426 1.8692

4 3 0.10796 1.8233

5 4 0.08232 0.8375

6 4 1.02909 0.1606

7 1 0.00011 1.2662

8 2 0.01262 1.4335

9 3 0.54126 0.3573

10 3 0.10531 1.8156

11 3 0.15603 1.9520

12 2 0.01160 1.0849

13 3 0.15223 1.9425

14 4 1.01865 0.1635

15 3 0.14111 1.9141

16 3 0.07494 1.7203

17 3 0.18154 0.6671

18 3 0.15603 1.9520

19 2 0.00265 1.3326

20 3 0.08008 1.7374

21 1 0.62500 0.3125

22 3 0.13472 1.8974

23 2 0.00290 1.1663

24 2 0.02020 1.4839

Output 65.7.10 displays the standard panel of influence diagnostics that is obtained when influence analysis is
iterative. The Cook’s D and CovRatio statistics are displayed for each deletion set for both fixed-effects and
covariance parameter estimates. This provides a convenient summary of the impact on the analysis for each
deletion set, since Cook’s D statistic measures impact on the estimates and the CovRatio statistic measures
impact on the precision of the estimates.
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Output 65.7.10 Influence Diagnostics

Observations 6, 9, 14, and 21 have considerable impact on estimates and precision of fixed effects and
covariance parameters. This is not necessarily the case. Observations can be influential on only some aspects
of the analysis, as shown in the next example.

Example 65.8: Influence Analysis for Repeated Measures Data
This example revisits the repeated measures data of Pothoff and Roy (1964) that were analyzed in Exam-
ple 65.2. Recall that the data consist of growth measurements at ages 8, 10, 12, and 14 for 11 girls and 16
boys. The model being fit contains fixed effects for Gender and Age and their interaction.

The earlier analysis of these data indicated some unusual observations in this data set. Because of the
clustered data structure, it is of interest to study the influence of clusters (children) on the analysis rather than
the influence of individual observations. A cluster comprises the repeated measurements for each child.

The repeated measures are first modeled with an unstructured within-child variance-covariance matrix.
A residual variance is not profiled in this model. A noniterative influence analysis will update the fixed
effects only. The following statements request this noniterative maximum likelihood analysis and produce
Output 65.8.1:
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proc mixed data=pr method=ml;
class person gender;
model y = gender age gender*age /

influence(effect=person);
repeated / type=un subject=person;
ods select influence;

run;

Output 65.8.1 Default Influence Statistics in Noniterative Analysis

The Mixed ProcedureThe Mixed Procedure

Influence Diagnostics for Levels of
Person

Person

Number of
Observations

in Level
PRESS

Statistic
Cook's

D

1 4 10.1716 0.01539

2 4 3.8187 0.03988

3 4 10.8448 0.02891

4 4 24.0339 0.04515

5 4 1.6900 0.01613

6 4 11.8592 0.01634

7 4 1.1887 0.00521

8 4 4.6717 0.02742

9 4 13.4244 0.03949

10 4 85.1195 0.13848

11 4 67.9397 0.09728

12 4 40.6467 0.04438

13 4 13.0304 0.00924

14 4 6.1712 0.00411

15 4 24.5702 0.12727

16 4 20.5266 0.01026

17 4 9.9917 0.01526

18 4 7.9355 0.01070

19 4 15.5955 0.01982

20 4 42.6845 0.01973

21 4 95.3282 0.10075

22 4 13.9649 0.03778

23 4 4.9656 0.01245

24 4 37.2494 0.15094

25 4 4.3756 0.03375

26 4 8.1448 0.03470

27 4 20.2913 0.02523

Each observation in the “Influence Diagnostics for Levels of Person” table in Output 65.8.1 represents the
removal of four observations. The subjects 10, 15, and 24 have the greatest impact on the fixed effects
(Cook’s D), and subject 10 and 21 have large PRESS statistics. The 21st child has a large PRESS statistic,
and its D statistic is not that extreme. This is an indication that the model fits rather poorly for this child,
whether it is part of the data or not.
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The previous analysis does not take into account the effect on the covariance parameters when a subject is
removed from the analysis. If you also update the covariance parameters, the impact of observations on these
can amplify or allay their effect on the fixed effects. To assess the overall influence of subjects on the analysis
and to compute separate statistics for the fixed effects and covariance parameters, an iterative analysis is
obtained by adding the INFLUENCE suboption ITER=, as follows:

ods graphics on;

proc mixed data=pr method=ml;
class person gender;
model y = gender age gender*age /

influence(effect=person iter=5);
repeated / type=un subject=person;

run;

The number of additional iterations following removal of the observations for a particular subject is limited
to five. Graphical displays of influence diagnostics are created when ODS Graphics is enabled. For
general information about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.” For specific
information about the graphics available in the MIXED procedure, see the section “ODS Graphics” on
page 5324.

The MIXED procedure produces a plot of the restricted likelihood distance (Output 65.8.2) and a panel of
diagnostics for fixed effects and covariance parameters (Output 65.8.3).
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Output 65.8.2 Restricted Likelihood Distance
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Output 65.8.3 Influence Diagnostics Panel

As judged by the restricted likelihood distance, subjects 20 and 24 clearly have the most influence on the
overall analysis (Output 65.8.2).

Output 65.8.3 displays Cook’s D and CovRatio statistics for the fixed effects and covariance parameters.
Clearly, subject 20 has a dramatic effect on the estimates of variances and covariances. This subject also
affects the precision of the covariance parameter estimates more than any other subject in Output 65.8.3
(CovRatio near 0).

The child who exerts the greatest influence on the fixed effects is subject 24. Maybe surprisingly, this
subject affects the variance-covariance matrix of the fixed effects more than subject 20 (small CovRatio in
Output 65.8.3).

The final model investigated for these data is a random coefficient model as in Stram and Lee (1994) with
random effects for the intercept and age effect. The following statements examine the estimates for fixed
effects and the entries of the unstructured 2 � 2 variance matrix of the random coefficients graphically:
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proc mixed data=pr method=ml
plots(only)=InfluenceEstPlot;

class person gender;
model y = gender age gender*age /

influence(iter=5 effect=person est);
random intercept age / type=un subject=person;

run;

The PLOTS(ONLY)=INFLUENCEESTPLOT option restricts the graphical output from this PROC MIXED
run to only the panels of deletion estimates (Output 65.8.4 and Output 65.8.5).

Output 65.8.4 Fixed-Effects Deletion Estimates

In Output 65.8.4 the graphs on the left side of the panel represent the intercept and slope estimate for boys;
the graphs on the right side represent the difference in intercept and slope between boys and girls. Removing
any one of the first eleven children, who are girls, does not alter the intercept or slope in the group of boys.
The difference in these parameters between boys and girls is altered by the removal of any child. Subject 24
changes the fixed effects considerably, subject 20 much less so.
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Output 65.8.5 Covariance Parameter Deletion Estimates

The covariance parameter deletion estimates in Output 65.8.5 show several important features.

• The panels do not contain information about subject 24. Estimation of the G matrix following removal
of that child did not yield a positive definite matrix. As a consequence, covariance parameter diagnostics
are not produced for this subject.

• Subject 20 has great impact on the four covariance parameters. Removing this child from the analysis
increases the variance of the random intercept and random slope and reduces the residual variance by
almost 80%. The repeated measurements of this child exhibit an up-and-down behavior.

• The variance of the random intercept and slope are reduced when child 15 is removed from the analysis.
This child’s growth measurements oscillate about 27.0 from age 10 on.

Examining observed and residual values by levels of classification variables is also a useful tool to diagnose
the adequacy of the model and unusual observations. Box plots for effects in the model that consist of only
classification variables can be requested with the BOXPLOT option of the PLOTS= option in the PROC
MIXED statement. For example, the following statements produce box plots for the SUBJECT= effects in
the model:
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ods graphics on;
proc mixed data=pr method=ml

plot=boxplot(observed marginal conditional subject);
class person gender;
model y = gender age gender*age;
random intercept age / type=un subject=person;

run;

The specific boxplot options request a plot of the observed data (Output 65.8.6), the marginal residuals
(Output 65.8.7), and the conditional residuals (Output 65.8.8). Box plots of the observed values show the
variation within and between children clearly. The group of girls (subjects 1–11) is distinguishable from the
group of boys by somewhat lesser average growth and lesser within-child variation (Output 65.8.6). After
adjusting for overall (population-averaged) gender and age effects, the residual within-child variation is
reduced but substantial differences in the means remain (Output 65.8.7). If child-specific inferences are
desired, a model accounting for only Gender, Age, and Gender*Age effects is not adequate for these data.

Output 65.8.6 Distribution of Observed Values
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Output 65.8.7 Distribution of Marginal Residuals

The conditional residuals incorporate the EBLUPs for each child and enable you to examine whether the
subject-specific model is adequate (Output 65.8.8). By using each child “as its own control,” the residuals are
now centered near zero. Subjects 20 and 24 stand out as unusual in all three sets of box plots.
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Output 65.8.8 Distribution of Conditional Residuals

Example 65.9: Examining Individual Test Components
The LCOMPONENTS option in the MODEL statement enables you to perform single-degree-of-freedom
tests for individual rows of the L matrix. Such tests are useful to identify interaction patterns. In a balanced
layout, Type 3 components of L associated with A*B interactions correspond to simple contrasts of cell mean
differences.

The first example revisits the data from the split-plot design by Stroup (1989a) that was analyzed in
Example 65.1. Recall that variables A and B in the following statements represent the whole-plot and subplot
factors, respectively:

proc mixed data=sp;
class a b block;
model y = a b a*b / LComponents e3;
random block a*block;

run;

The MIXED procedure constructs a separate L matrix for each of the three fixed-effects components. The
matrices are displayed in Output 65.9.1. The tests for fixed effects are shown in Output 65.9.2.
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Output 65.9.1 Coefficients of Type 3 Estimable Functions

The Mixed ProcedureThe Mixed Procedure

Type 3 Coefficients for A

Effect A B Row1 Row2

Intercept

A 1 1

A 2 1

A 3 -1 -1

B 1

B 2

A*B 1 1 0.5

A*B 1 2 0.5

A*B 2 1 0.5

A*B 2 2 0.5

A*B 3 1 -0.5 -0.5

A*B 3 2 -0.5 -0.5

Type 3 Coefficients for
B

Effect A B Row1

Intercept

A 1

A 2

A 3

B 1 1

B 2 -1

A*B 1 1 0.3333

A*B 1 2 -0.333

A*B 2 1 0.3333

A*B 2 2 -0.333

A*B 3 1 0.3333

A*B 3 2 -0.333

Type 3 Coefficients for A*B

Effect A B Row1 Row2

Intercept

A 1

A 2

A 3

B 1

B 2

A*B 1 1 1

A*B 1 2 -1

A*B 2 1 1

A*B 2 2 -1

A*B 3 1 -1 -1

A*B 3 2 1 1
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Output 65.9.2 Type 3 Tests in Split-Plot Example

Type 3 Tests of Fixed Effects

Effect
Num

DF
Den

DF F Value Pr > F

A 2 6 4.07 0.0764

B 1 9 19.39 0.0017

A*B 2 9 4.02 0.0566

If �i: denotes a whole-plot main effect mean, �:j denotes a subplot main effect mean, and �ij denotes a cell
mean, the five components shown in Output 65.9.3 correspond to tests of the following:

• H0 W �1: D �3:

• H0 W �2: D �3:

• H0 W �:1 D �:2

• H0 W �11 � �12 D �31 � �32

• H0 W �21 � �22 D �31 � �32

Output 65.9.3 Type 3 L Components Table

L Components of Type 3 Tests of Fixed Effects

Effect
L

Index Estimate
Standard

Error DF t Value Pr > |t|

A 1 7.1250 3.1672 6 2.25 0.0655

A 2 8.3750 3.1672 6 2.64 0.0383

B 1 5.5000 1.2491 9 4.40 0.0017

A*B 1 7.7500 3.0596 9 2.53 0.0321

A*B 2 7.2500 3.0596 9 2.37 0.0419

The first three components are comparisons of marginal means. The fourth component compares the effect
of factor B at the first whole-plot level against the effect of B at the third whole-plot level. Finally, the last
component tests whether the factor B effect changes between the second and third whole-plot level.

The Type 3 component tests can also be produced with these corresponding ESTIMATE statements:

proc mixed data=sp;
class a b block ;
model y = a b a*b;
random block a*block;
estimate 'a 1' a 1 0 -1;
estimate 'a 2' a 0 1 -1;
estimate 'b 1' b 1 -1;
estimate 'a*b 1' a*b 1 -1 0 0 -1 1;
estimate 'a*b 2' a*b 0 0 1 -1 -1 1;
ods select Estimates;

run;

The results are shown in Output 65.9.4.
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Output 65.9.4 Results from ESTIMATE Statements

The Mixed ProcedureThe Mixed Procedure

Estimates

Label Estimate
Standard

Error DF t Value Pr > |t|

a    1 7.1250 3.1672 6 2.25 0.0655

a    2 8.3750 3.1672 6 2.64 0.0383

b    1 5.5000 1.2491 9 4.40 0.0017

a*b  1 7.7500 3.0596 9 2.53 0.0321

a*b  2 7.2500 3.0596 9 2.37 0.0419

A second useful application of the LCOMPONENTS option is in polynomial models, where Type 1 tests are
often used to test the entry of model terms sequentially. The SOLUTION option in the MODEL statement
displays the regression coefficients that correspond to a Type 3 analysis. That is, the coefficients represent
the partial coefficients you would get by adding the regressor variable last in a model containing all other
effects, and the tests are identical to those in the “Type 3 Tests of Fixed Effects” table.

Consider the following DATA step and the fit of a third-order polynomial regression model.

data polynomial;
do x=1 to 20; input y@@; output; end;
datalines;

1.092 1.758 1.997 3.154 3.880
3.810 4.921 4.573 6.029 6.032
6.291 7.151 7.154 6.469 7.137
6.374 5.860 4.866 4.155 2.711
;

proc mixed data=polynomial;
model y = x x*x x*x*x / s lcomponents htype=1,3;

run;

The t tests displayed in the “Solution for Fixed Effects” table are Type 3 tests, sometimes referred to as
partial tests. They measure the contribution of a regressor in the presence of all other regressor variables in
the model.

Output 65.9.5 Parameter Estimates in Polynomial Model

The Mixed ProcedureThe Mixed Procedure

Solution for Fixed Effects

Effect Estimate
Standard

Error DF t Value Pr > |t|

Intercept 0.7837 0.3545 16 2.21 0.0420

x 0.3726 0.1426 16 2.61 0.0189

x*x 0.04756 0.01558 16 3.05 0.0076

x*x*x -0.00306 0.000489 16 -6.27 <.0001

The Type 3 L components are identical to the tests in the “Solutions for Fixed Effects” table shown in
Output 65.9.5. The Type 1 table yields the following:
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• sequential (Type 1) tests of regression variables that test the significance of a regressor given all other
variables preceding it in the model list

• the regression coefficients for sequential submodels

Output 65.9.6 Type 1 and Type 3 L Components

L Components of Type 1 Tests of Fixed Effects

Effect
L

Index Estimate
Standard

Error DF t Value Pr > |t|

x 1 0.1763 0.01259 16 14.01 <.0001

x*x 1 -0.04886 0.002449 16 -19.95 <.0001

x*x*x 1 -0.00306 0.000489 16 -6.27 <.0001

L Components of Type 3 Tests of Fixed Effects

Effect
L

Index Estimate
Standard

Error DF t Value Pr > |t|

x 1 0.3726 0.1426 16 2.61 0.0189

x*x 1 0.04756 0.01558 16 3.05 0.0076

x*x*x 1 -0.00306 0.000489 16 -6.27 <.0001

The estimate of 0.1763 is the regression coefficient in a simple linear regression of Y on X. The estimate of
–0.04886 is the partial coefficient for the quadratic term when it is added to a model containing only a linear
component. Similarly, the value –0.00306 is the partial coefficient for the cubic term when it is added to a
model containing a linear and quadratic component. The last Type 1 component is always identical to the
corresponding Type 3 component.

Example 65.10: Isotonic Contrasts for Ordered Mean Values
It is often of interest to test whether the mean values of the dependent variable increases or decreases
monotonically with certain factors. Hirotsu and Srivastava (2000) demonstrate one approach by using data
(Moriguchi 1976). The data consist of ferrite cores subjected to four increasing temperatures. The response
variable is the magnetic force of each core.

data FerriteCores;
do Temp = 1 to 4;

do rep = 1 to 5; drop rep;
input MagneticForce @@;
output;

end;
end;
datalines;

10.8 9.9 10.7 10.4 9.7
10.7 10.6 11.0 10.8 10.9
11.9 11.2 11.0 11.1 11.3
11.4 10.7 10.9 11.3 11.7
;

The method presented by Hirotsu and Srivastava (2000) to test whether the magnetic force of the cores rises
monotonically with temperature depends on the lower confidence limits of the isotonic contrasts of the force
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means at each temperature, adjusted for multiplicity. The corresponding isotonic contrast compares the
average of a particular group and the preceding groups with the average of the succeeding groups. You can
compute adjusted confidence intervals for isotonic contrasts by using the LSMESTIMATE statement.

The following statements analyze the FerriteCores data as a one-way design and multiplicity-adjusted lower
confidence limits for the isotonic contrasts. For the multiplicity adjustment, the LSMESTIMATE statement
employs simulation, which provides adjusted p-values and lower confidence limits that are exact up to Monte
Carlo error.

proc mixed data=FerriteCores;
class Temp;
model MagneticForce = Temp;
lsmestimate Temp

'avg(1:1)<avg(2:4)' -3 1 1 1 divisor=3,
'avg(1:2)<avg(3:4)' -1 -1 1 1 divisor=2,
'avg(1:3)<avg(4:4)' -1 -1 -1 3 divisor=3
/ adjust=simulate(seed=1) cl upper;

ods select LSMestimates;
run;

The results are shown in Output 65.10.1.

Output 65.10.1 Analysis of LS-Means with Isotonic Contrasts

The Mixed ProcedureThe Mixed Procedure

Least Squares Means Estimates
Adjustment for Multiplicity: Simulated

Effect Label Estimate
Standard

Error DF t Value Tails Pr > t Adj P Alpha Lower Upper
Adj

Lower
Adj

Upper

Temp avg(1:1)<avg(2:4) 0.8000 0.1906 16 4.20 Upper 0.0003 0.0010 0.05 0.4672 Infty 0.3771 Infty

Temp avg(1:2)<avg(3:4) 0.7000 0.1651 16 4.24 Upper 0.0003 0.0009 0.05 0.4118 Infty 0.3337 Infty

Temp avg(1:3)<avg(4:4) 0.4000 0.1906 16 2.10 Upper 0.0260 0.0625 0.05 0.06721 Infty -0.02291 Infty

With an adjusted p-value of 0.001, the magnetic force at the first temperature is significantly less than the
average of the other temperatures. Likewise, the average of the first two temperatures is significantly less
than the average of the last two (p = 0.0009). However, the magnetic force at the last temperature is not
significantly greater than the average magnetic force of the others (p = 0.0625). These results indicate a
significant monotone increase over the first three temperatures, but not across all four temperatures.
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Overview: MODECLUS Procedure
The MODECLUS procedure clusters observations in a SAS data set by using any of several algorithms
based on nonparametric density estimates. The data can be numeric coordinates or distances. PROC
MODECLUS can perform approximate significance tests for the number of clusters and can hierarchically
join nonsignificant clusters. The significance tests are empirically validated by simulations with sample sizes
ranging from 20 to 2000.
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PROC MODECLUS produces output data sets containing density estimates and cluster membership, various
cluster statistics including approximate p-values, and a summary of the number of clusters generated by
various algorithms, smoothing parameters, and significance levels.

Most clustering methods are biased toward finding clusters possessing certain characteristics related to size
(number of members), shape, or dispersion. Methods based on the least squares criterion (Sarle 1982), such
as k-means and Ward’s minimum variance method, tend to find clusters with roughly the same number of
observations in each cluster. Average linkage (see Chapter 33, “The CLUSTER Procedure”) is somewhat
biased toward finding clusters of equal variance. Many clustering methods tend to produce compact, roughly
hyperspherical clusters and are incapable of detecting clusters with highly elongated or irregular shapes.
The methods with the least bias are those based on nonparametric density estimation (Silverman 1986, pp.
130–146; Scott 1992, pp. 125–190) such as density linkage (see Chapter 33, “The CLUSTER Procedure”),
Wong and Lane (1983); Wong and Schaack (1982). The biases of many commonly used clustering methods
are discussed in Chapter 11, “Introduction to Clustering Procedures.”

PROC MODECLUS implements several clustering methods by using nonparametric density estimation. Such
clustering methods are referred to hereafter as nonparametric clustering methods. The methods in PROC
MODECLUS are related to, but not identical to, methods developed by Gitman (1973); Huizinga (1978);
Koontz and Fukunaga (1972a, b); Koontz, Narendra, and Fukunaga (1976); Mizoguchi and Shimura (1980);
Wong and Lane (1983).

Details of the algorithms are provided in the section “Clustering Methods” on page 5425.

For nonparametric clustering methods, a cluster is loosely defined as a region surrounding a local maximum
of the probability density function (see the section “Significance Tests” on page 5427 for a more rigorous
definition). Given a sufficiently large sample, nonparametric clustering methods are capable of detecting
clusters of unequal size and dispersion and with highly irregular shapes. Nonparametric methods can also
obtain good results for compact clusters of equal size and dispersion, but they naturally require larger sample
sizes for good recovery than clustering methods that are biased toward finding such “nice” clusters.

For coordinate data, nonparametric clustering methods are less sensitive to changes in scale of the variables or
to affine transformations of the variables than are most other commonly used clustering methods. Nevertheless,
it is necessary to consider questions of scaling and transformation, since variables with large variances tend
to have more of an effect on the resulting clusters than those with small variances. If two or more variables
are not measured in comparable units, some type of standardization or scaling is necessary; otherwise, the
distances used by the procedure might be based on inappropriate apples-and-oranges computations. For
variables with comparable units of measurement, standardization or scaling might still be desirable if the
scale estimates of the variables are not related to their expected importance for defining clusters. If you want
two variables to have equal importance in the analysis, they should have roughly equal scale estimates. If you
want one variable to have more of an effect than another, the former should be scaled to have a greater scale
estimate than the latter. The STD option in the PROC MODECLUS statement scales all variables to equal
variance. However, the variance is not necessarily the most appropriate scale estimate for cluster analysis. In
particular, outliers should be removed before using PROC MODECLUS with the STD option. A variety of
scale estimators including robust estimators are provided in the STDIZE procedure (for detailed information,
see Chapter 94, “The STDIZE Procedure”). Additionally, the ACECLUS procedure provides another way to
transform the variables to try to improve the separation of clusters.

Since clusters are defined in terms of local maxima of the probability density function, nonlinear transforma-
tions of the data can change the number of population clusters. The variables should be transformed so that



Getting Started: MODECLUS Procedure F 5409

equal differences are of equal practical importance. An interval scale of measurement is required. Ordinal or
ranked data are generally inappropriate, since monotone transformations can produce any arbitrary number
of modes.

Unlike the methods in the CLUSTER procedure, the methods in the MODECLUS procedure are not inherently
hierarchical. However, PROC MODECLUS can do approximate nonparametric significance tests for the
number of clusters by obtaining an approximate p-value for each cluster, and it can hierarchically join
nonsignificant clusters.

Another important difference between the MODECLUS procedure and many other clustering methods is
that you do not tell PROC MODECLUS how many clusters you want. Instead, you specify a smoothing
parameter (see the section “Density Estimation” on page 5422) and, optionally, a significance level, and
PROC MODECLUS determines the number of clusters. You can specify a list of smoothing parameters, and
PROC MODECLUS performs a separate cluster analysis for each value in the list.

Getting Started: MODECLUS Procedure
This section illustrates how PROC MODECLUS can be used to examine the clusters of data in the following
artificial data set.

data example;
input x y @@;
datalines;

18 18 20 22 21 20 12 23 17 12 23 25 25 20 16 27
20 13 28 22 80 20 75 19 77 23 81 26 55 21 64 24
72 26 70 35 75 30 78 42 18 52 27 57 41 61 48 64
59 72 69 72 80 80 31 53 51 69 72 81
;

It is a good practice to plot the data to check for obvious clusters or pathologies prior to the analysis. In
this example, with only two variables and a small sample size, the SGPLOT procedure in the following
statements produces a scatter plot:

proc sgplot;
scatter y=y x=x;

run;

Figure 66.1 suggests three clusters. Of these clusters, the one in the lower-left corner is the most compact,
while the lower-right cluster is more dispersed.

The upper cluster is elongated and would be difficult for most clustering algorithms to identify as a single
cluster. The plot also suggests that a Euclidean distance of 10 or 20 is a good initial guess for the neighborhood
size in density estimation and clustering.
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Figure 66.1 Scatter Plot of Data

To obtain a cluster analysis in PROC MODECLUS, you must specify the METHOD= option; for most
purposes, METHOD=1 is recommended. The cluster analysis can be performed with a list of radii (R=10
15 35), as shown in the following PROC MODECLUS statement. An output data set containing the cluster
membership is created with the OUT= option. The following statements produce Figure 66.2 through
Figure 66.5:

proc modeclus data=example method=1 r=10 15 35 out=out;
run;

For each cluster solution, PROC MODECLUS produces a table of cluster statistics including the cluster
number, the number of observations in the cluster, the maximum estimated density within the cluster, the
number of observations in the cluster having a neighbor that belongs to a different cluster, and the estimated
saddle density of the cluster. The results are displayed in Figure 66.2, Figure 66.3, and Figure 66.4 for three
different radii. A smaller radius (R=10) yields a larger number of clusters (6), as displayed in Figure 66.2; a
larger radius (R=35) includes all observations in a single cluster, as displayed in Figure 66.4. Note that all
clusters in these three figures are “isolated” since their corresponding boundary frequencies are all zeros.
Consequently, all the estimated saddle densities are missing. A table summarizing each cluster solution is
then produced at the end, as displayed in Figure 66.5.
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Figure 66.2 Results from PROC MODECLUS for METHOD=1 and R=10

The MODECLUS Procedure
R=10  METHOD=1

The MODECLUS Procedure
R=10  METHOD=1

Cluster Statistics

Cluster Frequency

Maximum
Estimated

Density
Boundary

Frequency

Estimated
Saddle

Density

1 10 0.00106103 0 .

2 9 0.00084883 0 .

3 7 0.00031831 0 .

4 2 0.00021221 0 .

5 1 0.0001061 0 .

6 1 0.0001061 0 .

Figure 66.3 Results from PROC MODECLUS for METHOD=1 and R=15

The MODECLUS Procedure
R=15  METHOD=1

The MODECLUS Procedure
R=15  METHOD=1

Cluster Statistics

Cluster Frequency

Maximum
Estimated

Density
Boundary

Frequency

Estimated
Saddle

Density

1 10 0.00047157 0 .

2 10 0.00042441 0 .

3 10 0.00023579 0 .

Figure 66.4 Results from PROC MODECLUS for METHOD=1 and R=35

The MODECLUS Procedure
R=35  METHOD=1

The MODECLUS Procedure
R=35  METHOD=1

Cluster Statistics

Cluster Frequency

Maximum
Estimated

Density
Boundary

Frequency

Estimated
Saddle

Density

1 30 0.00012126 0 .

Figure 66.5 Summary Table

The MODECLUS ProcedureThe MODECLUS Procedure

Cluster Summary

R
Number of

Clusters

Frequency of
Unclassified

Objects

10 6 0

15 3 0

35 1 0
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The OUT= data set contains a complete copy of the input data set for each cluster solution. By using
a BY statement in the following PROC SGPLOT statement, you can examine the differences in cluster
memberships for each radius as shown in Figure 66.6 through Figure 66.8:

proc sgplot data=out noautolegend;
scatter y=y x=x / group=cluster markerchar=cluster;
by _r_;

run;

Figure 66.6 Scatter Plots of Cluster Memberships with _R_=10
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Figure 66.7 Scatter Plots of Cluster Memberships with _R_=15

Figure 66.8 Scatter Plots of Cluster Memberships with _R_=35
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Syntax: MODECLUS Procedure
The following statements are available in the MODECLUS procedure:

PROC MODECLUS < options > ;
BY variables ;
FREQ variable ;
ID variable ;
VAR variables ;

The PROC MODECLUS statement is required. All other statements are optional.

PROC MODECLUS Statement
PROC MODECLUS < options > ;

The PROC MODECLUS statement invokes the MODECLUS procedure. Table 66.1 summarizes the options
available in the PROC MODECLUS statement. These options are discussed in the following sections.

Table 66.1 Summary of PROC MODECLUS Statement Options

Option Description

Specify input and output data sets
DATA= Specifies input data set name
OUT= Specifies output data set name for observations
OUTCLUS= Specifies output data set name for clusters
OUTSUM= Specifies output data set name for cluster solutions

Specify variables in output data sets
CLUSTER= Specifies variable in the OUT= and OUTCLUS= data sets identifying clusters
DENSITY= Specifies variable in the OUT= data set containing density estimates
OUTLENGTH= Specifies length of variables in the output data sets

Summarize and process coordinate data before clustering
SIMPLE Requests simple statistics
STANDARD Standardizes the variables to mean 0 and standard deviation 1

Specify smoothing parameters
DK= Specifies number of neighbors to use for kth-nearest-neighbor density estimation
CK= Specifies number of neighbors to use for clustering
K= Specifies number of neighbors to use for kth-nearest-neighbor density estimation

and clustering
DR= Specifies radius of the sphere of support for uniform-kernel density estimation
CR= Specifies radius of the neighborhood for clustering
R= Specifies radius of the sphere of support for uniform-kernel density estimation and

the neighborhood clustering

Specify density estimation options
CASCADE= Specifies number of times the density estimates are to be cascaded
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Table 66.1 continued

Option Description

DIMENSION= Specifies dimensionality to be used when computing density estimates
AM Uses arithmetic means for cascading density estimates
HM Uses harmonic means for cascading density estimates
SUM Uses sums for cascading density estimates

Specify clustering methods and options
DOCK= Dissolves clusters with n or fewer members
EARLY Stops the analysis after obtaining a solution with either no cluster or a single cluster
JOIN= Requests that nonsignificant clusters be hierarchically joined
MAXCLUSTERS= Specifies maximum number of clusters to be obtained with METHOD=6
METHOD= Specifies clustering method to use
MODE= Specifies minimum members for either cluster to be designated a modal cluster

when two clusters are joined using METHOD=5
POWER= Specifies power of the density used with METHOD=6
TEST Specifies approximate significance tests for the number of clusters
THRESHOLD= Specifies assignment threshold used with METHOD=6

Specify the output display options
ALL Produces all optional output
BOUNDARY Displays the density and cluster membership of observations with neighbors belong-

ing to a different cluster
CORE Retains the neighbor lists for each observation in memory
CROSS Displays the estimated cross validated log density of each observation
CROSSLIST Displays the estimated density and cluster membership of each observation
LOCAL Displays estimates of local dimensionality and writes them to the OUT=data set
NEIGHBOR Displays the neighbors of each observation
NOPRINT Suppresses the display of the output
NOSUMMARY Suppresses the display of the summary of the number of clusters, number of unas-

signed observations, and maximum p-value for each analysis
SHORT Suppresses the display of statistics for each cluster
TRACE Traces the cluster assignments when METHOD=6

You can specify at least one of the following options for smoothing parameters for density estimation: DK=,
K=, DR=, or R=. To obtain a cluster analysis, you can specify the METHOD= option and at least one of the
following smoothing parameters for clustering: CK=, K=, CR=, or R=. If you want significance tests for the
number of clusters, you should specify either the DR= or R= option. If none of the smoothing parameters is
specified, the MODECLUS procedure provides a default value for the R= option. See the section “Density
Estimation” on page 5422 for the formula of a reasonable first guess for R= and a discussion of smoothing
parameters.

You can specify lists of values for the DK=, CK=, K=, DR=, CR=, and R= options. Numbers in the lists can
be separated by blanks or commas. You can include in the lists one or more items of the form start TO stop
BY increment . Each list can contain either one value or the same number of values as in every other list
that contains more than one value. If a list has only one value, that value is used in combination with all the
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values in longer lists. If two or more lists have more than one value, then one analysis is done by using the
first value in each list, another analysis is done by using the second value in each list, and so on.

You can specify the following options in the PROC MODECLUS statement.

ALL
produces all optional output.

AM
specifies arithmetic means for cascading density estimates. See the description of the CASCADE=
option.

BOUNDARY
displays the density and cluster membership of observations with neighbors belonging to a different
cluster.

CASCADE=n

CASC=n
specifies the number of times the density estimates are to be cascaded (see the section “Density
Estimation” on page 5422). The default value 0 performs no cascading.

You can specify a list of values for the CASCADE= option. Each value in the list is combined with
each combination of smoothing parameters to produce a separate analysis.

CK=n
specifies the number of neighbors to use for clustering. The number of neighbors should be at least
two but less than the number of observations. See the section “Density Estimation” on page 5422 for
details.

CLUSTER=name
provides a name for the variable in the OUT= and OUTCLUS= data sets identifying clusters. The
default name is CLUSTER.

CORE
keeps the neighbor lists for each observation in the computer memory to make small problems run
faster.

CR=n
specifies the radius of the neighborhood for clustering. See the section “Density Estimation” on
page 5422 for details.

CROSS
computes the likelihood cross validation criterion (Silverman 1986, pp. 52–55). This option appears to
be of limited usefulness. See the section “Density Estimation” on page 5422 for details.

CROSSLIST
displays the cross validated log density of each observation.

DATA=SAS-data-set
specifies the input data set containing observations to be clustered. If you omit the DATA= option, the
most recently created SAS data set is used.



PROC MODECLUS Statement F 5417

If the data set is TYPE=DISTANCE, the data are interpreted as a distance matrix. The number of
variables must equal the number of observations in the data set or in each BY group. The distances
are assumed to be Euclidean, but the procedure accepts other types of distances or dissimilarities.
Unlike the CLUSTER procedure, PROC MODECLUS uses the entire distance matrix, not just the
lower triangle; the distances are not required to be symmetric. The neighbors of a given observation
are determined solely from the distances in that observation. Missing values are considered infinite.
Various distance measures can be computed from coordinate data by using the DISTANCE procedure
(for detailed information, see Chapter 36, “The DISTANCE Procedure”).

If the data set is not TYPE=DISTANCE, the data are interpreted as coordinates in a Euclidean space,
and Euclidean distances are computed. The variables can be discrete or continuous and should be at
the interval level of measurement.

Data set types such as TYPE=DISTANCE do not persist when you copy or modify a data set. You
must specify the TYPE= data set option for the new data set, as in the following example:

data dist2(type=distance);
set dist;

run;

If you do not specify the TYPE=DISTANCE data set option, the new data set is the default
TYPE=DATA. If you use the new data set in a procedure that accepts both TYPE=DATA or
TYPE=DISTANCE data sets (such as PROC CLUSTER or PROC MODECLUS), the results will be
incorrect.

DENSITY=name
provides a name for the variable in the OUT= data set containing density estimates. The default name
is DENSITY.

DIMENSION=n

DIM=n
specifies the dimensionality to be used when computing density estimates. The default is the number
of variables if the data are coordinates; the default is 1 if the data are distances.

DK=n
specifies the number of neighbors to use for kth-nearest-neighbor density estimation. The number of
neighbors should be at least two but less than the number of observations. See the section “Density
Estimation” on page 5422 for details.

DOCK=n
dissolves clusters with n or fewer members by making the members unassigned.

DR=n
specifies the radius of the sphere of support for uniform-kernel density estimation. See the section
“Density Estimation” on page 5422 for details.

EARLY
stops the cluster analysis after obtaining either a solution with no cluster or a solution with one cluster
to which all observations are assigned. The smoothing parameters should be specified in increasing
order. This can reduce the computer time required for the analysis but might occasionally miss some
multiple-cluster solutions.
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HM
uses harmonic means for cascading density estimates. See the description of the CASCADE= option
for details.

JOIN< =p >
requests that nonsignificant clusters be hierarchically joined. The JOIN option implies the TEST
option. After each solution is obtained, the cluster with the largest approximate p-value is either joined
to a neighboring cluster or, if there is no neighboring cluster, dissolved by making all of its members
unassigned. After two clusters are joined, an analysis of the remaining clusters is displayed.

If you do not specify a p-value with the JOIN= option, joining continues until only one cluster remains,
and the results are written to the output data sets after each analysis. If you specify a p-value with the
JOIN= option, joining continues until the greatest approximate p-value is less than the value given in
the JOIN= option, and only if there is more than one cluster are the results for that analysis written to
the output data sets.

Any value of p less than 1E–8 is set to 1E–8.

K=n
specifies the number of neighbors to use for kth-nearest-neighbor density estimation and clustering.
The number of neighbors should be at least two but less than the number of observations. Specifying
K=n is equivalent to specifying both DK=n and CK=n. See the section “Density Estimation” on
page 5422 for details.

LIST
displays the estimated density and cluster membership of each observation.

LOCAL
requests estimates of local dimensionality (Tukey and Tukey 1981, pp. 236–237).

MAXCLUSTERS=n

MAXC=n
specifies the maximum number of clusters to be obtained with the METHOD=6 option. By default,
there is no fixed limit.

METHOD=n

MET=n

M=n
specifies what clustering method to use. Since these methods do not have widely recognized names, the
methods are indicated by numbers from 0 to 6. The methods are described in the section “Clustering
Methods” on page 5425. For most purposes, METHOD=1 is recommended, although METHOD=6
might occasionally produce better results in return for considerably greater computer time and space
requirements. METHOD=1 is not good for discrete coordinate data with only a few equally spaced
values. In this case, METHOD=6 or METHOD=3 works better. METHOD=4 or METHOD=5 is
less desirable than other methods when there are ties, since a general characteristic of agglomerative
hierarchical clustering methods is that the results are indeterminate in the presence of ties.

You must specify the METHOD= option to obtain a cluster analysis.

You can specify a list of values for the METHOD= option. Each value in the list is combined with
each combination of smoothing and cascading parameters to produce a separate cluster analysis.
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MODE=n
specifies that when two clusters are joined using the METHOD=5 option (no other methods are affected
by the MODE= option), each must have at least n members for either cluster to be designated a modal
cluster. In any case, each cluster must also have a maximum density greater than the fusion density
for either cluster to be designated a modal cluster. If you specify the K= option, the default value of
the MODE= option is the same as the value of the K= option because the use of kth-nearest-neighbor
density estimation limits the resolution that can be obtained for clusters with fewer than k members. If
you do not specify the K= option, the default is MODE=2. If you specify MODE=0, the default value
is used instead of 0. If you specify a FREQ statement, the MODE= value is compared to the number of
observations in each cluster, not to the sum of the frequencies.

NEIGHBOR
displays the neighbors of each observation in a table called “Nearest Neighbor List.” See Nearest
Neighbor List for information displayed in the table.

NOPRINT
suppresses the display of the output. Note that this option temporarily disables the Output Delivery
System (ODS); see Chapter 20, “Using the Output Delivery System,” for more information.

NOSUMMARY
suppresses the display of the summary of the number of clusters, number of unassigned observations,
and maximum p-value for each analysis.

OUT=SAS-data-set
specifies the output data set containing the input data plus density estimates, cluster membership, and
variables identifying the type of solution. There is an output observation corresponding to each input
observation for each solution. Therefore, the OUT= data set can be very large.

If you want to create a SAS data set in a permanent library, you must specify a two-level name. For
more information about permanent libraries and SAS data sets, see SAS Language Reference: Concepts.
For details about OUT= data sets, see the section “Output Data Sets” on page 5433.

OUTCLUS=SAS-data-set

OUTC=SAS-data-set
specifies the output data set containing an observation corresponding to each cluster in each solution.
The variables identify the solution and contain statistics describing the clusters.

If you want to create a SAS data set in a permanent library, you must specify a two-level name. For
more information about permanent libraries and SAS data sets, see SAS Language Reference: Concepts.
For details about OUTCLUS= data sets, see the section “Output Data Sets” on page 5433.

OUTSUM=SAS-data-set

OUTS=SAS-data-set
specifies the output data set containing an observation corresponding to each cluster solution, giving
the number of clusters and the number of unclassified observations for that solution.

If you want to create a SAS data set in a permanent library, you must specify a two-level name. For
more information about permanent libraries and SAS data sets, see SAS Language Reference: Concepts.
For details about OUTSUM= data sets, see the section “Output Data Sets” on page 5433.



5420 F Chapter 66: The MODECLUS Procedure

OUTLENGTH=n

OUTL=n
specifies the length of those output variables that are not copied from the input data set but are created
by PROC MODECLUS.

The OUTLENGTH= option applies only to the following variables that appear in all of the output data
sets: _K_, _DK_, _CK_, _R_, _DR_, _CR_, _CASCAD_, _METHOD_, _NJOIN_, and _LOCAL_.

The minimum value is 2 or 3, depending on the operating system. The maximum value is 8. The
default value is 8.

POWER=n

POW=n
specifies the power of the density used with the METHOD=6 option. The default value is 2.

R=n
specifies the radius of the sphere of support for uniform-kernel density estimation and the neighborhood
for clustering. Specifying R=n is equivalent to specifying both DR=n and CR=n. See the section
“Density Estimation” on page 5422 for details.

SHORT
suppresses the display of statistics for each cluster.

SIMPLE

S
displays means, standard deviations, skewness, kurtosis, and a coefficient of bimodality. The SIMPLE
option applies only to coordinate data.

STANDARD

STD
standardizes the variables to mean 0 and standard deviation 1. The STANDARD option applies only to
coordinate data.

SUM
uses sums for cascading density estimates. See the description of the CASCADE= option for details.

TEST
performs approximate significance tests for the number of clusters. The R= or DR= option must also
be specified with a nonzero value to obtain significance tests.

The significance tests performed by PROC MODECLUS are valid only for simple random samples,
and they require at least 20 observations per cluster to have enough power to be of any use. See the
section “Significance Tests” on page 5427 for details.

THRESHOLD=n

THR=n
specifies the assignment threshold used with the METHOD=6 option. The default is 0.5.

TRACE
traces the process of cluster assignments when METHOD=6 is specified.
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BY Statement
BY variables ;

You can specify a BY statement with PROC MODECLUS to obtain separate analyses of observations in
groups that are defined by the BY variables. When a BY statement appears, the procedure expects the input
data set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last
one specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the MODECLUS
procedure. The NOTSORTED option does not mean that the data are unsorted but rather that the
data are arranged in groups (according to values of the BY variables) and that these groups are not
necessarily in alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

FREQ Statement
FREQ variable ;

If one variable in the input data set represents the frequency of occurrence for other values in the observation,
specify the variable’s name in a FREQ statement. PROC MODECLUS then treats the data set as if each
observation appeared n times, where n is the value of the FREQ variable for the observation. Nonintegral
values of the FREQ variable are truncated to the largest integer less than the FREQ value.

ID Statement
ID variable ;

The values of the ID variable identify observations in the displayed results and in the OUT= data set. If you
omit the ID statement, each observation is identified by its observation number, and a variable called _OBS_
is written to the OUT= data set containing the original observation numbers.
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VAR Statement
VAR variables ;

The VAR statement specifies numeric variables to be used in the cluster analysis. If you omit the VAR
statement, all numeric variables not specified in other statements are used.

Details: MODECLUS Procedure

Density Estimation
See Silverman (1986) or Scott (1992) for an introduction to nonparametric density estimation.

PROC MODECLUS uses hyperspherical uniform kernels of fixed or variable radius. The density estimate
at a point is computed by dividing the number of observations within a sphere centered at the point by
the product of the sample size and the volume of the sphere. The size of the sphere is determined by the
smoothing parameters that you are required to specify.

For fixed-radius kernels, specify the radius as a Euclidean distance with either the DR= or R= option. For
variable-radius kernels, specify the number of neighbors desired within the sphere with either the DK= or
K= option; the radius is then the smallest radius that contains at least the specified number of observations
including the observation at which the density is being estimated. If you specify both the DR= or R= option
and the DK= or K= option, the radius used is the maximum of the two indicated radii; this is useful for
dealing with outliers.

It is convenient to refer to the sphere of support of the kernel at observation xi as the neighborhood of xi .
The observations within the neighborhood of xi are the neighbors of xi . In some contexts, xi is considered a
neighbor of itself, but in other contexts it is not. The following notation is used in this chapter:

xi the ith observation

d(x,y) the distance between points x and y

n the total number of observations in the sample

ni the number of observations within the neighborhood of xi , including xi itself

n�i the number of observations within the neighborhood of xi , not including xi itself

Ni the set of indices of neighbors of xi , including i

N�i the set of indices of neighbors of xi , not including i

vi the volume of the neighborhood of xi

ri the radius of the neighborhood of xi
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Ofi the estimated density at xi
Of �i the cross validated density estimate at xi
Ck the set of indices of observations assigned to cluster k

v the number of variables or the dimensionality

sl standard deviation of the lth variable

The estimated density at xi is

Ofi D
ni

nvi

which indicates the number of neighbors of xi divided by the product of the sample size and the volume of
the neighborhood at xi , where

vi D
�
v
2 ri

v

�.v
2
C 1/

and � can be computed in a DATA step by using the GAMMA function. Note that v D 1 for distance data.

The density estimates provided by uniform kernels are not quite as good as those provided by some other
types of kernels, but they are quite satisfactory for clustering. The significance tests for the number of clusters
require the use of fixed-size uniform kernels.

There is no simple answer to the question of which smoothing parameter to use (Silverman 1986, pp. 43–61,
84–88, 98–99). It is usually necessary to try several different smoothing parameters. A reasonable first
guess for the K= option is in the range of 0.1 to 1 times n4=.vC4/, smaller values being suitable for higher
dimensionalities. A reasonable first guess for the R= option in many coordinate data sets is given by"

2vC2.v C 2/�.v
2
C 1/

nv2

#1=.vC4/vuut vX
lD1

s2
l

which can be computed in a DATA step by using the GAMMA function for � . The MODECLUS procedure
also provides this first guess as a default smoothing parameter if none of the options (DR=, CR=, R=, DK=,
CK=, and K= ) is specified. This formula is derived under the assumption that the data are sampled from
a multivariate normal distribution and, therefore, tend to be too large (oversmooth) if the true distribution
is multimodal. Robust estimates of the standard deviations might be preferable if there are outliers. If the
data are distances, the factor

pP
sl
2 can be replaced by an average root-mean-squared Euclidean distance

divided by
p
2. To prevent outliers from appearing as separate clusters, you can also specify K=2 or CK=2

or, more generally, K=m or CK=m, m � 2, which in most cases forces clusters to have at least m members.

If the variables all have unit variance (for example, if you specify the STD option), you can use Table 66.2 to
obtain an initial guess for the R= option.
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Table 66.2 Reasonable First Guess for R= for Standardized Data

Number Number of Variables
of Obs 1 2 3 4 5 6 7 8 9 10

20 1.01 1.36 1.77 2.23 2.73 3.25 3.81 4.38 4.98 5.60
35 0.91 1.24 1.64 2.08 2.56 3.08 3.62 4.18 4.77 5.38
50 0.84 1.17 1.56 1.99 2.46 2.97 3.50 4.06 4.64 5.24
75 0.78 1.09 1.47 1.89 2.35 2.85 3.38 3.93 4.50 5.09

100 0.73 1.04 1.41 1.82 2.28 2.77 3.29 3.83 4.40 4.99
150 0.68 0.97 1.33 1.73 2.18 2.66 3.17 3.71 4.27 4.85
200 0.64 0.93 1.28 1.67 2.11 2.58 3.09 3.62 4.17 4.75
350 0.57 0.85 1.18 1.56 1.98 2.44 2.93 3.45 4.00 4.56
500 0.53 0.80 1.12 1.49 1.91 2.36 2.84 3.35 3.89 4.45
750 0.49 0.74 1.06 1.42 1.82 2.26 2.74 3.24 3.77 4.32

1000 0.46 0.71 1.01 1.37 1.77 2.20 2.67 3.16 3.69 4.23
1500 0.43 0.66 0.96 1.30 1.69 2.11 2.57 3.06 3.57 4.11
2000 0.40 0.63 0.92 1.25 1.63 2.05 2.50 2.99 3.49 4.03

One data-based method for choosing the smoothing parameter is likelihood cross validation (Silverman 1986,
pp. 52–55). The cross validated density estimate at an observation is obtained by omitting the observation
from the computations:

Of �i D
n�i
nvi

The (log) likelihood cross validation criterion is then computed as

nX
iD1

log Of �i

The suggested smoothing parameter is the one that maximizes this criterion. With fixed-radius kernels,
likelihood cross validation oversmooths long-tailed distributions; for purposes of clustering, it tends to under-
smooth short-tailed distributions. With k-nearest-neighbor density estimation, likelihood cross validation is
useless because it almost always indicates k=2.

Cascaded density estimates are obtained by computing initial kernel density estimates and then, at each
observation, taking the arithmetic mean, harmonic mean, or sum of the initial density estimates of the
observations within the neighborhood. The cascaded density estimates can, in turn, be cascaded, and so on.
Let k Ofi be the density estimate at xi cascaded k times. For all types of cascading, 0 Ofi D Ofi . If the cascading
is done by arithmetic means, then, for k � 0,

kC1
Ofi D

X
j2Ni

k
Ofj =ni

For harmonic means,

kC1
Ofi D

0@X
j2Ni

k
Of �1j =ni

1A�1
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and for sums,

kC1
Ofi D

0@X
j2Ni

k
Of kC1j

1A 1
kC2

To avoid cluttering formulas, the symbol Ofi is used in the rest of the chapter to denote the density estimate at
xi whether cascaded or not, since the clustering methods and significance tests do not depend on the degree
of cascading.

Cascading increases the smoothness of the estimates with less computation than would be required by
increasing the smoothing parameters to yield a comparable degree of smoothness. For population densities
with bounded support and discontinuities at the boundaries, cascading improves estimates near the boundaries.
Cascaded estimates, especially using sums, might be more sensitive to the local covariance structure of
the distribution than are the uncascaded kernel estimates. Cascading seems to be useful for detecting very
nonspherical clusters. Cascading was suggested by Tukey and Tukey (1981, p. 237). Additional research into
the properties of cascaded density estimates is needed.

Clustering Methods
The number of clusters is a function of the smoothing parameters. The number of clusters tends to decrease
as the smoothing parameters increase, but the relationship is not strictly monotonic. Generally, you should
specify several different values of the smoothing parameters to see how the number of clusters varies.

The clustering methods used by PROC MODECLUS use spherical clustering neighborhoods of fixed
or variable radius that are similar to the spherical kernels used for density estimation. For fixed-radius
neighborhoods, specify the radius as a Euclidean distance with either the CR= or R= option. For variable-
radius neighborhoods, specify the number of neighbors desired within the sphere with either the CK= or
K= option; the radius is then the smallest radius that contains at least the specified number of observations
including the observation for which the neighborhood is being determined. However, in the following
descriptions of clustering methods, an observation is not considered to be one of its own neighbors. If you
specify both the CR= or R= option and the CK= or K= option, the radius used is the maximum of the two
indicated radii; this is useful for dealing with outliers. In this section, the symbols Ni , N�i , ni , and n�i refer
to clustering neighborhoods, not density estimation neighborhoods.

METHOD=0

Begin with each observation in a separate cluster. For each observation and each of its neighbors, join the
cluster to which the observation belongs with the cluster to which the neighbor belongs. This method does
not use density estimates. With a fixed clustering radius, the clusters are those obtained by cutting the single
linkage tree at the specified radius (see Chapter 33, “The CLUSTER Procedure”).

METHOD=1

Begin with each observation in a separate cluster. For each observation, find the nearest neighbor with a
greater estimated density. If such a neighbor exists, join the cluster to which the observation belongs with the
cluster to which the specified neighbor belongs.
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Next, consider each observation with density estimates equal to that of one or more neighbors but not less
than the estimate at any neighbor. Join the cluster containing the observation with (1) each cluster containing
a neighbor of the observation such that the maximum density estimate in the cluster equals the density
estimate at the observation and (2) the cluster containing the nearest neighbor of the observation such that the
maximum density estimate in the cluster exceeds the density estimate at the observation.

This method is similar to the classification or assignment stage of algorithms described by Gitman (1973)
and Huizinga (1978).

METHOD=2

Begin with each observation in a separate cluster. For each observation, find the neighbor with the greatest
estimated density exceeding the estimated density of the observation. If such a neighbor exists, join the
cluster to which the observation belongs with the cluster to which the specified neighbor belongs.

Observations with density estimates equal to that of one or more neighbors but not less than the estimate at
any neighbor are treated the same way as they are in METHOD=1.

This method is similar to the first stage of an algorithm proposed by Mizoguchi and Shimura (1980).

METHOD=3

Begin with each observation in a separate cluster. For each observation, find the neighbor with greater
estimated density such that the slope of the line connecting the point on the estimated density surface at
the observation with the point on the estimated density surface at the neighbor is a maximum. That is, for
observation xi , find a neighbor xj such that . Ofj � Ofi /=d.xj ; xi / is a maximum. If this slope is positive, join
the cluster to which observation xi belongs with the cluster to which the specified neighbor xj belongs. This
method was invented by Koontz, Narendra, and Fukunaga (1976).

Observations with density estimates equal to that of one or more neighbors but not less than the estimate at
any neighbor are treated the same way as they are in METHOD=1. The algorithm suggested for this situation
by Koontz, Narendra, and Fukunaga (1976) might fail for flat areas in the estimated density that contain four
or more observations.

METHOD=4

This method is equivalent to the first stage of two-stage density linkage (see Chapter 33, “The CLUSTER
Procedure”) without the use of the MODE=option.

METHOD=5

This method is equivalent to the first stage of two-stage density linkage (see Chapter 33, “The CLUSTER
Procedure”) with the use of the MODE=option.

METHOD=6

Begin with all observations unassigned.

Step 1: Form a list of seeds, each seed being a single observation such that the estimated density of the obser-
vation is not less than the estimated density of any of its neighbors. If you specify the MAXCLUSTERS=n
option, retain only the n seeds with the greatest estimated densities.

Step 2: Consider each seed in decreasing order of estimated density, as follows:
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1. If the current seed has already been assigned, proceed to the next seed. Otherwise, form a new cluster
consisting of the current seed.

2. Add to the cluster any unassigned seed that is a neighbor of a member of the cluster or that shares a
neighbor with a member of the cluster; repeat until no unassigned seed satisfies these conditions.

3. Add to the cluster all neighbors of seeds that belong to the cluster.

4. Consider each unassigned observation. Compute the ratio of the sum of the p – 1 powers of the
estimated density of the neighbors that belong to the current cluster to the sum of the p – 1 powers of
the estimated density of all of its neighbors, where p is specified by the POWER= option and is 2 by
default. Let xi be the current observation, and let k be the index of the current cluster. Then this ratio is

rik D

P
j2Ni\Ck

Of
p�1
jP

j2Ni
Of
p�1
j

(The sum of the p – 1 powers of the estimated density of the neighbors of an observation is an estimate of the
integral of the pth power of the density over the neighborhood.) If rik exceeds the maximum of 0.5 and the
value of the THRESHOLD= option, add the observation xi to the current cluster k. Repeat until no more
observations can be added to the current cluster.

Step 3: (This step is performed only if the value of the THRESHOLD= option is less than 0.5.) Form a list
of unassigned observations in decreasing order of estimated density. Repeat the following actions until the
list is empty:

1. Remove the first observation from the list, such as observation xi .

2. For each cluster k, compute rik .

3. If the maximum over clusters of rik exceeds the value of the THRESHOLD= option, assign observation
xi to the corresponding cluster and insert all observations of which the current observation is a neighbor
into the list, keeping the list in decreasing order of estimated density.

METHOD=6 is related to a method invented by Koontz and Fukunaga (1972a) and discussed by Koontz and
Fukunaga (1972b).

Significance Tests
Significance tests require that a fixed-radius kernel be specified for density estimation via the DR= or R=
option. You can also specify the DK= or K= option, but only the fixed radius is used for the significance tests.

The purpose of the significance tests is as follows: given a simple random sample of objects from a population,
obtain an estimate of the number of clusters in the population such that the probability in repeated sampling
that the estimate exceeds the true number of clusters is not much greater than ˛, 1%� ˛ � 10%. In other
words, a sequence of null hypotheses of the form

H
.i/
0 WThe number of population clusters is i or less
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where i D 1; 2; � � � ; n, is tested against the alternatives such as

H .i/
a WThe number of population clusters exceeds i

with a maximum experimentwise error rate of approximately ˛. The tests protect you from overestimating the
number of population clusters. It is impossible to protect against underestimating the number of population
clusters without introducing much stronger assumptions than are used here, since the number of population
clusters could conceivably exceed the sample size.

The method for conducting significance tests is as follows:

1. Estimate densities by using fixed-radius uniform kernels.

2. Obtain preliminary clusters by a “valley-seeking” method. Other clustering methods could be used but
would yield less power.

3. Compute an approximate p-value for each cluster by comparing the estimated maximum density in the
cluster with the estimated maximum density on the cluster boundary.

4. Repeatedly join the least significant cluster with a neighboring cluster until all remaining clusters are
significant.

5. Estimate the number of population clusters as the number of significant sample clusters.

6. The preceding steps can be repeated for any number of different radii, and the estimate of the number
of population clusters can be taken to be the maximum number of significant sample clusters for any
radius.

This method has the following useful features:

• No distributional assumptions are required.

• The choice of smoothing parameter is not critical since you can try any number of different values.

• The data can be coordinates or distances.

• Time and space requirements for the significance tests are no worse than those for obtaining the
clusters.

• The power is high enough to be useful for practical purposes.

The method for computing the p-values is based on a series of plausible approximations. There are as yet no
rigorous proofs that the method is infallible. Neither are there any asymptotic results. However, simulations
for sample sizes ranging from 20 to 2000 indicate that the p-values are almost always conservative. The only
case discovered so far in which the p-values are liberal is a uniform distribution in one dimension for which
the simulated error rates exceed the nominal significance level only slightly for a limited range of sample
sizes.

To make inferences regarding population clusters, it is first necessary to define what is meant by a cluster.
For clustering methods that use nonparametric density estimation, a cluster is usually loosely defined as a
region surrounding a local maximum of the probability density function or a maximal connected set of local
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maxima. This definition might not be satisfactory for very rough densities with many local maxima. It is not
applicable at all to discrete distributions for which the density does not exist. As another example in which
this definition is not intuitively reasonable, consider a uniform distribution in two dimensions with support in
the shape of a figure eight (including the interior). This density might be considered to contain two clusters
even though it does not have two distinct modes.

These difficulties can be avoided by defining clusters in terms of the local maxima of a smoothed probability
density or mass function. For example, define the neighborhood distribution function (NDF) with radius
r at a point x as the probability that a randomly selected point will lie within a radius r of x—that is, the
probability integral over a hypersphere of radius r centered at x:

s.x/ D P.d.x;X/ <D r/

where X is the random variable being sampled, r is a user-specified radius, and d(x,y) is the distance between
points x and y.

The NDF exists for all probability distributions. You can select the radius according to the degree of
resolution required. The minimum-variance unbiased estimate of the NDF at a point x is proportional to the
uniform-kernel density estimate with corresponding support.

You can define a modal region as a maximal connected set of local maxima of the NDF. A cluster is a
connected set containing exactly one modal region. This definition seems to give intuitively reasonable
results in most cases. An exception is a uniform density on the perimeter of a square. The NDF has four local
maxima. There are eight local maxima along the perimeter, but running PROC MODECLUS with the R=
option would yield four clusters since the two local maxima at each corner are separated by a distance equal
to the radius. While this density does indeed have four distinctive features (the corners), it is not obvious that
each corner should be considered a cluster.

The number of population clusters depends on the radius of the NDF. The significance tests in PROC
MODECLUS protect against overestimating the number of clusters at any specified radius. It is often useful
to look at the clustering results across a range of radii. A plot of the number of sample clusters as a function
of the radius is a useful descriptive display, especially for high-dimensional data (Wong and Schaack 1982).

If a population has two clusters, it must have two modal regions. If there are two modal regions, there must
be a “valley” between them. It seems intuitively desirable that the boundary between the two clusters should
follow the bottom of this valley. All the clustering methods in PROC MODECLUS are designed to locate the
estimated cluster boundaries in this way, although methods 1 and 6 seem to be much more successful at this
than the others. Regardless of the precise location of the cluster boundary, it is clear that the maximum of the
NDF along the boundary between two clusters must be strictly less than the value of the NDF in either modal
region; otherwise, there would be only a single modal region; according to Hartigan and Hartigan (1985),
there must be a “dip” between the two modes. PROC MODECLUS assesses the significance of a sample
cluster by comparing the NDF in the modal region with the maximum of the NDF along the cluster boundary.
If the NDF has second-order derivatives in the region of interest and if the boundary between the two clusters
is indeed at the bottom of the valley, then the maximum value of the NDF along the boundary occurs at a
saddle point. Hence, this test is called a saddle test. This term is intended to describe any test for clusters that
compares modal densities with saddle densities, not just the test currently implemented in the MODECLUS
procedure.

The obvious estimate of the maximum NDF in a sample cluster is the maximum estimated NDF at an
observation in the cluster. Let m.k/ be the index of the observation for which the maximum is attained in
cluster k.
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Estimating the maximum NDF on the cluster boundary is more complicated. One approach is to take the
maximum NDF estimate at an observation in the cluster that has a neighbor belonging to another cluster.
This method yields excessively large estimates when the neighborhood is large. Another approach is to try
to choose an object closer to the boundary by taking the observation with the maximum sum of estimated
densities of neighbors belonging to a different cluster. After some experimentation, it is found that a
combination of these two methods works well. Let Bk be the set of indices of observations in cluster k that
have neighbors belonging to a different cluster, and compute

maxi2Bk

0@0:2 Ofini C X
j2Ni�Ck

Ofj

1A
Let s.k/ be the index of the observation for which the maximum is attained.

Using the notation #.S/ for the cardinality of set S, let

n�ij D #.N�i \N
�
j /

cm.k/ D n�m.k/ � n
�
m.k/s.k/

cs.k/ D n�s.k/ � n
�
m.k/s.k/ if Bk ¤ ;;

D 0 otherwise
qk D 1=2 if Bk ¤ ;;
D 2=3 otherwise

zk D
cm.k/ � qk.cm.k/C cs.k// � 1=2p

qk.1 � qk/.cm.k/C cs.k//

u D

2666.0:2C 0:05pn/
X
i Wni>1

1

ni C 1

3777
Let R.u/ be a random variable distributed as the range of a random sample of u observations from a standard
normal distribution. Then the approximate p-value pk for cluster k is

pk D Pr.zk > R.u/=
p
2/

If points m.k/ and s.k/ are fixed a priori, zk would be the usual approximately normal test statistic for
comparing two binomial random variables. In fact, m.k/ and s.k/ are selected in such a way that cm.k/
tends to be large and cs.k/ tends to be small. For this reason, and because there might be a large number
of clusters, each with its own zk to be tested, each zk is referred to the distribution of R.u/ instead of a
standard normal distribution. If the tests are conducted for only one radius and if u is chosen equal to n,
then the p-values are very conservative because (1) you are not making all possible pairwise comparisons of
observations in the sample and (2) n�i and n�j are positively correlated if the neighborhoods overlap. In the
formula for u, the summation overcorrects somewhat for the conservativeness due to correlated n�i ’s. The
factor 0:2C 0:05

p
n is empirically estimated from simulation results to adjust for the use of more than one

radius.
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If the JOIN option is specified, the least significant cluster (the cluster with the smallest zk) is either dissolved
or joined with a neighboring cluster. If no members of the cluster have neighbors belonging to a different
cluster, all members of the cluster are unassigned. Otherwise, the cluster is joined to the neighboring
cluster such that the sum of density estimates of neighbors of the estimated saddle point belonging to it is a
maximum. Joining clusters increases the power of the saddle test. For example, consider a population with
two well-separated clusters. Suppose that, for a certain radius, each population cluster is divided into two
sample clusters. None of the four sample clusters is likely to be significant, but after the two sample clusters
corresponding to each population cluster are joined, the remaining two clusters can be highly significant.

The saddle test implemented in PROC MODECLUS has been evaluated by simulation from known distribu-
tions. Some results are given in the following three tables. In Table 66.3, samples of 20 to 2000 observations
are generated from a one-dimensional uniform distribution. For sample sizes of 1000 or less, 2000 samples
are generated and analyzed by PROC MODECLUS. For a sample size of 2000, only 1000 samples are
generated. The analysis is done with at least 20 different values of the R= option spread across the range of
radii most likely to yield significant results. The six central columns of the table give the observed error rates
at the nominal error rates .˛/ at the head of each column. The standard errors of the observed error rates are
given at the bottom of the table. The observed error rates are conservative for ˛ � 5%, but they increase with
˛ and become slightly liberal for sample sizes in the middle of the range tested.

Table 66.3 Observed Error Rates (%) for Uniform Distribution

Sample Nominal Type 1 Error Rate Number of
Size 1 2 5 10 15 20 Simulations

20 0.00 0.00 0.00 0.60 11.65 27.05 2000
50 0.35 0.70 4.50 10.95 20.55 29.80 2000

100 0.35 0.85 3.90 11.05 18.95 28.05 2000
200 0.30 1.35 4.00 10.50 18.60 27.05 2000
500 0.45 1.05 4.35 9.80 16.55 23.55 2000

1000 0.70 1.30 4.65 9.55 15.45 19.95 2000
2000 0.40 1.10 3.00 7.40 11.50 16.70 1000

Standard 0.22 0.31 0.49 0.67 0.80 0.89 2000
Error 0.31 0.44 0.69 0.95 1.13 1.26 1000

All unimodal distributions other than the uniform that have been tested, including normal, Cauchy, and
exponential distributions and uniform mixtures, have produced much more conservative results. Table 66.4
displays results from a unimodal mixture of two normal distributions with equal variances and equal sampling
probabilities and with means separated by two standard deviations. Any greater separation would produce a
bimodal distribution. The observed error rates are quite conservative.

Table 66.4 Observed Error Rates (%) for Normal Mixture with 2� Separation

Sample Nominal Type 1 Error Rate Number of
Size 1 2 5 10 15 20 Simulations
100 0.0 0.0 0.0 1.0 2.0 4.0 200
200 0.0 0.0 0.0 2.0 3.0 3.0 200
500 0.0 0.0 0.5 0.5 0.5 0.5 200

All distributions in two or more dimensions that have been tested yield extremely conservative results. For
example, a uniform distribution on a circle yields observed error rates that are never more than one-tenth
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of the nominal error rates for sample sizes up to 1000. This conservatism is due to the fact that, as the
dimensionality increases, more and more of the probability lies in the tails of the distribution (Silverman
1986, p. 92), and the saddle test used by PROC MODECLUS is more conservative for distributions with
pronounced tails. This applies even to a uniform distribution on a hypersphere because, although the density
does not have tails, the NDF does.

Since the formulas for the significance tests do not involve the dimensionality, no problems are created when
the data are linearly dependent. Simulations of data in nonlinear subspaces (the circumference of a circle or
surface of a sphere) have also yielded conservative results.

Table 66.5 displays results in terms of power for identifying two clusters in samples from a bimodal mixture
of two normal distributions with equal variances and equal sampling probabilities separated by four standard
deviations. In this simulation, PROC MODECLUS never indicated more than two significant clusters.

Table 66.5 Power (%) for Normal Mixture with 4� Separation

Sample Nominal Type 1 Error Rate Number of
Size 1 2 5 10 15 20 Simulations

20 0.0 0.0 0.0 2.0 37.5 68.5 200
35 0.0 13.5 38.5 48.5 64.0 75.5 200
50 17.5 26.0 51.5 67.0 78.5 84.0 200
75 25.5 36.0 58.5 77.5 85.5 89.5 200

100 40.0 54.5 72.5 84.5 91.5 92.5 200
150 70.5 80.0 92.0 97.0 100.0 100.0 200
200 89.0 96.0 99.5 100.0 100.0 100.0 200

The saddle test is not as efficient as excess-mass tests for multimodality (Müller and Sawitzki 1991; Polonik
1993). However, there is not yet a general approximation for the distribution of excess-mass statistics to
circumvent the need for simulations to do significance tests. See Minnotte (1992) for a review of tests for
multimodality.

Computational Resources
The MODECLUS procedure stores coordinate data in memory if there is enough space. For distance data,
only one observation at a time is in memory.

PROC MODECLUS constructs lists of the neighbors of each observation. The total space required is 12
P
ni

bytes, where ni is based on the largest neighborhood required by any analysis. The lists are stored in a SAS
utility data set unless you specify the CORE option. You might get an error message from the SAS System
or from the operating system if there is not enough disk space for the utility data set. Clustering method 6
requires a second list that is always stored in memory.

For coordinate data, the time required to construct the neighbor lists is roughly proportional to
v.log n/.

P
ni / log.

P
ni=n/. For distance data, the time is roughly proportional to n2 log.

P
ni=n/.

The time required for density estimation is proportional to
P
ni and is usually small compared to the time

required for constructing the neighbor lists.

Clustering methods 0 through 3 are quite efficient, requiring time proportional to
P
ni . Methods 4 and 5 are

slower, requiring time roughly proportional to .
P
ni / log.

P
ni /. Method 6 can also be slow, but the time
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requirements depend very much on the data and the particular options specified. Methods 4, 5, and 6 also
require more memory than the other methods.

The time required for significance tests is roughly proportional to g
P
ni , where g is the number of clusters.

PROC MODECLUS can process data sets of several thousand observations if you specify reasonable
smoothing parameters. Very small smoothing values produce many clusters, whereas very large values
produce many neighbors; either case can require excessive time or space.

Missing Values
If the data are coordinates, observations with missing values are excluded from the analysis.

If the data are distances, missing values are treated as infinite. The neighbors of each observation are
determined solely by the distances in that observation. The distances are not required to be symmetric, and
there is no check for symmetry; the neighbors of each observation are determined only from the distances in
that observation. This treatment of missing values is quite different from that of the CLUSTER procedure,
which ignores the upper triangle of the distance matrix.

Output Data Sets
The OUT= data set contains one complete copy of the input data set for each cluster solution. There are
additional variables identifying each solution and giving information about individual observations. Solutions
with only one remaining cluster when JOIN=p is specified are omitted from the OUT= data set (see the
description of the JOIN= option). The OUT= data set can be extremely large, so it is advisable to specify the
DROP= data set option to exclude unnecessary variables.

The OUTCLUS= or OUTC= data set contains one observation for each cluster in each cluster solution. The
variables identify the solution and provide statistics describing the cluster.

The OUTSUM= or OUTS= data set contains one observation for each cluster solution. The variables identify
the solution and provide information about the solution as a whole.

The following variables can appear in all of the output data sets:

• _K_, which is the value of the K= option for the current solution. This variable appears only if you
specify the K= option.

• _DK_, which is the value of the DK= option for the current solution. This variable appears only if you
specify the DK= option.

• _CK_, which is the value of the CK= option for the current solution. This variable appears only if you
specify the CK= option.

• _R_, which is the value of the R= option for the current solution. This variable appears only if you
specify the R= option.

• _DR_, which is the value of the DR= option for the current solution. This variable appears only if you
specify the DR= option.
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• _CR_, which is the value of the CR= option for the current solution. This variable appears only if you
specify the CR= option.

• _CASCAD_, which is the number of times the density estimates have been cascaded for the current
solution. This variable appears only if you specify the CASCADE= option.

• _METHOD_, which is the value of the METHOD= option for the current solution. This variable
appears only if you specify the METHOD= option.

• _NJOIN_, which is the number of clusters that are joined or dissolved in the current solution. This
variable appears only if you specify the JOIN option.

• _LOCAL_, which is the local dimensionality estimate of the observation. This variable appears only if
you specify the LOCAL option.

The OUT= data set contains the following variables:

• the variables from the input data set

• _OBS_, which is the observation number from the input data set. This variable appears only if you
omit the ID statement.

• DENSITY, which is the estimated density at the observation. This variable can be renamed by the
DENSITY= option.

• CLUSTER, which is the number of the cluster to which the observation is assigned. This variable can
be renamed by the CLUSTER= option.

The OUTCLUS= data set contains the following variables:

• the BY variables, if any

• _NCLUS_, which is the number of clusters in the solution

• CLUSTER, which is the number of the current cluster

• _FREQ_, which is the number of observations in the cluster

• _MODE_, which is the maximum estimated density in the cluster

• _BFREQ_, which is the number of observations in the cluster with neighbors belonging to a different
cluster

• _SADDLE_, which is the estimated saddle density for the cluster

• _MC_, which is the number of observations within the fixed-radius density-estimation neighborhood
of the modal observation. This variable appears only if you specify the TEST or JOIN option.

• _SC_, which is the number of observations within the fixed-radius density-estimation neighborhood of
the saddle observation. This variable appears only if you specify the TEST or JOIN option.

• _OC_, which is the number of observations within the overlap of the two previous neighborhoods.
This variable appears only if you specify the TEST or JOIN option.

• _Z_, which is the approximate z statistic for the cluster. This variable appears only if you specify the
TEST or JOIN option.
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• _P_, which is the approximate p-value for the cluster. This variable appears only if you specify the
TEST or JOIN option.

The OUTSUM= data set contains the following variables:

• the BY variables, if any

• _NCLUS_, which is the number of clusters in the solution

• _UNCL_, which is the number of unclassified observations

• _CROSS_, which is the likelihood cross validation criterion if you specify the CROSS or CROSSLIST
option

Displayed Output
If you specify the SIMPLE option and the data are coordinates, PROC MODECLUS displays the following
simple descriptive statistics for each variable:

• the mean

• the standard deviation

• the skewness

• the kurtosis

• a coefficient of bimodality (see Chapter 33, “The CLUSTER Procedure”)

If you specify the NEIGHBOR option, PROC MODECLUS displays a list of neighbors for each observation.
The table contains the following items:

• the observation number or ID value of the observation

• the observation number or ID value of each of its neighbors

• the distance to each neighbor

If you specify the CROSSLIST option, PROC MODECLUS produces a table of information regarding cross
validation of the density estimates. Each table has a row for each observation. For each observation, the
following are displayed:

• the observation number or ID value of the observation

• the radius of the neighborhood

• the number of neighbors

• the estimated log density

• the estimated cross validated log density

If you specify the LOCAL option, PROC MODECLUS produces a table of information regarding estimates
of local dimensionality. Each table has a row for each observation. For each observation, the following are
displayed:
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• the observation number or ID value of the observation

• the radius of the neighborhood

• the estimated local dimensionality

If you specify the LIST option, PROC MODECLUS produces a table listing the observations within each
cluster. The table includes the following items:

• the cluster number

• the observation number or ID value of the observation

• the estimated density

• the sum of the density estimates of observations within the neighborhood that belong to the same
cluster

• the sum of the density estimates of observations within the neighborhood that belong to a different
cluster

• the sum of the density estimates of all the observations within the neighborhood

• the ratio of the sum of the density estimates for the same cluster to the sum of all the density estimates
in the neighborhood

If you specify the LIST option and there are unassigned objects, PROC MODECLUS produces a table listing
those observations. The table includes the following items:

• the observation number or ID value of the observation

• the estimated density

• the ratio of the sum of the density estimates for the same cluster to the sum of the density estimates in
the neighborhood for all other clusters

If you specify the BOUNDARY option, PROC MODECLUS produces a table listing the observations in
each cluster that have a neighbor belonging to a different cluster. The table includes the following items:

• the observation number or ID value of the observation

• the estimated density

• the cluster number

• the ratio of the sum of the density estimates for the same cluster to the sum of the density estimates in
the neighborhood for all other clusters

If you do not specify the SHORT option, PROC MODECLUS produces a table of cluster statistics including
the following items:

• the cluster number

• the cluster frequency (the number of observations in the cluster)

• the maximum estimated density within the cluster
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• the number of observations in the cluster having a neighbor that belongs to a different cluster

• the estimated saddle density of the cluster

If you specify the TEST or JOIN option, the table of cluster statistics includes the following items pertaining
to the saddle test:

• the number of observations within the fixed-radius density-estimation neighborhood of the modal
observation

• the number of observations within the fixed-radius density-estimation neighborhood of the saddle
observation

• the number of observations within the overlap of the two preceding neighborhoods

• the z statistic for comparing the preceding counts

• the approximate p-value

If you do not specify the NOSUMMARY option, PROC MODECLUS produces a table summarizing each
cluster solution containing the following items:

• the smoothing parameters and cascade value

• the number of clusters

• the frequency of unclassified objects

• the likelihood cross validation criterion if you specify the CROSS or CROSSLIST option

If you specify the JOIN option, the summary table also includes the following items:

• the number of clusters joined

• the maximum p-value of any cluster in the solution

If you specify the TRACE option, PROC MODECLUS produces a table for each cluster solution that lists
each observation along with its cluster membership as it is reassigned from the “Old” cluster to the “New”
cluster. This reassignment is described in Step 1 through Step 3 of the section “METHOD=6” on page 5426.
Each table has a row for each observation. For each observation, the following are displayed:

• the observation number or ID value of the observation

• the estimated density

• the “Old” cluster membership. 0 represents an unassigned observation and –1 represents a seed.

• the “New” cluster membership

• “Ratio,” which is documented in the section “METHOD=6” on page 5426. The following character
values can also be displayed:

“M” means the observation is a mode

“S” means the observation is a seed

“N” means the neighbor of a mode or seed, for which the ratio is not computed
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ODS Table Names
PROC MODECLUS assigns a name to each table it creates. You can use these names to reference the table
when using the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed in Table 66.6.

For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

All of the ODS tables in Table 66.6 are created by specifying the PROC MODECLUS statement.

Table 66.6 ODS Tables Produced by PROC MODECLUS

ODS Table Name Description Option

BoundaryFreq Boundary objects information BOUNDARY or ALL
ClusterList Cluster listing, cluster ID,

frequency, density etc.
LIST or ALL

ClusterStats Cluster statistics default
Cluster statistics, significance
test statistics

TEST, JOIN, or ALL

ClusterSummary Cluster summary default
Cluster summary,
crossvalidation criterion

CROSS, CROSSLIS, or ALL

Cluster summary, clusters
joined information

JOIN or ALL

CrossList Cross validated log density CROSSLIST
ListLocal Local dimensionality

estimates
LOCAL

Neighbor Nearest neighbor list NEIGHBOR or ALL
SimpleStatistics Simple statistics SIMPLE or ALL
Trace Trace of clustering algorithm

(METHOD=6 only)
TRACE or ALL when METHOD=6

UnassignObjects Information about unassigned
objects

LIST or ALL
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Examples: MODECLUS Procedure

Example 66.1: Cluster Analysis of Samples from Univariate Distributions
This example uses pseudo-random samples from a uniform distribution, an exponential distribution, and a
bimodal mixture of two normal distributions. Results are presented in Output 66.1.1 through Output 66.1.18
as plots displaying both the true density and the estimated density, as well as cluster membership.

The following statements produce Output 66.1.1 through Output 66.1.4:

title 'Modeclus Example with Univariate Distributions';
title2 'Uniform Distribution';

data uniform;
drop n;
true=1;
do n=1 to 100;

x=ranuni(123);
output;

end;
run;

proc modeclus data=uniform m=1 k=10 20 40 60 out=out short;
var x;

run;

proc sgplot data=out noautolegend;
y2axis label='True' values=(0 to 2 by 1.);
yaxis values=(0 to 3 by 0.5);
scatter y=density x=x / markerchar=cluster group=cluster;
pbspline y=true x=x / y2axis nomarkers lineattrs=(thickness= 1);
by _K_;

run;

proc modeclus data=uniform m=1 r=.05 .10 .20 .30 out=out short;
var x;

run;

proc sgplot data=out noautolegend;
y2axis label='True' values=(0 to 2 by 1.);
yaxis values=(0 to 2 by 0.5);
scatter y=density x=x / markerchar=cluster group=cluster;
pbspline y=true x=x / y2axis nomarkers lineattrs=(thickness= 1);
by _R_;

run;
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Output 66.1.1 Cluster Analysis of Sample from a Uniform Distribution

Modeclus Example with Univariate Distributions
Uniform Distribution

The MODECLUS Procedure

Modeclus Example with Univariate Distributions
Uniform Distribution

The MODECLUS Procedure

Cluster Summary

K
Number of

Clusters

Frequency of
Unclassified

Objects

10 6 0

20 3 0

40 2 0

60 1 0

Output 66.1.2 True Density, Estimated Density, and Cluster Membership by Various _K_ Values
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Output 66.1.2 continued
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Output 66.1.2 continued

Output 66.1.3 Cluster Analysis of Sample from a Uniform Distribution

Modeclus Example with Univariate Distributions
Uniform Distribution

The MODECLUS Procedure

Modeclus Example with Univariate Distributions
Uniform Distribution

The MODECLUS Procedure

Cluster Summary

R
Number of

Clusters

Frequency of
Unclassified

Objects

0.05 4 0

0.1 2 0

0.2 2 0

0.3 1 0
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Output 66.1.4 True Density, Estimated Density, and Cluster Membership by Various _R_ Values
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Output 66.1.4 continued
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The following statements produce Output 66.1.5 through Output 66.1.12:

data expon;
title2 'Exponential Distribution';
drop n;
do n=1 to 100;

x=ranexp(123);
true=exp(-x);
output;

end;
run;

proc modeclus data=expon m=1 k=10 20 40 out=out short;
var x;

run;

proc sgplot data=out noautolegend;
y2axis label='True' values=(0 to 1 by .5);
yaxis values=(0 to 2 by 0.5);
scatter y=density x=x / markerchar=cluster group=cluster;
pbspline y=true x=x / y2axis nomarkers lineattrs=(thickness= 1);
by _K_;

run;

proc modeclus data=expon m=1 r=.20 .40 .80 out=out short;
var x;

run;

proc sgplot data=out noautolegend;
y2axis label='True' values=(0 to 1 by .5);
yaxis values=(0 to 1 by 0.5);
scatter y=density x=x / markerchar=cluster group=cluster;
pbspline y=true x=x / y2axis nomarkers lineattrs=(thickness= 1);
by _R_;

run;

title3 'Different Density-Estimation and Clustering Windows';

proc modeclus data=expon m=1 r=.20 ck=10 20 40
out=out short;

var x;
run;

proc sgplot data=out noautolegend;
y2axis label='True' values=(0 to 1 by .5);
yaxis values=(0 to 1 by 0.5);
scatter y=density x=x / markerchar=cluster group=cluster;
pbspline y=true x=x / y2axis nomarkers lineattrs=(thickness= 1);
by _CK_;

run;
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title3 'Cascaded Density Estimates Using Arithmetic Means';

proc modeclus data=expon m=1 r=.20 cascade=1 2 4 am out=out short;
var x;

run;

proc sgplot data=out noautolegend;
y2axis label='True' values=(0 to 1 by .5);
yaxis values=(0 to 1 by 0.5);
scatter y=density x=x / markerchar=cluster group=cluster;
pbspline y=true x=x / y2axis nomarkers lineattrs=(thickness= 1);
by _R_ _CASCAD_;

run;

Output 66.1.5 Cluster Analysis of Sample from an Exponential Distribution

Modeclus Example with Univariate Distributions
Exponential Distribution

The MODECLUS Procedure

Modeclus Example with Univariate Distributions
Exponential Distribution

The MODECLUS Procedure

Cluster Summary

K
Number of

Clusters

Frequency of
Unclassified

Objects

10 5 0

20 3 0

40 1 0
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Output 66.1.6 True Density, Estimated Density, and Cluster Membership by Various _K_ Values
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Output 66.1.6 continued

Output 66.1.7 Cluster Analysis of Sample from an Exponential Distribution

Modeclus Example with Univariate Distributions
Exponential Distribution

The MODECLUS Procedure

Modeclus Example with Univariate Distributions
Exponential Distribution

The MODECLUS Procedure

Cluster Summary

R
Number of

Clusters

Frequency of
Unclassified

Objects

0.2 8 0

0.4 6 0

0.8 1 0
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Output 66.1.8 True Density, Estimated Density, and Cluster Membership by Various _R_ Values



5450 F Chapter 66: The MODECLUS Procedure

Output 66.1.8 continued

Output 66.1.9 Cluster Analysis of Sample from an Exponential Distribution

Modeclus Example with Univariate Distributions
Exponential Distribution

Different Density-Estimation and Clustering Windows

The MODECLUS Procedure

Modeclus Example with Univariate Distributions
Exponential Distribution

Different Density-Estimation and Clustering Windows

The MODECLUS Procedure

Cluster Summary

R CK
Number of

Clusters

Frequency of
Unclassified

Objects

0.2 10 3 0

0.2 20 2 0

0.2 40 1 0
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Output 66.1.10 True Density, Estimated Density, and Cluster Membership by _R_=0.2 with Various _CK_
Values
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Output 66.1.10 continued

Output 66.1.11 Cluster Analysis of Sample from an Exponential Distribution

Modeclus Example with Univariate Distributions
Exponential Distribution

Cascaded Density Estimates Using Arithmetic Means

The MODECLUS Procedure

Modeclus Example with Univariate Distributions
Exponential Distribution

Cascaded Density Estimates Using Arithmetic Means

The MODECLUS Procedure

Cluster Summary

R Cascade
Number of

Clusters

Frequency of
Unclassified

Objects

0.2 1 8 0

0.2 2 8 0

0.2 4 7 0
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Output 66.1.12 True Density, Estimated Density, and Cluster Membership by _R_=0.2 with Various
_CASCAD_ Values
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Output 66.1.12 continued
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The following statements produce Output 66.1.13 through Output 66.1.18:

title2 'Normal Mixture Distribution';

data normix;
drop n sigma;
sigma=.125;
do n=1 to 100;

x=rannor(456)*sigma+mod(n,2)/2;
true=exp(-.5*(x/sigma)**2)+exp(-.5*((x-.5)/sigma)**2);
true=.5*true/(sigma*sqrt(2*3.1415926536));
output;

end;
run;

proc modeclus data=normix m=1 k=10 20 40 60 out=out short;
var x;

run;

proc sgplot data=out noautolegend;
y2axis label='True' values=(0 to 1.6 by .1);
yaxis values=(0 to 3 by 0.5);
scatter y=density x=x / markerchar=cluster group=cluster;
pbspline y=true x=x / y2axis nomarkers lineattrs=(thickness= 1);
by _K_;

run;

proc modeclus data=normix m=1 r=.05 .10 .20 .30 out=out short;
var x;

run;

proc sgplot data=out noautolegend;
y2axis label='True' values=(0 to 1.6 by .1);
yaxis values=(0 to 3 by 0.5);
scatter y=density x=x / markerchar=cluster group=cluster;
pbspline y=true x=x / y2axis nomarkers lineattrs=(thickness= 1);
by _R_;

run;

title3 'Cascaded Density Estimates Using Arithmetic Means';

proc modeclus data=normix m=1 r=.05 cascade=1 2 4 am out=out short;
var x;

run;

proc sgplot data=out noautolegend;
y2axis label='True' values=(0 to 1.6 by .1);
yaxis values=(0 to 2 by 0.5);
scatter y=density x=x / markerchar=cluster group=cluster;
pbspline y=true x=x / y2axis nomarkers lineattrs=(thickness= 1);
by _R_ _CASCAD_;

run;
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Output 66.1.13 Cluster Analysis of Sample from a Bimodal Mixture of Two Normal Distributions

Modeclus Example with Univariate Distributions
Normal Mixture Distribution

The MODECLUS Procedure

Modeclus Example with Univariate Distributions
Normal Mixture Distribution

The MODECLUS Procedure

Cluster Summary

K
Number of

Clusters

Frequency of
Unclassified

Objects

10 7 0

20 2 0

40 2 0

60 1 0

Output 66.1.14 True Density, Estimated Density, and Cluster Membership by Various _K_ Values
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Output 66.1.14 continued
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Output 66.1.14 continued

Output 66.1.15 Cluster Analysis of Sample from a Bimodal Mixture of Two Normal Distributions

Modeclus Example with Univariate Distributions
Normal Mixture Distribution

The MODECLUS Procedure

Modeclus Example with Univariate Distributions
Normal Mixture Distribution

The MODECLUS Procedure

Cluster Summary

R
Number of

Clusters

Frequency of
Unclassified

Objects

0.05 5 0

0.1 2 0

0.2 2 0

0.3 1 0
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Output 66.1.16 True Density, Estimated Density, and Cluster Membership by Various _R_= Values
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Output 66.1.16 continued
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Output 66.1.17 Cluster Analysis of Sample from a Bimodal Mixture of Two Normal Distributions

Modeclus Example with Univariate Distributions
Normal Mixture Distribution

Cascaded Density Estimates Using Arithmetic Means

The MODECLUS Procedure

Modeclus Example with Univariate Distributions
Normal Mixture Distribution

Cascaded Density Estimates Using Arithmetic Means

The MODECLUS Procedure

Cluster Summary

R Cascade
Number of

Clusters

Frequency of
Unclassified

Objects

0.05 1 5 0

0.05 2 4 0

0.05 4 4 0

Output 66.1.18 True Density, Estimated Density, and Cluster Membership by _R_=0.05 with Various
_CASCAD_ Values



5462 F Chapter 66: The MODECLUS Procedure

Output 66.1.18 continued
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Example 66.2: Cluster Analysis of Flying Mileages between Ten American
Cities

This example uses distance data and illustrates the use of the TRANSPOSE procedure and the DATA step to
fill in the upper triangle of the distance matrix. A data set containing a table of flying mileages between 10 U.S.
cities is available in the Sashelp library. The results are displayed in Output 66.2.1 through Output 66.2.3.

The following statements produce Output 66.2.1:

title 'Modeclus Analysis of 10 American Cities';
title2 'Based on Flying Mileages';

*-----Fill in Upper Triangle of Distance Matrix---------------;
proc transpose data=sashelp.mileages out=tran;

copy city;
run;

data mileages(type=distance drop=col: _: i);
merge sashelp.mileages tran;
array var[10] atlanta--washingtondc;
array col[10];
do i = 1 to 10;

var[i] = sum(var[i], col[i]);
end;

run;

*-----Clustering with K-Nearest-Neighbor Density Estimates-----;
proc modeclus data=mileages all m=1 k=3;

id CITY;
run;
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Output 66.2.1 Clustering with K-Nearest-Neighbor Density Estimates

Modeclus Analysis of 10 American Cities
Based on Flying Mileages

The MODECLUS Procedure

Modeclus Analysis of 10 American Cities
Based on Flying Mileages

The MODECLUS Procedure

Nearest Neighbor List

City Neighbor Distance

Atlanta Washington D.C. 543.0000000

Chicago 587.0000000

Chicago Atlanta 587.0000000

Washington D.C. 597.0000000

Denver Los Angeles 831.0000000

Houston 879.0000000

Houston Atlanta 701.0000000

Denver 879.0000000

Los Angeles San Francisco 347.0000000

Denver 831.0000000

Miami Atlanta 604.0000000

Washington D.C. 923.0000000

New York Washington D.C. 205.0000000

Chicago 713.0000000

San Francisco Los Angeles 347.0000000

Seattle 678.0000000

Seattle San Francisco 678.0000000

Los Angeles 959.0000000

Washington D.C. New York 205.0000000

Atlanta 543.0000000

Modeclus Analysis of 10 American Cities
Based on Flying Mileages

The MODECLUS Procedure
K=3  METHOD=1

Modeclus Analysis of 10 American Cities
Based on Flying Mileages

The MODECLUS Procedure
K=3  METHOD=1

Sums of Density Estimates Within Neighborhood

Cluster City
Estimated

Density
Same

Cluster
Other

Clusters Total

Cluster
Proportion
Same/Total

1 Atlanta 0.00025554 0.0005275 0 0.0005275 1.000

Chicago 0.00025126 0.00053178 0 0.00053178 1.000

Houston 0.00017065 0.00025554 0.00017065 0.00042619 0.600

Miami 0.00016251 0.00053178 0 0.00053178 1.000

New York 0.00021038 0.0005275 0 0.0005275 1.000

Washington D.C. 0.00027624 0.00046592 0 0.00046592 1.000

2 Denver 0.00017065 0.00018051 0.00017065 0.00035115 0.514

Los Angeles 0.00018051 0.00039189 0 0.00039189 1.000

San Francisco 0.00022124 0.00033692 0 0.00033692 1.000

Seattle 0.00015641 0.00040174 0 0.00040174 1.000
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Output 66.2.1 continued

Boundary Objects         -Cluster
Proportions-

City Density Cluster 1 2

Denver 0.0001706485 2 0.486 0.514

Houston 0.0001706485 1 0.600 0.400

Cluster Statistics

Cluster Frequency

Maximum
Estimated

Density
Boundary

Frequency

Estimated
Saddle

Density

1 6 0.00027624 1 0.00017065

2 4 0.00022124 1 0.00017065

Modeclus Analysis of 10 American Cities
Based on Flying Mileages

The MODECLUS Procedure

Modeclus Analysis of 10 American Cities
Based on Flying Mileages

The MODECLUS Procedure

Cluster Summary

K
Number of

Clusters

Frequency of
Unclassified

Objects

3 2 0

The following statements produce Output 66.2.2:

*------Clustering with Uniform-Kernel Density Estimates--------;
proc modeclus data=mileages all m=1 r=600 800;

id CITY;
run;
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Output 66.2.2 Clustering with Uniform-Kernel Density Estimates

Modeclus Analysis of 10 American Cities
Based on Flying Mileages

The MODECLUS Procedure

Modeclus Analysis of 10 American Cities
Based on Flying Mileages

The MODECLUS Procedure

Nearest Neighbor List

City Neighbor Distance

Atlanta Washington D.C. 543.0000000

Chicago 587.0000000

Miami 604.0000000

Houston 701.0000000

New York 748.0000000

Chicago Atlanta 587.0000000

Washington D.C. 597.0000000

New York 713.0000000

Houston Atlanta 701.0000000

Los Angeles San Francisco 347.0000000

Miami Atlanta 604.0000000

New York Washington D.C. 205.0000000

Chicago 713.0000000

Atlanta 748.0000000

San Francisco Los Angeles 347.0000000

Seattle 678.0000000

Seattle San Francisco 678.0000000

Washington D.C. New York 205.0000000

Atlanta 543.0000000

Chicago 597.0000000

Modeclus Analysis of 10 American Cities
Based on Flying Mileages

The MODECLUS Procedure
R=600  METHOD=1

Modeclus Analysis of 10 American Cities
Based on Flying Mileages

The MODECLUS Procedure
R=600  METHOD=1

Sums of Density Estimates Within Neighborhood

Cluster City
Estimated

Density
Same

Cluster
Other

Clusters Total

Cluster
Proportion
Same/Total

1 Atlanta 0.00025 0.00058333 0 0.00058333 1.000

Chicago 0.00025 0.00058333 0 0.00058333 1.000

New York 0.00016667 0.00033333 0 0.00033333 1.000

Washington D.C. 0.00033333 0.00066667 0 0.00066667 1.000

2 Los Angeles 0.00016667 0.00016667 0 0.00016667 1.000

San Francisco 0.00016667 0.00016667 0 0.00016667 1.000

3 Denver 0.00008333 0 0 0 .

4 Houston 0.00008333 0 0 0 .

5 Miami 0.00008333 0 0 0 .

6 Seattle 0.00008333 0 0 0 .



Example 66.2: Cluster Analysis of Flying Mileages between Ten American Cities F 5467

Output 66.2.2 continued

No Boundary Objects

Cluster Statistics

Cluster Frequency

Maximum
Estimated

Density
Boundary

Frequency

Estimated
Saddle

Density

1 4 0.00033333 0 .

2 2 0.00016667 0 .

3 1 0.00008333 0 .

4 1 0.00008333 0 .

5 1 0.00008333 0 .

6 1 0.00008333 0 .

Modeclus Analysis of 10 American Cities
Based on Flying Mileages

The MODECLUS Procedure
R=800  METHOD=1

Modeclus Analysis of 10 American Cities
Based on Flying Mileages

The MODECLUS Procedure
R=800  METHOD=1

Sums of Density Estimates Within Neighborhood

Cluster City
Estimated

Density
Same

Cluster
Other

Clusters Total

Cluster
Proportion
Same/Total

1 Atlanta 0.000375 0.001 0 0.001 1.000

Chicago 0.00025 0.000875 0 0.000875 1.000

Houston 0.000125 0.000375 0 0.000375 1.000

Miami 0.000125 0.000375 0 0.000375 1.000

New York 0.00025 0.000875 0 0.000875 1.000

Washington D.C. 0.00025 0.000875 0 0.000875 1.000

2 Los Angeles 0.000125 0.0001875 0 0.0001875 1.000

San Francisco 0.0001875 0.00025 0 0.00025 1.000

Seattle 0.000125 0.0001875 0 0.0001875 1.000

3 Denver 0.0000625 0 0 0 .

No Boundary Objects

Cluster Statistics

Cluster Frequency

Maximum
Estimated

Density
Boundary

Frequency

Estimated
Saddle

Density

1 6 0.000375 0 .

2 3 0.0001875 0 .

3 1 0.0000625 0 .
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Output 66.2.2 continued

Modeclus Analysis of 10 American Cities
Based on Flying Mileages

The MODECLUS Procedure

Modeclus Analysis of 10 American Cities
Based on Flying Mileages

The MODECLUS Procedure

Cluster Summary

R
Number of

Clusters

Frequency of
Unclassified

Objects

600 6 0

800 3 0

The following statements produce Output 66.2.3:

*------Clustering Neighborhoods Extended to Nearest Neighbor--------;
proc modeclus data=mileages list m=1 ck=2 r=600 800;

id CITY;
run;

Output 66.2.3 Uniform-Kernel Density Estimates, Clustering Neighborhoods Extended to Nearest Neighbor

Modeclus Analysis of 10 American Cities
Based on Flying Mileages

The MODECLUS Procedure
CK=2  R=600  METHOD=1

Modeclus Analysis of 10 American Cities
Based on Flying Mileages

The MODECLUS Procedure
CK=2  R=600  METHOD=1

Sums of Density Estimates Within Neighborhood

Cluster City
Estimated

Density
Same

Cluster
Other

Clusters Total

Cluster
Proportion
Same/Total

1 Atlanta 0.00025 0.00058333 0 0.00058333 1.000

Chicago 0.00025 0.00058333 0 0.00058333 1.000

Houston 0.00008333 0.00025 0 0.00025 1.000

Miami 0.00008333 0.00025 0 0.00025 1.000

New York 0.00016667 0.00033333 0 0.00033333 1.000

Washington D.C. 0.00033333 0.00066667 0 0.00066667 1.000

2 Denver 0.00008333 0.00016667 0 0.00016667 1.000

Los Angeles 0.00016667 0.00016667 0 0.00016667 1.000

San Francisco 0.00016667 0.00016667 0 0.00016667 1.000

Seattle 0.00008333 0.00016667 0 0.00016667 1.000

Cluster Statistics

Cluster Frequency

Maximum
Estimated

Density
Boundary

Frequency

Estimated
Saddle

Density

1 6 0.00033333 0 .

2 4 0.00016667 0 .
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Output 66.2.3 continued

Modeclus Analysis of 10 American Cities
Based on Flying Mileages

The MODECLUS Procedure
CK=2  R=800  METHOD=1

Modeclus Analysis of 10 American Cities
Based on Flying Mileages

The MODECLUS Procedure
CK=2  R=800  METHOD=1

Sums of Density Estimates Within Neighborhood

Cluster City
Estimated

Density
Same

Cluster
Other

Clusters Total

Cluster
Proportion
Same/Total

1 Atlanta 0.000375 0.001 0 0.001 1.000

Chicago 0.00025 0.000875 0 0.000875 1.000

Houston 0.000125 0.000375 0 0.000375 1.000

Miami 0.000125 0.000375 0 0.000375 1.000

New York 0.00025 0.000875 0 0.000875 1.000

Washington D.C. 0.00025 0.000875 0 0.000875 1.000

2 Denver 0.0000625 0.000125 0 0.000125 1.000

Los Angeles 0.000125 0.0001875 0 0.0001875 1.000

San Francisco 0.0001875 0.00025 0 0.00025 1.000

Seattle 0.000125 0.0001875 0 0.0001875 1.000

Cluster Statistics

Cluster Frequency

Maximum
Estimated

Density
Boundary

Frequency

Estimated
Saddle

Density

1 6 0.000375 0 .

2 4 0.0001875 0 .

Modeclus Analysis of 10 American Cities
Based on Flying Mileages

The MODECLUS Procedure

Modeclus Analysis of 10 American Cities
Based on Flying Mileages

The MODECLUS Procedure

Cluster Summary

R CK
Number of

Clusters

Frequency of
Unclassified

Objects

600 2 2 0

800 2 2 0
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Example 66.3: Cluster Analysis with Significance Tests
This example uses artificial data containing two clusters. One cluster is from a circular bivariate normal
distribution. The other is a ring-shaped cluster that completely surrounds the first cluster. Without significance
tests, the ring is divided into several sample clusters for any degree of smoothing that yields reasonable
density estimates. The JOIN= option puts the ring back together. Output 66.3.1 displays a short summary
generated from the first PROC MODECLUS statement. Output 66.3.2 contains a series of tables produced
from the second PROC MODECLUS statement. The lack of p-value in the JOIN= option makes joining
continue until only one cluster remains (see the description of the JOIN= option). The cluster memberships
are then plotted as displayed in Output 66.3.1 through Output 66.3.8.

The following statements produce Output 66.3.1 through Output 66.3.8:

title 'Modeclus Analysis with the JOIN= option';
title2 'A Normal Cluster Surrounded by a Ring Cluster';

data circle; keep x y;
c=1;
do n=1 to 30;

x=rannor(5);
y=rannor(5);
output;

end;

c=2;
do n=1 to 300;

x=rannor(5);
y=rannor(5);
z=rannor(5)+8;
l=z/sqrt(x**2+y**2);
x=x*l;
y=y*l;
output;

end;
run;
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proc modeclus data=circle m=1 r=1 to 3.5 by .25 join=20 short;
run;

proc modeclus data=circle m=1 r=2.5 join out=out;
run;

proc sgplot data=out noautolegend;
yaxis values=(-10 to 10 by 5);
xaxis values=(-15 to 15 by 5);
scatter y=y x=x / group=cluster Markerchar=cluster;
by _NJOIN_;

run;

Output 66.3.1 Significance Tests with the JOIN=20 and SHORT Options

Modeclus Analysis with the JOIN= option
A Normal Cluster Surrounded by a Ring Cluster

The MODECLUS Procedure

Modeclus Analysis with the JOIN= option
A Normal Cluster Surrounded by a Ring Cluster

The MODECLUS Procedure

Cluster Summary

R

Number of
Clusters

Joined
Maximum

P-value
Number of

Clusters

Frequency of
Unclassified

Objects

1 36 0.9339 1 301

1.25 20 0.7131 1 301

1.5 10 0.3296 1 300

1.75 5 0.1990 2 0

2 5 0.0683 2 0

2.25 3 0.0504 2 0

2.5 4 0.0301 2 0

2.75 3 0.0585 2 0

3 5 0.0003 1 0

3.25 4 0.1923 2 0

3.5 4 0.0000 1 0
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Output 66.3.2 Significance Tests with the JOIN Option

Modeclus Analysis with the JOIN= option
A Normal Cluster Surrounded by a Ring Cluster

The MODECLUS Procedure
R=2.5  METHOD=1

Modeclus Analysis with the JOIN= option
A Normal Cluster Surrounded by a Ring Cluster

The MODECLUS Procedure
R=2.5  METHOD=1

Cluster Statistics -Saddle Test: Version 92.7-

Cluster Frequency

Maximum
Estimated

Density
Boundary

Frequency

Estimated
Saddle

Density
Mode

Count
Saddle
Count

Overlap
Count Z

Approx
P-value

1 103 0.00617328 22 0.00308664 39 19 0 2.495 0.5055

2 71 0.00571029 20 0.0043213 36 27 9 1.193 0.999

3 53 0.00509296 18 0.00401263 32 25 10 0.986 0.9999

4 45 0.00478429 19 0.00354964 30 22 14 1.429 0.9924

5 30 0.00462996 0 . 29 0 . 3.611 0.0301

6 28 0.00370397 17 0.00354964 23 22 9 0.000 1

Cluster 6 with P-value 1.0000 will be joined to cluster 4.

Cluster Statistics -Saddle Test: Version 92.7-

Cluster Frequency

Maximum
Estimated

Density
Boundary

Frequency

Estimated
Saddle

Density
Mode

Count
Saddle
Count

Overlap
Count Z

Approx
P-value

1 103 0.00617328 22 0.00308664 39 19 0 2.495 0.5055

2 71 0.00571029 20 0.0043213 36 27 9 1.193 0.999

3 53 0.00509296 18 0.00401263 32 25 10 0.986 0.9999

4 73 0.00478429 13 0.00293231 30 18 0 1.588 0.9778

5 30 0.00462996 0 . 29 0 . 3.611 0.0301

Cluster 3 with P-value 0.9999 will be joined to cluster 1.

Cluster Statistics -Saddle Test: Version 92.7-

Cluster Frequency

Maximum
Estimated

Density
Boundary

Frequency

Estimated
Saddle

Density
Mode

Count
Saddle
Count

Overlap
Count Z

Approx
P-value

1 156 0.00617328 17 0.00246931 39 15 0 3.130 0.1318

2 71 0.00571029 20 0.0043213 36 27 9 1.193 0.999

3 73 0.00478429 13 0.00293231 30 18 0 1.588 0.9778

4 30 0.00462996 0 . 29 0 . 3.611 0.0301

Cluster 2 with P-value 0.9990 will be joined to cluster 3.

Cluster Statistics -Saddle Test: Version 92.7-

Cluster Frequency

Maximum
Estimated

Density
Boundary

Frequency

Estimated
Saddle

Density
Mode

Count
Saddle
Count

Overlap
Count Z

Approx
P-value

1 156 0.00617328 17 0.00246931 39 15 0 3.130 0.1318

2 144 0.00571029 14 0.00293231 36 18 0 2.313 0.6447

3 30 0.00462996 0 . 29 0 . 3.611 0.0301
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Output 66.3.2 continued

Cluster 2 with P-value 0.6447 will be joined to cluster 1.

Cluster Statistics -Saddle Test: Version 92.7-

Cluster Frequency

Maximum
Estimated

Density
Boundary

Frequency

Estimated
Saddle

Density
Mode

Count
Saddle
Count

Overlap
Count Z

Approx
P-value

1 300 0.00617328 0 . 39 0 . 4.246 0.0026

2 30 0.00462996 0 . 29 0 . 3.611 0.0301

Cluster 2 with P-value 0.0301 will be dissolved.

Cluster Statistics -Saddle Test: Version 92.7-

Cluster Frequency

Maximum
Estimated

Density
Boundary

Frequency

Estimated
Saddle

Density
Mode

Count
Saddle
Count

Overlap
Count Z

Approx
P-value

1 300 0.00617328 0 . 39 0 . 4.246 0.0026

30 observations were unassigned.

Cluster 1 with P-value 0.0026 will be dissolved.

Modeclus Analysis with the JOIN= option
A Normal Cluster Surrounded by a Ring Cluster

The MODECLUS Procedure

Modeclus Analysis with the JOIN= option
A Normal Cluster Surrounded by a Ring Cluster

The MODECLUS Procedure

Cluster Summary

R

Number of
Clusters

Joined
Maximum

P-value
Number of

Clusters

Frequency of
Unclassified

Objects

2.5 0 1.0000 6 0

2.5 1 0.9999 5 0

2.5 2 0.9990 4 0

2.5 3 0.6447 3 0

2.5 4 0.0301 2 0

2.5 5 0.0026 1 30
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Output 66.3.3 Cluster Memberships When Number of Clusters Joined=0

Output 66.3.4 Cluster Memberships When Number of Clusters Joined=1
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Output 66.3.5 Cluster Memberships When Number of Clusters Joined=2

Output 66.3.6 Cluster Memberships When Number of Clusters Joined=3
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Output 66.3.7 Cluster Memberships When Number of Clusters Joined=4

Output 66.3.8 Cluster Memberships When Number of Clusters Joined=5
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Example 66.4: Cluster Analysis: Hertzsprung-Russell Plot
This example uses computer-generated data to mimic a Hertzsprung-Russell plot (Struve and Zebergs 1962,
p. 259) of the temperature and luminosity of stars. The data are plotted and displayed in Output 66.4.1. It
appears that there are two main groups of stars and a collection of isolated stars. The long straggling group
of points appearing diagonally across the figure represents the main group of stars; the more compact group
in the top-right corner contains giant stars. The JOIN= option is specified at a 0.05 significance level with
various smoothing parameters. The CK=5 option is specified in order to prevent the numerous outliers from
forming separate clusters. The results from PROC MODECLUS is displayed in Output 66.4.2. The cluster
memberships are then plotted by PROC SGPLOT, as displayed in Output 66.4.3 through Output 66.4.5.

Note that the graphic output from PROC SGPLOT in Output 66.4.3 is not available when _R_ = 2.5 because
only one cluster remains after joining at a 5% significance level, and the results are not written to the OUT=
data set. See the description of the JOIN= option). for more information.

The following statements produce Output 66.4.1 through Output 66.4.5:

title 'Hertzsprung-Russell Plot of Visible Stars';
title2 'Computer-Generated Simulated Data';

data hr;
input x y @@;
label x='-Temperature'

y='-Luminosity';
datalines;

1.0 12.8 0.9 13.7 0.9 12.9 1.0 12.3 1.0 12.2 2.6 10.9
2.4 10.9 2.5 11.2 2.3 11.5 2.6 12.0 2.4 12.1 2.3 10.9
2.6 11.5 2.5 11.9 2.4 11.0 3.4 11.1 3.3 11.2 3.4 11.1
3.4 9.9 3.2 10.4 3.5 10.8 3.4 11.0 3.3 11.2 3.3 10.8
3.5 10.0 3.5 10.2 3.4 10.2 3.6 10.6 3.7 10.4 3.7 10.1
3.4 10.7 3.4 10.8 3.3 11.0 3.6 10.8 3.5 10.1 4.5 10.3
4.6 9.4 4.3 10.3 4.6 9.4 4.4 9.9 4.5 10.4 4.4 9.9
4.6 9.4 4.4 10.7 4.4 9.3 4.4 9.5 4.1 10.6 4.4 10.6
4.5 10.3 4.4 10.0 4.2 9.8 4.5 9.5 4.2 13.4 4.6 10.4
4.5 9.8 5.8 8.8 5.6 8.4 5.6 13.9 5.7 9.5 5.6 14.5
5.6 9.2 5.7 8.7 5.7 9.4 5.7 9.3 5.6 9.4 5.8 9.8
5.5 8.8 5.8 8.9 5.7 9.4 5.6 12.1 5.4 10.1 5.8 9.3
5.9 9.0 5.7 10.0 5.6 9.3 6.6 8.6 6.7 8.5 6.7 12.5

... more lines ...

26.4 14.1 26.6 14.2 27.5 13.7 27.6 14.4 27.8 14.0 27.4 14.7
25.8 13.5 25.6 13.6 26.8 14.4 26.4 19.0 26.0 13.4 27.3 14.0
27.5 14.3 27.4 14.5 26.3 13.8 26.9 13.7 26.3 13.7 27.7 14.3
27.3 14.1 28.3 14.2 17.4 15.5 13.8 15.2 12.0 11.6 14.1 12.8
17.1 10.2 16.9 15.4 18.5 12.6 14.2 16.1 23.2 6.6 11.4 12.4
20.4 11.7 20.9 8.1 18.9 13.7 16.9 9.7 15.5 9.9 18.3 14.2
19.3 13.7 17.0 12.9 10.1 11.6 17.9 13.5 14.3 1.4 13.1 -0.8
8.1 -0.9 20.0 7.0 21.0 8.5 15.6 13.2
;
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proc sgplot data=hr;
scatter y=y x=x;

run;

proc modeclus data=hr m=1 r=1 1.5 2 2.5 ck=5
join=.05 short out=out;

run;

title2 'MODECLUS Analysis';

proc sgplot data=out;
scatter y=y x=x/group=cluster;
by _R_;

run;

Output 66.4.1 Scatter Plot of Data
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Output 66.4.2 Results from PROC MODECLUS

Hertzsprung-Russell Plot of Visible Stars
Computer-Generated Simulated Data

The MODECLUS Procedure

Hertzsprung-Russell Plot of Visible Stars
Computer-Generated Simulated Data

The MODECLUS Procedure

Cluster Summary

R CK

Number of
Clusters

Joined
Maximum

P-value
Number of

Clusters

Frequency of
Unclassified

Objects

1 5 14 0.0001 2 0

1.5 5 6 0.0000 3 0

2 5 4 0.0000 2 0

2.5 5 2 0.0000 1 0

Output 66.4.3 Scatter Plots of Cluster Memberships by _R_= 1
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Output 66.4.4 Scatter Plots of Cluster Memberships by _R_= 1.5

Output 66.4.5 Scatter Plots of Cluster Memberships by _R_=2
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Example 66.5: Using the TRACE Option When METHOD=6
To illustrate how the TRACE option can help you to understand the clustering process when METHOD=6 is
specified, the following data set is created with 12 observations:

data test;
input x @@;
datalines;

1 2 3 4 5 7.5 9 11.5 13 14.5 15 16
;

The first five observations seem to be close to each other, and the last five observations seem to be close to
each other. Observation 6 is separated from the first five observations with a (Euclidean) distance of 2.5, and
the same distance separates observation 7 from the last five observations. Observations 6 and 7 differ by 1.5.

Suppose METHOD=6 with a radius of 2.5 is chosen for the cluster analysis. You can specify the TRACE
option to understand how each observation is assigned.

The following statements produce Output 66.5.1 and Output 66.5.2:

/*-- METHOD=6 with TRACE and THRESHOLD=0.5 (default) --*/
title 'METHOD=6 with TRACE and THRESHOLD=0.5 (default)';

proc modeclus data=test method=6 r=2.5 trace short out=out;
var x;

run;

title2 'Plot of DENSITY*X=CLUSTER';

proc sgplot data=out;
scatter y=density x=x / group=cluster datalabel=_obs_;

run;
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Output 66.5.1 Partial Output of METHOD=6 with TRACE and Default THRESHOLD=

METHOD=6 with TRACE and THRESHOLD=0.5 (default)

The MODECLUS Procedure
R=2.5  METHOD=6

METHOD=6 with TRACE and THRESHOLD=0.5 (default)

The MODECLUS Procedure
R=2.5  METHOD=6

Trace of Clustering Algorithm

Cluster

Obs Density Old New Ratio

3 0.0833333 -1 1 M

2 0.0666667 0 1 N

4 0.0666667 0 1 N

1 0.0500000 0 1 N

5 0.0666667 0 1 N

6 0.0500000 0 1 0.571

7 0.0500000 -1 1 0.500

9 0.0666667 -1 2 M

8 0.0500000 0 2 N

11 0.0666667 -1 2 S

12 0.0500000 0 2 N

10 0.0666667 -1 2 S

METHOD=6 with TRACE and THRESHOLD=0.5 (default)

The MODECLUS Procedure

METHOD=6 with TRACE and THRESHOLD=0.5 (default)

The MODECLUS Procedure

Cluster Summary

R
Number of

Clusters

Frequency of
Unclassified

Objects

2.5 2 0
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Output 66.5.2 Density Plot

Note that in Output 66.5.1, observation 7 is originally a seed (indicated by a value of –1 in the “Old” column)
and then assigned to cluster 1. This is because the ratio of observation 7 to cluster 1 is 0.5 and is not less than
the default value of the THRESHOLD= option (0.5).

If the value of the THRESHOLD= option is increased to 0.55, observation 7 should be excluded from cluster
1 and the cluster membership of observation 7 is changed.
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The following statements produce Output 66.5.3 and Output 66.5.4:

/*-- METHOD=6 with TRACE and THRESHOLD=0.55 --*/
title 'METHOD=6 with TRACE and THRESHOLD=0.55';

proc modeclus data=test method=6 r=2.5 trace threshold=0.55 short out=out;
var x;

run;

title2 'Plot of DENSITY*X=CLUSTER with TRACE and THRESHOLD=0.55';

proc sgplot data=out;
scatter y=density x=x / group=cluster datalabel=_obs_;

run;

Output 66.5.3 Partial Output of METHOD=6 with TRACE and THRESHOLD=.55

METHOD=6 with TRACE and THRESHOLD=0.55

The MODECLUS Procedure
R=2.5  METHOD=6

METHOD=6 with TRACE and THRESHOLD=0.55

The MODECLUS Procedure
R=2.5  METHOD=6

Trace of Clustering Algorithm

Cluster

Obs Density Old New Ratio

3 0.0833333 -1 1 M

2 0.0666667 0 1 N

4 0.0666667 0 1 N

1 0.0500000 0 1 N

5 0.0666667 0 1 N

6 0.0500000 0 1 0.571

9 0.0666667 -1 2 M

8 0.0500000 0 2 N

11 0.0666667 -1 2 S

12 0.0500000 0 2 N

10 0.0666667 -1 2 S

7 0.0500000 -1 2 S

METHOD=6 with TRACE and THRESHOLD=0.55

The MODECLUS Procedure

METHOD=6 with TRACE and THRESHOLD=0.55

The MODECLUS Procedure

Cluster Summary

R
Number of

Clusters

Frequency of
Unclassified

Objects

2.5 2 0
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Output 66.5.4 Density Plot

In Output 66.5.3, observation 7 is a seed that is excluded by cluster 1 because its ratio to cluster 1 is less than
0.55. Being a neighbor of a member (observation 8) of cluster 2, observation 7 eventually joins cluster 2 even
though it remains a “SEED.” (See Step 2.2 in the section “METHOD=6” on page 5426.)
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Overview: MULTTEST Procedure
The MULTTEST procedure addresses the multiple testing problem. This problem arises when you perform
many hypothesis tests on the same data set. Carrying out multiple tests is often reasonable because of
the cost of obtaining data, the discovery of new aspects of the data, and the many alternative statistical
methods. However, a disadvantage of multiple testing is the greatly increased probability of declaring false
significances.

For example, suppose you carry out 10 hypothesis tests at the 5% level, and you assume that the distributions
of the p-values from these tests are uniform and independent. Then, the probability of declaring a particular
test significant under its null hypothesis is 0.05, but the probability of declaring at least 1 of the 10 tests
significant is 0.401. If you perform 20 hypothesis tests, the latter probability increases to 0.642. These high
chances illustrate the danger of multiple testing.

PROC MULTTEST approaches the multiple testing problem by adjusting the p-values from a family of
hypothesis tests. An adjusted p-value is defined as the smallest significance level for which the given
hypothesis would be rejected, when the entire family of tests is considered. The decision rule is to reject
the null hypothesis when the adjusted p-value is less than ˛. For most methods, this decision rule controls
the familywise error rate at or below the ˛ level. However, the false discovery rate controlling procedures
control the false discovery rate at or below the ˛ level.

PROC MULTTEST provides the following p-value adjustments:

• Bonferroni
• Šidák
• step-down methods
• Hochberg
• Hommel
• Fisher and Stouffer combination
• bootstrap
• permutation
• adaptive methods
• false discovery rate
• positive FDR

The Bonferroni and Šidák adjustments are simple functions of the raw p-values. They are computationally
quick, but they can be too conservative. Step-down methods remove some conservativeness, as do the step-up
methods of Hochberg (1988), and the adaptive methods. The bootstrap and permutation adjustments resample
the data with and without replacement, respectively, to approximate the distribution of the minimum p-value
of all tests. This distribution is then used to adjust the individual raw p-values. The bootstrap and permutation
methods are computationally intensive but appealing in that, unlike the other methods, correlations and
distributional characteristics are incorporated into the adjustments (Westfall and Young 1989; Westfall et al.
1999).

PROC MULTTEST handles data arising from a multivariate one-way ANOVA model, possibly stratified, with
continuous and discrete response variables; it can also accept raw p-values as input data. You can perform a t
test for the mean for continuous data with or without a homogeneity assumption, and the following statistical
tests for discrete data:
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• Cochran-Armitage linear trend test
• Freeman-Tukey double arcsine test
• Peto mortality-prevalence (log-rank) test
• Fisher exact test

The Cochran-Armitage and Peto tests have exact versions that use permutation distributions and asymptotic
versions that use an optional continuity correction. Also, with the exception of the Fisher exact test, you can
use a stratification variable to construct Mantel-Haenszel-type tests. All of the previously mentioned tests
can be one- or two-sided.

As in the GLM procedure, you can specify linear contrasts that compare means or proportions of the treated
groups. The output contains summary statistics and regular and multiplicity-adjusted p-values. You can
create output data sets containing raw and adjusted p-values, test statistics and other intermediate calculations,
permutation distributions, and resampling information.

The MULTTEST procedure uses ODS Graphics to create graphs as part of its output. For general information
about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.”

The GLIMMIX, GLM, MIXED, and LIFETEST procedures, and other procedures that implement the
ESTIMATE, LSMEANS, LSMESTIMATE, and SLICE statements, also adjust their results for multiple tests.
For more information, see the documentation for these procedures and statements, and Westfall et al. (1999).

Getting Started: MULTTEST Procedure

Drug Example
Suppose you conduct a small study to test the effect of a drug on 15 subjects. You randomly divide the
subjects into three balanced groups receiving 0 mg, 1 mg, and 2 mg of the drug, respectively. You carry out
the experiment and record the presence or absence of 10 side effects for each subject. Your data set is as
follows:

data Drug;
input Dose$ SideEff1-SideEff10;
datalines;

0MG 0 0 1 0 0 1 0 0 0 0
0MG 0 0 0 0 0 0 0 0 0 1
0MG 0 0 0 0 0 0 0 0 1 0
0MG 0 0 0 0 0 0 0 0 0 0
0MG 0 1 0 0 0 0 0 0 0 0
1MG 1 0 0 1 0 1 0 0 1 0
1MG 0 0 0 1 1 0 0 1 0 1
1MG 0 1 0 0 0 0 1 0 0 0
1MG 0 0 1 0 0 0 0 0 0 1
1MG 1 0 1 0 0 0 0 1 0 0
2MG 0 1 1 1 0 1 1 1 0 1
2MG 1 1 1 1 1 1 0 1 1 0
2MG 1 0 0 1 0 1 1 0 1 0
2MG 0 1 1 1 1 0 1 1 1 1
2MG 1 0 1 0 1 1 1 0 0 1
;
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The increasing incidence of 1s for higher dosages in the preceding data set provides an initial visual indication
that the drug has an effect. To explore this statistically, you perform an analysis in which the possibility
of side effects increases linearly with drug level. You can analyze the data for each side effect separately,
but you are concerned that, with so many tests, there might be a high probability of incorrectly declaring
some drug effects significant. You want to correct for this multiplicity problem in a way that accounts for the
discreteness of the data and for the correlations between observations on the same unit.

PROC MULTTEST addresses these concerns by processing all of the data simultaneously and adjusting the
p-values. The following statements perform a typical analysis:

ods graphics on;
proc multtest bootstrap nsample=20000 seed=41287 notables

plots=PByTest(vref=0.05 0.1);
class Dose;
test ca(SideEff1-SideEff10);
contrast 'Trend' 0 1 2;

run;
ods graphics off;

This analysis uses the BOOTSTRAP option to adjust the p-values. The NSAMPLE= option requests
20,000 samples for the bootstrap analysis, and the starting seed for the random number generator is 41287.
The NOTABLES option suppresses the display of summary statistics for each side effect and drug level
combination. The PLOTS= option displays a visual summary of the unadjusted and adjusted p-values against
each test, and the VREF= option adds reference lines to the display.

The CLASS statement is used to specify the grouping variable, Dose. The ca(sideeff1-sideeff10)

specification in the TEST statement requests a Cochran-Armitage linear trend test for all 10 characteristics.
The CONTRAST statement gives the coefficients for the linear trend test.

The “Model Information” table in Figure 67.1 describes the statistical tests performed by PROC MULTTEST.
For this example, PROC MULTTEST carries out a two-tailed Cochran-Armitage linear trend test with no
continuity correction or strata adjustment. This test is performed on the raw data and on 20,000 bootstrap
samples.

Figure 67.1 Output Summary for the MULTTEST Procedure

The Multtest ProcedureThe Multtest Procedure

Model Information

Test for discrete variables Cochran-Armitage

Z-score approximation used Everywhere

Continuity correction 0

Tails for discrete tests Two-tailed

Strata weights None

P-value adjustment Bootstrap

Number of resamples 20000

Seed 41287

The “Contrast Coefficients” table in Figure 67.2 displays the coefficients for the Cochran-Armitage test. They
are 0, 1, and 2, as specified in the CONTRAST statement.
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Figure 67.2 Coefficients Used in the MULTTEST Procedure

Contrast Coefficients

Dose

Contrast 0MG 1MG 2MG

Trend 0 1 2

The “p-Values” table in Figure 67.3 lists the p-values for the drug example. The Raw column lists the
p-values for the Cochran-Armitage test on the original data, and the Bootstrap column provides the bootstrap
adjustment of the raw p-values.

Note that the raw p-values lead you to reject the null hypothesis of no linear trend for 3 of the 10 characteristics
at the 5% level and 7 of the 10 characteristics at the 10% level. The bootstrap p-values, however, lead to this
conclusion for 0 of the 10 characteristics at the 5% level and only 2 of the 10 characteristics at the 10% level;
you can also see this in Figure 67.4.

Figure 67.3 Summary of p-Values for the MULTTEST Procedure

p-Values

Variable Contrast Raw Bootstrap

SideEff1 Trend 0.0519 0.3388

SideEff2 Trend 0.1949 0.8403

SideEff3 Trend 0.0662 0.5190

SideEff4 Trend 0.0126 0.0884

SideEff5 Trend 0.0382 0.2408

SideEff6 Trend 0.0614 0.4383

SideEff7 Trend 0.0095 0.0514

SideEff8 Trend 0.0519 0.3388

SideEff9 Trend 0.1949 0.8403

SideEff10 Trend 0.2123 0.9030
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Figure 67.4 Adjusted p-Values

The bootstrap adjustment gives the probability of observing a p-value as extreme as each given p-value,
considering all 10 tests simultaneously. This adjustment incorporates the correlation of the raw p-values, the
discreteness of the data, and the multiple testing problem. Failure to account for these issues can certainly
lead to misleading inferences for these data.

Syntax: MULTTEST Procedure
The following statements are available in the MULTTEST procedure:

PROC MULTTEST < options > ;
BY variables ;
CLASS variable ;
CONTRAST 'label ' values ;
FREQ variable ;
ID variables ;
STRATA variable ;
TEST name (variables < / options >) ;
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Statements that follow the PROC MULTTEST statement can appear in any order. The CLASS and TEST
statements are required unless the INPVALUES= option is specified in the PROC MULTTEST statement.

The following sections describe the PROC MULTTEST statement and then describe the other statements in
alphabetical order.

PROC MULTTEST Statement
PROC MULTTEST < options > ;

The PROC MULTTEST statement invokes the MULTTEST procedure. It also specifies the p-value adjust-
ments. Table 67.1 summarizes the options available in the PROC MULTTEST statement. These options are
described in alphabetical order following the table.

Table 67.1 PROC MULTTEST Statement Options by Function

Option Description

FWE-Controlling p-Value Adjustments
ADAPTIVEHOLM Computes the adaptive step-down Bonferroni adjustment
ADAPTIVEHOCHBERG Computes the adaptive step-up Bonferroni adjustment
BONFERRONI Computes the Bonferroni adjustment
BOOTSTRAP Computes the bootstrap min-p adjustment
FISHER_C Computes Fisher’s combination adjustment
HOCHBERG Computes the step-up Bonferroni adjustment
HOMMEL Computes Hommel’s adjustment
HOLM Computes the step-down Bonferroni adjustment
PERMUTATION Computes the permutation min-p adjustment
SIDAK Computes Šidák’s adjustment
STEPBON Computes the step-down Bonferroni adjustment
STEPBOOT Computes the step-down bootstrap adjustment
STEPPERM Computes the step-down permutation adjustment
STEPSID Computes the step-down Šidák adjustment
STOUFFER Computes the Stouffer-Liptak combination adjustment

FDR-Controlling p-Value Adjustments
ADAPTIVEFDR Computes the adaptive linear step-up adjustment
DEPENDENTFDR Computes the linear step-up adjustment under dependence
FDR Computes the linear step-up adjustment
FDRBOOT Computes the linear step-up bootstrap min-p adjustment
FDRPERM Computes the linear step-up permutation min-p adjustment
PFDR Computes the positive FDR adjustment
Input/Output Data Sets
DATA= Names the input data set
INPVALUES= Names the input data set of raw p-values
OUT= Names the output data set
OUTPERM= Names the output permutation data set
OUTSAMP= Names the output resample data set
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Table 67.1 continued

Option Description

Displayed Output Options
NOPRINT Suppresses all tables
NOTABLES Suppresses variable tables
NOZEROS Suppresses zero tables for CLASS variables
NOPVALUE Suppresses the “p-Values” table
PLOTS Requests ODS Graphics

Resampling Options
CENTER Mean-centers continuous variables before resampling
NOCENTER Does not mean-center continuous variables before resampling
NSAMPLE= Specifies the number of resamples
RANUNI Specifies a different random number generator
SEED= Specifies the seed for resampling

CLASS Variable Options
NOZEROS Suppresses zero tables for CLASS variables
ORDER= Specifies CLASS variable order

Computational Options
EPSILON= Specifies the comparison value
NTRUENULL= Specifies the estimation method for the number of true nulls
PTRUENULL= Specifies the estimation method for the proportion of true nulls

You can specify the following options in the PROC MULTTEST statement.

ADAPTIVEHOCHBERG

AHOC
requests adjusted p-values by using the Hochberg and Benjamini (1990) adaptive step-up Bonferroni
method. See the section “Adaptive Adjustments” on page 5522 for more details.

ADAPTIVEHOLM

AHOLM
requests adjusted p-values by using the Hochberg and Benjamini (1990) adaptive step-down Bonferroni
method. See the section “Adaptive Adjustments” on page 5522 for more details.

ADAPTIVEFDR< (UNRESTRICT) >

AFDR< (UNRESTRICT) >
requests adjusted p-values by using the Benjamini and Hochberg (2000) adaptive linear step-up method
(AFDR). The UNRESTRICT option estimates the AFDR as defined in Benjamini and Hochberg
(2000), which allows the adjustment to reduce the raw p-value. By default, the AFDR is constrained
to be greater than or equal to the raw p-value. See the section “Adaptive False Discovery Rate” on
page 5524 for more details.
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BONFERRONI

BON
specifies that the Bonferroni adjustments (number of tests � p-value) be computed for each test. These
adjustments can be extremely conservative and should be viewed with caution. When exact tests are
specified via the PERMUTATION= option in the TEST statement, the actual permutation distributions
are used, resulting in a much less conservative version of this procedure (Westfall and Wolfinger 1997).
See the section “Bonferroni” on page 5519 for more details.

BOOTSTRAP

BOOT
specifies that the p-values be adjusted by using the bootstrap method to resample vectors (Westfall
and Young 1993). Resampling is performed with replacement and independently within levels of the
STRATA variable. Continuous variables are mean-centered by default prior to resampling; specify the
NOCENTER option to change this. See the section “Bootstrap” on page 5519 for more details. The
BOOTSTRAP option is not allowed with the Peto test.

If the PERMUTATION= suboption is used with the CA test in the TEST statement, the exact permuta-
tion distribution is recomputed for each bootstrap sample. CAUTION: This can be very time-consuming.
It is preferable to use permutation resampling when permutation base tests are used.

CENTER
requests that continuous variables be mean-centered prior to resampling. The default action is to
mean-center for bootstrap resampling and not to mean-center for permutation resampling.

DATA=SAS-data-set
names the input SAS data set to be used by PROC MULTTEST. The default is to use the most recently
created data set. The DATA= and INPVALUES= options cannot both be specified.

DEPENDENTFDR

DFDR
requests adjusted p-values by using the method of Benjamini and Yekutieli (2001). See the section
“Dependent False Discovery Rate” on page 5523 for more details.

EPSILON=number
specifies the amount by which two p-values must differ to be declared unequal. The value number
must be between 0 and 1; the default value is 1000 times the machine epsilon, which is approximately
1E–12. For SAS 9.1 and earlier releases the default value was 1E–8. See Westfall and Young (1993,
pp. 165–166) for more information.

FDR

LSU
requests adjusted p-values by using the linear step-up method of Benjamini and Hochberg (1995).
These p-values do not control the familywise error rate, but they do control the false discovery rate in
some cases. See the section “False Discovery Rate Controlling Adjustments” on page 5522 for more
details.

FDRBOOT< (ˇ) >
A bootstrap-resampling false discovery rate controlling method due to Yekutieli and Benjamini (1999).
This method uses the same resampling algorithm as the BOOTSTRAP option. Every resample is
saved in order to compute a quantile of the resampled p-values; therefore, this method can use a lot
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of memory. The parameter ˇ designates that a 100.1 � ˇ/ quantile is used in the computations for
determining the adjustments; by default, ˇ D 0:05. See the section “False Discovery Rate Resampling
Adjustments” on page 5523 for details.

FDRPERM< (ˇ) >
A permutation-resampling false discovery rate controlling method due to Yekutieli and Benjamini
(1999). This method uses the same resampling algorithm as the PERMUTATION option. Every
resample is saved in order to compute a quantile of the resampled p-values; therefore, this method
can use a lot of memory. The parameter ˇ designates that a 100.1 � ˇ/ quantile is used in the
computations for determining the adjustments; by default, ˇ D 0:05. See the section “False Discovery
Rate Resampling Adjustments” on page 5523 for details.

FISHER_C

FIC
requests adjusted p-values by using Fisher’s combination method. See the section “Fisher Combination”
on page 5521 for more details.

HOCHBERG

HOC
requests adjusted p-values by using the step-up Bonferroni method due to Hochberg (1988). See the
section “Hochberg” on page 5521 for more details.

HOMMEL

HOM
requests adjusted p-values by using the method of Hommel (1988). See the section “Hommel” on
page 5521 for more details.

HOLM
is an alias for the STEPBON adjustment.

INPVALUES< (pvalue-name) >=SAS-data-set
names an input SAS data set that includes a variable containing raw p-values. The MULTTEST
procedure adjusts the collection of raw p-values for multiplicity. Resampling-based adjustments are
not permitted with this type of data input. The CLASS, CONTRAST, FREQ, STRATA, and TEST
statements are ignored when an INPVALUES= data set is specified. The INPVALUES= and DATA=
options cannot both be specified. The pvalue-name enables you to specify the name of the p-value
column from your data set. By default, pvalue-name=’raw_p’. The INPVALUES= data set can contain
variables in addition to the raw p-values variable; see Example 67.5 for an example.

LIPTAK
is an alias for the STOUFFER adjustment.

NOCENTER
requests that continuous variables not be mean-centered prior to resampling. The default action is to
mean-center for bootstrap resampling and not to mean-center for permutation resampling.

NOPRINT
suppresses the normal display of results. Note that this option temporarily disables the Output Delivery
System (ODS); see Chapter 20, “Using the Output Delivery System,” for more information.
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NOPVALUE
suppresses the display of the “p-Values” table of raw and adjusted p-values. This option is most useful
when you are adjusting many tests and need to create only an OUT= data set or display graphics.

NOTABLES
suppresses display of the “Discrete Variable Tabulations” and “Continuous Variable Tabulations”
tables.

NOZEROS
suppresses display of tables having zero occurrences for all CLASS levels.

NSAMPLE=number

N=number
specifies the number of resamples for use with the resampling methods. The value number must be a
positive integer; by default, 20,000 resamples are used. Large values of number (20,000 or more) are
usually recommended for accuracy, but long execution times can result, particularly with large data
sets.

NTRUENULL=keyword | value

M0=keyword | value
Controls the method used to estimate the number of true NULL hypotheses (m0) for the adaptive
methods. This option is ignored unless one of the adaptive methods is specified. By default, PROC
MULTTEST uses the DECREASESLOPE method for the ADAPTIVEHOLM and ADAPTIVE-
HOCHBERG adjustments, and the LOWESTSLOPE method for ADAPTIVEFDR adjustment. For
the PFDR adjustment, the SPLINE method is attempted first. If the estimate is nonpositive or if the
slope of the spline at the last � is greater than 0.1 times the range of the fitted spline values, then the
BOOTSTRAP method is used.

You can specify a positive integer as the value, or you can specify one of the keywords in the
following list. Alternatively, you can specify the proportion of true NULL hypotheses by using the
PTRUENULL= option. Suppose you have m tests with ordered p-values p.1/ � : : : � p.m/, and define
q.i/ D 1 � p.i/.

BOOTSTRAP< (bootstrap-options) >
uses the bootstrap method of Storey and Tibshirani (2003). Compute the proportion of true null
hypotheses O�0.�/ D

m�N.�/Cf
.1��/m

for � 2 L D f0; 0:05; : : : ; 0:95g, where N.�/ is the number
of p-values less than or equal to �, and f = 1 for the finite-sample case; otherwise f = 0. For
each �, bootstrap on the p-values to form B bootstrap versions O�b0 .�/; b D 1; : : : ; B , and choose
the � that yields the minimum bMSE.�/ D 1

B

PB
bD1. O�

b
0 .�/ �min�02L O�0.�0//2. The available

bootstrap-options are as follows:

FINITE
the finite-sample case of the PFDR option, described on page 5500.

NBOOT=B
bootstrap resamples of the raw p-values for the � computations. NBOOT=10,000 by default;
B must be a positive integer.
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NLAMBDA=n
“optimal” � is the value in f0; 1

n
; : : : ; n�1

n
g that minimizes the MSE. NLAMBD=20 by

default; n must be an integer greater than 1.

DECREASESLOPE
Schweder and Spjøtvoll (1982) as modified by Hochberg and Benjamini (1990). Let bi be the
slope of the least squares line fit to fq.m/; : : : ; q.m�iC1/g and through the origin, for i D 1; : : : ; m.
Find the first i D m � 1;m � 2; : : : ; 1 such that bi < biC1. Then Om0 D ceil. 1

biC1
� 1/.

KSTEST< (ˇ) >
uses the Kolmogorov-Smirnov uniformity test method of Turkheimer, Smith, and Schmidt (2001).
Let kmin D 1; kmax D m, and the Kolmogorov-Smirnov statistic D D max.q.i/ � i=.m C
1/.
p
kC0:12C0:11=

p
k//. If D is greater than the upper-tail probability (Press et al. 1992), then

kmax D k; k D floor..kminCk/=2/; otherwise, let kmin D k; k D floor..kCkmax /=2/. Repeat
until k D kmin . Next compute the slope b of the weighted least squares regression line on the k
smallest q.i/ by using weights wi D i.k � i C 1/=..k C 1/2.k C 2//. Then Om0 D ceil.1

b
� 1/.

LEASTSQUARES
uses a linear least squares method to search for the correct cutpoint. For each i D 0; : : : ; m

compute the SSE of the least squares line through the origin fitting fq.m/; : : : ; q.m�iC1/g, let
bi be the slope of this line, and add the SSE of the unconstrained least squares line through
the rest of the qs. For i = 0 compute the SSE for the unconstrained line. The argument i that
minimizes the SSE is the cutpoint: if i = 0 then Om0 D 0; if i D m then Om0 D m; otherwise
Om0 D ceil. 1

bi
� 1/.

LOWESTSLOPE
uses the lowest slope method of Benjamini and Hochberg (2000). Find the first i D 1; : : : ; m

such that bi D q.i/=.m � i C 1/ decreases. Then Om0 D floor.min. 1
bi
C 1;m//.

MEANDIFF
uses the mean of differences method of Hsueh, Chen, and Kodell (2003). Let Ndi D

q.m�iC1/
i

and
estimate Omi0 D

1
Ndi
� 1. Start from i D m and proceed downward until the first time Omi�10 � Omi0

occurs.

SPLINE< (spline-options) >
uses the cubic spline method of Storey and Tibshirani (2003). For each � 2 f0; 1

n
; 2
n
; : : : ; n�1

n
g

compute O�0.�/ D
#fpi>�g
m.1��/

. Let bf .�/ be the natural cubic spline with 3 degrees of freedom of
O�0.�/ versus �. Estimate O�0 by taking the spline value at the last �: O�0 D O�0.n�1n /, so that
Om0 D m O�0. The available spline-options are as follows:

DF=df
sets the degrees of freedom of the spline, where df is a nonnegative integer. The default is
DF=3.

DFCONV=number
specifies the absolute change in spline degrees of freedom value for concluding convergence.
If jdf i � df iC1j < number (or if the SPCONV= criterion is satisfied), then convergence is
declared. number must be between 0 and 1; by default, number is 1000 times the square
root of machine epsilon, which is about 1E–5.
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FINITE
computations for the finite-sample case of the PFDR option, described on page 5500.

MAXITER=n
specifies the maximum number of golden-search iterations used to find a spline with DF=df
degrees of freedom. By default, MAXITER=100; number must be a nonnegative integer.

NLAMBDA=n
O�0.�/ for � 2 f0; 1

n
; 2
n
; : : : ; n�1

n
g for the spline fit. By default, NLAMBDA=20; number

must be an integer greater than 1.

SPCONV=number
specifies the absolute change in smoothing parameter value for concluding convergence
of the spline. If jspi � spiC1j < number (or if the DFCONV= criterion is satisfied), then
convergence is declared. By default, number equals the square root of the machine epsilon,
which is about 1E–8.

In all cases Om0 is constrained to lie between 0 and m; if the computed Om0 D 0, then the adaptive
adjustments do not produce results. If you specify Om0 > m, then it is reduced to m. Values of Om0 are
displayed in the “Estimated Number of True Null Hypotheses” table.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of the classification variables (which are specified in the CLASS
statement). This option applies to the levels for all classification variables, except when you use the
(default) ORDER=FORMATTED option with numeric classification variables that have no explicit
format. In that case, the levels of such variables are ordered by their internal value.

The ORDER= option can take the following values:

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set

FORMATTED External formatted value, except for numeric variables with
no explicit format, which are sorted by their unformatted
(internal) value

FREQ Descending frequency count; levels with the most observa-
tions come first in the order

INTERNAL Unformatted value

By default, ORDER=FORMATTED. For ORDER=FORMATTED and ORDER=INTERNAL, the
sort order is machine-dependent. For more information about sort order, see the chapter on the SORT
procedure in the Base SAS Procedures Guide and the discussion of BY-group processing in SAS
Language Reference: Concepts.

OUT=SAS-data-set
names the output SAS data set containing variable names, contrast names, intermediate calculations,
and all associated p-values. See “OUT= Data Set” on page 5526 for more information.
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OUTPERM=SAS-data-set
names the output SAS data set containing entire permutation distributions (upper-tail probabilities) for
all tests when the PERMUTATION= option is specified. See “OUTPERM= Data Set” on page 5527
for more information. CAUTION: This data set can be very large.

OUTSAMP=SAS-data-set
names the output SAS data set containing information from the resampled data sets when resampling
is performed. See “OUTSAMP= Data Set” on page 5527 for more information. CAUTION: This data
set can be very large.

PDATA=SAS-data-set
is an alias for the INPVALUES= option.

PERMUTATION

PERM
computes adjusted p-values in identical fashion as the BOOTSTRAP option, with the exception that
PROC MULTTEST resamples without replacement rather than with replacement. Resampling is
performed independently within levels of the STRATA variable. Continuous variables are not mean-
centered prior to resampling; specify the CENTER to change this. See the section “Bootstrap” on
page 5519 for more details. The PERMUTATION option is not allowed with the Peto test.

PFDR< (options ) >
computes the “q-values” Oq�.pi / of Storey (2002) and Storey, Taylor, and Siegmund (2004). PROC
MULTTEST treats these “q-values” as adjusted p-values. The computations depend on selecting a
parameter � and an estimation method for the false discovery rate; see the section “Positive False
Discovery Rate” on page 5524 for computational details. The available options for choosing the
method are as follows:

FINITE
estimates the false discovery rate with 1pFDR or bFDR for the finite-sample case with independent
null p-values.

POSITIVE
estimates the false discovery rate with 1pFDR instead of the default bFDR.

UNRESTRICT
estimates the false discovery rate as defined in Storey (2002), which allows the adjustment to
reduce the raw p-value. By default, the PFDR is constrained to be greater than or equal to the
raw p-value.

The available options for controlling the � search are the bootstrap-options (page 5497), the spline-
options (page 5498), and the following options:

LAMBDA=number
specifies a � 2 Œ0; 1/ and does not perform the bootstrap or spline searches for an “optimal” �.

MAXLAMBDA=number
stops the NLAMBDA= search sequence for the bootstrap and spline searches when this number
is reached. The number must be in Œ0; 1�. This option is ignored if the LAMBDA= option is
specified.
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PLOTS< (global-plot-options) >=plot-request< (options) >

PLOTS< (global-plot-options) >=(plot-request< (options) >< : : : plot-request< (options) > > )
controls the plots produced through ODS Graphics. If you specify only one plot-request , you can omit
the parentheses. For example, the following statements are valid specifications of the PLOTS= option:

plots = all
plots = (rawprob adjusted)
plots(sigonly) = (rawprob adjusted(unpack))

ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;
proc multtest plots=adjusted inpvalues=a pfdr;
run;
ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

By default, no graphs are created; you must specify the PLOTS= option to make graphs. You need at
least two tests to produce a graph. If you are not using an INPVALUES= data set, then each test is
given a name constructed as “variable-name contrast-label”. If you specify a MEAN test in the TEST
statement, the t-test names are prefixed with “Mean:”. See Example 67.6 for examples of the ODS
graphical displays.

The following global-plot-options are available:

UNPACKPANELS | UNPACK
suppresses paneling. By default, the plots produced with the ADJUSTED and RAWPROB
options are grouped in a single display, called a panel. Specify UNPACK to display each plot
separately.

SIGONLY< =number >
displays only those tests with adjusted p-values � number , where 0 � number � 1. By default,
number = 0.05.

The following plot-requests are available:

ADJUSTED< (UNPACK) >
displays a 2�2 panel of adjusted p-value plots similar to those Storey and Tibshirani (2003)
developed for use with the PFDR p-value adjustment method. The plots of the adjusted p-values
by the raw p-values and the adjusted p-values by their rank show the effect of the adjustments.
The plot of the proportion of adjusted p-values � each adjusted p-value and the plot of the
expected number of false positives (the proportion significant multiplied by the adjusted p-value)
versus the proportion significant show the effect of choosing different significance levels. The
UNPACK option unpanels the display.
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ALL
produces all appropriate plots. You can specify other options with ALL; for example, to display
all plots and unpack the RAWPROB plots you can specify plots=(all rawprob(unpack)).

LAMBDA
displays plots of the MSE and the estimated number of true nulls against the � parameter when
the NTRUENULL=SPLINE or NTRUENULL=BOOTSTRAP option is in effect.

MANHATTAN< (options) >
displays the Manhattan plot (a plot of –log10 of the adjusted p-values versus the tests). You can
specify the following options:

GROUP=variable
specifies a variable to group the adjusted p-values in the display.

LABEL < =OBS >
labels the observations that have adjusted p-values that are less than the value specified in
the VREF= option. By default, labels are created as follows: if an INPVALUES= data set
and an ID statement are specified, then the observations are labeled with the ID values; if a
DATA= data set is specified, then the observations are labeled with their constructed test
name; otherwise, the observation or test number is displayed.

NOTESTNAME
displays the number of the test instead of the test name on the X-axis, which is useful when
you have many tests.

UNPACK
suppresses paneling. By default, Manhattan plots are created for each requested p-value
adjustment, and the results are grouped in a single display, called a panel. Specify UNPACK
to display each plot separately.

VREF=number | NONE
displays a reference line at –log10(number ). The number must be between 0 and 1. By
default, a reference line at –log10(0.05) is displayed; it can be suppressed by specifying
VREF=0 or VREF=NONE. If the LABEL option is also specified, then observations above
this line are labeled with their ID variables, their observation number, their test name, or
their test number.

NONE
suppresses all plots.

PBYTEST< (options) >
displays the adjusted p-values for each test. The available options are as follows:

NOTESTNAME
displays the number of the test instead of the test name on the axis, which is useful when
you have many tests.
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VREF=
number-list displays reference lines at the p-values specified in the number-list . The values
in the number-list must be between 0 and 1; otherwise they are ignored. You can specify
a single value or a list of values; for example, vref=0.1 0 to 0.05 by 0.01 displays
reference lines at each of the values {0.01, 0.02, 0.03, 0.04, 0.05, and 0.1}.

RAWPROB< (UNPACK) >
displays a uniform probability plot of 1 minus the raw p-values (Schweder and Spjøtvoll 1982)
along with a histogram. If m0 is the number of true null hypotheses among the m tests, the
points on the left side of the plot should be approximately linear with slope 1

m0C1
. This graphic

is displayed when an adaptive p-value adjustment method is requested in order to see if the
NTRUENULL= estimate is appropriate. The UNPACK option unpanels the display.

PTRUENULL=keyword | value

PI0=keyword | value
is alias for the NTRUENULL= option, except that you can specify the proportion of true null hypotheses
as a value between 0 and 1, instead of specifying the number of true null hypotheses. The available
keywords are also the NTRUENULL= options described on page 5497.

RANUNI
requests the random number generator used in releases prior to SAS 9.2. Beginning with SAS 9.2, the
random number generator is the Mersenne Twister, which has better performance when bootstrapping.
Changes in the bootstrap- or permutation-adjusted p-values from prior releases are due to unimportant
sampling differences.

SEED=number

S=number
specifies the initial seed for the random number generator used for resampling. The value for number
must be an integer. If you do not specify a seed, or if you specify a value less than or equal to zero,
then PROC MULTTEST uses the time of day from the computer’s clock to generate an initial seed.
For more details about seed values, see SAS Language Reference: Concepts.

SIDAK

SID
computes the Šidák adjustment for each test. These adjustments take the form

1 � .1 � p/m

where p is the raw p-value and m is the number of tests. These are slightly less conservative than the
Bonferroni adjustments, but they still should be viewed with caution. When exact tests are specified
via the PERMUTATION= option in the TEST statement, the actual permutation distributions are used,
resulting in a much less conservative version of this procedure (Westfall and Wolfinger 1997). See the
section “Šidák” on page 5519 for more details.

STEPBON

HOLM
requests adjusted p-values by using the step-down Bonferroni method of Holm (1979). See the section
“Step-Down Methods” on page 5520 for more details.
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STEPBOOT
requests that adjusted p-values be computed by using bootstrap resampling as described under the
BOOTSTRAP option, but in step-down fashion. See the section “Step-Down Methods” on page 5520
for more details.

STEPPERM
requests that adjusted p-values be computed by using permutation resampling as described under
the PERMUTATION option, but in step-down fashion. See the section “Step-Down Methods” on
page 5520 for more details.

STEPSID
requests adjusted p-values by using the Šidák method as described in the SIDAK option, but in
step-down fashion. See the section “Step-Down Methods” on page 5520 for more details.

STOUFFER

LIPTAK
requests adjusted p-values by using the Stouffer-Liptak combination method. See the section “Stouffer-
Liptak Combination” on page 5521 for more details.

BY Statement
BY variables ;

You can specify a BY statement with PROC MULTTEST to obtain separate analyses of observations in
groups that are defined by the BY variables. When a BY statement appears, the procedure expects the input
data set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last
one specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the MULTTEST proce-
dure. The NOTSORTED option does not mean that the data are unsorted but rather that the data are
arranged in groups (according to values of the BY variables) and that these groups are not necessarily
in alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

You can specify one or more variables in the input data set on the BY statement.

Since sorting the data changes the order in which PROC MULTTEST reads observations, this can affect
the sort order for the levels of the CLASS variable if you have specified ORDER=DATA in the PROC
MULTTEST statement. This, in turn, affects specifications in the CONTRAST statements.

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.
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CLASS Statement
CLASS variable < / TRUNCATE > ;

The CLASS statement is required unless the INPVALUES= option is specified. The CLASS statement
specifies a single variable (character or numeric) used to identify the groups for the analysis. For example,
if the variable Treatment defines different levels of a treatment that you want to compare, then you would
specify the following statements:

class Treatment;

The CLASS variable can be either character or numeric. By default, class levels are determined from the
entire set of formatted values of the CLASS variable. The order of the class levels used by PROC MULTTEST
corresponds to the order of their formatted values; this order can be changed with the ORDER= option in the
PROC MULTTEST statement.

NOTE: Prior to SAS 9, class levels were determined by using no more than the first 16 characters of the
formatted values. To revert to this previous behavior you can specify the TRUNCATE option in the CLASS
statement.

In any case, you can use formats to group values into levels. See the discussion of the FORMAT procedure
in the Base SAS Procedures Guide and the discussions of the FORMAT statement and SAS formats in SAS
Formats and Informats: Reference. You can adjust the order of CLASS variable levels with the ORDER=
option in the PROC MULTTEST statement. You need to be aware of the order when using the CONTRAST
statement, and you should check the “Contrast Coefficients” table to verify that it is suitable.

You can specify the following option in the CLASS statement after a slash (/):

TRUNCATE
specifies that class levels should be determined by using only up to the first 16 characters of the
formatted values of CLASS variables. When formatted values are longer than 16 characters, you can
use this option to revert to the levels as determined in releases prior to SAS 9.

CONTRAST Statement
CONTRAST 'label ' values ;

This statement is used to identify tests between the levels of the CLASS variable; in particular, it is used to
specify the coefficients for the trend tests. The label is a string naming the contrast; it contains a maximum
of 21 characters. The values are scoring coefficients across the CLASS variable levels.

You can specify multiple CONTRAST statements, thereby specifying multiple contrasts for each variable.
Multiplicity adjustments are computed for all contrasts and all variables simultaneously. The coefficients
are applied to the ordered CLASS variables; this order can be changed with the ORDER= option in the
PROC MULTTEST statement. For example, consider a four-group experiment with CLASS variable levels
A1, A2, B1, and B2 denoting two levels of two treatments. The following statements produce three linear
trend tests for each variable identified in the TEST statement. PROC MULTTEST computes the multiplicity
adjustments over the entire collection of tests, which is three times the number of variables.
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contrast 'a vs b' -1 -1 1 1;
contrast 'a linear' -1 1 0 0;
contrast 'b linear' 0 0 -1 1;

As another example, consider an animal carcinogenicity experiment with dose levels 0, 4, 8, 16, and 50. You
can specify a trend test with the indicated scoring coefficients by using the following statement:

contrast 'arithmetic trend' 0 4 8 16 50;

Multiplicity-adjusted p-values are then computed over the collection of variables identified in the TEST
statement. See Lagakos and Louis (1985) for guidelines on the selection of contrast-scoring values.

When a Fisher test is specified in the TEST statement, the CONTRAST statement coefficients are used
to group the CLASS variable’s levels. Groups with a –1 contrast coefficient are combined and compared
with groups with a 1 contrast coefficient for each test, and groups with a 0 coefficient are not included in
the contrast. For example, the following statements compute Fisher exact tests for (a) control versus the
combined treatment groups, (b) control versus the first treatment group, and (c) control versus the third
treatment group:

contrast 'c vs all' 1 -1 -1 -1;
contrast 'c vs t1' 1 -1 0 0;
contrast 'c vs t3' 1 0 0 -1;

Multiplicity adjustments are then computed over the entire collection of tests and variables. Only –1, 1, and 0
are acceptable CONTRAST coefficients when the Fisher test is specified; PROC MULTTEST ignores the
CONTRAST statement if any other coefficients appear.

If you specify the FISHER test and no CONTRAST statements, then all contrasts of control versus treatment
are automatically generated, with the first level of the CLASS variable deemed to be the control. In this case,
the control level is assigned the value 1 in each contrast and the other treatment levels are assigned –1. You
should therefore use the LOWERTAILED option to test for higher success rates in the treatment groups.

For tests other than FISHER, CONTRAST values are 0; 1; 2; : : : by default. If you specify the CA or PETO
test with the PERMUTATION= option, then your CONTRAST coefficients must be integer valued.

For t tests for the mean of continuous data (and for the FT tests), the contrast coefficients are centered to
have meanD 0. The resulting centered scoring coefficients are then applied to the sample means (or to the
double-arcsine-transformed proportions in the case of the FT tests).

FREQ Statement
FREQ variable ;

The FREQ statement names a variable that provides frequencies for each observation in the DATA= data set.
Specifically, if n is the value of the FREQ variable for a given observation, then that observation is used n
times.

If the value of the FREQ variable is missing or is less than 1, the observation is not used in the analysis. If
the value is not an integer, only the integer portion is used.
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ID Statement
ID variables ;

The ID statement names one or more variables for identifying observations in the output and in the plots. The
statement requires an INPVALUES= data set. All ID variables are displayed in the “pValues” table. The ID
variables are used as the X axis for the plots requested by the PLOTS=PBYTEST and PLOTS=MANHATTAN
options in the PROC MULTTEST statement; they are also used to label points on the Manhattan plots. This
option has no effect on the OUT= data set.

STRATA Statement
STRATA variable ;

The STRATA statement identifies a single variable to use as a stratification variable in the analysis. This yields
tests similar to those discussed in Mantel and Haenszel (1959) and Hoel and Walburg (1972) for binary data
and pooled-means tests for continuous data. For example, when you test for prevalence in a carcinogenicity
study, it is common to stratify on intervals of the time of death; the first level of the stratification variable
might represent weeks 0–52, the second might represent weeks 53–80, and so on. In multicenter clinical
studies, each level of the stratification variable might represent a particular center.

The following option is available in the STRATA statement after a slash (/):

WEIGHT=keyword
specifies the type of strata weighting to use when computing the Freeman-Tukey and t tests. Valid
keywords are SAMPLESIZE, HARMONIC, and EQUAL. SAMPLESIZE requests weights propor-
tional to the within-stratum sample sizes, and is the default method even if the WEIGHT= option is not
specified. HARMONIC sets up weights equal to the harmonic mean of the nonmissing within-stratum
CLASS sizes, and is similar to a Type 2 analysis in PROC GLM. EQUAL specifies equal weights, and
is similar to a Type 3 analysis in PROC GLM.

TEST Statement
TEST name (variables < / options >) ;

The TEST statement is required unless the INPVALUES= option is specified. The TEST statement identifies
statistical tests to be performed and the discrete and continuous variables to be tested. Table 67.2 summarizes
the names and options available in the TEST statement.
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Table 67.2 TEST Statement Names and Options

Option Description

TEST Names
CA Requests the Cochran-Armitage linear trend tests for group comparisons
FISHER Requests Fisher exact tests
FT Requests Z-score CA tests based upon the Freeman-Tukey double arcsine

transformation
MEAN Requests the t test for the mean
PETO Requests the Peto mortality-prevalence test
TEST Options
BINOMIAL Uses the binomial variance estimate for CA and Peto tests
CONTINUITY= Specifies a continuity correction
DDFM= Specifies whether to use homogeneous or heterogeneous variances
LOWERTAILED Makes all tests lower-tailed
PERMUTATION= Computes p-values for the CA and Peto tests by using exact permutation

distributions
TIME= Identifies the Peto test variable containing the age at death
UPPERTAILED Makes all tests upper-tailed

The following tests are permitted as name in the TEST statement.

CA
requests the Cochran-Armitage linear trend tests for group comparisons. The test variables should take
the value 0 for a failure and 1 for a success. PERMUTATION= option can be used to request an exact
permutation test; otherwise, a Z-score approximation is used. The CONTINUITY= option can be used
to specify a continuity correction for the Z-score approximation.

FISHER
requests Fisher exact tests for comparing two treatment groups. The test variables should take the
value 0 for a failure and 1 for a success.

FT
requests Z-score CA tests based upon the Freeman-Tukey double arcsine transformation of the fre-
quencies. The test variables should take the value 0 for a failure and 1 for a success.

MEAN
requests the t test for the mean. The test variables can take on any numeric values.

PETO
requests the Peto mortality-prevalence test. The test variables should take the value 0 for a nonoccur-
rence, 1 for an incidental occurrence, and 2 for a fatal occurrence. The TIME= option should be used
with the Peto test to specify an integer-valued variable giving the age at death. The CONTINUITY=
option can be used to specify a continuity correction for the test.
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If the value of a TEST variable is invalid, the observation is not used in the analysis. You can specify two
tests only if one of them is MEAN. For example, the following statement is valid:

test ca(d1-d2) mean(c1-c2);

But specifying both CA and FT, as shown in the following statement, is invalid:

test ca(d1-d2) ft(d1-d2);

You can specify the following options in the TEST statement (some apply to only one test).

BINOMIAL
uses the binomial variance estimate for CA and Peto tests in their asymptotic normal approximations.
The default is to use the hypergeometric variance.

CONTINUITY=number

C=number
specifies number as a particular continuity correction for the Z-score approximation in the CA and
Peto tests. The default is 0.

LOWERTAILED

LOWER
is used to make all tests lower-tailed. All tests are two-tailed by default.

PERMUTATION=number

PERM=number
computes p-values for the CA and Peto tests by using exact permutation distributions when marginal
success or failure totals within a stratum are number or less. You can specify number as a nonnegative
integer. For totals greater than number (or when the PERMUTATION= option is omitted), PROC
MULTTEST uses standard normal approximations with a continuity correction chosen to approximate
the permutation distribution. PROC MULTTEST computes the appropriate convolution distributions
when you use the STRATA statement along with the PERMUTATION= option.

DDFM= POOLED | SATTERTHWAITE
specifies whether the MEAN test uses a homogeneity assumption (DDFM=POOLED, the default)
or deals with heterogeneous variances (DDFM=SATTERTHWAITE). See “t Test for the Mean” on
page 5516 for more information.

TIME=variable
identifies the Peto test variable containing the age at death, which must be integer valued. If the TIME=
option is omitted, all ages are assumed to equal 1.

UPPERTAILED

UPPER
is used to make all tests upper-tailed. All tests are two-tailed by default.
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Details: MULTTEST Procedure

Statistical Tests
The following section discusses the statistical tests performed in the MULTTEST procedure. For continuous
data, a t test for the mean (MEAN) is available. For discrete variables, available tests are the Cochran-
Armitage linear trend test (CA), the Freeman-Tukey double arcsine test (FT), the Peto mortality-prevalence
test (PETO), and the Fisher exact test (FISHER).

Throughout this section, the discrete and continuous variables are denoted by Svgsr and Xvgsr , respectively,
where v is the variable, g is the treatment group, s is the stratum, and r is the replication. Let mvgs denote the
sample size for a binary variable v within group g and stratum s. A plus sign (+) subscript denotes summation
over an index. Note that the tests are invariant to the location and scale of the contrast coefficients tg .

Cochran-Armitage Linear Trend Test

The Cochran-Armitage linear trend test (Cochran 1954; Armitage 1955; Agresti 2002) is implemented by
using a Z-score approximation, an exact permutation distribution, or a combination of both.

Z-Score Approximation
The pooled probability estimate for variable v and stratum s is

pvs D
SvCsC

mvCs

The expected value (under constant within-stratum treatment probabilities) for variable v, group g, and
stratum s is

Evgs D mvgspvs

Letting tg denote the contrast trend coefficients specified by the CONTRAST statement, the test statistic for
variable v has numerator

Nv D
X
s

X
g

tg.SvgsC �Evgs/

The binomial variance estimate for this statistic is

Vv D
X
s

pvs.1 � pvs/
X
g

mvgs.tg � Ntvs/
2

where

Ntvs D
X
g

mvgstg

mvCs

The hypergeometric variance estimate (the default) is

Vv D
X
s

fmvCs=.mvCs � 1/gpvs.1 � pvs/
X
g

mvgs.tg � Ntvs/
2
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For any strata s with mvCs � 1, the contribution to the variance is taken to be zero.

PROC MULTTEST computes the Z-score statistic

Zv D
Nv
p
Vv

The p-value for this statistic comes from the standard normal distribution. Whenever a 0 is computed for
the denominator, the p-value is set to 1. This p-value approximates the probability obtained from the exact
permutation distribution, discussed in the following text.

The Z-score statistic can be continuity-corrected to better approximate the permutation distribution. With
continuity correction c, the upper-tailed p-value is computed from

Zv D
Nv � c
p
Vv

For two-tailed, noncontinuity-corrected tests, PROC MULTTEST reports the p-value as 2min.p; 1 � p/,
where p is the upper-tailed p-value. The same formula holds for the continuity-corrected test, with the
exception that when the noncontinuity-corrected Z and the continuity-corrected Z have opposite signs, the
two-tailed p-value is 1.

When the PERMUTATION= option is specified and no STRATA variable is specified, PROC MULTTEST
uses a continuity correction selected to optimally approximate the upper-tail probability of permutation
distributions with smaller marginal totals (Westfall and Lin 1988). Otherwise, the continuity correction is
specified by the CONTINUITY= option in the TEST statement.

The CA Z-score statistic is the Hoel-Walburg (Mantel-Haenszel) statistic reported by Dinse (1985).

Exact Permutation Test
When you use the PERMUTATION= option for CA in the TEST statement, PROC MULTTEST computes
the exact permutation distribution of the trend score

Tv D
X
s

X
g

tgSvgsC

where the contrast trend coefficients tg must be integer valued. The observed value of this trend is compared
to the permutation distribution to obtain the p-value

pv D Pr.X � observed Tv/

where X is a random variable from the permutation distribution and where upper-tailed tests are requested.
This probability can be viewed as a binomial probability, where the within-stratum probabilities are constant
and where the probability is conditional with respect to the marginal totals SvCsC. It also can be considered
a rerandomization probability.

Because the computations can be quite time-consuming with large data sets, specifying the PERMUTA-
TION=number option in the TEST statement limits the situations where PROC MULTTEST computes the
exact permutation distribution. When marginal total success or total failure frequencies exceed number for a
particular stratum, the permutation distribution is approximated by a continuity-corrected normal distribution.
You should be cautious when using the PERMUTATION= option in conjunction with bootstrap resampling
because the permutation distribution is recomputed for each bootstrap sample. This recomputation is not
necessary with permutation resampling.

The permutation distribution is computed in two steps:
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1. The permutation distributions of the trend scores are computed within each stratum.

2. The distributions are convolved to obtain the distribution of the total trend.

As long as the total success or failure frequency does not exceed number for any stratum, the computed
distributions are exact. In other words, if SvCsC � number or .mvCs � SvCsC/ � number for all s, then
the permutation trend distribution for variable v is computed exactly.

In step 1, the distribution of the within-stratum trendX
g

tgSvgsC

is computed by using the multivariate hypergeometric distribution of the SvgsC, provided number is not
exceeded. This distribution can be written as

Pr.Sv1sC; Sv2sC; : : : ; SvGsC/ D
GY
gD1

�
mvgs
SvgsC

�
�
mvCs
SvCsC

�
The distribution of the within-stratum trend is then computed by summing these probabilities over appropriate
configurations. For further information about this technique, see Bickis and Krewski (1986) and Westfall and
Lin (1988). In step 2, the exact convolution distribution is obtained for the trend statistic summed over all
strata having totals that meet the threshold criterion. This distribution is obtained by applying the fast Fourier
transform to the exact within-stratum distributions. A description of this general method can be found in
Pagano and Tritchler (1983) and Good (1987).

The convolution distribution of the overall trend is then computed by convolving the exact distribution with
the distribution of the continuity-corrected standard normal approximation. To be more specific, let S1 denote
the subset of stratum indices that satisfy the threshold criterion, and let S2 denote the subset of indices that
do not satisfy the criterion. Let Tv1 denote the combined trend statistic from the set S1, which has an exact
distribution obtained from Fourier analysis as previously outlined, and let Tv1 denote the combined trend
statistic from the set S2. Then the distribution of the overall trend Tv D Tv1C Tv2 is obtained by convolving
the analytic distribution of Tv1 with the continuity-corrected normal approximation for Tv2. Using the
notation from the section “Z-Score Approximation” on page 5510, this convolution can be written as

Pr.Tv1 C Tv2 � u/ D
X
u1

Pr.Tv1 C Tv2 � u j Tv1 D u1/Pr.Tv1 D u1/

�

X
u1

Pr.Z � z/Pr.Tv1 D u1/

where Z is a standard normal random variable, and

z D
1
p
Vv

0@u � u1 �X
S2

pvs
X
g

tgmvgs � c

1A
In this expression, the summation of s in Vv is over S2, and c is the continuity correction discussed under the
Z-score approximation.
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When a two-tailed test is requested, the expected trend is computed

Ev D
X
s

X
g

tgEvgs

The two-tailed p-value is reported as the permutation tail probability for the observed trend Tv plus the
permutation tail probability for 2Ev � Tv, the reflected trend.

Freeman-Tukey Double Arcsine Test

For this test, the contrast trend coefficients t1; : : : ; tG are centered to the values c1; : : : ; cG , where cg D tg� Nt ,
Nt D

P
g tg=G, and G is the number of groups. The numerator of this test statistic is

Nv D
X
s

wvs
X
g

cgf .SvgsC; mvgs/

where the weights wvs take on three different types of values depending upon your specification of the
WEIGHT= option in the STRATA statement. The default value is the within-strata sample size mvCs ,
ensuring comparability with the ordinary CA trend statistic. WEIGHT=HARMONIC sets wvs equal to the
harmonic mean" X

g

1

mvgs

!
=G�

#�1

where G� is the number of nonmissing groups and the summation is over only the nonmissing elements. The
harmonic means analysis places more weight on the smaller sample sizes than does the default sample size
method, and is similar to a Type 2 analysis in PROC GLM. WEIGHT=EQUAL sets wvs D 1 for all v and s,
and is similar to a Type 3 analysis in PROC GLM.

The function f .r; n/ is the double arcsine transformation:

f .r; n/ D arcsin
�r

r

nC 1

�
C arcsin

 r
r C 1

nC 1

!

The variance estimate is

Vv D
X
s

w2vs

X
g

c2g

mvgs C
1
2

The test statistic is

Zv D
Nv
p
Vv

The Freeman-Tukey transformation and its variance are described by Freeman and Tukey (1950) and Miller
(1978). Since its variance is not weighted by the pooled probabilities, as is the CA test, the FT test can be
more useful than the CA test for tests involving only a subset of the groups.
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Peto Mortality-Prevalence Trend Test

The Peto test is a modified Cochran-Armitage procedure incorporating mortality and prevalence information.
The Peto test is computed like two Cochran-Armitage Z-score approximations, one for prevalence and one
for mortality (Peto et al. 1980). It represents a special case in PROC MULTTEST because the data structure
requirements are different, and the resampling methods used for adjusting p-values are not valid. The TIME=
option variable is required to specify “death” times or, more generally, times of occurrence. In addition, the
test variables must assume one of the following three values:

• 0 = no occurrence
• 1 = incidental occurrence
• 2 = fatal occurrence

Use the TIME= option variable to define the mortality strata, and use the STRATA statement variable to
define the prevalence strata.

In the following notation, the subscript v represents the variable, g represents the treatment group, s represents
the stratum, and t represents the time. Recall that a plus sign .C/ in a subscript location denotes summation
over that subscript.

Let SPvgs be the number of incidental occurrences, and let mPvgs be the total sample size for variable v in
group g, stratum s, excluding fatal tumors.

Let SFvgt be the number of fatal occurrences in time period t, and let mFvgt be the number of patients alive at
the end of time t – 1.

The pooled probability estimates are given by

pPvs D
SPvCs

mPvCs

pFvt D
SFvCt

mFvCt

The expected values are

EPvgs D mPvgsp
P
vs

EFvgt D mFvgtp
F
vt

Let tg denote a contrast trend coefficient, and define the numerator terms as follows:

NP
v D

X
s

X
g

tg

�
SPvgs �E

P
vgs

�
NF
v D

X
t

X
g

tg

�
SFvgt �E

F
vgt

�
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Define the denominator variance terms by using the binomial variance:

V Pv D

X
s

pPvs

�
1 � pPvs

�24 X
g

mPvgstg
2

!
�

1

mPvCs

 X
g

mPvgstg

!235
V Fv D

X
s

pFvt

�
1 � pFvt

�24 X
g

mFvgt tg
2

!
�

1

mFvCt

 X
g

mFvgt tg

!235

The hypergeometric variances (the default) are calculated by weighting the within-strata variances as discussed
in the section “Z-Score Approximation” on page 5510.

The Peto statistic is computed as

Zv D
NP
v CN

F
v � cp

V Pv C V
F
v

where c is a continuity correction. The p-value is determined from the standard normal distribution unless the
PERMUTATION=number option is used. When you use the PERMUTATION= option for PETO in the TEST
statement, PROC MULTTEST computes the “discrete approximation” permutation distribution described by
Mantel (1980) and Soper and Tonkonoh (1993). Specifically, the permutation distribution of

P
s

P
g tgS

P
vgsCP

t

P
g tgS

F
vgt is computed, assuming that f

P
g tgS

P
vgsg and f

P
g tgS

F
vgtg are independent over all s and

t. Note that the contrast trend coefficients tg must be integer valued. The p-values are exact under this
independence assumption. However, the independence assumption is valid only asymptotically, which is why
these p-values are called “approximate.”

An exact permutation distribution is available only under the assumption of equal risk of censoring in
all treatment groups; even then, computing this distribution can be cumbersome. Soper and Tonkonoh
(1993) describe situations where the discrete approximation distribution closely fits the exact permutation
distribution.

Fisher Exact Test

The CONTRAST statement in PROC MULTTEST enables you to compute Fisher exact tests for two-group
comparisons. No stratification variable is allowed for this test. Note, however, that the FISHER exact test is
a special case of the exact permutation tests performed by PROC MULTTEST and that these permutation
tests allow a stratification variable. Recall that contrast coefficients can be –1, 0, or 1 for the Fisher test. The
frequencies and sample sizes of the groups scored as –1 are combined, as are the frequencies and sample
sizes of the groups scored as 1. Groups scored as 0 are excluded. The –1 group is then compared with the 1
group by using the Fisher exact test.

Letting x and m denote the frequency and sample size of the 1 group, and letting y and n denote those of the
–1 group, the p-value is calculated as

Pr.X � x j X C Y D x C y/ D
mX
iDx

�
m

i

��
n

x C y � i

�
�
mC n

x C y

�
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where X and Y are independent binomially distributed random variables with sample sizes m and n and
common probability parameters. The hypergeometric distribution is used to determine the stated probability;
Yates (1984) discusses this technique. PROC MULTTEST computes the two-tailed p-values by adding
probabilities from both tails of the hypergeometric distribution. The first tail is from the observed x and y,
and the other tail is chosen so that the resulting probability is as large as possible without exceeding the
probability from the first tail. If the variable being tested has only one level, then the p-value is set to 1.

t Test for the Mean

For continuous variables, PROC MULTTEST automatically centers the contrast trend coefficients, as in
the Freeman-Tukey test. These centered coefficients cg are then used to form a t statistic contrasting the
within-group means. Let nvgs denote the sample size within group g and stratum s; it depends on variable
v only when there are missing values. Determine the weights wvs as in the Freeman-Tukey test with nvgs
replacing mvgs . Define

NXvgsC D
1

nvgs

X
r

Xvgsr

as the sample mean within a group-and-stratum combination, and let �vgs denote the treatment means. Write
the null hypothesis asX

s

wvs
X
g

cg�vgs D 0

Also define

s2v D

X
s

X
g

X
r

�
Xvgsr � NXvgsC

�2
X
s

X
g

�
nvgs � 1

�
as the pooled sample variance.

Homogeneous Variance
Assuming constant variance for all group-and-stratum combinations, the t statistic for the mean is

Mv D

X
s

wvs
X
g

cg NXvgsCvuuts2v

 X
s

w2vs

X
g

c2g

nvgs

!

Then under the null hypothesis and assuming normality, independence, and homoscedasticity, Mv follows a
t distribution with df p D

P
s

P
g

�
nvgs � 1

�
degrees of freedom.

Whenever a denominator of 0 is computed, the p-value is set to 1. When missing data force nvgs D 0, the
contribution to the denominator of the pooled variance is 0 and not –1. This is also true for the degrees of
freedom.
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Heterogeneous Variance
If you do not assume constant variance for all group-and-stratum combinations, then the approximate t test is

Mv D

X
s

wvs
X
g

cg NXvgsCvuutX
s

w2vs

X
g

c2g
s2vgs

nvgs

Under the null hypothesis and assuming normality and independence, the Satterthwaite (1946) approximation
for the degrees of freedom of the t test is given by

df s D

 X
s

w2vs

X
g

c2g
s2vgs

nvgs

!2

X
s

X
g

 
w2vsc

2
g

s2vgs

nvgs

!2
nvgs � 1

under the restriction 1 � df s �
P
s

P
g nvgs .

Whenever a denominator of 0 for Mv is computed, the p-value is set to 1. If the denominator for df s is
computed as 0, then set df s D df p . When missing data force nvgs � 1, that group-and-stratum combination
does not contribute to the df s computation.

p-Value Adjustments
Suppose you test m null hypotheses, H01; : : : ;H0m, and obtain the p-values p1; : : : ; pm. Denote the ordered
p-values as p.1/ � : : : � p.m/ and order the tests appropriately: H0.1/; : : : ;H0.m/. Suppose you know m0
of the null hypotheses are true and m1 D m �m0 are false. Let R indicate the number of null hypotheses
rejected by the tests, where V of these are incorrectly rejected (that is, V tests are Type I errors) and R�V are
correctly rejected (so m1 �RC V tests are Type II errors). This information is summarized in the following
table:

Null is Rejected Null is Not Rejected Total

Null is True V m0 – V m0
Null is False R – V m1 – R + V m1
Total R m – R m

The familywise error rate (FWE) is the overall Type I error rate for all the comparisons (possibly under some
restrictions); that is, it is the maximum probability of incorrectly rejecting one or more null hypotheses:

FWE D Pr.V > 0/

The FWE is also known as the maximum experimentwise error rate (MEER), as discussed in the section
“Pairwise Comparisons” on page 3477 in Chapter 45, “The GLM Procedure.”
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The false discovery rate (FDR) is the expected proportion of incorrectly rejected hypotheses among all
rejected hypotheses:

FDR D E
�
V

R

�
where

V

R
D 0 when V D R D 0

D E

�
V

R
j R > 0

�
Pr.R > 0/

Under the overall null hypothesis (all the null hypotheses are true), the FDR=FWE since V = R gives
E
�
V
R

�
D 1 � Pr

�
V
R
D 1

�
D Pr.V > 0/. Otherwise, FDR is always less than FWE, and an FDR-

controlling adjustment also controls the FWE. Another definition used is the positive false discovery rate:

pFDR D E
�
V

R
j R > 0

�
The p-value adjustment methods discussed in the following sections attempt to correct the raw p-values while
controlling either the FWE or the FDR. Note that the methods might impose some restrictions in order to
achieve this; restrictions are discussed along with the methods in the following sections. Discussions and
comparisons of some of these methods are given in Dmitrienko et al. (2005), Dudoit, Shaffer, and Boldrick
(2003), Westfall et al. (1999), and Brown and Russell (1997).

Familywise Error Rate Controlling Adjustments

PROC MULTTEST provides several p-value adjustments to control the familywise error rate. Single-step
adjustment methods are computed without reference to the other hypothesis tests under consideration. The
available single-step methods are the Bonferroni and Šidák adjustments, which are simple functions of
the raw p-values that try to distribute the significance level ˛ across all the tests, and the bootstrap and
permutation resampling adjustments, which require the raw data. The Bonferroni and Šidák methods are
calculated from the permutation distributions when exact permutation tests are used with the CA or Peto test.

Stepwise tests, or sequentially rejective tests, order the hypotheses in step-up (least significant to most
significant) or step-down fashion, then sequentially determine acceptance or rejection of the nulls. These
tests are more powerful than the single-step tests, and they do not always require you to perform every
test. However, PROC MULTTEST still adjusts every p-value. PROC MULTTEST provides the following
stepwise p-value adjustments: step-down Bonferroni (Holm), step-down Šidák, step-down bootstrap and
permutation resampling, Hochberg’s (1988) step-up, Hommel’s (1988), Fisher’s combination method, and
the Stouffer-Liptak combination method. Adaptive versions of Holm’s step-down Bonferroni and Hochberg’s
step-up Bonferroni methods, which require an estimate of the number of true null hypotheses, are also
available.

Liu (1996) shows that all single-step and stepwise tests based on marginal p-values can be used to construct
a closed test (Marcus, Peritz, and Gabriel 1976; Dmitrienko et al. 2005). Closed testing methods not only
control the familywise error rate at size ˛, but are also more powerful than the tests on which they are
based. Westfall and Wolfinger (2000) note that several of the methods available in PROC MULTTEST are
closed—namely, the step-down methods, Hommel’s method, and Fisher’s combination; see that reference for
conditions and exceptions.

All methods except the resampling methods are calculated by simple functions of the raw p-values or marginal
permutation distributions; the permutation and bootstrap adjustments require the raw data. Because the
resampling techniques incorporate distributional and correlational structures, they tend to be less conservative
than the other methods.
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When a resampling (bootstrap or permutation) method is used with only one test, the adjusted p-value is the
bootstrap or permutation p-value for that test, with no adjustment for multiplicity, as described by Westfall
and Soper (1994).

Bonferroni
The Bonferroni p-value for test i; i D 1; : : : ; m is simply Qpi D mpi . If the adjusted p-value exceeds 1, it is
set to 1. The Bonferroni test is conservative but always controls the familywise error rate.

If the unadjusted p-values are computed by using exact permutation distributions, then the Bonferroni
adjustment for pi is Qpi D p�1 C � � � C p

�
m, where p�j is the largest p-value from the permutation distribution

of test j satisfying p�j � pi , or 0 if all permutational p-values of test j are greater than pi . These adjustments
are much less conservative than the ordinary Bonferroni adjustments because they incorporate the discrete
distributional characteristics. However, they remain conservative in that they do not incorporate correlation
structures between multiple contrasts and multiple variables (Westfall and Wolfinger 1997).

Šidák
A technique slightly less conservative than Bonferroni is the Šidák p-value (Šidák 1967), which is Qpi D
1 � .1 � pi /

m. It is exact when all of the p-values are uniformly distributed and independent, and it
is conservative when the test statistics satisfy the positive orthant dependence condition (Holland and
Copenhaver 1987).

If the unadjusted p-values are computed by using exact permutation distributions, then the Šidák adjustment
for pi is Qpi D 1 � .1 � p�1 / � � � .1 � p

�
m/, where the p�j are as described previously. These adjustments are

less conservative than the corresponding Bonferroni adjustments, but they do not incorporate correlation
structures between multiple contrasts and multiple variables (Westfall and Wolfinger 1997).

Bootstrap
The bootstrap method creates pseudo-data sets by sampling observations with replacement from each within-
stratum pool of observations. An entire data set is thus created, and p-values for all tests are computed
on this pseudo-data set. A counter records whether the minimum p-value from the pseudo-data set is less
than or equal to the actual p-value for each base test. (If there are m tests, then there are m such counters.)
This process is repeated a large number of times, and the proportion of resampled data sets where the
minimum pseudo-p-value is less than or equal to an actual p-value is the adjusted p-value reported by PROC
MULTTEST. The algorithms are described in Westfall and Young (1993).

In the case of continuous data, the pooling of the groups is not likely to re-create the shape of the null
hypothesis distribution, since the pooled data are likely to be multimodal. For this reason, PROC MULTTEST
automatically mean-centers all continuous variables prior to resampling. Such mean-centering is akin
to resampling residuals in a regression analysis, as discussed by Freedman (1981). You can specify the
NOCENTER option if you do not want to center the data.

The bootstrap method implicitly incorporates all sources of correlation, from both the multiple contrasts and
the multivariate structure. The adjusted p-values incorporate all correlations and distributional characteristics.
This method always provides weak control of the familywise error rate, and it provides strong control when
the subset pivotality condition holds; that is, for any subset of the null hypotheses, the joint distribution of the
p-values for the subset is identical to that under the complete null (Westfall and Young 1993).
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Permutation
The permutation-style-adjusted p-values are computed in identical fashion as the bootstrap-adjusted p-values,
with the exception that the within-stratum resampling is performed without replacement instead of with
replacement. This produces a rerandomization analysis such as in Brown and Fears (1981) and Heyse and
Rom (1988). In the spirit of rerandomization analyses, the continuous variables are not centered prior to
resampling. This default can be overridden by using the CENTER option.

The permutation method implicitly incorporates all sources of correlation, from both the multiple contrasts and
the multivariate structure. The adjusted p-values incorporate all correlations and distributional characteristics.
This method always provides weak control of the familywise error rate, and it provides strong control of the
familywise error rate under the subset pivotality condition, as described in the preceding section.

Step-Down Methods
Step-down testing is available for the Bonferroni, Šidák, bootstrap, and permutation methods. The benefit
of using step-down methods is that the tests are made more powerful (smaller adjusted p-values) while, in
most cases, maintaining strong control of the familywise error rate. The step-down method was pioneered by
Holm (1979) and further developed by Shaffer (1986), Holland and Copenhaver (1987), and Hochberg and
Tamhane (1987).

The Bonferroni step-down (Holm) p-values Qp.1/; : : : ; Qp.m/ are obtained from

Qp.i/ D

(
mp.1/ for i D 1
max

�
Qp.i�1/; .m � i C 1/p.i/

�
for i D 2; : : : ; m

As always, if any adjusted p-value exceeds 1, it is set to 1.

The Šidák step-down p-values are determined similarly:

Qp.i/ D

(
1 � .1 � p.1//

m for i D 1
max

�
Qp.i�1/; 1 � .1 � p.i//

m�iC1
�

for i D 2; : : : ; m

Step-down Bonferroni adjustments that use exact tests are defined as

Qp.i/ D

8<:p
�
.1/
C � � � C p�

.m/
for i D 1

max
�
Qp.i�1/; p

�
.i/
C � � � C p�

.m/
;
�

for i D 2; : : : ; m

where the p�j are defined as before. Note that p�j is taken from the permutation distribution corresponding to
the jth-smallest unadjusted p-value. Also, any Qpj greater than 1.0 is reduced to 1.0.

Step-down Šidák adjustments for exact tests are defined analogously by substituting 1�.1�p�
.j /
/ � � � .1�p�

.m/
/

for p�
.j /
C � � � C p�

.m/
.

The resampling-style step-down methods are analogous to the preceding step-down methods; the most
extreme p-value is adjusted according to all m tests, the second-most extreme p-value is adjusted according
to (m – 1) tests, and so on. The difference is that all correlational and distributional characteristics are
incorporated when you use resampling methods. More specifically, assuming the same ordering of p-values
as discussed previously, the resampling-style step-down-adjusted p-value for test i is the probability that the
minimum pseudo-p-value of tests i; : : : ; m is less than or equal to pi .

This probability is evaluated by using Monte Carlo simulation, as are the previously described resampling-
style-adjusted p-values. In fact, the computations for step-down-adjusted p-values are essentially no more



p-Value Adjustments F 5521

time-consuming than the computations for the non-step-down-adjusted p-values. After Monte Carlo, the
step-down-adjusted p-values are corrected to ensure monotonicity; this correction leaves the first adjusted
p-values alone, then corrects the remaining ones as needed. The step-down method approximately controls
the familywise error rate, and it is described in more detail by Westfall and Young (1993), Westfall et al.
(1999), and Westfall and Wolfinger (2000).

Hommel
Hommel’s (1988) method is a closed testing procedure based on Simes’ test (Simes 1986). The Simes
p-value for a joint test of any set of S hypotheses with p-values p.1/ � p.2/ � : : : � p.S/ is
min..S=1/p.1/; .S=2/p.2/; : : : ; .S=S/p.S//. The Hommel-adjusted p-value for test j is the maximum of all
such Simes p-values, taken over all joint tests that include j as one of their components.

Hochberg-adjusted p-values are always as large or larger than Hommel-adjusted p-values. Sarkar and Chang
(1997) shows that Simes’ method is valid under independent or positively dependent p-values, so Hommel’s
and Hochberg’s methods are also valid in such cases by the closure principle.

Hochberg
Assuming p-values are independent and uniformly distributed under their respective null hypotheses,
Hochberg (1988) demonstrates that Holm’s step-down adjustments control the familywise error rate even
when calculated in step-up fashion. Since the adjusted p-values are uniformly smaller for Hochberg’s method
than for Holm’s method, the Hochberg method is more powerful. However, this improved power comes at the
cost of having to make the assumption of independence. Hochberg’s method can be derived from Hommel’s
(Liu 1996), and is thus also derived from Simes’ test (Simes 1986).

Hochberg-adjusted p-values are always as large or larger than Hommel-adjusted p-values. Sarkar and Chang
(1997) showed that Simes’ method is valid under independent or positively dependent p-values, so Hommel’s
and Hochberg’s methods are also valid in such cases by the closure principle.

The Hochberg-adjusted p-values are defined in reverse order of the step-down Bonferroni:

Qp.i/ D

(
p.m/ for i D m
min

�
Qp.iC1/; .m � i C 1/p.i/

�
for i D m � 1; : : : ; 1

Fisher Combination
The FISHER_C option requests adjusted p-values by using closed tests, based on the idea of Fisher’s
combination test. The Fisher combination test for a joint test of any set of S hypotheses with p-values uses
the chi-square statistic �2 D �2

P
log.pi /, with 2S degrees of freedom. The FISHER_C adjusted p-value

for test j is the maximum of all p-values for the combination tests, taken over all joint tests that include j as
one of their components. Independence of p-values is required for the validity of this method.

Stouffer-Liptak Combination
The STOUFFER option requests adjusted p-values by using closed tests, based on the Stouffer-Liptak
combination test. The Stouffer combination joint test of any set of S one-sided hypotheses with p-values,
p1; : : : ; pS , yields the p-value, 1�ˆ

�
1p
S

P
i ˆ
�1.1 � pi /

�
. The STOUFFER adjusted p-value for test j is

the maximum of all p-values for the combination tests, taken over all joint tests that include j as one of their
components.
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Independence of the one-sided p-values is required for the validity of this method. Westfall (2005) shows that
the Stouffer-Liptak adjustment might have more power than the Fisher combination and Simes’ adjustments
when the test results reinforce each other.

Adaptive Adjustments
Adaptive adjustments modify the FWE- and FDR-controlling procedures by taking an estimate of the number
m0 or proportion �0 of true null hypotheses into account. The adjusted p-values for Holm’s and Hochberg’s
methods involve the number of unadjusted p-values larger than .i/, m � i C 1. So the minimal significance
level at which the ith ordered p-value is rejected implies that the number of true null hypotheses is m� i C 1.
However, if you knowm0, then you can replacem� i C 1 with min.m0; m� i C 1/, thereby obtaining more
power while maintaining the original ˛-level significance.

Since m0 is unknown, there are several methods used to estimate the value—see the NTRUENULL= option
for more information. The estimation method described by Hochberg and Benjamini (1990) considers the
graph of 1 � p.i/ versus i, where the p.i/ are the ordered p-values of your tests. See Output 67.6.4 for an
example. If all null hypotheses are actually true (m0 D m), then the p-values behave like a sample from a
uniform distribution and this graph should be a straight line through the origin. However, if points in the
upper-right corner of this plot do not follow the initial trend, then some of these null hypotheses are probably
false and 0 < m0 < m.

The ADAPTIVEHOLM option uses this estimate of m0 to adjust the step-up Bonferroni method while the
ADAPTIVEHOCHBERG option adjusts the step-down Bonferroni method. Both of these methods are due
to Hochberg and Benjamini (1990). When m0 is known, these procedures control the familywise error
rate in the same manner as their nonadaptive versions but with more power; however, since m0 must be
estimated, the FWE control is only approximate. The ADAPTIVEFDR and PFDR options also use Om0, and
are described in the following section.

The adjusted p-values for the ADAPTIVEHOLM method are computed by

Qp.i/ D

(
min.m; Om0/p.1/ for i D 1
max

�
Qp.i�1/;min.m � i C 1; Om0/p.i/

�
for i D 2; : : : ; m

The adjusted p-values for the ADAPTIVEHOCHBERG method are computed by

Qp.i/ D

(
min.1; Om0/p.m/ for i D m
min

�
Qp.iC1/;min.m � i C 1; Om0/p.i/

�
for i D m � 1; : : : ; 1

False Discovery Rate Controlling Adjustments

Methods that control the false discovery rate (FDR) were described by Benjamini and Hochberg (1995). These
adjustments do not necessarily control the familywise error rate (FWE). However, FDR-controlling methods
are more powerful and more liberal, and hence reject more null hypotheses, than adjustments protecting the
FWE. FDR-controlling methods are often used when you have a large number of null hypotheses. To control
the FDR, Benjamini and Hochberg’s (1995) linear step-up method is provided, as well as an adaptive version,
a dependence version, and bootstrap and permutation resampling versions. Storey’s (2002) pFDR methods
are also provided.

The FDR option requests p-values that control the “false discovery rate” described by Benjamini and
Hochberg (1995). These linear step-up adjustments are potentially much less conservative than the Hochberg
adjustments.
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The FDR-adjusted p-values are defined in step-up fashion, like the Hochberg adjustments, but with less
conservative multipliers:

Qp.i/ D

(
p.m/ for i D m
min

�
Qp.iC1/;

m
i
p.i/

�
for i D m � 1; : : : ; 1

The FDR method is guaranteed to control the false discovery rate at level � m0
m
˛ � ˛ when you have

independent p-values that are uniformly distributed under their respective null hypotheses. Benjamini
and Yekutieli (2001) show that the false discovery rate is also controlled at level � m0

m
˛ when the positive

regression dependent condition holds on the set of the true null hypotheses, and they provide several examples
where this condition is true.

NOTE: The positive regression dependent condition on the set of the true null hypotheses holds if the
joint distribution of the test statistics X D .X1; : : : ; Xm/ for the null hypotheses H01; : : : ;H0m satisfies:
Pr.X 2 AjXi D x/ is nondecreasing in x for each Xi where H0i is true, for any increasing set A. The set A
is increasing if x 2 A and y � x implies y 2 A.

Dependent False Discovery Rate
The DEPENDENTFDR option requests a false discovery rate controlling method that is always valid for
p-values under any kind of dependency (Benjamini and Yekutieli 2001), but is thus quite conservative. Let
 D

Pm
iD1

1
i
. The DEPENDENTFDR procedure always controls the false discovery rate at level � m0

m
˛ .

The adjusted p-values are computed as

Qp.i/ D

(
p.m/ for i D m
min

�
Qp.iC1/; 

m
i
p.i/

�
for i D m � 1; : : : ; 1

False Discovery Rate Resampling Adjustments
Bootstrap and permutation resampling methods to control the false discovery rate are available with the
FDRBOOT and FDRPERM options (Yekutieli and Benjamini 1999). These methods approximately control
the false discovery rate when the subset pivotality condition holds, as discussed in the section “Bootstrap” on
page 5519, and when the p-values corresponding to the true null hypotheses are independent of those for the
false null hypotheses.

The resampling methodology for the BOOTSTRAP and PERMUTATION methods is used to create B
resamples. For the bth resample, let Rb.p/ denote the number of p-values that are less than or equal to the
observed p-value p. Let rˇ .p/ be the 100.1 � ˇ/ quantile of fR1.p/ : : : Rb.p/ : : : RB.p/g, and let r.p/ be
the number of observed p-values less than or equal to p. Compute one of the following estimators:

local estimator Q1.p/ D

8̂̂<̂
:̂
1

B

BX
bD1

Rb.p/

Rb.p/C r.p/ � pm
if r.p/ � rˇ .p/ � pm

#fRb.p/ � 1g=B otherwise

upper limit estimator Qˇ .p/ D

8̂̂<̂
:̂

sup
x2Œ0;p�

 
1

B

BX
bD1

Rb.x/

Rb.x/C r.x/ � rˇ .x/

!
if r.x/ � rˇ .x/ � 0

#fRb.p/ � 1g=B otherwise
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where m is the number of tests and B is the number of resamples. Then for Q D Q1 or Qˇ , the adjusted
p-values are computed as

Qp.i/ D

(
Q.p.m// for i D m
min

�
Qp.iC1/;Q.p.i//

�
for i D m � 1; : : : ; 1

Adaptive False Discovery Rate
Since the FDR method controls the false discovery rate at� m0

m
˛ � ˛, knowledge ofm0 allows improvement

of the power of the adjustment while still maintaining control of the false discovery rate. The ADAPTIVEFDR
option requests adaptive adjusted p-values for approximate control of the false discovery rate, as discussed in
Benjamini and Hochberg (2000). See the section “Adaptive Adjustments” on page 5522 for more details.
These adaptive adjustments are also defined in step-up fashion but use an estimate Om0 of the number of true
null hypotheses:

Qp.i/ D

(
Om0
m
p.m/ for i D m

min
�
Qp.iC1/;

Om0
i
p.i/

�
for i D m � 1; : : : ; 1

Since Om0 � m, the larger p-values are adjusted down. This means that, as defined, controlling the false
discovery rate enables you to reject these tests at a level less than the observed p-value. However, by default,
this reduction is prevented with an additional restriction: Qp.i/ D maxf Qp.i/; p.i/g.

To use this adjustment, Benjamini and Hochberg (2000) suggest first specifying the FDR option—if at least
one test is rejected at your level, then apply the ADAPTIVEFDR adjustment. Alternatively, Benjamini,
Krieger, and Yekutieli (2006) apply the FDR adjustment at level ˛

˛C1
, then specify the resulting number

of true hypotheses with the NTRUENULL= option and apply the ADAPTIVEFDR adjustment; they show
that this two-stage linear step-up procedure controls the false discovery rate at level ˛ for independent test
statistics.

Positive False Discovery Rate
The PFDR option computes the “q-values” Oq�.pi / (Storey 2002; Storey, Taylor, and Siegmund 2004), which
are adaptive adjusted p-values for strong control of the false discovery rate when the p-values corresponding
to the true null hypotheses are independent and uniformly distributed. There are four versions of the PFDR
available. LetN.�/ be the number of observed p-values that are less than or equal to �; let m be the number of
tests; let f = 1 if the FINITE option is specified, and otherwise set f = 0; and denote the estimated proportion
of true null hypotheses by

O�0.�/ D
m �N.�/C f

.1 � �/m

The default estimate of FDR is

bFDR�.p/ D
O�0.�/p

max.N.p/; 1/=m

If you set � D 0, then this is identical to the FDR adjustment.

The positive FDR is estimated by

1pFDR�.p/ D
bFDR�.p/

1 � .1 � p/m
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The finite-sample versions of these two estimators for independent null p-values are given by

bFDR��.p/ D

8<:
O��0 .�/p

max.N.p/; 1/=m
if p � �

1 if p > �

1pFDR��.p/ D
bFDR�

�
.p/

1 � .1 � p/m

Finally, the adjusted p-values are computed as

Qpi D Oq�.pi / D inf
p�pi

FDR�.p/ i D 1; : : : ; m

This method can produce adjusted p-values that are smaller than the raw p-values. This means that, as defined,
controlling the false discovery rate enables you to reject these tests at a level less than the observed p-value.
However, by default, this reduction is prevented with an additional restriction: Qpi D maxf Qpi ; pig.

Missing Values
If a CLASS or STRATA variable has a missing value, then PROC MULTTEST removes that observation
from the analysis.

When there are missing values for test variables, the within-group-and-stratum sample sizes can differ from
variable to variable. In most cases this is not a problem; however, it is possible for all data to be missing for
a particular group within a particular stratum. For continuous variables and Freeman-Tukey tests, PROC
MULTTEST re-centers the contrast trend coefficients within strata where all data for a particular group are
missing. Re-centering the MEAN tests could redefine your t tests in an undesirable fashion; for example,
if you specify coefficients to contrast the first and third groups (contrast -1 0 1) but the third group is
missing, then the re-centered coefficients become –0.5 and 0.5, thus contrasting the first and second groups.
If this is the case, you can run your t tests in separate PROC MULTTEST invocations, then combine the
data and adjust the p-values by using the INPVALUES= option. However, you might find this re-centering
acceptable for the Freeman-Tukey trend tests, since the contrast still tests for an increasing trend. The
Cochran-Armitage and Peto tests are unaffected by this situation.

PROC MULTTEST uses missing values for resampling if they exist in the original data set. If all variables
have missing values for any observation, then PROC MULTTEST removes the observation prior to resampling.
Otherwise, PROC MULTTEST treats all missing values as ordinary observations in the resampling. This
means that different resampled data sets can have different group sizes. In some cases it means that
a resampled data set can have all missing values for a particular variable in a particular group/stratum
combination, even when values exist for that combination in the original data. For this reason, PROC
MULTTEST recomputes all quantities within each pseudo-data set, including such items as centered scoring
coefficients and degrees of freedom for p-values.

While PROC MULTTEST does provide analyses in missing value cases, you should not feel that it completely
solves the missing-value problem. If you are concerned about the adverse effects of missing data on a
particular analysis, you should consider using imputation and sensitivity analyses to assess the effects of the
missing data.
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Computational Resources
PROC MULTTEST keeps all of the data in memory to expedite resampling. A large portion of the memory
requirement is thus 8*NOBS*NVAR bytes, where NOBS is the number of observations in the data set, and
NVAR is the number of variables analyzed, including CLASS, FREQ, and STRATA variables.

If you specify PERMUTATION=number (for exact permutation distributions), then PROC MULTTEST re-
quires additional memory. This requirement is approximately 4*NTEST*NSTRATA*CMAX*number*(number
+ 1) bytes, where NTEST is the number of contrasts, NSTRATA is the number of STRATA levels, and
CMAX is the maximum contrast coefficient.

If you specify the FDRBOOT or FDRPERM option, then saving all the resamples in memory requires
8*NSAMPLE*NOBS bytes, where NSAMPLE is the number of resamples used.

The execution time is linear in the number of resamples; that is, 10,000 resamples will take 10 times longer
than 1,000 resamples. The execution time is also linear in the sample size; that is, 100 resamples of size N
will take 10 times longer than 100 resamples of size 10N.

Output Data Sets

OUT= Data Set

The OUT= data set contains contrast names (_test_), variable names (_var_), the contrast label (_contrast_),
raw p-values (raw_p or the value specified in the INPVALUES= option), and all requested adjusted p-values
(bon_p, sid_p, boot_p, perm_p, stpbon_p, stpsid_p, stpbootp, stppermp, hom_p, hoc_p, fic_p, stouffer_p,
aholm_p, ahoc_p, fdr_p, dfdr_p, fdrbootp, ufdbootp, fdrpermp, ufdpermp, afdr_p, or pfdr_p).

If a resampling-based adjusted p-value is requested, then the simulation standard error is included as either
sim_se, stpsimse, fdrsimse, or ufdsimse, depending on whether single-step, step-down, or FDR adjustments
are requested. The simulation standard errors are used to bound the true resampling-based adjusted p-value.
For example, if the resampling-based estimate is 0.0312 and the simulation standard error is 0.00123, then a
95% confidence interval for the true adjusted p-value is 0:0312˙ 1:96.0:00123/, or 0.0288 to 0.0336.

Intermediate statistics used to calculate the p-values are also written to the OUT= data set. The statistics are
separated by the _strat_ level. When _strat_ is reported as missing, the statistics refer to the pooled analysis
over all _strat_ levels. The p-values are provided only for the pooled analyses and are therefore reported as
missing for the strata-specific statistics.

For the Peto test, an additional variable, _tstrat_, is included to indicate whether the stratum is an incidental
occurrence stratum (_tstrat_=0) or a fatal occurrence stratum (_tstrat_=1).

The statistic _value_ is the per-strata contribution to the numerator of the overall test statistic. In the case
of the MEAN test, this is the contrast function of the sample means multiplied by the total number of
observations within the stratum. For the FT test, _value_ is the contrast function of the double-arcsine
transformed proportions, again multiplied by the total number of observations within the stratum. For the CA
and Peto tests, _value_ is the observed value of the trend statistic within that stratum.

When either PETO or CA is requested, the variable _exp_ is included; this variable contains the expected
value of the trend statistic for the given stratum.

The statistic _se_ is the square root of the variance of the per-strata _value_ statistic for any of the tests.
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For MEAN tests, the variable _nval_ is included. When reported with an individual stratum level (that is,
when the _strat_ value is nonmissing), the value _nval_ refers to the within-stratum sample size. For the
combined analysis (that is, the value of the _strat_ is missing), the value _nval_ contains degrees of freedom
of the t distribution used to compute the unadjusted p-value.

When the FISHER test is requested, the OUT= data set contains the variables _xval_, _mval_, _yval_, and
_nval_, which define observations and sample sizes in the two groups defined by the CONTRAST statement.

For example, the OUT= data set from the drug example in the section “Getting Started: MULTTEST
Procedure” on page 5489 is displayed in Figure 67.5.

Figure 67.5 Output Data for the MULTTEST Procedure

Obs _test_ _var_ _contrast_ _value_ _exp_ _se_ raw_p boot_p sim_se

1 CA SideEff1 Trend 8 5 1.54303 0.05187 0.33880 .003346749

2 CA SideEff2 Trend 7 5 1.54303 0.19492 0.84030 .002590327

3 CA SideEff3 Trend 10 7 1.63299 0.06619 0.51895 .003532994

4 CA SideEff4 Trend 10 6 1.60357 0.01262 0.08840 .002007305

5 CA SideEff5 Trend 7 4 1.44749 0.03821 0.24080 .003023370

6 CA SideEff6 Trend 9 6 1.60357 0.06137 0.43825 .003508468

7 CA SideEff7 Trend 9 5 1.54303 0.00953 0.05135 .001560660

8 CA SideEff8 Trend 8 5 1.54303 0.05187 0.33880 .003346749

9 CA SideEff9 Trend 7 5 1.54303 0.19492 0.84030 .002590327

10 CA SideEff10 Trend 8 6 1.60357 0.21232 0.90300 .002092737

OUTPERM= Data Set

The OUTPERM= data set contains contrast names (_contrast_), variable names (_var_), and the associated
permutation distributions (_value_ and upper_p). PROC MULTTEST computes the permutation distributions
when you use the PERMUTATION= option with the CA or Peto test. The _value_ variable represents the
support of the distributions, and upper_p represents their cumulative upper-tail probabilities. The size of this
data set depends on the number of variables and the support of their permutation distributions.

For information about how this distribution is computed, see the section “Exact Permutation Test” on
page 5511. For an illustration, see Example 67.1.

OUTSAMP= Data Set

The OUTSAMP= data set contains the data sets used in the resampling analysis, if such an analysis is
requested. The variable _sample_ indicates the number of the resampled data set. This variable ranges from
1 to the value of the NSAMPLE= option. For each value of the _sample_ variable, an entire resampled
data set is included, with _stratum_, _class_, and all other variables in the original data set. The values of
the original variables are mean-centered for the mean test, if requested. The variable _obs_ indicates the
observation’s position in the original data set.

Each new data set is randomly drawn from the original data set, either with (bootstrap) or without (permuta-
tion) replacement. The size of this data set is, thus, the number of observations in the original data set times
the number of samples.
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Displayed Output
The output produced by PROC MULTTEST is divided into several tables. If the DATA= data set is specified,
then the following tables are displayed:

• The “Model Information” table provides a list of the options and settings used for that particular
invocation of the procedure. This table is not displayed if the INPVALUES= data set is specified.
Included in this list are the following items:

– statistical tests

– support of the exact permutation distribution for the CA and Peto tests

– continuity corrections used for the CA test

– test tails

– strata adjustment

– p-value adjustments and specified suboptions

– centering of continuous variables

– number of samples and seed

• The “Contrast Coefficients” table lists the coefficients used in constructing the statistical tests. These
coefficients are either specified in CONTRAST statements or generated by default. The coefficients
apply to the levels of the CLASS statement variable. If a MEAN or FT test is specified in the TEST
statement, the centered coefficients are displayed. Patterns of missing values in your data set might
affect the coefficients used in your analysis; the displayed contrasts take missing value patterns into
account. See the section “Missing Values” on page 5525 for more information.

• The “Variable Tabulations” tables provide summary statistics for each variable listed in the TEST
statement. Included for discrete variables are the count, sample size, and percentage of occurrences.
For continuous variables, the mean, sample standard deviation, and sample size are displayed. All of
the previously mentioned statistics are computed for distinct combinations of the CLASS and STRATA
statement variables.

If the INPVALUES= data set is specified, then the following tables are displayed:

• The “P-Value Adjustment Information” table provides a list of the specified p-value adjustments. If an
adaptive adjustment is specified (see section “Adaptive Adjustments” on page 5522), then the following
settings are also displayed when appropriate:

– whether the finite-sample version of the PFDR is used (FINITE)

– the number of tuning parameters to check (NLAMBDA=), the maximum tuning parameter
(MAXLAMBDA=), or the specified tuning parameter (LAMBDA=)
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– the degrees of freedom of the spline (DF=) and the smoothing parameter

– the number of bootstrap resamples (NBOOT=) and the seed (SEED=)

• If the bootstrap or spline method for estimating the number of true null hypotheses m0 is used and
the PLOTS= option is specified, the “Lambda Values” table displays the m0 estimates as a function
of the tuning parameter �. If the bootstrap method is used, the table also displays the mean-squared
errors, the minimum of which is used to select a specific �. This table contains the values used in the
“Lambda Functions” plot.

• The “Estimated Number of True Null Hypotheses” table displays the p-value adjustment, the method
used to estimate the number of true nulls, and an estimate of the number and proportion of true null
hypotheses in the data set.

The following table is displayed unless the NOPVALUE option is specified:

• The “p-Values” table is a collection of the raw and adjusted p-values from the run of PROC MULTTEST.
The p-values are identified by variable and test.

ODS Table Names
PROC MULTTEST assigns a name to each table it creates, and you must use this name to reference the table
when using the Output Delivery System (ODS). These names are listed in the following table. For more
information about ODS, see Chapter 20, “Using the Output Delivery System.”

Table 67.3 ODS Tables Produced by PROC MULTTEST

ODS Table Name Description Statement or Option

Continuous Continuous variable tabulations TEST with MEAN
Contrasts Contrast coefficients default
Discrete Discrete variable tabulations TEST with CA, FT, PETO, or FISHER
LambdaValues True null estimates AHOLM, AHOC, AFDR, or PFDR
ModelInfo Model information default
NumTrueNull Estimates of number of true nulls AHOLM, AHOC, AFDR, or PFDR
pValues p-values from the tests default
pValueInfo p-value adjustment information INPVALUES=
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ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

You must also specify the options in the PROC MULTTEST statement that are indicated in Table 67.4.

PROC MULTTEST assigns a name to each graph it creates using ODS. You can use these names to reference
the graphs when using ODS. The names are listed in Table 67.4.

Table 67.4 Graphs Produced by PROC MULTTEST

ODS Graph Name Plot Description Option

AdjPlots Panel of adjusted p-value plots PLOTS=ADJUSTED
AdjByRawRank Adjusted by rank of raw p-values PLOTS=ADJUSTED(UNPACK)
AdjbyRawP Adjusted by raw p-values PLOTS=ADJUSTED(UNPACK)
AdjBySignificant Proportion significant by adjusted PLOTS=ADJUSTED(UNPACK)
FalsePosBySignificant Expected number of false positives by

proportion significant
PLOTS=ADJUSTED(UNPACK)

PByTest p-values by test PLOTS=PBYTEST
LambdaPlot MSE or NTRUENULL by lambda PLOTS=LAMBDA and

(NTRUENULL=BOOTSTRAP
or NTRUENULL=SPLINE
or PFDR)

ManhattanPlots –log10(adjusted p-values) by test PLOTS=MANHATTAN
ManhattanPanel Panel of Manhattan plots PLOTS=MANHATTAN
RawUniformPlot Raw p-values by rank and histogram PLOTS=RAWPROB or

AHOLM or AHOC or AFDR or PFDR
RawUniformPlot Raw p-values by rank PLOTS=RAWPROB(UNPACK) and

AHOLM or AHOC or AFDR or PFDR
RawUniformHist Histogram of raw p-values PLOTS=RAWPROB(UNPACK) and

AHOLM or AHOC or AFDR or PFDR
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Examples: MULTTEST Procedure

Example 67.1: Cochran-Armitage Test with Permutation Resampling
This example, from Keith Soper at Merck, illustrates the exact permutation Cochran-Armitage test carried
out on permutation resamples. In the following data set, each observation represents an animal. The binary
variables S1 and S2 indicate two tumor types, with 0s indicating no tumor (failure) and 1 indicating a tumor
(success); note that they have perfect negative association. The grouping variable is Dose.

data a;
input S1 S2 Dose @@;
datalines;

0 1 1 1 0 1 0 1 1
0 1 1 0 1 1 1 0 1
1 0 2 1 0 2 0 1 2
1 0 2 0 1 2 1 0 2
1 0 3 1 0 3 1 0 3
0 1 3 0 1 3 1 0 3
;

proc multtest data=a permutation nsample=10000 seed=36607 outperm=pmt;
test ca(S1 S2 / permutation=10 uppertailed);
class Dose;
contrast 'CA Linear Trend' 0 1 2;

run;
proc print data=pmt;
run;

The PROC MULTTEST statement requests 10,000 permutation resamples. The OUTPERM= option creates
an output SAS data set pmt used for the exact permutation distribution computed for the CA test.

The TEST statement specifies an upper-tailed Cochran-Armitage linear trend test for S1 and S2. The
cutoff for exact permutation calculations is 10, as specified with the PERMUTATION= option in the TEST
statement. Since S1 and S2 have 10 and 8 successes, respectively, PROC MULTTEST uses exact permutation
distributions to compute the p-values for both variables.

The groups for the CA test are the levels of Dose from the CLASS statement. The trend coefficients applied
to these groups are 0, 1, and 2, respectively, as specified in the CONTRAST statement.

Finally, the PROC PRINT statement displays the SAS data set pmt, which contains the permutation distribu-
tions.

The results from this analysis are displayed in Output 67.1.1 through Output 67.1.5. You should check the
“Model Information” table to verify that the analysis specifications are correct.
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Output 67.1.1 Cochran-Armitage Test with Permutation Resampling

The Multtest ProcedureThe Multtest Procedure

Model Information

Test for discrete variables Cochran-Armitage

Exact permutation distribution used Everywhere

Tails for discrete tests Upper-tailed

Strata weights None

P-value adjustment Permutation

Number of resamples 10000

Seed 36607

The label and coefficients from the CONTRAST statement are shown in Output 67.1.2.

Output 67.1.2 Contrast Coefficients

Contrast Coefficients

Dose

Contrast 1 2 3

CA Linear Trend 0 1 2

Output 67.1.3 displays summary statistics for the two test variables, S1 and S2. The Count column lists the
number of successes for each level of the CLASS variable, Dose. The NumObs column lists the sample size,
and the Percent column lists the percentage of successes in the sample.

Output 67.1.3 Summary Statistics

Discrete Variable Tabulations

Variable Dose Count NumObs Percent

S1 1 2 6 33.33

S1 2 4 6 66.67

S1 3 4 6 66.67

S2 1 4 6 66.67

S2 2 2 6 33.33

S2 3 2 6 33.33

The Raw column in Output 67.1.4 contains the p-values from the CA test, and the Permutation column
contains the permutation-adjusted p-values.

Output 67.1.4 Resulting p-Values

p-Values

Variable Contrast Raw Permutation

S1 CA Linear Trend 0.1993 0.4009

S2 CA Linear Trend 0.9220 1.0000

This table shows that, for S1, the adjusted p-value is approximately twice the raw p-value. In fact, resamples
with small (large) p-values for S1 have large (small) p-values for S2 due to the perfect negative association
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of the variables, and hence the permutation-adjusted p-value for S1 should be 2 � 0:1993 D 0:3986; the
difference is due to resampling error. For the same reason, since the raw p-value for S2 is 0.9220, the adjusted
p-value equals 1. The permutation p-values for S1 and S2 also happen to be the Bonferroni-adjusted p-values
for this example.

The OUTPERM= data set is displayed in Output 67.1.5, which contains the exact permutation distributions
for S1 and S2 in terms of cumulative probabilities.

Output 67.1.5 Exact Permutation Distribution

Obs _contrast_ _var_ _value_ upper_p

1 CA Linear Trend S1 0 1.00000

2 CA Linear Trend S1 1 1.00000

3 CA Linear Trend S1 2 1.00000

4 CA Linear Trend S1 3 1.00000

5 CA Linear Trend S1 4 1.00000

6 CA Linear Trend S1 5 0.99966

7 CA Linear Trend S1 6 0.99609

8 CA Linear Trend S1 7 0.97827

9 CA Linear Trend S1 8 0.92205

10 CA Linear Trend S1 9 0.80070

11 CA Linear Trend S1 10 0.61011

12 CA Linear Trend S1 11 0.38989

13 CA Linear Trend S1 12 0.19930

14 CA Linear Trend S1 13 0.07795

15 CA Linear Trend S1 14 0.02173

16 CA Linear Trend S1 15 0.00391

17 CA Linear Trend S1 16 0.00034

18 CA Linear Trend S1 17 0.00000

19 CA Linear Trend S1 18 0.00000

20 CA Linear Trend S1 19 0.00000

21 CA Linear Trend S1 20 0.00000

22 CA Linear Trend S2 0 1.00000

23 CA Linear Trend S2 1 1.00000

24 CA Linear Trend S2 2 1.00000

25 CA Linear Trend S2 3 0.99966

26 CA Linear Trend S2 4 0.99609

27 CA Linear Trend S2 5 0.97827

28 CA Linear Trend S2 6 0.92205

29 CA Linear Trend S2 7 0.80070

30 CA Linear Trend S2 8 0.61011

31 CA Linear Trend S2 9 0.38989

32 CA Linear Trend S2 10 0.19930

33 CA Linear Trend S2 11 0.07795

34 CA Linear Trend S2 12 0.02173

35 CA Linear Trend S2 13 0.00391

36 CA Linear Trend S2 14 0.00034

37 CA Linear Trend S2 15 0.00000

38 CA Linear Trend S2 16 0.00000
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Example 67.2: Freeman-Tukey and t Tests with Bootstrap Resampling
The data for this example are the same as for Example 67.1, except that a continuous variable T, which
indicates the time of death of the animal, has been added.

data a;
input S1 S2 T Dose @@;
datalines;

0 1 104 1 1 0 80 1 0 1 104 1
0 1 104 1 0 1 100 1 1 0 104 1
1 0 85 2 1 0 60 2 0 1 89 2
1 0 96 2 0 1 96 2 1 0 99 2
1 0 60 3 1 0 50 3 1 0 80 3
0 1 98 3 0 1 99 3 1 0 50 3
;

proc multtest data=a bootstrap nsample=10000 seed=37081 outsamp=res;
test ft(S1 S2 / lowertailed) mean(T / lowertailed);
class Dose;
contrast 'Linear Trend' 0 1 2;

run;

proc print data=res(obs=36);
run;

The BOOTSTRAP option in the PROC MULTTEST statement requests bootstrap resampling, and NSAM-
PLE=10000 requests 10,000 bootstrap samples. The SEED=37081 option provides a starting value for the
random number generator. The OUTSAMP=res option creates an output SAS data set res containing the
10,000 bootstrap samples.

The TEST statement specifies the Freeman-Tukey test for S1 and S2 and specifies the t test for T. Both
tests are lower-tailed. The grouping variable in the CLASS statement is Dose, and the coefficients across
the levels of Dose are 0, 1, and 2, as specified in the CONTRAST statement. The PROC PRINT statement
displays the first 36 observations of the res data set containing the bootstrap samples.

The results from this analysis are listed in Output 67.2.1 through Output 67.2.5.

The “Model Information” table in Output 67.2.1 corresponds to the specifications in the invocation of PROC
MULTTEST.
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Output 67.2.1 FT and t tests with Bootstrap Resampling

The Multtest ProcedureThe Multtest Procedure

Model Information

Test for discrete variables Freeman-Tukey

Test for continuous variables Mean t-test

Degrees of Freedom Method Pooled

Tails for discrete tests Lower-tailed

Tails for continuous tests Lower-tailed

Strata weights None

P-value adjustment Bootstrap

Center continuous variables Yes

Number of resamples 10000

Seed 37081

The “Contrast Coefficients” table in Output 67.2.2 shows the coefficients from the CONTRAST statement
after centering, and they model a linear trend.

Output 67.2.2 Contrast Coefficients

Contrast Coefficients

Dose

Contrast 1 2 3

Linear Trend Centered -1 0 1

The summary statistics are displayed in Output 67.2.3. The values for the discrete variables S1 and S2 are
the same as those from Example 67.1. The mean, standard deviation, and sample size for the continuous
variable T at each level of Dose are displayed in the “Continuous Variable Tabulations” table.

Output 67.2.3 Summary Statistics

Discrete Variable Tabulations

Variable Dose Count NumObs Percent

S1 1 2 6 33.33

S1 2 4 6 66.67

S1 3 4 6 66.67

S2 1 4 6 66.67

S2 2 2 6 33.33

S2 3 2 6 33.33

Continuous Variable Tabulations

Variable Dose NumObs Mean
Standard
Deviation

T 1 6 99.3333 9.6056

T 2 6 87.5000 14.4326

T 3 6 72.8333 22.7017

The p-values, displayed in Output 67.2.4, are from the Freeman-Tukey test for S1 and S2, and are from the t
test for T.
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Output 67.2.4 p-Values

p-Values

Variable Contrast Raw Bootstrap

S1 Linear Trend 0.8547 1.0000

S2 Linear Trend 0.1453 0.4605

T Linear Trend 0.0070 0.0281

The Raw column in Output 67.2.4 contains the results from the tests on the original data, while the Bootstrap
column contains the bootstrap resampled adjustment to raw_p. Note that the adjusted p-values are larger than
the raw p-values for all three variables. The adjusted p-values more accurately reflect the correlation of the
raw p-values, the small size of the data, and the multiple testing.

Output 67.2.5 displays the first 36 observations of the SAS data set resulting from the OUTSAMP=RES
option in the PROC MULTTEST statement. The entire data set has 180,000 observations, which is 10,000
times the number of observations in the data set.
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Output 67.2.5 Resampling Data Set

Obs _sample_ _class_ _obs_ S1 S2 T

1 1 1 17 0 1 26.1667

2 1 1 8 1 0 -27.5000

3 1 1 5 0 1 0.6667

4 1 1 9 0 1 1.5000

5 1 1 7 1 0 -2.5000

6 1 1 3 0 1 4.6667

7 1 2 12 1 0 11.5000

8 1 2 12 1 0 11.5000

9 1 2 14 1 0 -22.8333

10 1 2 17 0 1 26.1667

11 1 2 1 0 1 4.6667

12 1 2 15 1 0 7.1667

13 1 3 4 0 1 4.6667

14 1 3 17 0 1 26.1667

15 1 3 14 1 0 -22.8333

16 1 3 15 1 0 7.1667

17 1 3 15 1 0 7.1667

18 1 3 6 1 0 4.6667

19 2 1 6 1 0 4.6667

20 2 1 17 0 1 26.1667

21 2 1 8 1 0 -27.5000

22 2 1 13 1 0 -12.8333

23 2 1 9 0 1 1.5000

24 2 1 8 1 0 -27.5000

25 2 2 9 0 1 1.5000

26 2 2 18 1 0 -22.8333

27 2 2 15 1 0 7.1667

28 2 2 14 1 0 -22.8333

29 2 2 9 0 1 1.5000

30 2 2 17 0 1 26.1667

31 2 3 16 0 1 25.1667

32 2 3 11 0 1 8.5000

33 2 3 14 1 0 -22.8333

34 2 3 18 1 0 -22.8333

35 2 3 18 1 0 -22.8333

36 2 3 10 1 0 8.5000

The _sample_ variable is the sample indicator and _class_ indicates the resampling group—that is, the level
of the CLASS variable Dose assigned to the new observation. The number of the observation in the original
data set is represented by _obs_. Also listed are the values of the original test variables, S1 and S2, and the
mean-centered values of T.
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Example 67.3: Peto Mortality-Prevalence Test
This example illustrates the use of the Peto mortality-prevalence test. The test is a combination of analyses
about the prevalence of incidental tumors in the population and mortality due to fatal tumors.

In the following data set, each observation represents an animal. The variables S1–S3 are three tumor types,
with a value of 0 indicating no tumor, 1 indicating an incidental (nonlethal) tumor, and 2 indicating a lethal
tumor. The time variable T indicates the time of death of the animal, a strata variable B is constructed from T,
and the grouping variable Dose is drug dosage.

data a;
input S1-S3 T Dose @@;
if T<=90 then B=1; else B=2;
datalines;

0 0 0 104 0 2 0 1 80 0 0 0 1 104 0
0 0 0 104 0 0 2 0 100 0 1 0 0 104 0
2 0 0 85 1 2 1 0 60 1 0 1 0 89 1
2 0 1 96 1 0 0 0 96 1 2 0 1 99 1
2 1 1 60 2 2 0 0 50 2 2 0 1 80 2
0 0 2 98 2 0 0 1 99 2 2 1 1 50 2
;

proc multtest data=a notables out=p stepsid;
test peto(S1-S3 / permutation=20 time=T uppertailed);
class Dose;
strata B;
contrast 'mort-prev' 0 1 2;

run;
proc print data=p;
run;

The NOTABLES option in the PROC MULTTEST statement suppresses the display of the summary statistics
for each variable. The OUT= option creates an output SAS data set p containing all p-values and intermediate
statistics. The STEPSID option is used to adjust the p-values.

The TEST statement specifies an upper-tailed Peto test for S1–S3. The mortality strata are defined by
TIME=T, the death times. The CLASS statement contains the grouping variable Dose. The prevalence strata
are defined by the STRATA statement as the blocking variable B. The CONTRAST statement lists the default
linear trend coefficients. The PROC PRINT statement displays the requested p-value data set.

The results from this analysis are listed in Output 67.3.1 through Output 67.3.4.

The “Model Information” table in Output 67.3.1 displays information corresponding to the PROC
MULTTEST invocation. In this case the totals for all prevalence and fatality strata are less than 20, so exact
permutation tests are used everywhere, and the STEPSID adjustments are computed from these permutation
distributions.
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Output 67.3.1 Peto Test

The Multtest ProcedureThe Multtest Procedure

Model Information

Test for discrete variables Peto

Exact permutation distribution used Everywhere

Tails for discrete tests Upper-tailed

Strata weights Sample size

P-value adjustment Stepdown Sidak

The contrast trend coefficients are listed in Output 67.3.2. They happen to be the same as the levels of the
Dose variable.

Output 67.3.2 Contrast Coefficients

Contrast Coefficients

Dose

Contrast 0 1 2

mort-prev 0 1 2

In the “p-Values” table in Output 67.3.3, the p-values for the Peto tests are listed in the Raw column, and the
step-down Šidák adjusted p-values are in the Stepdown Šidák column.

Output 67.3.3 p-Values

p-Values

Variable Contrast Raw
Stepdown

Sidak

S1 mort-prev 0.0681 0.0814

S2 mort-prev 0.5000 0.5000

S3 mort-prev 0.0363 0.0781

Significant p-values in the preceding table support the claim that higher dosage levels lead to higher mortality
and prevalence. The raw Peto test is significant at the 5% level for S3, but the adjusted S3 test is no longer
significant at 5%. The raw and adjusted p-values for S2 are the same because of the step-down technique.

The OUT= data set is displayed in Output 67.3.4.
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Output 67.3.4 OUT= Data Set

Obs _test_ _var_ _contrast_ _strat_ _tstrat_ _value_ _exp_ _se_ raw_p stpsid_p

1 PETO S1 mort-prev 1 0 0 0.00000 0.00000 . .

2 PETO S1 mort-prev 2 0 0 0.62500 0.85696 . .

3 PETO S1 mort-prev 50 1 4 2.00000 1.12022 . .

4 PETO S1 mort-prev 60 1 3 1.75000 1.06654 . .

5 PETO S1 mort-prev 80 1 2 1.57143 1.04978 . .

6 PETO S1 mort-prev 85 1 1 0.75000 0.72169 . .

7 PETO S1 mort-prev 96 1 1 0.70000 0.78102 . .

8 PETO S1 mort-prev 98 1 0 0.00000 0.00000 . .

9 PETO S1 mort-prev 99 1 1 0.42857 0.72843 . .

10 PETO S1 mort-prev 100 1 0 0.00000 0.00000 . .

11 PETO S2 mort-prev 1 0 6 5.50000 1.05221 . .

12 PETO S2 mort-prev 2 0 0 0.00000 0.00000 . .

13 PETO S2 mort-prev 50 1 0 0.00000 0.00000 . .

14 PETO S2 mort-prev 60 1 0 0.00000 0.00000 . .

15 PETO S2 mort-prev 80 1 0 0.00000 0.00000 . .

16 PETO S2 mort-prev 85 1 0 0.00000 0.00000 . .

17 PETO S2 mort-prev 96 1 0 0.00000 0.00000 . .

18 PETO S2 mort-prev 98 1 0 0.00000 0.00000 . .

19 PETO S2 mort-prev 99 1 0 0.00000 0.00000 . .

20 PETO S2 mort-prev 100 1 0 0.00000 0.00000 . .

21 PETO S3 mort-prev 1 0 6 5.50000 1.05221 . .

22 PETO S3 mort-prev 2 0 4 2.22222 1.08298 . .

23 PETO S3 mort-prev 50 1 0 0.00000 0.00000 . .

24 PETO S3 mort-prev 60 1 0 0.00000 0.00000 . .

25 PETO S3 mort-prev 80 1 0 0.00000 0.00000 . .

26 PETO S3 mort-prev 85 1 0 0.00000 0.00000 . .

27 PETO S3 mort-prev 96 1 0 0.00000 0.00000 . .

28 PETO S3 mort-prev 98 1 2 0.62500 0.85696 . .

29 PETO S3 mort-prev 99 1 0 0.00000 0.00000 . .

30 PETO S3 mort-prev 100 1 0 0.00000 0.00000 . .

31 PETO S1 mort-prev . . 12 7.82500 2.42699 0.06808 0.08140

32 PETO S2 mort-prev . . 6 5.50000 1.05221 0.50000 0.50000

33 PETO S3 mort-prev . . 12 8.34722 1.73619 0.03627 0.07811

The first 30 observations correspond to intermediate statistics used to compute the Peto p-values. The _test_
variable lists the name of the test, the _var_ variable lists the name of the TEST variables, and the _contrast_
variable lists the CONTRAST label. The _strat_ variable lists the level of the STRATA variable, and the
_tstrat_ variable indicates whether or not the stratum corresponds to values of the TIME= variable. The
_value_ variable is the observed contrast for a stratum, and the _exp_ variable is its expected value. The
variable _se_ contains the square root of the variance terms summed to form the denominator of the Peto
statistics.

The final three observations correspond to the three Peto tests, with their p-values listed under the raw_p
variable. The stpsid_p variable contains the step-down Šidák-adjusted p-values.
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Example 67.4: Fisher Test with Permutation Resampling
The following data, from Brown and Fears (1981), are the results of an 80-week carcinogenesis bioassay
with female mice. Six tissue sites are examined at necropsy; 1 indicates the presence of a tumor and 0 the
absence. A frequency variable Freq is included. A control and four different doses of a drug (in parts per
milliliter) make up the levels of the grouping variable Dose.

data a;
input Liver Lung Lymph Cardio Pitui Ovary Freq Dose$ @@;
datalines;

1 0 0 0 0 0 8 CTRL 0 1 0 0 0 0 7 CTRL 0 0 1 0 0 0 6 CTRL
0 0 0 1 0 0 1 CTRL 0 0 0 0 0 1 2 CTRL 1 1 0 0 0 0 4 CTRL
1 0 1 0 0 0 1 CTRL 1 0 0 0 0 1 1 CTRL 0 1 1 0 0 0 1 CTRL
0 0 0 0 0 0 18 CTRL
1 0 0 0 0 0 9 4PPM 0 1 0 0 0 0 4 4PPM 0 0 1 0 0 0 7 4PPM
0 0 0 1 0 0 1 4PPM 0 0 0 0 1 0 2 4PPM 0 0 0 0 0 1 1 4PPM
1 1 0 0 0 0 4 4PPM 1 0 1 0 0 0 3 4PPM 1 0 0 0 1 0 1 4PPM
0 1 1 0 0 0 1 4PPM 0 1 0 1 0 0 1 4PPM 1 0 1 1 0 0 1 4PPM
0 0 0 0 0 0 15 4PPM
1 0 0 0 0 0 8 8PPM 0 1 0 0 0 0 3 8PPM 0 0 1 0 0 0 6 8PPM
0 0 0 1 0 0 3 8PPM 1 1 0 0 0 0 1 8PPM 1 0 1 0 0 0 2 8PPM
1 0 0 1 0 0 1 8PPM 1 0 0 0 1 0 1 8PPM 1 1 0 1 0 0 2 8PPM
1 1 0 0 0 1 2 8PPM 0 0 0 0 0 0 19 8PPM
1 0 0 0 0 0 4 16PPM 0 1 0 0 0 0 2 16PPM 0 0 1 0 0 0 9 16PPM
0 0 0 0 1 0 1 16PPM 0 0 0 0 0 1 1 16PPM 1 1 0 0 0 0 4 16PPM
1 0 1 0 0 0 1 16PPM 0 1 1 0 0 0 1 16PPM 0 1 0 1 0 0 1 16PPM
0 1 0 0 0 1 1 16PPM 0 0 1 1 0 0 1 16PPM 0 0 1 0 1 0 1 16PPM
1 1 1 0 0 0 2 16PPM 0 0 0 0 0 0 14 16PPM
1 0 0 0 0 0 8 50PPM 0 1 0 0 0 0 4 50PPM 0 0 1 0 0 0 8 50PPM
0 0 0 1 0 0 1 50PPM 0 0 0 0 0 1 4 50PPM 1 1 0 0 0 0 3 50PPM
1 0 1 0 0 0 1 50PPM 0 1 1 0 0 0 1 50PPM 0 1 0 0 1 1 1 50PPM
0 0 0 0 0 0 19 50PPM
;

proc multtest data=a order=data notables out=p
permutation nsample=1000 seed=764511;

test fisher(Liver Lung Lymph Cardio Pitui Ovary /
lowertailed);

class Dose;
freq Freq;

run;
proc print data=p;
run;

In the PROC MULTTEST statement, the ORDER=DATA option is required to keep the levels of Dose in the
order in which they appear in the data set. Without this option, the levels are sorted by their formatted value,
resulting in an alphabetic ordering. The NOTABLES option suppresses the display of summary statistics,
and the OUT= option produces an output data set p containing the p-values. The PERMUTATION option
specifies permutation resampling, NSAMPLE=1000 requests 1000 samples, and SEED=764511 option
provides a starting value for the random number generator. You should specify a seed if you need to duplicate
resampling results.
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To test for higher rates of tumor occurrence in the treatment groups compared to the control group, the
LOWERTAILED option is specified in the FISHER option of the TEST statement to produce a lower-tailed
Fisher exact test for the six tissue sites. The Fisher test is appropriate for comparing a treatment and a control,
but multiple testing can be a problem. Brown and Fears (1981) use a multivariate permutation to evaluate the
entire collection of tests. PROC MULTTEST adjusts the p-values by simulation.

The treatments make up the levels of the grouping variable Dose, listed in the CLASS statement. Since no
CONTRAST statement is specified, PROC MULTTEST uses the default pairwise contrasts with the first
level of Dose. The FREQ statement is used since these are summary data containing frequency counts of
occurrences.

The results from this analysis are listed in Output 67.4.1 through Output 67.4.4. First, the PROC MULTTEST
specifications are displayed in Output 67.4.1.

Output 67.4.1 Fisher Test with Permutation Resampling

The Multtest ProcedureThe Multtest Procedure

Model Information

Test for discrete variables Fisher

Tails for discrete tests Lower-tailed

Strata weights None

P-value adjustment Permutation

Number of resamples 1000

Seed 764511

The default contrasts for the Fisher test are displayed in Output 67.4.2. Note that each dose is compared with
the control.

Output 67.4.2 Default Contrast Coefficients

Contrast Coefficients

Dose

Contrast CTRL 4PPM 8PPM 16PPM 50PPM

CTRL vs. 4PPM 1 -1 0 0 0

CTRL vs. 8PPM 1 0 -1 0 0

CTRL vs. 16PPM 1 0 0 -1 0

CTRL vs. 50PPM 1 0 0 0 -1

The “p-Values” table in Output 67.4.3 displays p-values for the Fisher exact tests and their permutation-based
adjustments.
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Output 67.4.3 p-Values

p-Values

Variable Contrast Raw Permutation

Liver CTRL vs. 4PPM 0.2828 0.9610

Liver CTRL vs. 8PPM 0.3069 0.9670

Liver CTRL vs. 16PPM 0.7102 1.0000

Liver CTRL vs. 50PPM 0.7718 1.0000

Lung CTRL vs. 4PPM 0.7818 1.0000

Lung CTRL vs. 8PPM 0.8858 1.0000

Lung CTRL vs. 16PPM 0.5469 0.9990

Lung CTRL vs. 50PPM 0.8498 1.0000

Lymph CTRL vs. 4PPM 0.2423 0.9280

Lymph CTRL vs. 8PPM 0.5898 1.0000

Lymph CTRL vs. 16PPM 0.0350 0.2680

Lymph CTRL vs. 50PPM 0.4161 0.9930

Cardio CTRL vs. 4PPM 0.3163 0.9710

Cardio CTRL vs. 8PPM 0.0525 0.3710

Cardio CTRL vs. 16PPM 0.4506 0.9960

Cardio CTRL vs. 50PPM 0.7576 1.0000

Pitui CTRL vs. 4PPM 0.1250 0.7540

Pitui CTRL vs. 8PPM 0.4948 0.9970

Pitui CTRL vs. 16PPM 0.2157 0.9080

Pitui CTRL vs. 50PPM 0.5051 0.9970

Ovary CTRL vs. 4PPM 0.9437 1.0000

Ovary CTRL vs. 8PPM 0.8126 1.0000

Ovary CTRL vs. 16PPM 0.7760 1.0000

Ovary CTRL vs. 50PPM 0.3689 0.9930

As noted by Brown and Fears, only one of the 24 tests is significant at the 5% level (Lymph, CTRL vs.
16PPM). Brown and Fears report a 12% chance of observing at least one significant raw p-value for 16PPM
and a 9% chance of observing at least one significant raw p-value for Lymph (both at the 5% level). Adjusted
p-values exhibit much lower chances of false significances. For this example, none of the adjusted p-values
are close to significant.

The OUT= data set is displayed in Output 67.4.4.
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Output 67.4.4 OUT= Data Set

Obs _test_ _var_ _contrast_ _xval_ _mval_ _yval_ _nval_ raw_p perm_p sim_se

1 FISHER Liver CTRL vs. 4PPM 14 49 18 50 0.28282 0.961 0.006122

2 FISHER Liver CTRL vs. 8PPM 14 49 17 48 0.30688 0.967 0.005649

3 FISHER Liver CTRL vs. 16PPM 14 49 11 43 0.71022 1.000 0.000000

4 FISHER Liver CTRL vs. 50PPM 14 49 12 50 0.77175 1.000 0.000000

5 FISHER Lung CTRL vs. 4PPM 12 49 10 50 0.78180 1.000 0.000000

6 FISHER Lung CTRL vs. 8PPM 12 49 8 48 0.88581 1.000 0.000000

7 FISHER Lung CTRL vs. 16PPM 12 49 11 43 0.54685 0.999 0.000999

8 FISHER Lung CTRL vs. 50PPM 12 49 9 50 0.84978 1.000 0.000000

9 FISHER Lymph CTRL vs. 4PPM 8 49 12 50 0.24228 0.928 0.008174

10 FISHER Lymph CTRL vs. 8PPM 8 49 8 48 0.58977 1.000 0.000000

11 FISHER Lymph CTRL vs. 16PPM 8 49 15 43 0.03498 0.268 0.014006

12 FISHER Lymph CTRL vs. 50PPM 8 49 10 50 0.41607 0.993 0.002636

13 FISHER Cardio CTRL vs. 4PPM 1 49 3 50 0.31631 0.971 0.005307

14 FISHER Cardio CTRL vs. 8PPM 1 49 6 48 0.05254 0.371 0.015276

15 FISHER Cardio CTRL vs. 16PPM 1 49 2 43 0.45061 0.996 0.001996

16 FISHER Cardio CTRL vs. 50PPM 1 49 1 50 0.75758 1.000 0.000000

17 FISHER Pitui CTRL vs. 4PPM 0 49 3 50 0.12496 0.754 0.013619

18 FISHER Pitui CTRL vs. 8PPM 0 49 1 48 0.49485 0.997 0.001729

19 FISHER Pitui CTRL vs. 16PPM 0 49 2 43 0.21572 0.908 0.009140

20 FISHER Pitui CTRL vs. 50PPM 0 49 1 50 0.50505 0.997 0.001729

21 FISHER Ovary CTRL vs. 4PPM 3 49 1 50 0.94372 1.000 0.000000

22 FISHER Ovary CTRL vs. 8PPM 3 49 2 48 0.81260 1.000 0.000000

23 FISHER Ovary CTRL vs. 16PPM 3 49 2 43 0.77596 1.000 0.000000

24 FISHER Ovary CTRL vs. 50PPM 3 49 5 50 0.36889 0.993 0.002636

The _test_, _var_, and _contrast_ variables provide the TEST name, TEST variable, and CONTRAST label,
respectively. The _xval_, _mval_, _yval_, and _nval_ variables contain the components used to compute
the Fisher exact tests from the hypergeometric distribution. The raw_p variable contains the p-values from
the Fisher exact tests, and the perm_p variable contains their permutation-based adjustments. The variable
sim_se is the simulation standard error from the permutation resampling.
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Example 67.5: Inputting Raw p-Values
This example illustrates how to use PROC MULTTEST to multiplicity-adjust a collection of raw p-values
obtained from some other source. This is a valuable option for those cases where PROC MULTTEST cannot
compute the raw p-values directly. The data set a, which follows, contains the unadjusted p-values computed
in Example 67.4. Note that the data set needs to have one variable containing the p-values, but the data set
can contain other variables as well.

data a;
input Test$ Raw_P @@;
datalines;

test01 0.28282 test02 0.30688 test03 0.71022
test04 0.77175 test05 0.78180 test06 0.88581
test07 0.54685 test08 0.84978 test09 0.24228
test10 0.58977 test11 0.03498 test12 0.41607
test13 0.31631 test14 0.05254 test15 0.45061
test16 0.75758 test17 0.12496 test18 0.49485
test19 0.21572 test20 0.50505 test21 0.94372
test22 0.81260 test23 0.77596 test24 0.36889
;

proc multtest inpvalues=a holm hoc fdr;
run;

Note that the PROC MULTTEST statement is the only statement that can be specified with the p-value input
mode. In this example, the raw p-values are adjusted by the Holm, Hochberg, and FDR methods.

The “P-Value Adjustment Information” table, displayed in Output 67.5.1, provides information about the
requested adjustments and replaces the usual “Model Information” table. The adjusted p-values are displayed
in Output 67.5.2

Output 67.5.1 Inputting Raw p-Values

The Multtest ProcedureThe Multtest Procedure

P-Value Adjustment Information

P-Value Adjustment Stepdown Bonferroni

P-Value Adjustment Hochberg

P-Value Adjustment False Discovery Rate
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Output 67.5.2 p-Values

p-Values

Test Raw
Stepdown
Bonferroni Hochberg

False
Discovery

Rate

1 0.2828 1.0000 0.9437 0.9243

2 0.3069 1.0000 0.9437 0.9243

3 0.7102 1.0000 0.9437 0.9243

4 0.7718 1.0000 0.9437 0.9243

5 0.7818 1.0000 0.9437 0.9243

6 0.8858 1.0000 0.9437 0.9243

7 0.5469 1.0000 0.9437 0.9243

8 0.8498 1.0000 0.9437 0.9243

9 0.2423 1.0000 0.9437 0.9243

10 0.5898 1.0000 0.9437 0.9243

11 0.0350 0.8395 0.8395 0.6305

12 0.4161 1.0000 0.9437 0.9243

13 0.3163 1.0000 0.9437 0.9243

14 0.0525 1.0000 0.9437 0.6305

15 0.4506 1.0000 0.9437 0.9243

16 0.7576 1.0000 0.9437 0.9243

17 0.1250 1.0000 0.9437 0.9243

18 0.4949 1.0000 0.9437 0.9243

19 0.2157 1.0000 0.9437 0.9243

20 0.5051 1.0000 0.9437 0.9243

21 0.9437 1.0000 0.9437 0.9437

22 0.8126 1.0000 0.9437 0.9243

23 0.7760 1.0000 0.9437 0.9243

24 0.3689 1.0000 0.9437 0.9243

Note that the adjusted p-values for the Hochberg method are less than or equal to those for the Holm
(Step-down Bonferroni) method. In turn, the adjusted p-values for the FDR method (False Discovery Rate)
are less than or equal to those for the Hochberg method. These comparisons hold generally for all p-value
configurations. The FDR method controls the false discovery rate and not the familywise error rate. The
Hochberg method controls the familywise error rate under independence. The Holm method controls the
familywise error rate without assuming independence.
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Example 67.6: Adaptive Adjustments and ODS Graphics

An experiment was performed using Affymetrix® gene chips on the CD4 lymphocyte white blood cells
of patients with and without a hereditary allergy (atopy) and possibly with asthma. The Asthma-Atopy
microarray data set and analysis are discussed in Gibson and Wolfinger (2004): a one-way ANOVA model of
the log2mas5 variable (log2.MAS 5.0 summary statistics) is fit against a classification variable trt describing
different asthma-atopy combinations in the patients, and the least squares means of the trt variable are
computed.

For this example, a 1% random sample of least squares means having p-values exceeding 1E–6 is taken. The
resulting data are recorded in the test data set, where the Probe_Set_ID variable identifies the probe and the
Probt variable contains the p-values for the m = 121 tests, as follows:

data test;
length Probe_Set_ID $9.;
input Probe_Set_ID $ Probt @@;
datalines;

200973_s_ .963316 201059_at .462754 201563_at .000409 201733_at .000819
201951_at .000252 202944_at .106550 203107_x_ .040396 203372_s_ .010911
203469_s_ .987234 203641_s_ .019296 203795_s_ .002276 204055_s_ .002328
205020_s_ .008628 205199_at .608129 205373_at .005209 205384_at .742381
205428_s_ .870533 205653_at .621671 205686_s_ .396440 205760_s_ .000002
206032_at .024661 206159_at .997627 206223_at .003702 206398_s_ .191682
206623_at .010030 206852_at .000004 207072_at .000214 207371_at .000013
207789_s_ .023623 207861_at .000002 207897_at .000007 208022_s_ .251999
208086_s_ .000361 208406_s_ .040182 208464_at .161468 209055_s_ .529824
209125_at .142276 209369_at .240079 209748_at .071750 209894_at .000042
209906_at .223282 210130_s_ .192187 210199_at .101623 210477_x_ .300038
210491_at .000078 210531_at .000784 210734_x_ .202931 210755_at .009644
210782_x_ .000011 211320_s_ .022896 211329_x_ .486869 211362_s_ .881798
211369_at .000030 211399_at .000008 211572_s_ .269788 211647_x_ .001301
213072_at .005019 213143_at .008711 213238_at .004824 213391_at .316133
213468_at .000172 213636_at .097133 213823_at .001678 213854_at .001921
213976_at .000299 214006_s_ .014616 214063_s_ .000361 214407_x_ .609880
214445_at .000009 214570_x_ .000002 214648_at .001255 214684_at .288156
214991_s_ .006695 215012_at .000499 215117_at .000136 215201_at .045235
215304_at .000816 215342_s_ .973786 215392_at .112937 215557_at .000007
215608_at .006204 215935_at .000027 215980_s_ .037382 216010_x_ .000354
216051_x_ .000003 216086_at .002310 216092_s_ .000056 216511_s_ .294776
216733_s_ .004823 216747_at .002902 216874_at .000117 216969_s_ .001614
217133_x_ .056851 217198_x_ .169196 217557_s_ .002966 217738_at .000005
218601_at .023817 218818_at .027554 219302_s_ .000039 219441_s_ .000172
219574_at .193737 219612_s_ .000075 219697_at .046476 219700_at .003049
219945_at .000066 219964_at .000684 220234_at .130064 220473_s_ .000017
220575_at .030223 220633_s_ .058460 220925_at .252465 221256_s_ .721731
221314_at .002307 221589_s_ .001810 221995_s_ .350859 222071_s_ .000062
222113_s_ .000023 222208_s_ .100961 222303_at .049265 37226_at .000749
60474_at .000423
run;

The following statements adjust the p-values in the test data set by using the adaptive adjustments (ADAP-
TIVEHOLM, ADAPTIVEHOCHBERG, ADAPTIVEFDR, and PFDR), which require an estimate of the
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number of true null hypotheses ( Om0) or proportion of true null hypotheses ( O�0). This example illustrates
some of the features and graphics for computing and evaluating these estimates. The NOPVALUE option is
specified to suppress the display of the “p-Values” table.

ods graphics on;
proc multtest inpvalues(Probt)=test plots=all seed=518498000

aholm ahoc afdr pfdr(positive) nopvalue;
id Probe_Set_ID;

run;
ods graphics off;

Output 67.6.1 lists the requested p-value adjustments, along with the selected value of the “Lambda” tuning
parameter and the seed (specified with the SEED= option) used in the bootstrap method of estimating the
number of true null hypotheses. The “Lambda Values” table lists the estimated number of true nulls for each
value of �, where you can see that the minimum MSE (0.002315) occurs at � D 0:4. Output 67.6.2 shows
that the SPLINE method failed due to a large slope at � D 0:95, so the bootstrap method is used and the
MSE plot is displayed.

Output 67.6.1 p and Lambda Values

The Multtest ProcedureThe Multtest Procedure

P-Value Adjustment Information

P-Value Adjustment Adaptive Holm

P-Value Adjustment Adaptive Hochberg

P-Value Adjustment Adaptive FDR

P-Value Adjustment pFDR Q-Value

Lambda 0.4

Seed 518498000

Lambda Values

Lambda MSE
NTrueNull
Observed

NTrueNull
Spline

0 0.657880 121.000000 67.318707

0.050000 0.030212 43.157895 59.812885

0.100000 0.024897 41.111111 52.636271

0.150000 0.014904 36.470588 46.033846

0.200000 0.008580 32.500000 40.172642

0.250000 0.006476 30.666667 35.157768

0.300000 0.002719 25.714286 31.046105

0.350000 0.002471 24.615385 27.861153

0.400000 0.002378 23.333333 25.595089

0.450000 0.003285 25.454545 24.217908

0.500000 0.003036 24.000000 23.687690

0.550000 0.003567 24.444444 23.965745

0.600000 0.005813 27.500000 25.016579

0.650000 0.004118 22.857143 26.809774

0.700000 0.006647 26.666667 29.321876

0.750000 0.006260 24.000000 32.512203

0.800000 0.013242 30.000000 36.315191

0.850000 0.037624 40.000000 40.618909

0.900000 0.046906 40.000000 45.274355

0.950000 0.332183 80.000000 50.117369
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Output 67.6.2 Tuning Parameter Plots

Output 67.6.3 also shows that the bootstrap estimate is used for the PFDR adjustment. The other adjustments
have different default methods for estimating the number of true nulls.

Output 67.6.3 Adjustments and Their Default Estimation Method

Estimated Number of True Null Hypotheses

P-Value
Adjustment Method Estimate Proportion

Adaptive Holm Decreased Slope 26 0.21488

Adaptive Hochberg Decreased Slope 26 0.21488

Adaptive FDR Lowest Slope 43 0.35537

Positive FDR Bootstrap 23.3333 0.19284

Output 67.6.4 displays the estimated number of true nulls Om0 against a uniform probability plot of the
unadjusted p-values (if the p-values are distributed uniformly, the points on the plot will all lie on a straight
line). According to Schweder and Spjøtvoll (1982) and Hochberg and Benjamini (1990), the points on the
left side of the plot should be approximately linear with slope 1

m0C1
, so you can use this plot to evaluate

whether your estimate of Om0 seems reasonable.
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Output 67.6.4 p-Value Distribution

The NTRUENULL= option provides several methods for estimating the number of true null hypotheses; the
following table displays each method and its estimate for this example:

NTRUENULL= Estimate

BOOTSTRAP 23.3
DECREASESLOPE 26
KSTEST 35
LEASTSQUARES 28
LOWESTSLOPE 43
MEANDIFF 42
SPLINE 50.1

Another method of estimating the number of true null hypotheses fits a finite mixture model (mixing a
uniform with a beta) to the distribution of the unadjusted p-values (Allison et al. 2002). Osborne (2006)
provides the following PROC NLMIXED statements to fit this model:
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proc nlmixed data=test;
parameters pi0=0.5 a=.1 b=.1;
pi1= 1-pi0;
bounds 0 <= pi0 <= 1;
loglikelihood= log(pi0+pi1*pdf('beta',Probt,a,b));
model Probt ~ general(loglikelihood);

run;

You might have to change the initial parameter values in the PARAMETERS statement to achieve convergence;
see Chapter 70, “The NLMIXED Procedure,” for more information. This mixture model estimates O�0 D 0,
meaning that the distribution of p-values is completely specified by a single beta distribution. If the estimate
were, say, O�0 D 0:10, you could then specify it as follows:

proc multtest inpvalues(Probt)=test ptruenull=0.10
aholm ahoc afdr pfdr(positive) nopvalue;

id Probe_Set_ID;
run;

A plot of the unadjusted and adjusted p-values for each test is also produced. Due to the large number of tests
and adjustments, the plot is not very informative and is not displayed here.

The top two plots in Output 67.6.5 show how the adjusted values compare with each other and the unadjusted
p-values. The PFDR and AFDR adjustments are eventually smaller than the unadjusted p-values since they
control the false discovery rate. The adaptive Holm and Hochberg adjustments are almost identical, so the
adaptive Holm values are mostly obscured in all four plots. The plot of the Proportion Significant versus the
Adjusted p-values tells you how many of the tests are significant for each cutoff, while the plot of the number
of false positives (FPN) versus the Proportion Significant tells you how many false positives you can expect
for that cutoff.
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Output 67.6.5 Adjustment Diagnostics

A Manhattan plot displays –log10 of the adjusted p-values, so the most significant tests stand out at the top
of the plot. The default plot is not displayed here. The following statements create a Manhattan plot of the
adaptive FDR p-values, with the most significant tests labeled with their observation number. The ID values
are displayed on the X axis, and the VREF= option specifies the significance level. This plot is typically
created with many more p-values, and special ODS Graphics options such as the LABELMAX= option
might be required to display the graph. If memory usage is an issue, you might want to store your p-values
and use the SGPLOT procedure to create a similar graph.

ods graphics on / labelmax=1000;
proc multtest inpvalues(Probt)=test afdr nopvalue

plots=Manhattan(label=obs vref=0.0001);
id Probe_Set_ID;

run;
ods graphics off;
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Output 67.6.6 Manhattan Plot
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If you have a lot of tests, the “Raw and Adjusted p-Values” and “P-Value Adjustment Diagnostics” plots can
be more informative if you suppress some of the tests. In the following statements, the SIGONLY=0.001
option selects tests with adjusted p-values < 0.001 for display. Output 67.6.7 displays tests with their
“significant” adjusted p-values:

ods graphics on;
proc multtest inpvalues(Probt)=test plots(sigonly=0.001)=PByTest

aholm ahoc afdr pfdr(positive) nopvalue;
run;
ods graphics off;

Output 67.6.7 Raw and Adjusted p-Values
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Overview: NESTED Procedure
The NESTED procedure performs random-effects analysis of variance for data from an experiment with a
nested (hierarchical) structure.1 A random-effects model for data from a completely nested design with two
factors has the form

yijr D �C ˛i C ˇij C �ijr

1PROC NESTED is modeled after the General Purpose Nested Analysis of Variance program of the Dairy Cattle Research
Branch of the United States Department of Agriculture. That program was originally written by M. R. Swanson, Statistical Reporting
Service, United States Department of Agriculture.
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where

yijr is the value of the dependent variable observed at the rth replication with the first factor at its
ith level and the second factor at its jth level.

� is the overall (fixed) mean of the sampling population.

˛i ; ˇij ; �ijr are mutually uncorrelated random effects with zero means and respective variances �2˛ , �2
ˇ

,
and �2� (the variance components).

This model is appropriate for an experiment with a multistage nested sampling design. An example of this is
given in Example 68.1, where four turnip plants are randomly chosen (the first factor), then three leaves are
randomly chosen from each plant (the second factor nested within the first), and then two samples are taken
from each leaf (the different replications at fixed levels of the two factors).

Note that PROC NESTED is appropriate for models with only classification effects; it does not handle
models that contain continuous covariates. For random effects models with covariates, use either the GLM or
MIXED procedure.

Contrasted with Other SAS Procedures
The NESTED procedure performs a computationally efficient analysis of variance for data with a nested
design, estimating the different components of variance and also testing for their significance if the design is
balanced (see the section “Unbalanced Data” on page 5565). Although other procedures (such as GLM and
MIXED) provide similar analyzes, PROC NESTED is both easier to use and computationally more efficient
for this special type of design. This is especially true when the design involves a large number of factors,
levels, or observations.

For example, to specify a four-factor completely nested design in the GLM procedure, you use the following
form:

class a b c d;
model y=a b(a) c(a b) d(a b c);

However, to specify the same design in PROC NESTED, you simply use the following form:

class a b c d;
var y;

In addition, other procedures require TEST statements to perform appropriate tests, whereas the NESTED
procedure produces the appropriate tests automatically. However, PROC NESTED makes one assumption
about the input data that the other procedures do not: PROC NESTED assumes that the input data set is
sorted by the classification (CLASS) variables defining the effects. If you use PROC NESTED on data
that are not sorted by the CLASS variables, then the results might not be valid.
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Getting Started: NESTED Procedure

Reliability of Automobile Models
A study is performed to compare the reliability of several models of automobiles. Three different automobile
models (Model) from each of four U.S. automobile manufacturers (Make) are tested. Three different cars of
each make and model are subjected to a reliability test and given a score between 1 and 100 (Score), where
higher scores indicate greater reliability.

The following statements create the SAS data set auto.

title1 'Reliability of Automobile Models';
data auto;

input Make $ Model Score @@;
datalines;

a 1 62 a 2 77 a 3 59
a 1 67 a 2 73 a 3 64
a 1 60 a 2 79 a 3 60
b 1 72 b 2 58 b 3 80
b 1 75 b 2 63 b 3 84
b 1 69 b 2 57 b 3 89
c 1 94 c 2 76 c 3 81
c 1 90 c 2 75 c 3 85
c 1 88 c 2 78 c 3 85
d 1 69 d 2 73 d 3 90
d 1 72 d 2 88 d 3 87
d 1 76 d 2 87 d 3 92
;

The Make variable contains the make of the automobile, represented here by ‘a’, ‘b’, ‘c’, or ‘d’, while the
Model variable represents the automobile model with a ‘1’, ‘2’, or ‘3’. The Score variable contains the
reliability scores given to the three sampled cars from each Make-Model group. Since the automobile models
are nested within their makes, the NESTED procedure is used to analyze these data. The NESTED procedure
requires the data to be sorted by Make and, within Make, by Model, so the following statements execute a
PROC SORT before completing the analysis.

proc sort data=auto;
by Make Model;

run;

title1 'Reliability of Automobile Models';
proc nested data=auto;

class Make Model;
var Score;

run;

The Model variable appears after the Make variable in the CLASS statement because it is nested within Make.
The VAR statement specifies the response variable. The output is displayed in Figure 68.1.
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Figure 68.1 Output from PROC NESTED

Reliability of Automobile Models

The NESTED Procedure

Reliability of Automobile Models

The NESTED Procedure

Coefficients of Expected
Mean Squares

Source Make Model Error

Make 9 3 1

Model 0 3 1

Error 0 0 1

Nested Random Effects Analysis of Variance for Variable Score

Variance
Source DF

Sum of
Squares F Value Pr > F

Error
Term Mean Square

Variance
Component

Percent
of Total

Total 35 4177.888889 119.368254 131.876543 100.0000

Make 3 1709.000000 2.15 0.1719 Model 569.666667 33.867284 25.6811

Model 8 2118.888889 18.16 <.0001 Error 264.861111 83.425926 63.2606

Error 24 350.000000 14.583333 14.583333 11.0583

Score Mean 75.94444444

Standard Error of Score Mean 3.97794848

Figure 68.1 first displays the coefficients of the variance components that make up each of the expected mean
squares, and then it displays the ANOVA table. The results do not indicate significant variation between
the different automobile makes (F D 2:15; p D 0:1719). However, they do suggest that there is significant
variation between the different models within the makes (F D 18:16; p < 0:0001). This is evident in the fact
that the make of car accounts for only 25.7% of the total variation in the data, while the car model accounts
for 63.3% (as shown in the Percent of Total column). The estimated variance components are shown in the
Variance Component column.

Syntax: NESTED Procedure
The following statements are available in the NESTED procedure:

PROC NESTED < options > ;
CLASS variables < / option > ;
VAR variables ;
BY variables ;

The PROC NESTED and CLASS statements are required. The BY, CLASS, and VAR statements are
described after the PROC NESTED statement.
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PROC NESTED Statement
PROC NESTED < options > ;

The PROC NESTED statement invokes the NESTED procedure. Table 68.1 summarizes the options available
in the PROC NESTED statement.

Table 68.1 PROC NESTED Statement Options

Option Description

AOV Displays only the analysis of variance statistics
DATA= Names the SAS data set

The PROC NESTED statement has the following options:

AOV
displays only the analysis of variance statistics when there is more than one dependent variable.
The “analysis of covariation” statistics are suppressed (see the section “Analysis of Covariation” on
page 5566).

DATA=SAS-data-set
names the SAS data set to be used by PROC NESTED. By default, the procedure uses the most recently
created SAS data set.

BY Statement
BY variables ;

You can specify a BY statement with PROC NESTED to obtain separate analyses of observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the NESTED procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.
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CLASS Statement
CLASS variables < / option > ;

You must include a CLASS statement with PROC NESTED specifying the classification variables for the
analysis.

Values of a variable in the CLASS statement denote the levels of an effect. The name of that variable is also
the name of the corresponding effect. The second effect is assumed to be nested within the first effect, the
third effect is assumed to be nested within the second effect, and so on.

By default, class levels are determined from the entire formatted values of the CLASS variables. Note that
this represents a slight change from previous releases in the way in which class levels are determined. Prior
to SAS 9, class levels were determined using no more than the first eight characters of the formatted values,
except for numeric variables with no explicit format, for which class levels were determined from the raw
numeric values. If you want to revert to this previous behavior, you can use the TRUNCATE option in the
CLASS statement. In any case, you can use formats to group values into levels. See the discussion of the
FORMAT procedure in the Base SAS Procedures Guide, and the discussions for the FORMAT statement and
SAS formats in SAS Statements: Reference.

NOTE: The data set must be sorted by the classification variables in the order in which they are given in the
CLASS statement. Use PROC SORT to sort the data if they are not already sorted.

You can specify the following option in the CLASS statement after a slash (/):

TRUNCATE
specifies that class levels should be determined by using only up to the first 16 characters of the
formatted values of CLASS variables. When formatted values are longer than 16 characters, you can
use this option to revert to the levels as determined in releases prior to SAS 9.

VAR Statement
VAR variables ;

The VAR statement lists the dependent variables for the analysis. The dependent variables must be numeric
variables. If you do not specify a VAR statement, PROC NESTED performs an analysis of variance for all
numeric variables in the data set, except those already specified in the CLASS statement.
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Details: NESTED Procedure

Missing Values
An observation with missing values for any of the variables used by PROC NESTED is omitted from the
analysis. Blank values of CLASS character variables are treated as missing values.

Unbalanced Data
A completely nested design is defined to be unbalanced if the groups corresponding to the levels of some
classification variable are not all of the same size. The NESTED procedure can compute unbiased estimates
for the variance components in an unbalanced design, but because the sums of squares on which these
estimates are based no longer have �2 distributions under a Gaussian model for the data, F tests for the
significance of the variance components cannot be computed. PROC NESTED checks to see that the design
is balanced. If it is not, a warning to that effect appears in the log, and the columns corresponding to the F
tests in the analysis of variance are left blank.

General Random-Effects Model
A random-effects model for data from a completely nested design with n factors has the general form

yi1i2���inr D �C ˛i1 C ˇi1i2 C � � � C �i1i2���inr

where

yi1i2���inr is the value of the dependent variable observed at the rth replication with factor j
at level ij , for j D 1; : : : ; n.

� is the overall (fixed) mean of the sampled population.

˛i1 ; ˇi1i2 ; : : : ; �i1i2���inr are mutually uncorrelated random effects with zero means and respective vari-
ances �2˛ , �2

ˇ
, . . . , �2� .
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Analysis of Covariation
When you specify more than one dependent variable, the NESTED procedure produces a descriptive analysis
of the covariance between each pair of dependent variables in addition to a separate analysis of variance for
each variable. The analysis of covariation is computed under the basic random-effects model for each pair of
dependent variables:

yi1i2���inr D �C ˛i1 C ˇi1i2 C � � � C �i1i2���inr

y0i1i2���inr D �0 C ˛0i1 C ˇ
0
i1i2
C � � � C �0i1i2���inr

where the notation is the same as that used in the preceding general random-effects model.

There is an additional assumption that all the random effects in the two models are mutually uncorrelated
except for corresponding effects, for which

Corr.˛i1 ; ˛
0
i1
/ D �˛

Corr.ˇi1i2 ; ˇ
0
i1i2
/ D �ˇ

:::

Corr.�i1i2���inr ; �
0
i1i2���inr

/ D ��

Error Terms in F Tests
Random-effects ANOVAs are distinguished from fixed-effects ANOVAs by which error mean squares are
used as the denominator for F tests. Under a fixed-effects model, there is only one true error term in the
model, and the corresponding mean square is used as the denominator for all tests. This is how the usual
analysis is computed in PROC ANOVA, for example. However, in a random-effects model for a nested
experiment, mean squares are compared sequentially. The correct denominator in the test for the first factor
is the mean square due to the second factor; the correct denominator in the test for the second factor is the
mean square due to the third factor; and so on. Only the mean square due to the last factor, the one at the
bottom of the nesting order, should be compared to the error mean square.
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Computational Method
The building blocks of the analysis are the sums of squares for the dependent variables for each classification
variable within the factors that precede it in the model, corrected for the factors that follow it. For example,
for a two-factor nested design, PROC NESTED computes the following sums of squares:

Total SS
X
ijr

.yijr � y���/
2

SS for Factor 1
X
i

ni �

�
yi ��

ni �
�
y���

n��

�2

SS for Factor 2 within Factor 1
X
ij

nij

�
yij �

nij
�
yi ��

ni �

�2

Error SS
X
ijr

�
yijr �

yij �

nij

�2

where yijr is the rth replication, nij is the number of replications at level i of the first factor and level j of the
second, and a dot as a subscript indicates summation over the corresponding index. If there is more than
one dependent variable, PROC NESTED also computes the corresponding sums of crossproducts for each
pair. The expected value of the sum of squares for a given classification factor is a linear combination of
the variance components corresponding to this factor and to the factors that are nested within it. For each
factor, the coefficients of this linear combination are computed. (The efficiency of PROC NESTED is partly
due to the fact that these various sums can be accumulated with just one pass through the data, assuming
that the data have been sorted by the classification variables.) Finally, estimates of the variance components
are derived as the solution to the set of linear equations that arise from equating the mean squares to their
expected values.

Displayed Output
PROC NESTED displays the following items for each dependent variable:

• Coefficients of Expected Mean Squares, which are the coefficients of the nC 1 variance components
making up the expected mean square. Denoting the element in the ith row and jth column of this matrix
by Cij , the expected value of the mean square due to the ith classification factor is

Ci1�
2
1 C � � � C Cin�

2
n C Ci;nC1�

2
�

Cij is always zero for i > j , and if the design is balanced, Cij is equal to the common size of all
classification groups of the jth factor for i � j . Finally, the mean square for error is always an unbiased
estimate of �2� . In other words, CnC1;nC1 D 1.



5568 F Chapter 68: The NESTED Procedure

For every dependent variable, PROC NESTED displays an analysis of variance table. Each table contains the
following:

• each Variance Source in the model (the different components of variance) and the total variance

• degrees of freedom (DF) for the corresponding sum of squares

• Sum of Squares for each classification factor. The sum of squares for a given classification factor is the
sum of squares in the dependent variable within the factors that precede it in the model, corrected for
the factors that follow it. (See the section “Computational Method” on page 5567.)

• F Value for a factor, which is the ratio of its mean square to the appropriate error mean square. The
next column, labeled PR > F, gives the significance levels that result from testing the hypothesis that
each variance component equals zero.

• the appropriate Error Term for an F test, which is the mean square due to the next classification factor
in the nesting order. (See the section “Error Terms in F Tests” on page 5566.)

• Mean Square due to a factor, which is the corresponding sum of squares divided by the degrees of
freedom

• estimates of the Variance Components. These are computed by equating the mean squares to their
expected values and solving for the variance terms. (See the section “Computational Method” on
page 5567.)

• Percent of Total, the proportion of variance due to each source. For the ith factor, the value is

100 �
source variance component
total variance component

• Mean, the overall average of the dependent variable. This gives an unbiased estimate of the mean
of the population. Its variance is estimated by a certain linear combination of the estimated variance
components, which is identical to the mean square due to the first factor in the model divided by the
total number of observations when the design is balanced.

If there is more than one dependent variable, then the NESTED procedure displays an “analysis of covariation”
table for each pair of dependent variables (unless the AOV option is specified in the PROC NESTED
statement). See the section “Analysis of Covariation” on page 5566 for details. For each source of variation,
this table includes the following:

• Degrees of Freedom

• Sum of Products
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• Mean Products

• Covariance Component, the estimate of the covariance component

Items in the analysis of covariation table are computed analogously to their counterparts in the analysis of
variance table. The analysis of covariation table also includes the following:

• Variance Component Correlation for a given factor. This is an estimate of the correlation between
corresponding effects due to this factor. This correlation is the ratio of the covariance component
for this factor to the square root of the product of the variance components for the factor for the two
different dependent variables. (See the section “Analysis of Covariation” on page 5566.)

• Mean Square Correlation for a given classification factor. This is the ratio of the Mean Products for
this factor to the square root of the product of the Mean Squares for the factor for the two different
dependent variables.

ODS Table Names
PROC NESTED assigns a name to each table it creates. You can use these names to reference the table
when using the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed in the following table. For more information about ODS, see Chapter 20, “Using the Output Delivery
System.”

Table 68.2 ODS Tables Produced by PROC NESTED

ODS Table Name Description Statement

ANCOVA Analysis of covariance default with more than
one dependent variable

ANOVA Analysis of variance default
EMSCoef Coefficients of expected

mean squares
default

Statistics Overall statistics for fit default
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Example: NESTED Procedure

Example 68.1: Variability of Calcium Concentration in Turnip Greens
In the following example from Snedecor and Cochran (1967), an experiment is conducted to study the
variability of calcium concentration in turnip greens. Four plants are selected at random; then three leaves are
randomly selected from each plant. Two 100-mg samples are taken from each leaf. The amount of calcium is
determined by microchemical methods.

Because the data are read in sorted order, it is not necessary to use PROC SORT on the CLASS variables.
Leaf is nested in Plant; Sample is nested in Leaf and is left for the residual term. All the effects are random
effects. The following statements read the data and invoke PROC NESTED. These statements produce
Output 68.1.1.

title 'Calcium Concentration in Turnip Leaves--Nested Random Model';
title2 'Snedecor and Cochran, ''Statistical Methods'', 1967, p. 286';
data Turnip;

do Plant=1 to 4;
do Leaf=1 to 3;

do Sample=1 to 2;
input Calcium @@;
output;

end;
end;

end;
datalines;

3.28 3.09 3.52 3.48 2.88 2.80 2.46 2.44
1.87 1.92 2.19 2.19 2.77 2.66 3.74 3.44
2.55 2.55 3.78 3.87 4.07 4.12 3.31 3.31
;

proc nested data=Turnip;
class plant leaf;
var calcium;

run;

Output 68.1.1 Analysis of Calcium Concentration in Turnip Greens Using PROC NESTED

Calcium Concentration in Turnip Leaves--Nested Random Model
Snedecor and Cochran, 'Statistical Methods', 1967, p. 286

The NESTED Procedure

Calcium Concentration in Turnip Leaves--Nested Random Model
Snedecor and Cochran, 'Statistical Methods', 1967, p. 286

The NESTED Procedure

Coefficients of Expected
Mean Squares

Source Plant Leaf Error

Plant 6 2 1

Leaf 0 2 1

Error 0 0 1
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Output 68.1.1 continued

Nested Random Effects Analysis of Variance for Variable Calcium

Variance
Source DF

Sum of
Squares F Value Pr > F

Error
Term Mean Square

Variance
Component

Percent
of Total

Total 23 10.270396 0.446539 0.532938 100.0000

Plant 3 7.560346 7.67 0.0097 Leaf 2.520115 0.365223 68.5302

Leaf 8 2.630200 49.41 <.0001 Error 0.328775 0.161060 30.2212

Error 12 0.079850 0.006654 0.006654 1.2486

Calcium Mean 3.01208333

Standard Error of Calcium Mean 0.32404445

The results indicate that there is significant (nonzero) variation from plant to plant (Pr > F is 0.0097) and
from leaf to leaf within a plant (Pr > F is less than 0.0001). Notice that the variance component for Plant
uses the Leaf mean square as an error term in the model rather than the error mean square.

References

Snedecor, G. W. and Cochran, W. G. (1967), Statistical Methods, 6th Edition, Ames: Iowa State University
Press.
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Overview: NLIN Procedure
The NLIN procedure fits nonlinear regression models and estimates the parameters by nonlinear least squares
or weighted nonlinear least squares. You specify the model with programming statements. This gives you
great flexibility in modeling the relationship between the response variable and independent (regressor)
variables. It does, however, require additional coding compared to model specifications in linear modeling
procedures such as the REG, GLM, and MIXED procedures.

Estimating parameters in a nonlinear model is an iterative process that commences from starting values. You
need to declare the parameters in your model and supply their initial values for the NLIN procedure. You
do not need to specify derivatives of the model equation with respect to the parameters. Although facilities
for specifying first and second derivatives exist in the NLIN procedure, it is not recommended that you
specify derivatives this way. Obtaining derivatives from user-specified expressions predates the high-quality
automatic differentiator that is now used by the NLIN procedure.

Nonlinear least-squares estimation involves finding those values in the parameter space that minimize the
(weighted) residual sum of squares. In a sense, this is a “distribution-free” estimation criterion since the
distribution of the data does not need to be fully specified. Instead, the assumption of homoscedastic and
uncorrelated model errors with zero mean is sufficient. You can relax the homoscedasticity assumption by
using a weighted residual sum of squares criterion. The assumption of uncorrelated errors (independent
observations) cannot be relaxed in the NLIN procedure. In summary, the primary assumptions for analysis
with the NLIN procedure are as follows:

• The structure in the response variable can be decomposed additively into a mean function and an error
component.

• The model errors are uncorrelated and have zero mean. Unless a weighted analysis is performed, the
errors are also assumed to be homoscedastic (have equal variance).

• The mean function consists of known regressor (independent) variables and unknown constants (the
parameters).

Fitting nonlinear models can be a difficult undertaking. There is no closed-form solution for the parameter
estimates, and the process is iterative. There can be one or more local minima in the residual sum of squares
surface, and the process depends on the starting values supplied by the user. You can reduce the dependence
on the starting values and reduce the chance to arrive at a local minimum by specifying a grid of starting
values. The NLIN procedure then computes the residual sum of squares at each point on the grid and starts the
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iterative process from the point that yields the lowest sum of squares. Even in this case, however, convergence
does not guarantee that a global minimum has been found.

The numerical behavior of a model and a model–data combination can depend on the way in which you
parameterize the model—for example, whether parameters are expressed on the logarithmic scale or not.
Parameterization also has bearing on the interpretation of the estimated quantities and the statistical properties
of the parameter estimators. Inferential procedures in nonlinear regression models are typically approximate
in that they rely on the asymptotic properties of the parameter estimators that are obtained as the sample
size grows without bound. Such asymptotic inference can be questionable in small samples, especially
if the behavior of the parameter estimators is “far-from-linear.” Reparameterization of the model can
yield parameters whose behavior is akin to that of estimators in linear models. These parameters exhibit
close-to-linear behavior.

The NLIN procedure solves the nonlinear least squares problem by one of the following four algorithms
(methods):

• steepest-descent or gradient method

• Newton method

• modified Gauss-Newton method

• Marquardt method

These methods use derivatives or approximations to derivatives of the SSE with respect to the parameters
to guide the search for the parameters producing the smallest SSE. Derivatives computed automatically by
the NLIN procedure are analytic, unless the model contains functions for which an analytic derivative is not
available.

Using PROC NLIN, you can also do the following:

• confine the estimation procedure to a certain range of values of the parameters by imposing bounds on
the estimates

• produce new SAS data sets containing predicted values, parameter estimates, residuals and other model
diagnostics, estimates at each iteration, and so forth.

You can use the NLIN procedure for segmented models (see Example 69.1) or robust regression (see
Example 69.2). You can also use it to compute maximum-likelihood estimates for certain models (see
Jennrich and Moore 1975; Charnes, Frome, and Yu 1976). For maximum likelihood estimation in a model
with a linear predictor and binomial error distribution, see the LOGISTIC, PROBIT, GENMOD, GLIMMIX,
and CATMOD procedures. For a linear model with a Poisson, gamma, or inverse Gaussian error distribution,
see the GENMOD and GLIMMIX procedures. For likelihood estimation in a linear model with a normal
error distribution, see the MIXED, GENMOD, and GLIMMIX procedures. The PHREG and LIFEREG
procedures fit survival models by maximum likelihood. For general maximum likelihood estimation, see the
NLP procedure in the SAS/OR User’s Guide: Mathematical Programming and the NLMIXED procedure.
These procedures are recommended over the NLIN procedure for solving maximum likelihood problems.

PROC NLIN uses the Output Delivery System (ODS). ODS enables you to convert any of the output from
PROC NLIN into a SAS data set. See the section “ODS Table Names” on page 5632 for a listing of the ODS
tables that are produced by the NLIN procedure.
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PROC NLIN exploits all the available cores on a multicore machine during bootstrap estimation and parameter
profiling. It does so by performing multiple optimizations in parallel for these tasks. see the BOOTSTRAP
and PROFILE statements.

In addition, PROC NLIN can produce graphs when ODS Graphics is enabled. For more information, see the
PLOTS option and the section “ODS Graphics” on page 5633 for a listing of the ODS graphs.

Getting Started: NLIN Procedure

Nonlinear or Linear Model
The NLIN procedure performs univariate nonlinear regression by using the least squares method. Nonlinear
regression analysis is indicated when the functional relationship between the response variable and the
predictor variables is nonlinear. Nonlinearity in this context refers to a nonlinear relationship in the parameters.
Many linear regression models exhibit a relationship in the regressor (predictor) variables that is not simply
a straight line. This does not make the models nonlinear. A model is nonlinear in the parameters if the
derivative of the model with respect to a parameter depends on this or other parameters.

Consider, for example the models

EŒY jx� D ˇ0 C ˇ1x

EŒY jx� D ˇ0 C ˇ1x C ˇ2x2

EŒY jx� D ˇ C x=˛

In these expressions, EŒY jx� denotes the expected value of the response variable Y at the fixed value of x.
(The conditioning on x simply indicates that the predictor variables are assumed to be non-random in models
fit by the NLIN procedure. Conditioning is often omitted for brevity in this chapter.)

Only the third model is a nonlinear model. The first model is a simple linear regression. It is linear in the
parameters ˇ0 and ˇ1 since the model derivatives do not depend on unknowns:

@

ˇ0
.ˇ0 C ˇ1x/ D 1

@

ˇ1
.ˇ0 C ˇ1x/ D x

The model is also linear in its relationship with x (a straight line). The second model is also linear in the
parameters, since

@

ˇ0

�
ˇ0 C ˇ1x C ˇ2x

2
�
D 1

@

ˇ1

�
ˇ0 C ˇ1x C ˇ2x

2
�
D x

@

ˇ2

�
ˇ0 C ˇ1x C ˇ2x

2
�
D x2
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It is a curvilinear model since it exhibits a curved relationship when plotted against x. The third model,
finally, is a nonlinear model since

@

ˇ
.ˇ C x=˛/ D 1

@

˛
.ˇ C x=˛/ D �

x

˛2

The second of these derivatives depends on a parameter ˛. A model is nonlinear if it is not linear in at least
one parameter.

Notation for Nonlinear Regression Models
This section briefly introduces the basic notation for nonlinear regression models that applies in this chapter.
Additional notation is introduced throughout as needed.

The .n � 1/ vector of observed responses is denoted as y. This vector is the realization of an .n � 1/ random
vector Y. The NLIN procedure assumes that the variance matrix of this random vector is �2I. In other words,
the observations have equal variance (are homoscedastic) and are uncorrelated. By defining the special
variable _WEIGHT_ in your NLIN programming statements, you can introduce heterogeneous variances. If a
_WEIGHT_ variable is present, then VarŒY� D �2W�1, where W is a diagonal matrix containing the values
of the _WEIGHT_ variable.

The mean of the random vector is represented by a nonlinear model that depends on parameters ˇ1; � � � ; ˇp
and regressor (independent) variables z1; � � � ; zk:

EŒYi � D f
�
ˇ1; ˇ2; � � � ; ˇpI zi1; � � � ; zik

�
In contrast to linear models, the number of regressor variables (k) does not necessarily equal the number of
parameters (p) in the mean function f . /. For example, the model fitted in the next subsection contains a
single regressor and two parameters.

To represent the mean of the vector of observations, boldface notation is used in an obvious extension of the
previous equation:

EŒY� D f.ˇI z1; � � � ; zk/

The vector z1, for example, is an .n � 1/ vector of the values for the first regressor variables. The explicit
dependence of the mean function on ˇ and/or the z vectors is often omitted for brevity.

In summary, the stochastic structure of models fit with the NLIN procedure is mathematically captured by

Y D f.ˇI z1; � � � ; zk/C �
EŒ�� D 0

VarŒ�� D �2I

Note that the residual variance �2 is typically also unknown. Since it is not estimated in the same fashion as
the other p parameters, it is often not counted in the number of parameters of the nonlinear regression. An
estimate of �2 is obtained after the model fit by the method of moments based on the residual sum of squares.
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A matrix that plays an important role in fitting nonlinear regression models is the .n � p/ matrix of the first
partial derivatives of the mean function f with respect to the p model parameters. It is frequently denoted as

X D
@f .ˇI z1; � � � ; zk/

@ˇ

The use of the symbol X—common in linear statistical modeling—is no accident here. The first derivative
matrix plays a similar role in nonlinear regression to that of the X matrix in a linear model. For example, the
asymptotic variance of the nonlinear least-squares estimators is proportional to .X0X/�1, and projection-type
matrices in nonlinear regressions are based on X.X0X/�1X0. Also, fitting a nonlinear regression model can
be cast as an iterative process where a nonlinear model is approximated by a series of linear models in which
the derivative matrix is the regressor matrix. An important difference between linear and nonlinear models is
that the derivatives in a linear model do not depend on any parameters (see previous subsection). In contrast,
the derivative matrix @f.ˇ/=@ˇ is a function of at least one element of ˇ. It is this dependence that lies at the
core of the fact that estimating the parameters in a nonlinear model cannot be accomplished in closed form,
but it is an iterative process that commences with user-supplied starting values and attempts to continually
improve on the parameter estimates.

Estimating the Parameters in the Nonlinear Model
As an example of a nonlinear regression analysis, consider the following theoretical model of enzyme kinetics.
The model relates the initial velocity of an enzymatic reaction to the substrate concentration.

f .x;�/ D
�1xi

�2 C xi
; for i D 1; 2; : : : ; n

where xi represents the amount of substrate for n trials and f .x;�/ is the velocity of the reaction. The
vector � contains the rate parameters. This model is known as the Michaelis-Menten model in biochemistry
(Ratkowsky 1990, p. 59). The model exists in many parameterizations. In the form shown here, �1 is
the maximum velocity of the reaction that is theoretically attainable. The parameter �2 is the substrate
concentration at which the velocity is 50% of the maximum.

Suppose that you want to study the relationship between concentration and velocity for a particular en-
zyme/substrate pair. You record the reaction rate (velocity) observed at different substrate concentrations.

A SAS data set is created for this experiment in the following DATA step:

data Enzyme;
input Concentration Velocity @@;
datalines;

0.26 124.7 0.30 126.9
0.48 135.9 0.50 137.6
0.54 139.6 0.68 141.1
0.82 142.8 1.14 147.6
1.28 149.8 1.38 149.4
1.80 153.9 2.30 152.5
2.44 154.5 2.48 154.7
;
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The SAS data set Enzyme contains the two variables Concentration (substrate concentration) and Velocity
(reaction rate). The following statements fit the Michaelis-Menten model by nonlinear least squares:

proc nlin data=Enzyme method=marquardt hougaard;
parms theta1=155

theta2=0 to 0.07 by 0.01;
model Velocity = theta1*Concentration / (theta2 + Concentration);

run;

The DATA= option specifies that the SAS data set Enzyme be used in the analysis. The METHOD= option
directs PROC NLIN to use the MARQUARDT iterative method. The HOUGAARD option requests that a
skewness measure be calculated for the parameters.

The PARMS statement declares the parameters and specifies their initial values. Suppose that V represents
the velocity and C represents the substrate concentration. In this example, the initial estimates listed in the
PARMS statement for �1 and �2 are obtained as follows:

�1: Because the model is a monotonic increasing function in C, and because

lim
C!1

�
�1C

�2 C C

�
D �1

you can take the largest observed value of the variable Velocity (154.7) as the initial value for the
parameter Theta1. Thus, the PARMS statement specifies 155 as the initial value for Theta1, which is
approximately equal to the maximum observed velocity.

�2: To obtain an initial value for the parameter �2, first rearrange the model equation to solve for �2:

�2 D
�1C

V
� C

By substituting the initial value of Theta1 for �1 and taking each pair of observed values of Concen-
tration and Velocity for C and V, respectively, you obtain a set of possible starting values for Theta2
ranging from about 0.01 to 0.07.

You can choose any value within this range as a starting value for Theta2, or you can direct PROC NLIN
to perform a preliminary search for the best initial Theta2 value within that range of values. The PARMS
statement specifies a range of values for Theta2, resulting in a search over the grid points from 0 to 0.07 in
increments of 0.01.
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The MODEL statement specifies the enzymatic reaction model

V D
�1C

�2 C C

in terms of the data set variables Velocity and Concentration and in terms of the parameters in the PARMS
statement.

The results from this PROC NLIN invocation are displayed in the following figures.

PROC NLIN evaluates the model at each point on the specified grid for the Theta2 parameter. Figure 69.1
displays the calculations resulting from the grid search.

Figure 69.1 Nonlinear Least-Squares Grid Search

The NLIN Procedure
Dependent Variable Velocity

The NLIN Procedure
Dependent Variable Velocity

Grid Search

theta1 theta2
Sum of

Squares

155.0 0 3075.4

155.0 0.0100 2074.1

155.0 0.0200 1310.3

155.0 0.0300 752.0

155.0 0.0400 371.9

155.0 0.0500 147.2

155.0 0.0600 58.1130

155.0 0.0700 87.9662

The parameter Theta1 is held constant at its specified initial value of 155, the grid is traversed, and the residual
sum of squares is computed at each point. The “best” starting value is the point that corresponds to the smallest
value of the residual sum of squares. The best set of starting values is obtained for �1 D 155; �2 D 0:06

(Figure 69.1). PROC NLIN uses this point from which to start the following, iterative phase of nonlinear
least-squares estimation.
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Figure 69.2 displays the iteration history. Note that the first entry in the “Iterative Phase” table echoes the
starting values and the residual sum of squares for the best value combination in Figure 69.1. The subsequent
rows of the table show the updates of the parameter estimates and the improvement (decrease) in the residual
sum of squares. For this data-and-model combination, the first iteration yielded a large improvement in the
sum of squares (from 58.113 to 19.7017). Further steps were necessary to improve the estimates in order to
achieve the convergence criterion. The NLIN procedure by default determines convergence by using R, the
relative offset measure of Bates and Watts (1981). Convergence is declared when this measure is less than
10�5—in this example, after three iterations.

Figure 69.2 Iteration History and Convergence Status

The NLIN Procedure
Dependent Variable Velocity

Method: Marquardt

The NLIN Procedure
Dependent Variable Velocity

Method: Marquardt

Iterative Phase

Iter theta1 theta2
Sum of

Squares

0 155.0 0.0600 58.1130

1 158.0 0.0736 19.7017

2 158.1 0.0741 19.6606

3 158.1 0.0741 19.6606

NOTE: Convergence criterion met.

Figure 69.3 Estimation Summary

Estimation Summary

Method Marquardt

Iterations 3

R 5.861E-6

PPC(theta2) 8.569E-7

RPC(theta2) 0.000078

Object 2.902E-7

Objective 19.66059

Observations Read 14

Observations Used 14

Observations Missing 0

A summary of the estimation including several convergence measures (R, PPC, RPC, and Object) is displayed
in Figure 69.3.
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The “R” measure in Figure 69.3 is the relative offset convergence measure of Bates and Watts. A “PPC”
value of 8.569E–7 indicates that the parameter Theta2 (which has the largest PPC value of the parameters)
would change by that relative amount, if PROC NLIN were to take an additional iteration step. The “RPC”
value indicates that Theta2 changed by 0.000078, relative to its value in the last iteration. These changes
are measured before step length adjustments are made. The “Object” measure indicates that the objective
function changed by 2.902E–7 in relative value from the last iteration.

Figure 69.4 displays the analysis of variance table for the model. The table displays the degrees of freedom,
sums of squares, and mean squares along with the model F test.

Figure 69.4 Nonlinear Least-Squares Analysis of Variance

Note: An intercept was not specified for this model.

Source DF
Sum of

Squares
Mean

Square F Value
Approx

Pr > F

Model 2 290116 145058 88537.2 <.0001

Error 12 19.6606 1.6384

Uncorrected Total 14 290135

Figure 69.5 Parameter Estimates and Approximate 95% Confidence Intervals

Parameter Estimate
Approx

Std Error

Approximate
95%

Confidence
Limits Skewness

theta1 158.1 0.6737 156.6 159.6 0.0152

theta2 0.0741 0.00313 0.0673 0.0809 0.0362

Figure 69.5 displays the estimates for each parameter, the associated asymptotic standard error, and the upper
and lower values for the asymptotic 95% confidence interval. PROC NLIN also displays the asymptotic
correlations between the estimated parameters (not shown).

The skewness measures of 0.0152 and 0.0362 indicate that the parameter estimators exhibit close-to-linear
behavior and that their standard errors and confidence intervals can be safely used for inferences.

Thus, the estimated nonlinear model that relates reaction velocity and substrate concentration can be written
as

bV D 158:1C

0:0741C C

where bV represents the predicted velocity or rate of the reaction and C represents the substrate concentration.
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Syntax: NLIN Procedure
The following statements are available in the NLIN procedure:

PROC NLIN < options > ;
BOOTSTRAP < / options > ;
BOUNDS inequality < , . . . , inequality > ;
BY variables ;
CONTROL variable < =values > < . . . variable < =values > > ;
DER. parameter=expression ;
DER. parameter.parameter=expression ;
ID variables ;
MODEL dependent = expression ;
OUTPUT OUT=SAS-data-set keyword=names < . . . keyword=names > ;
PARAMETERS < parameter-specification > < , . . . , parameter-specification >

< / PDATA=SAS-data-set > ;
PROFILE parameter < . . . parameter > < / options > ;
RETAIN variable < =values > < . . . variable < =values > > ;
Programming statements ;

The statements in the NLIN procedure, in addition to the PROC NLIN statement, are as follows:

BOOTSTRAP requests bootstrap resampling and estimation

BOUNDS constrains the parameter estimates within specified bounds

BY specifies variables to define subgroups for the analysis

DER specifies the first or second partial derivatives

ID specifies additional variables to add to the output data set

MODEL defines the relationship between the dependent and independent variables (the
mean function)

OUTPUT creates an output data set containing observation-wise statistics

PARAMETERS identifies parameters to be estimated and their starting values

PROFILE identifies parameters to be profiled

Programming Statements includes assignment statements, ARRAY statements, DO loops, and other
program control statements. These are valid SAS expressions that can appear
in the DATA step. PROC NLIN enables you to create new variables within
the procedure and use them in the nonlinear analysis. These programming
statements can appear anywhere in the PROC NLIN code, but new variables
must be created before they appear in other statements. The NLIN procedure
automatically creates several variables that are also available for use in the
analysis. See the section “Special Variables” on page 5618 for more information.

The PROC NLIN, PARAMETERS, and MODEL statements are required.
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PROC NLIN Statement
PROC NLIN < options > ;

The PROC NLIN statement invokes the NLIN procedure.

Table 69.1 summarizes the options available in the PROC NLIN statement. All options are subsequently
discussed in alphabetical order.

Table 69.1 Summary of Options in PROC NLIN Statement

Option Description

Options Related to Data Sets
DATA= Specifies the input data set
OUTEST= Specifies the output data set for parameter estimates, covariance

matrix, and so on
SAVE Requests that final estimates be added to the OUTEST= data set

Optimization Options
BEST= Limits display of grid search
METHOD= Chooses the optimization method
MAXITER= Specifies the maximum number of iterations
MAXSUBIT= Specifies the maximum number of step halvings
NOHALVE Allows the objective function to increase between iterations
RHO= Controls the step-size search
SMETHOD= Specifies the step-size search method
TAU= Controls the step-size search
G4 Uses the Moore-Penrose inverse
UNCORRECTEDDF Does not expense degrees of freedom when bounds are active
SIGSQ= Specifies the fixed value for residual variance

Singularity and Convergence Criteria
CONVERGE= Tunes the convergence criterion
CONVERGEOBJ= Uses the change in loss function as the convergence criterion and

tunes its value
CONVERGEPARM= Uses the maximum change in parameter estimates as the conver-

gence criterion and tunes its value
SINGULAR= Tunes the singularity criterion used in matrix inversions

ODS Graphics Options
PLOTS= Produces ODS graphical displays

Displayed Output
HOUGAARD Adds Hougaard’s skewness measure to the “Parameter Estimates”

table
BIAS Adds Box’s bias measure to the “Parameter Estimates” table
NOITPRINT Suppresses the “Iteration History” table
NOPRINT Suppresses displayed output
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Table 69.1 continued

Option Description

LIST Displays the model program and variable list
LISTALL Selects the LIST, LISTDEP, LISTDER, and LISTCODE options
LISTCODE Displays the model program code
LISTDEP Displays dependencies of model variables
LISTDER Displays the derivative table
NLINMEASURES Displays the global nonlinearity measures table
TOTALSS Adds the uncorrected or corrected total sum of squares to the analy-

sis of variance table
XREF Displays the cross-reference of variables

Trace Model Execution
FLOW Displays execution messages for program statements
PRINT Displays results of statements in model program
TRACE Displays results of operations in model program

ALPHA=˛
specifies the level of significance ˛ used in the construction of 100.1 � ˛/% confidence intervals. The
value must be strictly between 0 and 1; the default value of ˛ D 0:05 results in 95% intervals. This
value is used as the default confidence level for limits computed in the “Parameter Estimates” table
and with the LCLM, LCL, UCLM, and UCL options in the OUTPUT statement.

BEST=n
requests that PROC NLIN display the residual sums of squares only for the best n combinations of
possible starting values from the grid. If you do not specify the BEST= option, PROC NLIN displays
the residual sum of squares for every combination of possible parameter starting values.

BIAS
adds Box’s bias and percentage bias measures to the “Parameter Estimates” table (Box 1971). Box’s
bias measure, along with Hougaard’s measure of skewness, is used for assessing a parameter estimator’s
close-to-linear behavior (Ratkowsky 1983, 1990). Hence, it is useful for identifying problematic
parameters (Seber and Wild 1989, sec. 4.7.1). When you specify the BIAS option, Box’s bias measure
(Box 1971) and the percentage bias (the bias expressed as a percentage of the least-squares estimator)
are added for each parameter to the “Parameter Estimates” table. Ratkowsky (1983, p. 21) takes a
percentage bias in excess of 1% to be a good rule of thumb for indicating nonlinear behavior.

See the section “Box’s Measure of Bias” on page 5611 for further details. Example 69.4 shows
how to use this measure, along with Hougaard’s measure of skewness, to evaluate changes in the
parameterization of a nonlinear model. Computation of the Box’s bias measure requires first and
second derivatives. If you do not provide derivatives with the DER statement—and it is recommended
that you do not—the analytic derivatives are computed for you.

CONVERGE=c
specifies the convergence criterion for PROC NLIN. For all iterative methods the relative offset
convergence measure of Bates and Watts is used by default to determine convergence. This measure
is labeled “R” in the “Estimation Summary” table. The iterations are said to have converged for
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CONVERGE=c ifs
r0X.X0X/�1X0r

LOSS.i/
< c

where r is the residual vector and X is the .n � p/ matrix of first derivatives with respect to the
parameters. The default LOSS function is the sum of squared errors (SSE), and LOSS.i/ denotes the
value of the loss function at the ith iteration. By default, CONVERGE=10�5. The R convergence
measure cannot be computed accurately in the special case of a perfect fit (residuals close to zero).
When the SSE is less than the value of the SINGULAR= criterion, convergence is assumed.

CONVERGEOBJ=c
uses the change in the LOSS function as the convergence criterion and tunes the criterion. The iterations
are said to have converged for CONVERGEOBJ=c if

jLOSS.i�1/ � LOSS.i/j

jLOSS.i�1/ C 10�6j
< c

where LOSS.i/ is the LOSS for the ith iteration. The default LOSS function is the sum of squared
errors (SSE), the residual sum of squares. The constant c should be a small positive number. For more
details about the LOSS function, see the section “Special Variable Used to Determine Convergence
Criteria” on page 5619. For more details about the computational methods in the NLIN procedure, see
the section “Computational Methods” on page 5621.

Note that in SAS 6 the CONVERGE= and CONVERGEOBJ= options both requested that convergence
be tracked by the relative change in the loss function. If you specify the CONVERGEOBJ= option in
newer releases, the CONVERGE= option is disabled. This enables you to track convergence as in SAS
6.

CONVERGEPARM=c
uses the maximum change among parameter estimates as the convergence criterion and tunes the
criterion. The iterations are said to have converged for CONVERGEPARM=c if

max
j

0@ jˇ.i�1/j � ˇ
.i/
j j

jˇ
.i�1/
j j

1A < c
where ˇ.i/j is the value of the jth parameter at the ith iteration.

The default convergence criterion is CONVERGE. If you specify CONVERGEPARM=c, the maximum
change in parameters is used as the convergence criterion. If you specify both the CONVERGEOBJ=
and CONVERGEPARM= options, PROC NLIN continues to iterate until the decrease in LOSS is
sufficiently small (as determined by the CONVERGEOBJ= option) and the maximum change among
the parameters is sufficiently small (as determined by the CONVERGEPARM= option).

DATA=SAS-data-set
specifies the input SAS data set to be analyzed by PROC NLIN. If you omit the DATA= option, the
most recently created SAS data set is used.
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FLOW
displays a message for each statement in the model program as it is executed. This debugging option is
rarely needed, and it produces large amounts of output.

G4
uses a Moore-Penrose inverse (g4-inverse) in parameter estimation. See Kennedy and Gentle (1980)
for details.

HOUGAARD
adds Hougaard’s measure of skewness to the “Parameter Estimates” table (Hougaard 1982, 1985). The
skewness measure is one method of assessing a parameter estimator’s close-to-linear behavior in the
sense of Ratkowsky (1983, 1990). The behavior of estimators that are close to linear approaches that of
least squares estimators in linear models, which are unbiased and have minimum variance. When you
specify the HOUGAARD option, the standardized skewness measure of Hougaard (1985) is added for
each parameter to the “Parameter Estimates” table. Because of the linkage between nonlinear behavior
of a parameter estimator in nonlinear regression and the nonnormality of the estimator’s sampling
distribution, Ratkowsky (1990, p. 28) provides the following rules to interpret the (standardized)
Hougaard skewness measure:

• Values less than 0.1 in absolute value indicate very close-to-linear behavior.

• Values between 0.1 and 0.25 in absolute value indicate reasonably close-to-linear behavior.

• The nonlinear behavior is apparent for absolute values above 0.25 and is considerable for absolute
values above 1.

See the section “Hougaard’s Measure of Skewness” on page 5611 for further details. Example 69.4
shows how to use this measure to evaluate changes in the parameterization of a nonlinear model.
Computation of the Hougaard skewness measure requires first and second derivatives. If you do not
provide derivatives with the DER statement—and it is recommended that you do not—the analytic
derivatives are computed for you. For weighted least squares, the NLIN procedure ignores the weights
for computing the Hougaard skewness measure. This can be a strong assumption as the formulation in
Hougaard (1985) assumes homoscedastic errors.

LIST
displays the model program and variable lists, including the statements added by macros. Note that
the expressions displayed by the LIST option do not necessarily represent the way the expression is
actually calculated—because intermediate results for common subexpressions can be reused—but are
shown in expanded form. To see how the expression is actually evaluated, use the LISTCODE option.

LISTALL
selects the LIST, LISTDEP, LISTDER, and LISTCODE options.

LISTCODE
displays the derivative tables and the compiled model program code. The LISTCODE option is a
debugging feature and is not normally needed.

LISTDEP
produces a report that lists, for each variable in the model program, the variables that depend on it and
the variables on which it depends.
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LISTDER
displays a table of derivatives. The derivatives table lists each nonzero derivative computed for the
problem. The derivative listed can be a constant, a variable in the model program, or a special derivative
variable created to hold the result of an expression.

MAXITER=n
specifies the maximum number n of iterations in the optimization process. The default is n = 100.

MAXSUBIT=n
places a limit on the number of step halvings. The value of MAXSUBIT must be a positive integer and
the default value is n = 30.

METHOD=GAUSS | MARQUARDT | NEWTON | GRADIENT
specifies the iterative method employed by the NLIN procedure in solving the nonlinear least squares
problem. The GAUSS, MARQUARDT, and NEWTON methods are more robust than the GRA-
DIENT method. If you omit the METHOD= option, METHOD=GAUSS is used. See the section
“Computational Methods” on page 5621 for more information.

NLINMEASURES
displays the global nonlinearity measures table. These measures include the maximum intrinsic
and parameter-effects curvatures (Bates and Watts 1980), the root mean square (RMS) intrinsic and
parameter-effects curvatures and the critical curvature value (Bates and Watts 1980). In addition, the
variances of the ordinary and projected residuals are included. According to Bates and Watts (1980),
both intrinsic and parameter-effects curvatures are deemed negligible if they are less than the critical
curvature value. This critical value is given by 1=.

p
F / where F D F.p; n� pI˛/. The value 1=

p
F

can be considered as the radius of curvature of the 100.1 � ˛/ percent confidence region (Bates and
Watts 1980). For weighted least squares, the NLIN procedure ignores the weights for computing the
curvature measures. This can be a strong assumption as the original derivation in Bates and Watts
(1980) assumes homoscedastic errors.

NOITPRINT
suppresses the display of the “Iteration History” table.

NOHALVE
removes the restriction that the objective value must decrease at every iteration. Step halving is still
used to satisfy BOUNDS and to ensure that the number of observations that can be evaluated does not
decrease. The NOHALVE option can be useful in weighted nonlinear least squares problems where
the weights depend on the parameters, such as in iteratively reweighted least squares (IRLS) fitting.
See Example 69.2 for an application of IRLS fitting.

NOPRINT
suppresses the display of the output. Note that this option temporarily disables the Output Delivery
System (ODS). For more information, see Chapter 20, “Using the Output Delivery System.”

OUTEST=SAS-data-set
specifies an output data set that contains the parameter estimates produced at each iteration. See the
section “Output Data Sets” for details. If you want to create a SAS data set in a permanent library, you
must specify a two-level name. For more information about permanent libraries and SAS data sets, see
SAS Language Reference: Concepts.
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PLOTS < (global-plot-option) > < = (plot-request< (options) > < ... plot-request< (options) > >) >
controls most of the plots that are produced through ODS Graphics (other plots are controlled by the
BOOTSTRAP and PROFILE statements). When you specify only one plot-request , you can omit the
parentheses around it. Here are some examples:

plots
plots = none
plots = diagnostics(unpack)
plots = fit(stats=none)
plots = residuals(residualtype=proj unpack smooth)
plots(stats=all) = (diagnostics(stats=(maxincurv maxpecurv)) fit)

ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;

proc nlin plots=diagnostics(stats=all);
model y = alpha - beta*(gamma**x);

run;

ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

If ODS Graphics is enabled and if you specify the PLOTS option without any global-plot-option or
plot-requests, PROC NLIN produces the plots listed in Table 69.2 with the default set of statistics and
options. If you do not specify the PLOTS option, PROC NLIN does not produce any of these graphs.

Table 69.2 Graphs Produced When the PLOTS Option Is Specified

Plot Conditional On

ContourFitPlot Model with two regressors
FitDiagnosticsPanel Unconditional
FitPlot Model with one regressor
LeveragePlot Unconditional
LocalInfluencePlot Unconditional
ResidualPanel Unconditional

You can request additional plots by specifying plot-requests. For a listing of all the plots that PROC
NLIN produces, see the section “ODS Graphics” on page 5633. Each global-plot-option applies
to all plots that are generated by the NLIN procedure except for plots that are controlled by the
BOOTSTRAP and PROFILE statements. The global-plot-option can be overridden by a specific option
after a plot-request .

The following global-plot-options are available:
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RESIDUALTYPE=RAW | PROJ | BOTH
specifies the residual type to be plotted in the fit diagnostics and residual plots. RESIDUAL-
TYPE=RAW requests that only the ordinary residuals be included in the plots; RESIDUAL-
TYPE=PROJ sets the choice to projected residuals. By default, both residual types are included,
which can also be effected by setting RESIDUALTYPE=BOTH. See the section “Residuals in
Nonlinear Regression” on page 5614 for details about the properties of ordinary and projected
residuals in nonlinear regression.

STATS=ALL | DEFAULT | NONE | (plot-statistics)
requests the statistics to be included in all plots, except the ResidualPlots and the unpacked
diagnostics plots. Table 69.3 lists the statistics that you can request. STATS=ALL requests
all these statistics, STATS=NONE suppresses all statistics, and STATS=DEFAULT selects the
default statistics. You request statistics in addition to the default set by including the keyword
DEFAULT in the plot-statistics list.

Table 69.3 Statistics Available in Plots

Keyword Default Description

DEFAULT All default statistics
MAXINCURV Maximum intrinsic curvature
MAXPECURV Maximum parameter-effects curvature
MSE x Mean squared error, estimated or set by the SIGSQ option
NOBS x Number of observations used
NPARM x Number of parameters in the model
PVAR x Estimated variance of the projected residuals
RMSINCURV Root mean square intrinsic curvature
RMSPECURV Root mean square parameter-effects curvature
VAR x Estimated variance of the ordinary residuals

Along with the maximum intrinsic and parameter-effects curvatures, the critical curvature
(CURVCRIT) value, 1=

p
F where F D F.p; n � pI˛/, is also displayed. You do not need

to specify any option for it. See the section “Relative Curvature Measures of Nonlinearity” on
page 5612 for details about curvature measures of nonlinearity.

UNPACK
suppresses paneling.
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You can specify the following plot-requests in the PLOTS= option:

ALL
produces all appropriate plots.

NONE
suppresses all plots.

DIAGNOSTICS < (diagnostics-options) >
produces a summary panel of fit diagnostics, leverage plots, and local-influence plots. The fit
diagnostics panel includes:

• histogram of the ordinary residuals
• histogram of the projected residuals
• response variable values versus the predicted values
• expectation or mean of the ordinary residuals versus the predicted values
• ordinary and projected residuals versus the predicted values
• standardized ordinary and projected residuals versus the predicted values
• standardized ordinary and projected residuals versus the tangential leverage
• standardized ordinary and projected residuals versus the Jacobian leverage
• box plot of the ordinary and projected residuals if you specify the STATS=NONE suboption

The leverage and local influence plots are produced separately. The leverage plot is an index plot
of the tangential and Jacobian leverages (by observation), and the local-influence plot contains
the local influence by observation for a perturbation of the response variable. See the sections
“Leverage in Nonlinear Regression” on page 5613 and “Local Influence in Nonlinear Regression”
on page 5613 for a some details about leverages and local-influence in nonlinear regression.

You can specify the following diagnostics-options:

RESIDUALTYPE=RAW | PROJ | BOTH
specifies the residual type to be plotted in the panel. See the RESIDUALTYPE= global-
plot-option for details. This diagnostics-option overrides the PLOTS RESIDUALTYPE
global-plot-option. Only the plots that overlay both ordinary and projected residuals in the
same plot are affected by this option.

LEVERAGETYPE=TAN | JAC | BOTH
specifies the leverage type to be plotted in the leverage plot. LEVERAGETYPE=TAN
specifies that only the tangential leverage be included in the leverage plot, and LEVER-
AGETYPE=JAC specifies that only the Jacobian leverage be included. By default, both
are displayed in the leverage plot. The same result can be effected by setting LEVER-
AGETYPE=BOTH. Only the leverage plot is affected by this option.

LABELOBS
specifies that the leverage and local-influence plots be labeled with the observation number.
Only these two plots are affected by this option.
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STATS=stats-options
determines which statistics are included in the panel. See the STATS= global-plot-option for
details. This diagnostics-option overrides the PLOTS STATS global-plot-option.

UNPACK
produces the plots in the diagnostics panel as individual plots. The statistics panel is not
included in the individual plots, even if STATS= global-plot-option or STATS= diagnostics-
option or both are specified.

FITPLOT | FIT < (fit-options) >
produces, depending on the number of regressors, a scatter or contour fit plot. For a single-
regressor model, a scatter plot of the data overlaid with the regression curve, confidence, and
prediction bands is produced. For two-regressor models, a contour fit plot of the model with
overlaid data is produced. If the model contains more than two regressors, no fit plot is produced.

You can specify the following fit-options:

NOCLI
suppresses the prediction limits for single-regressor models.

NOCLM
suppresses the confidence limits for single-regressor models.

NOLIMITS
suppresses the confidence and prediction limits for single-regressor models.

OBS=GRADIENT | NONE | OUTLINE | OUTLINEGRADIENT
controls how the observations are displayed. The suboptions are as follows:

GRADIENT specifies that observations be displayed as circles colored by the observed
response. The same color gradient is used to display the fitted surface
and the observations. Observations for which the predicted response
is close to the observed response have similar colors—the greater the
contrast between the color of an observation and the surface, the larger
the residual is at that point. OBS=GRADIENT is the default.

NONE suppresses the observations.

OUTLINE specifies that observations be displayed as circles with a border but with
a completely transparent fill.

OUTLINEGRADIENT is the same as OBS=GRADIENT except that a border is shown
around each observation. This option is useful for identifying the location
observations for which the residuals are small, because at these points the
color of the observations and the color of the surface are indistinguishable.

CONTLEG
specifies that a continuous legend be included in the contour fit plot of a two-regressor
model.
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STATS=stats-options
determines which model fit statistics are included in the panel. See the STATS= global-plot-
option for details. This fit-option overrides the PLOTS STATS global-plot-option.

RESIDUALS < (residual-options) >
produces panels of the ordinary and projected residuals versus the regressors in the model. Each
panel contains at most six plots, and multiple panels are used in the case where there are more
than six regressors in the model.

The following residual-options are available:

RESIDUALTYPE=RAW | PROJ | BOTH
specifies the residual type to be plotted in the panel. See the RESIDUALTYPE= global-plot-
option for details. This residual-option overrides the PLOTS RESIDUALTYPE global-plot-
option.

SMOOTH
requests a nonparametric smooth of the residuals for each regressor. Each nonparametric
fit is a loess fit that uses local linear polynomials, linear interpolation, and a smoothing
parameter selected that yields a local minimum of the corrected Akaike information criterion
(AICC). See Chapter 59, “The LOESS Procedure,” for details.

UNPACK
suppresses paneling.

PRINT
displays the result of each statement in the program as it is executed. This option is a debugging feature
that produces large amounts of output and is normally not needed.

RHO=value
specifies a value that controls the step-size search. By default RHO=0.1, except when
METHOD=MARQUARDT. In that case, RHO=10. See the section “Step-Size Search” on page 5626
for more details.

SAVE
specifies that, when the iteration limit is exceeded, the parameter estimates from the final iteration
be output to the OUTEST= data set. These parameter estimates are associated with the observation
for which _TYPE_=“FINAL”. If you omit the SAVE option, the parameter estimates from the final
iteration are not output to the data set unless convergence has been attained.

SIGSQ=value
specifies a value to use as the estimate of the residual variance in lieu of the estimated mean-squared
error. This value is used in computing the standard errors of the estimates. Fixing the value of the
residual variance can be useful, for example, in maximum likelihood estimation.

SINGULAR=s
specifies the singularity criterion, s, which is the absolute magnitude of the smallest pivot value allowed
when inverting the Hessian or the approximation to the Hessian. The default value is 1E4 times the
machine epsilon; this product is approximately 1E-12 on most computers.
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SMETHOD=HALVE | GOLDEN | CUBIC
specifies the step-size search method. The default is SMETHOD=HALVE. See the section “Step-Size
Search” on page 5626 for details.

TAU=value
specifies a value that is used to control the step-size search. The default is TAU=1, except when
METHOD=MARQUARDT. In that case the default is TAU=0.01. See the section “Step-Size Search”
on page 5626 for details.

TOTALSS
adds to the analysis of variance table the uncorrected total sum of squares in models that have an
(implied) intercept, and adds the corrected total sum of squares in models that do not have an (implied)
intercept.

TRACE
displays the result of each operation in each statement in the model program as it is executed, in
addition to the information displayed by the FLOW and PRINT options. This debugging option is
needed very rarely, and it produces even more output than the FLOW and PRINT options.

XREF
displays a cross-reference of the variables in the model program showing where each variable is
referenced or given a value. The XREF listing does not include derivative variables.

UNCORRECTEDDF
specifies that no degrees of freedom be lost when a bound is active. When the UNCORRECTEDDF
option is not specified, an active bound is treated as if a restriction were applied to the set of parameters,
so one parameter degree of freedom is deducted.

BOOTSTRAP Statement
BOOTSTRAP < / options > ;

A BOOTSTRAP statement requests bootstrap estimation of confidence intervals, the covariance matrix,
and the correlation matrix of parameter estimates. To produce the plots that are are controlled by the
BOOTSTRAP statement, ODS Graphics must be enabled. If the main data set contains observations that
PROC NLIN deems unusable, the procedure issues a message that these observations are excluded from the
bootstrap resampling. PROC NLIN ignores the BOOTSTRAP statement for nonconvergent and singular
models.

Table 69.4 summarizes the options available in the BOOTSTRAP statement.

Table 69.4 Summary of Options in BOOTSTRAP Statement

Option Description

BOOTCI Produces bootstrap confidence intervals of the parameters
BOOTCORR Produces a bootstrap correlation matrix estimate table
BOOTCOV Produces a bootstrap covariance matrix estimate table
BOOTDATA= Specifies the bootstrap output data set
BOOTPLOTS Produces plots of the bootstrap parameter estimates
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Table 69.4 continued

Option Description

DGP= Specifies the bootstrap data generating process (DGP)
NSAMPLES= Specifies the number of bootstrap sample data sets (replicates)
SEED= Provides the seed that initializes the random number stream

BOOTCI < (BC | NORMAL | PERC | ALL) >
produces bootstrap-based confidence intervals for the parameters and adds columns that contain these
values to the “Parameter Estimates” table. You can specify the following types of bootstrap confidence
intervals:

BC produces bias-corrected confidence intervals.

NORMAL produces confidence intervals based on the assumption that bootstrap parameter
estimates follow a normal distribution.

PERC produces percentile-based confidence intervals.

ALL produces all three confidence intervals.

The ALPHA= option in the PROC NLIN statement sets the level of significance that is used in
constructing these bootstrap confidence intervals. By default, without the BOOTCI option, PROC
NLIN produces bias-corrected (BC) confidence intervals and adds a column that contains the standard
deviation of the bootstrap parameter estimates to the “Parameter Estimates” table. For more information,
see the section “Bootstrap Resampling and Estimation” on page 5615.

BOOTCORR
produces the “Bootstrap Correlation Matrix” table, which contains a bootstrap estimate of the correla-
tion matrix of the parameter estimates. For more information, see the section “Bootstrap Resampling
and Estimation” on page 5615.

BOOTCOV
produces the “Bootstrap Covariance Matrix” table, which contains a bootstrap estimate of the covari-
ance matrix of the parameter estimates. For more information, see the section “Bootstrap Resampling
and Estimation” on page 5615.

BOOTDATA=SAS-data-set
specifies the SAS data set that contains the bootstrap sample data when you use a BOOTSTRAP
statement. For more information about this data set, see the section “Output Data Sets” on page 5626.

BOOTPLOTS < (HIST | SCATTER | ALL) >
produces ODS graphics of bootstrap parameter estimates. You can specify the following types of plots:

HIST produces histograms of the bootstrap parameter estimates.

SCATTER produces pairwise scatter plots of the bootstrap parameter estimates.

ALL produces both plots.

By default, if ODS Graphics is enabled, PROC NLIN produces histograms of the bootstrap parameter
estimates.
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DGP=RESIDUAL < (scaling-option) > | WILD
specifies the bootstrap data generating process (DGP). DGP=RESIDUAL requests the residual boot-
strap, and DGP=WILD requests the wild bootstrap. The scaling-option determines the type of residual
scaling to be performed for DGP=RESIDUAL.

Table 69.5 Scaling Options Available for DGP=RESIDUAL

Keyword Description

ADJSSE Simple uniform scaling
JAC Scaling based on Jacobian leverage
RAW No scaling
TAN Scaling based on tangential leverage

By default, if the BOOTSTRAP statement is specified with no DGP= option or if no scaling-option
is specified for DGP=RESIDUAL, PROC NLIN performs a residual bootstrap with simple scaling
(ADJSSE) for unweighted least squares and a wild bootstrap (WILD) for weighted least squares. For
more information, see the section “Bootstrap Resampling and Estimation” on page 5615.

NSAMPLES=n
specifies the number of bootstrap sample data sets (replicates). By default, NSAMPLES=1000. For
more information, see the section “Bootstrap Resampling and Estimation” on page 5615.

SEED=n
provides the seed that initializes the random number stream for generating the bootstrap sample data
sets (replicates). If you do not specify the SEED= value or if you specify a value less than or equal to
0, the seed is generated from reading the time of day from the computer’s clock. The largest possible
value for the seed is 231 � 1. The _SEED_ in the data set that is produced by the the BOOTDATA=
option contains the value that is used as the initial seed for a particular replicate.

You can use the SYSRANDOM and SYSRANEND macro variables after a PROC NLIN run to
query the initial and final seed values. However, using the final seed value as the starting seed for a
subsequent analysis does not continue the random number stream where the previous analysis left off.
The SYSRANEND macro variable provides a mechanism to pass on seed values to ensure that the
sequence of random numbers is the same every time you run an entire program.

BOUNDS Statement
BOUNDS inequality < , . . . , inequality > ;

The BOUNDS statement restricts the parameter estimates so that they lie within specified regions. In each
BOUNDS statement, you can specify a series of boundary values separated by commas. The series of
bounds is applied simultaneously. Each boundary specification consists of a list of parameters, an inequality
comparison operator, and a value. In a single-bounded expression, these three elements follow one another in
the order described. The following are examples of valid single-bounded expressions:
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bounds a1-a10 <= 20;
bounds c > 30;
bounds a b c > 0;

Multiple-bounded expressions are also permitted. For example:

bounds 0 <= B<= 10;
bounds 15 < x1 <= 30;
bounds r <= s <= p < q;

If you need to restrict an expression involving several parameters (for example, ˛ C ˇ < 1), you can
reparameterize the model so that the expression becomes a parameter or so that the boundary constraint
can be expressed as a simple relationship between two parameters. For example, the boundary constraint
˛ C ˇ < 1 in the model

model y = alpha + beta*x;

can be achieved by parameterizing � D 1 � ˇ as follows:

bounds alpha < theta;
model y = alpha + (1-theta)*x;

Starting with SAS 7.01, Lagrange multipliers are reported for all bounds that are enforced (active) when the
estimation terminates. In the “Parameter Estimates” table, the Lagrange multiplier estimates are identified
with names Bound1, Bound2, and so forth. An active bound is treated as if a restriction were applied to the
set of parameters so that one parameter degree of freedom is deducted. You can use the UNCORRECTEDDF
option to prevent the loss of degrees of freedom when bounds are active.

BY Statement
BY variables ;

You can specify a BY statement with PROC NLIN to obtain separate analyses of observations in groups that
are defined by the BY variables. When a BY statement appears, the procedure expects the input data set to be
sorted in order of the BY variables. If you specify more than one BY statement, only the last one specified is
used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the NLIN procedure. The
NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.



5598 F Chapter 69: The NLIN Procedure

CONTROL Statement
CONTROL variable < =values > < . . . variable < =values > > ;

The CONTROL statement declares control variables and specifies their values. A control variable is like
a retained variable (see the section “RETAIN Statement” on page 5607) except that it is retained across
iterations, and the derivative of the model with respect to a control variable is always zero.

DER Statement
DER. parameter=expression ;

DER. parameter.parameter=expression ;

The DER statement specifies first or second partial derivatives. By default, analytical derivatives are
automatically computed. However, you can specify the derivatives yourself by using the DER.parm syntax.
Use the first form shown to specify first partial derivatives, and use the second form to specify second partial
derivatives. Note that the DER.parm syntax is retained for backward compatibility. The automatic analytical
derivatives are, in general, a better choice. For additional information about automatic analytical derivatives,
see the section “Automatic Derivatives” on page 5609.

For most of the computational methods, you need only specify the first partial derivative with respect to each
parameter to be estimated. For the NEWTON method, specify both the first and the second derivatives. If
any needed derivatives are not specified, they are automatically computed.

The expression can be an algebraic representation of the partial derivative of the expression in the MODEL
statement with respect to the parameter or parameters that appear on the left side of the DER statement.
Numerical derivatives can also be used. The expression in the DER statement must conform to the rules for a
valid SAS expression, and it can include any quantities that the MODEL statement expression contains.

ID Statement
ID variables ;

The ID statement specifies additional variables to place in the output data set created by the OUTPUT
statement. Any variable on the left side of any assignment statement is eligible. Also, the special variables
created by the procedure can be specified. Variables in the input data set do not need to be specified in the ID
statement since they are automatically included in the output data set.

MODEL Statement
MODEL dependent = expression ;

The MODEL statement defines the prediction equation by declaring the dependent variable and defining an
expression that evaluates predicted values. The expression can be any valid SAS expression that yields a
numeric result. The expression can include parameter names, variables in the data set, and variables created
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by programming statements in the NLIN procedure. Any operators or functions that can be used in a DATA
step can also be used in the MODEL statement.

A statement such as

model y=expression;

is translated into the form

model.y=expression;

using the compound variable name model.y to hold the predicted value. You can use this assignment directly
as an alternative to the MODEL statement. Either a MODEL statement or an assignment to a compound
variable such as model.y must appear.

OUTPUT Statement
OUTPUT OUT=SAS-data-set keyword=names < . . . keyword=names > < / options > ;

The OUTPUT statement specifies an output data set to contain statistics calculated for each observation. For
each statistic, specify the keyword , an equal sign, and a variable name for the statistic in the output data
set. All of the names appearing in the OUTPUT statement must be valid SAS names, and none of the new
variable names can match a variable already existing in the data set to which PROC NLIN is applied.

If an observation includes a missing value for one of the independent variables, both the predicted value and
the residual value are missing for that observation. If the iterations fail to converge, all the values of all the
variables named in the OUTPUT statement are missing values.

Table 69.6 summarizes the options available in the OUTPUT statement.

Table 69.6 OUTPUT Statement Options

Option Description

Output data set and OUTPUT statement options
ALPHA= Specifies the level of significance ˛
DER Saves the first derivatives of the model
OUT= Specifies the output data set

Keyword options
H= Specifies the tangential leverage
J= Specifies the Jacobian leverage
L95= Specifies the lower bound of an approximate 95% prediction interval
L95M= Specifies the lower bound of an approximate 95% confidence interval for

the mean
LCL= Specifies the lower bound of an approximate 100.1�˛/% prediction interval
LCLM= Specifies the lower bound of an approximate 100.1 � ˛/% confidence

interval for the mean
LMAX= Specifies the direction of maximum local influence
PARMS= Specifies the parameter estimates
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Table 69.6 continued

Option Description

PREDICTED= Specifies the predicted values
PROJRES= Specifies the projected residuals
PROJSTUDENT= Specifies the standardized projected residuals
RESEXPEC= Specifies the mean of the residuals
RESIDUAL= Specifies the residuals
SSE= Specifies the residual sum of squares
STDI= Specifies the standard error of the individual predicted value
STDP= Specifies the standard error of the mean predicted value
STDR= Specifies the standard error of the residual
STUDENT= Specifies the standardized residuals
U95= Specifies the upper bound of an approximate 95% prediction interval
U95M= Specifies the upper bound of an approximate 95% confidence interval for

the mean
UCL= Specifies the upper bound of an approximate 100.1�˛/% prediction interval
UCLM= Specifies the upper bound of an approximate 100.1 � ˛/% confidence

interval for the mean
WEIGHT= Specifies the special variable _WEIGHT_

You can specify the following options in the OUTPUT statement. For a description of computational formulas,
see Chapter 4, “Introduction to Regression Procedures.”

OUT=SAS-data-set
specifies the SAS data set to be created by PROC NLIN when an OUTPUT statement is included. The
new data set includes the variables in the input data set. Also included are any ID variables specified in
the ID statement, plus new variables with names that are specified in the OUTPUT statement.

The following values can be calculated and output to the new data set.

H=name
specifies a variable that contains the tangential leverage. See the section “Leverage in Nonlinear
Regression” on page 5613 for details.

J=name
specifies a variable that contains the Jacobian leverage. See the section “Leverage in Nonlinear
Regression” on page 5613 for details.

L95=name
specifies a variable that contains the lower bound of an approximate 95% confidence interval for an
individual prediction. This includes the variance of the error as well as the variance of the parameter
estimates. See also the description for the U95= option later in this section.

L95M=name
specifies a variable that contains the lower bound of an approximate 95% confidence interval for the
expected value (mean). See also the description for the U95M= option later in this section.
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LCL=name
specifies a variable that contains the lower bound of an approximate 100.1 � ˛/% confidence interval
for an individual prediction. The ˛ level is equal to the value of the ALPHA= option in the OUTPUT
statement or, if this option is not specified, to the value of the ALPHA= option in the PROC NLIN
statement. If neither of these options is specified, then ˛ D 0:05 by default, resulting in a lower
bound for an approximate 95% confidence interval. For the corresponding upper bound, see the UCL
keyword.

LCLM=name
specifies a variable that contains the lower bound of an approximate 100.1 � ˛/% confidence interval
for the expected value (mean). The ˛ level is equal to the value of the ALPHA= option in the OUTPUT
statement or, if this option is not specified, to the value of the ALPHA= option in the PROC NLIN
statement. If neither of these options is specified, then ˛ D 0:05 by default, resulting in a lower bound
for an approximate 95% confidence interval. For the corresponding lower bound, see the UCLM
keyword.

LMAX=name
specifies a variable that contains the direction of maximum local influence of an additive perturbation
of the response variable. See the section “Local Influence in Nonlinear Regression” on page 5613 for
details.

PARMS=names
specifies variables in the output data set that contains parameter estimates. These can be the same
variable names that are listed in the PARAMETERS statement; however, you can choose new names
for the parameters identified in the sequence from the parameter estimates table. A note in the log
indicates which variable in the output data set is associated with which parameter name. Note that, for
each of these new variables, the values are the same for every observation in the new data set.

PREDICTED=name

P=name
specifies a variable in the output data set that contains the predicted values of the dependent variable.

PROJRES=name
specifies a variable that contains the projected residuals obtained by projecting the residuals (ordinary
residuals) into the null space of .X jH/. For the ordinary residuals, see the RESIDUAL= option later in
this section. The section “Residuals in Nonlinear Regression” on page 5614 describes the statistical
properties of projected residuals in nonlinear regression.

PROJSTUDENT=name
specifies a variable that contains the standardized projected residuals. See the section
“Residuals in Nonlinear Regression” on page 5614 for details and the STUDENT= option later
in this section.

RESEXPEC=name
specifies a variable that contains the mean of the residuals. In contrast to linear regres-
sions where the mean of the residuals is zero, in nonlinear regression the residuals have a
nonzero mean value and show a negative covariance with the mean response. See the section
“Residuals in Nonlinear Regression” on page 5614 for details.
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RESIDUAL=name

R=name
specifies a variable in the output data set that contains the residuals. See also the
description of PROJRES= option stated previously in this section and the section
“Residuals in Nonlinear Regression” on page 5614 for the statistical properties of residuals and
projected residuals.

SSE=name

ESS=name
specifies a variable in the output data set that contains the residual sum of squares finally determined
by the procedure. The value of the variable is the same for every observation in the new data set.

STDI=name
specifies a variable that contains the standard error of the individual predicted value.

STDP=name
specifies a variable that contains the standard error of the mean predicted value.

STDR=name
specifies a variable that contains the standard error of the residual.

STUDENT=name
specifies a variable that contains the standardized residuals. These are residuals divided by their
estimated standard deviation. See the PROJSTUDENT= option defined previously in this section and
the section “Residuals in Nonlinear Regression” on page 5614 for the statistical properties of residuals
and projected residuals.

U95=name
specifies a variable that contains the upper bound of an approximate 95% confidence interval for an
individual prediction. See also the description for the L95= option.

U95M=name
specifies a variable that contains the upper bound of an approximate 95% confidence interval for the
expected value (mean). See also the description for the L95M= option.

UCL=name
specifies a variable that contains the upper bound of an approximate 100.1 � ˛/% confidence interval
an individual prediction. The ˛ level is equal to the value of the ALPHA= option in the OUTPUT
statement or, if this option is not specified, to the value of the ALPHA= option in the PROC NLIN
statement. If neither of these options is specified, then ˛ D 0:05 by default, resulting in an upper
bound for an approximate 95% confidence interval. For the corresponding lower bound, see the LCL
keyword.

UCLM=name
specifies a variable that contains the upper bound of an approximate 100.1 � ˛/% confidence interval
for the expected value (mean). The ˛ level is equal to the value of the ALPHA= option in the OUTPUT
statement or, if this option is not specified, to the value of the ALPHA= option in the PROC NLIN
statement. If neither of these options is specified, then ˛ D 0:05 by default, resulting in an upper
bound for an approximate 95% confidence interval. For the corresponding lower bound, see the LCLM
keyword.
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WEIGHT=name
specifies a variable in the output data set that contains values of the special variable _WEIGHT_.

You can specify the following options in the OUTPUT statement after a slash (/) :

ALPHA=˛
specifies the level of significance ˛ for 100.1� ˛/% confidence intervals. By default, ˛ is equal to the
value of the ALPHA= option in the PROC NLIN statement or 0.05 if that option is not specified. You
can supply values that are strictly between 0 and 1.

DER
saves the first derivatives of the model with respect to the parameters to the OUTPUT data set. The
derivatives are named DER_parmname, where “parmname” is the name of the model parameter in
your NLIN statements. You can use the DER option to extract the X D @f=@ˇ matrix into a SAS data
set. For example, the following statements create the data set nlinX, which contains the X matrix:

proc nlin;
parms theta1=155 theta3=0.04;
model V = theta1*c / (theta3 + c);
output out=nlinout / der;

run;

data nlinX;
set nlinout(keep=DER_:);

run;

The derivatives are evaluated at the final parameter estimates.

PARAMETERS Statement
PARAMETERS < parameter-specification > < , . . . , parameter-specification >

< / PDATA=SAS-data-set > ;

PARMS < parameter-specification > < , . . . , parameter-specification >
< / PDATA=SAS-data-set > ;

A PARAMETERS (or PARMS) statement is required. The purpose of this statement is to provide starting
values for the NLIN procedure. You can provide values that define a point in the parameter space or a set of
points.

All parameters must be assigned starting values through the PARAMETERS statement. The NLIN procedure
does not assign default starting values to parameters in your model that do not appear in the PARAMETERS
statement. However, it is not necessary to supply parameters and starting values explicitly through a
parameter-specification. Starting values can also be provided through a data set. The names assigned to
parameters must be valid SAS names and must not coincide with names of variables in the input data set (see
the DATA= option in the PROC NLIN statement). Parameters that are assigned starting values through the
PARAMETERS statement can be omitted from the estimation, for example, if the expression in the MODEL
statement does not depend on them.
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Assigning Starting Values with Parameter-Specification

A parameter-specification has the general form

name = value-list

where name identifies the parameter and value-list provides the set of starting values for the parameter.

Very often, the value-list contains only a single value, but more general and flexible list specifications are
possible:

m a single value

m1, m2, . . . , mn several values

m TO n a sequence where m equals the starting value, n equals the ending value, and the
increment equals 1

m TO n BY i a sequence where m equals the starting value, n equals the ending value, and the
increment is i

m1, m2 TO m3 mixed values and sequences

When you specify more than one value for a parameter, PROC NLIN sorts the values in ascending sequence
and removes duplicate values from the parameter list before forming the grid for the parameter search. If you
specify several values for each parameter, PROC NLIN evaluates the model at each point on the grid. The
iterations then commence from the point on the grid that yields the smallest objective function value.

For example, the following PARMS statement specifies five parameters and sets their possible starting values
as shown in the table:

parms b0 = 0
b1 = 4 to 8
b2 = 0 to .6 by .2
b3 = 1, 10, 100
b4 = 0, .5, 1 to 4;

Possible starting values

B0 B1 B2 B3 B4

0 4 0.0 1 0.0
5 0.2 10 0.5
6 0.4 100 1.0
7 0.6 2.0
8 3.0

4.0

Residual sums of squares are calculated for each of the 1 � 5 � 4 � 3 � 6 D 360 combinations of possible
starting values. (Specifying a large grid of values can take considerable computing time.)

If you specify a starting value with a parameter-specification, any starting values provided for this parameter
through the PDATA= data set are ignored. The parameter-specification overrides the information in the
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PDATA= data set. When you specify a BY statement, the same parameter-specification is applied in each
BY group. To vary starting values with BY groups, use the PDATA= option in the PARAMETERS statement
as described in the following paragraphs.

Assigning Starting Values from a SAS Data Set

The PDATA= option in the PARAMETERS statement enables you to assign starting values for parameters
through a SAS data set. The data set must contain at least two variables that identify the parameter and
contain starting values, respectively. The character variable identifying the parameters must be named
Parameter or Parm. The numeric variable containing the starting value must be named Estimate or Est. This
enables you, for example, to use the contents of the ParameterEstimates table from one PROC NLIN run to
supply starting values for a subsequent run, as in the following example:

proc nlin data=FirstData;
parameters alpha=100 beta=3 gamma=4;
< other NLIN statements >
model y = ... ;
ods output ParameterEstimates=pest;

run;

proc nlin data=SecondData;
parameters / pdata=pest;
Switch = 1/(1+gamma*exp(beta*log(dose)));
model y = alpha*Switch;

run;

You can specify multiple values for a parameter in the PDATA= data set, and the parameters can appear in any
order. The starting values are collected by parameter and arranged in ascending order, and duplicate values
are removed. The parameter names in the PDATA= data set are not case sensitive. For example, the following
DATA step defines starting values for three parameters and a starting grid with 1 � 3 � 1 D 3 points:

data test;
input Parameter $ Estimate;
datalines;

alpha 100
BETA 4
beta 4.1

beta 4.2
beta 4.1
gamma 30

;

If starting values for a parameter are provided through the PDATA= data set and through an explicit
parameter-specification, the latter takes precedence.

When you specify a BY statement, you can control whether the same starting values are applied to each BY
group or whether the starting values are varied. If the BY variables are not present in the PDATA= data set,
the entire contents of the PDATA= data set are applied in each BY group. If the BY variables are present in
the PDATA= data set, then BY-group-specific starting values are assigned.
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PROFILE Statement
PROFILE < . . . parameter > < / options > ;

A PROFILE statement selects parameters for profiling to assess their nonlinear characteristics. It can also
gauge the influence of each observation on the selected parameters. If none of the parameters is specified in
the PROFILE statement, all parameters are selected for profiling. To produce the plots that are controlled by
the PROFILE statement, ODS Graphics must be enabled. If there are observations in the main data set that
PROC NLIN deems unusable, the procedure issues a message stating that these observations are excluded
from the parameter profiling. PROC NLIN ignores PROFILE statements for nonconvergent and singular
models.

Table 69.8 summarizes the options available in the PROFILE statement.

Table 69.8 Summary of Options in PROFILE Statement

Option Description

ALL Produces all profiling related plots and statistics
CONFCURV Produces confidence curves for the listed parameters
JACKKNIFE Produces plots of the absolute relative percentage change by observation

for the listed parameters
PROFDATA= Specifies the profile output data set
RANGE= Specifies a profiling range
TPLOT Produces profile t plots for the listed parameters

ALL
produces all appropriate plots for the parameters that are listed in the PROFILE statement. This option
overrides all other options. If the PROFDATA= option is specified, the values of the corresponding
statistics are written to the data set.

CONFCURV
produces confidence curves for each parameter listed in the PROFILE statement. If the PROFDATA=
option is specified, the values of the corresponding statistics are written to the data set. See the
section “Profiling Parameters and Assessing the Influence of Observations on Parameter Estimates” on
page 5615 for details.

JACKKNIFE
produces, for each parameter listed in the PROFILE statement, plots of absolute relative percentage
change in the value of the parameter that results from a fit to a jackknife-resampled datum versus
observation number. The jackknife resampling is performed with a leave-one-out method. If the
PROFDATA= option is specified, the values of the corresponding statistics are written to the data
set. See the section “Profiling Parameters and Assessing the Influence of Observations on Parameter
Estimates” on page 5615 for details.

PROFDATA=SAS-data-set
specifies the SAS data set to be created by PROC NLIN when a PROFILE statement is included. See
the section “Output Data Sets” on page 5626 for details about this data set.
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RANGE=f to t by b
specifies a profiling range for each parameter listed in the PROFILE statement. f , t and b represent
the starting, final, and consecutive incremental values of the range in terms of the standard errors of the
parameters to be profiled. If you do not specify the RANGE= option, PROC NLIN uses –2, 2, and
0.2 as default values for f , t , and b , respectively. For example, if parameter ˇ is in the PROFILE
statement, then during the profiling of ˇ, PROC NLIN performs approximately (t – f )/b number
of constrained optimizations. At the ith constrained optimization, the value of ˇ is constrained to ˇi ,

ˇi D Ǒ C stderrˇ

 
f C i

�
t � f

�
b

!

and the rest of the parameters are freely optimized. In the preceding expression, Ǒ and stderrˇ are
the estimated value and standard error, respectively, for ˇ. If parameter bounds are specified with
BOUNDS statements, PROC NLIN enforces those bounds during the profiling optimizations.

NOTE: The profiling optimizations are performed using quasi-Newton algorithm. During these
optimizations, any optimization options specified in the PROC NLIN statement and the _LOSS_
variable are ignored.

TPLOT
produces profile t plots for each parameter listed in the PROFILE statement. If the PROFDATA=
option is specified, the values of the corresponding statistics are written to the data set. See the
section “Profiling Parameters and Assessing the Influence of Observations on Parameter Estimates” on
page 5615 for details.

RETAIN Statement
RETAIN variable < =values > < . . . variable < =values > > ;

The RETAIN statement declares retained variables and specifies their values. A retained variable is like a
control variable (see the section “CONTROL Statement” on page 5598) except that it is retained only within
iterations. An iteration involves a single pass through the data set.

Other Programming Statements
PROC NLIN supports many statements that are similar to SAS programming statements used in a DATA
step. However, there are some differences in capabilities; for additional information, see also the section
“Incompatibilities with SAS 6.11 and Earlier Versions of PROC NLIN” on page 5630.

Several SAS programming statements can be used after the PROC NLIN statement. These statements can
appear anywhere in the PROC NLIN code, but new variables must be created before they appear in other
statements. For example, the following statements are valid since they create the variable temp before it is
used in the MODEL statement:
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proc nlin;
parms b0=0 to 2 by 0.5 b1=0.01 to 0.09 by 0.01;
temp = exp(-b1*x);
model y=b0*(1-temp);

run;

The following statements result in missing values for y because the variable temp is undefined before it is
used:

proc nlin;
parms b0=0 to 2 by 0.5 b1=0.01 to 0.09 by 0.01;
model y = b0*(1-temp);
temp = exp(-b1*x);

run;

PROC NLIN can process assignment statements, explicitly or implicitly subscripted ARRAY statements,
explicitly or implicitly subscripted array references, IF statements, SAS functions, and program control
statements. You can use programming statements to create new SAS variables for the duration of the
procedure. These variables are not included in the data set to which PROC NLIN is applied. Program
statements can include variables in the DATA= data set, parameter names, variables created by preceding
programming statements within PROC NLIN, and special variables used by PROC NLIN. The following
SAS programming statements can be used in PROC NLIN:

ABORT;
ARRAY arrayname < [ dimensions ] > < $ > < variables-and-constants >;
CALL name < (expression < , expression . . . >) >;
DELETE;
DO < variable = expression < TO expression > < BY expression > >

< , expression < TO expression > < BY expression > > . . .
< WHILE expression > < UNTIL expression >;

END;
GOTO statement-label;
IF expression;
IF expression THEN program-statement;

ELSE program-statement;
variable = expression;
variable + expression;
LINK statement-label;
PUT < variable > < = > . . . ;
RETURN;
SELECT < (expression) >;
STOP;
SUBSTR(variable, index , length)= expression;
WHEN (expression)program-statement;

OTHERWISE program-statement;

These statements can use the special variables created by PROC NLIN. See the section “Special Variables”
on page 5618 for more information.
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Details: NLIN Procedure

Automatic Derivatives
Depending on the optimization method you select, analytical first- and second-order derivatives are computed
automatically. Derivatives can still be supplied using the DER.parm syntax. These DER.parm derivatives are
not verified by the differentiator. If any needed derivatives are not supplied, they are computed and added to
the programming statements. To view the computed derivatives, use the LISTDER or LIST option.

The following model is solved using Newton’s method. Analytical first- and second-order derivatives are
automatically computed. The compiled program code is shown in Figure 69.6.

proc nlin data=Enzyme method=newton list;
parms x1=4 x2=2;
model Velocity = x1 * exp (x2 * Concentration);

run;

Figure 69.6 Model and Derivative Code Output

The NLIN ProcedureThe NLIN Procedure

Listing of Compiled Program Code

Stmt Line:Col Statement as Parsed

1 1589:4 MODEL.Velocity = x1 * EXP(x2 * Concentration);

1 1589:4 @MODEL.Velocity/@x1 = EXP(x2 * Concentration);

1 1589:4 @MODEL.Velocity/@x2 = x1 * Concentration * EXP(x2 * Concentration);

1 1589:4 @@MODEL.Velocity/@x1/@x2 = Concentration * EXP(x2 * Concentration);

1 1589:4 @@MODEL.Velocity/@x2/@x1 = Concentration * EXP(x2 * Concentration);

1 1589:4 @@MODEL.Velocity/@x2/@x2 = x1 * Concentration * Concentration * EXP(x2 * Concentration);

Note that all the derivatives require the evaluation of EXP(X2 * Concentration). The actual machine-level
code is displayed if you specify the LISTCODE option, as in the following statements:

proc nlin data=Enzyme method=newton listcode;
parms x1=4 x2=2;
model Velocity = x1 * exp (x2 * Concentration);

run;

Note that, in the generated code, only one exponentiation is performed (Figure 69.7). The generated code
reuses previous operations to be more efficient.
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Figure 69.7 LISTCODE Output

The NLIN ProcedureThe NLIN Procedure

Code Listing

1 Stmt
MODEL

line 1596 column 4. (1) arg=MODEL.Velocity
argsave=MODEL.Velocity

Source Text: model Velocity = x1 * exp (x2 * Concentration);

Oper * at 1596:34 (30,0,2). * : _temp1 <- x2 Concentration

Oper EXP at 1596:30 (103,0,1). EXP : _temp2 <- _temp1

Oper * at 1596:24 (30,0,2). * : MODEL.Velocity <- x1 _temp2

Oper eeocf at 1596:24 (18,0,1). eeocf : _DER_ <- _DER_

Oper = at 1596:24 (1,0,1). = : @MODEL.Velocity/@x1 <- _temp2

Oper * at 1596:30 (30,0,2). * : @1dt1_1 <- Concentration _temp2

Oper * at 1596:24 (30,0,2). * : @MODEL.Velocity/@x2 <- x1 @1dt1_1

Oper = at 1596:24 (1,0,1). = : @@MODEL.Velocity/@x1/@x2 <- @1dt1_1

Oper = at 1596:24 (1,0,1). = : @@MODEL.Velocity/@x2/@x1 <- @1dt1_1

Oper * at 1596:30 (30,0,2). * : @2dt1_1 <- Concentration @1dt1_1

Oper * at 1596:24 (30,0,2). * : @@MODEL.Velocity/@x2/@x2 <- x1
@2dt1_1

Measures of Nonlinearity, Diagnostics and Inference
A “close-to-linear” nonlinear regression model, in the sense of Ratkowsky (1983, 1990), is a model in which
parameter estimators have properties similar to those in a linear regression model. That is, the least squares
estimators of the parameters are close to being unbiased and normally distributed, and they have minimum
variance.

A nonlinear regression model sometimes fails to be close to linear due to the properties of one or several
parameters. When this occurs, bias in the parameter estimates can render inferences that use the reported
standard errors and confidence limits invalid.

PROC NLIN provides various measures of nonlinearity. To assess the nonlinearity of a model-data combina-
tion, you can use both of the following complementary sets of measures:

• Box’s bias (Box 1971) and Hougaard’s skewness (Hougaard 1982, 1985) of the least squares parameter
estimates

• curvature measures of nonlinearity (Bates and Watts 1980).

Furthermore, PROC NLIN provides residual, leverage, and local-influence diagnostics (St. Laurent and Cook
1993).

In the following several sections, these nonlinearity measures and diagnostics are discussed. For this material,
several basic definitions are required. Let X be the Jacobian matrix for the model, X D @f

@ˇ
, and let Q and R

be the components of the QR decomposition of X D QR of X, where Q is an .n � n/ orthogonal matrix.
Finally, let B be the inverse of the matrix constructed from the first p rows of the .n � p/ dimensional matrix
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R (that is, B D R�1p ). Next define

�
Hj
�
kl
D

@2fj
@ˇk@ˇl�

Uj
�
kl
D

X
mn

B0km
�
Hj
�
mn

Bnl�
Aj
�
kl
D
p
p �mse

X
m

Q0jm ŒUm�kl ;

where H, U and the acceleration array A are three-dimensional .n � p � p/ matrices. The first p faces of the
acceleration array constitute a .p � p � p/ parameter-effects array and the last .n � p/ faces constitute the
.n � p � p � p/ intrinsic curvature array (Bates and Watts 1980). The previous and subsequent quantities
are computed at the least squares parameter estimators.

Box’s Measure of Bias

The degree to which parameter estimators exhibit close-to-linear behavior can be assessed with Box’s bias
(Box 1971) and Hougaard’s measure of skewness (Hougaard 1982, 1985). The bias and percentage bias
measures are available through the BIAS option in the PROC NLIN statement. Box’s bias measure is defined
as

bE hb̌� ˇi D ��2
2

�
X0WX

��1 nX
iD1

wix0i Tr
��
X0WX

��1
ŒHi �

�
where �2 D mse if the SIGSQ option is not set. Otherwise, �2 is the value you set with the SIGSQ option.
W is the diagonal weight matrix specified with the _WEIGHT_ variable (or the identity matrix if _WEIGHT_
is not defined) and ŒHi � is the .p � p/ Hessian matrix at the ith observation. In the case of unweighted least
squares, the bias formula can be expressed in terms of the acceleration array A,

bE hb̌i � ˇii D � �2

2p �mse

pX
j; kD1

Bij
�
Aj
�
kk

As the preceding formulas illustrate, the bias depends solely on the parameter-effects array, thereby permitting
its reduction through reparameterization. Example 69.4 shows how changing the parameterization of a four-
parameter logistic model can reduce the bias. Ratkowsky (1983, p. 21) recommends that you consider
reparameterization if the percentage bias exceeds 1%.

Hougaard’s Measure of Skewness

In addition to Box’s bias, Hougaard’s measure of skewness, g1i (Hougaard 1982, 1985), is also provided
in PROC NLIN to assess the close-to-linear behavior of parameter estimators. This measure is available
through the HOUGAARD option in the PROC NLIN statement. Hougaard’s skewness measure for the ith
parameter is based on the third central moment, defined as

E
hb̌
i � E

�b̌
i

�i3
D �

�
�2
�2X
jkl

ŒL�ij ŒL�ikŒL�il
��
Vj
�
kl
C ŒVk�jl C ŒVl �jk

�
where the sum is a triple sum over the number of parameters and

L D
�
X0X

��1
D

�
@f
@ˇ0

@f
@ˇ

��1
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The term ŒL�ij denotes the value in row i, column j of the matrix L. (Hougaard (1985) uses superscript
notation to denote elements in this inverse.) The matrix V is a three-dimensional .p � p � p/ array

�
Vj
�
kl
D

nX
mD1

@Fm

@ˇj

@2Fm

@ˇk@ˇl

The third central moment is then normalized using the standard error as

G1i D E
hb̌
i � E.b̌i /i3 = ��2 � ŒL�i i�3=2

The previous expressions depend on the unknown values of the parameters and on the residual variance �2.
In order to evaluate the Hougaard measure in a particular data set, the NLIN procedure computes

g1i D bE hb̌i � E.b̌i /i3 = �mse � ŒbL�i i�3=2
bE hb̌i � E.b̌i /i3 D �mse2

X
jkl

ŒbL�ij ŒbL�ikŒbL�il �ŒbVj �kl C ŒbVk�jl C ŒbVl �jk�

Following Ratkowsky (1990, p. 28), the parameter ˇi is considered to be very close to linear, reasonably
close, skewed, or quite nonlinear according to the absolute value of the Hougaard measure jg1i j being less
than 0.1, between 0.1 and 0.25, between 0.25 and 1, or greater than 1, respectively.

Relative Curvature Measures of Nonlinearity

Bates and Watts (1980) formulated the maximum parameter-effects and maximum intrinsic curvature
measures of nonlinearity to assess the close-to-linear behavior of nonlinear models. Ratkowsky (1990) notes
that of the two curvature components in a nonlinear model, the parameter-effects curvature is typically larger.
It is this component that you can affect by changing the parameterization of a model. PROC NLIN provides
these two measures of curvature both through the STATS plot-option and through the NLINMEASURES
option in the PROC NLIN statement.

The maximum parameter-effects and intrinsic curvatures are defined, in a compact form, as

T� D maxˇ
ˇ̌ˇ̌
ˇ
0

A�ˇ
ˇ̌ˇ̌

T� D maxˇ
ˇ̌ˇ̌
ˇ
0

A�ˇ
ˇ̌ˇ̌

where T� and T� denote the maximum parameter-effects and intrinsic curvatures, while A� and A� stand
for the parameter-effects and intrinsic curvature arrays. The maximization is carried out over a unit-vector
of the parameter values (Bates and Watts 1980). In line with Bates and Watts (1980), PROC NLIN takes
10�4 as the convergence tolerance for the maximum intrinsic and parameter-effects curvatures. Note that
the preceding matrix products involve contraction of the faces of the three-dimensional acceleration arrays
with the normalized parameter vector, ˇ. The corresponding expressions for the RMS (root mean square)
parameter-effects and intrinsic curvatures can be found in Bates and Watts (1980).

The statistical significance of T� and T� and the corresponding RMS values can be assessed by comparing
these values with 1=

p
F , where F is the upper ˛ � 100% quantile of an F distribution with p and n � p

degrees of freedom (Bates and Watts 1980).



Measures of Nonlinearity, Diagnostics and Inference F 5613

One motivation for fitting a nonlinear model in a different parameterization is to obtain a particular interpre-
tation and to give parameter estimators more close-to-linear behavior. Example 69.4 shows how changing the
parameterization of a four-parameter logistic model can reduce the parameter-effects curvature and can yield
a useful parameter interpretation at the same time. In addition, Example 69.6 shows a nonlinear model with a
high intrinsic curvature and the corresponding diagnostics.

Leverage in Nonlinear Regression

In contrast to linear regression, there are several measures of leverage in nonlinear regression. Furthermore,
in nonlinear regression, the effect of a change in the ith response on the ith predicted value might depend
on both the size of the change and the ith response itself (St. Laurent and Cook 1992). As a result, some
observations might show superleverage —namely, leverages in excess of one (St. Laurent and Cook 1992).

PROC NLIN provides two measures of leverages: tangential and Jacobian leverages through the PLOTS
option in the PROC NLIN statement and the H= and J= options of OUTPUT statement. Tangential leverage,
Hi , is based on approximating the nonlinear model with a linear model that parameterizes the tangent
plane at the least squares parameter estimators. In contrast, Jacobian leverage, Ji , is simply defined as the
instantaneous rate of change in the ith predicted value with respect to the ith response (St. Laurent and Cook
1992).

The mathematical formulas for tangential and Jacobian leverages are

Hi D wixi .X0WX/�1x0i
Ji D wixi .X0WX � ŒWe�ŒH�/�1x0i ;

where e is the vector of residuals, W is the diagonal weight matrix if you specify the special variable
_WEIGHT_ and otherwise the identity matrix, and i indexes the corresponding quantities for the ith observa-
tion. The brackets Œ:�Œ:� indicate column multiplication as defined in Bates and Watts (1980). The preceding
formula for tangential leverage holds if the gradient, Marquardt, or Gauss methods are used. For the Newton
method, the tangential leverage is set equal to the Jacobian leverage.

In a model with a large intrinsic curvature, the Jacobian and tangential leverages can be very different. In
fact, the two leverages are identical only if the model provides an exact fit to the data (e D 0) or the model is
intrinsically linear (St. Laurent and Cook 1993). This is also illustrated by the leverage plot and nonlinearity
measures provided in Example 69.6.

Local Influence in Nonlinear Regression

St. Laurent and Cook (1993) suggest using lmax, the direction that yields the maximum normal curvature,
to assess the local influence of an additive perturbation to the response variable on the estimation of the
parameters and variance of a nonlinear model. Defining the normal curvature components

Cˇ D maxl
2

�2
l 0Jl

C� D maxl
4

�2
l 0Pel

where J is the Jacobian leverage matrix and Pe D ee0=.e0e/, you choose the lmax that results in the
maximum of the two curvature components (St. Laurent and Cook 1993). PROC NLIN provides lmax
through the PLOTS option in the PROC NLIN statement and the LMAX= option in the OUTPUT statement.
Example 69.6 shows a plot of lmax for a model with high intrinsic curvature.
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Residuals in Nonlinear Regression

If a nonlinear model is intrinsically nonlinear, using the residuals e D y� Oy for diagnostics can be misleading
(Cook and Tsai 1985). This is due to the fact that in correctly specified intrinsically nonlinear models, the
residuals have nonzero means and different variances, even when the original error terms have identical
variances. Furthermore, the covariance between the residuals and the predicted values tends to be negative
semidefinite, complicating the interpretation of plots based on e (Cook and Tsai 1985).

Projected residuals are proposed by Cook and Tsai (1985) to overcome these shortcomings of residuals,
which are henceforth called raw (ordinary) residuals to differentiate them from their projected counterparts.
Projected residuals have zero means and are uncorrelated with the predicted values. In fact, projected
residuals are identical to the raw residuals in intrinsically linear models.

PROC NLIN provides raw and projected residuals, along with their standardized forms. In addition, the
mean or expectation of the raw residuals is available. These can be accessed with the PLOTS option in the
PROC NLIN statement and the OUTPUT statement options PROJRES=, PROJSTUDENT=, RESEXPEC=,
RESIDUAL= and STUDENT=.

Denote the projected residuals by ep and the expectation of the raw residuals by EŒe�. Then

ep D .In � Pxh/ e

E Œei � D �
�2

2

nX
jD1

QPx; ijTr
� �

Hj
� �

X0X
��1 �

where ei is the ith observation raw residual, In is an n-dimensional identity matrix, Pxh is the projector onto
the column space of .XjH/, and QPx D In � Px . The preceding formulas are general with the projectors
defined accordingly to take the weighting into consideration. In unweighted least squares, E Œe� reduces to

E Œe� D �
1

2
�2 QQa

with QQ being the last n � p columns of the Q matrix in the QR decomposition of X and the .n � p/
dimensional vector a being defined in terms of the intrinsic acceleration array

ai D
pX
jD1

�
AiCp

�
jj

Standardization of the projected residuals requires the variance of the projected residuals. This is estimated
using the formula (Cook and Tsai 1985)

�2p D
e0pep

Tr .In � Pxh/

The standardized raw and projected residuals, denoted by Qe and Qep respectively, are given by

Qe D
p
wi e

�
p
1 � Px;i i

Qep D
p
wi ep

�
p
1 � Pxh;i i

The use of raw and projected residuals for diagnostics in nonlinear regression is illustrated in Example 69.6.
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Profiling Parameters and Assessing the Influence of Observations on Parameter Estimates

The global measures of nonlinearity, discussed in the preceding section, are very useful for assessing the
overall nonlinearity of the model. However, the impact of global nonlinearity on inference regarding subsets
of the parameter set cannot be easily determined (Cook and Tsai 1985). The impact of the nonlinearity on
the uncertainty of individual parameters can be efficiently described by profile t plots and confidence curves
(Bates and Watts 1988; Cook and Weisberg 1990).

A profile t plot for parameter ˇ is a plot of the likelihood ratio pivotal statistic, �.ˇ/, and the corresponding
Wald pivotal statistic, �.ˇ/ (Bates and Watts 1988). The likelihood ratio pivotal statistic is defined as

�.ˇ/ D sign.ˇ � Ǒ/L.ˇ/

with

L.ˇ/ D

 
SSE.ˇ; Q‚/ � SSE. Ǒ; O‚/

mse

!1=2
where ˇ is the profile parameter and ‚ refers to the remaining parameters. SSE.ˇ; Q‚/ is the sum of square
errors where the profile parameter ˇ is constrained at a given value and Q‚ is the least squares estimate of ‚
conditional on a given value of ˇ. In contrast, SSE. Ǒ; O‚/ is the sum of square errors for the full model. For
linear models, �.ˇ/ matches �.ˇ/, which is defined as

�.ˇ/ D
ˇ � Ǒ

stderrˇ

where ˇ is the constrained value, Ǒ is the estimated value for the parameter, and stderrˇ is the standard error
for the parameter. Usually a profile t plot is overlaid with a reference line that passes through the origin and
has a slope of one. PROC NLIN follows this convention.

A confidence curve for a particular parameter is useful for validating Wald-based confidence intervals for
the parameter against likelihood-based confidence intervals (Cook and Weisberg 1990). A confidence curve
contains a scatter plot of the constrained parameter value versus L.ˇ/. The Wald-based confidence intervals
are overlaid as two straight lines that pass through .0; Ǒ/ with a slope of ˙stderrˇ . Hence, for different
levels of significance, you can easily compare the Wald-based confidence intervals against the corresponding
confidence intervals that are based on the likelihood ratio. Cook and Weisberg (1990) recommend that you
report a single Wald-based confidence interval only if there is a good agreement between the Wald and
likelihood intervals up to at least the 99% confidence level.

Compared to local influence, the leave-one-out method performs a more complete analysis of the influence
of observations on the values of parameter estimates. In this method, jackknife resampling removes each
observation in turn and fits the model to the remaining data set. Hence, a data set with n observations will
have n corresponding data sets with n–1 observations. The impact of each observation on a parameter is
assessed by the absolute relative percentage change in the value of the parameter compared with the reference
value from the full data.

Bootstrap Resampling and Estimation

Bootstrap resampling and estimation methods can be used to produce confidence intervals and covariance
matrix estimates that have second-order, O.1=n/ accuracy, where n is the number of observations (DiCiccio
and Efron 1996). In contrast, the standard Wald-based confidence interval has first-order, O.1=

p
n/ accuracy.
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Bootstrap methods achieve this higher accuracy at the cost of an orders-of-magnitude increase in numerical
computation compared to standard asymptotic approximations. However, dramatic increases in performance
and decreases in the cost of numerical computation have made bootstrap methods very attractive for routine
statistical inference (MacKinnon 2002).

PROC NLIN samples as many bootstrap sample data sets (replicates) as you specify in the NSAMPLES=
option and performs least squares fit on each replicate. For each least squares fit, PROC NLIN uses the
original parameter estimates as starting values for the model parameters. The statistics from the least squares
fits that converge are collected and used to produce confidence intervals, covariance and correlation matrices,
and histograms and scatter plots of the bootstrap parameter estimates.

Each replicate is obtained by sampling the residuals instead of the input data set. The sampled residuals are
used to simulate the response by using a bootstrap data generating process (DGP). PROC NLIN’s bootstrap
DGP produces replicates that contain the same number of observations as the number of usable observations
in the input data set. In fact, the bootstrap DGP for a particular replicate starts by discarding the input data
set observations that PROC NLIN deems unusable during the original least squares estimation. The next step
of the bootstrap DGP for a replicate can be represented by the formula

QYi D f . ǑI z0i /C Q�i

where QYi is the ith simulated response, Ǒ is the original least squares parameter estimate, z0i is the ith regressor
vector, and Q�i is the ith simulated error.

PROC NLIN makes several bootstrap DGP types available in the DGP= option of the BOOTSTRAP statement.
These bootstrap DGP types differ only in how they obtain the ith simulated error, Q�i . In general, Q�i can be
represented as

Q�i D sr Oer

where r is a uniform random integer between 1 and the number of usable observations, sr is a scale factor
that depends on the chosen bootstrap DGP options, and Oer is the rth residual obtained from the rth usable
observation of the original least squares fit. The scale factor, sr , that captures the differences among the
various bootstrap DGP types takes one of the following values:

sr D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

1 if DGP=RESIDUAL(RAW)q
n

n�p if DGP=RESIDUAL(ADJSSE)
1p
1�Hr

if DGP=RESIDUAL(TAN)
1p
1�Jr

if DGP=RESIDUAL(JAC)


p
1�Hr

if DGP=WILD

In the preceding formula, n is the number of usable observations, p is the number of model parameters, and
Hr and Jr are the rth tangential and Jacobian leverages, respectively. For the WILD bootstrap DGP (Wu
1986), which is the only bootstrap DGP type exclusively available for weighted least squares,  is a random
number given by

 D

8<: �
p
5�1
2

with probability
p
5C1

2
p
5p

5C1
2

with probability
p
5�1

2
p
5

PROC NLIN makes three types of bootstrap confidence intervals available in the BOOTCI option in the
BOOTSTRAP statement. These confidence intervals are the percentile, normal, and bias-corrected bootstrap
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confidence intervals. The computational details of these confidence intervals for ˇi , the ith model parameter,
follow. For simplicity of notation, denote ˇi as ˇ. Also, let B represent the number of replicates for which
the least squares fit converges

The option that computes the percentile bootstrap confidence interval, BOOTCI(PERC), does so by computing
the 100˛=2 and 100.1 � ˛=2/ percentiles from the bootstrap parameter estimates. ˛ is from the ALPHA=
option in the PROC NLIN statement. These percentiles are computed as follows. Let Q̌1; Q̌2; . . . ; Q̌B
represent the ordered values of the bootstrap estimates for ˇ. Let the kth weighted average percentile be y,
set p D k

100
, and let

np D j C g

where j is the integer part of np and g is the fractional part of np. Then the kth percentile, y, is given by

y D

8<:
1
2

�
Q̌
j C
Q̌
jC1

�
if g D 0

Q̌
jC1 if g > 0

which corresponds to the default percentile definition of the UNIVARIATE procedure.

In contrast, the BOOTCI(NORMAL) option in the BOOTSTRAP statement computes the normal bootstrap
confidence interval by approximating the distribution of the bootstrap parameter estimates as a normal
distribution. Consequently, the normal bootstrap confidence interval, for ˛ level, is given by
NQ̌ ˙ stdb Q̌ � z.1�˛=2/

where NQ̌ is the mean of the bootstrap estimates, Q̌; stdb Q̌ is the standard deviation of the bootstrap parameter

estimates; and z.1�˛=2/ is the 100.1 � ˛=2/ percentile of the standard normal distribution.

The BOOTSTRAP statement option that computes the bias-corrected bootstrap confidence interval,
BOOTCI(BC), does so by making use of the cumulative distribution function (CDF), G. Q̌/, of the bootstrap
parameter estimates to correct for the upper and lower endpoints of the ˛ level. The bias-corrected bootstrap
confidence interval is given by

G�1
�
ˆ.2z0˙z˛/

�
where ˆ is the standard normal CDF, z˛ D ˆ�1.˛/, and z0 is a bias correction given by

z0 D ˆ
�1

�
N
�
Q̌ � Ǒ

�
B

�
where Ǒ is the estimate of ˇ from the original least squares fit and N. Q̌ � Ǒ/ is the number of bootstrap
estimates, Q̌, that are less than or equal to Ǒ.

In addition, PROC NLIN produces bootstrap estimates of the covariance and correlation matrices. For the ith
and jth model parameters, the covariance is estimated by

Cov. Q̌i ; Q̌j / D
kDBX
kD1

. Q̌ik �
NQ̌
i /. Q̌jk �

NQ̌
j /

B � 1

where the sum runs over the nonmissing bootstrap parameter estimates. The bootstrap correlation matrix is
estimated by scaling the bootstrap covariance matrix

Corr. Q̌i ; Q̌j / D
Cov. Q̌i ; Q̌j /
stdb Q̌

i
stdb Q̌

j

where stdb Q̌
i

and stdb Q̌
j

are the bootstrap standard deviations for the ith and jth parameters.
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Missing Values
If the value of any one of the SAS variables involved in the model is missing from an observation, PROC
NLIN deems that observation unusable and omits it from the analysis. If only the value of the dependent
variable is missing, that observation has a predicted value calculated for it when you use an OUTPUT
statement and specify the PREDICTED= option.

If an observation includes a missing value for one of the independent variables, both the predicted value
and the residual value are missing for that observation. If the iterations fail to converge, the values for all
variables named in the OUTPUT statement are set to missing.

Special Variables
Several special variables are created automatically and can be used in PROC NLIN programming statements.

Special Variables with Values That Are Set by PROC NLIN

The values of the following six special variables are set by PROC NLIN and should not be reset to a different
value by programming statements:

_ERROR_ is set to 1 if a numerical error or invalid argument to a function occurs during the current
execution of the program. It is reset to 0 before each new execution.

_ITER_ represents the current iteration number. The variable _ITER_ is set to –1 during the grid
search phase.

_MODEL_ is set to 1 for passes through the data when only the predicted values are needed, and
not the derivatives. It is 0 when both predicted values and derivatives are needed. If
your derivative calculations consume a lot of time, you can save resources by using the
following statement after your MODEL statement but before your derivative calculations:

if _model_ then return;

The derivatives generated by PROC NLIN do this automatically.

_N_ indicates the number of times the PROC NLIN step has been executed. It is never reset
for successive passes through the data set.

_OBS_ indicates the observation number in the data set for the current program execution. It is
reset to 1 to start each pass through the data set (unlike the _N_ variable).

_SSE_ contains the error sum of squares of the last iteration. During the grid search phase, the
_SSE_ variable is set to 0. For iteration 0, the _SSE_ variable is set to the SSE associated
with the point chosen from the grid search.

PROC NLIN always sets the preceding special variables. In contrast, it sets the following special variables
only when the BOOTSTRAP or PROFILE statements are invoked:
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__COMPUTED_DEP__ is used to define _P_WEIGHTED_SSE_.

_P_WEIGHTED_SSE_ contains the error sum of squares for the optimization tasks that are required for
profiling parameters, assessing the influence of each observation on the estimate
of each profiled parameter, and bootstrap estimation.

Special Variable Used to Determine Convergence Criteria

The special variable _LOSS_ can be used to determine the criterion function for convergence and step
shortening. PROC NLIN looks for the variable _LOSS_ in the programming statements and, if it is defined,
uses the (weighted) sum of this value instead of the residual sum of squares to determine the criterion
function for convergence and step shortening. This feature is useful in certain types of maximum-likelihood
estimation.

NOTE: Even if you specify the _LOSS_ variable in your programming statements, the NLIN procedure
continues to solve a least squares problem. The specified _LOSS_ variable does not define or alter the
objective function for parameter estimation.

Weighted Regression with the Special Variable _WEIGHT_

To obtain weighted nonlinear least squares estimates of parameters, make an assignment to the _WEIGHT_
variable as in the following statement:

_weight_ = expression;

When this statement is included, the expression on the right side of the assignment statement is evaluated for
each observation in the data set. The values multiplied by 1=�2 are then taken as inverse elements of the
diagonal variance-covariance matrix of the dependent variable.

When a variable name is given after the equal sign, the values of the variable are taken as the inverse elements
of the variance-covariance matrix. The larger the _WEIGHT_ value, the more importance the observation is
given.

The _WEIGHT_ variable can be a function of the estimated parameters. For estimation purposes, the
derivative of the _WEIGHT_ variable with respect to the parameters is not included in the gradient and the
Hessian of the loss function. This is normally the desired approach for iteratively reweighted least squares
estimation. When the _WEIGHT_ variable is a function of the parameters, the gradient and the Hessian
used can lead to poor convergence or nonconvergence of the requested estimation. To have the derivative of
the _WEIGHT_ variable with respect to the parameters included in the gradient and the Hessian of the loss
function, do not use the _WEIGHT_ variable. Instead, redefine the model as

.y � f .x; ˇ// �
p
wgt.ˇ/

where y is the original dependent variable, f .x; ˇ/ is the nonlinear model, and wgt.ˇ/ is the weight that is a
function of the parameters.

If the _WEIGHT_= statement is not used, the default value of 1 is used, and regular least squares estimates
are obtained.
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Troubleshooting
This section describes a number of problems that might occur in your analysis with PROC NLIN.

Excessive Computing Time

If you specify a grid of starting values that contains many points, the analysis might take excessive time since
the procedure must go through the entire data set for each point on the grid.

The analysis might also take excessive time if your problem takes many iterations to converge, since each
iteration requires as much time as a linear regression with predicted values and residuals calculated.

Dependencies

The matrix of partial derivatives can be singular, possibly indicating an overparameterized model. For
example, if b0 starts at zero in the following model, the derivatives for b1 are all zero for the first iteration:

parms b0=0 b1=.022;
model pop=b0*exp(b1*(year-1790));
der.b0=exp(b1*(year-1790));
der.b1=(year-1790)*b0*exp(b1*(year-1790));

The first iteration changes a subset of the parameters; then the procedure can make progress in succeeding
iterations. This singularity problem is local. The next example displays a global problem. The term b2 in the
exponent is not identifiable since it trades roles with b0.

parms b0=3.9 b1=.022 b2=0;
model pop=b0*exp(b1*(year-1790)+b2);
der.b0 = exp(b1*(year-1790)+b2);
der.b1 = (year-1790)*b0*exp(b1*(year-1790)+b2);
der.b2 = b0*exp(b1*(year-1790)+b2);

Unable to Improve

The method can lead to steps that do not improve the estimates even after a series of step halvings. If this
happens, the procedure issues a message stating that it is unable to make further progress, and it then displays
the following warning message:

PROC NLIN failed to converge

Then it displays the results. This means that the procedure has not converged. If you provided your own
derivatives, check them carefully and then examine the residual sum of squares surface. If PROC NLIN has
not converged, try a different set of starting values, a different METHOD= specification, the G4 option, or a
different model.

Divergence

The iterative process might diverge, resulting in overflows in computations. It is also possible that parameters
enter a space where arguments to such functions as LOG and SQRT become invalid. For example, consider
the following model:
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parms b=0;
model y = x / b;

Suppose that y contains only zeros, and suppose that the values for variable x are not zero. There is no least
squares estimate for b since the SSE declines as b approaches infinity or minus infinity. To avoid the problem,
the same model could be parameterized as y = a*x.

If you have divergence problems, try reparameterizing the model, selecting different starting values, increasing
the maximum allowed number of iterations (the MAXITER= option), specifying an alternative METHOD=
option, or including a BOUNDS statement.

Local Minimum

The program might converge to a local rather than a global minimum. For example, consider the following
model:

parms a=1 b=-1;
model y=(1-a*x)*(1-b*x);

Once a solution is found, an equivalent solution with the same SSE can be obtained by swapping the values
of a and b.

Discontinuities

The computational methods assume that the model is a continuous and smooth function of the parameters. If
this is not true, the method does not work. For example, the following models do not work:

model y=a+int(b*x);

model y=a+b*x+4*(z>c);

Responding to Trouble

PROC NLIN does not necessarily produce a good solution the first time. Much depends on specifying good
initial values for the parameters. You can specify a grid of values in the PARMS statement to search for
good starting values. While most practical models should give you no trouble, other models can require
switching to a different iteration method or a different computational method for matrix inversion. Specifying
the option METHOD=MARQUARDT sometimes works when the default method (Gauss-Newton) does not
work.

Computational Methods

Nonlinear Least Squares

Recall the basic notation for the nonlinear regression model from the section “Notation for Nonlinear
Regression Models” on page 5577. The parameter vector ˇ belongs to�, a subset of Rp . Two points of this
set are of particular interest: the true value ě and the least squares estimate b̌. The general nonlinear model
fit with the NLIN procedure is represented by the equation

Y D f.f̌0; f̌1; : : : ; f̌pI z1; z2; : : : ; zk/C � D f.ěI z1; z2; : : : ; zk/C �
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where zj denotes the .n � 1/ vector of the jth regressor (independent) variable, ě is the true value of the
parameter vector, and � is the .n� 1/ vector of homoscedastic and uncorrelated model errors with zero mean.

To write the model for the ith observation, the ith elements of z1; � � � ; zk are collected in the row vector z0i ,
and the model equation becomes

Yi D f .ˇI z0i /C �i

The shorthand fi .ˇ/ will also be used throughout to denote the mean of the ith observation.

For any given value ˇ we can compute the residual sum of squares

SSE.ˇ/ D
nX
iD1

�
yi � f

�
ˇI z0i

��2
D

nX
iD1

.yi � fi .ˇ//
2
D r.ˇ/0r.ˇ/

The aim of nonlinear least squares estimation is to find the value b̌ that minimizes SSE.ˇ/. Because f is a
nonlinear function of ˇ, a closed-form solution does not exist for this minimization problem. An iterative
process is used instead. The iterative techniques that PROC NLIN uses are similar to a series of linear
regressions involving the matrix X and the residual vector r D y � f.ˇ/, evaluated at the current values of ˇ.

It is more insightful, however, to describe the algorithms in terms of their approach to minimizing the residual
sum of squares and in terms of their updating formulas. If b̌.u/ denotes the value of the parameter estimates
at the uth iteration, and b̌.0/ are your starting values, then the NLIN procedure attempts to find values k and
� such that

b̌.uC1/ D b̌.u/ C k�
and

SSE
�b̌.uC1/� < SSE

�b̌.u/�
The various methods to fit a nonlinear regression model—which you can select with the METHOD= option
in the PROC NLIN statement—differ in the calculation of the update vector�.

The gradient and Hessian of the residual sum of squares with respect to individual parameters and pairs of
parameters are, respectively,

g.ˇj / D
@SSE.ˇ/
@ˇj

D �2

nX
iD1

.yi � fi .ˇ//
@fi .ˇ/

@ˇj

ŒH.ˇ/�jk D
@SSE.ˇ/
@ˇj @ˇk

D 2

nX
iD1

@fi .ˇ/

@ˇj

@fi .ˇ/

@ˇk
� .yi � fi .ˇ//

@2fi .ˇ/

@ˇj @ˇk

Denote as H�i .ˇ/ the Hessian matrix of the mean function,

�
H�i .ˇ/

�
jk
D

�
@2fi .ˇ/

@ˇj @ˇk

�
jk
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Collecting the derivatives across all parameters leads to the expressions

g.ˇ/ D
@SSE.ˇ/
@ˇ

D �2X0r.ˇ/

H.ˇ/ D
@2SSE.ˇ/
@ˇ@ˇ0

D 2

 
X0X �

nX
iD1

ri .ˇ/H�i .ˇ/

!

The change in the vector of parameter estimates is computed as follows, depending on the estimation method:

Gauss-Newton: � D .�EŒH.ˇ/�/� g.ˇ/ D .X0X/�X0r

Marquardt: � D
�
X0XC �diag.X0X/

��X0r
Newton: � D �H.ˇ/�g.ˇ/ D H.ˇ/�X0r

Steepest descent: � D �
1

2

@SSE.ˇ/
@ˇ

D X0r

The Gauss-Newton and Marquardt iterative methods regress the residuals onto the partial derivatives of the
model with respect to the parameters until the estimates converge. You can view the Marquardt algorithm as
a Gauss-Newton algorithm with a ridging penalty. The Newton iterative method regresses the residuals onto
a function of the first and second derivatives of the model with respect to the parameters until the estimates
converge. Analytical first- and second-order derivatives are automatically computed as needed.

The default method used to compute .X0X/� is the sweep (Goodnight 1979). It produces a reflexive
generalized inverse (a g2-inverse, Pringle and Rayner 1971). In some cases it might be preferable to use a
Moore-Penrose inverse (a g4-inverse) instead. If you specify the G4 option in the PROC NLIN statement, a
g4-inverse is used to calculate� on each iteration.

The four algorithms are now described in greater detail.

Algorithmic Details

Gauss-Newton and Newton Methods
From the preceding set of equations you can see that the Marquardt method is a ridged version of the Gauss-
Newton method. If the ridge parameter � equals zero, the Marquardt step is identical to the Gauss-Newton
step. An important difference between the Newton methods and the Gauss-Newton-type algorithms lies in
the use of second derivatives. To motivate this distinctive element between Gauss-Newton and the Newton
method, focus first on the objective function in nonlinear least squares. To numerically find the minimum of

SSE.ˇ/ D r.ˇ/0r.ˇ/

you can approach the problem by approximating the sum of squares criterion by a criterion for which you
can compute a closed-form solution. Following Seber and Wild (1989, Sect. 2.1.3), we can achieve that by
doing the following:
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• approximating the model and substituting the approximation into SSE.ˇ/

• approximating SSE.ˇ/ directly

The first method, approximating the nonlinear model with a first-order Taylor series, is the purview of the
Gauss-Newton method. Approximating the residual sum of squares directly is the realm of the Newton
method.

The first-order Taylor series of the residual r.ˇ/ at the point b̌ is

r.ˇ/ � r.b̌/ � bX �ˇ � b̌�
Substitution into SSE.ˇ/ leads to the objective function for the Gauss-Newton step:

SSE .ˇ/ � SG.ˇ/ D r.b̌/0 � 2r0.b̌/bX �ˇ � b̌�C �ˇ � b̌�0 �bX0bX� �ˇ � b̌�
“Hat” notation is used here to indicate that the quantity in question is evaluated at b̌.

To motivate the Newton method, take a second-order Taylor series of SSE.ˇ/ around the value b̌:

SSE .ˇ/ � SN .ˇ/ D SSE
�b̌�C g.b̌/0 �ˇ � b̌�C 1

2

�
ˇ � b̌�0H.b̌/ �ˇ � b̌�

Both SG.ˇ/ and SN .ˇ/ are quadratic functions in ˇ and are easily minimized. The minima occur when

Gauss-Newton: ˇ � b̌D �bX0bX��bX0r.b̌/
Newton : ˇ � b̌D �H.b̌/�g.b̌/

and these terms define the preceding� update vectors.

Gauss-Newton Method
Since the Gauss-Newton method is based on an approximation of the model, you can also derive the update
vector by first considering the “normal” equations of the nonlinear model

X0f.ˇ/ D X0Y

and then substituting the Taylor approximation

f.ˇ/ � f.b̌/CX
�
ˇ � b̌�

for f.ˇ/. This leads to

X0
�
f.b̌/CX.ˇ � b̌/� D X0Y

.X0X/.ˇ � b̌/ D X0Y �X0f.b̌/
.X0X/� D X0r.b̌/

and the update vector becomes

� D
�
X0X

��X0r.b̌/
NOTE: If X0X is singular or becomes singular, PROC NLIN computes� by using a generalized inverse for
the iterations after singularity occurs. If X0X is still singular for the last iteration, the solution should be
examined.
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Newton Method
The Newton method uses the second derivatives and solves the equation

� D H�X0r

If the automatic variables _WEIGHT_, _WGTJPJ_, and _RESID_ are used, then

� D H�X0WSSEr�

is the direction, where

H D X0WXPXX �
nX
iD1

H�i .ˇ/w
XPX
i r�i

and

WSSE is an n � n diagonal matrix with elements wSSE
i of weights from the _WEIGHT_ variable. Each

element wSSE
i contains the value of _WEIGHT_ for the ith observation.

WXPX is an n � n diagonal matrix with elements wXPX
i of weights from the _WGTJPJ_ variable.

Each element wXPX
i contains the value of _WGTJPJ_ for the ith observation.

r� is a vector with elements r�i from the _RESID_ variable. Each element r�i contains the value of
_RESID_ evaluated for the ith observation.

Marquardt Method
The updating formula for the Marquardt method is as follows:

� D .X0XC �diag.X0X//�X0e

The Marquardt method is a compromise between the Gauss-Newton and steepest descent methods (Marquardt
1963). As �! 0, the direction approaches Gauss-Newton. As �!1, the direction approaches steepest
descent.

Marquardt’s studies indicate that the average angle between Gauss-Newton and steepest descent directions is
about 90ı. A choice of � between 0 and infinity produces a compromise direction.

By default, PROC NLIN chooses � D 10�7 to start and computes �. If SSE.ˇ0 C�/ < SSE.ˇ0/, then
� D �=10 for the next iteration. Each time SSE.ˇ0 C�/ > SSE.ˇ0/, then � D 10�.

NOTE: If the SSE decreases on each iteration, then �! 0, and you are essentially using the Gauss-Newton
method. If SSE does not improve, then � is increased until you are moving in the steepest descent direction.

Marquardt’s method is equivalent to performing a series of ridge regressions, and it is useful when the
parameter estimates are highly correlated or the objective function is not well approximated by a quadratic.

Steepest Descent (Gradient) Method
The steepest descent method is based directly on the gradient of 0:5r.ˇ/0r.ˇ/:

1

2

@SSE.ˇ/
@ˇ

D �X0r
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The quantity �X0r is the gradient along which �0� increases. Thus � D X0r is the direction of steepest
descent.

If the automatic variables _WEIGHT_ and _RESID_ are used, then

� D X0WSSEr�

is the direction, where

WSSE is an n � n diagonal matrix with elements wSSE
i of weights from the _WEIGHT_ variable. Each

element wSSE
i contains the value of _WEIGHT_ for the ith observation.

r� is a vector with elements r�i from _RESID_. Each element r�i contains the value of _RESID_
evaluated for the ith observation.

Using the method of steepest descent, let

ˇ.kC1/ D ˇ.k/ C ˛�

where the scalar ˛ is chosen such that

SSE.ˇi C ˛�/ < SSE.ˇi /

NOTE: The steepest-descent method can converge very slowly and is therefore not generally recommended.
It is sometimes useful when the initial values are poor.

Step-Size Search

The default method of finding the step size k is step halving by using SMETHOD=HALVE. If SSE.ˇ.u/ C
�/ > SSE.ˇ.u//, compute SSE.ˇ.u/ C 0:5�/, SSE.ˇ.u/ C 0:25�/; : : : ; until a smaller SSE is found.

If you specify SMETHOD=GOLDEN, the step size k is determined by a golden section search. The parameter
TAU determines the length of the initial interval to be searched, with the interval having length TAU (or
2 � TAU), depending on SSE.ˇ.u/ C�/. The RHO parameter specifies how fine the search is to be. The
SSE at each endpoint of the interval is evaluated, and a new subinterval is chosen. The size of the interval
is reduced until its length is less than RHO. One pass through the data is required each time the interval is
reduced. Hence, if RHO is very small relative to TAU, a large amount of time can be spent determining a
step size. For more information about the golden section search, see Kennedy and Gentle (1980).

If you specify SMETHOD=CUBIC, the NLIN procedure performs a cubic interpolation to estimate the step
size. If the estimated step size does not result in a decrease in SSE, step halving is used.

Output Data Sets
The data set produced by the OUTEST= option in the PROC NLIN statement contains the parameter estimates
on each iteration, including the grid search.

The variable _ITER_ contains the iteration number. The variable _TYPE_ denotes whether the observation
contains iteration parameter estimates (“ITER”), final parameter estimates (“FINAL”), or covariance estimates
(“COVB”). The variable _NAME_ contains the parameter name for covariances, and the variable _SSE_



Confidence Intervals F 5627

contains the objective function value for the parameter estimates. The variable _STATUS_ indicates whether
the estimates have converged.

The data set produced by the OUTPUT statement contains statistics calculated for each observation. In
addition, the data set contains the variables from the input data set and any ID variables that are specified in
the ID statement.

The data set that is produced by the PROFDATA= option in the PROFILE statement contains statistics that
are calculated during parameter profiling. The variable _TYPE_ denotes whether the observation is from a
profiling task (set as PROF) or jackknife resampling task (set as JACK). The variable _PROF_PARM_ refers
to the name of the profiled parameter for profiling tasks. The variable _OBS_INF_MEAS_ is the observation
index of the deleted observation for jackknife resampling tasks, the variable _SSE_ stands for the sum of
squared errors, and the variables _L_STAT_ and _W_STAT_ contain the likelihood ratio pivotal statistic and
the Wald pivotal statistic, respectively. The rest of the variables are the parameter estimates. Missing values
for _SSE_ indicate that the least squares fit for that particular profiling or jackknife task does not converge.

The data set that is produced by the BOOTDATA= option in the BOOTSTRAP statement contains statistics
that are calculated during bootstrap resampling and estimation. The variable _REPLICATE_ indexes the
bootstrap sample data sets. The variable _SEED_ refers to the initial seed value that is used in obtaining each
sample data set, the variable _SSE_ stands for the sum of squared errors, and the rest of the variables are
the parameter estimates for the model that is fit to the bootstrap sample data set. Missing values for _SSE_
indicate that the least squares fit for that particular bootstrap sample data set does not converge.

Confidence Intervals

Parameter Confidence Intervals

By default, the parameter confidence intervals are computed using the Wald-based formula:

b̌
i ˙ stderri � t .n � p; 1 � ˛=2/

where b̌i is the ith parameter estimate, stderri is its estimated standard error, t .n�p; 1� ˛=2/ is a t statistic
with n � p degrees of freedom, n is the number of usable observations, and p is the number of parameters.
You can specify the significance level ˛ used in constructing these confidence limits with the ALPHA=
option in the PROC NLIN statement; the default value is ˛ D 0:05.

Because Wald-based confidence intervals are only asymptotically valid, you can use the BOOTSTRAP
statement to request bootstrap-based confidence intervals. Furthermore, you can augment these confidence
intervals with confidence curves for a more complete inference on confidence intervals. For more information,
see the section “Bootstrap Resampling and Estimation” on page 5615 and “Profiling Parameters and Assessing
the Influence of Observations on Parameter Estimates” on page 5615.

Model Confidence Intervals

Model confidence intervals are output when an OUT= data set is specified and one or more of the keywords
LCLM, UCLM, LCL, UCL, L95M=, U95M=, L95=, and U95= is specified. The expressions for these terms
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are as follows:

LCLM D f .ˇ; zi / �
p
MSE � hi=wi � t .n � p; 1 � ˛=2/

UCLM D f .ˇ; zi /C
p
MSE � hi=wi � t .n � p; 1 � ˛=2/

LCL D f .ˇ; zi / �
p
MSE.hi C 1=wi / � t .n � p; 1 � ˛=2/

UCL D f .ˇ; zi /C
p
MSE.hi C 1=wi / � t .n � p; 1 � ˛=2/

L95M D f .ˇ; zi / �
p
MSE � hi=wi � t .n � p; 1 � 0:05=2/

U95M D f .ˇ; zi /C
p
MSE � hi=wi � t .n � p; 1 � 0:05=2/

L95 D f .ˇ; zi / �
p
MSE.hi C 1=wi / � t .n � p; 1 � 0:05=2/

U95 D f .ˇ; zi /C
p
MSE.hi C 1=wi / � t .n � p; 1 � 0:05=2/

where hi D wixi .X0WX/�1x0i is the leverage, X D @f=@ˇ, and xi is the ith row of X. These results are
derived for linear systems. The intervals are approximate for nonlinear models. The value ˛ in the preceding
formulas for LCLM, UCLM, LCL, and UCL can be set with the ALPHA= option in the PROC NLIN
statement or with the ALPHA= option in the OUTPUT statement. If both ALPHA= options are specified, the
option in the OUTPUT takes precedence.

Covariance Matrix of Parameter Estimates
By default, PROC NLIN estimates the covariance matrix of parameter estimates based on the following first
order asymptotic approximation. For unconstrained estimates (no active bounds), the covariance matrix of
the parameter estimates is

mse � .X0X/�1

for the gradient, Marquardt, and Gauss methods and

mse �H�1

for the Newton method. Recall that X is the matrix of the first partial derivatives of the nonlinear model with
respect to the parameters. The matrices are evaluated at the final parameter estimates. The mean squared
error, the estimate of the residual variance �2, is computed as

mse D r0r=.n � p/

where n is the number of nonmissing (used) observations and p is the number of estimable parameters. The
standard error reported for the parameter estimates is the square root of the corresponding diagonal element
of this matrix. If you specify a value for the residual variance with the SIGSQ= option, then that value
replaces mse in the preceding expressions.

Now suppose that restrictions or bounds are active. Equality restrictions can be written as a vector function,
h.�/ D 0. Inequality restrictions are either active or inactive. When an inequality restriction is active, it is
treated as an equality restriction.

Assume that the vector h.�/ contains the current active restrictions. The constraint matrix A is then

A.b�/ D @h.b�/
@b�
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The covariance matrix for the restricted parameter estimates is computed as

Z.Z0HZ/�1Z0

where H is the Hessian (or approximation to the Hessian) and Z collects the last .p � nc/ columns of Q from
an LQ factorization of the constraint matrix. Further, nc is the number of active constraints, and p denotes
the number of parameters. See Gill, Murray, and Wright (1981) for more details about the LQ factorization.
The covariance matrix for the Lagrange multipliers is computed as�

AH�1A0
��1

In addition to the default covariance matrix estimate, the BOOTSTRAP statement can be used to produce
bootstrap covariance matrix estimate. See the section “Bootstrap Resampling and Estimation” on page 5615
for details.

Convergence Measures
The NLIN procedure computes and reports four convergence measures, labeled R, PPC, RPC, and OBJECT.

R is the primary convergence measure for the parameters. It measures the degree to which
the residuals are orthogonal to the columns of X, and it approaches 0 as the gradient of
the objective function becomes small. R is defined ass

r0X.X0X/�1X0r
LOSSi

PPC is the prospective parameter change measure. PPC measures the maximum relative change
in the parameters implied by the parameter-change vector computed for the next iteration.
At the kth iteration, PPC is the maximum over the parameters

jb̌.kC1/i � b̌.k/i j
jb̌.k/i j C 1E � 6

where b̌.k/i is the current value of the ith parameter and b̌.kC1/i is the prospective value
of this parameter after adding the change vector computed for the next iteration. These
changes are measured before step length adjustments are made. The parameter with the
maximum prospective relative change is displayed with the value of PPC, unless the PPC
is nearly 0.

RPC is the retrospective parameter change measure. RPC measures the maximum relative
change in the parameters from the previous iteration. At the kth iteration, RPC is the
maximum over i of

jb̌.k/i � b̌.k�1/i j

jb̌.k�1/i j C 1E � 6

where b̌.k/i is the current value of the ith parameter and b̌k�1i is the previous value of this
parameter. These changes are measured before step length adjustments are made. The
name of the parameter with the maximum retrospective relative change is displayed with
the value of RPC, unless the RPC is nearly 0.
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OBJECT measures the relative change in the objective function value between iterations:

jO.k/ �O.k�1/j

jO.k�1/ C 1E � 6j

where O.k�1/ is the value of the objective function (O.k/) from the previous iteration.
This is the old CONVERGEOBJ= criterion.

Displayed Output
In addition to the output data sets, PROC NLIN also produces the following output objects:

• the residual sums of squares associated with all or some of the combinations of possible starting values
of the parameters

• the estimates of the parameters and the residual sums of squares at each iteration

• the estimation summary table, which displays information about the estimation method, the number of
observations in the analysis, the objective function, and convergence measures

• the analysis of variance table, including sums of squares for the “Model,” “Residual,” and “Total”
sources of variation (“Corrected Total” or “Uncorrected Total”), and the model F test. Note that
beginning in SAS® 9, only the uncorrected total SS is reported and the respective F test is based on
the uncorrected total SS if PROC NLIN determines the model does not include an intercept. If PROC
NLIN determines the model does include an intercept, only the corrected total SS is reported and the
respective F test is based on the corrected total SS.

• the table of parameter estimates, which contains for each parameter in the model its estimate, the
approximate standard error of the estimate, and a 95% confidence interval based on the approximate
standard error. The confidence level can be changed with the ALPHA= option in the PROC NLIN
statement. The HOUGAARD option in the PROC NLIN statement requests that Hougaard’s skewness
measure be added for each parameter. The standard errors and confidence limits are labeled approximate
because they are valid asymptotically as the number of observations grows. If your model is linear in
the parameters, the standard errors and confidence intervals are not approximate.

• the approximate correlation matrix of the parameter estimates. This correlation matrix is labeled
approximate because it is computed from the approximate covariance matrix of the parameter estimates.
If your model is linear in the parameters, the correlation matrix is not approximate.

Incompatibilities with SAS 6.11 and Earlier Versions of PROC NLIN
The NLIN procedure now uses a compiler that is different from the DATA step compiler. The compiler
was changed so that analytical derivatives could be computed automatically. For the most part, the syntax
accepted by the old NLIN procedure can be used in the new NLIN procedure. However, there are several
differences that should be noted:
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• You cannot specify a character index variable in the DO statement, and you cannot specify a character
test in the IF statement. Thus do i=1,2,3; is supported, but do i=’ONE’,’TWO’,’THREE’; is not
supported. And if ’THIS’ < ’THAT’ then ...; is supported, but if ’THIS’ THEN ...; is not
supported.

• The PUT statement, which is used mostly for program debugging in PROC NLIN, supports only some
of the features of the DATA step PUT statement, and it has some new features that the DATA step PUT
statement does not.

– The PUT statement does not support line pointers, factored lists, iteration factors, overprinting,
the _INFILE_ option, the ‘:’ format modifier, or the symbol ‘$’.

– The PUT statement does support expressions inside of parentheses. For example, put

(sqrt(X)); produces the square root of X.

– The PUT statement also supports the option _PDV_ to display a formatted listing of all the
variables in the program. The statement put _pdv_; prints a much more readable listing of the
variables than put _all_; does.

• You cannot use the ‘*’ subscript, but you can specify an array name in a PUT statement without
subscripts. Thus, array a ...; put a; is acceptable, but put a[*]; is not. The statement put
a; displays all the elements of the array a. The put a=; statement displays all the elements of A with
each value labeled by the name of the element variable.

• You cannot specify arguments in the ABORT statement.

• You can specify more than one target statement in the WHEN and OTHERWISE statements. That is,
DO/END groups are not necessary for multiple WHEN statements, such as select; when(exp1);

stmt1; stmt2; when(exp2); stmt3; stmt4; end;.

• You can specify only the options LOG, PRINT, and LIST in the FILE statement.

• The RETAIN statement retains only values across one pass through the data set. If you need to retain
values across iterations, use the CONTROL statement to make a control variable.

The ARRAY statement in PROC NLIN is similar to, but not the same as, the ARRAY statement in the DATA
step. The ARRAY statement is used to associate a name (of no more than 8 characters) with a list of variables
and constants. The array name can then be used with subscripts in the program to refer to the items in the list.

The ARRAY statement supported by PROC NLIN does not support all the features of the DATA step ARRAY
statement. You cannot specify implicit indexing variables; all array references must have explicit subscript
expressions. You can specify simple array dimensions; lower bound specifications are not supported. A
maximum of six dimensions are accepted.

On the other hand, the ARRAY statement supported by PROC NLIN does accept both variables and constants
as array elements. In the following statements, b is a constant array and c is a variable array. Note that the
constant array elements cannot be changed with assignment statements.

proc nlin data=nld;
array b[4] 1 2 3 4; /* Constant array */
array c[4] ( 1 2 3 4 ); /* Numeric array with initial values */
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b[1] = 2; /* This is an ERROR, b is a constant array*/
c[2] = 7.5; /* This is allowed */

Both dimension specification and the list of elements are optional, but at least one must be specified. When
the list of elements is not specified, or fewer elements than the size of the array are listed, array variables are
created by suffixing element numbers to the array name to complete the element list.

If the array is used as a pure array in the program rather than a list of symbols (the individual symbols of the
array are not referenced in the code), the array is converted to a numerical array. A pure array is literally a
vector of numbers that are accessed only by index. Using these types of arrays results in faster derivatives
and compiled code. The assignment to c1 in the following statements forces the array to be treated as a list of
symbols:

proc nlin data=nld;
array c[4] ( 1 2 3 4 ); /* Numeric array with initial values */

c[2] = 7.5; /* This is C used as a pure array */
c1 = -92.5; /* This forces C to be a list of symbols */

ODS Table Names
PROC NLIN assigns a name to each table it creates. You can use these names to refer to the table when using
the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in
Table 69.9. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

Table 69.9 ODS Tables Produced by PROC NLIN

ODS Table Name Description Statement

ANOVA Analysis of variance default

BootstrapCorr Bootstrap estimate of correlation matrix
of the parameters

BOOTSTRAP

BootstrapCov Bootstrap estimate of covariance matrix
of the parameters

BOOTSTRAP

CodeDependency Variable cross reference LISTDEP

CodeList Listing of program statements LISTCODE

ConvergenceStatus Convergence status default

CorrB Correlation of the parameters default

EstSummary Summary of the estimation default

FirstDerivatives First derivative table LISTDER

IterHistory Iteration output default

MissingValues Missing values generated by the program default

NonlinearityMeasures Global nonlinearity measures NLINMEASURES

ParameterEstimates Parameter estimates default
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ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

PROC NLIN assigns a name to each graph it creates using ODS. You can use these names to refer to the
graphs when using ODS. The graphs that are controlled by the PLOTS option in the PROC NLIN statement
are listed in Table 69.10, those that are controlled by the options in PROFILE statement are in Table 69.11.

Table 69.10 Graphs Controlled by the PLOTS option in the
PROC NLIN Statement

ODS Graph Name Plot Description PLOTS Option

ContourFitPlot Contour fit plot for models with two re-
gressors

FIT

FitPlot Fit plot for models with one regressor FIT
FitDiagnosticsPanel Panel of fit diagnostics DIAGNOSTICS
LeveragePlot Tangential and Jacobian leverages versus

observation number
DIAGNOSTICS

LocalInfluencePlot Local influence versus observation num-
ber

DIAGNOSTICS

ObservedByPredictedPlot Dependent variable versus predicted val-
ues

DIAGNOSTICS(UNPACK)

ProjectedResidualHistogram A histogram of the projected residuals DIAGNOSTICS(UNPACK)
RawResidualExpectationPlot Raw residual expectation versus predicted

values
DIAGNOSTICS(UNPACK)

RawResidualHistogram A histogram of the raw residuals DIAGNOSTICS(UNPACK)
ResidualBoxPlot A box plot of the raw and projected resid-

uals
DIAGNOSTICS(UNPACK)

ResidualPanel A panel of the raw and projected residuals
versus the regressors

RESIDUALS

ResidualPlot A plot of the raw and projected residuals
versus the regressors

RESIDUALS(UNPACK)

ResidualByPredictedPlot Raw and projected residuals versus the
predicted values

DIAGNOSTICS(UNPACK)

RStudentByJacLeveragePlot Standardized raw and projected residuals
versus Jacobian leverage

DIAGNOSTICS(UNPACK)

RStudentByPredictedPlot Standardized raw and projected residuals
versus the predicted values

DIAGNOSTICS(UNPACK)

RStudentByTanLeveragePlot Standardized raw and projected residuals
versus tangential leverage

DIAGNOSTICS(UNPACK)
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Table 69.11 Graphs Controlled by the PROFILE Statement

ODS Graph Name Plot Description PROFILE Option

ConfidenceCurve Parameter value versus t value CONFCURV
JackknifePlot Absolute relative percentage difference

versus observation number
JACKKNIFE

ProfiletPlot Likelihood ratio pivotal statistic versus
Wald pivotal statistic

TPLOT

Table 69.12 Graphs Controlled by the BOOTSTRAP Statement

ODS Graph Name Plot Description BOOTSTRAP Op-
tion

BootstrapHistPlot A histogram of bootstrap parameter esti-
mates

BOOTPLOTS(HIST)

BootstrapScatterPlot Pairwise scatter plot of bootstrap parame-
ter estimates

BOOTPLOTS(SCATTER)

Convergence Status Table

The “Convergence Status” table can be used to programmatically check the status of an estimation. This
table contains the Status variable that takes on the value 0, 1, 2, or 3. If Status takes on a value less than 3,
the convergence criterion was met. Specifically, the values mean the following:

Status=0 indicates that the convergence criterion was met and no warning or error messages were
issued during the PROC NLIN run. Also, no notes that could indicate a problem with the
model were issued.

Status=1 indicates that the convergence criterion was met and notes were written to the log that
might indicate a problem with the model.

Status=2 indicates that the convergence criterion was met and one or more warning messages were
produced during the PROC NLIN run.

Status=3 indicates that the convergence criterion was not met.

The following sample program demonstrates how the “Convergence Status” table can be used:

ods output ConvergenceStatus=ConvStatus;
proc nlin data=YourData;

parameters a=1 b=1 c=1;
model wgt = a + x / (b*y+c*z);

run;

data _null_;
set ConvStatus;
if status > 0 then put "A problem occurred";

run;
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Examples: NLIN Procedure

Example 69.1: Segmented Model
Suppose you are interested in fitting a model that consists of two segments that connect in a smooth fashion.
For example, the following model states that for values of x less than x0 the mean of Y is a quadratic function
in x, and for values of x greater than x0 the mean of Y is constant:

EŒY jx� D
�
˛ C ˇx C x2 if x < x0
c if x � x0

In this model equation ˛, ˇ, and  are the coefficients of the quadratic segment, and c is the plateau of
the mean function. The NLIN procedure can fit such a segmented model even when the join point, x0, is
unknown.

We also want to impose conditions on the two segments of the model. First, the curve should be continuous—
that is, the quadratic and the plateau section need to meet at x0. Second, the curve should be smooth—that is,
the first derivative of the two segments with respect to x need to coincide at x0.

The continuity condition requires that

p D EŒY jx0� D ˛ C ˇx0 C x20

The smoothness condition requires that

@EŒY jx0�
@x

D ˇ C 2x0 � 0

If you solve for x0 and substitute into the expression for c, the two conditions jointly imply that

x0 D �ˇ=2

c D ˛ � ˇ2=4

Although there are apparently four unknowns, the model contains only three parameters. The continuity and
smoothness restrictions together completely determine one parameter given the other three.

The following DATA step creates the SAS data set for this example:

data a;
input y x @@;
datalines;

.46 1 .47 2 .57 3 .61 4 .62 5 .68 6 .69 7

.78 8 .70 9 .74 10 .77 11 .78 12 .74 13 .80 13

.80 15 .78 16
;

The following PROC NLIN statements fit this segmented model:
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title 'Quadratic Model with Plateau';
proc nlin data=a;

parms alpha=.45 beta=.05 gamma=-.0025;

x0 = -.5*beta / gamma;

if (x < x0) then
mean = alpha + beta*x + gamma*x*x;

else mean = alpha + beta*x0 + gamma*x0*x0;
model y = mean;

if _obs_=1 and _iter_ =. then do;
plateau =alpha + beta*x0 + gamma*x0*x0;
put / x0= plateau= ;

end;
output out=b predicted=yp;

run;

The parameters of the model are ˛, ˇ, and  , respectively. They are represented in the PROC NLIN statements
by the variables alpha, beta, and gamma, respectively. In order to model the two segments, a conditional
statement is used that assigns the appropriate expression to the mean function depending on the value of x0.
A PUT statement is used to print the constrained parameters every time the program is executed for the first
observation. The OUTPUT statement computes predicted values for plotting and saves them to data set b.

Note that there are other ways in which you can write the conditional expressions for this model. For example,
you could formulate a condition with two model statements, as follows:

proc nlin data=a;
parms alpha=.45 beta=.05 gamma=-.0025;
x0 = -.5*beta / gamma;
if (x < x0) then

model y = alpha+beta*x+gamma*x*x;
else model y = alpha+beta*x0+gamma*x0*x0;

run;

Or you could use a single expression with a conditional evaluation, as in the following statements:

proc nlin data=a;
parms alpha=.45 beta=.05 gamma=-.0025;
x0 = -.5*beta / gamma;
model y = (x <x0)*(alpha+beta*x +gamma*x*x) +

(x>=x0)*(alpha+beta*x0+gamma*x0*x0);
run;

The results from fitting this model with PROC NLIN are shown in Output 69.1.1–Output 69.1.3. The iterative
optimization converges after six iterations (Output 69.1.1). Output 69.1.1 indicates that the join point is
12.747 and the plateau value is 0.777.
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Output 69.1.1 Nonlinear Least-Squares Iterative Phase

Quadratic Model with Plateau

The NLIN Procedure
Dependent Variable y

Method: Gauss-Newton

Quadratic Model with Plateau

The NLIN Procedure
Dependent Variable y

Method: Gauss-Newton

Iterative Phase

Iter alpha beta gamma
Sum of

Squares

0 0.4500 0.0500 -0.00250 0.0562

1 0.3881 0.0616 -0.00234 0.0118

2 0.3930 0.0601 -0.00234 0.0101

3 0.3922 0.0604 -0.00237 0.0101

4 0.3921 0.0605 -0.00237 0.0101

5 0.3921 0.0605 -0.00237 0.0101

6 0.3921 0.0605 -0.00237 0.0101

NOTE: Convergence criterion met.

Output 69.1.2 Results from Put Statement

x0=12.747669162 plateau=0.7774974276                                            

Output 69.1.3 Least-Squares Analysis for the Quadratic Model

Source DF
Sum of

Squares
Mean

Square F Value
Approx

Pr > F

Model 2 0.1769 0.0884 114.22 <.0001

Error 13 0.0101 0.000774

Corrected Total 15 0.1869

Parameter Estimate
Approx

Std Error

Approximate 95%
Confidence

Limits

alpha 0.3921 0.0267 0.3345 0.4497

beta 0.0605 0.00842 0.0423 0.0787

gamma -0.00237 0.000551 -0.00356 -0.00118

The following statements produce a graph of the observed and predicted values with reference lines for the
join point and plateau estimates (Output 69.1.4):

proc sgplot data=b noautolegend;
yaxis label='Observed or Predicted';
refline 0.777 / axis=y label="Plateau" labelpos=min;
refline 12.747 / axis=x label="Join point" labelpos=min;
scatter y=y x=x;
series y=yp x=x;

run;
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Output 69.1.4 Observed and Predicted Values for the Quadratic Model

If you want to estimate the join point directly, you can use the relationship between the parameters to change
the parameterization of the model in such a way that the mean function depends directly on x0. Using the
smoothness condition that relates x0 to  ,

x0 D �ˇ=2

you can express  as a function of ˇ and x0:

 D �ˇ=.2x0/

Substituting for  in the model equation

EŒY jx� D
�
˛ C ˇx C x2 if x < x0
˛ � ˇ2=.4/ if x � x0
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yields the reparameterized model

EŒY jx� D
�
˛ C ˇx.1 � x=.2x0// if x < x0
˛ C ˇx0=2 if x � x0

This model is fit with the following PROC NLIN statements:

proc nlin data=a;
parms alpha=.45 beta=.05 x0=10;
if (x<x0) then

mean = alpha + beta*x *(1-x/(2*x0));
else mean = alpha + beta*x0/2;
model y = mean;

run;

Output 69.1.5 Results from Reparameterized Model

The NLIN Procedure
Dependent Variable y

Method: Gauss-Newton

The NLIN Procedure
Dependent Variable y

Method: Gauss-Newton

NOTE: Convergence criterion met.

Source DF
Sum of

Squares
Mean

Square F Value
Approx

Pr > F

Model 2 0.1769 0.0884 114.22 <.0001

Error 13 0.0101 0.000774

Corrected Total 15 0.1869

Parameter Estimate
Approx

Std Error

Approximate
95%

Confidence
Limits

alpha 0.3921 0.0267 0.3345 0.4497

beta 0.0605 0.00842 0.0423 0.0787

x0 12.7477 1.2781 9.9864 15.5089

The analysis of variance table in the reparameterized model is the same as in the earlier analysis (compare
Output 69.1.5 and Output 69.1.3). Changing the parameterization of a model does not affect the fit. The
“Parameter Estimates” table now shows x0 as a parameter in the model. The estimate agrees with the earlier
result that uses the PUT statement (Output 69.1.2). Since x0 is now a model parameter, the NLIN procedure
also reports its asymptotic standard error and its approximate 95% confidence interval.
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Example 69.2: Iteratively Reweighted Least Squares
With the NLIN procedure you can perform weighted nonlinear least squares regression in situations where the
weights are functions of the parameters. To minimize a weighted sum of squares, you assign an expression to
the _WEIGHT_ variable in your PROC NLIN statements. When the _WEIGHT_ variable depends on the
model parameters, the estimation technique is known as iteratively reweighted least squares (IRLS). In this
situation you should employ the NOHALVE option in the PROC NLIN statement. Because the weights
change from iteration to iteration, it is not reasonable to expect the weighted residual sum of squares to
decrease between iterations. The NOHALVE option removes that restriction.

Examples where IRLS estimation is used include robust regression via M-estimation (Huber 1964, 1973),
generalized linear models (McCullagh and Nelder 1989), and semivariogram fitting in spatial statistics
(Schabenberger and Pierce 2002, Sect. 9.2). There are dedicated SAS/STAT procedures for robust regression
(the ROBUSTREG procedure) and generalized linear models (the GENMOD and GLIMMIX procedures).
Examples of weighted least squares fitting of a semivariogram function can be found in Chapter 109, “The
VARIOGRAM Procedure.”

In this example we show an application of PROC NLIN for M-estimation only to illustrate the connection
between robust regression and weighted least squares. The ROBUSTREG procedure is the appropriate tool
to fit these models with SAS/STAT software.

M-estimation was introduced by Huber (1964, 1973) to estimate location parameters robustly. Beaton and
Tukey (1974) applied the idea of M-estimation in regression models and introduced the biweight (or bisquare)
weight function. See Holland and Welsch (1977) for this and other robust methods. Consider a linear
regression model of the form

EŒYi jx� D x0iˇ C �i

In weighted least squares estimation you seek the parameters b̌ that minimize

nX
iD1

wi
�
yi � x0iˇ

�2
D

nX
iD1

wie
2
i

where wi is the weight associated with the ith observation. The normal equations of this minimization
problem can be written as

nX
iD1

wieixi D 0

In M-estimation the corresponding equations take on the form

nX
iD1

 .ei /xi D 0

where  .�/ is a weighing function. The Beaton-Tukey biweight, for example, can be written as

 .ei / D

(
ei

�
1 �

�
ei
�k

�2�2
jei=� j � k

0 jei=� j > k
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Substitution into the estimating equation for M-estimation yields weighted least squares equations

nX
iD1

 .ei /xi D
nX
iD1

wieixi D 0

wi D

( �
1 �

�
ei
�k

�2�2
jei=� j � k

0 jei=� j > k

The biweight function involves two constants, � and k. The scale � can be fixed or estimated from the fit in
the previous iteration. If � is estimated, a robust estimator of scale is typically used. In this example � is
fixed at 2. A common value for the constant k is k = 4.685.

The following DATA step creates a SAS data set of the population of the United States (in millions), recorded
at 10-year intervals starting in 1790 and ending in 1990. The aim is to fit a quadratic linear model to the
population over time.

title 'U.S. Population Growth';
data uspop;

input pop :6.3 @@;
retain year 1780;
year = year+10;
yearsq = year*year;
datalines;

3929 5308 7239 9638 12866 17069 23191 31443 39818 50155
62947 75994 91972 105710 122775 131669 151325 179323 203211
226542 248710
;

The PROC NLIN code that follows fits this linear model by M-estimation and IRLS. The weight function is
set to a zero or nonzero value depending on the value of the scaled residual. The NOHALVE option removes
the requirement that the (weighted) residual sum of squares must decrease between iterations.

title 'Beaton/Tukey Biweight Robust Regression using IRLS';
proc nlin data=uspop nohalve;

parms b0=20450.43 b1=-22.7806 b2=.0063456;
model pop=b0+b1*year+b2*year*year;
resid = pop-model.pop;
sigma = 2;
k = 4.685;
if abs(resid/sigma)<=k then _weight_=(1-(resid / (sigma*k))**2)**2;
else _weight_=0;
output out=c r=rbi;

run;

Parameter estimates from this fit are shown in Output 69.2.1, and the computed weights at the final iteration
are displayed in Output 69.2.2. The observations for 1940 and 1950 are highly discounted because of their
large residuals.
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Output 69.2.1 Nonlinear Least-Squares Analysis

Beaton/Tukey Biweight Robust Regression using IRLS

The NLIN Procedure

Beaton/Tukey Biweight Robust Regression using IRLS

The NLIN Procedure

Source DF
Sum of

Squares
Mean

Square F Value
Approx

Pr > F

Model 2 113564 56782.0 49454.5 <.0001

Error 18 20.6670 1.1482

Corrected Total 20 113585

Parameter Estimate
Approx

Std Error

Approximate 95%
Confidence

Limits

b0 20828.7 259.4 20283.8 21373.6

b1 -23.2004 0.2746 -23.7773 -22.6235

b2 0.00646 0.000073 0.00631 0.00661

Output 69.2.2 Listing of Computed Weights from PROC NLIN

Obs pop year yearsq rbi sigma k _weight_

1 3.929 1790 3204100 -0.93711 2 4.685 0.98010

2 5.308 1800 3240000 0.46091 2 4.685 0.99517

3 7.239 1810 3276100 1.11853 2 4.685 0.97170

4 9.638 1820 3312400 0.95176 2 4.685 0.97947

5 12.866 1830 3348900 0.32159 2 4.685 0.99765

6 17.069 1840 3385600 -0.62597 2 4.685 0.99109

7 23.191 1850 3422500 -0.94692 2 4.685 0.97968

8 31.443 1860 3459600 -0.43027 2 4.685 0.99579

9 39.818 1870 3496900 -1.08302 2 4.685 0.97346

10 50.155 1880 3534400 -1.06615 2 4.685 0.97427

11 62.947 1890 3572100 0.11332 2 4.685 0.99971

12 75.994 1900 3610000 0.25539 2 4.685 0.99851

13 91.972 1910 3648100 2.03607 2 4.685 0.90779

14 105.710 1920 3686400 0.28436 2 4.685 0.99816

15 122.775 1930 3724900 0.56725 2 4.685 0.99268

16 131.669 1940 3763600 -8.61325 2 4.685 0.02403

17 151.325 1950 3802500 -8.32415 2 4.685 0.04443

18 179.323 1960 3841600 -0.98543 2 4.685 0.97800

19 203.211 1970 3880900 0.95088 2 4.685 0.97951

20 226.542 1980 3920400 1.03780 2 4.685 0.97562

21 248.710 1990 3960100 -1.33067 2 4.685 0.96007

You can obtain this analysis more conveniently with PROC ROBUSTREG. The procedure re-estimates the
scale parameter robustly between iterations. To obtain an analysis with a fixed scale parameter as in this
example, use the following PROC ROBUSTREG statements:



Example 69.3: Probit Model with Likelihood Function F 5643

proc robustreg data=uspop method=m(scale=2);
model pop = year year*year;
output out=weights weight=w;

run;

proc print data=weights;
run;

Note that the computation of standard errors in the ROBUSTREG procedure is different from the calculations
in the NLIN procedure.

Example 69.3: Probit Model with Likelihood Function
The data in this example, taken from Lee (1974), consist of patient characteristics and a variable indicating
whether cancer remission occurred. This example demonstrates how to use PROC NLIN with a likelihood
function. In this case, twice the negative of the log-likelihood function is to be minimized. This is the
objective function for the analysis:

�2 logL D �2
nX
iD1

log f�i .yi ; xi /g

In this expression, �i denotes the success probability of the n Bernoulli trials, and logL is the log likelihood
of n independent binary (Bernoulli) observations. The probability �i depends on the observations through
the linear predictor �i ,

�i .yi ; xi / D
�
1 �ˆ.�i / yi D 1

ˆ.�i / yi D 0

The linear predictor takes the form of a regression equation that is linear in the parameters,

�i D ˇ0 C ˇ1z1i C ˇ2z2i C � � �ˇkzki D ziˇ

Despite this linearity of � in the z variables, the probit model is nonlinear, because the linear predictor appears
inside the nonlinear probit function.

In order to use the NLIN procedure to minimize the function, the estimation problem must be cast in terms of
a nonlinear least squares problem with objective function

nX
iD1

.yi � f .ˇ; z0i /
2

This can be accomplished by setting yi D 0 and f .ˇ; z0i / D
p
. � 2 logf�ig/. Because 0 � � � 1, the

function �2 logf�ig is strictly positive and the square root can be taken safely.

The following DATA step creates the data for the probit analysis. The variable like is created in the DATA
step, and it contains the value 0 throughout. This variable serves as the “dummy” response variable in the
PROC NLIN step. The variable remiss indicates whether cancer remission occurred. It is the binary outcome
variable of interest and is used to determine the relevant probability for observation i as the success or failure
probability of a Bernoulli experiment.
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data remiss;
input remiss cell smear infil li blast temp;
label remiss = 'complete remission';
like = 0;
label like = 'dummy variable for nlin';
datalines;

1 0.8 .83 .66 1.9 1.10 .996
1 0.9 .36 .32 1.4 0.74 .992
0 0.8 .88 .70 0.8 0.176 .982
0 1 .87 .87 0.7 1.053 .986
1 0.9 .75 .68 1.3 0.519 .980
0 1 .65 .65 0.6 0.519 .982
1 0.95 .97 .92 1 1.23 .992
0 0.95 .87 .83 1.9 1.354 1.020
0 1 .45 .45 0.8 0.322 .999
0 0.95 .36 .34 0.5 0 1.038
0 0.85 .39 .33 0.7 0.279 .988
0 0.7 .76 .53 1.2 0.146 .982
0 0.8 .46 .37 0.4 0.38 1.006
0 0.2 .39 .08 0.8 0.114 .990
0 1 .90 .90 1.1 1.037 .990
1 1 .84 .84 1.9 2.064 1.020
0 0.65 .42 .27 0.5 0.114 1.014
0 1 .75 .75 1 1.322 1.004
0 0.5 .44 .22 0.6 0.114 .990
1 1 .63 .63 1.1 1.072 .986
0 1 .33 .33 0.4 0.176 1.010
0 0.9 .93 .84 0.6 1.591 1.020
1 1 .58 .58 1 0.531 1.002
0 0.95 .32 .30 1.6 0.886 .988
1 1 .60 .60 1.7 0.964 .990
1 1 .69 .69 0.9 0.398 .986
0 1 .73 .73 0.7 0.398 .986

;

The following NLIN statements fit the probit model:

proc nlin data=remiss method=newton sigsq=1;
parms int=-10 a = -2 b = -1 c=6;

linp = int + a*cell + b*li + c*temp;
p = probnorm(linp);

if (remiss = 1) then pi = 1-p;
else pi = p;

model.like = sqrt(- 2 * log(pi));
output out=p p=predict;

run;
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The assignment to the variable linp creates the linear predictor of the generalized linear model,

� D ˇ0 C ˇ1celli C ˇ2lii C ˇ3 � tempi

In this example, the variables cell, li, and temp are used as regressors.

By default, the NLIN procedure computes the covariance matrix of the parameter estimates based on the
nonlinear least squares assumption. That is, the procedure computes the estimate of the residual variance
as the mean squared error and uses that to multiply the inverse crossproduct matrix or the inverse Hessian
matrix. (See the section “Covariance Matrix of Parameter Estimates” on page 5628 for details.) In the probit
model, there is no residual variance. In addition, standard errors in maximum likelihood estimation are based
on the inverse Hessian matrix. The METHOD=NEWTON option in the PROC NLIN statement is used to
employ the Hessian matrix in computing the covariance matrix of the parameter estimates. The SIGSQ=1
option replaces the residual variance estimate that PROC NLIN would use by default as a multiplier of the
inverse Hessian with the value 1.0.

Output 69.3.1 shows the results of this analysis. The analysis of variance table shows an apparently strange
result. The total sum of squares is zero, and the model sum of squares is negative. Recall that the values of
the response variable were set to zero and the mean function was constructed as �2 logf�ig in order for the
NLIN procedure to minimize a log-likelihood function in terms of a nonlinear least squares problem. The
value 21.9002 shown as the “Error” sum of squares is the value of the function �2 logL.

Output 69.3.1 Nonlinear Least-Squares Analysis from PROC NLIN

The NLIN ProcedureThe NLIN Procedure

Note: An intercept was not specified for this model.

Source DF
Sum of

Squares
Mean

Square F Value
Approx

Pr > F

Model 4 -21.9002 -5.4750 -5.75 .

Error 23 21.9002 0.9522

Uncorrected Total 27 0

Parameter Estimate
Approx

Std Error

Approximate
95%

Confidence
Limits

int -36.7548 32.3607 -103.7 30.1885

a -5.6298 4.6376 -15.2235 3.9639

b -2.2513 0.9790 -4.2764 -0.2262

c 45.1815 34.9095 -27.0343 117.4
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The problem can be more simply solved using dedicated procedures for generalized linear models:

proc glimmix data=remiss;
model remiss = cell li temp / dist=binary link=probit s;

run;

proc genmod data=remiss;
model remiss = cell li temp / dist=bin link=probit;

run;

proc logistic data=remiss;
model remiss = cell li temp / link=probit technique=newton;

run;

Example 69.4: Affecting Curvature through Parameterization
The work of Ratkowsky (1983, 1990) has brought into focus the importance of close-to-linear behavior of
parameters in nonlinear regression models. The curvature in a nonlinear model consists of two components:
the intrinsic curvature and the parameter-effects curvature. See the section “Relative Curvature Measures of
Nonlinearity” on page 5612 for details. Intrinsic curvature expresses the degree to which the nonlinear model
bends as values of the parameters change. This is not the same as the curviness of the model as a function
of the covariates (the x variables). Intrinsic curvature is a function of the type of model you are fitting and
the data. This curvature component cannot be affected by reparameterization of the model. According to
Ratkowsky (1983), the intrinsic curvature component is typically smaller than the parameter-effects curvature,
which can be affected by altering the parameterization of the model.

In models with low curvature, the nonlinear least squares parameter estimators behave similarly to least
squares estimators in linear regression models, which have a number of desirable properties. If the model is
correct, they are best linear unbiased estimators and are normally distributed if the model errors are normal
(otherwise they are asymptotically normal). As you lower the curvature of a nonlinear model, you can expect
that the parameter estimators approach the behavior of the linear regression model estimators: they behave
“close to linear.”

This example uses a simple data set and a commonly applied model for dose-response relationships to
examine how the parameter-effects curvature can be reduced. The statistics by which an estimator’s behavior
is judged are Box’s bias (Box 1971) and Hougaard’s measure of skewness (Hougaard 1982, 1985).
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The log-logistic model

EŒY jx� D ı C
˛ � ı

1C  exp fˇ ln.x/g

is a popular model to express the response Y as a function of dose x. The response is bounded between
the asymptotes ˛ and ı. The term in the denominator governs the transition between the asymptotes and
depends on two parameters,  and ˇ. The log-logistic model can be viewed as a member of a broader
class of dose-response functions, those relying on switch-on or switch-off mechanisms (see, for example,
Schabenberger and Pierce 2002, sec. 5.8.6). A switch function is usually a monotonic function S.x;�/ that
takes values between 0 and 1. A switch-on function increases in x; a switch-off function decreases in x. In
the log-logistic case, the function

S.x; Œˇ; �/ D
1

1C  exp fˇ ln.x/g

is a switch-off function for ˇ > 0 and a switch-on function for ˇ < 0. You can write general dose-response
functions with asymptotes simply as

EŒY jx� D �min C .�max � �min/S.x;�/

The following DATA step creates a small data set from a dose-response experiment with response y:

data logistic;
input dose y;
logdose = log(dose);
datalines;

0.009 106.56
0.035 94.12
0.07 89.76
0.15 60.21
0.20 39.95
0.28 21.88
0.50 7.46
;

A graph of these data is produced with the following statements:

proc sgplot data=logistic;
scatter y=y x=dose;
xaxis type=log logstyle=linear;

run;



5648 F Chapter 69: The NLIN Procedure

Output 69.4.1 Observed Data in Dose-Response Experiment

When dose is expressed on the log scale, the sigmoidal shape of the dose-response relationship is clearly
visible (Output 69.4.1). The log-logistic switching model in the preceding parameterization is fit with the
following statements in the NLIN procedure:

proc nlin data=logistic bias hougaard nlinmeasures;
parameters alpha=100 beta=3 gamma=300;
delta = 0;
Switch = 1/(1+gamma*exp(beta*log(dose)));
model y = delta + (alpha - delta)*Switch;

run;

The lower asymptote ı is assumed to be 0 in this case. Since ı is not listed in the PARAMETERS statement
and is assigned a value in the program, it is assumed to be constant. Note that the term Switch is the switch-off
function in the log-logistic model. The BIAS and HOUGAARD options in the PROC NLIN statement
request that Box’s bias, percentage bias, and Hougaard’s skewness measure be added to the table of parameter
estimates, and the NLINMEASURES option requests that the global nonlinearity measures be produced.
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The NLIN procedure converges after 10 iterations and achieves a residual mean squared error of 15.1869
(Output 69.4.2). This value is not that important by itself, but it is worth noting since this model fit is
compared to the fit with other parameterizations later on.

Output 69.4.2 Iteration History and Analysis of Variance

The NLIN Procedure
Dependent Variable y

Method: Gauss-Newton

The NLIN Procedure
Dependent Variable y

Method: Gauss-Newton

Iterative Phase

Iter alpha beta gamma
Sum of

Squares

0 100.0 3.0000 300.0 386.4

1 100.4 2.8011 162.8 129.1

2 100.8 2.6184 101.4 69.2710

3 101.3 2.4266 69.7579 68.2167

4 101.7 2.3790 69.0358 60.8223

5 101.8 2.3621 67.3709 60.7516

6 101.8 2.3582 67.0044 60.7477

7 101.8 2.3573 66.9150 60.7475

8 101.8 2.3571 66.8948 60.7475

9 101.8 2.3570 66.8902 60.7475

10 101.8 2.3570 66.8892 60.7475

NOTE: Convergence criterion met.

Note: An intercept was not specified for this model.

Source DF
Sum of

Squares
Mean

Square F Value
Approx

Pr > F

Model 3 33965.4 11321.8 745.50 <.0001

Error 4 60.7475 15.1869

Uncorrected Total 7 34026.1

The table of parameter estimates displays the estimates of the three model parameters, their approximate
standard errors, 95% confidence limits, Hougaard’s skewness measure, Box’s bias, and percentage bias
(Output 69.4.3). Parameters for which the skewness measure is less than 0.1 in absolute value and with
percentage bias less than 1% exhibit very close-to-linear behavior, and skewness values less than 0.25 in
absolute value indicate reasonably close-to-linear behavior (Ratkowsky 1990). According to these rules,
the estimators b̌ andb suffer from substantial curvature. The estimatorb is especially “far-from-linear.”
Inferences that involve b and rely on the reported standard errors or confidence limits (or both) for this
parameter might be questionable.

Output 69.4.3 Parameter Estimates, Hougaard’s Skewness, and Box’s Bias

Parameter Estimate
Approx

Std Error

Approximate
95%

Confidence
Limits Skewness Bias

Percent
Bias

alpha 101.8 3.0034 93.4751 110.2 0.1415 0.1512 0.15

beta 2.3570 0.2928 1.5440 3.1699 0.4987 0.0303 1.29

gamma 66.8892 31.6146 -20.8870 154.7 1.9200 10.9230 16.3
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The related global nonlinearity measures output table (Output 69.4.4) shows that both the maximum and
RMS parameter-effects curvature are substantially larger than the critical curvature value recommended by
Bates and Watts (1980). In contrast, the intrinsic curvatures of the model are less than the critical value. This
implies that most of the nonlinearity can be removed by reparameterization.

Output 69.4.4 Global Nonlinearity Measures

Global Nonlinearity Measures

Max Intrinsic Curvature 0.2397

RMS Intrinsic Curvature 0.1154

Max Parameter-Effects Curvature 4.0842

RMS Parameter-Effects Curvature 1.8198

Curvature Critical Value 0.3895

Raw Residual Variance 15.187

Projected Residual Variance 5.922

One method of reducing the parameter-effects curvature, and thereby reduce the bias and skewness of the
parameter estimators, is to replace a parameter with its expected-value parameterization. Schabenberger et al.
(1999) and Schabenberger and Pierce (2002, sec. 5.7.2) refer to this method as reparameterization through
defining relationships. A defining relationship is obtained by equating the mean response at a chosen value
of x (say, x�) to the model:

EŒY jx�� D ı C
˛ � ı

1C  exp fˇ ln.x�/g

This equation is then solved for a parameter that is subsequently replaced in the original equation. This
method is particularly useful if x� has an interesting interpretation. For example, let �K denote the value
that reduces the response by K � 100%,

EŒY j�K � D ı C
�
100 �K

100

�
.˛ � ı/

Because  exhibits large bias and skewness, it is the target in the first round of reparameterization. Setting
the expression for the conditional mean at �K equal to the mean function when x D �K yields the following
expression:

ı C

�
100 �K

100

�
.˛ � ı/ D ı C

˛ � ı

1C  exp fˇ ln.�K/g

This expression is solved for  , and the result is substituted back into the model equation. This leads to a
log-logistic model in which  is replaced by the parameter �K , the dose at which the response was reduced
by K � 100%. The new model equation is

EŒY jx� D ı C
˛ � ı

1CK=.100 �K/ expfˇ ln.x=�K/g
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A particularly interesting choice is K = 50, since �50 is the dose at which the response is halved. In studies
of mortality, this concentration is also known as the LD50. For the special case of �50 the model equation
becomes

EŒY jx� D ı C
˛ � ı

1C expfˇ ln.x=�50/g

You can fit the model in the LD50 parameterization with the following statements:

proc nlin data=logistic bias hougaard;
parameters alpha=100 beta=3 LD50=0.15;
delta = 0;
Switch = 1/(1+exp(beta*log(dose/LD50)));
model y = delta + (alpha - delta)*Switch;
output out=nlinout pred=p lcl=lcl ucl=ucl;

run;

Partial results from this NLIN run are shown in Output 69.4.5. The analysis of variance tables in Output 69.4.2
and Output 69.4.5 are identical. Changing the parameterization of a model does not affect the model fit. It does,
however, affect the interpretation of the parameters and the statistical properties (close-to-linear behavior) of
the parameter estimators. The skewness and bias measures of the parameter LD50 is considerably reduced
compared to those values for the parameter  in the previous parameterization. Also,  has been replaced by
a parameter with a useful interpretation, the dose that yields a 50% reduction in mean response. Also notice
that the bias and skewness measures of ˛ and ˇ are not affected by the  ! LD50 reparameterization.

Output 69.4.5 ANOVA Table and Parameter Estimates in LD50 Parameterization

The NLIN Procedure
Dependent Variable y

Method: Gauss-Newton

The NLIN Procedure
Dependent Variable y

Method: Gauss-Newton

NOTE: Convergence criterion met.

Note: An intercept was not specified for this model.

Source DF
Sum of

Squares
Mean

Square F Value
Approx

Pr > F

Model 3 33965.4 11321.8 745.50 <.0001

Error 4 60.7475 15.1869

Uncorrected Total 7 34026.1

Parameter Estimate
Approx

Std Error

Approximate
95%

Confidence
Limits Skewness Bias

Percent
Bias

alpha 101.8 3.0034 93.4752 110.2 0.1415 0.1512 0.15

beta 2.3570 0.2928 1.5440 3.1699 0.4987 0.0303 1.29

LD50 0.1681 0.00915 0.1427 0.1935 -0.0605 -0.00013 -0.08
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To reduce the parameter-effects curvature of the ˇ parameter, you can use the technique of defining relation-
ships again. This can be done generically, by solving

�� D ı C
˛ � ı

1C exp fˇ ln.x=�/g

for ˇ, treating �� as the new parameter (in lieu of ˇ), and choosing a value for x� that leads to low skewness.
This results in the expected-value parameterization of ˇ. Solving for ˇ yields

ˇ D
log

�
˛���

���ı

�
log .x�=�/

The interpretation of the parameter �� that replaces ˇ in the model equation is simple: it is the mean dose
response when the dose is x�. Fixing x� D 0:3, the following PROC NLIN statements fit this model:

proc nlin data=logistic bias hougaard nlinmeasures;
parameters alpha=100 mustar=20 LD50=0.15;
delta = 0;
xstar = 0.3;
beta = log((alpha - mustar)/(mustar - delta)) / log(xstar/LD50);
Switch = 1/(1+exp(beta*log(dose/LD50)));
model y = delta + (alpha - delta)*Switch;
output out=nlinout pred=p lcl=lcl ucl=ucl;

run;

Note that the switch-off function continues to be written in terms of ˇ and the LD50. The only difference
from the previous model is that ˇ is now expressed as a function of the parameter ��. Using expected-value
parameterizations is a simple mechanism to lower the curvature in a model and to arrive at starting values.
The starting value for �� can be gleaned from Output 69.4.1 at x = 0.3.

Output 69.4.6 shows selected results from this NLIN run. The ANOVA table is again unaffected by the
change in parameterization. The skewness for �� is significantly reduced in comparison to those of the ˇ
parameter in the previous model (compare Output 69.4.6 and Output 69.4.5), while its bias remains on the
same scale from Output 69.4.5 to Output 69.4.6. Also note the substantial reduction in the parameter-effects
curvature values. As expected, the intrinsic curvature values remain intact.

Output 69.4.6 ANOVA Table and Parameter Estimates in Expected-Value Parameterization

The NLIN Procedure
Dependent Variable y

Method: Gauss-Newton

The NLIN Procedure
Dependent Variable y

Method: Gauss-Newton

NOTE: Convergence criterion met.

Note: An intercept was not specified for this model.

Source DF
Sum of

Squares
Mean

Square F Value
Approx

Pr > F

Model 3 33965.4 11321.8 745.50 <.0001

Error 4 60.7475 15.1869

Uncorrected Total 7 34026.1
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Output 69.4.6 continued

Parameter Estimate
Approx

Std Error

Approximate
95%

Confidence
Limits Skewness Bias

Percent
Bias

alpha 101.8 3.0034 93.4752 110.2 0.1415 0.1512 0.15

mustar 20.7073 2.6430 13.3693 28.0454 -0.0572 -0.0983 -0.47

LD50 0.1681 0.00915 0.1427 0.1935 -0.0605 -0.00013 -0.08

Global Nonlinearity Measures

Max Intrinsic Curvature 0.2397

RMS Intrinsic Curvature 0.1154

Max Parameter-Effects Curvature 0.2925

RMS Parameter-Effects Curvature 0.1500

Curvature Critical Value 0.3895

Raw Residual Variance 15.187

Projected Residual Variance 5.9219

Example 69.5: Comparing Nonlinear Trends among Groups
When you model nonlinear trends in the presence of group (classification) variables, two questions often
arise: whether the trends should be varied by group, and how to decide which parameters should be varied
across groups. A large battery of tools is available on linear statistical models to test hypotheses involving
the model parameters, especially to test linear hypotheses. To test similar hypotheses in nonlinear models,
you can draw on analogous tools. Especially important in this regard are comparisons of nested models by
contrasting their residual sums of squares.

In this example, a two-group model from a pharmacokinetic application is fit to data that are in part based
on the theophylline data from Pinheiro and Bates (1995) and the first example in the documentation for
the NLMIXED procedure. In a pharmacokinetic application you study how a drug is dispersed through a
living organism. The following data represent concentrations of the drug theophylline over a 25-hour period
following oral administration. The data are derived by collapsing and averaging the subject-specific data
from Pinheiro and Bates (1995) in a particular, yet unimportant, way. The purpose of arranging the data in
this way is purely to demonstrate the methodology.
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data theop;
input time dose conc @@;
if (dose = 4) then group=1; else group=2;
datalines;

0.00 4 0.1633 0.25 4 2.045
0.27 4 4.4 0.30 4 7.37
0.35 4 1.89 0.37 4 2.89
0.50 4 3.96 0.57 4 6.57
0.58 4 6.9 0.60 4 4.6
0.63 4 9.03 0.77 4 5.22
1.00 4 7.82 1.02 4 7.305
1.05 4 7.14 1.07 4 8.6
1.12 4 10.5 2.00 4 9.72
2.02 4 7.93 2.05 4 7.83
2.13 4 8.38 3.50 4 7.54
3.52 4 9.75 3.53 4 5.66
3.55 4 10.21 3.62 4 7.5
3.82 4 8.58 5.02 4 6.275
5.05 4 9.18 5.07 4 8.57
5.08 4 6.2 5.10 4 8.36
7.02 4 5.78 7.03 4 7.47
7.07 4 5.945 7.08 4 8.02
7.17 4 4.24 8.80 4 4.11
9.00 4 4.9 9.02 4 5.33
9.03 4 6.11 9.05 4 6.89
9.38 4 7.14 11.60 4 3.16

11.98 4 4.19 12.05 4 4.57
12.10 4 5.68 12.12 4 5.94
12.15 4 3.7 23.70 4 2.42
24.15 4 1.17 24.17 4 1.05
24.37 4 3.28 24.43 4 1.12
24.65 4 1.15 0.00 5 0.025
0.25 5 2.92 0.27 5 1.505
0.30 5 2.02 0.50 5 4.795
0.52 5 5.53 0.58 5 3.08
0.98 5 7.655 1.00 5 9.855
1.02 5 5.02 1.15 5 6.44
1.92 5 8.33 1.98 5 6.81
2.02 5 7.8233 2.03 5 6.32
3.48 5 7.09 3.50 5 7.795
3.53 5 6.59 3.57 5 5.53
3.60 5 5.87 5.00 5 5.8
5.02 5 6.2867 5.05 5 5.88
6.98 5 5.25 7.00 5 4.02
7.02 5 7.09 7.03 5 4.925
7.15 5 4.73 9.00 5 4.47
9.03 5 3.62 9.07 5 4.57
9.10 5 5.9 9.22 5 3.46

12.00 5 3.69 12.05 5 3.53
12.10 5 2.89 12.12 5 2.69
23.85 5 0.92 24.08 5 0.86
24.12 5 1.25 24.22 5 1.15
24.30 5 0.9 24.35 5 1.57
;
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The following code plots the theophylline concentration data over time for the two groups (Output 69.5.1).
In each group the concentration tends to rise sharply right after the drug is administered, followed by a
prolonged tapering of the concentration.

proc sgplot data=theop;
scatter x=time y=conc / group=group;
yaxis label='Concentration';
xaxis label='Time';

run;

Output 69.5.1 Observed Responses in Two Groups
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In the context of nonlinear mixed models, Pinheiro and Bates (1995) consider a first-order compartment
model for these data. In terms of two fixed treatment groups, the model can be written as

Cit D
Dkeikai

Cli .kai � kei /
Œexp.�kei t / � exp.�kai t /�C �it

where Cit is the observed concentration in group i at time t, D is the dose of theophylline, kei is the
elimination rate in group i, kai is the absorption rate in group i, Cli is the clearance in group i, and �it
denotes the model error. Because the rates and the clearance must be positive, you can parameterize the
model in terms of log rates and the log clearance:

Cli D expfˇ1ig
kai D expfˇ2ig
kei D expfˇ3ig

In this parameterization the model contains six parameters, and the rates and clearance vary by group. This
produces two separate response profiles, one for each group. On the other extreme, you could model the
trends as if there were no differences among the groups:

Cli D expfˇ1g
kai D expfˇ2g
kei D expfˇ3g

In between these two extremes lie other models, such as a model where both groups have the same absorption
and elimination rate, but different clearances. The question then becomes how to go about building a model
in an organized manner.

To test hypotheses about nested nonlinear models, you can apply the idea of a “Sum of Squares Reduction
Test.” A reduced model is nested within a full model if you can impose q constraints on the full model to
obtain the reduced model. Then, if SSEr and SSEf denote the residual sum of squares in the reduced and
the full model, respectively, the test statistic is

FR D

�
SSEr � SSEf

�
=q

SSEf =.n � p/
D

�
SSEr � SSEf

�
=q

MSEf

where n are the number of observations used and p are the number of parameters in the full model. The
numerator of the FR statistic is the average reduction in residual sum of squares per constraint. The mean
squared error of the full model is used to scale this average because it is less likely to be a biased estimator
of the residual variance than the variance estimate from a constrained (reduced) model. The FR statistic is
then compared against quantiles from an F distribution with q numerator and n � p denominator degrees of
freedom. Schabenberger and Pierce (2002) discuss the justification for this test and compare it to other tests
in nonlinear models.
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In the present application we might phrase the initial question akin to the overall F test for a factor in a linear
model: Should any parameters be varied between the two groups? The corresponding null hypothesis is

H W

8<:
ˇ11 D ˇ12
ˇ21 D ˇ22
ˇ31 D ˇ32

where the first subscript identifies the type of the parameter and the second subscript identifies the group.
Note that this hypothesis implies

H W

8<:
Cl1 D Cl2
ka1 D ka2
ke1 D ke2

If you fail to reject this hypothesis, there is no need to further examine individual parameter differences.

The reduced model—the model subject to the null hypothesis—is fit with the following PROC NLIN
statements:

proc nlin data=theop;
parms beta1=-3.22 beta2=0.47 beta3=-2.45;
cl = exp(beta1);
ka = exp(beta2);
ke = exp(beta3);
mean = dose*ke*ka*(exp(-ke*time)-exp(-ka*time))/cl/(ka-ke);
model conc = mean;
ods output Anova=aovred(rename=(ss=ssred ms=msred df=dfred));

run;

The clearance, the rates, and the mean function are formed independently of the group membership. The
analysis of variance table is saved to the data set aovred, and some of its variables are renamed. This is done
so that the data set can be merged easily with the analysis of variance table for the full model (see following).

The converged model has a residual sum of square of SSEr D 286:4 and a mean squared error of 3.0142
(Output 69.5.2). The table of parameter estimates gives the values for the estimated log clearance .b̌1 D
�3:2991/, the estimated log absorption rate .b̌2 D 0:4769/, and the estimated log elimination rate .b̌3 D
�2:5555/.

Output 69.5.2 Fit Results for the Reduced Model

The NLIN Procedure
Dependent Variable conc
Method: Gauss-Newton

The NLIN Procedure
Dependent Variable conc
Method: Gauss-Newton

NOTE: Convergence criterion met.

Note: An intercept was not specified for this model.

Source DF
Sum of

Squares
Mean

Square F Value
Approx

Pr > F

Model 3 3100.5 1033.5 342.87 <.0001

Error 95 286.4 3.0142

Uncorrected Total 98 3386.8
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Output 69.5.2 continued

Parameter Estimate
Approx

Std Error

Approximate
95%

Confidence
Limits

beta1 -3.2991 0.0956 -3.4888 -3.1094

beta2 0.4769 0.1640 0.1512 0.8025

beta3 -2.5555 0.1410 -2.8354 -2.2755

The full model, in which all three parameters are varied by group, can be fit with the following statements in
the NLIN procedure:

proc nlin data=theop;
parms beta1_1=-3.22 beta2_1=0.47 beta3_1=-2.45

beta1_2=-3.22 beta2_2=0.47 beta3_2=-2.45;
if (group=1) then do;

cl = exp(beta1_1);
ka = exp(beta2_1);
ke = exp(beta3_1);

end; else do;
cl = exp(beta1_2);
ka = exp(beta2_2);
ke = exp(beta3_2);

end;
mean = dose*ke*ka*(exp(-ke*time)-exp(-ka*time))/cl/(ka-ke);
model conc = mean;
ods output Anova=aovfull;

run;

Separate parameters for the groups are now specified in the PARMS statement, and the value of the model
variables cl, ka, and ke is assigned conditional on the group membership of an observation. Notice that the
same expression as in the previous run can be used to model the mean function.

The results from this PROC NLIN run are shown in Output 69.5.3. The residual sum of squares in the full
model is only SSEf D 138:9, compared to SSEr D 286:4 in the reduced model (Output 69.5.3).

Output 69.5.3 Fit Results for the Full Model

The NLIN Procedure
Dependent Variable conc
Method: Gauss-Newton

The NLIN Procedure
Dependent Variable conc
Method: Gauss-Newton

NOTE: Convergence criterion met.

Note: An intercept was not specified for this model.

Source DF
Sum of

Squares
Mean

Square F Value
Approx

Pr > F

Model 6 3247.9 541.3 358.56 <.0001

Error 92 138.9 1.5097

Uncorrected Total 98 3386.8
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Output 69.5.3 continued

Parameter Estimate
Approx

Std Error

Approximate
95%

Confidence
Limits

beta1_1 -3.5671 0.0864 -3.7387 -3.3956

beta2_1 0.4421 0.1349 0.1742 0.7101

beta3_1 -2.6230 0.1265 -2.8742 -2.3718

beta1_2 -3.0111 0.1061 -3.2219 -2.8003

beta2_2 0.3977 0.1987 0.00305 0.7924

beta3_2 -2.4442 0.1618 -2.7655 -2.1229

Whether this reduction in sum of squares is sufficient to declare that the full model provides a significantly
better fit than the reduced model depends on the number of constraints imposed on the full model and on the
variability in the data. In other words, before drawing any conclusions, you have to take into account how
many parameters have been dropped from the model and how much variation around the regression trends
the data exhibit. The FR statistic sets these quantities into relation. The following macro merges the analysis
of variance tables from the full and reduced model, and computes FR and its p-value:

%macro SSReductionTest;
data aov; merge aovred aovfull;

if (Source='Error') then do;
Fstat = ((SSred-SS)/(dfred-df))/ms;
pvalue = 1-Probf(Fstat,dfred-df,df);
output;

end;
run;
proc print data=aov label noobs;

label Fstat = 'F Value'
pValue = 'Prob > F';

format pvalue pvalue8.;
var Fstat pValue;

run;
%mend;
%SSReductionTest;

Output 69.5.4 F Statistic and P-value for Hypothesis of Equal Trends

F Value Prob > F

32.5589 <.000001
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There is clear evidence that the model with separate trends fits these data significantly better (Output 69.5.4).
To decide whether all parameters should be varied between the groups or only one or two of them, we first
refit the model in a slightly different parameterization:

proc nlin data=theop;
parms beta1_1=-3.22 beta2_1=0.47 beta3_1=-2.45

beta1_diff=0 beta2_diff=0 beta3_diff=0;
if (group=1) then do;

cl = exp(beta1_1);
ka = exp(beta2_1);
ke = exp(beta3_1);

end; else do;
cl = exp(beta1_1 + beta1_diff);
ka = exp(beta2_1 + beta2_diff);
ke = exp(beta3_1 + beta3_diff);

end;
mean = dose*ke*ka*(exp(-ke*time)-exp(-ka*time))/cl/(ka-ke);
model conc = mean;

run;

In the preceding statements, the parameters in the second group were expressed using offsets from parameters
in the first group. For example, the parameter beta1_diff measures the change in log clearance between group
2 and group 1.

This simple reparameterization does not affect the model fit. The analysis of variance tables in Output 69.5.5
and Output 69.5.3 are identical. It does, however, affect the interpretation of the estimated quantities. Since
the parameter beta1_diff measures the change in the log clearance rates between the groups, you can use the
approximate 95% confidence limits in Output 69.5.5 to assess whether that quantity in the pharmacokinetic
equation varies between groups. Only the confidence interval for the difference in the log clearances excludes
0. The intervals for beta2_diff and beta3_diff include 0.

Output 69.5.5 Fit Results for the Full Model in Difference Parameterization

The NLIN Procedure
Dependent Variable conc
Method: Gauss-Newton

The NLIN Procedure
Dependent Variable conc
Method: Gauss-Newton

NOTE: Convergence criterion met.

Note: An intercept was not specified for this model.

Source DF
Sum of

Squares
Mean

Square F Value
Approx

Pr > F

Model 6 3247.9 541.3 358.56 <.0001

Error 92 138.9 1.5097

Uncorrected Total 98 3386.8
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Output 69.5.5 continued

Parameter Estimate
Approx

Std Error

Approximate
95%

Confidence
Limits

beta1_1 -3.5671 0.0864 -3.7387 -3.3956

beta2_1 0.4421 0.1349 0.1742 0.7101

beta3_1 -2.6230 0.1265 -2.8742 -2.3718

beta1_diff 0.5560 0.1368 0.2842 0.8278

beta2_diff -0.0444 0.2402 -0.5214 0.4326

beta3_diff 0.1788 0.2054 -0.2291 0.5866

This suggests as the final model one where the absorption and elimination rates are the same for both groups
and only the clearances are varied. The following statements fit this model and perform the sum of squares
reduction test:

proc nlin data=theop;
parms beta1_1=-3.22 beta2_1=0.47 beta3_1=-2.45

beta1_diff=0;
ka = exp(beta2_1);
ke = exp(beta3_1);
if (group=1) then do;

cl = exp(beta1_1);
end; else do;

cl = exp(beta1_1 + beta1_diff);
end;
mean = dose*ke*ka*(exp(-ke*time)-exp(-ka*time))/cl/(ka-ke);
model conc = mean;
ods output Anova=aovred(rename=(ss=ssred ms=msred df=dfred));
output out=predvals predicted=p;

run;

%SSReductionTest;

The results for this model with common absorption and elimination rates are shown in Output 69.5.6. The
sum-of-squares reduction test comparing this model against the full model with six parameters shows—as
expected—that the full model does not fit the data significantly better (p D 0:6193, Output 69.5.7).
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Output 69.5.6 Fit Results for Model with Common Rates

The NLIN Procedure
Dependent Variable conc
Method: Gauss-Newton

The NLIN Procedure
Dependent Variable conc
Method: Gauss-Newton

NOTE: Convergence criterion met.

Note: An intercept was not specified for this model.

Source DF
Sum of

Squares
Mean

Square F Value
Approx

Pr > F

Model 4 3246.5 811.6 543.60 <.0001

Error 94 140.3 1.4930

Uncorrected Total 98 3386.8

Parameter Estimate
Approx

Std Error

Approximate
95%

Confidence
Limits

beta1_1 -3.5218 0.0681 -3.6570 -3.3867

beta2_1 0.4226 0.1107 0.2028 0.6424

beta3_1 -2.5571 0.0988 -2.7532 -2.3610

beta1_diff 0.4346 0.0454 0.3444 0.5248

Output 69.5.7 F Statistic and P-value for Hypothesis of Common Rates

F Value Prob > F

0.48151 0.619398

A plot of the observed and predicted values for this final model is obtained with the following statements:

proc sgplot data=predvals;
scatter x=time y=conc / group=group;
series x=time y=p / group=group name='fit';
keylegend 'fit' / across=2 title='Group';
yaxis label='Concentration';
xaxis label='Time';

run;

The plot is shown in Output 69.5.8.
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Output 69.5.8 Observed and Fitted Values for Theophylline Data

The sum-of-squares reduction test is not the only possibility of performing linear-model style hypothesis
testing in nonlinear models. You can also perform Wald-type testing of linear hypotheses about the parameter
estimates. See Example 44.17 in Chapter 44, “The GLIMMIX Procedure,” for an application of this example
that uses the NLIN and GLIMMIX procedures to compare the parameters across groups and adjusts p-values
for multiplicity.
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Example 69.6: ODS Graphics and Diagnostics
The model in this example, taken from St. Laurent and Cook (1993), shows an unusual behavior in that the
intrinsic curvature is substantially larger than the parameter-effects curvature. This example demonstrates
how the diagnostics features of PROC NLIN can be used to perform postconvergence diagnostics.

The model takes the form

EŒY jx1; x2� D ˛x1 C expfx2g

The following DATA step creates a small data set to be used in this example:

data contrived;
input x1 x2 y;
datalines;

-4.0 -2.5 -10.0
-3.0 -2.0 -5.0
-2.0 -1.5 -2.0
-1.0 -1.0 -1.0
0.0 0.0 1.5
1.0 1.0 4.0
2.0 1.5 5.0
3.0 2.0 6.0
4.0 2.5 7.0

-3.5 -2.2 -7.1
-3.5 -1.7 -5.1
3.5 0.7 6.1
2.5 1.2 7.5

;

The model is fit with the following statements in the NLIN procedure:

ods graphics on;
proc nlin data=contrived bias hougaard

NLINMEASURES plots(stats=all)=(diagnostics);
parms alpha=2.0

gamma=0.0;
model y = alpha*x1 + exp(gamma*x2);

run;
ods graphics off;
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Output 69.6.1 Bias, Skewness, and Global Nonlinearity Measures

The NLIN ProcedureThe NLIN Procedure

Parameter Estimate
Approx

Std Error

Approximate
95%

Confidence
Limits Skewness Bias

Percent
Bias

alpha 1.9378 0.4704 0.9024 2.9733 6.6491 0.5763 29.7

gamma 0.0718 0.7923 -1.6720 1.8156 -7.5596 -0.9982 -1390

Global Nonlinearity Measures

Max Intrinsic Curvature 6.6007

RMS Intrinsic Curvature 4.0421

Max Parameter-Effects Curvature 3.5719

RMS Parameter-Effects Curvature 2.1873

Curvature Critical Value 0.5011

Raw Residual Variance 2.1722

Projected Residual Variance 1.4551

The bias, skewness, and both the maximum and RMS intrinsic curvatures, compared to the critical curvature
value, show that the model is highly nonlinear (Output 69.6.1). As such, performing diagnostics with the
raw residuals can be problematic because they might have undesirable statistical properties: a nonzero mean
and a negative semidefinite (instead of zero) covariance with the predicted values and different variances. In
addition, the use of tangential leverage is questionable in this case.

The partial results from this NLIN run are shown in Output 69.6.2, Output 69.6.3, and Output 69.6.4.
The diagnostics plots corroborate the previously mentioned expectations: highly correlated raw residuals
(with the predicted values), significant differences between tangential and Jacobian leverages and projected
residuals which overcome some of the shortcomings of the raw residuals. Finally, considering the large
intrinsic curvature, reparameterization might not make the model close-to-linear, perhaps necessitating the
construction of another model.
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Output 69.6.2 Diagnostics Panel
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Output 69.6.3 Leverage Plots
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Output 69.6.4 Local Influence Plot
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Example 69.7: Parameter Profiling and Bootstrapping
This example, which uses a model from Clarke (1987), shows why it is difficult to intuitively reason about the
characteristics of the parameters that occur in a nonlinear model. As a consequence, the example demonstrates
the indispensability of parameter profiling and confidence curves to identify the nonlinear characteristics
of model parameters. The parameter profiling is also augmented with a plot that shows the influence of
each observation on the parameter estimates. Furthermore, the BOOTSTRAP statement in PROC NLIN is
invoked in order to study the sampling distribution of parameter estimates and make more accurate statistical
inferences.

The model takes the form

EŒY jx� D �3 C �2 expf�1xg

The data set in this example is from Clarke (1987). The following DATA step creates this data set:

data clarke1987a;
input x y;
datalines;

1 3.183
2 3.059
3 2.871
4 2.622
5 2.541
6 2.184
7 2.110
8 2.075
9 2.018
10 1.903
11 1.770
12 1.762
13 1.550
;

The model is fit by using the following statements in the NLIN procedure:

ods graphics on;
proc nlin data=clarke1987a plots(stats=none)=diagnostics;

parms theta1=-0.15
theta2=2.0
theta3=0.80;

profile theta1 theta3 / range = -6 to 2 by 0.2 all;
bootstrap / nsamples = 2000 seed=123 bootplots bootci bootcov;
model y = theta3 + theta2*exp(theta1*x);

run;
ods graphics off;
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Output 69.7.1 Parameter Estimates and Bootstrap Estimate of the Covariance Matrix

The NLIN ProcedureThe NLIN Procedure

Parameter Estimate
Approx

Std Error

Approximate
95%

Confidence
Limits

Bootstrap
Std Dev

Bootstrap
Bias-Corrected

95%
Confidence

Limits

theta1 -0.1031 0.0255 -0.1599 -0.0462 0.0253 -0.1505 -0.0531

theta2 2.5190 0.2658 1.9268 3.1112 0.4450 2.1716 3.5325

theta3 0.9631 0.3216 0.2466 1.6797 0.4907 -0.2565 1.3697

Bootstrap Covariance Matrix Estimate

theta1 theta2 theta3

theta1 0.00063801 0.00834138 -.01006296

theta2 0.00834138 0.19802119 -.21570467

theta3 -.01006296 -.21570467 0.24082392

By default, the BOOTCI option in the BOOTSTRAP statement adds a column that contains the bias-corrected
bootstrap confidence limits to the “Parameter Estimates” table (Output 69.7.1). The BOOTCOV option
produces the “Bootstrap Covariance Matrix” table (Output 69.7.1). The discrepancy between the Wald-based
confidence limits and the bias-corrected bootstrap confidence limits is much greater for �3 than for �1. The
profile t plot, confidence curve, and histograms of the bootstrap estimates show why this is the case.

The profile t plot for parameter �3 in Output 69.7.3 shows a definite deviation from the linear reference line
that has a slope of 1 and passes through the origin. Hence, Wald-based inference for �3 is not appropriate. In
contrast, the profile t plot for parameter �1 in Output 69.7.2 shows that Wald-based inference for �1 might be
sufficient.

Output 69.7.4 and Output 69.7.5 show the confidence curves for �1 and �3, respectively. For �3, you can see
a significant difference between the Wald-based confidence interval and the corresponding likelihood-based
interval. In such cases, the likelihood-based intervals are preferred because their coverage rate is much closer
to the nominal values than the coverage rate of the Wald-based intervals (Donaldson and Schnabel 1987;
Cook and Weisberg 1990).

Output 69.7.6 depicts the influence of each observation on the value of �3. Observations 6 and 13 have the
most influence on the value of this parameter. The plot is generated using the leave-one-out method and
should be contrasted with the local influence plot in Output 69.7.7, which is based on assessing the influence
of an additive perturbation of the response variable.

Output 69.7.8 and Output 69.7.9 are histograms that show the distribution of the bootstrap parameter estimates
for �1 and �3, respectively. These histograms complement the information that is obtained about �1 and �3
from the profile t plots. Specifically, they show that the bootstrap parameter estimate of �1 has a distribution
close to normal, whereas that of �3 has a distribution that deviates significantly from normal. Again, this leads
to the conclusion that inferences based on linear approximations, such as Wald-based confidence intervals,
work better for �1 than for �3.
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Finally, this example shows that the adequacy of a linear approximation with regard to a certain parameter
cannot be inferred directly from the model. If it could, then �3, which enters the model linearly, would have a
completely linear behavior, whereas �1 would have a highly nonlinear behavior. However, the diagnostics
that are based on the profile t plot and confidence curves, and the histograms of the bootstrap parameter
estimates, show that the opposite holds. For a detailed discussion about this issue, see Cook and Weisberg
(1990).

Output 69.7.2 Profile t Plot
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Output 69.7.3 Profile t Plot
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Output 69.7.4 Confidence Curve
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Output 69.7.5 Confidence Curve
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Output 69.7.6 Observation Influence on Parameter Estimate
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Output 69.7.7 Local Influence Plot
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Output 69.7.8 Histogram of Bootstrap Parameter Estimates
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Output 69.7.9 Histogram of Bootstrap Parameter Estimates
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Overview: NLMIXED Procedure

Introduction
The NLMIXED procedure fits nonlinear mixed models—that is, models in which both fixed and random
effects enter nonlinearly. These models have a wide variety of applications, two of the most common being
pharmacokinetics and overdispersed binomial data. PROC NLMIXED enables you to specify a conditional
distribution for your data (given the random effects) having either a standard form (normal, binomial, Poisson)
or a general distribution that you code using SAS programming statements.

PROC NLMIXED fits nonlinear mixed models by maximizing an approximation to the likelihood integrated
over the random effects. Different integral approximations are available, the principal ones being adaptive
Gaussian quadrature and a first-order Taylor series approximation. A variety of alternative optimization
techniques are available to carry out the maximization; the default is a dual quasi-Newton algorithm.

Successful convergence of the optimization problem results in parameter estimates along with their approxi-
mate standard errors based on the second derivative matrix of the likelihood function. PROC NLMIXED
enables you to use the estimated model to construct predictions of arbitrary functions by using empirical
Bayes estimates of the random effects. You can also estimate arbitrary functions of the nonrandom parameters,
and PROC NLMIXED computes their approximate standard errors by using the delta method.

Literature on Nonlinear Mixed Models
Davidian and Giltinan (1995) and Vonesh and Chinchilli (1997) provide good overviews as well as general
theoretical developments and examples of nonlinear mixed models. Pinheiro and Bates (1995) is a primary
reference for the theory and computational techniques of PROC NLMIXED. They describe and compare
several different integrated likelihood approximations and provide evidence that adaptive Gaussian quadrature
is one of the best methods. Davidian and Gallant (1993) also use Gaussian quadrature for nonlinear mixed
models, although the smooth nonparametric density they advocate for the random effects is currently not
available in PROC NLMIXED.
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Traditional approaches to fitting nonlinear mixed models involve Taylor series expansions, expanding around
either zero or the empirical best linear unbiased predictions of the random effects. The former is the basis for
the well-known first-order method (Beal and Sheiner 1982, 1988; Sheiner and Beal 1985), and it is optionally
available in PROC NLMIXED. The latter is the basis for the estimation method of Lindstrom and Bates
(1990), and it is not available in PROC NLMIXED. However, the closely related Laplacian approximation is
an option; it is equivalent to adaptive Gaussian quadrature with only one quadrature point. The Laplacian
approximation and its relationship to the Lindstrom-Bates method are discussed by: Beal and Sheiner (1992);
Wolfinger (1993); Vonesh (1992, 1996); Vonesh and Chinchilli (1997); Wolfinger and Lin (1997).

A parallel literature exists in the area of generalized linear mixed models, in which random effects appear
as a part of the linear predictor inside a link function. Taylor-series methods similar to those just described
are discussed in articles such as: Harville and Mee (1984); Stiratelli, Laird, and Ware (1984); Gilmour,
Anderson, and Rae (1985); Goldstein (1991); Schall (1991); Engel and Keen (1992); Breslow and Clayton
(1993); Wolfinger and O’Connell (1993); McGilchrist (1994), but such methods have not been implemented
in PROC NLMIXED because they can produce biased results in certain binary data situations (Rodriguez
and Goldman 1995; Lin and Breslow 1996). Instead, a numerical quadrature approach is available in PROC
NLMIXED, as discussed in: Pierce and Sands (1975); Anderson and Aitkin (1985); Hedeker and Gibbons
(1994); Crouch and Spiegelman (1990); Longford (1994); McCulloch (1994); Liu and Pierce (1994); Diggle,
Liang, and Zeger (1994).

Nonlinear mixed models have important applications in pharmacokinetics, and Roe (1997) provides a wide-
ranging comparison of many popular techniques. Yuh et al. (1994) provide an extensive bibliography on
nonlinear mixed models and their use in pharmacokinetics.

PROC NLMIXED Compared with Other SAS Procedures and Macros
The models fit by PROC NLMIXED can be viewed as generalizations of the random coefficient models fit by
the MIXED procedure. This generalization allows the random coefficients to enter the model nonlinearly,
whereas in PROC MIXED they enter linearly. With PROC MIXED you can perform both maximum
likelihood and restricted maximum likelihood (REML) estimation, whereas PROC NLMIXED implements
only maximum likelihood. This is because the analog to the REML method in PROC NLMIXED would
involve a high-dimensional integral over all of the fixed-effects parameters, and this integral is typically not
available in closed form. Finally, PROC MIXED assumes the data to be normally distributed, whereas PROC
NLMIXED enables you to analyze data that are normal, binomial, or Poisson or that have any likelihood
programmable with SAS statements.

PROC NLMIXED does not implement the same estimation techniques available with the NLINMIX macro
or the default estimation method of the GLIMMIX procedure. These are based on the estimation methods
of: Lindstrom and Bates (1990); Breslow and Clayton (1993); Wolfinger and O’Connell (1993), and they
iteratively fit a set of generalized estimating equations (see Chapters 14 and 15 of Littell et al. 2006; Wolfinger
1997). In contrast, PROC NLMIXED directly maximizes an approximate integrated likelihood. This remark
also applies to the SAS/IML macros MIXNLIN (Vonesh and Chinchilli 1997) and NLMEM (Galecki 1998).

The GLIMMIX procedure also fits mixed models for nonnormal data with nonlinearity in the conditional
mean function. In contrast to the NLMIXED procedure, PROC GLIMMIX assumes that the model contains
a linear predictor that links covariates to the conditional mean of the response. The NLMIXED procedure
is designed to handle general conditional mean functions, whether they contain a linear component or
not. As mentioned earlier, the GLIMMIX procedure by default estimates parameters in generalized linear
mixed models by pseudo-likelihood techniques, whereas PROC NLMIXED by default performs maximum
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likelihood estimation by adaptive Gauss-Hermite quadrature. This estimation method is also available with
the GLIMMIX procedure (METHOD=QUAD in the PROC GLIMMIX statement).

PROC NLMIXED has close ties with the NLP procedure in SAS/OR software. PROC NLMIXED uses a
subset of the optimization code underlying PROC NLP and has many of the same optimization-based options.
Also, the programming statement functionality used by PROC NLMIXED is the same as that used by PROC
NLP and the MODEL procedure in SAS/ETS software.

Getting Started: NLMIXED Procedure

Nonlinear Growth Curves with Gaussian Data
As an introductory example, consider the orange tree data of Draper and Smith (1981). These data consist of
seven measurements of the trunk circumference (in millimeters) on each of five orange trees. You can input
these data into a SAS data set as follows:

data tree;
input tree day y;
datalines;

1 118 30
1 484 58
1 664 87

... more lines ...

5 1582 177
;

Lindstrom and Bates (1990) and Pinheiro and Bates (1995) propose the following logistic nonlinear mixed
model for these data:

yij D
b1 C ui1

1C expŒ�.dij � b2/=b3�
C eij

Here, yij represents the jth measurement on the ith tree (i D 1; : : : ; 5; j D 1; : : : ; 7), dij is the corresponding
day, b1; b2; b3 are the fixed-effects parameters, ui1 are the random-effect parameters assumed to be iid
N.0; �2u/, and eij are the residual errors assumed to be iid N.0; �2e / and independent of the ui1. This model
has a logistic form, and the random-effect parameters ui1 enter the model linearly.

The statements to fit this nonlinear mixed model are as follows:

proc nlmixed data=tree;
parms b1=190 b2=700 b3=350 s2u=1000 s2e=60;
num = b1+u1;
ex = exp(-(day-b2)/b3);
den = 1 + ex;
model y ~ normal(num/den,s2e);
random u1 ~ normal(0,s2u) subject=tree;

run;
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The PROC NLMIXED statement invokes the procedure and inputs the tree data set. The PARMS statement
identifies the unknown parameters and their starting values. Here there are three fixed-effects parameters (b1,
b2, b3) and two variance components (s2u, s2e).

The next three statements are SAS programming statements specifying the logistic mixed model. A new
variable u1 is included to identify the random effect. These statements are evaluated for every observation in
the data set when the NLMIXED procedure computes the log likelihood function and its derivatives.

The MODEL statement defines the dependent variable and its conditional distribution given the random
effects. Here a normal (Gaussian) conditional distribution is specified with mean num/den and variance s2e.

The RANDOM statement defines the single random effect to be u1, and specifies that it follow a normal
distribution with mean 0 and variance s2u. The SUBJECT= argument in the RANDOM statement defines a
variable indicating when the random effect obtains new realizations; in this case, it changes according to the
values of the tree variable. PROC NLMIXED assumes that the input data set is clustered according to the
levels of the tree variable; that is, all observations from the same tree occur sequentially in the input data set.

The output from this analysis is as follows.

Figure 70.1 Model Specifications

The NLMIXED ProcedureThe NLMIXED Procedure

Specifications

Data Set WORK.TREE

Dependent Variable y

Distribution for Dependent Variable Normal

Random Effects u1

Distribution for Random Effects Normal

Subject Variable tree

Optimization Technique Dual Quasi-Newton

Integration Method Adaptive Gaussian Quadrature

The “Specifications” table lists basic information about the nonlinear mixed model you have specified
(Figure 70.1). Included are the input data set, the dependent and subject variables, the random effects, the
relevant distributions, and the type of optimization. The “Dimensions” table lists various counts related to the
model, including the number of observations, subjects, and parameters (Figure 70.2). These quantities are
useful for checking that you have specified your data set and model correctly. Also listed is the number of
quadrature points that PROC NLMIXED has selected based on the evaluation of the log likelihood at the
starting values of the parameters. Here, only one quadrature point is necessary because the random-effect
parameters ui1 enter the model linearly. (The Gauss-Hermite quadrature with a single quadrature point
results in the Laplace approximation of the log likelihood.)
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Figure 70.2 Dimensions Table for Growth Curve Model

Dimensions

Observations Used 35

Observations Not Used 0

Total Observations 35

Subjects 5

Max Obs per Subject 7

Parameters 5

Quadrature Points 1

Figure 70.3 Starting Values of Parameter Estimates and Negative Log Likelihood

Initial Parameters

b1 b2 b3 s2u s2e

Negative
Log

Likelihood

190 700 350 1000 60 132.491787

The “Parameters” table lists the parameters to be estimated, their starting values, and the negative log
likelihood evaluated at the starting values (Figure 70.3).

Figure 70.4 Iteration History for Growth Curve Model

Iteration History

Iteration Calls

Negative
Log

Likelihood Difference
Maximum
Gradient Slope

1 8 131.6867 0.805045 0.010269 -0.63300

2 12 131.6447 0.042082 0.014783 -0.01820

3 16 131.6141 0.030583 0.009809 -0.02796

4 20 131.5725 0.041555 0.001186 -0.01344

5 22 131.5719 0.000627 0.000200 -0.00121

6 25 131.5719 5.549E-6 0.000092 -7.68E-6

7 28 131.5719 1.096E-6 6.097E-6 -1.29E-6

NOTE: GCONV convergence criterion satisfied.

The “Iteration History” table records the history of the minimization of the negative log likelihood (Fig-
ure 70.4). For each iteration of the quasi-Newton optimization, values are listed for the number of function
calls, the value of the negative log likelihood, the difference from the previous iteration, the absolute value
of the largest gradient, and the slope of the search direction. The note at the bottom of the table indicates
that the algorithm has converged successfully according to the GCONV convergence criterion, a standard
criterion computed using a quadratic form in the gradient and the inverse Hessian.
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The final maximized value of the log likelihood as well as the information criterion of Akaike (AIC), its
small sample bias corrected version (AICC), and the Bayesian information criterion (BIC) in the “smaller
is better” form appear in the “Fit Statistics” table (Figure 70.5). These statistics can be used to compare
different nonlinear mixed models.

Figure 70.5 Fit Statistics for Growth Curve Model

Fit Statistics

-2 Log Likelihood 263.1

AIC (smaller is better) 273.1

AICC (smaller is better) 275.2

BIC (smaller is better) 271.2

Figure 70.6 Parameter Estimates at Convergence

Parameter Estimates

Parameter Estimate
Standard

Error DF t Value Pr > |t|

95%
Confidence

Limits Gradient

b1 192.05 15.6473 4 12.27 0.0003 148.61 235.50 1.154E-6

b2 727.90 35.2474 4 20.65 <.0001 630.04 825.76 5.289E-6

b3 348.07 27.0793 4 12.85 0.0002 272.88 423.25 -6.1E-6

s2u 999.88 647.44 4 1.54 0.1974 -797.71 2797.46 -3.84E-6

s2e 61.5139 15.8832 4 3.87 0.0179 17.4150 105.61 2.892E-6

The maximum likelihood estimates of the five parameters and their approximate standard errors computed
using the final Hessian matrix are displayed in the “Parameter Estimates” table (Figure 70.6). Approximate
t-values and Wald-type confidence limits are also provided, with degrees of freedom equal to the number of
subjects minus the number of random effects. You should interpret these statistics cautiously for variance
parameters like s2u and s2e. The final column in the output shows the gradient vector at the optimization
solution. Each element appears to be sufficiently small to indicate a stationary point.

Since the random-effect parameters ui1 enter the model linearly, you can obtain equivalent results by using
the first-order method (specify METHOD=FIRO in the PROC NLMIXED statement).

Logistic-Normal Model with Binomial Data
This example analyzes the data from Beitler and Landis (1985), which represent results from a multi-center
clinical trial investigating the effectiveness of two topical cream treatments (active drug, control) in curing an
infection. For each of eight clinics, the number of trials and favorable cures are recorded for each treatment.
The SAS data set is as follows.
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data infection;
input clinic t x n;
datalines;

1 1 11 36
1 0 10 37
2 1 16 20
2 0 22 32
3 1 14 19
3 0 7 19
4 1 2 16
4 0 1 17
5 1 6 17
5 0 0 12
6 1 1 11
6 0 0 10
7 1 1 5
7 0 1 9
8 1 4 6
8 0 6 7
;

Suppose nij denotes the number of trials for the ith clinic and the jth treatment (i D 1; : : : ; 8I j D 0; 1), and
xij denotes the corresponding number of favorable cures. Then a reasonable model for the preceding data is
the following logistic model with random effects:

xij jui � Binomial.nij ; pij /

and

�ij D log
�

pij

1 � pij

�
D ˇ0 C ˇ1tj C ui

The notation tj indicates the jth treatment, and the ui are assumed to be iid N.0; �2u/.

The PROC NLMIXED statements to fit this model are as follows:

proc nlmixed data=infection;
parms beta0=-1 beta1=1 s2u=2;
eta = beta0 + beta1*t + u;
expeta = exp(eta);
p = expeta/(1+expeta);
model x ~ binomial(n,p);
random u ~ normal(0,s2u) subject=clinic;
predict eta out=eta;
estimate '1/beta1' 1/beta1;

run;

The PROC NLMIXED statement invokes the procedure, and the PARMS statement defines the parameters
and their starting values. The next three statements define pij , and the MODEL statement defines the
conditional distribution of xij to be binomial. The RANDOM statement defines u to be the random effect
with subjects defined by the clinic variable.
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The PREDICT statement constructs predictions for each observation in the input data set. For this example,
predictions of �ij and approximate standard errors of prediction are output to a data set named eta. These
predictions include empirical Bayes estimates of the random effects ui .

The ESTIMATE statement requests an estimate of the reciprocal of ˇ1.

The output for this model is as follows.

Figure 70.7 Model Information and Dimensions for Logistic-Normal Model

The NLMIXED ProcedureThe NLMIXED Procedure

Specifications

Data Set WORK.INFECTION

Dependent Variable x

Distribution for Dependent Variable Binomial

Random Effects u

Distribution for Random Effects Normal

Subject Variable clinic

Optimization Technique Dual Quasi-Newton

Integration Method Adaptive Gaussian Quadrature

Dimensions

Observations Used 16

Observations Not Used 0

Total Observations 16

Subjects 8

Max Obs per Subject 2

Parameters 3

Quadrature Points 5

The “Specifications” table provides basic information about the nonlinear mixed model (Figure 70.7). For
example, the distribution of the response variable, conditional on normally distributed random effects, is
binomial. The “Dimensions” table provides counts of various variables. You should check this table to make
sure the data set and model have been entered properly. PROC NLMIXED selects five quadrature points to
achieve the default accuracy in the likelihood calculations.

Figure 70.8 Starting Values of Parameter Estimates

Initial Parameters

beta0 beta1 s2u

Negative
Log

Likelihood

-1 1 2 37.5945925

The “Parameters” table lists the starting point of the optimization and the negative log likelihood at the
starting values (Figure 70.8).
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Figure 70.9 Iteration History and Fit Statistics for Logistic-Normal Model

Iteration History

Iteration Calls

Negative
Log

Likelihood Difference
Maximum
Gradient Slope

1 4 37.3622692 0.232323 2.88208 -19.3762

2 6 37.1460375 0.216232 0.92193 -0.82852

3 9 37.0300936 0.115944 0.31590 -0.59175

4 11 37.0223017 0.007792 0.019060 -0.01615

5 13 37.0222472 0.000054 0.001743 -0.00011

6 16 37.0222466 6.57E-7 0.000091 -1.28E-6

7 19 37.0222466 5.38E-10 2.078E-6 -1.1E-9

NOTE: GCONV convergence criterion satisfied.

Fit Statistics

-2 Log Likelihood 74.0

AIC (smaller is better) 80.0

AICC (smaller is better) 82.0

BIC (smaller is better) 80.3

The “Iteration History” table indicates successful convergence in seven iterations (Figure 70.9). The “Fit
Statistics” table lists some useful statistics based on the maximized value of the log likelihood.

Figure 70.10 Parameter Estimates for Logistic-Normal Model

Parameter Estimates

Parameter Estimate
Standard

Error DF t Value Pr > |t|

95%
Confidence

Limits Gradient

beta0 -1.1974 0.5561 7 -2.15 0.0683 -2.5123 0.1175 -3.1E-7

beta1 0.7385 0.3004 7 2.46 0.0436 0.02806 1.4488 -2.08E-6

s2u 1.9591 1.1903 7 1.65 0.1438 -0.8555 4.7737 -2.48E-7

The “Parameter Estimates” table indicates marginal significance of the two fixed-effects parameters (Fig-
ure 70.10). The positive value of the estimate of ˇ1 indicates that the treatment significantly increases the
chance of a favorable cure.

Figure 70.11 Table of Additional Estimates

Additional Estimates

Label Estimate
Standard

Error DF t Value Pr > |t| Alpha Lower Upper

1/beta1 1.3542 0.5509 7 2.46 0.0436 0.05 0.05146 2.6569

The “Additional Estimates” table displays results from the ESTIMATE statement (Figure 70.11). The estimate
of 1=ˇ1 equals 1=0:7385 D 1:3542 and its standard error equals 0:3004=0:73852 D 0:5509 by the delta
method (Billingsley 1986; Cox 1998). Note that this particular approximation produces a t-statistic identical
to that for the estimate of ˇ1. Not shown is the eta data set, which contains the original 16 observations and
predictions of the �ij .
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Syntax: NLMIXED Procedure
The following statements are available in the NLMIXED procedure:

PROC NLMIXED < options > ;
ARRAY array-specification ;
BOUNDS boundary-constraints ;
BY variables ;
CONTRAST 'label ' expression < , expression > < options > ;
ESTIMATE 'label ' expression < options > ;
ID names ;
MODEL model-specification ;
PARMS parameters-and-starting-values ;
PREDICT expression OUT=SAS-data-set < options > ;
RANDOM random-effects-specification ;
REPLICATE variable ;
Programming statements ;

The following sections provide a detailed description of each of these statements.

PROC NLMIXED Statement
PROC NLMIXED < options > ;

The PROC NLMIXED statement invokes the NLMIXED procedure. Table 70.1 summarizes the options
available in the PROC NLMIXED statement.

Table 70.1 PROC NLMIXED Statement Options

Option Description

Basic Options
DATA= Specifies the input data set
METHOD= Specifies the integration method
NOSORTSUB Requests that the unique SUBJECT= variable values not be used

Displayed Output Specifications
ALPHA= Specifies ˛ for confidence limits
CORR Requests the correlation matrix
COV Requests the covariance matrix
DF= Specifies the degrees of freedom for p-values and confidence limits
ECORR Requests the correlation matrix of additional estimates
ECOV Requests the covariance matrix of additional estimates
EDER Requests derivatives of additional estimates
EMPIRICAL Requests the empirical (“sandwich”) estimator of covariance matrix
HESS Requests the Hessian matrix
ITDETAILS Requests iteration details
START Specifies the gradient at starting values
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Table 70.1 continued

Option Description

Debugging Output
FLOW Displays the model execution messages
LISTCODE Displays compiled model program
LISTDEP Produces a model dependency listing
LISTDER Displays the model derivatives
LIST Displays the model program and variables
TRACE Displays detailed model execution messages
XREF Displays the model cross references

Quadrature Options
NOADSCALE Requests no adaptive scaling
NOAD Requests no adaptive centering
OUTQ= Displays output data set
QFAC= Specifies the search factor
QMAX= Specifies the maximum points
QPOINTS= Specifies the number of points
QSCALEFAC= Specifies the scale factor
QTOL= Specifies the tolerance

Empirical Bayes Options
EBOPT Requests comprehensive optimization
EBSSFRAC= Specifies the step-shortening fraction
EBSSTOL= Specifies the step-shortening tolerance
EBSTEPS= Specifies the number of Newton steps
EBSUBSTEPS= Specifies the number of substeps
EBTOL= Specifies the convergence tolerance
EBZSTART Requests zero as the starting values
OUTR= Displays an output data set that contains empirical Bayes estimates of

random effects and their approximate standard errors

Optimization Specifications
HESCAL= Specifies the type of Hessian scaling
INHESSIAN<=> Specifies the start for approximated Hessian
LINESEARCH= Specifies the line-search method
LSPRECISION= Specifies the line-search precision
OPTCHECK<=> Checks optimality in a neighborhood
RESTART= Specifies the iteration number for update restart
TECHNIQUE= Specifies the minimization technique
UPDATE= Specifies the update technique

Derivatives Specifications
DIAHES Uses only the diagonal of Hessian
FDHESSIAN<=> Specifies the finite-difference second derivatives
FD<=> Specifies the finite-difference derivatives
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Table 70.1 continued

Option Description

Constraint Specifications
LCDEACT= Specifies the Lagrange multiplier tolerance for deactivating
LCEPSILON= Specifies the range for active constraints
LCSINGULAR= Specifies the tolerance for dependent constraints

Termination Criteria Specifications
ABSCONV= Specifies the absolute function convergence criterion
ABSFCONV= Specifies the absolute function difference convergence criterion
ABSGCONV= Specifies the absolute gradient convergence criterion
ABSXCONV= Specifies the absolute parameter convergence criterion
FCONV= Specifies the relative function convergence criterion
FCONV2= Specifies another relative function convergence criterion
FDIGITS= Specifies the number accurate digits in objective function
FSIZE= Specifies the FSIZE parameter of the relative function and relative gradient

termination criteria
GCONV= Specifies the relative gradient convergence criterion
MAXFUNC= Specifies the maximum number of function calls
MAXITER= Specifies the maximum number of iterations
MAXTIME= Specifies the upper limit seconds of CPU time
MINITER= Specifies the minimum number of iterations
XCONV= Specifies the relative parameter convergence criterion
XSIZE= Used in XCONV criterion

Step Length Specifications
DAMPSTEP<=> Specifies the damped steps in line search
INSTEP= Specifies the initial trust-region radius
MAXSTEP= Specifies the maximum trust-region radius

Singularity Tolerances
SINGCHOL= Specifies the tolerance for Cholesky roots
SINGHESS= Specifies the tolerance for Hessian
SINGSWEEP= Specifies the tolerance for sweep
SINGVAR= Specifies the tolerance for variances

Covariance Matrix Tolerances
ASINGULAR= Specifies the absolute singularity for inertia
CFACTOR= Specifies the multiplication factor for COV matrix
COVSING= Specifies the tolerance for singular COV matrix
G4= Specifies the threshold for Moore-Penrose inverse
MSINGULAR= Specifies the relative M singularity for inertia
VSINGULAR= Specifies the relative V singularity for inertia

These options are described in alphabetical order. For a description of the mathematical notation used in the
following sections, see the section “Modeling Assumptions and Notation” on page 5717.
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ABSCONV=r
ABSTOL=r

specifies an absolute function convergence criterion. For minimization, termination requires f .�.k// �
r . The default value of r is the negative square root of the largest double-precision value, which serves
only as a protection against overflows.

ABSFCONV=r< [n] >
ABSFTOL=r< [n] >

specifies an absolute function difference convergence criterion. For all techniques except NMSIMP,
termination requires a small change of the function value in successive iterations:

jf .�.k�1// � f .�.k//j � r

The same formula is used for the NMSIMP technique, but �.k/ is defined as the vertex with the lowest
function value, and �.k�1/ is defined as the vertex with the highest function value in the simplex. The
default value is r = 0. The optional integer value n specifies the number of successive iterations for
which the criterion must be satisfied before the process can be terminated.

ABSGCONV=r< [n] >
ABSGTOL=r< [n] >

specifies an absolute gradient convergence criterion. Termination requires the maximum absolute
gradient element to be small:

max
j
jgj .�

.k//j � r

This criterion is not used by the NMSIMP technique. The default value is r = 1E–5. The optional
integer value n specifies the number of successive iterations for which the criterion must be satisfied
before the process can be terminated. If you specify more than one RANDOM statement, the default
value is r = 1E–3.

ABSXCONV=r< [n] >
ABSXTOL=r< [n] >

specifies an absolute parameter convergence criterion. For all techniques except NMSIMP, termination
requires a small Euclidean distance between successive parameter vectors,

k �.k/ � �.k�1/ k2� r

For the NMSIMP technique, termination requires either a small length ˛.k/ of the vertices of a restart
simplex,

˛.k/ � r

or a small simplex size,

ı.k/ � r

where the simplex size ı.k/ is defined as the L1 distance from the simplex vertex �.k/ with the smallest
function value to the other n simplex points �.k/

l
¤ �.k/:

ı.k/ D
X
�l¤y

k �
.k/

l
� �.k/ k1

The default is r = 1E–8 for the NMSIMP technique and r = 0 otherwise. The optional integer value n
specifies the number of successive iterations for which the criterion must be satisfied before the process
can terminate.
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ALPHA=˛
specifies the alpha level to be used in computing confidence limits. The default value is 0.05.

ASINGULAR=r

ASING=r
specifies an absolute singularity criterion for the computation of the inertia (number of positive,
negative, and zero eigenvalues) of the Hessian and its projected forms. The default value is the square
root of the smallest positive double-precision value.

CFACTOR=f
specifies a multiplication factor f for the estimated covariance matrix of the parameter estimates.

COV
requests the approximate covariance matrix for the parameter estimates.

CORR
requests the approximate correlation matrix for the parameter estimates.

COVSING=r> 0
specifies a nonnegative threshold that determines whether the eigenvalues of a singular Hessian matrix
are considered to be zero.

DAMPSTEP< =r >

DS< =r >
specifies that the initial step-size value ˛.0/ for each line search (used by the QUANEW, CONGRA, or
NEWRAP technique) cannot be larger than r times the step-size value used in the former iteration. If
you specify the DAMPSTEP option without factor r , the default value is r = 2. The DAMPSTEP=r
option can prevent the line-search algorithm from repeatedly stepping into regions where some
objective functions are difficult to compute or where they could lead to floating-point overflows during
the computation of objective functions and their derivatives. The DAMPSTEP=r option can save
time-costly function calls that result in very small step sizes ˛. For more details on setting the start
values of each line search, see the section “Restricting the Step Length” on page 5735.

DATA=SAS-data-set
specifies the input data set. Observations in this data set are used to compute the log likelihood function
that you specify with PROC NLMIXED statements.

NOTE: In SAS/STAT 12.3 and previous releases, if you are using a RANDOM statement, the input
data set must be clustered according to the SUBJECT= variable. One easy way to accomplish this is to
sort your data by the SUBJECT= variable before calling the NLMIXED procedure. PROC NLMIXED
does not sort the input data set for you.

DF=d
specifies the degrees of freedom to be used in computing p values and confidence limits. PROC
NLMIXED calculates the default degrees of freedom as follows:

• When there is no RANDOM statement in the model, the default value is the number of observa-
tions.

• When only one RANDOM statement is specified, the default value is the number of subjects
minus the number of random effects for random-effects models.
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• When multiple RANDOM statements are specified, the default degrees of freedom is the number
of subjects in the lowest nested level minus the total number of random effects. For example,
if the highest level of hierarchy is specified by SUBJECT=S1 and the next level of hierarchy
(nested within S1) is specified by SUBJECT=S2(S1), then the degrees of freedom is computed as
the total number of subjects from S2(S1) minus the total number of random-effects variables in
the model.

If the degrees of freedom computation leads to a nonpositive value, then the default value is the total
number of observations.

DIAHES
specifies that only the diagonal of the Hessian be used.

EBOPT
requests that a more comprehensive optimization be carried out if the default empirical Bayes opti-
mization fails to converge. If you specify more than one RANDOM statement, this option is ignored.

EBSSFRAC=r > 0
specifies the step-shortening fraction to be used while computing empirical Bayes estimates of the
random effects. The default value is 0.8. If you specify more than one RANDOM statement, this
option is ignored.

EBSSTOL=r � 0
specifies the objective function tolerance for determining the cessation of step-shortening while
computing empirical Bayes estimates of the random effects. The default value is r = 1E–8. If you
specify more than one RANDOM statement, this option is ignored.

EBSTEPS=n� 0
specifies the maximum number of Newton steps for computing empirical Bayes estimates of random
effects. The default value is n = 50. If you specify more than one RANDOM statement, this option is
ignored.

EBSUBSTEPS=n� 0
specifies the maximum number of step-shortenings for computing empirical Bayes estimates of random
effects. The default value is n = 20. If you specify more than one RANDOM statement, this option is
ignored.

EBTOL=r � 0
specifies the convergence tolerance for empirical Bayes estimation. The default value is r D �E4,
where � is the machine precision. This default value equals approximately 1E–12 on most machines.
If you specify more than one RANDOM statement, this option is ignored.

EBZSTART
requests that a zero be used as starting values during empirical Bayes estimation. By default, the
starting values are set equal to the estimates from the previous iteration (or zero for the first iteration).

ECOV
requests the approximate covariance matrix for all expressions specified in ESTIMATE statements.

ECORR
requests the approximate correlation matrix for all expressions specified in ESTIMATE statements.
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EDER
requests the derivatives of all expressions specified in ESTIMATE statements with respect to each of
the model parameters.

EMPIRICAL
requests that the covariance matrix of the parameter estimates be computed as a likelihood-based
empirical (“sandwich”) estimator (White 1982). If f .�/ D �logfm.�/g is the objective function for
the optimization andm.�/ denotes the marginal log likelihood (see the section “Modeling Assumptions
and Notation” on page 5717 for notation and further definitions) the empirical estimator is computed as

H. O�/�1
 

sX
iD1

gi . O�/gi . O�/0
!
H. O�/�1

where H is the second derivative matrix of f and gi is the first derivative of the contribution to f by
the ith subject. If you choose the EMPIRICAL option, this estimator of the covariance matrix of the
parameter estimates replaces the model-based estimator H. O�/�1 in subsequent calculations. You can
output the subject-specific gradients gi to a SAS data set with the SUBGRADIENT option in the
PROC NLMIXED statement.

The EMPIRICAL option requires the presence of a RANDOM statement and is available for
METHOD=GAUSS and METHOD=ISAMP only.

If you specify more than one RANDOM statement, this option is ignored.

FCONV=r< [n] >

FTOL=r< [n] >
specifies a relative function convergence criterion. For all techniques except NMSIMP, termination
requires a small relative change of the function value in successive iterations,

jf .�.k// � f .�.k�1//j

max.jf .�.k�1//j;FSIZE/
� r

where FSIZE is defined by the FSIZE= option. The same formula is used for the NMSIMP technique,
but �.k/ is defined as the vertex with the lowest function value, and �.k�1/ is defined as the vertex
with the highest function value in the simplex. The default is r D 10�FDIGITS, where FDIGITS is
the value of the FDIGITS= option. The optional integer value n specifies the number of successive
iterations for which the criterion must be satisfied before the process can terminate.

FCONV2=r< [n] >

FTOL2=r< [n] >
specifies another function convergence criterion. For all techniques except NMSIMP, termination
requires a small predicted reduction

df .k/ � f .�.k// � f .�.k/ C s.k//

of the objective function. The predicted reduction

df .k/ D �g.k/0s.k/ �
1

2
s.k/0H.k/s.k/

D �
1

2
s.k/0g.k/

� r
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is computed by approximating the objective function f by the first two terms of the Taylor series and
substituting the Newton step:

s.k/ D �ŒH.k/��1g.k/

For the NMSIMP technique, termination requires a small standard deviation of the function values of
the nC 1 simplex vertices �.k/

l
, l D 0; : : : ; n,s

1

nC 1

X
l

h
f .�

.k/

l
/ � f .�.k//

i2
� r

where f .�.k// D 1
nC1

P
l f .�

.k/

l
/. If there are nact boundary constraints active at �.k/, the mean and

standard deviation are computed only for the nC 1 � nact unconstrained vertices. The default value
is r = 1E–6 for the NMSIMP technique and r = 0 otherwise. The optional integer value n specifies
the number of successive iterations for which the criterion must be satisfied before the process can
terminate.

FD < = FORWARD | CENTRAL | r >
specifies that all derivatives be computed using finite difference approximations. The following
specifications are permitted:

FD is equivalent to FD=100.

FD=CENTRAL uses central differences.

FD=FORWARD uses forward differences.

FD=r uses central differences for the initial and final evaluations of the gradient and
for the Hessian. During iteration, start with forward differences and switch to a
corresponding central-difference formula during the iteration process when one of
the following two criteria is satisfied:

• The absolute maximum gradient element is less than or equal to r times the
ABSGCONV= threshold.

• The normalized predicted function reduction (see the GTOL option) is less
than or equal to max.1E � 6; r �GTOL/. The 1E–6 ensures that the switch
is done, even if you set the GTOL threshold to zero.

Note that the FD and FDHESSIAN options cannot apply at the same time. The FDHESSIAN option is
ignored when only first-order derivatives are used. See the section “Finite-Difference Approximations
of Derivatives” on page 5730 for more information.

FDHESSIAN< =FORWARD | CENTRAL >
FDHES< =FORWARD | CENTRAL >
FDH< =FORWARD | CENTRAL >

specifies that second-order derivatives be computed using finite difference approximations based on
evaluations of the gradients.

FDHESSIAN=FORWARD uses forward differences.

FDHESSIAN=CENTRAL uses central differences.

FDHESSIAN uses forward differences for the Hessian except for the initial and final output.

Note that the FD and FDHESSIAN options cannot apply at the same time. See the section “Finite-
Difference Approximations of Derivatives” on page 5730 for more information.
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FDIGITS=r
specifies the number of accurate digits in evaluations of the objective function. Fractional values
such as FDIGITS=4.7 are allowed. The default value is r D � log10 �, where � is the machine
precision. The value of r is used to compute the interval size h for the computation of finite-difference
approximations of the derivatives of the objective function and for the default value of the FCONV=
option. If you specify more than one RANDOM statement, the default value is r D 0:5.� log10 �/.

FLOW
displays a message for each statement in the model program as it is executed. This debugging option is
very rarely needed and produces voluminous output.

FSIZE=r
specifies the FSIZE parameter of the relative function and relative gradient termination criteria. The
default value is r = 0. For more information, see the FCONV= and GCONV= options.

G4=n> 0
specifies a dimension to determine the type of generalized inverse to use when the approximate
covariance matrix of the parameter estimates is singular. The default value of n is 60. See the section
“Covariance Matrix” on page 5739 for more information.

GCONV=r< [n] >
GTOL=r< [n] >

specifies a relative gradient convergence criterion. For all techniques except CONGRA and NMSIMP,
termination requires that the normalized predicted function reduction is small,

g.�.k//0ŒH.k/��1g.�.k//
max.jf .�.k//j;FSIZE/

� r

where FSIZE is defined by the FSIZE= option. For the CONGRA technique (where a reliable Hessian
estimate H is not available), the following criterion is used:

k g.�.k// k22 k s.�.k// k2
k g.�.k// � g.�.k�1// k2 max.jf .�.k//j;FSIZE/

� r

This criterion is not used by the NMSIMP technique.

The default value is r = 1E–8. The optional integer value n specifies the number of successive iterations
for which the criterion must be satisfied before the process can terminate. If you specify more than one
RANDOM statement, the default value is r = 1E–6.

HESCAL= 0 | 1 | 2 | 3
HS=0 | 1 | 2 | 3

specifies the scaling version of the Hessian matrix used in NRRIDG, TRUREG, NEWRAP, or
DBLDOG optimization.

If HS is not equal to 0, the first iteration and each restart iteration sets the diagonal scaling matrix
D.0/ D diag.d .0/i /:

d
.0/
i D

q
max.jH .0/

i;i j; �/

where H .0/
i;i are the diagonal elements of the Hessian. In every other iteration, the diagonal scaling

matrix D.0/ D diag.d .0/i / is updated depending on the HS option:
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0 specifies that no scaling is done.

1 specifies the Moré (1978) scaling update:

d
.kC1/
i D max

�
d
.k/
i ;

q
max.jH .k/

i;i j; �/

�
2 specifies the Dennis, Gay, and Welsch (1981) scaling update:

d
.kC1/
i D max

�
0:6 � d

.k/
i ;

q
max.jH .k/

i;i j; �/

�
3 specifies that di is reset in each iteration:

d
.kC1/
i D

q
max.jH .k/

i;i j; �/

In each scaling update, � is the relative machine precision. The default value is HS=0. Scaling of the
Hessian can be time-consuming in the case where general linear constraints are active.

HESS
requests the display of the final Hessian matrix after optimization. If you also specify the START
option, then the Hessian at the starting values is also printed.

INHESSIAN< =r >
INHESS< =r >

specifies how the initial estimate of the approximate Hessian is defined for the quasi-Newton techniques
QUANEW and DBLDOG. There are two alternatives:

• If you do not use the r specification, the initial estimate of the approximate Hessian is set to the
Hessian at �.0/.

• If you do use the r specification, the initial estimate of the approximate Hessian is set to the
multiple of the identity matrix, rI.

By default, if you do not specify the option INHESSIAN=r , the initial estimate of the approximate
Hessian is set to the multiple of the identity matrix rI, where the scalar r is computed from the
magnitude of the initial gradient.

INSTEP=r
reduces the length of the first trial step during the line search of the first iterations. For highly nonlinear
objective functions, such as the EXP function, the default initial radius of the trust-region algorithm
TRUREG or DBLDOG or the default step length of the line-search algorithms can result in arithmetic
overflows. If this occurs, you should specify decreasing values of 0 < r < 1 such as INSTEP=1E–1,
INSTEP=1E–2, INSTEP=1E–4, and so on, until the iteration starts successfully.

• For trust-region algorithms (TRUREG, DBLDOG), the INSTEP= option specifies a factor r > 0
for the initial radius �.0/ of the trust region. The default initial trust-region radius is the length of
the scaled gradient. This step corresponds to the default radius factor of r = 1.

• For line-search algorithms (NEWRAP, CONGRA, QUANEW), the INSTEP= option specifies
an upper bound for the initial step length for the line search during the first five iterations. The
default initial step length is r = 1.

• For the Nelder-Mead simplex algorithm, using TECH=NMSIMP, the INSTEP=r option defines
the size of the start simplex.

For more details, see the section “Computational Problems” on page 5736.
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ITDETAILS
requests a more complete iteration history, including the current values of the parameter estimates,
their gradients, and additional optimization statistics. For further details, see the section “Iterations” on
page 5742.

LCDEACT=r

LCD=r
specifies a threshold r for the Lagrange multiplier that determines whether an active inequality
constraint remains active or can be deactivated. During minimization, an active inequality constraint
can be deactivated only if its Lagrange multiplier is less than the threshold value r < 0. The default
value is

r D �min.0:01;max.0:1 �ABSGCONV; 0:001 � gmax.k///

where ABSGCONV is the value of the absolute gradient criterion, and gmax.k/ is the maximum
absolute element of the (projected) gradient g.k/ or Z0g.k/. (See the section “Active Set Methods” for
a definition of Z.)

LCEPSILON=r > 0

LCEPS=r > 0

LCE=r > 0
specifies the range for active and violated boundary constraints. The default value is r = 1E–8. During
the optimization process, the introduction of rounding errors can force PROC NLMIXED to increase
the value of r by a factor of 10; 100; : : :. If this happens, it is indicated by a message displayed in the
log.

LCSINGULAR=r > 0

LCSING=r > 0

LCS=r > 0
specifies a criterion r , used in the update of the QR decomposition, that determines whether an active
constraint is linearly dependent on a set of other active constraints. The default value is r = 1E–8. The
larger r becomes, the more the active constraints are recognized as being linearly dependent. If the
value of r is larger than 0.1, it is reset to 0.1.

LINESEARCH=i

LIS=i
specifies the line-search method for the CONGRA, QUANEW, and NEWRAP optimization techniques.
See Fletcher (1987) for an introduction to line-search techniques. The value of i can be 1; : : : ; 8. For
CONGRA, QUANEW and NEWRAP, the default value is i = 2.

1 specifies a line-search method that needs the same number of function and gradient
calls for cubic interpolation and cubic extrapolation; this method is similar to one
used by the Harwell subroutine library.

2 specifies a line-search method that needs more function than gradient calls for
quadratic and cubic interpolation and cubic extrapolation; this method is imple-
mented as shown in Fletcher (1987) and can be modified to an exact line search by
using the LSPRECISION= option.
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3 specifies a line-search method that needs the same number of function and gradient
calls for cubic interpolation and cubic extrapolation; this method is implemented as
shown in Fletcher (1987) and can be modified to an exact line search by using the
LSPRECISION= option.

4 specifies a line-search method that needs the same number of function and gradient
calls for stepwise extrapolation and cubic interpolation.

5 specifies a line-search method that is a modified version of LIS=4.

6 specifies golden section line search (Polak 1971), which uses only function values
for linear approximation.

7 specifies bisection line search (Polak 1971), which uses only function values for
linear approximation.

8 specifies the Armijo line-search technique (Polak 1971), which uses only function
values for linear approximation.

LIST
displays the model program and variable lists. The LIST option is a debugging feature and is not
normally needed.

LISTCODE
displays the derivative tables and the compiled program code. The LISTCODE option is a debugging
feature and is not normally needed.

LISTDEP
produces a report that lists, for each variable in the program, the variables that depend on it and on
which it depends. The LISTDEP option is a debugging feature and is not normally needed.

LISTDER
displays a table of derivatives. This table lists each nonzero derivative computed for the problem. The
LISTDER option is a debugging feature and is not normally needed.

LOGNOTE< =n >
writes periodic notes to the log that describe the current status of computations. It is designed for use
with analyses requiring extensive CPU resources. The optional integer value n specifies the desired
level of reporting detail. The default is n = 1. Choosing n = 2 adds information about the objective
function values at the end of each iteration. The most detail is obtained with n = 3, which also reports
the results of function evaluations within iterations.

LSPRECISION=r

LSP=r
specifies the degree of accuracy that should be obtained by the line-search algorithms LIS=2 and
LIS=3. Usually an imprecise line search is inexpensive and successful. For more difficult optimization
problems, a more precise and expensive line search might be necessary (Fletcher 1987). The second
line-search method (which is the default for the NEWRAP, QUANEW, and CONGRA techniques) and
the third line-search method approach exact line search for small LSPRECISION= values. If you have
numerical problems, you should try to decrease the LSPRECISION= value to obtain a more precise
line search. The default values are shown in the following table.



PROC NLMIXED Statement F 5703

TECH= UPDATE= LSP default

QUANEW DBFGS, BFGS r = 0.4
QUANEW DDFP, DFP r = 0.06
CONGRA all r = 0.1
NEWRAP no update r = 0.9

For more details, see Fletcher (1987).

MAXFUNC=i

MAXFU=i
specifies the maximum number i of function calls in the optimization process. The default values are
as follows:

• TRUREG, NRRIDG, NEWRAP: 125

• QUANEW, DBLDOG: 500

• CONGRA: 1000

• NMSIMP: 3000

Note that the optimization can terminate only after completing a full iteration. Therefore, the number
of function calls that is actually performed can exceed the number that is specified by the MAXFUNC=
option.

MAXITER=i

MAXIT=i
specifies the maximum number i of iterations in the optimization process. The default values are as
follows:

• TRUREG, NRRIDG, NEWRAP: 50

• QUANEW, DBLDOG: 200

• CONGRA: 400

• NMSIMP: 1000

These default values are also valid when i is specified as a missing value.

MAXSTEP=r< [n] >
specifies an upper bound for the step length of the line-search algorithms during the first n iterations.
By default, r is the largest double-precision value and n is the largest integer available. Setting this
option can improve the speed of convergence for the CONGRA, QUANEW, and NEWRAP techniques.

MAXTIME=r
specifies an upper limit of r seconds of CPU time for the optimization process. The time checked only
at the end of each iteration. Therefore, the actual run time might be longer than the specified time. By
default, CPU time is not limited. The actual running time includes the rest of the time needed to finish
the iteration and the time needed to generate the output of the results.
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METHOD=value
specifies the method for approximating the integral of the likelihood over the random effects. Valid
values are as follows:

FIRO
specifies the first-order method of Beal and Sheiner (1982). When using METHOD=FIRO, you
must specify the NORMAL distribution in the MODEL statement and you must also specify a
RANDOM statement.

GAUSS
specifies adaptive Gauss-Hermite quadrature (Pinheiro and Bates 1995). You can prevent the
adaptation with the NOAD option or prevent adaptive scaling with the NOADSCALE option.
This is the default integration method.

HARDY
specifies Hardy quadrature based on an adaptive trapezoidal rule. This method is available only
for one-dimensional integrals; that is, you must specify only one random effect.

ISAMP
specifies adaptive importance sampling (Pinheiro and Bates 1995). You can prevent the adaptation
with the NOAD option or prevent adaptive scaling with the NOADSCALE option. You can
use the SEED= option to specify a starting seed for the random number generation used in the
importance sampling. If you do not specify a seed, or if you specify a value less than or equal to
zero, the seed is generated from reading the time of day from the computer clock.

MINITER=i

MINIT=i
specifies the minimum number of iterations. The default value is 0. If you request more iterations
than are actually needed for convergence to a stationary point, the optimization algorithms can behave
strangely. For example, the effect of rounding errors can prevent the algorithm from continuing for the
required number of iterations.

MSINGULAR=r > 0

MSING=r > 0
specifies a relative singularity criterion for the computation of the inertia (number of positive, negative,
and zero eigenvalues) of the Hessian and its projected forms. The default value is 1E–12 if you do not
specify the SINGHESS= option; otherwise, the default value is max.10�; .1E � 4/ � SINGHESS/.
See the section “Covariance Matrix” on page 5739 for more information.

NOAD
requests that the Gaussian quadrature be nonadaptive; that is, the quadrature points are centered at
zero for each of the random effects and the current random-effects variance matrix is used as the scale
matrix.

NOADSCALE
requests nonadaptive scaling for adaptive Gaussian quadrature; that is, the quadrature points are
centered at the empirical Bayes estimates for the random effects, but the current random-effects
variance matrix is used as the scale matrix. By default, the observed Hessian from the current empirical
Bayes estimates is used as the scale matrix.
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NOSORTSUB
requests that the data be processed sequentially and forms a new subject whenever the value of the
SUBJECT= variable changes from the previous observation. This option enables PROC NLMIXED
to use the behavior from SAS/STAT 12.3 and previous releases, in which the clusters are constructed
by sequential processing. By default, starting with SAS/STAT 13.1, PROC NLMIXED constructs the
clusters by using each of the unique SUBJECT= variable values, whether the input data set is sorted or
not.

If you specify more than one RANDOM statement, this option is ignored.

OPTCHECK< =r > 0>
computes the function values f .�l/ of a grid of points �l in a ball of radius of r about ��. If you
specify the OPTCHECK option without factor r , the default value is r = 0.1 at the starting point and r
= 0.01 at the terminating point. If a point ��

l
is found with a better function value than f .��/, then

optimization is restarted at ��
l

.

OUTQ=SAS-data-set
specifies an output data set that contains the quadrature points used for numerical integration.

OUTR=SAS-data-set
specifies an output data set that contains empirical Bayes estimates of the random effects of all
hierarchies and their approximate standard errors.

QFAC=r > 0
specifies the additive factor used to adaptively search for the number of quadrature points. For
METHOD=GAUSS, the search sequence is 1, 3, 5, 7, 9, 11, 11 + r , 11 + 2r, . . . , where the default
value of r is 10. For METHOD=ISAMP, the search sequence is 10, 10 + r , 10 + 2r, . . . , where the
default value of r is 50.

QMAX=r > 0
specifies the maximum number of quadrature points permitted before the adaptive search is aborted.
The default values are 31 for adaptive Gaussian quadrature, 61 for nonadaptive Gaussian quadrature,
160 for adaptive importance sampling, and 310 for nonadaptive importance sampling.

QPOINTS=n> 0
specifies the number of quadrature points to be used during evaluation of integrals. For
METHOD=GAUSS, n equals the number of points used in each dimension of the random effects,
resulting in a total of nr points, where r is the number of dimensions. For METHOD=ISAMP, n
specifies the total number of quadrature points regardless of the dimension of the random effects. By
default, the number of quadrature points is selected adaptively, and this option disables the adaptive
search.

QSCALEFAC=r > 0
specifies a multiplier for the scale matrix used during quadrature calculations. The default value is 1.0.

QTOL=r > 0
specifies the tolerance used to adaptively select the number of quadrature points. When the relative
difference between two successive likelihood calculations is less than r , then the search terminates and
the lesser number of quadrature points is used during the subsequent optimization process. The default
value is 1E–4.
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RESTART=i > 0
REST=i > 0

specifies that the QUANEW or CONGRA algorithm is restarted with a steepest descent/ascent search
direction after, at most, i iterations. Default values are as follows:

• CONGRA: UPDATE=PB: restart is performed automatically, i is not used.

• CONGRA: UPDATE¤PB: i D min.10n; 80/, where n is the number of parameters.

• QUANEW: i is the largest integer available.

SEED=i
specifies the random number seed for METHOD=ISAMP. If you do not specify a seed, or if you
specify a value less than or equal to zero, the seed is generated from reading the time of day from the
computer clock. The value must be less than 231 � 1.

SINGCHOL=r > 0
specifies the singularity criterion r for Cholesky roots of the random-effects variance matrix and scale
matrix for adaptive Gaussian quadrature. The default value is 1E4 times the machine epsilon; this
product is approximately 1E–12 on most computers.

SINGHESS=r > 0
specifies the singularity criterion r for the inversion of the Hessian matrix. The default value is 1E–8.
See the ASINGULAR, MSINGULAR=, and VSINGULAR= options for more information.

SINGSWEEP=r > 0
specifies the singularity criterion r for inverting the variance matrix in the first-order method and the
empirical Bayes Hessian matrix. The default value is 1E4 times the machine epsilon; this product is
approximately 1E–12 on most computers.

SINGVAR=r > 0
specifies the singularity criterion r below which statistical variances are considered to equal zero.
The default value is 1E4 times the machine epsilon; this product is approximately 1E–12 on most
computers.

START
requests that the gradient of the log likelihood at the starting values be displayed. If you also specify
the HESS option, then the starting Hessian is displayed as well.

SUBGRADIENT=SAS-data-set
SUBGRAD=SAS-data-set

specifies a SAS data set that contains subgradients. In models that use the RANDOM statement, the
data set contains the subject-specific gradients of the integrated, marginal log likelihood with respect
to all parameters. The sum of the subject-specific gradients equals the gradient that is reported in the
“Parameter Estimates” table. The data set contains a variable that identifies the subjects.

In models that do not use the RANDOM statement, the data set contains the observation-wise gradient.
The variable identifying the SUBJECT= is then replaced with the Observation. This observation
counter includes observations not used in the analysis and is reset in each BY group.

Saving disaggregated gradient information by specifying the SUBGRADIENT= option requires that
you also specify METHOD=GAUSS or METHOD=ISAMP.

If you specify more than one RANDOM statement, this option is ignored.
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TECHNIQUE=value

TECH=value
specifies the optimization technique. By default, TECH = QUANEW. Valid values are as follows:

• CONGRA
performs a conjugate-gradient optimization, which can be more precisely specified with the
UPDATE= option and modified with the LINESEARCH= option. When you specify this option,
UPDATE=PB by default.

• DBLDOG
performs a version of double-dogleg optimization, which can be more precisely specified with
the UPDATE= option. When you specify this option, UPDATE=DBFGS by default.

• NMSIMP
performs a Nelder-Mead simplex optimization.

• NONE
does not perform any optimization. This option can be used as follows:

– to perform a grid search without optimization
– to compute estimates and predictions that cannot be obtained efficiently with any of the

optimization techniques

• NEWRAP
performs a Newton-Raphson optimization combining a line-search algorithm with ridging. The
line-search algorithm LIS=2 is the default method.

• NRRIDG
performs a Newton-Raphson optimization with ridging.

• QUANEW
performs a quasi-Newton optimization, which can be defined more precisely with the UPDATE=
option and modified with the LINESEARCH= option. This is the default estimation method.

• TRUREG
performs a trust region optimization.

TRACE
displays the result of each operation in each statement in the model program as it is executed. This
debugging option is very rarely needed, and it produces voluminous output.

UPDATE=method

UPD=method
specifies the update method for the quasi-Newton, double-dogleg, or conjugate-gradient optimization
technique. Not every update method can be used with each optimizer. See the section “Optimization
Algorithms” on page 5725 for more information.

Valid methods are as follows:

• BFGS
performs the original Broyden, Fletcher, Goldfarb, and Shanno (BFGS) update of the inverse
Hessian matrix.

• DBFGS
performs the dual BFGS update of the Cholesky factor of the Hessian matrix. This is the default
update method.
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• DDFP
performs the dual Davidon, Fletcher, and Powell (DFP) update of the Cholesky factor of the
Hessian matrix.

• DFP
performs the original DFP update of the inverse Hessian matrix.

• PB
performs the automatic restart update method of Powell (1977) and Beale (1972).

• FR
performs the Fletcher-Reeves update (Fletcher 1987).

• PR
performs the Polak-Ribiere update (Fletcher 1987).

• CD
performs a conjugate-descent update of Fletcher (1987).

VSINGULAR=r > 0

VSING=r > 0
specifies a relative singularity criterion for the computation of the inertia (number of positive, negative,
and zero eigenvalues) of the Hessian and its projected forms. The default value is r = 1E–8 if the
SINGHESS= option is not specified, and it is the value of SINGHESS= option otherwise. See the
section “Covariance Matrix” on page 5739 for more information.

XCONV=r< [n] >

XTOL=r< [n] >
specifies the relative parameter convergence criterion. For all techniques except NMSIMP, termination
requires a small relative parameter change in subsequent iterations:

maxj j�
.k/
j � �

.k�1/
j j

max.j� .k/j j; j�
.k�1/
j j;XSIZE/

� r

For the NMSIMP technique, the same formula is used, but �.k/ is defined as the vertex with the lowest
function value and �.k�1/ is defined as the vertex with the highest function value in the simplex.

The default value is r = 1E–8 for the NMSIMP technique and r = 0 otherwise. The optional integer
value n specifies the number of successive iterations for which the criterion must be satisfied before
the process can be terminated.

XREF
displays a cross-reference of the variables in the program showing where each variable is referenced
or given a value. The XREF listing does not include derivative variables. This option is a debugging
feature and is not normally needed.

XSIZE=r > 0
specifies the XSIZE parameter of the relative parameter termination criterion. The default value is r =
0. For more details, see the XCONV= option.



ARRAY Statement F 5709

ARRAY Statement
ARRAY arrayname [ dimensions ] < $ > < variables-and-constants > ;

The ARRAY statement is similar to, but not exactly the same as, the ARRAY statement in the SAS DATA
step, and it is exactly the same as the ARRAY statements in the NLIN, NLP, and MODEL procedures. The
ARRAY statement is used to associate a name (of no more than eight characters) with a list of variables
and constants. The array name is used with subscripts in the program to refer to the array elements. The
following statements illustrate this:

array r[8] r1-r8;

do i = 1 to 8;
r[i] = 0;

end;

The ARRAY statement does not support all the features of the ARRAY statement in the DATA step. It cannot
be used to assign initial values to array elements. Implicit indexing of variables cannot be used; all array
references must have explicit subscript expressions. Only exact array dimensions are allowed; lower-bound
specifications are not supported. A maximum of six dimensions is allowed.

On the other hand, the ARRAY statement does allow both variables and constants to be used as array elements.
(Constant array elements cannot have values assigned to them.) Both dimension specification and the list of
elements are optional, but at least one must be specified. When the list of elements is not specified or fewer
elements than the size of the array are listed, array variables are created by suffixing element numbers to the
array name to complete the element list.

BOUNDS Statement
BOUNDS b-con < , b-con . . . > ;

where b-con := number operator parameter_list operator number
or b-con := number operator parameter_list
or b-con := parameter_list operator number

and operator := <D, <, >D, or >

Boundary constraints are specified with a BOUNDS statement. One- or two-sided boundary constraints are
allowed. The list of boundary constraints are separated by commas. For example:

bounds 0 <= a1-a9 X <= 1, -1 <= c2-c5;
bounds b1-b10 y >= 0;

You can specify more than one BOUNDS statement. If you specify more than one lower (upper) bound for
the same parameter, the maximum (minimum) of these is taken.

If the maximum lj of all lower bounds is larger than the minimum of all upper bounds uj for the same
parameter �j , the boundary constraint is replaced by �j WD lj WD min.uj / defined by the minimum of all
upper bounds specified for �j .
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BY Statement
BY variables ;

You can specify a BY statement with PROC NLMIXED to obtain separate analyses of observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the NLMIXED procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

An optimization problem is solved for each BY group separately unless the TECH=NONE option is specified.

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

CONTRAST Statement
CONTRAST 'label ' expression < , expression > < options > ;

The CONTRAST statement enables you to conduct a statistical test that several expressions simultaneously
equal zero. The expressions are typically contrasts—that is, differences whose expected values equal zero
under the hypothesis of interest.

In the CONTRAST statement you must provide a quoted string to identify the contrast and then a list of
valid SAS expressions separated by commas. Multiple CONTRAST statements are permitted, and results
from all statements are listed in a common table. PROC NLMIXED constructs approximate F tests for
each statement using the delta method (Cox 1998) to approximate the variance-covariance matrix of the
constituent expressions.

The following option is available in the CONTRAST statement:

DF=d
specifies the denominator degrees of freedom to be used in computing p values for the F statistics. The
default value corresponds to the DF= option in the PROC NLMIXED statement.

ESTIMATE Statement
ESTIMATE 'label ' expression < options > ;

The ESTIMATE statement enables you to compute an additional estimate that is a function of the parameter
values. You must provide a quoted string to identify the estimate and then a valid SAS expression. Multiple
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ESTIMATE statements are permitted, and results from all statements are listed in a common table. PROC
NLMIXED computes approximate standard errors for the estimates using the delta method (Billingsley 1986).
It uses these standard errors to compute corresponding t statistics, p-values, and confidence limits.

The ECOV option in the PROC NLMIXED statement produces a table containing the approximate covariance
matrix of all the additional estimates you specify. The ECORR option produces the corresponding correlation
matrix. The EDER option produces a table of the derivatives of the additional estimates with respect to each
of the model parameters.

The following options are available in the ESTIMATE statement:

ALPHA=˛
specifies the alpha level to be used in computing confidence limits. The default value corresponds to
the ALPHA= option in the PROC NLMIXED statement.

DF=d
specifies the degrees of freedom to be used in computing p-values and confidence limits. The default
value corresponds to the DF= option in the PROC NLMIXED statement.

ID Statement
ID names ;

The ID statement identifies additional quantities to be included in the OUT= data set of the PREDICT
statement. These can be any symbols you have defined with SAS programming statements.

MODEL Statement
MODEL dependent-variable Ï distribution ;

The MODEL statement is the mechanism for specifying the conditional distribution of the data given the
random effects. You must specify a single dependent variable from the input data set, a tilde Ï, and then a
distribution with its parameters. Valid distributions are as follows.

• normal(m,v) specifies a normal (Gaussian) distribution with mean m and variance v.

• binary(p) specifies a binary (Bernoulli) distribution with probability p.

• binomial(n,p) specifies a binomial distribution with count n and probability p.

• gamma(a,b) specifies a gamma distribution with shape a and scale b.

• negbin(n,p) specifies a negative binomial distribution with count n and probability p.

• poisson(m) specifies a Poisson distribution with mean m.

• general(ll) specifies a general log likelihood function that you construct using SAS programming
statements.

The MODEL statement must follow any SAS programming statements you specify for computing parameters
of the preceding distributions. See the section “Built-in Log-Likelihood Functions” on page 5720 for
expressions of the built-in conditional log-likelihood functions.
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PARMS Statement
PARMS < name-list < =numbers > > < , name-list < =numbers > . . . >

< / options > ;

The PARMS statement lists names of parameters and specifies initial values, possibly over a grid. You can
specify the parameters and values directly in a list, or you can provide the name of a SAS data set that
contains them by using the DATA= option.

While the PARMS statement is not required, you are encouraged to use it to provide PROC NLMIXED with
accurate starting values. Parameters not listed in the PARMS statement are assigned an initial value of 1.
PROC NLMIXED considers all symbols not assigned values to be parameters, so you should specify your
modeling statements carefully and check the output from the “Parameters” table to make sure the proper
parameters are identified.

A list of parameter names in the PARMS statement is not separated by commas and is followed by an equal
sign and a list of numbers. If the number list consists of only one number, this number defines the initial
value for all the parameters listed to the left of the equal sign.

If the number list consists of more than one number, these numbers specify the grid locations for each of the
parameters listed to the left of the equal sign. You can use the TO and BY keywords to specify a number list
for a grid search. If you specify a grid of points in a PARMS statement, PROC NLMIXED computes the
objective function value at each grid point and chooses the best (feasible) grid point as an initial point for the
optimization process. You can use the BEST= option to save memory for the storing and sorting of all grid
point information.

The following options are available in the PARMS statement after a slash (/):

BEST=i > 0
specifies the maximum number of points displayed in the “Parameters” table, selected as the points
with the maximum likelihood values. By default, all grid values are displayed.

BYDATA
enables you to assign different starting values for each BY group by using the DATA=SAS-data-set
option during BY processing. By default, BY groups are ignored in the PARMS data set. For the
BYDATA option to be effective, the DATA= data set must contain the BY variables and the same BY
groups as the primary input data set. When you supply a grid of starting values with the DATA= data
set and the BYDATA option is in effect, the size of the grid is determined by the first BY group.

DATA=SAS-data-set
specifies a SAS data set containing parameter names and starting values. The data set should be in
one of two forms: narrow or wide. The narrow-form data set contains the variables Parameter and
Estimate, with parameters and values listed as distinct observations. The wide-form data set has the
parameters themselves as variables, and each observation provides a different set of starting values.
By default, BY groups are ignored in this data set, so the same starting grid is evaluated for each BY
group. You can vary the starting values for BY groups by using the BYDATA option.
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PREDICT Statement
PREDICT expression OUT=SAS-data-set < options > ;

The PREDICT statement enables you to construct predictions of an expression across all of the observations in
the input data set. Any valid SAS programming expression involving the input data set variables, parameters,
and random effects is valid. Predicted values are computed using the parameter estimates and empirical
Bayes estimates of the random effects. Standard errors of prediction are computed using the delta method
(Billingsley 1986; Cox 1998). Results are placed in an output data set that you specify with the OUT=
option. Besides all variables from the input data set, the OUT= data set contains the following variables:
Pred, StdErrPred, DF, tValue, Probt, Alpha, Lower, Upper. You can also add other computed quantities to
this data set with the ID statement.

The following options are available in the PREDICT statement:

ALPHA=˛
specifies the alpha level to be used in computing t statistics and intervals. The default value corresponds
to the ALPHA= option in the PROC NLMIXED statement.

DER
requests that derivatives of the predicted expression with respect to all parameters be included in the
OUT= data set. The variable names for the derivatives are the same as the parameter names with the
prefix “Der_” appended. All of the derivatives are evaluated at the final estimates of the parameters
and the empirical Bayes estimates of the random effects.

DF=d
specifies the degrees of freedom to be used in computing t statistics and intervals in the OUT= data set.
The default value corresponds to the DF= option in the PROC NLMIXED statement.

RANDOM Statement
RANDOM random-effects Ï distribution SUBJECT=variable < options > ;

The RANDOM statement defines the random effects and their distribution. The random effects must be
represented by symbols that appear in your SAS programming statements. The random effects usually
influence the mean value of the distribution that is specified in the MODEL statement. The RANDOM
statement consists of a list of the random effects (usually just one or two symbols), a tilde (Ï), the distribution
of the random effects, and then a SUBJECT= variable.

The only distribution available for the random effects is normal(m,v), with mean m and variance v.

This syntax is illustrated as follows for one effect:

random u ~ normal(0,s2u) subject=clinic;

For multiple effects, you should specify bracketed vectors for m and v, the latter consisting of the lower
triangle of the random-effects variance matrix listed in row order. This is illustrated for two random effects
as follows:

random b1 b2 ~ normal([0,0],[g11,g21,g22]) subject=person;

Similarly, the syntax for three random effects is illustrated as follows:



5714 F Chapter 70: The NLMIXED Procedure

random b1 b2 b3 ~ normal([0,0,0],[g11,g21,g22,g31,g32,g33])
subject=person;

The SUBJECT= variable determines the unique realizations of the random effects.

PROC NLMIXED constructs the subject clusters based on unique values in the SUBJECT= variable. This
construction process of clusters, starting in SAS/STAT 13.1, is different from that in earlier releases of PROC
NLMIXED, where a change in the SUBJECT= variable value indicates a new cluster. Because of this change,
starting in SAS/STAT 13.1, the input data set does not need to be sorted by SUBJECT= variable to use the
unique SUBJECT= variable values.

On the other hand, in earlier releases of SAS/STAT, PROC NLMIXED does not sort the input data set for
you; rather, it processes the data sequentially and considers an observation to be from a new subject whenever
the value of its SUBJECT= variable changes from the previous observation. To revert to this sequential
process behavior of SAS/STAT 12.3 and previous releases, specify the NOSORTSUB option in the PROC
NLMIXED statement.

You can specify multiple RANDOM statements; this is supported starting in SAS/STAT 13.2. When you
specify more than one RANDOM statement, PROC NLMIXED assumes that the SUBJECT= variable
from each RANDOM statement forms a containment hierarchy. For more information, see the section
“Hierarchical Model Specification” on page 5723. The syntax for two RANDOM statements is illustrated as
follows:

random r11 ~ normal(0,sd1) subject = school;
random r21 ~ normal(0,sd2) subject = class(school);

You can specify the following options in the RANDOM statement:

ALPHA=˛
specifies the alpha level to be used in computing t statistics and intervals. The default value corresponds
to the value of the ALPHA= option in the PROC NLMIXED statement.

DF=d
specifies the degrees of freedom to be used in computing t statistics and intervals in the OUT= data set.
PROC NLMIXED calculates the default degrees of freedom as follows:

• When only one or no RANDOM statement is specified, the default value corresponds to the value
of the DF= option in the PROC NLMIXED statement.

• When multiple RANDOM statements are specified, the default value is the number of subjects
minus the number of random-effects variables in the corresponding RANDOM statement.

OUT=SAS-data-set
requests an output data set that contains empirical Bayes estimates of the random effects and their
approximate standard errors of prediction.

REPLICATE Statement
REPLICATE variable ;

The REPLICATE statement provides a way to accommodate models in which different subjects have identical
data. This occurs most commonly when the dependent variable is binary. When you specify a REPLICATE
variable, PROC NLMIXED treats its value as the number of subjects that have data identical to the data for
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the current value of the SUBJECT= variable (specified in the RANDOM statement). Only the last observation
of the REPLICATE variable for each subject is used, and the replicate variable must have only positive
values.

The function of a REPLICATE statement is related to but not quite the same as the function of either a FREQ
or a WEIGHT statement in other statistical modeling procedures, such as the GLM, GENMOD, GLIMMIX,
and LOGISTIC procedures. A FREQ or a WEIGHT value essentially multiplies the log likelihood or sum
of squares contribution for each observation. On the other hand, a REPLICATE value multiplies the log
likelihood contribution of each subject, which consists of one or more observations. When no SUBJECT=
variable is specified, the REPLICATE value behaves like a weight, multiplying each observation’s log
likelihood contribution.

NOTE: The REPLICATE statement is not allowed when there is more than one RANDOM statement.

Programming Statements
This section lists the programming statements that are used to code the log-likelihood function in PROC
NLMIXED. It also documents the differences between programming statements in PROC NLMIXED and
programming statements in the SAS DATA step. The syntax of programming statements used in PROC
NLMIXED is identical to that used in the CALIS and GENMOD procedures (see Chapter 29 and Chapter 43,
respectively), and the MODEL procedure (see the SAS/ETS User’s Guide). Most of the programming
statements that can be used in the SAS DATA step can also be used in the NLMIXED procedure. See SAS
Language Reference: Dictionary for a description of SAS programming statements. The following are valid
statements:

ABORT;
ARRAY arrayname < [ dimensions ] > < $ > < variables-and-constants >;
CALL name < (expression < , expression . . . >) >;
DELETE;
DO < variable = expression < TO expression > < BY expression > >

< , expression < TO expression > < BY expression > > . . .
< WHILE expression > < UNTIL expression >;

END;
GOTO statement-label;
IF expression;
IF expression THEN program-statement;

ELSE program-statement;
variable = expression;
variable + expression;
LINK statement-label;
PUT < variable > < = > . . . ;
RETURN;
SELECT < (expression) >;
STOP;
SUBSTR(variable, index , length)= expression;
WHEN (expression)program-statement;

OTHERWISE program-statement;
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For the most part, the SAS programming statements work the same as they do in the SAS DATA step, as
documented in SAS Language Reference: Concepts; however, there are the following differences:

• The ABORT statement does not allow any arguments.

• The DO statement does not allow a character index variable. Thus

do i = 1,2,3;

is supported, but the following statement is not supported:

do i = 'A','B','C';

• The LAG function does work appropriately with PROC NLMIXED, but you can use the ZLAG
function instead.

• The PUT statement, used mostly for program debugging in PROC NLMIXED, supports only some of
the features of the DATA step PUT statement, and it has some new features that the DATA step PUT
statement does not.

– The PROC NLMIXED PUT statement does not support line pointers, factored lists, iteration
factors, overprinting, _INFILE_, the colon (:) format modifier, or “$”.

– The PROC NLMIXED PUT statement does support expressions, but the expression must be
enclosed in parentheses. For example, the following statement displays the square root of x:
put .sqrt.x//I

– The PROC NLMIXED PUT statement supports the item _PDV_ to display a formatted listing of
all variables in the program. For example, the following statement displays a much more readable
listing of the variables than the _ALL_ print item:
put _pdv_I

• The WHEN and OTHERWISE statements enable you to specify more than one target statement. That
is, DO/END groups are not necessary for multiple statement WHENs. For example, the following
syntax is valid:

select;
when (exp1) stmt1;

stmt2;
when (exp2) stmt3;

stmt4;
end;

When coding your programming statements, you should avoid defining variables that begin with an underscore
(_), because they might conflict with internal variables created by PROC NLMIXED. The MODEL statement
must come after any SAS programming statements that define or modify terms used in the construction of
the log-likelihood.
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Details: NLMIXED Procedure
This section contains details about the underlying theory and computations of PROC NLMIXED.

Modeling Assumptions and Notation
PROC NLMIXED operates under the following general framework for nonlinear mixed models. Assume
that you have an observed data vector yi for each of i subjects, i D 1; : : : ; s. The yi are assumed to be
independent across i, but within-subject covariance is likely to exist because each of the elements of yi
is measured on the same subject. As a statistical mechanism for modeling this within-subject covariance,
assume that there exist latent random-effect vectors ui of small dimension (typically one or two) that are also
independent across i. Assume also that an appropriate model linking yi and ui exists, leading to the joint
probability density function

p.yi jXi ;�; ui /q.ui j�/

where Xi is a matrix of observed explanatory variables and � and � are vectors of unknown parameters.

Let � D Œ�; �� and assume that it is of dimension n. Then inferences about � are based on the marginal
likelihood function

m.�/ D

sY
iD1

Z
p.yi jXi ;�; ui /q.ui j�/dui

In particular, the function

f .�/ D � logm.�/

is minimized over � numerically in order to estimate � , and the inverse Hessian (second derivative) matrix at
the estimates provides an approximate variance-covariance matrix for the estimate of � . The function f .�/
is referred to both as the negative log likelihood function and as the objective function for optimization.

As an example of the preceding general framework, consider the nonlinear growth curve example in the section
“Getting Started: NLMIXED Procedure” on page 5684. Here, the conditional distribution p.yi jXi ;�; ui / is
normal with mean

b1 C ui1

1C expŒ�.dij � b2/=b3�

and variance �2e ; thus � D Œb1; b2; b3; �
2
e �. Also, ui is a scalar and q.ui j�/ is normal with mean 0 and

variance �2u ; thus � D �2u .

The following additional notation is also found in this chapter. The quantity �.k/ refers to the parameter
vector at the kth iteration, the vector g.�/ refers to the gradient vector rf .�/, and the matrix H.�/ refers to
the Hessian r2f .�/. Other symbols are used to denote various constants or option values.
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Nested Multilevel Nonlinear Mixed Models

The general framework for nested multilevel nonlinear mixed models in cases of two levels can be explained
as follows. Let yj.i/ be the response vector observed on subject j that is nested within subject i, where
j is commonly referred as the second-level subject and i is the first-level subject. There are s first-level
subjects, and each has si second-level subjects that are nested within. An example is yj.i/, which are the
heights of students in class j of school i, where j D 1; : : : ; si for each i and i D 1; : : : ; s. Suppose there
exist latent random-effect vectors vj.i/ and vi of small dimensions for modeling within subject covariance.
Assume also that an appropriate model that links yj.i/ and .vj.i/; vi / exists, and if you use the notation
yi D .y1.i/; : : : ; ysi .i//, ui D .vi ; v1.i/; : : : ; vsi .i//, and � D .�1; �2/, the joint density function in terms of
the first-level subject can be expressed as

p.yi jXi ;�; ui /q.ui j�/ D

0@ siY
jD1

p.yj.i/jXi ;�; vi ; vj.i//q2.vj.i/j�2/

1A q1.vi j�1/
As defined in the previous section, the marginal likelihood function where � D Œ�; �� is

m.�/ D

sY
iD1

Z
p.yi jXi ;�; ui /q.ui j�/dui

Again, the function

f .�/ D � logm.�/

is minimized over � numerically in order to estimate � . Models that have more than two levels follow similar
notation.

Integral Approximations
An important part of the marginal maximum likelihood method described previously is the computation of
the integral over the random effects. The default method in PROC NLMIXED for computing this integral is
adaptive Gaussian quadrature as described in Pinheiro and Bates (1995). Another approximation method is
the first-order method of Beal and Sheiner (1982, 1988). A description of these two methods follows.

Adaptive Gaussian Quadrature

A quadrature method approximates a given integral by a weighted sum over predefined abscissas for the
random effects. A good approximation can usually be obtained with an adequate number of quadrature points
as well as appropriate centering and scaling of the abscissas. Adaptive Gaussian quadrature for the integral
over ui centers the integral at the empirical Bayes estimate of ui , defined as the vectorbui that minimizes

� log Œp.yi jXi ;�; ui /q.ui j�/�

with � and � set equal to their current estimates. The final Hessian matrix from this optimization can be used
to scale the quadrature abscissas.

Suppose .zj ; wj I j D 1; : : : ; p/ denote the standard Gauss-Hermite abscissas and weights (Golub and
Welsch 1969, or Table 25.10 of Abramowitz and Stegun 1972). The adaptive Gaussian quadrature integral
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approximation is as follows:Z
p.yi jXi ;�; ui /q.ui j�/dui �

2r=2 j�.Xi ;�/j�1=2
pX

j1D1

� � �

pX
jrD1

"
p.yi jXi ;�; aj1;:::;jr /q.aj1;:::;jr j�/

rY
kD1

wjk exp z
2
jk

#

where r is the dimension of ui , �.Xi ;�/ is the Hessian matrix from the empirical Bayes minimization,
zj1;:::;jr is a vector with elements .zj1 ; : : : ; zjr /, and

aj1;:::;jr Dbui C 21=2�.Xi ;�/�1=2zj1;:::;jr
PROC NLMIXED selects the number of quadrature points adaptively by evaluating the log-likelihood
function at the starting values of the parameters until two successive evaluations have a relative difference
less than the value of the QTOL= option. The specific search sequence is described under the QFAC= option.
Using the QPOINTS= option, you can adjust the number of quadrature points p to obtain different levels
of accuracy. Setting p = 1 results in the Laplacian approximation as described in: Beal and Sheiner (1992);
Wolfinger (1993); Vonesh (1992, 1996); Vonesh and Chinchilli (1997); Wolfinger and Lin (1997).

The NOAD option in the PROC NLMIXED statement requests nonadaptive Gaussian quadrature. Here allbui are set equal to zero, and the Cholesky root of the estimated variance matrix of the random effects is
substituted for �.Xi ;�/�1=2 in the preceding expression for aj1;:::;jr . In this case derivatives are computed
using the algorithm of Smith (1995). The NOADSCALE option requests the same scaling substitution
but with the empirical Bayes bui . When there is one RANDOM statement, the dimension of ui is the
number of random effects that are specified in that RANDOM statement. For nested multilevel nonlinear
mixed models, the dimension of ui could increase significantly. In this case, the dimension of ui is
equal to the sum of all nested subjects times the corresponding random-effects dimension. For example,
consider a three-level nested nonlinear mixed model that contains s first-level subjects, where each first-
level subject has si second-level subjects that are nested within and sij third-level subjects that are nested
within each combination of first-level subject i and second-level subject j. Then, based on notation in
the previous section, ui D .vi ; v1.i/; v1.i1/; : : : ; vsi1.i1/; : : : ; vsi .i/; v1.isi /; : : : ; vsisi .isi //. Suppose ri is
the random-effects dimension at level i. Then the dimension of ui , denoted as r, can be computed as
r D r1 C .r2 � si /C

�
r3 �

Psi
jD1 sij

�
. Hence the joint estimation of ui is more costly.

When only one RANDOM statement is specified for the model, by default PROC NLMIXED uses Newton-
Raphson optimization for empirical Bayes minimization of random effects for each subject. If you specify
the EBOPT option in the PROC NLMIXED statement, then the procedure uses Newton-Raphson ridge
optimization. But when multiple RANDOM statements are specified, quasi-Newton optimization is used
for the empirical Bayes minimization of random effects for each subject. Therefore, all the options that
are related to the Newton-Raphson method (such as the EBOPT, EBSSFRAC=, EBSSTOL=, EBSTEPS=,
EBSUBSTEPS=, and EBTOL= options) are ignored.

PROC NLMIXED computes the derivatives of the adaptive Gaussian quadrature approximation when
carrying out the default dual quasi-Newton optimization. For nested multilevel nonlinear mixed models,
PROC NLMIXED does not explicitly compute these derivatives. In this case, it ignores the EMPIRICAL
and SUBGRADIENT= options in the PROC NLMIXED statement. Also, nested multilevel nonlinear mixed
models use METHOD=GAUSS only. In addition to these changes, for nested multilevel nonlinear mixed
models, the default values of GTOL and ABSGTOL are changed to 1E–6 and 1E–3, respectively.
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First-Order Method

Another integral approximation available in PROC NLMIXED is the first-order method of Beal and Sheiner
(1982, 1988) and Sheiner and Beal (1985). This approximation is used only in the case where p.yi jXi ;�; ui /
is normal—that is,

p.yi jXi ;�; ui / D .2�/�ni=2 jRi .Xi ;�/j�1=2

exp
˚
�.1=2/ Œyi �mi .Xi ;�; ui /�0Ri .Xi ;�/�1 Œyi �mi .Xi ;�; ui /�

	
where ni is the dimension of yi , Ri is a diagonal variance matrix, and mi is the conditional mean vector of
yi .

The first-order approximation is obtained by expanding mi .Xi ;�; ui /with a one-term Taylor series expansion
about ui D 0, resulting in the approximation

p.yi jXi ;�; ui / � .2�/�ni=2 jRi .Xi ;�/j�1=2

exp
�
�.1=2/ Œyi �mi .Xi ;�; 0/ � Zi .Xi ;�/ui �0

Ri .Xi ;�/�1 Œyi �mi .Xi ;�; 0/ � Zi .Xi ;�/ui �
�

where Zi .Xi ;�/ is the Jacobian matrix @mi .Xi ;�; ui /=@ui evaluated at ui D 0.

Assuming that q.ui j�/ is normal with mean 0 and variance matrix G.�/, the first-order integral approximation
is computable in closed form after completing the square:Z

p.yi jXi ;�; ui /q.ui j�/ dui � .2�/�ni=2 jVi .Xi ;�/j�1=2

exp
�
�.1=2/ Œyi �mi .Xi ;�; 0/�0Vi .Xi ;�/�1 Œyi �mi .Xi ;�; 0/�

�
where Vi .Xi ;�/ D Zi .Xi ;�/G.�/Zi .Xi ;�/0 C Ri .Xi ;�/. The resulting approximation for f .�/ is then
minimized over � D Œ�; �� to obtain the first-order estimates. PROC NLMIXED uses finite-difference
derivatives of the first-order integral approximation when carrying out the default dual quasi-Newton
optimization.

Built-in Log-Likelihood Functions
This section displays the basic formulas used by the NLMIXED procedure to compute the conditional
log-likelihood functions of the data given the random effects. Note, however, that in addition to these basic
equations, the NLMIXED procedure employs a number of checks for missing values and floating-point
arithmetic. You can see the entire program used by the NLMIXED procedure to compute the conditional
log-likelihood functions l.�Iy/ by adding the LIST debugging option to the PROC NLMIXED statement.

Y � normal.m; v/

l.m; vIy/ D �
1

2

�
logf2�g C

.y �m/2

v
C logfvg

�
EŒY � D m

VarŒY � D v
v > 0
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Y � binary.p/

l1.pIy/ D

�
y logfpg y > 0

0 otherwise

l2.pIy/ D

�
.1 � y/ logf1 � pg y < 1

0 otherwise

l.pIy/ D l1.pIy/C l2.pIy/

EŒY � D p
VarŒY � D p .1 � p/

0 < p < 1

Y � binomial.n; p/

lc D logf�.nC 1/g � logf�.y C 1/g � logf�.n � y C 1/g

l1.n; pIy/ D

�
y logfpg y > 0

0 otherwise

l2.n; pIy/ D

�
.n � y/ logf1 � pg n � y > 0

0 otherwise

l.n; pIy/ D lc C l1.n; pIy/C l2.n; pIy/

EŒY � D np
VarŒY � D np .1 � p/

0 < p < 1

Y � gamma.a; b/

l.a; bIy/ D �a logfbg � logf�.a/g C .a � 1/ logfyg � y=b
EŒY � D ab

VarŒY � D ab2

a > 0

b > 0

This parameterization of the gamma distribution differs from the parameterization used in
the GLIMMIX and GENMOD procedures. The following statements show the equivalent
reparameterization in the NLMIXED procedure that fits a generalized linear model for
gamma-distributed data in the parameterization of the GLIMMIX procedure:

proc glimmix;
model y = x / dist=gamma s;

run;
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proc nlmixed;
parms b0=1 b1=0 scale=14;
linp = b0 + b1*x;
mu = exp(linp);
b = mu/scale;
model y ~ gamma(scale,b);

run;

Y � negbin.n; p/

l.n; pIy/ D logf�.nC y/g � logf�.n/g � logf�.y C 1/g
C n logfpg C y logf1 � pg

EŒY � D nP D n
�
1 � p

p

�
VarŒY � D nP.1 � P / D n

�
1 � p

p

�
1

p

n � 0

0 < p < 1

This form of the negative binomial distribution is one of the many parameterizations in
which the mass function or log-likelihood function appears. Another common parameteri-
zation uses

l.n; pIy/ D logf�.nC y/g � logf�.n/g � logf�.y C 1/g
C n logf1 � P=.1C P /g C y logfP=.1C P /g

with P D .1 � p/=p, P > 0.

Note that the parameter n can be real-numbered; it does not have to be integer-valued.
The parameterization of the negative binomial distribution in the NLMIXED procedure
differs from that in the GLIMMIX and GENMOD procedures. The following statements
show the equivalent formulations for maximum likelihood estimation in the GLIMMIX
and NLMIXED procedures in a negative binomial regression model:

proc glimmix;
model y = x / dist=negbin s;

run;

proc nlmixed;
parms b0=3, b1=1, k=0.8;
linp = b0 + b1*x;
mu = exp(linp);
p = 1/(1+mu*k);
model y ~ negbin(1/k,p);

run;

Y � Poisson.m/

l.mIy/ D y logfmg �m � logf�.y C 1/g
EŒY � D m

VarŒY � D m
m > 0
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Hierarchical Model Specification
PROC NLMIXED supports multiple RANDOM statements to accommodate nested multilevel nonlinear
mixed models, starting with SAS/STAT 13.2. If you use multiple RANDOM statements, PROC NLMIXED
assumes that the SUBJECT= variable from each RANDOM statement forms a containment hierarchy. In
the containment hierarchy, each SUBJECT= variable is contained by another SUBJECT= variable, and the
SUBJECT= variable that is contained by all SUBJECT= variables is considered “the” SUBJECT= variable.
For example, consider the following three-level nested model that has three SUBJECT= variables:

A B C

1 1 1
1 1 2
1 2 1
1 2 2
2 1 1
2 1 2
2 1 3
2 2 1
2 2 2

Suppose you specify a three-level nested model by using the following three RANDOM statements:

random r11 ~ normal(0,sd1) subject = A;
random r21 ~ normal(0,sd2) subject = B(A);
random r31 ~ normal(0,sd3) subject = C(A*B);

Then PROC NLMIXED assumes the containment hierarchy as follows. The first-level hierarchy is defined
using “the” SUBJECT= variable A. Similarly, the second-level hierarchy is defined using SUBJECT= variable
B, which is nested within first level. Finally, SUBJECT= variable C defines the third-level hierarchy that
is nested within both the first and second levels. In short, the SUBJECT= variable A is “the” SUBJECT=
variable. B is contained in A, and C is contained in both A and B. In this example, there are two first-level
subjects that are determined using “the” SUBJECT= variable A.

Based on the preceding hierarchy specification, PROC NLMIXED’s indexing of nested subjects for each
first-level subject can be visualized as follows:

A1‚ …„ ƒ
B1.1/‚ …„ ƒ

C1.11/C2.11/

B2.1/‚ …„ ƒ
C1.12/C2.12/

A2‚ …„ ƒ
B1.2/‚ …„ ƒ

C1.21/C2.21/C3.21/

B2.2/‚ …„ ƒ
C1.22/C2.22/

The ith subject from the first level is denoted as Ai , the second-level nested subjects are denoted as Bj.i/, and
the third-level nested subjects are denoted as Ck.ij /.

You can specify any nested structure by using the SUBJECT= syntax in PROC NLMIXED. For example,
using the following three RANDOM statements, PROC NLMIXED fits a different model:
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random r11 ~ normal(0,sd1) subject = C;
random r21 ~ normal(0,sd2) subject = B(C);
random r31 ~ normal(0,sd3) subject = A(C*B);

In this case, PROC NLMIXED processes the subjects by using SUBJECT= variable C as “the” SUBJECT=
variable, and the containment hierarchy is changed as follows:

A B C

1 1 1
1 1 2
1 2 1
1 2 2
2 1 1
2 1 2
2 1 3
2 2 1
2 2 2

)

C B A

1 1 1
1 1 2
1 2 1
1 2 2
2 1 1
2 1 2
2 2 1
2 2 2
3 1 2

Again, PROC NLMIXED’s indexing of the nested subjects in this containment hierarchy can be visualized as
follows:

C1‚ …„ ƒ
B1.1/‚ …„ ƒ

A1.11/A2.11/

B2.1/‚ …„ ƒ
A1.12/A2.12/

C2‚ …„ ƒ
B1.2/‚ …„ ƒ

A1.21/A2.21/

B2.2/‚ …„ ƒ
A1.22/A2.22/

C3‚…„ƒ
B1.3/‚…„ƒ
A1.31/

Here, PROC NLMIXED assumes that C is “the” SUBJECT= variable. B is contained in C, and A is contained
in C and B. In this case, there are three first-level subjects that are determined using “the” SUBJECT=
variable C.

As explained before, in this case, the ith subject from the first level is denoted as Ci , the second-level nested
subjects are denoted as Bj.i/ and for third level, the nested subjects are denoted as Ak.ij /.

Note that the containment hierarchy could potentially create more subjects than the unique number of subjects.
For example, consider the following table, in which A is “the” SUBJECT= variable and B is nested within
the subject A:

A B

a 1
a 2
b 1
b 2
c 1
c 2
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Even though the SUBJECT = B variable has only two unique subjects (1 and 2), when the containment
hierarchy that is specified along with B is nested within A, PROC NLMIXED creates six nested B subjects.
These nested subjects can be denoted as 1(a), 2(a), 1(b), 2(b), 1(c), and 2(c).

PROC NLMIXED does not support noncontainment hierarchy (or non-nested) models. For example, the
following statements are not supported, because subject C is not nested within B and A:

random r11 ~ normal(0,sd1) subject = A;
random r21 ~ normal(0,sd2) subject = B(A);
random r31 ~ normal(0,sd3) subject = C;

Optimization Algorithms
There are several optimization techniques available in PROC NLMIXED. You can choose a particular
optimizer with the TECH= option in the PROC NLMIXED statement.

Algorithm TECH=

trust region method TRUREG
Newton-Raphson method with line search NEWRAP
Newton-Raphson method with ridging NRRIDG
quasi-Newton methods (DBFGS, DDFP, BFGS, DFP) QUANEW
double-dogleg method (DBFGS, DDFP) DBLDOG
conjugate gradient methods (PB, FR, PR, CD) CONGRA
Nelder-Mead simplex method NMSIMP

No algorithm for optimizing general nonlinear functions exists that always finds the global optimum for
a general nonlinear minimization problem in a reasonable amount of time. Since no single optimization
technique is invariably superior to others, PROC NLMIXED provides a variety of optimization techniques
that work well in various circumstances. However, you can devise problems for which none of the techniques
in PROC NLMIXED can find the correct solution. Moreover, nonlinear optimization can be computationally
expensive in terms of time and memory, so you must be careful when matching an algorithm to a problem.

All optimization techniques in PROC NLMIXED use O.n2/ memory except the conjugate gradient methods,
which use only O.n/ of memory and are designed to optimize problems with many parameters. Since the
techniques are iterative, they require the repeated computation of the following:

• the function value (optimization criterion)

• the gradient vector (first-order partial derivatives)

• for some techniques, the (approximate) Hessian matrix (second-order partial derivatives)

However, since each of the optimizers requires different derivatives, some computational efficiencies can be
gained. The following table shows, for each optimization technique, which derivatives are required (FOD:
first-order derivatives; SOD: second-order derivatives).
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Algorithm FOD SOD

TRUREG x x
NEWRAP x x
NRRIDG x x

QUANEW x -
DBLDOG x -
CONGRA x -
NMSIMP - -

Each optimization method employs one or more convergence criteria that determine when it has converged.
The various termination criteria are listed and described in the “PROC NLMIXED Statement” section.
An algorithm is considered to have converged when any one of the convergence criteria is satisfied. For
example, under the default settings, the QUANEW algorithm will converge if ABSGCONV< 1E–5, FCONV<
10�FDIGITS, or GCONV< 1E–8.

Choosing an Optimization Algorithm

The factors that go into choosing a particular optimization technique for a particular problem are complex
and can involve trial and error.

For many optimization problems, computing the gradient takes more computer time than computing the
function value, and computing the Hessian sometimes takes much more computer time and memory than
computing the gradient, especially when there are many decision variables. Unfortunately, optimization
techniques that do not use some kind of Hessian approximation usually require many more iterations than
techniques that do use a Hessian matrix, and as a result the total run time of these techniques is often longer.
Techniques that do not use the Hessian also tend to be less reliable. For example, they can more easily
terminate at stationary points rather than at global optima.

A few general remarks about the various optimization techniques follow:

• The second-derivative methods TRUREG, NEWRAP, and NRRIDG are best for small problems where
the Hessian matrix is not expensive to compute. Sometimes the NRRIDG algorithm can be faster than
the TRUREG algorithm, but TRUREG can be more stable. The NRRIDG algorithm requires only one
matrix with n.nC 1/=2 double words; TRUREG and NEWRAP require two such matrices.

• The first-derivative methods QUANEW and DBLDOG are best for medium-sized problems where the
objective function and the gradient are much faster to evaluate than the Hessian. The QUANEW and
DBLDOG algorithms, in general, require more iterations than TRUREG, NRRIDG, and NEWRAP, but
each iteration can be much faster. The QUANEW and DBLDOG algorithms require only the gradient
to update an approximate Hessian, and they require slightly less memory than TRUREG or NEWRAP
(essentially one matrix with n.nC 1/=2 double words). QUANEW is the default optimization method.

• The first-derivative method CONGRA is best for large problems where the objective function and
the gradient can be computed much faster than the Hessian and where too much memory is required
to store the (approximate) Hessian. The CONGRA algorithm, in general, requires more iterations
than QUANEW or DBLDOG, but each iteration can be much faster. Since CONGRA requires only a
factor of n double-word memory, many large applications of PROC NLMIXED can be solved only by
CONGRA.
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• The no-derivative method NMSIMP is best for small problems where derivatives are not continuous or
are very difficult to compute.

Algorithm Descriptions

Some details about the optimization techniques follow.

Trust Region Optimization (TRUREG)
The trust region method uses the gradient g.�.k// and the Hessian matrix H.�.k//; thus, it requires that the
objective function f .�/ have continuous first- and second-order derivatives inside the feasible region.

The trust region method iteratively optimizes a quadratic approximation to the nonlinear objective function
within a hyperelliptic trust region with radius � that constrains the step size corresponding to the quality
of the quadratic approximation. The trust region method is implemented using: Dennis, Gay, and Welsch
(1981); Gay (1983); Moré and Sorensen (1983).

The trust region method performs well for small- to medium-sized problems, and it does not need many
function, gradient, and Hessian calls. However, if the computation of the Hessian matrix is computationally
expensive, one of the (dual) quasi-Newton or conjugate gradient algorithms might be more efficient.

Newton-Raphson Optimization with Line Search (NEWRAP)
The NEWRAP technique uses the gradient g.�.k// and the Hessian matrix H.�.k//; thus, it requires that
the objective function have continuous first- and second-order derivatives inside the feasible region. If
second-order derivatives are computed efficiently and precisely, the NEWRAP method can perform well for
medium-sized to large problems, and it does not need many function, gradient, and Hessian calls.

This algorithm uses a pure Newton step when the Hessian is positive definite and when the Newton step
reduces the value of the objective function successfully. Otherwise, a combination of ridging and line search
is performed to compute successful steps. If the Hessian is not positive definite, a multiple of the identity
matrix is added to the Hessian matrix to make it positive definite (Eskow and Schnabel 1991).

In each iteration, a line search is performed along the search direction to find an approximate optimum of
the objective function. The default line-search method uses quadratic interpolation and cubic extrapolation
(LINESEARCH=2).

Newton-Raphson Ridge Optimization (NRRIDG)
The NRRIDG technique uses the gradient g.�.k// and the Hessian matrix H.�.k//; thus, it requires that the
objective function have continuous first- and second-order derivatives inside the feasible region.

This algorithm uses a pure Newton step when the Hessian is positive definite and when the Newton step
reduces the value of the objective function successfully. If at least one of these two conditions is not satisfied,
a multiple of the identity matrix is added to the Hessian matrix.

The NRRIDG method performs well for small- to medium-sized problems, and it does not require many
function, gradient, and Hessian calls. However, if the computation of the Hessian matrix is computationally
expensive, one of the (dual) quasi-Newton or conjugate gradient algorithms might be more efficient.

Since the NRRIDG technique uses an orthogonal decomposition of the approximate Hessian, each iteration
of NRRIDG can be slower than that of the NEWRAP technique, which works with Cholesky decomposition.
Usually, however, NRRIDG requires fewer iterations than NEWRAP.
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Quasi-Newton Optimization (QUANEW)
The (dual) quasi-Newton method uses the gradient g.�.k//, and it does not need to compute second-order
derivatives since they are approximated. It works well for medium to moderately large optimization problems
where the objective function and the gradient are much faster to compute than the Hessian; but, in general, it
requires more iterations than the TRUREG, NEWRAP, and NRRIDG techniques, which compute second-
order derivatives. QUANEW is the default optimization algorithm because it provides an appropriate balance
between the speed and stability required for most nonlinear mixed model applications.

The QUANEW technique is one of the following, depending on the value of the UPDATE= option.

• the original quasi-Newton algorithm, which updates an approximation of the inverse Hessian

• the dual quasi-Newton algorithm, which updates the Cholesky factor of an approximate Hessian
(default)

You can specify four update formulas with the UPDATE= option:

• DBFGS performs the dual Broyden, Fletcher, Goldfarb, and Shanno (BFGS) update of the Cholesky
factor of the Hessian matrix. This is the default.

• DDFP performs the dual Davidon, Fletcher, and Powell (DFP) update of the Cholesky factor of the
Hessian matrix.

• BFGS performs the original BFGS update of the inverse Hessian matrix.

• DFP performs the original DFP update of the inverse Hessian matrix.

In each iteration, a line search is performed along the search direction to find an approximate optimum.
The default line-search method uses quadratic interpolation and cubic extrapolation to obtain a step size ˛
satisfying the Goldstein conditions. One of the Goldstein conditions can be violated if the feasible region
defines an upper limit of the step size. Violating the left-side Goldstein condition can affect the positive
definiteness of the quasi-Newton update. In that case, either the update is skipped or the iterations are
restarted with an identity matrix, resulting in the steepest descent or ascent search direction. You can specify
line-search algorithms other than the default with the LINESEARCH= option.

The QUANEW algorithm uses its own line-search technique. No options and parameters (except the
INSTEP= option) controlling the line search in the other algorithms apply here. In several applications, large
steps in the first iterations are troublesome. You can use the INSTEP= option to impose an upper bound for
the step size ˛ during the first five iterations. You can also use the INHESSIAN=r option to specify a different
starting approximation for the Hessian. If you specify only the INHESSIAN option, the Cholesky factor of a
(possibly ridged) finite difference approximation of the Hessian is used to initialize the quasi-Newton update
process. The values of the LCSINGULAR=, LCEPSILON=, and LCDEACT= options, which control the
processing of linear and boundary constraints, are valid only for the quadratic programming subroutine used
in each iteration of the QUANEW algorithm.

Double-Dogleg Optimization (DBLDOG)
The double-dogleg optimization method combines the ideas of the quasi-Newton and trust region methods.
In each iteration, the double-dogleg algorithm computes the step s.k/ as the linear combination of the steepest
descent or ascent search direction s.k/1 and a quasi-Newton search direction s.k/2 :

s.k/ D ˛1s
.k/
1 C ˛2s

.k/
2
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The step is requested to remain within a prespecified trust region radius; see Fletcher (1987, p. 107). Thus,
the DBLDOG subroutine uses the dual quasi-Newton update but does not perform a line search. You can
specify two update formulas with the UPDATE= option:

• DBFGS performs the dual Broyden, Fletcher, Goldfarb, and Shanno update of the Cholesky factor of
the Hessian matrix. This is the default.

• DDFP performs the dual Davidon, Fletcher, and Powell update of the Cholesky factor of the Hessian
matrix.

The double-dogleg optimization technique works well for medium to moderately large optimization problems
where the objective function and the gradient are much faster to compute than the Hessian. The implementa-
tion is based on Dennis and Mei (1979) and Gay (1983), but it is extended for dealing with boundary and
linear constraints. The DBLDOG technique generally requires more iterations than the TRUREG, NEWRAP,
and NRRIDG techniques, which require second-order derivatives; however, each of the DBLDOG iterations
is computationally cheap. Furthermore, the DBLDOG technique requires only gradient calls for the update
of the Cholesky factor of an approximate Hessian.

Conjugate Gradient Optimization (CONGRA)
Second-order derivatives are not required by the CONGRA algorithm and are not even approximated. The
CONGRA algorithm can be expensive in function and gradient calls, but it requires only O.n/ memory for
unconstrained optimization. In general, many iterations are required to obtain a precise solution, but each
of the CONGRA iterations is computationally cheap. You can specify four different update formulas for
generating the conjugate directions by using the UPDATE= option:

• PB performs the automatic restart update method of Powell (1977) and Beale (1972). This is the
default.

• FR performs the Fletcher-Reeves update (Fletcher 1987).

• PR performs the Polak-Ribiere update (Fletcher 1987).

• CD performs a conjugate-descent update of Fletcher (1987).

The default, UPDATE=PB, behaved best in most test examples. You are advised to avoid the option
UPDATE=CD, which behaved worst in most test examples.

The CONGRA subroutine should be used for optimization problems with large n. For the unconstrained
or boundary constrained case, CONGRA requires only O.n/ bytes of working memory, whereas all other
optimization methods require order O.n2/ bytes of working memory. During n successive iterations,
uninterrupted by restarts or changes in the working set, the conjugate gradient algorithm computes a cycle
of n conjugate search directions. In each iteration, a line search is performed along the search direction
to find an approximate optimum of the objective function. The default line-search method uses quadratic
interpolation and cubic extrapolation to obtain a step size ˛ satisfying the Goldstein conditions. One of the
Goldstein conditions can be violated if the feasible region defines an upper limit for the step size. Other
line-search algorithms can be specified with the LINESEARCH= option.
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Nelder-Mead Simplex Optimization (NMSIMP)
The Nelder-Mead simplex method does not use any derivatives and does not assume that the objective
function has continuous derivatives. The objective function itself needs to be continuous. This technique is
quite expensive in the number of function calls, and it might be unable to generate precise results for n� 40.

The original Nelder-Mead simplex algorithm is implemented and extended to boundary constraints. This
algorithm does not compute the objective for infeasible points, but it changes the shape of the simplex adapting
to the nonlinearities of the objective function, which contributes to an increased speed of convergence. It
uses a special termination criterion.

Finite-Difference Approximations of Derivatives
The FD= and FDHESSIAN= options specify the use of finite-difference approximations of the deriva-
tives. The FD= option specifies that all derivatives are approximated using function evaluations, and the
FDHESSIAN= option specifies that second-order derivatives are approximated using gradient evaluations.

Computing derivatives by finite-difference approximations can be very time-consuming, especially for
second-order derivatives based only on values of the objective function (FD= option). If analytical derivatives
are difficult to obtain (for example, if a function is computed by an iterative process), you might consider one
of the optimization techniques that use first-order derivatives only (QUANEW, DBLDOG, or CONGRA). In
the expressions that follow, � denotes the parameter vector, hi denotes the step size for the ith parameter, and
ei is a vector of zeros with a 1 in the ith position.

Forward-Difference Approximations
The forward-difference derivative approximations consume less computer time, but they are usually not as
precise as approximations that use central-difference formulas.

• For first-order derivatives, n additional function calls are required:

gi D
@f

@�i
�
f .� C hiei / � f .�/

hi

• For second-order derivatives based on function calls only (Dennis and Schnabel 1983, p. 80), nCn2=2
additional function calls are required for dense Hessian:

@2f

@�i@�j
�
f .� C hiei C hj ej / � f .� C hiei / � f .� C hj ej /C f .�/

hihj

• For second-order derivatives based on gradient calls (Dennis and Schnabel 1983, p. 103), n additional
gradient calls are required:

@2f

@�i@�j
�
gi .� C hj ej / � gi .�/

2hj
C
gj .� C hiei / � gj .�/

2hi
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Central-Difference Approximations
Central-difference approximations are usually more precise, but they consume more computer time than
approximations that use forward-difference derivative formulas.

• For first-order derivatives, 2n additional function calls are required:

gi D
@f

@�i
�
f .� C hiei / � f .� � hiei /

2hi

• For second-order derivatives based on function calls only (Abramowitz and Stegun 1972, p. 884),
2nC 4n2=2 additional function calls are required.

@2f

@�2i
�
�f .� C 2hiei /C 16f .� C hiei / � 30f .�/C 16f .� � hiei / � f .� � 2hiei /

12h2i

@2f

@�i@�j
�
f .� C hiei C hj ej / � f .� C hiei � hj ej / � f .� � hiei C hj ej /C f .� � hiei � hj ej /

4hihj

• For second-order derivatives based on gradient calls, 2n additional gradient calls are required:

@2f

@�i@�j
�
gi .� C hj ej / � gi .� � hj ej /

4hj
C
gj .� C hiei / � gj .� � hiei /

4hi

You can use the FDIGITS= option to specify the number of accurate digits in the evaluation of the objective
function. This specification is helpful in determining an appropriate interval size h to be used in the
finite-difference formulas.

The step sizes hj , j D 1; : : : ; n are defined as follows:

• For the forward-difference approximation of first-order derivatives that use function calls and second-
order derivatives that use gradient calls, hj D 2

p
�.1C j�j j/.

• For the forward-difference approximation of second-order derivatives that use only function calls and
all central-difference formulas, hj D 3

p
�.1C j�j j/.

The value of � is defined by the FDIGITS= option:

• If you specify the number of accurate digits by using FDIGITS=r, � is set to 10�r .

• If you do not specify the FDIGITS= option, � is set to the machine precision �.
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Hessian Scaling
The rows and columns of the Hessian matrix can be scaled when you use the trust region, Newton-Raphson,
and double-dogleg optimization techniques. Each element Hi;j , i; j D 1; : : : ; n is divided by the scaling
factor didj , where the scaling vector d D .d1; : : : ; dn/ is iteratively updated in a way specified by the
HESCAL=i option, as follows:

i D 0 W No scaling is done (equivalent to di D 1).

i ¤ 0 W First iteration and each restart iteration sets:

d
.0/
i D

q
max.jH .0/

i;i j; �/

i D 1 W See Moré (1978):

d
.kC1/
i D max

�
d
.k/
i ;

q
max.jH .k/

i;i j; �/

�
i D 2 W See Dennis, Gay, and Welsch (1981):

d
.kC1/
i D max

�
0:6d

.k/
i ;

q
max.jH .k/

i;i j; �/

�
i D 3 W di is reset in each iteration:

d
.kC1/
i D

q
max.jH .k/

i;i j; �/

In the preceding equations, � is the relative machine precision or, equivalently, the largest double-precision
value that, when added to 1, results in 1.

Active Set Methods
The parameter vector � 2 Rn can be subject to a set of m linear equality and inequality constraints:

nX
jD1

aij �j D bi i D 1; : : : ; me

nX
jD1

aij �j � bi i D me C 1; : : : ; m

The coefficients aij and right-hand sides bi of the equality and inequality constraints are collected in the
m � n matrix A and the m vector b.

The m linear constraints define a feasible region G in Rn that must contain the point �� that minimizes the
problem. If the feasible region G is empty, no solution to the optimization problem exists.

In PROC NLMIXED, all optimization techniques use active set methods. The iteration starts with a feasible
point �.0/, which you can provide or which can be computed by the Schittkowski and Stoer (1979) algorithm
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implemented in PROC NLMIXED. The algorithm then moves from one feasible point �.k�1/ to a better
feasible point �.k/ along a feasible search direction s.k/,

�.k/ D �.k�1/ C ˛.k/s.k/; ˛.k/ > 0

Theoretically, the path of points �.k/ never leaves the feasible region G of the optimization problem, but it
can reach its boundaries. The active set A.k/ of point �.k/ is defined as the index set of all linear equality
constraints and those inequality constraints that are satisfied at �.k/. If no constraint is active �.k/, the point
is located in the interior of G, and the active set A.k/ D ; is empty. If the point �.k/ in iteration k hits the
boundary of inequality constraint i, this constraint i becomes active and is added to A.k/. Each equality
constraint and each active inequality constraint reduce the dimension (degrees of freedom) of the optimization
problem.

In practice, the active constraints can be satisfied only with finite precision. The LCEPSILON=r option
specifies the range for active and violated linear constraints. If the point �.k/ satisfies the conditionˇ̌̌̌

ˇ̌ nX
jD1

aij �
.k/
j � bi

ˇ̌̌̌
ˇ̌ � t

where t D r.jbi j C 1/, the constraint i is recognized as an active constraint. Otherwise, the constraint i
is either an inactive inequality or a violated inequality or equality constraint. Due to rounding errors in
computing the projected search direction, error can be accumulated so that an iterate �.k/ steps out of the
feasible region.

In those cases, PROC NLMIXED might try to pull the iterate �.k/ back into the feasible region. However, in
some cases the algorithm needs to increase the feasible region by increasing the LCEPSILON=r value. If
this happens, a message is displayed in the log output.

If the algorithm cannot improve the value of the objective function by moving from an active constraint back
into the interior of the feasible region, it makes this inequality constraint an equality constraint in the next
iteration. This means that the active set A.kC1/ still contains the constraint i. Otherwise, it releases the active
inequality constraint and increases the dimension of the optimization problem in the next iteration.

A serious numerical problem can arise when some of the active constraints become (nearly) linearly dependent.
PROC NLMIXED removes linearly dependent equality constraints before starting optimization. You can
use the LCSINGULAR= option to specify a criterion r used in the update of the QR decomposition that
determines whether an active constraint is linearly dependent relative to a set of other active constraints.

If the solution �� is subjected to nact linear equality or active inequality constraints, the QR decomposition
of the n � nact matrix OA0 of the linear constraints is computed by OA0 D QR, where Q is an n � n orthogonal
matrix and R is an n � nact upper triangular matrix. The n columns of matrix Q can be separated into
two matrices, Q D ŒY;Z�, where Y contains the first nact orthogonal columns of Q and Z contains the
last n � nact orthogonal columns of Q. The n � .n � nact / column-orthogonal matrix Z is also called the
null-space matrix of the active linear constraints OA0. The n � nact columns of the n � .n � nact / matrix Z
form a basis orthogonal to the rows of the nact � n matrix OA.

At the end of the iterating, PROC NLMIXED computes the projected gradient gZ ,

gZ D Z0g

In the case of boundary-constrained optimization, the elements of the projected gradient correspond to
the gradient elements of the free parameters. A necessary condition for �� to be a local minimum of the
optimization problem is

gZ.��/ D Z0g.��/ D 0
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The symmetric nact � nact matrix GZ ,

GZ D Z0GZ

is called a projected Hessian matrix. A second-order necessary condition for �� to be a local minimizer
requires that the projected Hessian matrix is positive semidefinite.

Those elements of the nact vector of first-order estimates of Lagrange multipliers,

� D . OA OA0/�1 OAZZ0g

that correspond to active inequality constraints indicate whether an improvement of the objective function
can be obtained by releasing this active constraint. For minimization, a significant negative Lagrange
multiplier indicates that a possible reduction of the objective function can be achieved by releasing this
active linear constraint. The LCDEACT=r option specifies a threshold r for the Lagrange multiplier that
determines whether an active inequality constraint remains active or can be deactivated. (In the case of
boundary-constrained optimization, the Lagrange multipliers for active lower (upper) constraints are the
negative (positive) gradient elements corresponding to the active parameters.)

Line-Search Methods
In each iteration k, the (dual) quasi-Newton, conjugate gradient, and Newton-Raphson minimization tech-
niques use iterative line-search algorithms that try to optimize a linear, quadratic, or cubic approximation of f
along a feasible descent search direction s.k/,

�.kC1/ D �.k/ C ˛.k/s.k/; ˛.k/ > 0

by computing an approximately optimal scalar ˛.k/.

Therefore, a line-search algorithm is an iterative process that optimizes a nonlinear function f .˛/ of one
parameter (˛) within each iteration k of the optimization technique. Since the outside iteration process is
based only on the approximation of the objective function, the inside iteration of the line-search algorithm
does not have to be perfect. Usually, it is satisfactory that the choice of ˛ significantly reduces (in a
minimization) the objective function. Criteria often used for termination of line-search algorithms are the
Goldstein conditions (see Fletcher 1987).

You can select various line-search algorithms by specifying the LINESEARCH= option. The line-search
method LINESEARCH=2 seems to be superior when function evaluation consumes significantly less
computation time than gradient evaluation. Therefore, LINESEARCH=2 is the default method for Newton-
Raphson, (dual) quasi-Newton, and conjugate gradient optimizations.

You can modify the line-search methods LINESEARCH=2 and LINESEARCH=3 to be exact line searches
by using the LSPRECISION= option and specifying the � parameter described in Fletcher (1987). The
line-search methods LINESEARCH=1, LINESEARCH=2, and LINESEARCH=3 satisfy the left-side and
right-side Goldstein conditions (see Fletcher 1987). When derivatives are available, the line-search methods
LINESEARCH=6, LINESEARCH=7, and LINESEARCH=8 try to satisfy the right-side Goldstein condition;
if derivatives are not available, these line-search algorithms use only function calls.
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Restricting the Step Length
Almost all line-search algorithms use iterative extrapolation techniques that can easily lead them to (feasible)
points where the objective function f is no longer defined or is difficult to compute. Therefore, PROC
NLMIXED provides options restricting the step length ˛ or trust region radius �, especially during the first
main iterations.

The inner product g0s of the gradient g and the search direction s is the slope of f .˛/ D f .� C ˛s/ along the
search direction s. The default starting value ˛.0/ D ˛.k;0/ in each line-search algorithm (min˛>0 f .�C˛s/)
during the main iteration k is computed in three steps:

1. The first step uses either the difference j�f j D jf .k/ � f .k�1/j of the function values during the last
two consecutive iterations or the final step-size value ˛_ of the last iteration k � 1 to compute a first
value of ˛.0/1 .

• If the DAMPSTEP option is not used,

˛
.0/
1 D

8<:
step if 0:1 � step � 10
10 if step > 10
0:1 if step < 0:1

with

step D
�
j�f j=jg0sj if jg0sj � �max.100 � j�f j; 1/
1 otherwise

This value of ˛.0/1 can be too large and can lead to a difficult or impossible function evaluation,
especially for highly nonlinear functions such as the EXP function.

• If the DAMPSTEP=r option is used,

˛
.0/
1 D min.1; r˛_/

The initial value for the new step length can be no larger than r times the final step length ˛_ of
the former iteration. The default value is r = 2.

2. During the first five iterations, the second step enables you to reduce ˛.0/1 to a smaller starting value
˛
.0/
2 by using the INSTEP=r option:

˛
.0/
2 D min.˛.0/1 ; r/

After more than five iterations, ˛.0/2 is set to ˛.0/1 .

3. The third step can further reduce the step length by

˛
.0/
3 D min.˛.0/2 ;min.10; u//

where u is the maximum length of a step inside the feasible region.
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The INSTEP=r option enables you to specify a smaller or larger radius � of the trust region used in the first
iteration of the trust region and double-dogleg algorithms. The default initial trust region radius �.0/ is the
length of the scaled gradient (Moré 1978). This step corresponds to the default radius factor of r = 1. In most
practical applications of the TRUREG and DBLDOG algorithms, this choice is successful. However, for bad
initial values and highly nonlinear objective functions (such as the EXP function), the default start radius can
result in arithmetic overflows. If this happens, you can try decreasing values of INSTEP=r, 0 < r < 1, until
the iteration starts successfully. A small factor r also affects the trust region radius �.kC1/ of the next steps
because the radius is changed in each iteration by a factor 0 < c � 4, depending on the ratio � expressing the
goodness of quadratic function approximation. Reducing the radius � corresponds to increasing the ridge
parameter �, producing smaller steps aimed more closely toward the (negative) gradient direction.

Computational Problems

Floating-Point Errors and Overflows

Numerical optimization of a numerically integrated function is a difficult task, and the computation of the
objective function and its derivatives can lead to arithmetic exceptions and overflows. A typical cause of
these problems is parameters with widely varying scales. If the scaling of your parameters varies by more
than a few orders of magnitude, the numerical stability of the optimization problem can be seriously reduced
and can result in computational difficulties. A simple remedy is to rescale each parameter so that its final
estimated value has a magnitude near 1.

If parameter rescaling does not help, consider the following actions:

• Specify the ITDETAILS option in the PROC NLMIXED statement to obtain more detailed information
about when and where the problem is occurring.

• Provide different initial values or try a grid search of values.

• Use boundary constraints to avoid the region where overflows can happen.

• Delete outlying observations or subjects from the input data, if this is reasonable.

• Change the algorithm (specified in programming statements) that computes the objective function.

The line-search algorithms that work with cubic extrapolation are especially sensitive to arithmetic overflows.
If an overflow occurs during a line search, you can use the INSTEP= option to reduce the length of the first
trial step during the first five iterations, or you can use the DAMPSTEP or MAXSTEP option to restrict the
step length of the initial ˛ in subsequent iterations. If an arithmetic overflow occurs in the first iteration of the
trust region or double-dogleg algorithm, you can use the INSTEP= option to reduce the default trust region
radius of the first iteration. You can also change the optimization technique or the line-search method.

Long Run Times

PROC NLMIXED can take a long time to run for problems involving complex models, many parameters, or
large input data sets. Although the optimization techniques used by PROC NLMIXED are some of the best
ones available, they are not guaranteed to converge quickly for all problems. Ill-posed or misspecified models
can cause the algorithms to use more extensive calculations designed to achieve convergence, and this can
result in longer run times. So first make sure that your model is specified correctly, that your parameters
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are scaled to be of the same order of magnitude, and that your data reasonably match the model you are
contemplating.

If you are using the default adaptive Gaussian quadrature algorithm and no iteration history is printing at all,
then PROC NLMIXED might be bogged down trying to determine the number of quadrature points at the
first set of starting values. Specifying the QPOINTS= option will bypass this stage and proceed directly to
iterations; however, be aware that the likelihood approximation might not be accurate if there are too few
quadrature points.

PROC NLMIXED can also have difficulty determining the number of quadrature points if the initial starting
values are far from the optimum values. To obtain more accurate starting values for the model parameters,
one easy method is to fit a model with no RANDOM statement. You can then use these estimates as starting
values, although you will still need to specify values for the random-effects distribution. For normal-normal
models, another strategy is to use METHOD=FIRO. If you can obtain estimates by using this approximate
method, then they can be used as starting values for more accurate likelihood approximations.

If you are running PROC NLMIXED multiple times, you will probably want to include a statement like the
following in your program:

ods output ParameterEstimates=pe;

This statement creates a SAS data set named PE upon completion of the run. In your next invocation of
PROC NLMIXED, you can then specify

parms / data=pe;

to read in the previous estimates as starting values.

To speed general computations, you should double-check your programming statements to minimize the
number of floating-point operations. Using auxiliary variables and factoring amenable expressions can be
useful changes in this regard.

Problems Evaluating Code for Objective Function

The starting point �.0/ must be a point for which the programming statements can be evaluated. However,
during optimization, the optimizer might iterate to a point �.k/ where the objective function or its derivatives
cannot be evaluated. In some cases, the specification of boundary for parameters can avoid such situations.
In many other cases, you can indicate that the point �.0/ is a bad point simply by returning an extremely
large value for the objective function. In these cases, the optimization algorithm reduces the step length and
stays closer to the point that has been evaluated successfully in the former iteration.

No Convergence

There are a number of things to try if the optimizer fails to converge.

• Change the initial values by using a grid search specification to obtain a set of good feasible starting
values.

• Change or modify the update technique or the line-search algorithm.

This method applies only to TECH=QUANEW and TECH=CONGRA. For example, if you use the
default update formula and the default line-search algorithm, you can do the following:

– change the update formula with the UPDATE= option
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– change the line-search algorithm with the LINESEARCH= option

– specify a more precise line search with the LSPRECISION= option, if you use LINESEARCH=2
or LINESEARCH=3

• Change the optimization technique.

For example, if you use the default option, TECH=QUANEW, you can try one of the second-derivative
methods if your problem is small or the conjugate gradient method if it is large.

• Adjust finite-difference derivatives.

The forward-difference derivatives specified with the FD= or FDHESSIAN= option might not be
precise enough to satisfy strong gradient termination criteria. You might need to specify the more
expensive central-difference formulas. The finite-difference intervals might be too small or too big,
and the finite-difference derivatives might be erroneous.

• Double-check the data entry and program specification.

Convergence to Stationary Point

The gradient at a stationary point is the null vector, which always leads to a zero search direction. This point
satisfies the first-order termination criterion. Search directions that are based on the gradient are zero, so the
algorithm terminates. There are two ways to avoid this situation:

• Use the PARMS statement to specify a grid of feasible initial points.

• Use the OPTCHECK=r option to avoid terminating at the stationary point.

The signs of the eigenvalues of the (reduced) Hessian matrix contain the following information regarding a
stationary point:

• If all of the eigenvalues are positive, the Hessian matrix is positive definite, and the point is a minimum
point.

• If some of the eigenvalues are positive and all remaining eigenvalues are zero, the Hessian matrix is
positive semidefinite, and the point is a minimum or saddle point.

• If all of the eigenvalues are negative, the Hessian matrix is negative definite, and the point is a maximum
point.

• If some of the eigenvalues are negative and all remaining eigenvalues are zero, the Hessian matrix is
negative semidefinite, and the point is a maximum or saddle point.

• If all of the eigenvalues are zero, the point can be a minimum, maximum, or saddle point.

Precision of Solution

In some applications, PROC NLMIXED can result in parameter values that are not precise enough. Usually,
this means that the procedure terminated at a point too far from the optimal point. The termination criteria
define the size of the termination region around the optimal point. Any point inside this region can be
accepted for terminating the optimization process. The default values of the termination criteria are set to
satisfy a reasonable compromise between the computational effort (computer time) and the precision of the
computed estimates for the most common applications. However, there are a number of circumstances in
which the default values of the termination criteria specify a region that is either too large or too small.
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If the termination region is too large, then it can contain points with low precision. In such cases, you should
determine which termination criterion stopped the optimization process. In many applications, you can obtain
a solution with higher precision simply by using the old parameter estimates as starting values in a subsequent
run in which you specify a smaller value for the termination criterion that was satisfied at the former run.

If the termination region is too small, the optimization process might take longer to find a point inside such a
region, or it might not even find such a point due to rounding errors in function values and derivatives. This
can easily happen in applications in which finite-difference approximations of derivatives are used and the
GCONV and ABSGCONV termination criteria are too small to respect rounding errors in the gradient values.

Covariance Matrix
The estimated covariance matrix of the parameter estimates is computed as the inverse Hessian matrix, and
for unconstrained problems it should be positive definite. If the final parameter estimates are subjected to
nact > 0 active linear inequality constraints, the formulas of the covariance matrices are modified similar to
Gallant (1987) and Cramer (1986, p. 38) and additionally generalized for applications with singular matrices.

There are several steps available that enable you to tune the rank calculations of the covariance matrix.

1. You can use the ASINGULAR=, MSINGULAR=, and VSINGULAR= options to set three singularity
criteria for the inversion of the Hessian matrix H. The singularity criterion used for the inversion is

jdj;j j � max.ASING;VSING � jHj;j j;MSING �max.jH1;1j; : : : ; jHn;nj//

where dj;j is the diagonal pivot of the matrix H, and ASING, VSING, and MSING are the specified
values of the ASINGULAR=, VSINGULAR=, and MSINGULAR= options, respectively. The default
values are as follows:

• ASING: the square root of the smallest positive double-precision value

• MSING: 1E–12 if you do not specify the SINGHESS= option and max.10�; 1E�4�SINGHESS/
otherwise, where � is the machine precision

• VSING: 1E–8 if you do not specify the SINGHESS= option and the value of SINGHESS
otherwise

Note that, in many cases, a normalized matrix D�1AD�1 is decomposed, and the singularity criteria
are modified correspondingly.

2. If the matrix H is found to be singular in the first step, a generalized inverse is computed. Depending on
the G4= option, either a generalized inverse satisfying all four Moore-Penrose conditions is computed
(a g4-inverse) or a generalized inverse satisfying only two Moore-Penrose conditions is computed
(a g2-inverse, Pringle and Rayner 1971). If the number of parameters n of the application is less
than or equal to G4=i, a g4-inverse is computed; otherwise, only a g2-inverse is computed. The
g4-inverse is computed by the (computationally very expensive but numerically stable) eigenvalue
decomposition, and the g2-inverse is computed by Gauss transformation. The g4-inverse is computed
using the eigenvalue decomposition A D ZƒZ0, where Z is the orthogonal matrix of eigenvectors and
ƒ is the diagonal matrix of eigenvalues, ƒ D diag.�1; : : : ; �n/. The g4-inverse of H is set to

A� D Zƒ�Z0
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where the diagonal matrix ƒ� D diag.��1 ; : : : ; �
�
n / is defined using the COVSING= option:

��i D

�
1=�i if j�i j > COVSING
0 if j�i j � COVSING

If you do not specify the COVSING= option, the nr smallest eigenvalues are set to zero, where nr is
the number of rank deficiencies found in the first step.

For optimization techniques that do not use second-order derivatives, the covariance matrix is computed
using finite-difference approximations of the derivatives.

Prediction
The nonlinear mixed model is a useful tool for statistical prediction. Assuming a prediction is to be made
regarding the ith subject, suppose that f .�; ui / is a differentiable function predicting some quantity of
interest. Recall that � denotes the vector of unknown parameters and ui denotes the vector of random effects
for the ith subject. A natural point prediction is f .b�;bui /, whereb� is the maximum likelihood estimate of �
andbui is the empirical Bayes estimate of ui described previously in the section “Integral Approximations”
on page 5718.

An approximate prediction variance matrix for .b�;bui / is

P D

24 bH�1 bH�1 �@bui
@�

�0�
@bui
@�

�bH�1 b��1 C �@bui
@�

�bH�1 �@bui
@�

�0
35

where bH is the approximate Hessian matrix from the optimization forb� , b� is the approximate Hessian matrix
from the optimization forbui , and .@bui=@�/ is the derivative ofbui with respect to � , evaluated at .b�;bui /. The
approximate variance matrix forb� is the standard one discussed in the previous section, and that forbui is an
approximation to the conditional mean squared error of prediction described by Booth and Hobert (1998).

The prediction variance for a general scalar function f .�; ui / is defined as the expected squared difference
EŒf .b�;bui / � f .�; ui /�2: PROC NLMIXED computes an approximation to it as follows. The derivative of
f .�; ui / is computed with respect to each element of .�; ui / and evaluated at .b�;bui /. If ai is the resulting
vector, then the approximate prediction variance is a0iPai . This approximation is known as the delta method
(Billingsley 1986; Cox 1998).

Computational Resources
Since nonlinear optimization is an iterative process that depends on many factors, it is difficult to estimate
how much computer time is necessary to find an optimal solution satisfying one of the termination criteria.
You can use the MAXTIME=, MAXITER=, and MAXFUNC= options to restrict the amount of CPU time,
the number of iterations, and the number of function calls in a single run of PROC NLMIXED.

In each iteration k, the NRRIDG technique uses a symmetric Householder transformation to decompose the
n � n Hessian matrix H,

H D V0TV; V: orthogonal; T: tridiagonal
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to compute the (Newton) search direction s,

s.k/ D �ŒH.k/��1g.k/ k D 1; 2; 3; : : :

The TRUREG and NEWRAP techniques use the Cholesky decomposition to solve the same linear system
while computing the search direction. The QUANEW, DBLDOG, CONGRA, and NMSIMP techniques do
not need to invert or decompose a Hessian matrix; thus, they require less computational resources than the
other techniques.

The larger the problem, the more time is needed to compute function values and derivatives. Therefore,
you might want to compare optimization techniques by counting and comparing the respective numbers of
function, gradient, and Hessian evaluations.

Finite-difference approximations of the derivatives are expensive because they require additional function or
gradient calls:

• forward-difference formulas

– For first-order derivatives, n additional function calls are required.

– For second-order derivatives based on function calls only, for a dense Hessian, nCn2=2 additional
function calls are required.

– For second-order derivatives based on gradient calls, n additional gradient calls are required.

• central-difference formulas

– For first-order derivatives, 2n additional function calls are required.

– For second-order derivatives based on function calls only, for a dense Hessian, 2nC2n2 additional
function calls are required.

– For second-order derivatives based on gradient calls, 2n additional gradient calls are required.

Many applications need considerably more time for computing second-order derivatives (Hessian matrix)
than for computing first-order derivatives (gradient). In such cases, a dual quasi-Newton technique is
recommended, which does not require second-order derivatives.

Displayed Output
This section describes the displayed output from PROC NLMIXED. See the section “ODS Table Names” on
page 5744 for details about how this output interfaces with the Output Delivery System.

Specifications
The NLMIXED procedure first displays the “Specifications” table, listing basic information about the
nonlinear mixed model that you have specified. It includes the principal variables and estimation methods.

Dimensions
The “Dimensions” table lists counts of important quantities in your nonlinear mixed model, including the
number of observations, subjects, parameters, and quadrature points.
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Parameters
The “Parameters” table displays the information you provided with the PARMS statement and the value of
the negative log-likelihood function evaluated at the starting values.

Starting Gradient and Hessian
The START option in the PROC NLMIXED statement displays the gradient of the negative log-likelihood
function at the starting values of the parameters. If you also specify the HESS option, then the starting
Hessian is displayed as well.

Iterations
The iteration history consists of one line of output for each iteration in the optimization process. The iteration
history is displayed by default because it is important that you check for possible convergence problems. The
default iteration history includes the following variables:

• Iter, the iteration number

• Calls, the number of function calls

• NegLogLike, the value of the objective function

• Diff, the difference between adjacent function values

• MaxGrad, the maximum of the absolute (projected) gradient components (except NMSIMP)

• Slope, the slope g0s of the search direction s at the current parameter iterate �.k/ (QUANEW only)

• Rho, the ratio between the achieved and predicted values of Diff (NRRIDG only)

• Radius, the radius of the trust region (TRUREG only)

• StdDev, the standard deviation of the simplex values (NMSIMP only)

• Delta, the vertex length of the simplex (NMSIMP only)

• Size, the size of the simplex (NMSIMP only)

For the QUANEW method, the value of Slope should be significantly negative. Otherwise, the line-search
algorithm has difficulty reducing the function value sufficiently. If this difficulty is encountered, an asterisk
(*) appears after the iteration number. If there is a tilde Ï after the iteration number, the BFGS update is
skipped, and very high values of the Lagrange function are produced. A backslash (n ) after the iteration
number indicates that Powell’s correction for the BFGS update is used.

For methods using second derivatives, an asterisk (*) after the iteration number means that the computed
Hessian approximation was singular and had to be ridged with a positive value.

For the NMSIMP method, only one line is displayed for several internal iterations. This technique skips the
output for some iterations because some of the termination tests (StdDev and Size) are rather time-consuming
compared to the simplex operations, and they are performed only every five simplex operations.

The ITDETAILS option in the PROC NLMIXED statement provides a more detailed iteration history. Besides
listing the current values of the parameters and their gradients, the ITDETAILS option provides the following
values in addition to the default output:
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• Restart, the number of iteration restarts

• Active, the number of active constraints

• Lambda, the value of the Lagrange multiplier (TRUREG and DBLDOG only)

• Ridge, the ridge value (NRRIDG only)

• Alpha, the line-search step size (QUANEW only)

An apostrophe (’) trailing the number of active constraints indicates that at least one of the active constraints
was released from the active set due to a significant Lagrange multiplier.

Convergence Status
The “Convergence Status” table contains a status message describing the reason for termination of the
optimization. The ODS name of this table is ConvergenceStatus, and you can query the nonprinting numeric
variable Status to check for a successful optimization. This is useful in batch processing, or when processing
BY groups, for example, in simulations. Successful convergence is indicated by Status=0.

Fitting Information
The “Fitting Information” table lists the final minimized value of –2 times the log likelihood as well as the
information criteria of Akaike (AIC) and Schwarz (BIC), as well as a finite-sample corrected version of AIC
(AICC). The criteria are computed as follows:

AIC D 2f .b�/C 2p
AICC D 2f .b�/C 2pn=.n � p � 1/

BIC D 2f .b�/C p log.s/

where f ./ is the negative of the marginal log-likelihood function,b� is the vector of parameter estimates, p is
the number of parameters, n is the number of observations, and s is the number of subjects. See Hurvich and
Tsai (1989) and Burnham and Anderson (1998) for additional details.

Parameter Estimates
The “Parameter Estimates” table lists the estimates of the parameter values after successful convergence of
the optimization problem or the final values of the parameters under nonconvergence. If the problem did
converge, standard errors are computed from the final Hessian matrix. The ratio of the estimate with its
standard error produces a t value, with approximate degrees of freedom computed as the number of subjects
minus the number of random effects. A p-value and confidence limits based on this t distribution are also
provided. Finally, the gradient of the negative log-likelihood function is displayed for each parameter, and
you should verify that they each are sufficiently small for nonconstrained parameters.

Covariance and Correlation Matrices
Following standard maximum likelihood theory (for example, Serfling 1980), the asymptotic variance-
covariance matrix of the parameter estimates equals the inverse of the Hessian matrix. You can display this
matrix with the COV option in the PROC NLMIXED statement. The corresponding correlation form is
available with the CORR option.



5744 F Chapter 70: The NLMIXED Procedure

Additional Estimates
The “Additional Estimates” table displays the results of all ESTIMATE statements that you specify, with the
same columns as the “Parameter Estimates” table. The ECOV and ECORR options in the PROC NLMIXED
statement produce tables displaying the approximate covariance and correlation matrices of the additional
estimates. They are computed using the delta method (Billingsley 1986; Cox 1998). The EDER option in the
PROC NLMIXED statement produces a table that displays the derivatives of the additional estimates with
respect to the model parameters evaluated at their final estimated values.

ODS Table Names
PROC NLMIXED assigns a name to each table it creates. You can use these names to reference the table
when using the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed in Table 70.2. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

Table 70.2 ODS Tables Produced by PROC NLMIXED

ODS Table Name Description Statement or Option

AdditionalEstimates Results from ESTIMATE statements ESTIMATE
Contrasts Results from CONTRAST statements CONTRAST
ConvergenceStatus Convergence status default
CorrMatAddEst Correlation matrix of additional estimates ECORR
CorrMatParmEst Correlation matrix of parameter estimates CORR
CovMatAddEst Covariance matrix of additional estimates ECOV
CovMatParmEst Covariance matrix of parameter estimates COV
DerAddEst Derivatives of additional estimates EDER
Dimensions Dimensions of the problem default
FitStatistics Fit statistics default
Hessian Second derivative matrix HESS
IterHistory Iteration history default
Parameters Initial parameters default
ParameterEstimates Parameter estimates default
Specifications Model specifications default
StartingHessian Starting Hessian matrix START HESS
StartingValues Starting values and gradient START

Examples: NLMIXED Procedure

Example 70.1: One-Compartment Model with Pharmacokinetic Data
A popular application of nonlinear mixed models is in the field of pharmacokinetics, which studies how a
drug disperses through a living individual. This example considers the theophylline data from Pinheiro and
Bates (1995). Serum concentrations of the drug theophylline are measured in 12 subjects over a 25-hour
period after oral administration. The data are as follows.
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data theoph;
input subject time conc dose wt;
datalines;

1 0.00 0.74 4.02 79.6
1 0.25 2.84 4.02 79.6
1 0.57 6.57 4.02 79.6
1 1.12 10.50 4.02 79.6
1 2.02 9.66 4.02 79.6
1 3.82 8.58 4.02 79.6
1 5.10 8.36 4.02 79.6
1 7.03 7.47 4.02 79.6

... more lines ...

12 24.15 1.17 5.30 60.5
;

Pinheiro and Bates (1995) consider the following first-order compartment model for these data:

Cit D
Dkeikai

Cli .kai � kei /
Œexp.�kei t / � exp.�kai t /�C eit

where Cit is the observed concentration of the ith subject at time t, D is the dose of theophylline, kei is the
elimination rate constant for subject i, kai is the absorption rate constant for subject i, Cli is the clearance
for subject i, and eit are normal errors. To allow for random variability between subjects, they assume

Cli D exp.ˇ1 C bi1/
kai D exp.ˇ2 C bi2/
kei D exp.ˇ3/

where the ˇs denote fixed-effects parameters and the bi s denote random-effects parameters with an unknown
covariance matrix.

The PROC NLMIXED statements to fit this model are as follows:

proc nlmixed data=theoph;
parms beta1=-3.22 beta2=0.47 beta3=-2.45

s2b1 =0.03 cb12 =0 s2b2 =0.4 s2=0.5;
cl = exp(beta1 + b1);
ka = exp(beta2 + b2);
ke = exp(beta3);
pred = dose*ke*ka*(exp(-ke*time)-exp(-ka*time))/cl/(ka-ke);
model conc ~ normal(pred,s2);
random b1 b2 ~ normal([0,0],[s2b1,cb12,s2b2]) subject=subject;

run;

The PARMS statement specifies starting values for the three ˇs and four variance-covariance parameters.
The clearance and rate constants are defined using SAS programming statements, and the conditional model
for the data is defined to be normal with mean pred and variance s2. The two random effects are b1 and b2,
and their joint distribution is defined in the RANDOM statement. Brackets are used in defining their mean
vector (two zeros) and the lower triangle of their variance-covariance matrix (a general 2 � 2 matrix). The
SUBJECT= variable is subject.

The results from this analysis are as follows.
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Output 70.1.1 Model Specification for One-Compartment Model

The NLMIXED ProcedureThe NLMIXED Procedure

Specifications

Data Set WORK.THEOPH

Dependent Variable conc

Distribution for Dependent Variable Normal

Random Effects b1 b2

Distribution for Random Effects Normal

Subject Variable subject

Optimization Technique Dual Quasi-Newton

Integration Method Adaptive Gaussian Quadrature

The “Specifications” table lists the setup of the model (Output 70.1.1). The “Dimensions” table indicates that
there are 132 observations, 12 subjects, and 7 parameters. PROC NLMIXED selects 5 quadrature points for
each random effect, producing a total grid of 25 points over which quadrature is performed (Output 70.1.2).

Output 70.1.2 Dimensions Table for One-Compartment Model

Dimensions

Observations Used 132

Observations Not Used 0

Total Observations 132

Subjects 12

Max Obs per Subject 11

Parameters 7

Quadrature Points 5

The “Parameters” table lists the 7 parameters, their starting values, and the initial evaluation of the negative
log likelihood using adaptive Gaussian quadrature (Output 70.1.3). The “Iteration History” table indicates
that 10 steps are required for the dual quasi-Newton algorithm to achieve convergence.

Output 70.1.3 Starting Values and Iteration History

Initial Parameters

beta1 beta2 beta3 s2b1 cb12 s2b2 s2

Negative
Log

Likelihood

-3.22 0.47 -2.45 0.03 0 0.4 0.5 177.789945
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Output 70.1.3 continued

Iteration History

Iteration Calls

Negative
Log

Likelihood Difference
Maximum
Gradient Slope

1 7 177.7762 0.013697 2.87337 -63.0744

2 11 177.7643 0.011948 1.69814 -4.75239

3 14 177.7573 0.007036 1.29744 -1.97311

4 17 177.7557 0.001576 1.44141 -0.49772

5 20 177.7467 0.008988 1.13228 -0.82230

6 24 177.7464 0.000299 0.83129 -0.00244

7 27 177.7463 0.000083 0.72420 -0.00789

8 31 177.7457 0.000578 0.18002 -0.00583

9 34 177.7457 3.88E-6 0.017958 -8.25E-6

10 37 177.7457 3.222E-8 0.000143 -6.51E-8

NOTE: GCONV convergence criterion satisfied.

Output 70.1.4 Fit Statistics for One-Compartment Model

Fit Statistics

-2 Log Likelihood 355.5

AIC (smaller is better) 369.5

AICC (smaller is better) 370.4

BIC (smaller is better) 372.9

The “Fit Statistics” table lists the final optimized values of the log-likelihood function and information criteria
in the “smaller is better” form (Output 70.1.4).

The “Parameter Estimates” table contains the maximum likelihood estimates of the parameters (Output 70.1.5).
Both s2b1 and s2b2 are marginally significant, indicating between-subject variability in the clearances and
absorption rate constants, respectively. There does not appear to be a significant covariance between them, as
seen by the estimate of cb12.

Output 70.1.5 Parameter Estimates for One-Compartment Model

Parameter Estimates

Parameter Estimate
Standard

Error DF t Value Pr > |t|

95%
Confidence

Limits Gradient

beta1 -3.2268 0.05950 10 -54.23 <.0001 -3.3594 -3.0942 -0.00009

beta2 0.4806 0.1989 10 2.42 0.0363 0.03745 0.9238 3.645E-7

beta3 -2.4592 0.05126 10 -47.97 <.0001 -2.5734 -2.3449 0.000039

s2b1 0.02803 0.01221 10 2.30 0.0446 0.000828 0.05524 -0.00014

cb12 -0.00127 0.03404 10 -0.04 0.9710 -0.07712 0.07458 -0.00007

s2b2 0.4331 0.2005 10 2.16 0.0561 -0.01354 0.8798 -6.98E-6

s2 0.5016 0.06837 10 7.34 <.0001 0.3493 0.6540 6.133E-6
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The estimates of ˇ1, ˇ2, and ˇ3 are close to the adaptive quadrature estimates listed in Table 3 of Pinheiro
and Bates (1995). However, Pinheiro and Bates use a Cholesky-root parameterization for the random-
effects variance matrix and a logarithmic parameterization for the residual variance. The PROC NLMIXED
statements using their parameterization are as follows, and results are similar.

proc nlmixed data=theoph;
parms ll1=-1.5 l2=0 ll3=-0.1 beta1=-3 beta2=0.5 beta3=-2.5 ls2=-0.7;
s2 = exp(ls2);
l1 = exp(ll1);
l3 = exp(ll3);
s2b1 = l1*l1*s2;
cb12 = l2*l1*s2;
s2b2 = (l2*l2 + l3*l3)*s2;
cl = exp(beta1 + b1);
ka = exp(beta2 + b2);
ke = exp(beta3);
pred = dose*ke*ka*(exp(-ke*time)-exp(-ka*time))/cl/(ka-ke);
model conc ~ normal(pred,s2);
random b1 b2 ~ normal([0,0],[s2b1,cb12,s2b2]) subject=subject;

run;

Example 70.2: Probit-Normal Model with Binomial Data
For this example, consider the data from Weil (1970), also studied by: Williams (1975); Ochi and Prentice
(1984); McCulloch (1994). In this experiment 16 pregnant rats receive a control diet and 16 receive a
chemically treated diet, and the litter size for each rat is recorded after 4 and 21 days. The SAS data set
follows:

data rats;
input trt $ m x @@;
if (trt='c') then do;

x1 = 1;
x2 = 0;

end;
else do;

x1 = 0;
x2 = 1;

end;
litter = _n_;
datalines;

c 13 13 c 12 12 c 9 9 c 9 9 c 8 8 c 8 8 c 13 12 c 12 11
c 10 9 c 10 9 c 9 8 c 13 11 c 5 4 c 7 5 c 10 7 c 10 7
t 12 12 t 11 11 t 10 10 t 9 9 t 11 10 t 10 9 t 10 9 t 9 8
t 9 8 t 5 4 t 9 7 t 7 4 t 10 5 t 6 3 t 10 3 t 7 0
;

Here, m represents the size of the litter after 4 days, and x represents the size of the litter after 21 days. Also,
indicator variables x1 and x2 are constructed for the two treatment levels.
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Following McCulloch (1994), assume a latent survival model of the form

yijk D ti C ˛ij C eijk

where i indexes treatment, j indexes litter, and k indexes newborn rats within a litter. The ti represent
treatment means, the ˛ij represent random litter effects assumed to be iid N.0; s2i /, and the eijk represent iid
residual errors, all on the latent scale.

Instead of observing the survival times yijk , assume that only the binary variable indicating whether yijk
exceeds 0 is observed. If xij denotes the sum of these binary variables for the ith treatment and the jth litter,
then the preceding assumptions lead to the following generalized linear mixed model:

xij j˛ij � Binomial.mij ; pij /

where mij is the size of each litter after 4 days and

pij D ˆ.ti C ˛ij /

The PROC NLMIXED statements to fit this model are as follows:

proc nlmixed data=rats;
parms t1=1 t2=1 s1=.05 s2=1;
eta = x1*t1 + x2*t2 + alpha;
p = probnorm(eta);
model x ~ binomial(m,p);
random alpha ~ normal(0,x1*s1*s1+x2*s2*s2) subject=litter;
estimate 'gamma2' t2/sqrt(1+s2*s2);
predict p out=p;

run;

As in Example 70.1, the PROC NLMIXED statement invokes the procedure and the PARMS statement
defines the parameters. The parameters for this example are the two treatment means, t1 and t2, and the two
random-effect standard deviations, s1 and s2.

The indicator variables x1 and x2 are used in the program to assign the proper mean to each observation in
the input data set as well as the proper variance to the random effects. Note that programming expressions are
permitted inside the distributional specifications, as illustrated by the random-effects variance specified here.

The ESTIMATE statement requests an estimate of 2 D t2=
q
1C s22 , which is a location-scale parameter

from Ochi and Prentice (1984).

The PREDICT statement constructs predictions for each observation in the input data set. For this example,
predictions of p and approximate standard errors of prediction are output to a SAS data set named P. These
predictions are functions of the parameter estimates and the empirical Bayes estimates of the random effects
˛i .

The output for this model is as follows.
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Output 70.2.1 Specifications, Dimensions, and Starting Values

The NLMIXED ProcedureThe NLMIXED Procedure

Specifications

Data Set WORK.RATS

Dependent Variable x

Distribution for Dependent Variable Binomial

Random Effects alpha

Distribution for Random Effects Normal

Subject Variable litter

Optimization Technique Dual Quasi-Newton

Integration Method Adaptive Gaussian Quadrature

Dimensions

Observations Used 32

Observations Not Used 0

Total Observations 32

Subjects 32

Max Obs per Subject 1

Parameters 4

Quadrature Points 7

Initial Parameters

t1 t2 s1 s2

Negative
Log

Likelihood

1 1 0.05 1 54.9362323

The “Specifications” table provides basic information about this nonlinear mixed model (Output 70.2.1). The
“Dimensions” table provides counts of various variables. Note that each observation in the data comprises a
separate subject. Using the starting values in the “Parameters” table, PROC NLMIXED determines that the
log-likelihood function can be approximated with sufficient accuracy with a seven-point quadrature rule.

Output 70.2.2 Iteration History for Probit-Normal Model

Iteration History

Iteration Calls

Negative
Log

Likelihood Difference
Maximum
Gradient Slope

1 4 53.9933934 0.942839 11.0326 -81.9428

2 6 52.8753530 1.11804 2.14895 -2.86277

3 9 52.6350386 0.240314 0.32996 -1.05049

4 11 52.6319939 0.003045 0.12293 -0.00672

5 14 52.6313583 0.000636 0.028246 -0.00352

6 18 52.6313174 0.000041 0.013551 -0.00023

7 21 52.6313115 5.839E-6 0.000603 -0.00001

8 24 52.6313115 9.45E-9 0.000022 -1.68E-8

NOTE: GCONV convergence criterion satisfied.
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The “Iteration History” table indicates successful convergence in 8 iterations (Output 70.2.2).

Output 70.2.3 Fit Statistics for Probit-Normal Model

Fit Statistics

-2 Log Likelihood 105.3

AIC (smaller is better) 113.3

AICC (smaller is better) 114.7

BIC (smaller is better) 119.1

The “Fit Statistics” table lists useful statistics based on the maximized value of the log likelihood (Out-
put 70.2.3).

Output 70.2.4 Parameter Estimates for Probit-Normal Model

Parameter Estimates

Parameter Estimate
Standard

Error DF t Value Pr > |t|

95%
Confidence

Limits Gradient

t1 1.3063 0.1685 31 7.75 <.0001 0.9626 1.6499 -0.00002

t2 0.9475 0.3055 31 3.10 0.0041 0.3244 1.5705 9.283E-6

s1 0.2403 0.3015 31 0.80 0.4315 -0.3746 0.8552 0.000014

s2 1.0292 0.2988 31 3.44 0.0017 0.4198 1.6386 -3.16E-6

The “Parameter Estimates” table indicates significance of all the parameters except S1 (Output 70.2.4).

Output 70.2.5 Additional Estimates

Additional Estimates

Label Estimate
Standard

Error DF t Value Pr > |t| Alpha Lower Upper

gamma2 0.6603 0.2165 31 3.05 0.0047 0.05 0.2186 1.1019

The “Additional Estimates” table displays results from the ESTIMATE statement (Output 70.2.5). The
estimate of 2 equals 0.66, agreeing with that obtained by McCulloch (1994). The standard error 0.22 is
computed using the delta method (Billingsley 1986; Cox 1998).

Not shown is the P data set, which contains the original 32 observations and predictions of the pij .

Example 70.3: Probit-Normal Model with Ordinal Data
The data for this example are from Ezzet and Whitehead (1991), who describe a crossover experiment on two
groups of patients using two different inhaler devices (A and B). Patients from group 1 used device A for one
week and then device B for another week. Patients from group 2 used the devices in reverse order. The data
entered as a SAS data set are as follows:
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data inhaler;
input clarity group time freq @@;
gt = group*time;
sub = floor((_n_+1)/2);
datalines;

1 0 0 59 1 0 1 59 1 0 0 35 2 0 1 35 1 0 0 3 3 0 1 3 1 0 0 2
4 0 1 2 2 0 0 11 1 0 1 11 2 0 0 27 2 0 1 27 2 0 0 2 3 0 1 2
2 0 0 1 4 0 1 1 4 0 0 1 1 0 1 1 4 0 0 1 2 0 1 1 1 1 0 63
1 1 1 63 1 1 0 13 2 1 1 13 2 1 0 40 1 1 1 40 2 1 0 15 2 1 1 15
3 1 0 7 1 1 1 7 3 1 0 2 2 1 1 2 3 1 0 1 3 1 1 1 4 1 0 2
1 1 1 2 4 1 0 1 3 1 1 1
;

The response measurement, clarity, is the patients’ assessment on the clarity of the leaflet instructions for the
devices. The clarity variable is on an ordinal scale, with 1=easy, 2=only clear after rereading, 3=not very
clear, and 4=confusing. The group variable indicates the treatment group, and the time variable indicates the
time of measurement. The freq variable indicates the number of patients with exactly the same responses. A
variable gt is created to indicate a group-by-time interaction, and a variable sub is created to indicate patients.

As in the previous example and in Hedeker and Gibbons (1994), assume an underlying latent continuous
variable, here with the form

yij D ˇ0 C ˇ1gi C ˇ2tj C ˇ3gi tj C ui C eij

where i indexes patient and j indexes the time period, gi indicates groups, tj indicates time, ui is a patient-
level normal random effect, and eij are iid normal errors. The ˇs are unknown coefficients to be estimated.

Instead of observing yij , however, you observe only whether it falls in one of the four intervals: (�1, 0),
(0, I1), (I1, I1 + I2), or (I1 + I2,1), where I1 and I2 are both positive. The resulting category is the value
assigned to the clarity variable.

The following code sets up and fits this ordinal probit model:

proc nlmixed data=inhaler corr ecorr;
parms b0=0 b1=0 b2=0 b3=0 sd=1 i1=1 i2=1;
bounds i1 > 0, i2 > 0;
eta = b0 + b1*group + b2*time + b3*gt + u;
if (clarity=1) then p = probnorm(-eta);
else if (clarity=2) then

p = probnorm(i1-eta) - probnorm(-eta);
else if (clarity=3) then

p = probnorm(i1+i2-eta) - probnorm(i1-eta);
else p = 1 - probnorm(i1+i2-eta);
if (p > 1e-8) then ll = log(p);
else ll = -1e20;
model clarity ~ general(ll);
random u ~ normal(0,sd*sd) subject=sub;
replicate freq;
estimate 'thresh2' i1;
estimate 'thresh3' i1 + i2;
estimate 'icc' sd*sd/(1+sd*sd);

run;
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The PROC NLMIXED statement specifies the input data set and requests correlations both for the parameter
estimates (CORR option) and for the additional estimates specified with ESTIMATE statements (ECORR
option).

The parameters as defined in the PARMS statement are as follows: b0 (overall intercept), b1 (group main
effect), B2 (time main effect), b3 (group-by-time interaction), sd (standard deviation of the random effect), i1
(increment between first and second thresholds), and i2 (increment between second and third thresholds).
The BOUNDS statement restricts i1 and i2 to be positive.

The SAS programming statements begin by defining the linear predictor eta, which is a linear combination of
the b parameters and a single random effect u. The next statements define the ordinal likelihood according to
the clarity variable, eta, and the increment variables. An error trap is included in case the likelihood becomes
too small.

A general log-likelihood specification is used in the MODEL statement, and the RANDOM statement defines
the random effect u to have standard deviation sd and subject variable sub. The REPLICATE statement
indicates that data for each subject should be replicated according to the freq variable.

The ESTIMATE statements specify the second and third thresholds in terms of the increment variables (the
first threshold is assumed to equal zero for model identifiability). Also computed is the intraclass correlation.

The output is as follows.

Output 70.3.1 Specifications for Ordinal Data Model

The NLMIXED ProcedureThe NLMIXED Procedure

Specifications

Data Set WORK.INHALER

Dependent Variable clarity

Distribution for Dependent Variable General

Random Effects u

Distribution for Random Effects Normal

Subject Variable sub

Replicate Variable freq

Optimization Technique Dual Quasi-Newton

Integration Method Adaptive Gaussian Quadrature

The “Specifications” table echoes some primary information specified for this nonlinear mixed model
(Output 70.3.1). Because the log-likelihood function was expressed with SAS programming statements, the
distribution is displayed as General in the “Specifications” table.

The “Dimensions” table reveals a total of 286 subjects, which is the sum of the values of the FREQ variable
for the second time point. Five quadrature points are selected for log-likelihood evaluation (Output 70.3.2).

Output 70.3.2 Dimensions Table for Ordinal Data Model

Dimensions

Observations Used 38

Observations Not Used 0

Total Observations 38

Subjects 286

Max Obs per Subject 2

Parameters 7

Quadrature Points 5
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Output 70.3.3 Parameter Starting Values and Negative Log Likelihood

Initial Parameters

b0 b1 b2 b3 sd i1 i2

Negative
Log

Likelihood

0 0 0 0 1 1 1 538.484276

The “Parameters” table lists the simple starting values for this problem (Output 70.3.3). The “Iteration
History” table indicates successful convergence in 13 iterations (Output 70.3.4).

Output 70.3.4 Iteration History

Iteration History

Iteration Calls

Negative
Log

Likelihood Difference
Maximum
Gradient Slope

1 4 476.3825 62.10176 43.7506 -1431.40

2 7 463.2282 13.15431 14.2465 -106.753

3 9 458.5281 4.70008 48.3132 -33.0389

4 11 450.9757 7.552383 22.6010 -40.9954

5 14 448.0127 2.963033 14.8688 -16.7453

6 17 447.2452 0.767549 7.77419 -2.26743

7 19 446.7277 0.517483 3.79353 -1.59278

8 22 446.5183 0.209396 0.86864 -0.37801

9 26 446.5145 0.003745 0.32857 -0.02356

10 29 446.5133 0.001187 0.056778 -0.00183

11 32 446.5133 0.000027 0.010785 -0.00004

12 35 446.5133 3.956E-6 0.004922 -5.41E-6

13 38 446.5133 1.989E-7 0.000470 -4E-7

NOTE: GCONV convergence criterion satisfied.

Output 70.3.5 Fit Statistics for Ordinal Data Model

Fit Statistics

-2 Log Likelihood 893.0

AIC (smaller is better) 907.0

AICC (smaller is better) 910.8

BIC (smaller is better) 932.6

The “Fit Statistics” table lists the log likelihood and information criteria for model comparisons (Out-
put 70.3.5).
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Output 70.3.6 Parameter Estimates at Convergence

Parameter Estimates

Parameter Estimate
Standard

Error DF t Value Pr > |t|

95%
Confidence

Limits Gradient

b0 -0.6364 0.1342 285 -4.74 <.0001 -0.9006 -0.3722 0.000470

b1 0.6007 0.1770 285 3.39 0.0008 0.2523 0.9491 0.000265

b2 0.6015 0.1582 285 3.80 0.0002 0.2900 0.9129 0.000080

b3 -1.4817 0.2385 285 -6.21 <.0001 -1.9512 -1.0122 0.000102

sd 0.6599 0.1312 285 5.03 <.0001 0.4017 0.9181 -0.00009

i1 1.7450 0.1474 285 11.84 <.0001 1.4548 2.0352 0.000202

i2 0.5985 0.1427 285 4.19 <.0001 0.3176 0.8794 0.000087

The “Parameter Estimates” table indicates significance of all the parameters (Output 70.3.6).

Output 70.3.7 Threshold and Intraclass Correlation Estimates

Additional Estimates

Label Estimate
Standard

Error DF t Value Pr > |t| Alpha Lower Upper

thresh2 1.7450 0.1474 285 11.84 <.0001 0.05 1.4548 2.0352

thresh3 2.3435 0.2073 285 11.31 <.0001 0.05 1.9355 2.7516

icc 0.3034 0.08402 285 3.61 0.0004 0.05 0.1380 0.4687

The “Additional Estimates” table displays results from the ESTIMATE statements (Output 70.3.7).

Example 70.4: Poisson-Normal Model with Count Data
This example uses the pump failure data of Gaver and O’Muircheartaigh (1987). The number of failures
and the time of operation are recorded for 10 pumps. Each of the pumps is classified into one of two groups
corresponding to either continuous or intermittent operation. The data are as follows:

data pump;
input y t group;
pump = _n_;
logtstd = log(t) - 2.4564900;
datalines;

5 94.320 1
1 15.720 2
5 62.880 1

14 125.760 1
3 5.240 2

19 31.440 1
1 1.048 2
1 1.048 2
4 2.096 2

22 10.480 2
;

Each row denotes data for a single pump, and the variable logtstd contains the centered operation times.
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Letting yij denote the number of failures for the jth pump in the ith group, Draper (1996) considers the
following hierarchical model for these data:

yij j�ij � Poisson.�ij /

log �ij D ˛i C ˇi .log tij � log t /C eij
eij j�

2
� Normal.0; �2/

The model specifies different intercepts and slopes for each group, and the random effect is a mechanism for
accounting for overdispersion.

The corresponding PROC NLMIXED statements are as follows:

proc nlmixed data=pump;
parms logsig 0 beta1 1 beta2 1 alpha1 1 alpha2 1;
if (group = 1) then eta = alpha1 + beta1*logtstd + e;
else eta = alpha2 + beta2*logtstd + e;
lambda = exp(eta);
model y ~ poisson(lambda);
random e ~ normal(0,exp(2*logsig)) subject=pump;
estimate 'alpha1-alpha2' alpha1-alpha2;
estimate 'beta1-beta2' beta1-beta2;

run;

The selected output is as follows.

Output 70.4.1 Dimensions Table for Poisson-Normal Model

The NLMIXED ProcedureThe NLMIXED Procedure

Dimensions

Observations Used 10

Observations Not Used 0

Total Observations 10

Subjects 10

Max Obs per Subject 1

Parameters 5

Quadrature Points 5

The “Dimensions” table indicates that data for 10 pumps are used with one observation for each (Out-
put 70.4.1).
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Output 70.4.2 Iteration History for Poisson-Normal Model

Iteration History

Iteration Calls

Negative
Log

Likelihood Difference
Maximum
Gradient Slope

1 4 30.6986932 2.162768 5.10725 -91.6020

2 9 30.0255468 0.673146 2.76174 -11.0489

3 12 29.7263250 0.299222 2.99040 -2.36048

4 16 28.7390263 0.987299 2.07443 -3.93678

5 18 28.3161933 0.422833 0.61253 -0.63084

6 21 28.0956400 0.220553 0.46216 -0.52684

7 24 28.0438024 0.051838 0.40505 -0.10018

8 27 28.0357134 0.008089 0.13506 -0.01875

9 30 28.0339250 0.001788 0.026279 -0.00514

10 33 28.0338744 0.000051 0.004020 -0.00012

11 36 28.0338727 1.681E-6 0.002864 -5.09E-6

12 39 28.0338724 3.199E-7 0.000147 -6.87E-7

13 42 28.0338724 2.532E-9 0.000017 -5.75E-9

NOTE: GCONV convergence criterion satisfied.

The “Iteration History” table indicates successful convergence in 13 iterations (Output 70.4.2).

Output 70.4.3 Fit Statistics for Poisson-Normal Model

Fit Statistics

-2 Log Likelihood 56.1

AIC (smaller is better) 66.1

AICC (smaller is better) 81.1

BIC (smaller is better) 67.6

The “Fit Statistics” table lists the final log likelihood and associated information criteria (Output 70.4.3).

Output 70.4.4 Parameter Estimates and Additional Estimates

Parameter Estimates

Parameter Estimate
Standard

Error DF t Value Pr > |t|

95%
Confidence

Limits Gradient

logsig -0.3161 0.3213 9 -0.98 0.3508 -1.0429 0.4107 -0.00002

beta1 -0.4256 0.7473 9 -0.57 0.5829 -2.1162 1.2649 -0.00002

beta2 0.6097 0.3814 9 1.60 0.1443 -0.2530 1.4725 -1.61E-6

alpha1 2.9644 1.3826 9 2.14 0.0606 -0.1632 6.0921 -5.25E-6

alpha2 1.7992 0.5492 9 3.28 0.0096 0.5568 3.0415 -5.73E-6

Additional Estimates

Label Estimate
Standard

Error DF t Value Pr > |t| Alpha Lower Upper

alpha1-alpha2 1.1653 1.4855 9 0.78 0.4529 0.05 -2.1952 4.5257

beta1-beta2 -1.0354 0.8389 9 -1.23 0.2484 0.05 -2.9331 0.8623
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The “Parameter Estimates” and “Additional Estimates” tables list the maximum likelihood estimates for each
of the parameters and two differences (Output 70.4.4). The point estimates for the mean parameters agree
fairly closely with the Bayesian posterior means reported by Draper (1996); however, the likelihood-based
standard errors are roughly half the Bayesian posterior standard deviations. This is most likely due to the fact
that the Bayesian standard deviations account for the uncertainty in estimating �2, whereas the likelihood
values plug in its estimated value. This downward bias can be corrected somewhat by using the t9 distribution
shown here.

Example 70.5: Failure Time and Frailty Model
In this example an accelerated failure time model with proportional hazard is fitted with and without random
effects. The data are from the “Getting Started” example of PROC LIFEREG; see Chapter 57, “The LIFEREG
Procedure.” Thirty-eight patients are divided into two groups of equal size, and different pain relievers are
assigned to each group. The outcome reported is the time in minutes until headache relief. The variable
censor indicates whether relief was observed during the course of the observation period (censor = 0) or
whether the observation is censored (censor = 1). The SAS DATA step for these data is as follows:

data headache;
input minutes group censor @@;
patient = _n_;
datalines;

11 1 0 12 1 0 19 1 0 19 1 0
19 1 0 19 1 0 21 1 0 20 1 0
21 1 0 21 1 0 20 1 0 21 1 0
20 1 0 21 1 0 25 1 0 27 1 0
30 1 0 21 1 1 24 1 1 14 2 0
16 2 0 16 2 0 21 2 0 21 2 0
23 2 0 23 2 0 23 2 0 23 2 0
25 2 1 23 2 0 24 2 0 24 2 0
26 2 1 32 2 1 30 2 1 30 2 0
32 2 1 20 2 1
;

In modeling survival data, censoring of observations must be taken into account carefully. In this example,
only right censoring occurs. If g.t;ˇ/, h.t;ˇ/, and G.t;ˇ/ denote the density of failure, the hazard function,
and the survival distribution function at time t, respectively, then the log likelihood can be written as

l.ˇI t/ D
X
i2Uu

log g.ti ;ˇ/C
X
i2Uc

logG.ti ;ˇ/

D

X
i2Uu

log h.ti ;ˇ/C
nX
iD1

logG.ti ;ˇ/

(See Cox and Oakes 1984, Ch. 3.) In these expressions Uu is the set of uncensored observations, Uc is the
set of censored observations, and n denotes the total sample size.
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The proportional hazards specification expresses the hazard in terms of a baseline hazard, multiplied by a
constant. In this example the hazard is that of a Weibull model and is parameterized as h.t;ˇ/ D ˛.˛t/�1

and ˛ D expf�x0ˇg.

The linear predictor is set equal to the intercept in the reference group (group = 2); this defines the
baseline hazard. The corresponding distribution of survival past time t is G.t;ˇ/ D expf�.˛t/g. See
Cox and Oakes (1984, Table 2.1) and the section “Supported Distributions” in Chapter 57, “The LIFEREG
Procedure,” for this and other survival distribution models and various parameterizations.

The following NLMIXED statements fit this accelerated failure time model and estimate the cumulative
distribution function of time to headache relief:

proc nlmixed data=headache;
bounds gamma > 0;
linp = b0 - b1*(group-2);
alpha = exp(-linp);
G_t = exp(-(alpha*minutes)**gamma);
g = gamma*alpha*((alpha*minutes)**(gamma-1))*G_t;
ll = (censor=0)*log(g) + (censor=1)*log(G_t);
model minutes ~ general(ll);
predict 1-G_t out=cdf;

run;

Output 70.5.1 Specifications Table for Fixed-Effects Failure Time Model

The NLMIXED ProcedureThe NLMIXED Procedure

Specifications

Data Set WORK.HEADACHE

Dependent Variable minutes

Distribution for Dependent Variable General

Optimization Technique Dual Quasi-Newton

Integration Method None

The “Specifications” table shows that no integration is required, since the model does not contain random
effects (Output 70.5.1).

Output 70.5.2 Negative Log Likelihood with Default Starting Values

Initial Parameters

gamma b0 b1

Negative
Log

Likelihood

1 1 1 263.990327

No starting values were given for the three parameters. The NLMIXED procedure assigns the default value
of 1.0 in this case. The negative log likelihood based on these starting values is shown in Output 70.5.2.
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Output 70.5.3 Iteration History for Fixed-Effects Failure Time Model

Iteration History

Iteration Calls

Negative
Log

Likelihood Difference
Maximum
Gradient Slope

1 4 169.2443 94.74602 22.5599 -2230.83

2 8 142.8735 26.3708 14.8863 -3.64643

3 11 140.6337 2.239814 11.2523 -9.49454

4 15 122.8907 17.74304 19.4496 -2.50807

5 17 121.3970 1.493699 13.8558 -4.55427

6 20 120.6238 0.773116 13.6706 -1.38064

7 22 119.2782 1.345647 15.7801 -1.69072

8 26 116.2713 3.006871 26.9403 -3.25290

9 30 109.4274 6.843925 19.8838 -6.92890

10 35 103.2981 6.129298 12.1565 -4.96054

11 40 101.6862 1.611863 14.2487 -4.34059

12 42 100.0279 1.658364 11.6985 -13.2049

13 46 99.9189048 0.108971 3.60255 -0.55176

14 49 99.8738836 0.045021 0.17071 -0.16645

15 52 99.8736392 0.000244 0.050822 -0.00041

16 55 99.8736351 4.071E-6 0.000705 -6.9E-6

17 58 99.8736351 6.1E-10 4.768E-6 -1.23E-9

NOTE: GCONV convergence criterion satisfied.

The “Iteration History” table shows that the procedure converges after 17 iterations and 34 evaluations of the
objective function (Output 70.5.3).

Output 70.5.4 Fit Statistics and Parameter Estimates

Fit Statistics

-2 Log Likelihood 199.7

AIC (smaller is better) 205.7

AICC (smaller is better) 206.5

BIC (smaller is better) 210.7

Parameter Estimates

Parameter Estimate
Standard

Error DF t Value Pr > |t|

95%
Confidence

Limits Gradient

gamma 4.7128 0.6742 38 6.99 <.0001 3.3479 6.0777 5.327E-8

b0 3.3091 0.05885 38 56.23 <.0001 3.1900 3.4283 -4.77E-6

b1 -0.1933 0.07856 38 -2.46 0.0185 -0.3523 -0.03426 -1.22E-6
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The parameter estimates and their standard errors shown in Output 70.5.4 are identical to those obtained with
the LIFEREG procedure and the following statements:

proc lifereg data=headache;
class group;
model minutes*censor(1) = group / dist=weibull;
output out=new cdf=prob;

run;

The t statistic and confidence limits are based on 38 degrees of freedom. The LIFEREG procedure computes
z intervals for the parameter estimates.

For the two groups you obtain

b̨.group D 1/ D expf�3:3091C 0:1933g D 0:04434b̨.group D 2/ D expf�3:3091g D 0:03655

The probabilities of headache relief by t minutes are estimated as

1 �G.t; group D 1/ D 1 � expf�.0:04434 � t /4:7128g

1 �G.t; group D 2/ D 1 � expf�.0:03655 � t /4:7128g

These probabilities, calculated at the observed times, are shown for the two groups in Output 70.5.5 and
printed with the following statements:

proc print data=cdf;
var group censor patient minutes pred;

run;

Since the slope estimate is negative with p-value of 0.0185, you can infer that pain reliever 1 leads to overall
significantly faster relief, but the estimated probabilities give no information about patient-to-patient variation
within and between groups. For example, while pain reliever 1 provides faster relief overall, some patients
in group 2 might respond more quickly than some patients in group 1. A frailty model enables you to
accommodate and estimate patient-to-patient variation in health status by introducing random effects into a
subject’s hazard function.
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Output 70.5.5 Estimated Cumulative Distribution Function

Obs group censor patient minutes Pred

1 1 0 1 11 0.03336

2 1 0 2 12 0.04985

3 1 0 3 19 0.35975

4 1 0 4 19 0.35975

5 1 0 5 19 0.35975

6 1 0 6 19 0.35975

7 1 0 7 21 0.51063

8 1 0 8 20 0.43325

9 1 0 9 21 0.51063

10 1 0 10 21 0.51063

11 1 0 11 20 0.43325

12 1 0 12 21 0.51063

13 1 0 13 20 0.43325

14 1 0 14 21 0.51063

15 1 0 15 25 0.80315

16 1 0 16 27 0.90328

17 1 0 17 30 0.97846

18 1 1 18 21 0.51063

19 1 1 19 24 0.73838

20 2 0 20 14 0.04163

21 2 0 21 16 0.07667

22 2 0 22 16 0.07667

23 2 0 23 21 0.24976

24 2 0 24 21 0.24976

25 2 0 25 23 0.35674

26 2 0 26 23 0.35674

27 2 0 27 23 0.35674

28 2 0 28 23 0.35674

29 2 1 29 25 0.47982

30 2 0 30 23 0.35674

31 2 0 31 24 0.41678

32 2 0 32 24 0.41678

33 2 1 33 26 0.54446

34 2 1 34 32 0.87656

35 2 1 35 30 0.78633

36 2 0 36 30 0.78633

37 2 1 37 32 0.87656

38 2 1 38 20 0.20414

The following statements model the hazard for patient i in terms of ˛i D expf�x0iˇ � zig, where zi is a
(normal) random patient effect. Notice that the only difference from the previous NLMIXED statements are
the RANDOM statement and the addition of z in the linear predictor. The empirical Bayes estimates of the
random effect (RANDOM statement), the parameter estimates (ODS OUTPUT statement), and the estimated
cumulative distribution function (PREDICT statement) are saved to subsequently graph the patient-specific
distribution functions.
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ods output ParameterEstimates=est;
proc nlmixed data=headache;

bounds gamma > 0;
linp = b0 - b1*(group-2) + z;
alpha = exp(-linp);
G_t = exp(-(alpha*minutes)**gamma);
g = gamma*alpha*((alpha*minutes)**(gamma-1))*G_t;
ll = (censor=0)*log(g) + (censor=1)*log(G_t);
model minutes ~ general(ll);
random z ~ normal(0,exp(2*logsig)) subject=patient out=EB;
predict 1-G_t out=cdf;

run;

Output 70.5.6 Specifications for Random Frailty Model

The NLMIXED ProcedureThe NLMIXED Procedure

Specifications

Data Set WORK.HEADACHE

Dependent Variable minutes

Distribution for Dependent Variable General

Random Effects z

Distribution for Random Effects Normal

Subject Variable patient

Optimization Technique Dual Quasi-Newton

Integration Method Adaptive Gaussian Quadrature

The “Specifications” table shows that the objective function is computed by adaptive Gaussian quadrature
because of the presence of random effects (compare Output 70.5.6 and Output 70.5.1). The “Dimensions”
table reports that nine quadrature points are being used to integrate over the random effects (Output 70.5.7).

Output 70.5.7 Dimensions Table for Random Frailty Model

Dimensions

Observations Used 38

Observations Not Used 0

Total Observations 38

Subjects 38

Max Obs per Subject 1

Parameters 4

Quadrature Points 9
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Output 70.5.8 Iteration History for Random Frailty Model

Iteration History

Iteration Calls

Negative
Log

Likelihood Difference
Maximum
Gradient Slope

1 9 142.1214 28.82225 12.1448 -88.8664

2 12 136.4404 5.681042 25.9310 -65.7217

3 16 122.9720 13.46833 46.5655 -146.887

4 19 120.9048 2.067216 23.7794 -94.2862

5 23 109.2241 11.68068 57.6549 -92.4075

6 26 105.0647 4.159411 4.82465 -19.5879

7 28 101.9022 3.162526 14.1287 -6.33767

8 31 99.6907395 2.211468 7.67682 -3.42364

9 34 99.3654033 0.325336 5.68920 -0.93978

10 37 99.2602178 0.105185 0.31764 -0.23408

11 40 99.2544340 0.005784 1.17351 -0.00556

12 42 99.2456973 0.008737 0.24741 -0.00871

13 45 99.2445445 0.001153 0.10494 -0.00218

14 48 99.2444958 0.000049 0.005646 -0.00010

15 51 99.2444957 9.147E-8 0.000271 -1.84E-7

NOTE: GCONV convergence criterion satisfied.

The procedure converges after 15 iterations (Output 70.5.8). The achieved –2 log likelihood is only 1.2 less
than that in the model without random effects (compare Output 70.5.9 and Output 70.5.4). Compared to a
chi-square distribution with one degree of freedom, the addition of the random effect appears not to improve
the model significantly. You must exercise care, however, in interpreting likelihood ratio tests when the value
under the null hypothesis falls on the boundary of the parameter space (see, for example, Self and Liang
1987).

Output 70.5.9 Fit Statistics for Random Frailty Model

Fit Statistics

-2 Log Likelihood 198.5

AIC (smaller is better) 206.5

AICC (smaller is better) 207.7

BIC (smaller is better) 213.0

Output 70.5.10 Parameter Estimates

Parameter Estimates

Parameter Estimate
Standard

Error DF t Value Pr > |t|

95%
Confidence

Limits Gradient

gamma 6.2867 2.1334 37 2.95 0.0055 1.9640 10.6093 -1.89E-7

b0 3.2786 0.06576 37 49.86 <.0001 3.1453 3.4118 0.000271

b1 -0.1761 0.08264 37 -2.13 0.0398 -0.3436 -0.00867 0.000111

logsig -1.9027 0.5273 37 -3.61 0.0009 -2.9710 -0.8343 0.000027
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The estimate of the Weibull parameter has changed drastically from the model without random effects
(compare Output 70.5.10 and Output 70.5.4). The variance of the patient random effect is expf�2�1:9027g D
0:02225. The listing in Output 70.5.11 shows the empirical Bayes estimates of the random effects. These are
the adjustments made to the linear predictor in order to obtain a patient’s survival distribution. The listing is
produced with the following statements:

proc print data=eb;
var Patient Effect Estimate StdErrPred;

run;

Output 70.5.11 Empirical Bayes Estimates of Random Effects

Obs patient Effect Estimate StdErrPred

1 1 z -0.13597 0.23249

2 2 z -0.13323 0.22793

3 3 z -0.06294 0.13813

4 4 z -0.06294 0.13813

5 5 z -0.06294 0.13813

6 6 z -0.06294 0.13813

7 7 z -0.02568 0.11759

8 8 z -0.04499 0.12618

9 9 z -0.02568 0.11759

10 10 z -0.02568 0.11759

11 11 z -0.04499 0.12618

12 12 z -0.02568 0.11759

13 13 z -0.04499 0.12618

14 14 z -0.02568 0.11759

15 15 z 0.05980 0.11618

16 16 z 0.10458 0.12684

17 17 z 0.17147 0.14550

18 18 z 0.06471 0.13807

19 19 z 0.11157 0.14604

20 20 z -0.13406 0.22899

21 21 z -0.12698 0.21666

22 22 z -0.12698 0.21666

23 23 z -0.08506 0.15701

24 24 z -0.08506 0.15701

25 25 z -0.05797 0.13294

26 26 z -0.05797 0.13294

27 27 z -0.05797 0.13294

28 28 z -0.05797 0.13294

29 29 z 0.06420 0.13956

30 30 z -0.05797 0.13294

31 31 z -0.04266 0.12390

32 32 z -0.04266 0.12390

33 33 z 0.07618 0.14132

34 34 z 0.16292 0.16459

35 35 z 0.13193 0.15528

36 36 z 0.06327 0.12124

37 37 z 0.16292 0.16459

38 38 z 0.02074 0.14160
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The predicted values and patient-specific survival distributions can be plotted with the SAS code that follows:

proc transpose data=est(keep=estimate)
out=trest(rename=(col1=gamma col2=b0 col3=b1));

run;

data pred;
merge eb(keep=estimate) headache(keep=patient group);
array pp{2} pred1-pred2;
if _n_ = 1 then set trest(keep=gamma b0 b1);
do time=11 to 32;

linp = b0 - b1*(group-2) + estimate;
pp{group} = 1-exp(- (exp(-linp)*time)**gamma);
symbolid = patient+1;
output;

end;
keep pred1 pred2 time patient;

run;

data pred;
merge pred

cdf(where = (group=1)
rename = (pred=pcdf1 minutes=minutes1)
keep = pred minutes group)

cdf(where = (group=2)
rename = (pred=pcdf2 minutes=minutes2)
keep = pred minutes group);

drop group;
run;

proc sgplot data=pred noautolegend;
label minutes1='Minutes to Headache Relief'

pcdf1 ='Estimated Patient-specific CDF';
series x=time y=pred1 /

group=patient
lineattrs=(pattern=solid color=black);

series x=time y=pred2 /
group=patient
lineattrs=(pattern=dash color=black);

scatter x=minutes1 y=pcdf1 /
markerattrs=(symbol=CircleFilled size=9);

scatter x=minutes2 y=pcdf2 /
markerattrs=(symbol=Circle size=9);

run;

The separation of the distribution functions by groups is evident in Output 70.5.12. Most of the distributions
of patients in the first group are to the left of the distributions in the second group. The separation is not
complete, however. Several patients who are assigned the second pain reliever experience headache relief
more quickly than patients assigned to the first group.
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Output 70.5.12 Patient-Specific CDFs and Predicted Values. Pain Reliever 1: Solid Lines, Closed Circles;
Pain Reliever 2: Dashed Lines, Open Circles.
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Example 70.6: Simulated Nested Linear Random-Effects Model
This simulation study example demonstrates how to fit a hierarchical model with PROC NLMIXED by using
a simple two-level nested linear model. In this example, the data are generated from a simple two-level
nested hierarchical normal model (Littell et al. 2006). Here the conditional distribution of the response
variable, given the random effects, is normal. The mean of this conditional normal distribution is a linear
function of a fixed parameter and the random effects. In this simulation, only the intercept is used as a fixed
parameter. Also, the first-level random effects are assumed to follow a normal distribution. Similarly, the
second-level random effects that are nested within the first level follow a normal distribution. The model can
be represented as follows:

yij jˇ0; vi ; vj.i/ � N.�ij ; �
2/

�ij D ˇ0 C vi C vj.i/

vi � N.0; �
2
a /

vj.i/ � N.0; �
2
b /

The simulation code is as follows:

%let na = 100;
%let nb = 5;
%let nr = 2;
data nested;

do A = 1 to &na;
err1 = 3*rannor(339205);
do B = 1 to &nb;

err2 = 2*rannor(0);
do rep = 1 to &nr;

err3 = 1*rannor(0);
resp = 10 + err1 + err2 + err3;
output;

end;
end;

end;
run;

You can use PROC NLMIXED to fit the preceding nested model as follows by using two RANDOM
statements:

proc nlmixed data = nested;
bounds vara >=0, varb_a >=0;
mean = intercept + aeffect + beffect;
model resp ~ normal (mean, s2);
random aeffect ~ normal(0,vara) subject = A;
random beffect ~ normal(0,varb_a) subject = B(A);

run;

The MODEL statement specifies the response variable distribution as normal. The linear relationship between
the mean of this normal distribution and the fixed and random effects is specified by using a SAS programming
statement. The BOUNDS statement specifies the nonnegative constraints on the variance parameters.

PROC NLMIXED with multiple RANDOM statements is used to fit hierarchical (nested) models. In this
example, two RANDOM statements are used to fit a two-level nested model. The first RANDOM statement
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identifies aeffect as the first-level random effect, vi , and it is followed by the subject variable A. The subject
variable A indexes the number of distinct and independent subjects at the first level. Then the second
RANDOM statement identifies the beffect, vj.i/, as the second-level random effect, which is nested within
the first level. The subject variable specification in the second RANDOM statement defines the nested
structure. In this example, the subject variable B is nested within A.

The results from the analysis follow.

Output 70.6.1 Model Specifications for a Two-Level Nested Model

The NLMIXED ProcedureThe NLMIXED Procedure

Specifications

Data Set WORK.NESTED

Dependent Variable resp

Distribution for Dependent Variable Normal

Random Effects aeffect, beffect

Distribution for Random Effects Normal, Normal

Subject Variables A, B

Optimization Technique Dual Quasi-Newton

Integration Method Adaptive Gaussian Quadrature

The “Specifications” table (Output 70.6.1) lists the setup of the nested model. It lists all the random effects
and their distribution along with the SUBJECT= variable in the nested sequence. Random effects that are
listed in the specifications table are separated by a comma, indicating that aeffect is the first-level random
effect, followed by the second-level random effect, beffect, which is nested within the first level. The same
scheme applies to the distribution and subject items in the table. In this example, aeffect is the random effect
for the first level and is specified using the subject variable A, which follows a normal distribution. Then
beffect is the random effect for the second level, which is nested within the first level; it is specified using the
subject variable B, which also follows a normal distribution.

The “Dimensions” table (Output 70.6.2) follows the same nested flow to exhibit the model dimensions. It
indicates that 1,000 observations are used. There are 100 first-level subjects and 500 second-level subjects,
because each first-level subject is contained by five nested second-level subjects. For this model, PROC
NLMIXED selects one quadrature point to fit the model.

Output 70.6.2 Dimensions Table for a Two-Level Nested Model

Dimensions

Observations Used 1000

Observations Not Used 0

Total Observations 1000

Subjects [A] 100

Max Obs per Subject 10

Subjects [B] 500

Max Obs per Subject 2

Parameters 4

Quadrature Points 1
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A total of 15 steps are required to achieve convergence. They are shown in the “Iteration History” table
(Output 70.6.3).

Output 70.6.3 Iteration History

Iteration History

Iteration Calls

Negative
Log

Likelihood Difference
Maximum
Gradient Slope

1 12 2982.0141 2695.598 215.363 -87641.4

2 37 2462.0898 519.9243 518.335 -346.648

3 43 2144.0047 318.0852 60.9954 -2483.38

4 49 2108.7720 35.23267 56.3198 -64.4603

5 61 2098.5627 10.20936 43.0728 -7.79282

6 67 2094.2091 4.353502 34.1536 -20.0831

7 73 2090.2802 3.928941 26.4378 -5.86557

8 80 2089.3443 0.935937 15.0337 -2.41721

9 86 2088.1107 1.233618 20.3762 -0.59126

10 98 2072.7699 15.3408 5.02630 -1.53248

11 105 2068.5424 4.227408 28.6084 -2.25950

12 112 2066.4439 2.09858 9.01353 -2.53321

13 119 2065.8127 0.63118 3.73621 -0.50717

14 126 2065.7590 0.053646 1.02924 -0.07232

15 133 2065.7550 0.00406 0.36114 -0.00578

16 139 2065.7502 0.004798 0.27897 -0.00171

NOTE: GCONV convergence criterion satisfied.

The “Parameter Estimates” table (Output 70.6.4) contains the maximum likelihood estimates of the parameters.
You can see from this table that the intercept and the s2 variables are very close to the simulation parameters.
Also, both variances are very close to the simulation parameters.

Output 70.6.4 Parameter Estimates for a Two-Level Nested Model

Parameter Estimates

Parameter Estimate
Standard

Error DF t Value Pr > |t|

95%
Confidence

Limits Gradient

vara 9.2198 1.4299 498 6.45 <.0001 6.4104 12.0292 0.022612

varb_a 3.6997 0.2973 498 12.44 <.0001 3.1156 4.2839 0.008443

intercept 10.1546 0.3171 498 32.02 <.0001 9.5315 10.7776 -0.04079

s2 0.9661 0.06102 498 15.83 <.0001 0.8462 1.0860 -0.31590
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Example 70.7: Overdispersion Hierarchical Nonlinear Mixed Model
This example describes the overdispersion hierarchical nonlinear mixed model that is given in Ghebretinsae
et al. (2013). In this experiment, 24 rats are divided into four groups and receive a daily oral dose of
1,2-dimethylhydrazine dihydrochloride in three dose levels (low, medium, and high) and a vehicle control.
In addition, an extra group of three animals receive a positive control. All 27 animals are euthanized 3
hours after the last dose is administered. For each animal, a cell suspension is prepared, and from each
cell suspension, three replicate samples are prepared for scoring. Using a semi-automated scoring system,
50 randomly selected cells from each sample are scored per animal for DNA damage. The comet assay
methodology is used to detect this DNA damage. In this methodology, the DNA damage is measured by the
distance of DNA migration from the perimeter of the comet head to the last visible point in the tail. This
distance is defined as the tail length and is observed for the 150 cells from each animal. The data are available
in the Sashelp library. In order to use the dose levels as regressors in PROC NLMIXED, you need to create
indicator variables for each dose level. The following DATA step creates indicator variables for the dose
levels:

data comet;
set sashelp.comet;
L = 0; M = 0; H = 0; PC = 0;
if (dose = 1.25) then L = 1;
if (dose = 2.50) then M = 1;
if (dose = 5.00) then H = 1;
if (dose = 200) then PC = 1;

run;

Ghebretinsae et al. (2013) suggest a Weibull distribution to model the outcomes (tail lengths). Note that the
data exhibit the nested nature because of the three replicate samples from each cell. Also, the 50 cells from
each rat are correlated. To account for the dependency of these 150 correlated cells from each rat, two levels
of normally distributed nested random effects are used. Let yijk be the tail length that is observed in the kth
cell from the jth sample of the ith rat. Then the suggested two-level nested model can be described as follows:

yijkjri ; sj.i/ �Weibull.�; �ijk/

�ijk D exp.ˇ0 C ˇ1Lijk C ˇ2Mijk C ˇ3Hijk C ˇ4PCi C ri C sj.i//
ri � N.0; d1/

sj.i/ � N.0; d2/

This model is referred to as the nested Weibull model in the rest of the example. The parameters of the
Weibull distribution, � and �ijk , are known as the shape and scale parameters, respectively. Based on this
model specification, the conditional expectation of the response variable, given the random effects, is a
nonlinear function of fixed and random effects. The nonlinear relationship can be written as

E.yijkjri ; sj.i// D
�
�
1
�
C 1

�
�
1=�

ijk

D

�
�
1
�
C 1

�
�
e.ˇ0Cˇ1LijkCˇ2MijkCˇ3HijkCˇ4PCiCriCsj.i//

�1=�
These expected values can be obtained using the PREDICT statement in PROC NLMIXED, and they are
useful for validating the model fitting. The specified nested Weibull model can be fitted using the following
PROC NLMIXED statements:
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proc nlmixed data = comet;
parms b0 = -25 b1 = -10 b2 = -10 b3 = -10 b4 = -10 rho = 10;
bounds sd1 >=0, sd2 >=0;
mu = b0+ b1*L+ b2*M+ b3*H+ b4*PC + rateff + sampeff;
term = (length**rho)*exp(mu);
llike = log(rho) + (rho-1)*log(length) + mu - term;
model length ~ general(llike);
random ratEff ~ normal(0,sd1) subject = rat;
random sampEff ~ normal(0,sd2) subject = sample(rat);
predict gamma(1+(1/rho))/(exp(mu)**(1/rho)) out = p1;

run;

Note that the two-parameter Weibull density function is given by

f .yI �; �/ D ��y��1e��y
�

This implies that the log likelihood is

l.�; �Iy/ D log.�/C log.�/C .� � 1/ log.y/ � �y�

A general log-likelihood specification is used in the MODEL statement to specify the preceding log of the
Weibull density. The linear combination of the parameters, b0 to b4, and the two random effects, RatEff
and SampEff, is defined using the linear predictor MU in the first SAS programming statement. Then, the
next two SAS programming statements together define the log of the Weibull density function. The first
RANDOM statement defines the first level of the random effect, ri , by using RatEff. Then, the second
RANDOM statement defines the second level of the random effect, sj.i/, nested within the first level by using
SampEff. Both random-effects distributions are specified as normal with mean 0 and variance sd1 and sd2
for the first and second levels, respectively. The selected output from this model is shown in Output 70.7.1,
Output 70.7.2, and Output 70.7.3.

Output 70.7.1 Model Specification for Nested Weibull Model

The NLMIXED ProcedureThe NLMIXED Procedure

Specifications

Data Set WORK.COMET

Dependent Variable Length

Distribution for Dependent Variable General

Random Effects rateff, sampeff

Distribution for Random Effects Normal, Normal

Subject Variables Rat, Sample

Optimization Technique Dual Quasi-Newton

Integration Method Adaptive Gaussian Quadrature

The “Specifications” table shows that RatEff is the first-level random effect, specified by the subject variable
Rat, and it follows a normal distribution (Output 70.7.1). Similarly, SampEff is the second-level random
effect, nested in RatEff and specified by the subject variable Sample, and it follows a normal distribution.
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Output 70.7.2 Dimensions Table for Nested Weibull Model

Dimensions

Observations Used 4050

Observations Not Used 0

Total Observations 4050

Subjects [Rat] 27

Max Obs per Subject 150

Subjects [Sample] 81

Max Obs per Subject 50

Parameters 8

Quadrature Points 1

The “Dimensions” table indicates that 4,050 observations are used in the analysis (Output 70.7.2). It also
indicates that there are 27 rats and that 81 samples are nested within the rats. As explained earlier, three
samples are selected randomly from each rat, so a total of 81 (27 times 3) samples are used in the analysis.

Output 70.7.3 Parameter Estimates for Nested Weibull Model

Parameter Estimates

Parameter Estimate
Standard

Error DF t Value Pr > |t|

95%
Confidence

Limits Gradient

b0 -15.6346 0.2627 79 -59.52 <.0001 -16.1575 -15.1117 -0.21455

b1 -4.4912 0.2345 79 -19.15 <.0001 -4.9581 -4.0244 -0.12563

b2 -4.5865 0.2186 79 -20.98 <.0001 -5.0216 -4.1514 0.20926

b3 -4.8188 0.2188 79 -22.02 <.0001 -5.2543 -4.3833 0.088666

b4 -3.4834 0.2664 79 -13.08 <.0001 -4.0136 -2.9532 -0.18096

rho 4.9558 0.05881 79 84.27 <.0001 4.8388 5.0729 -1.18121

sd1 0.02454 0.04601 79 0.53 0.5953 -0.06704 0.1161 -0.75888

sd2 0.3888 0.07106 79 5.47 <.0001 0.2473 0.5302 -0.79003

The “Parameter Estimates” table list the maximum likelihood estimates of the parameters along with their
standard errors (Output 70.7.3). The estimates are fairly close to the estimates that are given in Ghebretinsae
et al. (2013), who use a gamma distribution for the Sample random effects instead of the normal distribution
as in the preceding model. Note that the parameters ˇ1, ˇ2, and ˇ3 represent the effects of low, medium,
and high doses, respectively, when compared to the vehicle control. Similarly, ˇ4 is the parameter that
corresponds to the effect of positive control when compared to vehicle control. The p-value indicates
that the point estimates of all these parameters, ˇ1 to ˇ4, are significant; this implies that the toxicity of
1,2-dimethylhydrazine dihydrochloride is significant at different dose levels.

In the nested Weibull model, the scale parameter, �ijk , is random because it is a function of random effects.
This implies that the model assumes that each observation is drawn from a different Weibull distribution.
Molenberghs et al. (2010) indicate that this way of modeling leads to an overdispersed Weibull model.
Ghebretinsae et al. (2013) use the random-effects mechanism to account for this overdispersion. The
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overdispersed Weibull model can be written as follows:

yijkjri ; sj.i/; �ijk �Weibull.�; �ijk/

�ijk D �ijk exp.ˇ0 C ˇ1Lijk C ˇ2Mijk C ˇ3Hijk C ˇ4PCi C ri C sj.i//
�ijk � gamma.˛; 1=˛/

ri � N.0; d1/

sj.i/ � N.0; d2/

This model is referred to as the nested Weibull overdispersion model in the rest of this example. Again,
in this model, the shape parameter, �ijk , is the function of the normally distributed random effects, ri
and sj.i/, along with other random effects, �ijk . Further, the model assumes that �ijk follow a gamma
distribution. Note that the random effects, ri and sj.i/, account for the cluster effect of the observations
from the same sample that is nested within a rat, whereas �ijk account for the overdispersion in the data.
Molenberghs et al. (2010) integrate out the overdispersion random effects, �ijk , from the joint distribution
f .yijkj�ijk; ri ; sj.i//g.�ijkj˛/ and provide the conditional density of yijkjri ; sj.i/. The conditional density
follows:

f .yijkjri ; sj.i// D
�y
��1
ij e.ˇ0Cˇ1LijkCˇ2MijkCˇ3HijkCˇ4PCiCriCsj.i//�

1C 1
˛
y
�
ij e

.ˇ0Cˇ1LijkCˇ2MijkCˇ3HijkCˇ4PCiCriCsj.i//
�˛C1

Again, in this case, the conditional expectation of the response variable, given the random effects, is a
nonlinear function of the fixed and random effects. Molenberghs et al. (2010) provide this nonlinear
relationship as follows:

E.yijkjri ; sj.i// D
�
�
˛ � 1

�

�
�
�
1
�
C 1

�
�
1
˛
e.ˇ0Cˇ1LijkCˇ2MijkCˇ3HijkCˇ4PCiCriCsj.i//

�1=�
�.˛/

As indicated previously, these values are useful for validating the fit of the model, and they can be obtained
using a PREDICT statement in PROC NLMIXED. Using the preceding conditional distribution of response,
given the random effects and the random-effects distribution, PROC NLMIXED fits the two-level nested
Weibull overdispersion model by using the following statements:

ods select ParameterEstimates;
proc nlmixed data = comet;

parms b0 = -25 b1 = -10 b2 = -10 b3 = -10 b4 = -10 alpha = 1 rho = 10;
bounds sd1 >=0, sd2 >=0;
mu = b0+ b1*L+ b2*M+ b3*H+ b4*PC + rateff + sampeff;
num = rho*((length)**(rho-1))*exp(mu);
den = (1+(((length)**rho)*exp(mu))/alpha)**(alpha+1);
llike = log(num/den);
model length ~ general(llike);
random rateff ~ normal(0,sd1) subject = rat;
random sampeff ~ normal(0,sd2) subject = sample(rat);
predict (gamma(alpha-(1/rho))*gamma(1+(1/rho)))

/(gamma(alpha)*((exp(mu)/alpha)**(1/rho))) out = p2;
run;
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The parameter estimates that are obtained from the nested Weibull overdispersion model are given in
Output 70.7.1. The “Parameter Estimates” table indicates that the point estimates are still significant, as they
are in the previous model in which the overdispersion is not taken into consideration. So the same conclusion
about the dose levels holds: the toxicity of 1,2-dimethylhydrazine dihydrochloride is significant at different
dose levels.

Output 70.7.4 Parameter Estimates for Nested Weibull Overdispersion Model

The NLMIXED ProcedureThe NLMIXED Procedure

Parameter Estimates

Parameter Estimate
Standard

Error DF t Value Pr > |t|

95%
Confidence

Limits Gradient

b0 -31.0041 0.8155 79 -38.02 <.0001 -32.6272 -29.3810 -0.27124

b1 -11.9102 0.5159 79 -23.09 <.0001 -12.9371 -10.8833 -0.00736

b2 -12.1194 0.5173 79 -23.43 <.0001 -13.1492 -11.0897 0.095998

b3 -12.5516 0.5217 79 -24.06 <.0001 -13.5900 -11.5132 0.29527

b4 -9.6307 0.5554 79 -17.34 <.0001 -10.7362 -8.5251 -0.12589

alpha 0.8925 0.05047 79 17.68 <.0001 0.7920 0.9930 1.84146

rho 10.7188 0.2792 79 38.39 <.0001 10.1632 11.2745 -0.04855

sd1 0.1908 0.1549 79 1.23 0.2217 -0.1175 0.4990 0.49983

sd2 0.7926 0.1666 79 4.76 <.0001 0.4609 1.1242 -0.04111

Recall that, from both models, the conditional expected values of the response variable, given the random
effects, are obtained using the PREDICT statement. These predicted values are stored in the data sets p1 and
p2 for the nested Weibull and nested Weibull overdispersion models, respectively. Because, in this example,
the regressor variables are only indicators, the prediction values for all the observations from the same sample
that is nested within a rat are equal. Further, compute the average predicted value for each sample that is
nested within a rat for both models. These values predict the average tail length of each sample that is nested
within a rat based on the fitted model. In addition, compute the observed sample averages of the responses
from each cluster, which can be viewed as the crude estimate of the average population tail length for each
cluster. The following statements combine all these average tail lengths, both observed and predicted, from
the two fitted models into a single data set:
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proc means data = p1 mean noprint;
class sample;
var pred;
output out = p11 (keep = sample weibull_mean)mean = weibull_mean;

run;

proc means data = p2 mean noprint;
class sample;
var pred;
output out = p21 (keep = sample weibull_gamma_mean)mean = weibull_gamma_mean;

run;

proc means data = comet mean noprint;
class sample;
var length;
id dose rat;
output out = p31(keep = dose rat sample observed_mean) mean = observed_mean;

run;

data average;
merge p11 p21 p31;
by sample;
if sample = . then delete;
label observed_mean = "Observed Average";
label weibull_gamma_mean = "Weibull Gamma Average";
label weibull_mean = "Weibull Average";
label sample = "Sample Index";
if dose = 0 then dosage = "0 Vehicle Control ";
if dose = 1.25 then dosage = "1 Low";
if dose = 2.50 then dosage = "2 Medium";
if dose = 5.00 then dosage = "3 High";
if dose = 200 then dosage = "4 Positive Control";

run;

In order to validate the fit of the models, the observed average tail length values are plotted along with
predicted average tail lengths from each model that is fitted using PROC NLMIXED. Moreover, the plots are
created for each dosage level by using a PANELBY statement in PROC SGPANEL. The code follows:

proc sgpanel data = average;
panelby dosage/onepanel layout = columnlattice novarname uniscale = row;
rowaxis values=(10 to 80 by 5) label="Average Tail Length";
series x = sample y = observed_mean;
series x = sample y = weibull_mean;
series x = sample y = weibull_gamma_mean;

run;

The resulting plots are given in Output 70.7.5.
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Output 70.7.5 Comparison of Nested Weibull Model and Nested Weibull Overdispersion Model

You can see from the plots that the observed averages of the tail lengths from each sample that is nested
within a rat are closer to the predicted averages of the nested Weibull overdispersion model than to the
predicted averages of the nested Weibull model.
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Overview: NPAR1WAY Procedure
The NPAR1WAY procedure performs nonparametric tests for location and scale differences across a one-way
classification. PROC NPAR1WAY also provides a standard analysis of variance on the raw data and tests
based on the empirical distribution function.

PROC NPAR1WAY performs tests for location and scale differences based on the following scores of a
response variable: Wilcoxon, median, Van der Waerden (normal), Savage, Siegel-Tukey, Ansari-Bradley,
Klotz, Mood, and Conover. Additionally, PROC NPAR1WAY provides tests that use the raw input data
as scores. When the data are classified into two samples, tests are based on simple linear rank statistics.
When the data are classified into more than two samples, tests are based on one-way ANOVA statistics.
Both asymptotic and exact p-values are available for these tests. PROC NPAR1WAY also provides Hodges-
Lehmann estimation, including exact confidence limits for the location shift.

PROC NPAR1WAY computes empirical distribution function (EDF) statistics, which test whether the
distribution of a variable is the same across different groups. These include the Kolmogorov-Smirnov test,
the Cramér–von Mises test, and, when the data are classified into only two samples, the Kuiper test. Exact
p-values are available for the two-sample Kolmogorov-Smirnov test.

PROC NPAR1WAY uses the Output Delivery System (ODS), a SAS subsystem that provides capabilities for
displaying and controlling the output from SAS procedures. ODS enables you to convert any of the output
from PROC NPAR1WAY into a SAS data set. For more information, see the section “ODS Table Names” on
page 5837.

PROC NPAR1WAY uses ODS Graphics to create graphs as part of its output. For general information
about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.” For specific information about
the statistical graphics available with the NPAR1WAY procedure, see the PLOTS= option in the PROC
NPAR1WAY statement and the section “ODS Graphics” on page 5839.
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Getting Started: NPAR1WAY Procedure
This example illustrates how you can use PROC NPAR1WAY to perform a one-way nonparametric analysis.
The data from Halverson and Sherwood (1930) consist of weight gain measurements for five different levels
of gossypol additive in animal feed. Gossypol is a substance contained in cottonseed shells, and these data
were collected to study the effect of gossypol on animal nutrition.

The following DATA step statements create the SAS data set Gossypol:

data Gossypol;
input Dose n;
do i=1 to n;

input Gain @@;
output;

end;
datalines;

0 16
228 229 218 216 224 208 235 229 233 219 224 220 232 200 208 232
.04 11
186 229 220 208 228 198 222 273 216 198 213
.07 12
179 193 183 180 143 204 114 188 178 134 208 196
.10 17
130 87 135 116 118 165 151 59 126 64 78 94 150 160 122 110 178
.13 11
154 130 130 118 118 104 112 134 98 100 104
;

The data set Gossypol contains the variable Dose, which represents the amount of gossypol additive, and the
variable Gain, which represents the weight gain.

Researchers are interested in whether there is a difference in weight gain among animals receiving the
different dose levels of gossypol. The following statements invoke the NPAR1WAY procedure to perform a
nonparametric analysis of this problem:

proc npar1way data=Gossypol;
class Dose;
var Gain;

run;

The variable Dose is the CLASS variable, and the VAR statement specifies the variable Gain is the response
variable. The CLASS statement is required, and you must name only one CLASS variable. You can name
one or more analysis variables in the VAR statement. If you omit the VAR statement, PROC NPAR1WAY
analyzes all numeric variables in the data set except for the CLASS variable, the FREQ variable, and the BY
variables.

When no analysis options are specified in the PROC NPAR1WAY statement, the ANOVA, WILCOXON,
MEDIAN, VW, SAVAGE, and EDF options are invoked by default. The tables in the following figures show
the results of these analyses.

The tables in Figure 71.1 are produced by the ANOVA option. For each level of the CLASS variable Dose,
PROC NPAR1WAY displays the number of observations and the mean of the analysis variable Gain. PROC
NPAR1WAY displays a standard analysis of variance on the raw data. This gives the same results as the
GLM and ANOVA procedures. The p-value for the F test is <0.0001, which indicates that Dose accounts for
a significant portion of the variability of the dependent variable Gain.
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Figure 71.1 Analysis of Variance

The NPAR1WAY ProcedureThe NPAR1WAY Procedure

Analysis of Variance for Variable Gain
Classified by Variable Dose

Dose N Mean

0 16 222.187500

0.04 11 217.363636

0.07 12 175.000000

0.1 17 120.176471

0.13 11 118.363636

Source DF Sum of Squares Mean Square F Value Pr > F

Among 4 140082.986077 35020.74652 55.8143 <.0001

Within 62 38901.998997 627.45160

Average scores were used for ties.

The WILCOXON option produces the output in Figure 71.2. PROC NPAR1WAY first provides a summary
of the Wilcoxon scores for the analysis variable Gain by class level. For each level of the CLASS variable
Dose, PROC NPAR1WAY displays the following information: number of observations, sum of the Wilcoxon
scores, expected sum under the null hypothesis of no difference among class levels, standard deviation under
the null hypothesis, and mean score.

Next PROC NPAR1WAY displays the one-way ANOVA statistic, which for Wilcoxon scores is known as the
Kruskal-Wallis test. The statistic equals 52.6656, with four degrees of freedom, which is the number of class
levels minus one. The p-value (probability of a larger statistic under the null hypothesis) is <0.0001. This
leads to rejection of the null hypothesis that there is no difference in location for Gain among the levels of
Dose. This p-value is asymptotic, computed from the asymptotic chi-square distribution of the test statistic.
For certain data sets it might also be useful to compute the exact p-value—for example, for small data sets
or for data sets that are sparse, skewed, or heavily tied. You can use the EXACT statement to request exact
p-values for any of the location or scale tests available in PROC NPAR1WAY.

Figure 71.2 Wilcoxon Score Analysis

Wilcoxon Scores (Rank Sums) for Variable Gain
Classified by Variable Dose

Dose N
Sum of
Scores

Expected
Under H0

Std Dev
Under H0

Mean
Score

0 16 890.50 544.0 67.978966 55.656250

0.04 11 555.00 374.0 59.063588 50.454545

0.07 12 395.50 408.0 61.136622 32.958333

0.1 17 275.50 578.0 69.380741 16.205882

0.13 11 161.50 374.0 59.063588 14.681818

Average scores were used for ties.

Kruskal-Wallis Test

Chi-Square 52.6656

DF 4

Pr > Chi-Square <.0001
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Figure 71.3 through Figure 71.5 display the analyses produced by the MEDIAN, VW, and SAVAGE options.
For each score type, PROC NPAR1WAY provides a summary of scores and the one-way ANOVA statistic, as
previously described for Wilcoxon scores. Other score types available in PROC NPAR1WAY are Siegel-
Tukey, Ansari-Bradley, Klotz, and Mood, which can be used to test for scale differences. Conover scores can
be used to test for differences in both location and scale. Additionally, you can specify the SCORES=DATA
option, which uses the input data as scores. This option gives you the flexibility to construct any scores for
your data with the DATA step and then analyze these scores with PROC NPAR1WAY.

Figure 71.3 Median Score Analysis

Median Scores (Number of Points Above Median) for Variable Gain
Classified by Variable Dose

Dose N
Sum of
Scores

Expected
Under H0

Std Dev
Under H0

Mean
Score

0 16 16.0 7.880597 1.757902 1.00

0.04 11 11.0 5.417910 1.527355 1.00

0.07 12 6.0 5.910448 1.580963 0.50

0.1 17 0.0 8.373134 1.794152 0.00

0.13 11 0.0 5.417910 1.527355 0.00

Average scores were used for ties.

Median One-Way
Analysis

Chi-Square 54.1765

DF 4

Pr > Chi-Square <.0001

Figure 71.4 Van der Waerden (Normal) Score Analysis

Van der Waerden Scores (Normal) for Variable Gain
Classified by Variable Dose

Dose N
Sum of
Scores

Expected
Under H0

Std Dev
Under H0

Mean
Score

0 16 16.116474 0.0 3.325957 1.007280

0.04 11 8.340899 0.0 2.889761 0.758264

0.07 12 -0.576674 0.0 2.991186 -0.048056

0.1 17 -14.688921 0.0 3.394540 -0.864054

0.13 11 -9.191777 0.0 2.889761 -0.835616

Average scores were used for ties.

Van der Waerden
One-Way Analysis

Chi-Square 47.2972

DF 4

Pr > Chi-Square <.0001
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Figure 71.5 Savage Score Analysis

Savage Scores (Exponential) for Variable Gain
Classified by Variable Dose

Dose N
Sum of
Scores

Expected
Under H0

Std Dev
Under H0

Mean
Score

0 16 16.074391 0.0 3.385275 1.004649

0.04 11 7.693099 0.0 2.941300 0.699373

0.07 12 -3.584958 0.0 3.044534 -0.298746

0.1 17 -11.979488 0.0 3.455082 -0.704676

0.13 11 -8.203044 0.0 2.941300 -0.745731

Average scores were used for ties.

Savage One-Way
Analysis

Chi-Square 39.4908

DF 4

Pr > Chi-Square <.0001

The tables in Figure 71.6 display the empirical distribution function statistics, comparing the distribution
of Gain for the different levels of Dose. These tables are produced by the EDF option, and they include
Kolmogorov-Smirnov statistics and Cramér–von Mises statistics.

Figure 71.6 Empirical Distribution Function Analysis

Kolmogorov-Smirnov Test for Variable Gain
Classified by Variable Dose

Dose N
EDF at

Maximum
Deviation from Mean

at Maximum

0 16 0.000000 -1.910448

0.04 11 0.000000 -1.584060

0.07 12 0.333333 -0.499796

0.1 17 1.000000 2.153861

0.13 11 1.000000 1.732565

Total 67 0.477612

Maximum Deviation Occurred at Observation 36

Value of Gain at Maximum = 178.0

Kolmogorov-Smirnov
Statistics (Asymptotic)

KS 0.457928 KSa 3.748300

Cramer-von Mises Test for Variable Gain
Classified by Variable Dose

Dose N
Summed Deviation

from Mean

0 16 2.165210

0.04 11 0.918280

0.07 12 0.348227

0.1 17 1.497542

0.13 11 1.335745

Cramer-von Mises Statistics
(Asymptotic)

CM 0.093508 CMa 6.265003
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PROC NPAR1WAY uses ODS Graphics to create graphs as part of its output. The following statements
produce a box plot of Wilcoxon scores for Gain classified by Dose. ODS Graphics must be enabled before
producing graphs.

ods graphics on;
proc npar1way data=Gossypol plots(only)=wilcoxonboxplot;

class Dose;
var Gain;

run;
ods graphics off;

Figure 71.7 displays the box plot of Wilcoxon scores. This graph corresponds to the Wilcoxon scores analysis
shown in Figure 71.2. To remove the p-value from the box plot display, you can specify the NOSTATS plot
option in parentheses following the WILCOXONBOXPLOT option.

Box plots are available for all PROC NPAR1WAY score types except median scores, which are displayed
in a stacked bar chart. If ODS Graphics is enabled but you do not specify the PLOTS= option, PROC
NPAR1WAY produces all plots that are associated with the analyses that you request.

Figure 71.7 Box Plot of Wilcoxon Scores
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In the preceding example, the CLASS variable Dose has five levels, and the analyses examine possible
differences among these five levels (samples). The following statements invoke the NPAR1WAY procedure
to perform a nonparametric analysis of the two lowest levels of Dose:

proc npar1way data=Gossypol;
where Dose <= .04;
class Dose;
var Gain;

run;

The tables in the following figures show the results of this two-sample analysis. The tables in Figure 71.8 are
produced by the ANOVA option.

Figure 71.8 Analysis of Variance for Two-Sample Data

The NPAR1WAY ProcedureThe NPAR1WAY Procedure

Analysis of Variance for Variable Gain
Classified by Variable Dose

Dose N Mean

0 16 222.187500

0.04 11 217.363636

Source DF Sum of Squares Mean Square F Value Pr > F

Among 1 151.683712 151.683712 0.5587 0.4617

Within 25 6786.982955 271.479318

Average scores were used for ties.

Figure 71.9 displays the output produced by the WILCOXON option. PROC NPAR1WAY provides a
summary of the Wilcoxon scores for the analysis variable Gain for each of the two class levels. Since there
are only two levels, PROC NPAR1WAY displays the two-sample test, based on the simple linear rank statistic
with Wilcoxon scores. The normal approximation includes a continuity correction. To remove the continuity
correction, you can specify the CORRECT=NO option. PROC NPAR1WAY also gives a t approximation
for the Wilcoxon two-sample test. Like the multisample analysis, PROC NPAR1WAY computes a one-way
ANOVA statistic, which for Wilcoxon scores is known as the Kruskal-Wallis test. All these p-values show no
difference in Gain for the two Dose levels at the 0.05 level of significance.

Figure 71.10 through Figure 71.12 display the two-sample analyses produced by the MEDIAN, VW, and
SAVAGE options.
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Figure 71.9 Wilcoxon Two-Sample Analysis

Wilcoxon Scores (Rank Sums) for Variable Gain
Classified by Variable Dose

Dose N
Sum of
Scores

Expected
Under H0

Std Dev
Under H0

Mean
Score

0 16 253.50 224.0 20.221565 15.843750

0.04 11 124.50 154.0 20.221565 11.318182

Average scores were used for ties.

Wilcoxon Two-Sample Test

Statistic 124.5000

Normal Approximation

Z -1.4341

One-Sided Pr <  Z 0.0758

Two-Sided Pr > |Z| 0.1515

t Approximation

One-Sided Pr <  Z 0.0817

Two-Sided Pr > |Z| 0.1635

Z includes a continuity correction of 0.5.

Kruskal-Wallis Test

Chi-Square 2.1282

DF 1

Pr > Chi-Square 0.1446

Figure 71.10 Median Two-Sample Analysis

Median Scores (Number of Points Above Median) for Variable Gain
Classified by Variable Dose

Dose N
Sum of
Scores

Expected
Under H0

Std Dev
Under H0

Mean
Score

0 16 9.0 7.703704 1.299995 0.562500

0.04 11 4.0 5.296296 1.299995 0.363636

Average scores were used for ties.

Median Two-Sample Test

Statistic 4.0000

Z -0.9972

One-Sided Pr <  Z 0.1593

Two-Sided Pr > |Z| 0.3187

Median One-Way
Analysis

Chi-Square 0.9943

DF 1

Pr > Chi-Square 0.3187
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Figure 71.11 Van der Waerden (Normal) Two-Sample Analysis

Van der Waerden Scores (Normal) for Variable Gain
Classified by Variable Dose

Dose N
Sum of
Scores

Expected
Under H0

Std Dev
Under H0

Mean
Score

0 16 3.346520 0.0 2.320336 0.209157

0.04 11 -3.346520 0.0 2.320336 -0.304229

Average scores were used for ties.

Van der Waerden
Two-Sample Test

Statistic -3.3465

Z -1.4423

One-Sided Pr <  Z 0.0746

Two-Sided Pr > |Z| 0.1492

Van der Waerden
One-Way Analysis

Chi-Square 2.0801

DF 1

Pr > Chi-Square 0.1492

Figure 71.12 Savage Two-Sample Analysis

Savage Scores (Exponential) for Variable Gain
Classified by Variable Dose

Dose N
Sum of
Scores

Expected
Under H0

Std Dev
Under H0

Mean
Score

0 16 1.834554 0.0 2.401839 0.114660

0.04 11 -1.834554 0.0 2.401839 -0.166778

Average scores were used for ties.

Savage Two-Sample Test

Statistic -1.8346

Z -0.7638

One-Sided Pr <  Z 0.2225

Two-Sided Pr > |Z| 0.4450

Savage One-Way
Analysis

Chi-Square 0.5834

DF 1

Pr > Chi-Square 0.4450
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The tables in Figure 71.13 display the empirical distribution function statistics, comparing the distribution of
Gain for the two levels of Dose. The p-value for the Kolmogorov-Smirnov two-sample test is 0.6199, which
indicates no rejection of the null hypothesis that the Gain distributions are identical for the two levels of
Dose.

Figure 71.13 Two-Sample EDF Tests

Kolmogorov-Smirnov Test for Variable Gain
Classified by Variable Dose

Dose N
EDF at

Maximum
Deviation from Mean

at Maximum

0 16 0.250000 -0.481481

0.04 11 0.545455 0.580689

Total 27 0.370370

Maximum Deviation Occurred at Observation 4

Value of Gain at Maximum = 216.0

Kolmogorov-Smirnov Two-Sample
Test (Asymptotic)

KS 0.145172 D 0.295455

KSa 0.754337 Pr > KSa 0.6199

Cramer-von Mises Test for Variable Gain
Classified by Variable Dose

Dose N
Summed Deviation

from Mean

0 16 0.098638

0.04 11 0.143474

Cramer-von Mises Statistics
(Asymptotic)

CM 0.008967 CMa 0.242112

Kuiper Test for Variable Gain
Classified by Variable Dose

Dose N
Deviation

from Mean

0 16 0.090909

0.04 11 0.295455

Kuiper Two-Sample Test (Asymptotic)

K 0.386364 Ka 0.986440 Pr > Ka 0.8383
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Syntax: NPAR1WAY Procedure
The following statements are available in the NPAR1WAY procedure:

PROC NPAR1WAY < options > ;
BY variables ;
CLASS variable ;
EXACT statistic-options < / computation-options > ;
FREQ variable ;
OUTPUT < OUT=SAS-data-set > < output-options > ;
VAR variables ;

The PROC NPAR1WAY statement invokes the NPAR1WAY procedure. The PROC NPAR1WAY and CLASS
statements are required. Table 71.1 summarizes the statements available in the NPAR1WAY procedure.

The following sections describe the PROC NPAR1WAY statement and then describe the other statements in
alphabetical order.

Table 71.1 Summary of PROC NPAR1WAY Statements

Statement Description

BY Provides separate analyses for each BY group
CLASS Identifies the classification variable
EXACT Requests exact tests
FREQ Identifies a frequency variable
OUTPUT Requests an output data set
VAR Identifies analysis variables

PROC NPAR1WAY Statement
PROC NPAR1WAY < options > ;

The PROC NPAR1WAY statement invokes the NPAR1WAY procedure. Optionally, it identifies the input data
set and requests analyses. By default, the procedure uses the most recently created SAS data set and omits
missing values from the analysis. If you do not specify any analysis options, PROC NPAR1WAY performs
an analysis of variance (ANOVA option), tests for location differences (WILCOXON, MEDIAN, SAVAGE,
and VW options), and empirical distribution function tests (EDF option).

Table 71.2 summarizes the options available in the PROC NPAR1WAY statement. Descriptions of the options
follow in alphabetical order.
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Table 71.2 PROC NPAR1WAY Statement Options

Option Description

Input Data Set
DATA= Names the input SAS data set

Missing Values
MISSING Treats missing CLASS values as a valid class

Analyses
AB Requests analysis of Ansari-Bradley scores
ANOVA Requests standard analysis of variance
CONOVER Requests analysis of Conover scores
D Requests one-sided Kolmogorov-Smirnov statistics
DSCF Requests pairwise multiple comparison analysis
EDF | KS Requests empirical distribution function statistics
FP Requests the Fligner-Policello test
HL Requests Hodges-Lehmann estimation for two-sample data
KLOTZ Requests analysis of Klotz scores
MEDIAN Requests analysis of median scores
MOOD Requests analysis of Mood scores
SAVAGE Requests analysis of Savage scores
SCORES=DATA Requests analysis of input data scores
ST Requests analysis of Siegel-Tukey scores
VW | NORMAL Requests analysis of Van der Waerden (normal) scores
WILCOXON Requests analysis of Wilcoxon scores

Analysis Details
ADJUST Requests median adjustment for scale analyses
ALPHA= Specifies the confidence level for Hodges-Lehmann estimation
CORRECT=NO Suppresses the continuity correction for Wilcoxon

and Siegel-Tukey two-sample tests

Displayed Output
NOPRINT Suppresses the display of all output

Plots
PLOTS= Requests plots from ODS Graphics

You can specify the following options in the PROC NPAR1WAY statement.

AB < (ADJUST) >
requests an analysis of Ansari-Bradley scores. For more information, see the section “Ansari-Bradley
Scores” on page 5815. The ADJUST option subtracts class medians from the input observations before
performing the analysis.

ADJUST
adjusts for location differences among classes before performing tests for scale differences. The
ADJUST option applies to the following analyses: Ansari-Bradley (AB), Klotz (KLOTZ), Mood
(MOOD), and Siegel-Tukey (ST). If you specify the ADJUST option, PROC NPAR1WAY subtracts
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the corresponding class median from each observation before scoring the data and performing the scale
tests that you request.

You can also request adjustment for an individual scale test by specifying ADJUST in parentheses after
the scale test option; for example, you can specify ST(ADJUST) to adjust by class medians before
performing the Siegel-Tukey test.

ALPHA=˛
specifies the level of the confidence limits for the Hodges-Lehmann location shift, which you can
request by specifying the HL option. The value of ˛ must be between 0 and 1; a confidence level of ˛
produces 100.1 � ˛/% confidence limits. By default, ALPHA=0.05, which produces 95% confidence
limits for the location shift.

ANOVA
requests a standard analysis of variance on the raw data.

CONOVER
requests an analysis of Conover scores. For more information, see the section “Conover Scores” on
page 5815.

CORRECT=NO
suppresses the continuity correction for the Wilcoxon two-sample test and the Siegel-Tukey two-sample
test. For more information, see the section “Continuity Correction” on page 5812.

D
requests the one-sided Kolmogorov-Smirnov DC and D� statistics and their asymptotic p-values, in
addition to the two-sided D statistic that the EDF option produces for two-sample data. The D option
invokes the EDF option. If you request exact Kolmogorov-Smirnov tests by specifying the KS option
in the EXACT statement for two-sample data, PROC NPAR1WAY provides D+ and D– by default. For
more information about Kolmogorov-Smirnov statistics, see the section “Tests Based on the Empirical
Distribution Function” on page 5820.

DATA=SAS-data-set
names the SAS-data-set to be analyzed by PROC NPAR1WAY. If you omit the DATA= option, the
procedure uses the most recently created SAS data set.

DSCF
requests the Dwass, Steel, Critchlow-Fligner multiple comparison procedure, which is based on
pairwise two-sample rankings. This procedure is available for multisample data, where the number of
CLASS variable levels is greater than 2. For more information, see the section “Multiple Comparisons
Based on Pairwise Rankings” on page 5819.

EDF

KS
requests statistics based on the empirical distribution function. These include the Kolmogorov-Smirnov
and Cramér–von Mises tests and, if there are only two classification levels, the Kuiper test. For more
information, see the section “Tests Based on the Empirical Distribution Function” on page 5820.

The EDF option produces the Kolmogorov-Smirnov D statistic for two-sample data. You can request
the one-sided D+ and D– statistics for two-sample data by specifying the D option.
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FP < (REFCLASS=class-number | ‘class-value’) >
requests the Fligner-Policello test for two-sample data. For more information, see the section “Fligner-
Policello Test” on page 5818.

The REFCLASS= option specifies which of the two CLASS variable levels (samples) to use as the
reference class X for the difference between class placement sums, PY � PX . REFCLASS=1 refers to
the first class that is listed in the “Fligner-Policello Placements” table, and REFCLASS=2 refers to
the second class listed. The table displays class levels in the order in which they appear in the input
data set. REFCLASS=class-value identifies the reference class by the formatted value of the CLASS
variable. By default, the reference class is the second class listed in the “Fligner-Policello Placements”
table (REFCLASS=2).

HL < (REFCLASS=class-number | ‘class-value’) >
requests Hodges-Lehmann estimation of the location shift for two-sample data. This option also
provides asymptotic confidence limits for the location shift (which are sometimes known as Moses
confidence limits). For more information, see the section “Hodges-Lehmann Estimation of Location
Shift” on page 5816. You can specify the confidence level in the ALPHA= option. By default,
ALPHA=0.05, which produces 95% confidence limits for the location shift.

The REFCLASS= option specifies which of the two CLASS variable levels (samples) to use as the
reference class X for the location shift, Y – X. REFCLASS=1 refers to the first class that is listed in the
“Wilcoxon Scores” table, and REFCLASS=2 refers to the second class listed. The table displays class
levels in the order in which they appear in the input data set. REFCLASS=class-value identifies the
reference class by the formatted value of the CLASS variable.

By default, PROC NPAR1WAY uses the larger of the two classes as the reference class X to compute
the Hodges-Lehmann location shift, Y – X. If both class have the same number of observations, PROC
NPAR1WAY uses the class that appears second in the input data set as the reference class.

KLOTZ < (ADJUST) >
requests an analysis of Klotz scores. For more information, see the section “Klotz Scores” on page 5815.
If you specify the ADJUST option, PROC NPAR1WAY subtracts the corresponding class median from
each observation before performing the analysis.

MEDIAN
requests an analysis of median scores. When there are two classification levels, this option produces the
two-sample median test. When there are more than two samples, this option produces the multisample
median test, which is also known as the Brown-Mood test. For more information, see the section
“Median Scores” on page 5814.

MISSING
treats missing values of the CLASS variable as a valid class level.

MOOD < (ADJUST) >
requests an analysis of Mood scores. For more information, see the section “Mood Scores” on
page 5815. If you specify the ADJUST option, PROC NPAR1WAY subtracts the corresponding class
median from each observation before performing the analysis.
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NOPRINT
suppresses the display of all output. You can use the NOPRINT option when you only want to create
an output data set. This option temporarily disables the Output Delivery System (ODS). For more
information, see Chapter 20, “Using the Output Delivery System.”

PLOTS < (global-plot-options) > < =plot-request < (plot-option) > >

PLOTS < (global-plot-options) > < =(plot-request < (plot-option) > < . . . plot-request < (plot-option) > > ) >

controls the plots that are produced through ODS Graphics. Plot-requests specify the plots to produce,
and plot-options control the appearance and content of the plots. You can specify plot-options in
parentheses after a plot-request . A global-plot-option applies to all plots for which it is available,
unless it is altered by a specific plot-option. You can specify global-plot-options in parentheses after
the PLOTS option.

When you specify only one plot-request , you can omit the parentheses around the request. For example:

plots=all
plots=wilcoxonboxplot
plots=(wilcoxonboxplot edfplot)
plots(only)=(medianplot normalboxplot)

ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;
proc npar1way plots=wilcoxonboxplot;

variable response;
class treatment;

run;
ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

If ODS Graphics is enabled but you do not specify the PLOTS= option, PROC NPAR1WAY produces
all plots that are associated with the analyses that you request. If you request a plot by specifying
the PLOTS= option but do not request the corresponding analysis, PROC NPAR1WAY automatically
invokes that analysis. For example, if you specify PLOTS=CONOVERBOXPLOT but do not also
specify the CONOVER option in the PROC NPAR1WAY statement, PROC NPAR1WAY produces the
Conover scores analysis in addition to the box plot.

You can suppress default plots and request specific plots by using the PLOTS(ONLY)= option;
PLOTS(ONLY)=(plot-requests) produces only the plots that are specified as plot-requests. You can
suppress all plots by specifying the PLOTS=NONE option. The PLOTS= option has no effect when
you specify the NOPRINT option.

PROC NPAR1WAY provides box plots of scored data, median plots, and empirical distribution plots.
See Figure 71.7, Output 71.1.2, Output 71.1.4, and Output 71.2.2 for examples of plots that PROC
NPAR1WAY produces. For general information about ODS Graphics, see Chapter 21, “Statistical
Graphics Using ODS.”
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Global Plot Options

A global-plot-option applies to all plots for which the option is available unless it is altered by a specific
plot-option. You can specify the following global-plot-options in parentheses after the PLOTS option.
You cannot specify both the STATS and the NOSTATS global-plot-options in the same statement.

NOSTATS
suppresses the p-values that are displayed by default in the plots.

ONLY
suppresses the default plots and requests only the plots that are specified as plot-requests.

STATS
displays p-values in the plots. This is the default.

Plot Requests

You can specify the following plot-requests:

ABBOXPLOT

AB
requests a box plot of Ansari-Bradley scores. This plot is associated with the Ansari-Bradley
analysis, which you request by specifying the AB option.

ALL
requests all plots that are associated with the specified analyses. This is the default if you do not
specify the ONLY global-plot-option.

ANOVABOXPLOT

ANOVA
requests a box plot of the raw data. This plot is associated with the analysis of variance based on
the raw data, which you request by specifying the ANOVA option.

CONOVERBOXPLOT

CONOVER
requests a box plot of Conover scores. This plot is associated with the Conover analysis, which
you request by specifying the CONOVER option.

DATASCORESBOXPLOT

DATASCORES
requests a box plot of raw data scores. This plot is associated with the analysis that uses input
data as scores, which you request by specifying the SCORES=DATA option.

EDFPLOT

EDF
requests an empirical distribution plot. This plot is associated with the analyses based on the
empirical distribution function, which you request by specifying the EDF option.
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FPBOXPLOT

FP
requests a box plot of Fligner-Policello placements. This plot is associated with the Fligner-
Policello analysis, which you request by specifying the FP option.

KLOTZBOXPLOT

KLOTZ
requests a box plot of Klotz scores. This plot is associated with the Klotz analysis, which you
request by specifying the KLOTZ option.

MEDIANPLOT

MEDIAN
requests a stacked bar chart showing the frequencies above and below the overall median. This
plot is associated with the median score analysis, which you request by specifying the MEDIAN
option.

MOODBOXPLOT

MOOD
requests a box plot of Mood scores. This plot is associated with the Mood analysis, which you
request by specifying the MOOD option.

NONE
suppresses all plots.

SAVAGEBOXPLOT

SAVAGE
requests a box plot of Savage scores. This plot is associated with the Savage analysis, which you
request by specifying the SAVAGE option.

STBOXPLOT

ST
requests a box plot of Siegel-Tukey scores. This plot is associated with the Siegel-Tukey analysis,
which you request by specifying the ST option.

VWBOXPLOT

VW

NORMALBOXPLOT

NORMAL
requests a box plot of Van der Waerden (normal) scores. This plot is associated with the Van der
Waerden analysis, which you request by specifying the VW (NORMAL) option.

WILCOXONBOXPLOT

WILCOXON
requests a box plot of Wilcoxon scores. This plot is associated with the Wilcoxon analysis, which
you request by specifying the WILCOXON option.
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Plot Options

The following plot-options are available for any plot-request . You cannot specify both the STATS
and the NOSTATS plot-options for the same plot. If you specify both the NOSTATS global-plot-
option and the STATS plot-option for an individual plot-request , the STATS plot-option overrides the
global-plot-option and displays statistics in the individual plot.

NOSTATS
suppresses the p-values that are displayed in the plot by default.

STATS
displays p-values in the plot. This is the default.

SAVAGE
requests an analysis of Savage scores. For more information, see the section “Savage Scores” on
page 5814.

SCORES=DATA

PERM
requests an analysis that uses input data as scores. This option gives you the flexibility to construct any
scores for your data with the DATA step and then analyze these scores with PROC NPAR1WAY. For
more information, see the section “Scores for Linear Rank and One-Way ANOVA Tests” on page 5813.

To produce the two-sample permutation test that is known as Pitman’s test, provide raw (unscored)
data in the input data set and specify the SCORES=DATA option in the EXACT statement. For more
information, see the section “Exact Tests” on page 5822.

ST < (ADJUST) >
requests an analysis of Siegel-Tukey scores. For more information, see the section “Siegel-Tukey
Scores” on page 5815. If you specify the ADJUST option, PROC NPAR1WAY subtracts the corre-
sponding class median from each observation before performing the analysis.

VW

NORMAL
requests an analysis of Van der Waerden (normal) scores. For more information, see the section “Van
der Waerden (Normal) Scores” on page 5814.

WILCOXON
requests an analysis of Wilcoxon scores. When there are two classification levels (samples), this option
produces the Wilcoxon rank-sum test. For any number of classification levels, this option produces the
Kruskal-Wallis test. For more information, see the section “Wilcoxon Scores” on page 5814.
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BY Statement
BY variables ;

You can specify a BY statement with PROC NPAR1WAY to obtain separate analyses of observations in
groups that are defined by the BY variables. When a BY statement appears, the procedure expects the input
data set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last
one specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the NPAR1WAY proce-
dure. The NOTSORTED option does not mean that the data are unsorted but rather that the data are
arranged in groups (according to values of the BY variables) and that these groups are not necessarily
in alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

CLASS Statement
CLASS variable ;

The CLASS statement, which is required, names one and only one classification variable. The variable can be
character or numeric. The CLASS variable identifies groups (samples) in the data, and PROC NPAR1WAY
provides analyses to examine differences among these groups. There can be two or more groups in the data.

EXACT Statement
EXACT statistic-options < / computation-options > ;

The EXACT statement requests exact tests and confidence limits for selected statistics. The statistic-options
identify which statistics to compute, and the computation-options specify options for computing exact
statistics. For more information, see the section “Exact Tests” on page 5822.

NOTE: PROC NPAR1WAY computes exact tests by using fast and efficient algorithms that are superior to
direct enumeration. Exact tests are appropriate when a data set is small, sparse, skewed, or heavily tied. For
some large problems, computation of exact tests might require a large amount of time and memory. Consider
using asymptotic tests for such problems. Alternatively, when asymptotic methods might not be sufficient for
such large problems, consider using Monte Carlo estimation of exact p-values. You can request Monte Carlo
estimation by specifying the MC computation-option in the EXACT statement. For more information, see
the section “Computational Resources” on page 5824.
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Statistic Options

The statistic-options specify which exact tests to compute. Table 71.3 lists the available statistic-options and
the exact statistics that are computed. Descriptions of the statistic-options follow Table 71.3 in alphabetical
order.

Exact p-values are available for all nonparametric tests of location and scale differences that are produced by
PROC NPAR1WAY. These include tests based on the following scores: Wilcoxon, median, Van der Waerden
(normal), Savage, Siegel-Tukey, Ansari-Bradley, Klotz, Mood, and Conover. Additionally, exact p-values
are available for tests that use the raw input data as scores. The procedure computes exact p-values when
the data are classified into two levels (two-sample tests) and when the data are classified into more than two
levels (multisample tests). Two-sample tests are based on simple linear rank statistics. Multisample tests are
based on one-way ANOVA statistics.

Exact p-values are also available for the two-sample Kolmogorov-Smirnov test. Exact confidence limits are
available for the Hodges-Lehmann estimate of location shift.

If you list no statistic-options in the EXACT statement, PROC NPAR1WAY computes all available exact
p-values for those tests that you request in the PROC NPAR1WAY statement.

Table 71.3 EXACT Statement Statistic Options

Statistic Option Exact Test

AB Ansari-Bradley test
CONOVER Conover test
HL Hodges-Lehmann confidence limits
KLOTZ Klotz test
KS | EDF Two-sample Kolmogorov-Smirnov test
MEDIAN Median test
MOOD Mood test
SAVAGE Savage test
SCORES=DATA Test with input data as scores
ST Siegel-Tukey test
VW | NORMAL Van der Waerden (normal scores) test
WILCOXON Wilcoxon test for two-sample data or

Kruskal-Wallis test for multisample data

You can specify the following statistic-options in the EXACT statement.

AB
requests the exact Ansari-Bradley test. For more information, see the sections “Ansari-Bradley Scores”
on page 5815 and “Exact Tests” on page 5822. The AB option in the PROC NPAR1WAY statement
provides Ansari-Bradley score analysis and asymptotic tests.

CONOVER
requests the exact Conover test. For more information, see the sections “Conover Scores” on page 5815
and “Exact Tests” on page 5822. The CONOVER option in the PROC NPAR1WAY statement provides
Conover score analysis and asymptotic tests.
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HL
requests exact Hodges-Lehmann confidence limits for the location shift for two-sample data. For more
information, see the section “Hodges-Lehmann Estimation of Location Shift” on page 5816. The HL
option in the PROC NPAR1WAY statement provides asymptotic Hodges-Lehmann confidence limits.

You can specify the level of the confidence limits in the ALPHA= option in the PROC NPAR1WAY
statement. By default, ALPHA=0.05, which produces 95% confidence limits for the location shift.

KLOTZ
requests the exact Klotz test. For more information, see the sections “Klotz Scores” on page 5815 and
“Exact Tests” on page 5822. The KLOTZ option in the PROC NPAR1WAY statement provides Klotz
score analysis and asymptotic tests.

KS

EDF
requests the exact Kolmogorov-Smirnov two-sample test. For more information, see the section
“Tests Based on the Empirical Distribution Function” on page 5820. The EDF option in the PROC
NPAR1WAY statement provides the asymptotic Kolmogorov-Smirnov test and other statistics that
are based on the empirical distribution function. The D option in the PROC NPAR1WAY statement
provides the asymptotic one-sided Kolmogorov-Smirnov tests for two-sample data.

MEDIAN
requests the exact median test. For more information, see the sections “Median Scores” on page 5814
and “Exact Tests” on page 5822. The MEDIAN option in the PROC NPAR1WAY statement provides
median score analysis and asymptotic tests.

MOOD
requests the exact Mood test. For more information, see the sections “Mood Scores” on page 5815 and
“Exact Tests” on page 5822. The MOOD option in the PROC NPAR1WAY statement provides Mood
score analysis and asymptotic tests.

SAVAGE
requests the exact Savage test. For more information, see the sections “Savage Scores” on page 5814
and “Exact Tests” on page 5822. The SAVAGE option in the PROC NPAR1WAY statement provides
Savage score analysis and asymptotic tests.

SCORES=DATA

PERM
requests the exact test that uses the input data as scores. For two-sample data, the test is based on the
rank-sum statistic. For multisample data, the test is based on the one-way ANOVA statistic. For more
information, see the sections “Scores for Linear Rank and One-Way ANOVA Tests” on page 5813
and “Exact Tests” on page 5822. The SCORES=DATA option in the PROC NPAR1WAY statement
provides analysis of the data scores and the corresponding asymptotic test.

ST
requests the exact Siegel-Tukey test. For more information, see the sections “Siegel-Tukey Scores”
on page 5815 and “Exact Tests” on page 5822. The ST option in the PROC NPAR1WAY statement
provides analysis of Siegel-Tukey scores and asymptotic tests.
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VW

NORMAL
requests the exact Van der Waerden (normal scores) test. For more information, see the sections “Van
der Waerden (Normal) Scores” on page 5814 and “Exact Tests” on page 5822. The VW (NORMAL)
option in the PROC NPAR1WAY statement provides analysis of Van der Waerden (normal) scores and
asymptotic tests.

WILCOXON
requests the exact Wilcoxon test. When the data consist of two classification levels (samples), the
exact test is based on the Wilcoxon rank-sum statistic. When the data consist of more than two levels
(multisample data), the exact test is based on the one-way ANOVA statistic for Wilcoxon scores,
which is the Kruskal-Wallis statistic. For more information, see the sections “Wilcoxon Scores” on
page 5814 and “Exact Tests” on page 5822. The WILCOXON option in the PROC NPAR1WAY
statement provides analysis of Wilcoxon scores and the asymptotic Wilcoxon and Kruskal-Wallis tests.

Computation Options

Computation-options specify options for computing exact statistics. You can specify the following
computation-options in the EXACT statement after a slash (/).

ALPHA=˛
specifies the level of the confidence limits for Monte Carlo p-value estimates. The value of ˛ must
be between 0 and 1; a confidence level of ˛ produces 100.1 � ˛/% confidence limits. By default,
ALPHA=0.01, which produces 99% confidence limits for the exact p-values.

The ALPHA= option invokes the MC option.

MAXTIME=value
specifies the maximum clock time (in seconds) that PROC NPAR1WAY can use to compute an
exact p-value. If the procedure does not complete the computation within the specified time, the
computation terminates. The maximum time value must be a positive number. This option is available
for Monte Carlo estimation of exact p-values as well as for direct exact p-value computation. For more
information, see the section “Computational Resources” on page 5824.

MC
requests Monte Carlo estimation of exact p-values instead of direct exact p-value computation. Monte
Carlo estimation can be useful for large problems that require a considerable amount of time and
memory for exact computations but for which asymptotic approximations might not be sufficient. For
more information, see the section “Monte Carlo Estimation” on page 5824.

This option is available for all EXACT statistic-options except the HL option, which produces exact
Hodges-Lehmann confidence limits. The ALPHA=, N=, and SEED= options invoke the MC option.

MIDP
requests exact mid p-values for the exact tests. The exact mid p-value is defined as the exact p-value
minus half the exact point probability. For two-sample data, PROC NPAR1WAY provides exact mid
p-values for the one-sided tests of the linear rank statistics. For multisample data, PROC NPAR1WAY
provides exact mid p-values for the one-way ANOVA tests. For more information, see the section
“Definition of p-Values” on page 5823.
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The MIDP option is available for all EXACT statement statistic-options except the HL option, which
produces exact Hodges-Lehmann confidence limits. You cannot specify both the MIDP option and the
MC option.

N=n
specifies the number of samples for Monte Carlo estimation. The value of n must be a positive integer,
and the default is 10,000 samples. Larger values of n produce more precise estimates of exact p-values.
Because larger values of n generate more samples, the computation time increases.

The N= option invokes the MC option.

PFORMAT=format-name | EXACT
specifies the display format for exact p-values. PROC NPAR1WAY applies this format to one- and two-
sided exact p-values, exact point probabilities, and exact mid p-values. By default, PROC NPAR1WAY
displays exact p-values in the PVALUE6.4 format.

You can provide a format-name or you can specify PFORMAT=EXACT to control the format of exact
p-values. The value of format-name can be any standard SAS numeric format or a user-defined format.
The format length must not exceed 24. For information about formats, see the FORMAT procedure
in the Base SAS Procedures Guide and the FORMAT statement and SAS format in SAS Formats and
Informats: Reference.

If you specify PFORMAT=EXACT, PROC NPAR1WAY uses the 6.4 format to display exact p-values
that are greater than or equal to 0.001; the procedure uses the E10.3 format to display values that are
between 0.000 and 0.001. This is the format that PROC NPAR1WAY uses to display exact p-values in
releases before SAS/STAT 12.3. Beginning in SAS/STAT 12.3, by default PROC NPAR1WAY uses
the PVALUE6.4 format to display exact p-values.

POINT
requests exact point probabilities for the exact tests. The exact point probability is the exact probability
that the test statistic equals the observed value. For two-sample data, PROC NPAR1WAY provides
exact point probabilities for the one-sided tests of the linear rank statistics. For multisample data, PROC
NPAR1WAY provides exact point probabilities for the one-way ANOVA tests. For more information,
see the section “Definition of p-Values” on page 5823.

The POINT option is available for all EXACT statement statistic-options except the HL option, which
produces exact Hodges-Lehmann confidence limits. You cannot specify both the POINT option and
the MC option.

SEED=number
specifies the initial seed for random number generation for Monte Carlo estimation. The value of the
SEED= option must be an integer. If you do not specify the SEED= option or if the SEED= value is
negative or zero, PROC NPAR1WAY uses the time of day from the computer’s clock to obtain the
initial seed.

The SEED= option invokes the MC option.
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FREQ Statement
FREQ variable ;

The FREQ statement names a numeric variable that represents a frequency of occurrence for each observation
in the input data set. PROC NPAR1WAY treats the data set as if each observation appears n times, where n is
the value of the FREQ variable for the observation. The sum of the FREQ variable values represents the total
number of observations, and the analysis is based on this expanded number of observations.

Noninteger values of the FREQ variable are truncated to the largest integer less than the FREQ value. The
observation is used in the analysis only if the value of the FREQ variable is greater than or equal to 1.

OUTPUT Statement
OUTPUT < OUT=SAS-data-set > < output-options > ;

The OUTPUT statement creates a SAS data set that contains statistics that PROC NPAR1WAY computes.
Table 71.4 lists the statistics that can be stored in the output data set. You identify which statistics to include
by specifying output-options.

The output data set contains one observation for each analysis variable that you name in the VAR statement.
If you use a BY statement, the output data set contains an observation or set of observations for each BY
group. For more information, see the section “Contents of the Output Data Set” on page 5825.

As an alternative to the OUTPUT statement, you can use the Output Delivery System (ODS) to store statistics
that PROC NPAR1WAY computes. ODS can create a SAS data set from any table that PROC NPAR1WAY
produces. For more information, see the section “ODS Table Names” on page 5837 and Chapter 20, “Using
the Output Delivery System.”

You can specify the following options in the OUTPUT statement:

OUT=SAS-data-set
names the output data set. When you use an OUTPUT statement but do not specify the OUT= option,
PROC NPAR1WAY creates a data set and names it by using the DATAn convention.

output-options
specifies the statistics to include in the output data set. Table 71.4 lists the output-options that are
available in the OUTPUT statement. Descriptions of the output-options follow the table in alphabetical
order.

When you specify an output-option, the output data set includes the test statistic and associated values
from the analysis that you specify. The associated values might include standardized statistics, one-
and two-sided p-values, exact p-values, degrees of freedom, and confidence limits. See the section
“Contents of the Output Data Set” on page 5825 for a list of output data set variables that each
output-option produces.

If you do not specify any output-options in the OUTPUT statement, the output data set includes all
available statistics from the analyses that you request in the PROC NPAR1WAY statement. If you
request a statistic in the OUTPUT statement but do not request the corresponding analysis in the PROC
NPAR1WAY statement, PROC NPAR1WAY performs the corresponding analysis.
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Table 71.4 OUTPUT Statement Output Options

Output Option Output Data Set Statistics

AB Ansari-Bradley test
ANOVA Analysis of variance
CONOVER Conover test
EDF | KS Kolmogorov-Smirnov test,

Cramér–von Mises test, and
Kuiper test for two-sample data

FP Fligner-Policello test
HL Hodges-Lehmann estimates
KLOTZ Klotz test
MEDIAN Median test
MOOD Mood test
SAVAGE Savage test
SCORES=DATA Test with input data as scores
ST Siegel-Tukey test
VW | NORMAL Van der Waerden (normal scores) test
WILCOXON Wilcoxon test for two-sample data and

Kruskal-Wallis test

You can specify the following output-options in the OUTPUT statement.

AB
includes statistics from the Ansari-Bradley analysis in the output data set. The AB option in the PROC
NPAR1WAY statement requests analysis of Ansari-Bradley scores. For more information, see the
section “Ansari-Bradley Scores” on page 5815.

ANOVA
includes analysis of variance statistics in the output data set. The ANOVA option in the PROC
NPAR1WAY statement requests a standard analysis of variance for the raw data.

CONOVER
includes statistics from the Conover analysis in the output data set. The CONOVER option in the
PROC NPAR1WAY statement requests analysis of Conover scores. For more information, see the
section “Conover Scores” on page 5815.

EDF

KS
includes empirical distribution function statistics in the output data set. The EDF option in the
PROC NPAR1WAY statement requests computation of these statistics, which include the Kolmogorov-
Smirnov test, the Cramér–von Mises test, and the Kuiper test for two sample-data. For more informa-
tion, see the section “Tests Based on the Empirical Distribution Function” on page 5820.

FP
includes the Fligner-Policello test in the output data set. The FP option in the PROC NPAR1WAY
statement requests the Fligner-Policello test, which is available for two-sample data. For more
information, see the section “Fligner-Policello Test” on page 5818.
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HL
includes the Hodges-Lehmann estimate and confidence limits in the output data set. The HL option
in the PROC NPAR1WAY statement requests Hodges-Lehmann estimation, which is available for
two-sample data. For more information, see the section “Hodges-Lehmann Estimation of Location
Shift” on page 5816.

KLOTZ
includes statistics from the Klotz analysis in the output data set. The KLOTZ option in the PROC
NPAR1WAY statement requests analysis of Klotz scores. For more information, see the section “Klotz
Scores” on page 5815.

MEDIAN
includes statistics from the median analysis in the output data set. The MEDIAN option in the PROC
NPAR1WAY statement requests analysis of median scores. For more information, see the section
“Median Scores” on page 5814.

MOOD
includes statistics from the Mood analysis in the output data set. The MOOD option in the PROC
NPAR1WAY statement requests analysis of Mood scores. For more information, see the section “Mood
Scores” on page 5815.

SAVAGE
includes statistics from the Savage analysis in the output data set. The SAVAGE option in the PROC
NPAR1WAY statement requests analysis of SAVAGE scores. For more information, see the section
“Savage Scores” on page 5814.

SCORES=DATA

PERM
includes statistics from the analysis of data scores in the output data set. The SCORES=DATA option
in the PROC NPAR1WAY statement requests an analysis that uses the raw input data as scores. For
more information, see the section “Scores for Linear Rank and One-Way ANOVA Tests” on page 5813.

ST
includes statistics from the Siegel-Tukey analysis in the output data set. The ST option in the PROC
NPAR1WAY statement requests analysis of Siegel-Tukey scores. For more information, see the section
“Siegel-Tukey Scores” on page 5815.

VW

NORMAL
includes statistics from the Van der Waerden (normal scores) analysis in the output data set. The VW
(NORMAL) option in the PROC NPAR1WAY statement requests analysis of Van der Waerden scores.
For more information, see the section “Van der Waerden (Normal) Scores” on page 5814.

WILCOXON
includes statistics from the Wilcoxon analysis in the output data set. The WILCOXON option in the
PROC NPAR1WAY statement requests analysis of Wilcoxon scores. For two-sample data, this analysis
includes the Wilcoxon rank-sum test. For all data (two-sample and multisample), the analysis includes
the Kruskal-Wallis test. For more information, see the section “Wilcoxon Scores” on page 5814.
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VAR Statement
VAR variables ;

The VAR statement names the response (dependent) variables to be included in the analysis. These variables
must be numeric. If you omit the VAR statement, the procedure includes all numeric variables in the data set
except for the CLASS variable, the FREQ variable, and the BY variables.

Details: NPAR1WAY Procedure

Missing Values
If an observation has a missing value for a response (VAR) variable, PROC NPAR1WAY excludes that
observation from the analysis. If an observation has a missing or nonpositive value for the FREQ variable,
PROC NPAR1WAY excludes that observation from the analysis.

By default, PROC NPAR1WAY also excludes observations that have missing values of the CLASS variable.
If you specify the MISSING option, PROC NPAR1WAY treats missing values of the CLASS variable as a
valid class level and includes these observations in the analysis.

PROC NPAR1WAY treats missing BY variable values like any other BY variable value. The missing values
form a separate, valid BY group.

Tied Values
Tied values occur when two or more observations are equal, whether the observations occur in the same
sample or in different samples. In theory, nonparametric tests were developed for continuous distributions
where the probability of a tie is zero. In practice, however, ties often occur. PROC NPAR1WAY uses the
same method to handle ties for all score types. The procedure computes the scores as if there were no ties,
averages the scores for tied observations, and assigns this average score to each observation that has the same
value.

When there are tied values, PROC NPAR1WAY first sorts the observations in ascending order and assigns
ranks as if there were no ties. Then the procedure computes the scores based on these ranks by using the
formula for the specified score type. The procedure averages the scores for tied observations and assigns this
average score to each of the tied observations. Thus, all equal data values have the same score value. PROC
NPAR1WAY then computes the test statistic from these scores.

Note that the asymptotic tests might be less accurate when the distribution of the data is heavily tied. For
such data, it might be appropriate to use the exact tests provided by PROC NPAR1WAY as described in the
section “Exact Tests” on page 5822.

When computing empirical distribution function statistics for data with ties, PROC NPAR1WAY uses the
formulas given in the section “Tests Based on the Empirical Distribution Function” on page 5820. No special
handling of ties is necessary.
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PROC NPAR1WAY bases its computations on the internal numeric values of the analysis variables; the
procedure does not format or round these values before analysis. When values differ in their internal
representation, even slightly, PROC NPAR1WAY does not treat them as tied values. If this is a concern for
your data, round the analysis variables by an appropriate amount before invoking PROC NPAR1WAY. For
information about the ROUND function, see the discussion in SAS Language Reference: Dictionary.

Statistical Computations

Simple Linear Rank Tests for Two-Sample Data

Statistics of the form

S D

nX
jD1

cj a.Rj /

are called simple linear rank statistics, where

Rj is the rank of observation j

a.Rj / is the score based on the rank of observation j

cj is an indicator variable denoting the class to which the jth observation belongs

n is the total number of observations

For two-sample data (where the observations are classified into two levels), PROC NPAR1WAY calculates
simple linear rank statistics for the scores that you specify. The section “Scores for Linear Rank and One-Way
ANOVA Tests” on page 5813 describes the available scores, which you can use to test for differences in
location and differences in scale.

To compute the linear rank statistic S, PROC NPAR1WAY sums the scores of the observations in the smaller
of the two samples. If both samples have the same number of observations, PROC NPAR1WAY sums those
scores for the sample that appears first in the input data set.

For each score that you specify, PROC NPAR1WAY computes an asymptotic test of the null hypothesis of no
difference between the two classification levels. Exact tests are also available for these two-sample linear
rank statistics. PROC NPAR1WAY computes exact tests for each score type that you specify in the EXACT
statement. For more information, see the section “Exact Tests” on page 5822.

To compute an asymptotic test for a linear rank sum statistic, PROC NPAR1WAY uses a standardized test
statistic z, which has an asymptotic standard normal distribution under the null hypothesis. The standardized
test statistic is computed as

z D .S � E0.S// =
p
Var0.S/

where E0.S/ is the expected value of S under the null hypothesis, and Var0.S/ is the variance under the null
hypothesis. As shown in Randles and Wolfe (1979),

E0.S/ D
n1

n

nX
jD1

a.Rj /
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where n1 is the number of observations in the first (smaller) class level (sample), n2 is the number of
observations in the other class level, and

Var0.S/ D
n1n2

n.n � 1/

nX
jD1

�
a.Rj / � Na

�2
where Na is the average score,

Na D
1

n

nX
jD1

a.Rj /

Definition of p-Values
PROC NPAR1WAY computes one-sided and two-sided asymptotic p-values for each two-sample linear rank
test. When the test statistic z is greater than its null hypothesis expected value of zero, PROC NPAR1WAY
computes the right-sided p-value, which is the probability of a larger value of the statistic occurring under
the null hypothesis. When the test statistic is less than or equal to zero, PROC NPAR1WAY computes
the left-sided p-value, which is the probability of a smaller value of the statistic occurring under the null
hypothesis. The one-sided p-value P1.z/ can be expressed as

P1.z/ D

(
Prob.Z > z/ if z > 0

Prob.Z < z/ if z � 0

where Z has a standard normal distribution. The two-sided p-value P2.z/ is computed as

P2.z/ D Prob.jZj > jzj/

Continuity Correction
PROC NPAR1WAY uses a continuity correction for the asymptotic two-sample Wilcoxon and Siegel-Tukey
tests by default. You can remove the continuity correction by specifying the CORRECT=NO option. PROC
NPAR1WAY incorporates the continuity correction when computing the standardized test statistic z by
subtracting 0.5 from the numerator .S � E0.S// if it is greater than zero. If the numerator is less than zero,
PROC NPAR1WAY adds 0.5. Some sources recommend a continuity correction for nonparametric tests that
use a continuous distribution to approximate a discrete distribution. (See Sheskin 1997.)

If you specify CORRECT=NO, PROC NPAR1WAY does not use a continuity correction for any test.

One-Way ANOVA Tests

PROC NPAR1WAY computes a one-way ANOVA test for each score type that you specify. Under the null
hypothesis of no difference among class levels (samples), this test statistic has an asymptotic chi-square
distribution with r – 1 degrees of freedom, where r is the number of class levels. For Wilcoxon scores, this
test is known as the Kruskal-Wallis test.

Exact one-way ANOVA tests are also available for multisample data (where the data are classified into more
than two levels). For two-sample data, exact simple linear rank tests are available. PROC NPAR1WAY
computes exact tests for each score type that you specify in the EXACT statement. For more information,
see the section “Exact Tests” on page 5822.
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PROC NPAR1WAY computes the one-way ANOVA test statistic as

C D

 
rX
iD1

.Ti � E0.Ti //
2 = ni

!
= S2

where Ti is the total of scores for class level i, E0.Ti / is the expected total for level i under the null hypothesis
of no difference among levels, ni is the number of observations in level i, and S2 is the sample variance of
the scores. The total of scores for class level i is given by

Ti D

nX
jD1

cij a.Rj /

where a.Rj / is the score for observation j, and cij indicates whether observation j is in level i. The expected
total of scores for class level i under the null hypothesis is equal to

E0.Ti / D
ni

n

nX
jD1

a.Rj /

The sample variance of the scores is computed as

S2 D
1

.n � 1/

nX
jD1

�
a.Rj / � Na

�2
where Na is the average score,

Na D
1

n

nX
jD1

a.Rj /

Scores for Linear Rank and One-Way ANOVA Tests

For each score type that you specify, PROC NPAR1WAY computes a one-way ANOVA statistic and also a
linear rank statistic for two-sample data. The following score types are used primarily to test for differences
in location: Wilcoxon, median, Van der Waerden (normal), and Savage. The following scores types are used
to test for scale differences: Siegel-Tukey, Ansari-Bradley, Klotz, and Mood. Conover scores can be used
to test for differences in both location and scale. This section gives formulas for the score types available
in PROC NPAR1WAY. For further information about the formulas and the applicability of each score, see
Randles and Wolfe (1979), Gibbons and Chakraborti (2010), Conover (1999), and Hollander and Wolfe
(1999).

In addition to the score types described in this section, you can specify the SCORES=DATA option to use the
input data observations as scores. This enables you to produce a wide variety of tests. You can construct
any scores by using the DATA step, and then you can use PROC NPAR1WAY to compute the corresponding
linear rank and one-way ANOVA tests for these scores. You can also analyze raw (unscored) data by using
the SCORES=DATA option; for two-sample data, the corresponding exact test is a permutation test that is
known as Pitman’s test.
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Wilcoxon Scores
Wilcoxon scores are the ranks of the observations, which can be written as

a.Rj / D Rj

where Rj is the rank of observation j, and a.Rj / is the score of observation j.

Using Wilcoxon scores in the linear rank statistic for two-sample data produces the rank sum statistic of
the Mann-Whitney-Wilcoxon test. Using Wilcoxon scores in the one-way ANOVA statistic produces the
Kruskal-Wallis test. Wilcoxon scores are locally most powerful for location shifts of a logistic distribution.

When computing the asymptotic Wilcoxon two-sample test, PROC NPAR1WAY uses a continuity correction
by default, as described in the section “Continuity Correction” on page 5812. If you specify the COR-
RECT=NO option in the PROC NPAR1WAY statement, the procedure does not use a continuity correction.

Median Scores
Median scores equal 1 for observations greater than the median, and 0 otherwise. In terms of the observation
ranks, median scores are defined as

a.Rj / D

(
1 if Rj > .nC 1/=2

0 if Rj � .nC 1/=2

Using median scores in the linear rank statistic for two-sample data produces the two-sample median test.
Using median scores in the one-way ANOVA statistic for multisample data produces the Brown-Mood test.
Median scores are particularly powerful for distributions that are symmetric and heavy-tailed.

Van der Waerden (Normal) Scores
Van der Waerden scores are the quantiles of a standard normal distribution and are also known as quantile
normal scores. Van der Waerden scores are computed as

a.Rj / D ˆ
�1

�
Rj

nC 1

�
where ˆ is the cumulative distribution function of a standard normal distribution. These scores are powerful
for normal distributions.

Savage Scores
Savage scores are expected values of order statistics from the exponential distribution, with 1 subtracted to
center the scores around 0. Savage scores are computed as

a.Rj / D

RjX
iD1

�
1

n � i C 1

�
� 1

Savage scores are powerful for comparing scale differences in exponential distributions or location shifts in
extreme value distributions (Hajek 1969, p. 83).
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Siegel-Tukey Scores
Siegel-Tukey scores are defined as

a.1/ D 1; a.n/ D 2; a.n � 1/ D 3; a.2/ D 4;

a.3/ D 5; a.n � 2/ D 6; a.n � 3/ D 7; a.4/ D 8; : : :

where the score values continue to increase in this pattern toward the middle ranks until all observations have
been assigned a score.

When computing the asymptotic Siegel-Tukey two-sample test, PROC NPAR1WAY uses a continuity
correction by default, as described in the section “Continuity Correction” on page 5812. If you specify
the CORRECT=NO option in the PROC NPAR1WAY statement, the procedure does not use a continuity
correction.

Ansari-Bradley Scores
Ansari-Bradley scores are similar to Siegel-Tukey scores, but Ansari-Bradley scoring assigns the same score
value to corresponding extreme ranks. (Siegel-Tukey scores are a permutation of the ranks 1; 2; : : : ; n.)
Ansari-Bradley scores are defined as

a.1/ D 1; a.n/ D 1;

a.2/ D 2; a.n � 1/ D 2; : : :

Equivalently, Ansari-Bradley scores are equal to

a.Rj / D
nC 1

2
�

ˇ̌̌̌
Rj �

nC 1

2

ˇ̌̌̌

Klotz Scores
Klotz scores are the squares of the Van der Waerden (normal) scores. Klotz scores are computed as

a.Rj / D

�
ˆ�1

�
Rj

nC 1

��2
where ˆ is the cumulative distribution function of a standard normal distribution.

Mood Scores
Mood scores are computed as the square of the difference between the observation rank and the average rank.
Mood scores can be written as

a.Rj / D

�
Rj �

nC 1

2

�2

Conover Scores
Conover scores are based on the squared ranks of the absolute deviations from the sample means. For
observation j the absolute deviation from the mean is computed as

Uj D jXj.i/ � NXi j
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where Xj.i/ is the value of observation j, observation j belongs to sample i, and NXi is the mean of sample i.
The values of Uj are ranked, and the Conover score for observation j is computed as

Scorej D
�
Rank.Uj /

�2
Following Conover (1999), when there are ties among the values of Uj , PROC NPAR1WAY assigns the
average rank to each of the tied observations. To compute the average rank, PROC NPAR1WAY first ranks
the Uj as if there were no ties and then averages the ranks of the tied observations.

The Conover score test is also known as the squared ranks test for variances. For more information, see
Conover (1999).

Hodges-Lehmann Estimation of Location Shift

If you specify the HL option, PROC NPAR1WAY computes the Hodges-Lehmann estimate of location shift
for two-sample data. This option also provides asymptotic confidence limits for the location shift (which are
sometimes known as Moses confidence limits). You can specify the confidence level in the ALPHA= option
in the PROC NPAR1WAY statement. By default, ALPHA=0.05, which produces 95% confidence limits.
Additionally, you can request exact confidence limits for the location shift by specifying the HL option in the
EXACT statement.

The Hodges-Lehmann estimator of location shift is associated with the Wilcoxon linear rank statistic. For
more information, see Hollander and Wolfe (1999) and Hodges and Lehmann (1983).

PROC NPAR1WAY computes the Hodges-Lehmann estimate O� as the median of all paired differences
between observations in the two samples (classes), which can be written as

O� D median
�
.Yj �Xi / where j D 1; 2; : : : ; n1I i D 1; 2; : : : ; n2

�
The Yj are observations in class 1, the Xi are observations in class 2, and n1 and n2 denote the number of
observations in class 1 and class 2, respectively.

By default, PROC NPAR1WAY uses the larger of the two classes as the reference class X (class 2). If both
class have the same number of observations, PROC NPAR1WAY uses the class that appears second in the
input data set as the reference class. You can specify the reference class by using the HL(REFCLASS=)
option. REFCLASS=1 refers to the first class that is listed in the “Wilcoxon Scores” table, and REFCLASS=2
refers to the second class in the table. REFCLASS=class-value identifies the reference class by the formatted
value of the CLASS variable.

Let m denote the total number of differences (n1 � n2), and let U .k/ denote the kth value of .Yj � Xi /
among the ordered differences. When m is an odd number, the median difference is the value that has rank
.mC 1/=2,

O� D U .k/ where k D .mC 1/=2

When m is an even number, the median difference is the average of the values that have ranks .m=2/ and
..m=2/C 1/,

O� D
�
U .k/ C U .kC1/

�
=2 where k D m=2

Following Hollander and Wolfe (1999), the asymptotic lower and upper confidence limits for the location
shift are�

�L D U
.C˛/; �U D U

.mC1�C˛/
�
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where C˛ is the largest integer less than or equal to C �˛ , which is computed as

C �˛ D E0.S/ � z˛=2
p
Var0.S/

where E0.S/ and Var0.S/ are the expected value and variance, respectively, of the Wilcoxon statistic S
under the null hypothesis (as described in the section “Simple Linear Rank Tests for Two-Sample Data” on
page 5811), and z˛=2 is the 100.1 � ˛=2/ percentile of the standard normal distribution. For Wilcoxon rank
scores,

E0.S/ D n1n2=2

When there are no tied values, Var0.S/ for Wilcoxon scores equals

Var0.S/ D n1n2.n1 C n2 C 1/=12

PROC NPAR1WAY displays the midpoint of the confidence interval .�L; �U /, which can also be used as an
estimate of location shift. For more information, see Lehmann (1963). Additionally, PROC NPAR1WAY
provides an estimate of the asymptotic standard error of O� based on the length of the confidence interval,
which is computed as

se. O�/ D .�U ��L/ = .2 z˛=2/

Exact Confidence Limits
If you specify the HL option in the EXACT statement, PROC NPAR1WAY computes exact confidence limits
for the location shift between the two samples. You can specify the level of the confidence limits in the
ALPHA= option in the PROC NPAR1WAY statement. By default, ALPHA=0.05, which produces 95%
confidence limits.

PROC NPAR1WAY computes exact confidence limits for the location shift as described in Randles and Wolfe
(1979, p. 180). PROC NPAR1WAY first generates the exact conditional distribution of the Mann-Whitney U
statistic, which equals the number of pairwise differences .Yj �Xi / that are positive, plus half the number of
pairwise differences that are zero. The Mann-Whitney statistic is defined as

MW D

n1X
jD1

n2X
iDi

�
�
Yj ; Xi

�
where

�.Yj ; Xi / D

8̂̂<̂
:̂
1 if Yj > Xi

1=2 if Yj D Xi

0 otherwise

From the exact conditional distribution of the Mann-Whitney statistic MW , PROC NPAR1WAY chooses
C �L;˛ as the smallest value such that Prob.MW � C �L;˛/ � ˛=2. Rounding C �L;˛ up to the nearest integer
CL;˛, the lower confidence limit equals the difference .Yi �Xj / that has a rank of .n1n2 � CL;˛ C 1/.

To find the upper confidence limit, PROC NPAR1WAY chooses C �U ;˛ as the largest Mann-Whitney value such
that Prob.MW � C �U ;˛/ � ˛=2. Rounding C �U ;˛ down to the nearest integer CL;˛, the upper confidence
limit equals the difference .Yi �Xj / that has a rank of .n1n2 � CU ;˛/.

Because this is a discrete problem, the confidence coefficient is not exactly (1 – ˛) but is at least (1 – ˛); thus,
these confidence limits are conservative.
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Fligner-Policello Test

If you specify the FP option, PROC NPAR1WAY computes the Fligner-Policello location test for two-sample
data (Fligner and Policello 1981). The null hypothesis for the test is H0 W �X D �Y , where �X and �Y are
the population medians of the two classes. The Fligner-Policello test assumes that the distribution in each
class is symmetric around the class median, but it does not require that the two class distributions have the
same form or that the class variances be equal. For more information, see Hollander and Wolfe (1999) and
Juneau (2007).

The Fligner-Policello test is based on placement scores (Orban and Wolfe 1979). The placement of an
observation Xi from class X, P.Xi /, is defined as the number of observations in class Y that are less than Xi .
If there are ties, the placement of Xi is adjusted by adding half the number of observations in class Y that
are equal to Xi . The placement of an observation Yj from class Y, P.Yj /, is defined in the same way. The
placements can be expressed as

P.Xi / D

nyX
jD1

�
I.Yj < Xi / C 0:5I.Yj D Xi /

�
P.Yj / D

nxX
iD1

�
I.Xi < Yj / C 0:5I.Xi D Yj /

�
where I.�/ is an indicator function and nx and ny denote the number of observations in class X and class Y,
respectively.

The average placements for class X and class Y are computed as

NPx D

 
nxX
iD1

P.Xi /

!
= nx

NPy D

0@ nyX
jD1

P.Yj /

1A = ny

The Fligner-Policello test statistic is computed as

z D

0@ nyX
jD1

P.Yj / �

nxX
iD1

P.Xi /

1A =

�
2

q
Vx C Vy C NPx NPy

�

where

Vx D

nxX
iD1

.P.Xi / � NPx/
2

Vy D

nyX
jD1

.P.Yj / � NPy/
2

and the standard deviation of the placements is
p
Vx=.nx � 1/ for class X and

p
Vy=.ny � 1/ for class Y.
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Under the null hypothesis, the Fligner-Policello statistic has an asymptotic standard normal distribution.
PROC NPAR1WAY provides one- and two-sided asymptotic p-values for the Fligner-Policello test. For the
one-sided test, PROC NPAR1WAY displays the right-sided p-value when the test statistic z is greater than its
null hypothesis expected value of zero. PROC NPAR1WAY displays the left-sided p-value when the test
statistic z is less than or equal to zero. The one-sided p-value P1.z/ can be expressed as

P1.z/ D

(
Prob.Z > z/ if z > 0

Prob.Z < z/ if z � 0

where Z has a standard normal distribution. The two-sided p-value P2.z/ is computed as Prob(|Z| > |z|).

When you specify the FP option, PROC NPAR1WAY displays a “Fligner-Policello Placements” table and a
“Fligner-Policello Test” table. The “Fligner-Policello Placements” table contains the following information
for each of the two classes: number of observations, sum of the placements, average placement, and
standard deviation of the placements. The “Fligner-Policello Test” table contains the test statistic z and
the corresponding one- and two-sided p-values. This table also displays the difference between the class
placement sums, which is the numerator of the test statistic. When ODS Graphics is enabled and you specify
the FP or PLOTS=FPBOXPLOT option, PROC NPAR1WAY provides a box plot of the Fligner-Policello
placements.

PROC NPAR1WAY computes the Fligner-Policello difference (the numerator of the test statistic) as the
placement sum for class Y minus the placement sum for class X (the reference class). By default, PROC
NPAR1WAY uses the first class that is listed in the “Fligner-Policello Placements” table as class Y and the
second class as the reference class X. The table displays class levels in the order in which they appear in the
input data set. To use the first class (instead of the second class) as the reference class for the Fligner-Policello
test, you can specify the FP(REFCLASS=1) option. Or you can specify the FP(REFCLASS=class-value)
option to identify the reference class by the formatted value of the CLASS variable.

Multiple Comparisons Based on Pairwise Rankings

If you specify the DSCF option, PROC NPAR1WAY computes the Dwass, Steel, Critchlow-Fligner (DSCF)
multiple comparison analysis, which is based on pairwise two-sample Wilcoxon comparisons (Dwass 1960;
Steel 1960; Critchlow and Fligner 1991). The DSCF analysis is available when the number of CLASS
variable levels (samples) is greater than 2. There are r(r–1)/2 pairs of samples, where r is the total number of
samples.

For each pair of samples, PROC NPAR1WAY ranks the observations and computes the standardized Wilcoxon
test statistic, which is described in the sections “Simple Linear Rank Tests for Two-Sample Data” on page 5811
and “Wilcoxon Scores” on page 5814. The procedure does not include a continuity correction in the Wilcoxon
test statistics that it computes for the DSCF analysis. The DSCF statistic for a pair of samples is computed
as
p
2 z, where z is the two-sample standardized Wilcoxon statistic. Under the null hypothesis of no

location differences among the r samples, the distribution of the DSCF statistics can be approximated by the
studentized range distribution for r independent standard normal variables. The p-value for a two-sample
DSCF comparison is the percentile of the studentized range distribution that corresponds to the value of the
DSCF statistic. For more information, see Hollander and Wolfe (1999), Juneau (2007), and Juneau (2004).

When you specify the DSCF option, PROC NPAR1WAY displays the “Pairwise Two-Sided Multiple Compar-
ison Analysis” table, which contains the following information for each two-sample comparison: comparison
identification (two CLASS variable levels), two-sample Wilcoxon test statistic, DSCF statistic, and two-sided
DSCF p-value. You can store these statistics in a SAS data set by using the Output Delivery System (ODS).
The ODS name for this table is DSCF. For more information, see the section “ODS Table Names” on
page 5837 and Chapter 20, “Using the Output Delivery System.”
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Tests Based on the Empirical Distribution Function

If you specify the EDF option, PROC NPAR1WAY computes tests based on the empirical distribution function.
These include the Kolmogorov-Smirnov and Cramér–von Mises tests, and also the Kuiper test for two-sample
data. This section gives formulas for these test statistics. For further information about the formulas and the
interpretation of EDF statistics, see Hollander and Wolfe (1999) and Gibbons and Chakraborti (2010). For
information about the k-sample analogs of the Kolmogorov-Smirnov and Cramér–von Mises statistics, see
Kiefer (1959).

The empirical distribution function (EDF) of a sample fxj g, j D 1; 2; : : : ; n, is defined as

F.x/ D
1

n
.number of xj � x/ D

1

n

nX
jD1

I.xj � x/

where I.�/ is an indicator function. PROC NPAR1WAY uses the subsample of values within the ith class
level to generate an EDF for the class, Fi . The EDF for the overall sample, pooled over classes, can also be
expressed as

F.x/ D
1

n

X
i

.niFi .x//

where ni is the number of observations in the ith class level, and n is the total number of observations.

Kolmogorov-Smirnov Test
The Kolmogorov-Smirnov statistic measures the maximum deviation of the EDF within the classes from the
pooled EDF. PROC NPAR1WAY computes the Kolmogorov-Smirnov statistic as

KS D max
j

s
1

n

X
i

ni
�
Fi .xj / � F.xj /

�2 where j D 1; 2; : : : ; n

The asymptotic Kolmogorov-Smirnov statistic is computed as

KSa D KS �
p
n

For each class level i and overall, PROC NPAR1WAY displays the value of Fi at the maximum deviation
from F and the value

p
ni .Fi � F / at the maximum deviation from F. PROC NPAR1WAY also gives the

observation where the maximum deviation occurs.

If there are only two class levels, PROC NPAR1WAY computes the two-sample Kolmogorov-Smirnov test
statistic D as

D D max
j

ˇ̌
F1.xj / � F2.xj /

ˇ̌
where j D 1; 2; : : : ; n

The p-value for this test is the probability that D is greater than the observed value d under the null hypothesis
of no difference between class levels (samples). PROC NPAR1WAY computes the asymptotic p-value for D
by using the approximation

Prob.D > d/ D 2

1X
iD1

.�1/.i�1/ e.�2i
2 z2/

where

z D d
p
n1 n2 = n
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For more information, see Hodges (1957).

If you specify the D option, or if you request exact Kolmogorov-Smirnov p-values by specifying the KS
option in the EXACT statement, PROC NPAR1WAY also computes the one-sided Kolmogorov-Smirnov
statistics D+ and D– for two-sample data as

DC D max
j

�
F1.xj / � F2.xj /

�
where j D 1; 2; : : : ; n

D� D max
j

�
F2.xj / � F1.xj /

�
where j D 1; 2; : : : ; n

The asymptotic probability that D+ is greater than the observed value dC, under the null hypothesis of no
difference between the two class levels, is computed as

Prob.DC > dC/ D e�2z
2

where z D dC
p
n1 n2 = n

Similarly, the asymptotic probability that D– is greater than the observed value d� is computed as

Prob.D� > d�/ D e�2z
2

where z D d�
p
n1 n2 = n

To request exact p-values for the Kolmogorov-Smirnov statistics, you can specify the KS option in the
EXACT statement. For more information, see the section “Exact Tests” on page 5822.

Cramér–von Mises Test
The Cramér–von Mises statistic is defined as

CM D
1

n2

X
i

0@ni pX
jD1

tj
�
Fi .xj / � F.xj /

�21A
where tj is the number of ties at the jth distinct value and p is the number of distinct values. The asymptotic
value is computed as

CM a D CM � n

PROC NPAR1WAY displays the contribution of each class level to the sum CM a.

Kuiper Test
For data with two class levels, PROC NPAR1WAY computes the Kuiper statistic, its scaled value for the
asymptotic distribution, and the asymptotic p-value. The Kuiper statistic is computed as

K D max
j

�
F1.xj / � F2.xj /

�
�min

j

�
F1.xj / � F2.xj /

�
where j D 1; 2; : : : ; n

The asymptotic value is

Ka D K
p
n1 n2 = n

PROC NPAR1WAY displays the value of .maxj
ˇ̌
F1.xj / � F2.xj /

ˇ̌
/ for each class level.

The p-value for the Kuiper test is the probability of observing a larger value of Ka under the null hypothesis
of no difference between the two classes. PROC NPAR1WAY computes this p-value according to Owen
(1962, p. 441).
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Exact Tests

PROC NPAR1WAY provides exact p-values for tests for location and scale differences based on the following
scores: Wilcoxon, median, van der Waerden (normal), Savage, Siegel-Tukey, Ansari-Bradley, Klotz, Mood,
and Conover. Additionally, PROC NPAR1WAY provides exact p-values for tests that use the raw data as
scores. Exact tests are available for two-sample and multisample data. When the data are classified into two
samples, tests are based on simple linear rank statistics. When the data are classified into more than two
samples, tests are based on one-way ANOVA statistics.

Exact tests can be useful in situations where the asymptotic assumptions are not met and the asymptotic
p-values are not close approximations for the true p-values. Standard asymptotic methods involve the
assumption that the test statistic follows a particular distribution when the sample size is sufficiently large.
When the sample size is not large, asymptotic results might not be valid, with the asymptotic p-values
differing perhaps substantially from the exact p-values. Asymptotic results might also be unreliable when
the distribution of the data is sparse, skewed, or heavily tied. For more information, see Agresti (2007)
and Bishop, Fienberg, and Holland (1975). Exact computations are based on the statistical theory of exact
conditional inference for contingency tables, reviewed by Agresti (1992).

In addition to computation of exact p-values, PROC NPAR1WAY provides the option of estimating exact
p-values by Monte Carlo simulation. This can be useful for problems that are so large that exact computations
require a great amount of time and memory, but for which asymptotic approximations might not be sufficient.

The following sections summarize the exact computational algorithms, define the exact p-values that PROC
NPAR1WAY computes, discuss the computational resource requirements, and describe the Monte Carlo
estimation option.

Computational Algorithms
PROC NPAR1WAY computes exact p-values by using the network algorithm developed by Mehta and
Patel (1983). This algorithm provides a substantial advantage over direct enumeration, which can be very
time-consuming and feasible only for small problems. See Agresti (1992) for a review of algorithms for
computation of exact p-values, and see Mehta, Patel, and Tsiatis (1984) and Mehta, Patel, and Senchaudhuri
(1991) for information about the performance of the network algorithm.

PROC NPAR1WAY constructs a contingency table from the input data, with rows formed by the levels of the
classification variable and columns formed by the response variable values. The reference set for a given
contingency table is the set of all contingency tables with the observed marginal row and column sums.
Corresponding to this reference set, the network algorithm forms a directed acyclic network consisting of
nodes in a number of stages. A path through the network corresponds to a distinct table in the reference
set. The distances between nodes are defined so that the total distance of a path through the network is the
corresponding value of the test statistic. At each node, the algorithm computes the shortest and longest path
distances for all the paths that pass through that node. For the two-sample linear rank statistics, which can be
expressed as linear combinations of cell frequencies multiplied by increasing row and column scores, PROC
NPAR1WAY computes shortest and longest path distances by using the algorithm given by Agresti, Mehta,
and Patel (1990). For the multisample one-way test statistics, PROC NPAR1WAY computes an upper bound
for the longest path and a lower bound for the shortest path by following the approach of Valz and Thompson
(1994).

The longest and shortest path distances (bounds) for a node are compared to the value of the test statistic
to determine whether all paths through the node contribute to the p-value, none of the paths through the
node contribute to the p-value, or neither of these situations occurs. If all paths through the node contribute,
the p-value is incremented accordingly, and these paths are eliminated from further analysis. If no paths
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contribute, these paths are eliminated from the analysis. Otherwise, the algorithm continues, still processing
this node and the associated paths. The algorithm finishes when all nodes have been accounted for.

In applying the network algorithm, PROC NPAR1WAY uses full numerical precision to represent all statistics,
row and column scores, and other quantities involved in the computations. Although it is possible to use
rounding to improve the speed and memory requirements of the algorithm, PROC NPAR1WAY does not do
this because it can result in reduced accuracy of the p-values.

Definition of p-Values
For two-sample linear rank tests, PROC NPAR1WAY computes exact one-sided and two-sided p-values
for each test that you specify in the EXACT statement. For one-sided tests, PROC NPAR1WAY displays
the right-sided p-value when the observed value of the test statistic is greater than its expected value. The
right-sided p-value is the sum of probabilities for those tables with a test statistic that is greater than or equal
to the observed test statistic. Otherwise, when the observed test statistic is less than or equal to its expected
value, PROC NPAR1WAY displays the left-sided p-value. The left-sided p-value is the sum of probabilities
for those tables with a test statistic that is less than or equal to the observed value. The one-sided p-value P1
can be expressed as

P1.t/ D

(
Prob. Test Statistic � t / if t > E0.T /

Prob. Test Statistic � t / if t � E0.T /

where t is the observed value of the test statistic and E0.T / is the expected value of the test statistic under the
null hypothesis. PROC NPAR1WAY computes the two-sided p-value as the sum of the one-sided p-value and
the corresponding area in the opposite tail of the distribution of the statistic, equidistant from the expected
value. The two-sided p-value P2 can be expressed as

P2.t/ D Prob .jTest Statistic � E0.T /j � jt � E0.T /j/

Tests for multisample data are based on one-way ANOVA statistics. For a test of this form, large values of
the test statistic indicate a departure from the null hypothesis; the test is inherently two-sided. The exact
p-value is the sum of probabilities for those tables having a test statistic greater than or equal to the value of
the observed test statistic.

If you specify the POINT option in the EXACT statement, PROC NPAR1WAY provides point probabilities
for the exact tests. The point probability is the exact probability that the test statistic equals the observed
value. For two-sample data, PROC NPAR1WAY provides point probabilities for the one-sided tests of the
linear rank statistics. For multisample data, PROC NPAR1WAY provides point probabilities for the one-way
ANOVA tests.

If you specify the MIDP option in the EXACT statement, PROC NPAR1WAY provides exact mid p-values.
The exact mid p-value is defined as the exact p-value minus half the exact point probability, which equals the
average of Prob.Test Statistic � t / and Prob.Test Statistic > t/ for a right-sided test. The exact mid p-value
is smaller and less conservative than the nonadjusted exact p-value. For more information, see Agresti (2013,
section 1.1.4) and Hirji (2006, sections 2.5 and 2.11.1). For two-sample data, PROC NPAR1WAY provides
mid p-values for the one-sided tests of the linear rank statistics. For multisample data, PROC NPAR1WAY
provides mid p-values for the one-way ANOVA tests.
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Computational Resources
PROC NPAR1WAY uses relatively fast and efficient algorithms for exact computations. These algorithms,
together with improvements in computer power, now make it feasible to perform exact computations for data
sets where previously only asymptotic methods could be applied. Nevertheless, there are still large problems
that might require a prohibitive amount of time and memory for exact computations, depending on the speed
and memory available on your computer. For large problems, consider whether exact methods are really
needed or whether asymptotic methods might give results quite close to the exact results while requiring
much less computer time and memory. When asymptotic methods might not be sufficient for such large
problems, consider using Monte Carlo estimation of exact p-values, as described in the section “Monte Carlo
Estimation” on page 5824.

A formula does not exist that can predict in advance how much time and memory are needed to compute an
exact p-value for a certain problem. The time and memory required depend on several factors, including
which test is being performed, the total sample size, the number of rows and columns, and the specific
arrangement of the observations into table cells. Generally, larger problems (in terms of total sample size,
number of rows, and number of columns) tend to require more time and memory. Additionally, for a fixed
total sample size, time and memory requirements tend to increase as the number of rows and columns
increase, since this corresponds to an increase in the number of tables in the reference set. Also for a fixed
sample size, time and memory requirements increase as the marginal row and column totals become more
homogeneous. For more information, see Agresti, Mehta, and Patel (1990) and Gail and Mantel (1977).

At any time while PROC NPAR1WAY is computing exact p-values, you can terminate the computations by
pressing the system interrupt key sequence (see the SAS Companion for your system) and choosing to stop
computations. After you terminate exact computations, PROC NPAR1WAY completes all other remaining
tasks. The procedure produces the requested output and reports missing values for any exact p-values not
computed by the time of termination.

You can also use the MAXTIME= option in the EXACT statement to limit the amount of time PROC
NPAR1WAY uses for exact computations. You specify a MAXTIME= value that is the maximum amount of
time (in seconds) that PROC NPAR1WAY can use to compute an exact p-value. If PROC NPAR1WAY does
not finish computing the exact p-value within that time, it terminates the computation and completes all other
remaining tasks.

Monte Carlo Estimation
If you specify the MC option in the EXACT statement, PROC NPAR1WAY computes Monte Carlo estimates
of the exact p-values instead of directly computing the exact p-values. Monte Carlo estimation can be
useful for large problems that require a great amount of time and memory for exact computations but for
which asymptotic approximations might not be sufficient. To describe the precision of each Monte Carlo
estimate, PROC NPAR1WAY provides the asymptotic standard error and 100.1�˛/% confidence limits. The
confidence level ˛ is determined by the ALPHA= option in the EXACT statement; by default, ALPHA=0.01,
which produces 99% confidence limits. The N= option in the EXACT statement specifies the number of
samples PROC NPAR1WAY uses for Monte Carlo estimation; the default is 10,000 samples. You can specify
a larger value for n to improve the precision of the Monte Carlo estimates. Because larger values of n
generate more samples, the computation time increases. Or you can specify a smaller value of n to reduce the
computation time.
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To compute a Monte Carlo estimate of an exact p-value, PROC NPAR1WAY generates a random sample
of tables with the same total sample size, row totals, and column totals as the observed table. PROC
NPAR1WAY uses the algorithm of Agresti, Wackerly, and Boyett (1979), which generates tables in proportion
to their hypergeometric probabilities conditional on the marginal frequencies. For each sample table, PROC
NPAR1WAY computes the value of the test statistic and compares it to the value for the observed table. When
estimating a right-sided p-value, PROC NPAR1WAY counts all sample tables for which the test statistic is
greater than or equal to the observed test statistic. Then the p-value estimate equals the number of these
tables divided by the total number of tables sampled, which can be written as

OPMC D M = N

M D number of samples with .Test Statistic � t /

N D total number of samples

t D observed Test Statistic

PROC NPAR1WAY computes left-sided and two-sided p-value estimates in a similar manner. For left-sided
p-values, PROC NPAR1WAY evaluates whether the test statistic for each sampled table is less than or equal
to the observed test statistic. For two-sided p-values, PROC NPAR1WAY examines the sample test statistics
according to the expression for P2.t/ given in the section “Definition of p-Values” on page 5823.

The variable M is a binomial variable with N trials and success probability p. It follows that the asymptotic
standard error of the Monte Carlo estimate is

se. OPMC / D

q
OPMC .1 � OPMC / = .N � 1/

PROC NPAR1WAY constructs asymptotic confidence limits for the p-values according to

OPMC ˙
�
z˛=2 � se. OPMC /

�
where z˛=2 is the 100.1 � ˛=2/ percentile of the standard normal distribution, and the confidence level ˛ is
determined by the ALPHA= option in the EXACT statement.

When the Monte Carlo estimate OPMC equals 0, PROC NPAR1WAY computes confidence limits for the
p-value as

. 0; 1 � ˛.1=N/ /

When the Monte Carlo estimate OPMC equals 1, PROC NPAR1WAY computes the confidence limits as

. ˛.1=N/; 1 /

Contents of the Output Data Set
The OUTPUT statement creates a SAS data set that contains statistics that PROC NPAR1WAY computes.
You identify which statistics to store in the output data set by specifying output-options in the OUTPUT
statement. For more information, see the description of the OUTPUT statement.
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The output data set contains one observation for each analysis variable for each BY group. (You can specify
the analysis variables in the VAR statement.) The OUTPUT data set includes the following variables:

• BY variables, if you use a BY statement

• _VAR_, which identifies the analysis variable

• variables that contain the statistics

When you specify an output-option in the OUTPUT statement, the output data set contains the test statistic
and associated values from the analysis that you specify. The associated values might include standardized
statistics, one- and two-sided p-values, exact p-values, degrees of freedom, and confidence limits. If you
request an exact test for the specified analysis by using the EXACT statement, the output data set includes the
exact p-values. The statistics that are included also depend on the classification of the data. Some statistics
are available only for two-sample data (where the CLASS variable groups the data into two classes); other
statistics are available only for multisample data.

Table 71.5 lists variable names and descriptions for the statistics that are available in the output data set.

Monte Carlo estimates of exact p-values are not available in this output data set. You can store Monte Carlo
estimates in a SAS data set by using the Output Delivery System (ODS). ODS can create a SAS data set
from any table that PROC NPAR1WAY produces. For more information, see the section “ODS Table Names”
on page 5837 and Chapter 20, “Using the Output Delivery System.”

Table 71.5 Output Data Set Variable Names and Descriptions

Output Option Output Variables Variable Descriptions

AB _AB_ * Two-sample Ansari-Bradley statistic
Z_AB * Ansari-Bradley statistic, standardized

PL_AB * p-value (left-sided), Ansari-Bradley test
PR_AB * p-value (right-sided), Ansari-Bradley test
P2_AB * p-value (two-sided), Ansari-Bradley test

XPL_AB * Exact p-value (left-sided), Ansari-Bradley test
XPR_AB * Exact p-value (right-sided), Ansari-Bradley test
XPT_AB * Exact point probability, Ansari-Bradley test

XMP_AB * Exact mid p-value, Ansari-Bradley test
XP2_AB * Exact p-value (two-sided), Ansari-Bradley test

_CHAB_ Ansari-Bradley chi-square
DF_CHAB Degrees of freedom, Ansari-Bradley chi-square

P_CHAB p-value, Ansari-Bradley chi-square test
XP_CHAB ** Exact p-value, Ansari-Bradley chi-square test

XPT_CHAB ** Exact point probability, Ansari-Bradley chi-square test
XMP_CHAB ** Exact mid p-value, Ansari-Bradley chi-square test

ANOVA _MSA_ ANOVA effect mean square, among MS
_MSE_ ANOVA error mean square, within MS

_F_ F statistic for ANOVA
P_F p-value, F statistic for ANOVA
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Table 71.5 continued

Output Option Output Variables Variable Descriptions

CONOVER _CON_ * Two-sample Conover statistic
Z_CON * Conover statistic, standardized

PL_CON * p-value (left-sided), Conover test
PR_CON * p-value (right-sided), Conover test
P2_CON * p-value (two-sided), Conover test

XPL_CON * Exact p-value (left-sided), Conover test
XPR_CON * Exact p-value (right-sided), Conover test
XPT_CON * Exact point probability, Conover test

XMP_CON * Exact mid p-value, Conover test
XP2_CON * Exact p-value (two-sided), Conover test

_CHCON_ Conover chi-square
DF_CHCON Degrees of freedom, Conover chi-square

P_CHCON p-value, Conover chi-square test
XP_CHCON ** Exact p-value, Conover chi-square test
XPT_CHCO ** Exact point probability, Conover chi-square test

XMP_CHCON ** Exact mid p-value, Conover chi-square test

EDF _KS_ Kolmogorov-Smirnov statistic
_KSA_ Kolmogorov-Smirnov statistic (asymptotic)

_Dp_ * Two-sample Kolmogorov-Smirnov D+
P_Dp * p-value, D+
_Dm_ * Two-sample Kolmogorov-Smirnov D–

P_Dm * p-value, D–
_D_ * Two-sample Kolmogorov-Smirnov statistic D

P_KSA * p-value, D
XP_Dp * Exact p-value, D+

XPT_Dp * Exact point probability, D+
XMP_Dp * Exact mid p-value, D+

XP_Dm * Exact p-value, D–
XPT_Dm * Exact point probability, D–

XMP_Dm * Exact mid p-value, D–
XP_D * Exact p-value, D

XPT_D * Exact point probability, D
XMP_D * Exact mid p-value, D

_CM_ Cramér–von Mises statistic
_CMA_ Cramér–von Mises statistic (asymptotic)

_K_ * Kuiper two-sample statistic
_KA_ * Kuiper two-sample statistic (asymptotic)

P_KA * p-value, two-sample Kuiper test
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Table 71.5 continued

Output Option Output Variables Variable Descriptions

FP _FP_ * Fligner-Policello statistic
PL_FP * p-value (left-sided), Fligner-Policello test
PR_FP * p-value (right-sided), Fligner-Policello test
P2_FP * p-value (two-sided), Fligner-Policello test

HL _HL_ * Hodges-Lehmann estimate, location shift
L_HL * Lower confidence limit, Hodges-Lehmann
U_HL * Upper confidence limit, Hodges-Lehmann
M_HL * Confidence limit midpoint, Hodges-Lehmann
E_HL * ASE of Hodges-Lehmann estimate

XL_HL * Exact lower confidence limit, Hodges-Lehmann
XU_HL * Exact upper confidence limit, Hodges-Lehmann
XM_HL * Exact confidence limit midpoint

KLOTZ _KLOTZ_ * Two-sample Klotz statistic
Z_K * Klotz statistic, standardized

PL_K * p-value (left-sided), Klotz test
PR_K * p-value (right-sided), Klotz test
P2_K * p-value (two-sided), Klotz test

XPL_K * Exact p-value (left-sided), Klotz test
XPR_K * Exact p-value (right-sided), Klotz test
XPT_K * Exact point probability, Klotz test

XMP_K * Exact mid p-value, Klotz test
XP2_K * Exact p-value (two-sided), Klotz test

_CHK_ Klotz chi-square
DF_CHK Degrees of freedom, Klotz chi-square

P_CHK p-value, Klotz chi-square test
XP_CHK ** Exact p-value, Klotz chi-square test

XPT_CHK ** Exact point probability, Klotz chi-square test
XMP_CHK ** Exact mid p-value, Klotz chi-square test

MEDIAN _MED_ * Two-sample median statistic
Z_MED * Median statistic, standardized

PL_MED * p-value (left-sided), median test
PR_MED * p-value (right-sided), median test
P2_MED * p-value (two-sided), median test

XPL_MED * Exact p-value (left-sided), median test
XPR_MED * Exact p-value (right-sided), median test
XPT_MED * Exact point probability, median test

XMP_MED * Exact mid p-value, median test
XP2_MED * Exact p-value (two-sided), median test
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Table 71.5 continued

Output Option Output Variables Variable Descriptions

MEDIAN _CHMED_ Median chi-square (Brown-Mood test)
DF_CHMED Degrees of freedom, median chi-square

P_CHMED p-value, median chi-square test
XP_CHMED ** Exact p-value, median chi-square test
XPT_CHME ** Exact point probability, median chi-square test

XMP_CHMED ** Exact mid p-value, median chi-square test

MOOD _MOOD_ * Two-sample Mood statistic
Z_MOOD * Mood statistic, standardized

PL_MOOD * p-value (left-sided), Mood test
PR_MOOD * p-value (right-sided), Mood test
P2_MOOD * p-value (two-sided), Mood test

XPL_MOOD * Exact p-value (left-sided), Mood test
XPR_MOOD * Exact p-value (right-sided), Mood test
XPT_MOOD * Exact point probability, Mood test

XMP_MOOD * Exact mid p-value, Mood test
XP2_MOOD * Exact p-value (two-sided), Mood test

_CHMOOD_ Mood chi-square
DF_CHMOO Degrees of Freedom, Mood chi-square
P_CHMOOD p-value, Mood chi-square test
XP_CHMOO ** Exact p-value, Mood chi-square test
XPT_CHMO ** Exact point probability, Mood chi-square test

XMP_CHMOOD ** Exact mid p-value, Mood chi-square test

SAVAGE _SAV_ * Two-sample Savage statistic
Z_SAV * Savage statistic, standardized

PL_SAV * p-value (left-sided), Savage test
PR_SAV * p-value (right-sided), Savage test
P2_SAV * p-value (two-sided), Savage test

XPL_SAV * Exact p-value (left-sided), Savage test
XPR_SAV * Exact p-value (right-sided), Savage test
XPT_SAV * Exact point probability, Savage test

XMP_SAV * Exact mid p-value, Savage test
XP2_SAV * Exact p-value (two-sided), Savage test

_CHSAV_ Savage chi-square
DF_CHSAV Degrees of freedom, Savage chi-square

P_CHSAV p-value, Savage chi-square test
XP_CHSAV ** Exact p-value, Savage chi-square test
XPT_CHSA ** Exact point probability, Savage chi-square test

XMP_CHSAV ** Exact mid p-value, Savage chi-square test
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Table 71.5 continued

Output Option Output Variables Variable Descriptions

SCORES=DATA _DATA_ * Two-sample data scores statistic
Z_DATA * Data scores statistic, standardized

PL_DATA * p-value (left-sided), data scores test
PR_DATA * p-value (right-sided), data scores test
P2_DATA * p-value (two-sided), data scores test

XPL_DATA * Exact p-value (left-sided), data scores test
XPR_DATA * Exact p-value (right-sided), data scores test
XPT_DATA * Exact point probability, data scores test

XMP_DATA * Exact mid p-value, data scores test
XP2_DATA * Exact p-value (two-sided), data scores test

_CHDATA_ Data scores chi-square
DF_CHDAT Degrees of freedom, data scores chi-square
P_CHDATA p-value, data scores chi-square test
XP_CHDAT ** Exact p-value, data scores chi-square test
XPT_CHDA ** Exact point probability, data scores chi-square test

XMP_CHDATA ** Exact mid p-value, data scores chi-square test

ST _ST_ * Two-sample Siegel-Tukey statistic
Z_ST * Siegel-Tukey statistic, standardized

PL_ST * p-value (left-sided), Siegel-Tukey test
PR_ST * p-value (right-sided), Siegel-Tukey test
P2_ST * p-value (two-sided), Siegel-Tukey test

XPL_ST * Exact p-value (left-sided), Siegel-Tukey test
XPR_ST * Exact p-value (right-sided), Siegel-Tukey test
XPT_ST * Exact point probability, Siegel-Tukey test

XMP_ST * Exact mid p-value, Siegel-Tukey test
XP2_ST * Exact p-value (two-sided), Siegel-Tukey test

_CHST_ Siegel-Tukey chi-square
DF_CHST Degrees of freedom, Siegel-Tukey chi-square

P_CHST p-value, Siegel-Tukey chi-square test
XP_CHST ** Exact p-value, Siegel-Tukey chi-square test

XPT_CHST ** Exact point probability, Siegel-Tukey chi-square test
XMP_CHST ** Exact mid p-value, Siegel-Tukey chi-square test

VW | NORMAL _VW_ * Two-sample Van der Waerden statistic
Z_VW * Van der Waerden statistic, standardized

PL_VW * p-value (left-sided), Van der Waerden test
PR_VW * p-value (right-sided), Van der Waerden test
P2_VW * p-value (two-sided), Van der Waerden test

XPL_VW * Exact p-value (left-sided), Van der Waerden test
XPR_VW * Exact p-value (right-sided), Van der Waerden test
XPT_VW * Exact point probability, Van der Waerden test

XMP_VW * Exact mid p-value, Van der Waerden test
XP2_VW * Exact p-value (two-sided), Van der Waerden test
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Table 71.5 continued

Output Option Output Variables Variable Descriptions

VW | NORMAL _CHVW_ Van der Waerden chi-square
DF_CHVW Degrees of freedom, Van der Waerden chi-square

P_CHVW p-value, Van der Waerden chi-square test
XP_CHVW ** Exact p-value, Van der Waerden chi-square test

XPT_CHVW ** Exact point probability, Van der Waerden chi-square test
XMP_CHVW ** Exact mid p-value, Van der Waerden chi-square test

WILCOXON _WIL_ * Two-sample Wilcoxon statistic
Z_WIL * Wilcoxon statistic, standardized

PL_WIL * p-value (left-sided), Wilcoxon test
PR_WIL * p-value (right-sided), Wilcoxon test
P2_WIL * p-value (two-sided), Wilcoxon test

PTL_WIL * p-value (left-sided), Wilcoxon t approximation
PTR_WIL * p-value (right-sided), Wilcoxon t approximation
PT2_WIL * p-value (two-sided), Wilcoxon t approximation
XPL_WIL * Exact p-value (left-sided), Wilcoxon test
XPR_WIL * Exact p-value (right-sided), Wilcoxon test
XPT_WIL * Exact point probability, Wilcoxon test

XMP_WIL * Exact mid p-value, Wilcoxon test
XP2_WIL * Exact p-value (two-sided), Wilcoxon test

_KW_ Kruskal-Wallis statistic
DF_KW Degrees of freedom, Kruskal-Wallis test

P_KW p-value, Kruskal-Wallis test
XP_KW ** Exact p-value, Kruskal-Wallis test

XPT_KW ** Exact point probability, Kruskal-Wallis test
XMP_KW ** Exact mid p-value, Kruskal-Wallis test

�Statistic included only for two-sample cases.
��Statistic included only for multisample cases.

Displayed Output
If you specify the ANOVA option, PROC NPAR1WAY displays a “Class Means” table and an “Analysis of
Variance” table for each response variable. The “Class Means” table includes the following information for
each CLASS variable value (level):

• N, which is the number of observations

• Mean of the response variable
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The “Analysis of Variance” table includes the following information for each Source of variation (Among
classes and Within classes):

• DF, which is the degrees of freedom associated with the source

• Sum of Squares

• Mean Square, which is the sum of squares divided by the degrees of freedom

The “Analysis of Variance” table also includes the following:

• F Value for testing the hypothesis that the class means are equal, which is computed by dividing the
Mean Square (Among) by the Mean Square (Within)

• Pr > F, which is the significance probability corresponding to the F Value

For each score type that you specify, PROC NPAR1WAY displays a “Class Scores” table. The available score
types include Wilcoxon, median, Van der Waerden (normal), Savage, Siegel-Tukey, Ansari-Bradley, Klotz,
Mood, Conover, and raw data scores. PROC NPAR1WAY computes the scores for the response variable
values and classifies the scored observations according to the CLASS variable values. The “Class Scores”
table includes the following information for each CLASS variable level:

• N, which is the number of observations

• Sum of Scores

• Expected Under H0, which is the expected sum of scores under the null hypothesis of no difference
among classes

• Std Dev Under H0, which is the standard deviation under the null hypothesis

• Mean Score

When there are two levels of the CLASS variable, PROC NPAR1WAY displays a “Two-Sample Test” table
for each analysis of scores. The “Two-Sample Test” table includes the following information:

• Statistic, which is the sum of scores for the class with the smaller sample size

• Z, which is the standardized test statistic and has an asymptotic standard normal distribution under the
null hypothesis

• One-Sided Pr < Z or One-Sided Pr > Z, which is the asymptotic one-sided p-value. This is displayed
as Pr < Z or Pr > Z, depending on whether Z is � 0 or > 0.

• Two-Sided Pr > |Z|, which is the asymptotic two-sided p-value
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For Wilcoxon scores, the “Two-Sample Test” table also includes a t Approximation for the Wilcoxon
two-sample test.

If you request an exact test by specifying the score type in the EXACT statement, the “Two-Sample Test”
table also includes the following exact p-values:

• One-Sided Pr � S or One-Sided Pr � S, which is the exact one-sided p-value. This is displayed as
Pr � S or Pr � S, depending on whether S �Mean or S > Mean, where S is the test statistic and Mean
is its expected value under the null hypothesis.

• Point Pr = S, which is the exact point probability. This is displayed if you specify the POINT option in
the EXACT statement.

• Mid p-Value, which is displayed if you specify the MIDP option in the EXACT statement

• Two-Sided Pr � |S - Mean|, which is the exact two-sided p-value

If you request Monte Carlo estimates for a two-sample exact test by specifying the MC option in the EXACT
statement, PROC NPAR1WAY displays the “Monte Carlo Estimates for the Exact Test” table, which includes
the following information:

• Estimate of One-Sided Pr � S or One-Sided Pr � S, which is the exact one-sided p-value, together
with its Lower and Upper Confidence Limits

• Estimate of Two-Sided Pr � |S - Mean|, which is the exact two-sided p-value, together with its Lower
and Upper Confidence Limits

• Number of Samples used to compute the Monte Carlo estimates

• Initial Seed used to compute the Monte Carlo estimates

For both two-sample and multisample data, PROC NPAR1WAY displays a “One-Way Analysis” table, which
includes the following information:

• Chi-Square, which is the one-way ANOVA statistic for testing the null hypothesis of no difference
among classes

• DF, which is the degrees of freedom

• Pr > Chi-Square, which is the asymptotic p-value

For multisample data, if you request an exact test by specifying the score type in the EXACT statement, the
“One-Way Analysis” table also displays the exact p-value as follows:

• Exact Pr � Chi-Square

• Exact Pr = Chi-Square, which is the point probability. This is displayed if you specify the POINT
option in the EXACT statement.

• Exact Mid p-Value, which is displayed if you specify the MIDP option in the EXACT statement
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For multisample data, if you specify the MC option in the EXACT statement, PROC NPAR1WAY displays
the following information in the “Monte Carlo Estimate for the Exact Test” table:

• Estimate of Exact Pr � Chi-Square, together with its Lower and Upper Confidence Limits

• Number of Samples used to compute the Monte Carlo estimate

• Initial Seed used to compute the Monte Carlo estimate

If you specify the HL option for two-sample data, PROC NPAR1WAY produces a “Hodges-Lehmann
Estimation” table, which includes the following information:

• Location Shift estimate

• Confidence Limits for the Location Shift

• Confidence Interval Midpoint

• Asymptotic Standard Error estimate, which is based on the confidence interval

If you request exact Hodges-Lehmann confidence limits by specifying the HL option in the EXACT statement,
the “Hodges-Lehmann Estimation” table also includes Exact Confidence Limits and the exact Interval
Midpoint.

If you specify the FP option for two-sample data, PROC NPAR1WAY produces the “Fligner-Policello
Placements” table and the “Fligner-Policello Test” table. The “Fligner-Policello Placements” table includes
the following information for each CLASS variable level:

• N, which is the number of observations

• Sum, which is the sum of the placements

• Mean, which is the average placement

• Std Dev, which is the standard deviation of the placements

The “Fligner-Policello Test” table includes the following information:

• Difference, which is the difference in placement sums between the two CLASS levels (samples)

• Statistic (Z), which is the standardized test statistic and has an asymptotic standard normal distribution
under the null hypothesis

• One-Sided Pr < Z or One-Sided Pr > Z, which is the one-sided p-value. This is displayed as Pr < Z or
Pr > Z, depending on whether Z is � 0 or > 0.

• Two-Sided Pr > |Z|, which is the two-sided p-value
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If you specify the DSCF option for multisample data, PROC NPAR1WAY produces the “Pairwise Two-
Sided Multiple Comparison Analysis” table, which includes the following information for each two-sample
comparison:

• Comparison, which identifies the two CLASS levels that are compared

• Wilcoxon Z, which is the standardized two-sample Wilcoxon statistic

• DSCF Value, which is the Dwass, Steel, Critchlow-Fligner statistic

• Pr > DSCF, which is the two-sided p-value

If you specify the EDF option, PROC NPAR1WAY produces tables for the Kolmogorov-Smirnov test, the
Cramér–von Mises test, and for two-sample data only, the Kuiper test.

The “Kolmogorov-Smirnov Test” table includes the following information for each CLASS variable level:

• N, which is the number of observations

• EDF at Maximum, which is the value of the class EDF (empirical distribution function) at its maximum
deviation from the pooled EDF

• Deviation from Mean at Maximum, which is the value of
p
ni
p
Fi � F at its maximum, where ni is

the class sample size, Fi is the class EDF, and F is the pooled EDF

The “Kolmogorov-Smirnov Test” table displays the following statistics:

• KS, which is the Kolmogorov-Smirnov statistic

• KSa, which is the asymptotic Kolmogorov-Smirnov statistic, KSa =
p
n KS

For two-sample data, the “Kolmogorov-Smirnov Test” table also displays the following statistics:

• Pr > KSa, which is the asymptotic p-value for KSa and equals Pr > D

• D, which is the two-sample Kolmogorov-Smirnov statistic, maxj jF1.xj / � F2.xj /j

If you specify the D option for two-sample data, PROC NPAR1WAY displays the following one-sided
Kolmogorov-Smirnov statistics and their asymptotic p-values in the “Kolmogorov-Smirnov Two-Sample
Test” table:

• D+, which is maxj .F1.xj / � F2.xj //

• Pr > D+

• D-, which is maxj .F2.xj / � F1.xj //

• Pr > D-
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For two-sample data, if you request exact Kolmogorov-Smirnov tests by specifying the KS option in the
EXACT statement, PROC NPAR1WAY displays the following exact p-values in the “Kolmogorov-Smirnov
Two-Sample Test” table:

• Exact Pr � D

• Exact Pr � D+

• Exact Pr � D-

• Exact Point Pr = D, Exact Point Pr = D+, and Exact Point Pr = D-, if you specify the POINT option in
the EXACT statement

• Exact Mid p-Values for D, D+, and D-, if you specify the MIDP option in the EXACT statement

If you request Monte Carlo estimates for the two-sample exact Kolmogorov-Smirnov test, PROC NPAR1WAY
displays the following information in the “Kolmogorov-Smirnov Two-Sample Test” table:

• Estimate of Exact Pr � D, together with its Lower and Upper Confidence Limits

• Estimate of Exact Pr � D+, together with its Lower and Upper Confidence Limits

• Estimate of Exact Pr � D-, together with its Lower and Upper Confidence Limits

• Number of Samples used to compute the Monte Carlo estimates

• Initial Seed used to compute the Monte Carlo estimates

The “Cramér–von Mises Test” table includes the following information for each CLASS variable level:

• N, which is the number of observations

• Summed Deviation from Mean, which is .ni=n/
Pp
jD1 tj

�
Fi .xj / � F.xj /

�2
The “Cramér–von Mises Statistics” table displays the following statistics:

• CM, which is the Cramér–von Mises statistic

• CMa, which is the asymptotic Cramér–von Mises statistic, CMa = n CM

For two-sample data, PROC NPAR1WAY displays the “Kuiper Test” table, which includes the following
information for each CLASS variable level:

• N, which is the number of observations

• Deviation from Mean, which is maxj jF1.xj / � F2.xj /j

The “Kuiper Two-Sample Statistics” table displays the following statistics:

• K, which is the Kuiper two-sample test statistic

• Ka, which is the asymptotic Kuiper two-sample test statistic, Ka = K
p
n1n2=n

• Pr > Ka
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ODS Table Names
PROC NPAR1WAY assigns a name to each table that it creates. You can use these names to refer to tables
when you use the Output Delivery System (ODS) to select tables and create output data sets. For more
information about ODS, see Chapter 20, “Using the Output Delivery System.”

Table 71.6 lists the ODS table names together with their descriptions and the options required to produce
the tables. If you do not specify any analysis options in the PROC NPAR1WAY statement, the procedure
provides the ANOVA, WILCOXON, MEDIAN, VW (NORMAL), SAVAGE, and EDF analyses by default.

Table 71.6 ODS Tables Produced by PROC NPAR1WAY

ODS Table Name Description Statement Option

ANOVA Analysis of variance PROC ANOVA
ABAnalysis Ansari-Bradley one-way analysis PROC AB
ABMC Monte Carlo estimates for the

Ansari-Bradley exact test
EXACT AB / MC

ABScores Ansari-Bradley scores PROC AB
ABTest� Ansari-Bradley two-sample test PROC AB
ClassMeans Class means PROC ANOVA
ConoverAnalysis Conover one-way analysis PROC CONOVER
ConoverMC Monte Carlo estimates for the

Conover exact test
EXACT CONOVER / MC

ConoverScores Conover scores PROC CONOVER
ConoverTest� Conover two-sample test PROC CONOVER
CVMStats Cramér–von Mises statistics PROC EDF
CVMTest Cramér–von Mises test PROC EDF
DataScores Data scores PROC SCORES=DATA
DataScoresAnalysis Data scores one-way analysis PROC SCORES=DATA
DataScoresMC Monte Carlo estimates for the

data scores exact test
EXACT SCORES=DATA / MC

DataScoresTest� Data scores two-sample test PROC SCORES=DATA
DSCF�� DSCF multiple comparison analysis PROC DSCF
FPPlacements� Fligner-Policello placements PROC FP
FPTest� Fligner-Policello test PROC FP
HodgesLehmann� Hodges-Lehmann estimation PROC HL
KlotzAnalysis Klotz one-way analysis PROC KLOTZ
KlotzMC Monte Carlo estimates for the

Klotz exact test
EXACT KLOTZ / MC

KlotzScores Klotz scores PROC KLOTZ
KlotzTest� Klotz two-sample test PROC KLOTZ
KruskalWallisMC�� Monte Carlo estimates for the

Kruskal-Wallis exact test
EXACT WILCOXON / MC

KruskalWallisTest Kruskal-Wallis test PROC WILCOXON
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Table 71.6 continued

ODS Table Name Description Statement Option

KS2Stats� Kolmogorov-Smirnov two-sample
statistics

PROC EDF

KSExactTest� Kolmogorov-Smirnov exact test EXACT KS | EDF
KSMC� Monte Carlo estimates for the

Kolmogorov-Smirnov exact test
EXACT KS | EDF / MC

KSStats�� Kolmogorov-Smirnov statistics PROC EDF
KSTest Kolmogorov-Smirnov test PROC EDF
KuiperStats� Kuiper two-sample statistics PROC EDF
KuiperTest� Kuiper test PROC EDF
MedianAnalysis Median one-way analysis PROC MEDIAN
MedianMC Monte Carlo estimates for the

median exact test
EXACT MEDIAN / MC

MedianScores Median scores PROC MEDIAN
MedianTest� Median two-sample test PROC MEDIAN
MoodAnalysis Mood one-way analysis PROC MOOD
MoodMC Monte Carlo estimates for the

Mood exact test
EXACT MOOD / MC

MoodScores Mood scores PROC MOOD
MoodTest� Mood two-sample test PROC MOOD
SavageAnalysis Savage one-way analysis PROC SAVAGE
SavageMC Monte Carlo estimates for the

Savage exact test
EXACT SAVAGE / MC

SavageScores Savage scores PROC SAVAGE
SavageTest� Savage two-sample test PROC SAVAGE
STAnalysis Siegel-Tukey one-way analysis PROC ST
STMC Monte Carlo estimates for the

Siegel-Tukey exact test
EXACT ST / MC

STScores Siegel-Tukey scores PROC ST
STTest� Siegel-Tukey two-sample test PROC ST
VWAnalysis Van der Waerden one-way analysis PROC VW | NORMAL
VWMC Monte Carlo estimates for the

Van der Waerden exact test
EXACT VW | NORMAL / MC

VWScores Van der Waerden scores PROC VW | NORMAL
VWTest� Van der Waerden two-sample test PROC VW | NORMAL
WilcoxonMC� Monte Carlo estimates for the

Wilcoxon two-sample exact test
EXACT WILCOXON / MC

WilcoxonScores Wilcoxon scores PROC WILCOXON
WilcoxonTest� Wilcoxon two-sample test PROC WILCOXON
�PROC NPAR1WAY produces this table only for two-sample data.
��PROC NPAR1WAY produces this table only for multisample data.
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ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

When ODS Graphics is enabled, you can request specific plots with the PLOTS= option in the PROC
NPAR1WAY statement. If you do not specify the PLOTS= option but have enabled ODS Graphics, PROC
NPAR1WAY produces all plots that are associated with the analyses that you request.

PROC NPAR1WAY assigns a name to each graph that it creates with ODS Graphics. You can use these
names to refer to the graphs. Table 71.7 lists the names of the graphs that PROC NPAR1WAY generates
together with their descriptions and the options that are required to produce the graphs.

Table 71.7 Graphs Produced by PROC NPAR1WAY

ODS Graph Name Description Option

ABBoxPlot Box plot of Ansari-Bradley scores AB
ANOVABoxPlot Box plot of raw data ANOVA
ConoverBoxPlot Box plot of Conover scores CONOVER
DataScoresBoxPlot Box plot of data scores SCORES=DATA
EDFPlot Empirical distribution function plot EDF
FPBoxPlot Box plot of Fligner-Policello placements FP
KlotzBoxPlot Box plot of Klotz scores KLOTZ
MedianPlot Median plot MEDIAN
MoodBoxPlot Box plot of Mood scores MOOD
SavageBoxPlot Box plot of Savage scores SAVAGE
STBoxPlot Box plot of Siegel-Tukey scores ST
VWBoxPlot Box plot of Van der Waerden scores VW | NORMAL
WilcoxonBoxPlot Box plot of Wilcoxon scores WILCOXON
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Examples: NPAR1WAY Procedure

Example 71.1: Two-Sample Location Tests and Plots
Fifty-nine female patients with rheumatoid arthritis who participated in a clinical trial were assigned to two
groups, active and placebo. The response status (excellent=5, good=4, moderate=3, fair=2, poor=1) of each
patient was recorded.

The following SAS statements create the data set Arthritis, which contains the observed status values for all
the patients. The variable Treatment denotes the treatment received by a patient, and the variable Response
contains the response status of the patient. The variable Freq contains the frequency of the observation, which
is the number of patients with the Treatment and Response combination.

data Arthritis;
input Treatment $ Response Freq @@;
datalines;

Active 5 5 Active 4 11 Active 3 5 Active 2 1 Active 1 5
Placebo 5 2 Placebo 4 4 Placebo 3 7 Placebo 2 7 Placebo 1 12
;

The following PROC NPAR1WAY statements test the null hypothesis that there is no difference in the patient
response status against the alternative hypothesis that the patient response status differs in the two treatment
groups. The WILCOXON option requests the Wilcoxon test for difference in location, and the MEDIAN
option requests the median test for difference in location. The variable Treatment is the CLASS variable, and
the VAR statement specifies that the variable Response is the analysis variable.

The PLOTS= option requests a box plot of the Wilcoxon scores and a median plot for Response classified by
Treatment. ODS Graphics must be enabled before producing plots.

ods graphics on;
proc npar1way data=Arthritis wilcoxon median

plots=(wilcoxonboxplot medianplot);
class Treatment;
var Response;
freq Freq;

run;
ods graphics off;
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Output 71.1.1 shows the results of the Wilcoxon analysis. The Wilcoxon two-sample test statistic equals
999.0, which is the sum of the Wilcoxon scores for the smaller sample (Active). This sum is greater than
810.0, which is the expected value under the null hypothesis of no difference between the two samples,
Active and Placebo. The one-sided p-value is 0.0016, which indicates that the patient response for the Active
treatment is significantly more than for the Placebo group.

Output 71.1.1 Wilcoxon Two-Sample Test

The NPAR1WAY ProcedureThe NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable Response
Classified by Variable Treatment

Treatment N
Sum of
Scores

Expected
Under H0

Std Dev
Under H0

Mean
Score

Active 27 999.0 810.0 63.972744 37.000000

Placebo 32 771.0 960.0 63.972744 24.093750

Average scores were used for ties.

Wilcoxon Two-Sample Test

Statistic 999.0000

Normal Approximation

Z 2.9466

One-Sided Pr >  Z 0.0016

Two-Sided Pr > |Z| 0.0032

t Approximation

One-Sided Pr >  Z 0.0023

Two-Sided Pr > |Z| 0.0046

Z includes a continuity correction of 0.5.

Kruskal-Wallis Test

Chi-Square 8.7284

DF 1

Pr > Chi-Square 0.0031

Output 71.1.2 displays the box plot of Wilcoxon scores classified by Treatment, which corresponds to the
Wilcoxon analysis in Output 71.1.1. To remove the p-values from the box plot display, you can specify the
NOSTATS plot option in parentheses after the WILCOXONBOXPLOT option.
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Output 71.1.2 Box Plot of Wilcoxon Scores

Output 71.1.3 shows the results of the median two-sample test. The test statistic equals 18.9167, and its
standardized Z value is 3.2667. The one-sided p-value Pr > Z equals 0.0005. This supports the alternative
hypothesis that the effect of the Active treatment is greater than that of the Placebo.

Output 71.1.4 displays the median plot for the analysis of Response classified by Treatment. The median
plot is a stacked bar chart showing the frequencies above and below the overall median. This plot corresponds
to the median scores analysis in Output 71.1.3.
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Output 71.1.3 Median Two-Sample Test

Median Scores (Number of Points Above Median) for Variable Response
Classified by Variable Treatment

Treatment N
Sum of
Scores

Expected
Under H0

Std Dev
Under H0

Mean
Score

Active 27 18.916667 13.271186 1.728195 0.700617

Placebo 32 10.083333 15.728814 1.728195 0.315104

Average scores were used for ties.

Median Two-Sample Test

Statistic 18.9167

Z 3.2667

One-Sided Pr >  Z 0.0005

Two-Sided Pr > |Z| 0.0011

Median One-Way
Analysis

Chi-Square 10.6713

DF 1

Pr > Chi-Square 0.0011

Output 71.1.4 Median Plot
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Example 71.2: EDF Statistics and EDF Plot
This example uses the SAS data set Arthritis created in Example 71.1. The data set contains the variable
Treatment, which denotes the treatment received by a patient, and the variable Response, which contains
the response status of the patient. The variable Freq contains the frequency of the observation, which is the
number of patients with the Treatment and Response combination.

The following statements request empirical distribution function (EDF) statistics, which test whether the
distribution of a variable is the same across different groups. The EDF option requests the EDF analysis. The
variable Treatment is the CLASS variable, and the variable Response specified in the VAR statement is the
analysis variable. The FREQ statement names Freq as the frequency variable.

The PLOTS= option requests an EDF plot for Response classified by Treatment. ODS Graphics must be
enabled before producing plots.

ods graphics on;
proc npar1way edf plots=edfplot data=Arthritis;

class Treatment;
var Response;
freq Freq;

run;
ods graphics off;

Output 71.2.1 shows EDF statistics that compare the two levels of Treatment, Active and Placebo. The
asymptotic p-value for the Kolmogorov-Smirnov test is 0.0164. This supports rejection of the null hypothesis
that the distributions are the same for the two samples.

Output 71.2.2 shows the EDF plot for Response classified by Treatment.

Output 71.2.1 Empirical Distribution Function Statistics

The NPAR1WAY ProcedureThe NPAR1WAY Procedure

Kolmogorov-Smirnov Test for Variable Response
Classified by Variable Treatment

Treatment N
EDF at

Maximum
Deviation from Mean

at Maximum

Active 27 0.407407 -1.141653

Placebo 32 0.812500 1.048675

Total 59 0.627119

Maximum Deviation Occurred at Observation 3

Value of Response at Maximum = 3.0

Kolmogorov-Smirnov Two-Sample
Test (Asymptotic)

KS 0.201818 D 0.405093

KSa 1.550191 Pr > KSa 0.0164
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Output 71.2.2 Empirical Distribution Function Plot

Example 71.3: Exact Wilcoxon Two-Sample Test
Researchers conducted an experiment to compare the effects of two stimulants. Thirteen randomly selected
subjects received the first stimulant, and six randomly selected subjects received the second stimulant. The
reaction times (in minutes) were measured while the subjects were under the influence of the stimulants.

The following SAS statements create the data set React, which contains the observed reaction times for each
stimulant. The variable Stim represents Stimulant 1 or 2. The variable Time contains the reaction times
observed for subjects under the stimulant.

data React;
input Stim Time @@;
datalines;

1 1.94 1 1.94 1 2.92 1 2.92 1 2.92 1 2.92 1 3.27
1 3.27 1 3.27 1 3.27 1 3.70 1 3.70 1 3.74
2 3.27 2 3.27 2 3.27 2 3.70 2 3.70 2 3.74
;

The following statements request a Wilcoxon test of the null hypothesis that there is no difference between
the effects of the two stimulants. Stim is the CLASS variable, and Time is the analysis variable. The
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WILCOXON option requests an analysis of Wilcoxon scores. The CORRECT=NO option removes the
continuity correction from the computation of the standardized z test statistic. The WILCOXON option in
the EXACT statement requests exact p-values for the Wilcoxon test. Because the sample size is small, the
large-sample normal approximation might not be adequate, and it is appropriate to compute the exact test.
These statements produce the results shown in Output 71.3.1.

proc npar1way wilcoxon correct=no data=React;
class Stim;
var Time;
exact wilcoxon;

run;

Output 71.3.1 displays the results of the Wilcoxon two-sample test. The Wilcoxon statistic equals 79.50.
Since this value is greater than 60.0, the expected value under the null hypothesis, PROC NPAR1WAY
displays the right-sided p-values. The normal approximation for the Wilcoxon two-sample test yields a
one-sided p-value of 0.0382 and a two-sided p-value of 0.0764. For the exact Wilcoxon test, the one-sided
p-value is 0.0527, and the two-sided p-value is 0.1054.

Output 71.3.1 Wilcoxon Two-Sample Test

The NPAR1WAY ProcedureThe NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable Time
Classified by Variable Stim

Stim N
Sum of
Scores

Expected
Under H0

Std Dev
Under H0

Mean
Score

1 13 110.50 130.0 11.004784 8.500

2 6 79.50 60.0 11.004784 13.250

Average scores were used for ties.

Wilcoxon Two-Sample Test

Statistic (S) 79.5000

Normal Approximation

Z 1.7720

One-Sided Pr >  Z 0.0382

Two-Sided Pr > |Z| 0.0764

t Approximation

One-Sided Pr >  Z 0.0467

Two-Sided Pr > |Z| 0.0933

Exact Test

One-Sided Pr >=  S 0.0527

Two-Sided Pr >= |S - Mean| 0.1054

Kruskal-Wallis Test

Chi-Square 3.1398

DF 1

Pr > Chi-Square 0.0764
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Example 71.4: Hodges-Lehmann Estimation
This example uses the SAS data set React created in Example 71.3. The data set contains the variable Stim,
which represents Stimulant 1 or 2, and the variable Time, which contains the reaction times observed for
subjects under the stimulant.

The following statements request Hodges-Lehmann estimation of the location shift between the two groups.
Stim is the CLASS variable, and Time is the analysis variable. The HL option requests Hodges-Lehmann
estimation. The ALPHA= option sets the confidence level for the Hodges-Lehmann confidence limits. The
HL option in the EXACT statement requests exact confidence limits for the estimate of location shift. The
ODS SELECT statement selects which tables to display. Output 71.4.1 shows the Hodges-Lehmann results.

proc npar1way hl alpha=.02 data=React;
class Stim;
var Time;
exact hl;
ods select WilcoxonScores HodgesLehmann;

run;

The HL option invokes the WILCOXON option, which produces a table of Wilcoxon scores (Output 71.4.1).
The Hodges-Lehmann estimate of location shift is 0.35, and the asymptotic confidence limits are 0.00 and
0.82. The confidence interval midpoint equals 0.41, which can also be used as an estimate of the location
shift. The ASE estimate of 0.1762 is based on the length of the confidence interval. The exact confidence
limits are 0.00 and 1.33.

Output 71.4.1 Hodges-Lehmann Estimate of Location Shift

The NPAR1WAY ProcedureThe NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable Time
Classified by Variable Stim

Stim N
Sum of
Scores

Expected
Under H0

Std Dev
Under H0

Mean
Score

1 13 110.50 130.0 11.004784 8.500

2 6 79.50 60.0 11.004784 13.250

Average scores were used for ties.

Hodges-Lehmann Estimation

Location Shift (2 - 1)    0.3500

Type

98%
Confidence

Limits
Interval

Midpoint
Asymptotic

Standard Error

Asymptotic (Moses) 0.0000 0.8200 0.4100 0.1762

Exact 0.0000 1.3300 0.6650

Example 71.5: Exact Savage Multisample Test
A researcher conducting a laboratory experiment randomly assigned 15 mice to receive one of three drugs.
The survival time (in days) was then recorded.
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The following SAS statements create the data set Mice, which contains the observed survival times for the
mice. The variable Treatment denotes the treatment received. The variable Days contains the number of days
the mouse survived.

data Mice;
input Treatment $ Days @@;
datalines;

1 1 1 1 1 3 1 3 1 4
2 3 2 4 2 4 2 4 2 15
3 4 3 4 3 10 3 10 3 26
;

The following statements request a Savage test of the null hypothesis that there is no difference in survival
time among the three drugs. Treatment is the CLASS variable, and Days is the analysis variable. The
SAVAGE option requests an analysis of Savage scores. The SAVAGE option in the EXACT statement
requests exact p-values for the Savage test. Because the sample size is small, the large-sample normal
approximation might not be adequate, and it is appropriate to compute the exact test.

PROC NPAR1WAY tests the null hypothesis that there is no difference in the survival times among the three
drugs against the alternative hypothesis of difference among the drugs. The SAVAGE option specifies an
analysis based on Savage scores. The variable Treatment is the CLASS variable, and the variable Days is the
response variable. The EXACT statement requests the exact Savage test.

proc npar1way savage data=Mice;
class Treatment;
var Days;
exact savage;

run;

Output 71.5.1 shows the results of the Savage test. The exact p-value is 0.0445, which supports a difference
in survival times among the drugs at the 0.05 level. The asymptotic p-value based on the chi-square
approximation is 0.0638.

Output 71.5.1 Savage Multisample Exact Test

The NPAR1WAY ProcedureThe NPAR1WAY Procedure

Savage Scores (Exponential) for Variable Days
Classified by Variable Treatment

Treatment N
Sum of
Scores

Expected
Under H0

Std Dev
Under H0

Mean
Score

1 5 -3.367980 0.0 1.634555 -0.673596

2 5 0.095618 0.0 1.634555 0.019124

3 5 3.272362 0.0 1.634555 0.654472

Average scores were used for ties.

Savage One-Way Analysis

Chi-Square 5.5047

DF 2

Asymptotic Pr >  Chi-Square 0.0638

Exact      Pr >= Chi-Square 0.0445
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Overview: ORTHOREG Procedure
The ORTHOREG procedure fits general linear models by the method of least squares. Other SAS/STAT
software procedures, such as the GLM and REG procedures, fit the same types of models, but PROC
ORTHOREG can produce more accurate estimates than other regression procedures when your data are
ill-conditioned. Instead of collecting crossproducts, PROC ORTHOREG uses Gentleman-Givens transforma-
tions to update and compute the upper triangular matrix R of the QR decomposition of the data matrix, with
special care for scaling (Gentleman 1972, 1973). This method has the advantage over other orthogonalization
methods (for example, Householder transformations) of not requiring the data matrix to be stored in memory.

The standard SAS regression procedures (PROC REG and PROC GLM) are very accurate for most problems.
However, if you have very ill-conditioned data, these procedures can produce estimates that yield an error
sum of squares very close to the minimum but still different from the exact least squares estimates. Normally,
this coincides with estimates that have very high standard errors. In other words, the numerical error is much
smaller than the statistical standard error.

PROC ORTHOREG fits models by the method of linear least squares, minimizing the sum of the squared
residuals for predicting the responses—that is, the distance between the regression line and the observed
Ys. The “ORTHO” in the name of the procedure refers to the orthogonalization approach to solving the
least squares equations. In particular, PROC ORTHOREG does not perform the modeling method known as
“orthogonal regression,” which minimizes a different criterion (namely, the distance between the regression
line and the X/Y points taken together.)

Getting Started: ORTHOREG Procedure

Longley Data
The labor statistics data set of Longley (1967) is noted for being ill-conditioned. Both the ORTHOREG and
GLM procedures are applied for comparison (only portions of the PROC GLM results are shown).

NOTE: The results from this example vary from machine to machine, depending on floating-point configura-
tion.

The following statements read the data into the SAS data set Longley:

title 'PROC ORTHOREG used with Longley data';
data Longley;

input Employment Prices GNP Jobless Military PopSize Year;
datalines;

60323 83.0 234289 2356 1590 107608 1947
61122 88.5 259426 2325 1456 108632 1948
60171 88.2 258054 3682 1616 109773 1949
61187 89.5 284599 3351 1650 110929 1950
63221 96.2 328975 2099 3099 112075 1951
63639 98.1 346999 1932 3594 113270 1952
64989 99.0 365385 1870 3547 115094 1953
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63761 100.0 363112 3578 3350 116219 1954
66019 101.2 397469 2904 3048 117388 1955
67857 104.6 419180 2822 2857 118734 1956
68169 108.4 442769 2936 2798 120445 1957
66513 110.8 444546 4681 2637 121950 1958
68655 112.6 482704 3813 2552 123366 1959
69564 114.2 502601 3931 2514 125368 1960
69331 115.7 518173 4806 2572 127852 1961
70551 116.9 554894 4007 2827 130081 1962
;

The data set contains one dependent variable, Employment (total derived employment), and six independent
variables: Prices (GNP implicit price deflator normalized to the value 100 in 1954), GNP (gross national
product), Jobless (unemployment), Military (size of armed forces), PopSize (noninstitutional population aged
14 and over), and Year (year).

The following statements use the ORTHOREG procedure to model the Longley data by using a quadratic
model in each independent variable, without interaction:

proc orthoreg data=Longley;
model Employment = Prices Prices*Prices

GNP GNP*GNP
Jobless Jobless*Jobless
Military Military*Military
PopSize PopSize*PopSize
Year Year*Year;

run;

Figure 72.1 shows the resulting analysis.

Figure 72.1 PROC ORTHOREG Results

PROC ORTHOREG used with Longley data

The ORTHOREG Procedure

Dependent Variable: Employment

PROC ORTHOREG used with Longley data

The ORTHOREG Procedure

Dependent Variable: Employment

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 12 184864508.5 15405375.709 320.24 0.0003

Error 3 144317.49568 48105.831895

Corrected Total 15 185008826

Root MSE 219.33041717

R-Square 0.9992199426
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Figure 72.1 continued

Parameter DF Parameter Estimate
Standard

Error t Value Pr > |t|

Intercept 1 186931078.640216 154201839.66 1.21 0.3122

Prices 1 1324.50679362506 916.17455832 1.45 0.2440

Prices**2 1 -6.61923922845539 4.7891445654 -1.38 0.2609

GNP 1 -0.12768642156232 0.0738897784 -1.73 0.1824

GNP**2 1 3.1369569286212E-8 8.7167753E-8 0.36 0.7428

Jobless 1 -4.35507653558708 1.3851792402 -3.14 0.0515

Jobless**2 1 0.00022132944101 0.0001763541 1.26 0.2983

Military 1 4.91162014560828 1.826715856 2.69 0.0745

Military**2 1 -0.00113707146734 0.0003539971 -3.21 0.0489

PopSize 1 -0.0303997234299 5.9272538242 -0.01 0.9962

PopSize**2 1 -1.212511414607E-6 0.0000237262 -0.05 0.9625

Year 1 -194907.139041839 157739.28757 -1.24 0.3045

Year**2 1 50.8067603538501 40.279878943 1.26 0.2963

The estimates in Figure 72.1 compare very well with the best estimates available; for additional information,
see Longley (1967) and Beaton, Rubin, and Barone (1976).

The following statements request the same analysis from the GLM procedure:

proc glm data=Longley;
model Employment = Prices Prices*Prices

GNP GNP*GNP
Jobless Jobless*Jobless
Military Military*Military
PopSize PopSize*PopSize
Year Year*Year;

ods select OverallANOVA
FitStatistics
ParameterEstimates
Notes;

run;

Figure 72.2 contains the overall ANOVA table and the parameter estimates produced by PROC GLM. Notice
that the PROC ORTHOREG fit achieves a somewhat smaller root mean square error (RMSE) and also that
the GLM procedure detects spurious singularities.

Figure 72.2 Partial PROC GLM Results

PROC ORTHOREG used with Longley data

The GLM Procedure

Dependent Variable: Employment

PROC ORTHOREG used with Longley data

The GLM Procedure

Dependent Variable: Employment

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 11 184791061.6 16799187.4 308.58 <.0001

Error 4 217764.4 54441.1

Corrected Total 15 185008826.0
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Figure 72.2 continued

R-Square Coeff Var Root MSE Employment Mean

0.998823 0.357221 233.3262 65317.00

Parameter Estimate
Standard

Error t Value Pr > |t|

Intercept -3598851.899 B 1327335.652 -2.71 0.0535

Prices 523.802 688.979 0.76 0.4894

Prices*Prices -2.326 3.507 -0.66 0.5434

GNP -0.138 0.078 -1.76 0.1526

GNP*GNP 0.000 0.000 0.24 0.8218

Jobless -4.599 1.459 -3.15 0.0344

Jobless*Jobless 0.000 0.000 1.14 0.3183

Military 4.994 1.942 2.57 0.0619

Military*Military -0.001 0.000 -3.15 0.0346

PopSize -4.246 5.156 -0.82 0.4565

PopSize*PopSize 0.000 B 0.000 0.81 0.4655

Year 0.000 B . . .

Year*Year 1.038 0.419 2.48 0.0683

Note: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations.  Terms whose
estimates are followed by the letter 'B' are not uniquely estimable.

Syntax: ORTHOREG Procedure
The following statements are available in the ORTHOREG procedure:

PROC ORTHOREG < options > ;
CLASS variables < / option > ;
MODEL dependent-variable = independent-effects < / option > ;
BY variables ;
EFFECT name = effect-type (variables < / options >) ;
EFFECTPLOT < plot-type < (plot-definition-options) > > < / options > ;
ESTIMATE < 'label ' > estimate-specification < / options > ;
LSMEANS < model-effects > < / options > ;
LSMESTIMATE model-effect lsmestimate-specification < / options > ;
SLICE model-effect < / options > ;
STORE < OUT= >item-store-name < / LABEL='label ' > ;
TEST < model-effects > < / options > ;
WEIGHT variable ;

The BY, CLASS, MODEL, and WEIGHT statements are described in full after the PROC ORTHOREG
statement in alphabetical order. The EFFECT, EFFECTPLOT, ESTIMATE, LSMEANS, LSMESTIMATE,
SLICE, STORE, and TEST statements are common to many procedures. Summary descriptions of function-
ality and syntax for these statements are also given after the PROC ORTHOREG statement in alphabetical
order, and full documentation about them is available in Chapter 19, “Shared Concepts and Topics.”



5856 F Chapter 72: The ORTHOREG Procedure

PROC ORTHOREG Statement
PROC ORTHOREG < options > ;

The PROC ORTHOREG statement invokes the ORTHOREG procedure. Table 72.1 summarizes the options
available in the PROC ORTHOREG statement.

Table 72.1 PROC ORTHOREG Statement Options

Option Description

DATA= Specifies the input SAS data set
NOPRINT Suppresses the normal display of results
ORDER= Specifies the order in which to sort class levels
OUTEST= Produces an output data set
SINGULAR= Specifies the singularity criterion

The PROC ORTHOREG statement has the following options:

DATA=SAS-data-set
specifies the input SAS data set to use. By default, the procedure uses the most recently created SAS
data set. The data set specified cannot be a TYPE=CORR, TYPE=COV, or TYPE=SSCP data set.

NOPRINT
suppresses the normal display of results. This option temporarily disables the Output Delivery System
(ODS); see Chapter 20, “Using the Output Delivery System” for more information.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of the classification variables (which are specified in the CLASS
statement).

This ordering determines which parameters in the model correspond to each level in the data, so the
ORDER= option may be useful when you use ESTIMATE statement. This option applies to the levels
for all classification variables, except when you use the (default) ORDER=FORMATTED option with
numeric classification variables that have no explicit format. In that case, the levels of such variables
are ordered by their internal value.

The ORDER= option can take the following values:

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set

FORMATTED External formatted value, except for numeric variables with
no explicit format, which are sorted by their unformatted
(internal) value

FREQ Descending frequency count; levels with the most observa-
tions come first in the order

INTERNAL Unformatted value
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By default, ORDER=FORMATTED. For ORDER=FORMATTED and ORDER=INTERNAL, the sort
order is machine-dependent.

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

OUTEST=SAS-data-set
produces an output data set that contains the parameter estimates, the BY variables, and the special
variables _TYPE_ (value “PARMS”), _NAME_ (blank), and _RMSE_ (root mean squared error).

SINGULAR=s
specifies a singularity criterion .s � 0/ for the inversion of the triangular matrix R. By default,
SINGULAR=1E–12.

BY Statement
BY variables ;

You can specify a BY statement with PROC ORTHOREG to obtain separate analyses of observations in
groups that are defined by the BY variables. When a BY statement appears, the procedure expects the input
data set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last
one specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the ORTHOREG
procedure. The NOTSORTED option does not mean that the data are unsorted but rather that the
data are arranged in groups (according to values of the BY variables) and that these groups are not
necessarily in alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

CLASS Statement
CLASS variable < (REF= option) > . . . < variable < (REF= option) > > < / global-options > ;

The CLASS statement names the classification variables to be used in the model. Typical classification
variables are Treatment, Sex, Race, Group, and Replication. If you use the CLASS statement, it must appear
before the MODEL statement.

Classification variables can be either character or numeric. By default, class levels are determined from the
entire set of formatted values of the CLASS variables.
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NOTE: Prior to SAS 9, class levels were determined by using no more than the first 16 characters of the
formatted values. To revert to this previous behavior, you can use the TRUNCATE option in the CLASS
statement.

In any case, you can use formats to group values into levels. See the discussion of the FORMAT procedure
in the Base SAS Procedures Guide and the discussions of the FORMAT statement and SAS formats in SAS
Formats and Informats: Reference. You can adjust the order of CLASS variable levels with the ORDER=
option in the PROC ORTHOREG statement.

You can specify the following REF= option to indicate how the levels of an individual classification variable
are to be ordered by enclosing it in parentheses after the variable name:

REF=’level’ | FIRST | LAST
specifies a level of the classification variable to be put at the end of the list of levels. This level thus
corresponds to the reference level in the usual interpretation of the estimates with PROC ORTHOREG’s
singular parameterization. You can specify the level of the variable to use as the reference level; specify
a value that corresponds to the formatted value of the variable if a format is assigned. Alternatively, you
can specify REF=FIRST to designate that the first ordered level serve as the reference, or REF=LAST to
designate that the last ordered level serve as the reference. To specify that REF=FIRST or REF=LAST
be used for all classification variables, use the REF= global-option after the slash (/) in the CLASS
statement.

You can specify the following global-options in the CLASS statement after a slash (/):

REF=FIRST | LAST
specifies a level of all classification variables to be put at the end of the list of levels. This level thus
corresponds to the reference level in the usual interpretation of the estimates with PROC ORTHOREG’s
singular parameterization. Specify REF=FIRST to designate that the first ordered level for each
classification variable serve as the reference. Specify REF=LAST to designate that the last ordered
level serve as the reference. This option applies to all the variables specified in the CLASS statement. To
specify different reference levels for different classification variables, use REF= options for individual
variables.

TRUNCATE
specifies that class levels be determined by using only up to the first 16 characters of the formatted
values of CLASS variables. When formatted values are longer than 16 characters, you can use this
option to revert to the levels as determined in releases prior to SAS 9.

EFFECT Statement
EFFECT name=effect-type (variables < / options >) ;

The EFFECT statement enables you to construct special collections of columns for design matrices. These
collections are referred to as constructed effects to distinguish them from the usual model effects that are
formed from continuous or classification variables, as discussed in the section “GLM Parameterization of
Classification Variables and Effects” on page 387 in Chapter 19, “Shared Concepts and Topics.”

You can specify the following effect-types:
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COLLECTION is a collection effect that defines one or more variables as a single effect with
multiple degrees of freedom. The variables in a collection are considered as
a unit for estimation and inference.

LAG is a classification effect in which the level that is used for a given period
corresponds to the level in the preceding period.

MULTIMEMBER | MM is a multimember classification effect whose levels are determined by one or
more variables that appear in a CLASS statement.

POLYNOMIAL | POLY is a multivariate polynomial effect in the specified numeric variables.

SPLINE is a regression spline effect whose columns are univariate spline expansions
of one or more variables. A spline expansion replaces the original variable
with an expanded or larger set of new variables.

Table 72.2 summarizes the options available in the EFFECT statement.

Table 72.2 EFFECT Statement Options

Option Description

Collection Effects Options
DETAILS Displays the constituents of the collection effect

Lag Effects Options
DESIGNROLE= Names a variable that controls to which lag design an observation

is assigned

DETAILS Displays the lag design of the lag effect

NLAG= Specifies the number of periods in the lag

PERIOD= Names the variable that defines the period

WITHIN= Names the variable or variables that define the group within which
each period is defined

Multimember Effects Options
NOEFFECT Specifies that observations with all missing levels for the multi-

member variables should have zero values in the corresponding
design matrix columns

WEIGHT= Specifies the weight variable for the contributions of each of the
classification effects

Polynomial Effects Options
DEGREE= Specifies the degree of the polynomial
MDEGREE= Specifies the maximum degree of any variable in a term of the

polynomial
STANDARDIZE= Specifies centering and scaling suboptions for the variables that

define the polynomial
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Table 72.2 continued

Option Description

Spline Effects Options
BASIS= Specifies the type of basis (B-spline basis or truncated power func-

tion basis) for the spline effect
DEGREE= Specifies the degree of the spline effect
KNOTMETHOD= Specifies how to construct the knots for the spline effect

For more information about the syntax of these effect-types and how columns of constructed effects are
computed, see the section “EFFECT Statement” on page 397 in Chapter 19, “Shared Concepts and Topics.”

EFFECTPLOT Statement
EFFECTPLOT < plot-type < (plot-definition-options) > > < / options > ;

The EFFECTPLOT statement produces a display of the fitted model and provides options for changing and
enhancing the displays. Table 72.3 describes the available plot-types and their plot-definition-options.

Table 72.3 Plot-Types and Plot-Definition-Options

Plot-Type and Description Plot-Definition-Options

BOX
Displays a box plot of continuous response data at each
level of a CLASS effect, with predicted values
superimposed and connected by a line. This is an
alternative to the INTERACTION plot-type.

PLOTBY= variable or CLASS effect
X= CLASS variable or effect

CONTOUR
Displays a contour plot of predicted values against two
continuous covariates

PLOTBY= variable or CLASS effect
X= continuous variable
Y= continuous variable

FIT
Displays a curve of predicted values versus a
continuous variable

PLOTBY= variable or CLASS effect
X= continuous variable

INTERACTION
Displays a plot of predicted values (possibly with error
bars) versus the levels of a CLASS effect. The
predicted values are connected with lines and can be
grouped by the levels of another CLASS effect.

PLOTBY= variable or CLASS effect
SLICEBY= variable or CLASS effect
X= CLASS variable or effect

MOSAIC
Displays a mosaic plot of predicted values by using up
to three CLASS effects

PLOTBY= variable or CLASS effect
X= CLASS effects
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Table 72.3 continued

Plot-Type and Description Plot-Definition-Options

SLICEFIT
Displays a curve of predicted values versus a
continuous variable, grouped by the levels of a
CLASS effect

PLOTBY= variable or CLASS effect
SLICEBY= variable or CLASS effect
X= continuous variable

For full details about the syntax and options of the EFFECTPLOT statement, see the section “EFFECTPLOT
Statement” on page 416 in Chapter 19, “Shared Concepts and Topics.”

ESTIMATE Statement
ESTIMATE < 'label ' > estimate-specification < (divisor=n) >

< , . . . < 'label ' > estimate-specification < (divisor=n) > >
< / options > ;

The ESTIMATE statement provides a mechanism for obtaining custom hypothesis tests. Estimates are
formed as linear estimable functions of the form Lˇ. You can perform hypothesis tests for the estimable
functions, construct confidence limits, and obtain specific nonlinear transformations.

Table 72.4 summarizes the options available in the ESTIMATE statement.

Table 72.4 ESTIMATE Statement Options

Option Description

Construction and Computation of Estimable Functions
DIVISOR= Specifies a list of values to divide the coefficients
NOFILL Suppresses the automatic fill-in of coefficients for higher-order

effects
SINGULAR= Tunes the estimability checking difference

Degrees of Freedom and p-values
ADJUST= Determines the method for multiple comparison adjustment of

estimates
ALPHA=˛ Determines the confidence level (1 � ˛)
LOWER Performs one-sided, lower-tailed inference
STEPDOWN Adjusts multiplicity-corrected p-values further in a step-down fash-

ion
TESTVALUE= Specifies values under the null hypothesis for tests
UPPER Performs one-sided, upper-tailed inference
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Table 72.4 continued

Option Description

Statistical Output
CL Constructs confidence limits
CORR Displays the correlation matrix of estimates
COV Displays the covariance matrix of estimates
E Prints the L matrix
JOINT Produces a joint F or chi-square test for the estimable functions
SEED= Specifies the seed for computations that depend on random numbers

For details about the syntax of the ESTIMATE statement, see the section “ESTIMATE Statement” on
page 444 in Chapter 19, “Shared Concepts and Topics.”

LSMEANS Statement
LSMEANS < model-effects > < / options > ;

The LSMEANS statement computes and compares least squares means (LS-means) of fixed effects. LS-means
are predicted population margins—that is, they estimate the marginal means over a balanced population. In a
sense, LS-means are to unbalanced designs as class and subclass arithmetic means are to balanced designs.

Table 72.5 summarizes the options available in the LSMEANS statement.

Table 72.5 LSMEANS Statement Options

Option Description

Construction and Computation of LS-Means
AT Modifies the covariate value in computing LS-means
BYLEVEL Computes separate margins
DIFF Requests differences of LS-means
OM= Specifies the weighting scheme for LS-means computation as de-

termined by the input data set
SINGULAR= Tunes estimability checking

Degrees of Freedom and p-values
ADJUST= Determines the method for multiple-comparison adjustment of LS-

means differences
ALPHA=˛ Determines the confidence level (1 � ˛)
STEPDOWN Adjusts multiple-comparison p-values further in a step-down

fashion
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Table 72.5 continued

Option Description

Statistical Output
CL Constructs confidence limits for means and mean differences
CORR Displays the correlation matrix of LS-means
COV Displays the covariance matrix of LS-means
E Prints the L matrix
LINES Produces a “Lines” display for pairwise LS-means differences
MEANS Prints the LS-means
PLOTS= Requests graphs of means and mean comparisons
SEED= Specifies the seed for computations that depend on random numbers

For details about the syntax of the LSMEANS statement, see the section “LSMEANS Statement” on page 460
in Chapter 19, “Shared Concepts and Topics.”

LSMESTIMATE Statement
LSMESTIMATE model-effect < 'label ' > values < divisor=n >

< , . . . < 'label ' > values < divisor=n > >
< / options > ;

The LSMESTIMATE statement provides a mechanism for obtaining custom hypothesis tests among least
squares means.

Table 72.6 summarizes the options available in the LSMESTIMATE statement.

Table 72.6 LSMESTIMATE Statement Options

Option Description

Construction and Computation of LS-Means
AT Modifies covariate values in computing LS-means
BYLEVEL Computes separate margins
DIVISOR= Specifies a list of values to divide the coefficients
OM= Specifies the weighting scheme for LS-means computation as de-

termined by a data set
SINGULAR= Tunes estimability checking
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Table 72.6 continued

Option Description

Degrees of Freedom and p-values
ADJUST= Determines the method for multiple-comparison adjustment of LS-

means differences
ALPHA=˛ Determines the confidence level (1 � ˛)
LOWER Performs one-sided, lower-tailed inference
STEPDOWN Adjusts multiple-comparison p-values further in a step-down fash-

ion
TESTVALUE= Specifies values under the null hypothesis for tests
UPPER Performs one-sided, upper-tailed inference

Statistical Output
CL Constructs confidence limits for means and mean differences
CORR Displays the correlation matrix of LS-means
COV Displays the covariance matrix of LS-means
E Prints the L matrix
ELSM Prints the K matrix
JOINT Produces a joint F or chi-square test for the LS-means and LS-

means differences
SEED= Specifies the seed for computations that depend on random numbers

For details about the syntax of the LSMESTIMATE statement, see the section “LSMESTIMATE Statement”
on page 476 in Chapter 19, “Shared Concepts and Topics.”

MODEL Statement
MODEL dependent-variable = independent-effects < / option > ;

The MODEL statement names the dependent variable and the independent effects. Only one MODEL
statement is allowed. The specification of effects and the parameterization of the linear model are the same
as in the GLM procedure; see Chapter 45, “The GLM Procedure” for further details.

The following option can be used in the MODEL statement:

NOINT
omits the intercept term from the model. Often, this omission also changes the total sum of squares in
the ANOVA and the value of R square to forms of these statistics that are not corrected for the mean.
However, if the model is determined to contain an implicit intercept, in the sense that the all-ones
intercept vector is in the column space of the design, then the usual mean-corrected forms of these
statistics are used.
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SLICE Statement
SLICE model-effect < / options > ;

The SLICE statement provides a general mechanism for performing a partitioned analysis of the LS-means
for an interaction. This analysis is also known as an analysis of simple effects.

The SLICE statement uses the same options as the LSMEANS statement, which are summarized in Ta-
ble 19.21. For details about the syntax of the SLICE statement, see the section “SLICE Statement” on
page 505 in Chapter 19, “Shared Concepts and Topics.”

STORE Statement
STORE < OUT= >item-store-name < / LABEL='label ' > ;

The STORE statement requests that the procedure save the context and results of the statistical analysis. The
resulting item store has a binary file format that cannot be modified. The contents of the item store can be
processed with the PLM procedure.

For details about the syntax of the STORE statement, see the section “STORE Statement” on page 508 in
Chapter 19, “Shared Concepts and Topics.”

TEST Statement
TEST < model-effects > < / options > ;

The TEST statement enables you to perform F tests for model effects that test Type I, Type II, or Type III
hypotheses. See Chapter 15, “The Four Types of Estimable Functions,” for details about the construction of
Type I, II, and III estimable functions.

Table 72.7 summarizes the options available in the TEST statement.

Table 72.7 TEST Statement Options

Option Description

CHISQ Requests chi-square tests
DDF= Specifies denominator degrees of freedom for fixed effects
E Requests Type I, Type II, and Type III coefficients
E1 Requests Type I coefficients
E2 Requests Type II coefficients
E3 Requests Type III coefficients
HTYPE= Indicates the type of hypothesis test to perform
INTERCEPT Adds a row that corresponds to the overall intercept

For details about the syntax of the TEST statement, see the section “TEST Statement” on page 509 in
Chapter 19, “Shared Concepts and Topics.”
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WEIGHT Statement
WEIGHT variable ;

A WEIGHT statement names a variable in the input data set whose values are relative weights for a weighted
least squares regression. If the weight value is proportional to the reciprocal of the variance for each
observation, the weighted estimates are the best linear unbiased estimates (BLUE). For a more complete
description of the WEIGHT statement, see the section “WEIGHT Statement” on page 3452 in Chapter 45,
“The GLM Procedure.”

Details: ORTHOREG Procedure

Missing Values
If there is a missing value for any model variable in an observation, the entire observation is dropped from
the analysis.

Output Data Set
The OUTEST= option produces a TYPE=EST output SAS data set that contains the BY variables, parameter
estimates, and four special variables. For each new value of the BY variables, PROC ORTHOREG outputs
an observation to the OUTEST= data set. The variables in the data set are as follows:

• parameter estimates for all variables listed in the MODEL statement

• BY variables

• _TYPE_, which is a character variable with the value PARMS for every observation

• _NAME_, which is a character variable left blank for every observation

• _RMSE_, which is the root mean square error (the estimate of the standard deviation of the true errors)

• Intercept, which is the estimated intercept. This variable does not exist in the OUTEST= data set if the
NOINT option is specified.

Displayed Output
PROC ORTHOREG displays the parameter estimates and associated statistics. These include the following:

• overall model analysis of variance, including the error mean square, which is an estimate of �2 (the
variance of the true errors), and the overall F test for a model effect.
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• root mean square error, which is an estimate of the standard deviation of the true errors. It is calculated
as the square root of the mean squared error.

• R square (R2) measures how much variation in the dependent variable can be accounted for by the
model. R square, which can range from 0 to 1, is the ratio of the sum of squares for the model to the
corrected total sum of squares. In general, the larger the value of R square, the better the model’s fit.

• estimates for the parameters in the linear model

The table of parameter estimates consists of the following:

• the terms used as regressors, including the intercept.

• degrees of freedom (DF) for the variable. There is one degree of freedom for each parameter being
estimated unless the model is not full rank.

• estimated linear coefficients.

• estimates of the standard errors of the parameter estimates.

• the critical t values for testing whether the parameters are This is computed as the parameter estimate
divided by its standard error.

• the two-sided p-value for the t test, which is the probability that a t statistic would obtain a greater
absolute value than that observed given that the true parameter is zero.

ODS Table Names
PROC ORTHOREG assigns a name to each table it creates. You can use these names to reference the table
when you use the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed in Table 72.8. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

Each of the EFFECT, ESTIMATE, LSMEANS, LSMESTIMATE, and SLICE statements also creates tables,
which are not listed in Table 72.8. For information about these tables, see the corresponding sections of
Chapter 19, “Shared Concepts and Topics.”

Table 72.8 ODS Tables Produced by PROC ORTHOREG

ODS Table Name Description Statement

ANOVA Analysis of variance Default
FitStatistics Overall statistics for fit Default
Levels Table of class levels CLASS statement
ParameterEstimates Parameter estimates Default
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ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

When ODS Graphics is enabled, then each of the EFFECT, ESTIMATE, LSMEANS, LSMESTIMATE, and
SLICE statements can produce plots associated with their analyses. For information about these plots, see
the corresponding sections of Chapter 19, “Shared Concepts and Topics.”

Examples: ORTHOREG Procedure

Example 72.1: Precise Analysis of Variance
The data for the following example are from Powell, Murphy, and Gramlich (1982). In order to calibrate an
instrument for measuring atomic weight, 24 replicate measurements of the atomic weight of silver (chemical
symbol Ag) are made with the new instrument and with a reference instrument.

NOTE: The results from this example vary from machine to machine, depending on floating-point configura-
tion.

The following statements read the measurements for the two instruments into the SAS data set AgWeight:

title 'Atomic Weight of Silver by Two Different Instruments';
data AgWeight;

input Instrument AgWeight @@;
datalines;

1 107.8681568 1 107.8681465 1 107.8681572 1 107.8681785
1 107.8681446 1 107.8681903 1 107.8681526 1 107.8681494
1 107.8681616 1 107.8681587 1 107.8681519 1 107.8681486
1 107.8681419 1 107.8681569 1 107.8681508 1 107.8681672
1 107.8681385 1 107.8681518 1 107.8681662 1 107.8681424
1 107.8681360 1 107.8681333 1 107.8681610 1 107.8681477
2 107.8681079 2 107.8681344 2 107.8681513 2 107.8681197
2 107.8681604 2 107.8681385 2 107.8681642 2 107.8681365
2 107.8681151 2 107.8681082 2 107.8681517 2 107.8681448
2 107.8681198 2 107.8681482 2 107.8681334 2 107.8681609
2 107.8681101 2 107.8681512 2 107.8681469 2 107.8681360
2 107.8681254 2 107.8681261 2 107.8681450 2 107.8681368
;
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Notice that the variation in the atomic weight measurements is several orders of magnitude less than their
mean. This is a situation that can be difficult for standard, regression-based analysis-of-variance procedures
to handle correctly.

The following statements invoke the ORTHOREG procedure to perform a simple one-way analysis of
variance, testing for differences between the two instruments:

proc orthoreg data=AgWeight;
class Instrument;
model AgWeight = Instrument;

run;

Output 72.1.1 shows the resulting analysis.

Output 72.1.1 PROC ORTHOREG Results for Atomic Weight Example

Atomic Weight of Silver by Two Different Instruments

The ORTHOREG Procedure

Atomic Weight of Silver by Two Different Instruments

The ORTHOREG Procedure

Class Level Information

Factor Levels Values

Instrument 2 1 2

Atomic Weight of Silver by Two Different Instruments

The ORTHOREG Procedure

Dependent Variable: AgWeight

Atomic Weight of Silver by Two Different Instruments

The ORTHOREG Procedure

Dependent Variable: AgWeight

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 1 3.6383419E-9 3.6383419E-9 15.95 0.0002

Error 46 1.0495173E-8 2.281559E-10

Corrected Total 47 1.4133515E-8

Root MSE 0.0000151048

R-Square 0.2574265445

Parameter DF Parameter Estimate
Standard

Error t Value Pr > |t|

Intercept 1 107.868136354166 3.0832608E-6 3.499E7 <.0001

(Instrument='1') 1 0.00001741249999 4.3603893E-6 3.99 0.0002

(Instrument='2') 0 0 . . .

The mean difference between instruments is about 1:74 � 10�5 (the value of the (Instrument=’1’)

parameter in the parameter estimates table), whereas the level of background variation in the measurements is
about 1:51� 10�5 (the value of the root mean square error). At this level of error, the difference is significant,
with a p-value of 0.0002.
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The National Institute of Standards and Technology (1998) has provided certified ANOVA values for this
data set. The following statements use ODS to examine the ANOVA values produced by ORTHOREG more
precisely, for comparison with the NIST-certified values:

ods listing close;

proc orthoreg data=AgWeight;
class Instrument;
model AgWeight = Instrument;
ods output ANOVA = OrthoregANOVA

FitStatistics = OrthoregFitStat;
run;

ods listing;

data _null_;
set OrthoregANOVA (in=inANOVA)

OrthoregFitStat(in=inFitStat);
if (inANOVA) then do;

if (Source = 'Model') then put "Model SS: " ss e20.;
if (Source = 'Error') then put "Error SS: " ss e20.;

end;
if (inFitStat) then do;

if (Statistic = 'Root MSE') then
put "Root MSE: " nValue1 e20.;

if (Statistic = 'R-Square') then
put "R-Square: " nValue1 best20.;

end;
run;

Table 72.9 and Table 72.10 compare the ANOVA values certified by NIST with those produced by OR-
THOREG. As you can see, the agreement is quite good.

Table 72.9 Accuracy Comparison for Sums of Squares

Values Model SS Error SS

NIST-certified 3.6383418750000E–09 1.0495172916667E–08
ORTHOREG 3.6383418747907E–09 1.0495172916797E–08

Table 72.10 Accuracy Comparison for Fit Statistics

Values Root MSE R Square

NIST-certified 1.5104831444641E–05 0.25742654453832
ORTHOREG 1.5104831444735E–05 0.25742654452494
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Example 72.2: Wampler Data
This example applies the ORTHOREG procedure to a collection of data sets noted for being ill-conditioned.
The OUTEST= data set is used to collect the results for comparison with values certified to be correct by the
National Institute of Standards and Technology (1998).

NOTE: The results from this example vary from machine to machine, depending on floating-point configura-
tion.

The data are from Wampler (1970). The independent variates for all five data sets are xi , i D 1; : : : 5; for
x D 0; 1; : : : ; 20. Two of the five dependent variables are exact linear functions of the independent terms:

y1 D 1C x C x2 C x3 C x4 C x5

y2 D 1C 0:1x C 0:01x2 C 0:001x3 C 0:0001x4 C 0:00001x5

The other three dependent variables have the same mean value as y1, but with nonzero errors:

y3 D y1 C e
y4 D y1 C 100e
y5 D y1 C 10000e

where e is a vector of values with standard deviation �2044, chosen to be orthogonal to the mean model for
y1.

The following statements create a SAS data set Wampler that contains the Wampler data, run a SAS macro
program that uses PROC ORTHOREG to fit a fifth-order polynomial in x to each of the Wampler dependent
variables, and collect the results in a data set named ParmEst:

data Wampler;
do x=0 to 20;

input e @@;
y1 = 1 + x + x**2 + x**3

+ x**4 + x**5;
y2 = 1 + .1 *x + .01 *x**2 + .001*x**3

+ .0001*x**4 + .00001*x**5;
y3 = y1 + e;
y4 = y1 + 100*e;
y5 = y1 + 10000*e;
output;

end;
datalines;

759 -2048 2048 -2048 2523 -2048 2048 -2048 1838 -2048 2048
-2048 1838 -2048 2048 -2048 2523 -2048 2048 -2048 759
;
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%macro WTest;
data ParmEst; if (0); run;
%do i = 1 %to 5;

proc orthoreg data=Wampler outest=ParmEst&i noprint;
model y&i = x x*x x*x*x x*x*x*x x*x*x*x*x;

data ParmEst&i; set ParmEst&i; Dep = "y&i";
data ParmEst; set ParmEst ParmEst&i;

label Col1='x' Col2='x**2' Col3='x**3'
Col4='x**4' Col5='x**5';

run;
%end;

%mend;
%WTest;

Instead of displaying the raw values of the RMSE and parameter estimates, use an additional DATA step as
follows to compute the deviations from the values certified to be correct by the National Institute of Standards
and Technology (1998):

data ParmEst; set ParmEst;
if (Dep = 'y1') then

_RMSE_ = _RMSE_ - 0.00000000000000;
else if (Dep = 'y2') then

_RMSE_ = _RMSE_ - 0.00000000000000;
else if (Dep = 'y3') then

_RMSE_ = _RMSE_ - 2360.14502379268;
else if (Dep = 'y4') then

_RMSE_ = _RMSE_ - 236014.502379268;
else if (Dep = 'y5') then

_RMSE_ = _RMSE_ - 23601450.2379268;
if (Dep ^= 'y2') then do;

Intercept = Intercept - 1.00000000000000;
Col1 = Col1 - 1.00000000000000;
Col2 = Col2 - 1.00000000000000;
Col3 = Col3 - 1.00000000000000;
Col4 = Col4 - 1.00000000000000;
Col5 = Col5 - 1.00000000000000;

end;
else do;

Intercept = Intercept - 1.00000000000000;
Col1 = Col1 - 0.100000000000000;
Col2 = Col2 - 0.100000000000000e-1;
Col3 = Col3 - 0.100000000000000e-2;
Col4 = Col4 - 0.100000000000000e-3;
Col5 = Col5 - 0.100000000000000e-4;

end;
run;

proc print data=ParmEst label noobs;
title 'Wampler data: Deviations from Certified Values';
format _RMSE_ Intercept Col1-Col5 e9.;
var Dep _RMSE_ Intercept Col1-Col5;

run;
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The results, shown in Output 72.2.1, indicate that the values computed by PROC ORTHOREG are quite
close to the NIST-certified values.

Output 72.2.1 Wampler Data: Deviations from Certified Values

Wampler data: Deviations from Certified ValuesWampler data: Deviations from Certified Values

Dep _RMSE_ Intercept x x**2 x**3 x**4 x**5

y1 0.00E+00 5.46E-12 -9.82E-11 1.55E-11 -5.68E-13 3.55E-14 -6.66E-16

y2 0.00E+00 8.88E-16 -3.19E-15 1.24E-15 -1.88E-16 1.20E-17 -2.57E-19

y3 -2.09E-11 -7.73E-11 1.46E-11 -2.09E-11 2.50E-12 -1.28E-13 2.66E-15

y4 -4.07E-10 -5.38E-10 8.99E-10 -3.29E-10 4.23E-11 -2.27E-12 4.35E-14

y5 -3.35E-08 -4.10E-08 8.07E-08 -2.77E-08 3.54E-09 -1.90E-10 3.64E-12

Example 72.3: Fitting Polynomials
The extra accuracy of the regression algorithm used by PROC ORTHOREG is most useful when the model
contains near-singularities that you want to be able to distinguish from true singularities. This example
demonstrates this usefulness in the context of fitting polynomials of high degree.

NOTE: The results from this example vary from machine to machine, depending on floating-point configura-
tion.

The following DATA step computes a response y as an exact ninth-degree polynomial function of a predictor
x evaluated at 0, 0.01, 0.02, . . . , 1.

title 'Polynomial Data';
data Polynomial;

do i = 1 to 101;
x = (i-1)/(101-1);
y = 10**(9/2);
do j = 0 to 8;

y = y * (x - j/8);
end;
output;

end;
run;

The polynomial is constructed in such a way that its zeros lie at x D i=8 for i D 0; : : : ; 8. The following
statements use the EFFECT statement to fit a ninth-degree polynomial to this data with PROC ORTHOREG.
The EFFECT statement makes it easy to specify complicated polynomial models.

ods graphics on;

proc orthoreg data=Polynomial;
effect xMod = polynomial(x / degree=9);
model y = xMod;
effectplot fit / obs;
store OStore;

run;

ods graphics off;
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The effect xMod defined by the EFFECT statement refers to all nine degrees of freedom in the ninth-degree
polynomial (excluding the intercept term). The resulting output is shown in Output 72.3.1. Note that the R
square for the fit is 1, indicating that the ninth-degree polynomial has been correctly fit.

Output 72.3.1 PROC ORTHOREG Results for Ninth-Degree Polynomial

Polynomial Data

The ORTHOREG Procedure

Dependent Variable: y

Polynomial Data

The ORTHOREG Procedure

Dependent Variable: y

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 9 15.527180055 1.7252422284 1.65E22 <.0001

Error 91 9.496616E-21 1.043584E-22

Corrected Total 100 15.527180055

Root MSE 1.02156E-11

R-Square 1

Parameter DF Parameter Estimate
Standard

Error t Value Pr > |t|

Intercept 1 -3.24572035915E-11 8.114115E-12 -4.00 0.0001

x 1 75.9977312440678 4.898326E-10 1.55E11 <.0001

x^2 1 -1652.40781362191 9.5027919E-9 -174E9 <.0001

x^3 1 14249.4539769783 8.3110512E-8 1.71E11 <.0001

x^4 1 -64932.461575205 3.8997072E-7 -167E9 <.0001

x^5 1 173315.359360779 1.066611E-6 1.62E11 <.0001

x^6 1 -280158.03646002 1.7523078E-6 -16E10 <.0001

x^7 1 269781.812887653 1.7021134E-6 1.58E11 <.0001

x^8 1 -142302.494710055 9.0027891E-7 -158E9 <.0001

x^9 1 31622.7766022468 1.997493E-7 1.58E11 <.0001

The fit plot produced by the EFFECTPLOT statement, Output 72.3.2, also demonstrates the perfect fit.
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Output 72.3.2 PROC ORTHOREG Fit Plot for Ninth-Degree Polynomial

Finally, you can use the PLM procedure with the fit model saved by the STORE statement in the item store
OStore to check the predicted values for the known zeros of the polynomial, as shown in the following
statements:

data Zeros(keep=x);
do j = 0 to 8;

x = j/8;
output;

end;
run;

proc plm restore=OStore noprint;
score data=Zeros out=OZeros pred=OPred;

run;

proc print noobs;
run;

The predicted values of the zeros, shown in Output 72.3.3, are again all miniscule.
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Output 72.3.3 Predicted Zeros for Ninth-Degree Polynomial

Polynomial DataPolynomial Data

x OPred

0.000 -3.2457E-11

0.125 -2.1262E-11

0.250 -9.5867E-12

0.375 -2.2895E-11

0.500 -5.2154E-11

0.625 -1.2329E-10

0.750 -2.5329E-10

0.875 -3.9836E-10

1.000 -5.9663E-10

To compare these results with those from a least squares fit produced by an alternative algorithm, consider
fitting a polynomial to this data using the GLM procedure. PROC GLM does not have an EFFECT statement,
but the familiar bar notation can still be used to specify a ninth-degree polynomial fairly succinctly, as shown
in the following statements:

proc glm data=Polynomial;
model y = x|x|x|x|x|x|x|x|x;
store GStore;

run;

Partial results are shown in Output 72.3.4. In this case, the R square for the fit is only about 0.83, indicating
that the full ninth-degree polynomial was not correctly fit.

Output 72.3.4 PROC GLM for Ninth-Degree Polynomial

Polynomial Data

The GLM Procedure

Dependent Variable: y

Polynomial Data

The GLM Procedure

Dependent Variable: y

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 8 12.91166643 1.61395830 56.77 <.0001

Error 92 2.61551363 0.02842950

Corrected Total 100 15.52718006

R-Square Coeff Var Root MSE y Mean

0.831553 -6.6691E17 0.168610 -0.000000

The following statements, which use the PLM procedure to compute predictions based on the GLM fit at the
true zeros of the polynomial, also confirm that PROC GLM is not able to correctly fit a polynomial of this
degree, as shown in Output 72.3.5.
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proc plm restore=GStore noprint;
score data=Zeros out=GZeros pred=GPred;

run;

data Zeros;
merge OZeros GZeros;

run;

proc print noobs;
run;

Output 72.3.5 Predicted Zeros for Ninth-Degree Polynomial

Polynomial DataPolynomial Data

x OPred GPred

0.000 -3.2457E-11 0.44896

0.125 -2.1262E-11 0.22087

0.250 -9.5867E-12 -0.19037

0.375 -2.2895E-11 0.12710

0.500 -5.2154E-11 0.00000

0.625 -1.2329E-10 -0.12710

0.750 -2.5329E-10 0.19037

0.875 -3.9836E-10 -0.22087

1.000 -5.9663E-10 -0.44896
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Overview: PHREG Procedure
The analysis of survival data requires special techniques because the data are almost always incomplete
and familiar parametric assumptions might be unjustifiable. Investigators follow subjects until they reach a
prespecified endpoint (for example, death). However, subjects sometimes withdraw from a study, or the study
is completed before the endpoint is reached. In these cases, the survival times (also known as failure times)
are censored; subjects survived to a certain time beyond which their status is unknown. The uncensored
survival times are sometimes referred to as event times. Methods of survival analysis must account for both
censored and uncensored data.

Many types of models have been used for survival data. Two of the more popular types of models are the
accelerated failure time model (Kalbfleisch and Prentice 1980) and the Cox proportional hazards model
(Cox 1972). Each has its own assumptions about the underlying distribution of the survival times. Two
closely related functions often used to describe the distribution of survival times are the survivor function
and the hazard function. See the section “Failure Time Distribution” on page 5949 for definitions. The
accelerated failure time model assumes a parametric form for the effects of the explanatory variables and
usually assumes a parametric form for the underlying survivor function. The Cox proportional hazards model
also assumes a parametric form for the effects of the explanatory variables, but it allows an unspecified form
for the underlying survivor function.

The PHREG procedure performs regression analysis of survival data based on the Cox proportional hazards
model. Cox’s semiparametric model is widely used in the analysis of survival data to explain the effect of
explanatory variables on hazard rates.

The survival time of each member of a population is assumed to follow its own hazard function, �i .t/,
expressed as

�i .t/ D �.t IZi / D �0.t/ exp.Z0iˇ/

where �0.t/ is an arbitrary and unspecified baseline hazard function, Zi is the vector of explanatory variables
for the ith individual, and ˇ is the vector of unknown regression parameters that is associated with the
explanatory variables. The vector ˇ is assumed to be the same for all individuals. The survivor function can
be expressed as

S.t IZi / D ŒS0.t/� exp.Z
0

iˇ/

where S0.t/ D exp.�
R t
0 �0.u/du/ is the baseline survivor function. To estimate ˇ, Cox (1972, 1975)

introduced the partial likelihood function, which eliminates the unknown baseline hazard �0.t/ and accounts
for censored survival times.

The partial likelihood of Cox also allows time-dependent explanatory variables. An explanatory variable is
time-dependent if its value for any given individual can change over time. Time-dependent variables have
many useful applications in survival analysis. You can use a time-dependent variable to model the effect of
subjects changing treatment groups. Or you can include time-dependent variables such as blood pressure or
blood chemistry measures that vary with time during the course of a study. You can also use time-dependent
variables to test the validity of the proportional hazards model.

An alternative way to fit models with time-dependent explanatory variables is to use the counting process style
of input. The counting process formulation enables PROC PHREG to fit a superset of the Cox model, known
as the multiplicative hazards model. This extension also includes recurrent events data and left-truncation of
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failure times. The theory of these models is based on the counting process pioneered by Andersen and Gill
(1982), and the model is often referred to as the Andersen-Gill model.

Multivariate failure-time data arise when each study subject can potentially experience several events (for
example, multiple infections after surgery) or when there exists some natural or artificial clustering of subjects
(for example, a litter of mice) that induces dependence among the failure times of the same cluster. Data in
the former situation are referred to as multiple events data, which include recurrent events data as a special
case; data in the latter situation are referred to as clustered data. You can use PROC PHREG to carry out
various methods of analyzing these data.

The population under study can consist of a number of subpopulations, each of which has its own baseline
hazard function. PROC PHREG performs a stratified analysis to adjust for such subpopulation differences.
Under the stratified model, the hazard function for the jth individual in the ith stratum is expressed as

�ij .t/ D �i0.t/ exp.Z0ijˇ/

where �i0.t/ is the baseline hazard function for the ith stratum and Zij is the vector of explanatory variables
for the individual. The regression coefficients are assumed to be the same for all individuals across all strata.

Ties in the failure times can arise when the time scale is genuinely discrete or when survival times that are
generated from the continuous-time model are grouped into coarser units. The PHREG procedure includes
four methods of handling ties. The discrete logistic model is available for discrete time-scale data. The
other three methods apply to continuous time-scale data. The exact method computes the exact conditional
probability under the model that the set of observed tied event times occurs before all the censored times
with the same value or before larger values. Breslow and Efron methods provide approximations to the exact
method.

Variable selection is a typical exploratory exercise in multiple regression when the investigator is interested in
identifying important prognostic factors from a large number of candidate variables. The PHREG procedure
provides four selection methods: forward selection, backward elimination, stepwise selection, and best subset
selection. The best subset selection method is based on the likelihood score statistic. This method identifies a
specified number of best models that contain one, two, or three variables and so on, up to the single model
that contains all of the explanatory variables.

The PHREG procedure also enables you to do the following: include an offset variable in the model; weight
the observations in the input data; test linear hypotheses about the regression parameters; perform conditional
logistic regression analysis for matched case-control studies; output survivor function estimates, residuals,
and regression diagnostics; and estimate and plot the survivor function for a new set of covariates.

PROC PHREG can also be used to fit the multinomial logit choice model to discrete choice data. See http:
//support.sas.com/resources/papers/tnote/tnote_marketresearch.html for more in-
formation about discrete choice modeling and the multinomial logit model. Look for the “Discrete Choice”
report.

The PHREG procedure uses ODS Graphics to create graphs as part of its output. For example, the ASSESS
statement uses a graphical method that uses ODS Graphics to check the adequacy of the model. See
Chapter 21, “Statistical Graphics Using ODS,” for general information about ODS Graphics.

For both the BASELINE and OUTPUT statements, the default method of estimating a survivor function has
changed to the Breslow (1972) estimator—that is, METHOD=CH. The option NOMEAN that was available
in the BASELINE statement prior to SAS/STAT 9.2 has become obsolete—that is, requested statistics at the

http://support.sas.com/resources/papers/tnote/tnote_marketresearch.html
http://support.sas.com/resources/papers/tnote/tnote_marketresearch.html
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sample average values of the covariates are no longer computed and added to the OUT= data set. However,
if the COVARIATES= data set is not specified, the requested statistics are computed and output for the
covariate set that consists of the reference levels for the CLASS variables and sample averages for the
continuous variable. In addition to the requested statistics, the OUT= data set also contains all variables in
the COVARIATES= data set.

The remaining sections of this chapter contain information about how to use PROC PHREG, information
about the underlying statistical methodology, and some sample applications of the procedure. The section
“Getting Started: PHREG Procedure” on page 5883 introduces PROC PHREG with two examples. The
section “Syntax: PHREG Procedure” on page 5891 describes the syntax of the procedure. The section
“Details: PHREG Procedure” on page 5949 summarizes the statistical techniques used in PROC PHREG.
The section “Examples: PHREG Procedure” on page 6027 includes eight additional examples of useful
applications. Experienced SAS/STAT software users might decide to proceed to the “Syntax” section, while
other users might choose to read both the “Getting Started” and “Examples” sections before proceeding to
“Syntax” and “Details.”

Getting Started: PHREG Procedure
This section uses the two-sample vaginal cancer mortality data from Kalbfleisch and Prentice (1980, p. 2)
in two examples to illustrate some of the basic features of PROC PHREG. The first example carries out a
classical Cox regression analysis and the second example performs a Bayesian analysis of the Cox model.

Two groups of rats received different pretreatment regimes and then were exposed to a carcinogen. Investiga-
tors recorded the survival times of the rats from exposure to mortality from vaginal cancer. Four rats died of
other causes, so their survival times are censored. Interest lies in whether the survival curves differ between
the two groups.

The following DATA step creates the data set Rats, which contains the variable Days (the survival time in
days), the variable Status (the censoring indicator variable: 0 if censored and 1 if not censored), and the
variable Group (the pretreatment group indicator).

data Rats;
label Days ='Days from Exposure to Death';
input Days Status Group @@;
datalines;

143 1 0 164 1 0 188 1 0 188 1 0
190 1 0 192 1 0 206 1 0 209 1 0
213 1 0 216 1 0 220 1 0 227 1 0
230 1 0 234 1 0 246 1 0 265 1 0
304 1 0 216 0 0 244 0 0 142 1 1
156 1 1 163 1 1 198 1 1 205 1 1
232 1 1 232 1 1 233 1 1 233 1 1
233 1 1 233 1 1 239 1 1 240 1 1
261 1 1 280 1 1 280 1 1 296 1 1
296 1 1 323 1 1 204 0 1 344 0 1
;
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By using ODS Graphics, PROC PHREG allows you to plot the survival curve for Group=0 and the survival
curve for Group=1, but first you must save these two covariate values in a SAS data set as in the following
DATA step:

data Regimes;
Group=0;
output;
Group=1;
output;

run;

Classical Method of Maximum Likelihood
PROC PHREG fits the Cox model by maximizing the partial likelihood and computes the baseline survivor
function by using the Breslow (1972) estimate. The following statements produce Figure 73.1 and Figure 73.2:

ods graphics on;
proc phreg data=Rats plot(overlay)=survival;

model Days*Status(0)=Group;
baseline covariates=regimes out=_null_;

run;

In the MODEL statement, the response variable, Days, is crossed with the censoring variable, Status, with
the value that indicates censoring is enclosed in parentheses. The values of Days are considered censored if
the value of Status is 0; otherwise, they are considered event times.

Graphs are produced when ODS Graphics is enabled. The survival curves for the two observations in the
data set Regime, specified in the COVARIATES= option in the BASELINE statement, are requested through
the PLOTS= option with the OVERLAY option for overlaying both survival curves in the same plot.

Figure 73.2 shows a typical printed output of a classical analysis. Since Group takes only two values, the null
hypothesis for no difference between the two groups is identical to the null hypothesis that the regression
coefficient for Group is 0. All three tests in the “Testing Global Null Hypothesis: BETA=0” table (see the
section “Testing the Global Null Hypothesis” on page 5969) suggest that the survival curves for the two
pretreatment groups might not be the same. In this model, the hazard ratio (or risk ratio) for Group, defined
as the exponentiation of the regression coefficient for Group, is the ratio of the hazard functions between
the two groups. The estimate is 0.551, implying that the hazard function for Group=1 is smaller than that
for Group=0. In other words, rats in Group=1 lived longer than those in Group=0. This conclusion is also
revealed in the plot of the survivor functions in Figure 73.2.
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Figure 73.1 Comparison of Two Survival Curves

The PHREG ProcedureThe PHREG Procedure

Model Information

Data Set WORK.RATS

Dependent Variable Days Days from Exposure to Death

Censoring Variable Status

Censoring Value(s) 0

Ties Handling BRESLOW

Number of Observations Read
Number of Observations Used

40
40

Summary of the Number of Event
and Censored Values

Total Event Censored
Percent

Censored

40 36 4 10.00

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Criterion
Without

Covariates
With

Covariates

-2 LOG L 204.317 201.438

AIC 204.317 203.438

SBC 204.317 205.022

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 2.8784 1 0.0898

Score 3.0001 1 0.0833

Wald 2.9254 1 0.0872

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio

Group 1 -0.59590 0.34840 2.9254 0.0872 0.551



5886 F Chapter 73: The PHREG Procedure

Figure 73.2 Survivorship for the Two Pretreatment Regimes

In this example, the comparison of two survival curves is put in the form of a proportional hazards model.
This approach is essentially the same as the log-rank (Mantel-Haenszel) test. In fact, if there are no ties in the
survival times, the likelihood score test in the Cox regression analysis is identical to the log-rank test. The
advantage of the Cox regression approach is the ability to adjust for the other variables by including them in
the model. For example, the present model could be expanded by including a variable that contains the initial
body weights of the rats.

Next, consider a simple test of the validity of the proportional hazards assumption. The proportional hazards
model for comparing the two pretreatment groups is given by the following:

�.t/ D

�
�0.t/ if GROUP D 0
�0.t/e

ˇ1 if GROUP D 1

The ratio of hazards is eˇ1 , which does not depend on time. If the hazard ratio changes with time, the
proportional hazards model assumption is invalid. Simple forms of departure from the proportional hazards
model can be investigated with the following time-dependent explanatory variable x D x.t/:

x.t/ D

�
0 if GROUP D 0
log.t/ � 5:4 if GROUP D 1
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Here, log.t/ is used instead of t to avoid numerical instability in the computation. The constant, 5.4, is the
average of the logs of the survival times and is included to improve interpretability. The hazard ratio in the
two groups then becomes eˇ1�5:4ˇ2 tˇ2 , where ˇ2 is the regression parameter for the time-dependent variable
x. The term eˇ1 represents the hazard ratio at the geometric mean of the survival times. A nonzero value of
ˇ2 would imply an increasing .ˇ2 > 0/ or decreasing .ˇ2 < 0/ trend in the hazard ratio with time.

The following statements implement this simple test of the proportional hazards assumption. The MODEL
statement includes the time-dependent explanatory variable X, which is defined subsequently by the program-
ming statement. At each event time, subjects in the risk set (those alive just before the event time) have their
X values changed accordingly.

proc phreg data=Rats;
model Days*Status(0)=Group X;
X=Group*(log(Days) - 5.4);

run;

The analysis of the parameter estimates is displayed in Figure 73.3. The Wald chi-square statistic for testing
the null hypothesis that ˇ2 D 0 is 0.0158. The statistic is not statistically significant when compared to a
chi-square distribution with one degree of freedom (p = 0.8999). Thus, you can conclude that there is no
evidence of an increasing or decreasing trend over time in the hazard ratio.

Figure 73.3 A Simple Test of Trend in the Hazard Ratio

The PHREG ProcedureThe PHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio

Group 1 -0.59976 0.34837 2.9639 0.0851 0.549

X 1 -0.22952 1.82489 0.0158 0.8999 0.795

Bayesian Analysis
PROC PHREG uses the partial likelihood of the Cox model as the likelihood and generates a chain of posterior
distribution samples by the Gibbs Sampler. Summary statistics, convergence diagnostics, and diagnostic
plots are provided for each parameter. The following statements generate Figure 73.4–Figure 73.10:

ods graphics on;
proc phreg data=Rats;

model Days*Status(0)=Group;
bayes seed=1 outpost=Post;

run;

The BAYES statement invokes the Bayesian analysis. The SEED= option is specified to maintain reproducibil-
ity; the OUTPOST= option saves the posterior distribution samples in a SAS data set for post-processing; no
other options are specified in the BAYES statement. By default, a uniform prior distribution is assumed on the
regression coefficient Group. The uniform prior is a flat prior on the real line with a distribution that reflects
ignorance of the location of the parameter, placing equal probability on all possible values the regression
coefficient can take. Using the uniform prior in the following example, you would expect the Bayesian
estimates to resemble the classical results of maximizing the likelihood. If you can elicit an informative prior
on the regression coefficients, you should use the COEFFPRIOR= option to specify it.
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You should make sure that the posterior distribution samples have achieved convergence before using them
for Bayesian inference. PROC PHREG produces three convergence diagnostics by default. If ODS Graphics
is enabled before calling PROC PHREG as in the preceding program, diagnostics plots are also displayed.

The results of this analysis are shown in the following figures.

The “Model Information” table in Figure 73.4 summarizes information about the model you fit and the size
of the simulation.

Figure 73.4 Model Information

The PHREG Procedure

Bayesian Analysis

The PHREG Procedure

Bayesian Analysis

Model Information

Data Set WORK.RATS

Dependent Variable Days Days from Exposure to Death

Censoring Variable Status

Censoring Value(s) 0

Model Cox

Ties Handling BRESLOW

Sampling Algorithm ARMS

Burn-In Size 2000

MC Sample Size 10000

Thinning 1

PROC PHREG first fits the Cox model by maximizing the partial likelihood. The only parameter in the
model is the regression coefficient of Group. The maximum likelihood estimate (MLE) of the parameter and
its 95% confidence interval are shown in Figure 73.5.

Figure 73.5 Classical Parameter Estimates

Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits

Group 1 -0.5959 0.3484 -1.2788 0.0870

Since no prior is specified for the regression coefficient, the default uniform prior is used. This information is
displayed in the “Uniform Prior for Regression Coefficients” table in Figure 73.6.

Figure 73.6 Coefficient Prior

Uniform Prior for
Regression
Coefficients

Parameter Prior

Group Constant
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The “Fit Statistics” table in Figure 73.7 lists information about the fitted model. The table displays the DIC
(deviance information criterion) and pD (effective number of parameters). See the section “Fit Statistics” on
page 6011 for details.

Figure 73.7 Fit Statistics

Fit Statistics

DIC (smaller is better) 203.444

pD (Effective Number of Parameters) 1.003

Summary statistics of the posterior samples are displayed in the “Posterior Summaries and Intervals” table in
Figure 73.8. Note that the mean and standard deviation of the posterior samples are comparable to the MLE
and its standard error, respectively, because of the use of the uniform prior.

Figure 73.8 Summary Statistics

The PHREG Procedure

Bayesian Analysis

The PHREG Procedure

Bayesian Analysis

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

Group 10000 -0.5998 0.3511 -1.2984 0.0756

PROC PHREG provides diagnostics to assess the convergence of the generated Markov chain. Figure 73.9
shows the effective sample size diagnostic. There is no indication that the Markov chain has not reached
convergence. For information about interpreting these diagnostics, see the section “Statistical Diagnostic
Tests” on page 142 in Chapter 7, “Introduction to Bayesian Analysis Procedures.”

Figure 73.9 Convergence Diagnostics

The PHREG Procedure

Bayesian Analysis

The PHREG Procedure

Bayesian Analysis

Effective Sample Sizes

Parameter ESS
Autocorrelation

Time Efficiency

Group 10000.0 1.0000 1.0000

You can also assess the convergence of the generated Markov chain by examining the trace plot, the
autocorrelation function plot, and the posterior density plot. Figure 73.10 displays a panel of these three plots
for the parameter Group. This graphical display is automatically produced when ODS Graphics is enabled.
Note that the trace of the samples centers on –0.6 with only small fluctuations, the autocorrelations are quite
small, and the posterior density appears bell-shaped—all exemplifying the behavior of a converged Markov
chain.
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Figure 73.10 Diagnostic Plots

The proportional hazards model for comparing the two pretreatment groups is

�.t/ D

�
�0.t/ if Group=0
�0.t/eˇ if Group=1

The probability that the hazard of Group=0 is greater than that of Group=1 is

Pr.�0.t/ > �0.t/eˇ / D Pr.ˇ < 0/

This probability can be enumerated from the posterior distribution samples by computing the fraction of
samples with a coefficient less than 0. The following DATA step and PROC MEANS perform this calculation:

data New;
set Post;
Indicator=(Group < 0);
label Indicator='Group < 0';

run;
proc means data=New(keep=Indicator) n mean;
run;
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Figure 73.11 Prob(Hazard(Group=0) > Hazard(Group=1))

The MEANS ProcedureThe MEANS Procedure

Analysis
Variable : Indicator

Group < 0

N Mean

10000 0.9581000

The PROC MEANS results are displayed in Figure 73.11. There is a 95.8% chance that the hazard rate of
Group=0 is greater than that of Group=1. The result is consistent with the fact that the average survival time
of Group=0 is less than that of Group=1.

Syntax: PHREG Procedure
The following statements are available in the PHREG procedure. Items within < > are optional.

PROC PHREG < options > ;
ASSESS keyword < / options > ;
BASELINE < OUT=SAS-data-set > < COVARIATES=SAS-data-set >

< keyword=name . . . keyword=name > < / options > ;
BAYES < options > ;
BY variables ;
CLASS variable < (options) > < . . . variable < (options) > > < / options > ;
CONTRAST < 'label ' > effect values < , . . . , effect values > < / options > ;
FREQ variable ;
EFFECT name = effect-type (variables < / options >) ;
ESTIMATE < 'label ' > estimate-specification < / options > ;
HAZARDRATIO < 'label ' > variable < / options > ;
ID variables ;
LSMEANS < model-effects > < / options > ;
LSMESTIMATE model-effect lsmestimate-specification < / options > ;
MODEL response <� censor (list) > = < effects > < / options > ;
OUTPUT < OUT=SAS-data-set > < keyword=name . . . keyword=name > < / options > ;
Programming statements ;
RANDOM variable < / options > ;
SLICE model-effect < / options > ;
STORE < OUT= > item-store-name < / LABEL='label ' > ;
STRATA variable < (list) > < . . . variable < (list) > > < / option > ;
< label: > TEST equation < , . . . , equation > < / options > ;
WEIGHT variable < / option > ;

The PROC PHREG and MODEL statements are required. The CLASS statement, if present, must precede
the MODEL statement, and the ASSESS or CONTRAST statement, if present, must come after the MODEL
statement. The BAYES statement, that invokes a Bayesian analysis, is not compatible with the ASSESS,
CONTRAST, ID, OUTPUT, and TEST statements, as well as a number of options in the PROC PHREG and
MODEL statements. See the section “Specifics for Bayesian Analysis” on page 6002 for details.
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The rest of this section provides detailed syntax information for each statement, beginning with the PROC
PHREG statement. The remaining statements are covered in alphabetical order.

PROC PHREG Statement
PROC PHREG < options > ;

The PROC PHREG statement invokes the PHREG procedure. Table 73.1 summarizes the options available
in the PROC PHREG statement.

Table 73.1 PROC PHREG Statement Options

Option Description

ALPHA= Specifies the level of significance
ATRISK Displays a table that contains the number of units and the corresponding

number of events in the risk sets
COVM Uses the model-based covariance matrix in the analysis
COVOUT Adds the estimated covariance matrix to the OUTEST= data set
COVSANDWICH Requests the robust sandwich estimate for the covariance matrix
DATA= Names the SAS data set to be analyzed
EV Requests the Schemper-Henderson predictive measures
INEST= Names the SAS data set that contains initial estimates
MULTIPASS Recompiles the risk sets
NAMELEN= Specifies the length of effect names
NOPRINT Suppresses all displayed output
NOSUMMARY Suppresses the summary display observation frequencies
OUTEST= Creates an output SAS data set containing estimates of the regression

coefficients
PLOTS= Controls the plots that are produced through ODS Graphics
SIMPLE Displays simple descriptive statistics
ZPH Requests diagnostics based on weighted residuals for checking the propor-

tional hazards assumption

You can specify the following options in the PROC PHREG statement.

ALPHA=number
specifies the level of significance ˛ for 100.1 � ˛/% confidence intervals. The value number

must be between 0 and 1; the default value is 0.05, which results in 95% intervals. This value is
used as the default confidence level for limits computed by the BASELINE, BAYES, CONTRAST,
HAZARDRATIO, and MODEL statements. You can override this default by specifying the ALPHA=
option in the separate statements.

ATRISK
displays a table that contains the number of units at risk at each event time and the corresponding

number of events in the risk sets. For example, the following risk set information is displayed if the
ATRISK option is specified in the example in the section “Getting Started: PHREG Procedure” on
page 5883.
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Risk Set Information
Number of Units

Days At Risk Event

142 40 1
143 39 1
156 38 1
:::

:::
:::

296 5 2
304 3 1
323 2 1

COVOUT
adds the estimated covariance matrix of the parameter estimates to the OUTEST= data set. The
COVOUT option has no effect unless the OUTEST= option is specified.

COVM
requests that the model-based covariance matrix (which is the inverse of the observed information
matrix) be used in the analysis if the COVS option is also specified. The COVM option has no effect if
the COVS option is not specified.

COVSANDWICH < (AGGREGATE) >

COVS < (AGGREGATE) >
requests the robust sandwich estimate of Lin and Wei (1989) for the covariance matrix. When this
option is specified, this robust sandwich estimate is used in the Wald tests for testing the global null
hypothesis, null hypotheses of individual parameters, and the hypotheses in the CONTRAST and TEST
statements. In addition, a modified score test is computed in the testing of the global null hypothesis,
and the parameter estimates table has an additional StdErrRatio column, which contains the ratios of
the robust estimate of the standard error relative to the corresponding model-based estimate. Optionally,
you can specify the keyword AGGREGATE enclosed in parentheses after the COVSANDWICH (or
COVS) option, which requests a summing up of the score residuals for each distinct ID pattern in the
computation of the robust sandwich covariance estimate. This AGGREGATE option has no effect if
the ID statement is not specified.

DATA=SAS-data-set
names the SAS data set that contains the data to be analyzed. If you omit the DATA= option, the
procedure uses the most recently created SAS data set.

EV
requests the Schemper-Henderson measure (Schemper and Henderson 2000) of the proportion of
variation that is explained by a Cox regression. This measure of explained variation (EV) is the
ratio of distance measures between the 1/0 survival processes and the fitted survival curves with
and without covariates information. The distance measure is referred to as the predictive inaccuracy,
because the smaller the predictive inaccuracy, the better the prediction. When you specify this option,
PROC PHREG creates a table that has three columns: one presents the predictive inaccuracy without
covariates (D); one presents the predictive inaccuracy with covariates (Dz); and one presents the EV
measure, computed according to 100D�Dz

Dz
%.
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INEST=SAS-data-set
names the SAS data set that contains initial estimates for all the parameters in the model. BY-group
processing is allowed in setting up the INEST= data set. See the section “INEST= Input Data Set” on
page 6014 for more information.

MULTIPASS
requests that, for each Newton-Raphson iteration, PROC PHREG recompile the risk sets corresponding
to the event times for the (start,stop) style of response and recomputes the values of the time-dependent
variables defined by the programming statements for each observation in the risk sets. If the MULTI-
PASS option is not specified, PROC PHREG computes all risk sets and all the variable values and saves
them in a utility file. The MULTIPASS option decreases required disk space at the expense of increased
execution time; however, for very large data, it might actually save time since it is time-consuming to
write and read large utility files. This option has an effect only when the (start,stop) style of response
is used or when there are time-dependent explanatory variables.

NAMELEN=n
specifies the length of effect names in tables and output data sets to be n characters, where n is a value
between 20 and 200. The default length is 20 characters.

NOPRINT
suppresses all displayed output. Note that this option temporarily disables the Output Delivery System
(ODS); see Chapter 20, “Using the Output Delivery System,” for more information.

NOSUMMARY
suppresses the summary display of the event and censored observation frequencies.

OUTEST=SAS-data-set
creates an output SAS data set that contains estimates of the regression coefficients. The data set also
contains the convergence status and the log likelihood. If you use the COVOUT option, the data set
also contains the estimated covariance matrix of the parameter estimators. See the section “OUTEST=
Output Data Set” on page 6013 for more information.

PLOTS< (global-plot-options) > = plot-request

PLOTS< (global-plot-options) > = (plot-request < . . . < plot-request > >)
controls the baseline functions plots produced through ODS Graphics. Each observation in the
COVARIATES= data set in the BASELINE statement represents a set of covariates for which a curve
is produced for each plot-request and for each stratum. You can use the ROWID= option in the
BASELINE statement to specify a variable in the COVARIATES= data set for identifying the curves
produced for the covariate sets. If the ROWID= option is not specified, the curves produced are
identified by the covariate values if there is only a single covariate or by the observation numbers of
the COVARIATES= data set if the model has two or more covariates. If the COVARIATES= data set
is not specified, a reference set of covariates consisting of the reference levels for the CLASS variables
and the average values for the continuous variables is used. For plotting more than one curve, you can
use the OVERLAY= option to group the curves in separate plots. When you specify one plot-request ,
you can omit the parentheses around the plot request. Here are some examples:

plots=survival
plots=(survival cumhaz)
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ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;
proc phreg plots(cl)=survival;

model Time*Status(0)=X1-X5;
baseline covariates=One;

run;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The global-plot-options include the following:

CL< =EQTAIL | HPD >
displays the pointwise interval limits for the specified curves. For the classical analysis, CL
displays the confidence limits. For the Bayesian analysis, CL=EQTAIL displays the equal-tail
credible limits and CL=HPD displays the HPD limits. Specifying just CL in a Bayesian analysis
defaults to CL=HPD.

OVERLAY < =overlay-option >
specifies how the curves for the various strata and covariate sets are overlaid. If the STRATA
statement is not specified, specifying OVERLAY without any option will overlay the curves for
all the covariate sets. The available overlay-options are as follows:

BYGROUP

GROUP
overlays, for each stratum, all curves for the covariate sets that have the same GROUP=
value in the COVARIATES= data set in the same plot.

INDIVIDUAL

IND
displays, for each stratum, a separate plot for each covariate set.

BYROW

ROW
displays, for each covariate set, a separate plot containing the curves for all the strata.

BYSTRATUM

STRATUM
displays, for each stratum, a separate plot containing the curves for all sets of covariates.

The default is OVERLAY=BYGROUP if the GROUP= option is specified in the BASELINE
statement or if the COVARIATES= data set contains the _GROUP_ variable; otherwise the
default is OVERLAY=INDIVIDUAL.
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TIMERANGE=(< min > < ,max >)

TIMERANGE=< min > < ,max >

RANGE=(< min > < ,max >)

RANGE=< min > < ,max >
specifies the range of values on the time axis to clip the display. The min and max values are the
lower and upper bounds of the range. By default, min is 0 and max is the largest event time.

You can specify the following plot-requests:

CIF
plots the estimated cumulative incidence function (CIF) for each set of covariates in the
COVARIATES= data set in the BASELINE statement. If the COVARIATES= data set is not
specified, the estimated CIF is plotted for the reference set of covariates, which consists of
reference levels for the CLASS variables and average values for the continuous variables.

CUMHAZ
plots the estimated cumulative hazard function for each set of covariates in the COVARIATES=
data set in the BASELINE statement. If the COVARIATES= data set is not specified, the
estimated cumulative hazard function is plotted for the reference set of covariates, which consists
of reference levels for the CLASS variables and average values for the continuous variables.

MCF
plots the estimated mean cumulative function for each set of covariates in the COVARIATES=
data set in the BASELINE statement. If the COVARIATES= data set is not specified, the
estimated mean cumulative function is plotted for the reference set of covariates, which consists
of reference levels for the CLASS variables and average values for the continuous variables.

NONE
suppresses all the plots in the procedure. Specifying this option is equivalent to disabling ODS
Graphics for the entire procedure.

SURVIVAL
plots the estimated survivor function for each set of covariates in the COVARIATES= data set in
the BASELINE statement. If COVARIATES= data set is not specified, the estimated survivor
function is plotted for the reference set of covariates, which consists of reference levels for the
CLASS variables and average values for the continuous variables.

SIMPLE
displays simple descriptive statistics (mean, standard deviation, minimum, and maximum) for each
explanatory variable in the MODEL statement.

ZPH< (zph-options) >
requests diagnostics based on the weighted Schoenfeld residuals for checking the proportional hazards
assumption (for more information, see “ZPH Diagnostics” on page 5987). For each predictor, PROC
PHREG presents a plot of the time-varying coefficients in addition to a correlation test between the
weighted residuals and failure times in a given scale. You can specify the following zph-options:
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FIT=NONE | LOESS | SPLINE
displays a fitted smooth curve in a plot of time-varying coefficients. FIT=LOESS displays a loess
curve. FIT=SPLINE fits a penalized B-spline curve. If you do not want to display a fitted curve,
specify FIT=NONE. By default, FIT=SPLINE.

GLOBAL
computes the global correlation test.

NOPLOT
suppresses the plots of the time-varying coefficients ˇ.t/.

NOTEST
suppresses the correlation tests.

OUT=SAS-data-set
names the output data set that contains the time-varying coefficients ˇ.t/, one row per event time.
The variables that contain ˇ.t/ have the same names as the predictors. The data set also contains
the transformed event times g.t/.

TRANSFORM=IDENTITY | KM | LOG | RANK
specifies how the failure times should be transformed in the diagnostic plots and correlation tests.
You can choose from the following transformations:

IDENTITY specify the identity transformation, g.t/ D t .

KM specifies the complement of the Kaplan-Meier estimate transformation,
g.t/ D 1 �KM.t/.

LOG specifies the log transformation, g.t/ D log.t/.

RANK specifies the rank transformation, g.t/ D rank.t/.

ASSESS Statement
ASSESS < VAR=(list) > < PH > < / options > ;

The ASSESS statement performs the graphical and numerical methods of Lin, Wei, and Ying (1993) for
checking the adequacy of the Cox regression model. The methods are derived from cumulative sums of
martingale residuals over follow-up times or covariate values. You can assess the functional form of a
covariate or you can check the proportional hazards assumption for each covariate in the Cox model. PROC
PHREG uses ODS Graphics for the graphical displays. You must specify at least one of the following options
to create an analysis.

VAR=(variable-list)
specifies the list of explanatory variables for which their functional forms are assessed. For each
variable on the list, the observed cumulative martingale residuals are plotted against the values of the
explanatory variable along with 20 (or n if NPATHS=n is specified) simulated residual patterns.
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PROPORTIONALHAZARDS

PH
requests the checking of the proportional hazards assumption. For each explanatory variable in the
model, the observed score process component is plotted against the follow-up time along with 20 (or n
if NPATHS=n is specified) simulated patterns.

The following options can be specified after a slash (/):

NPATHS=n
specifies the number of simulated residual patterns to be displayed in a cumulative martingale residual
plot or a score process plot. The default is n=20.

CRPANEL
requests that a plot with four panels, each containing the observed cumulative martingale residuals and
two simulated residual patterns, be created.

RESAMPLE < =n >
requests that the Kolmogorov-type supremum test be computed on 1,000 simulated patterns or on n
simulated patterns if n is specified.

SEED=n
specifies an integer seed for the random number generator used in creating simulated realizations
for plots and for the Kolmogorov-type supremum tests. Specifying a seed enables you to reproduce
identical graphs and p-values for the model assessments from the same PHREG specification. If the
SEED= option is not specified, or if you specify a nonpositive seed, a random seed is derived from the
time of day.

BASELINE Statement
BASELINE < OUT=SAS-data-set > < OUTDIFF=SAS-data-set > < COVARIATES=SAS-data-set >

< TIMELIST=list > < keyword=name . . . keyword=name > < / options > ;

The BASELINE statement creates a SAS data set (named by the OUT= option) that contains the baseline
function estimates at the event times of each stratum for every set of covariates in the COVARIATES= data
set. If the COVARIATES= data set is not specified, a reference set of covariates consisting of the reference
levels for the CLASS variables and the average values for the continuous variables is used. You can use the
DIRADJ option to obtain the direct adjusted survival curve that averages the estimated survival curves for
the observations in the COVARIATES= data set. No BASELINE data set is created if the model contains a
time-dependent variable defined by means of programming statement.

Table 73.2 summarizes the options available in the BASELINE statement.

Table 73.2 BASELINE Statement Options

Option Description

Data Set and Time List Options
OUT= Specifies the output BASELINE data set
OUTDIFF= Specifies the output data set that contains differences of direct adjusted

survival curves
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Table 73.2 continued

Options Description

COVARIATES= Specifies the SAS data set that contains the explanatory variables
TIMELIST= Specifies a list of time points for Bayesian computation of survival

estimates.

Keyword Options
CIF= Specifies the cumulative incidence estimate
CMF= Specifies the cumulative mean function estimate
CUMHAZ= Specifies the cumulative hazard function estimate
LOGLOGS= Specifies the log of the negative log of SURVIVAL
LOGSURV= Specifies the log of SURVIVAL
LOWERCIF= Specifies the lower pointwise confidence limit for CIF
LOWERCMF= Specifies the lower pointwise confidence limit for CMF
LOWERCUMHAZ= specifies the lower pointwise confidence limit for CUMHAZ
LOWERHPDCUMHAZ= Specifies the lower limit of the HPD interval for CUMHAZ
LOWERHPD= Specifies the lower limit of the HPD interval for SURVIVAL
LOWER= Specifies the lower pointwise confidence limit for SURVIVAL
STDCIF= Specifies the estimated standard error of CIF
STDCMF= Specifies the estimated standard error of CMF
STDCUMHAZ= Specifies the estimated standard error of CUMHAZ
STDERR= Specifies the standard error of SURVIVAL
STDXBETA= Specifies the estimated standard error of the linear predictor estimator
SURVIVAL= Specifies the survivor function estimate
UPPERCIF= Specifies the upper pointwise confidence limit for CIF
UPPERCMF= Specifies the upper pointwise confidence limit for CMF
UPPERCUMHAZ= Specifies the upper pointwise confidence limit for CUMHAZ
UPPERHPDCUMHAZ= Specifies the upper limit of the HPD interval for CUMHAZ
UPPERHPD= Specifies the upper limit of the HPD interval for SURVIVAL
UPPER= Specifies the upper pointwise confidence limit for SURVIVAL
XBETA= Specifies the estimate of the linear predictor x0ˇ

Other Options
ALPHA= Specifies the significance level of the confidence interval for the survivor

function
CLTYPE= Specifies the transformation used to compute the confidence limits
DIRADJ Computes direct adjusted survival curves
GROUP= Names a variable whose values are used to identify or group the survival

curves
METHOD= Specifies the method used to compute the survivor function estimates
NORMALSAMPLE= Specifies the number of normal random samples for CIF confidence

limits
ROWID= Names the variable in the COVARIATES= data set for identifying the

baseline functions curves in the plots
SEED= Specifies the random number generator seed



5900 F Chapter 73: The PHREG Procedure

The following options are available in the BASELINE statement.

OUT=SAS-data-set
names the output BASELINE data set. If you omit the OUT= option, the data set is created and
given a default name by using the DATAn convention. See the section “OUT= Output Data Set in the
BASELINE Statement” on page 6015 for more information.

OUTDIFF=SAS-data-set
names the output data set that contains all pairwise differences of direct adjusted probabilities between
groups if the GROUP= variable is specified, or between strata if the GROUP= variable is not specified.
It is required that the DIRADJ option be specified to use the OUTDIFF= option.

COVARIATES=SAS-data-set
names the SAS data set that contains the sets of explanatory variable values for which the quantities
of interest are estimated. All variables in the COVARIATES= data set are copied to the OUT= data
set. Thus, any variable in the COVARIATES= data set can be used to identify the covariate sets in the
OUT= data set.

TIMELIST=list
specifies a list of time points at which the survival function estimates and cumulative hazard function
estimates are computed. The following specifications are equivalent:

timelist=5,20 to 50 by 10
timelist=5 20 30 40 50

If the TIMELIST= option is not specified, the default is to carry out the prediction at all event times
and at time 0. This option can be used only for the Bayesian analysis.

keyword=name
specifies the statistics to be included in the OUT= data set and assigns names to the variables that
contain these statistics. Specify a keyword for each desired statistic, an equal sign, and the name of the
variable for the statistic. Not all keywords listed in Table 73.3 (and discussed in the text that follows)
are appropriate for both the classical analysis and the Bayesian analysis; and the table summaries the
choices for each analysis.

Table 73.3 Summary of the Keyword Choices

Keyword Classical Bayesian

Survivor Function
SURVIVAL= x x
STDERR= x x
LOWER= x x
UPPER= x x
LOWERHPD= x
UPPERHPD= x

Cumulative Hazard Function
CUMHAZ= x x
STDCUMHAZ= x x
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Table 73.3 continued

Options Classical Bayesian

LOWERCUMHAZ= x x
UPPERCUMHAZ= x x
LOWERHPDCUMHAZ= x
UPPERHPDCUMHAZ= x

Cumulative Mean Function
CMF= x
STDCMF= x
LOWERCMF= x
UPPERCMF= x

Others
XBETA= x x
STDXBETA= x x
LOGSURV= x
LOGLOGS= x

You can specify the following keywords:

CIF=
specifies the cumulative incidence function estimate for competing-risks data. Specifying
CIF=_ALL_ is equivalent to specifying CIF=CIF, STDCIF=StdErrCIF, LOWERCIF=LowerCIF,
and UPPERCIF=UpperCIF.

CMF=

MCF=
specifies the cumulative mean function estimate for recurrent events data. Speci-
fying CMF=_ALL_ is equivalent to specifying CMF=CMF, STDCMF=StdErrCMF,
LOWERCMF=LowerCMF, and UPPERCMF=UpperCMF. Nelson (2002) refers to the mean
function estimate as MCF (mean cumulative function).

CUMHAZ=
specifies the cumulative hazard function estimate. Specifying CUMHAZ=_ALL_
is equivalent to specifying CUMHAZ=CumHaz, STDCUMHAZ=StdErrCumHaz,
LOWERCUMHAZ=LowerCumHaz, and UPPERCUMHAZ=UpperCumHaz. For a Bayesian
analysis, CUMHAZ=_ALL_ also includes LOWERHPDCUMHAZ=LowerHPDCumHaz and
UpperHPDCUMHAZ=UpperHPDCumHaz.

LOGLOGS=
specifies the log of the negative log of SURVIVAL.

LOGSURV=
specifies the log of SURVIVAL.
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LOWER=

L=
specifies the lower pointwise confidence limit for the survivor function. For a Bayesian analysis,
this is the lower limit of the equal-tail credible interval for the survivor function. The confidence
level is determined by the ALPHA= option.

LOWERCIF=
specifies the lower pointwise confidence limit for the cumulative incidence function. The
confidence level is determined by the ALPHA= option.

LOWERCMF=

LOWERMCF=
specifies the lower pointwise confidence limit for the cumulative mean function. The confidence
level is determined by the ALPHA= option.

LOWERHPD=
specifies the lower limit of the HPD interval for the survivor function. The confidence level is
determined by the ALPHA= option.

LOWERHPDCUMHAZ=
specifies the lower limit of the HPD interval for the cumulative hazard function. The confidence
level is determined by the ALPHA= option.

LOWERCUMHAZ=
specifies the lower pointwise confidence limit for the cumulative hazard function. For a Bayesian
analysis, this is the lower limit of the equal-tail credible interval for the cumulative hazard
function. The confidence level is determined by the ALPHA= option.

STDERR=
specifies the standard error of the survivor function estimator. For a Bayesian analysis, this is the
standard deviation of the posterior distribution of the survivor function.

STDCIF=
specifies the estimated standard error of the cumulative incidence function estimator.

STDCMF=

STDMCF=
specifies the estimated standard error of the cumulative mean function estimator.

STDCUMHAZ=
specifies the estimated standard error of the cumulative hazard function estimator. For a Bayesian
analysis, this is the standard deviation of the posterior distribution of the cumulative hazard
function.

STDXBETA=
specifies the estimated standard error of the linear predictor estimator. For a Bayesian analysis,
this is the standard deviation of the posterior distribution of the linear predictor.
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SURVIVAL=
specifies the survivor function (S.t/ D ŒS0.t/�exp.ˇ

0x/) estimate. Specifying SURVIVAL=_ALL_
is equivalent to specifying SURVIVAL=Survival, STDERR=StdErrSurvival, LOWER=LowerSurvival,
and UPPER=UpperSurvival; and for a Bayesian analysis, SURVIVAL=_ALL_ also specifies
LOWERHPD=LowerHPDSurvival and UPPERHPD=UpperHPDSurvival.

UPPER=

U=
specifies the upper pointwise confidence limit for the survivor function. For a Bayesian analysis,
this is the upper limit of the equal-tail credible interval for the survivor function. The confidence
level is determined by the ALPHA= option.

UPPERCIF=
specifies the upper pointwise confidence limit for the cumulative incidence function. The
confidence level is determined by the ALPHA= option.

UPPERCMF=

UPPERMCF=
specifies the upper pointwise confidence limit for the cumulative mean function. The confidence
level is determined by the ALPHA= option.

UPPERCUMHAZ=
specifies the upper pointwise confidence limit for the cumulative hazard function. For a Bayesian
analysis, this is the upper limit of the equal-tail credible interval for the cumulative hazard
function. The confidence level is determined by the ALPHA= option.

UPPERHPD=
specifies the upper limit of the equal-tail credible interval for the survivor function. The confidence
level is determined by the ALPHA= option.

UPPERHPDCUMHAZ=
specifies the upper limit of the equal-tail credible interval for the cumulative hazard function.
The confidence level is determined by the ALPHA= option.

XBETA=
specifies the estimate of the linear predictor x0ˇ.

The following options can appear in the BASELINE statement after a slash (/). The METHOD= and
CLTYPE= options apply only to the estimate of the survivor function in the classical analysis. For the
Bayesian analysis, the survivor function is estimated by the Breslow (1972) method.

ALPHA=value
specifies the significance level of the confidence interval for the survivor function. The value must be
between 0 and 1. The default is the value of the ALPHA= option in the PROC PHREG statement, or
0.05 if that option is not specified.

CLTYPE=method
specifies the transformation used to compute the confidence limits for S.t; z/, the survivor function for
a subject with a fixed covariate vector z at event time t. The CLTYPE= option can take the following
values:
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LOG
specifies that the confidence limits for log.S.t; z// be computed using the normal theory approxi-
mation. The confidence limits for S.t; z/ are obtained by back-transforming the confidence limits
for log.S.t; z//. The default is CLTYPE=LOG.

LOGLOG
specifies that the confidence limits for the log.� log.S.t; z/// be computed using normal the-
ory approximation. The confidence limits for S.t; z/ are obtained by back-transforming the
confidence limits for log.� log.S.t; z///.

NORMAL

IDENTITY
specifies that the confidence limits for S.t; z/ be computed directly using normal theory approxi-
mation.

DIRADJ
computes direct adjusted survival curves (Makuch 1982; Gail and Byar 1986; Zhang et al. 2007) by
averaging the estimated survival curves for the observations in the COVARIATES= data set. See the
section “Direct Adjusted Survival Curves” on page 5992 and Example 73.8 for the computation and
specific details. If the COVARIATES= data set is not specified, the input data set specified in the
DATA= option in the PROC PHREG statement is used instead. If you also specify the GROUP= option,
PROC PHREG computes an adjusted survival curve for each value of the GROUP= variable.

GROUP=variable
names a variable whose values identify or group the estimated survival curves. The behavior of this
option depends on whether you also specify the DIRADJ option:

• If you also specify the DIRADJ option, variable must be a CLASS variable in the model. A direct
adjusted survival curve is computed for each value of variable in the input data. The variable
does not have to be a variable in the COVARIATES= data set. Each direct adjusted survival curve
is the average of the survival curves of all individuals in the COVARIATES= data set with their
value of variable set to a specific value.

• If you do not specify the DIRADJ option, variable is required to be a numeric variable in the
COVARIATES= data set. Survival curves for the observations with the same value of the variable
are overlaid in the same plot.

METHOD=method
specifies the method used to compute the survivor function estimates. See the section “Survivor
Function Estimators” on page 5989 for details. You can specify the following methods:

BRESLOW

CH

EMP
specifies that the Breslow (1972) estimator be used to compute the survivor function—that is, that
the survivor function be estimated by exponentiating the negative empirical cumulative hazard
function.
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FH
specifies that the Fleming-Harrington (FH) estimates be computed. The FH estimator is a tie-
breaking modification of the Breslow estimator. If there are no tied event times, this estimator is
the same as the Breslow estimator.

PL
specifies that the product-limit estimates of the survivor function be computed. This estimator
is not available if you use the model syntax that allows two time variables for counting process
style of input; in such a case the Breslow estimator (METHOD=BRESLOW) is used instead.

The default is METHOD=BRESLOW.

NORMALSAMPLE=n
specifies the number of sets of normal random samples to simulate the Gaussian process in
the estimation of the confidence limits for the cumulative incidence function. By default,
NORMALSAMPLE=100.

ROWID=variable

ID=variable

ROW=variable
names a variable in the COVARIATES= data set for identifying the baseline function curves in the
plots. This option has no effect if the PLOTS= option in the PROC PHREG statement is not specified.
Values of this variable are used to label the curves for the corresponding rows in the COVARIATES=
data set. You can specify ROWID=_OBS_ to use the observation numbers in the COVARIATES= data
set for identification.

SEED=n
specifies an integer seed, ranging from 1 to 231–1, to simulate the distribution of the Gaussian process
in the estimation of the confidence limits for the cumulative incidence function. Specifying a seed
enables you to reproduce identical confidence limits from the same PROC PHREG specification. If the
SEED= option is not specified, or if you specify a nonpositive seed, a random seed is derived from the
time of day on the computer’s clock.

For recurrent events data, both CMF= and CUMHAZ= statistics are the Nelson estimators, but their standard
error are not the same. Confidence limits for the cumulative mean function and cumulative hazard function
are based on the log transform.

BAYES Statement
BAYES < options > ;

The BAYES statement requests a Bayesian analysis of the regression model by using Gibbs sampling. The
Bayesian posterior samples (also known as the chain) for the regression parameters can be output to a SAS
data set. Table 73.4 summarizes the options available in the BAYES statement.
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Table 73.4 BAYES Statement Options

Option Description

Monte Carlo Options
INITIAL= Specifies initial values of the chain
NBI= Specifies the number of burn-in iterations
NMC= Specifies the number of iterations after burn-in
SAMPLING= Specifies the sampling algorithm
SEED= Specifies the random number generator seed
THINNING= Controls the thinning of the Markov chain

Model and Prior Options
COEFFPRIOR= Specifies the prior of the regression coefficients
DISPERSIONPRIOR= Specifies the prior of the dispersion parameter for frailties
PIECEWISE= Specifies details of the piecewise exponential model

Summaries and Diagnostics of the Posterior Samples
DIAGNOSTICS= Displays convergence diagnostics
PLOTS= Displays diagnostic plots
STATISTICS= Displays summary statistics

Posterior Samples
OUTPOST= Names a SAS data set for the posterior samples

The following list describes these options and their suboptions.

COEFFPRIOR=UNIFORM | NORMAL < (normal-option) > | ZELLNER < (zellner-option) >
CPRIOR=UNIFORM | NORMAL < (normal-option) > | ZELLNER < (zellner-option) >
COEFF=UNIFORM | NORMAL < (normal-option) > | ZELLNER < (zellner-option) >

specifies the prior distribution for the regression coefficients. The default is COEFFPRIOR=UNIFORM.
The following prior distributions are available:

UNIFORM
specifies a flat prior—that is, the prior that is proportional to a constant (p.ˇ1; : : : ; ˇk/ / 1 for
all �1 < ˇi <1).

NORMAL< (normal-option) >
specifies a normal distribution. The normal-options include the following:

INPUT=SAS-data-set
specifies a SAS data set that contains the mean and covariance information of the normal
prior. The data set must contain the _TYPE_ variable to identify the observation type,
and it must contain a variable to represent each regression coefficient. If the data set also
contains the _NAME_ variable, values of this variable are used to identify the covariances
for the _TYPE_=’COV’ observations; otherwise, the _TYPE_=’COV’ observations are
assumed to be in the same order as the explanatory variables in the MODEL statement.
PROC PHREG reads the mean vector from the observation with _TYPE_=’MEAN’ and the
covariance matrix from observations with _TYPE_=’COV’. For an independent normal prior,
the variances can be specified with _TYPE_=’VAR’; alternatively, the precisions (inverse of
the variances) can be specified with _TYPE_=’PRECISION’.
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RELVAR < =c >
specifies a normal prior N.0; cJ/, where J is a diagonal matrix with diagonal elements equal
to the variances of the corresponding ML estimator. By default, c=1E6.

VAR=c
specifies the normal prior N.0; cI/, where I is the identity matrix.

If you do not specify a normal-option, the normal prior N.0; 106I/, where I is the identity matrix,
is used. See the section “Normal Prior” on page 6007 for details.

ZELLNER< (zellner-option) >
specifies the Zellner g-prior for the regression coefficients. The g-prior is a normal prior distribu-
tion with mean zero and covariance matrix equal to .gX0X/�1, where X is the design matrix and
g can be a constant or a parameter with a gamma prior. The zellner-options include the following:

G=number
specifies a constant number for g.

GAMMA < (SHAPE=a ISCALE=b) >
specifies that g has a gamma prior distribution G.a; b/ with density f .t/ D b.bt/a�1e�bt

�.a/
.

By default, a=b=1E–4.

If you do not specify a zellner-option, the default is ZELLNER(g=1E–6).

DISPERSIONPRIOR=GAMMA< (gamma-options) > | IGAMMA< (igamma-options) > | IMPROPER

DPRIOR=GAMMA< (gamma-options) > | IGAMMA< (igamma-options) > | IMPROPER
specifies the prior distribution of the dispersion parameter. For gamma frailty, the dispersion parameter
is the variance of the gamma frailty; for lognormal frailty, the dispersion parameter is the variance of
the normal random component. The default is DISPERSIONPRIOR=IMPROPER.

You can specify the following values for this option:

GAMMA< (gamma-options) >
specifies the gamma prior. A gamma prior G.a; b/ with hyperparameters a and b has density
f .�/ D ba�a�1e�b�

�.a/
, where a is the shape parameter and b is the inverse-scale parameter. You

can use the following gamma-options enclosed in parentheses to specify the hyperparameters:

SHAPE=a

ISCALE=b
results in a G.a; b/ prior when both gamma-options are specified.

SHAPE=c
results in a G.c; c/ prior when specified alone.

ISCALE=c
results in a G.c; c/ prior when specify alone.

The default is SHAPE=1E–4 and ISCALE=1E–4.
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IGAMMA< (igamma-options) >
specifies the inverse-gamma prior. An inverse-gamma prior IG.a; b/ with hyperparameters a

and b has a density f .�/ D ba��.aC1/e�
b
�

�.a/
, where a is the shape parameter and b is the scale

parameter. You can use the following igamma-options enclosed in parentheses to specify the
hyperparameters:

SHAPE=a

SCALE=b
results in a IG.a; b/ prior when both igamma-options are specified.

SHAPE=c
results in a IG.c; c/ prior when specified alone.

SCALE=c
results in a IG.c; c/ prior when specified alone.

The default is SHAPE=2.001 AND SCALE=0.01.

IMPROPER
specifies the improper prior, which has a density f .�/ proportional to ��1.

DIAGNOSTICS=ALL | NONE | keyword | (keyword-list)

DIAG=ALL | NONE | keyword | (keyword-list)
controls the number of diagnostics produced. You can request all the diagnostics in the following
list by specifying DIAGNOSTICS=ALL. If you do not want any of these diagnostics, you specify
DIAGNOSTICS=NONE. If you want some but not all of the diagnostics, or if you want to change
certain settings of these diagnostics, you specify a subset of the following keywords. The default is
DIAGNOSTICS=(AUTOCORR GEWEKE ESS).

AUTOCORR < (LAGS= numeric-list) >
computes the autocorrelations of lags given by LAGS= list for each parameter. Elements in
the list are truncated to integers and repeated values are removed. If the LAGS= option is not
specified, autocorrelations of lags 1, 5, 10, and 50 are computed for each variable. See the section
“Autocorrelations” on page 150 in Chapter 7, “Introduction to Bayesian Analysis Procedures,” for
details.

ESS
computes the effective sample size of Kass et al. (1998), the correlation time, and the efficiency of
the chain for each parameter. See the section “Effective Sample Size” on page 150 in Chapter 7,
“Introduction to Bayesian Analysis Procedures,” for details.

MCSE

MCERROR
computes the Monte Carlo standard error for each parameter. The Monte Caro standard error,
which measures the simulation accuracy, is the standard error of the posterior mean estimate
and is calculated as the posterior standard deviation divided by the square root of the effective
sample size. See the section “Standard Error of the Mean Estimate” on page 151 in Chapter 7,
“Introduction to Bayesian Analysis Procedures,” for details.
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HEIDELBERGER < (heidel-options) >
computes the Heidelberger and Welch tests for each parameter. See the section “Heidelberger and
Welch Diagnostics” on page 146 in Chapter 7, “Introduction to Bayesian Analysis Procedures,”
for details. The tests consist of a stationary test and a halfwidth test. The former tests the null
hypothesis that the sample values form a stationary process. If the stationarity test is passed,
a halfwidth test is then carried out. Optionally, you can specify one or more of the following
heidel-options:

SALPHA=value
specifies the ˛ level .0 < ˛ < 1/ for the stationarity test. The default is the value of the
ALPHA= option in the PROC PHREG statement, or 0.05 if that option is not specified.

HALPHA=value
specifies the ˛ level .0 < ˛ < 1/ for the halfwidth test. The default is the value of the
ALPHA= option in the PROC PHREG statement, or 0.05 if that option is not specified.

EPS=value
specifies a small positive number � such that if the halfwidth is less than � times the sample
mean of the retaining samples, the halfwidth test is passed.

GELMAN < (gelman-options) >
computes the Gelman and Rubin convergence diagnostics. See the section “Gelman and Rubin
Diagnostics” on page 143 in Chapter 7, “Introduction to Bayesian Analysis Procedures,” for
details. You can specify one or more of the following gelman-options:

NCHAIN=number
N=number

specifies the number of parallel chains used to compute the diagnostic and has to be 2 or
larger. The default is NCHAIN=3. The NCHAIN= option is ignored when the INITIAL=
option is specified in the BAYES statement, and in such a case, the number of parallel chains
is determined by the number of valid observations in the INITIAL= data set.

ALPHA=value
specifies the significance level for the upper bound. The default is the value of the ALPHA=
option in the PROC PHREG statement, or 0.05 if that option is not specified (resulting in a
97.5% bound).

GEWEKE < geweke-options >
computes the Geweke diagnostics. See the section “Geweke Diagnostics” on page 144 in
Chapter 7, “Introduction to Bayesian Analysis Procedures,” for details. The diagnostic is
essentially a two-sample t-test between the first f1 portion and the last f2 portion of the chain.
The default is f1=0.1 and f2=0.5, but you can choose other fractions by using the following
geweke-options:

FRAC1=value
specifies the early f1 fraction of the Markov chain.

FRAC2=value
specifies the latter f2 fraction of the Markov chain.
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RAFTERY < (raftery-options) >
computes the Raftery and Lewis diagnostics. See the section “Raftery and Lewis Diagnostics”
on page 147 in Chapter 7, “Introduction to Bayesian Analysis Procedures,” for details. The
diagnostic evaluates the accuracy of the estimated quantile ( O�Q for a given Q 2 .0; 1/) of a
chain. O�Q can achieve any degree of accuracy when the chain is allowed to run for a long time.
A stopping criterion is when the estimated probability OPQ D Pr.� � O�Q/ reaches within ˙R
of the value Q with probability S; that is, Pr.Q � R � OPQ � Q C R/ D S . The following
raftery-options enable you to specify Q;R; S; and a precision level � for a stationary test.

QUANTILE=value
Q=value

specifies the order (a value between 0 and 1) of the quantile of interest. The default is 0.025.

ACCURACY=value
R=value

specifies a small positive number as the margin of error for measuring the accuracy of
estimation of the quantile. The default is 0.005.

PROBABILITY=value
S=value

specifies the probability of attaining the accuracy of the estimation of the quantile. The
default is 0.95.

EPSILON=value
EPS=value

specifies the tolerance level (a small positive number) for the test. The default is 0.001.

INITIAL=SAS-data-set
specifies the SAS data set that contains the initial values of the Markov chains. The INITIAL= data
set must contain a variable for each parameter in the model. You can specify multiple rows as the
initial values of the parallel chains for the Gelman-Rubin statistics, but posterior summary statistics,
diagnostics, and plots are computed only for the first chain.

NBI=number
specifies the number of burn-in iterations before the chains are saved. The default is 2000.

NMC=number
specifies the number of iterations after the burn-in. The default is 10000.

OUTPOST=SAS-data-set
OUT=SAS-data-set

names the SAS data set that contains the posterior samples. See the section “OUTPOST= Output Data
Set in the BAYES Statement” on page 6015 for more information. Alternatively, you can output the
posterior samples into a data set, as shown in the following example in which the data set is named
PostSamp.

ODS OUTPUT PosteriorSample = PostSamp;
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PIECEWISE < =keyword < (< NINTERVAL=number > < INTERVALS=(numeric-list) > < PRIOR=option >) > >

specifies that the piecewise constant baseline hazard model be used in the Bayesian analysis. You can
specify one of the following two keywords:

HAZARD
models the baseline hazard parameters in the original scale. The hazard parameters are named
Lambda1, Lambda2, : : :, and so on.

LOGHAZARD
models the baseline hazard parameters in the log scale. The log-hazard parameters are named
Alpha1, Alpha2, : : :, and so on.

Specifying PIECEWISE by itself is the same as specifying PIECEWISE=LOGHAZARD.

You can choose one of the following two options to specify the partition of the time axis into intervals
of constant baseline hazards:

NINTERVAL=number

N=number
specifies the number of intervals with constant baseline hazard rates. PROC PHREG partitions
the time axis into the given number of intervals with approximately equal number of events in
each interval.

INTERVALS=(numeric-list)

INTERVAL=(numeric-list)
specifies the list of numbers that partition the time axis into disjoint intervals with constant
baseline hazard in each interval. For example, INTERVALS=(100, 150, 200, 250, 300) specifies a
model with a constant hazard in the intervals [0,100), [100,150), [150,200), [200,250), [250,300),
and [300,1). Each interval must contain at least one event; otherwise, the posterior distribution
can be improper, and inferences cannot be derived from an improper posterior distribution.

If neither NINTERVAL= nor INTERVAL= is specified, the default is NINTERVAL=8.

To specify the prior for the baseline hazards (�1; : : : ; �J ) in the original scale, you specify the
following:

PRIOR = IMPROPER | UNIFORM | GAMMA< (gamma-option) > | ARGAMMA< (argamma-option) >

The default is PRIOR=IMPROPER. The available prior options include the following:

IMPROPER
specifies the noninformative and improper prior p.�1; : : : ; �J / /

Q
i �i
�1 for all �i > 0.

UNIFORM
specifies a uniform prior on the real line; that is, p.�i / / 1 for all �i > 0.

GAMMA < (gamma-option) >
specifies an independent gamma prior G.a; b/ with density f .t/ D b.bt/a�1e�bt

�.a/
, which can

be followed by one of the following gamma-options enclosed in parentheses. The hyper-
parameters a and b are the shape and inverse-scale parameters of the gamma distribution,
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respectively. See the section “Independent Gamma Prior” on page 6006 for details. The
default is G.10�4; 10�4/ for each �j , setting the prior mean to 1 with variance 1E4. This
prior is proper and reasonably noninformative.

INPUT=SAS-data-set
specifies a data set containing the hyperparameters of the independent gamma prior.
The data set must contain the _TYPE_ variable to identify the observation type, and it
must contain the variables named Lambda1, Lambda2, . . . , and so forth, to represent
the hazard parameters. The observation with _TYPE_=’SHAPE’ identifies the shape
parameters, and the observation with _TYPE_=’ISCALE’ identifies the inverse-scale
parameters.

RELSHAPE< =c >
specifies independent G.c O�j ; c/ distribution, where O�j ’s are the MLEs of the hazard

rates. This prior has mean O�j and variance
O�j
c

. By default, c=1E–4.

SHAPE=a and ISCALE=b
together specify the G.a; b/ prior.

SHAPE=c

ISCALE=c
specifies the G.c; c/ prior.

ARGAMMA < (argamma-option) >
specifies an autoregressive gamma prior of order 1, which can be followed by one of the following
argamma-options. See the section “AR1 Prior” on page 6006 for details.

INPUT=SAS-data-set
specifies a data set containing the hyperparameters of the correlated gamma prior. The
data set must contain the _TYPE_ variable to identify the observation type, and it must
contain the variables named Lambda1, Lambda2, . . . , and so forth, to represent the hazard
parameters. The observation with _TYPE_=’SHAPE’ identifies the shape parameters, and
the observation with _TYPE_=’ISCALE’ identifies the relative inverse-scale parameters;
that is, if aj and bj are, respectively, the SHAPE and ISCALE values for �j ; 1 � j � J ,
then �1 � G.a1; b1/, and �j � G.aj ; bj =�j�1/ for 2 � j � J .

SHAPE=a and SCALE=b
together specify that �1 � G.a; b/ and �j � G.a; b=�j�1/ for 2 � j � J .

SHAPE=c

ISCALE=c
specifies that �1 � G.c; c/ and �j � G.c; c=�j�1/ for 2 � j � J .

To specify the prior for ˛1; : : : ; ˛J , the hazard parameters in the log scale, you specifying the following:

PRIOR=UNIFORM | NORMAL< (normal-option) >
specifies the prior for the loghazard parameters. The default is PRIOR=UNIFORM. The available
PRIOR= options are as follows:
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UNIFORM
specifies the uniform prior on the real line; that is, ˛i / 1 for all �1 < ˛i <1.

NORMAL< (normal-option) >
specifies a normal prior distribution on the log-hazard parameters. The normal-options include
the following. If you do not specify a normal-option, the normal prior N.0; 106I/, where I is the
identity matrix, is used.

INPUT=SAS-data-set
specifies a SAS data set containing the mean and covariance information of the normal
prior. The data set must contain the _TYPE_ variable to identify the observation type,
and it must contain variables named Alpha1, Alpha2, . . . , and so forth, to represent the
log-hazard parameters. If the data set also contains the _NAME_ variable, the value of
this variable will be used to identify the covariances for the _TYPE_=’COV’ observations;
otherwise, the _TYPE_=’COV’ observations are assumed to be in the same order as the
explanatory variables in the MODEL statement. PROC PHREG reads the mean vector
from the observation with _TYPE_=’MEAN’ and the covariance matrix from observations
with _TYPE_=’COV’. See the section “Normal Prior” on page 6007 for details. For an
independent normal prior, the variances can be specified with _TYPE_=’VAR’; alternatively,
the precisions (inverse of the variances) can be specified with _TYPE_=’PRECISION’.

If you have a joint normal prior for the log-hazard parameters and the regression coeffi-
cients, specify the same data set containing the mean and covariance information of the
multivariate normal distribution in both the COEFFPRIOR=NORMAL(INPUT=) and the
PIECEWISE=LOGHAZARD(PRIOR=NORMAL(INPUT=)) options. See the section “Joint
Multivariate Normal Prior for Log-Hazards and Regression Coefficients” on page 6007 for
details.

RELVAR < =c >
specifies the normal prior N.0; cJ/, where J is a diagonal matrix with diagonal elements
equal to the variances of the corresponding ML estimator. By default, c=1E6.

VAR=c
specifies the normal prior N.0; cI/, where I is the identity matrix.

PLOTS < (global-plot-options) > = plot-request

PLOTS < (global-plot-options) > = (plot-requests)
controls the diagnostic plots produced through ODS Graphics. Three types of plots can be requested:
trace plots, autocorrelation function plots, and kernel density plots. By default, the plots are displayed
in panels unless the global plot option UNPACK is specified. If you specify more than one type of plots,
the plots are displayed by parameters unless the global plot option GROUPBY=TYPE is specified.
When you specify only one plot request, you can omit the parentheses around the plot request. For
example:

plots=none
plots(unpack)=trace
plots=(trace autocorr)
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ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;
proc phreg;

model y=x;
bayes plots=trace;

run;

If ODS Graphics is enabled but you do not specify the PLOTS= option in the BAYES statement, then
PROC PHREG produces, for each parameter, a panel that contains the trace plot, the autocorrela-
tion function plot, and the density plot. This is equivalent to specifying plots=(trace autocorr

density).

The global-plot-options include the following:

FRINGE
creates a fringe plot on the X axis of the density plot.

GROUPBY = PARAMETER | TYPE
specifies how the plots are to be grouped when there is more than one type of plots. The choices
are as follows:

TYPE
specifies that the plots be grouped by type.

PARAMETER
specifies that the plots be grouped by parameter.

GROUPBY=PARAMETER is the default.

SMOOTH
displays a fitted penalized B-spline curve each trace plot.

UNPACKPANEL

UNPACK
specifies that all paneled plots be unpacked, meaning that each plot in a panel is displayed
separately.

The plot-requests include the following:

ALL
specifies all types of plots. PLOTS=ALL is equivalent to specifying PLOTS=(TRACE AUTO-
CORR DENSITY).

AUTOCORR
displays the autocorrelation function plots for the parameters.

DENSITY
displays the kernel density plots for the parameters.
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NONE
suppresses all diagnostic plots.

TRACE
displays the trace plots for the parameters. See the section “Visual Analysis via Trace Plots” on
page 137 in Chapter 7, “Introduction to Bayesian Analysis Procedures,” for details.

Consider a model with four parameters, X1–X4. Displays for various specification are depicted as
follows.

1. PLOTS=(TRACE AUTOCORR) displays the trace and autocorrelation plots for each parameter
side by side with two parameters per panel:

Display 1 Trace(X1) Autocorr(X1)
Trace(X2) Autocorr(X2)

Display 2 Trace(X3) Autocorr(X3)
Trace(X4) Autocorr(X4)

2. PLOTS(GROUPBY=TYPE)=(TRACE AUTOCORR) displays all the paneled trace plots, fol-
lowed by panels of autocorrelation plots:

Display 1 Trace(X1)
Trace(X2)

Display 2 Trace(X3)
Trace(X4)

Display 3 Autocorr(X1) Autocorr(X2)
Autocorr(X3) Autocorr(X4)

3. PLOTS(UNPACK)=(TRACE AUTOCORR) displays a separate trace plot and a separate correla-
tion plot, parameter by parameter:

Display 1 Trace(X1)

Display 2 Autocorr(X1)

Display 3 Trace(X2)

Display 4 Autocorr(X2)

Display 5 Trace(X3)

Display 6 Autocorr(X3)

Display 7 Trace(X4)

Display 8 Autocorr(X4)
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4. PLOTS(UNPACK GROUPBY=TYPE) = (TRACE AUTOCORR) displays all the separate trace
plots followed by the separate autocorrelation plots:

Display 1 Trace(X1)

Display 2 Trace(X2)

Display 3 Trace(X3)

Display 4 Trace(X4)

Display 5 Autocorr(X1)

Display 6 Autocorr(X2)

Display 7 Autocorr(X3)

Display 8 Autocorr(X4)

SAMPLING=keyword
specifies the sampling algorithm used in the Markov chain Monte Carlo (MCMC) simulations. Two
sampling algorithms are available:

ARMS

GIBBS
requests the use of the adaptive rejection Metropolis sampling (ARMS) algorithm to draw the
Gibbs samples. ALGORITHM=ARMS is the default.

RWM
requests the use of the random walk Metropolis (RWM) algorithm to draw the samples.

For details about the MCMC sampling algorithms, see the section “Markov Chain Monte Carlo Method”
on page 131 in Chapter 7, “Introduction to Bayesian Analysis Procedures.”

SEED=number
specifies an integer seed ranging from 1 to 231–1 for the random number generator in the simulation.
Specifying a seed enables you to reproduce identical Markov chains for the same specification. If the
SEED= option is not specified, or if you specify a nonpositive seed, a random seed is derived from the
time of day.

STATISTICS < (global-options) > = ALL | NONE | keyword | (keyword-list)

STATS < (global-statoptions) > = ALL | NONE | keyword | (keyword-list)
controls the number of posterior statistics produced. Specifying STATISTICS=ALL is equivalent to
specifying STATISTICS=(SUMMARY INTERVAL COV CORR). If you do not want any posterior
statistics, you specify STATISTICS=NONE. The default is STATISTICS=(SUMMARY INTERVAL).
See the section “Summary Statistics” on page 151 in Chapter 7, “Introduction to Bayesian Analysis
Procedures,” for details. The global-options include the following:
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ALPHA=numeric-list
controls the probabilities of the credible intervals. The ALPHA= values must be between 0 and 1.
Each ALPHA= value produces a pair of 100(1–ALPHA)% equal-tail and HPD intervals for each
parameters. The default is the value of the ALPHA= option in the PROC PHREG statement, or
0.05 if that option is not specified (yielding the 95% credible intervals for each parameter).

PERCENT=numeric-list
requests the percentile points of the posterior samples. The PERCENT= values must be between
0 and 100. The default is PERCENT= 25, 50, 75, which yield the 25th, 50th, and 75th percentile
points for each parameter.

You can specify the following values for a keyword or as part of a keyword-list . To specify a list, place
parentheses around multiple keywords that are separated by spaces.

CORR
produces the posterior correlation matrix.

COV
produces the posterior covariance matrix.

SUMMARY
produces the means, standard deviations, and percentile points for the posterior samples. The
default is to produce the 25th, 50th, and 75th percentile points, but you can use the global
PERCENT= option to request specific percentile points.

INTERVAL
produces equal-tail credible intervals and HPD intervals. The default is to produce the 95%
equal-tail credible intervals and 95% HPD intervals, but you can use the global ALPHA= option
to request intervals of any probabilities.

THINNING=number
THIN=number

controls the thinning of the Markov chain. Only one in every k samples is used when THINNING=k,
and if NBI=n0 and NMC=n, the number of samples kept is�

n0 C n

k

�
�

�
n0

k

�
where [a] represents the integer part of the number a. The default is THINNING=1.

BY Statement
BY variables ;

You can specify a BY statement with PROC PHREG to obtain separate analyses of observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.
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If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the PHREG procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

CLASS Statement
CLASS variable < (options) > . . . < variable < (options) > > < / global-options > ;

The CLASS statement names the classification variables to be used as explanatory variables in the analysis.

The CLASS statement must precede the MODEL statement. Most options can be specified either as individual
variable options or as global-options. You can specify options for each variable by enclosing the options in
parentheses after the variable name. You can also specify global-options for the CLASS statement by placing
them after a slash (/). Global-options are applied to all the variables specified in the CLASS statement. If you
specify more than one CLASS statement, the global-options specified in any one CLASS statement apply to
all CLASS statements. However, individual CLASS variable options override the global-options. You can
specify the following values for either an option or a global-option:

CPREFIX=n
specifies that, at most, the first n characters of a CLASS variable name be used in creating names for
the corresponding design variables. The default is 32 �min.32;max.2; f //, where f is the formatted
length of the CLASS variable.

DESCENDING

DESC
reverses the sort order of the classification variable. If both the DESCENDING and ORDER= options
are specified, PROC PHREG orders the categories according to the ORDER= option and then reverses
that order.

LPREFIX=n
specifies that, at most, the first n characters of a CLASS variable label be used in creating labels for the
corresponding design variables. The default is 256 �min.256;max.2; f //, where f is the formatted
length of the CLASS variable.

MISSING
treats missing values (., ._, .A, . . . , .Z for numeric variables and blanks for character variables) as valid
values for the CLASS variable.
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ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of classification variables. This ordering determines which
parameters in the model correspond to each level in the data, so the ORDER= option can be useful when
you use the CONTRAST statement. By default, ORDER=FORMATTED. For ORDER=FORMATTED
and ORDER=INTERNAL, the sort order is machine-dependent. When ORDER=FORMATTED is in
effect for numeric variables for which you have supplied no explicit format, the levels are ordered by
their internal values.

The following table shows how PROC PHREG interprets values of the ORDER= option.

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set
FORMATTED External formatted values, except for numeric

variables with no explicit format, which are sorted
by their unformatted (internal) values

FREQ Descending frequency count; levels with more
observations come earlier in the order

INTERNAL Unformatted value

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

PARAM=keyword
specifies the parameterization method for the classification variable or variables. You can specify any
of the keywords shown in the following table; ; the default is PARAM=REF. Design matrix columns
are created from CLASS variables according to the corresponding coding schemes:

Value of PARAM= Coding

EFFECT Effect coding

GLM Less-than-full-rank reference cell coding (this
keyword can be used only in a global option)

ORDINAL
THERMOMETER

Cumulative parameterization for an ordinal
CLASS variable

POLYNOMIAL
POLY

Polynomial coding

REFERENCE
REF

Reference cell coding

ORTHEFFECT Orthogonalizes PARAM=EFFECT coding

ORTHORDINAL
ORTHOTHERM

Orthogonalizes PARAM=ORDINAL coding

ORTHPOLY Orthogonalizes PARAM=POLYNOMIAL coding

ORTHREF Orthogonalizes PARAM=REFERENCE coding

All parameterizations are full rank, except for the GLM parameterization. The REF= option in the
CLASS statement determines the reference level for EFFECT and REFERENCE coding and for their
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orthogonal parameterizations. It also indirectly determines the reference level for a singular GLM
parameterization through the order of levels.

If PARAM=ORTHPOLY or PARAM=POLY and the classification variable is numeric, then the
ORDER= option in the CLASS statement is ignored, and the internal unformatted values are used. See
the section “Other Parameterizations” on page 391 in Chapter 19, “Shared Concepts and Topics,” for
further details.

REF=’level’ | keyword
specifies the reference level for PARAM=EFFECT, PARAM=REFERENCE, and their orthogonaliza-
tions. For PARAM=GLM, the REF= option specifies a level of the classification variable to be put at
the end of the list of levels. This level thus corresponds to the reference level in the usual interpretation
of the linear estimates with a singular parameterization.

For an individual variable REF= option (but not for a global REF= option), you can specify the level
of the variable to use as the reference level. Specify the formatted value of the variable if a format is
assigned. For a global or individual variable REF= option, you can use one of the following keywords.
The default is REF=LAST.

FIRST designates the first ordered level as reference.

LAST designates the last ordered level as reference.

TRUNCATE< =n >
specifies the length n of CLASS variable values to use in determining CLASS variable levels. The
default is to use the full formatted length of the CLASS variable. If you specify TRUNCATE without
the length n, the first 16 characters of the formatted values are used. When formatted values are longer
than 16 characters, you can use this option to revert to the levels as determined in releases before SAS
9. The TRUNCATE option is available only as a global option.

Class Variable Naming Convention

Parameter names for a CLASS predictor variable are constructed by concatenating the CLASS variable name
with the CLASS levels. However, for the POLYNOMIAL and orthogonal parameterizations, parameter
names are formed by concatenating the CLASS variable name and keywords that reflect the parameterization.
See the section “Other Parameterizations” on page 391 in Chapter 19, “Shared Concepts and Topics,” for
examples and further details.

Class Variable Parameterization with Unbalanced Designs

PROC PHREG initially parameterizes the CLASS variables by looking at the levels of the variables across
the complete data set. If you have an unbalanced replication of levels across variables or BY groups, then
the design matrix and the parameter interpretation might be different from what you expect. For instance,
suppose you have a model with one CLASS variable A with three levels (1, 2, and 3), and another CLASS
variable B with two levels (1 and 2). If the third level of A occurs only with the first level of B, if you use the
EFFECT parameterization, and if your model contains the effect A(B) and an intercept, then the design for A
within the second level of B is not a differential effect. In particular, the design looks like the following:
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Design Matrix
A(B=1) A(B=2)

B A A1 A2 A1 A2

1 1 1 0 0 0
1 2 0 1 0 0
1 3 –1 –1 0 0
2 1 0 0 1 0
2 2 0 0 0 1

PROC PHREG detects linear dependency among the last two design variables and sets the parameter for
A2(B=2) to zero, resulting in an interpretation of these parameters as if they were reference- or dummy-coded.
The REFERENCE or GLM parameterization might be more appropriate for such problems.

CONTRAST Statement
CONTRAST 'label ' row-description < , . . . row-description > < / options > ;

The CONTRAST statement provides a mechanism for obtaining customized hypothesis tests. It is similar to
the CONTRAST statement in PROC GLM and PROC CATMOD, depending on the coding schemes used
with any categorical variables involved.

The CONTRAST statement enables you to specify a matrix, L, for testing the hypothesis Lˇ D 0. You must
be familiar with the details of the model parameterization that PROC PHREG uses (for more information,
see the PARAM= option in the section “CLASS Statement” on page 5918). Optionally, the CONTRAST
statement enables you to estimate each row, l 0iˇ, of Lˇ and test the hypothesis l 0iˇ D 0. Computed statistics
are based on the asymptotic chi-square distribution of the Wald statistic.

There is no limit to the number of CONTRAST statements that you can specify, but they must appear after
the MODEL statement.

The syntax of a row-description is:

effect values < ,. . . ,effect values >

The following parameters are specified in the CONTRAST statement:

label identifies the contrast on the output. A label is required for every contrast specified, and it must be
enclosed in quotes.

effect identifies an effect that appears in the MODEL statement. You do not need to include all effects
that are included in the MODEL statement.

values are constants that are elements of the L matrix associated with the effect. To correctly specify
your contrast, it is crucial to know the ordering of parameters within each effect and the variable
levels associated with any parameter. The “Class Level Information” table shows the ordering
of levels within variables. The E option, described later in this section, enables you to verify the
proper correspondence of values to parameters.

The rows of L are specified in order and are separated by commas. Multiple degree-of-freedom hypotheses
can be tested by specifying multiple row-descriptions. For any of the full-rank parameterizations, if an effect
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is not specified in the CONTRAST statement, all of its coefficients in the L matrix are set to 0. If too many
values are specified for an effect, the extra ones are ignored. If too few values are specified, the remaining
ones are set to 0.

When you use effect coding (by specifying PARAM=EFFECT in the CLASS statement), all parameters are
directly estimable (involve no other parameters). For example, suppose an effect coded CLASS variable A
has four levels. Then there are three parameters (˛1; ˛2; ˛3) representing the first three levels, and the fourth
parameter is represented by

�˛1 � ˛2 � ˛3

To test the first versus the fourth level of A, you would test

˛1 D �˛1 � ˛2 � ˛3

or, equivalently,

2˛1 C ˛2 C ˛3 D 0

which, in the form Lˇ D 0, is

�
2 1 1

�24 ˛1
˛2
˛3

35 D 0
Therefore, you would use the following CONTRAST statement:

contrast '1 vs. 4' A 2 1 1;

To contrast the third level with the average of the first two levels, you would test

˛1 C ˛2

2
D ˛3

or, equivalently,

˛1 C ˛2 � 2˛3 D 0

Therefore, you would use the following CONTRAST statement:

contrast '1&2 vs. 3' A 1 1 -2;

Other CONTRAST statements involving classification variables with PARAM=EFFECT are constructed
similarly. For example:

contrast '1 vs. 2 ' A 1 -1 0;
contrast '1&2 vs. 4 ' A 3 3 2;
contrast '1&2 vs. 3&4' A 2 2 0;
contrast 'Main Effect' A 1 0 0,

A 0 1 0,
A 0 0 1;
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When you use the less-than-full-rank parameterization (by specifying PARAM=GLM in the CLASS state-
ment), each row is checked for estimability. If PROC PHREG finds a contrast to be nonestimable, it displays
missing values in corresponding rows in the results. PROC PHREG handles missing level combinations
of categorical variables in the same manner as PROC GLM. Parameters corresponding to missing level
combinations are not included in the model. This convention can affect the way in which you specify the L
matrix in your CONTRAST statement. If the elements of L are not specified for an effect that contains a
specified effect, then the elements of the specified effect are distributed over the levels of the higher-order
effect just as the GLM procedure does for its CONTRAST and ESTIMATE statements. For example, suppose
that the model contains effects A and B and their interaction A*B. If you specify a CONTRAST statement
involving A alone, the L matrix contains nonzero terms for both A and A*B, since A*B contains A.

The Cox model contains no explicit intercept parameter, so it is not valid to specify one in the CONTRAST
statement. As a consequence, you can test or estimate only homogeneous linear combinations (those with
zero-intercept coefficients, such as contrasts that represent group differences) for the GLM parameterization.

The degrees of freedom are the number of linearly independent constraints implied by the CONTRAST
statement—that is, the rank of L.

You can specify the following options after a slash (/).

ALPHA= p
specifies the level of significance p for the 100.1� p/% confidence interval for each contrast when the
ESTIMATE option is specified. The value p must be between 0 and 1. By default, p is equal to the
value of the ALPHA= option in the PROC PHREG statement, or 0.05 if that option is not specified.

E
requests that the L matrix be displayed.

ESTIMATE=keyword
requests that each individual contrast (that is, each row, l 0iˇ, of Lˇ) or exponentiated contrast (el

0
i
ˇ) be

estimated and tested. PROC PHREG displays the point estimate, its standard error, a Wald confidence
interval, and a Wald chi-square test for each contrast. The significance level of the confidence interval
is controlled by the ALPHA= option. You can estimate the contrast or the exponentiated contrast
(el
0
i
ˇ), or both, by specifying one of the following keywords:

PARM specifies that the contrast itself be estimated.

EXP specifies that the exponentiated contrast be estimated.

BOTH specifies that both the contrast and the exponentiated contrast be estimated.

SINGULAR=number
tunes the estimability check. This option is ignored when the full-rank parameterization is used. If v is
a vector, define ABS(v) to be the largest absolute value of the elements of v. For a row vector l 0 of
the contrast matrix L, define c to be equal to ABS.l/ if ABS.l/ is greater than 0; otherwise, c equals
1. If ABS.l 0 � l 0T/ is greater than c � number , then l is declared nonestimable. The T matrix is the
Hermite form matrix I�0 I0, where I�0 represents a generalized inverse of the information matrix I0 of
the null model. The value for number must be between 0 and 1; the default value is 1E–4.
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TEST< (keywords) >
requests a Type 3 test for each contrast. The default is to use the Wald statistic, but you can requests
other statistics by specifying one or more of the following keywords:

ALL
requests the likelihood ratio tests, the score tests, and the Wald tests. Specifying TEST(ALL) is
equivalent to specifying TEST=(LR SCORE WALD).

NONE
suppresses the Type 3 analysis. Even if the TEST option is not specified, PROC PHREG displays
the Wald test results for each model effect if a CLASS variable is involved in a MODEL effect.
The NONE option can be used to suppress such display.

LR
requests the likelihood ratio tests. This request is not honored if the COVS option is also specified.

SCORE
requests the score tests. This request is not honored if the COVS option is also specified.

WALD
requests the Wald tests.

EFFECT Statement
EFFECT name=effect-type (variables < / options >) ;

The EFFECT statement enables you to construct special collections of columns for design matrices. These
collections are referred to as constructed effects to distinguish them from the usual model effects that are
formed from continuous or classification variables, as discussed in the section “GLM Parameterization of
Classification Variables and Effects” on page 387 in Chapter 19, “Shared Concepts and Topics.”

You can specify the following effect-types:

COLLECTION is a collection effect that defines one or more variables as a single effect with
multiple degrees of freedom. The variables in a collection are considered as
a unit for estimation and inference.

LAG is a classification effect in which the level that is used for a given period
corresponds to the level in the preceding period.

MULTIMEMBER | MM is a multimember classification effect whose levels are determined by one or
more variables that appear in a CLASS statement.

POLYNOMIAL | POLY is a multivariate polynomial effect in the specified numeric variables.

SPLINE is a regression spline effect whose columns are univariate spline expansions
of one or more variables. A spline expansion replaces the original variable
with an expanded or larger set of new variables.

Table 73.5 summarizes the options available in the EFFECT statement.
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Table 73.5 EFFECT Statement Options

Option Description

Collection Effects Options
DETAILS Displays the constituents of the collection effect

Lag Effects Options
DESIGNROLE= Names a variable that controls to which lag design an observation

is assigned

DETAILS Displays the lag design of the lag effect

NLAG= Specifies the number of periods in the lag

PERIOD= Names the variable that defines the period

WITHIN= Names the variable or variables that define the group within which
each period is defined

Multimember Effects Options
NOEFFECT Specifies that observations with all missing levels for the multi-

member variables should have zero values in the corresponding
design matrix columns

WEIGHT= Specifies the weight variable for the contributions of each of the
classification effects

Polynomial Effects Options
DEGREE= Specifies the degree of the polynomial
MDEGREE= Specifies the maximum degree of any variable in a term of the

polynomial
STANDARDIZE= Specifies centering and scaling suboptions for the variables that

define the polynomial

Spline Effects Options
BASIS= Specifies the type of basis (B-spline basis or truncated power func-

tion basis) for the spline effect
DEGREE= Specifies the degree of the spline effect
KNOTMETHOD= Specifies how to construct the knots for the spline effect

For more information about the syntax of these effect-types and how columns of constructed effects are
computed, see the section “EFFECT Statement” on page 397 in Chapter 19, “Shared Concepts and Topics.”

ESTIMATE Statement
ESTIMATE < 'label ' > estimate-specification < (divisor=n) >

< , < 'label ' > estimate-specification < (divisor=n) > > < , . . . >
< / options > ;
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The ESTIMATE statement provides a mechanism for obtaining custom hypothesis tests. Estimates are
formed as linear estimable functions of the form Lˇ. You can perform hypothesis tests for the estimable
functions, construct confidence limits, and obtain specific nonlinear transformations.

Table 73.6 summarizes options available in the ESTIMATE statement. If the BAYES statement is specified,
the ADJUST=, STEPDOWN, TESTVALUE, LOWER, UPPER, and JOINT options are ignored. The
PLOTS= option is not available for the maximum likelihood analysis. It is available only for the Bayesian
analysis.

Table 73.6 ESTIMATE Statement Options

Option Description

Construction and Computation of Estimable Functions
DIVISOR= Specifies a list of values to divide the coefficients
NOFILL Suppresses the automatic fill-in of coefficients for higher-order

effects
SINGULAR= Tunes the estimability checking difference

Degrees of Freedom and p-values
ADJUST= Determines the method for multiple comparison adjustment of

estimates
ALPHA=˛ Determines the confidence level (1 � ˛)
LOWER Performs one-sided, lower-tailed inference
STEPDOWN Adjusts multiplicity-corrected p-values further in a step-down fash-

ion
TESTVALUE= Specifies values under the null hypothesis for tests
UPPER Performs one-sided, upper-tailed inference

Statistical Output
CL Constructs confidence limits
CORR Displays the correlation matrix of estimates
COV Displays the covariance matrix of estimates
E Prints the L matrix
JOINT Produces a joint F or chi-square test for the estimable functions
PLOTS= Requests ODS statistical graphics if the analysis is sampling-based
SEED= Specifies the seed for computations that depend on random numbers

For details about the syntax of the ESTIMATE statement, see the section “ESTIMATE Statement” on
page 444 in Chapter 19, “Shared Concepts and Topics.”

FREQ Statement
FREQ variable < / option > ;

The FREQ statement identifies the variable (in the input data set) that contains the frequency of occurrence
of each observation. PROC PHREG treats each observation as if it appears n times, where n is the value of
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the FREQ variable for the observation. If not an integer, the frequency value is truncated to an integer. If the
frequency value is missing, the observation is not used in the estimation of the regression parameters.

The following option can be specified in the FREQ statement after a slash (/):

NOTRUNCATE

NOTRUNC
specifies that frequency values are not truncated to integers.

HAZARDRATIO Statement
HAZARDRATIO < 'label ' > variable < / options > ;

The HAZARDRATIO statement enables you to request hazard ratios for any variable in the model at
customized settings. For example, if the model contains the interaction of a CLASS variable A and a
continuous variable X, the following specification displays a table of hazard ratios comparing the hazards of
each pair of levels of A at X=3:

hazardratio A / at (X=3);

The HAZARDRATIO statement identifies the variable whose hazard ratios are to be evaluated. If the variable
is a continuous variable, the hazard ratio compares the hazards for a given change (by default, a increase
of 1 unit) in the variable. For a CLASS variable, a hazard ratio compares the hazards of two levels of the
variable. More than one HAZARDRATIO statement can be specified, and an optional label (specified as a
quoted string) helps identify the output.

Table 73.7 summarizes the options available in the HAZARDRATIO statement.

Table 73.7 HAZARDRATIO Statement Options

Option Description

ALPHA= Specifies the alpha level
AT Specifies the variables that interact with the variable of interest
CL= Specifies confidence limits
DIFF= Specifies which differences to consider
E Displays the log-hazard ratio
PLCONV= Controls the convergence criterion
PLMAXIT= Specifies the maximum number of iterations to achieve the convergence
PLSINGULAR= Specifies the tolerance for testing the singularity
UNITS= Specifies the units of change

Options for the HAZARDRATIO statement are as follows.

ALPHA=number
specifies the alpha level of the interval estimates for the hazard ratios. The value must be between 0
and 1. The default is the value of the ALPHA= option in the PROC PHREG statement, or 0.05 if that
option is not specified.
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AT (variable=ALL | REF | list < . . . variable=ALL | REF | list > )
specifies the variables that interact with the variable of interest and the corresponding values of the
interacting variables. If the interacting variable is continuous and a numeric list is specified after the
equal sign, hazard ratios are computed for each value in the list. If the interacting variable is a CLASS
variable, you can specify, after the equal sign, a list of quoted strings corresponding to various levels of
the CLASS variable, or you can specify the keyword ALL or REF. Hazard ratios are computed at each
value of the list if the list is specified, or at each level of the interacting variable if ALL is specified, or
at the reference level of the interacting variable if REF is specified.

If this option is not specified, PROC PHREG finds all the variables that interact with the variable of
interest. If an interacting variable is a CLASS variable, variable= ALL is the default; if the interacting
variable is continuous, variable=m is the default, where m is the average of all the sampled values of
the continuous variable.

Suppose the model contains two interactions: an interaction A*B of CLASS variables A and B, and
another interaction A*X of A with a continuous variable X. If 3.5 is the average of the sampled values
of X, the following two HAZARDRATIO statements are equivalent:

hazardratio A;
hazardratio A / at (B=ALL X=3.5);

CL=WALD | PL | BOTH
specifies whether to create the Wald or profile-likelihood confidence limits, or both for the classical
analysis. By default, Wald confidence limits are produced. This option is not applicable to a Bayesian
analysis.

DIFF=diff-request
specifies which differences to consider for the level comparisons of a CLASS variable. This option
is ignored in the estimation of hazard ratios for a continuous variable. The diff-requests include the
following:

DISTINCT

DISTINCTPAIRS

ALL
requests all comparisons of only the distinct combinations of pairs

PAIRWISE
requests all possible pairwise comparisons of levels

REF
requests comparisons between the reference level and all other levels of the CLASS variable.

For example, let A be a CLASS variable with 3 levels (A1, A2, and A3), and A3 is specified as the
reference level. The following table depicts the hazard ratios displayed for the three alternatives of the
DIFF= option:



ID Statement F 5929

Hazard Ratios Displayed
DIFF=option A1 vs A2 A2 vs A1 A1 vs A3 A3 vs A1 A2 vs A3 A3 vs A2

DISTINCT
p p p

PAIRWISE
p p p p p p

REF
p p

The default is DIFF=DISTINCT.

E
displays the vector h of linear coefficients such that h0ˇ is the log-hazard ratio, with ˇ being the vector
of regression coefficients.

PLCONV=value
controls the convergence criterion for the profile-likelihood confidence limits. The quantity value
must be a positive number, with a default value of 1E–4. The PLCONV= option has no effect if
profile-likelihood confidence intervals (CL=PL) are not requested.

PLMAXIT=n
specifies the maximum number of iterations to achieve the convergence of the profile-likelihood
confidence limits. By default, PLMAXITER=25. If convergence is not attained in n iterations, the cor-
responding profile-likelihood confidence limit for the hazard ratio is set to missing. The PLMAXITER=
option has no effect if profile-likelihood confidence intervals (CL=PL) are not requested.

PLSINGULAR=value
specifies the tolerance for testing the singularity of the Hessian matrix in the computation of the
profile-likelihood confidence limits. The test requires that a pivot for sweeping this matrix be at least
this number times a norm of the matrix. Values of the PLSINGULAR= option must be numeric. By
default, value is the machine epsilon times 1E7, which is approximately 1E–9. The PLSINGULAR=
option has no effect if profile-likelihood confidence intervals (CL=PL) are not requested.

UNITS=value
specifies the units of change in the continuous explanatory variable for which the customized hazard
ratio is estimated. The default is UNITS=1. This option is ignored in the computation of the hazard
ratios for a CLASS variable.

ID Statement
ID variables ;

The ID statement specifies additional variables for identifying observations in the input data. These vari-
ables are placed in the OUT= data set created by the OUTPUT statement. In the computation of the
COVSANDWICH estimate, you can aggregate over distinct values of these ID variables.

Only variables in the input data set can be included in the ID statement.
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LSMEANS Statement
LSMEANS < model-effects > < / options > ;

The LSMEANS statement compares least squares means (LS-means) of fixed effects. LS-means are predicted
population margins—that is, they estimate the marginal means over a balanced population. In a sense,
LS-means are to unbalanced designs as class and subclass arithmetic means are to balanced designs.

Table 73.8 summarizes the options available in the LSMEANS statement. If the BAYES statement is specified,
the ADJUST=, STEPDOWN, and LINES options are ignored. The PLOTS= option is not available for the
maximum likelihood analysis. It is available only for the Bayesian analysis.

Table 73.8 LSMEANS Statement Options

Option Description

Construction and Computation of LS-Means
AT Modifies the covariate value in computing LS-means
BYLEVEL Computes separate margins
DIFF Requests differences of LS-means
OM= Specifies the weighting scheme for LS-means computation as de-

termined by the input data set
SINGULAR= Tunes estimability checking

Degrees of Freedom and p-values
ADJUST= Determines the method for multiple-comparison adjustment of LS-

means differences
ALPHA=˛ Determines the confidence level (1 � ˛)
STEPDOWN Adjusts multiple-comparison p-values further in a step-down

fashion

Statistical Output
CL Constructs confidence limits for means and mean differences
CORR Displays the correlation matrix of LS-means
COV Displays the covariance matrix of LS-means
E Prints the L matrix
LINES Produces a “Lines” display for pairwise LS-means differences
MEANS Prints the LS-means
PLOTS= Requests graphs of means and mean comparisons
SEED= Specifies the seed for computations that depend on random numbers

For details about the syntax of the LSMEANS statement, see the section “LSMEANS Statement” on page 460
in Chapter 19, “Shared Concepts and Topics.”
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LSMESTIMATE Statement
LSMESTIMATE model-effect < 'label ' > values < divisor=n >

< , < 'label ' > values < divisor=n > > < , . . . >
< / options > ;

The LSMESTIMATE statement provides a mechanism for obtaining custom hypothesis tests among least
squares means.

Table 73.9 summarizes the options available in the LSMESTIMATE statement. If the BAYES statement is
specified, the ADJUST=, STEPDOWN, TESTVALUE, LOWER, UPPER, and JOINT options are ignored.
The PLOTS= option is not available for the maximum likelihood analysis. It is available only for the Bayesian
analysis.

Table 73.9 LSMESTIMATE Statement Options

Option Description

Construction and Computation of LS-Means
AT Modifies covariate values in computing LS-means
BYLEVEL Computes separate margins
DIVISOR= Specifies a list of values to divide the coefficients
OM= Specifies the weighting scheme for LS-means computation as de-

termined by a data set
SINGULAR= Tunes estimability checking

Degrees of Freedom and p-values
ADJUST= Determines the method for multiple-comparison adjustment of LS-

means differences
ALPHA=˛ Determines the confidence level (1 � ˛)
LOWER Performs one-sided, lower-tailed inference
STEPDOWN Adjusts multiple-comparison p-values further in a step-down fash-

ion
TESTVALUE= Specifies values under the null hypothesis for tests
UPPER Performs one-sided, upper-tailed inference

Statistical Output
CL Constructs confidence limits for means and mean differences
CORR Displays the correlation matrix of LS-means
COV Displays the covariance matrix of LS-means
E Prints the L matrix
ELSM Prints the K matrix
JOINT Produces a joint F or chi-square test for the LS-means and LS-

means differences
PLOTS= Requests graphs of means and mean comparisons
SEED= Specifies the seed for computations that depend on random numbers

For details about the syntax of the LSMESTIMATE statement, see the section “LSMESTIMATE Statement”
on page 476 in Chapter 19, “Shared Concepts and Topics.”
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MODEL Statement
MODEL response <� censor (list) > = effects < / options > ;

MODEL (t1, t2)<� censor (list) > = effects < / options > ;

The MODEL statement identifies the variables to be used as the failure time variables, the optional censoring
variable, and the explanatory effects, including covariates, main effects, interactions, nested effects; see the
section “Specification of Effects” on page 3453 in Chapter 45, “The GLM Procedure,” for more information.
A note of caution: specifying the effect T*A in the MODEL statement, where T is the time variable and A is
a CLASS variable, does not make the effect time-dependent. See the section “Time and CLASS Variables
Usage” on page 5950 for more information.

Two forms of MODEL syntax can be specified; the first form allows one time variable, and the second form
allows two time variables for the counting process style of input (see the section “Counting Process Style of
Input” on page 5955 for more information).

In the first MODEL statement, the name of the failure time variable precedes the equal sign. This name
can optionally be followed by an asterisk, the name of the censoring variable, and a list of censoring values
(separated by blanks or commas if there is more than one) enclosed in parentheses. If the censoring variable
takes on one of these values, the corresponding failure time is considered to be censored. Following the equal
sign are the explanatory effects (sometimes called independent variables or covariates) for the model.

Instead of a single failure-time variable, the second MODEL statement identifies a pair of failure-time
variables. Their names are enclosed in parentheses, and they signify the endpoints of a semiclosed interval
.t1; t2� during which the subject is at risk. If the censoring variable takes on one of the censoring values, the
time t2 is considered to be censored.

The censoring variable must be numeric and the failure-time variables must contain nonnegative values. Any
observation with a negative failure time is excluded from the analysis, as is any observation with a missing
value for any of the variables listed in the MODEL statement. Failure-time variables with a SAS date format
are not recommended because the dates might be translated into negative numbers and consequently the
corresponding observation would be discarded.

Table 73.10 summarizes the options available in the MODEL statement. These options can be specified after
a slash (/). Four convergence criteria are allowed for the maximum likelihood optimization: ABSFCONV=,
FCONV=, GCONV=, and XCONV=. If you specify more than one convergence criterion, the optimization
is terminated as soon as one of the criteria is satisfied. If none of the criteria is specified, the default is
GCONV=1E–8.

Table 73.10 MODEL Statement Options

Option Description

Model Specification Options
EVENTCODE= Specific the code that represents the event of interest for

competing-risks data
NOFIT Suppresses model fitting
OFFSET= Specifies offset variable
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Table 73.10 continued

Option Description

SELECTION= Specifies effect selection method

Effect Selection Options
BEST= Controls the number of models displayed for best subset

selection
DETAILS Requests detailed results at each step
HIERARCHY= Specifies whether and how hierarchy is maintained and

whether a single effect or multiple effects are allowed to
enter or leave the model per step

INCLUDE= Specifies number of effects included in every model
MAXSTEP= Specifies maximum number of steps for stepwise selection
SEQUENTIAL Adds or deletes effects in sequential order
SLENTRY= Specifies significance level for entering effects
SLSTAY= Specifies significance level for removing effects
START= Specifies number of variables in first model
STOP= Specifies number of variables in final model
STOPRES Adds or deletes variables by residual chi-square criterion

Maximum Likelihood Optimization Options
ABSFCONV= Specifies absolute function convergence criterion
FCONV= Specifies relative function convergence criterion
FIRTH Specifies Firth’s penalized likelihood method
GCONV= Specifies relative gradient convergence criterion
XCONV= Specifies relative parameter convergence criterion
MAXITER= Specifies maximum number of iterations
RIDGEINIT= Specifies the initial ridging value
RIDGING= Specifies the technique to improve the log likelihood

function when its value is worse than that of the previous
step

SINGULAR= Specifies tolerance for testing singularity

Confidence Interval Options
ALPHA= Specifies ˛ for the 100.1 � ˛/% confidence intervals
PLCONV= Specifies profile-likelihood convergence criterion
RISKLIMITS= Computes confidence intervals for hazard ratios

Display Options
CORRB Displays correlation matrix
COVB Displays covariance matrix
ITPRINT Displays iteration history
NODUMMYPRINT Suppresses “Class Level Information” table

TYPE1 Displays Type 1 analysis
TYPE3 Displays Type 3 tests or joint tests of effects
Miscellaneous Options
ENTRYTIME= Specifies the delayed entry time variable
TIES= Specifies the method of handling ties in failure times
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ALPHA=value
sets the significance level used for the confidence limits for the hazard ratios. The quantity value must
be between 0 and 1. The default is the value of the ALPHA= option in the PROC PHREG statement,
or 0.05 if that option is not specified. This option has no effect unless the RISKLIMITS option is
specified.

ABSFCONV=value

CONVERGELIKE=value
specifies the absolute function convergence criterion. Termination requires a small change in the
objective function (log partial likelihood function) in subsequent iterations,

jlk � lk�1j < value

where lk is the value of the objective function at iteration k.

BEST=n
is used exclusively with the best subset selection (SELECTION=SCORE). The BEST=n option
specifies that n models with the highest-score chi-square statistics are to be displayed for each model
size. If the option is omitted and there are no more than 10 explanatory variables, then all possible
models are listed for each model size. If the option is omitted and there are more than 10 explanatory
variables, then the number of models selected for each model size is, at most, equal to the number of
explanatory variables listed in the MODEL statement.

See Example 73.2 for an illustration of the best subset selection method and the BEST= option.

CORRB
displays the estimated correlation matrix of the parameter estimates.

COVB
displays the estimated covariance matrix of the parameter estimates.

DETAILS
produces a detailed display at each step of the model-building process. It produces an “Analysis of
Variables Not in the Model” table before displaying the variable selected for entry for forward or
stepwise selection. For each model fitted, it produces the “Analysis of Maximum Likelihood Estimates”
table.

See Example 73.1 for a discussion of these tables.

ENTRYTIME=variable

ENTRY=variable
specifies the name of the variable that represents the left-truncation time. This option has no effect
when the counting process style of input is specified. See the section “Left-Truncation of Failure Times”
on page 5957 for more information.

EVENTCODE=number

FAILCODE=number
specifies the number that represents the event of interest for the competing-risks analysis of Fine and
Gray (1999). For example:
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model T*Status(0 1)= X1-X5 / eventcode=2;

This specifies that a subject whose Status value is 2 has the event of interest, a subject whose Status
value is 0 or 1 is a censored observation, and a subject that has another value of the Status variable has
a competing event.

FCONV=value
specifies the relative function convergence criterion. Termination requires a small relative change in
the objective function (log partial likelihood function) in subsequent iterations,

jlk � lk�1j

jlk�1j C 1E � 6
< value

where lk is the value of the objective function at iteration k.

FIRTH
performs Firth’s penalized maximum likelihood estimation to reduce bias in the parameter estimates

(Heinze and Schemper 2001; Firth 1993). This method is useful when the likelihood is monotone—that
is, the likelihood converges to finite value while at least one estimate diverges to infinity.

GCONV=value
specifies the relative gradient convergence criterion. Termination requires that the normalized prediction
function reduction is small,

gkH�1k gk
jlkj C 1E � 6

< value

where lk is the log partial likelihood, gk is the gradient vector (first partial derivatives of the log
partial likelihood), and Hk is the negative Hessian matrix (second partial derivatives of the log partial
likelihood), all at iteration k.

HIERARCHY=keyword

HIER=keyword
specifies whether and how the model hierarchy requirement is applied and whether a single effect
or multiple effects are allowed to enter or leave the model in one step. You can specify that only
CLASS variable effects, or both CLASS and continuous variable effects, be subject to the hierarchy
requirement. The HIERARCHY= option is ignored unless you also specify the forward, backward, or
stepwise selection method.

Model hierarchy refers to the requirement that, for any term to be in the model, all effects contained
in the term must be present in the model. For example, in order for the interaction A*B to enter the
model, the main effects A and B must be in the model. Likewise, neither effect A nor B can leave the
model while the interaction A*B is in the model.
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You can specify any of the following keywords in the HIERARCHY= option:

NONE
indicates that the model hierarchy is not maintained. Any single effect can enter or leave the
model at any given step of the selection process.

SINGLE
indicates that only one effect can enter or leave the model at one time, subject to the model
hierarchy requirement. For example, suppose that you specify the main effects A and B and the
interaction of A*B in the model. In the first step of the selection process, either A or B can enter
the model. In the second step, the other main effect can enter the model. The interaction effect
can enter the model only when both main effects have already been entered. Also, before A or B
can be removed from the model, the A*B interaction must first be removed. All effects (CLASS
and continuous variables) are subject to the hierarchy requirement.

SINGLECLASS
is the same as HIERARCHY=SINGLE except that only CLASS effects are subject to the hierarchy
requirement.

MULTIPLE
indicates that more than one effect can enter or leave the model at one time, subject to the model
hierarchy requirement. In a forward selection step, a single main effect can enter the model, or an
interaction can enter the model together with all the effects that are contained in the interaction.
In a backward elimination step, an interaction itself, or the interaction together with all the effects
that the interaction contains, can be removed. All effects (CLASS and continuous variable) are
subject to the hierarchy requirement.

MULTIPLECLASS
is the same as HIERARCHY=MULTIPLE except that only CLASS effects are subject to the
hierarchy requirement.

The default value is HIERARCHY=SINGLE, which means that model hierarchy is to be maintained
for all effects (that is, both CLASS and continuous variable effects) and that only a single effect can
enter or leave the model at each step.

INCLUDE=n
includes the first n effects in the MODEL statement in every model. By default, INCLUDE=0. The
INCLUDE= option has no effect when SELECTION=NONE.

ITPRINT
displays the iteration history, including the last evaluation of the gradient vector.

MAXITER=n
specifies the maximum number of iterations allowed. The default value for n is 25. If convergence is
not attained in n iterations, the displayed output and all data sets created by PROC PHREG contain
results that are based on the last maximum likelihood iteration.

MAXSTEP=n
specifies the maximum number of times the explanatory variables can move in and out of the model
before the stepwise model-building process ends. The default value for n is twice the number of
explanatory variables in the MODEL statement. The option has no effect for other model selection
methods.
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NODUMMYPRINT

NODESIGNPRINT

NODP
suppresses the “Class Level Information” table, which shows how the design matrix columns for the
CLASS variables are coded.

NOFIT
performs the global score test, which tests the joint significance of all the explanatory variables in the
MODEL statement. No parameters are estimated. If the NOFIT option is specified along with other
MODEL statement options, NOFIT takes precedence, and all other options are ignored except the
TIES= option.

OFFSET=name
specifies the name of an offset variable, which is an explanatory variable with a regression coefficient
fixed as one. This option can be used to incorporate risk weights for the likelihood function.

PLCONV=value
controls the convergence criterion for confidence intervals based on the profile-likelihood function.
The quantity value must be a positive number, with a default value of 1E–4. The PLCONV= option
has no effect if profile-likelihood based confidence intervals are not requested.

RIDGING=keyword
specifies the technique to improve the log likelihood when its value is worse than that of the previous
step. The available keywords are as follows:

ABSOLUTE
specifies that the diagonal elements of the negative (expected) Hessian be inflated by adding the
ridge value.

RELATIVE
specifies that the diagonal elements be inflated by the factor equal to 1 plus the ridge value.

NONE
specifies the crude line-search method of taking half a step be used instead of ridging.

The default is RIDGING=RELATIVE.

RIDGEINIT=value
specifies the initial ridge value. The maximum ridge value is 2000 times the maximum of 1 and
the initial ridge value. The initial ridge value is raised to 1E–4 if it is less than 1E–4. By default,
RIDGEINIT=1E–4. This option has no effect for RIDGING=ABSOLUTE.

RISKLIMITS< =keyword >

RL< =keyword >
produces confidence intervals for hazard ratios of main effects not involved in interactions or nestings.
Computation of these confidence intervals is based on the profile likelihood or based on individual
Wald tests. The confidence coefficient can be specified with the ALPHA= option. You can specify one
of the following keywords:
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PL
requests profile-likelihood confidence limits.

WALD
requests confidence limits based on the Wald tests.

BOTH
request both profile-likelihood and Wald confidence limits.

Classification main effects that use parameterizations other than REF, EFFECT, or GLM are ignored.
If you need to compute hazard ratios for an effect involved in interactions or nestings, or using some
other parameterization, then you should specify a HAZARDRATIO statement for that effect.

SELECTION=method
specifies the method used to select the model. The methods available are as follows:

BACKWARD

B
requests backward elimination.

FORWARD

F
requests forward selection.

NONE

N
fits the complete model specified in the MODEL statement. This is the default value.

SCORE
requests best subset selection. It identifies a specified number of models with the highest-score
chi-square statistic for all possible model sizes ranging from one explanatory variable to the total
number of explanatory variables listed in the MODEL statement. This option is not allowed if an
explanatory effect in the MODEL statement contains a CLASS variable.

STEPWISE

S
requests stepwise selection.

For more information, see the section “Effect Selection Methods” on page 5997.

SEQUENTIAL
forces variables to be added to the model in the order specified in the MODEL statement or to be
eliminated from the model in the reverse order of that specified in the MODEL statement.

SINGULAR=value
specifies the singularity criterion for determining linear dependencies in the set of explanatory variables.
The default value is 1E–12.
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SLENTRY=value

SLE=value
specifies the significance level (a value between 0 and 1) for entering an explanatory variable into the
model in the FORWARD or STEPWISE method. For all variables not in the model, the one with the
smallest p-value is entered if the p-value is less than or equal to the specified significance level. The
default value is 0.05.

SLSTAY=value

SLS=value
specifies the significance level (a value between 0 and 1) for removing an explanatory variable from
the model in the BACKWARD or STEPWISE method. For all variables in the model, the one with the
largest p-value is removed if the p-value exceeds the specified significance level. The default value is
0.05.

START=n
begins the FORWARD, BACKWARD, or STEPWISE selection process with the first n effects listed in
the MODEL statement. The value of n ranges from 0 to s, where s is the total number of effects in the
MODEL statement. The default value of n is s for the BACKWARD method and 0 for the FORWARD
and STEPWISE methods. Note that START=n specifies only that the first n effects appear in the first
model, while INCLUDE=n requires that the first n effects be included in every model. For the SCORE
method, START=n specifies that the smallest models contain n effects, where n ranges from 1 to s; the
default value is 1. The START= option has no effect when SELECTION=NONE.

STOP=n
specifies the maximum (FORWARD method) or minimum (BACKWARD method) number of effects
to be included in the final model. The effect selection process is stopped when n effects are found. The
value of n ranges from 0 to s, where s is the total number of effects in the MODEL statement. The
default value of n is s for the FORWARD method and 0 for the BACKWARD method. For the SCORE
method, STOP=n specifies that the smallest models contain n effects, where n ranges from 1 to s; the
default value of n is s. The STOP= option has no effect when SELECTION=NONE or STEPWISE.

STOPRES

SR
specifies that the addition and deletion of variables be based on the result of the likelihood score test
for testing the joint significance of variables not in the model. This score chi-square statistic is referred
to as the residual chi-square. In the FORWARD method, the STOPRES option enters the explanatory
variables into the model one at a time until the residual chi-square becomes insignificant (that is, until
the p-value of the residual chi-square exceeds the SLENTRY= value). In the BACKWARD method, the
STOPRES option removes variables from the model one at a time until the residual chi-square becomes
significant (that is, until the p-value of the residual chi-square becomes less than the SLSTAY= value).
The STOPRES option has no effect for the STEPWISE method.

TYPE1
requests that a Type 1 (sequential) analysis of likelihood ratio test be performed. This consists of
sequentially fitting models, beginning with the null model and continuing up to the model specified in
the MODEL statement. The likelihood ratio statistic for each successive pair of models is computed
and displayed in a table.
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TYPE3 < (keywords) >
requests a Type 3 test or a joint test for each effect that is specified in the MODEL statement. See the
section “Type 3 Tests and Joint Tests” on page 5970 for details. The default is to use the Wald statistic,
but you can requests other statistics by specifying one or more of the following keywords:

ALL
requests the likelihood ratio tests, the score tests, and the Wald tests. Specifying TYPE3(ALL) is
equivalent to specifying TYPE3=(LR SCORE WALD).

NONE
suppresses the Type 3 analysis. Even if the TYPE3 option is not specified, PROC PHREG
displays the Wald test results for each model effect if a CLASS variable is involved in a MODEL
effect. The NONE option can be used to suppress such display.

LR
requests the likelihood ratio tests. This request is not honored if the COVS option is also specified.

SCORE
requests the score tests. This request is not honored if the COVS option is also specified.

WALD
requests the Wald tests.

TIES=method
specifies how to handle ties in the failure time. The following methods are available:

BRESLOW
uses the approximate likelihood of Breslow (1974). This is the default value.

DISCRETE
replaces the proportional hazards model by the discrete logistic model

�.t I z/
1 � �.t I z/

D
�0.t/

1 � �0.t/
exp.z0ˇ/

where �0.t/ and h.t I z/ are discrete hazard functions.

EFRON
uses the approximate likelihood of Efron (1977).

EXACT
computes the exact conditional probability under the proportional hazards assumption that all
tied event times occur before censored times of the same value or before larger values. This is
equivalent to summing all terms of the marginal likelihood for ˇ that are consistent with the
observed data (Kalbfleisch and Prentice 1980; DeLong, Guirguis, and So 1994).

TIES=EXACT can take a considerable amount of computer resources. If ties are not extensive,
TIES=EFRON and TIES=BRESLOW methods provide satisfactory approximations to TIES=EXACT
for the continuous time-scale model. In general, Efron’s approximation gives results that are much
closer to the exact method results than Breslow’s approximation does. If the time scale is genuinely
discrete, you should use TIES=DISCRETE. TIES=DISCRETE is also required in the analysis of
case-control studies when there is more than one case in a matched set. If there are no ties, all four
methods result in the same likelihood and yield identical estimates. The default, TIES=BRESLOW, is
the most efficient method when there are no ties.
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XCONV=value

CONVEREPARM=value
specifies the relative parameter convergence criterion. Termination requires a small relative parameter
change in subsequent iterations,

max
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is the estimate of the ith parameter at iteration k.

OUTPUT Statement
OUTPUT < OUT=SAS-data-set > < keyword=name . . . keyword=name > < / options > ;

The OUTPUT statement creates a new SAS data set containing statistics calculated for each observation.
These can include the estimated linear predictor (z0j Ǒ) and its standard error, survival distribution estimates,
residuals, and influence statistics. In addition, this data set includes the time variable, the explanatory
variables listed in the MODEL statement, the censoring variable (if specified), and the BY, STRATA, FREQ,
and ID variables (if specified).

For observations with missing values in the time variable or any explanatory variables, the output statistics
are set to missing. However, for observations with missing values only in the censoring variable or the
FREQ variable, survival estimates are still computed. Therefore, by adding observations with missing values
in the FREQ variable or the censoring variable, you can compute the survivor function estimates for new
observations or for settings of explanatory variables not present in the data without affecting the model fit.

No OUTPUT data set is created if the model contains a time-dependent variable defined by means of
programming statements.

The following list explains specifications in the OUTPUT statement.

OUT=SAS-data-set
names the output data set. If you omit the OUT= option, the OUTPUT data set is created and given a
default name by using the DATAn convention. See the section “OUT= Output Data Set in the OUTPUT
Statement” on page 6014 for more information.

keyword=name
specifies the statistics included in the OUTPUT data set and names the new variables that contain the
statistics. Specify a keyword for each desired statistic (see the following list of keywords), an equal
sign, and either a variable or a list of variables to contain the statistic. The keywords that accept a list
of variables are DFBETA, RESSCH, RESSCO, and WTRESSCH. For these keywords, you can specify
as many names in name as the number of explanatory variables specified in the MODEL statement. If
you specify k names and k is less than the total number of explanatory variables, only the changes for
the first k parameter estimates are output. The keywords and the corresponding statistics are as follows:
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ATRISK
specifies the number of subjects at risk at the observation time �j (or at the right endpoint of the
at-risk interval when a counting process MODEL specification is used).

CIF=name
specifies the name of the variable that contains the cumulative incidence function estimate at the
observed time.

DFBETA
specifies the approximate changes in the parameter estimates . Ǒ � Ǒ.j // when the jth observation
is omitted. These variables are a weighted transform of the score residual variables and are useful
in assessing local influence and in computing robust variance estimates.

LD
specifies the approximate likelihood displacement when the observation is left out. This diagnostic
can be used to assess the impact of each observation on the overall fit of the model.

LMAX
specifies the relative influence of observations on the overall fit of the model. This diagnostic is
useful in assessing the sensitivity of the fit of the model to each observation.

LOGLOGS
specifies the log of the negative log of SURVIVAL.

LOGSURV
specifies the log of SURVIVAL.

RESDEV
specifies the deviance residual ODj . This is a transform of the martingale residual to achieve a
more symmetric distribution.

RESMART
specifies the martingale residual OMj . The residual at the observation time �j can be interpreted
as the difference over Œ0; �j � in the observed number of events minus the expected number of
events given by the model.

RESSCH
specifies the Schoenfeld residuals. These residuals are useful in assessing the proportional
hazards assumption.

RESSCO
specifies the score residuals. These residuals are a decomposition of the first partial derivative
of the log likelihood. They can be used to assess the leverage exerted by each subject in the
parameter estimation. They are also useful in constructing robust sandwich variance estimators.

STDXBETA
specifies the standard error of the XBETA predictor,

q
z0j OV. Ǒ/zj .

SURVIVAL
specifies the survivor function estimate OSj D Œ OS0.�j /�

exp.z0
j
Ǒ/, where �j is the observation time.
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WTRESSCH
specifies the weighted Schoenfeld residuals. These residuals are useful in investigating the nature
of nonproportionality if the proportional hazard assumption does not hold.

XBETA
specifies the estimate of the linear predictor, z0j Ǒ.

The following options can appear in the OUTPUT statement after a slash (/) as follows:

ORDER=value
specifies the order of the observations in the OUTPUT data set. The following values are available:

DATA requests that the output observations be sorted the same as the input data set.

SORTED requests that the output observations be sorted by strata and descending order of the time
variable within each stratum.

The default is ORDER=DATA.

METHOD=method
specifies the method used to compute the survivor function estimates. See the section “Survivor
Function Estimators” on page 5989 for details. The following methods are available:

BRESLOW
CH
EMP

specifies that the empirical cumulative hazard function estimate of the survivor function be
computed; that is, the survivor function is estimated by exponentiating the negative empirical
cumulative hazard function.

FH
specifies that the Fleming-Harrington (FH) estimates be computed. The FH estimator is a tie-
breaking modification of the Breslow estimator. If there are no tied event times, this estimator is
the same as the Breslow estimator.

PL
specifies that the product-limit estimates of the survivor function be computed. This estimator is
not available if you use the model syntax that allows two time variables for the counting process
style of input; in such a case, the Breslow estimator (METHOD=BRESLOW) is used instead.

The default is METHOD=BRESLOW.

Programming Statements
Programming statements are used to create or modify the values of the explanatory variables in the MODEL
statement. They are especially useful in fitting models with time-dependent explanatory variables. Program-
ming statements can also be used to create explanatory variables that are not time dependent. For example,
you can create indicator variables from a categorical variable and incorporate them into the model. PROC
PHREG programming statements cannot be used to create or modify the values of the response variable, the
censoring variable, the frequency variable, or the strata variables.

The following DATA step statements are available in PROC PHREG:
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ABORT;
ARRAY arrayname < [ dimensions ] > < $ > < variables-and-constants >;
CALL name < (expression < , expression . . . >) >;
DELETE;
DO < variable = expression < TO expression > < BY expression > >

< , expression < TO expression > < BY expression > > . . .
< WHILE expression > < UNTIL expression >;

END;
GOTO statement-label;
IF expression;
IF expression THEN program-statement;

ELSE program-statement;
variable = expression;
variable + expression;
LINK statement-label;
PUT < variable > < = > . . . ;
RETURN;
SELECT < (expression) >;
STOP;
SUBSTR(variable, index , length)= expression;
WHEN (expression)program-statement;

OTHERWISE program-statement;

By default, the PUT statement in PROC PHREG writes results to the Output window instead of the Log
window. If you want the results of the PUT statements to go to the Log window, add the following statement
before the PUT statements:

FILE LOG;

DATA step functions are also available. Use these programming statements the same way you use them in
the DATA step. For detailed information, see SAS Statements: Reference.

Consider the following example of using programming statements in PROC PHREG. Suppose blood pressure
is measured at multiple times during the course of a study investigating the effect of blood pressure on some
survival time. By treating the blood pressure as a time-dependent explanatory variable, you are able to use
the value of the most recent blood pressure at each specific point of time in the modeling process rather than
using the initial blood pressure or the final blood pressure. The values of the following variables are recorded
for each patient, if they are available. Otherwise, the variables contain missing values.

Time survival time

Censor censoring indicator (with 0 as the censoring value)

BP0 blood pressure on entry to the study

T1 time 1

BP1 blood pressure at T1

T2 time 2

BP2 blood pressure at T2

The following programming statements create a variable BP. At each time T, the value of BP is the blood
pressure reading for that time, if available. Otherwise, it is the last blood pressure reading.
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proc phreg;
model Time*Censor(0)=BP;
BP = BP0;
if Time>=T1 and T1^=. then BP=BP1;
if Time>=T2 and T2^=. then BP=BP2;

run;

For other illustrations of using programming statements, see the section “Classical Method of Maximum
Likelihood” on page 5884 and Example 73.6.

RANDOM Statement
RANDOM variable < / options > ;

The RANDOM statement enables you to fit a shared frailty model for clustered data (see the section “The
Frailty Model” on page 5959 for details). The variable that represents the clusters must be a CLASS variable
(declared in the CLASS statement).

The following options can be specified in the RANDOM statement:

ABSPCONV=r
specifies an absolute variance estimate convergence criterion for the doubly iterative estimation process.
The PHREG procedure applies this criterion to the variance parameter estimate of the random effects.
Suppose O� .j / denotes the estimate of the variance parameter at the jth optimization. By default, PROC
PHREG examines the relative change in the variance estimate between optimizations (see the PCONV=
option). The purpose of the ABSPCONV= criterion is to stop the doubly iterative process when the
absolute change j O� .j / � O� .j�1/j is less than the tolerance criterion r . This convergence criterion does
not affect the convergence criteria applied within any individual optimization. In order to change the
convergence behavior within an individual optimization, you can use the ABSCONV=, ABSFCONV=,
ABSGCONV=, ABSXCONV=, FCONV=, or GCONV= option in the NLOPTIONS statement.

ALPHA=value
specifies the ˛ level of the confidence limits for the random effects. The default is the value of the
ALPHA= option in the PROC PHREG statement, or 0.05 if that option is not specified. This option is
ignored if the SOLUTION option is not also specified.

DIST=GAMMA | LOGNORMAL
specifies the distribution of the shared frailty. DIST=GAMMA specifies a gamma frailty model.
DIST=LOGNORMAL specifies a lognormal frailty model; that is, the log-frailty random variable has
a normal distribution with mean zero. The default is DIST=LOGNORMAL.

METHOD=REML | ML
specifies the estimation method for the variance parameter of the normal random effects.
METHOD=REML performs the residual maximum likelihood; METHOD=ML performs maxi-
mum likelihood. This option is ignored for the gamma frailty model. The default is METHOD=REML.

NOCLPRINT
suppresses the display of the “Class Level Information for Random Effects” table.
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PCONV=r
specifies the variance estimate convergence criterion for the doubly iterative estimation process. The
PHREG procedure applies this criterion to the variance estimate of the random effects. Suppose O� .j /

denotes the estimate of variance at the jth optimization. The procedure terminates the doubly iterative
process if the relative change

2 �
j O� .j / � O� .j�1/j

j O� .j /j C j O� .j�1/j

is less than r . To check an absolute convergence criterion in addition, you can specify the ABSPCONV=
option in the RANDOM statement. The default value for r is 1E–4. This convergence criterion does
not affect the convergence criteria applied within any individual optimization. In order to change the
convergence behavior within an individual optimization, you can use the ABSCONV=, ABSFCONV=,
ABSGCONV=, ABSXCONV=, FCONV=, or GCONV= option in the NLOPTIONS statement.

SOLUTION < (number-list) >
displays statistical measures of the random-effect parameters. The behavior of this option depends on
whether you also specify the BAYES statement:

• When you do not specify a BAYES statement, this option displays point estimates and confidence
intervals for the random components and for the frailties.

• When you also specify a BAYES statement, this option displays the summary statistics and
diagnostics of the random-effect parameters. Optionally, you can specify a number-list of indices
of the random-effect parameters for which the summary statistics and diagnostics are to be
displayed. For example, to display the summary statistics and diagnostics for the second to the
fifth random-effect parameters, specify

SOLUTION(2 to 5)

If you specify SOLUTION without a list, summary statistics and diagnostics are displayed for
each random-effect parameter.

INITIALVARIANCE=value

INITIAL=value
specifies an initial value of the dispersion parameter. For the lognormal frailty model, the dispersion
parameter represents the variance of the normal random effect; for the gamma frailty model, it
represents the variance of the gamma frailty. The default is INITIAL=1.

STRATA Statement
STRATA variable < (list) > < . . . variable < (list) > > < / option > ;

The proportional hazards assumption might not be realistic for all data. If so, it might still be reasonable to
perform a stratified analysis. The STRATA statement names the variables that determine the stratification.
Strata are formed according to the nonmissing values of the STRATA variables unless the MISSING option
is specified. In the STRATA statement, variable is a variable with values that are used to determine the
strata levels, and list is an optional list of values for a numeric variable. Multiple variables can appear in the
STRATA statement.



SLICE Statement F 5947

The values for variable can be formatted or unformatted. If the variable is a character variable, or if the
variable is numeric and no list appears, then the strata are defined by the unique values of the variable. If
the variable is numeric and is followed by a list, then the levels for that variable correspond to the intervals
defined by the list. The corresponding strata are formed by the combination of levels and unique values. The
list can include numeric values separated by commas or blanks, value to value by value range specifications,
or combinations of these.

For example, the specification

strata age (5, 10 to 40 by 10) sex;

indicates that the levels for age are to be less than 5, 5 to 10, 10 to 20, 20 to 30, 30 to 40, and greater than 40.
(Note that observations with exactly the cutpoint value fall into the interval preceding the cutpoint.) Thus,
with the sex variable, this STRATA statement specifies 12 strata altogether.

The following option can be specified in the STRATA statement after a slash (/):

MISSING
allows missing values (‘.’ for numeric variables and blanks for character variables) as valid STRATA
variable values. Otherwise, observations with missing STRATA variable values are deleted from the
analysis.

SLICE Statement
SLICE model-effect < / options > ;

The SLICE statement provides a general mechanism for performing a partitioned analysis of the LS-means
for an interaction. This analysis is also known as an analysis of simple effects.

The SLICE statement uses the same options as the LSMEANS statement, which are summarized in Ta-
ble 19.21. For details about the syntax of the SLICE statement, see the section “SLICE Statement” on
page 505 in Chapter 19, “Shared Concepts and Topics.”

STORE Statement
STORE < OUT= >item-store-name < / LABEL='label ' > ;

The STORE statement requests that the procedure save the context and results of the statistical analysis. The
resulting item store has a binary file format that cannot be modified. The contents of the item store can be
processed with the PLM procedure.

For details about the syntax of the STORE statement, see the section “STORE Statement” on page 508 in
Chapter 19, “Shared Concepts and Topics.”
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TEST Statement
< label: > TEST equation < , . . . , equation > < / options > ;

The TEST statement tests linear hypotheses about the regression coefficients. PROC PHREG performs a
Wald test for the joint hypothesis specified in a single TEST statement. Each equation specifies a linear
hypothesis; multiple equations (rows of the joint hypothesis) are separated by commas. The label , which
must be a valid SAS name, is used to identify the resulting output and should always be included. You can
submit multiple TEST statements.

The form of an equation is as follows:

term < ˙ term . . . > < = < ˙ term <˙ term . . . > > >

where term is a variable or a constant or a constant times a variable. The variable is any explanatory variable
in the MODEL statement. When no equal sign appears, the expression is set to 0. The following program
illustrates possible uses of the TEST statement:

proc phreg;
model time= A1 A2 A3 A4;
Test1: test A1, A2;
Test2: test A1=0,A2=0;
Test3: test A1=A2=A3;
Test4: test A1=A2,A2=A3;

run;

Note that the first and second TEST statements are equivalent, as are the third and fourth TEST statements.

The following options can be specified in the TEST statement after a slash (/):

AVERAGE
enables you to assess the average effect of the variables in the given TEST statement. An overall
estimate of the treatment effect is computed as a weighted average of the treatment coefficients as
illustrated in the following statement:

TREATMENT: test trt1, trt2, trt3, trt4 / average;

Let ˇ1, ˇ2, ˇ3, and ˇ4 be corresponding parameters for trt1, trt2, trt3, and trt4, respectively. Let
Ǒ D . Ǒ1; Ǒ2; Ǒ3; Ǒ4/

0 be the estimated coefficient vector and let OV. Ǒ/ be the corresponding variance
estimate. Assuming ˇ1 D ˇ2 D ˇ3 D ˇ4, let Ň be the average treatment effect. The effect is estimated
by c0 Ǒ, where c D Œ104 OV

�1
. Ǒ/14��1 OV

�1
. Ǒ/14 and 14 D .1; 1; 1; 1/0. A test of the null hypothesis

H0 W Ň D 0 is also included, which is more sensitive than the multivariate test for testing the null
hypothesis H0 W ˇ1 D ˇ2 D ˇ3 D ˇ4 D 0.

E
specifies that the linear coefficients and constants be printed. When the AVERAGE option is specified
along with the E option, the optimal weights of the average effect are also printed in the same tables as
the coefficients.
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PRINT
displays intermediate calculations. This includes L OV. Ǒ/L0 bordered by .L Ǒ � c/, and ŒL OV. Ǒ/L0��1
bordered by ŒL OV. Ǒ/L0��1.L Ǒ � c/, where L is a matrix of linear coefficients and c is a vector of
constants.

See the section “Using the TEST Statement to Test Linear Hypotheses” on page 5973 for details.

WEIGHT Statement
WEIGHT variable < / option > ;

The variable in the WEIGHT statement identifies the variable in the input data set that contains the case
weights. When the WEIGHT statement appears, each observation in the input data set is weighted by the
value of the WEIGHT variable. The WEIGHT values can be nonintegral and are not truncated. Observations
with negative, zero, or missing values for the WEIGHT variable are not used in the model fitting. When the
WEIGHT statement is not specified, each observation is assigned a weight of 1. The WEIGHT statement is
available for TIES=BRESLOW and TIES=EFRON only.

The following option can be specified in the WEIGHT statement after a slash (/):

NORMALIZE

NORM
causes the weights specified by the WEIGHT variable to be normalized so that they add up the actual
sample size. With this option, the estimated covariance matrix of the parameter estimators is invariant
to the scale of the WEIGHT variable.

Details: PHREG Procedure

Failure Time Distribution
Let T be a nonnegative random variable representing the failure time of an individual from a homogeneous
population. The survival distribution function (also known as the survivor function) of T is written as

S.t/ D Pr.T � t /

A mathematically equivalent way of specifying the distribution of T is through its hazard function. The
hazard function �.t/ specifies the instantaneous failure rate at t. If T is a continuous random variable, �.t/ is
expressed as

�.t/ D lim
�t!0C

Pr.t � T < t C�t j T � t /
�t

D
f .t/

S.t/

where f .t/ is the probability density function of T. If T is discrete with masses at x1 < x2 < : : : , then
survivor function is given by

S.t/ D
X
xj�t

Pr.T D xj / D
X
j

Pr.T D j /ı.t � xj /
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where ı.u/=0 if u < 0 and ı.u/=1 otherwise. The discrete hazards are given by

�j D Pr.T D xj j T � xj / D
Pr.T D xj /
S.xj /

j D 1; 2; : : :

Time and CLASS Variables Usage
The following DATA step creates an artificial data set, Test, to be used in this section. There are four variables
in Test: the variable T contains the failure times; the variable Status is the censoring indicator variable with
the value 1 for an uncensored failure time and the value 0 for a censored time; the variable A is a categorical
variable with values 1, 2, and 3 representing three different categories; and the variable MirrorT is an exact
copy of T.

data Test;
input T Status A @@;
MirrorT = T;
datalines;

23 1 1 7 0 1
23 1 1 10 1 1
20 0 1 13 0 1
24 1 1 10 1 1
18 1 2 6 1 2
18 0 2 6 1 2
13 0 2 13 1 2
9 0 2 15 1 2
8 1 3 6 1 3

12 0 3 4 1 3
11 1 3 8 1 1
6 1 3 7 1 3
7 1 3 12 1 3
9 1 2 15 1 2
3 1 2 14 0 3
6 1 1 13 1 2

;

Time Variable on the Right Side of the MODEL Statement

When the time variable is explicitly used in an explanatory effect in the MODEL statement, the effect is not
time-dependent. In the following specification, T is the time variable, but T does not play the role of the time
variable in the explanatory effect T*A:

proc phreg data=Test;
class A;
model T*Status(0)=T*A;

run;
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The parameter estimates of this model are shown in Figure 73.12.

Figure 73.12 T*A Effect

The PHREG ProcedureThe PHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio Label

T*A 1 1 -0.16549 0.05042 10.7734 0.0010 . A 1 * T

T*A 2 1 -0.11852 0.04181 8.0344 0.0046 . A 2 * T

To verify that the effect T*A in the MODEL statement is not time-dependent, T is replaced by MirrorT, which
is an exact copy of T, as in the following statements:

proc phreg data=Test;
class A;
model T*Status(0)=A*MirrorT;

run;

The results of fitting this model (Figure 73.13) are identical to those of the previous model (Figure 73.12),
except for the parameter names and labels. The effect A*MirrorT is not time-dependent, so neither is A*T.

Figure 73.13 T*A Effect

The PHREG ProcedureThe PHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio Label

MirrorT*A 1 1 -0.16549 0.05042 10.7734 0.0010 . A 1 * MirrorT

MirrorT*A 2 1 -0.11852 0.04181 8.0344 0.0046 . A 2 * MirrorT

CLASS Variables and Programming Statements

In PROC PHREG, the levels of CLASS variables are determined by the CLASS statement and the input data
and are not affected by user-supplied programming statements. Consider the following statements, which
produce the results in Figure 73.14. Variable A is declared as a CLASS variable in the CLASS statement. By
default, the reference parameterization is used with A=3 as the reference level. Two regression coefficients
are estimated for the two dummy variables of A.

proc phreg data=Test;
class A;
model T*Status(0)=A;

run;



5952 F Chapter 73: The PHREG Procedure

Figure 73.14 shows the dummy variables of A and the regression coefficients estimates.

Figure 73.14 Design Variable and Regression Coefficient Estimates

The PHREG ProcedureThe PHREG Procedure

Class Level Information

Class Value
Design

Variables

A 1 1 0

2 0 1

3 0 0

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio Label

A 1 1 -1.40925 0.64802 4.7293 0.0297 0.244 A 1

A 2 1 -0.65705 0.51764 1.6112 0.2043 0.518 A 2

Now consider the programming statement that attempts to change the value of the CLASS variable A as in
the following specification:

proc phreg data=Test;
class A;
model T*Status(0)=A;
if A=3 then A=2;

run;

Results of this analysis are shown in Figure 73.15 and are identical to those in Figure 73.14. The if A=3

then A=2 programming statement has no effects on the design variables for A, which have already been
determined.

Figure 73.15 Design Variable and Regression Coefficient Estimates

The PHREG ProcedureThe PHREG Procedure

Class Level Information

Class Value
Design

Variables

A 1 1 0

2 0 1

3 0 0

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio Label

A 1 1 -1.40925 0.64802 4.7293 0.0297 0.244 A 1

A 2 1 -0.65705 0.51764 1.6112 0.2043 0.518 A 2
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Additionally any variable used in a programming statement that has already been declared in the CLASS
statement is not treated as a collection of the corresponding design variables. Consider the following
statements:

proc phreg data=Test;
class A;
model T*Status(0)=A X;
X=T*A;

run;

The CLASS variable A generates two design variables as explanatory variables. The variable X created by
the X=T*A programming statement is a single time-dependent covariate whose values are evaluated using the
exact values of A given in the data, not the dummy-coded values that represent the levels of A. In data set
Test, A assumes the values of 1, 2, and 3, and these are the exact values that are used in producing X. If A
were a character variable with values ‘Bird’, ‘Cat’, and ‘Dog’, the programming statement X=T*A would
have produced an error in the attempt to multiply a number with a character value.

Figure 73.16 Single Time-Dependent Variable X*A

The PHREG ProcedureThe PHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio Label

A 1 1 0.15798 1.69338 0.0087 0.9257 1.171 A 1

A 2 1 0.00898 0.87573 0.0001 0.9918 1.009 A 2

X 1 0.09268 0.09535 0.9448 0.3311 1.097

To generalize the simple test of proportional hazard assumption for the design variables of A (as in the section
the “Classical Method of Maximum Likelihood” on page 5884), you specify the following statements, which
are not the same as in the preceding program or as in the specification in the section “Time Variable on the
Right Side of the MODEL Statement” on page 5950:

proc phreg data=Test;
class A;
model T*Status(0)=A X1 X2;
X1= T*(A=1);
X2= T*(A=2);

run;

The Boolean parenthetical expressions (A=1) and (A=2) resolve to a value of 1 or 0, depending on whether
the expression is true or false, respectively.

Results of this test are shown in Figure 73.17.



5954 F Chapter 73: The PHREG Procedure

Figure 73.17 Simple Test of Proportional Hazards Assumption

The PHREG ProcedureThe PHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio Label

A 1 1 -0.00766 1.69435 0.0000 0.9964 0.992 A 1

A 2 1 -0.88132 1.64298 0.2877 0.5917 0.414 A 2

X1 1 -0.15522 0.20174 0.5920 0.4417 0.856

X2 1 0.01155 0.18858 0.0037 0.9512 1.012

In general, when your model contains a categorical explanatory variable that is time-dependent, it might
be necessary to use hardcoded dummy variables to represent the categories of the categorical variable.
Alternatively, you might consider using the counting-process style of input where you break up the covariate
history of an individual into a number of records with nonoverlapping start and stop times and declare the
categorical time-dependent variable in the CLASS statement.

Partial Likelihood Function for the Cox Model
Let Zl.t/ denote the vector explanatory variables for the lth individual at time t. Let t1 < t2 < : : : < tk
denote the k distinct, ordered event times. Let di denote the multiplicity of failures at ti ; that is, di is the
size of the set Di of individuals that fail at ti . Let wl be the weight associated with the lth individual. Using
this notation, the likelihood functions used in PROC PHREG to estimate ˇ are described in the following
sections.

Continuous Time Scale

Let Ri denote the risk set just before the ith ordered event time ti . Let R�i denote the set of individuals
whose event or censored times exceed ti or whose censored times are equal to ti .

Exact Likelihood

L1.ˇ/ D

kY
iD1

8̂̂<̂
:̂
Z 1
0

Y
j2Di

26641 � exp

0BB@ �
eˇ0Zj .ti /X

l2R�
i

eˇ
0Zl .ti / t

1CCA
3775 exp.�t /dt

9>>=>>;
Breslow Likelihood

L2.ˇ/ D

kY
iD1

eˇ
0
P
j2Di Zj .ti /"X

l2Ri

eˇ
0Zl .ti /

#di
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Incorporating weights, the Breslow likelihood becomes

L2.ˇ/ D

kY
iD1

eˇ
0
P
j2Di wjZj .ti /"X

l2Ri

wleˇ
0Zl .ti /

#P
j2Di wi

Efron Likelihood

L3.ˇ/ D

kY
iD1

eˇ
0
P
j2Di Zj .ti /

diY
jD1

0@X
l2Ri

eˇ
0Zl .ti / �

j � 1

di

X
l2Di

eˇ
0Zl .ti /

1A
Incorporating weights, the Efron likelihood becomes

L3.ˇ/ D

kY
iD1

eˇ
0
P
j2Di wjZj .ti /24 diY

jD1

0@X
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0Zl .ti / �
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X
l2Di
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0Zl .ti /

1A35 1
di

P
j2Di wj

Discrete Time Scale

Let Qi denote the set of all subsets of di individuals from the risk set Ri . For each q 2 Qi , q is a di -tuple
.q1; q2; : : : ; qdi / of individuals who might have failed at ti .

Discrete Logistic Likelihood

L4.ˇ/ D

kY
iD1

eˇ
0
P
j2Di Zj .ti /X

q2Qi

eˇ
0
Pdi
lD1

Zql .ti /

The computation of L4.ˇ/ and its derivatives is based on an adaptation of the recurrence algorithm of Gail,
Lubin, and Rubinstein (1981) to the logarithmic scale. When there are no ties on the event times (that is,
di � 1), all four likelihood functions L1.ˇ/, L2.ˇ/, L3.ˇ/, and L4.ˇ/ reduce to the same expression. In a
stratified analysis, the partial likelihood is the product of the partial likelihood functions for the individual
strata.

Counting Process Style of Input
In the counting process formulation, data for each subject are identified by a triple fN; Y;Zg of counting,
at-risk, and covariate processes. Here, N.t/ indicates the number of events that the subject experiences over
the time interval .0; t �; Y.t/ indicates whether the subject is at risk at time t (one if at risk and zero otherwise);
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and Z.t/ is a vector of explanatory variables for the subject at time t. The sample path of N is a step function
with jumps of size +1 at the event times, and N.0/ D 0. Unless Z.t/ changes continuously with time, the
data for each subject can be represented by multiple observations, each identifying a semiclosed time interval
.t1; t2�, the values of the explanatory variables over that interval, and the event status at t2. The subject
remains at risk during the interval .t1; t2�, and an event might occur at t2. Values of the explanatory variables
for the subject remain unchanged in the interval. This style of data input was originated by Therneau (1994).

For example, a patient has a tumor recurrence at weeks 3, 10, and 15 and is followed up to week 23. Consider
three fixed explanatory variables Trt (treatment), Number (initial tumor number), and Size (initial tumor size),
and one time-dependent covariate Z that represents a hormone level. The value of Z might change during the
follow-up period. The data for this patient are represented by the following four observations:

T1 T2 Status Trt Number Size Z

0 3 1 1 1 3 12.3
3 10 1 1 1 3 14.7
10 15 1 1 1 3 13.8
15 23 0 1 1 3 15.5

Here (T1,T2] contains the at-risk intervals. The variable Event indicates whether a recurrence has occurred
at T2; a value of 1 indicates a tumor recurrence, and a value of 0 indicates nonrecurrence. The following
statements fit a multiplicative hazards model with baseline covariates Trt, Number, and Size, and a time-
varying covariate Z.

proc phreg;
model (T1,T2) * Status(0) = Trt Z1 Z2 Z3;

run;

Another useful application of the counting process formulation is delayed entry of subjects into the risk set.
For example, in studying the mortality of workers exposed to a carcinogen, the survival time is chosen to
be the worker’s age at death by malignant neoplasm. Any worker joining the workplace at a later age than
a given event failure time is not included in the corresponding risk set. The variables of a worker consist
of Entry (age at which the worker entered the workplace), Age (age at death or age censored), Status (an
indicator of whether the observation time is censored, with the value 0 identifying a censored time), and X1
and X2 (explanatory variables thought to be related to survival). The specification for such an application is
as follows:

proc phreg;
model (Entry, Age) * Status(0) = X1 X2;

run;

Alternatively, you can use a time-dependent variable to control the risk set, as illustrated in the following
specification:

proc phreg;
model Age * Status(0) = X1 X2;
if Age < Entry then X1= .;

run;

Here, X1 becomes a time-dependent variable. At a given death time t, the value of X1 is reevaluated for each
subject with Age � t ; subjects with Entry > t are given a missing value in X1 and are subsequently removed
from the risk set. Computationally, this approach is not as efficient as the one that uses the counting process
formulation.
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Left-Truncation of Failure Times
Left-truncation occurs when individuals are not observed at the natural time origin of the phenomenon under
study but come under observation at some known later time (called the left-truncation time). The risk set just
prior to an event time does not include individuals whose left-truncation times exceed the given event time.
Thus, any contribution to the likelihood must be conditional on the truncation limit having been exceeded.

You use the ENTRY= option to specify the variable that represents the left-truncation time. Suppose T1 and
T2 represent the left-truncation time and the survival time, respectively. To account for left-truncation, you
specify the following statements:

proc phreg;
model T2*Dead(0)=X1-X10/entry=T1;
title 'The ENTRY= option is Specified';

run;

Equivalently, you can use the counting process style of input for left-truncation:

proc phreg;
model (T1,T2)*Dead(0)=X1-X10;
title 'Counting Process Style of Input';

run;

Since the product-limit estimator of the survivor function is not available for the counting process style of
input, you cannot use PROC PHREG to obtain the product-limit estimate of the survivor function if you have
data with left-truncation times. In the preceding PROC PHREG calls, if you also specify METHOD=PL in a
BASELINE statement or an OUTPUT statement, it is defaulted to METHOD=BRESLOW.

The Multiplicative Hazards Model
Consider a set of n subjects such that the counting process Ni � fNi .t/; t � 0g for the ith subject represents
the number of observed events experienced over time t. The sample paths of the process Ni are step functions
with jumps of size C1, with Ni .0/ D 0. Let ˇ denote the vector of unknown regression coefficients. The
multiplicative hazards function ƒ.t;Zi .t// for Ni is given by

Yi .t/dƒ.t;Zi .t// D Yi .t/ exp.ˇ0Zi .t//dƒ0.t/

where

• Yi .t/ indicates whether the ith subject is at risk at time t (specifically, Yi .t/ D 1 if at risk and Yi .t/ D 0
otherwise)

• Zi .t/ is the vector of explanatory variables for the ith subject at time t

• ƒ0.t/ is an unspecified baseline hazard function

See Fleming and Harrington (1991) and Andersen et al. (1992). The Cox model is a special case of this
multiplicative hazards model, where Yi .t/ D 1 until the first event or censoring, and Yi .t/ D 0 thereafter.
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The partial likelihood for n independent triplets .Ni ; Yi ;Zi /; i D 1; : : : ; n, has the form

L.ˇ/ D
nY
iD1

Y
t�0

�
Yi .t/ exp.ˇ0Zi .t//Pn
jD1 Yj .t/ exp.ˇ0Zj .t//

��Ni .t/
where �Ni .t/ D 1 if Ni .t/ �Ni .t�/ D 1, and �Ni .t/ D 0 otherwise.

Proportional Rates/Means Models for Recurrent Events
Let N.t/ be the number of events experienced by a subject over the time interval .0; t �. Let dN.t/ be the
increment of the counting process N over Œt; t C dt/. The rate function is given by

d�Z.t/ D EŒdN.t/jZ.t/� D eˇ
0Z.t/d�0.t/

where �0.:/ is an unknown continuous function. If the Z are time independent, the rate model is reduced to
the mean model

�Z.t/ D eˇ
0Z�0.t/

The partial likelihood for n independent triplets .Ni ; Yi ;Zi /; i D 1; : : : ; n, of counting, at-risk, and covariate
processes is the same as that of the multiplicative hazards model. However, a robust sandwich estimate is
used for the covariance matrix of the parameter estimator instead of the model-based estimate.

Let Tki be the kth event time of the ith subject. Let Ci be the censoring time of the ith subject. The at-risk
indicator and the failure indicator are, respectively,

Yi .t/ D I.Ci � t / and �ki D I.Tki � Ci /

Denote

S .0/.ˇ; t / D

nX
iD1

Yi .t/eˇ
0Zi .t/ and NZ.ˇ; t / D

Pn
iD1 Yi .t/e

ˇ0Zi .t/Zi .t/
S .0/.ˇ; t /

Let Ǒ be the maximum likelihood estimate of ˇ, and let I. Ǒ/ be the observed information matrix. The robust
sandwich covariance matrix estimate is given by

I�1. Ǒ/
nX
iD1

�
Wi . Ǒ/W

0
i .
Ǒ/

�
I�1. Ǒ/

where

Wi .ˇ/ D
X
k

�ki

�
Zi .Tki / � NZ.ˇ; Tki /

�
�

nX
iD1

X
l

�ljYi .Tlj /eˇ
0Zi .Tlj /

S0.ˇ; Tlj /

�
Zi .Tlj / � NZ.ˇ; Tlj /

�
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For a given realization of the covariates �, the Nelson estimator is used to predict the mean function

O��.t/ D e Ǒ
0�

nX
iD1

X
k

I.Tki � t /�ki

S .0/. Ǒ; Tki /

with standard error estimate given by

O�2. O��.t// D

nX
iD1

�
1

n
O‰i .t; �/

�2
where

1

n
O‰i .t; �/ D e Ǒ

0�

�X
k

I.Tki � t /�ik

S .0/. Ǒ; Tki /
�

nX
jD1

X
k

Yi .Tkj /e
Ǒ 0Zi .Tkj /I.Tkj � t /�kj
ŒS .0/. Ǒ; Tkj /�

2
�

� nX
iD1

X
k

I.Tki � t /�ikŒ NZ. Ǒ; Tki / � ��
S .0/. Ǒ; Tki /

�
�I�1. Ǒ/

Z �

0

ŒZi .u/ � NZ. Ǒ; u/�d OMi .u/

�
Since the cumulative mean function is always nonnegative, the log transform is used to compute confidence
intervals. The 100.1 � ˛/% pointwise confidence limits for ��.t/ are

O��.t/e
˙z˛=2

O�. O�� .t//

O��.t/

where z˛=2 is the upper 100˛=2 percentage point of the standard normal distribution.

The Frailty Model
You can use the frailty model to model correlations between failures of the same cluster. The hazard rate for
the jth individual in the ith cluster is

�ij .t/ D �0.t/eˇ
0Zij .t/Ci

where �0.t/ is an arbitrary baseline hazard rate, Zij is the vector of (fixed-effect) covariates, ˇ is the vector
of regression coefficients, and i is the random effect for cluster i.

Frailties are the exponential transformations of the random components, and the frailty model can be written
as

�ij .t/ D �0.t/ei eˇ
0Zij .t/

The random components 1; : : : ; s (alternatively, the frailties e1 ; : : : ; es ) are assumed to be independent
and identically distributed. Modeling is based on the random effects rather than on the frailties.

Two frailty distributions are available in PROC PHREG: gamma and lognormal. Use the DIST= option in the
RANDOM statement to choose the distribution. Let � be an unknown parameter. The frailty distributions are
listed in Table 73.11.
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Table 73.11 Frailty Distributions

Frailty Option Distribution Density f(i / Mean and Variance

DIST=GAMMA ei � G
�
1
�
; 1
�

� exp.i
�
/ exp

�
�

exp.i /
�

�
�
1
� �. 1

�
/

E(ei )=1 V(ei )=�

DIST=LOGNORMAL i � N.0; �/
1p
.2��/

exp
�
�
2
i

2�

�
E(i )=0 V(i )=�

The unknown parameter � is a dispersion parameter. Each frailty distribution has a central tendency of 1
(the gamma frailty has a mean of 1, and the lognormal frailty has a median of 1). Thus, you can infer that
individuals in cluster i with frailty ei > 1 (or ei < 1) tend to fail at a faster (or slower) rate than they fail
under an independence model.

PROC PHREG estimates the regression coefficients ˇ, the random effects 1; : : : ; s , and the dispersion
parameter � . The RANDOM statement in PROC PHREG enables you to fit a shared frailty model by a
penalized partial likelihood approach. If you also specify the BAYES statement, PROC PHREG performs a
Bayesian analysis of the shared frailty model.

If the RANDOM statement is specified, any ASSESS, BASELINE, and OUTPUT statements are ignored.
Also ignored are the COVS options in the PROC PHREG statement and the following options in the
MODEL statement: BEST=, DETAILS, HIERARCHY=, INCLUDE=, NOFIT, PLCONV=, SELECTION=,
SEQUENTIAL, SLENTRY=, SLSTAY=, TYPE1, and TYPE3(ALL, LR, SCORE). Profile likelihood confi-
dence intervals for the hazard ratios are not available for the frailty model analysis.

Proportional Subdistribution Hazards Model for Competing-Risks Data
Competing risks arise in the analysis of time-to-event data when the event of interest can be impeded by a
prior event of a different type. For example, a leukemia patient’s relapse might be unobservable because the
patient dies before relapse is diagnosed. In the presence of competing risks, the Kaplan-Meier method of
estimating the survivor function is biased, because you can no longer assume that a subject will experience
the event of interest if the follow-up period is long enough. The cumulative incidence function (CIF), which
is the marginal failure subdistribution of a given cause, is widely used in competing-risks analysis.

The proportional hazards model for the subdistribution that Fine and Gray (1999) propose aims at modeling
the cumulative incidence of an event of interest. They define a subdistribution hazard,

N�k.t/ D �
d

dt
.1 � Fk.t//

where Fk.t/ is the cumulative incidence function for the failure of cause k, and they impose a proportional
hazards assumption on the subdistribution hazards:

N�k.t jZ/ D N�k;0 exp.ˇ0kZ/

The estimation of the regression coefficients is based on modified risk sets, where subjects that experience a
competing event are retained after their event. The weight of those subjects that are artificially retained in
the risk sets is gradually reduced according to the conditional probability of being under follow-up had the
competing event not occurred.
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You use PROC PHREG to fit the Fine and Gray (1999) model by specifying the EVENTCODE= option in
the MODEL statement to indicate the event of interest. Maximum likelihood estimates of the regression
coefficients are obtained by the Newton-Raphson algorithm. The covariance matrix of the parameter estimator
is computed as a sandwich estimate. You can request the CIF curves for a given set of covariates by using the
BASELINE statement. The PLOTS=CIF option in the PROC PHREG statement displays a plot of the curves.
You can obtain Schoenfeld residuals and score residuals by using the OUTPUT statement.

To model the subdistribution hazards for clustered data (Zhou et al. 2012), you use the COVS(AGGREGATE)
option in the PROC PHREG statement. You also have to specify the ID statement to identify the clusters.
To model the subdistribution hazards for stratified data (Zhou et al. 2011), you use the STRATA statement.
PROC PHREG handles only regular stratified data that have a small number of large subject groups.

When you specify the EVENTCODE= option in the MODEL statement, the ASSESS, BAYES, and
RANDOM statements are ignored. The ATRISK and COVM options in the PROC PHREG state-
ment are also ignored, as are the following options in the MODEL statement: BEST=, DETAILS,
HIERARCHY=, INCLUDE=, NOFIT, PLCONV=, RISKLIMITS=PL, SELECTION=, SEQUENTIAL,
SLENTRY=, SLSTAY=, TYPE1, and TYPE3(LR, SCORE). Profile likelihood confidence intervals for
the hazard ratios are not available for the Fine and Gray competing-risks analysis.

Parameter Estimation

For the ith subject, i D 1; : : : ; n, let Xi , �i , �i , and Zi .t/ be the observed time, event indicator, cause
of failure, and covariate vector at time t, respectively. Assume that K causes of failure are observable
(�i 2 .1; : : : ; K/). Consider failure from cause 1 to be the failure of interest, with failures of other causes as
competing events. Let

Ni .t/ D I.Xi � t; �i D 1/

Yi .t/ D 1 �Ni .t�/

Note that if �i D 1, then Ni .t/ D I.Xi � t / and Yi .t/ D I.Xi � t /; if �i ¤ 1, then Ni .t/ D 0 and
Yi .t/ D 1. Let

ri .t/ D I.Ci � Ti ^ t /

wi .t/ D ri .t/
G.t/

G.Xi ^ t /

whereG.t/ is the Kaplan-Meier estimate of the survivor function of the censoring variable, which is calculated
using fXi ; 1��i ; i D 1; 2; : : : ; ng. If �i D 0, then ri .t/ D 1 when t � Xi and 0 otherwise; and if �i D 1,
then ri .t/ D 1. Table 73.12 displays the weight of a subject at a function of time.

Table 73.12 Weight for the ith Subject

t; Xi Status ri .t/ Yi .t/ wi .t/

t � Xi �i D 0 1 1 1
�i�i D 1 1 1 1
�i�i ¤ 1 1 1 1

t > Xi �i D 0 0 1 0
�i�i D 1 1 0 G.t/=G.Xi /

�i�i ¤ 1 1 1 G.t/=G.Xi /
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The regression coefficients ˇ are estimated by maximizing the pseudo-likelihood L.ˇ/ with respect to ˇ:

L.ˇ/ D

nY
iD1

 
exp.ˇ0Zi .Xi //Pn

jD1 Yj .Xi /wj .Xi / exp.ˇ0Zj .Xi //

!I.�i�iD1/

The variance-covariance matrix of the maximum likelihood estimator Ǒ is approximated by a sandwich
estimate.

With a.0/ D 1, a.1/ D a, and a.2/ D aa0, let

S.r/2 .ˇ; u/ D

nX
jD1

wj .u/Yj .u/Zj .u/˝r exp.ˇ0Zj .u//; r D 0; 1; 2

NZ.ˇ; u/ D
S.1/2 .ˇ; u/

S
.0/
2 .ˇ; u/

The score function U2.ˇ/ and the observed information matrix O� are given by

U2. Ǒ/ D
nX
iD1

�
Zi .Xi / � NZ.ˇ; Xi /

�
I.�i�i D 1/

O� D �
@U2. Ǒ/
@ˇ

D

nX
iD1

 
S.2/2 . Ǒ; Xi /

S
.0/
2 . Ǒ; Xi /

� NZ˝2. Ǒ; Xi /

!
I.�i�i D 1/

The sandwich variance estimate of Ǒ is

cvar. Ǒ/ D O��1 O† O��1
where O† is the estimate of the variance-covariance matrix of U2. Ǒ/ that is given by

O† D

nX
iD1

. O�i C O i /
˝2

where

O�i D

Z 1
0

�
Zi .u/ � NZ. Ǒ; u/

�
wi .u/d OM

1
i .u/

O i D

Z 1
0

Oq.u/
�.u/

d OM c
i .u/

Oq.u/ D �
nX
iD1

Z 1
0

�
Zi .s/ � NZ. Ǒ; s/

�
wi .s/d OM

1
i I.s � u > Xi /

�.u/ D
X
j

I.Xj � u/

OM 1
i .t/ D Ni .t/ �

Z t

0

Yi .s/ exp. Ǒ0Zi .s//d Oƒ10.s/



Proportional Subdistribution Hazards Model for Competing-Risks Data F 5963

OM c
i .t/ D I.Xi � t; �i D 0/ �

Z t

0

I.Xi � u/d Oƒ
c.u/

Oƒ10.t/ D

nX
iD1

Z t

0

1

S
.0/
2 . Ǒ; u/

wi .u/dNi .u/

Oƒc.t/ D

Z t

0

P
i dfI.Xi � u;�i D 0/gP

i I.Xi � u/

Residuals

You can use the OUTPUT statement to output Schoenfeld residuals and score residuals to a SAS data set.

Schoenfeld residuals: Zi .Xi / � NZ. Ǒ; Xi /;�i�i D 1 1 � i � n

Score residuals O�i C O i 1 � i � n

Cumulative Incidence Prediction

For an individual with covariates Z D z0, the cumulative subdistribution hazard is estimated by

Oƒ1.t I z0/ D
Z t

0

expŒ Ǒ0z0�d Oƒ10.u/

and the predicted cumulative incidence is

OF1.t I z0/ D 1 � expŒ� Oƒ1.t I z0/�

To compute the confidence interval for the cumulative incidence, consider a monotone transformation m.p/
with first derivative Pm.p/. Fine and Gray (1999, Section 5) give the following procedure to calculate pointwise
confidence intervals. First, you generate B samples of normal random deviates f.Ak1; : : : ; Akn/; 1 � k � Bg.
You can specify the value of B by using the NORMALSAMPLE= option in the BASELINE statement. Then,
you compute the estimate of varfmŒ OF1.t I z0/� �mŒF1.t I z0/�g as

O�2.t I z0/ D
1

B

BX
kD1

OJ 21k.t I z0/

where

OJ1k.t I z0/ D PmŒ OF1.t I z0/� expŒ� Oƒ1.t I z0/�
nX
iD1

Aki

�Z t

0

exp. Ǒ0z0/

S
.0/
2 . Ǒ; u/

wi .u/d OM
1
i .u/

C Oh0.t I z0/ O�
�1. O�i C O i /C

Z 1
0

Ov.u; t; z0/

O�.u/
d OM c

i .u/

�

Oh.t I z0/ D exp. Ǒ0z0/
�
Oƒ10.t/z0 �

Z t

0

NZ. Ǒ; u/d Oƒ10.u/
�

Ov.u; t; z0/ D � exp. Ǒ0z0/
nX
iD1

Z t

0

1

S
.0/
2 . Ǒ; s/

wi .s/d OM
1
i .s/I.s � u > Xi /
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A 100(1–˛)% confidence interval for OF1.t I z0/ is given by

m�1
�
mŒ OF1.t I z0/�˙ z˛ O�.t I z0/

�
where z˛ is the 100(1–˛

2
) percentile of a standard normal distribution.

The CLTYPE option in the BASELINE statement enables you to choose the LOG transformation, the
LOGLOG (log of negative log) transformation, or the IDENTITY transformation. You can also output the
standard error of the cumulative incidence, which is approximated by the delta method as follows:

O�2. OF .t I z0// D
�
PmŒ OF .t I z0/�

��2
O�2.t I z0/

Table 73.13 displays the variance estimator for each transformation that is available in PROC PHREG.

Table 73.13 Variance Estimate of the CIF Predictor

CLTYPE= keyword Transformation cvar.F.t I z0/
IDENTITY m.p/ D p O�2.t I z0/

LOG m.p/ D log.p/
�
OF1.t I z0/

�2
O�2.t I z0/

LOGLOG m.p/ D log.� log.p//
�
OF .t I z0/ log. OF .t I z0//

�2
O�2.t I z0/

Hazard Ratios
Consider a dichotomous risk factor variable X that takes the value 1 if the risk factor is present and 0 if the
risk factor is absent. The log-hazard function is given by

logŒ�.t jX/� D logŒ�0.t/�C ˇ1X

where �0.t/ is the baseline hazard function.

The hazard ratio  is defined as the ratio of the hazard for those with the risk factor (X = 1) to the hazard
without the risk factor (X = 0). The log of the hazard ratio is given by

log. / � logŒ .X D 1;X D 0/� D logŒ�.t jX D 1/� � logŒ�.t jX D 0/� D ˇ1

In general, the hazard ratio can be computed by exponentiating the difference of the log-hazard between any
two population profiles. This is the approach taken by the HAZARDRATIO statement, so the computations
are available regardless of parameterization, interactions, and nestings. However, as shown in the preceding
equation for log. /, hazard ratios of main effects can be computed as functions of the parameter estimates,
and the remainder of this section is concerned with this methodology.

The parameter, ˇ1, associated with X represents the change in the log-hazard from X = 0 to X = 1. So the
hazard ratio is obtained by simply exponentiating the value of the parameter associated with the risk factor.
The hazard ratio indicates how the hazard change as you change X from 0 to 1. For instance,  D 2 means
that the hazard when X = 1 is twice the hazard when X = 0.



Hazard Ratios F 5965

Suppose the values of the dichotomous risk factor are coded as constants a and b instead of 0 and 1. The
hazard when X D a becomes �.t/ exp.aˇ1/, and the hazard when X D b becomes �.t/ exp.bˇ1/. The
hazard ratio corresponding to an increase in X from a to b is

 D expŒ.b � a/ˇ1� D Œexp.ˇ1/�b�a � Œexp.ˇ1/�c

Note that for any a and b such that c D b � a D 1;  D exp.ˇ1/. So the hazard ratio can be interpreted as
the change in the hazard for any increase of one unit in the corresponding risk factor. However, the change in
hazard for some amount other than one unit is often of greater interest. For example, a change of one pound
in body weight might be too small to be considered important, while a change of 10 pounds might be more
meaningful. The hazard ratio for a change in X from a to b is estimated by raising the hazard ratio estimate
for a unit change in X to the power of c D b � a as shown previously.

For a polytomous risk factor, the computation of hazard ratios depends on how the risk factor is parameterized.
For illustration, suppose that Cell is a risk factor with four categories: Adeno, Large, Small, and Squamous.

For the effect parameterization scheme (PARAM=EFFECT) with Squamous as the reference group, the
design variables for Cell are as follows:

Design Variables
Cell X1 X2 X3

Adeno 1 0 0
Large 0 1 0
Small 0 0 1
Squamous –1 –1 –1

The log-hazard for Adeno is

logŒ�.t jAdeno/� D logŒ�0.t/�C ˇ1.X1 D 1/C ˇ2.X2 D 0/C ˇ3.X3 D 0/
D �0.t/C ˇ1

The log-hazard for Squamous is

logŒ�.t jSquamous/� D logŒ�0.t/�C ˇ1.X1 D �1/C ˇ2.X2 D �1/C ˇ3.X3 D �1//
D logŒ�0.t/� � ˇ1 � ˇ2 � ˇ3

Therefore, the log-hazard ratio of Adeno versus Squamous

logŒ .Adeno;Squamous/� D logŒ�.t jAdeno/� � logŒ�.t jSquamous/�

D 2ˇ1 C ˇ2 C ˇ3

For the reference cell parameterization scheme (PARAM=REF) with Squamous as the reference cell, the
design variables for Cell are as follows:
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Design Variables
Cell X1 X2 X3

Adeno 1 0 0
Large 0 1 0
Small 0 0 1
Squamous 0 0 0

The log-hazard ratio of Adeno versus Squamous is given by

log. .Adeno;Squamous//

D logŒ�.t jAdeno/� � logŒ�.t jSquamous/�

D .logŒ�0.t/�C ˇ1.X1 D 1/C ˇ2.X2 D 0/C ˇ3.X3 D 0// �
.logŒ�0.t/�C ˇ1.X1 D 0/C ˇ2.X2 D 0/C ˇ3.X3 D 0//

D ˇ1

For the GLM parameterization scheme (PARAM=GLM), the design variables are as follows:

Design Variables
Cell X1 X2 X3 X4

Adeno 1 0 0 0
Large 0 1 0 0
Small 0 0 1 0
Squamous 0 0 0 1

The log-hazard ratio of Adeno versus Squamous is

log. .Adeno;Squamous//

D logŒ�.t jAdeno/� � logŒ�.t jSquamous/�

D logŒ�0.t/�C ˇ1.X1 D 1/C ˇ2.X2 D 0/C ˇ3.X3 D 0/C ˇ4.X4 D 0// �
.log.�0.t//C ˇ1.X1 D 0/C ˇ2.X2 D 0/C ˇ3.X3 D 0/C ˇ4.X4 D 1//

D ˇ1 � ˇ4

Consider Cell as the only risk factor in the Cox regression in Example 73.3. The computation of hazard ratio
of Adeno versus Squamous for various parameterization schemes is tabulated in Table 73.14.

Table 73.14 Hazard Ratio Comparing Adeno to Squamous

Parameter Estimates
PARAM= Ǒ

1
Ǒ
2

Ǒ
3

Ǒ
4 Hazard Ratio Estimates

EFFECT 0.5772 –0.2115 0.2454 exp.2 � 0:5772 � 0:2115C 0:2454/ D 3:281
REF 1.8830 0.3996 0.8565 exp.1:8830/ D 3:281
GLM 1.8830 0.3996 0.8565 0.0000 exp.1:8830/ D 3:281
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The fact that the log-hazard ratio (log. /) is a linear function of the parameters enables the HAZARDRATIO
statement to compute the hazard ratio of the main effect even in the presence of interactions and nest effects.
The section “Hazard Ratios” on page 5964 details the estimation of the hazard ratios in a classical analysis.

To customize hazard ratios for specific units of change for a continuous risk factor, you can use the UNITS=
option in a HAZARDRATIO statement to specify a list of relevant units for each explanatory variable in
the model. Estimates of these customized hazard ratios are given in a separate table. Let .Lj ; Uj / be a
confidence interval for log. /. The corresponding lower and upper confidence limits for the customized
hazard ratio exp.cˇj / are exp.cLj / and exp.cUj /, respectively (for c > 0), or exp.cUj / and exp.cLj /,
respectively (for c < 0).

Newton-Raphson Method
Let L.ˇ/ be one of the likelihood functions described in the previous subsections. Let l.ˇ/ D logL.ˇ/.
Finding ˇ such that L.ˇ/ is maximized is equivalent to finding the solution Ǒ to the likelihood equations

@l.ˇ/

@ˇ
D 0

With Ǒ0 D 0 as the initial solution, the iterative scheme is expressed as

ǑjC1 D Ǒ
j
�

"
@2l. Ǒj /

@ˇ2

#�1
@l. Ǒj /

@ˇ

The term after the minus sign is the Newton-Raphson step. If the likelihood function evaluated at ǑjC1

is less than that evaluated at Ǒj , then ǑjC1 is recomputed using half the step size. The iterative scheme
continues until convergence is obtained—that is, until ǑjC1 is sufficiently close to Ǒj . Then the maximum
likelihood estimate of ˇ is Ǒ D ǑjC1.

The model-based variance estimate of Ǒ is obtained by inverting the information matrix I. Ǒ/

OVm. Ǒ/ D I�1. Ǒ/ D �
"
@2l. Ǒ/

@ˇ2

#�1

Firth’s Modification for Maximum Likelihood Estimation
In fitting a Cox model, the phenomenon of monotone likelihood is observed if the likelihood converges to a
finite value while at least one parameter diverges (Heinze and Schemper 2001).

Let xl.t/ denote the vector explanatory variables for the lth individual at time t. Let t1 < t2 < : : : < tm
denote the k distinct, ordered event times. Let dj denote the multiplicity of failures at tj ; that is, dj is the size
of the set Dj of individuals that fail at tj . Let Rj denote the risk set just before tj . Let ˇ D .ˇ1; : : : ; ˇk/0

be the vector of regression parameters. The Breslow log partial likelihood is given by

l.ˇ/ D logL.ˇ/ D
mX
jD1

�
ˇ0
X
l2Dj

xl.tj / � dj log
X
h2Rj

eˇ
0xh.tj /

�
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Denote

S.a/j .ˇ/ D
X
h2Rj

eˇ
0xh.tj /Œxh.tj /�˝a a D 0; 1; 2

Then the score function is given by

U.ˇ/ � .U.ˇ1/; : : : ; U.ˇk//
0

D
@l.ˇ/

@ˇ

D

mX
jD1

�X
l2Dj

xl.tj / � dj
S.1/j .ˇ/

S0j .ˇ/

�

and the Fisher information matrix is given by

I.ˇ/ D �
@2l.ˇ/

@ˇ2

D

mX
jD1

dj

� S.2/j .ˇ/

S
.0/
j .ˇ/

�

�S.1/j .ˇ/

S.0/j .ˇ/

��S.1/j .ˇ/

S.0/j .ˇ/

�0�

Heinze (1999); Heinze and Schemper (2001) applied the idea of Firth (1993) by maximizing the penalized
partial likelihood

l�.ˇ/ D l.ˇ/C 0:5 log.jI.ˇ/j/

The score function U.ˇ/ is replaced by the modified score function by U�.ˇ/ � .U �.ˇ1/; : : : ; U �.ˇk//0,
where

U �.ˇr/ D U.ˇr/C 0:5tr
�
I�1.ˇ/

@I.ˇ/
@ˇr

�
r D 1; : : : ; k

The Firth estimate is obtained iteratively as

ˇ.sC1/ D ˇ.s/ C I�1.ˇ.s//U�.ˇ.s//

The covariance matrix OV is computed as I�1. Ǒ/, where Ǒ is the maximum penalized partial likelihood
estimate.

Explicit formulae for @I.ˇ/
@ˇr

; r D 1; : : : ; k

Denote

xh.t/ D .xh1.t/; : : : ; xhk.t//
0

Q.a/jr .ˇ/ D
X
h2Rj

eˇ
0xh.tj /xhr.tj /Œxh.tj /�˝a a D 0; 1; 2I r D 1; : : : ; k
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Then

@I.ˇ/
@ˇr

D

mX
jD1

dj

��Q.2/jr .ˇ/
S
.0/
j .ˇ/

�
Q.0/jr .ˇ/

S
.0/
j .ˇ/

S.2/j .ˇ/

S
.0/
j .ˇ/

�
�

�Q.1/jr .ˇ/
S
.0/
j .ˇ/

�
Q.0/jr .ˇ/

S
.0/
j .ˇ/

S.1/j .ˇ/

S
.0/
j .ˇ/

�� S.1/j .ˇ/

S
.0/
j .ˇ/

�0
�

� S.1/j .ˇ/

S
.0/
j .ˇ/

��Q.1/jr .ˇ/
S
.0/
j .ˇ/

�
Q.0/jr .ˇ/

S
.0/
j .ˇ/

S.1/j .ˇ/

S
.0/
j .ˇ/

�0�
r D 1; : : : ; k

Robust Sandwich Variance Estimate
For the ith subject, i D 1; : : : ; n, let Xi , wi , and Zi .t/ be the observed time, weight, and the covariate vector
at time t, respectively. Let �i be the event indicator and let Yi .t/ D I.Xi � t /. Let

S .r/.ˇ; t / D

nX
jD1

wjYj .t/eˇ
0Zj .t/Z

N
r

j .t/; r D 0; 1

Let NZ.ˇ; t / D S.1/.ˇ;t/

S.0/.ˇ;t/
. The score residual for the ith subject is

Li .ˇ/ D �i
�

Zi .Xi / � NZ.ˇ;Xi /
�
�

nX
jD1

�j
wjYi .Xj /eˇ

0Zi .Xj /

S .0/.ˇ; Xj /

�
Zi .Xj / � NZ.ˇ; Xj /

�
For TIES=EFRON, the computation of the score residuals is modified to comply with the Efron partial
likelihood. See the section “Residuals” on page 5985 for more information.

The robust sandwich variance estimate of Ǒ derived by Binder (1992), who incorporated weights into the
analysis, is

OVs. Ǒ/ D I�1. Ǒ/
� nX
jD1

.wjLj . Ǒ//
N
2

�
I�1. Ǒ/

where I. Ǒ/ is the observed information matrix, and a
N
2 D aa0. Note that when wi � 1,

OVs. Ǒ/ D D0D

where D is the matrix of DFBETA residuals. This robust variance estimate was proposed by Lin and Wei
(1989) and Reid and Crèpeau (1985).

Testing the Global Null Hypothesis
The following statistics can be used to test the global null hypothesis H0Wˇ D 0. Under mild assumptions,
each statistic has an asymptotic chi-square distribution with p degrees of freedom given the null hypothesis.
The value p is the dimension of ˇ. For clustered data, the likelihood ratio test, the score test, and the Wald
test assume independence of observations within a cluster, while the robust Wald test and the robust score
test do not need such an assumption.
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Likelihood Ratio Test

�2LR D 2
h
l. Ǒ/ � l.0/

i

Score Test

�2S D

�
@l.0/
@ˇ

�0 �
�
@2l.0/
@ˇ2

��1 �
@l.0/
@ˇ

�

Wald’s Test

�2W D
Ǒ0

"
�
@2l. Ǒ/

@ˇ2

#
Ǒ

Robust Score Test

�2RS D

"X
i

L0i

#0 "X
i

L0i L0i
0

#�1 "X
i

L0i

#
where L0i is the score residual of the ith subject at ˇ D 0; that is, L0i D Li .0;1/, where the score process
Li .ˇ; t / is defined in the section “Residuals” on page 5985.

Robust Wald’s Test

�2RW D
Ǒ0Œ OVs. Ǒ/��1 Ǒ

where OVs. Ǒ/ is the sandwich variance estimate (see the section “Robust Sandwich Variance Estimate” on
page 5969 for details).

Type 3 Tests and Joint Tests
For models that use less-than-full-rank parameterization (as specified by the PARAM=GLM option in the
CLASS statement), a Type 3 test of an effect of interest (main effect or interaction) is a test of the Type III
estimable functions that are defined for that effect. When the model contains no missing cells, the Type 3 test
of a main effect corresponds to testing the hypothesis of equal marginal means. For more information about
Type III estimable functions, see Chapter 45, “The GLM Procedure,” and Chapter 15, “The Four Types of
Estimable Functions.” Also see Littell, Freund, and Spector (1991).

For models that use full-rank parameterization, all parameters are estimable when there are no missing
cells, so it is unnecessary to define estimable functions. The standard test of an effect of interest in this
case is the joint test that the values of the parameters associated with that effect are zero. For a model that
uses effects parameterization (as specified by the PARAM=EFFECT option in the CLASS statement), the
joint test for a main effect is equivalent to testing the equality of marginal means. For a model that uses
reference parameterization (as specified by the PARAM=REF option in the CLASS statement), the joint test
is equivalent to testing the equality of cell means at the reference level of the other model effects. For more
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information about the coding scheme and the associated interpretation of results, see Muller and Fetterman
(2002, Chapter 14).

If there is no interaction term, the Type 3 test of an effect for a model with GLM parameterization is the same
as the joint test of the effect for the model with full-rank parameterization. In this situation, the joint test is
also called the Type 3 test. For a model that contains an interaction term and no missing cells, the Type 3 test
for a component main effect under GLM parameterization is the same as the joint test of the component main
effect under effect parameterization. Both test the equality of cell means. But this Type 3 test differs from the
joint test under reference parameterization, which tests the equality of cell means at the reference level of the
other component main effect. If some cells are missing, you can obtain meaningful tests only by testing a
Type III estimation function, so in this case you should use GLM parameterization.

The results of a Type 3 test or a joint test do not depend on the order in which the terms are specified in the
MODEL statement.

The following statistics can be used to test the null hypothesis H0LWLˇ D 0, where L is a matrix of
known coefficients. Under mild assumptions, each of the following statistics has an asymptotic chi-square
distribution with p degrees of freedom, where p is the rank of L. Let Q̌L be the maximum likelihood of ˇ
under the null hypothesis H0L; that is,

l. Q̌L/ D max
LˇD0

l.ˇ/

Likelihood Ratio Statistic

�2LR D 2
h
l. Ǒ/ � l. Q̌L/

i

Score Statistic

�2S D

"
@l. Q̌L/

@ˇ

#0 "
�
@2l. Q̌L/

@ˇ2

#�1 "
@l. Q̌L/

@ˇ

#

Wald’s Statistic

�2W D
�
L Ǒ
�0 h

L OV. Ǒ/L0
i�1 �

L Ǒ
�

where OV. Ǒ/ is the estimated covariance matrix, which can be the model-based covariance matrix
h
�
@2l. Ǒ/

@ˇ2

i�1
or the sandwich covariance matrix VS . Ǒ/ (see the section “Robust Sandwich Variance Estimate” on page 5969
for details).

Confidence Limits for a Hazard Ratio
Let ej be the jth unit vector—that is, the jth entry of the vector is 1 and all other entries are 0. The hazard
ratio for the explanatory variable with regression coefficient ˇj D e0jˇ is defined as exp.ˇj /. In general, a
log-hazard ratio can be written as h0ˇ, a linear combination of the regression coefficients, and the hazard
ratio exp.h0ˇ/ is obtained by replacing ej with h.
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Point Estimate

The hazard ratio exp.e0jˇ/ is estimated by exp.e0j Ǒ/, where Ǒ is the maximum likelihood estimate of the ˇ.

Wald’s Confidence Limits

The 100.1 � ˛/% confidence limits for the hazard ratio are calculated as

exp
�
e0j Ǒ ˙ z˛=2

q
e0j OV. Ǒ/ej

�
where OV. Ǒ/ is estimated covariance matrix, and z˛=2 is the 100.1 � ˛=2/ percentile point of the standard
normal distribution.

Profile-Likelihood Confidence Limits

The construction of the profile-likelihood-based confidence interval is derived from the asymptotic �2

distribution of the generalized likelihood ratio test of Venzon and Moolgavkar (1988). Suppose that the
parameter vector is ˇ D .ˇ1; : : : ; ˇk/0 and you want to compute a confidence interval for ˇj . The profile-
likelihood function for ˇj D  is defined as

l�j ./ D max
ˇ2Bj ./

l.ˇ/

where Bj ./ is the set of all ˇ with the jth element fixed at  , and l.ˇ/ is the log-likelihood function for ˇ.
If lmax D l. Ǒ/ is the log likelihood evaluated at the maximum likelihood estimate Ǒ, then 2.lmax � l

�
j .ˇj //

has a limiting chi-square distribution with one degree of freedom if ˇj is the true parameter value. Let
l0 D lmax � 0:5�

2
1.1 � ˛/, where �21.1 � ˛/ is the 100.1 � ˛/ percentile of the chi-square distribution with

one degree of freedom. A 100.1 � ˛/% confidence interval for ˇj is

f W l�j ./ � l0g

The endpoints of the confidence interval are found by solving numerically for values of ˇj that satisfy
equality in the preceding relation. To obtain an iterative algorithm for computing the confidence limits, the
log-likelihood function in a neighborhood of ˇ is approximated by the quadratic function

Ql.ˇ C ı/ D l.ˇ/C ı0gC
1

2
ı0Vı

where g D g.ˇ/ is the gradient vector and V D V.ˇ/ is the Hessian matrix. The increment ı for the next
iteration is obtained by solving the likelihood equations

d

dı
fQl.ˇ C ı/C �.e0j ı � /g D 0

where � is the Lagrange multiplier, ej is the jth unit vector, and  is an unknown constant. The solution is

ı D �V�1.gC �ej /
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By substituting this ı into the equation Ql.ˇ C ı/ D l0, you can estimate � as

� D ˙

�
2.l0 � l.ˇ/C

1
2
g0V�1g/

e0jV
�1ej

� 1
2

The upper confidence limit for ˇj is computed by starting at the maximum likelihood estimate of ˇ and
iterating with positive values of � until convergence is attained. The process is repeated for the lower
confidence limit, using negative values of �.

Convergence is controlled by value � specified with the PLCONV= option in the MODEL statement (the
default value of � is 1E–4). Convergence is declared on the current iteration if the following two conditions
are satisfied:

jl.ˇ/ � l0j � �

and

.gC �ej /0V�1.gC �ej / � �

The profile-likelihood confidence limits for the hazard ratio exp.e0jˇ/ are obtained by exponentiating these
confidence limits.

Using the TEST Statement to Test Linear Hypotheses
Linear hypotheses for ˇ are expressed in matrix form as

H0WLˇ D c

where L is a matrix of coefficients for the linear hypotheses, and c is a vector of constants. The Wald
chi-square statistic for testing H0 is computed as

�2W D
�
L Ǒ � c

�0 h
L OV. Ǒ/L0

i�1 �
L Ǒ � c

�
where OV. Ǒ/ is the estimated covariance matrix. Under H0, �2W has an asymptotic chi-square distribution
with r degrees of freedom, where r is the rank of L.

Optimal Weights for the AVERAGE option in the TEST Statement

Let ˇ0 D .ˇi1 ; : : : ; ˇis /
0, where fˇi1 ; : : : ; ˇisg is a subset of s regression coefficients. For any vector

e D .e1; : : : ; es/0 of length s,

e0 Ǒ0 � N.e0ˇ0; e0 OV. Ǒ0/e/

To find e such that e0 Ǒ0 has the minimum variance, it is necessary to minimize e0 OV. Ǒ0/e subject to
Pk
iD1 ei D

1. Let 1s be a vector of 1’s of length s. The expression to be minimized is

e0 OV. Ǒ0/e � �.e01s � 1/
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where � is the Lagrange multiplier. Differentiating with respect to e and �, respectively, yields

OV. Ǒ0/e � �1s D 0
e01s � 1 D 0

Solving these equations gives

e D Œ10s OV
�1
. Ǒ0/1s��1 OV

�1
. Ǒ0/1s

This provides a one degree-of-freedom test for testing the null hypothesis H0 W ˇi1 D : : : D ˇis D 0 with
normal test statistic

Z D
e0 Ǒ0q
e0 OV. Ǒ0/e

This test is more sensitive than the multivariate test specified by the TEST statement

Multivariate: test X1, ..., Xs;

where X1, . . . , Xs are the variables with regression coefficients ˇi1 ; : : : ; ˇis , respectively.

Analysis of Multivariate Failure Time Data
Multivariate failure time data arise when each study subject can potentially experience several events (for
instance, multiple infections after surgery) or when there exists some natural or artificial clustering of subjects
(for instance, a litter of mice) that induces dependence among the failure times of the same cluster. Data
in the former situation are referred to as multiple events data, and data in the latter situation are referred to
as clustered data. The multiple events data can be further classified into ordered and unordered data. For
ordered data, there is a natural ordering of the multiple failures within a subject, which includes recurrent
events data as a special case. For unordered data, the multiple event times result from several concurrent
failure processes.

Multiple events data can be analyzed by the Wei, Lin, and Weissfeld (1989), or WLW, method based on the
marginal Cox models. For the special case of recurrent events data, you can fit the intensity model (Andersen
and Gill 1982), the proportional rates/means model (Pepe and Cai 1993; Lawless and Nadeau 1995; Lin
et al. 2000), or the stratified models for total time and gap time proposed by Prentice, Williams, and Peterson
(1981), or PWP. For clustered data, you can carry out the analysis of Lee, Wei, and Amato (1992) based on
the marginal Cox model. To use PROC PHREG to perform these analyses correctly and effectively, you have
to array your data in a specific way to produce the correct risk sets.

All examples described in this section can be found in the program phrmult.sas in the SAS/STAT sample
library. Furthermore, the “Examples” section in this chapter contains two examples to illustrate the methods
of analyzing recurrent events data and clustered data.
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Marginal Cox Models for Multiple Events Data

Suppose there are n subjects and each subject can experience up to K potential events. Let Zki .:/ be the
covariate process associated with the kth event for the ith subject. The marginal Cox models are given by

�k.t IZki / D �k0eˇ
0
k
Zki .t/; k D 1; : : : ; KI i D 1; : : : ; n

where �k0.t/ is the (event-specific) baseline hazard function for the kth event and ˇk is the (event-specific)
column vector of regression coefficients for the kth event. WLW estimates ˇ1; : : : ;ˇK by the maximum
partial likelihood estimates Ǒ1; : : : ; ǑK , respectively, and uses a robust sandwich covariance matrix estimate
for . Ǒ01; : : : ; Ǒ

0
K/
0 to account for the dependence of the multiple failure times.

By using a properly prepared input data set, you can estimate the regression parameters for all the marginal
Cox models and compute the robust sandwich covariance estimates in one PROC PHREG invocation. For
convenience of discussion, suppose each subject can potentially experience K = 3 events and there are two
explanatory variables Z1 and Z2. The event-specific parameters to be estimated are ˇ1 D .ˇ11; ˇ21/0 for the
first marginal model, ˇ2 D .ˇ12; ˇ22/0 for the second marginal model, and ˇ3 D .ˇ13; ˇ23/0 for the third
marginal model. Inference of these parameters is based on the robust sandwich covariance matrix estimate of
the parameter estimators. It is necessary that each row of the input data set represent the data for a potential
event of a subject. The input data set should contain the following:

• an ID variable for identifying the subject so that all observations of the same subject have the same ID
value

• an Enum variable to index the multiple events. For example, Enum=1 for the first event, Enum=2 for
the second event, and so on.

• a Time variable to represent the observed time from some time origin for the event. For recurrence
events data, it is the time from the study entry to each recurrence.

• a Status variable to indicate whether the Time value is a censored or uncensored time. For example,
Status=1 indicates an uncensored time and Status=0 indicates a censored time.

• independent variables (Z1 and Z2)

The WLW analysis can be carried out by specifying the following:

proc phreg covs(aggregate);
model Time*Status(0)=Z11 Z12 Z13 Z21 Z22 Z23;
strata Enum;
id ID;
Z11= Z1 * (Enum=1);
Z12= Z1 * (Enum=2);
Z13= Z1 * (Enum=3);
Z21= Z2 * (Enum=1);
Z22= Z2 * (Enum=2);
Z23= Z2 * (Enum=3);

run;

The variable Enum is specified in the STRATA statement so that there is one marginal Cox model for
each distinct value of Enum. The variables Z11, Z12, Z13, Z21, Z22, and Z23 in the MODEL statement



5976 F Chapter 73: The PHREG Procedure

are event-specific variables derived from the independent variables Z1 and Z2 by the given programming
statements. In particular, the variables Z11, Z12, and Z13 are event-specific variables for the explanatory
variable Z1; the variables Z21, Z22, and Z23 are event-specific variables for the explanatory variable Z2.
For j D 1; 2, and k D 1; 2; 3, variable Zjk contains the same values as the explanatory variable Zj for the
rows that correspond to kth marginal model and the value 0 for all other rows; as such, ˇjk is the regression
coefficient for Zjk. You can avoid using the programming statements in PROC PHREG if you create these
event-specific variables in the input data set by using the same programming statements in a DATA step.

The option COVS(AGGREGATE) is specified in the PROC PHREG statement to obtain the robust sandwich
estimate of the covariance matrix, and the score residuals used in computing the middle part of the sandwich
estimate are aggregated over identical ID values. You can also include TEST statements in the PROC PHREG
code to test various linear hypotheses of the regression parameters based on the robust sandwich covariance
matrix estimate.

Consider the AIDS study data in Wei, Lin, and Weissfeld (1989) from a randomized clinical trial to assess
the antiretroviral capacity of ribavirin over time in AIDS patients. Blood samples were collected at weeks 4,
8, and 12 from each patient in three treatment groups (placebo, low dose of ribavirin, and high dose). For
each serum sample, the failure time is the number of days before virus positivity was detected. If the sample
was contaminated or it took a longer period of time than was achievable in the laboratory, the sample was
censored. For example:

• Patient #1 in the placebo group has uncensored times 9, 6, and 7 days (that is, it took 9 days to detect
viral positivity in the first blood sample, 6 days for the second blood sample, and 7 days for the third
blood sample).

• Patient #14 in the low-dose group of ribavirin has uncensored times of 16 and 17 days for the first and
second sample, respectively, and a censored time of 21 days for the third blood sample.

• Patient #28 in the high-dose group has an uncensored time of 21 days for the first sample, no
measurement for the second blood sample, and a censored time of 25 days for the third sample.

For a full-rank parameterization, two design variables are sufficient to represent three treatment groups.
Based on the reference coding with placebo as the reference, the values of the two dummy explanatory
variables Z1 and Z2 representing the treatments are as follows:

Treatment Group Z1 Z2

Placebo 0 0
Low dose ribavirin 1 0
High dose ribavirin 0 1

The bulk of the task in using PROC PHREG to perform the WLW analysis lies in the preparation of the input
data set. As discussed earlier, the input data set should contain the ID, Enum, Time, and Status variables, and
event-specific independent variables Z11, Z12, Z13, Z21, Z22, and Z23. Data for the three patients described
earlier are arrayed as follows:
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ID Time Status Enum Z1 Z2

1 9 1 1 0 0
1 6 1 2 0 0
1 7 1 3 0 0

14 16 1 1 1 0
14 17 1 2 1 0
14 21 0 3 1 0

28 21 1 1 0 1
28 25 0 3 0 1

The first three rows are data for Patient #1 with event times at 9, 6, and 7 days, one row for each event. The
next three rows are data for Patient #14, who has an uncensored time of 16 days for the first serum sample,
an uncensored time of 17 days for the second sample, and a censored time of 21 days for the third sample.
The last two rows are data for Patient #28 of the high-dose group (Z1=0 and Z2=1). Since the patient did not
have a second serum sample, there are only two rows of data.

To perform the WLW analysis, you specify the following statements:

proc phreg covs(aggregate);
model Time*Status(0)=Z11 Z12 Z13 Z21 Z22 Z23;
strata Enum;
id ID;
Z11= Z1 * (Enum=1);
Z12= Z1 * (Enum=2);
Z13= Z1 * (Enum=3);
Z21= Z2 * (Enum=1);
Z22= Z2 * (Enum=2);
Z23= Z2 * (Enum=3);
EqualLowDose: test Z11=Z12, Z12=Z23;
AverageLow: test Z11,Z12,Z13 / e average;

run;

Two linear hypotheses are tested using the TEST statements. The specification

EqualLowDose: test Z11=Z12, Z12=Z13;

tests the null hypothesis ˇ11 D ˇ12 D ˇ13 of identical low-dose effects across three marginal models. The
specification

AverageLow: test Z11,Z12,Z13 / e average;

tests the null hypothesis of no low-dose effects (that is, ˇ11 D ˇ12 D ˇ13 D 0). The AVERAGE option
computes the optimal weights for estimating the average low-dose effect ˇ�1 D ˇ11 D ˇ12 D ˇ13 and
performs a 1 DF test for testing the null hypothesis that ˇ�1 D 0. The E option displays the coefficients for
the linear hypotheses, including the optimal weights.
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Marginal Cox Models for Clustered Data

Suppose there are n clusters with Ki members in the ith cluster, i D 1; : : : ; n. Let Zki .:/ be the covariate
process associated with the kth member of the ith cluster. The marginal Cox model is given by

�.t IZki / D �0.t/eˇ
0Zki .t/k D 1; : : : ; Ki I i D 1; : : : ; n

where �0.t/ is an arbitrary baseline hazard function and ˇ is the vector of regression coefficients. Lee, Wei,
and Amato (1992) estimate ˇ by the maximum partial likelihood estimate Ǒ under the independent working
assumption, and use a robust sandwich covariance estimate to account for the intracluster dependence.

To use PROC PHREG to analyze the clustered data, each member of a cluster is represented by an observation
in the input data set. The input data set to PROC PHREG should contain the following:

• an ID variable to identify the cluster so that members of the same cluster have the same ID value

• a Time variable to represent the observed survival time of a member of a cluster

• a Status variable to indicate whether the Time value is an uncensored or censored time. For example,
Status=1 indicates an uncensored time and Status=0 indicates a censored time.

• the explanatory variables thought to be related to the failure time

Consider a tumor study in which one of three female rats of the same litter was randomly subjected to a drug
treatment. The failure time is the time from randomization to the detection of tumor. If a rat died before the
tumor was detected, the failure time was censored. For example:

• In litter #1, the drug-treated rat has an uncensored time of 101 days, one untreated rat has a censored
time of 49 days, and the other untreated rat has a failure time of 104 days.

• In litter #3, the drug-treated rat has a censored time of 104 days, one untreated rat has a censored time
of 102 days, and the other untreated rat has a censored time of 104 days.

In this example, a litter is a cluster and the rats of the same litter are members of the cluster. Let Trt be a 0-1
variable representing the treatment a rat received, with value 1 for drug treatment and 0 otherwise. Data for
the two litters of rats described earlier contribute six observations to the input data set:

Litter Time Status Trt

1 101 1 1
1 49 0 0
1 104 1 0

3 104 0 1
3 102 0 0
3 104 0 0
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The analysis of Lee, Wei, and Amato (1992) can be performed by PROC PHREG as follows:

proc phreg covs(aggregate);
model Time*Status(0)=Treatment;
id Litter;

run;

Intensity and Rate/Mean Models for Recurrent Events Data

Suppose each subject experiences recurrences of the same phenomenon. Let N.t/ be the number of events a
subject experiences over the interval [0,t] and let Z.:/ be the covariate process of the subject.

The intensity model (Andersen and Gill 1982) is given by

�Z.t/dt D EfdN.t/jFt�g D �0.t/e
ˇ0Z.t/dt

where Ft represents all the information of the processes N and Z up to time t, �0.t/ is an arbitrary baseline
intensity function, and ˇ is the vector of regression coefficients. This model consists of two components:
(1) all the influence of the prior events on future recurrences, if there is any, is mediated through the time-
dependent covariates, and (2) the covariates have multiplicative effects on the instantaneous rate of the
counting process. If the covariates are time invariant, the risk of recurrences is unaffected by the past events.

The proportional rates and means models (Pepe and Cai 1993; Lawless and Nadeau 1995; Lin et al. 2000)
assume that the covariates have multiplicative effects on the mean and rate functions of the counting process.
The rate function is given by

d�Z.t/ D EfdN.t/jZ.t/g D eˇ
0Z.t/d�0.t/

where �0.t/ is an unknown continuous function and ˇ is the vector of regression parameters. If Z is time
invariant, the mean function is given by

�Z.t/ D EfN.t/jZg D eˇ
0Z�0.t/

For both the intensity and the proportional rates/means models, estimates of the regression coefficients are
obtained by solving the partial likelihood score function. However, the covariance matrix estimate for the
intensity model is computed as the inverse of the observed information matrix, while that for the proportional
rates/means model is given by a sandwich estimate. For a given pattern of fixed covariates, the Nelson
estimate for the cumulative intensity function is the same for the cumulative mean function, but their standard
errors are not the same.

To fit the intensity or rate/mean model by using PROC PHREG, the counting process style of input is needed.
A subject with K events contributes K + 1 observations to the input data set. The kth observation of the
subject identifies the time interval from the (k – 1) event or time 0 (if k = 1) to the kth event, k D 1; : : : ; K.
The (K + 1) observation represents the time interval from the Kth event to time of censorship. The input data
set should contain the following variables:

• a TStart variable to represent the (k – 1) recurrence time or the value 0 if k = 1

• a TStop variable to represent the kth recurrence time or the follow-up time if k = K + 1

• a Status variable indicating whether the TStop time is a recurrence time or a censored time; for
example, Status=1 for a recurrence time and Status=0 for censored time

• explanatory variables thought to be related to the recurrence times
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If the rate/mean model is used, the input data should also contain an ID variable for identifying the subjects.

Consider the chronic granulomatous disease (CGD) data listed in Fleming and Harrington (1991). The
disease is a rare disorder characterized by recurrent pyrogenic infections. The study is a placebo-controlled
randomized clinical trial conducted by the International CGD Cooperative Study to assess the effect of
gamma interferon to reduce the rate of infection. For each study patient the times of recurrent infections
along with a number of prognostic factors were collected. For example:

• Patient #17404, age 38, in the gamma interferon group had a follow-up time of 293 without any
infection.

• Patient #204001, age 12, in the placebo group had an infection at 219 days, a recurrent infection at 373
days, and was followed up to 414 days.

Let Trt be the variable representing the treatment status with value 1 for gamma interferon and value 2 for
placebo. Let Age be a covariate representing the age of the CGD patient. Data for the two CGD patients
described earlier are given in the following table.

ID TStart TStop Status Trt Age

174054 0 293 0 1 38

204001 0 219 1 2 12
204001 219 373 1 2 12
204001 373 414 0 2 12

Since Patient #174054 had no infection through the end of the follow-up period (293 days), there is only one
observation representing the period from time 0 to the end of the follow-up. Data for Patient #204001 are
broken into three observations, since there are two infections. The first observation represents the period
from time 0 to the first infection, the second observation represents the period from the first infection to the
second infection, and the third time period represents the period from the second infection to the end of the
follow-up.

The following specification fits the intensity model:

proc phreg;
model (TStart,TStop)*Status(0)=Trt Age;

run;

You can predict the cumulative intensity function for a given pattern of fixed covariates by specifying the
CUMHAZ= option in the BASELINE statement. Suppose you are interested in two fixed patterns, one for
patients of age 30 in the gamma interferon group and the other for patients of age 1 in the placebo group.
You first create the SAS data set as follows:

data Pattern;
Trt=1; Age=30;
output;
Trt=2; Age=1;
output;

run;
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You then include the following BASELINE statement in the PROC PHREG specification. The CUM-
HAZ=_all_ option produces the cumulative hazard function estimates, the standard error estimates, and the
lower and upper pointwise confidence limits.

baseline covariates=Pattern out=out1 cumhaz=_all_;

The following specification of PROC PHREG fits the mean model and predicts the cumulative mean function
for the two patterns of covariates in the Pattern data set:

proc phreg covs(aggregate);
model (Tstart,Tstop)*Status(0)=Trt Age;
baseline covariates=Pattern out=out2 cmf=_all_;
id ID;

run;

The COV(AGGREGATE) option, along with the ID statement, computes the robust sandwich covariance
matrix estimate. The CMF=_ALL_ option adds the cumulative mean function estimates, the standard error
estimates, and the lower and upper pointwise confidence limits to the OUT=Out2 data set.

PWP Models for Recurrent Events Data

Let N.t/ be the number of events a subject experiences by time t. Let Z.t/ be the covariate vectors of the
subject at time t. For a subject who has K events before censorship takes place, let t0 D 0, let tk be the kth
recurrence time, k D 1; : : : ; K, and let tKC1 be the censored time. Prentice, Williams, and Peterson (1981)
consider two time scales, a total time from the beginning of the study and a gap time from immediately
preceding failure. The PWP models are stratified Cox-type models that allow the shape of the hazard function
to depend on the number of preceding events and possibly on other characteristics of {N.t/ and Z.t/}. The
total time and gap time models are given, respectively, as follows:

�.t jFt�/ D �0k.t/eˇ
0
k
Z.t/; tk�1 < t � tk

�.t jFt�/ D �0k.t � tk�1/eˇ
0
k
Z.t/; tk�1 < t � tk

where �0k is an arbitrary baseline intensity functions, and ˇk is a vector of stratum-specific regression
coefficients. Here, a subject moves to the kth stratum immediately after his (k – 1) recurrence time and
remains there until the kth recurrence occurs or until censorship takes place. For instance, a subject who
experiences only one event moves from the first stratum to the second stratum after the event occurs and
remains in the second stratum until the end of the follow-up.

You can use PROC PHREG to carry out the analyses of the PWP models, but you have to prepare the input
data set to provide the correct risk sets. The input data set for analyzing the total time is the same as the AG
model with an additional variable to represent the stratum that the subject is in. A subject with K events
contributes K + 1 observations to the input data set, one for each stratum that the subject moves to. The input
data should contain the following variables:

• a TStart variable to represent the (k – 1) recurrence time or the value 0 if k = 1

• a TStop variable to represent the kth recurrence time or the time of censorship if k D K C 1

• a Status variable with value 1 if the Time value is a recurrence time and value 0 if the Time value is a
censored time
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• an Enum variable representing the index of the stratum that the subject is in. For a subject who has
only one event at t1 and is followed to time tc , Enum=1 for the first observation (where Time=t1 and
Status=1) and Enum=2 for the second observation (where Time=tc and Status=0).

• explanatory variables thought to be related to the recurrence times

To analyze gap times, the input data set should also include a GapTime variable that is equal to (TStop –
TStart).

Consider the data of two subjects in CGD data described in the previous section:

• Patients #174054, age 38, in the gamma interferon group had a follow-up time of 293 without any
infection.

• Patient #204001, age 12, in the placebo group had an infection at 219 days, a recurrent infection at 373
days, and a follow-up time of 414 days.

To illustrate, suppose all subjects have at most two observed events. The data for the two subjects in the input
data set are as follows:

ID TStart TStop Gaptime Status Enum Trt Age

174054 0 293 293 0 1 1 38

204001 0 219 219 1 1 2 12
204001 219 373 154 1 2 2 12
204001 373 414 41 0 3 2 12

Subject #174054 contributes only one observation to the input data, since there is no observed event. Subject
#204001 contributes three observations, since there are two observed events.

To fit the total time model of PWP with stratum-specific slopes, either you can create the stratum-specific
explanatory variables (Trt1, Trt2, and Trt3 for Trt, and Age1, Age2, and Age3 for Age) in a DATA step, or you
can specify them in PROC PHREG by using programming statements as follows:

proc phreg;
model (TStart,TStop)*Status(0)=Trt1 Trt2 Trt3 Age1 Age2 Age3;
strata Enum;
Trt1= Trt * (Enum=1);
Trt2= Trt * (Enum=2);
Trt3= Trt * (Enum=3);
Age1= Age * (Enum=1);
Age2= Age * (Enum=2);
Age3= Age * (Enum=3);

run;

To fit the total time model of PWP with the common regression coefficients, you specify the following:

proc phreg;
model (TStart,TStop)*Status(0)=Trt Age;
strata Enum;

run;

To fit the gap time model of PWP with stratum-specific regression coefficients, you specify the following:
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proc phreg;
model Gaptime*Status(0)=Trt1 Trt2 Trt3 Age1 Age2 Age3;
strata Enum;
Trt1= Trt * (Enum=1);
Trt2= Trt * (Enum=2);
Trt3= Trt * (Enum=3);
Age1= Age * (Enum=1);
Age2= Age * (Enum=2);
Age3= Age * (Enum=3);

run;

To fit the gap time model of PWP with common regression coefficients, you specify the following:

proc phreg;
model Gaptime*Status(0)=Trt Age;
strata Enum;

run;

Model Fit Statistics
Suppose the model contains p regression parameters. Let �j and fj be the event indicator and the frequency,
respectively, of the jth observation. The three criteria displayed by the PHREG procedure are calculated as
follows:

• –2 Log Likelihood:

�2 Log L D �2 log.Ln. Ǒ//

where Ln.:/ is a partial likelihood function for the corresponding TIES= option as described in the
section “Partial Likelihood Function for the Cox Model” on page 5954, and Ǒ is the maximum
likelihood estimate of the regression parameter vector.

• Akaike’s Information Criterion:

AIC D �2 Log LC 2p

• Schwarz Bayesian (Information) Criterion:

SBC D �2 Log LC p log.
X
j

fj�j /

The –2 Log Likelihood statistic has a chi-square distribution under the null hypothesis (that all the explanatory
effects in the model are zero) and the procedure produces a p-value for this statistic. The AIC and SBC
statistics give two different ways of adjusting the –2 Log Likelihood statistic for the number of terms in
the model and the number of observations used. These statistics should be used when comparing different
models for the same data (for example, when you use the METHOD=STEPWISE option in the MODEL
statement); lower values of the statistic indicate a more desirable model.
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Schemper-Henderson Predictive Measure
Measures of predictive accuracy of regression models quantify the extent to which covariates determine an
individual outcome. Schemper and Henderson’s (2000) proposed predictive accuracy measure is defined as
the difference between individual processes and the fitted survivor function.

For the ith individual (1 � i � n), let li ; Xi ; �i ; and Zi be the left-truncation time, observed time, event
indicator (1 for death and 0 for censored), and covariate vector, respectively. If there is no delay entry, then
li D 0. Let t.1/ < � � � < t.m/ be m distinct event times with dj deaths at t.j /. The survival process Yi .t/ for
the ith individual is

Yi .t/ D

8<:
1 li � t < Xi
0 t � Xi and �i D 1

undefined t � Xi and �i D 0

Let OS.t/ be the Kaplan-Meier estimate of the survivor function (assuming no covariates). Let OS.t jZ/ be the
fitted survivor function with covariates Z, and if you specify TIES=EFRON, then OS.t jZ/ is computed by the
Efron method; otherwise, the Breslow estimate is used.

The predictive accuracy is defined as the difference between individual survival processes Yi .t/ and the fitted
survivor functions with ( OS.t jZi )) or without ( OS.t/) covariates between 0 and � , the largest observed time.
For each death time t.j /, define a mean absolute distance between the Yi .t/ and the OS.t/ as

OM.t.j // D
1

nj

nX
iD1

I.li � t.j //

�
I.Xi > t.j / � li /.1 � OS.t.j ///C�iI.Xi � t.j // OS.t.j //

C .1 ��i /I.Xi � t.j //

"
.1 � OS.t.j ///

OS.t.j //

OS.Xi /
C OS.t.j //

 
1 �
OS.t.j //

OS.Xi /

!#�

where nj D
Pn
iD1 I.li � t.j //. Let OM.t.j /jZ/ be defined similarly to OM.t.j //, but with OS.t.j // replaced

by OS.t.j /jZi / and OS.Xi / replaced by OS.Xi jZi /. Let OG.t/ be the Kaplan-Meier estimate of the censoring or
potential follow-up distribution, and let

w D

mX
jD1

dj

OG.t.j //

The overall estimator of the predictive accuracy with ( ODz) and without ( OD) covariates are weighted averages
of OM.t.j /jZ/ and OM.t.j //, respectively, given by

ODz D
1

w

mX
jD1

dj

OG.t.j //
OM.t.j /jZ/

OD D
1

w

mX
jD1

dj

OG.t.j //
OM.t.j //
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The explained variation by the Cox regression is

V D 100

 
1 �

ODz

OD

!
%

Because the predictive accuracy measures ODz and OD are based on differences between individual survival
processes and fitted survivor functions, a smaller value indicates a better prediction. For this reason, ODz and
OD are also referred to as predictive inaccuracy measures.

Residuals
This section describes the computation of residuals (RESMART=, RESDEV=, RESSCH=, and RESSCO=)
in the OUTPUT statement.

First, consider TIES=BRESLOW. Let

S .0/.ˇ; t / D
X
i

Yi .t/eˇ
0Zi .t/

S .1/.ˇ; t / D
X
i

Yi .t/eˇ
0Zi .t/Zi .t/

NZ.ˇ; t / D
S .1/.ˇ; t /

S .0/.ˇ; t /

dƒ0.ˇ; t / D
X
i

dNi .t/

S .0/.ˇ; t /

dMi .ˇ; t / D dNi .t/ � Yi .t/eˇ
0Zi .t/dƒ0.ˇ; t /

The martingale residual at t is defined as

OMi .t/ D

Z t

0

dMi . Ǒ; s/ D Ni .t/ �

Z t

0

Yi .s/e
Ǒ 0Zi .s/dƒ0. Ǒ; s/

Here OMi .t/ estimates the difference over .0; t � between the observed number of events for the ith subject
and a conditional expected number of events. The quantity OMi � OMi .1/ is referred to as the martingale
residual for the ith subject. When the counting process MODEL specification is used, the RESMART=
variable contains the component ( OMi .t2/ � OMi .t1/) instead of the martingale residual at t2. The martingale
residual for a subject can be obtained by summing up these component residuals within the subject. For the
Cox model with no time-dependent explanatory variables, the martingale residual for the ith subject with
observation time ti and event status �i is

OMi D �i � e Ǒ
0Zi

Z ti

0

dƒ0. Ǒ; s/

The deviance residuals Di are a transform of the martingale residuals:

Di D sign. OMi /

s
2

�
� OMi �Ni .1/ log

�
Ni .1/ � OMi

Ni .1/

��
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The square root shrinks large negative martingale residuals, while the logarithmic transformation expands
martingale residuals that are close to unity. As such, the deviance residuals are more symmetrically distributed
around zero than the martingale residuals. For the Cox model, the deviance residual reduces to the form

Di D sign. OMi /

q
2Œ� OMi ��i log.�i � OMi /�

When the counting process MODEL specification is used, values of the RESDEV= variable are set to missing
because the deviance residuals can be calculated only on a per-subject basis.

The Schoenfeld (1982) residual vector is calculated on a per-event-time basis. At the jth event time tij of the
ith subject, the Schoenfeld residual

OUi .tij / D Zi .tij / � NZ. Ǒ; tij /

is the difference between the ith subject covariate vector at tij and the average of the covariate vectors over
the risk set at tij . Under the proportional hazards assumption, the Schoenfeld residuals have the sample path
of a random walk; therefore, they are useful in assessing time trend or lack of proportionality. Harrell (1986)
proposed a z-transform of the Pearson correlation between these residuals and the rank order of the failure
time as a test statistic for nonproportional hazards. Therneau, Grambsch, and Fleming (1990) considered a
Kolmogorov-type test based on the cumulative sum of the residuals.

The score process for the ith subject at time t is

Li .ˇ; t / D
Z t

0

ŒZi .s/ � NZ.ˇ; s/�dMi .ˇ; s/

The vector OLi � Li . Ǒ;1/ is the score residual for the ith subject. When the counting process MODEL
specification is used, the RESSCO= variables contain the components of .Li . Ǒ; t2/ � Li . Ǒ; t1// instead of
the score process at t2. The score residual for a subject can be obtained by summing up these component
residuals within the subject.

The score residuals are a decomposition of the first partial derivative of the log likelihood. They are useful
in assessing the influence of each subject on individual parameter estimates. They also play an important
role in the computation of the robust sandwich variance estimators of Lin and Wei (1989) and Wei, Lin, and
Weissfeld (1989).

For TIES=EFRON, the preceding computation is modified to comply with the Efron partial likelihood. For a
given time t, let �i .t/=1 if the t is an event time of the ith subject and 0 otherwise. Let d.t/ D

P
i �i .t/,

which is the number of subjects that have an event at t. For 1 � k � d.t/, let

S .0/.ˇ; k; t/ D
X
i

Yi .t/

�
1 �

k � 1

d.t/
�i .t/

�
eˇ
0Zi .t/

S .1/.ˇ; k; t/ D
X
i

Yi .t/

�
1 �

k � 1

d.t/
�i .t/

�
eˇ
0Zi .t/Zi .t/

NZ.ˇ; k; t/ D
S .1/.ˇ; k; t/

S .0/.ˇ; k; t/

dƒ0.ˇ; k; t/ D
X
i

dNi .t/

S .0/.ˇ; k; t/

dMi .ˇ; k; t/ D dNi .t/ � Yi .t/

�
1 ��i .t/

k � 1

d.t/

�
eˇ
0Zi .t/dƒ0.ˇ; k; t/
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The martingale residual at t for the ith subject is defined as

OMi .t/ D

Z t

0

1

d.s/

d.s/X
kD1

dMi . Ǒ; k; s/ D Ni .t/�

Z t

0

1

d.s/

d.s/X
kD1

Yi .s/

�
1��i .s/

k � 1

d.s/

�
e Ǒ
0Zi .s/dƒ0. Ǒ; k; s/

Deviance residuals are computed by using the same transform on the corresponding martingale residuals as
in TIES=BRESLOW.

The Schoenfeld residual vector for the ith subject at event time tij is

OUi .tij / D Zi .tij / �
1

d.tij /

d.tij /X
kD1

NZ. Ǒ; k; tij /

The score process for the ith subject at time t is given by

Li .ˇ; t / D
Z t

0

1

d.s/

d.s/X
kD1

�
Zi .s/ � NZ.ˇ; k; s/

�
dMi .ˇ; k; s/

For TIES=DISCRETE or TIES=EXACT, it is difficult to come up with modifications that are consistent with
the corresponding partial likelihood. Residuals for these TIES= methods are computed by using the same
formulas as in TIES=BRESLOW.

Diagnostics Based on Weighted Residuals

ZPH Diagnostics

The vector of weighted Schoenfeld residuals, ri , is computed as

ri D neI�1. Ǒ/ OUi .ti /

where ne is the total number of events and OUi .ti / is the vector of Schoenfeld residuals at event time ti . The
components of ri are output to the WTRESSCH= variables in the OUTPUT statement.

The weighted Schoenfeld residuals are useful in assessing the proportional hazards assumption. The idea
is that most of the common alternatives to the proportional hazards can be cast in terms of a time-varying
coefficient model,

�.t;Z/ D �0.t/ exp.ˇ1.t/Z1 C ˇ2.t/Z2 C � � � /

where �.t;Z/ and �0.t/ are hazard rates. Let Ǒj and rij be the jth component of Ǒ and ri , respectively.
Grambsch and Therneau (1994) suggest using a smoothed plot of ( Ǒj C rij ) versus ti to discover the
functional form of the time-varying coefficient ˇj .t/. A zero slope indicates that the coefficient does not
vary with time.
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DFBETA Diagnostics

The weighted score residuals are used more often than their unscaled counterparts in assessing local influence.
Let Ǒ.i/ be the estimate of ˇ when the ith subject is left out, and let ı Ǒi D Ǒ � Ǒ.i/. The jth component
of ı Ǒi can be used to assess any untoward effect of the ith subject on Ǒj . The exact computation of ı Ǒi
involves refitting the model each time a subject is omitted. Cain and Lange (1984) derived the following
approximation of�i as weighted score residuals:

ı Ǒi D I�1. Ǒ/ OLi

Here, OLi is the vector of the score residuals for the ith subject. Values of ı Ǒi are output to the DFBETA=
variables. Again, when the counting process MODEL specification is used, the DFBETA= variables contain
the component I�1. Ǒ/.Li . Ǒ; t2/ � Li . Ǒ; t1//, where the score process Li .ˇ; t / is defined in the section
“Residuals” on page 5985. The vector ı Ǒi for the ith subject can be obtained by summing these components
within the subject.

Note that these DFBETA statistics are a transform of the score residuals. In computing the robust sandwich
variance estimators of Lin and Wei (1989) and Wei, Lin, and Weissfeld (1989), it is more convenient to use
the DFBETA statistics than the score residuals (see Example 73.10).

Influence of Observations on Overall Fit of the Model
The LD statistic approximates the likelihood displacement, which is the amount by which minus twice the
log likelihood (�2 logL. Ǒ/), under a fitted model, changes when each subject in turn is left out. When the
ith subject is omitted, the likelihood displacement is

2 logL. Ǒ/ � 2 logL. Ǒ.i//

where Ǒ.i/ is the vector of parameter estimates obtained by fitting the model without the ith subject. Instead
of refitting the model without the ith subject, Pettitt and Bin Daud (1989) propose that the likelihood
displacement for the ith subject be approximated by

LDi D OL
0

iI�1. Ǒ/ OLi

where OLi is the score residual vector of the ith subject. This approximation is output to the LD= variable.

The LMAX statistic is another global influence statistic. This statistic is based on the symmetric matrix

B D LI�1. Ǒ/L0

where L is the matrix with rows that are the score residual vectors OLi . The elements of the eigenvector
associated with the largest eigenvalue of the matrix B, standardized to unit length, give a measure of the
sensitivity of the fit of the model to each observation in the data. The influence of the ith subject on the global
fit of the model is proportional to the magnitude of �i , where �i is the ith element of the vector � that satisfies

B� D �max� and �0� D 1

with �max being the largest eigenvalue of B. The sign of �i is irrelevant, and its absolute value is output to
the LMAX= variable.

When the counting process MODEL specification is used, the LD= and LMAX= variables are set to missing,
because these two global influence statistics can be calculated on a per-subject basis only.
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Survivor Function Estimators
Three estimators of the survivor function are available: the Breslow (1972) estimator, which is based on the
empirical cumulative hazard function, the Fleming and Harrington (1984) estimator, which is a tie-breaking
modification of the Breslow estimator, and the product-limit estimator (Kalbfleisch and Prentice 1980, pp.
84–86).

Let ft1 < � � � < tkg be the distinct uncensored times of the survival data.

Breslow Estimator

To select this estimator, specify the METHOD=BRESLOW option in the BASELINE statement or OUTPUT
statement. For the jth subject, let f.Xj ; �j ;Zj .://g represent the failure time, the event indicator, and the
vector of covariate values, respectively. For t � 0, let

Yj .t/ D I.Xj � t /

�j .t/ D

�
1 Xj D t and �j D 1

0 otherwise

d.t/ D
X
j

�j .t/

Note that d.t/ is the number of subjects that have an event at t. Let

S .0/.ˇ; t / D
X
j

Yj .t/eˇ
0Zj .t/

S .1/.ˇ; t / D
X
j

Yj .t/eˇ
0Zj .t/Zj .t/

NZ.ˇ; t / D
S .1/.ˇ; t /

S .0/.ˇ; t /

For a given realization of the explanatory variables �, the cumulative hazard function estimator at � is

OƒB.t; �/ D e Ǒ
0�
X
ti�t

d.ti /

S .0/. Ǒ; ti /

with variance estimated by

O�2. OƒB.t; �// D e2 Ǒ
0�
X
ti�t

d.ti /

ŒS .0/. Ǒ; ti /�2
CH.t; �/0ŒI. Ǒ/��1H.t; �/

where

H.t; �/ D e Ǒ
0�
X
ti�t

d.ti /

S .0/. Ǒ; ti /

�
NZ. Ǒ; ti / � �

�
For the marginal model, the variance estimator computation follows Spiekerman and Lin (1998).
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The Breslow estimate of the survivor function for Z D � is

OSB.t; �/ D exp.� OƒB.t; �//

By the delta method, the standard error of OSB.t; �/ is approximated by

O�. OSB.t; �// D OSB.t; �/ O�. OƒB.t; �//

Fleming-Harrington Estimator

To select this estimator, specify the METHOD=FH option in the BASELINE statement or OUTPUT statement.
With Yj .t/ and d.t/ as defined in the section “Breslow Estimator” on page 5989 and for 1 � k � d.t/, let

S
.0/
E .ˇ; k; t/ D

X
j

Yj .t/

�
1 �

k � 1

d.t/
�j .t/

�
eˇ
0Zj .t/

S
.1/
E .ˇ; k; t/ D

X
j

Yj .t/

�
1 �

k � 1

d.t/
�j .t/

�
eˇ
0Zj .t/Zj .t/

NZEˇ; k; t/ D
S
.1/
E .ˇ; k; t/

S
.0/
E .ˇ; k; t/

For a given realization of the explanatory variables, the Fleming-Harrington adjustment of the cumulative
hazard function is

OƒF .t; �/ D e Ǒ
0�
X
ti�t

� d.ti /X
kD1

1

S
.0/
E . Ǒ; k; ti /

�
with variance estimated by

O�2. OƒF .t; �// D e2 Ǒ
0�
X
ti�t

�d.ti /X
kD1

1

ŒS
.0/
E . Ǒ; k; ti /�2

�
CHE .t; �/

0ŒI. Ǒ/��1HE .t; �/

where

HE .t; �/ D e Ǒ
0�

��X
ti�t

d.ti /X
kD1

1

S
.0/
E . Ǒ; k; ti /

NZE . Ǒ; k; ti /
�
� OƒF .t; 0/�

�

The Fleming-Harrington estimate of the survivor function for Z D � is

OSF .t; �/ D exp.� OƒF .t; �//

By the delta method, the standard error of OSB.t; �/ is approximated by

O�. OSF .t; �// D OSF .t; �/ O�. OƒF .t; �//
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Product-Limit Estimator

To select this estimator, specify the METHOD=PL option in the BASELINE statement or OUTPUT statement.
Let Di denote the set of individuals that fail at ti . Let Ci denote the set of individuals that are censored in the
half-open interval Œti ; tiC1/, where t0 D 0 and tkC1 D 1. Let l denote the censoring times in Œti ; tiC1/,
where l ranges over Ci .

The likelihood function for all individuals is given by

L D
kY
iD0

8<:Y
l2Di

�
ŒS0.ti /�

exp.Z0
l
ˇ/
� ŒS0.ti C 0/�

exp.Z0
l
ˇ/
� Y
l2Ci

ŒS0.l C 0/�
exp.Z0

l
ˇ/

9=;
where D0 is empty. The likelihood L is maximized by taking S0.t/ D S0.ti C 0/ for ti < t � tiC1 and
allowing the probability mass to fall only on the observed event times t1, : : : , tk . By considering a discrete
model with hazard contribution 1 � ˛i at ti , you take S0.ti / D S0.ti�1 C 0/ D

Qi�1
jD0 ˛j , where ˛0 D 1.

Substitution into the likelihood function produces

L D
kY
iD0

8<: Y
j2Di

�
1 � ˛

exp.Z0
j
ˇ/

i

� Y
l2Ri�Di

˛
exp.z0

l
ˇ/

i

9=;
If you replace ˇ with Ǒ estimated from the partial likelihood function and then maximize with respect to
˛1; : : : ; ˛k , the maximum likelihood estimate Ǫ i of ˛i becomes a solution of

X
j2Di

exp.Z0j Ǒ/

1 � Ǫ
exp.Z0

j
Ǒ/

i

D

X
l2Ri

exp.Z0l Ǒ/

When only a single failure occurs at ti , Ǫ i can be found explicitly. Otherwise, an iterative solution is obtained
by the Newton method.

The baseline survival function is estimated by

OS0.t/ D OS0.ti�1 C 0/ D

i�1Y
jD0

Ǫj ; ti�1 < t � ti

For a given realization of the explanatory variables �, the product-limit estimate of the survival function at
Z D � is

OSP .t; �/ D Œ OS0.t/�
exp.ˇ0�/

Approximating the variance of � log.SP .t; �// by the variance estimate of the Breslow estimator of the
cumulative hazard function, the variance of the product-limit estimator at Z D � is given by

O�. OSP .t; �// D OSP .t; �/ O�. OƒB.t; �//
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Direct Adjusted Survival Curves

Consider the Breslow estimator of the survival function. For j D 1; : : : ; n, let �j represent the covariate set
of the jth patient. The direct adjusted survival curve averages the estimated survival curves for each patient:

NS.t/ D
1

n

nX
jD1

OS.t; �j /

The variance of NS.t/ can be estimated by

O�2. NS.t// D
1

n2

�
V .1/t /C V .2/.t/

�
where

V .1/.t/ D

� nX
jD1

e Ǒ
0�j OS.t; �j /

�2X
ti�t

d.ti /

ŒS .0/. Ǒ; ti /�2

V .2/.t/ D

� nX
jD1

OS.t; �j /H.t; �j /

�0�
I. Ǒ/

��1� nX
jD1

OS.t; �j /H.t; �j /

�

Comparison of Direct Adjusted Probabilities of Two Strata
For a stratified Cox model, let k index the strata. For the jth patient, let OSk.t; �j / and Hk.t; �j / be the
estimated survival function and the H vector for the kth stratum. The direct adjusted survival curve for the
kth stratum is

NSk.t/ D
1

n

nX
jD1

OSk.t; �j /

The variance of NS1.t/ � NS2.t/ can be estimated by

O�2. NS1.t/ � NS2.t// D
1

n2

�
U
.1/
1 .t/C U

.1/
2 C U

.2/
12 .t/

�
where

U
.1/

k
.t/ D

0@ nX
jD1

eˇ
0�j OSk.t; �j /

1A2X
ti�t

d.ti /

ŒS .0/. Ǒ; ti /�2
k D 1; 2

U
.2/
12 .t/ D

8<:
nX
jD1

h
OS1.t; �j /H1.t; �j / � OS2.t; �j /H2.t; �j /

i9=;
0

I�1. Ǒ/

8<:
nX
jD1

h
OS1.t; �j /H2.t; �j / � OS1.t; �j /H.2t; �j /

i9=;
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Comparison of Direct Adjusted Survival Probabilities of Two Treatments
For j D 1; : : : ; n, let �jk represent the covariate set of the jth patient with the kth treatment, k D 1; 2. The
direct adjusted survival curve for the kth treatment is

NSk.t/ D
1

n

nX
iDj

OS.t; �jk/

The variance of NS1.t/ � NS2.t/ can be estimated by

O�2
�
NS1.t/ � NS2.t/

�
D

1

n2

�
V
.1/
12 .t/C V

.2/
12 .t/

�
where

V
.1/
12 .t/ D

8<:
nX
jD1

h
eˇ
0�1j OS.t; �1j / � eˇ

0�2j OS.t; �2j /
i9=;

2X
ti�t

d.ti /

ŒS .0/. Ǒ; ti /�2

V
.2/
12 .t/ D

8<:
nX
jD1

h
OS.t; �1j /H.t; �1j / � OS.t; �2j /H.t; �2j /

i9=;
0

I�1. Ǒ/

8<:
nX
jD1

h
OS.t; �1j /H.t; �1j / � OS.t; �2j /H.t; �2j /

i9=;
Confidence Intervals for the Survivor Function

When the computation of confidence limits for the survivor function S.t/ is based on the asymptotic normality
of the survival estimator OS.t/—which can be the Breslow estimator OSB.t/, the Fleming-Harrington estimator
OSF .t/, or the product-limit estimator OSP .t/—the approximate confidence interval might include impossible

values outside the range [0,1] at extreme values of t. This problem can be avoided by applying the asymptotic
normality to a transformation of S.t/ for which the range is unrestricted. In addition, certain transformed
confidence intervals for S.t/ perform better than the usual linear confidence intervals (Borgan and Liestøl
1990). The CLTYPE= option in the BASELINE statement enables you to choose one of the following
transformations: the log-log function, the log function, and the linear function.

Let g be the transformation that is being applied to the survivor function S.t/. By the delta method, the
standard error of g. OS.t// is estimated by

�.t/ D O�
h
g. OS.t//

i
D g0

�
OS.t/

�
O�Œ OS.t/�

where g0 is the first derivative of the function g. The 100(1–˛)% confidence interval for S.t/ is given by

g�1
n
gŒ OS.t/�˙ z˛

2
g0Œ OS.t/� O�Œ OS.t/�

o
where g�1 is the inverse function of g. The choices for the transformation g are as follows:
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• CLTYPE=NORMAL specifies linear transformation, which is the same as having no transformation in
which g is the identity. The 100(1–˛)% confidence interval for S.t/ is given by

OS.t/ � z˛
2
O�
h
OS.t/

i
� S.t/ � OS.t/C z˛

2
O�
h
OS.t/

i
• CLTYPE=LOG specifies log transformation. The estimated variance of log. OS.t// is O�2.t/ D O�2. OS.t//

OS2.t/
:

The 100(1–˛)% confidence interval for S.t/ is given by

OS.t/ exp
�
�z˛

2
O�.t/

�
� S.t/ � OS.t/ exp

�
z˛
2
O�.t/

�
• CLTYPE=LOGLOG specifies log-log transformation. The estimated variance of log.� log. OS.t// is

O�2.t/ D O�2Œ OS.t/�

Œ OS.t/ log. OS.t//�2
: The 100(1–˛)% confidence interval for S.t/ is given by

h
OS.t/

iexp�z˛
2
O�.t/

�
� S.t/ �

h
OS.t/

iexp��z˛
2
O�.t/

�

Caution about Using Survival Data with Left Truncation
The product-limit estimator is used in a number of instances in the PHREG procedure, such as to transform
the time values in the ZPH option in the PROC PHREG statement. The product-limit estimator is also used to
construct the weights in the inverse probability of censoring weighting (IPCW) techniques, which are adapted
to fit the proportional subdistribution model of Fine and Gray (1999) for competing-risks data and to assess
the predictive accuracy of a model (Schemper and Henderson 2000). Although the product-limit estimator is
the gold standard for estimating the survivor function of right-censored data, it might not be meaningful for
right-censored data with left-truncation, as illustrated by Example 4.3 in Klein and Moeschberger (2003).
In their example, 94 men and 365 women passed through the Channing House Retirement Center between
January 1964 and July 1975. The outcome is the time to death, using the natural metric of age (in months).

The following statements create the data set Channing, which contains the following variables:

• Gender: female or male

• Age_entry: age at entry, in months

• Age_exit: age at exit (death or last follow-up), in months

• Death: death indicator, with the value 1 for death and 0 for censoring

data Channing;
input Gender$ Age_entry Age_exit Death @@;
datalines;

Female 1042 1172 1 Female 921 1040 1 Female 885 1003 1
Female 901 1018 1 Female 808 932 1 Female 915 1004 1
Female 901 1023 1 Female 852 908 1 Female 828 868 1
Female 968 990 1 Female 936 1033 1 Female 977 1056 1
Female 929 999 1 Female 936 1064 1 Female 1016 1122 1
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Female 910 1020 1 Female 1140 1200 1 Female 1015 1056 1
Female 850 940 1 Female 895 996 1 Female 854 969 1

... more lines ...

Male 751 777 1 Male 906 966 1 Male 835 907 1
Male 946 1031 1 Male 759 781 1 Male 909 914 0
Male 962 998 1 Male 984 1022 1 Male 891 932 1
Male 835 898 1 Male 1039 1060 1 Male 1010 1044 1

;

The following statements use the PHREG procedure to save the product-limit estimate of the survivor function
for each gender in the data set Outs. For each gender, the number of subjects at risk and the number of deaths
at each death time are captured in the data set Atrisk. By merging these two data sets, Outs and Atrisk, you can
conveniently display side by side the number of subjects at risk, the number of deaths, and the product-limit
survival estimate at each death time.

ods graphics on;
proc phreg data=Channing plots(overlay=row)=survival atrisk;

model Age_exit*Death(0)= /entrytime=Age_entry;
strata Gender;
baseline out=Outs survival=Probability / method=pl;
ods output RiskSetInfo=Atrisk;

run;

data Outs;
set Outs;
if Gender="Female" then StratumNumber=1;
else StratumNumber=2;

run;
data Outs;

merge atrisk outs;
by StratumNumber Age_exit;

run;

proc print data=Outs;
id Gender;
var Age_exit Atrisk Event Probability;

run;

Figure 73.18 displays two product-limit survival curves, one for women and one for men. The survival
probabilities are tabulated in Figure 73.19 for women and in Figure 73.20 for men. Although the survival
curve for women does not appear unusual, the survival curve for men looks odd, because the curve drops to 0
at 781 months even though the majority of men survive beyond 781 months. At 781 months, the risk set
consists of a single time to death, rendering the product-limit estimate as 0 at 781 months and thereafter. The
product-limit curve for men for these data is meaningless. Klein and Moeschberger (2003) suggest using
only those observations in which the value of Age_exit exceeds 781 months.
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Figure 73.18 Product-Limit Estimates for Women and Men

Figure 73.19 Product-Limit Survival Probabilities for Women

Gender Age_exit Atrisk Event Probability

Female 0 . . 1.00000

Female 804 21 1 0.95238

Female 822 36 1 0.92593

Female 830 46 1 0.90580

Female 840 58 1 0.89018

Female 845 66 1 0.87669

Female 861 89 1 0.86684

. . . .

. . . .

. . . .

Female 1152 8 1 0.11493

Female 1172 7 1 0.09852

Female 1192 4 1 0.07389

Female 1200 3 2 0.02463
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Figure 73.20 Product-Limit Survival Probabilities for Men

Gender Age_exit Atrisk Event Probability

Male 0 . . 1.0

Male 777 2 1 0.5

Male 781 1 1 0.0

Male 869 24 1 0.0

Male 872 25 1 0.0

Male 876 25 1 0.0

Male 893 33 1 0.0

. . . .

. . . .

. . . .

Male 1085 10 1 0.0

Male 1094 8 2 0.0

Male 1128 3 1 0.0

Male 1139 2 1 0.0

PROC PHREG currently makes no attempt to circumvent the problem of the invalid product-limit estimator
for left-truncated data.

Effect Selection Methods
Five effect selection methods are available. The simplest method (and the default) is SELECTION=NONE,
for which PROC PHREG fits the complete model as specified in the MODEL statement. The other four meth-
ods are FORWARD for forward selection, BACKWARD for backward elimination, STEPWISE for stepwise
selection, and SCORE for best subsets selection. These methods are specified with the SELECTION= option
in the MODEL statement and are based on the score test or Wald test as described in the section “Type 3
Tests and Joint Tests” on page 5970.

When SELECTION=FORWARD, PROC PHREG first estimates parameters for effects that are forced into the
model. These are the first n effects in the MODEL statement, where n is the number specified by the START=
or INCLUDE= option in the MODEL statement (n is zero by default). Next, the procedure computes the
score statistic for each effect that is not in the model. Each score statistic is the chi-square statistic of the
score test for testing the null hypothesis that the corresponding effect that is not in the model is null. If the
largest of these statistics is significant at the SLSENTRY= level, the effect with the largest score statistic is
added to the model. After an effect is entered in the model, it is never removed from the model. The process
is repeated until none of the remaining effects meet the specified level for entry or until the STOP= value is
reached.

When SELECTION=BACKWARD, parameters for the complete model as specified in the MODEL statement
are estimated unless the START= option is specified. In that case, only the parameters for the first n effects
in the MODEL statement are estimated, where n is the number specified by the START= option. Next, the
procedure computes the Wald statistic of each effect in the model. Each Wald’s statistic is the chi-square
statistic of the Wald test for testing the null hypothesis that the corresponding effect is null. If the smallest of
these statistics is not significant at the SLSTAY= level, the effect with the smallest Wald statistic is removed.
After an effect is removed from the model, it remains excluded. The process is repeated until no other
variable in the model meets the specified level for removal or until the STOP= value is reached.
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The SELECTION=STEPWISE option is similar to the SELECTION=FORWARD option except that effects
already in the model do not necessarily remain. Effects are entered into and removed from the model in
such a way that each forward selection step can be followed by one or more backward elimination steps.
The stepwise selection process terminates if no further effect can be added to the model or if the effect just
entered into the model is the only effect that is removed in the subsequent backward elimination.

For SELECTION=SCORE, PROC PHREG uses the branch-and-bound algorithm of Furnival and Wilson
(1974) to find a specified number of models with the highest score (chi-square) statistic for all possible
model sizes, from 1, 2, or 3 variables, and so on, up to the single model that contains all of the explanatory
variables. The number of models displayed for each model size is controlled by the BEST= option. You can
use the START= option to impose a minimum model size, and you can use the STOP= option to impose a
maximum model size. For instance, with BEST=3, START=2, and STOP=5, the SCORE selection method
displays the best three models (that is, the three models with the highest score chi-squares) that contain 2, 3,
4, and 5 variables. One of the limitations of the branch-and-bound algorithm is that it works only when each
explanatory effect contains exactly one parameter—the SELECTION=SCORE option is not allowed when
an explanatory effect in the MODEL statement contains a CLASS variable.

The SEQUENTIAL and STOPRES options can alter the default criteria for adding variables to or removing
variables from the model when they are used with the FORWARD, BACKWARD, or STEPWISE selection
method.

Assessment of the Proportional Hazards Model
The proportional hazards model specifies that the hazard function for the failure time T associated with a
p � 1 column covariate vector Z takes the form

�.t IZ/ D �0.t/eˇ
0Z

where �0.:/ is an unspecified baseline hazard function and ˇ is a p � 1 column vector of regression
parameters. Lin, Wei, and Ying (1993) present graphical and numerical methods for model assessment
based on the cumulative sums of martingale residuals and their transforms over certain coordinates (such
as covariate values or follow-up times). The distributions of these stochastic processes under the assumed
model can be approximated by the distributions of certain zero-mean Gaussian processes whose realizations
can be generated by simulation. Each observed residual pattern can then be compared, both graphically
and numerically, with a number of realizations from the null distribution. Such comparisons enable you to
assess objectively whether the observed residual pattern reflects anything beyond random fluctuation. These
procedures are useful in determining appropriate functional forms of covariates and assessing the proportional
hazards assumption. You use the ASSESS statement to carry out these model-checking procedures.

For a sample of n subjects, let .Xi ; �i ;Zi / be the data of the ith subject; that is, Xi represents the observed
failure time, �i has a value of 1 if Xi is an uncensored time and 0 otherwise, and Zi D .Z1i ; : : : ; Zpi /0 is a
p-vector of covariates. Let Ni .t/ D �iI.Xi � t / and Yi .t/ D I.Xi � t /. Let

S .0/.ˇ; t / D

nX
iD1

Yi .t/eˇ
0Zi and Z.ˇ; t / D

Pn
iD1 Yi .t/e

ˇ0ZiZi
S .0/.ˇ; t /

Let Ǒ be the maximum partial likelihood estimate of ˇ, and let I. Ǒ/ be the observed information matrix.
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The martingale residuals are defined as

OMi .t/ D Ni .t/ �

Z t

0

Yi .u/e
Ǒ 0Zid Oƒ0.u/; i D 1; : : : ; n

where Oƒ0.t/ D
R t
0

Pn
iD1 dNi .u/

S.0/. Ǒ;u/
.

The empirical score process U. Ǒ; t / D .U1. Ǒ; t /; : : : ; Up. Ǒ; t //0 is a transform of the martingale residuals:

U. Ǒ; t / D
nX
iD1

Zi OMi .t/

Checking the Functional Form of a Covariate

To check the functional form of the jth covariate, consider the partial-sum process of OMi D OMi .1/:

Wj .z/ D

nX
iD1

I.Zj i � z/ OMi

Under that null hypothesis that the model holds, Wj .z/ can be approximated by the zero-mean Gaussian
process

OWj .z/ D

nX
lD1

�l

�
I.Zjl � z/ �

Pn
iD1 Yi .Xl/e

ˇ0Zi I.Zij � z/
S .0/. Ǒ; Xl/

�
Gl �

nX
kD1

Z 1
0

Yk.s/e
Ǒ 0ZkI.Zjk � z/ŒZk � NZ. Ǒ; s/�0d Oƒ0.s/

�I�1. Ǒ/
nX
lD1

�l ŒZl � NZ. Ǒ; Xl/�Gl

where .G1; : : : ; Gn/ are independent standard normal variables that are independent of .Xi ; �i ;Zi /, i D
1; : : : ; n.

You can assess the functional form of the jth covariate by plotting a small number of realizations (the default
is 20) of OWj .z/ on the same graph as the observedWj .z/ and visually comparing them to see how typical the
observed pattern of Wj .z/ is of the null distribution samples. You can supplement the graphical inspection
method with a Kolmogorov-type supremum test. Let sj be the observed value of Sj D supz jWj .z/j and
let OSj D supz j OWj .z/j. The p-value Pr.Sj � sj / is approximated by Pr. OSj � sj /, which in turn is
approximated by generating a large number of realizations (1000 is the default) of OWj .:/.

Checking the Proportional Hazards Assumption

Consider the standardized empirical score process for the jth component of Z

U �j .t/ D ŒI
�1. Ǒ/jj �

1
2Uj . Ǒ; t /;
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Under the null hypothesis that the model holds, U �j .t/ can be approximated by

OU �j .t/ D ŒI�1. Ǒ/jj �
1
2

� nX
lD1

I.Xl � t /�l ŒZjl � NZj . Ǒ; t /�Gl �

nX
kD1

Z t

0

Yk.s/e
Ǒ 0ZkZjkŒZk � NZ. Ǒ; s/�0d Oƒ0.s/

�I�1. Ǒ/
nX
lD1

�l ŒZl � NZ. Ǒ; Xl/�Gl
�

where NZj . Ǒ; t / is the jth component of NZ. Ǒ; t /, and .G1; : : : ; Gn/ are independent standard normal variables
that are independent of .Xi ; �i ;Zi , .i D 1; : : : ; n/.

You can assess the proportional hazards assumption for the jth covariate by plotting a few realizations of
OU �j .t/ on the same graph as the observed U �j .t/ and visually comparing them to see how typical the observed

pattern of U �j .t/ is of the null distribution samples. Again you can supplement the graphical inspection
method with a Kolmogorov-type supremum test. Let s�j be the observed value of S�j D supt jU �j .t/j
and let OS�j D supt j OU �j .t/j. The p-value PrŒS�j � s

�
j � is approximated by PrŒ OS�j � s

�
j �, which in turn is

approximated by generating a large number of realizations (1000 is the default) of OU �j .:/.

The Penalized Partial Likelihood Approach for Fitting Frailty Models
Let  D .1; : : : ; s/0 be the vector of random components for the s clusters.

Gamma Frailty Model

Assume each ei has an independent and identically distributed gamma distribution with mean 1 and a
common unknown variance � ; that is, ei is iid G

�
1
�
; 1
�

�
. The penalty function is

�
1

�

sX
iD1

�
i � ei

�
plus a function of � . The penalized partial log likelihood is given by

lp.ˇ;; �/ D lpartial.ˇ;/C
1

�

sX
iD1

�
i � ei

�
where lpartial.ˇ;/ is the log of any of the partial likelihoods in the sections “Partial Likelihood Function for
the Cox Model” on page 5954 and “The Multiplicative Hazards Model” on page 5957.

The profile marginal log-likelihood of this shared frailty model (Therneau and Grambsch 2000, pp. 257–258)
is

lm.�/ D lp. Ǒ.�/; O.�/; �/C

sX
iD1

�
��1 � .��1 C di / log

�
��1 C di

�
C ��1 log.��1/C log

�
�.��1 C di /

�.��1/

��
where di is the number of events in the ith cluster.

The maximization of this approximate likelihood is a doubly iterative process that alternates between the
following two steps:
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• For a provisional value of � , the best linear unbiased predictors (BLUP) of ˇ and  are computed
by maximizing the penalized partial log-likelihood lp.ˇ;; �/. The marginal likelihood is evaluated.
This constitutes the inner loop.

• A new value of � is obtained by the golden section search based on the marginal likelihood of all the
previous iterations. This constitutes the outer loop.

The outer loop is iterated until the bracketing interval of � is small.

Lognormal Frailty Model

With each i having a zero-mean normal distribution and a common variance � , the penalty function is

1

2�
 0

plus a function of � . The penalized partial log likelihood is given by

lp.ˇ;; �/ D lpartial.ˇ;/ �
1

2�
 0

where lpartial.ˇ;/ is the log of any of the partial likelihoods in the sections “Partial Likelihood Function for
the Cox Model” on page 5954 and “The Multiplicative Hazards Model” on page 5957.

For a given � , let H be the negative Hessian of the penalized partial log likelihood lp.ˇ;; �/; that is,

H D H.ˇ;/ D
�

H11 H12
H21 H22

�

where H11 D �
@2lp.ˇ;;�/

@ˇ2
;H12 D H021 D �

@2lp.ˇ;;�/

@ˇ@
, and H22 D �

@2lp.ˇ;;�/

@2
.

The marginal log likelihood of this shared frailty model is

lm.ˇ; �/ D �
1

2
log.�s/C log

� Z
elp.ˇ;;�/d

�
Using a Laplace approximation to the integral as in Breslow and Clayton (1993), an approximate marginal
log likelihood (Ripatti and Palmgren 2000; Therneau and Grambsch 2000) is given by

lm.ˇ; �/ � �
1

2
log.�s/ �

1

2
log.jH22.ˇ; Q; �/j/ � lp.ˇ; Q; �/

The maximization of this approximate likelihood is a doubly iterative process that alternates between the
following two steps:

• For a provisional value of � , PROC PHREG computes the best linear unbiased predictors (BLUP) of ˇ
and  by maximizing the penalized partial log likelihood lp.ˇ;; �/. This constitutes the inner loop.

• For ˇ and  fixed at the BLUP values, PROC PHREG estimates � by maximizing the approximate
marginal likelihood lm.ˇ; �/. This constitutes the outer loop.
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The outer loop is iterated until the difference between two successive estimates of � is small.

The ML estimate of � is

O� D
O 0 O C trace.H�122 /

s

The variance for O� is

var. O�/ D 2 O�
�
s C

1

O�2
trace.H�122H�122 / �

2

O�
trace.H�122 /

��1

The REML estimation of � is obtained by replacing .H22/�1 by .H�1/22.

The inverse of the final H matrix is used as the variance estimate of . Ǒ; O/0.

The final BLUP estimates of the random components 1; : : : ; s can be displayed by using the SOLUTION
option in the RANDOM statement. Also displayed are estimates of the lognormal frailties, which are the
exponentiated estimates of the BLUP estimates.

Wald-Type Tests for Penalized Models

Let I be the negative Hessian of the partial log likelihood lpartial.ˇ;/:

I D
�

I11 I12
I21 I22

�

where I11 D �
@2lpartial.ˇ;/

@ˇ2
; I12 D I021 D �

@2lpartial.ˇ;/

@ˇ@
, and I22 D �

@2lpartial.ˇ;/

@2
. Write �0 D .ˇ0; 0/0.

The Wald-type chi-square statistic for testing H0 W C� D 0 is

.C O�/0.CH�1C0/�1.C O�/

Let H be the negative Hessian of the penalized partial log likelihood lp.ˇ;; �/ at the ML estimate � ; that is,
H D @2

@ˇ@
lp.ˇ;; O�/. Let V D H�1IH�1. Gray (1992) recommends the following generalized degrees of

freedom for the Wald test:

DF D traceŒ.CH�1C0/�1CVC0/�

See Therneau and Grambsch (2000, Section 5.8) for a discussion of this Wald-type test.

PROC PHREG uses the label "Adjusted DF" to represent this generalized degrees of freedom in the output.

Specifics for Bayesian Analysis
To request a Bayesian analysis, you specify the new BAYES statement in addition to the PROC PHREG
statement and the MODEL statement. You include a CLASS statement if you have effects that involve
categorical variables. The FREQ or WEIGHT statement can be included if you have a frequency or weight
variable, respectively, in the input data. The STRATA statement can be used to carry out a stratified analysis
for the Cox model, but it is not allowed in the piecewise constant baseline hazard model. Programming
statements can be used to create time-dependent covariates for the Cox model, but they are not allowed in
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the piecewise constant baseline hazard model. However, you can use the counting process style of input
to accommodate time-dependent covariates that are not continuously changing with time for the piecewise
constant baseline hazard model and the Cox model as well. The HAZARDRATIO statement enables you to
request a hazard ratio analysis based on the posterior samples. The ASSESS, CONTRAST, ID, OUTPUT,
and TEST statements, if specified, are ignored. Also ignored are the COVM and COVS options in the
PROC PHREG statement and the following options in the MODEL statement: BEST=, CORRB, COVB,
DETAILS, HIERARCHY=, INCLUDE=, MAXSTEP=, NOFIT, PLCONV=, SELECTION=, SEQUENTIAL,
SLENTRY=, and SLSTAY=.

Piecewise Constant Baseline Hazard Model

Single Failure Time Variable
Let f.ti ; xi ; ıi /; i D 1; 2; : : : ; ng be the observed data. Let a0 D 0 < a1 < : : : < aJ�1 < aJ D 1 be a
partition of the time axis.

Hazards in Original Scale The hazard function for subject i is

h.t jxi I�/ D h0.t/ exp.ˇ0xi /

where

h0.t/ D �j if aj�1 � t < aj ; j D 1; : : : ; J

The baseline cumulative hazard function is

H0.t/ D

JX
jD1

�j�j .t/

where

�j .t/ D

8<:
0 t < aj�1
t � aj�1 aj�1 � t < aj
aj � aj�1 t � aj

The log likelihood is given by

l.�;ˇ/ D

nX
iD1

ıi

� JX
jD1

I.aj�1 � ti < aj / log �j C ˇ0xi
�
�

nX
iD1

� JX
jD1

�j .ti /�j

�
exp.ˇ0xi /

D

JX
jD1

dj log �j C
nX
iD1

ıiˇ
0xi �

JX
jD1

�j

� nX
iD1

�j .ti / exp.ˇ0xi /
�

where dj D
Pn
iD1 ıiI.aj�1 � ti < aj /.

Note that for 1 � j � J , the full conditional for �j is log-concave only when dj > 0, but the full
conditionals for the ˇ’s are always log-concave.
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For a given ˇ, @l
@�
D 0 gives

Q�j .ˇ/ D
djPn

iD1�j .ti / exp.ˇ0xi /
; j D 1; : : : ; J

Substituting these values into l.�;ˇ/ gives the profile log likelihood for ˇ

lp.ˇ/ D

nX
iD1

ıiˇ
0xi �

JX
jD1

dj log
� nX
lD1

�j .tl/ exp.ˇ0xl/
�
C c

where c D
P
j .dj log dj � dj /. Since the constant c does not depend on ˇ, it can be discarded from lp.ˇ/

in the optimization.

The MLE Ǒ of ˇ is obtained by maximizing

lp.ˇ/ D

nX
iD1

ıiˇ
0xi �

JX
jD1

dj log
� nX
lD1

�j .tl/ exp.ˇ0xl/
�

with respect to ˇ, and the MLE O� of � is given by

O� D Q�. Ǒ/

For j D 1; : : : ; J , let

S.r/j .ˇ/ D

nX
lD1

�j .tl/eˇ
0xlx˝r

l
; r D 0; 1; 2

Ej .ˇ/ D
S.1/j .ˇ/

S
.0/
j .ˇ/

The partial derivatives of lp.ˇ/ are

@lp.ˇ/

@ˇ
D

nX
iD1

ıixi �
JX
jD1

djEj .ˇ/

�
@2lp.ˇ/

@ˇ2
D

JX
jD1

dj

� S.2/j .ˇ/

S
.0/
j .ˇ/

�

�
Ej .ˇ/

��
Ej .ˇ/

�0�

The asymptotic covariance matrix for . O�; Ǒ/ is obtained as the inverse of the information matrix given by

�
@2l. O�; Ǒ/

@�2
D D

�
d1

O�21

; : : : ;
dJ

O�2J

�

�
@2l. O�; Ǒ/

@ˇ2
D

JX
jD1

O�jS.2/j . Ǒ/

�
@2l. O�; Ǒ/

@�@ˇ
D .S.1/1 . Ǒ/; : : : ;S.1/J . Ǒ//

See Example 6.5.1 in Lawless (2003) for details.
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Hazards in Log Scale By letting

˛j D log.�j /; j D 1; : : : ; J

you can build a prior correlation among the �j ’s by using a correlated prior ˛ � N.˛0; †˛/, where
˛ D .˛1; : : : ; ˛J /

0.

The log likelihood is given by

l.˛;ˇ/ D

JX
jD1

dj˛j C

nX
iD1

ıiˇ
0xi �

JX
jD1

e˛jS .0/j .ˇ/

Then the MLE of �j is given by

e Ǫj D O�j D
dj

S0j .
Ǒ/

Note that the full conditionals for ˛’s and ˇ’s are always log-concave.

The asymptotic covariance matrix for . Ǫ ; Ǒ/ is obtained as the inverse of the information matrix formed by

�
@2l. Ǫ ; Ǒ/

@˛2
D D

�
e ǪjS0j . Ǒ/; : : : ; e

ǪJS0J .
Ǒ//

�
�
@2l. Ǫ ; Ǒ/

@ˇ2
D

JX
jD1

e Ǫj S.2/j . Ǒ/

�
@2l. Ǫ ; Ǒ/

@˛@ˇ
D .e Ǫj S.1/1 . Ǒ/; : : : ; e Ǫj S.1/J . Ǒ//

Counting Process Style of Input
Let f..si ; ti �; xi ; ıi /; i D 1; 2; : : : ; ng be the observed data. Let a0 D 0 < a1 < : : : < ak be a partition of
the time axis, where ak > ti for all i D 1; 2; : : : ; n.

Replacing �j .ti / with

�j ..si ; ti �/ D

8<:
0 ti < aj�1 _ si > aj
ti �max.si ; aj�1/ aj�1 � ti < aj
aj �max.si ; aj�1/ ti � aj

the formulation for the single failure time variable applies.

Priors for Model Parameters

For a Cox model, the model parameters are the regression coefficients. For a piecewise exponential model,
the model parameters consist of the regression coefficients and the hazards or log-hazards. The priors for the
hazards and the priors for the regression coefficients are assumed to be independent, while you can have a
joint multivariate normal prior for the log-hazards and the regression coefficients.
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Hazard Parameters
Let �1; : : : ; �J be the constant baseline hazards.

Improper Prior The joint prior density is given by

p.�1; : : : ; �J / D

JY
jD1

1

�j
:8�j > 0

This prior is improper (nonintegrable), but the posterior distribution is proper as long as there is at least one
event time in each of the constant hazard intervals.

Uniform Prior The joint prior density is given by

p.�1; : : : ; �J / / 1;8�j > 0

This prior is improper (nonintegrable), but the posteriors are proper as long as there is at least one event time
in each of the constant hazard intervals.

Gamma Prior The gamma distribution G.a; b/ has a PDF

fa;b.t/ D
b.bt/a�1e�bt

�.a/
; t > 0

where a is the shape parameter and b�1 is the scale parameter. The mean is a
b

and the variance is a
b2

.

Independent Gamma Prior Suppose for j D 1; : : : ; J , �j has an independent G.aj ; bj / prior. The joint
prior density is given by

p.�1; : : : ; �J / /

JY
jD1

�
�
aj�1

j e�bj�j
�
;8�j > 0

AR1 Prior �1; : : : ; �J are correlated as follows:

�1 � G.a1; b1/

�2 � G

�
a2;

b2

�1

�
: : : : : :

�J � G

�
aJ ;

bJ

�J�1

�
The joint prior density is given by

p.�1; : : : ; �J / / �
a1�1
1 e�b1�1

JY
jD2

�
bj

�j�1

�aj
�
aj�1

j e
�

bj
�j�1

�j
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Log-Hazard Parameters
Write ˛ D .˛1; : : : ; ˛J /0 � .log �1; : : : ; log �J /0.

Uniform Prior The joint prior density is given by

p.˛1 : : : ˛J / / 1;8 �1 < ˛i <1

Note that the uniform prior for the log-hazards is the same as the improper prior for the hazards.

Normal Prior Assume ˛ has a multivariate normal prior with mean vector ˛0 and covariance matrix ‰0.
The joint prior density is given by

p.˛/ / e�
1
2
.˛�˛0/

0‰�10 .˛�˛0/

Regression Coefficients
Let ˇ D .ˇ1; : : : ; ˇk/0 be the vector of regression coefficients.

Uniform Prior The joint prior density is given by

p.ˇ1; : : : ; ˇk/ / 1;8 �1 < ˇi <1

This prior is improper, but the posterior distributions for ˇ are proper.

Normal Prior Assume ˇ has a multivariate normal prior with mean vector ˇ0 and covariance matrix †0.
The joint prior density is given by

p.ˇ/ / e�
1
2
.ˇ�ˇ0/

0†�10 .ˇ�ˇ0/

Joint Multivariate Normal Prior for Log-Hazards and Regression Coefficients Assume .˛0;ˇ0/0 has
a multivariate normal prior with mean vector .˛00;ˇ

0
0/
0 and covariance matrix ˆ0. The joint prior density is

given by

p.˛;ˇ/ / e�
1
2
Œ.˛�˛0/

0;.ˇ�ˇ0/
0�ˆ�10 Œ.˛�˛0/

0;.ˇ�ˇ0/
0�0

Zellner’s g-Prior Assume ˇ has a multivariate normal prior with mean vector 0 and covariance matrix
.gX0X/�1, where X is the design matrix and g is either a constant or it follows a gamma prior with density
f .�/ D b.b�/a�1e�b�

�.a/
where a and b are the SHAPE= and ISCALE= parameters. Let k be the rank of X. The

joint prior density with g being a constant c is given by

p.ˇ/ / c
k
2 e�

1
2
ˇ0.cX0X/�1ˇ

The joint prior density with g having a gamma prior is given by

p.ˇ; �/ / �
k
2 e�

1
2
ˇ0.�X0X/�1ˇ b.b�/

a�1e�b�

�.a/
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Dispersion Parameter for Frailty Model
Improper Prior The density is

p.�/ D
1

�

Inverse Gamma Prior The inverse gamma distribution IG.a; b/ has a density

p.� ja; b/ D
ba��.aC1/e�

b
�

�.a/

where a and b are the SHAPE= and SCALE= parameters.

Gamma Prior The gamma distribution G.a; b/ has a density

p.� ja; b/ D
ba�a�1e�b�

�.a/

where a and b are the SHAPE= and ISCALE= parameters.

Posterior Distribution

Denote the observed data by D.

Cox Model

�.ˇjD/ / L.Djˇ/„ ƒ‚ …
partial likelihood

prior‚…„ƒ
p.ˇ/

Frailty Model
Based on the framework of Sargent (1998),

�.ˇ;; � jD/ / L.Djˇ;/„ ƒ‚ …
partial likelihood

random effects‚…„ƒ
g.j�/ p.ˇ/p.�/„ ƒ‚ …

priors

where the joint density of the random effects  D .1; : : : ; s/0 is given by

g.j�/ /

8<:
Q
i exp

�i
�

�
exp

�
� exp

�i
�

��
gamma frailtyQ

i exp
�
�
2
i

2�

�
lognormal frailty
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Piecewise Exponential Model
Hazard Parameters

�.�;ˇjD/ / LH .Dj�;ˇ/p.�/p.ˇ/

where LH .Dj�;ˇ/ is the likelihood function with hazards � and regression coefficients ˇ as parameters.

Log-Hazard Parameters

�.˛;ˇjD/ /

�
LLH.Dj˛;ˇ/p.˛;ˇ/ if .˛0;ˇ0/0 � MVN
LLH.Dj˛;ˇ/p.˛/p.ˇ/ otherwise

where LLH.Dj˛;ˇ/ is the likelihood function with log-hazards ˛ and regression coefficients ˇ as parameters.

Sampling from the Posterior Distribution

For the Gibbs sampler, PROC PHREG uses the ARMS (adaptive rejection Metropolis sampling) algorithm
of Gilks, Best, and Tan (1995) to sample from the full conditionals. This is the default sampling scheme.
Alternatively, you can requests the random walk Metropolis (RWM) algorithm to sample an entire parameter
vector from the posterior distribution. For a general discussion of these algorithms, see section “Markov
Chain Monte Carlo Method” on page 131 in Chapter 7, “Introduction to Bayesian Analysis Procedures.”

You can output these posterior samples into a SAS data set by using the OUTPOST= option in the BAYES
statement, or you can use the following SAS statement to output the posterior samples into the SAS data set
Post:

ods output PosteriorSample=Post;

The output data set also includes the variables LogLike and LogPost, which represent the log of the likelihood
and the log of the posterior log density, respectively.

Let � D .�1; : : : ; �k/0 be the parameter vector. For the Cox model, the �i ’s are the regression coefficients
ˇi ’s, and for the piecewise constant baseline hazard model, the �i ’s consist of the baseline hazards �i ’s
(or log baseline hazards ˛i ’s) and the regression coefficients ˇj ’s. Let L.Dj�/ be the likelihood function,
where D is the observed data. Note that for the Cox model, the likelihood contains the infinite-dimensional
baseline hazard function, and the gamma process is perhaps the most commonly used prior process (Ibrahim,
Chen, and Sinha 2001). However, Sinha, Ibrahim, and Chen (2003) justify using the partial likelihood as the
likelihood function for the Bayesian analysis. Let p.�/ be the prior distribution. The posterior f�.�jD/ is
proportional to the joint distribution L.Dj�/p.�/.

Gibbs Sampler
The full conditional distribution of �i is proportional to the joint distribution; that is,

�.�i j�j ; i ¤ j;D/ / L.Dj�/p.�/

For example, the one-dimensional conditional distribution of �1, given �j D ��j ; 2 � j � k, is computed as

�.�1j�j D �
�
j ; 2 � j � k;D/ D L.Dj� D .�1; �

�
2 ; : : : ; �

�
k /
0/p.� D .�1; �

�
2 ; : : : ; �

�
k /
0/

Suppose you have a set of arbitrary starting values f� .0/1 ; : : : ; �
.0/

k
g. Using the ARMS algorithm, an iteration

of the Gibbs sampler consists of the following:
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• draw �
.1/
1 from �.�1j�

.0/
2 ; : : : ; �

.0/

k
;D/

• draw �
.1/
2 from �.�2j�

.1/
1 ; �

.0/
3 ; : : : ; �

.0/

k
;D/

•
:::

• draw �
.1/

k
from �.�kj�

.1/
1 ; : : : ; �

.1/

k�1
;D/

After one iteration, you have f� .1/1 ; : : : ; �
.1/

k
g. After n iterations, you have f� .n/1 ; : : : ; �

.n/

k
g. Cumulatively, a

chain of n samples is obtained.

Random Walk Metropolis Algorithm
PROC PHREG uses a multivariate normal proposal distribution q.:j�/ centered at � . With an initial parameter
vector �.0/, a new sample �.1/ is obtained as follows:

• sample �� from q.:j�.0//

• calculate the quantity r D min
n
�.��jD/

�.�.0/jD/
; 1
o

• sample u from the uniform distribution U .0; 1/

• set �.1/ D �� if u < r ; otherwise set �.1/ D �.0/

With �.1/ taking the role of �.0/, the previous steps are repeated to generate the next sample �.2/. After n
iterations, a chain of n samples f�.1/; : : : ;�.n/g is obtained.

Starting Values of the Markov Chains

When the BAYES statement is specified, PROC PHREG generates one Markov chain that contains the
approximate posterior samples of the model parameters. Additional chains are produced when the Gelman-
Rubin diagnostics are requested. Starting values (initial values) can be specified in the INITIAL= data set in
the BAYES statement. If the INITIAL= option is not specified, PROC PHREG picks its own initial values
for the chains based on the maximum likelihood estimates of � and the prior information of � .

Denote Œx� as the integral value of x.

Constant Baseline Hazard Parameters �i ’s
For the first chain that the summary statistics and diagnostics are based on, the initial values are

�
.0/
i D

O�i

For subsequent chains, the starting values are picked in two different ways according to the total number of
chains specified. If the total number of chains specified is less than or equal to 10, initial values of the rth
chain (2 � r � 10) are given by

�
.0/
i D

O�ie
˙

�
Œ r
2
�C2

�
Os. O�i /
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with the plus sign for odd r and minus sign for even r. If the total number of chains is greater than 10, initial
values are picked at random over a wide range of values. Let ui be a uniform random number between 0 and
1; the initial value for �i is given by

�
.0/
i D

O�ie16.ui�0:5/Os.
O�i /

Regression Coefficients and Log-Hazard Parameters �i ’s
The �i ’s are the regression coefficients ˇi ’s, and in the piecewise exponential model, include the log-hazard
parameters ˛i ’s. For the first chain that the summary statistics and regression diagnostics are based on, the
initial values are

�
.0/
i D O�i

If the number of chains requested is less than or equal to 10, initial values for the rth chain (2 � r � 10) are
given by

�
.0/
i D O�i ˙

�
2C

�
r

2

��
Os. O�i /

with the plus sign for odd r and minus sign for even r. When there are more than 10 chains, the initial value
for the �i is picked at random over the range . O�i � 8Os. O�i /; O�i C 8Os. O�i //; that is,

�
.0/
i D O�i C 16.ui � 0:5/Os. O�i /

where ui is a uniform random number between 0 and 1.

Fit Statistics

Denote the observed data by D. Let � be the vector of parameters of length k. Let L.Dj�/ be the likelihood.
The deviance information criterion (DIC) proposed in Spiegelhalter et al. (2002) is a Bayesian model
assessment tool. Let Dev.�/ D �2 logL.Dj�/. Let Dev.�/ and N� be the corresponding posterior means of
Dev.�/ and � , respectively. The deviance information criterion is computed as

DIC D 2Dev.�/ �Dev. N�/

Also computed is

pD D Dev.�/ �Dev. N�/

where pD is interpreted as the effective number of parameters.

Note that Dev.�/ defined here does not have the standardizing term as in the section “Deviance Information
Criterion (DIC)” on page 153 in Chapter 7, “Introduction to Bayesian Analysis Procedures.” Nevertheless,
the DIC calculated here is still useful for variable selection.

Posterior Distribution for Quantities of Interest

Let � D .�1; : : : ; �k/0 be the parameter vector. For the Cox model, the �i ’s are the regression coefficients
ˇi ’s; for the piecewise constant baseline hazard model, the �i ’s consist of the baseline hazards �i ’s (or log
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baseline hazards ˛i ’s) and the regression coefficients ˇj ’s. Let S D f�.r/; r D 1; : : : ; N g be the chain that
represents the posterior distribution for � .

Consider a quantity of interest � that can be expressed as a function f .�/ of the parameter vector � . You can
construct the posterior distribution of � by evaluating the function f .�.r// for each �.r/ in S . The posterior
chain for � is ff .�.r//; r D 1; : : : ; N g: Summary statistics such as mean, standard deviation, percentiles,
and credible intervals are used to describe the posterior distribution of � .

Hazard Ratio
As shown in the section “Hazard Ratios” on page 5964, a log-hazard ratio is a linear combination of the
regression coefficients. Let h be the vector of linear coefficients. The posterior sample for this hazard ratio is
the set fexp.h0ˇ.r//; r D 1; : : : ; N g.

Survival Distribution
Let x be a covariate vector of interest.

Cox Model Let f.ti ; zi ; ıi /; i D 1; 2; : : : ; ng be the observed data. Define

Yi .t/ D

�
1 t < ti
0 otherwise

Consider the rth draw ˇ.r/ of S. The baseline cumulative hazard function at time t is given by

H0.t jˇ
.r// D

X
i Wti�t

ıiPn
lD1 Yl.ti /exp.z

0
l
ˇ.r//

For the given covariate vector x, the cumulative hazard function at time t is

H.t I xjˇ.r// D H0.t jˇ.r// exp.x0ˇ.r//

and the survival function at time t is

S.t I xjˇ.r// D expŒ�H .r/.t I xjˇ.r//�

Piecewise Exponential Model Let 0 D a0 < a1 < : : : < aJ < 1 be a partition of the time axis.
Consider the rth draw �.r/ in S, where �.r/ consists of �.r/ D .�

.r/
1 ; : : : ; �

.r/
J /0 and ˇ.r/. The baseline

cumulative hazard function at time t is

H0.t j�
.r// D

JX
jD1

�
.r/
j �j .t/

where

�j .t/ D

8<:
0 t < aj�1
t � aj�1 aj�1 � t < aj
aj � aj�1 t � aj
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For the given covariate vector x, the cumulative hazard function at time t is

H.t I xj�.r/;ˇ.r// D H0.t j�.r// exp.x0ˇ.r//

and the survival function at time t is

S.t I xj�.r/;ˇ.r// D expŒ�H.t I xj�.r/;ˇ.r//�

Computational Resources
Let n be the number of observations in a BY group. Let p be the number of explanatory variables. The
minimum working space (in bytes) needed to process the BY group is

maxf12n; 24p2 C 160pg

Extra memory is needed for certain TIES= options. Let k be the maximum multiplicity of tied times. The
TIES=DISCRETE option requires extra memory (in bytes) of

4k.p2 C 4p/

The TIES=EXACT option requires extra memory (in bytes) of

24.k2 C 5k/

If sufficient space is available, the input data are also kept in memory. Otherwise, the input data are reread
from the utility file for each evaluation of the likelihood function and its derivatives, with the resulting
execution time substantially increased.

Input and Output Data Sets

OUTEST= Output Data Set

The OUTEST= data set contains one observation for each BY group containing the maximum likelihood
estimates of the regression coefficients. If you also use the COVOUT option in the PROC PHREG state-
ment, there are additional observations containing the rows of the estimated covariance matrix. If you
specify SELECTION=FORWARD, BACKWARD, or STEPWISE, only the estimates of the parameters and
covariance matrix for the final model are output to the OUTEST= data set.

Variables in the OUTEST= Data Set
The OUTEST= data set contains the following variables:

• any BY variables specified

• _TIES_, a character variable of length 8 with four possible values: BRESLOW, DISCRETE, EFRON,
and EXACT. These are the four values of the TIES= option in the MODEL statement.
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• _TYPE_, a character variable of length 8 with two possible values: PARMS for parameter estimates
or COV for covariance estimates. If both the COVM and COVS options are specified in the PROC
PHREG statement along with the COVOUT option, _TYPE_=’COVM’ for the model-based covariance
estimates and _TYPE_=’COVS’ for the robust sandwich covariance estimates.

• _STATUS_, a character variable indicating whether the estimates have converged

• _NAME_, a character variable containing the name of the TIME variable for the row of parameter
estimates and the name of each explanatory variable to label the rows of covariance estimates

• one variable for each regression coefficient and one variable for the offset variable if the OFFSET=
option is specified. If an explanatory variable is not included in the final model in a variable selection
process, the corresponding parameter estimates and covariances are set to missing.

• _LNLIKE_, a numeric variable containing the last computed value of the log likelihood

Parameter Names in the OUTEST= Data Set
For continuous explanatory variables, the names of the parameters are the same as the corresponding variables.
For CLASS variables, the parameter names are obtained by concatenating the corresponding CLASS variable
name with the CLASS category; see the PARAM= option in the CLASS statement for more details. For
interaction and nested effects, the parameter names are created by concatenating the names of each component
effect.

INEST= Input Data Set

You can specify starting values for the maximum likelihood iterative algorithm in the INEST= data set. The
INEST= data set has the same structure as the OUTEST= data set but is not required to have all the variables
or observations that appear in the OUTEST= data set.

The INEST= data set must contain variables that represent the regression coefficients of the model. If
BY processing is used, the INEST= data set should also include the BY variables, and there must be one
observation for each BY group. If the INEST= data set also contains the _TYPE_ variable, only observations
with _TYPE_ value ’PARMS’ are used as starting values.

OUT= Output Data Set in the ZPH Option

The OUT= data set in the ZPH option contains the variable of event times and the variables that represent the
time-varying coefficients, one for each parameter. If the transformation that you specify in the ZPH option is
not an identity, the OUT= data set also contains a variable that represents the transformed event times.

OUT= Output Data Set in the OUTPUT Statement

The OUT= data set in the OUTPUT statement contains all the variables in the input data set, along with
statistics you request by specifying keyword=name options. The new variables contain a variety of diagnostics
that are calculated for each observation in the input data set.
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OUT= Output Data Set in the BASELINE Statement

The OUT= data set in the BASELINE statement contains all the variables in the COVARIATES= data set,
along with statistics you request by specifying keyword=name options. For unstratified input data, there are 1
+ n observations in the OUT= data set for each observation in the COVARIATES= data set, where n is the
number of distinct event times in the input data. For input data that are stratified into k strata, with ni distinct
events in the ith stratum, i D 1; : : : ; k, there are 1+ni observations for the ith stratum in the OUT= data set
for each observation in the COVARIATES= data set.

OUTIDFF= Output Data Set in the BASELINE Statement

The OUTDIFF= data set contains the differences of the direct adjusted survival probabilities between two
treatments or two strata and their standard errors.

OUTPOST= Output Data Set in the BAYES Statement

The OUTPOST= data set contains the generated posterior samples. There are 3+n variables, where n is the
number of model parameters. The variable Iteration represents the iteration number, the variable LogLike
contains the log-likelihood values, and the variable LogPost contains the log-posterior-density values. The
other n variables represent the draws of the Markov chain for the model parameters.

Displayed Output
If you use the NOPRINT option in the PROC PHREG statement, the procedure does not display any output.
Otherwise, PROC PHREG displays results of the analysis in a collection of tables. The tables are listed
separately for the maximum likelihood analysis and for the Bayesian analysis.

Maximum Likelihood Analysis Displayed Output

Model Information
The “Model Information” table displays the two-level name of the input data set, the name and label of the
failure time variable, the name and label of the censoring variable and the values indicating censored times,
the model (either the Cox model or the piecewise constant baseline hazard model), the name and label of the
OFFSET variable, the name and label of the FREQ variable, the name and label of the WEIGHT variable, and
the method of handling ties in the failure time for the Cox model. The ODS name of the “Model Information”
table is ModelInfo.

Number of Observations
The “Number of Observations” table displays the number of observations read and used in the analysis. The
ODS name of the “Number of Observations” is NObs.

Class Level Information
The “Class Level Information” table is displayed when there are CLASS variables in the model. The table
lists the categories of every CLASS variable that is used in the model and the corresponding design variable
values. The ODS name of the “Class Level Information” table is ClassLevelInfo.
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Class Level Information for Random Effects
The “Class Level Information for Random Effects” table is displayed when the RANDOM statement is
specified. The table lists the categories of the classification variable specified in the RANDOM statement.
The ODS name of the “Class Level Information for Random Effects” table is ClassLevelInfoR.

Summary of the Number of Event and Censored Values
The “Summary of the Number of Event and Censored Values” table displays, for each stratum, the breakdown
of the number of events and censored values. The ODS name of the “Summary of the Number of Event and
Censored Values” table is CensoredSummary.

Risk Sets Information
The “Risk Sets Information” table is displayed if you specify the ATRISK option in the PROC PHREG
statement. The table displays, for each event time, the number of units at-risk and the number of units that
experience the event. The ODS name of the “Risk Sets Information” table is RiskSetInfo.

Descriptive Statistics for Continuous Explanatory Variables
The “Simple Statistics for Continuous Explanatory Variables” table is displayed when you specify the
SIMPLE option in the PROC PHREG statement. The table contains, for each stratum, the mean, standard
deviation, and minimum and maximum for each continuous explanatory variable in the MODEL statement.
The ODS name of the “Descriptive Statistics for Continuous Explanatory Variables” table is SimpleStatistics.

Frequency Distribution of CLASS Variables
The “Frequency Distribution of CLASS Variables” table is displayed if you specify the SIMPLE option in the
PROC PHREG statement and there are CLASS variables in the model. The table lists the frequency of the
levels of the CLASS variables. The ODS name of the “Frequency Distribution of CLASS Variables” table is
ClassLevelFreq.

Maximum Likelihood Iteration History
The “Maximum Likelihood Iteration History” table is displayed if you specify the ITPRINT option in the
MODEL statement. The table contains the iteration number, ridge value or step size, log likelihood, and
parameter estimates at each iteration. The ODS name of the “Maximum Likelihood Iteration History” table
is IterHistory.

Gradient of Last Iteration
The “Gradient of Last Iteration” table is displayed if you specify the ITPRINT option in the MODEL
statement. The ODS name of the “Gradient of Last Iteration” table is LastGradient.

Convergence Status
The “Convergence Status” table displays the convergence status of the Newton-Raphson maximization. The
ODS name of the “Convergence Status” table is ConvergenceStatus.

Model Fit Statistics
The “Model Fit Statistics” table displays the values of –2 log likelihood for the null model and the fitted
model, the AIC, and SBC. The ODS name of the “Model Fit Statistics” table is FitStatistics.
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Covariance Parameter Estimates
The “Covariance Parameter Estimates” table displays the estimate of the variance parameter of the random
effect and the standard error estimate of the variance parameter estimator. The ODS name of the “Covariance
Parameter Estimates” table is CovParms.

Testing Global Null Hypothesis: BETA=0
The “Testing Global Null Hypothesis: BETA=0” table displays results of the likelihood ratio test, the score
test, and the Wald test for testing the hypothesis that all parameters are zero. For the frailty model, the
score test is not displayed and an adjusted degrees of freedom is used (see the section “Wald-Type Tests for
Penalized Models” on page 6002 for more information.) For ODS purpose, the name of the “Testing Global
Null Hypothesis: BETA=0” table is GlobalTests.

Likelihood Ratio Statistics for Type 1 Analysis
The “Likelihood Ratio Statistics for Type 1 Analysis” table is displayed if the TYPE1 option is specified in
the MODEL statement. The table displays the degrees of freedom, the likelihood ratio chi-square statistic,
and the p-value for each effect in the model. The ODS name of “Likelihood Ratio Statistics for Type 1
Analysis” is Type1.

Type 3 Tests
The “Type 3 Tests” table is displayed if the model contains a CLASS variable or if the TYPE3 option is
specified in the MODEL statement. The table displays, for each specified statistic, the Type 3 chi-square, the
degrees of freedom, and the p-value for each effect in the model. For the frailty model, the table also displays
the adjusted Wald-type test results (see the section “Wald-Type Tests for Penalized Models” on page 6002 for
details.) The ODS name of “Type 3 Tests” is Type3.

Analysis of Maximum Likelihood Estimates
The “Analysis of Maximum Likelihood Estimates” table displays the maximum likelihood estimate of the
parameter; the estimated standard error, computed as the square root of the corresponding diagonal element
of the estimated covariance matrix; the ratio of the robust standard error estimate to the model-based standard
error estimate if you specify the COVS option in the PROC PHREG statement; the Wald Chi-Square statistic,
computed as the square of the parameter estimate divided by its standard error estimate; the degrees of
freedom of the Wald chi-square statistic, which has a value of 1 unless the corresponding parameter is
redundant or infinite, in which case the value is 0; the p-value of the Wald chi-square statistic with respect to
a chi-square distribution with one degree of freedom; the hazard ratio estimate; and the confidence limits for
the hazard ratio if you specified the RISKLIMITS option in the MODEL statement. The ODS name of the
“Analysis of Maximum Likelihood Estimates” table is ParameterEstimates.

Solution for Random Effects
The “Solution for Random Effects” table displays the BLUP estimates of the random effects, the estimated
standard errors, the confidence intervals for the random effects, the exponentiated values of the BLUP
estimates, and confidence intervals for the exponentiated random effects. The ODS name of the “Solution for
Random Effects” table is SolutionR.

Regression Models Selected by Score Criterion
The “Regression Models Selected by Score Criterion” table is displayed if you specify SELECTION=SCORE
in the MODEL statement. The table contains the number of explanatory variables in each model, the score
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chi-square statistic, and the names of the variables included in the model. The ODS name of the “Regression
Models Selected by Score Criterion” table is BestSubsets.

Analysis of Effects Eligible for Entry
The “Analysis of Effects Eligible for Entry” table is displayed if you use the FORWARD or STEPWISE
selection method and you specify the DETAILS option in the MODEL statement. The table contains the
score chi-square statistic for testing the significance of each variable not in the model (after adjusting for
the variables already in the model), and the p-value of the chi-square statistic with respect to a chi-square
distribution with one degree of freedom. This table is produced before a variable is selected for entry in a
forward selection step. The ODS name of the “Analysis of Effects Eligible for Entry” table is EffectsToEntry.

Analysis of Effects Eligible for Removal
The “Analysis of Effects Eligible for Removal” table is displayed if you use the BACKWARD or STEPWISE
selection method and you specify the DETAILS option in the MODEL statement. The table contains the Wald
chi-square statistic for testing the significance of each candidate effect for removal, the degrees of freedom of
the Wald chi-square, and the corresponding p-value. This table is produced before an effect is selected for
removal. The ODS name of the “Analysis of Effects Eligible for Removal” table is EffectsToRemoval.

Summary of Backward Elimination
The “Summary of Backward Elimination” table is displayed if you specify the SELECTION=BACKWARD
option in the MODEL statement. The table contains the step number, the effects removed at each step, the
corresponding chi-square statistic, the degrees of freedom, and the p-value. For ODS purpose, the name of
the “Summary of Backward Elimination” table is ModelBuildingSummary.

Summary of Forward Selection
The “Summary of Forward Selection” table is displayed if you specify the SELECTION=FORWARD
option in the MODEL statement. The table contains the step number, the effects entered at each step, the
corresponding chi-square statistic, the degrees of freedom, and the p-value. For ODS purpose, the name of
the “Summary of Forward Selection” table is ModelBuildingSummary.

Summary of Stepwise Selection
The “Summary of Stepwise Selection” table is displayed if you specify SELECTION=STEPWISE is specified
in the MODEL statement. The table contains the step number, the effects entered or removed at each step, the
corresponding chi-square statistic, the degrees of freedom, and the corresponding p-value. For ODS purpose,
the name of the “Summary of Stepwise Selection” table is ModelBuildingSummary.

Covariance Matrix
The “Covariance Matrix” table is displayed if you specify the COVB option in the MODEL statement. The
table contains the estimated covariance matrix for the parameter estimates. The ODS name of the “Covariance
Matrix” table is CovB.

Correlation Matrix
The “Correlation Matrix” table is displayed if you specify the COVB option in the MODEL statement.
The table contains the estimated correlation matrix for the parameter estimates. The ODS name of the
“Correlation Matrix” table is CorrB.
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Hazard Ratios for label
The “Hazard Ratios for label” table is displayed if you specify the HAZARDRATIO statement. The table
displays the estimate and confidence limits for each hazard ratio. The ODS name of the “Hazard Ratios for
label” table is HazardRatios.

Predictive Inaccuracy and Explained Variation
The “Predictive Inaccuracy and Explained Variation” table is displayed if you specify the EV option in the
PROC PHREG statement. The table displays the predictive inaccuracy without covariates, the predictive
inaccuracy with covariates, and the explained variation. If you specify the STRATA statement, the table also
contains the stratum identification. The ODS name of the “Predictive Inaccuracy and Explained Variation”
table is ExplainedVariation.

ZPH Tests of Nonproportional Hazards
The “ZPH Tests of Nonproportional Hazards” table is displayed if you specify the ZPH option in the
PROC PHREG statement. For each parameter, the table displays the correlation between the time-varying
coefficients and transformed times; the chi-square statistic and the corresponding p-value; and the t statistic
and the corresponding p-value. The ODS name of the “ZPH Tests of Nonproportional Hazards” table is
zphTest.

Coefficients of Contrast label
The “Coefficients of Contrast label” table is displayed if you specify the E option in the CONTRAST
statement. The table displays the parameter names and the corresponding coefficients of each row of contrast
label . The ODS name of the “Coefficients of Contrast label” table is ContrastCoeff.

Contrast Test Results
The “Contrast Test Results” table is displayed if you specify the CONTRAST statement. The table displays
the degrees of freedom, test statistics, and the p-values for testing each contrast. The ODS name of the
“Contrast Test Results” table is ContrastTest.

Contrast Estimation and Testing Results by Row
The “Contrast Estimation and Testing Results by Row” table is displayed if you specify the ESTIMATE
option in the CONTRAST statement. The table displays, for each row, the estimate of the linear function of
the coefficients, its standard error, and the confidence limits for the linear function. The ODS name of the
“Contrast Estimation and Testing Results by Row” table is ContrastEstimate.

Linear Coefficients for label
The “Linear Coefficients label” table is displayed if you specify the E option in the TEST statement with label
being the TEST statement label. The table contains the coefficients and constants of the linear hypothesis.
The ODS name of the “Linear Coefficients for label” table is TestCoeff.

L[cov(b)]L’ and Lb-c
The “L[cov(b)]L’ and Lb-c” table is displayed if you specified the PRINT option in a TEST statement with
label being the TEST statement label. The table displays the intermediate calculations of the Wald test. The
ODS name of the “L[cov(b)]L’ and Lb-c” table is TestPrint1.
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Ginv(L[cov(b)]L’) and Ginv(L[cov(b)]L’)(Lb-c)
The “Ginv(L[cov(b)]L’) and Ginv(L[cov(b)]L’)(Lb-c)” table is displayed if you specified the PRINT option in
a TEST statement with label being the TEST statement label. The table displays the intermediate calculations
of the Wald test. The ODS name of the “Ginv(L[cov(b)]L’) and Ginv(L[cov(b)]L’)(Lb-c)” table is TestPrint2.

label Test Results
The “label Test Results” table is displayed if you specify a TEST statement with label being the TEST
statement label. The table contains the Wald chi-square statistic, the degrees of freedom, and the p-value.
The ODS name of “label Test Results” table is TestStmts.

Average Effect for label
The “Average Effect for label” table is displayed if the AVERAGE option is specified in a TEST statement
with label being the TEST statement label. The table contains the weighted average of the parameter estimates
for the variables in the TEST statement, the estimated standard error, the z-score, and the p-value. The ODS
name of the “Average Effect for label” is TestAverage.

Reference Set of Covariates for Plotting
The “Reference Set of Covariates for Plotting” table is displayed if the PLOTS= option is requested without
specifying the COVARIATES= data set in the BASELINE statement. The tables contains the values of the
covariates for the reference set, where the reference levels are used for the CLASS variables and the sample
averages for the continuous variables.

Bayesian Analysis Displayed Output

Model Information
The “Model Information” table displays the two-level name of the input data set, the name and label of the
failure time variable, the name and label of the censoring variable and the values indicating censored times,
the model (either the Cox model or the piecewise constant baseline hazard model), the name and label of the
OFFSET variable, the name and label of the FREQ variable, the name and label of the WEIGHT variable,
the method of handling ties in the failure time, the number of burn-in iterations, the number of iterations
after the burn-in, and the number of thinning iterations. The ODS name of the “Model Information” table is
ModelInfo.

Number of Observations
The “Number of Observations” table displays the number of observations read and used in the analysis. The
ODS name of the “Number of Observations” is NObs.

Summary of the Number of Event and Censored Values
The “Summary of the Number of Event and Censored Values” table displays, for each stratum, the breakdown
of the number of events and censored values. This table is not produced if the NONSUMMARY option is
specified in the PROC PHREG statement. The ODS name of the “Summary of the Number of Event and
Censored Values” table is CensoredSummary.

Descriptive Statistics for Continuous Explanatory Variables
The “Simple Statistics for Continuous Explanatory Variables” table is displayed when you specify the
SIMPLE option in the PROC PHREG statement. The table contains, for each stratum, the mean, standard
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deviation, and minimum and maximum for each continuous explanatory variable in the MODEL statement.
The ODS name of the “Descriptive Statistics for Continuous Explanatory Variables” table is SimpleStatistics.

Class Level Information
The “Class Level Information” table is displayed if there are CLASS variables in the model. The table lists
the categories of every CLASS variable in the model and the corresponding design variable values. The ODS
name of the “Class Level Information” table is ClassLevelInfo.

Frequency Distribution of CLASS Variables
The “Frequency Distribution of CLASS Variables” table is displayed if you specify the SIMPLE option in the
PROC PHREG statement and there are CLASS variables in the model. The table lists the frequency of the
levels of the CLASS variables. The ODS name of the “Frequency Distribution of CLASS Variables” table is
ClassLevelFreq.

Regression Parameter Information
The “Regression Parameter Information” table displays the names of the parameters and the corresponding
level information of effects containing the CLASS variables. The ODS name of the “Regression Parameter
Information” table is ParmInfo.

Constant Baseline Hazard Time Intervals
The “Constant Baseline Hazard Time Intervals” table displays the intervals of constant baseline hazard and
the corresponding numbers of failure times and event times. This table is produced only if you specify
the PIECEWISE option in the BAYES statement. The ODS name of the “Constant Baseline Hazard Time
Intervals” table is Interval.

Maximum Likelihood Estimates
The “Maximum Likelihood Estimates” table displays, for each parameter, the maximum likelihood estimate,
the estimated standard error, and the 95% confidence limits. The ODS name of the “Maximum Likelihood
Estimates” table is ParameterEstimates.

Hazard Prior
The “Hazard Prior” table is displayed if you specify the PIECEWISE=HAZARD option in the BAYES
statement. It describes the prior distribution of the hazard parameters. The ODS name of the “Hazard Prior”
table is HazardPrior.

Log-Hazard Prior
The “Log-Hazard Prior” table is displayed if you specify the PIECEWISE=LOGHAZARD option in the
BAYES statement. It describes the prior distribution of the log-hazard parameters. The ODS name of the
“Log-Hazard Prior” table is HazardPrior.

Coefficient Prior
The “Coefficient Prior” table displays the prior distribution of the regression coefficients. The ODS name of
the “Coefficient Prior” table is CoeffPrior.



6022 F Chapter 73: The PHREG Procedure

Initial Values
The “Initial Values” table is displayed if you specify the INITIAL option in the BAYES statement. The table
contains the initial values of the parameters for the Gibbs sampling. The ODS name of the “Initial Values”
table is InitialValues.

Fit Statistics
The “Fit Statistics” table displays the DIC and pD statistics for each parameter. The ODS name of the “Fit
Statistics” table is FitStatistics.

Posterior Summaries
The “Posterior Summaries” table displays the size of the posterior sample, the mean, the standard error,
and the percentiles for each model parameter. The ODS name of the “Posterior Summaries” table is
PostSummaries.

Posterior Intervals
The “Posterior Intervals” table displays the equal-tail interval and the HPD interval for each model parameter.
The ODS name of the “Posterior Intervals” table is PostIntervals.

Posterior Covariance Matrix
The “Posterior Covariance Matrix” table is produced if you include COV in the SUMMARY= option in the
BAYES statement. This tables displays the sample covariance of the posterior samples. The ODS name of
the “Posterior Covariance Matrix” table is Cov.

Posterior Correlation Matrix
The “Posterior Correlation Matrix” table is displayed if you include CORR in the SUMMARY= option in the
BAYES statement. The table contains the sample correlation of the posterior samples. The ODS name of the
“Posterior Correlation Matrix” table is Corr.

Posterior Autocorrelations
The “Posterior Autocorrelations” table displays the lag 1, lag 5, lag 10, and lag 50 autocorrelations for each
parameter. The ODS name of the “Posterior Autocorrelations” table is AutoCorr.

Gelman-Rubin Diagnostics
The “Gelman-Rubin Diagnostics” table is produced if you include GELMAN in the DIAGNOSTIC= option
in the BAYES statement. This table displays the estimate of the potential scale reduction factor and its 97.5%
upper confidence limit for each parameter. The ODS name of the “Gelman-Rubin Diagnostics” table is
Gelman.

Geweke Diagnostics
The “Geweke Diagnostics” table displays the Geweke statistic and its p-value for each parameter. The ODS
name of the “Geweke Diagnostics” table is Geweke.

Raftery-Lewis Diagnostics
The “Raftery-Lewis Diagnostics” tables is produced if you include RAFTERY in the DIAGNOSTIC= option
in the BAYES statement. This table displays the Raftery and Lewis diagnostics for each variable. The ODS
name of the “Raftery-Diagnostics” table is “Raftery.”
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Heidelberger-Welch Diagnostics
The “Heidelberger-Welch Diagnostics” table is displayed if you include HEIDELBERGER in the DIAGNOS-
TIC= option in the BAYES statement. This table describes the results of a stationary test and a halfwidth test
for each parameter. The ODS name of the “Heidelberger-Welch Diagnostics” table is Heidelberger.

Effective Sample Sizes
The “Effective Sample Sizes” table displays, for each parameter, the effective sample size, the correlation
time, and the efficiency. The ODS name of the “Effective Sample Sizes” table is ESS.

Hazard Ratios for label
The “Hazard Ratios for label” table is displayed if you specify the HAZARDRATIO statement. The table
displays the posterior summary for each hazard ratio. The summary includes the mean, standard error,
quartiles, and equal-tailed and HPD intervals. The ODS name of the “Hazard Ratios for label” table is
HazardRatios.

Reference Set of Covariates for Plotting
The “Reference Set of Covariates for Plotting” table is displayed if the PLOTS= option is requested without
specifying the COVARIATES= data set in the BASELINE statement. The table contains the values of the
covariates for the reference set, where the reference levels are used for the CLASS variables and the sample
averages for the continuous variables.

ODS Table Names
PROC PHREG assigns a name to each table it creates. You can use these names to reference the table when
using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed
separately in Table 73.15 for the maximum likelihood analysis and in Table 73.16 for the Bayesian analysis.
For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

Each of the EFFECT, ESTIMATE, LSMEANS, LSMESTIMATE, and SLICE statements creates ODS tables,
which are not listed in Table 73.15 and Table 73.16. For information about these tables, see the corresponding
sections of Chapter 19, “Shared Concepts and Topics.”

Table 73.15 ODS Tables for a Maximum Likelihood Analysis
Produced by PROC PHREG

ODS Table Name Description Statement / Option

BestSubsets Best subset selection MODEL / SELECTION=SCORE
CensoredSummary Summary of event and censored ob-

servations
Default

ClassLevelFreq Frequency distribution of CLASS
variables

CLASS, PROC / SIMPLE

ClassLevelInfo CLASS variable levels and design
variables

CLASS

ClassLevelInfoR Class levels for random effects RANDOM
ContrastCoeff L matrix for contrasts CONTRAST / E
ContrastEstimate Individual contrast estimates CONTRAST / ESTIMATE=
ContrastTest Wald test for contrasts CONTRAST
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Table 73.15 continued

ODS Table Name Description Statement / Option

ConvergenceStatus Convergence status Default
CorrB Estimated correlation matrix of pa-

rameter estimators
MODEL / CORRB

CovB Estimated covariance matrix of pa-
rameter estimators

MODEL / COVB

CovParms Variance estimates of the random ef-
fects

RANDOM

EffectsToEnter Analysis of effects for entry MODEL / SELECTION=F|S
EffectsToRemove Analysis of effects for removal MODEL / SELECTION=B|S
ExplainedVariation Schemper-Henderson predictive ac-

curacy and explained variation
PROC / EV

FitStatistics Model fit statistics Default
FunctionalFormSupTest Supremum test for functional form ASSESS / VAR=
GlobalScore Global chi-square test MODEL / NOFIT
GlobalTests Tests of the global null

hypothesis
Default

HazardRatios Hazard ratios and confidence limits HAZARDRATIO
IterHistory Iteration history MODEL /ITPRINT
LastGradient Last evaluation of gradient MODEL / ITPRINT
ModelBuildingSummary Summary of model building MODEL / SELECTION=B|F|S
ModelInfo Model information Default
NObs Number of observations Default
ParameterEstimates Maximum likelihood estimates of

model parameters
Default

ProportionalHazardsSupTest Supremum test for proportional haz-
ards assumption

ASSESS / PH

ResidualChiSq Residual chi-square MODEL / SELECTION=F|B
ReferenceSet Reference set of covariates for plot-

ting
PROC / PLOTS=

RiskSetInfo Risk set information PROC / ATRISK
SimpleStatistics Summary statistics of input continu-

ous explanatory variables
PROC / SIMPLE

SolutionR Solutions for random effects RANDOM / SOLUTION
TestAverage Average effect for test TEST / AVERAGE
TestCoeff Coefficients for linear hypotheses TEST / E
TestPrint1 L[cov(b)]L’ and Lb-c TEST / PRINT
TestPrint2 Ginv(L[cov(b)]L’) and

Ginv(L[cov(b)]L’)(Lb-c)
TEST / PRINT

TestStmts Linear hypotheses testing results TEST
Type1 Type 1 likelihood ratio tests MODEL / TYPE1
ModelANOVA Type 3 tests or joint tests MODEL / TYPE3 | CLASS
zphTest Proportional hazards assumption

tests based on scaled Schoenfeld
residuals

PROC / ZPH
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Table 73.16 ODS Table for a Bayesian Analysis Produced by
PROC PHREG

ODS Table Name Description Statement / Option

AutoCorr Autocorrelations of the posterior
samples

BAYES

CensoredSummary Numbers of the event and censored
observations

PROC

ClassLevelFreq Frequency distribution of CLASS
variables

CLASS, PROC / SIMPLE

ClassLevelInfo CLASS variable levels and design
variables

CLASS

CoeffPrior Prior distribution of the regression
coefficients

BAYES

Corr Posterior correlation matrix BAYES / SUMMARY=CORR
Cov Posterior covariance Matrix BAYES / SUMMARY=COV
ESS Effective sample sizes BAYES / DIAGNOSTICS=ESS
FitStatistics Fit statistics BAYES
Gelman Gelman-Rubin convergence diagnos-

tics
BAYES /
DIAGNOSTICS=GELMAN

Geweke Geweke convergence diagnostics BAYES
HazardPrior Prior distribution of the baseline haz-

ards
BAYES / PIECEWISE

HazardRatios Posterior summary statistics for haz-
ard ratios

HAZARDRATIO

Heidelberger Heidelberger-Welch convergence di-
agnostics

BAYES /
DIAGNOSTICS=HEIDELBERGER

InitialValues Initial values of the Markov chains BAYES
ModelInfo Model information Default
NObs Number of observations Default
MCError Monte Carlo standard errors BAYES /

DIAGNOSTICS=MCERROR
ParameterEstimates Maximum likelihood estimates of

model parameters
Default

ParmInfo Names of regression coefficients CLASS,BAYES
Partition Partition of constant baseline hazard

intervals
BAYES / PIECEWISE

PostIntervals Equal-tail and high probability den-
sity intervals of the posterior samples

BAYES

PosteriorSample Posterior samples BAYES / (for ODS output data set
only)

PostSummaries Summary statistics of the posterior
samples

BAYES

Raftery Raftery-Lewis convergence diagnos-
tics

BAYES /
DIAGNOSTICS=RAFTERY

ReferenceSet Reference set of covariates for plot-
ting

PROC / PLOTS=
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Table 73.16 continued

ODS Table Name Description Statement / Option

SimpleStatistics Summary statistics of input continu-
ous explanatory variables

PROC / SIMPLE

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

You can reference every graph produced through ODS Graphics with a name. The names of the graphs
that PROC PHREG generates are listed separately in Table 73.17 for the maximum likelihood analysis and
in Table 73.18 for the Bayesian analysis. When the ODS Graphics are in effect in a Bayesian analysis,
each of the ESTIMATE, LSMEANS, LSMESTIMATE, and SLICE statements can produce plots associated
with their analyses. For information of these plots, see the corresponding sections of Chapter 19, “Shared
Concepts and Topics.”

Table 73.17 Graphs for a Maximum Likelihood Analysis Produced by PROC PHREG

ODS Graph Name Plot Description Statement / Option

CumhazPlot Cumulative hazard func-
tion plot

PROC / PLOTS=CUMHAZ

CumulativeResiduals Cumulative martingale
residual plot

ASSESS / VAR=

CumResidPanel Panel plot of cumulative
martingale residuals

ASSESS / VAR=, CRPANEL

MCFPlot Mean cumulative func-
tion plot

PROC / PLOTS=MCF

ScoreProcess Standardized score pro-
cess plot

ASSESS / PH

SurvivalPlot Survivor function plot PROC / PLOTS=SURVIVAL
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Table 73.18 Graphs for a Bayesian Analysis Produced by PROC
PHREG

ODS Graph Name Plot Description Statement / Option

ADPanel Autocorrelation function
and density panel

BAYES / PLOTS=(AUTOCORR DENSITY)

AutocorrPanel Autocorrelation function
panel

BAYES / PLOTS= AUTOCORR

AutocorrPlot Autocorrelation function
plot

BAYES / PLOTS(UNPACK)=AUTOCORR

CumhazPlot Cumulative hazard func-
tion plot

PROC / PLOTS=CUMHAZ

DensityPanel Density panel BAYES / PLOTS=DENSITY
DensityPlot Density plot BAYES / PLOTS(UNPACK)=DENSITY
SurvivalPlot Survivor function plot PROC / PLOTS=SURVIVAL
TAPanel Trace and autocorrelation

function panel
BAYES / PLOTS=(TRACE AUTOCORR)

TADPanel Trace, density, and autocor-
relation function panel

BAYES / PLOTS=(TRACE AUTOCORR
DENSITY)

TDPanel Trace and density panel BAYES / PLOTS=(TRACE DENSITY)
TracePanel Trace panel BAYES / PLOTS=TRACE
TracePlot Trace plot BAYES / PLOTS(UNPACK)=TRACE

Examples: PHREG Procedure
This section contains 14 examples of PROC PHREG applications. The first 12 examples use the classical
method of maximum likelihood, while the last two examples illustrate the Bayesian methodology.

Example 73.1: Stepwise Regression
Krall, Uthoff, and Harley (1975) analyzed data from a study on multiple myeloma in which researchers
treated 65 patients with alkylating agents. Of those patients, 48 died during the study and 17 survived. The
following DATA step creates the data set Myeloma. The variable Time represents the survival time in months
from diagnosis. The variable VStatus consists of two values, 0 and 1, indicating whether the patient was
alive or dead, respectively, at the end of the study. If the value of VStatus is 0, the corresponding value of
Time is censored. The variables thought to be related to survival are LogBUN (log(BUN) at diagnosis), HGB
(hemoglobin at diagnosis), Platelet (platelets at diagnosis: 0=abnormal, 1=normal), Age (age at diagnosis, in
years), LogWBC (log(WBC) at diagnosis), Frac (fractures at diagnosis: 0=none, 1=present), LogPBM (log
percentage of plasma cells in bone marrow), Protein (proteinuria at diagnosis), and SCalc (serum calcium at
diagnosis). Interest lies in identifying important prognostic factors from these nine explanatory variables.
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data Myeloma;
input Time VStatus LogBUN HGB Platelet Age LogWBC Frac

LogPBM Protein SCalc;
label Time='Survival Time'

VStatus='0=Alive 1=Dead';
datalines;

1.25 1 2.2175 9.4 1 67 3.6628 1 1.9542 12 10
1.25 1 1.9395 12.0 1 38 3.9868 1 1.9542 20 18
2.00 1 1.5185 9.8 1 81 3.8751 1 2.0000 2 15
2.00 1 1.7482 11.3 0 75 3.8062 1 1.2553 0 12
2.00 1 1.3010 5.1 0 57 3.7243 1 2.0000 3 9
3.00 1 1.5441 6.7 1 46 4.4757 0 1.9345 12 10
5.00 1 2.2355 10.1 1 50 4.9542 1 1.6628 4 9
5.00 1 1.6812 6.5 1 74 3.7324 0 1.7324 5 9
6.00 1 1.3617 9.0 1 77 3.5441 0 1.4624 1 8
6.00 1 2.1139 10.2 0 70 3.5441 1 1.3617 1 8
6.00 1 1.1139 9.7 1 60 3.5185 1 1.3979 0 10
6.00 1 1.4150 10.4 1 67 3.9294 1 1.6902 0 8
7.00 1 1.9777 9.5 1 48 3.3617 1 1.5682 5 10
7.00 1 1.0414 5.1 0 61 3.7324 1 2.0000 1 10
7.00 1 1.1761 11.4 1 53 3.7243 1 1.5185 1 13
9.00 1 1.7243 8.2 1 55 3.7993 1 1.7404 0 12

11.00 1 1.1139 14.0 1 61 3.8808 1 1.2788 0 10
11.00 1 1.2304 12.0 1 43 3.7709 1 1.1761 1 9
11.00 1 1.3010 13.2 1 65 3.7993 1 1.8195 1 10
11.00 1 1.5682 7.5 1 70 3.8865 0 1.6721 0 12
11.00 1 1.0792 9.6 1 51 3.5051 1 1.9031 0 9
13.00 1 0.7782 5.5 0 60 3.5798 1 1.3979 2 10
14.00 1 1.3979 14.6 1 66 3.7243 1 1.2553 2 10
15.00 1 1.6021 10.6 1 70 3.6902 1 1.4314 0 11
16.00 1 1.3424 9.0 1 48 3.9345 1 2.0000 0 10
16.00 1 1.3222 8.8 1 62 3.6990 1 0.6990 17 10
17.00 1 1.2304 10.0 1 53 3.8808 1 1.4472 4 9
17.00 1 1.5911 11.2 1 68 3.4314 0 1.6128 1 10
18.00 1 1.4472 7.5 1 65 3.5682 0 0.9031 7 8
19.00 1 1.0792 14.4 1 51 3.9191 1 2.0000 6 15
19.00 1 1.2553 7.5 0 60 3.7924 1 1.9294 5 9
24.00 1 1.3010 14.6 1 56 4.0899 1 0.4771 0 9
25.00 1 1.0000 12.4 1 67 3.8195 1 1.6435 0 10
26.00 1 1.2304 11.2 1 49 3.6021 1 2.0000 27 11
32.00 1 1.3222 10.6 1 46 3.6990 1 1.6335 1 9
35.00 1 1.1139 7.0 0 48 3.6532 1 1.1761 4 10
37.00 1 1.6021 11.0 1 63 3.9542 0 1.2041 7 9
41.00 1 1.0000 10.2 1 69 3.4771 1 1.4771 6 10
41.00 1 1.1461 5.0 1 70 3.5185 1 1.3424 0 9
51.00 1 1.5682 7.7 0 74 3.4150 1 1.0414 4 13
52.00 1 1.0000 10.1 1 60 3.8573 1 1.6532 4 10
54.00 1 1.2553 9.0 1 49 3.7243 1 1.6990 2 10
58.00 1 1.2041 12.1 1 42 3.6990 1 1.5798 22 10
66.00 1 1.4472 6.6 1 59 3.7853 1 1.8195 0 9
67.00 1 1.3222 12.8 1 52 3.6435 1 1.0414 1 10
88.00 1 1.1761 10.6 1 47 3.5563 0 1.7559 21 9
89.00 1 1.3222 14.0 1 63 3.6532 1 1.6232 1 9
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92.00 1 1.4314 11.0 1 58 4.0755 1 1.4150 4 11
4.00 0 1.9542 10.2 1 59 4.0453 0 0.7782 12 10
4.00 0 1.9243 10.0 1 49 3.9590 0 1.6232 0 13
7.00 0 1.1139 12.4 1 48 3.7993 1 1.8573 0 10
7.00 0 1.5315 10.2 1 81 3.5911 0 1.8808 0 11
8.00 0 1.0792 9.9 1 57 3.8325 1 1.6532 0 8

12.00 0 1.1461 11.6 1 46 3.6435 0 1.1461 0 7
11.00 0 1.6128 14.0 1 60 3.7324 1 1.8451 3 9
12.00 0 1.3979 8.8 1 66 3.8388 1 1.3617 0 9
13.00 0 1.6628 4.9 0 71 3.6435 0 1.7924 0 9
16.00 0 1.1461 13.0 1 55 3.8573 0 0.9031 0 9
19.00 0 1.3222 13.0 1 59 3.7709 1 2.0000 1 10
19.00 0 1.3222 10.8 1 69 3.8808 1 1.5185 0 10
28.00 0 1.2304 7.3 1 82 3.7482 1 1.6721 0 9
41.00 0 1.7559 12.8 1 72 3.7243 1 1.4472 1 9
53.00 0 1.1139 12.0 1 66 3.6128 1 2.0000 1 11
57.00 0 1.2553 12.5 1 66 3.9685 0 1.9542 0 11
77.00 0 1.0792 14.0 1 60 3.6812 0 0.9542 0 12
;

The stepwise selection process consists of a series of alternating forward selection and backward elimination
steps. The former adds variables to the model, while the latter removes variables from the model.

The following statements use PROC PHREG to produce a stepwise regression analysis. Stepwise selection
is requested by specifying the SELECTION=STEPWISE option in the MODEL statement. The option
SLENTRY=0.25 specifies that a variable has to be significant at the 0.25 level before it can be entered into
the model, while the option SLSTAY=0.15 specifies that a variable in the model has to be significant at
the 0.15 level for it to remain in the model. The DETAILS option requests detailed results for the variable
selection process.

proc phreg data=Myeloma;
model Time*VStatus(0)=LogBUN HGB Platelet Age LogWBC

Frac LogPBM Protein SCalc
/ selection=stepwise slentry=0.25
slstay=0.15 details;

run;

Results of the stepwise regression analysis are displayed in Output 73.1.1 through Output 73.1.7.

Individual score tests are used to determine which of the nine explanatory variables is first selected into
the model. In this case, the score test for each variable is the global score test for the model containing
that variable as the only explanatory variable. Output 73.1.1 displays the chi-square statistics and the
corresponding p-values. The variable LogBUN has the largest chi-square value (8.5164), and it is significant
(p = 0.0035) at the SLENTRY=0.25 level. The variable LogBUN is thus entered into the model.
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Output 73.1.1 Individual Score Test Results for All Variables

The PHREG ProcedureThe PHREG Procedure

Model Information

Data Set WORK.MYELOMA

Dependent Variable Time Survival Time

Censoring Variable VStatus 0=Alive 1=Dead

Censoring Value(s) 0

Ties Handling BRESLOW

Summary of the Number of Event
and Censored Values

Total Event Censored
Percent

Censored

65 48 17 26.15

Analysis of Effects Eligible for Entry

Effect DF
Score

Chi-Square Pr > ChiSq

LogBUN 1 8.5164 0.0035

HGB 1 5.0664 0.0244

Platelet 1 3.1816 0.0745

Age 1 0.0183 0.8924

LogWBC 1 0.5658 0.4519

Frac 1 0.9151 0.3388

LogPBM 1 0.5846 0.4445

Protein 1 0.1466 0.7018

SCalc 1 1.1109 0.2919

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

18.4550 9 0.0302

Output 73.1.2 displays the results of the first model. Since the Wald chi-square statistic is significant (p =
0.0039) at the SLSTAY=0.15 level, LogBUN stays in the model.

Output 73.1.2 First Model in the Stepwise Selection Process

Step 1. Effect LogBUN is entered. The model contains the following effects:Step 1. Effect LogBUN is entered. The model contains the following effects:

LogBUN

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Criterion
Without

Covariates
With

Covariates

-2 LOG L 309.716 301.959

AIC 309.716 303.959

SBC 309.716 305.830
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Output 73.1.2 continued

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 7.7572 1 0.0053

Score 8.5164 1 0.0035

Wald 8.3392 1 0.0039

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio

LogBUN 1 1.74595 0.60460 8.3392 0.0039 5.731

The next step consists of selecting another variable to add to the model. Output 73.1.3 displays the chi-square
statistics and p-values of individual score tests (adjusted for LogBUN) for the remaining eight variables. The
score chi-square for a given variable is the value of the likelihood score test for testing the significance of the
variable in the presence of LogBUN. The variable HGB is selected because it has the highest chi-square value
(4.3468), and it is significant (p = 0.0371) at the SLENTRY=0.25 level.

Output 73.1.3 Score Tests Adjusted for the Variable LogBUN

Analysis of Effects Eligible for Entry

Effect DF
Score

Chi-Square Pr > ChiSq

HGB 1 4.3468 0.0371

Platelet 1 2.0183 0.1554

Age 1 0.7159 0.3975

LogWBC 1 0.0704 0.7908

Frac 1 1.0354 0.3089

LogPBM 1 1.0334 0.3094

Protein 1 0.5214 0.4703

SCalc 1 1.4150 0.2342

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

9.3164 8 0.3163

Output 73.1.4 displays the fitted model containing both LogBUN and HGB. Based on the Wald statistics,
neither LogBUN nor HGB is removed from the model.

Output 73.1.4 Second Model in the Stepwise Selection Process

Step 2. Effect HGB is entered. The model contains the following effects:Step 2. Effect HGB is entered. The model contains the following effects:

LogBUN  HGB

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.
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Output 73.1.4 continued

Model Fit Statistics

Criterion
Without

Covariates
With

Covariates

-2 LOG L 309.716 297.767

AIC 309.716 301.767

SBC 309.716 305.509

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 11.9493 2 0.0025

Score 12.7252 2 0.0017

Wald 12.1900 2 0.0023

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio

LogBUN 1 1.67440 0.61209 7.4833 0.0062 5.336

HGB 1 -0.11899 0.05751 4.2811 0.0385 0.888

Output 73.1.5 shows Step 3 of the selection process, in which the variable SCalc is added, resulting in the
model with LogBUN, HGB, and SCalc as the explanatory variables. Note that SCalc has the smallest Wald
chi-square statistic, and it is not significant (p = 0.1782) at the SLSTAY=0.15 level.

Output 73.1.5 Third Model in the Stepwise Regression

Step 3. Effect SCalc is entered. The model contains the following effects:Step 3. Effect SCalc is entered. The model contains the following effects:

LogBUN  HGB  SCalc

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Criterion
Without

Covariates
With

Covariates

-2 LOG L 309.716 296.078

AIC 309.716 302.078

SBC 309.716 307.692

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 13.6377 3 0.0034

Score 15.3053 3 0.0016

Wald 14.4542 3 0.0023
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Output 73.1.5 continued

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio

LogBUN 1 1.63593 0.62359 6.8822 0.0087 5.134

HGB 1 -0.12643 0.05868 4.6419 0.0312 0.881

SCalc 1 0.13286 0.09868 1.8127 0.1782 1.142

The variable SCalc is then removed from the model in a step-down phase in Step 4 (Output 73.1.6). The
removal of SCalc brings the stepwise selection process to a stop in order to avoid repeatedly entering and
removing the same variable.

Output 73.1.6 Final Model in the Stepwise Regression

Step 4. Effect SCalc is removed. The model contains the following effects:Step 4. Effect SCalc is removed. The model contains the following effects:

LogBUN  HGB

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Criterion
Without

Covariates
With

Covariates

-2 LOG L 309.716 297.767

AIC 309.716 301.767

SBC 309.716 305.509

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 11.9493 2 0.0025

Score 12.7252 2 0.0017

Wald 12.1900 2 0.0023

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio

LogBUN 1 1.67440 0.61209 7.4833 0.0062 5.336

HGB 1 -0.11899 0.05751 4.2811 0.0385 0.888

Note: Model building terminates because the effect to be entered is the effect that was removed in the last step.
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The procedure also displays a summary table of the steps in the stepwise selection process, as shown in
Output 73.1.7.

Output 73.1.7 Model Selection Summary

Summary of Stepwise Selection

Effect

Step Entered Removed DF
Number

In
Score

Chi-Square
Wald

Chi-Square Pr > ChiSq

1 LogBUN 1 1 8.5164 0.0035

2 HGB 1 2 4.3468 0.0371

3 SCalc 1 3 1.8225 0.1770

4 SCalc 1 2 1.8127 0.1782

The stepwise selection process results in a model with two explanatory variables, LogBUN and HGB.

Example 73.2: Best Subset Selection
An alternative to stepwise selection of variables is best subset selection. This method uses the branch-and-
bound algorithm of Furnival and Wilson (1974) to find a specified number of best models containing one,
two, or three variables, and so on, up to the single model containing all of the explanatory variables. The
criterion used to determine the “best” subset is based on the global score chi-square statistic. For two models
A and B, each having the same number of explanatory variables, model A is considered to be better than
model B if the global score chi-square statistic for A exceeds that for B.

In the following statements, best subset selection analysis is requested by specifying the
SELECTION=SCORE option in the MODEL statement. The BEST=3 option requests the procedure
to identify only the three best models for each size. In other words, PROC PHREG will list the three models
having the highest score statistics of all the models possible for a given number of covariates.

proc phreg data=Myeloma;
model Time*VStatus(0)=LogBUN HGB Platelet Age LogWBC

Frac LogPBM Protein SCalc
/ selection=score best=3;

run;

Output 73.2.1 displays the results of this analysis. The number of explanatory variables in the model is given
in the first column, and the names of the variables are listed on the right. The models are listed in descending
order of their score chi-square values within each model size. For example, among all models containing two
explanatory variables, the model that contains the variables LogBUN and HGB has the largest score value
(12.7252), the model that contains the variables LogBUN and Platelet has the second-largest score value
(11.1842), and the model that contains the variables LogBUN and SCalc has the third-largest score value
(9.9962).
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Output 73.2.1 Best Variable Combinations

The PHREG ProcedureThe PHREG Procedure

Regression Models Selected by Score Criterion

Number of
Variables

Score
Chi-Square Variables Included in Model

1 8.5164 LogBUN

1 5.0664 HGB

1 3.1816 Platelet

2 12.7252 LogBUN HGB

2 11.1842 LogBUN Platelet

2 9.9962 LogBUN SCalc

3 15.3053 LogBUN HGB SCalc

3 13.9911 LogBUN HGB Age

3 13.5788 LogBUN HGB Frac

4 16.9873 LogBUN HGB Age SCalc

4 16.0457 LogBUN HGB Frac SCalc

4 15.7619 LogBUN HGB LogPBM SCalc

5 17.6291 LogBUN HGB Age Frac SCalc

5 17.3519 LogBUN HGB Age LogPBM SCalc

5 17.1922 LogBUN HGB Age LogWBC SCalc

6 17.9120 LogBUN HGB Age Frac LogPBM SCalc

6 17.7947 LogBUN HGB Age LogWBC Frac SCalc

6 17.7744 LogBUN HGB Platelet Age Frac SCalc

7 18.1517 LogBUN HGB Platelet Age Frac LogPBM SCalc

7 18.0568 LogBUN HGB Age LogWBC Frac LogPBM SCalc

7 18.0223 LogBUN HGB Platelet Age LogWBC Frac SCalc

8 18.3925 LogBUN HGB Platelet Age LogWBC Frac LogPBM SCalc

8 18.1636 LogBUN HGB Platelet Age Frac LogPBM Protein SCalc

8 18.1309 LogBUN HGB Platelet Age LogWBC Frac Protein SCalc

9 18.4550 LogBUN HGB Platelet Age LogWBC Frac LogPBM Protein SCalc

Example 73.3: Modeling with Categorical Predictors
Consider the data for the Veterans Administration lung cancer trial presented in Appendix 1 of Kalbfleisch
and Prentice (1980). In this trial, males with advanced inoperable lung cancer were randomized to a standard
therapy and a test chemotherapy. The primary endpoint for the therapy comparison was time to death in days,
represented by the variable Time. Negative values of Time are censored values. The data include information
about a number of explanatory variables: Therapy (type of therapy: standard or test), Cell (type of tumor cell:
adeno, large, small, or squamous), Prior (prior therapy: 0=no, 10=yes), Age (age, in years), Duration (months
from diagnosis to randomization), and Kps (Karnofsky performance scale). A censoring indicator variable,
Censor, is created from the data, with the value 1 indicating a censored time and the value 0 indicating an
event time. The following DATA step saves the data in the data set VALung.



6036 F Chapter 73: The PHREG Procedure

proc format;
value yesno 0='no' 10='yes';

run;

data VALung;
drop check m;
retain Therapy Cell;
infile cards column=column;
length Check $ 1;
label Time='time to death in days'

Kps='Karnofsky performance scale'
Duration='months from diagnosis to randomization'
Age='age in years'
Prior='prior therapy'
Cell='cell type'
Therapy='type of treatment';

format Prior yesno.;
M=Column;
input Check $ @@;
if M>Column then M=1;
if Check='s'|Check='t' then do;

input @M Therapy $ Cell $;
delete;

end;
else do;

input @M Time Kps Duration Age Prior @@;
Status=(Time>0);
Time=abs(Time);

end;
datalines;

standard squamous
72 60 7 69 0 411 70 5 64 10 228 60 3 38 0 126 60 9 63 10

118 70 11 65 10 10 20 5 49 0 82 40 10 69 10 110 80 29 68 0
314 50 18 43 0 -100 70 6 70 0 42 60 4 81 0 8 40 58 63 10
144 30 4 63 0 -25 80 9 52 10 11 70 11 48 10
standard small
30 60 3 61 0 384 60 9 42 0 4 40 2 35 0 54 80 4 63 10
13 60 4 56 0 -123 40 3 55 0 -97 60 5 67 0 153 60 14 63 10
59 30 2 65 0 117 80 3 46 0 16 30 4 53 10 151 50 12 69 0
22 60 4 68 0 56 80 12 43 10 21 40 2 55 10 18 20 15 42 0

139 80 2 64 0 20 30 5 65 0 31 75 3 65 0 52 70 2 55 0
287 60 25 66 10 18 30 4 60 0 51 60 1 67 0 122 80 28 53 0
27 60 8 62 0 54 70 1 67 0 7 50 7 72 0 63 50 11 48 0

392 40 4 68 0 10 40 23 67 10
standard adeno

8 20 19 61 10 92 70 10 60 0 35 40 6 62 0 117 80 2 38 0
132 80 5 50 0 12 50 4 63 10 162 80 5 64 0 3 30 3 43 0
95 80 4 34 0

standard large
177 50 16 66 10 162 80 5 62 0 216 50 15 52 0 553 70 2 47 0
278 60 12 63 0 12 40 12 68 10 260 80 5 45 0 200 80 12 41 10
156 70 2 66 0 -182 90 2 62 0 143 90 8 60 0 105 80 11 66 0
103 80 5 38 0 250 70 8 53 10 100 60 13 37 10
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test squamous
999 90 12 54 10 112 80 6 60 0 -87 80 3 48 0 -231 50 8 52 10
242 50 1 70 0 991 70 7 50 10 111 70 3 62 0 1 20 21 65 10
587 60 3 58 0 389 90 2 62 0 33 30 6 64 0 25 20 36 63 0
357 70 13 58 0 467 90 2 64 0 201 80 28 52 10 1 50 7 35 0
30 70 11 63 0 44 60 13 70 10 283 90 2 51 0 15 50 13 40 10

test small
25 30 2 69 0 -103 70 22 36 10 21 20 4 71 0 13 30 2 62 0
87 60 2 60 0 2 40 36 44 10 20 30 9 54 10 7 20 11 66 0
24 60 8 49 0 99 70 3 72 0 8 80 2 68 0 99 85 4 62 0
61 70 2 71 0 25 70 2 70 0 95 70 1 61 0 80 50 17 71 0
51 30 87 59 10 29 40 8 67 0

test adeno
24 40 2 60 0 18 40 5 69 10 -83 99 3 57 0 31 80 3 39 0
51 60 5 62 0 90 60 22 50 10 52 60 3 43 0 73 60 3 70 0
8 50 5 66 0 36 70 8 61 0 48 10 4 81 0 7 40 4 58 0

140 70 3 63 0 186 90 3 60 0 84 80 4 62 10 19 50 10 42 0
45 40 3 69 0 80 40 4 63 0

test large
52 60 4 45 0 164 70 15 68 10 19 30 4 39 10 53 60 12 66 0
15 30 5 63 0 43 60 11 49 10 340 80 10 64 10 133 75 1 65 0

111 60 5 64 0 231 70 18 67 10 378 80 4 65 0 49 30 3 37 0
;

The following statements use the PHREG procedure to fit the Cox proportional hazards model to these data.
The variables Prior, Cell, and Therapy, which are categorical variables, are declared in the CLASS statement.
By default, PROC PHREG parameterizes the CLASS variables by using the reference coding with the last
category as the reference category. However, you can explicitly specify the reference category of your choice.
Here, Prior=no is chosen as the reference category for prior therapy, Cell=large is chosen as the reference
category for type of tumor cell, and Therapy=standard is chosen as the reference category for the type of
therapy. In the MODEL statement, the term Prior|Therapy is just another way of specifying the main effects
Prior, Therapy, and the Prior*Therapy interaction.

proc phreg data=VALung;
class Prior(ref='no') Cell(ref='large') Therapy(ref='standard');
model Time*Status(0) = Kps Duration Age Cell Prior|Therapy;

run;

Coding of the CLASS variables is displayed in Output 73.3.1. There is one dummy variable for Prior and one
for Therapy, since both variables are binary. The dummy variable has a value of 0 for the reference category
(Prior=no, Therapy=standard). The variable Cell has four categories and is represented by three dummy
variables. Note that the reference category, Cell=large, has a value of 0 for all three dummy variables.
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Output 73.3.1 Reference Coding of CLASS Variables

The PHREG ProcedureThe PHREG Procedure

Class Level Information

Class Value
Design

Variables

Prior no 0

yes 1

Cell adeno 1 0 0

large 0 0 0

small 0 1 0

squamous 0 0 1

Therapy standard 0

test 1

The test results of individual model effects are shown in Output 73.3.2. There is a strong prognostic effect of
Kps on patient’s survivorship (p < 0:0001), and the survival times for patients of different Cell types differ
significantly (p = 0.0003). The Prior*Therapy interaction is marginally significant (p = 0.0416)—that is, prior
therapy might play a role in whether one treatment is more effective than the other.

Output 73.3.2 Wald Tests of Individual Effects

Joint Tests

Effect DF
Wald

Chi-Square Pr > ChiSq

Kps 1 35.5051 <.0001

Duration 1 0.1159 0.7335

Age 1 1.9772 0.1597

Cell 3 18.5339 0.0003

Prior 1 2.5296 0.1117

Therapy 1 5.2349 0.0221

Prior*Therapy 1 4.1528 0.0416

Note: Under full-rank parameterizations, Type 3 effect tests are replaced by joint tests.  The joint test for an effect is a test that all of
the parameters associated with that effect are zero.  Such joint tests might not be equivalent to Type 3 effect tests under GLM
parameterization.

In the Cox proportional hazards model, the effects of the covariates are to act multiplicatively on the hazard
of the survival time, and therefore it is a little easier to interpret the corresponding hazard ratios than the
regression parameters. For a parameter that corresponds to a continuous variable, the hazard ratio is the ratio
of hazard rates for a increase of one unit of the variable. From Output 73.3.3, the hazard ratio estimate for
Kps is 0.968, meaning that an increase of 10 units in Karnofsky performance scale will shrink the hazard rate
by 1 � .0:968/10=28%. For a CLASS variable parameter, the hazard ratio presented in the Output 73.3.3
is the ratio of the hazard rates between the given category and the reference category. The hazard rate of
Cell=adeno is 219% that of Cell=large, the hazard rate of Cell=small is 162% that of Cell=large, and the
hazard rate of Cell=squamous is only 66% that of Cell=large. Hazard ratios for Prior and Therapy are missing
since the model contains the Prior*Therapy interaction. You can use the HAZARDRATIO statement to
obtain the hazard ratios for a main effect in the presence of interaction as shown later in this example.



Example 73.3: Modeling with Categorical Predictors F 6039

Output 73.3.3 Parameters Estimates with Reference Coding

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio Label

Kps 1 -0.03300 0.00554 35.5051 <.0001 0.968 Karnofsky performance scale

Duration 1 0.00323 0.00949 0.1159 0.7335 1.003 months from diagnosis to
randomization

Age 1 -0.01353 0.00962 1.9772 0.1597 0.987 age in years

Cell adeno 1 0.78356 0.30382 6.6512 0.0099 2.189 cell type adeno

Cell small 1 0.48230 0.26537 3.3032 0.0691 1.620 cell type small

Cell squamous 1 -0.40770 0.28363 2.0663 0.1506 0.665 cell type squamous

Prior yes 1 0.45914 0.28868 2.5296 0.1117 . prior therapy yes

Therapy test 1 0.56662 0.24765 5.2349 0.0221 . type of treatment test

Prior*Therapy yes test 1 -0.87579 0.42976 4.1528 0.0416 . prior therapy yes * type of
treatment test

The following PROC PHREG statements illustrate the use of the backward elimination process to identify
the effects that affect the survivorship of the lung cancer patients. The option SELECTION=BACKWARD is
specified to carry out the backward elimination. The option SLSTAY=0.1 specifies the significant level for
retaining the effects in the model.

proc phreg data=VALung;
class Prior(ref='no') Cell(ref='large') Therapy(ref='standard');
model Time*Status(0) = Kps Duration Age Cell Prior|Therapy

/ selection=backward slstay=0.1;
run;

Results of the backward elimination process are summarized in Output 73.3.4. The effect Duration was
eliminated first and was followed by Age.

Output 73.3.4 Effects Eliminated from the Model

The PHREG ProcedureThe PHREG Procedure

Summary of Backward Elimination

Step
Effect
Removed DF

Number
In

Wald
Chi-Square Pr > ChiSq

Effect
Label

1 Duration 1 6 0.1159 0.7335 months from diagnosis to randomization

2 Age 1 5 2.0458 0.1526 age in years

Output 73.3.5 shows the Type 3 analysis of effects and the maximum likelihood estimates of the regression
coefficients of the model. Without controlling for Age and Duration, KPS and Cell remain significant, but the
Prior*Therapy interaction is less prominent than before (p = 0.0871) though still significant at 0.1 level.



6040 F Chapter 73: The PHREG Procedure

Output 73.3.5 Type 3 Effects and Parameter Estimates for the Selected Model

Joint Tests

Effect DF
Wald

Chi-Square Pr > ChiSq

Kps 1 35.9218 <.0001

Cell 3 17.4134 0.0006

Prior 1 2.3113 0.1284

Therapy 1 3.8030 0.0512

Prior*Therapy 1 2.9269 0.0871

Note: Under full-rank parameterizations, Type 3 effect tests are replaced by joint tests.  The joint test for an effect is a test that all of
the parameters associated with that effect are zero.  Such joint tests might not be equivalent to Type 3 effect tests under GLM
parameterization.

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio Label

Kps 1 -0.03111 0.00519 35.9218 <.0001 0.969 Karnofsky performance scale

Cell adeno 1 0.74907 0.30465 6.0457 0.0139 2.115 cell type adeno

Cell small 1 0.44265 0.26168 2.8614 0.0907 1.557 cell type small

Cell squamous 1 -0.41145 0.28309 2.1125 0.1461 0.663 cell type squamous

Prior yes 1 0.41755 0.27465 2.3113 0.1284 . prior therapy yes

Therapy test 1 0.45670 0.23419 3.8030 0.0512 . type of treatment test

Prior*Therapy yes test 1 -0.69443 0.40590 2.9269 0.0871 . prior therapy yes * type of
treatment test

Finally, the following statements refit the previous model and computes hazard ratios at settings beyond those
displayed in the “Analysis of Maximum Likelihood Estimates” table. You can use either the HAZARDRATIO
statement or the CONTRAST statement to obtain hazard ratios. Using the CONTRAST statement to compute
hazard ratios for CLASS variables can be a daunting task unless you are familiar with the parameterization
schemes (see the section “Parameterization of Model Effects” on page 387 in Chapter 19, “Shared Concepts
and Topics,” for details), but you have control over which specific hazard ratios you want to compute.
HAZARDRATIO statements, on the other hand, are designed specifically to provide hazard ratios. They are
easy to use and you can also request both the Wald confidence limits and the profile-likelihood confidence
limits; the latter is not available for the CONTRAST statements. Three HAZARDRATIO statements are
specified; each has the CL=BOTH option to request both the Wald confidence limits and the profile-likelihood
limits. The first HAZARDRATIO statement, labeled ’H1’, estimates the hazard ratio for an increase of 10
units in the KPS; the UNITS= option specifies the number of units increase. The second HAZARDRATIO
statement, labeled ’H2’ computes the hazard ratios for comparing any pairs of tumor Cell types. The
third HAZARDRATIO statement, labeled ’H3’, compares the test therapy with the standard therapy. The
DIFF=REF option specifies that each nonreference category is compared to the reference category. The
purpose of using DIFF=REF here is to ensure that the hazard ratio is comparing the test therapy to the
standard therapy instead of the other way around. Three CONTRAST statements, labeled ’C1’, ’C2’, and
’C3’, parallel to the HAZARDRATIO statements ’H1’, ’H2’, and ’H3’, respectively, are specified. The
ESTIMATE=EXP option specifies that the linear predictors be estimated in the exponential scale, which are
precisely the hazard ratios.
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proc phreg data=VALung;
class Prior(ref='no') Cell(ref='large') Therapy(ref='standard');
model Time*Status(0) = Kps Cell Prior|Therapy;
hazardratio 'H1' Kps / units=10 cl=both;
hazardratio 'H2' Cell / cl=both;
hazardratio 'H3' Therapy / diff=ref cl=both;
contrast 'C1' Kps 10 / estimate=exp;
contrast 'C2' cell 1 0 0, /* adeno vs large */

cell 1 -1 0, /* adeno vs small */
cell 1 0 -1, /* adeno vs squamous */
cell 0 -1 0, /* large vs small */
cell 0 0 -1, /* large vs Squamous */
cell 0 1 -1 /* small vs squamous */
/ estimate=exp;

contrast 'C3' Prior 0 Therapy 1 Prior*Therapy 0,
Prior 0 Therapy 1 Prior*Therapy 1 / estimate=exp;

run;

Output 73.3.6 displays the results of the three HAZARDRATIO statements in separate tables. Results of the
three CONTRAST statements are shown in one table in Output 73.3.7. However, point estimates and the
Wald confidence limits for the hazard ratio agree in between the two outputs.

Output 73.3.6 Results from HAZARDRATIO Statements

The PHREG ProcedureThe PHREG Procedure

H1: Hazard Ratios for Kps

Description
Point

Estimate

95%
Wald

Confidence
Limits

95%
Profile

Likelihood
Confidence

Limits

Kps Unit=10 0.733 0.662 0.811 0.662 0.811

H2: Hazard Ratios for Cell

Description
Point

Estimate

95%
Wald

Confidence
Limits

95%
Profile

Likelihood
Confidence

Limits

Cell adeno vs large 2.115 1.164 3.843 1.162 3.855

Cell adeno vs small 1.359 0.798 2.312 0.791 2.301

Cell adeno vs squamous 3.192 1.773 5.746 1.770 5.768

Cell large vs small 0.642 0.385 1.073 0.380 1.065

Cell large vs squamous 1.509 0.866 2.628 0.863 2.634

Cell small vs squamous 2.349 1.387 3.980 1.399 4.030

H3: Hazard Ratios for Therapy

Description
Point

Estimate

95%
Wald

Confidence
Limits

95%
Profile

Likelihood
Confidence

Limits

Therapy test vs standard At Prior=no 1.579 0.998 2.499 0.998 2.506

Therapy test vs standard At Prior=yes 0.788 0.396 1.568 0.390 1.560



6042 F Chapter 73: The PHREG Procedure

Output 73.3.7 Results from CONTRAST Statements

Contrast Estimation and Testing Results by Row

Contrast Type Row Estimate
Standard

Error Alpha
Confidence

Limits
Wald

Chi-Square Pr > ChiSq

C1 EXP 1 0.7326 0.0380 0.05 0.6618 0.8111 35.9218 <.0001

C2 EXP 1 2.1150 0.6443 0.05 1.1641 3.8427 6.0457 0.0139

C2 EXP 2 1.3586 0.3686 0.05 0.7982 2.3122 1.2755 0.2587

C2 EXP 3 3.1916 0.9575 0.05 1.7727 5.7462 14.9629 0.0001

C2 EXP 4 0.6423 0.1681 0.05 0.3846 1.0728 2.8614 0.0907

C2 EXP 5 1.5090 0.4272 0.05 0.8664 2.6282 2.1125 0.1461

C2 EXP 6 2.3493 0.6318 0.05 1.3868 3.9797 10.0858 0.0015

C3 EXP 1 1.5789 0.3698 0.05 0.9977 2.4985 3.8030 0.0512

C3 EXP 2 0.7884 0.2766 0.05 0.3964 1.5680 0.4593 0.4980

Example 73.4: Firth’s Correction for Monotone Likelihood
In fitting the Cox regression model by maximizing the partial likelihood, the estimate of an explanatory
variable X will be infinite if the value of X at each uncensored failure time is the largest of all the values
of X in the risk set at that time (Tsiatis 1981; Bryson and Johnson 1981). You can exploit this information
to artificially create a data set that has the condition of monotone likelihood for the Cox regression. The
following DATA step modifies the Myeloma data in Example 73.1 to create a new explanatory variable,
Contrived, which has the value 1 if the observed time is less than or equal to 65 and has the value 0 otherwise.
The phenomenon of monotone likelihood will be demonstrated in the new data set Myeloma2.

data Myeloma2;
set Myeloma;
Contrived= (Time <= 65);

run;

For illustration purposes, consider a Cox model with three explanatory variables, one of which is the variable
Contrived. The following statements invoke PROC PHREG to perform the Cox regression. The IPRINT
option is specified in the MODEL statement to print the iteration history of the optimization.

proc phreg data=Myeloma2;
model Time*Vstatus(0)=LOGbun HGB Contrived / itprint;

run;

The symptom of monotonity is demonstrated in Output 73.4.1. The log likelihood converges to the value of
–136.56 while the coefficient for Contrived diverges. Although the Newton-Raphson optimization process
did not fail, it is obvious that convergence is questionable. A close examination of the standard errors in the
“Analysis of Maximum Likelihood Estimates” table reveals a very large value for the coefficient of Contrived.
This is very typical of a diverged estimate.
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Output 73.4.1 Monotone Likelihood Behavior Displayed

The PHREG ProcedureThe PHREG Procedure

Maximum Likelihood Iteration History

Iter Ridge Log Likelihood LogBUN HGB Contrived

0 0 -154.8579914384 0.0000000000 0.000000000 0.000000000

1 0 -140.6934052686 1.9948819671 -0.084318519 1.466331269

2 0 -137.7841629416 1.6794678962 -0.109067888 2.778361123

3 0 -136.9711897754 1.7140611684 -0.111564202 3.938095086

4 0 -136.7078932606 1.7181735043 -0.112273248 5.003053568

5 0 -136.6164264879 1.7187547532 -0.112369756 6.027435769

6 0 -136.5835200895 1.7188294108 -0.112382079 7.036444978

7 0 -136.5715152788 1.7188392687 -0.112383700 8.039763533

8 0 -136.5671126045 1.7188405904 -0.112383917 9.040984886

9 0 -136.5654947987 1.7188407687 -0.112383947 10.041434266

10 0 -136.5648998913 1.7188407928 -0.112383950 11.041599592

11 0 -136.5646810709 1.7188407960 -0.112383951 12.041660414

12 0 -136.5646005760 1.7188407965 -0.112383951 13.041682789

13 0 -136.5645709642 1.7188407965 -0.112383951 14.041691020

14 0 -136.5645600707 1.7188407965 -0.112383951 15.041694049

15 0 -136.5645560632 1.7188407965 -0.112383951 16.041695162

16 0 -136.5645545889 1.7188407965 -0.112383951 17.041695572

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio

LogBUN 1 1.71884 0.58376 8.6697 0.0032 5.578

HGB 1 -0.11238 0.06090 3.4053 0.0650 0.894

Contrived 1 17.04170 1080 0.0002 0.9874 25183399

Next, the Firth correction was applied as shown in the following statements. Also, the profile-likelihood
confidence limits for the hazard ratios are requested by using the RISKLIMITS=PL option.

proc phreg data=Myeloma2;
model Time*Vstatus(0)=LogBUN HGB Contrived /

firth risklimits=pl itprint;
run;

PROC PHREG uses the penalized likelihood maximum to obtain a finite estimate for the coefficient of
Contrived (Output 73.4.2). The much preferred profile-likelihood confidence limits, as shown in (Heinze and
Schemper 2001), are also displayed.
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Output 73.4.2 Convergence Obtained with the Firth Correction

The PHREG ProcedureThe PHREG Procedure

Maximum Likelihood Iteration History

Iter Ridge Log Likelihood LogBUN HGB Contrived

0 0 -150.7361197494 0.0000000000 0.000000000 0.0000000000

1 0 -136.9933949142 2.0262484120 -0.086519138 1.4338859318

2 0 -134.5796594364 1.6770836974 -0.109172604 2.6221444778

3 0 -134.1572923217 1.7163408994 -0.111166227 3.4458043289

4 0 -134.1229607193 1.7209210332 -0.112007726 3.7923555412

5 0 -134.1228364805 1.7219588214 -0.112178328 3.8174197804

6 0 -134.1228355256 1.7220081673 -0.112187764 3.8151642206

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio

95%
Hazard Ratio

Profile
Likelihood
Confidence

Limits

LogBUN 1 1.72201 0.58379 8.7008 0.0032 5.596 1.761 17.231

HGB 1 -0.11219 0.06059 3.4279 0.0641 0.894 0.794 1.007

Contrived 1 3.81516 1.55812 5.9955 0.0143 45.384 5.406 6005.404

Example 73.5: Conditional Logistic Regression for m:n Matching
Conditional logistic regression is used to investigate the relationship between an outcome and a set of
prognostic factors in matched case-control studies. The outcome is whether the subject is a case or a control.
If there is only one case and one control, the matching is 1:1. The m:n matching refers to the situation in
which there is a varying number of cases and controls in the matched sets. You can perform conditional
logistic regression with the PHREG procedure by using the discrete logistic model and forming a stratum for
each matched set. In addition, you need to create dummy survival times so that all the cases in a matched set
have the same event time value, and the corresponding controls are censored at later times.

Consider the following set of low infant birth-weight data extracted from Appendix 1 of Hosmer and
Lemeshow (1989). These data represent 189 women, of whom 59 had low-birth-weight babies and 130
had normal-weight babies. Under investigation are the following risk factors: weight in pounds at the last
menstrual period (LWT), presence of hypertension (HT), smoking status during pregnancy (Smoke), and
presence of uterine irritability (UI). For HT, Smoke, and UI, a value of 1 indicates a “yes” and a value of 0
indicates a “no.” The woman’s age (Age) is used as the matching variable. The SAS data set LBW contains a
subset of the data corresponding to women between the ages of 16 and 32.

data LBW;
input id Age Low LWT Smoke HT UI @@;
Time=2-Low;
datalines;

25 16 1 130 0 0 0 143 16 0 110 0 0 0
166 16 0 112 0 0 0 167 16 0 135 1 0 0
189 16 0 135 1 0 0 206 16 0 170 0 0 0
216 16 0 95 0 0 0 37 17 1 130 1 0 1
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45 17 1 110 1 0 0 68 17 1 120 1 0 0
71 17 1 120 0 0 0 83 17 1 142 0 1 0
93 17 0 103 0 0 0 113 17 0 122 1 0 0

116 17 0 113 0 0 0 117 17 0 113 0 0 0
147 17 0 119 0 0 0 148 17 0 119 0 0 0
180 17 0 120 1 0 0 49 18 1 148 0 0 0
50 18 1 110 1 0 0 89 18 0 107 1 0 1

100 18 0 100 1 0 0 101 18 0 100 1 0 0
132 18 0 90 1 0 1 133 18 0 90 1 0 1
168 18 0 229 0 0 0 205 18 0 120 1 0 0
208 18 0 120 0 0 0 23 19 1 91 1 0 1
33 19 1 102 0 0 0 34 19 1 112 1 0 1
85 19 0 182 0 0 1 96 19 0 95 0 0 0
97 19 0 150 0 0 0 124 19 0 138 1 0 0

129 19 0 189 0 0 0 135 19 0 132 0 0 0
142 19 0 115 0 0 0 181 19 0 105 0 0 0
187 19 0 235 1 1 0 192 19 0 147 1 0 0
193 19 0 147 1 0 0 197 19 0 184 1 1 0
224 19 0 120 1 0 0 27 20 1 150 1 0 0
31 20 1 125 0 0 1 40 20 1 120 1 0 0
44 20 1 80 1 0 1 47 20 1 109 0 0 0
51 20 1 121 1 0 1 60 20 1 122 1 0 0
76 20 1 105 0 0 0 87 20 0 105 1 0 0

104 20 0 120 0 0 1 146 20 0 103 0 0 0
155 20 0 169 0 0 1 160 20 0 141 0 0 1
172 20 0 121 1 0 0 177 20 0 127 0 0 0
201 20 0 120 0 0 0 211 20 0 170 1 0 0
217 20 0 158 0 0 0 20 21 1 165 1 1 0
28 21 1 200 0 0 1 30 21 1 103 0 0 0
52 21 1 100 0 0 0 84 21 1 130 1 1 0
88 21 0 108 1 0 1 91 21 0 124 0 0 0

128 21 0 185 1 0 0 131 21 0 160 0 0 0
144 21 0 110 1 0 1 186 21 0 134 0 0 0
219 21 0 115 0 0 0 42 22 1 130 1 0 1
67 22 1 130 1 0 0 92 22 0 118 0 0 0
98 22 0 95 0 1 0 137 22 0 85 1 0 0

138 22 0 120 0 1 0 140 22 0 130 1 0 0
161 22 0 158 0 0 0 162 22 0 112 1 0 0
174 22 0 131 0 0 0 184 22 0 125 0 0 0
204 22 0 169 0 0 0 220 22 0 129 0 0 0
17 23 1 97 0 0 1 59 23 1 187 1 0 0
63 23 1 120 0 0 0 69 23 1 110 1 0 0
82 23 1 94 1 0 0 130 23 0 130 0 0 0

139 23 0 128 0 0 0 149 23 0 119 0 0 0
164 23 0 115 1 0 0 173 23 0 190 0 0 0
179 23 0 123 0 0 0 182 23 0 130 0 0 0
200 23 0 110 0 0 0 18 24 1 128 0 0 0
19 24 1 132 0 1 0 29 24 1 155 1 0 0
36 24 1 138 0 0 0 61 24 1 105 1 0 0

118 24 0 90 1 0 0 136 24 0 115 0 0 0
150 24 0 110 0 0 0 156 24 0 115 0 0 0
185 24 0 133 0 0 0 196 24 0 110 0 0 0
199 24 0 110 0 0 0 225 24 0 116 0 0 0
13 25 1 105 0 1 0 15 25 1 85 0 0 1
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24 25 1 115 0 0 0 26 25 1 92 1 0 0
32 25 1 89 0 0 0 46 25 1 105 0 0 0

103 25 0 118 1 0 0 111 25 0 120 0 0 1
120 25 0 155 0 0 0 121 25 0 125 0 0 0
169 25 0 140 0 0 0 188 25 0 95 1 0 1
202 25 0 241 0 1 0 215 25 0 120 0 0 0
221 25 0 130 0 0 0 35 26 1 117 1 0 0
54 26 1 96 0 0 0 75 26 1 154 0 1 0
77 26 1 190 1 0 0 95 26 0 113 1 0 0

115 26 0 168 1 0 0 154 26 0 133 1 0 0
218 26 0 160 0 0 0 16 27 1 150 0 0 0
43 27 1 130 0 0 1 125 27 0 124 1 0 0
4 28 1 120 1 0 1 79 28 1 95 1 0 0

105 28 0 120 1 0 0 109 28 0 120 0 0 0
112 28 0 167 0 0 0 151 28 0 140 0 0 0
159 28 0 250 1 0 0 212 28 0 134 0 0 0
214 28 0 130 0 0 0 10 29 1 130 0 0 1
94 29 0 123 1 0 0 114 29 0 150 0 0 0

123 29 0 140 1 0 0 190 29 0 135 0 0 0
191 29 0 154 0 0 0 209 29 0 130 1 0 0
65 30 1 142 1 0 0 99 30 0 107 0 0 1

141 30 0 95 1 0 0 145 30 0 153 0 0 0
176 30 0 110 0 0 0 195 30 0 137 0 0 0
203 30 0 112 0 0 0 56 31 1 102 1 0 0
107 31 0 100 0 0 1 126 31 0 215 1 0 0
163 31 0 150 1 0 0 222 31 0 120 0 0 0
22 32 1 105 1 0 0 106 32 0 121 0 0 0

134 32 0 132 0 0 0 170 32 0 134 1 0 0
175 32 0 170 0 0 0 207 32 0 186 0 0 0
;

The variable Low is used to determine whether the subject is a case (Low=1, low-birth-weight baby) or a
control (Low=0, normal-weight baby). The dummy time variable Time takes the value 1 for cases and 2 for
controls.

The following statements produce a conditional logistic regression analysis of the data. The variable Time is
the response, and Low is the censoring variable. Note that the data set is created so that all the cases have
the same event time and the controls have later censored times. The matching variable Age is used in the
STRATA statement so that each unique age value defines a stratum. The variables LWT, Smoke, HT, and UI
are specified as explanatory variables. The TIES=DISCRETE option requests the discrete logistic model.

proc phreg data=LBW;
model Time*Low(0)= LWT Smoke HT UI / ties=discrete;
strata Age;

run;
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The procedure displays a summary of the number of event and censored observations for each stratum. These
are the number of cases and controls for each matched set shown in Output 73.5.1.

Output 73.5.1 Summary of Number of Case and Controls

The PHREG ProcedureThe PHREG Procedure

Model Information

Data Set WORK.LBW

Dependent Variable Time

Censoring Variable Low

Censoring Value(s) 0

Ties Handling DISCRETE

Summary of the Number of Event and
Censored Values

Stratum Age Total Event Censored
Percent

Censored

1 16 7 1 6 85.71

2 17 12 5 7 58.33

3 18 10 2 8 80.00

4 19 16 3 13 81.25

5 20 18 8 10 55.56

6 21 12 5 7 58.33

7 22 13 2 11 84.62

8 23 13 5 8 61.54

9 24 13 5 8 61.54

10 25 15 6 9 60.00

11 26 8 4 4 50.00

12 27 3 2 1 33.33

13 28 9 2 7 77.78

14 29 7 1 6 85.71

15 30 7 1 6 85.71

16 31 5 1 4 80.00

17 32 6 1 5 83.33

Total 174 54 120 68.97

Results of the conditional logistic regression analysis are shown in Output 73.5.2. Based on the Wald test for
individual variables, the variables LWT, Smoke, and HT are statistically significant while UI is marginal.

The hazard ratios, computed by exponentiating the parameter estimates, are useful in interpreting the results
of the analysis. If the hazard ratio of a prognostic factor is larger than 1, an increment in the factor increases
the hazard rate. If the hazard ratio is less than 1, an increment in the factor decreases the hazard rate. Results
indicate that women were more likely to have low-birth-weight babies if they were underweight in the last
menstrual cycle, were hypertensive, smoked during pregnancy, or suffered uterine irritability.

Output 73.5.2 Conditional Logistic Regression Analysis for the Low-Birth-Weight Study

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.
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Output 73.5.2 continued

Model Fit Statistics

Criterion
Without

Covariates
With

Covariates

-2 LOG L 159.069 141.108

AIC 159.069 149.108

SBC 159.069 157.064

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 17.9613 4 0.0013

Score 17.3152 4 0.0017

Wald 15.5577 4 0.0037

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio

LWT 1 -0.01498 0.00706 4.5001 0.0339 0.985

Smoke 1 0.80805 0.36797 4.8221 0.0281 2.244

HT 1 1.75143 0.73932 5.6120 0.0178 5.763

UI 1 0.88341 0.48032 3.3827 0.0659 2.419

For matched case-control studies with one case per matched set (1:n matching), the likelihood function for
the conditional logistic regression reduces to that of the Cox model for the continuous time scale. For this
situation, you can use the default TIES=BRESLOW.

Example 73.6: Model Using Time-Dependent Explanatory Variables
Time-dependent variables can be used to model the effects of subjects transferring from one treatment group
to another. One example of the need for such strategies is the Stanford heart transplant program. Patients
are accepted if physicians judge them suitable for heart transplant. Then, when a donor becomes available,
physicians choose transplant recipients according to various medical criteria. A patient’s status can be
changed during the study from waiting for a transplant to being a transplant recipient. Transplant status can
be defined by the time-dependent covariate function z D z.t/ as

z.t/ D

�
0 if the patient has not received the transplant at time t
1 if the patient has received the transplant at time t

The Stanford heart transplant data that appear in Crowley and Hu (1977) consist of 103 patients, 69 of whom
received transplants. The data are saved in a SAS data set called Heart in the following DATA step. For each
patient in the program, there is a birth date (Bir_Date), a date of acceptance (Acc_Date), and a date last seen
(Ter_Date). The survival time (Time) in days is defined as Time = Ter_Date – Acc_Date. The survival time is
said to be uncensored (Status=1) or censored (Status=0), depending on whether Ter_Date is the date of death
or the closing date of the study. The age, in years, at acceptance into the program is Acc_Age = (Acc_Date
– Bir_Date) / 365. Previous open-heart surgery for each patient is indicated by the variable PrevSurg. For
each transplant recipient, there is a date of transplant (Xpl_Date) and three measures (NMismatch, Antigen,
Mismatch) of tissue-type mismatching. The waiting period (WaitTime) in days for a transplant recipient is
calculated as WaitTime = Xpl_Date – Acc_Date, and the age (in years) at transplant is Xpl_Age = (Xpl_Date –
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Bir_Date) / 365. For those who do not receive heart transplants, the WaitTime, Xpl_Age, NMismatch, Antigen,
and Mismatch variables contain missing values.

The input data contain dates that have a two-digit year representation. The SAS option YEARCUTOFF=1900
is specified to ensure that a two-digit year xx is year 19xx.

options yearcutoff=1900;
data Heart;

input ID
@5 Bir_Date mmddyy8.
@14 Acc_Date mmddyy8.
@23 Xpl_Date mmddyy8.
@32 Ter_Date mmddyy8.
@41 Status 1.
@43 PrevSurg 1.
@45 NMismatch 1.
@47 Antigen 1.
@49 Mismatch 4.
@54 Reject 1.
@56 NotTyped $1.;

label Bir_Date ='Date of birth'
Acc_Date ='Date of acceptance'
Xpl_Date ='Date of transplant'
Ter_Date ='Date last seen'
Status = 'Dead=1 Alive=0'
PrevSurg ='Previous surgery'
NMismatch= 'No of mismatches'
Antigen = 'HLA-A2 antigen'
Mismatch ='Mismatch score'
NotTyped = 'y=not tissue-typed';

Time= Ter_Date - Acc_Date;
Acc_Age=int( (Acc_Date - Bir_Date)/365 );
if ( Xpl_Date ne .) then do;

WaitTime= Xpl_Date - Acc_Date;
Xpl_Age= int( (Xpl_Date - Bir_Date)/365 );

end;
datalines;
1 01 10 37 11 15 67 01 03 68 1 0
2 03 02 16 01 02 68 01 07 68 1 0
3 09 19 13 01 06 68 01 06 68 01 21 68 1 0 2 0 1.11 0
4 12 23 27 03 28 68 05 02 68 05 05 68 1 0 3 0 1.66 0
5 07 28 47 05 10 68 05 27 68 1 0
6 11 08 13 06 13 68 06 15 68 1 0
7 08 29 17 07 12 68 08 31 68 05 17 70 1 0 4 0 1.32 1
8 03 27 23 08 01 68 09 09 68 1 0
9 06 11 21 08 09 68 11 01 68 1 0

10 02 09 26 08 11 68 08 22 68 10 07 68 1 0 2 0 0.61 1
11 08 22 20 08 15 68 09 09 68 01 14 69 1 0 1 0 0.36 0
12 07 09 15 09 17 68 09 24 68 1 0
13 02 22 14 09 19 68 10 05 68 12 08 68 1 0 3 0 1.89 1
14 09 16 14 09 20 68 10 26 68 07 07 72 1 0 1 0 0.87 1
15 12 04 14 09 27 68 09 27 68 1 1
16 05 16 19 10 26 68 11 22 68 08 29 69 1 0 2 0 1.12 1
17 06 29 48 10 28 68 12 02 68 1 0
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18 12 27 11 11 01 68 11 20 68 12 13 68 1 0 3 0 2.05 0
19 10 04 09 11 18 68 12 24 68 1 0
20 10 19 13 01 29 69 02 15 69 02 25 69 1 0 3 1 2.76 1
21 09 29 25 02 01 69 02 08 69 11 29 71 1 0 2 0 1.13 1
22 06 05 26 03 18 69 03 29 69 05 07 69 1 0 3 0 1.38 1
23 12 02 10 04 11 69 04 13 69 04 13 71 1 0 3 0 0.96 1
24 07 07 17 04 25 69 07 16 69 11 29 69 1 0 3 1 1.62 1
25 02 06 36 04 28 69 05 22 69 04 01 74 0 0 2 0 1.06 0
26 10 18 38 05 01 69 03 01 73 0 0
27 07 21 60 05 04 69 01 21 70 1 0
28 05 30 15 06 07 69 08 16 69 08 17 69 1 0 2 0 0.47 0
29 02 06 19 07 14 69 08 17 69 1 0
30 09 20 24 08 19 69 09 03 69 12 18 71 1 0 4 0 1.58 1
31 10 04 14 08 23 69 09 07 69 1 0
32 04 02 05 08 29 69 09 14 69 11 13 69 1 0 4 0 0.69 1
33 01 01 21 11 27 69 01 16 70 04 01 74 0 0 3 0 0.91 0
34 05 24 29 12 12 69 01 03 70 04 01 74 0 0 2 0 0.38 0
35 08 04 26 01 21 70 02 01 70 1 0
36 05 01 21 04 04 70 05 19 70 07 12 70 1 0 2 0 2.09 1
37 10 24 08 04 25 70 05 13 70 06 29 70 1 0 3 1 0.87 1
38 11 14 28 05 05 70 05 09 70 05 09 70 1 0 3 0 0.87 0
39 11 12 19 05 20 70 05 21 70 07 11 70 1 0 y
40 11 30 21 05 25 70 07 04 70 04 01 74 0 1 4 0 0.75 0
41 04 30 25 08 19 70 10 15 70 04 01 74 0 1 2 0 0.98 0
42 03 13 34 08 21 70 08 23 70 1 0
43 06 01 27 10 22 70 10 23 70 1 1
44 05 02 28 11 30 70 01 08 71 1 1
45 10 30 34 01 05 71 01 05 71 02 18 71 1 0 1 0 0.0 0
46 06 01 22 01 10 71 01 11 71 10 01 73 1 1 2 0 0.81 1
47 12 28 23 02 02 71 02 22 71 04 14 71 1 0 3 0 1.38 1
48 01 23 15 02 05 71 02 13 71 1 0
49 06 21 34 02 15 71 03 22 71 04 01 74 0 1 4 0 1.35 0
50 03 28 25 02 15 71 05 08 71 10 21 73 1 1 y
51 06 29 22 03 24 71 04 24 71 01 02 72 1 0 4 1 1.08 1
52 01 24 30 04 25 71 08 04 71 1 0
53 02 27 24 07 02 71 08 11 71 01 05 72 1 0 y
54 09 16 23 07 02 71 07 04 71 1 0
55 02 24 19 08 09 71 08 18 71 10 08 71 1 0 2 0 1.51 1
56 12 05 32 09 03 71 11 08 71 04 01 74 0 0 4 0 0.98 0
57 06 08 30 09 13 71 02 08 72 1 0
58 09 17 23 09 23 71 10 13 71 08 30 72 1 1 2 1 1.82 1
59 05 12 30 09 29 71 12 15 71 04 01 74 0 1 2 0 0.19 0
60 10 29 22 11 18 71 11 20 71 01 24 72 1 0 3 0 0.66 1
61 05 12 19 12 04 71 12 05 71 1 0
62 08 01 32 12 09 71 02 15 72 1 0
63 04 15 39 12 12 71 01 07 72 04 01 74 0 0 3 1 1.93 0
64 04 09 23 02 01 72 03 04 72 09 06 73 1 1 1 0 0.12 0
65 11 19 20 03 06 72 03 17 72 05 22 72 1 0 2 0 1.12 1
66 01 02 19 03 20 72 04 20 72 1 0
67 09 03 52 03 23 72 05 18 72 01 01 73 1 0 3 0 1.02 0
68 01 10 27 04 07 72 04 09 72 06 13 72 1 0 3 1 1.68 1
69 06 05 24 06 01 72 06 10 72 04 01 74 0 0 2 0 1.20 0
70 06 17 19 06 17 72 06 21 72 07 16 72 1 0 3 1 1.68 1
71 02 22 25 07 21 72 08 20 72 04 01 74 0 0 3 0 0.97 0
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72 11 22 45 08 14 72 08 17 72 04 01 74 0 0 3 1 1.46 0
73 05 13 16 09 11 72 10 07 72 12 09 72 1 0 3 1 2.16 1
74 07 20 43 09 18 72 09 22 72 10 04 72 1 0 1 0 0.61 0
75 07 25 20 09 29 72 09 30 72 1 0
76 09 03 20 10 04 72 11 18 72 04 01 74 0 1 3 1 1.70 0
77 08 27 31 10 06 72 10 26 72 1 0
78 02 20 24 11 03 72 05 31 73 04 01 74 0 0 3 0 0.81 0
79 02 18 19 11 30 72 02 04 73 03 05 73 1 0 2 0 1.08 1
80 06 27 26 12 06 72 12 31 72 04 01 74 0 1 3 0 1.41 0
81 02 21 20 01 12 73 01 17 73 04 01 74 0 0 4 1 1.94 0
82 08 19 42 11 01 71 01 01 73 0 0
83 10 04 19 01 24 73 02 24 73 04 13 73 1 0 4 0 3.05 0
84 05 13 30 01 30 73 03 07 73 12 29 73 1 0 4 0 0.60 1
85 02 13 25 02 06 73 02 10 73 1 0
86 03 30 24 03 01 73 03 08 73 04 01 74 0 0 3 1 1.44 0
87 12 19 26 03 21 73 05 19 73 07 08 73 1 0 2 0 2.25 1
88 11 16 18 03 28 73 04 27 73 04 01 74 0 0 3 0 0.68 0
89 03 19 22 04 05 73 08 21 73 10 28 73 1 0 4 1 1.33 1
90 03 25 21 04 06 73 09 12 73 10 08 73 1 1 3 1 0.82 0
91 09 08 25 04 13 73 03 18 74 1 0
92 05 03 28 04 27 73 03 02 74 04 01 74 0 0 1 0 0.16 0
93 10 10 25 07 11 73 08 07 73 04 01 74 0 0 2 0 0.33 0
94 11 11 29 09 14 73 09 17 73 02 25 74 1 1 3 0 1.20 1
95 06 11 33 09 22 73 09 23 73 10 07 73 1 0 y
96 02 09 47 10 04 73 10 16 73 04 01 74 0 0 2 0 0.46 0
97 04 11 50 11 22 73 12 12 73 04 01 74 0 0 3 1 1.78 0
98 04 28 45 12 14 73 03 19 74 04 01 74 0 0 4 1 0.77 0
99 02 24 24 12 25 73 01 14 74 1 0

100 01 31 39 02 22 74 03 31 74 04 01 74 0 1 3 0 0.67 0
101 08 25 24 03 02 74 04 01 74 0 0
102 10 30 33 03 22 74 04 01 74 0 0
103 05 20 28 09 13 67 09 18 67 1 0
;

Crowley and Hu (1977) have presented a number of analyses to assess the effects of various explanatory
variables on the survival of patients. This example fits two of the models that they have considered.

The first model consists of two explanatory variables—the transplant status and the age at acceptance. The
transplant status (XStatus) is a time-dependent variable defined by the programming statements between the
MODEL statement and the RUN statement. The XStatus variable takes the value 1 or 0 at time t (measured
from the date of acceptance), depending on whether or not the patient has received a transplant at that time.
Note that the value of XStatus changes for subjects in each risk set (subjects still alive just before each
distinct event time); therefore, the variable cannot be created in the DATA step. The variable Acc_Age, which
is not time dependent, accounts for the possibility that pretransplant risks vary with age. The following
statements fit this model:

proc phreg data= Heart;
model Time*Status(0)= XStatus Acc_Age;
if (WaitTime = . or Time < WaitTime) then XStatus=0.;
else XStatus= 1.0;

run;



6052 F Chapter 73: The PHREG Procedure

Results of this analysis are shown in Output 73.6.1. Transplantation appears to be associated with a slight
decrease in risk, although the effect is not significant (p = 0.8261). The age at acceptance as a pretransplant
risk factor adds significantly to the model (p = 0.0289). The risk increases significantly with age at acceptance.

Output 73.6.1 Heart Transplant Study Analysis I

The PHREG ProcedureThe PHREG Procedure

Model Information

Data Set WORK.HEART

Dependent Variable Time

Censoring Variable Status Dead=1 Alive=0

Censoring Value(s) 0

Ties Handling BRESLOW

Number of Observations Read
Number of Observations Used

103
103

Summary of the Number of Event
and Censored Values

Total Event Censored
Percent

Censored

103 75 28 27.18

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Criterion
Without

Covariates
With

Covariates

-2 LOG L 596.651 591.292

AIC 596.651 595.292

SBC 596.651 599.927

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 5.3593 2 0.0686

Score 4.8093 2 0.0903

Wald 4.7999 2 0.0907

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio

XStatus 1 -0.06720 0.30594 0.0482 0.8261 0.935

Acc_Age 1 0.03158 0.01446 4.7711 0.0289 1.032

The second model consists of three explanatory variables—the transplant status, the transplant age, and the
mismatch score. Four transplant recipients who were not typed have no Mismatch values; they are excluded
from the analysis by the use of a WHERE clause. The transplant age (XAge) and the mismatch score (XScore)
are also time dependent and are defined in a fashion similar to that of XStatus. While the patient is waiting for
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a transplant, XAge and XScore have a value of 0. After the patient has migrated to the recipient population,
XAge takes on the value of Xpl_Age (transplant age for the recipient), and XScore takes on the value of
Mismatch (a measure of the degree of dissimilarity between donor and recipient). The following statements
fit this model:

proc phreg data= Heart;
model Time*Status(0)= XStatus XAge XScore;
where NotTyped ^= 'y';
if (WaitTime = . or Time < WaitTime) then do;

XStatus=0.;
XAge=0.;
XScore= 0.;

end;
else do;

XStatus= 1.0;
XAge= Xpl_Age;
XScore= Mismatch;

end;
run;

Results of the analysis are shown in Output 73.6.2. Note that only 99 patients are included in this analysis,
instead of 103 patients as in the previous analysis, since four transplant recipients who were not typed
are excluded. The variable XAge is statistically significant (p = 0.0143), with a hazard ratio exceeding 1.
Therefore, patients who had a transplant at younger ages lived longer than those who received a transplant
later in their lives. The variable XScore has only minimal effect on the survival (p = 0.1121).

Output 73.6.2 Heart Transplant Study Analysis II

The PHREG ProcedureThe PHREG Procedure

Model Information

Data Set WORK.HEART

Dependent Variable Time

Censoring Variable Status Dead=1 Alive=0

Censoring Value(s) 0

Ties Handling BRESLOW

Number of Observations Read
Number of Observations Used

99
99

Summary of the Number of Event
and Censored Values

Total Event Censored
Percent

Censored

99 71 28 28.28

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.
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Output 73.6.2 continued

Model Fit Statistics

Criterion
Without

Covariates
With

Covariates

-2 LOG L 561.680 551.874

AIC 561.680 557.874

SBC 561.680 564.662

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 9.8059 3 0.0203

Score 9.0521 3 0.0286

Wald 9.0554 3 0.0286

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio

XStatus 1 -3.19837 1.18746 7.2547 0.0071 0.041

XAge 1 0.05544 0.02263 6.0019 0.0143 1.057

XScore 1 0.44490 0.28001 2.5245 0.1121 1.560

Example 73.7: Time-Dependent Repeated Measurements of a Covariate
Repeated determinations can be made during the course of a study of variables thought to be related to
survival. Consider an experiment to study the dosing effect of a tumor-promoting agent. Forty-five rodents
initially exposed to a carcinogen were randomly assigned to three dose groups. After the first death of an
animal, the rodents were examined every week for the number of papillomas. Investigators were interested in
determining the effects of dose on the carcinoma incidence after adjusting for the number of papillomas.

The input data set TUMOR consists of the following 19 variables:

• ID (subject identification)

• Time (survival time of the subject)

• Dead (censoring status where 1=dead and 0=censored)

• Dose (dose of the tumor-promoting agent)

• P1–P15 (number of papillomas at the 15 times that animals died. These 15 death times are weeks 27,
34, 37, 41, 43, 45, 46, 47, 49, 50, 51, 53, 65, 67, and 71. For instance, subject 1 died at week 47; it had
no papilloma at week 27, five papillomas at week 34, six at week 37, eight at week 41, and 10 at weeks
43, 45, 46, and 47. For an animal that died before week 71, the number of papillomas is missing for
those times beyond its death.)
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The following SAS statements create the data set TUMOR:

data Tumor;
infile datalines missover;
input ID Time Dead Dose P1-P15;
label ID='Subject ID';
datalines;

1 47 1 1.0 0 5 6 8 10 10 10 10
2 71 1 1.0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
3 81 0 1.0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 81 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 81 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 65 1 1.0 0 0 0 1 1 1 1 1 1 1 1 1 1
7 71 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 69 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 67 1 1.0 0 0 1 1 2 2 2 2 3 3 3 3 3 3

10 81 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 37 1 1.0 9 9 9
12 81 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 77 0 1.0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
14 81 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 81 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 54 0 2.5 0 1 1 1 2 2 2 2 2 2 2 2
17 53 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0
18 38 0 2.5 5 13 14
19 54 0 2.5 2 6 6 6 6 6 6 6 6 6 6 6
20 51 1 2.5 15 15 15 16 16 17 17 17 17 17 17
21 47 1 2.5 13 20 20 20 20 20 20 20
22 27 1 2.5 22
23 41 1 2.5 6 13 13 13
24 49 1 2.5 0 3 3 3 3 3 3 3 3
25 53 0 2.5 0 0 1 1 1 1 1 1 1 1 1 1
26 50 1 2.5 0 0 2 3 4 6 6 6 6 6
27 37 1 2.5 3 15 15
28 49 1 2.5 2 3 3 3 3 4 4 4 4
29 46 1 2.5 4 6 7 9 9 9 9
30 48 0 2.5 15 26 26 26 26 26 26 26
31 54 0 10.0 12 14 15 15 15 15 15 15 15 15 15 15
32 37 1 10.0 12 16 17
33 53 1 10.0 3 6 6 6 6 6 6 6 6 6 6 6
34 45 1 10.0 4 12 15 20 20 20
35 53 0 10.0 6 10 13 13 13 15 15 15 15 15 15 20
36 49 1 10.0 0 2 2 2 2 2 2 2 2
37 39 0 10.0 7 8 8
38 27 1 10.0 17
39 49 1 10.0 0 6 9 14 14 14 14 14 14
40 43 1 10.0 14 18 20 20 20
41 28 0 10.0 8
42 34 1 10.0 11 18
43 45 1 10.0 10 12 16 16 16 16
44 37 1 10.0 0 1 1
45 43 1 10.0 9 19 19 19 19
;
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The number of papillomas (NPap) for each animal in the study was measured repeatedly over time. One
way of handling time-dependent repeated measurements in the PHREG procedure is to use programming
statements to capture the appropriate covariate values of the subjects in each risk set. In this example, NPap
is a time-dependent explanatory variable with values that are calculated by means of the programming
statements shown in the following SAS statements:

proc phreg data=Tumor;
model Time*Dead(0)=Dose NPap;
array pp{*} P1-P14;
array tt{*} t1-t15;
t1=27; t2=34; t3=37; t4=41; t5=43;
t6=45; t7=46; t8=47; t9=49; t10=50;
t11=51; t12=53; t13=65; t14=67; t15=71;
if Time < tt[1] then NPap=0;
else if time >= tt[15] then NPap=P15;
else do i=1 to dim(pp);

if tt[i] <= Time < tt[i+1] then NPap= pp[i];
end;

run;

At each death time, the NPap value of each subject in the risk set is recalculated to reflect the actual number
of papillomas at the given death time. For instance, subject one in the data set Tumor was in the risk sets at
weeks 27 and 34; at week 27, the animal had no papilloma, while at week 34, it had five papillomas. Results
of the analysis are shown in Output 73.7.1. After the number of papillomas is adjusted for, the dose effect of
the tumor-promoting agent is not statistically significant.

Output 73.7.1 Cox Regression Analysis on the Survival of Rodents

The PHREG ProcedureThe PHREG Procedure

Model Information

Data Set WORK.TUMOR

Dependent Variable Time

Censoring Variable Dead

Censoring Value(s) 0

Ties Handling BRESLOW

Number of Observations Read
Number of Observations Used

45
45

Summary of the Number of Event
and Censored Values

Total Event Censored
Percent

Censored

45 25 20 44.44

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.
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Output 73.7.1 continued

Model Fit Statistics

Criterion
Without

Covariates
With

Covariates

-2 LOG L 166.793 143.269

AIC 166.793 147.269

SBC 166.793 149.707

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 23.5243 2 <.0001

Score 28.0498 2 <.0001

Wald 21.1646 2 <.0001

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio

Dose 1 0.06885 0.05620 1.5010 0.2205 1.071

NPap 1 0.11714 0.02998 15.2705 <.0001 1.124

Another way to handle time-dependent repeated measurements in the PHREG procedure is to use the counting
process style of input. Multiple records are created for each subject, one record for each distinct pattern of
the time-dependent measurements. Each record contains a T1 value and a T2 value representing the time
interval (T1,T2] during which the values of the explanatory variables remain unchanged. Each record also
contains the censoring status at T2.

One advantage of using the counting process formulation is that you can easily obtain various residuals and
influence statistics that are not available when programming statements are used to compute the values of the
time-dependent variables. On the other hand, creating multiple records for the counting process formulation
requires extra effort in data manipulation.

Consider a counting process style of input data set named Tumor1. It contains multiple observations for each
subject in the data set Tumor. In addition to variables ID, Time, Dead, and Dose, four new variables are
generated:

• T1 (left endpoint of the risk interval)

• T2 (right endpoint of the risk interval)

• NPap (number of papillomas in the time interval (T1,T2])

• Status (censoring status at T2)

For example, five observations are generated for the rodent that died at week 47 and that had no papilloma at
week 27, five papillomas at week 34, six at week 37, eight at week 41, and 10 at weeks 43, 45, 46, and 47.
The values of T1, T2, NPap, and Status for these five observations are (0,27,0,0), (27,34,5,0), (34,37,6,0),
(37,41,8,0), and (41,47,10,1). Note that the variables ID, Time, and Dead are not needed for the estimation of
the regression parameters, but they are useful for plotting the residuals.
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The following SAS statements create the data set Tumor1:

data Tumor1(keep=ID Time Dead Dose T1 T2 NPap Status);
array pp{*} P1-P14;
array qq{*} P2-P15;
array tt{1:15} _temporary_

(27 34 37 41 43 45 46 47 49 50 51 53 65 67 71);
set Tumor;
T1 = 0;
T2 = 0;
Status = 0;
if ( Time = tt[1] ) then do;

T2 = tt[1];
NPap = p1;
Status = Dead;
output;

end;
else do _i_=1 to dim(pp);

if ( tt[_i_] = Time ) then do;
T2= Time;
NPap = pp[_i_];
Status = Dead;
output;

end;
else if (tt[_i_] < Time ) then do;

if (pp[_i_] ^= qq[_i_] ) then do;
if qq[_i_] = . then T2= Time;
else T2= tt[_i_];
NPap= pp[_i_];
Status= 0;
output;
T1 = T2;

end;
end;

end;
if ( Time >= tt[15] ) then do;

T2 = Time;
NPap = P15;
Status = Dead;
output;

end;
run;
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In the following SAS statements, the counting process MODEL specification is used. The DFBETA statistics
are output to a SAS data set named Out1. Note that Out1 contains multiple observations for each subject—that
is, one observation for each risk interval (T1,T2].

proc phreg data=Tumor1 noprint;
model (T1,T2)*Status(0)=Dose NPap;
output out=Out1 resmart=Mart dfbeta=db1-db2;
id ID Time Dead;

run;

The output from PROC PHREG (not shown) is identical to Output 73.7.1 except for the “Summary of the
Number of Event and Censored Values” table. The number of event observations remains unchanged between
the two specifications of PROC PHREG, but the number of censored observations differs due to the splitting
of each subject’s data into multiple observations for the counting process style of input.

Next, the MEANS procedure sums up the component statistics for each subject and outputs the results to a
SAS data set named Out2:

proc means data=Out1 noprint;
by ID Time Dead;
var Mart db1-db2;
output out=Out2 sum=Mart db_Dose db_NPap;

run;

Finally, DFBETA statistics are plotted against subject ID for easy identification of influential points:

title 'DfBetas for Dose';
proc sgplot data=Out2;

yaxis label="DfBeta" grid;
refline 0 / axis=y;
scatter y=db_Dose x=ID;

run;
title 'DfBetas for NPap';
proc sgplot data=Out2;

yaxis label="DfBeta" grid;
refline 0 / axis=y;
scatter y=db_NPap x=ID;

run;

The plots of the DFBETA statistics are shown in Output 73.7.2 and Output 73.7.3. Subject 30 appears to have
a large influence on both the Dose and NPap coefficients. Subjects 31 and 35 have considerable influences
on the DOSE coefficient, while subjects 22 and 44 have rather large influences on the NPap coefficient.
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Output 73.7.2 Plot of DFBETA Statistic for DOSE versus Subject Number
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Output 73.7.3 Plot of DFBETA Statistic for NPAP versus Subject Number
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Example 73.8: Survival Curves
You might want to use your regression analysis results to predict the survivorship of subjects of specific
covariate values. The COVARIATES= data set in the BASELINE statement enables you to specify the sets of
covariate values for the prediction. On the other hand, you might want to summarize the survival experience
of an average patient for a given population. The DIRADJ option in the BASELINE statement computes the
direct adjusted survival curve that averages the estimated survival curves for patients whose covariates are
represented in the COVARIATES= data set. By using the PLOTS= option in the PROC PHREG statement,
you can use ODS Graphics to display the predicted survival curves. You can elect to output the predicted
survival curves in a SAS data set by optionally specifying the OUT= option in the BASELINE statement.
This example illustrates how to obtain the covariate-specific survival curves and the direct adjusted survival
curve by using the Myeloma data set in Example 73.1, where variables LogBUN and HGB were identified as
the most important prognostic factors.

Suppose you want to compute the predicted survival curves for two sets of covariate values: (LogBUN=1.0,
HGB=10) and (LogBUN=1.8, HGB=12). These values are saved in the data set Inrisks in the following DATA
step. Also created in this data set is the variable Id, whose values will be used in identifying the covariate sets
in the survival plot.

data Inrisks;
length Id $20;
input LogBUN HGB Id $12-31;
datalines;

1.00 10.0 logBUN=1.0 HGB=10
1.80 12.0 logBUN=1.8 HGB=12
;

The following statements plot the survival functions in Output 73.8.1 and save the survival estimates in the
data set Pred1:

ods graphics on;
proc phreg data=Myeloma plots(overlay)=survival;

model Time*VStatus(0)=LogBUN HGB;
baseline covariates=Inrisks out=Pred1 survival=_all_/rowid=Id;

run;

The COVARIATES= option in the BASELINE statement specifies the data set that contains the set of
covariates of interest. The PLOTS= option in the PROC PHREG statement creates the survival plot. The
OVERLAY suboption overlays the two curves in the same plot. If the OVERLAY suboption is not specified,
each curve is displayed in a separate plot. The ROWID= option in the BASELINE statement specifies
that the values of the variable Id in the COVARIATES= data set be used to identify the curves in the plot.
The SURVIVAL=_ALL_ option in the BASELINE statement requests that the estimated survivor function,
standard error, and lower and upper confidence limits for the survivor function be output into the SAS data
set that is specified in the OUT= option.
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The survival Plot (Output 73.8.1) contains two curves, one for each of row of covariates in the data set Inrisks.

Output 73.8.1 Estimated Survivor Function Plot

The following statements print out the observations in the data set Pred1 for the realization LogBUN=1.00
and HGB=10.0:

proc print data=Pred1(where=(logBUN=1 and HGB=10));
run;

As shown in Output 73.8.2, 32 observations represent the survivor function for the realization LogBUN=1.00
and HGB=10.0. The first observation has survival time 0 and survivor function estimate 1.0. Each of the
remaining 31 observations represents a distinct event time in the input data set Myeloma. These observations
are presented in ascending order of the event times. Note that all the variables in the COVARIATES=InRisks
data set are included in the OUT=Pred1 data set. Likewise, you can print out the observations that represent
the survivor function for the realization LogBUN=1.80 and HGB=12.0.
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Output 73.8.2 Survivor Function Estimates for LogBUN=1.0 and HGB=10.0

Obs Id LogBUN HGB Time Survival StdErrSurvival LowerSurvival UpperSurvival

1 logBUN=1.0 HGB=10 1 10 0.00 1.00000 . . .

2 logBUN=1.0 HGB=10 1 10 1.25 0.98678 0.01043 0.96655 1.00000

3 logBUN=1.0 HGB=10 1 10 2.00 0.96559 0.01907 0.92892 1.00000

4 logBUN=1.0 HGB=10 1 10 3.00 0.95818 0.02180 0.91638 1.00000

5 logBUN=1.0 HGB=10 1 10 5.00 0.94188 0.02747 0.88955 0.99729

6 logBUN=1.0 HGB=10 1 10 6.00 0.90635 0.03796 0.83492 0.98389

7 logBUN=1.0 HGB=10 1 10 7.00 0.87742 0.04535 0.79290 0.97096

8 logBUN=1.0 HGB=10 1 10 9.00 0.86646 0.04801 0.77729 0.96585

9 logBUN=1.0 HGB=10 1 10 11.00 0.81084 0.05976 0.70178 0.93686

10 logBUN=1.0 HGB=10 1 10 13.00 0.79800 0.06238 0.68464 0.93012

11 logBUN=1.0 HGB=10 1 10 14.00 0.78384 0.06515 0.66601 0.92251

12 logBUN=1.0 HGB=10 1 10 15.00 0.76965 0.06779 0.64762 0.91467

13 logBUN=1.0 HGB=10 1 10 16.00 0.74071 0.07269 0.61110 0.89781

14 logBUN=1.0 HGB=10 1 10 17.00 0.71005 0.07760 0.57315 0.87966

15 logBUN=1.0 HGB=10 1 10 18.00 0.69392 0.07998 0.55360 0.86980

16 logBUN=1.0 HGB=10 1 10 19.00 0.66062 0.08442 0.51425 0.84865

17 logBUN=1.0 HGB=10 1 10 24.00 0.64210 0.08691 0.49248 0.83717

18 logBUN=1.0 HGB=10 1 10 25.00 0.62360 0.08921 0.47112 0.82542

19 logBUN=1.0 HGB=10 1 10 26.00 0.60523 0.09136 0.45023 0.81359

20 logBUN=1.0 HGB=10 1 10 32.00 0.58549 0.09371 0.42784 0.80122

21 logBUN=1.0 HGB=10 1 10 35.00 0.56534 0.09593 0.40539 0.78840

22 logBUN=1.0 HGB=10 1 10 37.00 0.54465 0.09816 0.38257 0.77542

23 logBUN=1.0 HGB=10 1 10 41.00 0.50178 0.10166 0.33733 0.74639

24 logBUN=1.0 HGB=10 1 10 51.00 0.47546 0.10368 0.31009 0.72901

25 logBUN=1.0 HGB=10 1 10 52.00 0.44510 0.10522 0.28006 0.70741

26 logBUN=1.0 HGB=10 1 10 54.00 0.41266 0.10689 0.24837 0.68560

27 logBUN=1.0 HGB=10 1 10 58.00 0.37465 0.10891 0.21192 0.66232

28 logBUN=1.0 HGB=10 1 10 66.00 0.33626 0.10980 0.17731 0.63772

29 logBUN=1.0 HGB=10 1 10 67.00 0.28529 0.11029 0.13372 0.60864

30 logBUN=1.0 HGB=10 1 10 88.00 0.22412 0.10928 0.08619 0.58282

31 logBUN=1.0 HGB=10 1 10 89.00 0.15864 0.10317 0.04435 0.56750

32 logBUN=1.0 HGB=10 1 10 92.00 0.09180 0.08545 0.01481 0.56907

Next, the DIRADJ option in the BASELINE statement is used to request a survival curve that represents the
survival experience of an average patient in the population in which the COVARIATES= data set is sampled.
When the DIRADJ option is specified, PROC PHREG computes the direct adjusted survival function by
averaging the predicted survival functions for the rows in the COVARIATES= data set. The following
statements plot the direct adjusted survival function in Output 73.8.3.

proc phreg data=Myeloma plots=survival;
model Time*VStatus(0)=LogBUN HGB;
baseline covariates=Myeloma survival=_all_/diradj;

run;

When the DIRADJ option is specified in the BASELINE statement, the default COVARIATES= data set is
the input data set. For clarity, the COVARIATES=MYELOMA is specified in the BASELINE statement in
the preceding PROC PHREG call.
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Output 73.8.3 Average Survival Function for the Myeloma Data

If neither the COVARIATES= data set nor the DIRADJ option is specified in the BASELINE statement,
PROC PHREG computes a predicted survival curve based on NZ, the average values of the covariate vectors
in the input data (Neuberger et al. 1986). This curve represents the survival experience of a patient with
an average prognostic index ˇ0 NZ equal to the average prognostic index of all patients. This approach has a
couple of drawbacks: it is possible that no patient could ever have such an average index, and it does not
account for the variability in the prognostic factor from patient to patient.

The DIRADJ option is particularly useful if the model contains a categorical explanatory variable that
represents different treatments of interest. By specifying this categorical variable in the GROUP= option,
you obtain a direct adjusted survival curve for each category of the variable. In addition, you can use the
OUTDIFF= option to save all pairwise differences of these direct adjusted survival probabilities in a data
set. For illustration, consider a model that also includes the categorical variable Frac, which has a value 0
if a patient did not have a fracture at diagnosis and 1 otherwise, as an explanatory variable. The following
statements plot the adjusted survival curves in Output 73.8.4 and save the differences of the direct adjusted
survival probabilities in the data set Diff1:
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proc phreg data=Myeloma plots(overlay)=survival;
class Frac;
model Time*VStatus(0)=LogBUN HGB Frac;
baseline covariates=Myeloma outdiff=Diff1 survival=_all_/diradj group=Frac;

run;

Because the CLASS variable Frac is specified as the GROUP= variable, a separate direct adjusted survival
curve is computed for each value of the variable Frac. Each direct adjusted survival curve is the average of
the predicted survival curves for all the patients in the entire Myeloma data set with their Frac value set to
a specific constant. For example, the direct adjusted survival curve for Frac=0 (no fracture at diagnosis) is
computed as follows:

1. The value of the variable Frac is set to 0 for all observations in the Myeloma data set.

2. The survival curve for each observation in the modified data set is computed.

3. All the survival curves computed in step 2 are averaged.

Output 73.8.4 Average Survival by Fracture Status



Example 73.8: Survival Curves F 6067

Output 73.8.4 shows that patients without fracture at diagnosis have better survival than those with fractures.
Differences in the survival probabilities and their standard errors are displayed in Output 73.8.5.

proc print data=Diff1;
run;

Output 73.8.5 Differences in the Survival between Fracture and Nonfracture

Obs Frac Frac2 Time SurvDiff StdErr

1 0 1 1.25 0.01074 0.01199

2 0 1 2.00 0.02653 0.02605

3 0 1 3.00 0.03165 0.03063

4 0 1 5.00 0.04191 0.03963

5 0 1 6.00 0.06115 0.05669

6 0 1 7.00 0.07416 0.06853

7 0 1 9.00 0.07854 0.07261

8 0 1 11.00 0.09669 0.09002

9 0 1 13.00 0.09998 0.09327

10 0 1 14.00 0.10319 0.09644

11 0 1 15.00 0.10611 0.09937

12 0 1 16.00 0.11117 0.10464

13 0 1 17.00 0.11532 0.10922

14 0 1 18.00 0.11704 0.11120

15 0 1 19.00 0.11969 0.11447

16 0 1 24.00 0.12072 0.11593

17 0 1 25.00 0.12145 0.11713

18 0 1 26.00 0.12189 0.11808

19 0 1 32.00 0.12208 0.11883

20 0 1 35.00 0.12197 0.11933

21 0 1 37.00 0.12155 0.11956

22 0 1 41.00 0.11983 0.11924

23 0 1 51.00 0.11821 0.11850

24 0 1 52.00 0.11580 0.11714

25 0 1 54.00 0.11262 0.11507

26 0 1 58.00 0.10824 0.11203

27 0 1 66.00 0.10301 0.10814

28 0 1 67.00 0.09451 0.10130

29 0 1 88.00 0.08248 0.09133

30 0 1 89.00 0.06847 0.08033

31 0 1 92.00 0.05038 0.06515
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Example 73.9: Analysis of Residuals
Residuals are used to investigate the lack of fit of a model to a given subject. You can obtain martingale and
deviance residuals for the Cox proportional hazards regression analysis by requesting that they be included in
the OUTPUT data set. You can plot these statistics and look for outliers.

Consider the stepwise regression analysis performed in Example 73.1. The final model included variables
LogBUN and HGB. You can generate residual statistics for this analysis by refitting the model containing
those variables and including an OUTPUT statement as in the following invocation of PROC PHREG. The
keywords XBETA, RESMART, and RESDEV identify new variables that contain the linear predictor scores
z0j Ǒ, martingale residuals, and deviance residuals. These variables are xb, mart, and dev, respectively.

proc phreg data=Myeloma noprint;
model Time*Vstatus(0)=LogBUN HGB;
output out=Outp xbeta=Xb resmart=Mart resdev=Dev;

run;

The following statements plot the residuals against the linear predictor scores:

title "Myeloma Study";
proc sgplot data=Outp;

yaxis grid;
refline 0 / axis=y;
scatter y=Mart x=Xb;

run;
proc sgplot data=Outp;

yaxis grid;
refline 0 / axis=y;
scatter y=Dev x=Xb;

run;

The resulting plots are shown in Output 73.9.1 and Output 73.9.2. The martingale residuals are skewed
because of the single event setting of the Cox model. The martingale residual plot shows an isolation
point (with linear predictor score 1.09 and martingale residual –3.37), but this observation is no longer
distinguishable in the deviance residual plot. In conclusion, there is no indication of a lack of fit of the model
to individual observations.
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Output 73.9.1 Martingale Residual Plot
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Output 73.9.2 Deviance Residual Plot

Example 73.10: Analysis of Recurrent Events Data
Recurrent events data consist of times to a number of repeated events for each sample unit—for example,
times of recurrent episodes of a disease in patients. Various ways of analyzing recurrent events data are
described in the section “Analysis of Multivariate Failure Time Data” on page 5974. The bladder cancer data
listed in Wei, Lin, and Weissfeld (1989) are used here to illustrate these methods.

The data consist of 86 patients with superficial bladder tumors, which were removed when the patients
entered the study. Of these patients, 48 were randomized into the placebo group, and 38 were randomized
into the group receiving thiotepa. Many patients had multiple recurrences of tumors during the study, and
new tumors were removed at each visit. The data set contains the first four recurrences of the tumor for each
patient, and each recurrence time was measured from the patient’s entry time into the study.

The data consist of the following eight variables:

• Trt, treatment group (1=placebo and 2=thiotepa)

• Time, follow-up time
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• Number, number of initial tumors

• Size, initial tumor size

• T1, T2, T3, and T4, times of the four potential recurrences of the bladder tumor. A patient with only
two recurrences has missing values in T3 and T4.

In the data set Bladder, four observations are created for each patient, one for each of the four potential tumor
recurrences. In addition to values of Trt, Number, and Size for the patient, each observation contains the
following variables:

• ID, patient’s identification (which is the sequence number of the subject)

• Visit, visit number (with value k for the kth potential tumor recurrence)

• TStart, time of the (k – 1) recurrence for Visit=k, or the entry time 0 if VISIT=1, or the follow-up time
if the (k – 1) recurrence does not occur

• TStop, time of the kth recurrence if Visit=k or follow-up time if the kth recurrence does not occur

• Status, event status of TStop (1=recurrence and 0=censored)

For instance, a patient with only one recurrence time at month 6 who was followed until month 10 will have
values for Visit, TStart, TStop, and Status of (1,0,6,1), (2,6,10,0), (3,10,10,0), and (4,10,10,0), respectively.
The last two observations are redundant for the intensity model and the proportional means model, but they
are important for the analysis of the marginal Cox models. If the follow-up time is beyond the time of
the fourth tumor recurrence, it is tempting to create a fifth observation with the time of the fourth tumor
recurrence as the TStart value, the follow-up time as the TStop value, and a Status value of 0. However,
Therneau and Grambsch (2000, Section 8.5) have warned against incorporating such observations into the
analysis.

The following SAS statements create the data set Bladder:

data Bladder;
keep ID TStart TStop Status Trt Number Size Visit;
retain ID TStart 0;
array tt T1-T4;
infile datalines missover;
input Trt Time Number Size T1-T4;
ID + 1;
TStart=0;
do over tt;

Visit=_i_;
if tt = . then do;

TStop=Time;
Status=0;

end;
else do;

TStop=tt;
Status=1;

end;
output;
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TStart=TStop;
end;
if (TStart < Time) then delete;
datalines;

1 0 1 1
1 1 1 3
1 4 2 1
1 7 1 1
1 10 5 1
1 10 4 1 6
1 14 1 1
1 18 1 1
1 18 1 3 5
1 18 1 1 12 16
1 23 3 3
1 23 1 3 10 15
1 23 1 1 3 16 23
1 23 3 1 3 9 21
1 24 2 3 7 10 16 24
1 25 1 1 3 15 25
1 26 1 2
1 26 8 1 1
1 26 1 4 2 26
1 28 1 2 25
1 29 1 4
1 29 1 2
1 29 4 1
1 30 1 6 28 30
1 30 1 5 2 17 22
1 30 2 1 3 6 8 12
1 31 1 3 12 15 24
1 32 1 2
1 34 2 1
1 36 2 1
1 36 3 1 29
1 37 1 2
1 40 4 1 9 17 22 24
1 40 5 1 16 19 23 29
1 41 1 2
1 43 1 1 3
1 43 2 6 6
1 44 2 1 3 6 9
1 45 1 1 9 11 20 26
1 48 1 1 18
1 49 1 3
1 51 3 1 35
1 53 1 7 17
1 53 3 1 3 15 46 51
1 59 1 1
1 61 3 2 2 15 24 30
1 64 1 3 5 14 19 27
1 64 2 3 2 8 12 13
2 1 1 3
2 1 1 1
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2 5 8 1 5
2 9 1 2
2 10 1 1
2 13 1 1
2 14 2 6 3
2 17 5 3 1 3 5 7
2 18 5 1
2 18 1 3 17
2 19 5 1 2
2 21 1 1 17 19
2 22 1 1
2 25 1 3
2 25 1 5
2 25 1 1
2 26 1 1 6 12 13
2 27 1 1 6
2 29 2 1 2
2 36 8 3 26 35
2 38 1 1
2 39 1 1 22 23 27 32
2 39 6 1 4 16 23 27
2 40 3 1 24 26 29 40
2 41 3 2
2 41 1 1
2 43 1 1 1 27
2 44 1 1
2 44 6 1 2 20 23 27
2 45 1 2
2 46 1 4 2
2 46 1 4
2 49 3 3
2 50 1 1
2 50 4 1 4 24 47
2 54 3 4
2 54 2 1 38
2 59 1 3
;

First, consider fitting the intensity model (Andersen and Gill 1982) and the proportional means model
(Lin et al. 2000). The counting process style of input is used in the PROC PHREG specification. For the
proportional means model, inference is based on the robust sandwich covariance estimate, which is requested
by the COVS(AGGREGATE) option in the PROC PHREG statement. The COVM option is specified for
the analysis of the intensity model to use the model-based covariance estimate. Note that some of the
observations in the data set Bladder have a degenerated interval of risk. The presence of these observations
does not affect the results of the analysis since none of these observations are included in any of the risk sets.
However, the procedure will run more efficiently without these observations; consequently, in the following
SAS statements, the WHERE clause is used to eliminate these redundant observations:

title 'Intensity Model and Proportional Means Model';
proc phreg data=Bladder covm covs(aggregate);

model (TStart, TStop) * Status(0) = Trt Number Size;
id id;
where TStart < TStop;

run;
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Results of fitting the intensity model and the proportional means model are shown in Output 73.10.1 and
Output 73.10.2, respectively. The robust sandwich standard error estimate for Trt is larger than its model-based
counterpart, rendering the effect of thiotepa less significant in the proportional means model (p = 0.0747)
than in the intensity model (p = 0.0215).

Output 73.10.1 Analysis of the Intensity Model

Intensity Model and Proportional Means Model

The PHREG Procedure

Intensity Model and Proportional Means Model

The PHREG Procedure

Analysis of Maximum Likelihood Estimates

with Model-Based Variance Estimate

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio

Trt 1 -0.45979 0.19996 5.2873 0.0215 0.631

Number 1 0.17165 0.04733 13.1541 0.0003 1.187

Size 1 -0.04256 0.06903 0.3801 0.5375 0.958

Output 73.10.2 Analysis of the Proportional Means Model

Analysis of Maximum Likelihood Estimates

with Sandwich Variance Estimate

Parameter DF
Parameter

Estimate
Standard

Error
StdErr

Ratio Chi-Square Pr > ChiSq
Hazard

Ratio

Trt 1 -0.45979 0.25801 1.290 3.1757 0.0747 0.631

Number 1 0.17165 0.06131 1.296 7.8373 0.0051 1.187

Size 1 -0.04256 0.07555 1.094 0.3174 0.5732 0.958

Next, consider the conditional models of Prentice, Williams, and Peterson (1981). In the PWP models, the
risk set for the (k + 1) recurrence is restricted to those patients who have experienced the first k recurrences.
For example, a patient who experienced only one recurrence is an event observation for the first recurrence;
this patient is a censored observation for the second recurrence and should not be included in the risk set for
the third or fourth recurrence. The following DATA step eliminates those observations that should not be
in the risk sets, forming a new input data set (named Bladder2) for fitting the PWP models. The variable
Gaptime, representing the gap times between successive recurrences, is also created.

data Bladder2(drop=LastStatus);
retain LastStatus;
set Bladder;
by ID;
if first.id then LastStatus=1;
if (Status=0 and LastStatus=0) then delete;
LastStatus=Status;
Gaptime=Tstop-Tstart;

run;

The following statements fit the PWP total time model. The variables Trt1, Trt2, Trt3, and Trt4 are visit-specific
variables for Trt; the variables Number1, Number2, Numvber3, and Number4 are visit-specific variables for
Number; and the variables Size1, Size2, Size3, and Size4 are visit-specific variables for Size.
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title 'PWP Total Time Model with Noncommon Effects';
proc phreg data=Bladder2;

model (TStart,Tstop) * Status(0) = Trt1-Trt4 Number1-Number4
Size1-Size4;

Trt1= Trt * (Visit=1);
Trt2= Trt * (Visit=2);
Trt3= Trt * (Visit=3);
Trt4= Trt * (Visit=4);
Number1= Number * (Visit=1);
Number2= Number * (Visit=2);
Number3= Number * (Visit=3);
Number4= Number * (Visit=4);
Size1= Size * (Visit=1);
Size2= Size * (Visit=2);
Size3= Size * (Visit=3);
Size4= Size * (Visit=4);
strata Visit;

run;

Results of the analysis of the PWP total time model are shown in Output 73.10.3. There is no significant
treatment effect on the total time in any of the four tumor recurrences.

Output 73.10.3 Analysis of the PWP Total Time Model with Noncommon Effects

PWP Total Time Model with Noncommon Effects

The PHREG Procedure

PWP Total Time Model with Noncommon Effects

The PHREG Procedure

Summary of the Number of Event and Censored
Values

Stratum Visit Total Event Censored
Percent

Censored

1 1 85 47 38 44.71

2 2 46 29 17 36.96

3 3 27 22 5 18.52

4 4 20 14 6 30.00

Total 178 112 66 37.08

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio

Trt1 1 -0.51757 0.31576 2.6868 0.1012 0.596

Trt2 1 -0.45967 0.40642 1.2792 0.2581 0.631

Trt3 1 0.11700 0.67183 0.0303 0.8617 1.124

Trt4 1 -0.04059 0.79251 0.0026 0.9592 0.960

Number1 1 0.23605 0.07607 9.6287 0.0019 1.266

Number2 1 -0.02044 0.09052 0.0510 0.8213 0.980

Number3 1 0.01219 0.18208 0.0045 0.9466 1.012

Number4 1 0.18915 0.24443 0.5989 0.4390 1.208

Size1 1 0.06790 0.10125 0.4498 0.5024 1.070

Size2 1 -0.15425 0.12300 1.5728 0.2098 0.857

Size3 1 0.14891 0.26299 0.3206 0.5713 1.161

Size4 1 0.0000732 0.34297 0.0000 0.9998 1.000
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The following statements fit the PWP gap-time model:

title 'PWP Gap-Time Model with Noncommon Effects';
proc phreg data=Bladder2;

model Gaptime * Status(0) = Trt1-Trt4 Number1-Number4
Size1-Size4;

Trt1= Trt * (Visit=1);
Trt2= Trt * (Visit=2);
Trt3= Trt * (Visit=3);
Trt4= Trt * (Visit=4);
Number1= Number * (Visit=1);
Number2= Number * (Visit=2);
Number3= Number * (Visit=3);
Number4= Number * (Visit=4);
Size1= Size * (Visit=1);
Size2= Size * (Visit=2);
Size3= Size * (Visit=3);
Size4= Size * (Visit=4);
strata Visit;

run;

Results of the analysis of the PWP gap-time model are shown in Output 73.10.4. Note that the regression
coefficients for the first tumor recurrence are the same as those of the total time model, since the total time
and the gap time are the same for the first recurrence. There is no significant treatment effect on the gap times
for any of the four tumor recurrences.

Output 73.10.4 Analysis of the PWP Gap-Time Model with Noncommon Effects

PWP Gap-Time Model with Noncommon Effects

The PHREG Procedure

PWP Gap-Time Model with Noncommon Effects

The PHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio

Trt1 1 -0.51757 0.31576 2.6868 0.1012 0.596

Trt2 1 -0.25911 0.40511 0.4091 0.5224 0.772

Trt3 1 0.22105 0.54909 0.1621 0.6873 1.247

Trt4 1 -0.19498 0.64184 0.0923 0.7613 0.823

Number1 1 0.23605 0.07607 9.6287 0.0019 1.266

Number2 1 -0.00571 0.09667 0.0035 0.9529 0.994

Number3 1 0.12935 0.15970 0.6561 0.4180 1.138

Number4 1 0.42079 0.19816 4.5091 0.0337 1.523

Size1 1 0.06790 0.10125 0.4498 0.5024 1.070

Size2 1 -0.11636 0.11924 0.9524 0.3291 0.890

Size3 1 0.24995 0.23113 1.1695 0.2795 1.284

Size4 1 0.03557 0.29043 0.0150 0.9025 1.036
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You can fit the PWP total time model with common effects by using the following SAS statements. However,
the analysis is not shown here.

title2 'PWP Total Time Model with Common Effects';
proc phreg data=Bladder2;

model (tstart,tstop) * status(0) = Trt Number Size;
strata Visit;

run;

You can fit the PWP gap-time model with common effects by using the following statements. Again, the
analysis is not shown here.

title2 'PWP Gap Time Model with Common Effects';
proc phreg data=Bladder2;

model Gaptime * Status(0) = Trt Number Size;
strata Visit;

run;

Recurrent events data are a special case of multiple events data in which the recurrence times are regarded as
multivariate failure times and the marginal approach of Wei, Lin, and Weissfeld (1989) can be used. WLW
fits a Cox model to each of the component times and makes statistical inference of the regression parameters
based on a robust sandwich covariance matrix estimate. No specific correlation structure is imposed on the
multivariate failure times. For the kth marginal model, let ˇk denote the row vector of regression parameters,
let Ǒk denote the maximum likelihood estimate of ˇk , let OAk denote the covariance matrix obtained by
inverting the observed information matrix, and let Rk denote the matrix of score residuals. WLW showed
that the joint distribution of . Ǒ1; : : : ; Ǒ4/0 can be approximated by a multivariate normal distribution with
mean vector .ˇ1; : : : ;ˇ4/0 and robust covariance matrix

0BB@
V11 V12 V13 V14
V21 V22 V23 V24
V31 V32 V33 V34
V41 V42 V43 V44

1CCA
with the submatrix Vij given by

Vij D OAi .R0iRj / OAj

In this example, there are four marginal proportional hazards models, one for each potential recurrence
time. Instead of fitting one model at a time, you can fit all four marginal models in one analysis by using
the STRATA statement and model-specific covariates as in the following statements. Using Visit as the
STRATA variable on the input data set Bladder, PROC PHREG simultaneously fits all four marginal models,
one for each Visit value. The COVS(AGGREGATE) option is specified to compute the robust sandwich
variance estimate by summing up the score residuals for each distinct pattern of ID value. The TEST
statement TREATMENT is used to perform the global test of no treatment effect for each tumor recurrence,
the AVERAGE option is specified to estimate the parameter for the common treatment effect, and the E
option displays the optimal weights for the common treatment effect.



6078 F Chapter 73: The PHREG Procedure

title 'Wei-Lin-Weissfeld Model';
proc phreg data=Bladder covs(aggregate);

model TStop*Status(0)=Trt1-Trt4 Number1-Number4 Size1-Size4;
Trt1= Trt * (Visit=1);
Trt2= Trt * (Visit=2);
Trt3= Trt * (Visit=3);
Trt4= Trt * (Visit=4);
Number1= Number * (Visit=1);
Number2= Number * (Visit=2);
Number3= Number * (Visit=3);
Number4= Number * (Visit=4);
Size1= Size * (Visit=1);
Size2= Size * (Visit=2);
Size3= Size * (Visit=3);
Size4= Size * (Visit=4);
strata Visit;
id ID;
TREATMENT: test trt1,trt2,trt3,trt4/average e;

run;

Out of the 86 patients, 47 patients have only one tumor recurrence, 29 patients have two recurrences, 22
patients have three recurrences, and 14 patients have four recurrences (Output 73.10.5). Parameter estimates
for the four marginal models are shown in Output 73.10.6. The 4 DF Wald test (Output 73.10.7) indicates
a lack of evidence of a treatment effect in any of the four recurrences (p = 0.4105). The optimal weights
for estimating the parameter of the common treatment effect are 0.67684, 0.25723, –0.07547, and 0.14140
for Trt1, Trt2, Trt3, and Trt4, respectively, which gives a parameter estimate of –0.5489 with a standard
error estimate of 0.2853. A more sensitive test for a treatment effect is the 1 DF test based on this common
parameter; however, there is still insufficient evidence for such effect at the 0.05 level (p = 0.0543).

Output 73.10.5 Summary of Bladder Tumor Recurrences in 86 Patients

Wei-Lin-Weissfeld Model

The PHREG Procedure

Wei-Lin-Weissfeld Model

The PHREG Procedure

Summary of the Number of Event and Censored
Values

Stratum Visit Total Event Censored
Percent

Censored

1 1 86 47 39 45.35

2 2 86 29 57 66.28

3 3 86 22 64 74.42

4 4 86 14 72 83.72

Total 344 112 232 67.44
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Output 73.10.6 Analysis of Marginal Cox Models

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error
StdErr

Ratio Chi-Square Pr > ChiSq
Hazard

Ratio

Trt1 1 -0.51762 0.30750 0.974 2.8336 0.0923 0.596

Trt2 1 -0.61944 0.36391 0.926 2.8975 0.0887 0.538

Trt3 1 -0.69988 0.41516 0.903 2.8419 0.0918 0.497

Trt4 1 -0.65079 0.48971 0.848 1.7661 0.1839 0.522

Number1 1 0.23599 0.07208 0.947 10.7204 0.0011 1.266

Number2 1 0.13756 0.08690 0.946 2.5059 0.1134 1.147

Number3 1 0.16984 0.10356 0.984 2.6896 0.1010 1.185

Number4 1 0.32880 0.11382 0.909 8.3453 0.0039 1.389

Size1 1 0.06789 0.08529 0.842 0.6336 0.4260 1.070

Size2 1 -0.07612 0.11812 0.881 0.4153 0.5193 0.927

Size3 1 -0.21131 0.17198 0.943 1.5097 0.2192 0.810

Size4 1 -0.20317 0.19106 0.830 1.1308 0.2876 0.816

Output 73.10.7 Tests of Treatment Effects

Wei-Lin-Weissfeld Model

The PHREG Procedure

Wei-Lin-Weissfeld Model

The PHREG Procedure

Linear Coefficients for Test TREATMENT

Parameter Row 1 Row 2 Row 3 Row 4
Average

Effect

Trt1 1 0 0 0 0.67684

Trt2 0 1 0 0 0.25723

Trt3 0 0 1 0 -0.07547

Trt4 0 0 0 1 0.14140

Number1 0 0 0 0 0.00000

Number2 0 0 0 0 0.00000

Number3 0 0 0 0 0.00000

Number4 0 0 0 0 0.00000

Size1 0 0 0 0 0.00000

Size2 0 0 0 0 0.00000

Size3 0 0 0 0 0.00000

Size4 0 0 0 0 0.00000

CONSTANT 0 0 0 0 0.00000

Test TREATMENT Results

Wald
Chi-Square DF Pr > ChiSq

3.9668 4 0.4105

Average Effect for Test
TREATMENT

Estimate
Standard

Error z-Score Pr > |z|

-0.5489 0.2853 -1.9240 0.0543
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Example 73.11: Analysis of Clustered Data
When experimental units are naturally or artificially clustered, failure times of experimental units within a
cluster are correlated. Two approaches can be taken to adjust for the intracluster correlation. In the marginal
Cox model approach, Lee, Wei, and Amato (1992) estimate the regression parameters in the Cox model by the
maximum partial likelihood estimates under an independent working assumption and use a robust sandwich
covariance matrix estimate to account for the intracluster dependence. Lin (1994) illustrates this methodology
by using a subset of data from the Diabetic Retinopathy Study (DRS). An alternative approach to account for
the within-cluster correlation is to use a shared frailty model where cluster effects are incorporated into the
model as independent and identically distributed random variables.

The following DATA step creates the data set Blind that represents 197 diabetic patients who have a high
risk of experiencing blindness in both eyes as defined by DRS criteria. One eye of each patient is treated
with laser photocoagulation. The hypothesis of interest is whether the laser treatment delays the occurrence
of blindness. Since juvenile and adult diabetes have very different courses, it is also desirable to examine
how the age of onset of diabetes might affect the time of blindness. Since there are no biological differences
between the left eye and the right eye, it is natural to assume a common baseline hazard function for the
failure times of the left and right eyes.

Each patient is a cluster that contributes two observations to the input data set, one for each eye. The
following variables are in the input data set Blind:

• ID, patient’s identification

• Time, time to blindness

• Status, blindness indicator (0:censored and 1:blind)

• Treat, treatment received (Laser or Others)

• Type, type of diabetes (Juvenile: onset at age � 20 or Adult: onset at age > 20)

proc format;
value type 0='Juvenile' 1='Adult';
value Rx 1='Laser' 0='Others';

run;

data Blind;
input ID Time Status dty trt @@;
Type= put(dty, type.);
Treat= put(trt, Rx.);
datalines;
5 46.23 0 1 1 5 46.23 0 1 0 14 42.50 0 0 1 14 31.30 1 0 0
16 42.27 0 0 1 16 42.27 0 0 0 25 20.60 0 0 1 25 20.60 0 0 0
29 38.77 0 0 1 29 0.30 1 0 0 46 65.23 0 0 1 46 54.27 1 0 0
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... more lines ...

1705 8.00 0 0 1 1705 8.00 0 0 0 1717 51.60 0 1 1 1717 42.33 1 1 0
1727 49.97 0 1 1 1727 2.90 1 1 0 1746 45.90 0 0 1 1746 1.43 1 0 0
1749 41.93 0 1 1 1749 41.93 0 1 0
;

As a preliminary analysis, PROC FREQ is used to summarize the number of eyes that developed blindness.

proc freq data=Blind;
table Treat*Status;

run;

By the end of the study, 54 eyes treated with laser photocoagulation and 101 eyes treated by other means
have developed blindness (Output 73.11.1).

Output 73.11.1 Distribution of Blindness

The FREQ ProcedureThe FREQ Procedure

Frequency
Percent
Row Pct
Col Pct

Table of Treat by Status

Treat

Status

0 1 Total

Laser 143
36.29
72.59
59.83

54
13.71
27.41
34.84

197
50.00

Others 96
24.37
48.73
40.17

101
25.63
51.27
65.16

197
50.00

Total 239
60.66

155
39.34

394
100.00

The following statements use PROC PHREG to carry out the analysis of Lee, Wei, and Amato (1992).
The explanatory variables in this Cox model are Treat, Type, and the Treat � Type interaction. The
COVS(AGGREGATE) option is specified to compute the robust sandwich covariance matrix estimate. The
ID statement identifies the variable that represents the clusters. The HAZARDRATIO statement requests
hazard ratios for the treatments be displayed.

proc phreg data=Blind covs(aggregate);
class Treat Type;
model Time*Status(0)=Treat|Type;
id ID;
hazardratio 'Marginal Model Analysis' Treat;

run;

Results of the marginal model analysis are displayed in Output 73.11.2. The robust standard error estimates
are smaller than the model-based counterparts, since the ratio of the robust standard error estimate relative to
the model-based estimate is less than 1 for each parameter. Laser photocoagulation appears to be effective
(p = 0.0217) in delaying the occurrence of blindness, although there is also a significant interaction effect
between treatment and type of diabetes (p = 0.0053).
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Output 73.11.2 Inference Based the Marginal Model

The PHREG ProcedureThe PHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error
StdErr

Ratio Chi-Square Pr > ChiSq
Hazard

Ratio Label

Treat Laser 1 -0.42467 0.18497 0.850 5.2713 0.0217 . Treat Laser

Type Adult 1 0.34084 0.19558 0.982 3.0371 0.0814 . Type Adult

Treat*Type Laser Adult 1 -0.84566 0.30353 0.865 7.7622 0.0053 . Treat Laser * Type Adult

Hazard ratio estimates of the laser treatment relative to nonlaser treatment are displayed in Output 73.11.3.
For both types of diabetes, the 95% confidence interval for the hazard ratio lies below 1. This indicates that
laser-photocoagulation treatment is more effective in delaying blindness regardless of the type of diabetes.
However, the effect is more prominent for adult-onset diabetes than for juvenile-onset diabetes since the
hazard ratio estimates for the former are less than those of the latter.

Output 73.11.3 Hazard Ratio Estimates for Marginal Model

Marginal Model Analysis: Hazard Ratios for Treat

Description
Point

Estimate

95%
Wald

Robust
Confidence

Limits

Treat Laser vs Others At Type=Adult 0.281 0.175 0.451

Treat Laser vs Others At Type=Juvenile 0.654 0.455 0.940

Next, you analyze the same data by using a shared frailty model. The following statements use PROC
PHREG to fit a shared frailty model to the Blind data set. The RANDOM statement identifies the variable ID
as the variable that represents the clusters. You must declare the cluster variable as a classification variable in
the CLASS statement.

proc phreg data=Blind;
class ID Treat Type;
model Time*Status(0)=Treat|Type;
random ID;
hazardratio 'Frailty Model Analysis' Treat;

run;

Selected results of this analysis are displayed in Output 73.11.4 to Output 73.11.6.

The “Random Class Level Information” table in Output 73.11.4 displays the 197 ID values of the patients.
You can suppress the display of this table by using the NOCLPRINT option in the RANDOM statement.
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Output 73.11.4 Unique Cluster Identification Values

The PHREG ProcedureThe PHREG Procedure

Class Level Information for Random Effects

Class Levels Values

ID 197 5 14 16 25 29 46 49 56 61 71 100 112 120 127 133 150 167 176 185 190 202 214 220 243 255 264 266 284
295 300 302 315 324 328 335 342 349 357 368 385 396 405 409 419 429 433 445 454 468 480 485 491 503
515 522 538 547 550 554 557 561 568 572 576 581 606 610 615 618 624 631 636 645 653 662 664 683 687
701 706 717 722 731 740 749 757 760 766 769 772 778 780 793 800 804 810 815 832 834 838 857 866 887
903 910 920 925 931 936 945 949 952 962 964 971 978 983 987 1002 1017 1029 1034 1037 1042 1069 1074
1098 1102 1112 1117 1126 1135 1145 1148 1167 1184 1191 1205 1213 1228 1247 1250 1253 1267 1281
1287 1293 1296 1309 1312 1317 1321 1333 1347 1361 1366 1373 1397 1410 1413 1425 1447 1461 1469
1480 1487 1491 1499 1503 1513 1524 1533 1537 1552 1554 1562 1572 1581 1585 1596 1600 1603 1619
1627 1636 1640 1643 1649 1666 1672 1683 1688 1705 1717 1727 1746 1749

The “Covariance Parameter Estimates” table in Output 73.11.5 displays the estimate and asymptotic estimated
standard error of the common variance parameter of the normal random effects.

Output 73.11.5 Variance Estimate of the Normal Random Effects

Covariance Parameter
Estimates

Cov
Parm

REML
Estimate

Standard
Error

ID 0.8308 0.2145

Output 73.11.6 displays the Wald tests for both the fixed effects and the random effects. The random effects
are statistically significant (p = 0.0042). Results of testing the fixed effects are very similar to those based on
the robust variance estimates. Laser photocoagulation appears to be effective (p = 0.0252) in delaying the
occurrence of blindness, although there is also a significant treatment by diabetes type interaction effect (p =
0.0071).

Output 73.11.6 Inference Based on the Frailty Model

Type 3 Tests

Effect
Wald

Chi-Square DF Pr > ChiSq
Adjusted

DF
Adjusted

Pr > ChiSq

Treat 4.8964 1 0.0269 0.9587 0.0252

Type 2.6386 1 0.1043 0.6795 0.0629

Treat*Type 7.1336 1 0.0076 0.9644 0.0071

ID 110.3916 . . 74.2776 0.0042

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio Label

Treat Laser 1 -0.49849 0.22528 4.8964 0.0269 . Treat Laser

Type Adult 1 0.39781 0.24490 2.6386 0.1043 . Type Adult

Treat*Type Laser Adult 1 -0.96530 0.36142 7.1336 0.0076 . Treat Laser * Type Adult
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Estimates of hazard ratios of the laser treatment relative to nonlaser treatment are displayed in Output 73.11.7.
These estimates closely resemble those computed in analysis based on the marginal Cox model in Out-
put 73.11.3, which leads to the same conclusion that laser photocoagulation is effective in delaying blindness
for both types of diabetes, and more effective for the adult-onset diabetes than for juvenile-onset diabetes.

Output 73.11.7 Hazard Ratio Estimates for Frailty Model

Frailty Model Analysis: Hazard Ratios for Treat

Description
Point

Estimate

95%
Wald

Confidence
Limits

Treat Laser vs Others At Type=Adult 0.231 0.133 0.403

Treat Laser vs Others At Type=Juvenile 0.607 0.391 0.945

Example 73.12: Model Assessment Using Cumulative Sums of Martingale
Residuals

The Mayo liver disease example of Lin, Wei, and Ying (1993) is reproduced here to illustrate the checking
of the functional form of a covariate and the assessment of the proportional hazards assumption. The data
represent 418 patients with primary biliary cirrhosis (PBC), among whom 161 had died as of the date of
data listing. A subset of the variables is saved in the SAS data set Liver. The data set contains the following
variables:

• Time, follow-up time, in years

• Status, event indicator with value 1 for death time and value 0 for censored time

• Age, age in years from birth to study registration

• Albumin, serum albumin level, in gm/dl

• Bilirubin, serum bilirubin level, in mg/dl

• Edema, edema presence

• Protime, prothrombin time, in seconds

The following statements create the data set Liver:

data Liver;
input Time Status Age Albumin Bilirubin Edema Protime @@;
label Time="Follow-up Time in Years";
Time= Time / 365.25;
datalines;
400 1 58.7652 2.60 14.5 1.0 12.2 4500 0 56.4463 4.14 1.1 0.0 10.6

1012 1 70.0726 3.48 1.4 0.5 12.0 1925 1 54.7406 2.54 1.8 0.5 10.3
1504 0 38.1054 3.53 3.4 0.0 10.9 2503 1 66.2587 3.98 0.8 0.0 11.0
1832 0 55.5346 4.09 1.0 0.0 9.7 2466 1 53.0568 4.00 0.3 0.0 11.0
2400 1 42.5079 3.08 3.2 0.0 11.0 51 1 70.5599 2.74 12.6 1.0 11.5
3762 1 53.7139 4.16 1.4 0.0 12.0 304 1 59.1376 3.52 3.6 0.0 13.6
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3577 0 45.6893 3.85 0.7 0.0 10.6 1217 1 56.2218 2.27 0.8 1.0 11.0
3584 1 64.6461 3.87 0.8 0.0 11.0 3672 0 40.4435 3.66 0.7 0.0 10.8

... more lines ...

989 0 35.0000 3.23 0.7 0.0 10.8 681 1 67.0000 2.96 1.2 0.0 10.9
1103 0 39.0000 3.83 0.9 0.0 11.2 1055 0 57.0000 3.42 1.6 0.0 9.9
691 0 58.0000 3.75 0.8 0.0 10.4 976 0 53.0000 3.29 0.7 0.0 10.6

;

Consider fitting a Cox model for the survival time of the PCB patients with the covariates Bilirubin,
log(Protime), log(Albumin), Age, and Edema. The log transform, which is often applied to blood chemistry
measurements, is deliberately not employed for Bilirubin. It is of interest to assess the functional form of the
variable Bilirubin in the Cox model. The specifications are as follows:

ods graphics on;
proc phreg data=Liver;

model Time*Status(0)=Bilirubin logProtime logAlbumin Age Edema;
logProtime=log(Protime);
logAlbumin=log(Albumin);
assess var=(Bilirubin) / resample seed=7548;

run;

The ASSESS statement creates a plot of the cumulative martingale residuals against the values of the
covariate Bilirubin, which is specified in the VAR= option. The RESAMPLE option computes the p-value of
a Kolmogorov-type supremum test based on a sample of 1,000 simulated residual patterns.

Parameter estimates of the model fit are shown in Output 73.12.1. The plot in Output 73.12.2 displays the
observed cumulative martingale residual process for Bilirubin together with 20 simulated realizations from
the null distribution. When ODS Graphics is enabled, this graphical display is requested by specifying the
ASSESS statement. It is obvious that the observed process is atypical compared to the simulated realizations.
Also, none of the 1,000 simulated realizations has an absolute maximum exceeding that of the observed
cumulative martingale residual process. Both the graphical and numerical results indicate that a transform is
deemed necessary for Bilirubin in the model.

Output 73.12.1 Cox Model with Bilirubin as a Covariate

The PHREG ProcedureThe PHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio

Bilirubin 1 0.11733 0.01298 81.7567 <.0001 1.124

logProtime 1 2.77581 0.71482 15.0794 0.0001 16.052

logAlbumin 1 -3.17195 0.62945 25.3939 <.0001 0.042

Age 1 0.03779 0.00805 22.0288 <.0001 1.039

Edema 1 0.84772 0.28125 9.0850 0.0026 2.334
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Output 73.12.2 Cumulative Martingale Residuals vs Bilirubin

The cumulative martingale residual plots in Output 73.12.3 provide guidance in suggesting a more appropriate
functional form for a covariate. The four curves were created from simple forms of misspecification by using
10,000 simulated times from a exponential model with 20% censoring. The true and fitted models are shown
in Table 73.19. The following statements produce Output 73.12.3.
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data sim(drop=tmp);
p = 1 / 91;
seed = 1;
do n = 1 to 10000;

x1 = rantbl( seed, p, p, p, p, p, p, p, p, p, p,
p, p, p, p, p, p, p, p, p, p,
p, p, p, p, p, p, p, p, p, p,
p, p, p, p, p, p, p, p, p, p,
p, p, p, p, p, p, p, p, p, p,
p, p, p, p, p, p, p, p, p, p,
p, p, p, p, p, p, p, p, p, p,
p, p, p, p, p, p, p, p, p, p,
p, p, p, p, p, p, p, p, p, p );

x1 = 1 + ( x1 - 1 ) / 10;
x2= x1 * x1;
x3= x1 * x2;
status= rantbl(seed, .8);
tmp= log(1-ranuni(seed));
t1= -exp(-log(x1)) * tmp;
t2= -exp(-.1*(x1+x2)) * tmp;
t3= -exp(-.01*(x1+x2+x3)) * tmp;
tt= -exp(-(x1>5)) * tmp;
output;

end;
run;

proc sort data=sim;
by x1;

run;

proc phreg data=sim noprint;
model t1*status(2)=x1;
output out=out1 resmart=resmart;

run;

proc phreg data=sim noprint;
model t2*status(2)=x1;
output out=out2 resmart=resmart;

run;

proc phreg data=sim noprint;
model t3*status(2)=x1 x2;
output out=out3 resmart=resmart;

run;

proc phreg data=sim noprint;
model tt*status(2)=x1;
output out=out4 resmart=resmart;

run;
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data out1(keep=x1 cresid1);
retain cresid1 0;
set out1;
by x1;
cresid1 + resmart;
if last.x1 then output;

run;

data out2(keep=x1 cresid2);
retain cresid2 0;
set out2;
by x1;
cresid2 + resmart;
if last.x1 then output;

run;

data out3(keep=x1 cresid3);
retain cresid3 0;
set out3;
by x1;
cresid3 + resmart;
if last.x1 then output;

run;

data out4(keep=x1 cresid4);
retain cresid4 0;
set out4;
by x1;
cresid4 + resmart;
if last.x1 then output;

run;

data all;
set out1;
set out2;
set out3;
set out4;

run;

proc template;
define statgraph MisSpecification;

BeginGraph;
entrytitle "Covariate Misspecification";
layout lattice / columns=2 rows=2 columndatarange=unionall;

columnaxes;
columnaxis / display=(ticks tickvalues label) label="x";
columnaxis / display=(ticks tickvalues label) label="x";

endcolumnaxes;

cell;
cellheader;

entry "(a) Data: log(X), Model: X";
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endcellheader;
layout overlay / xaxisopts=(display=none)

yaxisopts=(label="Cumulative Residual");
seriesplot y=cresid1 x=x1 / lineattrs=GraphFit;

endlayout;
endcell;

cell;
cellheader;

entry "(b) Data: X*X, Model: X";
endcellheader;
layout overlay / xaxisopts=(display=none)

yaxisopts=(label=" ");
seriesplot y=cresid2 x=x1 / lineattrs=GraphFit;

endlayout;
endcell;

cell;
cellheader;

entry "(c) Data: X*X*X, Model: X*X";
endcellheader;
layout overlay / xaxisopts=(display=none)

yaxisopts=(label="Cumulative Residual");
seriesplot y=cresid3 x=x1 / lineattrs=GraphFit;

endlayout;
endcell;

cell;
cellheader;

entry "(d) Data: I(X>5), Model: X";
endcellheader;
layout overlay / xaxisopts=(display=none)

yaxisopts=(label=" ");
seriesplot y=cresid4 x=x1 / lineattrs=GraphFit;

endlayout;
endcell;

endlayout;
EndGraph;

end;
run;

proc sgrender data=all template=MisSpecification;
run;
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Output 73.12.3 Typical Cumulative Residual Plot Patterns

Table 73.19 Model Misspecifications

Plot Data Fitted Model

(a) log(X) X
(b) fX;X2g X
(c) fX;X2; X3g fX;X2g

(d) I.X > 5/ X

The curve of observed cumulative martingale residuals in Output 73.12.2 most resembles the behavior of the
curve in plot (a) of Output 73.12.3, indicating that log(Bilirubin) might be a more appropriate term in the
model than Bilirubin.
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Next, the analysis of the natural history of the PBC is repeated with log(Bilirubin) replacing Bilirubin, and the
functional form of log(Bilirubin) is assessed. Also assessed is the proportional hazards assumption for the
Cox model. The analysis is carried out by the following statements:

proc phreg data=Liver;
model Time*Status(0)=logBilirubin logProtime logAlbumin Age Edema;
logBilirubin=log(Bilirubin);
logProtime=log(Protime);
logAlbumin=log(Albumin);
assess var=(logBilirubin) ph / crpanel resample seed=19;

run;

The SEED= option specifies a integer seed for generating random numbers. The CRPANEL option in the
ASSESS statement requests a panel of four plots. Each plot displays the observed cumulative martingale
residual process along with two simulated realizations. The PH option checks the proportional hazards
assumption of the model by plotting the observed standardized score process with 20 simulated realizations
for each covariate in the model.

Output 73.12.4 displays the parameter estimates of the fitted model. The cumulative martingale residual plots
in Output 73.12.5 and Output 73.12.6 show that the observed martingale residual process is more typical of
the simulated realizations. The p-value for the Kolmogorov-type supremum test based on 1,000 simulations
is 0.052, indicating that the log transform is a much improved functional form for Bilirubin.

Output 73.12.4 Model with log(Bilirubin) as a Covariate

The PHREG ProcedureThe PHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio

logBilirubin 1 0.87072 0.08263 111.0484 <.0001 2.389

logProtime 1 2.37789 0.76674 9.6181 0.0019 10.782

logAlbumin 1 -2.53264 0.64819 15.2664 <.0001 0.079

Age 1 0.03940 0.00765 26.5306 <.0001 1.040

Edema 1 0.85934 0.27114 10.0447 0.0015 2.362
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Output 73.12.5 Panel Plot of Cumulative Martingale Residuals versus log(Bilirubin)
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Output 73.12.6 Cumulative Martingale Residuals versus log(Bilirubin)
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Output 73.12.7 and Output 73.12.8 display the results of proportional hazards assumption assessment for
log(Bilirubin) and log(Protime), respectively. The latter plot reveals nonproportional hazards for log(Protime).

Output 73.12.7 Standardized Score Process for log(Bilirubin)

[
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Output 73.12.8 Standardized Score Process for log(Protime)

Plots for log(Albumin), Age, and Edema are not shown here. The Kolmogorov-type supremum test results
for all the covariates are shown in Output 73.12.9. In addition to log(Protime), the proportional hazards
assumption appears to be violated for Edema.

Output 73.12.9 Kolmogorov-Type Supremum Tests for Proportional Hazards Assumption

Supremum Test for Proportionals Hazards
Assumption

Variable

Maximum
Absolute

Value Replications Seed
Pr >

MaxAbsVal

logBilirubin 1.0880 1000 19 0.1450

logProtime 1.7243 1000 19 0.0010

logAlbumin 0.8443 1000 19 0.4330

Age 0.7387 1000 19 0.4620

Edema 1.4350 1000 19 0.0330
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Example 73.13: Bayesian Analysis of the Cox Model
This example illustrates the use of an informative prior. Hazard ratios, which are transformations of the
regression parameters, are useful for interpreting survival models. This example also demonstrates the use of
the HAZARDRATIO statement to obtain customized hazard ratios.

Consider the VALung data set in Example 73.3. In this example, the Cox model is used for the Bayesian
analysis. The parameters are the coefficients of the continuous explanatory variables (Kps, Duration, and Age)
and the coefficients of the design variables for the categorical explanatory variables (Prior, Cell, and Therapy).
You use the CLASS statement in PROC PHREG to specify the categorical variables and their reference levels.
Using the default reference parameterization, the design variables for the categorical variables are Prioryes
(for Prior with Prior=’no’ as reference), Celladeno, Cellsmall, Cellsquamous (for Cell with Cell=’large’ as
reference), and Therapytest (for Therapy=’standard’ as reference).

Consider the explanatory variable Kps. The Karnofsky performance scale index enables patients to be
classified according to their functional impairment. The scale can range from 0 to 100—0 for dead, and 100
for a normal, healthy person with no evidence of disease. Recall that a flat prior was used for the regression
coefficient in the example in the section “Bayesian Analysis” on page 5887. A flat prior on the Kps coefficient
implies that the coefficient is as likely to be 0.1 as it is to be –100000. A coefficient of –5 means that a
decrease of 20 points in the scale increases the hazard by e�20��5(=2.68 �1043)-fold, which is a rather
unreasonable and unrealistic expectation for the effect of the Karnofsky index, much less than the value of
–100000. Suppose you have a more realistic expectation: the effect is somewhat small and is more likely to
be negative than positive, and a decrease of 20 points in the Karnofsky index will change the hazard from
0.9-fold (some minor positive effect) to 4-fold (a large negative effect). You can convert this opinion to a
more informative prior on the Kps coefficient ˇ1. Mathematically,

0:9 < e�20ˇ1 < 4

which is equivalent to

�0:0693 < ˇ1 < 0:0053

This becomes the plausible range that you believe the Kps coefficient can take. Now you can find a normal
distribution that best approximates this belief by placing the majority of the prior distribution mass within
this range. Assuming this interval is �˙ 2� , where � and � are the mean and standard deviation of the
normal prior, respectively, the hyperparameters � and � are computed as follows:

� D
�0:0693C 0:0053

2
D �0:032

� D
0:0053 � .�0:0693/

4
D 0:0186

Note that a normal prior distribution with mean –0.0320 and standard deviation 0.0186 indicates that you
believe, before looking at the data, that a decrease of 20 points in the Karnofsky index will probably change
the hazard rate by 0.9-fold to 4-fold. This does not rule out the possibility that the Kps coefficient can take a
more extreme value such as –5, but the probability of having such extreme values is very small.

Assume the prior distributions are independent for all the parameters. For the coefficient of Kps, you use a
normal prior distribution with mean –0.0320 and variance 0:01862.=0.00035). For other parameters, you
resort to using a normal prior distribution with mean 0 and variance 1E6, which is fairly noninformative.
Means and variances of these independent normal distributions are saved in the data set Prior as follows:
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proc format;
value yesno 0='no' 10='yes';

run;

data VALung;
drop check m;
retain Therapy Cell;
infile cards column=column;
length Check $ 1;
label Time='time to death in days'

Kps='Karnofsky performance scale'
Duration='months from diagnosis to randomization'
Age='age in years'
Prior='prior therapy'
Cell='cell type'
Therapy='type of treatment';

format Prior yesno.;
M=Column;
input Check $ @@;
if M>Column then M=1;
if Check='s'|Check='t' then do;

input @M Therapy $ Cell $;
delete;

end;
else do;

input @M Time Kps Duration Age Prior @@;
Status=(Time>0);
Time=abs(Time);

end;
datalines;

standard squamous
72 60 7 69 0 411 70 5 64 10 228 60 3 38 0 126 60 9 63 10

118 70 11 65 10 10 20 5 49 0 82 40 10 69 10 110 80 29 68 0
314 50 18 43 0 -100 70 6 70 0 42 60 4 81 0 8 40 58 63 10
144 30 4 63 0 -25 80 9 52 10 11 70 11 48 10
standard small
30 60 3 61 0 384 60 9 42 0 4 40 2 35 0 54 80 4 63 10
13 60 4 56 0 -123 40 3 55 0 -97 60 5 67 0 153 60 14 63 10
59 30 2 65 0 117 80 3 46 0 16 30 4 53 10 151 50 12 69 0
22 60 4 68 0 56 80 12 43 10 21 40 2 55 10 18 20 15 42 0

139 80 2 64 0 20 30 5 65 0 31 75 3 65 0 52 70 2 55 0
287 60 25 66 10 18 30 4 60 0 51 60 1 67 0 122 80 28 53 0
27 60 8 62 0 54 70 1 67 0 7 50 7 72 0 63 50 11 48 0

392 40 4 68 0 10 40 23 67 10
standard adeno

8 20 19 61 10 92 70 10 60 0 35 40 6 62 0 117 80 2 38 0
132 80 5 50 0 12 50 4 63 10 162 80 5 64 0 3 30 3 43 0
95 80 4 34 0

standard large
177 50 16 66 10 162 80 5 62 0 216 50 15 52 0 553 70 2 47 0
278 60 12 63 0 12 40 12 68 10 260 80 5 45 0 200 80 12 41 10
156 70 2 66 0 -182 90 2 62 0 143 90 8 60 0 105 80 11 66 0
103 80 5 38 0 250 70 8 53 10 100 60 13 37 10
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test squamous
999 90 12 54 10 112 80 6 60 0 -87 80 3 48 0 -231 50 8 52 10
242 50 1 70 0 991 70 7 50 10 111 70 3 62 0 1 20 21 65 10
587 60 3 58 0 389 90 2 62 0 33 30 6 64 0 25 20 36 63 0
357 70 13 58 0 467 90 2 64 0 201 80 28 52 10 1 50 7 35 0
30 70 11 63 0 44 60 13 70 10 283 90 2 51 0 15 50 13 40 10

test small
25 30 2 69 0 -103 70 22 36 10 21 20 4 71 0 13 30 2 62 0
87 60 2 60 0 2 40 36 44 10 20 30 9 54 10 7 20 11 66 0
24 60 8 49 0 99 70 3 72 0 8 80 2 68 0 99 85 4 62 0
61 70 2 71 0 25 70 2 70 0 95 70 1 61 0 80 50 17 71 0
51 30 87 59 10 29 40 8 67 0

test adeno
24 40 2 60 0 18 40 5 69 10 -83 99 3 57 0 31 80 3 39 0
51 60 5 62 0 90 60 22 50 10 52 60 3 43 0 73 60 3 70 0
8 50 5 66 0 36 70 8 61 0 48 10 4 81 0 7 40 4 58 0

140 70 3 63 0 186 90 3 60 0 84 80 4 62 10 19 50 10 42 0
45 40 3 69 0 80 40 4 63 0

test large
52 60 4 45 0 164 70 15 68 10 19 30 4 39 10 53 60 12 66 0
15 30 5 63 0 43 60 11 49 10 340 80 10 64 10 133 75 1 65 0

111 60 5 64 0 231 70 18 67 10 378 80 4 65 0 49 30 3 37 0
;

data Prior;
input _TYPE_ $ Kps Duration Age Prioryes Celladeno Cellsmall

Cellsquamous Therapytest;
datalines;
Mean -0.0320 0 0 0 0 0 0 0
Var 0.00035 1e6 1e6 1e6 1e6 1e6 1e6 1e6
run;

In the following BAYES statement, COEFFPRIOR=NORMAL(INPUT=PRIOR) specifies the normal prior
distribution for the regression coefficients whose details are contained in the data set Prior. Posterior
summaries (means, standard errors, and quantiles) and intervals (equal-tailed and HPD) are requested by the
STATISTICS= option. Autocorrelations and effective sample sizes are requested by the DIAGNOSTICS=
option as convergence diagnostics along with the trace plots (PLOTS= option) for visual analysis. For
comparisons of hazards, three HAZARDRATIO statements are specified—one for the variable Therapy, one
for the variable Age, and one for the variable Cell.

ods graphics on;
proc phreg data=VALung;

class Prior(ref='no') Cell(ref='large') Therapy(ref='standard');
model Time*Status(0) = Kps Duration Age Prior Cell Therapy;
bayes seed=1 coeffprior=normal(input=Prior) statistics=(summary interval)

diagnostics=(autocorr ess) plots=trace;
hazardratio 'Hazard Ratio Statement 1' Therapy;
hazardratio 'Hazard Ratio Statement 2' Age / unit=10;
hazardratio 'Hazard Ratio Statement 3' Cell;

run;

This analysis generates a posterior chain of 10,000 iterations after 2,000 iterations of burn-in, as depicted in
Output 73.13.1.
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Output 73.13.1 Model Information

The PHREG Procedure

Bayesian Analysis

The PHREG Procedure

Bayesian Analysis

Model Information

Data Set WORK.VALUNG

Dependent Variable Time time to death in days

Censoring Variable Status

Censoring Value(s) 0

Model Cox

Ties Handling BRESLOW

Sampling Algorithm ARMS

Burn-In Size 2000

MC Sample Size 10000

Thinning 1

Output 73.13.2 displays the names of the parameters and their corresponding effects and categories.

Output 73.13.2 Parameter Names

Regression Parameter Information

Parameter Effect Prior Cell Therapy

Kps Kps

Duration Duration

Age Age

Prioryes Prior yes

Celladeno Cell adeno

Cellsmall Cell small

Cellsquamous Cell squamous

Therapytest Therapy test

PROC PHREG computes the maximum likelihood estimates of regression parameters (Output 73.13.3).
These estimates are used as the starting values for the simulation of posterior samples.

Output 73.13.3 Parameter Estimates

Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits

Kps 1 -0.0326 0.00551 -0.0434 -0.0218

Duration 1 -0.00009 0.00913 -0.0180 0.0178

Age 1 -0.00855 0.00930 -0.0268 0.00969

Prioryes 1 0.0723 0.2321 -0.3826 0.5273

Celladeno 1 0.7887 0.3027 0.1955 1.3819

Cellsmall 1 0.4569 0.2663 -0.0650 0.9787

Cellsquamous 1 -0.3996 0.2827 -0.9536 0.1544

Therapytest 1 0.2899 0.2072 -0.1162 0.6961
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Output 73.13.4 displays the independent normal prior for the analysis.

Output 73.13.4 Coefficient Prior

Independent Normal Prior for
Regression Coefficients

Parameter Mean Precision

Kps -0.032 2857.143

Duration 0 1E-6

Age 0 1E-6

Prioryes 0 1E-6

Celladeno 0 1E-6

Cellsmall 0 1E-6

Cellsquamous 0 1E-6

Therapytest 0 1E-6

Fit statistics are displayed in Output 73.13.5. These statistics are useful for variable selection.

Output 73.13.5 Fit Statistics

Fit Statistics

DIC (smaller is better) 966.260

pD (Effective Number of Parameters) 7.934

Summary statistics of the posterior samples are shown in Output 73.13.6 and Output 73.13.7. These results
are quite comparable to the classical results based on maximizing the likelihood as shown in Output 73.13.3,
since the prior distribution for the regression coefficients is relatively flat.

Output 73.13.6 Summary Statistics

The PHREG Procedure

Bayesian Analysis

The PHREG Procedure

Bayesian Analysis

Posterior Summaries

Percentiles

Parameter N Mean
Standard
Deviation 25% 50% 75%

Kps 10000 -0.0326 0.00523 -0.0362 -0.0326 -0.0291

Duration 10000 -0.00159 0.00954 -0.00756 -0.00093 0.00504

Age 10000 -0.00844 0.00928 -0.0147 -0.00839 -0.00220

Prioryes 10000 0.0742 0.2348 -0.0812 0.0737 0.2337

Celladeno 10000 0.7881 0.3065 0.5839 0.7876 0.9933

Cellsmall 10000 0.4639 0.2709 0.2817 0.4581 0.6417

Cellsquamous 10000 -0.4024 0.2862 -0.5927 -0.4025 -0.2106

Therapytest 10000 0.2892 0.2038 0.1528 0.2893 0.4240
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Output 73.13.7 Interval Statistics

Posterior Intervals

Parameter Alpha
Equal-Tail

Interval HPD Interval

Kps 0.050 -0.0429 -0.0222 -0.0433 -0.0226

Duration 0.050 -0.0220 0.0156 -0.0210 0.0164

Age 0.050 -0.0263 0.00963 -0.0265 0.00941

Prioryes 0.050 -0.3936 0.5308 -0.3832 0.5384

Celladeno 0.050 0.1879 1.3920 0.1764 1.3755

Cellsmall 0.050 -0.0571 1.0167 -0.0888 0.9806

Cellsquamous 0.050 -0.9687 0.1635 -0.9641 0.1667

Therapytest 0.050 -0.1083 0.6930 -0.1284 0.6710

With autocorrelations retreating quickly to 0 (Output 73.13.8) and large effective sample sizes (Out-
put 73.13.9), both diagnostics indicate a reasonably good mixing of the Markov chain. The trace plots
in Output 73.13.10 also confirm the convergence of the Markov chain.

Output 73.13.8 Autocorrelation Diagnostics

The PHREG Procedure

Bayesian Analysis

The PHREG Procedure

Bayesian Analysis

Posterior Autocorrelations

Parameter Lag 1 Lag 5 Lag 10 Lag 50

Kps 0.1442 -0.0016 0.0096 -0.0013

Duration 0.2672 -0.0054 -0.0004 -0.0011

Age 0.1374 -0.0044 0.0129 0.0084

Prioryes 0.2507 -0.0271 -0.0012 0.0004

Celladeno 0.4160 0.0265 -0.0062 0.0190

Cellsmall 0.5055 0.0277 -0.0011 0.0271

Cellsquamous 0.3586 0.0252 -0.0044 0.0107

Therapytest 0.2063 0.0199 -0.0047 -0.0166

Output 73.13.9 Effective Sample Size Diagnostics

Effective Sample Sizes

Parameter ESS
Autocorrelation

Time Efficiency

Kps 7046.7 1.4191 0.7047

Duration 5790.0 1.7271 0.5790

Age 7426.1 1.3466 0.7426

Prioryes 6102.2 1.6388 0.6102

Celladeno 3673.4 2.7223 0.3673

Cellsmall 3346.4 2.9883 0.3346

Cellsquamous 4052.8 2.4674 0.4053

Therapytest 6870.8 1.4554 0.6871
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Output 73.13.10 Trace Plots
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Output 73.13.10 continued
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Output 73.13.10 continued

The first HAZARDRATIO statement compares the hazards between the standard therapy and the test therapy.
Summaries of the posterior distribution of the corresponding hazard ratio are shown in Output 73.13.11.
There is a 95% chance that the hazard ratio of standard therapy versus test therapy lies between 0.5 and 1.1.

Output 73.13.11 Hazard Ratio for Treatment

Hazard Ratio Statement 1: Hazard Ratios for Therapy

Quantiles

Description N Mean
Standard
Deviation 25% 50% 75%

95%
Equal-Tail

Interval
95%

HPD Interval

Therapy standard vs test 10000 0.7645 0.1573 0.6544 0.7488 0.8583 0.5001 1.1143 0.4788 1.0805

The second HAZARDRATIO statement assesses the change of hazards for an increase in Age of 10 years.
Summaries of the posterior distribution of the corresponding hazard ratio are shown in Output 73.13.12.
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Output 73.13.12 Hazard Ratio for Age

Hazard Ratio Statement 2: Hazard Ratios for Age

Quantiles

Description N Mean
Standard
Deviation 25% 50% 75%

95%
Equal-Tail

Interval
95%

HPD Interval

Age Unit=10 10000 0.9230 0.0859 0.8635 0.9195 0.9782 0.7685 1.1011 0.7650 1.0960

The third HAZARDRATIO statement compares the changes of hazards between two types of cells. For four
types of cells, there are six different pairs of cell comparisons. The results are shown in Output 73.13.13.

Output 73.13.13 Hazard Ratios for Cell

Hazard Ratio Statement 3: Hazard Ratios for Cell

Quantiles

Description N Mean
Standard
Deviation 25% 50% 75%

95%
Equal-Tail

Interval
95%

HPD Interval

Cell adeno vs large 10000 2.3048 0.7224 1.7929 2.1982 2.7000 1.2067 4.0227 1.0053 3.7057

Cell adeno vs small 10000 1.4377 0.4078 1.1522 1.3841 1.6704 0.7930 2.3999 0.7309 2.2662

Cell adeno vs squamous 10000 3.4449 1.0745 2.6789 3.2941 4.0397 1.8067 5.9727 1.6303 5.5946

Cell large vs small 10000 0.6521 0.1780 0.5264 0.6325 0.7545 0.3618 1.0588 0.3331 1.0041

Cell large vs squamous 10000 1.5579 0.4548 1.2344 1.4955 1.8089 0.8492 2.6346 0.7542 2.4575

Cell small vs squamous 10000 2.4728 0.7081 1.9620 2.3663 2.8684 1.3789 4.1561 1.2787 3.9263

Example 73.14: Bayesian Analysis of Piecewise Exponential Model
This example illustrates using a piecewise exponential model in a Bayesian analysis. Consider the Rats
data set in the section “Getting Started: PHREG Procedure” on page 5883. In the following statements,
PROC PHREG is used to carry out a Bayesian analysis for the piecewise exponential model. In the BAYES
statement, the option PIECEWISE stipulates a piecewise exponential model, and PIECEWISE=HAZARD
requests that the constant hazards be modeled in the original scale. By default, eight intervals of constant
hazards are used, and the intervals are chosen such that each has roughly the same number of events.

data Rats;
label Days ='Days from Exposure to Death';
input Days Status Group @@;
datalines;

143 1 0 164 1 0 188 1 0 188 1 0
190 1 0 192 1 0 206 1 0 209 1 0
213 1 0 216 1 0 220 1 0 227 1 0
230 1 0 234 1 0 246 1 0 265 1 0
304 1 0 216 0 0 244 0 0 142 1 1
156 1 1 163 1 1 198 1 1 205 1 1
232 1 1 232 1 1 233 1 1 233 1 1
233 1 1 233 1 1 239 1 1 240 1 1
261 1 1 280 1 1 280 1 1 296 1 1
296 1 1 323 1 1 204 0 1 344 0 1
;
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proc phreg data=Rats;
model Days*Status(0)=Group;
bayes seed=1 piecewise=hazard statistics=(summary interval)

diagnostics=(autocorr geweke ess);
run;

The “Model Information” table in Output 73.14.1 shows that the piecewise exponential model is being used.

Output 73.14.1 Model Information

The PHREG Procedure

Bayesian Analysis

The PHREG Procedure

Bayesian Analysis

Model Information

Data Set WORK.RATS

Dependent Variable Days Days from Exposure to Death

Censoring Variable Status

Censoring Value(s) 0

Model Piecewise Exponential

Sampling Algorithm ARMS

Burn-In Size 2000

MC Sample Size 10000

Thinning 1

By default the time axis is partitioned into eight intervals of constant hazard. Output 73.14.2 details the
number of events and observations in each interval. Note that the constant hazard parameters are named
Lambda1,. . . , Lambda8. You can supply your own partition by using the INTERVALS= suboption within
the PIECEWISE=HAZARD option.

Output 73.14.2 Interval Partition

Constant Hazard Time Intervals

Interval

[Lower, Upper) N Event
Hazard
Parameter

0 176 5 5 Lambda1

176 201.5 5 5 Lambda2

201.5 218 7 5 Lambda3

218 232.5 5 5 Lambda4

232.5 233.5 4 4 Lambda5

233.5 253.5 5 4 Lambda6

253.5 288 4 4 Lambda7

288 Infty 5 4 Lambda8

The model parameters consist of the eight hazard parameters Lambda1, . . . , Lambda8, and the regression
coefficient Group. The maximum likelihood estimates are displayed in Output 73.14.3. Again, these estimates
are used as the starting values for simulation of the posterior distribution.



Example 73.14: Bayesian Analysis of Piecewise Exponential Model F 6107

Output 73.14.3 Maximum Likelihood Estimates

Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits

Lambda1 1 0.000953 0.000443 0.000084 0.00182

Lambda2 1 0.00794 0.00371 0.000672 0.0152

Lambda3 1 0.0156 0.00734 0.00120 0.0300

Lambda4 1 0.0236 0.0115 0.00112 0.0461

Lambda5 1 0.3669 0.1959 0 0.7509

Lambda6 1 0.0276 0.0148 0 0.0566

Lambda7 1 0.0262 0.0146 0 0.0548

Lambda8 1 0.0545 0.0310 0 0.1152

Group 1 -0.6223 0.3468 -1.3020 0.0573

Without using the PRIOR= suboption within the PIECEWISE=HAZARD option to specify the prior of the
hazard parameters, the default is to use the noninformative and improper prior displayed in Output 73.14.4.

Output 73.14.4 Hazard Prior

Improper Prior for
Hazards

Parameter Prior

Lambda1 1 / Lambda1

Lambda2 1 / Lambda2

Lambda3 1 / Lambda3

Lambda4 1 / Lambda4

Lambda5 1 / Lambda5

Lambda6 1 / Lambda6

Lambda7 1 / Lambda7

Lambda8 1 / Lambda8

The noninformative uniform prior is used for the regression coefficient Group (Output 73.14.5), as in the
section “Bayesian Analysis” on page 5887.

Output 73.14.5 Coefficient Prior

Uniform Prior for
Regression
Coefficients

Parameter Prior

Group Constant
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Summary statistics for all model parameters are shown in Output 73.14.6 and Output 73.14.7.

Output 73.14.6 Summary Statistics

The PHREG Procedure

Bayesian Analysis

The PHREG Procedure

Bayesian Analysis

Posterior Summaries

Percentiles

Parameter N Mean
Standard
Deviation 25% 50% 75%

Lambda1 10000 0.000945 0.000444 0.000624 0.000876 0.00118

Lambda2 10000 0.00782 0.00363 0.00519 0.00724 0.00979

Lambda3 10000 0.0155 0.00735 0.0102 0.0144 0.0195

Lambda4 10000 0.0236 0.0116 0.0152 0.0217 0.0297

Lambda5 10000 0.3634 0.1965 0.2186 0.3266 0.4685

Lambda6 10000 0.0278 0.0153 0.0166 0.0249 0.0356

Lambda7 10000 0.0265 0.0151 0.0157 0.0236 0.0338

Lambda8 10000 0.0558 0.0323 0.0322 0.0488 0.0721

Group 10000 -0.6154 0.3570 -0.8569 -0.6186 -0.3788

Output 73.14.7 Interval Statistics

Posterior Intervals

Parameter Alpha
Equal-Tail

Interval HPD Interval

Lambda1 0.050 0.000289 0.00199 0.000208 0.00182

Lambda2 0.050 0.00247 0.0165 0.00194 0.0152

Lambda3 0.050 0.00484 0.0331 0.00341 0.0301

Lambda4 0.050 0.00699 0.0515 0.00478 0.0462

Lambda5 0.050 0.0906 0.8325 0.0541 0.7469

Lambda6 0.050 0.00676 0.0654 0.00409 0.0580

Lambda7 0.050 0.00614 0.0648 0.00421 0.0569

Lambda8 0.050 0.0132 0.1368 0.00637 0.1207

Group 0.050 -1.3190 0.0893 -1.3379 0.0652

The requested diagnostics—namely, lag1, lag5, lag10, lag50 autocorrelations (Output 73.14.8), the Geweke
diagnostics (Output 73.14.9), and the effective sample size diagnostics (Output 73.14.10)—show a good
mixing of the Markov chain.
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Output 73.14.8 Autocorrelations

The PHREG Procedure

Bayesian Analysis

The PHREG Procedure

Bayesian Analysis

Posterior Autocorrelations

Parameter Lag 1 Lag 5 Lag 10 Lag 50

Lambda1 0.0705 0.0015 0.0017 -0.0076

Lambda2 0.0909 0.0206 -0.0013 -0.0039

Lambda3 0.0861 -0.0072 0.0011 0.0002

Lambda4 0.1447 -0.0023 0.0081 0.0082

Lambda5 0.1086 0.0072 -0.0038 -0.0028

Lambda6 0.1281 0.0049 -0.0036 0.0048

Lambda7 0.1925 -0.0011 0.0094 -0.0011

Lambda8 0.2128 0.0322 -0.0042 -0.0045

Group 0.5638 0.0410 -0.0003 -0.0071

Output 73.14.9 Geweke Diagnostics

Geweke Diagnostics

Parameter z Pr > |z|

Lambda1 -0.0705 0.9438

Lambda2 -0.4936 0.6216

Lambda3 0.5751 0.5652

Lambda4 1.0514 0.2931

Lambda5 0.8910 0.3729

Lambda6 0.2976 0.7660

Lambda7 1.6543 0.0981

Lambda8 0.6686 0.5038

Group -1.2621 0.2069

Output 73.14.10 Effective Sample Size

Effective Sample Sizes

Parameter ESS
Autocorrelation

Time Efficiency

Lambda1 7775.3 1.2861 0.7775

Lambda2 6874.8 1.4546 0.6875

Lambda3 7655.7 1.3062 0.7656

Lambda4 6337.1 1.5780 0.6337

Lambda5 6563.3 1.5236 0.6563

Lambda6 6720.8 1.4879 0.6721

Lambda7 5968.7 1.6754 0.5969

Lambda8 5137.2 1.9466 0.5137

Group 2980.4 3.3553 0.2980
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Example 73.15: Analysis of Competing-Risks Data
Bone marrow transplant (BMT) is a standard treatment for acute leukemia. Klein and Moeschberger (1997)
present a set of BMT data for 137 patients, grouped into three risk categories based on their status at the time
of transplantation: acute lymphoblastic leukemia (ALL), acute myelocytic leukemia (AML) low-risk, and
AML high-risk. During the follow-up period, some patients might relapse or some patients might die while
in remission. Consider relapse to be the event of interest. Death is a competing risk because death impedes
the occurrence of leukemia relapse. The Fine and Gray (1999) model is used to compare the risk categories
on the disease-free survival.

The following DATA step creates the data set Bmt. The variable Disease represents the risk group of a
patient, which is either ALL, AML-Low Risk, or AML-High Risk. The variable T represents the disease-free
survival in days, which is the time to relapse, time to death, or censored. The variable Status has three values:
0 for censored observations, 1 for relapsed patients, and 2 for patients who die before experiencing a relapse.

proc format;
value DiseaseGroup 1='ALL'

2='AML-Low Risk'
3='AML-High Risk';

data Bmt;
input Disease T Status @@;
label T='Disease-Free Survival in Days';
format Disease DiseaseGroup.;
datalines;

1 2081 0 1 1602 0 1 1496 0 1 1462 0 1 1433 0
1 1377 0 1 1330 0 1 996 0 1 226 0 1 1199 0
1 1111 0 1 530 0 1 1182 0 1 1167 0 1 418 2
1 383 1 1 276 2 1 104 1 1 609 1 1 172 2
1 487 2 1 662 1 1 194 2 1 230 1 1 526 2
1 122 2 1 129 1 1 74 1 1 122 1 1 86 2
1 466 2 1 192 1 1 109 1 1 55 1 1 1 2
1 107 2 1 110 1 1 332 2 2 2569 0 2 2506 0
2 2409 0 2 2218 0 2 1857 0 2 1829 0 2 1562 0
2 1470 0 2 1363 0 2 1030 0 2 860 0 2 1258 0
2 2246 0 2 1870 0 2 1799 0 2 1709 0 2 1674 0
2 1568 0 2 1527 0 2 1324 0 2 957 0 2 932 0
2 847 0 2 848 0 2 1850 0 2 1843 0 2 1535 0
2 1447 0 2 1384 0 2 414 2 2 2204 2 2 1063 2
2 481 2 2 105 2 2 641 2 2 390 2 2 288 2
2 421 1 2 79 2 2 748 1 2 486 1 2 48 2
2 272 1 2 1074 2 2 381 1 2 10 2 2 53 2
2 80 2 2 35 2 2 248 1 2 704 2 2 211 1
2 219 1 2 606 1 3 2640 0 3 2430 0 3 2252 0
3 2140 0 3 2133 0 3 1238 0 3 1631 0 3 2024 0
3 1345 0 3 1136 0 3 845 0 3 422 1 3 162 2
3 84 1 3 100 1 3 2 2 3 47 1 3 242 1
3 456 1 3 268 1 3 318 2 3 32 1 3 467 1
3 47 1 3 390 1 3 183 2 3 105 2 3 115 1



Example 73.15: Analysis of Competing-Risks Data F 6111

3 164 2 3 93 1 3 120 1 3 80 2 3 677 2
3 64 1 3 168 2 3 74 2 3 16 2 3 157 1
3 625 1 3 48 1 3 273 1 3 63 2 3 76 1
3 113 1 3 363 2
;

PROC PHREG enables you to plot the cumulative incidence function for each disease category, but first you
must save these three Disease values in a SAS data set, as in the following DATA step:

data Risk;
Disease=1; output;
Disease=2; output;
Disease=3; output;
format Disease DiseaseGroup.;
run;

The following statements use the PHREG procedure to fit the proportional subdistribution hazards model.
To designate relapse (Status=1) as the event of interest, you specify EVENTCODE=1 in the MODEL
statement. The HAZARDRATIO statement provides the hazard ratios for all pairs of disease groups. The
COVARIATES= option in the BASELINE statement specifies the data set that contains the covariate settings
for predicting cumulative incidence functions; and the OUT= option saves the prediction results in a SAS
data set. The PLOTS= option in the PROC PHREG statement displays the cumulative incidence curves.

ods graphics on;
proc phreg data=Bmt plots(overlay=stratum)=cif;

class Disease (order=internal ref=first);
model T*Status(0)=Disease / eventcode=1;
Hazardratio 'Pairwise' Disease / diff=pairwise;
baseline covariates=Risk out=out1 cif=_all_ / seed=191;

run;

Figure 73.15.1 displays the codes of different types of observations in the input data set. Relapse is the failure
of interest with Status = 1, death is a competing failure with Status = 2, and censored observations are those
with Status = 0. Out of the 137 transplant patients, 42 have a relapse, 41 die without experiencing a relapse,
and 54 are censored (Figure 73.15.2).

Output 73.15.1 Code for the Competing Failures and Censored Observations

The PHREG ProcedureThe PHREG Procedure

Model Information

Data Set WORK.BMT

Dependent Variable T Disease-Free Survival in Days

Status Variable Status

Event of Interest 1

Competing Event 2

Censored Value 0
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Output 73.15.2 Distribution of Events and Censored Observations

Summary of Failure Outcomes

Total
Event of
Interest

Competing
Event Censored

137 42 41 54

Figure 73.15.3 shows a significant effect (p = 0.0030) of Disease on the disease-free survival. With the
reference coding, the CLASS variable Disease is represented by two dummy variables. Parameter estimates
and Wald tests for individual parameters are shown in Figure 73.15.3.

Output 73.15.3 Wald Test of the Disease Effect

Type 3 Tests

Effect DF
Wald

Chi-Square Pr > ChiSq

Disease 2 11.6406 0.0030

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio Label

Disease AML-Low Risk 1 -0.80340 0.42846 3.5160 0.0608 0.448 Disease AML-Low Risk

Disease AML-High Risk 1 0.50849 0.36618 1.9283 0.1649 1.663 Disease AML-High Risk

Hazard ratio estimates of one disease group relative to another disease group are displayed in Figure 73.15.4.
The hazard of relapse for the ALL patients is 2.2 times that for the AML-low risk patients, and the hazard for
the AML-high risk patients is 1.7 times that for the ALL patients. It is expected that at any given time after
the transplant, an AML high-risk patient is more likely to relapse than an ALL patient, and an ALL patient is
more likely to relapse than an AML low-risk patient. Such ordering of probabilities is revealed in the plot of
the cumulative incidence functions in Figure 73.15.5.

Output 73.15.4 Pairwise Comparison of Disease Group

Pairwise: Hazard Ratios for Disease

Description
Point

Estimate

95%
Wald

Confidence
Limits

Disease ALL vs AML-Low Risk 2.233 0.964 5.171

Disease AML-Low Risk vs ALL 0.448 0.193 1.037

Disease ALL vs AML-High Risk 0.601 0.293 1.233

Disease AML-High Risk vs ALL 1.663 0.811 3.408

Disease AML-Low Risk vs AML-High Risk 0.269 0.127 0.573

Disease AML-High Risk vs AML-Low Risk 3.713 1.745 7.900
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Output 73.15.5 CIF of the Three Disease Groups

You use the following statements to display the cumulative incidence prediction for the ALL (Disease=1)
risk group:

proc print data=Out1(where=(Disease=1));
title 'CIF Estimates and 95% Confidence limits for the ALL Group';

run;



6114 F Chapter 73: The PHREG Procedure

Output 73.15.6 Cumulative Incidence Prediction

CIF Estimates and 95% Confidence limits for the ALL GroupCIF Estimates and 95% Confidence limits for the ALL Group

Obs Disease T CIF StdErrCIF LowerCIF UpperCIF

1 ALL 0 0.00000 . . .

2 ALL 32 0.00727 0.007237 0.00103 0.05114

3 ALL 47 0.02183 0.014323 0.00604 0.07898

4 ALL 48 0.02922 0.017822 0.00884 0.09657

5 ALL 55 0.03663 0.019106 0.01318 0.10181

6 ALL 64 0.04405 0.019259 0.01870 0.10378

7 ALL 74 0.05151 0.019951 0.02411 0.11005

8 ALL 76 0.05897 0.025533 0.02524 0.13778

9 ALL 84 0.06646 0.025378 0.03145 0.14048

10 ALL 93 0.07400 0.025092 0.03807 0.14383

11 ALL 100 0.08158 0.030460 0.03924 0.16959

12 ALL 104 0.08920 0.029038 0.04712 0.16883

13 ALL 109 0.09682 0.033564 0.04907 0.19100

14 ALL 110 0.10443 0.035734 0.05341 0.20422

15 ALL 113 0.11205 0.041176 0.05453 0.23026

16 ALL 115 0.11972 0.037619 0.06467 0.22163

17 ALL 120 0.12742 0.036521 0.07266 0.22347

18 ALL 122 0.13518 0.042929 0.07254 0.25190

19 ALL 129 0.14293 0.041747 0.08063 0.25336

20 ALL 157 0.15068 0.046376 0.08243 0.27545

21 ALL 192 0.15848 0.051406 0.08392 0.29928

22 ALL 211 0.16628 0.058106 0.08383 0.32983

23 ALL 219 0.17404 0.056257 0.09236 0.32794

24 ALL 230 0.18185 0.053563 0.10210 0.32392

25 ALL 242 0.18967 0.065355 0.09653 0.37265

26 ALL 248 0.19753 0.057829 0.11128 0.35062

27 ALL 268 0.20535 0.054765 0.12176 0.34634

28 ALL 272 0.21322 0.058189 0.12489 0.36402

29 ALL 273 0.22105 0.061340 0.12832 0.38080

30 ALL 381 0.22893 0.061228 0.13554 0.38669

31 ALL 383 0.23677 0.062212 0.14147 0.39626

32 ALL 390 0.24461 0.063708 0.14682 0.40754

33 ALL 421 0.25250 0.070833 0.14571 0.43757

34 ALL 422 0.26035 0.063694 0.16118 0.42053

35 ALL 456 0.26825 0.067518 0.16379 0.43932

36 ALL 467 0.27621 0.073253 0.16424 0.46450

37 ALL 486 0.28422 0.066216 0.18004 0.44871

38 ALL 606 0.29233 0.067521 0.18590 0.45971

39 ALL 609 0.30039 0.079301 0.17905 0.50396

40 ALL 625 0.30845 0.067182 0.20128 0.47270

41 ALL 662 0.31657 0.070668 0.20439 0.49033

42 ALL 748 0.32469 0.082845 0.19692 0.53537

Figure 73.15.6 shows the point estimate and the confidence limits for the cumulative incidence at each distinct
time when the event of interest occurred for the ALL patients. The predictions for the AML-low risk patients
and AML-high risk patients are not shown.
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Overview: PLAN Procedure
The PLAN procedure constructs designs and randomizes plans for factorial experiments, especially nested
and crossed experiments and randomized block designs. PROC PLAN can also be used for generating lists
of permutations and combinations of numbers. The PLAN procedure can construct the following types of
experimental designs:
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• full factorial designs, with and without randomization

• certain balanced and partially balanced incomplete block designs

• generalized cyclic incomplete block designs

• Latin square designs

For other kinds of experimental designs, especially fractional factorial, response surface, and orthogonal
array designs, see the FACTEX and OPTEX procedures and the ADX Interface in SAS/QC software.

PROC PLAN generates designs by first generating a selection of the levels for the first factor. Then, for the
second factor, PROC PLAN generates a selection of its levels for each level of the first factor. In general, for
a given factor, the PLAN procedure generates a selection of its levels for all combinations of levels for the
factors that precede it.

The selection can be done in five different ways:

• randomized selection, for which the levels are returned in a random order

• ordered selection, for which the levels are returned in a standard order every time a selection is
generated

• cyclic selection, for which the levels returned are computed by cyclically permuting the levels of the
previous selection

• permuted selection, for which the levels are a permutation of the integers 1; : : : ; n

• combination selection, for which the m levels are selected as a combination of the integers 1; : : : ; n
taken m at a time

The randomized selection method can be used to generate randomized plans. Also, by appropriate use of
cyclic selection, any of the designs in the very wide class of generalized cyclic block designs (Jarrett and
Hall 1978) can be generated.

There is no limit to the depth to which the different factors can be nested, and any number of randomized
plans can be generated.

You can also declare a list of factors to be selected simultaneously with the lowest (that is, the most nested)
factor. The levels of the factors in this list can be seen as constituting the treatment to be applied to the cells
of the design. For this reason, factors in this list are called treatments. With this list, you can generate and
randomize plans in one run of PROC PLAN.

Getting Started: PLAN Procedure

Three Replications with Four Factors
Suppose you want to determine if the order in which four drugs are given affects the response of a subject. If
you have only three subjects to test, you can use the following statements to design the experiment.
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proc plan seed=27371;
factors Replicate=3 ordered Drug=4;

run;

These statements produce a design with three replicates of the four levels of the factor Drug arranged in
random order. The three levels of Replicate are arranged in order, as shown in Figure 74.1.

Figure 74.1 Three Replications and Four Factors

The PLAN ProcedureThe PLAN Procedure

Factor Select Levels Order

Replicate 3 3 Ordered

Drug 4 4 Random

Replicate Drug

1 3 2 4 1

2 1 2 4 3

3 4 1 2 3

You might also want to apply one of four different treatments to each cell of this plan (for example, applying
different amounts of each drug). The following additional statements create the output shown in Figure 74.2:

factors Replicate=3 ordered Drug=4;
treatments Treatment=4;

run;

Figure 74.2 Using the TREATMENTS Statement

The PLAN ProcedureThe PLAN Procedure

Plot Factors

Factor Select Levels Order

Replicate 3 3 Ordered

Drug 4 4 Random

Treatment Factors

Factor Select Levels Order

Treatment 4 4 Random

Replicate Drug Treatment

1 3 1 2 4 2 1 3 4

2 4 3 2 1 4 1 2 3

3 3 2 4 1 1 4 2 3
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Randomly Assigning Subjects to Treatments
You can use the PLAN procedure to design a completely randomized design. Suppose you have 12 exper-
imental units, and you want to assign one of two treatments to each unit. Use a DATA step to store the
unrandomized design in a SAS data set, and then call PROC PLAN to randomize it by specifying one factor
with the default type of RANDOM, having 12 levels. The following statements produce Figure 74.3 and
Figure 74.4:

title 'Completely Randomized Design';
/* The unrandomized design */

data Unrandomized;
do Unit=1 to 12;

if (Unit <= 6) then Treatment=1;
else Treatment=2;
output;

end;
run;

/* Randomize the design */

proc plan seed=27371;
factors Unit=12;
output data=Unrandomized out=Randomized;

run;

proc sort data=Randomized;
by Unit;

run;
proc print;
run;

Figure 74.3 shows that the 12 levels of the unit factor have been randomly reordered and then lists the new
ordering.

Figure 74.3 A Completely Randomized Design for Two Treatments

Completely Randomized Design

The PLAN Procedure

Completely Randomized Design

The PLAN Procedure

Factor Select Levels Order

Unit 12 12 Random

Unit

8 5 1 4 6 2 12 7 3 9 10 11

After the data set is sorted by the unit variable, the randomized design is displayed (Figure 74.4).
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Figure 74.4 A Completely Randomized Design for Two Treatments

Completely Randomized DesignCompletely Randomized Design

Obs Unit Treatment

1 1 1

2 2 1

3 3 2

4 4 1

5 5 1

6 6 1

7 7 2

8 8 1

9 9 2

10 10 2

11 11 2

12 12 2

You can also generate the plan by using a TREATMENTS statement instead of a DATA step. The following
statements generate the same plan.

proc plan seed=27371;
factors Unit=12;
treatments Treatment=12 cyclic (1 1 1 1 1 1 2 2 2 2 2 2);
output out=Randomized;

run;

Syntax: PLAN Procedure
The following statements are available in the PLAN procedure:

PROC PLAN < options > ;
FACTORS factor-selections < / NOPRINT > ;
OUTPUT OUT=SAS-data-set < factor-value-settings > ;
TREATMENTS factor-selections ;

To use PROC PLAN, you need to specify the PROC PLAN statement and at least one FACTORS state-
ment before the first RUN statement. The TREATMENTS statement, OUTPUT statement, and additional
FACTORS statements can appear either before the first RUN statement or after it.

The rest of this section gives detailed syntax information for each of the statements, beginning with the PROC
PLAN statement. The remaining statements are described in alphabetical order.

You can use PROC PLAN interactively by specifying multiple groups of statements, separated by RUN
statements. For details, see the section “Using PROC PLAN Interactively” on page 6130.
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PROC PLAN Statement
PROC PLAN < options > ;

The PROC PLAN statement invokes the PLAN procedure. Optionally, you can also specify a random number
seed or a default method for selecting levels of factors. By default, the procedure uses a random number
seed generated from reading the time of day from the computer’s clock and randomly selects levels of
factors. These defaults can be modified with the SEED= and ORDERED options, respectively. Unlike many
SAS/STAT procedures, the PLAN procedure does not have a DATA= option in the PROC PLAN statement;
in this procedure, both the input and output data sets are specified in the OUTPUT statement.

Table 74.1 summarizes the options available in the PROC PLAN statement.

Table 74.1 PROC PLAN Statement Options

Option Description

ORDERED Selects the levels of the factor as the integers 1; 2; : : : ; m; in order
SEED= Specifies an integer used to start the pseudo-random number generator

You can specify the following options in the PROC PLAN statement:

ORDERED
selects the levels of the factor as the integers 1; 2; : : : ; m; in order. For more detail, see “Selection-Types”
on page 6125 and “Specifying Factor Structures” on page 6132.

SEED=number
specifies an integer used to start the pseudo-random number generator for selecting factor levels
randomly. If you do not specify a seed, or if you specify a value less than or equal to zero, the seed is
by default generated from reading the time of day from the computer’s clock.

FACTORS Statement
FACTORS factor-selections < / NOPRINT > ;

The FACTORS statement specifies the factors of the plan and generates the plan. Taken together, the
factor-selections specify the plan to be generated; more than one factor-selection request can be used in a
FACTORS statement. The form of a factor-selection is

name = m < OF n > < selection-type > ;

where

name is a valid SAS name. This gives the name of a factor in the design.

m is a positive integer that gives the number of values to be selected. If n is specified, the
value of m must be less than or equal to n.

n is a positive integer that gives the number of values to be selected from.



FACTORS Statement F 6125

selection-type specifies one of five methods for selecting m values. Possible values are COMB, CYCLIC,
ORDERED, PERM, and RANDOM. The CYCLIC selection-type has additional optional
specifications that enable you to specify an initial block of numbers to be cyclically permuted
and an increment used to permute the numbers. By default, the selection-type is RANDOM,
unless you use the ORDERED option in the PROC PLAN statement. In this case, the default
selection-type is ORDERED. For details, see the following section, “Selection-Types”; for
examples, see the section “Syntax Examples” on page 6125.

The following option can appear in the FACTORS statement after the slash:

NOPRINT
suppresses the display of the plan. This is particularly useful when you require only an output data set.
Note that this option temporarily disables the Output Delivery System (ODS); see Chapter 20, “Using
the Output Delivery System,” for more information.

Selection-Types

PROC PLAN interprets selection-type as follows:

RANDOM selects the m levels of the factor randomly without replacement from the integers 1; 2; : : : ; n.
Or, if n is not specified, RANDOM selects levels by randomly ordering the integers
1; 2; : : : ; m.

ORDERED selects the levels of the factor as the integers 1; 2; : : : ; m, in that order.

PERM selects the m levels of the factor as a permutation of the integers 1; : : : m according to an
algorithm that cycles through all mŠ permutations. The permutations are produced in a sorted
standard order; see Example 74.6.

COMB selects the m levels of the factor as a combination of the integers 1; : : : ; n taken m at a
time, according to an algorithm that cycles through all nŠ=.mŠ.n �m/Š/ combinations. The
combinations are produced in a sorted standard order; see Example 74.6.

CYCLIC < (initial-block ) > < increment > selects the levels of the factor by cyclically permuting the integers
1; 2; : : : ; n. Wrapping occurs at m if n is not specified, and at n if n is specified. Additional
optional specifications are as follows.

With the selection-type CYCLIC, you can optionally specify an initial-block and an increment .
The initial-block must be specified within parentheses, and it specifies the block of numbers
to permute. The first permutation is the block you specify, the second is the block permuted
by 1 (or by the increment you specify), and so on. By default, the initial-block is the integers
1; 2; : : : ; m. If you specify an initial-block , it must have m values. Values specified in the
initial-block do not have to be given in increasing order.

The increment specifies the increment by which to permute the block of numbers. By default,
the increment is 1.

Syntax Examples

This section gives some simple syntax examples. For more complex examples and details on how to generate
various designs, see “Specifying Factor Structures” on page 6132. The examples in this section assume that
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you use the default random selection method and do not use the ORDERED option in the PROC PLAN
statement.

The following specification generates a random permutation of the numbers 1, 2, 3, 4, and 5.

factors A=5;

The following specification generates a random permutation of five of the integers from 1 to 8, selected
without replacement.

factors A=5 of 8;

Adding the ORDERED selection-type to the two previous specifications generates an ordered list of the
integers 1 to 5. The following specification cyclically permutes the integers 1, 2, 3, and 4.

factors A=4 cyclic;

Since this simple request generates only one permutation of the numbers, the procedure generates an ordered
list of the integers 1 to 4. The following specification cyclically permutes the integers 5 to 8.

factors A=4 of 8 cyclic (5 6 7 8);

In this case, since only one permutation is performed, the procedure generates an ordered list of the integers
5 to 8. The following specification produces an ordered list for A, with values 1 and 2.

factors A=2 ordered B=4 of 8 cyclic (5 6 7 8) 2;

The associated factor levels for B are 5, 6, 7, 8 for level 1 of A, and 7, 8, 1, 2 for level 2 of A.

Handling More Than One Factor-Selection

For cases with more than one factor-selection in the same FACTORS statement, PROC PLAN constructs the
design as follows:

1. PROC PLAN first generates levels for the first factor-selection. These levels are permutations of
integers (1, 2, and so on) appropriate for the selection type chosen. If you do not specify a selection
type, PROC PLAN uses the default (RANDOM); if you specify the ORDERED option in the PROC
PLAN statement, the procedure uses ORDERED as the default selection type.

2. For every integer generated for the first factor-selection, levels are generated for the second factor-
selection. These levels are generated according to the specifications following the second equal
sign.

3. This process is repeated until levels for all factor-selections have been generated.

The following statements give an example of generating a design with two random factors:

proc plan seed=27371;
factors One=4 Two=3;

run;

The procedure first generates a random permutation of the integers 1 to 4 and then, for each of these, generates
a random permutation of the integers 1 to 3. You can think of factor Two as being nested within factor One,
where the levels of factor One are to be randomly assigned to 4 units.
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As another example, six random permutations of the numbers 1, 2, 3 can be generated by specifying the
following statements:

proc plan seed=27371;
factors a=6 ordered b=3;

run;

OUTPUT Statement
OUTPUT OUT=SAS-data-set < DATA=SAS-data-set > < factor-value-settings > ;

The OUTPUT statement applies only to the last plan generated. If you use PROC PLAN interactively, the
OUTPUT statement for a given plan must be immediately preceded by the FACTORS statement (and the
TREATMENTS statement, if appropriate) for the plan.

See “Output Data Sets” on page 6130 for more information about how output data sets are constructed.

You can specify the following options in the OUTPUT statement:

OUT=SAS-data-set

DATA=SAS-data-set
You can use the OUTPUT statement both to output the last plan generated and to use the last plan
generated to randomize another SAS data set.

When you specify only the OUT= option in the OUTPUT statement, PROC PLAN saves the last plan
generated to the specified data set. The output data set contains one variable for each factor in the plan
and one observation for each cell in the plan. The value of a variable in a given observation is the level
of the corresponding factor for that cell. The OUT= option is required.

When you specify both the DATA= and OUT= options in the OUTPUT statement, then PROC PLAN
uses the last plan generated to randomize the input data set (DATA=), saving the results to the output
data set (OUT=). The output data set has the same form as the input data set but has modified values for
the variables that correspond to factors (see the section “Output Data Sets” on page 6130 for details).
Values for variables not corresponding to factors are transferred without change.

factor-value-settings
specify the values input or output for the factors in the design. The form for factor-value-settings is
different when only an OUT= data set is specified and when both OUT= and DATA= data sets are
specified.

Both forms are discussed in the following section.

Factor-Value-Settings with Only an OUT= Data Set

When you specify only an OUT= data set, the form for each factor-value-setting specification is one of the
following:

factor-name < NVALS=list-of-n-numbers > < ORDERED | RANDOM > ;

or

factor-name < CVALS=list-of-n-strings > < ORDERED | RANDOM > ;
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where

factor-name is a factor in the last FACTORS statement preceding the OUTPUT statement.

NVALS= lists n numeric values for the factor. By default, the procedure uses NVALS=(1 2 3 � � �n).

CVALS= lists n character strings for the factor. Each string can have up to 40 characters, and
each string must be enclosed in quotes. CAUTION: When you use the CVALS= option,
the variable created in the output data set has a length equal to the length of the longest
string given as a value; shorter strings are padded with trailing blanks. For example,
the values output for the first level of a two-level factor with the following two different
specifications are not the same.

CVALS=('String 1' "String 2")

CVALS=('String 1' "A longer string")

The value output with the second specification is ’String 1’ followed by seven blanks. In
order to match two such values (for example, when merging two plans), you must use the
TRIM function in the DATA step (see SAS Functions and CALL Routines: Reference).

ORDERED | RANDOM specifies how values (those given with the NVALS= or CVALS= option, or the
default values) are associated with the levels of a factor (the integers 1; 2; : : : ; n). The
default association type is ORDERED, for which the first value specified is output for a
factor level setting of 1, the second value specified is output for a level of 2, and so on. You
can also specify an association type of RANDOM, for which the levels are associated with
the values in a random order. Specifying RANDOM is useful for randomizing crossed
experiments (see the section “Randomizing Designs” on page 6134).

The following statements give an example of using the OUTPUT statement with only an OUT= data set and
with both the NVALS= and CVALS= specifications.

proc plan seed=27371;
factors a=6 ordered b=3;
output out=design a nvals=(10 to 60 by 10)

b cvals=('HSX' 'SB2' 'DNY');
run;

The DESIGN data set contains two variables, a and b. The values of the variable a are 10 when factor a
equals 1, 20 when factor a equals 2, and so on. Values of the variable b are ‘HSX’ when factor b equals 1,
‘SB2’ when factor b equals 2, and ‘DNY’ when factor b equals 3.

Factor-Value-Settings with OUT= and DATA= Data Sets

If you specify an input data set with DATA=, then PROC PLAN assumes that each factor in the last plan
generated corresponds to a variable in the input set. If the variable name is different from the name of the
factor to which it corresponds, the two can be associated in the values specification by

input-variable-name = factor-name ;

Then, the NVALS= or CVALS= specification can be used. The values given by NVALS= or CVALS= specify
the input values as well as the output values for the corresponding variable.
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Since the procedure assumes that the collection of input factor values constitutes a plan position description
(see the section “Output Data Sets” on page 6130), the values must correspond to integers less than or equal
to m, the number of values selected for the associated factor. If any input values do not correspond, then the
collection does not define a plan position, and the corresponding observation is output without changing the
values of any of the factor variables.

The following statements demonstrate the use of factor-value-settings. The input SAS data set a contains
variables Day and Hour, which are renamed Block and Plot, respectively.

proc plan seed=27371;
factors Block=7 Plot=6;
output data=a out=b

Day = Block cvals=('Mon' 'Tue' 'Wed' 'Thu'
'Fri' 'Sat' 'Sun' )

Hour = Plot;
run;

For another example of using both a DATA= and OUT= data set, see the section “Randomly Assigning
Subjects to Treatments” on page 6122.

TREATMENTS Statement
TREATMENTS factor-selections ;

The TREATMENTS statement specifies the treatments of the plan to generate, but it does not generate a
plan. If you supply several FACTORS and TREATMENTS statements before the first RUN statement, the
procedure uses only the last TREATMENTS specification and applies it to the plans that are generated by
each of the FACTORS statements. The TREATMENTS statement must follow a FACTORS statement. The
TREATMENTS statement has the same syntax as the FACTORS statement. The individual factor-selections
also have the same form as in the FACTORS statement:

name = m < OF n > < selection-type > ;

The procedure generates each treatment simultaneously with the lowest (that is, the most nested) factor in the
last FACTORS statement. The m value for each treatment must be at least as large as the m for the most
nested factor.

The following statements use both a FACTORS and a TREATMENTS statement. First the FACTORS
statement sets up the rows and columns of a 3 � 3 square (factors r and c). Then, the TREATMENTS
statement augments the square with two cyclic treatments. The resulting design is a 3 � 3 Graeco-Latin
square, a type of design useful in main-effects factorial experiments.

proc plan;
factors r=3 ordered c=3 ordered;
treatments a=3 cyclic

b=3 cyclic 2;
run;

The resulting Graeco-Latin square design is shown in Figure 74.5. Notice how the values of r and c are
ordered (1, 2, 3) as requested.
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Figure 74.5 A 3 � 3 Graeco-Latin Square

The PLAN ProcedureThe PLAN Procedure

r c a b

1 1 2 3 1 2 3 1 2 3

2 1 2 3 2 3 1 3 1 2

3 1 2 3 3 1 2 2 3 1

Details: PLAN Procedure

Using PROC PLAN Interactively
After specifying a design with a FACTORS statement and running PROC PLAN with a RUN statement, you
can generate additional plans and output data sets without invoking PROC PLAN again.

In PROC PLAN, all statements can be used interactively. You can execute statements singly or in groups by
following the single statement or group of statements with a RUN statement.

If you use PROC PLAN interactively, you can end the procedure with a DATA step, another PROC step, an
ENDSAS statement, or a QUIT statement. The syntax of the QUIT statement is

quit;

When you use PROC PLAN interactively, additional RUN statements do not end the procedure but tell PROC
PLAN to execute additional statements.

Output Data Sets
To understand how PROC PLAN creates output data sets, you need to look at how the procedure represents a
plan. A plan is a list of values for all the factors, the values being chosen according to the factor-selection
requests you specify. For example, consider the plan produced by the following statements:

proc plan seed=12345;
factors a=3 b=2;

run;

The plan as displayed by PROC PLAN is shown in Figure 74.6.

Figure 74.6 A Simple Plan

The PLAN ProcedureThe PLAN Procedure

Factor Select Levels Order

a 3 3 Random

b 2 2 Random
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Figure 74.6 continued

a b

2 2 1

1 1 2

3 2 1

The first cell of the plan has a=2 and b=2, the second has a=2 and b=1, the third has a=1 and b=1, and so on.
If you output the plan to a data set with the OUTPUT statement, by default the output data set contains a
numeric variable with that factor’s name; the values of this numeric variable are the numbers of the successive
levels selected for the factor in the plan. For example, the following statements produce Figure 74.7.

proc plan seed=12345;
factors a=3 b=2;
output out=out;

run;
proc print data=out;
run;

Figure 74.7 Output Data Set from Simple Plan

Obs a b

1 2 2

2 2 1

3 1 1

4 1 2

5 3 2

6 3 1

Alternatively, you can specify the values that are output for a factor with the CVALS= or NVALS= option.
Also, you can specify that the internal values be associated with the output values in random order with the
RANDOM option. See the section “OUTPUT Statement” on page 6127.

If you also specify an input data set (DATA=), each factor is associated with a variable in the DATA= data set.
This occurs either implicitly by the factor and variable having the same name or explicitly as described in
the specifications for the OUTPUT statement. In this case, the values of the variables corresponding to the
factors are first read and then interpreted as describing the position of a cell in the plan. Then the respective
values taken by the factors at that position are assigned to the variables in the OUT= data set. For example,
consider the data set defined by the following statements.

data in;
input a b;
datalines;

1 1
2 1
3 1
;

Suppose you specify this data set as an input data set for the OUTPUT statement.
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proc plan seed=12345;
factors a=3 b=2;
output out=out data=in;

run;
proc print data=out;
run;

PROC PLAN interprets the first observation as referring to the cell in the first row and column of the plan,
since a=1 and b=1; likewise, the second observation is interpreted as the cell in the second row and first
column, and the third observation as the cell in the third row and first column. In the output data set, a and b
have the values they have in the plan at these positions, as shown in Figure 74.8.

Figure 74.8 Output Form of Input Data Set from Simple Plan

Obs a b

1 2 2

2 1 1

3 3 2

When the factors are random, this has the effect of randomizing the input data set in the same manner as the
plan produced (see the sections “Randomizing Designs” on page 6134 and “Randomly Assigning Subjects to
Treatments” on page 6122).

Specifying Factor Structures
By appropriately combining features of the PLAN procedure, you can construct an extensive set of designs.
The basic tools are the factor-selections, which are used in the FACTORS and TREATMENTS statements.
Table 74.2 summarizes how the procedure interprets various factor-selections (assuming that the ORDERED
option is not specified in the PROC PLAN statement).

Table 74.2 Factor-Selection Interpretation

Form of
Request Interpretation Example Results

name=m produce a random per-
mutation of the integers
1; 2; : : : ; m

t=15 lists a random ordering of the num-
bers 1; 2; : : : ; 15

name=m
cyclic

cyclically permute the in-
tegers 1; 2; : : : ; m

t=5 cyclic selects the integers 1 to 5. On the
next iteration, selects 2,3,4,5,1; then
3,4,5,1,2; and so on.

name=m of n choose a random sample
of m integers (without re-
placement) from the set
of integers 1; 2; : : : ; n

t=5 of 15 lists a random selection of 5 numbers
from 1 to 15. First, the procedure
selects 5 numbers and then arranges
them in random order.

name=m of n
ordered

has the same effect as
name=m ordered

t=5 of 15

ordered

lists the integers 1 to 5 in increasing
order (same as t=5 ordered)
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Table 74.2 continued

Form of
Request Interpretation Example Results

name=m of n
cyclic

permute m of the n inte-
gers

t=5 of 30

cyclic

selects the integers 1 to 5. On the
next iteration, selects 2,3,4,5,6; then
3,4,5,6,7; and so on. The 30th itera-
tion produces 30,1,2,3,4; the 31st iter-
ation produces 1,2,3,4,5; and so on.

name=m
perm

produce a list of all per-
mutations of m integers

t=5 perm lists the integers 1,2,3,4,5 on the first
iteration; on the second lists 1,2,3,5,4;
on the 119th iteration lists 5,4,3,1,2;
and on the last (120th) lists 5,4,3,2,1.

name=m of n
comb

choose combinations of
m integers from n inte-
gers

t=3 of 5

comb

lists all combinations of 5 choose 3
integers. The first iteration is 1,2,3;
the second is 1,2,4; the third is 1,2,5;
and so on until the last iteration 3,4,5.

name=m of n
cyclic
(initial-block)

permute m of the n inte-
gers, starting with the val-
ues specified in the initial-
block

t=4 of 30

cyclic

(2 10 15 18)

selects the integers 2,10,15,18. On
the next iteration, selects 3,11,16,19;
then 4,12,17,20; and so on. The thir-
teenth iteration is 14,22,27,30; the
fourteenth iteration is 15,23,28,1; and
so on.

name=m of n
cyclic
(initial-block)
increment

permute m of the n inte-
gers. Start with the val-
ues specified in the initial-
block , then add the incre-
ment to each value.

t=4 of 30

cyclic

(2 10 15 18)

2

selects the integers 2,10,15,18. On the
next iteration, selects 4,12,17,20; then
6,14,19,22; and so on. The wrap oc-
curs at the eighth iteration. The eighth
iteration is 16,24,29,2; and so on.

In Table 74.2, in order for more than one iteration to appear in the plan, another name=j factor selection
(with j > 1) must precede the example factor selection. For example, the following statements produce six of
the iterations described in the last entry of Table 74.2.

proc plan;
factors c=6 ordered t=4 of 30 cyclic (2 10 15 18) 2;

run;

The following statements create a randomized complete block design and output the design to a data set.

proc plan ordered seed=78390;
factors blocks=3 cell=5;
treatments t=5 random;
output out=rcdb;

run;
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Randomizing Designs
In many situations, proper randomization is crucial for the validity of any conclusions to be drawn from an
experiment. Randomization is used both to neutralize the effect of any unknown systematic biases that might
be involved in the design and to provide a basis for the assumptions underlying the analysis.

You can use PROC PLAN to randomize an already existing design: one produced by a previous call to PROC
PLAN, perhaps, or a more specialized design taken from a standard reference such as Cochran and Cox
(1957). The method is to specify the appropriate block structure in the FACTORS statement and then to
specify the data set where the design is stored with the DATA= option in the OUTPUT statement. For an
illustration of this method, see the section “Randomly Assigning Subjects to Treatments” on page 6122).

Two sorts of randomization are provided for, corresponding to the RANDOM factor selection and association
types in the FACTORS and OUTPUT statements, respectively. Designs in which factors are completely
nested (for example, block designs) should be randomized by specifying that the selection type of each factor
is RANDOM in the FACTORS statement, which is the default (see Example 74.3). On the other hand, if
the factors are crossed (for example, row-and-column designs), they should be randomized by one random
reassignment of their values for the whole design. To do this, specify that the association type of each factor
is RANDOM in the OUTPUT statement (see Example 74.4).

Displayed Output
The PLAN procedure displays the following output:

• the m value for each factor, which is the number of values to be selected

• the n value for each factor, which is the number of values to be selected from

• the selection type for each factor, as specified in the FACTORS statement

• the initial block and increment number for cyclic factors

• the factor-value-selections making up each plan

In addition, notes are written to the log that give the starting and ending values of the random number seed
for each call to PROC PLAN.

ODS Table Names
PROC PLAN assigns a name to each table it creates. You can use these names to reference the table in the
Output Delivery System (ODS) to select tables and create output data sets. These names are listed in the
following table. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”
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Table 74.3 ODS Tables Produced by PROC PLAN

ODS Table Name Description Statements

FInfo General factor information FACTORS and no TREATMENTS
PFInfo Plot factor information FACTORS and TREATMENTS
Plan Computed plan default
TFInfo Treatment factor information FACTORS and TREATMENTS

Examples: PLAN Procedure

Example 74.1: A Split-Plot Design
This plan is appropriate for a split-plot design with main plots forming a randomized complete block design.
In this example, there are three blocks, four main plots per block, and two subplots per main plot. First, three
random permutations (one for each of the blocks) of the integers 1, 2, 3, and 4 are produced. The four integers
correspond to the four levels of the main plot factor a; the permutation determines how the levels of a are
assigned to the main plots within a block. For each of these 12 numbers (four numbers per block for three
blocks), a random permutation of the integers 1 and 2 is produced. Each two-integer permutation determines
the assignment of the two levels of the subplot factor b within a main plot. The following statements produce
Output 74.1.1:

title 'Split Plot Design';
proc plan seed=37277;

factors Block=3 ordered a=4 b=2;
run;

Output 74.1.1 A Split-Plot Design

Split Plot Design

The PLAN Procedure

Split Plot Design

The PLAN Procedure

Factor Select Levels Order

Block 3 3 Ordered

a 4 4 Random

b 2 2 Random
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Output 74.1.1 continued

Block a b

1 4 2 1

3 2 1

1 2 1

2 2 1

2 4 1 2

3 1 2

1 2 1

2 1 2

3 4 2 1

2 2 1

3 2 1

1 2 1

Example 74.2: A Hierarchical Design
In this example, three plants are nested within four pots, which are nested within three houses. The FACTORS
statement requests a random permutation of the numbers 1, 2, and 3 to choose Houses randomly. The second
step requests a random permutation of the numbers 1, 2, 3, and 4 for each of those first three numbers to
randomly assign Pots to Houses. Finally, the FACTORS statement requests a random permutation of 1, 2,
and 3 for each of the 12 integers in the second set of permutations. This last step randomly assigns Plants to
Pots. The following statements produce Output 74.2.1:

title 'Hierarchical Design';
proc plan seed=17431;

factors Houses=3 Pots=4 Plants=3 / noprint;
output out=nested;

run;

proc print data=nested;
run;
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Output 74.2.1 A Hierarchical Design

Hierarchical DesignHierarchical Design

Obs Houses Pots Plants

1 1 3 2

2 1 3 3

3 1 3 1

4 1 1 3

5 1 1 1

6 1 1 2

7 1 2 2

8 1 2 3

9 1 2 1

10 1 4 3

11 1 4 2

12 1 4 1

13 2 4 1

14 2 4 3

15 2 4 2

16 2 2 2

17 2 2 1

18 2 2 3

19 2 3 2

20 2 3 3

21 2 3 1

22 2 1 2

23 2 1 3

24 2 1 1

25 3 4 1

26 3 4 3

27 3 4 2

28 3 1 3

29 3 1 2

30 3 1 1

31 3 2 1

32 3 2 2

33 3 2 3

34 3 3 3

35 3 3 2

36 3 3 1

Example 74.3: An Incomplete Block Design
Jarrett and Hall (1978) give an example of a generalized cyclic design with good efficiency characteristics.
The design consists of two replicates of 52 treatments in 13 blocks of size 8. The following statements use
the PLAN procedure to generate this design in an appropriately randomized form and store it in a SAS data
set GCBD. Then the design is sorted and transposed to display in randomized order. The following statements
produce Output 74.3.1 and Output 74.3.2:
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title 'Generalized Cyclic Block Design';
proc plan seed=33373;

factors Block=13 Plot=8;
treatments Treatment=8 of 52 cyclic (1 2 3 4 32 43 46 49) 4;
output out=GCBD;

quit;

proc sort data=GCBD out=GCBD;
by Block Plot;

run;
proc transpose data= GCBD(rename=(Plot=_NAME_))

out =tGCBD(drop=_NAME_);
by Block;
var Treatment;

run;
proc print data=tGCBD noobs;
run;

Output 74.3.1 A Generalized Cyclic Block Design

Generalized Cyclic Block Design

The PLAN Procedure

Generalized Cyclic Block Design

The PLAN Procedure

Plot Factors

Factor Select Levels Order

Block 13 13 Random

Plot 8 8 Random

Treatment Factors

Factor Select Levels Order Initial Block / Increment

Treatment 8 52 Cyclic (1 2 3 4 32 43 46 49) / 4

Block Plot Treatment

10 7 4 8 1 2 3 5 6 1 2 3 4 32 43 46 49

8 1 2 4 3 8 6 5 7 5 6 7 8 36 47 50 1

9 2 5 4 7 3 1 8 6 9 10 11 12 40 51 2 5

6 4 2 6 8 3 7 1 5 13 14 15 16 44 3 6 9

7 4 7 6 3 1 2 8 5 17 18 19 20 48 7 10 13

4 4 8 1 5 3 6 7 2 21 22 23 24 52 11 14 17

2 6 2 3 8 7 5 1 4 25 26 27 28 4 15 18 21

3 6 2 3 1 7 4 5 8 29 30 31 32 8 19 22 25

1 1 2 7 8 5 6 3 4 33 34 35 36 12 23 26 29

5 5 7 6 8 4 3 1 2 37 38 39 40 16 27 30 33

12 5 8 1 4 7 3 6 2 41 42 43 44 20 31 34 37

13 3 5 1 8 4 2 6 7 45 46 47 48 24 35 38 41

11 4 1 5 2 3 8 6 7 49 50 51 52 28 39 42 45
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Output 74.3.2 A Generalized Cyclic Block Design

Generalized Cyclic Block DesignGeneralized Cyclic Block Design

Block _1 _2 _3 _4 _5 _6 _7 _8

1 33 34 26 29 12 23 35 36

2 18 26 27 21 15 25 4 28

3 32 30 31 19 22 29 8 25

4 23 17 52 21 24 11 14 22

5 30 33 27 16 37 39 38 40

6 6 14 44 13 9 15 3 16

7 48 7 20 17 13 19 18 10

8 5 6 8 7 50 47 1 36

9 51 9 40 11 10 5 12 2

10 4 32 43 2 46 49 1 3

11 50 52 28 49 51 42 45 39

12 43 37 31 44 41 34 20 42

13 47 35 45 24 46 38 41 48

Example 74.4: A Latin Square Design
All of the preceding examples involve designs with completely nested block structures, for which PROC
PLAN was especially designed. However, by appropriate coordination of its facilities, PROC PLAN can
accommodate a much wider class of designs. A Latin square design is based on experimental units that have
a row-and-column block structure. The following statements use the CYCLIC option in the TREATMENTS
statement to generate a simple 4 � 4 Latin square. The RANDOM option in the OUTPUT statement
randomizes the generated Latin square by randomly permuting the row, column, and treatment values
independently. This example also uses factor-value-settings in the OUTPUT statement.

title 'Latin Square Design';
proc plan seed=37430;

factors Row=4 ordered Col=4 ordered / noprint;
treatments Tmt=4 cyclic;
output out=LatinSquare

Row cvals=('Day 1' 'Day 2' 'Day 3' 'Day 4') random
Col cvals=('Lab 1' 'Lab 2' 'Lab 3' 'Lab 4') random
Tmt nvals=( 0 100 250 450) random;

quit;

proc sort data=LatinSquare out=LatinSquare;
by Row Col;

run;
proc transpose data= LatinSquare(rename=(Col=_NAME_))

out =tLatinSquare(drop=_NAME_);
by Row;
var Tmt;

run;
proc print data=tLatinSquare noobs;
run;

The preceding statements produce Output 74.4.1.
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Output 74.4.1 A Randomized Latin Square Design

Latin Square DesignLatin Square Design

Row Lab_1 Lab_2 Lab_3 Lab_4

Day 1 0 250 100 450

Day 2 250 450 0 100

Day 3 100 0 450 250

Day 4 450 100 250 0

You can use the PLAN procedure to randomize Latin squares from any transformation sets. See Kempthorne
(1952) for definitions of transformation sets. In particular, the following DATA step and PROC PLAN
statements demonstrate how to randomize a Latin square from the second transformation set defined in
Kempthorne (1952). The following DATA step creates a 4 � 4 Latin square from the transformation set 2:

data Unrandomized;
do Row = 1 to 4;

do Col = 1 to 4;
input Tmt @@;
output;

end;
end;
datalines;

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1
;

The following PROC PLAN statements permute the rows and columns and randomly assign treatment levels.

proc plan seed=37430;
factors Row = 4;
output data= Unrandomized out=Randomized1;

run;
factors Col = 4;
output data= Randomized1 out=Randomized2;

run;
factors Tmt = 4;
output data= Randomized2 out=Randomized3;

run;

proc sort data=Randomized3;
by Row Col;

run;
proc transpose data= Randomized3 out =tLatinSquare2(drop=_NAME_);

by Row;
var Tmt;

run;
proc print data=tLatinSquare2 noobs;
run;
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Output 74.4.2 A Randomized Latin Square from a Different Transformation Set

The PLAN ProcedureThe PLAN Procedure

Factor Select Levels Order

Row 4 4 Random

Row

1 3 2 4

Factor Select Levels Order

Col 4 4 Random

Col

3 2 4 1

Factor Select Levels Order

Tmt 4 4 Random

Tmt

4 3 2 1

Row COL1 COL2 COL3 COL4

1 1 3 4 2

2 3 1 2 4

3 2 4 3 1

4 4 2 1 3

Example 74.5: A Generalized Cyclic Incomplete Block Design
The following statements depict how to create an appropriately randomized generalized cyclic incomplete
block design for v treatments (given by the value of t) in b blocks (given by the value of b) of size k (with
values of p indexing the cells within a block) with initial block .e1 e2 � � � ek/ and increment number i.

factors b=b p=k ;
treatments t=k of v cyclic (e1 e2 � � � ek ) i ;

For example, the specification

proc plan seed=37430;
factors b=10 p=4;
treatments t=4 of 30 cyclic (1 3 4 26) 2;

run;

generates the generalized cyclic incomplete block design given in Example 1 of Jarrett and Hall (1978),
which is given by the rows and columns of the plan associated with the treatment factor t in Output 74.5.1.
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Output 74.5.1 A Generalized Cyclic Incomplete Block Design

The PLAN ProcedureThe PLAN Procedure

Plot Factors

Factor Select Levels Order

b 10 10 Random

p 4 4 Random

Treatment Factors

Factor Select Levels Order
Initial
Block / Increment

t 4 30 Cyclic (1 3 4 26) / 2

b p t

2 2 3 1 4 1 3 4 26

1 3 2 4 1 3 5 6 28

3 2 3 4 1 5 7 8 30

10 4 2 3 1 7 9 10 2

9 4 1 2 3 9 11 12 4

4 1 3 2 4 11 13 14 6

5 1 2 4 3 13 15 16 8

8 3 2 4 1 15 17 18 10

7 2 4 1 3 17 19 20 12

6 2 1 4 3 19 21 22 14

Example 74.6: Permutations and Combinations
Occasionally, you might need to generate all possible permutations of n things, or all possible combinations
of n things taken m at a time.

For example, suppose you are planning an experiment in cognitive psychology where you want to present four
successive stimuli to each subject. You want to observe each permutation of the four stimuli. The following
statements use PROC PLAN to create a data set containing all possible permutations of four numbers in
random order.

title 'All Permutations of 1,2,3,4';
proc plan seed=60359;

factors Subject = 24
Order = 4 ordered;

treatments Stimulus = 4 perm;
output out=Psych;

run;

proc sort data=Psych out=Psych;
by Subject Order;

run;
proc transpose data= Psych(rename=(Order=_NAME_))

out =tPsych(drop=_NAME_);
by Subject;
var Stimulus;
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run;
proc print data=tPsych noobs;
run;

The variable Subject is set at 24 levels because there are 4Š D 24 total permutations to be listed. If
Subject > 24, the list repeats. Output 74.6.1 displays the PROC PLAN output. Note that the variable Subject
is listed in random order.

Output 74.6.1 List of Permutations

All Permutations of 1,2,3,4

The PLAN Procedure

All Permutations of 1,2,3,4

The PLAN Procedure

Plot Factors

Factor Select Levels Order

Subject 24 24 Random

Order 4 4 Ordered

Treatment Factors

Factor Select Levels Order

Stimulus 4 4 Perm

Subject Order Stimulus

4 1 2 3 4 1 2 3 4

15 1 2 3 4 1 2 4 3

24 1 2 3 4 1 3 2 4

1 1 2 3 4 1 3 4 2

5 1 2 3 4 1 4 2 3

17 1 2 3 4 1 4 3 2

19 1 2 3 4 2 1 3 4

14 1 2 3 4 2 1 4 3

6 1 2 3 4 2 3 1 4

23 1 2 3 4 2 3 4 1

8 1 2 3 4 2 4 1 3

2 1 2 3 4 2 4 3 1

13 1 2 3 4 3 1 2 4

16 1 2 3 4 3 1 4 2

12 1 2 3 4 3 2 1 4

18 1 2 3 4 3 2 4 1

21 1 2 3 4 3 4 1 2

9 1 2 3 4 3 4 2 1

22 1 2 3 4 4 1 2 3

10 1 2 3 4 4 1 3 2

7 1 2 3 4 4 2 1 3

11 1 2 3 4 4 2 3 1

3 1 2 3 4 4 3 1 2

20 1 2 3 4 4 3 2 1

The output data set Psych contains 96 observations of the 3 variables (Subject, Order, and Stimulus). Sorting
the output data set by Subject and by Order within Subject results in all possible permutations of Stimulus in
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random order. PROC TABULATE displays these permutations in Output 74.6.2.

Output 74.6.2 Randomized Permutations

All Permutations of 1,2,3,4All Permutations of 1,2,3,4

Subject _1 _2 _3 _4

1 1 3 4 2

2 2 4 3 1

3 4 3 1 2

4 1 2 3 4

5 1 4 2 3

6 2 3 1 4

7 4 2 1 3

8 2 4 1 3

9 3 4 2 1

10 4 1 3 2

11 4 2 3 1

12 3 2 1 4

13 3 1 2 4

14 2 1 4 3

15 1 2 4 3

16 3 1 4 2

17 1 4 3 2

18 3 2 4 1

19 2 1 3 4

20 4 3 2 1

21 3 4 1 2

22 4 1 2 3

23 2 3 4 1

24 1 3 2 4

As another example, suppose you have six alternative treatments, any four of which can occur together in a
block (in no particular order). The following statements use PROC PLAN to create a data set containing all
possible combinations of six numbers taken four at a time. In this case, you use ODS to create the data set.

title 'All Combinations of (6 Choose 4) Integers';
proc plan;

factors Block=15 ordered
Treat= 4 of 6 comb;

ods output Plan=Combinations;
run;

proc print data=Combinations noobs;
run;

The variable Block has 15 levels since there are a total of 6Š=.4Š2Š/ D 15 combinations of four integers chosen
from six integers. The data set formed by ODS from the displayed plan has one row for each block, with the
four values of Treat corresponding to four different variables, as shown in Output 74.6.3 and Output 74.6.4.
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Output 74.6.3 List of Combinations

All Combinations of (6 Choose 4) Integers

The PLAN Procedure

All Combinations of (6 Choose 4) Integers

The PLAN Procedure

Factor Select Levels Order

Block 15 15 Ordered

Treat 4 6 Comb

Block Treat

1 1 2 3 4

2 1 2 3 5

3 1 2 3 6

4 1 2 4 5

5 1 2 4 6

6 1 2 5 6

7 1 3 4 5

8 1 3 4 6

9 1 3 5 6

10 1 4 5 6

11 2 3 4 5

12 2 3 4 6

13 2 3 5 6

14 2 4 5 6

15 3 4 5 6

Output 74.6.4 Combinations Data Set Created by ODS

All Combinations of (6 Choose 4) IntegersAll Combinations of (6 Choose 4) Integers

Block Treat1 Treat2 Treat3 Treat4

1 1 2 3 4

2 1 2 3 5

3 1 2 3 6

4 1 2 4 5

5 1 2 4 6

6 1 2 5 6

7 1 3 4 5

8 1 3 4 6

9 1 3 5 6

10 1 4 5 6

11 2 3 4 5

12 2 3 4 6

13 2 3 5 6

14 2 4 5 6

15 3 4 5 6
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Example 74.7: Crossover Designs
In crossover experiments, the same experimental units or subjects are given multiple treatments in sequence,
and the model for the response at any one period includes an effect for the treatment applied in the previous
period. A good design for a crossover experiment is therefore one that balances how often each treatment
is preceded by each other treatment. Cox (1992) gives the following example of a balanced crossover
experiment for paper production. In this experiment, the subjects are production runs of the mill, with the
treatments being six different concentrations of pulp used in sequence. The following statements construct
this design in a standard form:

proc plan;
factors Run=6 ordered Period=6 ordered;
treatments Treatment=6 cyclic (1 2 6 3 5 4);

run;

Output 74.7.1 shows the results of the preceding statements.

Output 74.7.1 Crossover Design for Six Treatments

The PLAN ProcedureThe PLAN Procedure

Plot Factors

Factor Select Levels Order

Run 6 6 Ordered

Period 6 6 Ordered

Treatment Factors

Factor Select Levels Order
Initial
Block / Increment

Treatment 6 6 Cyclic (1 2 6 3 5 4) / 1

Run Period Treatment

1 1 2 3 4 5 6 1 2 6 3 5 4

2 1 2 3 4 5 6 2 3 1 4 6 5

3 1 2 3 4 5 6 3 4 2 5 1 6

4 1 2 3 4 5 6 4 5 3 6 2 1

5 1 2 3 4 5 6 5 6 4 1 3 2

6 1 2 3 4 5 6 6 1 5 2 4 3

The construction method for this example is due to Williams (1949). The initial block for the treatment
variable Treatment is defined as follows for n = 6:

.1 2 n 3 n � 1 : : : n=2 n=2C 2 n=2/

This general form serves to generate a balanced crossover design for n treatments and n subjects in n periods
when n is even. When n is odd, 2n subjects are required, with the following initial blocks, respectively for
odd and even n:

.1 2 n 3 n � 1 : : : n=2C 1 n=2/

.n=2 n=2C 1 : : : n � 1 3 n 2 1/
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In order to randomize Williams’ crossover designs, the following statements randomly permute the subjects
and treatments:

proc plan seed=136149876;
factors Run=6 ordered Period=6 ordered / noprint;
treatments Treatment=6 cyclic (1 2 6 3 5 4);
output out=RandomizedDesign

Run random
Treatment random
;

run;

/*
/ Relabel Period to obtain the same design as in Cox (1992).
/------------------------------------------------------------------*/
data RandomizedDesign;

set RandomizedDesign;
Period = mod(Period+2,6)+1;

run;

proc sort data=RandomizedDesign;
by Run Period;

run;
proc transpose data=RandomizedDesign out=tDesign(drop=_name_);

by notsorted Run;
var Treatment;

run;
data tDesign;

set tDesign;
rename COL1-COL6 = Period_1-Period_6;

run;
proc print data=tDesign noobs;
run;

In the preceding statements, Run and Treatment are randomized by using the RANDOM option in the
OUTPUT statement, and new labels for Period are obtained in a subsequent DATA step. This Period
relabeling is not necessary and might not be valid for Williams’ designs in general; it is used in this example
only to match results with those of Cox (1992). The SORT and TRANSPOSE steps then prepare the design
to be printed in a standard form, shown in Output 74.7.2.

Output 74.7.2 Randomized Crossover Design

Run Period_1 Period_2 Period_3 Period_4 Period_5 Period_6

1 3 6 2 5 4 1

2 5 3 4 6 1 2

3 1 4 5 2 6 3

4 2 1 6 4 3 5

5 6 5 1 3 2 4

6 4 2 3 1 5 6

The analysis of a crossover experiment requires for each observation a carryover variable whose values are
the treatment in the preceding period. The following statements add such a variable to the randomized design
constructed previously:
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proc sort data=RandomizedDesign;
by Run Period;

run;
data RandomizedDesign;

set RandomizedDesign;
by Run period;
LagTreatment = lag(Treatment);
if (first.Run) then LagTreatment = .;

run;

proc transpose data=RandomizedDesign out=tDesign(drop=_name_);
by notsorted Run;
var LagTreatment;

run;
data tDesign;

set tDesign;
rename COL1-COL6 = Period_1-Period_6;

run;
proc print data=tDesign noobs;
run;

Output 74.7.3 displays the values of the carryover variable for each run and period.

Output 74.7.3 Lag Treatment Effect in Crossover Design

Run Period_1 Period_2 Period_3 Period_4 Period_5 Period_6

1 . 3 6 2 5 4

2 . 5 3 4 6 1

3 . 1 4 5 2 6

4 . 2 1 6 4 3

5 . 6 5 1 3 2

6 . 4 2 3 1 5

Of course, the carryover variable has no effect in the first period, which is why it is coded with a missing
value in this case.

The LAG effect in the EFFECT statement in PROC ORTHOREG provides a convenient mechanism for
incorporating the carryover effect into the analysis. The following statements first add the observed data
to the design to create the Mills data set. Then PROC ORTHOREG is invoked, and the carryover effect is
defined as a lag effect with the relevant period and subject information specified. ODS is used to trim down
the results to show only the parts that are usually of interest in crossover analysis. For more information
about the EFFECTS statement in PROC ORTHOREG, see the section “EFFECT Statement” on page 5858 in
Chapter 72, “The ORTHOREG Procedure.”

data Responses;
input Response @@;
datalines;

56.7 53.8 54.4 54.4 58.9 54.5
58.5 60.2 61.3 54.4 59.1 59.8
55.7 60.7 56.7 59.9 56.6 59.6
57.3 57.7 55.2 58.1 60.2 60.2
53.7 57.1 59.2 58.9 58.9 59.6
58.1 55.7 58.9 56.6 59.6 57.5
;
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data Mills;
merge RandomizedDesign Responses;

run;

proc orthoreg data=Mills;
class Run Period Treatment;
effect CarryOver = lag(Treatment / period=Period within=Run);
model Response = Run Period Treatment CarryOver;
test Run Period Treatment CarryOver / htype=1;
lsmeans Treatment CarryOver / diff=anom;
ods select Tests1 LSMeans Diffs;

run;

Output 74.7.4 shows the carryover analysis that results from the preceding statements.

Output 74.7.4 Carryover Analysis for Crossover Experiment

The ORTHOREG Procedure

Dependent Variable: Response

The ORTHOREG Procedure

Dependent Variable: Response

Type I Tests of Model Effects

Effect
Num

DF
Den

DF F Value Pr > F

Run 5 15 13.76 <.0001

Period 5 15 7.19 0.0013

Treatment 5 15 22.95 <.0001

CarryOver 5 15 7.76 0.0009

Treatment Least Squares Means

Treatment Estimate
Standard

Error DF t Value Pr > |t|

1 57.1954 0.3220 15 177.65 <.0001

2 57.6204 0.3220 15 178.97 <.0001

3 59.1919 0.3220 15 183.85 <.0001

4 59.2288 0.3220 15 183.97 <.0001

5 57.9829 0.3220 15 180.10 <.0001

6 55.0639 0.3220 15 171.03 <.0001

Differences of Treatment Least Squares Means

Treatment _Treatment Estimate
Standard

Error DF t Value Pr > |t|

1 Avg -0.5185 0.2948 15 -1.76 0.0990

2 Avg -0.09345 0.2948 15 -0.32 0.7556

3 Avg 1.4780 0.2948 15 5.01 0.0002

4 Avg 1.5149 0.2948 15 5.14 0.0001

5 Avg 0.2690 0.2948 15 0.91 0.3758

6 Avg -2.6500 0.2948 15 -8.99 <.0001



6150 F Chapter 74: The PLAN Procedure

Output 74.7.4 continued

CarryOver Least Squares Means

CarryOver Estimate
Standard

Error DF t Value Pr > |t|

1 Non-est . . . .

2 Non-est . . . .

3 Non-est . . . .

4 Non-est . . . .

5 Non-est . . . .

6 Non-est . . . .

Differences of CarryOver Least Squares Means

CarryOver _CarryOver Estimate
Standard

Error DF t Value Pr > |t|

1 Avg 0.3726 0.3284 15 1.13 0.2743

2 Avg -0.2774 0.3284 15 -0.84 0.4116

3 Avg 0.6512 0.3284 15 1.98 0.0660

4 Avg -1.3274 0.3284 15 -4.04 0.0011

5 Avg 1.3976 0.3284 15 4.26 0.0007

6 Avg -0.8167 0.3284 15 -2.49 0.0252

The Type I analysis of variance indicates that all effects are significant—in particular, both the direct and
the carryover effects of the treatment. In the presence of carryover effects, the LS-means need to be defined
with some care. The LS-means for treatments computed using balanced margins for the carryover effect
are inestimable; so the OBSMARGINS option is specified in the LSMEANS statement in order to use the
observed margins instead. The observed margins take the absence of a carryover effect in the first period into
account. Note that the LS-means themselves of the carryover effect are inestimable, but their differences are
estimable. The LS-means of the direct effect of the treatment and the ANOM differences for the LS-means
of their carryover effect match the “adjusted direct effects” and “adjusted residual effects,” respectively, of
Cox (1992).
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Overview: PLM Procedure
The PLM procedure performs postfitting statistical analyses for the contents of a SAS item store that was
previously created with the STORE statement in some other SAS/STAT procedure. An item store is a special
SAS-defined binary file format used to store and restore information with a hierarchical structure.

The statements available in the PLM procedure are designed to reveal the contents of the source item store
via the Output Delivery System (ODS) and to perform postfitting tasks such as the following:

• testing hypotheses

• computing confidence intervals

• producing prediction plots

• scoring a new data set

The use of item stores and PROC PLM enables you to separate common postprocessing tasks, such as testing
for treatment differences and predicting new observations under a fitted model, from the process of model
building and fitting. A numerically expensive model fitting technique can be applied once to produce a source
item store. The PLM procedure can then be called multiple times and the results of the fitted model analyzed
without incurring the model fitting expenditure again.

The PLM procedure offers the most advanced postprocessing techniques available in SAS/STAT software.
These techniques include step-down multiplicity adjustments for p-values, F tests with order restrictions,
analysis of means (ANOM), and sampling-based linear inference based on Bayes posterior estimates.

The following procedures support the STORE statement for the generation of item stores that can be
processed with the PLM procedure: GENMOD, GLIMMIX, GLM, GLMSELECT, LIFEREG, LOGISTIC,
MIXED, ORTHOREG, PHREG, PROBIT, SURVEYLOGISTIC, SURVEYPHREG, and SURVEYREG. The
RELIABILITY procedure in SAS/QC software also supports the STORE statement. For details about the
STORE statement, see the section “STORE Statement” on page 508 of Chapter 19, “Shared Concepts and
Topics.”

Basic Features
The PLM procedure, unlike most SAS/STAT procedures, does not operate primarily on an input data set.
Instead, the procedure requires you to specify an item store with the RESTORE= option in the PROC PLM
statement. The item store contains the necessary information and context about the statistical model that
was fit when the store was created. SAS data sets are used only to provide input information in some
circumstances. For example, when scoring a data set or when computing least squares means with specially
defined population margins. In other words, instead of reading raw data and fitting a model, the PLM
procedure reads the results of a model having been fit.

In order to interact with the item store and to reveal its contents, the PLM procedure supports the SHOW
statement which converts item store information into standard ODS tables for viewing and further processing.

The PLM procedure is sensitive to the contents of the item store. For example, if a BAYES statement was
in effect when the item store was created, the posterior parameter estimates are saved to the item store so
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that the PLM procedure can perform postprocessing tasks by taking the posterior distribution of estimable
functions into account. As another example, for item stores that are generated by a mixed model procedure
using the Satterthwaite or Kenward-Roger (Kenward and Roger 1997) degrees-of-freedom method, these
methods continue to be available when the item store contents are processed with the PLM procedure.

Because the PLM procedure does not read data and does not fit a model, the processing time of this procedure
is usually considerably less than the processing time of the procedure that generates the item store.

PROC PLM Contrasted with Other SAS Procedures
In contrast to other analytic procedures in SAS/STAT software, the PLM procedure does not use an input
data set. Instead, it retrieves information from an item store.

Some of the statements in the PLM procedure are also available as postprocessing statements in other
procedures. Table 75.1 lists SAS/STAT procedures that support the same postprocessing statements as PROC
PLM does.

Table 75.1 SAS/STAT Procedures with Postprocessing
Statements Similar to PROC PLM

EFFECTPLOT ESTIMATE LSMEANS LSMESTIMATE SLICE TEST

GENMOD
p p� p p p

GLIMMIX
p� p� p� p

GLM
p� p� p�

ICPHREG
p

LIFEREG
p p p p p p

LOGISTIC
p p p p p p�

MIXED
p� p� p p

ORTHOREG
p p p p p p

PHREG
p p p p p�

PROBIT
p p p p p p

SURVEYLOGISTIC
p p p p p�

SURVEYPHREG
p p p p p

SURVEYREG
p p p p p

Table entries marked with
p

indicate procedures that support statements with the same functionality as in
PROC PLM. Those entries marked with

p� indicate procedures that support statements with same names but
different syntaxes from PROC PLM. You can find the most comprehensive set of features for these statements
in the PLM procedure. For example, the LSMEANS statement is available in all of the listed procedures. For
example, the ESTIMATE statement available in the GENMOD, GLIMMIX, GLM and MIXED procedures
does not support all options that PROC PLM supports, such as multiple rows and multiplicity adjustments.

The WHERE statement in other procedures enables you to conditionally select a subset of the observations
from the input data set so that the procedure processes only the observations that meet the specified conditions.
Since the PLM procedure does not use an input data set, the WHERE statement in the PLM procedure has
different functionality. If the item store contains information about BY groups—that is, a BY statement was
in effect when the item store was created—you can use the WHERE statement to select specific BY groups
for the analysis. You can also use the FILTER statement in the PLM procedure to filter results from the ODS
output and output data sets.
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Getting Started: PLM Procedure
The following DATA step creates a data set from a randomized block experiment with a factorial treatment
structure of factors A and B:

data BlockDesign;
input block a b y @@;
datalines;
1 1 1 56 1 1 2 41
1 2 1 50 1 2 2 36
1 3 1 39 1 3 2 35
2 1 1 30 2 1 2 25
2 2 1 36 2 2 2 28
2 3 1 33 2 3 2 30
3 1 1 32 3 1 2 24
3 2 1 31 3 2 2 27
3 3 1 15 3 3 2 19
4 1 1 30 4 1 2 25
4 2 1 35 4 2 2 30
4 3 1 17 4 3 2 18

;

The GLM procedure is used in the following statements to fit the model and to create a source item store for
the PLM procedure:

proc glm data=BlockDesign;
class block a b;
model y = block a b a*b / solution;
store sasuser.BlockAnalysis / label='PLM: Getting Started';

run;

The CLASS statement identifies the variables Block, A, and B as classification variables. The MODEL
statement specifies the response variable and the model effects. The block effect models the design effect,
and the a, b, and a*b effects model the factorial treatment structure. The STORE statement requests that the
context and results of this analysis be saved to an item store named sasuser.BlockAnalysis. Because the
SASUSER library is specified as the library name of the item store, the store will be available after the SAS
session completes. The optional label in the STORE statement identifies the store in subsequent analyses
with the PLM procedure.

Note that having BlockDesign as the name of the output store would not create a conflict with the input data
set name, because data sets and item stores are saved as files of different types.

Figure 75.1 displays the results from the GLM procedure. The “Class Level Information” table shows the
number of levels and their values for the three classification variables. The “Parameter Estimates” table
shows the estimates and their standard errors along with t tests.
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Figure 75.1 Class Variable Information, Fit Statistics, and Parameter Estimates

The GLM ProcedureThe GLM Procedure

Class Level
Information

Class Levels Values

block 4 1 2 3 4

a 3 1 2 3

b 2 1 2

R-Square Coeff Var Root MSE y Mean

0.848966 15.05578 4.654747 30.91667

Parameter Estimate
Standard

Error t Value Pr > |t|

Intercept 20.41666667 B 2.85043856 7.16 <.0001

block     1 17.00000000 B 2.68741925 6.33 <.0001

block     2 4.50000000 B 2.68741925 1.67 0.1148

block     3 -1.16666667 B 2.68741925 -0.43 0.6704

block     4 0.00000000 B . . .

a         1 3.25000000 B 3.29140294 0.99 0.3391

a         2 4.75000000 B 3.29140294 1.44 0.1695

a         3 0.00000000 B . . .

b         1 0.50000000 B 3.29140294 0.15 0.8813

b         2 0.00000000 B . . .

a*b       1 1 7.75000000 B 4.65474668 1.66 0.1167

a*b       1 2 0.00000000 B . . .

a*b       2 1 7.25000000 B 4.65474668 1.56 0.1402

a*b       2 2 0.00000000 B . . .

a*b       3 1 0.00000000 B . . .

a*b       3 2 0.00000000 B . . .

The following statements invoke the PLM procedure and use sasuser.BlockAnalysis as the source item store:

proc plm restore=sasuser.BlockAnalysis;
run;

These statements produce Figure 75.2. The “Store Information” table displays information that is gleaned
from the source item store. For example, the store was created by the GLM procedure at the indicated time
and date, and the input data set for the analysis was WORK.BLOCKDESIGN. The label used earlier in the
STORE statement of the GLM procedure also appears as a descriptor in Figure 75.2.
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Figure 75.2 Default Information

The PLM ProcedureThe PLM Procedure

Store Information

Item Store SASUSER.BLOCKANALYSIS

Label PLM: Getting Started

Data Set Created From WORK.BLOCKDESIGN

Created By PROC GLM

Date Created 27MAR14:10:12:42

Response Variable y

Class Variables block a b

Model Effects Intercept block a b a*b

Class Level
Information

Class Levels Values

block 4 1 2 3 4

a 3 1 2 3

b 2 1 2

The “Store Information” table also echoes partial information about the variables and model effects that are
used in the analysis. The “Class Level Information” table is produced by the PLM procedure by default
whenever the model contains effects that depend on CLASS variables.

The following statements request a display of the fit statistics and the parameter estimates from the source
item store and a test of the treatment main effects and their interactions:

proc plm restore=sasuser.BlockAnalysis;
show fit parms;
test a b a*b;

run;

The statements produce Figure 75.3. Notice that the estimates and standard errors in the “Parameter Estimates”
table agree with the results displayed earlier by the GLM procedure, except for small differences in formatting.

Figure 75.3 Fit Statistics, Parameter Estimates, and Tests of Effects

The PLM ProcedureThe PLM Procedure

Fit Statistics

MSE 21.66667

Error df 15
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Figure 75.3 continued

Parameter Estimates

Effect block a b Estimate
Standard

Error

Intercept 20.4167 2.8504

block 1 17.0000 2.6874

block 2 4.5000 2.6874

block 3 -1.1667 2.6874

block 4 0 .

a 1 3.2500 3.2914

a 2 4.7500 3.2914

a 3 0 .

b 1 0.5000 3.2914

b 2 0 .

a*b 1 1 7.7500 4.6547

a*b 1 2 0 .

a*b 2 1 7.2500 4.6547

a*b 2 2 0 .

a*b 3 1 0 .

a*b 3 2 0 .

Type III Tests of Model Effects

Effect
Num

DF
Den

DF F Value Pr > F

a 2 15 7.54 0.0054

b 1 15 8.38 0.0111

a*b 2 15 1.74 0.2097

Since the main effects, but not the interaction are significant in this experiment, the subsequent analysis
focuses on the main effects, in particular on the effect of variable A.

The following statements request the least squares means of the A effect along with their pairwise differences:

proc plm restore=sasuser.BlockAnalysis seed=3;
lsmeans a / diff;
lsmestimate a -1 1,

1 1 -2 / uppertailed ftest;
run;

The LSMESTIMATE statement tests two linear combinations of the A least squares means: equality of the
first two levels and whether the sum of the first two level effects equals twice the effect of the third level.
The FTEST option in the LSMESTIMATE statement requests a joint F test for this two-row contrast. The
UPPERTAILED option requests that the F test also be carried out under one-sided order restrictions. Since F
tests under order restrictions (chi-bar-square statistic) require a simulation-based approach for the calculation
of p-values, the random number stream is initialized with a seed value through the SEED= option in the
PROC PLM statement.

The results of the LSMEANS and the LSMESTIMATE statement are shown in Figure 75.4.
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Figure 75.4 LS-Means Related Inference for A Effect

The PLM ProcedureThe PLM Procedure

a Least Squares Means

a Estimate
Standard

Error DF t Value Pr > |t|

1 32.8750 1.6457 15 19.98 <.0001

2 34.1250 1.6457 15 20.74 <.0001

3 25.7500 1.6457 15 15.65 <.0001

Differences of a Least Squares Means

a _a Estimate
Standard

Error DF t Value Pr > |t|

1 2 -1.2500 2.3274 15 -0.54 0.5991

1 3 7.1250 2.3274 15 3.06 0.0079

2 3 8.3750 2.3274 15 3.60 0.0026

Least Squares Means Estimates

Effect Label Estimate
Standard

Error DF t Value Tails Pr > t

a Row 1 1.2500 2.3274 15 0.54 Upper 0.2995

a Row 2 15.5000 4.0311 15 3.85 Upper 0.0008

F Test for Least Squares Means Estimates

Effect
Num

DF
Den

DF F Value Pr > F
ChiBarSq

Value Pr > ChiBarSq

a 2 15 7.54 0.0054 15.07 0.0001

The least squares means for the three levels of variable A are 32.875, 34.125, and 25.75. The differences
between the third level and the first and second levels are statistically significant at the 5% level (p-values
of 0.0079 and 0.0026, respectively). There is no significant difference between the first two levels. The
first row of the “Least Squares Means Estimates” table also displays the difference between the first two
levels of factor A. Although the (absolute value of the) estimate and its standard error are identical to those in
the “Differences of a Least Squares Means” table, the p-values do not agree because one-sided tests were
requested in the LSMESTIMATE statement.

The “F Test” table in Figure 75.4 shows the two degree-of-freedom test for the linear combinations of the
LS-means. The F value of 7.54 with p-value of 0.0054 represents the usual (two-sided) F test. Under the
one-sided right-tailed order restriction imposed by the UPPERTAILED option, the ChiBarSq value of 15.07
represents the observed value of the chi-bar-square statistic of Silvapulle and Sen (2004). The associated
p-value of 0.0001 was obtained by simulation.
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Now suppose that you are interested in analyzing the relationship of the interaction cell means. (Typically this
would not be the case in this example since the a*b interaction is not significant; see Figure 75.3.) The SLICE
statement in the following PROC PLM run produces an F test of equality and all pair-wise differences of the
interaction means for the subset (partition) where variable B is at level ‘1’. With ODS Graphics enabled, the
pairwise differences are displayed in a diffogram.

ods graphics on;
proc plm restore=sasuser.BlockAnalysis;

slice a*b / sliceby(b='1') diff;
run;
ods graphics off;

The results are shown in Figure 75.5. Since variable A has three levels, the test of equality of the A means at
level ‘1’ of B is a two-degree comparison. This comparison is statistically significant (p-value equals 0.0040).
You can conclude that the three levels of A are not the same for the first level of B.

Figure 75.5 Results from Analyzing an Interaction Partition

The PLM ProcedureThe PLM Procedure

F Test for a*b Least Squares
Means Slice

Slice
Num

DF
Den

DF F Value Pr > F

b 1 2 15 8.18 0.0040

Simple Differences of a*b Least Squares Means

Slice a _a Estimate
Standard

Error DF t Value Pr > |t|

b 1 1 2 -1.0000 3.2914 15 -0.30 0.7654

b 1 1 3 11.0000 3.2914 15 3.34 0.0045

b 1 2 3 12.0000 3.2914 15 3.65 0.0024

The table of “Simple Differences” was produced by the DIFF option in the SLICE statement. As is the case
with the marginal comparisons in Figure 75.4, there are significant differences against the third level of A if
variable B is held fixed at ‘1’.

Figure 75.6 shows the diffogram that displays the three pairwise least squares mean differences and their
significance. Each line segment corresponds to a comparison. It centers at the least squares means in the
pair with its length corresponding to the projected width of a confidence interval for the difference. If the
variable B is held fixed at ‘1’, both the first two levels are significantly different from the third level, but the
difference between the first and the second level is not significant.
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Figure 75.6 LS-Means Difference Diffogram
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Syntax: PLM Procedure
The following statements are available in the PLM procedure:

PROC PLM RESTORE=item-store-specification < options > ;
CODE < options > ;
EFFECTPLOT < plot-type < (plot-definition-options) > > < / options > ;
ESTIMATE < 'label ' > estimate-specification < (divisor=n) >

< , . . . < 'label ' > estimate-specification < (divisor=n) > > < / options > ;
FILTER expression ;
LSMEANS < model-effects > < / options > ;
LSMESTIMATE model-effect < 'label ' > values < divisor=n >

< , . . . < 'label ' > values < divisor=n > > < / options > ;
SCORE DATA=SAS-data-set < OUT=SAS-data-set >

< keyword< =name > > . . .
< keyword< =name > > < / options > ;

SHOW options ;
SLICE model-effect < / options > ;
TEST < model-effects > < / options > ;
WHERE expression ;

With the exception of the PROC PLM statement and the FILTER statement, any statement can appear multiple
times and in any order. The default order in which the statements are processed by the PLM procedure
depends on the specification in the item store and can be modified with the STMTORDER= option in the
PROC PLM statement.

In contrast to many other SAS/STAT modeling procedures, the PLM procedure does not have common
modeling statements such as the CLASS and MODEL statements. This is because the information about
classification variables and model effects is contained in the source item store that is passed to the procedure
in the PROC PLM statement. All subsequent statements are checked for consistency with the stored model.
For example, the statement

lsmeans c / diff;

is detected as not valid unless all of the following conditions were true at the time when the source store was
created:

• The effect C was used in the model.

• C was specified in the CLASS statement.

• The CLASS variables in the model had a GLM parameterization.

The FILTER, SCORE, SHOW, and WHERE statements are described in full after the PROC PLM statement
in alphabetical order. The CODE EFFECTPLOT, ESTIMATE, LSMEANS, LSMESTIMATE, SLICE, and
TEST statements are also used by many other procedures. Summary descriptions of functionality and
syntax for these statements are also given after the PROC PLM statement in alphabetical order, but full
documentation about them is available in Chapter 19, “Shared Concepts and Topics.”
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PROC PLM Statement
PROC PLM RESTORE=item-store-specification < options > ;

The PROC PLM statement invokes the PLM procedure. The RESTORE= option with item-store-specification
is required. Table 75.2 summarizes the options available in the PROC PLM statement.

Table 75.2 PROC PLM Statement Options

Option Description

Basic Options
RESTORE= Specifies the source item store for processing
SEED= Specifies the random number seed
STMTORDER= Affects the order in which statements are grouped during processing
FORMAT= Specifies how the PLM procedure handles user-defined formats
WHEREFORMAT Specifies the constants (literals) in terms of the formatted values of the BY

variables

Computational Options
ALPHA= Specifies the nominal significance level
DDFMETHOD= Specifies the method for determining denominator degrees of freedom
PERCENTILES= Supplies a list of percentiles for the construction of HPD intervals

Displayed Output
MAXLEN= Determines the maximum length of informational strings
NOCLPRINT Suppresses the display of the “Class Level Information” table
NOINFO Suppresses the display of the “Store Information” table
NOPRINT Suppresses tabular and graphical output
PLOT Controls the plots produced through ODS Graphics

Singularity Tolerances
ESTEPS= Specifies the tolerance value used in determining the estimability of linear

functions
SINGCHOL= Tunes the singularity criterion in Cholesky decompositions
SINGRES= Sets the tolerance for which the residual variance or scale parameter is

considered to be zero
SINGULAR= Tunes the general singularity criterion
ZETA= Tunes the sensitivity in forming Type III functions

You can specify the following options:

ALPHA=˛
specifies the nominal significance level for multiplicity corrections and for the construction of con-
fidence intervals. The value of ˛ must be between 0 and 1. The default is the value specified in the
source item store, or 0.05 if the item store does not provide a value. The confidence level based on ˛ is
1 � ˛.
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DDFMETHOD=RESIDUAL | RES | ERROR

DDFMETHOD=NONE

DDFMETHOD=KENROG | KR | KENWARDROGER

DDFMETHOD=SATTERTH | SAT | SATTERTHWAITE
specifies the method for determining denominator degrees of freedom for tests and confidence intervals.
The default degree-of-freedom method is determined by the contents of the item store. You can override
the default to some extent with the DDFMETHOD= option.

If you choose DDFMETHOD=NONE, then infinite denominator degrees of freedom are assumed for
tests and confidence intervals. This essentially produces z tests and intervals instead of t tests and
intervals and chi-square tests instead of F tests.

The KENWARDROGER and SATTERTHWAITE methods require that the source item store contain
information about these methods. This information is currently available for item stores that were
created with the MIXED or GLIMMIX procedures when the appropriate DDFM= option was in effect.

ESTEPS=�
specifies the tolerance value used in determining the estimability of linear functions. The default value
is determined by the contents of the source item store; it is usually 1E–4.

FORMAT=NOLOAD | RELOAD
specifies how the PLM procedure handles user-defined formats, which are not permanent. When the
item store is created, user-defined formats are stored. When the PLM procedure opens an item store, it
uses this option as follows. If FORMAT=RELOAD (the default), the stored formats are loaded again
from the item store and formats that already exist in your SAS session are replaced by the reloaded
formats. If FORMAT=NOLOAD, stored formats are not loaded from the item store and existing
formats are not replaced.

With FORMAT=NOLOAD, you prevent the PLM procedure from reloading the format from the item
store. As a consequence, PLM statements might fail if a format was present at the item store creation
and is not available in your SAS session. Also, if you modify the format that was used in the item
store creation and use FORMAT=NOLOAD, you might obtain unexpected results because levels of
classification variables are remapped.

The “Class Level Information” table always displays the formatted values of classification variables
that were used in fitting the model, regardless of the FORMAT= option. For more details about using
formats with the PLM procedure, see “User-Defined Formats and the PLM Procedure” on page 6181.

MAXLEN=n
determines the maximum length of informational strings in the “Store Information” table. This table
displays, for example, lists of classification or BY variables and lists of model effects. The value of n
determines the truncation length for these strings. The minimum and maximum values for n are 20 and
256, respectively. The default is n = 100.

NOCLPRINT< =number >
suppresses the display of the “Class Level Information” table if you do not specify number . If you
specify number , only levels with totals that are less than number are listed in the table. The PLM
procedure produces the “Class Level Information” table by default when the model contains effects
that depend on classification variables.
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NOINFO
suppresses the display of the “Store Information” table.

NOPRINT
suppresses the generation of tabular and graphical output. When the NOPRINT option is in effect,
ODS tables are also not produced.

PERCENTILES=value-list

PERCENTILE=value-list
supplies a list of percentiles for the construction of highest posterior density (HPD) intervals when
the PLM procedure performs a sampling-based analysis (for example, when processing an item store
that contains posterior parameter estimates from a Bayesian analysis). The default set of percentiles
depends on the contents of the source item store; it is typically PERCENTILES=25, 50, 75. The entries
in value-list must be strictly between 0 and 100.

PLOTS < (global-plot-option) > < =specific-plot-options >
controls the plots produced through ODS Graphics. ODS Graphics must be enabled before plots can
be requested. For example:

ods graphics on;

proc plm plots=all;
lsmeans a/diff;

run;

ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

Global Plot Option

The following global-plot-option applies to all plots produced by PROC PLM.

UNPACKPANEL

UNPACK
suppresses paneling. (By default, multiple plots can appear in some output panels.) Specify
UNPACK to display each plot separately.

Specific Plot Options

You can specify the following specific-plot-options:

ALL
requests that all the appropriate plots be produced.
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NONE
suppresses all plots.

SEED=number
specifies the random number seed for analyses that depend on a random number stream. You can also
specify the random number seed through some PLM statements (for example, through the SEED=
options in the ESTIMATE, LSMEANS, and LSMESTIMATE statements). However, note that there is
only a single random number stream per procedure run. Specifying the SEED= option in the PROC
PLM statement initializes the stream for all subsequent statements. If you do not specify a random
number seed, the source item store might supply one for you. If a seed is in effect when the PLM
procedure opens the source store, the “Store Information” table displays its value.

If the random number seed is less than or equal to zero, the seed is generated from reading the time of
day from the computer clock and a log message indicates the chosen seed value.

SINGCHOL=number
tunes the singularity criterion in Cholesky decompositions. The default value depends on the contents
of the source item store. The default value is typically 1E4 times the machine epsilon; this product is
approximately 1E–12 on most computers.

SINGRES=number
sets the tolerance for which the residual variance or scale parameter is considered to be zero. The
default value depends on the contents of the source item store. The default value is typically 1E4 times
the machine epsilon; this product is approximately 1E–12 on most computers.

SINGULAR=number
tunes the general singularity criterion applied by the PLM procedure in divisions and inversions. The
default value used by the PLM procedure depends on the contents of the item store. The default value
is typically 1E4 times the machine epsilon; this product is approximately 1E–12 on most computers.

RESTORE=item-store-specification
specifies the source item store for processing. This option is required because, in contrast to SAS data
sets, there is no default item store. An item-store-specification consists of a one- or two-level name
as with SAS data sets. As with data sets, the default library association of an item store is with the
WORK library, and any stores created in this library are deleted when the SAS session concludes.

STMTORDER=SYNTAX | GROUP

STMT=SYNTAX | GROUP
affects the order in which statements are grouped during processing. The default behavior depends
on the contents of the source item store and can be modified with the STMTORDER= option. If
STMTORDER=SYNTAX is in effect, the statements are processed in the order in which they appear.
Note that this precludes the hierarchical grouping of ODS objects. If STMTORDER=GROUP is in
effect, the statements are processed in groups and in the following order: SHOW, TEST, LSMEANS,
SLICE, LSMESTIMATE, ESTIMATE, SCORE, EFFECTPLOT, and CODE.

WHEREFORMAT
specifies that the constants (literals) specified in WHERE expressions for group selection are in terms
of the formatted values of the BY variables. By default, WHERE expressions are specified in terms of
the unformatted (raw) values of the BY variables, as in the SAS DATA step.
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ZETA=number
tunes the sensitivity in forming Type III functions. Any element in the estimable function basis with an
absolute value less than number is set to 0. The default depends on the contents of the source item
store; it usually is 1E–8.

CODE Statement
CODE < options > ;

The CODE statement writes SAS DATA step code for computing predicted values of the fitted model either
to a file or to a catalog entry. This code can then be included in a DATA step to score new data.

Table 75.3 summarizes the options available in the CODE statement.

Table 75.3 CODE Statement Options

Option Description

CATALOG= Names the catalog entry where the generated code is saved
DUMMIES Retains the dummy variables in the data set
ERROR Computes the error function
FILE= Names the file where the generated code is saved
FORMAT= Specifies the numeric format for the regression coefficients
GROUP= Specifies the group identifier for array names and statement labels
IMPUTE Imputes predicted values for observations with missing or invalid

covariates
LINESIZE= Specifies the line size of the generated code
LOOKUP= Specifies the algorithm for looking up CLASS levels
RESIDUAL Computes residuals

For details about the syntax of the CODE statement, see the section “CODE Statement” on page 395 in
Chapter 19, “Shared Concepts and Topics.”

EFFECTPLOT Statement
EFFECTPLOT < plot-type < (plot-definition-options) > > < / options > ;

The EFFECTPLOT statement produces a display of the fitted model and provides options for changing and
enhancing the displays. Table 75.4 describes the available plot-types and their plot-definition-options.
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Table 75.4 Plot-Types and Plot-Definition-Options

Plot-Type and Description Plot-Definition-Options

BOX
Displays a box plot of continuous response data at each
level of a CLASS effect, with predicted values
superimposed and connected by a line. This is an
alternative to the INTERACTION plot-type.

PLOTBY= variable or CLASS effect
X= CLASS variable or effect

CONTOUR
Displays a contour plot of predicted values against two
continuous covariates

PLOTBY= variable or CLASS effect
X= continuous variable
Y= continuous variable

FIT
Displays a curve of predicted values versus a
continuous variable

PLOTBY= variable or CLASS effect
X= continuous variable

INTERACTION
Displays a plot of predicted values (possibly with error
bars) versus the levels of a CLASS effect. The
predicted values are connected with lines and can be
grouped by the levels of another CLASS effect.

PLOTBY= variable or CLASS effect
SLICEBY= variable or CLASS effect
X= CLASS variable or effect

MOSAIC
Displays a mosaic plot of predicted values by using up
to three CLASS effects

PLOTBY= variable or CLASS effect
X= CLASS effects

SLICEFIT
Displays a curve of predicted values versus a
continuous variable, grouped by the levels of a
CLASS effect

PLOTBY= variable or CLASS effect
SLICEBY= variable or CLASS effect
X= continuous variable

For full details about the syntax and options of the EFFECTPLOT statement, see the section “EFFECTPLOT
Statement” on page 416 in Chapter 19, “Shared Concepts and Topics.”

ESTIMATE Statement
ESTIMATE < 'label ' > estimate-specification < (divisor=n) >

< , . . . < 'label ' > estimate-specification < (divisor=n) > >
< / options > ;

The ESTIMATE statement provides a mechanism for obtaining custom hypothesis tests. Estimates are
formed as linear estimable functions of the form Lˇ. You can perform hypothesis tests for the estimable
functions, construct confidence limits, and obtain specific nonlinear transformations.

Table 75.5 summarizes the options available in the ESTIMATE statement.
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Table 75.5 ESTIMATE Statement Options

Option Description

Construction and Computation of Estimable Functions
DIVISOR= Specifies a list of values to divide the coefficients
NOFILL Suppresses the automatic fill-in of coefficients for higher-order

effects
SINGULAR= Tunes the estimability checking difference

Degrees of Freedom and p-values
ADJUST= Determines the method for multiple comparison adjustment of

estimates
ALPHA=˛ Determines the confidence level (1 � ˛)
LOWER Performs one-sided, lower-tailed inference
STEPDOWN Adjusts multiplicity-corrected p-values further in a step-down fash-

ion
TESTVALUE= Specifies values under the null hypothesis for tests
UPPER Performs one-sided, upper-tailed inference

Statistical Output
CL Constructs confidence limits
CORR Displays the correlation matrix of estimates
COV Displays the covariance matrix of estimates
E Prints the L matrix
JOINT Produces a joint F or chi-square test for the estimable functions
PLOTS= Requests ODS statistical graphics if the analysis is sampling-based
SEED= Specifies the seed for computations that depend on random numbers

Generalized Linear Modeling
CATEGORY= Specifies how to construct estimable functions with multinomial

data
EXP Exponentiates and displays estimates
ILINK Computes and displays estimates and standard errors on the inverse

linked scale

For details about the syntax of the ESTIMATE statement, see the section “ESTIMATE Statement” on
page 444 in Chapter 19, “Shared Concepts and Topics.”

FILTER Statement
FILTER expression ;

The FILTER statement enables you to filter the results of the PLM procedure, specifically the contents of
ODS tables and the output data sets. There can be at most one FILTER statement per PROC PLM run, and
the filter is applied to all BY groups and to all queries generated through WHERE expressions.
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A filter expression follows the same pattern as a where-expression in the WHERE statement. The expressions
consist of operands and operators. For more information about specifying where-expressions, see the WHERE
statement for the PLM procedure and SAS Language Reference: Concepts.

Valid keywords for the formation of operands in the FILTER statement are shown in Table 75.6.

Table 75.6 Keywords for Filtering Results

Keyword Description

Prob Regular (unadjusted) p-values from t, F, or chi-square tests
ProbChi Regular (unadjusted) p-values from chi-square tests
ProbF Regular (unadjusted) p-values from F tests
ProbT Regular (unadjusted) p-values from t tests
AdjP Adjusted p-values
Estimate Results displayed in “Estimates” column of ODS tables
Pred Predicted values in SCORE output data sets
Resid Residuals in SCORE output data sets.
Std Standard errors in ODS tables and in SCORE results
Mu Results displayed in the “Mean” column of ODS tables (this column

is typically produced by the ILINK option)
tValue The value of the usual t statistic
FValue The value of the usual F statistic
Chisq The value of the chi-square statistic
testStat The value of the test statistic (a generic keyword for the ‘tValue’,

‘FValue’, and ‘Chisq’ tokens)
Lower The lower confidence limit displayed in ODS tables
Upper The upper confidence limit displayed in ODS tables
AdjLower The adjusted lower confidence limit displayed in ODS tables
AdjUpper The adjusted upper confidence limit displayed in ODS tables
LowerMu The lower confidence limit for the mean displayed in ODS tables
UpperMu The upper confidence limit for the mean displayed in ODS tables
AdjLowerMu The adjusted lower confidence limit for the mean displayed in ODS

tables
AdjUpperMu The adjusted upper confidence limit for the mean displayed in ODS

tables

When you write filtering expressions, be advised that filtering variables that are not used in the results are
typically set to missing values. For example, the following statements select all results (filter nothing) because
no adjusted p-values are computed:

proc plm restore=MyStore;
lsmeans a / diff;
filter adjp < 0.05;

run;

If the adjusted p-values are set to missing values, the condition adjp < 0.05 is true in each case (missing
values always compare smaller than the smallest nonmissing value).
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See “Example 75.6: Comparing Multiple B-Splines” on page 6199 for an example of using the FILTER
statement.

Filtering results has no affect on the item store contents that are displayed with the SHOW statement. However,
BY-group selection with the WHERE statement can limit the amount of information that is displayed by the
SHOW statements.

LSMEANS Statement
LSMEANS < model-effects > < / options > ;

The LSMEANS statement computes and compares least squares means (LS-means) of fixed effects. LS-means
are predicted population margins—that is, they estimate the marginal means over a balanced population. In a
sense, LS-means are to unbalanced designs as class and subclass arithmetic means are to balanced designs.

Table 75.7 summarizes the options available in the LSMEANS statement.

Table 75.7 LSMEANS Statement Options

Option Description

Construction and Computation of LS-Means
AT Modifies the covariate value in computing LS-means
BYLEVEL Computes separate margins
DIFF Requests differences of LS-means
OM= Specifies the weighting scheme for LS-means computation as de-

termined by the input data set
SINGULAR= Tunes estimability checking

Degrees of Freedom and p-values
ADJUST= Determines the method for multiple-comparison adjustment of LS-

means differences
ALPHA=˛ Determines the confidence level (1 � ˛)
STEPDOWN Adjusts multiple-comparison p-values further in a step-down

fashion

Statistical Output
CL Constructs confidence limits for means and mean differences
CORR Displays the correlation matrix of LS-means
COV Displays the covariance matrix of LS-means
E Prints the L matrix
LINES Produces a “Lines” display for pairwise LS-means differences
MEANS Prints the LS-means
PLOTS= Requests graphs of means and mean comparisons
SEED= Specifies the seed for computations that depend on random numbers
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Table 75.7 continued

Option Description

Generalized Linear Modeling
EXP Exponentiates and displays estimates of LS-means or LS-means

differences
ILINK Computes and displays estimates and standard errors of LS-means

(but not differences) on the inverse linked scale
ODDSRATIO Reports (simple) differences of least squares means in terms of

odds ratios if permitted by the link function

For details about the syntax of the LSMEANS statement, see the section “LSMEANS Statement” on page 460
in Chapter 19, “Shared Concepts and Topics.”

LSMESTIMATE Statement
LSMESTIMATE model-effect < 'label ' > values < divisor=n >

< , . . . < 'label ' > values < divisor=n > >
< / options > ;

The LSMESTIMATE statement provides a mechanism for obtaining custom hypothesis tests among least
squares means.

Table 75.8 summarizes the options available in the LSMESTIMATE statement.

Table 75.8 LSMESTIMATE Statement Options

Option Description

Construction and Computation of LS-Means
AT Modifies covariate values in computing LS-means
BYLEVEL Computes separate margins
DIVISOR= Specifies a list of values to divide the coefficients
OM= Specifies the weighting scheme for LS-means computation as de-

termined by a data set
SINGULAR= Tunes estimability checking

Degrees of Freedom and p-values
ADJUST= Determines the method for multiple-comparison adjustment of LS-

means differences
ALPHA=˛ Determines the confidence level (1 � ˛)
LOWER Performs one-sided, lower-tailed inference
STEPDOWN Adjusts multiple-comparison p-values further in a step-down fash-

ion
TESTVALUE= Specifies values under the null hypothesis for tests
UPPER Performs one-sided, upper-tailed inference
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Table 75.8 continued

Option Description

Statistical Output
CL Constructs confidence limits for means and mean differences
CORR Displays the correlation matrix of LS-means
COV Displays the covariance matrix of LS-means
E Prints the L matrix
ELSM Prints the K matrix
JOINT Produces a joint F or chi-square test for the LS-means and LS-

means differences
PLOTS= Requests graphs of means and mean comparisons
SEED= Specifies the seed for computations that depend on random numbers

Generalized Linear Modeling
CATEGORY= Specifies how to construct estimable functions with multinomial

data
EXP Exponentiates and displays LS-means estimates
ILINK Computes and displays estimates and standard errors of LS-means

(but not differences) on the inverse linked scale

For details about the syntax of the LSMESTIMATE statement, see the section “LSMESTIMATE Statement”
on page 476 in Chapter 19, “Shared Concepts and Topics.”

SCORE Statement
SCORE DATA=SAS-data-set < OUT=SAS-data-set >

< keyword< =name > > . . .
< keyword< =name > > < / options > ;

The SCORE statement applies the contents of the source item store to compute predicted values and other
observation-wise statistics for a SAS data set.

You can specify the following syntax elements in the SCORE statement before the option slash (/):

DATA=SAS-data-set
specifies the input data set for scoring. This option is required, and the data set is examined for
congruity with the previously fitted (and stored) model. For example, all necessary variables to form a
row of the X matrix must be present in the input data set and must be of the correct type and format.
The following variables do not have to be present in the input data set:

• the response variable

• the events and trials variables used in the events/trials syntax for binomial data

• variables used in WEIGHT or FREQ statements
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OUT=SAS-data-set
specifies the name of the output data set. If you do not specify an output data set with the OUT= option,
the PLM procedure uses the DATAn convention to name the output data set.

keyword< =name >
specifies a statistic to be included in the OUT= data set and optionally assigns the statistic the variable
name name. Table 75.9 lists the keywords and the default names assigned by the PLM procedure if
you do not specify a name.

Table 75.9 Keywords for Output Statistics

Keyword Description Expression Name

PREDICTED Linear predictor b� D xb̌ Predicted

STDERR Standard deviation of linear predictor
p
Var.b�/ StdErr

RESIDUAL Residual y � g�1.b�/ Resid

LCLM Lower confidence limit for the linear predictor LCLM

UCLM Upper confidence limit for the linear predictor UCLM

LCL Lower prediction limit for the linear predictor LCL

UCL Upper prediction limit for the linear predictor UCL

PZERO zero-inflation probability for zero-inflated models g�1z .zb/ PZERO

Prediction limits (LCL, UCL) are available only for statistical models that allow such limits, typically
regression-type models for normally distributed data with an identity link function. Zero-inflation probability
(PZERO) is available only for zero-inflated models. For details on how PROC PLM computes statistics for
zero-inflated models, see “Scoring Data Sets for Zero-Inflated Models” on page 6181.

You can specify the following options in the SCORE statement after a slash (/):

ALPHA=number
determines the coverage probability for two-sided confidence and prediction intervals. The coverage
probability is computed as 1 – number . The value of number must be between 0 and 1; the default is
0.05.

DF=number
specifies the degrees of freedom to use in the construction of prediction and confidence limits.

ILINK
requests that predicted values be inversely linked to produce predictions on the data scale. By default,
predictions are produced on the linear scale where covariate effects are additive.

NOOFFSET
requests that the offset values not be added to the prediction if the offset variable is used in the fitted
model.
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NOUNIQUE
requests that names not be made unique in the case of naming conflicts. By default, the PLM procedure
avoids naming conflicts by assigning a unique name to each output variable. If you specify the
NOUNIQUE option, variables with conflicting names are not renamed. In that case, the first variable
added to the output data set takes precedence.

NOVAR
requests that variables from the input data set not be added to the output data set.

OBSCAT
requests that statistics in models for multinomial data be written to the output data set only for the
response level that corresponds to the observed level of the observation.

SAMPLE
requests that the sample of parameter estimates in the item store be used to form scoring statistics. This
option is useful when the item store contains the results of a Bayesian analysis and a posterior sample
of parameter estimates. The predicted value is then computed as the average predicted value across
the posterior estimates, and the standard error measures the standard deviation of these estimates. For
example, let b̌1; : : : ; b̌k denote the k posterior sample estimates of ˇ, and let xi denote the x-vector
for the ith observation in the scoring data set. If the SAMPLE option is in effect, the output statistics
for the predicted value, the standard error, and the residual of the ith observation are computed as

�ij D xib̌j
PREDi D �i D

1

k

kX
jD1

�ij

STDERRi D

0@ 1

k � 1

kX
jD1

�
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�21A1=2
RESIDUALi D yi � g

�1 .�i /

where g�1.�/ denotes the inverse link function.

If, in addition, the ILINK option is in effect, the calculations are as follows:
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The LCL and UCL statistics are not available with the SAMPLE option. When the LCLM and UCLM
statistics are requested, the SAMPLE option yields the lower 100�˛=2% and upper 100� .1�˛=2/%
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percentiles of the predicted values under the sample (posterior) distribution. When you request residuals
with the SAMPLE option, the calculation depends on whether the ILINK option is specified.

SHOW Statement
SHOW options ;

The SHOW statement uses the Output Delivery System to display contents of the item store. This statement
is useful for verifying that the contents of the item store apply to the analysis and for generating ODS tables.
Table 75.10 summarizes the options available in the SHOW statement.

Table 75.10 SHOW Statement Options

Option Description

ALL Displays all applicable contents
BYVAR Displays information about the BY variables
CLASSLEVELS Displays the “Class Level Information” table
CORRELATION Produces the correlation matrix of the parameter estimates
COVARIANCE Produces the covariance matrix of the parameter estimates
EFFECTS Displays information about the constructed effects
FITSTATS Displays the fit statistics
HESSIAN Displays the Hessian matrix
HERMITE Generates the Hermite matrix H D .X0X/�.X0X/
PARAMETERS Displays the parameter estimates
PROGRAM Displays the SAS program that generated the item store
XPX Displays the crossproduct matrix X0X
XPXI Displays the generalized inverse of the crossproduct matrix X0X

You can specify the following options after the SHOW statement:

ALL | _ALL_
displays all applicable contents.

BYVAR | BY
displays information about the BY variables in the source item store. If a BY statement was present
when the item store was created, the PLM procedure performs the analysis separately for each BY
group.

CLASSLEVELS | CLASS
displays the “Class Level Information” table. This table is produced by the PLM procedure by default
if the model contains effects that depend on classification variables.

CORRELATION | CORR | CORRB
produces the correlation matrix of the parameter estimates. If the source item store contains a posterior
sample of parameter estimates, the computed matrix is the correlation matrix of the sample covariance
matrix.
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COVARIANCE | COV | COVB
produces the covariance matrix of the parameter estimates. If the source item store contains a posterior
sample of parameter estimates, the PLM procedure computes the empirical sample covariance matrix
from the posterior estimates. You can convert this matrix into a sample correlation matrix with the
CORRELATION option in the SHOW statement.

EFFECTS
displays information about the constructed effects in the model. Constructed effects are those that were
created with the EFFECT statement in the procedure run that generated the source item store.

FITSTATS | FIT
displays the fit statistics from the item store.

HESSIAN | HESS
displays the Hessian matrix.

HERMITE | HERM
generates the Hermite matrix H D .X0X/�.X0X/. The PLM procedure chooses a reflexive, g2-
inverse for the generalized inverse of the crossproduct matrix X0X. See “Important Linear Algebra
Concepts” on page 40 in Chapter 3, “Introduction to Statistical Modeling with SAS/STAT Software,”
for information about generalized inverses and the sweep operator.

PARAMETERS< =n >

PARMS< =n >
displays the parameter estimates. The structure of the display depends on whether a posterior sample
of parameter estimates is available in the source item store. If such a sample is present, up to the first
20 parameter vectors are shown in wide format. You can modify this number with the n argument.

If no posterior sample is present, the single vector of parameter estimates is shown in narrow format.
If the store contains information about the covariance matrix of the parameter estimates, then standard
errors are added.

PROGRAM< (WIDTH=n) >

PROG< (WIDTH=n) >
displays the SAS program that generated the item store, provided that this was stored at store generation
time. The program does not include comments, titles, or some other global statements. The optional
width parameter n determines the display width of the source code.

XPX | CROSSPRODUCT
displays the crossproduct matrix X0X.

XPXI
displays the generalized inverse of the crossproduct matrix X0X. The PLM procedure obtains a
reflexive g2-inverse by sweeping. See “Important Linear Algebra Concepts” on page 40 in Chapter 3,
“Introduction to Statistical Modeling with SAS/STAT Software,” for information about generalized
inverses and the sweep operator.
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SLICE Statement
SLICE model-effect < / options > ;

The SLICE statement provides a general mechanism for performing a partitioned analysis of the LS-means
for an interaction. This analysis is also known as an analysis of simple effects.

The SLICE statement uses the same options as the LSMEANS statement, which are summarized in Ta-
ble 19.21. For details about the syntax of the SLICE statement, see the section “SLICE Statement” on
page 505 in Chapter 19, “Shared Concepts and Topics.”

TEST Statement
TEST < model-effects > < / options > ;

The TEST statement enables you to perform F tests for model effects that test Type I, Type II, or Type III
hypotheses. See Chapter 15, “The Four Types of Estimable Functions,” for details about the construction of
Type I, II, and III estimable functions.

Table 75.11 summarizes the options available in the TEST statement.

Table 75.11 TEST Statement Options

Option Description

CHISQ Requests chi-square tests
DDF= Specifies denominator degrees of freedom for fixed effects
E Requests Type I, Type II, and Type III coefficients
E1 Requests Type I coefficients
E2 Requests Type II coefficients
E3 Requests Type III coefficients
HTYPE= Indicates the type of hypothesis test to perform
INTERCEPT Adds a row that corresponds to the overall intercept

For details about the syntax of the TEST statement, see the section “TEST Statement” on page 509 in
Chapter 19, “Shared Concepts and Topics.”

WHERE Statement
WHERE expression ;

You can use the WHERE statement in the PLM procedure when the item store contains BY-variable
information and you want to apply the PROC PLM statements to only a subset of the BY groups.

A WHERE expression is a type of SAS expression that defines a condition. In the DATA step and in
procedures that use SAS data sets as the input source, the WHERE expression is used to select observations
for inclusion in the DATA step or in the analysis. In the PLM procedure, which does not accept a SAS data set



6178 F Chapter 75: The PLM Procedure

but rather takes an item store that was created by a qualifying SAS/STAT procedure, the WHERE statement
is also used to specify conditions. The conditional selection does not apply to observations in PROC PLM,
however. Instead, you use the WHERE statement in the PLM procedure to select a subset of BY groups from
the item store to which to apply the PROC PLM statements.

The general syntax of the WHERE statement is

WHERE operand < operator operand > < AND | OR operand < operator operand >. . . > ;

where

operand is something to be operated on. The operand can be the name of a BY variable in the item
store, a SAS function, a constant, or a predefined name to identify columns in result tables.

operator is a symbol that requests a comparison, logical operation, or arithmetic calculation. All SAS
expression operators are valid for a WHERE expression.

For more details about how to specify general WHERE expressions, see SAS Language Reference: Concepts.
Notice that the FILTER statement accepts similar expressions that are specified in terms of predefined
keywords. Expressions in the WHERE statement of the PLM procedure are written in terms of BY variables.

There is no limit to the number of WHERE statements in the PLM procedure. When you specify multiple
WHERE statements, the statements are not cumulative. Each WHERE statement is executed separately. You
can think of each selection WHERE statement as one analytic query to the item store: the WHERE statement
defines the query, and the PLM procedure is the querying engine. For example, suppose that the item store
contains results for the numeric BY variables A and B. The following statements define two separate queries
of the item store:

WHERE a = 4;
WHERE (b < 3) and (a > 4);

The PLM procedure first applies the requested analysis to all BY groups where a equals 4 (irrespective of the
value of variable b). The analysis is then repeated for all BY groups where b is less than 3 and a is greater
than 4.

Group selection with WHERE statements is possible only if the item store contains BY variables. You can
use the BYVAR option in the SHOW statement to display the BY variables in the item store.

Note that WHERE expressions in the SAS DATA step and in many procedures are specified in terms of the
unformatted values of data set variables, even if a format was applied to the variable. If you specify the
WHEREFORMAT option in the PROC PLM statement, the PLM procedure evaluates WHERE expressions
for BY variables in terms of the formatted values. For example, assume that the following format was applied
to the variable tx when the item store was created:

proc format;
value bf 1 = 'Control'

2 = 'Treated';
run;
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Then the following two PROC PLM runs are equivalent:

proc plm restore=MyStore;
show parms;
where b = 2;

run;

proc plm restore=MyStore whereformat;
show parms;
where b = 'Treated';

run;

Details: PLM Procedure

BY Processing and the PLM Procedure
When a BY statement is in effect for the analysis that creates an item store, the information about BY
variables and BY-group-specific modeling results are transferred to the item store. In this case, the PLM
procedure automatically assumes a processing mode for the item store that is akin to BY processing, with the
PLM statements being applied in turn for each of the BY groups. Also, you can then obtain a table of BY
groups with the BYVAR option in the SHOW statement. The “Source Information” table also displays the
variable names of the BY variables if BY groups are present. The WHERE statement can be used to restrict
the analysis to specific BY groups that meet the conditions of the WHERE expression.

See Example 75.4 for an example that uses BY-group-specific information in the source item store.

As with procedures that operate on input data sets, the BY variable information is added automatically to any
output data sets and ODS tables produced by the PLM procedure.

When you score a data set with the SCORE statement and the item store contains BY variables, three
situations can arise:

• None of the BY variables are present in the scoring data set. In this situation the results of the BY
groups in the item store are applied in turn to the entire scoring data set. For example, if the scoring
data set contains 50 observations and no BY-variable information, the number of observations in the
output data set of the SCORE statement equals 50 times the number of BY groups.

• The scoring data set contains only a part of the BY variables, or the variables have different type or
format. The PLM procedure does not process such an incompatible scoring data set.

• All BY variables are in the scoring data set in the same type and format as when the item store
was created. The BY-group-specific results are applied to each observation in the scoring data set.
The scoring data set does not have to be sorted or grouped by the BY variables. However, it is
computationally more efficient if the scoring data set is arranged by groups of the BY variables.
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Analysis Based on Posterior Estimates
If an item store is saved from a Bayesian analysis (by PROC GENMOD or PROC PHREG or PROC
LIFEREG), then PROC PLM can perform sampling-based inference based on Bayes posterior estimates that
are saved in the item store. For example, the following statements request a Bayesian analysis and save the
results to an item store named sasuser.gmd. For the Bayesian analysis, the random number generator seed is
set to 1. By default, a noninformative distribution is set as the prior distribution for the regression coefficients
and the posterior sample size is 10,000.

proc genmod data=gs;
class a b;
model y = a b;
bayes seed=1;
store sasuser.gmd / label='Bayesian Analysis';

run;

When the PLM procedure opens the item store sasuser.gmd, it detects that the results were saved from
a Bayesian analysis. The posterior sample of regression coefficient estimates are then loaded to perform
statistical inference tasks.

The majority of postprocessing tasks involve inference based on an estimable linear function Lb̌, which often
requires its mean and variance. When the standard frequentist analyses are performed, the mean and variance
have explicit forms because the parameter estimate b̌ is analytically tractable. However, explicit forms are
not usually available when Bayesian models are fitted. Instead, empirical means and variance-covariance
matrices for the estimable function are constructed from the posterior sample.

Let b̌i ; i D 1; : : : ; Np denote the Np vectors of posterior sample estimates of ˇ saved in sasuser.gmd.
Use these vectors to construct the posterior sample of estimable functions Lˇi . The posterior mean of the
estimable function is thus

Lb̌D 1

Np

NpX
iD1

Lb̌i
and the posterior variance of the estimable function is

V
�
Lb̌� D 1

Np � 1

NpX
iD1

�
Lb̌i � Lb̌�2

Sometimes statistical inference on a transformation of Lb̌ is requested. For example, the EXP option for
the ESTIMATE and LSMESTIMATE statements requests analysis based on exp.Lb̌/, exponentiation of
the estimable function. If this type of analysis is requested, the posterior sample of transformed estimable
functions is constructed by transforming each of the estimable function evaluated at the posterior sample:
f .Lb̌i /; i D 1; : : : ; Np . The posterior mean and variance for f .Lb̌/ are then computed from the constructed
sample to make the inference:

f .Lb̌/ D 1

Np

NpX
iD1

f .Lb̌i /
V
�
f .Lb̌/� D 1

Np � 1

NpX
iD1

�
f .Lb̌i / � f .Lb̌/�2

After obtaining the posterior mean and variance, the PLM procedure proceeds to perform statistical inference
based on them.
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Scoring Data Sets for Zero-Inflated Models
The PLM procedure can score new observations for zero-inflated models with the SCORE statement. If you
specify the ILINK option, the computed statistics are for estimated counts.

In the following formula, x is the design row for covariates that correspond to the the Poisson or negative
binomial component, Ǒ is the column vector of the fitted regression parameters; z is the design row for
covariates that correspond to the zero inflation component, O is the column vector of the fitted regression
parameters; g and g�1 are the link and inverse link functions for the Poisson or negative binomial component,
gz and g�1z are the link and inverse link functions for the zero inflation component; ˆ is the standard normal
cumulative distribution function and ˛ is the nominal significance level. Let

� D g�1.�/ D g�1.x Ǒ/
�z D g�1z .�z/ D g�1z .z O/
v1 D .d�d� /

2x OVˇ;ˇx0

v2 D .d�zd�z
/2z OV;z0

v12 D �.d�d� /.
d�z
d�z

/x OVˇ;z0

The formula for statistics in the SCORE statement for zero-inflated models are listed as follows.

PZERO D ! D �z
PRED=ILINK D pc D �.1 � !/

STD=ILINK D sc D

q
p2cv2 C .1 � !/

2v1 C v1v2 C 2pc.1 � !/v12 C v
2
12

UCLM=ILINK D uc D pc exp.ˆ�1.1 � ˛=2/sc=pc/
LCLM=ILINK D lc D pc= exp.ˆ�1.1 � ˛=2/sc=pc/
PRED D pl D g.pc/

STD D sl D g.sc/=.
d�
d� /

UCLM D ul D g.uc/

LCLM D ll D g.lc/

User-Defined Formats and the PLM Procedure
The PLM procedure does not support a FORMAT statement because it operates without an input data set,
and also because changing the format properties of variables could alter the interpretation of parameter
estimates, thus creating a dissonance with variable properties in effect when the item store was created.
Instead, user-defined formats that are applied to classification variables when the item store is created are
saved to the store and are by default reloaded by the PLM procedure. When the PLM procedure loads a
format, notes are issued to the log.

You can change the load behavior for formats with the FORMAT= option in the PROC PLM statement.

User-defined formats do not need to be supplied in a new SAS session. However, when a user-defined format
with the same name as a stored format exists and the default FORMAT=RELOAD option is in effect, the
format definition loaded from the item store replaces the format currently in effect.

In the following statements, the format AFORM is created and applied to the variable a in the PROC GLM
step. This format definition is transferred to the item store sasuser.glm through the STORE statement.
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proc format;
value aform 1='One' 2='Two' 3='Three';

run;
proc glm data=sp;

format a aform.;
class block a b;
model y = block a b x;
store sasuser.glm;
weight x;

run;

The following statements replace the format definition of the AFORM format. The PLM step then reloads
the AFORM format (from the item store) and thereby restores its original state.

proc format;
value aform 1='Un' 2='Deux' 3='Trois';

run;
proc plm restore=sasuser.glm;

show class;
score data=sp out=plmout lcl lclm ucl uclm;

run;

The following notes, issued by the PLM procedure, inform you that the procedure loaded the format, the
format already existed, and the existing format was replaced:

NOTE: The format AFORM was loaded from item store SASUSER.GLM.
NOTE: Format AFORM is already on the library.
NOTE: Format AFORM has been output.

After the PROC PLM run, the definition that is in effect for the format AFORM corresponds to the following
SAS statements:

proc format;
value aform 1='One' 2='Two' 3='Three';

run;

ODS Table Names
PROC PLM assigns a name to each table it creates. You can use these names to refer to the table when you
use the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in
Table 75.12. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

Each of the EFFECTPLOT, ESTIMATE, LSMEANS, LSMESTIMATE, and SLICE statements also creates
tables, which are not listed in Table 75.12. For information about these tables, see the corresponding sections
of Chapter 19, “Shared Concepts and Topics.”
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Table 75.12 ODS Tables Produced by PROC PLM

Table Name Description Required Option

ByVarInfo Information about BY variables in
source item store (if present)

SHOW BYVAR

ClassLevels Level information from the CLASS
statement

Default output when model ef-
fects depend on CLASS vari-
ables

Corr Correlation matrix of parameter esti-
mates

SHOW CORR

Cov Covariance matrix of parameter esti-
mates

SHOW COV

FitStatistics Fit statistics SHOW FIT
Hessian Hessian matrix SHOW HESSIAN
Hermite Hermite matrix SHOW HERMITE
ParameterEstimates Parameter estimates SHOW PARMS
ParameterSample Sampled (posterior) parameter esti-

mates
SHOW PARMS

Program Originating source code SHOW PROGRAM
StoreInfo Information about source item store Default
XpX X0X matrix SHOW XPX
XpXI .X0X/� matrix SHOW XPXI

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

When ODS Graphics is enabled, then each of the EFFECTPLOT, ESTIMATE, LSMEANS, LSMESTIMATE,
and SLICE statements can produce plots associated with their analyses. For information about these plots,
see the corresponding sections of Chapter 19, “Shared Concepts and Topics.”
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Examples: PLM Procedure

Example 75.1: Scoring with PROC PLM
Logistic regression with model selection is often used to extract useful information and build interpretable
models for classification problems with many variables. This example demonstrates how you can use PROC
LOGISTIC to build a spline model on a simulated data set and how you can later use the fitted model to
classify new observations.

The following DATA step creates a data set named SimuData, which contains 5,000 observations and 100
continuous variables:

%let nObs = 5000;
%let nVars = 100;
data SimuData;

array x{&nVars};
do obsNum=1 to &nObs;

do j=1 to &nVars;
x{j}=ranuni(1);

end;

linp = 10 + 11*x1 - 10*sqrt(x2) + 2/x3 - 8*exp(x4) + 7*x5*x5
- 6*x6**1.5 + 5*log(x7) - 4*sin(3.14*x8) + 3*x9 - 2*x10;

TrueProb = 1/(1+exp(-linp));

if ranuni(1) < TrueProb then y=1;
else y=0;

output;
end;

run;

The response is binary based on the inversely transformed logit values. The true logit is a function of only 10
of the 100 variables, including nonlinear transformations of seven variables, as follows:

logit.p/ D 10C11x1�10
p
x2C

2

x3
�8 exp.x4/C7x25�6x

1:5
6 C5 log.x7/�4 sin.3:14x8/C3x9�2x10

Now suppose the true model is not known. With some exploratory data analysis, you determine that the
dependency of the logit on some variables is nonlinear. Therefore, you decide to use splines to model
this nonlinear dependence. Also, you want to use stepwise regression to remove unimportant variable
transformations. The following statements perform the task:

proc logistic data=SimuData;
effect splines = spline(x1-x&nVars/separate);
model y = splines/selection=stepwise;
store sasuser.SimuModel;

run;

By default, PROC LOGISTIC models the probability that y = 0. The EFFECT statement requests an
effect named splines constructed by all predictors in the data. The SEPARATE option specifies that the
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spline basis for each variable be treated as a separate set so that model selection applies to each individual
set. The SELECTION=STEPWISE specifies the stepwise regression as the model selection technique.
The STORE statement requests that the fitted model be saved to an item store sasuser.SimuModel. See
“Example 75.2: Working with Item Stores” on page 6185 for an example with more details about working
with item stores.

The spline effect for each predictor produces seven columns in the design matrix, making stepwise regression
computationally intensive. For example, a typical Pentium 4 workstation takes around ten minutes to
run the preceding statements. Real data sets for classification can be much larger. See examples at UCI
Machine Learning Repository (Asuncion and Newman 2007). If new observations about which you want to
make predictions are available at model fitting time, you can add the SCORE statement in the LOGISTIC
procedure. Consider the case in which observations to predict become available after fitting the model.
With PROC PLM, you do not have to repeat the computationally intensive model-fitting processes multiple
times. You can use the SCORE statement in the PLM procedure to score new observations based on the item
store sasuser.SimuModel that was created during the initial model building. For example, to compute the
probability of y = 0 for one new observation with all predictor values equal to 0.15 in the data set test, you
can use the following statements:

data test;
array x{&nVars};
do j=1 to &nVars;

x{j}=0.15;
end;
drop j;
output;

run;

proc plm restore=sasuser.SimuModel;
score data=test out=testout predicted / ilink;

run;

The ILINK option in the SCORE statement requests that predicted values be inversely transformed to the
response scale. In this case, it is the predicted probability of y = 0. Output 75.1.1 shows the predicted
probability for the new observation.

Output 75.1.1 Predicted Probability for One New Observation

Obs Predicted

1 0.56649

Example 75.2: Working with Item Stores
This example demonstrates how procedures save statistical analysis context and results into item stores and
how you can use PROC PLM to make post hoc inference based on saved item stores. The data are taken
from McCullagh and Nelder (1989) and concern the effects on taste of various cheese additives. Four cheese
additives were tested, and 52 response ratings for each additive were obtained. The response was measured
on a scale of nine categories that range from strong dislike (1) to excellent taste (9). The following program
saves the data in the data set Cheese. The variable y contains the taste rating, the variable Additive contains
cheese additive types, and the variable freq contains the frequencies with which each additive received each
rating.
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data Cheese;
do Additive = 1 to 4;

do y = 1 to 9;
input freq @@;
output;

end;
end;
label y='Taste Rating';
datalines;

0 0 1 7 8 8 19 8 1
6 9 12 11 7 6 1 0 0
1 1 6 8 23 7 5 1 0
0 0 0 1 3 7 14 16 11
;

The response y is a categorical variable that contains nine ordered levels. You can use PROC LOGISTIC to
fit an ordinal model to investigate the effects of the cheese additive types on taste ratings. Suppose you also
want to save the ordinal model into an item store so that you can make statistical inference later. You can use
the following statements to perform the tasks:

proc logistic data=cheese;
freq freq;
class additive y / param=glm;
model y=additive;
store sasuser.cheese;
title 'Ordinal Model on Cheese Additives';

run;

By default, PROC LOGISTIC uses the cumulative logit model for the ordered categorical response. The
STORE statement saves the fitted model to a SAS item store named sasuser.cheese. The name is a two-level
SAS name of the form libname.membername. If libname is not specified in the STORE statement, the fitted
results are saved in work.membername and the item store is deleted after the current SAS session ends. With
this example, the fitted model is saved to an item store named sasuser.cheese in the Sasuser library. It is not
deleted after the current SAS session ends. You can use PROC PLM to restore the results later.

The following statements use PROC PLM to load the saved model context and results by specifying
RESTORE= with the target item store sasuser.cheese. Then they use two SHOW statements to display
separate information saved in the item store. The first SHOW statement with the PROGRAM option displays
the program that was used to generate the item store sasuser.cheese. The second SHOW statement with the
PARMS option displays parameter estimates and associated statistics of the fitted ordinal model.

proc plm restore=sasuser.cheese;
show program;
show parms;

run;

Output 75.2.1 displays the program that generated the item store sasuser.cheese. Except for the title
information, it matches the original program.
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Output 75.2.1 Program Information from sasuser.cheese

Ordinal Model on Cheese Additives

The PLM Procedure

Ordinal Model on Cheese Additives

The PLM Procedure

SAS Program Information

proc logistic data=cheese;

freq freq;

class additive y / param=glm;

model y=additive;

store sasuser.cheese;

run;

Output 75.2.2 displays estimates of the intercept terms and covariates and associated statistics. The intercept
terms correspond to eight cumulative logits defined on taste ratings; that is, the ith intercept for ith logit is

log

 P
j�i pj

1 �
P
j�i pj

!

Output 75.2.2 Parameter Estimates of the Ordinal Model

Parameter Estimates

Parameter
Taste
Rating Estimate

Standard
Error

Intercept 1 -7.0801 0.5624

Intercept 2 -6.0249 0.4755

Intercept 3 -4.9254 0.4272

Intercept 4 -3.8568 0.3902

Intercept 5 -2.5205 0.3431

Intercept 6 -1.5685 0.3086

Intercept 7 -0.06688 0.2658

Intercept 8 1.4930 0.3310

Additive 1 1.6128 0.3778

Additive 2 4.9645 0.4741

Additive 3 3.3227 0.4251

Additive 4 0 .

You can perform various statistical inference tasks from a saved item store, as long as the task is applicable
under the model context. For example, you can perform group comparisons between different cheese additive
types. See the next example for details.
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Example 75.3: Group Comparisons in an Ordinal Model
This example continues the study of the effects on taste of various cheese additives. You have finished
fitting an ordinal logistic model and saved it to an item store named sasuser.cheese in the previous example.
Suppose you want to make comparisons between any pair of cheese additives. You can conduct the analysis
by using the ESTIMATE statement and constructing an appropriate L matrix, or by using the LSMEANS
statement to compute least squares means differences. For an ordinal logistic model with the cumulative
logit link, the least squares means are predicted population margins of the cumulative logits. The following
statements compute and display differences between least squares means of cheese additive:

ods graphics on;
proc plm restore=sasuser.cheese;

lsmeans additive / cl diff oddsratio plot=diff;
run;
ods graphics off;

The LSMEANS statement contains four options. The DIFF option requests least squares means differences
for cheese additives. Since the fitted model is an ordinal logistic model with the cumulative logit link, the
least squares means differences represent log cumulative odds ratios. The ODDSRATIO option requests
exponentiation of the LS-means differences which produces cumulative odds ratios. The CL option constructs
confidence limits for the LS-means differences. When ODS Graphics is enabled, the PLOTS=DIFF option
requests a display of all pairwise least squares means differences and their significance.

Output 75.3.1 displays the LS-means differences. The reported log odds ratios indicate the relative difference
among the cheese additives. A negative log odds ratio indicates that the first category (displayed in the
Additive column) having a lower taste rating is less likely than the second category (displayed in the _Additive
column) having a lower taste rating. For example, the log odds ratio between cheese additive 1 and 2 is
–3.3517 and the corresponding odds ratio is 0.035. This means the odds of cheese additive 1 receiving a poor
rating is 0.035 times the odds of cheese additive 2 receiving a poor rating. In addition to the highly significant
p-value (< 0.0001), the confidence limits for both the log odds ratio and the odds ratio indicate that you can
reject the null hypothesis that the odds of cheese additive 1 having a lower taste rating is the same as that
of cheese additive 2 having a lower rating. Similarly, the odds of cheese additive 2 having a lower rating is
143.241 (with 95% confidence limits .56:558; 362:777/) times the odds of cheese additive 4 having a lower
rating. With the same logic, you can conclude that the preference order for the four cheese types from the
most favorable to the least favorable is: 4, 1, 3 and 2.
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Output 75.3.1 LS-Means Differences of Additive

Ordinal Model on Cheese Additives

The PLM Procedure

Ordinal Model on Cheese Additives

The PLM Procedure

Differences of Additive Least Squares Means

Additive _Additive Estimate
Standard

Error z Value Pr > |z| Alpha Lower Upper
Odds
Ratio

Lower
Confidence

Limit for
Odds Ratio

Upper
Confidence

Limit for
Odds Ratio

1 2 -3.3517 0.4235 -7.91 <.0001 0.05 -4.1818 -2.5216 0.035 0.015 0.080

1 3 -1.7098 0.3731 -4.58 <.0001 0.05 -2.4410 -0.9787 0.181 0.087 0.376

1 4 1.6128 0.3778 4.27 <.0001 0.05 0.8724 2.3532 5.017 2.393 10.520

2 3 1.6419 0.3738 4.39 <.0001 0.05 0.9092 2.3746 5.165 2.482 10.746

2 4 4.9645 0.4741 10.47 <.0001 0.05 4.0353 5.8938 143.241 56.558 362.777

3 4 3.3227 0.4251 7.82 <.0001 0.05 2.4895 4.1558 27.734 12.055 63.805

Output 75.3.2 displays the DiffPlot. This shows that all pairs of LS-means differences, equivalent to log odds
ratios in this case, are significant at the level of ˛ D 0:05. This means that the preference between any pair
of the four cheese additive types are statistically significantly different.

Output 75.3.2 LS-Means Plot of Pairwise Differences
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Example 75.4: Posterior Inference for Binomial Data
This example demonstrates how you can use PROC PLM to perform posterior inference from a Bayesian
analysis. The data for this example are taken from Weisberg (1985) and concern the effect of small electrical
currents on farm animals. The ultimate goal of the experiment was to understand the effects of high-voltage
power lines on livestock and to better protect farm animals. Seven cows and six shock intensities were used
in two experiments. In one experiment, each cow was given 30 electrical shocks with five at each shock
intensity in random order. The number of shock responses was recorded for each cow at each shock level.
The experiment was then repeated to investigate whether the response diminished due to fatigue of cows, or
due to learning. So each cow received a total of 60 shocks. For the following analysis, the cow difference is
ignored. The following DATA step lists the data where the variable current represents the shock level, the
variable response represents the number of shock responses, the variable trial represents the total number of
trials at each shock level, and the variable experiment represents the experiment number (1 for the initial
experiment and 2 for the repeated one):

data cow;
input current response trial experiment;
datalines;

0 0 35 1
0 0 35 2
1 6 35 1
1 3 35 2
2 13 35 1
2 8 35 2
3 26 35 1
3 21 35 2
4 33 35 1
4 27 35 2
5 34 35 1
5 29 35 2
;

Suppose you are interested in modeling the distribution of the shock response based on the level of the current
and the experiment number. You can use the GENMOD procedure to fit a frequentist logistic model for
the data. However, if you have some prior information about parameter estimates, you can fit a Bayesian
logistic regression model to take this prior information into account. In this case, suppose you believe the
logit of response has a positive association with the shock level but you are uncertain about the ranges of
other regression coefficients. To incorporate this prior information in the regression model, you can use the
following statements:

data prior;
input _type_$ current;
datalines;

mean 100
var 50
;

proc genmod data=cow;
class experiment;
bayes coeffprior=normal(input=prior) seed=1;
model response/trial = current|experiment / dist=binomial;
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store cowgmd;
title 'Bayesian Logistic Model on Cow';

run;

The DATA step creates a data set prior that specifies the prior distribution for the variable current, which in
this case is a normal distribution with mean 100 and variance 50. This reflects a rough belief in a positive
coefficient in a moderate range for current. The prior distribution parameters are not specified for experiment
and the interaction between experiment and current, and so PROC GENMOD assigns a default prior for
them, which is a normal distribution with mean 0 and variance 1E6.

The BAYES statement in PROC GENMOD specifies that the regression coefficients follow a normal
distribution with mean and variance specified in the input data set named prior. It also specifies 1 as the seed
for the random number generator in the simulation of the posterior sample. The MODEL statement requests
a logistic regression model with a logit link. The STORE statement requests that the fitted results be saved
into an item store named cowgmd.

The convergence diagnostics in the output of PROC GENMOD indicate that the Markov chain has converged.
Output 75.4.1 displays summaries on the posterior sample of the regression coefficients. The posterior
mean for the intercept is –3.5857 with a 95% HPD interval .�4:5226; �2:6303/. The posterior mean of
the coefficient for current is 1.1893 with a 95% HPD interval .0:8950; 1:4946/, which indicates a positive
association between the logit of response and the shock level. Further investigation about whether shock
reaction was different between two experiment is warranted.

Output 75.4.1 Posterior Summaries on the Bayesian Logistic Model

Bayesian Logistic Model on Cow

The GENMOD Procedure

Bayesian Analysis

Bayesian Logistic Model on Cow

The GENMOD Procedure

Bayesian Analysis

Posterior Summaries

Percentiles

Parameter N Mean
Standard
Deviation 25% 50% 75%

Intercept 10000 -3.6047 0.4906 -3.9281 -3.5842 -3.2679

current 10000 1.1966 0.1561 1.0873 1.1927 1.2996

experiment1 10000 0.0350 0.7014 -0.4206 0.0347 0.4987

experiment1current 10000 0.3574 0.2503 0.1906 0.3520 0.5235

Posterior Intervals

Parameter Alpha
Equal-Tail

Interval HPD Interval

Intercept 0.050 -4.6233 -2.7074 -4.5611 -2.6581

current 0.050 0.9073 1.5152 0.9028 1.5064

experiment1 0.050 -1.3651 1.4004 -1.2995 1.4370

experiment1current 0.050 -0.1293 0.8580 -0.1287 0.8580

Bayesian model fitting typically involves a large amount of simulation. Using the item store and PROC PLM,
you do not need to refit the model to perform further posterior inference. Suppose you want to determine
whether the shock reaction for the current level is different between the two experiments. You can use PROC
PLM with the ESTIMATE statement in the following statements:
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proc plm restore=cowgmd;
estimate
'Diff at current 0' experiment 1 -1 current*experiment [1, 0 1] [-1, 0 2],
'Diff at current 1' experiment 1 -1 current*experiment [1, 1 1] [-1, 1 2],
'Diff at current 2' experiment 1 -1 current*experiment [1, 2 1] [-1, 2 2],
'Diff at current 3' experiment 1 -1 current*experiment [1, 3 1] [-1, 3 2],
'Diff at current 4' experiment 1 -1 current*experiment [1, 4 1] [-1, 4 2],
'Diff at current 5' experiment 1 -1 current*experiment [1, 5 1] [-1, 5 2]
/ exp cl;

run;

Each line in the ESTIMATE statement compares the fits between the two groups at each current level. The
nonpositional syntax is used for the interaction effect current*experiment. For example, the first line requests
coefficient 1 for the interaction effect at current level 0 for the initial experiment, and coefficient –1 for the
effect at current level 0 for the repeated experiment. The two terms are then added to derive the difference.
For more details about the nonpositional syntax, see “Positional and Nonpositional Syntax for Coefficients in
Linear Functions” on page 455 in Chapter 19, “Shared Concepts and Topics.”

The EXP option exponentiates log odds ratios to produce odds ratios. The CL option requests that confidence
limits be constructed for both log odds ratios and odds ratios. Output 75.4.2 lists the posterior sample
estimates for differences between experiments at different current levels.

Output 75.4.2 Comparisons between Experiments at Different Current Levels

Bayesian Logistic Model on Cow

The PLM Procedure

Bayesian Logistic Model on Cow

The PLM Procedure

Sample Estimates

Percentiles

Label N Estimate
Standard
Deviation 25th 50th 75th Alpha

Lower
HPD

Upper
HPD Exponentiated

Standard
Deviation of

Exponentiated

Diff at current 0 10000 0.03500 0.7014 -0.4206 0.0347 0.4987 0.05 -1.2995 1.4370 1.3258 1.080632

Diff at current 1 10000 0.3924 0.4865 0.0700 0.3884 0.7096 0.05 -0.5287 1.3599 1.6672 0.873185

Diff at current 2 10000 0.7498 0.3266 0.5283 0.7468 0.9719 0.05 0.1300 1.3827 2.2328 0.753450

Diff at current 3 10000 1.1072 0.3194 0.8901 1.1001 1.3220 0.05 0.4772 1.7182 3.1863 1.068673

Diff at current 4 10000 1.4646 0.4718 1.1387 1.4559 1.7756 0.05 0.5369 2.3694 4.8511 2.562732

Diff at current 5 10000 1.8219 0.6844 1.3508 1.8079 2.2601 0.05 0.4881 3.1505 7.8941 6.668085

Sample Estimates

Percentiles for
Exponentiated

Label 25th 50th 75th
Lower HPD of
Exponentiated

Upper HPD of
Exponentiated

Diff at current 0 0.6566 1.0353 1.6466 0.1263 3.3077

Diff at current 1 1.0725 1.4746 2.0331 0.3809 3.3011

Diff at current 2 1.6961 2.1101 2.6429 1.0081 3.7135

Diff at current 3 2.4353 3.0045 3.7509 1.3990 5.1655

Diff at current 4 3.1227 4.2885 5.9040 1.3083 9.6902

Diff at current 5 3.8606 6.0976 9.5838 0.9081 19.4638
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The sample statistics are constructed from the posterior sample saved in the item store cowgmd. From the
output, the odds of a cow showing shock reaction at level 0 in the initial experiment is 1.2811 (with a 95%
HPD interval (0.07387, 3.1001)) times the odds in the repeated experiment. The HPD interval for the odds
ratio is constructed based on the mean and variance of the sample of the exponentiated log odds ratios, instead
of based on the exponentiated mean and variance of the posterior sample of log odds ratios. The HPD interval
suggests that there is not much evidence that the cows responded differently at current level 0 between the
two experiments. Similar conclusions can be drawn for current level 1, 2, and 5. However, there is strong
evidence that cows responded differently at current level 3 and 4 between the two experiments. The possible
explanation is that, if the current level is so small that cows could hardly feel it or the current level is so
strong that cows could hardly bear it, cows would respond consistently in the two experiment. If the current
level is moderate, cows might get used to it and their response diminished in the repeated experiment.

You can visualize the distribution of the posterior sample of log odds ratios by specifying the PLOTS= option
in the ESTIMATE statement. In the following statements, ODS Graphics is enabled by the ODS GRAPHICS
ON statement, the PLOTS=BOXPLOT option requests a box plot of posterior distribution of log odds ratios.
The suboption ORIENT=HORIZONTAL specifies a horizontal orientation of the boxes.

ods graphics on;
proc plm restore=cowgmd;

estimate
'Diff at current 0' experiment 1 -1 current*experiment [1, 0 1] [-1, 0 2],
'Diff at current 1' experiment 1 -1 current*experiment [1, 1 1] [-1, 1 2],
'Diff at current 2' experiment 1 -1 current*experiment [1, 2 1] [-1, 2 2],
'Diff at current 3' experiment 1 -1 current*experiment [1, 3 1] [-1, 3 2],
'Diff at current 4' experiment 1 -1 current*experiment [1, 4 1] [-1, 4 2],
'Diff at current 5' experiment 1 -1 current*experiment [1, 5 1] [-1, 5 2]
/ plots=boxplot(orient=horizontal);

run;
ods graphics off;

Output 75.4.3 displays the box plot of the posterior sample of log odds ratios. The two boxes for differences
at current level 3 and 4 show that the corresponding log odds ratios are significantly larger than the reference
value x = 0. This indicate that there is obvious evidence that the probability of cow response is larger in
the initial experiment than in the repeated one at the two current levels. The other four boxes show that the
corresponding log odds ratios are not significantly different from 0, which suggests that there is no obvious
reaction difference at current level 0, 1, 2, and 5 between the two experiments.
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Output 75.4.3 Box Plot of Difference between Two Experiments

Example 75.5: BY-Group Processing
This example uses a data set on a study of the analgesic effects of treatments on elderly patients with neuralgia.
The purpose of this example is to show how PROC PLM behaves under different situations when BY-group
processing is present. Two test treatments and a placebo are compared to test whether the patient reported
pain or not. For each patient, the information of age, gender, and the duration of complaint before the
treatment began were recorded. The following DATA step creates the data set named Neuralgia:

Data Neuralgia;
input Treatment $ Sex $ Age Duration Pain $ @@;
datalines;

P F 68 1 No B M 74 16 No P F 67 30 No
P M 66 26 Yes B F 67 28 No B F 77 16 No
A F 71 12 No B F 72 50 No B F 76 9 Yes
A M 71 17 Yes A F 63 27 No A F 69 18 Yes
B F 66 12 No A M 62 42 No P F 64 1 Yes
A F 64 17 No P M 74 4 No A F 72 25 No
P M 70 1 Yes B M 66 19 No B M 59 29 No
A F 64 30 No A M 70 28 No A M 69 1 No
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B F 78 1 No P M 83 1 Yes B F 69 42 No
B M 75 30 Yes P M 77 29 Yes P F 79 20 Yes
A M 70 12 No A F 69 12 No B F 65 14 No
B M 70 1 No B M 67 23 No A M 76 25 Yes
P M 78 12 Yes B M 77 1 Yes B F 69 24 No
P M 66 4 Yes P F 65 29 No P M 60 26 Yes
A M 78 15 Yes B M 75 21 Yes A F 67 11 No
P F 72 27 No P F 70 13 Yes A M 75 6 Yes
B F 65 7 No P F 68 27 Yes P M 68 11 Yes
P M 67 17 Yes B M 70 22 No A M 65 15 No
P F 67 1 Yes A M 67 10 No P F 72 11 Yes
A F 74 1 No B M 80 21 Yes A F 69 3 No
;

The data set contains five variables. Treatment is a classification variable that has three levels: A and B
represent the two test treatments, and P represents the placebo treatment. Sex is a classification variable that
indicates each patient’s gender. Age is a continuous variable that indicates the age in years of each patient
when a treatment began. Duration is a continuous variable that indicates the duration of complaint in months.
The last variable Pain is the response variable with two levels: ‘Yes’ if pain was reported, ‘No’ if no pain was
reported.

Suppose there is some preliminary belief that the dependency of pain on the explanatory variables is different
for male and female patients, leading to separate models between genders. You believe there might be
redundant information for predicting the probability of Pain. Thus, you want to perform model selection to
eliminate unnecessary effects. You can use the following statements:

proc sort data=Neuralgia;
by sex;

run;

proc logistic data=Neuralgia;
class Treatment / param=glm;
model pain = Treatment Age Duration / selection=backward;
by sex;
store painmodel;
title 'Logistic Model on Neuralgia';

run;

PROC SORT is called to sort the data by variable Sex. The LOGISTIC procedure is then called to fit the
probability of no pain. Three variables are specified for the full model: Treatment, Age, and Duration.
Backward elimination is used as the model selection method. The BY statement fits separate models for male
and female patients. Finally, the STORE statement specifies that the fitted results be saved to an item store
named painmodel.

Output 75.5.1 lists parameter estimates from the two models after backward elimination is performed. From
the model for female patients, Treatment is the only factor that affects the probability of no pain, and
Treatment A and B have the same positive effect in predicting the probability of no pain. From the model for
male patients, both Treatment and Age are included in the selected model. Treatment A and B have different
positive effects, while Age has a negative effect in predicting the probability of no pain.
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Output 75.5.1 Parameter Estimates for Male and Female Patients

Logistic Model on Neuralgia

The LOGISTIC Procedure

Logistic Model on Neuralgia

The LOGISTIC Procedure

Sex=F

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept 1 -0.4055 0.6455 0.3946 0.5299

Treatment A 1 2.6027 1.2360 4.4339 0.0352

Treatment B 1 2.6027 1.2360 4.4339 0.0352

Treatment P 0 0 . . .

Sex=M

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept 1 20.6178 9.1638 5.0621 0.0245

Treatment A 1 3.9982 1.7333 5.3208 0.0211

Treatment B 1 4.5556 1.9252 5.5993 0.0180

Treatment P 0 0 . . .

Age 1 -0.3416 0.1408 5.8869 0.0153

Now the fitted models are saved to the item store painmodel. Suppose you want to use it to score several new
observations. The following DATA steps create three data sets for scoring:

data score1;
input Treatment $ Sex $ Age;
datalines;

A F 20
B F 30
P F 40
A M 20
B M 30
P M 40
;

data score2;
set score1(drop=sex);

run;

data score3;
set score2(drop=Age);

run;

The first score data set score1 contains six observations and all the variables that are specified in the full
model. The second score data set score2 is a duplicate of score1 except that Sex is dropped. The third score
data set score3 is a duplicate of score2 except that Age is dropped. You can use the following statements to
score the three data sets:
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proc plm restore=painmodel;
score data=score1 out=score1out predicted;
score data=score2 out=score2out predicted;
score data=score3 out=score3out predicted;

run;

Output 75.5.2 lists the store information that PROC PLM reads from the item store painmodel. The “Model
Effects” entry lists all three variables that are specified in the full model before the BY-group processing.

Output 75.5.2 Item Store Information for painmodel

Logistic Model on Neuralgia

The PLM Procedure

Logistic Model on Neuralgia

The PLM Procedure

Store Information

Item Store WORK.PAINMODEL

Data Set Created From WORK.NEURALGIA

Created By PROC LOGISTIC

Date Created 27MAR14:10:15:34

By Variable Sex

Response Variable Pain

Link Function Logit

Distribution Binary

Class Variables Treatment Pain

Model Effects Intercept Treatment Age Duration

With the three SCORE statements, three data sets are thus produced: score1out, score2out, and score3out.
They contain the linear predictors in addition to all original variables. The data set score1out contains the
values shown in Output 75.5.3.

Output 75.5.3 Values of Data Set score1out

Logistic Model on NeuralgiaLogistic Model on Neuralgia

Obs Treatment Sex Age Predicted

1 A F 20 2.1972

2 B F 30 2.1972

3 P F 40 -0.4055

4 A M 20 17.7850

5 B M 30 14.9269

6 P M 40 6.9557

Linear predictors are computed for all six observations. Because the BY variable Sex is available in score1,
PROC PLM uses separate models to score observations of male and female patients. So an observation with
the same Treatment and Age has different linear predictors for different genders.

The data set score2out contains the values shown in Output 75.5.4.
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Output 75.5.4 Values of Data Set score2out

Logistic Model on NeuralgiaLogistic Model on Neuralgia

Obs Sex Treatment Age Predicted

1 F A 20 2.1972

2 F B 30 2.1972

3 F P 40 -0.4055

4 F A 20 2.1972

5 F B 30 2.1972

6 F P 40 -0.4055

7 M A 20 17.7850

8 M B 30 14.9269

9 M P 40 6.9557

10 M A 20 17.7850

11 M B 30 14.9269

12 M P 40 6.9557

The second score data set score2 does not contain the BY variable Sex. PROC PLM continues to score
the full data set two times. Each time the scoring is based on the fitted model for each corresponding
BY-group. In the output data set, Sex is added at the first column as the BY-group indicator. The first six
entries correspond to the model for female patients, and the next six entries correspond to the model for male
patients. Age is not included in the first model, and Treatment A and B have the same parameter estimates,
so observations 1, 2, 4, and 5 have the same linear predicted value.

The data set score3out contains the values shown in Output 75.5.5.

Output 75.5.5 Values of Data Set score3out

Logistic Model on NeuralgiaLogistic Model on Neuralgia

Obs Sex Treatment Predicted

1 F A 2.19722

2 F B 2.19722

3 F P -0.40547

4 F A 2.19722

5 F B 2.19722

6 F P -0.40547

7 M A .

8 M B .

9 M P .

10 M A .

11 M B .

12 M P .

The third score data set score3 does not contain the BY variable Sex. PROC PLM scores the full data twice
with separate models. Furthermore, it does not contain the variable Age, which is a selected variable for
predicting the probability of no pain for male patients. Thus, PROC PLM computes linear predictor values
for score3 by using the first model for female patients, and sets the linear predictor to missing when using
the second model for male patients to score the data set.
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Example 75.6: Comparing Multiple B-Splines
This example conducts an analysis similar to Example 15 in Chapter 44.33, “Examples: GLIMMIX Pro-
cedure.” It uses simulated data to perform multiple comparisons among predicted values in a model with
group-specific trends that are modeled through regression splines. The estimable functions are formed using
nonpositional syntax with constructed effects. Consider the data in the following DATA step. Each of the 100
observations for the continuous response variable y is associated with one of two groups.

data spline;
input group y @@;
x = _n_;
datalines;

1 -.020 1 0.199 2 -1.36 1 -.026
2 -.397 1 0.065 2 -.861 1 0.251
1 0.253 2 -.460 2 0.195 2 -.108
1 0.379 1 0.971 1 0.712 2 0.811
2 0.574 2 0.755 1 0.316 2 0.961
2 1.088 2 0.607 2 0.959 1 0.653
1 0.629 2 1.237 2 0.734 2 0.299
2 1.002 2 1.201 1 1.520 1 1.105
1 1.329 1 1.580 2 1.098 1 1.613
2 1.052 2 1.108 2 1.257 2 2.005
2 1.726 2 1.179 2 1.338 1 1.707
2 2.105 2 1.828 2 1.368 1 2.252
1 1.984 2 1.867 1 2.771 1 2.052
2 1.522 2 2.200 1 2.562 1 2.517
1 2.769 1 2.534 2 1.969 1 2.460
1 2.873 1 2.678 1 3.135 2 1.705
1 2.893 1 3.023 1 3.050 2 2.273
2 2.549 1 2.836 2 2.375 2 1.841
1 3.727 1 3.806 1 3.269 1 3.533
1 2.948 2 1.954 2 2.326 2 2.017
1 3.744 2 2.431 2 2.040 1 3.995
2 1.996 2 2.028 2 2.321 2 2.479
2 2.337 1 4.516 2 2.326 2 2.144
2 2.474 2 2.221 1 4.867 2 2.453
1 5.253 2 3.024 2 2.403 1 5.498

;

The following statements fit a model with separate trends for the two groups; the trends are modeled as
B-splines.

proc orthoreg data=spline;
class group;
effect spl = spline(x);
model y = group spl*group / noint;
store ortho_spline;
title 'B-splines Comparisons';

run;

Results from this analysis are shown in Output 75.6.1. The “Parameter Estimates” table shows the estimates
for the spline coefficients in the two groups.
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Output 75.6.1 Results for Group-Specific Spline Model

B-splines Comparisons

The ORTHOREG Procedure

Dependent Variable: y

B-splines Comparisons

The ORTHOREG Procedure

Dependent Variable: y

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 13 153.0175561 11.770581238 160.11 <.0001

Error 86 6.3223804119 0.0735160513

Corrected Total 99 159.33993651

Root MSE 0.2711384357

R-Square 0.9603214326

Parameter DF Parameter Estimate
Standard

Error t Value Pr > |t|

(group='1') 1 9.70265463962039 3.1341899987 3.10 0.0026

(group='2') 1 6.30619220563569 2.6299147768 2.40 0.0187

spl*group 1 1 1 -11.1786451718041 3.7008097395 -3.02 0.0033

spl*group 1 2 1 -20.1946092746139 3.9765046236 -5.08 <.0001

spl*group 2 1 1 -9.53273697995301 3.2575832048 -2.93 0.0044

spl*group 2 2 1 -5.85652496534967 2.7906116773 -2.10 0.0388

spl*group 3 1 1 -8.96118371893294 3.0717508806 -2.92 0.0045

spl*group 3 2 1 -5.55671605245205 2.5716715573 -2.16 0.0335

spl*group 4 1 1 -7.26153231478755 3.243690314 -2.24 0.0278

spl*group 4 2 1 -4.36778889738236 2.7246809593 -1.60 0.1126

spl*group 5 1 1 -6.44615256510896 2.9616955361 -2.18 0.0323

spl*group 5 2 1 -4.03801618914902 2.4588839125 -1.64 0.1042

spl*group 6 1 1 -4.63816959094139 3.7094636319 -1.25 0.2146

spl*group 6 2 1 -4.30290104395061 3.0478540171 -1.41 0.1616

spl*group 7 1 0 0 . . .

spl*group 7 2 0 0 . . .

By default, the ORTHOREG procedure constructs B-splines with seven knots. Since B-spline coefficients
satisfy a sum-to-one constraint and since the model contains group-specific intercepts, the last spline
coefficient for each group is redundant and is set to 0.

The following statements make a prediction for the input data set by using the SCORE statement with PROC
PLM and graph the observed and predicted values in the two groups:

proc plm restore=ortho_spline;
score data=spline out=ortho_pred predicted=p;

run;

proc sgplot data=ortho_pred;
series y=p x=x / group=group name="fit";
scatter y=y x=x / group=group;
keylegend "fit" / title="Group";

run;
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The prediction plot in Output 75.6.2 suggests that there is some separation of the group trends for small
values of x and for values that exceed about x = 40.

Output 75.6.2 Observed Data and Predicted Values by Group

In order to determine the range on which the trends separate significantly, the PLM procedure is executed in
the following statements with an ESTIMATE statement that applies group comparisons at a number of values
for the spline variable x:

%macro GroupDiff;
%do x=0 %to 75 %by 5;

"Diff at x=&x" group 1 -1 group*spl [1,1 &x] [-1,2 &x],
%end;
'Diff at x=80' group 1 -1 group*spl [1,1 80] [-1,2 80]

%mend;

proc plm restore=ortho_spline;
show effects;
estimate %GroupDiff / adjust=simulate seed=1 stepdown;

run;
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For example, the following ESTIMATE statement compares the trends between the two groups at x = 25:

estimate 'Diff at x=25' group 1 -1 group*spl [1,1 25] [-1,2 25];

The nonpositional syntax is used for the group*spl effect. For example, the specification Œ�1; 2 25� requests
that the spline be computed at x = 25 for the second level of variable group. The resulting coefficients are
added to the L vector for the estimate after being multiplied with –1.

Because comparisons are made at a large number of values for x, a multiplicity correction is in order to adjust
the p-values to reflect familywise error control. Simulated p-values with step-down adjustment are used here.

Output 75.6.3 displays the “Store Information” for the item store and information about the spline effect (the
result of the SHOW statement).

Output 75.6.3 Spline Details

B-splines Comparisons

The PLM Procedure

B-splines Comparisons

The PLM Procedure

Store Information

Item Store WORK.ORTHO_SPLINE

Data Set Created From WORK.SPLINE

Created By PROC ORTHOREG

Date Created 27MAR14:10:15:46

Response Variable y

Class Variable group

Constructed Effect spl

Model Effects group spl*group

B-splines Comparisons

The PLM Procedure

B-splines Comparisons

The PLM Procedure

Knots for Spline Effect spl

Knot
Number Boundary x

1 * -48.50000

2 * -23.75000

3 * 1.00000

4 25.75000

5 50.50000

6 75.25000

7 * 100.00000

8 * 124.75000

9 * 149.50000
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Output 75.6.3 continued

B-splines Comparisons

The PLM Procedure

B-splines Comparisons

The PLM Procedure

Basis Details for Spline Effect spl

Column Support
Support
Knots

1 -48.50000 25.75000 1-4

2 -48.50000 50.50000 1-5

3 -23.75000 75.25000 2-6

4 1.00000 100.00000 3-7

5 25.75000 124.75000 4-8

6 50.50000 149.50000 5-9

7 75.25000 149.50000 6-9

Output 75.6.4 displays the results from the ESTIMATE statement.

Output 75.6.4 Estimate Results with Multiplicity Correction

Estimates
Adjustment for Multiplicity: Holm-Simulated

Label Estimate
Standard

Error DF t Value Pr > |t| Adj P

Diff at x=0 12.4124 4.2130 86 2.95 0.0041 0.0206

Diff at x=5 1.0376 0.1759 86 5.90 <.0001 <.0001

Diff at x=10 0.3778 0.1540 86 2.45 0.0162 0.0545

Diff at x=15 0.05822 0.1481 86 0.39 0.6952 0.9101

Diff at x=20 -0.02602 0.1243 86 -0.21 0.8346 0.9565

Diff at x=25 0.02014 0.1312 86 0.15 0.8783 0.9565

Diff at x=30 0.1023 0.1378 86 0.74 0.4600 0.7418

Diff at x=35 0.1924 0.1236 86 1.56 0.1231 0.2925

Diff at x=40 0.2883 0.1114 86 2.59 0.0113 0.0450

Diff at x=45 0.3877 0.1195 86 3.24 0.0017 0.0096

Diff at x=50 0.4885 0.1308 86 3.74 0.0003 0.0024

Diff at x=55 0.5903 0.1231 86 4.79 <.0001 <.0001

Diff at x=60 0.7031 0.1125 86 6.25 <.0001 <.0001

Diff at x=65 0.8401 0.1203 86 6.99 <.0001 <.0001

Diff at x=70 1.0147 0.1348 86 7.52 <.0001 <.0001

Diff at x=75 1.2400 0.1326 86 9.35 <.0001 <.0001

Diff at x=80 1.5237 0.1281 86 11.89 <.0001 <.0001

Notice that the “Store Information” in Output 75.6.3 displays the classification variables (from the CLASS
statement in PROC ORTHOREG), the constructed effects (from the EFFECT statement in PROC OR-
THOREG), and the model effects (from the MODEL statement in PROC ORTHOREG). Output 75.6.4 shows
that at the 5% significance level the trends are significantly different for x � 10 and for x � 40. Between
those values you cannot reject the hypothesis of trend congruity.
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To see this effect more clearly, you can filter the results by adding the a filtering statement to the previous
PROC PLM step:

proc plm restore=ortho_spline;
estimate %GroupDiff / adjust=simulate seed=1 stepdown;
filter adjp > 0.05;

run;

This produces Output 75.6.5, which displays the subset of the results in Output 75.6.4 that meets the condition
in the FILTER expression.

Output 75.6.5 Filtered Estimate Results

B-splines Comparisons

The PLM Procedure

B-splines Comparisons

The PLM Procedure

Estimates
Adjustment for Multiplicity: Holm-Simulated

Label Estimate
Standard

Error DF t Value Pr > |t| Adj P

Diff at x=10 0.3778 0.1540 86 2.45 0.0162 0.0545

Diff at x=15 0.05822 0.1481 86 0.39 0.6952 0.9101

Diff at x=20 -0.02602 0.1243 86 -0.21 0.8346 0.9565

Diff at x=25 0.02014 0.1312 86 0.15 0.8783 0.9565

Diff at x=30 0.1023 0.1378 86 0.74 0.4600 0.7418

Diff at x=35 0.1924 0.1236 86 1.56 0.1231 0.2925

Example 75.7: Linear Inference with Arbitrary Estimates
Suppose that you have calculated a vector of parameter estimates of dimension .p � 1/ and its associated
variance-covariance matrix by some statistical method. You might want to use these results to perform linear
inference, or to score a data set and calculate predicted values and their standard errors.

The following DATA steps create two SAS data sets. The first, called parms, contains six estimates that
represent two uncorrelated groups. The data set cov contains the covariance matrix of the estimates. The
lack of correlation between the two sets of three parameters is evident in the block-diagonal structure of the
covariance matrix.

data parms;
length name $6;
input Name$ Value;
datalines;

alpha1 -3.5671
beta1 0.4421
gamma1 -2.6230
alpha2 -3.0111
beta2 0.3977
gamma2 -2.4442
;
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data cov;
input Parm row col1-col6;
datalines;

1 1 0.007462 -0.005222 0.010234 0.000000 0.000000 0.000000
1 2 -0.005222 0.048197 -0.010590 0.000000 0.000000 0.000000
1 3 0.010234 -0.010590 0.215999 0.000000 0.000000 0.000000
1 4 0.000000 0.000000 0.000000 0.031261 -0.009096 0.015785
1 5 0.000000 0.000000 0.000000 -0.009096 0.039487 -0.019996
1 6 0.000000 0.000000 0.000000 0.015785 -0.019996 0.126172
;

Suppose that you are interested in testing whether the parameters are homogeneous across groups—that is,
whether ˛1 D ˛2; ˇ1 D ˇ2; 1 D 2. You are interested in testing the hypothesis jointly and separately with
multiplicity adjustment.

To use the PLM procedure, you first need to create an item store that contains the necessary information as if
the preceding parameter vector and covariance matrix were the result of a statistical modeling procedure.
The following statements use the GLIMMIX procedure to create such an item store, by fitting a saturated
linear model with the data set that contains the parameter estimates serving as the input data set:

proc glimmix data=parms order=data;
class Name;
model Value = Name / noint ddfm=none s;
random _residual_ / type=lin(1) ldata=cov v;
parms (1) / noiter;
store ArtificialModel;
title 'Linear Inference';

run;

The RANDOM statement is used to form the covariance structure for the estimates. The PARMS statement
prevents iterative updates of the covariance parameters. The resulting marginal covariance matrix of the
“data” is thus identical to the covariance matrix in the data set cov. The ORDER=DATA option in the PROC
GLIMMIX statement is used to arrange the levels of the classification variable Name in the order in which
they appear in the data set so that the order of the parameters matches that of the covariance matrix.

The results of this analysis are shown in Output 75.7.1. Note that the parameter estimates are identical to the
values passed in the input data set and their standard errors equal the square root of the diagonal elements of
the cov data set.

Output 75.7.1 “Fitted” Parameter Estimates and Covariance Matrix

Linear Inference

The GLIMMIX Procedure

Linear Inference

The GLIMMIX Procedure

Estimated V Matrix for Subject 1

Row Col1 Col2 Col3 Col4 Col5 Col6

1 0.007462 -0.00522 0.01023

2 -0.00522 0.04820 -0.01059

3 0.01023 -0.01059 0.2160

4 0.03126 -0.00910 0.01579

5 -0.00910 0.03949 -0.02000

6 0.01579 -0.02000 0.1262
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Output 75.7.1 continued

Solutions for Fixed Effects

Effect name Estimate
Standard

Error DF t Value Pr > |t|

name alpha1 -3.5671 0.08638 Infty -41.29 <.0001

name beta1 0.4421 0.2195 Infty 2.01 0.0440

name gamma1 -2.6230 0.4648 Infty -5.64 <.0001

name alpha2 -3.0111 0.1768 Infty -17.03 <.0001

name beta2 0.3977 0.1987 Infty 2.00 0.0454

name gamma2 -2.4442 0.3552 Infty -6.88 <.0001

There are other ways to fit a saturated model with the GLIMMIX procedure. For example, you can use
the TYPE=UN covariance structure in the RANDOM statement with a properly prepared input data set for
the PDATA= option in the PARMS statement. See Example 17 in Chapter 44.33, “Examples: GLIMMIX
Procedure,” for details.

Once the item store exists, you can apply the linear inference capabilities of the PLM procedure. For example,
the ESTIMATE statement in the following statements test the hypothesis of parameter homogeneity across
groups:

proc plm restore=ArtificialModel;
estimate

'alpha1 = alpha2' Name 1 0 0 -1 0 0,
'beta1 = beta2 ' Name 0 1 0 0 -1 0,
'gamma1 = gamma2' Name 0 0 1 0 0 -1 /

adjust=bon stepdown ftest(label='Homogeneity');
run;

Output 75.7.2 Results from the PLM Procedure

Linear Inference

The PLM Procedure

Linear Inference

The PLM Procedure

Estimates
Adjustment for Multiplicity: Holm

Label Estimate
Standard

Error DF t Value Pr > |t| Adj P

alpha1 = alpha2 -0.5560 0.1968 Infty -2.83 0.0047 0.0142

beta1  = beta2 0.04440 0.2961 Infty 0.15 0.8808 1.0000

gamma1 = gamma2 -0.1788 0.5850 Infty -0.31 0.7599 1.0000

F Test for Estimates

Label
Num

DF
Den

DF F Value Pr > F

Homogeneity 3 Infty 2.79 0.0389

The F test in Output 75.7.2 shows that the joint test of homogeneity is rejected. The individual tests with
familywise control of the Type I error show that the overall difference is due to a significant change in the
˛ parameters. The hypothesis of homogeneity across the two groups cannot be rejected for the ˇ and 
parameters.
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Overview: PLS Procedure
The PLS procedure fits models by using any one of a number of linear predictive methods, including partial
least squares (PLS). Ordinary least squares regression, as implemented in SAS/STAT procedures such as
PROC GLM and PROC REG, has the single goal of minimizing sample response prediction error, seeking
linear functions of the predictors that explain as much variation in each response as possible. The techniques
implemented in the PLS procedure have the additional goal of accounting for variation in the predictors,
under the assumption that directions in the predictor space that are well sampled should provide better
prediction for new observations when the predictors are highly correlated. All of the techniques implemented
in the PLS procedure work by extracting successive linear combinations of the predictors, called factors (also
called components, latent vectors, or latent variables), which optimally address one or both of these two
goals—explaining response variation and explaining predictor variation. In particular, the method of partial
least squares balances the two objectives, seeking factors that explain both response and predictor variation.

Note that the name “partial least squares” also applies to a more general statistical method that is not
implemented in this procedure. The partial least squares method was originally developed in the 1960s by
the econometrician Herman Wold (1966) for modeling “paths” of causal relation between any number of
“blocks” of variables. However, the PLS procedure fits only predictive partial least squares models, with one
“block” of predictors and one “block” of responses. If you are interested in fitting more general path models,
you should consider using the CALIS procedure.

Basic Features
The techniques implemented by the PLS procedure are as follows:

• principal components regression, which extracts factors to explain as much predictor sample variation
as possible

• reduced rank regression, which extracts factors to explain as much response variation as possible. This
technique, also known as (maximum) redundancy analysis, differs from multivariate linear regression
only when there are multiple responses.

• partial least squares regression, which balances the two objectives of explaining response variation and
explaining predictor variation. Two different formulations for partial least squares are available: the
original predictive method of Wold (1966) and the SIMPLS method of De Jong (1993).

The number of factors to extract depends on the data. Basing the model on more extracted factors improves
the model fit to the observed data, but extracting too many factors can cause overfitting—that is, tailoring
the model too much to the current data, to the detriment of future predictions. The PLS procedure enables
you to choose the number of extracted factors by cross validation—that is, fitting the model to part of the
data, minimizing the prediction error for the unfitted part, and iterating with different portions of the data in
the roles of fitted and unfitted. Various methods of cross validation are available, including one-at-a-time
validation and splitting the data into blocks. The PLS procedure also offers test set validation, where the
model is fit to the entire primary input data set and the fit is evaluated over a distinct test data set.
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You can use the general linear modeling approach of the GLM procedure to specify a model for your design,
allowing for general polynomial effects as well as classification or ANOVA effects. You can save the model
fit by the PLS procedure in a data set and apply it to new data by using the SCORE procedure.

The PLS procedure uses ODS Graphics to create graphs as part of its output. For general information
about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.” For specific information about the
statistical graphics available with the PLS procedure, see the PLOTS options in the PROC PLS statements
and the section “ODS Graphics” on page 6239.

Getting Started: PLS Procedure

Spectrometric Calibration
The example in this section illustrates basic features of the PLS procedure. The data are reported in Umetrics
(1995); the original source is Lindberg, Persson, and Wold (1983). Suppose that you are researching pollution
in the Baltic Sea, and you would like to use the spectra of samples of seawater to determine the amounts
of three compounds present in samples from the Baltic Sea: lignin sulfonate (ls: pulp industry pollution),
humic acids (ha: natural forest products), and optical whitener from detergent (dt). Spectrometric calibration
is a type of problem in which partial least squares can be very effective. The predictors are the spectra
emission intensities at different frequencies in sample spectrum, and the responses are the amounts of various
chemicals in the sample.

For the purposes of calibrating the model, samples with known compositions are used. The calibration data
consist of 16 samples of known concentrations of ls, ha, and dt, with spectra based on 27 frequencies (or,
equivalently, wavelengths). The following statements create a SAS data set named Sample for these data.

data Sample;
input obsnam $ v1-v27 ls ha dt @@;
datalines;

EM1 2766 2610 3306 3630 3600 3438 3213 3051 2907 2844 2796
2787 2760 2754 2670 2520 2310 2100 1917 1755 1602 1467
1353 1260 1167 1101 1017 3.0110 0.0000 0.00

EM2 1492 1419 1369 1158 958 887 905 929 920 887 800
710 617 535 451 368 296 241 190 157 128 106
89 70 65 56 50 0.0000 0.4005 0.00

EM3 2450 2379 2400 2055 1689 1355 1109 908 750 673 644
640 630 618 571 512 440 368 305 247 196 156
120 98 80 61 50 0.0000 0.0000 90.63

EM4 2751 2883 3492 3570 3282 2937 2634 2370 2187 2070 2007
1974 1950 1890 1824 1680 1527 1350 1206 1080 984 888
810 732 669 630 582 1.4820 0.1580 40.00

EM5 2652 2691 3225 3285 3033 2784 2520 2340 2235 2148 2094
2049 2007 1917 1800 1650 1464 1299 1140 1020 909 810
726 657 594 549 507 1.1160 0.4104 30.45

EM6 3993 4722 6147 6720 6531 5970 5382 4842 4470 4200 4077
4008 3948 3864 3663 3390 3090 2787 2481 2241 2028 1830
1680 1533 1440 1314 1227 3.3970 0.3032 50.82

EM7 4032 4350 5430 5763 5490 4974 4452 3990 3690 3474 3357
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3300 3213 3147 3000 2772 2490 2220 1980 1779 1599 1440
1320 1200 1119 1032 957 2.4280 0.2981 70.59

EM8 4530 5190 6910 7580 7510 6930 6150 5490 4990 4670 4490
4370 4300 4210 4000 3770 3420 3060 2760 2490 2230 2060
1860 1700 1590 1490 1380 4.0240 0.1153 89.39

EM9 4077 4410 5460 5857 5607 5097 4605 4170 3864 3708 3588
3537 3480 3330 3192 2910 2610 2325 2064 1830 1638 1476
1350 1236 1122 1044 963 2.2750 0.5040 81.75

EM10 3450 3432 3969 4020 3678 3237 2814 2487 2205 2061 2001
1965 1947 1890 1776 1635 1452 1278 1128 981 867 753
663 600 552 507 468 0.9588 0.1450 101.10

EM11 4989 5301 6807 7425 7155 6525 5784 5166 4695 4380 4197
4131 4077 3972 3777 3531 3168 2835 2517 2244 2004 1809
1620 1470 1359 1266 1167 3.1900 0.2530 120.00

EM12 5340 5790 7590 8390 8310 7670 6890 6190 5700 5380 5200
5110 5040 4900 4700 4390 3970 3540 3170 2810 2490 2240
2060 1870 1700 1590 1470 4.1320 0.5691 117.70

EM13 3162 3477 4365 4650 4470 4107 3717 3432 3228 3093 3009
2964 2916 2838 2694 2490 2253 2013 1788 1599 1431 1305
1194 1077 990 927 855 2.1600 0.4360 27.59

EM14 4380 4695 6018 6510 6342 5760 5151 4596 4200 3948 3807
3720 3672 3567 3438 3171 2880 2571 2280 2046 1857 1680
1548 1413 1314 1200 1119 3.0940 0.2471 61.71

EM15 4587 4200 5040 5289 4965 4449 3939 3507 3174 2970 2850
2814 2748 2670 2529 2328 2088 1851 1641 1431 1284 1134
1020 918 840 756 714 1.6040 0.2856 108.80

EM16 4017 4725 6090 6570 6354 5895 5346 4911 4611 4422 4314
4287 4224 4110 3915 3600 3240 2913 2598 2325 2088 1917
1734 1587 1452 1356 1257 3.1620 0.7012 60.00

;

Fitting a PLS Model

To isolate a few underlying spectral factors that provide a good predictive model, you can fit a PLS model to
the 16 samples by using the following SAS statements:

proc pls data=sample;
model ls ha dt = v1-v27;

run;

By default, the PLS procedure extracts at most 15 factors. The procedure lists the amount of variation
accounted for by each of these factors, both individual and cumulative; this listing is shown in Figure 76.1.
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Figure 76.1 PLS Variation Summary

The PLS ProcedureThe PLS Procedure

Percent Variation Accounted for by Partial
Least Squares Factors

Model Effects
Dependent
Variables

Number
of

Extracted
Factors Current Total Current Total

1 97.4607 97.4607 41.9155 41.9155

2 2.1830 99.6436 24.2435 66.1590

3 0.1781 99.8217 24.5339 90.6929

4 0.1197 99.9414 3.7898 94.4827

5 0.0415 99.9829 1.0045 95.4873

6 0.0106 99.9935 2.2808 97.7681

7 0.0017 99.9952 1.1693 98.9374

8 0.0010 99.9961 0.5041 99.4415

9 0.0014 99.9975 0.1229 99.5645

10 0.0010 99.9985 0.1103 99.6747

11 0.0003 99.9988 0.1523 99.8270

12 0.0003 99.9991 0.1291 99.9561

13 0.0002 99.9994 0.0312 99.9873

14 0.0004 99.9998 0.0065 99.9938

15 0.0002 100.0000 0.0062 100.0000

Note that all of the variation in both the predictors and the responses is accounted for by only 15 factors; this
is because there are only 16 sample observations. More important, almost all of the variation is accounted for
with even fewer factors—one or two for the predictors and three to eight for the responses.

Selecting the Number of Factors by Cross Validation

A PLS model is not complete until you choose the number of factors. You can choose the number of factors
by using cross validation, in which the data set is divided into two or more groups. You fit the model to all
groups except one, and then you check the capability of the model to predict responses for the group omitted.
Repeating this for each group, you then can measure the overall capability of a given form of the model. The
predicted residual sum of squares (PRESS) statistic is based on the residuals generated by this process.

To select the number of extracted factors by cross validation, you specify the CV= option with an argument
that says which cross validation method to use. For example, a common method is split-sample validation,
in which the different groups are composed of every nth observation beginning with the first, every nth
observation beginning with the second, and so on. You can use the CV=SPLIT option to specify split-sample
validation with n = 7 by default, as in the following SAS statements:

proc pls data=sample cv=split;
model ls ha dt = v1-v27;

run;

The resulting output is shown in Figure 76.2 and Figure 76.3.
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Figure 76.2 Split-Sample Validated PRESS Statistics for Number of Factors

The PLS ProcedureThe PLS Procedure

Split-sample
Validation for the

Number of
Extracted Factors

Number
of

Extracted
Factors

Root
Mean

PRESS

0 1.107747

1 0.957983

2 0.931314

3 0.520222

4 0.530501

5 0.586786

6 0.475047

7 0.477595

8 0.483138

9 0.485739

10 0.48946

11 0.521445

12 0.525653

13 0.531049

14 0.531049

15 0.531049

Minimum root mean PRESS 0.4750

Minimizing number of factors 6

Figure 76.3 PLS Variation Summary for Split-Sample Validated Model

Percent Variation Accounted for by Partial
Least Squares Factors

Model Effects
Dependent
Variables

Number
of

Extracted
Factors Current Total Current Total

1 97.4607 97.4607 41.9155 41.9155

2 2.1830 99.6436 24.2435 66.1590

3 0.1781 99.8217 24.5339 90.6929

4 0.1197 99.9414 3.7898 94.4827

5 0.0415 99.9829 1.0045 95.4873

6 0.0106 99.9935 2.2808 97.7681
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The absolute minimum PRESS is achieved with six extracted factors. Notice, however, that this is not much
smaller than the PRESS for three factors. By using the CVTEST option, you can perform a statistical model
comparison suggested by van der Voet (1994) to test whether this difference is significant, as shown in the
following SAS statements:

proc pls data=sample cv=split cvtest(seed=12345);
model ls ha dt = v1-v27;

run;

The model comparison test is based on a rerandomization of the data. By default, the seed for this randomiza-
tion is based on the system clock, but it is specified here. The resulting output is shown in Figure 76.4 and
Figure 76.5.

Figure 76.4 Testing Split-Sample Validation for Number of Factors

The PLS ProcedureThe PLS Procedure

Split-sample Validation for the Number of
Extracted Factors

Number
of

Extracted
Factors

Root
Mean

PRESS T**2 Prob > T**2

0 1.107747 9.272858 0.0010

1 0.957983 10.62305 <.0001

2 0.931314 8.950878 0.0010

3 0.520222 5.133259 0.1440

4 0.530501 5.168427 0.1340

5 0.586786 6.437266 0.0150

6 0.475047 0 1.0000

7 0.477595 2.809763 0.4750

8 0.483138 7.189526 0.0110

9 0.485739 7.931726 0.0070

10 0.48946 6.612597 0.0150

11 0.521445 6.666235 0.0130

12 0.525653 7.092861 0.0080

13 0.531049 7.538298 0.0030

14 0.531049 7.538298 0.0030

15 0.531049 7.538298 0.0030

Minimum root mean PRESS 0.4750

Minimizing number of factors 6

Smallest number of factors with p > 0.1 3
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Figure 76.5 PLS Variation Summary for Tested Split-Sample Validated Model

Percent Variation Accounted for by Partial
Least Squares Factors

Model Effects
Dependent
Variables

Number
of

Extracted
Factors Current Total Current Total

1 97.4607 97.4607 41.9155 41.9155

2 2.1830 99.6436 24.2435 66.1590

3 0.1781 99.8217 24.5339 90.6929

The p-value of 0.1430 in comparing the cross validated residuals from models with 6 and 3 factors indicates
that the difference between the two models is insignificant; therefore, the model with fewer factors is preferred.
The variation summary shows that over 99% of the predictor variation and over 90% of the response variation
are accounted for by the three factors.

Predicting New Observations

Now that you have chosen a three-factor PLS model for predicting pollutant concentrations based on sample
spectra, suppose that you have two new samples. The following SAS statements create a data set containing
the spectra for the new samples:

data newobs;
input obsnam $ v1-v27 @@;
datalines;

EM17 3933 4518 5637 6006 5721 5187 4641 4149 3789
3579 3447 3381 3327 3234 3078 2832 2571 2274
2040 1818 1629 1470 1350 1245 1134 1050 987

EM25 2904 2997 3255 3150 2922 2778 2700 2646 2571
2487 2370 2250 2127 2052 1713 1419 1200 984
795 648 525 426 351 291 240 204 162

;

You can apply the PLS model to these samples to estimate pollutant concentration. To do so, append the new
samples to the original 16, and specify that the predicted values for all 18 be output to a data set, as shown in
the following statements:

data all;
set sample newobs;

run;

proc pls data=all nfac=3;
model ls ha dt = v1-v27;
output out=pred p=p_ls p_ha p_dt;

run;

proc print data=pred;
where (obsnam in ('EM17','EM25'));
var obsnam p_ls p_ha p_dt;

run;
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The new observations are not used in calculating the PLS model, since they have no response values. Their
predicted concentrations are shown in Figure 76.6.

Figure 76.6 Predicted Concentrations for New Observations

Obs obsnam p_ls p_ha p_dt

17 EM17 2.54261 0.31877 81.4174

18 EM25 -0.24716 1.37892 46.3212

Finally, if ODS Graphics is enabled, PLS also displays by default a plot of the amount of variation accounted
for by each factor, as well as a correlations loading plot that summarizes the first two dimensions of the PLS
model. The following statements, which are the same as the previous split-sample validation analysis but
with ODS Graphics enabled, additionally produce Figure 76.7 and Figure 76.8:

ods graphics on;

proc pls data=sample cv=split cvtest(seed=12345);
model ls ha dt = v1-v27;

run;

Figure 76.7 Split-Sample Cross Validation Plot
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Figure 76.8 Correlation Loading Plot

The cross validation plot in Figure 76.7 gives a visual representation of the selection of the optimum number
of factors discussed previously. The correlation loading plot is a compact summary of many features of the
PLS model. For example, it shows that the first factor is highly positively correlated with all spectral values,
indicating that it is approximately an average of them all; the second factor is positively correlated with the
lowest frequencies and negatively correlated with the highest, indicating that it is approximately a contrast
between the two ends of the spectrum. The observations, represented by their number in the data set on this
plot, are generally spaced well apart, indicating that the data give good information about these first two
factors. For more details on the interpretation of the correlation loading plot, see the section “ODS Graphics”
on page 6239 and Example 76.1.

The default correlation loading plot for just the first two factors depicts most of the model information. In
order to see correlation loadings for all three of the selected factors, you use the NFAC= suboption for the
PLOT=CORRLOAD option, as in the following:

proc pls data=sample nfac=3 plot=corrload(nfac=3);
model ls ha dt = v1-v27;

run;

The resulting plot is shown in Figure 76.9.
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Figure 76.9 Correlation Loading Plot Matrix
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Syntax: PLS Procedure
The following statements are available in the PLS procedure. Items within the angle brackets are optional.

PROC PLS < options > ;
BY variables ;
CLASS variables < / option > ;
EFFECT name=effect-type (variables< / options >) ;
ID variables ;
MODEL dependent-variables = effects < / options > ;
OUTPUT OUT=SAS-data-set < options > ;

To analyze a data set, you must use the PROC PLS and MODEL statements. You can use the other statements
as needed. CLASS and EFFECT statements, if present, must precede the MODEL statement.

PROC PLS Statement
PROC PLS < options > ;

The PROC PLS statement invokes the PLS procedure. Optionally, you can also indicate the analysis data
and method in the PROC PLS statement. Table 76.1 summarizes the options available in the PROC PLS
statement.

Table 76.1 PROC PLS Statement Options

Option Description

CENSCALE Displays the centering and scaling information
CV=ONE Specifies the cross validation method to be used
CVTEST Specifies that van der Voet’s (1994) randomization-based model comparison

test be performed
DATA= Names the SAS data set
DETAILS Displays the details of the fitted model
METHOD=PLS Specifies the general factor extraction method to be used
MISSING= Specifies how observations with missing values are to be handled in com-

puting the fit
NFAC= Specifies the number of factors to extract
NOCENTER Suppresses centering of the responses and predictors before fitting
NOCVSTDIZE Suppresses re-centering and rescaling of the responses and predictors when

cross-validating
NOPRINT Suppresses the normal display of results
NOSCALE Suppresses scaling of the responses and predictors before fitting
PLOTS Controls the plots produced through ODS Graphics
VARSCALE Specifies that continuous model variables be centered and scaled
VARSS Displays the amount of variation accounted for in each response and predic-

tor
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The following options are available.

CENSCALE
lists the centering and scaling information for each response and predictor.

CV=ONE

CV=SPLIT < (n) >

CV=BLOCK < (n) >

CV=RANDOM < (cv-random-opts) >

CV=TESTSET(SAS-data-set)
specifies the cross validation method to be used. By default, no cross validation is performed. The
method CV=ONE requests one-at-a-time cross validation, CV=SPLIT requests that every nth obser-
vation be excluded, CV=BLOCK requests that n blocks of consecutive observations be excluded,
CV=RANDOM requests that observations be excluded at random, and CV=TESTSET(SAS-data-set)
specifies a test set of observations to be used for validation (formally, this is called “test set validation”
rather than “cross validation”). You can, optionally, specify n for CV=SPLIT and CV=BLOCK; the
default is n = 7. You can also specify the following optional cv-random-options in parentheses after
the CV=RANDOM option:

NITER=n
specifies the number of random subsets to exclude. The default value is 10.

NTEST=n
specifies the number of observations in each random subset chosen for exclusion. The default
value is one-tenth of the total number of observations.

SEED=n
specifies an integer used to start the pseudo-random number generator for selecting the random
test set. If you do not specify a seed, or specify a value less than or equal to zero, the seed is by
default generated from reading the time of day from the computer’s clock.

CVTEST < (cvtest-options) >
specifies that van der Voet’s (1994) randomization-based model comparison test be performed to test
models with different numbers of extracted factors against the model that minimizes the predicted
residual sum of squares; see the section “Cross Validation” on page 6235 for more information. You
can also specify the following cv-test-options in parentheses after the CVTEST option:

PVAL=n
specifies the cutoff probability for declaring an insignificant difference. The default value is 0.10.

STAT=test-statistic
specifies the test statistic for the model comparison. You can specify either T2, for Hotelling’s
T 2 statistic, or PRESS, for the predicted residual sum of squares. The default value is T2.

NSAMP=n
specifies the number of randomizations to perform. The default value is 1000.
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SEED=n
specifies the seed value for randomization generation (the clock time is used by default).

DATA=SAS-data-set
names the SAS data set to be used by PROC PLS. The default is the most recently created data set.

DETAILS
lists the details of the fitted model for each successive factor. The details listed are different for different
extraction methods; see the section “Displayed Output” on page 6237 for more information.

METHOD=PLS< (PLS-options ) > | SIMPLS | PCR | RRR
specifies the general factor extraction method to be used. The value PLS requests partial least
squares, SIMPLS requests the SIMPLS method of De Jong (1993), PCR requests principal components
regression, and RRR requests reduced rank regression. The default is METHOD=PLS. You can also
specify the following optional PLS-options in parentheses after METHOD=PLS:

ALGORITHM=NIPALS | SVD | EIG | RLGW
names the specific algorithm used to compute extracted PLS factors. NIPALS requests the usual
iterative NIPALS algorithm, SVD bases the extraction on the singular value decomposition of
X0Y, EIG bases the extraction on the eigenvalue decomposition of Y0XX0Y, and RLGW is an
iterative approach that is efficient when there are many predictors. ALGORITHM=SVD is the
most accurate but least efficient approach; the default is ALGORITHM=NIPALS.

MAXITER=n
specifies the maximum number of iterations for the NIPALS and RLGW algorithms. The default
value is 200.

EPSILON=n
specifies the convergence criterion for the NIPALS and RLGW algorithms. The default value is
10�12.

MISSING=NONE | AVG | EM < ( EM-options ) >
specifies how observations with missing values are to be handled in computing the fit. The default is
MISSING=NONE, for which observations with any missing variables (dependent or independent) are
excluded from the analysis. MISSING=AVG specifies that the fit be computed by filling in missing
values with the average of the nonmissing values for the corresponding variable. If you specify
MISSING=EM, then the procedure first computes the model with MISSING=AVG and then fills in
missing values by their predicted values based on that model and computes the model again. For
both methods of imputation, the imputed values contribute to the centering and scaling values, and
the difference between the imputed values and their final predictions contributes to the percentage
of variation explained. You can also specify the following optional EM-options in parentheses after
MISSING=EM:

MAXITER=n
specifies the maximum number of iterations for the imputation/fit loop. The default value is
1. If you specify a large value of MAXITER=, then the loop will iterate until it converges (as
controlled by the EPSILON= option).
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EPSILON=n
specifies the convergence criterion for the imputation/fit loop. The default value is 10�8. This
option is effective only if you specify a large value for the MAXITER= option.

NFAC=n
specifies the number of factors to extract. The default is minf15; p;N g, where p is the number of
predictors (the number of dependent variables for METHOD=RRR) and N is the number of runs
(observations). This is probably more than you need for most applications. Extracting too many factors
can lead to an overfit model, one that matches the training data too well, sacrificing predictive ability.
Thus, if you use the default NFAC= specification, you should also either use the CV= option to select
the appropriate number of factors for the final model or consider the analysis to be preliminary and
examine the results to determine the appropriate number of factors for a subsequent analysis.

NOCENTER
suppresses centering of the responses and predictors before fitting. This is useful if the analysis
variables are already centered and scaled. See the section “Centering and Scaling” on page 6236 for
more information.

NOCVSTDIZE
suppresses re-centering and rescaling of the responses and predictors before each model is fit in the
cross validation. See the section “Centering and Scaling” on page 6236 for more information.

NOPRINT
suppresses the normal display of results. This is useful when you want only the output statistics
saved in a data set. Note that this option temporarily disables the Output Delivery System (ODS); see
Chapter 20, “Using the Output Delivery System” for more information.

NOSCALE
suppresses scaling of the responses and predictors before fitting. This is useful if the analysis variables
are already centered and scaled. See the section “Centering and Scaling” on page 6236 for more
information.

PLOTS < (global-plot-options) > < = plot-request< (options) > >
PLOTS < (global-plot-options) > < = (plot-request< (options) > < ... plot-request< (options) > >) >

controls the plots produced through ODS Graphics. When you specify only one plot-request , you can
omit the parentheses from around the plot request. For example:

plots=none
plots=cvplot
plots=(diagnostics cvplot)
plots(unpack)=diagnostics
plots(unpack)=(diagnostics corrload(trace=off))

ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;
proc pls data=pentaTrain;

model log_RAI = S1-S5 L1-L5 P1-P5;
run;
ods graphics off;
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For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

If ODS Graphics is enabled but you do not specify the PLOTS= option, then PROC PLS produces by
default a plot of the R-square analysis and a correlation loading plot summarizing the first two factors.

The global-plot-options include the following:

FLIP
interchanges the X-axis and Y-axis dimensions for the score, weight, and loading plots.

ONLY
suppresses the default plots. Only plots specifically requested are displayed.

UNPACKPANEL

UNPACK
suppresses paneling. By default, multiple plots can appear in some output panels. Specify
UNPACKPANEL to get each plot in a separate panel. You can specify PLOTS(UNPACKPANEL)
to unpack only the default plots. You can also specify UNPACKPANEL as a suboption for certain
specific plots, as discussed in the following.

The plot-requests include the following:

ALL
produces all appropriate plots. You can specify other options with ALL—for example, to request
all plots and unpack only the residuals, specify PLOTS=(ALL RESIDUALS(UNPACK)).

CORRLOAD < (options ) >
produces a correlation loading plot (default). You can specify the following options:

TRACE=OFF | ON
controls how points that correspond to the X-loadings are depicted. You can specify the
following values:

OFF specifies that all X-loadings be depicted in the plot by their names plotted at the
corresponding point on the graph.

ON specifies that the positions for all the X-loadings be depicted by a “trace” through
the corresponding points.

By default, TRACE=ON if there are more than 20 predictors, and TRACE=OFF otherwise.

NFAC=n
specifies the number of factors for which to display correlation loading plots. By default,
NFAC=2, which corresponds to a single plot for the first two factors. If you specify a value
of n greater than 2, then the n.n�1/=2 plots are displayed together in a matrix of correlation
loading plots. The maximum number of factors that can be displayed in such a matrix is 8.

UNPACK
requests that the n.n � 1/=2 correlation loading plots be produced separately instead of in a
matrix. This options has no effect unless the NFAC=n option is also specified, with a value
of n greater than 2.
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CVPLOT
produces a cross validation and R-square analysis. This plot requires the CV= option to be
specified, and is displayed by default in this case.

DIAGNOSTICS < (UNPACK) >
produces a summary panel of the fit for each dependent variable. The summary by default consists
of a panel for each dependent variable, with plots depicting the distribution of residuals and
predicted values. You can use the UNPACK suboption to specify that the subplots be produced
separately.

DMOD
produces the DMODX, DMODY, and DMODXY plots.

DMODX
produces a plot of the distance of each observation to the X model.

DMODXY
produces plots of the distance of each observation to the X and Y models.

DMODY
produces a plot of the distance of each observation to the Y model.

FIT
produces both the fit diagnostic panel and the ParmProfiles plot.

NONE
suppresses the display of graphics.

PARMPROFILES
produces profiles of the regression coefficients.

SCORES < (UNPACK | FLIP) >
produces the XScores, YScores, XYScores, and DModXY plots. You can use the UNPACK
suboption to specify that the subplots for scores be produced separately, and the FLIP option to
interchange their default X-axis and Y-axis dimensions.

RESIDUALS < (UNPACK) >
plots the residuals for each dependent variable against each independent variable. Residual
plots are by default composed of multiple plots combined into a single panel. You can use the
UNPACK suboption to specify that the subplots be produced separately.

VIP
produces profiles of variable importance factors.

WEIGHTS < (UNPACK | FLIP) >
produces all X and Y loading and weight plots, as well as the VIP plot. You can use the UNPACK
suboption to specify that the subplots for weights and loadings be produced separately, and the
FLIP option to interchange their default X-axis and Y-axis dimensions.
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XLOADINGPLOT < (UNPACK | FLIP) >
produces a scatter plot matrix of X-loadings against each other. Loading scatter plot matrices are
by default composed of multiple plots combined into a single panel. You can use the UNPACK
suboption to specify that the subplots be produced separately, and the FLIP option to interchange
the default X-axis and Y-axis dimensions.

XLOADINGPROFILES
produces profiles of the X-loadings.

XSCORES < (UNPACK | FLIP) >
produces a scatter plot matrix of X-scores against each other. Score scatter plot matrices are by
default composed of multiple plots combined into a single panel. You can use the UNPACK
suboption to specify that the subplots be produced separately, and the FLIP option to interchange
the default X-axis and Y-axis dimensions.

XWEIGHTPLOT < (UNPACK | FLIP) >
produces a scatter plot matrix of X-weights against each other. Weight scatter plot matrices are
by default composed of multiple plots combined into a single panel. You can use the UNPACK
suboption to specify that the subplots be produced separately, and the FLIP option to interchange
the default X-axis and Y-axis dimensions.

XWEIGHTPROFILES
produces profiles of the X-weights.

XYSCORES < (UNPACK) >
produces a scatter plot matrix of X-scores against Y-scores. Score scatter plot matrices are by
default composed of multiple plots combined into a single panel. You can use the UNPACK
suboption to specify that the subplots be produced separately.

YSCORES < (UNPACK | FLIP) >
produces a scatter plot matrix of Y-scores against each other. Score scatter plot matrices are by
default composed of multiple plots combined into a single panel. You can use the UNPACK
suboption to specify that the subplots be produced separately, and the FLIP option to interchange
the default X-axis and Y-axis dimensions.

YWEIGHTPLOT < (UNPACK | FLIP) >
produces a scatter plot matrix of Y-weights against each other. Weight scatter plot matrices are
by default composed of multiple plots combined into a single panel. You can use the UNPACK
suboption to specify that the subplots be produced separately, and the FLIP option to interchange
the default X-axis and Y-axis dimensions.

VARSCALE
specifies that continuous model variables be centered and scaled prior to centering and scaling the
model effects in which they are involved. The rescaling specified by the VARSCALE option is
sometimes more appropriate if the model involves crossproducts between model variables; however,
the VARSCALE option still might not produce the model you expect. See the section “Centering and
Scaling” on page 6236 for more information.
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VARSS
lists, in addition to the average response and predictor sum of squares accounted for by each successive
factor, the amount of variation accounted for in each response and predictor.

BY Statement
BY variables ;

You can specify a BY statement with PROC PLS to obtain separate analyses of observations in groups that
are defined by the BY variables. When a BY statement appears, the procedure expects the input data set to be
sorted in order of the BY variables. If you specify more than one BY statement, only the last one specified is
used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the PLS procedure. The
NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

CLASS Statement
CLASS variables < / TRUNCATE > ;

The CLASS statement names the classification variables to be used in the model. Typical classification
variables are Treatment, Sex, Race, Group, and Replication. If you use the CLASS statement, it must appear
before the MODEL statement statement.

Classification variables can be either character or numeric. By default, class levels are determined from the
entire set of formatted values of the CLASS variables.

NOTE: Prior to SAS 9, class levels were determined by using no more than the first 16 characters of the
formatted values. To revert to this previous behavior, you can use the TRUNCATE option in the CLASS
statement.

In any case, you can use formats to group values into levels. See the discussion of the FORMAT procedure
in the Base SAS Procedures Guide and the discussions of the FORMAT statement and SAS formats in SAS
Language Reference: Dictionary.
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You can specify the following option in the CLASS statement after a slash (/):

TRUNCATE
specifies that class levels should be determined by using only up to the first 16 characters of the
formatted values of CLASS variables. When formatted values are longer than 16 characters, you can
use this option to revert to the levels as determined in releases prior to SAS 9.

EFFECT Statement
EFFECT name=effect-type (variables< / options >) ;

The EFFECT statement enables you to construct special collections of columns for design matrices. These
collections are referred to as constructed effects to distinguish them from the usual model effects formed from
continuous or classification variables, as discussed in the section “GLM Parameterization of Classification
Variables and Effects” on page 387 in Chapter 19, “Shared Concepts and Topics.”

The following effect-types are available.

COLLECTION is a collection effect that defines one or more variables as a single effect with
multiple degrees of freedom. The variables in a collection are considered as
a unit for estimation and inference.

LAG is a classification effect in which the level that is used for a given period
corresponds to the level in the preceding period.

MULTIMEMBER | MM is a multimember classification effect whose levels are determined by one or
more variables that appear in a CLASS statement.

POLYNOMIAL | POLY is a multivariate polynomial effect in the specified numeric variables.

SPLINE is a regression spline effect whose columns are univariate spline expansions
of one or more variables. A spline expansion replaces the original variable
with an expanded or larger set of new variables.

Table 76.2 summarizes the options available in the EFFECT statement.

Table 76.2 EFFECT Statement Options

Option Description

Collection Effects Options
DETAILS Displays the constituents of the collection effect

Lag Effects Options
DESIGNROLE= Names a variable that controls to which lag design an observation

is assigned

DETAILS Displays the lag design of the lag effect

NLAG= Specifies the number of periods in the lag

PERIOD= Names the variable that defines the period
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Table 76.2 continued

Option Description

WITHIN= Names the variable or variables that define the group within which
each period is defined

Multimember Effects Options
NOEFFECT Specifies that observations with all missing levels for the multi-

member variables should have zero values in the corresponding
design matrix columns

WEIGHT= Specifies the weight variable for the contributions of each of the
classification effects

Polynomial Effects Options
DEGREE= Specifies the degree of the polynomial
MDEGREE= Specifies the maximum degree of any variable in a term of the

polynomial
STANDARDIZE= Specifies centering and scaling suboptions for the variables that

define the polynomial

Spline Effects Options
BASIS= Specifies the type of basis (B-spline basis or truncated power func-

tion basis) for the spline effect
DEGREE= Specifies the degree of the spline effect
KNOTMETHOD= Specifies how to construct the knots for the spline effect

For further details about the syntax of these effect-types and how columns of constructed effects are computed,
see the section “EFFECT Statement” on page 397 in Chapter 19, “Shared Concepts and Topics.”

ID Statement
ID variables ;

The ID statement names variables whose values are used to label observations in plots. If you do not specify
an ID statement, then each observations is labeled in plots by its corresponding observation number.

MODEL Statement
MODEL response-variables = predictor-effects < / options > ;

The MODEL statement names the responses and the predictors, which determine the Y and X matrices of
the model, respectively. Usually you simply list the names of the predictor variables as the model effects, but
you can also use the effects notation of PROC GLM to specify polynomial effects and interactions; see the
section “Specification of Effects” on page 3453 in Chapter 45, “The GLM Procedure” for further details.
The MODEL statement is required. You can specify only one MODEL statement (in contrast to the REG
procedure, for example, which allows several MODEL statements in the same PROC REG run).
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You can specify the following options in the MODEL statement after a slash (/).

INTERCEPT
By default, the responses and predictors are centered; thus, no intercept is required in the model. You
can specify the INTERCEPT option to override the default.

SOLUTION
lists the coefficients of the final predictive model for the responses. The coefficients for predicting the
centered and scaled responses based on the centered and scaled predictors are displayed, as well as the
coefficients for predicting the raw responses based on the raw predictors.

OUTPUT Statement
OUTPUT OUT=SAS-data-set keyword=names < . . . keyword=names > ;

You use the OUTPUT statement to specify a data set to receive quantities that can be computed for every
input observation, such as extracted factors and predicted values. The following keywords are available:

PREDICTED predicted values for responses

YRESIDUAL residuals for responses

XRESIDUAL residuals for predictors

XSCORE extracted factors (X-scores, latent vectors, latent variables, T)

YSCORE extracted responses (Y-scores, U)

STDY standardized (centered and scaled) responses

STDX standardized (centered and scaled) predictors

H approximate leverage

PRESS approximate predicted residuals

TSQUARE scaled sum of squares of score values

STDXSSE sum of squares of residuals for standardized predictors

STDYSSE sum of squares of residuals for standardized responses

Suppose that there are Nx predictors and Ny responses and that the model has Nf selected factors.

• The keywords XRESIDUAL and STDX define an output variable for each predictor, so Nx names are
required after each one.

• The keywords PREDICTED, YRESIDUAL, STDY, and PRESS define an output variable for each
response, so Ny names are required after each of these keywords.

• The keywords XSCORE and YSCORE specify an output variable for each selected model factor. For
these keywords, you provide only one base name, and the variables corresponding to each successive
factor are named by appending the factor number to the base name. For example, if Nf D 3, then a
specification of XSCORE=T would produce the variables T1, T2, and T3.

• Finally, the keywords H, TSQUARE, STDXSSE, and STDYSSE each specify a single output variable,
so only one name is required after each of these keywords.
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Details: PLS Procedure

Regression Methods
All of the predictive methods implemented in PROC PLS work essentially by finding linear combinations of
the predictors (factors) to use to predict the responses linearly. The methods differ only in how the factors are
derived, as explained in the following sections.

Partial Least Squares

Partial least squares (PLS) works by extracting one factor at a time. Let X D X0 be the centered and scaled
matrix of predictors and let Y D Y0 be the centered and scaled matrix of response values. The PLS method
starts with a linear combination t D X0w of the predictors, where t is called a score vector and w is its
associated weight vector. The PLS method predicts both X0 and Y0 by regression on t:

OX0 D tp0; where p0 D .t0t/�1t0X0
OY0 D tc0; where c0 D .t0t/�1t0Y0

The vectors p and c are called the X- and Y-loadings, respectively.

The specific linear combination t D X0w is the one that has maximum covariance t0u with some response
linear combination u D Y0q. Another characterization is that the X- and Y-weights w and q are proportional
to the first left and right singular vectors of the covariance matrix X00Y0 or, equivalently, the first eigenvectors
of X00Y0Y

0
0X0 and Y00X0X

0
0Y0, respectively.

This accounts for how the first PLS factor is extracted. The second factor is extracted in the same way by
replacing X0 and Y0 with the X- and Y-residuals from the first factor:

X1 D X0 � OX0
Y1 D Y0 � OY0

These residuals are also called the deflated X and Y blocks. The process of extracting a score vector and
deflating the data matrices is repeated for as many extracted factors as are wanted.

SIMPLS

Note that each extracted PLS factor is defined in terms of different X-variables Xi . This leads to difficulties
in comparing different scores, weights, and so forth. The SIMPLS method of De Jong (1993) overcomes
these difficulties by computing each score ti D Xri in terms of the original (centered and scaled) predictors
X. The SIMPLS X-weight vectors ri are similar to the eigenvectors of SS0 D X0YY0X, but they satisfy a
different orthogonality condition. The r1 vector is just the first eigenvector e1 (so that the first SIMPLS score
is the same as the first PLS score), but whereas the second eigenvector maximizes

e01SS0e2 subject to e01e2 D 0

the second SIMPLS weight r2 maximizes

r01SS
0r2 subject to r01X0Xr2 D t01t2 D 0
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The SIMPLS scores are identical to the PLS scores for one response but slightly different for more than one
response; see De Jong (1993) for details. The X- and Y-loadings are defined as in PLS, but since the scores
are all defined in terms of X, it is easy to compute the overall model coefficients B:

OY D

X
i

tic0i

D

X
i

Xric0i

D XB; where B D RC0

Principal Components Regression

Like the SIMPLS method, principal components regression (PCR) defines all the scores in terms of the
original (centered and scaled) predictors X. However, unlike both the PLS and SIMPLS methods, the PCR
method chooses the X-weights/X-scores without regard to the response data. The X-scores are chosen
to explain as much variation in X as possible; equivalently, the X-weights for the PCR method are the
eigenvectors of the predictor covariance matrix X0X. Again, the X- and Y-loadings are defined as in PLS;
but, as in SIMPLS, it is easy to compute overall model coefficients for the original (centered and scaled)
responses Y in terms of the original predictors X.

Reduced Rank Regression

As discussed in the preceding sections, partial least squares depends on selecting factors t D Xw of the
predictors and u D Yq of the responses that have maximum covariance, whereas principal components
regression effectively ignores u and selects t to have maximum variance, subject to orthogonality constraints.
In contrast, reduced rank regression selects u to account for as much variation in the predicted responses as
possible, effectively ignoring the predictors for the purposes of factor extraction. In reduced rank regression,
the Y-weights qi are the eigenvectors of the covariance matrix OY0LS OYLS of the responses predicted by ordinary
least squares regression; the X-scores are the projections of the Y-scores Yqi onto the X space.

Relationships between Methods

When you develop a predictive model, it is important to consider not only the explanatory power of the model
for current responses, but also how well sampled the predictive functions are, since this affects how well
the model can extrapolate to future observations. All of the techniques implemented in the PLS procedure
work by extracting successive factors, or linear combinations of the predictors, that optimally address one
or both of these two goals—explaining response variation and explaining predictor variation. In particular,
principal components regression selects factors that explain as much predictor variation as possible, reduced
rank regression selects factors that explain as much response variation as possible, and partial least squares
balances the two objectives, seeking for factors that explain both response and predictor variation.

To see the relationships between these methods, consider how each one extracts a single factor from the
following artificial data set consisting of two predictors and one response:

data data;
input x1 x2 y;
datalines;
3.37651 2.30716 0.75615
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0.74193 -0.88845 1.15285
4.18747 2.17373 1.42392
0.96097 0.57301 0.27433

-1.11161 -0.75225 -0.25410
-1.38029 -1.31343 -0.04728
1.28153 -0.13751 1.00341

-1.39242 -2.03615 0.45518
0.63741 0.06183 0.40699

-2.52533 -1.23726 -0.91080
2.44277 3.61077 -0.82590

;

proc pls data=data nfac=1 method=rrr;
model y = x1 x2;

run;

proc pls data=data nfac=1 method=pcr;
model y = x1 x2;

run;

proc pls data=data nfac=1 method=pls;
model y = x1 x2;

run;

The amount of model and response variation explained by the first factor for each method is shown in
Figure 76.10 through Figure 76.12.

Figure 76.10 Variation Explained by First Reduced Rank Regression Factor

The PLS ProcedureThe PLS Procedure

Percent Variation Accounted for by Reduced
Rank Regression Factors

Model Effects
Dependent
Variables

Number
of

Extracted
Factors Current Total Current Total

1 15.0661 15.0661 100.0000 100.0000

Figure 76.11 Variation Explained by First Principal Components Regression Factor

The PLS ProcedureThe PLS Procedure

Percent Variation Accounted for by
Principal Components

Model Effects
Dependent
Variables

Number
of

Extracted
Factors Current Total Current Total

1 92.9996 92.9996 9.3787 9.3787
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Figure 76.12 Variation Explained by First Partial Least Squares Regression Factor

The PLS ProcedureThe PLS Procedure

Percent Variation Accounted for by Partial
Least Squares Factors

Model Effects
Dependent
Variables

Number
of

Extracted
Factors Current Total Current Total

1 88.5357 88.5357 26.5304 26.5304

Notice that, while the first reduced rank regression factor explains all of the response variation, it accounts
for only about 15% of the predictor variation. In contrast, the first principal components regression factor
accounts for most of the predictor variation (93%) but only 9% of the response variation. The first partial
least squares factor accounts for only slightly less predictor variation than principal components but about
three times as much response variation.

Figure 76.13 illustrates how partial least squares balances the goals of explaining response and predictor
variation in this case.

Figure 76.13 Depiction of First Factors for Three Different Regression Methods
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The ellipse shows the general shape of the 11 observations in the predictor space, with the contours of
increasing y overlaid. Also shown are the directions of the first factor for each of the three methods. Notice
that, while the predictors vary most in the x1 = x2 direction, the response changes most in the orthogonal x1
= -x2 direction. This explains why the first principal component accounts for little variation in the response
and why the first reduced rank regression factor accounts for little variation in the predictors. The direction
of the first partial least squares factor represents a compromise between the other two directions.

Cross Validation
None of the regression methods implemented in the PLS procedure fit the observed data any better than
ordinary least squares (OLS) regression; in fact, all of the methods approach OLS as more factors are
extracted. The crucial point is that, when there are many predictors, OLS can overfit the observed data;
biased regression methods with fewer extracted factors can provide better predictability of future observations.
However, as the preceding observations imply, the quality of the observed data fit cannot be used to choose
the number of factors to extract; the number of extracted factors must be chosen on the basis of how well the
model fits observations not involved in the modeling procedure itself.

One method of choosing the number of extracted factors is to fit the model to only part of the available data
(the training set) and to measure how well models with different numbers of extracted factors fit the other
part of the data (the test set). This is called test set validation. However, it is rare that you have enough
data to make both parts large enough for pure test set validation to be useful. Alternatively, you can make
several different divisions of the observed data into training set and test set. This is called cross validation,
and there are several different types. In one-at-a-time cross validation, the first observation is held out as a
single-element test set, with all other observations as the training set; next, the second observation is held out,
then the third, and so on. Another method is to hold out successive blocks of observations as test sets—for
example, observations 1 through 7, then observations 8 through 14, and so on; this is known as blocked
validation. A similar method is split-sample cross validation, in which successive groups of widely separated
observations are held out as the test set—for example, observations {1, 11, 21, . . . }, then observations {2,
12, 22, . . . }, and so on. Finally, test sets can be selected from the observed data randomly; this is known as
random sample cross validation.

Which validation you should use depends on your data. Test set validation is preferred when you have
enough data to make a division into a sizable training set and test set that represent the predictive population
well. You can specify that the number of extracted factors be selected by test set validation by using the
CV=TESTSET(data set) option, where data set is the name of the data set containing the test set. If you do
not have enough data for test set validation, you can use one of the cross validation techniques. The most
common technique is one-at-a-time validation (which you can specify with the CV=ONE option or just the
CV option), unless the observed data are serially correlated, in which case either blocked or split-sample
validation might be more appropriate (CV=BLOCK or CV=SPLIT); you can specify the number of test sets
in blocked or split-sample validation with a number in parentheses after the CV= option. Note that CV=ONE
is the most computationally intensive of the cross validation methods, since it requires a recomputation of the
PLS model for every input observation. Also, note that using random subset selection with CV=RANDOM
might lead two different researchers to produce different PLS models on the same data (unless the same seed
is used).

Whichever validation method you use, the number of factors chosen is usually the one that minimizes the
predicted residual sum of squares (PRESS); this is the default choice if you specify any of the CV methods
with PROC PLS. However, often models with fewer factors have PRESS statistics that are only marginally
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larger than the absolute minimum. To address this, van der Voet (1994) has proposed a statistical test for
comparing the predicted residuals from different models; when you apply van der Voet’s test, the number of
factors chosen is the fewest with residuals that are insignificantly larger than the residuals of the model with
minimum PRESS.

To see how van der Voet’s test works, let Ri;jk be the jth predicted residual for response k for the model
with i extracted factors; the PRESS statistic is

P
jk R

2
i;jk

. Also, let imin be the number of factors for which
PRESS is minimized. The critical value for van der Voet’s test is based on the differences between squared
predicted residuals

Di;jk D R2i;jk �R
2
imin;jk

One alternative for the critical value is Ci D
P
jkDi;jk , which is just the difference between the PRESS

statistics for i and imin factors; alternatively, van der Voet suggests Hotelling’s T 2 statistic Ci D d0i;�S
�1
i di;�,

where di;� is the sum of the vectors di;j D fDi;j1; : : : ;Di;jNy g
0 and Si is the sum of squares and crossprod-

ucts matrix

Si D
X
j

di;jd0i;j

Virtually, the significance level for van der Voet’s test is obtained by comparing Ci with the distribution of
values that result from randomly exchanging R2

i;jk
and R2

imin;jk
. In practice, a Monte Carlo sample of such

values is simulated and the significance level is approximated as the proportion of simulated critical values
that are greater than Ci . If you apply van der Voet’s test by specifying the CVTEST option, then, by default,
the number of extracted factors chosen is the least number with an approximate significance level that is
greater than 0.10.

Centering and Scaling
By default, the predictors and the responses are centered and scaled to have mean 0 and standard deviation
1. Centering the predictors and the responses ensures that the criterion for choosing successive factors is
based on how much variation they explain, in either the predictors or the responses or both. (See the section
“Regression Methods” on page 6231 for more details on how different methods explain variation.) Without
centering, both the mean variable value and the variation around that mean are involved in selecting factors.
Scaling serves to place all predictors and responses on an equal footing relative to their variation in the data.
For example, if Time and Temp are two of the predictors, then scaling says that a change of std.Time/ in
Time is roughly equivalent to a change of std.Temp/ in Temp.

Usually, both the predictors and responses should be centered and scaled. However, if their values already
represent variation around a nominal or target value, then you can use the NOCENTER option in the PROC
PLS statement to suppress centering. Likewise, if the predictors or responses are already all on comparable
scales, then you can use the NOSCALE option to suppress scaling.

Note that, if the predictors involve crossproduct terms, then, by default, the variables are not standardized
before standardizing the crossproduct. That is, if the ith values of two predictors are denoted x1i and x2i , then
the default standardized ith value of the crossproduct is

x1i x
2
i �meanj .x1jx

2
j /

stdj .x1jx
2
j /
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If you want the crossproduct to be based instead on standardized variables

x1i �m
1

s1
�
x2i �m

2

s2

where mk D meanj .xkj / and sk D stdj .xkj / for k D 1; 2, then you should use the VARSCALE option
in the PROC PLS statement. Standardizing the variables separately is usually a good idea, but unless the
model also contains all crossproducts nested within each term, the resulting model might not be equivalent to
a simple linear model in the same terms. To see this, note that a model involving the crossproduct of two
standardized variables

x1i �m
1

s1
�
x2i �m

2

s2
D x1i x

2
i

1

s1s2
� x1i

m2

s1s2
� x2i

m1

s1s2
C
m1m2

s1s2

involves both the crossproduct term and the linear terms for the unstandardized variables.

When cross validation is performed for the number of effects, there is some disagreement among practitioners
as to whether each cross validation training set should be retransformed. By default, PROC PLS does so, but
you can suppress this behavior by specifying the NOCVSTDIZE option in the PROC PLS statement.

Missing Values
By default, PROC PLS handles missing values very simply. Observations with any missing independent
variables (including all classification variables) are excluded from the analysis, and no predictions are
computed for such observations. Observations with no missing independent variables but any missing
dependent variables are also excluded from the analysis, but predictions are computed.

However, the MISSING= option in the PROC PLS statement provides more sophisticated ways of modeling
in the presence of missing values. If you specify MISSING=AVG or MISSING=EM, then all observations in
the input data set contribute to both the analysis and the OUTPUT OUT= data set. With MISSING=AVG, the
fit is computed by filling in missing values with the average of the nonmissing values for the corresponding
variable. With MISSING=EM, the procedure first computes the model with MISSING=AVG, then fills in
missing values with their predicted values based on that model and computes the model again. Alternatively,
you can specify MISSING=EM(MAXITER=n) with a large value of n in order to perform this imputation/fit
loop until convergence.

Displayed Output
By default, PROC PLS displays just the amount of predictor and response variation accounted for by each
factor.

If you perform a cross validation for the number of factors by specifying the CV option in the PROC PLS
statement, then the procedure displays a summary of the cross validation for each number of factors, along
with information about the optimal number of factors.
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If you specify the DETAILS option in the PROC PLS statement, then details of the fitted model are displayed
for each successive factor. These details for each number of factors include the following:

• the predictor loadings

• the predictor weights

• the response weights

• the coded regression coefficients (for METHOD=SIMPLS, PCR, or RRR)

If you specify the CENSCALE option in the PROC PLS statement, then centering and scaling information
for each response and predictor is displayed.

If you specify the VARSS option in the PROC PLS statement, the procedure displays, in addition to the
average response and predictor sum of squares accounted for by each successive factor, the amount of
variation accounted for in each response and predictor.

If you specify the SOLUTION option in the MODEL statement, then PROC PLS displays the coefficients of
the final predictive model for the responses. The coefficients for predicting the centered and scaled responses
based on the centered and scaled predictors are displayed, as well as the coefficients for predicting the raw
responses based on the raw predictors.

ODS Table Names
PROC PLS assigns a name to each table it creates. You can use these names to reference the table when
using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed
in Table 76.3. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

Table 76.3 ODS Tables Produced by PROC PLS
ODS Table Name Description Statement Option
CVResults Results of cross validation PROC CV
CenScaleParms Parameter estimates for centered and

scaled data
MODEL SOLUTION

CodedCoef Coded coefficients PROC DETAILS
MissingIterations Iterations for missing value imputation PROC MISSING=EM
ModelInfo Model information PROC default
NObs Number of observations PROC default
ParameterEstimates Parameter estimates for raw data MODEL SOLUTION
PercentVariation Variation accounted for by each factor PROC default
ResidualSummary Residual summary from cross validation PROC CV
XEffectCenScale Centering and scaling information for pre-

dictor effects
PROC CENSCALE

XLoadings Loadings for independents PROC DETAILS
XVariableCenScale Centering and scaling information for pre-

dictor variables
PROC CENSCALE

and VARSCALE
XWeights Weights for independents PROC DETAILS
YVariableCenScale Centering and scaling information for re-

sponses
PROC CENSCALE

YWeights Weights for dependents PROC DETAILS
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ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

When ODS Graphics is enabled, by default the PLS procedure produces a plot of the variation accounted for
by each extracted factor, as well as a correlation loading plot for the first two extracted factors (if the final
model has at least two factors). The plot of the variation accounted for can take several forms:

• If the PLS analysis does not include cross validation, then the plot shows the total R square for both
model effects and the dependent variables against the number of factors.

• If you specify the CV= option to select the number of factors in the final model by cross validation,
then the plot shows the R-square analysis discussed previously as well as the root mean PRESS from
the cross validation analysis, with the selected number of factors identified by a vertical line.

The correlation loading plot for the first two factors summarizes many aspects of the two most significant
dimensions of the model. It consists of overlaid scatter plots of the scores of the first two factors, the loadings
of the model effects, and the loadings of the dependent variables. The loadings are scaled so that the amount
of variation in the variables that is explained by the model is proportional to the distance from the origin;
circles indicating various levels of explained variation are also overlaid on the correlation loading plot. Also,
the correlation between the model approximations for any two variables is proportional to the length of the
projection of the point corresponding to one variable on a line through the origin passing through the point
corresponding to the other variable; the sign of the correlation corresponds to which side of the origin the
projected point falls on.

The R square and the first two correlation loadings are plotted by default when ODS Graphics is enabled, but
you can produce many other plots for the PROC PLS analysis.

ODS Graph Names

PROC PLS assigns a name to each graph it creates using ODS. You can use these names to reference the
graphs when using ODS. The names are listed in Table 76.4.

Table 76.4 Graphs Produced by PROC PLS
ODS Graph Name Plot Description Option
CorrLoadPlot Correlation loading plot (de-

fault)
PLOT=CORRLOAD(option)

CVPlot Cross validation and R-
square analysis (default, as
appropriate)

CV=
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Table 76.4 continued
ODS Graph Name Plot Description Option
DModXPlot Distance of each observation

to the X model
PLOT=DMODX

DModXYPlot Distance of each observation
to the X and Y models

PLOT=DMODXY

DModYPlot Distance of each observation
to the Y model

PLOT=DMODY

DiagnosticsPanel Panel of diagnostic plots for
the fit

PLOT=DIAGNOSTICS

AbsResidualByPredicted Absolute residual by pre-
dicted values

PLOT=DIAGNOSTICS(UNPACK)

ObservedByPredicted Observed by predicted PLOT=DIAGNOSTICS(UNPACK)
QQPlot Residual Q-Q plot PLOT=DIAGNOSTICS(UNPACK)
ResidualByPredicted Residual by predicted values PLOT=DIAGNOSTICS(UNPACK)
ResidualHistogram Residual histogram PLOT=DIAGNOSTICS(UNPACK)
RFPlot RF plot PLOT=DIAGNOSTICS(UNPACK)

ParmProfiles Profiles of regression coeffi-
cients

PLOT=PARMPROFILES

R2Plot R-square analysis (default,
as appropriate)

ResidualPlots Residuals for each depen-
dent variable

PLOT=RESIDUALS

VariableImportancePlot Profile of variable impor-
tance factors

PLOT=VIP

XLoadingPlot Scatter plot matrix of X-
loadings against each other

PLOT=XLOADINGPLOT

XLoadingProfiles Profiles of the X-loadings PLOT=XLOADINGPROFILES
XScorePlot Scatter plot matrix of X-

scores against each other
PLOT=XSCORES

XWeightPlot Scatter plot matrix of X-
weights against each other

PLOT=XWEIGHTPLOT

XWeightProfiles Profiles of the X-weights PLOT=XWEIGHTPROFILES
XYScorePlot Scatter plot matrix of X-

scores against Y-scores
PLOT=XYSCORES

YScorePlot Scatter plot matrix of Y-
scores against each other

PLOT=YSCORES

YWeightPlot Scatter plot matrix of Y-
weights against each other

PLOT=YWEIGHTPLOT
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Examples: PLS Procedure

Example 76.1: Examining Model Details
This example, from Umetrics (1995), demonstrates different ways to examine a PLS model. The data come
from the field of drug discovery. New drugs are developed from chemicals that are biologically active. Testing
a compound for biological activity is an expensive procedure, so it is useful to be able to predict biological
activity from cheaper chemical measurements. In fact, computational chemistry makes it possible to calculate
certain chemical measurements without even making the compound. These measurements include size,
lipophilicity, and polarity at various sites on the molecule. The following statements create a data set named
pentaTrain, which contains these data.

data pentaTrain;
input obsnam $ S1 L1 P1 S2 L2 P2

S3 L3 P3 S4 L4 P4
S5 L5 P5 log_RAI @@;

n = _n_;
datalines;

VESSK -2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701
1.9607 -1.6324 0.5746 1.9607 -1.6324 0.5746
2.8369 1.4092 -3.1398 0.00

VESAK -2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701
1.9607 -1.6324 0.5746 0.0744 -1.7333 0.0902
2.8369 1.4092 -3.1398 0.28

VEASK -2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701
0.0744 -1.7333 0.0902 1.9607 -1.6324 0.5746
2.8369 1.4092 -3.1398 0.20

VEAAK -2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701
0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902
2.8369 1.4092 -3.1398 0.51

VKAAK -2.6931 -2.5271 -1.2871 2.8369 1.4092 -3.1398
0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902
2.8369 1.4092 -3.1398 0.11

VEWAK -2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701
-4.7548 3.6521 0.8524 0.0744 -1.7333 0.0902
2.8369 1.4092 -3.1398 2.73

VEAAP -2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701
0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902

-1.2201 0.8829 2.2253 0.18
VEHAK -2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701

2.4064 1.7438 1.1057 0.0744 -1.7333 0.0902
2.8369 1.4092 -3.1398 1.53

VAAAK -2.6931 -2.5271 -1.2871 0.0744 -1.7333 0.0902
0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902
2.8369 1.4092 -3.1398 -0.10

GEAAK 2.2261 -5.3648 0.3049 3.0777 0.3891 -0.0701
0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902
2.8369 1.4092 -3.1398 -0.52

LEAAK -4.1921 -1.0285 -0.9801 3.0777 0.3891 -0.0701
0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902
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2.8369 1.4092 -3.1398 0.40
FEAAK -4.9217 1.2977 0.4473 3.0777 0.3891 -0.0701

0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902
2.8369 1.4092 -3.1398 0.30

VEGGK -2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701
2.2261 -5.3648 0.3049 2.2261 -5.3648 0.3049
2.8369 1.4092 -3.1398 -1.00

VEFAK -2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701
-4.9217 1.2977 0.4473 0.0744 -1.7333 0.0902
2.8369 1.4092 -3.1398 1.57

VELAK -2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701
-4.1921 -1.0285 -0.9801 0.0744 -1.7333 0.0902
2.8369 1.4092 -3.1398 0.59

;

You would like to study the relationship between these measurements and the activity of the compound,
represented by the logarithm of the relative Bradykinin activating activity (log_RAI). Notice that these
data consist of many predictors relative to the number of observations. Partial least squares is especially
appropriate in this situation as a useful tool for finding a few underlying predictive factors that account
for most of the variation in the response. Typically, the model is fit for part of the data (the “training” or
“work” set), and the quality of the fit is judged by how well it predicts the other part of the data (the “test” or
“prediction” set). For this example, the first 15 observations serve as the training set and the rest constitute the
test set (see Ufkes et al. 1978, 1982).

When you fit a PLS model, you hope to find a few PLS factors that explain most of the variation in both
predictors and responses. Factors that explain response variation provide good predictive models for new
responses, and factors that explain predictor variation are well represented by the observed values of the
predictors. The following statements fit a PLS model with two factors and save predicted values, residuals,
and other information for each data point in a data set named outpls.

proc pls data=pentaTrain;
model log_RAI = S1-S5 L1-L5 P1-P5;

run;

The PLS procedure displays a table, shown in Output 76.1.1, showing how much predictor and response
variation is explained by each PLS factor.
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Output 76.1.1 Amount of Training Set Variation Explained

The PLS ProcedureThe PLS Procedure

Percent Variation Accounted for by Partial
Least Squares Factors

Model Effects
Dependent
Variables

Number
of

Extracted
Factors Current Total Current Total

1 16.9014 16.9014 89.6399 89.6399

2 12.7721 29.6735 7.8368 97.4767

3 14.6554 44.3289 0.4636 97.9403

4 11.8421 56.1710 0.2485 98.1889

5 10.5894 66.7605 0.1494 98.3383

6 5.1876 71.9481 0.2617 98.6001

7 6.1873 78.1354 0.2428 98.8428

8 7.2252 85.3606 0.1926 99.0354

9 6.7285 92.0891 0.0725 99.1080

10 7.9076 99.9967 0.0000 99.1080

11 0.0033 100.0000 0.0099 99.1179

12 0.0000 100.0000 0.0000 99.1179

13 0.0000 100.0000 0.0000 99.1179

14 0.0000 100.0000 0.0000 99.1179

15 0.0000 100.0000 0.0000 99.1179

From Output 76.1.1, note that 97% of the response variation is already explained by just two factors, but only
29% of the predictor variation is explained.

The graphics in PROC PLS, available when ODS Graphics is enabled, make it easier to see features of the
PLS model.

If ODS Graphics is enabled, then in addition to the tables discussed previously, PROC PLS displays a
graphical depiction of the R-square analysis as well as a correlation loading plot summarizing the model
based on the first two PLS factors. The following statements perform the previous analysis with ODS
Graphics enabled, producing Output 76.1.2 and Output 76.1.3.

ods graphics on;

proc pls data=pentaTrain;
model log_RAI = S1-S5 L1-L5 P1-P5;

run;
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Output 76.1.2 Plot of Proportion of Variation Accounted For
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Output 76.1.3 Correlation Loading Plot

The plot in Output 76.1.2 of the proportion of variation explained (or R square) makes it clear that there is a
plateau in the response variation after two factors are included in the model. The correlation loading plot in
Output 76.1.3 summarizes many features of this two-factor model, including the following:

• The X-scores are plotted as numbers for each observation. You should look for patterns or clearly
grouped observations. If you see a curved pattern, for example, you might want to add a quadratic
term. Two or more groupings of observations indicate that it might be better to analyze the groups
separately, perhaps by including classification effects in the model. This plot appears to show most of
the observations close together, with a few being more spread out with larger positive X-scores for
factor 2. There are no clear grouping patterns, but observation 13 stands out.

• The loadings show how much variation in each variable is accounted for by the first two factors, jointly
by the distance of the corresponding point from the origin and individually by the distance for the
projections of this point onto the horizontal and vertical axes. That the dependent variable is well
explained by the model is reflected in the fact that the point for log_RAI is near the 100% circle.

• You can also use the projection interpretation to relate variables to each other. For example, projecting
other variables’ points onto the line that runs through the log_RAI point and the origin, you can see
that the PLS approximation for the predictor L3 is highly positively correlated with log_RAI, S3 is
somewhat less correlated but in the negative direction, and several predictors including L1, L5, and S5
have very little correlation with log_RAI.
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Other graphics enable you to explore more of the features of the PLS model. For example, you can examine
the X-scores versus the Y-scores to explore how partial least squares chooses successive factors. For a good
PLS model, the first few factors show a high correlation between the X- and Y-scores. The correlation usually
decreases from one factor to the next. When ODS Graphics is enabled, you can plot the X-scores versus the
Y-scores by using the PLOT=XYSCORES option, as shown in the following statements.

proc pls data=pentaTrain nfac=4 plot=XYScores;
model log_RAI = S1-S5 L1-L5 P1-P5;

run;

The plot of the X-scores versus the Y-scores for the first four factors is shown in Output 76.1.4.

Output 76.1.4 X-Scores versus Y-Scores

For this example, Output 76.1.4 shows high correlation between X- and Y-scores for the first factor but
somewhat lower correlation for the second factor and sharply diminishing correlation after that. This adds
strength to the judgment that NFAC=2 is the right number of factors for these data and this model. Note
that observation 13 is again extreme in the first two plots. This run might be overly influential for the PLS
analysis; thus, you should check to make sure it is reliable.
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As explained earlier, you can draw some inferences about the relationship between individual predictors and
the dependent variable from the correlation loading plot. However, the regression coefficient profile and the
variable importance plot give a more direct indication of which predictors are most useful for predicting the
dependent variable. The regression coefficients represent the importance each predictor has in the prediction
of just the response. The variable importance plot, on the other hand, represents the contribution of each
predictor in fitting the PLS model for both predictors and response. It is based on the Variable Importance
for Projection (VIP) statistic of Wold (1994), which summarizes the contribution a variable makes to the
model. If a predictor has a relatively small coefficient (in absolute value) and a small value of VIP, then it is
a prime candidate for deletion. Wold in Umetrics (1995) considers a value less than 0.8 to be “small” for the
VIP. The following statements fit a two-factor PLS model and display these two additional plots.

proc pls data=pentaTrain nfac=2 plot=(ParmProfiles VIP);
model log_RAI = S1-S5 L1-L5 P1-P5;

run;

ods graphics off;

The additional graphics are shown in Output 76.1.5 and Output 76.1.6.

Output 76.1.5 Variable Importance Plots
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Output 76.1.6 Regression Parameter Profile

In these two plots, the variables L1, L2, P2, S5, L5, and P5 have small absolute coefficients and small VIP.
Looking back at the correlation loading plot in Output 76.1.2, you can see that these variables tend to be the
ones near zero for both PLS factors. You should consider dropping these variables from the model.

Example 76.2: Examining Outliers
This example is a continuation of Example 76.1.

Standard diagnostics for statistical models focus on the response, allowing you to look for patterns that
indicate the model is inadequate or for outliers that do not seem to follow the trend of the rest of the data.
However, partial least squares effectively models the predictors as well as the responses, so you should
consider the pattern of the fit for both. The DModX and DModY statistics give the distance from each point
to the PLS model with respect to the predictors and the responses, respectively, and ODS Graphics enables
you to plot these values. No point should be dramatically farther from the model than the rest. If there is a
group of points that are all farther from the model than the rest, they might have something in common, in
which case they should be analyzed separately.
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The following statements fit a reduced model to the data discussed in Example 76.1 and plot a panel of
standard diagnostics as well as the distances of the observations to the model.

ods graphics on;

proc pls data=pentaTrain nfac=2 plot=(diagnostics dmod);
model log_RAI = S1 P1

S2
S3 L3 P3
S4 L4 ;

run;

The plots are shown in Output 76.2.1 and Output 76.2.2.

Output 76.2.1 Model Fit Diagnostics
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Output 76.2.2 Predictor versus Response Distances to the Model

There appear to be no profound outliers in either the predictor space or the response space.

Example 76.3: Choosing a PLS Model by Test Set Validation
This example demonstrates issues in spectrometric calibration. The data (Umetrics 1995) consist of spectro-
graphic readings on 33 samples containing known concentrations of two amino acids, tyrosine and tryptophan.
The spectra are measured at 30 frequencies across the overall range of frequencies. For example, Figure 76.3.1
shows the observed spectra for three samples, one with only tryptophan, one with only tyrosine, and one with
a mixture of the two, all at a total concentration of 10�6.
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Output 76.3.1 Spectra for Three Samples of Tyrosine and Tryptophan

Of the 33 samples, 18 are used as a training set and 15 as a test set. The data originally appear in McAvoy
et al. (1989).

These data were created in a lab, with the concentrations fixed in order to provide a wide range of applicability
for the model. You want to use a linear function of the logarithms of the spectra to predict the logarithms of
tyrosine and tryptophan concentration, as well as the logarithm of the total concentration. Actually, because
of the possibility of zeros in both the responses and the predictors, slightly different transformations are used.
The following statements create SAS data sets containing the training and test data, named ftrain and ftest,
respectively.
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data ftrain;
input obsnam $ tot tyr f1-f30 @@;
try = tot - tyr;
if (tyr) then tyr_log = log10(tyr); else tyr_log = -8;
if (try) then try_log = log10(try); else try_log = -8;
tot_log = log10(tot);
datalines;

17mix35 0.00003 0
-6.215 -5.809 -5.114 -3.963 -2.897 -2.269 -1.675 -1.235
-0.900 -0.659 -0.497 -0.395 -0.335 -0.315 -0.333 -0.377
-0.453 -0.549 -0.658 -0.797 -0.878 -0.954 -1.060 -1.266
-1.520 -1.804 -2.044 -2.269 -2.496 -2.714

19mix35 0.00003 3E-7
-5.516 -5.294 -4.823 -3.858 -2.827 -2.249 -1.683 -1.218
-0.907 -0.658 -0.501 -0.400 -0.345 -0.323 -0.342 -0.387
-0.461 -0.554 -0.665 -0.803 -0.887 -0.960 -1.072 -1.272
-1.541 -1.814 -2.058 -2.289 -2.496 -2.712

21mix35 0.00003 7.5E-7
-5.519 -5.294 -4.501 -3.863 -2.827 -2.280 -1.716 -1.262
-0.939 -0.694 -0.536 -0.444 -0.384 -0.369 -0.377 -0.421
-0.495 -0.596 -0.706 -0.824 -0.917 -0.988 -1.103 -1.294
-1.565 -1.841 -2.084 -2.320 -2.521 -2.729

23mix35 0.00003 1.5E-6

... more lines ...

mix6 0.0001 0.00009
-1.140 -0.757 -0.497 -0.362 -0.329 -0.412 -0.513 -0.647
-0.772 -0.877 -0.958 -1.040 -1.104 -1.162 -1.233 -1.317
-1.425 -1.543 -1.661 -1.804 -1.877 -1.959 -2.034 -2.249
-2.502 -2.732 -2.964 -3.142 -3.313 -3.576

;

data ftest;
input obsnam $ tot tyr f1-f30 @@;
try = tot - tyr;
if (tyr) then tyr_log = log10(tyr); else tyr_log = -8;
if (try) then try_log = log10(try); else try_log = -8;
tot_log = log10(tot);
datalines;

43trp6 1E-6 0
-5.915 -5.918 -6.908 -5.428 -4.117 -5.103 -4.660 -4.351
-4.023 -3.849 -3.634 -3.634 -3.572 -3.513 -3.634 -3.572
-3.772 -3.772 -3.844 -3.932 -4.017 -4.023 -4.117 -4.227
-4.492 -4.660 -4.855 -5.428 -5.103 -5.428

59mix6 1E-6 1E-7
-5.903 -5.903 -5.903 -5.082 -4.213 -5.083 -4.838 -4.639
-4.474 -4.213 -4.001 -4.098 -4.001 -4.001 -3.907 -4.001
-4.098 -4.098 -4.206 -4.098 -4.213 -4.213 -4.335 -4.474
-4.639 -4.838 -4.837 -5.085 -5.410 -5.410

51mix6 1E-6 2.5E-7
-5.907 -5.907 -5.415 -4.843 -4.213 -4.843 -4.843 -4.483
-4.343 -4.006 -4.006 -3.912 -3.830 -3.830 -3.755 -3.912
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-4.006 -4.001 -4.213 -4.213 -4.335 -4.483 -4.483 -4.642
-4.841 -5.088 -5.088 -5.415 -5.415 -5.415

49mix6 1E-6 5E-7

... more lines ...

tyro2 0.0001 0.0001
-1.081 -0.710 -0.470 -0.337 -0.327 -0.433 -0.602 -0.841
-1.119 -1.423 -1.750 -2.121 -2.449 -2.818 -3.110 -3.467
-3.781 -4.029 -4.241 -4.366 -4.501 -4.366 -4.501 -4.501
-4.668 -4.668 -4.865 -4.865 -5.109 -5.111

;

The following statements fit a PLS model with 10 factors.

proc pls data=ftrain nfac=10;
model tot_log tyr_log try_log = f1-f30;

run;

The table shown in Output 76.3.2 indicates that only three or four factors are required to explain almost all of
the variation in both the predictors and the responses.

Output 76.3.2 Amount of Training Set Variation Explained

The PLS ProcedureThe PLS Procedure

Percent Variation Accounted for by Partial
Least Squares Factors

Model Effects
Dependent
Variables

Number
of

Extracted
Factors Current Total Current Total

1 81.1654 81.1654 48.3385 48.3385

2 16.8113 97.9768 32.5465 80.8851

3 1.7639 99.7407 11.4438 92.3289

4 0.1951 99.9357 3.8363 96.1652

5 0.0276 99.9634 1.6880 97.8532

6 0.0132 99.9765 0.7247 98.5779

7 0.0052 99.9817 0.2926 98.8705

8 0.0053 99.9870 0.1252 98.9956

9 0.0049 99.9918 0.1067 99.1023

10 0.0034 99.9952 0.1684 99.2707

In order to choose the optimal number of PLS factors, you can explore how well models based on the training
data with different numbers of factors fit the test data. To do so, use the CV=TESTSET option, with an
argument pointing to the test data set ftest. The following statements also employ the ODS Graphics features
in PROC PLS to display the cross validation results in a plot.

ods graphics on;

proc pls data=ftrain nfac=10 cv=testset(ftest)
cvtest(stat=press seed=12345);

model tot_log tyr_log try_log = f1-f30;
run;
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The tabular results of the test set validation are shown in Output 76.3.3, and the graphical results are shown
in Output 76.3.4. They indicate that, although five PLS factors give the minimum predicted residual sum
of squares, the residuals for four factors are insignificantly different from those for five. Thus, the smaller
model is preferred.

Output 76.3.3 Test Set Validation for the Number of PLS Factors

The PLS ProcedureThe PLS Procedure

Test Set Validation for the Number
of Extracted Factors

Number
of

Extracted
Factors

Root
Mean

PRESS Prob > PRESS

0 3.056797 <.0001

1 2.630561 <.0001

2 1.00706 0.0070

3 0.664603 0.0020

4 0.521578 0.3800

5 0.500034 1.0000

6 0.513561 0.5100

7 0.501431 0.6870

8 1.055791 0.1530

9 1.435085 0.1010

10 1.720389 0.0320

Minimum root mean PRESS 0.5000

Minimizing number of factors 5

Smallest number of factors with p > 0.1 4

Percent Variation Accounted for by Partial
Least Squares Factors

Model Effects
Dependent
Variables

Number
of

Extracted
Factors Current Total Current Total

1 81.1654 81.1654 48.3385 48.3385

2 16.8113 97.9768 32.5465 80.8851

3 1.7639 99.7407 11.4438 92.3289

4 0.1951 99.9357 3.8363 96.1652
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Output 76.3.4 Test Set Validation Plot

The factor loadings show how the PLS factors are constructed from the centered and scaled predictors.
For spectral calibration, it is useful to plot the loadings against the frequency. In many cases, the physical
meanings that can be attached to factor loadings help to validate the scientific interpretation of the PLS model.
You can use ODS Graphics with PROC PLS to plot the loadings for the four PLS factors against frequency,
as shown in the following statements.

proc pls data=ftrain nfac=4 plot=XLoadingProfiles;
model tot_log tyr_log try_log = f1-f30;

run;

ods graphics off;

The resulting plot is shown in Output 76.3.5.
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Output 76.3.5 Predictor Loadings across Frequencies

Notice that all four factors handle frequencies below and above about 7 or 8 differently. For example, the first
factor is very nearly a simple contrast between the averages of the two sets of frequencies, and the second
factor appears to be approximately a weighted sum of only the frequencies in the first set.

Example 76.4: Partial Least Squares Spline Smoothing
The EFFECT statement makes it easy to construct a wide variety of linear models. In particular, you can use
the spline effect to add smoothing terms to a model. A particular benefit of using spline effects in PROC PLS
is that, when operating on spline basis functions, the partial least squares algorithm effectively chooses the
amount of smoothing automatically, especially if you combine it with cross validation for the selecting the
number of factors. This example employs the EFFECT statement to demonstrate partial least squares spline
smoothing of agricultural data.
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Weibe (1935) presents data from a study of uniformity of wheat yields over a certain rectangular plot of land.
The following statements read these wheat yield measurements, indexed by row and column distances, into
the SAS data set Wheat:

data Wheat;
keep Row Column Yield;
input Yield @@;
iRow = int((_N_-1)/12);
iCol = mod( _N_-1 ,12);
Column = iCol*15 + 1; /* Column distance, in feet */
Row = iRow* 1 + 1; /* Row distance, in feet */
Row = 125 - Row + 1; /* Invert rows */
datalines;

715 595 580 580 615 610 540 515 557 665 560 612
770 710 655 675 700 690 565 585 550 574 511 618
760 715 690 690 655 725 665 640 665 705 644 705
665 615 685 555 585 630 550 520 553 616 573 570
755 730 670 580 545 620 580 525 495 565 599 612
745 670 585 560 550 710 590 545 538 587 600 664
645 690 550 520 450 630 535 505 530 536 611 578
585 495 455 470 445 555 500 450 420 461 531 559

... more lines ...

570 585 635 765 550 675 765 620 608 705 677 660
505 500 580 655 470 565 570 555 537 585 589 619
465 430 510 680 460 600 670 615 620 594 616 784

;

The following statements use the PLS procedure to smooth these wheat yields using two spline effects, one
for rows and another for columns, in addition to their crossproduct. Each spline effect has, by default, seven
basis columns; thus their crossproduct has 49 D 72 columns, for a total of 63 parameters in the full linear
model. However, the predictive PLS model does not actually need to have 63 degrees of freedom. Rather, the
degree of smoothing is controlled by the number of PLS factors, which in this case is chosen automatically
by random subset validation with the CV=RANDOM option.

ods graphics on;

proc pls data=Wheat cv=random(seed=1) cvtest(seed=12345)
plot(only)=contourfit(obs=gradient);

effect splCol = spline(Column);
effect splRow = spline(Row );
model Yield = splCol|splRow;

run;

These statements produce the output shown in Output 76.4.1 through Output 76.4.4.
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Output 76.4.1 Default Spline Basis: Model and Data Information

The PLS ProcedureThe PLS Procedure

Data Set WORK.WHEAT

Factor Extraction Method Partial Least Squares

PLS Algorithm NIPALS

Number of Response Variables 1

Number of Predictor Parameters 63

Missing Value Handling Exclude

Maximum Number of Factors 15

Validation Method 10-fold Random Subset Validation

Random Subset Seed 1

Validation Testing Criterion Prob T**2 > 0.1

Number of Random Permutations 1000

Random Permutation Seed 12345

Number of Observations Read 1500

Number of Observations Used 1500

Output 76.4.2 Default Spline Basis: Random Subset Validated PRESS Statistics for Number of Factors

Random Subset Validation for the
Number of Extracted Factors

Number
of

Extracted
Factors

Root
Mean

PRESS T**2 Prob > T**2

0 1.066355 251.8793 <.0001

1 0.826177 123.8161 <.0001

2 0.745877 61.6035 <.0001

3 0.725181 44.99644 <.0001

4 0.701464 23.20199 <.0001

5 0.687164 8.369711 0.0030

6 0.683917 8.775847 0.0010

7 0.677969 2.907019 0.0830

8 0.676423 2.190871 0.1340

9 0.676966 3.191284 0.0600

10 0.675026 1.334638 0.2390

11 0.673906 0.556455 0.4470

12 0.673653 1.257292 0.2790

13 0.672669 0 1.0000

14 0.673596 2.386014 0.1190

15 0.672828 0.02962 0.8820

Minimum root mean PRESS 0.6727

Minimizing number of factors 13

Smallest number of factors with p > 0.1 8
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Output 76.4.3 Default Spline Basis: PLS Variation Summary for Split-Sample Validated Model

Percent Variation Accounted for by Partial
Least Squares Factors

Model Effects
Dependent
Variables

Number
of

Extracted
Factors Current Total Current Total

1 11.5269 11.5269 40.2471 40.2471

2 7.2314 18.7583 10.4908 50.7379

3 6.9147 25.6730 2.6523 53.3902

4 3.8433 29.5163 2.8806 56.2708

5 6.4795 35.9958 1.3197 57.5905

6 7.6201 43.6159 1.1700 58.7605

7 7.3214 50.9373 0.7186 59.4790

8 4.8363 55.7736 0.4548 59.9339

Output 76.4.4 Default Spline Basis: Smoothed Yield
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The cross validation results in Output 76.4.2 point to a model with eight PLS factors; this is the smallest
model whose predicted residual sum of squares (PRESS) is insignificantly different from the model with the
absolute minimum PRESS. The variation summary in Output 76.4.3 shows that this model accounts for about
60% of the variation in the Yield values. The OBS=GRADIENT suboption for the PLOT=CONTOURFIT
option specifies that the observations in the resulting plot, Output 76.4.4, be colored according to the same
scheme as the surface of predicted yield. This coloration enables you to easily tell which observations are
above the surface of predicted yield and which are below.

The surface of predicted yield is somewhat smoother than what Weibe (1935) settled on originally, with a
predominance of simple, elliptically shaped contours. You can easily specify a potentially more granular
model by increasing the number of knots in the spline bases. Even though the more granular model increases
the number of predictor parameters, cross validation can still protect you from overfitting the data. The
following statements are the same as those shown before, except that the spline effects now have twice as
many basis functions:

ods graphics on;

proc pls data=Wheat cv=random(seed=1) cvtest(seed=12345)
plot(only)=contourfit(obs=gradient);

effect splCol = spline(Column / knotmethod=equal(14));
effect splRow = spline(Row / knotmethod=equal(14));
model Yield = splCol|splRow;

run;

The resulting output is shown in Output 76.4.5 through Output 76.4.8.

Output 76.4.5 More Granular Spline Basis: Model and Data Information

The PLS ProcedureThe PLS Procedure

Data Set WORK.WHEAT

Factor Extraction Method Partial Least Squares

PLS Algorithm NIPALS

Number of Response Variables 1

Number of Predictor Parameters 360

Missing Value Handling Exclude

Maximum Number of Factors 15

Validation Method 10-fold Random Subset Validation

Random Subset Seed 1

Validation Testing Criterion Prob T**2 > 0.1

Number of Random Permutations 1000

Random Permutation Seed 12345

Number of Observations Read 1500

Number of Observations Used 1500



Example 76.4: Partial Least Squares Spline Smoothing F 6261

Output 76.4.6 More Granular Spline Basis: Random Subset Validated PRESS Statistics for Number of
Factors

Random Subset Validation for the
Number of Extracted Factors

Number
of

Extracted
Factors

Root
Mean

PRESS T**2 Prob > T**2

0 1.066355 247.9268 <.0001

1 0.652658 20.68858 <.0001

2 0.615087 0.074822 0.7740

3 0.614128 0 1.0000

4 0.615268 0.197678 0.6490

5 0.618001 1.372038 0.2340

6 0.622949 5.035504 0.0180

7 0.626482 7.296797 0.0080

8 0.633316 13.66045 <.0001

9 0.635239 16.16922 <.0001

10 0.636938 18.02295 <.0001

11 0.636494 16.9881 <.0001

12 0.63682 16.83341 <.0001

13 0.637719 16.74157 <.0001

14 0.637627 15.79342 <.0001

15 0.638431 16.12327 <.0001

Minimum root mean PRESS 0.6141

Minimizing number of factors 3

Smallest number of factors with p > 0.1 2

Output 76.4.7 More Granular Spline Basis: PLS Variation Summary for Split-Sample Validated Model

Percent Variation Accounted for by Partial
Least Squares Factors

Model Effects
Dependent
Variables

Number
of

Extracted
Factors Current Total Current Total

1 1.7967 1.7967 64.7792 64.7792

2 1.3719 3.1687 6.3163 71.0955
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Output 76.4.8 More Granular Spline Basis: Smoothed Yield

Output 76.4.5 shows that the model now has 360 parameters, many more than before. In Output 76.4.6 you
can see that with more granular spline effects, fewer PLS factors are required—only two, in fact. However,
Output 76.4.7 shows that this model now accounts for over 70% of the variation in the Yield values, and the
contours of predicted values in Output 76.4.8 are less inclined to be simple elliptical shapes.
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Overview: POWER Procedure
Power and sample size analysis optimizes the resource usage and design of a study, improving chances of
conclusive results with maximum efficiency. The POWER procedure performs prospective power and sample
size analyses for a variety of goals, such as the following:

• determining the sample size required to get a significant result with adequate probability (power)

• characterizing the power of a study to detect a meaningful effect
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• conducting what-if analyses to assess sensitivity of the power or required sample size to other factors

Here prospective indicates that the analysis pertains to planning for a future study. This is in contrast to
retrospective power analysis for a past study, which is not supported by the procedure.

A variety of statistical analyses are covered:

• t tests, equivalence tests, and confidence intervals for means

• tests, equivalence tests, and confidence intervals for binomial proportions

• multiple regression

• tests of correlation and partial correlation

• one-way analysis of variance

• rank tests for comparing two survival curves

• logistic regression with binary response

• Wilcoxon-Mann-Whitney (rank-sum) test

For more complex linear models, see Chapter 47, “The GLMPOWER Procedure.”

Input for PROC POWER includes the components considered in study planning:

• design

• statistical model and test

• significance level (alpha)

• surmised effects and variability

• power

• sample size

You designate one of these components by a missing value in the input, in order to identify it as the result
parameter. The procedure calculates this result value over one or more scenarios of input values for all other
components. Power and sample size are the most common result values, but for some analyses the result can
be something else. For example, you can solve for the sample size of a single group for a two-sample t test.

In addition to tabular results, PROC POWER produces graphs. You can produce the most common types of
plots easily with default settings and use a variety of options for more customized graphics. For example,
you can control the choice of axis variables, axis ranges, number of plotted points, mapping of graphical
features (such as color, line style, symbol and panel) to analysis parameters, and legend appearance.

If ODS Graphics is enabled, then PROC POWER uses ODS Graphics to create graphs; otherwise, traditional
graphs are produced.

For more information about enabling and disabling ODS Graphics, see the section “Enabling and Disabling
ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”



6268 F Chapter 77: The POWER Procedure

For specific information about the statistical graphics and options available with the POWER procedure, see
the PLOT statement and the section “ODS Graphics” on page 6428.

The POWER procedure is one of several tools available in SAS/STAT software for power and sample size
analysis. PROC GLMPOWER supports more complex linear models. The Power and Sample Size application
provides a user interface and implements many of the analyses supported in the procedures. See Chapter 47,
“The GLMPOWER Procedure,” and Chapter 78, “The Power and Sample Size Application,” for details.

The following sections of this chapter describe how to use PROC POWER and discuss the underlying
statistical methodology. The section “Getting Started: POWER Procedure” on page 6268 introduces PROC
POWER with simple examples of power computation for a one-sample t test and sample size determination
for a two-sample t test. The section “Syntax: POWER Procedure” on page 6274 describes the syntax of the
procedure. The section “Details: POWER Procedure” on page 6363 summarizes the methods employed by
PROC POWER and provides details on several special topics. The section “Examples: POWER Procedure”
on page 6429 illustrates the use of the POWER procedure with several applications.

For an overview of methodology and SAS tools for power and sample size analysis, see Chapter 18,
“Introduction to Power and Sample Size Analysis.” For more discussion and examples, see O’Brien and
Castelloe (2007); Castelloe (2000); Castelloe and O’Brien (2001); Muller and Benignus (1992); O’Brien and
Muller (1993); Lenth (2001).

Getting Started: POWER Procedure

Computing Power for a One-Sample t Test
Suppose you want to improve the accuracy of a machine used to print logos on sports jerseys. The logo
placement has an inherently high variability, but the horizontal alignment of the machine can be adjusted. The
operator agrees to pay for a costly adjustment if you can establish a nonzero mean horizontal displacement in
either direction with high confidence. You have 150 jerseys at your disposal to measure, and you want to
determine your chances of a significant result (power) by using a one-sample t test with a two-sided ˛ = 0.05.

You decide that 8 mm is the smallest displacement worth addressing. Hence, you will assume a true mean of
8 in the power computation. Experience indicates that the standard deviation is about 40.

Use the ONESAMPLEMEANS statement in the POWER procedure to compute the power. Indicate power
as the result parameter by specifying the POWER= option with a missing value (.). Specify your conjectures
for the mean and standard deviation by using the MEAN= and STDDEV= options and for the sample size by
using the NTOTAL= option. The statements required to perform this analysis are as follows:

proc power;
onesamplemeans

mean = 8
ntotal = 150
stddev = 40
power = .;

run;

Default values for the TEST=, DIST=, ALPHA=, NULLMEAN=, and SIDES= options specify a two-sided t
test for a mean of 0, assuming a normal distribution with a significance level of ˛ = 0.05.
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Figure 77.1 shows the output.

Figure 77.1 Sample Size Analysis for One-Sample t Test

The POWER Procedure
One-Sample t Test for Mean

The POWER Procedure
One-Sample t Test for Mean

Fixed Scenario Elements

Distribution Normal

Method Exact

Mean 8

Standard Deviation 40

Total Sample Size 150

Number of Sides 2

Null Mean 0

Alpha 0.05

Computed
Power

Power

0.682

The power is about 0.68. In other words, there is about a 2/3 chance that the t test will produce a significant
result demonstrating the machine’s average off-center displacement. This probability depends on the
assumptions for the mean and standard deviation.

Now, suppose you want to account for some of your uncertainty in conjecturing the true mean and standard
deviation by evaluating the power for four scenarios, using reasonable low and high values, 5 and 10 for the
mean, and 30 and 50 for the standard deviation. Also, you might be able to measure more than 150 jerseys,
and you would like to know under what circumstances you could get by with fewer. You want to plot power
for sample sizes between 100 and 200 to visualize how sensitive the power is to changes in sample size for
these four scenarios of means and standard deviations. The following statements perform this analysis:

ods graphics on;

proc power;
onesamplemeans

mean = 5 10
ntotal = 150
stddev = 30 50
power = .;

plot x=n min=100 max=200;
run;

ods graphics off;

The new mean and standard deviation values are specified by using the MEAN= and STDDEV= options in
the ONESAMPLEMEANS statement. The PLOT statement with X=N produces a plot with sample size on
the X axis. (The result parameter, in this case the power, is always plotted on the other axis.) The MIN= and
MAX= options in the PLOT statement determine the sample size range. The ODS GRAPHICS ON statement
enables ODS Graphics.

Figure 77.2 shows the output, and Figure 77.3 shows the plot.
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Figure 77.2 Sample Size Analysis for One-Sample t Test with Input Ranges

The POWER Procedure
One-Sample t Test for Mean

The POWER Procedure
One-Sample t Test for Mean

Fixed Scenario Elements

Distribution Normal

Method Exact

Total Sample Size 150

Number of Sides 2

Null Mean 0

Alpha 0.05

Computed Power

Index Mean
Std
Dev Power

1 5 30 0.527

2 5 50 0.229

3 10 30 0.982

4 10 50 0.682

Figure 77.3 Plot of Power versus Sample Size for One-Sample t Test with Input Ranges
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The power ranges from about 0.23 to 0.98 for a sample size of 150 depending on the mean and standard
deviation. In Figure 77.3, the line style identifies the mean, and the plotting symbol identifies the standard
deviation. The locations of plotting symbols indicate computed powers; the curves are linear interpolations
of these points. The plot suggests sufficient power for a mean of 10 and standard deviation of 30 (for any of
the sample sizes) but insufficient power for the other three scenarios.

Determining Required Sample Size for a Two-Sample t Test
In this example you want to compare two physical therapy treatments designed to increase muscle flexibility.
You need to determine the number of patients required to achieve a power of at least 0.9 to detect a group
mean difference in a two-sample t test. You will use ˛ = 0.05 (two-tailed).

The mean flexibility with the standard treatment (as measured on a scale of 1 to 20) is well known to be about
13 and is thought to be between 14 and 15 with the new treatment. You conjecture three alternative scenarios
for the means:

1. �1 = 13, �2 = 14

2. �1 = 13, �2 = 14.5

3. �1 = 13, �2 = 15

You conjecture two scenarios for the common group standard deviation:

1. � = 1.2

2. � = 1.7

You also want to try three weighting schemes:

1. equal group sizes (balanced, or 1:1)

2. twice as many patients with the new treatment (1:2)

3. three times as many patients with the new treatment (1:3)

This makes 3 � 2 � 3 = 18 scenarios in all.

Use the TWOSAMPLEMEANS statement in the POWER procedure to determine the sample sizes required
to give 90% power for each of these 18 scenarios. Indicate total sample size as the result parameter by
specifying the NTOTAL= option with a missing value (.). Specify your conjectures for the means by using
the GROUPMEANS= option. Using the “matched” notation (discussed in the section “Specifying Value
Lists in Analysis Statements” on page 6366), enclose the two group means for each scenario in parentheses.
Use the STDDEV= option to specify scenarios for the common standard deviation. Specify the weighting
schemes by using the GROUPWEIGHTS= option. You could again use the matched notation. But for
illustrative purposes, specify the scenarios for each group weight separately by using the “crossed” notation,
with scenarios for each group weight separated by a vertical bar (|). The statements that perform the analysis
are as follows:
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proc power;
twosamplemeans

groupmeans = (13 14) (13 14.5) (13 15)
stddev = 1.2 1.7
groupweights = 1 | 1 2 3
power = 0.9
ntotal = .;

run;

Default values for the TEST=, DIST=, NULLDIFF=, ALPHA=, and SIDES= options specify a two-sided t
test of group mean difference equal to 0, assuming a normal distribution with a significance level of ˛ = 0.05.
The results are shown in Figure 77.4.

Figure 77.4 Sample Size Analysis for Two-Sample t Test Using Group Means

The POWER Procedure
Two-Sample t Test for Mean Difference

The POWER Procedure
Two-Sample t Test for Mean Difference

Fixed Scenario
Elements

Distribution Normal

Method Exact

Group 1 Weight 1

Nominal Power 0.9

Number of Sides 2

Null Difference 0

Alpha 0.05

Computed N Total

Index Mean1 Mean2
Std
Dev Weight2

Actual
Power

N
Total

1 13 14.0 1.2 1 0.907 64

2 13 14.0 1.2 2 0.908 72

3 13 14.0 1.2 3 0.905 84

4 13 14.0 1.7 1 0.901 124

5 13 14.0 1.7 2 0.905 141

6 13 14.0 1.7 3 0.900 164

7 13 14.5 1.2 1 0.910 30

8 13 14.5 1.2 2 0.906 33

9 13 14.5 1.2 3 0.916 40

10 13 14.5 1.7 1 0.900 56

11 13 14.5 1.7 2 0.901 63

12 13 14.5 1.7 3 0.908 76

13 13 15.0 1.2 1 0.913 18

14 13 15.0 1.2 2 0.927 21

15 13 15.0 1.2 3 0.922 24

16 13 15.0 1.7 1 0.914 34

17 13 15.0 1.7 2 0.921 39

18 13 15.0 1.7 3 0.910 44
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The interpretation is that in the best-case scenario (large mean difference of 2, small standard deviation of
1.2, and balanced design), a sample size of N = 18 (n1 D n2 D 9) patients is sufficient to achieve a power of
at least 0.9. In the worst-case scenario (small mean difference of 1, large standard deviation of 1.7, and a 1:3
unbalanced design), a sample size of N = 164 (n1 = 41, n2 = 123) patients is necessary. The Nominal Power
of 0.9 in the “Fixed Scenario Elements” table represents the input target power, and the Actual Power column
in the “Computed N Total” table is the power at the sample size (N Total) adjusted to achieve the specified
sample weighting exactly.

Note the following characteristics of the analysis, and ways you can modify them if you want:

• The total sample sizes are rounded up to multiples of the weight sums (2 for the 1:1 design, 3 for
the 1:2 design, and 4 for the 1:3 design) to ensure that each group size is an integer. To request raw
fractional sample size solutions, use the NFRACTIONAL option.

• Only the group weight that varies (the one for group 2) is displayed as an output column, while the
weight for group 1 appears in the “Fixed Scenario Elements” table. To display the group weights
together in output columns, use the matched version of the value list rather than the crossed version.

• If you can specify only differences between group means (instead of their individual values), or if you
want to display the mean differences instead of the individual means, use the MEANDIFF= option
instead of the GROUPMEANS= option.

The following statements implement all of these modifications:

proc power;
twosamplemeans

nfractional
meandiff = 1 to 2 by 0.5
stddev = 1.2 1.7
groupweights = (1 1) (1 2) (1 3)
power = 0.9
ntotal = .;

run;

Figure 77.5 shows the new results.

Figure 77.5 Sample Size Analysis for Two-Sample t Test Using Mean Differences

The POWER Procedure
Two-Sample t Test for Mean Difference

The POWER Procedure
Two-Sample t Test for Mean Difference

Fixed Scenario
Elements

Distribution Normal

Method Exact

Nominal Power 0.9

Number of Sides 2

Null Difference 0

Alpha 0.05
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Figure 77.5 continued

Computed Ceiling N Total

Index
Mean

Diff
Std
Dev Weight1 Weight2

Fractional
N Total

Actual
Power

Ceiling
N

Total

1 1.0 1.2 1 1 62.507429 0.902 63

2 1.0 1.2 1 2 70.065711 0.904 71

3 1.0 1.2 1 3 82.665772 0.901 83

4 1.0 1.7 1 1 123.418482 0.901 124

5 1.0 1.7 1 2 138.598159 0.901 139

6 1.0 1.7 1 3 163.899094 0.900 164

7 1.5 1.2 1 1 28.961958 0.900 29

8 1.5 1.2 1 2 32.308867 0.906 33

9 1.5 1.2 1 3 37.893351 0.901 38

10 1.5 1.7 1 1 55.977156 0.900 56

11 1.5 1.7 1 2 62.717357 0.901 63

12 1.5 1.7 1 3 73.954291 0.900 74

13 2.0 1.2 1 1 17.298518 0.913 18

14 2.0 1.2 1 2 19.163836 0.913 20

15 2.0 1.2 1 3 22.282926 0.910 23

16 2.0 1.7 1 1 32.413512 0.905 33

17 2.0 1.7 1 2 36.195531 0.907 37

18 2.0 1.7 1 3 42.504535 0.903 43

Note that the Nominal Power of 0.9 applies to the raw computed sample size (Fractional N Total), and the
Actual Power column applies to the rounded sample size (Ceiling N Total). Some of the adjusted sample
sizes in Figure 77.5 are lower than those in Figure 77.4 because underlying group sample sizes are allowed to
be fractional (for example, the first Ceiling N Total of 63 corresponding to equal group sizes of 31.5).

Syntax: POWER Procedure
The following statements are available in the POWER procedure:

PROC POWER < options > ;
LOGISTIC < options > ;
MULTREG < options > ;
ONECORR < options > ;
ONESAMPLEFREQ < options > ;
ONESAMPLEMEANS < options > ;
ONEWAYANOVA < options > ;
PAIREDFREQ < options > ;
PAIREDMEANS < options > ;
PLOT < plot-options > < / graph-options > ;
TWOSAMPLEFREQ < options > ;
TWOSAMPLEMEANS < options > ;
TWOSAMPLESURVIVAL < options > ;
TWOSAMPLEWILCOXON < options > ;
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The statements in the POWER procedure consist of the PROC POWER statement, a set of analysis statements
(for requesting specific power and sample size analyses), and the PLOT statement (for producing graphs). The
PROC POWER statement and at least one of the analysis statements are required. The analysis statements
are LOGISTIC, MULTREG, ONECORR, ONESAMPLEFREQ, ONESAMPLEMEANS, ONEWAYANOVA,
PAIREDFREQ, PAIREDMEANS, TWOSAMPLEFREQ, TWOSAMPLEMEANS, TWOSAMPLESUR-
VIVAL, and TWOSAMPLEWILCOXON.

You can use multiple analysis statements and multiple PLOT statements. Each analysis statement produces a
separate sample size analysis. Each PLOT statement refers to the previous analysis statement and generates a
separate graph (or set of graphs).

The name of an analysis statement describes the framework of the statistical analysis for which sample
size calculations are desired. You use options in the analysis statements to identify the result parameter to
compute, to specify the statistical test and computational options, and to provide one or more scenarios for
the values of relevant analysis parameters.

Table 77.1 summarizes the basic functions of each statement in PROC POWER. The syntax of each statement
in Table 77.1 is described in the following pages.

Table 77.1 Statements in the POWER Procedure

Statement Description

PROC POWER Invokes the procedure

LOGISTIC Likelihood ratio chi-square test of a single predictor in logistic
regression with binary response

MULTREG Tests of one or more coefficients in multiple linear regression
ONECORR Fisher’s z test and t test of (partial) correlation
ONESAMPLEFREQ Tests, confidence interval precision, and equivalence tests of a

single binomial proportion
ONESAMPLEMEANS One-sample t test, confidence interval precision, or equivalence test
ONEWAYANOVA One-way ANOVA including single-degree-of-freedom contrasts
PAIREDFREQ McNemar’s test for paired proportions
PAIREDMEANS Paired t test, confidence interval precision, or equivalence test

PLOT Displays plots for previous sample size analysis

TWOSAMPLEFREQ Chi-square, likelihood ratio, and Fisher’s exact tests for two
independent proportions

TWOSAMPLEMEANS Two-sample t test, confidence interval precision, or equivalence
test

TWOSAMPLESURVIVAL Log-rank, Gehan, and Tarone-Ware tests for comparing two
survival curves

TWOSAMPLEWILCOXON Wilcoxon-Mann-Whitney (rank-sum) test for 2 independent groups

See the section “Summary of Analyses” on page 6364 for a summary of the analyses available and the syntax
required for them.
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PROC POWER Statement
PROC POWER < options > ;

The PROC POWER statement invokes the POWER procedure. You can specify the following option.

PLOTONLY
specifies that only graphical results from the PLOT statement should be produced.

LOGISTIC Statement
LOGISTIC < options > ;

The LOGISTIC statement performs power and sample size analyses for the likelihood ratio chi-square test of
a single predictor in binary logistic regression, possibly in the presence of one or more covariates that might
be correlated with the tested predictor.

Summary of Options

Table 77.2 summarizes the options available in the LOGISTIC statement.

Table 77.2 LOGISTIC Statement Options

Option Description

Define analysis
TEST= Specifies the statistical analysis

Specify analysis information
ALPHA= Specifies the significance level
COVARIATES= Specifies the distributions of predictor variables
TESTPREDICTOR= Specifies the distribution of the predictor variable being tested
VARDIST= Defines a distribution for a predictor variable

Specify effects
CORR= Specifies the multiple correlation between the predictor and the covariates
COVODDSRATIOS= Specifies the odds ratios for the covariates
COVREGCOEFFS= Specifies the regression coefficients for the covariates
DEFAULTUNIT= Specifies the default change in the predictor variables
INTERCEPT= Specifies the intercept
RESPONSEPROB= Specifies the response probability
TESTODDSRATIO= Specifies the odds ratio being tested
TESTREGCOEFF= Specifies the regression coefficient for the predictor variable
UNITS= Specifies the changes in the predictor variables

Specify sample size
NFRACTIONAL Enables fractional input and output for sample sizes
NTOTAL= Specifies the sample size

Specify power
POWER= Specifies the desired power of the test
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Table 77.2 continued

Option Description

Specify computational method
DEFAULTNBINS= Specifies the default number of categories for each predictor variable
NBINS= Specifies the number of categories for predictor variables

Control ordering in output
OUTPUTORDER= Controls the output order of parameters

Table 77.3 summarizes the valid result parameters in the LOGISTIC statement.

Table 77.3 Summary of Result Parameters in the LOGISTIC
Statement

Analyses Solve For Syntax

TEST=LRCHI Power POWER=.
Sample size NTOTAL=.

Dictionary of Options

ALPHA=number-list
specifies the level of significance of the statistical test. The default is 0.05, corresponding to the usual
0.05 � 100% = 5% level of significance. For information about specifying the number-list , see the
section “Specifying Value Lists in Analysis Statements” on page 6366.

CORR=number-list
specifies the multiple correlation (�) between the tested predictor and the covariates. If you also specify
the COVARIATES= option, then the sample size is either multiplied (if you are computing power) or
divided (if you are computing sample size) by a factor of .1 � �2/. For information about specifying
the number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

COVARIATES=grouped-name-list
specifies the distributions of any predictor variables in the model but not being tested, using labels
specified with the VARDIST= option. The distributions are assumed to be independent of each
other and of the tested predictor. If this option is omitted, then the tested predictor specified by the
TESTEDPREDICTOR= option is assumed to be the only predictor in the model. For information about
specifying the grouped-name-list , see the section “Specifying Value Lists in Analysis Statements” on
page 6366.

COVODDSRATIOS=grouped-number-list
specifies the odds ratios for the covariates in the full model (including variables in the TESTPREDIC-
TOR= and COVARIATES= options). The ordering of the values corresponds to the ordering in the
COVARIATES= option. If the response variable is coded as Y = 1 for success and Y = 0 for failure,
then the odds ratio for each covariate X is the odds of Y = 1 when X = a divided by the odds of Y = 1
when X = b, where a and b are determined from the DEFAULTUNIT= and UNITS= options. Values
must be greater than zero. For information about specifying the grouped-number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 6366.
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COVREGCOEFFS=grouped-number-list
specifies the regression coefficients for the covariates in the full model including the test predictor (as
specified by the TESTPREDICTOR= option). The ordering of the values corresponds to the ordering
in the COVARIATES= option. For information about specifying the grouped-number-list , see the
section “Specifying Value Lists in Analysis Statements” on page 6366.

DEFAULTNBINS=number
specifies the default number of categories (or “bins”) into which the distribution for each predictor
variable is divided in internal calculations. Higher values increase computational time and memory
requirements but generally lead to more accurate results. However, if the value is too high, then
numerical instability can occur. Lower values are less likely to produce “No solution computed” errors.
Each test predictor or covariate that is absent from the NBINS= option derives its bin number from the
DEFAULTNBINS= option. The default value is DEFAULTNBINS=10.

There are two variable distributions for which the number of bins can be overridden internally:

• For an ordinal distribution, the number of ordinal values is always used as the number of bins.

• For a binomial distribution, if the requested number of bins is larger than n + 1, where n is the
sample size parameter of the binomial distribution, then exactly n + 1 bins are used.

DEFAULTUNIT=change-spec
specifies the default change in the predictor variables assumed for odds ratios specified with the
COVODDSRATIOS= and TESTODDSRATIO= options. Each test predictor or covariate that is absent
from the UNITS= option derives its change value from the DEFAULTUNIT= option. The value must
be nonzero. The default value is DEFAULTUNIT=1. This option can be used only if at least one of the
COVODDSRATIOS= and TESTODDSRATIO= options is used.

Valid specifications for change-spec are as follows:

number defines the odds ratio as the ratio of the response variable odds when X = a to the odds when
X = a – number for any constant a.

<+ | ->SD defines the odds ratio as the ratio of the odds when X = a to the odds when X = a – � (or
X = a + � , if SD is preceded by a minus sign (–)) for any constant a, where � is the standard
deviation of X (as determined from the VARDIST= option).

multiple*SD defines the odds ratio as the ratio of the odds when X = a to the odds when X = a –
multiple * � for any constant a, where � is the standard deviation of X (as determined from the
VARDIST= option).

PERCENTILES(p1, p2) defines the odds ratio as the ratio of the odds when X is equal to its p2�
100th percentile to the odds when X is equal to its p1� 100th percentile (where the percentiles
are determined from the distribution specified in the VARDIST= option). Values for p1 and p2
must be strictly between 0 and 1.

INTERCEPT=number-list
specifies the intercept in the full model (including variables in the TESTPREDICTOR= and COVARI-
ATES= options). For information about specifying the number-list , see the section “Specifying Value
Lists in Analysis Statements” on page 6366.
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NBINS=(“name” = number < . . . "name" = number >)
specifies the number of categories (or “bins”) into which the distribution for each predictor variable
(identified by its name from the VARDIST= option) is divided in internal calculations. Higher values
increase computational time and memory requirements but generally lead to more accurate results.
However, if the value is too high, then numerical instability can occur. Lower values are less likely
to produce “No solution computed” errors. Each predictor variable that is absent from the NBINS=
option derives its bin number from the DEFAULTNBINS= option.

There are two variable distributions for which the NBINS= value can be overridden internally:

• For an ordinal distribution, the number of ordinal values is always used as the number of bins.

• For a binomial distribution, if the requested number of bins is larger than n + 1, where n is the
sample size parameter of the binomial distribution, then exactly n + 1 bins are used.

NFRACTIONAL

NFRAC
enables fractional input and output for sample sizes. See the section “Sample Size Adjustment
Options” on page 6369 for information about the ramifications of the presence (and absence) of the
NFRACTIONAL option.

NTOTAL=number-list
specifies the sample size or requests a solution for the sample size with a missing value (NTOTAL=.).
Values must be at least one. For information about specifying the number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 6366.

OUTPUTORDER=INTERNAL | REVERSE | SYNTAX
controls how the input and default analysis parameters are ordered in the output. OUT-
PUTORDER=INTERNAL (the default) arranges the parameters in the output according to the following
order of their corresponding options:

• DEFAULTNBINS=
• NBINS=
• ALPHA=
• RESPONSEPROB=
• INTERCEPT=
• TESTPREDICTOR=
• TESTODDSRATIO=
• TESTREGCOEFF=
• COVARIATES=
• COVODDSRATIOS=
• COVREGCOEFFS=
• CORR=
• NTOTAL=
• POWER=

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the same or-
der in which their corresponding options are specified in the LOGISTIC statement. The OUT-
PUTORDER=REVERSE option arranges the parameters in the output in the reverse of the order in
which their corresponding options are specified in the LOGISTIC statement.
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POWER=number-list
specifies the desired power of the test or requests a solution for the power with a missing value
(POWER=.). The power is expressed as a probability, a number between 0 and 1, rather than as a
percentage. For information about specifying the number-list , see the section “Specifying Value Lists
in Analysis Statements” on page 6366.

RESPONSEPROB=number-list
specifies the response probability in the full model when all predictor variables (including variables in
the TESTPREDICTOR= and COVARIATES= options) are equal to their means. The log odds of this
probability are equal to the intercept in the full model where all predictor are centered at their means.
If the response variable is coded as Y = 1 for success and Y = 0 for failure, then this probability is
equal to the mean of Y in the full model when all Xs are equal to their means. Values must be strictly
between zero and one. For information about specifying the number-list , see the section “Specifying
Value Lists in Analysis Statements” on page 6366.

TEST=LRCHI
specifies the likelihood ratio chi-square test of a single model parameter in binary logistic regression.
This is the default test option.

TESTODDSRATIO=number-list
specifies the odds ratio for the predictor variable being tested in the full model (including variables in
the TESTPREDICTOR= and COVARIATES= options). If the response variable is coded as Y = 1 for
success and Y = 0 for failure, then the odds ratio for the X being tested is the odds of Y = 1 when X = a
divided by the odds of Y = 1 when X = b, where a and b are determined from the DEFAULTUNIT= and
UNITS= options. Values must be greater than zero. For information about specifying the number-list ,
see the section “Specifying Value Lists in Analysis Statements” on page 6366.

TESTPREDICTOR=name-list
specifies the distribution of the predictor variable being tested, using labels specified with the
VARDIST= option. This distribution is assumed to be independent of the distributions of the co-
variates as defined in the COVARIATES= option. For information about specifying the name-list , see
the section “Specifying Value Lists in Analysis Statements” on page 6366.

TESTREGCOEFF=number-list
specifies the regression coefficient for the predictor variable being tested in the full model including the
covariates specified by the COVARIATES= option. For information about specifying the number-list ,
see the section “Specifying Value Lists in Analysis Statements” on page 6366.

UNITS=(“name” = change-spec < . . . "name" = change-spec >)
specifies the changes in the predictor variables assumed for odds ratios specified with the COV-
ODDSRATIOS= and TESTODDSRATIO= options. Each predictor variable whose name (from
the VARDIST= option) is absent from the UNITS option derives its change value from the DE-
FAULTUNIT= option. This option can be used only if at least one of the COVODDSRATIOS= and
TESTODDSRATIO= options is used.

Valid specifications for change-spec are as follows:

number defines the odds ratio as the ratio of the response variable odds when X = a to the odds when
X = a – number for any constant a.
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<+ | ->SD defines the odds ratio as the ratio of the odds when X = a to the odds when X = a – � (or
X = a + � , if SD is preceded by a minus sign (–)) for any constant a, where � is the standard
deviation of X (as determined from the VARDIST= option).

multiple*SD defines the odds ratio as the ratio of the odds when X = a to the odds when X = a –
multiple �� for any constant a, where � is the standard deviation of X (as determined from the
VARDIST= option).

PERCENTILES(p1, p2) defines the odds ratio as the ratio of the odds when X is equal to its p2�
100th percentile to the odds when X is equal to its p1� 100th percentile (where the percentiles
are determined from the distribution specified in the VARDIST= option). Values for p1 and p2
must be strictly between 0 and 1.

Each unit value must be nonzero.

VARDIST("label")=distribution (parameters)
defines a distribution for a predictor variable.

For the VARDIST= option,

label identifies the variable distribution in the output and with the COVARIATES= and
TESTPREDICTOR= options.

distribution specifies the distributional form of the variable.

parameters specifies one or more parameters associated with the distribution.

The distributions and parameters are named and defined in the same way as the distributions and
arguments in the CDF SAS function; for more information, see SAS Language Reference: Dictionary.
Choices for distributional forms and their parameters are as follows:

ORDINAL ((values) : (probabilities)) is an ordered categorical distribution. The values are any
numbers separated by spaces. The probabilities are numbers between 0 and 1 (inclusive)
separated by spaces. Their sum must be exactly 1. The number of probabilities must match the
number of values.

BETA (a, b <, l , r >) is a beta distribution with shape parameters a and b and optional location
parameters l and r . The values of a and b must be greater than 0, and l must be less than r . The
default values for l and r are 0 and 1, respectively.

BINOMIAL (p, n) is a binomial distribution with probability of success p and number of independent
Bernoulli trials n. The value of p must be greater than 0 and less than 1, and n must be an integer
greater than 0. If n = 1, then the distribution is binary.

EXPONENTIAL (�) is an exponential distribution with scale �, which must be greater than 0.

GAMMA (a, �) is a gamma distribution with shape a and scale �. The values of a and � must be
greater than 0.

LAPLACE (� , �) is a Laplace distribution with location � and scale �. The value of � must be
greater than 0.

LOGISTIC (� , �) is a logistic distribution with location � and scale �. The value of �must be greater
than 0.
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LOGNORMAL (� , �) is a lognormal distribution with location � and scale �. The value of � must
be greater than 0.

NORMAL (� , �) is a normal distribution with mean � and standard deviation �. The value of � must
be greater than 0.

POISSON (m) is a Poisson distribution with mean m. The value of m must be greater than 0.

UNIFORM (l , r ) is a uniform distribution on the interval Œ l , r �, where l < r .

Restrictions on Option Combinations

To specify the intercept in the full model, choose one of the following two parameterizations:

• intercept (using the INTERCEPT= options)

• Prob(Y = 1) when all predictors are equal to their means (using the RESPONSEPROB= option)

To specify the effect associated with the predictor variable being tested, choose one of the following two
parameterizations:

• odds ratio (using the TESTODDSRATIO= options)

• regression coefficient (using the TESTREGCOEFFS= option)

To describe the effects of the covariates in the full model, choose one of the following two parameterizations:

• odds ratios (using the COVODDSRATIOS= options)

• regression coefficients (using the COVREGCOEFFS= options)

Option Groups for Common Analyses

This section summarizes the syntax for the common analyses supported in the LOGISTIC statement.

Likelihood Ratio Chi-Square Test for One Predictor
You can express effects in terms of response probability and odds ratios, as in the following statements:

proc power;
logistic

vardist("x1a") = normal(0, 2)
vardist("x1b") = normal(0, 3)
vardist("x2") = poisson(7)
vardist("x3a") = ordinal((-5 0 5) : (.3 .4 .3))
vardist("x3b") = ordinal((-5 0 5) : (.4 .3 .3))
testpredictor = "x1a" "x1b"
covariates = "x2" | "x3a" "x3b"
responseprob = 0.15
testoddsratio = 1.75
covoddsratios = (2.1 1.4)
ntotal = 100
power = .;

run;
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The VARDIST= options define the distributions of the predictor variables. The TESTPREDICTOR=
option specifies two scenarios for the test predictor distribution, Normal(10,2) and Normal(10,3). The
COVARIATES= option specifies two covariates, the first with a Poisson(7) distribution. The second covariate
has an ordinal distribution on the values –5, 0, and 5 with two scenarios for the associated probabilities: (.3,
.4, .3) and (.4, .3, .3). The response probability in the full model with all variables equal to zero is specified by
the RESPONSEPROB= option as 0.15. The odds ratio for a unit decrease in the tested predictor is specified
by the TESTODDSRATIO= option to be 1.75. Corresponding odds ratios for the two covariates in the full
model are specified by the COVODDSRATIOS= option to be 2.1 and 1.4. The POWER=. option requests a
solution for the power at a sample size of 100 as specified by the NTOTAL= option.

Default values of the TEST= and ALPHA= options specify a likelihood ratio test of the first predictor with a
significance level of 0.05. The default of DEFAULTUNIT=1 specifies that all odds ratios are defined in terms
of unit changes in predictors. The default of DEFAULTNBINS=10 specifies that each of the three predictor
variables is discretized into a distribution with 10 categories in internal calculations.

You can also express effects in terms of regression coefficients, as in the following statements:

proc power;
logistic

vardist("x1a") = normal(0, 2)
vardist("x1b") = normal(0, 3)
vardist("x2") = poisson(7)
vardist("x3a") = ordinal((-5 0 5) : (.3 .4 .3))
vardist("x3b") = ordinal((-5 0 5) : (.4 .3 .3))
testpredictor = "x1a" "x1b"
covariates = "x2" | "x3a" "x3b"
intercept = -6.928162
testregcoeff = 0.5596158
covregcoeffs = (0.7419373 0.3364722)
ntotal = 100
power = .;

run;

The regression coefficients for the tested predictor (TESTREGCOEFF=0.5596158) and covariates (COV-
REGCOEFFS=(0.7419373 0.3364722)) are determined by taking the logarithm of the corresponding odds
ratios. The intercept in the full model is specified as –6.928162 by the INTERCEPT= option. This number
is calculated according to the formula at the end of “Analyses in the LOGISTIC Statement” on page 6374,
which expresses the intercept in terms of the response probability, regression coefficients, and predictor
means:

Intercept D log
�

0:15

1 � 0:15

�
� .0:5596158.0/C 0:7419373.7/C 0:3364722.0//

MULTREG Statement
MULTREG < options > ;

The MULTREG statement performs power and sample size analyses for Type III F tests of sets of predictors
in multiple linear regression, assuming either fixed or normally distributed predictors.
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Summary of Options

Table 77.4 summarizes the options available in the MULTREG statement.

Table 77.4 MULTREG Statement Options

Option Description

Define analysis
TEST= Specifies the statistical analysis

Specify analysis information
ALPHA= Specifies the significance level
MODEL= Specifies the assumed distribution of the predictors
NFULLPREDICTORS= Specifies the number of predictors in the full model
NOINT Specifies a no-intercept model
NREDUCEDPREDICTORS= Specifies the number of predictors in the reduced model
NTESTPREDICTORS= Specifies the number of predictors being tested

Specify effects
PARTIALCORR= Specifies the partial correlation
RSQUAREDIFF= Specifies the difference in R2

RSQUAREFULL= Specifies the R2 of the full model
RSQUAREREDUCED= Specifies the R2 of the reduced model

Specify sample size
NFRACTIONAL Enables fractional input and output for sample sizes
NTOTAL= Specifies the sample size

Specify power
POWER= Specifies the desired power

Control ordering in output
OUTPUTORDER= Controls the order of parameters

Table 77.5 summarizes the valid result parameters in the MULTREG statement.

Table 77.5 Summary of Result Parameters in the MULTREG
Statement

Analyses Solve For Syntax

TEST=TYPE3 Power POWER=.
Sample size NTOTAL=.

Dictionary of Options

ALPHA=number-list
specifies the level of significance of the statistical test. The default is 0.05, corresponding to the usual
0.05 � 100% = 5% level of significance. For information about specifying the number-list , see the
section “Specifying Value Lists in Analysis Statements” on page 6366.
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MODEL=keyword-list
specifies the assumed distribution of the tested predictors. MODEL=FIXED indicates a fixed predictor
distribution. MODEL=RANDOM (the default) indicates a joint multivariate normal distribution
for the response and tested predictors. You can use the aliases CONDITIONAL for FIXED and
UNCONDITIONAL for RANDOM. For information about specifying the keyword-list , see the section
“Specifying Value Lists in Analysis Statements” on page 6366.

FIXED fixed predictors

RANDOM random (multivariate normal) predictors

NFRACTIONAL

NFRAC
enables fractional input and output for sample sizes. See the section “Sample Size Adjustment
Options” on page 6369 for information about the ramifications of the presence (and absence) of the
NFRACTIONAL option.

NFULLPREDICTORS=number-list

NFULLPRED=number-list
specifies the number of predictors in the full model, not counting the intercept. For information
about specifying the number-list , see the section “Specifying Value Lists in Analysis Statements” on
page 6366.

NOINT
specifies a no-intercept model (for both full and reduced models). By default, the intercept is included
in the model. If you want to test the intercept, you can specify the NOINT option and simply consider
the intercept to be one of the predictors being tested. For information about specifying the number-list ,
see the section “Specifying Value Lists in Analysis Statements” on page 6366.

NREDUCEDPREDICTORS=number-list

NREDUCEDPRED=number-list

NREDPRED=number-list
specifies the number of predictors in the reduced model, not counting the intercept. This is the
same as the difference between values of the NFULLPREDICTORS= and NTESTPREDICTORS=
options. Note that supplying a value of 0 is the same as specifying an F test of a Pearson correlation.
This option cannot be used at the same time as the NTESTPREDICTORS= option. For information
about specifying the number-list , see the section “Specifying Value Lists in Analysis Statements” on
page 6366.

NTESTPREDICTORS=number-list

NTESTPRED=number-list
specifies the number of predictors being tested. This is the same as the difference between values
of the NFULLPREDICTORS= and NREDUCEDPREDICTORS= options. Note that supplying
identical values for the NTESTPREDICTORS= and NFULLPREDICTORS= options is the same as
specifying an F test of a Pearson correlation. This option cannot be used at the same time as the
NREDUCEDPREDICTORS= option. For information about specifying the number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 6366.
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NTOTAL=number-list
specifies the sample size or requests a solution for the sample size with a missing value (NTOTAL=.).
The minimum acceptable value for the sample size depends on the MODEL=, NOINT, NFULLPRE-
DICTORS=, NTESTPREDICTORS=, and NREDUCEDPREDICTORS= options. It ranges from p +
1 to p + 3, where p is the value of the NFULLPREDICTORS option. For further information about
minimum NTOTAL values, see Table 77.30. For information about specifying the number-list , see the
section “Specifying Value Lists in Analysis Statements” on page 6366.

OUTPUTORDER=INTERNAL | REVERSE | SYNTAX
controls how the input and default analysis parameters are ordered in the output. OUT-
PUTORDER=INTERNAL (the default) arranges the parameters in the output according to the following
order of their corresponding options:

• MODEL=
• NFULLPREDICTORS=
• NTESTPREDICTORS=
• NREDUCEDPREDICTORS=
• ALPHA=
• PARTIALCORR=
• RSQUAREFULL=
• RSQUAREREDUCED=
• RSQUAREDIFF=
• NTOTAL=
• POWER=

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the same or-
der in which their corresponding options are specified in the MULTREG statement. The OUT-
PUTORDER=REVERSE option arranges the parameters in the output in the reverse of the order in
which their corresponding options are specified in the MULTREG statement.

PARTIALCORR=number-list

PCORR=number-list
specifies the partial correlation between the tested predictors and the response, adjusting for any other
predictors in the model. For information about specifying the number-list , see the section “Specifying
Value Lists in Analysis Statements” on page 6366.

POWER=number-list
specifies the desired power of the test or requests a solution for the power with a missing value
(POWER=.). The power is expressed as a probability, a number between 0 and 1, rather than as a
percentage. For information about specifying the number-list , see the section “Specifying Value Lists
in Analysis Statements” on page 6366.

RSQUAREDIFF=number-list

RSQDIFF=number-list
specifies the difference in R2 between the full and reduced models. This is equivalent to the proportion
of variation explained by the predictors you are testing. It is also equivalent to the squared semipartial
correlation of the tested predictors with the response. For information about specifying the number-list ,
see the section “Specifying Value Lists in Analysis Statements” on page 6366.
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RSQUAREFULL=number-list

RSQFULL=number-list
specifies the R2 of the full model, where R2 is the proportion of variation explained by the model.
For information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

RSQUAREREDUCED=number-list

RSQREDUCED=number-list

RSQRED=number-list
specifies the R2 of the reduced model, where R2 is the proportion of variation explained by the
model. If the reduced model is an empty or intercept-only model (in other words, if NREDUCEDPRE-
DICTORS=0 or NTESTPREDICTORS=NFULLPREDICTORS), then RSQUAREREDUCED=0 is
assumed. For information about specifying the number-list , see the section “Specifying Value Lists in
Analysis Statements” on page 6366.

TEST=TYPE3
specifies a Type III F test of a set of predictors adjusting for any other predictors in the model. This is
the default test option.

Restrictions on Option Combinations

To specify the number of predictors, use any two of these three options:

• the number of predictors in the full model (NFULLPREDICTORS=)

• the number of predictors in the reduced model (NREDUCEDPREDICTORS=)

• the number of predictors being tested (NTESTPREDICTORS=)

To specify the effect, choose one of the following parameterizations:

• partial correlation (by using the PARTIALCORR= option)

• R2 for the full and reduced models (by using any two of RSQUAREDIFF=, RSQUAREFULL=, and
RSQUAREREDUCED=)

Option Groups for Common Analyses

This section summarizes the syntax for the common analyses supported in the MULTREG statement.

Type III F Test of a Set of Predictors
You can express effects in terms of partial correlation, as in the following statements. Default values of the
TEST=, MODEL=, and ALPHA= options specify a Type III F test with a significance level of 0.05, assuming
normally distributed predictors.
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proc power;
multreg

model = random
nfullpredictors = 7
ntestpredictors = 3
partialcorr = 0.35
ntotal = 100
power = .;

run;

You can also express effects in terms of R2:

proc power;
multreg

model = fixed
nfullpredictors = 7
ntestpredictors = 3
rsquarefull = 0.9
rsquarediff = 0.1
ntotal = .
power = 0.9;

run;

ONECORR Statement
ONECORR < options > ;

The ONECORR statement performs power and sample size analyses for tests of simple and partial Pearson
correlation between two variables. Both Fisher’s z test and the t test are supported.

Summary of Options

Table 77.6 summarizes the options available in the ONECORR statement.

Table 77.6 ONECORR Statement Options

Option Description

Define analysis
DIST= Specifies the underlying distribution assumed for the test statistic
TEST= Specifies the statistical analysis

Specify analysis information
ALPHA= Specifies the significance level
MODEL= Specifies the assumed distribution of the variables
NPARTIALVARS= Specifies the number of variables adjusted for in the correlation
NULLCORR= Specifies the null value of the correlation
SIDES= Specifies the number of sides and the direction of the statistical test

Specify effects
CORR= Specifies the correlation
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Table 77.6 continued

Option Description

Specify sample size
NFRACTIONAL Enables fractional input and output for sample sizes
NTOTAL= Specifies the sample size

Specify power
POWER= Specifies the desired power of the test

Control ordering in output
OUTPUTORDER= Controls the output order of parameters

Table 77.7 summarizes the valid result parameters in the ONECORR statement.

Table 77.7 Summary of Result Parameters in the ONECORR
Statement

Analyses Solve For Syntax

TEST=PEARSON Power POWER=.
Sample size NTOTAL=.

Dictionary of Options

ALPHA=number-list
specifies the level of significance of the statistical test. The default is 0.05, corresponding to the usual
0.05 � 100% = 5% level of significance. For information about specifying the number-list , see the
section “Specifying Value Lists in Analysis Statements” on page 6366.

CORR=number-list
specifies the correlation between two variables, possibly adjusting for other variables as determined
by the NPARTIALVARS= option. For information about specifying the number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 6366.

DIST=FISHERZ | T
specifies the underlying distribution assumed for the test statistic. FISHERZ corresponds to Fisher’s z
normalizing transformation of the correlation coefficient. T corresponds to the t transformation of the
correlation coefficient. Note that DIST=T is equivalent to analyses in the MULTREG statement with
NTESTPREDICTORS=1. The default value is FISHERZ.

MODEL=keyword-list
specifies the assumed distribution of the first variable when DIST=T. The second variable is assumed
to have a normal distribution. MODEL=FIXED indicates a fixed distribution. MODEL=RANDOM
(the default) indicates a joint bivariate normal distribution with the second variable. You can use the
aliases CONDITIONAL for FIXED and UNCONDITIONAL for RANDOM. This option can be used
only for DIST=T. For information about specifying the keyword-list , see the section “Specifying Value
Lists in Analysis Statements” on page 6366.
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FIXED fixed variables

RANDOM random (bivariate normal) variables

NFRACTIONAL

NFRAC
enables fractional input and output for sample sizes. See the section “Sample Size Adjustment
Options” on page 6369 for information about the ramifications of the presence (and absence) of the
NFRACTIONAL option.

NPARTIALVARS=number-list

NPVARS=number-list
specifies the number of variables adjusted for in the correlation between the two primary variables.
The default value is 0, corresponding to a simple correlation. For information about specifying the
number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

NTOTAL=number-list
specifies the sample size or requests a solution for the sample size with a missing value (NTOTAL=.).
Values for the sample size must be at least p + 3 when DIST=T and MODEL=CONDITIONAL, and at
least p + 4 when either DIST=FISHER or when DIST=T and MODEL=UNCONDITIONAL, where p
is the value of the NPARTIALVARS option. For information about specifying the number-list , see the
section “Specifying Value Lists in Analysis Statements” on page 6366.

NULLCORR=number-list

NULLC=number-list
specifies the null value of the correlation. The default value is 0. This option can be used only with
the DIST=FISHERZ analysis. For information about specifying the number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 6366.

OUTPUTORDER=INTERNAL | REVERSE | SYNTAX
controls how the input and default analysis parameters are ordered in the output. OUT-
PUTORDER=INTERNAL (the default) arranges the parameters in the output according to the following
order of their corresponding options:

• MODEL=
• SIDES=
• NULL=
• ALPHA=
• NPARTIALVARS=
• CORR=
• NTOTAL=
• POWER=

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the same or-
der in which their corresponding options are specified in the ONECORR statement. The OUT-
PUTORDER=REVERSE option arranges the parameters in the output in the reverse of the order in
which their corresponding options are specified in the ONECORR statement.
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POWER=number-list
specifies the desired power of the test or requests a solution for the power with a missing value
(POWER=.). The power is expressed as a probability, a number between 0 and 1, rather than as a
percentage. For information about specifying the number-list , see the section “Specifying Value Lists
in Analysis Statements” on page 6366.

SIDES=keyword-list
specifies the number of sides (or tails) and the direction of the statistical test. Valid keywords are

1 one-sided with alternative hypothesis in same direction as effect

2 two-sided

U upper one-sided with alternative greater than null value

L lower one-sided with alternative less than null value

The default value is 2.

TEST=PEARSON
specifies a test of the Pearson correlation coefficient between two variables, possibly adjusting for
other variables. This is the default test option.

Option Groups for Common Analyses

This section summarizes the syntax for the common analyses supported in the ONECORR statement.

Fisher’s z Test for Pearson Correlation
The following statements demonstrate a power computation for Fisher’s z test for correlation. Default values
of TEST=PEARSON, ALPHA=0.05, SIDES=2, and NPARTIALVARS=0 are assumed.

proc power;
onecorr dist=fisherz

nullcorr = 0.15
corr = 0.35
ntotal = 180
power = .;

run;

t Test for Pearson Correlation
The following statements demonstrate a sample size computation for the t test for correlation. Default values
of TEST=PEARSON, MODEL=RANDOM, ALPHA=0.05, and SIDES=2 are assumed.

proc power;
onecorr dist=t

npartialvars = 4
corr = 0.45
ntotal = .
power = 0.85;

run;
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ONESAMPLEFREQ Statement
ONESAMPLEFREQ < options > ;

The ONESAMPLEFREQ statement performs power and sample size analyses for exact and approximate
tests (including equivalence, noninferiority, and superiority) and confidence interval precision for a single
binomial proportion.

Summary of Options

Table 77.8 summarizes the options available in the ONESAMPLEFREQ statement.

Table 77.8 ONESAMPLEFREQ Statement Options

Option Description

Define analysis
CI= Specifies an analysis of precision of a confidence interval
TEST= Specifies the statistical analysis

Specify analysis information
ALPHA= Specifies the significance level
EQUIVBOUNDS= Specifies the lower and upper equivalence bounds
LOWER= Specifies the lower equivalence bound
MARGIN= Specifies the equivalence or noninferiority or superiority margin
NULLPROPORTION= Specifies the null proportion
SIDES= Specifies the number of sides and the direction of the statistical test
UPPER= Specifies the upper equivalence bound

Specify effect
HALFWIDTH= Specifies the desired confidence interval half-width
PROPORTION= Specifies the binomial proportion

Specify variance estimation
VAREST= Specifies how the variance is computed

Specify sample size
NFRACTIONAL Enables fractional input and output for sample sizes
NTOTAL= Specifies the sample size

Specify power and related probabilities
POWER= Specifies the desired power of the test
PROBWIDTH= Specifies the probability of obtaining a confidence interval half-width less

than or equal to the value specified by HALFWIDTH=

Choose computational method
METHOD= Specifies the computational method

Control ordering in output
OUTPUTORDER= Controls the output order of parameters

Table 77.9 summarizes the valid result parameters for different analyses in the ONESAMPLEFREQ statement.
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Table 77.9 Summary of Result Parameters in the
ONESAMPLEFREQ Statement

Analyses Solve For Syntax

CI=WILSON Prob(width) PROBWIDTH=.

CI=AGRESTICOULL Prob(width) PROBWIDTH=.

CI=JEFFREYS Prob(width) PROBWIDTH=.

CI=EXACT Prob(width) PROBWIDTH=.

CI=WALD Prob(width) PROBWIDTH=.

CI=WALD_CORRECT Prob(width) PROBWIDTH=.

TEST=ADJZ METHOD=EXACT Power POWER=.

TEST=ADJZ METHOD=NORMAL Power POWER=.
Sample size NTOTAL=.

TEST=EQUIV_ADJZ METHOD=EXACT Power POWER=.

TEST=EQUIV_ADJZ METHOD=NORMAL Power POWER=.
Sample size NTOTAL=.

TEST=EQUIV_EXACT Power POWER=.

TEST=EQUIV_Z METHOD=EXACT Power POWER=.

TEST=EQUIV_Z METHOD=NORMAL Power POWER=.
Sample size NTOTAL=.

TEST=EXACT Power POWER=.

TEST=Z METHOD=EXACT Power POWER=.

TEST=Z METHOD=NORMAL Power POWER=.
Sample size NTOTAL=.

Dictionary of Options

ALPHA=number-list
specifies the level of significance of the statistical test. The default is 0.05, corresponding to the usual
0.05 � 100% = 5% level of significance. If the CI= and SIDES=1 options are used, then the value must
be less than 0.5. For information about specifying the number-list , see the section “Specifying Value
Lists in Analysis Statements” on page 6366.

CI

CI=AGRESTICOULL | AC

CI=JEFFREYS

CI=EXACT | CLOPPERPEARSON | CP

CI=WALD

CI=WALD_CORRECT

CI=WILSON | SCORE
specifies an analysis of precision of a confidence interval for the sample binomial proportion.



6294 F Chapter 77: The POWER Procedure

The value of the CI= option specifies the type of confidence interval. The CI=AGRESTICOULL option
is a generalization of the “Adjusted Wald / add 2 successes and 2 failures” interval of Agresti and
Coull (1998) and is presented in Brown, Cai, and DasGupta (2001). It corresponds to the TABLES /
BINOMIAL (AGRESTICOULL) option in PROC FREQ. The CI=JEFFREYS option specifies the
equal-tailed Jeffreys prior Bayesian interval, corresponding to the TABLES / BINOMIAL (JEFFREYS)
option in PROC FREQ. The CI=EXACT option specifies the exact Clopper-Pearson confidence interval
based on enumeration, corresponding to the TABLES / BINOMIAL (EXACT) option in PROC FREQ.
The CI=WALD option specifies the confidence interval based on the Wald test (also commonly called
the z test or normal-approximation test), corresponding to the TABLES / BINOMIAL (WALD) option
in PROC FREQ. The CI=WALD_CORRECT option specifies the confidence interval based on the
Wald test with continuity correction, corresponding to the TABLES / BINOMIAL (CORRECT WALD)
option in PROC FREQ. The CI=WILSON option (the default) specifies the confidence interval based
on the score statistic, corresponding to the TABLES / BINOMIAL (WILSON) option in PROC FREQ.

Instead of power, the relevant probability for this analysis is the probability of achieving a desired
precision. Specifically, it is the probability that the half-width of the confidence interval will be at most
the value specified by the HALFWIDTH= option.

EQUIVBOUNDS=grouped-number-list
specifies the lower and upper equivalence bounds, representing the same information as the combination
of the LOWER= and UPPER= options but grouping them together. The EQUIVBOUNDS= option
can be used only with equivalence analyses (TEST=EQUIV_ADJZ | EQUIV_EXACT | EQUIV_Z).
Values must be strictly between 0 and 1. For information about specifying the grouped-number-list ,
see the section “Specifying Value Lists in Analysis Statements” on page 6366.

HALFWIDTH=number-list
specifies the desired confidence interval half-width. The half-width for a two-sided interval is the
length of the confidence interval divided by two. This option can be used only with the CI= analysis.
For information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

LOWER=number-list
specifies the lower equivalence bound for the binomial proportion. The LOWER= option can be used
only with equivalence analyses (TEST=EQUIV_ADJZ | EQUIV_EXACT | EQUIV_Z). Values must be
strictly between 0 and 1. For information about specifying the number-list , see the section “Specifying
Value Lists in Analysis Statements” on page 6366.

MARGIN=number-list
specifies the equivalence or noninferiority or superiority margin, depending on the analysis.

The MARGIN= option can be used with one-sided analyses (SIDES = 1 | U | L), in which case it
specifies the margin added to the null proportion value in the hypothesis test, resulting in a noninferiority
or superiority test (depending on the agreement between the effect and hypothesis directions and the
sign of the margin). A test with a null proportion p0 and a margin m is the same as a test with null
proportion p0 Cm and no margin.

The MARGIN= option can also be used with equivalence analyses (TEST=EQUIV_ADJZ |
EQUIV_EXACT | EQUIV_Z) when the NULLPROPORTION= option is used, in which case it
specifies the lower and upper equivalence bounds as p0 �m and p0 Cm, where p0 is the value of the
NULLPROPORTION= option and m is the value of the MARGIN= option.
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The MARGIN= option cannot be used in conjunction with the SIDES=2 option. (Instead, specify an
equivalence analysis by using TEST=EQUIV_ADJZ or TEST=EQUIV_EXACT or TEST=EQUIV_Z).
Also, the MARGIN= option cannot be used with the CI= option.

Values must be strictly between –1 and 1. In addition, the sum of NULLPROPORTION and MARGIN
must be strictly between 0 and 1 for one-sided analyses, and the derived lower equivalence bound (2 *
NULLPROPORTION – MARGIN) must be strictly between 0 and 1 for equivalence analyses.

For information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

METHOD=EXACT | NORMAL
specifies the computational method. METHOD=EXACT (the default) computes exact results by using
the binomial distribution. METHOD=NORMAL computes approximate results by using the normal
approximation to the binomial distribution.

NFRACTIONAL

NFRAC
enables fractional input and output for sample sizes. This option is invalid when the METHOD=EXACT
option is specified. See the section “Sample Size Adjustment Options” on page 6369 for information
about the ramifications of the presence (and absence) of the NFRACTIONAL option.

NTOTAL=number-list
specifies the sample size or requests a solution for the sample size with a missing value (NTOTAL=.).
For information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

NULLPROPORTION=number-list

NULLP=number-list
specifies the null proportion. A value of 0.5 corresponds to the sign test. For information about speci-
fying the number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

OUTPUTORDER=INTERNAL | REVERSE | SYNTAX
controls how the input and default analysis parameters are ordered in the output. OUT-
PUTORDER=INTERNAL (the default) arranges the parameters in the output according to the following
order of their corresponding options:

• SIDES=
• NULLPROPORTION=
• ALPHA=
• PROPORTION=
• NTOTAL=
• POWER=

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the same order in
which their corresponding options are specified in the ONESAMPLEFREQ statement. The OUT-
PUTORDER=REVERSE option arranges the parameters in the output in the reverse of the order in
which their corresponding options are specified in the ONESAMPLEFREQ statement.
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POWER=number-list
specifies the desired power of the test or requests a solution for the power with a missing value
(POWER=.). The power is expressed as a probability, a number between 0 and 1, rather than as a
percentage. For information about specifying the number-list , see the section “Specifying Value Lists
in Analysis Statements” on page 6366.

PROBWIDTH=number-list
specifies the desired probability of obtaining a confidence interval half-width less than or equal to the
value specified by the HALFWIDTH= option. A missing value (PROBWIDTH=.) requests a solution
for this probability. Values are expressed as probabilities (for example, 0.9) rather than percentages.
This option can be used only with the CI= analysis. For information about specifying the number-list ,
see the section “Specifying Value Lists in Analysis Statements” on page 6366.

PROPORTION=number-list

P=number-list
specifies the binomial proportion—that is, the expected proportion of successes in the hypothetical
binomial trial. For information about specifying the number-list , see the section “Specifying Value
Lists in Analysis Statements” on page 6366.

SIDES=keyword-list
specifies the number of sides (or tails) and the direction of the statistical test. For information about
specifying the keyword-list , see the section “Specifying Value Lists in Analysis Statements” on
page 6366. Valid keywords are as follows:

1 one-sided with alternative hypothesis in same direction as effect

2 two-sided

U upper one-sided with alternative greater than null value

L lower one-sided with alternative less than null value

If the effect size is zero, then SIDES=1 is not permitted; instead, specify the direction of the test
explicitly in this case with either SIDES=L or SIDES=U. The default value is 2.

TEST= ADJZ | EQUIV_ADJZ | EQUIV_EXACT | EQUIV_Z | EXACT | Z
TEST

specifies the statistical analysis. TEST=ADJZ specifies a normal-approximate z test with continu-
ity adjustment. TEST=EQUIV_ADJZ specifies a normal-approximate two-sided equivalence test
based on the z statistic with continuity adjustment and a TOST (two one-sided tests) procedure.
TEST=EQUIV_EXACT specifies the exact binomial two-sided equivalence test based on a TOST (two
one-sided tests) procedure. TEST=EQUIV_Z specifies a normal-approximate two-sided equivalence
test based on the z statistic without any continuity adjustment, which is the same as the chi-square
statistic, and a TOST (two one-sided tests) procedure. TEST or TEST=EXACT (the default) speci-
fies the exact binomial test. TEST=Z specifies a normal-approximate z test without any continuity
adjustment, which is the same as the chi-square test when SIDES=2.

UPPER=number-list
specifies the upper equivalence bound for the binomial proportion. The UPPER= option can be used
only with equivalence analyses (TEST=EQUIV_ADJZ | EQUIV_EXACT | EQUIV_Z). Values must be
strictly between 0 and 1. For information about specifying the number-list , see the section “Specifying
Value Lists in Analysis Statements” on page 6366.
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VAREST=keyword-list
specifies how the variance is computed in the test statistic for the TEST=Z, TEST=ADJZ,
TEST=EQUIV_Z, and TEST=EQUIV_ADJZ analyses. For information about specifying the keyword-
list , see the section “Specifying Value Lists in Analysis Statements” on page 6366. Valid keywords are
as follows:

NULL (the default) estimates the variance by using the null proportion(s) (specified by some com-
bination of the NULLPROPORTION=, MARGIN=, LOWER=, and UPPER= options). For
TEST=Z and TEST=ADJZ, the null proportion is the value of the NULLPROPORTION=
option plus the value of the MARGIN= option (if it is used). For TEST=EQUIV_Z and
TEST=EQUIV_ADJZ, there are two null proportions, corresponding to the lower and upper
equivalence bounds, one for each test in the TOST (two one-sided tests) procedure.

SAMPLE estimates the variance by using the observed sample proportion.

This option is ignored if the analysis is one other than TEST=Z, TEST=ADJZ, TEST=EQUIV_Z, or
TEST=EQUIV_ADJZ.

Option Groups for Common Analyses

This section summarizes the syntax for the common analyses supported in the ONESAMPLEFREQ statement.

Exact Test of a Binomial Proportion
The following statements demonstrate a power computation for the exact test of a binomial proportion.
Defaults for the SIDES= and ALPHA= options specify a two-sided test with a 0.05 significance level.

proc power;
onesamplefreq test=exact

nullproportion = 0.2
proportion = 0.3
ntotal = 100
power = .;

run;

z Test
The following statements demonstrate a sample size computation for the z test of a binomial proportion.
Defaults for the SIDES=, ALPHA=, and VAREST= options specify a two-sided test with a 0.05 significance
level that uses the null variance estimate.

proc power;
onesamplefreq test=z method=normal

nullproportion = 0.8
proportion = 0.85
sides = u
ntotal = .
power = .9;

run;
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z Test with Continuity Adjustment
The following statements demonstrate a sample size computation for the z test of a binomial proportion with
a continuity adjustment. Defaults for the SIDES=, ALPHA=, and VAREST= options specify a two-sided test
with a 0.05 significance level that uses the null variance estimate.

proc power;
onesamplefreq test=adjz method=normal

nullproportion = 0.15
proportion = 0.1
sides = l
ntotal = .
power = .9;

run;

Exact Equivalence Test for a Binomial Proportion
You can specify equivalence bounds by using the EQUIVBOUNDS= option, as in the following statements:

proc power;
onesamplefreq test=equiv_exact

proportion = 0.35
equivbounds = (0.2 0.4)
ntotal = 50
power = .;

run;

You can also specify the combination of NULLPROPORTION= and MARGIN= options:

proc power;
onesamplefreq test=equiv_exact

proportion = 0.35
nullproportion = 0.3
margin = 0.1
ntotal = 50
power = .;

run;

Finally, you can specify the combination of LOWER= and UPPER= options:

proc power;
onesamplefreq test=equiv_exact

proportion = 0.35
lower = 0.2
upper = 0.4
ntotal = 50
power = .;

run;

Note that the three preceding analyses are identical.

Exact Noninferiority Test for a Binomial Proportion
A noninferiority test corresponds to an upper one-sided test with a negative-valued margin, as demonstrated
in the following statements:
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proc power;
onesamplefreq test=exact

sides = U
proportion = 0.15
nullproportion = 0.1
margin = -0.02
ntotal = 130
power = .;

run;

Exact Superiority Test for a Binomial Proportion
A superiority test corresponds to an upper one-sided test with a positive-valued margin, as demonstrated in
the following statements:

proc power;
onesamplefreq test=exact

sides = U
proportion = 0.15
nullproportion = 0.1
margin = 0.02
ntotal = 130
power = .;

run;

Confidence Interval Precision
The following statements performs a confidence interval precision analysis for the Wilson score-based
confidence interval for a binomial proportion. The default value of the ALPHA= option specifies a confidence
level of 0.95.

proc power;
onesamplefreq ci=wilson

halfwidth = 0.1
proportion = 0.3
ntotal = 70
probwidth = .;

run;

Restrictions on Option Combinations

To specify the equivalence bounds for TEST=EQUIV_ADJZ, TEST=EQUIV_EXACT, and TEST=EQUIV_Z,
use any of these three option sets:

• lower and upper equivalence bounds, using the EQUIVBOUNDS= option

• lower and upper equivalence bounds, using the LOWER= and UPPER= options

• null proportion (NULLPROPORTION=) and margin (MARGIN=)
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ONESAMPLEMEANS Statement
ONESAMPLEMEANS < options > ;

The ONESAMPLEMEANS statement performs power and sample size analyses for t tests, equivalence tests,
and confidence interval precision involving one sample.

Summary of Options

Table 77.10 summarizes the options available in the ONESAMPLEMEANS statement.

Table 77.10 ONESAMPLEMEANS Statement Options

Option Description

Define analysis
CI= Specifies an analysis of precision of the confidence interval for the mean
DIST= Specifies the underlying distribution assumed for the test statistic
TEST= Specifies the statistical analysis

Specify analysis information
ALPHA= Specifies the significance level
LOWER= Specifies the lower equivalence bound for the mean
NULLMEAN= Specifies the null mean
SIDES= Specifies the number of sides and the direction of the statistical test
UPPER= Specifies the upper equivalence bound for the mean

Specify effect
HALFWIDTH= Specifies the desired confidence interval half-width
MEAN= Specifies the mean

Specify variability
CV= Specifies the coefficient of variation
STDDEV= Specifies the standard deviation

Specify sample size
NFRACTIONAL Enables fractional input and output for sample sizes
NTOTAL= Specifies the sample size

Specify power and related probabilities
POWER= Specifies the desired power of the test
PROBTYPE= Specifies the type of probability for the PROBWIDTH= option
PROBWIDTH= Specifies the probability of obtaining a confidence interval half-width less

than or equal to the value specified by HALFWIDTH=

Control ordering in output
OUTPUTORDER= Controls the output order of parameters

Table 77.11 summarizes the valid result parameters for different analyses in the ONESAMPLEMEANS
statement.
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Table 77.11 Summary of Result Parameters in the
ONESAMPLEMEANS Statement

Analyses Solve For Syntax

TEST=T DIST=NORMAL Power POWER=.
Sample size NTOTAL=.
Alpha ALPHA=.
Mean MEAN=.
Standard Deviation STDDEV=.

TEST=T DIST=LOGNORMAL Power POWER=.
Sample size NTOTAL=.

TEST=EQUIV Power POWER=.
Sample size NTOTAL=.

CI=T Prob(width) PROBWIDTH=.
Sample size NTOTAL=.

Dictionary of Options

ALPHA=number-list
specifies the level of significance of the statistical test or requests a solution for alpha with a missing
value (ALPHA=.). The default is 0.05, corresponding to the usual 0.05 � 100% = 5% level of
significance. If the CI= and SIDES=1 options are used, then the value must be less than 0.5. For
information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

CI

CI=T
specifies an analysis of precision of the confidence interval for the mean. Instead of power, the relevant
probability for this analysis is the probability of achieving a desired precision. Specifically, it is the
probability that the half-width of the confidence interval will be at most the value specified by the
HALFWIDTH= option. If neither the CI= option nor the TEST= option is used, the default is TEST=T.

CV=number-list
specifies the coefficient of variation, defined as the ratio of the standard deviation to the mean on
the original data scale. You can use this option only with DIST=LOGNORMAL. For information
about specifying the number-list , see the section “Specifying Value Lists in Analysis Statements” on
page 6366.

DIST=LOGNORMAL | NORMAL
specifies the underlying distribution assumed for the test statistic. NORMAL corresponds the normal
distribution, and LOGNORMAL corresponds to the lognormal distribution. The default value is
NORMAL.
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HALFWIDTH=number-list
specifies the desired confidence interval half-width. The half-width is defined as the distance between
the point estimate and a finite endpoint. This option can be used only with the CI=T analysis. For
information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

LOWER=number-list
specifies the lower equivalence bound for the mean. This option can be used only with the
TEST=EQUIV analysis. For information about specifying the number-list , see the section “Specifying
Value Lists in Analysis Statements” on page 6366.

MEAN=number-list
specifies the mean, in the original scale, or requests a solution for the mean with a missing value
(MEAN=.). The mean is arithmetic if DIST=NORMAL and geometric if DIST=LOGNORMAL. This
option can be used only with the TEST=T and TEST=EQUIV analyses. For information about specify-
ing the number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

NFRACTIONAL

NFRAC
enables fractional input and output for sample sizes. See the section “Sample Size Adjustment
Options” on page 6369 for information about the ramifications of the presence (and absence) of the
NFRACTIONAL option.

NTOTAL=number-list
specifies the sample size or requests a solution for the sample size with a missing value (NTOTAL=.).
For information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

NULLMEAN=number-list

NULLM=number-list
specifies the null mean, in the original scale (whether DIST=NORMAL or DIST=LOGNORMAL).
The default value is 0 when DIST=NORMAL and 1 when DIST=LOGNORMAL. This option can be
used only with the TEST=T analysis. For information about specifying the number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 6366.

OUTPUTORDER=INTERNAL | REVERSE | SYNTAX
controls how the input and default analysis parameters are ordered in the output. OUT-
PUTORDER=INTERNAL (the default) arranges the parameters in the output according to the following
order of their corresponding options:

• SIDES=
• NULLMEAN=
• LOWER=
• UPPER=
• ALPHA=
• MEAN=
• HALFWIDTH=
• STDDEV=
• CV=
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• NTOTAL=
• POWER=
• PROBTYPE=
• PROBWIDTH=

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the same order
in which their corresponding options are specified in the ONESAMPLEMEANS statement. The
OUTPUTORDER=REVERSE option arranges the parameters in the output in the reverse of the order
in which their corresponding options are specified in the ONESAMPLEMEANS statement.

POWER=number-list
specifies the desired power of the test or requests a solution for the power with a missing value
(POWER=.). The power is expressed as a probability, a number between 0 and 1, rather than as
a percentage. This option can be used only with the TEST=T and TEST=EQUIV analyses. For
information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

PROBTYPE=keyword-list
specifies the type of probability for the PROBWIDTH= option. A value of CONDITIONAL (the
default) indicates the conditional probability that the confidence interval half-width is at most the
value specified by the HALFWIDTH= option, given that the true mean is captured by the confidence
interval. A value of UNCONDITIONAL indicates the unconditional probability that the confidence
interval half-width is at most the value specified by the HALFWIDTH= option. You can use the alias
GIVENVALIDITY for CONDITIONAL. The PROBTYPE= option can be used only with the CI=T
analysis. For information about specifying the keyword-list , see the section “Specifying Value Lists in
Analysis Statements” on page 6366.

CONDITIONAL width probability conditional on interval containing the mean

UNCONDITIONAL unconditional width probability

PROBWIDTH=number-list
specifies the desired probability of obtaining a confidence interval half-width less than or equal to the
value specified by the HALFWIDTH= option. A missing value (PROBWIDTH=.) requests a solution
for this probability. The type of probability is controlled with the PROBTYPE= option. Values are
expressed as probabilities (for example, 0.9) rather than percentages. This option can be used only
with the CI=T analysis. For information about specifying the number-list , see the section “Specifying
Value Lists in Analysis Statements” on page 6366.

SIDES=keyword-list
specifies the number of sides (or tails) and the direction of the statistical test or confidence interval.
For information about specifying the keyword-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366. Valid keywords and their interpretation for the TEST= analyses are as
follows:

1 one-sided with alternative hypothesis in same direction as effect

2 two-sided

U upper one-sided with alternative greater than null value

L lower one-sided with alternative less than null value
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For confidence intervals, SIDES=U refers to an interval between the lower confidence limit and infinity,
and SIDES=L refers to an interval between minus infinity and the upper confidence limit. For both of
these cases and SIDES=1, the confidence interval computations are equivalent. The SIDES= option
can be used only with the TEST=T and CI=T analyses. The default value is 2.

STDDEV=number-list

STD=number-list
specifies the standard deviation, or requests a solution for the standard deviation with a missing value
(STDDEV=.). You can use this option only with DIST=NORMAL. For information about specifying
the number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

TEST=EQUIV | T

TEST
specifies the statistical analysis. TEST=EQUIV specifies an equivalence test of the mean by using a
two one-sided tests (TOST) analysis (Schuirmann 1987). TEST or TEST=T (the default) specifies a t
test on the mean. If neither the TEST= option nor the CI= option is used, the default is TEST=T.

UPPER=number-list
specifies the upper equivalence bound for the mean, in the original scale (whether DIST=NORMAL
or DIST=LOGNORMAL). This option can be used only with the TEST=EQUIV analysis. For
information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

Restrictions on Option Combinations

To define the analysis, choose one of the following parameterizations:

• a statistical test (by using the TEST= option)

• confidence interval precision (by using the CI= option)

Option Groups for Common Analyses

This section summarizes the syntax for the common analyses supported in the ONESAMPLEMEANS
statement.

One-Sample t Test
The following statements demonstrate a power computation for the one-sample t test. Default values for
the DIST=, SIDES=, NULLMEAN=, and ALPHA= options specify a two-sided test for zero mean with a
normal distribution and a significance level of 0.05.

proc power;
onesamplemeans test=t

mean = 7
stddev = 3
ntotal = 50
power = .;

run;
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One-Sample t Test with Lognormal Data
The following statements demonstrate a sample size computation for the one-sample t test for lognormal data.
Default values for the SIDES=, NULLMEAN=, and ALPHA= options specify a two-sided test for unit mean
with a significance level of 0.05.

proc power;
onesamplemeans test=t dist=lognormal

mean = 7
cv = 0.8
ntotal = .
power = 0.9;

run;

Equivalence Test for Mean of Normal Data
The following statements demonstrate a power computation for the TOST equivalence test for a normal mean.
Default values for the DIST= and ALPHA= options specify a normal distribution and a significance level of
0.05.

proc power;
onesamplemeans test=equiv

lower = 2
upper = 7
mean = 4
stddev = 3
ntotal = 100
power = .;

run;

Equivalence Test for Mean of Lognormal Data
The following statements demonstrate a sample size computation for the TOST equivalence test for a
lognormal mean. The default of ALPHA=0.05 specifies a significance level of 0.05.

proc power;
onesamplemeans test=equiv dist=lognormal

lower = 1
upper = 5
mean = 3
cv = 0.6
ntotal = .
power = 0.85;

run;

Confidence Interval for Mean
By default CI=T analyzes the conditional probability of obtaining the desired precision, given that the interval
contains the true mean, as in the following statements. The defaults of SIDES=2 and ALPHA=0.05 specify a
two-sided interval with a confidence level of 0.95.
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proc power;
onesamplemeans ci = t

halfwidth = 14
stddev = 8
ntotal = 50
probwidth = .;

run;

ONEWAYANOVA Statement
ONEWAYANOVA < options > ;

The ONEWAYANOVA statement performs power and sample size analyses for one-degree-of-freedom
contrasts and the overall F test in one-way analysis of variance.

Summary of Options

Table 77.12 summarizes the options available in the ONEWAYANOVA statement.

Table 77.12 ONEWAYANOVA Statement Options

Option Description

Define analysis
TEST= Specifies the statistical analysis

Specify analysis information
ALPHA= Specifies the significance level
CONTRAST= Specifies coefficients for single-degree-of-freedom hypothesis tests
NULLCONTRAST= Specifies the null value of the contrast
SIDES= Specifies the number of sides and the direction of the statistical test

Specify effect
GROUPMEANS= Specifies the group means

Specify variability
STDDEV= Specifies the error standard deviation

Specify sample size and allocation
GROUPNS= Specifies the group sample sizes
GROUPWEIGHTS= Specifies the sample size allocation weights for the groups
NFRACTIONAL Enables fractional input and output for sample sizes
NPERGROUP= Specifies the common sample size per group
NTOTAL= Specifies the sample size

Specify power
POWER= Specifies the desired power of the test
Control ordering in output
OUTPUTORDER= Controls the output order of parameters

Table 77.13 summarizes the valid result parameters for different analyses in the ONEWAYANOVA statement.
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Table 77.13 Summary of Result Parameters in the
ONEWAYANOVA Statement

Analyses Solve For Syntax

TEST=CONTRAST Power POWER=.
Sample size NTOTAL=.

NPERGROUP==.

TEST=OVERALL Power POWER=.
Sample size NTOTAL=.

NPERGROUP==.

Dictionary of Options

ALPHA=number-list
specifies the level of significance of the statistical test. The default is 0.05, corresponding to the usual
0.05 � 100% = 5% level of significance. For information about specifying the number-list , see the
section “Specifying Value Lists in Analysis Statements” on page 6366.

CONTRAST= ( values ) < ( . . . values ) >
specifies coefficients for single-degree-of-freedom hypothesis tests. You must provide a coefficient
for every mean appearing in the GROUPMEANS= option. Specify multiple contrasts either with
additional sets of coefficients or with additional CONTRAST= options. For example, you can specify
two different contrasts of five means by using the following:

CONTRAST = (1 -1 0 0 0) (1 0 -1 0 0)

GROUPMEANS=grouped-number-list

GMEANS=grouped-number-list
specifies the group means. This option is used to implicitly set the number of groups. For informa-
tion about specifying the grouped-number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

GROUPNS=grouped-number-list

GNS=grouped-number-list
specifies the group sample sizes. The number of groups represented must be the same as with the
GROUPMEANS= option. For information about specifying the grouped-number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 6366.

GROUPWEIGHTS=grouped-number-list

GWEIGHTS=grouped-number-list
specifies the sample size allocation weights for the groups. This option controls how the total sample
size is divided between the groups. Each set of values across all groups represents relative allocation
weights. Additionally, if the NFRACTIONAL option is not used, the total sample size is restricted to be
equal to a multiple of the sum of the group weights (so that the resulting design has an integer sample
size for each group while adhering exactly to the group allocation weights). The number of groups
represented must be the same as with the GROUPMEANS= option. Values must be integers unless
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the NFRACTIONAL option is used. The default value is 1 for each group, amounting to a balanced
design. For information about specifying the grouped-number-list , see the section “Specifying Value
Lists in Analysis Statements” on page 6366.

NFRACTIONAL

NFRAC
enables fractional input and output for sample sizes. See the section “Sample Size Adjustment
Options” on page 6369 for information about the ramifications of the presence (and absence) of the
NFRACTIONAL option.

NPERGROUP=number-list

NPERG=number-list
specifies the common sample size per group or requests a solution for the common sample size per
group with a missing value (NPERGROUP==.). Use of this option implicitly specifies a balanced
design. For information about specifying the number-list , see the section “Specifying Value Lists in
Analysis Statements” on page 6366.

NTOTAL=number-list
specifies the sample size or requests a solution for the sample size with a missing value (NTOTAL=.).
For information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

NULLCONTRAST=number-list

NULLC=number-list
specifies the null value of the contrast. The default value is 0. This option can be used only with
the TEST=CONTRAST analysis. For information about specifying the number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 6366.

OUTPUTORDER=INTERNAL | REVERSE | SYNTAX
controls how the input and default analysis parameters are ordered in the output. OUT-
PUTORDER=INTERNAL (the default) arranges the parameters in the output according to the following
order of their corresponding options:

• CONTRAST=
• SIDES=
• NULLCONTRAST=
• ALPHA=
• GROUPMEANS=
• STDDEV=
• GROUPWEIGHTS=
• NTOTAL=
• NPERGROUP==
• GROUPNS=
• POWER=

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the same order
in which their corresponding options are specified in the ONEWAYANOVA statement. The OUT-
PUTORDER=REVERSE option arranges the parameters in the output in the reverse of the order in
which their corresponding options are specified in the ONEWAYANOVA statement.
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POWER=number-list
specifies the desired power of the test or requests a solution for the power with a missing value
(POWER=.). The power is expressed as a probability, a number between 0 and 1, rather than as a
percentage. For information about specifying the number-list , see the section “Specifying Value Lists
in Analysis Statements” on page 6366.

SIDES=keyword-list
specifies the number of sides (or tails) and the direction of the statistical test. For information about
specifying the keyword-list , see the section “Specifying Value Lists in Analysis Statements” on
page 6366. Valid keywords are as follows:

1 one-sided with alternative hypothesis in same direction as effect

2 two-sided

U upper one-sided with alternative greater than null value

L lower one-sided with alternative less than null value

This option can be used only with the TEST=CONTRAST analysis. The default value is 2.

STDDEV=number-list

STD=number-list
specifies the error standard deviation. For information about specifying the number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 6366.

TEST=CONTRAST | OVERALL
specifies the statistical analysis. TEST=CONTRAST specifies a one-degree-of-freedom test of a
contrast of means. The test is the usual F test for the two-sided case and the usual t test for the
one-sided case. TEST=OVERALL specifies the overall F test of equality of all means. The default is
TEST=CONTRAST if the CONTRAST= option is used, and TEST=OVERALL otherwise.

Restrictions on Option Combinations

To specify the sample size and allocation, choose one of the following parameterizations:

• sample size per group in a balanced design (by using the NPERGROUP== option)

• total sample size and allocation weights (by using the NTOTAL= and GROUPWEIGHTS= options)

• individual group sample sizes (by using the GROUPNS= option)

Option Groups for Common Analyses

This section summarizes the syntax for the common analyses supported in the ONEWAYANOVA statement.

One-Degree-of-Freedom Contrast
You can use the NPERGROUP== option in a balanced design, as in the following statements. Default values
for the SIDES=, NULLCONTRAST=, and ALPHA= options specify a two-sided test for a contrast value of
0 with a significance level of 0.05.
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proc power;
onewayanova test=contrast

contrast = (1 0 -1)
groupmeans = 3 | 7 | 8
stddev = 4
npergroup = 50
power = .;

run;

You can also specify an unbalanced design with the NTOTAL= and GROUPWEIGHTS= options:

proc power;
onewayanova test=contrast

contrast = (1 0 -1)
groupmeans = 3 | 7 | 8
stddev = 4
groupweights = (1 2 2)
ntotal = .
power = 0.9;

run;

Another way to specify the sample sizes is with the GROUPNS= option:

proc power;
onewayanova test=contrast

contrast = (1 0 -1)
groupmeans = 3 | 7 | 8
stddev = 4
groupns = (20 40 40)
power = .;

run;

Overall F Test
The following statements demonstrate a power computation for the overall F test in a one-way ANOVA. The
default of ALPHA=0.05 specifies a significance level of 0.05.

proc power;
onewayanova test=overall

groupmeans = 3 | 7 | 8
stddev = 4
npergroup = 50
power = .;

run;

PAIREDFREQ Statement
PAIREDFREQ < options > ;

The PAIREDFREQ statement performs power and sample size analyses for McNemar’s test for paired
proportions.
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Summary of Options

Table 77.14 summarizes the options available in the PAIREDFREQ statement.

Table 77.14 PAIREDFREQ Statement Options

Option Description

Define analysis
DIST= Specifies the underlying distribution assumed for the test statistic
TEST= Specifies the statistical analysis

Specify analysis information
ALPHA= Specifies the significance level
NULLDISCPROPRATIO= Specifies the null value of the ratio of discordant proportions
SIDES= Specifies the number of sides and the direction of the statistical test or

confidence interval

Specify effects
CORR= Specifies the correlation � between members of a pair
DISCPROPDIFF= Specifies the discordant proportion difference p01 � p10
DISCPROPORTIONS= Specifies the two discordant proportions, p10 and p01
DISCPROPRATIO= Specifies the ratio p01=p10
ODDSRATIO= Specifies the odds ratio Œp�1=.1 � p�1/� = Œp1�=.1 � p1�/�
PAIREDPROPORTIONS= Specifies the two paired proportions, p1� and p�1
PROPORTIONDIFF= Specifies the proportion difference p�1 � p1�
REFPROPORTION= Specifies either the reference first proportion p1� or the reference discordant

proportion p10
RELATIVERISK= Specifies the relative risk p�1=p1�
TOTALPROPDISC= Specifies the discordant proportion sum, p10 C p01
Specify sample size
NFRACTIONAL Enables fractional input and output for sample sizes
NPAIRS= Specifies the total number of proportion pairs

Specify power
POWER= Specifies the desired power of the test

Choose computational method
METHOD= Specifies the computational method

Control ordering in output
OUTPUTORDER= Controls the output order of parameters

Table 77.15 summarizes the valid result parameters in the PAIREDFREQ statement.

Table 77.15 Summary of Result Parameters in the
PAIREDFREQ Statement

Analyses Solve For Syntax

TEST=MCNEMAR METHOD=CONNOR Power POWER=.
Sample size NPAIRS=.
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Table 77.15 continued

Analyses Solve For Syntax

TEST=MCNEMAR METHOD=EXACT Power POWER=.

TEST=MCNEMAR METHOD=MIETTINEN Power POWER=.
Sample size NPAIRS=.

Dictionary of Options

ALPHA=number-list
specifies the level of significance of the statistical test. The default is 0.05, corresponding to the usual
0.05 � 100% = 5% level of significance. For information about specifying the number-list , see the
section “Specifying Value Lists in Analysis Statements” on page 6366.

CORR=number-list
specifies the correlation � between members of a pair. For information about specifying the number-list ,
see the section “Specifying Value Lists in Analysis Statements” on page 6366.

DISCPROPORTIONS=grouped-number-list

DISCPS=grouped-number-list
specifies the two discordant proportions, p10 and p01. For information about specifying the grouped-
number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

DISCPROPDIFF=number-list

DISCPDIFF=number-list
specifies the difference p01 � p10 between discordant proportions. For information about specifying
the number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

DISCPROPRATIO=number-list

DISCPRATIO=number-list
specifies the ratio p01=p10 of discordant proportions. For information about specifying the number-list ,
see the section “Specifying Value Lists in Analysis Statements” on page 6366.

DIST=EXACT_COND | NORMAL
specifies the underlying distribution assumed for the test statistic. EXACT_COND corresponds to the
exact conditional test, based on the exact binomial distribution of the two types of discordant pairs
given the total number of discordant pairs. NORMAL corresponds to the conditional test based on the
normal approximation to the binomial distribution of the two types of discordant pairs given the total
number of discordant pairs. The default value is EXACT_COND.

METHOD=CONNOR | EXACT | MIETTINEN
specifies the computational method. METHOD=EXACT (the default) uses the exact binomial
distributions of the total number of discordant pairs and the two types of discordant pairs.
METHOD=CONNOR uses an approximation from Connor (1987), and METHOD=MIETTINEN uses
an approximation from Miettinen (1968). The CONNOR and MIETTINEN methods are valid only for
DIST=NORMAL.
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NFRACTIONAL

NFRAC
enables fractional input and output for sample sizes. See the section “Sample Size Adjustment
Options” on page 6369 for information about the ramifications of the presence (and absence) of the
NFRACTIONAL option. This option cannot be used with METHOD=EXACT.

NPAIRS=number-list
specifies the total number of proportion pairs (concordant and discordant) or requests a solution for the
number of pairs with a missing value (NPAIRS=.). For information about specifying the number-list ,
see the section “Specifying Value Lists in Analysis Statements” on page 6366.

NULLDISCPROPRATIO=number-list

NULLDISCPRATIO=number-list

NULLRATIO=number-list

NULLR=number-list
specifies the null value of the ratio of discordant proportions. The default value is 1. For information
about specifying the number-list , see the section “Specifying Value Lists in Analysis Statements” on
page 6366.

ODDSRATIO=number-list

OR=number-list
specifies the odds ratio Œp�1=.1 � p�1/� = Œp1�=.1 � p1�/�. For information about specifying the number-
list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

OUTPUTORDER=INTERNAL | REVERSE | SYNTAX
controls how the input and default analysis parameters are ordered in the output. OUT-
PUTORDER=INTERNAL (the default) arranges the parameters in the output according to the following
order of their corresponding options:

• SIDES=
• NULLDISCPROPRATIO=
• ALPHA=
• PAIREDPROPORTIONS=
• PROPORTIONDIFF=
• ODDSRATIO=
• RELATIVERISK=
• CORR=
• DISCPROPORTIONS=
• DISCPROPDIFF=
• TOTALPROPDISC=
• REFPROPORTION=
• DISCPROPRATIO=
• NPAIRS=
• POWER=

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the same order
in which their corresponding options are specified in the PAIREDFREQ statement. The OUT-
PUTORDER=REVERSE option arranges the parameters in the output in the reverse of the order
in which their corresponding options are specified in the PAIREDFREQ statement.
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PAIREDPROPORTIONS=grouped-number-list

PPROPORTIONS=grouped-number-list

PAIREDPS=grouped-number-list

PPS=grouped-number-list
specifies the two paired proportions, p1� and p�1. For information about specifying the grouped-
number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

POWER=number-list
specifies the desired power of the test or requests a solution for the power with a missing value
(POWER=.). The power is expressed as a probability, a number between 0 and 1, rather than as a
percentage. For information about specifying the number-list , see the section “Specifying Value Lists
in Analysis Statements” on page 6366.

PROPORTIONDIFF=number-list

PDIFF=number-list
specifies the proportion difference p�1 � p1�. For information about specifying the number-list , see the
section “Specifying Value Lists in Analysis Statements” on page 6366.

REFPROPORTION=number-list

REFP=number-list
specifies either the reference first proportion p1� (when used in conjunction with the PROPORTION-
DIFF=, ODDSRATIO=, or RELATIVERISK= option) or the reference discordant proportion p10
(when used in conjunction with the DISCPROPDIFF= or DISCPROPRATIO= option). For information
about specifying the number-list , see the section “Specifying Value Lists in Analysis Statements” on
page 6366.

RELATIVERISK=number-list

RR=number-list
specifies the relative risk p�1=p1�. For information about specifying the number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 6366.

SIDES=keyword-list
specifies the number of sides (or tails) and the direction of the statistical test or confidence interval.
For information about specifying the keyword-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366. Valid keywords and their interpretation are as follows:

1 one-sided with alternative hypothesis in same direction as effect

2 two-sided

U upper one-sided with alternative greater than null value

L lower one-sided with alternative less than null value

If the effect size is zero, then SIDES=1 is not permitted; instead, specify the direction of the test
explicitly in this case with either SIDES=L or SIDES=U. The default value is 2.

TEST=MCNEMAR
specifies the McNemar test of paired proportions. This is the default test option.
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TOTALPROPDISC=number-list

TOTALPDISC=number-list

PDISC=number-list
specifies the sum of the two discordant proportions, p10 C p01. For information about specifying the
number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

Restrictions on Option Combinations

To specify the proportions, choose one of the following parameterizations:

• discordant proportions (using the DISCPROPORTIONS= option)

• difference and sum of discordant proportions (using the DISCPROPDIFF= and TOTAL-
PROPDISC=options)

• difference of discordant proportions and reference discordant proportion (using the DISCPROPDIFF=
and REFPROPORTION= options)

• ratio of discordant proportions and reference discordant proportion (using the DISCPROPRATIO= and
REFPROPORTION= options)

• ratio and sum of discordant proportions (using the DISCPROPRATIO= and TOTAL-
PROPDISC=options)

• paired proportions and correlation (using the PAIREDPROPORTIONS= and CORR= options)

• proportion difference, reference proportion, and correlation (using the PROPORTIONDIFF=, REF-
PROPORTION=, and CORR= options)

• odds ratio, reference proportion, and correlation (using the ODDSRATIO=, REFPROPORTION=, and
CORR= options)

• relative risk, reference proportion, and correlation (using the RELATIVERISK=, REFPROPORTION=,
and CORR= options)

Option Groups for Common Analyses

This section summarizes the syntax for the common analyses supported in the PAIREDFREQ statement.

McNemar Exact Conditional Test
You can express effects in terms of the individual discordant proportions, as in the following statements.
Default values for the TEST=, SIDES=, ALPHA=, and NULLDISCPROPRATIO= options specify a two-
sided McNemar test for no effect with a significance level of 0.05.

proc power;
pairedfreq dist=exact_cond

discproportions = 0.15 | 0.45
npairs = 80
power = .;

run;

You can also express effects in terms of the difference and sum of discordant proportions:
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proc power;
pairedfreq dist=exact_cond

discpropdiff = 0.3
totalpropdisc = 0.6
npairs = 80
power = .;

run;

You can also express effects in terms of the difference of discordant proportions and the reference discordant
proportion:

proc power;
pairedfreq dist=exact_cond

discpropdiff = 0.3
refproportion = 0.15
npairs = 80
power = .;

run;

You can also express effects in terms of the ratio of discordant proportions and the denominator of the ratio:

proc power;
pairedfreq dist=exact_cond

discpropratio = 3
refproportion = 0.15
npairs = 80
power = .;

run;

You can also express effects in terms of the ratio and sum of discordant proportions:

proc power;
pairedfreq dist=exact_cond

discpropratio = 3
totalpropdisc = 0.6
npairs = 80
power = .;

run;

You can also express effects in terms of the paired proportions and correlation:

proc power;
pairedfreq dist=exact_cond

pairedproportions = 0.6 | 0.8
corr = 0.4
npairs = 45
power = .;

run;

You can also express effects in terms of the proportion difference, reference proportion, and correlation:

proc power;
pairedfreq dist=exact_cond

proportiondiff = 0.2
refproportion = 0.6
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corr = 0.4
npairs = 45
power = .;

run;

You can also express effects in terms of the odds ratio, reference proportion, and correlation:

proc power;
pairedfreq dist=exact_cond

oddsratio = 2.66667
refproportion = 0.6
corr = 0.4
npairs = 45
power = .;

run;

You can also express effects in terms of the relative risk, reference proportion, and correlation:

proc power;
pairedfreq dist=exact_cond

relativerisk = 1.33333
refproportion = 0.6
corr = 0.4
npairs = 45
power = .;

run;

McNemar Normal Approximation Test
The following statements demonstrate a sample size computation for the normal-approximate McNemar test.
The default value for the METHOD= option specifies an exact sample size computation. Default values for
the TEST=, SIDES=, ALPHA=, and NULLDISCPROPRATIO= options specify a two-sided McNemar test
for no effect with a significance level of 0.05.

proc power;
pairedfreq dist=normal method=connor

discproportions = 0.15 | 0.45
npairs = .
power = .9;

run;

PAIREDMEANS Statement
PAIREDMEANS < options > ;

The PAIREDMEANS statement performs power and sample size analyses for t tests, equivalence tests, and
confidence interval precision involving paired samples.

Summary of Options

Table 77.14 summarizes the options available in the PAIREDMEANS statement.
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Table 77.16 PAIREDMEANS Statement Options

Option Description

Define analysis
CI= Specifies an analysis of precision of the confidence interval for the mean

difference
DIST= Specifies the underlying distribution assumed for the test statistic
TEST= Specifies the statistical analysis

Specify analysis information
ALPHA= Specifies the significance level
LOWER= Specifies the lower equivalence bound
NULLDIFF= Specifies the null mean difference
NULLRATIO= Specifies the null mean ratio
SIDES= Specifies the number of sides and the direction of the statistical test or

confidence interval
UPPER= Specifies the upper equivalence bound

Specify effects
HALFWIDTH= Specifies the desired confidence interval half-width
MEANDIFF= Specifies the mean difference
MEANRATIO= Specifies the geometric mean ratio, 2=1
PAIREDMEANS= Specifies the two paired means

Specify variability
CORR= Specifies the correlation between members of a pair
CV= Specifies the common coefficient of variation
PAIREDCVS= Specifies the coefficient of variation for each member of a pair
PAIREDSTDDEVS= Specifies the standard deviation of each member of a pair
STDDEV= Specifies the common standard deviation

Specify sample size
NFRACTIONAL Enables fractional input and output for sample sizes
NPAIRS= Specifies the number of pairs

Specify power and related probabilities
POWER= Specifies the desired power of the test
PROBTYPE= Specifies the type of probability for the PROBWIDTH= option
PROBWIDTH= Specifies the probability of obtaining a confidence interval half-width less

than or equal to the value specified by the HALFWIDTH=

Control ordering in output
OUTPUTORDER= Controls the output order of parameters

Table 77.17 summarizes the valid result parameters for different analyses in the PAIREDMEANS statement.

Table 77.17 Summary of Result Parameters in the
PAIREDMEANS Statement

Analyses Solve For Syntax

TEST=DIFF Power POWER=.
Sample size NPAIRS=.
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Table 77.17 continued

Analyses Solve For Syntax

TEST=RATIO Power POWER=.
Sample size NPAIRS=.

TEST=EQUIV_DIFF Power POWER=.
Sample size NPAIRS=.

TEST=EQUIV_RATIO Power POWER=.
Sample size NPAIRS=.

CI=DIFF Prob(width) PROBWIDTH=.
Sample size NPAIRS=.

Dictionary of Options

ALPHA=number-list
specifies the level of significance of the statistical test. The default is 0.05, corresponding to the usual
0.05 � 100% = 5% level of significance. If the CI= and SIDES=1 options are used, then the value must
be less than 0.5. For information about specifying the number-list , see the section “Specifying Value
Lists in Analysis Statements” on page 6366.

CI

CI=DIFF
specifies an analysis of precision of the confidence interval for the mean difference. Instead of power,
the relevant probability for this analysis is the probability of achieving a desired precision. Specifically,
it is the probability that the half-width of the observed confidence interval will be at most the value
specified by the HALFWIDTH= option. If neither the CI= option nor the TEST= option is used, the
default is TEST=DIFF.

CORR=number-list
specifies the correlation between members of a pair. For tests that assume lognormal data
(DIST=LOGNORMAL, or TEST=RATIO or TEST=EQUIV_RATIO), values of the CORR= op-
tion are restricted to the range .�L; �U /, where

�L D

exp
�
�
�
log.CV21 C 1/ log.CV

2
2 C 1/

� 1
2

�
� 1

CV1CV2

�U D

exp
��

log.CV21 C 1/ log.CV
2
2 C 1/

� 1
2

�
� 1

CV1CV2

and CV1 are the CV2 coefficient of variation values specified by the CV= or PAIREDCVS= option.
See “Paired t Test for Mean Ratio with Lognormal Data (TEST=RATIO)” on page 6408 for more
information about this restriction on correlation values. For information about specifying the number-
list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.
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CV=number-list
specifies the coefficient of variation that is assumed to be common to both members of a pair. The
coefficient of variation is defined as the ratio of the standard deviation to the mean on the original data
scale. You can use this option only with DIST=LOGNORMAL. For information about specifying the
number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

DIST=LOGNORMAL | NORMAL
specifies the underlying distribution assumed for the test statistic. NORMAL corresponds the normal
distribution, and LOGNORMAL corresponds to the lognormal distribution. The default value (also
the only acceptable value in each case) is NORMAL for TEST=DIFF, TEST=EQUIV_DIFF, and
CI=DIFF; and LOGNORMAL for TEST=RATIO and TEST=EQUIV_RATIO.

HALFWIDTH=number-list
specifies the desired confidence interval half-width. The half-width is defined as the distance between
the point estimate and a finite endpoint. This option can be used only with the CI=DIFF analysis.
For information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

LOWER=number-list
specifies the lower equivalence bound for the mean difference or mean ratio, in the original scale
(whether DIST=NORMAL or DIST=LOGNORMAL). This option can be used only with the
TEST=EQUIV_DIFF and TEST=EQUIV_RATIO analyses. For information about specifying the
number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

MEANDIFF=number-list
specifies the mean difference, defined as the mean of the difference between the second and first mem-
bers of a pair, �2 � �1. This option can be used only with the TEST=DIFF and TEST=EQUIV_DIFF
analyses. When TEST=EQUIV_DIFF, the mean difference is interpreted as the treatment mean minus
the reference mean. For information about specifying the number-list , see the section “Specifying
Value Lists in Analysis Statements” on page 6366.

MEANRATIO=number-list
specifies the geometric mean ratio, defined as 2=1. This option can be used only with the
TEST=RATIO and TEST=EQUIV_RATIO analyses. When TEST=EQUIV_RATIO, the mean ratio is
interpreted as the treatment mean divided by the reference mean. For information about specifying the
number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

NFRACTIONAL

NFRAC
enables fractional input and output for sample sizes. See the section “Sample Size Adjustment
Options” on page 6369 for information about the ramifications of the presence (and absence) of the
NFRACTIONAL option.

NPAIRS=number-list
specifies the number of pairs or requests a solution for the number of pairs with a missing value
(NPAIRS=.). For information about specifying the number-list , see the section “Specifying Value Lists
in Analysis Statements” on page 6366.
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NULLDIFF=number-list

NULLD=number-list
specifies the null mean difference. The default value is 0. This option can be used only with the
TEST=DIFF analysis. For information about specifying the number-list , see the section “Specifying
Value Lists in Analysis Statements” on page 6366.

NULLRATIO=number-list

NULLR=number-list
specifies the null mean ratio. The default value is 1. This option can be used only with the
TEST=RATIO analysis. For information about specifying the number-list , see the section “Spec-
ifying Value Lists in Analysis Statements” on page 6366.

OUTPUTORDER=INTERNAL | REVERSE | SYNTAX
controls how the input and default analysis parameters are ordered in the output. OUT-
PUTORDER=INTERNAL (the default) arranges the parameters in the output according to the following
order of their corresponding options:

• SIDES=
• NULLDIFF=
• NULLRATIO=
• LOWER=
• UPPER=
• ALPHA=
• PAIREDMEANS=
• MEANDIFF=
• MEANRATIO=
• HALFWIDTH=
• STDDEV=
• PAIREDSTDDEVS=
• CV=
• PAIREDCVS=
• CORR=
• NPAIRS=
• POWER=
• PROBTYPE=
• PROBWIDTH=

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the same order
in which their corresponding options are specified in the PAIREDMEANS statement. The OUT-
PUTORDER=REVERSE option arranges the parameters in the output in the reverse of the order in
which their corresponding options are specified in the PAIREDMEANS statement.

PAIREDCVS=grouped-number-list
specifies the coefficient of variation for each member of a pair. Unlike the CV= option, the PAIRED-
CVS= option supports different values for each member of a pair. The coefficient of variation is
defined as the ratio of the standard deviation to the mean on the original data scale. Values must be
nonnegative (unless both are equal to zero, which is permitted). This option can be used only with
DIST=LOGNORMAL. For information about specifying the grouped-number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 6366.
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PAIREDMEANS=grouped-number-list

PMEANS=grouped-number-list
specifies the two paired means, in the original scale. The means are arithmetic if DIST=NORMAL and
geometric if DIST=LOGNORMAL. This option cannot be used with the CI=DIFF analysis. When
TEST=EQUIV_DIFF, the means are interpreted as the reference mean (first) and the treatment mean
(second). For information about specifying the grouped-number-list , see the section “Specifying Value
Lists in Analysis Statements” on page 6366.

PAIREDSTDDEVS=grouped-number-list

PAIREDSTDS=grouped-number-list

PSTDDEVS=grouped-number-list

PSTDS=grouped-number-list
specifies the standard deviation of each member of a pair. Unlike the STDDEV= option, the PAIRED-
STDDEVS= option supports different values for each member of a pair. This option can be used only
with DIST=NORMAL. For information about specifying the grouped-number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 6366.

POWER=number-list
specifies the desired power of the test or requests a solution for the power with a missing value
(POWER=.). The power is expressed as a probability, a number between 0 and 1, rather than as a
percentage. This option cannot be used with the CI=DIFF analysis. For information about specifying
the number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

PROBTYPE=keyword-list
specifies the type of probability for the PROBWIDTH= option. A value of CONDITIONAL (the
default) indicates the conditional probability that the confidence interval half-width is at most the
value specified by the HALFWIDTH= option, given that the true mean difference is captured by the
confidence interval. A value of UNCONDITIONAL indicates the unconditional probability that the
confidence interval half-width is at most the value specified by the HALFWIDTH= option. you can
use the alias GIVENVALIDITY for CONDITIONAL. The PROBTYPE= option can be used only with
the CI=DIFF analysis. For information about specifying the keyword-list , see the section “Specifying
Value Lists in Analysis Statements” on page 6366.

CONDITIONAL width probability conditional on interval containing the mean

UNCONDITIONAL unconditional width probability

PROBWIDTH=number-list
specifies the desired probability of obtaining a confidence interval half-width less than or equal to the
value specified by the HALFWIDTH= option. A missing value (PROBWIDTH=.) requests a solution
for this probability. The type of probability is controlled with the PROBTYPE= option. Values are
expressed as probabilities (for example, 0.9) rather than percentages. This option can be used only with
the CI=DIFF analysis. For information about specifying the number-list , see the section “Specifying
Value Lists in Analysis Statements” on page 6366.

SIDES=keyword-list
specifies the number of sides (or tails) and the direction of the statistical test or confidence interval.
For information about specifying the keyword-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366. Valid keywords and their interpretation for the TEST= analyses are as
follows:
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1 one-sided with alternative hypothesis in same direction as effect

2 two-sided

U upper one-sided with alternative greater than null value

L lower one-sided with alternative less than null value

For confidence intervals, SIDES=U refers to an interval between the lower confidence limit and infinity,
and SIDES=L refers to an interval between minus infinity and the upper confidence limit. For both of
these cases and SIDES=1, the confidence interval computations are equivalent. The SIDES= option
cannot be used with the TEST=EQUIV_DIFF and TEST=EQUIV_RATIO analyses. The default value
is 2.

STDDEV=number-list

STD=number-list
specifies the standard deviation assumed to be common to both members of a pair. This option can be
used only with DIST=NORMAL. For information about specifying the number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 6366.

TEST=DIFF | EQUIV_DIFF | EQUIV_RATIO | RATIO

TEST
specifies the statistical analysis. TEST or TEST=DIFF (the default) specifies a paired t test on the
mean difference. TEST=EQUIV_DIFF specifies an additive equivalence test of the mean difference by
using a two one-sided tests (TOST) analysis (Schuirmann 1987). TEST=EQUIV_RATIO specifies a
multiplicative equivalence test of the mean ratio by using a TOST analysis. TEST=RATIO specifies a
paired t test on the geometric mean ratio. If neither the TEST= option nor the CI= option is used, the
default is TEST=DIFF.

UPPER=number-list
specifies the upper equivalence bound for the mean difference or mean ratio, in the original scale
(whether DIST=NORMAL or DIST=LOGNORMAL). This option can be used only with the
TEST=EQUIV_DIFF and TEST=EQUIV_RATIO analyses. For information about specifying the
number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

Restrictions on Option Combinations

To define the analysis, choose one of the following parameterizations:

• a statistical test (by using the TEST= option)

• confidence interval precision (by using the CI= option)

To specify the means, choose one of the following parameterizations:

• individual means (by using the PAIREDMEANS= option)

• mean difference (by using the MEANDIFF= option)

• mean ratio (by using the MEANRATIO= option)
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To specify the coefficient of variation, choose one of the following parameterizations:

• common coefficient of variation (by using the CV= option)

• individual coefficients of variation (by using the PAIREDCVS= option)

To specify the standard deviation, choose one of the following parameterizations:

• common standard deviation (by using the STDDEV= option)

• individual standard deviations (by using the PAIREDSTDDEVS= option)

Option Groups for Common Analyses

This section summarizes the syntax for the common analyses supported in the PAIREDMEANS statement.

Paired t Test
You can express effects in terms of the mean difference and variability in terms of a correlation and common
standard deviation, as in the following statements. Default values for the DIST=, SIDES=, NULLDIFF=, and
ALPHA= options specify a two-sided test for no difference with a normal distribution and a significance
level of 0.05.

proc power;
pairedmeans test=diff

meandiff = 7
corr = 0.4
stddev = 12
npairs = 50
power = .;

run;

You can also express effects in terms of individual means and variability in terms of correlation and individual
standard deviations:

proc power;
pairedmeans test=diff

pairedmeans = 8 | 15
corr = 0.4
pairedstddevs = (7 12)
npairs = .
power = 0.9;

run;

Paired t Test of Mean Ratio with Lognormal Data
You can express variability in terms of correlation and a common coefficient of variation, as in the following
statements. Defaults for the DIST=, SIDES=, NULLRATIO= and ALPHA= options specify a two-sided test
of mean ratio = 1 assuming a lognormal distribution and a significance level of 0.05.
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proc power;
pairedmeans test=ratio

meanratio = 7
corr = 0.3
cv = 1.2
npairs = 30
power = .;

run;

You can also express variability in terms of correlation and individual coefficients of variation:

proc power;
pairedmeans test=ratio

meanratio = 7
corr = 0.3
pairedcvs = 0.8 | 0.9
npairs = 30
power = .;

run;

Additive Equivalence Test for Mean Difference with Normal Data
The following statements demonstrate a sample size computation for a TOST equivalence test for a normal
mean difference. Default values for the DIST= and ALPHA= options specify a normal distribution and a
significance level of 0.05.

proc power;
pairedmeans test=equiv_diff

lower = 2
upper = 5
meandiff = 4
corr = 0.2
stddev = 8
npairs = .
power = 0.9;

run;

Multiplicative Equivalence Test for Mean Ratio with Lognormal Data
The following statements demonstrate a power computation for a TOST equivalence test for a lognormal
mean ratio. Default values for the DIST= and ALPHA= options specify a lognormal distribution and a
significance level of 0.05.

proc power;
pairedmeans test=equiv_ratio

lower = 3
upper = 7
meanratio = 5
corr = 0.2
cv = 1.1
npairs = 50
power = .;

run;
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Confidence Interval for Mean Difference
By default CI=DIFF analyzes the conditional probability of obtaining the desired precision, given that the
interval contains the true mean difference, as in the following statements. The defaults of SIDES=2 and
ALPHA=0.05 specify a two-sided interval with a confidence level of 0.95.

proc power;
pairedmeans ci = diff

halfwidth = 4
corr = 0.35
stddev = 8
npairs = 30
probwidth = .;

run;

PLOT Statement
PLOT < plot-options > < / graph-options > ;

The PLOT statement produces a graph or set of graphs for the sample size analysis defined by the previous
analysis statement. The plot-options define the plot characteristics, and the graph-options are SAS/GRAPH-
style options. If ODS Graphics is enabled, then the PLOT statement uses ODS Graphics to create graphs. For
example:

ods graphics on;

proc power;
onesamplemeans

mean = 5 10
ntotal = 150
stddev = 30 50
power = .;

plot x=n min=100 max=200;
run;

ods graphics off;

Otherwise, traditional graphics are produced. For example:

ods graphics off;

proc power;
onesamplemeans

mean = 5 10
ntotal = 150
stddev = 30 50
power = .;

plot x=n min=100 max=200;
run;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and Disabling
ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”
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Options

You can specify the following plot-options in the PLOT statement.

INTERPOL=JOIN | NONE
specifies the type of curve to draw through the computed points. The INTERPOL=JOIN option
connects computed points by straight lines. The INTERPOL=NONE option leaves computed points
unconnected.

KEY=BYCURVE < ( bycurve-options ) >

KEY=BYFEATURE < ( byfeature-options ) >

KEY=ONCURVES
specifies the style of key (or “legend”) for the plot. The default is KEY=BYFEATURE, which specifies
a key with a column of entries for each plot feature (line style, color, and/or symbol). Each entry shows
the mapping between a value of the feature and the value(s) of the analysis parameter(s) linked to that
feature. The KEY=BYCURVE option specifies a key with each row identifying a distinct curve in the
plot. The KEY=ONCURVES option places a curve-specific label adjacent to each curve.

You can specify the following byfeature-options in parentheses after the KEY=BYCURVE option.

NUMBERS=OFF | ON
specifies how the key should identify curves. If NUMBERS=OFF, then the key includes symbol,
color, and line style samples to identify the curves. If NUMBERS=ON, then the key includes
numbers matching numeric labels placed adjacent to the curves. The default is NUMBERS=ON.

POS=BOTTOM | INSET
specifies the position of the key. The POS=BOTTOM option places the key below the X axis.
The POS=INSET option places the key inside the plotting region and attempts to choose the least
crowded corner. The default is POS=BOTTOM.

You can specify the following byfeature-options in parentheses after KEY=BYFEATURE option.

POS=BOTTOM | INSET
specifies the position of the key. The POS=BOTTOM option places the key below the X axis.
The POS=INSET option places the key inside the plotting region and attempts to choose the least
crowded corner. The default is POS=BOTTOM.

MARKERS=ANALYSIS | COMPUTED | NICE | NONE
specifies the locations for plotting symbols.

The MARKERS=ANALYSIS option places plotting symbols at locations corresponding to the values
of the relevant input parameter from the analysis statement preceding the PLOT statement.

The MARKERS=COMPUTED option (the default) places plotting symbols at the locations of actual
computed points from the sample size analysis.

The MARKERS=NICE option places plotting symbols at tick mark locations (corresponding to the
argument axis).

The MARKERS=NONE option disables plotting symbols.
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MAX=number | DATAMAX
specifies the maximum of the range of values for the parameter associated with the “argument” axis
(the axis that is not representing the parameter being solved for). The default is DATAMAX, which
specifies the maximum value that occurs for this parameter in the analysis statement that precedes the
PLOT statement.

MIN=number | DATAMIN
specifies the minimum of the range of values for the parameter associated with the “argument” axis
(the axis that is not representing the parameter being solved for). The default is DATAMIN, which
specifies the minimum value that occurs for this parameter in the analysis statement that precedes the
PLOT statement.

NPOINTS=number

NPTS=number
specifies the number of values for the parameter associated with the “argument” axis (the axis that is
not representing the parameter being solved for). You cannot use the NPOINTS= and STEP= options
simultaneously. The default value for typical situations is 20.

STEP=number
specifies the increment between values of the parameter associated with the “argument” axis (the axis
that is not representing the parameter being solved for). You cannot use the STEP= and NPOINTS=
options simultaneously. By default, the NPOINTS= option is used instead of the STEP= option.

VARY ( feature < BY parameter-list > < , . . . , feature < BY parameter-list > > )
specifies how plot features should be linked to varying analysis parameters. Available plot features are
COLOR, LINESTYLE, PANEL, and SYMBOL. A “panel” refers to a separate plot with a heading
identifying the subset of values represented in the plot.

The parameter-list is a list of one or more names separated by spaces. Each name must match the name
of an analysis option used in the analysis statement preceding the PLOT statement. Also, the name
must be the primary name for the analysis option—that is, the one listed first in the syntax description.

If you omit the < BY parameter-list > portion for a feature, then one or more multivalued parameters
from the analysis will be automatically selected for you.

X=EFFECT | N | POWER
specifies a plot with the requested type of parameter on the X axis and the parameter being solved for
on the Y axis. When X=EFFECT, the parameter assigned to the X axis is the one most representative of
“effect size.” When X=N, the parameter assigned to the X axis is the sample size. When X=POWER,
the parameter assigned to the X axis is the one most representative of “power” (either power itself or
a similar probability, such as Prob(Width) for confidence interval analyses). You cannot use the X=
and Y= options simultaneously. The default is X=POWER, unless the result parameter is power or
Prob(Width), in which case the default is X=N.

You can use the X=N option only when a scalar sample size parameter is used as input in the analysis.
For example, X=N can be used with total sample size or sample size per group, or with two group
sample sizes when one is being solved for.

Table 77.18 summarizes the parameters representing effect size in different analyses.
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Table 77.18 Effect Size Parameters for Different Analyses

Analysis Statement and Options Effect Size Parameters

LOGISTIC None

MULTREG Partial correlation or R2

difference

ONECORR Correlation

ONESAMPLEFREQ TEST Proportion

ONESAMPLEFREQ CI CI half-width

ONESAMPLEMEANS TEST=T,
ONESAMPLEMEANS TEST=EQUIV Mean

ONESAMPLEMEANS CI=T CI half-width

ONEWAYANOVA None

PAIREDFREQ Discordant proportion difference
or ratio

PAIREDMEANS TEST=DIFF,
PAIREDMEANS TEST=EQUIV_DIFF Mean difference

PAIREDMEANS TEST=RATIO,
PAIREDMEANS TEST=EQUIV_RATIO Mean ratio

PAIREDMEANS CI=DIFF CI half-width

TWOSAMPLEFREQ Proportion difference, odds ratio,
or relative risk

TWOSAMPLEMEANS TEST=DIFF,
TWOSAMPLEMEANS TEST=DIFF_SATT,
TWOSAMPLEMEANS TEST=EQUIV_DIFF Mean difference

TWOSAMPLEMEANS TEST=RATIO,
TWOSAMPLEMEANS TEST=EQUIV_RATIO Mean ratio

TWOSAMPLEMEANS CI=DIFF CI half-width

TWOSAMPLESURVIVAL Hazard ratio if used, else none

TWOSAMPLEWILCOXON None

XOPTS=( x-options )
specifies plot characteristics pertaining to the X axis.

You can specify the following x-options in parentheses.

CROSSREF=NO | YES
specifies whether the reference lines defined by the REF= x-option should be crossed with a
reference line on the Y axis that indicates the solution point on the curve.
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REF=number-list
specifies locations for reference lines extending from the X axis across the entire plotting region.
For information about specifying the number-list , see the section “Specifying Value Lists in
Analysis Statements” on page 6366.

Y=EFFECT | N | POWER
specifies a plot with the requested type of parameter on the Y axis and the parameter being solved for
on the X axis. When Y=EFFECT, the parameter assigned to the Y axis is the one most representative of
“effect size.” When Y=N, the parameter assigned to the Y axis is the sample size. When Y=POWER,
the parameter assigned to the Y axis is the one most representative of “power” (either power itself or a
similar probability, such as Prob(Width) for confidence interval analyses). You cannot use the Y= and
X= options simultaneously. By default, the X= option is used instead of the Y= option.

YOPTS=( y-options )
specifies plot characteristics pertaining to the Y axis.

You can specify the following y-options in parentheses.

CROSSREF=NO | YES
specifies whether the reference lines defined by the REF= y-option should be crossed with a
reference line on the X axis that indicates the solution point on the curve.

REF=number-list
specifies locations for reference lines extending from the Y axis across the entire plotting region.
For information about specifying the number-list , see the section “Specifying Value Lists in
Analysis Statements” on page 6366.

You can specify the following graph-options in the PLOT statement after a slash (/).

DESCRIPTION=’string ’
specifies a descriptive string of up to 40 characters that appears in the “Description” field of the
graphics catalog. The description does not appear on the plots. By default, PROC POWER assigns a
description either of the form “Y versus X” (for a single-panel plot) or of the form “Y versus X (S),”
where Y is the parameter on the Y axis, X is the parameter on the X axis, and S is a description of the
subset represented on the current panel of a multipanel plot.

NAME=’string ’
specifies a name of up to eight characters for the catalog entry for the plot. The default name is PLOTn,
where n is the number of the plot statement within the current invocation of PROC POWER. If the
name duplicates the name of an existing entry, SAS/GRAPH software adds a number to the duplicate
name to create a unique entry—for example, PLOT11 and PLOT12 for the second and third panels of
a multipanel plot generated in the first PLOT statement in an invocation of PROC POWER.

TWOSAMPLEFREQ Statement
TWOSAMPLEFREQ < options > ;

The TWOSAMPLEFREQ statement performs power and sample size analyses for tests of two independent
proportions. The Farrington-Manning score, Pearson’s chi-square, Fisher’s exact, and likelihood ratio
chi-square tests are supported.
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Summary of Options

Table 77.19 summarizes the options available in the TWOSAMPLEFREQ statement.

Table 77.19 TWOSAMPLEFREQ Statement Options

Option Description

Define analysis
TEST= Specifies the statistical analysis

Specify analysis information
ALPHA= Specifies the significance level
NULLODDSRATIO= Specifies the null odds ratio
NULLPROPORTIONDIFF= Specifies the null proportion difference
NULLRELATIVERISK= Specifies the null relative risk
SIDES= Specifies the number of sides and the direction of the statistical test or

confidence interval

Specify effects
GROUPPROPORTIONS= Specifies the two independent proportions, p1 and p2
ODDSRATIO= Specifies the odds ratio Œp2=.1 � p2/� = Œp1=.1 � p1/�
PROPORTIONDIFF= Specifies the proportion difference p2 � p1
REFPROPORTION= Specifies the reference proportion p1
RELATIVERISK= Specifies the relative risk p2=p1
Specify sample size and allocation
GROUPNS= Specifies the two group sample sizes
GROUPWEIGHTS= Specifies the sample size allocation weights for the two groups
NFRACTIONAL Enables fractional input and output for sample sizes
NPERGROUP= Specifies the common sample size per group
NTOTAL= Specifies the sample size

Specify power
POWER= Specifies the desired power of the test

Control ordering in output
OUTPUTORDER= Controls the output order of parameters

Table 77.20 summarizes the valid result parameters for different analyses in the TWOSAMPLEFREQ
statement.

Table 77.20 Summary of Result Parameters in the
TWOSAMPLEFREQ Statement

Analyses Solve For Syntax

TEST=FISHER Power POWER=.
Sample size NTOTAL=.

NPERGROUP=.
TEST=FM Power POWER=.

Sample size NTOTAL=.
NPERGROUP=.
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Table 77.20 continued

Analyses Solve For Syntax

TEST=LRCHI Power POWER=.
Sample size NTOTAL=.

NPERGROUP=.
TEST=PCHI Power POWER=.

Sample size NTOTAL=.
NPERGROUP=.

Dictionary of Options

ALPHA=number-list
specifies the level of significance of the statistical test. The default is 0.05, corresponding to the usual
0.05 � 100% = 5% level of significance. For information about specifying the number-list , see the
section “Specifying Value Lists in Analysis Statements” on page 6366.

GROUPPROPORTIONS=grouped-number-list

GPROPORTIONS=grouped-number-list

GROUPPS=grouped-number-list

GPS=grouped-number-list
specifies the two independent proportions, p1 and p2. For information about specifying the grouped-
number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

GROUPNS=grouped-number-list

GNS=grouped-number-list
specifies the two group sample sizes. For information about specifying the grouped-number-list , see
the section “Specifying Value Lists in Analysis Statements” on page 6366.

GROUPWEIGHTS=grouped-number-list

GWEIGHTS=grouped-number-list
specifies the sample size allocation weights for the two groups. This option controls how the total
sample size is divided between the two groups. Each pair of values for the two groups represents
relative allocation weights. Additionally, if the NFRACTIONAL option is not used, the total sample
size is restricted to be equal to a multiple of the sum of the two group weights (so that the resulting
design has an integer sample size for each group while adhering exactly to the group allocation
weights). Values must be integers unless the NFRACTIONAL option is used. The default value is
(1 1), a balanced design with a weight of 1 for each group. For information about specifying the
grouped-number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

NFRACTIONAL

NFRAC
enables fractional input and output for sample sizes. See the section “Sample Size Adjustment
Options” on page 6369 for information about the ramifications of the presence (and absence) of the
NFRACTIONAL option.
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NPERGROUP=number-list

NPERG=number-list
specifies the common sample size per group or requests a solution for the common sample size per
group with a missing value (NPERGROUP=.). Use of this option implicitly specifies a balanced design.
For information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

NTOTAL=number-list
specifies the sample size or requests a solution for the sample size with a missing value (NTOTAL=.).
For information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

NULLODDSRATIO=number-list

NULLOR=number-list
specifies the null odds ratio. You can specify this option only if you also specify the ODDSRATIO= and
TEST=PCHI options. For information about specifying the number-list , see the section “Specifying
Value Lists in Analysis Statements” on page 6366. By default, NULLOR=1.

NULLPROPORTIONDIFF=number-list

NULLPDIFF=number-list
specifies the null proportion difference. You can specify this option only if you also specify the
GROUPPROPORTIONS= or PROPORTIONDIFF= option and the TEST=FM or TEST=PCHI option.
If you are using a non-default null value, then TEST=FM is recommended. For information about spec-
ifying the number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.
By default, NULLPDIFF=0.

NULLRELATIVERISK=number-list

NULLRR=number-list
specifies the null relative risk. You can specify this option only if you also specify the RELA-
TIVERISK= and TEST=PCHI options. For information about specifying the number-list , see the
section “Specifying Value Lists in Analysis Statements” on page 6366. By default, NULLRR=1.

ODDSRATIO=number-list

OR=number-list
specifies the odds ratio Œp2=.1 � p2/� = Œp1=.1 � p1/�. For information about specifying the number-
list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

OUTPUTORDER=INTERNAL | REVERSE | SYNTAX
controls how the input and default analysis parameters are ordered in the output. OUT-
PUTORDER=INTERNAL (the default) arranges the parameters in the output according to the following
order of their corresponding options:

• SIDES=
• NULLPROPORTIONDIFF=
• NULLODDSRATIO=
• NULLRELATIVERISK=
• ALPHA=
• GROUPPROPORTIONS=
• REFPROPORTION=
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• PROPORTIONDIFF=
• ODDSRATIO=
• RELATIVERISK=
• GROUPWEIGHTS=
• NTOTAL=
• NPERGROUP=
• GROUPNS=
• POWER=

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the same order
in which their corresponding options are specified in the TWOSAMPLEFREQ statement. The
OUTPUTORDER=REVERSE option arranges the parameters in the output in the reverse of the order
in which their corresponding options are specified in the TWOSAMPLEFREQ statement.

POWER=number-list
specifies the desired power of the test or requests a solution for the power with a missing value
(POWER=.). The power is expressed as a probability, a number between 0 and 1, rather than as a
percentage. For information about specifying the number-list , see the section “Specifying Value Lists
in Analysis Statements” on page 6366.

PROPORTIONDIFF=number-list

PDIFF=number-list
specifies the proportion difference p2 � p1. For information about specifying the number-list , see the
section “Specifying Value Lists in Analysis Statements” on page 6366.

REFPROPORTION=number-list

REFP=number-list
specifies the reference proportion p1. For information about specifying the number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 6366.

RELATIVERISK=number-list

RR=number-list
specifies the relative risk p2=p1. For information about specifying the number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 6366.

SIDES=keyword-list
specifies the number of sides (or tails) and the direction of the statistical test or confidence interval.
For information about specifying the keyword-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366. Valid keywords and their interpretation are as follows:

1 one-sided with alternative hypothesis in same direction as effect

2 two-sided

U upper one-sided with alternative greater than null value

L lower one-sided with alternative less than null value

If the effect size is zero, then SIDES=1 is not permitted; instead, specify the direction of the test
explicitly in this case with either SIDES=L or SIDES=U. The default value is 2.



TWOSAMPLEFREQ Statement F 6335

TEST=FISHER | FM | LRCHI | PCHI
specifies the statistical analysis. You can specify the following values:

FISHER specifies Fisher’s exact test.

FM specifies the score test of Farrington and Manning (1990).

LRCHI specifies the likelihood ratio chi-square test.

PCHI specifies Pearson’s chi-square test.

If you are using a non-default null value for a noninferiority or superiority test, then TEST=FM is the
most appropriate choice. For information about the power and sample size computational methods and
formulas, see the section “Analyses in the TWOSAMPLEFREQ Statement” on page 6413. By default,
TEST=PCHI.

Restrictions on Option Combinations

To specify the proportions, choose one of the following parameterizations:

• individual proportions (by using the GROUPPROPORTIONS= option)

• difference between proportions and reference proportion (by using the PROPORTIONDIFF= and
REFPROPORTION= options)

• odds ratio and reference proportion (by using the ODDSRATIO= and REFPROPORTION= options)

• relative risk and reference proportion (by using the RELATIVERISK= and REFPROPORTION=
options)

To specify the sample size and allocation, choose one of the following parameterizations:

• sample size per group in a balanced design (by using the NPERGROUP= option)

• total sample size and allocation weights (by using the NTOTAL= and GROUPWEIGHTS= options)

• individual group sample sizes (by using the GROUPNS= option)

Option Groups for Common Analyses

This section summarizes the syntax for the common analyses supported in the TWOSAMPLEFREQ state-
ment.

Pearson Chi-Square Test for Two Proportions
You can use the NPERGROUP= option in a balanced design and express effects in terms of the individual
proportions, as in the following statements. Default values for the SIDES= and ALPHA= options specify a
two-sided test with a significance level of 0.05.
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proc power;
twosamplefreq test=pchi

groupproportions = (.15 .25)
nullproportiondiff = .03
npergroup = 50
power = .;

run;

You can also specify an unbalanced design by using the NTOTAL= and GROUPWEIGHTS= options and
express effects in terms of the odds ratio. The default value of the NULLODDSRATIO= option specifies a
test of no effect.

proc power;
twosamplefreq test=pchi

oddsratio = 2.5
refproportion = 0.3
groupweights = (1 2)
ntotal = .
power = 0.8;

run;

You can also specify sample sizes with the GROUPNS= option and express effects in terms of relative risks.
The default value of the NULLRELATIVERISK= option specifies a test of no effect.

proc power;
twosamplefreq test=pchi

relativerisk = 1.5
refproportion = 0.2
groupns = 40 | 60
power = .;

run;

You can also express effects in terms of the proportion difference. The default value of the NULLPROPOR-
TIONDIFF= option specifies a test of no effect, and the default value of the GROUPWEIGHTS= option
specifies a balanced design.

proc power;
twosamplefreq test=pchi

proportiondiff = 0.15
refproportion = 0.4
ntotal = 100
power = .;

run;

Farrington-Manning Score Test for Two Proportions
The following statements demonstrate a sample size computation for the Farrington-Manning score test for
two proportions:

proc power;
twosamplefreq test=fm

proportiondiff = 0.06
refproportion = 0.32
nullproportiondiff = -0.02
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sides = u
ntotal = .
power = 0.85;

run;

Fisher’s Exact Conditional Test for Two Proportions
The following statements demonstrate a power computation for Fisher’s exact conditional test for two
proportions. Default values for the SIDES= and ALPHA= options specify a two-sided test with a significance
level of 0.05.

proc power;
twosamplefreq test=fisher

groupproportions = (.35 .15)
npergroup = 50
power = .;

run;

Likelihood Ratio Chi-Square Test for Two Proportions
The following statements demonstrate a sample size computation for the likelihood ratio chi-square test
for two proportions. Default values for the SIDES= and ALPHA= options specify a two-sided test with a
significance level of 0.05.

proc power;
twosamplefreq test=lrchi

oddsratio = 2
refproportion = 0.4
npergroup = .
power = 0.9;

run;

TWOSAMPLEMEANS Statement
TWOSAMPLEMEANS < options > ;

The TWOSAMPLEMEANS statement performs power and sample size analyses for pooled and unpooled t
tests, equivalence tests, and confidence interval precision involving two independent samples.

Summary of Options

Table 77.21 summarizes the options available in the TWOSAMPLEMEANS statement.

Table 77.21 TWOSAMPLEMEANS Statement Options

Option Description

Define analysis
CI= Specifies an analysis of precision of the confidence interval
DIST= Specifies the underlying distribution assumed for the test statistic
TEST= Specifies the statistical analysis

Specify analysis information
ALPHA= Specifies the significance level
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Table 77.21 continued

Option Description

LOWER= Specifies the lower equivalence bound
NULLDIFF= Specifies the null mean difference
NULLRATIO= Specifies the null mean ratio
SIDES= Specifies the number of sides and the direction of the statistical test or

confidence interval
UPPER= Specifies the upper equivalence bound

Specify effects
HALFWIDTH= Specifies the desired confidence interval half-width
GROUPMEANS= Specifies the two group means
MEANDIFF= Specifies the mean difference
MEANRATIO= Specifies the geometric mean ratio, 2=1
Specify variability
CV= Specifies the common coefficient of variation
GROUPSTDDEVS= Specifies the standard deviation of each group
STDDEV= Specifies the common standard deviation

Specify sample size and allocation
GROUPNS= Specifies the two group sample sizes
GROUPWEIGHTS= Specifies the sample size allocation weights for the two groups
NFRACTIONAL Enables fractional input and output for sample sizes
NPERGROUP= Specifies the common sample size per group
NTOTAL= Specifies the sample size

Specify power and related probabilities
POWER= Specifies the desired power of the test
PROBTYPE= Specifies the type of probability for the PROBWIDTH= option
PROBWIDTH= Specifies the desired probability of obtaining a confidence interval half-

width less than or equal to the value specified

Control ordering in output
OUTPUTORDER= Controls the output order of parameters

Table 77.22 summarizes the valid result parameters for different analyses in the TWOSAMPLEMEANS
statement.

Table 77.22 Summary of Result Parameters in the
TWOSAMPLEMEANS Statement

Analyses Solve For Syntax

TEST=DIFF Power POWER=.
Sample size NTOTAL=.

NPERGROUP=.
Group sample size GROUPNS= n1 | .

GROUPNS=. | n2
GROUPNS= (n1 .)
GROUPNS= (. n2)
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Table 77.22 continued

Analyses Solve For Syntax

Group weight GROUPWEIGHTS= w1 | .
GROUPWEIGHTS=. | w2
GROUPWEIGHTS= (w1 .)
GROUPWEIGHTS= (. w2)

Alpha ALPHA=.
Group mean GROUPMEANS= mean1 | .

GROUPMEANS=. | mean2
GROUPMEANS= (mean1 .)
GROUPMEANS= (. mean2)

Mean difference MEANDIFF=.
Standard deviation STDDEV=.

TEST=DIFF_SATT Power POWER=.
Sample size NTOTAL=.

NPERGROUP=.

TEST=RATIO Power POWER=.
Sample size NTOTAL=.

NPERGROUP=.

TEST=EQUIV_DIFF Power POWER=.
Sample size NTOTAL=.

NPERGROUP=.

TEST=EQUIV_RATIO Power POWER=.
Sample size NTOTAL=.

NPERGROUP=.

CI=DIFF Prob(width) PROBWIDTH=.
Sample size NTOTAL=.

NPERGROUP=.

Dictionary of Options

ALPHA=number-list
specifies the level of significance of the statistical test or requests a solution for alpha with a missing
value (ALPHA=.). The default is 0.05, corresponding to the usual 0.05 � 100% = 5% level of
significance. If the CI= and SIDES=1 options are used, then the value must be less than 0.5. For
information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

CI

CI=DIFF
specifies an analysis of precision of the confidence interval for the mean difference, assuming equal
variances. Instead of power, the relevant probability for this analysis is the probability that the interval
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half-width is at most the value specified by the HALFWIDTH= option. If neither the TEST= option
nor the CI= option is used, the default is TEST=DIFF.

CV=number-list
specifies the coefficient of variation assumed to be common to both groups. The coefficient of variation
is defined as the ratio of the standard deviation to the mean on the original data scale. You can use this
option only with DIST=LOGNORMAL. For information about specifying the number-list , see the
section “Specifying Value Lists in Analysis Statements” on page 6366.

DIST=LOGNORMAL | NORMAL
specifies the underlying distribution assumed for the test statistic. NORMAL corresponds
the normal distribution, and LOGNORMAL corresponds to the lognormal distribution. The
default value (also the only acceptable value in each case) is NORMAL for TEST=DIFF,
TEST=DIFF_SATT, TEST=EQUIV_DIFF, and CI=DIFF; and LOGNORMAL for TEST=RATIO and
TEST=EQUIV_RATIO.

GROUPMEANS=grouped-number-list
GMEANS=grouped-number-list

specifies the two group means or requests a solution for one group mean given the other. Means are in
the original scale. They are arithmetic if DIST=NORMAL and geometric if DIST=LOGNORMAL.
This option cannot be used with the CI=DIFF analysis. When TEST=EQUIV_DIFF, the means are
interpreted as the reference mean (first) and the treatment mean (second). For information about
specifying the grouped-number-list , see the section “Specifying Value Lists in Analysis Statements”
on page 6366.

GROUPNS=grouped-number-list
GNS=grouped-number-list

specifies the two group sample sizes or requests a solution for one group sample size given the other.
For information about specifying the grouped-number-list , see the section “Specifying Value Lists in
Analysis Statements” on page 6366.

GROUPSTDDEVS=grouped-number-list
GSTDDEVS=grouped-number-list
GROUPSTDS=grouped-number-list
GSTDS=grouped-number-list

specifies the standard deviation of each group. Unlike the STDDEV= option, the GROUPSTD-
DEVS== option supports different values for each group. It is valid only for the Satterthwaite t test
(TEST=DIFF_SATT DIST=NORMAL). For information about specifying the grouped-number-list ,
see the section “Specifying Value Lists in Analysis Statements” on page 6366.

GROUPWEIGHTS=grouped-number-list
GWEIGHTS=grouped-number-list

specifies the sample size allocation weights for the two groups, or requests a solution for one group
weight given the other. This option controls how the total sample size is divided between the two
groups. Each pair of values for the two groups represents relative allocation weights. Additionally, if
the NFRACTIONAL option is not used, the total sample size is restricted to be equal to a multiple
of the sum of the two group weights (so that the resulting design has an integer sample size for each
group while adhering exactly to the group allocation weights). Values must be integers unless the
NFRACTIONAL option is used. The default value is (1 1), a balanced design with a weight of 1 for
each group. For information about specifying the grouped-number-list , see the section “Specifying
Value Lists in Analysis Statements” on page 6366.
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HALFWIDTH=number-list
specifies the desired confidence interval half-width. The half-width is defined as the distance between
the point estimate and a finite endpoint. This option can be used only with the CI=DIFF analysis.
For information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

LOWER=number-list
specifies the lower equivalence bound for the mean difference or mean ratio, in the origi-
nal scale (whether DIST=NORMAL or DIST=LOGNORMAL). Values must be greater than 0
when DIST=LOGNORMAL. This option can be used only with the TEST=EQUIV_DIFF and
TEST=EQUIV_RATIO analyses. For information about specifying the number-list , see the section
“Specifying Value Lists in Analysis Statements” on page 6366.

MEANDIFF=number-list
specifies the mean difference, defined as �2 ��1, or requests a solution for the mean difference with a
missing value (MEANDIFF=.). This option can be used only with the TEST=DIFF, TEST=DIFF_SATT,
and TEST=EQUIV_DIFF analyses. When TEST=EQUIV_DIFF, the mean difference is interpreted as
the treatment mean minus the reference mean. For information about specifying the number-list , see
the section “Specifying Value Lists in Analysis Statements” on page 6366.

MEANRATIO=number-list
specifies the geometric mean ratio, defined as 2=1. This option can be used only with the
TEST=RATIO and TEST=EQUIV_RATIO analyses. When TEST=EQUIV_RATIO, the mean ratio is
interpreted as the treatment mean divided by the reference mean. For information about specifying the
number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

NFRACTIONAL

NFRAC
enables fractional input and output for sample sizes. See the section “Sample Size Adjustment
Options” on page 6369 for information about the ramifications of the presence (and absence) of the
NFRACTIONAL option.

NPERGROUP=number-list

NPERG=number-list
specifies the common sample size per group or requests a solution for the common sample size per
group with a missing value (NPERGROUP=.). Use of this option implicitly specifies a balanced design.
For information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

NTOTAL=number-list
specifies the sample size or requests a solution for the sample size with a missing value (NTOTAL=.).
For information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

NULLDIFF=number-list

NULLD=number-list
specifies the null mean difference. The default value is 0. This option can be used only with the
TEST=DIFF and TEST=DIFF_SATT analyses. For information about specifying the number-list , see
the section “Specifying Value Lists in Analysis Statements” on page 6366.
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NULLRATIO=number-list

NULLR=number-list
specifies the null mean ratio. The default value is 1. This option can be used only with the
TEST=RATIO analysis. For information about specifying the number-list , see the section “Spec-
ifying Value Lists in Analysis Statements” on page 6366.

OUTPUTORDER=INTERNAL | REVERSE | SYNTAX
controls how the input and default analysis parameters are ordered in the output. OUT-
PUTORDER=INTERNAL (the default) arranges the parameters in the output according to the following
order of their corresponding options:

• SIDES=
• NULLDIFF=
• NULLRATIO=
• LOWER=
• UPPER=
• ALPHA=
• GROUPMEANS=
• MEANDIFF=
• MEANRATIO=
• HALFWIDTH=
• STDDEV=
• GROUPSTDDEVS==
• CV=
• GROUPWEIGHTS=
• NTOTAL=
• NPERGROUP=
• GROUPNS=
• POWER=
• PROBTYPE=
• PROBWIDTH=

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the same order
in which their corresponding options are specified in the TWOSAMPLEMEANS statement. The
OUTPUTORDER=REVERSE option arranges the parameters in the output in the reverse of the order
in which their corresponding options are specified in the TWOSAMPLEMEANS statement.

POWER=number-list
specifies the desired power of the test or requests a solution for the power with a missing value
(POWER=.). The power is expressed as a probability, a number between 0 and 1, rather than as a
percentage. This option cannot be used with the CI=DIFF analysis. For information about specifying
the number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

PROBTYPE=keyword-list
specifies the type of probability for the PROBWIDTH= option. A value of CONDITIONAL (the
default) indicates the conditional probability that the confidence interval half-width is at most the
value specified by the HALFWIDTH= option, given that the true mean difference is captured by the
confidence interval. A value of UNCONDITIONAL indicates the unconditional probability that the
confidence interval half-width is at most the value specified by the HALFWIDTH= option. you can
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use the alias GIVENVALIDITY for CONDITIONAL. The PROBTYPE= option can be used only with
the CI=DIFF analysis. For information about specifying the keyword-list , see the section “Specifying
Value Lists in Analysis Statements” on page 6366.

CONDITIONAL width probability conditional on interval containing the mean

UNCONDITIONAL unconditional width probability

PROBWIDTH=number-list
specifies the desired probability of obtaining a confidence interval half-width less than or equal to the
value specified by the HALFWIDTH= option. A missing value (PROBWIDTH=.) requests a solution
for this probability. The type of probability is controlled with the PROBTYPE= option. Values are
expressed as probabilities (for example, 0.9) rather than percentages. This option can be used only with
the CI=DIFF analysis. For information about specifying the number-list , see the section “Specifying
Value Lists in Analysis Statements” on page 6366.

SIDES=keyword-list
specifies the number of sides (or tails) and the direction of the statistical test or confidence interval.
For information about specifying the keyword-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366. Valid keywords and their interpretation for the TEST= analyses are as
follows:

1 one-sided with alternative hypothesis in same direction as effect

2 two-sided

U upper one-sided with alternative greater than null value

L lower one-sided with alternative less than null value

For confidence intervals, SIDES=U refers to an interval between the lower confidence limit and infinity,
and SIDES=L refers to an interval between minus infinity and the upper confidence limit. For both of
these cases and SIDES=1, the confidence interval computations are equivalent. The SIDES= option
cannot be used with the TEST=EQUIV_DIFF and TEST=EQUIV_RATIO analyses. The default value
is 2.

STDDEV=number-list

STD=number-list
specifies the standard deviation assumed to be common to both groups, or requests a solution for the
common standard deviation with a missing value (STDDEV=.). This option can be used only with
DIST=NORMAL. For information about specifying the number-list , see the section “Specifying Value
Lists in Analysis Statements” on page 6366.

TEST=DIFF | DIFF_SATT | EQUIV_DIFF | EQUIV_RATIO | RATIO
TEST

specifies the statistical analysis. TEST or TEST=DIFF (the default) specifies a pooled t test on the
mean difference, assuming equal variances. TEST=DIFF_SATT specifies a Satterthwaite unpooled t
test on the mean difference, assuming unequal variances. TEST=EQUIV_DIFF specifies an additive
equivalence test of the mean difference by using a two one-sided tests (TOST) analysis (Schuirmann
1987). TEST=EQUIV_RATIO specifies a multiplicative equivalence test of the mean ratio by using a
TOST analysis. TEST=RATIO specifies a pooled t test on the mean ratio, assuming equal coefficients
of variation. If neither the TEST= option nor the CI= option is used, the default is TEST=DIFF.
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UPPER=number-list
specifies the upper equivalence bound for the mean difference or mean ratio, in the original scale
(whether DIST=NORMAL or DIST=LOGNORMAL). This option can be used only with the
TEST=EQUIV_DIFF and TEST=EQUIV_RATIO analyses. For information about specifying the
number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

Restrictions on Option Combinations

To define the analysis, choose one of the following parameterizations:

• a statistical test (by using the TEST= option)

• confidence interval precision (by using the CI= option)

To specify the means, choose one of the following parameterizations:

• individual group means (by using the GROUPMEANS= option)

• mean difference (by using the MEANDIFF= option)

• mean ratio (by using the MEANRATIO= option)

To specify standard deviations in the Satterthwaite t test (TEST=DIFF_SATT), choose one of the following
parameterizations:

• common standard deviation (by using the STDDEV= option)

• individual group standard deviations (by using the GROUPSTDDEVS== option)

To specify the sample sizes and allocation, choose one of the following parameterizations:

• sample size per group in a balanced design (by using the NPERGROUP= option)

• total sample size and allocation weights (by using the NTOTAL= and GROUPWEIGHTS= options)

• individual group sample sizes (by using the GROUPNS= option)

Option Groups for Common Analyses

This section summarizes the syntax for the common analyses supported in the TWOSAMPLEMEANS
statement.

Two-Sample t Test Assuming Equal Variances
You can use the NPERGROUP= option in a balanced design and express effects in terms of the mean
difference, as in the following statements. Default values for the DIST=, SIDES=, NULLDIFF=, and
ALPHA= options specify a two-sided test for no difference with a normal distribution and a significance
level of 0.05.
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proc power;
twosamplemeans test=diff

meandiff = 7
stddev = 12
npergroup = 50
power = .;

run;

You can also specify an unbalanced design by using the NTOTAL= and GROUPWEIGHTS= options and
express effects in terms of individual group means:

proc power;
twosamplemeans test=diff

groupmeans = 8 | 15
stddev = 4
groupweights = (2 3)
ntotal = .
power = 0.9;

run;

Another way to specify the sample sizes is with the GROUPNS= option:

proc power;
twosamplemeans test=diff

groupmeans = 8 | 15
stddev = 4
groupns = (25 40)
power = .;

run;

Two-Sample Satterthwaite t Test Assuming Unequal Variances
The following statements demonstrate a power computation for the two-sample Satterthwaite t test allowing
unequal variances. Default values for the DIST=, SIDES=, NULLDIFF=, and ALPHA= options specify a
two-sided test for no difference with a normal distribution and a significance level of 0.05.

proc power;
twosamplemeans test=diff_satt

meandiff = 3
groupstddevs = 5 | 8
groupweights = (1 2)
ntotal = 60
power = .;

run;

Two-Sample Pooled t Test of Mean Ratio with Lognormal Data
The following statements demonstrate a power computation for the pooled t test of a lognormal mean ratio.
Default values for the DIST=, SIDES=, NULLRATIO=, and ALPHA= options specify a two-sided test of
mean ratio = 1 assuming a lognormal distribution and a significance level of 0.05.

proc power;
twosamplemeans test=ratio

meanratio = 7
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cv = 0.8
groupns = 50 | 70
power = .;

run;

Additive Equivalence Test for Mean Difference with Normal Data
The following statements demonstrate a sample size computation for the TOST equivalence test for a normal
mean difference. A default value of GROUPWEIGHTS=(1 1) specifies a balanced design. Default values
for the DIST= and ALPHA= options specify a significance level of 0.05 and an assumption of normally
distributed data.

proc power;
twosamplemeans test=equiv_diff

lower = 2
upper = 5
meandiff = 4
stddev = 8
ntotal = .
power = 0.9;

run;

Multiplicative Equivalence Test for Mean Ratio with Lognormal Data
The following statements demonstrate a power computation for the TOST equivalence test for a lognormal
mean ratio. Default values for the DIST= and ALPHA= options specify a significance level of 0.05 and an
assumption of lognormally distributed data.

proc power;
twosamplemeans test=equiv_ratio

lower = 3
upper = 7
meanratio = 5
cv = 0.75
npergroup = 50
power = .;

run;

Confidence Interval for Mean Difference
By default CI=DIFF analyzes the conditional probability of obtaining the desired precision, given that the
interval contains the true mean difference, as in the following statements. The defaults of SIDES=2 and
ALPHA=0.05 specify a two-sided interval with a confidence level of 0.95.

proc power;
twosamplemeans ci = diff

halfwidth = 4
stddev = 8
groupns = (30 35)
probwidth = .;

run;
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TWOSAMPLESURVIVAL Statement
TWOSAMPLESURVIVAL < options > ;

The TWOSAMPLESURVIVAL statement performs power and sample size analyses for comparing two
survival curves. The log-rank, Gehan, and Tarone-Ware rank tests are supported.

Summary of Options

Table 77.23 summarizes the options available in the TWOSAMPLESURVIVAL statement.

Table 77.23 TWOSAMPLESURVIVAL Statement Options

Option Description

Define analysis
TEST= Specifies the statistical analysis

Specify analysis information
ACCRUALTIME= Specifies the accrual time
ALPHA= Specifies the significance level
FOLLOWUPTIME= Specifies the follow-up time
SIDES= Specifies the number of sides and the direction of the statistical test or

confidence interval
TOTALTIME= Specifies the total time

Specify effects
CURVE= Defines a survival curve
GROUPMEDSURVTIMES= Specifies the median survival times in each group
GROUPSURVEXPHAZARDS= Specifies exponential hazard rates of the survival curve for each group
GROUPSURVIVAL= Specifies the survival curve for each group
HAZARDRATIO= Specifies the hazard ratio
REFSURVEXPHAZARD= Specifies the exponential hazard rate of the survival curve for the reference

group
REFSURVIVAL= Specifies the survival curve for the reference group

Specify loss information
GROUPLOSS= Specifies the exponential loss survival curve for each group
GROUPLOSSEXPHAZARDS= Specifies the exponential hazards of the loss in each group
GROUPMEDLOSSTIMES= Specifies the median times of the loss in each group

Specify sample size and allocation
ACCRUALRATEPERGROUP= Specifies the common accrual rate per group
ACCRUALRATETOTAL= Specifies the total accrual rate
EVENTSTOTAL= Specifies the expected total number of events
GROUPACCRUALRATES= Specifies the accrual rate for each group
GROUPNS= Specifies the two group sample sizes
GROUPWEIGHTS= Specifies the sample size allocation weights for the two groups
NFRACTIONAL Enables fractional input and output for sample sizes
NPERGROUP= Specifies the common sample size per group
NTOTAL= Specifies the sample size
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Table 77.23 continued

Option Description

Specify power
POWER= Specifies the desired power of the test

Specify computational method
NSUBINTERVAL= Specifies the number of subintervals per unit time

Control ordering in output
OUTPUTORDER= Controls the output order of parameters

Table 77.24 summarizes the valid result parameters for different analyses in the TWOSAMPLESURVIVAL
statement.

Table 77.24 Summary of Result Parameters in the
TWOSAMPLESURVIVAL Statement

Analyses Solve For Syntax

TEST=GEHAN Power POWER=.
Sample size NTOTAL=.

NPERGROUP=.
EVENTSTOTAL=.
ACCRUALRATETOTAL=.
ACCRUALRATEPERGROUP=.

TEST=LOGRANK Power POWER=.
Sample size NTOTAL=.

NPERGROUP=.
EVENTSTOTAL=.
ACCRUALRATETOTAL=.
ACCRUALRATEPERGROUP=.

TEST=TARONEWARE Power POWER=.
Sample size NTOTAL=.

NPERGROUP=.
EVENTSTOTAL=.
ACCRUALRATETOTAL=.
ACCRUALRATEPERGROUP=.

Dictionary of Options

ACCRUALRATEPERGROUP=number-list

ACCRUALRATEPERG=number-list

ARPERGROUP=number-list

ARPERG=number-list
specifies the common accrual rate per group or requests a solution for the common accrual rate per
group with a missing value (ACCRUALRATEPERGROUP=.). The accrual rate per group is the
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number of subjects in each group that enters the study per time unit during the accrual period. Use
of this option implicitly specifies a balanced design. The NFRACTIONAL option is automatically
enabled when the ACCRUALRATEPERGROUP= option is used. For information about specifying
the number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

ACCRUALRATETOTAL=number-list

ARTOTAL=number-list
specifies the total accrual rate or requests a solution for the accrual rate with a missing value (AC-
CRUALRATETOTAL=.). The total accrual rate is the total number of subjects that enter the study per
time unit during the accrual period. The NFRACTIONAL option is automatically enabled when the
ACCRUALRATETOTAL= option is used. For information about specifying the number-list , see the
section “Specifying Value Lists in Analysis Statements” on page 6366.

ACCRUALTIME=number-list | MAX

ACCTIME=number-list | MAX

ACCRUALT=number-list | MAX

ACCT=number-list | MAX
specifies the accrual time. Accrual is assumed to occur uniformly from time 0 to the time specified by
the ACCRUALTIME= option. If the GROUPSURVIVAL= or REFSURVIVAL= option is used, then
the value of the total time (the sum of accrual and follow-up times) must be less than or equal to the
largest time in each multipoint (piecewise linear) survival curve. If the ACCRUALRATEPERGROUP=,
ACCRUALRATETOTAL=, or GROUPACCRUALRATES= option is used, then the accrual time must
be greater than 0. For information about specifying the number-list , see the section “Specifying Value
Lists in Analysis Statements” on page 6366.

ACCRUALTIME=MAX can be used when each scenario in the analysis contains at least one piece-
wise linear survival curve (in the GROUPSURVIVAL= or REFSURVIVAL= option). It causes the
accrual time to be automatically set, separately for each scenario, to the maximum possible time
supported by the piecewise linear survival curve(s) in that scenario. It is not compatible with the
FOLLOWUPTIME=MAX option or the TOTALTIME= option.

ALPHA=number-list
specifies the level of significance of the statistical test. The default is 0.05, corresponding to the usual
0.05 � 100% = 5% level of significance. For information about specifying the number-list , see the
section “Specifying Value Lists in Analysis Statements” on page 6366.

CURVE("label")=points
defines a survival curve.

For the CURVE= option,

label identifies the curve in the output and with the GROUPLOSS=, GROUPSUR-
VIVAL=, and REFSURVIVAL= options.

points specifies one or more (time, survival) pairs on the curve, where the survival value
denotes the probability of surviving until at least the specified time.

A single-point curve is interpreted as exponential, and a multipoint curve is interpreted as piecewise
linear. Points can be expressed in either of two forms:
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• a series of time:survival pairs separated by spaces. For example:

1:0.9 2:0.7 3:0.6

• a DOLIST of times enclosed in parentheses, followed by a colon (:), followed by a DOLIST of
survival values enclosed in parentheses. For example:

(1 to 3 by 1):(0.9 0.7 0.6)

The DOLIST format is the same as in the DATA step.

Points can also be expressed as combinations of the two forms. For example:

1:0.9 2:0.8 (3 to 6 by 1):(0.7 0.65 0.6 0.55)

The points have the following restrictions:

• The time values must be nonnegative and strictly increasing.

• The survival values must be strictly decreasing.

• The survival value at a time of 0 must be equal to 1.

• If there is only one point, then the time must be greater than 0, and the survival value cannot be 0
or 1.

EVENTSTOTAL=number-list

EVENTTOTAL=number-list

EETOTAL=number-list
specifies the expected total number of events—that is, deaths, whether observed or censored—during
the entire study period, or requests a solution for this parameter with a missing value (EVENTSTO-
TAL=.). The NFRACTIONAL option is automatically enabled when the EVENTSTOTAL= option
is used. For information about specifying the number-list , see the section “Specifying Value Lists in
Analysis Statements” on page 6366.

FOLLOWUPTIME=number-list | MAX

FUTIME=number-list | MAX

FOLLOWUPT=number-list | MAX

FUT=number-list | MAX
specifies the follow-up time, the amount of time in the study past the accrual time. If the GROUPSUR-
VIVAL= or REFSURVIVAL= option is used, then the value of the total time (the sum of accrual and
follow-up times) must be less than or equal to the largest time in each multipoint (piecewise linear)
survival curve. For information about specifying the number-list , see the section “Specifying Value
Lists in Analysis Statements” on page 6366.

FOLLOWUPTIME=MAX can be used when each scenario in the analysis contains at least one
piecewise linear survival curve (in the GROUPSURVIVAL= or REFSURVIVAL= option). It causes
the follow-up time to be automatically set, separately for each scenario, to the maximum possible
time supported by the piecewise linear survival curve(s) in that scenario. It is not compatible with the
ACCRUALTIME=MAX option or the TOTALTIME= option.
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GROUPACCRUALRATES=grouped-number-list

GACCRUALRATES=grouped-number-list

GROUPARS=grouped-number-list

GARS=grouped-number-list
specifies the accrual rate for each group. The groupwise accrual rates are the numbers of subjects in
each group that enters the study per time unit during the accrual period. The NFRACTIONAL option
is automatically enabled when the GROUPACCRUALRATES= option is used. For information about
specifying the grouped-number-list , see the section “Specifying Value Lists in Analysis Statements”
on page 6366.

GROUPLOSS=grouped-name-list

GLOSS=grouped-name-list
specifies the exponential loss survival curve for each group, by using labels specified with the CURVE=
option. Loss is assumed to follow an exponential curve, indicating the expected rate of censoring (in
other words, loss to follow-up) over time. For information about specifying the grouped-name-list , see
the section “Specifying Value Lists in Analysis Statements” on page 6366.

GROUPLOSSEXPHAZARDS=grouped-number-list

GLOSSEXPHAZARDS=grouped-number-list

GROUPLOSSEXPHS=grouped-number-list

GLOSSEXPHS=grouped-number-list
specifies the exponential hazards of the loss in each group. Loss is assumed to follow an exponential
curve, indicating the expected rate of censoring (in other words, loss to follow-up) over time. If none
of the GROUPLOSSEXPHAZARDS=, GROUPLOSS=, and GROUPMEDLOSSTIMES= options
are used, the default of GROUPLOSSEXPHAZARDS=(0 0) indicates no loss to follow-up. For
information about specifying the grouped-number-list , see the section “Specifying Value Lists in
Analysis Statements” on page 6366.

GROUPMEDLOSSTIMES=grouped-number-list

GMEDLOSSTIMES=grouped-number-list

GROUPMEDLOSSTS=grouped-number-list

GMEDLOSSTS=grouped-number-list
specifies the median times of the loss in each group. Loss is assumed to follow an exponential
curve, indicating the expected rate of censoring (in other words, loss to follow-up) over time. For
information about specifying the grouped-number-list , see the section “Specifying Value Lists in
Analysis Statements” on page 6366.

GROUPMEDSURVTIMES=grouped-number-list

GMEDSURVTIMES=grouped-number-list

GROUPMEDSURVTS=grouped-number-list

GMEDSURVTS=grouped-number-list
specifies the median survival times in each group. When the GROUPMEDSURVTIMES= option is
used, the survival curve in each group is assumed to be exponential. For information about specifying
the grouped-number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.
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GROUPNS=grouped-number-list

GNS=grouped-number-list
specifies the two group sample sizes. For information about specifying the grouped-number-list , see
the section “Specifying Value Lists in Analysis Statements” on page 6366.

GROUPSURVEXPHAZARDS=grouped-number-list

GSURVEXPHAZARDS=grouped-number-list

GROUPSURVEXPHS=grouped-number-list

GEXPHS=grouped-number-list
specifies exponential hazard rates of the survival curve for each group. For information about specifying
the grouped-number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

GROUPSURVIVAL=grouped-name-list

GSURVIVAL=grouped-name-list

GROUPSURV=grouped-name-list

GSURV=grouped-name-list
specifies the survival curve for each group, by using labels specified with the CURVE= option. For
information about specifying the grouped-name-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

GROUPWEIGHTS=grouped-number-list

GWEIGHTS=grouped-number-list
specifies the sample size allocation weights for the two groups. This option controls how the total
sample size is divided between the two groups. Each pair of values for the two groups represents
relative allocation weights. Additionally, if the NFRACTIONAL option is not used, the total sample
size is restricted to be equal to a multiple of the sum of the two group weights (so that the resulting
design has an integer sample size for each group while adhering exactly to the group allocation
weights). Values must be integers unless the NFRACTIONAL option is used. The default value is
(1 1), a balanced design with a weight of 1 for each group. For information about specifying the
grouped-number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

HAZARDRATIO=number-list

HR=number-list
specifies the hazard ratio of the second group’s survival curve to the first group’s survival curve. For
information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

NFRACTIONAL

NFRAC
enables fractional input and output for sample sizes. This option is automatically enabled when
any of the following options are used: ACCRUALRATEPERGROUP=, ACCRUALRATETOTAL=,
EVENTSTOTAL=, and GROUPACCRUALRATES=. See the section “Sample Size Adjustment
Options” on page 6369 for information about the ramifications of the presence (and absence) of the
NFRACTIONAL option.
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NPERGROUP=number-list

NPERG=number-list
specifies the common sample size per group or requests a solution for the common sample size per
group with a missing value (NPERGROUP=.). Use of this option implicitly specifies a balanced design.
For information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

NSUBINTERVAL=number-list

NSUBINTERVALS=number-list

NSUB=number-list

NSUBS=number-list
specifies the number of subintervals per unit time to use in internal calculations. Higher values increase
computational time and memory requirements but generally lead to more accurate results. The default
value is 12. For information about specifying the number-list , see the section “Specifying Value Lists
in Analysis Statements” on page 6366.

NTOTAL=number-list
specifies the sample size or requests a solution for the sample size with a missing value (NTOTAL=.).
For information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

OUTPUTORDER=INTERNAL | REVERSE | SYNTAX
controls how the input and default analysis parameters are ordered in the output. OUT-
PUTORDER=INTERNAL (the default) arranges the parameters in the output according to the following
order of their corresponding options:

• SIDES=
• ACCRUALTIME=
• FOLLOWUPTIME=
• TOTALTIME=
• NSUBINTERVAL=
• ALPHA=
• REFSURVIVAL=
• GROUPSURVIVAL=
• REFSURVEXPHAZARD=
• HAZARDRATIO=
• GROUPSURVEXPHAZARDS=
• GROUPMEDSURVTIMES=
• GROUPLOSSEXPHAZARDS=
• GROUPLOSS=
• GROUPMEDLOSSTIMES=
• GROUPWEIGHTS=
• NTOTAL=
• ACCRUALRATETOTAL=
• EVENTSTOTAL=
• NPERGROUP=
• ACCRUALRATEPERGROUP=
• GROUPNS=
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• GROUPACCRUALRATES=
• POWER=

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the same order in
which their corresponding options are specified in the TWOSAMPLESURVIVAL statement. The
OUTPUTORDER=REVERSE option arranges the parameters in the output in the reverse of the order
in which their corresponding options are specified in the TWOSAMPLESURVIVAL statement.

POWER=number-list
specifies the desired power of the test or requests a solution for the power with a missing value
(POWER=.). The power is expressed as a probability, a number between 0 and 1, rather than as a
percentage. For information about specifying the number-list , see the section “Specifying Value Lists
in Analysis Statements” on page 6366.

REFSURVEXPHAZARD=number-list

REFSURVEXPH=number-list
specifies the exponential hazard rate of the survival curve for the first (reference) group. For information
about specifying the number-list , see the section “Specifying Value Lists in Analysis Statements” on
page 6366.

REFSURVIVAL=name-list

REFSURV=name-list
specifies the survival curve for the first (reference) group, by using labels specified with the CURVE=
option. For information about specifying the name-list , see the section “Specifying Value Lists in
Analysis Statements” on page 6366.

SIDES=keyword-list
specifies the number of sides (or tails) and the direction of the statistical test or confidence interval.
For information about specifying the keyword-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366. Valid keywords and their interpretation are as follows:

1 one-sided with alternative hypothesis in same direction as effect

2 two-sided

U upper one-sided with the alternative hypothesis favoring better survival in the second group

L lower one-sided with the alternative hypothesis favoring better survival in the first (reference)
group

The default value is 2.

TEST=GEHAN | LOGRANK | TARONEWARE
specifies the statistical analysis. TEST=GEHAN specifies the Gehan rank test. TEST=LOGRANK
(the default) specifies the log-rank test. TEST=TARONEWARE specifies the Tarone-Ware rank test.

TOTALTIME=number-list | MAX

TOTALT=number-list | MAX
specifies the total time, which is equal to the sum of accrual and follow-up times. If the GROUP-
SURVIVAL= or REFSURVIVAL= option is used, then the value of the total time must be less than
or equal to the largest time in each multipoint (piecewise linear) survival curve. For information
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about specifying the number-list , see the section “Specifying Value Lists in Analysis Statements” on
page 6366.

TOTALTIME=MAX can be used when each scenario in the analysis contains at least one piecewise
linear survival curve (in the GROUPSURVIVAL= or REFSURVIVAL= option). It causes the total time
to be automatically set, separately for each scenario, to the maximum possible time supported by the
piecewise linear survival curve(s) in that scenario. It is not compatible with the ACCRUALTIME=MAX
option or the FOLLOWUPTIME=MAX option.

Restrictions on Option Combinations

To specify the survival curves, choose one of the following parameterizations:

• arbitrary piecewise linear or exponential curves (by using the CURVE= and GROUPSURVIVAL=
options)

• curves with proportional hazards (by using the CURVE=, REFSURVIVAL=, and HAZARDRATIO=
options)

• exponential curves, by using one of the following parameterizations:

– median survival times (by using the GROUPMEDSURVTIMES= option)

– the hazard ratio and the hazard of the reference curve (by using the HAZARDRATIO= and
REFSURVEXPHAZARD= options)

– the individual hazards (by using the GROUPSURVEXPHAZARDS= option)

To specify the study time, use any two of the following three options:

• accrual time (by using the ACCRUALTIME= option)

• follow-up time (by using the FOLLOWUPTIME= option)

• total time, the sum of accrual and follow-up times (by using the TOTALTIME= option)

To specify the sample size and allocation, choose one of the following parameterizations:

• sample size per group in a balanced design (by using the NPERGROUP= option)

• accrual rate per group in a balanced design (by using the ACCRUALRATEPERGROUP= option)

• total sample size and allocation weights (by using the NTOTAL= and GROUPWEIGHTS= options)

• total accrual rate and allocation weights (by using the ACCRUALRATETOTAL= and GROUP-
WEIGHTS= options)

• expected total number of events and allocation weights (by using the EVENTSTOTAL= and GROUP-
WEIGHTS= options)

• individual group sample sizes (by using the GROUPNS= option)

• individual group accrual rates (by using the GROUPACCRUALRATES= option)
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The values of parameters that involve expected number of events or accrual rate are converted internally to
the analogous sample size parameterization (that is, the NPERGROUP=, NTOTAL=, or GROUPNS= option)
for the purpose of sample size adjustments according to the presence or absence of the NFRACTIONAL
option.

To specify the exponential loss curves, choose one of the following parameterizations:

• a point on the loss curve of each group (by using the CURVE= and GROUPLOSS= options)

• median loss times (by using the GROUPMEDLOSSTIMES= option)

• the individual loss hazards (by using the GROUPLOSSEXPHAZARDS= option)

Option Groups for Common Analyses

This section summarizes the syntax for the common analyses supported in the TWOSAMPLESURVIVAL
statement.

Log-Rank Test for Two Survival Curves
You can use the NPERGROUP= option in a balanced design and specify piecewise linear or exponential
survival curves by using the CURVE= and GROUPSURVIVAL= options, as in the following statements.
Default values for the SIDES=, ALPHA=, NSUBINTERVAL=, and GROUPLOSSEXPHAZARDS= options
specify a two-sided test with a significance level of 0.05, an assumption of no loss to follow-up, and the use
of 12 subintervals per unit time in computations.

proc power;
twosamplesurvival test=logrank

curve("Control") = (1 2 3):(0.8 0.7 0.6)
curve("Treatment") = (5):(.6)
groupsurvival = "Control" | "Treatment"
accrualtime = 2
followuptime = 1
npergroup = 50
power = .;

run;

In the preceding example, the “Control” curve is piecewise linear (since it has more than one point), and the
“Treatment” curve is exponential (since it has only one point).

You can also specify an unbalanced design by using the NTOTAL= and GROUPWEIGHTS= options and
specify piecewise linear or exponential survival curves with proportional hazards by using the CURVE=,
REFSURVIVAL=, and HAZARDRATIO= options:

proc power;
twosamplesurvival test=logrank

curve("Control") = (1 2 3):(0.8 0.7 0.6)
refsurvival = "Control"
hazardratio = 1.5
accrualtime = 2
followuptime = 1
groupweights = (1 2)
ntotal = .
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power = 0.8;
run;

Instead of computing sample size, you can compute the accrual rate by using the ACCRUALRATETOTAL=
option:

proc power;
twosamplesurvival test=logrank

curve("Control") = (1 2 3):(0.8 0.7 0.6)
refsurvival = "Control"
hazardratio = 1.5
accrualtime = 2
followuptime = 1
groupweights = (1 2)
accrualratetotal = .
power = 0.8;

run;

or the expected number of events by using the EVENTSTOTAL= option:

proc power;
twosamplesurvival test=logrank

curve("Control") = (1 2 3):(0.8 0.7 0.6)
refsurvival = "Control"
hazardratio = 1.5
accrualtime = 2
followuptime = 1
groupweights = (1 2)
eventstotal = .
power = 0.8;

run;

You can also specify sample sizes with the GROUPNS= option and specify exponential survival curves in
terms of median survival times:

proc power;
twosamplesurvival test=logrank

groupmedsurvtimes = (16 22)
accrualtime = 6
totaltime = 18
groupns = 40 | 60
power = .;

run;

You can also specify exponential survival curves in terms of the hazard ratio and reference hazard. The
default value of the GROUPWEIGHTS= option specifies a balanced design.

proc power;
twosamplesurvival test=logrank

hazardratio = 1.2
refsurvexphazard = 0.7
accrualtime = 2
totaltime = 4
ntotal = 100
power = .;

run;
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You can also specify exponential survival curves in terms of the individual hazards, as in the following
statements:

proc power;
twosamplesurvival test=logrank

groupsurvexphazards = 0.7 | 0.84
accrualtime = 2
totaltime = 4
ntotal = .
power = 0.9;

run;

Gehan Rank Test for Two Survival Curves
In addition to the log-rank test, you can also specify the Gehan tank test, as in the following statements.
Default values for the SIDES=, ALPHA=, NSUBINTERVAL=, and GROUPLOSSEXPHAZARDS= options
specify a two-sided test with a significance level of 0.05, an assumption of no loss to follow-up, and the use
of 12 subintervals per unit time in computations.

proc power;
twosamplesurvival test=gehan

groupmedsurvtimes = 5 | 7
accrualtime = 3
totaltime = 6
npergroup = .
power = 0.8;

run;

Tarone-Ware Rank Test for Two Survival Curves
You can also specify the Tarone-Ware tank test, as in the following statements. Default values for the SIDES=,
ALPHA=, NSUBINTERVAL=, and GROUPLOSSEXPHAZARDS= options specify a two-sided test with a
significance level of 0.05, an assumption of no loss to follow-up, and the use of 12 subintervals per unit time
in computations.

proc power;
twosamplesurvival test=taroneware

groupmedsurvtimes = 5 | 7
accrualtime = 3
totaltime = 6
npergroup = 100
power = .;

run;

TWOSAMPLEWILCOXON Statement
TWOSAMPLEWILCOXON < options > ;

The TWOSAMPLEWILCOXON statement performs power and sample size analyses for the Wilcoxon-
Mann-Whitney test (also called the Wilcoxon rank-sum test, Mann-Whitney-Wilcoxon test, or Mann-Whitney
U test) for two independent groups.
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Note that the O’Brien-Castelloe approach to computing power for the Wilcoxon test is approximate, based on
asymptotic behavior as the total sample size gets large. The quality of the power approximation degrades for
small sample sizes; conversely, the quality of the sample size approximation degrades if the two distributions
are far apart, so that only a small sample is needed to detect a significant difference. But this degradation
is rarely a problem in practical situations, in which experiments are usually performed for relatively close
distributions.

Summary of Options

Table 77.25 summarizes the options available in the TWOSAMPLEWILCOXON statement.

Table 77.25 TWOSAMPLEWILCOXON Statement Options

Option Description

Define analysis
TEST= Specifies the statistical analysis

Specify analysis information
ALPHA= Specifies the significance level
SIDES= Specifies the number of sides and the direction of the statistical test

Specify distributions
VARDIST= Defines a distribution for a variable
VARIABLES= Specifies the distributions of two or more variables

Specify sample size and allocation
GROUPNS= Specifies the two group sample sizes
GROUPWEIGHTS= Specifies the sample size allocation weights for the two groups
NFRACTIONAL Enables fractional input and output for sample sizes
NPERGROUP= Specifies the common sample size per group
NTOTAL= Specifies the sample size

Specify power
POWER= Specifies the desired power of the test

Specify computational options
NBINS= Specifies the number of categories for each variable

Control ordering in output
OUTPUTORDER= Controls the output order of parameters

Table 77.26 summarizes the valid result parameters in the TWOSAMPLEWILCOXON statement.

Table 77.26 Summary of Result Parameters in the
TWOSAMPLEWILCOXON Statement

Analyses Solve For Syntax

TEST=WMW Power POWER=.
Sample size NTOTAL=.

NPERGROUP=.
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Dictionary of Options

ALPHA=number-list
specifies the level of significance of the statistical test. The default is 0.05, corresponding to the usual
0.05 � 100% = 5% level of significance. For information about specifying the number-list , see the
section “Specifying Value Lists in Analysis Statements” on page 6366.

GROUPNS=grouped-number-list

GNS=grouped-number-list
specifies the two group sample sizes. For information about specifying the grouped-number-list , see
the section “Specifying Value Lists in Analysis Statements” on page 6366.

GROUPWEIGHTS=grouped-number-list

GWEIGHTS=grouped-number-list
specifies the sample size allocation weights for the two groups. This option controls how the total
sample size is divided between the two groups. Each pair of values for the two groups represents
relative allocation weights. Additionally, if the NFRACTIONAL option is not used, the total sample
size is restricted to be equal to a multiple of the sum of the two group weights (so that the resulting
design has an integer sample size for each group while adhering exactly to the group allocation
weights). Values must be integers unless the NFRACTIONAL option is used. The default value is
(1 1), a balanced design with a weight of 1 for each group. For information about specifying the
grouped-number-list , see the section “Specifying Value Lists in Analysis Statements” on page 6366.

NBINS=number-list
specifies the number of categories (or “bins”) each variable’s distribution is divided into (unless it is
ordinal, in which case the categories remain intact) in internal calculations. Higher values increase
computational time and memory requirements but generally lead to more accurate results. However, if
the value is too high, then numerical instability can occur. Lower values are less likely to produce “No
solution computed” errors. The default value is 1000. For information about specifying the number-list ,
see the section “Specifying Value Lists in Analysis Statements” on page 6366.

NFRACTIONAL

NFRAC
enables fractional input and output for sample sizes. See the section “Sample Size Adjustment
Options” on page 6369 for information about the ramifications of the presence (and absence) of the
NFRACTIONAL option.

NPERGROUP=number-list

NPERG=number-list
specifies the common sample size per group or requests a solution for the common sample size per
group with a missing value (NPERGROUP=.). Use of this option implicitly specifies a balanced design.
For information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.

NTOTAL=number-list
specifies the sample size or requests a solution for the sample size with a missing value (NTOTAL=.).
For information about specifying the number-list , see the section “Specifying Value Lists in Analysis
Statements” on page 6366.
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OUTPUTORDER=INTERNAL | REVERSE | SYNTAX
controls how the input and default analysis parameters are ordered in the output. OUT-
PUTORDER=INTERNAL (the default) arranges the parameters in the output according to the following
order of their corresponding options:

• SIDES
• NBINS=
• ALPHA=
• VARIABLES=
• GROUPWEIGHTS=
• NTOTAL=
• NPERGROUP=
• GROUPNS=
• POWER=

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the same order in
which their corresponding options are specified in the TWOSAMPLEWILCOXON statement. The
OUTPUTORDER=REVERSE option arranges the parameters in the output in the reverse of the order
in which their corresponding options are specified in the TWOSAMPLEWILCOXON statement.

POWER=number-list
specifies the desired power of the test or requests a solution for the power with a missing value
(POWER=.). The power is expressed as a probability, a number between 0 and 1, rather than as a
percentage. For information about specifying the number-list , see the section “Specifying Value Lists
in Analysis Statements” on page 6366.

SIDES=keyword-list
specifies the number of sides (or tails) and the direction of the statistical test. Valid keywords are as
follows:

1 one-sided with alternative hypothesis in same direction as effect

2 two-sided

U upper one-sided with alternative greater than null value

L lower one-sided with alternative less than null value

The default value is 2.

TEST=WMW
specifies the Wilcoxon-Mann-Whitney test for two independent groups This is the default test option.

VARDIST("label")=distribution (parameters)
defines a distribution for a variable.

For the VARDIST= option,

label identifies the variable distribution in the output and with the VARIABLES= option.

distribution specifies the distributional form of the variable.

parameters specifies one or more parameters associated with the distribution.
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The distributions and parameters are named and defined in the same way as the distributions and
arguments in the CDF SAS function; for more information, see SAS Language Reference: Dictionary.
Choices for distributional forms and their parameters are as follows:

ORDINAL ((values) : (probabilities)) is an ordered categorical distribution. The values are any
numbers separated by spaces. The probabilities are numbers between 0 and 1 (inclusive)
separated by spaces. Their sum must be exactly 1. The number of probabilities must match the
number of values.

BETA (a, b <, l , r >) is a beta distribution with shape parameters a and b and optional location
parameters l and r . The values of a and b must be greater than 0, and l must be less than r . The
default values for l and r are 0 and 1, respectively.

BINOMIAL (p, n) is a binomial distribution with probability of success p and number of independent
Bernoulli trials n. The value of p must be greater than 0 and less than 1, and n must be an integer
greater than 0. If n = 1, then the distribution is binary.

EXPONENTIAL (�) is an exponential distribution with scale �, which must be greater than 0.

GAMMA (a, �) is a gamma distribution with shape a and scale �. The values of a and � must be
greater than 0.

LAPLACE (� , �) is a Laplace distribution with location � and scale �. The value of � must be
greater than 0.

LOGISTIC (� , �) is a logistic distribution with location � and scale �. The value of �must be greater
than 0.

LOGNORMAL (� , �) is a lognormal distribution with location � and scale �. The value of � must
be greater than 0.

NORMAL (� , �) is a normal distribution with mean � and standard deviation �. The value of � must
be greater than 0.

POISSON (m) is a Poisson distribution with mean m. The value of m must be greater than 0.

UNIFORM (l , r ) is a uniform distribution on the interval Œ l , r �, where l < r .

VARIABLES=grouped-name-list

VARS=grouped-name-list
specifies the distributions of two or more variables, using labels specified with the VARDIST= option.
For information about specifying the grouped-name-list , see the section “Specifying Value Lists in
Analysis Statements” on page 6366.

Restrictions on Option Combinations

To specify the sample size and allocation, choose one of the following parameterizations:

• sample size per group in a balanced design (using the NPERGROUP= option)

• total sample size and allocation weights (using the NTOTAL= and GROUPWEIGHTS= options)

• individual group sample sizes (using the GROUPNS= option)
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Option Groups for Common Analyses

This section summarizes the syntax for the common analyses supported in the TWOSAMPLEWILCOXON
statement.

Wilcoxon-Mann-Whitney Test for Comparing Two Distributions
The following statements performs a power analysis for Wilcoxon-Mann-Whitney tests comparing an ordinal
variable with each other type of distribution. Default values for the ALPHA=, NBINS=, SIDES=, and
TEST= options specify a two-sided test with a significance level of 0.05 and the use of 1000 categories per
distribution when discretization is needed.

proc power;
twosamplewilcoxon

vardist("myordinal") = ordinal ((0 1 2) : (.2 .3 .5))
vardist("mybeta1") = beta (1, 2)
vardist("mybeta2") = beta (1, 2, 0, 2)
vardist("mybinomial") = binomial (.3, 3)
vardist("myexponential") = exponential (2)
vardist("mygamma") = gamma (1.5, 2)
vardist("mylaplace") = laplace (1, 2)
vardist("mylogistic") = logistic (1, 2)
vardist("mylognormal") = lognormal (1, 2)
vardist("mynormal") = normal (3, 2)
vardist("mypoisson") = poisson (2)
vardist("myuniform") = uniform (0, 2)
variables = "myordinal" | "mybeta1" "mybeta2" "mybinomial"

"myexponential" "mygamma" "mylaplace"
"mylogistic" "mylognormal" "mynormal"
"mypoisson" "myuniform"

ntotal = 40
power = .;

run;

Details: POWER Procedure

Overview of Power Concepts
In statistical hypothesis testing, you typically express the belief that some effect exists in a population by
specifying an alternative hypothesis H1. You state a null hypothesis H0 as the assertion that the effect does
not exist and attempt to gather evidence to reject H0 in favor of H1. Evidence is gathered in the form of
sample data, and a statistical test is used to assess H0. If H0 is rejected but there really is no effect, this is
called a Type I error. The probability of a Type I error is usually designated “alpha” or ˛, and statistical tests
are designed to ensure that ˛ is suitably small (for example, less than 0.05).

If there really is an effect in the population but H0 is not rejected in the statistical test, then a Type II error
has been made. The probability of a Type II error is usually designated “beta” or ˇ. The probability 1 – ˇ of
avoiding a Type II error—that is, correctly rejecting H0 and achieving statistical significance—is called the
power. (NOTE: Another more general definition of power is the probability of rejecting H0 for any given set
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of circumstances, even those corresponding to H0 being true. The POWER procedure uses this more general
definition.)

An important goal in study planning is to ensure an acceptably high level of power. Sample size plays a
prominent role in power computations because the focus is often on determining a sufficient sample size to
achieve a certain power, or assessing the power for a range of different sample sizes.

Some of the analyses in the POWER procedure focus on precision rather than power. An analysis of
confidence interval precision is analogous to a traditional power analysis, with “CI Half-Width” taking
the place of effect size and “Prob(Width)” taking the place of power. The CI Half-Width is the margin of
error associated with the confidence interval, the distance between the point estimate and an endpoint. The
Prob(Width) is the probability of obtaining a confidence interval with at most a target half-width.

Summary of Analyses
Table 77.27 gives a summary of the analyses supported in the POWER procedure. The name of the analysis
statement reflects the type of data and design. The TEST=, CI=, and DIST= options specify the focus of
the statistical hypothesis (in other words, the criterion on which the research question is based) and the test
statistic to be used in data analysis.

Table 77.27 Summary of Analyses

Analysis Statement Options

Logistic regression: likelihood ratio
chi-square test

LOGISTIC

Multiple linear regression: Type III F test MULTREG

Correlation: Fisher’s z test ONECORR DIST=FISHERZ

Correlation: t test ONECORR DIST=T

Binomial proportion: exact test ONESAMPLEFREQ TEST=EXACT

Binomial proportion: z test ONESAMPLEFREQ TEST=Z

Binomial proportion: z test with continuity
adjustment

ONESAMPLEFREQ TEST=ADJZ

Binomial proportion: exact equivalence test ONESAMPLEFREQ TEST=EQUIV_EXACT

Binomial proportion: z equivalence test ONESAMPLEFREQ TEST=EQUIV_Z

Binomial proportion: z test with continuity
adjustment

ONESAMPLEFREQ TEST=EQUIV_ADJZ

Binomial proportion: confidence interval ONESAMPLEFREQ CI=AGRESTICOULL

CI=JEFFREYS

CI=EXACT

CI=WALD

CI=WALD_CORRECT

CI=WILSON

One-sample t test ONESAMPLEMEANS TEST=T
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Table 77.27 continued

Analysis Statement Options

One-sample t test with lognormal data ONESAMPLEMEANS TEST=T
DIST=LOGNORMAL

One-sample equivalence test for mean of
normal data

ONESAMPLEMEANS TEST=EQUIV

One-sample equivalence test for mean of
lognormal data

ONESAMPLEMEANS TEST=EQUIV
DIST=LOGNORMAL

Confidence interval for a mean ONESAMPLEMEANS CI=T

One-way ANOVA: one-degree-of-freedom
contrast

ONEWAYANOVA TEST=CONTRAST

One-way ANOVA: overall F test ONEWAYANOVA TEST=OVERALL

McNemar exact conditional test PAIREDFREQ

McNemar normal approximation test PAIREDFREQ DIST=NORMAL

Paired t test PAIREDMEANS TEST=DIFF

Paired t test of mean ratio with lognormal data PAIREDMEANS TEST=RATIO

Paired additive equivalence of mean
difference with normal data

PAIREDMEANS TEST=EQUIV_DIFF

Paired multiplicative equivalence of mean
ratio with lognormal data

PAIREDMEANS TEST=EQUIV_RATIO

Confidence interval for mean of paired
differences

PAIREDMEANS CI=DIFF

Farrington-Manning score test for two
independent proportions

TWOSAMPLEFREQ TEST=FM

Pearson chi-square test for two independent
proportions

TWOSAMPLEFREQ TEST=PCHI

Fisher’s exact test for two independent
proportions

TWOSAMPLEFREQ TEST=FISHER

Likelihood ratio chi-square test for two
independent proportions

TWOSAMPLEFREQ TEST=LRCHI

Two-sample t test assuming equal variances TWOSAMPLEMEANS TEST=DIFF

Two-sample Satterthwaite t test assuming
unequal variances

TWOSAMPLEMEANS TEST=DIFF_SATT

Two-sample pooled t test of mean ratio with
lognormal data

TWOSAMPLEMEANS TEST=RATIO

Two-sample additive equivalence of mean
difference with normal data

TWOSAMPLEMEANS TEST=EQUIV_DIFF

Two-sample multiplicative equivalence of
mean ratio with lognormal data

TWOSAMPLEMEANS TEST=EQUIV_RATIO

Two-sample confidence interval for mean
difference

TWOSAMPLEMEANS CI=DIFF

Log-rank test for comparing two survival
curves

TWOSAMPLESURVIVAL TEST=LOGRANK
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Table 77.27 continued

Analysis Statement Options

Gehan rank test for comparing two survival
curves

TWOSAMPLESURVIVAL TEST=GEHAN

Tarone-Ware rank test for comparing two
survival curves

TWOSAMPLESURVIVAL TEST=TARONEWARE

Wilcoxon-Mann-Whitney (rank-sum) test TWOSAMPLEWILCOXON

Specifying Value Lists in Analysis Statements
To specify one or more scenarios for an analysis parameter (or set of parameters), you provide a list of values
for the statement option that corresponds to the parameter(s). To identify the parameter you want to solve for,
you place missing values in the appropriate list.

There are five basic types of such lists: keyword-lists, number-lists, grouped-number-lists, name-lists, and
grouped-name-lists. Some parameters, such as the direction of a test, have values represented by one or
more keywords in a keyword-list . Scenarios for scalar-valued parameters, such as power, are represented by a
number-list . Scenarios for groups of scalar-valued parameters, such as group sample sizes in a multigroup
design, are represented by a grouped-number-list . Scenarios for named parameters, such as reference survival
curves, are represented by a name-list . Scenarios for groups of named parameters, such as group survival
curves, are represented by a grouped-name-list .

The following subsections explain these five basic types of lists.

Keyword-Lists

A keyword-list is a list of one or more keywords, separated by spaces. For example, you can specify both
two-sided and upper-tailed versions of a one-sample t test as follows:

SIDES = 2 U

Number-Lists

A number-list can be one of two things: a series of one or more numbers expressed in the form of one or
more DOLISTs, or a missing value indicator (.).

The DOLIST format is the same as in the DATA step language. For example, for the one-sample t test you
can specify four scenarios (30, 50, 70, and 100) for a total sample size in any of the following ways.

NTOTAL = 30 50 70 100
NTOTAL = 30 to 70 by 20 100

A missing value identifies a parameter as the result parameter; it is valid only with options representing
parameters you can solve for in a given analysis. For example, you can request a solution for NTOTAL as
follows:

NTOTAL = .
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Grouped-Number-Lists

A grouped-number-list specifies multiple scenarios for numeric values in two or more groups, possibly
including missing value indicators to solve for a specific group. The list can assume one of two general forms,
a “crossed” version and a “matched” version.

Crossed Grouped-Number-Lists
The crossed version of a grouped number list consists of a series of number-lists (see the section “Number-
Lists” on page 6366), one representing each group, with groups separated by a vertical bar (|). The values
for each group represent multiple scenarios for that group, and the scenarios for each individual group are
crossed to produce the set of all scenarios for the analysis option. For example, you can specify the following
six scenarios for the sizes .n1; n2/ of two groups

.20; 30/.20; 40/.20; 50/

.25; 30/.25; 40/.25; 50/

as follows:

GROUPNS = 20 25 | 30 40 50

If the analysis can solve for a value in one group given the other groups, then one of the number-lists in a
crossed grouped-number-list can be a missing value indicator (.). For example, in a two-sample t test you
can posit three scenarios for the group 2 sample size while solving for the group 1 sample size:

GROUPNS = . | 30 40 50

Some analyses can involve more than two groups. For example, you can specify 2 � 3 � 1 = 6 scenarios for
the means of three groups in a one-way ANOVA as follows:

GROUPMEANS = 10 12 | 10 to 20 by 5 | 24

Matched Grouped-Number-Lists
The matched version of a grouped number list consists of a series of numeric lists, each enclosed in
parentheses. Each list consists of a value for each group and represents a single scenario for the analysis
option. Multiple scenarios for the analysis option are represented by multiple lists. For example, you can
express the crossed grouped-number-list

GROUPNS = 20 25 | 30 40 50

alternatively in a matched format:

GROUPNS = (20 30) (20 40) (20 50) (25 30) (25 40) (25 50)

The matched version is particularly useful when you want to include only a subset of all combinations of
individual group values. For example, you might want to pair 20 only with 50, and 25 only with 30 and 40:

GROUPNS = (20 50) (25 30) (25 40)
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If the analysis can solve for a value in one group given the other groups, then you can replace the value for
that group with a missing value indicator (.). If used, the missing value indicator must occur in the same
group in every scenario. For example, you can solve for the group 1 sample size (as in the section “Crossed
Grouped-Number-Lists” on page 6367) by using a matched format:

GROUPNS = (. 30) (. 40) (. 50)

Some analyses can involve more than two groups. For example, you can specify two scenarios for the means
of three groups in a one-way ANOVA:

GROUPMEANS = (15 24 32) (12 25 36)

Name-Lists

A name-list is a list of one or more names that are enclosed in single or double quotation marks and separated
by spaces. For example, you can specify two scenarios for the reference survival curve in a log-rank test as
follows:

REFSURVIVAL = "Curve A" "Curve B"

Grouped-Name-Lists

A grouped-name-list specifies multiple scenarios for names in two or more groups. The list can assume one
of two general forms, a “crossed” version and a “matched” version.

Crossed Grouped-Name-Lists
The crossed version of a grouped name list consists of a series of name-lists (see the section “Name-Lists”
on page 6368), one representing each group, with groups separated by a vertical bar (|). The values for each
group represent multiple scenarios for that group, and the scenarios for each individual group are crossed
to produce the set of all scenarios for the analysis option. For example, you can specify the following six
scenarios for the survival curves .c1; c2/ of two groups

."Curve A"; "Curve C"/."Curve A"; "Curve D"/."Curve A"; "Curve E"/

."Curve B"; "Curve C"/."Curve B"; "Curve D"/."Curve B"; "Curve E"/

as follows:

GROUPSURVIVAL = "Curve A" "Curve B" | "Curve C" "Curve D"
"Curve E"

Matched Grouped-Name-Lists
The matched version of a grouped name list consists of a series of name lists, each enclosed in parentheses.
Each list consists of a name for each group and represents a single scenario for the analysis option. Multiple
scenarios for the analysis option are represented by multiple lists. For example, you can express the crossed
grouped-name-list
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GROUPSURVIVAL = "Curve A" "Curve B" | "Curve C" "Curve D"
"Curve E"

alternatively in a matched format:

GROUPSURVIVAL = ("Curve A" "Curve C")
("Curve A" "Curve D")
("Curve A" "Curve E")
("Curve B" "Curve C")
("Curve B" "Curve D")
("Curve B" "Curve E")

The matched version is particularly useful when you want to include only a subset of all combinations of
individual group values. For example, you might want to pair “Curve A” only with “Curve C”, and “Curve B”
only with “Curve D” and “Curve E”:

GROUPSURVIVAL = ("Curve A" "Curve C")
("Curve B" "Curve D")
("Curve B" "Curve E")

Sample Size Adjustment Options
By default, PROC POWER rounds sample sizes conservatively (down in the input, up in the output) so that
all total sizes (and individual group sample sizes, if a multigroup design) are integers. This is generally
considered conservative because it selects the closest realistic design providing at most the power of the
(possibly fractional) input or mathematically optimized design. In addition, in a multigroup design, all group
sizes are adjusted to be multiples of the corresponding group weights. For example, if GROUPWEIGHTS =
(2 6), then all group 1 sample sizes become multiples of 2, and all group 2 sample sizes become multiples of
6 (and all total sample sizes become multiples of 8).

With the NFRACTIONAL option, sample size input is not rounded, and sample size output (whether total or
groupwise) are reported in two versions, a raw “fractional” version and a “ceiling” version rounded up to the
nearest integer.

Whenever an input sample size is adjusted, both the original (“nominal”) and adjusted (“actual”) sample
sizes are reported. Whenever computed output sample sizes are adjusted, both the original input (“nominal”)
power and the achieved (“actual”) power at the adjusted sample size are reported.

Error and Information Output
The Error column in the main output table provides reasons for missing results and flags numerical results
that are bounds rather than exact answers. For example, consider the sample size analysis implemented by
the following statements:
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proc power;
twosamplefreq test=pchi

method=normal
oddsratio= 1.0001
refproportion=.4
nulloddsratio=1
power=.9
ntotal=.;

run;

Figure 77.6 Error Column

The POWER Procedure
Pearson Chi-square Test for Two Proportions

The POWER Procedure
Pearson Chi-square Test for Two Proportions

Fixed Scenario Elements

Distribution Asymptotic normal

Method Normal approximation

Null Odds Ratio 1

Reference (Group 1) Proportion 0.4

Odds Ratio 1.0001

Nominal Power 0.9

Number of Sides 2

Alpha 0.05

Group 1 Weight 1

Group 2 Weight 1

Computed N Total

Actual
Power N Total Error

0.206 2.15E+09 Solution is a lower bound

The output in Figure 77.6 reveals that the sample size to achieve a power of 0.9 could not be computed, but
that the sample size 2.15E+09 achieves a power of 0.206.

The Info column provides further details about Error column entries, warnings about any boundary conditions
detected, and notes about any adjustments to input. Note that the Info column is hidden by default in the
main output. You can view it by using the ODS OUTPUT statement to save the output as a data set and the
PRINT procedure. For example, the following SAS statements print both the Error and Info columns for a
power computation in a two-sample t test:

proc power;
twosamplemeans

meandiff= 0 7
stddev=2
ntotal=2 5
power=.;

ods output output=Power;
run;
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proc print noobs data=Power;
var MeanDiff NominalNTotal NTotal Power Error Info;

run;

The output is shown in Figure 77.7.

Figure 77.7 Error and Info Columns

MeanDiff NominalNTotal NTotal Power Error Info

0 2 2 . Invalid input N too small / No effect

0 5 4 0.050 Input N adjusted / No effect

7 2 2 . Invalid input N too small

7 5 4 0.477 Input N adjusted

The mean difference of 0 specified with the MEANDIFF= option leads to a “No effect” message to appear
in the Info column. The sample size of 2 specified with the NTOTAL= option leads to an “Invalid input”
message in the Error column and an “NTotal too small” message in the Info column. The sample size of 5
leads to an “Input N adjusted” message in the Info column because it is rounded down to 4 to produce integer
group sizes of 2 per group.

Displayed Output
If you use the PLOTONLY option in the PROC POWER statement, the procedure displays only graphical
output. Otherwise, the displayed output of the POWER procedure includes the following:

• the “Fixed Scenario Elements” table, which shows all applicable single-valued analysis parameters, in
the following order: distribution, method, parameters that are input explicitly, and parameters that are
supplied with defaults

• an output table that shows the following when applicable (in order): the index of the scenario, all
multivalued input, ancillary results, the primary computed result, and error descriptions

• plots (if requested)

For each input parameter, the order of the input values is preserved in the output.

Ancillary results include the following:

• Actual Power, the achieved power, if it differs from the input (Nominal) power value

• Actual Prob(Width), the achieved precision probability, if it differs from the input (Nominal) probability
value

• Actual Alpha, the achieved significance level, if it differs from the input (Nominal) alpha value

• fractional sample size, if the NFRACTIONAL option is used in the analysis statement
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If sample size is the result parameter and the NFRACTIONAL option is used in the analysis statement, then
both “Fractional” and “Ceiling” sample size results are displayed. Fractional sample sizes correspond to the
“Nominal” values of power or precision probability. Ceiling sample sizes are simply the fractional sample
sizes rounded up to the nearest integer; they correspond to “Actual” values of power or precision probability.

ODS Table Names
PROC POWER assigns a name to each table that it creates. You can use these names to reference the table
when using the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed in Table 77.28. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

Table 77.28 ODS Tables Produced by PROC POWER

ODS Table Name Description Statement

FixedElements Factoid with single-valued analysis parameters Default*
Output All input and computed analysis parameters, error messages, and

information messages for each scenario
Default

PlotContent Data contained in plots, including analysis parameters and indices
identifying plot features. (NOTE: This table is saved as a data set
and not displayed in PROC POWER output.)

PLOT

*Depends on input.

Computational Resources

Memory

In the TWOSAMPLESURVIVAL statement, the amount of required memory is roughly proportional to the
product of the number of subintervals (specified by the NSUBINTERVAL= option) and the total time of the
study (specified by the ACCRUALTIME=, FOLLOWUPTIME=, and TOTALTIME= options). If you run out
of memory, then you can try either specifying a smaller number of subintervals, changing the time scale to a
use a longer time unit (for example, years instead of months), or both.

CPU Time

In the Satterthwaite t test analysis (TWOSAMPLEMEANS TEST=DIFF_SATT), the required CPU time
grows as the mean difference decreases relative to the standard deviations. In the PAIREDFREQ statement,
the required CPU time for the exact power computation (METHOD=EXACT) grows with the sample size.
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Computational Methods and Formulas
This section describes the approaches that PROC POWER uses to compute power for each analysis. The first
subsection defines some common notation. The following subsections describe the various power analyses,
including discussions of the data, statistical test, and power formula for each analysis. Unless otherwise
indicated, computed values for parameters besides power (for example, sample size) are obtained by solving
power formulas for the desired parameters.

Common Notation

Table 77.29 displays notation for some of the more common parameters across analyses. The Associated
Syntax column shows examples of relevant analysis statement options, where applicable.

Table 77.29 Common Notation

Symbol Description Associated Syntax

˛ Significance level ALPHA=
N Total sample size NTOTAL=, NPAIRS=
ni Sample size in ith group NPERGROUP=,

GROUPNS=
wi Allocation weight for ith group (standardized to sum

to 1)
GROUPWEIGHTS=

� (Arithmetic) mean MEAN=
�i (Arithmetic) mean in ith group GROUPMEANS=,

PAIREDMEANS=
�diff (Arithmetic) mean difference, �2 � �1 or �T � �R MEANDIFF=
�0 Null mean or mean difference (arithmetic) NULL=, NULLDIFF=
 Geometric mean MEAN=
i Geometric mean in ith group GROUPMEANS=,

PAIREDMEANS=
0 Null mean or mean ratio (geometric) NULL=, NULLRATIO=
� Standard deviation (or common standard deviation per

group)
STDDEV=

�i Standard deviation in ith group GROUPSTDDEVS=,
PAIREDSTDDEVS=

�diff Standard deviation of differences
CV Coefficient of variation, defined as the ratio of the

standard deviation to the (arithmetic) mean on the
original data scale

CV=, PAIREDCVS=

� Correlation CORR=
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Table 77.29 continued

Symbol Description Associated Syntax

�T ; �R Treatment and reference (arithmetic) means for
equivalence test

GROUPMEANS=,
PAIREDMEANS=

T ; R Treatment and reference geometric means for
equivalence test

GROUPMEANS=,
PAIREDMEANS=

�L Lower equivalence bound LOWER=
�U Upper equivalence bound UPPER=
t .�; ı/ t distribution with df � and noncentrality ı
F.�1; �2; �/ F distribution with numerator df �1, denominator df

�2, and noncentrality �
tpI� pth percentile of t distribution with df �
FpI�1;�2 pth percentile of F distribution with numerator df �1

and denominator df �2
Bin.N; p/ Binomial distribution with sample size N and

proportion p

A “lower one-sided” test is associated with SIDES=L (or SIDES=1 with the effect smaller than the null
value), and an “upper one-sided” test is associated with SIDES=U (or SIDES=1 with the effect larger than
the null value).

Owen (1965) defines a function, known as Owen’s Q, that is convenient for representing terms in power
formulas for confidence intervals and equivalence tests:

Q�.t; ıI a; b/ D

p
2�

�.�
2
/2
��2
2

Z b

a

ˆ

�
tx
p
�
� ı

�
x��1�.x/dx

where �.�/ and ˆ.�/ are the density and cumulative distribution function of the standard normal distribution,
respectively.

Analyses in the LOGISTIC Statement

Likelihood Ratio Chi-Square Test for One Predictor (TEST=LRCHI)
The power computing formula is based on Shieh and O’Brien (1998); Shieh (2000); Self, Mauritsen, and
Ohara (1992), and Hsieh (1989).
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Define the following notation for a logistic regression analysis:

N D #subjects .NTOTAL/

K D #predictors (not counting intercept)

x D .x1; : : : ; xK/0 D random variables for predictor vector

x�1 D .x2; : : : ; xK/0

� D .�1; : : : ; �K/
0
D Ex D mean predictor vector

xi D .xi1; : : : ; xiK/0 D predictor vector for subject i .i 2 1; : : : ; N /

Y D random variable for response (0 or 1)

Yi D response for subject i .i 2 1; : : : ; N /

pi D Prob.Yi D 1jxi / .i 2 1; : : : ; N /

� D Prob.Yi D 1jxi D �/ .RESPONSEPROB/

Uj D unit change for j th predictor .UNITS/

ORj D Odds.Yi D 1jxij D c/=Odds.Yi D 1jxij D c � Uj / .c arbitrary; i 2 1; : : : ; N;

j 2 1; : : : ; K/ (TESTODDSRATIO if j D 1;COVODDSRATIOS if j > 1/

‰0 D intercept in full model (INTERCEPT)

‰ D .‰1; : : : ; ‰K/
0
D regression coefficients in full model

.‰1 D TESTREGCOEFF, others = COVREGCOEFFS/

� D Corr.x�1; x1/ .CORR/

cj D #distinct possible values of xij .j 2 1; : : : ; K/.for any i/ .NBINS/

x?gj D gth possible value of xij .g 2 1; : : : ; cj /.j 2 1; : : : ; K/

.for any i/ .VARDIST/

�gj D Prob
�
xij D x

?
gj

�
.g 2 1; : : : ; cj /.j 2 1; : : : ; K/

.for any i/ .VARDIST/

C D

KY
jD1

cj D #possible values of xi .for any i/

x?m D mth possible value of xi .m 2 1; : : : ; C /

�m D Prob
�
xi D x?m

�
.m 2 1; : : : ; C /

The logistic regression model is

log
�

pi

1 � pi

�
D ‰0 C‰

0xi

The hypothesis test of the first predictor variable is

H0W‰1 D 0

H1W‰1 ¤ 0
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Assuming independence among all predictor variables, �m is defined as follows:

�m D

KY
jD1

�h.m;j /j .m 2 1; : : : ; C /

where h.m; j / is calculated according to the following algorithm:

z D mI

do j D K to 1I

h.m; j / D mod.z � 1; cj /C 1I
z D floor..z � 1/=cj /C 1I

endI

This algorithm causes the elements of the transposed vector fh.m; 1/; : : : ; h.m;K/g to vary fastest to slowest
from right to left as m increases, as shown in the following table of h.m; j / values:

j

h.m; j / 1 2 � � � K � 1 K

1 1 1 � � � 1 1

1 1 1 � � � 1 2
:::

:::
::: 1 1 � � � 1 cK
::: 1 1 � � � 2 1
::: 1 1 � � � 2 2
:::

:::

m
::: 1 1 � � � 2 cK
:::

:::
::: c1 c2 � � � cK�1 1
::: c1 c2 � � � cK�1 2
:::

:::

C c1 c2 � � � cK�1 cK

The x?m values are determined in a completely analogous manner.

The discretization is handled as follows (unless the distribution is ordinal, or binomial with sample size
parameter at least as large as requested number of bins): for xj , generate cj quantiles at evenly spaced
probability values such that each such quantile is at the midpoint of a bin with probability 1

cj
. In other words,

x?gj D

�
g � 0:5

cj

�
th quantile of relevant distribution

.g 2 1; : : : ; cj /.j 2 1; : : : ; K/

�gj D
1

cj
(same for all g)
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The primary noncentrality for the power computation is

�? D 2

CX
mD1

�m
�
b0.�m/

�
�m � �

?
m

�
�
�
b.�m/ � b.�

?
m/
��

where

b0.�/ D
exp.�/

1C exp.�/
b.�/ D log .1C exp.�//
�m D ‰0 C‰

0x?m
�?m D ‰

?
0 C‰

?0x?m

where

‰?0 D ‰0 C‰1�1 D intercept in reduced model, absorbing the tested predictor

‰? D .0;‰2; : : : ; ‰K/
0
D coefficients in reduced model

The power is

power D P
�
�2.1;�?N.1 � �2// � �21�˛.1/

�
The factor .1 � �2/ is the adjustment for correlation between the predictor that is being tested and other
predictors, from Hsieh (1989).

Alternative input parameterizations are handled by the following transformations:

‰0 D log
�

�

1 � �

�
�‰ 0�

‰j D
log.ORj /

Uj
.j 2 1; : : : ; K/

Analyses in the MULTREG Statement

Type III F Test in Multiple Regression (TEST=TYPE3)
Maxwell (2000) discusses a number of different ways to represent effect sizes (and to compute exact power
based on them) in multiple regression. PROC POWER supports two of these, multiple partial correlation and
R2 in full and reduced models.

Let p denote the total number of predictors in the full model (excluding the intercept), and let Y denote the
response variable. You are testing that the coefficients of p1 � 1 predictors in a set X1 are 0, controlling for
all of the other predictors X�1, which consists of p � p1 � 0 variables.

The hypotheses can be expressed in two different ways. The first is in terms of �YX1jX�1 , the multiple partial
correlation between the predictors in X1 and the response Y adjusting for the predictors in X�1:

H0W�
2
YX1jX�1

D 0

H1W�
2
YX1jX�1

> 0



6378 F Chapter 77: The POWER Procedure

The second is in terms of the multiple correlations in full (�Y j.X1;X�1/) and reduced (�Y jX�1) nested models:

H0W�
2
Y j.X1;X�1/

� �2Y jX�1 D 0

H1W�
2
Y j.X1;X�1/

� �2Y jX�1 > 0

Note that the squared values of �Y j.X1;X�1/ and �Y jX�1 are the population R2 values for full and reduced
models.

The test statistic can be written in terms of the sample multiple partial correlation RYX1jX�1 ,

F D

8̂̂<̂
:̂
.N � 1 � p/

R2
YX1jX�1

1�R2
YX1jX�1

; intercept

.N � p/
R2
YX1jX�1

1�R2
YX1jX�1

; no intercept

or the sample multiple correlations in full (RY j.X1;X�1/) and reduced (RY jX�1) models,

F D

8̂̂<̂
:̂
.N � 1 � p/

R2
Y j.X1;X�1/

�R2
Y jX�1

1�R2
Y j.X1;X�1/

; intercept

.N � p/
R2
Y j.X1;X�1/

�R2
Y jX�1

1�R2
Y j.X1;X�1/

; no intercept

The test is the usual Type III F test in multiple regression:

Reject H0 if
�
F � F1�˛.p1; N � 1 � p/; intercept
F � F1�˛.p1; N � p/; no intercept

Although the test is invariant to whether the predictors are assumed to be random or fixed, the power is
affected by this assumption. If the response and predictors are assumed to have a joint multivariate normal
distribution, then the exact power is given by the following formula:

power D

8̂̂<̂
:̂
P

��
N�1�p
p1

�� R2
YX1jX�1

1�R2
YX1jX�1

�
� F1�˛.p1; N � 1 � p/

�
; intercept

P

��
N�p
p1

�� R2
YX1jX�1

1�R2
YX1jX�1

�
� F1�˛.p1; N � p/

�
; no intercept

D

8̂̂<̂
:̂
P

�
R2
YX1jX�1

�
F1�˛.p1;N�1�p/

F1�˛.p1;N�1�p/C
N�1�p
p1

�
; intercept

P

�
R2
YX1jX�1

�
F1�˛.p1;N�p/

F1�˛.p1;N�p/C
N�p
p1

�
; no intercept

The distribution of R2
YX1jX�1

(for any �2
YX1jX�1

) is given in Chapter 32 of Johnson, Kotz, and Balakrishnan
(1995). Sample size tables are presented in Gatsonis and Sampson (1989).

If the predictors are assumed to have fixed values, then the exact power is given by the noncentral F
distribution. The noncentrality parameter is

� D N
�2
YX1jX�1

1 � �2
YX1jX�1
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or equivalently,

� D N
�2
Y j.X1;X�1/

� �2
Y jX�1

1 � �2
Y j.X1;X�1/

The power is

power D
�
P .F.p1; N � 1 � p; �/ � F1�˛.p1; N � 1 � p// ; intercept
P .F.p1; N � p; �/ � F1�˛.p1; N � p// ; no intercept

The minimum acceptable input value of N depends on several factors, as shown in Table 77.30.

Table 77.30 Minimum Acceptable Sample Size Values in the MULTREG Statement

Predictor Type Intercept in Model? p1 D 1? Minimum N

Random Yes Yes p + 3
Random Yes No p + 2
Random No Yes p + 2
Random No No p + 1
Fixed Yes Yes or No p + 2
Fixed No Yes or No p + 1

Analyses in the ONECORR Statement

Fisher’s z Test for Pearson Correlation (TEST=PEARSON DIST=FISHERZ)
Fisher’s z transformation (Fisher 1921) of the sample correlation RY j.X1;X�1/ is defined as

z D
1

2
log

�
1CRY j.X1;X�1/

1 �RY j.X1;X�1/

�
Fisher’s z test assumes the approximate normal distribution N.�; �2/ for z, where

� D
1

2
log

�
1C �Y j.X1;X�1/

1 � �Y j.X1;X�1/

�
C

�Y j.X1;X�1/

2.N � 1 � p?/

and

�2 D
1

N � 3 � p?

where p? is the number of variables partialed out (Anderson 1984, pp. 132–133) and �Y j.X1;X�1/ is the
partial correlation between Y and X1 adjusting for the set of zero or more variables X�1.

The test statistic

z? D .N � 3 � p?/
1
2

�
z �

1

2
log

�
1C �0

1 � �0

�
�

�0

2.N � 1 � p?/

�
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is assumed to have a normal distribution N.ı; �/, where �0 is the null partial correlation and ı and � are
derived from Section 16.33 of Stuart and Ord (1994):

ı D .N � 3 � p?/
1
2

"
1

2
log

�
1C �Y j.X1;X�1/

1 � �Y j.X1;X�1/

�
C

�Y j.X1;X�1/

2.N � 1 � p?/

 
1C

5C �2
Y j.X1;X�1/

4.N � 1 � p?/
C

11C 2�2
Y j.X1;X�1/

C 3�4
Y j.X1;X�1/

8.N � 1 � p?/2

!
�
1

2
log

�
1C �0

1 � �0

�
�

�0

2.N � 1 � p?/

#

� D
N � 3 � p?

N � 1 � p?

"
1C

4 � �2
Y j.X1;X�1/

2.N � 1 � p?/
C

22 � 6�2
Y j.X1;X�1/

� 3�4
Y j.X1;X�1/

6.N � 1 � p?/2

#

The approximate power is computed as

power D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

ˆ

�
ı�z1�˛

�
1
2

�
; upper one-sided

ˆ

�
�ı�z1�˛

�
1
2

�
; lower one-sided

ˆ

�
ı�z1�˛

2

�
1
2

�
Cˆ

�
�ı�z1�˛

2

�
1
2

�
; two-sided

Because the test is biased, the achieved significance level might differ from the nominal significance level.
The actual alpha is computed in the same way as the power, except that the correlation �Y j.X1;X�1/ is replaced
by the null correlation �0.

t Test for Pearson Correlation (TEST=PEARSON DIST=T)
The two-sided case is identical to multiple regression with an intercept and p1 D 1, which is discussed in the
section “Analyses in the MULTREG Statement” on page 6377.

Let p? denote the number of variables partialed out. For the one-sided cases, the test statistic is

t D .N � 2 � p?/
1
2

RYX1jX�1�
1 �R2

YX1jX�1

� 1
2

which is assumed to have a null distribution of t .N � 2 � p?/.

If the X and Y variables are assumed to have a joint multivariate normal distribution, then the exact power is
given by the following formula:
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power D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:
P

24.N � 2 � p?/ 12 RYX1jX�1�
1�R2

YX1jX�1

� 1
2

� t1�˛.N � 2 � p
?/

35 ; upper one-sided

P

24.N � 2 � p?/ 12 RYX1jX�1�
1�R2

YX1jX�1

� 1
2

� t˛.N � 2 � p
?/

35 ; lower one-sided

D

8̂̂̂̂
<̂
ˆ̂̂:
P

"
RY j.X1;X�1/ �

t1�˛.N�2�p
?/

.t21�˛.N�2�p?/CN�2�p?/
1
2

#
; upper one-sided

P

"
RY j.X1;X�1/ �

t˛.N�2�p
?/

.t2˛.N�2�p?/CN�2�p?/
1
2

#
; lower one-sided

The distribution of RY j.X1;X�1/ (given the underlying true correlation �Y j.X1;X�1/) is given in Chapter 32 of
Johnson, Kotz, and Balakrishnan (1995).

If the X variables are assumed to have fixed values, then the exact power is given by the noncentral t
distribution t .N � 2 � p?; ı/, where the noncentrality is

ı D N
1
2

�YX1jX�1�
1 � �2

YX1jX�1

� 1
2

The power is

power D
�
P .t.N � 2 � p?; ı/ � t1�˛.N � 2 � p

?// ; upper one-sided
P .t.N � 2 � p?; ı/ � t˛.N � 2 � p

?// ; lower one-sided

Analyses in the ONESAMPLEFREQ Statement

Exact Test of a Binomial Proportion (TEST=EXACT)
Let X be distributed as Bin.N; p/. The hypotheses for the test of the proportion p are as follows:

H0Wp D p0

H1W

8<:
p ¤ p0; two-sided
p > p0; upper one-sided
p < p0; lower one-sided

The exact test assumes binomially distributed data and requires N � 1 and 0 < p0 < 1. The test statistic is

X D number of successes Ï Bin.N; p/

The significance probability ˛ is split symmetrically for two-sided tests, in the sense that each tail is filled
with as much as possible up to ˛=2.
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Exact power computations are based on the binomial distribution and computing formulas such as the
following from Johnson, Kotz, and Kemp (1992, equation 3.20):

P.X � C jN;p/ D P

�
F�1;�2 �

�2p

�1.1 � p/

�
where �1 D 2C and �2 D 2.N � C C 1/

Let CL and CU denote lower and upper critical values, respectively. Let ˛a denote the achieved (actual)
significance level, which for two-sided tests is the sum of the favorable major tail (˛M ) and the opposite
minor tail (˛m).

For the upper one-sided case,

CU D minfC W P.X � C jp0/ � ˛g
Reject H0 if X � CU

˛a D P.X � CU jp0/

power D P.X � CU jp/

For the lower one-sided case,

CL D maxfC W P.X � C jp0/ � ˛g
Reject H0 if X � CL

˛a D P.X � CLjp0/

power D P.X � CLjp/

For the two-sided case,

CL D maxfC W P.X � C jp0/ �
˛

2
g

CU D minfC W P.X � C jp0/ �
˛

2
g

Reject H0 if X � CL orX � CU
˛a D P.X � CL orX � CU jp0/

power D P.X � CL orX � CU jp/

z Test for Binomial Proportion Using Null Variance (TEST=Z VAREST=NULL)
For the normal approximation test, the test statistic is

Z.X/ D
X �Np0

ŒNp0.1 � p0/�
1
2

For the METHOD=EXACT option, the computations are the same as described in the section “Exact Test of
a Binomial Proportion (TEST=EXACT)” on page 6381 except for the definitions of the critical values.

For the upper one-sided case,

CU D minfC W Z.C/ � z1�˛g
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For the lower one-sided case,

CL D maxfC W Z.C/ � z˛g

For the two-sided case,

CL D maxfC W Z.C/ � z˛
2
g

CU D minfC W Z.C/ � z1�˛
2
g

For the METHOD=NORMAL option, the test statistic Z.X/ is assumed to have the normal distribution

N

 
N
1
2 .p � p0/

Œp0.1 � p0/�
1
2

;
p.1 � p/

p0.1 � p0/

!
The approximate power is computed as

power D

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

ˆ

 
z˛C
p
N

p�p0p
p0.1�p0/q

p.1�p/
p0.1�p0/

!
; upper one-sided

ˆ

 
z˛�
p
N

p�p0p
p0.1�p0/q

p.1�p/
p0.1�p0/

!
; lower one-sided

ˆ

 
z˛
2
C
p
N

p�p0p
p0.1�p0/q

p.1�p/
p0.1�p0/

!
Cˆ

 
z˛
2
�
p
N

p�p0p
p0.1�p0/q

p.1�p/
p0.1�p0/

!
; two-sided

The approximate sample size is computed in closed form for the one-sided cases by inverting the power
equation,

N D

 
zpower

p
p.1 � p/C z1�˛

p
p0.1 � p0/

p � p0

!2
and by numerical inversion for the two-sided case.

z Test for Binomial Proportion Using Sample Variance (TEST=Z VAREST=SAMPLE)
For the normal approximation test using the sample variance, the test statistic is

Zs.X/ D
X �Np0

ŒN Op.1 � Op/�
1
2

where Op D X=N .

For the METHOD=EXACT option, the computations are the same as described in the section “Exact Test of
a Binomial Proportion (TEST=EXACT)” on page 6381 except for the definitions of the critical values.

For the upper one-sided case,

CU D minfC W Zs.C / � z1�˛g
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For the lower one-sided case,

CL D maxfC W Zs.C / � z˛g

For the two-sided case,

CL D maxfC W Zs.C / � z˛
2
g

CU D minfC W Zs.C / � z1�˛
2
g

For the METHOD=NORMAL option, the test statistic Zs.X/ is assumed to have the normal distribution

N

 
N

1
2 .p � p0/

Œp.1 � p/�
1
2

; 1

!

(see Chow, Shao, and Wang (2003, p. 82)).

The approximate power is computed as

power D

8̂̂̂<̂
ˆ̂:
ˆ
�
z˛ C

p
N p�p0p

p.1�p/

�
; upper one-sided

ˆ
�
z˛ �

p
N p�p0p

p.1�p/

�
; lower one-sided

ˆ
�
z˛
2
C
p
N p�p0p

p.1�p/

�
Cˆ

�
z˛
2
�
p
N p�p0p

p.1�p/

�
; two-sided

The approximate sample size is computed in closed form for the one-sided cases by inverting the power
equation,

N D p.1 � p/

�
zpower C z1�˛

p � p0

�2
and by numerical inversion for the two-sided case.

z Test for Binomial Proportion with Continuity Adjustment Using Null Variance (TEST=ADJZ
VAREST=NULL)
For the normal approximation test with continuity adjustment, the test statistic is (Pagano and Gauvreau
1993, p. 295):

Zc.X/ D
X �Np0 C 0:5.1fX<Np0g/ � 0:5.1fX>Np0g/

ŒNp0.1 � p0/�
1
2

For the METHOD=EXACT option, the computations are the same as described in the section “Exact Test of
a Binomial Proportion (TEST=EXACT)” on page 6381 except for the definitions of the critical values.

For the upper one-sided case,

CU D minfC W Zc.C / � z1�˛g
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For the lower one-sided case,

CL D maxfC W Zc.C / � z˛g

For the two-sided case,

CL D maxfC W Zc.C / � z˛
2
g

CU D minfC W Zc.C / � z1�˛
2
g

For the METHOD=NORMAL option, the test statistic Zc.X/ is assumed to have the normal distribution
N.�; �2/, where � and �2 are derived as follows.

For convenience of notation, define

k D
1

2
p
Np0.1 � p0/

Then

E ŒZc.X/� D 2kNp � 2kNp0 C kP.X < Np0/ � kP.X > Np0/

and

Var ŒZc.X/� D 4k2Np.1 � p/C k2 Œ1 � P.X D Np0/� � k2 ŒP.X < Np0/ � P.X > Np0/�
2

C 4k2
�
E
�
X1fX<Np0g

�
�E

�
X1fX>Np0g

��
� 4k2Np ŒP.X < Np0/ � P.X > Np0/�

The probabilities P.X D Np0/, P.X < Np0/, and P.X > Np0/ and the truncated expectations
E
�
X1fX<Np0g

�
and E

�
X1fX>Np0g

�
are approximated by assuming the normal-approximate distribution of

X, N.Np;Np.1 � p//. Letting �.�/ and ˆ.�/ denote the standard normal PDF and CDF, respectively, and
defining d as

d D
Np0 �Np

ŒNp.1 � p/�
1
2

the terms are computed as follows:

P.X D Np0/ D 0

P.X < Np0/ D ˆ.d/

P.X > Np0/ D 1 �ˆ.d/

E
�
X1fX<Np0g

�
D Npˆ.d/ � ŒNp.1 � p/�

1
2 �.d/

E
�
X1fX>Np0g

�
D Np Œ1 �ˆ.d/�C ŒNp.1 � p/�

1
2 �.d/

The mean and variance of Zc.X/ are thus approximated by

� D k Œ2Np � 2Np0 C 2ˆ.d/ � 1�
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and

�2 D 4k2
h
Np.1 � p/Cˆ.d/ .1 �ˆ.d// � 2 .Np.1 � p//

1
2 �.d/

i
The approximate power is computed as

power D

8̂̂̂<̂
ˆ̂:
ˆ
�
z˛C�
�

�
; upper one-sided

ˆ
�z˛��

�

�
; lower one-sided

ˆ

�
z˛
2
C�

�

�
Cˆ

�z˛
2
��

�

�
; two-sided

The approximate sample size is computed by numerical inversion.

z Test for Binomial Proportion with Continuity Adjustment Using Sample Variance (TEST=ADJZ
VAREST=SAMPLE)
For the normal approximation test with continuity adjustment using the sample variance, the test statistic is

Zcs.X/ D
X �Np0 C 0:5.1fX<Np0g/ � 0:5.1fX>Np0g/

ŒN Op.1 � Op/�
1
2

where Op D X=N .

For the METHOD=EXACT option, the computations are the same as described in the section “Exact Test of
a Binomial Proportion (TEST=EXACT)” on page 6381 except for the definitions of the critical values.

For the upper one-sided case,

CU D minfC W Zcs.C / � z1�˛g

For the lower one-sided case,

CL D maxfC W Zcs.C / � z˛g

For the two-sided case,

CL D maxfC W Zcs.C / � z˛
2
g

CU D minfC W Zcs.C / � z1�˛
2
g

For the METHOD=NORMAL option, the test statistic Zcs.X/ is assumed to have the normal distribution
N.�; �2/, where � and �2 are derived as follows.

For convenience of notation, define

k D
1

2
p
Np.1 � p/
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Then

E ŒZcs.X/� � 2kNp � 2kNp0 C kP.X < Np0/ � kP.X > Np0/

and

Var ŒZcs.X/� � 4k2Np.1 � p/C k2 Œ1 � P.X D Np0/� � k2 ŒP.X < Np0/ � P.X > Np0/�
2

C 4k2
�
E
�
X1fX<Np0g

�
�E

�
X1fX>Np0g

��
� 4k2Np ŒP.X < Np0/ � P.X > Np0/�

The probabilities P.X D Np0/, P.X < Np0/, and P.X > Np0/ and the truncated expectations
E
�
X1fX<Np0g

�
and E

�
X1fX>Np0g

�
are approximated by assuming the normal-approximate distribution of

X, N.Np;Np.1 � p//. Letting �.�/ and ˆ.�/ denote the standard normal PDF and CDF, respectively, and
defining d as

d D
Np0 �Np

ŒNp.1 � p/�
1
2

the terms are computed as follows:

P.X D Np0/ D 0

P.X < Np0/ D ˆ.d/

P.X > Np0/ D 1 �ˆ.d/

E
�
X1fX<Np0g

�
D Npˆ.d/ � ŒNp.1 � p/�

1
2 �.d/

E
�
X1fX>Np0g

�
D Np Œ1 �ˆ.d/�C ŒNp.1 � p/�

1
2 �.d/

The mean and variance of Zcs.X/ are thus approximated by

� D k Œ2Np � 2Np0 C 2ˆ.d/ � 1�

and

�2 D 4k2
h
Np.1 � p/Cˆ.d/ .1 �ˆ.d// � 2 .Np.1 � p//

1
2 �.d/

i
The approximate power is computed as

power D

8̂̂̂<̂
ˆ̂:
ˆ
�
z˛C�
�

�
; upper one-sided

ˆ
�z˛��

�

�
; lower one-sided

ˆ

�
z˛
2
C�

�

�
Cˆ

�z˛
2
��

�

�
; two-sided

The approximate sample size is computed by numerical inversion.
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Exact Equivalence Test of a Binomial Proportion (TEST=EQUIV_EXACT)
The hypotheses for the equivalence test are

H0Wp < �L or p > �U

H1W�L � p � �U

where �L and �U are the lower and upper equivalence bounds, respectively.

The analysis is the two one-sided tests (TOST) procedure as described in Chow, Shao, and Wang (2003) on p.
84, but using exact critical values as on p. 116 instead of normal-based critical values.

Two different hypothesis tests are carried out:

Ha0Wp < �L

Ha1Wp � �L

and

Hb0Wp > �U

Hb1Wp � �U

If Ha0 is rejected in favor of Ha1 and Hb0 is rejected in favor of Hb1, then H0 is rejected in favor of H1.

The test statistic for each of the two tests (Ha0 versus Ha1 and Hb0 versus Hb1) is

X D number of successes Ï Bin.N; p/

Let CU denote the critical value of the exact upper one-sided test of Ha0 versus Ha1, and let CL denote the
critical value of the exact lower one-sided test of Hb0 versus Hb1. These critical values are computed in
the section “Exact Test of a Binomial Proportion (TEST=EXACT)” on page 6381. Both of these tests are
rejected if and only if CU � X � CL. Thus, the exact power of the equivalence test is

power D P .CU � X � CL/
D P .X � CU / � P .X � CL C 1/

The probabilities are computed using Johnson and Kotz (1970, equation 3.20).

z Equivalence Test for Binomial Proportion Using Null Variance (TEST=EQUIV_Z VAREST=NULL)
The hypotheses for the equivalence test are

H0Wp < �L or p > �U

H1W�L � p � �U

where �L and �U are the lower and upper equivalence bounds, respectively.

The analysis is the two one-sided tests (TOST) procedure as described in Chow, Shao, and Wang (2003) on p.
84, but using the null variance instead of the sample variance.
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Two different hypothesis tests are carried out:

Ha0Wp < �L

Ha1Wp � �L

and

Hb0Wp > �U

Hb1Wp � �U

If Ha0 is rejected in favor of Ha1 and Hb0 is rejected in favor of Hb1, then H0 is rejected in favor of H1.

The test statistic for the test of Ha0 versus Ha1 is

ZL.X/ D
X �N�L

ŒN�L.1 � �L/�
1
2

The test statistic for the test of Hb0 versus Hb1 is

ZU .X/ D
X �N�U

ŒN�U .1 � �U /�
1
2

For the METHOD=EXACT option, let CU denote the critical value of the exact upper one-sided test of Ha0
versus Ha1 using ZL.X/. This critical value is computed in the section “z Test for Binomial Proportion
Using Null Variance (TEST=Z VAREST=NULL)” on page 6382. Similarly, let CL denote the critical value
of the exact lower one-sided test of Hb0 versus Hb1 using ZU .X/. Both of these tests are rejected if and
only if CU � X � CL. Thus, the exact power of the equivalence test is

power D P .CU � X � CL/
D P .X � CU / � P .X � CL C 1/

The probabilities are computed using Johnson and Kotz (1970, equation 3.20).

For the METHOD=NORMAL option, the test statistic ZL.X/ is assumed to have the normal distribution

N

 
N
1
2 .p � �L/

Œ�L.1 � �L/�
1
2

;
p.1 � p/

�L.1 � �L/

!
and the test statistic ZU .X/ is assumed to have the normal distribution

N

 
N
1
2 .p � �U /

Œ�U .1 � �U /�
1
2

;
p.1 � p/

�U .1 � �U /

!
(see Chow, Shao, and Wang (2003, p. 84)). The approximate power is computed as

power D ˆ

0B@z˛ �
p
N p��Up

�U .1��U /q
p.1�p/
�U .1��U /

1CACˆ
0B@z˛ C

p
N p��Lp

�L.1��L/q
p.1�p/
�L.1��L/

1CA � 1
The approximate sample size is computed by numerically inverting the power formula, using the sample size
estimate N0 of Chow, Shao, and Wang (2003, p. 85) as an initial guess:

N0 D p.1 � p/

�
z1�˛ C z.1Cpower/=2

0:5.�U � �L/� j p � 0:5.�L C �U / j

�2
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z Equivalence Test for Binomial Proportion Using Sample Variance (TEST=EQUIV_Z
VAREST=SAMPLE)
The hypotheses for the equivalence test are

H0Wp < �L or p > �U

H1W�L � p � �U

where �L and �U are the lower and upper equivalence bounds, respectively.

The analysis is the two one-sided tests (TOST) procedure as described in Chow, Shao, and Wang (2003) on p.
84.

Two different hypothesis tests are carried out:

Ha0Wp < �L

Ha1Wp � �L

and

Hb0Wp > �U

Hb1Wp � �U

If Ha0 is rejected in favor of Ha1 and Hb0 is rejected in favor of Hb1, then H0 is rejected in favor of H1.

The test statistic for the test of Ha0 versus Ha1 is

ZsL.X/ D
X �N�L

ŒN Op.1 � Op/�
1
2

where Op D X=N .

The test statistic for the test of Hb0 versus Hb1 is

ZsU .X/ D
X �N�U

ŒN Op.1 � Op/�
1
2

For the METHOD=EXACT option, let CU denote the critical value of the exact upper one-sided test of Ha0
versus Ha1 using ZsL.X/. This critical value is computed in the section “z Test for Binomial Proportion
Using Sample Variance (TEST=Z VAREST=SAMPLE)” on page 6383. Similarly, let CL denote the critical
value of the exact lower one-sided test of Hb0 versus Hb1 using ZsU .X/. Both of these tests are rejected if
and only if CU � X � CL. Thus, the exact power of the equivalence test is

power D P .CU � X � CL/
D P .X � CU / � P .X � CL C 1/

The probabilities are computed using Johnson and Kotz (1970, equation 3.20).

For the METHOD=NORMAL option, the test statistic ZsL.X/ is assumed to have the normal distribution

N

 
N

1
2 .p � �L/

Œp.1 � p/�
1
2

; 1

!
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and the test statistic ZsU .X/ is assumed to have the normal distribution

N

 
N
1
2 .p � �U /

Œp.1 � p/�
1
2

; 1

!
(see Chow, Shao, and Wang (2003), p. 84).

The approximate power is computed as

power D ˆ

 
z˛ �

p
N

p � �Up
p.1 � p/

!
Cˆ

 
z˛ C

p
N

p � �Lp
p.1 � p/

!
� 1

The approximate sample size is computed by numerically inverting the power formula, using the sample size
estimate N0 of Chow, Shao, and Wang (2003, p. 85) as an initial guess:

N0 D p.1 � p/

�
z1�˛ C z.1Cpower/=2

0:5.�U � �L/� j p � 0:5.�L C �U / j

�2
z Equivalence Test for Binomial Proportion with Continuity Adjustment Using Null Variance
(TEST=EQUIV_ADJZ VAREST=NULL)
The hypotheses for the equivalence test are

H0Wp < �L or p > �U

H1W�L � p � �U

where �L and �U are the lower and upper equivalence bounds, respectively.

The analysis is the two one-sided tests (TOST) procedure as described in Chow, Shao, and Wang (2003) on p.
84, but using the null variance instead of the sample variance.

Two different hypothesis tests are carried out:

Ha0Wp < �L

Ha1Wp � �L

and

Hb0Wp > �U

Hb1Wp � �U

If Ha0 is rejected in favor of Ha1 and Hb0 is rejected in favor of Hb1, then H0 is rejected in favor of H1.

The test statistic for the test of Ha0 versus Ha1 is

ZcL.X/ D
X �N�L C 0:5.1fX<N�Lg/ � 0:5.1fX>N�Lg/h

N O�L.1 � O�L/
i 1
2

where Op D X=N .

The test statistic for the test of Hb0 versus Hb1 is

ZcU .X/ D
X �N�U C 0:5.1fX<N�U g/ � 0:5.1fX>N�U g/h

N O�U .1 � O�U /
i 1
2
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For the METHOD=EXACT option, let CU denote the critical value of the exact upper one-sided test of Ha0
versus Ha1 using ZcL.X/. This critical value is computed in the section “z Test for Binomial Proportion
with Continuity Adjustment Using Null Variance (TEST=ADJZ VAREST=NULL)” on page 6384. Similarly,
let CL denote the critical value of the exact lower one-sided test of Hb0 versus Hb1 using ZcU .X/. Both of
these tests are rejected if and only if CU � X � CL. Thus, the exact power of the equivalence test is

power D P .CU � X � CL/
D P .X � CU / � P .X � CL C 1/

The probabilities are computed using Johnson and Kotz (1970, equation 3.20).

For the METHOD=NORMAL option, the test statistic ZcL.X/ is assumed to have the normal distribution
N.�L; �

2
L/, and ZcU .X/ is assumed to have the normal distribution N.�U ; �2U /, where �L, �U , �2L, and

�2U are derived as follows.

For convenience of notation, define

kL D
1

2
p
N�L.1 � �L/

kU D
1

2
p
N�U .1 � �U /

Then

E ŒZcL.X/� � 2kLNp � 2kLN�L C kLP.X < N�L/ � kLP.X > N�L/

E ŒZcU .X/� � 2kUNp � 2kUN�U C kUP.X < N�U / � kUP.X > N�U /

and

Var ŒZcL.X/� � 4k2LNp.1 � p/C k
2
L Œ1 � P.X D N�L/� � k

2
L ŒP.X < N�L/ � P.X > N�L/�

2

C 4k2L
�
E
�
X1fX<N�Lg

�
�E

�
X1fX>N�Lg

��
� 4k2LNp ŒP.X < N�L/ � P.X > N�L/�

Var ŒZcU .X/� � 4k2UNp.1 � p/C k
2
U Œ1 � P.X D N�U /� � k

2
U ŒP.X < N�U / � P.X > N�U /�

2

C 4k2U
�
E
�
X1fX<N�U g

�
�E

�
X1fX>N�U g

��
� 4k2UNp ŒP.X < N�U / � P.X > N�U /�

The probabilities P.X D N�L/, P.X < N�L/, P.X > N�L/, P.X D N�U /, P.X < N�U /, and
P.X > N�U / and the truncated expectations E

�
X1fX<N�Lg

�
, E

�
X1fX>N�Lg

�
, E

�
X1fX<N�Lg

�
, and

E
�
X1fX>N�Lg

�
are approximated by assuming the normal-approximate distribution of X,N.Np;Np.1�p//.

Letting �.�/ and ˆ.�/ denote the standard normal PDF and CDF, respectively, and defining dL and dU as

dL D
N�L �Np

ŒNp.1 � p/�
1
2

dU D
N�U �Np

ŒNp.1 � p/�
1
2
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the terms are computed as follows:

P.X D N�L/ D 0

P.X D N�U / D 0

P.X < N�L/ D ˆ.dL/

P.X < N�U / D ˆ.dU /

P.X > N�L/ D 1 �ˆ.dL/

P.X > N�U / D 1 �ˆ.dU /

E
�
X1fX<N�Lg

�
D Npˆ.dL/ � ŒNp.1 � p/�

1
2 �.dL/

E
�
X1fX<N�U g

�
D Npˆ.dU / � ŒNp.1 � p/�

1
2 �.dU /

E
�
X1fX>N�Lg

�
D Np Œ1 �ˆ.dL/�C ŒNp.1 � p/�

1
2 �.dL/

E
�
X1fX>N�U g

�
D Np Œ1 �ˆ.dU /�C ŒNp.1 � p/�

1
2 �.dU /

The mean and variance of ZcL.X/ and ZcU .X/ are thus approximated by

�L D kL Œ2Np � 2N�L C 2ˆ.dL/ � 1�

�U D kU Œ2Np � 2N�U C 2ˆ.dU / � 1�

and

�2L D 4k
2
L

h
Np.1 � p/Cˆ.dL/ .1 �ˆ.dL// � 2 .Np.1 � p//

1
2 �.dL/

i
�2U D 4k

2
U

h
Np.1 � p/Cˆ.dU / .1 �ˆ.dU // � 2 .Np.1 � p//

1
2 �.dU /

i

The approximate power is computed as

power D ˆ
�
z˛ � �U

�U

�
Cˆ

�
z˛ C �L

�L

�
� 1

The approximate sample size is computed by numerically inverting the power formula.

z Equivalence Test for Binomial Proportion with Continuity Adjustment Using Sample Variance
(TEST=EQUIV_ADJZ VAREST=SAMPLE)
The hypotheses for the equivalence test are

H0Wp < �L or p > �U

H1W�L � p � �U

where �L and �U are the lower and upper equivalence bounds, respectively.

The analysis is the two one-sided tests (TOST) procedure as described in Chow, Shao, and Wang (2003) on p.
84.
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Two different hypothesis tests are carried out:

Ha0Wp < �L

Ha1Wp � �L

and

Hb0Wp > �U

Hb1Wp � �U

If Ha0 is rejected in favor of Ha1 and Hb0 is rejected in favor of Hb1, then H0 is rejected in favor of H1.

The test statistic for the test of Ha0 versus Ha1 is

ZcsL.X/ D
X �N�L C 0:5.1fX<N�Lg/ � 0:5.1fX>N�Lg/

ŒN Op.1 � Op/�
1
2

where Op D X=N .

The test statistic for the test of Hb0 versus Hb1 is

ZcsU .X/ D
X �N�U C 0:5.1fX<N�U g/ � 0:5.1fX>N�U g/

ŒN Op.1 � Op/�
1
2

For the METHOD=EXACT option, let CU denote the critical value of the exact upper one-sided test of Ha0
versus Ha1 using ZcsL.X/. This critical value is computed in the section “z Test for Binomial Proportion
with Continuity Adjustment Using Sample Variance (TEST=ADJZ VAREST=SAMPLE)” on page 6386.
Similarly, let CL denote the critical value of the exact lower one-sided test ofHb0 versusHb1 usingZcsU .X/.
Both of these tests are rejected if and only if CU � X � CL. Thus, the exact power of the equivalence test is

power D P .CU � X � CL/
D P .X � CU / � P .X � CL C 1/

The probabilities are computed using Johnson and Kotz (1970, equation 3.20).

For the METHOD=NORMAL option, the test statistic ZcsL.X/ is assumed to have the normal distribution
N.�L; �

2
L/, and ZcsU .X/ is assumed to have the normal distribution N.�U ; �2U /, where �L, �U , �2L and

�2U are derived as follows.

For convenience of notation, define

k D
1

2
p
Np.1 � p/

Then

E ŒZcsL.X/� � 2kNp � 2kN�L C kP.X < N�L/ � kP.X > N�L/

E ŒZcsU .X/� � 2kNp � 2kN�U C kP.X < N�U / � kP.X > N�U /
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and

Var ŒZcsL.X/� � 4k2Np.1 � p/C k2 Œ1 � P.X D N�L/� � k2 ŒP.X < N�L/ � P.X > N�L/�
2

C 4k2
�
E
�
X1fX<N�Lg

�
�E

�
X1fX>N�Lg

��
� 4k2Np ŒP.X < N�L/ � P.X > N�L/�

Var ŒZcsU .X/� � 4k2Np.1 � p/C k2 Œ1 � P.X D N�U /� � k2 ŒP.X < N�U / � P.X > N�U /�
2

C 4k2
�
E
�
X1fX<N�U g

�
�E

�
X1fX>N�U g

��
� 4k2Np ŒP.X < N�U / � P.X > N�U /�

The probabilities P.X D N�L/, P.X < N�L/, P.X > N�L/, P.X D N�U /, P.X < N�U /, and
P.X > N�U / and the truncated expectations E

�
X1fX<N�Lg

�
, E

�
X1fX>N�Lg

�
, E

�
X1fX<N�Lg

�
, and

E
�
X1fX>N�Lg

�
are approximated by assuming the normal-approximate distribution of X,N.Np;Np.1�p//.

Letting �.�/ and ˆ.�/ denote the standard normal PDF and CDF, respectively, and defining dL and dU as

dL D
N�L �Np

ŒNp.1 � p/�
1
2

dU D
N�U �Np

ŒNp.1 � p/�
1
2

the terms are computed as follows:

P.X D N�L/ D 0

P.X D N�U / D 0

P.X < N�L/ D ˆ.dL/

P.X < N�U / D ˆ.dU /

P.X > N�L/ D 1 �ˆ.dL/

P.X > N�U / D 1 �ˆ.dU /

E
�
X1fX<N�Lg

�
D Npˆ.dL/ � ŒNp.1 � p/�

1
2 �.dL/

E
�
X1fX<N�U g

�
D Npˆ.dU / � ŒNp.1 � p/�

1
2 �.dU /

E
�
X1fX>N�Lg

�
D Np Œ1 �ˆ.dL/�C ŒNp.1 � p/�

1
2 �.dL/

E
�
X1fX>N�U g

�
D Np Œ1 �ˆ.dU /�C ŒNp.1 � p/�

1
2 �.dU /

The mean and variance of ZcsL.X/ and ZcsU .X/ are thus approximated by

�L D k Œ2Np � 2N�L C 2ˆ.dL/ � 1�

�U D k Œ2Np � 2N�U C 2ˆ.dU / � 1�

and

�2L D 4k
2
h
Np.1 � p/Cˆ.dL/ .1 �ˆ.dL// � 2 .Np.1 � p//

1
2 �.dL/

i
�2U D 4k

2
h
Np.1 � p/Cˆ.dU / .1 �ˆ.dU // � 2 .Np.1 � p//

1
2 �.dU /

i
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The approximate power is computed as

power D ˆ
�
z˛ � �U

�U

�
Cˆ

�
z˛ C �L

�L

�
� 1

The approximate sample size is computed by numerically inverting the power formula.

Wilson Score Confidence Interval for Binomial Proportion (CI=WILSON)
The two-sided 100.1 � ˛/% confidence interval for p is

X C
z2
1�˛=2

2

N C z2
1�˛=2

˙
z1�˛=2N

1
2

N C z2
1�˛=2

 
Op.1 � Op/C

z2
1�˛=2

4N

! 1
2

So the half-width for the two-sided 100.1 � ˛/% confidence interval is

half-width D
z1�˛=2N

1
2

N C z2
1�˛=2

 
Op.1 � Op/C

z2
1�˛=2

4N

! 1
2

Prob(Width) is calculated exactly by adding up the probabilities of observing each X 2 f1; : : : ; N g that
produces a confidence interval whose half-width is at most a target value h:

Prob.Width/ D
NX
iD0

P.X D i/1half-width<h

For references and more details about this and all other confidence intervals associated with the CI= option,
see “Binomial Proportion” on page 2663 in Chapter 40, “The FREQ Procedure.”

Agresti-Coull “Add k Successes and Failures” Confidence Interval for Binomial Proportion
(CI=AGRESTICOULL)
The two-sided 100.1 � ˛/% confidence interval for p is

X C
z2
1�˛=2

2

N C z2
1�˛=2

˙ z1�˛=2

0BBBBB@
XC

z2
1�˛=2
2

NCz2
1�˛=2

 
1 �

XC
z2
1�˛=2
2

NCz2
1�˛=2

!
N C z2

1�˛=2

1CCCCCA

1
2

So the half-width for the two-sided 100.1 � ˛/% confidence interval is
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half-width D z1�˛=2

0BBBBB@
XC

z2
1�˛=2
2

NCz2
1�˛=2

 
1 �

XC
z2
1�˛=2
2

NCz2
1�˛=2

!
N C z2

1�˛=2

1CCCCCA

1
2

Prob(Width) is calculated exactly by adding up the probabilities of observing each X 2 f1; : : : ; N g that
produces a confidence interval whose half-width is at most a target value h:

Prob.Width/ D
NX
iD0

P.X D i/1half-width<h

Jeffreys Confidence Interval for Binomial Proportion (CI=JEFFREYS)
The two-sided 100.1 � ˛/% confidence interval for p is

ŒLJ .X/; UJ .X/�

where

LJ .X/ D

�
0; X D 0

Beta˛=2IXC1=2;N�XC1=2; X > 0

and

UJ .X/ D

�
Beta1�˛=2IXC1=2;N�XC1=2; X < N

1; X D N

The half-width of this two-sided 100.1 � ˛/% confidence interval is defined as half the width of the full
interval:

half-width D
1

2
.UJ .X/ � LJ .X//

Prob(Width) is calculated exactly by adding up the probabilities of observing each X 2 f1; : : : ; N g that
produces a confidence interval whose half-width is at most a target value h:

Prob.Width/ D
NX
iD0

P.X D i/1half-width<h
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Exact Clopper-Pearson Confidence Interval for Binomial Proportion (CI=EXACT)
The two-sided 100.1 � ˛/% confidence interval for p is

ŒLE .X/; UE .X/�

where

LE .X/ D

�
0; X D 0

Beta˛=2IX;N�XC1; X > 0

and

UE .X/ D

�
Beta1�˛=2IXC1;N�X ; X < N

1; X D N

The half-width of this two-sided 100.1 � ˛/% confidence interval is defined as half the width of the full
interval:

half-width D
1

2
.UE .X/ � LE .X//

Prob(Width) is calculated exactly by adding up the probabilities of observing each X 2 f1; : : : ; N g that
produces a confidence interval whose half-width is at most a target value h:

Prob.Width/ D
NX
iD0

P.X D i/1half-width<h

Wald Confidence Interval for Binomial Proportion (CI=WALD)
The two-sided 100.1 � ˛/% confidence interval for p is

Op ˙ z1�˛=2

�
Op.1 � Op/

N

� 1
2

So the half-width for the two-sided 100.1 � ˛/% confidence interval is

half-width D z1�˛=2

�
Op.1 � Op/

N

� 1
2

Prob(Width) is calculated exactly by adding up the probabilities of observing each X 2 f1; : : : ; N g that
produces a confidence interval whose half-width is at most a target value h:

Prob.Width/ D
NX
iD0

P.X D i/1half-width<h
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Continuity-Corrected Wald Confidence Interval for Binomial Proportion (CI=WALD_CORRECT)
The two-sided 100.1 � ˛/% confidence interval for p is

Op ˙

"
z1�˛=2

�
Op.1 � Op/

N

� 1
2

C
1

2N

#

So the half-width for the two-sided 100.1 � ˛/% confidence interval is

half-width D z1�˛=2

�
Op.1 � Op/

N

� 1
2

C
1

2N

Prob(Width) is calculated exactly by adding up the probabilities of observing each X 2 f1; : : : ; N g that
produces a confidence interval whose half-width is at most a target value h:

Prob.Width/ D
NX
iD0

P.X D i/1half-width<h

Analyses in the ONESAMPLEMEANS Statement

One-Sample t Test (TEST=T)
The hypotheses for the one-sample t test are

H0W� D �0

H1W

8<:
� ¤ �0; two-sided
� > �0; upper one-sided
� < �0; lower one-sided

The test assumes normally distributed data and requires N � 2. The test statistics are

t D N
1
2

�
Nx � �0

s

�
Ï t .N � 1; ı/

t2 Ï F.1;N � 1; ı2/

where Nx is the sample mean, s is the sample standard deviation, and

ı D N
1
2

�� � �0
�

�
The test is

Reject H0 if

8<:
t2 � F1�˛.1;N � 1/; two-sided
t � t1�˛.N � 1/; upper one-sided
t � t˛.N � 1/; lower one-sided
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Exact power computations for t tests are discussed in O’Brien and Muller (1993, Section 8.2), although not
specifically for the one-sample case. The power is based on the noncentral t and F distributions:

power D

8<:
P
�
F.1;N � 1; ı2/ � F1�˛.1;N � 1/

�
; two-sided

P .t.N � 1; ı/ � t1�˛.N � 1// ; upper one-sided
P .t.N � 1; ı/ � t˛.N � 1// ; lower one-sided

Solutions for N, ˛, and ı are obtained by numerically inverting the power equation. Closed-form solutions
for other parameters, in terms of ı, are as follows:

� D ı�N�
1
2 C �0

� D

(
ı�1N

1
2 .� � �0/; jıj > 0

undefined; otherwise

One-Sample t Test with Lognormal Data (TEST=T DIST=LOGNORMAL)
The lognormal case is handled by reexpressing the analysis equivalently as a normality-based test on the
log-transformed data, by using properties of the lognormal distribution as discussed in Johnson, Kotz, and
Balakrishnan (1994, Chapter 14). The approaches in the section “One-Sample t Test (TEST=T)” on page 6399
then apply.

In contrast to the usual t test on normal data, the hypotheses with lognormal data are defined in terms of
geometric means rather than arithmetic means. This is because the transformation of a null arithmetic mean
of lognormal data to the normal scale depends on the unknown coefficient of variation, resulting in an
ill-defined hypothesis on the log-transformed data. Geometric means transform cleanly and are more natural
for lognormal data.

The hypotheses for the one-sample t test with lognormal data are

H0W


0
D 1

H1W

8̂<̂
:


0
¤ 1; two-sided


0
> 1; upper one-sided


0
< 1; lower one-sided

Let �? and �? be the (arithmetic) mean and standard deviation of the normal distribution of the log-
transformed data. The hypotheses can be rewritten as follows:

H0W�
?
D log.0/

H1W

8<:
�? ¤ log.0/; two-sided
�? > log.0/; upper one-sided
�? < log.0/; lower one-sided

where �? D log./.
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The test assumes lognormally distributed data and requires N � 2.

The power is

power D

8<:
P
�
F.1;N � 1; ı2/ � F1�˛.1;N � 1/

�
; two-sided

P .t.N � 1; ı/ � t1�˛.N � 1// ; upper one-sided
P .t.N � 1; ı/ � t˛.N � 1// ; lower one-sided

where

ı D N
1
2

�
�? � log.0/

�?

�
�? D

�
log.CV2 C 1/

� 1
2

Equivalence Test for Mean of Normal Data (TEST=EQUIV DIST=NORMAL)
The hypotheses for the equivalence test are

H0W� < �L or � > �U

H1W�L � � � �U

The analysis is the two one-sided tests (TOST) procedure of Schuirmann (1987). The test assumes normally
distributed data and requires N � 2. Phillips (1990) derives an expression for the exact power assuming a
two-sample balanced design; the results are easily adapted to a one-sample design:

power D QN�1

 
.�t1�˛.N � 1//;

� � �U

�N�
1
2

I 0;
.N � 1/

1
2 .�U � �L/

2�N�
1
2 .t1�˛.N � 1//

!
�

QN�1

 
.t1�˛.N � 1//;

� � �L

�N�
1
2

I 0;
.N � 1/

1
2 .�U � �L/

2�N�
1
2 .t1�˛.N � 1//

!

where Q�.�; �I �; �/ is Owen’s Q function, defined in the section “Common Notation” on page 6373.

Equivalence Test for Mean of Lognormal Data (TEST=EQUIV DIST=LOGNORMAL)
The lognormal case is handled by reexpressing the analysis equivalently as a normality-based test on the
log-transformed data, by using properties of the lognormal distribution as discussed in Johnson, Kotz, and
Balakrishnan (1994, Chapter 14). The approaches in the section “Equivalence Test for Mean of Normal Data
(TEST=EQUIV DIST=NORMAL)” on page 6401 then apply.

In contrast to the additive equivalence test on normal data, the hypotheses with lognormal data are defined in
terms of geometric means rather than arithmetic means. This is because the transformation of an arithmetic
mean of lognormal data to the normal scale depends on the unknown coefficient of variation, resulting in an
ill-defined hypothesis on the log-transformed data. Geometric means transform cleanly and are more natural
for lognormal data.
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The hypotheses for the equivalence test are

H0W � �L or  � �U

H1W�L <  < �U

where 0 < �L < �U

The analysis is the two one-sided tests (TOST) procedure of Schuirmann (1987) on the log-transformed data.
The test assumes lognormally distributed data and requires N � 2. Diletti, Hauschke, and Steinijans (1991)
derive an expression for the exact power assuming a crossover design; the results are easily adapted to a
one-sample design:

power D QN�1

 
.�t1�˛.N � 1//;

log ./ � log.�U /

�?N�
1
2

I 0;
.N � 1/

1
2 .log.�U / � log.�L//

2�?N�
1
2 .t1�˛.N � 1//

!
�

QN�1

 
.t1�˛.N � 1//;

log ./ � log.�L/

�?N�
1
2

I 0;
.N � 1/

1
2 .log.�U / � log.�L//

2�?N�
1
2 .t1�˛.N � 1//

!
where

�? D
�
log.CV2 C 1/

� 1
2

is the standard deviation of the log-transformed data, and Q�.�; �I �; �/ is Owen’s Q function, defined in the
section “Common Notation” on page 6373.

Confidence Interval for Mean (CI=T)
This analysis of precision applies to the standard t-based confidence interval:h

Nx � t1�˛
2
.N � 1/ sp

N
; Nx C t1�˛

2
.N � 1/ sp

N

i
; two-sidedh

Nx � t1�˛.N � 1/
sp
N
; 1

�
; upper one-sided�

�1; Nx C t1�˛.N � 1/
sp
N

i
; lower one-sided

where Nx is the sample mean and s is the sample standard deviation. The “half-width” is defined as the distance
from the point estimate Nx to a finite endpoint,

half-width D

(
t1�˛

2
.N � 1/ sp

N
; two-sided

t1�˛.N � 1/
sp
N
; one-sided

A “valid” conference interval captures the true mean. The exact probability of obtaining at most the target
confidence interval half-width h, unconditional or conditional on validity, is given by Beal (1989):

Pr.half-width � h/ D

8̂̂̂<̂
ˆ̂:
P

 
�2.N � 1/ � h2N.N�1/

�2.t2
1�˛

2

.N�1//

!
; two-sided

P

�
�2.N � 1/ � h2N.N�1/

�2.t21�˛.N�1//

�
; one-sided

Pr.half-width � hj
validity/

D

8̂<̂
:
�
1
1�˛

�
2
h
QN�1

�
.t1�˛

2
.N � 1//; 0I

0; b1/ �QN�1.0; 0I 0; b1/� ; two-sided�
1
1�˛

�
QN�1 ..t1�˛.N � 1//; 0I 0; b1/ ; one-sided
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where

b1 D
h.N � 1/

1
2

�.t1�˛
c
.N � 1//N�

1
2

c D number of sides

and Q�.�; �I �; �/ is Owen’s Q function, defined in the section “Common Notation” on page 6373.

A “quality” confidence interval is both sufficiently narrow (half-width � h) and valid:

Pr(quality) D Pr.half-width � h and validity/

D Pr.half-width � hjvalidity/.1 � ˛/

Analyses in the ONEWAYANOVA Statement

One-Degree-of-Freedom Contrast (TEST=CONTRAST)
The hypotheses are

H0Wc1�1 C � � � C cG�G D c0

H1W

8<:
c1�1 C � � � C cG�G ¤ c0; two-sided
c1�1 C � � � C cG�G > c0; upper one-sided
c1�1 C � � � C cG�G < c0; lower one-sided

where G is the number of groups, fc1; : : : ; cGg are the contrast coefficients, and c0 is the null contrast value.

The test is the usual F test for a contrast in one-way ANOVA. It assumes normal data with common group
variances and requires N � G C 1 and ni � 1.

O’Brien and Muller (1993, Section 8.2.3.2) give the exact power as

power D

8<:
P
�
F.1;N �G; ı2/ � F1�˛.1;N �G/

�
; two-sided

P .t.N �G; ı/ � t1�˛.N �G// ; upper one-sided
P .t.N �G; ı/ � t˛.N �G// ; lower one-sided

where

ı D N
1
2

0BBBB@
PG
iD1 ci�i � c0

�

�PG
iD1

c2
i

wi

� 1
2

1CCCCA
Overall F Test (TEST=OVERALL)
The hypotheses are

H0W�1 D �2 D � � � D �G

H1W�i ¤ �j for some i; j

where G is the number of groups.
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The test is the usual overall F test for equality of means in one-way ANOVA. It assumes normal data with
common group variances and requires N � G C 1 and ni � 1.

O’Brien and Muller (1993, Section 8.2.3.1) give the exact power as

power D P .F.G � 1;N �G; �/ � F1�˛.G � 1;N �G//

where the noncentrality is

� D N

 PG
iD1wi .�i � N�/

2

�2

!

and

N� D

GX
iD1

wi�i

Analyses in the PAIREDFREQ Statement

Overview of Conditional McNemar Tests
Notation:

Case
Failure Success

Control Failure n00 n01 n0�
Success n10 n11 n1�

n�0 n�1 N

n00 D #fcontrol=failure, case=failureg

n01 D #fcontrol=failure, case=successg

n10 D #fcontrol=success, case=failureg

n11 D #fcontrol=success, case=successg

N D n00 C n01 C n10 C n11

nD D n01 C n10 � #discordant pairs

O�ij D
nij

N

�ij D theoretical population value of O�ij
�1� D �10 C �11

��1 D �01 C �11

� D Corr.control observation; case observation/ (within a pair)

DPR D "discordant proportion ratio" D
�01

�10

DPR0 D null DPR
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Power formulas are given here in terms of the discordant proportions �10 and �01. If the input is specified in
terms of f�1�; ��1; �g, then it can be converted into values for f�10; �01g as follows:

�01 D ��1.1 � �1�/ � �..1 � �1�/�1�.1 � ��1/��1/
1
2

�10 D �01 C �1� � ��1

All McNemar tests covered in PROC POWER are conditional, meaning that nD is assumed fixed at its
observed value.

For the usual DPR0 D 1, the hypotheses are

H0W��1 D �1�

H1W

8<:
��1 ¤ �1�; two-sided
��1 > �1�; upper one-sided
��1 < �1�; lower one-sided

The test statistic for both tests covered in PROC POWER (DIST=EXACT_COND and DIST=NORMAL) is
the McNemar statistic QM , which has the following form when DPR0 D 1:

QM0 D
.n01 � n10/

2

n01 C n10

For the conditional McNemar tests, this is equivalent to the square of the Z.X/ statistic for the test of a
single proportion (normal approximation to binomial), where the proportion is �01

�01C�10
, the null is 0.5, and

“N” is nD (see, for example, Schork and Williams 1980):

Z.X/ D
n01 � nD.0:5/

ŒnD0:5.1 � 0:5/�
1
2

�Ï N

0@n 12D. �01
�01C�10

� 0:5/

Œ0:5.1 � 0:5/�
1
2

;

�01
�01C�10

�
1 � �01

�01C�10

�
0:5.1 � 0:5/

1A
D

n01 � .n01 C n10/.0:5/

Œ.n01 C n10/0:5.1 � 0:5/�
1
2

D
n01 � n10

Œn01 C n10�
1
2

D
p
QM0

This can be generalized to a custom null for �01
�01C�10

, which is equivalent to specifying a custom null DPR:

�
�01

�01 C �10

�
0

�

264 1

1C 1
�01
�10

375
0

�
1

1C 1
DPR0

So, a conditional McNemar test (asymptotic or exact) with a custom null is equivalent to the test of a single
proportion p1 � �01

�01C�10
with a null value p0 � 1

1C 1
DPR0

, with a sample size of nD:

H0Wp1 D p0

H1W

8<:
p1 ¤ p0; two-sided
p1 > p0; one-sided U
p1 < p0; one-sided L
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which is equivalent to

H0WDPR D DPR0

H1W

8<:
DPR ¤ DPR0; two-sided
DPR > DPR0; one-sided U
DPR < DPR0; one-sided L

The general form of the test statistic is thus

QM D
.n01 � nDp0/

2

nDp0.1 � p0/

The two most common conditional McNemar tests assume either the exact conditional distribution of QM
(covered by the DIST=EXACT_COND analysis) or a standard normal distribution for QM (covered by the
DIST=NORMAL analysis).

McNemar Exact Conditional Test (TEST=MCNEMAR DIST=EXACT_COND)
For DIST=EXACT_COND, the power is calculated assuming that the test is conducted by using the exact
conditional distribution of QM (conditional on nD). The power is calculated by first computing the
conditional power for each possible nD . The unconditional power is computed as a weighted average over
all possible outcomes of nD:

power D
NX

nDD0

P.nD/P.Reject p1 D p0jnD/

where nD Ï Bin.�01C �10; N /, and P.Reject p1 D p0jnD/ is calculated by using the exact method in the
section “Exact Test of a Binomial Proportion (TEST=EXACT)” on page 6381.

The achieved significance level, reported as “Actual Alpha” in the analysis, is computed in the same way
except by using the actual alpha of the one-sample test in place of its power:

actual alpha D
NX

nDD0

P.nD/˛
?.p1; p0jnD/

where ˛?.p1; p0jnD/ is the actual alpha calculated by using the exact method in the section “Exact Test of a
Binomial Proportion (TEST=EXACT)” on page 6381 with proportion p1, null p0, and sample size nD .

McNemar Normal Approximation Test (TEST=MCNEMAR DIST=NORMAL)
For DIST=NORMAL, power is calculated assuming the test is conducted by using the normal-approximate
distribution of QM (conditional on nD).

For the METHOD=EXACT option, the power is calculated in the same way as described in the section
“McNemar Exact Conditional Test (TEST=MCNEMAR DIST=EXACT_COND)” on page 6406, except
that P.Reject p1 D p0jnD/ is calculated by using the exact method in the section “z Test for Binomial
Proportion Using Null Variance (TEST=Z VAREST=NULL)” on page 6382. The achieved significance
level is calculated in the same way as described at the end of the section “McNemar Exact Conditional Test
(TEST=MCNEMAR DIST=EXACT_COND)” on page 6406.
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For the METHOD=MIETTINEN option, approximate sample size for the one-sided cases is computed
according to equation (5.6) in Miettinen (1968):

N D

�
z1�˛.p10 C p01/C zpower

�
.p10 C p01/

2 �
1
4
.p01 � p10/

2.3C p10 C p01/
� 1
2

�2
.p10 C p01/.p01 � p10/2

Approximate power for the one-sided cases is computed by solving the sample size equation for power, and
approximate power for the two-sided case follows easily by summing the one-sided powers each at ˛=2:

power D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

ˆ

 
.p01�p10/ŒN.p10Cp01/�

1
2�z1�˛.p10Cp01/

Œ.p10Cp01/2� 14 .p01�p10/
2.3Cp10Cp01/�

1
2

!
; upper one-sided

ˆ

 
�.p01�p10/ŒN.p10Cp01/�

1
2�z1�˛.p10Cp01/

Œ.p10Cp01/2� 14 .p01�p10/
2.3Cp10Cp01/�

1
2

!
; lower one-sided

ˆ

 
.p01�p10/ŒN.p10Cp01/�

1
2�z1�˛

2
.p10Cp01/

Œ.p10Cp01/2� 14 .p01�p10/
2.3Cp10Cp01/�

1
2

!
C

ˆ

 
�.p01�p10/ŒN.p10Cp01/�

1
2�z1�˛

2
.p10Cp01/

Œ.p10Cp01/2� 14 .p01�p10/
2.3Cp10Cp01/�

1
2

!
; two-sided

The two-sided solution for N is obtained by numerically inverting the power equation.

In general, compared to METHOD=CONNOR, the METHOD=MIETTINEN approximation tends to be
slightly more accurate but can be slightly anticonservative in the sense of underestimating sample size and
overestimating power (Lachin 1992, p. 1250).

For the METHOD=CONNOR option, approximate sample size for the one-sided cases is computed according
to equation (3) in Connor (1987):

N D

�
z1�˛.p10 C p01/

1
2 C zpower

�
p10 C p01 � .p01 � p10/

2
� 1
2

�2
.p01 � p10/2

Approximate power for the one-sided cases is computed by solving the sample size equation for power, and
approximate power for the two-sided case follows easily by summing the one-sided powers each at ˛=2:

power D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

ˆ

 
.p01�p10/N

1
2�z1�˛.p10Cp01/

1
2

Œp10Cp01�.p01�p10/2�
1
2

!
; upper one-sided

ˆ

 
�.p01�p10/N

1
2�z1�˛.p10Cp01/

1
2

Œp10Cp01�.p01�p10/2�
1
2

!
; lower one-sided

ˆ

 
.p01�p10/N

1
2�z1�˛

2
.p10Cp01/

1
2

Œp10Cp01�.p01�p10/2�
1
2

!
C

ˆ

 
�.p01�p10/N

1
2�z1�˛

2
.p10Cp01/

1
2

Œp10Cp01�.p01�p10/2�
1
2

!
; two-sided

The two-sided solution for N is obtained by numerically inverting the power equation.

In general, compared to METHOD=MIETTINEN, the METHOD=CONNOR approximation tends to be
slightly less accurate but slightly conservative in the sense of overestimating sample size and underestimating
power (Lachin 1992, p. 1250).



6408 F Chapter 77: The POWER Procedure

Analyses in the PAIREDMEANS Statement

Paired t Test (TEST=DIFF)
The hypotheses for the paired t test are

H0W�diff D �0

H1W

8<:
�diff ¤ �0; two-sided
�diff > �0; upper one-sided
�diff < �0; lower one-sided

The test assumes normally distributed data and requires N � 2. The test statistics are

t D N
1
2

 
Nd � �0

sd

!
Ï t .N � 1; ı/

t2 Ï F.1;N � 1; ı2/

where Nd and sd are the sample mean and standard deviation of the differences and

ı D N
1
2

�
�diff � �0

�diff

�
and

�diff D
�
�21 C �

2
2 � 2��1�2

� 1
2

The test is

Reject H0 if

8<:
t2 � F1�˛.1;N � 1/; two-sided
t � t1�˛.N � 1/; upper one-sided
t � t˛.N � 1/; lower one-sided

Exact power computations for t tests are given in O’Brien and Muller (1993, Section 8.2.2):

power D

8<:
P
�
F.1;N � 1; ı2/ � F1�˛.1;N � 1/

�
; two-sided

P .t.N � 1; ı/ � t1�˛.N � 1// ; upper one-sided
P .t.N � 1; ı/ � t˛.N � 1// ; lower one-sided

Paired t Test for Mean Ratio with Lognormal Data (TEST=RATIO)
The lognormal case is handled by reexpressing the analysis equivalently as a normality-based test on the
log-transformed data, by using properties of the lognormal distribution as discussed in Johnson, Kotz, and
Balakrishnan (1994, Chapter 14). The approaches in the section “Paired t Test (TEST=DIFF)” on page 6408
then apply.

In contrast to the usual t test on normal data, the hypotheses with lognormal data are defined in terms of
geometric means rather than arithmetic means.
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The hypotheses for the paired t test with lognormal pairs fY1; Y2g are

H0W
2

1
D 0

H1W

8̂<̂
:

2
1
¤ 0; two-sided

2
1
> 0; upper one-sided

2
1
< 0; lower one-sided

Let �?1 , �?2 , �?1 , �?2 , and �? be the (arithmetic) means, standard deviations, and correlation of the bivariate
normal distribution of the log-transformed data flog Y1; log Y2g. The hypotheses can be rewritten as follows:

H0W�
?
2 � �

?
1 D log.0/

H1W

8<:
�?2 � �

?
1 ¤ log.0/; two-sided

�?2 � �
?
1 > log.0/; upper one-sided

�?2 � �
?
1 < log.0/; lower one-sided

where

�?1 D log 1
�?2 D log 2

�?1 D
�
log.CV21 C 1/

� 1
2

�?2 D
�
log.CV22 C 1/

� 1
2

�? D
log f�CV1CV2 C 1g

�?1 �
?
2

and CV1, CV2, and � are the coefficients of variation and the correlation of the original untransformed pairs
fY1; Y2g. The conversion from � to �? is given by equation (44.36) on page 27 of Kotz, Balakrishnan, and
Johnson (2000) and due to Jones and Miller (1966).

The valid range of � is restricted to .�L; �U /, where

�L D

exp
�
�
�
log.CV21 C 1/ log.CV

2
2 C 1/

� 1
2

�
� 1

CV1CV2

�U D

exp
��

log.CV21 C 1/ log.CV
2
2 C 1/

� 1
2

�
� 1

CV1CV2
These bounds are computed from equation (44.36) on page 27 of Kotz, Balakrishnan, and Johnson (2000)
by observing that � is a monotonically increasing function of �? and plugging in the values �? D �1 and
�? D 1. Note that when the coefficients of variation are equal (CV1 D CV2 D CV), the bounds simplify to

�L D
�1

CV2 C 1
�U D 1
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The test assumes lognormally distributed data and requires N � 2. The power is

power D

8<:
P
�
F.1;N � 1; ı2/ � F1�˛.1;N � 1/

�
; two-sided

P .t.N � 1; ı/ � t1�˛.N � 1// ; upper one-sided
P .t.N � 1; ı/ � t˛.N � 1// ; lower one-sided

where

ı D N
1
2

�
�?1 � �

?
2 � log.0/
�?

�
and

�? D
�
�?21 C �

?2
2 � 2�

?�?1 �
?
2

� 1
2

Additive Equivalence Test for Mean Difference with Normal Data (TEST=EQUIV_DIFF)
The hypotheses for the equivalence test are

H0W�diff < �L or �diff > �U

H1W�L � �diff � �U

The analysis is the two one-sided tests (TOST) procedure of Schuirmann (1987). The test assumes normally
distributed data and requires N � 2. Phillips (1990) derives an expression for the exact power assuming a
two-sample balanced design; the results are easily adapted to a paired design:

power D QN�1

 
.�t1�˛.N � 1//;

�diff � �U

�diffN
� 1
2

I 0;
.N � 1/

1
2 .�U � �L/

2�diffN
� 1
2 .t1�˛.N � 1//

!
�

QN�1

 
.t1�˛.N � 1//;

�diff � �L

�diffN
� 1
2

I 0;
.N � 1/

1
2 .�U � �L/

2�diffN
� 1
2 .t1�˛.N � 1//

!
where

�diff D
�
�21 C �

2
2 � 2��1�2

� 1
2

and Q�.�; �I �; �/ is Owen’s Q function, defined in the section “Common Notation” on page 6373.

Multiplicative Equivalence Test for Mean Ratio with Lognormal Data (TEST=EQUIV_RATIO)
The lognormal case is handled by reexpressing the analysis equivalently as a normality-based test on the
log-transformed data, by using properties of the lognormal distribution as discussed in Johnson, Kotz, and
Balakrishnan (1994, Chapter 14). The approaches in the section “Additive Equivalence Test for Mean
Difference with Normal Data (TEST=EQUIV_DIFF)” on page 6410 then apply.

In contrast to the additive equivalence test on normal data, the hypotheses with lognormal data are defined in
terms of geometric means rather than arithmetic means.

The hypotheses for the equivalence test are

H0W
T

R
� �L or

T

R
� �U

H1W�L <
T

R
< �U
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where 0 < �L < �U

The analysis is the two one-sided tests (TOST) procedure of Schuirmann (1987) on the log-transformed data.
The test assumes lognormally distributed data and requires N � 2. Diletti, Hauschke, and Steinijans (1991)
derive an expression for the exact power assuming a crossover design; the results are easily adapted to a
paired design:

power D QN�1

0@.�t1�˛.N � 1//; log
�
T
R

�
� log.�U /

�?N�
1
2

I 0;
.N � 1/

1
2 .log.�U / � log.�L//

2�?N�
1
2 .t1�˛.N � 1//

1A�
QN�1

0@.t1�˛.N � 1//; log
�
T
R

�
� log.�L/

�?N�
1
2

I 0;
.N � 1/

1
2 .log.�U / � log.�L//

2�?N�
1
2 .t1�˛.N � 1//

1A
where �? is the standard deviation of the differences between the log-transformed pairs (in other words,
the standard deviation of log.YT / � log.YR/, where YT and YR are observations from the treatment and
reference, respectively), computed as

�? D
�
�?2R C �

?2
T � 2�

?�?R�
?
T

� 1
2

�?R D
�
log.CV2R C 1/

� 1
2

�?T D
�
log.CV2T C 1/

� 1
2

�? D
log f�CVRCVT C 1g

�?R�
?
T

where CVR, CVT , and � are the coefficients of variation and the correlation of the original untransformed
pairs fYT ; YRg, and Q�.�; �I �; �/ is Owen’s Q function. The conversion from � to �? is given by equation
(44.36) on page 27 of Kotz, Balakrishnan, and Johnson (2000) and due to Jones and Miller (1966), and
Owen’s Q function is defined in the section “Common Notation” on page 6373.

The valid range of � is restricted to .�L; �U /, where

�L D

exp
�
�
�
log.CV2R C 1/ log.CV

2
T C 1/

� 1
2

�
� 1

CVRCVT

�U D

exp
��

log.CV2R C 1/ log.CV
2
T C 1/

� 1
2

�
� 1

CVRCVT

These bounds are computed from equation (44.36) on page 27 of Kotz, Balakrishnan, and Johnson (2000)
by observing that � is a monotonically increasing function of �? and plugging in the values �? D �1 and
�? D 1. Note that when the coefficients of variation are equal (CVR D CVT D CV), the bounds simplify to

�L D
�1

CV2 C 1
�U D 1
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Confidence Interval for Mean Difference (CI=DIFF)
This analysis of precision applies to the standard t-based confidence interval:h

Nd � t1�˛
2
.N � 1/ sdp

N
; Nd C t1�˛

2
.N � 1/ sdp

N

i
; two-sidedh

Nd � t1�˛.N � 1/
sdp
N
; 1

�
; upper one-sided�

�1; Nd C t1�˛.N � 1/
sdp
N

i
; lower one-sided

where Nd and sd are the sample mean and standard deviation of the differences. The “half-width” is defined
as the distance from the point estimate Nd to a finite endpoint,

half-width D

(
t1�˛

2
.N � 1/ sdp

N
; two-sided

t1�˛.N � 1/
sdp
N
; one-sided

A “valid” conference interval captures the true mean difference. The exact probability of obtaining at most
the target confidence interval half-width h, unconditional or conditional on validity, is given by Beal (1989):

Pr.half-width � h/ D

8̂̂̂<̂
ˆ̂:
P

 
�2.N � 1/ � h2N.N�1/

�2diff.t
2

1�˛
2

.N�1//

!
; two-sided

P

�
�2.N � 1/ � h2N.N�1/

�2diff.t
2
1�˛.N�1//

�
; one-sided

Pr.half-width � hj
validity/

D

8̂<̂
:
�
1
1�˛

�
2
h
QN�1

�
.t1�˛

2
.N � 1//; 0I

0; b1/ �QN�1.0; 0I 0; b1/� ; two-sided�
1
1�˛

�
QN�1 ..t1�˛.N � 1//; 0I 0; b1/ ; one-sided

where

�diff D
�
�21 C �

2
2 � 2��1�2

� 1
2

b1 D
h.N � 1/

1
2

�diff.t1�˛
c
.N � 1//N�

1
2

c D number of sides

and Q�.�; �I �; �/ is Owen’s Q function, defined in the section “Common Notation” on page 6373.

A “quality” confidence interval is both sufficiently narrow (half-width � h) and valid:

Pr(quality) D Pr.half-width � hand validity/

D Pr.half-width � hjvalidity/.1 � ˛/
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Analyses in the TWOSAMPLEFREQ Statement

Overview of the 2 � 2 Table
Notation:

Outcome
Failure Success

Group 1 n1 � x1 x1 n1
2 n2 � x2 x2 n2

N �m m N

x1 D #successes in group 1

x2 D #successes in group 2

m D x1 C x2 D total #successes

Op1 D
x1

n1

Op2 D
x2

n2

Op D
m

N
D w1 Op1 C w2 Op2

The hypotheses are

H0Wp2 � p1 D p0

H1W

8<:
p2 � p1 ¤ p0; two-sided
p2 � p1 > p0; upper one-sided
p2 � p1 < p0; lower one-sided

where p0 is constrained to be 0 for the likelihood ratio and Fisher’s exact tests. If p0 < 0 in an upper one-sided
test or p0 > 0 in a lower one-sided test, then the test is a noninferiority test. If p0 > 0 in an upper one-sided
test or p0 < 0 in a lower one-sided test, then the test is a superiority test. Although p0 is unconstrained for
the Pearson chi-square test, p0 ¤ 0 is not recommended for that test. The Farrington-Manning score test is a
better choice when p0 ¤ 0.

Internal calculations are performed in terms of p1, p2, and p0. An input set consisting of OR, p1, and OR0
is transformed as follows:

p2 D
.OR/p1

1 � p1 C .OR/p1
p10 D p1

p20 D
OR0p10

1 � p10 C .OR0/p10
p0 D p20 � p10
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An input set consisting of RR, p1, and RR0 is transformed as follows:

p2 D .RR/p1
p10 D p1

p20 D .RR0/p10
p0 D p20 � p10

Note that the transformation of either OR0 or RR0 to p0 is not unique. The chosen parameterization fixes
the null value p10 at the input value of p1. Some values of OR0 or RR0 might lead to invalid values of p0
(p0 � 0 or p0 � 1), in which case an “Invalid input” error occurs.

Farrington-Manning Score Test for Two Proportions (TEST=FM)
The Farrington-Manning score test is based on equations (1), (2), and (12) in Farrington and Manning (1990).
The test statistic, which is assumed to have a null distribution of N.0; 1/ under H0, is

zFM D
Op2 � Op1 � p0h

Qp1.1� Qp1/
n1

C
Qp2.1� Qp2/
n2

i 1
2

D ŒNw1w2�
1
2

Op2 � Op1 � p0

Œw2 Qp1.1 � Qp1/C w1 Qp2.1 � Qp2/�
1
2

where Qp1 and Qp2 are the maximum likelihood estimates of the proportions under the restriction Qp2� Qp1 D p0.

Sample size for the one-sided cases is given by equations (4) and (12) in Farrington and Manning (1990).
One-sided power is computed by inverting the sample size formula. Power for the two-sided case is computed
by adding the lower-sided and upper-sided powers, each evaluated at ˛=2. Sample size for the two-sided case
is obtained by numerically inverting the power formula,

power D

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

ˆ

�
.p2�p1�p0/.Nw1w2/

1
2�z1�˛Œw2 Qp1.1� Qp1/Cw1 Qp2.1� Qp2/�

1
2

Œw2p1.1�p1/Cw1p2.1�p2/�
1
2

�
; upper one-sided

ˆ

�
�.p2�p1�p0/.Nw1w2/

1
2�z1�˛Œw2 Qp1.1� Qp1/Cw1 Qp2.1� Qp2/�

1
2

Œw2p1.1�p1/Cw1p2.1�p2/�
1
2

�
; lower one-sided

ˆ

 
.p2�p1�p0/.Nw1w2/

1
2�z1�˛

2
Œw2 Qp1.1� Qp1/Cw1 Qp2.1� Qp2/�

1
2

Œw2p1.1�p1/Cw1p2.1�p2/�
1
2

!
C

ˆ

 
�.p2�p1�p0/.Nw1w2/

1
2�z1�˛

2
Œw2 Qp1.1� Qp1/Cw1 Qp2.1� Qp2/�

1
2

Œw2p1.1�p1/Cw1p2.1�p2/�
1
2

!
; two-sided

where

Qp2 D 2u cos.w/ � b=.3a/
Qp1 D Qp2 � p0

w D .� C cos�1.v=u3//=3
v D b3=.3a/3 � bc=.6a2/C d=.2a/

u D sign.v/
q
b2=.3a/2 � c=.3a/

a D 1C w1=w2

b D � Œ1C w1=w2 C p2 C .w1=w2/p1 C p0.w1=w2 C 2/�

c D p20 C p0.2p2 C w1=w2 C 1/C p2 C .w1=w2/p1

d D �p2p0.1C p0/
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For the one-sided cases, a closed-form inversion of the power equation yields an approximate total sample
size of

N D

h
z1�˛ fw2 Qp1.1 � Qp1/C w1 Qp2.1 � Qp2/g

1
2 C zpower fw2p1.1 � p1/C w1p2.1 � p2/g

1
2

i2
w1w2.p2 � p1 � p0/2

For the two-sided case, the solution for N is obtained by numerically inverting the power equation.

Pearson Chi-Square Test for Two Proportions (TEST=PCHI)
The usual Pearson chi-square test is unconditional. The test statistic

zP D
Op2 � Op1 � p0h

Op.1 � Op/
�
1
n1
C

1
n2

�i 1
2

D ŒNw1w2�
1
2
Op2 � Op1 � p0

Œ Op.1 � Op/�
1
2

is assumed to have a null distribution of N.0; 1/.

Sample size for the one-sided cases is given by equation (4) in Fleiss, Tytun, and Ury (1980). One-sided
power is computed as suggested by Diegert and Diegert (1981) by inverting the sample size formula. Power
for the two-sided case is computed by adding the lower-sided and upper-sided powers each evaluated at ˛=2.
Sample size for the two-sided case is obtained by numerically inverting the power formula. A custom null
value p0 for the proportion difference p2 � p1 is also supported, but it is not recommended. If you are using
a non-default null value, then the Farrington-Manning score test is a better choice.

power D

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

ˆ

�
.p2�p1�p0/.Nw1w2/

1
2�z1�˛Œ.w1p1Cw2p2/.1�w1p1�w2p2/�

1
2

Œw2p1.1�p1/Cw1p2.1�p2/�
1
2

�
; upper one-sided

ˆ

�
�.p2�p1�p0/.Nw1w2/

1
2�z1�˛Œ.w1p1Cw2p2/.1�w1p1�w2p2/�

1
2

Œw2p1.1�p1/Cw1p2.1�p2/�
1
2

�
; lower one-sided

ˆ

 
.p2�p1�p0/.Nw1w2/

1
2�z1�˛

2
Œ.w1p1Cw2p2/.1�w1p1�w2p2/�

1
2

Œw2p1.1�p1/Cw1p2.1�p2/�
1
2

!
C

ˆ

 
�.p2�p1�p0/.Nw1w2/

1
2�z1�˛

2
Œ.w1p1Cw2p2/.1�w1p1�w2p2/�

1
2

Œw2p1.1�p1/Cw1p2.1�p2/�
1
2

!
; two-sided

For the one-sided cases, a closed-form inversion of the power equation yields an approximate total sample
size

N D

h
z1�˛ f.w1p1 C w2p2/.1 � w1p1 � w2p2/g

1
2 C zpower fw2p1.1 � p1/C w1p2.1 � p2/g

1
2

i2
w1w2.p2 � p1 � p0/2

For the two-sided case, the solution for N is obtained by numerically inverting the power equation.

Likelihood Ratio Chi-Square Test for Two Proportions (TEST=LRCHI)
The usual likelihood ratio chi-square test is unconditional. The test statistic

zLR D .�1fp2<p1g/

vuut2N

2X
iD1

�
wi Opi log

�
Opi

Op

�
C wi .1 � Opi / log

�
1 � Opi

1 � Op

��
is assumed to have a null distribution of N.0; 1/ and an alternative distribution of N.ı; 1/, where

ı D N
1
2 .�1fp2<p1g/

vuut2

2X
iD1

�
wipi log

�
pi

w1p1 C w2p2

�
C wi .1 � pi / log

�
1 � pi

1 � .w1p1 C w2p2/

��
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The approximate power is

power D

8̂<̂
:
ˆ.ı � z1�˛/ ; upper one-sided
ˆ.�ı � z1�˛/ ; lower one-sided

ˆ
�
ı � z1�˛

2

�
Cˆ

�
�ı � z1�˛

2

�
; two-sided

For the one-sided cases, a closed-form inversion of the power equation yield an approximate total sample size

N D

�
zpower C z1�˛

ı

�2
For the two-sided case, the solution for N is obtained by numerically inverting the power equation.

Fisher’s Exact Conditional Test for Two Proportions (Test=FISHER)
Fisher’s exact test is conditional on the observed total number of successes m. Power and sample size
computations are based on a test with similar power properties, the continuity-adjusted arcsine test. The test
statistic

zA D .4Nw1w2/
1
2

"
arcsin

 �
Op2 C

1

2Nw2
.1f Op2< Op1g � 1f Op2> Op1g/

� 1
2

!

�arcsin

 �
Op1 C

1

2Nw1
.1f Op1< Op2g � 1f Op1> Op2g/

� 1
2

!#
is assumed to have a null distribution of N.0; 1/ and an alternative distribution of N.ı; 1/, where

ı D .4Nw1w2/
1
2

"
arcsin

 �
p2 C

1

2Nw2
.1fp2<p1g � 1fp2>p1g/

� 1
2

!

�arcsin

 �
p1 C

1

2Nw1
.1fp1<p2g � 1fp1>p2g/

� 1
2

!#
The approximate power for the one-sided balanced case is given by Walters (1979) and is easily extended to
the unbalanced and two-sided cases:

power D

8̂<̂
:
ˆ.ı � z1�˛/ ; upper one-sided
ˆ.�ı � z1�˛/ ; lower one-sided

ˆ
�
ı � z1�˛

2

�
Cˆ

�
�ı � z1�˛

2

�
; two-sided

The approximation is valid only for N � 1=.2w1w2jp1 � p2j/.

Analyses in the TWOSAMPLEMEANS Statement

Two-Sample t Test Assuming Equal Variances (TEST=DIFF)
The hypotheses for the two-sample t test are

H0W�diff D �0

H1W

8<:
�diff ¤ �0; two-sided
�diff > �0; upper one-sided
�diff < �0; lower one-sided
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The test assumes normally distributed data and common standard deviation per group, and it requires N � 3,
n1 � 1, and n2 � 1. The test statistics are

t D N
1
2 .w1w2/

1
2

�
Nx2 � Nx1 � �0

sp

�
Ï t .N � 2; ı/

t2 Ï F.1;N � 2; ı2/

where Nx1 and Nx2 are the sample means and sp is the pooled standard deviation, and

ı D N
1
2 .w1w2/

1
2

��diff � �0

�

�
The test is

Reject H0 if

8<:
t2 � F1�˛.1;N � 2/; two-sided
t � t1�˛.N � 2/; upper one-sided
t � t˛.N � 2/; lower one-sided

Exact power computations for t tests are given in O’Brien and Muller (1993, Section 8.2.1):

power D

8<:
P
�
F.1;N � 2; ı2/ � F1�˛.1;N � 2/

�
; two-sided

P .t.N � 2; ı/ � t1�˛.N � 2// ; upper one-sided
P .t.N � 2; ı/ � t˛.N � 2// ; lower one-sided

Solutions for N, n1, n2, ˛, and ı are obtained by numerically inverting the power equation. Closed-form
solutions for other parameters, in terms of ı, are as follows:

�diff D ı�.Nw1w2/
� 1
2 C �0

�1 D ı�.Nw1w2/
� 1
2 C �0 � �2

�2 D ı�.Nw1w2/
� 1
2 C �0 � �1

� D

(
ı�1.Nw1w2/

1
2 .�diff � �0/; jıj > 0

undefined; otherwise

w1 D

8<: 1
2
˙

1
2

h
1 � 4ı2�2

N.�diff��0/2

i 1
2
; 0 < jıj � 1

2
N
1
2
j�diff��0j

�

undefined; otherwise

w2 D

8<: 1
2
˙

1
2

h
1 � 4ı2�2

N.�diff��0/2

i 1
2
; 0 < jıj � 1

2
N
1
2
j�diff��0j

�

undefined; otherwise

Finally, here is a derivation of the solution for w1:

Solve the ı equation for w1 (which requires the quadratic formula). Then determine the range of ı given w1:

min
w1
.ı/ D

(
0; when w1 D 0 or 1; if .�diff � �0/ � 0
1
2
N
1
2
.�diff��0/

�
; when w1 D

1
2
; if .�diff � �0/ < 0

max
w1

.ı/ D

(
0; when w1 D 0 or 1; if .�diff � �0/ < 0
1
2
N
1
2
.�diff��0/

�
; when w1 D

1
2
; if .�diff � �0/ � 0
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This implies

jıj �
1

2
N
1
2
j�diff � �0j

�

Two-Sample Satterthwaite t Test Assuming Unequal Variances (TEST=DIFF_SATT)
The hypotheses for the two-sample Satterthwaite t test are

H0W�diff D �0

H1W

8<:
�diff ¤ �0; two-sided
�diff > �0; upper one-sided
�diff < �0; lower one-sided

The test assumes normally distributed data and requires N � 3, n1 � 1, and n2 � 1. The test statistics are

t D
Nx2 � Nx1 � �0�
s21
n1
C

s22
n2

� 1
2

D N
1
2
Nx2 � Nx1 � �0�
s21
w1
C

s22
w2

� 1
2

F D t2

where Nx1 and Nx2 are the sample means and s1 and s2 are the sample standard deviations.

DiSantostefano and Muller (1995, p. 585) state, the test is based on assuming that under H0, F is distributed
as F.1; �/, where � is given by Satterthwaite’s approximation (Satterthwaite 1946),

� D

�
�21
n1
C

�22
n2

�2
�
�2
1
n1

�2
n1�1

C

�
�2
2
n2

�2
n2�1

D

�
�21
w1
C

�22
w2

�2
�
�2
1
w1

�2
Nw1�1

C

�
�2
2
w2

�2
Nw2�1

Since � is unknown, in practice it must be replaced by an estimate

O� D

�
s21
n1
C

s22
n2

�2
�
s2
1
n1

�2
n1�1

C

�
s2
2
n2

�2
n2�1

D

�
s21
w1
C

s22
w2

�2
�
s2
1
w1

�2
Nw1�1

C

�
s2
2
w2

�2
Nw2�1

So the test is

Reject H0 if

8<:
F � F1�˛.1; O�/; two-sided
t � t1�˛. O�/; upper one-sided
t � t˛. O�/; lower one-sided

Exact solutions for power for the two-sided and upper one-sided cases are given in Moser, Stevens, and Watts
(1989). The lower one-sided case follows easily by using symmetry. The equations are as follows:
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power D

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

R1
0 P .F.1;N � 2; �/ >

h.u/F1�˛.1; v.u//ju/ f .u/du; two-sidedR1
0 P

�
t .N � 2; �

1
2 / >

Œh.u/�
1
2 t1�˛.v.u//ju

�
f .u/du; upper one-sidedR1

0 P
�
t .N � 2; �

1
2 / <

Œh.u/�
1
2 t˛.v.u//ju

�
f .u/du; lower one-sided

where

h.u/ D

�
1
n1
C

u
n2

�
.n1 C n2 � 2/�

.n1 � 1/C .n2 � 1/
u�21
�22

��
1
n1
C

�22
�21n2

�

v.u/ D

�
1
n1
C

u
n2

�2
1

n21.n1�1/
C

u2

n22.n2�1/

� D
.�diff � �0/

2

�21
n1
C

�22
n2

f .u/ D
�
�
n1Cn2�2

2

�
�
�
n1�1
2

�
�
�
n2�1
2

� "�21 .n2 � 1/
�22 .n1 � 1/

#n2�1
2

u
n2�3

2

"
1C

�
n2 � 1

n1 � 1

�
u�21

�22

#��n1Cn2�2
2

�

The density f .u/ is obtained from the fact that

u�21

�22
� F.n2 � 1; n1 � 1/

Because the test is biased, the achieved significance level might differ from the nominal significance level.
The actual alpha is computed in the same way as the power, except that the mean difference �diff is replaced
by the null mean difference �0.

Two-Sample Pooled t Test of Mean Ratio with Lognormal Data (TEST=RATIO)
The lognormal case is handled by reexpressing the analysis equivalently as a normality-based test on the
log-transformed data, by using properties of the lognormal distribution as discussed in Johnson, Kotz, and
Balakrishnan (1994, Chapter 14). The approaches in the section “Two-Sample t Test Assuming Equal
Variances (TEST=DIFF)” on page 6416 then apply.

In contrast to the usual t test on normal data, the hypotheses with lognormal data are defined in terms of
geometric means rather than arithmetic means. The test assumes equal coefficients of variation in the two
groups.
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The hypotheses for the two-sample t test with lognormal data are

H0W
2

1
D 0

H1W

8̂<̂
:

2
1
¤ 0; two-sided

2
1
> 0; upper one-sided

2
1
< 0; lower one-sided

Let �?1 , �?2 , and �? be the (arithmetic) means and common standard deviation of the corresponding normal
distributions of the log-transformed data. The hypotheses can be rewritten as follows:

H0W�
?
2 � �

?
1 D log.0/

H1W

8<:
�?2 � �

?
1 ¤ log.0/; two-sided

�?2 � �
?
1 > log.0/; upper one-sided

�?2 � �
?
1 < log.0/; lower one-sided

where

�?1 D log 1
�?2 D log 2

The test assumes lognormally distributed data and requires N � 3, n1 � 1, and n2 � 1.

The power is

power D

8<:
P
�
F.1;N � 2; ı2/ � F1�˛.1;N � 2/

�
; two-sided

P .t.N � 2; ı/ � t1�˛.N � 2// ; upper one-sided
P .t.N � 2; ı/ � t˛.N � 2// ; lower one-sided

where

ı D N
1
2 .w1w2/

1
2

�
�?2 � �

?
1 � log.0/
�?

�
�? D

�
log.CV2 C 1/

� 1
2

Additive Equivalence Test for Mean Difference with Normal Data (TEST=EQUIV_DIFF)
The hypotheses for the equivalence test are

H0W�diff < �L or �diff > �U

H1W�L � �diff � �U
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The analysis is the two one-sided tests (TOST) procedure of Schuirmann (1987). The test assumes normally
distributed data and requires N � 3, n1 � 1, and n2 � 1. Phillips (1990) derives an expression for the exact
power assuming a balanced design; the results are easily adapted to an unbalanced design:

power D QN�2

 
.�t1�˛.N � 2//;

�diff � �U

�N�
1
2 .w1w2/

� 1
2

I 0;
.N � 2/

1
2 .�U � �L/

2�N�
1
2 .w1w2/

� 1
2 .t1�˛.N � 2//

!
�

QN�2

 
.t1�˛.N � 2//;

�diff � �L

�N�
1
2 .w1w2/

� 1
2

I 0;
.N � 2/

1
2 .�U � �L/

2�N�
1
2 .w1w2/

� 1
2 .t1�˛.N � 2//

!

where Q�.�; �I �; �/ is Owen’s Q function, defined in the section “Common Notation” on page 6373.

Multiplicative Equivalence Test for Mean Ratio with Lognormal Data (TEST=EQUIV_RATIO)
The lognormal case is handled by reexpressing the analysis equivalently as a normality-based test on the
log-transformed data, by using properties of the lognormal distribution as discussed in Johnson, Kotz, and
Balakrishnan (1994, Chapter 14). The approaches in the section “Additive Equivalence Test for Mean
Difference with Normal Data (TEST=EQUIV_DIFF)” on page 6420 then apply.

In contrast to the additive equivalence test on normal data, the hypotheses with lognormal data are defined in
terms of geometric means rather than arithmetic means.

The hypotheses for the equivalence test are

H0W
T

R
� �L or

T

R
� �U

H1W�L <
T

R
< �U

where 0 < �L < �U

The analysis is the two one-sided tests (TOST) procedure of Schuirmann (1987) on the log-transformed data.
The test assumes lognormally distributed data and requires N � 3, n1 � 1, and n2 � 1. Diletti, Hauschke,
and Steinijans (1991) derive an expression for the exact power assuming a crossover design; the results are
easily adapted to an unbalanced two-sample design:

power D QN�2

0@.�t1�˛.N � 2//; log
�
T
R

�
� log.�U /

�?N�
1
2 .w1w2/

� 1
2

I 0;
.N � 2/

1
2 .log.�U / � log.�L//

2�?N�
1
2 .w1w2/

� 1
2 .t1�˛.N � 2//

1A �

QN�2

0@.t1�˛.N � 2//; log
�
T
R

�
� log.�L/

�?N�
1
2 .w1w2/

� 1
2

I 0;
.N � 2/

1
2 .log.�U / � log.�L//

2�?N�
1
2 .w1w2/

� 1
2 .t1�˛.N � 2//

1A
where

�? D
�
log.CV2 C 1/

� 1
2

is the (assumed common) standard deviation of the normal distribution of the log-transformed data, and
Q�.�; �I �; �/ is Owen’s Q function, defined in the section “Common Notation” on page 6373.
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Confidence Interval for Mean Difference (CI=DIFF)
This analysis of precision applies to the standard t-based confidence interval:h

. Nx2 � Nx1/ � t1�˛
2
.N � 2/

spp
Nw1w2

;

. Nx2 � Nx1/C t1�˛
2
.N � 2/

spp
Nw1w2

i
; two-sidedh

. Nx2 � Nx1/ � t1�˛.N � 2/
spp
Nw1w2

; 1
�
; upper one-sided�

�1; . Nx2 � Nx1/C t1�˛.N � 2/
spp
Nw1w2

i
; lower one-sided

where Nx1 and Nx2 are the sample means and sp is the pooled standard deviation. The “half-width” is defined
as the distance from the point estimate Nx2 � Nx1 to a finite endpoint,

half-width D

(
t1�˛

2
.N � 2/

spp
Nw1w2

; two-sided
t1�˛.N � 2/

spp
Nw1w2

; one-sided

A “valid” conference interval captures the true mean. The exact probability of obtaining at most the target
confidence interval half-width h, unconditional or conditional on validity, is given by Beal (1989):

Pr.half-width � h/ D

8̂̂̂<̂
ˆ̂:
P

 
�2.N � 2/ � h2N.N�2/.w1w2/

�2.t2
1�˛

2

.N�2//

!
; two-sided

P

�
�2.N � 2/ � h2N.N�2/.w1w2/

�2.t21�˛.N�2//

�
; one-sided

Pr.half-width � hj
validity)

D

8̂<̂
:
�
1
1�˛

�
2
h
QN�2

�
.t1�˛

2
.N � 2//; 0I

0; b2/ �QN�2.0; 0I 0; b2/� ; two-sided�
1
1�˛

�
QN�2 ..t1�˛.N � 2//; 0I 0; b2/ ; one-sided

where

b2 D
h.N � 2/

1
2

�.t1�˛
c
.N � 2//N�

1
2 .w1w2/

� 1
2

c D number of sides

and Q�.�; �I �; �/ is Owen’s Q function, defined in the section “Common Notation” on page 6373.

A “quality” confidence interval is both sufficiently narrow (half-width � h) and valid:

Pr(quality) D Pr.half-width � hand validity/

D Pr.half-width � hjvalidity/.1 � ˛/

Analyses in the TWOSAMPLESURVIVAL Statement

Rank Tests for Two Survival Curves (TEST=LOGRANK, TEST=GEHAN, TEST=TARONEWARE)
The method is from Lakatos (1988) and Cantor (1997, pp. 83–92).
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Define the following notation:

Xj .i/ D i th input time point on survival curve for groupj

Sj .i/ D input survivor function value corresponding toXj .i/

hj .t/ D hazard rate for group j at time t

‰j .t/ D loss hazard rate for group j at time t

�j D exponential hazard rate for group j

R D hazard ratio of group 2 to group 1 � (assumed constant) value of
h2.t/

h1.t/

mj D median survival time for group j

b D number of subintervals per time unit

T D accrual time

� D follow-up time after accrual

Lj D exponential loss rate for group j

XLj D input time point on loss curve for group j

SLj D input survivor function value corresponding to XLj
mLj D median survival time for group j

ri D rank for i th time point

Each survival curve can be specified in one of several ways.

• For exponential curves:

– a single point .Xj .1/; Sj .1// on the curve

– median survival time

– hazard rate

– hazard ratio (for curve 2, with respect to curve 1)

• For piecewise linear curves with proportional hazards:

– a set of points f.X1.1/; S1.1//; .X1.2/; S1.2//; : : :g (for curve 1)

– hazard ratio (for curve 2, with respect to curve 1)

• For arbitrary piecewise linear curves:

– a set of points f.Xj .1/; Sj .1//; .Xj .2/; Sj .2//; : : :g

A total of M C 1 evenly spaced time points ft0 D 0; t1; t2; : : : ; tM D T C �g are used in calculations, where

M D floor ..T C �/b/
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The hazard function is calculated for each survival curve at each time point. For an exponential curve, the
(constant) hazard is given by one of the following, depending on the input parameterization:

hj .t/ D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

�j
�1R
� log. 1

2
/

mj
� log.Sj .1//
Xj .1/

� log.S1.1//
X1.1/

R

For a piecewise linear curve, define the following additional notation:

t�i D largest input time Xsuch that X � ti
tCi D smallest input time Xsuch that X > ti

The hazard is computed by using linear interpolation as follows:

hj .ti / D
Sj .t

�
i / � Sj .t

C
i /�

Sj .t
C
i / � Sj .t

�
i /
� �
ti � t

�
i

�
C Sj .t

�
i /
�
tCi � t

�
i

�
With proportional hazards, the hazard rate of group 2’s curve in terms of the hazard rate of group 1’s curve is

h2.t/ D h1.t/R

Hazard function values f‰j .ti /g for the loss curves are computed in an analogous way from
fLj ; XLj ; SLj ; mLj g.

The expected number at risk Nj .i/ at time i in group j is calculated for each group and time points 0 through
M – 1, as follows:

Nj .0/ D Nwj

Nj .i C 1/ D Nj .i/

�
1 � hj .ti /

�
1

b

�
�‰j .ti /

�
1

b

�
�

�
1

b.T C � � ti /

�
1fti>�g

�

Define �i as the ratio of hazards and �i as the ratio of expected numbers at risk for time ti :

�i D
h2.ti /

h1.ti /

�i D
N2.i/

N1.i/

The expected number of deaths in each subinterval is calculated as follows:

Di D Œh1.ti /N1.i/C h2.ti /N2.i/�

�
1

b

�
The rank values are calculated as follows according to which test statistic is used:

ri D

8<:
1; log-rank
N1.i/CN2.i/; Gehanp
N1.i/CN2.i/; Tarone-Ware
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The distribution of the test statistic is approximated by N.E; 1/ where

E D

PM�1
iD0 Diri

h
�i�i
1C�i�i

�
�i
1C�i

i
qPM�1

iD0 Dir
2
i

�i
.1C�i /2

Note that N
1
2 can be factored out of the mean E, and so it can be expressed equivalently as

E D N
1
2E? D N

1
2

264
PM�1
iD0 D?i r

?
i

h
�i�i
1C�i�i

�
�i
1C�i

i
qPM�1

iD0 D?i r
?
i
2 �i
.1C�i /2

375
where E? is free of N and

D?i D
�
h1.ti /N

?
1 .i/C h2.ti /N

?
2 .i/

� �1
b

�

r?i D

8<:
1; log-rank
N ?
1 .i/CN

?
2 .i/; Gehanp

N ?
1 .i/CN

?
2 .i/; Tarone-Ware

N ?
j .0/ D wj

N ?
j .i C 1/ D N

?
j .i/

�
1 � hj .ti /

�
1

b

�
�‰j .ti /

�
1

b

�
�

�
1

b.T C � � ti /

�
1fti>�g

�

The approximate power is

power D

8̂̂̂<̂
ˆ̂:
ˆ
�
�N

1
2E? � z1�˛

�
; upper one-sided

ˆ
�
N
1
2E? � z1�˛

�
; lower one-sided

ˆ
�
�N

1
2E? � z1�˛

2

�
Cˆ

�
N

1
2E? � z1�˛

2

�
; two-sided

Note that the upper and lower one-sided cases are expressed differently than in other analyses. This is because
E? > 0 corresponds to a higher survival curve in group 1 and thus, by the convention used in PROC power
for two-group analyses, the lower side.

For the one-sided cases, a closed-form inversion of the power equation yield an approximate total sample size

N D

�
zpower C z1�˛

E?

�2
For the two-sided case, the solution for N is obtained by numerically inverting the power equation.

Accrual rates are converted to and from sample sizes according to the equation aj D nj =T , where aj is the
accrual rate for group j.

Expected numbers of events—that is, deaths, whether observed or censored—are converted to and from
sample sizes according to the equation

ej D

(
nj
�
1 � Sj .�/

�
; T D 0

nj

h
1 � 1

T

R T
0 Sj .T C � � t /dt

i
; T > 0
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where ej is the expected number of events in group j. For an exponential curve, the equation simplifies to

ej D

(
nj
�
1 � exp.��j �/

�
; T D 0

nj

h
1 � 1

�jT

�
exp.��j �/ � exp.��j .T C �//

�i
; T > 0

For a piecewise linear curve, first define Kj as the number of time points in the following collection: � ,
T C � , and input time points for group j strictly between � and T C � . Denote the ordered set of these points
as fuj1; : : : ; ujKj g. The survival function values Sj .�/ and Sj .T C �/ are calculated by linear interpolation
between adjacent input time points if they do not coincide with any input time points. Then the equation for
a piecewise linear curve simplifies to

ej D

(
nj
�
1 � Sj .�/

�
; T D 0

nj

h
1 � 1

2T

PKj�1

iD1

�
uj;iC1 � uj i

� �
Sj .uj i /C Sj .uj;iC1/

�i
; T > 0

Analyses in the TWOSAMPLEWILCOXON Statement

Wilcoxon-Mann-Whitney Test for Comparing Two Distributions (TEST=WMW)
The power approximation in this section is applicable to the Wilcoxon-Mann-Whitney (WMW) test as
invoked with the WILCOXON option in the PROC NPAR1WAY statement of the NPAR1WAY procedure.
The approximation is based on O’Brien and Castelloe (2006) and an estimator called 4WMWodds. See
O’Brien and Castelloe (2006) for a definition of 4WMWodds, which need not be derived in detail here for
purposes of explaining the power formula.

Let Y1 and Y2 be independent observations from any two distributions that you want to compare using the
WMW test. For purposes of deriving the asymptotic distribution of 4WMWodds (and consequently the power
computation as well), these distributions must be formulated as ordered categorical (“ordinal”) distributions.

If a distribution is continuous, it can be discretized using a large number of categories with negligible loss
of accuracy. Each nonordinal distribution is divided into b categories, where b is the value of the NBINS
parameter, with breakpoints evenly spaced on the probability scale. That is, each bin contains an equal
probability 1/b for that distribution. Then the breakpoints across both distributions are pooled to form
a collection of C bins (heretofore called “categories”), and the probabilities of bin membership for each
distribution are recalculated. The motivation for this method of binning is to avoid degenerate representations
of the distributions—that is, small handfuls of large probabilities among mostly empty bins—as can be
caused by something like an evenly spaced grid across raw values rather than probabilities.

After the discretization process just mentioned, there are now two ordinal distributions, each with a set of
probabilities across a common set of C ordered categories. For simplicity of notation, assume (without loss
of generality) the response values to be 1; : : : ; C . Represent the conditional probabilities as

Qpij D Prob .Yi D j j group D i/ ; i 2 f1; 2g and j 2 f1; : : : ; C g

and the group allocation weights as

wi D
ni

N
D Prob .group D i/ ; i 2 f1; 2g

The joint probabilities can then be calculated simply as

pij D Prob .group D i; Yi D j / D wi Qpij ; i 2 f1; 2g and j 2 f1; : : : ; C g
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The next step in the power computation is to compute the probabilities that a randomly chosen pair of
observations from the two groups is concordant, discordant, or tied. It is useful to define these probabilities
as functions of the terms Rsij and Rdij , defined as follows, where Y is a random observation drawn from the
joint distribution across groups and categories:

Rsij D Prob .Y is concordant with cell.i; j //C
1

2
Prob .Y is tied with cell.i; j //

D Prob ..group < i and Y < j / or .group > i and Y > j //C
1

2
Prob .group ¤ i and Y D j /

D

2X
gD1

CX
cD1

wg Qpgc

�
I.g�i/.c�j />0 C

1

2
Ig¤i;cDj

�
and

Rdij D Prob .Y is discordant with cell.i; j //C
1

2
Prob .Y is tied with cell.i; j //

D Prob ..group < i and Y > j / or .group > i and Y < j //C
1

2
Prob .group ¤ i and Y D j /

D

2X
gD1

CX
cD1

wg Qpgc

�
I.g�i/.c�j /<0 C

1

2
Ig¤i;cDj

�

For an independent random draw Y1; Y2 from the two distributions,

Pc D Prob .Y1; Y2 concordant/C
1

2
Prob .Y1; Y2 tied/

D

2X
iD1

CX
jD1

wi QpijRsij

and

Pd D Prob .Y1; Y2 discordant/C
1

2
Prob .Y1; Y2 tied/

D

2X
iD1

CX
jD1

wi QpijRdij

Then

WMWodds D
Pc

Pd

Proceeding to compute the theoretical standard error associated with WMWodds (that is, the population
analogue to the sample standard error),

SE.WMWodds/ D
2

Pd

24 2X
iD1

CX
jD1

wi Qpij
�
WMWoddsRdij �Rsij

�2
=N

35 1
2
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Converting to the natural log scale and using the delta method,

SE.log.WMWodds// D
SE.WMWodds/

WMWodds

The next step is to produce a “smoothed” version of the 2 � C cell probabilities that conforms to the null
hypothesis of the Wilcoxon-Mann-Whitney test (in other words, independence in the 2 � C contingency
table of probabilities). Let SEH0.log.WMWodds// denote the theoretical standard error of log.WMWodds/

assuming H0.

Finally, compute the power using the noncentral chi-square and normal distributions:

power D

8̂̂̂̂
<̂
ˆ̂̂:
P
�
Z �

SEH0 .log.WMWodds//

SE.log.WMWodds//
z1�˛ � ı

?N
1
2

�
; upper one-sided

P
�
Z �

SEH0 .log.WMWodds//

SE.log.WMWodds//
z˛ � ı

?N
1
2

�
; lower one-sided

P

�
�2.1; .ı?/2N/ �

h
SEH0 .log.WMWodds//

SE.log.WMWodds//

i2
�21�˛.1/

�
; two-sided

where

ı? D
log.WMWodds/

N
1
2SE.log.WMWodds//

is the primary noncentrality—that is, the “effect size” that quantifies how much the two conjectured distri-
butions differ. Z is a standard normal random variable, �2.df ;nc/ is a noncentral �2 random variable with
degrees of freedom df and noncentrality nc, and N is the total sample size.

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

If ODS Graphics is not enabled, then PROC POWER creates traditional graphics.

You can reference every graph produced through ODS Graphics with a name. The names of the graphs that
PROC POWER generates are listed in Table 77.31, along with the required statements and options.
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Table 77.31 Graphs Produced by PROC POWER

ODS Graph Name Plot Description Option

PowerPlot Plot with two of the following three parameters on the
X and Y axes: power, sample size, and effect size

PLOT

PowerAbort Empty plot that shows an error message when a plot
could not be produced

PLOT

Examples: POWER Procedure

Example 77.1: One-Way ANOVA
This example deals with the same situation as in Example 47.1 of Chapter 47, “The GLMPOWER Procedure.”

Hocking (1985, p. 109) describes a study of the effectiveness of electrolytes in reducing lactic acid buildup
for long-distance runners. You are planning a similar study in which you will allocate five different fluids to
runners on a 10-mile course and measure lactic acid buildup immediately after the run. The fluids consist of
water and two commercial electrolyte drinks, EZDure and LactoZap, each prepared at two concentrations,
low (EZD1 and LZ1) and high (EZD2 and LZ2).

You conjecture that the standard deviation of lactic acid measurements given any particular fluid is about
3.75, and that the expected lactic acid values will correspond roughly to those in Table 77.32. You are least
familiar with the LZ1 drink and hence decide to consider a range of reasonable values for that mean.

Table 77.32 Mean Lactic Acid Buildup by Fluid

Water EZD1 EZD2 LZ1 LZ2

35.6 33.7 30.2 29 or 28 25.9

You are interested in four different comparisons, shown in Table 77.33 with appropriate contrast coefficients.

Table 77.33 Planned Comparisons

Contrast Coefficients
Comparison Water EZD1 EZD2 LZ1 LZ2
Water versus electrolytes 4 –1 –1 –1 –1
EZD versus LZ 0 1 1 –1 –1
EZD1 versus EZD2 0 1 –1 0 0
LZ1 versus LZ2 0 0 0 1 –1
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For each of these contrasts you want to determine the sample size required to achieve a power of 0.9 for
detecting an effect with magnitude in accord with Table 77.32. You are not yet attempting to choose a single
sample size for the study, but rather checking the range of sample sizes needed for individual contrasts. You
plan to test each contrast at ˛ D 0:025. In the interests of reducing costs, you will provide twice as many
runners with water as with any of the electrolytes; in other words, you will use a sample size weighting
scheme of 2:1:1:1:1. Use the ONEWAYANOVA statement in the POWER procedure to compute the sample
sizes.

The statements required to perform this analysis are as follows:

proc power;
onewayanova

groupmeans = 35.6 | 33.7 | 30.2 | 29 28 | 25.9
stddev = 3.75
groupweights = (2 1 1 1 1)
alpha = 0.025
ntotal = .
power = 0.9
contrast = (4 -1 -1 -1 -1) (0 1 1 -1 -1)

(0 1 -1 0 0) (0 0 0 1 -1);
run;

The NTOTAL= option with a missing value (.) indicates total sample size as the result parameter. The
GROUPMEANS= option with values from Table 77.32 specifies your conjectures for the means. With only
one mean varying (the LZ1 mean), the “crossed” notation is simpler, showing scenarios for each group mean,
separated by vertical bars (|). For more information about crossed and matched notations for grouped values,
see the section “Specifying Value Lists in Analysis Statements” on page 6366. The contrasts in Table 77.33
are specified with the CONTRAST= option, by using the “matched” notation with each contrast enclosed
in parentheses. The STDDEV=, ALPHA=, and POWER= options specify the error standard deviation,
significance level, and power. The GROUPWEIGHTS= option specifies the weighting schemes. Default
values for the NULLCONTRAST= and SIDES= options specify a two-sided t test of the contrast equal to 0.
See Output 77.1.1 for the results.

Output 77.1.1 Sample Sizes for One-Way ANOVA Contrasts

The POWER Procedure
Single DF Contrast in One-Way ANOVA

The POWER Procedure
Single DF Contrast in One-Way ANOVA

Fixed Scenario Elements

Method Exact

Alpha 0.025

Standard Deviation 3.75

Group Weights 2 1 1 1 1

Nominal Power 0.9

Number of Sides 2

Null Contrast Value 0
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Output 77.1.1 continued

Computed N Total

Index Contrast Means
Actual
Power

N
Total

1 4 -1 -1 -1 -1 35.6 33.7 30.2 29 25.9 0.947 30

2 4 -1 -1 -1 -1 35.6 33.7 30.2 28 25.9 0.901 24

3 0 1 1 -1 -1 35.6 33.7 30.2 29 25.9 0.929 60

4 0 1 1 -1 -1 35.6 33.7 30.2 28 25.9 0.922 48

5 0 1 -1 0 0 35.6 33.7 30.2 29 25.9 0.901 174

6 0 1 -1 0 0 35.6 33.7 30.2 28 25.9 0.901 174

7 0 0 0 1 -1 35.6 33.7 30.2 29 25.9 0.902 222

8 0 0 0 1 -1 35.6 33.7 30.2 28 25.9 0.902 480

The sample sizes in Output 77.1.1 range from 24 for the comparison of water versus electrolytes to 480 for
the comparison of LZ1 versus LZ2, both assuming the smaller LZ1 mean. The sample size for the latter
comparison is relatively large because the small mean difference of 28 – 25.9 = 2.1 is hard to detect.

The Nominal Power of 0.9 in the “Fixed Scenario Elements” table in Output 77.1.1 represents the input
target power, and the Actual Power column in the “Computed N Total” table is the power at the sample size
(N Total) adjusted to achieve the specified sample weighting. Note that all of the sample sizes are rounded
up to multiples of 6 to preserve integer group sizes (since the group weights add up to 6). You can use the
NFRACTIONAL option in the ONEWAYANOVA statement to compute raw fractional sample sizes.

Suppose you want to plot the required sample size for the range of power values from 0.5 to 0.95. First,
define the analysis by specifying the same statements as before, but add the PLOTONLY option to the PROC
POWER statement to disable the nongraphical results. Next, specify the PLOT statement with X=POWER
to request a plot with power on the X axis. (The result parameter, here sample size, is always plotted on
the other axis.) Use the MIN= and MAX= options in the PLOT statement to specify the power range. The
following statements produce the plot shown in Output 77.1.2.

ods graphics on;

proc power plotonly;
onewayanova

groupmeans = 35.6 | 33.7 | 30.2 | 29 28 | 25.9
stddev = 3.75
groupweights = (2 1 1 1 1)
alpha = 0.025
ntotal = .
power = 0.9
contrast = (4 -1 -1 -1 -1) (0 1 1 -1 -1)

(0 1 -1 0 0) (0 0 0 1 -1);
plot x=power min=.5 max=.95;

run;
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Output 77.1.2 Plot of Sample Size versus Power for One-Way ANOVA Contrasts

In Output 77.1.2, the line style identifies the contrast, and the plotting symbol identifies the group means
scenario. The plot shows that the required sample size is highest for the (0 0 0 1 –1) contrast, corresponding
to the test of LZ1 versus LZ2 that was previously found to require the most resources, in either cell means
scenario.
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Note that some of the plotted points in Output 77.1.2 are unevenly spaced. This is because the plotted points
are the rounded sample size results at their corresponding actual power levels. The range specified with
the MIN= and MAX= values in the PLOT statement corresponds to nominal power levels. In some cases,
actual power is substantially higher than nominal power. To obtain plots with evenly spaced points (but with
fractional sample sizes at the computed points), you can use the NFRACTIONAL option in the analysis
statement preceding the PLOT statement.

Finally, suppose you want to plot the power for the range of sample sizes you will likely consider for the
study (the range of 24 to 480 that achieves 0.9 power for different comparisons). In the ONEWAYANOVA
statement, identify power as the result (POWER=.), and specify NTOTAL=24. The following statements
produce the plot:

proc power plotonly;
onewayanova

groupmeans = 35.6 | 33.7 | 30.2 | 29 28 | 25.9
stddev = 3.75
groupweights = (2 1 1 1 1)
alpha = 0.025
ntotal = 24
power = .
contrast = (4 -1 -1 -1 -1) (0 1 1 -1 -1)

(0 1 -1 0 0) (0 0 0 1 -1);
plot x=n min=24 max=480;

run;

ods graphics off;

The X=N option in the PLOT statement requests a plot with sample size on the X axis.

Note that the value specified with the NTOTAL=24 option is not used. It is overridden in the plot by
the MIN= and MAX= options in the PLOT statement, and the PLOTONLY option in the PROC POWER
statement disables nongraphical results. But the NTOTAL= option (along with a value) is still needed in the
ONEWAYANOVA statement as a placeholder, to identify the desired parameterization for sample size.

Output 77.1.3 shows the resulting plot.
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Output 77.1.3 Plot of Power versus Sample Size for One-Way ANOVA Contrasts

Although Output 77.1.2 and Output 77.1.3 surface essentially the same computations for practical power
ranges, they each provide a different quick visual assessment. Output 77.1.2 reveals the range of required
sample sizes for powers of interest, and Output 77.1.3 reveals the range of achieved powers for sample sizes
of interest.

Example 77.2: The Sawtooth Power Function in Proportion Analyses
For many common statistical analyses, the power curve is monotonically increasing: the more samples
you take, the more power you achieve. However, in statistical analyses of discrete data, such as tests of
proportions, the power curve is often nonmonotonic. A small increase in sample size can result in a decrease
in power, a decrease that is sometimes substantial. The explanation is that the actual significance level (in
other words, the achieved Type I error rate) for discrete tests strays below the target level and varies with
sample size. The power loss from a decrease in the Type I error rate can outweigh the power gain from
an increase in sample size. The example discussed here demonstrates this “sawtooth” phenomenon. For
additional discussion on the topic, see Chernick and Liu (2002).

Suppose you have a new scheduling system for an airline, and you want to determine how many flights you
must observe to have at least an 80% chance of establishing an improvement in the proportion of late arrivals
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on a specific travel route. You will use a one-sided exact binomial proportion test with a null proportion of
30%, the frequency of late arrivals under the previous scheduling system, and a nominal significance level of
˛ = 0.05. Well-supported predictions estimate the new late arrival rate to be about 20%, and you will base
your sample size determination on this assumption.

The POWER procedure does not currently compute exact sample size directly for the exact binomial test.
But you can get an initial estimate by computing the approximate sample size required for a z test. Use
the ONESAMPLEFREQ statement in the POWER procedure with TEST=Z and METHOD=NORMAL to
compute the approximate sample size to achieve a power of 0.8 by using the z test. The following statements
perform the analysis:

proc power;
onesamplefreq test=z method=normal

sides = 1
alpha = 0.05
nullproportion = 0.3
proportion = 0.2
ntotal = .
power = 0.8;

run;

The NTOTAL= option with a missing value (.) indicates sample size as the result parameter. The SIDES=1
option specifies a one-sided test. The ALPHA=, NULLPROPORTION=, and POWER= options specify
the significance level of 0.05, null value of 0.3, and target power of 0.8, respectively. The PROPORTION=
option specifies your conjecture of 0.3 for the true proportion.

Output 77.2.1 Approximate Sample Size for z Test of a Proportion

The POWER Procedure
Z Test for Binomial Proportion

The POWER Procedure
Z Test for Binomial Proportion

Fixed Scenario Elements

Method Normal approximation

Number of Sides 1

Null Proportion 0.3

Alpha 0.05

Binomial Proportion 0.2

Nominal Power 0.8

Variance Estimate Null Variance

Computed N
Total

Actual
Power

N
Total

0.800 119

The results, shown in Output 77.2.1, indicate that you need to observe about N = 119 flights to have an 80%
chance of rejecting the hypothesis of a late arrival proportion of 30% or higher, if the true proportion is 20%,
by using the z test. A similar analysis (Output 77.2.2) reveals an approximate sample size of N = 129 for the
z test with continuity correction, which is performed by using TEST=ADJZ:
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proc power;
onesamplefreq test=adjz method=normal

sides = 1
alpha = 0.05
nullproportion = 0.3
proportion = 0.2
ntotal = .
power = 0.8;

run;

Output 77.2.2 Approximate Sample Size for z Test with Continuity Correction

The POWER Procedure
Z Test for Binomial Proportion with Continuity Adjustment

The POWER Procedure
Z Test for Binomial Proportion with Continuity Adjustment

Fixed Scenario Elements

Method Normal approximation

Number of Sides 1

Null Proportion 0.3

Alpha 0.05

Binomial Proportion 0.2

Nominal Power 0.8

Variance Estimate Null Variance

Computed N
Total

Actual
Power

N
Total

0.801 129

Based on the approximate sample size results, you decide to explore the power of the exact binomial test for
sample sizes between 110 and 140. The following statements produce the plot:

ods graphics on;

proc power plotonly;
onesamplefreq test=exact

sides = 1
alpha = 0.05
nullproportion = 0.3
proportion = 0.2
ntotal = 119
power = .;

plot x=n min=110 max=140 step=1
yopts=(ref=.8) xopts=(ref=119 129);

run;

The TEST=EXACT option in the ONESAMPLEFREQ statement specifies the exact binomial test, and the
missing value (.) for the POWER= option indicates power as the result parameter. The PLOTONLY option in
the PROC POWER statement disables nongraphical output. The PLOT statement with X=N requests a plot
with sample size on the X axis. The MIN= and MAX= options in the PLOT statement specify the sample size
range. The YOPTS=(REF=) and XOPTS=(REF=) options add reference lines to highlight the approximate
sample size results. The STEP=1 option produces a point at each integer sample size. The sample size value
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specified with the NTOTAL= option in the ONESAMPLEFREQ statement is overridden by the MIN= and
MAX= options in the PLOT statement. Output 77.2.3 shows the resulting plot.

Output 77.2.3 Plot of Power versus Sample Size for Exact Binomial Test

Note the sawtooth pattern in Output 77.2.3. Although the power surpasses the target level of 0.8 at N
= 119, it decreases to 0.79 with N = 120 and further to 0.76 with N = 122 before rising again to 0.81
with N = 123. Not until N = 130 does the power stay above the 0.8 target. Thus, a more conservative
sample size recommendation of 130 might be appropriate, depending on the precise goals of the sample size
determination.

In addition to considering alternative sample sizes, you might also want to assess the sensitivity of the power
to inaccuracies in assumptions about the true proportion. The following statements produce a plot including
true proportion values of 0.18 and 0.22. They are identical to the previous statements except for the additional
true proportion values specified with the PROPORTION= option in the ONESAMPLEFREQ statement.
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proc power plotonly;
onesamplefreq test=exact

sides = 1
alpha = 0.05
nullproportion = 0.3
proportion = 0.18 0.2 0.22
ntotal = 119
power = .;

plot x=n min=110 max=140 step=1
yopts=(ref=.8) xopts=(ref=119 129);

run;

Output 77.2.4 shows the resulting plot.

Output 77.2.4 Plot for Assessing Sensitivity to True Proportion Value
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The plot reveals a dramatic sensitivity to the true proportion value. For N=119, the power is about 0.92 if the
true proportion is 0.18, and as low as 0.62 if the proportion is 0.22. Note also that the power jumps occur at
the same sample sizes in all three curves; the curves are only shifted and stretched vertically. This is because
spikes and valleys in power curves are invariant to the true proportion value; they are due to changes in the
critical value of the test.

A closer look at some ancillary output from the analysis sheds light on this property of the sawtooth pattern.
You can add an ODS OUTPUT statement to save the plot content corresponding to Output 77.2.3 to a data
set:

proc power plotonly;
ods output plotcontent=PlotData;
onesamplefreq test=exact

sides = 1
alpha = 0.05
nullproportion = 0.3
proportion = 0.2
ntotal = 119
power = .;

plot x=n min=110 max=140 step=1
yopts=(ref=.8) xopts=(ref=119 129);

run;

The PlotData data set contains parameter values for each point in the plot. The parameters include underlying
characteristics of the putative test. The following statements print the critical value and actual significance
level along with sample size and power:

proc print data=PlotData;
var NTotal LowerCritVal Alpha Power;

run;

Output 77.2.5 shows the plot data.
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Output 77.2.5 Numerical Content of Plot

Obs NTotal LowerCritVal Alpha Power

1 110 24 0.0356 0.729

2 111 24 0.0313 0.713

3 112 25 0.0446 0.771

4 113 25 0.0395 0.756

5 114 25 0.0349 0.741

6 115 26 0.0490 0.795

7 116 26 0.0435 0.781

8 117 26 0.0386 0.767

9 118 26 0.0341 0.752

10 119 27 0.0478 0.804

11 120 27 0.0425 0.790

12 121 27 0.0377 0.776

13 122 27 0.0334 0.762

14 123 28 0.0465 0.812

15 124 28 0.0414 0.799

16 125 28 0.0368 0.786

17 126 28 0.0327 0.772

18 127 29 0.0453 0.820

19 128 29 0.0404 0.807

20 129 29 0.0359 0.794

21 130 30 0.0493 0.838

22 131 30 0.0441 0.827

23 132 30 0.0394 0.815

24 133 30 0.0351 0.803

25 134 31 0.0480 0.845

26 135 31 0.0429 0.834

27 136 31 0.0384 0.823

28 137 31 0.0342 0.811

29 138 32 0.0466 0.851

30 139 32 0.0418 0.841

31 140 32 0.0374 0.830

Note that whenever the critical value changes, the actual ˛ jumps up to a value close to the nominal ˛ =
0.05, and the power also jumps up. Then while the critical value stays constant, the actual ˛ and power
slowly decrease. The critical value is independent of the true proportion value. So you can achieve a locally
maximal power by choosing a sample size corresponding to a spike on the sawtooth curve, and this choice is
locally optimal regardless of the unknown value of the true proportion. Locally optimal sample sizes in this
case include 115, 119, 123, 127, 130, and 134.

As a point of interest, the power does not always jump sharply and decrease gradually. The shape of the
sawtooth depends on the direction of the test and the location of the null proportion relative to 0.5. For
example, if the direction of the hypothesis in this example is reversed (by switching true and null proportion
values) so that the rejection region is in the upper tail, then the power curve exhibits sharp decreases and
gradual increases. The following statements are similar to those producing the plot in Output 77.2.3 but with
values of the PROPORTION= and NULLPROPORTION= options switched:
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proc power plotonly;
onesamplefreq test=exact

sides = 1
alpha = 0.05
nullproportion = 0.2
proportion = 0.3
ntotal = 119
power = .;

plot x=n min=110 max=140 step=1;
run;

The resulting plot is shown in Output 77.2.6.

Output 77.2.6 Plot of Power versus Sample Size for Another One-sided Test

Finally, two-sided tests can lead to even more irregular power curve shapes, since changes in lower and upper
critical values affect the power in different ways. The following statements produce a plot of power versus
sample size for the scenario of a two-sided test with high alpha and a true proportion close to the null value:
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proc power plotonly;
onesamplefreq test=exact

sides = 2
alpha = 0.2
nullproportion = 0.1
proportion = 0.09
ntotal = 10
power = .;

plot x=n min=2 max=100 step=1;
run;

ods graphics off;

Output 77.2.7 shows the resulting plot.

Output 77.2.7 Plot of Power versus Sample Size for a Two-Sided Test

Due to the irregular shapes of power curves for proportion tests, the question “Which sample size should I
use?” is often insufficient. A sample size solution produced directly in PROC POWER reveals the smallest
possible sample size to achieve your target power. But as the examples in this section demonstrate, it is
helpful to consult graphs for answers to questions such as the following:



Example 77.3: Simple AB/BA Crossover Designs F 6443

• Which sample size will guarantee that all higher sample sizes also achieve my target power?

• Given a candidate sample size, can I increase it slightly to achieve locally maximal power, or perhaps
even decrease it and get higher power?

Example 77.3: Simple AB/BA Crossover Designs
Crossover trials are experiments in which each subject is given a sequence of different treatments. They are
especially common in clinical trials for medical studies. The reduction in variability from taking multiple
measurements on a subject allows for more precise treatment comparisons. The simplest such design is the
AB/BA crossover, in which each subject receives each of two treatments in a randomized order.

Under certain simplifying assumptions, you can test the treatment difference in an AB/BA crossover trial by
using either a paired or two-sample t test (or equivalence test, depending on the hypothesis). This example
will demonstrate when and how you can use the PAIREDMEANS statement in PROC POWER to perform
power analyses for AB/BA crossover designs.

Senn (1993, Chapter 3) discusses a study comparing the effects of two bronchodilator medications in treatment
of asthma, by using an AB/BA crossover design. Suppose you want to plan a similar study comparing two
new medications, “Xilodol” and “Brantium.” Half of the patients would be assigned to sequence AB, getting
a dose of Xilodol in the first treatment period, a wash-out period of one week, and then a dose of Brantium in
the second treatment period. The other half would be assigned to sequence BA, following the same schedule
but with the drugs reversed. In each treatment period you would administer the drugs in the morning and then
measure peak expiratory flow (PEF) at the end of the day, with higher PEF representing better lung function.

You conjecture that the mean and standard deviation of PEF are about �A = 330 and �A = 40 for Xilodol
and �B = 310 and �B = 55 for Brantium, and that each pair of measurements on the same subject will have
a correlation of about 0.3. You want to compute the power of both one-sided and two-sided tests of mean
difference, with a significance level of ˛ = 0.01, for a sample size of 100 patients and also plot the power for
a range of 50 to 200 patients. Note that the allocation ratio of patients to the two sequences is irrelevant in
this analysis.

The choice of statistical test depends on which assumptions are reasonable. One possibility is a t test. A
paired or two-sample t test is valid when there is no carryover effect and no interactions between patients,
treatments, and periods. See Senn (1993, Chapter 3) for more details. The choice between a paired or
a two-sample test depends on what you assume about the period effect. If you assume no period effect,
then a paired t test is the appropriate analysis for the design, with the first member of each pair being the
Xilodol measurement (regardless of which sequence the patient belongs to). Otherwise, the two-sample t test
approach is called for, since this analysis adjusts for the period effect by using an extra degree of freedom.

Suppose you assume no period effect. Then you can use the PAIREDMEANS statement in PROC POWER
with the TEST=DIFF option to perform a sample size analysis for the paired t test. Indicate power as the
result parameter by specifying the POWER= option with a missing value (.). Specify the conjectured means
and standard deviations for each drug by using the PAIREDMEANS= and PAIREDSTDDEVS= options and
the correlation by using the CORR= option. Specify both one- and two-sided tests by using the SIDES=
option, the significance level by using the ALPHA= option, and the sample size (in terms of number of
pairs) by using the NPAIRS= option. Generate a plot of power versus sample size by specifying the PLOT
statement with X=N to request a plot with sample size on the X axis. (The result parameter, here power, is
always plotted on the other axis.) Use the MIN= and MAX= options in the PLOT statement to specify the
sample size range (as numbers of pairs).
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The following statements perform the sample size analysis:

ods graphics on;

proc power;
pairedmeans test=diff

pairedmeans = (330 310)
pairedstddevs = (40 55)
corr = 0.3
sides = 1 2
alpha = 0.01
npairs = 100
power = .;

plot x=n min=50 max=200;
run;

ods graphics off;

Default values for the NULLDIFF= and DIST= options specify a null mean difference of 0 and the assumption
of normally distributed data. The output is shown in Output 77.3.1 and Output 77.3.2.

Output 77.3.1 Power for Paired t Analysis of Crossover Design

The POWER Procedure
Paired t Test for Mean Difference

The POWER Procedure
Paired t Test for Mean Difference

Fixed Scenario Elements

Distribution Normal

Method Exact

Alpha 0.01

Mean 1 330

Mean 2 310

Standard Deviation 1 40

Standard Deviation 2 55

Correlation 0.3

Number of Pairs 100

Null Difference 0

Computed Power

Index Sides Power

1 1 0.865

2 2 0.801
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Output 77.3.2 Plot of Power versus Sample Size for Paired t Analysis of Crossover Design

The “Computed Power” table in Output 77.3.1 shows that the power with 100 patients is about 0.8 for the
two-sided test and 0.87 for the one-sided test with the alternative of larger Brantium mean. In Output 77.3.2,
the line style identifies the number of sides of the test. The plotting symbols identify locations of actual
computed powers; the curves are linear interpolations of these points. The plot demonstrates how much
higher the power is in the one-sided test than in the two-sided test for the range of sample sizes.

Suppose now that instead of detecting a difference between Xilodol and Brantium, you want to establish
that they are similar—in particular, that the absolute mean PEF difference is at most 35. You might consider
this goal if, for example, one of the drugs has fewer side effects and if a difference of no more than 35
is considered clinically small. Instead of a standard t test, you would conduct an equivalence test of the
treatment mean difference for the two drugs. You would test the hypothesis that the true difference is less
than –35 or more than 35 against the alternative that the mean difference is between –35 and 35, by using an
additive model and a two one-sided tests (“TOST”) analysis.

Assuming no period effect, you can use the PAIREDMEANS statement with the TEST=EQUIV_DIFF option
to perform a sample size analysis for the paired equivalence test. Indicate power as the result parameter by
specifying the POWER= option with a missing value (.). Use the LOWER= and UPPER= options to specify
the equivalence bounds of –35 and 35. Use the PAIREDMEANS=, PAIREDSTDDEVS=, CORR=, and
ALPHA= options in the same way as in the t test at the beginning of this example to specify the remaining
parameters.
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The following statements perform the sample size analysis:

proc power;
pairedmeans test=equiv_add

lower = -35
upper = 35
pairedmeans = (330 310)
pairedstddevs = (40 55)
corr = 0.3
alpha = 0.01
npairs = 100
power = .;

run;

The default option DIST=NORMAL specifies an assumption of normally distributed data. The output is
shown in Output 77.3.3.

Output 77.3.3 Power for Paired Equivalence Test for Crossover Design

The POWER Procedure
Equivalence Test for Paired Mean Difference

The POWER Procedure
Equivalence Test for Paired Mean Difference

Fixed Scenario Elements

Distribution Normal

Method Exact

Lower Equivalence Bound -35

Upper Equivalence Bound 35

Alpha 0.01

Reference Mean 330

Treatment Mean 310

Standard Deviation 1 40

Standard Deviation 2 55

Correlation 0.3

Number of Pairs 100

Computed
Power

Power

0.598

The power for the paired equivalence test with 100 patients is about 0.6.

Example 77.4: Noninferiority Test with Lognormal Data
The typical goal in noninferiority testing is to conclude that a new treatment or process or product is not
appreciably worse than some standard. This is accomplished by convincingly rejecting a one-sided null
hypothesis that the new treatment is appreciably worse than the standard. When designing such studies,
investigators must define precisely what constitutes “appreciably worse.”

You can use the POWER procedure for sample size analyses for a variety of noninferiority tests, by specifying
custom, one-sided null hypotheses for common tests. This example illustrates the strategy (often called
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Blackwelder’s scheme; Blackwelder 1982) by comparing the means of two independent lognormal samples.
The logic applies to one-sample, two-sample, and paired-sample problems involving normally distributed
measures and proportions.

Suppose you are designing a study hoping to show that a new (less expensive) manufacturing process does
not produce appreciably more pollution than the current process. Quantifying “appreciably worse” as 10%,
you seek to show that the mean pollutant level from the new process is less than 110% of that from the current
process. In standard hypothesis testing notation, you seek to reject

H0W
�new

�current
� 1:10

in favor of

HAW
�new

�current
< 1:10

This is described graphically in Figure 77.8. Mean ratios below 100% are better levels for the new process; a
ratio of 100% indicates absolute equivalence; ratios of 100–110% are “tolerably” worse; and ratios exceeding
110% are appreciably worse.

Figure 77.8 Hypotheses for the Pollutant Study

An appropriate test for this situation is the common two-group t test on log-transformed data. The hypotheses
become

H0W log .�new/ � log .�current/ � log.1:10/
HAW log .�new/ � log .�current/ < log.1:10/

Measurements of the pollutant level will be taken by using laboratory models of the two processes and will
be treated as independent lognormal observations with a coefficient of variation (�=�) between 0.5 and 0.6
for both processes. You will end up with 300 measurements for the current process and 180 for the new one.
It is important to avoid a Type I error here, so you set the Type I error rate to 0.01. Your theoretical work
suggests that the new process will actually reduce the pollutant by about 10% (to 90% of current), but you
need to compute and graph the power of the study if the new levels are actually between 70% and 120% of
current levels.

Implement the sample size analysis by using the TWOSAMPLEMEANS statement in PROC POWER
with the TEST=RATIO option. Indicate power as the result parameter by specifying the POWER= option
with a missing value (.). Specify a series of scenarios for the mean ratio between 0.7 and 1.2 by using
the MEANRATIO= option. Use the NULLRATIO= option to specify the null mean ratio of 1.10. Specify
SIDES=L to indicate a one-sided test with the alternative hypothesis stating that the mean ratio is lower than
the null value. Specify the significance level, scenarios for the coefficient of variation, and the group sample
sizes by using the ALPHA=, CV=, and GROUPNS= options. Generate a plot of power versus mean ratio by
specifying the PLOT statement with the X=EFFECT option to request a plot with mean ratio on the X axis.
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(The result parameter, here power, is always plotted on the other axis.) Use the STEP= option in the PLOT
statement to specify an interval of 0.05 between computed points in the plot.

The following statements perform the desired analysis:

ods graphics on;

proc power;
twosamplemeans test=ratio

meanratio = 0.7 to 1.2 by 0.1
nullratio = 1.10
sides = L
alpha = 0.01
cv = 0.5 0.6
groupns = (300 180)
power = .;

plot x=effect step=0.05;
run;

ods graphics off;

Note the use of SIDES=L, which forces computations for cases that need a rejection region that is opposite to
the one providing the most one-tailed power; in this case, it is the lower tail. Such cases will show power
that is less than the prescribed Type I error rate. The default option DIST=LOGNORMAL specifies the
assumption of lognormally distributed data. The default MIN= and MAX= options in the plot statement
specify an X axis range identical to the effect size range in the TWOSAMPLEMEANS statement (mean
ratios between 0.7 and 1.2).

Output 77.4.1 and Output 77.4.2 show the results.

Output 77.4.1 Power for Noninferiority Test of Ratio

The POWER Procedure
Two-Sample t Test for Mean Ratio

The POWER Procedure
Two-Sample t Test for Mean Ratio

Fixed Scenario Elements

Distribution Lognormal

Method Exact

Number of Sides L

Null Geometric Mean Ratio 1.1

Alpha 0.01

Group 1 Sample Size 300

Group 2 Sample Size 180
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Output 77.4.1 continued

Computed Power

Index

Geo
Mean
Ratio CV Power

1 0.7 0.5 >.999

2 0.7 0.6 >.999

3 0.8 0.5 >.999

4 0.8 0.6 >.999

5 0.9 0.5 0.985

6 0.9 0.6 0.933

7 1.0 0.5 0.424

8 1.0 0.6 0.306

9 1.1 0.5 0.010

10 1.1 0.6 0.010

11 1.2 0.5 <.001

12 1.2 0.6 <.001

Output 77.4.2 Plot of Power versus Mean Ratio for Noninferiority Test
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The “Computed Power” table in Output 77.4.1 shows that power exceeds 0.90 if the true mean ratio is
90% or less, as surmised. But power is unacceptably low (0.31–0.42) if the processes happen to be truly
equivalent. Note that the power is identical to the alpha level (0.01) if the true mean ratio is 1.10 and below
0.01 if the true mean ratio is appreciably worse (>110%). In Output 77.4.2, the line style identifies the
coefficient of variation. The plotting symbols identify locations of actual computed powers; the curves are
linear interpolations of these points.

Example 77.5: Multiple Regression and Correlation
You are working with a team of preventive cardiologists investigating whether elevated serum homocysteine
levels are linked to atherosclerosis (plaque buildup) in coronary arteries. The planned analysis is an ordinary
least squares regression to assess the relationship between total homocysteine level (tHcy) and a plaque
burden index (PBI), adjusting for six other variables: age, gender, plasma levels of folate, vitamin B6, vitamin
B12, and a serum cholesterol index. You will regress PBI on tHcy and the six other predictors (plus the
intercept) and use a Type III F test to assess whether tHcy is a significant predictor after adjusting for the
others. You wonder whether 100 subjects will provide adequate statistical power.

This is a correlational study at a single time. Subjects will be screened so that about half will have had a
heart problem. All eight variables will be measured during one visit. Most clinicians are familiar with simple
correlations between two variables, so you decide to pose the statistical problem in terms of estimating and
testing the partial correlation between X1 = tHcy and Y = PBI, controlling for the six other predictor variables
(RYX1jX�1). This greatly simplifies matters, especially the elicitation of the conjectured effect.

You use partial regression plots like that shown in Figure 77.9 to teach the team that the partial correlation
between PBI and tHcy is the correlation of two sets of residuals obtained from ordinary regression models,
one from regressing PBI on the six covariates and the other from regressing tHcy on the same covariates.
Thus each subject has “expected” tHcy and PBI values based on the six covariates. The cardiologists believe
that subjects whose tHcy is relatively higher than expected will also have a PBI that is relatively higher than
expected. The partial correlation quantifies that adjusted association just as a standard simple correlation
does with the unadjusted linear association between two variables.

Figure 77.9 Partial Regression Plot
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Based on previously published studies of various coronary risk factors and after viewing a set of scatterplots
showing various correlations, the team surmises that the true partial correlation is likely to be at least 0.35.

You want to compute the statistical power for a sample size of N = 100 by using ˛ = 0.05. You also want to
plot power for sample sizes between 50 and 150. Use the MULTREG statement to compute the power and the
PLOT statement to produce the graph. Since the predictors are observed rather than fixed in advanced, and a
joint multivariate normal assumption seems tenable, use MODEL=RANDOM. The following statements
perform the power analysis:

ods graphics on;

proc power;
multreg

model = random
nfullpredictors = 7
ntestpredictors = 1
partialcorr = 0.35
ntotal = 100
power = .;

plot x=n min=50 max=150;
run;

ods graphics off;

The POWER=. option identifies power as the parameter to compute. The NFULLPREDICTORS= option
specifies seven total predictors (not including the intercept), and the NTESTPREDICTORS= option indicates
that one of those predictors is being tested. The PARTIALCORR= and NTOTAL= options specify the partial
correlation and sample size, respectively. The default value for the ALPHA= option sets the significance
level to 0.05. The X=N option in the plot statement requests a plot of sample size on the X axis, and the
MIN= and MAX= options specify the sample size range.

Output 77.5.1 shows the output, and Output 77.5.2 shows the plot.

Output 77.5.1 Power Analysis for Multiple Regression

The POWER Procedure
Type III F Test in Multiple Regression

The POWER Procedure
Type III F Test in Multiple Regression

Fixed Scenario Elements

Method Exact

Model Random X

Number of Predictors in Full Model 7

Number of Test Predictors 1

Partial Correlation 0.35

Total Sample Size 100

Alpha 0.05

Computed
Power

Power

0.939
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Output 77.5.2 Plot of Power versus Sample Size for Multiple Regression

For the sample size N = 100, the study is almost balanced with respect to Type I and Type II error rates, with
˛ = 0.05 and ˇ = 1 – 0.937 = 0.063. The study thus seems well designed at this sample size.

Now suppose that in a follow-up meeting with the cardiologists, you discover that their specific intent is to
demonstrate that the (partial) correlation between PBI and tHcy is greater than 0.2. You suggest changing the
planned data analysis to a one-sided Fisher’s z test with a null correlation of 0.2. The following statements
perform a power analysis for this test:

proc power;
onecorr dist=fisherz

npvars = 6
corr = 0.35
nullcorr = 0.2
sides = 1
ntotal = 100
power = .;

run;
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The DIST=FISHERZ option in the ONECORR statement specifies Fisher’s z test. The NPARTIALVARS=
option specifies that six additional variables are adjusted for in the partial correlation. The CORR= option
specifies the conjectured correlation of 0.35, and the NULLCORR= option indicates the null value of 0.2.
The SIDES= option specifies a one-sided test.

Output 77.5.3 shows the output.

Output 77.5.3 Power Analysis for Fisher’s z Test

The POWER Procedure
Fisher's z Test for Pearson Correlation

The POWER Procedure
Fisher's z Test for Pearson Correlation

Fixed Scenario Elements

Distribution Fisher's z transformation of r

Method Normal approximation

Number of Sides 1

Null Correlation 0.2

Number of Variables Partialled Out 6

Correlation 0.35

Total Sample Size 100

Nominal Alpha 0.05

Computed
Power

Actual
Alpha Power

0.05 0.466

The power for Fisher’s z test is less than 50%, the decrease being mostly due to the smaller effect size (relative
to the null value). When asked for a recommendation for a new sample size goal, you compute the required
sample size to achieve a power of 0.95 (to balance Type I and Type II errors) and 0.85 (a threshold deemed to
be minimally acceptable to the team). The following statements perform the sample size determination:

proc power;
onecorr dist=fisherz

npvars = 6
corr = 0.35
nullcorr = 0.2
sides = 1
ntotal = .
power = 0.85 0.95;

run;

The NTOTAL=. option identifies sample size as the parameter to compute, and the POWER= option specifies
the target powers.
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Output 77.5.4 Sample Size Determination for Fisher’s z Test

The POWER Procedure
Fisher's z Test for Pearson Correlation

The POWER Procedure
Fisher's z Test for Pearson Correlation

Fixed Scenario Elements

Distribution Fisher's z transformation of r

Method Normal approximation

Number of Sides 1

Null Correlation 0.2

Number of Variables Partialled Out 6

Correlation 0.35

Nominal Alpha 0.05

Computed N Total

Index
Nominal

Power
Actual
Alpha

Actual
Power

N
Total

1 0.85 0.05 0.850 280

2 0.95 0.05 0.950 417

The results in Output 77.5.4 reveal a required sample size of 417 to achieve a power of 0.95 and a required
sample size of 280 to achieve a power of 0.85.

Example 77.6: Comparing Two Survival Curves
You are consulting for a clinical research group planning a trial to compare survival rates for proposed and
standard cancer treatments. The planned data analysis is a log-rank test to nonparametrically compare the
overall survival curves for the two treatments. Your goal is to determine an appropriate sample size to achieve
a power of 0.8 for a two-sided test with ˛ = 0.05 by using a balanced design.

The survival curve for patients on the standard treatment is well known to be approximately exponential with
a median survival time of five years. The research group conjectures that the new proposed treatment will
yield a (nonexponential) survival curve similar to the dashed line in Figure 77.6.1.

Patients will be accrued uniformly over two years and then followed for an additional three years past the
accrual period. Some loss to follow-up is expected, with roughly exponential rates that would result in about
50% loss with the standard treatment within 10 years. The loss to follow-up with the proposed treatment is
more difficult to predict, but 50% loss would be expected to occur sometime between years 5 and 20.
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Output 77.6.1 Survival Curves

Use the TWOSAMPLESURVIVAL statement with the TEST=LOGRANK option to compute the required
sample size for the log-rank test. The following statements perform the analysis:

proc power;
twosamplesurvival test=logrank

curve("Standard") = 5 : 0.5
curve("Proposed") = (1 to 5 by 1):(0.95 0.9 0.75 0.7 0.6)
groupsurvival = "Standard" | "Proposed"
accrualtime = 2
followuptime = 3
groupmedlosstimes = 10 | 20 5
power = 0.8
npergroup = .;

run;
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The CURVE= option defines the two survival curves. The “Standard” curve has only one point, specifying an
exponential form with a survival probability of 0.5 at year 5. The “Proposed” curve is a piecewise linear
curve defined by the five points shown in Figure 77.6.1. The GROUPSURVIVAL= option assigns the survival
curves to the two groups, and the ACCRUALTIME= and FOLLOWUPTIME= options specify the accrual and
follow-up times. The GROUPMEDLOSSTIMES= option specifies the years at which 50% loss is expected
to occur. The POWER= option specifies the target power, and the NPERGROUP=. option identifies sample
size per group as the parameter to compute. Default values for the SIDES= and ALPHA= options specify a
two-sided test with ˛ = 0.05.

Output 77.6.2 shows the results.

Output 77.6.2 Sample Size Determination for Log-Rank Test

The POWER Procedure
Log-Rank Test for Two Survival Curves

The POWER Procedure
Log-Rank Test for Two Survival Curves

Fixed Scenario Elements

Method Lakatos normal approximation

Accrual Time 2

Follow-up Time 3

Group 1 Survival Curve Standard

Form of Survival Curve 1 Exponential

Group 2 Survival Curve Proposed

Form of Survival Curve 2 Piecewise Linear

Group 1 Median Loss Time 10

Nominal Power 0.8

Number of Sides 2

Number of Time Sub-Intervals 12

Alpha 0.05

Computed N per Group

Index

Median
Loss

Time 2
Actual
Power

N per
Group

1 20 0.800 228

2 5 0.801 234

The required sample size per group to achieve a power of 0.8 is 228 if the median loss time is 20 years for
the proposed treatment. Only six more patients are required in each group if the median loss time is as short
as five years.
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Example 77.7: Confidence Interval Precision
An investment firm has hired you to help plan a study to estimate the success of a new investment strategy
called IntuiVest. The study involves complex simulations of market conditions over time, and it tracks the
balance of a hypothetical brokerage account starting with $50,000. Each simulation is very expensive in
terms of computing time. You are asked to determine an appropriate number of simulations to estimate
the average change in the account balance at the end of three years. The goal is to have a 95% chance of
obtaining a 90% confidence interval whose half-width is at most $1,000. That is, the firm wants to have
a 95% chance of being able to correctly claim at the end of the study that “Our research shows with 90%
confidence that IntuiVest yields a profit of $X +/– $1,000 at the end of three years on an initial investment of
$50,000 (under simulated market conditions).”

The probability of achieving the desired precision (that is, a small interval width) can be calculated either
unconditionally or conditionally given that the true mean is captured by the interval. You decide to use the
conditional form, considering two of its advantages:

• The conditional probability is usually lower than the unconditional probability for the same sample
size, meaning that the conditional form is generally conservative.

• The overall probability of achieving the desired precision and capturing the true mean is easily
computed as the product of the half-width probability and the confidence level. In this case, the overall
probability is 0.95 � 0.9 = 0.855.

Based on some initial simulations, you expect a standard deviation between $25,000 and $45,000 for the
ending account balance. You will consider both of these values in the sample size analysis.

As mentioned in the section “Overview of Power Concepts” on page 6363, an analysis of confidence interval
precision is analogous to a traditional power analysis, with “CI Half-Width” taking the place of effect size
and “Prob(Width)” taking the place of power. In this example, the target CI Half-Width is 1000, and the
desired Prob(Width) is 0.95.
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In addition to computing sample sizes for a half-width of $1,000, you are asked to plot the required number of
simulations for a range of half-widths between $500 and $2,000. Use the ONESAMPLEMEANS statement
with the CI=T option to implement the sample size determination. The following statements perform the
analysis:

ods graphics on;

proc power;
onesamplemeans ci=t

alpha = 0.1
halfwidth = 1000
stddev = 25000 45000
probwidth = 0.95
ntotal = .;

plot x=effect min=500 max=2000;
run;

ods graphics off;

The NTOTAL=. option identifies sample size as the parameter to compute. The ALPHA=0.1 option specifies
a confidence level of 1 – ˛ = 0.9. The HALFWIDTH= option specifies the target half-width, and the
STDDEV= option specifies the conjectured standard deviation values. The PROBWIDTH= option specifies
the desired probability of achieving the target precision. The default value PROBTYPE=CONDITIONAL
specifies that this probability is conditional on the true mean being captured by the interval. The default of
SIDES=2 indicates a two-sided interval.

Output 77.7.1 shows the output, and Output 77.7.2 shows the plot.

Output 77.7.1 Sample Size Determination for Confidence Interval Precision

The POWER Procedure
Confidence Interval for Mean

The POWER Procedure
Confidence Interval for Mean

Fixed Scenario Elements

Distribution Normal

Method Exact

Alpha 0.1

CI Half-Width 1000

Nominal Prob(Width) 0.95

Number of Sides 2

Prob Type Conditional

Computed N Total

Index
Std
Dev

Actual
Prob(Width)

N
Total

1 25000 0.951 1788

2 45000 0.950 5652
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Output 77.7.2 Plot of Sample Size versus Confidence Interval Half-Width

The number of simulations required in order to have a 95% chance of obtaining a half-width of at most 1000
is between 1788 and 5652, depending on the standard deviation. The plot reveals that more than 20,000
simulations would be required for a half-width of 500, assuming the higher standard deviation.

Example 77.8: Customizing Plots
This example demonstrates various ways you can modify and enhance plots:

• assigning analysis parameters to axes

• fine-tuning a sample size axis

• adding reference lines

• linking plot features to analysis parameters

• choosing key (legend) styles

• modifying symbol locations
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The example plots are all based on a sample size analysis for a two-sample t test of group mean difference.
You start by computing the sample size required to achieve a power of 0.9 by using a two-sided test with ˛ =
0.05, assuming the first mean is 12, the second mean is either 15 or 18, and the standard deviation is either 7
or 9.

Use the TWOSAMPLEMEANS statement with the TEST=DIFF option to compute the required sample sizes.
Indicate total sample size as the result parameter by supplying a missing value (.) with the NTOTAL= option.
Use the GROUPMEANS=, STDDEV=, and POWER= options to specify values of the other parameters. The
following statements perform the sample size computations:

proc power;
twosamplemeans test=diff

groupmeans = 12 | 15 18
stddev = 7 9
power = 0.9
ntotal = .;

run;

Default values for the NULLDIFF=, SIDES=, GROUPWEIGHTS=, and DIST= options specify a null mean
difference of 0, two-sided test, balanced design, and assumption of normally distributed data, respectively.

Output 77.8.1 shows that the required sample size ranges from 60 to 382, depending on the unknown standard
deviation and second mean.

Output 77.8.1 Computed Sample Sizes

The POWER Procedure
Two-Sample t Test for Mean Difference

The POWER Procedure
Two-Sample t Test for Mean Difference

Fixed Scenario
Elements

Distribution Normal

Method Exact

Group 1 Mean 12

Nominal Power 0.9

Number of Sides 2

Null Difference 0

Alpha 0.05

Group 1 Weight 1

Group 2 Weight 1

Computed N Total

Index Mean2
Std
Dev

Actual
Power

N
Total

1 15 7 0.902 232

2 15 9 0.901 382

3 18 7 0.904 60

4 18 9 0.904 98
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Assigning Analysis Parameters to Axes

Use the PLOT statement to produce plots for all power and sample size analyses in PROC POWER. For
the sample size analysis described at the beginning of this example, suppose you want to plot the required
sample size on the Y axis against a range of powers between 0.5 and 0.95 on the X axis. The X= and Y=
options specify which parameter to plot against the result and which axis to assign to this parameter. You
can use either the X= or the Y= option, but not both. Use the X=POWER option in the PLOT statement to
request a plot with power on the X axis. The result parameter, here total sample size, is always plotted on the
other axis. Use the MIN= and MAX= options to specify the range of the axis indicated with either the X= or
the Y= option. Here, specify MIN=0.5 and MAX=0.95 to specify the power range. The following statements
produce the plot:

ods graphics on;

proc power plotonly;
twosamplemeans test=diff

groupmeans = 12 | 15 18
stddev = 7 9
power = 0.9
ntotal = .;

plot x=power min=0.5 max=0.95;
run;

Note that the value (0.9) of the POWER= option in the TWOSAMPLEMEANS statement is only a placeholder
when the PLOTONLY option is used and both the MIN= and MAX= options are used, because the values of
the MIN= and MAX= options override the value of 0.9. But the POWER= option itself is still required in the
TWOSAMPLEMEANS statement, to provide a complete specification of the sample size analysis.

The resulting plot is shown in Output 77.8.2.
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Output 77.8.2 Plot of Sample Size versus Power

The line style identifies the group means scenario, and the plotting symbol identifies the standard deviation
scenario. The locations of plotting symbols indicate computed sample sizes; the curves are linear interpo-
lations of these points. By default, each curve consists of approximately 20 computed points (sometimes
slightly more or less, depending on the analysis).

If you would rather plot power on the Y axis versus sample size on the X axis, you have two general strategies
to choose from. One strategy is to use the Y= option instead of the X= option in the PLOT statement:

plot y=power min=0.5 max=0.95;
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Output 77.8.3 Plot of Power versus Sample Size using First Strategy

Note that the resulting plot (Output 77.8.3) is essentially a mirror image of Output 77.8.2. The axis ranges
are set such that each curve in Output 77.8.3 contains similar values of Y instead of X. Each plotted point
represents the computed value of the X axis at the input value of the Y axis.

A second strategy for plotting power versus sample size (when originally solving for sample size) is to invert
the analysis and base the plot on computed power for a given range of sample sizes. This strategy works
well for monotonic power curves (as is the case for the t test and most other continuous analyses). It is
advantageous in the sense of preserving the traditional role of the Y axis as the computed parameter. A
common way to implement this strategy is as follows:

• Determine the range of sample sizes sufficient to cover at the desired power range for all curves (where
each “curve” represents a scenario for standard deviation and second group mean).

• Use this range for the X axis of a plot.

To determine the required sample sizes for target powers of 0.5 and 0.95, change the values in the POWER=
option as follows to reflect this range:
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proc power;
twosamplemeans test=diff

groupmeans = 12 | 15 18
stddev = 7 9
power = 0.5 0.95
ntotal = .;

run;

Output 77.8.4 reveals that a sample size range of 24 to 470 is approximately sufficient to cover the desired
power range of 0.5 to 0.95 for all curves (“approximately” because the actual power at the rounded sample
size of 24 is slightly higher than the nominal power of 0.5).

Output 77.8.4 Computed Sample Sizes

The POWER Procedure
Two-Sample t Test for Mean Difference

The POWER Procedure
Two-Sample t Test for Mean Difference

Fixed Scenario
Elements

Distribution Normal

Method Exact

Group 1 Mean 12

Number of Sides 2

Null Difference 0

Alpha 0.05

Group 1 Weight 1

Group 2 Weight 1

Computed N Total

Index Mean2
Std
Dev

Nominal
Power

Actual
Power

N
Total

1 15 7 0.50 0.502 86

2 15 7 0.95 0.951 286

3 15 9 0.50 0.505 142

4 15 9 0.95 0.950 470

5 18 7 0.50 0.519 24

6 18 7 0.95 0.953 74

7 18 9 0.50 0.516 38

8 18 9 0.95 0.952 120

To plot power on the Y axis for sample sizes between 20 and 500, use the X=N option in the PLOT statement
with MIN=20 and MAX=500:

proc power plotonly;
twosamplemeans test=diff

groupmeans = 12 | 15 18
stddev = 7 9
power = .
ntotal = 200;

plot x=n min=20 max=500;
run;

Each curve in the resulting plot in Output 77.8.5 covers at least a power range of 0.5 to 0.95.
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Output 77.8.5 Plot of Power versus Sample Size Using Second Strategy

Finally, suppose you want to produce a plot of sample size versus effect size for a power of 0.9. In this case,
the “effect size” is defined to be the mean difference. You need to reparameterize the analysis by using the
MEANDIFF= option instead of the GROUPMEANS= option to produce a plot, since each plot axis must be
represented by a scalar parameter. Use the X=EFFECT option in the PLOT statement to assign the mean
difference to the X axis. The following statements produce a plot of required sample size to detect mean
differences between 3 and 6:

proc power plotonly;
twosamplemeans test=diff

meandiff = 3 6
stddev = 7 9
power = 0.9
ntotal = .;

plot x=effect min=3 max=6;
run;

The resulting plot Output 77.8.6 shows how the required sample size decreases with increasing mean
difference.
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Output 77.8.6 Plot of Sample Size versus Mean Difference

Fine-Tuning a Sample Size Axis

Consider the following plot request for a sample size analysis similar to the one in Output 77.8.1 but with
only a single scenario, and with unbalanced sample size allocation of 2:1:

proc power plotonly;
ods output plotcontent=PlotData;
twosamplemeans test=diff

groupmeans = 12 | 18
stddev = 7
groupweights = 2 | 1
power = .
ntotal = 20;

plot x=n min=20 max=50 npoints=20;
run;

The MIN=, MAX=, and NPOINTS= options in the PLOT statement request a plot with 20 points between 20
and 50. But the resulting plot (Output 77.8.7) appears to have only 11 points, and they range from 18 to 48.
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Output 77.8.7 Plot with Overlapping Points

The reason that this plot has fewer points than usual is due to the rounding of sample sizes. If you do not use
the NFRACTIONAL option in the analysis statement (here, the TWOSAMPLEMEANS statement), then the
set of sample size points determined by the MIN=, MAX=, NPOINTS=, and STEP= options in the PLOT
statement can be rounded to satisfy the allocation weights. In this case, they are rounded down to the nearest
multiples of 3 (the sum of the weights), and many of the points overlap. To see the overlap, you can print the
NominalNTotal (unadjusted) and NTotal (rounded) variables in the PlotContent ODS object (here saved to a
data set called PlotData):

proc print data=PlotData;
var NominalNTotal NTotal;

run;

The output is shown in Output 77.8.8.
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Output 77.8.8 Sample Sizes

Obs NominalNTotal NTotal

1 18.0 18

2 19.6 18

3 21.2 21

4 22.7 21

5 24.3 24

6 25.9 24

7 27.5 27

8 29.1 27

9 30.6 30

10 32.2 30

11 33.8 33

12 35.4 33

13 36.9 36

14 38.5 36

15 40.1 39

16 41.7 39

17 43.3 42

18 44.8 42

19 46.4 45

20 48.0 48

Besides overlapping of sample size points, another peculiarity that might occur without the NFRACTIONAL
option is unequal spacing—for example, in the plot in Output 77.8.9, created with the following statements:

proc power plotonly;
twosamplemeans test=diff

groupmeans = 12 | 18
stddev = 7
groupweights = 2 | 1
power = .
ntotal = 20;

plot x=n min=20 max=50 npoints=5;
run;
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Output 77.8.9 Plot with Unequally Spaced Points

If you want to guarantee evenly spaced, nonoverlapping sample size points in your plots, you can either
(1) use the NFRACTIONAL option in the analysis statement preceding the PLOT statement or (2) use the
STEP= option and provide values for the MIN=, MAX=, and STEP= options in the PLOT statement that
are multiples of the sum of the allocation weights. Note that this sum is simply 1 for one-sample and paired
designs and 2 for balanced two-sample designs. So any integer step value works well for one-sample and
paired designs, and any even step value works well for balanced two-sample designs. Both of these strategies
will avoid rounding adjustments.

The following statements implement the first strategy to create the plot in Output 77.8.10, by using the
NFRACTIONAL option in the TWOSAMPLEMEANS statement:

proc power plotonly;
twosamplemeans test=diff

nfractional
groupmeans = 12 | 18
stddev = 7
groupweights = 2 | 1
power = .
ntotal = 20;

plot x=n min=20 max=50 npoints=20;
run;
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Output 77.8.10 Plot with Fractional Sample Sizes

To implement the second strategy, use multiples of 3 for the STEP=, MIN=, and MAX= options in the
PLOT statement (because the sum of the allocation weights is 2 + 1 = 3). The following statements use
STEP=3, MIN=18, and MAX=48 to create a plot that looks identical to the plot in Output 77.8.7 but suffers
no overlapping of points:

proc power plotonly;
twosamplemeans test=diff

groupmeans = 12 | 18
stddev = 7
groupweights = 2 | 1
power = .
ntotal = 20;

plot x=n min=18 max=48 step=3;
run;

Adding Reference Lines

Suppose you want to add reference lines to highlight power=0.8 and power=0.9 on the plot in Output 77.8.5.
You can add simple reference lines by using the YOPTS= option and REF= suboption in the PLOT statement
to produce Output 77.8.11, with the following statements:
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proc power plotonly;
twosamplemeans test=diff

groupmeans = 12 | 15 18
stddev = 7 9
power = .
ntotal = 100;

plot x=n min=20 max=500
yopts=(ref=0.8 0.9);

run;

Output 77.8.11 Plot with Simple Reference Lines on Y Axis

Or you can specify CROSSREF=YES to add reference lines that intersect each curve and cross over to the
other axis:

plot x=n min=20 max=500
yopts=(ref=0.8 0.9 crossref=yes);

The resulting plot is shown in Output 77.8.12.
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Output 77.8.12 Plot with CROSSREF=YES Style Reference Lines from Y Axis

You can also add reference lines for the X axis by using the XOPTS= option instead of the YOPTS= option.
For example, the following PLOT statement produces Output 77.8.13, which has crossing reference lines
highlighting the sample size of 100:

plot x=n min=20 max=500
xopts=(ref=100 crossref=yes);

Note that the values that label the reference lines at the X axis in Output 77.8.12 and at the Y axis in Out-
put 77.8.13 are linearly interpolated from two neighboring points on the curves. Thus they might not exactly
match corresponding values that are computed directly from the methods in the section “Computational
Methods and Formulas” on page 6373—that is, computed by PROC POWER in the absence of a PLOT
statement. The two ways of computing these values generally differ by a negligible amount.
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Output 77.8.13 Plot with CROSSREF=YES Style Reference Lines from X Axis

Linking Plot Features to Analysis Parameters

You can use the VARY option in the PLOT statement to specify which of the following features you want to
associate with analysis parameters.

• line style

• plotting symbol

• color

• panel

You can specify mappings between each of these features and one or more analysis parameters, or you can
simply choose a subset of these features to use (and rely on default settings to associate these features with
multiple-valued analysis parameters).
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Suppose you supplement the sample size analysis in Output 77.8.5 to include three values of alpha, by using
the following statements:

proc power plotonly;
twosamplemeans test=diff

groupmeans = 12 | 15 18
stddev = 7 9
alpha = 0.01 0.025 0.1
power = .
ntotal = 100;

plot x=n min=20 max=500;
run;

The defaults for the VARY option in the PLOT statement specify line style varying by the ALPHA= parameter,
plotting symbol varying by the GROUPMEANS= parameter, panel varying by the STDDEV= parameter, and
color remaining constant. The resulting plot, consisting of two panels, is shown in Output 77.8.14.

Output 77.8.14 Plot with Default VARY Settings
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Output 77.8.14 continued

Suppose you want to produce a plot with only one panel that varies color in addition to line style and plotting
symbol. Include the LINESTYLE, SYMBOL, and COLOR keywords in the VARY option in the PLOT
statement, as follows, to produce the plot in Output 77.8.15:

plot x=n min=20 max=500
vary (linestyle, symbol, color);
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Output 77.8.15 Plot with Varying Color Instead of Panel

Finally, suppose you want to specify which features are used and which analysis parameters they are linked
to. The following PLOT statement produces a two-panel plot (shown in Output 77.8.16) in which line style
varies by standard deviation, plotting symbol varies by both alpha and sides, and panel varies by means:

plot x=n min=20 max=500
vary (linestyle by stddev,

symbol by alpha sides,
panel by groupmeans);
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Output 77.8.16 Plot with Features Explicitly Linked to Parameters
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Output 77.8.16 continued

Choosing Key (Legend) Styles

The default style for the key (or “legend”) is one that displays the association between levels of features and
levels of analysis parameters, located below the X axis. For example, Output 77.8.5 demonstrates this style
of key.

You can reproduce Output 77.8.5 with the same key but a different location, inside the plotting region, by
using the POS=INSET option within the KEY=BYFEATURE option in the PLOT statement. The following
statements product the plot in Output 77.8.17:

proc power plotonly;
twosamplemeans test=diff

groupmeans = 12 | 15 18
stddev = 7 9
power = .
ntotal = 200;

plot x=n min=20 max=500
key = byfeature(pos=inset);

run;
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Output 77.8.17 Plot with a By-Feature Key inside the Plotting Region

Alternatively, you can specify a key that identifies each individual curve separately by number by using the
KEY=BYCURVE option in the PLOT statement:

plot x=n min=20 max=500
key = bycurve;

The resulting plot is shown in Output 77.8.18.
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Output 77.8.18 Plot with a Numbered By-Curve Key

Use the NUMBERS=OFF option within the KEY=BYCURVE option to specify a nonnumbered key that
identifies curves with samples of line styles, symbols, and colors:

plot x=n min=20 max=500
key = bycurve(numbers=off pos=inset);

The POS=INSET suboption places the key within the plotting region. The resulting plot is shown in
Output 77.8.19.
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Output 77.8.19 Plot with a Nonnumbered By-Curve Key

Finally, you can attach labels directly to curves with the KEY=ONCURVES option. The following PLOT
statement produces Output 77.8.20:

plot x=n min=20 max=500
key = oncurves;



6482 F Chapter 77: The POWER Procedure

Output 77.8.20 Plot with Directly Labeled Curves

Modifying Symbol Locations

The default locations for plotting symbols are the points computed directly from the power and sample
size algorithms. For example, Output 77.8.5 shows plotting symbols corresponding to computed points.
The curves connecting these points are interpolated (as indicated by the INTERPOL= option in the PLOT
statement).

You can modify the locations of plotting symbols by using the MARKERS= option in the PLOT statement.
The MARKERS=ANALYSIS option places plotting symbols at locations corresponding to the input specified
in the analysis statement preceding the PLOT statement. You might prefer this as an alternative to using
reference lines to highlight specific points. For example, you can reproduce Output 77.8.5, but with the
plotting symbols located at the sample sizes shown in Output 77.8.1, by using the following statements:

proc power plotonly;
twosamplemeans test=diff

groupmeans = 12 | 15 18
stddev = 7 9
power = .
ntotal = 232 382 60 98;
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plot x=n min=20 max=500
markers=analysis;

run;

The analysis statement here is the TWOSAMPLEMEANS statement. The MARKERS=ANALYSIS option in
the PLOT statement causes the plotting symbols to occur at sample sizes specified by the NTOTAL= option in
the TWOSAMPLEMEANS statement: 232, 382, 60, and 98. The resulting plot is shown in Output 77.8.21.

Output 77.8.21 Plot with MARKERS=ANALYSIS

You can also use the MARKERS=NICE option to align symbols with the tick marks on one of the axes (the
X axis when the X= option is used, or the Y axis when the Y= option is used):

plot x=n min=20 max=500
markers=nice;

The plot created by this PLOT statement is shown in Output 77.8.22.
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Output 77.8.22 Plot with MARKERS=NICE

Note that the plotting symbols are aligned with the tick marks on the X axis because the X= option is
specified.

Example 77.9: Binary Logistic Regression with Independent Predictors
Suppose you are planning an industrial experiment similar to the analysis in “Getting Started: LOGISTIC
Procedure” on page 4492 in Chapter 60, “The LOGISTIC Procedure,” but for a different type of ingot. The
primary test of interest is the likelihood ratio chi-square test of the effect of heating time on the readiness of
the ingots for rolling. Ingots will be randomized independently into one of four different heating times (5, 10,
15, and 20 minutes) with allocation ratios 2:3:3:2 and three different soaking times (2, 4, and 6 minutes) with
allocation ratios 2:2:1. The mass of each ingot will be measured as a covariate.

You want to know how many ingots you must sample to have a 90% chance of detecting an odds ratio as
small as 1.2 for a five-minute heating time increase. The odds ratio is defined here as the odds of the ingot
not being ready given a heating time of h minutes divided by the odds given a heating time of h – 5 minutes,
for any time h. You will use a significance level of ˛ = 0.1 to balance Type I and Type II errors since you
consider their importance to be roughly equal.
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The distributions of heating time and soaking time are determined by the design, but you must conjecture the
distribution of ingot mass. Suppose you expect its distribution to be approximately normal with mean 4 kg
and standard deviation between 1 kg and 2 kg.

You are powering the study for an odds ratio of 1.2 for the heating time, but you must also conjecture odds
ratios for soaking time and mass. You suspect that the odds ratio for a unit increase in soaking time is about
1.4, and the odds ratio for a unit increase in mass is between 1 and 1.3.

Finally, you must provide a guess for the average probability of an ingot not being ready for rolling, averaged
across all possible design profiles. Existing data suggest that this probability lies between 0.15 and 0.25.

You decide to evaluate sample size at the two extremes of each parameter for which you conjectured a range.
Use the following statements to perform the sample size determination:

proc power;
logistic

vardist("Heat") = ordinal((5 10 15 20) : (0.2 0.3 0.3 0.2))
vardist("Soak") = ordinal((2 4 6) : (0.4 0.4 0.2))
vardist("Mass1") = normal(4, 1)
vardist("Mass2") = normal(4, 2)
testpredictor = "Heat"
covariates = "Soak" | "Mass1" "Mass2"
responseprob = 0.15 0.25
testoddsratio = 1.2
units= ("Heat" = 5)
covoddsratios = 1.4 | 1 1.3
alpha = 0.1
power = 0.9
ntotal = .;

run;

The VARDIST= option is used to define the distributions of the predictor variables. The distributions
of heating and soaking times are defined by the experimental design, with ordinal probabilities derived
from the allocation ratios. The two conjectured standard deviations for the ingot mass are represented
in the Mass1 and Mass2 distributions. The TESTPREDICTOR= option identifies the predictor being
tested, and the COVARIATES= option specifies the scenarios for the remaining predictors in the model
(soaking time and mass). The RESPONSEPROB= option specifies the overall response probability, and
the TESTODDSRATIO= and UNITS= options indicate the odds ratio and increment for heating time. The
COVODDSRATIOS= option specifies the scenarios for the odds ratios of soaking time and mass. The default
DEFAULTUNIT=1 option specifies a unit change for both of these odds ratios. The ALPHA= option sets the
significance level, and the POWER= option defines the target power. Finally, the NTOTAL= option with a
missing value (.) identifies the parameter to solve for.

Output 77.9.1 shows the results.



6486 F Chapter 77: The POWER Procedure

Output 77.9.1 Sample Sizes for Test of Heating Time in Logistic Regression

The POWER Procedure
Likelihood Ratio Chi-Square Test for One Predictor

The POWER Procedure
Likelihood Ratio Chi-Square Test for One Predictor

Fixed Scenario Elements

Method Shieh-O'Brien approximation

Alpha 0.1

Test Predictor Heat

Odds Ratio for Test Predictor 1.2

Unit for Test Pred Odds Ratio 5

Nominal Power 0.9

Computed N Total

Index
Response

Prob Covariates
Cov
ORs

Cov
Units

Total
N

Bins
Actual
Power

N
Total

1 0.15 Soak Mass1 1.4 1.0 1 1 120 0.900 1878

2 0.15 Soak Mass1 1.4 1.3 1 1 120 0.900 1872

3 0.15 Soak Mass2 1.4 1.0 1 1 120 0.900 1878

4 0.15 Soak Mass2 1.4 1.3 1 1 120 0.900 1857

5 0.25 Soak Mass1 1.4 1.0 1 1 120 0.900 1342

6 0.25 Soak Mass1 1.4 1.3 1 1 120 0.900 1348

7 0.25 Soak Mass2 1.4 1.0 1 1 120 0.900 1342

8 0.25 Soak Mass2 1.4 1.3 1 1 120 0.900 1369

The required sample size ranges from 1342 to 1878, depending on the unknown true values of the overall
response probability, mass standard deviation, and soaking time odds ratio. The overall response probability
clearly has the largest influence among these parameters, with a sample size increase of almost 40% going
from 0.25 to 0.15.

Example 77.10: Wilcoxon-Mann-Whitney Test
Consider a hypothetical clinical trial to treat interstitial cystitis (IC), a painful, chronic inflammatory condition
of the bladder with no known cause that most commonly affects women. Two treatments will be compared:
lidocaine alone (“lidocaine”) versus lidocaine plus a fictitious experimental drug called Mironel (“Mir+lido”).
The design is balanced, randomized, double-blind, and female-only. The primary outcome is a measure of
overall improvement at week 4 of the study, measured on a seven-point Likert scale as shown in Table 77.34.
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Table 77.34 Self-Report Improvement Scale

Compared to when I started
this study, my condition is:

Much worse –3
Worse –2
Slightly worse –1
The same 0
Slightly better +1
Better +2
Much better +3

The planned data analysis is a one-sided Wilcoxon-Mann-Whitney test with ˛ = 0.05 where the alternative
hypothesis represents greater improvement for “Mir+lido.”

You are asked to graphically assess the power of the planned trial for sample sizes between 100 and 250,
assuming that the conditional outcome probabilities given treatment are equal to the values in Table 77.35.

Table 77.35 Conjectured Conditional Probabilities

Response
Treatment –3 –2 –1 0 +1 +2 +3
Lidocaine 0.01 0.04 0.20 0.50 0.20 0.04 0.01
Mir+lido 0.01 0.03 0.15 0.35 0.30 0.10 0.06

Use the following statements to compute the power at sample sizes of 100 and 250 and generate a power
curve:

ods graphics on;

proc power;
twosamplewilcoxon

vardist("lidocaine") = ordinal ((-3 -2 -1 0 1 2 3) :
(.01 .04 .20 .50 .20 .04 .01))

vardist("Mir+lido") = ordinal ((-3 -2 -1 0 1 2 3) :
(.01 .03 .15 .35 .30 .10 .06))

variables = "lidocaine" | "Mir+lido"
sides = u
ntotal = 100 250
power = .;

plot step=10;
run;

ods graphics off;
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The VARDIST= option is used to define the distribution for each treatment, and the VARIABLES= option
specifies the distributions to compare. The SIDES=U option corresponds to the alternative hypothesis that
the second distribution ("Mir+lido") is more favorable. The NTOTAL= option specifies the total sample sizes
of interest, and the POWER= option with a missing value (.) identifies the parameter to solve for. The default
GROUPWEIGHTS= and ALPHA= options specify a balanced design and significance level ˛ = 0.05.

The STEP=10 option in the PLOT statement requests a point for each sample size increment of 10. The
default values for the X=, MIN=, and MAX= plot options specify a sample size range of 100 to 250 (the
same as in the analysis) for the X axis.

The tabular and graphical results are shown in Output 77.10.1 and Output 77.10.2, respectively.

Output 77.10.1 Power Values for Wilcoxon-Mann-Whitney Test

The POWER Procedure
Wilcoxon-Mann-Whitney Test

The POWER Procedure
Wilcoxon-Mann-Whitney Test

Fixed Scenario Elements

Method O'Brien-Castelloe approximation

Number of Sides U

Group 1 Variable lidocaine

Group 2 Variable Mir+lido

Pooled Number of Bins 7

Alpha 0.05

Group 1 Weight 1

Group 2 Weight 1

NBins per Group 1000

Computed Power

Index
N

Total Power

1 100 0.651

2 250 0.939
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Output 77.10.2 Plot of Power versus Sample Size for Wilcoxon Power Analysis

The achieved power ranges from 0.651 to 0.939, increasing with sample size.
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Overview: PSS Application

SAS Power and Sample Size
The SAS Power and Sample Size application (PSS) is a desktop application that provides easy access to
power analysis and sample size determination techniques. The application is intended for students and
researchers as well as experienced SAS users and statisticians.

Figure 78.1 shows the graphical user interface. PSS relies on the SAS/STAT procedures POWER and
GLMPOWER for its computations.

Figure 78.1 PSS Application
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This section describes the statistical tasks that are available with the application as well as its principal
features.

Analyses

PSS provides power and sample size computations for a variety of statistical analyses. Included are t tests for
means; equivalence tests and confidence intervals for means and proportions; exact binomial, chi-square,
Fisher’s exact, and McNemar tests for proportions; correlation and regression (multiple and logistic); one-way
analysis of variance; linear models; tests of distribution; and rank tests for comparing survival curves.

Table 78.1 lists the analyses that are available.

Table 78.1 Available Analyses

Category Analysis

Means One-sample t test
Paired t test
Two-sample t test

Confidence intervals One proportion
One-sample means
Paired means
Two-sample means

Equivalence tests One proportion
One-sample means
Paired means
Two-sample means

Proportions One proportion
Two correlated proportions
Two independent proportions

Correlation and regression Pearson correlation coefficient
Logistic regression with a binary response
Multiple regression

Analysis of variance and linear models One-way ANOVA
General linear univariate models

Survival analysis Two-sample survival rank tests
Distribution tests Wilcoxon Mann-Whitney test for two distributions

Features

PSS provides multiple input parameter options, stores the results in a project format, displays power curves,
and produces narratives for the results. Narratives are descriptions of the input parameters and include a
statement about the computed power or sample size. The SAS log and SAS code are also available.

All analyses offer computation of power or sample size. Some analyses offer computation of sample size per
group as well as total sample size.
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Where appropriate, several alternate ways of entering values for certain parameters are offered. For example,
in the two-sample t test analysis, means can be entered for individual groups or as a difference. The null
mean difference can be specified as a default of zero or can be explicitly entered.

Information about existing analyses is stored in a project format. You can access each project to review the
results or to edit your input parameters and produce another analysis.

Getting Started: PSS Application

Overview
This section is intended to get you off to a quick start with PSS. More detailed information about using the
application is found in “How to Use: PSS Application” on page 6512 and in the example sections.

To start the application on a PC using the Windows operating system, select StartIProgramsISASISAS
Power and Sample Size 3.1 (or the latest release).

When you first use the application for a release, you are asked some configuration questions. For more
information see the section “Configuration” on page 6528.

As an initial step, you also must define a SAS connection. If you have Foundation SAS software installed on
the PC that you are using for PSS, this step can be done for you automatically. To define a connection or to
determine whether one has already been defined, see the section “SAS Connections” on page 6512.

The Basic Steps
Here are the basic steps that you follow to use PSS.

1. Start a new project by selecting FileINew on the menu bar or clicking the New icon on the toolbar.

2. In the New window, select the desired analysis type and click OK.

A project window for the analysis type appears with the Edit Properties page displayed. (The tabs on
the Edit Properties page and their content vary according to the analysis type.)

3. Click each tab to enter the relevant data for the analysis. (For more information about the types of data
to enter, see the example sections.)

4. After you have entered all the data, click the Calculate button.

5. After PSS calculates the results, the project window displays the View Results page with the Summary
Table tab displayed by default.

6. To view other results or to review the SAS code or the SAS log, click any of the tabs on the left side of
the View Results page.

7. To print any results page, select FileIPrint on the menu bar.

The remainder of this section takes you through a simple example.
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A Simple Example
Suppose you want to determine the power for a new marketing study. You want to compare car sales in the
southeastern region to the national average of 1.0 car per salesperson per day. You believe that the actual
average for the region is 1.6 cars per salesperson per day. You want to test if the mean for a single group is
larger than a specific value, so the one-sample t test is the appropriate analysis. The conjectured mean is 1.6
and the null mean is 1.0. You intend to use a significance level of 0.05 for the one-sided test. You want to
calculate power for two standard deviations, 0.5 and 0.75, and two sample sizes, 10 and 20 dealerships.

First, open a new project by selecting FileINew on the menu bar or clicking the New icon on the toolbar.
The New window appears. Then, select the appropriate analysis.

Figure 78.2 New Window
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For this example, the selected analysis is the One-sample t test in the Means section, as shown at the top of
Figure 78.2. Select the analysis from the list and click OK. The One-sample t test project window appears
with the Edit Properties page displayed, as shown in Figure 78.3.

Figure 78.3 Edit Properties Page

Enter a descriptive label of the project in the Project: field. For the example, change the description to
Regional car sales versus the national average. The description is used to identify the project
when you reopen it from the Open window.
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Select FileISave to save the description change. Note in Figure 78.3 that the title bar of the window contains
your project description after you have saved the change.

Properties of the project are displayed on several tabs. You can change from tab to tab by clicking a tab or by
clicking the Next tab or Previous tab buttons. To display help about the properties for a tab, click the Help
button at the bottom of the Edit Properties page.

Entering Parameter Values

First, click the Solve For tab and choose to calculate power or sample size. For this example, select the
Power option, as shown in Figure 78.3.

Next, you must provide values for two analysis options and four parameters. These parameters are set in
separate tabs on the Edit Properties page and are labeled Distribution, Hypothesis, Alpha, Mean, Standard
Deviation, and Sample Size.

Distribution
Click the Distribution tab to select a Normal or Lognormal distribution. For the example, you are using
means rather than mean ratios, so select Normal, as shown in Figure 78.4.

Figure 78.4 Distribution Tab

Hypothesis
Click the Hypothesis tab to select a one- or two-sided test. Because you are interested only in whether the
southeastern region produces higher daily car sales than the national average, select One-sided test, as shown
in Figure 78.5.
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Figure 78.5 Hypothesis Tab

There are three one-sided test options: One-sided test, Upper one-sided test, and Lower one-sided test.
The Upper one-sided test option would also be appropriate for this example.

Alpha
Click the Alpha tab to specify one or more significance levels. Enter 0.05, as shown in Figure 78.6.

Figure 78.6 Alpha Tab
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This value will be the default unless the default has been changed in the Preferences window. To set
preferences, select ToolsIPreferences on the menu bar. For more information about setting preferences,
see the section “Setting Preferences” on page 6515.

Mean
Click the Means tab to enter one or more means and null means. For the example, enter 1.6 in the Mean
table and 1.0 in the Null Mean table. Figure 78.7 shows the entered values.

Figure 78.7 Means Tab

Note that additional input rows are available if you want to enter additional sets of parameters. You can also
append and delete rows using the and buttons beneath the table. In addition, by selecting a row and
right-clicking, you can choose to insert and delete rows in the body of the table from a pop-up menu.

Standard Deviation
Click the Standard Deviation tab to enter standard deviations. You are interested in two standard deviations,
0.5 and 0.75. Enter them in the table, as shown in Figure 78.8.
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Figure 78.8 Standard Deviation Tab

Sample Size
You want to be able to sample between 10 and 20 dealerships. Click the Sample Size tab and enter these two
values, as shown in Figure 78.9.

Figure 78.9 Sample Size Tab
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Scenarios
The input values are combined into one or more scenarios. In this case, each of the two standard deviations is
combined with each of the two sample sizes for a total of four scenarios. Then power is computed for each
scenario. In this example, only a single value or setting is present for the mean, null mean, and alpha level, so
they are common to all scenarios.

Results Options

Click the Results tab to select results options including a Summary Table and a Power by Sample Size graph.

Figure 78.10 Results Tab

For this example, select both results check boxes: Create summary table and Create power by sample
size graph, as shown in Figure 78.10. These selections can also be set as preferences; see the section “Setting
Preferences” on page 6515.

Customizing the Power by Sample Size Graph
Click the Customize button beside the Create power by sample size graph check box to customize the
graph. The Customize Graph window contains two tabs: Axis Orientation and Value Ranges, as shown in
Figure 78.11.
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Figure 78.11 Customize Graph Window with Axis Orientation Tab

Click the Axis Orientation tab to select which quantity you would like to plot on the vertical axis. You can
choose to display the quantity solved for (either power or sample size) on the vertical axis or you can choose
to display power or sample size on the vertical axis with the other quantity appearing on the horizontal axis.
The default is Quantity solved for (or power) on the vertical axis, which is appropriate for this graph.

The summary table is created using the two sample sizes specified in the Sample Size table, 10 and 20. If you
want to create a graph that contains more than these two sample sizes, you can do so by customizing the
value ranges for the graph. Click the Value Ranges tab to set the axis range for sample sizes, as shown in
Figure 78.12.
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Figure 78.12 Customize Graph Window with Value Ranges Tab

Enter 5 for the minimum and 30 for the maximum. Also, select Interval between points in the drop-down
list and enter a value of 1. These values set the sample size axis to range from 5 to 30 in increments of 1. The
completed Value Ranges section of the window is shown in Figure 78.12.

When you solve for power, you can set a range for sample size values, but not for the powers; and vice versa
when you solve for sample size. That is, you cannot set the range of axis values for the quantity that you are
solving for.

Click OK to save the values that you have entered and return to the Edit Properties page.

Performing the Analysis

You have now specified all of the necessary input values. Click Calculate to perform the analysis, as shown
in Figure 78.13.

Figure 78.13 Calculate Button on the Edit Properties Page
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Alternatively, you could choose to save the information that you have entered by selecting FileISave from
the menu bar or clicking the Save toolbar icon, and perform the analysis at another time. No error checking
is done when you save the project.

You can close the project by selecting FileIClose on the menu bar or clicking the window close X in the
upper right corner of the project window. You can reopen a project by selecting FileIOpen on the menu bar
or clicking the Open toolbar icon.

For this example, click Calculate.

Viewing the Results

Results appear on the View Results page and are viewable in separate tabs. The tabs include Summary
Table, Graph, Narratives, SAS Log, and SAS Code (located on the left side of the View Results page).
The Summary Table and Graph tabs appear if you selected those options on the Results tab of the Edit
Properties page. The other tabs always appear.

Summary Table
Click the Summary Table tab to view the summary table.

Figure 78.14 Summary Table Tab with Fixed Scenario Elements and Computed Power Tables
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The Summary table consists of two subtables, as shown in Figure 78.14. The Fixed Scenario Elements

table includes the parameters or options that have a single value for the analysis. The Computed Power table
contains the input parameters that have been given more than one value, and it shows the computed quantity,
power.

Thus, the Computed Power table contains four rows for the four combinations of standard deviation and
sample size. From the table you can see that all four powers are high. The smallest value of power, 0.754, is
associated with the largest standard deviation and the smallest sample size. In other words, the probability of
rejecting the null hypothesis is greater than 75% in all four scenarios.

Power by Sample Size Graph
Click the Graph tab to view the power by sample size graph.

The power by sample size graph in Figure 78.15 contains one curve for each standard deviation. For a
standard deviation of 0.5 (the upper curve), increasing sample size above 10 does not lead to much increase
in power. If you are satisfied with a power of 0.75 or greater, 10 samples would be adequate for standard
deviations between 0.5 and 0.75.

Figure 78.15 Graph Tab with Power by Sample Size Graph
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Narratives
Click the Narratives tab to display a facility for creating narratives.

Narratives are descriptions of the values that compose each scenario and include a statement about the
computed power or sample size.

To create narratives, choose one or more scenarios in the table at the bottom of the tab. A narrative for each
selected scenario is displayed in the top portion of the tab. See Figure 78.16.

Figure 78.16 Narrative Tab
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For the example, select the first row in the table. The following narrative is displayed for the scenario with a
standard deviation of 0.5 and a sample size of 10:

For a one-sample t test of a normal mean with a one-sided significance level of 0.05 and null
mean 1, assuming a standard deviation of 0.5, a sample size of 10 has a power of 0.967 to detect
a mean of 1.6.

You can select several rows in the table. As you select each one, a corresponding narrative is created and
displayed in the top portion of the table. Selecting a second scenario (the third row) produces the following
output, where the narrative for the first row is followed by the narrative for the third row:

For a one-sample t test of a normal mean with a one-sided significance level of 0.05 and null
mean 1, assuming a standard deviation of 0.5, a sample size of 10 has a power of 0.967 to detect
a mean of 1.6.

For a one-sample t test of a normal mean with a one-sided significance level of 0.05 and null
mean 1, assuming a standard deviation of 0.75, a sample size of 10 has a power of 0.754 to
detect a mean of 1.6.

Other Results
Other results include the SAS log and the SAS code.

The SAS log that was produced when the Calculate button was last clicked appears on the SAS Log tab.

The SAS statements that produced the results appear on the SAS Code tab.

Printing Results
To print one or more results, select FileIPrint from the menu bar or click the Print toolbar icon. A window
is displayed that lists all available results, as shown in Figure 78.17. Select the results that you want to print
and click OK.
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Figure 78.17 Print Selection Window

Changing Properties

If you want to change some values of the properties and rerun the analysis, change to the Edit Properties
page and continue. The icons for selecting the Edit Properties and View Results pages are in the command
bar just below the project window title.

Closing the Project

When you are finished working with a project, close it by clicking the X in the upper right corner of the
project window or selecting FileIClose on the menu bar. If you have not saved the project, you will be
asked if you want to save it before closing.

Opening a Project

You can reopen existing projects using the Open window. Select FileIOpen on the menu bar or click the
Open toolbar icon.
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Figure 78.18 Open Window Containing the Analysis Created in the Example

As shown in Figure 78.18, the analysis that you just completed is listed in the table. The label that you
assigned to it, Regional car sales versus the national average, appears in the Project column
of the table. The table also contains the date that the analysis was last modified. If you do not see the project
that you are looking for, change the value of the Display projects by date box to All by selecting All from
the drop-down list, and click the Change display button.

You can sort the projects in the table by clicking the header of the desired column. The sort direction is
indicated by arrows displayed in the column header.

Select the project that you want to open and click OK. You can also double-click the project entry to open it.

Changing Values and Rerunning the Analysis

After viewing the graph, you might want to re-create the graph with a different range for sample sizes. On
the Results tab of the Edit Properties page, click the Customize button for the power by sample size graph.
The Customize Graph window is displayed.

On the Value Ranges tab of the window, change the Maximum value in the Sample Size table from 30 to 20.
Click OK.

Rerun the analysis by clicking Calculate. The View Results page is displayed again and the graph now has
the new maximum value for the sample size axis.
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How to Use: PSS Application

Overview
The PSS application is an application that resides on your desktop. It requires a connection to SAS software
either on your desktop machine or a remote machine. You can set default values for several parameters and
options as preferences. More detail on creating and editing projects is provided. Projects can be imported
and exported.

SAS Connections
Connections to SAS servers are defined in the Preferences window. To access the Preferences window, select
ToolsIPreferences on the menu bar.

Click the SAS Connection tab to select or define a connection to a SAS server. A connection to a SAS server
is required in order to calculate results. The server can be on your local (desktop) machine or on a remote
machine.

You can define several SAS connections and choose the one you want to use. To select a previously defined
connection, choose it from the Connection list on the SAS Connection tab; see Figure 78.19.

Figure 78.19 SAS Connection Tab
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To define a SAS connection, click the Define connection button. The Connection List window appears, as
shown in Figure 78.20. To create a new connection, click Add. To edit an existing connection, select it in the
Connection List and click Edit.

Figure 78.20 Connection List

Defining a SAS Connection

After you click the Add or Edit button, the Define SAS Connection window appears, as shown in Figure 78.21.
If you clicked Edit, the previously defined information is available for editing.
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Figure 78.21 Define Connection Window

Enter a descriptive label for the connection. The label is used to distinguish among the connections in the
connections list.

Then, select Yes or No to specify whether the SAS connection is to the local machine (that is, the one on
which PSS is running) or to a remote machine, respectively.

Defining a Local Connection
To define a connection to the local machine, enter the full path name of (or browse for) the SAS executable
file (sas.exe on Microsoft Windows).

Test the SAS connection by clicking the Test SAS Connection button.
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Defining a Remote Connection
To define a connection to a remote machine, select either the UNIX or Windows option to indicate that the
remote SAS server is on a machine running the UNIX or Microsoft Windows operating systems, respectively.
Then, specify the machine name and port number that the SAS/Connect spawner is using on the remote
machine. Contact the SAS server administrator for this information.

If the remote machine is running Microsoft Windows, select the User id and password are required if
authentication is required to access the SAS server (that is, if the SAS -security option is used). By default,
authentication is required for SAS servers running on UNIX operating systems.

Test the SAS connection by clicking the Test SAS Connection button.

Additional Settings
Click the Settings button on the Define SAS Connection window to access some additional settings for a
remote connection to a SAS server. For the most part these settings are prompts that PSS expects to receive
from the SAS/CONNECT spawner on the remote machine, as shown in Figure 78.22.

If the remote SAS server is on a UNIX machine, you must specify the full pathname of the SAS command.
Contact the SAS server administrator for this information.

Figure 78.22 Connection Settings Window

Setting Preferences
In the Preferences window you can set default values for options that are used by all analyses.

To access the Preferences window, select ToolsIPreferences on the menu bar. Figure 78.23 shows the
Preferences window.
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Figure 78.23 Preferences Window

Preference values are used as the defaults for each newly opened project (that is, those that are opened from
the New window). For a specific project, each of these default values can be overridden on the Edit Properties
page.

Changes in preferences do not change the state of an existing analysis (that is, one that is accessed from the
Open window).

Selecting the Quantity to Solve For

Click the Solve For tab to select Power or Sample Size as the default value to be solved for; see Figure 78.23.
For confidence interval analyses, selecting Power is equivalent to selecting Prob(Width).

For analyses that offer both Sample size per group and Total sample size, the Sample size option on this
page corresponds to total sample size.
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Setting Alphas

Click the Alpha tab to enter one or more values for alpha. Alpha is the significance level (false positive
probability). For confidence interval analyses, alpha values are transformed into confidence levels by (1 –
alpha). For example, an alpha of 0.05 would represent a confidence level of 0.95.

To set default values of alpha, enter one or more values in the Alpha data entry table. See Figure 78.24. It is
not necessary to have any default values for alpha. Add more rows to the table as needed using the button
at the bottom of the table.

Figure 78.24 Alpha Preference Tab

Setting Powers

Click the Power tab to enter one or more values for power. It is not necessary to have any default values for
power. For confidence interval analyses, power values are treated as prob(width) values.

To set default values of power, enter one or more values in the Power data entry table; see Figure 78.25.



6518 F Chapter 78: The Power and Sample Size Application

Figure 78.25 Power Preference Tab

Setting Results Options

Click the Results tab to make default selections for the summary table and the power by sample size graph
options; see Figure 78.26.
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Figure 78.26 Results Options Preferences Tab

The summary table consists of the input parameter values and the calculated quantity (power or sample size).
Select the Create summary table check box to create the table by default.

To request that an analysis create a power by sample size graph by default, select the Create power by
sample size graph check box.

Creating and Editing PSS Projects
A PSS project is an instance of an analysis. The first decision in using PSS is to choose the appropriate test
or design. Select the FileINew on the menu bar or click the New icon on the toolbar. The New window
appears with a list of the available analyses. Select the type of analysis that you want from the list and click
OK.

When the project is first opened, the Edit Properties page is displayed. It is described in the section “Editing
Properties” on page 6520.

After the properties have been specified and the analysis is performed, the View Results page is displayed.
See the section “Viewing the Results” on page 6524.

A project that has been saved and closed can be reopened from the Open window. Select FileIOpen on the
menu bar or click the Open icon on the toolbar.
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Editing Properties

The Edit Properties page consists of several analysis options and input parameters that are relevant to the
particular analysis. These options and parameters are organized on several tabs, as shown in Figure 78.27.

Figure 78.27 Edit Properties Page
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The Edit Properties page contains various controls by which you can enter values or select choices. In
addition to the usual data entry controls such as text fields and check boxes, several specialized controls are
present: data entry tables and the Alternate Forms control. More detailed descriptions follow.

Using Data Tables
Data entry tables are composed of data entry fields for one or more rows and columns. Figure 78.28 shows a
two-row, two-column table.

Figure 78.28 Two-Column Data Entry Table with Controls

Type an appropriate value in each field. It is not necessary to type data in all rows or to delete empty rows.
However, if a table has more than one column, the cells of a row must be completely filled or completely
blank. Rows with values in some but not all cells are not allowed.

To append more rows, click the button beneath the table. To delete the last row of the table, click the
button.

Also, you can display a pop-up menu to perform additional actions such as inserting and deleting rows. First,
select the row to insert before or delete, then right-click to display the pop-menu and select the desired action.

Using Alternate Forms
For some input parameters, there are several ways in which data may be entered. For example, in the
two-sample t test analysis, group means can be entered as either individual means or a difference between
means.

The alternate forms are displayed in a drop-down list with an adjacent button, as shown in Figure 78.29.
The button enables you to cycle through the alternatives, displaying each one in turn. To see what forms
are available, you can open the drop-down list and select the one you want or you can click the button
until the form that you want is displayed.
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Figure 78.29 Select a form Drop-Down List and Button

The alternate form last used for an analysis is saved and displayed as the default when a new instance of the
analysis is opened.

Customizing Graphs
The Edit Properties page for all analyses contains a Results tab. You can choose to create a graph, and you
can optionally choose to customize the graph by clicking the Customize button that is beside the Create
power and sample size graph choice.

As shown in Figure 78.30, the Customize Graph window consists of an Axis Orientation tab and a Value
Ranges tab. Use the Axis Orientation options to specify which axes you want used for power and for sample
size. Use the Value Ranges settings to specify the axis range for the non-target quantity (that is, the power
axis if you are solving for sample size or the sample size axis if you are solving for power).
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Figure 78.30 Customize Graph Window

When specifying a value range, you can specify a minimum value and a maximum value. Also, you can
select either the Number of points or the Interval between points choice for the axis and specify a
value. All of these values are optional; specify only the ones you want.

Scenarios
A scenario is one instance of a complete set of values for an analysis. For example, if two alpha values and
two total sample size values are specified with all other input parameters taking only a single value, there
would be four scenarios—the four combinations of two alphas and two sample sizes.

Performing the Analysis
To perform the analysis, click Calculate at the lower right of the Edit Properties page. The input parameters
are checked for validity, and the analysis is performed. The View Results page is then displayed.
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Viewing the Results

The results appear in separate tabs on the View Results Page. These tabs include Summary Table, Graph,
Narratives, SAS Log, and SAS Code.

Viewing the Summary Table
Click the Summary Table tab to view the summary table. It consists of two subtables, as shown in
Figure 78.31. The Fixed Scenario Elements table includes the options and parameter values that are
constant for the analysis. The Computed Power table includes the calculated power or sample size values
and the values for input parameters that have multiple values specified for the analysis.

Figure 78.31 View Results Page with Summary Table
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Creating Narratives
Click the Narratives tab to display a facility to create narratives. Narratives are descriptions of the input
parameter values and calculated quantities in sentence or paragraph form. Each narrative corresponds to one
calculated quantity value.

The Narratives tab is divided into a narrative selector panel and a narrative display panel. To create a
narrative, select the row in the narrative selector panel that corresponds to it. You can select as many rows as
you want. See Figure 78.32.

Figure 78.32 Narrative Selector and Display

The narrative selector table often contains columns whose values do not vary. For example, in Figure 78.32,
the Sides, NullMean, Alpha, and Mean columns contain values that do not vary. You can hide these columns
by selecting the Hide columns with constant input values check box.

Viewing the SAS Log and Code
Click the SAS Code tab to view the SAS statements that are used to generate the analysis results. Click the
SAS Log tab to view the SAS log that corresponds to the analysis.
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The SAS code differs slightly from the statements in the SAS log. Statements that are used to place the results
in the location maintained by the application are not included. This is done to prevent you from overwriting
the results stored by the application if you run the SAS code outside of the application.

Printing Results
To print one or more results, click the Print icon on the toolbar or select FileIPrint on the menu bar. The
Select Results to Print window is displayed. You can choose to print one or more of the results by selecting
the corresponding options here.

Saving the Project

To save a project, click the Save toolbar icon or select FileISave from the menu bar. Projects can be saved
even if some of the information is invalid. Error checking is performed when the Calculate button is clicked.

Closing the Project

To close a project, click the X in the upper right corner of the project window or select FileIClose from the
menu bar.

Importing and Exporting Projects
PSS projects can be imported from the same machine or a different machine. Also, the active project (the
project that is open and on top of any other open projects) can be exported.

Importing Projects

A PSS project that was created on another machine or by another user can be imported and used. Also,
importing projects is the recommended way of moving existing PSS projects that were created with PSS
release 2.0 (a Web application) to PSS release 3.1 (a desktop application).

PSS files are stored in a folder entitled pss. The pss folder contains a project.xml file and individual folders
for each project. See Figure 78.33.
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Figure 78.33 PSS Directory Structure

If PSS files are on another machine, they must first be copied to a temporary location on the desktop machine
that is running PSS. The entire pss folder should be copied.

To import projects, select FileIImport from the menu bar. Then, specify the full pathname of the pss folder.

Figure 78.34 Import Projects Window
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To import PSS 2.0 files, you need to find the pss folder. The easiest way to do this is to search for the
project.xml file. If you find several files with this name, you need to decide which one or more to import.

Exporting the Active Project

If you want to send a PSS project to someone, you can export the active project. The active project is the one
that is open and that has focus (is displayed on top of any other open projects). Select FileIExport active
project and specify a temporary directory to hold the exported project.

The recipient must import the project using PSS.

Details: PSS Application

Software Requirements
PSS is available in SAS/STAT 13.2 or later for the following platforms: Microsoft Windows 7 and 8.

Two configurations are available for SAS connections: local and remote. With the local configuration, PSS
and SAS must reside on the same machine. With the remote configuration, PSS and SAS can reside on
different machines. SAS connections are defined and selected on the SAS Connection tab on the Preferences
window. More information about SAS connections is found in the section “SAS Connections” on page 6512.

For both configurations, Base SAS and SAS/STAT software must be installed and SAS/GRAPH software is
recommended.

For the remote configuration, SAS/CONNECT and SAS/IntrNet software must also be installed. For more
information about configuring the remote SAS server, click HelpIContents on the menu bar and then click
Configuring a Remote SAS Server under Special Topics in the table of contents.

Installation
SAS Power and Sample Size is installed separately from the SAS/STAT product. Contact your SAS site
representative to have the application installed.

SAS Power and Sample Size is installed using the SAS Software Deployment Wizard. It is listed as an
available product with, but separate from, Foundation SAS which contains the SAS/STAT and SAS/GRAPH
products that are required for using the application.

Configuration
When you first run SAS Power and Sample Size 3.1 (PSS), you are asked to provide configuration information.

First, you are asked for the name of a directory to contain the your power and sample size projects. A folder
named pss is created in the specified directory, and projects are stored in the pss folder. This directory cannot
be the same as the one used by PSS 2.0. If it is, PSS requires that another folder name be provided.
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Then, if the appropriate release of the SAS System is available on the desktop machine, you are asked whether
a connection should be automatically created to it. If you respond No, then PSS informs you that a connection
to the SAS server is necessary and asks if you want to select one now or later. A connection to a SAS server
is not necessary to use the application until the Calculate button on the Edit Properties page of a project is
clicked. More information about connections is available in the section “Setting Preferences” on page 6515.

Then, PSS displays a wizard to help you import existing PSS projects from either a previous release (PSS 2.0)
or the current one (PSS 3.1). More information is available in the section “Importing Projects” on page 6526.

Example: Two-Sample t Test

Overview
The one-sample t test compares the mean of a sample to a given value. The two-sample t test compares
the means of two samples. The paired t test compares the mean of the differences in the observations to a
given number. PSS provides power and sample size computations for all of these types of t tests. For more
information about power and sample size analysis for t tests, see Chapter 77, “The POWER Procedure.”

The two-sample t test tests for differences or ratios between means for two groups. The groups are assumed
to be independent. This example describes three examples using the two-sample t test: for equal variances,
for unequal variances, and for mean ratios.

Test of Two Independent Means for Equal Variances
Suppose you are interested in testing whether an experimental drug produces a lower systolic blood pressure
than a placebo does. Will 25 subjects per treatment group yield a satisfactory power for this test? From
previous work, you expect that the blood pressure is 132 for the control group and 120 for the drug treatment
group and that the standard deviation is 15 for both groups. You want to use a one-sided test with a
significance level of 0.05. Because there are two independent groups and you are assuming that blood
pressure is normally distributed, the two-sample t test is an appropriate analysis.

Start by creating a new project. Select FileINew. In the New window, select Two-sample t test from the
list. The Two-Sample t test project window appears, with the Edit Properties page displayed.

Editing Properties

On this page enter a name to describe the project and enter project properties. Click each tab on the Edit
Properties page to enter the desired properties. You can also change tabs by clicking the Next tab or Previous
tab buttons. See Figure 78.3.
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Figure 78.35 Two-Sample t Test

Project Description
The description is used to identify this particular project in the Open and Delete windows. Type a description
for your project in the Project: text box.

For this example, change the description to Experimental blood pressure drug with two groups,
as shown in Figure 78.35.

Solve For
For the two-sample t test analysis, you can choose to solve for power, sample size per group, or total sample
size. Specify the desired quantity type on the Solve For tab.

Click the Solve For tab and select the Power option as shown in Figure 78.35. For information about solving
for sample size, see the section “Solving for Sample Size” on page 6550.

Distribution
Click the Distribution tab to select a distribution option that specifies the underlying distribution for the test
statistic, as shown in Figure 78.36.
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Figure 78.36 Distribution Tab

For this example, you are interested in means rather than mean ratios, so select the Normal option.

Hypothesis
Click the Hypothesis tab to select the type of test; see Figure 78.37.

Figure 78.37 Hypothesis Tab

You can choose either a one- or two-sided test. If you do not know the direction of the effect (that is, whether
it is positive or negative), the two-sided test is appropriate. If you know the effect’s direction, the one-sided
test is appropriate. For the one-sided test, the alternative hypothesis is assumed to be in the same direction
as the effect. If you specify a one-sided test and the effect is in the unexpected direction, the results of the
analysis are invalid.
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The One-sided test option assumes that you know the correct direction of the test. Select the Lower
one-sided test and Upper one-sided test options to explicitly indicate the direction of the one-sided test.

Because you are interested only in whether the experimental drug lowers blood pressure, select the One-sided
test option on the Hypothesis tab.

Test
Click the Test tab to select either the pooled t test or the Satterthwaite t test.

Figure 78.38 Test Tab

With the independent variances that the example uses, select Pooled t test option. The Satterthwaite t test is
used with unequal variances; it is available only with the normal distribution.

Alpha
Click the Alpha tab to specify one or more significance levels, as shown in Figure 78.39.
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Figure 78.39 Alpha Tab

Alpha is the significance level (that is, the probability of falsely rejecting the null hypothesis). If you
frequently use the same values for alpha, set them as defaults in the Preferences window. See the section
“Setting Preferences” on page 6515 for more information about setting preferences.

Type the desired significance level of 0.05 in the first cell of the Alpha table (if it is not already the default
value).

Means
Click the Means tab to select one of four possible ways to enter the means and the null mean difference, as
shown in Figure 78.40.
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Figure 78.40 Means Tab

Select one of the following forms from the Select A Form list. The four available forms are:

Difference between means
Enter the difference between the group means. The null mean difference is assumed to be
0.

Group means
Enter the means for each group. The null mean difference is assumed to be 0. The
difference is formed by subtracting the mean for group 1 from the mean for group 2.

Difference between means, Null difference
Enter the difference between the group means and a null mean difference.

Group means, Null difference
Enter the means for each group and a null mean difference. The difference is formed by
subtracting the mean for group 1 from the mean for group 2.

For this analysis, you can enter the means for the two groups either individually or as a difference. If your
null mean difference is not zero, enter that value in the Null Mean table. (The Null Mean table is displayed
only for the Group means, Null Difference and Difference between means, Null difference forms.)

For this example, a null mean difference of 0 is reasonable, so select the Group means form from the list, as
shown in Figure 78.40. Enter the control mean of 132 in the first row of the first column and the experimental
mean of 120 in the first row of the second column.
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Standard Deviation
Click the Standard Deviation tab to enter the standard deviation for the two groups. It is assumed to be
equal for both groups.

For the example, enter a single value of 15, as shown in Figure 78.41.

Figure 78.41 Standard Deviation Tab

Sample Size
Click the Sample Size tab to select one of three possible ways to enter the sample sizes, as shown in
Figure 78.40.

Select one of the following forms from the Select A Form list:

Sample size per group
Enter the sample size for one of the two groups. The group sizes are assumed to be equal.

Group sample sizes
Enter the sample size for each of the two groups. The group sizes can be equal or unequal.

Total N, Group weights
Enter the total sample size for the two groups and the relative sample sizes for each group.
For more information about using relative sample sizes, see the section “Using Unequal
Group Sizes” on page 6551.

Examine the alternatives by clicking the Select a form down arrow. For this example, select the Sample size
per group form. You want to examine a curve of powers in the power by sample size graph, so enter the
values 20, 25, and 30 in the Sample Size table, as shown in Figure 78.42. If you need to add more rows to
the table, add them by clicking the button beneath the table.
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Figure 78.42 Sample Size Tab

Summary of Properties
Table 78.2 contains the values of the input parameters for the example.

Table 78.2 Summary of Input Properties

Parameter Value

Solve for Power
Distribution Normal
Hypothesis One-sided test
Test Pooled t test
Alpha 0.05
Means form Group means
Means 132, 120
Standard deviation 15
Sample size form Sample size per group
Sample size 20, 25, 30

Results
Click the Results tab to request desired results. Summary table and power by sample size graph options are
available.

For the example, select the Create summary table and Create power by sample size graph check boxes.

Click Calculate to perform the analysis. If there are no errors in the input values, the View Results page
appears. If there are errors in the input parameter values, you are prompted to correct them.
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Viewing Results

The results are listed on separate tabs on the View Results page. Click the tab of each result that you want to
view.

Summary Table
Click the Summary Table tab to view a table that includes the values of the input parameters and the
computed quantity (in this example, power). See Figure 78.43.

Figure 78.43 Results Page with Summary Table

The table consists of two subtables: the Fixed Scenario Elements table that contains the input parameters
that have only one value for the analysis, and the Computed Power table that contains the input parameters
that have more than one value for the analysis and the corresponding power. Only the N per group parameter
appears in the Computed Power table; all of the other input parameters have a single value. The computed
power for a sample size per group of 25 is 0.874. Thus, you have a probability of 0.87 that the study will find
the expected result if the assumptions and conjectured values are correct.
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Power by Sample Size Graph
Click the Graph tab to view a power by sample size graph that displays power on the vertical axis and
sample size per group on the horizontal axis. See Figure 78.44.

Figure 78.44 Power by Sample Size Graph

The range of values for the horizontal axis is 20 to 30, which were the smallest and largest values, respectively,
that you entered on the Sample Size tab. You can customize the graph by specifying the values for the sample
size axis (see the section “Customizing Graphs” on page 6522).

Narratives
Click the Narratives tab to create and display a sentence- or paragraph-length text summary of the input
parameter values and the computed quantity for combinations of the input parameter values; see Figure 78.45.
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Figure 78.45 Narrative Selector and Display

To create a narrative, selected the desired scenario (row) in the narrative selector table at the bottom of the
Narratives tab.

In this example, select the narrative for the sample size per group of 20, which yields a power of 0.799. The
following text summary is displayed:

For a two-sample pooled t test of a normal mean difference with a one-sided

significance level of 0.05, assuming a common standard deviation of

15, a sample size of 20 per group has a power of 0.799 to detect a

difference between the means 132 and 120.

To create other narratives, select the desired rows in the narrative selector table. If you also select the second
row for the sample size of 25, another text summary is displayed below the first one:

For a two-sample pooled t test of a normal mean difference with a one-sided

significance level of 0.05, assuming a common standard deviation of

15, a sample size of 20 per group has a power of 0.799 to detect a

difference between the means 132 and 120.
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For a two-sample pooled t test of a normal mean difference with a one-sided

significance level of 0.05, assuming a common standard deviation of

15, a sample size of 25 per group has a power of 0.874 to detect a

difference between the means 132 and 120.

To change some values of the analysis and rerun it, select the Edit Properties page, change the desired
properties, and click the Calculate button again.

Test of Two Independent Means for Unequal Variances
In the preceding example, you assumed that the population standard deviations were equal. If you believe
that the population standard deviations are not equal, use the same two-sample t test analysis as with the
preceding example, but change the test option and enter group standard deviations.

You can use the previous example to demonstrate this test. If the project is not already open, open it by
selecting FileIOpen on the menu bar, and then selecting the project that you have been using.

Make a copy of the project by selecting FileISave As. Enter a different project description, Experimental
blood pressure drug with two groups for unequal variances. Click OK.

The copy of the project is opened, and the current project is closed.

Editing Properties

Test
On the Test tab of the copied project, change the test to Satterthwaite t test, as shown in Figure 78.46.

Figure 78.46 Satterthwaite t Test Option

Specifying Group Standard Deviations
Click the Standard Deviation tab and enter the group standard deviations of 12 and 15 on a single row, as
shown in Figure 78.47.
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Figure 78.47 Group Standard Deviations

Summary of Input Parameters
Table 78.3 contains the values of the input parameters for the example.

Table 78.3 Summary of Input Parameters

Parameter Value

Distribution Normal
Hypothesis One-sided test
Test Satterthwaite t test
Alpha 0.05
Means form Group means
Means 132, 120
Standard deviation 12, 15
Sample size form Sample size per group
Sample size 20, 25, 30

Click Calculate to run the analysis.

Viewing Results

The power for a sample size per group of 25 is 0.924, as shown in Figure 78.48. Notice that the actual alpha
is 0.0499. This is because the Satterthwaite t test is (slightly) biased.
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Figure 78.48 Satterthwaite Test Results

If you modified the previous example, when you select the Narratives tab, the following message is displayed:

Previously selected narratives have been cleared because one or more input
parameter values have changed.



Test of Mean Ratios F 6543

In the previous analysis, you created narratives for two scenarios. Because this analysis uses group standard
deviations, those selected narratives were cleared. The message would also have appeared if you had changed
the number of scenarios.

Use the narrative selector table to create other narratives.

Test of Mean Ratios
Instead of comparing means for a control and drug treatment group, you might want to investigate whether
the blood pressure of the treatment group is lowered by a given percentage of the control group, say 10
percent. That is, you expect the ratio of the treatment group to the control group to be 90% or less.

PSS provides a two-sample t test of a mean ratio when the data are lognormally distributed.

For mean ratios, the coefficient of variation (CV) is used instead of standard deviation. In this example, you
can expect the CV to be between 0.5 and 0.6. You also want to compare an equally weighted sampling of
groups with an overweighted sampling in which the control group contains twice as many subjects as the
treatment group: 50 and 25, respectively.

Make a copy of the project by selecting FileISave As. Enter a different project description, Percent
improvement with blood pressure drug.

The copy of the project is opened.

Editing Properties

Several of the input parameters for the test of mean ratios differ from the ones described in the section “Test
of Two Independent Means for Equal Variances” on page 6529. Mean ratios and coefficients of variation are
used instead of mean differences and standard deviations. These two parameters are discussed in detail in
this section. For the input parameters and options that have been discussed previously in this example, only
the values for this example are given.

Solve For Tab
Click the Solve For tab to select the Power option as the quantity to be solved for, as shown in Figure 78.49.



6544 F Chapter 78: The Power and Sample Size Application

Figure 78.49 Project Description, Solve for Tab

Distribution
You are interested in mean ratios rather than means, so select the Lognormal option on the Distribution tab,
as shown in Figure 78.50.

Figure 78.50 Distribution Tab with Lognormal Option

Hypothesis and Alpha
Click the Hypothesis tab and select the One-sided test option.

Click the Alpha tab and type 0.05 as the significance level in the first cell of the table, if it is not already
there.
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Means
Click the Means tab to select the input form for entering mean ratios. There are four alternate forms for
entering means or mean ratios:

Mean ratio
Enter the ratio of the two group means—that is, the treatment mean divided by the
reference mean. The null ratio is assumed to be 1.

Group means
Enter the means for each group. The ratio of the means is formed by dividing the mean
for group 2 by the mean for group 1. The null ratio is assumed to be 1.

Mean ratio, Null ratio
Enter the ratio of the two group means—that is, the treatment mean divided by the
reference mean. Enter the null ratio.

Group means, Null ratio
Enter the means for each group. The ratio of the means is formed by dividing the mean
for group 2 by the mean for group 1. Enter the null ratio.

As shown in Figure 78.51, select the Mean ratio form which uses a default null ratio of 1. Enter a single
mean ratio value of 0.9.

Figure 78.51 Means Tab with Mean Ration Form and Values
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Coefficient of Variation
On the Coefficient of Variation tab, enter the coefficients of variation. They are assumed to be equal for the
two groups.

For this example, enter 0.5 and 0.6, as shown in Figure 78.52.

Figure 78.52 Coefficient of Variation Tab

Sample Size
On the Sample Size tab, select the Group sample sizes form and enter two sets of values: 25 and 25 in the
first row and 25 and 50 in the second row, as shown in Figure 78.53.

Figure 78.53 Sample Sizes
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Summary of Input Parameters
Table 78.4 contains the values of the input parameters for the example.

Table 78.4 Summary of Input Parameters

Parameter Value

Hypothesis One-sided test
Distribution Lognormal
Alpha 0.05
Means form Mean ratio
Mean ratio 0.9
Coefficients of variation 0.5, 0.6
Sample size form Group sample sizes
Sample Size (25, 25), (25, 50)

Results
On the Results tab, select the Create summary table and Create power by sample size graph check
boxes.

Click Calculate to perform the analysis.

In this case, the following message is displayed:

The power by sample size graph is not available when specifying sample
sizes for two groups.

If you want a power by sample size graph, you can choose to plot total sample size instead by using the
Total N, Group weights sample size form on the Sample Size tab. For more information about using
this input form, see the section “Using Unequal Group Sizes” on page 6551.

Viewing Results

The first thing that you notice from the summary table in Figure 78.54 is that the calculated powers are quite
low—they range from 0.163 to 0.229. You have less than a 25% probability of detecting the difference that
you are looking for. Clearly, this set of parameter values leads to insufficient power. To increase power, you
might choose a larger sample size or a larger alpha.
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Figure 78.54 Summary Table

You can also see that oversampling the control group improves power slightly, 0.229 versus 0.193 for the
coefficient of variation of 0.5. However, this is a marginal increase that is probably not worth the added
expense.

For the example, use larger sample sizes with equal cell sizes. Return to the Edit Properties page by clicking
the Edit Properties icon near the top of the window.

Then, on the Sample size tab, change to the Sample size per group form. Specify sample sizes of 50, 100,
150, and 200, as shown in Figure 78.55.
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Figure 78.55 Modified Sample Size Values

Table 78.5 contains the modified values of the input parameters for the example.

Table 78.5 Modified Summary of Input Parameters

Parameter Value

Sample size form Sample size per group
Sample size 50, 100, 150, 200

Rerun the analysis by clicking Calculate.

Figure 78.56 displays the summary table. The largest sample size of 200 (per group) yields a power of 0.72
for a coefficient of variation of 0.5, and 0.599 for one of 0.6. With a total of 400 subjects, you still have a
30% to 40% probability of not detecting the effect even if it exists.
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Figure 78.56 Summary Table for Modified Sample Sizes

Additional Topics

Solving for Sample Size

Several types of analysis enable you to solve for either total sample size or sample size per group. The sample
size per group choice assumes equal group sizes. When solving for total sample size, the group sizes can be
equal or unequal. Select the desired quantity on the Solve For tab. An example of these options is shown in
Figure 78.57.
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Figure 78.57 Solve For Tab with Sample Size Selected

For either of the two sample size options, you must specify one or more values for power on the Power tab.
If you frequently use the same values for power, set them as the default in the Preferences window, which is
accessed by ToolsIPreferences. Changing preferences affects only projects that you create after the change;
existing projects are not affected.

If you select total sample size, you must specify whether the group sizes are equal or unequal. Select the
appropriate option on the Sample Size tab. For unequal group sizes, you must specify the relative sample
sizes for the two groups. For information about providing relative sample sizes, see the section “Using
Unequal Group Sizes” on page 6551.

Using Unequal Group Sizes

When solving for either power or total sample size, you might have unequal group sizes. If so, you must
provide relative sample sizes for the groups. Weights must be greater than 0 but do not have to sum to 1.

Select the Total N, Group weights form on the Sample Size tab. Enter total sample sizes of 30 and 60 in
the Total N table. Select the Unequal group sizes option and click Enter Relative Sample Sizes, as seen
in Figure 78.58.
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Figure 78.58 Sample Size Tab with Group Weights Form

Figure 78.59 displays the window in which you can enter relative sample sizes. As an example, enter 2 for
the first group and 1 for the second. In this case, you are sampling the drug treatment group twice as often as
the control group.

Figure 78.59 Relative Sample Sizes Window
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The weights control how the total sample size is divided between the two groups. In the example, the sample
size for groups 1 and 2 is 20 and 10, respectively, for a total sample size of 30.

Click OK to save the values and return to the Edit Properties page.

Example: Analysis of Variance

Overview
PSS offers power and sample size calculations for analysis of variance in two tasks: one-way ANOVA and
general linear univariate models. Optional contrasts are available in both tasks.

In the one-way ANOVA task, you can solve for sample size per group as well as total sample size. The
contrast facility for the one-way ANOVA task enables you to select orthogonal polynomials as well as
to specify contrast coefficients. For more information about power and sample size analysis for one-way
ANOVA, see Chapter 77, “The POWER Procedure.”

In the general linear univariate models task, you specify linear models for a single dependent variable. Type III
tests and contrasts of fixed effects are included, and the model can include covariates. For more information
about power and sample size analysis for linear univariate models, see Chapter 47, “The GLMPOWER
Procedure.”

The Example
Suppose you are interested in testing how two experimental drugs affect systolic blood pressure relative to a
standard drug. You want to include both men and women in the study. You have a two-factor design: a drug
factor with three levels and a gender factor with two levels. You choose a main-effects-only model because
you do not expect a drug by gender interaction. You want to calculate the sample size that will produce a
power of 0.9 using a significance level of 0.05. You believe that the error standard deviation is between 5 and
7 mm pressure. This is a two-way analysis of variance, so the general linear univariate models task is the
appropriate one.

Editing Properties

Start by opening the New window (FileINew). In the Analysis of Variance and Linear models section of
the New window, select General linear univariate models. The General univariate linear models project
appears, with the Edit Properties page displayed.

Project Description
For the example, change the project description to Three blood pressure drugs and gender.

Solve For
Click the Solve For tab and select the Sample size option.
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Variables
Click the Variables tab to enter the names of the factors in the design. Click the Add button. The Factor
Definition window appears, as shown in Figure 78.60.

Figure 78.60 Factor Definition Window

Enter the name for the first factor, Drug, and enter the number of factor levels in the Number of levels: list
box. There are three levels for this factor. Optionally, you can provide a label for each factor level. This
label is used to identify factor levels on other tabs of the Edit Properties page. For this example enter the
labels Experimental 1, Experimental 2, and Standard for the three levels of the Drug factor. Click
OK when you are finished.

Click the Add button again and repeat the process for the second factor, Gender with two levels and labels
Female and Male.

Factors can contain blanks and other special characters. Do not use an asterisk (*) because a factor name
with an asterisk might be confused with an interaction effect. Factor names can be any length, but they must
be distinct from one another in the first 32 characters.

On the Variables tab, you can also specify the name of the dependent variable; in this example,
Blood pressure is used.
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The completed Variables tab is shown in Figure 78.61.

Figure 78.61 Variables Tab with Factors and Number of Levels

Model
Click the Model tab, then choose from three model options:

Main effects
Only the main effects are included in the model.

Main effects and all interactions
The main effects and all possible interactions are included in the model.

Custom model
Selected effects are included in the model. The effects are selected in a model builder that
is displayed when this model is selected. For more information about specifying a custom
model, see the section “Specifying a Custom Model” on page 6566.

For this example, choose the default Main effects model, as shown in Figure 78.62.
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Figure 78.62 Model Tab with Main Effects Selected

Alpha
Click the Alpha tab to specify one or more significance levels. For the example, specify a single significance
level of 0.05.

Alpha is the significance level (that is, the probability of falsely rejecting the null hypothesis). If you frequently
use the same values for alpha, set them as the defaults in the Preferences window (ToolsIPreferences).

Means
Click the Means tab to enter projected cell means for each cell of the design. The completed means for the
example are shown in Figure 78.63.

Figure 78.63 Means Tab with Cell Means
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Standard Deviation
Click the Standard Deviation tab to specify one or more conjectured error standard deviations. The standard
deviation is the same as the root mean squared error. For this example, enter two standard deviations, 5 and 7,
as shown in Figure 78.64.

Figure 78.64 Standard Deviations Tab

Relative Sample Size
Click the Sample Size tab to select whether cell sample sizes are equal or unequal.

Figure 78.65 Sample Size Tab with Equal Cell Sample Sizes

For the example, select the Equal cell sizes option, as shown in Figure 78.65.
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When solving for sample size, it is necessary to specify whether the cell sample sizes are equal or unequal.
If cell sizes are unequal, relative sample size weights must also be specified. For more information about
providing sample size weights, see the section “Using Unequal Cell Sizes” on page 6563.

Power
Click the Power tab to specify one or more powers. For this example, enter a single power of 0.9, as shown
in Figure 78.66.

Figure 78.66 Power Tab

Summary of Input Parameters
Table 78.6 contains the values of the input parameters for the example.

Table 78.6 Summary of Input Parameters

Parameter Value

Model Main effects
Alpha 0.05
Means See Table 78.7
Standard deviation 5, 7
Relative sample sizes Equal cell sizes
Power 0.9
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Table 78.7 Cell Means

Drug
Gender Experimental 1 Experimental 2 Standard

Female 125 121 118
Male 130 128 125

Results Options
Click the Results tab to select desired results. For the example, select both the Create summary table and
Create power by sample size graph check boxes.

The graph consists of four points, one for each of the four scenarios that were created by combining the two
factor main effects with the two standard deviations. This graph is not very informative, so specify a range of
powers for the horizontal power axis. To change the power axis of the graph, click the Customize button
beside the Create power by sample size graph check box to open the Customize Graph window.

Figure 78.67 Value Ranges on Customize Graph Window
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Click the Value Ranges tab and enter a minimum power of 0.75 and a maximum power of 0.95, as shown in
Figure 78.67. Click OK to close the window.

Now, click Calculate to perform the analysis.

Viewing Results

The results are displayed in separate tabs on the View Results page.

Click the Summary Table tab to view the summary table. In the Computed N Total table, sample sizes
are listed for each combination of factor and standard deviation (Figure 78.68). You need a total sample size
between 60 and 108 to yield a power of 0.9 for the Drug effect if the standard deviation is between 5 and 7.
You need a sample size of half that for the Gender effect.

Figure 78.68 Summary Table

Click the Graph tab to view the power by sample size graph, as shown in Figure 78.69. One approximately
linear curve is displayed for each standard deviation and factor combination.
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Figure 78.69 Power by Sample Size Graph

Click the Narratives tab to create narratives of one or more scenarios. Select the first scenario, the Drug
effect with the standard deviation of 5, in the narrative selector table. Note that the cell means are not included
in the following narrative description:

For the usual F test of the Drug effect in the general linear univariate

model with fixed class effects [Blood pressure = Drug Gender] using a

significance level of 0.05, assuming the specified cell means and an

error standard deviation of 5, a total sample size of 60 assuming a

balanced design is required to obtain a power of at least 0.9. The

actual power is 0.921.

For more information about using the narrative facility, see the section “Creating Narratives” on page 6525.
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Additional Topics

Adding Contrasts

Click the Contrasts tab to define one or more contrasts. Contrasts are optional. PSS allows contrasts to be
added when using either a main effects model or a main effects and interactions model. At least two factors
must have been specified in order to be able to enter contrasts. The contrast tab appears in Figure 78.70.

Figure 78.70 Contrast Tab with Coefficients

To create a contrast, click the New button. Then, select the newly created contrast (Contrast 1) from the
list.

Specify a label for the contrast in the Label field. The label should be different from all of the factor names
and all interactions in the model, as well as other contrast labels.

Then, for each term you want to include in the contrast, select the term in the Effects list and enter at least
two coefficients per term. It is not necessary to enter zeros; blanks are considered to be zeros.

To clear all of the contrast coefficients for a term, click the Clear button. To remove a previously defined
contrast, select it from the Contrasts list and click the Remove button.

In this example, you are interested in comparing the two experimental drugs to the standard drug. As shown
in Figure 78.70, the contrast coefficients are 0.5, 0.5, and –1 for the three levels of the Drug effect.
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Figure 78.71 shows the two scenarios for the contrast at the bottom of the Computed N Total table. The
two scenarios also appear in the graph but the graph is not shown here.

Figure 78.71 Computed N Total Table for the Contrast

Using Unequal Cell Sizes

Click the Sample Size tab to select the equal or unequal cell sizes option.

Figure 78.72 Sample Size Tab
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For the example, select the Unequal cell sizes option, as seen in Figure 78.72, and then click the Enter
Relative Sample Sizes button.

Figure 78.73 shows the window in which you can enter relative sample sizes. As an example, enter the
sample size weights from Table 78.8.

Table 78.8 Sample Size Weights

Drug
Gender Experimental 1 Experimental 2 Standard

Males 1 1 2
Females 1 1 2

If you have unequal cell sizes, you must enter relative sample size weights for the cells. Weights do not have
to sum to 1 across the cells. Some weights can be zero, but enough weights must be greater than zero so that
the effects and contrasts are estimable.

In this case, you want the sample size of the standard group to be twice that of each of the two experimental
groups. Click OK to save the values and return to the Edit Properties page.

Figure 78.73 Relative Sample Sizes Window
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Figure 78.74 shows the summary table for the Drug by Gender example.

Figure 78.74 Summary Table for Unbalanced Design Example

Solving for Power

In addition to solving for sample size, you can also solve for power. Figure 78.75 shows the two options.
Click the Solve For tab to select the Power option.

Figure 78.75 Solve For Tab with Power Option Selected
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When solving for power, you must provide sample size information. For the general linear univariate model
analysis, you provide this information by using one of two alternate forms. To choose the desired alternate
form, select the desired form from the Select a form list box on the Sample Size tab. The alternate forms
are:

Sample size per cell
Enter the sample size for a cell. Cell sizes are assumed to be equal. Sample size is reported
in the summary table as total sample size.

Total N, Cell weights
Enter the total sample size and specify whether cell sizes are to be equal or unequal.
Select the Equal cell sizes or Unequal cell sizes option. For unequal cell sizes, you also
enter cell weights. Click the Enter Relative Sample Sizes button to display a window
that is used to enter the data. For more information about using unequal cell sizes, see the
section “Using Unequal Cell Sizes” on page 6563.

Specifying a Custom Model

Click the Model tab to select from three types of models: a Main effects model, a Main effects and all interactions
model, and a Custom model.

To specify a custom model, select the Custom model option; then a model building facility is displayed.

The facility displays a list of the factors on the left. Construct the desired model using the Add, Cross, and
Factorial buttons. The example shown in Figure 78.76 has the three main effects and one of the four possible
interactions.
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Figure 78.76 Model Tab with Custom Model Builder Displayed

Add the three main effects (A, B, C) by selecting them in the Terms list and clicking the Add button. Add the
A*B interaction by selecting the A and B factors in the Terms list and clicking the Cross button.

To create the complete factorial design of several factors, select the factors in the Terms list, then click the
Factorial button. All possible main effects and interactions are added to the Model Effects list.

To remove effects, select them in the Model Effects list and click the Remove button. Clicking the Remove
All button removes all effects in the model.
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Including Covariates

Click the Covariates tab to enter covariate information.

Figure 78.77 Covariates Tab with Proportional Reduction in Variance Form

Figure 78.77 illustrates four covariates and a proportional reduction in variation of 0.3. The results for the
analysis are not shown.

Covariates are optional. If you have covariates, include the total number of degrees of freedom for all
covariates. To do this, add the number of continuous covariates and the sum of the degrees of freedom of
the classification covariates, and enter this total in the Number of Covariates list box. For example, with
two continuous covariates and a single classification covariate factor with three levels, the total would be
2C .3 � 1/ D 4.

Also, you must enter the correlation between the dependent variable and the set of covariates. Two alternate
forms are available: Multiple correlation and Proportional reduction in variance. Select the desired form
and enter one or more values.

The multiple correlation is between the set of covariates and the dependent variable. Proportional reduction
in variation is how much the variance of the dependent variable is reduced by the inclusion of the covariates,
expressed as a proportion between 0 and 1.
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Example: Two-Sample Survival Rank Tests

Overview
Survival analysis often involves the comparison of survival curves. PSS provides sample size and power
calculations for two-sample survival rank analyses. Several rank tests are available: Gehan, log-rank, and
Tarone-Ware. There are also several ways to specify the survival functions. For more information about
power and sample size analysis for survival rank tests, see Chapter 77, “The POWER Procedure.”

The Example
Suppose you want to compare survival rates for an existing cancer treatment and a new treatment. You intend
to use a log-rank test to compare the overall survival curves for the two treatments. You want to determine a
sample size to achieve a power of 0.8 for a two-sided test using a balanced design, with a significance level
of 0.05.

The survival curve of patients for the existing treatment is known to be approximately exponential with a
median survival time of five years. You think that the proposed treatment will yield a survival curve described
by the times and probabilities listed in Table 78.9. Patients are to be accrued uniformly over two years and
followed for three years.

Table 78.9 Survival Probabilities for Proposed Treatment

Time Probability

1 0.95
2 0.90
3 0.75
4 0.70
5 0.60

To create a new survival analysis project, select FileINew, Then, under the Survival Analysis section, select
Two-sample survival rank tests and click OK. The Two-sample survival rank tests project appears with
the Edit Properties page displayed.
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Editing Properties

Project Description
For the example, change the project description to Comparing cancer treatments using two-sample

survival rank test.

Figure 78.78 Project Description and Solve For Tab

Solve For
Click the Solve For tab to select the quantity to solve for. For this example, select the Sample size per group
option, as shown in Figure 78.78. For information about calculating total sample size, see the section “Solving
for Sample Size” on page 6550.

In this analysis you can solve for power, sample size per group, or total sample size.

Test
Click the Test tab to select a rank test. For this example, select the Log-rank option, as shown in Figure 78.79.
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Figure 78.79 Test Tab

Several rank tests are available: Gehan, log-rank, and Tarone-Ware. The Gehan test is most sensitive to
survival differences near the beginning of the study period, the log-rank test is uniformly sensitive throughout
the study period, and the Tarone-Ware test is somewhere in between.

Hypothesis
Click the Hypothesis tab to select a one- or two-sided test. For the example, select the Two-sided test option,
as shown in Figure 78.80.

Figure 78.80 Hypothesis Tab
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You can choose either a one- or two-sided test. For the one-sided test, the alternative hypothesis is assumed
to be in the same direction as the effect. If you do not know the direction of the effect (that is, whether it is
positive or negative), the two-sided test is appropriate. If you know the effect’s direction, the one-sided test is
appropriate. If you specify a one-sided test and the effect is in the unexpected direction, the results of the
analysis are invalid.

Alpha
Click the Alpha tab to enter one or more values for the significance level. For the example, enter the desired
significance level of 0.05 in the first cell of the Alpha table, as shown in Figure 78.81, if it is not already the
default value.

Figure 78.81 Alpha Tab

The significance level is the probability of falsely rejecting the null hypothesis. If you frequently use the
same values for alpha, set them as the defaults in the Preferences window.

Survival Functions
Click the Survival Functions tab to select the input form for the survival functions.
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Figure 78.82 Survival Functions Tab with Number of Curves

Examine the input alternatives available in the Select a form list. There are four alternate forms for entering
survival functions. The first three apply only to exponential curves; the fourth applies to both piecewise linear
and exponential curves.

Group median survival times
Enter median survival times for the two groups.

Group hazards
Enter hazards for the two groups.

Hazards, Hazard ratios
Enter hazards for the reference group and hazard ratios.

Survival curves
Enter survival probabilities and their associated times for each of several curves. Select
or enter the number of curves from the drop-down list; at least two curves are required.
Then, for each curve, select it in the left-hand list, select the Group 1 or Group 2 option,
and then define the survival curve by entering pairs of times and probabilities. Enter a
time and probability pair only if the probability is less than that of the previous pair.

For information about using the other forms, see the section “Using the Other Survival Curve Forms” on
page 6582.

For each survival curve, select the curve in the left-hand list. Then, enter a descriptive label and select which
group it is for. The labels should be unique. Finally, enter pairs of survival times and probabilities.
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When you enter probabilities, enter a time and probability pair only when the probability for a survival curve
changes. For example, if the probability for curve 1 at time 1 and 2 is 0.9 and at time 3 is 0.8, enter 0.9 for
time 1 and 0.8 for time 3.

To specify an exponential survival curve, enter a single time and probability pair. In the example, the
exponential curve for the existing treatment is defined by a probability of 0.5 at time 5.

The units of time for the survival curves must correspond to the units for the accrual, follow-up, and total
times, which are described in the section “Accrual Times” on page 6575.

You can also compare several survival curves. For example, if you have two scenarios, A and B, for group
1’s curve and two scenarios, C and D, for group 2’s curve, then specify probabilities for the four curves and
assign A and B to group 1 and C and D to group 2.

For the example, select the Survival curves form, as shown in Figure 78.82. Enter the value, 2, in the
Number of survival curves list box.

For the example enter the following values:

• For the first survival curve, enter a label of Existing treatment and select the Group 1 option. For
the first curve, enter a time of 5 and a probability of 0.5. Figure 78.83 shows the resulting values.

Figure 78.83 Survival Times and Probabilities for Curve 1
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• For the second curve select Function 2 in the selection list on the left side of the tab. Enter a label
of Proposed treatment and select the Group 2 option. Then, enter time values of 1 through 5 and
the corresponding probabilities of 0.95, 0.9, 0.75, 0.7, and 0.6. To add rows to the table, click the
button beneath the table.

Figure 78.84 shows these values; the last row of the time and probability table is not displayed.

Figure 78.84 Survival Times and Probabilities for Curve 2

Accrual Times
Click the Accrual times tab to select an input form for accrual times and to enter the times.
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Figure 78.85 Accrual Times Tab

Examine the alternatives available in the Select a form list.

Accrual time is the period during which subjects are brought into the study. Follow-up time is the period
during which subjects are observed after all subjects have been included in the study. Total time is the sum of
accrual and follow-up time. The units of time for the accrual, follow-up, and total times must correspond to
the units you used specified for the survival curves.

When you enter survival curves, the sum of the accrual and follow-up times must be less than the largest time
for each survival curve. This does not apply to survival curves represented by a single time, which represent
exponential curves.

On the Accrual Times tab, there are three alternate forms for entering accrual and follow-up times:

Accrual times, Follow-up times
Enter accrual and follow-up times.

Accrual times, Total times
Enter accrual and total times.

Follow-up times, Total times
Enter follow-up and total times.

For the example, select the Accrual times, Follow-up times form. Then enter a single value of 2 in the
Accrual table and a value of 3 in the Follow-up table, as shown in Figure 78.85.

Power
Click the Power tab to enter one or more power values. For the example, enter a single value of 0.8.

When you calculate sample size, it is necessary to specify one or more powers.
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Summary of Input Parameters
Table 78.10 contains the values of the input parameters for the example.

Table 78.10 Summary of Input Parameters

Parameter Value

Solve for Sample size per group
Test Log-rank
Hypothesis Two-sided test
Alpha 0.05
Survival function form Survival curves
Survival curves See Table 78.11 and Table 78.12
Accrual and follow-up times form Accrual time, Follow-up times
Accrual times 2
Follow-up times 3
Power 0.8

Table 78.11 and Table 78.12 contain times and probabilities for the two survival curves, respectively.

Table 78.11 Survival Times and Probabilities for Existing Treatment (Survival Curve 1)

Time Probability

5 0.5

Table 78.12 Survival Times and Probabilities for Proposed Treatment (Survival Curve 2)

Time Probability

1 0.95
2 0.90
3 0.75
4 0.70
5 0.60

Result Options
Click the Results tab to specify the desired result options. For the example, request both results by selecting
both the Create summary table and Create power by sample size graph check boxes.

Specifying only one power (as in this example) produces a graph with a single point. You might be interested
in a plot of sample sizes for a range of powers—say, between 0.75 and 0.85. You can customize the graph by
specifying the values for the power axis. Also, you might want to change the appearance of the graph to have
sample size (per group) on the vertical axis and power on the horizontal axis.
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Click the Customize button beside the Create power by sample size graph check box to customize the
graph. The Customize Graph window is displayed, as shown in Figure 78.86.

Figure 78.86 Customize Graph Window with Axis Orientation Tab

Click the Axis Orientation tab to select which variable to plot on the vertical axis. For the example, select
the Quantity solved for option, as shown in Figure 78.86. This option plots sample size on the vertical axis
and power on the horizontal axis. You could also have chosen the Sample size option.

Click the Value Ranges tab to enter minimum and maximum values for a plot axis. For the example, enter a
minimum of 0.75 and a maximum of 0.85 in the Powers text boxes. This sets the range of values on the
axis for powers. The completed Value Ranges tab of the window is displayed in Figure 78.87. You can set
the axis values only for the quantity that is not being solved for.
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Figure 78.87 Customize Graph Window with Value Ranges Tab

Click OK to save the values that you have entered and return to the Edit Properties page.

Then, click Calculate to perform the analysis. If there are no errors in the input parameter values, the View
Results page appears. If there are errors in the input parameter values, you are prompted to correct them.

Viewing Results

The results appear in separate tabs on the View Results page of the project. Select the tab of each result that
you want to view.

Summary Table
Click the Summary Table tab to view the summary table. It is composed of two subtables. As shown in
Figure 78.88, the Fixed Scenario Elements and Computed N Per Group tables include the values of
the input parameters and the computed quantity (in this case, sample size per group, N per group). The
sample size per group for the single requested scenario is 226.
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Figure 78.88 Summary Table

Power by Sample Size Graph
Click the Graph tab to view the power by sample size graph.
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Figure 78.89 Power by Sample Size Graph

As you can see in Figure 78.89, the graph is curved slightly upward with larger powers associated with larger
sample sizes. Sample size is plotted on the vertical axis as requested in the Customize Graph window.

Narratives
Click the Narratives tab to create one or more narratives. To generate a narrative, select the single scenario
in the narrative selector table at the bottom of the tab. The narrative for this task does not include the survival
times and probabilities for the survival curves:

For a log-rank test comparing two survival curves with a two-sided significance level of 0.05,
assuming uniform accrual with an accrual time of 2 and a follow-up time of 3, a sample size of
226 per group is required to obtain a power of at least 0.8 for the exponential curve, “Existing
treatment,” and the piecewise linear curve, “Proposed treatment.” The actual power is 0.800.

For information about selecting additional narratives when multiple scenarios are present, see the section
“Creating Narratives” on page 6525.
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Additional Topics

Using the Other Survival Curve Forms

Survival functions can be specified as median survival times, hazards, or a combination of hazards for one
group and hazard ratios. These all assume exponential curves.

Suppose you are interested in comparing the proposed and existing treatments using their median survival
times. The survival times are five years and four years for the two groups, respectively.

Figure 78.90 Median Survival Times and List of Alternate Forms

Click the Survival Functions tab and examine the list of alternate forms available in the Select a form: list.
For this example, select the Group median survival times option.

For the example, enter 5 and 4 in the first row of the table. The completed table is shown in Figure 78.90.

You can enter one or more sets of two median survival times. The results of the analysis are not shown.
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Overview: PRINCOMP Procedure
The PRINCOMP procedure performs principal component analysis. As input, you can use raw data, a
correlation matrix, a covariance matrix, or a sum-of-squares-and-crossproducts (SSCP) matrix. You can
create output data sets that contain eigenvalues, eigenvectors, and standardized or unstandardized principal
component scores.

Principal component analysis is a multivariate technique for examining relationships among several quantita-
tive variables. The choice between using factor analysis and using principal component analysis depends
in part on your research objectives. You should use the PRINCOMP procedure if you are interested in
summarizing data and detecting linear relationships. You can use principal component analysis to reduce the
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number of variables in regression, clustering, and so on. For a detailed comparison of the PRINCOMP and
FACTOR procedures, see Chapter 9, “Introduction to Multivariate Procedures.”

You can use ODS Graphics to display the scree plot, component pattern plot, component pattern profile plot,
matrix plot of component scores, and component score plots. These plots are especially valuable tools in
exploratory data analysis.

Principal component analysis was originated by Pearson (1901) and later developed by Hotelling (1933). The
application of principal components is discussed by Rao (1964); Cooley and Lohnes (1971); Gnanadesikan
(1977). Excellent statistical treatments of principal components are found in Kshirsagar (1972); Morrison
(1976); Mardia, Kent, and Bibby (1979).

If you have a data set that contains p numeric variables, you can compute p principal components. Each
principal component is a linear combination of the original variables, with coefficients equal to the eigen-
vectors of the correlation or covariance matrix. The eigenvectors are usually taken with unit length. The
principal components are sorted by descending order of the eigenvalues, which are equal to the variances of
the components.

Principal components have a variety of useful properties (Rao 1964; Kshirsagar 1972):

• The eigenvectors are orthogonal, so the principal components represent jointly perpendicular directions
through the space of the original variables.

• The principal component scores are jointly uncorrelated. Note that this property is quite distinct from
the previous one.

• The first principal component has the largest variance of any unit-length linear combination of the
observed variables. The jth principal component has the largest variance of any unit-length linear
combination orthogonal to the first j – 1 principal components. The last principal component has the
smallest variance of any linear combination of the original variables.

• The scores on the first j principal components have the highest possible generalized variance of any set
of unit-length linear combinations of the original variables.

• The first j principal components provide a least squares solution to the model

Y D XBC E

where Y is an n � p matrix of the centered observed variables; X is the n � j matrix of scores on the
first j principal components; B is the j � p matrix of eigenvectors; E is an n � p matrix of residuals;
and you want to minimize trace.E0E/, the sum of all the squared elements in E. In other words, the first
j principal components are the best linear predictors of the original variables among all possible sets of
j variables, although any nonsingular linear transformation of the first j principal components would
provide equally good prediction. The same result is obtained if you want to minimize the determinant
or the Euclidean (Schur, Frobenius) norm of E0E rather than the trace.

• In geometric terms, the j-dimensional linear subspace that is spanned by the first j principal components
provides the best possible fit to the data points as measured by the sum of squared perpendicular
distances from each data point to the subspace. This contrasts with the geometric interpretation of least
squares regression, which minimizes the sum of squared vertical distances. For example, suppose you
have two variables. Then, the first principal component minimizes the sum of squared perpendicular
distances from the points to the first principal axis. This contrasts with least squares, which would
minimize the sum of squared vertical distances from the points to the fitted line.
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Principal component analysis can also be used for exploring polynomial relationships and for multivariate
outlier detection (Gnanadesikan 1977), and it is related to factor analysis, correspondence analysis, allometry,
and biased regression techniques (Mardia, Kent, and Bibby 1979).

Getting Started: PRINCOMP Procedure
The following data provide crime rates per 100,000 people in seven categories for each of the 50 US states in
1977. Because there are seven numeric variables, it is impossible to plot all the variables simultaneously. You
can use principal components to summarize the data in two or three dimensions, and they help you visualize
the data. The following statements produce Figure 79.1 through Figure 79.5:

title 'Crime Rates per 100,000 Population by State';

data Crime;
input State $1-15 Murder Rape Robbery Assault

Burglary Larceny Auto_Theft;
datalines;

Alabama 14.2 25.2 96.8 278.3 1135.5 1881.9 280.7
Alaska 10.8 51.6 96.8 284.0 1331.7 3369.8 753.3
Arizona 9.5 34.2 138.2 312.3 2346.1 4467.4 439.5
Arkansas 8.8 27.6 83.2 203.4 972.6 1862.1 183.4
California 11.5 49.4 287.0 358.0 2139.4 3499.8 663.5
Colorado 6.3 42.0 170.7 292.9 1935.2 3903.2 477.1
Connecticut 4.2 16.8 129.5 131.8 1346.0 2620.7 593.2
Delaware 6.0 24.9 157.0 194.2 1682.6 3678.4 467.0
Florida 10.2 39.6 187.9 449.1 1859.9 3840.5 351.4
Georgia 11.7 31.1 140.5 256.5 1351.1 2170.2 297.9
Hawaii 7.2 25.5 128.0 64.1 1911.5 3920.4 489.4
Idaho 5.5 19.4 39.6 172.5 1050.8 2599.6 237.6
Illinois 9.9 21.8 211.3 209.0 1085.0 2828.5 528.6
Indiana 7.4 26.5 123.2 153.5 1086.2 2498.7 377.4
Iowa 2.3 10.6 41.2 89.8 812.5 2685.1 219.9
Kansas 6.6 22.0 100.7 180.5 1270.4 2739.3 244.3
Kentucky 10.1 19.1 81.1 123.3 872.2 1662.1 245.4
Louisiana 15.5 30.9 142.9 335.5 1165.5 2469.9 337.7
Maine 2.4 13.5 38.7 170.0 1253.1 2350.7 246.9
Maryland 8.0 34.8 292.1 358.9 1400.0 3177.7 428.5
Massachusetts 3.1 20.8 169.1 231.6 1532.2 2311.3 1140.1
Michigan 9.3 38.9 261.9 274.6 1522.7 3159.0 545.5
Minnesota 2.7 19.5 85.9 85.8 1134.7 2559.3 343.1
Mississippi 14.3 19.6 65.7 189.1 915.6 1239.9 144.4
Missouri 9.6 28.3 189.0 233.5 1318.3 2424.2 378.4
Montana 5.4 16.7 39.2 156.8 804.9 2773.2 309.2
Nebraska 3.9 18.1 64.7 112.7 760.0 2316.1 249.1
Nevada 15.8 49.1 323.1 355.0 2453.1 4212.6 559.2
New Hampshire 3.2 10.7 23.2 76.0 1041.7 2343.9 293.4
New Jersey 5.6 21.0 180.4 185.1 1435.8 2774.5 511.5
New Mexico 8.8 39.1 109.6 343.4 1418.7 3008.6 259.5
New York 10.7 29.4 472.6 319.1 1728.0 2782.0 745.8
North Carolina 10.6 17.0 61.3 318.3 1154.1 2037.8 192.1
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North Dakota 0.9 9.0 13.3 43.8 446.1 1843.0 144.7
Ohio 7.8 27.3 190.5 181.1 1216.0 2696.8 400.4
Oklahoma 8.6 29.2 73.8 205.0 1288.2 2228.1 326.8
Oregon 4.9 39.9 124.1 286.9 1636.4 3506.1 388.9
Pennsylvania 5.6 19.0 130.3 128.0 877.5 1624.1 333.2
Rhode Island 3.6 10.5 86.5 201.0 1489.5 2844.1 791.4
South Carolina 11.9 33.0 105.9 485.3 1613.6 2342.4 245.1
South Dakota 2.0 13.5 17.9 155.7 570.5 1704.4 147.5
Tennessee 10.1 29.7 145.8 203.9 1259.7 1776.5 314.0
Texas 13.3 33.8 152.4 208.2 1603.1 2988.7 397.6
Utah 3.5 20.3 68.8 147.3 1171.6 3004.6 334.5
Vermont 1.4 15.9 30.8 101.2 1348.2 2201.0 265.2
Virginia 9.0 23.3 92.1 165.7 986.2 2521.2 226.7
Washington 4.3 39.6 106.2 224.8 1605.6 3386.9 360.3
West Virginia 6.0 13.2 42.2 90.9 597.4 1341.7 163.3
Wisconsin 2.8 12.9 52.2 63.7 846.9 2614.2 220.7
Wyoming 5.4 21.9 39.7 173.9 811.6 2772.2 282.0
;

ods graphics on;

proc princomp out=Crime_Components plots= score(ellipse ncomp=3);
id State;

run;

Figure 79.1 displays the PROC PRINCOMP output, beginning with simple statistics and followed by the
correlation matrix. By default, the PROC PRINCOMP statement requests principal components that are
computed from the correlation matrix, so the total variance is equal to the number of variables, 7.

Figure 79.1 Number of Observations and Simple Statistics from the PRINCOMP Procedure

Crime Rates per 100,000 Population by State

The PRINCOMP Procedure

Crime Rates per 100,000 Population by State

The PRINCOMP Procedure

Observations 50

Variables 7

Simple Statistics

Murder Rape Robbery Assault Burglary Larceny Auto_Theft

Mean 7.444000000 25.73400000 124.0920000 211.3000000 1291.904000 2671.288000 377.5260000

StD 3.866768941 10.75962995 88.3485672 100.2530492 432.455711 725.908707 193.3944175

Correlation Matrix

Murder Rape Robbery Assault Burglary Larceny Auto_Theft

Murder 1.0000 0.6012 0.4837 0.6486 0.3858 0.1019 0.0688

Rape 0.6012 1.0000 0.5919 0.7403 0.7121 0.6140 0.3489

Robbery 0.4837 0.5919 1.0000 0.5571 0.6372 0.4467 0.5907

Assault 0.6486 0.7403 0.5571 1.0000 0.6229 0.4044 0.2758

Burglary 0.3858 0.7121 0.6372 0.6229 1.0000 0.7921 0.5580

Larceny 0.1019 0.6140 0.4467 0.4044 0.7921 1.0000 0.4442

Auto_Theft 0.0688 0.3489 0.5907 0.2758 0.5580 0.4442 1.0000
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Figure 79.2 displays the eigenvalues. The first principal component accounts for about 58.8% of the total
variance, the second principal component accounts for about 17.7%, and the third principal component
accounts for about 10.4%. Note that the eigenvalues sum to the total variance.

The eigenvalues indicate that two or three components provide a good summary of the data: two components
account for 76% of the total variance, and three components account for 87%. Subsequent components
account for less than 5% each.

Figure 79.2 Results of Principal Component Analysis: PROC PRINCOMP

Eigenvalues of the Correlation Matrix

Eigenvalue Difference Proportion Cumulative

1 4.11495951 2.87623768 0.5879 0.5879

2 1.23872183 0.51290521 0.1770 0.7648

3 0.72581663 0.40938458 0.1037 0.8685

4 0.31643205 0.05845759 0.0452 0.9137

5 0.25797446 0.03593499 0.0369 0.9506

6 0.22203947 0.09798342 0.0317 0.9823

7 0.12405606 0.0177 1.0000

Figure 79.3 displays the eigenvectors. From the eigenvectors matrix, you can represent the first principal
component, Prin1, as a linear combination of the original variables:

Prin1 D 0:300279 �Murder

C 0:431759 � Rape

C 0:396875 � Robbery

:

:

:

C 0:295177 � Auto_Theft

Similarly, the second principal component, Prin2, is

Prin2 D � 0:629174 �Murder

� 0:169435 � Rape

C 0:042247 � Robbery

:

:

:

� 0:502421 � Auto_Theft

where the variables are standardized.
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Figure 79.3 Results of Principal Component Analysis: PROC PRINCOMP

Eigenvectors

Prin1 Prin2 Prin3 Prin4 Prin5 Prin6 Prin7

Murder 0.300279 -.629174 0.178245 -.232114 0.538123 0.259117 0.267593

Rape 0.431759 -.169435 -.244198 0.062216 0.188471 -.773271 -.296485

Robbery 0.396875 0.042247 0.495861 -.557989 -.519977 -.114385 -.003903

Assault 0.396652 -.343528 -.069510 0.629804 -.506651 0.172363 0.191745

Burglary 0.440157 0.203341 -.209895 -.057555 0.101033 0.535987 -.648117

Larceny 0.357360 0.402319 -.539231 -.234890 0.030099 0.039406 0.601690

Auto_Theft 0.295177 0.502421 0.568384 0.419238 0.369753 -.057298 0.147046

The first component is a measure of the overall crime rate because the first eigenvector shows approximately
equal loadings on all variables. The second eigenvector has high positive loadings on the variables Auto_Theft
and Larceny and high negative loadings on the variables Murder and Assault. There is also a small positive
loading on the variable Burglary and a small negative loading on the variable Rape. This component seems
to measure the preponderance of property crime compared to violent crime. The interpretation of the third
component is not obvious.

The ODS GRAPHICS statement enables the creation of graphs. For more information, see Chapter 21, “Sta-
tistical Graphics Using ODS.” The option PLOTS=SCORE(ELLIPSE NCOMP=3) in the PROC PRINCOMP
statement requests the pairwise component score plots for the first three components, with a 95% prediction
ellipse overlaid on each scatter plot. Figure 79.4 shows the plot of the first two components. You can identify
regional trends in the plot of the first two components. Nevada and California are at the extreme right, with
high overall crime rates but an average ratio of property crime to violent crime. North Dakota and South
Dakota are at the extreme left, with low overall crime rates. Southeastern states tend to be at the bottom of
the plot, with a higher-than-average ratio of violent crime to property crime. New England states tend to be in
the upper part of the plot, with a higher-than-average ratio of property crime to violent crime. Assuming that
the first two components are from a bivariate normal distribution, the ellipse identifies Nevada as a possible
outlier.
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Figure 79.4 Plot of the First Two Component Scores
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Figure 79.5 shows the plot of the first and third components. Assuming that the first and third components are
from a bivariate normal distribution, the ellipse identifies Nevada, Massachusetts, and New York as possible
outliers.

Figure 79.5 Plot of the First and Third Component Scores

The most striking feature of the plot of the first and third principal components is that Massachusetts and
New York are outliers on the third component.
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Syntax: PRINCOMP Procedure
The following statements are available in the PRINCOMP procedure:

PROC PRINCOMP < options > ;
BY variables ;
FREQ variable ;
ID variables ;
PARTIAL variables ;
VAR variables ;
WEIGHT variable ;

Usually only the VAR statement is used in addition to the PROC PRINCOMP statement. The rest of this
section provides detailed syntax information for each of the preceding statements, beginning with the PROC
PRINCOMP statement. The remaining statements are described in alphabetical order.

PROC PRINCOMP Statement
PROC PRINCOMP < options > ;

The PROC PRINCOMP statement invokes the PRINCOMP procedure. Optionally, it also identifies input
and output data sets, specifies the analyses that are performed, and controls displayed output. Table 79.1
summarizes the options available in the PROC PRINCOMP statement.

Table 79.1 Summary of PROC PRINCOMP Statement Options

Option Description

Specify Data Sets
DATA= Specifies the name of the input data set
OUT= Specifies the name of the output data set
OUTSTAT= Specifies the name of the output data set that contains various statistics

Specify Details of Analysis
COV Computes the principal components from the covariance matrix
N= Specifies the number of principal components to be computed
NOINT Omits the intercept from the model
PREFIX= Specifies a prefix for naming the principal components
PARPREFIX= Specifies a prefix for naming the residual variables
SINGULAR= Specifies the singularity criterion
STD Standardizes the principal component scores
VARDEF= Specifies the divisor used in calculating variances and standard deviations

Suppress the Display of Output
NOPRINT Suppresses the display of all output

Specify ODS Graphics Details
PLOTS= Specifies options that control the details of the plots
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The following list provides details about these options.

COVARIANCE

COV
computes the principal components from the covariance matrix. If you omit the COV option, the
correlation matrix is analyzed. The COV option causes variables that have large variances to be more
strongly associated with components that have large eigenvalues, it and causes variables that have
small variances to be more strongly associated with components that have small eigenvalues. You
should not specify the COV option unless the units in which the variables are measured are comparable
or the variables are standardized in some way.

DATA=SAS-data-set
specifies the SAS data set to be analyzed. The data set can be an ordinary SAS data set or a TYPE=ACE,
TYPE=CORR, TYPE=COV, TYPE=FACTOR, TYPE=SSCP, TYPE=UCORR, or TYPE=UCOV data
set (see Appendix A, “Special SAS Data Sets”). Also, the PRINCOMP procedure can read the
_TYPE_='COVB' matrix from a TYPE=EST data set. If you omit the DATA= option, the procedure
uses the most recently created SAS data set.

N=number
specifies the number of principal components to be computed. The default is the number of variables.
The value of the N= option must be an integer greater than or equal to 0.

NOINT
omits the intercept from the model. In other words, the NOINT option requests that the covariance or
correlation matrix not be corrected for the mean. When you specify the NOINT option, the covariance
matrix and, hence, the standard deviations are not corrected for the mean.

If you use a TYPE=SSCP data set as input to the PRINCOMP procedure and list the variable Intercept
in the VAR statement, the procedure acts as if you had also specified the NOINT option. If you use the
NOINT option and also create an OUTSTAT= data set, the data set is TYPE=UCORR or TYPE=UCOV
rather than TYPE=CORR or TYPE=COV.

NOPRINT
suppresses the display of all output. This option temporarily disables the Output Delivery System
(ODS). For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

OUT=SAS-data-set
creates an output SAS data set to contain all the original data in addition to the principal component
scores.

If you want to create a SAS data set in a permanent library, you must specify a two-level name. For
more information about permanent libraries and SAS data sets, see SAS Language Reference: Concepts.
For information about OUT= data sets, see the section “Output Data Sets” on page 6599.

OUTSTAT=SAS-data-set
creates an output SAS data set to contain means, standard deviations, number of observations, corre-
lations or covariances, eigenvalues, and eigenvectors. If you specify the COV option, the data set is
TYPE=COV or TYPE=UCOV, depending on the NOINT option, and it contains covariances; otherwise,
the data set is TYPE=CORR or TYPE=UCORR, depending on the NOINT option, and it contains
correlations. If you specify the PARTIAL statement, the OUTSTAT= data set also contains R squares.
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If you want to create a SAS data set in a permanent library, you must specify a two-level name. For
more information about permanent libraries and SAS data sets, see SAS Language Reference: Concepts.
For more information about OUTSTAT= data sets, see the section “Output Data Sets” on page 6599.

PLOTS < (global-plot-options) > < = plot-request < (options) > >

PLOTS < (global-plot-options) > < = (plot-request < (options) > < ... plot-request < (options) > >) >
controls the plots that are produced through ODS Graphics. When you specify only one plot request,
you can omit the parentheses around the plot request. Here are some examples:

plots=none
plots=(scatter pattern)
plots(unpack)=scree
plots(ncomp=3 flip)=(pattern(circles=0.5 1.0) score)

ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;
proc princomp plots=all;

var x1--x10;
run;
ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

If ODS Graphics is enabled but you do not specify the PLOTS= option, PROC PRINCOMP produces
the scree plot by default.

You can specify the following global-plot-options:

FLIP
flips or interchanges the X-axis and Y-axis dimensions of the component score plots and the
component pattern plots. For example, if you have three components, the default plots (y * x) are
Component 2 * Component 1, Component 3 * Component 1, and Component 3 * Component 2.
When you specify PLOTS(FLIP), the plots are Component 1 * Component 2, Component 1 *
Component 3, and Component 2 * Component 3.

NCOMP=n
specifies the number of components n.� 2/ to be plotted for the component pattern plots and
the component score plots. If you specify the NCOMP= option again in an individual plot, such
as PLOTS=SCORE(NCOMP= m), the value m determines the number of components to be
plotted in the component score plots. Be aware that the number of plots (n � .n � 1/=2) that
are produced grows quadratically when n increases. The default is 5 or the total number of
components m.� 2/, whichever is smaller. If n > m, NCOMP=m is used.

ONLY
suppresses the default plots. Only plots that you specifically request are displayed.



6594 F Chapter 79: The PRINCOMP Procedure

UNPACKPANEL

UNPACK
suppresses paneling in the scree plot. By default, multiple plots can appear in an output panel.
Specify UNPACKPANEL to get each plot to appear in a separate panel. You can specify
PLOTS(UNPACKPANEL) to unpack the default plots. You can also specify UNPACKPANEL as
a suboption with the SCREE option (such as PLOTS=SCREE(UNPACKPANEL)).

You can specify the following plot-requests:

ALL
produces all appropriate plots. You can specify other options along with ALL; for example, to re-
quest all plots and unpack only the scree plot, specify PLOTS=(ALL SCREE(UNPACKPANEL)).

EIGEN | EIGENVALUE | SCREE < ( UNPACKPANEL ) >
produces the scree plot of eigenvalues and proportion variance explained. By default, both plots
appear in the same panel. Specify PLOTS= SCREE(UNPACKPANEL) to get each plot to appear
in a separate panel.

MATRIX
produces the matrix plot of principal component scores.

NONE
suppresses the display of all graphics output.

PATTERN < ( pattern-options ) >
produces the pairwise component pattern plots. Each variable is plotted as an observation whose
coordinates are correlations between the variable and the two corresponding components in the
plot. Use the NCOMP= option (for instance, PLOTS=PATTERN(NCOMP=3)) as described in
the following list to control the number of plots to display.

You can specify the following pattern-options:

CIRCLES < = number-list >
plots the variance percentage circles. For each number c (0 < c � 1) that is specified,
a (c � 100%) variance circle is displayed. For each number c (c > 1) that is speci-
fied, a c% variance circle is displayed. You can specify either CIRCLES=0.05 1 or CIR-
CLES=5 100 to display 5% and 100% variance circles. PLOTS=PATTERN(CIRCLES) and
PLOTS=PATTERN(VECTOR) both display a unit circle (100% variance). By default, no
circle is displayed when you specify PLOTS=PATTERN.

FLIP
flips or interchanges the X-axis and Y-axis dimensions of the component pattern plots.
Specify PLOTS=PATTERN(FLIP) to flip the X-axis and Y-axis dimensions.

NCOMP=n
specifies the number of components n.� 2/ to be plotted. The default is 5 or the total number
of components m.� 2/, whichever is smaller. If n > m, NCOMP=m is used. Be aware that
the number of plots (n � .n� 1/=2) that are produced grows quadratically when n increases.
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VECTOR
plots the pattern in a vector form.

PATTERNPROFILE | PROFILE
produces the pattern profile plot. Each component has its own profile. The Y-axis value represents
the correlation between the variable (corresponding to the X-axis value) and the profiled principal
component.

SCORE < ( score-options ) >
produces the pairwise component score plots. Use the NCOMP= option (for example,
PLOTS=SCORE(NCOMP=3)) as described in the following list to control the number of plots to
display.

You can specify the following score-options.

ALPHA=number list
specifies a list of numbers for the prediction ellipses to be displayed in the score plots. Each
value (˛) in the list must be greater than 0. If ˛ is greater than or equal to 1, it is interpreted
as a percentage and divided by 100; ALPHA=0.05 and ALPHA=5 are equivalent.

ELLIPSE
requests prediction ellipses for the principal component scores of a new observation to be
created in the principal component score plots. For information about the computation of
a prediction ellipse, see the section “Confidence and Prediction Ellipses” in “The CORR
Procedure” (Base SAS Procedures Guide: Statistical Procedures).

FLIP
flips or interchanges the X-axis and Y-axis dimensions of the component score plots. Specify
PLOTS=SCORE(FLIP) to flip the X-axis and Y-axis dimensions.

NCOMP=n
specifies the number of components n.� 2/ to be plotted. The default is 5 or the total number
of components m.� 2/, whichever is smaller. If n > m, NCOMP=m is used. Be aware that
the number of plots (n � .n� 1/=2) that are produced grows quadratically when n increases.

PAINT < =position >
creates plots of component i versus component j, painted by component k. When you have at
least three components, the PLOTS=SCORE option is specified, and the PAINT option is not
specified, a painted score plot for component 3 versus component 2, painted by component 1,
is produced. Use the PAINT option when you want to create painted score plots that involve
other triples of components.

PLOTS=SCORE(PAINT), PLOTS=SCORE(PAINT=F), and PLOTS=SCORE(PAINT=
FIRST) are all equivalent and create painted plots of i � j , painted by k for triples .i; j; k/,
where k < j < i .

PLOTS=SCORE(PAINT=L) and PLOTS=SCORE(PAINT=LAST) are equivalent and create
painted plots of i � j , painted by k for triples .i; j; k/, where j < i < k.

PLOTS=SCORE(PAINT=M) and PLOTS=SCORE(PAINT=MIDDLE) are equivalent and
create painted plots of i � j , painted by k for triples .i; j; k/, where j < k < i .



6596 F Chapter 79: The PRINCOMP Procedure

PREFIX=name
specifies a prefix for naming the principal components. By default, the names are Prin1, Prin2, . . . ,
Prinn. If you specify PREFIX=Abc, the components are named Abc1, Abc2, Abc3, and so on. The
number of characters in the prefix plus the number of digits required to designate the variables should
not exceed the current name length that is defined by the VALIDVARNAME= system option.

PARPREFIX=name

PPREFIX=name

RPREFIX=name
specifies a prefix for naming the residual variables in the OUT= data set and the OUTSTAT= data set.
By default, the prefix is R_. The number of characters in the prefix plus the maximum length of the
variable names should not exceed the current name length that is defined by the VALIDVARNAME=
system option.

SINGULAR=p

SING=p
specifies the singularity criterion, where 0 < p < 1. If a variable in a PARTIAL statement has an R
square as large as 1�p when predicted from the variables listed before it in the statement, the variable
is assigned a standardized coefficient of 0. By default, SINGULAR=1E–8.

STANDARD

STD
standardizes the principal component scores in the OUT= data set to unit variance. If you omit the
STANDARD option, the scores have variance equal to the corresponding eigenvalue. Note that the
STANDARD option has no effect on the eigenvalues themselves.

VARDEF=DF | N | WDF | WEIGHT | WGT
specifies the divisor to be used in calculating variances and standard deviations. By default,
VARDEF=DF. The following table displays the values and associated divisors:

Value Divisor Formula
DF Error degrees of freedom n � i (before partialing)

n � p � i (after partialing)

N Number of observations n

WEIGHT | WGT Sum of weights
Pn
jD1wj

WDF Sum of weights minus one
�Pn

jD1wj

�
� i (before partialing)�Pn

jD1wj

�
� p � i (after partialing)

In the formulas for VARDEF=DF and VARDEF=WDF, p is the number of degrees of freedom of the
variables in the PARTIAL statement, and i is 0 if the NOINT option is specified and 1 otherwise.
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BY Statement
BY variables ;

You can specify a BY statement with PROC PRINCOMP to obtain separate analyses of observations in
groups that are defined by the BY variables. When a BY statement appears, the procedure expects the input
data set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last
one specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the PRINCOMP proce-
dure. The NOTSORTED option does not mean that the data are unsorted but rather that the data are
arranged in groups (according to values of the BY variables) and that these groups are not necessarily
in alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

FREQ Statement
FREQ variable ;

The FREQ statement specifies a variable that provides frequencies for each observation in the DATA= data
set. Specifically, if n is the value of the FREQ variable for a given observation, then that observation is used
n times.

The analysis that you produce by using a FREQ statement reflects the expanded number of observations. The
total number of observations is considered to be equal to the sum of the FREQ variable. You could produce
the same analysis (without the FREQ statement) by first creating a new data set that contains the expanded
number of observations. For example, if the value of the FREQ variable is 5 for the first observation, the first
five observations in the new data set are identical. Each observation in the old data set would be replicated
nj times in the new data set, where nj is the value of the FREQ variable for that observation.

If the value of the FREQ variable is missing or is less than 1, the observation is not used in the analysis. If
the value is not an integer, only the integer portion is used.

ID Statement
ID variables ;

The ID statement labels observations by using values from the first ID variable in the principal component
score plot. If one or more ID variables are specified, their values are displayed in tooltips of the component
score plot and the matrix plot of component scores.
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PARTIAL Statement
PARTIAL variables ;

If you want to analyze a partial correlation or covariance matrix, specify the names of the numeric variables to
be partialed out in the PARTIAL statement. The PRINCOMP procedure computes the principal components
of the residuals from the prediction of the VAR variables by the PARTIAL variables. If you request an OUT=
or OUTSTAT= data set, the residual variables are named by prefixing the characters R_ by default or the
string specified in the PARPREFIX= option to the VAR variables.

VAR Statement
VAR variables ;

The VAR statement lists the numeric variables to be analyzed. If you omit the VAR statement, all numeric
variables not specified in other statements are analyzed. However, if the DATA= data set is TYPE=SSCP, the
default set of variables used as VAR variables does not include Intercept so that the correlation or covariance
matrix is constructed correctly. If you want to analyze Intercept as a separate variable, you should specify it
in the VAR statement.

WEIGHT Statement
WEIGHT variable ;

To use relative weights for each observation in the input data set, place the weights in a variable in the data
set and specify the name in a WEIGHT statement. This is often done when the variance associated with
each observation is different and the values of the weight variable are proportional to the reciprocals of the
variances.

The observation is used in the analysis only if the value of the WEIGHT statement variable is nonmissing
and is greater than 0.

Details: PRINCOMP Procedure

Missing Values
Observations that have missing values for any variable in the VAR, PARTIAL, FREQ, or WEIGHT statement
are omitted from the analysis and are given missing values for principal component scores in the OUT= data
set. If a correlation, covariance, or SSCP matrix is read, it can contain missing values as long as every pair of
variables has at least one nonmissing entry.
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Output Data Sets

OUT= Data Set

The OUT= data set contains all the variables in the original data set plus new variables that contain the
principal component scores. The N= option determines the number of new variables. The names of the new
variables are formed by concatenating the value given by the PREFIX= option (or Prin if PREFIX= is omitted)
to the numbers 1, 2, 3, and so on. The new variables have mean 0 and variance equal to the corresponding
eigenvalue, unless you specify the STANDARD option to standardize the scores to unit variance. Also, if you
specify the COV option, PROC PRINCOMP computes the principal component scores from the corrected or
uncorrected (if the NOINT option is specified) variables rather than from the standardized variables.

If you use a PARTIAL statement, the OUT= data set also contains the residuals from predicting the VAR
variables from the PARTIAL variables.

You cannot create an OUT= data set if the DATA= data set is TYPE=ACE, TYPE=CORR, TYPE=COV,
TYPE=EST, TYPE=FACTOR, TYPE=SSCP, TYPE=UCORR, or TYPE=UCOV.

OUTSTAT= Data Set

The OUTSTAT= data set is similar to the TYPE=CORR data set that the CORR procedure produces. The
following table relates the TYPE= value for the OUTSTAT= data set to the options that are specified in the
PROC PRINCOMP statement:

Options TYPE=
(Default) CORR
COV COV
NOINT UCORR
COV NOINT UCOV

Note that the default (neither the COV nor NOINT option) produces a TYPE=CORR data set.

The new data set contains the following variables:

• the BY variables, if any

• two new variables, _TYPE_ and _NAME_, both character variables

• the variables that are analyzed (that is, those in the VAR statement); or, if there is no VAR statement,
all numeric variables not listed in any other statement; or, if there is a PARTIAL statement, the residual
variables as described in the section “OUT= Data Set” on page 6599

Each observation in the new data set contains some type of statistic, as indicated by the _TYPE_ variable.
The values of the _TYPE_ variable are as follows:

_TYPE_ Contents

MEAN mean of each variable. If you specify the PARTIAL statement, this observation is omitted.
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STD standard deviations. If you specify the COV option, this observation is omitted, so the
SCORE procedure does not standardize the variables before computing scores. If you use
the PARTIAL statement, the standard deviation of a variable is computed as its root mean
squared error as predicted from the PARTIAL variables.

USTD uncorrected standard deviations. When you specify the NOINT option in the PROC
PRINCOMP statement, the OUTSTAT= data set contains standard deviations not corrected
for the mean. However, if you also specify the COV option in the PROC PRINCOMP
statement, this observation is omitted.

N number of observations on which the analysis is based. This value is the same for each
variable. If you specify the PARTIAL statement and the value of the VARDEF= option
is DF or unspecified, then the number of observations is decremented by the degrees of
freedom of the PARTIAL variables.

SUMWGT the sum of the weights of the observations. This value is the same of each variable. If
you specify the PARTIAL statement and VARDEF=WDF, then the sum of the weights is
decremented by the degrees of freedom of the PARTIAL variables. This observation is
output only if the value is different from that in the observation for which _TYPE_='N'.

CORR correlations between each variable and the variable specified by the _NAME_ variable. The
number of observations for which _TYPE_='CORR' is equal to the number of variables
being analyzed. If you specify the COV option, no _TYPE_='CORR' observations are
produced. If you use the PARTIAL statement, the partial correlations, not the raw
correlations, are output.

UCORR uncorrected correlation matrix. When you specify the NOINT option without the COV
option in the PROC PRINCOMP statement, the OUTSTAT= data set contains a matrix of
correlations not corrected for the means. However, if you also specify the COV option in
the PROC PRINCOMP statement, this observation is omitted.

COV covariances between each variable and the variable specified by the _NAME_ variable.
_TYPE_='COV' observations are produced only if you specify the COV option. If you
use the PARTIAL statement, the partial covariances, not the raw covariances, are output.

UCOV uncorrected covariance matrix. When you specify the NOINT and COV options in the
PROC PRINCOMP statement, the OUTSTAT= data set contains a matrix of covariances
not corrected for the means.

EIGENVAL eigenvalues. If the N= option requests fewer principal components than the maximum
number, only the specified number of eigenvalues is produced, with missing values filling
out the observation.

SCORE eigenvectors. The _NAME_ variable contains the name of the corresponding principal
component as constructed from the PREFIX= option. The number of observations for
which _TYPE_='SCORE' equals the number of principal components computed. The
eigenvectors have unit length unless you specify the STD option, in which case the unit-
length eigenvectors are divided by the square roots of the eigenvalues to produce scores
that have unit standard deviations.

When you do not specify the COV option, you can produce the principal component
scores by multiplying the standardized data by these coefficients. When you specify the
COV option, you can produce the principal component scores by multiplying the centered
data by these coefficients. You should use the means, obtained from the observation
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for which _TYPE_='MEAN', to center the data. You should use the standard deviations,
obtained from the observation for which _TYPE_='STD', to standardize the data.

USCORE scoring coefficients to be applied without subtracting the mean from the raw variables.
Observations for which _TYPE_='USCORE' are produced when you specify the NOINT
option in the PROC PRINCOMP statement.

To obtain the principal component scores, these coefficients should be multiplied by
the data that are standardized by the uncorrected standard deviations obtained from the
observation for which _TYPE_='USTD'.

RSQUARED R squares for each VAR variable as predicted by the PARTIAL variables

B regression coefficients for each VAR variable as predicted by the PARTIAL variables.
This observation is produced only if you specify the COV option.

STB standardized regression coefficients for each VAR variable as predicted by the PARTIAL
variables. If you specify the COV option, this observation is omitted.

You can use the data set with the SCORE procedure to compute principal component scores, or you can use it
as input to the FACTOR procedure and specify METHOD=SCORE to rotate the components. If you use the
PARTIAL statement, the scoring coefficients should be applied to the residuals, not to the original variables.

Computational Resources
Let

n D number of observations
v D number of VAR variables
p D number of PARTIAL variables
c D number of components

• The minimum allocated memory required (in bytes) is

232v C 120p C 48c Cmax.8cv; 8vp C 4.v C p/.v C p C 1//

• The time required to compute the correlation matrix is approximately proportional to

n.v C p/2 C
p

2
.v C p/.v C p C 1/

• The time required to compute eigenvalues is approximately proportional to v3.

• The time required to compute eigenvectors is approximately proportional to cv2.
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Displayed Output
The PRINCOMP procedure displays the following items if the DATA= data set is not TYPE=CORR,
TYPE=COV, TYPE=SSCP, TYPE=UCORR, or TYPE=UCOV:

• simple statistics, including the mean and standard deviation (StD) for each variable. If you specify the
NOINT option, the uncorrected standard deviation (UStD) is displayed.

• the correlation or, if you specify the COV option, the covariance matrix

The PRINCOMP procedure displays the following items if you use the PARTIAL statement:

• regression statistics, giving the R square and root mean squared error (RMSE) for each VAR variable
as predicted by the PARTIAL variables (not shown)

• standardized regression coefficients or, if you specify the COV option, regression coefficients for
predicting the VAR variables from the PARTIAL variables (not shown)

• the partial correlation matrix or, if you specify the COV option, the partial covariance matrix (not
shown)

The PRINCOMP procedure displays the following item if you specify the COV option:

• the total variance

The PRINCOMP procedure displays the following items unless you specify the NOPRINT option:

• eigenvalues of the correlation or covariance matrix, in addition to the difference between successive
eigenvalues, the proportion of variance explained by each eigenvalue, and the cumulative proportion of
variance explained

• the eigenvectors

ODS Table Names
PROC PRINCOMP assigns a name to each table that it creates. You can use these names to reference the
ODS table when using the Output Delivery System (ODS) to select tables and create output data sets. These
names are listed in Table 79.2. For more information about ODS, see Chapter 20, “Using the Output Delivery
System.”

All the tables are created by specifying the PROC PRINCOMP statement; a few tables need an additional
PARTIAL statement.
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Table 79.2 ODS Tables Produced by PROC PRINCOMP

ODS Table Name Description Statement / Option

Corr Correlation matrix Default
Cov Covariance matrix COV
Eigenvalues Eigenvalues Default
Eigenvectors Eigenvectors Default
NObsNVar Number of observations, variables, and partial vari-

ables
Default

ParCorr Partial correlation matrix PARTIAL statement
ParCov Uncorrected partial covariance matrix PARTIAL statement and COV
RegCoef Regression coefficients PARTIAL statement and COV
RSquareRMSE Regression statistics: R squares and RMSEs PARTIAL statement
SimpleStatistics Simple statistics Default
StdRegCoef Standardized regression coefficients PARTIAL statement
TotalVariance Total variance COV

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

Some graphs are produced by default; other graphs are produced by using statements and options. You
can reference every graph produced through ODS Graphics by name. The names of the graphs that PROC
PRINCOMP generates are listed in Table 79.3, along with a description of each graph and the required
statements and options.

Table 79.3 Graphs Produced by PROC PRINCOMP

ODS Graph Name Plot Description Statement and Option

PaintedScorePlot Score plot of component i versus
component j, painted by component k

PLOTS=SCORE when number of
variables � 3

PatternPlot Component pattern plot PLOTS=PATTERN
PatternProfilePlot Component pattern profile plot PLOTS=PATTERNPROFILE
ScoreMatrixPlot Matrix plot of component scores PLOTS=MATRIX
ScorePlot Component score plot PLOTS=SCORE
ScreePlot Scree and variance plots Default and PLOTS=SCREE
VariancePlot Variance proportion explained plot PLOTS=SCREE(UNPACKPANEL)
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Examples: PRINCOMP Procedure

Example 79.1: Analyzing Mean Temperatures of US Cities
This example analyzes mean daily temperatures of selected US cities in January and July. Both the raw data
and the principal components are plotted to illustrate that principal components are orthogonal rotations of
the original variables.

The following statements create the Temperature data set:

data Temperature;
length CityId $ 2;
title 'Mean Temperature in January and July for Selected Cities';
input City $ 1-15 January July;
CityId = substr(City,1,2);
datalines;

Mobile 51.2 81.6
Phoenix 51.2 91.2
Little Rock 39.5 81.4
Sacramento 45.1 75.2
Denver 29.9 73.0

... more lines ...

Cheyenne 26.6 69.1
;

The following statements plot the Temperature data set. The variable Cityid instead of City is used as a data
label in the scatter plot to avoid label collisions.

title 'Mean Temperature in January and July for Selected Cities';
proc sgplot data=Temperature;

scatter x=July y=January / datalabel=CityId;
run;

The results are displayed in Output 79.1.1, which shows a scatter plot of the 64 pairs of data points in which
July temperatures are plotted against January temperatures.
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Output 79.1.1 Plot of Raw Data

The following step requests a principal component analysis of the Temperature data set:

ods graphics on;

title 'Mean Temperature in January and July for Selected Cities';
proc princomp data=Temperature cov plots=score(ellipse);

var July January;
id CityId;

run;

Output 79.1.2 displays the PROC PRINCOMP output. The standard deviation of January (11.712) is higher
than the standard deviation of July (5.128). The COV option in the PROC PRINCOMP statement requests
that the principal components be computed from the covariance matrix. The total variance is 163.474. The
first principal component accounts for about 94% of the total variance, and the second principal component
accounts for only about 6%. The eigenvalues sum to the total variance.

Note that January receives a higher loading on Prin1 because it has a higher standard deviation than July.
Also note that the PRINCOMP procedure calculates the scores by using the centered variables rather than the
standardized variables.
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Output 79.1.2 Results of Principal Component Analysis

Mean Temperature in January and July for Selected Cities

The PRINCOMP Procedure

Mean Temperature in January and July for Selected Cities

The PRINCOMP Procedure

Observations 64

Variables 2

Simple Statistics

July January

Mean 75.60781250 32.09531250

StD 5.12761910 11.71243309

Covariance Matrix

July January

July 26.2924777 46.8282912

January 46.8282912 137.1810888

Total Variance 163.47356647

Eigenvalues of the Covariance Matrix

Eigenvalue Difference Proportion Cumulative

1 154.310607 145.147647 0.9439 0.9439

2 9.162960 0.0561 1.0000

Eigenvectors

Prin1 Prin2

July 0.343532 0.939141

January 0.939141 -.343532

The PLOTS=SCORE option in the PROC PRINCOMP statement requests a plot of the second principal
component against the first principal component, as shown in Output 79.1.3. It is clear from this plot that the
principal components are orthogonal rotations of the original variables and that the first principal component
has a larger variance than the second principal component. In fact, the first component has a larger variance
than either of the original variables, July and January. The ellipse indicates that Miami, Phoenix, and Portland
are possible outliers.
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Output 79.1.3 Plot of Component 2 by Component 1

Example 79.2: Analyzing Rankings of US College Basketball Teams
The data in this example are rankings of 35 US college basketball teams. The rankings were made before
the start of the 1985–86 season by 10 news services. The purpose of the principal component analysis is to
compute a single variable that best summarizes all 10 preseason rankings. Note that the various news services
rank different numbers of teams, ranging from 20 to 30 (one of the variables, WashPost, has a missing rank).
And, of course, not all news services rank the same teams, so there are missing values in these data. Each of
the 35 teams is ranked by at least one news service.

The PRINCOMP procedure omits observations that have missing values. To obtain principal component
scores for all the teams, you must replace the missing values. Because it is the best teams that are ranked,
it is not appropriate to replace missing values with the mean of the nonmissing values. Instead, an ad hoc
method is used that replaces missing values with the mean of the unassigned ranks. For example, if a news
service ranks 20 teams, then ranks 21 through 35 are unassigned. The mean of ranks 21 through 35 is 28,
so missing values for that variable are replaced by the value 28. To prevent the method of missing-value
replacement from having an undue effect on the analysis, each observation is weighted according to the
number of nonmissing values that it has. For an alternative analysis of these data, see Example 80.2 in
Chapter 80, “The PRINQUAL Procedure.”

Because the first principal component accounts for 78% of the variance, there is substantial agreement among
the rankings. The eigenvector shows that all the news services are about equally weighted; this is also
suggested by the nearly horizontal line of the pattern profile plot in Output 79.2.3. So a simple average would
work almost as well as the first principal component. The following statements produce Output 79.2.1.
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/*-----------------------------------------------------------*/
/* */
/* Pre-season 1985 College Basketball Rankings */
/* (rankings of 35 teams by 10 news services) */
/* */
/* Note: (a) news services rank varying numbers of teams; */
/* (b) not all teams are ranked by all news services; */
/* (c) each team is ranked by at least one service; */
/* (d) rank 20 is missing for UPI. */
/* */
/*-----------------------------------------------------------*/

data HoopsRanks;
input School $13. CSN DurSun DurHer WashPost USAToday

Sport InSports UPI AP SI;
label CSN = 'Community Sports News (Chapel Hill, NC)'

DurSun = 'Durham Sun'
DurHer = 'Durham Morning Herald'
WashPost = 'Washington Post'
USAToday = 'USA Today'
Sport = 'Sport Magazine'
InSports = 'Inside Sports'
UPI = 'United Press International'
AP = 'Associated Press'
SI = 'Sports Illustrated'
;

format CSN--SI 5.1;
datalines;

Louisville 1 8 1 9 8 9 6 10 9 9
Georgia Tech 2 2 4 3 1 1 1 2 1 1
Kansas 3 4 5 1 5 11 8 4 5 7
Michigan 4 5 9 4 2 5 3 1 3 2
Duke 5 6 7 5 4 10 4 5 6 5
UNC 6 1 2 2 3 4 2 3 2 3
Syracuse 7 10 6 11 6 6 5 6 4 10
Notre Dame 8 14 15 13 11 20 18 13 12 .
Kentucky 9 15 16 14 14 19 11 12 11 13
LSU 10 9 13 . 13 15 16 9 14 8
DePaul 11 . 21 15 20 . 19 . . 19
Georgetown 12 7 8 6 9 2 9 8 8 4
Navy 13 20 23 10 18 13 15 . 20 .
Illinois 14 3 3 7 7 3 10 7 7 6
Iowa 15 16 . . 23 . . 14 . 20
Arkansas 16 . . . 25 . . . . 16
Memphis State 17 . 11 . 16 8 20 . 15 12
Washington 18 . . . . . . 17 . .
UAB 19 13 10 . 12 17 . 16 16 15
UNLV 20 18 18 19 22 . 14 18 18 .
NC State 21 17 14 16 15 . 12 15 17 18
Maryland 22 . . . 19 . . . 19 14
Pittsburgh 23 . . . . . . . . .
Oklahoma 24 19 17 17 17 12 17 . 13 17
Indiana 25 12 20 18 21 . . . . .
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Virginia 26 . 22 . . 18 . . . .
Old Dominion 27 . . . . . . . . .
Auburn 28 11 12 8 10 7 7 11 10 11
St. Johns 29 . . . . 14 . . . .
UCLA 30 . . . . . . 19 . .
St. Joseph's . . 19 . . . . . . .
Tennessee . . 24 . . 16 . . . .
Montana . . . 20 . . . . . .
Houston . . . . 24 . . . . .
Virginia Tech . . . . . . 13 . . .
;

/* PROC MEANS is used to output a data set containing the */
/* maximum value of each of the newspaper and magazine */
/* rankings. The output data set, maxrank, is then used */
/* to set the missing values to the next highest rank plus */
/* thirty-six, divided by two (that is, the mean of the */
/* missing ranks). This ad hoc method of replacing missing */
/* values is based more on intuition than on rigorous */
/* statistical theory. Observations are weighted by the */
/* number of nonmissing values. */
/* */

title 'Pre-Season 1985 College Basketball Rankings';
proc means data=HoopsRanks;

output out=MaxRank
max=CSNMax DurSunMax DurHerMax

WashPostMax USATodayMax SportMax
InSportsMax UPIMax APMax SIMax;

run;

Output 79.2.1 Summary Statistics for Basketball Rankings from Using PROC MEANS

Pre-Season 1985 College Basketball Rankings

The MEANS Procedure

Pre-Season 1985 College Basketball Rankings

The MEANS Procedure

Variable Label N Mean Std Dev Minimum Maximum

CSN
DurSun
DurHer
WashPost
USAToday
Sport
InSports
UPI
AP
SI

Community Sports News (Chapel Hill, NC)
Durham Sun
Durham Morning Herald
Washington Post
USA Today
Sport Magazine
Inside Sports
United Press International
Associated Press
Sports Illustrated

30
20
24
19
25
20
20
19
20
20

15.5000000
10.5000000
12.5000000
10.4210526
13.0000000
10.5000000
10.5000000
10.0000000
10.5000000
10.5000000

8.8034084
5.9160798
7.0710678
6.0673607
7.3598007
5.9160798
5.9160798
5.6273143
5.9160798
5.9160798

1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000

30.0000000
20.0000000
24.0000000
20.0000000
25.0000000
20.0000000
20.0000000
19.0000000
20.0000000
20.0000000
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The following statements produce Output 79.2.2 and Output 79.2.3:

data Basketball;
set HoopsRanks;
if _n_=1 then set MaxRank;
array Services{10} CSN--SI;
array MaxRanks{10} CSNMax--SIMax;
keep School CSN--SI Weight;
Weight=0;
do i=1 to 10;

if Services{i}=. then Services{i}=(MaxRanks{i}+36)/2;
else Weight=Weight+1;

end;
run;

ods graphics on;

proc princomp data=Basketball n=1 out=PCBasketball standard
plots=patternprofile;

var CSN--SI;
weight Weight;

run;

Output 79.2.2 Principal Component Analysis of Basketball Rankings by Using PROC PRINCOMP

Pre-Season 1985 College Basketball Rankings

The PRINCOMP Procedure

Pre-Season 1985 College Basketball Rankings

The PRINCOMP Procedure

Observations 35

Variables 10

Simple Statistics

CSN DurSun DurHer WashPost USAToday Sport

Mean 13.33640553 13.06451613 12.88018433 13.83410138 12.55760369 13.83870968

StD 22.08036285 21.66394183 21.38091837 23.47841791 20.48207965 23.37756267

Simple Statistics

InSports UPI AP SI

Mean 13.24423963 13.59216590 12.83410138 13.52534562

StD 22.20231526 23.25602811 21.40782406 22.93219584
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Output 79.2.2 continued

Correlation Matrix

CSN DurSun DurHer WashPost USAToday Sport InSports UPI AP SI

CSN Community Sports News
(Chapel Hill, NC)

1.0000 0.6505 0.6415 0.6121 0.7456 0.4806 0.6558 0.7007 0.6779 0.6135

DurSun Durham Sun 0.6505 1.0000 0.8341 0.7667 0.8860 0.6940 0.7702 0.9015 0.8437 0.7518

DurHer Durham Morning Herald 0.6415 0.8341 1.0000 0.7035 0.8877 0.7788 0.7900 0.7676 0.8788 0.7761

WashPost Washington Post 0.6121 0.7667 0.7035 1.0000 0.7984 0.6598 0.8717 0.6953 0.7809 0.5952

USAToday USA Today 0.7456 0.8860 0.8877 0.7984 1.0000 0.7716 0.8475 0.8539 0.9479 0.8426

Sport Sport Magazine 0.4806 0.6940 0.7788 0.6598 0.7716 1.0000 0.7176 0.6220 0.8217 0.7701

InSports Inside Sports 0.6558 0.7702 0.7900 0.8717 0.8475 0.7176 1.0000 0.7920 0.8830 0.7332

UPI United Press International 0.7007 0.9015 0.7676 0.6953 0.8539 0.6220 0.7920 1.0000 0.8436 0.7738

AP Associated Press 0.6779 0.8437 0.8788 0.7809 0.9479 0.8217 0.8830 0.8436 1.0000 0.8212

SI Sports Illustrated 0.6135 0.7518 0.7761 0.5952 0.8426 0.7701 0.7332 0.7738 0.8212 1.0000

Eigenvalues of the Correlation Matrix

Eigenvalue Difference Proportion Cumulative

1 7.88601647 0.7886 0.7886

Eigenvectors

Prin1

CSN Community Sports News (Chapel Hill, NC) 0.270205

DurSun Durham Sun 0.326048

DurHer Durham Morning Herald 0.324392

WashPost Washington Post 0.300449

USAToday USA Today 0.345200

Sport Sport Magazine 0.293881

InSports Inside Sports 0.324088

UPI United Press International 0.319902

AP Associated Press 0.342151

SI Sports Illustrated 0.308570
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Output 79.2.3 Pattern Profile Plot

The following statements produce Output 79.2.4:

proc sort data=PCBasketball;
by Prin1;

run;

proc print;
var School Prin1;
title 'Pre-Season 1985 College Basketball Rankings';
title2 'College Teams as Ordered by PROC PRINCOMP';

run;
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Output 79.2.4 Basketball Rankings from Using PROC PRINCOMP

Pre-Season 1985 College Basketball Rankings
College Teams as Ordered by PROC PRINCOMP
Pre-Season 1985 College Basketball Rankings
College Teams as Ordered by PROC PRINCOMP

Obs School Prin1

1 Georgia Tech -0.58068

2 UNC -0.53317

3 Michigan -0.47874

4 Kansas -0.40285

5 Duke -0.38464

6 Illinois -0.33586

7 Syracuse -0.31578

8 Louisville -0.31489

9 Georgetown -0.29735

10 Auburn -0.09785

11 Kentucky 0.00843

12 LSU 0.00872

13 Notre Dame 0.09407

14 NC State 0.19404

15 UAB 0.19771

16 Oklahoma 0.23864

17 Memphis State 0.25319

18 Navy 0.28921

19 UNLV 0.35103

20 DePaul 0.43770

21 Iowa 0.50213

22 Indiana 0.51713

23 Maryland 0.55910

24 Arkansas 0.62977

25 Virginia 0.67586

26 Washington 0.67756

27 Tennessee 0.70822

28 St. Johns 0.71425

29 Virginia Tech 0.71638

30 St. Joseph's 0.73492

31 UCLA 0.73965

32 Pittsburgh 0.75078

33 Houston 0.75534

34 Montana 0.75790

35 Old Dominion 0.76821
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Example 79.3: Analyzing Job Ratings of Police Officers
This example uses the PRINCOMP procedure to analyze job performance. Police officers were rated by their
supervisors in 14 categories as part of standard police department administrative procedure.

The following statements create the Jobratings data set:

options validvarname=any;
data Jobratings;

input 'Communication Skills'n 'Problem Solving'n
'Learning Ability'n 'Judgment Under Pressure'n
'Observational Skills'n 'Willingness to Confront Problems'n
'Interest in People'n 'Interpersonal Sensitivity'n
'Desire for Self-Improvement'n 'Appearance'n
'Dependability'n 'Physical Ability'n
'Integrity'n 'Overall Rating'n;

datalines;
2 6 8 3 8 8 5 3 8 7 9 8 6 7 7 4 7 5 8 8 7 6 8 5 7 6 6 7 5 6 7 5 7 8 6 3 7 7 5
8 7 5 6 7 8 6 9 7 7 7 9 8 8 9 9 7 9 9 9 9 7 7 9 8 8 7 8 8 8 8 8 9 8 9 7 8 9 9
8 8 8 7 9 9 8 9 9 9 9 8 8 9 8 9 9 7 9 8 8 7 7 9 4 7 9 8 4 6 8 8 8 6 3 5 6 5 2

... more lines ...

7 8 9 9 7 9 9 7 9 9 9 9 8 9 9 8 9 9 8 9 9 8 9 9 7 6 6 5 6 3 9 9 5 6 7 4 8 6
;

The Jobratings data set contains 14 variables. Each variable contains the job ratings, which use a scale
measurement from 1 to 10 (1=fail to comply, 10=exceptional). The last variable, Overall Rating, contains a
score as an overall index of how each officer performs.

The following statements request a principal component analysis of the Jobratings data set, output the scores
to the Scores data set (OUT= Scores), and produce default plots. Note that the variable Overall Rating is
excluded from the analysis.

ods graphics on;

proc princomp data=Jobratings(drop='Overall Rating'n);
run;
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Figure 79.3.1 and Figure 79.3.2 display the PROC PRINCOMP output, beginning with simple statistics
and then the correlation matrix. By default, PROC PRINCOMP computes principal components from the
correlation matrix, so the total variance is equal to the number of variables, 13. In this example, it would
also be reasonable to use the COV option, which would cause variables that have a high variance (such as
Dependability) to influence the results more than variables that have a low variance (such as Learning Ability).
If you used the COV option, scores would be computed from centered rather than standardized variables.

Output 79.3.1 Simple Statistics and Correlation Matrix from Using PROC PRINCOMP

The PRINCOMP ProcedureThe PRINCOMP Procedure

Observations 37

Variables 13

Simple Statistics

Communication
Skills

Problem
Solving

Learning
Ability

Judgment
Under

Pressure
Observational

Skills

Willingness
to Confront

Problems
Interest in

People

Mean 6.567567568 6.675675676 6.891891892 6.378378378 7.081081081 6.756756757 6.675675676

StD 1.878837414 1.748873511 1.696135866 2.252792728 1.816259563 2.126622327 1.871631108

Simple Statistics

Interpersonal
Sensitivity

Desire for
Self-Improvement Appearance Dependability

Physical
Ability Integrity

Mean 6.540540541 7.027027027 7.135135135 7.027027027 7.162162162 7.081081081

StD 2.218540494 1.707605316 1.436859271 1.499749729 1.343988953 1.460182226
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Output 79.3.1 continued

Correlation Matrix

Communication
Skills

Problem
Solving

Learning
Ability

Judgment
Under

Pressure
Observational

Skills

Willingness
to

Confront
Problems

Interest
in

People

Communication Skills 1.0000 0.7254 0.3685 0.6107 0.4338 0.5708 0.4646

Problem Solving 0.7254 1.0000 0.6715 0.6877 0.6207 0.6504 0.3828

Learning Ability 0.3685 0.6715 1.0000 0.5126 0.7603 0.3545 0.1024

Judgment Under Pressure 0.6107 0.6877 0.5126 1.0000 0.5761 0.6227 0.5635

Observational Skills 0.4338 0.6207 0.7603 0.5761 1.0000 0.4655 0.2449

Willingness to Confront Problems 0.5708 0.6504 0.3545 0.6227 0.4655 1.0000 0.4751

Interest in People 0.4646 0.3828 0.1024 0.5635 0.2449 0.4751 1.0000

Interpersonal Sensitivity 0.2975 0.3113 0.3112 0.4915 0.4921 0.2170 0.5652

Desire for Self-Improvement 0.0211 0.1890 0.3079 0.1489 0.4113 0.1931 0.3765

Appearance -.0086 0.1064 0.1885 0.1382 0.0915 0.1111 0.2750

Dependability -.2619 -.0389 0.0121 -.1347 -.1640 0.2286 0.1220

Physical Ability -.1145 -.0361 0.0932 -.1217 0.0741 0.1114 0.0215

Integrity -.2096 -.1852 -.1085 -.1025 -.0549 -.1813 0.1115

Correlation Matrix

Interpersonal
Sensitivity

Desire for
Self-Improvement Appearance Dependability

Physical
Ability Integrity

Communication Skills 0.2975 0.0211 -.0086 -.2619 -.1145 -.2096

Problem Solving 0.3113 0.1890 0.1064 -.0389 -.0361 -.1852

Learning Ability 0.3112 0.3079 0.1885 0.0121 0.0932 -.1085

Judgment Under Pressure 0.4915 0.1489 0.1382 -.1347 -.1217 -.1025

Observational Skills 0.4921 0.4113 0.0915 -.1640 0.0741 -.0549

Willingness to Confront Problems 0.2170 0.1931 0.1111 0.2286 0.1114 -.1813

Interest in People 0.5652 0.3765 0.2750 0.1220 0.0215 0.1115

Interpersonal Sensitivity 1.0000 0.5460 0.4121 0.0790 0.1747 0.1747

Desire for Self-Improvement 0.5460 1.0000 0.5645 0.2166 0.3248 0.3667

Appearance 0.4121 0.5645 1.0000 0.5525 0.3479 0.4183

Dependability 0.0790 0.2166 0.5525 1.0000 0.5628 0.3415

Physical Ability 0.1747 0.3248 0.3479 0.5628 1.0000 0.5027

Integrity 0.1747 0.3667 0.4183 0.3415 0.5027 1.0000

Figure 79.3.2 displays the eigenvalues. The first principal component accounts for about 50% of the total
variance, the second principal component accounts for about 13.6%, and the third principal component
accounts for about 7.7%. Note that the eigenvalues sum to the total variance. The eigenvalues indicate that
three to five components provide a good summary of the data: three components account for about 71.7% of
the total variance, and five components account for about 82.7%. Subsequent components account for less
than 5% each.
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Output 79.3.2 Eigenvalues and Eigenvectors from Using PROC PRINCOMP

Eigenvalues of the Correlation Matrix

Eigenvalue Difference Proportion Cumulative

1 4.69468687 1.81899683 0.3611 0.3611

2 2.87569003 1.67100277 0.2212 0.5823

3 1.20468727 0.03118935 0.0927 0.6750

4 1.17349791 0.45846322 0.0903 0.7653

5 0.71503470 0.15713583 0.0550 0.8203

6 0.55789887 0.09269082 0.0429 0.8632

7 0.46520805 0.04118763 0.0358 0.8990

8 0.42402041 0.13454552 0.0326 0.9316

9 0.28947489 0.06869311 0.0223 0.9539

10 0.22078178 0.03221769 0.0170 0.9708

11 0.18856410 0.06620108 0.0145 0.9853

12 0.12236302 0.05427092 0.0094 0.9948

13 0.06809210 0.0052 1.0000

Eigenvectors

Prin1 Prin2 Prin3 Prin4 Prin5 Prin6 Prin7

Communication Skills 0.323548 -.236730 0.206727 0.092655 0.293138 0.260352 -.215988

Problem Solving 0.383857 -.160898 -.091224 0.212751 0.025258 0.252518 -.140816

Learning Ability 0.322899 -.050464 -.553565 0.056656 -.138393 0.168405 0.150062

Judgment Under Pressure 0.379958 -.142821 0.155157 -.025467 0.043612 0.175269 0.361045

Observational Skills 0.359246 -.067434 -.424397 -.148191 0.093417 -.221005 0.022944

Willingness to Confront Problems 0.333754 -.064285 0.183338 0.459764 -.024447 -.304704 -.247094

Interest in People 0.296160 0.082187 0.575827 -.140226 0.023973 -.159653 -.015476

Interpersonal Sensitivity 0.302693 0.180810 0.119231 -.432281 -.047507 -.238610 0.501550

Desire for Self-Improvement 0.225795 0.344251 -.123236 -.333516 -.174557 -.266896 -.621875

Appearance 0.158341 0.425329 0.052469 -.022665 -.441729 0.494677 -.051864

Dependability 0.025597 0.427337 0.079019 0.520679 -.289013 -.044047 0.221520

Physical Ability 0.052980 0.418985 -.185687 0.312555 0.486621 -.299641 0.145579

Integrity -.006172 0.435225 0.015874 -.147905 0.578186 0.421421 -.087126

Eigenvectors

Prin8 Prin9 Prin10 Prin11 Prin12 Prin13

Communication Skills -.550645 -.050648 0.107002 0.262509 0.341232 0.291574

Problem Solving -.104392 0.283104 0.221940 -.548010 -.492803 -.073999

Learning Ability 0.055518 0.391053 -.223399 0.132338 0.442471 -.307096

Judgment Under Pressure 0.391055 -.315796 -.392714 -.286021 0.111225 0.382730

Observational Skills 0.177808 -.141401 0.225326 0.502509 -.416669 0.278776

Willingness to Confront Problems 0.259896 -.387665 0.158552 0.047611 0.168464 -.459746

Interest in People 0.131682 0.540942 -.277206 0.299254 -.197252 -.112818

Interpersonal Sensitivity -.303435 -.097727 0.393688 -.196906 0.137833 -.222427

Desire for Self-Improvement 0.020842 0.018350 -.105222 -.293349 0.219662 0.263644

Appearance -.204081 -.350816 -.186793 0.226289 -.256802 -.177399

Dependability 0.079762 0.250326 0.336689 0.049300 0.146711 0.445532

Physical Ability -.340453 -.072184 -.432711 -.090520 -.154868 -.034075

Integrity 0.396179 0.030130 0.284351 0.021483 0.113790 -.129601
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PROC PRINCOMP produces the scree plot as shown in Figure 79.3.3 by default when ODS Graphics is
enabled. You can obtain more plots by specifying the PLOTS= option in the PROC PRINCOMP statement.

The scree plot on the left shows that the eigenvalue of the first component is approximately 6.5 and the
eigenvalue of the second component is largely decreased to under 2.0. The variance explained plot on the
right shows that the first four principal components account for nearly 80% of the total variance.

Output 79.3.3 Scree Plot from Using PROC PRINCOMP

The first component reflects overall performance, because the first eigenvector shows approximately equal
loadings on all variables. The second eigenvector has high positive loadings on the variables Observational
Skills and Willingness to Confront Problems but even higher negative loadings on the variables Interest in
People and Interpersonal Sensitivity. This component seems to reflect the ability to take action, but it also
reflects a lack of interpersonal skills. The third eigenvector has a very high positive loading on the variable
Physical Ability and high negative loadings on the variables Problem Solving and Learning Ability. This
component seems to reflect physical strength, but it also shows poor learning and problem-solving skills.

In short, the three components represent the following:

First component: overall performance

Second component: smartness, toughness, and introversion

Third component: superior strength and average intellect

PROC PRINCOMP also produces other plots besides the scree plot, that help interpret the results. The
following statements request plots from the PRINCOMP procedure:

proc princomp data=Jobratings(drop='Overall Rating'n)
n=5 plots(ncomp=3)=all;

run;
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The N=5 option sets the number of principal components to five. The option PLOTS(NCOMP=3)=ALL
produces all plots but limits to three the number of components that are displayed in the component pattern
plots and the component score plots.

Output 79.3.4 shows a matrix plot of component scores for the first five principal components. The histogram
of each component is displayed in the diagonal element of the matrix. The histograms indicate that the first
principal component is skewed to the left and the second principal component is slightly skewed to the right.

Output 79.3.4 Matrix Plot of Component Scores
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The pairwise component pattern plots are shown in Output 79.3.5 through Output 79.3.7. The pattern plots
show the following:

• All variables positively and evenly correlate with the first principal component (Output 79.3.5 and
Output 79.3.6).

• The variables Observational Skills and Willingness to Confront Problems correlate highly with the
second component, and the variables Interest in People and Interpersonal Sensitivity correlate highly
but negatively with the second component (Output 79.3.5).

• The variable Physical Ability correlates highly with the third component, and the variables Problem
Solving and Learning Ability correlate highly but negatively with the third component (Output 79.3.6).

• The variables Observational Skills, Willingness to Confront Problems, Interest in People, and Interper-
sonal Sensitivity correlate highly (either positively or negatively) with the second component, but all
these variables have very low correlations with the third component; the variables Physical Ability and
Problem Solving correlate highly (either positively or negatively) with the third component, but both
variables have very low correlations with the second component (Output 79.3.7).

Output 79.3.5 Pattern Plot of Component 2 by Component 1
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Output 79.3.6 Pattern Plot of Component 3 by Component 1

Output 79.3.7 Pattern Plot of Component 3 by Component 2
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Output 79.3.8 shows a component pattern profile. As is shown in the pattern plots, the nearly horizontal
profile from the first component indicates that the first component is mostly correlated evenly across all
variables.

Output 79.3.8 Component Pattern Profile Plot from Using PROC PRINCOMP
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Output 79.3.9 through Output 79.3.11 display the pairwise component score plots. Observation numbers are
used as the plotting symbol.

Output 79.3.9 shows a scatter plot of the first and second components. Observations 4 and 31 seem like
outliers on the first component. Observations 22 and 30 can be potential outliers on the second component.

Output 79.3.9 Component 2 versus Component 1
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Output 79.3.10 shows a scatter plot of the first and third components. Observations 4 and 31 seem like
outliers on the first component.

Output 79.3.10 Component 3 versus Component 1
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Output 79.3.11 shows a scatter plot of the second and third components. Observations 22 and 30 can be
potential outliers on the second component.

Output 79.3.11 Component 3 versus Component 2
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Output 79.3.12 shows a scatter plot of the second and third components, displaying the first component in
color. Color interpolation ranges from red (minimum) to blue (middle) to green (maximum).

Output 79.3.12 Component 3 versus Component 2, Painted by Component 1

References

Cooley, W. W. and Lohnes, P. R. (1971), Multivariate Data Analysis, New York: John Wiley & Sons.

Gnanadesikan, R. (1977), Methods for Statistical Data Analysis of Multivariate Observations, New York:
John Wiley & Sons.

Hotelling, H. (1933), “Analysis of a Complex of Statistical Variables into Principal Components,” Journal of
Educational Psychology, 24, 417–441, 498–520.

Kshirsagar, A. M. (1972), Multivariate Analysis, New York: Marcel Dekker.

Mardia, K. V., Kent, J. T., and Bibby, J. M. (1979), Multivariate Analysis, London: Academic Press.

Morrison, D. F. (1976), Multivariate Statistical Methods, 2nd Edition, New York: McGraw-Hill.

Pearson, K. (1901), “On Lines and Planes of Closest Fit to Systems of Points in Space,” Philosophical
Magazine, 6, 559–572.

Rao, C. R. (1964), “The Use and Interpretation of Principal Component Analysis in Applied Research,”
Sankhy Na, Series A, 26, 329–358.



Chapter 80

The PRINQUAL Procedure

Contents
Overview: PRINQUAL Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6628
Getting Started: PRINQUAL Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6630
Syntax: PRINQUAL Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6634

PROC PRINQUAL Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6634
BY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6642
FREQ Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6643
ID Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6643
TRANSFORM Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6643
WEIGHT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6650

Details: PRINQUAL Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6651
The Three Methods of Variable Transformation . . . . . . . . . . . . . . . . . . . . . 6651
Understanding How PROC PRINQUAL Works . . . . . . . . . . . . . . . . . . . . . 6652
Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6656
Missing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6657
Controlling the Number of Iterations . . . . . . . . . . . . . . . . . . . . . . . . . . 6657
Performing a Principal Component Analysis of Transformed Data . . . . . . . . . . . 6658
Using the MAC Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6658
Output Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6659
Avoiding Constant Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . 6662
Constant Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6662
Character OPSCORE Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6662
REITERATE Option Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6662
Passive Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6663
Computational Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6664
Displayed Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6665
ODS Table Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6666
ODS Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6666

Examples: PRINQUAL Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6667
Example 80.1: Multidimensional Preference Analysis of Automobile Data . . . . . . 6667
Example 80.2: Principal Components of Basketball Rankings . . . . . . . . . . . . . 6675

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6683



6628 F Chapter 80: The PRINQUAL Procedure

Overview: PRINQUAL Procedure
The PRINQUAL procedure performs principal component analysis (PCA) of qualitative, quantitative, or
mixed data. PROC PRINQUAL is based on the work of Kruskal and Shepard (1974); Young, Takane, and
de Leeuw (1978); Young (1981); Winsberg and Ramsay (1983). PROC PRINQUAL finds linear and nonlinear
transformations of variables, using the method of alternating least squares, that optimize properties of the
transformed variables’ correlation or covariance matrix. Nonoptimal transformations such as logarithm and
rank are also available. You can use ODS Graphics to display the results. You can use PROC PRINQUAL to
do the following:

• fit metric and nonmetric principal component analyses

• perform metric and nonmetric multidimensional preference (MDPREF) analyses (Carroll 1972)

• transform data prior to their use in other analyses

• reduce the number of variables for subsequent use in regression analyses, cluster analyses, and other
analyses

• detect nonlinear relationships

PROC PRINQUAL provides three methods, each of which seeks to optimize a different property of the
transformed variables’ covariance or correlation matrix. These methods are as follows:

• maximum total variance, or MTV
• minimum generalized variance, or MGV
• maximum average correlation, or MAC

The MTV method is based on a PCA model, and it is the most commonly used method. All three methods
attempt to find transformations that decrease the rank of the covariance matrix computed from the trans-
formed variables. Transforming the variables to maximize the total variance accounted for by a few linear
combinations locates the observations in a space with a dimensionality that approximates the stated number
of linear combinations as much as possible, given the transformation constraints. Transforming the variables
to minimize their generalized variance or maximize the average correlations also reduces the dimensionality,
but without a stated target for the final dimensionality. See the section “The Three Methods of Variable
Transformation” on page 6651 for more information about all three methods.
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The data can contain variables measured on nominal, ordinal, interval, and ratio scales of measurement
(Siegel 1956). Any mix is allowed with all methods. PROC PRINQUAL can do the following:

• transform nominal variables by optimally scoring the categories (Fisher 1938)

• transform ordinal variables monotonically by scoring the ordered categories so that order is weakly
preserved (adjacent categories can be merged) and the covariance matrix is optimized. You can undo
ties optimally or leave them tied (Kruskal 1964). You can also transform ordinal variables to ranks.

• transform interval and ratio scale of measurement variables linearly, or transform them nonlinearly
with spline transformations (De Boor 1978; van Rijckevorsel 1982) or monotone spline transformations
(Winsberg and Ramsay 1983). In addition, nonoptimal transformations for logarithm, rank, exponential,
power, logit, and inverse trigonometric sine are available.

• estimate missing data without constraint, with category constraints (missing values within the same
group get the same value), and with order constraints (missing value estimates in adjacent groups can
be tied to preserve a specified ordering). See Gifi (1990) and Young (1981).

The transformed qualitative (nominal and ordinal) variables can be thought of as being quantified by the
analysis, with the quantification done in the context set by the algorithm. The data are quantified so that
the proportion of variance accounted for by a stated number of principal components is locally maximized,
the generalized variance of the variables is locally minimized, or the average of the correlations is locally
maximized.

The PROC PRINQUAL iterations produce a set of transformed variables. Each variable’s new scoring
satisfies a set of constraints based on the original scoring of the variable and the specified transformation type.
First, all variables are required to satisfy standardization constraints; that is, all variables have a fixed mean
and variance. The other constraints include linear constraints, weak order constraints, category constraints,
and smoothness constraints. The new set of scores is selected from the sets of possible scorings that do not
violate the constraints so that the method criterion is locally optimized.
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Getting Started: PRINQUAL Procedure
PROC PRINQUAL can be used to fit a principal component model with nonlinear transformations of the
variables and graphically display the results. This example finds monotonic transformations of ratings of
automobiles.

title 'Ratings for Automobiles Manufactured in 1980';

data cars;
input Origin $ 1-8 Make $ 10-19 Model $ 21-36

(MPG Reliability Acceleration Braking Handling Ride
Visibility Comfort Quiet Cargo) (1.);

datalines;
GMC Buick Century 3334444544
GMC Buick Electra 2434453555
GMC Buick Lesabre 2354353545
GMC Buick Regal 3244443424

... more lines ...

GMC Pontiac Sunbird 3134533234
;

ods graphics on;

proc prinqual data=cars plots=all maxiter=100;
transform monotone(mpg -- cargo);
id model;

run;

The PROC PRINQUAL statement names the input data set Cars. The ODS GRAPHICS statement, along
with the PLOTS=ALL option, requests all graphical displays. The MDPREF option requests the PCA plot
with the scores (automobiles) represented as points and the structure (variables) represented as vectors. By
default, the vector lengths are increased by a factor of 2.5 to produce a better graphical display. If instead you
were to specify MDPREF=1, you would get the actual vectors, and they would all be short and would end
near the origin where there are a lot of points. It is often the case that increasing the vector lengths by a factor
of 2 or 3 makes a better graphical display, so by default the vector lengths are increased by a factor of 2.5.
Up to 100 iterations are requested with the MAXITER= option. All of the numeric variable are specified
with a MONOTONE transformation, so their original values, 1 to 5, are optimally rescored to maximize fit to
a two-component model while preserving the original order. The Model variable provides the labels for the
row points in the plot.

The iteration history table is shown in Figure 80.1. The monotonic transformations allow the PCA to account
for 5% more variance in two principal components than the ordinary PCA model applied to the untransformed
data.
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Figure 80.1 Automobile Ratings Iteration History

Ratings for Automobiles Manufactured in 1980

The PRINQUAL Procedure

Ratings for Automobiles Manufactured in 1980

The PRINQUAL Procedure

PRINQUAL MTV Algorithm Iteration History

Iteration
Number

Average
Change

Maximum
Change

Proportion
of Variance

Criterion
Change Note

1 0.18087 1.24219 0.53742

2 0.06916 0.77503 0.57244 0.03502

3 0.04653 0.38237 0.57978 0.00734

4 0.03387 0.18682 0.58300 0.00321

5 0.02661 0.13506 0.58484 0.00185

6 0.01730 0.09213 0.58600 0.00115

7 0.00969 0.07107 0.58660 0.00061

8 0.00705 0.04798 0.58685 0.00025

9 0.00544 0.03482 0.58699 0.00014

10 0.00442 0.02641 0.58708 0.00009

11 0.00363 0.02062 0.58714 0.00006

12 0.00298 0.01643 0.58717 0.00004

13 0.00245 0.01325 0.58720 0.00002

14 0.00201 0.01077 0.58721 0.00002

15 0.00165 0.00880 0.58723 0.00001

16 0.00136 0.00721 0.58723 0.00001

17 0.00112 0.00591 0.58724 0.00001

18 0.00092 0.00485 0.58724 0.00000

19 0.00075 0.00399 0.58724 0.00000

20 0.00062 0.00328 0.58725 0.00000

21 0.00051 0.00269 0.58725 0.00000

22 0.00042 0.00221 0.58725 0.00000

23 0.00035 0.00182 0.58725 0.00000

24 0.00028 0.00149 0.58725 0.00000

25 0.00023 0.00123 0.58725 0.00000

26 0.00019 0.00101 0.58725 0.00000

27 0.00016 0.00083 0.58725 0.00000

28 0.00013 0.00068 0.58725 0.00000

29 0.00011 0.00056 0.58725 0.00000

30 0.00009 0.00046 0.58725 0.00000

31 0.00007 0.00038 0.58725 0.00000

32 0.00006 0.00031 0.58725 0.00000

33 0.00005 0.00025 0.58725 0.00000

34 0.00004 0.00021 0.58725 0.00000

35 0.00003 0.00017 0.58725 0.00000

36 0.00003 0.00014 0.58725 0.00000

37 0.00002 0.00012 0.58725 0.00000

38 0.00002 0.00010 0.58725 0.00000

39 0.00001 0.00008 0.58725 0.00000

40 0.00001 0.00006 0.58725 0.00000

41 0.00001 0.00005 0.58725 0.00000

42 0.00001 0.00004 0.58725 0.00000 Converged
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Figure 80.1 continued

Algorithm converged.

The PCA biplot in Figure 80.2 shows the transformed automobile ratings projected into the two-dimensional
plane of the analysis. The automobiles on the left tend to be smaller than the autos on the right, and the
autos at the top tend to be cheaper than the autos at the bottom. The vectors can help you interpret the
plot of the scores. Longer vectors show the variables that better fit the two-dimensional model. A larger
component of them is in the plane of the plot. In contrast, shorter vectors show the variables that do not fit
the two-dimensional model as well. They tend to be located less in the plot and more away from the plot;
hence their projection into the plot is shorter. To envision this, lay a pencil on your desk directly under a light,
and slowly rotate it up to form a 90-degree angle with your desk. As you do so, the shadow or projection of
the pencil onto your desk will get progressively shorter. The results show, for example, that the Chevette
would be expected to do well on gas mileage but not well on quiet and acceleration. In contrast, the Corvette
and the Firebird have the opposite pattern.

Figure 80.2 Automobile Ratings PCA Biplot

There are many patterns shown in the transformations in Figure 80.3. The transformation of Braking, for
example, is not very different from the original scoring. The optimal scoring for other variables, such as
Acceleration and Handling, is binary. Automobiles are differentiated by high versus everything else or low
versus everything else.
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Figure 80.3 Automobile Ratings Transformations
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Syntax: PRINQUAL Procedure
The following statements are available in the PRINQUAL procedure:

PROC PRINQUAL < options > ;
TRANSFORM transform(variables < / t-options >)

< transform(variables < / t-options >). . . > ;
ID variables ;
FREQ variable ;
WEIGHT variable ;
BY variables ;

To use PROC PRINQUAL, you need the PROC PRINQUAL and TRANSFORM statements. You can
abbreviate all options and t-options to their first three letters. This is a special feature of PROC PRINQUAL
and is not generally true of other SAS/STAT procedures.

The rest of this section provides detailed syntax information about each of the preceding statements, beginning
with the PROC PRINQUAL statement. The remaining statements are described in alphabetical order.

PROC PRINQUAL Statement
PROC PRINQUAL < options > ;

The PROC PRINQUAL statement invokes the PRINQUAL procedure. Optionally, this statement identifies
an input data set, creates an output data set, specifies the algorithm and other computational details, and
controls displayed output. Table 80.1 summarizes the options available in the PROC PRINQUAL statement.

Table 80.1 Summary of PROC PRINQUAL Statement Options

Option Description

Input Data Set Options
DATA= Specifies input SAS data set

Output Data Set Details
APPROXIMATIONS Outputs approximations to transformed variables
APREFIX= Specifies prefix for approximation variables
CORRELATIONS Outputs correlations and component structure matrix
MDPREF= Specifies a multidimensional preference analysis
OUT= Specifies output data set
PREFIX= Specifies prefix for principal component scores
REPLACE Replaces raw data with transformed data
SCORES Outputs principal component scores
STANDARD Standardizes principal component scores
TPREFIX= Specifies prefix for transformed variables
TSTANDARD= Specifies transformation standardization
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Table 80.1 continued

Option Description

Method and Iterations
CCONVERGE= Specifies minimum criterion change
CHANGE= Specifies number of first iteration to be displayed
CONVERGE= Specifies minimum data change
COVARIANCE Analyzes covariances
DUMMY Initializes using dummy variables
INITITER= Specifies number of MAC initialization iterations
MAXITER= Specifies maximum number of iterations
METHOD= Specifies iterative algorithm
NOCHECK Suppresses numerical error checking
N Specifies number of principal components
REFRESH= Specifies number of MGV models before refreshing
REITERATE Restarts iterations
SINGULAR= Specifies singularity criterion
TYPE= Specifies input observation type

Missing Data Handling
MONOTONE= Includes monotone special missing values
NOMISS Excludes observations with missing values
UNTIE= Unties special missing values

Control Displayed Output
NOPRINT Suppresses displayed output
PLOTS= Specifies ODS Graphics details

The following list describes these options in alphabetical order.

APREFIX=name

APR=name
specifies a prefix for naming the approximation variables. By default, APREFIX=A. Specifying the
APREFIX= option also implies the APPROXIMATIONS option.

APPROXIMATIONS

APPROX

APP
includes principal component approximations to the transformed variables (Eckart and Young 1936) in
the output data set. Variable names are constructed from the value of the APREFIX= option and the
input variable names. If you specify the APREFIX= option, then approximations are automatically
included. If you specify the APPROXIMATIONS option and not the APREFIX= option, then the
APPROXIMATIONS option uses the default, APREFIX=A, to construct the variable names.
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CCONVERGE=n

CCO=n
specifies the minimum change in the criterion being optimized that is required to continue iterating.
By default, CCONVERGE=0.0. The CCONVERGE= option is ignored for METHOD=MAC. For the
MGV method, specify CCONVERGE=–2 to ensure data convergence.

CHANGE=n

CHA=n
specifies the number of the first iteration to be displayed in the iteration history table. The default is
CHANGE=1. When you specify a larger value for n, the first n – 1 iterations are not displayed, thus
speeding up the analysis. The CHANGE= option is most useful with the MGV method, which is much
slower than the other methods.

CONVERGE=n

CON=n
specifies the minimum average absolute change in standardized variable scores that is required to
continue iterating. By default, CONVERGE=0.00001. Average change is computed over only those
variables that can be transformed by the iterations—that is, all LINEAR, OPSCORE, MONOTONE,
UNTIE, SPLINE, MSPLINE, and SSPLINE variables and nonoptimal transformation variables with
missing values. For more information, see the section “Optimal Transformations” on page 6646.

COVARIANCE

COV
computes the principal components from the covariance matrix. The variables are always centered
to mean zero. If you do not specify the COVARIANCE option, the variables are also standardized to
variance one, which means the analysis is based on the correlation matrix.

CORRELATIONS

COR
includes correlations and the component structure matrix in the output data set. By default, this
information is not included.

DATA=SAS-data-set
specifies the SAS data set to be analyzed. The data set must be an ordinary SAS data set; it cannot be a
TYPE=CORR or TYPE=COV data set. If you omit the DATA= option, PROC PRINQUAL uses the
most recently created SAS data set.

DUMMY

DUM
expands variables specified for OPSCORE optimal transformations to dummy variables for the initial-
ization (Tenenhaus and Vachette 1977). By default, the initial values of OPSCORE variables are the
actual data values. The dummy variable nominal initialization requires considerable time and memory,
so it might not be possible to use the DUMMY option with large data sets. No separate report of the
initialization is produced. Initialization results are incorporated into the first iteration displayed in the
iteration history table. For details, see the section “Optimal Transformations” on page 6646.
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INITITER=n

INI=n
specifies the number of MAC iterations required to initialize the data before starting MTV or MGV
iterations. By default, INITITER=0. The INITITER= option is ignored if METHOD=MAC.

MAXITER=n

MAX=n
specifies the maximum number of iterations. By default, MAXITER=30.

MDPREF< =n >

MDP< =n >
specifies a multidimensional preference analysis by implying the STANDARD, SCORES, and COR-
RELATIONS options. This option also suppresses warnings when there are more variables than
observations.

When ODS Graphics is enabled, an MDPREF plot is produced with points for each row and vectors
for each column. Often, the vectors are short, and a better graphical display is produced when the
vectors are stretched. The absolute lengths of each vector can optionally be changed by specifying
MDPREF=n. Then the vector coordinates are all multiplied by n. Usually, n will be a value such as
2, 2.5, or 3. The default is 2.5. Specify MDPREF=1 to see the vectors without any stretching. The
relative lengths of the different vectors is important and interpretable, and these are preserved by the
stretching.

METHOD=MAC | MGV | MTV

MET=MAC | MGV | MTV
specifies the optimization method. By default, METHOD=MTV. Values of the METHOD= option are
MTV, for maximum total variance; MGV, for minimum generalized variance; and MAC, for maximum
average correlation. You can use the MAC method when all variables are positively correlated or when
no monotonicity constraints are placed on any transformations. See the section “The Three Methods of
Variable Transformation” on page 6651 for more information.

MONOTONE=two-letters

MON=two-letters
specifies the first and last special missing value in the list of those special missing values to be estimated
using within-variable order and category constraints. By default, there are no order constraints on
missing value estimates. The two-letters value must consist of two letters in alphabetical order. For
example, MONOTONE=DF means that the estimate of .D must be less than or equal to the estimate of
.E, which must be less than or equal to the estimate of .F; no order constraints are placed on estimates
of ._, .A through .C, and .G through .Z. For details, see the sections “Missing Values” on page 6657
and “Optimal Scaling” on page 8676 in Chapter 104, “The TRANSREG Procedure.”

N=n
specifies the number of principal components to be computed. By default, N=2.
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NOCHECK

NOC
turns off computationally intensive numerical error checking for the MGV method. If you do not
specify the NOCHECK option, the procedure computes R square from the squared length of the
predicted values vector and compares this value to the R square computed from the error sum of
squares that is a byproduct of the sweep algorithm (Goodnight 1978). If the two values of R square
differ by more than the square root of the value of the SINGULAR= option, a warning is displayed,
the value of the REFRESH= option is halved, and the model is refit after refreshing. Specifying the
NOCHECK option slightly speeds up the algorithm. Note that other less computationally intensive
error checking is always performed.

NOMISS

NOM
excludes all observations with missing values from the analysis, but does not exclude them from the
OUT= data set. If you omit the NOMISS option, PROC PRINQUAL simultaneously computes the
optimal transformations of the nonmissing values and estimates the missing values that minimize
squared error.

Casewise deletion of observations with missing values occurs when you specify the NOMISS option,
when there are missing values in IDENTITY variables, when there are weights less than or equal to 0,
or when there are frequencies less than 1. Excluded observations are output with a blank value for the
_TYPE_ variable, and they have a weight of 0. They do not contribute to the analysis but are scored
and transformed as supplementary or passive observations. See the sections “Passive Observations” on
page 6663 and “Missing Values” on page 6657 for more information about excluded observations and
missing data.

NOPRINT

NOP
suppresses the display of all output. This option disables the Output Delivery System (ODS), including
ODS Graphics, for the duration of the procedure. For more information, see Chapter 20, “Using the
Output Delivery System.”

OUT=SAS-data-set
specifies an output SAS data set that contains results of the analysis. If you omit the OUT= option,
PROC PRINQUAL still creates an output data set and names it by using the DATAn convention. If you
want to create a SAS data set in a permanent library, you must specify a two-level name. For more
information about permanent libraries and SAS data sets, see SAS Language Reference: Concepts. You
can use the REPLACE, APPROXIMATIONS, SCORES, and CORRELATIONS options to control
what information is included in the output data set. For details, see the section “Output Data Set” on
page 6659.
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PLOTS < (global-plot-options) > < = plot-request < (options) > >

PLOTS < (global-plot-options) > < = (plot-request < (options) > < ... plot-request < (options) > >) >
controls the plots produced through ODS Graphics. When you specify only one plot request, you can
omit the parentheses from around the plot request. Here are some examples:

plots=none
plots=transformation
plots(unpack)=transformation

ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;

proc prinqual plots=all;
transformation spline(x1-x10);

run;

ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

If ODS Graphics is enabled, but do not specify the PLOTS= option, then PROC PRINQUAL produces
an MDPREF plot when the MDPREF option is specified.

The global plot options include the following:

FLIP

FLI
flips or interchanges the X-axis and Y-axis dimensions for MDPREF plots. The FLIP option can
be specified either as a global plot option (for example, PLOTS(FLIP)) or with the MDPREF
option (for example, PLOTS=MDPREF(FLIP)).

INTERPOLATE

INT
uses observations that are excluded from the analysis for interpolation in the fit and transformation
plots. By default, observations with zero weight are excluded from all plots. These include
observations with a zero, negative, or missing weight or frequency and observations excluded
due to missing and invalid values. You can specify PLOTS(INTERPOLATE)=(plot-requests)
to include some of these observations in the plots. You can use this option, for example, with
sparse data sets to show smoother functions over the range of the data (see the section “The
PLOTS(INTERPOLATE) Option” on page 8714 in Chapter 104, “The TRANSREG Procedure”).

ONLY

ONL
suppresses the default plots. Only plots specifically requested are displayed.
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UNPACKPANEL

UNPACK

UNP
suppresses paneling. By default, multiple plots can appear in some output panels. Specify
UNPACKPANEL to get each plot in a separate panel.

The plot requests include the following:

ALL
produces all appropriate plots.

TRANSFORMATION

TRA

TRANSFORMATION(UNPACK)

TRA(UNP)
plots the variable transformations. By default, multiple plots can appear in some output panels.
Specify UNPACKPANEL to display each plot in a separate panel.

MDPREF

MDP
plots multidimensional preference analysis results. The MDPREF plot can also be requested by
specifying the MDPREF option in the PROC PRINQUAL statement outside the PLOTS= option.

NONE
suppresses all plots.

PREFIX=name

PRE=name
specifies a prefix for naming the principal components. By default, PREFIX=Prin. As a result, the
principal component default names are Prin1, Prin2,. . . , Prinn.

REFRESH=n

REF=n
specifies the number of variables to scale in the MGV method before computing a new inverse. By
default, REFRESH=5. PROC PRINQUAL uses the REFRESH= option in the sweep algorithm of the
MGV method. Large values for the REFRESH= option make the method run faster but with more
numerical error. Small values make the method run more slowly but with more numerical accuracy.

REITERATE

REI
enables PROC PRINQUAL to use previous transformations as starting points. The REITERATE option
affects only variables that are iteratively transformed (specified as LINEAR, SPLINE, MSPLINE,
SSPLINE, UNTIE, OPSCORE, and MONOTONE). For iterative transformations, the REITERATE
option requests a search in the input data set for a variable that consists of the value of the TPREFIX=
option followed by the original variable name. If such a variable is found, it is used to provide the
initial values for the first iteration. The final transformation is a member of the transformation family
defined by the original variable, not the transformation family defined by the initialization variable.
See the section “REITERATE Option Usage” on page 6662.



PROC PRINQUAL Statement F 6641

REPLACE
REP

replaces the original data with the transformed data in the output data set. The names of the transformed
variables in the output data set correspond to the names of the original variables in the input data set.
If you do not specify the REPLACE option, both original variables and transformed variables (with
names constructed from the TPREFIX= option and the original variable names) are included in the
output data set.

SCORES
SCO

includes principal component scores in the output data set. By default, scores are not included.

SINGULAR=n
SIN=n

specifies the largest value within rounding error of zero. By default, SINGULAR=1E–8. PROC
PRINQUAL uses the value of the SINGULAR= option for checking .1 � R2/ when constructing
full-rank matrices of predictor variables, checking denominators before dividing, and so on.

STANDARD
STD

standardizes the principal component scores in the output data set to mean zero and variance one
instead of the default mean zero and variance equal to the corresponding eigenvalue. See the SCORES
option.

TPREFIX=name
TPR=name

specifies a prefix for naming the transformed variables. By default, TPREFIX=T. The TPREFIX=
option is ignored if you specify the REPLACE option.

TSTANDARD=CENTER | NOMISS | ORIGINAL | Z
TST=CEN | NOM | ORI | Z

specifies the standardization of the transformed variables in the OUT= data set. By default, TSTAN-
DARD=ORIGINAL. When you specify the TSTANDARD= option in the PROC PRINQUAL statement,
it the default standardization for all variables. When you specify TSTANDARD= as a t-option, it
overrides the default standardization just for selected variables.

CENTER centers the output variables to mean zero, but the variances are the same as the variances
of the input variables.

NOMISS sets the means and variances of the transformed variables in the OUT= data set,
computed over all output values that correspond to nonmissing values in the input data
set, to the means and variances computed from the nonmissing observations of the
original variables. The TSTANDARD=NOMISS specification is useful with missing
data. When a variable is linearly transformed, the final variable contains the original
nonmissing values and the missing value estimates. In other words, the nonmissing
values are unchanged. If your data have no missing values, TSTANDARD=NOMISS
and TSTANDARD=ORIGINAL produce the same results.

ORIGINAL sets the means and variances of the transformed variables to the means and variances
of the original variables. This is the default.

Z standardizes the variables to mean zero, variance one.
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For nonoptimal variable transformations, the means and variances of the original variables are actually
the means and variances of the nonlinearly transformed variables, unless you specify the ORIGINAL
nonoptimal t-option in the TRANSFORM statement. For example, if a variable X with no missing
values is specified as LOG, then, by default, the final transformation of X is simply LOG(X), not
LOG(X) standardized to the mean of X and variance of X.

TYPE=’text ’|name

TYP=’text ’|name
specifies the valid value for the _TYPE_ variable in the input data set. If PROC PRINQUAL finds
an input _TYPE_ variable, it uses only observations with a _TYPE_ value that matches the TYPE=
value. This enables a PROC PRINQUAL OUT= data set containing correlations to be used as input to
PROC PRINQUAL without requiring a WHERE statement to exclude the correlations. If a _TYPE_
variable is not in the data set, all observations are used. The default is TYPE=’SCORE’, so if you do
not specify the TYPE= option, only observations with _TYPE_ = ’SCORE’ are used.

PROC PRINQUAL displays a note when it reads observations with blank values of _TYPE_, but it does
not automatically exclude those observations. Data sets created by the TRANSREG and PRINQUAL
procedures have blank _TYPE_ values for those observations that were excluded from the analysis due
to nonpositive weights, nonpositive frequencies, or missing data. When these observations are read
again, they are excluded for the same reason that they were excluded from their original analysis, not
because their _TYPE_ value is blank.

UNTIE=two-letters

UNT=two-letters
specifies the first and last special missing values in the list of those special missing values that are
to be estimated with within-variable order constraints but no category constraints. The two-letters
value must consist of two letters in alphabetical order. By default, there are category constraints but no
order constraints on special missing value estimates. For details, see the section “Missing Values” on
page 6657. Also, see the section “Optimal Scaling” on page 8676 in Chapter 104, “The TRANSREG
Procedure.”

BY Statement
BY variables ;

You can specify a BY statement with PROC PRINQUAL to obtain separate analyses of observations in
groups that are defined by the BY variables. When a BY statement appears, the procedure expects the input
data set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last
one specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the PRINQUAL procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
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in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

FREQ Statement
FREQ variable ;

If one variable in the input data set represents the frequency of occurrence for other values in the observation,
list the variable’s name in a FREQ statement. PROC PRINQUAL then treats the data set as if each observation
appeared n times, where n is the value of the FREQ variable for the observation. Noninteger values of the
FREQ variable are truncated to the largest integer less than the FREQ value. The observation is used in the
analysis only if the value of the FREQ statement variable is greater than or equal to 1.

ID Statement
ID variables ;

The ID statement includes additional character or numeric variables in the output data set. The variables
must be contained in the input data set.

TRANSFORM Statement
TRANSFORM transform(variables < / t-options >)< transform(variables < / t-options >). . . > ;

The TRANSFORM statement lists the variables to be analyzed (variables) and specifies the transformation
(transform) to apply to each variable listed. You must specify a transformation for each variable list in the
TRANSFORM statement. The variables are variables in the data set. The t-options are transformation options
that provide details for the transformation; these depend on the transform chosen. The t-options are listed
after a slash in the parentheses that enclose the variables.

For example, the following statements find a quadratic polynomial transformation of all variables in the data
set:

proc prinqual;
transform spline(_all_ / degree=2);

run;

Or, if N1 through N10 are nominal variables and M1 through M10 are ordinal variables, you can use the
following statements:
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proc prinqual;
transform opscore(N1-N10) monotone(M1-M10);

run;

The following sections describe the transformations available (specified with transform) and the options
available for some of the transformations (specified with t-options).

Families of Transformations

There are three types of transformation families: nonoptimal, optimal, and other. The families are described
as follows:

Nonoptimal transformations preprocess the specified variables, replacing each one with a single new
nonoptimal, nonlinear transformation.

Optimal transformations replace the specified variables with new, iteratively derived optimal transfor-
mation variables that fit the specified model better than the original variable
(except in contrived cases where the transformation fits the model exactly as
well as the original variable).

Other transformations are the IDENTITY and SSPLINE transformations. These do not fit into either
of the preceding categories.

Table 80.2 summarizes the transformations in each family.

Table 80.2 Transformation Families

Transformation Description

Nonoptimal Transformations
ARSIN Inverse trigonometric sine
EXP Exponential
LOG Logarithm
LOGIT Logit
POWER Raises variables to specified power
RANK Transforms to ranks

Optimal Transformations
LINEAR Linear
MONOTONE Monotonic, ties preserved
MSPLINE Monotonic B-spline
OPSCORE Optimal scoring
SPLINE B-spline
UNTIE Monotonic, ties not preserved

Other Transformations
IDENTITY Identity, no transformation
SSPLINE Iterative smoothing spline

The transform is followed by a variable (or list of variables) enclosed in parentheses. Optionally, depending
on the transform, the parentheses can also contain t-options, which follow the variables and a slash. For



TRANSFORM Statement F 6645

example, the following statement computes the LOG transformation of X and Y:

transform log(X Y);

A more complex example follows:

transform spline(Y / nknots=2) log(X1 X2 X3);

The preceding statement uses the SPLINE transformation of the variable Y and the LOG transformation of
the variables X1, X2, and X3. In addition, it uses the NKNOTS= option with the SPLINE transformation and
specifies two knots.

The rest of this section provides syntax details for members of the three families of transformations. The
t-options are discussed in the section “Transformation Options (t-options)” on page 6647.

Nonoptimal Transformations
Nonoptimal transformations are computed before the iterative algorithm begins. Nonoptimal transformations
create a single new transformed variable that replaces the original variable. The new variable is not
transformed by the subsequent iterative algorithms (except for a possible linear transformation and missing
value estimation).

The following list provides syntax and details for nonoptimal variable transformations.

ARSIN
ARS

finds an inverse trigonometric sine transformation. Variables specified in the ARSIN transform must
be numeric and in the interval .�1:0 � x � 1:0/, and they are typically continuous.

EXP
exponentiates variables (x is transformed to ax). To specify the value of a, use the PARAMETER=
t-option. By default, a is the mathematical constant e D 2:718 : : :. Variables specified with the EXP
transform must be numeric, and they are typically continuous.

LOG
transforms variables to logarithms (x is transformed to loga.x/). To specify the base of the logarithm,
use the PARAMETER= t-option. The default is a natural logarithm with base e D 2:718 : : :. Variables
specified with the LOG transform must be numeric and positive, and they are typically continuous.

LOGIT
finds a logit transformation on the variables. The logit of x is log.x=.1� x//. Unlike other transforma-
tions, LOGIT does not have a three-letter abbreviation. Variables specified with the LOGIT transform
must be numeric and in the interval .0:0 < x < 1:0/, and they are typically continuous.

POWER
POW

raises variables to a specified power (x is transformed to xa). You must specify the power parameter a
by specifying the PARAMETER= t-option following the variables.

power(variable / parameter=number)

You can use POWER for squaring variables (PARAMETER=2), reciprocal transformations
(PARAMETER=–1), square roots (PARAMETER=0.5), and so on. Variables specified with the
POWER transform must be numeric, and they are typically continuous.
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RANK

RAN
transforms variables to ranks. Ranks are averaged within ties. The smallest input value is assigned the
smallest rank. Variables specified with the RANK transform must be numeric.

Optimal Transformations
Optimal transformations are iteratively derived. Missing values for these types of variables can be optimally
estimated (see the section “Missing Values” on page 6657). See the sections “OPSCORE, MONOTONE,
UNTIE, and LINEAR Transformations” on page 8676 and “SPLINE and MSPLINE Transformations”
on page 8678 in Chapter 104, “The TRANSREG Procedure,” for more information about the optimal
transformations.

The following list provides syntax and details for optimal transformations.

LINEAR

LIN
finds an optimal linear transformation of each variable. For variables with no missing values, the
transformed variable is the same as the original variable. For variables with missing values, the
transformed nonmissing values have a different scale and origin than the original values. Variables
specified with the LINEAR transform must be numeric.

MONOTONE

MON
finds a monotonic transformation of each variable, with the restriction that ties are preserved. The
Kruskal (1964) secondary least squares monotonic transformation is used. This transformation weakly
preserves order and category membership (ties). Variables specified with the MONOTONE transform
must be numeric, and they are typically discrete.

MSPLINE

MSP
finds a monotonically increasing B-spline transformation with monotonic coefficients (De Boor 1978;
De Leeuw 1986) of each variable. You can specify the DEGREE=, KNOTS=, NKNOTS=, and
EVENLY= t-options with MSPLINE. By default, PROC PRINQUAL uses a quadratic spline. Variables
specified with the MSPLINE transform must be numeric, and they are typically continuous.

OPSCORE

OPS
finds an optimal scoring of each variable. The OPSCORE transformation assigns scores to each class
(level) of the variable. The Fisher (1938) optimal scoring method is used. Variables specified with the
OPSCORE transform can be either character or numeric; numeric variables should be discrete.

SPLINE

SPL
finds a B-spline transformation (De Boor 1978) of each variable. By default, PROC PRINQUAL
uses a cubic polynomial transformation. You can specify the DEGREE=, KNOTS=, NKNOTS=, and
EVENLY t-options with SPLINE. Variables specified with the SPLINE transform must be numeric,
and they are typically continuous.
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UNTIE

UNT
finds a monotonic transformation of each variable without the restriction that ties are preserved. PROC
PRINQUAL uses the Kruskal (1964) primary least squares monotonic transformation method. This
transformation weakly preserves order but not category membership (it might untie some previously
tied values). Variables specified with the UNTIE transform must be numeric, and they are typically
discrete.

Other Transformations
IDENTITY

IDE
specifies variables that are not changed by the iterations. The IDENTITY transformation is used for
variables when no transformation and no missing data estimation are desired. However, the REFLECT,
ADDITIVE, TSTANDARD=Z, and TSTANDARD=CENTER options can linearly transform all
variables, including IDENTITY variables, after the iterations. Observations with missing values in
IDENTITY variables are excluded from the analysis, and no optimal scores are computed for missing
values in IDENTITY variables. Variables specified with the IDENTITY transform must be numeric.

SSPLINE

SSP
finds an iterative smoothing spline transformation of each variable. The SSPLINE transformation
does not generally minimize squared error. You can specify the smoothing parameter with either the
SM= t-option or the PARAMETER= t-option. The default smoothing parameter is SM=0. Variables
specified with the SSPLINE transform must be numeric, and they are typically continuous.

Transformation Options (t-options)

If you use a nonoptimal, optimal, or other transformation, you can use t-options, which specify additional
details of the transformation. The t-options are specified within the parentheses that enclose variables and are
listed after a slash. For example:

proc prinqual;
transform spline(X Y / nknots=3);

run;

The preceding statements find an optimal variable transformation (SPLINE) of the variables X and Y and use
a t-option to specify the number of knots (NKNOTS=). The following is a more complex example:

proc prinqual;
transform spline(Y / nknots=3) spline(X1 X2 / nknots=6);

run;

These statements use the SPLINE transformation for all three variables and use t-options as well; the
NKNOTS= option specifies the number of knots for the spline.

The following sections discuss the t-options available for nonoptimal, optimal, and other transformations.

Table 80.3 summarizes the t-options.



6648 F Chapter 80: The PRINQUAL Procedure

Table 80.3 Transformation Options

Option Description

Nonoptimal Transformation
ORIGINAL Uses original mean and variance

Parameter Specification
PARAMETER= Specifies miscellaneous parameters
SM Specifies smoothing parameter

Spline
DEGREE= Specifies the degree of the spline
EVENLY Spaces the knots evenly
KNOTS= Specifies the interior knots or break points
NKNOTS= Creates n knots

Other t-options
NAME= Renames variables
REFLECT Reflects the variable around the mean
TSTANDARD= Specifies transformation standardization

Nonoptimal Transformation t-options
ORIGINAL

ORI
matches the variable’s final mean and variance to the mean and variance of the original variable. By
default, the mean and variance are based on the transformed values. The ORIGINAL t-option is
available for all of the nonoptimal transformations.

Parameter t-options
PARAMETER=number

PAR=number
specifies the transformation parameter. The PARAMETER= t-option is available for the EXP, LOG,
POWER, SMOOTH, and SSPLINE transformations. For EXP, the parameter is the value to be
exponentiated; for LOG, the parameter is the base value; and for POWER, the parameter is the power.
For SMOOTH and SSPLINE, the parameter is the raw smoothing parameter. (See the SM= option for
an alternative way to specify the smoothing parameter.) The default for the PARAMETER= t-option for
the LOG and EXP transformations is e D 2:718 : : :. The default parameter for SSPLINE is computed
from SM=0. For the POWER transformation, you must specify the PARAMETER= t-option; there is
no default.

SM=n
specifies a smoothing parameter in the range 0 to 100, just like PROC GPLOT uses. For example,
SM=50 in PROC PRINQUAL is equivalent to I=SM50 on the SYMBOL statement with PROC GPLOT.
You can specify the SM= t-option only with the SSPLINE transformation. The smoothness of the
function increases as the value of the smoothing parameter increases. By default, SM=0.
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Spline t-options
The following t-options are available with the SPLINE and MSPLINE optimal transformations.

DEGREE=n

DEG=n
specifies the degree of the B-spline transformation. The degree must be a nonnegative integer. The
defaults are DEGREE=3 for SPLINE variables and DEGREE=2 for MSPLINE variables.

The polynomial degree should be a small integer, usually 0, 1, 2, or 3. Larger values are rarely useful.
If you have any doubt as to what degree to specify, use the default.

EVENLY< =n >

EVE< =n >
is used with the NKNOTS= t-option to space the knots evenly. The differences between adjacent knots
are constant. If you specify NKNOTS=k, k knots are created at

minimumC i..maximum �minimum/=.k C 1//

for i D 1; : : : ; k. For example, if you specify

spline(X / knots=2 evenly)

and the variable X has a minimum of 4 and a maximum of 10, then the two interior knots are 6 and 8.
Without the EVENLY t-option, the NKNOTS= t-option places knots at percentiles, so the knots are not
evenly spaced.

By default for the SPLINE and MSPLINE transformations, the smaller exterior knots are all the same
and just a little smaller than the minimum. Similarly, by default, the larger exterior knots are all the
same and just a little larger than the maximum. However, if you specify EVENLY=n, then the n
exterior knots are evenly spaced as well. The number of exterior knots must be greater than or equal to
the degree. You can specify values larger than the degree when you want to interpolate slightly beyond
the range or your data. The exterior knots must be less than the minimum or greater than the maximum,
and hence the knots across all sets are not precisely equally spaced. For example, with data ranging
from 0 to 10, and with EVENLY=3 and NKNOTS=4, the first exterior knots are –4.000000000001,
–2.000000000001, and –0.000000000001, the interior knots are 2, 4, 6, and 8, and the second exterior
knots are 10.000000000001, 12.000000000001, and 14.000000000001.

KNOTS=number-list | n TO m BY p

KNO=number-list | n TO m BY p
specifies the interior knots or break points. By default, there are no knots. The first time you specify
a value in the knot list, it indicates a discontinuity in the nth (from DEGREE=n) derivative of the
transformation function at the value of the knot. The second mention of a value indicates a discontinuity
in the (n – 1) derivative of the transformation function at the value of the knot. Knots can be repeated
any number of times to decrease the smoothness at the break points, but the values in the knot list can
never decrease.

You cannot use the KNOTS= t-option with the NKNOTS= t-option. You should keep the number of
knots small. (See the section “Specifying the Number of Knots” on page 8679 in Chapter 104, “The
TRANSREG Procedure.”)
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NKNOTS=n

NKN=n
creates n knots, the first at the 100=.nC 1/ percentile, the second at the 200=.nC 1/ percentile, and
so on. Knots are always placed at data values; there is no interpolation. For example, if NKNOTS=3,
knots are placed at the 25th percentile, the median, and the 75th percentile. By default, NKNOTS=0.
The NKNOTS= t-option must be � 0.

You cannot use the NKNOTS= t-option with the KNOTS= t-option. You should keep the number of
knots small. (See the section “Specifying the Number of Knots” on page 8679 in Chapter 104, “The
TRANSREG Procedure.”)

Other t-options
The following t-options are available for all transformations.

NAME=(variable-list)

NAM=(variable-list)
renames variables as they are used in the TRANSFORM statement. This option allows a variable to be
used more than once. For example, if the variable X is a character variable, then the following step
stores both the original character variable X and a numeric variable XC that contains category numbers
in the output data set.

proc prinqual data=A n=1 out=B;
transform linear(Y) opscore(X / name=(XC));
id X;

run;

REFLECT

REF
reflects the transformation

y D �.y � Ny/C Ny

after the iterations are completed and before the final standardization and results calculations.

TSTANDARD=CENTER | NOMISS | ORIGINAL | Z

TST=CEN | NOM | ORI | Z
specifies the standardization of the transformed variables in the OUT= data set. By default, TSTAN-
DARD=ORIGINAL. When the TSTANDARD= option is specified in the PROC PRINQUAL statement,
it specifies the default standardization for all variables. When you specify TSTANDARD= as a t-option,
it overrides the default standardization only for selected variables.

WEIGHT Statement
WEIGHT variable ;

When you use a WEIGHT statement, a weighted residual sum of squares is minimized. The WEIGHT
statement has no effect on degrees of freedom or number of observations, but the weights affect most other
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calculations. The observation is used in the analysis only if the value of the WEIGHT statement variable is
greater than 0.

Details: PRINQUAL Procedure

The Three Methods of Variable Transformation
The three methods of variable transformation provided by PROC PRINQUAL are discussed in the following
sections.

The Maximum Total Variance (MTV) Method

The MTV method (Young, Takane, and de Leeuw 1978) is based on the principal component model, and it
attempts to maximize the sum of the first r eigenvalues of the covariance matrix. This method transforms
variables to be (in a least squares sense) as similar to linear combinations of r principal component score
variables as possible, where r can be much smaller than the number of variables. This maximizes the total
variance of the first r components (the trace of the covariance matrix of the first r principal components). See
SAS Technical Report R-108.

On each iteration, the MTV algorithm alternates classical principal component analysis (Hotelling 1933)
with optimal scaling (Young 1981). When all variables are ordinal preference ratings, this corresponds to
MDPREF analysis (Carroll 1972). You can request the dummy variable initialization method suggested by
Tenenhaus and Vachette (1977), who independently propose the same iterative algorithm for nominal and
interval scale-of-measurement variables.

The Minimum Generalized Variance (MGV) Method

The MGV method (Sarle 1984) uses an iterated multiple regression algorithm in an attempt to minimize the
determinant of the covariance matrix of the transformed variables. This method transforms each variable to
be (in a least squares sense) as similar to linear combinations of the remaining variables as possible. This
locally minimizes the generalized variance of the transformed variables, the determinant of the covariance
matrix, the volume of the parallelepiped defined by the transformed variables, and the sphericity (the extent
to which a quadratic form in the optimized covariance matrix defines a sphere). See SAS Technical Report
R-108.

On each iteration for each variable, the MGV algorithm alternates multiple regression with optimal scaling.
The multiple regression involves predicting the selected variable from all other variables. You can request a
dummy variable initialization by using a modification of the Tenenhaus and Vachette (1977) method that is
appropriate with a regression algorithm. This method can be viewed as a way of investigating the nature
of the linear and nonlinear dependencies in, and the rank of, a data matrix containing variables that can be
nonlinearly transformed. This method tries to create a less-than-full-rank data matrix. The matrix contains
the transformation of each variable that is most similar to what the other transformed variables predict.
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The Maximum Average Correlation (MAC) Method

The MAC method (De Leeuw 1985) uses an iterated constrained multiple regression algorithm in an attempt
to maximize the average of the elements of the correlation matrix. This method transforms each variable to
be (in a least squares sense) as similar to the average of the remaining variables as possible.

On each iteration for each variable, the MAC algorithm alternates computing an equally weighted average of
the other variables with optimal scaling. The MAC method is similar to the MGV method in that each variable
is scaled to be as similar to a linear combination of the other variables as possible, given the constraints on
the transformation. However, optimal weights are not computed. You can use the MAC method when all
variables are positively correlated or when no monotonicity constraints are placed on any transformations. Do
not use this method with negatively correlated variables when some optimal transformations are constrained
to be increasing because the signs of the correlations are not taken into account. The MAC method is useful
as an initialization method for the MTV and MGV methods.

Understanding How PROC PRINQUAL Works
In the following example, PROC PRINQUAL uses the MTV method to linearize a curved scatter plot. Let

X1 D �1 to 1 by 0:02

X2 D X31 C �

X3 D X52 C �

where � is normal error.

These three variables define a curved swarm of points in three-dimensional space. First, the SGSCATTER
procedure is used to display two-dimensional views of these data. Next, PROC PRINQUAL is used to
straighten the scatter plot, making it more one-dimensional by finding a smooth transformation of each
variable. The N=1 option in the PROC PRINQUAL statement requests one principal component. The
TRANSFORM statement requests a cubic spline transformation with nine knots. Splines are curves, which
are usually required to be continuous and smooth. See the section “Splines” on page 6656 for more
information about splines. See Smith (1979) for an excellent introduction to splines.

PROC PRINQUAL transforms each variable to be as much as possible like the first principal component
(or more generally, to be close to the space defined by the first N= principal components). One component
accounts for 92 percent of the variance of the untransformed data and over 99 percent of the variance of the
transformed data (see Figure 80.5). Note that the results did not converge in the default 50 iterations, so more
iterations were requested using the MAXITER= option. The transformations are requested by specifying
PLOTS=TRANSFORMATION and are displayed in Figure 80.6.
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PROC PRINQUAL creates an output data set that contains both the original and transformed variables. The
original variables are named X1, X2, and X3, and the transformed variables are named TX1, TX2, and TX3.
The transformed variables are displayed using the SGSCATTER procedure in Figure 80.7.

The following statements produce Figure 80.4 through Figure 80.7:

ods graphics on;

* Generate Three-Dimensional Data;
data X;

do X1 = -1 to 1 by 0.02;
X2 = X1 ** 3 + 0.05 * normal(7);
X3 = X1 ** 5 + 0.05 * normal(7);
output;

end;
run;

proc sgscatter data=x;
plot x1*x2 x1*x3 x3*x2;

run;

* Try to Straighten the Scatter Plot;
proc prinqual data=X n=1 maxiter=2000 plots=transformation out=results;

title 'Linearize the Scatter Plot';
transform spline(X1-X3 / nknots=9);

run;

* Plot the Linearized Scatter Plot;
proc sgscatter data=results;

plot tx1*tx2 tx1*tx3 tx3*tx2;
run;

The three-dimensional data in Figure 80.4 and Figure 80.7 are displayed in three two-dimensional plots,
arrayed as if they were three faces of a cube that was flattened as you might flatten a box.
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Figure 80.4 Three-Dimensional Scatter Plot
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Figure 80.5 PRINQUAL Iteration History

Linearize the Scatter Plot

The PRINQUAL Procedure

PRINQUAL MTV Algorithm Iteration History

Linearize the Scatter Plot

The PRINQUAL Procedure

PRINQUAL MTV Algorithm Iteration History

Iteration
Number

Average
Change

Maximum
Change

Proportion
of Variance

Criterion
Change Note

1 0.15125 0.93453 0.92376

2 0.04589 0.14682 0.98030 0.05653

3 0.03154 0.10125 0.98626 0.00596

4 0.02258 0.06890 0.98890 0.00265

5 0.01682 0.04777 0.99028 0.00137

6 0.01297 0.03782 0.99106 0.00078

7 0.01032 0.03029 0.99154 0.00048

.

.

.

1670 0.00001 0.00005 0.99371 0.00000

1671 0.00001 0.00005 0.99371 0.00000

1672 0.00001 0.00005 0.99371 0.00000 Converged

       Algorithm converged.                                                     

Figure 80.6 Transformations
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Figure 80.7 Linearized Scatter Plot

Splines
Splines are curves, and they are usually required to be continuous and smooth. Splines are usually defined as
piecewise polynomials of degree n with function values and first n – 1 derivatives that agree at the points
where they join. The abscissa values of the join points are called knots. The term “spline” is also used for
polynomials (splines with no knots) and piecewise polynomials with more than one discontinuous derivative.
Splines with no knots are generally smoother than splines with knots, which are generally smoother than
splines with multiple discontinuous derivatives. Splines with few knots are generally smoother than splines
with many knots; however, increasing the number of knots usually increases the fit of the spline function
to the data. Knots give the curve freedom to bend to follow the data more closely. See Smith (1979) for an
excellent introduction to splines. There are many examples and detailed discussions of splines in Chapter 104,
“The TRANSREG Procedure.” See the sections “Linear and Nonlinear Regression Functions” on page 8629,
“Smoothing Splines” on page 8641, “SPLINE and MSPLINE Transformations” on page 8678, “Specifying the
Number of Knots” on page 8679, “SPLINE, BSPLINE, and PSPLINE Comparisons” on page 8680, “Linear
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and Nonlinear Regression Functions” on page 8629, “Simultaneously Fitting Two Regression Functions” on
page 8633, and examples “Using Splines and Knots” on page 8614 and Example 104.1.

Missing Values
PROC PRINQUAL can estimate missing values, subject to optional constraints, so that the covariance matrix
is optimized. The procedure provides several approaches for handling missing data. When you specify the
NOMISS option in the PROC PRINQUAL statement, observations with missing values are excluded from
the analysis. Otherwise, missing data are estimated, using variable means as initial estimates. Missing values
for OPSCORE character variables are treated the same as any other category during the initialization. See the
section “Missing Values” on page 8666 in Chapter 104, “The TRANSREG Procedure,” for more information
about missing data estimation.

Controlling the Number of Iterations
Several options in the PROC PRINQUAL statement control the number of iterations performed. Iteration
terminates when any one of the following conditions is satisfied:

• The number of iterations equals the value of the MAXITER= option.

• The average absolute change in variable scores from one iteration to the next is less than the value of
the CONVERGE= option.

• The criterion change is less than the value of the CCONVERGE= option.

With the MTV method, the change in the proportion of variance criterion can become negative when the
data have converged so that it is numerically impossible, within machine precision, to increase the criterion.
Because the MTV algorithm is convergent, a negative criterion change is the result of very small amounts
of rounding error. The MGV method displays the average squared multiple correlation (which is not the
criterion being optimized), so the criterion change can become negative well before convergence. The MAC
method criterion (average correlation) is never computed, so the CCONVERGE= option is ignored for
METHOD=MAC. You can specify a negative value for either convergence option if you want to define
convergence only in terms of the other convergence option.

With the MGV method, iterations minimize the generalized variance (determinant), but the generalized
variance is not reported for two reasons. First, in most data sets, the generalized variance is almost always
near zero (or will be after one or two iterations), which is its minimum. This does not mean that iteration is
complete; it simply means that at least one multiple correlation is at or near one. The algorithm continues
minimizing the determinant in .m � 1/; .m � 2/ dimensions, and so on. Because the generalized variance is
almost always near zero, it does not provide a good indication of how the iterations are progressing. The mean
R square provides a better indication of convergence. The second reason for not reporting the generalized
variance is that almost no additional time is required to compute R square values for each step. This is
because the error sum of squares is a byproduct of the algorithm at each step. Computing the determinant at
the end of each iteration adds more computations to an already computationally intensive algorithm.

You can increase the number of iterations to ensure convergence by increasing the value of the MAXITER=
option and decreasing the value of the CONVERGE= option. Because the average absolute change in
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standardized variable scores seldom decreases below 1E–11, you typically do not specify a value for the
CONVERGE= option less than 1E–8 or 1E–10. Most of the data changes occur during the first few iterations,
but the data can still change after 50 or even 100 iterations. You can try different combinations of values for
the CONVERGE= and MAXITER= options to ensure convergence without extreme overiteration. If the data
do not converge with the default specifications, specify the REITERATE option, or try CONVERGE=1E–8
and MAXITER=50, or CONVERGE=1E–10 and MAXITER=200.

Performing a Principal Component Analysis of Transformed Data
PROC PRINQUAL produces an iteration history table that displays (for each iteration) the iteration number,
the maximum and average absolute change in standardized variable scores computed over the iteratively
transformed variables, the criterion being optimized, and the criterion change. In order to examine the results
of the analysis in more detail, you can analyze the information in the output data set by using other SAS
procedures.

Specifically, use the PRINCOMP procedure to perform a principal components analysis on the transformed
data. PROC PRINCOMP accepts the raw data from PROC PRINQUAL but issues a warning, because the
PROC PRINQUAL output data set has _NAME_ and _TYPE_ variables but is not a TYPE=CORR data set.
You can ignore this warning.

If the output data set contains both scores and correlations, you must subset it for analysis with PROC
PRINCOMP. Otherwise, the correlation observations are treated as ordinary observations and the PROC
PRINCOMP results are incorrect. For example, consider the following statements:

proc prinqual data=a out=b correlations replace;
transform spline(var1-var50 / nknots=3);

run;

proc princomp data=b;
where _TYPE_='SCORE';

run;

Also note that the proportion of variance accounted for, as reported by PROC PRINCOMP, can exceed
the proportion of variance accounted for in the last PROC PRINQUAL iteration. This is because PROC
PRINQUAL reports the variance accounted for by the components analysis that generated the current scaling
of the data, not a components analysis of the current scaling of the data.

Using the MAC Method
You can use the MAC algorithm alone by specifying METHOD=MAC, or you can use it as an initialization
algorithm for METHOD=MTV and METHOD=MGV analyses by specifying the iteration option INITITER=.
If any variables are negatively correlated, do not use the MAC algorithm with monotonic transformations
(MONOTONE, UNTIE, and MSPLINE) because the signs of the correlations among the variables are not
used when computing variable approximations. If an approximation is negatively correlated with the original
variable, monotone constraints would make the optimally scaled variable a constant, which is not allowed
(see the section “Avoiding Constant Transformations” on page 6662). When used with other transformations,
the MAC algorithm can reverse the scoring of the variables. So, for example, if variable X is designated
LOG(X) with METHOD=MAC and TSTANDARD=ORIGINAL, the final transformation (for example, TX)
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might not be LOG(X). If TX is not LOG(X), it has the same mean as LOG(X) and the same variance as
LOG(X), and it is perfectly negatively correlated with LOG(X). PROC PRINQUAL displays a note for every
variable that is reversed in this manner.

You can use the METHOD=MAC algorithm to reverse the scorings of some rating variables before a
factor analysis. The correlations among bipolar ratings such as ’like - dislike’, ’hot - cold’, and ’fragile -
monumental’ are typically both positive and negative. If some items are reversed to say ’dislike - like’, ’cold -
hot’, and ’monumental - fragile’, some of the negative signs can be eliminated, and the factor pattern matrix
would be cleaner. You can use PROC PRINQUAL with METHOD=MAC and LINEAR transformations to
reverse some items, maximizing the average of the intercorrelations.

Output Data Set
PROC PRINQUAL produces an output data set by default. By specifying the OUT=, APPROXIMATIONS,
SCORES, REPLACE, and CORRELATIONS options in the PROC PRINQUAL statement, you can name
this data set and control its contents.

By default, the procedure creates an output data set that contains variables with _TYPE_=’SCORE’. These
observations contain original variables, transformed variables, components, or data approximations. If you
specify the CORRELATIONS option in the PROC PRINQUAL statement, the data set also contains observa-
tions with _TYPE_=’CORR’; these observations contain correlations or component structure information.

Structure and Content

The output data set can have 16 different forms, depending on the specified combinations of the REPLACE,
SCORES, APPROXIMATIONS, and CORRELATIONS options. You can specify any combination of
these options. To illustrate, assume that the data matrix consists of N observations and m variables, and n
components are computed. Then define the following:

D the N �m matrix of original data with variable names that correspond to the names of the variables
in the input data set. However, when you use the OPSCORE transformation on character variables,
those variables are replaced by numeric variables that contain category numbers.

T the N � m matrix of transformed data with variable names constructed from the value of the
TPREFIX= option (if you do not specify the REPLACE option) and the names of the variables in
the input data set

S the N � n matrix of component scores with variable names constructed from the value of the
PREFIX= option and integers

A the N �m matrix of data approximations with variable names constructed from the value of the
APREFIX= option and the names of the variables in the input data set

RTD the m �m matrix of correlations between the transformed variables and the original variables with
variable names that correspond to the names of the variables in the input data set. When missing
values exist, casewise deletion is used to compute the correlations.

RTT them�mmatrix of correlations among the transformed variables with the variable names constructed
from the value of the TPREFIX= option (if you do not specify the REPLACE option) and the names
of the variables in the input data set
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RTS the m � n matrix of correlations between the transformed variables and the principal component
scores (component structure matrix) with variable names constructed from the value of the PREFIX=
option and integers

RTA them�m matrix of correlations between the transformed variables and the variable approximations
with variable names constructed from the value of the APREFIX= option and the names of the
variables in the input data set

To create a data set Work.A that contains all information, specify the following options in the PROC
PRINQUAL statement:

proc prinqual scores approximations correlations out=a;

Also use a TRANSFORM statement appropriate for your data. Then the Work.A data set contains the
following:

D T S A

RTD RTT RTS RTA

To eliminate the bottom partitions that contain the correlations and component structure, do not specify the
CORRELATIONS option. For example, use the following PROC PRINQUAL statement with an appropriate
TRANSFORM statement:

proc prinqual scores approximations out=a;

Then the Work.A data set contains the following:

D T S A

Suppose you use the following PROC PRINQUAL statement (with an appropriate TRANSFORM statement):

proc prinqual out=a;

This creates a data set Work.A of the following form:

D T

To output transformed data and component scores only, specify the following options in the PROC PRIN-
QUAL statement:

proc prinqual replace scores out=a;

Then the Work.A data set contains the following:

T S
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_TYPE_ and _NAME_ Variables

In addition to the preceding information, the output data set contains two character variables, the variable
_TYPE_ (length 8) and the variable _NAME_ (length 32).

The _TYPE_ variable has the value ’SCORE’ if the observation contains variables, transformed variables,
components, or data approximations; the _TYPE_ variable has the value ’CORR’ if the observation contains
correlations or component structure.

By default, the _NAME_ variable has values ’ROW1’, ’ROW2’, and so on, for the observations with
_TYPE_=’SCORE’. If you use an ID statement, the variable _NAME_ contains the formatted ID variable for
SCORES observations. The values of the variable _NAME_ for observations with _TYPE_=’CORR’ are the
names of the transformed variables.

Certain procedures, such as PROC PRINCOMP, which can use the PROC PRINQUAL output data set,
issue a warning that the PROC PRINQUAL data set contains _NAME_ and _TYPE_ variables but is not a
TYPE=CORR data set. You can ignore this warning.

Variable Names

The TPREFIX=, APREFIX=, and PREFIX= options specify prefixes for the transformed and approximation
variable names and for principal component score variables, respectively. PROC PRINQUAL constructs
transformed and approximation variable names from a prefix and the first characters of the original variable
name. The number of characters in the prefix plus the number of characters in the original variable name
(including the final digits, if any) required to uniquely designate the new variables should not exceed 32. For
example, if the APREFIX= parameter that you specify is one character, PROC PRINQUAL adds the first 31
characters of the original variable name; if your prefix is four characters, only the first 28 characters of the
original variable name are added.

Effect of the TSTANDARD= and COVARIANCE Options

The values in the output data set are affected by the TSTANDARD= and COVARIANCE options. If you
specify TSTANDARD=NOMISS, the NOMISS standardization is performed on the transformed data after
the iterations have been completed, but before the output data set is created. The new means and variances
are used in creating the output data set. Then, if you do not specify the COVARIANCE option, the data are
transformed to mean zero and variance one. The principal component scores and data approximations are
computed from the resulting matrix. The data are then linearly transformed to have the mean and variance
specified by the TSTANDARD= option. The data approximations are transformed so that the means within
each pair of a transformed variable and its approximation are the same. The ratio of the variance of a variable
approximation to the variance of the corresponding transformed variable equals the proportion of the variance
of the variable that is accounted for by the components model.

If you specify the COVARIANCE option and do not specify TSTANDARD=Z, you can input the transformed
data to PROC PRINCOMP, again specifying the COVARIANCE option, to perform a components analysis
of the results of PROC PRINQUAL. Similarly, if you do not specify the COVARIANCE option with
PROC PRINQUAL and you input the transformed data to PROC PRINCOMP without the COVARIANCE
option, you receive the same report. However, some combinations of PROC PRINQUAL options, such
as COVARIANCE and TSTANDARD=Z, while valid, produce approximations and scores that cannot be
reproduced by PROC PRINCOMP.
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The component scores in the output data set are computed from the correlations among the transformed
variables, or from the covariances if you specified the COVARIANCE option. The component scores are
computed after the TSTANDARD=NOMISS transformation, if specified. The means of the component
scores in the output data set are always zero. The variances equal the corresponding eigenvalues, unless you
specify the STANDARD option; then the variances are set to one.

Avoiding Constant Transformations
There are times when the optimal scaling produces a constant transformed variable. This can happen with
the MONOTONE, UNTIE, and MSPLINE transformations when the target is negatively correlated with the
original input variable. It can happen with all transformations when the target is uncorrelated with the original
input variable. When this happens, the procedure modifies the target to avoid a constant transformation. This
strategy avoids certain nonoptimal solutions.

If the transformation is monotonic and a constant transformed variable results, the procedure multiplies the
target by –1 and tries the optimal scaling again. If the transformation is not monotonic or if the multiplication
by –1 did not help, the procedure tries using a random target. If the transformation is still constant, the
previous nonconstant transformation is retained. When a constant transformation is avoided by any strategy,
this message is displayed: “A constant transformation was avoided for name.”

Constant Variables
Constant and almost constant variables are zeroed and ignored.

Character OPSCORE Variables
Character OPSCORE variables are replaced by a numeric variable containing category numbers before the
iterations, and the character values are discarded. Only the first eight characters are considered in determining
category membership. If you want the original character variable in the output data set, give it a different
name in the OPSCORE specification (OPSCORE(x / name=(x2)) and name the original variable in the ID
statement (ID x;).

REITERATE Option Usage
You can use the REITERATE option to perform additional iterations when PROC PRINQUAL stops before
the data have adequately converged. For example, suppose you execute the following code:

proc prinqual data=A cor out=B;
transform mspline(X1-X5);

run;

If the transformations do not converge in the default 30 iterations, you can perform more iterations without
repeating the first 30 iterations, as follows:
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proc prinqual data=B reiterate cor out=B;
transform mspline(X1-X5);

run;

Note that a WHERE statement is not necessary to exclude the correlation observations. They are automatically
excluded because their _TYPE_ variable value is not ’SCORE’.

You can also use the REITERATE option to specify starting values other than the original values for the
transformations. Providing alternate starting points might avoid local optima. Here are two examples.

proc prinqual data=A out=B;
transform rank(X1-X5);

run;

proc prinqual data=B reiterate out=C;
/* Use ranks as the starting point. */
transform monotone(X1-X5);

run;

data B;
set A;
array TXS[5] TX1-TX5;
do j = 1 to 5;

TXS[j] = normal(0);
end;

run;

proc prinqual data=B reiterate out=C;
/* Use a random starting point. */
transform monotone(X1-X5);

run;

Note that divergence with the REITERATE option, particularly in the second iteration, is not an error since
the initial transformation is not required to be a valid member of the transformation family. When you specify
the REITERATE option, the iteration does not terminate when the criterion change is negative during the
first 10 iterations.

Passive Observations
Observations can be excluded from the analysis for several reasons, including zero weight, zero frequency,
missing values in variables designated as IDENTITY, or missing values with the NOMISS option specified.
These observations are passive in that they do not contribute to determining transformations, R square, total
variance, and so on. However, some information can be computed for them, such as approximations, principal
component scores, and transformed values. Passive observations in the output data set have a blank value for
the variable _TYPE_.

Missing value estimates for passive observations might converge slowly with METHOD=MTV. In the
following example, the missing value estimates should be 2, 5, and 8. Since the nonpassive observations do
not change, the procedure converges in one iteration but the missing value estimates do not converge. The
extra iterations produced by specifying CONVERGE=–1 and CCONVERGE=–1, as shown in the second
PROC PRINQUAL step that follows, generate the expected results.
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data A;
input X Y;
datalines;

1 1
2 .
3 3
4 4
5 .
6 6
7 7
8 .
9 9
;

proc prinqual nomiss data=A nomiss n=1 out=B method=mtv;
transform lin(X Y);

run;

proc print;
run;

proc prinqual nomiss data=A nomiss n=1 out=B method=mtv converge=-1 cconverge=-1;
transform lin(X Y);

run;

proc print;
run;

Computational Resources
This section provides information about the computational resources required to run PROC PRINQUAL.

Let

N D number of observations
m D number of variables
n D number of principal components
k D maximum spline degree
p D maximum number of knots

• For the MTV algorithm, more than

56mC 8NmC 8 .6N C .p C k C 2/.p C k C 11//

bytes of array space are required.
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• For the MGV and MAC algorithms, more than 56m plus the maximum of the data matrix size and the
optimal scaling work space bytes of array space are required. The data matrix size is 8Nm bytes. The
optimal scaling work space requires less than 8 .6N C .p C k C 2/.p C k C 11// bytes.

• For the MTV and MGV algorithms, more than 56mC 4m.mC 1/ bytes of array space are required.

• PROC PRINQUAL tries to store the original and transformed data in memory. If there is not enough
memory, a utility data set is used, potentially resulting in a large increase in execution time. The
amount of memory for the preceding data formulas is an underestimate of the amount of memory
needed to handle most problems. These formulas give an absolute minimum amount of memory
required. If a utility data set is used, and if memory could be used with perfect efficiency, then roughly
the amount of memory stated previously would be needed. In reality, most problems require at least
two or three times the minimum.

• PROC PRINQUAL sorts the data once. The sort time is roughly proportional to mN 3=2.

• For the MTV algorithm, the time required to compute the variable approximations is roughly propor-
tional to 2Nm2 C 5m3 C nm2.

• For the MGV algorithm, one regression analysis per iteration is required to compute model parameter
estimates. The time required to accumulate the crossproduct matrix is roughly proportional to Nm2.
The time required to compute the regression coefficients is roughly proportional to m3. For each
variable for each iteration, the swept crossproduct matrix is updated with time roughly proportional to
m(N+m). The swept crossproduct matrix is updated for each variable with time roughly proportional
to m2, until computations are refreshed, requiring all sweeps to be performed again.

• The only computationally intensive part of the MAC algorithm is the optimal scaling, since variable
approximations are simple averages.

• Each optimal scaling is a multiple regression problem, although some transformations are handled with
faster special-case algorithms. The number of regressors for the optimal scaling problems depends on
the original values of the variable and the type of transformation. For each monotone spline transfor-
mation, an unknown number of multiple regressions is required to find a set of coefficients that satisfies
the constraints. The B-spline basis is generated twice for each SPLINE and MSPLINE transformation
for each iteration. The time required to generate the B-spline basis is roughly proportional to Nk2.

Displayed Output
The main output from PROC PRINQUAL is the output data set. However, the procedure does produce
displayed output in the form of an iteration history table that includes the following:

• iteration number
• the criterion being optimized
• criterion change
• maximum and average absolute change in standardized variable scores computed over variables that

can be iteratively transformed
• notes
• final convergence status
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ODS Table Names
PROC PRINQUAL assigns a name to each table it creates. You can use these names to reference the table
when using the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed in Table 80.4 along with the PROC PRINQUAL statement options needed to produce the table. For
more information about ODS, see Chapter 20, “Using the Output Delivery System.”

Table 80.4 ODS Tables Produced by PROC PRINQUAL

ODS Table Name Description Option

ConvergenceStatus Convergence Status default
Footnotes Iteration History Footnotes default
MAC MAC Iteration History METHOD=MAC
MGV MGV Iteration History METHOD=MGV
MTV MTV Iteration History METHOD=MTV
PctVar Percentage of Variance nonprinting

The nonprinting PctVar table is not displayed and does not appear in the ODS trace output unless you specify
it in an ODS OUTPUT statement, as in the following example:

ods output pctvar=pvardataset;

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

The plots are produced only when you specify the options shown in the table. You can reference every graph
produced through ODS Graphics with a name. The names of the graphs that PROC PRINQUAL generates
are listed in Table 80.5, along with the required statements and options.

Table 80.5 Graphs Produced by PROC PRINQUAL

ODS Graph Name Plot Description Option

MDPrefPlot Multidimensional preference analysis MDPREF
TransformationPlot Variable transformation PLOTS=TRANSFORMATION
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Examples: PRINQUAL Procedure

Example 80.1: Multidimensional Preference Analysis of Automobile Data
This example uses PROC PRINQUAL to perform a nonmetric multidimensional preference (MDPREF)
analysis (Carroll 1972). MDPREF analysis is a principal component analysis of a data matrix with columns
that correspond to people and rows that correspond to objects. The data are ratings or rankings of each
person’s preference for each object. The data are the transpose of the usual multivariate data matrix. (In other
words, the columns are people; in the more typical matrix the rows represent people.) The final result of an
MDPREF analysis is a biplot (Gabriel 1981) of the resulting preference space. A biplot displays the judges
and objects in a single plot by projecting them onto the plane in the transformed variable space that accounts
for the most variance.

In 1980, 25 judges gave their preferences for each of 17 new automobiles. The ratings were made on a 0 to 9
scale, with 0 meaning very weak preference and 9 meaning very strong preference for the automobile. The
following statements create a SAS data set with the manufacturer and model of each automobile along with
the ratings:

title 'Preference Ratings for Automobiles Manufactured in 1980';

options validvarname=any;

data CarPref;
input Make $ 1-10 Model $ 12-22 @25 ('1'n-'25'n) (1.);
datalines;

Cadillac Eldorado 8007990491240508971093809
Chevrolet Chevette 0051200423451043003515698
Chevrolet Citation 4053305814161643544747795
Chevrolet Malibu 6027400723121345545668658
Ford Fairmont 2024006715021443530648655
Ford Mustang 5007197705021101850657555
Ford Pinto 0021000303030201500514078
Honda Accord 5956897609699952998975078
Honda Civic 4836709507488852567765075
Lincoln Continental 7008990592230409962091909
Plymouth Gran Fury 7006000434101107333458708
Plymouth Horizon 3005005635461302444675655
Plymouth Volare 4005003614021602754476555
Pontiac Firebird 0107895613201206958265907
Volkswagen Dasher 4858696508877795377895000
Volkswagen Rabbit 4858509709695795487885000
Volvo DL 9989998909999987989919000
;

The following statements run PROC PRINCOMP and create a scree plot. The results of this step are shown
in Output 80.1.1.

ods graphics on;

* Principal Component Analysis of the Original Data;
proc princomp data=CarPref;

ods select ScreePlot;
var '1'n-'25'n;

run;
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Output 80.1.1 Eigenvalue Plot

The scree or eigenvalue plot in Output 80.1.1 shows that two principal components should be retained. There
is a clear separation between the first two components and the remaining components. There are eight
eigenvalues that are precisely zero because there are eight fewer observations than variables in the data matrix.
One additional eigenvalue is zero, for a total of nine zero eigenvalues, since the correlation matrix is based
on centered data. The following statements create the data set and perform a principal component analysis of
the original data.

PROC PRINQUAL fits the nonmetric MDPREF model. PROC PRINQUAL monotonically transforms the
raw judgments to maximize the proportion of variance accounted for by the first two principal components.
The MONOTONE option is specified in the TRANSFORM statement to request a nonmetric MDPREF
analysis; alternatively, you can instead specify the IDENTITY option for a metric analysis. Several options
are used in the PROC PRINQUAL statement. The option DATA=CarPref specifies the input data set,
OUT=Results creates an output data set, and N=2 and the default METHOD=MTV transform the data to
better fit a two-component model. The REPLACE option replaces the original data with the monotonically
transformed data in the OUT= data set. The MDPREF option standardizes the component scores to variance
one so that the geometry of the biplot is correct, and it creates two variables in the OUT= data set named Prin1
and Prin2. These variables contain the standardized principal component scores and structure matrix, which
are used to make the biplot. If the variables in data matrix X are standardized to mean zero and variance
one, and n is the number of rows in X, then X D Vƒ1=2W0 is the principal component model, where
X0X=.n � 1/ DWƒW0. The W and ƒ contain the eigenvectors and eigenvalues of the correlation matrix
of X. The first two columns of V, the standardized component scores, and Wƒ1=2, which is the structure
matrix, are output. The advantage of creating a biplot based on principal components is that coordinates do
not depend on the sample size. The following statements transform the data and produce Output 80.1.2.

* Transform the Data to Better Fit a Two Component Model;
proc prinqual data=CarPref out=Results n=2 replace mdpref;

title2 'Multidimensional Preference (MDPREF) Analysis';
title3 'Optimal Monotonic Transformation of Preference Data';
id model;
transform monotone('1'n-'25'n);

run;
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Output 80.1.2 PRINQUAL Iteration History

Preference Ratings for Automobiles Manufactured in 1980
Multidimensional Preference (MDPREF) Analysis

Optimal Monotonic Transformation of Preference Data

The PRINQUAL Procedure

Preference Ratings for Automobiles Manufactured in 1980
Multidimensional Preference (MDPREF) Analysis

Optimal Monotonic Transformation of Preference Data

The PRINQUAL Procedure

PRINQUAL MTV Algorithm Iteration History

Iteration
Number

Average
Change

Maximum
Change

Proportion
of Variance

Criterion
Change Note

1 0.24994 1.28017 0.66946

2 0.07223 0.36958 0.80194 0.13249

3 0.04522 0.29026 0.81598 0.01404

4 0.03096 0.25213 0.82178 0.00580

5 0.02182 0.23045 0.82493 0.00315

6 0.01602 0.19017 0.82680 0.00187

7 0.01219 0.14748 0.82793 0.00113

8 0.00953 0.11031 0.82861 0.00068

9 0.00737 0.06461 0.82904 0.00043

10 0.00556 0.04469 0.82930 0.00026

11 0.00445 0.04087 0.82944 0.00014

12 0.00381 0.03706 0.82955 0.00011

13 0.00319 0.03348 0.82965 0.00009

14 0.00255 0.02999 0.82971 0.00006

15 0.00213 0.02824 0.82976 0.00005

16 0.00183 0.02646 0.82980 0.00004

17 0.00159 0.02472 0.82983 0.00003

18 0.00139 0.02305 0.82985 0.00003

19 0.00123 0.02145 0.82988 0.00002

20 0.00109 0.01993 0.82989 0.00002

21 0.00096 0.01850 0.82991 0.00001

22 0.00086 0.01715 0.82992 0.00001

23 0.00076 0.01588 0.82993 0.00001

24 0.00067 0.01440 0.82994 0.00001

25 0.00059 0.00871 0.82994 0.00001

26 0.00050 0.00720 0.82995 0.00000

27 0.00043 0.00642 0.82995 0.00000

28 0.00037 0.00573 0.82995 0.00000

29 0.00031 0.00510 0.82995 0.00000

30 0.00027 0.00454 0.82995 0.00000 Not Converged

WARNING: Failed to converge, however criterion change is less than 0.0001.

The iteration history displayed by PROC PRINQUAL indicates that the proportion of variance is increased
from an initial 0.66946 to 0.82995. The proportion of variance accounted for by PROC PRINQUAL on
the first iteration equals the cumulative proportion of variance shown by PROC PRINCOMP for the first
two principal components. PROC PRINQUAL’s initial iteration performs a standard principal component
analysis of the raw data. The columns labeled Average Change, Maximum Change, and Criterion Change
contain values that always decrease, indicating that PROC PRINQUAL is improving the transformations at
a monotonically decreasing rate over the iterations. This does not always happen, and when it does not, it
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suggests that the analysis might be converging to a degenerate solution. See Example 80.2 for a discussion of
a degenerate solution. The algorithm does not converge in 30 iterations. However, the criterion change is
small, indicating that more iterations are unlikely to have much effect on the results.

The biplot, shown in Output 80.1.3, is automatically displayed by PROC PRINQUAL when ODS Graphics is
enabled and the MDPREF option is specified.

Output 80.1.3 Biplot Made with PRINQUAL

The second PROC PRINCOMP analysis is performed on the transformed data. The WHERE statement
is used to retain only the monotonically transformed judgments. The scree plot shows that the first two
eigenvalues are now much larger than the remaining smaller eigenvalues. The second eigenvalue has increased
markedly at the expense of the next several eigenvalues. Two principal components seem to be necessary and
sufficient to adequately describe these judges’ preferences for these automobiles. The cumulative proportion
of variance displayed by PROC PRINCOMP for the first two principal components is 0.83. The following
statements perform the analysis and produce Output 80.1.4:

* Final Principal Component Analysis;
proc princomp data=Results;

ods select ScreePlot;
var '1'n-'25'n;
where _TYPE_='SCORE';

run;
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Output 80.1.4 Transformed Data Eigenvalue Plot

The remainder of the example discusses the MDPREF biplot. A biplot is a plot that displays the relation
between the row points and the columns of a data matrix. The rows of V, the standardized component scores,
and Wƒ1=2, the structure matrix, contain enough information to reproduce X. The .i; j / element of X is the
product of row i of V and row j of Wƒ1=2. If all but the first two columns of V and Wƒ1=2 are discarded,
the .i; j / element of X is approximated by the product of row i of V and row j of Wƒ1=2.

Since the MDPREF analysis is based on a principal component model, the dimensions of the MDPREF biplot
are the first two principal components. The first principal component is the longest dimension through the
MDPREF biplot. The first principal component is overall preference, which is the most salient dimension in
the preference judgments. One end points in the direction that is on the average preferred most by the judges,
and the other end points in the least preferred direction. The second principal component is orthogonal to the
first principal component, and it is the orthogonal direction that is the second most salient. The interpretation
of the second dimension varies from example to example.

With an MDPREF biplot, it is geometrically appropriate to represent each automobile (object) by a point and
each judge by a vector. The automobile points have coordinates that are the scores of the automobile on the
first two principal components. The judge vectors emanate from the origin of the space and go through a
point whose coordinates are the coefficients of the judge (variable) on the first two principal components.
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The absolute length of a vector is arbitrary. However, the relative lengths of the vectors indicate fit, with the
squared lengths being proportional to the communalities that you can get in PROC FACTOR output. The
direction of the vector indicates the direction that is most preferred by the individual judge, with preference
increasing as the vector moves from the origin. Let v0 be row i of V, u0 be row j of U D Wƒ1=2, kvk
be the length of v, kuk be the length of u, and � be the angle between v and u. The predicted degree of
preference that an individual judge has for an automobile is u0v D kuk kvk cos � . Each automobile point can
be orthogonally projected onto the vector. The projection of automobile i on vector j is u..u0v/=.u0u//, and
the length of this projection is kvk cos � . The automobile that projects farthest along a vector in the direction
it points is that judge’s most preferred automobile, since the length of this projection, kvk cos � , differs from
the predicted preference, kuk kvk cos � , only by kuk, which is constant for each judge.

To interpret the biplot, look for directions through the plot that show a continuous change in some attribute of
the automobiles, or look for regions in the plot that contain clusters of automobile points and determine what
attributes the automobiles have in common. Points that are tightly clustered in a region of the plot represent
automobiles that have the same preference patterns across the judges. Vectors that point in roughly the same
direction represent judges who have similar preference patterns.

In the biplot, American automobiles are located at the left of the space, while European and Japanese
automobiles are located at the right. At the top of the space are expensive American automobiles (Cadillac
Eldorado, Lincoln Continental), while at the bottom are inexpensive ones (Ford Pinto, Chevrolet Chevette).
The first principal component differentiates American from imported automobiles, and the second arranges
automobiles by price and other associated characteristics.

The two expensive American automobiles form a cluster, the sporty automobile (Pontiac Firebird) is by itself,
the Volvo DL is by itself, and the remaining imported autos form a cluster, as do the remaining American
autos. It seems there are 5 prototypical automobiles in this set of 17, in terms of preference patterns among
the 25 judges.

Most of the judges prefer the imported automobiles, especially the Volvo. There is also a fairly large minority
that prefer the expensive autos, whether or not they are American (those with vectors that point toward one
o’clock), or simply prefer expensive American automobiles (vectors that point toward eleven o’clock). There
are two judges who prefer anything except expensive American autos (five o’clock vectors), and one who
prefers inexpensive American autos (seven o’clock vector).

Several vectors point toward the upper-right corner of the plot, toward a region with no automobiles. This is
the region between the European and Japanese autos at the right and the luxury autos at the top. This suggests
that there is a market for luxury Japanese and European automobiles.

The next part of this example modifies the graph template for the MDPREF plot to display group information
(the make of the automobile) in the MDPREF plot. First you need to run the PROC PRINQUAL step with
ODS trace output enabled to find the name of the graph template for the MDPREF plot:

ods trace on;
proc prinqual data=CarPref out=Results n=2 replace mdpref;

title2 'Multidimensional Preference (MDPREF) Analysis';
title3 'Optimal Monotonic Transformation of Preference Data';
id model;
transform monotone('1'n-'25'n);

run;



Example 80.1: Multidimensional Preference Analysis of Automobile Data F 6673

The results are as follows:

Output Added:
-------------
Name: MDPrefPlot
Label: 2 by 1
Template: Stat.Prinqual.Graphics.MDPref
Path: Prinqual.MDPREF.MDPrefPlot
-------------

The following step displays the template:

proc template;
source Stat.Prinqual.Graphics.MDPref;

run;

The following template is displayed:

define statgraph Stat.Prinqual.Graphics.MDPref;
notes "Multidimensional Preference Analysis Plot";
dynamic xVar yVar xVec yVec ylab xlab yshortlab xshortlab xOri yOri

stretch;
begingraph;

entrytitle "Multidimensional Preference Analysis";
layout overlayequated / equatetype=fit xaxisopts=(label=XLAB shortlabel

=XSHORTLAB offsetmin=0.1 offsetmax=0.1) yaxisopts=(label=YLAB
shortlabel=YSHORTLAB offsetmin=0.1 offsetmax=0.1);
scatterplot y=YVAR x=XVAR / datalabel=IDLAB1 rolename=(_tip1=

OBSNUMVAR _id2=IDLAB2 _id3=IDLAB3 _id4=IDLAB4 _id5=IDLAB5 _id6=
IDLAB6 _id7=IDLAB7 _id8=IDLAB8 _id9=IDLAB9 _id10=IDLAB10 _id11=
IDLAB11 _id12=IDLAB12 _id13=IDLAB13 _id14=IDLAB14 _id15=IDLAB15
_id16=IDLAB16 _id17=IDLAB17 _id18=IDLAB18 _id19=IDLAB19 _id20=
IDLAB20) tip=(y x datalabel _tip1 _id2 _id3 _id4 _id5 _id6 _id7
_id8 _id9 _id10 _id11 _id12 _id13 _id14 _id15 _id16 _id17 _id18
_id19 _id20) datalabelattrs=GRAPHVALUETEXT (color=
GraphData1:ContrastColor) markerattrs=GRAPHDATA1;

vectorplot y=YVEC x=XVEC xorigin=0 yorigin=0 / datalabel=LABEL2VAR
shaftprotected=false rolename=(_tip1=VNAME _tip2=VLABEL _tip3=
YORI _tip4=XORI _tip5=LENGTH _tip6=LENGTH2) tip=(y x datalabel
_tip1 _tip2 _tip3 _tip4 _tip5 _tip6) datalabelattrs=
GRAPHVALUETEXT (color=GraphData2:ContrastColor) lineattrs=
GRAPHDATA2 (pattern=solid) primary=true;

if (0)
entry "Vector Stretch = " STRETCH / autoalign=(topright topleft

bottomright bottomleft right left top bottom);
endif;

endlayout;
endgraph;

end;

The following step adds a PROC PRINQUAL statement and a RUN statement, removes attribute options
from the SCATTERPLOT statement, adds a GROUP=IDLAB2 option to use the second ID variable as a
group variable, and adds a NAME=‘s’ option along with a DISCRETELEGEND statement to display the
groups in a legend:
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proc template;
define statgraph Stat.Prinqual.Graphics.MDPref;

notes "Multidimensional Preference Analysis Plot";
dynamic xVar yVar xVec yVec ylab xlab yshortlab xshortlab xOri yOri

stretch;
begingraph;

entrytitle "Multidimensional Preference Analysis";
layout overlayequated / equatetype=fit xaxisopts=(label=XLAB shortlabel

=XSHORTLAB offsetmin=0.1 offsetmax=0.1) yaxisopts=(label=YLAB
shortlabel=YSHORTLAB offsetmin=0.1 offsetmax=0.1);
scatterplot y=YVAR x=XVAR / datalabel=IDLAB1 rolename=(_tip1=

OBSNUMVAR _id2=IDLAB2 _id3=IDLAB3 _id4=IDLAB4 _id5=IDLAB5 _id6=
IDLAB6 _id7=IDLAB7 _id8=IDLAB8 _id9=IDLAB9 _id10=IDLAB10 _id11=
IDLAB11 _id12=IDLAB12 _id13=IDLAB13 _id14=IDLAB14 _id15=IDLAB15
_id16=IDLAB16 _id17=IDLAB17 _id18=IDLAB18 _id19=IDLAB19 _id20=
IDLAB20) tip=(y x datalabel _tip1 _id2 _id3 _id4 _id5 _id6 _id7
_id8 _id9 _id10 _id11 _id12 _id13 _id14 _id15 _id16 _id17 _id18
_id19 _id20)

group=idlab2 name='s'; *<==== add the group variable ====<<<<;

vectorplot y=YVEC x=XVEC xorigin=0 yorigin=0 / datalabel=LABEL2VAR
shaftprotected=false rolename=(_tip1=VNAME _tip2=VLABEL _tip3=
YORI _tip4=XORI _tip5=LENGTH _tip6=LENGTH2) tip=(y x datalabel
_tip1 _tip2 _tip3 _tip4 _tip5 _tip6) datalabelattrs=
GRAPHVALUETEXT (color=GraphData2:ContrastColor) lineattrs=
GRAPHDATA2 (pattern=solid) primary=true;

discretelegend 's'; *<==== add a legend ====<<<<;

if (0)
entry "Vector Stretch = " STRETCH / autoalign=(topright topleft

bottomright bottomleft right left top bottom);
endif;

endlayout;
endgraph;

end;
run;

The following step creates the MDPREF plot with the make of the automobile added as a second ID variable
and displayed in the graph as a group variable:

proc prinqual data=CarPref out=Results n=2 replace mdpref;
title2 'Multidimensional Preference (MDPREF) Analysis';
title3 'Optimal Monotonic Transformation of Preference Data';
id model make;
transform monotone('1'n-'25'n);

run;

The results are displayed in Output 80.1.5.
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Output 80.1.5 Biplot with a Group Variable

The following step restores the default template:

proc template;
delete Stat.Prinqual.Graphics.MDPref / store=sasuser.templat;

run;

Example 80.2: Principal Components of Basketball Rankings
The data in this example are 1985–1986 preseason rankings of 35 U.S. college basketball teams by 10
different news services. The services do not all rank the same teams or the same number of teams, so there
are missing values in these data. Each of the 35 teams in the data set is ranked by at least one news service.
One way of summarizing these data is with a principal component analysis, since the rankings should all be
related to a single underlying variable, the first principal component.

You can use PROC PRINQUAL to estimate the missing ranks and compute scores for all observations. You
can formulate a PROC PRINQUAL analysis that assumes that the observed ranks are ordinal variables
and replaces the ranks with new numbers that are monotonic with the ranks and better fit the one principal
component model. The missing rank estimates need to be constrained since a news service would have
positioned the unranked teams below the teams it ranked. PROC PRINQUAL should impose order constraints
within the nonmissing values and between the missing and nonmissing values, but not within the missing
values. PROC PRINQUAL has sophisticated missing data handling facilities; however, these facilities cannot
directly handle this problem. The solution requires reformulating the problem.
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By performing some preliminary data manipulations, specifying the N=1 option in the PROC PRINQUAL
statement, and specifying the UNTIE transformation in the TRANSFORM statement, you can make the
missing value estimates conform to the requirements. The PROC MEANS step finds the largest rank for each
variable. The next DATA step replaces missing values with a value that is one larger than the largest observed
rank. The PROC PRINQUAL N=1 option specifies that the variables should be transformed to make them
as one-dimensional as possible. The UNTIE transformation in the TRANSFORM statement monotonically
transforms the ranks, untying any ties in an optimal way. Because the only ties are for the values that replace
the missing values, and because these values are larger than the observed values, the rescoring of the data
satisfies the preceding requirements.

The following statements create the data set and perform the transformations discussed previously. These
statements produce Output 80.2.1 and Output 80.2.2.

* Preseason 1985 College Basketball Rankings

* (rankings of 35 teams by 10 news services)

*
* Note:(a) Various news services rank varying numbers of teams.

* (b) Not all 35 teams are ranked by all news services.

* (c) Each team is ranked by at least one service.

* (d) Rank 20 is missing for UPI.;

title1 '1985 Preseason College Basketball Rankings';

data bballm;
input School $13. CSN DurhamSun DurhamHerald WashingtonPost

USA_Today SportMagazine InsideSports UPI AP SportsIllustrated;
label CSN = 'Community Sports News (Chapel Hill, NC)'

DurhamSun = 'Durham Sun'
DurhamHerald = 'Durham Morning Herald'
WashingtonPost = 'Washington Post'
USA_Today = 'USA Today'
SportMagazine = 'Sport Magazine'
InsideSports = 'Inside Sports'
UPI = 'United Press International'
AP = 'Associated Press'
SportsIllustrated = 'Sports Illustrated'
;

format CSN--SportsIllustrated 5.1;
datalines;

Louisville 1 8 1 9 8 9 6 10 9 9
Georgia Tech 2 2 4 3 1 1 1 2 1 1
Kansas 3 4 5 1 5 11 8 4 5 7
Michigan 4 5 9 4 2 5 3 1 3 2
Duke 5 6 7 5 4 10 4 5 6 5
UNC 6 1 2 2 3 4 2 3 2 3
Syracuse 7 10 6 11 6 6 5 6 4 10
Notre Dame 8 14 15 13 11 20 18 13 12 .
Kentucky 9 15 16 14 14 19 11 12 11 13
LSU 10 9 13 . 13 15 16 9 14 8
DePaul 11 . 21 15 20 . 19 . . 19
Georgetown 12 7 8 6 9 2 9 8 8 4
Navy 13 20 23 10 18 13 15 . 20 .
Illinois 14 3 3 7 7 3 10 7 7 6
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Iowa 15 16 . . 23 . . 14 . 20
Arkansas 16 . . . 25 . . . . 16
Memphis State 17 . 11 . 16 8 20 . 15 12
Washington 18 . . . . . . 17 . .
UAB 19 13 10 . 12 17 . 16 16 15
UNLV 20 18 18 19 22 . 14 18 18 .
NC State 21 17 14 16 15 . 12 15 17 18
Maryland 22 . . . 19 . . . 19 14
Pittsburgh 23 . . . . . . . . .
Oklahoma 24 19 17 17 17 12 17 . 13 17
Indiana 25 12 20 18 21 . . . . .
Virginia 26 . 22 . . 18 . . . .
Old Dominion 27 . . . . . . . . .
Auburn 28 11 12 8 10 7 7 11 10 11
St. Johns 29 . . . . 14 . . . .
UCLA 30 . . . . . . 19 . .
St. Joseph's . . 19 . . . . . . .
Tennessee . . 24 . . 16 . . . .
Montana . . . 20 . . . . . .
Houston . . . . 24 . . . . .
Virginia Tech . . . . . . 13 . . .
;

* Find maximum rank for each news service and replace

* each missing value with the next highest rank.;

proc means data=bballm noprint;
output out=maxrank

max=mcsn mdurs mdurh mwas musa mspom mins mupi map mspoi;
run;

data bball;
set bballm;
if _n_=1 then set maxrank;
array services[10] CSN--SportsIllustrated;
array maxranks[10] mcsn--mspoi;
keep School CSN--SportsIllustrated;
do i=1 to 10;

if services[i]=. then services[i]=maxranks[i]+1;
end;

run;

* Assume that the ranks are ordinal and that unranked teams would have

* been ranked lower than ranked teams. Monotonically transform all ranked

* teams while estimating the unranked teams. Enforce the constraint that

* the missing ranks are estimated to be less than the observed ranks.

* Order the unranked teams optimally within this constraint. Do this so

* as to maximize the variance accounted for by one linear combination.

* This makes the data as nearly rank one as possible, given the constraints.

*
* NOTE: The UNTIE transformation should be used with caution.

* It frequently produces degenerate results.;

ods graphics on;

proc prinqual data=bball out=tbball scores n=1 tstandard=z
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plots=transformations;
title2 'Optimal Monotonic Transformation of Ranked Teams';
title3 'with Constrained Estimation of Unranked Teams';
transform untie(CSN -- SportsIllustrated);
id School;

run;

Output 80.2.1 PRINQUAL Iteration History

1985 Preseason College Basketball Rankings
Optimal Monotonic Transformation of Ranked Teams

with Constrained Estimation of Unranked Teams

The PRINQUAL Procedure

1985 Preseason College Basketball Rankings
Optimal Monotonic Transformation of Ranked Teams

with Constrained Estimation of Unranked Teams

The PRINQUAL Procedure

PRINQUAL MTV Algorithm Iteration History

Iteration
Number

Average
Change

Maximum
Change

Proportion
of Variance

Criterion
Change Note

1 0.18563 0.76531 0.85850

2 0.03225 0.14627 0.94362 0.08512

3 0.02126 0.10530 0.94669 0.00307

4 0.01467 0.07526 0.94801 0.00132

5 0.01067 0.05282 0.94865 0.00064

6 0.00800 0.03669 0.94899 0.00034

7 0.00617 0.02862 0.94919 0.00020

8 0.00486 0.02636 0.94932 0.00013

9 0.00395 0.02453 0.94941 0.00009

10 0.00327 0.02300 0.94947 0.00006

11 0.00275 0.02166 0.94952 0.00005

12 0.00236 0.02041 0.94956 0.00004

13 0.00205 0.01927 0.94959 0.00003

14 0.00181 0.01818 0.94962 0.00003

15 0.00162 0.01719 0.94964 0.00002

16 0.00147 0.01629 0.94966 0.00002

17 0.00136 0.01546 0.94968 0.00002

18 0.00128 0.01469 0.94970 0.00002

19 0.00121 0.01398 0.94971 0.00001

20 0.00115 0.01332 0.94973 0.00001

21 0.00111 0.01271 0.94974 0.00001

22 0.00105 0.01213 0.94975 0.00001

23 0.00099 0.01155 0.94976 0.00001

24 0.00095 0.01095 0.94977 0.00001

25 0.00091 0.01038 0.94978 0.00001

26 0.00088 0.00986 0.94978 0.00001

27 0.00084 0.00936 0.94979 0.00001

28 0.00081 0.00889 0.94980 0.00001

29 0.00077 0.00846 0.94980 0.00000

30 0.00073 0.00805 0.94980 0.00000 Not Converged

WARNING: Failed to converge, however criterion change is less than 0.0001.
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Output 80.2.2 Transformations
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An alternative approach is to use the pairwise deletion option of the CORR procedure to compute the
correlation matrix and then use PROC PRINCOMP or PROC FACTOR to perform the principal component
analysis. This approach has several disadvantages. The correlation matrix might not be positive semidefinite
(PSD), an assumption required for principal component analysis. PROC PRINQUAL always produces a PSD
correlation matrix. Even with pairwise deletion, PROC CORR removes the six observations that have only a
single nonmissing value from this data set. Finally, it is still not possible to calculate scores on the principal
components for those teams that have missing values.

You can compute the composite ranking by using PROC PRINCOMP and some preliminary data manipula-
tions, similar to those discussed previously.

Chapter 79, “The PRINCOMP Procedure,” contains an example where the average of the unused ranks in
each poll is substituted for the missing values, and each observation is weighted by the number of nonmissing
values. This method has much to recommend it. It is much faster and simpler than using PROC PRINQUAL.
It is also much less prone to degeneracies and capitalization on chance. However, PROC PRINCOMP does
not allow the nonmissing ranks to be monotonically transformed and the missing values untied to optimize
fit.

PROC PRINQUAL monotonically transforms the observed ranks and estimates the missing ranks (within the
constraints given previously) to account for almost 95 percent of the variance of the transformed data by just
one dimension. PROC FACTOR is then used to report details of the principal component analysis of the
transformed data. As shown by the Factor Pattern values in Output 80.2.3, nine of the ten news services have
a correlation of 0.95 or larger with the scores on the first principal component after the data are optimally
transformed. The scores are sorted and the composite ranking is displayed following the PROC FACTOR
output. More confidence can be placed in the stability of the scores for teams that are ranked by the majority
of the news services than in scores for teams that are seldom ranked.

The monotonic transformations are plotted for each of the ten news services. See Output 80.2.2. These
plots show the values of the raw ranks (with the missing ranks replaced by the maximum rank plus one)
versus the rescored (transformed) ranks. The transformations are the step functions that maximize the fit of
the data to the principal component model. Smoother transformations could be found by using MSPLINE
transformations, but MSPLINE transformations would not correctly handle the missing data problem.

The following statements perform the final analysis and produce Output 80.2.3:

* Perform the Final Principal Component Analysis;
proc factor nfactors=1 plots=scree;

title4 'Principal Component Analysis';
ods select factorpattern screeplot;
var TCSN -- TSportsIllustrated;

run;

proc sort;
by Prin1;

run;

* Display Scores on the First Principal Component;
proc print;

title4 'Teams Ordered by Scores on First Principal Component';
var School Prin1;

run;
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Output 80.2.3 Principal Components of College Basketball Rankings

Output 80.2.3 continued

Factor Pattern

Factor1

TCSN CSN Transformation 0.91136

TDurhamSun DurhamSun Transformation 0.98887

TDurhamHerald DurhamHerald Transformation 0.97402

TWashingtonPost WashingtonPost Transformation 0.97408

TUSA_Today USA_Today Transformation 0.98867

TSportMagazine SportMagazine Transformation 0.95331

TInsideSports InsideSports Transformation 0.98521

TUPI UPI Transformation 0.98534

TAP AP Transformation 0.99590

TSportsIllustrated SportsIllustrated Transformation 0.98615
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Output 80.2.3 continued

1985 Preseason College Basketball Rankings
Optimal Monotonic Transformation of Ranked Teams

with Constrained Estimation of Unranked Teams
Teams Ordered by Scores on First Principal Component

1985 Preseason College Basketball Rankings
Optimal Monotonic Transformation of Ranked Teams

with Constrained Estimation of Unranked Teams
Teams Ordered by Scores on First Principal Component

Obs School Prin1

1 Georgia Tech -6.20315

2 UNC -5.93314

3 Michigan -5.71034

4 Kansas -4.78699

5 Duke -4.75896

6 Illinois -4.19220

7 Georgetown -4.02861

8 Louisville -3.73087

9 Syracuse -3.47497

10 Auburn -1.78429

11 LSU -0.35928

12 Memphis State 0.46737

13 Kentucky 0.63661

14 Notre Dame 0.71919

15 Navy 0.76187

16 UAB 0.98316

17 DePaul 1.09891

18 Oklahoma 1.12012

19 NC State 1.15144

20 UNLV 1.28766

21 Iowa 1.45260

22 Indiana 1.48123

23 Maryland 1.54935

24 Virginia 2.01385

25 Arkansas 2.02718

26 Washington 2.10878

27 Tennessee 2.27770

28 Virginia Tech 2.36103

29 St. Johns 2.37387

30 Montana 2.43502

31 UCLA 2.52481

32 Pittsburgh 3.00907

33 Old Dominion 3.03324

34 St. Joseph's 3.39259

35 Houston 4.69614

The ordinary PROC PRINQUAL missing data handling facilities do not work for these data because they do
not constrain the missing data estimates properly. If you code the missing ranks as missing and specify linear
transformations, then you can compute least squares estimates of the missing values without transforming
the observed values. The first principal component then accounts for 92 percent of the variance after 20
iterations. However, Virginia Tech is ranked number 11 by its score even though it appeared in only one poll
(Inside Sports ranked it number 13, anchoring it firmly in the middle). Specifying monotone transformations



References F 6683

is also inappropriate since they too allow unranked teams to move in between ranked teams.

With these data, the combination of monotone transformations and the freedom to score the missing ranks
without constraint leads to degenerate transformations. PROC PRINQUAL tries to merge the 35 points into
two points, producing a perfect fit in one dimension. There is evidence for this after 20 iterations when
the Average Change, Maximum Change, and Criterion Change values are all increasing, instead of the
more stable decreasing change rate seen in the analysis shown. The change rates all stop increasing after
41 iterations, and it is clear by 70 or 80 iterations that one component will account for 100 percent of the
transformed variables variance after sufficient iteration. While this might seem desirable (after all, it is a
perfect fit), you should, in fact, be on guard when this happens. Whenever convergence is slow, the rates of
change increase, or the final data perfectly fit the model, the solution is probably degenerating because of too
few constraints on the scorings.

PROC PRINQUAL can account for 100 percent of the variance by scoring Montana and UCLA with one
positive value on all variables and scoring all the other teams with one negative value on all variables. This
inappropriate analysis suggests that all ranked teams are equally good except for two teams that are less good.
Both of these two teams are ranked by only one news service, and their only nonmissing rank is last in the
poll. This accounts for the degeneracy.
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Overview: PROBIT Procedure
The PROBIT procedure calculates maximum likelihood estimates of regression parameters and the natural
(or threshold) response rate for quantal response data from biological assays or other discrete event data. This
includes probit, logit, ordinal logistic, and extreme value (or gompit) regression models.

Probit analysis developed from the need to analyze qualitative (dichotomous or polytomous) dependent
variables within the regression framework. Many response variables are binary by nature (yes/no), while
others are measured ordinally rather than continuously (degree of severity). Researchers have shown ordinary
least squares (OLS) regression to be inadequate when the dependent variable is discrete (Collett 2003; Agresti
2002). Probit or logit analyses are more appropriate in this case.

The PROBIT procedure computes maximum likelihood estimates of the parameters ˇ and C of the probit
equation by using a modified Newton-Raphson algorithm. When the response Y is binary, with values 0 and
1, the probit equation is

p D Pr.Y D 0/ D C C .1 � C/F.x0ˇ/

where

ˇ is a vector of parameter estimates

F is a cumulative distribution function (normal, logistic, or extreme value)

x is a vector of explanatory variables

p is the probability of a response

C is the natural (threshold) response rate

Notice that PROC PROBIT, by default, models the probability of the lower response levels. The choice of
the distribution function F (normal for the probit model, logistic for the logit model, and extreme value or
Gompertz for the gompit model) determines the type of analysis. For most problems, there is relatively little
difference between the normal and logistic specifications of the model. Both distributions are symmetric
about the value zero. The extreme value (or Gompertz) distribution, however, is not symmetric, approaching
0 on the left more slowly than it approaches 1 on the right. You can use the extreme value distribution where
such asymmetry is appropriate.
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For ordinal response models, the response, Y, of an individual or an experimental unit can be restricted to one
of a (usually small) number, k C 1.k � 1/, of ordinal values, denoted for convenience by 1; : : : ; k; k C 1.
For example, the severity of coronary disease can be classified into three response categories as 1=no disease,
2=angina pectoris, and 3=myocardial infraction. The PROBIT procedure fits a common slopes cumulative
model, which is a parallel-lines regression model based on the cumulative probabilities of the response
categories rather than on their individual probabilities. The cumulative model has the form

Pr.Y � 1 j x/ D F.x0ˇ/

Pr.Y � i j x/ D F.˛i C x0ˇ/; 2 � i � k

where ˛2; : : : ; ˛k are k – 1 intercept parameters. By default, the covariate vector x contains an overall
intercept term.

You can set or estimate the natural (threshold) response rate C. Estimation of C can begin either from an
initial value that you specify or from the rate observed in a control group. By default, the natural response
rate is fixed at zero.

An observation in the data set analyzed by the PROBIT procedure might contain the response and explanatory
values for one subject. Alternatively, it might provide the number of observed events from a number of
subjects at a particular setting of the explanatory variables. In this case, PROC PROBIT models the probability
of an event.

The PROBIT procedure uses ODS Graphics to create graphs as part of its output. For general information
about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.” For specific information about the
graphics available in the PROBIT procedure, see the section “ODS Graphics” on page 6760.

Getting Started: PROBIT Procedure
The following example illustrates how you can use the PROBIT procedure to compute the threshold response
rate and regression parameter estimates for quantal response data.

Estimating the Natural Response Threshold Parameter
Suppose you want to test the effect of a drug at 12 dosage levels. You randomly divide 180 subjects into
12 groups of 15—one group for each dosage level. You then conduct the experiment and, for each subject,
record the presence or absence of a positive response to the drug. You summarize the data by counting the
number of subjects responding positively in each dose group. Your data set is as follows:

data study;
input Dose Respond @@;
Number = 15;
datalines;

0 3 1.1 4 1.3 4 2.0 3 2.2 5 2.8 4
3.7 5 3.9 9 4.4 8 4.8 11 5.9 12 6.8 13
;
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The variable dose represents the amount of drug administered. The first group, receiving a dose level of 0, is
the control group. The variable number represents the number of subjects in each group. All groups are equal
in size; hence, number has the value 15 for all observations. The variable respond represents the number of
subjects responding to the associated drug dosage.

You can model the probability of positive response as a function of dosage by using the following statements:

ods graphics on;

proc probit data=study log10 optc plots=(predpplot ippplot);
model respond/number=dose;
output out=new p=p_hat;

run;

The DATA= option specifies that PROC PROBIT analyze the SAS data set study. The LOG10 option replaces
the first continuous independent variable (dose) with its common logarithm. The OPTC option estimates the
natural response rate. When you use the LOG10 option with the OPTC option, any observations with a dose
value less than or equal to zero are used in the estimation as a control group.

The PLOTS= option in the PROC PROBIT statement, together with the ODS GRAPHICS statement, requests
two plots for the estimated probability values and dosage levels. For general information about ODS Graphics,
see Chapter 21, “Statistical Graphics Using ODS.” For specific information about the graphics available in
the PROBIT procedure, see the section “ODS Graphics” on page 6760.

The MODEL statement specifies a proportional response by using the variables respond and number in
events/trials syntax. The variable dose is the stimulus or explanatory variable.

The OUTPUT statement creates a new data set, new, that contains all the variables in the original data set,
and a new variable, p_hat, that represents the predicted probabilities.

The results from this analysis are displayed in the following figures.

Figure 81.1 displays background information about the model fit. Included are the name of the input data set,
the response variables used, and the number of observations, events, and trials. The last line in Figure 81.1
shows the final value of the log-likelihood function.

Figure 81.2 displays the table of parameter estimates for the model. The parameter C, which is the natural
response threshold or the proportion of individuals responding at zero dose, is estimated to be 0.2409. Since
both the intercept and the slope coefficient have significant p-values (0.0020, 0.0010), you can write the
model for

Pr.response/ D C C .1 � C/F.x0ˇ/

as

Pr.response/ D 0:2409C 0:7591.ˆ.�4:1439C 6:2308 � log10 .dose///

where ˆ is the normal cumulative distribution function.

Finally, PROC PROBIT specifies the resulting tolerance distribution by providing the mean MU and scale
parameter SIGMA as well as the covariance matrix of the distribution parameters in Figure 81.3.
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Figure 81.1 Model Fitting Information for the PROBIT Procedure

The Probit ProcedureThe Probit Procedure

Model Information

Data Set WORK.STUDY

Events Variable Respond

Trials Variable Number

Number of Observations 12

Number of Events 81

Number of Trials 180

Number of Events In Control Group 3

Number of Trials In Control Group 15

Name of Distribution Normal

Log Likelihood -104.3945783

Figure 81.2 Model Parameter Estimates for the PROBIT Procedure

Analysis of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Intercept 1 -4.1438 1.3415 -6.7731 -1.5146 9.54 0.0020

Log10(Dose) 1 6.2308 1.8996 2.5076 9.9539 10.76 0.0010

_C_ 1 0.2409 0.0523 0.1385 0.3433

Figure 81.3 Tolerance Distribution Estimates for the PROBIT Procedure

Estimated Covariance Matrix for
Tolerance Parameters

MU SIGMA _C_

MU 0.001158 -0.000493 0.000954

SIGMA -0.000493 0.002394 -0.000999

_C_ 0.000954 -0.000999 0.002731

The PLOT=PREDPPLOT option creates the plot in Figure 81.4, showing the relationship between dosage
level, observed response proportions, and estimated probability values. The dashed lines represent pointwise
confidence bands for the fitted probabilities, and a reference line is plotted at the estimated threshold value of
0.24.

The PLOT=IPPPLOT option creates the plot in Figure 81.5, showing the inverse relationship between dosage
level and observed response proportions/estimated probability values. The dashed lines represent pointwise
fiducial limits for the predicted values of the dose variable, and a reference line is also plotted at the estimated
threshold value of 0.24.

The two plot options can be put together with the PLOTS= option, as shown in the PROC PROBIT statement.
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Figure 81.4 Plot of Observed and Fitted Probabilities versus Dose Level

Figure 81.5 Inverse Predicted Probability Plot with Fiducial Limits
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Syntax: PROBIT Procedure
The following statements are available in the PROBIT procedure:

PROC PROBIT < options > ;
BY variables ;
CDFPLOT < VAR=variable > < options > ;
CLASS variables < (options) > . . . < variable < (options) > > < / options > ;
ESTIMATE < 'label ' > estimate-specification < (divisor=n) >

< , . . . < 'label ' > estimate-specification < (divisor=n) > > < / options > ;
EFFECTPLOT < plot-type < (plot-definition-options) > > < / options > ;
INSET < keyword-list > < / options > ;
IPPPLOT < VAR=variable > < options > ;
LPREDPLOT < VAR=variable > < options > ;
LSMEANS < model-effects > < / options > ;
LSMESTIMATE model-effect < 'label ' > values < (divisor=n) >

< , . . . < 'label ' > values < (divisor=n) > > < / options > ;
MODEL response < (response _options) > = independents < / options > ;
OUTPUT < OUT=SAS-data-set > < options > ;
PREDPPLOT < VAR=variable > < options > ;
SLICE model-effect < / options > ;
STORE < OUT= >item-store-name < / LABEL='label ' > ;
TEST < model-effects > < / options > ;
WEIGHT variable ;

A MODEL statement is required. Only a single MODEL statement can be used with one invocation of the
PROBIT procedure. If multiple MODEL statements are present, only the last one is used. Main effects
and higher-order terms can be specified in the MODEL statement, as in the GLM procedure. If a CLASS
statement is used, it must precede the MODEL statement.

The CDFPLOT, INSET, IPPPLOT, LPREDPLOT, and PREDPPLOT statements are used to produce graphical
output. You can use any appropriate combination of the graphical statements after the MODEL statement.

The ESTIMATE, EFFECTPLOT, LSMEANS, LSMESTIMATE, SLICE, STORE, and TEST statements are
common to many procedures. Summary descriptions of functionality and syntax for these statements are
also given after the PROC PROBIT statement in alphabetical order, and full documentation about them is
available in Chapter 19, “Shared Concepts and Topics.”

PROC PROBIT Statement
PROC PROBIT < options > ;

The PROC PROBIT statement invokes the PROBIT procedure. Table 81.1 summarizes the options available
in the PROC PROBIT statement.
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Table 81.1 PROC PROBIT Statement Options

Option Description

COVOUT Writes the parameter estimate covariance matrix to the OUTEST= data set
C= Controls how the natural response is handled
DATA= Specifies the SAS data set to be used
GOUT= Specifies a graphics catalog in which to save graphics output
HPROB= Specifies a minimum probability level for the Pearson’s chi-square
INEST= Specifies an input SAS data set that contains initial estimates
INVERSECL Computes confidence limits
LACKFIT Performs two goodness-of-fit tests
LOG Replaces the first continuous independent variable with its natural logarithm
LOG10 Replaces the first continuous independent variable with log to the base 10
NAMELEN= Specifies the length of effect names to be n characters
NOPRINT Suppresses the display of all output including graphics
OPTC Controls how the natural response is handled
ORDER= Specifies the sort order for the levels of the classification variables
OUTEST= Specifies a SAS data set to contain the parameter estimates
PLOT | PLOTS Controls the plots produced though ODS Graphics
XDATA= Specifies an input SAS data set that contains values for all the independent

variables

You can specify the following options in the PROC PROBIT statement.

COVOUT
writes the parameter estimate covariance matrix to the OUTEST= data set.

C=rate

OPTC
controls how the natural response is handled. Specify the OPTC option to request that the natural
response rate C be estimated. Specify the C=rate option to set the natural response rate or to provide
the initial estimate of the natural response rate. The natural response rate value must be a number
between 0 and 1.

• If you specify neither the OPTC nor the C= option, a natural response rate of zero is assumed.

• If you specify both the OPTC and the C= option, the C= option should be a reasonable initial
estimate of the natural response rate. For example, you could use the ratio of the number of
responses to the number of subjects in a control group.

• If you specify the C= option but not the OPTC option, the natural response rate is set to the
specified value and not estimated.

• If you specify the OPTC option but not the C= option, PROC PROBIT’s action depends on the
response variable, as follows:

– If you specify either the LN or LOG10 option and some subjects have the first independent
variable (dose) values less than or equal to zero, these subjects are treated as a control group.
The initial estimate of C is then the ratio of the number of responses to the number of
subjects in this group.
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– If you do not specify the LN or LOG10 option or if there is no control group, then one of the
following occurs:

� If all responses are greater than zero, the initial estimate of the natural response rate
is the minimal response rate (the ratio of the number of responses to the number of
subjects in a dose group) across all dose levels.
� If one or more of the responses is zero (making the response rate zero in that dose group),

the initial estimate of the natural rate is the reciprocal of twice the largest number of
subjects in any dose group in the experiment.

DATA=SAS-data-set
specifies the SAS data set to be used by PROC PROBIT. By default, the procedure uses the most
recently created SAS data set.

GOUT=graphics-catalog
specifies a graphics catalog in which to save graphics output.

HPROB=p
specifies a minimum probability level for the Pearson’s chi-square to indicate a good fit. The default
value is 0.10. The LACKFIT option must also be specified for this option to have any effect. For
Pearson’s goodness-of-fit chi-square values with probability greater than the HPROB= value, the
fiducial limits, if requested with the INVERSECL option, are computed by using a critical value of
1.96. For chi-square values with probability less than the value of the HPROB= option, the critical
value is a 0.95 two-sided quantile value taken from the t distribution with degrees of freedom equal to
.k � 1/�m� q, where k is the number of levels for the response variable, m is the number of different
sets of independent variable values, and q is the number of parameters fit in the model. Note that the
HPROB= option can also appear in the MODEL statement.

INEST=SAS-data-set
specifies an input SAS data set that contains initial estimates for all the parameters in the model. See
the section “INEST= SAS-data-set” on page 6751 for a detailed description of the contents of the
INEST= data set.

INVERSECL< (PROB=rates) >
computes confidence limits for the values of the first continuous independent variable (such as dose)
that yield selected response rates. You can optionally specify a list of response rates as rates. The
response rates must be between zero and one, and can be a list separated by blanks, commas, or in the
form of a DO list.

For example,

PROB = .1 TO .9 by .1
PROB = .1 .2 .3 .4
PROB = .01, .25, .75, .9

are valid lists of response rates.

If the algorithm fails to converge (this can happen when C is nonzero), missing values are reported for
the confidence limits. See the section “Inverse Confidence Limits” on page 6754 for details. Note that
the INVERSECL option can also appear in the MODEL statement.
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LACKFIT
performs two goodness-of-fit tests (a Pearson’s chi-square test and a log-likelihood ratio chi-square
test) for the fitted model.

To compute the test statistics, proper grouping of the observations into subpopulations is needed. You
can use the AGGREGATE or AGGREGATE= option for this end. See the entry for the AGGREGATE
and AGGREGATE= options under the MODEL statement. If neither AGGREGATE nor AGGRE-
GATE= is specified, PROC PROBIT assumes each observation is from a separate subpopulation and
computes the goodness-of-fit test statistics only for the events/trials syntax.

NOTE: This test is not appropriate if the data are very sparse, with only a few values at each set of the
independent variable values.

If the Pearson’s chi-square test statistic is significant, then the covariance estimates and standard error
estimates are adjusted. See the section “Lack-of-Fit Tests” on page 6752 for a description of the tests.
Note that the LACKFIT option can also appear in the MODEL statement.

LOG

LN
analyzes the data by replacing the first continuous independent variable with its natural logarithm.
This variable is usually the level of some treatment such as dosage. In addition to the usual output
given by the INVERSECL option, the estimated dose values and 95% fiducial limits for dose are also
displayed. If you specify the OPTC option, any observations with a dose value less than or equal to
zero are used in the estimation as a control group. If you do not specify the OPTC option with the
LOG or LN option, then any observations with the first continuous independent variable values less
than or equal to zero are ignored.

LOG10
specifies an analysis like that of the LN or LOG option, except that the common logarithm (log to the
base 10) of the dose value is used rather than the natural logarithm.

NAMELEN=n
specifies the length of effect names in tables and output data sets to be n characters, where n is a value
between 20 and 200. The default length is 20 characters.

NOPRINT
suppresses the display of all output including graphics. Note that this option temporarily disables the
Output Delivery System (ODS). For more information, see Chapter 20, “Using the Output Delivery
System.”

OPTC
controls how the natural response is handled. See the description of the C= option on page 6692 for
details.
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ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of the classification variables (which are specified in the CLASS
statement).

This option applies to the levels for all classification variables, except when you use the (default)
ORDER=FORMATTED option with numeric classification variables that have no explicit format. In
that case, the levels of such variables are ordered by their internal value.

The ORDER= option can take the following values:

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set

FORMATTED External formatted value, except for numeric variables with
no explicit format, which are sorted by their unformatted
(internal) value

FREQ Descending frequency count; levels with the most observa-
tions come first in the order

INTERNAL Unformatted value

By default, ORDER=FORMATTED. For ORDER=FORMATTED and ORDER=INTERNAL, the sort
order is machine-dependent.

This order also applies to the levels of the response variable. Response level ordering is important
because PROC PROBIT always models the probability of response levels at the beginning of the
ordering. See the section “Response Level Ordering” on page 6748 for further details.

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

OUTEST=SAS-data-set
specifies a SAS data set to contain the parameter estimates and, if the COVOUT option is specified,
their estimated covariances. If you omit this option, the output data set is not created. The contents of
the data set are described in the section “OUTEST= SAS-data-set” on page 6755.

PLOT | PLOTS < =plot-request >
PLOT | PLOTS < =(plot-request < . . . plot-request > ) >

specifies options that control details of the plots created by ODS Graphics. These plots are related to a
dose variable, which is identified as the first single continuous independent variable in the MODEL
statement. If there are interaction terms with this variable in the model, the PROBIT procedure will
not produce any plot.

You can specify more than one plot request within the parentheses after PLOTS=. For a single plot
request, you can omit the parentheses.

ODS Graphics must be enabled before plots can be requested. For example:

proc probit plots=predplot;
model r/n = dose;

run;
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For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The following plot-requests are available.

ALL
creates all appropriate plots.

CDFPLOT< (LEVEL=(character-list)) >
requests the plot of predicted cumulative distribution function (CDF) of the multinomial response
variable as a function of a single continuous independent variable (dose variable). This single
continuous independent variable must be the first single continuous independent variable listed in
the MODEL statement. You can request this plot only with a multinomial model.

The LEVEL= suboption specifies the levels of the multinomial response variable for which the
CDF curves are requested. There are k – 1 curves for a k-level multinomial response variable
(for the highest level, it is the constant line 1). You can specify any of them to be plotted by the
LEVEL= suboption.

IPPPLOT
requests the inverse plot of the predicted probability against the first single continuous variable
(dose variable) in the MODEL statement for the binomial model. You can request this plot only
with a binomial model. The confidence limits for the predicted values of the dose variable are the
computed fiducial limits, not the inverse of the confidence limits of the predicted probabilities.
See the section “Inverse Confidence Limits” on page 6754 for more details.

LPREDPLOT< (LEVEL=(character-list)) >
requests the plot of the linear predictor x0b against the first single continuous variable (dose
variable) in the MODEL statement for either the binomial model or the multinomial model. The
confidence limits for the predicted values are available only for the binomial model.

For the multinomial model, you can use the LEVEL= suboption to specify the levels for which
the linear predictor lines are plotted.

NONE
suppresses all plots.

PREDPPLOT< (LEVEL=(character-list)) >
requests the plot of the predicted probability against the first single continuous variable (dose
variable) in the MODEL statement for both the binomial model and the multinomial model.
Confidence limits are available only for the binomial model.

For the multinomial model, you can use the LEVEL= suboption to specify the levels for which
the linear predictor lines are plotted.

XDATA=SAS-data-set
specifies an input SAS data set that contains values for all the independent variables in the MODEL
statement and variables in the CLASS statement. If there are covariates specified in a MODEL
statement, you specify fixed values for the effects in the MODEL statement by the XDATA= data
set when predicted values and/or fiducial limits for a single continuous variable (dose variable) are
required. These specified values for the effects in the MODEL statement are also used for generating
plots. See the section “XDATA= SAS-data-set” on page 6756 for a detailed description of the contents
of the XDATA= data set.
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BY Statement
BY variables ;

You can specify a BY statement with PROC PROBIT to obtain separate analyses of observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the PROBIT procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

CDFPLOT Statement
CDFPLOT < VAR=variable > < options > ;

The CDFPLOT statement plots the predicted cumulative distribution function (CDF) of the multinomial
response variable as a function of a single continuous independent variable (dose variable). You can use this
statement only after a multinomial model statement.

VAR=variable
specifies a single continuous variable (dose variable) in the independent variable list of the MODEL
statement. If a VAR= variable is not specified, the first single continuous variable in the independent
variable list of the MODEL statement is used. If such a variable does not exist in the independent
variable list of the MODEL statement, an error is reported.

The predicted cumulative distribution function is defined as

OFj .x/ D C C .1 � C/F. Oaj C x0 Ob/
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where j D 1; : : : ; k are the indexes of the k levels of the multinomial response variable, F is the CDF
of the distribution used to model the cumulative probabilities, Ob is the vector of estimated parameters,
x is the covariate vector, Oaj are estimated ordinal intercepts with Oa1 D 0, and C is the threshold
parameter, either known or estimated from the model. Let x1 be the covariate corresponding to the
dose variable and x�1 be the vector of the rest of the covariates. Let the corresponding estimated
parameters be Ob1 and Ob�1. Then

OFj .x/ D C C .1 � C/F. Oaj C x1 Ob1 C x0�1 Ob�1/

To plot OFj as a function of x1, x�1 must be specified. You can use the XDATA= option to provide the
values of x�1 (see the XDATA= option in the PROC PROBIT statement for details), or use the default
values that follow the rules:

• If the effect contains a continuous variable (or variables), the overall mean of this effect is used.

• If the effect is a single classification variable, the highest level of the variable is used.

options
specify the levels of the multinomial response variable for which the CDF curves are requested, and
add features to the plot. There are k – 1 curves for a k-level multinomial response variable (for the
highest level, it is the constant line 1). You can specify any of them to be plotted by the LEVEL=
option in the CDFPLOT statement. See the LEVEL= option for how to specify the levels.

An attached box on the right side of the plot is used to label these curves with the names of their levels.
You can specify the color of this box by using the CLABBOX= option.

You can use options in the CDFPLOT statement to do the following:

• superimpose specification limits

• specify the levels for which the CDF curves are requested

• specify graphical enhancements (such as color or text height)

Summary of Options

Table 81.2 through Table 81.8 summarize the options available in the CDFPLOT statement. The “Dictionary
of Options” on page 6701 describes each option in detail.

CDF Options

Table 81.2 Options for CDFPLOT

LEVEL=(character-list) Specifies the names of the levels for which the CDF curves are
requested

NOTHRESH Suppresses the threshold line

THRESHLABPOS=value Specifies the position for the label of the threshold line
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General Options

Table 81.3 Color Options

CAXIS=color Specifies color for axis

CFIT=color Specifies color for fitted curves

CFRAME=color Specifies color for frame

CGRID=color Specifies color for grid lines

CHREF=color Specifies color for HREF= lines

CLABBOX=color Specifies color for label box

CTEXT=color Specifies color for text

CVREF=color Specifies color for VREF= lines

Table 81.4 Options to Enhance Plots Produced on Graphics Devices

ANNOTATE=
SAS-data-set

Specifies an Annotate data set

INBORDER Requests a border around plot

LFIT=linetype Specifies line style for fitted curves

LGRID=linetype Specifies line style for grid lines

NOFRAME Suppresses the frame around plotting areas

NOGRID Suppresses grid lines

NOFIT Suppresses CDF curves

NOHLABEL Suppresses horizontal labels

NOHTICK Suppresses horizontal ticks

NOVTICK Suppresses vertical ticks

TURNVLABELS Vertically strings out characters in vertical labels

WFIT=n Specifies thickness for fitted curves

WGRID=n Specifies thickness for grids

WREFL=n Specifies thickness for reference lines
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Table 81.5 Axis Options

HAXIS=value1 to value2
< by value3 >

Specifies tick mark values for horizontal axis

HOFFSET=value Specifies offset for horizontal axis

HLOWER=value Specifies lower limit on horizontal axis scale

HUPPER=value Specifies upper limit on horizontal axis scale

NHTICK=n Specifies number of ticks for horizontal axis

NVTICK=n Specifies number of ticks for vertical axis

VAXIS=value1 to value2
< by value3 >

Specifies tick mark values for vertical axis

VAXISLABEL='label ' Specifies label for vertical axis

VOFFSET=value Specifies offset for vertical axis

VLOWER=value Specifies lower limit on vertical axis scale

VUPPER=value Specifies upper limit on vertical axis scale

WAXIS=n Specifies thickness for axis

Table 81.6 Graphics Catalog Options

DESCRIPTION='string' Specifies description for graphics catalog member

NAME='string' Specifies name for plot in graphics catalog

Table 81.7 Options for Text Enhancement

FONT=font Specifies software font for text

HEIGHT=value Specifies height of text outside framed areas

INHEIGHT=value Specifies height of text inside framed areas
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Table 81.8 Options for Reference Lines

HREF< (INTERSECT) >
=value-list

Requests horizontal reference line

HREFLABELS=
('label1',. . . ,'labeln')

Specifies labels for HREF= lines

HREFLABPOS=n Specifies vertical position of labels for HREF= lines

LHREF=linetype Specifies line style for HREF= lines

LVREF=linetype Specifies line style for VREF= lines

VREF< (INTERSECT) >
=value-list

Requests vertical reference line

VREFLABELS=
('label1',. . . ,'labeln')

Specifies labels for VREF= lines

VREFLABPOS=n Specifies horizontal position of labels for VREF= lines

Dictionary of Options

The following entries provide detailed descriptions of the options in the CDFPLOT statement.

ANNOTATE=SAS-data-set

ANNO=SAS-data-set
specifies an Annotate data set, as described in SAS/GRAPH: Reference, that enables you to add features
to the CDF plot. The ANNOTATE= data set you specify in the CDFPLOT statement is used for all
plots created by the statement.

CAXIS=color

CAXES=color
specifies the color used for the axes and tick marks. This option overrides any COLOR= specifications
in an AXIS statement. The default is the first color in the device color list.

CFIT=color
specifies the color for the fitted CDF curves. The default is the first color in the device color list.

CFRAME=color

CFR=color
specifies the color for the area enclosed by the axes and frame. This area is not shaded by default.

CGRID=color
specifies the color for grid lines. The default is the first color in the device color list.

CLABBOX=color
specifies the color for the area enclosed by the label box for CDF curves. This area is not shaded by
default.
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CHREF=color

CH=color
specifies the color for lines requested by the HREF= option. The default is the first color in the device
color list.

CTEXT=color
specifies the color for tick mark values and axis labels. The default is the color specified for the
CTEXT= option in the most recent GOPTIONS statement.

CVREF=color

CV=color
specifies the color for lines requested by the VREF= option. The default is the first color in the device
color list.

DESCRIPTION=“string”

DES=“string”
specifies a description, up to 40 characters, that appears in the PROC GREPLAY master menu. The
default is the variable name.

FONT=font
specifies a software font for reference line and axis labels. You can also specify fonts for axis labels in
an AXIS statement. The FONT= font takes precedence over the FTEXT= font specified in the most
recent GOPTIONS statement. Hardware characters are used by default.

HAXIS=value1 to value2 < by value3 >
specifies tick mark values for the horizontal axis; value1, value2, and value3 must be numeric, and
value1 must be less than value2. The lower tick mark is value1. Tick marks are drawn at increments
of value3. The last tick mark is the greatest value that does not exceed value2. If value3 is omitted, a
value of 1 is used.

Examples of HAXIS= lists follow:

haxis = 0 to 10
haxis = 2 to 10 by 2
haxis = 0 to 200 by 10

HEIGHT=value
specifies the height of text used outside framed areas. The default value is 3.846 (in percentage).

HLOWER=value
specifies the lower limit on the horizontal axis scale. The HLOWER= option specifies value as the
lower horizontal axis tick mark. The tick mark interval and the upper axis limit are determined
automatically. This option has no effect if the HAXIS= option is used.

HOFFSET=value
specifies offset for horizontal axis. The default value is 1.



CDFPLOT Statement F 6703

HUPPER=value
specifies value as the upper horizontal axis tick mark. The tick mark interval and the lower axis limit
are determined automatically. This option has no effect if the HAXIS= option is used.

HREF < (INTERSECT) > =value-list
requests reference lines perpendicular to the horizontal axis. If (INTERSECT) is specified, a second
reference line perpendicular to the vertical axis is drawn that intersects the fit line at the same
point as the horizontal axis reference line. If a horizontal axis reference line label is specified, the
intersecting vertical axis reference line is labeled with the vertical axis value. See also the CHREF=,
HREFLABELS=, and LHREF= options.

HREFLABELS='label1',. . . ,'labeln'

HREFLABEL='label1',. . . ,'labeln'

HREFLAB='label1',. . . ,'labeln'
specifies labels for the lines requested by the HREF= option. The number of labels must equal the
number of lines. Enclose each label in quotes. Labels can be up to 16 characters.

HREFLABPOS=n
specifies the vertical position of labels for HREF= lines. The following table shows valid values for n
and the corresponding label placements.

n Label Placement
1 Top
2 Staggered from top
3 Bottom
4 Staggered from bottom
5 Alternating from top
6 Alternating from bottom

INBORDER
requests a border around CDF plots.

INHEIGHT=value
Specifies height of text inside framed areas.

LEVEL=(character-list)

ORDINAL=(character-list)
specifies the names of the levels for which CDF curves are requested. Names should be quoted and
separated by space. If there is no correct name provided, no CDF curve is plotted.

LFIT=linetype
specifies a line style for fitted curves. By default, fitted curves are drawn by connecting solid lines
(linetype = 1).

LGRID=linetype
specifies a line style for all grid lines. linetype is between 1 and 46. The default is 35.
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LHREF=linetype

LH=linetype
specifies the line type for lines requested by the HREF= option. The default is 2, which produces a
dashed line.

LVREF=linetype

LV=linetype
specifies the line type for lines requested by the VREF= option. The default is 2, which produces a
dashed line.

NAME='string'
specifies a name for the plot, up to eight characters, that appears in the PROC GREPLAY master menu.
The default is ’PROBIT’.

NHTICK=n
Specifies number of ticks for horizontal axis.

NVTICK=n
Specifies number of ticks for vertical axis.

NOFIT
suppresses the fitted CDF curves.

NOFRAME
suppresses the frame around plotting areas.

NOGRID
suppresses grid lines.

NOHLABEL
suppresses horizontal labels.

NOHTICK
suppresses horizontal tick marks.

NOTHRESH
suppresses the threshold line.

NOVLABEL
suppresses vertical labels.

TURNVLABELS
vertically strings out characters in vertical labels.

NOVTICK
suppresses vertical tick marks.

THRESHLABPOS=n
specifies the horizontal position of labels for the threshold line. The following table shows valid values
for n and the corresponding label placements.
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n Label Placement
1 Left
2 Right

VAXIS=value1 to value2 < by value3 >
specifies tick mark values for the vertical axis; value1, value2, and value3 must be numeric, and value1
must be less than value2. The lower tick mark is value1. Tick marks are drawn at increments of value3.
The last tick mark is the greatest value that does not exceed value2. This method of specification of
tick marks is not valid for logarithmic axes. If value3 is omitted, a value of 1 is used.

Examples of VAXIS= lists follow:

vaxis = 0 to 10
vaxis = 0 to 2 by .1

VAXISLABEL='string'
specifies a label for the vertical axis.

VLOWER=value
specifies the lower limit on the vertical axis scale. The VLOWER= option specifies value as the lower
vertical axis tick mark. The tick mark interval and the upper axis limit are determined automatically.
This option has no effect if the VAXIS= option is used.

VOFFSET=value
specifies the offset for the vertical axis.

VREF=value-list
requests reference lines perpendicular to the vertical axis. If (INTERSECT) is specified, a second
reference line perpendicular to the horizontal axis is drawn that intersects the fit line at the same point
as the vertical axis reference line. If a vertical axis reference line label is specified, the intersecting
horizontal axis reference line is labeled with the horizontal axis value. See also the CVREF=, LVREF=,
and VREFLABELS= options.

VREFLABELS='label1',. . . ,'labeln'

VREFLABEL='label1',. . . ,'labeln'

VREFLAB='label1',. . . ,'labeln'
specifies labels for the lines requested by the VREF= option. The number of labels must equal the
number of lines. Enclose each label in quotes. Labels can be up to 16 characters.

VREFLABPOS=n
specifies the horizontal position of labels for VREF= lines. The following table shows valid values for
n and the corresponding label placements.

n Label Placement
1 Left
2 Right
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VUPPER=value
specifies the upper limit on the vertical axis scale. The VUPPER= option specifies value as the upper
vertical axis tick mark. The tick mark interval and the lower axis limit are determined automatically.
This option has no effect if the VAXIS= option is used.

WAXIS=n
specifies line thickness for axes and frame. The default value is 1.

WFIT=n
specifies line thickness for fitted curves. The default value is 1.

WGRID=n
specifies line thickness for grids. The default value is 1.

WREFL=n
specifies line thickness for reference lines. The default value is 1.

CLASS Statement
CLASS variable < (options) > . . . < variable < (options) > > < / global-options > ;

The CLASS statement names the classification variables to be used as explanatory variables in the analysis.

The CLASS statement must precede the MODEL statement. Most options can be specified either as individual
variable options or as global-options. You can specify options for each variable by enclosing the options in
parentheses after the variable name. You can also specify global-options for the CLASS statement by placing
them after a slash (/). Global-options are applied to all the variables specified in the CLASS statement. If you
specify more than one CLASS statement, the global-options specified in any one CLASS statement apply to
all CLASS statements. However, individual CLASS variable options override the global-options. You can
specify the following values for either an option or a global-option:

CPREFIX=n
specifies that, at most, the first n characters of a CLASS variable name be used in creating names for
the corresponding design variables. The default is 32 �min.32;max.2; f //, where f is the formatted
length of the CLASS variable.

DESCENDING

DESC
reverses the sort order of the classification variable. If both the DESCENDING and ORDER= options
are specified, PROC PROBIT orders the categories according to the ORDER= option and then reverses
that order.

LPREFIX=n
specifies that, at most, the first n characters of a CLASS variable label be used in creating labels for the
corresponding design variables. The default is 256 �min.256;max.2; f //, where f is the formatted
length of the CLASS variable.
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MISSING
treats missing values (., ._, .A, . . . , .Z for numeric variables and blanks for character variables) as valid
values for the CLASS variable.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of classification variables. This ordering determines which
parameters in the model correspond to each level in the data, so the ORDER= option can be useful when
you use the CONTRAST statement. By default, ORDER=FORMATTED. For ORDER=FORMATTED
and ORDER=INTERNAL, the sort order is machine-dependent. When ORDER=FORMATTED is in
effect for numeric variables for which you have supplied no explicit format, the levels are ordered by
their internal values.

The following table shows how PROC PROBIT interprets values of the ORDER= option.

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set
FORMATTED External formatted values, except for numeric

variables with no explicit format, which are sorted
by their unformatted (internal) values

FREQ Descending frequency count; levels with more
observations come earlier in the order

INTERNAL Unformatted value

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

PARAM=keyword
specifies the parameterization method for the classification variable or variables. You can specify any
of the keywords shown in the following table;

Design matrix columns are created from CLASS variables according to the corresponding coding
schemes:
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Value of PARAM= Coding

EFFECT Effect coding

GLM Less-than-full-rank reference cell coding (this
keyword can be used only in a global option)

ORDINAL
THERMOMETER

Cumulative parameterization for an ordinal
CLASS variable

POLYNOMIAL
POLY

Polynomial coding

REFERENCE
REF

Reference cell coding

ORTHEFFECT Orthogonalizes PARAM=EFFECT coding

ORTHORDINAL
ORTHOTHERM

Orthogonalizes PARAM=ORDINAL coding

ORTHPOLY Orthogonalizes PARAM=POLYNOMIAL coding

ORTHREF Orthogonalizes PARAM=REFERENCE coding

All parameterizations are full rank, except for the GLM parameterization. The REF= option in the
CLASS statement determines the reference level for EFFECT and REFERENCE coding and for their
orthogonal parameterizations. It also indirectly determines the reference level for a singular GLM
parameterization through the order of levels.

If PARAM=ORTHPOLY or PARAM=POLY and the classification variable is numeric, then the
ORDER= option in the CLASS statement is ignored, and the internal unformatted values are used. See
the section “Other Parameterizations” on page 391 in Chapter 19, “Shared Concepts and Topics,” for
further details.

REF=’level’ | keyword
specifies the reference level for PARAM=EFFECT, PARAM=REFERENCE, and their orthogonaliza-
tions. For PARAM=GLM, the REF= option specifies a level of the classification variable to be put at
the end of the list of levels. This level thus corresponds to the reference level in the usual interpretation
of the linear estimates with a singular parameterization.

For an individual variable REF= option (but not for a global REF= option), you can specify the level
of the variable to use as the reference level. Specify the formatted value of the variable if a format is
assigned. For a global or individual variable REF= option, you can use one of the following keywords.
The default is REF=LAST.

FIRST designates the first ordered level as reference.

LAST designates the last ordered level as reference.

TRUNCATE< =n >
specifies the length n of CLASS variable values to use in determining CLASS variable levels. The
default is to use the full formatted length of the CLASS variable. If you specify TRUNCATE without
the length n, the first 16 characters of the formatted values are used. When formatted values are longer
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than 16 characters, you can use this option to revert to the levels as determined in releases before SAS
9. The TRUNCATE option is available only as a global option.

Class Variable Naming Convention

Parameter names for a CLASS predictor variable are constructed by concatenating the CLASS variable name
with the CLASS levels. However, for the POLYNOMIAL and orthogonal parameterizations, parameter
names are formed by concatenating the CLASS variable name and keywords that reflect the parameterization.
See the section “Other Parameterizations” on page 391 in Chapter 19, “Shared Concepts and Topics,” for
examples and further details.

Class Variable Parameterization with Unbalanced Designs

PROC PROBIT initially parameterizes the CLASS variables by looking at the levels of the variables across
the complete data set. If you have an unbalanced replication of levels across variables or BY groups, then
the design matrix and the parameter interpretation might be different from what you expect. For instance,
suppose you have a model with one CLASS variable A with three levels (1, 2, and 3), and another CLASS
variable B with two levels (1 and 2). If the third level of A occurs only with the first level of B, if you use the
EFFECT parameterization, and if your model contains the effect A(B) and an intercept, then the design for A
within the second level of B is not a differential effect. In particular, the design looks like the following:

Design Matrix
A(B=1) A(B=2)

B A A1 A2 A1 A2

1 1 1 0 0 0
1 2 0 1 0 0
1 3 –1 –1 0 0
2 1 0 0 1 0
2 2 0 0 0 1

PROC PROBIT detects linear dependency among the last two design variables and sets the parameter for
A2(B=2) to zero, resulting in an interpretation of these parameters as if they were reference- or dummy-coded.
The REFERENCE or GLM parameterization might be more appropriate for such problems.

EFFECTPLOT Statement
EFFECTPLOT < plot-type < (plot-definition-options) > > < / options > ;

The EFFECTPLOT statement produces a display of the fitted model and provides options for changing and
enhancing the displays. Table 81.9 describes the available plot-types and their plot-definition-options.
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Table 81.9 Plot-Types and Plot-Definition-Options

Plot-Type and Description Plot-Definition-Options

BOX
Displays a box plot of continuous response data at each
level of a CLASS effect, with predicted values
superimposed and connected by a line. This is an
alternative to the INTERACTION plot-type.

PLOTBY= variable or CLASS effect
X= CLASS variable or effect

CONTOUR
Displays a contour plot of predicted values against two
continuous covariates

PLOTBY= variable or CLASS effect
X= continuous variable
Y= continuous variable

FIT
Displays a curve of predicted values versus a
continuous variable

PLOTBY= variable or CLASS effect
X= continuous variable

INTERACTION
Displays a plot of predicted values (possibly with error
bars) versus the levels of a CLASS effect. The
predicted values are connected with lines and can be
grouped by the levels of another CLASS effect.

PLOTBY= variable or CLASS effect
SLICEBY= variable or CLASS effect
X= CLASS variable or effect

MOSAIC
Displays a mosaic plot of predicted values by using up
to three CLASS effects

PLOTBY= variable or CLASS effect
X= CLASS effects

SLICEFIT
Displays a curve of predicted values versus a
continuous variable, grouped by the levels of a
CLASS effect

PLOTBY= variable or CLASS effect
SLICEBY= variable or CLASS effect
X= continuous variable

For full details about the syntax and options of the EFFECTPLOT statement, see the section “EFFECTPLOT
Statement” on page 416 in Chapter 19, “Shared Concepts and Topics.”

ESTIMATE Statement
ESTIMATE < 'label ' > estimate-specification < (divisor=n) >

< , . . . < 'label ' > estimate-specification < (divisor=n) > >
< / options > ;

The ESTIMATE statement provides a mechanism for obtaining custom hypothesis tests. Estimates are
formed as linear estimable functions of the form Lˇ. You can perform hypothesis tests for the estimable
functions, construct confidence limits, and obtain specific nonlinear transformations.

Table 81.10 summarizes the options available in the ESTIMATE statement.
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Table 81.10 ESTIMATE Statement Options

Option Description

Construction and Computation of Estimable Functions
DIVISOR= Specifies a list of values to divide the coefficients
NOFILL Suppresses the automatic fill-in of coefficients for higher-order

effects
SINGULAR= Tunes the estimability checking difference

Degrees of Freedom and p-values
ADJUST= Determines the method for multiple comparison adjustment of

estimates
ALPHA=˛ Determines the confidence level (1 � ˛)
LOWER Performs one-sided, lower-tailed inference
STEPDOWN Adjusts multiplicity-corrected p-values further in a step-down fash-

ion
TESTVALUE= Specifies values under the null hypothesis for tests
UPPER Performs one-sided, upper-tailed inference

Statistical Output
CL Constructs confidence limits
CORR Displays the correlation matrix of estimates
COV Displays the covariance matrix of estimates
E Prints the L matrix
JOINT Produces a joint F or chi-square test for the estimable functions
SEED= Specifies the seed for computations that depend on random numbers

For details about the syntax of the ESTIMATE statement, see the section “ESTIMATE Statement” on
page 444 in Chapter 19, “Shared Concepts and Topics.”

INSET Statement
INSET < keyword-list > < / options > ;

The box or table of summary information produced on plots made with the CDFPLOT, IPPPLOT, LPRED-
PLOT, or PREDPPLOT statement is called an inset. You can use the INSET statement to customize both the
information that is printed in the inset box and the appearance of the inset box. To supply the information
that is displayed in the inset box, you specify keywords corresponding to the information you want shown.
For example, the following statements produce a predicted probability plot with the number of trials, the
number of events, the name of the distribution, and the estimated optimum natural threshold in the inset.

proc probit data=epidemic;
model r/n = dose;
predpplot;
inset nobs ntrials nevents dist optc;

run;
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By default, inset entries are identified with appropriate labels. However, you can provide a customized label
by specifying the keyword for that entry followed by the equal sign (=) and the label in quotes. For example,
the following INSET statement produces an inset containing the number of observations and the name of the
distribution, labeled “Sample Size” and “Distribution” in the inset.

inset nobs='Sample Size' dist='Distribution';

If you specify a keyword that does not apply to the plot you are creating, then the keyword is ignored.

The options control the appearance of the box.

If you specify more than one INSET statement, only the first one is used.

Keywords Used in the INSET Statement

Table 81.11 and Table 81.12 list keywords available in the INSET statement to display summary statistics,
distribution parameters, and distribution fitting information.

Table 81.11 Summary Statistics

NOBS Number of observations

NTRIALS Number of trials

NEVENTS Number of events

C User-input threshold

OPTC Estimated natural threshold

NRESPLEV Number of levels of the response variable

Table 81.12 General Information

CONFIDENCE Confidence coefficient for all confidence intervals

DIST Name of the distribution

Options Used in the INSET Statement

Table 81.13 and Table 81.14 list the options available in the INSET statement.

Table 81.13 Color and Pattern Options

CFILL=color Specifies color for filling box

CFILLH=color Specifies color for filling box header

CFRAME=color Specifies color for frame

CHEADER=color Specifies color for text in header

CTEXT=color Specifies color for text
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Table 81.14 General Appearance Options

FONT=font Specifies software font for text

HEIGHT=value Specifies height of text

HEADER=’ 'quoted-string' Specifies text for header or box title
NOFRAME Omits frame around box
POS= value
< DATA | PERCENT > Determines the position of the inset. The value can be a com-

pass point (N, NE, E, SE, S, SW, W, NW) or a pair of coordi-
nates (x, y) enclosed in parentheses. The coordinates can be
specified in axis percentage units or axis data units.

REFPOINT= name Specifies the reference point for an inset that is positioned
by a pair of coordinates with the POS= option. You use the
REFPOINT= option in conjunction with the POS= coordinates.
The REFPOINT= option specifies which corner of the inset
frame you have specified with coordinates (x, y), and it can take
the value of BR (bottom right), BL (bottom left), TR (top right),
or TL (top left). The default is REFPOINT=BL. If the inset
position is specified as a compass point, then the REFPOINT=
option is ignored.

IPPPLOT Statement
IPPPLOT < variable > < options > ;

The IPPPLOT statement plots the inverse of the predicted probability (IPP) against a single continuous
variable (dose variable) in the MODEL statement for the binomial model. You can only use this statement
after a binomial model statement. The confidence limits for the predicted values of the dose variable are
the computed fiducial limits, not the inverse of the confidence limits of the predicted probabilities. See the
section “Inverse Confidence Limits” on page 6754 for more details.

VAR= variable
specifies a single continuous variable (dose variable) in the independent variable list of the MODEL
statement. If a VAR= variable is not specified, the first single continuous variable in the independent
variable list of the MODEL statement is used. If such a variable does not exist in the independent
variable list of the MODEL statement, an error is reported.

For the binomial model, the response variable is a probability. An estimate of the dose level Ox1 needed
for a response of p is given by

Ox1 D .F
�1.p/ � x0�1 Ob�1/= Ob1

where F is the cumulative distribution function used to model the probability, x�1 is the vector of the
rest of the covariates, Ob�1 is the vector of the estimated parameters corresponding to x�1, and Ob1 is the
estimated parameter for the dose variable of interest.
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To plot Ox1 as a function of p, x�1 must be specified. You can use the XDATA= option to provide the
values of x�1 (see the XDATA= option in the PROC PROBIT statement for details), or use the default
values that follow the rules:

• If the effect contains a continuous variable (or variables), the overall mean of this effect is used.

• If the effect is a single classification variable, the highest level of the variable is used.

options
add features to the plot.

You can use options in the IPPPLOT statement to do the following:

• superimpose specification limits

• suppress or add the observed data points on the plot

• suppress or add the fiducial limits on the plot

• specify graphical enhancements (such as color or text height)

Summary of Options

Table 81.15 through Table 81.21 summarize the options available in the IPPPLOT statement. The “Dictionary
of Options” on page 6716 describes each option in detail.

IPP Options

Table 81.15 Plot Layout Options for IPPPLOT

NOCONF Suppresses fiducial limits

NODATA Suppresses observed data points on the plot

NOTHRESH Suppresses the threshold line

THRESHLABPOS=value Specifies the position for the label of the threshold line

General Options

Table 81.16 Color Options

CAXIS=color Specifies color for axis

CFIT=color Specifies color for fitted curves

CFRAME=color Specifies color for frame

CGRID=color Specifies color for grid lines

CHREF=color Specifies color for HREF= lines

CTEXT=color Specifies color for text

CVREF=color Specifies color for VREF= lines
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Table 81.17 Options to Enhance Plots Produced on Graphics Devices

ANNOTATE=
SAS-data-set

Specifies an Annotate data set

INBORDER Requests a border around plot

LFIT=linetype Specifies line style for fitted curves and confidence limits

LGRID=linetype Specifies line style for grid lines

NOFRAME Suppresses the frame around plotting areas

NOGRID Suppresses grid lines

NOFIT Suppresses fitted curves

NOHLABEL Suppresses horizontal labels

NOHTICK Suppresses horizontal ticks

NOVTICK Suppresses vertical ticks

TURNVLABELS Vertically strings out characters in vertical labels

WFIT=n Specifies thickness for fitted curves

WGRID=n Specifies thickness for grids

WREFL=n Specifies thickness for reference lines

Table 81.18 Axis Options

HAXIS=value1 to value2
< by value3 >

Specifies tick mark values for horizontal axis

HOFFSET=value Specifies offset for horizontal axis

HLOWER=value Specifies lower limit on horizontal axis scale

HUPPER=value Specifies upper limit on horizontal axis scale

NHTICK=n Specifies number of ticks for horizontal axis

NVTICK=n Specifies number of ticks for vertical axis

VAXIS=value1 to value2
< by value3 >

Specifies tick mark values for vertical axis

VAXISLABEL='label ' Specifies label for vertical axis

VOFFSET=value Specifies offset for vertical axis

VLOWER=value Specifies lower limit on vertical axis scale

VUPPER=value Specifies upper limit on vertical axis scale

WAXIS=n Specifies thickness for axis
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Table 81.19 Options for Reference Lines

HREF< (INTERSECT) >
=value-list

Requests horizontal reference line

HREFLABELS=
('label1',. . . ,'labeln')

Specifies labels for HREF= lines

HREFLABPOS=n Specifies vertical position of labels for HREF= lines

LHREF=linetype Specifies line style for HREF= lines

LVREF=linetype Specifies line style for VREF= lines

VREF< (INTERSECT) >
=value-list

Requests vertical reference line

VREFLABELS=
('label1',. . . ,'labeln')

Specifies labels for VREF= lines

VREFLABPOS=n Specifies horizontal position of labels for VREF= lines

Table 81.20 Graphics Catalog Options

DESCRIPTION='string' Specifies description for graphics catalog member

NAME='string' Specifies name for plot in graphics catalog

Table 81.21 Options for Text Enhancement

FONT=font Specifies software font for text

HEIGHT=value Specifies height of text used outside framed areas

INHEIGHT=value Specifies height of text inside framed areas

Dictionary of Options

The following entries provide detailed descriptions of the options in the IPPPLOT statement.

ANNOTATE=SAS-data-set

ANNO=SAS-data-set
specifies an Annotate data set, as described in SAS/GRAPH: Reference, that enables you to add features
to the IPP plot. The ANNOTATE= data set you specify in the IPPPLOT statement is used for all plots
created by the statement.

CAXIS=color

CAXES=color
specifies the color used for the axes and tick marks. This option overrides any COLOR= specifications
in an AXIS statement. The default is the first color in the device color list.
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CFIT=color
specifies the color for the fitted IPP curves. The default is the first color in the device color list.

CFRAME=color

CFR=color
specifies the color for the area enclosed by the axes and frame. This area is not shaded by default.

CGRID=color
specifies the color for grid lines. The default is the first color in the device color list.

CHREF=color

CH=color
specifies the color for lines requested by the HREF= option. The default is the first color in the device
color list.

CTEXT=color
specifies the color for tick mark values and axis labels. The default is the color specified for the
CTEXT= option in the most recent GOPTIONS statement.

CVREF=color

CV=color
specifies the color for lines requested by the VREF= option. The default is the first color in the device
color list.

DESCRIPTION='string'

DES='string'
specifies a description, up to 40 characters, that appears in the PROC GREPLAY master menu. The
default is the variable name.

FONT=font
specifies a software font for reference line and axis labels. You can also specify fonts for axis labels in
an AXIS statement. The FONT= font takes precedence over the FTEXT= font specified in the most
recent GOPTIONS statement. Hardware characters are used by default.

HAXIS=value1 to value2 < by value3 >
specifies tick mark values for the horizontal axis; value1, value2, and value3 must be numeric, and
value1 must be less than value2. The lower tick mark is value1. Tick marks are drawn at increments
of value3. The last tick mark is the greatest value that does not exceed value2. If value3 is omitted, a
value of 1 is used.

Examples of HAXIS= lists follow:

haxis = 0 to 10
haxis = 2 to 10 by 2
haxis = 0 to 200 by 10

HEIGHT=value
specifies the height of text used outside framed areas. The default value is 3.846 (in percentage).
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HLOWER=value
specifies the lower limit on the horizontal axis scale. The HLOWER= option specifies value as the
lower horizontal axis tick mark. The tick mark interval and the upper axis limit are determined
automatically. This option has no effect if the HAXIS= option is used.

HOFFSET=value
specifies offset for horizontal axis. The default value is 1.

HUPPER=value
specifies value as the upper horizontal axis tick mark. The tick mark interval and the lower axis limit
are determined automatically. This option has no effect if the HAXIS= option is used.

HREF < (INTERSECT) > =value-list
requests reference lines perpendicular to the horizontal axis. If (INTERSECT) is specified, a second
reference line perpendicular to the vertical axis is drawn that intersects the fit line at the same
point as the horizontal axis reference line. If a horizontal axis reference line label is specified, the
intersecting vertical axis reference line is labeled with the vertical axis value. See also the CHREF=,
HREFLABELS=, and LHREF= options.

HREFLABELS='label1',. . . ,'labeln'

HREFLABEL='label1',. . . ,'labeln'

HREFLAB='label1',. . . ,'labeln'
specifies labels for the lines requested by the HREF= option. The number of labels must equal the
number of lines. Enclose each label in quotes. Labels can be up to 16 characters.

HREFLABPOS=n
specifies the vertical position of labels for HREF= lines. The following table shows valid values for n
and the corresponding label placements.

n Label Placement
1 Top
2 Staggered from top
3 Bottom
4 Staggered from bottom
5 Alternating from top
6 Alternating from bottom

INBORDER
requests a border around IPP plots.

INHEIGHT=value
Specifies height of text inside framed areas.

LFIT=linetype
specifies a line style for fitted curves and confidence limits. By default, fitted curves are drawn by
connecting solid lines (linetype = 1) and confidence limits are drawn by connecting dashed lines
(linetype = 3).
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LGRID=linetype
specifies a line style for all grid lines. The value for linetype must be between 1 and 46. The default is
35.

LHREF=linetype

LH=linetype
specifies the line type for lines requested by the HREF= option. The default is 2, which produces a
dashed line.

LVREF=linetype

LV=linetype
specifies the line type for lines requested by the VREF= option. The default is 2, which produces a
dashed line.

NAME='string'
specifies a name for the plot, up to eight characters, that appears in the PROC GREPLAY master menu.
The default is ’PROBIT’.

NHTICK=n
Specifies number of ticks for horizontal axis.

NVTICK=n
Specifies number of ticks for vertical axis.

NOCONF
suppresses fiducial limits from the plot.

NODATA
suppresses observed data points from the plot.

NOFIT
suppresses the fitted IPP curves.

NOFRAME
suppresses the frame around plotting areas.

NOGRID
suppresses grid lines.

NOHLABEL
suppresses horizontal labels.

NOHTICK
suppresses horizontal tick marks.

NOTHRESH
suppresses the threshold line.

NOVLABEL
suppresses vertical labels.
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TURNVLABELS
vertically strings out characters in vertical labels.

NOVTICK
suppresses vertical tick marks.

THRESHLABPOS=n
specifies the vertical position of labels for the threshold line. The following table shows valid values
for n and the corresponding label placements.

n Label Placement
1 Top
2 Bottom

VAXIS=value1 to value2 < by value3 >
specifies tick mark values for the vertical axis; value1, value2, and value3 must be numeric, and value1
must be less than value2. The lower tick mark is value1. Tick marks are drawn at increments of value3.
The last tick mark is the greatest value that does not exceed value2. This method of specification of
tick marks is not valid for logarithmic axes. If value3 is omitted, a value of 1 is used.

Examples of VAXIS= lists follow:

vaxis = 0 to 10
vaxis = 0 to 2 by .1

VAXISLABEL='string'
specifies a label for the vertical axis.

VLOWER=value
specifies the lower limit on the vertical axis scale. The VLOWER= option specifies value as the lower
vertical axis tick mark. The tick mark interval and the upper axis limit are determined automatically.
This option has no effect if the VAXIS= option is used.

VOFFSET=value
specifies the offset for the vertical axis.

VREF=value-list
requests reference lines perpendicular to the vertical axis. If (INTERSECT) is specified, a second
reference line perpendicular to the horizontal axis is drawn that intersects the fit line at the same point
as the vertical axis reference line. If a vertical axis reference line label is specified, the intersecting
horizontal axis reference line is labeled with the horizontal axis value. See also the CVREF=, LVREF=,
and VREFLABELS= options.

VREFLABELS='label1',. . . ,'labeln'

VREFLABEL='label1',. . . ,'labeln'

VREFLAB='label1',. . . ,'labeln'
specifies labels for the lines requested by the VREF= option. The number of labels must equal the
number of lines. Enclose each label in quotes. Labels can be up to 16 characters.
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VREFLABPOS=n
specifies the horizontal position of labels for VREF= lines. The following table shows valid values for
n and the corresponding label placements.

n Label Placement
1 Left
2 Right

VUPPER=value
specifies the upper limit on the vertical axis scale. The VUPPER= option specifies value as the upper
vertical axis tick mark. The tick mark interval and the lower axis limit are determined automatically.
This option has no effect if the VAXIS= option is used.

WAXIS=n
specifies line thickness for axes and frame. The default value is 1.

WFIT=n
specifies line thickness for fitted curves. The default value is 1.

WGRID=n
specifies line thickness for grids. The default value is 1.

WREFL=n
specifies line thickness for reference lines. The default value is 1.

LPREDPLOT Statement
LPREDPLOT < VAR=variable > < options > ;

The LPREDPLOT statement plots the linear predictor (LPRED) x0b against a single continuous variable
(dose variable) in the MODEL statement for either the binomial model or the multinomial model. The
confidence limits for the predicted values are available only for the binomial model.

VAR= variable
specifies a single continuous variable (dose variable) in the independent variable list of the MODEL
statement for which the linear predictor plot is plotted. If a VAR= variable is not specified, the first
single continuous variable in the independent variable list of the MODEL statement is used. If such a
variable does not exist in the independent variable list of the MODEL statement, an error is reported.

Let x1 be the covariate of the dose variable, x�1 be the vector of the rest of the covariates, Ob�1 be the
vector of estimated parameters corresponding to x�1, and Ob1 be the estimated parameter for the dose
variable of interest.

To plot Ox0b as a function of x1, x�1 must be specified. You can use the XDATA= option to provide the
values of x�1 (see the XDATA= option in the PROC PROBIT statement for details), or use the default
values that follow these rules:

• If the effect contains a continuous variable (or variables), the overall mean of this effect is used.

• If the effect is a single classification variable, the highest level of the variable is used.
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options
add features to the plot.

For the multinomial model, you can use the LEVEL= option to specify the levels for which the linear
predictor lines are plotted. The lines are labeled by the names of their levels in the middle.

You can use options in the LPREDPLOT statement to do the following:

• superimpose specification limits

• suppress or add the observed data points on the plot for the binomial model

• suppress or add the confidence limits for the binomial model

• specify the levels for which the linear predictor lines are requested for the multinomial model

• specify graphical enhancements (such as color or text height)

Summary of Options

Table 81.22 through Table 81.28 list all options by function. The “Dictionary of Options” on page 6724
describes each option in detail.

LPRED Options

Table 81.22 Plot Layout Options for LPREDPLOT

LEVEL=(character-list) Specifies the names of the levels for which the linear predictor
lines are requested (only for the multinomial model )

NOCONF Suppresses fiducial limits (only for the binomial model)

NODATA Suppresses observed data points on the plot (only for the bino-
mial model)

NOTHRESH Suppresses the threshold line

THRESHLABPOS=value Specifies the position for the label of the threshold line

General Options

Table 81.23 Color Options

CAXIS=color Specifies color for axis

CFIT=color Specifies color for fitted curves

CFRAME=color Specifies color for frame

CGRID=color Specifies color for grid lines

CHREF=color Specifies color for HREF= lines

CTEXT=color Specifies color for text

CVREF=color Specifies color for VREF= lines
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Table 81.24 Options to Enhance Plots Produced on Graphics Devices

ANNOTATE=
SAS-data-set

Specifies an Annotate data set

INBORDER Requests a border around plot

LFIT=linetype Specifies line style for fitted curves and confidence limits

LGRID=linetype Specifies line style for grid lines

NOFRAME Suppresses the frame around plotting areas

NOGRID Suppresses grid lines

NOFIT Suppresses fitted curves

NOHLABEL Suppresses horizontal labels

NOHTICK Suppresses horizontal ticks

NOVTICK Suppresses vertical ticks

TURNVLABELS Vertically strings out characters in vertical labels

WFIT=n Specifies thickness for fitted curves

WGRID=n Specifies thickness for grids

WREFL=n Specifies thickness for reference lines

Table 81.25 Axis Options

HAXIS=value1 to value2
< by value3 >

Specifies tick mark values for horizontal axis

HOFFSET=value Specifies offset for horizontal axis

HLOWER=value Specifies lower limit on horizontal axis scale

HUPPER=value Specifies upper limit on horizontal axis scale

NHTICK=n Specifies number of ticks for horizontal axis

NVTICK=n Specifies number of ticks for vertical axis

VAXIS=value1 to value2
< by value3 >

Specifies tick mark values for vertical axis

VAXISLABEL='label ' Specifies label for vertical axis

VOFFSET=value Specifies offset for vertical axis

VLOWER=value Specifies lower limit on vertical axis scale

VUPPER=value Specifies upper limit on vertical axis scale

WAXIS=n Specifies thickness for axis

Table 81.26 Graphics Catalog Options

DESCRIPTION='string' Specifies description for graphics catalog member

NAME='string' Specifies name for plot in graphics catalog
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Table 81.27 Options for Text Enhancement

FONT=font Specifies software font for text

HEIGHT=value Specifies height of text used outside framed areas

INHEIGHT=value Specifies height of text inside framed areas

Table 81.28 Options for Reference Lines

HREF< (INTERSECT) >
=value-list

Requests horizontal reference line

HREFLABELS=
('label1',. . . ,'labeln')

Specifies labels for HREF= lines

HREFLABPOS=n Specifies vertical position of labels for HREF= lines

LHREF=linetype Specifies line style for HREF= lines

LVREF=linetype Specifies line style for VREF= lines

VREF< (INTERSECT) >
=value-list

Requests vertical reference line

VREFLABELS=
('label1',. . . ,'labeln')

Specifies labels for VREF= lines

VREFLABPOS=n Specifies horizontal position of labels for VREF= lines

Dictionary of Options

The following entries provide detailed descriptions of the options in the LPREDPLOT statement.

ANNOTATE=SAS-data-set

ANNO=SAS-data-set
specifies an Annotate data set, as described in SAS/GRAPH: Reference, that enables you to add features
to the LPRED plot. The ANNOTATE= data set you specify in the LPREDPLOT statement is used for
all plots created by the statement.

CAXIS=color

CAXES=color
specifies the color used for the axes and tick marks. This option overrides any COLOR= specifications
in an AXIS statement. The default is the first color in the device color list.

CFIT=color
specifies the color for the fitted LPRED lines. The default is the first color in the device color list.

CFRAME=color

CFR=color
specifies the color for the area enclosed by the axes and frame. This area is not shaded by default.
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CGRID=color
specifies the color for grid lines. The default is the first color in the device color list.

CHREF=color

CH=color
specifies the color for lines requested by the HREF= option. The default is the first color in the device
color list.

CTEXT=color
specifies the color for tick mark values and axis labels. The default is the color specified for the
CTEXT= option in the most recent GOPTIONS statement.

CVREF=color

CV=color
specifies the color for lines requested by the VREF= option. The default is the first color in the device
color list.

DESCRIPTION='string'

DES='string'
specifies a description, up to 40 characters, that appears in the PROC GREPLAY master menu. The
default is the variable name.

FONT=font
specifies a software font for reference line and axis labels. You can also specify fonts for axis labels in
an AXIS statement. The FONT= font takes precedence over the FTEXT= font specified in the most
recent GOPTIONS statement. Hardware characters are used by default.

HAXIS=value1 to value2 < by value3 >
specifies tick mark values for the horizontal axis; value1, value2, and value3 must be numeric, and
value1 must be less than value2. The lower tick mark is value1. Tick marks are drawn at increments
of value3. The last tick mark is the greatest value that does not exceed value2. If value3 is omitted, a
value of 1 is used.

Examples of HAXIS= lists follow:

haxis = 0 to 10
haxis = 2 to 10 by 2
haxis = 0 to 200 by 10

HEIGHT=value
specifies the height of text used outside framed areas. The default value is 3.846 (in percentage).

HLOWER=value
specifies the lower limit on the horizontal axis scale. The HLOWER= option specifies value as the
lower horizontal axis tick mark. The tick mark interval and the upper axis limit are determined
automatically. This option has no effect if the HAXIS= option is used.
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HOFFSET=value
specifies offset for horizontal axis. The default value is 1.

HUPPER=value
specifies value as the upper horizontal axis tick mark. The tick mark interval and the lower axis limit
are determined automatically. This option has no effect if the HAXIS= option is used.

HREF < (INTERSECT) > =value-list
requests reference lines perpendicular to the horizontal axis. If (INTERSECT) is specified, a second
reference line perpendicular to the vertical axis is drawn that intersects the fit line at the same
point as the horizontal axis reference line. If a horizontal axis reference line label is specified, the
intersecting vertical axis reference line is labeled with the vertical axis value. See also the CHREF=,
HREFLABELS=, and LHREF= options.

HREFLABELS='label1',. . . ,'labeln'

HREFLABEL='label1',. . . ,'labeln'

HREFLAB='label1',. . . ,'labeln'
specifies labels for the lines requested by the HREF= option. The number of labels must equal the
number of lines. Enclose each label in quotes. Labels can be up to 16 characters.

HREFLABPOS=n
specifies the vertical position of labels for HREF= lines. The following table shows valid values for n
and the corresponding label placements.

n Label Placement
1 Top
2 Staggered from top
3 Bottom
4 Staggered from bottom
5 Alternating from top
6 Alternating from bottom

INBORDER
requests a border around LPRED plots.

INHEIGHT=value
Specifies height of text inside framed areas.

LEVEL=(character-list)

ORDINAL=(character-list)
specifies the names of the levels for which linear predictor lines are requested. Names should be quoted
and separated by space. If there is no correct name provided, no LPRED line is plotted.

LFIT=linetype
specifies a line style for fitted curves and confidence limits. By default, fitted curves are drawn by
connecting solid lines (linetype = 1) and confidence limits are drawn by connecting dashed lines
(linetype = 3).
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LGRID=linetype
specifies a line style for all grid lines. The value for linetype is between 1 and 46. The default is 35.

LHREF=linetype

LH=linetype
specifies the line type for lines requested by the HREF= option. The default is 2, which produces a
dashed line.

LVREF=linetype

LV=linetype
specifies the line type for lines requested by the VREF= option. The default is 2, which produces a
dashed line.

NAME='string'
specifies a name for the plot, up to eight characters, that appears in the PROC GREPLAY master menu.
The default is ’PROBIT’.

NHTICK=n
Specifies number of ticks for horizontal axis.

NVTICK=n
Specifies number of ticks for vertical axis.

NOCONF
suppresses confidence limits from the plot. This works only for the binomial model. Confidence limits
are not plotted for the multinomial model.

NODATA
suppresses observed data points from the plot. This works only for the binomial model. Data points
are not plotted for the multinomial model.

NOFIT
suppresses the fitted LPRED lines.

NOFRAME
suppresses the frame around plotting areas.

NOGRID
suppresses grid lines.

NOHLABEL
suppresses horizontal labels.

NOHTICK
suppresses horizontal tick marks.

NOTHRESH
suppresses the threshold line.
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NOVLABEL
suppresses vertical labels.

NOVTICK
suppresses vertical tick marks.

TURNVLABELS
vertically strings out characters in vertical labels.

THRESHLABPOS=n
specifies the horizontal position of labels for the threshold line. The following table shows valid values
for n and the corresponding label placements.

n Label Placement
1 Left
2 Right

VAXIS=value1 to value2 < by value3 >
specifies tick mark values for the vertical axis; value1, value2, and value3 must be numeric, and value1
must be less than value2. The lower tick mark is value1. Tick marks are drawn at increments of value3.
The last tick mark is the greatest value that does not exceed value2. This method of specification of
tick marks is not valid for logarithmic axes. If value3 is omitted, a value of 1 is used.

Examples of VAXIS= lists follow:

vaxis = 0 to 10
vaxis = 0 to 2 by .1

VAXISLABEL='string'
specifies a label for the vertical axis.

VLOWER=value
specifies the lower limit on the vertical axis scale. The VLOWER= option specifies value as the lower
vertical axis tick mark. The tick mark interval and the upper axis limit are determined automatically.
This option has no effect if the VAXIS= option is used.

VOFFSET=value
specifies the offset for the vertical axis.

VREF=value-list
requests reference lines perpendicular to the vertical axis. If (INTERSECT) is specified, a second
reference line perpendicular to the horizontal axis is drawn that intersects the fit line at the same point
as the vertical axis reference line. If a vertical axis reference line label is specified, the intersecting
horizontal axis reference line is labeled with the horizontal axis value. See also the CVREF=, LVREF=,
and VREFLABELS= options.
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VREFLABELS='label1',. . . ,'labeln'

VREFLABEL='label1',. . . ,'labeln'

VREFLAB='label1',. . . ,'labeln'
specifies labels for the lines requested by the VREF= option. The number of labels must equal the
number of lines. Enclose each label in quotes. Labels can be up to 16 characters.

VREFLABPOS=n
specifies the horizontal position of labels for VREF= lines. The following table shows valid values for
n and the corresponding label placements.

n Label Placement
1 Left
2 Right

VUPPER=number
specifies the upper limit on the vertical axis scale. The VUPPER= option specifies number as the upper
vertical axis tick mark. The tick mark interval and the lower axis limit are determined automatically.
This option has no effect if the VAXIS= option is used.

WAXIS=n
specifies line thickness for axes and frame. The default value is 1.

WFIT=n
specifies line thickness for fitted lines. The default value is 1.

WGRID=n
specifies line thickness for grids. The default value is 1.

WREFL=n
specifies line thickness for reference lines. The default value is 1.

LSMEANS Statement
LSMEANS < model-effects > < / options > ;

The LSMEANS statement computes and compares least squares means (LS-means) of fixed effects. LS-means
are predicted population margins—that is, they estimate the marginal means over a balanced population. In a
sense, LS-means are to unbalanced designs as class and subclass arithmetic means are to balanced designs.

Table 81.29 summarizes the options available in the LSMEANS statement.
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Table 81.29 LSMEANS Statement Options

Option Description

Construction and Computation of LS-Means
AT Modifies the covariate value in computing LS-means
BYLEVEL Computes separate margins
DIFF Requests differences of LS-means
OM= Specifies the weighting scheme for LS-means computation as de-

termined by the input data set
SINGULAR= Tunes estimability checking

Degrees of Freedom and p-values
ADJUST= Determines the method for multiple-comparison adjustment of LS-

means differences
ALPHA=˛ Determines the confidence level (1 � ˛)
STEPDOWN Adjusts multiple-comparison p-values further in a step-down

fashion

Statistical Output
CL Constructs confidence limits for means and mean differences
CORR Displays the correlation matrix of LS-means
COV Displays the covariance matrix of LS-means
E Prints the L matrix
LINES Produces a “Lines” display for pairwise LS-means differences
MEANS Prints the LS-means
PLOTS= Requests graphs of means and mean comparisons
SEED= Specifies the seed for computations that depend on random numbers

For details about the syntax of the LSMEANS statement, see the section “LSMEANS Statement” on page 460
in Chapter 19, “Shared Concepts and Topics.”

LSMESTIMATE Statement
LSMESTIMATE model-effect < 'label ' > values < divisor=n >

< , . . . < 'label ' > values < divisor=n > >
< / options > ;

The LSMESTIMATE statement provides a mechanism for obtaining custom hypothesis tests among least
squares means.

Table 81.30 summarizes the options available in the LSMESTIMATE statement.
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Table 81.30 LSMESTIMATE Statement Options

Option Description

Construction and Computation of LS-Means
AT Modifies covariate values in computing LS-means
BYLEVEL Computes separate margins
DIVISOR= Specifies a list of values to divide the coefficients
OM= Specifies the weighting scheme for LS-means computation as de-

termined by a data set
SINGULAR= Tunes estimability checking

Degrees of Freedom and p-values
ADJUST= Determines the method for multiple-comparison adjustment of LS-

means differences
ALPHA=˛ Determines the confidence level (1 � ˛)
LOWER Performs one-sided, lower-tailed inference
STEPDOWN Adjusts multiple-comparison p-values further in a step-down fash-

ion
TESTVALUE= Specifies values under the null hypothesis for tests
UPPER Performs one-sided, upper-tailed inference

Statistical Output
CL Constructs confidence limits for means and mean differences
CORR Displays the correlation matrix of LS-means
COV Displays the covariance matrix of LS-means
E Prints the L matrix
ELSM Prints the K matrix
JOINT Produces a joint F or chi-square test for the LS-means and LS-

means differences
SEED= Specifies the seed for computations that depend on random numbers

For details about the syntax of the LSMESTIMATE statement, see the section “LSMESTIMATE Statement”
on page 476 in Chapter 19, “Shared Concepts and Topics.”

MODEL Statement
< label: > MODEL response< (response_options) > = effects < / options > ;

< label: > MODEL events/trials = effects < / options > ;

The MODEL statement names the variables used as the response and the independent variables. Additionally,
you can specify the distribution used to model the response, as well as other options. Only a single MODEL
statement can be used with one invocation of the PROBIT procedure. If multiple MODEL statements are
present, only the last is used. Main effects and interaction terms can be specified in the MODEL statement,
as in the GLM procedure.
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The optional label , which must be a valid SAS name, is used to label output from the matching MODEL
statement.

The response can be a single variable with a value that is used to indicate the level of the observed response.
For example, the response might be a variable called Symptoms that takes on the values ‘None,’ ‘Mild,’ or
‘Severe.’ Note that, for dichotomous response variables, the probability of the lower sorted value is modeled
by default (see the section “Details: PROBIT Procedure” on page 6748). Because the model fit by the
PROBIT procedure requires ordered response levels, you might need to use either the ORDER=DATA option
in the PROC PROBIT statement or a numeric coding of the response to get the desired ordering of levels.

Alternatively, the response can be specified as a pair of variable names separated by a slash (/). The value of
the first variable, events, is the number of positive responses (or events). The value of the second variable,
trials, is the number of trials. Both variables must be numeric and nonnegative, and the ratio of the first
variable value to the second variable value must be between 0 and 1, inclusive. For example, the variables
might be hits, a variable containing the number of hits for a baseball player, and AtBats, a variable containing
the number of times at bat. A model for hitting proportion (batting average) as a function of age could be
specified as

model hits/AtBats=age;

The effects following the equal sign are the covariates in the model. Higher-order effects, such as interactions
and nested terms, are allowed in the list, as in the GLM procedure. Variable names and combinations of
variable names representing higher-order terms are allowed to appear in this list. Classification variables
can be used as effects, and indicator variables are generated for the class levels. If you do not specify any
covariates following the equal sign, an intercept-only model is fit.

Table 81.31 summarizes the options available in the MODEL statement.

Table 81.31 MODEL Statement Options

Option Description

AGGREGATE Specifies the subpopulations
ALPHA= Sets the significance level
CONVERGE= Specifies the convergence criterion
CORRB Displays the estimated correlation matrix
COVB Displays the estimated covariance matrix
DESCENDING Reverses the order of the response categories
DISTRIBUTION= Specifies the cumulative distribution function
EVENT= Specifies the event category for the binary response model
HPROB= Specifies a minimum probability level
INITIAL= Sets initial values for the parameters
INTERCEPT= Initializes the intercept parameter
INVERSECL Computes confidence limits
ITPRINT Displays the iteration history, the final evaluation of the gradient, and the

second derivative matrix
LACKFIT Performs two goodness-of-fit tests
MAXITER= Specifies the maximum number of iterations
NOINT Fits a model with no intercept parameter
ORDER= Specifies the sort order for the levels of the response variable
REFERENCE= Specifies the reference category for the binary response model
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Table 81.31 continued

Option Description

SCALE= Specifies the method for estimating the dispersion parameter
SINGULAR= Specifies the singularity criterion

Response Variable Options

DESCENDING | DESC
reverses the order of the response categories. If both the DESCENDING and ORDER= options are
specified, PROC PROBIT orders the response categories according to the ORDER= option and then
reverses that order. See the section “Response Level Ordering” on page 6748 for more detail.

EVENT=’category ’ | keyword
specifies the event category for the binary response model. PROC PROBIT models the probability
of the event category. The EVENT= option has no effect when there are more than two response
categories. You can specify the value (formatted if a format is applied) of the event category in
quotation marks, or you can specify one of the following keywords.

FIRST
designates the first ordered category as the event.

LAST
designates the last ordered category as the event.

By default, EVENT=FIRST.

One of the most common sets of response levels is {0,1}, where 1 represents the event for which the
probability is to be modeled. Consider the example where Y takes the values 1 and 0 for event and
nonevent, respectively, and Exposure is the explanatory variable. To specify the value 1 as the event
category, use the following MODEL statement:

model Y(event='1') = Exposure;

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of the response variable. The following table displays the available
ORDER= options:

ORDER= Levels Sorted By

DATA order of appearance in the input data set
FORMATTED external formatted value, except for numeric

variables with no explicit format, which are sorted
by their unformatted (internal) value

FREQ descending frequency count; levels with the most
observations come first in the order

INTERNAL unformatted value
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By default, ORDER=FORMATTED. For ORDER=FORMATTED and ORDER=INTERNAL, the
sort order is machine-dependent. When ORDER=FORMATTED is in effect for numeric variables for
which you have supplied no explicit format, the levels are ordered by their internal values.

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

REFERENCE=’category ’ | keyword

REF=’category ’ | keyword
specifies the reference category for the binary response model. Specifying one response category as
the reference is the same as specifying the other response category as the event category. You can
specify the value (formatted if a format is applied) of the reference category in quotation marks, or you
can specify one of the following keywords:

FIRST designates the first ordered category as the reference.

LAST designates the last ordered category as the reference.

By default, REF=LAST.

Model Options

The following options are available in the MODEL statement.

AGGREGATE

AGGREGATE=variable-list
specifies the subpopulations on which the Pearson’s chi-square test statistic and the log-likelihood ratio
chi-square test statistic (deviance) are calculated if the LACKFIT option is specified. See the section
“Rescaling the Covariance Matrix” on page 6753 for details of Pearson’s chi-square and deviance
calculations.

Observations with common values in the given list of variables are regarded as coming from the
same subpopulation. Variables in the list can be any variables in the input data set. Specifying the
AGGREGATE option is equivalent to specifying the AGGREGATE= option with a variable list that
includes all independent variables in the MODEL statement. The PROBIT procedure sorts the input
data set according to the variables specified in this list. Information for the sorted data set is reported
in the “Response-Covariate Profile” table.

The deviance and Pearson’s goodness-of-fit statistics are calculated if the LACKFIT option is specified
in the MODEL statement. The calculated results are reported in the “Goodness-of-Fit” table. If the
Pearson’s chi-square test is significant with the test level specified by the HPROB= option, the fiducial
limits, if required with the INVERSECL option in the MODEL statement, are modified (see the section
“Inverse Confidence Limits” on page 6754 for details). Also, the covariance matrix is rescaled by the
dispersion parameter when the SCALE= option is specified.

ALPHA=value
sets the significance level for the confidence intervals for regression parameters, fiducial limits for the
predicted values, and confidence intervals for the predicted probabilities. The value must be between 0
and 1. The default value is ALPHA=0.05.
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CONVERGE=value
specifies the convergence criterion. Convergence is declared when the maximum change in the
parameter estimates between Newton-Raphson steps is less than the value specified. The change is
a relative change if the parameter is greater than 0.01 in absolute value; otherwise, it is an absolute
change.

By default, CONVERGE=1.0E–8.

CORRB
displays the estimated correlation matrix of the parameter estimates.

COVB
displays the estimated covariance matrix of the parameter estimates.

DISTRIBUTION=distribution-type

DIST=distribution-type

D=distribution-type
specifies the cumulative distribution function used to model the response probabilities. The distributions
are described in the section “Details: PROBIT Procedure” on page 6748. Valid values for distribution-
type are as follows:

NORMAL the normal distribution for the probit model

LOGISTIC the logistic distribution for the logit model

EXTREMEVALUE | EXTREME | GOMPERTZ the extreme value, or Gompertz distribution for the
gompit model

By default, DISTRIBUTION=NORMAL.

HPROB=p
specifies a minimum probability level for the Pearson’s chi-square to indicate a good fit. The default
value is 0.10. The LACKFIT option must also be specified for this option to have any effect. For
Pearson’s goodness-of-fit chi-square values with probability greater than the HPROB= value, the
fiducial limits, if requested with the INVERSECL option, are computed by using a critical value of
1.96. For chi-square values with probability less than the value of the HPROB= option, the critical
value is a 0.95 two-sided quantile value taken from the t distribution with degrees of freedom equal
to .k � 1/ � m � q, where k is the number of levels for the response variable, m is the number of
different sets of independent variable values, and q is the number of parameters fit in the model. If
you specify the HPROB= option in both the PROC PROBIT and MODEL statements, the MODEL
statement option takes precedence.

INITIAL=values
sets initial values for the parameters in the model other than the intercept. The values must be given
in the order in which the variables are listed in the MODEL statement. If some of the independent
variables listed in the MODEL statement are classification variables, then there must be as many values
given for that variable as there are classification levels minus 1. The INITIAL option can be specified
as follows.
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Type of List Specification
List separated by blanks initial=3 4 5

List separated by commas initial=3,4,5

By default, all parameters have initial estimates of zero.

NOTE: The INITIAL= option is overwritten by the INEST= option in the PROC PROBIT statement.

INTERCEPT=value
initializes the intercept parameter to value. By default, INTERCEPT=0.

INVERSECL< (PROB=rates) >
computes confidence limits for the values of the first continuous independent variable (such as dose)
that yield selected response rates. You can optionally specify a list of response rates as rates. The
response rates must be between zero and one; they can be a list separated by blanks, commas, or in the
form of a DO list. For example, the following expressions are all valid lists of response rates:

PROB = .1 TO .9 by .1
PROB = .1 .2 .3 .4
PROB = .01, .25, .75, .9

If the algorithm fails to converge (this can happen when C is nonzero), missing values are reported for
the confidence limits. See the section “Inverse Confidence Limits” on page 6754 for details.

ITPRINT
displays the iteration history, the final evaluation of the gradient, and the second derivative matrix
(Hessian).

LACKFIT
performs two goodness-of-fit tests (a Pearson’s chi-square test and a log-likelihood ratio chi-square
test) for the fitted model.

To compute the test statistics, proper grouping of the observations into subpopulations is needed.
You can use the AGGREGATE or AGGREGATE= option for this purpose. See the entry for the
AGGREGATE and AGGREGATE= options under the MODEL statement. If neither AGGREGATE
nor AGGREGATE= is specified, PROC PROBIT assumes each observation is from a separate subpop-
ulation and computes the goodness-of-fit test statistics only for the events/trials syntax.

NOTE: This test is not appropriate if the data are very sparse, with only a few values at each set of the
independent variable values.

If the Pearson’s chi-square test statistic is significant, then the covariance estimates and standard error
estimates are adjusted. See the section “Lack-of-Fit Tests” on page 6752 for a description of the tests.
Note that the LACKFIT option can also appear in the PROC PROBIT statement. See the section
“PROC PROBIT Statement” on page 6691 for details.

MAXITER=value

MAXIT=value
specifies the maximum number of iterations to be performed in estimating the parameters. By default,
MAXITER=50.
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NOINT
fits a model with no intercept parameter. If the INTERCEPT= option is also specified, the intercept is
fixed at the specified value; otherwise, it is set to zero. This is most useful when the response is binary.
When the response has k levels, then k – 1 intercept parameters are fit. The NOINT option sets the
intercept parameter corresponding to the lowest response level equal to zero. A Lagrange multiplier, or
score, test for the restricted model is computed when the NOINT option is specified.

SCALE=scale
enables you to specify the method for estimating the dispersion parameter. To correct for overdispersion
or underdispersion, the covariance matrix is multiplied by the estimate of the dispersion parameter.
Valid values for scale are as follows:

D | DEVIANCE specifies that the dispersion parameter be estimated by the deviance divided
by its degrees of freedom.

P | PEARSON specifies that the dispersion parameter be estimated by the Pearson’s chi-
square statistic divided by its degrees of freedom. This is set as the default
method for estimating the dispersion parameter.

You can use the AGGREGATE= option to define the subpopulations for calculating the Pearson’s
chi-square statistic and the deviance.

The “Goodness-of-Fit ” table includes the Pearson’s chi-square statistic, the deviance, their degrees of
freedom, the ratio of each statistic divided by its degrees of freedom, and the corresponding p-value.

SINGULAR=value
specifies the singularity criterion for determining linear dependencies in the set of independent variables.
The sum of squares and crossproducts matrix of the independent variables is formed and swept. If the
relative size of a pivot becomes less than the value specified, then the variable corresponding to the
pivot is considered to be linearly dependent on the previous set of variables considered. By default,
value=1E–12.

OUTPUT Statement
OUTPUT < OUT=SAS-data-set keyword=name . . . keyword=name > ;

The OUTPUT statement creates a new SAS data set containing all variables in the input data set and,
optionally, the fitted probabilities, the estimate of x0ˇ, and the estimate of its standard error. Estimates of
the probabilities, x0ˇ, and the standard errors are computed for observations with missing response values
as long as the values of all the explanatory variables are nonmissing. This enables you to compute these
statistics for additional settings of the explanatory variables that are of interest but for which responses are
not observed.

You can specify multiple OUTPUT statements. Each OUTPUT statement creates a new data set and applies
only to the preceding MODEL statement. If you want to create a SAS data set in a permanent library, you
must specify a two-level name. For more information about permanent libraries and SAS data sets, see SAS
Language Reference: Concepts.

Details on the specifications in the OUTPUT statement are as follows:
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keyword=name specifies the statistics to include in the output data set and assigns names to the new
variables that contain the statistics. Specify a keyword for each desired statistic (see
the following list of keywords), an equal sign, and the variable to contain the statistic.

The keywords allowed and the statistics they represent are as follows:

PROB | P cumulative probability estimates

p D C C .1 � C/F.aj C x0ˇ/

STD standard error estimates of aj C x0b

XBETA estimates of aj C x0ˇ

OUT=SAS-data-set names the output data set. By default, the new data set is named by using the DATAn
convention.

When the single variable response syntax is used, the _LEVEL_ variable is added to the output data set, and
there are k – 1 output observations for each input observation, where k is the number of response levels.
There is no observation output corresponding to the highest response level. For each of the k – 1 observations,
the PROB variable contains the fitted probability of obtaining a response level up to the level indicated by the
_LEVEL_ variable, the XBETA variable contains aj C x0b, where j references the levels (a1 D 0), and the
STD variable contains the standard error estimate of the XBETA variable. See the section “Details: PROBIT
Procedure” on page 6748 for the formulas for the parameterizations.

PREDPPLOT Statement
PREDPPLOT < VAR=variable > < options > ;

The PREDPPLOT statement plots the predicted probability against a single continuous variable (dose
variable) in the MODEL statement for both the binomial model and the multinomial model. Confidence
limits are available only for the binomial model. An attached box on the right side of the plot is used to label
predicted probability curves with the names of their levels for the multinomial model. You can specify the
color of this box by using the CLABBOX= option.

VAR=variable
specifies a single continuous variable (dose variable) in the independent variable list of the MODEL
statement. If a VAR= variable is not specified, the first single continuous variable in the independent
variable list of the MODEL statement is used. If such a variable does not exist in the independent
variable list of the MODEL statement, an error is reported.

The predicted probability is

Op D C C .1 � C/F.x0 Ob/

for the binomial model and

Op1 D C C .1 � C/F.x0 Ob/
Opj D .1 � C/.F. Oaj C x0 Ob/ � F. Oaj�1 C x0 Ob// j D 2; : : : ; k � 1

Opk D .1 � C/.1 � F. Oak�1 C x0 Ob//
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for the multinomial model with k response levels, where F is the cumulative distribution function used
to model the probability, x0 is the vector of the covariates, Oaj are the estimated ordinal intercepts with
Oa1 D 0, C is the threshold parameter, either known or estimated from the model, and Ob0 is the vector
of estimated parameters.

To plot Op (or Opj ) as a function of a continuous variable x1, the remaining covariates x�1 must be
specified. You can use the XDATA= option to provide the values of x�1 (see the XDATA= option in
the PROC PROBIT statement for details), or use the default values that follow these rules:

• If the effect contains a continuous variable (or variables), the overall mean of this effect is used.

• If the effect is a single classification variable, the highest level of the variable is used.

options
enable you to plot the observed data and add features to the plot.

You can use options in the PREDPPLOT statement to do the following:

• superimpose specification limits

• suppress or add observed data points for the binomial model

• suppress or add confidence limits for the binomial model

• specify the levels for which predicted probability curves are requested for the multinomial model

• specify graphical enhancements (such as color or text height)

Summary of Options

Table 81.32 through Table 81.38 list all options by function. The “Dictionary of Options” on page 6742
describes each option in detail.

PREDPPLOT Options

Table 81.32 Plot Layout Options for PREDPPLOT

LEVEL=(character-list) Specifies the names of the levels for which the predicted proba-
bility curves are requested (only for the multinomial model)

NOCONF Suppresses confidence limits

NODATA Suppresses observed data points on the plot

NOTHRESH Suppresses the threshold line

THRESHLABPOS=value Specifies the position for the label of the threshold line
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General Options

Table 81.33 Color Options

CAXIS=color Specifies color for the axes

CFIT=color Specifies color for fitted curves

CFRAME=color Specifies color for frame

CGRID=color Specifies color for grid lines

CHREF=color Specifies color for HREF= lines

CLABBOX=color Specifies color for label box

CTEXT=color Specifies color for text

CVREF=color Specifies color for VREF= lines

Table 81.34 Options to Enhance Plots Produced on Graphics Devices

ANNOTATE=
SAS-data-set

Specifies an Annotate data set

INBORDER Requests a border around plot

LFIT=linetype Specifies line style for fitted curves and confidence limits

LGRID=linetype Specifies line style for grid lines

NOFRAME Suppresses the frame around plotting areas

NOGRID Suppresses grid lines

NOFIT Suppresses fitted curves

NOHLABEL Suppresses horizontal labels

NOHTICK Suppresses horizontal ticks

NOVTICK Suppresses vertical ticks

TURNVLABELS Vertically strings out characters in vertical labels

WFIT=n Specifies thickness for fitted curves

WGRID=n Specifies thickness for grids

WREFL=n Specifies thickness for reference lines
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Table 81.35 Axis Options

HAXIS=value1 to value2
< by value3 >

Specifies tick mark values for horizontal axis

HOFFSET=value Specifies offset for horizontal axis

HLOWER=value Specifies lower limit on horizontal axis scale

HUPPER=value Specifies upper limit on horizontal axis scale

NHTICK=n Specifies number of ticks for horizontal axis

NVTICK=n Specifies number of ticks for vertical axis

VAXIS=value1 to value2
< by value3 >

Specifies tick mark values for vertical axis

VAXISLABEL='label ' Specifies label for vertical axis

VOFFSET=value Specifies offset for vertical axis

VLOWER=value Specifies lower limit on vertical axis scale

VUPPER=value Specifies upper limit on vertical axis scale

WAXIS=n Specifies thickness for axis

Table 81.36 Graphics Catalog Options

DESCRIPTION='string' Specifies description for graphics catalog member

NAME='string' Specifies name for plot in graphics catalog

Table 81.37 Options for Text Enhancement

FONT=font Specifies software font for text

HEIGHT=value Specifies height of text used outside framed areas

INHEIGHT=value Specifies height of text inside framed areas
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Table 81.38 Options for Reference Lines

HREF< (INTERSECT) >
=value-list

Requests horizontal reference line

HREFLABELS=
('label1',. . . ,'labeln')

Specifies labels for HREF= lines

HREFLABPOS=n Specifies vertical position of labels for HREF= lines

LHREF=linetype Specifies line style for HREF= lines

LVREF=linetype Specifies line style for VREF= lines

VREF< (INTERSECT) >
=value-list

Requests vertical reference line

VREFLABELS=
('label1',. . . ,'labeln')

Specifies labels for VREF= lines

VREFLABPOS=n Specifies horizontal position of labels for VREF= lines

Dictionary of Options

The following entries provide detailed descriptions of the options in the PREDPPLOT statement.

ANNOTATE=SAS-data-set

ANNO=SAS-data-set
specifies an Annotate data set, as described in SAS/GRAPH: Reference, that enables you to add features
to the predicted probability plot. The ANNOTATE= data set you specify in the PREDPPLOT statement
is used for all plots created by the statement.

CAXIS=color

CAXES=color
specifies the color used for the axes and tick marks. This option overrides any COLOR= specifications
in an AXIS statement. The default is the first color in the device color list.

CFIT=color
specifies the color for the fitted predicted probability curves. The default is the first color in the device
color list.

CFRAME=color

CFR=color
specifies the color for the area enclosed by the axes and frame. This area is not shaded by default.

CGRID=color
specifies the color for grid lines. The default is the first color in the device color list.

CHREF=color

CH=color
specifies the color for lines requested by the HREF= option. The default is the first color in the device
color list.
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CTEXT=color
specifies the color for tick mark values and axis labels. The default is the color specified for the
CTEXT= option in the most recent GOPTIONS statement.

CVREF=color
CV=color

specifies the color for lines requested by the VREF= option. The default is the first color in the device
color list.

DESCRIPTION='string'
DES='string'

specifies a description, up to 40 characters, that appears in the PROC GREPLAY master menu. The
default is the variable name.

FONT=font
specifies a software font for reference line and axis labels. You can also specify fonts for axis labels in
an AXIS statement. The FONT= font takes precedence over the FTEXT= font specified in the most
recent GOPTIONS statement. Hardware characters are used by default.

HAXIS=value1 to value2 < by value3 >
specifies tick mark values for the horizontal axis; value1, value2, and value3 must be numeric, and
value1 must be less than value2. The lower tick mark is value1. Tick marks are drawn at increments
of value3. The last tick mark is the greatest value that does not exceed value2. If value3 is omitted, a
value of 1 is used.

Examples of HAXIS= lists follow:

haxis = 0 to 10
haxis = 2 to 10 by 2
haxis = 0 to 200 by 10

HEIGHT=value
specifies the height of text used outside framed areas.

HLOWER=value
specifies the lower limit on the horizontal axis scale. The HLOWER= option specifies value as the
lower horizontal axis tick mark. The tick mark interval and the upper axis limit are determined
automatically. This option has no effect if the HAXIS= option is used.

HOFFSET=value
specifies the offset for the horizontal axis. The default value is 1.

HUPPER=value
specifies value as the upper horizontal axis tick mark. The tick mark interval and the lower axis limit
are determined automatically. This option has no effect if the HAXIS= option is used.

HREF < (INTERSECT) > =value-list
requests reference lines perpendicular to the horizontal axis. If (INTERSECT) is specified, a second
reference line perpendicular to the vertical axis is drawn that intersects the fit line at the same
point as the horizontal axis reference line. If a horizontal axis reference line label is specified, the
intersecting vertical axis reference line is labeled with the vertical axis value. See also the CHREF=,
HREFLABELS=, and LHREF= options.
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HREFLABELS='label1',. . . ,'labeln'

HREFLABEL='label1',. . . ,'labeln'

HREFLAB='label1',. . . ,'labeln'
specifies labels for the lines requested by the HREF= option. The number of labels must equal the
number of lines. Enclose each label in quotes. Labels can be up to 16 characters.

HREFLABPOS=n
specifies the vertical position of labels for HREF= lines. The following table shows valid values for n
and the corresponding label placements.

n Label Placement
1 Top
2 Staggered from top
3 Bottom
4 Staggered from bottom
5 Alternating from top
6 Alternating from bottom

INBORDER
requests a border around predicted probability plots.

INHEIGHT=value
Specifies height of text inside framed areas.

LEVEL=(character-list)

ORDINAL= (character-list)
specifies the names of the levels for which predicted probability curves are requested. Names should
be quoted and separated by space. If there is no correct name provided, no fitted probability curve is
plotted.

LFIT=linetype
specifies a line style for fitted curves and confidence limits. By default, fitted curves are drawn by
connecting solid lines (linetype = 1) and confidence limits are drawn by connecting dashed lines
(linetype = 3).

LGRID=linetype
specifies a line style for all grid lines. The value for linetype is between 1 and 46. The default is 35.

LHREF=linetype

LH=linetype
specifies the line type for lines requested by the HREF= option. The default is 2, which produces a
dashed line.

LVREF=linetype

LV=linetype
specifies the line type for lines requested by the VREF= option. The default is 2, which produces a
dashed line.
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NAME='string'
specifies a name for the plot, up to eight characters, that appears in the PROC GREPLAY master menu.
The default is ’PROBIT’.

NHTICK=n
Specifies number of ticks for horizontal axis.

NVTICK=n
Specifies number of ticks for vertical axis.

NOCONF
suppresses confidence limits from the plot. This works only for the binomial model. Confidence limits
are not plotted for the multinomial model.

NODATA
suppresses observed data points from the plot. This works only for the binomial model. The data
points are not plotted for the multinomial model.

NOFIT
suppresses the fitted predicted probability curves.

NOFRAME
suppresses the frame around plotting areas.

NOGRID
suppresses grid lines.

NOHLABEL
suppresses horizontal labels.

NOHTICK
suppresses horizontal tick marks.

NOTHRESH
suppresses the threshold line.

NOVLABEL
suppresses vertical labels.

NOVTICK
suppresses vertical tick marks.

TURNVLABELS
vertically strings out characters in vertical labels.

THRESHLABPOS=n
specifies the horizontal position of labels for the threshold line. The following table shows valid values
for n and the corresponding label placements.

n Label Placement
1 Left
2 Right
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VAXIS=value1 to value2 < by value3 >
specifies tick mark values for the vertical axis; value1, value2, and value3 must be numeric, and value1
must be less than value2. The lower tick mark is value1. Tick marks are drawn at increments of value3.
The last tick mark is the greatest value that does not exceed value2. This method of specification of
tick marks is not valid for logarithmic axes. If value3 is omitted, a value of 1 is used.

Examples of VAXIS= lists follow:

vaxis = 0 to 10
vaxis = 0 to 2 by .1

VAXISLABEL='string'
specifies a label for the vertical axis.

VLOWER=value
specifies the lower limit on the vertical axis scale. The VLOWER= option specifies value as the lower
vertical axis tick mark. The tick mark interval and the upper axis limit are determined automatically.
This option has no effect if the VAXIS= option is used.

VOFFSET=value
specifies the offset for the vertical axis.

VREF=value-list
requests reference lines perpendicular to the vertical axis. If (INTERSECT) is specified, a second
reference line perpendicular to the horizontal axis is drawn that intersects the fit line at the same point
as the vertical axis reference line. If a vertical axis reference line label is specified, the intersecting
horizontal axis reference line is labeled with the horizontal axis value. See also the CVREF=, LVREF=,
and VREFLABELS= options.

VREFLABELS='label1',. . . ,'labeln'

VREFLABEL='label1',. . . ,'labeln'

VREFLAB='label1',. . . ,'labeln'
specifies labels for the lines requested by the VREF= option. The number of labels must equal the
number of lines. Enclose each label in quotes. Labels can be up to 16 characters.

VREFLABPOS=n
specifies the horizontal position of labels for VREF= lines. The following table shows valid values for
n and the corresponding label placements.

n Label Placement
1 Left
2 Right
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VUPPER=value
specifies the upper limit on the vertical axis scale. The VUPPER= option specifies value as the upper
vertical axis tick mark. The tick mark interval and the lower axis limit are determined automatically.
This option has no effect if the VAXIS= option is used.

WAXIS=n
specifies line thickness for axes and frame. The default value is 1.

WFIT=n
specifies line thickness for fitted curves. The default value is 1.

WGRID=n
specifies line thickness for grids. The default value is 1.

WREFL=n
specifies line thickness for reference lines. The default value is 1.

SLICE Statement
SLICE model-effect < / options > ;

The SLICE statement provides a general mechanism for performing a partitioned analysis of the LS-means
for an interaction. This analysis is also known as an analysis of simple effects.

The SLICE statement uses the same options as the LSMEANS statement, which are summarized in Ta-
ble 19.21. For details about the syntax of the SLICE statement, see the section “SLICE Statement” on
page 505 in Chapter 19, “Shared Concepts and Topics.”

STORE Statement
STORE < OUT= >item-store-name < / LABEL='label ' > ;

The STORE statement requests that the procedure save the context and results of the statistical analysis. The
resulting item store has a binary file format that cannot be modified. The contents of the item store can be
processed with the PLM procedure.

For details about the syntax of the STORE statement, see the section “STORE Statement” on page 508 in
Chapter 19, “Shared Concepts and Topics.”
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TEST Statement
TEST < model-effects > < / options > ;

The TEST statement enables you to perform chi-square tests for model effects that test Type I, Type II, or
Type III hypotheses. By default, the Type III tests are performed. For more information, see Chapter 19,
“Shared Concepts and Topics.”

WEIGHT Statement
WEIGHT variable ;

A WEIGHT statement can be used with PROC PROBIT to weight each observation by the value of the
variable specified. The contribution of each observation to the likelihood function is multiplied by the value
of the weight variable. Observations with zero, negative, or missing weights are not used in model estimation.

Details: PROBIT Procedure

Missing Values
PROC PROBIT does not use any observations having missing values for any of the independent variables,
the response variables, or the weight variable. If only the response variables are missing, statistics requested
in the OUTPUT statement are computed.

Response Level Ordering
For binary response data, PROC PROBIT fits the following model by default:

ˆ�1
�
p � C

1 � C

�
D x0ˇ

where p is the probability of the response level identified as the first level in the “Response Profile” table in
the output and ˆ is the normal cumulative distribution function. By default, the covariate vector x contains
an intercept term. This is sometimes called Abbot’s formula.

Because of the symmetry of the normal (and logistic) distribution, the effect of reversing the order of the two
response values is to change the signs of ˇ in the preceding equation.

By default, response levels appear in ascending, sorted order (that is, the lowest level appears first, and then
the next lowest, and so on). There are a number of ways that you can control the sort order of the response
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categories and, therefore, which level is assigned the first ordered level. One of the most common sets of
response levels is {0,1}, with 1 representing the event with the probability that is to be modeled.

Consider the example where Y takes the values 1 and 0 for event and nonevent, respectively, and EXPOSURE
is the explanatory variable. By default, PROC PROBIT assigns the first ordered level to response level 0,
causing the probability of the nonevent to be modeled. There are several ways to change this.

Besides recoding the variable Y, you can do the following:

• Explicitly state which response level is to be modeled by using the response variable option EVENT=
in the MODEL statement:

model Y(event='1') = Exposure;

• Specify the nonevent category for the response variable in the response variable option REF= in the
MODEL statement:

model Y(ref='0') = Exposure;

• Specify the response variable option DESCENDING in the MODEL statement to assign the lowest
ordered value to Y=1:

model Y(descending)=Exposure;

• Assign a format to Y such that the first formatted value (when the formatted values are put in sorted
order) corresponds to the event. For the following example, Y=0 could be assigned formatted value
‘nonevent’ and Y=1 could be assigned formatted value ‘event.’ Since ORDER=FORMATTED by
default, Y=1 becomes the first ordered level. See Example 81.3 for an illustration of this method.

proc format;
value disease 1='event' 0='nonevent';

run;
proc probit;

model y=exposure;
format y disease.;

run;

• Arrange the input data set so that Y=1 appears first and use the ORDER=DATA option in the PROC
PROBIT statement. Because ORDER=DATA sorts levels in order of their appearance in the data set,
Y=1 becomes the first ordered level. Note that this option causes classification variables to be sorted by
their order of appearance in the data set, also.
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Computational Method
The log-likelihood function is maximized by means of a ridge-stabilized Newton-Raphson algorithm. Initial
regression parameter estimates are set to zero. The INITIAL= and INTERCEPT= options in the MODEL
statement can be used to give nonzero initial estimates.

The log-likelihood function, L, is computed as

L D
X
i

wi ln.pi /

where the sum is over the observations in the data set, wi is the weight for the ith observation, and pi is the
modeled probability of the observed response. In the case of the events/trials syntax in the MODEL statement,
each observation contributes two terms corresponding to the probability of the event and the probability of its
complement:

L D
X
i

wi Œri ln.pi /C .ni � ri / ln.1 � pi /�

where ri is the number of events and ni is the number of trials for observation i. This log-likelihood function
differs from the log-likelihood function for a binomial or multinomial distribution by additive terms consisting
of the log of binomial or multinomial coefficients. These terms are parameter-independent and do not affect
the model estimation or the standard errors and tests.

The estimated covariance matrix, V, of the parameter estimates is computed as the negative inverse of the
information matrix of second derivatives of L with respect to the parameters evaluated at the final parameter
estimates. Thus, the estimated covariance matrix is derived from the observed information matrix rather
than the expected information matrix (these are generally not the same). The standard error estimates for the
parameter estimates are taken as the square roots of the corresponding diagonal elements of V.

If convergence of the maximum likelihood estimates is attained, a Type III chi-square test statistic is computed
for each effect, testing whether there is any contribution from any of the levels of the effect. This statistic is
computed as a quadratic form in the appropriate parameter estimates by using the corresponding submatrix
of the asymptotic covariance matrix estimate. See Chapter 45, “The GLM Procedure,” and Chapter 15, “The
Four Types of Estimable Functions,” for more information about Type III estimable functions.

The asymptotic covariance matrix is computed as the inverse of the observed information matrix. Note that if
the NOINT option is specified and classification variables are used, the first classification variable contains a
contribution from an intercept term. The results are displayed in an ODS table named “Type3Analysis”.

Chi-square tests for individual parameters are Wald tests based on the observed information matrix and
the parameter estimates. If an effect has a single degree of freedom in the parameter estimates table, the
chi-square test for this parameter is equivalent to the Type III test for this effect.

Prior to SAS 8.2, a multiple-degrees-of-freedom statistic was computed for each effect to test for contribution
from any level of the effect. In general, the Type III test statistic in a main-effect-only model (no interaction
terms) will be equal to the previously computed effect statistic, unless there are collinearities among the
effects. If there are collinearities, the Type III statistic will adjust for them, and the value of the Type III
statistic and the number of degrees of freedom might not be equal to those of the previous effect statistic.

The theory behind these tests assumes large samples. If the samples are not large, it might be better to base
the tests on log-likelihood ratios. These changes in log likelihood can be obtained by fitting the model twice,
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once with all the parameters of interest and once leaving out the parameters to be tested. See Cox and Oakes
(1984) for a discussion of the merits of some possible test methods.

If some of the independent variables are perfectly correlated with the response pattern, then the theoretical
parameter estimates can be infinite. Although fitted probabilities of 0 and 1 are not especially pathological,
infinite parameter estimates are required to yield these probabilities. Due to the finite precision of computer
arithmetic, the actual parameter estimates are not infinite. Indeed, since the tails of the distributions allowed
in the PROBIT procedure become small rapidly, an argument to the cumulative distribution function of
around 20 becomes effectively infinite. In the case of such parameter estimates, the standard error estimates
and the corresponding chi-square tests are not trustworthy.

Distributions
The distributions, F.x/, allowed in the PROBIT procedure are specified with the DISTRIBUTION= option
in the MODEL statement. The cumulative distribution functions for the available distributions are

Cumulative Distribution Function DistributionR x
�1

1p
2�

exp
�
�
z2

2

�
dz Normal

1
1Ce�x

Logistic
1 � e�e

x

Extreme value or Gompertz

The variances of these three distributions are not all equal to 1, and their means are not all equal to zero.
Their means and variances are shown in the following table, where  is the Euler constant.

Distribution Mean Variance

Normal 0 1
Logistic 0 �2=3

Extreme value or Gompertz � �2=6

When comparing parameter estimates by using different distributions, you need to take into account the
different scalings and, for the extreme value (or Gompertz) distribution, a possible shift in location. For
example, if the fitted probabilities are in the neighborhood of 0.1 to 0.9, then the parameter estimates from
the logistic model should be about �=

p
3 larger than the estimates from the probit model.

INEST= SAS-data-set

The INEST= data set names a SAS data set that specifies initial estimates for all the parameters in the model.

The INEST= data set must contain the intercept variables (named Intercept for binary response model and
Intercept, Intercept2, Intercept3, and so forth, for multinomial response models) and all independent variables
in the MODEL statement.

If BY processing is used, the INEST= data set should also include the BY variables, and there must be at
least one observation for each BY group. If there is more than one observation in a BY group, the first one
read is used for that BY group.
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If the INEST= data set also contains the _TYPE_ variable, only observations with the _TYPE_ value
“PARMS” are used as starting values. Combining the INEST= data set and the option MAXIT= in the
MODEL statement, partial scoring can be done, such as predicting on a validation data set by using the model
built from a training data set.

You can specify starting values for the iterative algorithm in the INEST= data set. This data set overwrites
the INITIAL= option in the MODEL statement, which is a little difficult to use for models with multilevel
interaction effects. The INEST= data set has the same structure as the “OUTEST= SAS-data-set” on
page 6755, but it is not required to have all the variables or observations that appear in the OUTEST= data
set. One simple use of the INEST= option is passing the previous OUTEST= data set directly to the next
model as an INEST= data set, assuming that the two models have the same parameterization.

Model Specification
For a two-level response, the probability that the lesser response occurs is modeled by the probit equation as

p D C C .1 � C/F.x0b/

The probability of the other (complementary) event is 1 – p.

For a multilevel response with outcomes labeled li for i D 1; 2; : : : ; k, the probability, pj , of observing level
lj is as follows:

p1 D C C .1 � C/F.x0b/

p2 D .1 � C/
�
F.a2 C x0b/ � F.x0b/

�
:::

pj D .1 � C/
�
F.aj C x0b/ � F.aj�1 C x0b/

�
:::

pk D .1 � C/.1 � F.ak�1 C x0b//

Thus, for a k-level response, there are k – 2 additional parameters, a2; a3; : : : ; ak�1, estimated. These
parameters are denoted by Interceptj, j D 2; 3; : : : ; k � 1, in the output.

An intercept parameter is always added to the set of independent variables as the first term in the model
unless the NOINT option is specified in the MODEL statement. If a classification variable taking on k levels
is used as one of the independent variables, a set of k indicator variables is generated to model the effect of
this variable. Because of the presence of the intercept term, there are at most k – 1 degrees of freedom for
this effect in the model.

Lack-of-Fit Tests
Two goodness-of-fit tests can be requested from the PROBIT procedure: a Pearson’s chi-square test and a
log-likelihood ratio chi-square test.
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To compute the test statistics, you can use the AGGREGATE or AGGREGATE= option grouping the
observations into subpopulations. If neither AGGREGATE nor AGGREGATE= is specified, PROC PROBIT
assumes that each observation is from a separate subpopulation and computes the goodness-of-fit test statistics
only for the events/trials syntax.

If the Pearson’s goodness-of-fit chi-square test is requested and the p-value for the test is too small, variances
and covariances are adjusted by a heterogeneity factor (the goodness-of-fit chi-square divided by its degrees
of freedom) and a critical value from the t distribution is used to compute the fiducial limits. The Pearson’s
chi-square test statistic is computed as

�2P D

mX
iD1

kX
jD1

.rij � ni Opij /
2

ni Opij

where the sum on i is over grouping, the sum on j is over levels of response, rij is the frequency of response
level j for the ith grouping, ni is the total frequency for the ith grouping, and Opij is the fitted probability for
the jth level at the ith grouping.

The likelihood ratio chi-square test statistic is computed as

�2D D 2

mX
iD1

kX
jD1

rij ln
�
rij

ni Opij

�
This quantity is sometimes called the deviance. If the modeled probabilities fit the data, these statistics should
be approximately distributed as chi-square with degrees of freedom equal to .k � 1/ �m � q, where k is the
number of levels of the multinomial or binomial response, m is the number of sets of independent variable
values (covariate patterns), and q is the number of parameters fit in the model.

In order for the Pearson’s statistic and the deviance to be distributed as chi-square, there must be sufficient
replication within the groupings. When this is not true, the data are sparse, and the p-values for these statistics
are not valid and should be ignored. Similarly, these statistics, divided by their degrees of freedom, cannot
serve as indicators of overdispersion. A large difference between the Pearson’s statistic and the deviance
provides some evidence that the data are too sparse to use either statistic.

Rescaling the Covariance Matrix
One way of correcting overdispersion is to multiply the covariance matrix by a dispersion parameter. You
can supply the value of the dispersion parameter directly, or you can estimate the dispersion parameter based
on either the Pearson’s chi-square statistic or the deviance for the fitted model.

The Pearson’s chi-square statistic �2P and the deviance �2D are defined in the section “Lack-of-Fit Tests”
on page 6752. If the SCALE= option is specified in the MODEL statement, the dispersion parameter is
estimated by

b�2 D
8<:
�2P =.m.k � 1/ � q/ SCALE=PEARSON
�2D=.m.k � 1/ � q/ SCALE=DEVIANCE
.constant/2 SCALE=constant

In order for the Pearson’s statistic and the deviance to be distributed as chi-square, there must be sufficient
replication within the subpopulations. When this is not true, the data are sparse, and the p-values for these
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statistics are not valid and should be ignored. Similarly, these statistics, divided by their degrees of freedom,
cannot serve as indicators of overdispersion. A large difference between the Pearson’s statistic and the
deviance provides some evidence that the data are too sparse to use either statistic.

You can use the AGGREGATE (or AGGREGATE=) option to define the subpopulation profiles. If you do not
specify this option, each observation is regarded as coming from a separate subpopulation. For events/trials
syntax, each observation represents n Bernoulli trials, where n is the value of the trials variable; for single-trial
syntax, each observation represents a single trial. Without the AGGREGATE (or AGGREGATE=) option,
the Pearson’s chi-square statistic and the deviance are calculated only for events/trials syntax.

Note that the parameter estimates are not changed by this method. However, their standard errors are adjusted
for overdispersion, affecting their significance tests.

Tolerance Distribution
For a single independent variable, such as a dosage level, the models for the probabilities can be justified on
the basis of a population with mean � and scale parameter � of tolerances for the subjects. Then, given a
dose x, the probability, P, of observing a response in a particular subject is the probability that the subject’s
tolerance is less than the dose or

P D F
�x � �

�

�
Thus, in this case, the intercept parameter, b0, and the regression parameter, b1, are related to � and � by

b0 D �
�

�
; b1 D

1

�

NOTE: The parameter � is not equal to the standard deviation of the population of tolerances for the logistic
and extreme value distributions.

Inverse Confidence Limits
In bioassay problems, estimates of the values of the independent variables that yield a desired response
are often needed. For instance, the value yielding a 50% response rate (called the ED50 or LD50) is often
used. The INVERSECL option requests that confidence limits be computed for the value of the independent
variable that yields a specified response. These limits are computed only for the first continuous variable
effect in the model. The other variables are set either at their mean values if they are continuous or at the
reference (last) level if they are discrete variables. For a discussion of inverse confidence limits, see Hubert,
Bohidar, and Peace (1988).

For the PROBIT procedure, the response variable is a probability. An estimate of the first continuous variable
value needed to achieve a response of p is given by

Ox1 D
1

b1

�
F�1.p/ � x�0b�

�
where F is the cumulative distribution function used to model the probability, x� is the vector of independent
variables excluding the first one, which can be specified by the XDATA= option described in the section
“XDATA= SAS-data-set” on page 6756, b� is the vector of parameter estimates excluding the first one, and
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b1 is the estimated regression coefficient for the independent variable of interest. This estimate assumes that
there is no natural response rate (C = 0). When C is nonzero, the quantiles and confidence limits for the
independent variable correspond to the adjusted probability C C .1 � C/p, rather than to p. As a result, an
estimate of the value yielding response rate p is associated with the .p � C/=.1 � C/ quantile. For example,
if C = 0.1 then an estimate of the LD50 is found corresponding to the 0.44 quantile. This value can be thought
of as yielding 50% of the variable’s effect, but a 44% response rate. For both binary and ordinal models, the
INVERSECL option provides estimates of the value of x1, which yields Pr.first response level/ D p, for
various values of p.

This estimator is given as a ratio of random variables, such as r D a=b. Confidence limits for this ratio can
be computed by using Fieller’s theorem. A brief description of this theorem follows. See Finney (1971) for a
more complete description of Fieller’s theorem.

If the random variables a and b are thought to be distributed as jointly normal, then for any fixed value r the
following probability statement holds if z is an ˛=2 quantile from the standard normal distribution and V is
the variance-covariance matrix of a and b:

Pr
�
.a � rb/2 > z2.Vaa � 2rVab C r

2Vbb/
�
D ˛

Usually the inequality can be solved for r to yield a confidence interval. The PROBIT procedure uses a value
of 1.96 for z, corresponding to an ˛ value of 0.05, unless the goodness-of-fit p-value is less than the specified
value of the HPROB= option. When this happens, the covariance matrix is scaled by the heterogeneity factor,
and a t distribution quantile is used for z.

It is possible for the roots of the equation for r to be imaginary or for the confidence interval to be all points
outside of an interval. In these cases, the limits are set to missing by the PROBIT procedure.

Although the normal and logistic distribution give comparable fitted values of p if the empirically observed
proportions are not too extreme, they can give appreciably different values when extrapolated into the
tails. Correspondingly, the estimates of the confidence limits and dose values can be different for the two
distributions even when they agree quite well in the body of the data. Extrapolation outside of the range of
the actual data is often sensitive to model assumptions, and caution is advised if extrapolation is necessary.

OUTEST= SAS-data-set

The OUTEST= data set contains parameter estimates and the log likelihood for the model. You can specify a
label in the MODEL statement to distinguish between the estimates for different models used by the PROBIT
procedure. If you specify the COVOUT option, the OUTEST= data set also contains the estimated covariance
matrix of the parameter estimates.

The OUTEST= data set contains each variable used as a dependent or independent variable in any MODEL
statement. One observation consists of parameter values for the model with the dependent variable having
the value -1. If you specify the COVOUT option, there are additional observations containing the rows of the
estimated covariance matrix. For these observations, the dependent variable contains the parameter estimate
for the corresponding row variable. The following variables are also added to the data set:

_MODEL_ a character variable containing the label of the MODEL statement, if present, or blank
otherwise

_NAME_ a character variable containing the name of the dependent variable for the parameter estimates
observations or the name of the row for the covariance matrix estimates
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_TYPE_ a character variable containing the type of the observation, either PARMS for parameter
estimates or COV for covariance estimates

_DIST_ a character variable containing the name of the distribution modeled

_LNLIKE_ a numeric variable containing the last computed value of the log likelihood

_C_ a numeric variable containing the estimated threshold parameter

INTERCEPT a numeric variable containing the intercept parameter estimates and covariances

Any BY variables specified are also added to the OUTEST= data set.

XDATA= SAS-data-set

The XDATA= data set is used for specifying values for the effects in the MODEL statement when predicted
values and/or fiducial limits for a single continuous variable (dose variable) are required. It is also used for
plots specified by the CDFPLOT, IPPPLOT, LPREDPLOT, and PREDPPLOT statement.

The XDATA= data names a SAS data set that contains user input values for all the independent variables
in the MODEL statement and the variables in the CLASS statement. The XDATA= data set has the same
structure as the DATA= data set but is not required to have all the variables or observations that appear in the
DATA= data set.

The XDATA= data set must contain all the independent variables in the MODEL statement and variables
in the CLASS statement. Even though variables in the CLASS statement are not used in the MODEL
statement, valid values are required for these variables in the XDATA= data set. Missing values are not
allowed. For independent variables in the MODEL statement, although the dose variable’s value is not used
in the computing of predicted values and/or fiducial limits for the dose variable, missing values are not
allowed in the XDATA= data set for any of the independent variables. Missing values are allowed for the
dependent variables and other variables if they are included in the XDATA= data set and not listed in the
CLASS statement.

If BY processing is used, the XDATA= data set should also include the BY variables, and there must be at
least one valid observation for each BY group. If there is more than one valid observation in one BY group,
the last one read is used for that BY group.

If there is no XDATA= data set in the PROC PROBIT statement, by default, the PROBIT procedure will
use overall mean for effects containing continuous variable (or variables) and the highest level of a single
classification variable as reference level. The rules are summarized as follows:

• If the effect contains a continuous variable (or variables), the overall mean of this effect is used.

• If the effect is a single classification variable, the highest level of the variable is used.

Traditional High-Resolution Graphics
This section provides examples of using syntax available with the traditional high-resolution plots. A more
modern alternative is to use ODS Graphics. See the section “ODS Graphics” on page 6760 for details.
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There are four plot statements that you can use to request traditional high-resolution plots: CDFPLOT,
IPPPLOT, LPREDPLOT, and PREDPPLOT. Some of these statements apply only to either the binomial
model or the multinomial model. Table 81.39 shows the availability of these statements for different models.

Table 81.39 Plot Statement Availability

Statement Binomial Multinomial
CDFPLOT No Yes

IPPPLOT Yes No

LPREDPLOT Yes Yes

PREDPPLOT Yes Yes

The following example uses the data set study in the section “Estimating the Natural Response Threshold
Parameter” on page 6687 to illustrate how to create high-resolution plots for the binomial model:

proc probit data=study log10 optc;
model respond/number=dose;
predpplot var=dose cfit=blue; inset;
lpredplot var=dose cfit=blue; inset;
ippplot var=dose cfit=blue; inset/pos=se;

run;

All plot statements must follow the MODEL statement. The VAR= option specifies a continuous independent
variable (dose variable) against which the predicted probability or the linear predictor is plotted. The INSET
statement requests the inset box with summary information. See the section “INSET Statement” on page 6711
for more details.

The PREDPPLOT statement creates a plot that shows the relationship between dosage level, observed
response proportions, and estimated probability values. See the section “PREDPPLOT Statement” on
page 6738 for more details. The IPPPLOT statement creates a similar plot. See the section “IPPPLOT
Statement” on page 6713 for details about this plot. The LPREDPLOT statement creates a linear predictor
plot, which is described in the section “LPREDPLOT Statement” on page 6721.

The following example uses the data set multi from Example 81.2 to illustrate how to create high-resolution
plots for the multinomial model:

proc probit data=multi order=data;
class prep;
model symptoms=prep ldose;
cdfplot var=ldose level=("None" "Mild" "Severe")

cfit=blue cframe=ligr noconf;
lpredplot var=ldose level=("None" "Mild" "Severe")

cfit=blue cframe=ligr;
predpplot var=ldose level=("None" "Mild" "Severe")

cfit=blue cframe=ligr;
weight n;

run;

The CDFPLOT statement creates a plot that shows the relationship between the cumulative response
probabilities and the dose levels. The multinomial model plots are similar to those with the binomial model.
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Displayed Output
If you request the iteration history (ITPRINT), PROC PROBIT displays the following:

• the current value of the log likelihood

• the ridging parameter for the modified Newton-Raphson optimization process

• the current estimate of the parameters

• the current estimate of the parameter C for a natural (threshold) model

• the values of the gradient and the Hessian on the last iteration

If you include classification variables, PROC PROBIT displays the following:

• the numbers of levels for each classification variable

• the (ordered) values of the levels

• the number of observations used

After the model is fit, PROC PROBIT displays the following:

• the name of the input data set

• the name of the dependent variables

• the number of observations used

• the number of events and the number of trials

• the final value of the log-likelihood function

• the parameter estimates

• the standard error estimates of the parameter estimates

• approximate chi-square test statistics for the test

If you specify the COVB or CORRB options, PROC PROBIT displays the following:

• the estimated covariance matrix for the parameter estimates

• the estimated correlation matrix for the parameter estimates

If you specify the LACKFIT option, PROC PROBIT displays the following:

• a count of the number of levels of the response and the number of distinct sets of independent variables
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• a goodness-of-fit test based on the Pearson’s chi-square

• a goodness-of-fit test based on the likelihood-ratio chi-square

If you specify only one independent variable, the normal distribution is used to model the probabilities, and
the response is binary, then PROC PROBIT displays the following:

• the mean MU of the stimulus tolerance

• the scale parameter SIGMA of the stimulus tolerance

• the covariance matrix for MU, SIGMA, and the natural response parameter C

If you specify the INVERSECL options, PROC PROBIT also displays the following:

• the estimated dose along with the 95% fiducial limits for probability levels 0.01 to 0.10, 0.15 to 0.85
by 0.05, and 0.90 to 0.99

ODS Table Names
PROC PROBIT assigns a name to each table it creates. You can use these names to reference the table when
using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in
the following table. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

Table 81.40 ODS Tables Produced by PROC PROBIT
ODS Table Name Description Statement Option
ClassLevels Classification variable levels CLASS Default
ConvergenceStatus Convergence status MODEL Default
CorrB Parameter estimate correlation matrix MODEL CORRB
CovB Parameter estimate covariance matrix MODEL COVB
CovTolerance Covariance matrix for location and scale MODEL Default
GoodnessOfFit Goodness-of-fit tests MODEL LACKFIT
Heterogeneity Heterogeneity correction MODEL LACKFIT
IterHistory Iteration history MODEL ITPRINT
LagrangeStatistics Lagrange statistics MODEL NOINT
LastGrad Last evaluation of the gradient MODEL ITPRINT
LastHess Last evaluation of the Hessian MODEL ITPRINT
LogProbitAnalysis Probit analysis for log dose MODEL INVERSECL
ModelInfo Model information MODEL Default
MuSigma Location and scale MODEL Default
NObs Observations summary PROC Default
ParameterEstimates Parameter estimates MODEL Default
ParmInfo Parameter indices MODEL Default
ProbitAnalysis Probit analysis for linear dose MODEL INVERSECL
ResponseLevels Response-covariate profile MODEL LACKFIT
ResponseProfiles Counts for ordinal data MODEL Default
Type3Analysis Type III tests MODEL Default
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ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

These ODS graphs are controlled by the PLOTS= option in the PROC PROBIT statement. You can specify
more than one graph request with the PLOTS= option. Table 81.41 summarizes these requests.

Table 81.41 Options for Plots

Option Plot
ALL All appropriate plots

CDFPLOT Estimated cumulative probability

IPPPLOT Inverse predicted probability

LPREDPLOT Linear predictor

NONE No plot

PREDPPLOT Predicted probability

The following subsections provide information about these graphs.

ODS Graph Names

PROC PROBIT assigns a name to each graph it creates using ODS. You can use these names to reference the
graphs when using ODS. The names are listed in Table 81.42.

Table 81.42 Graphs Produced by PROC PROBIT
ODS Graph Name Plot Description Statement PLOTS= Option
CDFPlot Estimated cumulative probability PROC CDFPLOT
IPPPlot Inverse predicted probability PROC IPPPLOT
LPredPlot Linear predictor PROC LPREDPLOT
PredPPlot Predicted probability PROC PREDPPLOT

CDF Plot

For a multinomial model, the predicted cumulative distribution function is defined as

OFj .x/ D C C .1 � C/F. Oaj C x0 Ob/
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where j D 1; : : : ; k are the indexes of the k levels of the multinomial response variable, F is the CDF of
the distribution used to model the cumulative probabilities, Ob is the vector of estimated parameters, x is the
covariate vector, Oaj are estimated ordinal intercepts with Oa1 D 0, and C is the threshold parameter, either
known or estimated from the model. Let x1 be the covariate corresponding to the dose variable and x�1 be
the vector of the rest of the covariates. Let the corresponding estimated parameters be Ob1 and Ob�1. Then

OFj .x/ D C C .1 � C/F. Oaj C x1 Ob1 C x0�1 Ob�1/

To plot OFj as a function of x1, x�1 must be specified. You can use the XDATA= option to provide the values
of x�1 (see the XDATA= option in the PROC PROBIT statement for details), or use the default values that
follow these rules:

• If the effect contains a continuous variable (or variables), the overall mean of this effect is used.

• If the effect is a single classification variable, the highest level of the variable is used.

The LEVEL= suboption specify the levels of the multinomial response variable for which the CDF curves
are requested. There are k – 1 curves for a k-level multinomial response variable (for the highest level, it is
the constant line 1). You can specify any of them to be plotted by the LEVEL= suboption. See the plot in
Output 81.2.6 for an example.

Inverse Predicted Probability Plot

For the binomial model, the response variable is a probability. An estimate of the dose level Ox1 needed for a
response of p is given by

Ox1 D .F
�1.p/ � x0�1 Ob�1/= Ob1

where F is the cumulative distribution function used to model the probability, x�1 is the vector of the rest of
the covariates, Ob�1 is the vector of the estimated parameters corresponding to x�1, and Ob1 is the estimated
parameter for the dose variable of interest.

To plot Ox1 as a function of p, x�1 must be specified. You can use the XDATA= option to provide the values
of x�1 (see the XDATA= option in the PROC PROBIT statement for details), or use the default values that
follow these rules:

• If the effect contains a continuous variable (or variables), the overall mean of this effect is used.

• If the effect is a single classification variable, the highest level of the variable is used.

Output 81.4.12 in Example 81.4 shows an inverse predicted probability plot.
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Linear Predictor Plot

For both binomial models and multinomial models, the linear predictor x0b can be plotted against the first
single continuous variable (dose variable) in the MODEL statement.

Let x1 be the covariate of the dose variable, x�1 be the vector of the rest of the covariates, Ob�1 be the vector
of estimated parameters corresponding to x�1, and Ob1 be the estimated parameter for the dose variable of
interest.

To plot Ox0b as a function of x1, x�1 must be specified. You can use the XDATA= option to provide the values
of x�1 (see the XDATA= option in the PROC PROBIT statement for details), or use the default values that
follow these rules:

• If the effect contains a continuous variable (or variables), the overall mean of this effect is used.

• If the effect is a single classification variable, the highest level of the variable is used.

For the multinomial model, you can use the LEVEL= suboption to specify the levels for which the linear
predictor lines are plotted.

The confidence limits for the predicted values are only available for the binomial model. Output 81.4.13 in
Example 81.4 shows a linear predictor plot for a binomial model.

Predicted Probability Plot

The predicted probability is

Op D C C .1 � C/F.x0 Ob/

for the binomial model and

Op1 D C C .1 � C/F.x0 Ob/
Opj D .1 � C/.F. Oaj C x0 Ob/ � F. Oaj�1 C x0 Ob//; j D 2; : : : ; k � 1

Opk D .1 � C/.1 � F. Oak�1 C x0 Ob//

for the multinomial model with k response levels, where F is the cumulative distribution function used to
model the probability, x0 is the vector of the covariates, Oaj are the estimated ordinal intercepts with Oa1 D 0,
C is the threshold parameter, either known or estimated from the model, and Ob0 is the vector of estimated
parameters.

To plot Op (or Opj ) as a function of a continuous variable x1, the remaining covariates x�1 must be specified.
You can use the XDATA= option to provide the values of x�1 (see the XDATA= option in the PROC PROBIT
statement for details), or use the default values that follow these rules:

• If the effect contains a continuous variable (or variables), the overall mean of this effect is used.

• If the effect is a single classification variable, the highest level of the variable is used.
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For the multinomial model, you can use the LEVEL= suboption to specify the levels for which the linear
predictor lines are plotted.

Confidence limits are plotted only for the binomial model. Output 81.1.7 in Example 81.1 shows a predicted
probability plot for a binomial model; and Output 81.2.3 in Example 81.2 shows a predicted probability plot
for a multinomial model.

Examples: PROBIT Procedure

Example 81.1: Dosage Levels
In this example, Dose is a variable representing the level of a stimulus, N represents the number of subjects
tested at each level of the stimulus, and Response is the number of subjects responding to that level of the
stimulus. Both probit and logit response models are fit to the data. The LOG10 option in the PROC PROBIT
statement requests that the log base 10 of Dose is used as the independent variable. Specifically, for a given
level of Dose, the probability p of a positive response is modeled as

p D Pr.Response/ D F .b0 C b1 � log10.Dose//

The probabilities are estimated first by using the normal distribution function (the default) and then by using
the logistic distribution function. Note that, in this model specification, the natural rate is assumed to be zero.

The LACKFIT option specifies lack-of-fit tests and the INVERSECL option specifies inverse confidence
limits.

In the DATA step that reads the data, a number of observations are generated that have a missing value for the
response. Although the PROBIT procedure does not use the observations with the missing values to fit the
model, it does give predicted values for all nonmissing sets of independent variables. These data points fill in
the plot of fitted and observed values in the logistic model displayed in Output 81.1.7. The plot, requested
with the PLOT=PREDPPLOT option, displays the estimated logistic cumulative distribution function and the
observed response rates.

The following statements produce Output 81.1.1:

data a;
infile cards eof=eof;
input Dose N Response @@;
Observed= Response/N;
output;
return;

eof: do Dose=0.5 to 7.5 by 0.25;
output;

end;
datalines;

1 10 1 2 12 2 3 10 4 4 10 5
5 12 8 6 10 8 7 10 10
;



6764 F Chapter 81: The PROBIT Procedure

ods graphics on;

proc probit log10;
model Response/N=Dose / lackfit inversecl itprint;
output out=B p=Prob std=std xbeta=xbeta;

run;

Output 81.1.1 Probit Analysis with Normal Distribution

The Probit ProcedureThe Probit Procedure

Iteration History for Parameter Estimates

Iter Ridge Loglikelihood Intercept Log10(Dose)

0 0 -51.292891 0 0

1 0 -37.881166 -1.355817008 2.635206083

2 0 -37.286169 -1.764939171 3.3408954936

3 0 -37.280389 -1.812147863 3.4172391614

4 0 -37.280388 -1.812704962 3.418117919

5 0 -37.280388 -1.812704962 3.418117919

Model Information

Data Set WORK.A

Events Variable Response

Trials Variable N

Number of Observations 7

Number of Events 38

Number of Trials 74

Name of Distribution Normal

Log Likelihood -37.28038802

Last Evaluation of the
Negative of the Gradient

Intercept Log10(Dose)

3.4349069E-7 -2.09809E-8

Last Evaluation of the Negative of the
Hessian

Intercept Log10(Dose)

Intercept 36.005280383 20.152675982

Log10(Dose) 20.152675982 13.078826305

Goodness-of-Fit Tests

Statistic Value DF Value/DF Pr > ChiSq

Pearson Chi-Square 3.6497 5 0.7299 0.6009

L.R.    Chi-Square 4.6381 5 0.9276 0.4616

Response-Covariate Profile

Response Levels 2

Number of Covariate Values 7



Example 81.1: Dosage Levels F 6765

Output 81.1.1 continued

Analysis of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Intercept 1 -1.8127 0.4493 -2.6934 -0.9320 16.27 <.0001

Log10(Dose) 1 3.4181 0.7455 1.9569 4.8794 21.02 <.0001

Probit Model in Terms
of Tolerance
Distribution

MU SIGMA

0.53032254 0.29255866

Estimated Covariance
Matrix for Tolerance

Parameters

MU SIGMA

MU 0.002418 -0.000409

SIGMA -0.000409 0.004072

The p-values in the goodness-of-fit table of 0.6009 for the Pearson’s chi-square and 0.4616 for the likelihood
ratio chi-square indicate an adequate fit for the model fit with the normal distribution.

Tolerance distribution parameter estimates for the normal distribution indicate a mean tolerance for the
population of 0.5303.

Output 81.1.2 displays probit analysis with the logarithm of dose levels. The LD50 (ED50 for log dose) is
0.5303, the dose corresponding to a probability of 0.5. This is the same as the mean tolerance for the normal
distribution.
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Output 81.1.2 Probit Analysis with Normal Distribution

The Probit ProcedureThe Probit Procedure

Probit Analysis on Log10(Dose)

Probability Log10(Dose)
95%

Fiducial Limits

0.01 -0.15027 -0.69518 0.07710

0.02 -0.07052 -0.55766 0.13475

0.03 -0.01992 -0.47064 0.17156

0.04 0.01814 -0.40534 0.19941

0.05 0.04911 -0.35233 0.22218

0.06 0.07546 -0.30731 0.24165

0.07 0.09857 -0.26793 0.25881

0.08 0.11926 -0.23273 0.27425

0.09 0.13807 -0.20080 0.28837

0.10 0.15539 -0.17147 0.30142

0.15 0.22710 -0.05086 0.35631

0.20 0.28410 0.04369 0.40124

0.25 0.33299 0.12343 0.44116

0.30 0.37690 0.19348 0.47857

0.35 0.41759 0.25658 0.51504

0.40 0.45620 0.31429 0.55182

0.45 0.49356 0.36754 0.58999

0.50 0.53032 0.41693 0.63057

0.55 0.56709 0.46296 0.67451

0.60 0.60444 0.50618 0.72271

0.65 0.64305 0.54734 0.77603

0.70 0.68374 0.58745 0.83550

0.75 0.72765 0.62776 0.90265

0.80 0.77655 0.66999 0.98008

0.85 0.83354 0.71675 1.07279

0.90 0.90525 0.77313 1.19191

0.91 0.92257 0.78646 1.22098

0.92 0.94139 0.80083 1.25265

0.93 0.96208 0.81653 1.28759

0.94 0.98519 0.83394 1.32672

0.95 1.01154 0.85367 1.37149

0.96 1.04250 0.87669 1.42424

0.97 1.08056 0.90480 1.48928

0.98 1.13116 0.94189 1.57602

0.99 1.21092 0.99987 1.71321

Output 81.1.3 displays probit analysis with dose levels. The ED50 for dose is 3.39 with a 95% confidence
interval of (2.61, 4.27).
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Output 81.1.3 Probit Analysis with Normal Distribution

The Probit ProcedureThe Probit Procedure

Probit Analysis on Dose

Probability Dose
95%

Fiducial Limits

0.01 0.70750 0.20175 1.19427

0.02 0.85012 0.27691 1.36380

0.03 0.95517 0.33834 1.48444

0.04 1.04266 0.39324 1.58274

0.05 1.11971 0.44429 1.66793

0.06 1.18976 0.49282 1.74443

0.07 1.25478 0.53960 1.81473

0.08 1.31600 0.58515 1.88042

0.09 1.37427 0.62980 1.94252

0.10 1.43019 0.67380 2.00181

0.15 1.68696 0.88950 2.27147

0.20 1.92353 1.10584 2.51906

0.25 2.15276 1.32870 2.76161

0.30 2.38180 1.56128 3.01000

0.35 2.61573 1.80543 3.27374

0.40 2.85893 2.06200 3.56306

0.45 3.11573 2.33098 3.89038

0.50 3.39096 2.61175 4.27138

0.55 3.69051 2.90374 4.72619

0.60 4.02199 3.20759 5.28090

0.65 4.39594 3.52651 5.97077

0.70 4.82770 3.86765 6.84706

0.75 5.34134 4.24385 7.99189

0.80 5.97787 4.67724 9.55169

0.85 6.81617 5.20900 11.82480

0.90 8.03992 5.93105 15.55653

0.91 8.36704 6.11584 16.63320

0.92 8.73752 6.32165 17.89163

0.93 9.16385 6.55431 19.39034

0.94 9.66463 6.82245 21.21881

0.95 10.26925 7.13949 23.52275

0.96 11.02811 7.52816 26.56066

0.97 12.03830 8.03149 30.85201

0.98 13.52585 8.74763 37.67206

0.99 16.25233 9.99709 51.66627

The following statements request probit analysis of dosage levels with the logistic distribution:

proc probit log10 plot=predpplot;
model Response/N=Dose / d=logistic inversecl;
output out=B p=Prob std=std xbeta=xbeta;

run;
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The regression parameter estimates in Output 81.1.4 for the logistic model of –3.22 and 5.97 are approximately
�=
p
3 times as large as those for the normal model.

Output 81.1.4 Probit Analysis with Logistic Distribution

The Probit ProcedureThe Probit Procedure

Model Information

Data Set WORK.B

Events Variable Response

Trials Variable N

Number of Observations 7

Number of Events 38

Number of Trials 74

Name of Distribution Logistic

Log Likelihood -37.11065336

Analysis of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Intercept 1 -3.2246 0.8861 -4.9613 -1.4880 13.24 0.0003

Log10(Dose) 1 5.9702 1.4492 3.1299 8.8105 16.97 <.0001

Output 81.1.5 and Output 81.1.6 show that both the ED50 and the LD50 are similar to those for the normal
model.
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Output 81.1.5 Probit Analysis with Logistic Distribution

The Probit ProcedureThe Probit Procedure

Probit Analysis on Log10(Dose)

Probability Log10(Dose)
95%

Fiducial Limits

0.01 -0.22955 -0.97441 0.04234

0.02 -0.11175 -0.75158 0.12404

0.03 -0.04212 -0.62018 0.17265

0.04 0.00780 -0.52618 0.20771

0.05 0.04693 -0.45265 0.23533

0.06 0.07925 -0.39205 0.25826

0.07 0.10686 -0.34037 0.27796

0.08 0.13103 -0.29521 0.29530

0.09 0.15259 -0.25502 0.31085

0.10 0.17209 -0.21875 0.32498

0.15 0.24958 -0.07552 0.38207

0.20 0.30792 0.03092 0.42645

0.25 0.35611 0.11742 0.46451

0.30 0.39820 0.19143 0.49932

0.35 0.43644 0.25684 0.53275

0.40 0.47221 0.31588 0.56619

0.45 0.50651 0.36986 0.60089

0.50 0.54013 0.41957 0.63807

0.55 0.57374 0.46559 0.67894

0.60 0.60804 0.50846 0.72474

0.65 0.64381 0.54896 0.77673

0.70 0.68205 0.58815 0.83637

0.75 0.72414 0.62752 0.90582

0.80 0.77233 0.66915 0.98876

0.85 0.83067 0.71631 1.09242

0.90 0.90816 0.77562 1.23343

0.91 0.92766 0.79014 1.26931

0.92 0.94922 0.80607 1.30912

0.93 0.97339 0.82378 1.35391

0.94 1.00100 0.84384 1.40523

0.95 1.03332 0.86713 1.46546

0.96 1.07245 0.89511 1.53864

0.97 1.12237 0.93053 1.63228

0.98 1.19200 0.97952 1.76329

0.99 1.30980 1.06166 1.98569
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Output 81.1.6 Probit Analysis with Logistic Distribution

The Probit ProcedureThe Probit Procedure

Probit Analysis on Dose

Probability Dose
95%

Fiducial Limits

0.01 0.58945 0.10607 1.10241

0.02 0.77312 0.17718 1.33058

0.03 0.90757 0.23978 1.48817

0.04 1.01813 0.29773 1.61327

0.05 1.11413 0.35266 1.71922

0.06 1.20018 0.40546 1.81244

0.07 1.27896 0.45670 1.89654

0.08 1.35218 0.50675 1.97379

0.09 1.42100 0.55588 2.04572

0.10 1.48625 0.60430 2.11339

0.15 1.77656 0.84038 2.41030

0.20 2.03199 1.07379 2.66961

0.25 2.27043 1.31046 2.91416

0.30 2.50152 1.55393 3.15736

0.35 2.73172 1.80652 3.40996

0.40 2.96627 2.06957 3.68292

0.45 3.21006 2.34345 3.98927

0.50 3.46837 2.62768 4.34578

0.55 3.74746 2.92138 4.77466

0.60 4.05546 3.22451 5.30573

0.65 4.40366 3.53961 5.98041

0.70 4.80891 3.87391 6.86079

0.75 5.29836 4.24155 8.05044

0.80 5.92009 4.66820 9.74455

0.85 6.77126 5.20365 12.37149

0.90 8.09391 5.96508 17.11715

0.91 8.46559 6.16800 18.59129

0.92 8.89644 6.39837 20.37592

0.93 9.40575 6.66469 22.58957

0.94 10.02317 6.97977 25.42292

0.95 10.79732 7.36428 29.20549

0.96 11.81534 7.85438 34.56521

0.97 13.25466 8.52173 42.88232

0.98 15.55972 9.53941 57.98207

0.99 20.40815 11.52549 96.75820

The PLOT=PREDPPLOT option together with the ODS GRAPHICS statement creates the plot of observed
and fitted probabilities in Output 81.1.7. The dashed line represent pointwise confidence bands for the
probabilities.
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Output 81.1.7 Plot of Observed and Fitted Probabilities
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Example 81.2: Multilevel Response
In this example, two preparations, a standard preparation and a test preparation, are each given at several dose
levels to groups of insects. The symptoms are recorded for each insect within each group, and two multilevel
probit models are fit. Because the natural sort order of the three levels is not the same as the response order,
the ORDER=DATA response variable option is specified in the MODEL statement to get the desired order.
The following statements fit two models:

data multi;
input Prep $ Dose Symptoms $ N;
LDose=log10(Dose);
if Prep='test' then PrepDose=LDose;
else PrepDose=0;
datalines;

stand 10 None 33
stand 10 Mild 7
stand 10 Severe 10
stand 20 None 17
stand 20 Mild 13
stand 20 Severe 17
stand 30 None 14
stand 30 Mild 3
stand 30 Severe 28
stand 40 None 9
stand 40 Mild 8
stand 40 Severe 32
test 10 None 44
test 10 Mild 6
test 10 Severe 0
test 20 None 32
test 20 Mild 10
test 20 Severe 12
test 30 None 23
test 30 Mild 7
test 30 Severe 21
test 40 None 16
test 40 Mild 6
test 40 Severe 19
;

proc probit data=multi;
class Prep;
nonpara: model Symptoms(order=data)=Prep LDose PrepDose / lackfit;
weight N;

run;

proc probit data=multi;
class Prep;
parallel: model Symptoms(order=data)=Prep LDose / lackfit;
weight N;

run;
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Results of these two models are shown in Output 81.2.1 and Output 81.2.2. The first model allows for
nonparallelism between the dose response curves for the two preparations by inclusion of an interaction
between Prep and LDose. The interaction term is labeled PrepDose in the “Analysis of Parameter Estimates”
table. The results of this first model indicate that the parameter for the interaction term is not significant,
having a Wald chi-square of 0.73. Also, since the first model is a generalization of the second, a likelihood
ratio test statistic for this same parameter can be obtained by multiplying the difference in log likelihoods
between the two models by 2. The value obtained, 2 � .�345:94 � .�346:31//, is 0.73. This is in close
agreement with the Wald chi-square from the first model. The lack-of-fit test statistics for the two models do
not indicate a problem with either fit.

Output 81.2.1 Multilevel Response: Nonparallel Analysis

The Probit ProcedureThe Probit Procedure

Model Information

Data Set WORK.MULTI

Dependent Variable Symptoms

Weight Variable N

Number of Observations 23

Name of Distribution Normal

Log Likelihood -345.9401767

Class Level Information

Name Levels Values

Prep 2 stand test

Symptoms 3 None Mild Severe

Analysis of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Intercept 1 3.8080 0.6252 2.5827 5.0333 37.10 <.0001

Intercept2 1 0.4684 0.0559 0.3589 0.5780 70.19 <.0001

Prep stand 1 -1.2573 0.8190 -2.8624 0.3479 2.36 0.1247

Prep test 0 0.0000 . . . . .

LDose 1 -2.1512 0.3909 -2.9173 -1.3851 30.29 <.0001

PrepDose 1 -0.5072 0.5945 -1.6724 0.6580 0.73 0.3935

Output 81.2.2 Multilevel Response: Parallel Analysis

The Probit ProcedureThe Probit Procedure

Model Information

Data Set WORK.MULTI

Dependent Variable Symptoms

Weight Variable N

Number of Observations 23

Name of Distribution Normal

Log Likelihood -346.306141
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Output 81.2.2 continued

Class Level Information

Name Levels Values

Prep 2 stand test

Symptoms 3 None Mild Severe

Analysis of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Intercept 1 3.4148 0.4126 2.6061 4.2235 68.50 <.0001

Intercept2 1 0.4678 0.0558 0.3584 0.5772 70.19 <.0001

Prep stand 1 -0.5675 0.1259 -0.8142 -0.3208 20.33 <.0001

Prep test 0 0.0000 . . . . .

LDose 1 -2.3721 0.2949 -2.9502 -1.7940 64.68 <.0001

The negative coefficient associated with LDose indicates that the probability of having no symptoms
(Symptoms=’None’) or no or mild symptoms (Symptoms=’None’ or Symptoms=’Mild’) decreases as LDose
increases; that is, the probability of a severe symptom increases with LDose. This association is apparent for
both treatment groups.

The negative coefficient associated with the standard treatment group (Prep = stand) indicates that the
standard treatment is associated with more severe symptoms across all Ldose values.
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The following statements use the PLOTS= option to create the plot shown in Output 81.2.3 and Output 81.2.4.
Output 81.2.3 is the plot of the probabilities of the response taking on individual levels as a function of
LDose. Since there are two covariates, LDose and Prep, the value of the classification variable Prep is fixed
at the highest level, test. Instead of individual response level probabilities, the CDFPLOT option creates the
plot of the cumulative response probabilities with confidence limits shown in Output 81.2.4.

proc probit data=multi
plots=(predpplot(level=("None" "Mild" "Severe"))

cdfplot(level=("None" "Mild" "Severe")));
class Prep;
parallel: model Symptoms(order=data)=Prep LDose / lackfit;
weight N;

run;

Output 81.2.3 Plot of Predicted Probabilities for the Test Preparation Group
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Output 81.2.4 Plot of Predicted Cumulative Probabilities for the Test Preparation Group

The following statements use the XDATA= data set to create plots of predicted probabilities and cumulative
probabilities with Prep set to the stand level. The resulting plots are shown in Output 81.2.5 and Output 81.2.6.

data xrow;
input Prep $ Dose Symptoms $ N;
LDose=log10(Dose);
datalines;

stand 40 Severe 32
run;

proc probit data=multi xdata=xrow
plots=(predpplot(level=("None" "Mild" "Severe"))

cdfplot(level=("None" "Mild" "Severe")));
class Prep;
parallel: model Symptoms(order=data)=Prep LDose / lackfit;
weight N;

run;
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Output 81.2.5 Plot of Predicted Probabilities for the Standard Preparation Group

Output 81.2.6 Plot of Predicted Cumulative Probabilities for the Standard Preparation Group
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Example 81.3: Logistic Regression
In this example, a series of people are asked whether or not they would subscribe to a new newspaper. For
each person, the variables sex (Female, Male), age, and subs (1=yes,0=no) are recorded. The PROBIT
procedure is used to fit a logistic regression model to the probability of a positive response (subscribing) as a
function of the variables sex and age. Specifically, the probability of subscribing is modeled as

p D Pr.subs D 1/ D F .b0 C b1 � sexC b2 � age/

where F is the cumulative logistic distribution function.

By default, the PROBIT procedure models the probability of the lower response level for binary data. One
way to model Pr.subs D 1/ is to specify the EVENT="1" response variable option. The following statements
format the values of subs as 1 = ’accept’ and 0 = ’reject’, fit the model, and produce Output 81.3.1.

data news;
input sex $ age subs @@;
datalines;

Female 35 0 Male 44 0
Male 45 1 Female 47 1
Female 51 0 Female 47 0
Male 54 1 Male 47 1
Female 35 0 Female 34 0
Female 48 0 Female 56 1
Male 46 1 Female 59 1
Female 46 1 Male 59 1
Male 38 1 Female 39 0
Male 49 1 Male 42 1
Male 50 1 Female 45 0
Female 47 0 Female 30 1
Female 39 0 Female 51 0
Female 45 0 Female 43 1
Male 39 1 Male 31 0
Female 39 0 Male 34 0
Female 52 1 Female 46 0
Male 58 1 Female 50 1
Female 32 0 Female 52 1
Female 35 0 Female 51 0
;

proc format;
value subscrib 1 = 'accept' 0 = 'reject';

run;

proc probit data=news;
class sex;
model subs(event="accept")=sex age / d=logistic itprint;
format subs subscrib.;

run;
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Output 81.3.1 Logistic Regression of Subscription Status

The Probit ProcedureThe Probit Procedure

Iteration History for Parameter Estimates

Iter Ridge Loglikelihood Intercept sexFemale age

0 0 -27.725887 0 0 0

1 0 -20.142659 -3.634567629 -1.648455751 0.1051634384

2 0 -19.52245 -5.254865196 -2.234724956 0.1506493473

3 0 -19.490439 -5.728485385 -2.409827238 0.1639621828

4 0 -19.490303 -5.76187293 -2.422349862 0.1649007124

5 0 -19.490303 -5.7620267 -2.422407743 0.1649050312

6 0 -19.490303 -5.7620267 -2.422407743 0.1649050312

Model Information

Data Set WORK.NEWS

Dependent Variable subs

Number of Observations 40

Name of Distribution Logistic

Log Likelihood -19.49030281

Class Level Information

Name Levels Values

sex 2 Female Male

subs 2 accept reject

Last Evaluation of the Negative of the
Gradient

Intercept sexFemale age

-5.95557E-12 8.768324E-10 -1.6367E-8

Last Evaluation of the Negative of the Hessian

Intercept sexFemale age

Intercept 6.4597397447 4.6042218284 292.04051848

sexFemale 4.6042218284 4.6042218284 216.20829515

age 292.04051848 216.20829515 13487.329973

Analysis of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Intercept 1 -5.7620 2.7635 -11.1783 -0.3458 4.35 0.0371

sex Female 1 -2.4224 0.9559 -4.2959 -0.5489 6.42 0.0113

sex Male 0 0.0000 . . . . .

age 1 0.1649 0.0652 0.0371 0.2927 6.40 0.0114

Output 81.3.1 shows that there appears to be an effect due to both the variables sex and age. The positive
coefficient for age indicates that older people are more likely to subscribe than younger people. The negative
coefficient for sex indicates that females are less likely to subscribe than males.
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Example 81.4: An Epidemiology Study
The data in this example, which are from an epidemiology study, consist of five variables: the number, r,
of individuals surviving after an epidemic, out of n treated, for combinations of medicine dosage (dose),
treatment (treat = A, B), and sex (sex = 0(Female), 1(Male)).

To see whether the two treatments have different effects on male and female individual survival rates, the
interaction term between the two variables treat and sex is included in the model.

The following invocation of PROC PROBIT fits the binary probit model to the grouped data:

data epidemic;
input treat$ dose n r sex @@;
label dose = Dose;
datalines;

A 2.17 142 142 0 A .57 132 47 1
A 1.68 128 105 1 A 1.08 126 100 0
A 1.79 125 118 0 B 1.66 117 115 1
B 1.49 127 114 0 B 1.17 51 44 1
B 2.00 127 126 0 B .80 129 100 1
;

data xval;
input treat $ dose sex;
datalines;

B 2. 1
;

proc probit optc lackfit covout data=epidemic
outest = out1 xdata = xval
Plots=(predpplot ippplot lpredplot);

class treat sex;
model r/n = dose treat sex sex*treat/corrb covb inversecl;
output out = out2 p =p;

run;

The results of this analysis are shown in the outputs that follow.

Output 81.4.1 displays the table of level information for all classification variables in the CLASS statement.

Output 81.4.1 Class Level Information

The Probit ProcedureThe Probit Procedure

Class Level
Information

Name Levels Values

treat 2 A B

sex 2 0 1

Output 81.4.2 displays the table of parameter information for the effects in the MODEL statement.
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Output 81.4.2 Parameter Information

Parameter Information

Parameter Effect treat sex

Intercept Intercept

dose dose

treatA treat A

treatB treat B

sex0 sex 0

sex1 sex 1

treatAsex0 treat*sex A 0

treatAsex1 treat*sex A 1

treatBsex0 treat*sex B 0

treatBsex1 treat*sex B 1

Output 81.4.3 displays background information about the model fit. Included are the name of the input data
set, the response variables used, the numbers of observations, events, and trials, the type of distribution, and
the final value of the log-likelihood function.

Output 81.4.3 Model Information

The Probit ProcedureThe Probit Procedure

Model Information

Data Set WORK.EPIDEMIC

Events Variable r

Trials Variable n

Number of Observations 10

Number of Events 1011

Number of Trials 1204

Name of Distribution Normal

Log Likelihood -387.2467391

Output 81.4.4 displays the table of goodness-of-fit tests requested with the LACKFIT option in the PROC
PROBIT statement. Two goodness-of-fit statistics, the Pearson’s chi-square statistic and the likelihood ratio
chi-square statistic, are computed. The grouping method for computing these statistics can be specified by the
AGGREGATE= option. The details can be found in the AGGREGATE= option, and an example can be found
in the second part of this example. By default, the PROBIT procedure uses the covariates in the MODEL
statement to do grouping. Observations with the same values of the covariates in the MODEL statement are
grouped into cells and the two statistics are computed according to these cells. The total number of cells and
the number of levels for the response variable are reported next in the “Response-Covariate Profile.”

In this example, neither the Pearson’s chi-square nor the log-likelihood ratio chi-square tests are significant at
the 0.1 level, which is the default test level used by the PROBIT procedure. That means that the model, which
includes the interaction of treat and sex, is suitable for this epidemiology data set. (Further investigation
shows that models without the interaction of treat and sex are not acceptable by either test.)
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Output 81.4.4 Goodness-of-Fit Tests and Response-Covariate Profile

Goodness-of-Fit Tests

Statistic Value DF Value/DF Pr > ChiSq

Pearson Chi-Square 4.9317 4 1.2329 0.2944

L.R.    Chi-Square 5.7079 4 1.4270 0.2220

Response-Covariate Profile

Response Levels 2

Number of Covariate Values 10

Output 81.4.5 displays the Type III test results for all effects specified in the MODEL statement, which
include the degrees of freedom for the effect, the Wald Chi-Square test statistic, and the p-value.

Output 81.4.5 Type III Tests

Type III Analysis of Effects

Effect DF
Wald

Chi-Square Pr > ChiSq

dose 1 42.1691 <.0001

treat 1 16.1421 <.0001

sex 1 1.7710 0.1833

treat*sex 1 13.9343 0.0002

Output 81.4.6 displays the table of parameter estimates for the model. The PROBIT procedure displays
information for all the parameters of an effect. Degenerate parameters are indicated by 0 degree of freedom.
Confidence intervals are computed for all parameters with nonzero degrees of freedom, including the natural
threshold C if the OPTC option is specified in the PROC PROBIT statement. The confidence level can be
specified by the ALPHA= option in the MODEL statement. The default confidence level is 95%.

Output 81.4.6 Analysis of Parameter Estimates

Analysis of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Intercept 1 -0.8871 0.3632 -1.5991 -0.1752 5.96 0.0146

dose 1 1.6774 0.2583 1.1711 2.1837 42.17 <.0001

treat A 1 -1.2537 0.2616 -1.7664 -0.7410 22.97 <.0001

treat B 0 0.0000 . . . . .

sex 0 1 -0.4633 0.2289 -0.9119 -0.0147 4.10 0.0429

sex 1 0 0.0000 . . . . .

treat*sex A 0 1 1.2899 0.3456 0.6126 1.9672 13.93 0.0002

treat*sex A 1 0 0.0000 . . . . .

treat*sex B 0 0 0.0000 . . . . .

treat*sex B 1 0 0.0000 . . . . .

_C_ 1 0.2735 0.0946 0.0881 0.4589
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From Table 81.4.6, you can see the following results:

• The variable dose has a significant positive effect on the survival rate.

• Individuals under treatment A have a lower survival rate.

• Male individuals have a higher survival rate.

• Female individuals under treatment A have a higher survival rate.

Output 81.4.7 and Output 81.4.8 display tables of estimated covariance matrix and estimated correlation
matrix for estimated parameters with a nonzero degree of freedom, respectively. They are computed by the
inverse of the Hessian matrix of the estimated parameters.

Output 81.4.7 Estimated Covariance Matrix

Estimated Covariance Matrix

Intercept dose treatA sex0 treatAsex0 _C_

Intercept 0.131944 -0.087353 0.053551 0.030285 -0.067056 -0.028073

dose -0.087353 0.066723 -0.047506 -0.034081 0.058620 0.018196

treatA 0.053551 -0.047506 0.068425 0.036063 -0.075323 -0.017084

sex0 0.030285 -0.034081 0.036063 0.052383 -0.063599 -0.008088

treatAsex0 -0.067056 0.058620 -0.075323 -0.063599 0.119408 0.019134

_C_ -0.028073 0.018196 -0.017084 -0.008088 0.019134 0.008948

Output 81.4.8 Estimated Correlation Matrix

Estimated Correlation Matrix

Intercept dose treatA sex0 treatAsex0 _C_

Intercept 1.000000 -0.930998 0.563595 0.364284 -0.534227 -0.817027

dose -0.930998 1.000000 -0.703083 -0.576477 0.656744 0.744699

treatA 0.563595 -0.703083 1.000000 0.602359 -0.833299 -0.690420

sex0 0.364284 -0.576477 0.602359 1.000000 -0.804154 -0.373565

treatAsex0 -0.534227 0.656744 -0.833299 -0.804154 1.000000 0.585364

_C_ -0.817027 0.744699 -0.690420 -0.373565 0.585364 1.000000

Output 81.4.9 displays the computed values and fiducial limits for the first single continuous variable dose in
the MODEL statement, given the probability levels, without the effect of the natural threshold, and when the
option INSERSECL in the MODEL statement is specified. If there is no single continuous variable in the
MODEL specification but the INVERSECL option is specified, an error is reported.
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Output 81.4.9 Probit Analysis on Dose

The Probit ProcedureThe Probit Procedure

Probit Analysis on dose

Probability dose
95%

Fiducial Limits

0.01 -0.85801 -1.81301 -0.33743

0.02 -0.69549 -1.58167 -0.21116

0.03 -0.59238 -1.43501 -0.13093

0.04 -0.51482 -1.32476 -0.07050

0.05 -0.45172 -1.23513 -0.02130

0.06 -0.39802 -1.15888 0.02063

0.07 -0.35093 -1.09206 0.05742

0.08 -0.30877 -1.03226 0.09039

0.09 -0.27043 -0.97790 0.12040

0.10 -0.23513 -0.92788 0.14805

0.15 -0.08900 -0.72107 0.26278

0.20 0.02714 -0.55706 0.35434

0.25 0.12678 -0.41669 0.43322

0.30 0.21625 -0.29095 0.50437

0.35 0.29917 -0.17477 0.57064

0.40 0.37785 -0.06487 0.63387

0.45 0.45397 0.04104 0.69546

0.50 0.52888 0.14481 0.75654

0.55 0.60380 0.24800 0.81819

0.60 0.67992 0.35213 0.88157

0.65 0.75860 0.45879 0.94803

0.70 0.84151 0.56985 1.01942

0.75 0.93099 0.68770 1.09847

0.80 1.03063 0.81571 1.18970

0.85 1.14677 0.95926 1.30171

0.90 1.29290 1.12867 1.45386

0.91 1.32819 1.16747 1.49273

0.92 1.36654 1.20867 1.53590

0.93 1.40870 1.25284 1.58450

0.94 1.45579 1.30084 1.64012

0.95 1.50949 1.35397 1.70515

0.96 1.57258 1.41443 1.78353

0.97 1.65015 1.48626 1.88238

0.98 1.75326 1.57833 2.01720

0.99 1.91577 1.71776 2.23537

If the XDATA= option is used to input a data set for the independent variables in the MODEL statement,
the PROBIT procedure uses these values for the independent variables other than the single continuous
variable. Missing values are not permitted in the XDATA= data set for the independent variables, although
the value for the single continuous variable is not used in the computing of the fiducial limits. A suitable
valid value should be given. In the data set xval created by the SAS statements on page 6780, dose = 2. Only



Example 81.4: An Epidemiology Study F 6785

one observation from the XDATA= data set is used to produce a probit analysis table for a combination of
classification variable levels. If more than one observation is present in the XDATA= data set, only the last
observation is used.

See the section “XDATA= SAS-data-set” on page 6756 for the default values for those effects other than the
single continuous variable, for which the fiducial limits are computed.

In this example, there are two classification variables, treat and sex. Fiducial limits for the dose variable
are computed for the highest level of the classification variables, treat = B and sex = 1, which is the default
specification. Since these are the default values, you would get the same values and fiducial limits if you did
not specify the XDATA= option in this example. The confidence level for the fiducial limits can be specified
by the ALPHA= option in the MODEL statement. The default level is 95%.

If a LOG10 or LOG option is used in the PROC PROBIT statement, the values and the fiducial limits are
computed for both the single continuous variable and its logarithm.

Output 81.4.10 displays the OUTEST= data set. All parameters for an effect are included. The name of a
parameter is generated by combining the variable names and levels in the effect. The maximum length of a
parameter name is 32.

Output 81.4.10 Outest Data Set for Epidemiology Study

Obs _MODEL_ _NAME_ _TYPE_ _DIST_ _STATUS_ _LNLIKE_ r Intercept dose

1 r PARMS Normal 0 Converged -387.247 -1.00000 -0.88714 1.67739

2 Intercept COV Normal 0 Converged -387.247 -0.88714 0.13194 -0.08735

3 dose COV Normal 0 Converged -387.247 1.67739 -0.08735 0.06672

4 treatA COV Normal 0 Converged -387.247 -1.25367 0.05355 -0.04751

5 treatB COV Normal 0 Converged -387.247 0.00000 0.00000 0.00000

6 sex0 COV Normal 0 Converged -387.247 -0.46329 0.03029 -0.03408

7 sex1 COV Normal 0 Converged -387.247 0.00000 0.00000 0.00000

8 treatAsex0 COV Normal 0 Converged -387.247 1.28991 -0.06706 0.05862

9 treatAsex1 COV Normal 0 Converged -387.247 0.00000 0.00000 0.00000

10 treatBsex0 COV Normal 0 Converged -387.247 0.00000 0.00000 0.00000

11 treatBsex1 COV Normal 0 Converged -387.247 0.00000 0.00000 0.00000

12 _C_ COV Normal 0 Converged -387.247 0.27347 -0.02807 0.01820

Obs treatA treatB sex0 sex1 treatAsex0 treatAsex1 treatBsex0 treatBsex1 _C_

1 -1.25367 0 -0.46329 0 1.28991 0 0 0 0.27347

2 0.05355 0 0.03029 0 -0.06706 0 0 0 -0.02807

3 -0.04751 0 -0.03408 0 0.05862 0 0 0 0.01820

4 0.06843 0 0.03606 0 -0.07532 0 0 0 -0.01708

5 0.00000 0 0.00000 0 0.00000 0 0 0 0.00000

6 0.03606 0 0.05238 0 -0.06360 0 0 0 -0.00809

7 0.00000 0 0.00000 0 0.00000 0 0 0 0.00000

8 -0.07532 0 -0.06360 0 0.11941 0 0 0 0.01913

9 0.00000 0 0.00000 0 0.00000 0 0 0 0.00000

10 0.00000 0 0.00000 0 0.00000 0 0 0 0.00000

11 0.00000 0 0.00000 0 0.00000 0 0 0 0.00000

12 -0.01708 0 -0.00809 0 0.01913 0 0 0 0.00895
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The plots in the following three outputs, Output 81.4.11, Output 81.4.12, and Output 81.4.13, are generated
by the PLOTS= option. The first plot, specified with the PREDPPLOT option, is the plot of the predicted
probability against the first single continuous variable dose in the MODEL statement. You can specify values
of other independent variables in the MODEL statement by using an XDATA= data set or by using the default
values.

The second plot, specified with the IPPPLOT option, is the inverse of the predicted probability plot with
the fiducial limits. It should be pointed out that the fiducial limits are not just the inverse of the confidence
limits in the predicted probability plot; see the section “Inverse Confidence Limits” on page 6754 for the
computation of these limits. The third plot, specified with the LPREDPLOT option, is the plot of the linear
predictor x0˛ against the first single continuous variable with the Wald confidence intervals.

Output 81.4.11 Predicted Probability Plot
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Output 81.4.12 Inverse Predicted Probability Plot

Output 81.4.13 Linear Predictor Plot
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When you combine the INEST= data set and the MAXIT= option in the MODEL statement, the PROBIT
procedure can do prediction, if the parameterizations for the models used for the training data and the
validation data are exactly the same. The following SAS statements show an example:

data validate;
input treat $ dose sex n r group @@;
datalines;

B 2.0 0 44 43 1 B 2.0 1 54 52 2
B 1.5 1 36 32 3 B 1.5 0 45 40 4
A 2.0 0 66 64 5 A 2.0 1 89 89 6
A 1.5 1 45 39 7 A 1.5 0 66 60 8
B 2.0 0 44 44 1 B 2.0 1 54 54 2
B 1.5 1 36 30 3 B 1.5 0 45 41 4
A 2.0 0 66 65 5 A 2.0 1 89 88 6
A 1.5 1 45 38 7 A 1.5 0 66 59 8
;

proc probit optc data=validate inest=out1;
class treat sex;
model r/n = dose treat sex sex*treat / maxit = 0;
output out = out3 p =p;

run;

proc probit optc lackfit data=validate inest=out1;
class treat sex;
model r/n = dose treat sex sex*treat / aggregate = group;
output out = out4 p =p;

run;

After the first invocation of PROC PROBIT, you have the estimated parameters and their covariance matrix
in the data set OUTEST = Out1, and the fitted probabilities for the training data set epidemic in the data set
OUTPUT = Out2. See Output 81.4.10 for the data set Out1 and Output 81.4.14 for the data set Out2.

The validation data are collected in data set validate. The second invocation of PROC PROBIT simply
passes the estimated parameters from the training data set epidemic to the validation data set validate for
prediction. The predicted probabilities are stored in the data set OUTPUT = Out3 (see Output 81.4.15).
The third invocation of PROC PROBIT passes the estimated parameters as initial values for a new fit of the
validation data set with the same model. Predicted probabilities are stored in the data set OUTPUT = Out4
(see Output 81.4.16). Goodness-of-fit tests are computed based on the cells grouped by the AGGREGATE=
group variable. Results are shown in Output 81.4.17.



Example 81.4: An Epidemiology Study F 6789

Output 81.4.14 Out2

Obs treat dose n r sex p

1 A 2.17 142 142 0 0.99272

2 A 0.57 132 47 1 0.35925

3 A 1.68 128 105 1 0.81899

4 A 1.08 126 100 0 0.77517

5 A 1.79 125 118 0 0.96682

6 B 1.66 117 115 1 0.97901

7 B 1.49 127 114 0 0.90896

8 B 1.17 51 44 1 0.89749

9 B 2.00 127 126 0 0.98364

10 B 0.80 129 100 1 0.76414

Output 81.4.15 Out3

Obs treat dose sex n r group p

1 B 2.0 0 44 43 1 0.98364

2 B 2.0 1 54 52 2 0.99506

3 B 1.5 1 36 32 3 0.96247

4 B 1.5 0 45 40 4 0.91145

5 A 2.0 0 66 64 5 0.98500

6 A 2.0 1 89 89 6 0.91835

7 A 1.5 1 45 39 7 0.74300

8 A 1.5 0 66 60 8 0.91666

9 B 2.0 0 44 44 1 0.98364

10 B 2.0 1 54 54 2 0.99506

11 B 1.5 1 36 30 3 0.96247

12 B 1.5 0 45 41 4 0.91145

13 A 2.0 0 66 65 5 0.98500

14 A 2.0 1 89 88 6 0.91835

15 A 1.5 1 45 38 7 0.74300

16 A 1.5 0 66 59 8 0.91666
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Output 81.4.16 Out4

Obs treat dose sex n r group p

1 B 2.0 0 44 43 1 0.98954

2 B 2.0 1 54 52 2 0.98262

3 B 1.5 1 36 32 3 0.86187

4 B 1.5 0 45 40 4 0.90095

5 A 2.0 0 66 64 5 0.98768

6 A 2.0 1 89 89 6 0.98614

7 A 1.5 1 45 39 7 0.88075

8 A 1.5 0 66 60 8 0.88964

9 B 2.0 0 44 44 1 0.98954

10 B 2.0 1 54 54 2 0.98262

11 B 1.5 1 36 30 3 0.86187

12 B 1.5 0 45 41 4 0.90095

13 A 2.0 0 66 65 5 0.98768

14 A 2.0 1 89 88 6 0.98614

15 A 1.5 1 45 38 7 0.88075

16 A 1.5 0 66 59 8 0.88964

Output 81.4.17 Goodness-of-Fit Table

The Probit ProcedureThe Probit Procedure

Goodness-of-Fit Tests

Statistic Value DF Value/DF Pr > ChiSq

Pearson Chi-Square 2.8101 2 1.4050 0.2454

L.R.    Chi-Square 2.8080 2 1.4040 0.2456

Example 81.5: Model Postfitting Analysis
Recall the previous example of an epidemic study, in which the treat*sex interaction is statistically significant.
Suppose you want to know whether such an effect is the same at different levels of the two categorical
variables.

The following SAS statements fit a probit model and use the SLICE statement to request analysis of the
two-way interaction term treat*sex:

proc probit data=epidemic;
class treat sex;
model r/n = dose treat sex treat*sex;
slice treat*sex / diff;
effectplot;

run;

Output 81.5.1 displays the test results for the interaction effect. As you can see, the difference between the
two treatments is not significant among females.
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Output 81.5.1 Tests Conditional on treat*sex

The Probit ProcedureThe Probit Procedure

Chi-Square Test for treat*sex Least
Squares Means Slice

Slice
Num

DF Chi-Square Pr > ChiSq

treat A 1 18.52 <.0001

Chi-Square Test for treat*sex Least
Squares Means Slice

Slice
Num

DF Chi-Square Pr > ChiSq

treat B 1 2.65 0.1035

Chi-Square Test for treat*sex
Least Squares Means Slice

Slice
Num

DF Chi-Square Pr > ChiSq

sex 0 1 0.00 0.9579

Chi-Square Test for treat*sex
Least Squares Means Slice

Slice
Num

DF Chi-Square Pr > ChiSq

sex 1 1 47.43 <.0001
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The DIFF option computes effect differences between groups within the same slice. Results are displayed in
Output 81.5.2.

Output 81.5.2 Effect Differences Conditional on treat*sex

Simple Differences of treat*sex Least Squares Means

Slice sex _sex Estimate
Standard

Error z Value Pr > |z|

treat A 0 1 0.5957 0.1384 4.30 <.0001

Simple Differences of treat*sex Least Squares Means

Slice sex _sex Estimate
Standard

Error z Value Pr > |z|

treat B 0 1 -0.2956 0.1816 -1.63 0.1035

Simple Differences of treat*sex Least Squares Means

Slice treat _treat Estimate
Standard

Error z Value Pr > |z|

sex 0 A B -0.00899 0.1702 -0.05 0.9579

Simple Differences of treat*sex Least Squares Means

Slice treat _treat Estimate
Standard

Error z Value Pr > |z|

sex 1 A B -0.9003 0.1307 -6.89 <.0001

The EFFECTPLOT statement produces a predicted probability plot for dose by the four groups that are
formed by the treat*sex interaction. The plot is displayed in Output 81.5.3. The two overlapping curves
represent the two treatment groups for females, suggesting no treatment effect. It appears that males tend
to respond to the two treatments differently: those on treatment B have a better survival rate, and those on
treatment A have a worse chance of survival.
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Output 81.5.3 Predicted Probability versus Dose Level by treat*sex
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Overview: QUANTLIFE Procedure
The QUANTLIFE procedure performs quantile regression analysis for survival data, in which observations
are not always directly observed.
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Quantile regression analysis (Koenker and Bassett 1978) is a type of regression analysis that explores how
the conditional quantile of a response variable depends on its covariates. Recall that a student’s score on a
test is at the 0.85th quantile if his or her score is higher than that of 85% of the students who took the test.
The score is also said to be at the 85th percentile. By estimating a set of conditional quantiles, you can gain
more insight into the conditional distribution of the response, given its covariates.

Quantile regression provides a flexible way to capture heterogeneous effects in the sense that the tails and
the central location of the conditional distributions can vary differently with the covariates. Thus, quantile
regression offers a powerful tool in survival analysis, where the lifetimes are skewed and extreme survival
times can be of special interest (Koenker and Geling 2001; Huang 2010).

When the observations are fully observed, you can use the QUANTREG procedure to fit a standard quantile
regression model. For an introduction to the basic concepts of quantile regression analysis, see Chapter 83,
“The QUANTREG Procedure.”

However, lifetime data often contain incomplete observations because of censoring (Klein and Moeschberger
2003; Hosmer, Lemeshow, and May 2008). When censoring occurs, the usual standard quantile regression
approach can lead to biased estimates. Thus, special approaches have been developed that account for
censoring and provide valid estimates. Portnoy (2003) proposed a method to estimate conditional quantile
functions by generalizing the idea of the Kaplan-Meier estimator of the survival function. Peng and Huang
(2008) developed a different quantile regression approach that is motivated by the Nelson-Aalen estimator of
the cumulative hazard function. Both methods can be implemented using linear programming algorithms,
and both are available in the QUANTLIFE procedure. Like the standard quantile regression method for
uncensored data, these two methods are distribution-free and apply to heteroscedastic data.

Features
The QUANTLIFE procedure provides the following features:

• quantile regression methods for censored data that are based on generalizations of the Kaplan-Meier
and the Nelson-Aalen estimator

• the interior point algorithm for parameter estimation, which uses parallel computing when multiple
processors are available

• hypothesis tests for the regression parameter

• semiparametric quantile regression that uses spline effects

• survival plots, conditional quantile plots, and quantile process plots

Quantile Regression
Suppose that Y is a dependent variable of interest (such as the survival time or some monotone transformation
of the survival time) and x is a p � 1 vector of covariates. The observed data consist of a random sample
f.Yi ; xi /; i D 1; : : : ; ng from .Y; x/.
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You can use regression analysis to explore the relationship between the response Y and its predictor x.
Classical linear regression estimates the conditional mean function E.Y jx/ by using a linear predictor x0ˇ; a
linear quantile regression estimates the � th conditional quantile function QY .� jx/ by using a different linear
predictor x0ˇ.�/, where the quantile level � ranges between 0 and 1. For example, x0ˇ.0:95/ is the linear
predictor for the 0.95th quantile (commonly referred to as the 95th percentile).

The quantile regression coefficient ˇ.�/ can be estimated by minimizing the following objective function
over b:

r.b/ D

nX
iD1

�� .Yi � x
0
i b/

The loss function �� .u/ is defined as u.� � I.u < 0//, in contrast to the square loss function for classical
linear regression.

When � D 0:5, the coefficient ˇ.0:5/ minimizes the sum of absolute residuals, which corresponds to median
regression (or L1 regression).

The following set of regression quantiles is referred to as the quantile process, and it completely describes
the conditional distribution of Y , given the predictor x:

fˇ.�/ W � 2 .0; 1/g

When all the observations are observed, you can use the QUANTREG procedure to estimate the quantile
function QY .� jx/ and draw statistical inference about the regression parameters ˇ.�/. For more information,
see Chapter 83, “The QUANTREG Procedure.”

However, when the observations are incomplete, as is the case with censored data in survival analysis, the
classical quantile regression method is not appropriate. The QUANTLIFE procedure implements appropriate
quantile regression methods to model the relationship between the response Y and the predictor x.

Getting Started: QUANTLIFE Procedure
This example uses the human immunodeficiency virus (HIV) study data from Hosmer and Lemeshow (1999)
to illustrate the basic features of PROC QUANTLIFE.

In this study, subjects were followed after a confirmed diagnosis of HIV. The primary goal was to evaluate
the effect of various factors on the survival time. Two covariates for each subject were collected: age and
history of prior intravenous drug use.

The following DATA step creates the data set HIV, which contains the variable Time (the follow-up time
in days), the variable Status (with value 0 if Time was censored and 1 otherwise), the variable Drug (with
value 1 for prior intravenous drug use and 0 otherwise), and the variable Age (the patient’s age in years at the
beginning of the follow-up).
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data HIV;
input Time Age Drug Status;
datalines;
5 46 0 1
6 35 1 0
8 30 1 1
3 30 1 1

22 36 0 1
1 32 1 0

... more lines ...

1 34 1 1
;

You can use PROC QUANTLIFE to explore the relationship between the survival time and the two covariates
at different quantiles.

Suppose you are interested in the median survivors and in the longer and shorter survivors. The following
statements fit a linear model for the 25th, 50th, and 75th percentiles:

ods graphics on;
proc quantlife data=hiv log plots=quantplot seed=1268;

class Drug;
model Time*Status(0) = Drug Age / quantile=(0.25 0.5 0.75);
Drug_Effect: test Drug;

run;

The LOG option fits a quantile regression model for the log of Time, as is done by an accelerated failure time
(AFT) model in standard survival analysis. The SEED= option maintains reproducibility of the resampling
method that is used for statistical inference.

The MODEL statement specifies the response variable, Time, and the censoring variable, Censor. The value
that indicates censoring is enclosed in parentheses. The values of Time are considered to be censored if the
value of Censor is 0; otherwise, they are considered to be event times. The QUANTILE= option requests a
fit of the conditional quantile function Qlog.Y /.� jx/ at the quantile levels 0.25, 0.5, and 0.75.

The TEST statement requests a test for the hypothesis that there is no drug effect at each of the quantile
levels.

Figure 82.1 displays basic model information. For example, you can see from Figure 82.1 that the response
is log(Time) and the censoring rate is 20%.
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Figure 82.1 Model Fitting Information

The QUANTLIFE ProcedureThe QUANTLIFE Procedure

Model Information

Data Set WORK.HIV

Dependent Variable Log(Time)

Censoring Variable Status

Censoring Value(s) 0

Number of Observations 100

Method Kaplan-Meier

Replications 200

Seed for Random Number Generator 1268

Class Level
Information

Name Levels Values

Drug 2 0 1

Summary of the Number of Event
and Censored Values

Total Event Censored
Percent

Censored

100 80 20 20.00

Figure 82.2 displays the parameter estimates, which are computed using the default Kaplan-Meier-type
estimator. For more information, see the section “Kaplan-Meier-Type Estimator for Censored Quantile
Regression” on page 6811. In addition, Figure 82.2 displays standard errors, 95% confidence limits, t values,
and p-values that are computed by the default resampling method, exponentially weighted resampling. For
more information, see the section “Exponentially Weighted Method” on page 6813.

A different quantile regression model is fitted for each quantile, and the first column (Quantile) in Figure 82.2
identifies the model for the parameter estimates. Age has a negative effect on survival time. You can use the
parameter estimates to predict the survival time at the quantiles of interests. For example, the 75th percentile
survival time for a person who has no previous intravenous drug use at age 46 is

exp.5:3351C 1:1451 � 0:0941 � 46/ D 8:6 years
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Figure 82.2 Parameter Estimates

Parameter Estimates

Quantile Parameter DF Estimate
Standard

Error

95%
Confidence

Limits t Value Pr > |t|

0.2500 Intercept 1 3.0373 1.1680 0.7482 5.3265 2.60 0.0108

Drug 0 1 0.9516 0.4403 0.0887 1.8146 2.16 0.0331

Drug 1 0 0 0 0 0 . .

Age 1 -0.0646 0.0261 -0.1158 -0.0135 -2.48 0.0150

0.5000 Intercept 1 5.3351 0.6605 4.0406 6.6296 8.08 <.0001

Drug 0 1 0.8681 0.2786 0.3219 1.4142 3.12 0.0024

Drug 1 0 0 0 0 0 . .

Age 1 -0.1059 0.0194 -0.1439 -0.0679 -5.46 <.0001

0.7500 Intercept 1 5.3351 0.9091 3.5532 7.1170 5.87 <.0001

Drug 0 1 1.1451 0.2625 0.6307 1.6596 4.36 <.0001

Drug 1 0 0 0 0 0 . .

Age 1 -0.0941 0.0223 -0.1378 -0.0505 -4.23 <.0001
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The PLOTS=QUANTPLOT option in the PROC QUANTLIFE statement requests the quantile process
plots, which are shown in Figure 82.3. The quantile process plot is a scatter plot of an estimated regression
parameter against the quantile level. You can use these plots to compare quantile-specific covariate effects. A
curve that is not constant can indicate heterogeneity in the data. For example, Figure 82.3 shows that the
drug effect does not change much across quantiles.

Figure 82.3 Estimated Parameters

The tests that are requested by the TEST statement are shown in Figure 82.4.

Figure 82.4 Tests of Significance

Test Drug_Effect Results

Quantile DF Chi-Square Pr > ChiSq

0.2500 1 4.67 0.0307

0.5000 1 9.70 0.0018

0.7500 1 19.03 <.0001

The tests indicate that the coefficient of Drug is significantly different from 0 at the 25th, 50th, and 75th
percentiles.
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Syntax: QUANTLIFE Procedure
The following statements are available in the QUANTLIFE procedure:

PROC QUANTLIFE < options > ;
BASELINE < options > ;
BY variables ;
CLASS variables ;
EFFECT name = effect-type ( variables < / options > ) ;
MODEL response <� censor (list) > = < effects > < / options > ;
OUTPUT < OUT=SAS-data-set > < keyword=name . . . keyword=name > ;
TEST effects < / options > ;
WEIGHT variable ;

The PROC QUANTLIFE and MODEL statements are required. The PROC QUANTLIFE statement invokes
the procedure. The CLASS statement specifies which explanatory variables are treated as categorical. The
MODEL statement specifies the variables to be used in the regression. You can specify main effects and
interaction terms in the MODEL statement, as you can in the GLM procedure (Chapter 45, “The GLM
Procedure”). The OUTPUT statement creates an output data set to contain predicted values, residuals, and
estimated standard errors. The TEST statement requests linear tests for the model parameters. The WEIGHT
statement identifies a variable in the input data set whose values are used to weight the observations. In one
invocation of PROC QUANTLIFE, multiple OUTPUT and TEST statements are allowed.

The rest of this section provides detailed syntax information for each statement, beginning with the PROC
QUANTLIFE statement. The remaining statements are covered in alphabetical order.

PROC QUANTLIFE Statement
PROC QUANTLIFE < options > ;

The PROC QUANTLIFE statement invokes the QUANTLIFE procedure. Table 82.1 summarizes the options
available in this statement.

Table 82.1 Options Available in the PROC QUANTLIFE
Statement

Option Description

Data Set Options
DATA= Specifies the input SAS data set
OUTBOOTEST= Creates an output SAS data set for parameter estimates from resampled data sets

Basic Options
ALPHA= Specifies the confidence level
CI= Specifies a resampling method for computing confidence interval and test statistics
LOG Requests log transformation of the response
METHOD= Specifies a method to fit quantile regression
NAMELEN= Specifies the length of effect names
NREP= Specifies the number of replications
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Table 82.1 continued

Option Description

SEED= Specifies the seed for the random number generator
PLOTS= Specifies the plots to be produced by using ODS Graphics

Computational Options
GRIDSIZE= Specifies a step size for the grid for computing regression quantiles
INITTAU= Specifies the first quantile level for computing regression quantiles
KAPPA= Specifies the step-length parameter for the interior point algorithm
MAXIT= Specifies the maximum number of iterations for the interior point algorithm
NTHREADS= Specifies the number of threads for the computation
TOLERANCE= Specifies the convergence criterion of the interior point algorithm

You can specify the following options in the PROC QUANTLIFE statement.

ALPHA=value
specifies the confidence level for the regression parameters. The value must be between 0 and 1. By
default, ALPHA=0.05, which corresponds to a 95% confidence interval.

CI=EW | PW | NONE
requests the method for computing confidence intervals for regression parameters. In addition to
confidence intervals, the QUANTLIFE procedure also computes standard errors, t values, and p-
values for regression parameters. You can suppress these computations by specifying CI=NONE.
The QUANTLIFE procedure provides two resampling methods for computing confidence intervals,
the exponentially weighted (EW) method and the pairwise (PW) resampling method. For more
information, see the section “Confidence Interval” on page 6813. By default, CI=EW, which requests
the exponentially weighted method.

DATA=SAS-data-set
specifies the SAS-data-set that the QUANTLIFE procedure uses. By default, the most recently created
SAS-data-set is used.

GRIDSIZE=value
specifies the step size for computing regression quantiles. The value must be between 0 and 1. For
more information, see the section “Details: QUANTLIFE Procedure” on page 6810.

INITTAU=value
specifies the first quantile level for computing regression quantiles. The value must be between 0 and
1. For more information, see the section “Details: QUANTLIFE Procedure” on page 6810.

KAPPA=value
specifies the step-length parameter for the interior point algorithm. The value must be between 0 and
1. The interior point method that the QUANTLIFE procedure uses is identical to the interior point
method that the QUANTREG procedure uses. For more information, see the section “Interior Point
Algorithm” on page 6860 in Chapter 83, “The QUANTREG Procedure.” By default, KAPPA=0.99995.
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LOG
requests that a log transformation of the response variable be performed before the model is fitted.

MAXIT=n
specifies the maximum number of iterations for the interior point algorithm. By default, MAXIT=
1000.

METHOD=KM | NA
requests the method to use to estimate the regression parameters. METHOD=KM specifies the
Kaplan-Meier-type method (see the section “Kaplan-Meier-Type Estimator for Censored Quantile
Regression” on page 6811) and METHOD=NA specifies the Nelson-Aalen-type method (see the
section “Nelson-Aalen-Type Estimator for Censored Quantile Regression” on page 6812). By default,
METHOD=KM.

NAMELEN=n
specifies the length of effect names in tables and output data sets to be n characters, where n is a value
between 20 and 200. By default, NAMELEN=20.

NREP=n
specifies the number of replications to draw in the resampling method. By default, NREP=200.

NTHREADS=n
specifies the number of threads for analytic computations and overrides the SAS system option
THREADS | NOTHREADS. If you do not specify the NTHREADS= option or if you specify
NTHREADS=0, the number of threads is determined based on the data size and the number of
CPUs on the host where the analytic computations execute.

OUTBOOTEST=SAS-data-set
creates a data set to contain the parameter estimates from the resampled data sets. For a detailed
description of the contents of the OUTBOOTEST= data set, see the section “OUTBOOTEST= Output
Data Set” on page 6814.

PLOTS =(plot-request < . . . plot-request >)

requests various plots.

When you specify one plot-request , you can omit the parentheses around it.

ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;

proc quantlife plots=survival;
model y=x1;

run;

ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”
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You can specify one or more of the following plot-requests:

ALL
creates all appropriate plots.

NONE
suppresses all the plots in the procedure. Specifying this option is equivalent to disabling ODS
Graphics for the entire procedure.

QUANTILE
plots the estimated quantile function for each combination of covariate values in the
COVARIATES= data set that is specified in the BASELINE statement. If the COVARIATES=
data set is not specified, then the estimated quantile function is plotted for the reference set of
covariate values, which consists of reference levels for the CLASS variables and average values
for the continuous variables. When the estimated quantile function is not monotonic, the quantile
function (Chernozhukov, Fernandez-Val, and Galichon 2009) is rearranged to make it monotonic
and then plotted.

QUANTPLOT < / UNPACK >
plots the regression quantile process. The estimated coefficient of each specified covariate effect
is plotted as a function of the quantile level. You can use the UNPACK option to create individual
process plots.

SURVIVAL
plots the estimated survival function for each combination of covariate values in the
COVARIATES= data set that is specified in the BASELINE statement. If the COVARIATES=
data set is not specified, then the estimated survival function is plotted for the reference set of
covariate values, which consists of reference levels for the CLASS variables and average values
for the continuous variables.

SEED=number
specifies a positive integer to start the pseudorandom number generator. The default is a value that is
generated from reading the time of day from the computer’s clock. However, to duplicate the results
under identical situations, you must specify the same seed in subsequent runs of the QUANTLIFE
procedure. The seed information is displayed in the “Model Information” table.

TOLERANCE=value
specifies the tolerance for the convergence criterion of the interior point algorithm. Both the
QUANTLIFE procedure and the QUANTREG procedure use the duality gap as the convergence
criterion. For more information, see Chapter 83.13, “Interior Point Algorithm.” By default,
TOLERANCE=1E–8.

BASELINE Statement
BASELINE < OUT=SAS-data-set > < COVARIATES=SAS-data-set > ;

The BASELINE statement creates an output data set to contain the survival function estimates or the
conditional quantile function estimates for every set of covariates (x) in the COVARIATES= data set. If the
COVARIATES= data set is not specified, PROC QUANTLIFE uses a reference set of covariates that consists
of the reference levels for the CLASS variables and the average values for the continuous variables.
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You can specify the following options:

COVARIATES=SAS-data-set
names the SAS-data-set that contains the sets of explanatory variable values for which the quantities
of interest are estimated. All variables in the COVARIATES= data set are copied to the OUT= data
set. Thus, the variables in the COVARIATES= data set can be used to identify the covariate sets in the
OUT= data set.

OUT=SAS-data-set
specifies an output SAS-data-set that contains the estimated survival function and the estimated
quantile function. If you omit the OUT= option, the data set is created and given a default name by
using the DATAn convention. For more information, see the section “OUT= Output Data Set in the
BASELINE Statement” on page 6814.

BY Statement
BY variables ;

You can specify a BY statement with PROC QUANTLIFE to obtain separate analyses of observations in
groups that are defined by the BY variables. When a BY statement appears, the procedure expects the input
data set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last
one specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the QUANTLIFE
procedure. The NOTSORTED option does not mean that the data are unsorted but rather that the
data are arranged in groups (according to values of the BY variables) and that these groups are not
necessarily in alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

CLASS Statement
CLASS variables < / TRUNCATE > ;

The CLASS statement names the classification variables to be used in the model. Typical classification
variables are Treatment, Sex, Race, Group, and Replication. If you use the CLASS statement, it must appear
before the MODEL statement.

Classification variables can be either character or numeric. By default, class levels are determined from the
entire set of formatted values of the CLASS variables.
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In any case, you can use formats to group values into levels. See the discussion of the FORMAT procedure
in the Base SAS Procedures Guide and the discussions of the FORMAT statement and SAS formats in SAS
Formats and Informats: Reference.

You can specify the following option in the CLASS statement after a slash (/):

TRUNCATE
specifies that class levels be determined by using only up to the first 16 characters of the formatted
values of CLASS variables.

EFFECT Statement
EFFECT name=effect-type (variables < / options >) ;

The EFFECT statement enables you to construct special collections of columns for design matrices. These
collections are referred to as constructed effects to distinguish them from the usual model effects that are
formed from continuous or classification variables, as discussed in the section “GLM Parameterization of
Classification Variables and Effects” on page 387 in Chapter 19, “Shared Concepts and Topics.”

You can specify the following effect-types:

COLLECTION is a collection effect that defines one or more variables as a single effect with
multiple degrees of freedom. The variables in a collection are considered as
a unit for estimation and inference.

LAG is a classification effect in which the level that is used for a given period
corresponds to the level in the preceding period.

MULTIMEMBER | MM is a multimember classification effect whose levels are determined by one or
more variables that appear in a CLASS statement.

POLYNOMIAL | POLY is a multivariate polynomial effect in the specified numeric variables.

SPLINE is a regression spline effect whose columns are univariate spline expansions
of one or more variables. A spline expansion replaces the original variable
with an expanded or larger set of new variables.

Table 82.2 summarizes the options available in the EFFECT statement.

Table 82.2 EFFECT Statement Options

Option Description

Collection Effects Options
DETAILS Displays the constituents of the collection effect

Lag Effects Options
DESIGNROLE= Names a variable that controls to which lag design an observation

is assigned

DETAILS Displays the lag design of the lag effect

NLAG= Specifies the number of periods in the lag
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Table 82.2 continued

Option Description

PERIOD= Names the variable that defines the period

WITHIN= Names the variable or variables that define the group within which
each period is defined

Multimember Effects Options
NOEFFECT Specifies that observations with all missing levels for the multi-

member variables should have zero values in the corresponding
design matrix columns

WEIGHT= Specifies the weight variable for the contributions of each of the
classification effects

Polynomial Effects Options
DEGREE= Specifies the degree of the polynomial
MDEGREE= Specifies the maximum degree of any variable in a term of the

polynomial
STANDARDIZE= Specifies centering and scaling suboptions for the variables that

define the polynomial

Spline Effects Options
BASIS= Specifies the type of basis (B-spline basis or truncated power func-

tion basis) for the spline effect
DEGREE= Specifies the degree of the spline effect
KNOTMETHOD= Specifies how to construct the knots for the spline effect

For more information about the syntax of these effect-types and how columns of constructed effects are
computed, see the section “EFFECT Statement” on page 397 in Chapter 19, “Shared Concepts and Topics.”

MODEL Statement
MODEL response <� censor (list) > = < effects > < / options > ;

The MODEL statement identifies the response variable, the optional censoring variable, and the explanatory
effects, including covariates, main effects, interactions, and nested effects; for more information, see the
section “Specification of Effects” on page 3453 in Chapter 45, “The GLM Procedure.” In the MODEL
statement, the response variable precedes the equal sign. This name can optionally be followed by an asterisk,
the name of the censoring variable, and a list of censoring values (separated by blanks or commas if you
list more than one value) enclosed in parentheses. If the censoring variable takes on one of these values, the
corresponding failure time is considered to be censored. Following the equal sign are the explanatory effects
(sometimes called independent variables or covariates) for the model.

The censoring variable must be numeric.
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Options

You can specify the following options after a slash (/):

NOINT
specifies no intercept regression.

QUANTILE=number-list | PROCESS
specifies the quantile levels of interest for quantile regression analysis. You can specify any number of
quantile levels in the interval .0; 1/. You can also compute the entire quantile process by specifying
the PROCESS option.

If you do not specify the QUANTILE= option, the QUANTLIFE procedure fits a median regression,
which corresponds to QUANTILE=0.5.

OUTPUT Statement
OUTPUT < OUT=SAS-data-set > keyword=name < . . . keyword=name > ;

The OUTPUT statement creates a SAS-data-set to contain statistics that are calculated after fitting models
for all quantiles specified by the QUANTILE= option in the MODEL statement. At least one specification of
the form keyword=name is required.

All variables in the original data set are included in the new data set, along with the variables that are created.
These new variables contain fitted values and estimated quantiles.

You can use the following specifications in the OUTPUT statement:

OUT=SAS-data-set specifies the new data set. By default, the QUANTLIFE procedure uses the DATAn
convention to name the new data set. For more information, see the section “OUT=
Output Data Set in the OUTPUT Statement” on page 6814.

keyword=name specifies the statistics to include in the output data set and gives names to the new
variables. Specify a keyword for each desired statistic (see the following list of
keywords), an equal sign, and the variable to contain the statistic.

You can specify the following keywords, which represent the indicated statistics:

PREDICTED | P specifies a variable to contain the predicted response.

RESIDUAL | RES specifies a variable to contain the residuals, yi � x0i Ǒ.�/.

SAMPLEWEIGHT | SW specifies variables for sample weights from the bootstrap samples. For the ith
sample, a column is added that contains the weights that are used for that sample.
The name of this column is formed by appending an index i to the name that you
specify. If you do not specify a name, then the default prefix is sw.

STDP specifies a variable to contain the estimates of the standard errors of the estimated
response.
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TEST Statement
< label: > TEST effects < / options > ;

In quantile regression analysis, you might be interested in testing whether a covariate effect is statistically
significant for a given quantile. You can use the TEST statement to obtain a test for the canonical linear
hypothesis about the parameters of the tested effects,

ˇj D 0; j D i1; : : : ; iq

where q is the total number of parameters of the tested effects. The tested effects can be any set of effects in
the MODEL statement.

You can include multiple TEST statements, provided that they appear after the MODEL statement. The
optional label , which must be a valid SAS name, identifies output from the corresponding TEST statement.
For more information about these tests, see the section “Testing Effects of Covariates” on page 6813.

WEIGHT Statement
WEIGHT variable ;

The WEIGHT statement specifies a weight variable in the input data set.

To request weighted quantile regression, place the weights in a variable and specify the name in the WEIGHT
statement. The values of the WEIGHT variable can be nonintegral and are not truncated. Observations that
have nonpositive or missing values for the weight variable do not contribute to the fit of the model. For
more information about weighted quantile regression, see the section “Details: QUANTREG Procedure” on
page 6857 in Chapter 83, “The QUANTREG Procedure.”

Details: QUANTLIFE Procedure

Notation for Censored Quantile Regression
Let T be a dependent variable, such as a survival time, and let x be a p � 1 covariate vector. Quantile
regression methods focus on modeling the conditional quantile function, QT .� jx/, which is defined as

QT .� jx/ D infft W P.T � t jx/ D �g; 0 < � < 1

For example, QT .0:5jx/ is the conditional median quantile, and QT .0:95jx/ is the conditional quantile
function that corresponds to the 95th percentile.

A linear quantile regression model for QT .� jx/ has the form x0ˇ.�/. One of the advantages of quantile
regression analysis is that the covariate effect ˇ.�/ can change with � . Unlike ordinary least squares
regression, which estimates the conditional expectation function E.T jx/, quantile regression offers the
flexibility to model the entire conditional distribution.
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Given observations f.Ti ; xi /; i D 1; : : : ; ng, standard quantile regression estimates the regression coefficients
ˇ.�/ by minimizing the following objective function over b:

r.b/ D

nX
iD1

�� .Ti � x
0
i b/

where �� .u/ D u.� � I.u < 0//:

However, in many applications, the responses Ti are subject to censoring. For example, in a biomedical study,
censoring occurs when patients withdraw from the study or die from a cause that is unrelated to the disease
being studied.

Let Ci denote the censoring variable. In the case of right-censoring, the triples .xi ; Yi ; �i / are observed,
where Yi D min.Ti ; Ci / and�i D I.Ti � Ci / are the observed response variable and the censoring indicator,
respectively. Standard quantile regression can lead to a biased estimator of the regression parameters ˇ.�/
when censoring occurs.

The following sections describe two methods for estimating the quantile coefficient ˇ.�/ in the presence of
right-censoring.

Kaplan-Meier-Type Estimator for Censored Quantile Regression
Portnoy (2003) proposes the use of weighted quantile regression to sequentially estimate ˇ.�k/ along the
equally spaced grid 0 < �1 < � � � < �M < 1. You can request this method by specifying the METHOD=KM
option in the PROC QUANTLIFE statement. The grid points 0 < �1 < � � � < �M < 1 are equally spaced,
with �1 specified by the INITTAU= option and the step between adjacent grid points specified by the
GRIDSIZE=option.

This method uses a weight function wi .�/ for each censored observation. The weight function is constructed
as follows: Let O�i be the first grid point at which x0i Ǒ.�i / � Ci and x0i Ǒ.�iC1/ < Ci ; otherwise let O�i D 1.
When computing the � th quantile, assign weight wi .�/ D ��O�i

1�O�i
to the censored observation Yi if � > O�i ;

otherwise assign wi .�/ D 1. The algorithm for computing Ǒ.�k/; k D 1; : : : ;M; is as follows:

1. Compute Ǒ.�1/ by using the standard quantile regression method.

2. For k D 2; : : : ;M , obtain Ǒ.�k/ sequentially by minimizing the following weighted quantile regression
objective function:

rw.b/ D
P
�iD1

��k .Yi � x
0
ib/

C
P
�iD0

˚
wi .�k/ ��k .Yi � x

0
ib/C .1 � wi .�k//��k .Y

� � x0ib/
	

where wi .�k/ is the weight for the right-censored observation Yi at computing Ǒ.�k/, and the comple-
mentary weight 1 � wi .�k/ is for Y �, a large constant that is greater than all x0i Ǒ.�/.

The weighted quantile regression method is similar to Efron’s redistribution-of-mass idea (Efron 1967) for
the Kaplan-Meier estimator.

Note that if all observations are uncensored, Ǒ.�k/ is the same as the standard quantile regression estimator.
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Nelson-Aalen-Type Estimator for Censored Quantile Regression
Peng and Huang (2008) propose a method of censored quantile regression that is based on the Nelson-Aalen
estimator of the cumulative hazard function. Let Fi .t jx/ D P.Ti � t jxi /;ƒi .t jx/ D �log.1�Fi .t jx//, and
Ni .t/ D I ffTi � tg and f�i D 1gg. Then the following equation is a martingale process that is associated
with the counting process Ni .t/ (Fleming and Harrington 1991):

Mi .t/ D Ni .t/ �ƒi .t ^ Yi jx/

Based on the martingale process, Peng and Huang (2008) derive the following estimating equation:

n�1=2
nX
iD1

xi ŒNi .exp.x0iˇ.�/// �
Z �

0

I.Yi � exp.x0iˇ.�///dH.u/� D 0

where H.u/ D �log.1 � u/ and u 2 Œ0; 1/. By approximating the integral in the estimating equation on
a grid 0 D �0 < �1 < � � � < �M < 1, the regression quantiles ˇ.�k/, k D 1; : : : ;M , can be estimated
sequentially by solving the following linear programming problem:

min
b
f˛.�k/

0uC .� � ˛.�k//
0v j z D Xb C u � v; u � 0; v � 0g

where

˛.�k/ D

k�1X
jD1

I.Yi � exp.x0i Ǒ.�j ///H..ujC1/ �H.uj //

and X is the known matrix of xi ’s. For more information, see Koenker (2008).

You can request this method by specifying the METHOD=NA option. The grid points 0 D �0 < �1 < � � � <
�M < 1 are equally spaced, with �1 specified by the INITTAU=option and the grid step between two adjacent
grid points specified by the GRIDSIZE=option.

Relationship of Quantile Function and Survival Function
Both quantile function and survival function are useful in characterizing a lifetime distribution.

By the definition of the quantile function QT .� jx/,

F.QT .� jx// D P.T � QT .� jx// D �

In other words, the cumulative distribution function FT .t jx/ maps QT .� jx/ to � , and thus the corresponding
survival function ST .t jx/ maps QT .� jx/ to 1 � � .

When you specify the LOG option, the QUANTLIFE procedure fits a linear quantile regression model for a
log transformation of the lifetime as

Qlog.T /.� jx/ D x
0ˇ.�/
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where Qlog.T /.� jx/ is the � th quantile of log.T / at x. The estimated quantile function for T given x is
OQT .� jx/ D e

x0 Ǒ.�/, because the quantile function is invariant under a monotone transformation.

You can specify the covariates x in the COVARIATES= data set of the BASELINE statement and the
PLOTS=(QUANTILE SURVIVAL) option in the PROC statement. Then the conditional quantile function
at x is plotted as OQT .� jx/ against � , and the conditional survival function at x is plotted as 1 � � against
OQT .� jx/.

Confidence Interval
Direct computation of the covariance of the parameter estimators involves a complicated density estimation.
Instead, the QUANTLIFE procedure computes confidence intervals for the quantile regression parameters
ˇ.�/ by using resampling methods. The QUANTLIFE procedure implements two different methods, the
exponentially weighted method and the pairwise resampling method.

Exponentially Weighted Method

This method samples weights wi ; i D 1; : : : ; n; from a standard exponential distribution that has mean 1
and variance 1. Then it computes the censored quantile regression estimators Ǒ.�/ based on the observed
data .xi ; Yi ; �i / with the weights wi . These steps are repeated B times (where B is the value of the NREP=
option in the PROC QUANTLIFE statement). The confidence intervals can be obtained from these B
estimates. You can specify this method by using the CI=EW option in the PROC QUANTLIFE statement.

Pairwise Method

This method samples .xi ; Yi ; �i / with replacement and computes the quantile regression estimators Ǒ.�/
based on the resampled data. These steps are repeated B times (where B is the value of the NREP= option in
the PROC QUANTLIFE statement). The confidence intervals can be obtained from these B estimates. You
can specify this method by using the CI=PW option in the PROC QUANTLIFE statement.

Testing Effects of Covariates

Consider the linear model

yi D x01iˇ1 C x02iˇ2 C �i

where ˇ1 and ˇ2 are p-dimensional and q-dimensional parameters, respectively, and �i , i D 1; : : : ; n,
are errors. Denote x0i D .x01i ; x

0
2i /, and let Ǒ1.�/ and Ǒ2.�/ be the parameter estimates for ˇ1 and ˇ2,

respectively, at the � th quantile.

The QUANTLIFE procedure implements the Wald test for the null hypothesis:

H0 W ˇ2.�/ D 0

The Wald test statistic, which is based on the estimated coefficients Ǒ2 from the unrestricted fitted model, is
given by

TW .�/ D Ǒ
0
2.�/
O†.�/

�1
Ǒ
2.�/

where O†.�/ is an estimator of the covariance of Ǒ2.�/, which is obtained by using resampling methods.
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Output Data Sets

OUTBOOTEST= Output Data Set

The OUTBOOTEST= data set contains parameter estimates for the specified model from resampled data sets.
A set of observations is created for each quantile level and for each resampled data set.

If the QUANTLIFE procedure does not produce valid solutions, the parameter estimates are set to missing in
the OUTBOOTEST= data set.

If created, this data set contains all variables that are specified in the MODEL statement. Each observation
contains parameter estimates for a specified quantile level.

The following variables are also included in the data set:

• any specified BY variables

• _STATUS_, a character variable of length 12 that contains the status of the model fit: either NORMAL,
NOUNIQUE, or NOVALID

• Intercept, a numeric variable that contains the intercept parameter estimates

• _TAU_, a numeric variable that contains the specified quantile levels from the MODEL statement

For continuous explanatory variables, the names of the parameters are the same as they are for the correspond-
ing variables. For CLASS variables, the parameter names are obtained by concatenating the corresponding
CLASS variable name to the CLASS category. For interaction and nested effects, the parameter names are
created by concatenating the names of each component effect.

OUT= Output Data Set in the OUTPUT Statement

The OUT= data set that is specified in the OUTPUT statement contains all the variables in the input data set,
along with statistics that you request by specifying keyword=name options. The additional variables are
calculated for each observation in the input data set.

OUT= Output Data Set in the BASELINE Statement

The OUT= data set that is specified in the BASELINE statement contains all the variables in the
COVARIATES= data set.

The following variables are also added to the data set:

_QUANTILE_ a numeric variable that contains the estimated quantile function

_SURVIVAL_ a numeric variable that contains the estimated survival function

_TAU_ a numeric variable that contains the quantile levels that are the complement of the
survival function
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ODS Table Names
Table 82.3 lists the names that the QUANTLIFE procedure assigns to each table that it creates. You can
specify these names when you use the Output Delivery System (ODS) to select tables and create output data
sets.

Table 82.3 ODS Tables Produced by PROC QUANTLIFE
ODS Table Name Description Statement Option
ClassLevels Classification variable levels CLASS Default
ModelInfo Model information MODEL Default
NObs Number of observations PROC QUANTLIFE Default
ParameterEstimates Parameter estimates MODEL Default
CensoredSummary Summary of event and censored

observations
PROC QUANTLIFE Default

Tests Results of tests TEST Default

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

The QUANTLIFE procedure assigns a name to each graph that it creates. You can use these names to refer
to the graphs when you use ODS. The names along with the required statements and options are listed in
Table 82.4.

Table 82.4 Graphs Produced by PROC QUANTLIFE

ODS Graph Name Plot Description PLOTS= Option
QuantilePlot Quantile function plot QUANTILE
QuantPanel Panel of regression parameter esti-

mates against quantile level with con-
fidence limits

QUANTPLOT

QuantPlot Scatter plot for regression parameter
estimates against quantile level with
confidence limits

QUANTPLOT / UNPACK

SurvivalPlot Survival function plot SURVIVAL
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Examples: QUANTLIFE Procedure

Example 82.1: Primary Biliary Cirrhosis Study
This example illustrates how to use quantile regression analysis to detect varying covariate effects on survival
time. Consider a study of primary biliary cirrhosis, a rare but fatal chronic liver disease, discussed by Fleming
and Harrington (1991). Researchers followed 418 patients who had this disease, 161 of whom died during
the study.

The data set contains the following variables:

• Time, follow-up time, in years

• Status, event indicator, with value 1 for death time and value 0 for censored time

• Age, age from birth to study registration, in years

• Albumin, serum albumin level, in g/dl

• Bilirubin, serum bilirubin level, in mg/dl

• Edema, edema presence

• Protime, prothrombin time, in seconds

The following statements create the data set PBC, which is used in this example:

data pbc;
input Time Status Age Albumin Bilirubin Edema Protime @@;
label Time="Follow-Up Time in Days";
logAlbumin = log(Albumin);
logBilirubin = log(Bilirubin);
logProtime = log(Protime);
datalines;
400 1 58.7652 2.60 14.5 1.0 12.2 4500 0 56.4463 4.14 1.1 0.0 10.6

1012 1 70.0726 3.48 1.4 0.5 12.0 1925 1 54.7406 2.54 1.8 0.5 10.3
1504 0 38.1054 3.53 3.4 0.0 10.9 2503 1 66.2587 3.98 0.8 0.0 11.0
1832 0 55.5346 4.09 1.0 0.0 9.7 2466 1 53.0568 4.00 0.3 0.0 11.0
2400 1 42.5079 3.08 3.2 0.0 11.0 51 1 70.5599 2.74 12.6 1.0 11.5
3762 1 53.7139 4.16 1.4 0.0 12.0 304 1 59.1376 3.52 3.6 0.0 13.6

... more lines ...

989 0 35.0000 3.23 0.7 0.0 10.8 681 1 67.0000 2.96 1.2 0.0 10.9
1103 0 39.0000 3.83 0.9 0.0 11.2 1055 0 57.0000 3.42 1.6 0.0 9.9
691 0 58.0000 3.75 0.8 0.0 10.4 976 0 53.0000 3.29 0.7 0.0 10.6

;
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The next statements fit a linear model for the log of survival time of the PBC patients with the covariates
logBilirubin, logProtime, logAlbumin, Age, and Edema:

ods graphics on;
proc quantlife data=pbc log method=na plot=(quantplot survival) seed=1268;

model Time*Status(0)=logBilirubin logProtime logAlbumin Age Edema
/quantile=(.1 .2 .3 .4 .5 .6 .75);

run;

You use the QUANTILE= option to specify a set of quantiles of interest for comparing quantile-specific
covariate effects. The METHOD= option specifies the Nelson-Aalen method for estimating the regression
parameters.

The QUANTLIFE procedure provides resampling methods for computing confidence limits for the parameters;
for more information, see the section “Confidence Interval” on page 6813. By default, the repetition number
is 200. You can request a different number of repetitions by specifying the NREP= option. You can also use
the SEED= option to specify the seed for generating random numbers so that you can later reproduce the
results.

Figure 82.1.1 displays model information and information about censoring in the data. Out of 418 observa-
tions, 257 are censored.

Output 82.1.1 Model Information

The QUANTLIFE ProcedureThe QUANTLIFE Procedure

Model Information

Data Set WORK.PBC

Dependent Variable Log(Time)

Censoring Variable Status

Censoring Value(s) 0

Number of Observations 418

Method Nelson-Aalen

Replications 200

Seed for Random Number Generator 1268

Summary of the Number of Event
and Censored Values

Total Event Censored
Percent

Censored

418 161 257 61.48

Figure 82.1.2 provides the parameter estimates. Each quantile level has a set of parameter estimates and
confidence limits.
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Output 82.1.2 Parameter Estimates at Different Quantiles

Parameter Estimates

Quantile Parameter DF Estimate
Standard

Error

95%
Confidence

Limits t Value Pr > |t|

0.1000 Intercept 1 14.8030 4.0967 6.7736 22.8325 3.61 0.0003

logBilirubin 1 -0.4488 0.1485 -0.7398 -0.1578 -3.02 0.0027

logProtime 1 -3.6378 1.4560 -6.4915 -0.7841 -2.50 0.0129

logAlbumin 1 1.9286 0.9756 0.0165 3.8408 1.98 0.0487

Age 1 -0.0244 0.0107 -0.0455 -0.00334 -2.27 0.0237

Edema 1 -1.0712 0.6688 -2.3820 0.2396 -1.60 0.1100

0.2000 Intercept 1 15.1800 2.6664 9.9540 20.4060 5.69 <.0001

logBilirubin 1 -0.6532 0.0886 -0.8268 -0.4796 -7.37 <.0001

logProtime 1 -3.3273 0.9401 -5.1699 -1.4847 -3.54 0.0004

logAlbumin 1 1.6842 0.6888 0.3343 3.0342 2.45 0.0149

Age 1 -0.0291 0.00687 -0.0425 -0.0156 -4.23 <.0001

Edema 1 -0.7265 0.3179 -1.3497 -0.1034 -2.29 0.0228

0.3000 Intercept 1 13.2382 2.5296 8.2804 18.1961 5.23 <.0001

logBilirubin 1 -0.6013 0.0762 -0.7506 -0.4521 -7.90 <.0001

logProtime 1 -2.5816 0.8907 -4.3273 -0.8359 -2.90 0.0039

logAlbumin 1 1.7246 0.7142 0.3248 3.1245 2.41 0.0162

Age 1 -0.0244 0.00716 -0.0385 -0.0104 -3.41 0.0007

Edema 1 -0.8577 0.2763 -1.3992 -0.3163 -3.10 0.0020

0.4000 Intercept 1 13.4716 3.0874 7.4204 19.5228 4.36 <.0001

logBilirubin 1 -0.6047 0.0846 -0.7705 -0.4389 -7.15 <.0001

logProtime 1 -2.1632 1.1726 -4.4615 0.1351 -1.84 0.0658

logAlbumin 1 0.9819 0.7191 -0.4274 2.3912 1.37 0.1728

Age 1 -0.0255 0.00681 -0.0389 -0.0122 -3.74 0.0002

Edema 1 -1.0589 0.3104 -1.6672 -0.4506 -3.41 0.0007

0.5000 Intercept 1 10.9205 2.8047 5.4235 16.4175 3.89 0.0001

logBilirubin 1 -0.5315 0.0904 -0.7087 -0.3543 -5.88 <.0001

logProtime 1 -1.2222 1.2142 -3.6020 1.1577 -1.01 0.3148

logAlbumin 1 1.5700 0.6284 0.3383 2.8016 2.50 0.0129

Age 1 -0.0318 0.00883 -0.0491 -0.0145 -3.60 0.0004

Edema 1 -0.7316 0.3743 -1.4653 0.00202 -1.95 0.0513

0.6000 Intercept 1 11.2381 2.6294 6.0846 16.3917 4.27 <.0001

logBilirubin 1 -0.5701 0.0852 -0.7370 -0.4031 -6.69 <.0001

logProtime 1 -1.3508 1.1402 -3.5856 0.8840 -1.18 0.2368

logAlbumin 1 1.3704 0.5091 0.3726 2.3682 2.69 0.0074

Age 1 -0.0226 0.0109 -0.0440 -0.00111 -2.06 0.0399

Edema 1 -0.5141 0.3088 -1.1193 0.0912 -1.66 0.0968

0.7500 Intercept 1 10.0954 3.1893 3.8445 16.3463 3.17 0.0017

logBilirubin 1 -0.6366 0.1071 -0.8466 -0.4267 -5.94 <.0001

logProtime 1 -0.9670 1.2343 -3.3862 1.4521 -0.78 0.4338

logAlbumin 1 1.8148 0.5883 0.6618 2.9678 3.08 0.0022

Age 1 -0.0203 0.0156 -0.0509 0.0102 -1.30 0.1931

Edema 1 -0.3529 0.3120 -0.9644 0.2586 -1.13 0.2587
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For comparison, the following statements use the LIFEREG procedure to fit a Weibull distribution to the
data. The LIFEREG procedure fits an accelerated failure time model, which assumes that the independent
variables have a multiplicative effect on the event time.

proc lifereg data=pbc;
model Time*Status(0)=logBilirubin logProtime logAlbumin Age Edema;

run;

Figure 82.1.3 provides the parameter estimates that are computed by PROC LIFEREG.

Output 82.1.3 Parameter Estimates from PROC LIFEREG

The LIFEREG ProcedureThe LIFEREG Procedure

Analysis of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Intercept 1 12.2155 1.4539 9.3658 15.0651 70.59 <.0001

logBilirubin 1 -0.5770 0.0556 -0.6861 -0.4680 107.55 <.0001

logProtime 1 -1.7565 0.5248 -2.7850 -0.7280 11.20 0.0008

logAlbumin 1 1.6694 0.4276 0.8313 2.5074 15.24 <.0001

Age 1 -0.0265 0.0053 -0.0368 -0.0162 25.35 <.0001

Edema 1 -0.6303 0.1805 -0.9842 -0.2764 12.19 0.0005

Scale 1 0.6807 0.0430 0.6014 0.7704

Weibull Shape 1 1.4691 0.0928 1.2980 1.6628

The p-value for logProtime is very small. For this same variable, the p-values that result from the quantile
regression analysis are 0.3148 for the 0.5th quantile and 0.4338 for the 0.75th quantile, and the p-values are
much smaller for the lower quantiles. Apparently, the effect of this covariate depends on which side of the
response distribution is being modeled.

The PLOT=QUANTPLOT option in the PROC QUANTLIFE statement requests the quantile process plots in
Figure 82.1.4 and Figure 82.1.5, which plot the estimated regression parameter against the quantile level. You
can use these plots to compare quantile-specific covariate effects. If the curve is not constant, it can indicate
heterogeneity in the data. The interpretation of the regression coefficients at a given quantile is similar to
that of classical regression analysis. That is, the coefficient from a given covariate indicates the effect on
log(Time) of a unit change in that covariate, assuming that the other covariates are fixed.
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Output 82.1.4 Quantile Processes with 95% Confidence Bands

Output 82.1.5 Quantile Processes with 95% Confidence Bands
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In Figure 82.1.4, you can see that the effect of logProtime has a negative effect over the lower quantiles,
which diminishes in magnitude at the median and upper quantiles. This insight would be missed if you were
using the accelerated failure model.

Example 82.2: Drug Abuse Study
This example reproduces analysis done by Portnoy (2003), which demonstrates how to use quantile regression
to analyze survival times. The example uses drug abuse data from Hosmer and Lemeshow (1999). The goal
of this study is to compare treatment effects on reducing drug abuse.

The data set contains the following variables:

• Time, time to return to drug use, in days

• Status, event indicator, with value 1 for return to drug use and value 0 for censored time

• Age, age at enrollment, in years

• Treatment, with value 1 for six-month treatment and value 0 for three-month treatment

• Beck, Beck Depression Inventory score at admission to the program

• IV3, indicator of recent intravenous drug use

• NDT, number of prior drug treatments

• Race, race indicator, with value 1 for white and value 0 for nonwhite

• Site, treatment sites (A and B)

• LOT, length of treatment, in days

The following statements create the data set UIS:

data uis;
input ID Age Becktota Hercoc Ivhx Ndrugtx Race Treat Site Lot Time
Censor;
Iv3 = (Ivhx = 3);
Nd1 = 1/((Ndrugtx+1)/10);
Nd2 = (1/((Ndrugtx+1)/10))*log((Ndrugtx+1)/10);
if (Treat =1 ) then Frac = Lot/180;
else Frac = Lot/90;
datalines;

1 39 9.0000 4 3 1 0 1 0 123 188 1
2 33 34.0000 4 2 8 0 1 0 25 26 1
3 33 10.0000 2 3 3 0 1 0 7 207 1
4 32 20.0000 4 3 1 0 0 0 66 144 1

... more lines ...

626 28 10.0 4 2 3 0 1 1 21 35 1
627 35 17.0 1 3 2 0 0 1 184 379 1
628 46 31.5 1 3 15 1 1 1 9 377 1

;
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The following statements replicate the analysis of Portnoy (2003):

ods graphics on;
proc quantlife data=uis log seed=999 plots=(quantplot survival);

class Race Site Treat;
model Time*Censor(0)=Nd1 Nd2 Iv3 Becktota

Treat Frac Race Age|Site
/ quantile=0.05 to 0.85 by 0.05 ;

baseline out=Predsurvf;

run;

Figure 82.2.1 displays the model information. Out of 628 subjects, 53 contain missing values and are not
included in the analysis. The censoring rate is 20.87%.

Output 82.2.1 Model Information

The QUANTLIFE ProcedureThe QUANTLIFE Procedure

Model Information

Data Set WORK.UIS

Dependent Variable Log(Time)

Censoring Variable Censor

Censoring Value(s) 0

Number of Observations 575

Method Kaplan-Meier

Replications 200

Seed for Random Number Generator 999

Class Level
Information

Name Levels Values

Race 2 0 1

Site 2 0 1

Treat 2 0 1

Summary of the Number of Event
and Censored Values

Total Event Censored
Percent

Censored

575 464 111 19.30

Figure 82.2.2, Figure 82.2.3, and Figure 82.2.4 display regression quantile process plots for each covariate.
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Output 82.2.2 Quantile Processes with 95% Confidence Bands

Output 82.2.3 Quantile Processes with 95% Confidence Bands
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Output 82.2.4 Quantile Processes with 95% Confidence Bands

You can see the varying effects for Nd and Frac, whereas the treatment effect is fairly constant. For more
information about the covariate effects that can be discovered using quantile regression, see Portnoy (2003).

In survival analysis, a plot of the estimated survival function is often of interest. There is a one-to-one rela-
tionship between the quantile function and the survival function. When you specify the PLOTS= SURVIVAL
option, the QUANTLIFE procedure estimates the survival function by fitting a quantile regression model for
a grid of equally spaced quantile levels. You can specify the grid points by using the INITTAU=option and
the step between adjacent grid points by using the GRIDSIZE=option. For more information, see the section
“Kaplan-Meier-Type Estimator for Censored Quantile Regression” on page 6811.

Figure 82.4 shows the estimated survival function at the reference set of covariate values that consist of
reference levels for the CLASS variables and average values for the continuous variables. You can output the
predicted survival function by specifying the SURVIVAL= option in the BASELINE statement.
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Output 82.2.5 Survival Function
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Overview: QUANTREG Procedure
The QUANTREG procedure uses quantile regression to model the effects of covariates on the conditional
quantiles of a response variable.

Quantile regression was introduced by Koenker and Bassett (1978) as an extension of ordinary least squares
(OLS) regression, which models the relationship between one or more covariates X and the conditional
mean of the response variable Y given X D x. Quantile regression extends the OLS regression to model the
conditional quantiles of the response variable, such as the median or the 90th percentile. Quantile regression
is particularly useful when the rate of change in the conditional quantile, expressed by the regression
coefficients, depends on the quantile.

Figure 83.1 Trout Density in Streams

Figure 83.1 illustrates an ecological study in which modeling upper conditional quantiles reveals additional
information. The points represent measurements of trout density and stream width-to-depth ratio that were
taken at 13 streams over seven years.

As analyzed by Dunham, Cade, and Terrell (2002), both the ratio and the trout density depend on a number of
unmeasured limiting factors that are related to the integrity of stream habitat. The interaction of these factors
results in unequal variances for the conditional distributions of density given the ratio. When the ratio is the
“active” limiting effect, changes in the upper conditional percentiles of density provide a better estimate of
this effect than changes in the conditional mean.

The red and green curves represent the conditional 90th and 50th percentiles of density as determined by the
QUANTREG procedure. The analysis was done by using a simple linear regression model for the logarithm
of density. (The curves in Figure 83.1 were obtained by transforming the fitted lines back to the original scale.
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For more information, see the section “Analysis of Fish-Habitat Relationships” on page 6832.) The slope
parameter for the 90th percentile has an estimated value of –0.0215 and is significant with a p-value less
than 0.01. On the other hand, the slope parameter for the 50th percentile is not significantly different from
0. Similarly, the slope parameter for the mean, which is obtained with OLS regression, is not significantly
different from 0.

Figure 83.2 Percentiles for Body Mass Index

Quantile regression is especially useful when the data are heterogeneous in the sense that the tails and the
central location of the conditional distributions vary differently with the covariates. An even more pronounced
example of heterogeneity is shown in Figure 83.2, which plots the body mass index of 8,250 men versus their
age.

Here, both upper (overweight) and lower (underweight) conditional quantiles are important because they
provide the basis for developing growth charts and establishing health standards. The curves in Figure 83.2
were determined by using the QUANTREG procedure to perform polynomial quantile regression. For more
information, see the section “Growth Charts for Body Mass Index” on page 6838. Clearly, the rate of change
with age (as expressed by the regression coefficients), particularly for ages less than 20, is different for each
conditional quantile.

Heterogeneous data occur in many fields, including biomedicine, econometrics, survival analysis, and ecology.
Quantile regression, which includes median regression as a special case, provides a complete picture of the
covariate effect when a set of percentiles is modeled. So it can capture important features of the data that
might be missed by models that average over the conditional distribution.

Because it makes no distributional assumption about the error term in the model, quantile regression offers
considerable model robustness. The assumption of normality, which is often made with OLS regression
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in order to compute conditional quantiles as offsets from the mean, forces a common set of regression
coefficients for all the quantiles. Obviously, quantiles with common slopes would be inappropriate in the
preceding examples.

Quantile regression is also flexible because it does not involve a link function that relates the variance and the
mean of the response variable. Generalized linear models, which you can fit with the GENMOD procedure,
require both a link function and a distributional assumption such as the normal or Poisson distribution. The
goal of generalized linear models is inference about the regression parameters in the linear predictor for the
mean of the population. In contrast, the goal of quantile regression is inference about regression coefficients
for the conditional quantiles of a response variable that is usually assumed to be continuous.

Quantile regression also offers a degree of data robustness. Unlike OLS regression, quantile regression is
robust to extreme points in the response direction (outliers). However, it is not robust to extreme points
in the covariate space (leverage points). When both types of robustness are of concern, consider using the
ROBUSTREG procedure (Chapter 86, “The ROBUSTREG Procedure.”)

Unlike OLS regression, quantile regression is equivariant to monotone transformations of the response
variable. For example, as illustrated in the trout example, the logarithm of the 90th conditional percentile of
trout density is the 90th conditional percentile of the logarithm of density.

Quantile regression cannot be carried out simply by segmenting the unconditional distribution of the response
variable and then obtaining least squares fits for the subsets. This approach leads to disastrous results when,
for example, the data include outliers. In contrast, quantile regression uses all of the data for fitting quantiles,
even the extreme quantiles.

Features
The main features of the QUANTREG procedure are as follows:

• offers simplex, interior point, and smoothing algorithms for estimation

• provides sparsity, rank, and resampling methods for confidence intervals

• provides asymptotic and bootstrap methods for covariance and correlation matrices of the estimated
parameters

• provides the Wald, likelihood ratio, and rank tests for the regression parameter estimates and the Wald
test for heteroscedasticity

• provides outlier and leverage-point diagnostics

• enables parallel computing when multiple processors are available

• provides rowwise or columnwise output data sets with multiple quantiles

• provides regression quantile spline fits

• produces fit plots, diagnostic plots, and quantile process plots by using ODS Graphics

The next section provides notation and a formal definition for quantile regression.
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Quantile Regression
Quantile regression generalizes the concept of a univariate quantile to a conditional quantile given one or
more covariates. Recall that a student’s score on a test is at the � quantile if his or her score is better than that
of 100�% of the students who took the test. The score is also said to be at the 100� percentile.

For a random variable Y with probability distribution function

F.y/ D Prob .Y � y/

the � quantile of Y is defined as the inverse function

Q.�/ D inf fy W F.y/ � �g

where the quantile level � ranges between 0 and 1. In particular, the median is Q.1=2/.

For a random sample fy1; : : : ; yng of Y, it is well known that the sample median minimizes the sum of
absolute deviations:

median D argmin�2R
nX
iD1

jyi � �j

Likewise, the general � sample quantile �.�/, which is the analog of Q.�/, is formulated as the minimizer

�.�/ D argmin�2R
nX
iD1

�� .yi � �/

where �� .z/ D z.� � I.z < 0//, 0 < � < 1, and where I.�/ denotes the indicator function. The loss function
�� assigns a weight of � to positive residuals yi � � and a weight of 1 � � to negative residuals.

Using this loss function, the linear conditional quantile function extends the � sample quantile �.�/ to the
regression setting in the same way that the linear conditional mean function extends the sample mean. Recall
that OLS regression estimates the linear conditional mean function E.Y jX D x/ D x0ˇ by solving for

Ǒ D argminˇ2Rp
nX
iD1

.yi � x0iˇ/
2

The estimated parameter Ǒ minimizes the sum of squared residuals in the same way that the sample mean O�
minimizes the sum of squares:
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O� D argmin�2R
nX
iD1

.yi � �/
2

Likewise, quantile regression estimates the linear conditional quantile function, QY .� jX D x/ D x0ˇ.�/, by
solving the following equation for � 2 .0; 1/:

Ǒ.�/ D argminˇ2Rp
nX
iD1

�� .yi � x0iˇ/

The quantity Ǒ.�/ is called the � regression quantile. The case � D 0:5 (which minimizes the sum of absolute
residuals) corresponds to median regression (which is also known as L1 regression).

The following set of regression quantiles is referred to as the quantile process:

fˇ.�/ W � 2 .0; 1/g

The QUANTREG procedure computes the quantile functionQY .� jX D x/ and conducts statistical inference
on the estimated parameters Ǒ.�/.

Getting Started: QUANTREG Procedure
The following examples demonstrate how you can use the QUANTREG procedure to fit linear models for
selected quantiles or for the entire quantile process. The first example explains the use of the procedure in a
fish-habitat example, and the second example explains the use of the procedure to construct growth charts for
body mass index.

Analysis of Fish-Habitat Relationships
Quantile regression is used extensively in ecological studies (Cade and Noon 2003). Recently, Dunham, Cade,
and Terrell (2002) applied quantile regression to analyze fish-habitat relationships for Lahontan cutthroat
trout in 13 streams of the eastern Lahontan basin, which covers most of northern Nevada and parts of southern
Oregon. The density of trout (number of trout per meter) was measured by sampling stream sites from 1993
to 1999. The width-to-depth ratio of the stream site was determined as a measure of stream habitat.

The goal of this study was to explore the relationship between the conditional quantiles of trout density and
the width-to-depth ratio. The scatter plot of the data in Figure 83.1 indicates a nonlinear relationship, so it is
reasonable to fit regression models for the conditional quantiles of the log of density. Because regression
quantiles are equivariant under any monotonic (linear or nonlinear) transformation (Koenker and Hallock
2001), the exponential transformation converts the conditional quantiles to the original density scale.

The data set trout, which follows, includes the average numbers of Lahontan cutthroat trout per meter of
stream (Density), the logarithm of Density (LnDensity), and the width-to-depth ratios (WDRatio) for 71
samples:
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data trout;
input Density WDRatio LnDensity @@;
datalines;

0.38732 8.6819 -0.94850 1.16956 10.5102 0.15662
0.42025 10.7636 -0.86690 0.50059 12.7884 -0.69197
0.74235 12.9266 -0.29793 0.40385 14.4884 -0.90672
0.35245 15.2476 -1.04284 0.11499 16.6495 -2.16289
0.18290 16.7188 -1.69881 0.06619 16.7859 -2.71523
0.70330 19.0141 -0.35197 0.50845 19.0548 -0.67639

... more lines ...

0.25125 54.6916 -1.38129
;

The following statements use the QUANTREG procedure to fit a simple linear model for the 50th and 90th
percentiles of LnDensity:

ods graphics on;

proc quantreg data=trout alpha=0.1 ci=resampling;
model LnDensity = WDRatio / quantile=0.5 0.9

CovB seed=1268;
test WDRatio / wald lr;

run;

The MODEL statement specifies a simple linear regression model with LnDensity as the response variable
Y and WDRatio as the covariate X. The QUANTILE= option requests that the regression quantile function
Q.� jX D x/ D x0ˇ.�/ be estimated by solving the following equation, where � D .0:5; 0:9/:

Ǒ.�/ D argminˇ2R2
nX
iD1

�� .yi � x0iˇ/

By default, the regression coefficients Ǒ.�/ are estimated by using the simplex algorithm, which is explained
in the section “Simplex Algorithm” on page 6859. The ALPHA= option requests 90% confidence limits
for the regression parameters, and the option CI=RESAMPLING specifies that the intervals be computed
by using the Markov chain marginal bootstrap (MCMB) resampling method of He and Hu (2002). When
you specify the CI=RESAMPLING option, the QUANTREG procedure also computes standard errors, t
values, and p-values of regression parameters by using the MCMB resampling method. The SEED= option
specifies a seed for the resampling method. The COVB option requests covariance matrices for the estimated
regression coefficients, and the TEST statement requests tests for the hypothesis that the slope parameter (the
coefficient of WDRatio) is 0.

Figure 83.3 displays model information and summary statistics for the variables in the model. The summary
statistics include the median and the standardized median absolute deviation (MAD), which are robust
measures of univariate location and scale, respectively. For more information about the standardized MAD,
see Huber (1981, p. 108).



6834 F Chapter 83: The QUANTREG Procedure

Figure 83.3 Model Fitting Information and Summary Statistics

The QUANTREG ProcedureThe QUANTREG Procedure

Model Information

Data Set WORK.TROUT

Dependent Variable LnDensity

Number of Independent Variables 1

Number of Observations 71

Optimization Algorithm Simplex

Method for Confidence Limits Resampling

Summary Statistics

Variable Q1 Median Q3 Mean
Standard
Deviation MAD

WDRatio 22.0917 29.4083 35.9382 29.1752 9.9859 10.4970

LnDensity -2.0511 -1.3813 -0.8669 -1.4973 0.7682 0.8214

Figure 83.4 and Figure 83.5 display the parameter estimates, standard errors, 95% confidence limits, t values,
and p-values that are computed by the resampling method.

Figure 83.4 Parameter Estimates at QUANTILE=0.5

Parameter Estimates

Parameter DF Estimate
Standard

Error

90%
Confidence

Limits t Value Pr > |t|

Intercept 1 -0.9811 0.3952 -1.6400 -0.3222 -2.48 0.0155

WDRatio 1 -0.0136 0.0123 -0.0341 0.0068 -1.11 0.2705

Figure 83.5 Parameter Estimates at QUANTILE=0.9

Parameter Estimates

Parameter DF Estimate
Standard

Error

90%
Confidence

Limits t Value Pr > |t|

Intercept 1 0.0576 0.2606 -0.3769 0.4921 0.22 0.8257

WDRatio 1 -0.0215 0.0075 -0.0340 -0.0091 -2.88 0.0053

The 90th percentile of trout density can be predicted from the width-to-depth ratio as follows:

Oy90 D exp.0:0576 � 0:0215x/

This is the upper dashed curve that is plotted in Figure 83.1. The lower dashed curve for the median can be
obtained in a similar fashion.

The covariance matrices for the estimated parameters are shown in Figure 83.6. The resampling method that
is used for the confidence intervals is also used to compute these matrices.
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Figure 83.6 Covariance Matrices of the Estimated Parameters

Estimated Covariance Matrix
for Quantile Level = 0.5

Intercept WDRatio

Intercept 0.156191 -.004653

WDRatio -.004653 0.000151

Estimated Covariance Matrix
for Quantile Level = 0.9

Intercept WDRatio

Intercept 0.067914 -.001877

WDRatio -.001877 0.000056

The tests requested by the TEST statement are shown in Figure 83.7. Both the Wald test and the likelihood
ratio test indicate that the coefficient of width-to-depth ratio is significantly different from 0 at the 90th
percentile, but the difference is not significant at the median.

Figure 83.7 Tests of Significance

Test Results

Quantile
Level Test

Test
Statistic DF Chi-Square Pr > ChiSq

0.5 Wald 1.2339 1 1.23 0.2666

0.5 Likelihood Ratio 1.1467 1 1.15 0.2842

0.9 Wald 8.3031 1 8.30 0.0040

0.9 Likelihood Ratio 9.0529 1 9.05 0.0026

In many quantile regression problems it is useful to examine how the estimated regression parameters for
each covariate change as a function of � in the interval .0; 1/. The following statements use the QUANTREG
procedure to request the estimated quantile processes Ǒ.�/ for the slope and intercept parameters:

proc quantreg data=trout alpha=0.1 ci=resampling;
model LnDensity = WDRatio / quantile=process seed=1268

plot=quantplot;
run;

The QUANTILE=PROCESS option requests an estimate of the quantile process for each regression parameter.
The options ALPHA=0.1 and CI=RESAMPLING specify that 90% confidence bands for the quantile
processes be computed by using the resampling method.

Figure 83.8 displays a portion of the objective function table for the entire quantile process. The objective
function is evaluated at 77 values of � in the interval .0; 1/. The table also provides predicted values of the
conditional quantile function Q.�/ at the mean for WDRatio, which can be used to estimate the conditional
density function.
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Figure 83.8 Objective Function

Objective Function for Quantile
Process

Label
Quantile

Level
Objective
Function

Predicted
at

Mean

t0 0.005634 0.7044 -3.2582

t1 0.020260 2.5331 -3.0331

t2 0.031348 3.7421 -2.9376

t3 0.046131 5.2538 -2.7013

. . . .

. . . .

. . . .

t73 0.945705 4.1433 -0.4361

t74 0.966377 2.5858 -0.4287

t75 0.976060 1.8512 -0.4082

t76 0.994366 0.4356 -0.4082

Figure 83.9 displays a portion of the table of the quantile processes for the estimated parameters and
confidence limits.

Figure 83.9 Objective Function

Parameter Estimates for Quantile
Process

Label Quantile Intercept WDRatio

. . . .

. . . .

. . . .

t57 0.765705 -0.42205 -0.01335

lower90 0.765705 -0.91952 -0.02682

upper90 0.765705 0.07541 0.00012

t58 0.786206 -0.32688 -0.01592

lower90 0.786206 -0.80883 -0.02895

upper90 0.786206 0.15507 -0.00289

. . . .

. . . .

. . . .
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When ODS Graphics is enabled, the PLOT=QUANTPLOT option in the MODEL statement requests a plot
of the estimated quantile processes.

For more information about enabling and disabling ODS Graphics, see the section “Enabling and Disabling
ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The left side of Figure 83.10 displays the process for the intercept, and the right side displays the process for
the coefficient of WDRatio.

The process plot for WDRatio shows that the slope parameter changes from positive to negative as the quantile
increases and that it changes sign with a sharp drop at the 40th percentile. The 90% confidence bands show
that the relationship between LnDensity and WDRatio (expressed by the slope) is not significant below the
78th percentile. This situation can also be seen in Figure 83.9, which shows that 0 falls between the lower
and upper confidence limits of the slope parameter for quantiles below 0.78. Since the confidence intervals
for the extreme quantiles are not stable because of insufficient data, the confidence band is not displayed
outside the interval (0.05, 0.95).

Figure 83.10 Quantile Processes for Intercept and Slope
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Growth Charts for Body Mass Index
Body mass index (BMI) is defined as the ratio of weight (kg) to squared height (m2) and is a widely used
measure for categorizing individuals as overweight or underweight. The percentiles of BMI for specified
ages are of particular interest. As age increases, these percentiles provide growth patterns of BMI not only
for the majority of the population, but also for underweight or overweight extremes of the population. In
addition, the percentiles of BMI for a specified age provide a reference for individuals at that age with respect
to the population.

Smooth quantile curves have been widely used for reference charts in medical diagnosis to identify unusual
subjects, whose measurements lie in the tails of the reference distribution. This example explains how to use
the QUANTREG procedure to create growth charts for BMI.

A SAS data set named bmimen was created by merging and cleaning the 1999–2000 and 2001–2002 survey
results for men that is published by the National Center for Health Statistics. This data set contains the
variables Weight (kg), Height (m), BMI (kg/m2), Age (year), and SeQN (respondent sequence number) for
8,250 men (Chen 2005).

The data set that is used in this example is a subset of the original data set of Chen (2005). It contains the two
variables BMI and Age with 3,264 observations.

data bmimen;
input BMI Age @@;
SqrtAge = sqrt(Age);
InveAge = 1/Age;
LogBMI = log(BMI);
datalines;

18.6 2.0 17.1 2.0 19.0 2.0 16.8 2.0 19.0 2.1 15.5 2.1
16.7 2.1 16.1 2.1 18.0 2.1 17.8 2.1 18.3 2.1 16.9 2.1
15.9 2.1 20.6 2.1 16.7 2.1 15.4 2.1 15.9 2.1 17.7 2.1

... more lines ...

29.0 80.0 24.1 80.0 26.6 80.0 24.2 80.0 22.7 80.0 28.4 80.0
26.3 80.0 25.6 80.0 24.8 80.0 28.6 80.0 25.7 80.0 25.8 80.0
22.5 80.0 25.1 80.0 27.0 80.0 27.9 80.0 28.5 80.0 21.7 80.0
33.5 80.0 26.1 80.0 28.4 80.0 22.7 80.0 28.0 80.0 42.7 80.0
;

The logarithm of BMI is used as the response. (Although this does not improve the quantile regression fit, it
helps with statistical inference.) A preliminary median regression is fitted with a parametric model, which
involves six powers of Age.
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The following statements invoke the QUANTREG procedure:

proc quantreg data=bmimen algorithm=interior(tolerance=1e-5) ci=resampling;
model logbmi = inveage sqrtage age sqrtage*age

age*age age*age*age
/ diagnostics cutoff=4.5 quantile=.5 seed=1268;

id age bmi;
test_age_cubic: test age*age*age / wald lr rankscore(tau);

run;

The MODEL statement provides the model, and the option QUANTILE=0.5 requests median regression.
The ALGORITHM= option requests that the interior point algorithm be used to compute Ǒ.1

2
/. For more

information about this algorithm, see the section “Interior Point Algorithm” on page 6860.

Figure 83.11 displays the estimated parameters, standard errors, 95% confidence intervals, t values, and
p-values that are computed by the resampling method, which is requested by the CI= option. All of the
parameters are considered significant because the p-values are smaller than 0.001.

Figure 83.11 Parameter Estimates with Median Regression: Men

The QUANTREG ProcedureThe QUANTREG Procedure

Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits t Value Pr > |t|

Intercept 1 7.8909 0.8168 6.2895 9.4924 9.66 <.0001

InveAge 1 -1.8354 0.4350 -2.6884 -0.9824 -4.22 <.0001

SqrtAge 1 -5.1247 0.7135 -6.5237 -3.7257 -7.18 <.0001

Age 1 1.9759 0.2537 1.4785 2.4733 7.79 <.0001

SqrtAge*Age 1 -0.3347 0.0424 -0.4179 -0.2515 -7.89 <.0001

Age*Age 1 0.0227 0.0029 0.0170 0.0284 7.77 <.0001

Age*Age*Age 1 -0.0000 0.0000 -0.0001 -0.0000 -7.40 <.0001

The TEST statement requests Wald, likelihood ratio, and rank tests for the significance of the cubic term in
Age. The test results, shown in Figure 83.12, indicate that this term is significant. Higher-order terms are not
significant.

Figure 83.12 Test of Significance for Cubic Term

Test test_age_cubic Results

Test
Test

Statistic DF Chi-Square Pr > ChiSq

Wald 54.7417 1 54.74 <.0001

Likelihood Ratio 56.9473 1 56.95 <.0001

Rank_Tau 42.5731 1 42.57 <.0001
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Median regression and, more generally, quantile regression are robust to extremes of the response variable.
The DIAGNOSTICS option in the MODEL statement requests a diagnostic table of outliers, shown in
Figure 83.13, which uses a cutoff value that is specified in the CUTOFF= option. The variables that are
specified in the ID statement are included in the table.

With CUTOFF=4.5, 14 men are identified as outliers. All of these men have large positive standardized
residuals, which indicates that they are overweight for their age. The cutoff value 4.5 is ad hoc. It corresponds
to a probability less than 0.5E–5 if normality is assumed, but the standardized residuals for median regression
usually do not meet this assumption.

In order to construct the chart shown in Figure 83.2, the same model that is used for median regression is
used for other quantiles. The QUANTREG procedure can compute fitted values for multiple quantiles.

Figure 83.13 Diagnostics with Median Regression

Diagnostics

Obs Age BMI
Standardized

Residual Outlier

1337 8.900000 36.500000 5.3575 *

1376 9.200000 39.600000 5.8723 *

1428 9.400000 36.900000 5.3036 *

1505 9.900000 35.500000 4.8862 *

1764 14.900000 46.800000 5.6403 *

1838 16.200000 50.400000 5.9138 *

1845 16.300000 42.600000 4.6683 *

1870 16.700000 42.600000 4.5930 *

1957 18.100000 49.900000 5.5053 *

2002 18.700000 52.700000 5.8106 *

2016 18.900000 48.400000 5.1603 *

2264 32.000000 55.600000 5.3085 *

2291 35.000000 60.900000 5.9406 *

2732 66.000000 14.900000 -4.7849 *
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The following statements request fitted values for 10 quantile levels that range from 0.03 to 0.97:

proc quantreg data=bmimen algorithm=interior(tolerance=1e-5) ci=none;
model logbmi = inveage sqrtage age sqrtage*age

age*age age*age*age
/ quantile=0.03,0.05,0.1,0.25,0.5,0.75,

0.85,0.90,0.95,0.97;
output out=outp pred=p/columnwise;

run;

data outbmi;
set outp;
pbmi = exp(p);

run;

proc sgplot data=outbmi;
title 'BMI Percentiles for Men: 2-80 Years Old';
yaxis label='BMI (kg/m**2)' min=10 max=45 values=(10 15 20 25 30 35 40 45);
xaxis label='Age (Years)' min=2 max=80 values=(2 10 20 30 40 50 60 70 80);

scatter x=age y=bmi /markerattrs=(size=1);
series x=age y=pbmi/group=QUANTILE;

run;

The fitted values are stored in the OUTPUT data set outp. The COLUMNWISE option arranges these
fitted values for all quantiles in the single variable p by groups of the quantiles. After the exponential
transformation, both the fitted BMI values and the original BMI values are plotted against age to create the
display shown in Figure 83.2.

The fitted quantile curves reveal important information. During the quick growth period (ages 2 to 20), the
dispersion of BMI increases dramatically. It becomes stable during middle age, and then it contracts after age
60. This pattern suggests that effective population weight control should start in childhood.

Compared to the 97th percentile in reference growth charts that were published by the Centers for Disease
Control and Prevention (CDC) in 2000 (Kuczmarski, Ogden, and Guo 2002), the 97th percentile for 10-year-
old boys in Figure 83.2 is 6.4 BMI units higher (an increase of 27%). This can be interpreted as a warning of
overweight or obesity. See Chen (2005) for a detailed analysis.
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Syntax: QUANTREG Procedure
The following statements are available in the QUANTREG procedure:

PROC QUANTREG < options > ;
BY variables ;
CLASS variables < / TRUNCATE > ;
EFFECT name=SPLINE(variables < / options >) ;
ESTIMATE < 'label ' > estimate-specification < / options > ;
ID variables ;
MODEL response = < effects > < / options > ;
OUTPUT < OUT= SAS-data-set > < options > ;
PERFORMANCE < options > ;
TEST effects < / options > ;
WEIGHT variable ;

The PROC QUANTREG statement invokes the QUANTREG procedure. The CLASS statement specifies
which explanatory variables are treated as categorical. The ID statement names variables to identify
observations in the outlier diagnostics tables. The MODEL statement is required and specifies the variables
used in the regression. Main effects and interaction terms can be specified in the MODEL statement, as in the
GLM procedure (Chapter 45, “The GLM Procedure.”) The OUTPUT statement creates an output data set that
contains predicted values, residuals, and estimated standard errors. The PERFORMANCE statement tunes
the performance of PROC QUANTREG by using single or multiple processors available in the hardware.
The TEST statement requests linear tests for the model parameters. The WEIGHT statement identifies a
variable in the input data set whose values are used to weight the observations. Multiple OUTPUT and TEST
statements are allowed in one invocation of PROC QUANTREG.

The EFFECT and ESTIMATE statements are also available in other procedures. Summary descriptions of
functionality and syntax for these statements are provided in this chapter, and you can find full documentation
about them in Chapter 19, “Shared Concepts and Topics.”

PROC QUANTREG Statement
PROC QUANTREG < options > ;

The PROC QUANTREG statement invokes the QUANTREG procedure. Table 83.1 summarizes the options
available in the PROC QUANTREG statement.

Table 83.1 PROC QUANTREG Statement Options

Option Description

ALGORITHM= Specifies an algorithm to estimate the regression parameters
ALPHA= Specifies the level of significance
CI= Specifies a method to compute confidence intervals
DATA= Specifies the input SAS data set
INEST= Specifies an input SAS data set that contains initial estimates
NAMELEN= Specifies the length of effect names
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Table 83.1 continued

Option Description

ORDER= Specifies the order in which to sort classification variables
OUTEST= Specifies an output SAS data set containing the parameter estimates
PLOT Specifies options that control details of the plots

You can specify the following options in the PROC QUANTREG statement.

ALGORITHM=algorithm < ( suboptions ) >
specifies an algorithm for estimating the regression parameters. Three algorithms are available: simplex
(SIMPLEX), interior point (INTERIOR), and smoothing (SMOOTH).

The default algorithm depends on the number of observations (n) and the number of covariates (p) in
the model estimation. See Table 83.2 for the relevant defaults.

Table 83.2 The Default Estimation Algorithm

p � 100 p > 100

n � 5000 Simplex Smoothing

n > 5000 Interior point Smoothing

Table 83.3 summarizes the options available for each of these methods.

Table 83.3 Options for Estimation Algorithms

algorithm Algorithm suboption
INTERIOR Interior point KAPPA=, MAXIT=, and TOLERANCE=

SIMPLEX Simplex MAXSTATIONARY=

SMOOTH Smoothing RRATIO=

If you specify ALGORITHM=SIMPLEX, you can specify the following suboption:

MAXSTATIONARY=m requests that the algorithm terminate if the objective function has not im-
proved for m consecutive iterations. By default, m = 1000.

If you specify ALGORITHM=INTERIOR, you can specify the following suboptions:

KAPPA=value specifies the step-length parameter for the interior point algorithm. This parameter
should be between 0 and 1. The larger the parameter, the faster the algorithm.
However, numeric instability can occur as the parameter approaches 1. By default,
KAPPA=0.99995. For more information, see the section “Interior Point Algorithm”
on page 6860.

MAXIT=m sets the maximum number of iterations for the interior point algorithm. By default,
MAXIT=1000.
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TOLERANCE=value specifies the tolerance for the convergence criterion of the interior point algo-
rithm. By default, TOLERANCE=1E–8. The QUANTREG procedure uses the
duality gap as the convergence criterion. For more information, see the section
“Interior Point Algorithm” on page 6860.

If you specify ALGORITHM=INTERIOR, you can also use the PERFORMANCE statement to enable
parallel computing when multiple processors are available in the hardware.

If you specify ALGORITHM=SMOOTH, you can specify the following suboption:

RRATIO=value specifies the reduction ratio for the smoothing algorithm. This ratio is used to
reduce the threshold of the smoothing algorithm. The value should be between 0
and 1. In theory, the smaller the reduction ratio, the faster the smoothing algorithm.
However, in practice, the optimal ratio is quite dependent on the data. For more
information, see the section “Smoothing Algorithm” on page 6863.

ALPHA=value
specifies the level of significance ˛ for 100.1 � ˛/% confidence intervals for regression parameters.
The value must be between 0 and 1. The default is ALPHA=0.05, which corresponds to a 0.95
confidence interval.

CI=NONE | RANK | SPARSITY< (BF | HS) >< /IID > | RESAMPLING< (NREP=n) >
specifies a method for computing confidence intervals for regression parameters. When you specify
CI=SPARSITY or CI=RESAMPLING, the QUANTREG procedure also computes standard errors, t
values, and p-values for regression parameters.

The following table summarizes these methods.

Table 83.4 Options for Confidence Intervals

Value of CI= Method Additional Options
NONE No confidence intervals computed

RANK By inverting rank-score tests

RESAMPLING By resampling NREP
SPARSITY By estimating sparsity function HS, BF, and IID

By default, when there are fewer than 5,000 observations, fewer than 20 variables in the data set, and
the algorithm is simplex, the QUANTREG procedure computes confidence intervals by using the
inverted rank-score test method. Otherwise, the resampling method is used.

By default, confidence intervals are not computed for the quantile process, which is estimated when
you specify the QUANTILE=PROCESS option in the MODEL statement. Confidence intervals for
the quantile process are computed by using the sparsity or resampling methods when you specify
CI=SPARSITY or CI=RESAMPLING, respectively. The rank method for confidence intervals is not
available for quantile processes because it is computationally prohibitive.

When you specify the SPARSITY option, you have two suboptions for estimating the sparsity function.
If you specify the IID suboption, the sparsity function is estimated by assuming that the errors in
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the linear model are independent and identically distributed (iid). By default, the sparsity function is
estimated by assuming that the conditional quantile function is locally linear. For more information,
see the section “Sparsity” on page 6865. For both methods, two bandwidth selection methods are
available: You can specify the BF suboption for the Bofinger method or the the HS suboption for the
Hall-Sheather method. By default, the Hall-Sheather method is used.

When you specify the RESAMPLING option, you can specify the NREP=n suboption for the number
of repetitions. By default, NREP=200. The value of n must be greater than 50.

DATA=SAS-data-set
specifies the input SAS data set to be used by the QUANTREG procedure. By default, the most
recently created SAS data set is used.

INEST=SAS-data-set
specifies an input SAS data set that contains initial estimates for all the parameters in the model. The
interior point algorithm and the smoothing algorithm use these estimates as a start. For a detailed
description of the contents of the INEST= data set, see the section “INEST= Data Set” on page 6872.

NAMELEN=n
restricts the length of effect names in tables and output data sets to n characters, where n is a value
between 20 and 200. By default, NAMELEN=20.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of the classification variables (which are specified in the CLASS
statement).

This option applies to the levels for all classification variables, except when you use the (default)
ORDER=FORMATTED option with numeric classification variables that have no explicit format. In
that case, the levels of such variables are ordered by their internal value.

The ORDER= option can take the following values:

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set

FORMATTED External formatted value, except for numeric variables with
no explicit format, which are sorted by their unformatted
(internal) value

FREQ Descending frequency count; levels with the most observa-
tions come first in the order

INTERNAL Unformatted value

By default, ORDER=FORMATTED. For ORDER=FORMATTED and ORDER=INTERNAL, the sort
order is machine-dependent.

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.
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OUTEST=SAS-data-set
specifies an output SAS data set to contain the parameter estimates for all quantiles. See the section
“OUTEST= Data Set” on page 6872 for a detailed description of the contents of the OUTEST= data set.

PLOT | PLOTS< (global-plot-options) > < =plot-request >

PLOT | PLOTS< (global-plot-options) > < =(plot-request < . . . plot-request > ) >

specifies options that control details of the plots. These plots fall into two categories: diagnostic plots
and fit plots. You can also use the PLOT= option in the MODEL statement to request the quantile
process plot for any effects that are specified in the model. If you do not specify the PLOTS= option,
PROC QUANTREG produces the quantile fit plot by default when a single continuous variable is
specified in the model.

When you specify only one plot-request , you can omit the parentheses around the plot request.

Here are some examples:

plots=ddplot
plots=(ddplot rdplot)

ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;

proc quantreg plots=fitplot;
model y=x1;

run;

ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

You can specify the following global-plot-options, which apply to all plots that PROC QUANTREG
generates:

MAXPOINTS=NONE | number
suppresses plots that have elements that require processing more than number points. The default
is MAXPOINTS=5000. This cutoff is ignored if you specify MAXPOINTS=NONE.

ONLY
suppresses the default quantile fit plot. Only plots specifically requested are displayed.

You can specify the following plot-requests:

ALL
creates all appropriate plots.
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DDPLOT< (LABEL=ALL | LEVERAGE | NONE | OUTLIER) >
creates a plot of robust distance against Mahalanobis distance. For more information about robust
distance, see the section “Leverage Point and Outlier Detection” on page 6871. The LABEL=
option specifies how the points on this plot are to be labeled, as summarized by Table 83.5.

Table 83.5 Options for Label

Value of LABEL= Label Method
ALL Label all points

LEVERAGE Label leverage points

NONE No labels

OUTLIERS Label outliers

By default, the QUANTREG procedure labels both outliers and leverage points.

If you specify ID variables in the ID statement, the values of the first ID variable are used as
labels; otherwise, observation numbers are used as labels.

FITPLOT< (NOLIMITS | SHOWLIMITS | NODATA) >
creates a plot of fitted conditional quantiles against the single continuous variable that is specified
in the model. This plot is produced only when the response is modeled as a function of a
single continuous variable. Multiple lines or curves are drawn on this plot if you specify several
quantiles with the QUANTILE= option in the MODEL statement. By default, confidence limits
are added to the plot when a single quantile is requested, and the confidence limits are not shown
on the plot when multiple quantiles are requested. The NOLIMITS option suppresses the display
of the confidence limits. The SHOWLIMITS option adds the confidence limits when multiple
quantiles are requested. The NODATA option suppresses the display of the observed data, which
are superimposed on the plot by default.

HISTOGRAM
creates a histogram (based on the quantile regression estimates) for the standardized residuals.
The histogram is superimposed with a normal density curve and a kernel density curve.

NONE
suppresses all plots.

QQPLOT
creates the normal quantile-quantile plot (based on the quantile regression estimates) for the
standardized residuals.

RDPLOT< (LABEL=ALL | LEVERAGE | NONE | OUTLIER) >
creates the plot of standardized residual against robust distance. For more information about
robust distance, see the section “Leverage Point and Outlier Detection” on page 6871.

The LABEL= option specifies a label method for points on this plot. These label methods are
described in Table 83.5.

By default, the QUANTREG procedure labels both outliers and leverage points.

If you specify ID variables in the ID statement, the values of the first ID variable are used as
labels; otherwise, observation numbers are used as labels.
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PP
requests preprocessing to speed up the interior point algorithm or the smoothing algorithm. The
preprocessing uses a subsampling algorithm (which assumes that the data set is evenly distributed) to
iteratively reduce the original problem to a smaller one. Preprocessing should be used only for very
large data sets, such as data sets with more than 100,000 observations. For more information, see
Portnoy and Koenker (1997).

BY Statement
BY variables ;

You can specify a BY statement with PROC QUANTREG to obtain separate analyses of observations in
groups that are defined by the BY variables. When a BY statement appears, the procedure expects the input
data set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last
one specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the QUANTREG
procedure. The NOTSORTED option does not mean that the data are unsorted but rather that the
data are arranged in groups (according to values of the BY variables) and that these groups are not
necessarily in alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

CLASS Statement
CLASS variables < / TRUNCATE > ;

The CLASS statement names the classification variables to be used in the model. Typical classification
variables are Treatment, Sex, Race, Group, and Replication. If you use the CLASS statement, it must appear
before the MODEL statement.

Classification variables can be either character or numeric. By default, class levels are determined from the
entire set of formatted values of the CLASS variables.

NOTE: Prior to SAS 9, class levels were determined by using no more than the first 16 characters of the
formatted values. To revert to this previous behavior, you can use the TRUNCATE option in the CLASS
statement.

In any case, you can use formats to group values into levels. See the discussion of the FORMAT procedure
in the Base SAS Procedures Guide and the discussions of the FORMAT statement and SAS formats in SAS
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Formats and Informats: Reference. You can adjust the order of CLASS variable levels with the ORDER=
option in the PROC QUANTREG statement.

You can specify the following option in the CLASS statement after a slash (/):

TRUNCATE
specifies that class levels should be determined by using only up to the first 16 characters of the
formatted values of CLASS variables. When formatted values are longer than 16 characters, you can
use this option to revert to the levels as determined in releases prior to SAS 9.

EFFECT Statement
EFFECT name=effect-type (variables < / options >) ;

The EFFECT statement enables you to construct special collections of columns for design matrices. These
collections are referred to as constructed effects to distinguish them from the usual model effects that are
formed from continuous or classification variables, as discussed in the section “GLM Parameterization of
Classification Variables and Effects” on page 387 in Chapter 19, “Shared Concepts and Topics.”

You can specify the following effect-types:

COLLECTION is a collection effect that defines one or more variables as a single effect with
multiple degrees of freedom. The variables in a collection are considered as
a unit for estimation and inference.

LAG is a classification effect in which the level that is used for a given period
corresponds to the level in the preceding period.

MULTIMEMBER | MM is a multimember classification effect whose levels are determined by one or
more variables that appear in a CLASS statement.

POLYNOMIAL | POLY is a multivariate polynomial effect in the specified numeric variables.

SPLINE is a regression spline effect whose columns are univariate spline expansions
of one or more variables. A spline expansion replaces the original variable
with an expanded or larger set of new variables.

Table 83.6 summarizes the options available in the EFFECT statement.

Table 83.6 EFFECT Statement Options

Option Description

Collection Effects Options
DETAILS Displays the constituents of the collection effect

Lag Effects Options
DESIGNROLE= Names a variable that controls to which lag design an observation

is assigned

DETAILS Displays the lag design of the lag effect

NLAG= Specifies the number of periods in the lag
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Table 83.6 continued

Option Description

PERIOD= Names the variable that defines the period

WITHIN= Names the variable or variables that define the group within which
each period is defined

Multimember Effects Options
NOEFFECT Specifies that observations with all missing levels for the multi-

member variables should have zero values in the corresponding
design matrix columns

WEIGHT= Specifies the weight variable for the contributions of each of the
classification effects

Polynomial Effects Options
DEGREE= Specifies the degree of the polynomial
MDEGREE= Specifies the maximum degree of any variable in a term of the

polynomial
STANDARDIZE= Specifies centering and scaling suboptions for the variables that

define the polynomial

Spline Effects Options
BASIS= Specifies the type of basis (B-spline basis or truncated power func-

tion basis) for the spline effect
DEGREE= Specifies the degree of the spline effect
KNOTMETHOD= Specifies how to construct the knots for the spline effect

For more information about the syntax of these effect-types and how columns of constructed effects are
computed, see the section “EFFECT Statement” on page 397 in Chapter 19, “Shared Concepts and Topics.”

ESTIMATE Statement
ESTIMATE < 'label ' > estimate-specification < (divisor=n) >

< , . . . < 'label ' > estimate-specification < (divisor=n) > >
< / options > ;

The ESTIMATE statement provides a mechanism for obtaining custom hypothesis tests. Estimates are
formed as linear estimable functions of the form Lˇ. You can perform hypothesis tests for the estimable
functions, construct confidence limits, and obtain specific nonlinear transformations.

Table 83.7 summarizes the options available in the ESTIMATE statement.
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Table 83.7 ESTIMATE Statement Options

Option Description

Construction and Computation of Estimable Functions
DIVISOR= Specifies a list of values to divide the coefficients
NOFILL Suppresses the automatic fill-in of coefficients for higher-order

effects
SINGULAR= Tunes the estimability checking difference

Degrees of Freedom and p-values
ADJUST= Determines the method for multiple comparison adjustment of

estimates
ALPHA=˛ Determines the confidence level (1 � ˛)
LOWER Performs one-sided, lower-tailed inference
STEPDOWN Adjusts multiplicity-corrected p-values further in a step-down fash-

ion
TESTVALUE= Specifies values under the null hypothesis for tests
UPPER Performs one-sided, upper-tailed inference

Statistical Output
CL Constructs confidence limits
CORR Displays the correlation matrix of estimates
COV Displays the covariance matrix of estimates
E Prints the L matrix
JOINT Produces a joint F or chi-square test for the estimable functions
SEED= Specifies the seed for computations that depend on random numbers

For details about the syntax of the ESTIMATE statement, see the section “ESTIMATE Statement” on
page 444 in Chapter 19, “Shared Concepts and Topics.”

ID Statement
ID variables ;

When the diagnostics table is requested by the DIAGNOSTICS option in the MODEL statement, the variables
listed in the ID statement are displayed in addition to the observation number. These values are useful for
identifying observations. If the ID statement is omitted, only the observation number is displayed.

MODEL Statement
< label: > MODEL response = < effects > < / options > ;

You can specify main effects and interaction terms in the MODEL statement, as you can in the GLM
procedure (Chapter 45, “The GLM Procedure.”) Classification variables in the MODEL statement must also
be specified in the CLASS statement.
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The optional label , which must be a valid SAS name, is used to label output from the matching MODEL
statement.

Options

Table 83.8 summarizes the options available in the MODEL statement.

Table 83.8 MODEL Statement Options

Option Description

CORRB Produces the estimated correlation matrix
COVB Produces the estimated covariance matrix
CUTOFF= Specifies the multiplier of the cutoff value for outlier detection
DIAGNOSTICS Requests the outlier diagnostics
ITPRINT Displays the iteration history
LEVERAGE Requests an analysis of leverage points
NODIAG Suppresses the computation for outlier diagnostics
NOINT Specifies no-intercept regression
NOSUMMARY Suppresses the computation for summary statistics
PLOT= Requests plots
QUANTILE= Specifies the quantile levels
SCALE= Specifies the scale value used to compute the standardized residuals
SEED= Specifies the seed for the random number generator
SINGULAR= Specifies the tolerance for testing singularity

You can specify the following options for the model fit.

CORRB
produces the estimated correlation matrix of the parameter estimates. When the resampling method
is used to compute the confidence intervals, the QUANTREG procedure computes the bootstrap
correlation. When the sparsity method is used to compute the confidence intervals, PROC QUANTREG
bases its computation of the asymptotic correlation on an estimator of the sparsity function. The rank
method for confidence intervals does not provide a correlation estimate.

COVB
produces the estimated covariance matrix of the parameter estimates. When the resampling method
is used to compute the confidence intervals, the QUANTREG procedure computes the bootstrap
covariance. When the sparsity method is used to compute the confidence intervals, PROC QUANTREG
bases its computation of the asymptotic covariance on an estimator of the sparsity function. The rank
method for confidence intervals does not provide a covariance estimate.

CUTOFF=value
specifies the multiplier of the cutoff value for outlier detection. By default, CUTOFF=3.

DIAGNOSTICS< (ALL) >
requests the outlier diagnostics. By default, only observations that are identified as outliers or leverage
points are displayed. To request that all observations be displayed, specify the ALL option.
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ITPRINT
displays the iteration history of the interior point algorithm or the smoothing algorithm.

LEVERAGE< (CUTOFF=value | CUTOFFALPHA=value | H=n) >
requests an analysis of leverage points for the continuous covariates. The results are added to the
diagnostics table, which you can request with the DIAGNOSTICS option in the MODEL statement.
You can specify the cutoff value for leverage-point detection with the CUTOFF= option. The default

cutoff value is
q
�2pI1�˛, where ˛ can be specified with the CUTOFFALPHA= option. By default,

˛ D 0:025. You can use the H= option to specify the number of points to be minimized for the MCD
algorithm used for the leverage-point analysis. By default, H=Œ.3nCpC 1/=4�, where n is the number
of observations and p is the number of independent variables. The LEVERAGE option is ignored if
the model includes classification variables as covariates.

NODIAG
suppresses the computation for outlier diagnostics. If you specify the NODIAG option, the diagnostics
summary table is not provided.

NOINT
specifies no intercept regression.

NOSUMMARY
suppresses the computation of summary statistics. If you specify the NOSUMMARY option, the
summary statistics table is not provided.

PLOT=plot-option

PLOTS=(plot-option)
You can use the PLOTS= option in the MODEL statement together with ODS Graphics to request
the quantile process plot in addition to all that plots that you request in the PLOT= option in the
PROC QUANTREG statement. If you specify the same plot-option in both the PROC QUANTREG
statement and the MODEL statement, the plot-option in the PROC QUANTREG statement overwrites
the plot-option in the MODEL statement .

You can specify the following plot-option only in the MODEL statement:

QUANTPLOT< (EFFECTS) < / < NOLIMITS > < EXTENDCI > < UNPACK > < OLS > > >
plots the regression quantile process. The estimated coefficient of each specified covariate effect
is plotted as a function of the quantile. If you do not specify a covariate effect, quantile processes
are plotted for all covariate effects in the MODEL statement. You can use the NOLIMITS option
to suppress confidence bands for the quantile processes. By default, confidence bands are plotted,
and process plots are displayed in panels, each of which can hold up to four plots. By default, the
confidence limits are plotted for quantiles in the range between 0.05 and 0.95. You can use the
EXTENDCI option to plot the confidence limits even for quantiles outside this range. You can
use the UNPACK option to create individual process plots. For an individual process plot, you
can superimpose the ordinary least squares estimate by specifying the OLS option.

ODS Graphics must be enabled before you request plots.

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”
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QUANTILE=number-list | PROCESS
specifies the quantile levels for the quantile regression. You can specify any number of quantile levels
in .0; 1/. You can also compute the entire quantile process by specifying the PROCESS option. Only
the simplex algorithm is available for computing the quantile process.

If you do not specify the QUANTILE= option, the QUANTREG procedure fits a median regression,
which corresponds to QUANTILE=0.5.

SCALE=number
specifies the scale value to use to compute the standardized residuals. By default, the scale is computed
as the corrected median of absolute residuals. See the section “Leverage Point and Outlier Detection”
on page 6871 for details.

SEED=number
specifies the seed for the random number generator used to compute the MCMB confidence intervals.
This seed is also used to randomly select the subgroups for preprocessing when you specify the PP
option in the PROC QUANTREG statement. If you do not specify a seed, or if you specify a value less
than or equal to 0, the seed is generated from reading the time of day from the computer clock.

By default or if you specify SEED=0, the QUANTREG procedure generates a seed between one and
one billion.

SINGULAR=value
sets the tolerance for testing singularity of the information matrix and the crossproducts matrix for the
initial least squares estimates. Approximately, the test requires that a pivot be at least this value times
the original diagonal value. By default, SINGULAR=1E–12.

OUTPUT Statement
OUTPUT < OUT=SAS-data-set > keyword=name < . . . keyword=name > < / COLUMNWISE > ;

The OUTPUT statement creates a SAS data set to contain statistics that are calculated after PROC
QUANTREG fits models for all specified quantiles that are specified in the QUANTILE= option in the
MODEL statement. At least one specification of the form keyword=name is required.

All variables in the original data set are included in the new data set, along with the variables that are created
from options in the OUTPUT statement. These new variables contain fitted values and estimated quantiles.
If you want to create a SAS data set in a permanent library, you must specify a two-level name. For more
information about permanent libraries and SAS data sets, see SAS Language Reference: Concepts.

If you specify multiple quantiles in the MODEL statement, the COLUMNWISE option arranges the created
OUTPUT data set in columnwise form. This arrangement repeats the input data for each quantile. By default,
the OUTPUT data set is created in rowwise form. For each appropriate keyword specified in the OUTPUT
statement, one variable for each specified quantile is generated. These variables appear in the sorted order of
the specified quantiles.

The following specifications can appear in the OUTPUT statement:
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OUT=SAS-data-set specifies the new data set. By default, PROC QUANTREG uses the DATAn convention
to name the new data set.

keyword=name specifies the statistics to include in the output data set and gives names to the new
variables. For each desired statistic, specify a keyword from the following list of
keywords, an equal sign, and the name of a variable to contain the statistic.

You can specify the following keywords:

LEVERAGE specifies a variable to indicate leverage points. To include this variable in the OUTPUT
data set, you must specify the LEVERAGE option in the MODEL statement. See
the section “Leverage Point and Outlier Detection” on page 6871 for how to define
LEVERAGE.

MAHADIST | MD names a variable to contain the Mahalanobis distance. To include this variable in the
OUTPUT data set, you must specify the LEVERAGE option in the MODEL statement.

OUTLIER specifies a variable to indicate outliers. See the section “Leverage Point and Outlier
Detection” on page 6871 for how to define OUTLIER.

PREDICTED | P names a variable to contain the estimated response.

QUANTILE | Q names a variable to contain the quantile for which the quantile regression is fitted. If
you specify the COLUMNWISE option, this variable is created by default. If multiple
quantiles are specified in the MODEL statement and the COLUMNWISE option is
not specified, this variable is not created.

RESIDUAL | RES names a variable to contain the residuals (unstandardized):

yi � x0i Ǒ

ROBDIST | RD names a variable to contain the robust MCD distance. To include this variable in the
OUTPUT data set, you must specify the LEVERAGE option in the MODEL statement.

SPLINE | SP names a variable to contain the estimated spline effect, which includes all spline effects
in the model and their interactions.

SRESIDUAL | SR names a variable to contain the standardized residuals:

yi � x0i Ǒ

O�

See the section “Leverage Point and Outlier Detection” on page 6871 for how to
compute � .

STDP names a variable to contain the estimates of the standard errors of the estimated
response.

PERFORMANCE Statement
You can use the PERFORMANCE statement to change default options that affect the performance of PROC
QUANTREG and to request tables that show the performance options in effect and the timing details.

PERFORMANCE < options > ;
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You can specify the following options:

CPUCOUNT=number | ACTUAL
specifies the number of processors to use in the computation of the interior point algorithm. CPU-
COUNT=ACTUAL sets CPUCOUNT to be the number of physical processors available, which this
can be less than the physical number of CPUs if the SAS process has been restricted by system
administration tools. You can specify any integer from 1 to 1024 for number . Setting CPUCOUNT=
to a number greater than the actual number of available CPUs might result in reduced performance. If
CPUCOUNT=1, then NOTHREADS is in effect, and PROC QUANTREG uses singly threaded code.
This option overrides the SAS system option CPUCOUNT=.

DETAILS
creates the PerfSettings table that shows the performance settings in effect and the “Timing” table that
provides a broad timing breakdown of the PROC QUANTREG step.

THREADS
enables multithreaded computation for the interior point algorithm. If you do not specify the AL-
GORITHM=INTERIOR option in the PROC QUANTREG statement, then PROC QUANTREG
ignores this option and uses singly threaded code. This option overrides the SAS system option
THREADS | NOTHREADS.

NOTHREADS
disables multithreaded computation for the interior point algorithm. This option overrides the SAS
system option THREADS | NOTHREADS.

TEST Statement
< label: > TEST effects < / options > ;

In quantile regression analysis, you might be interested in testing whether a covariate effect is statistically
significant for a given quantile. In other situations, you might be interested in testing whether the coefficients
of a covariate are the same across a set of quantiles. You can use the TEST Statement to perform these tests.

You can submit multiple TEST statements, provided that they appear after the MODEL statement. The
optional label , which must be a valid SAS name, is used to identify output from the corresponding TEST
statement. For more information about these tests, see the section “Linear Test” on page 6869.

Testing Effects of Covariates

You can use TEST statement to obtain a test for the canonical linear hypothesis concerning the parameters of
the tested effects,

ˇj D 0; j D i1; : : : ; iq

where q is the total number of parameters of the tested effects. The tested effects can be any set of effects in
the MODEL statement. You can specify three types of tests (Wald, likelihood ratio, and rank methods) for
testing effects of covariates by using the following options in the TEST statement after a slash (/):

WALD
requests Wald tests.
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LR
requests likelihood ratio tests.

RANKSCORE < (NORMAL | WILCOXON | SIGN | TAU) >
requests rank tests. The NORMAL, WILCOXON, and SIGN functions are implemented and suitable
for iid error models, and the TAU score function is implemented and appropriate for non-iid error
models. By default, the TAU score function is used. See Koenker (2005) for more information about
the score functions.

Testing for Heteroscedasticity

You can test whether there is any difference among the estimated coefficients across quantiles if several
quantiles are specified in the MODEL statement. The test for such heteroscedasticity can be requested by the
option QINTERACT after a slash (/) in the TEST statement. See Example 83.5.

WEIGHT Statement
WEIGHT variable ;

The WEIGHT statement specifies a weight variable in the input data set.

To request weighted quantile regression, place the weights in a variable. The values of the WEIGHT variable
can be nonintegral and are not truncated. Observations with nonpositive or missing values for the weight
variable do not contribute to the fit of the model. For more information about weighted quantile regression,
see the section “Details: QUANTREG Procedure” on page 6857.

Details: QUANTREG Procedure

Quantile Regression as an Optimization Problem
The model for linear quantile regression is

y D A0ˇ C �

where y D .y1; : : : ; yn/
0 is the .n � 1/ vector of responses, A0 D .x1; : : : ; xn/0 is the .n � p/ regressor

matrix, ˇ D .ˇ1; : : : ; ˇp/0 is the .p � 1/ vector of unknown parameters, and � D .�1; : : : ; �n/0 is the .n� 1/
vector of unknown errors.

L1 regression, also known as median regression, is a natural extension of the sample median when the
response is conditioned on the covariates. In L1 regression, the least absolute residuals estimate ǑLAR,
referred to as the L1-norm estimate, is obtained as the solution of the following minimization problem:

min
ˇ2Rp

nX
iD1

jyi � x0iˇj
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More generally, for quantile regression Koenker and Bassett (1978) defined the � regression quantile,
0 < � < 1, as any solution to the following minimization problem:

min
ˇ2Rp

24 X
i2fi Wyi�x0

i
ˇg

� jyi � x0iˇj C
X

i2fi Wyi<x0
i
ˇg

.1 � �/jyi � x0iˇj

35
The solution is denoted as Ǒ.�/, and the L1-norm estimate corresponds to Ǒ.1=2/. The � regression quantile
is an extension of the � sample quantile O�.�/, which can be formulated as the solution of

min
�2R

24 X
i2fi Wyi��g

� jyi � �j C
X

i2fi Wyi<�g

.1 � �/jyi � �j

35
If you specify weights wi ; i D 1; : : : ; n, with the WEIGHT statement, weighted quantile regression is carried
out by solving

min
ˇw2Rp

24 X
i2fi Wyi�x0

i
ˇwg

wi� jyi � x0iˇw j C
X

i2fi Wyi<x0
i
ˇwg

wi .1 � �/jyi � x0iˇw j

35
Weighted regression quantiles ˇw can be used for L-estimation (Koenker and Zhao 1994).

Optimization Algorithms
The optimization problem for median regression has been formulated and solved as a linear programming
(LP) problem since the 1950s. Variations of the simplex algorithm, especially the method of Barrodale and
Roberts (1973), have been widely used to solve this problem. The simplex algorithm is computationally
demanding in large statistical applications, and in theory the number of iterations can increase exponentially
with the sample size. This algorithm is often useful with data that contain no more than tens of thousands of
observations.

Several alternatives have been developed to handle L1 regression for larger data sets. The interior point
approach of Karmarkar (1984) solves a sequence of quadratic problems in which the relevant interior of the
constraint set is approximated by an ellipsoid. The worst-case performance of the interior point algorithm
has been proved to be better than the worst-case performance of the simplex algorithm. More important,
experience has shown that the interior point algorithm is advantageous for larger problems.

Like L1 regression, general quantile regression fits nicely into the standard primal-dual formulations of linear
programming.

In addition to the interior point method, various heuristic approaches are available for computing L1-type
solutions. Among these, the finite smoothing algorithm of Madsen and Nielsen (1993) is the most useful.
It approximates the L1-type objective function with a smoothing function, so that the Newton-Raphson
algorithm can be used iteratively to obtain a solution after a finite number of iterations. The smoothing
algorithm extends naturally to general quantile regression.

The QUANTREG procedure implements the simplex, interior point, and smoothing algorithms. The
remainder of this section describes these algorithms in more detail.
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Simplex Algorithm

Let � D Œy � A0ˇ�C, � D ŒA0ˇ � y�C, � D Œˇ�C, and ' D Œ�ˇ�C, where Œz�C is the nonnegative part of z.

Let DLAR.ˇ/ D
Pn
iD1 jyi � x0iˇj. For the L1 problem, the simplex approach solves minˇDLAR.ˇ/ by

reformulating it as the constrained minimization problem

min
ˇ
fe0�C e0�jy D A0ˇ C � � �; f�; �g 2 RnCg

where e denotes an .n � 1/ vector of ones.

Let B D ŒA0 � A0 I � I�, � D .�0 '0 �0 �0/0, and d D .00 00 e0 e0/0, where 00 D .0 0 : : : 0/p. The
reformulation presents a standard LP problem:

.P/ min
�

d0�

subject to B� D y
� � 0

This problem has the following dual formulation:

.D/ max
z

y0z

subject to B0z � d

This formulation can be simplified as

max
z

y0zI subject to Az D 0; z 2 Œ�1; 1�n

By setting � D 1
2
C

1
2
e; b D 1

2
Ae, the problem becomes

max
�

y0�I subject to A� D b;� 2 Œ0; 1�n

For quantile regression, the minimization problem is minˇ
P
�� .yi � x0iˇ/, and a similar set of steps leads

to the dual formulation

max
z

y0zI subject to Az D .1 � �/Ae; z 2 Œ0; 1�n

The QUANTREG procedure solves this LP problem by using the simplex algorithm of Barrodale and Roberts
(1973). This algorithm exploits the special structure of the coefficient matrix B by solving the primary LP
problem (P) in two stages: The first stage chooses the columns in A0 or �A0 as pivotal columns. The second
stage interchanges the columns in I or –I as basis or nonbasis columns, respectively. The algorithm obtains
an optimal solution by executing these two stages interactively. Moreover, because of the special structure of
B, only the main data matrix A is stored in the current memory.

Although this special version of the simplex algorithm was introduced for median regression, it extends
naturally to quantile regression for any given quantile and even to the entire quantile process (Koenker and
d’Orey 1994). It greatly reduces the computing time that is required by the general simplex algorithm, and it
is suitable for data sets with fewer than 5,000 observations and 50 variables.
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Interior Point Algorithm

There are many variations of interior point algorithms. The QUANTREG procedure uses the primal-dual
predictor-corrector algorithm that was implemented by Lustig, Marsten, and Shanno (1992). Roos, Terlaky,
and Vial (1997) provide more information about this particular algorithm. The following brief introduction
of this algorithm uses the notation in the first reference.

To be consistent with the conventional LP setting, let c D �y, let b D .1 � �/Ae, and let u be the general
upper bound. The linear program to be solved is

minfc0zg

subject to Az D b

0 � z � u

To simplify the computation, this is treated as the primal problem. The problem has n variables. The index i
denotes a variable number, and k denotes an iteration number. If k is used as a subscript or superscript, it
denotes “of iteration k.”

Let v be the primal slack so that zC v D u. Associate dual variables w with these constraints. The interior
point algorithm solves the system of equations to satisfy the Karush-Kuhn-Tucker (KKT) conditions for
optimality:

Az D b
zC v D u
A0tC s � w D c
ZSe D 0
VWe D 0
z; s; v;w � 0
where

W D diag.w/ (that is, Wi;j D wi if i D j ; Wi;j D 0 otherwise)

V D diag.v/;Z D diag.z/;S D diag.s/

These are the conditions for feasibility, with the addition of complementarity conditions ZSe D 0 and
VWe D 0. c0z D b0t � u0w must occur at the optimum. Complementarity forces the optimal objectives of
the primal and dual to be equal, c0zopt D b0topt � u0wopt , because

0 D v0optwopt D .u � zopt /0wopt D u0wopt � z0optwopt

0 D z0optsopt D s0optzopt D .c � A0topt C wopt /
0zopt

D c0zopt � t0opt .Azopt /C w0optzopt D c0zopt � b0topt C u0wopt

Therefore
0 D c0zopt � b0topt C u0wopt

The duality gap, c0z� b0tC u0w, measures the convergence of the algorithm. You can specify a tolerance for
this convergence criterion in the TOLERANCE= option in the PROC QUANTREG statement.
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Before the optimum is reached, it is possible for a solution .z; t; s; v;w/ to violate the KKT conditions in one
of several ways:

• Primal bound constraints can be broken: ıb D u � z � v ¤ 0.

• Primal constraints can be broken: ıc D b � Az ¤ 0.

• Dual constraints can be broken: ıd s D c � A0t � sC w ¤ 0.

• Complementarity conditions are unsatisfied: z0s ¤ 0 and v0w ¤ 0.

The interior point algorithm works by using Newton’s method to find a direction .�zk;�tk;�sk;�vk;�wk/
to move from the current solution .zk; tk; sk; vk;wk/ toward a better solution:

.zkC1; tkC1; skC1; vkC1;wkC1/ D .zk; tk; sk; vk;wk/C �.�zk;�tk;�sk;�vk;�wk/

� is the step length and is assigned a value as large as possible, but not so large that a zkC1i or skC1i is “too
close” to 0. You can control the step length in the KAPPA= option in the PROC QUANTREG statement.

The QUANTREG procedure implements a predictor-corrector variant of the primal-dual interior point
algorithm. First, Newton’s method is used to find a direction .�zkaff ;�t

k
aff ;�s

k
aff ;�v

k
aff ;�w

k
aff / in which

to move. This is known as the affine step.

In iteration k, the affine step system that must be solved is

�zaff C�vaff D ıb

A�zaff D ıc
A0�taff C�saff ��waff D ıd

S�zaff C Z�saff D �ZSe
V�waff CW�zaff D �VWe

Therefore, the following computations are involved in solving the affine step, where � is the step length as
before:

‚ D SZ�1 CWV�1

� D ‚�1.ıd C .S �W/e � V�1Wıb/

�taff D .A‚�1A0/�1.ıc C A�/

�zaff D ‚
�1A0�taff � �

�vaff D ıb ��zaff

�waff D �We � V�1W�zaff
�saff D �Se � Z�1S�zaff
.zaff ; taff ; saff ; vaff ;waff / D .z; t; s; v;w/C �.�zaff ;�taff ;�saff ;�vaff ;�waff /

The success of the affine step is gauged by calculating the complementarity of z0s and v0w at
.zkaff ; t

k
aff ; s

k
aff ; v

k
aff ;w

k
aff / and comparing it with the complementarity at the starting point .zk; tk; sk; vk;wk/.
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If the affine step was successful in reducing the complementarity by a substantial amount, the need for
centering is not great. Therefore, a value close to 0 is assigned to � in the following second linear system,
which is used to determine a centering vector.

The following linear system is solved to determine a centering vector .�zc ;�tc ;�sc ;�vc ;�wc/ from
.zaff ; taff ; saff ; vaff ;waff /:

�zc C�vc D 0
A�zc D 0
A0�tc C�sc ��wc D 0
S�zc C Z�sc D �Zaff Saff eC ��e
V�wc CW�vc D �Vaff Waff eC ��e
where �start D z0sC v0w; complementarity at the start of the iteration

�aff D z0aff saff C v0affwaff ; the affine complementarity

� D �aff =2n; the average complementarity

� D .�aff =�start /
3

However, if the affine step was unsuccessful, then centering is deemed beneficial, and a value close to 1.0 is
assigned to � . In other words, the value of � is adaptively altered depending on the progress made toward the
optimum.

Therefore, the following computations are involved in solving the centering step:

� D ‚�1.��.Z�1 � V�1/e � Z�1Zaff Saff eC V�1Vaff Waff e/

�tc D .A‚�1A0/�1A�

�zc D ‚
�1A0�tc � �

�vc D ��zc

�wc D ��V�1e � V�1Vaff Waff e � V�1Waff�vc

�sc D ��Z�1e � Z�1Zaff Saff e � Z�1Saff�zc

Then

.�z;�t;�s;�v;�w/ D .�zaff ;�taff ;�saff ;�vaff ;�waff /C .�zc ;�tc ;�sc ;�vc ;�wc/

.zkC1; tkC1; skC1; vkC1;wkC1/ D .zk; tk; sk; vk;wk/C �.�z;�t;�s;�v;�w/

where, as before, � is the step length, which is assigned a value as large as possible but not so large that a
zkC1i , skC1i , vkC1i , or wkC1i is “too close” to 0.

Although the predictor-corrector variant entails solving two linear systems instead of one, fewer iterations are
usually required to reach the optimum. The additional overhead of the second linear system is small because
the matrix .A‚�1A0/ has already been factorized in order to solve the first linear system.

You can specify the starting point in the INEST= option in the PROC QUANTREG statement. By default,
the starting point is set to be the least squares estimate.
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Smoothing Algorithm

To minimize the sum of the absolute residuals DLAR.ˇ/, the smoothing algorithm approximates the nondif-
ferentiable function DLAR by the following smooth function(which is referred to as the Huber function),

D .ˇ/ D

nX
iD1

H .ri .ˇ//

where

H .t/ D

�
t2=.2/ if jt j � 
jt j � =2 if jt j > 

Here ri .ˇ/ D yi � x0iˇ, and the threshold  is a positive real number. The function D is continuously
differentiable, and a minimizer ˇ of D is close to a minimizer ǑLAR of DLAR.ˇ/ when  is close to 0.

The advantage of the smoothing algorithm as described in Madsen and Nielsen (1993) is that the L1 solution
ǑLAR can be detected when  > 0 is small. In other words, it is not necessary to let  converge to 0 in

order to find a minimizer of DLAR.ˇ/. The algorithm terminates before going through the entire sequence
of values of  that are generated by the algorithm. Convergence is indicated by no change of the status of
residuals ri .ˇ/ as  goes through this sequence.

The smoothing algorithm extends naturally from L1 regression to general quantile regression (Chen 2007).
The function

D�� .ˇ/ D

nX
iD1

�� .yi � x0iˇ/

can be approximated by the smooth function

D;� .ˇ/ D

nX
iD1

H;� .ri .ˇ//

where

H;� .t/ D

8̂<̂
:
t .� � 1/ � 1

2
.� � 1/2 if t � .� � 1/

t2

2
if .� � 1/ � t � �

t� � 1
2
�2 if t � �

The function H;� is determined by whether ri .ˇ/ � .� � 1/ , ri .ˇ/ � � , or .� � 1/ � ri .ˇ/ � � .
These inequalities divide Rp into subregions that are separated by the parallel hyperplanes ri .ˇ/ D .� � 1/
and ri .ˇ/ D � . The set of all such hyperplanes is denoted by B;� :

B;� D fˇ 2 Rpj9i W ri .ˇ/ D .� � 1/ or ri .ˇ/ D �g

Define the sign vector s .ˇ/ D .s1.ˇ/; : : : ; sn.ˇ//0 as

si D si .ˇ/ D

8<:
�1 if ri .ˇ/ � .� � 1/
0 if .� � 1/ � ri .ˇ/ � �
1 if ri .ˇ/ � �
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and introduce

wi D wi .ˇ/ D 1 � s
2
i .ˇ/

Therefore,

H;� .ri .ˇ// D
1

2
wir

2
i .ˇ/

Csi Œ
1

2
ri .ˇ/C

1

4
.1 � 2�/ C si .ri .ˇ/.� �

1

2
/ �

1

4
.1 � 2� C 2�2//�

This equation yields

D;� .ˇ/ D
1

2
r0W;�rC v0.s/rC c.s/

where W;� is the diagonal n � n matrix with diagonal elements wi .ˇ/, v0.s/ D .s1..2� � 1/s1 C 1/=

2; : : : ; sn..2��1/snC1/=2/, c.s/ D
P
Œ1
4
.1�2�/si�

1
4
s2i .1�2�C2�

2/�, and r.ˇ/ D .r1.ˇ/; : : : ; rn.ˇ//0.

The gradient of D;� is given by

D.1/;� .ˇ/ D �AŒ
1


W;� .ˇ/r.ˇ/C v.s/�

For ˇ 2 RpnB;� the Hessian exists and is given by

D.2/;� .ˇ/ D
1


AW;� .ˇ/A0

The gradient is a continuous function in Rp, whereas the Hessian is piecewise constant.

Following Madsen and Nielsen (1993), the vector s is referred to as a -feasible sign vector if there exists
ˇ 2 RpnB;� with s .ˇ/ D s. If s is -feasible, then Qs is defined as the quadratic function Qs.˛/ that is
derived from D;� .ˇ/ by substituting s for s . Thus, for any ˇ with s D s,

Qs.˛/ D
1

2
.˛ � ˇ/0D.2/;� .ˇ/.˛ � ˇ/CD

.1/
;� .ˇ/.˛ � ˇ/CD;� .ˇ/

In the domain Cs D f˛js .˛/ D sg,

D;� .˛/ D Qs.˛/

For each  > 0 and � 2 Rp , there can be one or several corresponding quadratics, Qs . If � … B;� , then Qs
is characterized by � and  . However, for � 2 B;� , the quadratic is not unique. Therefore, the following
reference determines the quadratic:

.; �; s/

Again following Madsen and Nielsen (1993), let .; �; s/ be a feasible reference if s is a -feasible sign
vector, where � 2 Cs , and let .; �; s/ be a solution reference if s is feasible and � minimizes D;� .

The smoothing algorithm for minimizing D�� is based on minimizing D;� for a set of decreasing  . For
each new value of  , information from the previous solution is used. Finally, when  is small enough, a
solution can be found by the following modified Newton-Raphson algorithm as stated by Madsen and Nielsen
(1993):
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1. Find an initial solution reference .;ˇ ; s/.

2. Repeat the following substeps until  D 0.

a) Decrease  .

b) Find a solution reference .;ˇ ; s/.

ˇ0 is the solution.

By default, the initial solution reference is found by letting ˇ be the least squares solution. Alternatively,
you can specify the initial solution reference with the INEST= option in the PROC QUANTREG statement.
Then  and s are chosen according to these initial values.

There are several approaches for determining a decreasing sequence of values of  . The QUANTREG
procedure uses a strategy by Madsen and Nielsen (1993). The computation that is uses is not significant
compared to the Newton-Raphson step. You can control the ratio of consecutive decreasing values of  by
specifying the RRATIO= suboption in the ALGORITHM= option in the PROC QUANTREG statement. By
default,

RRATIO D

8<:
0:1 if n � 10; 000 and p � 20
0:9 if p

n
� 0:1 or fn � 5; 000 and p � 300g

0:5 otherwise

For the L1 and quantile regression, it turns out that the smoothing algorithm is very efficient and competitive,
especially for a fat data set—namely, when p

n
> 0:05 and AA0 is dense. See Chen (2007) for a complete

smoothing algorithm and details.

Confidence Interval
The QUANTREG procedure provides three methods to compute confidence intervals for the regression
quantile parameter ˇ.�/: sparsity, rank, and resampling. The sparsity method is the most direct and the fastest,
but it involves estimation of the sparsity function, which is not robust for data that are not independently
and identically distributed. To deal with this problem, the QUANTREG procedure uses a local estimate of
the sparsity function to compute a Huber sandwich estimate. The rank method, which computes confidence
intervals by inverting the rank score test, does not suffer from this problem. However, the rank method uses
the simplex algorithm and is computationally expensive with large data sets. The resampling method, which
uses the bootstrap approach, addresses these problems, but at a computation cost.

Based on these properties, the QUANTREG uses a combination of the resampling and rank methods as
the default. For data sets that have more than either 5,000 observations or more than 20 variables, the
QUANTREG procedure uses the MCMB resampling method; otherwise it uses the rank method. You can
request a particular method by using the CI= option in the PROC QUANTREG statement.

Sparsity

Consider the linear model

yi D x0iˇ C �i
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Assume that f�ig, i D 1; : : : ; n, are iid with a distribution F and a density f D F 0, where f .F�1.�// > 0
in a neighborhood of � . Under some mild conditions,
p
n. Ǒ.�/ � ˇ.�//! N.0; !2.�; F /��1/

where !2.�; F / D �.1 � �/=f 2.F�1.�// and� D limn!1 n�1
P

xix0i (Koenker and Bassett 1982b).

This asymptotic distribution for the regression quantile Ǒ.�/ can be used to construct confidence intervals.
However, the reciprocal of the density function,

s.�/ D Œf .F�1.�//��1

which is called the sparsity function, must first be estimated.

Because

s.t/ D
d

dt
F�1.t/

s.t/ can be estimated by the difference quotient of the empirical quantile function—that is,

Osn.t/ D Œ OF
�1
n .t C hn/ � OF

�1
n .t � hn/�=2hn

where OFn is an estimate of F�1 and hn is a bandwidth that tends to 0 as n!1.

The QUANTREG procedure provides two bandwidth methods. The Bofinger bandwidth

hn D n
�1=5.

4:5s2.t/

.s.2/.t//2
/1=5

is an optimizer of mean squared error for standard density estimation. The Hall-Sheather bandwidth

hn D n
�1=3z2=3˛ .

1:5s.t/

s.2/.t/
/1=3

is based on Edgeworth expansions for studentized quantiles, where s.2/.t/ is the second derivative of s.t/
and z˛ satisfies ˆ.z˛/ D 1 � ˛=2 for the construction of 1 � ˛ confidence intervals. The following quantity
is not sensitive to f and can be estimated by assuming f is Gaussian:

s.t/

s.2/.t/
D

f 2

2.f .1/=f /2 C Œ.f .1/=f /2 � f .2/=f �

OF�1 can be estimated in either of the following ways:

• by the empirical quantile function of the residuals from the quantile regression fit,

OF�1.t/ D r.i/; for t 2 Œ.i � 1/=n; i=n/;

• by the empirical quantile function of regression proposed by Bassett and Koenker (1982),

OF�1.t/ D Nx0 Ǒ.t/
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The QUANTREG procedure interpolates the first empirical quantile function and produces the piecewise
linear version:

OF�1.t/ D

8<:
r.1/ if t 2 Œ0; 1=2n/
�r.iC1/ C .1 � �/r.i/ if t 2 Œ.2i � 1/=2n; .2i C 1/=2n/
r.n/ if t 2 Œ.2n � 1/; 1�

OF�1 is set to a constant if t ˙ hn falls outside Œ0; 1�.

This estimator of the sparsity function is sensitive to the iid assumption. Alternately, Koenker and Machado
(1999) consider the non-iid case. By assuming local linearity of the conditional quantile function Q.� jx/ in
x, they propose a local estimator of the density function by using the difference quotient. A Huber sandwich
estimate of the covariance and standard error is computed and used to construct the confidence intervals. One
difficulty with this method is the selection of the bandwidth when using the difference quotient. With a small
sample size, either the Bofinger or the Hall-Sheather bandwidth tends to be too large to assure local linearity
of the conditional quantile function. The QUANTREG procedure uses a heuristic bandwidth selection in
these cases.

By default, the QUANTREG procedure computes non-iid confidence intervals. You can request iid confidence
intervals by specifying the IID option in the PROC QUANTREG statement.

Inversion of Rank Tests

The classical theory of rank tests can be extended to test the hypothesis H0: ˇ2 D � in the linear regression
model y D X1ˇ1CX2ˇ2C�. Here, .X1;X2/ D A0. See Gutenbrunner and Jureckova (1992) for more details.
By inverting this test, confidence intervals can be computed for the regression quantiles that correspond to
ˇ2.

The rank score function Oan.t/ D . Oan1.t/; : : : ; Oann.t// can be obtained by solving the dual problem:

max
a
f.y � X2�/0ajX01a D .1 � t /X

0
1e; a 2 Œ0; 1�

n
g

For a fixed quantile � , integrating Oani .t/ with respect to the � -quantile score function

'� .t/ D � � I.t < �/

yields the � -quantile scores

Obni D �

Z 1

0

'� .t/d Oani .t/ D Oani .�/ � .1 � �/

Under the null hypothesis H0: ˇ2 D �,

Sn.�/ D n
�1=2X02 Obn.�/! N.0; �.1 � �/�n/

for large n, where�n D n�1X02.I � X1.X01X1/�1X01/X2.

Let

Tn.�/ D
1p

�.1 � �/
Sn.�/�

�1=2
n

Then Tn. Ǒ2.�// D 0 from the constraint A Oa D .1 � �/Ae in the full model. In order to obtain confidence
intervals for ˇ2, a critical value can be specified for Tn. The dual vector Oan.�/ is a piecewise constant in �,
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and � can be altered without compromising the optimality of Oan.�/ as long as the signs of the residuals in
the primal quantile regression problem do not change. When � gets to such a boundary, the solution does
change. But it can be restored by taking one simplex pivot. The process can continue in this way until Tn.�/
exceeds the specified critical value. Because Tn.�/ is piecewise constant, interpolation can be used to obtain
the desired level of confidence interval (Koenker and d’Orey 1994).

Resampling

The bootstrap can be implemented to compute confidence intervals for regression quantile estimates. As
in other regression applications, both the residual bootstrap and the xy-pair bootstrap can be used. The
former assumes iid random errors and resamples from the residuals, whereas the latter resamples xy pairs and
accommodates some forms of heteroscedasticity. Koenker (1994) considered a more interesting resampling
mechanism, resampling directly from the full regression quantile process, which he called the Heqf bootstrap.

In contrast with these bootstrap methods, Parzen, Wei, and Ying (1994) observed that the following estimating
equation for the � regression quantile is a pivotal quantity for the � quantile regression parameter ˇ� :

S.ˇ/ D n�1=2
nX
iD1

xi .� � I.yi � x0iˇ//

In other words, the distribution of S.ˇ/ can be generated exactly by a random vector U, which is a weighted
sum of independent, re-centered Bernoulli variables. They further showed that for large n, the distribution
of Ǒ.�/ � ˇ� can be approximated by the conditional distribution of ǑU � Ǒn.�/, where ǑU solves an
augmented quantile regression problem by using n + 1 observations that have xnC1 D �n�1=2u=� and ynC1
sufficiently large for a given realization of u. By exploiting the asymptotically pivotal role of the quantile
regression “gradient condition,” this approach also achieves some robustness to certain heteroscedasticity.

Although the bootstrap method by Parzen, Wei, and Ying (1994) is much simpler, it is too time-consuming for
relatively large data sets, especially for high-dimensional data sets. The QUANTREG procedure implements
a new, general resampling method developed by He and Hu (2002), which is called the Markov chain
marginal bootstrap (MCMB). For quantile regression, the MCMB method has the advantage that it solves p
one-dimensional equations instead of solving p-dimensional equations, as the previous bootstrap methods
do. This greatly improves the feasibility of the resampling method in computing confidence intervals for
regression quantiles.

Covariance-Correlation
You can specify the COVB and CORRB options in the MODEL statement to request covariance and
correlation matrices for the estimated parameters.

The QUANTREG procedure provides two methods for computing the covariance and correlation matrices of
the estimated parameters: an asymptotic method and a bootstrap method. Bootstrap covariance and correlation
matrices are computed when resampling confidence intervals are computed. Asymptotic covariance and
correlation matrices are computed when asymptotic confidence intervals are computed. The rank method for
confidence intervals does not provide a covariance-correlation estimate.
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Asymptotic Covariance-Correlation

This method corresponds to the sparsity method for the confidence intervals. For the sparsity function in the
computation of the asymptotic covariance and correlation, the QUANTREG procedure provides both iid and
non-iid estimates. By default, the QUANTREG procedure computes non-iid estimates.

Bootstrap Covariance-Correlation

This method corresponds to the resampling method for the confidence intervals. The Markov chain marginal
bootstrap (MCMB) method is used.

Linear Test
Consider the linear model

yi D x01iˇ1 C x02iˇ2 C �i

where ˇ1 and ˇ2 are p- and q-dimensional unknown parameters and f�ig, i D 1; : : : ; n, are errors with
unknown density function fi . Let x0i D .x

0
1i ; x

0
2i /, and let Ǒ1.�/ and Ǒ2.�/ be the parameter estimates for

ˇ1 and ˇ2, respectively at the � quantile. The covariance matrix� for the parameter estimates is partitioned
correspondingly as�ij with i D 1; 2I j D 1; 2; and�22 D .�22 ��21��111�12/

�1:

Testing Effects of Covariates

Three tests are available in the QUANTREG procedure for the linear null hypothesis H0 W ˇ2 D 0 at the �
quantile:

• The Wald test statistic, which is based on the estimated coefficients for the unrestricted model, is given
by

TW .�/ D Ǒ
0
2.�/
O†.�/

�1
Ǒ
2.�/

where O†.�/ is an estimator of the covariance of Ǒ2.�/. The QUANTREG procedure provides two
estimators for the covariance, as described in the previous section. The estimator that is based on the
asymptotic covariance is

O†.�/ D
1

n
O!.�/2�22

where O!.�/ D
p
�.1 � �/Os.�/ and Os.�/ is the estimated sparsity function. The estimator that is based

on the bootstrap covariance is the empirical covariance of the MCMB samples.

• The likelihood ratio test is based on the difference between the objective function values in the restricted
and unrestricted models. Let D0.�/ D

P
�� .yi � xi Ǒ.�//, and let D1.�/ D

P
�� .yi � x1i Ǒ1.�//.

Set

TLR.�/ D 2.�.1 � �/Os.�//
�1.D1.�/ �D0.�//

where Os.�/ is the estimated sparsity function.
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• The rank test statistic is given by

TR.�/ D S0nM�1n Sn=A2.'/

where

Sn D n�1=2.X2 � OX2/0 Obn

‰ D diag.fi .Qyi .� jx1i ; x2i ///

OX2 D X1.X01‰X1/�1X01X2

Mn D .X2 � OX2/.X2 � OX2/0=n

Obni D
Z 1

0

Oani .t/d'.t/

Oa.t/ D max
a
fy0ajX01a D .1 � t /X

0
1e; a 2 Œ0; 1�

n
g

A2.'/ D

Z 1

0

.'.t/ � N'.t//2dt

N'.t/ D

Z 1

0

'.t/dt

and '.t/ is one of the following score functions:

– Wilcoxon scores: �.t/ D t � 1=2

– normal scores: �.t/ D ˆ�1.t/, where ˆ is the normal distribution function

– sign scores: �.t/ D 1=2sign.t � 1=2/

– tau scores: �� .t/ D � � I .t < �/.

The rank test statistic TR.�/, unlike Wald tests or likelihood ratio tests, requires no estimation of the
nuisance parameter fi under iid error models (Gutenbrunner et al. 1993).

Koenker and Machado (1999) prove that the three test statistics (TW .�/; TLR.�/, and TR.�/) are asymp-
totically equivalent and that their distributions converge to �2q under the null hypothesis, where q is the
dimension of ˇ2.

Testing for Heteroscedasticity

After you obtain the parameter estimates for several quantiles specified in the MODEL statement, you can
test whether there are significant differences for the estimates for the same covariates across the quantiles. For
example, if you want to test whether the parameters ˇ2 are the same across quantiles, the null hypothesis H0
can be written as ˇ2.�1/ D ::: D ˇ2.�k/, where �j ; j D 1; :::; k; are the quantiles specified in the MODEL
statement. See Koenker and Bassett (1982a) for details.
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Leverage Point and Outlier Detection
The QUANTREG procedure uses robust multivariate location and scale estimates for leverage-point detection.

Mahalanobis distance is defined as

MD.xi / D Œ.xi � Nx/0 NC.A/�1.xi � Nx/�1=2

where Nx D 1
n

Pn
iD1 xi and NC.A/ D 1

n�1

Pn
iD1.xi � Nx/

0.xi � Nx/ are the empirical multivariate location and
scale, respectively. Here, xi D .xi1; : : : ; xi.p�1//0 does not include the intercept variable. The relationship
between the Mahalanobis distance MD.xi / and the matrix H D .hij / D A0.AA0/�1A is

hi i D
1

n � 1
MD2i C

1

n

Robust distance is defined as

RD.xi / D Œ.xi � T.A//0C.A/�1.xi � T.A//�1=2

where T.A/ and C.A/ are robust multivariate location and scale estimates that are computed according to the
minimum covariance determinant (MCD) method of Rousseeuw and Van Driessen (1999).

These distances are used to detect leverage points. You can use the LEVERAGE and DIAGNOSTICS options
in the MODEL statement to request leverage-point and outlier diagnostics, respectively. Two new variables,
Leverage and Outlier, respectively, are created and saved in an output data set that is specified in the OUTPUT
statement.

Let C.p/ D
q
�2pI1�˛ be the cutoff value. The variable LEVERAGE is defined as

LEVERAGE D
�
0 if RD.xi / � C.p/
1 otherwise

You can specify a cutoff value in the LEVERAGE option in the MODEL statement.

Residuals ri ; i D 1; : : : ; n, that are based on quantile regression estimates are used to detect vertical outliers.
The variable OUTLIER is defined as

OUTLIER D
�
0 if jri j � k�
1 otherwise

You can specify the multiplier k of the cutoff value in the CUTOFF= option in the MODEL statement. You
can specify the scale � in the SCALE= option in the MODEL statement. By default, k = 3 and the scale � is
computed as the corrected median of the absolute residuals:

� D medianfjri j=ˇ0; i D 1; : : : ; ng

where ˇ0 D ˆ�1.0:75/ is an adjustment constant for consistency when the normal distribution is used.

An ODS table called DIAGNOSTICS contains the Leverage and Outlier variables.
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INEST= Data Set
The INEST= data set specifies initial estimates for all the parameters in the model. The INEST= data set
must contain the intercept variable (named Intercept) and all independent variables in the MODEL statement.

If BY processing is used, the INEST= data set should also include the BY variables, and there must be at
least one observation for each BY group. If there is more than one observation in one BY group, the first one
read is used for that BY group.

If the INEST= data set also contains the _TYPE_ variable, only observations with the _TYPE_ value
'PARMS' are used as starting values.

You can specify starting values for the interior point algorithm or the smoothing algorithm in the INEST=
data set. The INEST= data set has the same structure as the OUTEST= data set, but it is not required to
have all the variables or observations that appear in the OUTEST= data set. One simple use of the INEST=
option is passing the previous OUTEST= data set directly to the next model as an INEST= data set, assuming
that the two models have the same parameterization. If you specify more than one quantile in the MODEL
statement, the same initial values are used for all quantiles.

OUTEST= Data Set
The OUTEST= data set contains parameter estimates for the specified model with all quantiles. A set of
observations is created for each quantile specified. You can also specify a label in the MODEL statement to
distinguish between the estimates for different models that are used by the QUANTREG procedure.

If the QUANTREG procedure does not produce valid solutions, the parameter estimates are set to missing in
the OUTEST data set.

If this data set is created, it contains all the variables that are specified in the MODEL statement and the BY
statement. Each observation consists of parameter values for a specified quantile, and the dependent variable
has the value –1.

The following variables are also added to the data set:

_MODEL_ a character variable of length 8 that contains the label of the MODEL statement, if
present. Otherwise, the variable’s value is blank.

_ALGORITHM_ a character variable of length 8 that contains the name of the algorithm that is used for
computing the parameter estimates, either SIMPLEX, INTERIOR, or SMOOTH.

_TYPE_ a character variable of length 8 that contains the type of the observation. This variable
is fixed as PARMS to indicate that the observation includes parameter estimates.

_STATUS_ a character variable of length 12 that contains the status of model fitting (either
NORMAL, NOUNIQUE, or NOVALID).

Intercept a numeric variable that contains the intercept parameter estimates.

_QUANTILE_ a numeric variable that contains the specified quantile levels.

Any specified BY variables are also added to the OUTEST= data set.
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Computational Resources
The various algorithms need different amounts of memory for working space. Let p be the number of
parameters that are estimated, n be the number of observations that are used in the model estimation, and s be
the size (in bytes) of the double data type.

For the simplex algorithm, the minimum working space (in bytes) that is needed is

.2np C 6nC 10p/s

For the interior point algorithm, the minimum working space (in bytes) that is needed is

.np C p2 C 13nC 4p/s

For the smoothing algorithm, the minimum working space (in bytes) that is needed is

.np C p2 C 6nC 4p/s

For the last two algorithms, if you want to use preprocessing, the following additional amount of working
space (in bytes) is needed:

.np C 6nC 2p/s

If sufficient space is available, the input data set is kept in memory. Otherwise, the input data set is reread as
necessary, and the execution time of the procedure increases substantially.

ODS Table Names
The QUANTREG procedure assigns a name to each table it creates. You can specify these names when you
use the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in
the Table 83.9.

Table 83.9 ODS Tables Produced in PROC QUANTREG
ODS Table Name Description Statement Option
ClassLevels Classification variable levels CLASS Default
CorrB Parameter estimate correlation matrix MODEL CORRB
CovB Parameter estimate covariance matrix MODEL COVB
Diagnostics Outlier diagnostics MODEL DIAGNOSTICS
DiagSummary Summary of the outlier diagnostics MODEL DIAGNOSTICS
IPIterHistory Iteration history (interior point) MODEL ITPRINT
ModelInfo Model information MODEL Default
NObs Number of observations PROC Default
ObjFunction Objective function MODEL Default
ParameterEstimates Parameter estimates MODEL Default
ParmInfo Parameter indices MODEL Default
PerfSettings Performance settings PERFORMANCE DETAILS
ProcessEst Quantile process estimates MODEL QUANTILE=
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Table 83.9 (continued)
ODS Table Name Description Statement Option
ProcessObj Objective function for quantile process MODEL QUANTILE=
SMIterHistory Iteration history (smoothing) MODEL ITPRINT
SummaryStatistics Summary statistics for model variables MODEL Default
Tests Results for tests TEST Default
ScalableTiming Timing details PERFORMANCE DETAILS

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

For a single quantile, two plots are particularly useful in revealing outliers and leverage points: a scatter plot
of the standardized residuals for the specified quantile against the robust distances and a scatter plot of the
robust distances against the classical Mahalanobis distances. You can request these two plots by using the
PLOT=RDPLOT and PLOT=DDPLOT options, respectively.

You can also request a normal quantile-quantile plot and a histogram of the standardized residuals for the
specified quantile by using the PLOT=QQPLOT and PLOT=HISTOGRAM options, respectively.

You can request a plot of fitted conditional quantiles by the single continuous variable that is specified in the
model by using the PLOT=FITPLOT option.

All these plots can be requested by specifying corresponding plot options in either the PROC QUANTREG
statement or the MODEL statement. If you specify same plot options in both statements, options in the
PROC QUANTREG statement override options in the MODEL statement.

You can specify the PLOT=QUANTPLOT option only in the MODEL statement to request a quantile process
plot with confidence bands.

The plot options in the PROC QUANTREG statement and the MODEL statement are summarized in
Table 83.10. See the PLOT= option in the PROC QUANTREG statement and the PLOT= option in the
MODEL statement for details.
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Table 83.10 Options for Plots

Keyword Plot
ALL All appropriate plots

DDPLOT Robust distance versus Mahalanobis distance

FITPLOT Conditional quantile fit versus independent variable

HISTOGRAM Histogram of standardized robust residuals

NONE No plot

QUANTPLOT Scatter plot of regression quantile

QQPLOT Q-Q plot of standardized robust residuals

RDPLOT Standardized robust residual versus robust distance

The following subsections provide information about these graphs.

ODS Graph Names

The QUANTREG procedure assigns a name to each graph it creates. You can use these names to refer
to the graphs when you use ODS. The names along with the required statements and options are listed in
Table 83.11.

Table 83.11 Graphs Produced by PROC QUANTREG

ODS Graph Name Plot Description Statement Option
DDPlot Robust distance versus Mahalanobis dis-

tance
PROC MODEL DDPLOT

FitPlot Quantile fit versus independent variable PROC MODEL FITPLOT
Histogram Histogram of standardized robust residu-

als
PROC MODEL HISTOGRAM

QQPlot Q-Q plot of standardized robust residuals PROC MODEL QQPLOT
QuantPanel Panel of quantile plots with confidence

limits
MODEL QUANTPLOT

QuantPlot Scatter plot for regression quantiles with
confidence limits

MODEL QUANTPLOT
UNPACK

RDPlot Standardized robust residual versus robust
distance

PROC MODEL RDPLOT

Fit Plot

When the model has a single independent continuous variable (with or without the intercept), the QUANTREG
procedure automatically creates a plot of fitted conditional quantiles against this independent variable for one
or more quantiles that are specified in the MODEL statement.
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The following example reuses the trout data set in the section “Analysis of Fish-Habitat Relationships” on
page 6832 to show the fit plot for one or several quantiles:

ods graphics on;

proc quantreg data=trout ci=resampling;
model LnDensity = WDRatio / quantile=0.9 seed=1268;

run;

proc quantreg data=trout ci=resampling;
model LnDensity = WDRatio / quantile=0.5 0.75 0.9 seed=1268;

run;

For a single quantile, the confidence limits for the fitted conditional quantiles are also plotted if you specify
the CI=RESAMPLING or CI=SPARSITY option. (See Figure 83.14.) For multiple quantiles, confidence
limits are not plotted by default. (See Figure 83.15.) You can add the confidence limits on the plot by
specifying the option PLOT=FITPLOT(SHOWLIMITS).

The QUANTREG procedure also provides fit plots for quantile regression splines and polynomials if they are
based on a single continuous variable. (See Example 83.4 and Example 83.5 for some examples.)

Figure 83.14 Fit Plot with Confidence Limits



ODS Graphics F 6877

Figure 83.15 Fit Plot for Multiple Quantiles

Quantile Process Plot

A quantile process plot is a scatter plot of an estimated regression parameter against a quantile. You can
request this plot by specifying the PLOT=QUANTPLOT option in the MODEL statement when multiple
regression quantiles are computed or when the entire quantile process is computed. Quantile process plots
are often used to check model variations at different quantiles, which is usually called model heterogeneity.

By default, panels are used to hold multiple process plots (up to four in each panel). You can use the UNPACK
option to request individual process plots. Figure 83.10 in the section “Analysis of Fish-Habitat Relationships”
on page 6832 shows a panel that includes two quantile process plots. Output 83.2.9 in Example 83.2 shows a
single quantile process plot. Example 83.3 demonstrates more quantile process plots and their usage.

Distance-Distance Plot

The distance-distance plot (DDPLOT) is mainly used for leverage-point diagnostics. It is a scatter plot of
the robust distances against the classical Mahalanobis distances for the continuous independent variables.
For more information about the robust distance, see the section “Leverage Point and Outlier Detection” on
page 6871. If is a classification variable is specified in the model, this plot is not created.

You can use the PLOT=DDPLOT option to request this plot. The following statements use the growth data
set in Example 83.2 to create a single plot, which is shown in Output 83.2.4 in Example 83.2:
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ods graphics on;

proc quantreg data=growth ci=resampling plot=ddplot;
model GDP = lgdp2 mse2 fse2 fhe2 mhe2 lexp2

lintr2 gedy2 Iy2 gcony2 lblakp2 pol2 ttrad2
/ quantile=.5 diagnostics leverage(cutoff=8) seed=1268;

id Country;
run;

The reference lines represent the cutoff values. The diagonal line is also drawn to show the distribution of the
distances. By default, all outliers and leverage points are labeled with observation numbers. To change the
default, you can use the LABEL= option as described in Table 83.5.

Residual-Distance Plot

The residual-distance plot (RDPLOT) is used for both outlier and leverage-point diagnostics. It is a scatter
plot of the standardized residuals against the robust distances. For more information about the robust distance,
see the section “Leverage Point and Outlier Detection” on page 6871. If a classification variable is specified
in the model, this plot is not created.

You can use the PLOT=RDPLOT option to request this plot. The following statements use the growth data
set in Example 83.2 to create a single plot, which is shown in Output 83.2.3 in Example 83.2:

ods graphics on;

proc quantreg data=growth ci=resampling plot=rdplot;
model GDP = lgdp2 mse2 fse2 fhe2 mhe2 lexp2

lintr2 gedy2 Iy2 gcony2 lblakp2 pol2 ttrad2
/ quantile=.5 diagnostics leverage(cutoff=8) seed=1268;

id Country;
run;

The reference lines represent the cutoff values. By default, all outliers and leverage points are labeled with
observation numbers. To change the default, you can use the LABEL= option as described in Table 83.5.

If you specify ID variables instead of observation numbers in the ID statement, the values of the first ID
variable are used as labels.

Histogram and Q-Q Plot

PROC QUANTREG produces a histogram and a Q-Q plot for the standardized residuals. The histogram
is superimposed with a normal density curve and a kernel density curve. Using the growth data set in
Example 83.2, the following statements create the plot that is shown in Output 83.2.5 in Example 83.2:

ods graphics on;

proc quantreg data=growth ci=resampling plot=histogram;
model GDP = lgdp2 mse2 fse2 fhe2 mhe2 lexp2

lintr2 gedy2 Iy2 gcony2 lblakp2 pol2 ttrad2
/ quantile=.5 diagnostics leverage(cutoff=8) seed=1268;

id Country;
run;
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Examples: QUANTREG Procedure

Example 83.1: Comparison of Algorithms
This example illustrates and compares the three algorithms for regression estimation available in the
QUANTREG procedure. The simplex algorithm is the default because of its stability. Although this
algorithm is slower than the interior point and smoothing algorithms for large data sets, the difference is not
as significant for data sets with fewer than 5,000 observations and 50 variables. The simplex algorithm can
also compute the entire quantile process, which is shown in Example 83.2.

The following statements generate 1,000 random observations. The first 950 observations are from a linear
model, and the last 50 observations are significantly biased in the y-direction. In other words, 5% of the
observations are contaminated with outliers.

data a (drop=i);
do i=1 to 1000;

x1=rannor(1234);
x2=rannor(1234);
e=rannor(1234);
if i > 950 then y=100 + 10*e;
else y=10 + 5*x1 + 3*x2 + 0.5 * e;
output;

end;
run;

The following statements invoke the QUANTREG procedure to fit a median regression model with the default
simplex algorithm. They produce the results that are shown in Output 83.1.1 through Output 83.1.3.

proc quantreg data=a;
model y = x1 x2;

run;

Output 83.1.1 displays model information and summary statistics for variables in the model. It indicates that
the simplex algorithm is used to compute the optimal solution and that the rank method is used to compute
confidence intervals of the parameters.

By default, the QUANTREG procedure fits a median regression model. This is indicated by the quantile
value 0.5 in Output 83.1.2, which also displays the objective function value and the predicted value of the
response at the means of the covariates.

Output 83.1.3 displays parameter estimates and confidence limits. These estimates are reasonable, which
indicates that median regression is robust to the 50 outliers.
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Output 83.1.1 Model Fit Information and Summary Statistics from the Simplex Algorithm

BMI Percentiles for Men: 2-80 Years Old

The QUANTREG Procedure

BMI Percentiles for Men: 2-80 Years Old

The QUANTREG Procedure

Model Information

Data Set WORK.A

Dependent Variable y

Number of Independent Variables 2

Number of Observations 1000

Optimization Algorithm Simplex

Method for Confidence Limits Inv_Rank

Summary Statistics

Variable Q1 Median Q3 Mean
Standard
Deviation MAD

x1 -0.6546 0.0230 0.7099 0.0222 0.9933 1.0085

x2 -0.7891 -0.0747 0.6839 -0.0401 1.0394 1.0857

y 6.1045 10.6936 14.9569 14.4864 20.4087 6.5696

Output 83.1.2 Quantile and Objective Function from the Simplex Algorithm

Quantile Level and Objective
Function

Quantile Level 0.5

Objective Function 2441.1927

Predicted Value at Mean 10.0259

Output 83.1.3 Parameter Estimates from the Simplex Algorithm

Parameter Estimates

Parameter DF Estimate

95%
Confidence

Limits

Intercept 1 10.0364 9.9959 10.0756

x1 1 5.0106 4.9602 5.0388

x2 1 3.0294 2.9944 3.0630

The following statements refit the model by using the interior point algorithm:

proc quantreg algorithm=interior(tolerance=1e-6)
ci=none data=a;

model y = x1 x2 / itprint nosummary;
run;

The TOLERANCE= option specifies the stopping criterion for convergence of the interior point algorithm,
which is controlled by the duality gap. Although the default criterion is 1E–8, the value 1E–6 is often
sufficient. The ITPRINT option requests the iteration history for the algorithm. The option CI=NONE
suppresses the computation of confidence limits, and the option NOSUMMARY suppresses the table of
summary statistics.
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Output 83.1.4 displays model fit information.

Output 83.1.4 Model Fit Information from the Interior Point Algorithm

BMI Percentiles for Men: 2-80 Years Old

The QUANTREG Procedure

BMI Percentiles for Men: 2-80 Years Old

The QUANTREG Procedure

Model Information

Data Set WORK.A

Dependent Variable y

Number of Independent Variables 2

Number of Observations 1000

Optimization Algorithm Interior

Output 83.1.5 displays the iteration history of the interior point algorithm. Note that the duality gap is less
than 1E–6 in the final iteration. The table also provides the number of iterations, the number of corrections,
the primal step length, the dual step length, and the objective function value at each iteration.

Output 83.1.5 Iteration History for the Interior Point Algorithm

Iteration History of Interior Point Algorithm

Duality
Gap Iter Correction

Primal
Step

Dual
Step

Objective
Function

2623 1 1 0.3113 0.4910 3303.4688

3215 2 2 0.0427 1.0000 2461.3774

1127 3 3 0.9882 0.3653 2451.1337

760.88658 4 4 0.3381 1.0000 2442.8104

77.10290 5 5 1.0000 0.8916 2441.2627

8.43666 6 6 0.9370 0.8381 2441.2085

1.82868 7 7 0.8375 0.7674 2441.1985

0.40584 8 8 0.6980 0.8636 2441.1948

0.09550 9 9 0.9438 0.5955 2441.1930

0.00665 10 10 0.9818 0.9304 2441.1927

0.0002248 11 11 0.9179 0.9994 2441.1927

5.44651E-8 12 12 1.0000 1.0000 2441.1927

Output 83.1.6 displays the parameter estimates that are obtained by using the interior point algorithm. These
estimates are identical to those obtained by using the simplex algorithm.

Output 83.1.6 Parameter Estimates from the Interior Point Algorithm

Parameter Estimates

Parameter DF Estimate

Intercept 1 10.0364

x1 1 5.0106

x2 1 3.0294

The following statements refit the model by using the smoothing algorithm. They produce the results that are
shown in Output 83.1.7 through Output 83.1.9.
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proc quantreg algorithm=smooth(rratio=.5) ci=none data=a;
model y = x1 x2 / itprint nosummary;

run;

The RRATIO= option controls the reduction speed of the threshold. Output 83.1.7 displays the model fit
information.

Output 83.1.7 Model Fit Information from the Smoothing Algorithm

BMI Percentiles for Men: 2-80 Years Old

The QUANTREG Procedure

BMI Percentiles for Men: 2-80 Years Old

The QUANTREG Procedure

Model Information

Data Set WORK.A

Dependent Variable y

Number of Independent Variables 2

Number of Observations 1000

Optimization Algorithm Smooth

Output 83.1.8 displays the iteration history of the smoothing algorithm. The threshold controls the con-
vergence. Note that the thresholds decrease by a factor of at least 0.5, which is the value specified in the
RRATIO= option. The table also provides the number of iterations, the number of factorizations, the number
of full updates, the number of partial updates, and the objective function value in each iteration. For details
concerning the smoothing algorithm, see Chen (2007).

Output 83.1.8 Iteration History for the Smoothing Algorithm

Iteration History of Smoothing Algorithm

Threshold Iter Refac
Full

Update
Partial

Update
Objective
Function

227.24557 1 1 1000 0 4267.0988

116.94090 15 4 1480 2420 3631.9653

1.44064 17 4 1480 2583 2441.4719

0.72032 20 5 1980 2598 2441.3315

0.36016 22 6 2248 2607 2441.2369

0.18008 24 7 2376 2608 2441.2056

0.09004 26 8 2446 2613 2441.1997

0.04502 28 9 2481 2617 2441.1971

0.02251 30 10 2497 2618 2441.1956

0.01126 32 11 2505 2620 2441.1946

0.00563 34 12 2510 2621 2441.1933

0.00281 35 13 2514 2621 2441.1930

0.0000846 36 14 2517 2621 2441.1927

1E-12 37 14 2517 2621 2441.1927
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Output 83.1.9 displays the parameter estimates that are obtained by using the smoothing algorithm. These
estimates are identical to those obtained by using the simplex and interior point algorithms. All three
algorithms should have the same parameter estimates unless the problem does not have a unique solution.

Output 83.1.9 Parameter Estimates from the Smoothing Algorithm

Parameter Estimates

Parameter DF Estimate

Intercept 1 10.0364

x1 1 5.0106

x2 1 3.0294

The interior point algorithm and the smoothing algorithm offer better performance than the simplex algorithm
for large data sets. For more information about choosing an appropriate algorithm on the basis of data set size.
see Chen (2004). All three algorithms should have the same parameter estimates, unless the optimization
problem has multiple solutions.

Example 83.2: Quantile Regression for Econometric Growth Data
This example uses a SAS data set named Growth, which contains economic growth rates for countries during
two time periods: 1965–1975 and 1975–1985. The data come from a study by Barro and Lee (1994) and
have also been analyzed by Koenker and Machado (1999).

There are 161 observations and 15 variables in the data set. The variables, which are listed in the following
table, include the national growth rates (GDP) for the two periods, 13 covariates, and a name variable
(Country) for identifying the countries in one of the two periods.

Variable Description
Country Country’s name and period
GDP Annual change per capita in gross domestic product (GDP)
lgdp2 Initial per capita GDP
mse2 Male secondary education
fse2 Female secondary education
fhe2 Female higher education
mhe2 Male higher education
lexp2 Life expectancy
lintr2 Human capital
gedy2 Education=GDP
Iy2 Investment=GDP
gcony2 Public consumption=GDP
lblakp2 Black market premium
pol2 Political instability
ttrad2 Growth rate terms trade

The goal is to study the effect of the covariates on GDP. The following statements request median regression
for a preliminary exploration. They produce the results that are in Output 83.2.1 through Output 83.2.6.
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data growth;
length Country$ 22;
input Country GDP lgdp2 mse2 fse2 fhe2 mhe2 lexp2 lintr2 gedy2

Iy2 gcony2 lblakp2 pol2 ttrad2 @@;
datalines;

Algeria75 .0415 7.330 .1320 .0670 .0050 .0220 3.880 .1138 .0382
.1898 .0601 .3823 .0833 .1001

Algeria85 .0244 7.745 .2760 .0740 .0070 .0370 3.978 -.107 .0437
.3057 .0850 .9386 .0000 .0657

Argentina75 .0187 8.220 .7850 .6200 .0740 .1660 4.181 .4060 .0221
.1505 .0596 .1924 .3575 -.011

Argentina85 -.014 8.407 .9360 .9020 .1320 .2030 4.211 .1914 .0243
.1467 .0314 .3085 .7010 -.052

Australia75 .0259 9.101 2.541 2.353 .0880 .2070 4.263 6.937 .0348
.3272 .0257 .0000 .0080 -.016

... more lines ...

Zambia75 .0120 6.989 .3760 .1190 .0130 .0420 3.757 .4388 .0339
.3688 .2513 .3945 .0000 -.032

Zambia85 -.046 7.109 .4200 .2740 .0110 .0270 3.854 .8812 .0477
.1632 .2637 .6467 .0000 -.033

Zimbabwe75 .0320 6.860 .1450 .0170 .0080 .0450 3.833 .7156 .0337
.2276 .0246 .1997 .0000 -.040

Zimbabwe85 -.011 7.180 .2200 .0650 .0060 .0400 3.944 .9296 .0520
.1559 .0518 .7862 .7161 -.024

;

ods graphics on;

proc quantreg data=growth ci=resampling
plots=(rdplot ddplot reshistogram);

model GDP = lgdp2 mse2 fse2 fhe2 mhe2 lexp2
lintr2 gedy2 Iy2 gcony2 lblakp2 pol2 ttrad2
/ quantile=.5 diagnostics leverage(cutoff=8) seed=1268;

id Country;
test_lgdp2: test lgdp2 / lr wald;

run;

The QUANTREG procedure uses the default simplex algorithm to estimate the parameters and uses the
MCMB resampling method to compute confidence limits.

Output 83.2.1 displays model information and summary statistics for the variables in the model. Six summary
statistics are computed, including the median and the median absolute deviation (MAD), which are robust
measures of univariate location and scale, respectively. For the variable lintr2 (human capital), both the
mean and standard deviation are much larger than the corresponding robust measures (median and MAD),
indicating that this variable might have outliers.
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Output 83.2.1 Model Information and Summary Statistics

BMI Percentiles for Men: 2-80 Years Old

The QUANTREG Procedure

BMI Percentiles for Men: 2-80 Years Old

The QUANTREG Procedure

Model Information

Data Set WORK.GROWTH

Dependent Variable GDP

Number of Independent Variables 13

Number of Observations 161

Optimization Algorithm Simplex

Method for Confidence Limits Resampling

Summary Statistics

Variable Q1 Median Q3 Mean
Standard
Deviation MAD

lgdp2 6.9890 7.7450 8.6080 7.7905 0.9543 1.1579

mse2 0.3160 0.7230 1.2675 0.9666 0.8574 0.6835

fse2 0.1270 0.4230 0.9835 0.7117 0.8331 0.5011

fhe2 0.0110 0.0350 0.0890 0.0792 0.1216 0.0400

mhe2 0.0400 0.1060 0.2060 0.1584 0.1752 0.1127

lexp2 3.8670 4.0640 4.2430 4.0440 0.2028 0.2728

lintr2 0.00160 0.5604 1.8805 1.4625 2.5491 1.0058

gedy2 0.0248 0.0343 0.0466 0.0360 0.0141 0.0151

Iy2 0.1396 0.1955 0.2671 0.2010 0.0877 0.0981

gcony2 0.0480 0.0767 0.1276 0.0914 0.0617 0.0566

lblakp2 0 0.0696 0.2407 0.1916 0.3070 0.1032

pol2 0 0.0500 0.2429 0.1683 0.2409 0.0741

ttrad2 -0.0240 -0.0100 0.00730 -0.00570 0.0375 0.0239

GDP 0.00290 0.0196 0.0351 0.0191 0.0248 0.0237
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Output 83.2.2 displays the parameter estimates and 95% confidence limits that are computed with the rank
method.

Output 83.2.2 Parameter Estimates

Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits t Value Pr > |t|

Intercept 1 -0.0488 0.0733 -0.1937 0.0961 -0.67 0.5065

lgdp2 1 -0.0269 0.0041 -0.0350 -0.0188 -6.58 <.0001

mse2 1 0.0110 0.0080 -0.0048 0.0269 1.38 0.1710

fse2 1 -0.0011 0.0088 -0.0185 0.0162 -0.13 0.8960

fhe2 1 0.0148 0.0321 -0.0485 0.0782 0.46 0.6441

mhe2 1 0.0043 0.0268 -0.0487 0.0573 0.16 0.8735

lexp2 1 0.0683 0.0229 0.0232 0.1135 2.99 0.0033

lintr2 1 -0.0022 0.0015 -0.0052 0.0008 -1.44 0.1513

gedy2 1 -0.0508 0.1654 -0.3777 0.2760 -0.31 0.7589

Iy2 1 0.0723 0.0248 0.0233 0.1213 2.92 0.0041

gcony2 1 -0.0935 0.0382 -0.1690 -0.0181 -2.45 0.0154

lblakp2 1 -0.0269 0.0084 -0.0435 -0.0104 -3.22 0.0016

pol2 1 -0.0301 0.0093 -0.0485 -0.0117 -3.23 0.0015

ttrad2 1 0.1613 0.0740 0.0149 0.3076 2.18 0.0310

Diagnostics for the median regression fit, which are requested in the PLOTS= option, are displayed in
Output 83.2.3 and Output 83.2.4. Output 83.2.3 plots the standardized residuals from median regression
against the robust MCD distance. This display is used to diagnose both vertical outliers and horizontal
leverage points. Output 83.2.4 plots the robust MCD distance against the Mahalanobis distance. This display
is used to diagnose leverage points.

The cutoff value 8, which is specified in the LEVERAGE option, is close to the maximum of the Mahalanobis
distance. Eighteen points are diagnosed as high leverage points, and almost all are countries with high
human capital, which is the major contributor to the high leverage as observed from the summary statistics.
Four points are diagnosed as outliers by using the default cutoff value of 3. However, these are not extreme
outliers.

A histogram of the standardized residuals and two fitted density curves are displayed in Output 83.2.5. This
output shows that median regression fits the data well.
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Output 83.2.3 Plot of Residual versus Robust Distance

Output 83.2.4 Plot of Robust Distance versus Mahalanobis Distance
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Output 83.2.5 Histogram for Residuals

Tests of significance for the initial per-capita GDP (LGDP2) are shown in Output 83.2.6.

Output 83.2.6 Tests for Regression Coefficient

Test test_lgdp2 Results

Test
Test

Statistic DF Chi-Square Pr > ChiSq

Wald 43.2684 1 43.27 <.0001

Likelihood Ratio 36.3047 1 36.30 <.0001
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The QUANTREG procedure computes entire quantile processes for covariates when you specify QUAN-
TILE=PROCESS in the MODEL statement, as follows:

proc quantreg data=growth ci=resampling;
model GDP = lgdp2 mse2 fse2 fhe2 mhe2 lexp2 lintr2

gedy2 Iy2 gcony2 lblakp2 pol2 ttrad2
/ quantile=process plot=quantplot seed=1268;

run;

Confidence limits for quantile processes can be computed by using the sparsity or resampling methods.
But they cannot be computed by using the rank method, because the computation would be prohibitively
expensive.

A total of 14 quantile process plots are produced. Output 83.2.7 and Output 83.2.8 display two panels of
eight selected process plots. The 95% confidence bands are shaded.

Output 83.2.7 Quantile Processes with 95% Confidence Bands
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Output 83.2.8 Quantile Processes with 95% Confidence Bands

As pointed out by Koenker and Machado (1999), previous studies of the Barro growth data have focused on
the effect of the initial per-capita GDP on the growth of this variable (annual change in per-capita GDP). The
following statements request a single process plot for this effect:

proc quantreg data=growth ci=resampling;
model GDP = lgdp2 mse2 fse2 fhe2 mhe2 lexp2 lintr2

gedy2 Iy2 gcony2 lblakp2 pol2 ttrad2
/ quantile=process plot=quantplot(lgdp2) seed=1268;

run;
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The plot is shown in Output 83.2.9.

Output 83.2.9 Quantile Process Plot for LGDP2

The confidence bands here are computed by using the MCMB resampling method. In contrast, Koenker and
Machado (1999) used the rank method to compute confidence limits for a few selected points. Output 83.2.9
suggests that the effect of the initial level of GDP is relatively constant over the entire distribution, with a
slightly stronger effect in the upper tail.

The effects of other covariates are quite varied. An interesting covariate is public consumption divided by
GDP (gcony2) (first plot in second panel), which has a constant effect over the upper half of the distribution
and a larger effect in the lower tail. For an analysis of the effects of the other covariates, see Koenker and
Machado (1999).

Example 83.3: Quantile Regression Analysis of Birth-Weight Data
This example is patterned after a quantile regression analysis of covariates associated with birth weight
that was carried out by Koenker and Hallock (2001). Their study uses a subset of the June 1997 Detailed
Natality Data, which was published by the National Center for Health Statistics. The study demonstrates that
conditional quantile functions provide more complete information about the covariate effects than ordinary
least squares regression provides.

This example is based on Koenker and Hallock (2001); Abreveya (2001); it uses data for live, singleton births
to mothers in the United States who were recorded as black or white, and who were between the ages of
18 and 45. For convenience, this example uses 50,000 observations, which are randomly selected from the
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qualified observations. Observations that have missing data for any of the variables are deleted. The data are
available in the data set Sashelp.BWeight. The following step displays in Output 83.3.1 the variables in the
data set:

proc contents varnum data=sashelp.bweight;
ods select position;

run;

Output 83.3.1 Sashelp.BWeight Data Set

BMI Percentiles for Men: 2-80 Years Old

The CONTENTS Procedure

BMI Percentiles for Men: 2-80 Years Old

The CONTENTS Procedure

Variables in Creation Order

# Variable Type Len Label

1 Weight Num 8 Infant Birth Weight

2 Black Num 8 Black Mother

3 Married Num 8 Married Mother

4 Boy Num 8 Baby Boy

5 MomAge Num 8 Mother's Age

6 MomSmoke Num 8 Smoking Mother

7 CigsPerDay Num 8 Cigarettes Per Day

8 MomWtGain Num 8 Mother's Pregnancy Weight Gain

9 Visit Num 8 Prenatal Visit

10 MomEdLevel Num 8 Mother's Education Level

The following step creates descriptive labels for the values of the classification variables Visit and Mo-
mEdLevel:

proc format;
value vfmt 0 = 'No Visit' 1 = 'Second Trimester'

2 = 'Last Trimester' 3 = 'First Trimester';
value efmt 0 = 'High School' 1 = 'Some College'

2 = 'College' 3 = 'Less Than High School';
run;

There are four levels of maternal education. When you specify the ORDER=INTERNAL option, PROC
QUANTREG treats the highest unformatted value (3, which represents that the mother’s education level
is less than high school) as a reference level. The regression coefficients of other levels measure the effect
relative to this level. Likewise, there are four levels of prenatal medical care of the mother, and a first visit in
the first trimester serves as the reference level.

The following statements fit a regression model for 19 quantiles of birth weight, which are evenly spaced in
the interval .0; 1/. The model includes linear and quadratic effects for the age of the mother and for weight
gain during pregnancy.

ods graphics on;

proc quantreg ci=sparsity/iid algorithm=interior(tolerance=5.e-4)
data=sashelp.bweight order=internal;
class Visit MomEdLevel;
model Weight = Black Married Boy Visit MomEdLevel MomSmoke
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CigsPerDay MomAge MomAge*MomAge
MomWtGain MomWtGain*MomWtGain /
quantile= 0.05 to 0.95 by 0.05
plot=quantplot;
format Visit vfmt. MomEdLevel efmt.;

run;

Output 83.3.2 displays the model information and summary statistics for the variables in the model.

Output 83.3.2 Model Information and Summary Statistics

BMI Percentiles for Men: 2-80 Years Old

The QUANTREG Procedure

BMI Percentiles for Men: 2-80 Years Old

The QUANTREG Procedure

Model Information

Data Set SASHELP.BWEIGHT Infant Birth Weight

Dependent Variable Weight Infant Birth Weight

Number of Independent Variables 9

Number of Continuous Independent Variables 7

Number of Class Independent Variables 2

Number of Observations 50000

Optimization Algorithm Interior

Method for Confidence Limits Sparsity

Summary Statistics

Variable Q1 Median Q3 Mean
Standard
Deviation MAD

Black 0 0 0 0.1628 0.3692 0

Married 0 1.0000 1.0000 0.7126 0.4525 0

Boy 0 1.0000 1.0000 0.5158 0.4998 0

MomSmoke 0 0 0 0.1307 0.3370 0

CigsPerDay 0 0 0 1.4766 4.6541 0

MomAge -4.0000 0 5.0000 0.4161 5.7285 5.9304

MomAge*MomAge 4.0000 16.0000 49.0000 32.9877 39.2861 22.2390

MomWtGain -8.0000 0 9.0000 0.7092 12.8761 11.8608

MomWtGain*MomWtGain 16.0000 64.0000 196.0 166.3 298.8 88.9561

Weight 3062.0 3402.0 3720.0 3370.8 566.4 504.1

Among the 11 independent variables, Black, Married, Boy, and MomSmoke are binary variables. For these
variables, the mean represents the proportion in the category. The two continuous variables, MomAge and
MomWtGain, are centered at their medians, which are 27 and 30, respectively.

The quantile plots for the intercept and the other 15 factors with nonzero degrees of freedom are shown in the
following four panels. In each plot, the regression coefficient at a given quantile indicates the effect on birth
weight of a unit change in that factor, assuming that the other factors are fixed. The bands represent 95%
confidence intervals.
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Although the data set used here is a subset of the Natality data set, the results are quite similar to those of
Koenker and Hallock (2001) for the full data set.

In Output 83.3.3, the first plot is for the intercept. As explained by Koenker and Hallock (2001), the intercept
“may be interpreted as the estimated conditional quantile function of the birth-weight distribution of a girl
born to an unmarried, white mother with less than a high school education, who is 27 years old and had a
weight gain of 30 pounds, didn’t smoke, and had her first prenatal visit in the first trimester of the pregnancy.”

The second plot shows that infants born to black mothers weigh less than infants born to white mothers,
especially in the lower tail of the birth-weight distribution. The third plot shows that marital status has a large
positive effect on birth weight, especially in the lower tail. The fourth plot shows that boys weigh more than
girls for any chosen quantile; this difference is smaller in the lower quantiles of the distribution.

In Output 83.3.4, the first three plots deal with prenatal care. Compared with babies born to mothers who
had a prenatal visit in the first trimester, babies born to mothers who received no prenatal care weigh less,
especially in the lower quantiles of the birth-weight distributions. As noted by Koenker and Hallock (2001),
“babies born to mothers who delayed prenatal visits until the second or third trimester have substantially
higher birthweights in the lower tail than mothers who had a prenatal visit in the first trimester. This might
be interpreted as the self-selection effect of mothers confident about favorable outcomes.”

The fourth plot in Output 83.3.4 and the first two plots in Output 83.3.5 are for variables that are related to
education. Education beyond high school is associated with a positive effect on birth weight. The effect of
high school education is uniformly around 15 grams across the entire birth-weight distribution (this is a pure
location shift effect), whereas the effect of some college and college education is more positive in the lower
quantiles than the upper quantiles.

The remaining two plots in Output 83.3.5 show that smoking is associated with a large negative effect on
birth weight.

The linear and quadratic effects for the two continuous variables are shown in Output 83.3.6. Both of these
variables are centered at their median. At the lower quantiles, the quadratic effect of the mother’s age is more
concave. The optimal age at the first quantile is about 33, and the optimal age at the third quantile is about 38.
The effect of the mother’s weight gain is clearly positive, as indicated by the narrow confidence bands for
both linear and quadratic coefficients.

For more information about the covariate effects that are discovered by using quantile regression, see Koenker
and Hallock (2001).
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Output 83.3.3 Quantile Processes with 95% Confidence Bands

Output 83.3.4 Quantile Processes with 95% Confidence Bands
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Output 83.3.5 Quantile Processes with 95% Confidence Bands

Output 83.3.6 Quantile Processes with 95% Confidence Bands
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Example 83.4: Nonparametric Quantile Regression for Ozone Levels
Tracing seasonal trends in the level of tropospheric ozone is essential for predicting high-level periods,
observing long-term trends, and discovering potential changes in pollution. Traditional methods for modeling
seasonal effects are based on the conditional mean of ozone concentration. However, the upper conditional
quantiles are more critical from a public-health perspective. In this example, the QUANTREG procedure
fits conditional quantile curves for seasonal effects by using nonparametric quantile regression with cubic
B-splines.

The data used here are from Chock, Winkler, and Chen (2000), who studied the association between daily
mortality and ambient air pollutant concentrations in Pittsburgh, Pennsylvania. The data set ozone contains
the following two variables: Ozone, which represents the daily maximum one-hour ozone concentration
(ppm) and Days, which is an index of 1,095 days (3 years).

data ozone;
days = _n_;
input ozone @@;
datalines;

0.0060 0.0060 0.0320 0.0320 0.0320 0.0150 0.0150 0.0150 0.0200 0.0200
0.0160 0.0070 0.0270 0.0160 0.0150 0.0240 0.0220 0.0220 0.0220 0.0185
0.0150 0.0150 0.0110 0.0070 0.0070 0.0240 0.0380 0.0240 0.0265 0.0290
0.0310 0.0460 0.0360 0.0260 0.0300 0.0250 0.0280 0.0310 0.0370 0.0325

... more lines ...

0.0220 0.0210 0.0210 0.0130 0.0130 0.0130 0.0330 0.0330 0.0330 0.0325
0.0320 0.0320 0.0320 0.0120 0.0200 0.0200 0.0200 0.0320 0.0320 0.0250
0.0180 0.0180 0.0270 0.0270 0.0290
;

Output 83.4.1, which displays the time series plot of ozone concentration for the three years, shows a clear
seasonal pattern.

In this example, cubic B-splines are used to fit the seasonal effect. These splines are generated with 11 knots,
which split the 3 years into 12 seasons. The following statements create the spline basis and fit multiple
quantile regression spline curves:

ods graphics on;

proc quantreg data=ozone algorithm=smooth ci=none plot=fitplot(nodata);
effect sp = spline( days / knotmethod = list

(90 182 272 365 455 547 637 730 820 912 1002) );
model ozone = sp / quantile = 0.5 0.75 0.90 0.95 seed=1268;

run;
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Output 83.4.1 Time Series of Ozone Levels in Pittsburgh, Pennsylvania

The EFFECT statement creates spline bases for the variable Days. The KNOTMETHOD=LIST option
provides all internal knots for these bases. Cubic spline bases are generated by default. These bases are
treated as components of the spline effect sp, which is specified in the MODEL statement. Spline fits for four
quantiles are requested in the QUANTILE= option.

When ODS Graphics is enabled, the QUANTREG procedure automatically generates a fit plot, which
includes all fitted curves.

Output 83.4.2 displays these curves. The curves show that peak ozone levels occur in the summer. For the
three years 1989–1991, the median curve (labeled 50%) does not cross the 0.08 ppm line, which is the 1997
EPA eight-hour standard. The median curve and the 75% curve show a drop for the ozone concentration
levels in 1990. However, for the 90% and 95% curves, peak ozone levels tend to increase. This indicates that
there might have been more days with low ozone concentration in 1990, but the top 10% and 5% tend to have
higher ozone concentration levels.
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Output 83.4.2 Quantiles of Ozone Levels in Pittsburgh, Pennsylvania

The quantile curves also show that high ozone concentration in 1989 had a longer duration than in 1990 and
1991. This is indicated by the wider spread of the quantile curves in 1989.

Example 83.5: Quantile Polynomial Regression for Salary Data
This example uses the data set from a university union survey of salaries of professors in 1991. The survey
covered departments in US colleges and universities that list programs in statistics. The goal of this example
is to examine the relationship between faculty salaries and years of service.

The data include salaries and years of service for 459 professors. The scatter plot in Output 83.5.1 shows
that the relationship is not linear and that a quadratic or cubic regression curve is appropriate. Output 83.5.1
shows a cubic curve.

The curve in Output 83.5.1 does not adequately describe the conditional salary distributions and how they
change with length of service. Output 83.5.2 shows the 25th, 50th, and 75th percentiles for each number of
years, which gives a better picture of the conditional distributions.
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data salary;
input Salaries Years @@;
label Salaries='Salaries (1000s of dollars)';
datalines;

54.94 2 58.24 2 58.11 2 52.23 2 52.98 2 57.62 2
44.48 2 57.22 2 54.24 2 54.79 2 56.42 2 61.90 2
63.90 2 64.10 2 47.77 2 54.86 2 49.31 2 53.37 2
51.69 2 53.66 2 58.77 2 56.77 2 53.06 2 54.86 2
50.96 2 56.46 2 51.67 2 49.37 2 56.86 2 49.85 2

... more lines ...

85.72 25 64.87 25 51.76 25 51.11 25 51.31 25 78.28 25
57.91 25 86.78 25 58.27 25 56.56 25 76.33 25 61.83 25
69.13 25 63.15 25 66.13 25
;

Output 83.5.1 Salary and Years as Professor: Cubic Fit
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Output 83.5.2 Salary and Years as Professor: Sample Quantiles

These descriptive percentiles do not clearly show trends with length of service. The following statements use
polynomial quantile regression to obtain a smooth version.

ods graphics on;

proc quantreg data=salary ci=sparsity;
model salaries = years years*years years*years*years

/quantile=0.25 0.5 0.75
plot=fitplot(showlimits);

test years/QINTERACT;

run;

The results are shown in Output 83.5.3 and Output 83.5.5. Output 83.5.3 displays the regression coefficients
for the three quantiles, from which you can see a difference among the estimated parameters of the variable
years across the three quantiles. To test whether the difference is significant, you can specify the option
QINTERACT in the TEST statement. Output 83.5.4 indicates that the difference is not significant (the
p-value is greater than 0.05).
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Output 83.5.3 Regression Coefficients

BMI Percentiles for Men: 2-80 Years Old

The QUANTREG Procedure

BMI Percentiles for Men: 2-80 Years Old

The QUANTREG Procedure

Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits t Value Pr > |t|

Intercept 1 48.2509 1.3484 45.6011 50.9007 35.78 <.0001

Years 1 2.2234 0.5455 1.1514 3.2953 4.08 <.0001

Years*Years 1 -0.1292 0.0500 -0.2275 -0.0308 -2.58 0.0101

Years*Years*Years 1 0.0024 0.0013 -0.0001 0.0049 1.86 0.0634

Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits t Value Pr > |t|

Intercept 1 50.2512 1.2812 47.7334 52.7690 39.22 <.0001

Years 1 2.7173 0.5947 1.5485 3.8860 4.57 <.0001

Years*Years 1 -0.1632 0.0632 -0.2873 -0.0390 -2.58 0.0101

Years*Years*Years 1 0.0034 0.0018 -0.0002 0.0070 1.85 0.0647

Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits t Value Pr > |t|

Intercept 1 51.0298 1.5886 47.9078 54.1517 32.12 <.0001

Years 1 3.6513 0.7594 2.1590 5.1436 4.81 <.0001

Years*Years 1 -0.2390 0.0764 -0.3892 -0.0888 -3.13 0.0019

Years*Years*Years 1 0.0055 0.0021 0.0013 0.0096 2.60 0.0098

Output 83.5.4 Tests for Heteroscedasticity

Test Results Equal
Coefficients Across

Quantiles

Chi-Square DF Pr > ChiSq

3.4026 2 0.1825

The three fitted quantile curves and their 95% confidence limits in the Output 83.5.5 clearly show that salary
dispersion increases gradually with length of service. After 15 years, a salary more than $70,000 is relatively
high, whereas a salary less than $60,000 is relatively low. Percentile curves of this type are useful in medical
science as reference curves (Yu, Lu, and Stabder 2003).
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Output 83.5.5 Salary and Years as Professor: Regression Quantiles
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Overview: QUANTSELECT Procedure
Quantile regression, which was introduced by Koenker and Bassett (1978), is a modern method that models
the effects of covariates on the conditional quantiles of a response variable. The QUANTSELECT procedure
performs effect selection in the framework of quantile regression. A variety of effect selection methods
are available, including greedy methods and penalty methods. The QUANTSELECT procedure offers
extensive capabilities for customizing the effect selection processes with a variety of candidate selecting,
effect-selection stopping, and final-model choosing criteria. PROC QUANTSELECT also provides graphical
summaries for the effect selection processes.

The QUANTSELECT procedure compares most closely to the GLMSELECT and QUANTREG proce-
dures. PROC GLMSELECT performs effect selection in the framework of general linear models. PROC
QUANTREG supports a variety of estimation and inference methods for quantile regression but does not
directly provide effect selection facilities. The QUANTSELECT procedure, as a counterpart of PROC
GLMSELECT for quantile regression, fills this gap.

The QUANTSELECT procedure focuses on linear quantile models for univariate responses and offers great
flexibility for and insight into the effect selection algorithm. The QUANTSELECT procedure inherits
most of its syntax from PROC GLMSELECT and PROC QUANTREG. The QUANTSELECT procedure
provides results that are similar to those of PROC GLMSELECT and PROC QUANTREG. These results
(displayed tables, output data sets, and macro variables) make it easy to explore the selected models in PROC
QUANTREG.

Features
The main features of the QUANTSELECT procedure are as follows:

• supports the following model specifications:

– interaction (crossed) effects and nested effects
– constructed effects such as regression splines
– hierarchy among effects
– partitioning of data into training, validation, and testing roles

• provides the following selection controls:

– multiple methods for effect selection
– selection for quantile process and single quantile levels
– selection of individual or grouped effects
– selection based on a variety of selection criteria
– stopping rules based on a variety of model evaluation criteria
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• produces the following display and output:

– graphical representation of the selection process
– output data sets that contain predicted values and residuals
– an output data set that contains the design matrix
– macro variables that contain selected effects

The QUANTSELECT procedure supports the following effect selection methods. These methods are
explained in detail in the section “Effect Selection Methods” on page 6944.

• Forward selection starts with no effects or with forced-in effects in the model and adds more effects.

• Backward elimination starts with all effects in the model and deletes effects.

• Stepwise regression is similar to the forward selection method except that effects already in the model
do not necessarily stay there.

• LASSO regression adds and deletes effects based on a constrained version of estimated check risk
where the L1-norm of regression coefficients is penalized (Tibshirani 1996; Belloni and Chernozhukov
2011). Adaptive LASSO (Zou 2006; Wu and Liu 2009) is implemented as a special case of LASSO
methods where the L1-norm of certain weighted regression coefficients is penalized. See the discussion
in the section “LASSO Method (LASSO)” on page 6945 for additional details. The QUANTSELECT
procedure uses LASSO methods only to determine the adding and dropping covariate effects at a step;
a post-penalized model that is associated with the step is refitted without penalty, and the selection
criteria and the parameter estimates are from the post-penalized model.

The QUANTSELECT procedure is intended primarily as an effect selection procedure and does not include
regression diagnostics and hypothesis testing. The intention is that you use the QUANTSELECT procedure
to select a model or a set of models, where each model contains a set of selected effects, and then you can
further investigate these models by using PROC QUANTREG or other analytic tools.

Getting Started: QUANTSELECT Procedure
This example demonstrates how you can use the QUANTSELECT procedure to select covariate effects for
quantile regression. The Sashelp.Baseball data set contains salary and performance information for Major
League Baseball (MLB) players, excluding pitchers, who played at least one game in both the 1986 and 1987
seasons. The salaries (Time Inc. 1987) are for the 1987 season, and the performance measures are from 1986
(Reichler 1987).
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The following step displays in Figure 84.1 the variables in the data set:

proc contents varnum data=sashelp.baseball;
ods select position;

run;

Figure 84.1 Sashelp.Baseball Data Set

The CONTENTS ProcedureThe CONTENTS Procedure

Variables in Creation Order

# Variable Type Len Label

1 Name Char 18 Player's Name

2 Team Char 14 Team at the End of 1986

3 nAtBat Num 8 Times at Bat in 1986

4 nHits Num 8 Hits in 1986

5 nHome Num 8 Home Runs in 1986

6 nRuns Num 8 Runs in 1986

7 nRBI Num 8 RBIs in 1986

8 nBB Num 8 Walks in 1986

9 YrMajor Num 8 Years in the Major Leagues

10 CrAtBat Num 8 Career Times at Bat

11 CrHits Num 8 Career Hits

12 CrHome Num 8 Career Home Runs

13 CrRuns Num 8 Career Runs

14 CrRbi Num 8 Career RBIs

15 CrBB Num 8 Career Walks

16 League Char 8 League at the End of 1986

17 Division Char 8 Division at the End of 1986

18 Position Char 8 Position(s) in 1986

19 nOuts Num 8 Put Outs in 1986

20 nAssts Num 8 Assists in 1986

21 nError Num 8 Errors in 1986

22 Salary Num 8 1987 Salary in $ Thousands

23 Div Char 16 League and Division

24 logSalary Num 8 Log Salary

Suppose you want to investigate how the MLB players’ salaries for the 1987 season depend on performance
measures for the players’ previous season and MLB careers. As a starting point for such a analysis, you can
use the following statements to obtain a parsimonious conditional median model at � D 0:5:

proc quantselect data=sashelp.baseball;
class Div;
model Salary = nAtBat nHits nHome nRuns nRBI nBB yrMajor crAtBat

crHits crHome crRuns crRbi crBB nAssts nError nOuts
Div

/ selection=lasso(adaptive stop=aic choose=sbc sh=7);
run;

The SELECTION=LASSO(ADAPTIVE) option in the MODEL statement specifies the adaptive LASSO
method (Zou 2006), which controls the effect selection process. The STOP=AIC option specifies that
Akaike’s information criterion (AIC) be used to determine the stopping condition. The CHOOSE=SBC
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option specifies that the Schwarz Bayesian information criterion (SBC) be used to determine the final selected
model. The SH= option specifies the number of stop horizons, which requests that the selection process be
stopped whenever the STOP= criterion values at step s C 1; : : : ; s C SH are worse than those for step s for
some s 2 f0; 1; : : :g.

Figure 84.2 shows the “Model Information” table, which indicates the effect selection settings. You can see
that the default quantile type is single level, so this effect selection is effective only for � D 0:5.

Figure 84.2 Model Information

The QUANTSELECT ProcedureThe QUANTSELECT Procedure

Model Information

Data Set SASHELP.BASEBALL

Dependent Variable Salary

Selection Method Adaptive LASSO

Quantile Type Single Level

Stop Criterion AIC

Choose Criterion SBC

Figure 84.3 summarizes the effect selection process, which starts with an intercept-only model at step 0. At
step 1, the effect that corresponds to the career runs is added to the model that reduced the AIC value from
2691.6511 to 2510.7297. You can see that step 10 has the minimum AIC and that step 7 has the minimum
SBC. Common sense also tells you that the SBC favors a smaller model than the AIC.

Figure 84.3 Selection Summary

The QUANTSELECT Procedure
Quantile Level = 0.5

The QUANTSELECT Procedure
Quantile Level = 0.5

Selection Summary

Step
Effect
Entered

Effect
Removed

Number
Effects

In AIC SBC

0 Intercept 1 2691.6511 2695.2232

1 CrRuns 2 2510.7297 2517.8740

2 nHits 3 2470.4807 2481.1971

3 CrHome 4 2463.5953 2477.8839

4 nBB 5 2463.7806 2481.6414

5 nOuts 6 2455.6212 2477.0541

6 Div AW 7 2451.4609 2476.4660

7 nAtBat 8 2445.0446 2473.6218*

8 CrBB 9 2445.5432 2477.6926

9 nHome 10 2443.4818 2479.2033

10 nRuns 11 2442.6036* 2481.8973

11 Div NE 12 2444.2409 2487.1067

12 CrAtBat 13 2444.5049 2490.9429

13 Div NE 12 2442.8387 2485.7046

14 YrMajor 13 2443.5374 2489.9754

15 nError 14 2445.2085 2495.2187

16 Div NE 15 2446.4042 2499.9865

* Optimal Value Of Criterion
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Figure 84.4 shows that the selection process stopped at a local minimum of the STOP= criterion, which is
step 10. According to the SH=7 option, the effect selection process is stopped at step 10 because all the AIC
values for step 11 through step 17 are no less than the AIC at step 10. Step 17 is ignored in the selection
summary table because it is the last step.

Figure 84.4 Stop Reason

Selection stopped at a local minimum of the AIC criterion.

Figure 84.5 shows how the final selected model is determined. CHOOSE=SBC is specified in this example,
so the model at step 7 is chosen as the final selected model.

Figure 84.5 Selection Reason

The model at step 7 is selected where SBC is 2473.622.

Figure 84.6 shows the final selected effects and Figure 84.7 shows the parameter estimates for the final
selected model.

Figure 84.6 Selected Effects

Selected Effects: Intercept nAtBat nHits nBB CrHome CrRuns nOuts Div AW

Figure 84.7 Parameter Estimates

Parameter Estimates

Parameter DF Estimate
Standardized

Estimate

Intercept 1 -18.187539 0

nAtBat 1 -1.582714 -0.500417

nHits 1 7.044354 0.686968

nBB 1 2.053726 0.097911

CrHome 1 1.429926 0.272726

CrRuns 1 0.425955 0.316167

nOuts 1 0.282803 0.175489

Div AW 1 -57.671778 -0.056862

Quantile regression can fit a conditional quantile model at any quantile level � 2 .0; 1/, so it can describe the
entire distribution of a response variable conditional on covariate effects. To further investigate the effects
that might affect the MLB players’ salaries, you can also conduct effect selection at � D 0:1 and � D 0:9,
which correspond to low-end salaries and high-end salaries respectively. The following statements use the
same selection settings that are used in the previous program:

proc quantselect data=sashelp.baseball;
class Div;
model Salary = nAtBat nHits nHome nRuns nRBI nBB yrMajor crAtBat

crHits crHome crRuns crRbi crBB nAssts nError nOuts
Div
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/ quantiles=0.1 0.9 selection=lasso(adaptive stop=aic choose=sbc sh=7);
run;

Figure 84.8 shows the effect selection summary with � D 0:1.

Figure 84.8 Selection Summary: � D 0:1

The QUANTSELECT Procedure
Quantile Level = 0.1

The QUANTSELECT Procedure
Quantile Level = 0.1

Selection Summary

Step
Effect
Entered

Effect
Removed

Number
Effects

In AIC SBC

0 Intercept 1 2008.3489 2011.9211

1 CrRuns 2 1918.7675 1925.9118

2 nHits 3 1897.2425 1907.9590*

3 YrMajor 4 1897.2476 1911.5362

4 CrBB 5 1896.1765 1914.0373

5 nBB 6 1894.1257 1915.5587

6 CrHome 7 1895.6765 1920.6816

7 nAtBat 8 1890.4051 1918.9824

8 nHome 9 1891.3527 1923.5020

9 Div NE 10 1891.7566 1927.4781

10 nRBI 11 1893.7319 1933.0256

11 CrAtBat 12 1893.9432 1936.8090

12 nRBI 11 1891.9716 1931.2653

13 nAssts 12 1888.6870 1931.5529

14 nRBI 13 1890.5300 1936.9680

15 Div AE 14 1889.4234 1939.4336

16 nRBI 13 1887.6644* 1934.1024

17 CrRbi 14 1888.0966 1938.1068

18 Div AW 15 1890.0322 1943.6145

19 nError 16 1891.7949 1948.9494

20 nRuns 17 1893.2801 1954.0067

21 nRBI 18 1894.7805 1959.0793

22 CrHits 19 1896.6868 1964.5578

* Optimal Value Of Criterion

Figure 84.9 shows the parameter estimates for the final selected model with � D 0:1. You can see from
Figure 84.9 that low-end salaries for MLB players depend mainly on career runs and hits in 1986.

Figure 84.9 Parameter Estimates: � D 0:1

The QUANTSELECT Procedure
Quantile Level = 0.1

The QUANTSELECT Procedure
Quantile Level = 0.1

Parameter Estimates

Parameter DF Estimate
Standardized

Estimate

Intercept 1 -4.397043 0

nHits 1 0.878564 0.085678

CrRuns 1 0.327350 0.242977
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Figure 84.10 shows the effect selection summary with � D 0:9.

Figure 84.10 Selection Summary: � D 0:9

The QUANTSELECT Procedure
Quantile Level = 0.9

The QUANTSELECT Procedure
Quantile Level = 0.9

Selection Summary

Step
Effect
Entered

Effect
Removed

Number
Effects

In AIC SBC

0 Intercept 1 2436.7289 2440.3011

1 CrHits 2 2197.4349 2204.5792

2 CrRbi 3 2183.6148 2194.3313

3 nHits 4 2113.2757 2127.5643

4 CrRbi 3 2127.8632 2138.5797

5 CrRbi 4 2113.2757 2127.5643

6 CrRbi 3 2127.8632 2138.5797

7 CrRbi 4 2113.2757 2127.5643

8 CrHome 5 2099.2203 2117.0811

9 CrRbi 4 2099.3891 2113.6777

10 CrRbi 5 2099.2203 2117.0811

11 CrRbi 4 2099.3891 2113.6777

12 nOuts 5 2067.1926 2085.0533

13 Div AW 6 2048.2393 2069.6723

14 CrRuns 7 2028.8040 2053.8090

15 nAtBat 8 2012.8195 2041.3968

16 CrHits 7 2017.0290 2042.0341

17 CrRbi 8 2009.3551 2037.9324

18 CrAtBat 9 2011.2415 2043.3908

19 CrRbi 8 2011.4053 2039.9825

20 CrRbi 9 2011.2415 2043.3908

21 CrAtBat 8 2009.3551 2037.9324

22 CrAtBat 9 2011.2415 2043.3908

23 nBB 10 2004.5033 2040.2249

24 CrAtBat 9 2003.1023 2035.2517

25 CrAtBat 10 2004.5033 2040.2249

26 CrAtBat 9 2003.1023 2035.2517*

27 CrAtBat 10 2004.5033 2040.2249

28 nError 11 2004.2230 2043.5167

29 CrHits 12 2003.0544 2045.9203

30 Div NE 13 2001.9603 2048.3983

31 Div AE 14 2001.8349* 2051.8451

32 nRuns 15 2003.5961 2057.1784

33 nHome 16 2004.2721 2061.4266

34 nRBI 17 2006.0023 2066.7289

35 YrMajor 18 2007.9975 2072.2963

36 CrBB 19 2009.9514 2077.8223

37 nAssts 20 2011.9095 2083.3525

* Optimal Value Of Criterion
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Figure 84.11 shows the parameter estimates for the final selected model with � D 0:9.

Figure 84.11 Parameter Estimates: � D 0:9

Parameter Estimates

Parameter DF Estimate
Standardized

Estimate

Intercept 1 92.893875 0

nAtBat 1 -1.858170 -0.587509

nHits 1 8.155573 0.795335

nBB 1 3.392794 0.161751

CrHome 1 3.191472 0.608700

CrRuns 1 1.394317 1.034939

CrRbi 1 -0.913371 -0.664951

nOuts 1 0.437241 0.271323

Div AW 1 -167.110005 -0.164764

To visually illustrate how the model evolves through the selection process, the QUANTSELECT procedure
provides the coefficient plot, the average check loss plot, and several criterion plots in either packed or
unpacked forms. You can request these plots by using the PLOTS= option. The following statements request
all the plots for the baseball data at � D 0:1; they also use the STOP=AIC criterion, the CHOOSE=SBC
criterion, and the SH=7 option:

ods graphics on;
proc quantselect data=sashelp.baseball plots=all;

class Div;
model Salary = nAtBat nHits nHome nRuns nRBI nBB yrMajor crAtBat

crHits crHome crRuns crRbi crBB nAssts nError nOuts
Div

/ quantiles=0.1 selection=lasso(adaptive stop=aic choose=sbc sh=7);
run;
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Figure 84.12 shows the progression of the parameter estimates as the selection process proceeds.

Figure 84.12 Coefficient Panel: � D 0:1
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Figure 84.13 shows the progression of the average check losses as the selection process proceeds.

Figure 84.13 Average Check Loss Plot: � D 0:1
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Figure 84.14 shows the progression of four effect selection criteria as the selection process proceeds.

Figure 84.14 Criterion Panel: � D 0:1
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Syntax: QUANTSELECT Procedure
The following statements are available in PROC QUANTSELECT:

PROC QUANTSELECT < options > ;
BY variables ;
CLASS variable < (v-options) > < variable < (v-options . . . ) > > < / v-options > < options > ;
EFFECT name = effect-type (variables < / options > ) ;
MODEL variable = < effects > < / options > ;
OUTPUT < OUT=SAS-data-set > < keyword < =name > > < . . . keyword< =name > > ;
PARTITION < options > ;
WEIGHT variable ;

The PROC QUANTSELECT statement invokes the procedure. All statements other than the MODEL
statement are optional. CLASS and EFFECT statements, if present, must precede the MODEL statement.

PROC QUANTSELECT Statement
PROC QUANTSELECT < options > ;

Table 84.1 lists the options available in the PROC QUANTSELECT statement.

Table 84.1 PROC QUANTSELECT Statement Options

option Description

Data Set Options
DATA= Names a data set to use for the regression
MAXMACRO= Sets the maximum number of macro variables to produce
TESTDATA= Names a data set that contains test data
VALDATA= Names a data set that contains validation data

ODS Graphics Options
PLOTS= Produces ODS Graphics displays

Other Options
ALGORITHM= Specifies an algorithm for estimating the regression parameters
NAMELEN= Specifies the maximum length of effect names in tables and output

data sets
NOPRINT Suppresses displayed output (including plots)
OUTDESIGN= Names a data set that contains the design matrix
PARMLABELSTYLE= Sets the style of parameter names and labels for nested and crossed

effects
SEED= Sets the seed used for pseudorandom number generation

You can specify the following options (shown in alphabetical order) in the PROC QUANTSELECT statement.
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ALGORITHM=SIMPLEX | SMOOTH
specifies either the simplex algorithm (ALGORITHM=SIMPLEX) or the smoothing algorithm (AL-
GORITHM=SMOOTH) for estimating the regression parameters. The smoothing algorithm is compu-
tationally much more efficient than the simplex algorithm for fitting models on large data sets. You
might consider specifying the ALGORITHM=SMOOTH if your DATA= data set contains more than
5,000 observations and more than 50 regressors. The smoothing algorithm does not support quantile
process effect selection or the LASSO selection method. By default, ALGORITHM=SIMPLEX.

DATA=SAS-data-set
names the SAS data set to be used by PROC QUANTSELECT. If the DATA= option is not specified,
PROC QUANTSELECT uses the most recently created SAS data set. If the data set contains a variable
named _ROLE_, then this variable is used to assign observations for training, validation, and testing
roles. See the section “Using Validation and Test Data” on page 6949 for more information about using
the _ROLE_ variable.

MAXMACRO=n
specifies the maximum number of macro variables with selected effects to create. By default, MAX-
MACRO=100.

PROC QUANTSELECT saves the list of selected effects in a macro variable, &_QRSIND. For example,
suppose your input effect list consists of x1–x10. Then &_QRSIND would be set to x1 x3 x4 x10 if the
first, third, fourth, and tenth effects were selected for the model. This list can be used in the MODEL
statement of a subsequent procedure.

If you specify the OUTDESIGN= option in the PROC QUANTSELECT statement, then PROC
QUANTSELECT saves the list of columns in the design matrix in a macro variable named &_QRSMOD.

With multiple quantile levels and BY processing, one macro variable is created for each combination
of quantile level and BY group, and the macro variables are indexed by the BY-group number and the
quantile level index. You can use the MAXMACRO= option to either limit or increase the number of
these macro variables when you are processing data sets with many combinations of quantile level and
BY group.

With a single quantile level and no BY-group processing, PROC QUANTSELECT creates the macro
variables shown in Table 84.2.

Table 84.2 Macro Variables Created for a Single Quantile Level and No BY Processing

Macro Variable Name Contains

_QRSIND Selected effects
_QRSIND1 Selected effects
_QRSINDT1 Selected effects
_QRSIND1T1 Selected effects
_QRSMOD Selected design matrix columns
_QRSMOD1 Selected design matrix columns
_QRSMODT1 Selected design matrix columns
_QRSMOD1T1 Selected design matrix columns
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With multiple quantile levels and BY-group processing, PROC QUANTSELECT creates the macro
variables shown in Table 84.3.

Table 84.3 Macro Variables Created for a Multiple Quantile Levels and BY-Group Processing

Macro Variable Name Contains

_QRSIND Selected effects for quantile 1 and BY group 1
_QRSINDT1 Selected effects for quantile 1 and BY group 1
_QRSINDT2 Selected effects for quantile 2 and BY group 1
.
.
.
_QRSIND1 Selected effects for quantile 1 and BY group 1
_QRSIND1T1 Selected effects for quantile 1 and BY group 1
_QRSIND1T2 Selected effects for quantile 2 and BY group 1
.
.
.
_QRSIND2 Selected effects for quantile 1 and BY group 2
_QRSIND2T1 Selected effects for quantile 1 and BY group 2
_QRSIND2T2 Selected effects for quantile 2 and BY group 2
.
.
.
_QRSINDmTn Selected effects for quantile n and BY group m

If you specify the OUTDESIGN= option, PROC QUANTSELECT also creates the macro variables
shown in Table 84.4.

Table 84.4 Macro Variables Created When the OUTDESIGN= Option Is Specified

Macro Variable Name Contains

_QRSMOD Selected design matrix columns for BY group 1
_QRSMOD1 Selected design matrix columns for BY group 1
_QRSMOD2 Selected design matrix columns for BY group 2
.
.
.
_QRSMODmTn Selected design matrix columns for quantile n and BY group m
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The macros variables in Table 84.5 show the number of quantiles and BY groups:

Table 84.5 Macro Variables Showing the Number of Quantiles and BY Groups

Macro Variable Name Contains

_QRSNUMBYS The number of BY groups
_QRSNUMTAUS The number of quantiles
_QRSBY1NUMTAUS The number of _QRSIND1Tj macro variables actually made
_QRSBY2NUMTAUS The number of _QRSIND2Tj macro variables actually made
.
.
.
_QRSNUMBYTAUS The number of _QRSINDiTj macro variables actually made. This

value can be less than _QRSNUMBYS � _QRSNUMTAUS, and it
is less than or equal to MAXMACRO=n.

See the section “Macro Variables That Contain Selected Models” on page 6947 for more information.

NAMELEN=number
specifies the maximum length of effect names. By default, NAMELEN=20. If you specify a value less
than 20, the default is used.

NOPRINT
suppresses all displayed output (including plots).

OUTDESIGN< (options) >< =SAS-data-set >
creates a data set that contains the design matrix. By default, the QUANTSELECT procedure includes
in the OUTDESIGN data set the X matrix that corresponds to all the effects in the selected models.
Two schemes for naming the columns of the design matrix are available:

• In the first scheme, names of the parameters are constructed from the parameter labels that appear
in the parameter estimates table. This naming scheme is the default when you do not request BY
processing, or when you specify the FULLMODEL option with BY processing.

• In the second scheme, the design matrix column names consist of a prefix followed by an index.
The default name prefix is _X. This scheme is used when you specify the PREFIX= option, or
when you specify a BY statement without using the FULLMODEL option; otherwise the first
scheme is used.

You can specify the following options in parentheses to control the contents of the OUTDESIGN=
data set:

ADDINPUTVARS
includes all the input data set variables in the OUTDESIGN= data set.

ADDVALDATA
includes all the VALDATA= data set variables in the OUTDESIGN= data set. This option is
ignored if the VALDATA= data set is not specified.
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ADDTESTDATA
includes all the TESTDATA= data set variables in the OUTDESIGN= data set. This option is
ignored if TESTDATA= data set is not specified.

FULLMODEL
includes in the OUTDESIGN= data set parameters that correspond to all effects that are specified
in the MODEL statement. By default, only parameters that correspond to the selected model are
included.

NAMES
produces a table that associates columns in the OUTDESIGN= data set with the labels of the
parameters they represent.

PREFIX< =prefix >
creates the design matrix column names from a prefix followed by an index. The default prefix is
_X.

PARMLABELSTYLE=options
specifies how parameter names and labels are constructed for nested and crossed effects.

The following options are available:

INTERLACED < (SEPARATOR=quoted string) >
forms parameter names and labels by positioning levels of classification variables and constructed
effects adjacent to the associated variable or constructed effect name and using “ * ” as the
delimiter for both crossed and nested effects. This style of naming parameters and labels is
used in the TRANSREG procedure. You can request truncation of the classification variable
names used in forming the parameter names and labels by using the CPREFIX= and LPREFIX=
options in the CLASS statement. You can use the SEPARATOR= suboption to change the
delimiter between the crossed variables in the effect. PARMLABELSTYLE=INTERLACED is
not supported if you specify the SPLIT option in an EFFECT statement or a CLASS statement.
The following are examples of the parameter labels in this style (Age is a continuous variable,
Gender and City are classification variables):

Age
Gender male * City Beijing
City London * Age

SEPARATE
specifies that in forming parameter names and labels, the effect name appears before the levels
associated with the classification variables and constructed effects in the effect. You can control
the length of the effect name by using the NAMELEN= option in the PROC GLMSELECT
statement. In forming parameter labels, the first level that is displayed is positioned so that it
starts at the same offset in every parameter label—this enables you to easily distinguish the effect
name from the levels when the parameter labels are displayed in a column in the “Parameter
Estimates” table. The following are examples of the parameter labels in this style (Age is a
continuous variable, Gender and City are classification variables):
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Age
Gender*City male Beijing
Age*City London

SEPARATECOMPACT
requests the same parameter naming and labeling scheme as PARMLABELSTYLE=SEPARATE
except that the first level in the parameter label is separated from the effect name by a single
blank. This style of labeling is used in the PLS procedure and is the default if you do not specify
the PARMLABELSTYLE option. The following are examples of the parameter labels in this
style (Age is a continuous variable, Gender and City are classification variables):

Age
Gender*City male Beijing
Age*City London

PLOTS | PLOT < (global-plot-options) > < =plot-request < (options) > >

PLOTS | PLOT < (global-plot-options) > < =(plot-request < (options) > < ... plot-request < (options) > >) >
controls the plots that are produced through ODS Graphics. When you specify only one plot-request ,
you can omit the parentheses around it. Here are some examples:

plots=all
plots=coefficients(unpack)
plots(unpack)=(coef acl crit)

ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;
proc quantselect plots=all;

class temp sex / split;
model depVar = sex sex*temp;

run;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

You can specify the following global-plot-options, which apply to all plots generated by the
QUANTSELECT procedure, unless they are altered by specific plot options.

ENDSTEP=n
specifies that the step ranges shown on the horizontal axes of plots terminate at the specified step.
By default, the step range shown terminates at the final step of the selection process. If you specify
the ENDSTEP= option as both a global-plot-option and as an option for a specific plot-request ,
then PROC QUANTSELECT uses the ENDSTEP=n option for the specific plot-request .

LOGP | LOGPVALUE
displays the natural logarithm of the entry and removal significance levels when the SELECT=SL
option is specified in the MODEL statement.
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MAXSTEPLABEL=n
specifies the maximum number of characters beyond which labels of effects on plots are truncated.
The default is MAXSTEPLABEL=256.

MAXPARMLABEL=n
specifies the maximum number of characters beyond which parameter labels on plots are truncated.
The default is MAXPARMLABEL=256.

STARTSTEP=n
specifies that the step ranges shown on the horizontal axes of plots start at the specified step. By
default, the step range shown starts at the initial step of the selection process. If you specify
the STATSTEP= option as both a global-plot-option and as an option for a specific plot-request ,
then PROC QUANTSELECT uses the STARTSTEP=n option for the specific plot-request . The
default is STARTSTEP=0.

STEPAXIS=EFFECT | NORMB | NUMBER
specifies the method for labeling the horizontal plot axis. This axis represents the sequence of
entering or departing effects. The default is STEPAXIS=EFFECT.

STEPAXIS=EFFECT
labels each step by a prefix followed by the name of the effect that enters or leaves at that
step. The prefix consists of the step number followed by a “+” sign or a “–” sign, depending
on whether the effect enters or leaves at that step.

STEPAXIS=NORMB
labels the horizontal axis value at step i with the penalty on the parameter estimates at step i,
normalized by the penalty on the parameter estimates at the final step. This option is valid
only with regularization selection methods.

STEPAXIS=NUMBER
labels each step with the step number.

UNPACK
displays each graph separately. (By default, some graphs can appear together in a single panel.)
You can also specify UNPACK as a suboption with CRITERIA and COEFFICIENTS options for
specific plot-requests.

The following list describes the specific plot-requests and their options.

ALL
displays all appropriate graphs.

ACL | ACLPLOT < (aclplot-option) >
plots the progression of the average check losses on the training data, and on the test and validation
data when these data are provided with the TESTDATA= or VALDATA= options or are produced
by using a PARTITION statement. When the PROC QUANTSELECT procedure is applied on
multiple quantile levels, the ACL option and its suboptions apply to the ACL plots for each of the
quantile levels.

You can specify the following aclplot-option:
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STEPAXIS=EFFECT | NORMB | NUMBER
specifies the method for labeling the horizontal plot axis. See the STEPAXIS= option in the
global-plot-options for more information.

COEF | COEFFICIENTS | COEFFICIENTPANEL < (coefficient-panel-options) >
displays a panel of two plots for each quantile level. The upper plot shows the progression of the
parameter values as the selection process proceeds. The lower plot shows the progression of the
CHOOSE= criterion. If no CHOOSE= criterion is in effect, then the AICC criterion is displayed.
You can specify the following coefficient-panel-options:

LABELGAP=percentage
specifies the percentage of the vertical axis range that forms the minimum gap between
successive parameter labels at the final step of the coefficient progression plot. If the values
of more than one parameter at the final step are closer than this gap, then the labels on all
but one of these parameters are suppressed. The default is LABELGAP=5.

LOGP | LOGPVALUE
displays the natural logarithm of the entry and removal significance levels when the SE-
LECT=SL option is specified in the MODEL statement.

STEPAXIS=EFFECT | NORMB | NUMBER
specifies the horizontal axis to be used. See the STEPAXIS= option in the global-options for
more information.

UNPACK | UNPACKPANEL
displays the coefficient progression and the CHOOSE= criterion progression in separate
plots.

CRIT | CRITERIA | CRITERIONPANEL < (criterion-panel-options) >
plots a panel of model fit criteria. If multiple quantile levels apply, the CRITERIA option plots a
panel of model fit criteria for each quantile level. The criteria that are displayed are AIC, AICC,
and SBC, in addition to any other criteria that are named in the CHOOSE=, SELECT=, STOP=,
and STATS= options in the MODEL statement. You can specify the following criterion-panel-
options:

STEPAXIS=EFFECT | NORMB | NUMBER
specifies the horizontal axis to be used. See the STEPAXIS= option in the global-options for
more information.

UNPACK | UNPACKPANEL
displays each criterion progression on a separate plot.

NONE
suppresses all plots.

SEED=number
specifies an integer that is used to start the pseudorandom number generator for random partitioning of
data for training, testing, and validation. If you do not specify a seed or if you specify a value less than
or equal to 0, the seed is generated by reading the time of day from the computer’s clock.
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TESTDATA=SAS-data-set
names a SAS data set that contains test data. This data set must contain all the effects that are specified
in the MODEL statement. Furthermore, when you also specify a BY statement and the TESTDATA=
data set contains any of the BY variables, then the TESTDATA= data set must also contain all the BY
variables sorted in the order of the BY variables. In this case, only the test data for a specific BY group
are used with the corresponding BY group in the analysis data. If the TESTDATA= data set contains
none of the BY variables, then the entire TESTDATA= data set is used with each BY group of the
analysis data.

If you specify both a TESTDATA= data set and the PARTITION statement, then the testing observations
from the DATA= data set are merged with the TESTDATA= data set for testing purposes.

VALDATA=SAS-data-set
names a SAS data set that contains validation data. This data set must contain all the effects that are
specified in the MODEL statement. Furthermore, when a BY statement is used and the VALDATA=
data set contains any of the BY variables, then the VALDATA= data set must also contain all the BY
variables sorted in the order of the BY variables. In this case, only the validation data for a specific
BY group are used with the corresponding BY group in the analysis data. If the VALDATA= data set
contains none of the BY variables, then the entire VALDATA= data set is used with each BY group of
the analysis data.

If you specify both a VALDATA= data set and the PARTITION statement, then the validation observa-
tions from the DATA= data set are merged with the VALDATA= data set for validation purposes.

BY Statement
BY variables ;

You can specify a BY statement with PROC QUANTSELECT to obtain separate analyses of observations in
groups that are defined by the BY variables. When a BY statement appears, the procedure expects the input
data set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last
one specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the QUANTSELECT
procedure. The NOTSORTED option does not mean that the data are unsorted but rather that the
data are arranged in groups (according to values of the BY variables) and that these groups are not
necessarily in alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.
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CLASS Statement
CLASS variable < (v-options) > < variable < (v-options . . . ) > > < / v-options > < options > ;

The CLASS statement names the classification variables to be used in the analysis. The CLASS statement
must precede the MODEL statement.

Table 84.6 summarizes the options and v-options available in the CLASS statement.

Table 84.6 CLASS Statement Options

option or v-option Description

DELIMITER= Specifies the delimiter
DESCENDING Reverses the sort order
MISSING Allows for missing values
ORDER= Specifies the sort order
PARAM= Specifies the parameterization method
REF= Specifies the reference level
SHOW Requests a table for each CLASS variable
SPLIT Splits CLASS variables into independent effects

You can specify the following options after a slash (/):

DELIMITER=’c’
specifies the delimiter character, ‘c’, to be used between levels of classification variables when
parameter names and lists of class level values are built. The default delimiter is a space. This option
is useful if the levels of a classification variable contain embedded blanks.

SHOW | SHOWCODING
requests a table that shows the coding used for each classification variable.

You can specify various v-options for each variable by enclosing them in parentheses after the variable name;
these are called individual v-options. You can also specify global v-options by placing them after a slash (/)
at the end of the CLASS statement. Global v-options are applied to all the variables specified in the CLASS
statement. If you specify more than one CLASS statement, the global v-options specified in any one CLASS
statement apply to all CLASS statements. However, individual CLASS variable v-options override the global
v-options except for the PARAM=GLM option. The global PARAM=GLM option overrides all individual
PARAM= options.

You can specify the following v-options:

CPREFIX=n
specifies that, at most, the first n characters of a CLASS variable name be used in creating names
for the corresponding design variables. The default is 32 � min.32;max.2; f //, where f is the
formatted length of the CLASS variable. This option applies only when you specify the PARMLA-
BELSTYLE=INTERLACED option in the PROC QUANTSELECT statement.
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DESCENDING

DESC
reverses the sort order of the classification variable.

LPREFIX=n
specifies that, at most, the first n characters of a CLASS variable label be used in creating labels
for the corresponding design variables. The default is 256 � min.256;max.2; f //, where f is the
formatted length of the CLASS variable. This option applies only when you specify the PARMLA-
BELSTYLE=INTERLACED option in the PROC QUANTSELECT statement.

MISSING
allows missing values, such as ‘.’ for a numeric variable or a blank for a character variable, as valid
values for the CLASS variable.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of classification variables. If ORDER=FORMATTED for numeric
variables for which you have supplied no explicit format, the levels are ordered by their internal values.
The following table shows how PROC QUANTSELECT interprets values of the ORDER= option.

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set

FORMATTED External formatted value, except for numeric
variables with no explicit format, which are
sorted by their unformatted (internal) value

FREQ Descending frequency count; levels with the
most observations come first in the order

INTERNAL Unformatted value

By default, ORDER=FORMATTED. For FORMATTED and INTERNAL, the sort order is machine
dependent.

For more information about sort order, see the chapter on the SORT procedure in the
Bookrefprocguide and the discussion of BY-group processing in SAS Language Reference: Concepts.

PARAM=keyword
specifies the parameterization method for the classification variable or variables. Design matrix columns
are created from CLASS variables according to the following coding schemes. If the PARAM= option
is not specified with any individual CLASS variable, by default, PARAM=GLM. Otherwise, the default
is PARAM=EFFECT. If PARAM=ORTHPOLY or PARAM=POLY, and the CLASS levels are numeric,
then the ORDER= option in the CLASS statement is ignored, and the internal, unformatted values
are used. See the section “CLASS Variable Parameterization and the SPLIT Option” on page 3716 in
Chapter 48, “The GLMSELECT Procedure,” for more information.

EFFECT specifies effect coding.

GLM specifies less-than-full-rank coding. This option can be used
only as a global v-option (after the slash in the CLASS state-
ment).
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ORDINAL | THERMOMETER specifies the cumulative parameterization for an ordinal CLASS
variable.

POLYNOMIAL | POLY specifies polynomial coding.

REFERENCE | REF specifies reference-cell coding.

ORTHEFFECT orthogonalizes PARAM=EFFECT.

ORTHORDINAL | ORTHOTHERM orthogonalizes PARAM=ORDINAL.

ORTHPOLY orthogonalizes PARAM=POLYNOMIAL.

ORTHREF orthogonalizes PARAM=REFERENCE.

The EFFECT, POLYNOMIAL, REFERENCE, and ORDINAL coding schemes and their orthogonal
parameterizations are full rank. The REF= option in the CLASS statement determines the reference
level for the EFFECT and REFERENCE schemes and their orthogonal parameterizations.

REF=’level’ | FIRST | LAST
specifies the reference level for PARAM=EFFECT, PARAM=REFERENCE, and their orthogonaliza-
tions. For an individual (but not a global) REF= v-option, you can specify the level of the variable to use
as the reference level. For a global or individual REF= v-option, you can specify REF=FIRST (which
designates the first-ordered level as reference) or REF=LAST (which designates the last-ordered level
as reference). The default is REF=LAST.

SPLIT
enables the columns of the design matrix that correspond to any effect that contains a split classification
variable to be selected to enter or leave a model independently of the other design columns of that
effect. For example, suppose a variable named temp has three levels with values 'hot', 'warm', and
'cold', and a variable named sex has two levels with values 'M' and 'F'. The following statements
include SPLIT as a global v-option:

proc quantselect;
class temp sex / split;
model depVar = sex sex*temp;

run;

Because both the classification variables are split, the two effects named in the MODEL state-
ment are split into eight effects. The effect 'sex' is split into two effects labeled 'sex_M'
and 'sex_F'. The effect 'sex*temp' is split into six effects labeled 'sex_M*temp_hot',
'sex_F*temp_hot', 'sex_M*temp_warm', 'sex_F*temp_warm', 'sex_M*temp_cold',
and 'sex_F*temp_cold'. The previous PROC QUANTSELECT statements are equivalent to the
following statements for the split version of the DATA= data set:

proc quantselect;
model depVar = sex_M sex_F sex_M*temp_hot sex_F*temp_hot

sex_M*temp_warm sex_F*temp_warm
sex_M*temp_cold sex_F*temp_cold;

run;

You can specify the SPLIT option for individual classification variables. For example, consider the
following PROC QUANTSELECT statements:
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proc quantselect;
class temp(split) sex;
model depVar = sex sex*temp;

run;

In this case, the effect 'sex' is not split, and the effect 'sex*temp' is split into three effects
labeled 'sex*temp_hot', 'sex*temp_warm', and 'sex*temp_cold'. Furthermore each of
these three split effects now has two parameters that correspond to the two levels of 'sex,' and the
previous PROC QUANTSELECT statements are equivalent to the following statements for the split
version of the DATA= data set:

proc quantselect;
class sex;
model depVar = sex sex*temp_hot sex*temp_warm sex*temp_cold;

run;

EFFECT Statement
EFFECT name=effect-type (variables < / options >) ;

The EFFECT statement enables you to construct special collections of columns for design matrices. These
collections are referred to as constructed effects to distinguish them from the usual model effects that are
formed from continuous or classification variables, as discussed in the section “GLM Parameterization of
Classification Variables and Effects” on page 387 in Chapter 19, “Shared Concepts and Topics.”

You can specify the following effect-types:

COLLECTION is a collection effect that defines one or more variables as a single effect with
multiple degrees of freedom. The variables in a collection are considered as
a unit for estimation and inference.

LAG is a classification effect in which the level that is used for a given period
corresponds to the level in the preceding period.

MULTIMEMBER | MM is a multimember classification effect whose levels are determined by one or
more variables that appear in a CLASS statement.

POLYNOMIAL | POLY is a multivariate polynomial effect in the specified numeric variables.

SPLINE is a regression spline effect whose columns are univariate spline expansions
of one or more variables. A spline expansion replaces the original variable
with an expanded or larger set of new variables.

Table 84.7 summarizes the options available in the EFFECT statement.
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Table 84.7 EFFECT Statement Options

Option Description

Collection Effects Options
DETAILS Displays the constituents of the collection effect

Lag Effects Options
DESIGNROLE= Names a variable that controls to which lag design an observation

is assigned

DETAILS Displays the lag design of the lag effect

NLAG= Specifies the number of periods in the lag

PERIOD= Names the variable that defines the period

WITHIN= Names the variable or variables that define the group within which
each period is defined

Multimember Effects Options
NOEFFECT Specifies that observations with all missing levels for the multi-

member variables should have zero values in the corresponding
design matrix columns

WEIGHT= Specifies the weight variable for the contributions of each of the
classification effects

Polynomial Effects Options
DEGREE= Specifies the degree of the polynomial
MDEGREE= Specifies the maximum degree of any variable in a term of the

polynomial
STANDARDIZE= Specifies centering and scaling suboptions for the variables that

define the polynomial

Spline Effects Options
BASIS= Specifies the type of basis (B-spline basis or truncated power func-

tion basis) for the spline effect
DEGREE= Specifies the degree of the spline effect
KNOTMETHOD= Specifies how to construct the knots for the spline effect

For more information about the syntax of these effect-types and how columns of constructed effects are
computed, see the section “EFFECT Statement” on page 397 in Chapter 19, “Shared Concepts and Topics.”

MODEL Statement
MODEL dependent = < effects > / < options > ;

The MODEL statement names the dependent variable and the covariate effects, including covariates, main
effects, constructed effects, interactions, and nested effects; see the section “Specification of Effects” on
page 3453 in Chapter 45, “The GLM Procedure,” for more information. If you omit the explanatory effects,
PROC QUANTSELECT fits an intercept-only model.
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After the keyword MODEL, specify the dependent (response) variable, followed by an equal sign, followed
by the explanatory effects.

Table 84.8 summarizes the options available in the MODEL statement.

Table 84.8 MODEL Statement Options

Option Description

DETAILS= Specifies the level of effect selection detail to display
HIERARCHY= Specifies hierarchy of effects to impose
NOINT Specifies models without an explicit intercept
QUANTILES= Specifies quantile levels to be applied
SELECTION= Specifies effect selection method
STATS= Specifies additional statistics to be displayed
TEST= Specifies the test type for computing significance levels

The following list provides details about the options that you can specify in the MODEL statement after a
slash (/):

DETAILS=level | STEPS < (step options) >
specifies the level of effect selection detail that is displayed, where level can be ALL, STEPS, or
SUMMARY. The default if the DETAILS= option is omitted is DETAILS=SUMMARY that produces
only the selection summary table. The DETAILS=ALL option produces the following:

• entry and removal statistics for each variable that is selected in the model building process

• fit statistics and parameter estimates

• entry and removal statistics for the top five candidates for inclusion or exclusion at each step

• a selection summary table

The option DETAILS=STEPS < (step options) > provides the step information and the selection sum-
mary table. The following suboptions can be specified within parentheses after the DETAILS=STEPS
option:

FITSTATISTICS | FITSTATS | FIT
requests fit statistics at each selection step.

PARAMETERESTIMATES | PARMEST
requests parameter estimates at each selection step.

CANDIDATES < (ALL | n) >
requests entry or removal statistics for the best n candidate effects for inclusion or exclusion at
each step. If you specify the CANDIDATES(ALL) option, then all candidates are shown. If the
CANDIDATES(n) is not specified. then the best 10 candidates are shown. The entry or removal
statistic is the statistic named in the SELECT= option that is specified in the MODEL statement
SELECTION= option.
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HIERARCHY=keyword

HIER=keyword
specifies whether and how the model hierarchy requirement is applied. This option also controls
whether a single effect or multiple effects are allowed to enter or leave the model in one step. You
can specify that only CLASS effects, or both CLASS and continuous effects, be subject to the
hierarchy requirement. This option is ignored unless you also specify one of the following options:
SELECTION=FORWARD, SELECTION=BACKWARD, or SELECTION=STEPWISE.

Model hierarchy refers to the requirement that for any term to be in the model, all model effects
contained in the term must be present in the model. For example, in order for the interaction A*B to
enter the model, the main effects A and B must be in the model. Likewise, neither effect A nor effect B
can leave the model while the interaction A*B is in the model.

You can specify the following keywords:

NONE
specifies that model hierarchy not be maintained. Any single effect can enter or leave the model
at any given step of the selection process.

SINGLE
specifies that only one effect enter or leave the model at one time, subject to the model hierarchy
requirement. For example, suppose that the model contains the main effects A and B and the
interaction A*B. In the first step of the selection process, either A or B can enter the model. In
the second step, the other main effect can enter the model. The interaction effect can enter the
model only when both main effects have already entered. Also, before A or B can be removed
from the model, the A*B interaction must first be removed. All effects (CLASS and interval) are
subject to the hierarchy requirement.

SINGLECLASS
is the same as HIERARCHY=SINGLE except that only CLASS effects are subject to the hierarchy
requirement.

The default is HIERARCHY=NONE.

NOINT
suppresses the intercept term that is otherwise included in the model.

QUANTILES=number-list | PROCESS < (option) >

QUANTILE=< number-list | PROCESS < (option) > >
specifies the quantile levels for the quantile regression. You can specify any number of quantile levels
in .0; 1/. If you do not specify this option, the QUANTSELECT procedure performs median regression
effect selection that corresponds to QUANTILES=0.5.

If you specify the QUANTILES=PROCESS option, the QUANTSELECT procedure performs ef-
fect selection for quantile process regression. The QUANTILES=PROCESS option cannot be used
with LASSO selection methods. You can specify the following option in parentheses after QUAN-
TILES=PROCESS.

NTAU=n | ALL
specifies how many quantile levels that you expect to cover for the quantile process. If you
specify NTAU=ALL, the QUANTSELECT procedure performs effect selection for accurate
quantile process regression. If you specify NTAU=n, the QUANTSELECT procedure performs
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effect selection for approximate quantile process regression. The approximate quantile process
is computed at n equally spaced quantile levels:

˚
1
nC1

; : : : ; n
nC1

	
besides three control quantile

levels f0; 0:5; 1g. If the number of observations for training is more than 1000, by default,
NTAU=500. Otherwise, the default is NTAU=ALL.

SELECTION=method < (method-options) >
specifies the method used to select the model, optionally followed by parentheses that enclose method-
options that apply to the specified method. The default is SELECTION=STEPWISE.

You can specify the following methods, which are explained in detail in the section “Effect Selection
Methods” on page 6944.

NONE specifies full model fitting without effect selection.

FORWARD specifies forward selection. This method starts with no effects in the model and
adds effects.

BACKWARD specifies backward elimination. This method starts with all effects in the model and
deletes effects.

STEPWISE specifies stepwise regression. This is similar to the FORWARD method except that
effects already in the model do not necessarily stay there.

LASSO specifies a method that adds and deletes parameters based on a version of estimated
check risk where the weighted L1-norm of certain weighted regression coefficients
is penalized. For more information, see the section “LASSO Method (LASSO)” on
page 6945. If the model contains CLASS variables or constructed effects, these
CLASS variables or constructed effects are split into separate covariates.

Table 84.9 lists the applicable method-options for each method .

Table 84.9 Applicable method-options for Each method

method-option FORWARD BACKWARD STEPWISE LASSO

ADAPTIVE x
CHOOSE= x x x x
INCLUDE= x x x x
MAXSTEP= x x x x
SELECT= x x x
SLENTRY= x x
SLSTAY= x x
STOP= x x x x
STOPHORIZON= x x x x

You can specify the following method-option in parentheses after the method . As described in
Table 84.9, not all method-options apply to every SELECTION= method.

ADAPTIVE
ADAPT

specifies the adaptive LASSO selection method. The ADAPTIVE option can be used only with
the SELECTION=LASSO option.
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CHOOSE=criterion
chooses from the list of models (with one model at each step of the selection process) the model
that yields the best value of the specified criterion as the final selected model. If the optimal
value of the specified criterion occurs for more than one model, then the model with the smallest
number of parameters is chosen. If you do not specify the CHOOSE= option, then the model
selected is the model at the final step in the selection process for the SELECT=SL criterion, or
the STOP= option is applied as the CHOOSE= option for all the other cases.

You can specify the following values for criterion in the CHOOSE= option. See the section
“Criteria Used in Model Selection Methods” on page 6945 for more information about these
criteria.

ADJR1 chooses the model with the largest adjusted quantile regression R statistic.

AIC chooses the model with the smallest Akaike’s information criterion.

AICC chooses the model with the smallest corrected Akaike’s information criterion.

SBC chooses the model with the smallest Schwarz Bayesian information criterion.

VALIDATE chooses the model with the smallest average check loss for the validation
data. You can specify CHOOSE=VALIDATE only if you have specified a
VALDATA= data set in the PROC QUANTSELECT statement or if you have
reserved part of the input data for validation by using either a PARTITION
statement or a _ROLE_ variable in the input data.

INCLUDE=n
forces the first n effects listed in the MODEL statement to be included in all models. The selection
methods are performed on the other effects in the MODEL statement.

MAXSTEP=n
specifies the maximum number of selection steps. The default value of n is the number of effects
in the MODEL statement when SELECTION=FORWARD or SELECTION=BACKWARD and
is three times the number of effects when SELECTION=STEPWISE or SELECTION=LASSO.

SELECT=criterion
specifies the criterion that PROC QUANTSELECT uses to determine the order in which effects
enter or leave at each step of the specified selection method. This option is not valid when
SELECTION=LASSO. You can specify the following values for criterion: ADJR1, AIC, AICC,
SBC, SL, and VALIDATE. See the section “Criteria Used in Model Selection Methods” on
page 6945 for more information about these criteria.

When SELECT=SL, the effect selection depends on the selection method and is described in the
relevant subsection of the section “Effect Selection Methods” on page 6944. Otherwise, the effect
that is selected to enter or leave at a step of the selection process is the effect whose addition to or
removal from the current model produces the maximum improvement in the specified criterion.

If validation data exist, the default is SELECT=VALIDATE; otherwise, the default is SE-
LECT=SBC.
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SLENTRY=value
SLE=value

specifies the significance level for entry, used when the SELECT=SL option is in effect. The
defaults are 0.50 when SELECTION=FORWARD and 0.15 when SELECTION=STEPWISE.

SLSTAY=value
SLS=value

specifies the significance level for staying in the model, used when the SELECT=SL option
is in effect. The defaults are 0.10 when SELECTION=BACKWARD and 0.15 when SELEC-
TION=STEPWISE.

STOP=criterion
specifies the criterion for stopping the selection process. If the maximum number of steps is
specified in the MAXSTEP= option and the criterion does not stop the selection process before
the maximum number of steps for the selection method, then the selection process terminates at
the maximum number of steps.

You can specify the following values for criterion. See the section “Criteria Used in Model
Selection Methods” on page 6945 for more detailed descriptions of these criteria.

NONE enables the model selection process to go through all possible steps.

ADJR1 stops selection at the step where the next SH= steps (or all remaining steps)
would yield models with smaller values of the adjusted quantile regression R
(ADJR1) statistic.

AIC stops selection at the step where the next SH= steps (or all remaining steps)
would yield models with larger values of Akaike’s information criterion.

AICC stops selection at the step where the next SH= steps (or all remaining steps)
would yield models with larger values of the corrected Akaike’s information
criterion.

SBC stops selection at the step where the next SH= steps (or all remaining steps)
would yield models with larger values of the Schwarz Bayesian information
criterion.

VALIDATE stops selection at the step where the next SH= steps (or all remaining steps)
would yield models with larger values of the average check loss for the
validation data. You can specify STOP=VALIDATE only if you have specified
a VALDATA= data set in the PROC QUANTSELECT statement or if you have
reserved part of the input data for validation by using either a PARTITION
statement or a _ROLE_ variable in the input data.

The default criterion depends on other factors as follows:

• If validation data exist, STOP=VALIDATE by default.
• If validation data do not exist and you specify SELECTION=LASSO, STOP=SBC by default.

The SELECTION=LASSO option does not support the SELECT=method-option.
• If validation data do not exist and you specify SELECTION= STEPWISE, FORWARD, or

BACKWARD, the default is one of the following:
– When you specify SELECT=SL, the entry and stay significance levels terminate the

effect selection process.
– When you do not specify SELECT=SL, the default is the criterion that is specified in

the SELECT= option.
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If you specify both the STOP= option and SELECT=SL, the following rules apply:

• When you specify SELECTION=STEPWISE, the entry and stay significance levels can
terminate the effect selection process when no candidate effect is available to be deleted
from or added to the model. This extra check can result in the selection terminating before a
local minimum of the STOP= criterion is found.

• When you specify SELECTION=FORWARD, the effect selection process ignores the entry
significance level even if you use the SLE= option to specify the entry significance level.

• When you specify SELECTION=BACKWARD, the effect selection process ignores the stay
significance level even if you use the SLS= option to specify the stay significance level.

STOPHORIZON=n

SH=n
looks ahead for the specified number of steps to decide whether an extremum of the stop criterion
is achieved. This option applies only to the STOP= criterion. The default is STOPHORIZON=1.

For example, suppose that the stop criterion values at steps 1 through 5 are 4, 3, 5, 6, and 2,
respectively. If you specify STOPHORIZON=1, then the selection process terminates after
looking at the model at step 3, and the final selected model is the model at step 2. If you specify
STOPHORIZON=2, the selection process stops after looking at the model at step 4, and the final
selected model is the model at step 2. However, if you specify STOPHORIZON=3 or higher, then
the local minimum in the stop value sequence at step 2 cannot stop the selection process because
a lower value is achieved at step 5, which is within 3 steps beyond this local minimum step.

STAT=name | (names)

STATS=name | (names)
specifies which model fit statistics to display in the selection summary table. To specify multiple model
fit statistics, specify a list of names in parentheses. If you omit this option, the default set of statistics
that are displayed in these tables includes all the criteria that are specified in any of the CHOOSE=,
SELECT=, and STOP= method-options.

You can specify the following values for name:

ADJR1 displays the adjusted quantile regression R statistic.

AIC displays the Akaike’s information criterion.

AICC displays the corrected Akaike’s information criterion.

ACL displays the average check losses for the training, test, and validation data. The
ACL statistics for the test and validation data are reported only if you have specified
the TESTDATA= option or the VALDATA= option in the PROC QUANTSELECT
statement or if you have reserved part of the input data for testing or validation by
using either a PARTITION statement or a _ROLE_ variable in the input data.

R1 displays the quantile regression R statistic.

SBC displays the Schwarz Bayesian information criterion.

The statistics ADJR1, AIC, AICC, and SBC can be computed with little computation cost. However,
computing ACL for test and validation data when these are not used in any of the CHOOSE=,
SELECT=, and STOP= method-options can hurt performance.
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TEST=name
specifies the test type for computing significance levels.

You can specify the following values for name:

LR1 specifies the likelihood ratio test Type I. The LR1 test score is

2.D1.�/ �D2.�//

�.1 � �/Os

where D1.�/ D
P
��

�
yi � xi Ǒ1.�/

�
is the sum of check losses for the reduced

model, D2.�/ D
P
��

�
yi � xi Ǒ.�/

�
is the sum of check losses for the extended

model, and Os is the estimated sparsity function. See the section “Quasi-Likelihood
Ratio Tests” on page 6942 for more information.

LR2 specifies the likelihood ratio test Type II. The LR2 test score is

2D2.�/ .log.D1.�// � log.D2.�///
�.1 � �/Os

:

See the section “Quasi-Likelihood Ratio Tests” on page 6942 for more information.

OUTPUT Statement
OUTPUT < OUT=SAS-data-set > < keyword < =name > > . . . < keyword < =name > > ;

The OUTPUT statement creates a new SAS data set that saves diagnostic measures that are calculated for the
selected model. If you do not specify a keyword , then the only diagnostic included is the predicted response.

All the variables in the original data set are included in the new data set, along with variables that are created
by the keyword options in the OUTPUT statement. These new variables contain the values of a variety of
statistics and diagnostic measures that are calculated for each observation in the data set.

The OUTPUT data set is created in row-wise form, and the variable _QUANTILE_ is optional. For each
appropriate keyword specified in the OUTPUT statement, one variable for each specified quantile level is
generated. These variables appear in the sorted order of the specified quantile levels.

If you specify a BY statement, then a variable _BY_ that indexes the BY groups is included. For each
observation, the value of _BY_ is the index of the BY group to which this observation belongs. This variable
is useful for matching BY groups with macro variables that PROC QUANTSELECT creates. See the section
“Macro Variables That Contain Selected Models” on page 6947 for more information.

If you have partitioned the input data with a PARTITION statement, then a character variable _ROLE_ is
included in the output data set. The following table shows the value of _ROLE_ for each observation:

_ROLE_ Value Observation Role

TEST Testing
TRAIN Training
VALIDATE Validation

If you want to create a permanent SAS data set, you must specify a two-level name. For more information
about permanent SAS data sets, see see the discussion in SAS Language Reference: Concepts.

You can specify the following arguments in the OUTPUT statement:
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keyword < =name >
specifies the statistics to include in the output data set and optionally names the new variables that
contain the statistics. Specify one of the following keywords for each desired statistic, followed
optionally by an equal sign, and the name of a variable to contain the statistic. If you specify
keyword=name, the new variable that contains the requested statistic has the specified name. If you
omit the optional =name after a keyword , then the new variable name is formed by using a prefix
of one or more characters that identify the statistic, followed by an underscore (_), followed by the
dependent variable name.

PREDICTED | PRED | P includes predicted values in the output data set. The prefix for the default
name is p.

RESIDUAL | RESID | R includes residuals, calculated as ACTUAL – PREDICTED, in the output
data set. The prefix for the default name is r.

OUT=SAS-data-set
names the output data set. By default, PROC QUANTSELECT uses the DATAn convention to name
the new data set.

PARTITION Statement
PARTITION < option > ;

The PARTITION statement specifies how observations in the input data set are logically partitioned into
disjoint subsets for model training, validation, and testing. Either you can designate a variable in the input
data set and a set of formatted values of that variable to determine the role of each observation, or you can
specify proportions to use for random assignment of observations for each role.

An alternative to using a PARTITION statement is to provide a variable named _ROLE_ in the input data set
to define roles of observations in the input data. If you specify a PARTITION statement, then any _ROLE_
variable in the input data set is ignored. If you do not use a PARTITION statement and the input data do not
contain a variable named _ROLE_, then all observations in the input data set are assigned to model training.

You can specify either (but not both) of the following options:

ROLEVAR=variable (< TEST=value > < TRAIN=value > < VALIDATE=value >)

ROLE=variable (< TEST=value > < TRAIN=value > < VALIDATE=value >)
names the variable in the input data set whose values are used to assign roles to each observation. The
TEST=, TRAIN=, and VALIDATE= suboptions specify the formatted values of this variable that are
used to assign observations roles. If you do not specify the TRAIN= suboption, then all observations
whose role is not determined by the TEST= or VALIDATE= suboptions are assigned to training.

FRACTION(< TEST=fraction > < VALIDATE=fraction >)
requests that specified proportions of the observations in the input data set be randomly assigned
training and validation roles. You specify the proportions for testing and validation by using the TEST=
and VALIDATE= suboptions. If you specify both the TEST= and the VALIDATE= suboptions, then
the sum of the specified fractions must be less than 1 and the remaining fraction of the observations are
assigned to the training role.



WEIGHT Statement F 6941

WEIGHT Statement
WEIGHT variable ;

A WEIGHT statement names a variable in the input data set with values that are relative weights for a
weighted quantile regression fit.

Values of the weight variable must be nonnegative. If an observation’s weight is 0, the observation is deleted
from the analysis. If a weight is negative or missing, it is set to 0, and the observation is excluded from the
analysis.

Details: QUANTSELECT Procedure

Quantile Regression
This section describes the basic concepts and notations for quantile regression and quantile regression model
selection.

Let f.yi ; xi / W i D 1; : : : ; ng denote a data set of observations, where yi are responses, and xi are regressors.
Koenker and Bassett (1978) defined the regression quantile at quantile level � 2 .0; 1/ as any solution to the
minimization problem,

min
ˇ2Rp

nX
iD1

��
�
yi � x0iˇ

�
where �� .r/ D � rC C .1 � �/r� is a check loss function in which rC D max.r; 0/ and r� D max.�r; 0/.

If you specify weights wi ; i D 1; : : : ; n, in the WEIGHT statement, weighted quantile regression is carried
out by solving

min
ˇ2Rp

nX
iD1

��
�
wi .yi � x0iˇ/

�

Quasi-Likelihood Information Criteria

Given quantile level � , assume that the distribution of Yi conditional on xi follows the linear model

Yi D x0iˇ C �i

where �i for i D 1; : : : ; n are iid in distribution F. Further assume that F is an asymmetric Laplace distribution
whose density function is

f� .r/ D
�.1 � �/

�
exp

�
�
�� .r/

�

�
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where � is the scale parameter. Then, the associated -log likelihood function is

l� .ˇ; �/ D n log.�/C ��1
nX
iD1

�� .yi � x0iˇ/ � n log.�.1 � �//

Under these settings, the maximum likelihood estimate (MLE) of ˇ is the same as the relevant level � quantile
regression solution Ǒ.�/, and the MLE for � is

O�.�/ D n�1
nX
iD1

��

�
yi � x0i Ǒ.�/

�
where O�.�/ equals the level � average check loss (ACL.�/) for the quantile regression solution.

According to the general form of Akaike’s information criterion (AIC) AIC D .�2l C 2p/, the quasi-
likelihood AIC for quantile regression is

AIC.�/ D 2n ln .ACL.�//C 2p

where p is the degrees of freedom for the fitted model.

Similarly, the quasi-likelihood AICC (corrected AIC) and SBC (Schwarz Bayesian information criterion) can
be formulated as follows:

AICC.�/ D 2n ln .ACL.�//C
2pn

n � p � 1

SBC.�/ D 2n ln .ACL.�//C p ln.n/

In fact, the quasi-likelihood AIC, AICC, and SBC are fairly robust, and they can be used to select effects for
data sets without the iid assumption in asymmetric Laplace distribution. See “Example 84.1: Simulation
Study” on page 6956 for a simulation study that applies SBC for effect selection on a data set that is generated
from a naive instrumental model (Chernozhukov and Hansen 2008).

Quasi-Likelihood Ratio Tests

Under the iid assumption, Koenker and Machado (1999) proposed two types of quasi-likelihood ratio tests
for quantile regression, where the error distribution is flexible but not limited to the asymmetric Laplace
distribution. The Type I test score, LR1, is defined as

2.D1.�/ �D2.�//

�.1 � �/Os

where D1.�/ D
P
��

�
yi � xi Ǒ1.�/

�
is the sum of check losses for the reduced model, D2.�/ DP

��

�
yi � xi Ǒ.�/

�
is the sum of check losses for the extended model, and Os is the estimated sparsity

function. The Type II test score, LR2, is defined as

2D2.�/ .log.D1.�// � log.D2.�///
�.1 � �/Os

Under the null hypothesis that the reduced model is the true model, both LR1 and LR2 follow a �2 distribution
with df D df2 � df1 degrees of freedom, where df 1 and df 2 are the degrees of freedom for the reduced
model and the extended model, respectively.
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If you specify the TEST=LR1 option in the MODEL statement, the QUANTSELECT procedure uses LR1
score to compute the significance level. Or you can use the substitutable TEST=LR2 option for computing
the significance level on Type II quasi-likelihood ratio test.

Under the iid assumption, the sparsity function is defined as s.�/ D 1=f .F�1.�//. Here the distribution of
errors F is flexible but not limited to the asymmetric Laplace distribution. The algorithm for estimating s.�/
is as follows:

1. Fit a quantile regression model and compute the residuals. Each residual ri D yi � x0i Ǒ.�/ can be
viewed as an estimated realization of the corresponding error �i . Then Os is computed on the reduced
model for testing the entry effect and on the extended model for testing the removal effect.

2. Compute quantile level bandwidth hn. The QUANTSELECT procedure computes the Bofinger
bandwidth, which is an optimizer of mean squared error for standard density estimation:

hn D n
�1=5.4:5v2.�//1=5

The quantity

v.�/ D
s.�/

s.2/.�/
D

f 2

2.f .1/=f /2 C Œ.f .1/=f /2 � f .2/=f �

is not sensitive to f and can be estimated by assuming f is Gaussian as

Ov.�/ D
exp.�q2/
2�.q2 C 1/

with q D ˆ�1.�/

3. Compute residual quantiles OF�1.�0/ and OF�1.�1/ as follows:

a) Set �0 D max.0; � � hn/ and �1 D min.1; � C hn/.

b) Use the equation

OF�1.t/ D

8<:
r.1/ if t 2 Œ0; 1=2n/
�r.iC1/ C .1 � �/r.i/ if t 2 Œ.i � 0:5/=n; .i C 0:5/=n/
r.n/ if t 2 Œ.2n � 1/; 1�

where r.i/ is the ith smallest residual and � D t � .i � 0:5/=n.

c) If OF�1.�0/ D OF�1.�1/, find i that satisfies r.i/ < OF�1.�0/ and r.iC1/ � OF�1.�0/. If such an i
exists, reset �0 D .i � 0:5/=n so that OF�1.�0/ D r.i/. Also find j that satisfies r.j / > OF�1.�1/
and r.j�1/ � OF�1.�1/. If such a j exists, reset �1 D .j � 0:5/=n so that OF�1.�1/ D r.j /.

4. Estimate the sparsity function s.�/ as

Os.�/ D
OF�1.�1/ � OF

�1.�0/

�1 � �0

Because a real data set might not follow the null hypothesis and the iid assumptions, the LR1 and LR2
scores that are used for quantile regression effect selection often do not follow a �2 distribution. Hence, the
SLENTRY and SLSTAY values cannot reliably be viewed as probabilities. One way to address this difficulty
is to treat the SLENTRY and SLSTAY values only as criteria for comparing importance levels of effect
candidates at each selection step, and not to explain these values as probabilities.
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Effect Selection Methods
The effect selection methods implemented in PROC QUANTSELECT are specified with the SELECTION=
option in the MODEL statement.

Full Model Fitted (NONE)

The complete model specified in the MODEL statement is used to fit the model, and no effect selection is
done. You request this method by specifying SELECTION=NONE in the MODEL statement.

Forward Selection (FORWARD)

The forward selection technique begins with just the forced-in covariates and then sequentially adds the
effect that most improves the fit. The process terminates when no significant improvement can be obtained
by adding any effect. You request this method by specifying SELECTION=FORWARD in the MODEL
statement.

If you specify the SELECT=SL method-option, you can use the TEST= method-option to specify a test
statistic for gauging improvement in fit. For example, if TEST=LR1, at each step the effect that yields the
most significant likelihood ratio statistic is added and the process continues until all effects that are not in the
model have LR1 statistics that are not significant at the entry significance level (which is specified in the
SLE= option). Because effects can contribute different degrees of freedom to the model, it is necessary to
compare the p-values that correspond to these statistics.

Backward Elimination (BACKWARD)

The backward elimination technique starts from the full model, which includes all independent effects.
Then effects are deleted one by one until a stopping condition is satisfied. At each step, the effect that
shows the smallest contribution to the model is deleted. You request this method by specifying SELEC-
TION=BACKWARD in the MODEL statement.

Suppose you specify the SELECT=SL method-option and the TEST=LR1 method-option to gauge improve-
ment in quantile regression fit. At any step, the predictor that produces the least significant LR1 statistic
is dropped and the process continues until all effects that remain in the model have LR1 statistics that are
significant at the stay significance level (which is specified in the SLS= option).

Stepwise Selection (STEPWISE)

The stepwise method is a modification of the forward selection technique in which effects already in the
model do not necessarily stay there. You request this method by specifying SELECTION=STEPWISE in the
MODEL statement.

In the implementation of the stepwise selection method, the same entry and removal approaches for the
forward selection and backward elimination methods are used to assess contributions of effects as they are
added to or removed from a model. Suppose you specify SELECT=SL. If, at a step of the stepwise method,
any effect in the model is not significant at the level specified by the SLSTAY= method-option, then the
least significant of these effects is removed from the model and the algorithm proceeds to the next step.
This ensures that no effect can be added to a model while some effect currently in the model is not deemed
significant. Only after all necessary deletions have been accomplished can another effect be added to the
model. In this case, the effect whose addition yields the most significant statistic value is added to the model
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and the algorithm proceeds to the next step. The stepwise process ends when none of the effects outside
the model is significant at the level specified by the SLENTRY= method-option and every effect in the
model is significant at the level specified by the SLSTAY= method-option. In some cases, neither of these
two conditions for stopping is met and the sequence of models cycles. In this case, the stepwise method
terminates at the end of the second cycle.

Just as with forward selection and backward elimination, you can use the SELECT= method-option to change
the criterion used to assess effect contributions. You can also use the STOP= method-option to specify a
stopping criterion and use the CHOOSE= method-option to specify a criterion used to select among the
sequence of models produced.

LASSO Method (LASSO)

The standard LASSO method uses a standardized design matrix that orthogonalizes selectable covariates
against forced-in covariates, and then scales the orthogonalized selectable covariates so that they all have the
same sum of squares. See the information about the standard parameter estimate in the section “Parameter
Estimates” on page 6953 for more information about design matrix orthogonalization. The LASSO method
initializes all the selectable coefficients into 0 at step 0. The predictor that reduces the average check loss the
fastest relative to the L1-norm of the selectable coefficient increment is determined, and a step is taken in the
direction of this predictor.

The difference between adaptive LASSO and standard LASSO methods is in the prescaling of the selectable
coefficients. After orthogonalization against forced-in covariates, the adaptive LASSO method first fits a
full model without penalty, and then scales the orthogonalized selectable covariates with the corresponding
coefficients from the full model. This adaptive scaling can be equivalently substituted by using a weighted
L1-norm penalty, where the weights are the reciprocals of the corresponding coefficients from the full model.

The length of this step determines the coefficient of this predictor and is chosen when some residual changes
its sign or some predictor that is not used in the model can reduce the average check loss more efficiently.
This process continues until all predictors are in the model.

As with other selection methods, the issue of when to stop the selection process is crucial. You can use
the CHOOSE= method-option to specify a criterion for choosing among the models at each step. You can
also use the STOP= method-option to specify a stopping criterion. See the section “Criteria Used in Model
Selection Methods” on page 6945 for more information and Table 84.10 for the formulas for evaluating these
criteria.

Criteria Used in Model Selection Methods
PROC QUANTSELECT supports a variety of fit statistics that you can specify as criteria for the CHOOSE=,
SELECT=, and STOP= method-options in the MODEL statement.

Single Quantile Effect Selection

The following fit statistics are available for single quantile effect selection:

AIC applies the Akaike’s information criterion (Akaike 1981; Darlington 1968; Judge et al.
1985).

AICC applies the corrected Akaike’s information criterion (Hurvich and Tsai 1989).
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SBC applies the Schwarz Bayesian information criterion (Schwarz 1978; Judge et al. 1985).

SL< (LR1 | LR2) > specifies the significance level of a statistic used to assess an effect’s contribution to the
fit when it is added to or removed from a model. LR1 specifies likelihood ratio Type I,
and LR2 specifies the likelihood ratio Type II. By default, the LR1 statistic is applied.

ADJR1 applies the adjusted quantile regression R statistic.

VALIDATE applies the average check loss for the validation data.

Table 84.10 provides formulas and definitions for these fit statistics.

Table 84.10 Formulas and Definitions for Model Fit Summary
Statistics for Single Quantile Effect Selection

Statistic Definition or Formula

n Number of observations
p Number of parameters including the intercept
ri .�/ Residual for the ith observation; ri .�/ D yi � xiˇ.�/
D.�/ Total sum of check losses; D.�/ D

Pn
iD1 �� .ri /

D0.�/ Total sum of check losses for intercept-only model if intercept is a forced-in effect,
otherwise for empty-model.

ACL.�/ Average check loss; ACL.�/ D
D.�/

n

R1.�/ Counterpart of linear regression R-square for quantile regression; 1 �
D.�/

D0.�/

ADJR1.�/ Adjusted R1; .�/ D 1 �
.n � 1/D.�/

.n � p/D0.�/

AIC.�/ 2n ln .ACL.�//C 2p

AICC.�/ 2n ln .ACL.�//C
2pn

n � p � 1

SBC.�/ 2n ln .ACL.�//C p ln.n/

Quantile Process Effect Selection

The following statistics are available for quantile process effect selection:

AIC specifies Akaike’s information criterion (Akaike 1981; Darlington 1968; Judge et al.
1985).

AICC specifies the corrected Akaike’s information criterion (Hurvich and Tsai 1989).

SBC specifies Schwarz Bayesian information criterion (Schwarz 1978; Judge et al. 1985).

ADJR1 specifies the adjusted quantile regression R statistic.

VALIDATE specifies average check loss for the validation data.
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Table 84.11 provides formulas and definitions for the fit statistics.

Table 84.11 Formulas and Definitions for Model Fit Summary
Statistics for Quantile Process Effect Selection

Statistic Definition or Formula

D Integral of total sum of check losses; D D
R 1
0 D.�/d�

D0 Integral of total sum of check losses for intercept-only
model or empty-model if the NOINT option is used; D0 DR 1
0 D0.�/d�

ACL Integral of average check loss; ACL D
D

n

R1 1 �
D

D0

ADJR1 Adjusted R1; 1 �
.n � 1/D

.n � p/D0

AIC
Z 1

0

AIC.�/d�

AICC
Z 1

0

AICC.�/d�

SBC
Z 1

0

SBC.�/d�

Macro Variables That Contain Selected Models
PROC QUANTSELECT saves the list of selected effects in a macro variable so that you can use other SAS
procedures to perform post-selection analyses. This list does not explicitly include the intercept so that you
can use it in the MODEL statement of other SAS/STAT regression procedures.

Table 84.12 describes the macro variables that PROC QUANTSELECT creates. When multiple quantile
levels or BY processing are used, one macro variable, indexed by the quantile level order and the BY group
number, is created for each quantile level and BY group combination.
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Table 84.12 Macro Variables Created for Subsequent Processing

Macro Variable Description

Single Quantile Level and No BY processing
_QRSIND Selected model

Multiple Quantile Levels and No BY Processing
_QRSNUMTAUS Number of quantile levels
_QRSINDT1 Selected model for the first quantile level
_QRSINDT2 Selected model for the second quantile level
. . .
Single Quantile Level and BY Processing
_QRSNUMBYS Number of BY groups
_QRSIND1 Selected model for BY group 1
_QRSIND2 Selected model for BY group 2
. . .
Multiple Quantile Levels and BY Processing
_QRSNUMTAUS Number of quantile levels
_QRSNUMBYS Number of BY groups
_QRSIND1T1 Selected model for the first quantile level and BY group 1
_QRSIND1T2 Selected model for the second quantile level and BY group 1
. . .
_QRSIND2T1 Selected model for the first quantile level and BY group 2
_QRSIND2T2 Selected model for the second quantile level and BY group 2
. . .

The macro variables _QRSIND, _QRSINDT1, _QRSIND1, and _QRSIND1T1 are all synonyms. If you do not
specify multiple quantile levels or BY processing, the macro variables _QRSNUMTAUS and _QRSNUMBYS
are both set to 1.

PROC QUANTSELECT creates two output data set variables, _BY_ and _QUANTILE_, to aid in associating
macro variables with output data set observations when multiple quantile levels or BY processing are used.
The values of these two variables are integers that match the i,j components of the macro variable names
_QRSINDiTj.
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Using Validation and Test Data
When you have sufficient data, you can subdivide your data into three parts: training, validation, and test
data. During the selection process, models are fit on the training data, and the prediction error for the models
so obtained is found by using the validation data. This prediction error on the validation data can be used to
decide when to terminate the selection process or to decide which effects to include as the selection process
proceeds. Finally, after a selected model has been obtained, the test set can be used to assess how the selected
model generalizes on data that played no role in selecting the model.

In some cases you might want to use only training and test data. For example, you might decide to use an
information criterion to decide which effects to include and when to terminate the selection process. In this
case no validation data are required, but test data can still be useful in assessing the predictive performance
of the selected model. In other cases you might decide to use validation data during the selection process
but forgo assessing the selected model on test data. Hastie, Tibshirani, and Friedman (2001) note that it is
difficult to give a general rule for how many observations you should assign to each role. They note that a
typical split might be 50% for training and 25% each for validation and testing.

PROC QUANTSELECT provides several methods for partitioning data into training, validation, and test data.
You can provide data for each role in separate data sets that you specify with the DATA=, TESTDATA=, and
VALDATA= options in the PROC QUANTSELECT procedure. An alternative method is to use a PARTITION
statement to logically subdivide the DATA= data set into separate roles. You can name the fractions of the
data that you want to reserve as test data and validation data. The following statements randomly subdivide
the inData data set to use 25% of the data for validation and 25% for testing, leaving 50% of the data for
training:

proc quantselect data=inData;
partition fraction(test=0.25 validate=0.25);
...

run;

If you need to exercise more control over the partitioning of the input data set, you can name a variable in the
input data set and a formatted value of that variable to correspond to each role. The following statements
assign roles to observations in the inData data set based on the value of the variable named group in that data
set:

proc quantselect data=inData;
partition roleVar=group(test='group 1' train='group 2')
...

run;

Observations whose value of the variable group is 'group 1' are assigned for testing, and those whose
value is 'group 2' are assigned to training. All other observations are ignored.

You can also combine the use of the PARTITION statement with named data sets for specifying data roles.
For example, the following statements reserve 40% of the inData data set for validation, leaving the remaining
60% for training:

proc quantselect data=inData testData=inTest;
partition fraction(validate=0.4);
...

run;
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Data for testing are supplied in the inTest data set. Because a TESTDATA= data set is specified, additional
observations for testing cannot be reserved by specifying a PARTITION statement.

When you use a PARTITION statement, the output data set that is created by an OUTPUT statement contains
a character variable _ROLE_ whose values 'TRAIN', 'TEST', and 'VALIDATE' indicate the role of each
observation. _ROLE_ is blank for observations that were not assigned to any of these three roles. When
the input data set specified in the DATA= option in the PROC QUANTSELECT statement contains an
_ROLE_ variable, no PARTITION statement is used, and the TESTDATA= and VALDATA= options are not
specified, then the _ROLE_ variable is used to define the roles of each observation. This is useful when you
want to rerun PROC QUANTSELECT but use the same data partitioning as you used in a previous PROC
QUANTSELECT step. For example, the following statements use the same data for testing and training in
both PROC QUANTSELECT steps:

proc quantselect data=inData;
partition fraction(test=0.5);
model y=x1-x10 / selection=forward;
output out=outDataForward;

run;

proc quantselect data=outDataForward;
model y=x1-x10 / selection=backward;

run;

When you have reserved observations for training, validation, and testing, a model that is fit on the training
data is scored on the validation and test data, and the average check loss, denoted by ACL, is computed
separately for each of these subsets. The ACL for each data role is the sum of check losses for observations
in that role divided by the number of observations in that role.

Using the Validation ACL as the STOP= Criterion

If you have provided observations for validation, then you can use the STOP=VALIDATE method-option to
specify the validation ACL as the STOP= criterion in the SELECTION= option in the MODEL statement. At
step k of the selection process, the best candidate effect to enter or leave the current model is determined. The
“best candidate” means the effect that gives the best value of the SELECT= criterion that does not need to be
based on the validation data. The validation ACL for the model with this candidate effect added is computed.
If this validation ACL is greater than the validation ACL for the model at step k, then the selection process
terminates at step k.

Using the Validation ACL as the CHOOSE= Criterion

When you specify the CHOOSE=VALIDATE method-option in the SELECTION= option in the MODEL
statement, the validation ACL is computed for the models at each step of the selection process. The model
that yields the smallest validation ACL and contains the fewest effects is selected.

Using the Validation ACL as the SELECT= Criterion

You request the validation ACL as the selection criterion by specifying the SELECT=VALIDATE method-
option in the SELECTION= option in the MODEL statement. At step k of the selection process, the validation
ACL is computed for each model where a candidate for entry is added or candidate for removal is dropped.
The selected candidate for entry or removal is the one that yields a model with the minimal validation ACL.
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Displayed Output
The following sections describe the output that is displayed by PROC QUANTSELECT. The output is
organized into various tables, which are discussed in the order of appearance. The contents of a table might
change depending on the options you specify.

Model Information

The “Model Information” table displays basic information about the data sets and the settings used to control
effect selection. These settings include the following:

• the selection method

• the criteria used to select effects, stop the selection, and choose the selected model

• the effect hierarchy enforced

The ODS name of the “Model Information” table is ModelInfo.

Number of Observations

The “Number of Observations” table displays the number of observations read from the input data set and the
number of observations used in the analysis. If you use a PARTITION statement, the table also displays the
number of observations used for each data role. If you specify TESTDATA= or VALDATA= data sets in the
PROC QUANTSELECT statement, then “Number of Observations” tables are also produced for these data
sets. The ODS name of the “Number of Observations” table is NObs.

Class Level Information

The “Class Level Information” table lists the levels of every variable specified in the CLASS statement. The
ODS name of the “Class Level Information” table is ClassLevelInfo.

Class Level Coding

The “Class Level Coding” table shows the coding used for every variable specified in the CLASS statement.
The ODS name of the “Class Level Coding” table is ClassLevelCoding.

Dimensions

The “Dimensions” table displays information about the number of effects and the number of parameters from
which the selected model is chosen. If you use split classification variables, then this table also includes
the number of effects after splitting is taken into account. The ODS name of the “Dimensions” table is
Dimensions.
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Candidates

The “Candidates” table displays the effect name and value of the criterion used to select entering or departing
effects at each step of the selection process. The effects are displayed in sorted order from best to worst of
the selection criterion. You request this table with the DETAILS= option in the MODEL statement. The ODS
name of the “Candidates” table is either EntryCandidates for addition candidates or RemovalCandidates for
removal candidates.

Selection Summary

The “Selection Summary” table displays details about the sequence of steps of the selection process. For
each step, the effect that entered or dropped out is displayed along with the statistics used to select the effect,
stop the selection, and choose the selected model. You can request that additional statistics be displayed
with the STATS= option in the MODEL statement. For all criteria that you can use for effect selection, the
steps at which the optimal values of these criteria occur are also indicated. The ODS name of the “Selection
Summary” table is SelectionSummary.

Stop Reason

The “Stop Reason” table displays the reason why the selection stopped. Table 84.13 shows the possible stop
reasons.

Table 84.13 Reasons for Stopping

Stop Reason Description

1 The selected model is a perfect fit.
2 The specified maximum number of steps has been reached.
3 The specified maximum number of effects are in the model.
4 The specified minimum number of effects are in the model.
5 The stopping criterion found a local optimum.
6 No suitable add or drop candidate is available.
7 All effects are in the model.
8 All effects have been dropped.
9 The sequence of effect additions and removals is cycling.
10 Adding or dropping any effect does not improve the SELECT= criterion.
11 No effect is significant at the specified significance level for entry or significance

level for staying levels.
12 All remaining effects are required.

The ODS name of the “Stop Reason” table is StopReason.

Selection Reason

The “Selection Reason” table displays how the final selected model is determined. Table 84.14 shows the
possible selection reasons:
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Table 84.14 Selection Reasons

Selection Reason Description

1 The last valid model that occurs in the selection process is the final model.
2 The first model with the minimum CHOOSE= criterion value in the selection process

is the final model.

The ODS name of the “Selection Reason” table is SelectionReason.

Selected Effects

The “Selected Effects” table displays a string that contains the list of effects in the selected model. The ODS
name of the “Selected Effects” table is SelectedEffects.

Fit Statistics

The “Fit Statistics” table displays fit statistics for the selected model. The statistics displayed include the
following:

• OBJ, the sum of check losses. It is calculated as the minimized objective function value for the fit.

• R1, a measure between 0 and 1 that indicates the portion of the (corrected) total variation attributed to
the fit rather than left to residual error. It is calculated as one minus OBJ(Model) divided by OBJ(Total).

• Adj R1, the adjusted R1, a version of R1 that has been adjusted for degrees of freedom. It is calculated
as

NR1 D 1 �
.n � i/.1 �R1/

n � p

where i is equal to 1 if there is an intercept and 0 otherwise, n is the number of observations used to fit
the model, and p is the number of parameters in the model.

• fit criteria AIC, AICC, and SBC.

• the average check losses (ACL) on the training, validation, and test data. See the section “Using
Validation and Test Data” on page 6949 for details.

You can request “Fit Statistics” tables for the models at each step of the selection process with the DETAILS=
option in the MODEL statement. The ODS name of the “Fit Statistics” table is FitStatistics.

Parameter Estimates

The “Parameter Estimates” table displays the parameters in the selected model and their estimates. The
following information is displayed for each parameter in the selected model:

• the parameter label that includes the effect name and level information for effects that contain classifi-
cation variables

• the degrees of freedom (DF) for the parameter. There is one degree of freedom unless the model is not
full rank.
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• the parameter estimate

• the standard parameter estimate, which is computed on a standardized design matrix. Let X D .X1;X2/
denote the original design matrix, where X1 is the submatrix for all the forced-in effects, and X2 is the
submatrix for the rest of the effects that are subject to selection. Let

X�2 D
�
I � X1.X10X1/�1X10

�
X2 and X��2 D sYX�2

"
diag.X�2

0X�2/
n � p1

#� 1
2

where p1 is the rank of X1 and sY D
q

Y�0Y�
n�p1

with Y� D
�
I � X1.X10X1/�1X10

�
Y.

Then standard parameter estimates are defined as .0;ˇ��2 /, where .ˇ1;ˇ��2 / are the parameter estimates
computed on the standardized design matrix .X1;X��2 /.

You can also use the DETAILS= option in the MODEL statement to request “Parameter Estimates” tables
for the models at each step of the selection process. The ODS name of the “Parameter Estimates” table is
ParameterEstimates.

ODS Table Names
PROC QUANTSELECT assigns a name to each table it creates. You can use these names to refer to the table
when you use the Output Delivery System (ODS) to select tables and create output data sets. These names
are listed in Table 84.15.

For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

Table 84.15 ODS Tables Produced by PROC QUANTSELECT

ODS Table Name Description Statement Option

BSplineDetails B-spline basis details EFFECT DETAILS
Dimensions Number of effects and parameters MODEL Default
EntryCandidates Entry effect ranking MODEL DETAILS=
FitStatistics Selected model fit statistics MODEL Default
RemovalCandidates Removal effect ranking MODEL DETAILS=
ClassLevelCoding Classification variable coding CLASS SHOWCODING
ClassLevelInfo Classification variable levels CLASS Default
CollectionLevelInfo Levels of collection effects EFFECT DETAILS
MMLevelInfo Levels of multimember effects EFFECT DETAILS
ModelInfo Model information MODEL Default
NObs Number of observations MODEL Default
ParameterNames Labels for column names in the

design matrix
PROC OUTDESIGN(names)

ParameterEstimates Selected model parameter esti-
mates

MODEL Default

PolynomialDetails Polynomial details EFFECT DETAILS
PolynomialScaling Polynomial scaling EFFECT DETAILS
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Table 84.15 continued

ODS Table Name Description Statement Option

SelectedEffects List of selected effects MODEL Default
SelectionSummary Selection summary MODEL Default
StopReason Reason why selection stopped MODEL Default
TPFSplineDetails Thin-plate spline basis details EFFECT DETAILS

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

PROC QUANTSELECT assigns a name to each graph it creates using ODS. You can use these names to
refer to the graphs when using ODS. The names are listed in Table 84.16.

Table 84.16 ODS Graphics Produced by PROC
QUANTSELECT

ODS Graph Name Plot Description PLOTS Option

ACLPlot Average check loss by step ACL
AICCPlot Corrected Akaike’s information criterion by step CRITERIA(UNPACK)
AICPlot Akaike’s information criterion by step CRITERIA(UNPACK)
AdjR1Plot Adjusted quantile regression R by step CRITERIA(UNPACK)
ChooseCriterionPlot CHOOSE= criterion by step COEFFICIENTS(UNPACK)
CoefficientPanel Coefficients and CHOOSE= criterion by step COEFFICIENTS
CoefficientPlot Coefficients by step COEFFICIENTS(UNPACK)
CriterionPanel Fit criteria by step CRITERIA
SBCPlot Schwarz Bayesian information criterion by step CRITERIA(UNPACK)
ValidateACLPlot Average square error on validation data by step CRITERIA(UNPACK)
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Example: QUANTSELECT Procedure

Example 84.1: Simulation Study
This simulation study exemplifies the unity of motive and effect for the PROC QUANTSELECT procedure.
The following statements generate a data set that is based on a naive instrumental model (Chernozhukov and
Hansen 2008):

%let seed=321;
%let p=20;
%let n=3000;

data analysisData;
array x{&p} x1-x&p;
do i=1 to &n;

U = ranuni(&seed);
x1 = ranuni(&seed);
x2 = ranexp(&seed);
x3 = abs(rannor(&seed));
y = x1*(U-0.1) + x2*(U*U-0.25) + x3*(exp(U)-exp(0.9));
do j=4 to &p;

x{j} = ranuni(&seed);
end;
output;

end;
run;

Variable U of the data set indicates the true quantile level of the response y conditional on x D .x1; : : : ; xp/.

Let Qy.� jx/ D xˇ.�/ denote the underlying quantile regression model, where ˇ.�/ D .ˇ1.�/; : : : ; ˇp.�//0.
Then, the true parameter functions are

ˇ1.�/ D � � 0:1

ˇ2.�/ D �2 � 0:25

ˇ3.�/ D exp.�/ � exp.0:9/
ˇ4.�/ D ::: D ˇp.�/ D 0

It is easy to see that, at � D 0:1, only ˇ2.0:1/ D �0:24 and ˇ3.0:1/ D exp.0:1/ � exp.0:9/ � �1:354432
are nonzero parameters. Therefore, an effective effect selection method should select x2 and x3 and drop
all the other effects in this data set at � D 0:1. By the same rationale, x1 and x3 should be selected at
� D 0:5 with ˇ1.0:5/ D 0:4 and ˇ3.0:5/ � �0:810882, and x1 and x2 should be selected at � D 0:9 with
ˇ1.0:9/ D 0:8 and ˇ2.0:9/ D 0:56.
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The following statements use PROC QUANTSELECT with the adaptive LASSO method:

proc quantselect data=analysisData;
model y= x1-x&p / quantile=0.1 0.5 0.9

selection=lasso(adaptive);
output out=out p=pred;

run;

Output 84.1.1 shows that, by default, the CHOOSE= and STOP= options are both set to SBC.

Output 84.1.1 Model Information

The QUANTSELECT ProcedureThe QUANTSELECT Procedure

Model Information

Data Set WORK.ANALYSISDATA

Dependent Variable y

Selection Method Adaptive LASSO

Quantile Type Single Level

Stop Criterion SBC

Choose Criterion SBC

The selected effects and the relevant estimates are shown in Output 84.1.2 for � D 0:1, Output 84.1.3 for
� D 0:5, and Output 84.1.4 for � D 0:9. You can see that the adaptive LASSO method correctly selects
active effects for all three quantile levels.

Output 84.1.2 Parameter Estimates at � D 0:1

Selected Effects: Intercept x2 x3

Parameter Estimates

Parameter DF Estimate
Standardized

Estimate

Intercept 1 0.011793 0

x2 1 -0.228709 -0.218287

x3 1 -1.379907 -0.784520

Output 84.1.3 Parameter Estimates at � D 0:5

Selected Effects: Intercept x1 x3

Parameter Estimates

Parameter DF Estimate
Standardized

Estimate

Intercept 1 0.011778 0

x1 1 0.425843 0.118792

x3 1 -0.863316 -0.490822
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Output 84.1.4 Parameter Estimates at � D 0:9

Selected Effects: Intercept x1 x2

Parameter Estimates

Parameter DF Estimate
Standardized

Estimate

Intercept 1 -0.007738 0

x1 1 0.782942 0.218407

x2 1 0.576445 0.550177

The QUANTSELECT procedure can perform effect selection not only at a single quantile level but also for
the entire quantile process. You can specify the QUANTILE=PROCESS option to do effect selection for the
entire quantile process. With the QUANTILE=PROCESS option specified, the ParameterEstimates table
produced by the QUANTSELECT procedure actually shows the mean prediction model of y conditional on x.
In this simulation study, the true mean model is

E.yjx/ D xˇ

where

ˇ1 D E.U / � 0:1 D 0:4

ˇ2 D E.U 2/ � 0:25 � 0:083333

ˇ3 D E.exp.U // � exp.0:9/ � �0:741321
ˇ4 D : : : D ˇp D 0

The following statements perform effect selection for the quantile process with the forward selection method.

proc quantselect data=analysisData;
model y= x1-x&p / quantile=process(ntau=all)

selection=forward;
run;

Output 84.1.5 shows that, by default, the SELECT= and STOP= options are both set to SBC. The selected
effects and the relevant estimates for the conditional mean model are shown in Output 84.1.6.

Output 84.1.5 Model Information

The QUANTSELECT ProcedureThe QUANTSELECT Procedure

Model Information

Data Set WORK.ANALYSISDATA

Dependent Variable y

Selection Method Forward

Quantile Type Process

Select Criterion SBC

Stop Criterion SBC

Choose Criterion SBC



Example 84.2: Econometric Growth Data F 6959

Output 84.1.6 Parameter Estimates

Parameter Estimates

Parameter DF Estimate
Standardized

Estimate

Intercept 1 0.007833 0

x1 1 0.418825 0.116834

x2 1 0.094791 0.090472

x3 1 -0.785686 -0.446687

Linear regression is the most popular method for estimating conditional means. The following statements
show how to select effects with the GLMSELECT procedure, and Output 84.1.7 shows the resulting selected
effects and their estimates. You can see that the mean estimates from the QUANTSELECT procedure
are similar to those from the GLMSELECT procedure. However, quantile regression can provide detailed
distribution information, which is not available from linear regression.

proc glmselect data=analysisData;
model y= x1-x3 / selection=forward(select=sbc stop=sbc choose=sbc);

run;

Output 84.1.7 Parameter Estimates

The GLMSELECT Procedure
Selected Model

The GLMSELECT Procedure
Selected Model

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value

Intercept 1 -0.010143 0.043129 -0.24

x1 1 0.434553 0.057385 7.57

x2 1 0.114183 0.016771 6.81

x3 1 -0.797194 0.028156 -28.31

Example 84.2: Econometric Growth Data
This example shows how you can use the QUANTREG procedure to further analyze the final selected models
from the QUANTSELECT procedure, and how you can find the set of observations for a specified range of
conditional quantile levels. The data under investigation contain economic growth rate records for countries
during two time periods: 1965–1975 and 1975–1985. This data set comes from a study by Barro and Lee
(1994) and is also analyzed in the section “Example 83.2: Quantile Regression for Econometric Growth
Data” on page 6883 of Chapter 83, “The QUANTREG Procedure.”

The data set contains 161 observations and 16 variables. The variables, which are listed in Table 84.17,
include the national GDP growth rates (GDPR), 14 covariates, and a name variable (Country) that identifies
the countries in one of the two periods.
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Table 84.17 Variables for Econometric Growth Data
Variable Description
Country Country’s name and time period
GDPR Annual change of per capita GDP
lgdp2 Initial per capita GDP
mse2 Male secondary education
fse2 Female secondary education
fhe2 Female higher education
mhe2 Male higher education
lexp2 Life expectancy
lintr2 Human capital
gedy2 Education=GDP
Iy2 Investment=GDP
gcony2 Public consumption=GDP
lblakp2 Black market premium
pol2 Political instability
ttrad2 Growth rate terms trade
period Time period

The goal is to compare the effect of the covariates on GDPR at different quantile levels. The following
statements perform effect selection at three quantile levels (� ): 0.1, 0.5, and 0.9.

data growth;
length Country$ 22;
input Country GDPR lgdp2 mse2 fse2 fhe2 mhe2 lexp2 lintr2 gedy2

Iy2 gcony2 lblakp2 pol2 ttrad2 @@;
if(index(country,'75')) then period='65-75';
if(index(country,'85')) then period='75-85';
datalines;

Algeria75 .0415 7.330 .1320 .0670 .0050 .0220 3.880 .1138 .0382
.1898 .0601 .3823 .0833 .1001

Algeria85 .0244 7.745 .2760 .0740 .0070 .0370 3.978 -.107 .0437
.3057 .0850 .9386 .0000 .0657

Argentina75 .0187 8.220 .7850 .6200 .0740 .1660 4.181 .4060 .0221
.1505 .0596 .1924 .3575 -.011

Argentina85 -.014 8.407 .9360 .9020 .1320 .2030 4.211 .1914 .0243

... more lines ...

.0654 .1224 .9393 .7022 -.007
Zambia75 .0120 6.989 .3760 .1190 .0130 .0420 3.757 .4388 .0339

.3688 .2513 .3945 .0000 -.032
Zambia85 -.046 7.109 .4200 .2740 .0110 .0270 3.854 .8812 .0477

.1632 .2637 .6467 .0000 -.033
Zimbabwe75 .0320 6.860 .1450 .0170 .0080 .0450 3.833 .7156 .0337

.2276 .0246 .1997 .0000 -.040
Zimbabwe85 -.011 7.180 .2200 .0650 .0060 .0400 3.944 .9296 .0520

.1559 .0518 .7862 .7161 -.024
;
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proc quantselect data=growth;
class period;
model GDPR = period lgdp2 mse2 fse2 fhe2 mhe2 lexp2

lintr2 gedy2 Iy2 gcony2 lblakp2 pol2 ttrad2
/ quantile=0.1 0.5 0.9 selection=backward(choose=sbc sh=5);

run;

The SELECTION=BACKWARD option specifies the BACKWARD method as the effect selection method,
and the CHOOSE=SBC option specifies the Schwarz Bayesian information criterion for choosing the final
selected effects. The estimates for the final selected effects are shown in Output 84.2.1 for � D 0:1,
Output 84.2.2 for � D 0:5, and Output 84.2.3 for � D 0:9.

Output 84.2.1 Parameter Estimates at � D 0:1

The QUANTSELECT Procedure
Quantile Level = 0.1

The QUANTSELECT Procedure
Quantile Level = 0.1

Selected Effects: Intercept period lgdp2 mse2 lexp2 lintr2 Iy2 gcony2 lblakp2 pol2 ttrad2

Parameter Estimates

Parameter DF Estimate
Standardized

Estimate

Intercept 1 0.048847 0

period 65-75 1 0.011861 0.238272

lgdp2 1 -0.024613 -0.947421

mse2 1 0.016031 0.554367

lexp2 1 0.033898 0.277298

lintr2 1 -0.001877 -0.192986

Iy2 1 0.067877 0.240002

gcony2 1 -0.176072 -0.438350

lblakp2 1 -0.026364 -0.326506

pol2 1 -0.022975 -0.223264

ttrad2 1 0.096604 0.146071

Output 84.2.2 Parameter Estimates at � D 0:5

Selected Effects: Intercept period lgdp2 mse2 lexp2 lintr2 Iy2 gcony2 lblakp2 pol2 ttrad2
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Output 84.2.2 continued

Parameter Estimates

Parameter DF Estimate
Standardized

Estimate

Intercept 1 -0.040264 0

period 65-75 1 0.008913 0.179063

lgdp2 1 -0.025823 -0.993996

mse2 1 0.014161 0.489697

lexp2 1 0.062163 0.508527

lintr2 1 -0.002688 -0.276345

Iy2 1 0.068294 0.241476

gcony2 1 -0.096543 -0.240354

lblakp2 1 -0.025265 -0.312892

pol2 1 -0.019387 -0.188396

ttrad2 1 0.150668 0.227819

Output 84.2.3 Parameter Estimates at � D 0:9

Selected Effects: Intercept lgdp2 mse2 lexp2 lintr2 Iy2 gcony2 lblakp2 ttrad2

Parameter Estimates

Parameter DF Estimate
Standardized

Estimate

Intercept 1 -0.011162 0

lgdp2 1 -0.032753 -1.260735

mse2 1 0.016583 0.573447

lexp2 1 0.073326 0.599845

lintr2 1 -0.003334 -0.342843

Iy2 1 0.063929 0.226041

gcony2 1 -0.089998 -0.224060

lblakp2 1 -0.032253 -0.399439

ttrad2 1 0.213457 0.322760

Comparing the three quantile models, you can see that the final selected models for � D 0:1 and � D 0:5
have the same set of selected effects, but the final selected model for � D 0:9 excludes the effects for time
period and political instability. In other words, if a country’s annual change in per capita GDP represents
the 90% quantile conditional on the explanatory effects, then its GDP growth rate seems consistent for both
the 1965–1975 and 1975–1985 periods and resistant to political instability. In addition, if a country’s GDP
growth rate represents the 50% or less quantile conditional on the explanatory effects, then the country’s
1975–1985 GDP growth rate seems lower than its 1965–1975 GDP growth rate, and the effect for political
instability has a negative impact on its GDP growth rate.

To further investigate the impact of time period and political instability on GDP growth rate, you can use the
QUANTREG procedure to test the final selected effects. In the previous statements, PROC QUANTSELECT
creates a macro variable for the final selected model at each of the three quantile levels. For the current
example, the macro variable _QRSINDT1 contains the final model at � D 0:1; _QRSINDT2 contains the
final model at � D 0:5; and _QRSINDT3 contains the final model at � D 0:9. The following statements show
how to use _QRSINDT2 to specify the model for the QUANTREG procedure at � D 0:5:
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proc quantreg data=growth;
class period;
model GDPR = &_qrsindt2 / quantile=0.5;
Time_Period: test period;
Political_Instability: test pol2;

run;

Output 84.2.4 shows more information for the final selected model at � D 0:5. Output 84.2.5 and Out-
put 84.2.6 show the test results for the effects of time period and political instability on GDP growth rate.
You can see that both time period and political instability are significant for the � D 0:5 model.

Output 84.2.4 Parameter Estimates at � D 0:5

The QUANTREG ProcedureThe QUANTREG Procedure

Parameter Estimates

Parameter DF Estimate

95%
Confidence

Limits

Intercept 1 -0.0403 -0.1529 0.0453

period 65-75 1 0.0089 0.0060 0.0139

period 75-85 0 0.0000 0.0000 0.0000

lgdp2 1 -0.0258 -0.0324 -0.0212

mse2 1 0.0142 0.0068 0.0182

lexp2 1 0.0622 0.0400 0.1199

lintr2 1 -0.0027 -0.0045 -0.0011

Iy2 1 0.0683 0.0143 0.1077

gcony2 1 -0.0965 -0.1526 -0.0576

lblakp2 1 -0.0253 -0.0537 -0.0174

pol2 1 -0.0194 -0.0377 -0.0116

ttrad2 1 0.1507 0.0190 0.2436

Output 84.2.5 Test Results at � D 0:5

Test Time_Period Results

Test
Test

Statistic DF Chi-Square Pr > ChiSq

Wald 13.9838 1 13.98 0.0002

Output 84.2.6 Test Results at � D 0:5

Test Political_Instability Results

Test
Test

Statistic DF Chi-Square Pr > ChiSq

Wald 11.0589 1 11.06 0.0009

As mentioned earlier, _QRSINDT1 and _QRSINDT2 are identical, and _QRSINDT3 excludes two effects
from _QRSINDT2: time period and political instability. The following statements retest time period and
political instability for the final selected model at � D 0:9:
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proc quantreg data=growth;
class period;
model GDPR = &_qrsindt2 / quantile=0.9;
Time_Period: test period;
Political_Instability: test pol2;
Period_and_Political: test period pol2;

run;

Output 84.2.7, Output 84.2.8, and Output 84.2.9 show the test results for the effects of time period and
political instability on GDP growth rate at � D 0:9 . You can see that time period, political instability, and
their combination are all insignificant for the � D 0:9 model.

Output 84.2.7 Test Results at � D 0:9

The QUANTREG ProcedureThe QUANTREG Procedure

Test Time_Period Results

Test
Test

Statistic DF Chi-Square Pr > ChiSq

Wald 0.0001 1 0.00 0.9941

Output 84.2.8 Test Results at � D 0:9

Test Political_Instability Results

Test
Test

Statistic DF Chi-Square Pr > ChiSq

Wald 0.1238 1 0.12 0.7250

Output 84.2.9 Test Results at � D 0:9

Test Period_and_Political Results

Test
Test

Statistic DF Chi-Square Pr > ChiSq

Wald 0.1367 2 0.14 0.9339

Another interesting question for quantile regression is to find the observations for a certain range of conditional
quantile levels. For example, you might want to know which countries are winners in terms of conditional
GDP growth rate at the � D 0:9 level. The following statements compute the � D 0:9 quantile predictions
and then search, sort, and print the list of winner countries:

proc quantselect data=growth;
class period;
model GDPR = period lgdp2 mse2 fse2 fhe2 mhe2 lexp2

lintr2 gedy2 Iy2 gcony2 lblakp2 pol2 ttrad2
/ quantile=0.9 selection=backward(choose=sbc sh=5);

output out=growth90Out p=Pred;
run;

data growth90;
set growth90Out;
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drop lgdp2 mse2 fse2 fhe2 mhe2 lexp2 lintr2 gedy2 Iy2
gcony2 lblakp2 ttrad2;

where GDPR-Pred >= -1E-4;
GdpDiff = GDPR-Pred;

run;

proc sort data=growth90;
by GdpDiff;

run;
proc print data=growth90;
run;

Output 84.2.10 lists the countries whose conditional GDP growth rates are equal to or higher than their
� D 0:9 quantile predictions.

Output 84.2.10 Countries with High Conditional GDP Growth Rates at � D 0:9 Level

Obs Country GDPR pol2 period Pred GdpDiff

1 Canada75 0.0346 0.0047 65-75 0.034600 0.000000

2 Canada85 0.0240 0.0000 75-85 0.024000 0.000000

3 Congo75 0.0464 0.3385 65-75 0.046400 0.000000

4 Cyprus85 0.0709 0.6000 75-85 0.070900 0.000000

5 Finland75 0.0391 0.0000 65-75 0.039100 0.000000

6 Germany_West85 0.0214 0.0000 75-85 0.021400 0.000000

7 Ghana85 -0.0150 0.0500 75-85 -0.015000 0.000000

8 United_States75 0.0155 0.0015 65-75 0.015500 0.000000

9 Yemen85 0.0305 0.0730 75-85 0.030500 0.000000

10 Denmark85 0.0234 0.0000 75-85 0.023010 0.000390

11 Japan75 0.0636 0.0005 65-75 0.062519 0.001081

12 Jordan85 0.0593 0.5000 75-85 0.058201 0.001099

13 Sudan85 0.0007 0.7000 75-85 -0.000919 0.001619

14 Iran75 0.0538 0.0072 65-75 0.051880 0.001920

15 Spain75 0.0457 0.0014 65-75 0.043241 0.002459

16 Egypt85 0.0427 0.5500 75-85 0.038409 0.004291

17 Hong_Kong85 0.0649 0.0000 75-85 0.059040 0.005860

18 Bangladesh85 0.0133 0.6507 75-85 0.006816 0.006484

19 Rwanda75 0.0590 0.0500 65-75 0.050266 0.008734

20 Brazil75 0.0637 0.0011 65-75 0.050749 0.012951

21 Syria75 0.0601 0.2500 65-75 0.046072 0.014028

22 Botswana85 0.0512 0.0000 75-85 0.030626 0.020574

Example 84.3: Pollution and Mortality
This example shows how you can use the PARTITION statement and other options to control the effect
selection process. The data for this example come from a study by McDonald and Schwing (1973). The data
set contains 60 observations, 15 covariates, and one response variable. The response variable is the total
age-adjusted mortality rate for Standard Metropolitan Statistical Areas in 1959–1961.

The following statements fit a median model for mortality rate conditional on a set of climate, demographic,
and pollution covariates by using the forward selection method. Because linear terms alone might not be
sufficient to fit this model, quadratic terms are also added in the MODEL statement. The FRACTION option
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of the PARTITION statement requests that 30% of the observations be used for validation and the remaining
70% of the observations for training. The HIER=SINGLE option in the MODEL statement forces the effect
selection process to ignore quadratic effect candidates if their corresponding main effects are not in the model.
The OUTPUT statement creates a SAS data set named OutData, which contains the variable _ROLE_. This
variable shows the role of each observation that the PARTITION statement assigns.

data mortality;
input index aap ajant ajult size65 nph nsch25 nfek ppsm snwp nowk nin3k
hpi nopi sdpi datm DeathRate;
label index="the index"

aap="Average Annual Precipitation"
ajant="Average January Temperature"
ajult="Average July Temperature"
size65="Size of Population older than 65"
nph="Number of Members per Household"
nsch25="Number of Years of Schooling for Persons over 25"
nfek="Number of Households with fully Equipped Kitchens"
ppsm="Population per Square Mile"
snwp="Size of the Nonwhite Population"
nowk="Number of Office Workers"
nin3k="Number of Families with an Income less than $3000"
hpi="Hydrocarbon Pollution Index"
nopi="Nitric Oxide Pollution Index"
sdpi="Sulfur Dioxide Pollution Index"
datm="Degree of Atmospheric Moisture"
DeathRate="Age-Adjusted Death Rate: Deaths per 100,000 Population";

datalines;
1 36 27 71 8.1 3.34 11.4 81.5 3243 8.8 42.6 11.7 21

15 59 59 921.870
2 35 23 72 11.1 3.14 11.0 78.8 4281 3.6 50.7 14.4 8

10 39 57 997.875
3 44 29 74 10.4 3.21 9.8 81.6 4260 0.8 39.4 12.4 6

6 33 54 962.354
4 47 45 79 6.5 3.41 11.1 77.5 3125 27.1 50.2 20.6 18

8 24 56 982.291
5 43 35 77 7.6 3.44 9.6 84.6 6441 24.4 43.7 14.3 43

... more lines ...

11 42 56 1003.502
58 45 24 70 11.8 3.25 11.1 79.8 3678 1.0 44.8 14.0 7

3 8 56 895.696
59 42 83 76 9.7 3.22 9.0 76.2 9699 4.8 42.2 14.5 8

8 49 54 911.817
60 38 28 72 8.9 3.48 10.7 79.8 3451 11.7 37.5 13.0 14

13 39 58 954.442
;

ods graphics on;
proc quantselect data=Mortality seed=800 plots=all;

partition fraction(validate=0.3);
model DeathRate = aap aap*aap ajant ajant*ajant ajult

ajult*ajult size65 size65*size65 nph nph*nph nsch25
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nsch25*nsch25 nfek nfek*nfek ppsm ppsm*ppsm snwp snwp*snwp
nowk nowk*nowk nin3k nin3k*nin3k hpi hpi*hpi nopi
nopi*nopi sdpi sdpi*sdpi datm datm*datm
/ quantile=0.5 selection=forward(choose=val sh=8) hier=single;

output out=OutData p=Pred;
run;

proc print data=OutData(obs=10); run;

Output 84.3.1 shows the selection summary. You can see that the best model is at step 13 for validation ACL,
step 5 for the SBC, and step 14 for the AIC.

Output 84.3.1 Selection Summary

The QUANTSELECT Procedure
Quantile Level = 0.5

The QUANTSELECT Procedure
Quantile Level = 0.5

Selection Summary

Step
Effect
Entered

Number
Effects

In AIC AICC SBC
Validation

ACL
Adjusted

R1

0 Intercept 1 276.5053 276.6005 278.2895 31.7900 0.0000

1 snwp 2 251.6460 251.9387 255.2144 23.9139 0.2455

2 sdpi 3 240.3445 240.9445 245.6971 20.3977 0.3355

3 nopi 4 238.3223 239.3480 245.4591 16.9704 0.3493

4 ppsm 5 239.3875 240.9664 248.3084 16.3677 0.3397

5 aap 6 226.5892 228.8595* 237.2943* 15.7333 0.4272

6 aap*aap 7 227.6860 230.7971 240.1754 14.8892 0.4177

7 ajult 8 228.5136 232.6279 242.7871 14.5477 0.4095

8 nin3k 9 229.4258 234.7199 245.4835 14.3532 0.4001

9 ajant 10 224.7397 231.4063 242.5816 13.5693 0.4276*

10 ppsm*ppsm 11 226.5785 234.8285 246.2046 12.4032 0.4114

11 hpi 12 228.5050 238.5696 249.9153 11.6356 0.3935

12 ajant*ajant 13 229.9796 242.1129 253.1740 11.1214 0.3776

13 nfek 14 231.9208 246.4035 256.8994 10.9947* 0.3573

14 snwp*snwp 15 221.3905* 238.5334 248.1533 13.3735 0.4234

15 ajult*ajult 16 223.3153 243.4635 251.8624 13.0557 0.4033

16 sdpi*sdpi 17 224.8099 248.3483 255.1411 14.2347 0.3847

17 size65 18 226.7756 254.1356 258.8910 14.3067 0.3613

18 nin3k*nin3k 19 223.8621 255.5288 257.7618 14.5143 0.3719

19 nfek*nfek 20 224.0342 260.5559 259.7180 14.6314 0.3591

20 datm 21 222.7062 264.7062 260.1742 15.4604 0.3561

* Optimal Value Of Criterion
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Output 84.3.2 shows the selected effects and the relevant estimates.

Output 84.3.2 Parameter Estimates

Selected Effects: Intercept aap aap*aap ajant ajant*ajant ajult nfek ppsm ppsm*ppsm snwp nin3k hpi nopi sdpi

Parameter Estimates

Parameter DF Estimate
Standardized

Estimate

Intercept 1 909.689797 0

aap 1 4.634741 0.750747

aap*aap 1 -0.047789 -0.533679

ajant 1 0.009723 0.001962

ajant*ajant 1 -0.020447 -0.389447

ajult 1 -1.672607 -0.146182

nfek 1 -0.323920 -0.030436

ppsm 1 -0.007194 -0.194141

ppsm*ppsm 1 0.000001906 0.534144

snwp 1 3.483423 0.574703

nin3k 1 3.228388 0.252681

hpi 1 -0.401693 -0.351016

nopi 1 0.795823 0.389110

sdpi 1 0.151049 0.152444
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Output 84.3.3 shows the progression of the standardized parameter estimates as the selection process proceeds.

Output 84.3.3 Coefficient Panel
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Output 84.3.4 shows the progression of the average check losses for training data and validation data as the
selection process proceeds.

Output 84.3.4 Average Check Loss Plot
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Output 84.3.5 shows the progression of five effect selection criteria as the selection process proceeds.

Output 84.3.5 Criterion Panel
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Output 84.3.6 shows the first 10 observations of the OUTPUT data set.

Output 84.3.6 OUTPUT Data Set

Obs index aap ajant ajult size65 nph nsch25 nfek ppsm snwp nowk nin3k hpi nopi sdpi datm DeathRate Pred _ROLE_

1 1 36 27 71 8.1 3.34 11.4 81.5 3243 8.8 42.6 11.7 21 15 59 59 921.87 932.36 TRAIN

2 2 35 23 72 11.1 3.14 11.0 78.8 4281 3.6 50.7 14.4 8 10 39 57 997.88 930.62 VALIDATE

3 3 44 29 74 10.4 3.21 9.8 81.6 4260 0.8 39.4 12.4 6 6 33 54 962.35 908.09 TRAIN

4 4 47 45 79 6.5 3.41 11.1 77.5 3125 27.1 50.2 20.6 18 8 24 56 982.29 983.55 TRAIN

5 5 43 35 77 7.6 3.44 9.6 84.6 6441 24.4 43.7 14.3 43 38 206 55 1071.29 1047.71 VALIDATE

6 6 53 45 80 7.7 3.45 10.2 66.8 3325 38.5 43.1 25.5 30 32 72 54 1030.38 1062.56 TRAIN

7 7 43 30 74 10.9 3.23 12.1 83.9 4679 3.5 49.2 11.3 21 32 62 56 934.70 934.70 TRAIN

8 8 45 30 73 9.3 3.29 10.6 86.0 2140 5.3 40.4 10.5 6 4 4 56 899.53 900.48 TRAIN

9 9 36 24 70 9.0 3.31 10.5 83.2 6582 8.1 42.5 12.6 18 12 37 61 1001.90 971.06 TRAIN

10 10 36 27 72 9.5 3.36 10.7 79.3 4213 6.7 41.0 13.2 12 7 20 59 912.35 927.10 VALIDATE

Example 84.4: Surface Fitting with Many Noisy Variables
This example is based on “Example 25.1: Surface Fitting with Many Noisy Variables” on page 923 in
Chapter 25, “The ADAPTIVEREG Procedure.” This example shows how you can use the EFFECT statement
to select a nonlinear surface model for a data set that contains many nuisance variables.

Consider a simulated data set that contains a response variable and 10 continuous predictors. Each continuous
predictor is sampled independently from the uniform distribution U.0; 1/. The true model of the artificial
data set depends nonlinearly on two variables x1 and x2:

y D
40 exp

�
8
�
.x1 � 0:5/

2 C .x2 � 0:5/
2
��

exp
�
8
�
.x1 � 0:2/2 C .x2 � 0:7/2

��
C exp

�
8
�
.x1 � 0:7/2 C .x2 � 0:2/2

��
The values of the response variable are generated by adding errors from the standard normal distribution
N.0; 1/ to the true model. The generating mechanism is adapted from Gu et al. (1990). The following
statements create an artificial data set that contains 400 observations for the purpose of effect selection and
10,201 observations of missing response values for the purpose of prediction:

%let p=10;
data artificial;

drop i;
array x{&p};
do i=1 to 400;

do j=1 to &p;
x{j} = ranuni(1);

end;
yTrain = 40*exp(8*((x1-0.5)**2+(x2-0.5)**2))/

(exp(8*((x1-0.2)**2+(x2-0.7)**2))+
exp(8*((x1-0.7)**2+(x2-0.2)**2)))+rannor(1);

output;
end;

yTrain = .;
do x1=0 to 1 by 0.01;

do x2 = 0 to 1 by 0.01;
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y = 40*exp(8*((x1-0.5)**2+(x2-0.5)**2))/
(exp(8*((x1-0.2)**2+(x2-0.7)**2))+
exp(8*((x1-0.7)**2+(x2-0.2)**2)));

output;
end;

end;
run;

The variables x3 through x10 are nuisance variables that can cause overfitting in your analysis. The following
statements invoke the QUANTSELECT procedure to select effects, fit a model on the selected effects, and
output the model predictions to an output data set Out:

%macro art;
proc quantselect data=artificial algorithm=smooth;

%do i=1 %to &p;
effect sp&i = spline(x&i);

%end;
model yTrain =

sp1 %do i=2 %to &p; |sp&i %end; @2/details=all;
output out=Out p=pred;

run;
%mend;

%art;

You can use the EFFECT statement to generate nonlinear effects and model a nonlinear surface. This example
uses spline effects on variables and includes all the two-way interactions among these spline effects.

The ALGORITHM=SMOOTH option specifies the smoothing algorithm for model fitting. It takes approxi-
mately 2.8 seconds to select the model on a PC that has an Intel i7-2600 quad-core CPU and 64-bit Windows
7 Enterprise operation system. If you use the ALGORITHM=SIMPLEX option, which is default, it takes
approximately 8.7 seconds for the same computation settings.

Output 84.4.1 shows the model information. By default, the effect selection method is the stepwise method,
and the selection criterion is SBC for the SELECT=, CHOOSE=, and STOP= options. The default quantile
level is 0.5 for median regression.

Output 84.4.1 Model Information

The QUANTSELECT ProcedureThe QUANTSELECT Procedure

Model Information

Data Set WORK.ARTIFICIAL

Dependent Variable yTrain

Selection Method Stepwise

Quantile Type Single Level

Select Criterion SBC

Stop Criterion SBC

Choose Criterion SBC

Output 84.4.2 shows the best 10 entry candidates at the selection step. You can see that sp1*sp2 is the most
important effect, followed by sp1 and sp2.
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Output 84.4.2 Best 10 Entry Candidates at Step 1

Best 10 Entry
Candidates

Rank Effect SBC

1 sp1*sp2 -496.6752

2 sp1 165.9104

3 sp2 178.2126

4 sp3 213.4593

5 sp6 220.8471

6 sp7 222.0916

7 sp9 224.3185

8 sp4 224.7100

9 sp8 226.8373

10 sp5 227.2176

Output 84.4.3 shows the selection summary.

Output 84.4.3 Selection Summary

The QUANTSELECT Procedure
Quantile Level = 0.5

The QUANTSELECT Procedure
Quantile Level = 0.5

Selection Summary

Step
Effect
Entered

Number
Effects

In

Number
Parms

In SBC

0 Intercept 1 1 195.8108

1 sp1*sp2 2 49 -496.6752*

* Optimal Value Of Criterion

The following statements produce a graph that shows both the true model and the fitted model:

ods graphics on;
data pred;

set out;
where yTrain=.;

run;

%let off0 = offsetmin=0 offsetmax=0;
%let off0 = xaxisopts=(&off0) yaxisopts=(&off0);
%let eopt = location=outside valign=top textattrs=graphlabeltext;
proc template;

define statgraph surfaces;
begingraph / designheight=360px;

layout lattice/columns=2;
layout overlay / &off0;

entry "True Model" / &eopt;
contourplotparm z=y y=x2 x=x1;

endlayout;
layout overlay / &off0;

entry "Fitted Model" / &eopt;
contourplotparm z=pred y=x2 x=x1;



References F 6975

endlayout;
endlayout;

endgraph;
end;

run;

proc sgrender data=pred template=surfaces;
run;

Output 84.4.4 displays surfaces for both the true model and the fitted model. You can see that the fitted model
nicely approximates the underlying true model.

Output 84.4.4 True Model and Fitted Model

References

Akaike, H. (1981), “Likelihood of a Model and Information Criteria,” Journal of Econometrics, 16, 3–14.

Barro, R. and Lee, J. W. (1994), “Data Set for a Panel of 138 Countries,” http://www.nber.org/pub/
barro.lee, discussion paper, National Bureau of Econometric Research.

Belloni, A. and Chernozhukov, V. (2011), “L1-Penalized Quantile Regression in High-Dimensional Sparse
Models,” Annals of Statistics, 39, 82–130.

Chernozhukov, V. and Hansen, C. (2008), “Instrumental Variable Quantile Regression: A Robust Inference
Approach,” Journal of Econometrics, 142, 379–398.

http://www.nber.org/pub/barro.lee
http://www.nber.org/pub/barro.lee


6976 F Chapter 84: The QUANTSELECT Procedure

Darlington, R. B. (1968), “Multiple Regression in Psychological Research and Practice,” Psychological
Bulletin, 69, 161–182.

Gu, C., Bates, D. M., Chen, Z., and Wahba, G. (1990), “The Computation of GCV Function through
Householder Tridiagonalization with Application to the Fitting of Interaction Splines Models,” SIAM
Journal on Matrix Analysis and Applications, 10, 457–480.

Hastie, T. J., Tibshirani, R. J., and Friedman, J. H. (2001), The Elements of Statistical Learning, New York:
Springer-Verlag.

Hurvich, C. M. and Tsai, C.-L. (1989), “Regression and Time Series Model Selection in Small Samples,”
Biometrika, 76, 297–307.

Judge, G. G., Griffiths, W. E., Hill, R. C., Lütkepohl, H., and Lee, T.-C. (1985), The Theory and Practice of
Econometrics, 2nd Edition, New York: John Wiley & Sons.

Koenker, R. and Bassett, G. W. (1978), “Regression Quantiles,” Econometrica, 46, 33–50.

Koenker, R. and Machado, A. F. (1999), “Goodness of Fit and Related Inference Processes for Quantile
Regression,” Journal of the American Statistical Association, 94, 1296–1310.

McDonald, G. C. and Schwing, R. C. (1973), “Instabilities of Regression Estimates Relating Air Pollution to
Mortality,” Technometrics, 15, 463–481.

Reichler, J. L., ed. (1987), The 1987 Baseball Encyclopedia Update, New York: Macmillan.

Schwarz, G. (1978), “Estimating the Dimension of a Model,” Annals of Statistics, 6, 461–464.

Tibshirani, R. (1996), “Regression Shrinkage and Selection via the Lasso,” Journal of the Royal Statistical
Society, Series B, 58, 267–288.

Time Inc. (1987), “What They Make,” Sports Illustrated, April, 54–81.

Wu, Y. and Liu, Y. (2009), “Variable Selection in Quantile Regression,” Statistica Sinica, 19, 801–817.

Zou, H. (2006), “The Adaptive Lasso and Its Oracle Properties,” Journal of the American Statistical
Association, 101, 1418–1429.



Chapter 85

The REG Procedure

Contents
Overview: REG Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6978
Getting Started: REG Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6980

Simple Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6980
Polynomial Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6984
Using PROC REG Interactively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6995

Syntax: REG Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6996
PROC REG Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6998
ADD Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7012
BY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7012
CODE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7012
DELETE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7013
FREQ Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7013
ID Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7014
MODEL Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7014
MTEST Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7025
OUTPUT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7027
PRINT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7028
REFIT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7029
RESTRICT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7030
REWEIGHT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7031
STORE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7034
TEST Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7035
VAR Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7036
WEIGHT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7036

Details: REG Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7036
Missing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7036
Input Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7037
Output Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7040
Interactive Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7045
Model-Selection Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7049
Criteria Used in Model-Selection Methods . . . . . . . . . . . . . . . . . . . . . . . 7052
Limitations in Model-Selection Methods . . . . . . . . . . . . . . . . . . . . . . . . 7052
Parameter Estimates and Associated Statistics . . . . . . . . . . . . . . . . . . . . . 7053
Predicted and Residual Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7055
Models of Less Than Full Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7059
Collinearity Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7060



6978 F Chapter 85: The REG Procedure

Model Fit and Diagnostic Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 7062
Influence Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7064
Reweighting Observations in an Analysis . . . . . . . . . . . . . . . . . . . . . . . . 7072
Testing for Heteroscedasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7078
Testing for Lack of Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7079
Multivariate Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7080
Autocorrelation in Time Series Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 7083
Computations for Ridge Regression and IPC Analysis . . . . . . . . . . . . . . . . . 7084
Construction of Q-Q and P-P Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . 7085
Computational Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7085
Computer Resources in Regression Analysis . . . . . . . . . . . . . . . . . . . . . . 7085
Displayed Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7086
Plot Options Superseded by ODS Graphics . . . . . . . . . . . . . . . . . . . . . . . 7088
ODS Table Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7104
ODS Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7106

Examples: REG Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7112
Example 85.1: Modeling Salaries of Major League Baseball Players . . . . . . . . . 7112
Example 85.2: Aerobic Fitness Prediction . . . . . . . . . . . . . . . . . . . . . . . 7126
Example 85.3: Predicting Weight by Height and Age . . . . . . . . . . . . . . . . . 7142
Example 85.4: Regression with Quantitative and Qualitative Variables . . . . . . . . 7146
Example 85.5: Ridge Regression for Acetylene Data . . . . . . . . . . . . . . . . . . 7152
Example 85.6: Chemical Reaction Response . . . . . . . . . . . . . . . . . . . . . . 7156

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7158

Overview: REG Procedure
The REG procedure is one of many regression procedures in the SAS System. It is a general-purpose
procedure for regression, while other SAS regression procedures provide more specialized applications.

Other SAS/STAT procedures that perform at least one type of regression analysis are the CATMOD, GEN-
MOD, GLM, LOGISTIC, MIXED, NLIN, ORTHOREG, PROBIT, RSREG, and TRANSREG procedures.
SAS/ETS procedures are specialized for applications in time series or simultaneous systems. These other
SAS/STAT regression procedures are summarized in Chapter 4, “Introduction to Regression Procedures,”
which also contains an overview of regression techniques and defines many of the statistics computed by
PROC REG and other regression procedures.
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PROC REG provides the following capabilities:

• multiple MODEL statements

• nine model-selection methods

• interactive changes both in the model and the data used to fit the model

• linear equality restrictions on parameters

• tests of linear hypotheses and multivariate hypotheses

• collinearity diagnostics

• predicted values, residuals, studentized residuals, confidence limits, and influence statistics

• correlation or crossproduct input

• requested statistics available for output through output data sets

• ODS Graphics. For more information, see the section “ODS Graphics” on page 7106.

Nine model-selection methods are available in PROC REG. In the simplest method, PROC REG fits the
complete model that you specify. The other eight methods involve various ways of including or excluding
variables from the model. You specify these methods with the SELECTION= option in the MODEL statement.

The methods are identified in the following list and are explained in detail in the section “Model-Selection
Methods” on page 7049.

NONE no model selection. This is the default. The complete model specified in the MODEL
statement is fit to the data.

FORWARD forward selection. This method starts with no variables in the model and adds variables.

BACKWARD backward elimination. This method starts with all variables in the model and deletes
variables.

STEPWISE stepwise regression. This is similar to the FORWARD method except that variables
already in the model do not necessarily stay there.

MAXR forward selection to fit the best one-variable model, the best two-variable model, and so
on. Variables are switched so that R square is maximized.

MINR similar to the MAXR method, except that variables are switched so that the increase in R
square from adding a variable to the model is minimized.

RSQUARE finds a specified number of models with the highest R square in a range of model sizes.

ADJRSQ finds a specified number of models with the highest adjusted R square in a range of model
sizes.

CP finds a specified number of models with the lowest Cp in a range of model sizes.
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Getting Started: REG Procedure

Simple Linear Regression
Suppose that a response variable Y can be predicted by a linear function of a regressor variable X. You can
estimate ˇ0, the intercept, and ˇ1, the slope, in

Yi D ˇ0 C ˇ1Xi C �i

for the observations i D 1; 2; : : : ; n. Fitting this model with the REG procedure requires only the following
MODEL statement, where y is the outcome variable and x is the regressor variable.

proc reg;
model y=x;

run;

For example, you might use regression analysis to find out how well you can predict a child’s weight if you
know that child’s height. The Class data set used in this example is available in the Sashelp library.

The equation of interest is

Weight D ˇ0 C ˇ1HeightC �

The variable Weight is the response or dependent variable in this equation, and ˇ0 and ˇ1 are the unknown
parameters to be estimated. The variable Height is the regressor or independent variable, and � is the unknown
error. The following commands invoke the REG procedure and fit this model to the data.

ods graphics on;

proc reg data=sashelp.class;
model Weight = Height;

run;

Figure 85.1 includes some information concerning model fit.

The F statistic for the overall model is highly significant (F = 57.076, p < 0.0001), indicating that the model
explains a significant portion of the variation in the data.

The degrees of freedom can be used in checking accuracy of the data and model. The model degrees of
freedom are one less than the number of parameters to be estimated. This model estimates two parameters,
ˇ0 and ˇ1; thus, the degrees of freedom should be 2 – 1 = 1. The corrected total degrees of freedom are
always one less than the total number of observations in the data set, in this case 19 – 1 = 18.
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Several simple statistics follow the ANOVA table. The Root MSE is an estimate of the standard deviation of
the error term. The coefficient of variation, or Coeff Var, is a unitless expression of the variation in the data.
The R-square and Adj R-square are two statistics used in assessing the fit of the model; values close to 1
indicate a better fit. The R-square of 0.77 indicates that Height accounts for 77% of the variation in Weight.

Figure 85.1 ANOVA Table

The REG Procedure
Model: MODEL1

Dependent Variable: Weight

The REG Procedure
Model: MODEL1

Dependent Variable: Weight

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 1 7193.24912 7193.24912 57.08 <.0001

Error 17 2142.48772 126.02869

Corrected Total 18 9335.73684

Root MSE 11.22625 R-Square 0.7705

Dependent Mean 100.02632 Adj R-Sq 0.7570

Coeff Var 11.22330

The “Parameter Estimates” table in Figure 85.2 contains the estimates of ˇ0 and ˇ1. The table also contains
the t statistics and the corresponding p-values for testing whether each parameter is significantly different
from zero. The p-values (t = –4.43, p = 0.0004 and t = 7.55, p < 0.0001) indicate that the intercept and Height
parameter estimates, respectively, are highly significant.

From the parameter estimates, the fitted model is

Weight D �143:0C 3:9 � Height

Figure 85.2 Parameter Estimates

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 -143.02692 32.27459 -4.43 0.0004

Height 1 3.89903 0.51609 7.55 <.0001
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If ODS Graphics is enabled, then PROC REG produces a variety of plots. Figure 85.3 shows a plot of the
residuals versus the regressor and Figure 85.4 shows a panel of diagnostic plots.

Figure 85.3 Residuals vs. Regressor
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Figure 85.4 Fit Diagnostics

A trend in the residuals would indicate nonconstant variance in the data. The plot of residuals by predicted
values in the upper-left corner of the diagnostics panel in Figure 85.4 might indicate a slight trend in the
residuals; they appear to increase slightly as the predicted values increase. A fan-shaped trend might indicate
the need for a variance-stabilizing transformation. A curved trend (such as a semicircle) might indicate
the need for a quadratic term in the model. Since these residuals have no apparent trend, the analysis is
considered to be acceptable.
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Polynomial Regression
Consider a response variable Y that can be predicted by a polynomial function of a regressor variable X. You
can estimate ˇ0, the intercept; ˇ1, the slope due to X; and ˇ2, the slope due to X2, in

Yi D ˇ0 C ˇ1Xi C ˇ2X
2
i C �i

for the observations i D 1; 2; : : : ; n.

Consider the following example on population growth trends. The population of the United States from 1790
to 2000 is fit to linear and quadratic functions of time. Note that the quadratic term, YearSq, is created in
the DATA step; this is done since polynomial effects such as Year*Year cannot be specified in the MODEL
statement in PROC REG. The data are as follows:

data USPopulation;
input Population @@;
retain Year 1780;
Year = Year+10;
YearSq = Year*Year;
Population = Population/1000;
datalines;

3929 5308 7239 9638 12866 17069 23191 31443 39818 50155
62947 75994 91972 105710 122775 131669 151325 179323 203211
226542 248710 281422
;

proc reg data=USPopulation plots=ResidualByPredicted;
var YearSq;
model Population=Year / r clm cli;

run;

The DATA option ensures that the procedure uses the intended data set. Any variable that you might add to
the model but that is not included in the first MODEL statement must appear in the VAR statement.

The “Analysis of Variance” and “Parameter Estimates” tables are displayed in Figure 85.5.
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Figure 85.5 ANOVA Table and Parameter Estimates

The REG Procedure
Model: MODEL1

Dependent Variable: Population

The REG Procedure
Model: MODEL1

Dependent Variable: Population

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 1 146869 146869 228.92 <.0001

Error 20 12832 641.58160

Corrected Total 21 159700

Root MSE 25.32946 R-Square 0.9197

Dependent Mean 94.64800 Adj R-Sq 0.9156

Coeff Var 26.76175

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 -2345.85498 161.39279 -14.54 <.0001

Year 1 1.28786 0.08512 15.13 <.0001

The Model F statistic is significant (F = 228.92, p < 0.0001), indicating that the model accounts for a
significant portion of variation in the data. The R-square indicates that the model accounts for 92% of the
variation in population growth. The fitted equation for this model is

Population D �2345:85C 1:29 � Year

In the MODEL statement, three options are specified: R requests a residual analysis to be performed, CLI
requests 95% confidence limits for an individual value, and CLM requests these limits for the expected value
of the dependent variable. You can request specific 100.1 � ˛/% limits with the ALPHA= option in the
PROC REG or MODEL statement.
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Figure 85.6 shows the “Output Statistics” table. The residual, its standard error, the studentized residual, and
Cook’s D are displayed for each observation. The studentized residual is the residual divided by its standard
error. Cook’s D is a measure of the change in the predicted values upon deletion of that observation from the
data set; hence, it measures the influence of the observation on the estimated regression coefficients. The
studentized residuals and Cook’s D statistics are displayed in Figure 85.7.

Studentized residuals follow a beta distribution and can be used to identify outlying or extreme observations:

• Having a few large absolute studentized residuals is no cause for alarm.
• Many observations having absolute studentized residuals greater than two might indicate an inadequate

model.
• Absolute studentized residuals greater than three are rarer; they should be regarded as extreme, and the

data should be reviewed carefully.

Figure 85.6 Output Statistics

The REG Procedure
Model: MODEL1

Dependent Variable: Population

The REG Procedure
Model: MODEL1

Dependent Variable: Population

Output Statistics

Obs
Dependent

Variable
Predicted

Value

Std
Error
Mean

Predict 95% CL Mean 95% CL Predict Residual
Std Error
Residual

Student
Residual Cook's D

1 3.93 -40.5778 10.4424 -62.3602 -18.7953 -97.7280 16.5725 44.5068 23.077 1.929 0.381

2 5.31 -27.6991 9.7238 -47.9826 -7.4156 -84.2950 28.8968 33.0071 23.389 1.411 0.172

3 7.24 -14.8205 9.0283 -33.6533 4.0123 -70.9128 41.2719 22.0595 23.666 0.932 0.063

4 9.64 -1.9418 8.3617 -19.3841 15.5004 -57.5827 53.6991 11.5798 23.909 0.484 0.014

5 12.87 10.9368 7.7314 -5.1906 27.0643 -44.3060 66.1797 1.9292 24.121 0.080 0.000

6 17.07 23.8155 7.1470 8.9070 38.7239 -31.0839 78.7148 -6.7465 24.300 -0.278 0.003

7 23.19 36.6941 6.6208 22.8834 50.5048 -17.9174 91.3056 -13.5031 24.449 -0.552 0.011

8 31.44 49.5727 6.1675 36.7075 62.4380 -4.8073 103.9528 -18.1297 24.567 -0.738 0.017

9 39.82 62.4514 5.8044 50.3436 74.5592 8.2455 116.6573 -22.6334 24.655 -0.918 0.023

10 50.16 75.3300 5.5491 63.7547 86.9053 21.2406 129.4195 -25.1750 24.714 -1.019 0.026

11 62.95 88.2087 5.4170 76.9090 99.5084 34.1776 142.2398 -25.2617 24.743 -1.021 0.025

12 75.99 101.0873 5.4170 89.7876 112.3870 47.0562 155.1184 -25.0933 24.743 -1.014 0.025

13 91.97 113.9660 5.5491 102.3907 125.5413 59.8765 168.0554 -21.9940 24.714 -0.890 0.020

14 105.71 126.8446 5.8044 114.7368 138.9524 72.6387 181.0505 -21.1346 24.655 -0.857 0.020

15 122.78 139.7233 6.1675 126.8580 152.5885 85.3432 194.1033 -16.9483 24.567 -0.690 0.015

16 131.67 152.6019 6.6208 138.7912 166.4126 97.9904 207.2134 -20.9329 24.449 -0.856 0.027

17 151.33 165.4805 7.1470 150.5721 180.3890 110.5812 220.3799 -14.1555 24.300 -0.583 0.015

18 179.32 178.3592 7.7314 162.2317 194.4866 123.1163 233.6020 0.9638 24.121 0.040 0.000

19 203.21 191.2378 8.3617 173.7956 208.6801 135.5969 246.8787 11.9732 23.909 0.501 0.015

20 226.54 204.1165 9.0283 185.2837 222.9493 148.0241 260.2088 22.4255 23.666 0.948 0.065

21 248.71 216.9951 9.7238 196.7116 237.2786 160.3992 273.5910 31.7149 23.389 1.356 0.159

22 281.42 229.8738 10.4424 208.0913 251.6562 172.7235 287.0240 51.5482 23.077 2.234 0.511
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Figure 85.7 Studentized Residuals

Figure 85.8 shows the residual statistics table. A fairly close agreement between the PRESS statistic (see
Table 85.7) and the sum of squared residuals indicates that the MSE is a reasonable measure of the predictive
accuracy of the fitted model (Neter, Wasserman, and Kutner 1990).

Figure 85.8 Residual Statistics

Sum of Residuals 0

Sum of Squared Residuals 12832

Predicted Residual SS (PRESS) 16662
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Graphical representations are very helpful in interpreting the information in the “Output Statistics” table.
When ODS Graphics is enabled, the REG procedure produces a default set of diagnostic plots that are
appropriate for the requested analysis.

Figure 85.9 displays a panel of diagnostics plots. These diagnostics indicate an inadequate model:

• The plots of residual and studentized residual versus predicted value show a clear quadratic pattern.

• The plot of studentized residual versus leverage seems to indicate that there are two outlying data
points. However, the plot of Cook’s D distance versus observation number reveals that these two points
are just the data points for the endpoint years 1790 and 2000. These points show up as apparent outliers
because the departure of the linear model from the underlying quadratic behavior in the data shows up
most strongly at these endpoints.

• The normal quantile plot of the residuals and the residual histogram are not consistent with the
assumption of Gaussian errors. This occurs as the residuals themselves still contain the quadratic
behavior that is not captured by the linear model.

• The plot of the dependent variable versus the predicted value exhibits a quadratic form around the
45-degree line that represents a perfect fit.

• The “Residual-Fit” (or RF) plot consisting of side-by-side quantile plots of the centered fit and the
residuals shows that the spread in the residuals is no greater than the spread in the centered fit. For
inappropriate models, the spread of the residuals in such a plot is often greater than the spread of the
centered fit. In this case, the RF plot shows that the linear model does indeed capture the increasing
trend in the data, and hence accounts for much of the variation in the response.
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Figure 85.9 Diagnostics Panel
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Figure 85.10 shows a plot of residuals versus Year. Again you can see the quadratic pattern that strongly
indicates that a quadratic term should be added to the model.

Figure 85.10 Residual Plot

Figure 85.11 shows the FitPlot consisting of a scatter plot of the data overlaid with the regression line, and
95% confidence and prediction limits. Note that this plot also indicates that the model fails to capture the
quadratic nature of the data. This plot is produced for models containing a single regressor. You can use
the ALPHA= option in the model statement to change the significance level of the confidence band and
prediction limits.
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Figure 85.11 Fit Plot

These default plots provide strong evidence that the Yearsq needs to be added to the model. You can use the
interactive feature of PROC REG to do this by specifying the following statements:

add YearSq;
print;

run;

The ADD statement requests that YearSq be added to the model, and the PRINT command causes the model
to be refit and displays the ANOVA and parameter estimates for the new model. The print statement also
produces updated ODS graphical displays.



6992 F Chapter 85: The REG Procedure

Figure 85.12 displays the ANOVA table and parameter estimates for the new model.

Figure 85.12 ANOVA Table and Parameter Estimates

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 2 159529 79765 8864.19 <.0001

Error 19 170.97193 8.99852

Corrected Total 21 159700

Root MSE 2.99975 R-Square 0.9989

Dependent Mean 94.64800 Adj R-Sq 0.9988

Coeff Var 3.16938

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 21631 639.50181 33.82 <.0001

Year 1 -24.04581 0.67547 -35.60 <.0001

YearSq 1 0.00668 0.00017820 37.51 <.0001

The overall F statistic is still significant (F = 8864.19, p < 0.0001). The R-square has increased from 0.9197
to 0.9989, indicating that the model now accounts for 99.9% of the variation in Population. All effects are
significant with p < 0.0001 for each effect in the model.

The fitted equation is now

Population D 21631 � 24:046 � YearC 0:0067 � Yearsq

Figure 85.13 show the panel of diagnostics for this quadratic polynomial model. These diagnostics indicate
that this model is considerably more successful than the corresponding linear model:

• The plots of residuals and studentized residuals versus predicted values exhibit no obvious patterns.

• The points on the plot of the dependent variable versus the predicted values lie along a 45-degree line,
indicating that the model successfully predicts the behavior of the dependent variable.

• The plot of studentized residual versus leverage shows that the years 1790 and 2000 are leverage
points with 2000 showing up as an outlier. This is confirmed by the plot of Cook’s D distance versus
observation number. This suggests that while the quadratic model fits the current data well, the model
might not be quite so successful over a wider range of data. You might want to investigate whether the
population trend over the last couple of decades is growing slightly faster than quadratically.
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Figure 85.13 Diagnostics Panel

When a model contains more than one regressor, PROC REG does not produce a fit plot. However, when all
the regressors in the model are functions of a single variable, it is appropriate to plot predictions and residuals
as a function of that variable. You request such plots by using the PLOTS=PREDICTIONS option in the
PROC REG statement, as the following code illustrates:

proc reg data=USPopulation plots=predictions(X=Year);
model Population=Year Yearsq;

quit;

ods graphics off;
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Figure 85.14 shows the data, predictions, and residuals by Year. These plots confirm that the quadratic
polynomial model successfully model the growth in U.S. population between the years 1780 and 2000.

Figure 85.14 Predictions and Residuals by Year

To complete an analysis of these data, you might want to examine influence statistics and, since the data are
essentially time series data, examine the Durbin-Watson statistic.
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Using PROC REG Interactively
The REG procedure can be used interactively. After you specify a model with a MODEL statement and run
PROC REG with a RUN statement, a variety of statements can be executed without reinvoking PROC REG.

The section “Interactive Analysis” on page 7045 describes which statements can be used interactively. These
interactive statements can be executed singly or in groups by following the single statement or group of
statements with a RUN statement. Note that the MODEL statement can be repeated. This is an important
difference from the GLM procedure, which supports only one MODEL statement.

If you use PROC REG interactively, you can end the REG procedure with a DATA step, another PROC step,
an ENDSAS statement, or a QUIT statement. The syntax of the QUIT statement is

quit;

When you are using PROC REG interactively, additional RUN statements do not end PROC REG but tell the
procedure to execute additional statements.

When a BY statement is used with PROC REG, interactive processing is not possible; that is, once the
first RUN statement is encountered, processing proceeds for each BY group in the data set, and no further
statements are accepted by the procedure.

When you use PROC REG interactively, you can fit a model, perform diagnostics, and then refit the model and
perform diagnostics on the refitted model. Most of the interactive statements implicitly refit the model; for
example, if you use the ADD statement to add a variable to the model, the regression equation is automatically
recomputed. The two exceptions to this automatic recomputing are the PAINT and REWEIGHT statements.
These two statements do not cause the model to be refitted. To refit the model, you can follow these
statements either with a REFIT statement, which causes the model to be explicitly recomputed, or with
another interactive statement that causes the model to be implicitly recomputed.
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Syntax: REG Procedure
The following statements are available in the REG procedure:

PROC REG < options > ;
< label: > MODEL dependents = < regressors > < / options > ;
BY variables ;
FREQ variable ;
ID variables ;
VAR variables ;
WEIGHT variable ;
ADD variables ;
CODE < options > ;
DELETE variables ;
< label: > MTEST < equation, . . . , equation > < / options > ;
OUTPUT < OUT=SAS-data-set > < keyword=names > < . . . keyword=names > ;
PAINT < condition | ALLOBS > < / options > | < STATUS | UNDO > ;
PLOT < yvariable� xvariable > < =symbol > < . . . yvariable� xvariable > < =symbol > < / options > ;
PRINT < options > < ANOVA > < MODELDATA > ;
REFIT ;
RESTRICT equation, . . . , equation ;
REWEIGHT < condition | ALLOBS > < / options > | < STATUS | UNDO > ;
STORE < options > ;
< label: > TEST equation, < , . . . , equation > < / option > ;

Although there are numerous statements and options available in PROC REG, many analyses use only a few
of them. Often you can find the features you need by looking at an example or by scanning this section.

In the preceding list, brackets denote optional specifications, and vertical bars denote a choice of one of the
specifications separated by the vertical bars. In all cases, label is optional.

The PROC REG statement is required. To fit a model to the data, you must specify the MODEL statement. If
you want to use only the options available in the PROC REG statement, you do not need a MODEL statement,
but you must use a VAR statement. (See the example in the section “OUTSSCP= Data Sets” on page 7045.)
Several MODEL statements can be used. In addition, several MTEST, OUTPUT, PAINT, PLOT, PRINT,
RESTRICT, and TEST statements can follow each MODEL statement.

The ADD, DELETE, and REWEIGHT statements are used interactively to change the regression model and
the data used in fitting the model. The ADD, DELETE, MTEST, OUTPUT, PLOT, PRINT, RESTRICT, and
TEST statements implicitly refit the model; changes made to the model are reflected in the results from these
statements. The REFIT statement is used to refit the model explicitly and is most helpful when it follows
PAINT and REWEIGHT statements, which do not refit the model.
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The BY, FREQ, ID, VAR, and WEIGHT statements are optionally specified once for the entire PROC step,
and they must appear before the first RUN statement.

When a TYPE=CORR, TYPE=COV, or TYPE=SSCP data set is used as an input data set to PROC REG,
statements and options that require the original data are not available. Specifically, the OUTPUT, PAINT,
PLOT, and REWEIGHT statements and the MODEL and PRINT statement options P, R, CLM, CLI, DW,
DWPROB, INFLUENCE, PARTIAL, and PARTIALDATA are disabled.

You can specify the following statements with the REG procedure in addition to the PROC REG statement:

ADD adds independent variables to the regression model.

BY specifies variables to define subgroups for the analysis.

CODE requests that the procedure write SAS DATA step code to a file or catalog entry for
computing predicted values according to the fitted model.

DELETE deletes independent variables from the regression model.

FREQ specifies a frequency variable.

ID names a variable to identify observations in the tables.

MODEL specifies the dependent and independent variables in the regression model, requests a
model selection method, displays predicted values, and provides details on the estimates
(according to which options are selected).

MTEST performs multivariate tests across multiple dependent variables.

OUTPUT creates an output data set and names the variables to contain predicted values, residuals,
and other diagnostic statistics.

PAINT paints points in scatter plots.

PLOT generates scatter plots.

PRINT displays information about the model and can reset options.

REFIT refits the model.

RESTRICT places linear equality restrictions on the parameter estimates.

REWEIGHT excludes specific observations from analysis or changes the weights of observations used.

STORE requests that the procedure requests that the procedure save the estimated parameters of
the fitted model.

TEST performs an F test on linear functions of the parameters.

VAR lists variables for which crossproducts are to be computed, variables that can be interac-
tively added to the model, or variables to be used in scatter plots.

WEIGHT declares a variable to weight observations.

The CODE and STORE statements are also used by many other procedures. A summary description of
functionality and syntax for these statements is also shown after the PROC REG statement in alphabetical
order, but you can find full documentation about them in the section “STORE Statement” on page 508 in
Chapter 19, “Shared Concepts and Topics.”
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PROC REG Statement
PROC REG < options > ;

The PROC REG statement invokes the REG procedure. The PROC REG statement is required. If you want
to fit a model to the data, you must also use a MODEL statement. If you want to use only the PROC REG
options, you do not need a MODEL statement, but you must use a VAR statement. If you do not use a
MODEL statement, then the COVOUT and OUTEST= options are not available.

Table 85.1 summarizes the options available in the PROC REG statement. Note that any option specified in
the PROC REG statement applies to all MODEL statements.

Table 85.1 PROC REG Statement Options

Option Description

Data Set Options
DATA= Names a data set to use for the regression
OUTEST= Outputs a data set that contains parameter estimates and other

model fit summary statistics
OUTSSCP= Outputs a data set that contains sums of squares and crossproducts
COVOUT Outputs the covariance matrix for parameter estimates to the

OUTEST= data set
EDF Outputs the number of regressors, the error degrees of freedom,

and the model R square to the OUTEST= data set
OUTSEB Outputs standard errors of the parameter estimates to the

OUTEST= data set
OUTSTB Outputs standardized parameter estimates to the OUTEST= data

set. Use only with the RIDGE= or PCOMIT= option.
OUTVIF Outputs the variance inflation factors to the OUTEST= data set.

Use only with the RIDGE= or PCOMIT= option.
PCOMIT= Performs incomplete principal component analysis and outputs

estimates to the OUTEST= data set
PRESS Outputs the PRESS statistic to the OUTEST= data set
RIDGE= Performs ridge regression analysis and outputs estimates to the

OUTEST= data set
RSQUARE Same effect as the EDF option
TABLEOUT Outputs standard errors, confidence limits, and associated test

statistics of the parameter estimates to the OUTEST= data set

ODS Graphics Options
PLOTS= Produces ODS graphical displays

Display Options
CORR Displays correlation matrix for variables listed in MODEL and

VAR statements
SIMPLE Displays simple statistics for each variable listed in MODEL and

VAR statements
USSCP Displays uncorrected sums of squares and crossproducts matrix
ALL Displays all statistics (CORR, SIMPLE, and USSCP)
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Table 85.1 continued

Option Description

NOPRINT Suppresses output
Other Options
ALPHA= Sets significance value for confidence and prediction intervals and

tests
SINGULAR= Sets criterion for checking for singularity

Following are explanations of the options that you can specify in the PROC REG statement (in alphabetical
order).

Note that any option specified in the PROC REG statement applies to all MODEL statements.

ALL
requests the display of many tables. Using the ALL option in the PROC REG statement is equivalent
to specifying ALL in every MODEL statement. The ALL option also implies the CORR, SIMPLE,
and USSCP options.

ALPHA=number
sets the significance level used for the construction of confidence intervals. The value must be between
0 and 1; the default value of 0.05 results in 95% intervals. This option affects the PROC REG option
TABLEOUT; the MODEL options CLB, CLI, and CLM; the OUTPUT statement keywords LCL,
LCLM, UCL, and UCLM; the PLOT statement keywords LCL., LCLM., UCL., and UCLM.; and the
PLOT statement options CONF and PRED.

CORR
displays the correlation matrix for all variables listed in the MODEL or VAR statement.

COVOUT
outputs the covariance matrices for the parameter estimates to the OUTEST= data set. This option
is valid only if the OUTEST= option is also specified. See the section “OUTEST= Data Set” on
page 7040.

DATA=SAS-data-set
names the SAS data set to be used by PROC REG. The data set can be an ordinary SAS data set or a
TYPE=CORR, TYPE=COV, or TYPE=SSCP data set. If one of these special TYPE= data sets is used,
the OUTPUT, PAINT, PLOT, and REWEIGHT statements, ODS Graphics, and some options in the
MODEL and PRINT statements are not available. See Appendix A, “Special SAS Data Sets,” for more
information about TYPE= data sets. If the DATA= option is not specified, PROC REG uses the most
recently created SAS data set.

EDF
outputs the number of regressors in the model excluding and including the intercept, the error degrees
of freedom, and the model R square to the OUTEST= data set.

NOPRINT
suppresses the normal display of results. Note that this option temporarily disables the Output Delivery
System (ODS); see Chapter 20, “Using the Output Delivery System,” for more information.
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OUTEST=SAS-data-set
requests that parameter estimates and optional model fit summary statistics be output to this data set.
See the section “OUTEST= Data Set” on page 7040 for details. If you want to create a SAS data set
in a permanent library, you must specify a two-level name. For more information about permanent
libraries and SAS data sets, see SAS Language Reference: Concepts.

OUTSEB
outputs the standard errors of the parameter estimates to the OUTEST= data set. The value SEB for
the variable _TYPE_ identifies the standard errors. If the RIDGE= or PCOMIT= option is specified,
additional observations are included and identified by the values RIDGESEB and IPCSEB, respectively,
for the variable _TYPE_. The standard errors for ridge regression estimates and IPC estimates are
limited in their usefulness because these estimates are biased. This option is available for all model
selection methods except RSQUARE, ADJRSQ, and CP.

OUTSSCP=SAS-data-set
requests that the sums of squares and crossproducts matrix be output to this TYPE=SSCP data set. See
the section “OUTSSCP= Data Sets” on page 7045 for details. If you want to create a SAS data set in a
permanent library, you must specify a two-level name. For more information about permanent libraries
and SAS data sets, see SAS Language Reference: Concepts.

OUTSTB
outputs the standardized parameter estimates as well as the usual estimates to the OUTEST= data set
when the RIDGE= or PCOMIT= option is specified. The values RIDGESTB and ICPSTB for the
variable _TYPE_ identify ridge regression estimates and IPC estimates, respectively.

OUTVIF
outputs the variance inflation factors (VIF) to the OUTEST= data set when the RIDGE= or PCOMIT=
option is specified. The factors are the diagonal elements of the inverse of the correlation matrix of
regressors as adjusted by ridge regression or IPC analysis. These observations are identified in the
output data set by the values RIDGEVIF and IPCVIF for the variable _TYPE_.

PCOMIT=list
requests an incomplete principal component (IPC) analysis for each value m in the list. The procedure
computes parameter estimates by using all but the last m principal components. Each value of m
produces a set of IPC estimates, which are output to the OUTEST= data set. The values of m are saved
by the variable _PCOMIT_, and the value of the variable _TYPE_ is set to IPC to identify the estimates.
Only nonnegative integers can be specified with the PCOMIT= option.

If you specify the PCOMIT= option, RESTRICT statements are ignored.

PLOTS < (global-plot-options) > < = plot-request< (options) > >
PLOTS < (global-plot-options) > < = (plot-request< (options) > < ... plot-request< (options) > >) >

controls the plots produced through ODS Graphics. When you specify only one plot request, you can
omit the parentheses around the plot request. Here are some examples:

plots = none
plots = diagnostics(unpack)
plots = (all fit(stats=none))
plots(label) = (rstudentbyleverage cooksd)
plots(only) = (diagnostics(stats=all) fit(nocli stats=(aic sbc)))

ODS Graphics must be enabled before plots can be requested. For example:
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ods graphics on;

proc reg;
model y = x1-x10;

run;

proc reg plots=diagnostics(stats=(default aic sbc));
model y = x1-x10;

run;

ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

If ODS Graphics is enabled but you do not specify the PLOTS= option, then PROC REG produces a
default set of plots. Table 85.2 lists the default set of plots produced.

Table 85.2 Default Graphs Produced

Plot Conditional On

DiagnosticsPanel Unconditional
ResidualPlot Unconditional
FitPlot Model with one regressor (excluding intercept)
PartialPlot PARTIAL option specified in MODEL statement
RidgePanel RIDGE= option specified in PROC REG or MODEL statement

For models with multiple dependent variables, separate plots are produced for each dependent variable.
For jobs with more than one MODEL statement, plots are produced for each model statement.

The global-options apply to all plots generated by the REG procedure, unless it is altered by a
specific-plot-option. The following global-plot-options are available:

LABEL
specifies that the LABEL option be applied to each plot that supports a LABEL option. See the
descriptions of the specific plots for details.

MAXPOINTS=NONE | max < heat-max >
suppresses most plots that require processing more than max points. When the number of points
exceeds max but does not exceed heat-max divided by the number of independent variables,
heat maps are displayed instead of scatter plots for the fit and residual plots. All other plots are
suppressed when the number of points exceeds max . The default is MAXPOINTS=5000 150000.
These cutoffs are ignored if you specify MAXPOINTS=NONE.

MODELLABEL
requests that the model label be displayed in the upper-left corner of all plots. This option is
useful when you use more than one MODEL statement.
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ONLY
suppress the default plots. Only plots specifically requested are displayed.

STATS=ALL | DEFAULT | NONE | (plot-statistics)
requests statistics that are included on the fit plot and diagnostics panel. Table 85.3 lists the statis-
tics that you can request. STATS=ALL requests all these statistics; STATS=NONE suppresses
them.

Table 85.3 Statistics Available on Plots

Keyword Default Description

ADJRSQ x adjusted R-square
AIC Akaike’s information criterion
BIC Sawa’s Bayesian information criterion
CP Mallows’ Cp statistic
COEFFVAR coefficient of variation
DEPMEAN mean of dependent
DEFAULT all default statistics
EDF x error degrees of freedom
GMSEP estimated MSE of prediction, assuming multivariate normality
JP final prediction error
MSE x mean squared error
NOBS x number of observations used
NPARM x number of parameters in the model (including the intercept)
PC Amemiya’s prediction criterion
RSQUARE x R-square
SBC SBC statistic
SP SP statistic
SSE error sum of squares

You request statistics in addition to the default set by including the keyword DEFAULT in the
plot-statistics list.

UNPACK
suppresses paneling.

USEALL
specifies that predicted values at data points with missing dependent variable(s) be included on
appropriate plots. By default, only points used in constructing the SSCP matrix appear on plots.
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The following specific plots are available:

ADJRSQ < (adjrsq-options) >
displays the adjusted R-square values for the models examined when you request variable
selection with the SELECTION= option in the MODEL statement.

The following adjrsq-options are available for models where you request the RSQUARE, AD-
JRSQ, or CP selection method:

LABEL
requests that the model number corresponding to the one displayed in the “Subset Selection
Summary” table be used to label the model with the largest adjusted R-square statistic at
each value of the number of parameters.

LABELVARS
requests that the list (excluding the intercept) of the regressors in the relevant model be used
to label the model with the largest adjusted R-square statistic at each value of the number of
parameters.

AIC < (aic-options) >
displays Akaike’s information criterion (AIC) for the models examined when you request variable
selection with the SELECTION= option in the MODEL statement.

The following aic-options are available for models where you request the RSQUARE, ADJRSQ,
or CP selection method:

LABEL
requests that the model number corresponding to the one displayed in the “Subset Selection
Summary” table be used to label the model with the smallest AIC statistic at each value of
the number of parameters.

LABELVARS
requests that the list (excluding the intercept) of the regressors in the relevant model be used
to label the model with the smallest AIC statistic at each value of the number of parameters.

ALL
produces all appropriate plots.

BIC < (bic-options) >
displays Sawa’s Bayesian information criterion (BIC) for the models examined when you request
variable selection with the SELECTION= option in the MODEL statement.

The following bic-options are available for models where you request the RSQUARE, ADJRSQ,
or CP selection method:

LABEL
requests that the model number corresponding to the one displayed in the “Subset Selection
Summary” table be used to label the model with the smallest BIC statistic at each value of
the number of parameters.

LABELVARS
requests that the list (excluding the intercept) of the regressors in the relevant model be used
to label the model with the smallest BIC statistic at each value of the number of parameters.
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COOKSD < (LABEL) >
plots Cook’s D statistic by observation number. Observations whose Cook’s D statistic lies
above the horizontal reference line at value 4=n, where n is the number of observations used,
are deemed to be influential (Rawlings, Pantula, and Dickey 1998). If you specify the LABEL
option, then points deemed as influential are labeled. If you do not specify an ID variable, the
observation number within the current BY group is used as the label. If you specify one or more
ID variables in one or more ID statements, then the first ID variable you specify is used for the
labeling.

CP < (cp-options) >
displays Mallows’ Cp statistic for the models examined when you request variable selection
with the SELECTION= option in the MODEL statement. For models where you request the
RSQUARE, ADJRSQ, or CP selection, reference lines corresponding to the equations Cp D p
and Cp D 2p � pfull , where pfull is the number of parameters in the full model (excluding the
intercept) and p is the number of parameters in the subset model (including the intercept), are
displayed on the plot of Cp versus p. For the purpose of parameter estimation, Hocking (1976)
suggests selecting a model where Cp � 2p � pfull . For the purpose of prediction, Hocking
suggests the criterion Cp � p. Mallows (1973) suggests that all subset models with Cp small
and near p be considered for further study.

The following cp-options are available for models where you request the RSQUARE, ADJRSQ,
or CP selection method:

LABEL
requests that the model number corresponding to the one displayed in the “Subset Selection
Summary” table be used to label the model with the smallest Cp statistic at each value of
the number of parameters.

LABELVARS
requests that the list (excluding the intercept) of the regressors in the relevant model be used
to label the model with the smallest Cp statistic at each value of the number of parameters.

CRITERIA | CRITERIONPANEL < (criteria-options) >
produces a panel of fit criteria for the models examined when you request variable selection
with the SELECTION= option in the MODEL statement. The fit criteria displayed are R-
square, adjusted R-square, Mallows’ Cp , Akaike’s information criterion (AIC), Sawa’s Bayesian
information criterion (BIC), and Schwarz’s Bayesian information criterion (SBC). For SELEC-
TION=RSQUARE, SELECTION=ADJRSQ, or SELECTION=CP, scatter plots of these statistics
versus the number of parameters (including the intercept) are displayed. For other selection
methods, line plots of these statistics as function of the selection step number are displayed.

The following criteria-options are available:

LABEL
requests that the model number corresponding to the one displayed in the “Subset Selection
Summary” table be used to label the best model at each value of the number of parameters.
This option applies only to the RSQUARE, ADJRSQ, and CP selection methods.
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LABELVARS
requests that the list (excluding the intercept) of the regressors in the relevant model be used
to label the best model at each value of the number of parameters. Since these labels are
typically long, LABELVARS is supported only when the panel is unpacked. This option
applies only to the RSQUARE, ADJRSQ, and CP selection methods.

UNPACK
suppresses paneling. Separate plots are produced for each of the six fit statistics. For
models where you request the RSQUARE, ADJRSQ, or CP selection, two reference lines
corresponding to the equations Cp D p and Cp D 2p � pfull , where pfull is the number
of parameters in the full model (excluding the intercept) and p is the number of parameters
in the subset model (including the intercept), are displayed on the plot of Cp versus p. For
the purpose of parameter estimation, Hocking (1976) suggests selecting a model where
Cp � 2p � pfull . For the purpose of prediction, Hocking suggests the criterion Cp � p.
Mallows (1973) suggests that all subset models with Cp small and near p be considered for
further study.

DFBETAS < (DFBETAS-options) >
produces panels of DFBETAS by observation number for the regressors in the model. Note
that each panel contains at most six plots, and multiple panels are used in the case where
there are more than six regressors (including the intercept) in the model. Observations whose
DFBETAS’ statistics for a regressor are greater in magnitude than 2=

p
n, where n is the number

of observations used, are deemed to be influential for that regressor (Rawlings, Pantula, and
Dickey 1998).

The following DFBETAS-options are available:

COMMONAXES
specifies that the same DFBETAS axis be used in all panels when multiple panels are needed.
By default, the DFBETAS axis is chosen independently for each panel. If you also specify
the UNPACK option, then the same DFBETAS axis is used for each regressor.

LABEL
specifies that observations whose magnitude are greater than 2=

p
n be labeled. If you do

not specify an ID variable, the observation number within the current BY group is used as
the label. If you specify one or more ID variables on one or more ID statements, then the
first ID variable you specify is used for the labeling.

UNPACK
suppresses paneling. The DFBETAS statistics for each regressor are displayed on separate
plots.

DFFITS < (LABEL) >
plots the DFFITS statistic by observation number. Observations whose DFFITS’ statistic is
greater in magnitude than 2

p
p=n, where n is the number of observations used and p is the

number of regressors, are deemed to be influential (Rawlings, Pantula, and Dickey 1998). If you
specify the LABEL option, then these influential observations are labeled. If you do not specify
an ID variable, the observation number within the current BY group is used as the label. If you
specify one or more ID variables in one or more ID statements, then the first ID variable you
specify is used for the labeling.
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DIAGNOSTICS < (diagnostics-options) >
produces a summary panel of fit diagnostics:

• residuals versus the predicted values
• studentized residuals versus the predicted values
• studentized residuals versus the leverage
• normal quantile plot of the residuals
• dependent variable values versus the predicted values
• Cook’s D versus observation number
• histogram of the residuals
• “Residual-Fit” (or RF) plot consisting of side-by-side quantile plots of the centered fit and

the residuals
• box plot of the residuals if you specify the STATS=NONE suboption

You can specify the following diagnostics-options:

STATS=stats-options
determines which model fit statistics are included in the panel. See the global STATS= sub-
option for details. The PLOTS= suboption of the DIAGNOSTICSPANEL option overrides
the global PLOTS= suboption.

UNPACK
produces the eight plots in the panel as individual plots. Note that you can also request
individual plots in the panel by name without having to unpack the panel.

FITPLOT | FIT < (fit-options) >
produces a scatter plot of the data overlaid with the regression line, confidence band, and
prediction band for models that depend on at most one regressor excluding the intercept. When
the number of points exceeds the MAXPOINTS=max value, a heat map is displayed instead of
a scatter plot. By default, heat maps are not displayed if the number of observations times the
number of independent variables is greater than 150,000. See the MAXPOINTS= option.

You can specify the following fit-options:

NOCLI
suppresses the prediction limits.

NOCLM
suppresses the confidence limits.

NOLIMITS
suppresses the confidence and prediction limits.

STATS=stats-options
determines which model fit statistics are included in the panel. See the global STATS=
suboption for details. The PLOTS= suboption of the FITPLOT option overrides the global
PLOTS= suboption.
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OBSERVEDBYPREDICTED < (LABEL) >
plots dependent variable values by the predicted values. If you specify the LABEL option, then
points deemed as outliers or influential (see the RSTUDENTBYLEVERAGE option for details)
are labeled.

NONE
suppresses all plots.

PARTIAL < (UNPACK) >
produces panels of partial regression plots for each regressor with at most six regressors per panel.
If you specify the UNPACK option, then all partial plot panels are unpacked.

PREDICTIONS (X=numeric-variable < prediction-options >)
produces a panel of two plots whose horizontal axis is the variable you specify in the required
X= suboption. The upper plot in the panel is a scatter plot of the residuals. The lower plot shows
the data overlaid with the regression line, confidence band, and prediction band. This plot is
appropriate for models where all regressors are known to be functions of the single variable that
you specify in the X= suboption.

You can specify the following prediction-options:

NOCLI
suppresses the prediction limits.

NOCLM
suppresses the confidence limits

NOLIMITS
suppresses the confidence and prediction limits

SMOOTH
requests a nonparametric smoothing of the residuals as a function of the variable you specify
in the X= suboption. This nonparametric fit is a loess fit that uses local linear polynomials,
linear interpolation, and a smoothing parameter that is selected to yield a local minimum
of the corrected Akaike’s information criterion (AICC). See Chapter 59, “The LOESS
Procedure,” for details. The SMOOTH option is not supported when a FREQ statement is
used.

UNPACK
suppresses paneling.

QQPLOT | QQ
produces a normal quantile plot of the residuals.

RESIDUALBOXPLOT | BOXPLOT < (LABEL) >
produces a box plot consisting of the residuals. If you specify label option, points deemed
far-outliers are labeled. If you do not specify an ID variable, the observation number within the
current BY group is used as the label. If you specify one or more ID variables in one or more ID
statements, then the first ID variable you specify is used for the labeling.
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RESIDUALBYPREDICTED < (LABEL) >
plots residuals by predicted values. If you specify the LABEL option, then points deemed as
outliers or influential (see the RSTUDENTBYLEVERAGE option for details) are labeled.

RESIDUALCHART < (residual-chart-options) >

RC < (residual-chart-options) >
produces the residual chart and enables you to specify residual-chart-options. This chart displays
studentized residuals and Cook’s D in side-by-side bar charts. This chart is also displayed when
you specify the R option in the MODEL statement.

Unlike most graphs, the height of this chart can vary as a function of the number of observations
that appear in the chart. You can specify the following residual-chart-options to control the height
and other aspects of the chart:

COMPUTEHEIGHT=a b < max >

CH=a b < max >
specifies the constants for computing the height of the chart. For n dimensions, intercept
a, slope b, and maximum height max , the height is min(a + b (n + 1), max). By default,
COMPUTEHEIGHT=150 15 1650. Thus, the default height in pixels is min(150 + 15(n +
1), 1650). The default unit is pixels, and you can use the UNIT= residual-chart-option to
change the unit to inches or centimeters.

MAX=max
species the maximum number of points to display in each chart. When the number of points
exceeds max , charts of up to max observations are displayed until all observations are
displayed.

SETHEIGHT=height

SH=height
specifies the height of the chart. By default, the height is based on the COMPUTEHEIGHT=
option. The default unit is pixels, and you can use the UNIT= residual-chart-option to
change the unit to inches or centimeters.

UNIT=PX | IN | CM
specifies the unit (pixels, inches, or centimeters) for the SETHEIGHT= and COMPUTE-
HEIGHT= residual-chart-options. Inches equals pixels divided by 96, and centimeters
equals inches times 2.54. By default, UNIT=PX.

UNPACK
suppresses paneling. The studentized residuals and Cook’s D are displayed in separate charts.
When you specify the UNPACK residual-chart-option, residuals, standard errors, and other
values that go into the computations are added to each chart.

RESIDUALS < (residual-options) >
produces panels of the residuals versus the regressors in the model. Each panel contains at
most six plots, and multiple panels are used when the model contains more than six regressors
(including the intercept). When the number of points exceeds the MAXPOINTS=max value, a
heat map is displayed instead of a scatter plot. By default, heat maps are not displayed if the
number of observations times the number of independent variables is greater than 150,000. See
the MAXPOINTS= option. You can specify the following residual-options:
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SMOOTH
requests a nonparametric smoothing of the residuals for each regressor. Each nonparametric
fit is a loess fit that uses local linear polynomials, linear interpolation, and a smoothing
parameter that is selected to yield a local minimum of the corrected Akaike’s information
criterion (AICC). See Chapter 59, “The LOESS Procedure,” for details. The SMOOTH
option is not supported when a FREQ statement is used.

UNPACK
suppresses paneling.

RESIDUALHISTOGRAM
produces a histogram of the residuals.

RFPLOT | RF
produces a “Residual-Fit” (or RF) plot consisting of side-by-side quantile plots of the centered fit
and the residuals. This plot “shows how much variation in the data is explained by the fit and
how much remains in the residuals” (Cleveland 1993).

RIDGE | RIDGEPANEL | RIDGEPLOT < (ridge-options) >
creates panels of VIF values and standardized ridge estimates by ridge values for each coefficient.
The VIF values for each coefficient are connected by lines and are displayed in the upper plot
in each panel. The points corresponding to the standardized estimates of each coefficient are
connected by lines and are displayed in the lower plot in each panel. By default, at most 10
coefficients are represented in a panel and multiple panels are produced for models with more
than 10 regressors. For ridge estimates to be computed and plotted, the OUTEST= option must
be specified in the PROC REG statement, and the RIDGE= list must be specified in either the
PROC REG or the MODEL statement. (See Example 85.5.)

The following ridge-options are available:

COMMONAXES
specifies that the same VIF axis and the same standardized estimate axis are used in all
panels when multiple panels are needed. By default, these axes are chosen independently for
the regressors shown in each panel.

RIDGEAXIS=LINEAR | LOG
specifies the axis type used to display the ridge parameters. The default is
RIDGEAXIS=LINEAR. Note that the point with the ridge parameter equal to zero is
not displayed if you specify RIDGEAXIS=LOG.

UNPACK
suppresses paneling. The traces of the VIF statistics and standardized estimates are shown
in separate plots.

VARSPERPLOT=ALL

VARSPERPLOT=number
specifies the maximum number of regressors displayed in each panel or in each plot if you
additionally specify the UNPACK option. If you specify VARSPERPLOT=ALL, then the
VIF values and ridge traces for all regressors are displayed in a single panel.
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VIFAXIS=LINEAR | LOG
specifies the axis type used to display the VIF statistics. The default is VIFAXIS=LINEAR.

RSQUARE < (rsquare-options) >
displays the R-square values for the models examined when you request variable selection with
the SELECTION= option in the MODEL statement.

The following rsquare-options are available for models where you request the RSQUARE,
ADJRSQ, or CP selection method:

LABEL
requests that the model number corresponding to the one displayed in the “Subset Selection
Summary” table be used to label the model with the largest R-square statistic at each value
of the number of parameters.

LABELVARS
requests that the list (excluding the intercept) of the regressors in the relevant model be
used to label the model with the largest R-square statistic at each value of the number of
parameters.

RSTUDENTBYLEVERAGE < (LABEL) >
plots studentized residuals by leverage. Observations whose studentized residuals lie outside
the band between the reference lines RSTUDENT D ˙2 are deemed outliers. Observations
whose leverage values are greater than the vertical reference LEVERAGE D 2p=n, where p is
the number of parameters including the intercept and n is the number of observations used, are
deemed influential (Rawlings, Pantula, and Dickey 1998). If you specify the LABEL option,
then points deemed as outliers or influential are labeled. If you do not specify an ID variable, the
observation number within the current BY group is used as the label. If you specify one or more
ID variables in one or more ID statements, then the first ID variable you specify is used for the
labeling.

RSTUDENTBYPREDICTED < (LABEL) >
plots studentized residuals by predicted values. If you specify the LABEL option, then points
deemed as outliers or influential (see the RSTUDENTBYLEVERAGE option for details) are
labeled.

SBC < (sbc-options) >
displays Schwarz’s Bayesian information criterion (SBC) for the models examined when you
request variable selection with the SELECTION= option in the MODEL statement.

The following sbc-options are available for models where you request the RSQUARE, ADJRSQ,
or CP selection method:

LABEL
requests that the model number corresponding to the one displayed in the “Subset Selection
Summary” table be used to label the model with the smallest SBC statistic at each value of
the number of parameters.

LABELVARS
requests that the list (excluding the intercept) of the regressors in the relevant model be used
to label the model with the smallest SBC statistic at each value of the number of parameters.
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PRESS
outputs the PRESS statistic to the OUTEST= data set. The values of this statistic are saved in the
variable _PRESS_. This option is available for all model selection methods except RSQUARE,
ADJRSQ, and CP.

RIDGE=list
requests a ridge regression analysis and specifies the values of the ridge constant k (see the section
“Computations for Ridge Regression and IPC Analysis” on page 7084). Each value of k produces a set
of ridge regression estimates that are placed in the OUTEST= data set. The values of k are saved by
the variable _RIDGE_, and the value of the variable _TYPE_ is set to RIDGE to identify the estimates.

Only nonnegative numbers can be specified with the RIDGE= option. Example 85.5 illustrates this
option.

If ODS Graphics is enabled (see the section “ODS Graphics” on page 7106), then ridge regression plots
are automatically produced. These plots consist of panels containing ridge traces for the regressors,
with at most eight ridge traces per panel.

If you specify the RIDGE= option, RESTRICT statements are ignored.

RSQUARE
has the same effect as the EDF option.

SIMPLE
displays the sum, mean, variance, standard deviation, and uncorrected sum of squares for each variable
used in PROC REG.

SINGULAR=n
tunes the mechanism used to check for singularities. The default value is machine dependent but is
approximately 1E–7 on most machines. This option is rarely needed.

Singularity checking is described in the section “Computational Methods” on page 7085.

TABLEOUT
outputs the standard errors and 100.1 � ˛/% confidence limits for the parameter estimates, the t
statistics for testing if the estimates are zero, and the associated p-values to the OUTEST= data set.
The _TYPE_ variable values STDERR, LnB, UnB, T, and PVALUE, where n D 100.1 � ˛/, identify
these rows in the OUTEST= data set. The ˛ level can be set with the ALPHA= option in the PROC
REG or MODEL statement. The OUTEST= option must be specified in the PROC REG statement for
this option to take effect.

USSCP
displays the uncorrected sums-of-squares and crossproducts matrix for all variables used in the
procedure.
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ADD Statement
ADD variables ;

The ADD statement adds independent variables to the regression model. Only variables used in the VAR
statement or used in MODEL statements before the first RUN statement can be added to the model. You can
use the ADD statement interactively to add variables to the model or to include a variable that was previously
deleted with a DELETE statement. Each use of the ADD statement modifies the MODEL label.

See the section “Interactive Analysis” on page 7045 for an example.

BY Statement
BY variables ;

You can specify a BY statement with PROC REG to obtain separate analyses of observations in groups that
are defined by the BY variables. When a BY statement appears, the procedure expects the input data set to be
sorted in order of the BY variables. If you specify more than one BY statement, only the last one specified is
used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the REG procedure. The
NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

When a BY statement is used with PROC REG, interactive processing is not possible; that is, once the
first RUN statement is encountered, processing proceeds for each BY group in the data set, and no further
statements are accepted by the procedure. A BY statement that appears after the first RUN statement is
ignored.

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

CODE Statement
CODE < options > ;

The CODE statement writes SAS DATA step code for computing predicted values of the fitted model either
to a file or to a catalog entry. This code can then be included in a DATA step to score new data.

Table 85.4 summarizes the options available in the CODE statement.
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Table 85.4 CODE Statement Options

Option Description

CATALOG= Names the catalog entry where the generated code is saved
DUMMIES Retains the dummy variables in the data set
ERROR Computes the error function
FILE= Names the file where the generated code is saved
FORMAT= Specifies the numeric format for the regression coefficients
GROUP= Specifies the group identifier for array names and statement labels
IMPUTE Imputes predicted values for observations with missing or invalid

covariates
LINESIZE= Specifies the line size of the generated code
LOOKUP= Specifies the algorithm for looking up CLASS levels
RESIDUAL Computes residuals

For details about the syntax of the CODE statement, see the section “CODE Statement” on page 395 in
Chapter 19, “Shared Concepts and Topics.”

DELETE Statement
DELETE variables ;

The DELETE statement deletes independent variables from the regression model. The DELETE statement
performs the opposite function of the ADD statement and is used in a similar manner. Each use of the
DELETE statement modifies the MODEL label.

For an example of how the ADD statement is used (and how the DELETE statement can be used), see the
section “Interactive Analysis” on page 7045.

FREQ Statement
FREQ variable ;

When a FREQ statement appears, each observation in the input data set is assumed to represent n observations,
where n is the value of the FREQ variable. The analysis produced when you use a FREQ statement is the
same as an analysis produced by using a data set that contains n observations in place of each observation in
the input data set. When the procedure determines degrees of freedom for significance tests, the total number
of observations is considered to be equal to the sum of the values of the FREQ variable.

If the value of the FREQ variable is missing or is less than 1, the observation is not used in the analysis. If
the value is not an integer, only the integer portion is used.

The FREQ statement must appear before the first RUN statement, or it is ignored.
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ID Statement
ID variables ;

When one of the MODEL statement options CLI, CLM, P, R, and INFLUENCE is requested, the variables
listed in the ID statement are displayed beside each observation. These variables can be used to identify each
observation. If the ID statement is omitted, the observation number is used to identify the observations.

Although there are no restrictions on the length of ID variables, PROC REG might truncate ID values to 16
characters for display purposes.

MODEL Statement
< label: > MODEL dependents = < regressors > < / options > ;

After the keyword MODEL, the dependent (response) variables are specified, followed by an equal sign and
the regressor variables. Variables specified in the MODEL statement must be numeric variables in the data set
being analyzed. For example, if you want to specify a quadratic term for variable X1 in the model, you cannot
use X1*X1 in the MODEL statement but must create a new variable (for example, X1SQUARE=X1*X1)
in a DATA step and use this new variable in the MODEL statement. The label in the MODEL statement is
optional.

Table 85.5 summarizes the options available in the MODEL statement. Equations for the statistics available
are given in the section “Model Fit and Diagnostic Statistics” on page 7062.

Table 85.5 MODEL Statement Options

Option Description

Model Selection and Details of Selection
SELECTION= Specifies model selection method
BEST= Specifies maximum number of subset models displayed or output to the OUT-

EST= data set
DETAILS Produces summary statistics at each step
DETAILS= Specifies the display details for FORWARD, BACKWARD, and STEPWISE

methods
GROUPNAMES= Provides names for groups of variables
INCLUDE= Includes first n variables in the model
MAXSTEP= Specifies maximum number of steps that might be performed
NOINT Fits a model without the intercept term
PCOMIT= Performs incomplete principal component analysis and outputs estimates to the

OUTEST= data set
RIDGE= Performs ridge regression analysis and outputs estimates to the OUTEST= data

set
SLE= Sets criterion for entry into model
SLS= Sets criterion for staying in model
START= Specifies number of variables in model to begin the comparing and switching

process
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Table 85.5 continued
Option Description

STOP= Stops selection criterion

Statistics
ADJRSQ Computes adjusted R square
AIC Computes Akaike’s information criterion
B Computes parameter estimates for each model
BIC Computes Sawa’s Bayesian information criterion
CP Computes Mallows’ Cp statistic
GMSEP Computes estimated MSE of prediction assuming multivariate normality
JP Computes Jp, the final prediction error
MSE Computes MSE for each model
PC Computes Amemiya’s prediction criterion
RMSE Displays root MSE for each model
SBC Computes the SBC statistic
SP Computes Sp statistic for each model
SSE Computes error sum of squares for each model

Data Set Options
EDF Outputs the number of regressors, the error degrees of freedom, and the model R

square to the OUTEST= data set
OUTSEB Outputs standard errors of the parameter estimates to the OUTEST= data set
OUTSTB Outputs standardized parameter estimates to the OUTEST= data set. Use only

with the RIDGE= or PCOMIT= option.
OUTVIF Outputs the variance inflation factors to the OUTEST= data set. Use only with

the RIDGE= or PCOMIT= option.
PRESS Outputs the PRESS statistic to the OUTEST= data set
RSQUARE Has same effect as the EDF option

Regression Calculations
I Displays inverse of sums of squares and crossproducts
XPX Displays sums-of-squares and crossproducts matrix

Details on Estimates
ACOV Displays heteroscedasticity- consistent covariance matrix of estimates and

heteroscedasticity-consistent standard errors
ACOVMETHOD= Specifies method for computing the asymptotic heteroscedasticity-consistent

covariance matrix
COLLIN Produces collinearity analysis
COLLINOINT Produces collinearity analysis with intercept adjusted out
CORRB Displays correlation matrix of estimates
COVB Displays covariance matrix of estimates
HCC Displays heteroscedasticity-consistent standard errors
HCCMETHOD= Specifies method for computing the asymptotic heteroscedasticity-consistent

covariance matrix
LACKFIT Performs lack-of-fit test
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Table 85.5 continued
Option Description

PARTIALR2 Displays squared semipartial correlation coefficients computed using Type I
sums of squares

PCORR1 Displays squared partial correlation coefficients computed using Type I sums of
squares

PCORR2 Displays squared partial correlation coefficients computed using Type II sums of
squares

SCORR1 Displays squared semipartial correlation coefficients computed using Type I
sums of squares

SCORR2 Displays squared semipartial correlation coefficients computed using Type II
sums of squares

SEQB Displays a sequence of parameter estimates during selection process
SPEC Tests that first and second moments of model are correctly specified
SRT Displays the studentized residuals by using a series of asterisks
SS1 Displays the sequential sums of squares
SS2 Displays the partial sums of squares
STB Displays standardized parameter estimates
TOL Displays tolerance values for parameter estimates
WHITE Displays heteroscedasticity-consistent standard errors
VIF Computes variance-inflation factors

Predicted and Residual Values
CLB Computes 100.1 � ˛/% confidence limits for the parameter estimates
CLI Computes 100.1 � ˛/% confidence limits for an individual predicted value
CLM Computes 100.1�˛/% confidence limits for the expected value of the dependent

variable
DW Computes a Durbin-Watson statistic
DWPROB Computes a Durbin-Watson statistic and p-value
INFLUENCE Computes influence statistics
P Computes predicted values
PARTIAL Displays partial regression plots for each regressor
PARTIALDATA Displays partial regression data
R Produces analysis of residuals

Display Options and Other Options
ALL Requests the following options:

ACOV, CLB, CLI, CLM, CORRB, COVB, HCC, I, P,
PCORR1, PCORR2, R, SCORR1, SCORR2, SEQB, SPEC,
SS1, SS2, STB, TOL, VIF, XPX

ALPHA= Sets significance value for confidence and prediction intervals and tests
NOPRINT Suppresses display of results
SIGMA= Specifies the true standard deviation of error term for computing CP and BIC
SINGULAR= Sets criterion for checking for singularity
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You can specify the following options in the MODEL statement after a slash (/).

ACOV
displays the estimated asymptotic covariance matrix of the estimates under the hypothesis of het-
eroscedasticity and heteroscedasticity-consistent standard errors of parameter estimates. See the
HCCMETHOD= option and the HCC option and the section “Testing for Heteroscedasticity” on
page 7078 for more information.

ACOVMETHOD=0,1,2, or 3
See the HCCMETHOD= option.

ADJRSQ
computes R square adjusted for degrees of freedom for each model selected (Darlington 1968; Judge
et al. 1980).

AIC
outputs Akaike’s information criterion for each model selected (Akaike 1969; Judge et al. 1980) to the
OUTEST= data set. If SELECTION=ADJRSQ, SELECTION=RSQUARE, or SELECTION=CP is
specified, then the AIC statistic is also added to the SubsetSelSummary table.

ALL
requests all these options: ACOV, CLB, CLI, CLM, CORRB, COVB, HCC, I, P, PCORR1, PCORR2,
R, SCORR1, SCORR2, SEQB, SPEC, SS1, SS2, STB, TOL, VIF, and XPX.

ALPHA=number
sets the significance level used for the construction of confidence intervals for the current MODEL
statement. The value must be between 0 and 1; the default value of 0.05 results in 95% intervals. This
option affects the MODEL options CLB, CLI, and CLM; the OUTPUT statement keywords LCL,
LCLM, UCL, and UCLM; the PLOT statement keywords LCL., LCLM., UCL., and UCLM.; and the
PLOT statement options CONF and PRED. If you specify this option in the MODEL statement, it
takes precedence over the ALPHA= option in the PROC REG statement.

B
is used with the RSQUARE, ADJRSQ, and CP model-selection methods to compute estimated
regression coefficients for each model selected.

BEST=n
is used with the RSQUARE, ADJRSQ, and CP model-selection methods. If SELECTION=CP or
SELECTION=ADJRSQ is specified, the BEST= option specifies the maximum number of subset
models to be displayed or output to the OUTEST= data set. For SELECTION=RSQUARE, the BEST=
option requests the maximum number of subset models for each size.

If the BEST= option is used without the B option (displaying estimated regression coefficients), the
variables in each MODEL are listed in order of inclusion instead of the order in which they appear in
the MODEL statement.

If the BEST= option is omitted and the number of regressors is less than 11, all possible subsets are
evaluated. If the BEST= option is omitted and the number of regressors is greater than 10, the number
of subsets selected is, at most, equal to the number of regressors. A small value of the BEST= option
greatly reduces the CPU time required for large problems.
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BIC
outputs Sawa’s Bayesian information criterion for each model selected (Sawa 1978; Judge et al. 1980)
to the OUTEST= data set. If SELECTION=ADJRSQ, SELECTION=RSQUARE, or SELECTION=CP
is specified, then the BIC statistic is also added to the SubsetSelSummary table.

CLB
requests the 100.1 � ˛/% upper and lower confidence limits for the parameter estimates. By default,
the 95% limits are computed; the ALPHA= option in the PROC REG or MODEL statement can be
used to change the ˛ level. If any of the MODEL statement options ACOV, HCC, or WHITE are in
effect, then the CLB option also produces heteroscedasticity-consistent 100.1 � ˛/% upper and lower
confidence limits for the parameter estimates.

CLI
requests the 100.1 � ˛/% upper and lower confidence limits for an individual predicted value. By
default, the 95% limits are computed; the ALPHA= option in the PROC REG or MODEL statement
can be used to change the ˛ level. The confidence limits reflect variation in the error, as well as
variation in the parameter estimates. See the section “Predicted and Residual Values” on page 7055
and Chapter 4, “Introduction to Regression Procedures,” for more information.

CLM
displays the 100.1 � ˛/% upper and lower confidence limits for the expected value of the dependent
variable (mean) for each observation. By default, the 95% limits are computed; the ALPHA= in the
PROC REG or MODEL statement can be used to change the ˛ level. This is not a prediction interval
(see the CLI option) because it takes into account only the variation in the parameter estimates, not
the variation in the error term. See the section “Predicted and Residual Values” on page 7055 and
Chapter 4, “Introduction to Regression Procedures,” for more information.

COLLIN
requests a detailed analysis of collinearity among the regressors. This includes eigenvalues, condition
indices, and decomposition of the variances of the estimates with respect to each eigenvalue. See the
section “Collinearity Diagnostics” on page 7060.

COLLINOINT
requests the same analysis as the COLLIN option with the intercept variable adjusted out rather than
included in the diagnostics. See the section “Collinearity Diagnostics” on page 7060.

CORRB
displays the correlation matrix of the estimates. This is the .X0X/�1 matrix scaled to unit diagonals.

COVB
displays the estimated covariance matrix of the estimates. This matrix is .X0X/�1s2, where s2 is the
estimated mean squared error.

CP
outputs Mallows’ Cp statistic for each model selected (Mallows 1973; Hocking 1976) to the OUTEST=
data set. See the section “Criteria Used in Model-Selection Methods” on page 7052 for a discussion
of the use of Cp. If SELECTION=ADJRSQ, SELECTION=RSQUARE, or SELECTION=CP is
specified, then the Cp statistic is also added to the SubsetSelSummary table.
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DETAILS

DETAILS=name
specifies the level of detail produced when the BACKWARD, FORWARD, or STEPWISE method is
used, where name can be ALL, STEPS, or SUMMARY. The DETAILS or DETAILS=ALL option
produces entry and removal statistics for each variable in the model building process, ANOVA and
parameter estimates at each step, and a selection summary table. The option DETAILS=STEPS
provides the step information and summary table. The option DETAILS=SUMMARY produces only
the summary table. The default if the DETAILS option is omitted is DETAILS=STEPS.

DW
calculates a Durbin-Watson statistic to test whether or not the errors have first-order autocorrelation.
(This test is appropriate only for time series data.) Note that your data should be sorted by the date/time
ID variable before you use this option. The sample autocorrelation of the residuals is also produced.
See the section “Autocorrelation in Time Series Data” on page 7083.

DWPROB
calculates a Durbin-Watson statistic and a p-value to test whether or not the errors have first-order
autocorrelation. Note that it is not necessary to specify the DW option if the DWPROB option is
specified. (This test is appropriate only for time series data.) Note that your data should be sorted by
the date/time ID variable before you use this option. The sample autocorrelation of the residuals is also
produced. See the section “Autocorrelation in Time Series Data” on page 7083.

EDF
outputs the number of regressors in the model excluding and including the intercept, the error degrees
of freedom, and the model R square to the OUTEST= data set.

GMSEP
outputs the estimated mean square error of prediction assuming that both independent and dependent
variables are multivariate normal (Stein 1960; Darlington 1968) to the OUTEST= data set. (Note
that Hocking’s formula (1976, eq. 4.20) contains a misprint: “n � 1” should read “n � 2.”) If SE-
LECTION=ADJRSQ, SELECTION=RSQUARE, or SELECTION=CP is specified, then the GMSEP
statistic is also added to the SubsetSelSummary table.

GROUPNAMES=’name1’ ’name2’ . . .
provides names for variable groups. This option is available only in the BACKWARD, FORWARD,
and STEPWISE methods. The group name can be up to 32 characters. Subsets of independent variables
listed in the MODEL statement can be designated as variable groups. This is done by enclosing the
appropriate variables in braces. Variables in the same group are entered into or removed from the
regression model at the same time. However, if the tolerance of any variable (see the TOL option
on page 7025) in a group is less than the setting of the SINGULAR= option, then the variable is not
entered into the model with the rest of its group. If the GROUPNAMES= option is not used, then
the names GROUP1, GROUP2, . . . , GROUPn are assigned to groups encountered in the MODEL
statement. Variables not enclosed by braces are used as groups of a single variable.
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For example:

model y={x1 x2} x3 / selection=stepwise
groupnames='x1 x2' 'x3';

Another example:

model y={ht wgt age} bodyfat / selection=forward
groupnames='htwgtage' 'bodyfat';

HCC
requests heteroscedasticity-consistent standard errors of the parameter estimates. You can use the
HCCMETHOD= option to specify the method used to compute the heteroscedasticity-consistent
covariance matrix.

HCCMETHOD=0,1,2, or 3
specifies the method used to obtain a heteroscedasticity-consistent covariance matrix for use with
the ACOV, HCC, or WHITE option in the MODEL statement and for heteroscedasticity-consistent
tests with the TEST statement. The default is HCCMETHOD=0. See the section “Testing for
Heteroscedasticity” on page 7078 for details.

I
displays the .X0X/�1 matrix. The inverse of the crossproducts matrix is bordered by the parameter
estimates and SSE matrices.

INCLUDE=n
forces the first n independent variables listed in the MODEL statement to be included in all models.
The selection methods are performed on the other variables in the MODEL statement. The INCLUDE=
option is not available with SELECTION=NONE.

INFLUENCE
requests a detailed analysis of the influence of each observation on the estimates and the predicted
values. See the section “Influence Statistics” on page 7064 for details.

JP
outputs Jp, the estimated mean square error of prediction for each model selected assuming that
the values of the regressors are fixed and that the model is correct to the OUTEST= data set. The
Jp statistic is also called the final prediction error (FPE) by Akaike (Nicholson 1948; Lord 1950;
Mallows 1967; Darlington 1968; Rothman 1968; Akaike 1969; Hocking 1976; Judge et al. 1980) If
SELECTION=ADJRSQ, SELECTION=RSQUARE, or SELECTION=CP is specified, then the Jp
statistic is also added to the SubsetSelSummary table.

LACKFIT
performs a lack-of-fit test. See the section “Testing for Lack of Fit” on page 7079 for more information.
See Draper and Smith (1981) for a discussion of lack-of-fit tests.



MODEL Statement F 7021

MSE
computes the mean square error for each model selected (Darlington 1968).

MAXSTEP=n
specifies the maximum number of steps that are done when SELECTION=FORWARD, SELEC-
TION=BACKWARD, or SELECTION=STEPWISE is used. The default value is the number of
independent variables in the model for the FORWARD and BACKWARD methods and three times this
number for the stepwise method.

NOINT
suppresses the intercept term that is otherwise included in the model.

NOPRINT
suppresses the normal display of regression results. Note that this option temporarily disables the
Output Delivery System (ODS); see Chapter 20, “Using the Output Delivery System,” for more
information.

OUTSEB
outputs the standard errors of the parameter estimates to the OUTEST= data set. The value SEB for
the variable _TYPE_ identifies the standard errors. If the RIDGE= or PCOMIT= option is specified,
additional observations are included and identified by the values RIDGESEB and IPCSEB, respectively,
for the variable _TYPE_. The standard errors for ridge regression estimates and incomplete principal
components (IPC) estimates are limited in their usefulness because these estimates are biased. This
option is available for all model-selection methods except RSQUARE, ADJRSQ, and CP.

OUTSTB
outputs the standardized parameter estimates as well as the usual estimates to the OUTEST= data set
when the RIDGE= or PCOMIT= option is specified. The values RIDGESTB and IPCSTB for the
variable _TYPE_ identify ridge regression estimates and IPC estimates, respectively.

OUTVIF
outputs the variance inflation factors (VIF) to the OUTEST= data set when the RIDGE= or PCOMIT=
option is specified. The factors are the diagonal elements of the inverse of the correlation matrix of
regressors as adjusted by ridge regression or IPC analysis. These observations are identified in the
output data set by the values RIDGEVIF and IPCVIF for the variable _TYPE_.

P
calculates predicted values from the input data and the estimated model. The display includes the
observation number, the ID variable (if one is specified), the actual and predicted values, and the
residual. If the CLI, CLM, or R option is specified, the P option is unnecessary. See the section
“Predicted and Residual Values” on page 7055 for more information.

PARTIAL
requests partial regression leverage plots for each regressor. You can use the PARTIALDATA option to
obtain a tabular display of the partial regression leverage data. If ODS Graphics is enabled (see the
section “ODS Graphics” on page 7106), then these partial plots are produced in panels with up to six
plots per panel. See the section “Influence Statistics” on page 7064 for more information.
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PARTIALDATA
requests partial regression leverage data for each regressor. You can request partial regression leverage
plots of these data with the PARTIAL option. See the section “Influence Statistics” on page 7064 for
more information.

PARTIALR2 < ( < TESTS > < SEQTESTS > ) >
See the SCORR1 option.

PC
outputs Amemiya’s prediction criterion for each model selected (Amemiya 1976; Judge et al. 1980) to
the OUTEST= data set. If SELECTION=ADJRSQ, SELECTION=RSQUARE, or SELECTION=CP
is specified, then the PC statistic is also added to the SubsetSelSummary table.

PCOMIT=list
requests an IPC analysis for each value m in the list. The procedure computes parameter estimates by
using all but the last m principal components. Each value of m produces a set of IPC estimates, which
is output to the OUTEST= data set. The values of m are saved by the variable _PCOMIT_, and the
value of the variable _TYPE_ is set to IPC to identify the estimates. Only nonnegative integers can be
specified with the PCOMIT= option.

If you specify the PCOMIT= option, RESTRICT statements are ignored. The PCOMIT= option is
ignored if you use the SELECTION= option in the MODEL statement.

PCORR1
displays the squared partial correlation coefficients computed using Type I sum of squares (SS). This is
calculated as SS/(SS+SSE), where SSE is the error sum of squares.

PCORR2
displays the squared partial correlation coefficients computed using Type II sums of squares. These are
calculated the same way as with the PCORR1 option, except that Type II SS are used instead of Type I
SS.

PRESS
outputs the PRESS statistic to the OUTEST= data set. The values of this statistic are saved in the
variable _PRESS_. This option is available for all model-selection methods except RSQUARE,
ADJRSQ, and CP.

R
requests an analysis of the residuals. The results include everything requested by the P option plus
the standard errors of the mean predicted and residual values, the studentized residual, and Cook’s
D statistic to measure the influence of each observation on the parameter estimates. See the section
“Predicted and Residual Values” on page 7055 for more information.

RIDGE=list
requests a ridge regression analysis and specifies the values of the ridge constant k (see the section
“Computations for Ridge Regression and IPC Analysis” on page 7084). Each value of k produces a set
of ridge regression estimates that are placed in the OUTEST= data set. The values of k are saved by
the variable _RIDGE_, and the value of the variable _TYPE_ is set to RIDGE to identify the estimates.

Only nonnegative numbers can be specified with the RIDGE= option. Example 85.5 illustrates this
option.
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If you specify the RIDGE= option, RESTRICT statements are ignored. The RIDGE= option is ignored
if you use the SELECTION= option in the MODEL statement.

RMSE
displays the root mean square error for each model selected.

RSQUARE
has the same effect as the EDF option.

SBC
outputs the SBC statistic for each model selected (Schwarz 1978; Judge et al. 1980) to the OUTEST=
data set. If SELECTION=ADJRSQ, SELECTION=RSQUARE, or SELECTION=CP is specified, then
the SBC statistic is also added to the SubsetSelSummary table.

SCORR1 < ( < TESTS > < SEQTESTS > ) >
displays the squared semipartial correlation coefficients computed using Type I sums of squares. This is
calculated as SS/SST, where SST is the corrected total SS. If the NOINT option is used, the uncorrected
total SS is used in the denominator. The optional arguments TESTS and SEQTESTS request are
sequentially added to a model. The F-test values are computed as the Type I sum of squares for the
variable in question divided by a mean square error. If you specify the TESTS option, the denominator
MSE is the residual mean square for the full model specified in the MODEL statement. If you specify
the SEQTESTS option, the denominator MSE is the residual mean square for the model containing
all the independent variables that have been added to the model up to and including the variable
in question. The TESTS and SEQTESTS options are not supported if you specify model selection
methods or the RIDGE or PCOMIT options. Note that the PARTIALR2 option is a synonym for the
SCORR1 option.

SCORR2 < ( TESTS ) >
displays the squared semipartial correlation coefficients computed using Type II sums of squares.
These are calculated the same way as with the SCORR1 option, except that Type II SS are used instead
of Type I SS. The optional TEST argument requests F tests and p-values as variables are sequentially
added to a model. The F-test values are computed as the Type II sum of squares for the variable in
question divided by the residual mean square for the full model specified in the MODEL statement.
The TESTS option is not supported if you specify model selection methods or the RIDGE or PCOMIT
options.

SELECTION=name
specifies the method used to select the model, where name can be FORWARD (or F), BACKWARD
(or B), STEPWISE, MAXR, MINR, RSQUARE, ADJRSQ, CP, or NONE (use the full model). The
default method is NONE. See the section “Model-Selection Methods” on page 7049 for a description
of each method.

SEQB
produces a sequence of parameter estimates as each variable is entered into the model. This is displayed
as a matrix where each row is a set of parameter estimates.

SIGMA=n
specifies the true standard deviation of the error term to be used in computing the CP and BIC statistics.
If the SIGMA= option is not specified, an estimate from the full model is used. This option is available
in the RSQUARE, ADJRSQ, and CP model-selection methods only.
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SINGULAR=n
tunes the mechanism used to check for singularities. If you specify this option in the MODEL statement,
it takes precedence over the SINGULAR= option in the PROC REG statement. The default value
is machine dependent but is approximately 1E–7 on most machines. This option is rarely needed.
Singularity checking is described in the section “Computational Methods” on page 7085.

SLENTRY=value

SLE=value
specifies the significance level for entry into the model used in the FORWARD and STEPWISE
methods. The defaults are 0.50 for FORWARD and 0.15 for STEPWISE.

SLSTAY=value

SLS=value
specifies the significance level for staying in the model for the BACKWARD and STEPWISE methods.
The defaults are 0.10 for BACKWARD and 0.15 for STEPWISE.

SP
outputs the Sp statistic for each model selected (Hocking 1976) to the OUTEST= data set. If
SELECTION=ADJRSQ, SELECTION=RSQUARE, or SELECTION=CP is specified, then the SP
statistic is also added to the SubsetSelSummary table.

SPEC
performs a test that the first and second moments of the model are correctly specified. See the section
“Testing for Heteroscedasticity” on page 7078 for more information.

SRT
displays a column in the “Output Statistics” table that shows the magnitude of studentized residuals by
using a series of asterisks. This table is produced by the R option in the MODEL statement. When
ODS Graphics is not enabled, the column is displayed in the table and the graph is not produced. When
ODS Graphics is enabled, a graphical chart of the studentized residuals and Cook’s D is produced, and
the column is omitted from the table unless you specify the SRT option.

SS1
displays the sequential sums of squares (Type I SS) along with the parameter estimates for each term
in the model. See Chapter 15, “The Four Types of Estimable Functions,” for more information about
the different types of sums of squares.

SS2
displays the partial sums of squares (Type II SS) along with the parameter estimates for each term in
the model. See the SS1 option also.

SSE
computes the error sum of squares for each model selected.

START=s
specifies the number of regressors to be added or reported in a model.

When SELECTION= MAXR, MINR, or STEPWISE, START=s requests that the first s regressors be
added to the model before beginning the comparing-and-switching process. Thus, START=s behaves
like INCLUDE=s in that it forces selection to begin with the first s regressors included in the model,
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but it differs in that START=s allows these variables to be subsequently removed from the model in
the course of variable selection. For these methods, the default is START=0.

When SELECTION= RSQUARE, ADJRSQ, or CP, START=s specifies the smallest number of
regressors to be reported in a subset model. For these methods, the default is START=1.

The START= option cannot be used with model-selection methods other than the six described here.

STB
produces standardized regression coefficients. A standardized regression coefficient is computed by
dividing a parameter estimate by the ratio of the sample standard deviation of the dependent variable
to the sample standard deviation of the regressor.

STOP=s
causes PROC REG to stop when it has found the “best” s-variable model, where s is the STOP value.
For the RSQUARE, ADJRSQ, and CP methods, STOP=s specifies the largest number of regressors
to be reported in a subset model. For the MAXR and MINR methods, STOP=s specifies the largest
number of regressors to be included in the model.

The default setting for the STOP= option is the number of variables in the MODEL statement. This
option can be used only with the MAXR, MINR, RSQUARE, ADJRSQ, and CP methods.

TOL
produces tolerance values for the estimates. Tolerance for a variable is defined as 1 � R2, where R
square is obtained from the regression of the variable on all other regressors in the model. See the
section “Collinearity Diagnostics” on page 7060 for more details.

VIF
produces variance inflation factors with the parameter estimates. Variance inflation is the reciprocal of
tolerance. See the section “Collinearity Diagnostics” on page 7060 for more detail.

WHITE
See the HCC option.

XPX
displays the X0X crossproducts matrix for the model. The crossproducts matrix is bordered by the X0Y
and Y0Y matrices.

MTEST Statement
< label: > MTEST < equation < , . . . , equation > > < / options > ;

where each equation is a linear function composed of coefficients and variable names. The label is optional.

The MTEST statement is used to test hypotheses in multivariate regression models where there are several
dependent variables fit to the same regressors. If no equations or options are specified, the MTEST statement
tests the hypothesis that all estimated parameters except the intercept are zero.

The hypotheses that can be tested with the MTEST statement are of the form

.Lˇ � cj/M D 0
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where L is a linear function on the regressor side, ˇ is a matrix of parameters, c is a column vector of
constants, j is a row vector of ones, and M is a linear function on the dependent side. The special case where
the constants are zero is

LˇM D 0

See the section “Multivariate Tests” on page 7080 for more details.

Each linear function extends across either the regressor variables or the dependent variables. If the equation
is across the dependent variables, then the constant term, if specified, must be zero. The equations for the
regressor variables form the L matrix and c vector in the preceding formula; the equations for dependent
variables form the M matrix. If no equations for the dependent variables are given, PROC REG uses
an identity matrix for M, testing the same hypothesis across all dependent variables. If no equations for
the regressor variables are given, PROC REG forms a linear function corresponding to a test that all the
nonintercept parameters are zero.

As an example, consider the following statements:

model y1 y2 y3=x1 x2 x3;
mtest x1,x2;
mtest y1-y2, y2 -y3, x1;
mtest y1-y2;

The first MTEST statement tests the hypothesis that the X1 and X2 parameters are zero for Y1, Y2, and Y3.
In addition, the second MTEST statement tests the hypothesis that the X1 parameter is the same for all three
dependent variables. For the same model, the third MTEST statement tests the hypothesis that all parameters
except the intercept are the same for dependent variables Y1 and Y2.

You can specify the following options in the MTEST statement:

CANPRINT
displays the canonical correlations for the hypothesis combinations and the dependent variable combi-
nations. If you specify

mtest / canprint;

the canonical correlations between the regressors and the dependent variables are displayed.

DETAILS
displays the M matrix and various intermediate calculations.

MSTAT=FAPPROX | EXACT
specifies the method of evaluating the multivariate test statistics. The default is MSTAT=FAPPROX,
which specifies that the multivariate tests are evaluated by using the usual approximations based on
the F distribution, as discussed in the “Multivariate Tests” section in Chapter 4, “Introduction to
Regression Procedures.” Alternatively, you can specify MSTAT=EXACT to compute exact p-values
for three of the four tests (Wilks’ lambda, the Hotelling-Lawley trace, and Roy’s greatest root) and
an improved F approximation for the fourth (Pillai’s trace). While MSTAT=EXACT provides better
control of the significance probability for the tests, especially for Roy’s greatest root, computations for
the exact p-values can be appreciably more demanding, and are in fact infeasible for large problems
(many dependent variables). Thus, although MSTAT=EXACT is more accurate for most data, it is not
the default method.
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PRINT
displays the H and E matrices.

OUTPUT Statement
OUTPUT < OUT=SAS-data-set > < keyword=names > < . . . keyword=names > ;

The OUTPUT statement creates a new SAS data set that saves diagnostic measures calculated after fitting the
model. The OUTPUT statement refers to the most recent MODEL statement. At least one keyword=names
specification is required.

All the variables in the original data set are included in the new data set, along with variables created in the
OUTPUT statement. These new variables contain the values of a variety of statistics and diagnostic measures
that are calculated for each observation in the data set. If you want to create a SAS data set in a permanent
library, you must specify a two-level name. For more information about permanent libraries and SAS data
sets, see SAS Language Reference: Concepts.

The OUTPUT statement cannot be used when a TYPE=CORR, TYPE=COV, or TYPE=SSCP data set is
used as the input data set for PROC REG. See the section “Input Data Sets” on page 7037 for more details.

The statistics created in the OUTPUT statement are described in this section. More details are given in the
section “Predicted and Residual Values” on page 7055 and the section “Influence Statistics” on page 7064.
Also see Chapter 4, “Introduction to Regression Procedures,” for definitions of the statistics available from
the REG procedure.

You can specify the following options in the OUTPUT statement:

OUT=SAS data set
gives the name of the new data set. By default, the procedure uses the DATAn convention to name the
new data set.

keyword=names
specifies the statistics to include in the output data set and names the new variables that contain the
statistics. Specify a keyword for each desired statistic (see the following list of keywords), an equal
sign, and the variable or variables to contain the statistic.

In the output data set, the first variable listed after a keyword in the OUTPUT statement contains that
statistic for the first dependent variable listed in the MODEL statement; the second variable contains
the statistic for the second dependent variable in the MODEL statement, and so on. The list of variables
following the equal sign can be shorter than the list of dependent variables in the MODEL statement.
In this case, the procedure creates the new names in order of the dependent variables in the MODEL
statement.

For example, the following SAS statements create an output data set named b:

proc reg data=a;
model y z=x1 x2;
output out=b

p=yhat zhat
r=yresid zresid;

run;
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In addition to the variables in the input data set, b contains the following variables:

• yhat, with values that are predicted values of the dependent variable y

• zhat, with values that are predicted values of the dependent variable z

• yresid, with values that are the residual values of y

• zresid, with values that are the residual values of z

You can specify the following keywords in the OUTPUT statement. See the section “Model Fit and
Diagnostic Statistics” on page 7062 for computational formulas.

Table 85.6 Keywords for OUTPUT Statement

Keyword Description

COOKD=names Cook’s D influence statistic
COVRATIO=names standard influence of observation on covariance of betas, as

discussed in the section “Influence Statistics” on page 7064
DFFITS=names standard influence of observation on predicted value
H=names leverage, xi .X0X/�1x0i
LCL=names lower bound of a 100.1 � ˛/% confidence interval for an

individual prediction. This includes the variance of the
error, as well as the variance of the parameter estimates.

LCLM=names lower bound of a 100.1 � ˛/% confidence interval for the
expected value (mean) of the dependent variable

PREDICTED | P=names predicted values
PRESS=names ith residual divided by .1 � h/, where h is the leverage,

and where the model has been refit without the ith
observation

RESIDUAL | R=names residuals, calculated as ACTUAL minus PREDICTED
RSTUDENT=names a studentized residual with the current observation deleted
STDI=names standard error of the individual predicted value
STDP=names standard error of the mean predicted value
STDR=names standard error of the residual
STUDENT=names studentized residuals, which are the residuals divided by their

standard errors
UCL=names upper bound of a 100.1 � ˛/% confidence interval for an

individual prediction
UCLM=names upper bound of a 100.1 � ˛/% confidence interval for the

expected value (mean) of the dependent variable

PRINT Statement
PRINT < options > < ANOVA > < MODELDATA > ;

The PRINT statement enables you to interactively display the results of MODEL statement options, produce
an ANOVA table, display the data for variables used in the current model, or redisplay the options specified
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in a MODEL or a previous PRINT statement. In addition, like most other interactive statements in PROC
REG, the PRINT statement implicitly refits the model; thus, effects of REWEIGHT statements are seen in
the resulting tables. If ODS Graphics is enabled (see the section “ODS Graphics” on page 7106), the PRINT
statement also requests the use of the ODS graphical displays associated with the current model.

The following specifications can appear in the PRINT statement:

options
interactively displays the results of MODEL statement options, where options is one or more of the
following: ACOV, ALL, CLI, CLM, COLLIN, COLLINOINT, CORRB, COVB, DW, I, INFLUENCE,
P, PARTIAL, PCORR1, PCORR2, R, SCORR1, SCORR2, SEQB, SPEC, SS1, SS2, STB, TOL, VIF,
or XPX. See the section “MODEL Statement” on page 7014 for a description of these options.

ANOVA
produces the ANOVA table associated with the current model. This is either the model specified
in the last MODEL statement or the model that incorporates changes made by ADD, DELETE, or
REWEIGHT statements after the last MODEL statement.

MODELDATA
displays the data for variables used in the current model.

Use the statement

print;

to reprint options in the most recently specified PRINT or MODEL statement.

Options that require original data values, such as R or INFLUENCE, cannot be used when a TYPE=CORR,
TYPE=COV, or TYPE=SSCP data set is used as the input data set to PROC REG. See the section “Input
Data Sets” on page 7037 for more detail.

REFIT Statement
REFIT ;

The REFIT statement causes the current model and corresponding statistics to be recomputed immediately.
No output is generated by this statement. The REFIT statement is needed after one or more REWEIGHT
statements to cause them to take effect before subsequent PAINT or REWEIGHT statements. This is
sometimes necessary when you are using statistical conditions in REWEIGHT statements. For example,
consider the following statements:

paint student.>2;
plot student.*p.;
reweight student.>2;
refit;
paint student.>2;
plot student.*p.;

The second PAINT statement paints any additional observations that meet the condition after deleting
observations and refitting the model. The REFIT statement is used because the REWEIGHT statement does
not cause the model to be recomputed. In this particular example, the same effect could be achieved by
replacing the REFIT statement with a PLOT statement.
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Most interactive statements can be used to implicitly refit the model; any plots or statistics produced by these
statements reflect changes made to the model and changes made to the data used to compute the model. The
two exceptions are the PAINT and REWEIGHT statements, which do not cause the model to be recomputed.

RESTRICT Statement
RESTRICT equation < , . . . , equation > ;

A RESTRICT statement is used to place restrictions on the parameter estimates in the MODEL preceding
it. More than one RESTRICT statement can follow each MODEL statement. Each RESTRICT statement
replaces any previous RESTRICT statement. To lift all restrictions on a model, submit a new MODEL
statement. If there are several restrictions, separate them with commas. The statement

restrict equation1=equation2=equation3;

is equivalent to imposing the two restrictions

restrict equation1=equation2;
restrict equation2=equation3;

Each restriction is written as a linear equation and can be written as

equation

or

equation = equation

The form of each equation is

c1 � variable1 ˙ c2 � variable2 ˙ � � � ˙ cn � variablen

where the cj ’s are constants and the variablej ’s are any regressor variables.

When no equal sign appears, the linear combination is set equal to zero. Each variable name mentioned must
be a variable in the MODEL statement to which the RESTRICT statement refers. The keyword INTERCEPT
can also be used as a variable name, and it refers to the intercept parameter in the regression model.

Note that the parameters associated with the variables are restricted, not the variables themselves. Restrictions
should be consistent and not redundant.

Examples of valid RESTRICT statements include the following:

restrict x1;
restrict a+b=l;
restrict a=b=c;
restrict a=b, b=c;
restrict 2*f=g+h, intercept+f=0;
restrict f=g=h=intercept;

The third and fourth statements in this list produce identical restrictions. You cannot specify
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restrict f-g=0,
f-intercept=0,
g-intercept=1;

because the three restrictions are not consistent. If these restrictions are included in a RESTRICT statement,
one of the restrict parameters is set to zero and has zero degrees of freedom, indicating that PROC REG is
unable to apply a restriction.

The restrictions usually operate even if the model is not of full rank. Check to ensure that DF = –1 for each
restriction. In addition, the model DF should decrease by 1 for each restriction.

The parameter estimates are those that minimize the quadratic criterion (SSE) subject to the restrictions. If a
restriction cannot be applied, its parameter value and degrees of freedom are listed as zero.

The method used for restricting the parameter estimates is to introduce a Lagrangian parameter for each
restriction (Pringle and Rayner 1971). The estimates of these parameters are displayed with test statistics.
Note that the t statistic reported for the Lagrangian parameters does not follow a Student’s t distribution, but
its square follows a beta distribution (LaMotte 1994). The p-value for these parameters is computed using
the beta distribution.

The Lagrangian parameter  measures the sensitivity of the SSE to the restriction constant. If the restriction
constant is changed by a small amount �, the SSE is changed by 2�. The t ratio tests the significance of the
restrictions. If  is zero, the restricted estimates are the same as the unrestricted estimates, and a change in
the restriction constant in either direction increases the SSE.

RESTRICT statements are ignored if the PCOMIT= or RIDGE= option is specified in the PROC REG
statement.

REWEIGHT Statement
REWEIGHT < condition | ALLOBS > < / options > ;

REWEIGHT < STATUS | UNDO > ;

The REWEIGHT statement interactively changes the weights of observations that are used in computing
the regression equation. The REWEIGHT statement can change observation weights, or set them to zero,
which causes selected observations to be excluded from the analysis. When a REWEIGHT statement sets
observation weights to zero, the observations are not deleted from the data set. More than one REWEIGHT
statement can be used. The requests from all REWEIGHT statements are applied to the subsequent statements.
Each use of the REWEIGHT statement modifies the MODEL label.

The model and corresponding statistics are not recomputed after a REWEIGHT statement. For example,
consider the following statements:

reweight r.>0;
reweight r.>0;

The second REWEIGHT statement does not exclude any additional observations since the model is not
recomputed after the first REWEIGHT statement. Either use a REFIT statement to explicitly refit the model,
or implicitly refit the model by following the REWEIGHT statement with any other interactive statement
except a PAINT statement or another REWEIGHT statement.



7032 F Chapter 85: The REG Procedure

The REWEIGHT statement cannot be used if a TYPE=CORR, TYPE=COV, or TYPE=SSCP data set is used
as an input data set to PROC REG. Note that the syntax used in the REWEIGHT statement is the same as the
syntax in the PAINT statement.

The syntax of the REWEIGHT statement is described in the following sections.

For detailed examples of using this statement, see the section “Reweighting Observations in an Analysis” on
page 7072.

Specifying Condition

Condition is used to find observations to be reweighted. The syntax of condition is

variable compare value

or

variable compare value logical variable compare value

where

variable is one of the following:

• a variable name in the input data set

• OBS., which is the observation number

• keyword ., where keyword is a keyword for a statistic requested in the OUTPUT statement.
The keyword specification is applied to all dependent variables in the model.

compare is an operator that compares variable to value. Compare can be any one of the following:
<, <=, >, >=, =, ˆ =. The operators LT, LE, GT, GE, EQ, and NE, respectively, can be used
instead of the preceding symbols. See the “Expressions” chapter in SAS Language Reference:
Concepts for more information about comparison operators.

value gives an unformatted value of variable. Observations are selected to be reweighted if they
satisfy the condition created by variable compare value. Value can be a number or a character
string. If value is a character string, it must be eight characters or less and must be enclosed in
quotes. In addition, value is case-sensitive. In other words, the following two statements are
not the same:

reweight name='steve';

reweight name='Steve';

logical is one of two logical operators. Either AND or OR can be used. To specify AND, use AND or
the symbol &. To specify OR, use OR or the symbol |.

Here are some examples of the variable compare value form:
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reweight obs. le 10;
reweight temp=55;
reweight type='new';

Here are some examples of the variable compare value logical variable compare value form:

reweight obs.<=10 and residual.<2;
reweight student.<-2 or student.>2;
reweight name='Mary' | name='Susan';

Using ALLOBS

Instead of specifying condition, you can use the ALLOBS option to select all observations. This is most
useful when you want to restore the original weights of all observations. For example,

reweight allobs / reset;

resets weights for all observations and uses all observations in the subsequent analysis. Note that

reweight allobs;

specifies that all observations be excluded from analysis. Consequently, using ALLOBS is useful only if you
also use one of the options discussed in the following section.

Options in the REWEIGHT Statement

The following options can be used when either a condition, ALLOBS, or nothing is specified before the
slash. If only an option is listed, the option applies to the observations selected in the previous REWEIGHT
statement, not to the observations selected by reapplying the condition from the previous REWEIGHT
statement. For example, consider the following statements:

reweight r.>0 / weight=0.1;
refit;
reweight;

The second REWEIGHT statement excludes from the analysis only those observations selected in the first
REWEIGHT statement. No additional observations are excluded even if there are new observations that meet
the condition in the first REWEIGHT statement.

NOTE: Options are not available when either the UNDO or STATUS option is used.

NOLIST
suppresses the display of the selected observation numbers. If you omit the NOLIST option, a list of
observations selected is written to the log.

RESET
resets the observation weights to their original values as defined by the WEIGHT statement or to
WEIGHT=1 if no WEIGHT statement is specified. For example,

reweight / reset;
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resets observation weights to the original weights in the data set. If previous REWEIGHT statements
have been submitted, this REWEIGHT statement applies only to the observations selected by the
previous REWEIGHT statement. Note that, although the RESET option does reset observation weights
to their original values, it does not cause the model and corresponding statistics to be recomputed.

WEIGHT=value
changes observation weights to the specified nonnegative real number. If you omit the WEIGHT=
option, the observation weights are set to zero, and observations are excluded from the analysis. For
example:

reweight name='Alan';
...other interactive statements
reweight / weight=0.5;

The first REWEIGHT statement changes weights to zero for all observations with name=’Alan’, effec-
tively deleting these observations. The subsequent analysis does not include these observations. The
second REWEIGHT statement applies only to those observations selected by the previous REWEIGHT
statement, and it changes the weights to 0.5 for all the observations with NAME=’Alan’. Thus, the
next analysis includes all original observations; however, those observations with NAME=’Alan’ have
their weights set to 0.5.

STATUS and UNDO

If you omit condition and the ALLOBS options, you can specify one of the following options.

STATUS
writes to the log the observation’s number and the weight of all reweighted observations. If an
observation’s weight has been set to zero, it is reported as deleted. However, the observation is not
deleted from the data set, only from the analysis.

UNDO
undoes the changes made by the most recent REWEIGHT statement. Weights might be, but are not
necessarily, reset. For example, consider the following statements:

reweight student.>2 / weight=0.1;
reweight;
reweight undo;

The first REWEIGHT statement sets the weights of observations that satisfy the condition to 0.1.
The second REWEIGHT statement sets the weights of the same observations to zero. The third
REWEIGHT statement undoes the second, changing the weights back to 0.1.

STORE Statement
STORE < OUT= >item-store-name < / LABEL='label ' > ;
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The STORE statement requests that the procedure save the estimated parameters of the fitted model. The
resulting item store is a binary file format that cannot be modified. The contents of the item store can be
processed with the PLM procedure.

For details about the syntax of the STORE statement, see the section “STORE Statement” on page 508 in
Chapter 19, “Shared Concepts and Topics.”

NOTE: The information stored by the STORE statement in PROC REG is a subset of what is usually stored
by other procedures that implement this statement. In particular, PROC REG stores only the estimated
parameters of the model, so that you can later use the CODE statement in PROC PLM to write SAS DATA step
code for prediction to a file or catalog entry. With only this subset of information, many other postprocessing
features of PROC PLM are not available for item stores that are created by PROC REG.

TEST Statement
< label: > TEST equation, < , . . . , equation > < / option > ;

The TEST statement tests hypotheses about the parameters estimated in the preceding MODEL statement. It
has the same syntax as the RESTRICT statement except that it supports an option. Each equation specifies a
linear hypothesis to be tested. The rows of the hypothesis are separated by commas.

Variable names must correspond to regressors, and each variable name represents the coefficient of the
corresponding variable in the model. An optional label is useful to identify each test with a name. The
keyword INTERCEPT can be used instead of a variable name to refer to the model’s intercept.

The REG procedure performs an F test for the joint hypotheses specified in a single TEST statement. More
than one TEST statement can accompany a MODEL statement. The numerator is the usual quadratic form of
the estimates; the denominator is the mean squared error. If hypotheses can be represented by

Lˇ D c

then the numerator of the F test is

Q D .Lb � c/0.L.X0X/�L0/�1.Lb � c/

divided by degrees of freedom, where b is the estimate of ˇ. For example:

model y=a1 a2 b1 b2;
aplus: test a1+a2=1;
b1: test b1=0, b2=0;
b2: test b1, b2;

The last two statements are equivalent; since no constant is specified, zero is assumed.

Note that, when the ACOV, HCC, or WHITE option is specified in the MODEL statement, tests are
recomputed using the heteroscedasticity-consistent covariance matrix specified with the HCCMETHOD=
option in the MODEL statement (see the section “Testing for Heteroscedasticity” on page 7078).
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One option can be specified in the TEST statement after a slash (/):

PRINT
displays intermediate calculations. This includes L.X0X/�L0 bordered by Lb� c, and .L.X0X/�L0/�1

bordered by .L.X0X/�L0/�1.Lb � c/.

VAR Statement
VAR variables ;

The VAR statement is used to include numeric variables in the crossproducts matrix that are not specified in
the first MODEL statement.

Variables not listed in MODEL statements before the first RUN statement must be listed in the VAR statement
if you want the ability to add them interactively to the model with an ADD statement, to include them in a
new MODEL statement, or to plot them in a scatter plot with the PLOT statement.

In addition, if you want to use options in the PROC REG statement and do not want to fit a model to the data
(with a MODEL statement), you must use a VAR statement.

WEIGHT Statement
WEIGHT variable ;

A WEIGHT statement names a variable in the input data set with values that are relative weights for a
weighted least squares fit. If the weight value is proportional to the reciprocal of the variance for each
observation, then the weighted estimates are the best linear unbiased estimates (BLUE).

Values of the weight variable must be nonnegative. If an observation’s weight is zero, the observation is
deleted from the analysis. If a weight is negative or missing, it is set to zero, and the observation is excluded
from the analysis. A more complete description of the WEIGHT statement can be found in Chapter 45, “The
GLM Procedure.”

Observation weights can be changed interactively with the REWEIGHT statement.

Details: REG Procedure

Missing Values
PROC REG constructs only one crossproducts matrix for the variables in all regressions. If any variable
needed for any regression is missing, the observation is excluded from all estimates. If you include variables
with missing values in the VAR statement, the corresponding observations are excluded from all analyses,
even if you never include the variables in a model. PROC REG assumes that you might want to include these
variables after the first RUN statement and deletes observations with missing values.
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Input Data Sets
PROC REG does not compute new regressors. For example, if you want a quadratic term in your model, you
should create a new variable when you prepare the input data. For example, the statement

model y=x1 x1*x1;

is not valid. Note that this MODEL statement is valid in the GLM procedure.

The input data set for most applications of PROC REG contains standard rectangular data, but special
TYPE=CORR, TYPE=COV, and TYPE=SSCP data sets can also be used. TYPE=CORR and TYPE=COV
data sets created by the CORR procedure contain means and standard deviations. In addition, TYPE=CORR
data sets contain correlations and TYPE=COV data sets contain covariances. TYPE=SSCP data sets created in
previous runs of PROC REG that used the OUTSSCP= option contain the sums of squares and crossproducts
of the variables.

See Appendix A, “Special SAS Data Sets,” and the “SAS Files” section in SAS Language Reference: Concepts
for more information about special SAS data sets.

These summary files save CPU time. It takes nk2 operations (where n = number of observations and k
= number of variables) to calculate crossproducts; the regressions are of the order k3. When n is in the
thousands and k is less than 10, you can save 99% of the CPU time by reusing the SSCP matrix rather than
recomputing it.

When you want to use a special SAS data set as input, PROC REG must determine the TYPE for the data set.
PROC CORR and PROC REG automatically set the type for their output data sets. However, if you create
the data set by some other means (such as a DATA step), you must specify its type with the TYPE= data set
option. If the TYPE for the data set is not specified when the data set is created, you can specify TYPE= as a
data set option in the DATA= option in the PROC REG statement. For example:

proc reg data=a(type=corr);

When a TYPE=CORR, TYPE=COV, or TYPE=SSCP data set is used with PROC REG, statements and
options that require the original data values have no effect. The OUTPUT, PAINT, PLOT, and REWEIGHT
statements and the MODEL and PRINT statement options P, R, CLM, CLI, DW, INFLUENCE, and PARTIAL
are disabled since the original observations needed to calculate predicted and residual values are not present.

Example Using TYPE=CORR Data Set

The following statements use PROC CORR to produce an input data set for PROC REG. The fitness data for
this analysis can be found in Example 85.2.

proc corr data=fitness outp=r noprint;
var Oxygen RunTime Age Weight RunPulse MaxPulse RestPulse;

run;
proc print data=r;
run;
proc reg data=r;

model Oxygen=RunTime Age Weight;
run;

Since the OUTP= data set from PROC CORR is automatically set to TYPE=CORR, the TYPE= data set
option is not required in this example. The data set containing the correlation matrix is displayed by the
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PRINT procedure as shown in Figure 85.15. Figure 85.16 shows results from the regression that uses the
TYPE=CORR data as an input data set.

Figure 85.15 TYPE=CORR Data Set Created by PROC CORR

Obs _TYPE_ _NAME_ Oxygen RunTime Age Weight RunPulse MaxPulse RestPulse

1 MEAN 47.3758 10.5861 47.6774 77.4445 169.645 173.774 53.4516

2 STD 5.3272 1.3874 5.2114 8.3286 10.252 9.164 7.6194

3 N 31.0000 31.0000 31.0000 31.0000 31.000 31.000 31.0000

4 CORR Oxygen 1.0000 -0.8622 -0.3046 -0.1628 -0.398 -0.237 -0.3994

5 CORR RunTime -0.8622 1.0000 0.1887 0.1435 0.314 0.226 0.4504

6 CORR Age -0.3046 0.1887 1.0000 -0.2335 -0.338 -0.433 -0.1641

7 CORR Weight -0.1628 0.1435 -0.2335 1.0000 0.182 0.249 0.0440

8 CORR RunPulse -0.3980 0.3136 -0.3379 0.1815 1.000 0.930 0.3525

9 CORR MaxPulse -0.2367 0.2261 -0.4329 0.2494 0.930 1.000 0.3051

10 CORR RestPulse -0.3994 0.4504 -0.1641 0.0440 0.352 0.305 1.0000

Figure 85.16 Regression on TYPE=CORR Data Set

The REG Procedure
Model: MODEL1

Dependent Variable: Oxygen

The REG Procedure
Model: MODEL1

Dependent Variable: Oxygen

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 3 656.27095 218.75698 30.27 <.0001

Error 27 195.11060 7.22632

Corrected Total 30 851.38154

Root MSE 2.68818 R-Square 0.7708

Dependent Mean 47.37581 Adj R-Sq 0.7454

Coeff Var 5.67416

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 93.12615 7.55916 12.32 <.0001

RunTime 1 -3.14039 0.36738 -8.55 <.0001

Age 1 -0.17388 0.09955 -1.75 0.0921

Weight 1 -0.05444 0.06181 -0.88 0.3862

The following example uses the saved crossproducts matrix:

proc reg data=fitness outsscp=sscp noprint;
model Oxygen=RunTime Age Weight RunPulse MaxPulse RestPulse;

run;
proc print data=sscp;
run;
proc reg data=sscp;
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model Oxygen=RunTime Age Weight;
run;

First, all variables are used to fit the data and create the SSCP data set. Figure 85.17 shows the PROC PRINT
display of the SSCP data set. The SSCP data set is then used as the input data set for PROC REG, and a
reduced model is fit to the data.

Figure 85.17 TYPE=SSCP Data Set Created by PROC REG

Obs _TYPE_ _NAME_ Intercept RunTime Age Weight RunPulse MaxPulse RestPulse Oxygen

1 SSCP Intercept 31.00 328.17 1478.00 2400.78 5259.00 5387.00 1657.00 1468.65

2 SSCP RunTime 328.17 3531.80 15687.24 25464.71 55806.29 57113.72 17684.05 15356.14

3 SSCP Age 1478.00 15687.24 71282.00 114158.90 250194.00 256218.00 78806.00 69767.75

4 SSCP Weight 2400.78 25464.71 114158.90 188008.20 407745.67 417764.62 128409.28 113522.26

5 SSCP RunPulse 5259.00 55806.29 250194.00 407745.67 895317.00 916499.00 281928.00 248497.31

6 SSCP MaxPulse 5387.00 57113.72 256218.00 417764.62 916499.00 938641.00 288583.00 254866.75

7 SSCP RestPulse 1657.00 17684.05 78806.00 128409.28 281928.00 288583.00 90311.00 78015.41

8 SSCP Oxygen 1468.65 15356.14 69767.75 113522.26 248497.31 254866.75 78015.41 70429.86

9 N 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00

Figure 85.18 also shows the PROC REG results for the reduced model. (For the PROC REG results for the
full model, see Figure 85.30.)

Figure 85.18 Regression on TYPE=SSCP Data Set

The REG Procedure
Model: MODEL1

Dependent Variable: Oxygen

The REG Procedure
Model: MODEL1

Dependent Variable: Oxygen

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 3 656.27095 218.75698 30.27 <.0001

Error 27 195.11060 7.22632

Corrected Total 30 851.38154

Root MSE 2.68818 R-Square 0.7708

Dependent Mean 47.37581 Adj R-Sq 0.7454

Coeff Var 5.67416

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 93.12615 7.55916 12.32 <.0001

RunTime 1 -3.14039 0.36738 -8.55 <.0001

Age 1 -0.17388 0.09955 -1.75 0.0921

Weight 1 -0.05444 0.06181 -0.88 0.3862

In the preceding example, the TYPE= data set option is not required since PROC REG sets the OUTSSCP=
data set to TYPE=SSCP.
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Output Data Sets

OUTEST= Data Set

The OUTEST= specification produces a TYPE=EST output SAS data set containing estimates and optional
statistics from the regression models. For each BY group on each dependent variable occurring in each
MODEL statement, PROC REG outputs an observation to the OUTEST= data set. The variables output to
the data set are as follows:

• the BY variables, if any

• _MODEL_, a character variable containing the label of the corresponding MODEL statement, or
MODELn if no label is specified, where n is 1 for the first MODEL statement, 2 for the second model
statement, and so on

• _TYPE_, a character variable with the value ’PARMS’ for every observation

• _DEPVAR_, the name of the dependent variable

• _RMSE_, the root mean squared error or the estimate of the standard deviation of the error term

• Intercept, the estimated intercept, unless the NOINT option is specified

• all the variables listed in any MODEL or VAR statement. Values of these variables are the estimated
regression coefficients for the model. A variable that does not appear in the model corresponding to a
given observation has a missing value in that observation. The dependent variable in each model is
given a value of –1.

If you specify the COVOUT option, the covariance matrix of the estimates is output after the estimates; the
_TYPE_ variable is set to the value ’COV’ and the names of the rows are identified by the character variable,
_NAME_.

If you specify the TABLEOUT option, the following statistics listed by _TYPE_ are added after the estimates:

• STDERR, the standard error of the estimate

• T, the t statistic for testing if the estimate is zero

• PVALUE, the associated p-value

• LnB, the 100.1�˛/ lower confidence limit for the estimate, where n is the nearest integer to 100.1�˛/
and ˛ defaults to 0.05 or is set by using the ALPHA= option in the PROC REG or MODEL statement

• UnB, the 100.1 � ˛/ upper confidence limit for the estimate
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Specifying the option ADJRSQ, AIC, BIC, CP, EDF, GMSEP, JP, MSE, PC, RSQUARE, SBC, SP, or SSE
in the PROC REG or MODEL statement automatically outputs these statistics and the model R2 for each
model selected, regardless of the model selection method. Additional variables, in order of occurrence, are as
follows:

• _IN_, the number of regressors in the model not including the intercept

• _P_, the number of parameters in the model including the intercept, if any

• _EDF_, the error degrees of freedom

• _SSE_, the error sum of squares, if the SSE option is specified

• _MSE_, the mean squared error, if the MSE option is specified

• _RSQ_, the R square statistic

• _ADJRSQ_, the adjusted R square, if the ADJRSQ option is specified

• _CP_, the Cp statistic, if the CP option is specified

• _SP_, the Sp statistic, if the SP option is specified

• _JP_, the Jp statistic, if the JP option is specified

• _PC_, the PC statistic, if the PC option is specified

• _GMSEP_, the GMSEP statistic, if the GMSEP option is specified

• _AIC_, the AIC statistic, if the AIC option is specified

• _BIC_, the BIC statistic, if the BIC option is specified

• _SBC_, the SBC statistic, if the SBC option is specified

The following statements produce and display the OUTEST= data set. This example uses the population data
given in the section “Polynomial Regression” on page 6984. Figure 85.19 through Figure 85.21 show the
regression equations and the resulting OUTEST= data set.

proc reg data=USPopulation outest=est;
m1: model Population=Year;
m2: model Population=Year YearSq;

run;
proc print data=est;
run;
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Figure 85.19 Regression Output for Model M1

The REG Procedure
Model: m1

Dependent Variable: Population

The REG Procedure
Model: m1

Dependent Variable: Population

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 1 146869 146869 228.92 <.0001

Error 20 12832 641.58160

Corrected Total 21 159700

Root MSE 25.32946 R-Square 0.9197

Dependent Mean 94.64800 Adj R-Sq 0.9156

Coeff Var 26.76175

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 -2345.85498 161.39279 -14.54 <.0001

Year 1 1.28786 0.08512 15.13 <.0001

Figure 85.20 Regression Output for Model M2

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 2 159529 79765 8864.19 <.0001

Error 19 170.97193 8.99852

Corrected Total 21 159700

Root MSE 2.99975 R-Square 0.9989

Dependent Mean 94.64800 Adj R-Sq 0.9988

Coeff Var 3.16938

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 21631 639.50181 33.82 <.0001

Year 1 -24.04581 0.67547 -35.60 <.0001

YearSq 1 0.00668 0.00017820 37.51 <.0001

Figure 85.21 OUTEST= Data Set

Obs _MODEL_ _TYPE_ _DEPVAR_ _RMSE_ Intercept Year Population YearSq

1 m1 PARMS Population 25.3295 -2345.85 1.2879 -1 .

2 m2 PARMS Population 2.9998 21630.89 -24.0458 -1 .006684346
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The following modification of the previous example uses the TABLEOUT and ALPHA= options to obtain
additional information in the OUTEST= data set:

proc reg data=USPopulation outest=est tableout alpha=0.1;
m1: model Population=Year/noprint;
m2: model Population=Year YearSq/noprint;

run;
proc print data=est;
run;

Notice that the TABLEOUT option causes standard errors, t statistics, p-values, and confidence limits for
the estimates to be added to the OUTEST= data set. Also note that the ALPHA= option is used to set the
confidence level at 90%. The OUTEST= data set is shown in Figure 85.22.

Figure 85.22 The OUTEST= Data Set When TABLEOUT Is Specified

Obs _MODEL_ _TYPE_ _DEPVAR_ _RMSE_ Intercept Year Population YearSq

1 m1 PARMS Population 25.3295 -2345.85 1.2879 -1 .

2 m1 STDERR Population 25.3295 161.39 0.0851 . .

3 m1 T Population 25.3295 -14.54 15.1300 . .

4 m1 PVALUE Population 25.3295 0.00 0.0000 . .

5 m1 L90B Population 25.3295 -2624.21 1.1411 . .

6 m1 U90B Population 25.3295 -2067.50 1.4347 . .

7 m2 PARMS Population 2.9998 21630.89 -24.0458 -1 0.0067

8 m2 STDERR Population 2.9998 639.50 0.6755 . 0.0002

9 m2 T Population 2.9998 33.82 -35.5988 . 37.5096

10 m2 PVALUE Population 2.9998 0.00 0.0000 . 0.0000

11 m2 L90B Population 2.9998 20525.11 -25.2138 . 0.0064

12 m2 U90B Population 2.9998 22736.68 -22.8778 . 0.0070

A slightly different OUTEST= data set is created when you use the RSQUARE selection method. The
following statements request only the “best” model for each subset size but ask for a variety of model
selection statistics, as well as the estimated regression coefficients. An OUTEST= data set is created and
displayed. See Figure 85.23 and Figure 85.24 for the results.

proc reg data=fitness outest=est;
model Oxygen=Age Weight RunTime RunPulse RestPulse MaxPulse

/ selection=rsquare mse jp gmsep cp aic bic sbc b best=1;
run;
proc print data=est;
run;
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Figure 85.23 PROC REG Output for Physical Fitness Data: Best Models

The REG Procedure
Model: MODEL1

Dependent Variable: Oxygen

R-Square Selection Method

The REG Procedure
Model: MODEL1

Dependent Variable: Oxygen

R-Square Selection Method

Number in
Model R-Square C(p) AIC BIC

Estimated MSE
of Prediction J(p) MSE SBC

1 0.7434 13.6988 64.5341 65.4673 8.0546 8.0199 7.53384 67.40210

2 0.7642 12.3894 63.9050 64.8212 7.9478 7.8621 7.16842 68.20695

3 0.8111 6.9596 59.0373 61.3127 6.8583 6.7253 5.95669 64.77326

4 0.8368 4.8800 56.4995 60.3996 6.3984 6.2053 5.34346 63.66941

5 0.8480 5.1063 56.2986 61.5667 6.4565 6.1782 5.17634 64.90250

6 0.8487 7.0000 58.1616 64.0748 6.9870 6.5804 5.36825 68.19952

Parameter Estimates

Number in
Model R-Square Intercept Age Weight RunTime RunPulse RestPulse MaxPulse

1 0.7434 82.42177 . . -3.31056 . . .

2 0.7642 88.46229 -0.15037 . -3.20395 . . .

3 0.8111 111.71806 -0.25640 . -2.82538 -0.13091 . .

4 0.8368 98.14789 -0.19773 . -2.76758 -0.34811 . 0.27051

5 0.8480 102.20428 -0.21962 -0.07230 -2.68252 -0.37340 . 0.30491

6 0.8487 102.93448 -0.22697 -0.07418 -2.62865 -0.36963 -0.02153 0.30322

Figure 85.24 PROC PRINT Output for Physical Fitness Data: OUTEST= Data Set

Obs _MODEL_ _TYPE_ _DEPVAR_ _RMSE_ Intercept Age Weight RunTime RunPulse RestPulse

1 MODEL1 PARMS Oxygen 2.74478 82.422 . . -3.31056 . .

2 MODEL1 PARMS Oxygen 2.67739 88.462 -0.15037 . -3.20395 . .

3 MODEL1 PARMS Oxygen 2.44063 111.718 -0.25640 . -2.82538 -0.13091 .

4 MODEL1 PARMS Oxygen 2.31159 98.148 -0.19773 . -2.76758 -0.34811 .

5 MODEL1 PARMS Oxygen 2.27516 102.204 -0.21962 -0.072302 -2.68252 -0.37340 .

6 MODEL1 PARMS Oxygen 2.31695 102.934 -0.22697 -0.074177 -2.62865 -0.36963 -0.021534

Obs MaxPulse Oxygen _IN_ _P_ _EDF_ _MSE_ _RSQ_ _CP_ _JP_ _GMSEP_ _AIC_ _BIC_ _SBC_

1 . -1 1 2 29 7.53384 0.74338 13.6988 8.01990 8.05462 64.5341 65.4673 67.4021

2 . -1 2 3 28 7.16842 0.76425 12.3894 7.86214 7.94778 63.9050 64.8212 68.2069

3 . -1 3 4 27 5.95669 0.81109 6.9596 6.72530 6.85833 59.0373 61.3127 64.7733

4 0.27051 -1 4 5 26 5.34346 0.83682 4.8800 6.20531 6.39837 56.4995 60.3996 63.6694

5 0.30491 -1 5 6 25 5.17634 0.84800 5.1063 6.17821 6.45651 56.2986 61.5667 64.9025

6 0.30322 -1 6 7 24 5.36825 0.84867 7.0000 6.58043 6.98700 58.1616 64.0748 68.1995
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OUTSSCP= Data Sets

The OUTSSCP= option produces a TYPE=SSCP output SAS data set containing sums of squares and
crossproducts. A special row (observation) and column (variable) of the matrix called Intercept contain the
number of observations and sums. Observations are identified by the character variable _NAME_. The data
set contains all variables used in MODEL statements. You can specify additional variables that you want
included in the crossproducts matrix with a VAR statement.

The SSCP data set is used when a large number of observations are explored in many different runs. The
SSCP data set can be saved and used for subsequent runs, which are much less expensive since PROC REG
never reads the original data again. If you run PROC REG once to create only a SSCP data set, you should
list all the variables that you might need in a VAR statement or include all the variables that you might need
in a MODEL statement.

The following statements use the fitness data from Example 85.2 to produce an output data set with the
OUTSSCP= option. The resulting output is shown in Figure 85.25.

proc reg data=fitness outsscp=sscp;
var Oxygen RunTime Age Weight RestPulse RunPulse MaxPulse;

run;
proc print data=sscp;
run;

Since a model is not fit to the data and since the only request is to create the SSCP data set, a MODEL
statement is not required in this example. However, since the MODEL statement is not used, the VAR
statement is required.

Figure 85.25 SSCP Data Set Created with OUTSSCP= Option: REG Procedure

Obs _TYPE_ _NAME_ Intercept Oxygen RunTime Age Weight RestPulse RunPulse MaxPulse

1 SSCP Intercept 31.00 1468.65 328.17 1478.00 2400.78 1657.00 5259.00 5387.00

2 SSCP Oxygen 1468.65 70429.86 15356.14 69767.75 113522.26 78015.41 248497.31 254866.75

3 SSCP RunTime 328.17 15356.14 3531.80 15687.24 25464.71 17684.05 55806.29 57113.72

4 SSCP Age 1478.00 69767.75 15687.24 71282.00 114158.90 78806.00 250194.00 256218.00

5 SSCP Weight 2400.78 113522.26 25464.71 114158.90 188008.20 128409.28 407745.67 417764.62

6 SSCP RestPulse 1657.00 78015.41 17684.05 78806.00 128409.28 90311.00 281928.00 288583.00

7 SSCP RunPulse 5259.00 248497.31 55806.29 250194.00 407745.67 281928.00 895317.00 916499.00

8 SSCP MaxPulse 5387.00 254866.75 57113.72 256218.00 417764.62 288583.00 916499.00 938641.00

9 N 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00

Interactive Analysis
PROC REG enables you to change interactively both the model and the data used to compute the model, and
to produce and highlight scatter plots. See the section “Using PROC REG Interactively” on page 6995 for an
overview of interactive analysis that uses PROC REG. The following statements can be used interactively
(without reinvoking PROC REG): ADD, DELETE, MODEL, MTEST, OUTPUT, PAINT, PLOT, PRINT,
REFIT, RESTRICT, REWEIGHT, and TEST. All interactive features are disabled if there is a BY statement.

The ADD, DELETE, and REWEIGHT statements can be used to modify the current MODEL. Every use
of an ADD, DELETE, or REWEIGHT statement causes the model label to be modified by attaching an
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additional number to it. This number is the cumulative total of the number of ADD, DELETE, or REWEIGHT
statements following the current MODEL statement.

A more detailed explanation of changing the data used to compute the model is given in the section
“Reweighting Observations in an Analysis” on page 7072.

The following statements illustrate the usefulness of the interactive features. First, the full regression model
is fit to the Sashelp.Class data, and Figure 85.26 is produced.

ods graphics on;

proc reg data=sashelp.Class plots(modelLabel only)=ResidualByPredicted;
model Weight=Age Height;

run;

Figure 85.26 Interactive Analysis: Full Model

The REG Procedure
Model: MODEL1

Dependent Variable: Weight

The REG Procedure
Model: MODEL1

Dependent Variable: Weight

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 2 7215.63710 3607.81855 27.23 <.0001

Error 16 2120.09974 132.50623

Corrected Total 18 9335.73684

Root MSE 11.51114 R-Square 0.7729

Dependent Mean 100.02632 Adj R-Sq 0.7445

Coeff Var 11.50811

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 -141.22376 33.38309 -4.23 0.0006

Age 1 1.27839 3.11010 0.41 0.6865

Height 1 3.59703 0.90546 3.97 0.0011

Next, the regression model is reduced by the following statements, and Figure 85.27 is produced.

delete age;
print;

run;
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Figure 85.27 Interactive Analysis: Reduced Model

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 1 7193.24912 7193.24912 57.08 <.0001

Error 17 2142.48772 126.02869

Corrected Total 18 9335.73684

Root MSE 11.22625 R-Square 0.7705

Dependent Mean 100.02632 Adj R-Sq 0.7570

Coeff Var 11.22330

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 -143.02692 32.27459 -4.43 0.0004

Height 1 3.89903 0.51609 7.55 <.0001

Note that the MODEL label has been changed from MODEL1 to MODEL1.1, since the original MODEL
has been changed by the delete statement.

When ODS Graphics is enabled, updated plots are produced whenever a PRINT statement is used. The option

plots(modelLabel only)=ResidualByPredicted

in the PROC REG statement specifies that the only plot produced is a scatter plot of residuals by predicted
values. The MODELLABEL option specifies that the current model label is added to the plot.

The following statements generate a scatter plot of the residuals against the predicted values from the full
model. Figure 85.28 is produced, and the scatter plot shows a possible outlier.

add age;
print;

run;
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Figure 85.28 Interactive Analysis: Scatter Plot

The following statements delete the observation with the largest residual, refit the regression model, and
produce a scatter plot of residuals against predicted values for the refitted model. Figure 85.29 shows the new
scatter plot.

reweight r.>20;
print;

run;
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Figure 85.29 Interactive Analysis: Scatter Plot

Model-Selection Methods
The nine methods of model selection implemented in PROC REG are specified with the SELECTION=
option in the MODEL statement. Each method is discussed in this section.

Full Model Fitted (NONE)

This method is the default and provides no model selection capability. The complete model specified in the
MODEL statement is used to fit the model. For many regression analyses, this might be the only method you
need.

Forward Selection (FORWARD)

The forward-selection technique begins with no variables in the model. For each of the independent variables,
the FORWARD method calculates F statistics that reflect the variable’s contribution to the model if it is
included. The p-values for these F statistics are compared to the SLENTRY= value that is specified in the
MODEL statement (or to 0.50 if the SLENTRY= option is omitted). If no F statistic has a significance level
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greater than the SLENTRY= value, the FORWARD selection stops. Otherwise, the FORWARD method
adds the variable that has the largest F statistic to the model. The FORWARD method then calculates F
statistics again for the variables still remaining outside the model, and the evaluation process is repeated.
Thus, variables are added one by one to the model until no remaining variable produces a significant F
statistic. Once a variable is in the model, it stays.

Backward Elimination (BACKWARD)

The backward elimination technique begins by calculating F statistics for a model which includes all of
the independent variables. Then the variables are deleted from the model one by one until all the variables
remaining in the model produce F statistics significant at the SLSTAY= level specified in the MODEL
statement (or at the 0.10 level if the SLSTAY= option is omitted). At each step, the variable showing the
smallest contribution to the model is deleted.

Stepwise (STEPWISE)

The stepwise method is a modification of the forward-selection technique and differs in that variables already
in the model do not necessarily stay there. As in the forward-selection method, variables are added one by
one to the model, and the F statistic for a variable to be added must be significant at the SLENTRY= level.
After a variable is added, however, the stepwise method looks at all the variables already included in the
model and deletes any variable that does not produce an F statistic significant at the SLSTAY= level. Only
after this check is made and the necessary deletions are accomplished can another variable be added to the
model. The stepwise process ends when none of the variables outside the model has an F statistic significant
at the SLENTRY= level and every variable in the model is significant at the SLSTAY= level, or when the
variable to be added to the model is the one just deleted from it.

Maximum R2 Improvement (MAXR)

The maximum R square improvement technique does not settle on a single model. Instead, it tries to find the
“best” one-variable model, the “best” two-variable model, and so forth, although it is not guaranteed to find
the model with the largest R square for each size.

The MAXR method begins by finding the one-variable model producing the highest R square. Then another
variable, the one that yields the greatest increase in R square, is added. Once the two-variable model
is obtained, each of the variables in the model is compared to each variable not in the model. For each
comparison, the MAXR method determines if removing one variable and replacing it with the other variable
increases R square. After comparing all possible switches, the MAXR method makes the switch that produces
the largest increase in R square. Comparisons begin again, and the process continues until the MAXR method
finds that no switch could increase R square. Thus, the two-variable model achieved is considered the
“best” two-variable model the technique can find. Another variable is then added to the model, and the
comparing-and-switching process is repeated to find the “best” three-variable model, and so forth.

The difference between the STEPWISE method and the MAXR method is that all switches are evaluated
before any switch is made in the MAXR method. In the STEPWISE method, the “worst” variable might
be removed without considering what adding the “best” remaining variable might accomplish. The MAXR
method might require much more computer time than the STEPWISE method.
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Minimum R2 (MINR) Improvement

The MINR method closely resembles the MAXR method, but the switch chosen is the one that produces the
smallest increase in R square. For a given number of variables in the model, the MAXR and MINR methods
usually produce the same “best” model, but the MINR method considers more models of each size.

R2 Selection (RSQUARE)

The RSQUARE method finds subsets of independent variables that best predict a dependent variable by linear
regression in the given sample. You can specify the largest and smallest number of independent variables
to appear in a subset and the number of subsets of each size to be selected. The RSQUARE method can
efficiently perform all possible subset regressions and display the models in decreasing order of R square
magnitude within each subset size. Other statistics are available for comparing subsets of different sizes.
These statistics, as well as estimated regression coefficients, can be displayed or output to a SAS data set.

The subset models selected by the RSQUARE method are optimal in terms of R square for the given sample,
but they are not necessarily optimal for the population from which the sample is drawn or for any other
sample for which you might want to make predictions. If a subset model is selected on the basis of a large R
square value or any other criterion commonly used for model selection, then all regression statistics computed
for that model under the assumption that the model is given a priori, including all statistics computed by
PROC REG, are biased.

While the RSQUARE method is a useful tool for exploratory model building, no statistical method can be
relied on to identify the “true” model. Effective model building requires substantive theory to suggest relevant
predictors and plausible functional forms for the model.

The RSQUARE method differs from the other selection methods in that RSQUARE always identifies the
model with the largest R square for each number of variables considered. The other selection methods are
not guaranteed to find the model with the largest R square. The RSQUARE method requires much more
computer time than the other selection methods, so a different selection method such as the STEPWISE
method is a good choice when there are many independent variables to consider.

Adjusted R2 Selection (ADJRSQ)

This method is similar to the RSQUARE method, except that the adjusted R square statistic is used as the
criterion for selecting models, and the method finds the models with the highest adjusted R square within the
range of sizes.

Mallows’ Cp Selection (CP)

This method is similar to the ADJRSQ method, except that Mallows’ Cp statistic is used as the criterion for
model selection. Models are listed in ascending order of Cp.

Additional Information about Model-Selection Methods

Reviews of model-selection methods by Hocking (1976) and Judge et al. (1980) describe these and other
variable-selection methods.



7052 F Chapter 85: The REG Procedure

Criteria Used in Model-Selection Methods
When many significance tests are performed, each at a level of, for example, 5%, the overall probability of
rejecting at least one true null hypothesis is much larger than 5%. If you want to guard against including any
variables that do not contribute to the predictive power of the model in the population, you should specify
a very small SLE= significance level for the FORWARD and STEPWISE methods and a very small SLS=
significance level for the BACKWARD and STEPWISE methods.

In most applications, many of the variables considered have some predictive power, however small. If you
want to choose the model that provides the best prediction computed using the sample estimates, you need
only to guard against estimating more parameters than can be reliably estimated with the given sample size,
so you should use a moderate significance level, perhaps in the range of 10% to 25%.

In addition to R square, the Cp statistic is displayed for each model generated in the model-selection methods.
The Cp statistic is proposed by Mallows (1973) as a criterion for selecting a model. It is a measure of total
squared error defined as

Cp D
SSEp
s2
� .N � 2p/

where s2 is the MSE for the full model, and SSEp is the sum-of-squares error for a model with p parameters
including the intercept, if any. If Cp is plotted against p, Mallows recommends the model where Cp first
approaches p. When the right model is chosen, the parameter estimates are unbiased, and this is reflected in
Cp near p. For further discussion, see Daniel and Wood (1980).

The adjusted R square statistic is an alternative to R square that is adjusted for the number of parameters in
the model. The adjusted R square statistic is calculated as

ADJRSQ D 1 �
.n � i/.1 �R2/

n � p

where n is the number of observations used in fitting the model, and i is an indicator variable that is 1 if the
model includes an intercept, and 0 otherwise.

Limitations in Model-Selection Methods
The use of model-selection methods can be time-consuming in some cases because there is no built-in limit
on the number of independent variables, and the calculations for a large number of independent variables can
be lengthy. The recommended limit on the number of independent variables for the MINR method is 20C i ,
where i is the value of the INCLUDE= option.

For the RSQUARE, ADJRSQ, or CP method, with a large value of the BEST= option, adding one more
variable to the list from which regressors are selected might significantly increase the CPU time. Also, the
time required for the analysis is highly dependent on the data and on the values of the BEST=, START=, and
STOP= options.
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Parameter Estimates and Associated Statistics
The following example uses the fitness data from Example 85.2. Figure 85.31 shows the parameter estimates
and the tables from the SS1, SS2, STB, CLB, COVB, and CORRB options:

proc reg data=fitness;
model Oxygen=RunTime Age Weight RunPulse MaxPulse RestPulse

/ ss1 ss2 stb clb covb corrb;
run;

The procedure first displays an analysis of variance table (Figure 85.30). The F statistic for the overall model
is significant, indicating that the model explains a significant portion of the variation in the data.

Figure 85.30 ANOVA Table

The REG Procedure
Model: MODEL1

Dependent Variable: Oxygen

The REG Procedure
Model: MODEL1

Dependent Variable: Oxygen

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 6 722.54361 120.42393 22.43 <.0001

Error 24 128.83794 5.36825

Corrected Total 30 851.38154

Root MSE 2.31695 R-Square 0.8487

Dependent Mean 47.37581 Adj R-Sq 0.8108

Coeff Var 4.89057

The procedure next displays parameter estimates and some associated statistics (Figure 85.31). First, the
estimates are shown, followed by their standard errors. The next two columns of the table contain the
t statistics and the corresponding probabilities for testing the null hypothesis that the parameter is not
significantly different from zero. These probabilities are usually referred to as p-values. For example, the
Intercept term in the model is estimated to be 102.9 and is significantly different from zero. The next two
columns of the table are the result of requesting the SS1 and SS2 options, and they show sequential and
partial sums of squares (SS) associated with each variable. The standardized estimates (produced by the
STB option) are the parameter estimates that result when all variables are standardized to a mean of 0 and a
variance of 1. These estimates are computed by multiplying the original estimates by the standard deviation
of the regressor (independent) variable and then dividing by the standard deviation of the dependent variable.
The CLB option adds the upper and lower 95% confidence limits for the parameter estimates; the ˛ level can
be changed by specifying the ALPHA= option in the PROC REG or MODEL statement.
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Figure 85.31 SS1, SS2, STB, CLB, COVB, and CORRB Options: Parameter Estimates

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t| Type I SS Type II SS
Standardized

Estimate
95%

Confidence Limits

Intercept 1 102.93448 12.40326 8.30 <.0001 69578 369.72831 0 77.33541 128.53355

RunTime 1 -2.62865 0.38456 -6.84 <.0001 632.90010 250.82210 -0.68460 -3.42235 -1.83496

Age 1 -0.22697 0.09984 -2.27 0.0322 17.76563 27.74577 -0.22204 -0.43303 -0.02092

Weight 1 -0.07418 0.05459 -1.36 0.1869 5.60522 9.91059 -0.11597 -0.18685 0.03850

RunPulse 1 -0.36963 0.11985 -3.08 0.0051 38.87574 51.05806 -0.71133 -0.61699 -0.12226

MaxPulse 1 0.30322 0.13650 2.22 0.0360 26.82640 26.49142 0.52161 0.02150 0.58493

RestPulse 1 -0.02153 0.06605 -0.33 0.7473 0.57051 0.57051 -0.03080 -0.15786 0.11480

The final two tables are produced as a result of requesting the COVB and CORRB options (Figure 85.32).
These tables show the estimated covariance matrix of the parameter estimates, and the estimated correlation
matrix of the estimates.

Figure 85.32 SS1, SS2, STB, CLB, COVB, and CORRB Options: Covariances and Correlations

Covariance of Estimates

Variable Intercept RunTime Age Weight RunPulse MaxPulse RestPulse

Intercept 153.84081152 0.7678373769 -0.902049478 -0.178237818 0.280796516 -0.832761667 -0.147954715

RunTime 0.7678373769 0.1478880839 -0.014191688 -0.004417672 -0.009047784 0.0046249498 -0.010915224

Age -0.902049478 -0.014191688 0.009967521 0.0010219105 -0.001203914 0.0035823843 0.0014897532

Weight -0.178237818 -0.004417672 0.0010219105 0.0029804131 0.0009644683 -0.001372241 0.0003799295

RunPulse 0.280796516 -0.009047784 -0.001203914 0.0009644683 0.0143647273 -0.014952457 -0.000764507

MaxPulse -0.832761667 0.0046249498 0.0035823843 -0.001372241 -0.014952457 0.0186309364 0.0003425724

RestPulse -0.147954715 -0.010915224 0.0014897532 0.0003799295 -0.000764507 0.0003425724 0.0043631674

Correlation of Estimates

Variable Intercept RunTime Age Weight RunPulse MaxPulse RestPulse

Intercept 1.0000 0.1610 -0.7285 -0.2632 0.1889 -0.4919 -0.1806

RunTime 0.1610 1.0000 -0.3696 -0.2104 -0.1963 0.0881 -0.4297

Age -0.7285 -0.3696 1.0000 0.1875 -0.1006 0.2629 0.2259

Weight -0.2632 -0.2104 0.1875 1.0000 0.1474 -0.1842 0.1054

RunPulse 0.1889 -0.1963 -0.1006 0.1474 1.0000 -0.9140 -0.0966

MaxPulse -0.4919 0.0881 0.2629 -0.1842 -0.9140 1.0000 0.0380

RestPulse -0.1806 -0.4297 0.2259 0.1054 -0.0966 0.0380 1.0000

For further discussion of the parameters and statistics, see the section “Displayed Output” on page 7086, and
Chapter 4, “Introduction to Regression Procedures.”
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Predicted and Residual Values
The display of the predicted values and residuals is controlled by the P, R, CLM, and CLI options in the
MODEL statement. The P option causes PROC REG to display the observation number, the ID value (if an
ID statement is used), the actual value, the predicted value, and the residual. The R, CLI, and CLM options
also produce the items under the P option. Thus, P is unnecessary if you use one of the other options.

The R option requests more detail, especially about the residuals. The standard errors of the mean predicted
value and the residual are displayed. The studentized residual, which is the residual divided by its standard
error, is both displayed and plotted. A measure of influence, Cook’s D, is displayed and plotted. Cook’s D
measures the change to the estimates that results from deleting each observation (Cook 1977, 1979). This
statistic is very similar to DFFITS.

The CLM option requests that PROC REG display the 100.1 � ˛/% lower and upper confidence limits for
the mean predicted values. This accounts for the variation due to estimating the parameters only. If you want
a 100.1 � ˛/% confidence interval for observed values, then you can use the CLI option, which adds in the
variability of the error term. The ˛ level can be specified with the ALPHA= option in the PROC REG or
MODEL statement.

You can use these statistics in PLOT and PAINT statements. This is useful in performing a variety of
regression diagnostics. For definitions of the statistics produced by these options, see Chapter 4, “Introduction
to Regression Procedures.”

The following statements use the U.S. population data found in the section “Polynomial Regression” on
page 6984. The results are shown in Figure 85.33 and Figure 85.34.

ods graphics on;

data USPop2;
input Year @@;
YearSq=Year*Year;
datalines;

2010 2020 2030
;

data USPop2;
set USPopulation USPop2;

run;

proc reg data=USPop2;
id Year;
model Population=Year YearSq / r cli clm;

run;
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Figure 85.33 Regression Using the R, CLI, and CLM Options

The REG Procedure
Model: MODEL1

Dependent Variable: Population

The REG Procedure
Model: MODEL1

Dependent Variable: Population

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 2 159529 79765 8864.19 <.0001

Error 19 170.97193 8.99852

Corrected Total 21 159700

Root MSE 2.99975 R-Square 0.9989

Dependent Mean 94.64800 Adj R-Sq 0.9988

Coeff Var 3.16938

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 21631 639.50181 33.82 <.0001

Year 1 -24.04581 0.67547 -35.60 <.0001

YearSq 1 0.00668 0.00017820 37.51 <.0001
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Figure 85.34 Regression Using the R, CLI, and CLM Options

The REG Procedure
Model: MODEL1

Dependent Variable: Population

The REG Procedure
Model: MODEL1

Dependent Variable: Population

Output Statistics

Obs Year
Dependent

Variable
Predicted

Value

Std
Error
Mean

Predict 95% CL Mean 95% CL Predict Residual
Std Error
Residual

Student
Residual Cook's D

1 1790 3.93 6.2127 1.7565 2.5362 9.8892 -1.0631 13.4884 -2.2837 2.432 -0.939 0.153

2 1800 5.31 5.7226 1.4560 2.6751 8.7701 -1.2565 12.7017 -0.4146 2.623 -0.158 0.003

3 1810 7.24 6.5694 1.2118 4.0331 9.1057 -0.2021 13.3409 0.6696 2.744 0.244 0.004

4 1820 9.64 8.7531 1.0305 6.5963 10.9100 2.1144 15.3918 0.8849 2.817 0.314 0.004

5 1830 12.87 12.2737 0.9163 10.3558 14.1916 5.7087 18.8386 0.5923 2.856 0.207 0.001

6 1840 17.07 17.1311 0.8650 15.3207 18.9415 10.5968 23.6655 -0.0621 2.872 -0.022 0.000

7 1850 23.19 23.3254 0.8613 21.5227 25.1281 16.7932 29.8576 -0.1344 2.873 -0.047 0.000

8 1860 31.44 30.8566 0.8846 29.0051 32.7080 24.3107 37.4024 0.5864 2.866 0.205 0.001

9 1870 39.82 39.7246 0.9163 37.8067 41.6425 33.1597 46.2896 0.0934 2.856 0.033 0.000

10 1880 50.16 49.9295 0.9436 47.9545 51.9046 43.3476 56.5114 0.2255 2.847 0.079 0.000

11 1890 62.95 61.4713 0.9590 59.4641 63.4785 54.8797 68.0629 1.4757 2.842 0.519 0.010

12 1900 75.99 74.3499 0.9590 72.3427 76.3571 67.7583 80.9415 1.6441 2.842 0.578 0.013

13 1910 91.97 88.5655 0.9436 86.5904 90.5405 81.9836 95.1473 3.4065 2.847 1.196 0.052

14 1920 105.71 104.1178 0.9163 102.2000 106.0357 97.5529 110.6828 1.5922 2.856 0.557 0.011

15 1930 122.78 121.0071 0.8846 119.1556 122.8585 114.4612 127.5529 1.7679 2.866 0.617 0.012

16 1940 131.67 139.2332 0.8613 137.4305 141.0359 132.7010 145.7654 -7.5642 2.873 -2.632 0.208

17 1950 151.33 158.7962 0.8650 156.9858 160.6066 152.2618 165.3306 -7.4712 2.872 -2.601 0.205

18 1960 179.32 179.6961 0.9163 177.7782 181.6139 173.1311 186.2610 -0.3731 2.856 -0.131 0.001

19 1970 203.21 201.9328 1.0305 199.7759 204.0896 195.2941 208.5715 1.2782 2.817 0.454 0.009

20 1980 226.54 225.5064 1.2118 222.9701 228.0427 218.7349 232.2779 1.0356 2.744 0.377 0.009

21 1990 248.71 250.4168 1.4560 247.3693 253.4644 243.4378 257.3959 -1.7068 2.623 -0.651 0.044

22 2000 281.42 276.6642 1.7565 272.9877 280.3407 269.3884 283.9400 4.7578 2.432 1.957 0.666

23 2010 . 304.2484 2.1073 299.8377 308.6591 296.5754 311.9214 . . . .

24 2020 . 333.1695 2.5040 327.9285 338.4104 324.9910 341.3479 . . . .

25 2030 . 363.4274 2.9435 357.2665 369.5883 354.6310 372.2238 . . . .
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Figure 85.35 Studentized Residuals and Cook’s D

After producing the usual analysis of variance and parameter estimates tables (Figure 85.33), the procedure
displays the results of requesting the options for predicted and residual values (Figure 85.34). For each
observation, the requested information is shown. Note that the ID variable is used to identify each observation.
Also note that, for observations with missing dependent variables, the predicted value, standard error of the
predicted value, and confidence intervals for the predicted value are still available.
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The studentized residuals and Cook’s D statistics in Figure 85.34 and Figure 85.35 are displayed as a
result of specifying the R option. The large absolute studentized residuals for 1940 and 1950 (best seen
in Figure 85.35) indicate that the overall model is inadequate for explaining the population in these two
years. You can use ODS Graphics to obtain plots of studentized residuals by predicted values or leverage; see
Example 85.1 for a similar example.

Models of Less Than Full Rank
If the model is not full rank, there are an infinite number of least squares solutions for the estimates. PROC
REG chooses a nonzero solution for all variables that are linearly independent of previous variables and
a zero solution for other variables. This solution corresponds to using a generalized inverse in the normal
equations, and the expected values of the estimates are the Hermite normal form of X multiplied by the true
parameters:

E.b/ D .X0X/�.X0X/ˇ

Degrees of freedom for the zeroed estimates are reported as zero. The hypotheses that are not testable have t
tests reported as missing. The message that the model is not full rank includes a display of the relations that
exist in the matrix.

The following statements use the fitness data from Example 85.2. The variable Dif=RunPulse–RestPulse is
created. When this variable is included in the model along with RunPulse and RestPulse, there is a linear
dependency (or exact collinearity) between the independent variables. Figure 85.36 shows how this problem
is diagnosed.

data fit2;
set fitness;
Dif=RunPulse-RestPulse;

run;
proc reg data=fit2;

model Oxygen=RunTime Age Weight RunPulse MaxPulse RestPulse Dif;
run;
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Figure 85.36 Model That Is Not Full Rank: REG Procedure

The REG Procedure
Model: MODEL1

Dependent Variable: Oxygen

The REG Procedure
Model: MODEL1

Dependent Variable: Oxygen

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 6 722.54361 120.42393 22.43 <.0001

Error 24 128.83794 5.36825

Corrected Total 30 851.38154

Root MSE 2.31695 R-Square 0.8487

Dependent Mean 47.37581 Adj R-Sq 0.8108

Coeff Var 4.89057

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 102.93448 12.40326 8.30 <.0001

RunTime 1 -2.62865 0.38456 -6.84 <.0001

Age 1 -0.22697 0.09984 -2.27 0.0322

Weight 1 -0.07418 0.05459 -1.36 0.1869

RunPulse B -0.36963 0.11985 -3.08 0.0051

MaxPulse 1 0.30322 0.13650 2.22 0.0360

RestPulse B -0.02153 0.06605 -0.33 0.7473

Dif 0 0 . . .

PROC REG produces a message informing you that the model is less than full rank. Parameters with DF=0
are not estimated, and parameters with DF=B are biased. In addition, the form of the linear dependency
among the regressors is displayed.

Collinearity Diagnostics
When a regressor is nearly a linear combination of other regressors in the model, the affected estimates are
unstable and have high standard errors. This problem is called collinearity or multicollinearity. It is a good
idea to find out which variables are nearly collinear with which other variables. The approach in PROC
REG follows that of Belsley, Kuh, and Welsch (1980). PROC REG provides several methods for detecting
collinearity with the COLLIN, COLLINOINT, TOL, and VIF options.

The COLLIN option in the MODEL statement requests that a collinearity analysis be performed. First,
X0X is scaled to have 1s on the diagonal. If you specify the COLLINOINT option, the intercept variable
is adjusted out first. Then the eigenvalues and eigenvectors are extracted. The analysis in PROC REG is
reported with eigenvalues of X0X rather than singular values of X. The eigenvalues of X0X are the squares of
the singular values of X.

The condition indices are the square roots of the ratio of the largest eigenvalue to each individual eigenvalue.
The largest condition index is the condition number of the scaled X matrix. Belsley, Kuh, and Welsch (1980)
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suggest that, when this number is around 10, weak dependencies might be starting to affect the regression
estimates. When this number is larger than 100, the estimates might have a fair amount of numerical error
(although the statistical standard error almost always is much greater than the numerical error).

For each variable, PROC REG produces the proportion of the variance of the estimate accounted for by each
principal component. A collinearity problem occurs when a component associated with a high condition index
contributes strongly (variance proportion greater than about 0.5) to the variance of two or more variables.

The VIF option in the MODEL statement provides the variance inflation factors (VIF). These factors measure
the inflation in the variances of the parameter estimates due to collinearities that exist among the regressor
(independent) variables. There are no formal criteria for deciding if a VIF is large enough to affect the
predicted values.

The TOL option requests the tolerance values for the parameter estimates. The tolerance is defined as 1 / VIF.

For a complete discussion of the preceding methods, see Belsley, Kuh, and Welsch (1980). For a more
detailed explanation of using the methods with PROC REG, see Freund and Littell (1986).

This example uses the COLLIN option on the fitness data found in Example 85.2. The following statements
produce Figure 85.37.

proc reg data=fitness;
model Oxygen=RunTime Age Weight RunPulse MaxPulse RestPulse

/ tol vif collin;
run;

Figure 85.37 Regression Using the TOL, VIF, and COLLIN Options

The REG Procedure
Model: MODEL1

Dependent Variable: Oxygen

The REG Procedure
Model: MODEL1

Dependent Variable: Oxygen

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 6 722.54361 120.42393 22.43 <.0001

Error 24 128.83794 5.36825

Corrected Total 30 851.38154

Root MSE 2.31695 R-Square 0.8487

Dependent Mean 47.37581 Adj R-Sq 0.8108

Coeff Var 4.89057

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t| Tolerance
Variance
Inflation

Intercept 1 102.93448 12.40326 8.30 <.0001 . 0

RunTime 1 -2.62865 0.38456 -6.84 <.0001 0.62859 1.59087

Age 1 -0.22697 0.09984 -2.27 0.0322 0.66101 1.51284

Weight 1 -0.07418 0.05459 -1.36 0.1869 0.86555 1.15533

RunPulse 1 -0.36963 0.11985 -3.08 0.0051 0.11852 8.43727

MaxPulse 1 0.30322 0.13650 2.22 0.0360 0.11437 8.74385

RestPulse 1 -0.02153 0.06605 -0.33 0.7473 0.70642 1.41559
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Figure 85.37 continued

Collinearity Diagnostics

Proportion of Variation

Number Eigenvalue
Condition

Index Intercept RunTime Age Weight RunPulse MaxPulse RestPulse

1 6.94991 1.00000 0.00002326 0.00021086 0.00015451 0.00019651 0.00000862 0.00000634 0.00027850

2 0.01868 19.29087 0.00218 0.02522 0.14632 0.01042 0.00000244 0.00000743 0.39064

3 0.01503 21.50072 0.00061541 0.12858 0.15013 0.23571 0.00119 0.00125 0.02809

4 0.00911 27.62115 0.00638 0.60897 0.03186 0.18313 0.00149 0.00123 0.19030

5 0.00607 33.82918 0.00133 0.12501 0.11284 0.44442 0.01506 0.00833 0.36475

6 0.00102 82.63757 0.79966 0.09746 0.49660 0.10330 0.06948 0.00561 0.02026

7 0.00017947 196.78560 0.18981 0.01455 0.06210 0.02283 0.91277 0.98357 0.00568

Model Fit and Diagnostic Statistics
This section gathers the formulas for the statistics available in the MODEL, PLOT, and OUTPUT statements.
The model to be fit is Y D XˇC�, and the parameter estimate is denoted by b D .X0X/�X0Y. The subscript
i denotes values for the ith observation, the parenthetical subscript .i/ means that the statistic is computed by
using all observations except the ith observation, and the subscript jj indicates the jth diagonal matrix entry.
The ALPHA= option in the PROC REG or MODEL statement is used to set the ˛ value for the t statistics.

Table 85.7 contains the summary statistics for assessing the fit of the model.

Table 85.7 Formulas and Definitions for Model Fit Summary
Statistics

Model Option or Statistic Definition or Formula

n the number of observations
p the number of parameters including the intercept
i 1 if there is an intercept, 0 otherwise
O�2 the estimate of pure error variance from the SIGMA=

option or from fitting the full model
SST0 the uncorrected total sum of squares for the dependent

variable
SST1 the total sum of squares corrected for the mean for the

dependent variable
SSE the error sum of squares

MSE
SSE
n � p

R2 1 �
SSE
SSTi

ADJRSQ 1 �
.n � i/.1 �R2/

n � p

AIC n ln
�

SSE
n

�
C 2p

BIC n ln
�

SSE
n

�
C 2.p C 2/q � 2q2 where q D

n O�2

SSE
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Table 85.7 continued

Model Option or Statistic Definition or Formula

CP .Cp/
SSE
O�2
C 2p � n

GMSEP
MSE.nC 1/.n � 2/
n.n � p � 1/

D
1

n
Sp.nC 1/.n � 2/

JP .Jp/
nC p

n
MSE

PC
nC p

n � p
.1 �R2/ D Jp

�
n

SSTi

�
PRESS the sum of squares of predri (see Table 85.8)

RMSE
p

MSE

SBC n ln
�

SSE
n

�
C p ln.n/

SP .Sp/
MSE

n � p � 1

Table 85.8 contains the diagnostic statistics and their formulas; these formulas and further information can
be found in Chapter 4, “Introduction to Regression Procedures,” and in the section “Influence Statistics” on
page 7064. Each statistic is computed for each observation.

Table 85.8 Formulas and Definitions for Diagnostic Statistics

MODEL Option or Statistic Formula

PRED (bYi ) Xib
RES (ri ) Yi � bYi
H (hi ) xi .X0X/�x0i

STDP
p
hib�2

STDI
p
.1C hi /b�2

STDR
p
.1 � hi /b�2

LCL bY i � t˛
2

STDI
LCLM bY i � t˛

2
STDP

UCL bY i C t˛
2

STDI
UCLM bY i C t˛

2
STDP

STUDENT
ri

STDRi

RSTUDENT
ri

O�.i/
p
1 � hi

COOKD
1

p
STUDENT2

STDP2

STDR2

COVRATIO
det. O�2

.i/
.x0
.i/
x.i//�1

det. O�2.X0X/�1/
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Table 85.8 continued

MODEL Option or Statistic Formula

DFFITS
.bYi � bY.i//
. O�.i/
p
hi /

DFBETASj
bj � b.i/j
O�.i/
p
.X0X/jj

PRESS(predri )
ri

1 � hi

Influence Statistics
This section discusses the INFLUENCE option, which produces several influence statistics, and the PARTIAL
option, which produces partial regression leverage plots.

The INFLUENCE Option

The INFLUENCE option (in the MODEL statement) requests the statistics proposed by Belsley, Kuh, and
Welsch (1980) to measure the influence of each observation on the estimates. Influential observations are
those that, according to various criteria, appear to have a large influence on the parameter estimates.

Let b.i/ be the parameter estimates after deleting the ith observation; let s.i/2 be the variance estimate after
deleting the ith observation; let X.i/ be the X matrix without the ith observation; let Oy.i/ be the ith value
predicted without using the ith observation; let ri D yi � Oyi be the ith residual; and let hi be the ith diagonal
of the projection matrix for the predictor space, also called the hat matrix:

hi D xi .X0X/�1x0i

Belsley, Kuh, and Welsch (1980) propose a cutoff of 2p=n, where n is the number of observations used to fit
the model and p is the number of parameters in the model. Observations with hi values above this cutoff
should be investigated.

For each observation, PROC REG first displays the residual, the studentized residual (RSTUDENT), and
the hi . The studentized residual RSTUDENT differs slightly from STUDENT since the error variance is
estimated by s2

.i/
without the ith observation, not by s2. For example,

RSTUDENT D
ri

s.i/
p
.1 � hi /

Observations with RSTUDENT larger than 2 in absolute value might need some attention.

The COVRATIO statistic measures the change in the determinant of the covariance matrix of the estimates
by deleting the ith observation:
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COVRATIO D
det

�
s2.i/.X0

.i/
X.i//�1

�
det

�
s2.X0X/�1

�
Belsley, Kuh, and Welsch (1980) suggest that observations with

jCOVRATIO � 1j �
3p

n

where p is the number of parameters in the model and n is the number of observations used to fit the model,
are worth investigation.

The DFFITS statistic is a scaled measure of the change in the predicted value for the ith observation and is
calculated by deleting the ith observation. A large value indicates that the observation is very influential in its
neighborhood of the X space.

DFFITS D
Oyi � Oy.i/

s.i/
p
h.i/

Large values of DFFITS indicate influential observations. A general cutoff to consider is 2; a size-adjusted
cutoff recommended by Belsley, Kuh, and Welsch (1980) is 2

p
p=n, where n and p are as defined previously.

The DFFITS statistic is very similar to Cook’s D, defined in the section “Predicted and Residual Values” on
page 7055.

The DFBETAS statistics are the scaled measures of the change in each parameter estimate and are calculated
by deleting the ith observation:

DFBETASj D
bj � b.i/j

s.i/
p
.X0X/jj

where .X0X/jj is the .j; j / element of .X0X/�1.

In general, large values of DFBETAS indicate observations that are influential in estimating a given parameter.
Belsley, Kuh, and Welsch (1980) recommend 2 as a general cutoff value to indicate influential observations
and 2=

p
n as a size-adjusted cutoff.

The following statements use a subset of the data in the population example in the section “Polynomial
Regression” on page 6984. The INFLUENCE option produces the tables shown in Figure 85.38 and
Figure 85.39.

proc reg data=USPopulation;
where Year <= 1970;
model Population=Year YearSq / influence;

run;
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Figure 85.38 Regression Using the INFLUENCE Option

The REG Procedure
Model: MODEL1

Dependent Variable: Population

The REG Procedure
Model: MODEL1

Dependent Variable: Population

Output Statistics

DFBETAS

Obs Residual RStudent
Hat Diag

H
Cov

Ratio DFFITS Intercept Year YearSq

1 -1.1094 -0.4972 0.3865 1.8834 -0.3946 -0.2842 0.2810 -0.2779

2 0.2691 0.1082 0.2501 1.6147 0.0625 0.0376 -0.0370 0.0365

3 0.9305 0.3561 0.1652 1.4176 0.1584 0.0666 -0.0651 0.0636

4 0.7908 0.2941 0.1184 1.3531 0.1078 0.0182 -0.0172 0.0161

5 0.2110 0.0774 0.0983 1.3444 0.0256 -0.0030 0.0033 -0.0035

6 -0.6629 -0.2431 0.0951 1.3255 -0.0788 0.0296 -0.0302 0.0307

7 -0.8869 -0.3268 0.1009 1.3214 -0.1095 0.0609 -0.0616 0.0621

8 -0.2501 -0.0923 0.1095 1.3605 -0.0324 0.0216 -0.0217 0.0218

9 -0.7593 -0.2820 0.1164 1.3519 -0.1023 0.0743 -0.0745 0.0747

10 -0.5757 -0.2139 0.1190 1.3650 -0.0786 0.0586 -0.0587 0.0587

11 0.7938 0.2949 0.1164 1.3499 0.1070 -0.0784 0.0783 -0.0781

12 1.1492 0.4265 0.1095 1.3144 0.1496 -0.1018 0.1014 -0.1009

13 3.1664 1.2189 0.1009 1.0168 0.4084 -0.2357 0.2338 -0.2318

14 1.6746 0.6207 0.0951 1.2430 0.2013 -0.0811 0.0798 -0.0784

15 2.2406 0.8407 0.0983 1.1724 0.2776 -0.0427 0.0404 -0.0380

16 -6.6335 -3.1845 0.1184 0.2924 -1.1673 -0.1531 0.1636 -0.1747

17 -6.0147 -2.8433 0.1652 0.3989 -1.2649 -0.4843 0.4958 -0.5076

18 1.6770 0.6847 0.2501 1.4757 0.3954 0.2240 -0.2274 0.2308

19 3.9895 1.9947 0.3865 0.9766 1.5831 1.0902 -1.1025 1.1151

Figure 85.39 Residual Statistics

Sum of Residuals -5.8175E-11

Sum of Squared Residuals 123.74557

Predicted Residual SS (PRESS) 188.54924

In Figure 85.38, observations 16, 17, and 19 exceed or are near the cutoff value of 2 for RSTUDENT. None
of the observations exceeds the general cutoff of 2 for DFFITS or the DFBETAS, but observations 16, 17,
and 19 exceed at least one of the size-adjusted cutoffs for these statistics. Observations 1 and 19 exceed the
cutoff for the hat diagonals, and observations 1, 2, 16, 17, and 18 exceed the cutoffs for COVRATIO. Taken
together, these statistics indicate that you should look first at observations 16, 17, and 19 and then perhaps
investigate the other observations that exceeded a cutoff.
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When ODS Graphics is enabled, you can request influence diagnostic plots by using the PLOTS= option in
the PROC REG statement as shown in the following statements:

ods graphics on;

proc reg data=USPopulation
plots(label)=(CooksD RStudentByLeverage DFFITS DFBETAS);

where Year <= 1970;
id Year;
model Population=Year YearSq;

run;

The LABEL suboption specified in the PLOTS(LABEL)= option requests that observations that exceed the
relevant cutoffs for the statistics being plotted are labeled. Since Year has been named in an ID statement, the
value of Year is used for the labels. The requested plots are shown in Figure 85.40.

Figure 85.40 Influence Diagnostics
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Figure 85.40 continued
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Figure 85.40 continued

When ODS Graphics is enabled, you can request a chart of the studentized residuals and Cook’s D by using
the PLOTS=RESIDUALCHART option as shown in the following statements:

proc reg data=USPopulation plots(only)=residualchart;
where Year <= 1970;
id Year;
model Population=Year YearSq;

run;

The chart is shown in Figure 85.41.
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Figure 85.41 Studentized Residuals and Cook’s D Chart

The PARTIAL and PARTIALDATA Options

The PARTIAL option in the MODEL statement produces partial regression leverage plots. If ODS Graphics
is not enabled, this option requires the use of the LINEPRINTER option in the PROC REG statement. One
plot is created for each regressor in the current full model. For example, plots are produced for regressors
included by using ADD statements; plots are not produced for interim models in the various model-selection
methods but only for the full model. If you use a model-selection method and the final model contains only a
subset of the original regressors, the PARTIAL option still produces plots for all regressors in the full model.
If ODS Graphics is enabled, these plots are produced as high-resolution graphics, in panels with a maximum
of six partial regression leverage plots per panel. Multiple panels are displayed for models with more than six
regressors.

For a given regressor, the partial regression leverage plot is the plot of the dependent variable and the regressor
after they have been made orthogonal to the other regressors in the model. These can be obtained by plotting
the residuals for the dependent variable against the residuals for the selected regressor, where the residuals for
the dependent variable are calculated with the selected regressor omitted, and the residuals for the selected
regressor are calculated from a model where the selected regressor is regressed on the remaining regressors.
A line fit to the points has a slope equal to the parameter estimate in the full model.

When ODS Graphics is not enabled, points in the plot are marked by the number of replicates appearing at
one position. The symbol ‘*’ is used if there are 10 or more replicates. If an ID statement is specified, the
leftmost nonblank character in the value of the ID variable is used as the plotting symbol.
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The PARTIALDATA option in the MODEL statement produces a table that contains the partial regression
data that are displayed in the partial regression leverage plots. You can request partial regression data even if
you do not requests plots with the PARTIAL option.

The following statements use the fitness data in Example 85.2 with the PARTIAL option and ODS Graphics
to produce the partial regression leverage plots. The plots are shown in Figure 85.42.

ods graphics on;

proc reg data=fitness;
model Oxygen=RunTime Weight Age / partial;

run;

ods graphics off;

Figure 85.42 Partial Regression Leverage Plots
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Reweighting Observations in an Analysis
Reweighting observations is an interactive feature of PROC REG that enables you to change the weights of
observations used in computing the regression equation. Observations can also be deleted from the analysis
(not from the data set) by changing their weights to zero. In the following statements, the Sashelp.Class data
are used to illustrate some of the features of the REWEIGHT statement. First, the full model is fit, and the
residuals are displayed in Figure 85.43.

proc reg data=sashelp.Class;
model Weight=Age Height / p;
id Name;

run;

Figure 85.43 Full Model for Sashelp.Class Data, Residuals Shown

The REG Procedure
Model: MODEL1

Dependent Variable: Weight

The REG Procedure
Model: MODEL1

Dependent Variable: Weight

Output Statistics

Obs Name
Dependent

Variable
Predicted

Value Residual

1 Alfred 112.5 124.8686 -12.3686

2 Alice 84.0 78.6273 5.3727

3 Barbara 98.0 110.2812 -12.2812

4 Carol 102.5 102.5670 -0.0670

5 Henry 102.5 105.0849 -2.5849

6 James 83.0 80.2266 2.7734

7 Jane 84.5 89.2191 -4.7191

8 Janet 112.5 102.7663 9.7337

9 Jeffrey 84.0 100.2095 -16.2095

10 John 99.5 86.3415 13.1585

11 Joyce 50.5 57.3660 -6.8660

12 Judy 90.0 107.9625 -17.9625

13 Louise 77.0 76.6295 0.3705

14 Mary 112.0 117.1544 -5.1544

15 Philip 150.0 138.2164 11.7836

16 Robert 128.0 107.2043 20.7957

17 Ronald 133.0 118.9529 14.0471

18 Thomas 85.0 79.6676 5.3324

19 William 112.0 117.1544 -5.1544

Sum of Residuals 0

Sum of Squared Residuals 2120.09974

Predicted Residual SS (PRESS) 3272.72186
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Upon examining the data and residuals, you realize that observation 17 (Ronald) was mistakenly included
in the analysis. Also, you would like to examine the effect of reweighting to 0.5 those observations with
residuals that have absolute values greater than or equal to 17. The following statements show how you
request this reweighting:

reweight obs.=17;
reweight r. le -17 or r. ge 17 / weight=0.5;
print p;
run;

At this point, a message appears (in the log) that tells you which observations have been reweighted and what
the new weights are. Figure 85.44 is produced.

Figure 85.44 Model with Reweighted Observations

The REG Procedure
Model: MODEL1.2

Dependent Variable: Weight

The REG Procedure
Model: MODEL1.2

Dependent Variable: Weight

Output Statistics

Obs Name Weight
Dependent

Variable
Predicted

Value Residual

1 Alfred 1.0 112.5 121.6250 -9.1250

2 Alice 1.0 84.0 79.9296 4.0704

3 Barbara 1.0 98.0 107.5484 -9.5484

4 Carol 1.0 102.5 102.1663 0.3337

5 Henry 1.0 102.5 104.3632 -1.8632

6 James 1.0 83.0 79.9762 3.0238

7 Jane 1.0 84.5 87.8225 -3.3225

8 Janet 1.0 112.5 103.6889 8.8111

9 Jeffrey 1.0 84.0 98.7606 -14.7606

10 John 1.0 99.5 85.3117 14.1883

11 Joyce 1.0 50.5 58.6811 -8.1811

12 Judy 0.5 90.0 106.8740 -16.8740

13 Louise 1.0 77.0 76.8377 0.1623

14 Mary 1.0 112.0 116.2429 -4.2429

15 Philip 1.0 150.0 135.9688 14.0312

16 Robert 0.5 128.0 103.5150 24.4850

17 Ronald 0.0 133.0 117.8121 15.1879

18 Thomas 1.0 85.0 78.1398 6.8602

19 William 1.0 112.0 116.2429 -4.2429

Sum of Residuals 0

Sum of Squared Residuals 1500.61194

Predicted Residual SS (PRESS) 2287.57621

The first REWEIGHT statement excludes observation 17, and the second REWEIGHT statement reweights
observations 12 and 16 to 0.5. An important feature to note from this example is that the model is not refit
until after the PRINT statement. REWEIGHT statements do not cause the model to be refit. This is so that
multiple REWEIGHT statements can be applied to a subsequent model.
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In this example, since the intent is to reweight observations with large residuals, the observation that was
mistakenly included in the analysis should be deleted; then the model should be fit for those remaining
observations, and the observations with large residuals should be reweighted. To accomplish this, use the
REFIT statement. Note that the model label has been changed from MODEL1 to MODEL1.2 since two
REWEIGHT statements have been used. The following statements produce Figure 85.45:

reweight allobs / weight=1.0;
reweight obs.=17;
refit;
reweight r. le -17 or r. ge 17 / weight=.5;
print;
run;

Figure 85.45 Observations Excluded from Analysis, Model Refitted, and Observations Reweighted

The REG Procedure
Model: MODEL1.5

Dependent Variable: Weight

The REG Procedure
Model: MODEL1.5

Dependent Variable: Weight

Output Statistics

Obs Name Weight
Dependent

Variable
Predicted

Value Residual

1 Alfred 1.0 112.5 120.9716 -8.4716

2 Alice 1.0 84.0 79.5342 4.4658

3 Barbara 1.0 98.0 107.0746 -9.0746

4 Carol 1.0 102.5 101.5681 0.9319

5 Henry 1.0 102.5 103.7588 -1.2588

6 James 1.0 83.0 79.7204 3.2796

7 Jane 1.0 84.5 87.5443 -3.0443

8 Janet 1.0 112.5 102.9467 9.5533

9 Jeffrey 1.0 84.0 98.3117 -14.3117

10 John 1.0 99.5 85.0407 14.4593

11 Joyce 1.0 50.5 58.6253 -8.1253

12 Judy 1.0 90.0 106.2625 -16.2625

13 Louise 1.0 77.0 76.5908 0.4092

14 Mary 1.0 112.0 115.4651 -3.4651

15 Philip 1.0 150.0 134.9953 15.0047

16 Robert 0.5 128.0 103.1923 24.8077

17 Ronald 0.0 133.0 117.0299 15.9701

18 Thomas 1.0 85.0 78.0288 6.9712

19 William 1.0 112.0 115.4651 -3.4651

Sum of Residuals 0

Sum of Squared Residuals 1637.81879

Predicted Residual SS (PRESS) 2473.87984

Notice that this results in a slightly different model than the previous set of statements: only observation 16
is reweighted to 0.5. Also note that the model label is now MODEL1.5 since five REWEIGHT statements
have been used for this model.
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Another important feature of the REWEIGHT statement is the ability to nullify the effect of a previous or all
REWEIGHT statements. First, assume that you have several REWEIGHT statements in effect and you want
to restore the original weights of all the observations. The following REWEIGHT statement accomplishes
this and produces Figure 85.46:

reweight allobs / reset;
print;
run;

Figure 85.46 Restoring Weights of All Observations

The REG Procedure
Model: MODEL1.6

Dependent Variable: Weight

The REG Procedure
Model: MODEL1.6

Dependent Variable: Weight

Output Statistics

Obs Name
Dependent

Variable
Predicted

Value Residual

1 Alfred 112.5 124.8686 -12.3686

2 Alice 84.0 78.6273 5.3727

3 Barbara 98.0 110.2812 -12.2812

4 Carol 102.5 102.5670 -0.0670

5 Henry 102.5 105.0849 -2.5849

6 James 83.0 80.2266 2.7734

7 Jane 84.5 89.2191 -4.7191

8 Janet 112.5 102.7663 9.7337

9 Jeffrey 84.0 100.2095 -16.2095

10 John 99.5 86.3415 13.1585

11 Joyce 50.5 57.3660 -6.8660

12 Judy 90.0 107.9625 -17.9625

13 Louise 77.0 76.6295 0.3705

14 Mary 112.0 117.1544 -5.1544

15 Philip 150.0 138.2164 11.7836

16 Robert 128.0 107.2043 20.7957

17 Ronald 133.0 118.9529 14.0471

18 Thomas 85.0 79.6676 5.3324

19 William 112.0 117.1544 -5.1544

Sum of Residuals 0

Sum of Squared Residuals 2120.09974

Predicted Residual SS (PRESS) 3272.72186

The resulting model is identical to the original model specified at the beginning of this section. Notice that
the model label is now MODEL1.6. Note that the Weight column does not appear, since all observations
have been reweighted to have weight=1.

Now suppose you want only to undo the changes made by the most recent REWEIGHT statement. Use
REWEIGHT UNDO for this. The following statements produce Figure 85.47:
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reweight r. le -12 or r. ge 12 / weight=.75;
reweight r. le -17 or r. ge 17 / weight=.5;
reweight undo;
print;
run;

Figure 85.47 Example of UNDO in REWEIGHT Statement

The REG Procedure
Model: MODEL1.9

Dependent Variable: Weight

The REG Procedure
Model: MODEL1.9

Dependent Variable: Weight

Output Statistics

Obs Name Weight
Dependent

Variable
Predicted

Value Residual

1 Alfred 0.75 112.5 125.1152 -12.6152

2 Alice 1.00 84.0 78.7691 5.2309

3 Barbara 0.75 98.0 110.3236 -12.3236

4 Carol 1.00 102.5 102.8836 -0.3836

5 Henry 1.00 102.5 105.3936 -2.8936

6 James 1.00 83.0 80.1133 2.8867

7 Jane 1.00 84.5 89.0776 -4.5776

8 Janet 1.00 112.5 103.3322 9.1678

9 Jeffrey 0.75 84.0 100.2835 -16.2835

10 John 0.75 99.5 86.2090 13.2910

11 Joyce 1.00 50.5 57.0745 -6.5745

12 Judy 0.75 90.0 108.2622 -18.2622

13 Louise 1.00 77.0 76.5275 0.4725

14 Mary 1.00 112.0 117.6752 -5.6752

15 Philip 1.00 150.0 138.9211 11.0789

16 Robert 0.75 128.0 107.0063 20.9937

17 Ronald 0.75 133.0 119.4681 13.5319

18 Thomas 1.00 85.0 79.3061 5.6939

19 William 1.00 112.0 117.6752 -5.6752

Sum of Residuals 0

Sum of Squared Residuals 1694.87114

Predicted Residual SS (PRESS) 2547.22751

The resulting model reflects changes made only by the first REWEIGHT statement since the third REWEIGHT
statement negates the effect of the second REWEIGHT statement. Observations 1, 3, 9, 10, 12, 16, and 17
have their weights changed to 0.75. Note that the label MODEL1.9 reflects the use of nine REWEIGHT
statements for the current model.
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Now suppose you want to reset the observations selected by the most recent REWEIGHT statement to their
original weights. Use the REWEIGHT statement with the RESET option to do this. The following statements
produce Figure 85.48:

reweight r. le -12 or r. ge 12 / weight=.75;
reweight r. le -17 or r. ge 17 / weight=.5;
reweight / reset;
print;
run;

Figure 85.48 REWEIGHT Statement with RESET option

The REG Procedure
Model: MODEL1.12

Dependent Variable: Weight

The REG Procedure
Model: MODEL1.12

Dependent Variable: Weight

Output Statistics

Obs Name Weight
Dependent

Variable
Predicted

Value Residual

1 Alfred 0.75 112.5 126.0076 -13.5076

2 Alice 1.00 84.0 77.8727 6.1273

3 Barbara 0.75 98.0 111.2805 -13.2805

4 Carol 1.00 102.5 102.4703 0.0297

5 Henry 1.00 102.5 105.1278 -2.6278

6 James 1.00 83.0 80.2290 2.7710

7 Jane 1.00 84.5 89.7199 -5.2199

8 Janet 1.00 112.5 102.0122 10.4878

9 Jeffrey 0.75 84.0 100.6507 -16.6507

10 John 0.75 99.5 86.6828 12.8172

11 Joyce 1.00 50.5 56.7703 -6.2703

12 Judy 1.00 90.0 108.1649 -18.1649

13 Louise 1.00 77.0 76.4327 0.5673

14 Mary 1.00 112.0 117.1975 -5.1975

15 Philip 1.00 150.0 138.7581 11.2419

16 Robert 1.00 128.0 108.7016 19.2984

17 Ronald 0.75 133.0 119.0957 13.9043

18 Thomas 1.00 85.0 80.3076 4.6924

19 William 1.00 112.0 117.1975 -5.1975

Sum of Residuals 0

Sum of Squared Residuals 1879.08980

Predicted Residual SS (PRESS) 2959.57279

Note that observations that meet the condition of the second REWEIGHT statement (residuals with an
absolute value greater than or equal to 17) now have weights reset to their original value of 1. Observations 1,
3, 9, 10, and 17 have weights of 0.75, but observations 12 and 16 (which meet the condition of the second
REWEIGHT statement) have their weights reset to 1.

Notice how the last three examples show three ways to change weights back to a previous value. In the
first example, ALLOBS and the RESET option are used to change weights for all observations back to
their original values. In the second example, the UNDO option is used to negate the effect of a previous
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REWEIGHT statement, thus changing weights for observations selected in the previous REWEIGHT
statement to the weights specified in still another REWEIGHT statement. In the third example, the RESET
option is used to change weights for observations selected in a previous REWEIGHT statement back to their
original values. Finally, note that the label MODEL1.12 indicates that 12 REWEIGHT statements have been
applied to the original model.

Testing for Heteroscedasticity
The regression model is specified as yi D xiˇ C �i , where the �i ’s are identically and independently
distributed: E.�/ D 0 and E.�0�/ D �2I. If the �i ’s are not independent or their variances are not constant,
the parameter estimates are unbiased, but the estimate of the covariance matrix is inconsistent.

In the case of heteroscedasticity, if the regression data are from a simple random sample, then White (1980),
showed that matrix

HC0 D .X0X/�1.X0diag.e2i /X/.X
0X/�1

where

ei D yi � xib

is an asymptotically consistent estimate of the covariance matrix. MacKinnon and White (1985) introduced
three alternative heteroscedasticity-consistent covariance matrix estimators that are all asymptotically equiva-
lent to the estimator HC0 but that typically have better small sample behavior. These estimators labeled HC1,
HC2, and HC3 are defined as follows:

HC1 D
n

n � p
HC0

where n is the number of observations and p is the number of regressors including the intercept.

HC2 D .X0X/�1X0diag.
e2i

1 � hi i
/X.X0X/�1

where

hi i D xi .X0X/�1x0i

is the leverage of the ith observation.

HC3 D .X0X/�1X0diag.
e2i

.1 � hi i /2
/X.X0X/�1
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Long and Ervin (2000) studied the performance of these estimators and recommend using the HC3 estimator
if the sample size is less than 250.

You can use the HCCMETHOD=0,1,2, or 3 in the MODEL statement to select a heteroscedasticity-consistent
covariance matrix estimator, with HC0 being the default. The ACOV option in the MODEL statement
displays the heteroscedasticity-consistent covariance matrix estimator in effect and adds heteroscedasticity-
consistent standard errors, also known as White standard errors, to the parameter estimates table. If you
specify the HCC or WHITE option in the MODEL statement, but do not also specify the ACOV option,
then the heteroscedasticity-consistent standard errors are added to the parameter estimates table but the
heteroscedasticity- consistent covariance matrix is not displayed.

The SPEC option performs a model specification test. The null hypothesis for this test maintains that the
errors are homoscedastic and independent of the regressors and that several technical assumptions about
the model specification are valid. For details, see theorem 2 and assumptions 1–7 of White (1980). When
the model is correctly specified and the errors are independent of the regressors, the rejection of this null
hypothesis is evidence of heteroscedasticity. In implementing this test, an estimator of the average covariance
matrix (White 1980, p. 822) is constructed and inverted. The nonsingularity of this matrix is one of the
assumptions in the null hypothesis about the model specification. When PROC REG determines this matrix
to be numerically singular, a generalized inverse is used and a note to this effect is written to the log. In such
cases, care should be taken in interpreting the results of this test.

When you specify the SPEC, ACOV, HCC, or WHITE option in the MODEL statement, tests listed in the
TEST statement are performed with both the usual covariance matrix and the heteroscedasticity-consistent
covariance matrix requested with the HCCMETHOD= option. Tests performed with the consistent covariance
matrix are asymptotic. For more information, see White (1980).

Both the ACOV and SPEC options can be specified in a MODEL or PRINT statement.

Testing for Lack of Fit
The test for lack of fit compares the variation around the model with “pure” variation within replicated
observations. This measures the adequacy of the specified model. In particular, if there are ni replicated
observations Yi1; : : : ; Yini of the response all at the same values xi of the regressors, then you can predict
the true response at xi either by using the predicted value OYi based on the model or by using the mean NYi
of the replicated values. The test for lack of fit decomposes the residual error into a component due to the
variation of the replications around their mean value (the “pure” error) and a component due to the variation
of the mean values around the model prediction (the “bias” error):

X
i

niX
jD1

�
Yij � OYi

�2
D

X
i

niX
jD1

�
Yij � NYi

�2
C

X
i

ni

�
NYi � OYi

�2
If the model is adequate, then both components estimate the nominal level of error; however, if the bias
component of error is much larger than the pure error, then this constitutes evidence that there is significant
lack of fit.

If some observations in your design are replicated, you can test for lack of fit by specifying the LACKFIT
option in the MODEL statement (see Example 85.6). Note that, since all other tests use total error rather
than pure error, you might want to hand-calculate the tests with respect to pure error if the lack of fit is
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significant. On the other hand, significant lack of fit indicates that the specified model is inadequate, so if this
is a problem you can also try to refine the model.

Multivariate Tests
The MTEST statement described in the section “MTEST Statement” on page 7025 can test hypotheses
involving several dependent variables in the form

.Lˇ � cj/M D 0

where L is a linear function on the regressor side, ˇ is a matrix of parameters, c is a column vector of
constants, j is a row vector of ones, and M is a linear function on the dependent side. The special case where
the constants are zero is

LˇM D 0

To test this hypothesis, PROC REG constructs two matrices called H and E that correspond to the numerator
and denominator of a univariate F test:

H D M0.LB � cj/0.L.X0X/�L0/�1.LB � cj/M

E D M0.Y0Y � B0.X0X/B/M

These matrices are displayed for each MTEST statement if the PRINT option is specified.

Four test statistics based on the eigenvalues of E�1H or .ECH/�1H are formed. These are Wilks’ lambda,
Pillai’s trace, the Hotelling-Lawley trace, and Roy’s greatest root. These test statistics are discussed in
Chapter 4, “Introduction to Regression Procedures.”

The following code creates MANOVA data from Morrison (1976):

* Manova Data from Morrison (1976, 190);
data a;

input sex $ drug $ @;
do rep=1 to 4;

input y1 y2 @;
sexcode=(sex='m')-(sex='f');
drug1=(drug='a')-(drug='c');
drug2=(drug='b')-(drug='c');
sexdrug1=sexcode*drug1;
sexdrug2=sexcode*drug2;
output;

end;
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datalines;
m a 5 6 5 4 9 9 7 6
m b 7 6 7 7 9 12 6 8
m c 21 15 14 11 17 12 12 10
f a 7 10 6 6 9 7 8 10
f b 10 13 8 7 7 6 6 9
f c 16 12 14 9 14 8 10 5
;

The following statements perform a multivariate analysis of variance and produce Figure 85.49 through
Figure 85.52:

proc reg;
model y1 y2=sexcode drug1 drug2 sexdrug1 sexdrug2;
y1y2drug: mtest y1=y2, drug1,drug2;
drugshow: mtest drug1, drug2 / print canprint;

run;

Figure 85.49 Multivariate Analysis of Variance: REG Procedure

The REG Procedure
Model: MODEL1

Dependent Variable: y1

The REG Procedure
Model: MODEL1

Dependent Variable: y1

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 5 316.00000 63.20000 12.04 <.0001

Error 18 94.50000 5.25000

Corrected Total 23 410.50000

Root MSE 2.29129 R-Square 0.7698

Dependent Mean 9.75000 Adj R-Sq 0.7058

Coeff Var 23.50039

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 9.75000 0.46771 20.85 <.0001

sexcode 1 0.16667 0.46771 0.36 0.7257

drug1 1 -2.75000 0.66144 -4.16 0.0006

drug2 1 -2.25000 0.66144 -3.40 0.0032

sexdrug1 1 -0.66667 0.66144 -1.01 0.3269

sexdrug2 1 -0.41667 0.66144 -0.63 0.5366

Figure 85.50 Multivariate Analysis of Variance: REG Procedure

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 5 69.33333 13.86667 2.19 0.1008

Error 18 114.00000 6.33333

Corrected Total 23 183.33333
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Figure 85.50 continued

Root MSE 2.51661 R-Square 0.3782

Dependent Mean 8.66667 Adj R-Sq 0.2055

Coeff Var 29.03782

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 8.66667 0.51370 16.87 <.0001

sexcode 1 0.16667 0.51370 0.32 0.7493

drug1 1 -1.41667 0.72648 -1.95 0.0669

drug2 1 -0.16667 0.72648 -0.23 0.8211

sexdrug1 1 -1.16667 0.72648 -1.61 0.1257

sexdrug2 1 -0.41667 0.72648 -0.57 0.5734

Figure 85.51 Multivariate Analysis of Variance: First Test

The REG Procedure
Model: MODEL1

Multivariate Test: y1y2drug

The REG Procedure
Model: MODEL1

Multivariate Test: y1y2drug

Multivariate Statistics and Exact F Statistics

S=1    M=0    N=8

Statistic Value F Value Num DF Den DF Pr > F

Wilks' Lambda 0.28053917 23.08 2 18 <.0001

Pillai's Trace 0.71946083 23.08 2 18 <.0001

Hotelling-Lawley Trace 2.56456456 23.08 2 18 <.0001

Roy's Greatest Root 2.56456456 23.08 2 18 <.0001

The four multivariate test statistics are all highly significant, giving strong evidence that the coefficients of
drug1 and drug2 are not the same across dependent variables y1 and y2.

Figure 85.52 Multivariate Analysis of Variance: Second Test

The REG Procedure
Model: MODEL1

Multivariate Test: drugshow

The REG Procedure
Model: MODEL1

Multivariate Test: drugshow

Error Matrix (E)

94.5 76.5

76.5 114

Hypothesis Matrix (H)

301 97.5

97.5 36.333333333
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Figure 85.52 continued

Eigenvalues of Inv(E)*H
= CanRsq/(1-CanRsq)

Canonical
Correlation

Adjusted
Canonical
Correlation

Approximate
Standard

Error

Squared
Canonical
Correlation Eigenvalue Difference Proportion Cumulative

1 0.905903 0.899927 0.040101 0.820661 4.5760 4.5125 0.9863 0.9863

2 0.244371 . 0.210254 0.059717 0.0635 0.0137 1.0000

Test of H0: The canonical correlations in the current row and all that follow are zero

Likelihood
Ratio

Approximate
F Value NumDF Den DF Pr > F

1 0.16862952 12.20 4 34 <.0001

2 0.94028273 1.14 1 18 0.2991

Multivariate Statistics and F Approximations

S=2    M=-0.5    N=7.5

Statistic Value F Value Num DF Den DF Pr > F

Wilks' Lambda 0.16862952 12.20 4 34 <.0001

Pillai's Trace 0.88037810 7.08 4 36 0.0003

Hotelling-Lawley Trace 4.63953666 19.40 4 19.407 <.0001

Roy's Greatest Root 4.57602675 41.18 2 18 <.0001

NOTE: F Statistic for Roy's Greatest Root is an upper bound.

NOTE: F Statistic for Wilks' Lambda is exact.

The four multivariate test statistics are all highly significant, giving strong evidence that the coefficients of
drug1 and drug2 are not zero for both dependent variables.

Autocorrelation in Time Series Data
When regression is performed on time series data, the errors might not be independent. Often errors are
autocorrelated; that is, each error is correlated with the error immediately before it. Autocorrelation is also a
symptom of systematic lack of fit. The DW option provides the Durbin-Watson d statistic to test that the
autocorrelation is zero:

d D

Pn
iD2.ei � ei�1/

2Pn
iD1 e

2
i

The value of d is close to 2 if the errors are uncorrelated. The distribution of d is reported by Durbin and
Watson (1951). Tables of the distribution are found in most econometrics textbooks, such as Johnston (1972)
and Pindyck and Rubinfeld (1981).

The sample autocorrelation estimate is displayed after the Durbin-Watson statistic. The sample is computed
as

r D

Pn
iD2 eiei�1Pn
iD1 e

2
i
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This autocorrelation of the residuals might not be a very good estimate of the autocorrelation of the true
errors, especially if there are few observations and the independent variables have certain patterns. If there
are missing observations in the regression, these measures are computed as though the missing observations
did not exist.

Positive autocorrelation of the errors generally tends to make the estimate of the error variance too small, so
confidence intervals are too narrow and true null hypotheses are rejected with a higher probability than the
stated significance level. Negative autocorrelation of the errors generally tends to make the estimate of the
error variance too large, so confidence intervals are too wide and the power of significance tests is reduced.
With either positive or negative autocorrelation, least squares parameter estimates are usually not as efficient
as generalized least squares parameter estimates. For more details, see Judge et al. (1985, Chapter 8) and the
SAS/ETS User’s Guide.

The following SAS statements request the DWPROB option for the U.S. population data (see Figure 85.53).
If you use the DW option instead of the DWPROB option, then p-values are not produced.

proc reg data=USPopulation;
model Population=Year YearSq / dwProb;

run;

Figure 85.53 Regression Using DW Option

The REG Procedure
Model: MODEL1

Dependent Variable: Population

The REG Procedure
Model: MODEL1

Dependent Variable: Population

Durbin-Watson D 1.191

Pr < DW 0.0050

Pr > DW 0.9950

Number of Observations 22

1st Order Autocorrelation 0.323

Computations for Ridge Regression and IPC Analysis
In ridge regression analysis, the crossproduct matrix for the independent variables is centered (the NOINT
option is ignored if it is specified) and scaled to one on the diagonal elements. The ridge constant k (specified
with the RIDGE= option) is then added to each diagonal element of the crossproduct matrix. The ridge
regression estimates are the least squares estimates obtained by using the new crossproduct matrix.

Let X be an n � p matrix of the independent variables after centering the data, and let Y be an n � 1 vector
corresponding to the dependent variable. Let D be a p � p diagonal matrix with diagonal elements as in
X0X. The ridge regression estimate corresponding to the ridge constant k can be computed as

D�
1
2 .Z0ZC kIp/�1Z0Y

where Z D XD�
1
2 and Ip is a p�p identity matrix.

For IPC analysis, the smallest m eigenvalues of Z0Z (where m is specified with the PCOMIT= option) are
omitted to form the estimates.

For information about ridge regression and IPC standardized parameter estimates, parameter estimate standard
errors, and variance inflation factors, see Rawlings, Pantula, and Dickey (1998); Neter, Wasserman, and
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Kutner (1990); Marquardt and Snee (1975). Unlike Rawlings, Pantula, and Dickey (1998), the REG procedure
uses the mean squared errors of the submodels instead of the full model MSE to compute the standard errors
of the parameter estimates.

Construction of Q-Q and P-P Plots
If a normal probability-probability or quantile-quantile plot for the variable x is requested, the n nonmissing
values of x are first ordered from smallest to largest:

x.1/ � x.2/ � � � � � x.n/

If a Q-Q plot is requested (with a PLOT statement of the form PLOT yvariable*NQQ.), the ith-ordered
value x.i/ is represented by a point with y-coordinate x.i/ and x-coordinate ˆ�1

�
i�0:375
nC0:25

�
, where ˆ.�/ is

the standard normal distribution.

If a P-P plot is requested (with a PLOT statement of the form PLOT yvariable*NPP.), the ith-ordered
value x.i/ is represented by a point with y-coordinate i

n
and x-coordinate ˆ

�x.i/��
�

�
, where � is the

mean of the nonmissing x-values and � is the standard deviation. If an x-value has multiplicity k (that is,
x.i/ D � � � D x.iCk�1/), then only the point

�
ˆ
�x.i/��

�

�
; iCk�1

n

�
is displayed.

Computational Methods
The REG procedure first composes a crossproducts matrix. The matrix can be calculated from input
data, reformed from an input correlation matrix, or read in from an SSCP data set. For each model, the
procedure selects the appropriate crossproducts from the main matrix. The normal equations formed from
the crossproducts are solved by using a sweep algorithm (Goodnight 1979). The method is accurate for data
that are reasonably scaled and not too collinear.

The mechanism that PROC REG uses to check for singularity involves the diagonal (pivot) elements of X0X
as it is being swept. If a pivot is less than SINGULAR*CSS, then a singularity is declared and the pivot is not
swept (where CSS is the corrected sum of squares for the regressor and SINGULAR is machine dependent
but is approximately 1E–7 on most machines or reset in the PROC REG statement).

The sweep algorithm is also used in many places in the model-selection methods. The RSQUARE method
uses the leaps-and-bounds algorithm by Furnival and Wilson (1974).

Computer Resources in Regression Analysis
The REG procedure is efficient for ordinary regression; however, requests for optional features can greatly
increase the amount of time required.

The major computational expense in the regression analysis is the collection of the crossproducts matrix.
For p variables and n observations, the time required is proportional to np2. For each model run, PROC
REG needs time roughly proportional to k3, where k is the number of regressors in the model. Include an
additional nk2 for the R, CLM, or CLI option and another nk2 for the INFLUENCE option.
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Most of the memory that PROC REG needs to solve large problems is used for crossproducts matrices. PROC
REG requires 4p2 bytes for the main crossproducts matrix plus 4k2 bytes for the largest model. If several
output data sets are requested, memory is also needed for buffers.

See the section “Input Data Sets” on page 7037 for information about how to use TYPE=SSCP data sets to
reduce computing time.

Displayed Output
Many of the more specialized tables are described in detail in previous sections. Most of the formulas for
the statistics are in Chapter 4, “Introduction to Regression Procedures,” while other formulas can be found
in the section “Model Fit and Diagnostic Statistics” on page 7062 and the section “Influence Statistics” on
page 7064.

The analysis-of-variance table includes the following:

• the Source of the variation, Model for the fitted regression, Error for the residual error, and C Total for
the total variation after correcting for the mean. The Uncorrected Total Variation is produced when the
NOINT option is used.

• the degrees of freedom (DF) associated with the source

• the Sum of Squares for the term

• the Mean Square, the sum of squares divided by the degrees of freedom

• the F Value for testing the hypothesis that all parameters are zero except for the intercept. This is
formed by dividing the mean square for Model by the mean square for Error.

• the Prob>F, the probability of getting a greater F statistic than that observed if the hypothesis is true.
This is the significance probability.

Other statistics displayed include the following:

• Root MSE is an estimate of the standard deviation of the error term. It is calculated as the square root
of the mean square error.

• Dep Mean is the sample mean of the dependent variable.

• C.V. is the coefficient of variation, computed as 100 times Root MSE divided by Dep Mean. This
expresses the variation in unitless values.

• R-square is a measure between 0 and 1 that indicates the portion of the (corrected) total variation that is
attributed to the fit rather than left to residual error. It is calculated as SS(Model) divided by SS(Total).
It is also called the coefficient of determination. It is the square of the multiple correlation—in other
words, the square of the correlation between the dependent variable and the predicted values.
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• Adj R-square, the adjusted R square, is a version of R square that has been adjusted for degrees of
freedom. It is calculated as

NR2 D 1 �
.n � i/.1 �R2/

n � p

where i is equal to 1 if there is an intercept and 0 otherwise, n is the number of observations used to fit
the model, and p is the number of parameters in the model.

The parameter estimates and associated statistics are then displayed, and they include the following:

• the Variable used as the regressor, including the name Intercept to represent the estimate of the intercept
parameter

• the degrees of freedom (DF) for the variable. There is one degree of freedom unless the model is not
full rank.

• the Parameter Estimate

• the Standard Error, the estimate of the standard deviation of the parameter estimate

• T for H0: Parameter=0, the t test that the parameter is zero. This is computed as the Parameter Estimate
divided by the Standard Error.

• the Prob > |T|, the probability that a t statistic would obtain a greater absolute value than that observed
given that the true parameter is zero. This is the two-tailed significance probability.

If model-selection methods other than NONE, RSQUARE, ADJRSQ, and CP are used, the analysis-of-
variance table and the parameter estimates with associated statistics are produced at each step. Also displayed
are the following:

• C(p), which is Mallows’ Cp statistic

• bounds on the condition number of the correlation matrix for the variables in the model (Berk 1977)

After statistics for the final model are produced, the following is displayed when the method chosen is
FORWARD, BACKWARD, or STEPWISE:

• a Summary table listing Step number, Variable Entered or Removed, Partial and Model R-square, and
C(p) and F statistics

The RSQUARE method displays its results beginning with the model containing the fewest independent
variables and producing the largest R square. Results for other models with the same number of variables are
then shown in order of decreasing R square, and so on, for models with larger numbers of variables. The
ADJRSQ and CP methods group models of all sizes together and display results beginning with the model
having the optimal value of adjusted R square and Cp, respectively.
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For each model considered, the RSQUARE, ADJRSQ, and CP methods display the following:

• Number in Model or IN, the number of independent variables used in each model

• R-square or RSQ, the squared multiple correlation coefficient

If the B option is specified, the RSQUARE, ADJRSQ, and CP methods produce the following:

• Parameter Estimates, the estimated regression coefficients

If the B option is not specified, the RSQUARE, ADJRSQ, and CP methods display the following:

• Variables in Model, the names of the independent variables included in the model

Plot Options Superseded by ODS Graphics
You can select one of the following three types of graphics in PROC REG: ODS, traditional, and line printer.
ODS Graphics is the preferred method of creating graphs, superseding the other two. This section describes
the options that are available on the PROC REG, PAINT, and PLOT statements for traditional and line printer
graphics.

When ODS Graphics is enabled, you can use the PLOTS= option in the PROC REG statement to create plots
by using ODS Graphics. For more information about ODS Graphics options see the PLOTS= option in the
section “Syntax: REG Procedure” on page 6996.

If ODS Graphics is not enabled and you specify the LINEPRINTER option, line printer plots are produced;
otherwise traditional graphics are produced.

Table 85.9 summarizes the options available in the PROC REG statement for line printer and traditional
graphics.

Table 85.9 PROC REG Statement Traditional Graphics and Line
Printer Options

Option Description

ANNOTATE= Specifies an annotation data set
GOUT= Specifies the graphics catalog in which graphics output is saved
LINEPRINTER Creates printer plots
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The following options are used to produce line printer and traditional graphics:

ANNOTATE=SAS-data-set

ANNO=SAS-data-set
specifies an input data set containing annotate variables, as described in SAS/GRAPH: Reference. You
can use this data set to add features to the traditional graphics that you request with the PLOT statement.
Features provided in this data set are applied to all plots produced in the current run of PROC REG.
To add features to individual plots, use the ANNOTATE= option in the PLOT statement. This option
cannot be used if the LINEPRINTER option is specified.

GOUT=graphics-catalog
specifies the graphics catalog in which traditional graphics output is saved. The default graphics-catalog
is WORK.GSEG. The GOUT= option cannot be used if the LINEPRINTER option is specified.

LINEPRINTER | LP
creates printer plots. If you do not specify this option, requested plots are created on a high-resolution
graphics device. See the PLOTS= option for information about using ODS graphics to create modern
statistical graphics.

PAINT Statement

PAINT < condition | ALLOBS > < / options > ;

PAINT < STATUS | UNDO > ;

The PAINT statement is used with line printer plots. See the PLOTS= option for information about using
ODS graphics to create modern statistical graphics.

The PAINT statement selects observations to be painted or highlighted in a scatter plot on line printer output;
the PAINT statement is ignored if the LINEPRINTER option is not specified in the PROC REG statement.

All observations that satisfy condition are painted using some specific symbol. The PAINT statement does
not generate a scatter plot and must be followed by a PLOT statement, which does generate a scatter plot.
Several PAINT statements can be used before a PLOT statement, and all prior PAINT statement requests are
applied to all later PLOT statements.

The PAINT statement lists the observation numbers of the observations selected, the total number of
observations selected, and the plotting symbol used to paint the points.

On a plot, paint symbols take precedence over all other symbols. If any position contains more than one
painted point, the paint symbol for the observation plotted last is used.

The PAINT statement cannot be used when a TYPE=CORR, TYPE=COV, or TYPE=SSCP data set is used
as the input data set for PROC REG. Also, the PAINT statement cannot be used for models with more than
one dependent variable. Note that the syntax for the PAINT statement is the same as the syntax for the
REWEIGHT statement.
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Specifying Condition
Condition is used to select observations to be painted. The syntax of condition is

variable compare value

or

variable compare value logical variable compare value

where

variable is one of the following:

• a variable name in the input data set

• OBS., which is the observation number

• keyword ., where keyword is a keyword for a statistic requested in the OUTPUT statement

compare is an operator that compares variable to value. Compare can be any one of the following: <, <=,
>, >=, =, ˆ =. The operators LT, LE, GT, GE, EQ, and NE, respectively, can be used instead of
the preceding symbols. See the “Expressions” section in SAS Language Reference: Concepts for
more information about comparison operators.

value gives an unformatted value of variable. Observations are selected to be painted if they satisfy the
condition created by variable compare value. Value can be a number or a character string. If
value is a character string, it must be eight characters or less and must be enclosed in quotes. In
addition, value is case-sensitive. In other words, the statements

paint name='henry';

and

paint name='Henry';

are not the same.

logical is one of two logical operators. Either AND or OR can be used. To specify AND, use AND or
the symbol &. To specify OR, use OR or the symbol |.

Here are some examples of the variable compare value form:

paint name='Henry';
paint residual.>=20;
paint obs.=99;

Here are some examples of the variable compare value logical variable compare value form:

paint name='Henry'|name='Mary';
paint residual.>=20 or residual.<=10;
paint obs.>=11 and residual.<=20;
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Using ALLOBS
Instead of specifying condition, the ALLOBS option can be used to select all observations. This is most
useful when you want to unpaint all observations. For example,

paint allobs / reset;

resets the symbols for all observations.

Options in the PAINT Statement
The following options can be used when either a condition is specified, the ALLOBS option is specified,
or nothing is specified before the slash. If only an option is listed, the option applies to the observations
selected in the previous PAINT statement, not to the observations selected by reapplying the condition from
the previous PAINT statement. For example, in the statements

paint r.>0 / symbol='a';
reweight r.>0;
refit;
paint / symbol='b';

the second PAINT statement paints only those observations selected in the first PAINT statement. No
additional observations are painted even if, after refitting the model, there are new observations that meet the
condition in the first PAINT statement.

NOTE: Options are not available when either the UNDO or STATUS option is used.

You can specify the following options after a slash (/).

NOLIST
suppresses the display of the selected observation numbers. If the NOLIST option is not specified,
a list of observations selected is written to the log. The list includes the observation numbers and
painting symbol used to paint the points. The total number of observations selected to be painted is
also shown.

RESET
changes the painting symbol to the current default symbol, effectively unpainting the observations
selected. If you set the default symbol by using the SYMBOL= option in the PLOT statement, the
RESET option in the PAINT statement changes the painting symbol to the symbol you specified.
Otherwise, the default symbol of ‘1’ is used.

SYMBOL=’character’
specifies a painting symbol. If the SYMBOL= option is omitted, the painting symbol is either the one
used in the most recent PAINT statement or, if there are no previous PAINT statements, the symbol
‘@’. For example,

paint / symbol='#';

changes the painting symbol for the observations selected by the most recent PAINT statement to ‘#’.
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As another example,

paint temp lt 22 / symbol='c';

changes the painting symbol to ‘c’ for all observations with TEMP<22. In general, the numbers
1, 2, . . . , 9 and the asterisk are not recommended as painting symbols. These symbols are used as
default symbols in the PLOT statement, where they represent the number of replicates at a point. If
SYMBOL=‘’ is used, no painting is done in the current plot. If SYMBOL=‘ ’ is used, observations are
painted with a blank and are no longer seen on the plot.

STATUS and UNDO
Instead of specifying condition or the ALLOBS option, you can use the STATUS or UNDO option as follows:

STATUS
lists (in the log) the observation number and plotting symbol of all currently painted observations.

UNDO
undoes changes made by the most recent PAINT statement. Observations might be, but are not
necessarily, unpainted. For example:

paint obs. <=10 / symbol='a';
...other interactive statements
paint obs.=1 / symbol='b';
...other interactive statements
paint undo;

The last PAINT statement changes the plotting symbol used for observation 1 back to ‘a’. If the
statement

paint / reset;

is used instead, observation 1 is unpainted.

PLOT Statement

PLOT < yvariable� xvariable > < =symbol > < . . . yvariable� xvariable > < =symbol > < / options > ;

The PLOT statement is used with line printer and traditional graphics. See the PLOTS= option for information
about using ODS graphics to create modern statistical graphics.

The PLOT statement in PROC REG displays scatter plots with yvariable on the vertical axis and xvariable
on the horizontal axis. Line printer plots are generated if the LINEPRINTER option is specified in the PROC
REG statement; otherwise, the traditional graphics are created. Points in line printer plots can be marked
with symbols, while global graphics statements such as GOPTIONS and SYMBOL are used to enhance the
traditional graphics. Note that the plots you request by using the PLOT statement are independent of the
ODS graphical displays (see the section “ODS Graphics” on page 7106) that are available in PROC REG.

As with most other interactive statements, the PLOT statement implicitly refits the model. For example, if a
PLOT statement is preceded by a REWEIGHT statement, the model is recomputed, and the plot reflects the
new model.
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If there are multiple MODEL statements preceding a PLOT statement, then the PLOT statement refers to the
latest MODEL statement.

The PLOT statement cannot be used when a TYPE=CORR, TYPE=COV, or TYPE=SSCP data set is used as
input to PROC REG.

You can specify several PLOT statements for each MODEL statement, and you can specify more than one
plot in each PLOT statement.

Specifying Yvariables, Xvariables, and Symbol
More than one yvariable*xvariable pair can be specified to request multiple plots. The yvariables and
xvariables can be as follows:

• any variables specified in the VAR or MODEL statement before the first RUN statement

• keyword ., where keyword is a regression diagnostic statistic available in the OUTPUT statement (see
Table 85.10). For example,

plot predicted.*residual.;

generates one plot of the predicted values by the residuals for each dependent variable in the MODEL
statement. These statistics can also be plotted against any of the variables in the VAR or MODEL
statements.

• the keyword OBS. (the observation number), which can be plotted against any of the preceding
variables

• the keyword NPP. or NQQ., which can be used with any of the preceding variables to construct normal
P-P or Q-Q plots, respectively (see the section “Construction of Q-Q and P-P Plots” on page 7085 for
more information)

• keywords for model fit summary statistics available in the OUTEST= data set with _TYPE_= PARMS
(see Table 85.10). A SELECTION= method (other than NONE) must be requested in the MODEL
statement for these variables to be plotted. If one member of a yvariable*xvariable pair is from the
OUTEST= data set, the other member must also be from the OUTEST= data set.

The OUTPUT statement and the OUTEST= option are not required when their keywords are specified in the
PLOT statement.

The yvariable and xvariable specifications can be replaced by a set of variables and statistics enclosed in
parentheses. When this occurs, all possible combinations of yvariable and xvariable are generated. For
example, the following two statements are equivalent:

plot (y1 y2)*(x1 x2);
plot y1*x1 y1*x2 y2*x1 y2*x2;
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The statement

plot;

is equivalent to respecifying the most recent PLOT statement without any options. However, the line printer
options COLLECT, HPLOTS=, SYMBOL=, and VPLOTS=, described in the section “Line Printer Plots” on
page 7101, apply across PLOT statements and remain in effect if they have been previously specified.

Options used for the traditional graphics are described in the following section; see “Line Printer Plots” on
page 7101 for more information.

Traditional Graphics
The display of traditional graphics is described in the following paragraphs, the options are summarized in
Table 85.10 and described in the section “Dictionary of PLOT Statement Options” on page 7097.

Several line printer statements and options are not supported for the traditional graphics. In particular
the PAINT statement is disabled, as are the PLOT statement options CLEAR, COLLECT, HPLOTS=,
NOCOLLECT, SYMBOL=, and VPLOTS=. To display more than one plot per page or to collect plots from
multiple PLOT statements, use the PROC GREPLAY statement (see SAS/GRAPH: Reference). Also note
that traditional graphics options are not recognized for line printer plots.

The fitted model equation and a label are displayed in the top margin of the plot; this display can be suppressed
with the NOMODEL option. If the label is requested but cannot fit on one line, it is not displayed. The
equation and label are displayed on one line when possible; if more lines are required, the label is displayed
in the first line with the model equation in successive lines. If displaying the entire equation causes the plot
to be unacceptably small, the equation is truncated. Table 85.11 lists options to control the display of the
equation.

Four statistics are displayed by default in the right margin: the number of observations, R square, the adjusted
R square, and the root mean square error. The display of these statistics can be suppressed with the NOSTAT
option. You can specify other options to request the display of various statistics in the right margin; see
Table 85.11.

A default reference line at zero is displayed if residuals are plotted. If the dependent variable is plotted
against the independent variable in a simple linear regression model, the fitted regression line is displayed by
default. Default reference lines can be suppressed with the NOLINE option; the lines are not displayed if the
OVERLAY option is specified.

Specialized plots are requested with special options. For each coefficient, the RIDGEPLOT option plots
the ridge estimates against the ridge values k; see the description of the RIDGEPLOT option in the section
“Dictionary of PLOT Statement Options” on page 7097 for more details. The CONF option plots 100.1�˛/%
confidence intervals for the mean while the PRED option plots 100.1 � ˛/% prediction intervals; see the
description of these options in the section “Dictionary of PLOT Statement Options” on page 7097 for more
details.

If a SELECTION= method is requested, the fitted model equation and the statistics displayed in the margin
correspond to the selected model. For the ADJRSQ and CP methods, the selected model is treated as a
submodel of the full model. If a CP.*NP. plot is requested, the CHOCKING= and CMALLOWS= options
display model selection reference lines; see the descriptions of these options in the section “Dictionary of
PLOT Statement Options” on page 7097 for more details.

PLOT Statement variable Keywords The following table lists the keywords available as PLOT statement
xvariables and yvariables. All keywords have a trailing dot; for example, “COOKD.” requests Cook’s D
statistic. Neither the OUTPUT statement nor the OUTEST= option needs to be specified.
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Table 85.10 Keywords for PLOT Statement xvariables

Keyword Description

Diagnostic Statistics
COOKD. Cook’s D influence statistics
COVRATIO. standard influence of observation on covariance of betas
DFFITS. standard influence of observation on predicted value
H. leverage
LCL. lower bound of 100.1 � ˛/% confidence interval for individual

prediction
LCLM. lower bound of 100.1 � ˛/% confidence interval for the mean of

the dependent variable
PREDICTED.
| PRED. | P.

predicted values

PRESS. residuals from refitting the model with current observation deleted
RESIDUAL. | R. residuals
RSTUDENT. studentized residuals with the current observation deleted
STDI. standard error of the individual predicted value
STDP. standard error of the mean predicted value
STDR. standard error of the residual
STUDENT. residuals divided by their standard errors
UCL. upper bound of 100.1 � ˛/% confidence interval for individual

prediction
UCLM. upper bound of 100.1 � ˛/% confidence interval for the mean of

the dependent variables

Other Keywords Used with Diagnostic Statistics
NPP. normal probability-probability plot
NQQ. normal quantile-quantile plot
OBS. observation number (cannot plot against OUTEST= statistics)

Model Fit Summary Statistics
ADJRSQ. adjusted R-square
AIC. Akaike’s information criterion
BIC. Sawa’s Bayesian information criterion
CP. Mallows’ Cp statistic
EDF. error degrees of freedom
GMSEP. estimated MSE of prediction, assuming multivariate normality
IN. number of regressors in the model not including the intercept
JP. final prediction error
MSE. mean squared error
NP. number of parameters in the model (including the intercept)
PC. Amemiya’s prediction criterion
RMSE. root MSE
RSQ. R-square
SBC. SBC statistic
SP. SP statistic
SSE. error sum of squares
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Summary of PLOT Statement Graphics Options Table 85.11 summarizes the options available in the
PLOT statement. These options are available unless the LINEPRINTER option is specified in the PROC
REG statement. For complete descriptions, see the section “Dictionary of PLOT Statement Options” on
page 7097.

Table 85.11 Traditional Graphics Options

Option Description

General Graphics Options
ANNOTATE=
SAS-data-set

Specifies the annotate data set

CHOCKING=color Requests a reference line for Cp model selection criteria
CMALLOWS=color Requests a reference line for the Cp model selection criterion
CONF Requests plots of 100.1 � ˛/% confidence intervals for the mean
DESCRIPTION=
’string’

Specifies a description for graphics catalog member

NAME=’string’ Names the plot in the graphics catalog
OVERLAY Overlays plots from the same model
PRED Requests plots of 100.1 � ˛/% prediction intervals for individual

responses
RIDGEPLOT Requests the ridge trace for ridge regression

Axis and Legend Options
LEGEND=LEGENDn Specifies LEGEND statement to be used
NOLEGEND Suppresses display of the legend
HAXIS=values Specifies tick mark values for horizontal axis
VAXIS=values Specifies tick mark values for vertical axis

Reference Line Options
HREF=values Specifies reference lines perpendicular to horizontal axis
LHREF=linetype Specifies line style for HREF= lines
LLINE=linetype Specifies line style for lines displayed by default
LVREF=linetype Specifies line style for VREF= lines
NOLINE Suppresses display of any default reference line
VREF=values Specifies reference lines perpendicular to vertical axis

Color Options
CAXIS=color Specifies color for axis line and tick marks
CFRAME=color Specifies color for frame
CHREF=color Specifies color for HREF= lines
CLINE=color Specifies color for lines displayed by default
CTEXT=color Specifies color for text
CVREF=color Specifies color for VREF= lines

Options for Displaying the Fitted Model Equation
MODELFONT=font Specifies font of model equation and model label
MODELHT=value Specifies text height of model equation and model label
MODELLAB=’label’ Specifies model label
NOMODEL Suppresses display of the fitted model and the label

Options for Displaying Statistics in the Plot Margin
AIC Displays Akaike’s information criterion
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Table 85.11 continued

Option Description

BIC Displays Sawa’s Bayesian information criterion
CP Displays Mallows’ Cp statistic
EDF Displays the error degrees of freedom
GMSEP Displays the estimated MSE of prediction assuming

multivariate normality
IN Displays the number of regressors in the model not including

the intercept
JP Displays the Jp statistic
MSE Displays the mean squared error
NOSTAT Suppresses display of the default statistics: the number of

observations, R-square, adjusted R-square, and
root mean square error

NP Displays the number of parameters in the model including the
intercept, if any

PC Displays the PC statistic
SBC Displays the SBC statistic
SP Displays the Sp statistic
SSE Displays the error sum of squares
STATFONT=font Specifies font of text displayed in the margin
STATHT=value Specifies height of text displayed in the margin

Dictionary of PLOT Statement Options The following entries describe the PLOT statement options in
detail. Note that these options are available unless you specify the LINEPRINTER option in the PROC REG
statement.

AIC
displays Akaike’s information criterion in the plot margin.

ANNOTATE=SAS-data-set

ANNO=SAS-data-set
specifies an input data set that contains appropriate variables for annotation. This applies only to
displays created with the current PLOT statement. See SAS/GRAPH: Reference for more information.

BIC
displays Sawa’s Bayesian information criterion in the plot margin.

CAXIS=color

CAXES=color

CA=color
specifies the color for the axes, frame, and tick marks.

CFRAME=color

CFR=color
specifies the color for filling the area enclosed by the axes and the frame.
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CHOCKING=color
requests reference lines corresponding to the equations Cp D p and Cp D 2p � pfull , where pfull is
the number of parameters in the full model (excluding the intercept) and p is the number of parameters
in the subset model (including the intercept). The color must be specified; the Cp D p line is solid
and the Cp D 2p � pfull line is dashed. Only PLOT statements of the form PLOT CP.*NP. produce
these lines.

For the purpose of parameter estimation, Hocking (1976) suggests selecting a model where Cp �
2p � pfull . For the purpose of prediction, Hocking suggests the criterion Cp � p. You can request
the single reference line Cp D p with the CMALLOWS= option. If, for example, you specify both
CHOCKING=RED and CMALLOWS=BLUE, then the Cp D 2p � pfull line is red and the Cp D p
line is blue.

CHREF=color

CH=color
specifies the color for lines requested with the HREF= option.

CLINE=color

CL=color
specifies the color for lines displayed by default. See the NOLINE option for details.

CMALLOWS=color
requests a Cp D p reference line, where p is the number of parameters (including the intercept) in the
subset model. The color must be specified; the line is solid. Only PLOT statements of the form PLOT
CP.*NP. produce this line.

Mallows (1973) suggests that all subset models with Cp small and near p be considered for further
study. See the CHOCKING= option for related model-selection criteria.

CONF
is a keyword used as a shorthand option to request plots that include .100 � ˛/% confidence intervals
for the mean response. The ALPHA= option in the PROC REG or MODEL statement selects the
significance level ˛, which is 0.05 by default. The CONF option is valid for simple regression models
only, and is ignored for plots where confidence intervals are inappropriate. The CONF option replaces
the CONF95 option; however, the CONF95 option is still supported when the ALPHA= option is not
specified. The OVERLAY option is ignored when the CONF option is specified.

CP
displays Mallows’ Cp statistic in the plot margin.

CTEXT=color

CT=color
specifies the color for text including tick mark labels, axis labels, the fitted model label and equation,
the statistics displayed in the margin, and legends.

CVREF=color

CV=color
specifies the color for lines requested with the VREF= option.
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DESCRIPTION=’string ’

DESC=’string ’
specifies a descriptive string, up to 40 characters, that appears in the description field of the PROC
GREPLAY master menu.

EDF
displays the error degrees of freedom in the plot margin.

GMSEP
displays the estimated mean square error of prediction in the plot margin. Note that the estimate is
calculated under the assumption that both independent and dependent variables have a multivariate
normal distribution.

HAXIS=values

HA=values
specifies tick mark values for the horizontal axis.

HREF=values
specifies where reference lines perpendicular to the horizontal axis are to appear.

IN
displays the number of regressors in the model (not including the intercept) in the plot margin.

JP
displays the Jp statistic in the plot margin.

LEGEND=LEGENDn
specifies the LEGENDn statement to be used. The LEGENDn statement is a global graphics statement;
see SAS/GRAPH: Reference for more information.

LHREF=linetype

LH=linetype
specifies the line style for lines requested with the HREF= option. The default linetype is 2. Note that
LHREF=1 requests a solid line. See SAS/GRAPH: Reference for a table of available line types.

LLINE=linetype

LL=linetype
specifies the line style for reference lines displayed by default; see the NOLINE option for details. The
default linetype is 2. Note that LLINE=1 requests a solid line.

LVREF=linetype

LV=linetype
specifies the line style for lines requested with the VREF= option. The default linetype is 2. Note that
LVREF=1 requests a solid line.

MODELFONT=font
specifies the font used for displaying the fitted model label and the fitted model equation. See
SAS/GRAPH: Reference for tables of software fonts.
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MODELHT=height
specifies the text height for the fitted model label and the fitted model equation.

MODELLAB=’label ’
specifies the label to be displayed with the fitted model equation. By default, no label is displayed.
If the label does not fit on one line, it is not displayed. See the section “Traditional Graphics” on
page 7094 for more information.

MSE
displays the mean squared error in the plot margin.

NAME=’string ’
specifies a descriptive string, up to eight characters, that appears in the name field of the PROC
GREPLAY master menu. The default string is REG.

NOLEGEND
suppresses the display of the legend.

NOLINE
suppresses the display of default reference lines. A default reference line at zero is displayed if
residuals are plotted. If the dependent variable is plotted against the independent variable in a simple
regression model, then the fitted regression line is displayed by default. Default reference lines are not
displayed if the OVERLAY option is specified.

NOMODEL
suppresses the display of the fitted model equation.

NOSTAT
suppresses the display of statistics in the plot margin. By default, the number of observations, R-square,
adjusted R-square, and root MSE are displayed.

NP
displays the number of regressors in the model including the intercept, if any, in the plot margin.

OVERLAY
overlays all plots specified in the PLOT statement from the same model on one set of axes. The
variables for the first plot label the axes. The procedure automatically scales the axes to fit all of the
variables unless the HAXIS= or VAXIS= option is used. Default reference lines are not displayed. A
default legend is produced; the LEGEND= option can be used to customize the legend.

PC
displays the PC statistic in the plot margin.

PRED
is a keyword used as a shorthand option to request plots that include .100 � ˛/% prediction intervals
for individual responses. The ALPHA= option in the PROC REG or MODEL statement selects the
significance level ˛, which is 0.05 by default. The PRED option is valid for simple regression models
only, and is ignored for plots where prediction intervals are inappropriate. The PRED option replaces
the PRED95 option; however, the PRED95 option is still supported when the ALPHA= option is not
specified. The OVERLAY option is ignored when the PRED option is specified.
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RIDGEPLOT
creates overlaid plots of ridge estimates against ridge values for each coefficient. The points corre-
sponding to the estimates of each coefficient in the plot are connected by lines. For ridge estimates to
be computed and plotted, the OUTEST= option must be specified in the PROC REG statement, and
the RIDGE=list must be specified in either the PROC REG or MODEL statement.

SBC
displays the SBC statistic in the plot margin.

SP
displays the Sp statistic in the plot margin.

SSE
displays the error sum of squares in the plot margin.

STATFONT=font
specifies the font used for displaying the statistics that appear in the plot margin. See SAS/GRAPH:
Reference for tables of software fonts.

STATHT=height
specifies the text height of the statistics that appear in the plot margin.

USEALL
specifies that predicted values at data points with missing dependent variable(s) be included on
appropriate plots. By default, only points used in constructing the SSCP matrix appear on plots.

VAXIS=values

VA=values
specifies tick mark values for the vertical axis.

VREF=values
specifies where reference lines perpendicular to the vertical axis are to appear.

Line Printer Plots
Line printer plots are requested with the LINEPRINTER option in the PROC REG statement. Points in line
printer plots can be marked with symbols, which can be specified as a single character enclosed in quotes or
the name of any variable in the input data set.

If a character variable is used for the symbol, the first (leftmost) nonblank character in the formatted value
of the variable is used as the plotting symbol. If a character in quotes is specified, that character becomes
the plotting symbol. If a character is used as the plotting symbol, and if there are different plotting symbols
needed at the same point, the symbol ‘?’ is used at that point.

If an unformatted numeric variable is used for the symbol, the symbols ‘1’, ‘2’, . . . , ‘9’ are used for variable
values 1, 2, . . . , 9. For noninteger values, only the integer portion is used as the plotting symbol. For values
of 10 or greater, the symbol ‘*’ is used. For negative values, a ‘?’ is used. If a numeric variable is used, and
if there is more than one plotting symbol needed at the same point, the sum of the variable values is used at
that point. If the sum exceeds 9, the symbol ‘*’ is used.

If a symbol is not specified, the number of replicates at the point is displayed. The symbol ‘*’ is used if there
are 10 or more replicates.
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If the LINEPRINTER option is used, you can specify the following options in the PLOT statement after a
slash (/):

CLEAR
clears any collected scatter plots before plotting begins but does not turn off the COLLECT option.
Use this option when you want to begin a new collection with the plots in the current PLOT statement.
For more information about collecting plots, see the COLLECT and NOCOLLECT options in this
section.

COLLECT
specifies that plots begin to be collected from one PLOT statement to the next and that subsequent
plots show an overlay of all collected plots. This option enables you to overlay plots before and after
changes to the model or to the data used to fit the model. Plots collected before changes are unaffected
by the changes and can be overlaid on later plots. You can request more than one plot with this option,
and you do not need to request the same number of plots in subsequent PLOT statements. If you
specify an unequal number of plots, plots in corresponding positions are overlaid. For example, the
statements

plot residual.*predicted. y*x / collect;
run;

produce two plots. If these statements are then followed by

plot residual.*x;
run;

two plots are again produced. The first plot shows residual against X values overlaid on residual against
predicted values. The second plot is the same as that produced by the first PLOT statement.

Axes are scaled for the first plot or plots collected. The axes are not rescaled as more plots are collected.

Once specified, the COLLECT option remains in effect until the NOCOLLECT option is specified.

HPLOTS=number
sets the number of scatter plots that can be displayed across the page. The procedure begins with one
plot per page. The value of the HPLOTS= option remains in effect until you change it in a later PLOT
statement. See the VPLOTS= option for an example.

NOCOLLECT
specifies that the collection of scatter plots ends after adding the plots in the current PLOT statement.
PROC REG starts with the NOCOLLECT option in effect. After you specify the NOCOLLECT option,
any following PLOT statement produces a new plot that contains only the plots requested by that PLOT
statement.

For more information, see the COLLECT option.

OVERLAY
enables requested scatter plots to be superimposed. The axes are scaled so that points on all plots are
shown. If the HPLOTS= or VPLOTS= option is set to more than one, the overlaid plot occupies the first
position on the page. The OVERLAY option is similar to the COLLECT option in that both options
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produce superimposed plots. However, OVERLAY superimposes only the plots in the associated PLOT
statement; COLLECT superimposes plots across PLOT statements. The OVERLAY option can be
used when the COLLECT option is in effect.

SYMBOL=’character ’
changes the default plotting symbol used for all scatter plots produced in the current and in subsequent
PLOT statements. Both SYMBOL=‘’ and SYMBOL=‘ ’ are allowed.

If the SYMBOL= option has not been specified, the default symbol is ‘1’ for positions with one
observation, ‘2’ for positions with two observations, and so on. For positions with more than 9
observations, ‘*’ is used. The SYMBOL= option (or a plotting symbol) is needed to avoid any
confusion caused by this default convention. Specifying a particular symbol is especially important
when either the OVERLAY or COLLECT option is being used.

If you specify the SYMBOL= option and use a number for character , that number is used for all points
in the plot. For example, the statement

plot y*x / symbol='1';

produces a plot with the symbol ‘1’ used for all points.

If you specify a plotting symbol and the SYMBOL= option, the plotting symbol overrides the SYM-
BOL= option. For example, in the statements

plot y*x y*v='.' / symbol='*';

the symbol used for the plot of Y against X is ‘*’, and a ‘.’ is used for the plot of Y against V.

If a paint symbol is defined with a PAINT statement, the paint symbol takes precedence over both the
SYMBOL= option and the default plotting symbol for the PLOT statement.

VPLOTS=number
sets the number of scatter plots that can be displayed down the page. The procedure begins with one
plot per page. The value of the VPLOTS= option remains in effect until you change it in a later PLOT
statement.

For example, to specify a total of six plots per page, with two rows of three plots, use the HPLOTS=
and VPLOTS= options as follows:

plot y1*x1 y1*x2 y1*x3 y2*x1 y2*x2 y2*x3 /
hplots=3 vplots=2;

run;
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ODS Table Names
PROC REG assigns a name to each table it creates. You can use these names to reference the table when
using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in
the following table. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

Table 85.12 ODS Tables Produced by PROC REG

ODS Table Name Description Statement Option

ACovEst Consistent covariance of
estimates matrix

MODEL ALL, ACOV

ACovTestANOVA Test ANOVA using ACOV
estimates

TEST ACOV (MODEL statement)

ANOVA Model ANOVA table MODEL Default
CanCorr Canonical correlations for

hypothesis combinations
MTEST CANPRINT

CollinDiag Collinearity Diagnostics
table

MODEL COLLIN

CollinDiagNoInt Collinearity Diagnostics for
no intercept model

MODEL COLLINOINT

ConditionBounds Bounds on condition
number

MODEL (SELECTION=BACKWARD
| FORWARD | STEPWISE
| MAXR | MINR) and
DETAILS

Corr Correlation matrix for
analysis variables

PROC ALL, CORR

CorrB Correlation of estimates MODEL CORRB
CovB Covariance of estimates MODEL COVB
CrossProducts Bordered model X’X matrix MODEL ALL, XPX
DWStatistic Durbin-Watson statistic MODEL ALL, DW
DependenceEquations Linear dependence

equations
MODEL Default if needed

Eigenvalues MTest eigenvalues MTEST CANPRINT
Eigenvectors MTest eigenvectors MTEST CANPRINT
EntryStatistics Entry statistics for selection

methods
MODEL (SELECTION=BACKWARD

| FORWARD | STEPWISE
| MAXR | MINR) and
DETAILS

ErrorPlusHypothesis MTest error plus hypothesis
matrix H+E

MTEST PRINT

ErrorSSCP MTest error matrix E MTEST PRINT
FitStatistics Model fit statistics MODEL Default
HypothesisSSCP MTest hypothesis matrix MTEST PRINT
InvMTestCov Inv(L Ginv(X’X) L’) and

Inv(Lb-c)
MTEST DETAILS
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Table 85.12 continued

ODS Table Name Description Statement Option

InvTestCov Inv(L Ginv(X’X) L’) and
Inv(Lb-c)

TEST PRINT

InvXPX Bordered X’X inverse matrix MODEL I
MTestCov L Ginv(X’X) L’ and Lb-c MTEST DETAILS
MTransform MTest matrix M, across

dependents
MTEST DETAILS

MultStat Multivariate test statistics MTEST Default
NObs Number of observations Default
OutputStatistics Output statistics table MODEL ALL, CLI, CLM,

INFLUENCE, P, R
PartialData Partial regression leverage

data
MODEL PARTIALDATA

ParameterEstimates Model parameter estimates MODEL Default if SELECTION= is
not specified

RemovalStatistics Removal statistics for
selection methods

MODEL (SELECTION=BACKWARD
| STEPWISE | MAXR |
MINR) and DETAILS

ResidualStatistics Residual statistics and
PRESS statistic

MODEL ALL, CLI, CLM,
INFLUENCE, P, R

SelParmEst Parameter estimates for
selection methods

MODEL SELECTION=BACKWARD
| FORWARD | STEPWISE |
MAXR | MINR

SelectionSummary Selection summary for
FORWARD, BACKWARD,
and STEPWISE methods

MODEL SELECTION=BACKWARD
| FORWARD | STEPWISE

SeqParmEst Sequential parameter
estimates

MODEL SEQB

SimpleStatistics Simple statistics for analysis
variables

PROC ALL, SIMPLE

SpecTest White’s heteroscedasticity
test

MODEL ALL, SPEC

SubsetSelSummary Selection summary for
R-square, Adj-RSq, and
Cp methods

MODEL SELECTION=RSQUARE |
ADJRSQ | CP

TestANOVA Test ANOVA table TEST Default
TestCov L Ginv(X’X) L’ and Lb-c TEST PRINT
USSCP Uncorrected SSCP matrix for

analysis variables
PROC ALL, USSCP
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ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

The following sections describe the ODS graphical displays produced by PROC REG.

Diagnostics Panel

The “Diagnostics Panel” provides a display that you can use to get an overall assessment of your model. See
Figure 85.9 for an example.

The panel contains the following plots:

• residuals versus the predicted values

• externally studentized residuals (RSTUDENT) versus the predicted values

• externally studentized residuals versus the leverage

• normal quantile-quantile plot (Q-Q plot) of the residuals

• dependent variable values versus the predicted values

• Cook’s D versus observation number

• histogram of the residuals

• “Residual-Fit” (or RF) plot consisting of side-by-side quantile plots of the centered fit and the residuals

• box plot of the residuals if you specify the STATS=NONE suboption

Patterns in the plots of residuals or studentized residuals versus the predicted values, or spread of the residuals
being greater than the spread of the centered fit in the RF plot, are indications of an inadequate model.
Patterns in the spread about the 45-degree reference line in the plot of the dependent variable values versus
the predicted values are also indications of an inadequate model.

The Q-Q plot, residual histogram, and box plot of the residuals are useful for diagnosing violations of the
normality and homoscedasticity assumptions. If the data in a Q-Q plot come from a normal distribution, the
points will cluster tightly around the reference line. A normal density is overlaid on the residual histogram to
help in detecting departures form normality.



ODS Graphics F 7107

Following Rawlings, Pantula, and Dickey (1998), reference lines are shown on the relevant plots to identify
observations deemed outliers or influential. Observations whose externally studentized residual magnitudes
exceed 2 are deemed outliers. Observations whose leverage value exceeds 2p=n or whose Cook’s D value
exceeds 4=n are deemed influential (p is the number of regressors including the intercept, and n is the number
of observations used in the analysis). If you specify the LABEL suboption of the PLOTS=DIAGNOSTICS
option, then the points deemed outliers or influential are labeled on the appropriate plots.

Fit statistics are shown in the lower right of the plot and can be customized or suppressed by using the
STATS= suboption of the PLOTS=DIAGNOSTICS option.

Residuals by Regressor Plots

Panels of plots of the residuals versus each of the regressors in the model are produced by default. Patterns in
these plots are indications of an inadequate model. To help in detecting patterns, you can use the SMOOTH=
suboption of the PLOTS=RESIDUALS option to add loess fits to these residual plots. See Figure 85.1.7 for
an example.

Fit and Prediction Plots

A fit plot consisting of a scatter plot of the data overlaid with the regression line, as well as confidence and
prediction limits, is produced for models depending on a single regressor. Fit statistics are shown to the right
of the plot and can be customized or suppressed by using the STATS= suboption of the PLOTS=FIT option.

When a model contains more than one regressor, a fit plot is not appropriate. However, if all the regressors
in the model are transformations of a single variable in the input data set, then you can request a scatter
plot of the dependent variable overlaid with a fit line and confidence and prediction limits versus this
variable. You can also plot residuals versus this variable. You request these plots, shown in a panel, with the
PLOTS=PREDICTION option. See Figure 85.14 for an example.

Influence Plots

In addition to the “Cook’s D Plot” and the “RStudent By Leverage Plot,” you can request plots of the DFBE-
TAS and DFFITS statistics versus observation number by using the PLOTS=DFBETAS and PLOTS=DFFITS
options. You can also obtain partial regression leverage plots by using the PLOTS=PARTIAL option. See the
section “Influence Statistics” on page 7064 for examples of these plots and details about their interpretation.

Ridge and VIF Plots

When you use ridge regression, you can request plots of the variance inflation factor (VIF) values and
standardized ridge estimates by ridge values for each coefficient with the PLOTS=RIDGE option. See
Example 85.5 for examples.
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Variable Selection Plots

When you request variable selection by using the SELECTION= option in the MODEL statement, you can
request plots of fit criteria for the models examined by using the PLOTS=CRITERIA option. The fit criteria
are displayed versus the step number for the FORWARD, BACKWARD, and STEPWISE selection methods
and the step at which the optimal value of each criterion is obtained is indicated using a “Star” marker. For
the all-subset-based selection methods (SELECTION=RSQUARE|ADJRSQ|CP), the fit criteria are displayed
versus the number of observations in the model.

The criteria are shown in a panel, but you can use the UNPACK suboption of the PLOTS=CRITERIA option
to obtain separate plots for each criterion. You can also use the LABEL suboption of the PLOTS=CRITERIA
option to request that optimal models be labeled on the plots. Example 85.2 provides several examples.

Heat Maps

PROC REG can produce either fit and residual scatter plots for smaller data sets or heat maps for larger data
sets. The global plot option MAXPOINTS=max heat-max controls which of these are produced. When the
number of points exceeds the value of max but does not exceed the value of heat-max divided by the number
of independent variables, heat maps are displayed instead of scatter plots for the fit and residual plots. All
other graphs are suppressed when the number of points exceeds max . The default is MAXPOINTS=5000
150000. These cutoffs are ignored if you specify MAXPOINTS=NONE. The following statements create
both scatter plots and heat maps with artificial data:

data x;
do i = 1 to 25000;

x = 2 * normal(104);
y = x + sin(x * 2) + 3 * normal(104);
output;

end;
run;

ods graphics on;

proc reg data=x plots(maxpoints=30000);
model y = x;

run; quit;

proc reg data=x;
model y = x;

run; quit;

Scatter plots are displayed in Output 85.54, and heat maps are displayed in Output 85.55.
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Figure 85.54 Scatter Plot
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Figure 85.55 Heat Map
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The heat maps show more clearly that the sine function is not fit well by the linear fit function.

ODS Graph Names

PROC REG assigns a name to each graph it creates using ODS. You can use these names to reference the
graphs when using ODS. The names are listed in Table 85.13.

Table 85.13 ODS Graphical Displays Produced by PROC REG

ODS Graph Name Plot Description PLOTS Option

AdjrsqPlot Adjusted R-square statistic for mod-
els examined doing variable selection

ADJRSQ

AICPlot AIC statistic for models examined
doing variable selection

AIC

BICPlot BIC statistic for models examined do-
ing variable selection

BIC

CooksDChart Cook’s D chart PLOTS=RESIDUALCHART(UNPACK)
CooksDPlot Cook’s D statistic versus observation

number
COOKSD

CPPlot Cp statistic for models examined do-
ing variable selection

CP

DFFITSPlot DFFITS statistics versus observation
number

DFFITS

DFBETASPanel Panel of DFBETAS statistics versus
observation number

DFBETAS

DFBETASPlot DFBETAS statistics versus observa-
tion number

DFBETAS(UNPACK)

DiagnosticsPanel Panel of fit diagnostics DIAGNOSTICS
FitPlot Regression line, confidence limits,

and prediction limits overlaid on a
scatter plot of the data

FIT, MAXPOINTS=max not exceeded

FitPlot Regression line overlaid on a heat
map of the data

FIT, MAXPOINTS=max exceeded

ObservedByPredicted Dependent variable versus predicted
values

OBSERVEDBYPREDICTED

PartialPlot Partial regression plot PARTIAL
PredictionPanel Panel of residuals and fit versus spec-

ified variable
PREDICTIONS

PredictionPlot Regression line, confidence limits,
and prediction limits versus specified
variable

PREDICTIONS(UNPACK)

PredictionResidualPlot Residuals versus specified variable PREDICTIONS(UNPACK)
QQPlot Normal quantile plot of residuals QQ
ResidualBoxPlot Box plot of residuals BOXPLOT
ResidualByPredicted Residuals versus predicted values RESIDUALBYPREDICTED
ResidualHistogram Histogram of fit residuals RESIDUALHISTOGRAM
ResidualPlot Scatter plot of residuals versus re-

gressor
RESIDUALS, MAXPOINTS=max
not exceeded
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Table 85.13 continued

ODS Graph Name Plot Description PLOTS Option

ResidualPlot Heat map of residuals versus regres-
sor

RESIDUALS, MAXPOINTS=max ex-
ceeded

RFPlot Side-by-side plots of quantiles of cen-
tered fit and residuals

RF

RidgePanel Plot of VIF and ridge traces RIDGE
RidgePlot Plot of ridge traces RIDGE(UNPACK)
RSquarePlot R-square statistic for models exam-

ined doing variable selection
RSQUARE

RStudentByLeverage Studentized residuals versus leverage RSTUDENTBYLEVERAGE
RStudentByPredicted Studentized residuals versus pre-

dicted values
RSTUDENTBYPREDICTED

SBCPlot SBC statistic for models examined
doing variable selection

SBC

SelectionCriterionPanel Panel of fit statistics for models ex-
amined doing variable selection

CRITERIA

StudResCooksDChart Studentized residual and Cook’s D
chart

PLOTS=RESIDUALCHART

StudentResChart Studentized residual chart PLOTS=RESIDUALCHART(UNPACK)
VIFPlot Plot of VIF traces RIDGE(UNPACK)

Examples: REG Procedure

Example 85.1: Modeling Salaries of Major League Baseball Players
This example features the use of ODS Graphics in the process of building models by using the REG procedure
and highlights the use of fit and influence diagnostics.

The Sashelp.Baseball data set contains salary and performance information for Major League Baseball
players who played at least one game in both the 1986 and 1987 seasons, excluding pitchers. The salaries
(Sports Illustrated, April 20, 1987) are for the 1987 season and the performance measures are from 1986
(Collier Books, The 1987 Baseball Encyclopedia Update). The following step displays in Output 85.1.1 the
variables in the data set:

proc contents varnum data=sashelp.baseball;
ods select position;

run;
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Output 85.1.1 Sashelp.Baseball Data Set

The CONTENTS ProcedureThe CONTENTS Procedure

Variables in Creation Order

# Variable Type Len Label

1 Name Char 18 Player's Name

2 Team Char 14 Team at the End of 1986

3 nAtBat Num 8 Times at Bat in 1986

4 nHits Num 8 Hits in 1986

5 nHome Num 8 Home Runs in 1986

6 nRuns Num 8 Runs in 1986

7 nRBI Num 8 RBIs in 1986

8 nBB Num 8 Walks in 1986

9 YrMajor Num 8 Years in the Major Leagues

10 CrAtBat Num 8 Career Times at Bat

11 CrHits Num 8 Career Hits

12 CrHome Num 8 Career Home Runs

13 CrRuns Num 8 Career Runs

14 CrRbi Num 8 Career RBIs

15 CrBB Num 8 Career Walks

16 League Char 8 League at the End of 1986

17 Division Char 8 Division at the End of 1986

18 Position Char 8 Position(s) in 1986

19 nOuts Num 8 Put Outs in 1986

20 nAssts Num 8 Assists in 1986

21 nError Num 8 Errors in 1986

22 Salary Num 8 1987 Salary in $ Thousands

23 Div Char 16 League and Division

24 logSalary Num 8 Log Salary

Suppose you want to investigate whether you can model the players’ salaries for the 1987 season based on
batting statistics for the previous season and lifetime batting performance. Since the variation in salaries
is much greater for higher salaries, it is appropriate to apply a log transformation for this analysis. The
following statements begin the analysis:

ods graphics on;

proc reg data=sashelp.baseball;
id name team league;
model logSalary = nhits nruns nrbi nbb yrmajor crhits;

run;

Output 85.1.2 shows the default output produced by PROC REG. The number of observations table shows
that 59 observations are excluded because they have missing values for at least one of the variables used in
the analysis. The analysis of variance and parameter estimates tables provide details about the fitted model.



7114 F Chapter 85: The REG Procedure

Output 85.1.2 Default Output from PROC REG

The REG Procedure
Model: MODEL1

Dependent Variable: logSalary Log Salary

The REG Procedure
Model: MODEL1

Dependent Variable: logSalary Log Salary

Number of Observations Read 322

Number of Observations Used 263

Number of Observations with Missing Values 59

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 6 121.53052 20.25509 60.56 <.0001

Error 256 85.62322 0.33447

Corrected Total 262 207.15373

Root MSE 0.57833 R-Square 0.5867

Dependent Mean 5.92722 Adj R-Sq 0.5770

Coeff Var 9.75719

Parameter Estimates

Variable Label DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept Intercept 1 4.14614 0.13612 30.46 <.0001

nHits Hits in 1986 1 0.00663 0.00210 3.15 0.0018

nRuns Runs in 1986 1 0.00019890 0.00398 0.05 0.9602

nRBI RBIs in 1986 1 0.00125 0.00235 0.53 0.5947

nBB Walks in 1986 1 0.00672 0.00239 2.81 0.0054

YrMajor Years in the Major Leagues 1 0.07108 0.01925 3.69 0.0003

CrHits Career Hits 1 0.00023910 0.00014571 1.64 0.1020

Before you accept a regression model, it is important to examine influence and fit diagnostics to see whether
the model might be unduly influenced by a few observations and whether the data support the assumptions
that underlie the linear regression. To facilitate such investigations, you can obtain diagnostic plots by
enabling ODS Graphics.
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Output 85.1.3 Fit Diagnostics

Output 85.1.3 shows a panel of diagnostic plots. The plot of externally studentized residuals (RStudent) by
leverage values reveals that there is one observation with very high leverage that might be overly influencing
the fit produced. The plot of Cook’s D by observation also indicates two highly influential observations.
To investigate further, you can use the PLOTS= option in the PROC REG statement as follows to produce
labeled versions of these plots:
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proc reg data=sashelp.baseball
plots(only label)=(RStudentByLeverage CooksD);

id name team league;
model logSalary = nhits nruns nrbi nbb yrmajor crhits;

run;

Output 85.1.4 and Output 85.1.5 reveal that Pete Rose is the highly influential observation. You might obtain
a better fit to the remaining data if you omit his statistics when building the model.

Output 85.1.4 Outlier and Leverage Diagnostics
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Output 85.1.5 Cook’s D

The following statements use a WHERE statement to omit Pete Rose’s statistics when building the model.
An alternative way to do this within PROC REG is to use a REWEIGHT statement. See “Reweighting
Observations in an Analysis” on page 7072 for details about reweighting.

proc reg data=sashelp.baseball
plots=(RStudentByLeverage(label) residuals(smooth));

where name^="Rose, Pete";
id name team league;
model logSalary = nhits nruns nrbi nbb yrmajor crhits;

run;
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Output 85.1.6 shows the new fit diagnostics panel. You can see that there are still several influential and
outlying observations. One possible reason for observing outliers is that the linear model specified is not
appropriate to capture the variation in this data. You can often see evidence of an inappropriate model by
observing patterns in plots of residuals.

Output 85.1.6 Fit Diagnostics

Output 85.1.7 shows plots of the residuals by the regressors in the model. When you specify the RESIDU-
ALS(SMOOTH) suboption of the PLOTS option in the PROC REG statement, a loess fit is overlaid on each
of these plots. You can see the same clear pattern in the residual plots for YrMajor and CrHits. Players near
the start of their careers and players near the end of their careers get paid less than the model predicts.
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Output 85.1.7 Residuals by Regressors

You can address this lack of fit by using polynomials of degree 2 for these two variables as shown in the
following statements:

data baseball;
set sashelp.baseball(where=(name^="Rose, Pete"));
YrMajor2 = yrmajor*yrmajor;
CrHits2 = crhits*crhits;

run;

proc reg data=baseball
plots=(diagnostics(stats=none) RStudentByLeverage(label)

CooksD(label) Residuals(smooth)
DFFITS(label) DFBETAS ObservedByPredicted(label));

id name team league;
model logSalary = nhits nruns nrbi nbb yrmajor crhits

yrmajor2 crhits2;
run;
ods graphics off;



7120 F Chapter 85: The REG Procedure

Output 85.1.8 shows the analysis of variance and parameter estimates for this model. Note that the R-square
value of 0.787 for this model is considerably larger than the R-square value of 0.587 for the initial model
shown in Output 85.1.2.

Output 85.1.8 Output from PROC REG

The REG Procedure
Model: MODEL1

Dependent Variable: logSalary Log Salary

The REG Procedure
Model: MODEL1

Dependent Variable: logSalary Log Salary

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 8 162.73473 20.34184 117.13 <.0001

Error 253 43.93712 0.17366

Corrected Total 261 206.67186

Root MSE 0.41673 R-Square 0.7874

Dependent Mean 5.92458 Adj R-Sq 0.7807

Coeff Var 7.03393

Parameter Estimates

Variable Label DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept Intercept 1 3.78922 0.11581 32.72 <.0001

nHits Hits in 1986 1 -0.00012753 0.00159 -0.08 0.9363

nRuns Runs in 1986 1 0.00215 0.00288 0.75 0.4549

nRBI RBIs in 1986 1 0.00431 0.00172 2.51 0.0127

nBB Walks in 1986 1 0.00501 0.00173 2.90 0.0040

YrMajor Years in the Major Leagues 1 0.23908 0.03443 6.94 <.0001

CrHits Career Hits 1 0.00170 0.00027562 6.18 <.0001

YrMajor2 1 -0.01440 0.00165 -8.73 <.0001

CrHits2 1 -3.31739E-7 1.001272E-7 -3.31 0.0011

The plots of residuals by regressors in Output 85.1.9 and Output 85.1.10 show that the strong pattern in the
plots for CrMajors and CrHits has been reduced, although there is still some indication of a pattern remaining
in these residuals. This suggests that a quadratic function might be insufficient to capture dependence of
salary on these regressors.
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Output 85.1.9 Residuals by Regressors

Output 85.1.10 Residuals by Regressors
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Output 85.1.11 show the diagnostics plots; three of the plots, with points of interest labeled, are shown
individually in Output 85.1.12, Output 85.1.13, and Output 85.1.14. The STATS=NONE suboption specified
in the PLOTS=DIAGNOSTICS option replaces the inset of statistics with a box plot of the residuals in the fit
diagnostics panel. The observed by predicted value plot reveals a reasonably successful model for explaining
the variation in salary for most of the players. However, the model tends to overpredict the salaries of several
players near the lower end of the salary range. This bias can also be seen in the distribution of the residuals
that you can see in the histogram, Q-Q plot, and box plot in Output 85.1.11.

Output 85.1.11 Fit Diagnostics
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Output 85.1.12 Outlier and Leverage Diagnostics

Output 85.1.13 Observed by Predicted Values
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Output 85.1.14 Cook’s D

The RStudent by leverage plot in Output 85.1.12 and the Cook’s D plot in Output 85.1.14 show that
there are still a number of influential observations. By specifying the DFFITS and DFBETAS suboptions
of the PLOTS= option, you obtain additional influence diagnostics plots shown in Output 85.1.15 and
Output 85.1.16. See “Influence Statistics” on page 7064 for details about the interpretation DFFITS and
DFBETAS statistics.
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Output 85.1.15 DFFITS

Output 85.1.16 DFBETAS
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You can continue this analysis by investigating how the influential observations identified in the various
influence plots affect the fit. You can also use PROC ROBUSTREG to obtain a fit that is resistant to the
presence of high leverage points and outliers.

Example 85.2: Aerobic Fitness Prediction
Aerobic fitness (measured by the ability to consume oxygen) is fit to some simple exercise tests. The goal is
to develop an equation to predict fitness based on the exercise tests rather than on expensive and cumbersome
oxygen consumption measurements. Three model-selection methods are used: forward selection, backward
selection, and MAXR selection. Here are the data:

*-------------------Data on Physical Fitness-------------------*
| These measurements were made on men involved in a physical |
| fitness course at N.C.State Univ. The variables are Age |
| (years), Weight (kg), Oxygen intake rate (ml per kg body |
| weight per minute), time to run 1.5 miles (minutes), heart |
| rate while resting, heart rate while running (same time |
| Oxygen rate measured), and maximum heart rate recorded while |
| running. |
| ***Certain values of MaxPulse were changed for this analysis.|

*--------------------------------------------------------------*;
data fitness;

input Age Weight Oxygen RunTime RestPulse RunPulse MaxPulse @@;
datalines;

44 89.47 44.609 11.37 62 178 182 40 75.07 45.313 10.07 62 185 185
44 85.84 54.297 8.65 45 156 168 42 68.15 59.571 8.17 40 166 172
38 89.02 49.874 9.22 55 178 180 47 77.45 44.811 11.63 58 176 176
40 75.98 45.681 11.95 70 176 180 43 81.19 49.091 10.85 64 162 170
44 81.42 39.442 13.08 63 174 176 38 81.87 60.055 8.63 48 170 186
44 73.03 50.541 10.13 45 168 168 45 87.66 37.388 14.03 56 186 192
45 66.45 44.754 11.12 51 176 176 47 79.15 47.273 10.60 47 162 164
54 83.12 51.855 10.33 50 166 170 49 81.42 49.156 8.95 44 180 185
51 69.63 40.836 10.95 57 168 172 51 77.91 46.672 10.00 48 162 168
48 91.63 46.774 10.25 48 162 164 49 73.37 50.388 10.08 67 168 168
57 73.37 39.407 12.63 58 174 176 54 79.38 46.080 11.17 62 156 165
52 76.32 45.441 9.63 48 164 166 50 70.87 54.625 8.92 48 146 155
51 67.25 45.118 11.08 48 172 172 54 91.63 39.203 12.88 44 168 172
51 73.71 45.790 10.47 59 186 188 57 59.08 50.545 9.93 49 148 155
49 76.32 48.673 9.40 56 186 188 48 61.24 47.920 11.50 52 170 176
52 82.78 47.467 10.50 53 170 172
;

The following statements demonstrate the FORWARD, BACKWARD, and MAXR model selection methods:

proc reg data=fitness;
model Oxygen=Age Weight RunTime RunPulse RestPulse MaxPulse

/ selection=forward;
model Oxygen=Age Weight RunTime RunPulse RestPulse MaxPulse

/ selection=backward;
model Oxygen=Age Weight RunTime RunPulse RestPulse MaxPulse

/ selection=maxr;
run;

Output 85.2.1 shows the sequence of models produced by the FORWARD model-selection method.
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Output 85.2.1 Forward Selection Method: PROC REG

The REG Procedure
Model: MODEL1

Dependent Variable: Oxygen

The REG Procedure
Model: MODEL1

Dependent Variable: Oxygen

Forward Selection: Step 1

Variable RunTime Entered: R-Square = 0.7434 and C(p) = 13.6988

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 1 632.90010 632.90010 84.01 <.0001

Error 29 218.48144 7.53384

Corrected Total 30 851.38154

Variable
Parameter

Estimate
Standard

Error Type II SS F Value Pr > F

Intercept 82.42177 3.85530 3443.36654 457.05 <.0001

RunTime -3.31056 0.36119 632.90010 84.01 <.0001

Bounds on condition number: 1, 1Bounds on condition number: 1, 1

Forward Selection: Step 2

Variable Age Entered: R-Square = 0.7642 and C(p) = 12.3894

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 2 650.66573 325.33287 45.38 <.0001

Error 28 200.71581 7.16842

Corrected Total 30 851.38154

Variable
Parameter

Estimate
Standard

Error Type II SS F Value Pr > F

Intercept 88.46229 5.37264 1943.41071 271.11 <.0001

Age -0.15037 0.09551 17.76563 2.48 0.1267

RunTime -3.20395 0.35877 571.67751 79.75 <.0001

Bounds on condition number: 1.0369, 4.1478Bounds on condition number: 1.0369, 4.1478

Forward Selection: Step 3

Variable RunPulse Entered: R-Square = 0.8111 and C(p) = 6.9596

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 3 690.55086 230.18362 38.64 <.0001

Error 27 160.83069 5.95669

Corrected Total 30 851.38154
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Output 85.2.1 continued

Variable
Parameter

Estimate
Standard

Error Type II SS F Value Pr > F

Intercept 111.71806 10.23509 709.69014 119.14 <.0001

Age -0.25640 0.09623 42.28867 7.10 0.0129

RunTime -2.82538 0.35828 370.43529 62.19 <.0001

RunPulse -0.13091 0.05059 39.88512 6.70 0.0154

Bounds on condition number: 1.3548, 11.597Bounds on condition number: 1.3548, 11.597

Forward Selection: Step 4

Variable MaxPulse Entered: R-Square = 0.8368 and C(p) = 4.8800

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 4 712.45153 178.11288 33.33 <.0001

Error 26 138.93002 5.34346

Corrected Total 30 851.38154

Variable
Parameter

Estimate
Standard

Error Type II SS F Value Pr > F

Intercept 98.14789 11.78569 370.57373 69.35 <.0001

Age -0.19773 0.09564 22.84231 4.27 0.0488

RunTime -2.76758 0.34054 352.93570 66.05 <.0001

RunPulse -0.34811 0.11750 46.90089 8.78 0.0064

MaxPulse 0.27051 0.13362 21.90067 4.10 0.0533

Bounds on condition number: 8.4182, 76.851Bounds on condition number: 8.4182, 76.851

Forward Selection: Step 5

Variable Weight Entered: R-Square = 0.8480 and C(p) = 5.1063

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 5 721.97309 144.39462 27.90 <.0001

Error 25 129.40845 5.17634

Corrected Total 30 851.38154

Variable
Parameter

Estimate
Standard

Error Type II SS F Value Pr > F

Intercept 102.20428 11.97929 376.78935 72.79 <.0001

Age -0.21962 0.09550 27.37429 5.29 0.0301

Weight -0.07230 0.05331 9.52157 1.84 0.1871

RunTime -2.68252 0.34099 320.35968 61.89 <.0001

RunPulse -0.37340 0.11714 52.59624 10.16 0.0038

MaxPulse 0.30491 0.13394 26.82640 5.18 0.0316

Bounds on condition number: 8.7312, 104.83
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The final variable available to add to the model, RestPulse, is not added since it does not meet the 50% (the
default value of the SLE option is 0.5 for FORWARD selection) significance-level criterion for entry into the
model.

The BACKWARD model-selection method begins with the full model. Output 85.2.2 shows the steps of
the BACKWARD method. RestPulse is the first variable deleted, followed by Weight. No other variables
are deleted from the model since the variables remaining (Age, RunTime, RunPulse, and MaxPulse) are all
significant at the 10% (the default value of the SLS option is 0.1 for the BACKWARD elimination method)
significance level.

Output 85.2.2 Backward Selection Method: PROC REG

Backward Elimination: Step 0

All Variables Entered: R-Square = 0.8487 and C(p) = 7.0000

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 6 722.54361 120.42393 22.43 <.0001

Error 24 128.83794 5.36825

Corrected Total 30 851.38154

Variable
Parameter

Estimate
Standard

Error Type II SS F Value Pr > F

Intercept 102.93448 12.40326 369.72831 68.87 <.0001

Age -0.22697 0.09984 27.74577 5.17 0.0322

Weight -0.07418 0.05459 9.91059 1.85 0.1869

RunTime -2.62865 0.38456 250.82210 46.72 <.0001

RunPulse -0.36963 0.11985 51.05806 9.51 0.0051

RestPulse -0.02153 0.06605 0.57051 0.11 0.7473

MaxPulse 0.30322 0.13650 26.49142 4.93 0.0360

Bounds on condition number: 8.7438, 137.13Bounds on condition number: 8.7438, 137.13

Backward Elimination: Step 1

Variable RestPulse Removed: R-Square = 0.8480 and C(p) = 5.1063

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 5 721.97309 144.39462 27.90 <.0001

Error 25 129.40845 5.17634

Corrected Total 30 851.38154



7130 F Chapter 85: The REG Procedure

Output 85.2.2 continued

Variable
Parameter

Estimate
Standard

Error Type II SS F Value Pr > F

Intercept 102.20428 11.97929 376.78935 72.79 <.0001

Age -0.21962 0.09550 27.37429 5.29 0.0301

Weight -0.07230 0.05331 9.52157 1.84 0.1871

RunTime -2.68252 0.34099 320.35968 61.89 <.0001

RunPulse -0.37340 0.11714 52.59624 10.16 0.0038

MaxPulse 0.30491 0.13394 26.82640 5.18 0.0316

Bounds on condition number: 8.7312, 104.83Bounds on condition number: 8.7312, 104.83

Backward Elimination: Step 2

Variable Weight Removed: R-Square = 0.8368 and C(p) = 4.8800

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 4 712.45153 178.11288 33.33 <.0001

Error 26 138.93002 5.34346

Corrected Total 30 851.38154

Variable
Parameter

Estimate
Standard

Error Type II SS F Value Pr > F

Intercept 98.14789 11.78569 370.57373 69.35 <.0001

Age -0.19773 0.09564 22.84231 4.27 0.0488

RunTime -2.76758 0.34054 352.93570 66.05 <.0001

RunPulse -0.34811 0.11750 46.90089 8.78 0.0064

MaxPulse 0.27051 0.13362 21.90067 4.10 0.0533

Bounds on condition number: 8.4182, 76.851

The MAXR method tries to find the “best” one-variable model, the “best” two-variable model, and so
on. Output 85.2.3 shows that the one-variable model contains RunTime; the two-variable model contains
RunTime and Age; the three-variable model contains RunTime, Age, and RunPulse; the four-variable model
contains Age, RunTime, RunPulse, and MaxPulse; the five-variable model contains Age, Weight, RunTime,
RunPulse, and MaxPulse; and finally, the six-variable model contains all the variables in the MODEL
statement.

Output 85.2.3 Maximum R-Square Improvement Selection Method: PROC REG

Maximum R-Square Improvement: Step 1

Variable RunTime Entered: R-Square = 0.7434 and C(p) = 13.6988

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 1 632.90010 632.90010 84.01 <.0001

Error 29 218.48144 7.53384

Corrected Total 30 851.38154
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Output 85.2.3 continued

Variable
Parameter

Estimate
Standard

Error Type II SS F Value Pr > F

Intercept 82.42177 3.85530 3443.36654 457.05 <.0001

RunTime -3.31056 0.36119 632.90010 84.01 <.0001

Bounds on condition number: 1, 1

The above model is the best 1-variable model found.

Bounds on condition number: 1, 1

The above model is the best 1-variable model found.

Maximum R-Square Improvement: Step 2

Variable Age Entered: R-Square = 0.7642 and C(p) = 12.3894

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 2 650.66573 325.33287 45.38 <.0001

Error 28 200.71581 7.16842

Corrected Total 30 851.38154

Variable
Parameter

Estimate
Standard

Error Type II SS F Value Pr > F

Intercept 88.46229 5.37264 1943.41071 271.11 <.0001

Age -0.15037 0.09551 17.76563 2.48 0.1267

RunTime -3.20395 0.35877 571.67751 79.75 <.0001

Bounds on condition number: 1.0369, 4.1478

The above model is the best 2-variable model found.

Bounds on condition number: 1.0369, 4.1478

The above model is the best 2-variable model found.

Maximum R-Square Improvement: Step 3

Variable RunPulse Entered: R-Square = 0.8111 and C(p) = 6.9596

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 3 690.55086 230.18362 38.64 <.0001

Error 27 160.83069 5.95669

Corrected Total 30 851.38154

Variable
Parameter

Estimate
Standard

Error Type II SS F Value Pr > F

Intercept 111.71806 10.23509 709.69014 119.14 <.0001

Age -0.25640 0.09623 42.28867 7.10 0.0129

RunTime -2.82538 0.35828 370.43529 62.19 <.0001

RunPulse -0.13091 0.05059 39.88512 6.70 0.0154
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Output 85.2.3 continued

Bounds on condition number: 1.3548, 11.597

The above model is the best 3-variable model found.

Bounds on condition number: 1.3548, 11.597

The above model is the best 3-variable model found.

Maximum R-Square Improvement: Step 4

Variable MaxPulse Entered: R-Square = 0.8368 and C(p) = 4.8800

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 4 712.45153 178.11288 33.33 <.0001

Error 26 138.93002 5.34346

Corrected Total 30 851.38154

Variable
Parameter

Estimate
Standard

Error Type II SS F Value Pr > F

Intercept 98.14789 11.78569 370.57373 69.35 <.0001

Age -0.19773 0.09564 22.84231 4.27 0.0488

RunTime -2.76758 0.34054 352.93570 66.05 <.0001

RunPulse -0.34811 0.11750 46.90089 8.78 0.0064

MaxPulse 0.27051 0.13362 21.90067 4.10 0.0533

Bounds on condition number: 8.4182, 76.851

The above model is the best 4-variable model found.

Bounds on condition number: 8.4182, 76.851

The above model is the best 4-variable model found.

Maximum R-Square Improvement: Step 5

Variable Weight Entered: R-Square = 0.8480 and C(p) = 5.1063

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 5 721.97309 144.39462 27.90 <.0001

Error 25 129.40845 5.17634

Corrected Total 30 851.38154

Variable
Parameter

Estimate
Standard

Error Type II SS F Value Pr > F

Intercept 102.20428 11.97929 376.78935 72.79 <.0001

Age -0.21962 0.09550 27.37429 5.29 0.0301

Weight -0.07230 0.05331 9.52157 1.84 0.1871

RunTime -2.68252 0.34099 320.35968 61.89 <.0001

RunPulse -0.37340 0.11714 52.59624 10.16 0.0038

MaxPulse 0.30491 0.13394 26.82640 5.18 0.0316
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Output 85.2.3 continued

Bounds on condition number: 8.7312, 104.83

The above model is the best 5-variable model found.

Bounds on condition number: 8.7312, 104.83

The above model is the best 5-variable model found.

Maximum R-Square Improvement: Step 6

Variable RestPulse Entered: R-Square = 0.8487 and C(p) = 7.0000

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 6 722.54361 120.42393 22.43 <.0001

Error 24 128.83794 5.36825

Corrected Total 30 851.38154

Variable
Parameter

Estimate
Standard

Error Type II SS F Value Pr > F

Intercept 102.93448 12.40326 369.72831 68.87 <.0001

Age -0.22697 0.09984 27.74577 5.17 0.0322

Weight -0.07418 0.05459 9.91059 1.85 0.1869

RunTime -2.62865 0.38456 250.82210 46.72 <.0001

RunPulse -0.36963 0.11985 51.05806 9.51 0.0051

RestPulse -0.02153 0.06605 0.57051 0.11 0.7473

MaxPulse 0.30322 0.13650 26.49142 4.93 0.0360

Bounds on condition number: 8.7438, 137.13

Note that for all three of these methods, RestPulse contributes least to the model. In the case of forward
selection, it is not added to the model. In the case of backward selection, it is the first variable to be removed
from the model. In the case of MAXR selection, RestPulse is included only for the full model.

For the STEPWISE, BACKWARD, and FORWARD selection methods, you can control the amount of detail
displayed by using the DETAILS option, and you can use ODS Graphics to produce plots that show how
selection criteria progress as the selection proceeds. For example, the following statements display only the
selection summary table for the FORWARD selection method (Output 85.2.4) and produce the plots shown
in Output 85.2.5 and Output 85.2.6.

ods graphics on;

proc reg data=fitness plots=(criteria sbc);
model Oxygen=Age Weight RunTime RunPulse RestPulse MaxPulse

/ selection=forward details=summary;
run;
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Output 85.2.4 Forward Selection Summary

The REG Procedure
Model: MODEL1

Dependent Variable: Oxygen

The REG Procedure
Model: MODEL1

Dependent Variable: Oxygen

Summary of Forward Selection

Step
Variable
Entered

Number
Vars In

Partial
R-Square

Model
R-Square C(p) F Value Pr > F

1 RunTime 1 0.7434 0.7434 13.6988 84.01 <.0001

2 Age 2 0.0209 0.7642 12.3894 2.48 0.1267

3 RunPulse 3 0.0468 0.8111 6.9596 6.70 0.0154

4 MaxPulse 4 0.0257 0.8368 4.8800 4.10 0.0533

5 Weight 5 0.0112 0.8480 5.1063 1.84 0.1871

Output 85.2.5 show how six fit criteria progress as the forward selection proceeds. The step at which each
criterion achieves its best value is indicated. For example, the BIC criterion achieves its minimum value for
the model at step 4. Note that this does not mean that the model at step 4 achieves the smallest BIC criterion
among all possible models that use a subset of the regressors; the model at step 4 yields the smallest BIC
statistic among the models at each step of the forward selection. Output 85.2.6 show the progression of the
SBC statistic in its own plot. If you want to see six of the selection criteria in individual plots, you can specify
the UNPACK suboption of the PLOTS=CRITERIA option in the PROC REG statement.

Output 85.2.5 Fit Criteria
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Output 85.2.6 SBC Criterion

Next, the RSQUARE model-selection method is used to request R square and Cp statistics for all possible
combinations of the six independent variables. The following statements produce Output 85.2.7:

proc reg data=fitness plots=(criteria(label) cp);
model Oxygen=Age Weight RunTime RunPulse RestPulse MaxPulse

/ selection=rsquare cp;
title 'Physical fitness data: all models';

run;
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Output 85.2.7 All Models by the RSQUARE Method: PROC REG

Physical fitness data: all models

The REG Procedure
Model: MODEL1

Dependent Variable: Oxygen

R-Square Selection Method

Physical fitness data: all models

The REG Procedure
Model: MODEL1

Dependent Variable: Oxygen

R-Square Selection Method

Model
Index

Number in
Model R-Square C(p) Variables in Model

1 1 0.7434 13.6988 RunTime

2 1 0.1595 106.3021 RestPulse

3 1 0.1584 106.4769 RunPulse

4 1 0.0928 116.8818 Age

5 1 0.0560 122.7072 MaxPulse

6 1 0.0265 127.3948 Weight

7 2 0.7642 12.3894 Age RunTime

8 2 0.7614 12.8372 RunTime RunPulse

9 2 0.7452 15.4069 RunTime MaxPulse

10 2 0.7449 15.4523 Weight RunTime

11 2 0.7435 15.6746 RunTime RestPulse

12 2 0.3760 73.9645 Age RunPulse

13 2 0.3003 85.9742 Age RestPulse

14 2 0.2894 87.6951 RunPulse MaxPulse

15 2 0.2600 92.3638 Age MaxPulse

16 2 0.2350 96.3209 RunPulse RestPulse

17 2 0.1806 104.9523 Weight RestPulse

18 2 0.1740 105.9939 RestPulse MaxPulse

19 2 0.1669 107.1332 Weight RunPulse

20 2 0.1506 109.7057 Age Weight

21 2 0.0675 122.8881 Weight MaxPulse

22 3 0.8111 6.9596 Age RunTime RunPulse

23 3 0.8100 7.1350 RunTime RunPulse MaxPulse

24 3 0.7817 11.6167 Age RunTime MaxPulse

25 3 0.7708 13.3453 Age Weight RunTime

26 3 0.7673 13.8974 Age RunTime RestPulse

27 3 0.7619 14.7619 RunTime RunPulse RestPulse

28 3 0.7618 14.7729 Weight RunTime RunPulse

29 3 0.7462 17.2588 Weight RunTime MaxPulse

30 3 0.7452 17.4060 RunTime RestPulse MaxPulse

31 3 0.7451 17.4243 Weight RunTime RestPulse

32 3 0.4666 61.5873 Age RunPulse RestPulse

33 3 0.4223 68.6250 Age RunPulse MaxPulse

34 3 0.4091 70.7102 Age Weight RunPulse

35 3 0.3900 73.7424 Age RestPulse MaxPulse

36 3 0.3568 79.0013 Age Weight RestPulse

37 3 0.3538 79.4891 RunPulse RestPulse MaxPulse

38 3 0.3208 84.7216 Weight RunPulse MaxPulse

39 3 0.2902 89.5693 Age Weight MaxPulse

40 3 0.2447 96.7952 Weight RunPulse RestPulse

41 3 0.1882 105.7430 Weight RestPulse MaxPulse
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Output 85.2.7 continued

Physical fitness data: all models

The REG Procedure
Model: MODEL1

Dependent Variable: Oxygen

R-Square Selection Method

Model
Index

Number in
Model R-Square C(p) Variables in Model

42 4 0.8368 4.8800 Age RunTime RunPulse MaxPulse

43 4 0.8165 8.1035 Age Weight RunTime RunPulse

44 4 0.8158 8.2056 Weight RunTime RunPulse MaxPulse

45 4 0.8117 8.8683 Age RunTime RunPulse RestPulse

46 4 0.8104 9.0697 RunTime RunPulse RestPulse MaxPulse

47 4 0.7862 12.9039 Age Weight RunTime MaxPulse

48 4 0.7834 13.3468 Age RunTime RestPulse MaxPulse

49 4 0.7750 14.6788 Age Weight RunTime RestPulse

50 4 0.7623 16.7058 Weight RunTime RunPulse RestPulse

51 4 0.7462 19.2550 Weight RunTime RestPulse MaxPulse

52 4 0.5034 57.7590 Age Weight RunPulse RestPulse

53 4 0.5025 57.9092 Age RunPulse RestPulse MaxPulse

54 4 0.4717 62.7830 Age Weight RunPulse MaxPulse

55 4 0.4256 70.0963 Age Weight RestPulse MaxPulse

56 4 0.3858 76.4100 Weight RunPulse RestPulse MaxPulse

57 5 0.8480 5.1063 Age Weight RunTime RunPulse MaxPulse

58 5 0.8370 6.8461 Age RunTime RunPulse RestPulse MaxPulse

59 5 0.8176 9.9348 Age Weight RunTime RunPulse RestPulse

60 5 0.8161 10.1685 Weight RunTime RunPulse RestPulse MaxPulse

61 5 0.7887 14.5111 Age Weight RunTime RestPulse MaxPulse

62 5 0.5541 51.7233 Age Weight RunPulse RestPulse MaxPulse

63 6 0.8487 7.0000 Age Weight RunTime RunPulse RestPulse MaxPulse

The models in Output 85.2.7 are arranged first by the number of variables in the model and then by the
magnitude of R square for the model.
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Output 85.2.8 shows the panel of fit criteria for the RSQUARE selection method. The best models (based on
the R-square statistic) for each subset size are indicated on the plots. The LABEL suboption specifies that
these models are labeled by the model number that appears in the summary table shown in Output 85.2.7.

Output 85.2.8 Fit Criteria

Output 85.2.9 shows the plot of the Cp criterion by number of regressors in the model. Useful reference lines
suggested by Mallows (1973) and Hocking (1976) are included on the plot. However, because all possible
subset models are included on this plot, the better models are all compressed near the bottom of the plot.
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Output 85.2.9 Cp Criterion

The following statements use the BEST=20 option in the model statement and SELECTION=CP to restrict
attention to the models that yield the 20 smallest values of the Cp statistic:

proc reg data=fitness plots(only)=cp(label);
model Oxygen=Age Weight RunTime RunPulse RestPulse MaxPulse

/ selection=cp best=20;
run;

ods graphics off;
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Output 85.2.10 shows the summary table listing the regressors in the 20 models that yield the smallest Cp
values, and Output 85.2.11 presents the results graphically. Reference lines Cp D 2p�pfull and Cp D p are
shown on this plot. See the PLOTS=CP option on page 7004 for interpretations of these lines. For the Fitness
data, these lines indicate that a six-variable model is a reasonable choice for doing parameter estimation,
while a five-variable model might be suitable for doing prediction.

Output 85.2.10 Cp Selection Summary: PROC REG

The REG Procedure
Model: MODEL1

Dependent Variable: Oxygen

C(p) Selection Method

The REG Procedure
Model: MODEL1

Dependent Variable: Oxygen

C(p) Selection Method

Model
Index

Number in
Model C(p) R-Square Variables in Model

1 4 4.8800 0.8368 Age RunTime RunPulse MaxPulse

2 5 5.1063 0.8480 Age Weight RunTime RunPulse MaxPulse

3 5 6.8461 0.8370 Age RunTime RunPulse RestPulse MaxPulse

4 3 6.9596 0.8111 Age RunTime RunPulse

5 6 7.0000 0.8487 Age Weight RunTime RunPulse RestPulse MaxPulse

6 3 7.1350 0.8100 RunTime RunPulse MaxPulse

7 4 8.1035 0.8165 Age Weight RunTime RunPulse

8 4 8.2056 0.8158 Weight RunTime RunPulse MaxPulse

9 4 8.8683 0.8117 Age RunTime RunPulse RestPulse

10 4 9.0697 0.8104 RunTime RunPulse RestPulse MaxPulse

11 5 9.9348 0.8176 Age Weight RunTime RunPulse RestPulse

12 5 10.1685 0.8161 Weight RunTime RunPulse RestPulse MaxPulse

13 3 11.6167 0.7817 Age RunTime MaxPulse

14 2 12.3894 0.7642 Age RunTime

15 2 12.8372 0.7614 RunTime RunPulse

16 4 12.9039 0.7862 Age Weight RunTime MaxPulse

17 3 13.3453 0.7708 Age Weight RunTime

18 4 13.3468 0.7834 Age RunTime RestPulse MaxPulse

19 1 13.6988 0.7434 RunTime

20 3 13.8974 0.7673 Age RunTime RestPulse
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Output 85.2.11 Cp Criterion

Before making a final decision about which model to use, you would want to perform collinearity diagnostics.
Note that, since many different models have been fit and the choice of a final model is based on R square, the
statistics are biased and the p-values for the parameter estimates are not valid.
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Example 85.3: Predicting Weight by Height and Age
In this example, the weights of schoolchildren are modeled as a function of their heights and ages. The
example shows the use of a BY statement with PROC REG, multiple MODEL statements, and the OUTEST=
and OUTSSCP= options, which create data sets. Here are the data:

*------------Data on Age, Weight, and Height of Children-------*
| Age (months), height (inches), and weight (pounds) were |
| recorded for a group of school children. |
| From Lewis and Taylor (1967). |

*--------------------------------------------------------------*;

data htwt;
input sex $ age :3.1 height weight @@;
datalines;

f 143 56.3 85.0 f 155 62.3 105.0 f 153 63.3 108.0 f 161 59.0 92.0
f 191 62.5 112.5 f 171 62.5 112.0 f 185 59.0 104.0 f 142 56.5 69.0
f 160 62.0 94.5 f 140 53.8 68.5 f 139 61.5 104.0 f 178 61.5 103.5
f 157 64.5 123.5 f 149 58.3 93.0 f 143 51.3 50.5 f 145 58.8 89.0
f 191 65.3 107.0 f 150 59.5 78.5 f 147 61.3 115.0 f 180 63.3 114.0

... more lines ...

m 164 66.5 112.0 m 189 65.0 114.0 m 164 61.5 140.0 m 167 62.0 107.5
m 151 59.3 87.0
;

Modeling is performed separately for boys and girls. Since the BY statement is used, interactive processing
is not possible in this example; no statements can appear after the first RUN statement.

The following statements produce Output 85.3.1 through Output 85.3.4:

proc reg outest=est1 outsscp=sscp1 rsquare;
by sex;
eq1: model weight=height;
eq2: model weight=height age;

run;

proc print data=sscp1;
title2 'SSCP type data set';

run;

proc print data=est1;
title2 'EST type data set';

run;
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Output 85.3.1 Height and Weight Data: Submodel for Female Children

The REG Procedure
Model: eq1

Dependent Variable: weight

The REG Procedure
Model: eq1

Dependent Variable: weight

sex=f

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 1 21507 21507 141.09 <.0001

Error 109 16615 152.42739

Corrected Total 110 38121

Root MSE 12.34615 R-Square 0.5642

Dependent Mean 98.87838 Adj R-Sq 0.5602

Coeff Var 12.48620

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 -153.12891 21.24814 -7.21 <.0001

height 1 4.16361 0.35052 11.88 <.0001

Output 85.3.2 Height and Weight Data: Full Model for Female Children

The REG Procedure
Model: eq2

Dependent Variable: weight

The REG Procedure
Model: eq2

Dependent Variable: weight

sex=f

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 2 22432 11216 77.21 <.0001

Error 108 15689 145.26700

Corrected Total 110 38121

Root MSE 12.05268 R-Square 0.5884

Dependent Mean 98.87838 Adj R-Sq 0.5808

Coeff Var 12.18939

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 -150.59698 20.76730 -7.25 <.0001

height 1 3.60378 0.40777 8.84 <.0001

age 1 1.90703 0.75543 2.52 0.0130
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Output 85.3.3 Height and Weight Data: Submodel for Male Children

The REG Procedure
Model: eq1

Dependent Variable: weight

The REG Procedure
Model: eq1

Dependent Variable: weight

sex=m

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 1 31126 31126 206.24 <.0001

Error 124 18714 150.92222

Corrected Total 125 49840

Root MSE 12.28504 R-Square 0.6245

Dependent Mean 103.44841 Adj R-Sq 0.6215

Coeff Var 11.87552

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 -125.69807 15.99362 -7.86 <.0001

height 1 3.68977 0.25693 14.36 <.0001

Output 85.3.4 Height and Weight Data: Full Model for Male Children

The REG Procedure
Model: eq2

Dependent Variable: weight

The REG Procedure
Model: eq2

Dependent Variable: weight

sex=m

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 2 32975 16487 120.24 <.0001

Error 123 16866 137.11922

Corrected Total 125 49840

Root MSE 11.70979 R-Square 0.6616

Dependent Mean 103.44841 Adj R-Sq 0.6561

Coeff Var 11.31945

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 -113.71346 15.59021 -7.29 <.0001

height 1 2.68075 0.36809 7.28 <.0001

age 1 3.08167 0.83927 3.67 0.0004
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For both female and male children, the overall F statistics for both models are significant, indicating that the
model explains a significant portion of the variation in the data. For females, the full model is

weight D �150:57C 3:60 � heightC 1:91 � age

and for males, the full model is

weight D �113:71C 2:68 � heightC 3:08 � age

The OUTSSCP= data set is shown in Output 85.3.5. Note how the BY groups are separated. Observations
with _TYPE_=‘N’ contain the number of observations in the associated BY group. Observations with
_TYPE_=‘SSCP’ contain the rows of the uncorrected sums of squares and crossproducts matrix. The
observations with _NAME_=‘Intercept’ contain crossproducts for the intercept.

Output 85.3.5 SSCP Matrix

SSCP type data setSSCP type data set

Obs sex _TYPE_ _NAME_ Intercept height weight age

1 f SSCP Intercept 111.0 6718.40 10975.50 1824.90

2 f SSCP height 6718.4 407879.32 669469.85 110818.32

3 f SSCP weight 10975.5 669469.85 1123360.75 182444.95

4 f SSCP age 1824.9 110818.32 182444.95 30363.81

5 f N 111.0 111.00 111.00 111.00

6 m SSCP Intercept 126.0 7825.00 13034.50 2072.10

7 m SSCP height 7825.0 488243.60 817919.60 129432.57

8 m SSCP weight 13034.5 817919.60 1398238.75 217717.45

9 m SSCP age 2072.1 129432.57 217717.45 34515.95

10 m N 126.0 126.00 126.00 126.00

The OUTEST= data set is displayed in Output 85.3.6; again, the BY groups are separated. The _MODEL_
column contains the labels for models from the MODEL statements. If no labels are specified, the defaults
MODEL1 and MODEL2 would appear as values for _MODEL_. Note that _TYPE_=‘PARMS’ for all
observations, indicating that all observations contain parameter estimates. The _DEPVAR_ column displays
the dependent variable, and the _RMSE_ column gives the root mean square error for the associated model.
The Intercept column gives the estimate for the intercept for the associated model, and variables with the
same name as variables in the original data set (height, age) give parameter estimates for those variables.
The dependent variable, weight, is shown with a value of –1. The _IN_ column contains the number of
regressors in the model not including the intercept; _P_ contains the number of parameters in the model;
_EDF_ contains the error degrees of freedom; and _RSQ_ contains the R square statistic. Finally, note that
the _IN_, _P_, _EDF_, and _RSQ_ columns appear in the OUTEST= data set since the RSQUARE option is
specified in the PROC REG statement.
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Output 85.3.6 OUTEST Data Set

EST type data setEST type data set

Obs sex _MODEL_ _TYPE_ _DEPVAR_ _RMSE_ Intercept height weight age _IN_ _P_ _EDF_ _RSQ_

1 f eq1 PARMS weight 12.3461 -153.129 4.16361 -1 . 1 2 109 0.56416

2 f eq2 PARMS weight 12.0527 -150.597 3.60378 -1 1.90703 2 3 108 0.58845

3 m eq1 PARMS weight 12.2850 -125.698 3.68977 -1 . 1 2 124 0.62451

4 m eq2 PARMS weight 11.7098 -113.713 2.68075 -1 3.08167 2 3 123 0.66161

Example 85.4: Regression with Quantitative and Qualitative Variables
At times it is desirable to have independent variables in the model that are qualitative rather than quantitative.
This is easily handled in a regression framework. Regression uses qualitative variables to distinguish between
populations. There are two main advantages of fitting both populations in one model. You gain the ability to
test for different slopes or intercepts in the populations, and more degrees of freedom are available for the
analysis.

Regression with qualitative variables is different from analysis of variance and analysis of covariance.
Analysis of variance uses qualitative independent variables only. Analysis of covariance uses quantitative
variables in addition to the qualitative variables in order to account for correlation in the data and reduce
MSE; however, the quantitative variables are not of primary interest and merely improve the precision of the
analysis.

Consider the case where Yi is the dependent variable, X1i is a quantitative variable, X2i is a qualitative
variable taking on values 0 or 1, and X1iX2i is the interaction. The variable X2i is called a dummy, binary,
or indicator variable. With values 0 or 1, it distinguishes between two populations. The model is of the form

Yi D ˇ0 C ˇ1X1i C ˇ2X2i C ˇ3X1iX2i C �i

for the observations i D 1; 2; : : : ; n. The parameters to be estimated are ˇ0, ˇ1, ˇ2, and ˇ3. The number of
dummy variables used is one less than the number of qualitative levels. This yields a nonsingular X0X matrix.
See Chapter 10 of Neter, Wasserman, and Kutner (1990) for more details.

An example from Neter, Wasserman, and Kutner (1990) follows. An economist is investigating the relation-
ship between the size of an insurance firm and the speed at which it implements new insurance innovations.
He believes that the type of firm might affect this relationship and suspects that there might be some inter-
action between the size and type of firm. The dummy variable in the model enables the two firms to have
different intercepts. The interaction term enables the firms to have different slopes as well.

In this study, Yi is the number of months from the time the first firm implemented the innovation to the time
it was implemented by the ith firm. The variable X1i is the size of the firm, measured in total assets of the
firm. The variable X2i denotes the firm type; it is 0 if the firm is a mutual fund company and 1 if the firm is a
stock company. The dummy variable enables each firm type to have a different intercept and slope.
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The previous model can be broken down into a model for each firm type by plugging in the values for X2i . If
X2i D 0, the model is

Yi D ˇ0 C ˇ1X1i C �i

This is the model for a mutual company. If X2i D 1, the model for a stock firm is

Yi D .ˇ0 C ˇ2/C .ˇ1 C ˇ3/X1i C �i

This model has intercept ˇ0 C ˇ2 and slope ˇ1 C ˇ3.

The data1 follow. Note that the interaction term is created in the DATA step since polynomial effects such as
size*type are not allowed in the MODEL statement in the REG procedure.

title 'Regression with Quantitative and Qualitative Variables';
data insurance;

input time size type @@;
sizetype=size*type;
datalines;

17 151 0 26 92 0 21 175 0 30 31 0 22 104 0 0 277 0 12 210 0
19 120 0 4 290 0 16 238 0 28 164 1 15 272 1 11 295 1 38 68 1
31 85 1 21 224 1 20 166 1 13 305 1 30 124 1 14 246 1
;

The following statements begin the analysis and produce the ANOVA table in Output 85.4.1:

proc reg data=insurance;
model time = size type sizetype;

run;

Output 85.4.1 ANOVA Table and Parameter Estimates

Regression with Quantitative and Qualitative Variables

The REG Procedure
Model: MODEL1

Dependent Variable: time

Regression with Quantitative and Qualitative Variables

The REG Procedure
Model: MODEL1

Dependent Variable: time

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 3 1504.41904 501.47301 45.49 <.0001

Error 16 176.38096 11.02381

Corrected Total 19 1680.80000

Root MSE 3.32021 R-Square 0.8951

Dependent Mean 19.40000 Adj R-Sq 0.8754

Coeff Var 17.11450

1From Neter, J., et al., Applied Linear Statistical Models, Third Edition, Copyright (c) 1990, Richard D. Irwin. Reprinted with
permission of The McGraw-Hill Companies.
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Output 85.4.1 continued

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 33.83837 2.44065 13.86 <.0001

size 1 -0.10153 0.01305 -7.78 <.0001

type 1 8.13125 3.65405 2.23 0.0408

sizetype 1 -0.00041714 0.01833 -0.02 0.9821

The overall F statistic is significant (F = 45.490, p < 0.0001). The interaction term is not significant (t =
–0.023, p = 0.9821). Hence, this term should be removed and the model refitted, as shown in the following
statements:

delete sizetype;
print;

run;

The DELETE statement removes the interaction term (sizetype) from the model. The new ANOVA and
parameter estimates tables are shown in Output 85.4.2.

Output 85.4.2 ANOVA Table and Parameter Estimates

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 2 1504.41333 752.20667 72.50 <.0001

Error 17 176.38667 10.37569

Corrected Total 19 1680.80000

Root MSE 3.22113 R-Square 0.8951

Dependent Mean 19.40000 Adj R-Sq 0.8827

Coeff Var 16.60377

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 33.87407 1.81386 18.68 <.0001

size 1 -0.10174 0.00889 -11.44 <.0001

type 1 8.05547 1.45911 5.52 <.0001
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The overall F statistic is still significant (F = 72.497, p < 0.0001). The intercept and the coefficients associated
with size and type are significantly different from zero (t = 18.675, p < 0.0001; t = –11.443, p < 0.0001; t =
5.521, p < 0.0001, respectively). Notice that the R square did not change with the omission of the interaction
term.

The fitted model is

time D 33:87 � 0:102 � sizeC 8:055 � type

The fitted model for a mutual fund company (X2i D 0) is

time D 33:87 � 0:102 � size

and the fitted model for a stock company (X2i D 1) is

time D .33:87C 8:055/ � 0:102 � size

So the two models have different intercepts but the same slope.

The following statements first use an OUTPUT statement to save the residuals and predicted values from
the new model in the OUT= data set. Next PROC SGPLOT is used to produce Output 85.4.3, which plots
residuals versus predicted values. The firm type is used as the plot symbol; this can be useful in determining
if the firm types have different residual patterns.

output out=out r=r p=p;
run;

proc sgplot data=out;
scatter x=p y=r / markerchar=type group=type;

run;
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Output 85.4.3 Plot of Residual vs. Predicted Values

The residuals show no major trend. Neither firm type by itself shows a trend either. This indicates that the
model is satisfactory.

The following statements produce the plot of the predicted values versus size that appears in Output 85.4.4,
where the firm type is again used as the plotting symbol:

proc sgplot data=out;
scatter x=size y=p / markerchar=type group=type;

run;
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Output 85.4.4 Plot of Predicted vs. Size

The different intercepts are very evident in this plot.
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Example 85.5: Ridge Regression for Acetylene Data
This example uses the acetylene data in Marquardt and Snee (1975) to illustrate the RIDGEPLOT and
OUTVIF options. Here are the data:

data acetyl;
input x1-x4 @@;
x1x2 = x1 * x2;
x1x1 = x1 * x1;
label x1 = 'reactor temperature(celsius)'

x2 = 'h2 to n-heptone ratio'
x3 = 'contact time(sec)'
x4 = 'conversion percentage'
x1x2= 'temperature-ratio interaction'
x1x1= 'squared temperature';

datalines;
1300 7.5 .012 49 1300 9 .012 50.2 1300 11 .0115 50.5
1300 13.5 .013 48.5 1300 17 .0135 47.5 1300 23 .012 44.5
1200 5.3 .04 28 1200 7.5 .038 31.5 1200 11 .032 34.5
1200 13.5 .026 35 1200 17 .034 38 1200 23 .041 38.5
1100 5.3 .084 15 1100 7.5 .098 17 1100 11 .092 20.5
1100 17 .086 29.5
;

ods graphics on;

proc reg data=acetyl outvif
outest=b ridge=0 to 0.02 by .002;

model x4=x1 x2 x3 x1x2 x1x1;
run;
proc print data=b;
run;

When ODS Graphics is enabled and you request ridge regression by using the RIDGE= option in the PROC
REG statement, PROC REG produces a panel showing variance inflation factors (VIF) in the upper plot in
the panel and ridge traces in the lower plot. This panel is shown in Output 85.5.1.
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Output 85.5.1 Ridge Regression and VIF Traces

The OUTVIF option outputs the variance inflation factors to the OUTEST= data set that is shown in
Output 85.5.2.
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Output 85.5.2 OUTEST Data Set Showing VIF Values

Obs _MODEL_ _TYPE_ _DEPVAR_ _RIDGE_ _PCOMIT_ _RMSE_ Intercept x1 x2 x3 x1x2 x1x1 x4

1 MODEL1 PARMS x4 . . 1.15596 390.538 -0.78 10.174 -121.626 -0.008 0.00 -1

2 MODEL1 RIDGEVIF x4 0.000 . . . 7682.37 320.022 53.525 344.545 6643.32 -1

3 MODEL1 RIDGE x4 0.000 . 1.15596 390.538 -0.78 10.174 -121.626 -0.008 0.00 -1

4 MODEL1 RIDGEVIF x4 0.002 . . . 11.18 58.731 10.744 63.208 11.22 -1

5 MODEL1 RIDGE x4 0.002 . 2.69721 -103.388 0.05 4.404 -9.065 -0.003 0.00 -1

6 MODEL1 RIDGEVIF x4 0.004 . . . 4.36 23.939 9.996 25.744 5.15 -1

7 MODEL1 RIDGE x4 0.004 . 3.22340 -93.797 0.06 2.839 -21.338 -0.002 0.00 -1

8 MODEL1 RIDGEVIF x4 0.006 . . . 2.93 13.011 9.383 13.976 3.81 -1

9 MODEL1 RIDGE x4 0.006 . 3.47752 -87.687 0.06 2.110 -28.447 -0.001 0.00 -1

10 MODEL1 RIDGEVIF x4 0.008 . . . 2.36 8.224 8.838 8.821 3.23 -1

11 MODEL1 RIDGE x4 0.008 . 3.62677 -83.593 0.06 1.689 -33.377 -0.001 0.00 -1

12 MODEL1 RIDGEVIF x4 0.010 . . . 2.04 5.709 8.343 6.112 2.89 -1

13 MODEL1 RIDGE x4 0.010 . 3.72505 -80.603 0.06 1.414 -37.177 -0.001 0.00 -1

14 MODEL1 RIDGEVIF x4 0.012 . . . 1.84 4.226 7.891 4.514 2.65 -1

15 MODEL1 RIDGE x4 0.012 . 3.79477 -78.276 0.06 1.221 -40.297 -0.001 0.00 -1

16 MODEL1 RIDGEVIF x4 0.014 . . . 1.69 3.279 7.476 3.493 2.46 -1

17 MODEL1 RIDGE x4 0.014 . 3.84693 -76.381 0.06 1.078 -42.965 -0.001 0.00 -1

18 MODEL1 RIDGEVIF x4 0.016 . . . 1.57 2.637 7.094 2.801 2.31 -1

19 MODEL1 RIDGE x4 0.016 . 3.88750 -74.785 0.06 0.968 -45.309 -0.001 0.00 -1

20 MODEL1 RIDGEVIF x4 0.018 . . . 1.47 2.182 6.741 2.310 2.18 -1

21 MODEL1 RIDGE x4 0.018 . 3.92004 -73.407 0.06 0.880 -47.407 -0.000 0.00 -1

22 MODEL1 RIDGEVIF x4 0.020 . . . 1.39 1.847 6.415 1.949 2.06 -1

23 MODEL1 RIDGE x4 0.020 . 3.94679 -72.193 0.06 0.809 -49.310 -0.000 0.00 -1
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If you want to obtain separate plots containing the ridge traces and VIF traces, you can specify the UNPACK
suboption in the PLOTS=RIDGE option. You can also request that one or both of the VIF axis and ridge
parameter axis be displayed on a logarithmic scale. You can see in Output 85.5.1 that the VIF traces for
several of the parameters are nearly indistinguishable when displayed on a linear scale. The following code
illustrates how you obtain separate VIF and ridge traces with the VIF values displayed on a logarithmic scale.
Note that you can obtain plots of VIF values even though you do not specify the OUTVIF option in the
PROC REG statement.

proc reg data=acetyl plots(only)=ridge(unpack VIFaxis=log)
outest=b ridge=0 to 0.02 by .002;

model x4=x1 x2 x3 x1x2 x1x1;
run;

ods graphics off;

The requested plots are shown in Output 85.5.3 and Output 85.5.4.

Output 85.5.3 VIF Traces
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Output 85.5.4 Ridge Traces

Example 85.6: Chemical Reaction Response
This example shows how you can use lack-of-fit tests with the REG procedure. See the section “Testing for
Lack of Fit” on page 7079 for details about lack-of-fit tests.

In a study of the percentage of raw material that responds in a reaction, researchers identified the following
five factors:

• the feed rate of the chemicals (FeedRate), ranging from 10 to 15 liters per minute

• the percentage of the catalyst (Catalyst), ranging from 1% to 2%

• the agitation rate of the reactor (AgitRate), ranging from 100 to 120 revolutions per minute

• the temperature (Temperature), ranging from 140 to 180 degrees Celsius

• the concentration (Concentration), ranging from 3% to 6%
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The following data set contains the results of an experiment designed to estimate main effects for all factors:

data reaction;
input FeedRate Catalyst AgitRate Temperature

Concentration ReactionPercentage;
datalines;

10.0 1.0 100 140 6.0 37.5
10.0 1.0 120 180 3.0 28.5
10.0 2.0 100 180 3.0 40.4
10.0 2.0 120 140 6.0 48.2
15.0 1.0 100 180 6.0 50.7
15.0 1.0 120 140 3.0 28.9
15.0 2.0 100 140 3.0 43.5
15.0 2.0 120 180 6.0 64.5
12.5 1.5 110 160 4.5 39.0
12.5 1.5 110 160 4.5 40.3
12.5 1.5 110 160 4.5 38.7
12.5 1.5 110 160 4.5 39.7
;

The first eight runs of this experiment enable orthogonal estimation of the main effects for all factors. The
last four comprise four replicates of the centerpoint.

The following statements fit a linear model. Because this experiment includes replications, you can test for
lack of fit by using the LACKFIT option in the MODEL statement.

proc reg data=reaction;
model ReactionPercentage=FeedRate Catalyst AgitRate

Temperature Concentration / lackfit;
run;

Output 85.6.1 shows that the lack of fit for the linear model is significant, indicating that a more complex
model is required. Models that include interactions should be investigated. In this case, this will require
additional experimentation to obtain appropriate data for estimating the effects.

Output 85.6.1 Analysis of Variance

The REG Procedure
Model: MODEL1

Dependent Variable: ReactionPercentage

The REG Procedure
Model: MODEL1

Dependent Variable: ReactionPercentage

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 5 990.27000 198.05400 33.29 0.0003

Error 6 35.69917 5.94986

Lack of Fit 3 34.15167 11.38389 22.07 0.0151

Pure Error 3 1.54750 0.51583

Corrected Total 11 1025.96917

Root MSE 2.43923 R-Square 0.9652

Dependent Mean 41.65833 Adj R-Sq 0.9362

Coeff Var 5.85533
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Overview: ROBUSTREG Procedure
The main purpose of robust regression is to detect outliers and provide resistant (stable) results in the presence
of outliers. In order to achieve this stability, robust regression limits the influence of outliers. Historically,
robust regression techniques have addressed three classes of problems:

• problems with outliers in the Y direction (response direction)

• problems with multivariate outliers in the X space (that is, outliers in the covariate space, which are
also referred to as leverage points)

• problems with outliers in both the Y direction and the X space

Many methods have been developed in response to these problems. However, in statistical applications
of outlier detection and robust regression, the methods that are most commonly used today are Huber M
estimation, high breakdown value estimation, and combinations of these two methods. The ROBUSTREG
procedure provides four such methods: M estimation, LTS estimation, S estimation, and MM estimation.

• M estimation, introduced by Huber (1973), is the simplest approach both computationally and theo-
retically. Although it is not robust with respect to leverage points, it is still used extensively in data
analysis when contamination can be assumed to be mainly in the response direction.

• Least trimmed squares (LTS) estimation is a high breakdown value method that was introduced by
Rousseeuw (1984). The breakdown value is a measure of the proportion of contamination that an
estimation method can withstand and still maintain its robustness. The performance of this method
was improved by the FAST-LTS algorithm of Rousseeuw and Van Driessen (2000).

• S estimation is a high breakdown value method that was introduced by Rousseeuw and Yohai (1984).
Given the same breakdown value, S estimation has a higher statistical efficiency than LTS estimation.

• MM estimation, introduced by Yohai (1987), combines high breakdown value estimation and M
estimation. It has the same high breakdown property as S estimation but a higher statistical efficiency.

Features
The ROBUSTREG procedure has the following main features:

• offers four estimation methods: M, LTS, S, and MM

• provides 10 weight functions for M estimation

• provides robust R square and deviance for all estimates

• provides asymptotic covariance and confidence intervals for regression parameters by using the M, S,
and MM methods
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• provides robust Wald and F tests for regression parameters by using the M and MM methods

• provides Mahalanobis distance and robust Mahalanobis distance by using the generalized minimum
covariance determinant (MCD) algorithm

• provides outlier and leverage-point diagnostics

• supports parallel computing for S and LTS estimates

• supports constructed effects, including spline and multimember effects

• produces fit plots and diagnostic plots by using ODS Graphics

Getting Started: ROBUSTREG Procedure
The following examples demonstrate how you can use the ROBUSTREG procedure to fit a linear regression
model and obtain outlier and leverage-point diagnostics.

M Estimation
This example shows how you can use the ROBUSTREG procedure to do M estimation, which is a commonly
used method for outlier detection and robust regression when contamination is mainly in the response
direction.

The following data set, Stack, is the well-known stack loss data set presented by Brownlee (1965). The data
describe the operation of a plant for the oxidation of ammonia to nitric acid and consist of 21 four-dimensional
observations. The explanatory variables for the response stack loss (y) are the rate of operation (x1), the
cooling water inlet temperature (x2), and the acid concentration (x3).

data Stack;
input x1 x2 x3 y exp $ @@;
datalines;

80 27 89 42 e1 80 27 88 37 e2
75 25 90 37 e3 62 24 87 28 e4
62 22 87 18 e5 62 23 87 18 e6
62 24 93 19 e7 62 24 93 20 e8
58 23 87 15 e9 58 18 80 14 e10
58 18 89 14 e11 58 17 88 13 e12
58 18 82 11 e13 58 19 93 12 e14
50 18 89 8 e15 50 18 86 7 e16
50 19 72 8 e17 50 19 79 8 e18
50 20 80 9 e19 56 20 82 15 e20
70 20 91 15 e21
;
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The following PROC ROBUSTREG statements analyze the data:

proc robustreg data=stack;
model y = x1 x2 x3 / diagnostics leverage;
id exp;
test x3;

run;

By default, the ROBUSTREG procedure uses the bisquare weight function to do M estimation, and it
uses the median method to estimate the scale parameter. The MODEL statement specifies the covariate
effects. The DIAGNOSTICS option requests a table for outlier diagnostics, and the LEVERAGE option adds
leverage-point diagnostic results to this table for continuous covariate effects. The ID statement specifies
that the variable exp be used to identify each observation (experiment) in this table. If the ID statement is
omitted, the observation number is used to identify the observations. The TEST statement requests a test of
significance for the covariate effects that are specified. The results of this analysis are displayed in Figures
86.1 through 86.3.

Figure 86.1 displays the model-fitting information and summary statistics for the response variable and the
continuous covariates. The Q1, Median, and Q3 columns provide the lower quantile, median, and upper
quantile, respectively. The MAD column provides a robust estimate of the univariate scale, which is computed
as the standardized median absolute deviation (MAD). For more information about the standardized MAD,
see Huber (1981, p. 108). The Mean and Standard Deviation columns provide the usual mean and standard
deviation. A large difference between the standard deviation and the MAD for a variable indicates some
extreme values for that variable. In the stack loss data, the stack loss (response y) has the biggest difference
between the standard deviation and the MAD.

Figure 86.1 Model-Fitting Information and Summary Statistics

The ROBUSTREG ProcedureThe ROBUSTREG Procedure

Model Information

Data Set WORK.STACK

Dependent Variable y

Number of Independent Variables 3

Number of Observations 21

Method M Estimation

Summary Statistics

Variable Q1 Median Q3 Mean
Standard
Deviation MAD

x1 53.0000 58.0000 62.0000 60.4286 9.1683 5.9304

x2 18.0000 20.0000 24.0000 21.0952 3.1608 2.9652

x3 82.0000 87.0000 89.5000 86.2857 5.3586 4.4478

y 10.0000 15.0000 19.5000 17.5238 10.1716 5.9304

Figure 86.2 displays the table of robust parameter estimates, standard errors, and confidence limits. The
Scale row provides a point estimate of the scale parameter in the linear regression model, which is obtained
by the median method. For more information about scale estimation methods, see the section “M Estimation”
on page 7190. For the stack loss data, M estimation yields the fitted linear model:

Oy D �42:2845C 0:9276x1C 0:6507x2 � 0:1123x3
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Figure 86.2 Model Parameter Estimates

Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Intercept 1 -42.2854 9.5045 -60.9138 -23.6569 19.79 <.0001

x1 1 0.9276 0.1077 0.7164 1.1387 74.11 <.0001

x2 1 0.6507 0.2940 0.0744 1.2270 4.90 0.0269

x3 1 -0.1123 0.1249 -0.3571 0.1324 0.81 0.3683

Scale 1 2.2819

Figure 86.3 displays outlier and leverage-point diagnostics. Standardized robust residuals are computed based
on the estimated parameters. Both the Mahalanobis distance and the robust MCD distance are displayed.
Outliers and leverage points, identified by asterisks, are defined by the standardized robust residuals and
robust MCD distances that exceed the corresponding cutoff values displayed in the diagnostics summary.
Observations 4 and 21 are outliers because their standardized robust residuals exceed the cutoff value in
absolute value. The procedure detects four observations that have high leverage values. Leverage points
(points with high leverage values) that have smaller standardized robust residuals than the cutoff value in
absolute value are called good leverage points; others are called bad leverage points. Observation 21 is a bad
leverage point.

Figure 86.3 Diagnostics

Diagnostics

Obs exp
Mahalanobis

Distance

Robust
MCD

Distance Leverage

Standardized
Robust
Residual Outlier

1 e1 2.2536 5.5284 * 1.0995

2 e2 2.3247 5.6374 * -1.1409

3 e3 1.5937 4.1972 * 1.5604

4 e4 1.2719 1.5887 3.0381 *

21 e21 2.1768 3.6573 * -4.5733 *

Two particularly useful plots for revealing outliers and leverage points are a scatter plot of the standardized
robust residuals against the robust distances (RD plot) and a scatter plot of the robust distances against the
classical Mahalanobis distances (DD plot).
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For the stack loss data, the following statements produce the RD plot in Figure 86.4 and the DD plot in
Figure 86.5. The histogram and the normal quantile-quantile plots (shown in Figure 86.6 and Figure 86.7,
respectively) for the standardized robust residuals are also created using the HISTOGRAM and QQPLOT
suboptions of the PLOTS= option.

ods graphics on;

proc robustreg data=stack plots=(rdplot ddplot histogram qqplot);
model y = x1 x2 x3;

run;

ods graphics off;

These plots are helpful in identifying outliers in addition to good and bad high-leverage points.

These plots are requested when ODS Graphics is enabled by specifying the PLOTS= option in the PROC
ROBUSTREG statement. For general information about ODS Graphics, see Chapter 21, “Statistical Graphics
Using ODS.” For specific information about the graphics available in the ROBUSTREG procedure, see the
section “ODS Graphics” on page 7217.

Figure 86.4 RD Plot for Stack Loss Data
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Figure 86.5 DD Plot for Stack Loss Data

Figure 86.6 Histogram
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Figure 86.7 Q-Q Plot

Figure 86.8 displays robust versions of goodness-of-fit statistics for the model. You can use the robust
information criteria, AICR and BICR, for model selection and comparison. For both AICR and BICR, the
lower the value, the more desirable the model.

Figure 86.8 Goodness-of-Fit Statistics

Goodness-of-Fit

Statistic Value

R-Square 0.6659

AICR 29.5231

BICR 36.3361

Deviance 125.7905

Figure 86.9 displays the test results that are requested by the TEST statement. The ROBUSTREG procedure
conducts two robust linear tests, the � test and the R2n test. For information about how the ROBUSTREG
procedure computes test statistics and the correction factor lambda, see the section “Linear Tests” on
page 7196. Because of the large p-values for both tests, you can conclude that the effect x3 is not significant
at the 5% level.
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Figure 86.9 Test of Significance

Robust Linear Test

Test
Test

Statistic Lambda DF Chi-Square Pr > ChiSq

Rho 0.9378 0.7977 1 1.18 0.2782

Rn2 0.8092 1 0.81 0.3683

For the bisquare weight function, the default tuning constant, c = 4.685, is chosen to yield a 95% asymptotic
efficiency of the M estimates with the Gaussian distribution. For more information, see the section “M
Estimation” on page 7190. The smaller the constant c, the lower the asymptotic efficiency but the sharper
the M estimate as an outlier detector. For the stack loss data set, you could consider using a sharper outlier
detector.

The following PROC ROBUSTREG step uses a smaller constant, c = 3.5. This tuning constant corresponds
to an efficiency close to 85%. For the relationship between the tuning constant and asymptotic efficiency of
M estimates, see Chen and Yin (2002).

proc robustreg method=m(wf=bisquare(c=3.5)) data=stack;
model y = x1 x2 x3 / diagnostics leverage;
id exp;
test x3;

run;

Figure 86.10 displays the table of robust parameter estimates, standard errors, and confidence limits when
PROC ROBUSTREG uses the constant c = 3.5.

The refitted linear model is

Oy D �37:1076C 0:8191x1C 0:5173x2 � 0:0728x3

Figure 86.10 Model Parameter Estimates

The ROBUSTREG ProcedureThe ROBUSTREG Procedure

Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Intercept 1 -37.1076 5.4731 -47.8346 -26.3805 45.97 <.0001

x1 1 0.8191 0.0620 0.6975 0.9407 174.28 <.0001

x2 1 0.5173 0.1693 0.1855 0.8492 9.33 0.0022

x3 1 -0.0728 0.0719 -0.2138 0.0681 1.03 0.3111

Scale 1 1.4265
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Figure 86.11 displays outlier and leverage-point diagnostics when the constant c = 3.5 is used. Besides
observations 4 and 21, observations 1 and 3 are also detected as outliers.

Figure 86.11 Diagnostics

Diagnostics

Obs exp
Mahalanobis

Distance

Robust
MCD

Distance Leverage

Standardized
Robust
Residual Outlier

1 e1 2.2536 5.5284 * 4.2719 *

2 e2 2.3247 5.6374 * 0.7158

3 e3 1.5937 4.1972 * 4.4142 *

4 e4 1.2719 1.5887 5.7792 *

21 e21 2.1768 3.6573 * -6.2727 *

LTS Estimation
If the data are contaminated in the X space, M estimation might yield improper results. It is better to use the
high breakdown value method. This example shows how you can use LTS estimation to deal with X-space
contaminated data. The following data set, hbk, is an artificial data set that was generated by Hawkins, Bradu,
and Kass (1984).

data hbk;
input index $ x1 x2 x3 y @@;
datalines;

1 10.1 19.6 28.3 9.7 2 9.5 20.5 28.9 10.1
3 10.7 20.2 31.0 10.3 4 9.9 21.5 31.7 9.5
5 10.3 21.1 31.1 10.0 6 10.8 20.4 29.2 10.0
7 10.5 20.9 29.1 10.8 8 9.9 19.6 28.8 10.3
9 9.7 20.7 31.0 9.6 10 9.3 19.7 30.3 9.9

11 11.0 24.0 35.0 -0.2 12 12.0 23.0 37.0 -0.4
13 12.0 26.0 34.0 0.7 14 11.0 34.0 34.0 0.1
15 3.4 2.9 2.1 -0.4 16 3.1 2.2 0.3 0.6
17 0.0 1.6 0.2 -0.2 18 2.3 1.6 2.0 0.0
19 0.8 2.9 1.6 0.1 20 3.1 3.4 2.2 0.4
21 2.6 2.2 1.9 0.9 22 0.4 3.2 1.9 0.3
23 2.0 2.3 0.8 -0.8 24 1.3 2.3 0.5 0.7
25 1.0 0.0 0.4 -0.3 26 0.9 3.3 2.5 -0.8
27 3.3 2.5 2.9 -0.7 28 1.8 0.8 2.0 0.3
29 1.2 0.9 0.8 0.3 30 1.2 0.7 3.4 -0.3
31 3.1 1.4 1.0 0.0 32 0.5 2.4 0.3 -0.4
33 1.5 3.1 1.5 -0.6 34 0.4 0.0 0.7 -0.7
35 3.1 2.4 3.0 0.3 36 1.1 2.2 2.7 -1.0
37 0.1 3.0 2.6 -0.6 38 1.5 1.2 0.2 0.9
39 2.1 0.0 1.2 -0.7 40 0.5 2.0 1.2 -0.5
41 3.4 1.6 2.9 -0.1 42 0.3 1.0 2.7 -0.7
43 0.1 3.3 0.9 0.6 44 1.8 0.5 3.2 -0.7
45 1.9 0.1 0.6 -0.5 46 1.8 0.5 3.0 -0.4
47 3.0 0.1 0.8 -0.9 48 3.1 1.6 3.0 0.1
49 3.1 2.5 1.9 0.9 50 2.1 2.8 2.9 -0.4
51 2.3 1.5 0.4 0.7 52 3.3 0.6 1.2 -0.5
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53 0.3 0.4 3.3 0.7 54 1.1 3.0 0.3 0.7
55 0.5 2.4 0.9 0.0 56 1.8 3.2 0.9 0.1
57 1.8 0.7 0.7 0.7 58 2.4 3.4 1.5 -0.1
59 1.6 2.1 3.0 -0.3 60 0.3 1.5 3.3 -0.9
61 0.4 3.4 3.0 -0.3 62 0.9 0.1 0.3 0.6
63 1.1 2.7 0.2 -0.3 64 2.8 3.0 2.9 -0.5
65 2.0 0.7 2.7 0.6 66 0.2 1.8 0.8 -0.9
67 1.6 2.0 1.2 -0.7 68 0.1 0.0 1.1 0.6
69 2.0 0.6 0.3 0.2 70 1.0 2.2 2.9 0.7
71 2.2 2.5 2.3 0.2 72 0.6 2.0 1.5 -0.2
73 0.3 1.7 2.2 0.4 74 0.0 2.2 1.6 -0.9
75 0.3 0.4 2.6 0.2
;

Both ordinary least squares (OLS) estimation and M estimation (not shown here) suggest that observations
11 to 14 are outliers. However, these four observations were generated from the underlying model, whereas
observations 1 to 10 were contaminated. The reason that OLS estimation and M estimation do not pick up
the contaminated observations is that they cannot distinguish good leverage points (observations 11 to 14)
from bad leverage points (observations 1 to 10). In such cases, the LTS method identifies the true outliers.

The following statements invoke the ROBUSTREG procedure and use the LTS estimation method:

proc robustreg data=hbk fwls method=lts;
model y = x1 x2 x3 / diagnostics leverage;
id index;

run;

Figure 86.12 displays the model-fitting information and summary statistics for the response variable and
independent covariates.

Figure 86.12 Model-Fitting Information and Summary Statistics

The ROBUSTREG ProcedureThe ROBUSTREG Procedure

Model Information

Data Set WORK.HBK

Dependent Variable y

Number of Independent Variables 3

Number of Observations 75

Method LTS Estimation

Summary Statistics

Variable Q1 Median Q3 Mean
Standard
Deviation MAD

x1 0.8000 1.8000 3.1000 3.2067 3.6526 1.9274

x2 1.0000 2.2000 3.3000 5.5973 8.2391 1.6309

x3 0.9000 2.1000 3.0000 7.2307 11.7403 1.7791

y -0.5000 0.1000 0.7000 1.2787 3.4928 0.8896

Figure 86.13 displays information about the LTS fit, which includes the breakdown value of the LTS estimate.
The breakdown value is a measure of the proportion of contamination that an estimation method can withstand
and still maintain its robustness. In this example the LTS estimate minimizes the sum of 57 smallest squares
of residuals. It can still estimate the true underlying model if the remaining 18 observations are contaminated.
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This corresponds to a breakdown value around 0.25, which is set as the default.

Figure 86.13 LTS Profile

LTS Profile

Total Number of Observations 75

Number of Squares Minimized 57

Number of Coefficients 4

Highest Possible Breakdown Value 0.2533

Figure 86.14 displays parameter estimates for covariates and scale. Two robust estimates of the scale
parameter are displayed. For information about computing these estimates, see the section “Final Weighted
Scale Estimator” on page 7199. The weighted scale estimator (Wscale) is a more efficient estimator of the
scale parameter.

Figure 86.14 LTS Parameter Estimates

LTS Parameter Estimates

Parameter DF Estimate

Intercept 1 -0.3431

x1 1 0.0901

x2 1 0.0703

x3 1 -0.0731

Scale (sLTS) 0 0.7451

Scale (Wscale) 0 0.5749
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Figure 86.15 displays outlier and leverage-point diagnostics. The ID variable index is used to identify
the observations. If you do not specify this ID variable, the observation number is used to identify the
observations. However, the observation number depends on how the data are read. The first 10 observations
are identified as outliers, and observations 11 to 14 are identified as good leverage points.

Figure 86.15 Diagnostics

Diagnostics

Obs index
Mahalanobis

Distance

Robust
MCD

Distance Leverage

Standardized
Robust
Residual Outlier

1 1 1.9168 29.4424 * 17.0868 *

2 2 1.8558 30.2054 * 17.8428 *

3 3 2.3137 31.8909 * 18.3063 *

4 4 2.2297 32.8621 * 16.9702 *

5 5 2.1001 32.2778 * 17.7498 *

6 6 2.1462 30.5892 * 17.5155 *

7 7 2.0105 30.6807 * 18.8801 *

8 8 1.9193 29.7994 * 18.2253 *

9 9 2.2212 31.9537 * 17.1843 *

10 10 2.3335 30.9429 * 17.8021 *

11 11 2.4465 36.6384 * 0.0406

12 12 3.1083 37.9552 * -0.0874

13 13 2.6624 36.9175 * 1.0776

14 14 6.3816 41.0914 * -0.7875

Figure 86.16 displays the final weighted least squares estimates. These estimates are least squares estimates
that are computed after the detected outliers are deleted.

Figure 86.16 Final Weighted LS Estimates

Parameter Estimates for Final Weighted Least Squares Fit

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Intercept 1 -0.1805 0.1044 -0.3852 0.0242 2.99 0.0840

x1 1 0.0814 0.0667 -0.0493 0.2120 1.49 0.2222

x2 1 0.0399 0.0405 -0.0394 0.1192 0.97 0.3242

x3 1 -0.0517 0.0354 -0.1210 0.0177 2.13 0.1441

Scale 0 0.5572
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Syntax: ROBUSTREG Procedure
The following statements are available in the ROBUSTREG procedure:

PROC ROBUSTREG < options > ;
BY variables ;
CLASS variables ;
EFFECT name=effect-type(variables < / options >) ;
ID variables ;
MODEL response = < effects > < / options > ;
OUTPUT < OUT=SAS-data-set > keyword=name < . . . keyword=name > ;
PERFORMANCE < options > ;
TEST effects ;
WEIGHT variable ;

The PROC ROBUSTREG statement invokes the procedure. The METHOD= option in the PROC ROBUS-
TREG statement selects one of the four estimation methods, M, LTS, S, and MM. By default, Huber M
estimation is used. The MODEL statement is required and specifies the variables to be used in the regression.
You can specify main effects and interaction terms in the MODEL statement, as in the GLM procedure. (See
Chapter 45, “The GLM Procedure.”) The CLASS statement specifies which explanatory variables to treat as
categorical. The ID statement names variables to identify observations in the outlier diagnostics tables. The
WEIGHT statement identifies a variable in the input data set whose values are used to weight the observations.
The OUTPUT statement creates an output data set that contains final weights, predicted values, and residuals.
The TEST statement requests robust linear tests for the model parameters. The PERFORMANCE statement
tunes the performance of the procedure by using single or multiple processors available on the hardware.
Multiple OUTPUT and TEST statements are permitted.

PROC ROBUSTREG Statement
PROC ROBUSTREG < options > ;

The PROC ROBUSTREG statement invokes the ROBUSTREG procedure. Table 86.1 summarizes the
options available in the PROC ROBUSTREG statement.

Table 86.1 PROC ROBUSTREG Statement Options

Option Description

COVOUT Saves the estimated covariance matrix
DATA= Specifies the input SAS data set
FWLS Computes the final weighted least squares estimates
INEST= Specifies an input SAS data set that contains initial estimates
ITPRINT Displays the iteration history of the iteratively reweighted least squares

algorithm
METHOD= Specifies the estimation method
NAMELEN= Specifies the length of effect names
ORDER= Specifies the order in which to sort classification variables
OUTEST= Specifies an output SAS data set that contains the parameter estimates
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Table 86.1 continued

Option Description

PLOT Specifies options that control details of the plots
SEED= Specifies the seed for the random number generator

You can specify the following options in the PROC ROBUSTREG statement.

COVOUT
saves the estimated covariance matrix in the OUTEST= data set. This option is not supported for LTS
estimation.

DATA=SAS-data-set
specifies the input SAS data set to be used by PROC ROBUSTREG. By default, the most recently
created SAS data set is used.

FWLS
computes the final weighted least squares estimates. These estimates are equivalent to the least squares
estimates after the detected outliers are deleted.

INEST=SAS-data-set
specifies an input SAS data set that contains initial estimates for all the parameters in the model. For a
detailed description of the contents of the INEST= data set, see the section “INEST= Data Set” on
page 7214.

ITPRINT
displays the iteration history of the iteratively reweighted least squares algorithm that is used in M and
MM estimation. You can also use this option in the MODEL statement.

METHOD=method-type < (options) >
specifies the estimation method and some additional options for the estimation method. PROC
ROBUSTREG provides four estimation methods: M estimation, LTS estimation, S estimation, and
MM estimation. The default method is M estimation.

NOTE: Because the LTS and S methods use subsampling algorithms, these methods are not suitable in
an analysis that uses variables that have only a few unequal values or a few unequal values within one
BY group. For example, indicator variables that correspond to a classification variable often fall into
this category. The same issue also applies to the initial LTS and S estimates in the MM method. For a
model that includes classification independent variables or continuous independent variables with a
few unequal values, the M method is recommended.

NAMELEN=n
specifies the length of effect names in tables and output data sets to be n characters, where n is a value
between 20 and 200. The default length is 20 characters.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of the classification variables (which are specified in the CLASS
statement).

This option applies to the levels for all classification variables, except when you use the (default)
ORDER=FORMATTED option with numeric classification variables that have no explicit format. In
that case, the levels of such variables are ordered by their internal value.

The ORDER= option can take the following values:
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Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set

FORMATTED External formatted value, except for numeric variables with
no explicit format, which are sorted by their unformatted
(internal) value

FREQ Descending frequency count; levels with the most observa-
tions come first in the order

INTERNAL Unformatted value

By default, ORDER=FORMATTED. For ORDER=FORMATTED and ORDER=INTERNAL, the sort
order is machine-dependent.

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

OUTEST=SAS-data-set
specifies an output SAS data set that contains the parameter estimates and, if the COVOUT option is
specified, the estimated covariance matrix. For a detailed description of the contents of the OUTEST=
data set, see the section “OUTEST= Data Set” on page 7214.

PLOT | PLOTS < (global-plot-options) > < =plot-request >

PLOT | PLOTS < (global-plot-options) > < =(plot-request < . . . plot-request > ) >
specifies options that control details of the plots. If ODS Graphics is enabled but you do not specify
the PLOTS= option, then PROC ROBUSTREG produces the robust fit plot by default when the model
includes a single continuous independent variable.

ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;
proc robustreg data=stack plots=all;

model y = x1 x2 x3;
run;
ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The global-plot-options apply to all plots that are generated by the ROBUSTREG procedure. The
following global-plot-option is available:

ONLY
suppresses the default robust fit plot. Only plots that are specifically requested are displayed.

You can specify more than one plot-request within the parentheses after PLOTS=. For a single
plot-request , you can omit the parentheses. The following plot-requests are available:
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ALL
creates all appropriate plots.

DDPLOT < (LABEL=ALL | LEVERAGE | NONE | OUTLIER) >
creates a plot of robust distance against Mahalanobis distance. For more information about robust
distance, see the section “Leverage-Point and Outlier Detection” on page 7212. The LABEL=
option specifies how the points in this plot are to be labeled, as summarized in Table 86.2.

Table 86.2 Options for Label

Value of LABEL= Label Method

ALL Label all points
LEVERAGE Label leverage points
NONE No labels
OUTLIERS Label outliers

By default, the ROBUSTREG procedure labels both outliers and leverage points.

If you specify ID variables in the ID statement, the values of the first ID variable are used as
labels; otherwise, observation numbers are used as labels.

FITPLOT < (NOLIMITS) >
creates a plot of robust fit against the single independent continuous variable that is specified
in the model. You can request this plot when only a single independent continuous variable is
specified in the model. Confidence limits are added to the plot by default. The NOLIMITS option
suppresses these limits.

HISTOGRAM
creates a histogram for the standardized robust residuals. The histogram is superimposed with a
normal density curve and a kernel density curve.

NONE
suppresses all plots.

QQPLOT
creates the normal quantile-quantile plot for the standardized robust residuals.

RDPLOT < (LABEL=ALL | LEVERAGE | NONE | OUTLIER) >
creates the plot of standardized robust residual against robust distance. For more information
about robust distance, see the section “Leverage-Point and Outlier Detection” on page 7212.
The LABEL= option specifies a label method for points in this plot. These label methods are
described in Table 86.2.

If you specify ID variables in the ID statement, the values of the first ID variable are used as
labels; otherwise, observation numbers are used as labels.

SEED=number
specifies the seed for the random number generator used to randomly select the subgroups and subsets
for LTS and S estimation. By default, or if you specify 0, the ROBUSTREG procedure generates a
random seed.
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Options with METHOD=M

When you specify METHOD=M < (options) >, you can specify the following options:

ASYMPCOV=H1 | H2 | H3
specifies the type of asymptotic covariance that is computed for the M estimate. The three types are
described in the section “Asymptotic Covariance and Confidence Intervals” on page 7195. By default,
ASYMPCOV=H1.

CONVERGENCE=criterion < (EPS=value) >
specifies a convergence criterion for the M estimate. Table 86.3 lists the three criteria that are available.

Table 86.3 Options to Specify Convergence Criteria

Type Option
Coefficient CONVERGENCE=COEF
Residual CONVERGENCE=RESID
Weight CONVERGENCE=WEIGHT

By default, CONVERGENCE=COEF. You can specify the precision of the convergence criterion by
using the EPS= option; by default, EPS=1E–8.

MAXITER=n
sets the maximum number of iterations during the parameter estimation. By default, MAXITER=1000.

SCALE=scale-type | value
specifies the scale parameter or a method of estimating the scale parameter. These methods and options
are summarized in Table 86.4.

Table 86.4 Options to Specify Scale

Scale Option Default d
Fixed constant SCALE=value
Huber estimate SCALE=HUBER < (D=d) > 2.5
Median estimate SCALE=MED
Tukey estimate SCALE=TUKEY < (D=d) > 2.5

By default, SCALE=MED.

WEIGHTFUNCTION=function-type

WF=function-type
specifies the weight function that is used for the M estimate. The ROBUSTREG procedure provides
10 weight functions, which are listed in Table 86.5. You can specify the parameters in these functions
by using the A=, B=, and C= options. These functions are described in the section “M Estimation” on
page 7190. The default weight function is bisquare.
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Table 86.5 Options to Specify Weight Functions

Weight Function Option Default a, b, c
Andrews WF=ANDREWS < (C=c) > 1.339
Bisquare WF=BISQUARE < (C=c) > 4.685
Cauchy WF=CAUCHY < (C=c) > 2.385
Fair WF=FAIR < (C=c) > 1.4
Hampel WF=HAMPEL < (< A=a > < B=b > < C=c >) > 2, 4, 8
Huber WF=HUBER < (C=c) > 1.345
Logistic WF=LOGISTIC < (C=c) > 1.205
Median WF=MEDIAN < (C=c) > 0.01
Talworth WF=TALWORTH < (C=c) > 2.795
Welsch WF=WELSCH < (C=c) > 2.985

Options with METHOD=LTS

When you specify METHOD=LTS < (options) >, you can specify the following options:

CSTEP=n
specifies the number of concentration steps (C-steps) for the LTS estimate. For information about how
the default value is determined, see the section “LTS Estimate” on page 7197.

H=n
specifies the quantile for the LTS estimate. For information about how the default value is determined,
see the section “LTS Estimate” on page 7197

IADJUST=ALL | NONE
requests (IADJUST=ALL) or suppresses (IADJUST=NONE) the intercept adjustment for all estimates
in the LTS algorithm. By default, the intercept adjustment is used for data sets that contain fewer than
10,000 observations. For more information, see the section “Algorithm” on page 7197.

NBEST=n
specifies the number of best solutions that are kept for each subgroup during the computation of the
LTS estimate. The default number is 10, which is the maximum number allowed.

NREP=n
specifies the number of times to repeat least squares fit in subgroups during the computation of the LTS
estimate. For information about how the default number is determined, see the section “LTS Estimate”
on page 7197.

SUBANALYSIS
requests a display of the subgrouping information and parameter estimates within subgroups. This
option generates the ODS tables that are listed in Table 86.6.
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Table 86.6 ODS Tables Available with SUBANALYSIS Option

ODS Table Name Description
BestEstimates Best final estimates for LTS

BestSubEstimates Best estimates for each subgroup

CStep C-step information for LTS

Groups Grouping information for LTS

SUBGROUPSIZE=n
specifies the data set size of the subgroups in the computation of the LTS estimate. The default number
is 300.

Options with METHOD=S

When you specify METHOD=S < (options) >, you can specify the following options:

ASYMPCOV=H1 | H2 | H3 | H4
specifies the type of asymptotic covariance that is computed for the S estimate. The four types are
described in the section “Asymptotic Covariance and Confidence Intervals” on page 7202. By default,
ASYMPCOV=H4.

CHIF= TUKEY | YOHAI
specifies the � function for the S estimate. PROC ROBUSTREG provides two � functions, Tukey’s
bisquare function and Yohai’s optimal function, which you can request by specifying CHIF=TUKEY
and CHIF=YOHAI, respectively. The default is Tukey’s bisquare function.

EFF=value
specifies the efficiency (as a fraction) of the S estimate. The parameter k0 in the � function is
determined by this efficiency. The default efficiency is determined such that the consistent S estimate
has a breakdown value of 25%. This option is overwritten by the K0= option if both options are used.

K0=value
specifies the k0 parameter in the � function of the S estimate. If you specify CHIF=TUKEY, the
default is 1.548. If you specify CHIF=YOHAI, the default is 0.66. These default values correspond to
a 50% breakdown value of the consistent S estimate.

MAXITER=n
sets the maximum number of iterations for computing the scale parameter of the S estimate. By default,
MAXITER=1000.

NREP=n
specifies the number of repeats of subsampling in the computation of the S estimate. For information
about how the default number of repeats is determined, see the section “Algorithm” on page 7200.
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NOREFINE
suppresses the refinement of the S estimate. For more information, see the section “Algorithm” on
page 7200.

SUBSETSIZE=n
specifies the size of the subset for the S estimate. For information about how the default value is
determined, see the section “Algorithm” on page 7200.

TOLERANCE=value
specifies the tolerance for the S estimate of the scale. The default value is 0.001.

Options with METHOD=MM

When you specify METHOD=MM < (options) >, you can specify the following options:

ASYMPCOV=H1 | H2 | H3 | H4
specifies the type of asymptotic covariance that is computed for the MM estimate. The four types
are described in the section “Details: ROBUSTREG Procedure” on page 7190. By default, ASYMP-
COV=H4.

BIASTEST < (ALPHA=number ) >
requests the bias test for the final MM estimate. For more information about this test, see the section
“Bias Test” on page 7204.

CHIF=TUKEY | YOHAI
selects the � function for the MM estimate. PROC ROBUSTREG provides two � functions, Tukey’s
bisquare function and Yohai’s optimal function, which you can request by specifying CHIF=TUKEY
and CHIF=YOHAI, respectively. The default is Tukey’s bisquare function. This � function is also
used by the initial S estimate if you specify the INITEST=S option.

CONVERGENCE=criterion < (EPS=number ) >
specifies a convergence criterion for the MM estimate. Table 86.7 lists the three criteria that are
available.

Table 86.7 Options to Specify Convergence Criteria

Type Option
Coefficient CONVERGENCE=COEF
Residual CONVERGENCE=RESID
Weight CONVERGENCE=WEIGHT

By default, CONVERGENCE=COEF. You can specify the precision of the convergence criterion by
using the EPS= option; by default, EPS=1E–8.
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EFF=value
specifies the efficiency (as a fraction) of the MM estimate. The parameter k1 in the � function is
determined by this efficiency. The default efficiency is set to 0.85, which corresponds to k1 D 3:440 if
you specify CHIF=TUKEY or k1 D 0:868 if you specify CHIF=YOHAI.

INITEST=LTS | S
specifies the initial estimator for the MM estimator. By default, the LTS estimator with its default
settings is used as the initial estimator for the MM estimator.

INITH=h
specifies the integer h for the initial LTS estimate that is used by the MM estimator. For information
about how to specify h and how the default is determined, see the section “Algorithm” on page 7203.

K0=number
specifies the parameter k0 in the � function for the MM estimate. If you specify CHIF=TUKEY, the
default is k0 D 2:9366. If you specify CHIF=YOHAI, the default is k0 D 0:7405. These default
values correspond to the 25% breakdown value of the MM estimator.

MAXITER=n
sets the maximum number of iterations during the parameter estimation. By default, MAXITER=1000.

BY Statement
BY variables ;

You can specify a BY statement with PROC ROBUSTREG to obtain separate analyses of observations in
groups that are defined by the BY variables. When a BY statement appears, the procedure expects the input
data set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last
one specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the ROBUSTREG
procedure. The NOTSORTED option does not mean that the data are unsorted but rather that the
data are arranged in groups (according to values of the BY variables) and that these groups are not
necessarily in alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

CLASS Statement
CLASS variables < / TRUNCATE > ;
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The CLASS statement names the classification variables to be used in the model. Typical classification
variables are Treatment, Sex, Race, Group, and Replication. If you use the CLASS statement, it must appear
before the MODEL statement.

Classification variables can be either character or numeric. By default, class levels are determined from the
entire set of formatted values of the CLASS variables.

NOTE: Prior to SAS 9, class levels were determined by using no more than the first 16 characters of the
formatted values. To revert to this previous behavior, you can use the TRUNCATE option in the CLASS
statement.

In any case, you can use formats to group values into levels. See the discussion of the FORMAT procedure
in the Base SAS Procedures Guide and the discussions of the FORMAT statement and SAS formats in SAS
Formats and Informats: Reference. You can adjust the order of CLASS variable levels with the ORDER=
option in the PROC ROBUSTREG statement.

You can specify the following option in the CLASS statement after a slash (/):

TRUNCATE
specifies that class levels should be determined by using only up to the first 16 characters of the
formatted values of CLASS variables. When formatted values are longer than 16 characters, you can
use this option to revert to the levels as determined in releases prior to SAS 9.

EFFECT Statement
EFFECT name=effect-type (variables < / options >) ;

The EFFECT statement enables you to construct special collections of columns for design matrices. These
collections are referred to as constructed effects to distinguish them from the usual model effects that are
formed from continuous or classification variables, as discussed in the section “GLM Parameterization of
Classification Variables and Effects” on page 387 in Chapter 19, “Shared Concepts and Topics.”

You can specify the following effect-types:

COLLECTION is a collection effect that defines one or more variables as a single effect with
multiple degrees of freedom. The variables in a collection are considered as
a unit for estimation and inference.

LAG is a classification effect in which the level that is used for a given period
corresponds to the level in the preceding period.

MULTIMEMBER | MM is a multimember classification effect whose levels are determined by one or
more variables that appear in a CLASS statement.

POLYNOMIAL | POLY is a multivariate polynomial effect in the specified numeric variables.

SPLINE is a regression spline effect whose columns are univariate spline expansions
of one or more variables. A spline expansion replaces the original variable
with an expanded or larger set of new variables.

Table 86.8 summarizes the options available in the EFFECT statement.
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Table 86.8 EFFECT Statement Options

Option Description

Collection Effects Options
DETAILS Displays the constituents of the collection effect

Lag Effects Options
DESIGNROLE= Names a variable that controls to which lag design an observation

is assigned

DETAILS Displays the lag design of the lag effect

NLAG= Specifies the number of periods in the lag

PERIOD= Names the variable that defines the period

WITHIN= Names the variable or variables that define the group within which
each period is defined

Multimember Effects Options
NOEFFECT Specifies that observations with all missing levels for the multi-

member variables should have zero values in the corresponding
design matrix columns

WEIGHT= Specifies the weight variable for the contributions of each of the
classification effects

Polynomial Effects Options
DEGREE= Specifies the degree of the polynomial
MDEGREE= Specifies the maximum degree of any variable in a term of the

polynomial
STANDARDIZE= Specifies centering and scaling suboptions for the variables that

define the polynomial

Spline Effects Options
BASIS= Specifies the type of basis (B-spline basis or truncated power func-

tion basis) for the spline effect
DEGREE= Specifies the degree of the spline effect
KNOTMETHOD= Specifies how to construct the knots for the spline effect

For more information about the syntax of these effect-types and how columns of constructed effects are
computed, see the section “EFFECT Statement” on page 397 in Chapter 19, “Shared Concepts and Topics.”

ID Statement
ID variables ;

When you request the diagnostics table by specifying the DIAGNOSTICS option in the MODEL statement,
the variables that are listed in the ID statement are displayed in addition to the observation number. You can
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use these variables to identify each observation. If the ID statement is omitted, the observation number is
used to identify the observations.

MODEL Statement
< label: > MODEL response = < effects > < / options > ;

You can specify main effects and interaction terms in the MODEL statement, as in the GLM procedure (see
Chapter 45, “The GLM Procedure”).

The optional label , which must be a valid SAS name, is used to label the model in the OUTEST data set.

Table 86.9 summarizes the options available in the MODEL statement.

Table 86.9 MODEL Statement Options

Option Description

ALPHA= Specifies the significance level
CORRB Produces the estimated correlation matrix
COVB Produces the estimated covariance matrix
CUTOFF= Specifies the multiplier of the cutoff value for outlier detection
DIAGNOSTICS Requests the outlier diagnostics
FAILRATIO= Specifies the failure-ratio threshold
ITPRINT Displays the iteration history
LEVERAGE Requests an analysis of leverage points
NOGOODFIT Suppresses the computation of goodness-of-fit statistics
NOINT Specifies no-intercept regression
SINGULAR= Specifies the tolerance for testing singularity

You can specify the following options for the model fit.

ALPHA=value
specifies the significance level for the confidence intervals for regression parameters. The value must
be between 0 and 1. By default, ALPHA=0.05.

CORRB
produces the estimated correlation matrix of the parameter estimates.

COVB
produces the estimated covariance matrix of the parameter estimates.

CUTOFF=value
specifies the multiplier of the cutoff value for outlier detection. By default, CUTOFF=3.

DIAGNOSTICS < (ALL) >
requests the outlier diagnostics. By default, only observations that are identified as outliers or leverage
points are displayed. Specify the ALL option to display all observations.
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FAILRATIO=value
specifies the failure-ratio threshold for the subsampling algorithm of an LTS or S estimate. It also
applies to the initial LTS or S step in an MM estimate. The threshold must be between 0 and 1. Its
default value is 0.99. For more information, see the section “LTS Estimate” on page 7197 or “S
Estimate” on page 7199.

ITPRINT
displays the iteration history of the iteratively reweighted least squares algorithm that is used by M and
MM estimation. You can also use this option in the PROC ROBUSTREG statement.

LEVERAGE < (leverage-options) >
requests an analysis of leverage points for the covariates. The results are added to the diagnostics table,
which you can request by specifying the DIAGNOSTICS option in the MODEL statement.

You can use the following leverage-options:

CUTOFF=value
specifies the leverage cutoff value for leverage-point detection. For more information, see the
section “Leverage-Point and Outlier Detection” on page 7212. You can also specify the cutoff
value by using the CUTOFFALPHA= option.

CUTOFFALPHA=alpha-value
specifies the leverage cutoff ˛ value for leverage-point detection. The respective leverage cutoff

value equals
q
�2pI1�˛ (or

q
�2qI1�˛ if projection is applied in the generalized MCD algorithm).

By default, ˛ D 0:025.

H=n

QUANTILE=n
specifies the quantile to be minimized for the MCD algorithm that is used for the leverage-point
analysis. By default, H=Œ.3nC p C 1/=4�, where n is the number of observations and p is the
number of independent variables, excluding the intercept.

MCDALPHA=alpha-value
specifies the MCD cutoff ˛ value for the final MCD reweighting step. The respective MCD cutoff

value equals
q
�2pI1�˛ (or

q
�2qI1�˛ if projection is applied in the generalized MCD algorithm).

By default, ˛ D 0:025.

MCDCUTOFF=value

MCDCUT=value
specifies the MCD cutoff value for the final MCD reweighting step. For more information, see
the section “Mahalanobis Distance versus Robust Distance” on page 7206 and Rousseeuw and
Van Driessen (1999). You can also specify the cutoff value by using the MCDALPHA= option.

MCDINFO
requests that detailed information about the MCD covariance estimate be displayed, including
the low-dimensional structure, the breakdown value, the MCD center, and the MCD covariance
itself. The option outputs the ODS tables of the MCD profile, MCD center, MCD covariance,
and MCD correlation.
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OPC | OFFPLANECOEF
requests the ODS table of the coefficients for MCD-dropped components, when projection is
applied in the generalized MCD algorithm. The OFFPLANECOEF option is ignored for the
regular MCD algorithm.

PROJECTIONALPHA=alpha-value

PALPHA=alpha-value
specifies the projection cutoff ˛ value to be used to judge whether an observation is on or off the
low-dimensional hyperplane that is identified by the generalized MCD algorithm. The respective

projection cutoff value equals
q
�21I1�˛. By default, ˛ D 0:001.

PROJECTIONCUTOFF=value

PCUTOFF=value
specifies the projection cutoff value to be used to judge whether an observation is on or off the
low-dimensional hyperplane identified by the projected MCD algorithm. For more information,
see the section “Mahalanobis Distance versus Robust Distance” on page 7206 and Rousseeuw
and Van Driessen (1999). You can also specify the projection cutoff value by using the PALPHA=
option.

PROJECTIONTOLERANCE=value

PTOL=value
specifies the projection tolerance value for the low-dimensional structure detection. For more
information, see the section “Leverage-Point and Outlier Detection” on page 7212.

NOGOODFIT
suppresses the computation of goodness-of-fit statistics.

NOINT
specifies no-intercept regression.

SINGULAR=value
specifies the tolerance for testing singularity of the information matrix and the crossproducts matrix
for the initial least squares estimates. By default, SINGULAR=1E–12.

OUTPUT Statement
OUTPUT < OUT=SAS-data-set > keyword=name < . . . keyword=name > ;

The OUTPUT statement creates an output SAS data set that contains statistics calculated after the model is
fitted. At least one specification of the form keyword=name is required.

All variables in the original data set are included in the new data set, along with the variables that are
created by using keyword= options in the OUTPUT statement. These new variables contain fitted values and
estimated quantiles. To create a SAS data set in a permanent library, you must specify a two-level name. For
more information about permanent libraries and SAS data sets, see SAS Language Reference: Concepts.

You can use the following specifications in the OUTPUT statement:



7188 F Chapter 86: The ROBUSTREG Procedure

OUT=SAS-data-set specifies the new data set. By default, the procedure uses the DATAn convention to
name the new data set.

keyword=name specifies the statistics to include in the output data set and gives names to the new
variables. Specify a keyword for each desired statistic (see the following list), an equal
sign, and the variable to contain the statistic.

The keywords that are allowed and the statistics that they represent are as follows:

LEVERAGE specifies a variable to indicate leverage points. To include this variable in the OUT=
data set, you must specify the LEVERAGE option in the MODEL statement. For
information about how to define the LEVERAGE keyword, see the section “Leverage-
Point and Outlier Detection” on page 7212.

MD specifies a variable to contain the Mahalanobis distances. For the definition of Maha-
lanobis distance, see the section “Robust Distance” on page 7205.

OUTLIER specifies a variable to indicate outliers. For information about how to define the OUT-
LIER keyword, see the section “Leverage-Point and Outlier Detection” on page 7212.

PMD specifies a variable to contain the projected Mahalanobis distances. For the definition
of projected Mahalanobis distance, see the section “Robust Distance” on page 7205.

POD specifies a variable to contain the projected off-plane distances. For the definition of
off-plane distance, see the section “Robust Distance” on page 7205.

PRD specifies a variable to contain the projected robust MCD Mahalanobis distances. For
the definition of projected robust distance, see the section “Robust Distance” on
page 7205.

PREDICTED | P specifies a variable to contain the estimated responses

Oyi D x0i O�

RD specifies a variable to contain the robust MCD Mahalanobis distances. For the defini-
tion of robust distance, see the section “Robust Distance” on page 7205.

RESIDUAL | R specifies a variable to contain the unstandardized residuals

yi � Oyi or yi � x0i O�

SRESIDUAL | SR specifies a variable to contain the standardized residuals

yi � Oyi

O�
or
yi � x0i O�
O�

:

By default, the LTS method uses Wscale as O� for computing the standardized residuals.

STDP specifies a variable to contain the estimates of the standard errors of the estimated
mean responsesq

x0i†xi

where† denotes the covariance matrix of the parameter estimates. You can request the
ODS table of this covariance matrix by specifying the COVB option in the MODEL
statement. The STDP= option is applied to M, S, and MM estimation, but not to LTS
estimation.



PERFORMANCE Statement F 7189

STDI specifies a variable to contain the estimates of the standard errors of the individual
predicted valuesq

x0i†xi C O�2:

The STDI= option is applied to M, S, and MM estimation, but not to LTS estimation.

WEIGHT specifies a variable to contain the computed final weights.

PERFORMANCE Statement
The PERFORMANCE statement is used to specify options that affect the performance of PROC ROBUS-
TREG and to request tables that show the performance options in effect and timing details. See Chen (2002)
for some empirical results.

PERFORMANCE < options > ;

You can specify the following options:

CPUCOUNT=n | ACTUAL
specifies the number of processors to use in forming crossproduct matrices. You can specify any integer
in the range 1–1024 for n. CPUCOUNT=ACTUAL sets CPUCOUNT to the number of physical
processors available. This can be less than the number of physical CPUs if the SAS process has been
restricted by system administration tools. Setting CPUCOUNT= to a number greater than the actual
number of available CPUs might result in reduced performance. This option overrides the SAS system
option CPUCOUNT=. If CPUCOUNT=1, then NOTHREADS is in effect, and PROC ROBUSTREG
uses singly threaded code.

DETAILS
requests the PerfSettings table that shows the performance settings in effect and the “Timing” table
that provides a broad timing breakdown of the PROC ROBUSTREG step.

NOTHREADS
disables multithreaded computation. This option overrides the SAS system option THREADS.

THREADS
enables multithreaded computation. This option overrides the SAS system option NOTHREADS.

TEST Statement
< label: > TEST effects ;

When you use M estimation and MM estimation, the TEST statement provides a means of obtaining a test
for the canonical linear hypothesis about the parameters of the tested effects

�j D 0; j D i1; : : : ; iq

where q is the total number of parameters of the tested effects.
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PROC ROBUSTREG provides two kinds of robust tests: the � test and the R2n test. They are described in the
section “Details: ROBUSTREG Procedure” on page 7190. No test is available for LTS and S estimation.

The optional label , which must be a valid SAS name, is used to label output from the corresponding TEST
statement.

WEIGHT Statement
WEIGHT variable ;

The WEIGHT statement specifies a weight variable in the input data set.

If you want to use fixed weights for each observation in the input data set, place the weights in a variable
in the data set and specify the name in a WEIGHT statement. The values of the WEIGHT variable can
be nonintegral and are not truncated. Observations that have nonpositive or missing values for the weight
variable do not contribute to the fit of the model.

Details: ROBUSTREG Procedure
This section describes the statistical and computational aspects of the ROBUSTREG procedure. The following
notation is used throughout the section.

Let X D .xij / denote an n � p matrix, let y D .y1; : : : ; yn/0 denote a given n-vector of responses, and let
� D .�1; : : : ; �p/

0 denote an unknown p-vector of parameters or coefficients whose components are to be
estimated. The matrix X is called the design matrix. Consider the usual linear model,

y D X� C e

where e D .e1; : : : ; en/0 is an n-vector of unknown errors. It is assumed that (for a given X) the components
ei of e are independent and identically distributed according to a distribution L.�=�/, where � is a scale
parameter (usually unknown). Often L.�/ � ˆ.�/, the standard normal distribution function. The vector of
residuals for a given value of O� is denoted by r D .r1; : : : ; rn/0, and the ith row of the matrix X is denoted by
x0i .

M Estimation
M estimation in the context of regression was first introduced by Huber (1973) as a result of making the
least squares approach robust. Although M estimators are not robust with respect to leverage points, they are
popular in applications where leverage points are not an issue.

Instead of minimizing a sum of squares of the residuals, a Huber-type M estimator O�M of � minimizes a sum
of less rapidly increasing functions of the residuals:

Q.�/ D

nX
iD1

�
�ri
�

�
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where r D y � X� . For the ordinary least squares estimation, � is the square function, �.z/ D z2.

If � is known, then when derivatives are taken with respect to � , O�M is also a solution of the system of p
equations:

nX
iD1

 
�ri
�

�
xij D 0; j D 1; : : : ; p

where  D @�
@z

. If � is convex, O�M is the unique solution.

The ROBUSTREG procedure solves this system by using iteratively reweighted least squares (IRLS). The
weight function w.x/ is defined as

w.z/ D
 .z/

z

The ROBUSTREG procedure provides 10 kinds of weight functions through the WEIGHTFUNCTION=
option in the MODEL statement. Each weight function corresponds to a � function. For a complete
discussion, see the section “Weight Functions” on page 7192. You can specify the scale parameter � by using
the SCALE= option in the PROC ROBUSTREG statement.

If � is unknown, both � and � are estimated by minimizing the function

Q.�; �/ D

nX
iD1

h
�
�ri
�

�
C a

i
�; a > 0

The algorithm proceeds by alternately improving O� in a location step and O� in a scale step.

For the scale step, the following three methods are available to estimate � , which you can select by specifying
the SCALE= option:

1. (SCALE=HUBER < (D=d) >) Compute O� by the iteration

�
O� .mC1/

�2
D

1

nh

nX
iD1

�d

�
ri

O� .m/

��
O� .m/

�2
where

�d .x/ D

�
x2=2 if jxj < d
d2=2 otherwise

is the Huber function and h D n�p
n

�
d2 C .1 � d2/ˆ.d/ � 0:5 � d

p
2�e�

1
2
d2
�

is the Huber con-
stant (Huber 1981, p. 179). You can use the D=d option to specify d. By default, D=2.5.
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2. (SCALE=TUKEY < (D=d) >) Compute O� by solving the supplementary equation

1

n � p

nX
iD1

�d

�ri
�

�
D ˇ

where

�d .x/ D

(
3x2

d2
�
3x4

d4
C

x6

d6
if jxj < d

1 otherwise

Here  D 1
6
�01 is Tukey’s bisquare function, and ˇ D

R
�d .s/dˆ.s/ is the constant such that the

solution O� is asymptotically consistent when L.�=�/ D ˆ.�/ (Hampel et al. 1986, p. 149). You can use
the D=d option to specify d. By default, D=2.5.

3. (SCALE=MED) Compute O� by the iteration

O� .mC1/ D median
n
jyi � x0i O�

.m/
j=ˇ0; i D 1; : : : ; n

o
where ˇ0 D ˆ�1.0:75/ is the constant such that the solution O� is asymptotically consistent when
L.�=�/ D ˆ.�/ (Hampel et al. 1986, p. 312).

SCALE=MED is the default.

Algorithm

The basic algorithm for computing M estimates for regression is iteratively reweighted least squares (IRLS).
As the name suggests, a weighted least squares fit is carried out inside an iteration loop. For each iteration, a
set of weights for the observations is used in the least squares fit. The weights are constructed by applying
a weight function to the current residuals. Initial weights are based on residuals from an initial fit. The
ROBUSTREG procedure uses the unweighted least squares fit as a default initial fit. The iteration terminates
when a convergence criterion is satisfied. The maximum number of iterations is set to 1,000. You can specify
both the weight function and the convergence criteria.

Weight Functions

You can specify the weight function for M estimation by using the WEIGHTFUNCTION= option. The
ROBUSTREG procedure provides 10 weight functions. By default, the procedure uses the bisquare weight
function. In most cases, M estimates are more sensitive to the parameters of these weight functions than to
the type of weight function. The median weight function is not stable and is seldom recommended in data
analysis; it is included in the ROBUSTREG procedure for completeness. You can specify the parameters
for these weight functions. Except for the Hampel and median weight functions, default values for these
parameters are defined such that the corresponding M estimates have 95% asymptotic efficiency in the
location model with the Gaussian distribution (Holland and Welsch 1977).

The following list shows the weight functions available. See Table 86.5 for the default values of the constants
in these weight functions.
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Andrews W.x; c/ D

(
sin.x=c/
x=c

if jxj � �c
0 otherwise

Bisquare W.x; c/ D

( �
1 � .x=c/2

�2 if jxj < c
0 otherwise

Cauchy W.x; c/ D 1
1C.jxj=c/2

Fair W.x; c/ D 1
.1Cjxj=c/

Hampel W.x; a; b; c/ D

8̂̂̂<̂
ˆ̂:
1 jxj < a
a
jxj

a < jxj � b
a
jxj
c�jxj
c�b

b < jxj � c

0 otherwise
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Huber W.x; c/ D

�
1 if jxj < c
c
jxj

otherwise

Logistic W.x; c/ D tanh.x=c/
x=c

Median W.x; c/ D

(
1
c

if x D 0
1
jxj

otherwise

Talworth W.x; c/ D

�
1 if jxj < c
0 otherwise

Welsch W.x; c/ D exp
�
�
.x=c/2

2

�

Convergence Criteria

The following convergence criteria are available in PROC ROBUSTREG:

• relative change in the coefficients (CONVERGENCE=COEF)
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• relative change in the scaled residuals (CONVERGENCE=RESID)

• relative change in weights (CONVERGENCE=WEIGHT)

You can specify the criteria by using the CONVERGENCE= option in the PROC ROBUSTREG statement.
The default is CONVERGENCE=COEF.

You can specify the precision of the convergence criterion by using the EPS= suboption. The default is
EPS=1E–8.

In addition to these convergence criteria, a convergence criterion that is based on a scale-independent measure
of the gradient is always checked. For more information, see Coleman et al. (1980). A warning is issued if
this additional criterion is not satisfied.

Asymptotic Covariance and Confidence Intervals

The following three estimators of the asymptotic covariance of the robust estimator are available in PROC
ROBUSTREG:

H1: K2
Œ1=.n � p/�

P
. .ri //

2

Œ.1=n/
P
. 0.ri //�2

.X0X/�1

H2: K
Œ1=.n � p/�

P
. .ri //

2

Œ.1=n/
P
. 0.ri //�

W�1

H3: K�1
1

.n � p/

X
. .ri //

2W�1.X0X/W�1

where K D 1C p
n

Var. 0/
.E 0/2

is a correction factor and Wjk D
P
 0.ri /xijxik . For more information, see

Huber (1981, p. 173).

You can specify the asymptotic covariance estimate by using the ASYMPCOV= option. The ROBUSTREG
procedure uses H1 as the default because of its simplicity and stability. Confidence intervals are computed
from the diagonal elements of the estimated asymptotic covariance matrix.

R Square and Deviance

The robust version of R square is defined as

R2 D

P
�
�
yi� O�
Os

�
�
P
�

�
yi�x0

i
O�

Os

�
P
�
�
yi� O�
Os

�
The robust deviance is defined as the optimal value of the objective function on the �2 scale,

D D 2Os2
X

�

 
yi � x0i O�
Os

!

where �0 D  , O� is the M estimator of � , O� is the M estimator of location, and Os is the M estimator of the
scale parameter in the full model.
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Linear Tests

Two tests are available in PROC ROBUSTREG for the canonical linear hypothesis

H0 W �j D 0; j D i1; : : : ; iq

where q is the total number of parameters of the tested effects. The first test is a robust version of the F test,
which is referred to as the � test. Denote the M estimators in the full and reduced models as O�.0/ 2 �0 and
O�.1/ 2 �1, respectively. Let

Q0 D Q. O�.0// D minfQ.�/j� 2 �0g
Q1 D Q. O�.1// D minfQ.�/j� 2 �1g

with

Q D

nX
iD1

�
�ri
�

�
The robust F test is based on the test statistic

S2n D
2

q
ŒQ1 �Q0�

Asymptotically S2n � ��
2
q underH0, where the standardization factor is � D

R
 2.s/dˆ.s/=

R
 0.s/ dˆ.s/

and ˆ is the cumulative distribution function of the standard normal distribution. Large values of S2n are
significant. This test is a special case of the general � test of Hampel et al. (1986, Section 7.2).

The second test is a robust version of the Wald test, which is referred to as the R2n test. This test uses a test
statistic

R2n D n.
O�i1 ; : : : ;

O�iq /H
�1
22 .
O�i1 ; : : : ;

O�iq /
0

where 1
n

H22 is the q � q block (corresponding to �i1 ; : : : ; �iq ) of the asymptotic covariance matrix of the M
estimate O�M of � in a p-parameter linear model.

Under H0, the statistic R2n has an asymptotic �2 distribution with q degrees of freedom. Large values of R2n
are significant. For more information, see Hampel et al. (1986, Chapter 7).

Model Selection

When M estimation is used, two criteria are available in PROC ROBUSTREG for model selection. The first
criterion is a counterpart of Akaike’s (1974) information criterion for robust regression (AICR); it is defined
as

AICR D 2
nX
iD1

�.ri Wp/C ˛p

where ri Wp D .yi � x0i O�/= O� , O� is a robust estimate of � and O� is the M estimator with the p-dimensional
design matrix.

As with AIC, ˛ is the weight of the penalty for dimensions. The ROBUSTREG procedure uses ˛ D
2E 2=E 0 (Ronchetti 1985) and estimates it by using the final robust residuals.
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The second criterion is a robust version of the Schwarz information criteria (BICR); it is defined as

BICR D 2
nX
iD1

�.ri Wp/C p log.n/

High Breakdown Value Estimation
The breakdown value of an estimator is the smallest contamination fraction of the data that can cause the
estimates on the entire data to be arbitrarily far from the estimates on only the uncontaminated data. The
breakdown value of an estimator can be used to measure the robustness of the estimator. Rousseeuw and
Leroy (1987) and others introduced the following high breakdown value estimators for linear regression.

LTS Estimate

The least trimmed squares (LTS) estimate that was proposed by Rousseeuw (1984) is defined as the p-vector

O�LTS D argmin
�
QLTS .�/ with QLTS .�/ D

hX
iD1

r2.i/

where r2
.1/
� r2

.2/
� ::: � r2

.n/
are the ordered squared residuals r2i D .yi � x0i�/

2, i D 1; : : : ; n, and h is

defined in the range n
2
C 1 � h � 3nCpC1

4
.

You can specify the parameter h by using the H= option in the PROC ROBUSTREG statement. By default,
h D Œ3nCpC1

4
�. The breakdown value is n�h

n
for the LTS estimate.

The ROBUSTREG procedure computes LTS estimates by using the FAST-LTS algorithm of Rousseeuw and
Van Driessen (2000). The estimates are often used to detect outliers in the data, which are then downweighted
in the resulting weighted LS regression.

Algorithm
Least trimmed squares (LTS) regression is based on the subset of h observations (out of a total of n
observations) whose least squares fit possesses the smallest sum of squared residuals. The coverage h can
be set between n

2
and n. The LTS method was proposed by Rousseeuw (1984, p. 876) as a highly robust

regression estimator with breakdown value n�h
n

. The ROBUSTREG procedure uses the FAST-LTS algorithm
that was proposed by Rousseeuw and Van Driessen (2000). The intercept adjustment technique is also
used in this implementation. However, because this adjustment is expensive to compute, it is optional. You
can use the IADJUST= option in the PROC ROBUSTREG statement to request or suppress the intercept
adjustment. By default, PROC ROBUSTREG does intercept adjustment for data sets that contain fewer than
10,000 observations. The steps of the algorithm are described briefly as follows. For more information, see
Rousseeuw and Van Driessen (2000).

1. The default h is Œ3nCpC1
4

�, where p is the number of independent variables. You can specify any integer
h with Œn

2
�C 1 � h � Œ3nCpC1

4
� by using the H= option in the MODEL statement. The breakdown

value for LTS, n�h
n

, is reported. The default h is a good compromise between breakdown value and
statistical efficiency.
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2. If p = 1 (single regressor), the procedure uses the exact algorithm of Rousseeuw and Leroy (1987, p.
172).

3. If p � 2, PROC ROBUSTREG uses the following algorithm. If n < 2 ssubs, where ssubs is the
size of the subgroups (you can specify ssubs by using the SUBGROUPSIZE= option in the PROC
ROBUSTREG statement; by default, ssubs = 300), PROC ROBUSTREG draws a random p-subset
and computes the regression coefficients by using these p points (if the regression is degenerate,
another p-subset is drawn). The absolute residuals for all observations in the data set are computed,
and the first h points that have the smallest absolute residuals are selected. From this selected h-
subset, PROC ROBUSTREG carries out nsteps C-steps (concentration steps; for more information,
see Rousseeuw and Van Driessen 2000). You can specify nsteps by using the CSTEP= option in the
PROC ROBUSTREG statement; by default, nsteps = 2. PROC ROBUSTREG redraws p-subsets and
repeats the preceding computation nrep times, and then finds the nbsol (at most) solutions that have the
lowest sums of h squared residuals. You can specify nrep by using the NREP= option in the PROC
ROBUSTREG statement; by default, NREP=minf500;

�
n
p

�
g. For small n and p, all

�
n
p

�
subsets are

used and the NREP= option is ignored (Rousseeuw and Hubert 1996). You can specify nbsol by using
the NBEST= option in the PROC ROBUSTREG statement; by default, NBEST=10. For each of these
nbsol best solutions, C-steps are taken until convergence and the best final solution is found.

4. If n � 5ssubs , construct five disjoint random subgroups with size ssubs. If 2ssubs < n < 5ssubs ,
the data are split into at most four subgroups with ssubs or more observations in each subgroup, so
that each observation belongs to a subgroup and the subgroups have roughly the same size. Let nsubs
denote the number of subgroups. Inside each subgroup, PROC ROBUSTREG repeats the step 3
algorithm nrep / nsubs times, keeps the nbsol best solutions, and pools the subgroups, yielding the
merged set of size nmerged . In the merged set, for each of the nsubs � nbsol best solutions, nsteps
C-steps are carried out by using nmerged and hmerged D Œnmerged

h
n
� and the nbsol best solutions are

kept. In the full data set, for each of these nbsol best solutions, C-steps are taken by using n and h until
convergence and the best final solution is found.

NOTE: At step 3 in the algorithm, a randomly selected p-subset might be degenerate (that is, its design
matrix might be singular). If the total number of p-subsets from any subgroup is greater than 4,000 and the
ratio of degenerate p-subsets is higher than the threshold that is specified in the FAILRATIO= option, the
algorithm terminates with an error message.

R Square
For models with the intercept term, the robust version of R square for the LTS estimate is defined as

R2LTS D 1 �
s2LTS .X; y/
s2LTS .1; y/

For models without the intercept term, it is defined as

R2LTS D 1 �
s2LTS .X; y/
s2LTS .0; y/

For both models,

sLTS .X; y/ D dh;n

vuut1

h

hX
iD1

r2
.i/
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Note that sLTS is a preliminary estimate of the parameter � in the distribution function L.�=�/.

Here dh;n is chosen to make sLTS consistent, assuming a Gaussian model. Specifically,

dh;n D 1=

s
1 �

2n

hch;n
�.1=ch;n/

ch;n D 1=ˆ�1
�
hC n

2n

�
where ˆ and � are the distribution function and the density function of the standard normal distribution,
respectively.

Final Weighted Scale Estimator
The ROBUSTREG procedure displays two scale estimators, sLTS and Wscale. The estimator Wscale is a
more efficient scale estimator based on the preliminary estimate sLTS ; it is defined as

Wscale D

s P
i wiri

2P
i wi � p

where

wi D

�
0 if jri j=sLTS > k
1 otherwise

You can specify k by using the CUTOFF= option in the MODEL statement. By default, k = 3.

S Estimate

The S estimate that was proposed by Rousseeuw and Yohai (1984) is defined as the p-vector

O�S D argmin
�
S.�/

where the dispersion S.�/ is the solution of

1

n � p

nX
iD1

�

�
yi � x0i�

S

�
D ˇ

Here ˇ is set to
R
�.s/dˆ.s/ such that O�S and S. O�S / are asymptotically consistent estimates of � and � for

the Gaussian regression model. The breakdown value of the S estimate is

ˇ

maxs �.s/

The ROBUSTREG procedure provides two choices for �: Tukey’s bisquare function and Yohai’s optimal
function.

Tukey’s bisquare function, which you can specify by using the option CHIF=TUKEY, is
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�k0.s/ D

�
3. s
k0
/2 � 3. s

k0
/4 C . s

k0
/6; if jsj � k0

1 otherwise

The constant k0 controls the breakdown value and efficiency of the S estimate. If you use the EFF= option
to specify the efficiency, you can determine the corresponding k0. The default k0 is 2.9366, such that the
breakdown value of the S estimate is 0.25, with a corresponding asymptotic efficiency for the Gaussian model
of 75.9%.

The Yohai function, which you can specify by using the option CHIF=YOHAI, is

�k0.s/ D

8̂̂̂<̂
ˆ̂:

s2

2
if jsj � 2k0

k20 Œb0 C b1.
s
k0
/2 C b2.

s
k0
/4

Cb3.
s
k0
/6 C b4.

s
k0
/8� if 2k0 < jsj � 3k0

3:25k20 if jsj > 3k0

where b0 D 1:792, b1 D �0:972, b2 D 0:432, b3 D �0:052, and b4 D 0:002. If you use the EFF= option
to specify the efficiency, you can determine the corresponding k0. By default, k0 is set to 0.7405, such that
the breakdown value of the S estimate is 0.25, with a corresponding asymptotic efficiency for the Gaussian
model of 72.7%.

Algorithm
The ROBUSTREG procedure implements the algorithm that was proposed by Marazzi (1993) for the S
estimate, which is a refined version of the algorithm that was proposed by Ruppert (1992). The refined
algorithm is briefly described as follows.

Initialize iter = 1.

1. Draw a random q-subset of the total n observations, and compute the regression coefficients by using
these q observations (if the regression is degenerate, draw another q-subset), where q � p can be
specified by using the SUBSIZE= option. By default, q D p.

2. Compute the residuals: ri D yi �
Pp
jD1 xij �j for i D 1; : : : ; n. For the first iteration, where iter = 1,

take the following substeps:

a) If all jri j D 0 for i D 1; : : : ; n, which means yi exactly equals
Pp
jD1 xij �j for all i D 1; : : : ; n,

this algorithm terminates with a message for exact fit.

b) Otherwise, set s� D 2medianfjri j; i D 1; : : : ; ng.

c) If s� D 0, update s� D minfjri j > 0; i D 1; : : : ; ng.

d) If
Pn
iD1 �.ri=s

�/ > .n � p/ˇ, set s� D 1:5s�; go to step 3.

If iter > 1 and
Pn
iD1 �.ri=s

�/ <D .n � p/ˇ, go to step 3; otherwise, go to step 5.

3. Solve the following equation for s by using an iterative algorithm:

1

n � p

nX
iD1

�.ri=s/ D ˇ
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4. If iter > 1 and s > s�, go to step 5. Otherwise, set s� D s and �� D � . If s� < TOLS, return s� and
��; otherwise, go to step 5.

5. If iter < NREP, set iter D iter C 1 and return to step 1; otherwise, return s� and ��.

The ROBUSTREG procedure performs the following refinement step by default. You can request that this
refinement not be performed by specifying the NOREFINE option in the PROC ROBUSTREG statement.

6. Let  D �0. Using the values s� and �� from the previous steps, compute the M estimates �M and
�M of � and � with the setup for M estimation that is described in the section “M Estimation” on
page 7190. If �M > s�, give a warning and return s� and ��; otherwise, return �M and �M .

You can specify TOLS by using the TOLERANCE= option; by default, TOLERANCE=0.001. Alter-
nately, you can specify NREP by using the NREP= option. You can also use the option NREP=NREP0 or
NREP=NREP1 to determine NREP according to Table 86.11. NREP=NREP0 is set as the default.

Table 86.11 Default NREP

P NREP0 NREP1
1 150 500
2 300 1000
3 400 1500
4 500 2000
5 600 2500
6 700 3000
7 850 3000
8 1250 3000
9 1500 3000

>9 1500 3000

NOTE: At step 1 in the algorithm, a randomly selected q-subset might be degenerate. If the total number of
q-subsets from any subgroup is greater than 4,000 and the ratio of degenerate q-subsets is higher than the
threshold specified in the FAILRATIO= option, the algorithm terminates with an error message.

R Square and Deviance
For the model with the intercept term, the robust version of R square for the S estimate is defined as

R2S D 1 �
.n � p/S2p

.n � 1/S2�

For the model without the intercept term, it is defined as

R2S D 1 �
.n � p/S2p

nS20

In both cases, Sp is the S estimate of the scale in the full model, S� is the S estimate of the scale in the
regression model with only the intercept term, and S0 is the S estimate of the scale without any regressor.
The deviance D is defined as the optimal value of the objective function on the �2 scale:

D D S2p
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Asymptotic Covariance and Confidence Intervals
Because the S estimate satisfies the first-order necessary conditions as the M estimate, it has the same
asymptotic covariance as the M estimate. All three estimators of the asymptotic covariance for the M estimate
in the section “Asymptotic Covariance and Confidence Intervals” on page 7195 can be used for the S estimate.
Besides, the weighted covariance estimator H4 that is described in the section “Asymptotic Covariance
and Confidence Intervals” on page 7204 is also available and is set as the default. Confidence intervals
for estimated parameters are computed from the diagonal elements of the estimated asymptotic covariance
matrix.

MM Estimation
MM estimation is a combination of high breakdown value estimation and efficient estimation that was
introduced by Yohai (1987). It has the following three steps:

1. Compute an initial (consistent) high breakdown value estimate O� 0. The ROBUSTREG procedure
provides two kinds of estimates as the initial estimate: the LTS estimate and the S estimate. By default,
the LTS estimate is used because of its speed and high breakdown value. The breakdown value of
the final MM estimate is decided by the breakdown value of the initial LTS estimate and the constant
k0 in the � function. To use the S estimate as the initial estimate, specify the INITEST=S option in
the PROC ROBUSTREG statement. In this case, the breakdown value of the final MM estimate is
decided only by the constant k0. Instead of computing the LTS estimate or the S estimate as the initial
estimate, you can also specify the initial estimate explicitly by using the INEST= option in the PROC
ROBUSTREG statement. For more information, see the section “INEST= Data Set” on page 7214.

2. Find O� 0 such that

1

n � p

nX
iD1

�

 
yi � x0i O�

0

O� 0

!
D ˇ

where ˇ D
R
�.s/dˆ.s/.

The ROBUSTREG procedure provides two choices for �: Tukey’s bisquare function and Yohai’s
optimal function.

Tukey’s bisquare function, which you can specify by using the option CHIF=TUKEY, is

�k0.s/ D

�
3. s
k0
/2 � 3. s

k0
/4 C . s

k0
/6 if jsj � k0

1 otherwise

where k0 can be specified by using the K0= option. The default k0 is 2.9366, such that the asymptoti-
cally consistent scale estimate O� 0 has a breakdown value of 25%.

Yohai’s optimal function, which you can specify by using the option CHIF=YOHAI, is

�k0.s/ D

8̂̂̂<̂
ˆ̂:

s2

2
if jsj � 2k0

k20 Œb0 C b1.
s
k0
/2 C b2.

s
k0
/4

Cb3.
s
k0
/6 C b4.

s
k0
/8� if 2k0 < jsj � 3k0

3:25k20 if jsj > 3k0
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where b0 D 1:792, b1 D �0:972, b2 D 0:432, b3 D �0:052, and b4 D 0:002. You can use the K0=
option to specify k0. The default k0 is 0.7405, such that the asymptotically consistent scale estimate
O� 0 has a breakdown value of 25%.

3. Find a local minimum O�MM of

QMM D

nX
iD1

�

�
yi � x0i�
O� 0

�
such that QMM . O�MM / � QMM . O�

0/. The algorithm for M estimation is used here.

The ROBUSTREG procedure provides two choices for �: Tukey’s bisquare function and Yohai’s
optimal function.

Tukey’s bisquare function, which you can specify by using the option CHIF=TUKEY, is

�.s/ D �k1.s/ D

�
3. s
k1
/2 � 3. s

k1
/4 C . s

k1
/6 if jsj � k1

1 otherwise

where k1 can be specified by using the K1= option. The default k1 is 3.440 such that the MM estimate
has 85% asymptotic efficiency with the Gaussian distribution.

Yohai’s optimal function, which you can specify by using the option CHIF=YOHAI, is

�.s/ D �k1.s/ D

8̂̂̂<̂
ˆ̂:

s2

2
if jsj � 2k1

k21 Œb0 C b1.
s
k1
/2 C b2.

s
k1
/4

Cb3.
s
k1
/6 C b4.

s
k1
/8� if 2k1 < jsj � 3k1

3:25k21 if jsj > 3k1

where k1 can be specified by using the K1= option. The default k1 is 0.868 such that the MM estimate
has 85% asymptotic efficiency with the Gaussian distribution.

Algorithm

The initial LTS estimate is computed using the algorithm described in the section “LTS Estimate” on
page 7197. You can control the quantile of the LTS estimate by specifying the option INITH=h, where h is
an integer between Œn

2
�C 1 and Œ3nCpC1

4
�. By default, h D Œ3nCpC1

4
�, which corresponds to a breakdown

value of around 25%.

The initial S estimate is computed using the algorithm described in the section “S Estimate” on page 7199.
You can control the breakdown value and efficiency of this initial S estimate by the constant k0, which you
can specify by using the K0= option.

The scale parameter � is solved by an iterative algorithm

.� .mC1//2 D
1

.n � p/ˇ

nX
iD1

�k0

�
ri

� .m/

��
� .m/

�2
where ˇ D

R
�k0.s/dˆ.s/.

After the scale parameter is computed, the iteratively reweighted least squares (IRLS) algorithm with fixed
scale parameter is used to compute the final MM estimate.
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Convergence Criteria

In the iterative algorithm for the scale parameter, the relative change of the scale parameter controls the
convergence.

In the iteratively reweighted least squares algorithm, the same convergence criteria for the M estimate that
are used before are used here.

Bias Test

Although the final MM estimate inherits the high breakdown value property, its bias from the distortion of the
outliers can be high. Yohai, Stahel, and Zamar (1991) introduced a bias test. The ROBUSTREG procedure
implements this test when you specify the BIASTEST= option in the PROC ROBUSTREG statement. This
test is based on the initial scale estimate O� 0 and the final scale estimate O� 01, which is the solution of

1

n � p

nX
iD1

�

 
yi � x0i O�MM

O� 01

!
D ˇ

Let  k0.z/ D
@�k0 .z/

@z
and  k1.z/ D

@�k1 .z/

@z
. Compute

Qri D .yi � x0i O�
0/= O� 0 for i D 1; : : : ; n

v0 D
.1=n/

P
 0
k0
. Qri /

. O� 01=n/
P
 k0. Qri / Qri

p
.0/
i D

 k0. Qri /

.1=n/
P
 0
k0
. Qri /

for i D 1; : : : ; n

p
.1/
i D

 k1. Qri /

.1=n/
P
 0
k1
. Qri /

for i D 1; : : : ; n

d2 D
1

n

X
.p
.1/
i � p

.0/
i /2

Let

T D
2n. O� 01 � O�

0/

v0d2. O� 0/2

Standard asymptotic theory shows that T approximately follows a �2 distribution with p degrees of freedom.
If T exceeds the ˛ quantile �2˛ of the �2 distribution with p degrees of freedom, then the ROBUSTREG
procedure gives a warning and recommends that you use other methods. Otherwise, the final MM estimate and
the initial scale estimate are reported. You can specify ˛ by using the ALPHA= option after the BIASTEST=
option. By default, ALPHA=0.99.

Asymptotic Covariance and Confidence Intervals

Because the MM estimate is computed as an M estimate with a known scale in the last step, the asymptotic
covariance for the M estimate can be used here for the asymptotic covariance of the MM estimate. Besides
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the three estimators H1, H2, and H3 as described in the section “Asymptotic Covariance and Confidence
Intervals” on page 7195, a weighted covariance estimator H4 is available. H4 is calculated as

K2
Œ1=.n � p/�

P
. .ri //

2

Œ.1=n/
P
. 0.ri //�2

W�1

where K D 1C p
n

Var. 0/
.E 0/2

is the correction factor and Wjk D 1
Nw

P
wixijxik , Nw D 1

n

P
wi .

You can specify these estimators by using the option ASYMPCOV=[H1 | H2 | H3 | H4]. The ROBUSTREG
procedure uses H4 as the default. Confidence intervals for estimated parameters are computed from the
diagonal elements of the estimated asymptotic covariance matrix.

R Square and Deviance

The robust version of R square for the MM estimate is defined as

R2 D

P
�
�
yi� O�
Os

�
�
P
�

�
yi�x0

i
O�

Os

�
P
�
�
yi� O�
Os

�
and the robust deviance is defined as the optimal value of the objective function on the �2 scale,

D D 2Os2
X

�

 
yi � x0i O�
Os

!

where �0 D  , O� is the MM estimator of � , O� is the MM estimator of location, and Os is the MM estimator of
the scale parameter in the full model.

Linear Tests

For MM estimation, you can use the same � test andR2n test that used for M estimation. For more information,
see the section “Linear Tests” on page 7196.

Model Selection

For MM estimation, you can use the same two model selection methods that are used for M estimation. For
more information, see the section “Model Selection” on page 7196.

Robust Distance
The ROBUSTREG procedure uses the robust multivariate location and scatter estimates for leverage-point
detection. The procedure computes a robust version of the Mahalanobis distance by using a generalized
minimum covariance determinant (MCD) method. The original MCD method was proposed by Rousseeuw
(1984).
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Algorithm

PROC ROBUSTREG implements a generalized MCD algorithm that is based on the fast-MCD algorithm
formulated by Rousseeuw and Van Driessen (1999), which is similar to the algorithm for least trimmed
squares (LTS).

Mahalanobis Distance versus Robust Distance

The canonical Mahalanobis distance is defined as

MD.xi / D Œ.xi � Nx/0 NC.X/�1.xi � Nx/�1=2

where Nx D 1
n

Pn
iD1 xi and NC.X/ D 1

n�1

Pn
iD1.xi � Nx/

0.xi � Nx/ are the empirical multivariate location
and scatter, respectively. Here xi D .xi1; : : : ; xip/

0 excludes the intercept. The relationship between the
Mahalanobis distance MD.xi / and the hat matrix H D .hij / D X.X0X/�1X0 is

hi i D
1

n � 1
MD2i C

1

n

The canonical robust distance is defined as

RD.xi / D Œ.xi � T.X//0C.X/�1.xi � T.X//�1=2

where T.X/ and C.X/ are the robust multivariate location and scatter, respectively, that are obtained by the
MCD method.

To achieve robustness, the MCD algorithm estimates the covariance of a multivariate data set mainly through
an MCD h-point subset of the data set. This subset has the smallest sample-covariance determinant among
all possible h-subsets. Accordingly, the breakdown value for the MCD algorithm equals .n�h/

n
. This means

the MCD estimate is reliable, even if up to 100.n�h/
n

% observations in the data set are contaminated.

Low-Dimensional Structure

It is possible that the original data are in p-dimensional space but the h-point subset that yields the minimum
covariance determinant lies in a lower-dimensional hyperplane. Applying the canonical MCD algorithm to
such a data set would result in a singular covariance problem (called exact fit in Rousseeuw and Van Driessen
1999), such that the relevant robust distances cannot be computed. To deal with the singularity problem and
provide further leverage-point analysis, PROC ROBUSTREG implements a generalized MCD algorithm.
(For more information, see the section “Generalized MCD Algorithm” on page 7210.) The algorithm
distinguishes in-(hyper)plane points from off-(hyper)plane points, and performs MCD leverage-point analysis
in the dimension-reduced space by projecting all points onto the hyperplane.

Low-dimensional structure is often induced by classification covariates. Suppose that, in a study that has
25 female subjects and 5 male subjects, gender is the only classification effect. If the breakdown setting is
greater than 5

.25C5/
, the canonical MCD algorithm fails, and so does the relevant leverage-point analysis. In

this case, the MCD h-subset would contain only female observations, and the constant gender in the h-subset
would cause the relevant MCD estimate to be singular. The generalized MCD algorithm solves that problem
by identifying all male observations as off-plane leverage points, and then carries out the leverage-point
analysis, with all the other covariates being centered separately for female and male groups against their
group means.
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In general, low-dimensional structure is not necessarily due to classification covariates. Imagine that 80
children are supposed to play on a straight trail (denoted by y D x) but that some adventurous children go
off the trail. The following statements generate the Children data set and the relevant scatter plot:

data Children;
do i=1 to 80;

off_trail=ranuni(321)>.9;
x=rannor(111)*ranuni(321);
trail_x=(i-40)/80*3;
trail_y=trail_x;
if off_trail=1 then y=x-1+rannor(321);
else y=x;
output;

end;
run;

proc sgplot data=Children;
series x=trail_x y=trail_y/lineattrs=(color="red" pattern=4);
scatter x=x y=y/group=off_trail;
ellipse x=x y=y/alpha=.05 lineattrs=(color="green" pattern=34);

run;

Figure 86.17 shows the positions of all 80 children, the trail (as a red dashed line), and a contour curve of
regular Mahalanobis distance that is centered at the mean position (as a green dotted ellipse). In terms of
regular Mahalanobis distance, the associated covariance estimate is not singular, but its relevant leverage-point
analysis completely ignores the trail (which is the entity of the low-dimensional structure). The children
outside the ellipse are defined as leverage points, but the children off the trail would not be viewed as leverage
points unless they had large Mahalanobis distances. As mentioned in Rousseeuw and Van Driessen (1999),
the canonical MCD method can find the low-dimensional structure, but it does not provide further robust
covariance estimation because the MCD covariance estimate is singular. As an improved version of the
canonical MCD method, the generalized MCD method can find the trail, identify the children off the trail as
off-plane leverage points, and further execute in-plane leverage analysis. The following statements apply the
generalized MCD algorithm to the Children data set:

ods graphics on;
proc robustreg data=children plots=ddplot(label=none);

model i = x y/leverage(mcdinfo opc);
run;
ods graphics off;
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Figure 86.17 Scatter Plot for Children Data

Figure 86.18 exactly identifies the equation that underlies the trail. The analysis projects off-plane points
onto the trail and computes their projected robust distances and projected Mahalanobis distances the same
way as it does for the in-plane points.

Figure 86.18 Robust Dependence Equations

The ROBUSTREG ProcedureThe ROBUSTREG Procedure

Note:  The following robust dependence equations simultaneously hold for 86.25% of the observations in the data set. The breakdown
setting for the MCD algorithm is 25.00 %.

y = x
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Figure 86.19 shows the relevant distance-distance plot. Robust distance is typically greater than Mahalanobis
distance because the sample covariance can be strongly influenced by unusual points that cause the sample
covariance to be larger than the MCD covariance.

Figure 86.19 DD Plot for Children Data

NOTE: The PROC ROBUSTREG step in this example is used to obtain the leverage diagnostics; the response
is not relevant for this analysis.

Through the off-plane and in-plane symbols and the horizontal cutoff line in Figure 86.19, you can separate
the children into four groups:

• on the trail and close to the MCD center

• on the trail but far away from the MCD center

• off the trail but close to the MCD center

• off the trail and far away from the MCD center

The children in the latter three groups are defined as leverage points in PROC ROBUSTREG.
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Generalized MCD Algorithm

The generalized MCD algorithm follows the same resampling strategy as the canonical MCD algorithm by
Rousseeuw and Van Driessen (1999) but with the following modifications:

1. Data are orthonormalized before further processing. The orthonormalized covariates, x�i , are defined
by x�i D .xi � Nx/Pƒ

�1=2, where P and ƒ are the eigenvector and eigenvalue matrices, respectively,
of NC.X/ (that is, NC.X/ D PƒP0).

2. Let

Sh.X�/ D
1

h � 1

hX
jD1

.x�ij � Nx
�/0.x�ij � Nx

�/ D

p�1X
jD1

�jpjpj 0

denote the covariance and eigendecomposition of a low-dimensional h-subset fx�i1 ; � � � ; x
�
ih
g, where

Nx� D 1
h

Ph
jD1 x

�
ij

and the eigenvalues satisfy

�1 � � � � � �q > 0 D �qC1 D � � � D �p

Then, the rank of Sh.X�/ equals q, and the pseudo-determinant of Sh.X�/ is defined as
Qq
jD1 �j . In

finite-precision arithmetic, q is defined as the number of �’s where �i
�1

is greater than a certain tolerance
value. You can specify this tolerance by using the PTOL= suboption of the LEVERAGE option.

3. If Sh.X�/ and Nx� are the covariance and center estimates, respectively, then the projected Mahalanobis
distance for xi is defined as24 qX

jD1

�
.x�i � Nx

�/pj
�2

�j

351=2

The generalized algorithm also computes off-plane distance for each xi as24 pX
jDqC1

�
.x�i � Nx

�/pj
�2351=2

In finite-precision arithmetic,
�
.x�i � Nx

�/pj
�2 in the previous off-plane formula are truncated to zero if

they satisfy�
.x�i � Nx

�/pj
�2

�j
� cutoff

You can tune this cutoff by using either the PCUTOFF= or PALPHA= suboption of the LEVERAGE
option. The points with zero off-plane distances are called in-plane points; otherwise, they are called
off-plane points. Analogous to ordering all points in terms of their canonical Mahalanobis distances,
for the generalized MCD algorithm the points are first sorted by their off-plane distances, and the points
with the same off-plane distance values are further sorted by their projected Mahalanobis distances.

4. Instead of comparing the determinants of h-subset covariance matrices, the generalized algorithm
compares both the ranks and pseudo-determinants of the h-subset covariance matrices. If the ranks
of two matrices are different, the matrix that has the smaller rank is treated as if its determinant were
smaller. If two matrices are of the same rank, they are compared in terms of their pseudo-determinants.
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5. Suppose that the Sh.X�/ of the minimum determinant is singular. Then the relevant low-dimensional
structure or hyperplane can be identified by using the eigendecomposition of Sh.X�/. The eigenvectors
that correspond to the nonzero eigenvalues form a basis for the low-dimensional hyperplane. The
projected off-plane distance (POD) for xi is defined as the off-plane distance that is associated with
the Sh.X�/. To provide further leverage analysis on the low-dimensional hyperplane, every x�i is
transformed into .x�i p1; � � � ; x

�
i pq/, where pj are the eigenvectors of the Sh.X�/. The projected

robust distance (PRD) is then computed as the reweighted Mahalanobis distance on all the transformed
in-plane points. The off-plane points are assigned zero weights at the reweighting stage, because
they are leverage points by definition. The in-plane points are classified into two groups, the normal
group and the in-plane leverage group. This classification is made by comparing their projected robust
distances with a leverage cutoff value. (For more information, see the section “Leverage-Point and
Outlier Detection” on page 7212.) This reweighting process mirrors the one that was proposed by
Rousseeuw and Van Driessen (1999). However, the degrees of freedom p for the reweighting critical
�2 value are replaced by q. You can control the �2 critical value by specifying the MCDCUTOFF= or
MCDALPHA= option.

If the data set under investigation has a low-dimensional structure, you can use two ODS objects, Depen-
denceEquations and MCDDependenceEquations, to identify the regressors that are linear combinations of
other regressors plus certain constants. The equations in DependenceEquations hold for the entire data set,
whereas the equations in MCDDependenceEquations apply only to the majority of the observations.

By using the OPC suboption of the LEVERAGE option, you can request an ODS table called DroppedCom-
ponents. Figure 86.20 shows the DroppedComponents table for the Children data set example. This table
contains a set of coefficient vectors for regressors, which form a basis of the complementary space for the
relevant low-dimensional structure.

Figure 86.20 MCD-Dropped Components

Coefficients for
MCD-Dropped
Components

Parameter RobustDrop1

x -1.000

y 1.0000

By using the MCDINFO suboption of the LEVERAGE option, you can request that detailed information
about the MCD covariance estimate be displayed in four ODS tables: MCDProfile, MCDCenter, MCDCov,
and MCDCorr. Figure 86.21 shows an example of the MCD information tables for the Children data set.
The number of dimensions in the table MCDProfile equals the number of nonintercept regressors minus the
number of design-dropped components. The specified value of H is the same as h for the h-subset that you
can specify by using the QUANTILE= suboption of the LEVERAGE option in the MODEL statement. The
reweighted H is the number of observations that are actually used to compute the MCD center and MCD
covariance after the reweighting step of the MCD algorithm.
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Figure 86.21 MCD Information

MCD Profile

Number of Dimensions 2

Number of Robust Dropped Components 1

Number of Observations 80

Number of Off-Plane Observations 11

Specified Value of H 60

Reweighted Value of H 63

Breakdown Value 0.2500

MCD Center

ParameterName Parameter Center

x x 0.0307

y y 0.0307

MCD Covariance

x y

x 0.207713 0.207713

y 0.207713 0.207713

MCD
Correlation

x y

x 1 1

y 1 1

Leverage-Point and Outlier Detection
The regular variable LEVERAGE is defined as

LEVERAGE D
�
0 if RD.xi / � C.p/
1 otherwise

where C.p/ D
q
�2pI1�˛ is the cutoff value. C.p/ can be set by using the leverage CUTOFF= option, and ˛

can be set by using the leverage CUTOFFALPHA= option.

If projected robust distances are computed for a data set that has a low-dimensional structure, the default

cutoff value is C.q/ D
q
�2qI1�˛ , where q is the dimensionality of the low-dimensional space. LEVERAGE

is then defined as

LEVERAGE D

8<:
0 if POD.xi / D 0 and PRD.xi / � C.q/
1 if POD.xi / D 0 and PRD.xi / > C.q/ (called in-plane leverage)
1 if POD.xi / > 0 (called off-plane leverage)

where POD is the projected off-plane distance and PRD denotes the projected robust distance. You can
specify a cutoff value by using the CUTOFF= or CUTOFFALPHA= suboption of the LEVERAGE option in
the MODEL statement.



Implementation of the WEIGHT Statement F 7213

Residuals ri ; i D 1; : : : ; n, based on robust regression estimates are used to detect vertical outliers. The
variable OUTLIER is defined as

OUTLIER D
�
0 if jri j � k O�
1 otherwise

where O� is the estimated scale in the model and the multiplier k of the cutoff value is specified by the
CUTOFF= option in the MODEL statement. By default, k = 3.

An ODS table called Diagnostics contains the LEVERAGE and OUTLIER variables.

Implementation of the WEIGHT Statement
You can use the WEIGHT statement to specify a weight variable in the input data set. (For more information,
see the section “WEIGHT Statement” on page 7190.) This section describes how PROC ROBUSTREG
implements the WEIGHT statement for each of the estimation methods and for leverage detection.

M Estimation

If you use M estimation with a known scale, then instead of minimizing Q.�/ D
Pn
iD1 �.

ri
�
/, the weighted

M estimation minimizes the weighted Huber-type objective function

Q.�/ D

nX
iD1

vi�
�ri
�

�
where vi is the weight variable that is specified by the WEIGHT statement. If you use M estimation with
an unknown scale, the weight variable is used in the location steps but not in the scale steps. (For more
information, see the section “M Estimation” on page 7190 and the SCALE= option.) For estimating the
covariance of the weighted M estimation,  .ri / and  0.ri / are obtained from the final iteration of the
weighted M estimation, and X0X and W are replaced, respectively, by X0VX and Wjk D

P
vi 
0.ri /xijxik ,

where V is a diagonal matrix whose diagonal elements are vi . (For more information, see the section
“Asymptotic Covariance and Confidence Intervals” on page 7195.) The weight variable does not affect the
model degrees of freedom p and the error degrees of freedom n � p.

LTS Estimation

LTS estimation ignores the weight variable.

S Estimation

S estimation applies the weight variable only in its M-refinement step. Except for the initial estimates, the
M-refinement step of S estimation is the same as the weighted M estimation with unknown scale. If you use
the NOREFINE suboption, S estimation ignores the weight variable along with the M-refinement step.

MM Estimation

By default, the initial step of MM estimation is the initial LTS estimation. Unlike the regular LTS estimation,
the initial LTS estimation is applied to the weighted data .yi�; xi�/’s, where yi� D

p
viyi and xi� D

p
vixi .

After the initial LTS estimation, the weight variable is ignored for the subsequent scale adjustment.
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You can use INITEST=S to specify the initial S estimation as the initial step of the MM estimation. As with
the regular S estimation, the weight variable is used only in the M-refinement step of the initial S estimation.
There is no subsequent scale adjustment step if the initial S estimation is applied.

Except for the initial estimates, the final M estimation of the MM estimation is the same as the weighted M
estimation with known scale.

Final Weighted Least Squares Estimation

Final weighted least squares estimation is always applied to the weighted data .yi�; xi�/, no matter how the
weight variable is applied in the preceding estimation. For example, if the option METHOD=LTS is specified
along with the FWLS option, although the outliers that are identified by LTS estimation do not depend on the
weight variable, final weighted least squares estimation applies the weight variable to all the points that are
not outliers.

Robust Distances and Leverage Detection

Robust distance computation ignores the weight variable. Because leverage detection depends on robust
distance, it also ignores the weight variable.

INEST= Data Set
When you use M or MM estimation, you can use the INEST= data set to specify initial estimates for all the
parameters in the model. The INEST= option is ignored if you specify LTS or S estimation by using the
METHOD=LTS or METHOD=S option or if you specify the INITEST= option after the METHOD=MM
option in the PROC ROBUSTREG statement. The INEST= data set must contain the intercept variable
(named Intercept) and all independent variables in the MODEL statement.

If BY processing is used, the INEST= data set should also include the BY variables, and there must be at
least one observation in each BY group. If there is more than one observation in a BY group, the first one
that is read is used for that BY group.

If the INEST= data set also contains the _TYPE_ variable, only observations that have the _TYPE_ value
“PARMS” are used as starting values.

You can specify starting values for the iteratively reweighted least squares algorithm in the INEST= data set.
The INEST= data set has the same structure as the OUTEST= data set but is not required to contain all the
variables or observations that appear in the OUTEST= data set. One simple use of the INEST= option is to
pass the previous OUTEST= data set directly to the next model as an INEST= data set, assuming that the two
models have the same parameterization.

OUTEST= Data Set
The OUTEST= data set contains parameter estimates for the model. You can specify a label in the MODEL
statement to distinguish between the estimates for different models that the ROBUSTREG procedure uses. If
the COVOUT option is specified, the OUTEST= data set also contains the estimated covariance matrix of the
parameter estimates. If the ROBUSTREG procedure does not converge, the parameter estimates are set to
missing in the OUTEST data set.
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The OUTEST= data set contains all variables that are specified in the MODEL statement and the BY
statement. For each BY group, the OUTEST= data set has the following:

• one observation that consists of the model’s parameter estimates, where the value of the dependent
variable is set to –1

• if the COVOUT option is specified, p observations that contain the rows of the estimated covariance
matrix. For these observations, the dependent variable contains the parameter estimates for the
corresponding row variables.

The following variables are also added to the data set in their display order:

_MODEL_ is a character variable that contains the label of the MODEL statement, if present. Other-
wise, the variable’s value is blank.

_NAME_ is a character variable that contains the name of the dependent variable for the parameter
estimates or the name of the row for the covariance matrix estimates.

_TYPE_ is a character variable that contains the type of the observation: either PARMS for
parameter estimates or COV for covariance estimates.

_METHOD_ is a character variable that contains the type of estimation method: either M estimation,
LTS estimation, S estimation, or MM estimation.

_STATUS_ is a character variable that contains the status of model fitting: either Converged, Warning,
or Failed.

INTERCEPT is a numeric variable that contains the intercept parameter estimates and covariances.

_SCALE_ is a numeric variable that contains the scale parameter estimates.

Any BY variables that are specified are also added to the OUTEST= data set.

Computational Resources
The algorithms for the various estimation methods need a different amount of memory for working space.
Let p be the number of parameters that are estimated, and let n be the number of observations that are used in
the model estimation.

For M estimation, the minimum required working space (in bytes) is

3nC 2p2 C 30p

If sufficient space is available, the input data set is also kept in memory; otherwise, the input data set is read
again to compute the iteratively reweighted least squares estimates, and the execution time of the procedure
increases substantially. For each of the reweighted least squares, O.np2 C p3/ multiplications and additions
are required for computing the crossproduct matrix and its inverse. The O.v/ notation means that, for large
values of the argument, v, O.v/ is approximately a constant times v.

Because the iteratively reweighted least squares algorithm converges very quickly (usually within fewer than
20 iterations), the computation of M estimates is fast.

LTS estimation is more expensive in computation. The minimum required working space (in bytes) is

np C 12nC 4p2 C 60p
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The memory is mainly used to store the current data that the LTS algorithm uses for modeling. The LTS
algorithm uses subsampling and spends much of its computing time on resampling and computing estimates
for subsamples. Because it resamples if singularity is detected, the LTS algorithm might take more time if
the data set has serious singularities.

The MCD algorithm for leverage-point diagnostics is similar to the LTS algorithm.

ODS Table Names
The ROBUSTREG procedure assigns a name to each table that it creates. You can specify these names when
using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed
in Table 86.12.

Table 86.12 ODS Tables Produced by PROC ROBUSTREG
ODS Table Name Description Statement Option
BestEstimates Best final estimates for LTS PROC SUBANALYSIS
BestSubEstimates Best estimates for each subgroup PROC SUBANALYSIS
BiasTest Bias test for MM estimation PROC BIASTEST
ClassLevels Classification variable levels CLASS Default
CorrB Parameter estimate correlation

matrix
MODEL CORRB

CovB Parameter estimate covariance
matrix

MODEL COVB

CStep C-step for LTS fitting PROC SUBANALYSIS
DependenceEquations Design dependence equations MODEL LEVERAGE
Diagnostics Outlier diagnostics MODEL DIAGNOSTICS
DiagSummary Summary of the outlier diagnos-

tics
MODEL Default

DroppedComponents Coefficients for MCD-dropped
components

MODEL LEVERAGE
(OPC)

GoodFit R square, deviance, AIC, and BIC PROC METHOD=
InitLTSProfile Profile for initial LTS estimate PROC METHOD=
InitSProfile Profile for initial S estimate PROC METHOD=
IterHistory Iteration history PROC ITPRINT
LTSEstimates LTS parameter estimates PROC METHOD=
LTSLocationScale Location and scale for LTS PROC METHOD=
LTSProfile Profile for LTS estimator PROC METHOD=
LTSRsquare R square for LTS estimate PROC METHOD=
MCDDependenceEquations Robust dependence equations MODEL LEVERAGE
MCDProfile MCD profile MODEL LEVERAGE

(MCDINFO)
MCDCenter MCD center estimate MODEL LEVERAGE

(MCDINFO)
MCDCov MCD covariance estimate MODEL LEVERAGE

(MCDINFO)
MCDCorr MCD correlation estimate MODEL LEVERAGE

(MCDINFO)
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Table 86.12 (continued)
ODS Table Name Description Statement Option
MMProfile Profile for MM estimator PROC METHOD=
ModelInfo Model information MODEL Default
NObs Observations summary PROC Default
ParameterEstimates Parameter estimates MODEL Default
ParameterEstimatesF Final weighted LS estimates PROC FWLS
ParameterEstimatesR Reduced parameter estimates TEST Default
ParmInfo Parameter indices MODEL Default
SProfile Profile for S estimator PROC METHOD=
Groups Groups for LTS fitting PROC SUBANALYSIS
SummaryStatistics Summary statistics for model vari-

ables
MODEL Default

Tests Results for tests TEST Default

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

If the model includes a single continuous independent variable, a plot of robust fit against this variable (fit
plot) is provided by default. Two plots are particularly useful in revealing outliers and leverage points. The
first is a scatter plot of the standardized robust residuals against the robust distances (RD plot). The second is
a scatter plot of the robust distances against the classical Mahalanobis distances (DD plot). In addition to
these two plots, a histogram and a quantile-quantile plot of the standardized robust residuals are also helpful.

PROC ROBUSTREG assigns a name to each graph that it creates using ODS Graphics. You can use these
names to refer to the graphs when using ODS. The graph names and corresponding PLOTS= options are
listed in Table 86.13.

Table 86.13 Graphs Produced by PROC ROBUSTREG
ODS Graph Name Plot Description Statement PLOTS= Option
DDPlot Robust distance versus Mahalanobis distance

(or projected robust distance versus projected
Mahalanobis distance)

PROC DDPLOT

FitPlot Robust fit versus independent variable PROC FITPLOT
Histogram Histogram of standardized robust residuals PROC HISTOGRAM
QQPlot Quantile-quantile plot of standardized robust

residuals
PROC QQPLOT
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Table 86.13 (continued)
ODS Graph Name Plot Description Statement PLOTS= Option
RDPlot Standardized robust residual versus robust dis-

tance (or projected robust distance)
PROC RDPLOT

Fit Plot

When the model has a single independent continuous variable (with or without the intercept), the ROBUS-
TREG procedure automatically creates a plot of robust fit against this independent variable.

The following simple example shows the fit plot. The data, from Rousseeuw and Leroy (1987, Table 3),
include the logarithm of surface temperature and the logarithm of light intensity for 47 stars in the direction
of the constellation Cygnus.

data star;
input index x y @@;
label x = 'Log Temperature'

y = 'Log Light Intensity';
datalines;

1 4.37 5.23 2 4.56 5.74 3 4.26 4.93 4 4.56 5.74
5 4.30 5.19 6 4.46 5.46 7 3.84 4.65 8 4.57 5.27
9 4.26 5.57 10 4.37 5.12 11 3.49 5.73 12 4.43 5.45

13 4.48 5.42 14 4.01 4.05 15 4.29 4.26 16 4.42 4.58
17 4.23 3.94 18 4.42 4.18 19 4.23 4.18 20 3.49 5.89
21 4.29 4.38 22 4.29 4.22 23 4.42 4.42 24 4.49 4.85
25 4.38 5.02 26 4.42 4.66 27 4.29 4.66 28 4.38 4.90
29 4.22 4.39 30 3.48 6.05 31 4.38 4.42 32 4.56 5.10
33 4.45 5.22 34 3.49 6.29 35 4.23 4.34 36 4.62 5.62
37 4.53 5.10 38 4.45 5.22 39 4.53 5.18 40 4.43 5.57
41 4.38 4.62 42 4.45 5.06 43 4.50 5.34 44 4.45 5.34
45 4.55 5.54 46 4.45 4.98 47 4.42 4.50
;

The following statements use the MM method to plot the robust fit of the logarithm of light intensity against
the logarithm of the surface temperature:

ods graphics on;
proc robustreg data=star method=mm;

model y = x;
run;
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Figure 86.22 shows the fit plot. Confidence limits are added to the plot by default.

Figure 86.22 Robust Fit

You can suppress the confidence limits by specifying the NOLIMITS option, as shown in the following
statements:

proc robustreg data=star method=mm plot=fitplot(nolimits);
model y = x;

run;

Distance-Distance Plot

The distance-distance (DD) plot is mainly used for leverage-point diagnostics. It is a scatter plot of the robust
distances (or projected robust distances) against the classical Mahalanobis distances (or projected classical
Mahalanobis distances) for the independent variables. For more information about the robust distance, see
the section “Leverage-Point and Outlier Detection” on page 7212.

You can use the PLOT=DDPLOT option to request this plot. The following statements use the Stack data set
in the section “M Estimation” on page 7163 to create the single plot shown in Figure 86.5:

proc robustreg data=Stack plot=ddplot;
model y = x1 x2 x3;

run;

The reference lines represent the cutoff values. The diagonal line is also drawn to show the distribution of the
distances. By default, all outliers and leverage points are labeled with observation numbers. To change the
default, you can use the LABEL= option as described in Table 86.2.
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If you specify ID variables in the ID statement, the values of the first ID variable instead of observation
numbers are used as labels.

Residual-Distance Plot

The residual-distance (RD) plot is used for both outlier and leverage-point diagnostics. It is a scatter plot of
the standardized robust residuals against the robust distances. For more information about the robust distance,
see the section “Leverage-Point and Outlier Detection” on page 7212.

You can use the PLOT=RDPLOT option to request the RD plot. The following statements use the Stack data
set in the section “M Estimation” on page 7163 to create the plot shown in Figure 86.4:

proc robustreg data=Stack plot=rdplot;
model y = x1 x2 x3;

run;

The reference lines represent the cutoff values. By default, all outliers and leverage points are labeled with
observation numbers. To change the default, you can use the LABEL= option as described in Table 86.2.

If you specify ID variables in the ID statement, the values of the first ID variable instead of observation
numbers are used as labels.

Histogram and Q-Q Plot

PROC ROBUSTREG produces a histogram and a Q-Q plot for the standardized robust residuals. The
histogram is superimposed with a normal density curve and a kernel density curve. The following statements
use the Stack data set from the section “M Estimation” on page 7163 to create the plots in Figure 86.6 and
Figure 86.7:

proc robustreg data=Stack plots=(histogram qqplot);
model y = x1 x2 x3;

run;

Examples: ROBUSTREG Procedure

Example 86.1: Comparison of Robust Estimates
This example contrasts several of the robust methods available in the ROBUSTREG procedure.

The following statements generate 1,000 random observations. The first 900 observations are from a linear
model, and the last 100 observations are significantly biased in the Y direction. In other words, 10% of the
observations are contaminated with outliers.

data a (drop=i);
do i=1 to 1000;

x1=rannor(1234);
x2=rannor(1234);
e=rannor(1234);
if i > 900 then y=100 + e;
else y=10 + 5*x1 + 3*x2 + .5 * e;
output;
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end;
run;

The following statements invoke PROC REG and PROC ROBUSTREG with the data set a:

proc reg data=a;
model y = x1 x2;

run;

proc robustreg data=a method=m;
model y = x1 x2;

run;

proc robustreg data=a method=mm seed=100;
model y = x1 x2;

run;

proc robustreg data=a method=s seed=100;
model y = x1 x2;

run;

proc robustreg data=a method=lts seed=100;
model y = x1 x2;

run;

The tables of parameter estimates that are generated by using M estimation, MM estimation, S estimation,
and LTS estimation in the ROBUSTREG procedure are shown in Output 86.1.2, Output 86.1.3, Output 86.1.4,
and Output 86.1.5, respectively. For comparison, the ordinary least squares (OLS) estimates that are produced
by the REG procedure (see Chapter 85, “The REG Procedure”) are shown in Output 86.1.1. The four robust
methods, M, MM, S, and LTS, correctly estimate the regression coefficients for the underlying model (10, 5,
and 3), but the OLS estimate does not.

Output 86.1.1 OLS Estimates for Data with 10% Contamination

The REG Procedure
Model: MODEL1

Dependent Variable: y

The REG Procedure
Model: MODEL1

Dependent Variable: y

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 19.06712 0.86322 22.09 <.0001

x1 1 3.55485 0.86892 4.09 <.0001

x2 1 2.12341 0.83039 2.56 0.0107
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Output 86.1.2 M Estimates for Data with 10% Contamination

The ROBUSTREG ProcedureThe ROBUSTREG Procedure

Model Information

Data Set WORK.A

Dependent Variable y

Number of Independent Variables 2

Number of Observations 1000

Method M Estimation

Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Intercept 1 10.0024 0.0174 9.9683 10.0364 331908 <.0001

x1 1 5.0077 0.0175 4.9735 5.0420 82106.9 <.0001

x2 1 3.0161 0.0167 2.9834 3.0488 32612.5 <.0001

Scale 1 0.5780

Output 86.1.3 MM Estimates for Data with 10% Contamination

The ROBUSTREG ProcedureThe ROBUSTREG Procedure

Model Information

Data Set WORK.A

Dependent Variable y

Number of Independent Variables 2

Number of Observations 1000

Method MM Estimation

Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Intercept 1 10.0035 0.0176 9.9690 10.0379 323947 <.0001

x1 1 5.0085 0.0178 4.9737 5.0433 79600.6 <.0001

x2 1 3.0181 0.0168 2.9851 3.0511 32165.0 <.0001

Scale 0 0.6733

Output 86.1.4 S Estimates for Data with 10% Contamination

The ROBUSTREG ProcedureThe ROBUSTREG Procedure

Model Information

Data Set WORK.A

Dependent Variable y

Number of Independent Variables 2

Number of Observations 1000

Method S Estimation
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Output 86.1.4 continued

Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Intercept 1 10.0055 0.0180 9.9703 10.0408 309917 <.0001

x1 1 5.0096 0.0182 4.9740 5.0452 76045.2 <.0001

x2 1 3.0210 0.0172 2.9873 3.0547 30841.3 <.0001

Scale 0 0.6721

Output 86.1.5 LTS Estimates for Data with 10% Contamination

The ROBUSTREG ProcedureThe ROBUSTREG Procedure

Model Information

Data Set WORK.A

Dependent Variable y

Number of Independent Variables 2

Number of Observations 1000

Method LTS Estimation

LTS Parameter Estimates

Parameter DF Estimate

Intercept 1 10.0083

x1 1 5.0316

x2 1 3.0396

Scale (sLTS) 0 0.5880

Scale (Wscale) 0 0.5113

The next statements demonstrate that if the percentage of contamination is increased to 40%, the M method
and the MM method with default options fail to estimate the underlying model. Output 86.1.6 and Out-
put 86.1.7 display these estimates. However, by tuning the constant c for the M method and the constants
INITH and K0 for the MM method, you can increase the breakdown values of the estimates and capture the
right model. Output 86.1.8 and Output 86.1.9 display these estimates. Similarly, you can tune the constant
EFF for the S method and the constant H for the LTS method and correctly estimate the underlying model by
using these methods. Results are not presented.

data b (drop=i);
do i=1 to 1000;

x1=rannor(1234);
x2=rannor(1234);
e=rannor(1234);
if i > 600 then y=100 + e;
else y=10 + 5*x1 + 3*x2 + .5 * e;
output;

end;
run;
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proc robustreg data=b method=m;
model y = x1 x2;

run;

proc robustreg data=b method=mm;
model y = x1 x2;

run;

proc robustreg data=b method=m(wf=bisquare(c=2));
model y = x1 x2;

run;

proc robustreg data=b method=mm(inith=502 k0=1.8);
model y = x1 x2;

run;

Output 86.1.6 M Estimates (Default Setting) for Data with 40% Contamination

The ROBUSTREG ProcedureThe ROBUSTREG Procedure

Model Information

Data Set WORK.B

Dependent Variable y

Number of Independent Variables 2

Number of Observations 1000

Method M Estimation

Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Intercept 1 44.8991 1.5609 41.8399 47.9584 827.46 <.0001

x1 1 2.4309 1.5712 -0.6485 5.5104 2.39 0.1218

x2 1 1.3742 1.5015 -1.5687 4.3171 0.84 0.3601

Scale 1 56.6342

Output 86.1.7 MM Estimates (Default Setting) for Data with 40% Contamination

The ROBUSTREG ProcedureThe ROBUSTREG Procedure

Model Information

Data Set WORK.B

Dependent Variable y

Number of Independent Variables 2

Number of Observations 1000

Method MM Estimation



Example 86.1: Comparison of Robust Estimates F 7225

Output 86.1.7 continued

Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Intercept 1 43.0607 1.7978 39.5370 46.5844 573.67 <.0001

x1 1 2.7369 1.8140 -0.8185 6.2924 2.28 0.1314

x2 1 1.5211 1.7265 -1.8628 4.9049 0.78 0.3783

Scale 0 52.8496

Output 86.1.8 M Estimates (Tuned) for Data with 40% Contamination

The ROBUSTREG ProcedureThe ROBUSTREG Procedure

Model Information

Data Set WORK.B

Dependent Variable y

Number of Independent Variables 2

Number of Observations 1000

Method M Estimation

Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Intercept 1 10.0137 0.0219 9.9708 10.0565 209688 <.0001

x1 1 4.9905 0.0220 4.9473 5.0336 51399.1 <.0001

x2 1 3.0399 0.0210 2.9987 3.0811 20882.4 <.0001

Scale 1 1.0531

Output 86.1.9 MM Estimates (Tuned) for Data with 40% Contamination

The ROBUSTREG ProcedureThe ROBUSTREG Procedure

Model Information

Data Set WORK.B

Dependent Variable y

Number of Independent Variables 2

Number of Observations 1000

Method MM Estimation

Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Intercept 1 10.0103 0.0213 9.9686 10.0520 221639 <.0001

x1 1 4.9890 0.0218 4.9463 5.0316 52535.9 <.0001

x2 1 3.0363 0.0201 2.9970 3.0756 22895.5 <.0001

Scale 0 1.8992
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When there are bad leverage points, the M method fails to estimate the underlying model no matter what
constant c you use. In this case, other methods (LTS, S, and MM) in PROC ROBUSTREG, which are robust
to bad leverage points, correctly estimate the underlying model.

The following statements generate and analyze 1,000 observations, 1% of which are bad high-leverage points.

data c (drop=i);
do i=1 to 1000;

x1=rannor(1234);
x2=rannor(1234);
e=rannor(1234);
if i > 600 then y=100 + e;
else y=10 + 5*x1 + 3*x2 + .5 * e;
if i < 11 then x1=200 * rannor(1234);
if i < 11 then x2=200 * rannor(1234);
if i < 11 then y= 100*e;
output;

end;
run;

proc robustreg data=c method=mm(inith=502 k0=1.8) seed=100;
model y = x1 x2;

run;

proc robustreg data=c method=s(k0=1.8) seed=100;
model y = x1 x2;

run;

proc robustreg data=c method=lts(h=502) seed=100;
model y = x1 x2;

run;

Output 86.1.10 displays the MM estimates with initial LTS estimates, Output 86.1.11 displays the S estimates,
and Output 86.1.12 displays the LTS estimates.

Output 86.1.10 MM Estimates for Data with 1% Leverage Points

The ROBUSTREG ProcedureThe ROBUSTREG Procedure

Model Information

Data Set WORK.C

Dependent Variable y

Number of Independent Variables 2

Number of Observations 1000

Method MM Estimation

Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Intercept 1 9.9820 0.0215 9.9398 10.0241 215369 <.0001

x1 1 5.0303 0.0206 4.9898 5.0707 59469.1 <.0001

x2 1 3.0222 0.0221 2.9789 3.0655 18744.9 <.0001

Scale 0 2.2134
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Output 86.1.11 S Estimates for Data with 1% Leverage Points

The ROBUSTREG ProcedureThe ROBUSTREG Procedure

Model Information

Data Set WORK.C

Dependent Variable y

Number of Independent Variables 2

Number of Observations 1000

Method S Estimation

Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Intercept 1 9.9808 0.0216 9.9383 10.0232 212532 <.0001

x1 1 5.0303 0.0208 4.9896 5.0710 58656.3 <.0001

x2 1 3.0217 0.0222 2.9782 3.0652 18555.7 <.0001

Scale 0 2.2094

Output 86.1.12 LTS Estimates for Data with 1% Leverage Points

The ROBUSTREG ProcedureThe ROBUSTREG Procedure

Model Information

Data Set WORK.C

Dependent Variable y

Number of Independent Variables 2

Number of Observations 1000

Method LTS Estimation

LTS Parameter Estimates

Parameter DF Estimate

Intercept 1 9.9742

x1 1 5.0010

x2 1 3.0219

Scale (sLTS) 0 0.9952

Scale (Wscale) 0 0.5216

Example 86.2: Robust ANOVA
The classical analysis of variance (ANOVA) technique that is based on least squares assumes that the
underlying experimental errors are normally distributed. However, data often contain outliers as a result of
recording or other errors. In other cases, extreme responses occur when control variables in the experiments
are set to extremes. It is important to distinguish among these extreme points and determine whether they
are outliers or important extreme cases. You can use the ROBUSTREG procedure for robust analysis of
variance based on M estimation. Usually there are no high-leverage points in a well-designed experiment, so
M estimation is appropriate.

This example shows how to use the ROBUSTREG procedure for robust ANOVA.
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An experiment studied the effects of two successive treatments (T1, T2) on the recovery time of mice that
had certain diseases. Sixteen mice were randomly assigned to four groups for the four different combinations
of the treatments. The recovery times (time) were recorded (in hours) as shown in the following data set:

data recover;
input T1 $ T2 $ time @@;
datalines;

0 0 20.2 0 0 23.9 0 0 21.9 0 0 42.4
1 0 27.2 1 0 34.0 1 0 27.4 1 0 28.5
0 1 25.9 0 1 34.5 0 1 25.1 0 1 34.2
1 1 35.0 1 1 33.9 1 1 38.3 1 1 39.9
;

The following statements invoke the GLM procedure (see Chapter 45, “The GLM Procedure”) for a standard
ANOVA:

proc glm data=recover;
class T1 T2;
model time = T1 T2 T1*T2;

run;

Output 86.2.1 indicates that the overall model effect is not significant at the 10% level, and Output 86.2.2
indicates that neither treatment is significant at the 10% level.

Output 86.2.1 Overall ANOVA

The GLM Procedure

Dependent Variable: time

The GLM Procedure

Dependent Variable: time

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 3 209.9118750 69.9706250 1.86 0.1905

Error 12 451.9225000 37.6602083

Corrected Total 15 661.8343750

R-Square Coeff Var Root MSE time Mean

0.317167 19.94488 6.136791 30.76875

Output 86.2.2 Model ANOVA

Source DF Type I SS Mean Square F Value Pr > F

T1 1 81.4506250 81.4506250 2.16 0.1671

T2 1 106.6056250 106.6056250 2.83 0.1183

T1*T2 1 21.8556250 21.8556250 0.58 0.4609

The following statements invoke the ROBUSTREG procedure and use the same model:

proc robustreg data=recover;
class T1 T2;
model time = T1 T2 T1*T2 / diagnostics;
T1_T2: test T1*T2;
output out=robout r=resid sr=stdres;

run;
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Output 86.2.3 shows some basic information about the model and the response variable time.

Output 86.2.3 Model-Fitting Information and Summary Statistics

The ROBUSTREG ProcedureThe ROBUSTREG Procedure

Model Information

Data Set WORK.RECOVER

Dependent Variable time

Number of Independent Variables 2

Number of Continuous Independent Variables 0

Number of CLASS Independent Variables 2

Number of Observations 16

Method M Estimation

Summary Statistics

Variable Q1 Median Q3 Mean
Standard
Deviation MAD

time 25.5000 31.2000 34.7500 30.7688 6.6425 6.8941

The “Parameter Estimates” table in Output 86.2.4 indicates that the main effects of both treatments are
significant at the 5% level.

Output 86.2.4 Model Parameter Estimates

Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Intercept 1 36.7655 2.0489 32.7497 40.7814 321.98 <.0001

T1 0 1 -6.8307 2.8976 -12.5100 -1.1514 5.56 0.0184

T1 1 0 0.0000 . . . . .

T2 0 1 -7.6755 2.8976 -13.3548 -1.9962 7.02 0.0081

T2 1 0 0.0000 . . . . .

T1*T2 0 0 1 -0.2619 4.0979 -8.2936 7.7698 0.00 0.9490

T1*T2 0 1 0 0.0000 . . . . .

T1*T2 1 0 0 0.0000 . . . . .

T1*T2 1 1 0 0.0000 . . . . .

Scale 1 3.5346

The reason for the difference between the traditional ANOVA and the robust ANOVA is explained by
Output 86.2.5, which shows that the fourth observation is an outlier. Further investigation shows that the
original value of 24.4 for the fourth observation was recorded incorrectly.

Output 86.2.5 Diagnostics

Diagnostics

Obs

Standardized
Robust
Residual Outlier

4 5.7722 *
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Output 86.2.6 displays the robust test results. The interaction between the two treatments is not significant.

Output 86.2.6 Test of Significance

Robust Linear Test T1_T2

Test
Test

Statistic Lambda DF Chi-Square Pr > ChiSq

Rho 0.0041 0.7977 1 0.01 0.9431

Rn2 0.0041 1 0.00 0.9490

Output 86.2.7 displays the robust residuals and standardized robust residuals.

Output 86.2.7 PROC ROBUSTREG Output

Obs T1 T2 time resid stdres

1 0 0 20.2 -1.7974 -0.50851

2 0 0 23.9 1.9026 0.53827

3 0 0 21.9 -0.0974 -0.02756

4 0 0 42.4 20.4026 5.77222

5 1 0 27.2 -1.8900 -0.53472

6 1 0 34.0 4.9100 1.38911

7 1 0 27.4 -1.6900 -0.47813

8 1 0 28.5 -0.5900 -0.16693

9 0 1 25.9 -4.0348 -1.14152

10 0 1 34.5 4.5652 1.29156

11 0 1 25.1 -4.8348 -1.36785

12 0 1 34.2 4.2652 1.20668

13 1 1 35.0 -1.7655 -0.49950

14 1 1 33.9 -2.8655 -0.81070

15 1 1 38.3 1.5345 0.43413

16 1 1 39.9 3.1345 0.88679

Example 86.3: Growth Study of De Long and Summers
Robust regression and outlier detection techniques have considerable applications to econometrics. This
example, from Zaman, Rousseeuw, and Orhan (2001), shows how these techniques substantially improve the
ordinary least squares (OLS) results for the growth study of De Long and Summers.

De Long and Summers (1991) studied the national growth of 61 countries from 1960 to 1985 by applying
OLS to the following data set:

data growth;
input country $ GDP LFG EQP NEQ GAP @@;
datalines;

Argentin 0.0089 0.0118 0.0214 0.2286 0.6079
Austria 0.0332 0.0014 0.0991 0.1349 0.5809
Belgium 0.0256 0.0061 0.0684 0.1653 0.4109
Bolivia 0.0124 0.0209 0.0167 0.1133 0.8634
Botswana 0.0676 0.0239 0.1310 0.1490 0.9474
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... more lines ...

Venezuel 0.0120 0.0378 0.0340 0.0760 0.4974
Zambia -0.0110 0.0275 0.0702 0.2012 0.8695
Zimbabwe 0.0110 0.0309 0.0843 0.1257 0.8875
;

The regression equation that they used is

GDP D ˇ0 C ˇ1LFGC ˇ2GAPC ˇ3EQPC ˇ4NEQC �

where the response variable is the growth in gross domestic product per worker (GDP) and the regressors
are labor force growth (LFG), relative GDP gap (GAP), equipment investment (EQP), and nonequipment
investment (NEQ).

The following statements invoke the REG procedure (see Chapter 85, “The REG Procedure”) for the OLS
analysis:

proc reg data=growth;
model GDP = LFG GAP EQP NEQ;

run;

The OLS analysis that is shown in Output 86.3.1 indicates that GAP and EQP have a significant influence on
GDP at the 5% level.

Output 86.3.1 OLS Estimates

The REG Procedure
Model: MODEL1

Dependent Variable: GDP

The REG Procedure
Model: MODEL1

Dependent Variable: GDP

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 -0.01430 0.01028 -1.39 0.1697

LFG 1 -0.02981 0.19838 -0.15 0.8811

GAP 1 0.02026 0.00917 2.21 0.0313

EQP 1 0.26538 0.06529 4.06 0.0002

NEQ 1 0.06236 0.03482 1.79 0.0787

The following statements invoke the ROBUSTREG procedure and use the default M estimation:

ods graphics on;

proc robustreg data=growth plots=all;
model GDP = LFG GAP EQP NEQ / diagnostics leverage;
id country;

run;

ods graphics off;
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Output 86.3.2 displays model information and summary statistics for variables in the model.

Output 86.3.2 Model-Fitting Information and Summary Statistics

The ROBUSTREG ProcedureThe ROBUSTREG Procedure

Model Information

Data Set WORK.GROWTH

Dependent Variable GDP

Number of Independent Variables 4

Number of Observations 61

Method M Estimation

Summary Statistics

Variable Q1 Median Q3 Mean
Standard
Deviation MAD

LFG 0.0118 0.0239 0.0281 0.0211 0.00979 0.00949

GAP 0.5796 0.8015 0.8863 0.7258 0.2181 0.1778

EQP 0.0265 0.0433 0.0720 0.0523 0.0296 0.0325

NEQ 0.0956 0.1356 0.1812 0.1399 0.0570 0.0624

GDP 0.0121 0.0231 0.0310 0.0224 0.0155 0.0150

Output 86.3.3 displays the M estimates. Besides GAP and EQP, the robust analysis also indicates that NEQ is
significant. This new finding is explained by Output 86.3.4, which shows that Zambia, the 60th country in the
data, is an outlier. Output 86.3.4 also identifies leverage points that are based on the robust MCD distances;
however, there are no serious high-leverage points in this data set.

Output 86.3.3 M Estimates

Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Intercept 1 -0.0247 0.0097 -0.0437 -0.0058 6.53 0.0106

LFG 1 0.1040 0.1867 -0.2619 0.4699 0.31 0.5775

GAP 1 0.0250 0.0086 0.0080 0.0419 8.36 0.0038

EQP 1 0.2968 0.0614 0.1764 0.4172 23.33 <.0001

NEQ 1 0.0885 0.0328 0.0242 0.1527 7.29 0.0069

Scale 1 0.0099
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Output 86.3.4 Diagnostics

Diagnostics

Obs country
Mahalanobis

Distance

Robust
MCD

Distance Leverage

Standardized
Robust
Residual Outlier

1 Argentin 2.6083 4.0639 * -0.9424

5 Botswana 3.4351 6.7391 * 1.4200

8 Canada 3.1876 4.6843 * -0.1972

9 Chile 3.6752 5.0599 * -1.8784

17 Finland 2.6024 3.8186 * -1.7971

23 HongKong 2.1225 3.8238 * 1.7161

27 Israel 2.6461 5.0336 * 0.0909

31 Japan 2.9179 4.7140 * 0.0216

53 Tanzania 2.2600 4.3193 * -1.8082

57 U.S. 3.8701 5.4874 * 0.1448

58 Uruguay 2.5953 3.9671 * -0.0978

59 Venezuel 2.9239 4.1663 * 0.3573

60 Zambia 1.8562 2.7135 -4.9798 *

61 Zimbabwe 1.9634 3.9128 * -2.5959

Output 86.3.5 displays robust versions of goodness-of-fit statistics for the model.

Output 86.3.5 Goodness-of-Fit Statistics

Goodness-of-Fit

Statistic Value

R-Square 0.3178

AICR 80.2134

BICR 91.5095

Deviance 0.0070

The PLOTS=ALL option generates four diagnostic plots. Output 86.3.6 and Output 86.3.7 are for outlier and
leverage-point diagnostics. Output 86.3.8 and Output 86.3.9 are a histogram and a Q-Q plot, respectively, of
the standardized robust residuals.
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Output 86.3.6 RD Plot for Growth Data

Output 86.3.7 DD Plot for Growth Data
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Output 86.3.8 Histogram

Output 86.3.9 Q-Q Plot
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The following statements invoke the ROBUSTREG procedure and use LTS estimation, which was used by
Zaman, Rousseeuw, and Orhan (2001). The results are consistent with those of M estimation.

proc robustreg method=lts(h=33) fwls data=growth seed=100;
model GDP = LFG GAP EQP NEQ / diagnostics leverage;
id country;

run;

Output 86.3.10 displays the LTS estimates and the LTS R square.

Output 86.3.10 LTS Estimates and LTS R Square

The ROBUSTREG ProcedureThe ROBUSTREG Procedure

LTS Parameter Estimates

Parameter DF Estimate

Intercept 1 -0.0249

LFG 1 0.1123

GAP 1 0.0214

EQP 1 0.2669

NEQ 1 0.1110

Scale (sLTS) 0 0.0076

Scale (Wscale) 0 0.0109

R-Square for
LTS Estimation

R-Square 0.7418

Output 86.3.11 displays outlier and leverage-point diagnostics that are based on the LTS estimates and the
robust MCD distances.

Output 86.3.11 Diagnostics

Diagnostics

Obs country
Mahalanobis

Distance

Robust
MCD

Distance Leverage

Standardized
Robust
Residual Outlier

1 Argentin 2.6083 4.0639 * -1.0715

5 Botswana 3.4351 6.7391 * 1.6574

8 Canada 3.1876 4.6843 * -0.2324

9 Chile 3.6752 5.0599 * -2.0896

17 Finland 2.6024 3.8186 * -1.6367

23 HongKong 2.1225 3.8238 * 1.7570

27 Israel 2.6461 5.0336 * 0.2334

31 Japan 2.9179 4.7140 * 0.0971

53 Tanzania 2.2600 4.3193 * -1.2978

57 U.S. 3.8701 5.4874 * 0.0605

58 Uruguay 2.5953 3.9671 * -0.0857

59 Venezuel 2.9239 4.1663 * 0.4113

60 Zambia 1.8562 2.7135 -4.4984 *

61 Zimbabwe 1.9634 3.9128 * -2.1201
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Output 86.3.12 displays the final weighted least squares estimates, which are identical to those that are
reported in Zaman, Rousseeuw, and Orhan (2001).

Output 86.3.12 Final Weighted LS Estimates

Parameter Estimates for Final Weighted Least Squares Fit

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Intercept 1 -0.0222 0.0093 -0.0405 -0.0039 5.65 0.0175

LFG 1 0.0446 0.1771 -0.3026 0.3917 0.06 0.8013

GAP 1 0.0245 0.0082 0.0084 0.0406 8.89 0.0029

EQP 1 0.2824 0.0581 0.1685 0.3964 23.60 <.0001

NEQ 1 0.0849 0.0314 0.0233 0.1465 7.30 0.0069

Scale 0 0.0116

Example 86.4: Constructed Effects
The algorithms of PROC ROBUSTREG assume that a response variable is linearly dependent on the
regressors. However, in practice, a response often depends on some factors in a nonlinear manner. This
example demonstrates how a nonlinear response-factor relationship can be modeled by using constructed
effects. (For more information, see the section “EFFECT Statement” on page 397 in Chapter 19, “Shared
Concepts and Topics.”)

The following data set contains 526 female observations and 474 male observations that are sampled from
the 2003 National Health and Nutrition Examination Survey (NHANES). Each observation is composed
of three values, which correspond to the variables BMI (body mass index), Age, and Gender, measured for
subjects between ages 20 and 60.

data BMI;
input BMI Age Gender $ @@;
datalines;

46.16 30.33 F 20.67 31.83 F 30.98 51.33 F 30.71 31.42 F
29.81 30.50 M 19.94 25.08 F 29.97 41.67 F 24.48 26.92 F
34.34 51.25 F 20.24 53.67 F 27.72 60.25 F 32.85 41.67 M
22.75 47.50 F 32.78 22.42 F 43.07 29.50 F 38.34 58.50 F
40.03 39.92 F 21.78 56.42 M 28.77 39.83 F 28.77 28.75 F
29.73 54.25 M 33.75 35.67 M 28.48 35.83 M 22.12 29.58 F

... more lines ...

26.98 42.50 F 29.44 39.75 M 25.60 52.67 F 19.30 22.00 F
26.53 27.92 F 23.77 29.00 F 29.86 60.58 M 25.41 44.08 M
26.53 24.83 M 33.33 42.08 F 30.52 32.50 F 31.89 38.17 F
32.20 35.92 F 21.73 26.67 M 32.10 39.33 M 25.13 51.75 M
;

The goal of this analysis is to evaluate whether the BMI by Age curves for women and men are different at a
5% significance level. In order to provide sufficient flexibility to model the effect of Age on BMI, you can use
regression splines that you define by using an EFFECT statement. In this example, a regression spline of
degree 2 that has three knots is used for the variable Age. The knots are placed at the 25th, 50th, and 75th
percentiles of Age. This analysis assume that there is no interaction between Gender and Age, so that the
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BMI by Age curves for women and men are the same up to a constant. The following statements produce the
BMI by Age scatter plot shown in Output 86.4.1:

proc sort data=bmi;
by age;

run;

ods graphics on;
proc sgplot data=bmi;

scatter x=age y=bmi/group=gender;
run;

Output 86.4.1 Scatter Plot for BMI Data

The observations that have large BMI values (for example, BMI > 40) are outliers that can substantially
influence an ordinary least squares (OLS) analysis. Output 86.4.1 shows that the distributions of BMI
conditional on Age are skewed toward the side of large BMI, and that there are more observations that have
large BMI values (outliers) in the female group. Hence you can expect a significant Gender difference in the
BMI by Age OLS regression analysis. This expectation is confirmed by the OLS Gender p-value 0.0059 in
Output 86.4.2, which is produced by the following statements:

proc glmselect data=bmi;
class gender;
effect Age_Sp=spl(age/degree=2 knotmethod=percentiles(3));
model bmi = gender age_sp /selection=none showpvalues;
output out=out_ols P=pred R=res;

run;
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Output 86.4.2 OLS Estimates

The GLMSELECT Procedure
Least Squares Model (No Selection)

The GLMSELECT Procedure
Least Squares Model (No Selection)

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value Pr > |t|

Intercept 1 29.890089 1.022825 29.22 <.0001

Gender    F 1 1.167332 0.422565 2.76 0.0058

Gender    M 0 0 . . .

Age_Sp    1 1 -4.404487 1.473761 -2.99 0.0029

Age_Sp    2 1 -3.329537 1.374096 -2.42 0.0156

Age_Sp    3 1 -0.966875 1.314964 -0.74 0.4623

Age_Sp    4 1 -1.611621 1.123854 -1.43 0.1519

Age_Sp    5 1 -0.484787 1.701281 -0.28 0.7757

Age_Sp    6 0 0 . . .

A robust regression method can reduce the outlier influence by automatically assigning smaller or even
zero weights to outliers. For the BMI data, a robust regression method is likely to assign less weight to
observations that have large BMI, so more female observations than male observations would receive smaller
weights. The following statements invoke PROC ROBUSTREG and the BMI data set:

proc robustreg data=bmi method=s seed=100;
class gender;
effect Age_Sp=spl(age/degree=2 knotmethod=percentiles(3));
model bmi = gender age_sp;
output out=out_s P=pred R=res;

run;

Output 86.4.3 shows the parameter estimates and the diagnostics summary that are produced by PROC
ROBUSTREG and the S method. In contrast to OLS, the robust p-value 0.5581 of the Gender coefficient
indicates that the Gender effect is not significant. The outlier diagnostics that are based on the S estimates
find 19 outliers that are assigned lower weights by the S method than by the OLS method.
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Output 86.4.3 S Estimates and S Diagnostics Summary

The ROBUSTREG ProcedureThe ROBUSTREG Procedure

Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Intercept 1 28.2858 1.0081 26.3100 30.2616 787.33 <.0001

Gender F 1 0.2409 0.4114 -0.5654 1.0473 0.34 0.5581

Gender M 0 0.0000 . . . . .

Age_Sp 1 1 -3.8956 1.4376 -6.7133 -1.0779 7.34 0.0067

Age_Sp 2 1 -1.8692 1.3430 -4.5014 0.7630 1.94 0.1640

Age_Sp 3 1 -0.8336 1.2877 -3.3574 1.6903 0.42 0.5174

Age_Sp 4 1 -0.2329 1.1055 -2.3997 1.9338 0.04 0.8331

Age_Sp 5 1 0.0055 1.6632 -3.2543 3.2652 0.00 0.9974

Age_Sp 6 0 0.0000 . . . . .

Scale 0 6.1715

Diagnostics Summary

Observation
Type Proportion Cutoff

Outlier 0.0190 3.0000

To further compare the OLS and S outputs, the following statements plot the BMI predictions in the variable
Age for both methods in the same graph, which is shown in Output 86.4.4:

data out2_s;
set out_s;
if gender="F" then label="F, S ";
if gender="M" then label="M, S ";

run;

data out2_ols;
merge bmi out_ols;
if gender='F' then label='F, OLS';
if gender='M' then label='M, OLS';
keep pred bmi gender age label;

run;

data out2;
set out2_ols out2_s;

run;

proc sgplot data=out2;
series x=age y=pred/group=label;

run;
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Output 86.4.4 OLS and S Predictions

You can observe the following differences between the OLS and S predictions:

• The OLS prediction is larger.

• The OLS curves have a local maximum near Age = 35.

One question remains: is the significance of the Gender effect for the OLS regression due solely to the
outlying observations? To tentatively answer this question, the following statements omit the observations
that have the top 10% of BMI values from the original data set and reapply OLS and S methods to the reduced
data set:

data three;
set bmi;
where bmi<38.315;

run;

proc robustreg data=three method=s seed=100;
class gender;
effect Age_Sp=spl(age/degree=2 knotmethod=percentiles(3));
model bmi = gender age_sp;
output out=out_s P=pred R=res;

run;
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data out2_s;
set out_s;
if gender="F" then label="F, S ";
if gender="M" then label="M, S ";

run;

proc glmselect data=three outdesign=four;
class gender;
effect Age_Sp=spl(age/degree=2 knotmethod=percentiles(3));
model bmi = gender age_sp /selection=none showpvalues;
output out=out_ols P=pred R=res;

run;

data out2_ols;
merge three out_ols;
if gender='F' then label='F, OLS';
if gender='M' then label='M, OLS';
keep pred bmi gender age label;

run;

data out2;
set out2_ols out2_s;

run;

proc sgplot data=out2;
series x=age y=pred/group=label;

run;
ods graphics off;

In the reduced data set, 71 female observations and 29 male observations are dropped. Output 86.4.5 and
Output 86.4.6 show the refitted S and OLS parameter estimates, respectively.

Output 86.4.5 S Estimates

The ROBUSTREG ProcedureThe ROBUSTREG Procedure

Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Intercept 1 27.6427 0.9741 25.7334 29.5520 805.23 <.0001

Gender F 1 -0.2650 0.4023 -1.0535 0.5234 0.43 0.5100

Gender M 0 0.0000 . . . . .

Age_Sp 1 1 -3.1859 1.4032 -5.9361 -0.4356 5.15 0.0232

Age_Sp 2 1 -1.5354 1.3051 -4.0934 1.0226 1.38 0.2394

Age_Sp 3 1 -0.3776 1.2499 -2.8273 2.0721 0.09 0.7626

Age_Sp 4 1 0.3299 1.0668 -1.7610 2.4208 0.10 0.7572

Age_Sp 5 1 0.0949 1.6221 -3.0845 3.2742 0.00 0.9534

Age_Sp 6 0 0.0000 . . . . .

Scale 0 4.9440
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Output 86.4.6 OLS Estimates

The GLMSELECT Procedure
Least Squares Model (No Selection)

The GLMSELECT Procedure
Least Squares Model (No Selection)

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value Pr > |t|

Intercept 1 27.841568 0.780817 35.66 <.0001

Gender    F 1 -0.040924 0.317749 -0.13 0.8976

Gender    M 0 0 . . .

Age_Sp    1 1 -3.253964 1.121292 -2.90 0.0038

Age_Sp    2 1 -0.975273 1.034172 -0.94 0.3459

Age_Sp    3 1 -0.508979 0.999609 -0.51 0.6108

Age_Sp    4 1 0.089393 0.852774 0.10 0.9165

Age_Sp    5 1 -0.113706 1.298157 -0.09 0.9302

Age_Sp    6 0 0 . . .

Output 86.4.7 displays the fitted curves on the reduced data set. You can see that Gender is no longer
significant for the OLS model, and the OLS turning pattern has also disappeared, but the new S curves do
not change much from the previous ones. The OLS BMI by Age curves in Output 86.4.7 are closer to the S
curves than to the OLS curves in Output 86.4.4. This suggests that the difference between the OLS and S
estimate results is indeed due solely to the influence of the outlying observations.

Output 86.4.7 OLS and S Predictions for the Reduced Data Set
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Example 86.5: Robust Diagnostics
This example models the selling price of a house as a function of several covariates. One of these covariates
is a classification variable that indicates whether a house is located on a corner lot (called a corner house
in this example). Because corner houses are relatively rare, the inclusion of this classification effect in
the model introduces a low-dimensional structure (that is, the majority of the observations are located in a
lower-dimensional hyperplane that is defined as containing non-corner houses) into the design matrix. As
discussed in the section “Robust Distance” on page 7205, the presence of this low-dimensional structure
causes difficulties in the traditional computation of robust distances. This example illustrates how you can
use the projected robust distance to address those difficulties and to obtain meaningful leverage diagnostics.
It also shows how you can use the RDPLOT= and DDPLOT= options to illustrate the outlier-leverage
relationship.

The following house price data set contains 66 home resale records on seven variables from February 15 to
April 30, 1993 (Data and Story Library 2005). The records are randomly selected from a database that is
maintained by the Albuquerque Board of Realtors.

data house;
input price sqft age feats ne cor tax @@;
label price = "Selling price"

sqft = "Square feet of living space"
age = "Age of home in year"
feats = "Number out of 11 features (dishwasher, refrigerator,

microwave, disposer, washer, intercom, skylight(s),
compactor, dryer, handicap fit, cable TV access)"

ne = "Located in northeast sector of city (1) or not (0)"
cor = "Corner location (1) or not (0)"
tax = "Annual taxes";

sum = sqft+age+feats+ne+cor+tax;
id = _N_;
datalines;

2050 2650 13 7 1 0 1639
2150 2664 6 5 1 0 1193
2150 2921 3 6 1 0 1635
1999 2580 4 4 1 0 1732

... more lines ...

870 1273 4 4 0 0 638
869 1165 7 4 0 0 694
766 1200 7 4 0 1 634
739 970 4 4 0 1 541

;
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To illustrate the dependence detection ability of the generalized MCD algorithm, an extra variable called
sum is created such that all the observations satisfy sum = sqft + age + feats + ne + cor + tax. Adding the
variable sum does not change the rank of the original design matrix; sum is expected to be ignored in the
model and also in the diagnostics. The following statements apply the MM method and the generalized MCD
algorithm to the house price data:

ods graphics on;
proc robustreg data=house method=MM plots=all;

model price = sqft age feats ne cor tax sum /
leverage(opc mcdinfo) diagnostics;

run;

As shown in Output 86.5.1 and Output 86.5.2, PROC ROBUSTREG finds the design dependence equation
and forces the parameter estimate of variable sum to be 0.

Output 86.5.1 MM Estimates

The ROBUSTREG ProcedureThe ROBUSTREG Procedure

Parameter Estimates

Parameter DF Estimate
Standard

Error
95%

Confidence Limits Chi-Square Pr > ChiSq

Intercept 1 46.4062 79.1714 -108.767 201.5792 0.34 0.5578

sqft 1 0.3809 0.0756 0.2327 0.5291 25.37 <.0001

age 1 -2.6067 1.7610 -6.0582 0.8449 2.19 0.1388

feats 1 8.3627 14.7107 -20.4697 37.1951 0.32 0.5697

ne 1 65.0081 40.1329 -13.6508 143.6671 2.62 0.1053

cor 1 -19.2997 38.1907 -94.1520 55.5526 0.26 0.6133

tax 1 0.4699 0.1260 0.2229 0.7170 13.90 0.0002

sum 0 0.0000 . . . . .

Scale 0 157.5593

Output 86.5.2 Design Dependence Equations

Note: The following variables have been ignored in the MCD computation because of linear dependence.

sum = sqft + age + feats + ne + cor + tax

Moreover, PROC ROBUSTREG also identifies a robust dependence equation on cor in Output 86.5.3, which
holds for 77.27% of the observations but not for the entire data set.

Output 86.5.3 Robust Dependence Equations

Note:  The following robust dependence equations simultaneously hold for 77.27% of the observations in the data set. The breakdown
setting for the MCD algorithm is 22.73 %.

cor = 0
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Another way to represent the low-dimensional structure is to specify the coefficients of the MCD-dropped
components on the data (see Output 86.5.4), which form a basis of the complementary space to the relevant
low-dimensional hyperplane.

Output 86.5.4 Coefficients of MCD-Dropped Components

Coefficients for MCD-Dropped
Components

Parameter DesignDrop0 RobustDrop1

sqft 0 0

age 0 0

feats 0 0

ne 0 0

cor 0 1.0000

tax 0 0

sum 1.0000 0

By the definitions of projected robust distance and leverage point, an observation is called an off-plane
leverage point if at least one of the robust or design dependence equations does not apply to the observation.
In this example, the observations in which cor = 1 are all off-plane leverage points. Output 86.5.5 lists the
leverage points and outliers along with the relevant distance measurements and standardized residuals.

Output 86.5.5 Diagnostics

Diagnostics

Projected Distance

Obs Mahalanobis Robust Off-Plane Leverage

Standardized
Robust

Residual Outlier

1 3.5567 4.0211 0.0000 * 0.8522

13 4.0034 5.2310 0.0000 * 0.1411

15 1.3221 1.5219 2.3681 * 0.0226

16 1.0839 1.0905 2.3681 * 0.4148

18 1.9452 2.4655 2.3681 * -0.2789

20 3.6006 4.0771 2.3681 * -0.0150

22 3.0210 3.4307 2.3681 * 1.1664

23 1.5920 1.8197 2.3681 * 0.2422

24 3.4967 4.5154 0.0000 * 0.6464

26 3.0420 3.6975 0.0000 * -1.7068

29 2.3264 2.9925 2.3681 * -2.4980

30 1.2587 1.2714 2.3681 * -1.2558

38 2.4064 2.7249 2.3681 * -1.0620

42 1.4722 1.4645 2.3681 * 0.2584

44 2.8491 3.0019 0.0000 4.5665 *

46 3.9725 5.2271 0.0000 * 3.5835 *

47 2.9431 3.3728 2.3681 * 0.1365

55 2.2325 2.9590 2.3681 * 0.3217

56 1.7999 1.8119 2.3681 * 0.1715

65 1.8831 2.1822 2.3681 * -0.1990

66 2.2483 2.5673 2.3681 * 0.4134
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From Output 86.5.6 and Output 86.5.7, you can see that there is no apparent corner-related difference for
the houses in terms of standardized robust residual and projected MD versus projected RD, although all the
corner houses are defined as off-plane leverage points.

Output 86.5.6 Projected RD Plot
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Output 86.5.7 Projected DD Plot

Output 86.5.8 shows more details of the robust diagnostics. The number of dimensions indicates that six
regressors are used in the MCD analysis. Because sum is excluded in model fitting, it is ignored in the MCD
analysis. The number of robust dropped components equals 1 because cor = 1. The number of off-plane
points implies the 15 corner-house observations. The reweighted value of H is the number of observations
that are finally used to estimate the MCD covariance.

Output 86.5.8 MCD Information

MCD Profile

Number of Dimensions 6

Number of Robust Dropped Components 1

Number of Observations 66

Number of Off-Plane Observations 15

Specified Value of H 51

Reweighted Value of H 47

Breakdown Value 0.2273
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Output 86.5.8 continued

MCD Center

ParameterName Parameter Center

sqft sqft 1752.7

age age 12.809

feats feats 4.0426

ne ne 0.6170

cor cor -2E-16

tax tax 895.40

sum sum 2665.6

MCD Covariance

sqft age feats ne cor tax sum

sqft 248870.3 -853.232 147.0347 88.60083 0 148494.5 396747.3

age -853.232 126.2886 -1.18733 1.229417 0 -1251.44 -1978.34

feats 147.0347 -1.18733 0.99815 0.234043 0 87.0259 361.5814

ne 88.60083 1.229417 0.234043 0.241443 0 45.76688 134.42

cor 0 0 0 0 0 0 0

tax 148494.5 -1251.44 87.0259 45.76688 0 106652.5 255147

sum 396747.3 -1978.34 361.5814 134.42 0 255147 650413.7

MCD Correlation

sqft age feats ne cor tax sum

sqft 1 -0.15219 0.295009 0.361446 0 0.911462 0.986126

age -0.15219 1 -0.10575 0.222643 0 -0.34099 -0.21829

feats 0.295009 -0.10575 1 0.476749 0 0.266726 0.448759

ne 0.361446 0.222643 0.476749 1 0 0.285206 0.339204

cor 0 0 0 0 0 0 0

tax 0.911462 -0.34099 0.266726 0.285206 0 1 0.968747

sum 0.986126 -0.21829 0.448759 0.339204 0 0.968747 1

You might speculate that the projected MD and projected RD are equal to the regular MD and RD on the same
data set without the variable cor. In fact, this is not true. (See Output 86.5.9 and Output 86.5.10 for the RD
plot and DD plot of the data set without cor.) When cor is included in the MODEL statement, it is omitted
from the distance calculation, but it is still used for the initial orthonormalization step and the h-subset
searching. In this example, inclusion of cor causes all the other covariates to be centered separately for corner
houses and non-corner houses. However, without cor, the centering process does not distinguish corner
houses from non-corner houses, and therefore the MCD algorithm can still be influenced by cor through the
correlation between cor and other covariates. The following statements drop the variable cor and produce
the RD plot and DD plot for the reduced model, which are shown in Output 86.5.9 and Output 86.5.10,
respectively:

proc robustreg data=house method=MM plots=all;
model price = sqft age feats ne tax/leverage(mcdinfo) diagnostics;

run;
ods graphics off;
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Output 86.5.9 RD Plot for the Reduced Model

Output 86.5.10 DD Plot for the Reduced Model
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Compared with Output 86.5.8, Output 86.5.11 shows the changes of the MCD information by removing cor
from the model. You can see that the corner houses are no longer identified as off-plane points and that the
reweighted value of H is increased from 47 to 52. The breakdown value is intact because it depends only on
the specified value of H and the total number of observations.

Output 86.5.11 MCD Information for the Reduced Model

MCD Profile

Number of Dimensions 5

Number of Robust Dropped Components 0

Number of Observations 66

Number of Off-Plane Observations 0

Specified Value of H 51

Reweighted Value of H 52

Breakdown Value 0.2273

MCD Center

ParameterName Parameter Center

sqft sqft 1710.9

age age 11.173

feats feats 3.9423

ne ne 0.5962

tax tax 858.10

MCD Covariance

sqft age feats ne tax

sqft 216974.7 681.2327 199.2492 103.0388 107503.1

age 681.2327 64.49887 -0.9506 1.855581 -187.135

feats 199.2492 -0.9506 0.878959 0.152715 114.9076

ne 103.0388 1.855581 0.152715 0.245475 49.98077

tax 107503.1 -187.135 114.9076 49.98077 66558.68

MCD Correlation

sqft age feats ne tax

sqft 1 0.182102 0.456255 0.44647 0.89457

age 0.182102 1 -0.12625 0.466337 -0.09032

feats 0.456255 -0.12625 1 0.328771 0.475075

ne 0.44647 0.466337 0.328771 1 0.391018

tax 0.89457 -0.09032 0.475075 0.391018 1
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Overview: RSREG Procedure
The RSREG procedure uses the method of least squares to fit quadratic response surface regression models.
Response surface models are a kind of general linear model in which attention focuses on characteristics of
the fit response function and in particular, where optimum estimated response values occur.

In addition to fitting a quadratic function, you can use the RSREG procedure to do the following:

• test for lack of fit
• test for the significance of individual factors
• analyze the canonical structure of the estimated response surface
• compute the ridge of optimum response
• predict new values of the response

The RSREG procedure uses ODS Graphics to display the response surfaces, residuals, fit diagnostics, and
ridges of optimum response. For general information about ODS Graphics, see Chapter 21, “Statistical
Graphics Using ODS.”

Comparison to Other SAS Software
Other SAS/STAT procedures can be used to fit the response surface, but the RSREG procedure is more
specialized. PROC RSREG uses a much more compact model syntax than other procedures; for example, the
following statements model a three-factor response surface in the REG, GLM, and RSREG procedures:

proc reg;
model y=x1 x1*x1

x2 x1*x2 x2*x2
x3 x1*x3 x2*x3 x3*x3;

run;

proc glm;
model y=x1|x2|x3@2;

run;

proc rsreg;
model y=x1 x2 x3;

run;

Additionally, PROC RSREG includes specialized methodology for analyzing the fitted response surface,
such as canonical analysis and optimum response ridges.

Note that the ADX Interface in SAS/QC software provides an interactive environment for constructing
and analyzing many different kinds of experiments, including response surface experiments. The ADX
Interface is the preferred interactive SAS System tool for analyzing experiments, since it includes facilities
for checking underlying assumptions and graphically optimizing the response surface; see Getting Started
with the SAS ADX Interface for Design of Experiments for more information. The RSREG procedure is
appropriate for analyzing experiments in a batch environment.
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Terminology
Variables are referred to according to the following conventions:

factor variables independent variables used to construct the quadratic response surface. To estimate
the necessary parameters, each variable must have at least three distinct values in the
data. Independent variables must be numeric.

response variables the dependent variables to which the quadratic response surfaces are fit. Dependent
variables must be numeric.

covariates additional independent variables for use in the regression but not in the formation of
the quadratic response surface. Covariates must be numeric.

WEIGHT variable a variable for weighting the observations in the regression. The WEIGHT variable
must be numeric.

ID variables variables not previously described that are transferred to an output data set containing
statistics for each observation in the input data set. This data set is created by using
the OUT= option in the PROC RSREG statement. ID variables can be either character
or numeric.

BY variables variables for grouping observations. Separate analyses are obtained for each BY group.
BY variables can be either character or numeric.

Getting Started: RSREG Procedure

A Response Surface with a Simple Optimum
This example uses the three-factor quadratic model discussed in John (1971). Settings of the temperature,
gas–liquid ratio, and packing height are controlled factors in the production of a certain chemical; Schneider
and Stockett (1963) performed an experiment in order to determine the values of these three factors that
minimize the unpleasant odor of the chemical. The following statements input the SAS data set smell; the
variable Odor is the response, while the variables T, R, and H are the independent factors.

title 'Response Surface with a Simple Optimum';
data smell;

input Odor T R H @@;
label

T = "Temperature"
R = "Gas-Liquid Ratio"
H = "Packing Height";

datalines;
66 40 .3 4 39 120 .3 4 43 40 .7 4 49 120 .7 4
58 40 .5 2 17 120 .5 2 -5 40 .5 6 -40 120 .5 6
65 80 .3 2 7 80 .7 2 43 80 .3 6 -22 80 .7 6

-31 80 .5 4 -35 80 .5 4 -26 80 .5 4
;
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The following statements invoke PROC RSREG on the data set smell. Figure 87.1 through Figure 87.3
display the results of the analysis, including a lack-of-fit test requested with the LACKFIT option.

proc rsreg data=smell;
model Odor = T R H / lackfit;

run;

Figure 87.1 displays the coding coefficients for the transformation of the independent variables to lie between
–1 and 1, simple statistics for the response variable, hypothesis tests for linear, quadratic, and crossproduct
terms, and the lack-of-fit test. The hypothesis tests can be used to gain a rough idea of importance of the
effects; here the crossproduct terms are not significant. However, the lack of fit for the model is significant,
so more complicated modeling or further experimentation with additional variables should be performed
before firm conclusions are made concerning the underlying process.

Figure 87.1 Summary Statistics and Analysis of Variance

Response Surface with a Simple Optimum

The RSREG Procedure

Response Surface with a Simple Optimum

The RSREG Procedure

Coding Coefficients for the
Independent Variables

Factor Subtracted off Divided by

T 80.000000 40.000000

R 0.500000 0.200000

H 4.000000 2.000000

Response Surface for Variable
Odor

Response Mean 15.200000

Root MSE 22.478508

R-Square 0.8820

Coefficient of Variation 147.8849

Regression DF
Type I Sum
of Squares R-Square F Value Pr > F

Linear 3 7143.250000 0.3337 4.71 0.0641

Quadratic 3 11445 0.5346 7.55 0.0264

Crossproduct 3 293.500000 0.0137 0.19 0.8965

Total Model 9 18882 0.8820 4.15 0.0657

Residual DF
Sum of

Squares Mean Square F Value Pr > F

Lack of Fit 3 2485.750000 828.583333 40.75 0.0240

Pure Error 2 40.666667 20.333333

Total Error 5 2526.416667 505.283333

Parameter estimates and the factor ANOVA are shown in Figure 87.2. Looking at the parameter estimates, you
can see that the crossproduct terms are not significantly different from zero, as noted previously. The Estimate
column contains estimates based on the raw data, and the Parameter Estimate from Coded Data column
contains estimates based on the coded data. The factor ANOVA table displays tests for all four parameters
corresponding to each factor—the parameters corresponding to the linear effect, the quadratic effect, and
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the effects of the crossproducts with each of the other two factors. The only factor with a significant overall
effect is R, indicating that the level of noise left unexplained by the model is still too high to estimate the
effects of T and H accurately. This might be due to the lack of fit.

Figure 87.2 Parameter Estimates and Hypothesis Tests

Parameter DF Estimate
Standard

Error t Value Pr > |t|

Parameter
Estimate

from
Coded
Data

Intercept 1 568.958333 134.609816 4.23 0.0083 -30.666667

T 1 -4.102083 1.489024 -2.75 0.0401 -12.125000

R 1 -1345.833333 335.220685 -4.01 0.0102 -17.000000

H 1 -22.166667 29.780489 -0.74 0.4902 -21.375000

T*T 1 0.020052 0.007311 2.74 0.0407 32.083333

R*T 1 1.031250 1.404907 0.73 0.4959 8.250000

R*R 1 1195.833333 292.454665 4.09 0.0095 47.833333

H*T 1 0.018750 0.140491 0.13 0.8990 1.500000

H*R 1 -4.375000 28.098135 -0.16 0.8824 -1.750000

H*H 1 1.520833 2.924547 0.52 0.6252 6.083333

Factor DF
Sum of

Squares Mean Square F Value Pr > F Label

T 4 5258.016026 1314.504006 2.60 0.1613 Temperature

R 4 11045 2761.150641 5.46 0.0454 Gas-Liquid Ratio

H 4 3813.016026 953.254006 1.89 0.2510 Packing Height

Figure 87.3 displays the canonical analysis and eigenvectors. The canonical analysis indicates that the
directions of principal orientation for the predicted response surface are along the axes associated with the
three factors, confirming the small interaction effect in the regression ANOVA (Figure 87.1). The largest
eigenvalue (48.8588) corresponds to the eigenvector (0.238091, 0.971116, -0.015690), the largest component
of which (0.971116) is associated with R; similarly, the second-largest eigenvalue (31.1035) is associated
with T. The third eigenvalue (6.0377), associated with H, is quite a bit smaller than the other two, indicating
that the response surface is relatively insensitive to changes in this factor. The coded form of the canonical
analysis indicates that the estimated response surface is at a minimum when T and R are both near the middle
of their respective ranges (that is, the coded critical values for T and R are both near 0) and H is relatively
high; in uncoded terms, the model predicts that the unpleasant odor is minimized when T = 84.876502, R =
0.539915, and H = 7.541050.

Figure 87.3 Canonical Analysis and Eigenvectors

Critical Value

Factor Coded Uncoded Label

T 0.121913 84.876502 Temperature

R 0.199575 0.539915 Gas-Liquid Ratio

H 1.770525 7.541050 Packing Height

Predicted value at stationary point:
-52.024631
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Figure 87.3 continued

Eigenvectors

Eigenvalues T R H

48.858807 0.238091 0.971116 -0.015690

31.103461 0.970696 -0.237384 0.037399

6.037732 -0.032594 0.024135 0.999177

Stationary point is a minimum.

To plot the response surface with respect to two of the factor variables, fix H, the least significant factor
variable, at its estimated optimum value. The following statements use ODS Graphics to display the surface:

ods graphics on;
proc rsreg data=smell

plots(unpack)=surface(3d at(H=7.541050));
model Odor = T R H;
ods select 'T * R = Pred';

run;
ods graphics off;

Note that the ODS SELECT statement is specified to select the plot of interest.

Figure 87.4 The Response Surface at the Optimum H
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Alternatively, the following statements produce an output data set containing the surface information, which
you can then use for plotting surfaces or searching for optima. The first DATA step fixes H, the least significant
factor variable, at its estimated optimum value (7.541), and generates a grid of points for T and R. To ensure
that the grid data do not affect parameter estimates, the response variable (Odor) is set to missing. (See
the section “Missing Values” on page 7273.) The second DATA step concatenates these grid points to the
original data. Then PROC RSREG computes predictions for the combined data. The last DATA step subsets
the predicted values over just the grid points, which excludes the predictions at the original data.

data grid;
do;

Odor = . ;
H = 7.541;
do T = 20 to 140 by 5;

do R = .1 to .9 by .05;
output;

end;
end;

end;
run;
data grid;

set smell grid;
run;

proc rsreg data=grid out=predict noprint;
model Odor = T R H / predict;

run;

data grid;
set predict;
if H = 7.541;

run;

Syntax: RSREG Procedure
The following statements are available in the RSREG procedure.

PROC RSREG < options > ;
MODEL responses = independents < / options > ;
RIDGE < options > ;
WEIGHT variable ;
ID variables ;
BY variables ;

The PROC RSREG and MODEL statements are required.

The BY, ID, MODEL, RIDGE, and WEIGHT statements are described after the PROC RSREG statement,
and they can appear in any order.
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PROC RSREG Statement
PROC RSREG < options > ;

The PROC RSREG statement invokes the RSREG procedure. Table 87.1 summarizes the options available in
the PROC RSREG statement.

Table 87.1 PROC RSREG Statement Options

Option Description

DATA= Names the input SAS data set
NOPRINT Suppresses the normal display of results
OUT= Creates the output SAS data set
PLOTS Controls the plots produced through ODS Graphics

The following list describes these options.

DATA=SAS-data-set
specifies the input SAS data set that contains the data to be analyzed. By default, PROC RSREG uses
the most recently created SAS data set.

NOPRINT
suppresses the normal display of results when only the output data set is required.

For more information, see the description of the NOPRINT option in the MODEL and RIDGE
statements.

Note that this option temporarily disables the Output Delivery System (ODS); see Chapter 20, “Using
the Output Delivery System,” for more information.

OUT=SAS-data-set
creates an output SAS data set that contains statistics for each observation in the input data set. In
particular, this data set contains the BY variables, the ID variables, the WEIGHT variable, the variables
in the MODEL statement, and the output options requested in the MODEL statement. You must
specify output statistic options in the MODEL statement; otherwise, the output data set is created
but contains no observations. If you want to create a SAS data set in a permanent library, you must
specify a two-level name. For more information about permanent libraries and SAS data sets, see SAS
Language Reference: Concepts. For more details, see the section “OUT=SAS-data-set” on page 7278.

PLOTS< (global-plot-option) >= plot-request< (options) >

PLOTS< (global-plot-option) >=(plot-request < (options) >< : : : plot-request< (options) > >)
controls the plots produced through ODS Graphics. When you specify only one plot-request , you can
omit the parentheses from around the plot-request . For example:

plots = all
plots = (diagnostics ridge surface(unpack))
plots(unpack) = surface(overlaypairs)

ODS Graphics must be enabled before plots can be requested. For example:
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ods graphics on;
proc rsreg plots=all;

model y=x;
run;
ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

By default, no graphs are created; you must specify the PLOTS= option to make graphs. See Figure 87.4,
Output 87.1.5, Output 87.2.3, and Output 87.2.4 for examples of the ODS graphical displays.

The following global-plot-option is available.

UNPACKPANELS | UNPACK
suppresses paneling. By default, multiple plots can appear in some output panels. Specify the
UNPACK option to display each plot separately.

The following plot-requests are available.

ALL
produces all appropriate plots. You can specify other options with ALL; for example, to display
all plots and unpack the SURFACE contours you can specify plots=(all surface(unpack)).

DIAGNOSTICS < (LABEL | UNPACK ) >
displays a panel of summary fit diagnostic plots. The plots produced and their usage are discussed
in Table 87.2.

Table 87.2 Diagnostic Plots

Diagnostic Plot Usage

Cook’s D statistic versus observation
number

Evaluate influence of an observation on the entire
parameter estimate vector

Dependent variable values versus
predicted values

Evaluate adequacy of fit and detect influential
observations

Externally studentized residuals
(RStudent) versus leverage

Detect outliers and influential (high-leverage)
observations

Externally studentized residuals versus
predicted values

Evaluate adequacy of fit and detect outliers

Histogram of residuals Confirm normality of error terms
Normal quantile plot of residuals Confirm normality and homogeneity of error

terms, and detect outliers
Residuals versus predicted values Evaluate adequacy of fit and detect outliers
Residual-fit (RF) spread plot side-by-side quantile plots of the centered fit and

the residuals show “how much variation in the
data is explained by the fit and how much remains
in the residuals” (Cleveland 1993)
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Observations satisfying RStudent > 2 or RStudent < –2 are called outliers, and observations with
leverage > 2p/n are called influential, where n is the number of observations used in fitting the
model and p is the number of parameters used in the model (Rawlings, Pantula, and Dickey
1998). Specifying the LABEL option labels the influential and outlying observations—the label
is the first ID variable if the ID statement is specified; otherwise, it is the observation number.
Note in the Cook’s D plot that only observations with D exceeding 4/n are labeled; these are also
called influential observations. The UNPACK option displays each diagnostic plot separately.
See Output 87.2.3 for an example of the diagnostics panel.

FIT < (GRIDSIZE=number ) >
plots the predicted values against a single predictor when you have only one factor or only one
covariate in the model. The GRIDSIZE= option specifies the number of points at which the fitted
values are computed; by default, GRIDSIZE=200.

NONE
suppresses all plots.

RESIDUALS < (UNPACK | SMOOTH) >
displays plots of residuals against each factor and covariate. The UNPACK option displays each
residual plot separately. The SMOOTH option overlays a loess smooth on each residual plot; see
Chapter 59, “The LOESS Procedure,” for more information. See Output 87.2.4 for an example of
this plot.

RIDGE < (UNPACK) >
displays the maximum and/or minimum ridge plots. This option is available only when a
MAXIMUM or MINIMUM option is specified in the RIDGE statement. The UNPACK option
displays the estimated response and factor level ridge plots separately. See Output 87.1.5 for an
example of this plot.

SURFACE < (surface-options) >
displays the response surface for each response variable and each pair of factors with all other
factors and covariates fixed at their means. By default a panel of contour plots is produced; see
Output 87.1.5 for an example of this plot. The following surface-options can be specified:

3D
displays three-dimensional surface plots instead of contour plots. See Figure 87.4 for an
example of this plot.

AT < keyword >< (variable=value-list | keyword < ...variable=value-list | keyword >) >
specifies fixed values for factors and covariates. You can specify one or more numbers in the
value-list or one of the following keywords:

MIN sets the variable to its minimum value.
MEAN sets the variable to its mean value.
MIDRANGE sets the variable to the middle value: maxCmin

2
.

MAX sets the variable to its maximum value.

Specifying a keyword immediately after AT sets the default value of all variables; for
example, AT MIN sets all variables not displayed on an axis to their minimum values. By
default, continuous variables are set to their means (AT MEAN) when they are not used on
an axis. For example, if your model contains variables X1, X2, and X3, then specifying
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AT(X1=7 9) produces a contour plot of X2 versus X3 fixing X1 = 7 and then another contour
plot with X1 = 9, along with contour plots of X1 versus X2 fixing X3 at its mean, and X1
versus X3 fixing X2 at its mean.

EXTEND=value
extends the surface value-times the range of each factor in each direction, which enables you
to see more of the fitted surface. For example, if factor A has range [0, 10], then specifying
EXTEND=0.1 will compute and display the surface for A in [-1, 11]. You can specify value
� 0; by default, value = 0.1.

FILL=PRED | SE | NONE
produces a filled contour plot for either the predicted values or the standard errors. FILL=SE
is the default. If the 3D option is also specified, then the contour plot is projected onto the
surface.

GRIDSIZE=n
creates an n � n grid of points at which the estimated values for the surface and standard
errors are computed, for n � 1. By default, n = 50.

LINE< =PRED | SE | NONE >
produces a contour line plot for either the predicted values or the standard errors.
LINE=PRED is the default. If the 3D option is also specified, then specifying LINE
displays a grid on the surface, and the other LINE= specifications are ignored.

NODESIGN
suppresses the display of the design points on the contour surface plots and the overlaid
contour-line plots.

OVERLAYPAIRS
produces overlaid contour line plots for all pairs of response variables in addition to the
contour surface plots. See Figure 87.6 for an example of this plot.

ROTATE=angle
rotates the 3-D surface plots angle degrees, –180 < angle < 180. By default, angle = 57.

TILT=angle
tilts the 3-D surface plots angle degrees, –180 < angle < 180. By default, angle = 20.

UNPACKPANELS | UNPACK
suppresses paneling, and displays each surface plot separately.

BY Statement
BY variables ;

You can specify a BY statement with PROC RSREG to obtain separate analyses of observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:
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• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the RSREG procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

ID Statement
ID variables ;

The ID statement names variables that are to be transferred to the data set created by the OUT= option in the
PROC RSREG statement.

MODEL Statement
MODEL responses = independents < / options > ;

In the MODEL statement, you specify the response (dependent) variables followed by an equal sign and then
the independent variables, some of which can be covariates.

Table 87.3 summarizes the options available in the MODEL statement. The output statistics specify which
statistics are output to the OUT= data set. If none of the output statistics are specified, the data set is created
but contains no observations. The keywords for the output statistics become values of the special variable
_TYPE_ in the output data set.

Table 87.3 MODEL Statement Options

Option Description

BYOUT Uses only the first BY group to estimate the model
COVAR= Declares variables to be simple linear regressors
LACKFIT Performs a lack-of-fit test
NOCODE Performs the canonical and ridge analyses using original values
PRESS Displays the predicted residual sum of squares (PRESS) statistic
Suppress Displayed Output
NOANOVA Suppresses the analysis of variance and parameter estimates
NOOPTIMAL Suppresses the canonical analysis
NOPRINT Suppresses both the analysis of variance and the canonical analysis
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Table 87.3 continued

Option Description

Output Statistics
ACTUAL Includes observed response values
PREDICT Includes values predicted by the model
RESIDUAL Includes the residuals
L95 Includes the lower bound of a 95% confidence interval for an individual

predicted value
U95 Includes the upper bound of a 95% confidence interval for an individual

predicted value
L95M Includes the lower bound of a 95% confidence interval for the expected

value of the dependent variable
U95M Includes the upper bound of a 95% confidence interval for the expected

value of the dependent variable
D Includes Cook’s D influence statistic

The following list describes these options in alphabetical order.

ACTUAL
specifies that the observed response values from the input data set be written to the output data set.

BYOUT
uses only the first BY group to estimate the model. Subsequent BY groups have scoring statistics
computed in the output data set only. The BYOUT option is used only when a BY statement is
specified.

COVAR=n
declares that the first n variables on the right side of the model are simple linear regressors (covariates)
and not factors in the quadratic response surface. By default, PROC RSREG forms quadratic and
crossproduct effects for all regressor variables in the MODEL statement.

See the section “Handling Covariates” on page 7276 for more details and Example 87.2 for an example
that uses covariates.

D
specifies that Cook’s D influence statistic be written to the output data set.

See Chapter 4, “Introduction to Regression Procedures,” for details and formulas.

LACKFIT
performs a lack-of-fit test.

See Draper and Smith (1981) for a discussion of lack-of-fit tests.

L95
specifies that the lower bound of a 95% confidence interval for an individual predicted value be written
to the output data set. The variance used in calculating this bound is a function of both the mean square
error and the variance of the parameter estimates.

See Chapter 4, “Introduction to Regression Procedures,” for details and formulas.
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L95M
specifies that the lower bound of a 95% confidence interval for the expected value of the dependent
variable be written to the output data set. The variance used in calculating this bound is a function of
the variance of the parameter estimates.

See Chapter 4, “Introduction to Regression Procedures,” for details and formulas.

NOANOVA

NOAOV
suppresses the display of the analysis of variance and parameter estimates from the model fit.

NOCODE
performs the canonical and ridge analyses with the parameter estimates derived from fitting the response
to the original values of the factor variables, rather than their coded values (see the section “Coding the
Factor Variables” on page 7273 for more details). Use this option if the data are already stored in a
coded form.

NOOPTIMAL

NOOPT
suppresses the display of the canonical analysis for the quadratic response surface.

NOPRINT
suppresses the display of both the analysis of variance and the canonical analysis.

PREDICT
specifies that the values predicted by the model be written to the output data set.

PRESS
computes and displays the predicted residual sum of squares (PRESS) statistic for each dependent
variable in the model. The PRESS statistic is added to the summary information at the beginning of
the analysis of variance, so if the NOANOVA or NOPRINT option is specified, then the PRESS option
has no effect.

See Chapter 4, “Introduction to Regression Procedures,” for details and formulas.

RESIDUAL
specifies that the residuals, calculated as ACTUAL – PREDICTED, be written to the output data set.

U95
specifies that the upper bound of a 95% confidence interval for an individual predicted value be written
to the output data set. The variance used in calculating this bound is a function of both the mean square
error and the variance of the parameter estimates.

See Chapter 4, “Introduction to Regression Procedures,” for details and formulas.

U95M
specifies that the upper bound of a 95% confidence interval for the expected value of the dependent
variable be written to the output data set. The variance used in calculating this bound is a function of
the variance of the parameter estimates.

See Chapter 4, “Introduction to Regression Procedures,” for details and formulas.
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RIDGE Statement
RIDGE < options > ;

A RIDGE statement computes the ridge of optimum response. The ridge starts at a given point x0, and the
point on the ridge at radius r from x0 is the collection of factor settings that optimizes the predicted response
at this radius. You can think of the ridge as climbing or falling as fast as possible on the surface of predicted
response. Thus, the ridge analysis can be used as a tool to help interpret an existing response surface or to
indicate the direction in which further experimentation should be performed.

The default starting point, x0, has each coordinate equal to the point midway between the highest and lowest
values of the factor in the design. The default radii at which the ridge is computed are 0, 0.1, : : :, 0.9, 1. If
the ridge analysis is based on the response surface fit to coded values for the factor variables (see the section
“Coding the Factor Variables” on page 7273 for details), then this results in a ridge that starts at the point
with a coded zero value for each coordinate and extends toward, but not beyond, the edge of the range of
experimentation. Alternatively, both the center point of the ridge and the radii at which it is to be computed
can be specified.

You can specify the following options in the RIDGE statement:

CENTER=uncoded-factor-values
gives the coordinates of the point x0 from which to begin the ridge. The coordinates should be given in
the original (uncoded) factor variable values and should be separated by commas. There must be as
many coordinates specified as there are factors in the model, and the order of the coordinates must be
the same as that used in the MODEL statement. This starting point should be well inside the range of
experimentation. The default sets each coordinate equal to the value midway between the highest and
lowest values for the associated factor.

MAXIMUM

MAX
computes the ridge of maximum response. Both the MIN and MAX options can be specified; at least
one must be specified.

MINIMUM

MIN
computes the ridge of minimum response. Both the MIN and MAX options can be specified; at least
one must be specified.

NOPRINT
suppresses the display of the ridge analysis when only an output data set is required.

OUTR=SAS-data-set
creates an output SAS data set containing the computed optimum ridge.

For details, see the section “OUTR=SAS-data-set” on page 7278.

RADIUS=coded-radii
gives the distances from the ridge starting point at which to compute the optima. The values in the
list represent distances between coded points. The list can take any of the following forms or can be
composed of mixtures of them:
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m1; m2; : : : ; mn specifies several values.

m TO n specifies a sequence where m equals the starting value, n equals the ending value,
and the increment equals 1.

m TO n BY i specifies a sequence where m equals the starting value, n equals the ending value,
and i equals the increment.

Mixtures of the preceding forms should be separated by commas. The default list runs from 0 to 1 by
increments of 0.1. The following are examples of valid lists.

radius=0 to 5 by .5;
radius=0, .2, .25, .3, .5 to 1.0 by .1;

WEIGHT Statement
WEIGHT variable ;

When a WEIGHT statement is specified, a weighted residual sum of squaresX
i

wi .yi � Oyi /
2

is minimized, where wi is the value of the variable specified in the WEIGHT statement, yi is the observed
value of the response variable, and Oyi is the predicted value of the response variable.

The observation is used in the analysis only if the value of the WEIGHT statement variable is greater than
zero. The WEIGHT statement has no effect on degrees of freedom or number of observations. If the weights
for the observations are proportional to the reciprocals of the error variances, then the weighted least squares
estimates are best linear unbiased estimators (BLUE).

Details: RSREG Procedure

Introduction to Response Surface Experiments
Many industrial experiments are conducted to discover which values of given factor variables optimize a
response. If each factor is measured at three or more values, a quadratic response surface can be estimated
by least squares regression. The predicted optimal value can be found from the estimated surface if the
surface is shaped like a simple hill or valley. If the estimated surface is more complicated, or if the predicted
optimum is far from the region of experimentation, then the shape of the surface can be analyzed to indicate
the directions in which new experiments should be performed.

Suppose that a response variable y is measured at combinations of values of two factor variables, x1 and x2.
The quadratic response surface model for this variable is written as

y D ˇ0 C ˇ1x1 C ˇ2x2 C ˇ3x
2
1 C ˇ4x

2
2 C ˇ5x1x2 C �

The steps in the analysis for such data are as follows:
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1. model fitting and analysis of variance, including lack-of-fit testing, to estimate parameters

2. canonical analysis to investigate the shape of the predicted response surface

3. ridge analysis to search for the region of optimum response

Model Fitting and Analysis of Variance

The first task in analyzing the response surface is to estimate the parameters of the model by least squares
regression and to obtain information about the fit in the form of an analysis of variance. The estimated surface
is typically curved: a hill with the peak occurring at the unique estimated point of maximum response, a
valley, or a saddle surface with no unique minimum or maximum. Use the results of this phase of the analysis
to answer the following questions:

• What is the contribution of each type of effect—linear, quadratic, and crossproduct—to the statistical
fit? The ANOVA table with sources labeled “Regression” addresses this question.

• What part of the residual error is due to lack of fit? Does the quadratic response model adequately
represent the true response surface? If you specify the LACKFIT option in the MODEL statement, then
the ANOVA table with sources labeled “Residual” addresses this question. See the section “Lack-of-Fit
Test” on page 7271 for details.

• What is the contribution of each factor variable to the statistical fit? Can the response be predicted
accurately if the variable is removed? The ANOVA table with sources labeled “Factor” addresses this
question.

• What are the predicted responses for a grid of factor values? (See the section “Plotting the Surface” on
page 7273 and the section “Searching for Multiple Response Conditions” on page 7274.)

Lack-of-Fit Test

The lack-of-fit test compares the variation around the model with pure variation within replicated observations.
This measures the adequacy of the quadratic response surface model. In particular, if there are ni replicated
observations Yi1; : : : ; Yini of the response all at the same values xi of the factors, then you can predict the
true response at xi either by using the predicted value OYi based on the model or by using the mean NYi of the
replicated values. The lack-of-fit test decomposes the residual error into a component due to the variation of
the replications around their mean value (the pure error) and a component due to the variation of the mean
values around the model prediction (the bias error):

X
i

niX
jD1

�
Yij � OYi

�2
D

X
i

niX
jD1

�
Yij � NYi

�2
C

X
i

ni

�
NYi � OYi

�2
If the model is adequate, then both components estimate the nominal level of error; however, if the bias
component of error is much larger than the pure error, then this constitutes evidence that there is significant
lack of fit.

If some observations in your design are replicated, you can test for lack of fit by specifying the LACKFIT
option in the MODEL statement. Note that, since all other tests use total error rather than pure error, you
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might want to hand-calculate the tests with respect to pure error if the lack of fit is significant. On the other
hand, significant lack of fit indicates that the quadratic model is inadequate, so if this is a problem you can
also try to refine the model, possibly by using PROC GLM for general polynomial modeling; see Chapter 45,
“The GLM Procedure,” for more information. Example 87.1 illustrates the use of the LACKFIT option.

Canonical Analysis

The second task in analyzing the response surface is to examine the overall shape of the curve and determine
whether the estimated stationary point is a maximum, a minimum, or a saddle point. The canonical analysis
can be used to answer the following questions:

• Is the surface shaped like a hill, a valley, or a saddle, or is it flat?

• If there is a unique optimum combination of factor values, where is it?

• To which factor or factors are the predicted responses most sensitive?

The eigenvalues and eigenvectors in the matrix of second-order parameters characterize the shape of the
response surface. The eigenvectors point in the directions of principal orientation for the surface, and
the signs and magnitudes of the associated eigenvalues give the shape of the surface in these directions.
Positive eigenvalues indicate directions of upward curvature, and negative eigenvalues indicate directions of
downward curvature. The larger an eigenvalue is in absolute value, the more pronounced is the curvature
of the response surface in the associated direction. Often, all the coefficients of an eigenvector except for
one are relatively small, indicating that the vector points roughly along the axis associated with the factor
corresponding to the single large coefficient. In this case, the canonical analysis can be used to determine the
relative sensitivity of the predicted response surface to variations in that factor. (See the section “Getting
Started: RSREG Procedure” on page 7257 for an example.)

Ridge Analysis

If the estimated surface is found to have a simple optimum well within the range of experimentation, the
analysis performed by the preceding two steps might be sufficient. In more complicated situations, further
search for the region of optimum response is required. The method of ridge analysis computes the estimated
ridge of optimum response for increasing radii from the center of the original design. The ridge analysis
answers the following question:

• If there is not a unique optimum of the response surface within the range of experimentation, in which
direction should further searching be done in order to locate the optimum?

You can use the RIDGE statement to compute the ridge of maximum or minimum response.
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Coding the Factor Variables
For the results of the canonical and ridge analyses to be interpretable, the values of different factor variables
should be comparable. This is because the canonical and ridge analyses of the response surface are not
invariant with respect to differences in scale and location of the factor variables. The analysis of variance is
not affected by these changes. Although the actual predicted surface does not change, its parameterization
does. The usual solution to this problem is to code each factor variable so that its minimum in the experiment
is –1 and its maximum is 1 and to carry through the analysis with the coded values instead of the original
ones. This practice has the added benefit of making 1 a reasonable boundary radius for the ridge analysis
since 1 represents approximately the edge of the experimental region. By default, PROC RSREG computes
the linear transformation to perform this coding as the data are initially read in, and the canonical and ridge
analyses are performed on the model fit to the coded data. The actual form of the coding operation for each
value of a variable is

coded value D .original value �M/=S

where M is the average of the highest and lowest values for the variable in the design and S is half their
difference.

Missing Values
If an observation has missing data for any of the variables used by the procedure, then that observation is
not used in the estimation process. If one or more response variables are missing, but no factor or covariate
variables are missing, then predicted values and confidence limits are computed for the output data set, but
the residual and Cook’s D statistic are missing.

Plotting the Surface
Specifying the PLOTS=SURFACE option in the PROC RSREG statement displays contour plots for all pairs
of factors in the model (see Example 87.1), while specifying the PLOTS=SURFACE(3D) option displays a
three-dimensional surface as shown in Figure 87.4.

You can also generate predicted values for a grid of points with the PREDICT option (see the section “Getting
Started: RSREG Procedure” on page 7257 for an example) and then use these values to create a contour plot
or a three-dimensional plot of the response surface over a two-dimensional grid. Any two factor variables
can be chosen to form the grid for the plot. Several plots can be generated by using different pairs of factor
variables.



7274 F Chapter 87: The RSREG Procedure

Searching for Multiple Response Conditions
Suppose you have the following data with two factors and three responses, and you want to find the factor
setting that produces responses in a certain region:

data a;
input x1 x2 y1 y2 y3;
datalines;

-1 -1 1.8 1.940 3.6398
-1 1 2.6 1.843 4.9123
1 -1 5.4 1.063 6.0128
1 1 0.7 1.639 2.3629
0 0 8.5 0.134 9.0910
0 0 3.0 0.545 3.7349
0 0 9.8 0.453 10.4412
0 0 4.1 1.117 5.0042
0 0 4.8 1.690 6.6245
0 0 5.9 1.165 6.9420
0 0 7.3 1.013 8.7442
0 0 9.3 1.179 10.2762
1.4142 0 3.9 0.945 5.0245

-1.4142 0 1.7 0.333 2.4041
0 1.4142 3.0 1.869 5.2695
0 -1.4142 5.7 0.099 5.4346

;

You want to find the values of x1 and x2 that maximize y1 subject to y2<2 and y3<y2+y1. The exact answer
is not easy to obtain analytically, but you can obtain a practically feasible solution by checking conditions
across a grid of values in the range of interest. First, append a grid of factor values to the observed data, with
missing values for the responses:

data b;
set a end=eof;
output;
if eof then do;

y1=.;
y2=.;
y3=.;
do x1=-2 to 2 by .1;

do x2=-2 to 2 by .1;
output;

end;
end;

end;
run;

Next, use PROC RSREG to fit a response surface model to the data and to compute predicted values for both
the observed data and the grid, putting the predicted values in a data set c:

proc rsreg data=b out=c;
model y1 y2 y3=x1 x2 / predict;

run;
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Finally, find the subset of predicted values that satisfy the constraints, sort by the unconstrained variable, and
display the top five predictions:

data d;
set c;
if y2<2;
if y3<y2+y1;

proc sort data=d;
by descending y1;

run;

data d; set d;
if (_n_ <= 5);

proc print;
run;

The results are displayed in Figure 87.5. They indicate that optimal values of the factors are around 0.3 for
x1 and around –0.5 for x2.

Figure 87.5 Top Five Predictions

Obs x1 x2 _TYPE_ y1 y2 y3

1 0.3 -0.5 PREDICT 6.92570 0.75784 7.60471

2 0.3 -0.6 PREDICT 6.91424 0.74174 7.54194

3 0.3 -0.4 PREDICT 6.91003 0.77870 7.64341

4 0.4 -0.6 PREDICT 6.90769 0.73357 7.51836

5 0.4 -0.5 PREDICT 6.90540 0.75135 7.56883

If you are also interested in simultaneously optimizing y1 and y2, you can specify the following statements
to make a visual comparison of the two response surfaces by overlaying their contour plots:

ods graphics on;
proc rsreg data=a plots=surface(overlaypairs);

model y1 y2=x1 x2;
run;
ods graphics off;

Figure 87.6 shows that you have to make some compromises in any attempt to maximize both y1 and y2;
however, you might be able to maximize y1 while minimizing y2.
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Figure 87.6 Overlaid Line Contours of Predicted Responses

Handling Covariates
Covariate regressors are added to a response surface model because they are believed to account for a sizable
yet relatively uninteresting portion of the variation in the data. What the experimenter is really interested in
is the response corrected for the effect of the covariates. A common example is the block effect in a block
design. In the canonical and ridge analyses of a response surface, which estimate responses at hypothetical
levels of the factor variables, the actual value of the predicted response is computed by using the average
values of the covariates. The estimated response values do optimize the estimated surface of the response
corrected for covariates, but true prediction of the response requires actual values for the covariates. You
can use the COVAR= option in the MODEL statement to include covariates in the response surface model.
Example 87.2 illustrates the use of this option.
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Computational Method

Canonical Analysis

For each response variable, the model can be written in the form

yi D x0iAxi C b0xi C c0zi C �i

where

yi is the ith observation of the response variable.

xi D .xi1; xi2; : : : ; xik/
0 are the k factor variables for the ith observation.

zi D .zi1; zi2; : : : ; ziL/
0 are the L covariates, including the intercept term.

A is the k � k symmetrized matrix of quadratic parameters, with diagonal elements equal to the
coefficients of the pure quadratic terms in the model and off-diagonal elements equal to half the
coefficient of the corresponding crossproduct.

b is the k � 1 vector of linear parameters.

c is the L � 1 vector of covariate parameters, one of which is the intercept.

�i is the error associated with the ith observation. Tests performed by PROC RSREG assume that errors
are independently and normally distributed with mean zero and variance �2.

The parameters in A, b, and c are estimated by least squares. To optimize y with respect to x, take partial
derivatives, set them to zero, and solve:

@y

@x
D 2x0AC b0 D 0 H) x D �

1

2
A�1b

You can determine if the solution is a maximum or minimum by looking at the eigenvalues of A:

If the eigenvalues. . . then the solution is. . .
are all negative a maximum
are all positive a minimum
have mixed signs a saddle point
contain zeros in a flat area

Ridge Analysis

If the largest eigenvalue is positive, its eigenvector gives the direction of steepest ascent from the stationary
point; if the largest eigenvalue is negative, its eigenvector gives the direction of steepest descent. The
eigenvectors corresponding to small or zero eigenvalues point in directions of relative flatness.

The point on the optimum response ridge at a given radius R from the ridge origin is found by optimizing

.x0 C d/0A.x0 C d/C b0.x0 C d/

over d satisfying d0d D R2, where x0 is the k � 1 vector containing the ridge origin and A and b are as
previously discussed. By the method of Lagrange multipliers, the optimal d has the form

d D �.A � �I/�1.Ax0 C 0:5b/
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where I is the k � k identity matrix and � is chosen so that d0d D R2. There can be several values of �
that satisfy this constraint; the correct one depends on which sort of response ridge is of interest. If you
are searching for the ridge of maximum response, then the appropriate � is the unique one that satisfies the
constraint and is greater than all the eigenvalues of A. Similarly, the appropriate � for the ridge of minimum
response satisfies the constraint and is less than all the eigenvalues of A. (See Myers and Montgomery (1995)
for details.)

Output Data Sets

OUT=SAS-data-set

An output data set containing statistics requested with options in the MODEL statement for each observation
in the input data set is created whenever the OUT= option is specified in the PROC RSREG statement. The
data set contains the following variables:

• the BY variables

• the ID variables

• the WEIGHT variable

• the independent variables in the MODEL statement

• the variable _TYPE_, which identifies the observation type in the output data set. _TYPE_ is a character
variable with a length of eight, and it takes on the values ‘ACTUAL’, ‘PREDICT’, ‘RESIDUAL’,
‘U95M’, ‘L95M’, ‘U95’, ‘L95’, and ‘D’, corresponding to the options specified.

• the response variables containing special output values identified by the _TYPE_ variable

All confidence limits use the two-tailed Student’s t value.

OUTR=SAS-data-set

An output data set containing the optimum response ridge is created when the OUTR= option is specified in
the RIDGE statement. The data set contains the following variables:

• the current values of the BY variables

• a character variable _DEPVAR_ containing the name of the dependent variable

• a character variable _TYPE_ identifying the type of ridge being computed, MINIMUM or MAXIMUM.
If both MAXIMUM and MINIMUM are specified, the data set contains observations for the minimum
ridge followed by observations for the maximum ridge.

• a numeric variable _RADIUS_ giving the distance from the ridge starting point

• the values of the model factors at the estimated optimum point at distance _RADIUS_ from the ridge
starting point
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• a numeric variable _PRED_, which is the estimated expected value of the dependent variable at the
optimum

• a numeric variable _STDERR_, which is the standard error of the estimated expected value

Displayed Output
All estimates and hypothesis tests assume that the model is correctly specified and the errors are distributed
according to classical statistical assumptions.

The output displayed by PROC RSREG includes the following.

Estimation and Analysis of Variance

• The actual form of the coding operation for each value of a variable is

coded value D
1

S
.original value �M/

where M is the average of the highest and lowest values for the variable in the design and S is half their
difference. The Subtracted off column contains the M values for this formula for each factor variable,
and S is found in the Divided by column.

• The summary table for the response variable contains the following information.

– “Response Mean” is the mean of the response variable in the sample. When a WEIGHT statement
is specified, the mean Ny is calculated by

Ny D

P
i wiyiP
i wi

– “Root MSE” estimates the standard deviation of the response variable and is calculated as the
square root of the “Total Error” mean square.

– The “R-Square” value is R2, or the coefficient of determination. R2 measures the proportion of
the variation in the response that is attributed to the model rather than to random error.

– The “Coefficient of Variation” is 100 times the ratio of the “Root MSE” to the “Response Mean.”

• A table analyzing the significance of the terms of the regression is displayed. Terms are brought into
the regression in four steps: (1) the “Intercept” and any covariates in the model, (2) “Linear” terms
like X1 and X2, (3) pure “Quadratic” terms like X1*X1 or X2*X2, and (4) “Crossproduct” terms like
X1*X2. The table displays the following information:

– the degrees of freedom in the DF column, which should be the same as the number of correspond-
ing parameters unless one or more of the parameters are not estimable

– Type I Sum of Squares, also called the sequential sums of squares, which measures the reduction
in the error sum of squares as sets of terms (Linear, Quadratic, and so forth) are added to the
model
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– R-Square, which measures the portion of total R2 contributed as each set of terms (Linear,
Quadratic, and so forth) is added to the model

– F Value, which tests the null hypothesis that all parameters in the term are zero by using the Total
Error mean square as the denominator. This is a test of a Type I hypothesis, containing the usual
F test numerator, conditional on the effects of subsequent variables not being in the model.

– Pr > F, which is the significance value or probability of obtaining at least as great an F ratio given
that the null hypothesis is true.

• The Sum of Squares column partitions the “Total Error” into “Lack of Fit” and “Pure Error.” When
“Lack of Fit” is significant, there is variation around the model other than random error (such as cubic
effects of the factor variables).

– The “Total Error” Mean Square estimates �2, the variance.

– F Value tests the null hypothesis that the variation is adequately described by random error.

• A table containing the parameter estimates from the model is displayed.

– The Estimate column contains the parameter estimates based on the uncoded values of the factor
variables. If an effect is a linear combination of previous effects, the parameter for the effect is
not estimable. When this happens, the degrees of freedom are zero, the parameter estimate is set
to zero, and estimates and tests on other parameters are conditional on this parameter being zero.

– The Standard Error column contains the estimated standard deviations of the parameter estimates
based on uncoded data.

– The t Value column contains t values of a test of the null hypothesis that the true parameter is
zero when the uncoded values of the factor variables are used.

– The Pr > |T| column gives the significance value or probability of a greater absolute t ratio given
that the true parameter is zero.

– The Parameter Estimate from Coded Data column contains the parameter estimates based on the
coded values of the factor variables. These are the estimates used in the subsequent canonical
and ridge analyses.

• The sum of squares are partitioned by the factors in the model, and an analysis table is displayed. The
test on a factor is a joint test on all the parameters involving that factor. For example, the test for the
factor X1 tests the null hypothesis that the true parameters for X1, X1*X1, and X1*X2 are all zero.

Canonical Analysis

• The Critical Value columns contain the values of the factor variables that correspond to the stationary
point of the fitted response surface. The critical values can be at a minimum, maximum, or saddle
point.
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• The eigenvalues and eigenvectors are from the matrix of quadratic parameter estimates based on the
coded data. They characterize the shape of the response surface.

Ridge Analysis

• The Coded Radius column contains the distance from the coded version of the associated point to the
coded version of the origin of the ridge. The origin is given by the point at radius zero.

• The Estimated Response column contains the estimated value of the response variable at the associated
point. The standard error of this estimate is also given. This quantity is useful for assessing the
relative credibility of the prediction at a given radius. Typically, this standard error increases rapidly as
the ridge moves up to and beyond the design perimeter, reflecting the inherent difficulty of making
predictions beyond the range of experimentation.

• The Uncoded Factor Values columns contain the values of the uncoded factor variables that give the
optimum response at this radius from the ridge origin.

ODS Table Names
PROC RSREG assigns a name to each table it creates. You can use these names to reference the table when
using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed
in Table 87.4. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

Table 87.4 ODS Tables Produced by PROC RSREG

ODS Table Name Description Statement

Coding Coding coefficients for the independent
variables

default

ErrorANOVA Error analysis of variance default
FactorANOVA Factor analysis of variance default
FitStatistics Overall statistics for fit default
ModelANOVA Model analysis of variance default
ParameterEstimates Estimated linear parameters default
Ridge Ridge analysis for optimum response RIDGE
Spectral Spectral analysis default
StationaryPoint Stationary point of response surface default
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ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

PROC RSREG assigns a name to each graph it creates using ODS. The names are listed in Table 87.5. You
can use these names to reference the graphs when using ODS. You must also specify the PLOTS= option and
any other options indicated in Table 87.5.

Table 87.5 Graphs Produced by PROC RSREG

ODS Graph Name Plot Description PLOTS= Option

FitPlot Fit plot for 1 predictor FIT
DiagnosticsPanel Panel of fit diagnostics DIAGNOSTICS

CooksDPlot Cook’s D plot DIAGNOSTICS(UNPACK)
ObservedByPredicted Observed by predicted DIAGNOSTICS(UNPACK)
QQPlot Residual Q-Q plot DIAGNOSTICS(UNPACK)
ResidualByPredicted Residual by predicted values DIAGNOSTICS(UNPACK)
ResidualHistogram Residual histogram DIAGNOSTICS(UNPACK)
RFPlot RF plot DIAGNOSTICS(UNPACK)
RStudentByPredicted Studentized residuals by predicted DIAGNOSTICS(UNPACK)
RStudentByLeverage RStudent by hat diagonals DIAGNOSTICS(UNPACK)

ResidualPlots Panel of residuals by predictors RESIDUALS
Residuals by predictors RESIDUALS(UNPACK)

RidgePlots Panel of ridge plot and factors RIDGE
(with RIDGE MAX or MIN)

Ridge plot RIDGE(UNPACK)
(with RIDGE MAX or MIN)

Ridge factors RIDGE(UNPACK)
(with RIDGE MAX or MIN)

Contour Panel of contour plots SURFACE
Contour plots SURFACE(UNPACK)

Surface Panel of 3-D surface plots SURFACE(3D)
3-D surface plots SURFACE(3D UNPACK)

ContourOverlay Panel of overlaid line-contour plots SURFACE(OVERLAYPAIRS)
Overlaid line-contour plots SURFACE(OVERLAYPAIRS UNPACK)
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Examples: RSREG Procedure

Example 87.1: A Saddle Surface Response Using Ridge Analysis
Myers (1976) analyzes an experiment reported by Frankel (1961) aimed at maximizing the yield of mercapto-
benzothiazole (MBT) by varying processing time and temperature. Myers (1976) uses a two-factor model in
which the estimated surface does not have a unique optimum. A ridge analysis is used to determine the region
in which the optimum lies. The objective is to find the settings of time and temperature in the processing of a
chemical that maximize the yield. The following statements produce Output 87.1.1 through Output 87.1.5:

data d;
input Time Temp MBT;
label Time = "Reaction Time (Hours)"

Temp = "Temperature (Degrees Centigrade)"
MBT = "Percent Yield Mercaptobenzothiazole";

datalines;
4.0 250 83.8

20.0 250 81.7
12.0 250 82.4
12.0 250 82.9
12.0 220 84.7
12.0 280 57.9
12.0 250 81.2
6.3 229 81.3
6.3 271 83.1

17.7 229 85.3
17.7 271 72.7
4.0 250 82.0

;

ods graphics on;
proc rsreg data=d plots=(ridge surface);

model MBT=Time Temp / lackfit;
ridge max;

run;
ods graphics off;

Output 87.1.1 displays the coding coefficients for the transformation of the independent variables to lie
between –1 and 1 and some simple statistics for the response variable.

Output 87.1.1 Coding and Response Variable Information

The RSREG ProcedureThe RSREG Procedure

Coding Coefficients for the
Independent Variables

Factor Subtracted off Divided by

Time 12.000000 8.000000

Temp 250.000000 30.000000
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Output 87.1.1 continued

Response Surface for Variable
MBT:

Percent Yield
Mercaptobenzothiazole

Response Mean 79.916667

Root MSE 4.615964

R-Square 0.8003

Coefficient of Variation 5.7760

Output 87.1.2 shows that the lack of fit for the model is highly significant. Since the quadratic model does not
fit the data very well, firm statements about the underlying process should not be based only on the current
analysis. Note from the analysis of variance for the model that the test for the time factor is not significant.
If further experimentation is undertaken, it might be best to fix Time at a moderate to high value and to
concentrate on the effect of temperature. In the actual experiment discussed here, extra runs were made that
confirmed the results of the following analysis.

Output 87.1.2 Analyses of Variance

Regression DF
Type I Sum
of Squares R-Square F Value Pr > F

Linear 2 313.585803 0.4899 7.36 0.0243

Quadratic 2 146.768144 0.2293 3.44 0.1009

Crossproduct 1 51.840000 0.0810 2.43 0.1698

Total Model 5 512.193947 0.8003 4.81 0.0410

Residual DF
Sum of

Squares Mean Square F Value Pr > F

Lack of Fit 3 124.696053 41.565351 39.63 0.0065

Pure Error 3 3.146667 1.048889

Total Error 6 127.842720 21.307120

Parameter DF Estimate
Standard

Error t Value Pr > |t|

Parameter
Estimate

from
Coded
Data

Intercept 1 -545.867976 277.145373 -1.97 0.0964 82.173110

Time 1 6.872863 5.004928 1.37 0.2188 -1.014287

Temp 1 4.989743 2.165839 2.30 0.0608 -8.676768

Time*Time 1 0.021631 0.056784 0.38 0.7164 1.384394

Temp*Time 1 -0.030075 0.019281 -1.56 0.1698 -7.218045

Temp*Temp 1 -0.009836 0.004304 -2.29 0.0623 -8.852519

Factor DF
Sum of

Squares Mean Square F Value Pr > F Label

Time 3 61.290957 20.430319 0.96 0.4704 Reaction Time (Hours)

Temp 3 461.250925 153.750308 7.22 0.0205 Temperature (Degrees Centigrade)
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The canonical analysis (Output 87.1.3) indicates that the predicted response surface is shaped like a saddle.
The eigenvalue of 2.5 shows that the valley orientation of the saddle is less curved than the hill orientation,
with an eigenvalue of –9.99. The coefficients of the associated eigenvectors show that the valley is more
aligned with Time and the hill with Temp. Because the canonical analysis resulted in a saddle point, the
estimated surface does not have a unique optimum.

Output 87.1.3 Canonical Analysis

Critical Value

Factor Coded Uncoded Label

Time -0.441758 8.465935 Reaction Time (Hours)

Temp -0.309976 240.700718 Temperature (Degrees Centigrade)

Predicted value at stationary point: 83.741940

Eigenvectors

Eigenvalues Time Temp

2.528816 0.953223 -0.302267

-9.996940 0.302267 0.953223

Stationary point is a saddle
point.

However, the ridge analysis in Output 87.1.4 and the ridge plot in Output 87.1.5 indicate that maximum yields
result from relatively high reaction times and low temperatures. A contour plot of the predicted response
surface, shown in Output 87.1.5, confirms this conclusion.

Output 87.1.4 Ridge Analysis

Estimated Ridge of Maximum Response for
Variable MBT:

Percent Yield Mercaptobenzothiazole

Uncoded Factor
Values

Coded
Radius

Estimated
Response

Standard
Error Time Temp

0.0 82.173110 2.665023 12.000000 250.000000

0.1 82.952909 2.648671 11.964493 247.002956

0.2 83.558260 2.602270 12.142790 244.023941

0.3 84.037098 2.533296 12.704153 241.396084

0.4 84.470454 2.457836 13.517555 239.435227

0.5 84.914099 2.404616 14.370977 237.919138

0.6 85.390012 2.410981 15.212247 236.624811

0.7 85.906767 2.516619 16.037822 235.449230

0.8 86.468277 2.752355 16.850813 234.344204

0.9 87.076587 3.130961 17.654321 233.284652

1.0 87.732874 3.648568 18.450682 232.256238
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Output 87.1.5 Ridge and Contour Plot of Predicted Response Surface
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Example 87.2: Response Surface Analysis with Covariates
One way of viewing covariates is as extra sources of variation in the dependent variable that can mask the
variation due to primary factors. This example demonstrates the use of the COVAR= option in PROC RSREG
to fit a response surface model to the dependent variables corrected for the covariates.

You have a chemical process with a yield that you hypothesize to be dependent on three factors: reaction
time, reaction temperature, and reaction pressure. You perform an experiment to measure this dependence.
You are willing to include up to 20 runs in your experiment, but you can perform no more than 8 runs on the
same day, so the design for the experiment is composed of three blocks. Additionally, you know that the
grade of raw material for the reaction has a significant impact on the yield. You have no control over this, but
you keep track of it. The following statements create a SAS data set containing the results of the experiment:

data Experiment;
input Day Grade Time Temp Pressure Yield;
datalines;

1 67 -1 -1 -1 32.98
1 68 -1 1 1 47.04
1 70 1 -1 1 67.11
1 66 1 1 -1 26.94
1 74 0 0 0 103.22
1 68 0 0 0 42.94
2 75 -1 -1 1 122.93
2 69 -1 1 -1 62.97
2 70 1 -1 -1 72.96
2 71 1 1 1 94.93
2 72 0 0 0 93.11
2 74 0 0 0 112.97
3 69 1.633 0 0 78.88
3 67 -1.633 0 0 52.53
3 68 0 1.633 0 68.96
3 71 0 -1.633 0 92.56
3 70 0 0 1.633 88.99
3 72 0 0 -1.633 102.50
3 70 0 0 0 82.84
3 72 0 0 0 103.12
;

Your first analysis neglects to take the covariates into account. The following statements use PROC RSREG
to fit a response surface to the observed yield, but note that Day and Grade are omitted:

proc rsreg data=Experiment;
model Yield = Time Temp Pressure;

run;

The ANOVA results shown in Output 87.2.1 indicate that no process variable effects are significantly larger
than the background noise.
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Output 87.2.1 Analysis of Variance Ignoring Covariates

The RSREG ProcedureThe RSREG Procedure

Regression DF
Type I Sum
of Squares R-Square F Value Pr > F

Linear 3 1880.842426 0.1353 0.67 0.5915

Quadratic 3 2370.438681 0.1706 0.84 0.5023

Crossproduct 3 241.873250 0.0174 0.09 0.9663

Total Model 9 4493.154356 0.3233 0.53 0.8226

Residual DF
Sum of

Squares Mean Square

Total Error 10 9405.129724 940.512972

However, when the yields are adjusted for covariate effects of day and grade of raw material, very strong
process variable effects are revealed. The following statements produce the ANOVA results in Output 87.2.2.
Note that in order to include the effects of the classification factor Day as covariates, you need to create
dummy variables indicating each day separately.

data Experiment;
set Experiment;
d1 = (Day = 1);
d2 = (Day = 2);
d3 = (Day = 3);

ods graphics on;
proc rsreg data=Experiment plots=all;

model Yield = d1-d3 Grade Time Temp Pressure / covar=4;
run;
ods graphics off;

The results show very strong effects due to both the covariates and the process variables.

Output 87.2.2 Analysis of Variance Including Covariates

The RSREG ProcedureThe RSREG Procedure

Regression DF
Type I Sum
of Squares R-Square F Value Pr > F

Covariates 3 13695 0.9854 316957 <.0001

Linear 3 156.524497 0.0113 3622.53 <.0001

Quadratic 3 22.989775 0.0017 532.06 <.0001

Crossproduct 3 23.403614 0.0017 541.64 <.0001

Total Model 12 13898 1.0000 80413.2 <.0001

Residual DF
Sum of

Squares Mean Square

Total Error 7 0.100820 0.014403
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The number of observations in the data set might be too small for the diagnostic plots in Output 87.2.3 to
dependably identify problems; however, some outliers are indicated. The residual plots in Output 87.2.4 do
not display any obvious structure.

Output 87.2.3 Fit Diagnostics
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Output 87.2.4 Residual Plots
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Overview: SCORE Procedure
The SCORE procedure multiplies values from two SAS data sets, one containing coefficients (for example,
factor-scoring coefficients or regression coefficients) and the other containing raw data to be scored using
the coefficients from the first data set. The result of this multiplication is a SAS data set containing linear
combinations of the coefficients and the raw data values.

Many statistical procedures output coefficients that PROC SCORE can apply to raw data to produce scores.
The new score variable is formed as a linear combination of raw data and scoring coefficients. For each
observation in the raw data set, PROC SCORE multiplies the value of a variable in the raw data set by the
matching scoring coefficient from the data set of scoring coefficients. This multiplication process is repeated
for each variable in the VAR statement. The resulting products are then summed to produce the value of the
new score variable. This entire process is repeated for each observation in the raw data set. In other words,
PROC SCORE cross multiplies part of one data set with another.
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Raw Data Set
The raw data set can contain the original data used to calculate the scoring coefficients, or it can contain
an entirely different data set. The raw data set must contain all the variables needed to produce scores. In
addition, the scoring coefficients and the variables in the raw data set that are used in scoring must have the
same names. See the section “Getting Started: SCORE Procedure” on page 7295 for more information.

Scoring Coefficients Data Set
The data set containing scoring coefficients must contain two special variables: the _TYPE_ variable and the
_NAME_ or _MODEL_ variable.

• The _TYPE_ variable identifies the observations that contain scoring coefficients.

• The _NAME_ or _MODEL_ variable provides a SAS name for the new score variable.

PROC SCORE first looks for a _NAME_ variable in the SCORE= input data set. If there is such a variable,
the variable’s value is what SCORE uses to name the new score variable. If the SCORE= data set does not
have a _NAME_ variable, then PROC SCORE looks for a _MODEL_ variable.

For example, PROC FACTOR produces an output data set that contains factor-scoring coefficients. In this
output data set, the scoring coefficients are identified by _TYPE_=’SCORE’. For _TYPE_=’SCORE’, the
_NAME_ variable has values of ’Factor1’, ’Factor2’, and so forth. PROC SCORE gives the new score
variables the names Factor1, Factor2, and so forth.

As another example, the REG procedure produces an output data set that contains parameter estimates. In
this output data set, the parameter estimates are identified by _TYPE_=’PARMS’. The _MODEL_ variable
contains the label used in the MODEL statement in PROC REG, or it uses MODELn if no label is specified.
This label is the name PROC SCORE gives to the new score variable.

Standardization of Raw Data
PROC SCORE automatically standardizes or centers the DATA= variables for you, based on information
from the original variables and analysis from the SCORE= data set.

If the SCORE= scoring coefficients data set contains observations with _TYPE_=’MEAN’ and
_TYPE_=’STD’, then PROC SCORE standardizes the raw data before scoring. For example, this
type of SCORE= data set can come from PROC PRINCOMP without the COV option.

If the SCORE= scoring coefficients data set contains observations with _TYPE_=’MEAN’ but _TYPE_=’STD’
is absent, then PROC SCORE centers the raw data (the means are subtracted) before scoring. For example,
this type of SCORE= data set can come from PROC PRINCOMP with the COV option.

If the SCORE= scoring coefficients data set does not contain observations with _TYPE_=’MEAN’ and
_TYPE_=’STD’, or if you use the NOSTD option, then PROC SCORE does not center or standardize the raw
data.
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If the SCORE= scoring coefficients are obtained from observations with _TYPE_=’USCORE’, then
PROC SCORE “standardizes” the raw data by using the uncorrected standard deviations identified by
_TYPE_=’USTD’, and the means are not subtracted from the raw data. For example, this type of
SCORE= data set can come from PROC PRINCOMP with the NOINT option. For more information
about _TYPE_=’USCORE’ scoring coefficients in TYPE=UCORR or TYPE=UCOV output data sets, see
Appendix A, “Special SAS Data Sets.”

You can use PROC SCORE to score the data that were also used to generate the scoring coefficients, although
more typically, scoring results are directly obtained from the OUT= data set in a procedure that computes
scoring coefficients. When scoring new data, it is important to realize that PROC SCORE assumes that the
new data have approximately the same scales as the original data. For example, if you specify the COV
option with PROC PRINCOMP for the original analysis, the scoring coefficients in the PROC PRINCOMP
OUTSTAT= data set are not appropriate for standardized data. With the COV option, PROC PRINCOMP will
not output _TYPE_=’STD’ observations to the OUTSTAT= data set, and PROC SCORE will only subtract the
means of the original (not new) variables from the new variables before multiplying. Without the COV option
in PROC PRINCOMP, both the original variable means and standard deviations will be in the OUTSTAT=
data set, and PROC SCORE will subtract the original variable means from the new variables and divide them
by the original variable standard deviations before multiplying.

In general, procedures that output scoring coefficients in their OUTSTAT= data sets provide the neces-
sary information for PROC SCORE to determine the appropriate standardization. However, if you use
PROC SCORE with a scoring coefficients data set that you constructed without _TYPE_=’MEAN’ and
_TYPE_=’STD’ observations, you might have to do the relevant centering or standardization of the new data
first. If you do this, you must use the means and standard deviations of the original variables—that is, the
variables that were used to generate the coefficients—not the means and standard deviations of the variables
to be scored.

See the section “Getting Started: SCORE Procedure” on page 7295 for further illustration.

Getting Started: SCORE Procedure
The SCORE procedure multiplies the values from two SAS data sets and creates a new data set to contain the
results of the multiplication. The variables in the new data set are linear combinations of the variables in the
two input data sets. Typically, one of these data sets contains raw data that you want to score, and the other
data set contains scoring coefficients.

The following example demonstrates how to use the SCORE procedure to multiply values from two SAS
data sets, one containing factor-scoring coefficients and the other containing raw data to be scored using the
scoring coefficients.

Suppose you are interested in the performance of three different types of schools: private schools, state-run
urban schools, and state-run rural schools. You want to compare the schools’ performances as measured by
student grades on standard tests in English, mathematics, and biology. You administer these tests and record
the scores for each of the three types of schools.

The following DATA step creates the SAS data set Schools. The data are provided by Chaseling (1996).
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data Schools;
input Type $ English Math Biology @@;
datalines;

p 52 55 45 p 42 49 40 p 63 64 54
p 47 50 51 p 64 69 47 p 63 67 54
p 59 63 42 p 56 61 41 p 41 44 72
p 39 42 45 p 56 63 44 p 63 73 42

... more lines ...

r 50 47 49 r 55 48 46 r 38 36 51
;

The data set Schools contains the character variable Type, which represents the type of school. Valid values
are p (private schools), r (state-run rural schools), and u (state-run urban schools).

The three numeric variables in the data set are English, Math, and Biology, which represent the student
scores for English, mathematics, and biology, respectively. The double trailing at sign (@@) in the INPUT
statement specifies that observations are input from each line until all values are read.

The following statements invoke the FACTOR procedure to compute the data set of factor scoring coefficients.
The statements perform a principal components factor analysis that uses all three numeric variables in the
SAS data set Schools. The OUTSTAT= option requests that PROC FACTOR output the factor scores to the
data set Scores. The NOPRINT option suppresses display of the output.

proc factor data=Schools score outstat=Scores noprint;
var english math biology;

run;

proc score data=schools score=Scores out=New;
var english math biology;
id type;

run;

The SCORE procedure is then invoked using Schools as the raw data set to be scored and Scores as the
scoring data set. The OUT= option creates the SAS data set New to contain the linear combinations.

The VAR statement specifies that the variables English, Math, and Biology are used in computing scores. The
ID statement copies the variable Type from the Schools data set to the output data set New.

The following statements print the SAS output data set Scores, the first two observations from the original
data set Schools, and the first two observations of the resulting data set New.

title 'OUTSTAT= Data Set from PROC FACTOR';
proc print data=Scores;
run;

title 'First Two Observations of the DATA= Data Set from PROC SCORE';
proc print data=Schools(obs=2);
run;

title 'First Two Observations of the OUT= Data Set from PROC SCORE';
proc print data=New(obs=2);
run;
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Figure 88.1 displays the output data set Scores produced by the FACTOR procedure. The last observation
(number 11) contains the scoring coefficients (_TYPE_=’SCORE’). Only one factor has been retained.

Figure 88.1 Listing of the Data Set Created by PROC FACTOR

OUTSTAT= Data Set from PROC FACTOROUTSTAT= Data Set from PROC FACTOR

Obs _TYPE_ _NAME_ English Math Biology

1 MEAN 55.525 52.325 50.350

2 STD 12.949 12.356 12.239

3 N 120.000 120.000 120.000

4 CORR English 1.000 0.833 0.672

5 CORR Math 0.833 1.000 0.594

6 CORR Biology 0.672 0.594 1.000

7 COMMUNAL 0.881 0.827 0.696

8 PRIORS 1.000 1.000 1.000

9 EIGENVAL 2.405 0.437 0.159

10 PATTERN Factor1 0.939 0.910 0.834

11 SCORE Factor1 0.390 0.378 0.347

Figure 88.2 lists the first two observations of the original SAS data set (Schools).

Figure 88.2 First Two Observations of the Schools Data Set

First Two Observations of the DATA= Data Set from PROC SCOREFirst Two Observations of the DATA= Data Set from PROC SCORE

Obs Type English Math Biology

1 p 52 55 45

2 p 42 49 40

Figure 88.3 lists the first two observations of the output data set New created by PROC SCORE.

Figure 88.3 Listing of the New Data Set

First Two Observations of the OUT= Data Set from PROC SCOREFirst Two Observations of the OUT= Data Set from PROC SCORE

Obs Type Factor1

1 p -0.17604

2 p -0.80294

The score variable Factor1 in the New data set is named according to the value of the _NAME_ variable in the
Scores data set. The values of the variable Factor1 are computed as follows: the DATA= data set variables
are standardized using the same means and standard deviations that PROC FACTOR used when extracting
the factors because the Scores data set contains observations with _TYPE_=’MEAN’ and _TYPE_=’STD’.

Note that in order to correctly use standardized scoring coefficients created by other procedures such as
PROC FACTOR in this example, the data to be scored must be standardized in the same way that the data
were standardized when the scoring coefficients were computed. Otherwise, the resulting scores might be
incorrect. PROC SCORE does this automatically if the SCORE= data set is the original OUTSTAT= data set
output from the procedure creating the scoring coefficients.
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These standardized variables are then multiplied by their respective standardized scoring coefficients from
the data set Scores. These products are summed over all three variables, and the sum is the value of the new
variable Factor1. The first two values of the scored variable Factor1 are obtained as follows:
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The following statements request that the SGPLOT procedure produce a horizontal bar chart of the variable
Type. The length of each bar represents the mean of the variable Factor1.

title 'Mean Score of Variable Factor1 by Each Type of Schools';
proc sgplot data=New;

hbar type / stat = mean response=Factor1;
run;

Figure 88.4 displays the mean score of the variable Factor1 for each of the three school types. For private
schools (Type=p), the average value of the variable Factor1 is 0.384, while for state-run schools the average
values are much lower. The state-run urban schools (Type=u) have the lowest mean value of –0.202, and the
state-run rural schools (Type=r) have a mean value of –0.183.



Syntax: SCORE Procedure F 7299

Figure 88.4 Bar Chart of School Type

Syntax: SCORE Procedure
The following statements are available in the SCORE procedure:

PROC SCORE DATA=SAS-data-set < options > ;
BY variables ;
ID variables ;
VAR variables ;

The only required statement is the PROC SCORE statement. The BY, ID, and VAR statements are described
following the PROC SCORE statement.

PROC SCORE Statement
PROC SCORE DATA=SAS-data-set < options > ;
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The PROC SCORE statement invokes the SCORE procedure. Table 88.1 summarizes the options available in
the PROC SCORE statement.

Table 88.1 PROC SCORE Statement Options

Option Description

DATA= Names the input SAS data set containing the raw data to score
NOSTD Suppresses centering and scaling of the raw data
OUT= Specifies the name of the SAS data set
PREDICT Treats coefficients of –1 as 0
RESIDUAL Reverses the sign of each score
SCORE= Names the data set containing the scoring coefficients
TYPE= Specifies the observations that contain scoring coefficients

You can specify the following options in the PROC SCORE statement.

DATA=SAS-data-set
names the input SAS data set containing the raw data to score. This option is required.

NOSTD
suppresses centering and scaling of the raw data. Ordinarily, if PROC SCORE finds _TYPE_=‘MEAN’,
_TYPE_= ‘USCORE’, _TYPE_=‘USTD’, or _TYPE_=‘STD’ observations in the SCORE= data set,
the procedure uses these to standardize the raw data before scoring.

OUT=SAS-data-set
specifies the name of the SAS data set created by PROC SCORE. If you want to create a SAS data set
in a permanent library, you must specify a two-level name. For more information about permanent
libraries and SAS data sets, see SAS Language Reference: Concepts. If the OUT= option is omitted,
PROC SCORE still creates an output data set and automatically names it according to the DATAn
convention, as if you omitted a data set name in a DATA statement.

PREDICT
specifies that PROC SCORE should treat coefficients of –1 in the SCORE= data set as 0. In regression
applications, the dependent variable is coded with a coefficient of –1. Applied directly to regression
results, PROC SCORE produces negative residuals (see the description of the RESIDUAL option,
which follows); the PREDICT option produces predicted values instead.

RESIDUAL
reverses the sign of each score. Applied directly to regression results, PROC SCORE produces negative
residuals (PREDICT–ACTUAL); the RESIDUAL option produces positive residuals (ACTUAL–
PREDICT) instead.

SCORE=SAS-data-set
names the data set containing the scoring coefficients. If you omit the SCORE= option, the most
recently created SAS data set is used. This data set must have two special variables: _TYPE_ and
either _NAME_ or _MODEL_.
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TYPE=name or ‘string’
specifies the observations in the SCORE= data set that contain scoring coefficients. The TYPE=
procedure option is unrelated to the data set option that has the same name. PROC SCORE examines
the values of the special variable _TYPE_ in the SCORE= data set. When the value of _TYPE_ matches
TYPE=name, the observation in the SCORE= data set is used to score the raw data in the DATA= data
set.

If you omit the TYPE= option, scoring coefficients are read from observations with either
_TYPE_=’SCORE’ or _TYPE_=’USCORE’. Because the default for PROC SCORE is TYPE=SCORE,
you need not specify the TYPE= option for factor scoring or for computing scores from OUTSTAT=
data sets from the CANCORR, CANDISC, PRINCOMP, or VARCLUS procedure. When you use
regression coefficients from PROC REG, specify TYPE=PARMS.

The maximum length of the argument specified in the TYPE= option depends on the length defined
by the VALIDVARNAME= SAS system option. For additional information, see SAS System Options:
Reference.

Note that the TYPE= option setting is not case sensitive. For example, the two option settings
TYPE=’MyScore’ and TYPE=’myscore’ are equivalent.

BY Statement
BY variables ;

You can specify a BY statement with PROC SCORE to obtain separate analyses of observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the SCORE procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

You can specify a BY statement to apply separate groups of scoring coefficients to the entire DATA= data set.

If the DATA= data set does not contain any of the BY variables, the entire DATA= data set is scored by each
BY group of scoring coefficients in the SCORE= data set.

If the DATA= data set contains some but not all of the BY variables, or if some BY variables do not have the
same type or length in the DATA= data set as in the SCORE= data set, then PROC SCORE prints an error
message and stops.
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If all the BY variables appear in the DATA= data set with the same type and length as in the SCORE= data
set, then each BY group in the DATA= data set is scored using scoring coefficients from the corresponding
BY group in the SCORE= data set. The BY groups in the DATA= data set must be in the same order as in the
SCORE= data set. All BY groups in the DATA= data set must also appear in the SCORE= data set. If you do
not specify the NOTSORTED option, some BY groups can appear in the SCORE= data set but not in the
DATA= data set; such BY groups are not used in computing scores.

ID Statement
ID variables ;

The ID statement identifies variables from the DATA= data set to be included in the OUT= data set. If there is
no ID statement, all variables from the DATA= data set are included in the OUT= data set. The ID variables
can be character or numeric.

VAR Statement
VAR variables ;

The VAR statement specifies the variables to be used in computing scores. These variables must be in both
the DATA= and SCORE= input data sets and must be numeric. If you do not specify a VAR statement, the
procedure uses all numeric variables in the SCORE= data set. You should almost always specify a VAR
statement with PROC SCORE because you would rarely use all the numeric variables in your data set to
compute scores.

Details: SCORE Procedure

Missing Values
If one of the scoring variables in the DATA= data set has a missing value for an observation, all the scores
have missing values for that observation. The exception to this criterion is that if the PREDICT option is
specified, the variable with a coefficient of –1 can tolerate a missing value and still produce a prediction
score. Also, a variable with a coefficient of 0 can tolerate a missing value.

If a scoring coefficient in the SCORE= data set has a missing value for an observation, the coefficient is
not used in creating the new score variable for the observation. In other words, missing values of scoring
coefficients are treated as zeros. This treatment affects only the observation in which the missing value
occurs.
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Regression Parameter Estimates from PROC REG
If the SCORE= data set is an OUTEST= data set produced by PROC REG and if you specify TYPE=PARMS,
the interpretation of the new score variables depends on the PROC SCORE options chosen and the variables
listed in the VAR statement. If the VAR statement contains only the independent variables used in a model in
PROC REG, the new score variables give the predicted values. If the VAR statement contains the dependent
variables and the independent variables used in a model in PROC REG, the interpretation of the new score
variables depends on the PROC SCORE options chosen. If you omit both the PREDICT and the RESIDUAL
options, the new score variables give negative residuals (PREDICT–ACTUAL). If you specify the RESIDUAL
option, the new score variables give positive residuals (ACTUAL–PREDICT). If you specify the PREDICT
option, the new score variables give predicted values.

Unless you specify the NOINT option for PROC REG, the OUTEST= data set contains the variable Intercept.
The SCORE procedure uses the intercept value in computing the scores.

Output Data Set
PROC SCORE produces an output data set but displays no output. The output OUT= data set contains the
following variables:

• the ID variables, if any

• all variables from the DATA= data set, if no ID variables are specified

• the BY variables, if any

• the new score variables, named from the _NAME_ or _MODEL_ values in the SCORE= data set

Computational Resources
Let

v = number of variables used in computing scores
s = number of new score variables
b = maximum number of new score variables in a BY group
n = original input value

Memory

The array storage required is approximately 8.4vC .3Cv/bC s/ bytes. When you do not use BY processing,
the array storage required is approximately 8.4v C .4C v/s/ bytes.

Time

The time required to construct the scoring matrix is roughly proportional to vs, and the time needed to
compute the scores is roughly proportional to nvs.
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Examples: SCORE Procedure
The following three examples use a subset of the Fitness data set. The complete data set is given in Chapter 85,
“The REG Procedure.”

Example 88.1: Factor Scoring Coefficients
This example shows how to use PROC SCORE with factor scoring coefficients. First, the FACTOR procedure
produces an output data set containing scoring coefficients in observations identified by _TYPE_=’SCORE’.
These data, together with the original data set Fitness, are supplied to PROC SCORE, resulting in a
data set containing scores Factor1 and Factor2. The following statements produce Output 88.1.1 through
Output 88.1.3:

/* This data set contains only the first 12 observations */
/* from the full data set used in the chapter on PROC REG. */

data Fitness;
input Age Weight Oxygen RunTime RestPulse RunPulse @@;
datalines;

44 89.47 44.609 11.37 62 178 40 75.07 45.313 10.07 62 185
44 85.84 54.297 8.65 45 156 42 68.15 59.571 8.17 40 166
38 89.02 49.874 9.22 55 178 47 77.45 44.811 11.63 58 176
40 75.98 45.681 11.95 70 176 43 81.19 49.091 10.85 64 162
44 81.42 39.442 13.08 63 174 38 81.87 60.055 8.63 48 170
44 73.03 50.541 10.13 45 168 45 87.66 37.388 14.03 56 186
;

proc factor data=Fitness outstat=FactOut
method=prin rotate=varimax score;

var Age Weight RunTime RunPulse RestPulse;
title 'Factor Scoring Example';

run;

proc print data=FactOut;
title2 'Data Set from PROC FACTOR';

run;

proc score data=Fitness score=FactOut out=FScore;
var Age Weight RunTime RunPulse RestPulse;

run;

proc print data=FScore;
title2 'Data Set from PROC SCORE';

run;

Output 88.1.1 shows the PROC FACTOR output. The scoring coefficients for the two factors are shown at
the end of the PROC FACTOR output.
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Output 88.1.1 Creating an OUTSTAT= Data Set with PROC FACTOR

Factor Scoring Example

The FACTOR Procedure

Factor Scoring Example

The FACTOR Procedure

Input Data Type Raw Data

Number of Records Read 12

Number of Records Used 12

N for Significance Tests 12

Factor Scoring Example

The FACTOR Procedure
Initial Factor Method: Principal Components

Factor Scoring Example

The FACTOR Procedure
Initial Factor Method: Principal Components

Prior Communality Estimates: ONE

Eigenvalues of the Correlation Matrix:
Total = 5  Average = 1

Eigenvalue Difference Proportion Cumulative

1 2.30930638 1.11710686 0.4619 0.4619

2 1.19219952 0.30997249 0.2384 0.7003

3 0.88222702 0.37965990 0.1764 0.8767

4 0.50256713 0.38886717 0.1005 0.9773

5 0.11369996 0.0227 1.0000

2 factors will be retained by the MINEIGEN criterion.

Factor Pattern

Factor1 Factor2

Age 0.29795 0.93675

Weight 0.43282 -0.17750

RunTime 0.91983 0.28782

RunPulse 0.72671 -0.38191

RestPulse 0.81179 -0.23344

Variance Explained
by Each Factor

Factor1 Factor2

2.3093064 1.1921995

Final Communality Estimates: Total = 3.501506

Age Weight RunTime RunPulse RestPulse

0.96628351 0.21883401 0.92893333 0.67396207 0.71349297
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Output 88.1.1 continued

Factor Scoring Example

The FACTOR Procedure
Rotation Method: Varimax

Factor Scoring Example

The FACTOR Procedure
Rotation Method: Varimax

Orthogonal
Transformation Matrix

1 2

1 0.92536 0.37908

2 -0.37908 0.92536

Rotated Factor Pattern

Factor1 Factor2

Age -0.07939 0.97979

Weight 0.46780 -0.00018

RunTime 0.74207 0.61503

RunPulse 0.81725 -0.07792

RestPulse 0.83969 0.09172

Variance Explained
by Each Factor

Factor1 Factor2

2.1487753 1.3527306

Final Communality Estimates: Total = 3.501506

Age Weight RunTime RunPulse RestPulse

0.96628351 0.21883401 0.92893333 0.67396207 0.71349297

Factor Scoring Example

The FACTOR Procedure
Rotation Method: Varimax

Factor Scoring Example

The FACTOR Procedure
Rotation Method: Varimax

Scoring Coefficients Estimated by Regression

Squared Multiple
Correlations of the
Variables with Each

Factor

Factor1 Factor2

1.0000000 1.0000000

Standardized Scoring
Coefficients

Factor1 Factor2

Age -0.17846 0.77600

Weight 0.22987 -0.06672

RunTime 0.27707 0.37440

RunPulse 0.41263 -0.17714

RestPulse 0.39952 -0.04793
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Output 88.1.2 lists the OUTSTAT= data set from PROC FACTOR. Note that observations 18 and 19 have
_TYPE_=’SCORE’. Observations 1 and 2 have _TYPE_=’MEAN’ and _TYPE_=’STD’, respectively. These
four observations are used by PROC SCORE.

Output 88.1.2 OUTSTAT= Data Set from PROC FACTOR Reproduced with PROC PRINT

Factor Scoring Example
Data Set from PROC FACTOR

Factor Scoring Example
Data Set from PROC FACTOR

Obs _TYPE_ _NAME_ Age Weight RunTime RunPulse RestPulse

1 MEAN 42.4167 80.5125 10.6483 172.917 55.6667

2 STD 2.8431 6.7660 1.8444 8.918 9.2769

3 N 12.0000 12.0000 12.0000 12.000 12.0000

4 CORR Age 1.0000 0.0128 0.5005 -0.095 -0.0080

5 CORR Weight 0.0128 1.0000 0.2637 0.173 0.2396

6 CORR RunTime 0.5005 0.2637 1.0000 0.556 0.6620

7 CORR RunPulse -0.0953 0.1731 0.5555 1.000 0.4853

8 CORR RestPulse -0.0080 0.2396 0.6620 0.485 1.0000

9 COMMUNAL 0.9663 0.2188 0.9289 0.674 0.7135

10 PRIORS 1.0000 1.0000 1.0000 1.000 1.0000

11 EIGENVAL 2.3093 1.1922 0.8822 0.503 0.1137

12 UNROTATE Factor1 0.2980 0.4328 0.9198 0.727 0.8118

13 UNROTATE Factor2 0.9368 -0.1775 0.2878 -0.382 -0.2334

14 TRANSFOR Factor1 0.9254 -0.3791 . . .

15 TRANSFOR Factor2 0.3791 0.9254 . . .

16 PATTERN Factor1 -0.0794 0.4678 0.7421 0.817 0.8397

17 PATTERN Factor2 0.9798 -0.0002 0.6150 -0.078 0.0917

18 SCORE Factor1 -0.1785 0.2299 0.2771 0.413 0.3995

19 SCORE Factor2 0.7760 -0.0667 0.3744 -0.177 -0.0479

Since the PROC SCORE statement does not contain the NOSTD option, the data in the Fitness data set
are standardized before scoring. For each variable specified in the VAR statement, the mean and standard
deviation are obtained from the FactOut data set. For each observation in the Fitness data set, the variables
are then standardized. For example, for observation 1 in the Fitness data set, the variable Age is standardized
to 0:5569 D Œ.44 � 42:4167/=2:8431�.

After the data in the Fitness data set are standardized, the standardized values of the variables in the VAR
statement are multiplied by the matching coefficients in the FactOut data set, and the resulting products are
summed. This sum is output as a value of the new score variable.

Output 88.1.3 displays the FScore data set produced by PROC SCORE. This data set contains the variables
Age, Weight, Oxygen, RunTime, RestPulse, and RunPulse from the Fitness data set. It also contains Factor1
and Factor2, the two new score variables.
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Output 88.1.3 OUT= Data Set from PROC SCORE Reproduced with PROC PRINT

Factor Scoring Example
Data Set from PROC SCORE

Factor Scoring Example
Data Set from PROC SCORE

Obs Age Weight Oxygen RunTime RestPulse RunPulse Factor1 Factor2

1 44 89.47 44.609 11.37 62 178 0.82129 0.35663

2 40 75.07 45.313 10.07 62 185 0.71173 -0.99605

3 44 85.84 54.297 8.65 45 156 -1.46064 0.36508

4 42 68.15 59.571 8.17 40 166 -1.76087 -0.27657

5 38 89.02 49.874 9.22 55 178 0.55819 -1.67684

6 47 77.45 44.811 11.63 58 176 -0.00113 1.40715

7 40 75.98 45.681 11.95 70 176 0.95318 -0.48598

8 43 81.19 49.091 10.85 64 162 -0.12951 0.36724

9 44 81.42 39.442 13.08 63 174 0.66267 0.85740

10 38 81.87 60.055 8.63 48 170 -0.44496 -1.53103

11 44 73.03 50.541 10.13 45 168 -1.11832 0.55349

12 45 87.66 37.388 14.03 56 186 1.20836 1.05948

Example 88.2: Regression Parameter Estimates
In this example, PROC REG computes regression parameter estimates for the Fitness data. (See Example 88.1
to for more information about how to create the Fitness data set.) The parameter estimates are output to a
data set and used as scoring coefficients. For the first part of this example, PROC SCORE is used to score the
Fitness data, which are the same data used in the regression.

In the second part of this example, PROC SCORE is used to score a new data set, Fitness2. For PROC
SCORE, the TYPE= specification is PARMS, and the names of the score variables are found in the variable
_MODEL_, which gets its values from the model label. The following code produces Output 88.2.1 through
Output 88.2.3:

proc reg data=Fitness outest=RegOut;
OxyHat: model Oxygen=Age Weight RunTime RunPulse RestPulse;
title 'Regression Scoring Example';

run;

proc print data=RegOut;
title2 'OUTEST= Data Set from PROC REG';

run;

proc score data=Fitness score=RegOut out=RScoreP type=parms;
var Age Weight RunTime RunPulse RestPulse;

run;

proc print data=RScoreP;
title2 'Predicted Scores for Regression';

run;

proc score data=Fitness score=RegOut out=RScoreR type=parms;
var Oxygen Age Weight RunTime RunPulse RestPulse;

run;
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proc print data=RScoreR;
title2 'Negative Residual Scores for Regression';

run;

Output 88.2.1 shows the PROC REG output. The column labeled “Parameter Estimates” lists the parameter
estimates. These estimates are output to the RegOut data set.

Output 88.2.1 Creating an OUTEST= Data Set with PROC REG

Regression Scoring Example

The REG Procedure
Model: OxyHat

Dependent Variable: Oxygen

Regression Scoring Example

The REG Procedure
Model: OxyHat

Dependent Variable: Oxygen

Number of Observations Read 12

Number of Observations Used 12

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 5 509.62201 101.92440 15.80 0.0021

Error 6 38.70060 6.45010

Corrected Total 11 548.32261

Root MSE 2.53970 R-Square 0.9294

Dependent Mean 48.38942 Adj R-Sq 0.8706

Coeff Var 5.24847

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 151.91550 31.04738 4.89 0.0027

Age 1 -0.63045 0.42503 -1.48 0.1885

Weight 1 -0.10586 0.11869 -0.89 0.4068

RunTime 1 -1.75698 0.93844 -1.87 0.1103

RunPulse 1 -0.22891 0.12169 -1.88 0.1090

RestPulse 1 -0.17910 0.13005 -1.38 0.2176

Output 88.2.2 lists the RegOut data set. Note that _TYPE_=’PARMS’ and _MODEL_=’OXYHAT’, which
are from the label in the MODEL statement in PROC REG.

Output 88.2.2 OUTEST= Data Set from PROC REG Reproduced with PROC PRINT

Regression Scoring Example
OUTEST= Data Set from PROC REG

Regression Scoring Example
OUTEST= Data Set from PROC REG

Obs _MODEL_ _TYPE_ _DEPVAR_ _RMSE_ Intercept Age Weight RunTime RunPulse RestPulse Oxygen

1 OxyHat PARMS Oxygen 2.53970 151.916 -0.63045 -0.10586 -1.75698 -0.22891 -0.17910 -1
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Output 88.2.3 lists the data sets created by PROC SCORE. Since the SCORE= data set does not contain
observations with _TYPE_=’MEAN’ or _TYPE_=’STD’, the data in the Fitness data set are not standardized
before scoring. The SCORE= data set contains the variable Intercept, so this intercept value is used in
computing the score. To produce the RScoreP data set, the VAR statement in PROC SCORE includes only
the independent variables from the model in PROC REG. As a result, the OxyHat variable contains predicted
values. To produce the RScoreR data set, the VAR statement in PROC SCORE includes both the dependent
variables and the independent variables from the model in PROC REG. As a result, the OxyHat variable
contains negative residuals (PREDICT–ACTUAL) as shown in Output 88.2.4. If the RESIDUAL option is
specified, the variable OxyHat contains positive residuals (ACTUAL–PREDICT). If the PREDICT option is
specified, the OxyHat variable contains predicted values.

Output 88.2.3 Predicted Scores from the OUT= Data Set Created by PROC SCORE

Regression Scoring Example
Predicted Scores for Regression

Regression Scoring Example
Predicted Scores for Regression

Obs Age Weight Oxygen RunTime RestPulse RunPulse OxyHat

1 44 89.47 44.609 11.37 62 178 42.8771

2 40 75.07 45.313 10.07 62 185 47.6050

3 44 85.84 54.297 8.65 45 156 56.1211

4 42 68.15 59.571 8.17 40 166 58.7044

5 38 89.02 49.874 9.22 55 178 51.7386

6 47 77.45 44.811 11.63 58 176 42.9756

7 40 75.98 45.681 11.95 70 176 44.8329

8 43 81.19 49.091 10.85 64 162 48.6020

9 44 81.42 39.442 13.08 63 174 41.4613

10 38 81.87 60.055 8.63 48 170 56.6171

11 44 73.03 50.541 10.13 45 168 52.1299

12 45 87.66 37.388 14.03 56 186 37.0080

Output 88.2.4 Residual Scores from the OUT= Data Set Created by PROC SCORE

Regression Scoring Example
Negative Residual Scores for Regression

Regression Scoring Example
Negative Residual Scores for Regression

Obs Age Weight Oxygen RunTime RestPulse RunPulse OxyHat

1 44 89.47 44.609 11.37 62 178 -1.73195

2 40 75.07 45.313 10.07 62 185 2.29197

3 44 85.84 54.297 8.65 45 156 1.82407

4 42 68.15 59.571 8.17 40 166 -0.86657

5 38 89.02 49.874 9.22 55 178 1.86460

6 47 77.45 44.811 11.63 58 176 -1.83542

7 40 75.98 45.681 11.95 70 176 -0.84811

8 43 81.19 49.091 10.85 64 162 -0.48897

9 44 81.42 39.442 13.08 63 174 2.01935

10 38 81.87 60.055 8.63 48 170 -3.43787

11 44 73.03 50.541 10.13 45 168 1.58892

12 45 87.66 37.388 14.03 56 186 -0.38002
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The second part of this example uses the parameter estimates to score a new data set. The following statements
produce Output 88.2.5 and Output 88.2.6:

/* The FITNESS2 data set contains observations 13-16 from */
/* the FITNESS data set used in EXAMPLE 2 in the PROC REG */
/* chapter. */

data Fitness2;
input Age Weight Oxygen RunTime RestPulse RunPulse;
datalines;

45 66.45 44.754 11.12 51 176
47 79.15 47.273 10.60 47 162
54 83.12 51.855 10.33 50 166
49 81.42 49.156 8.95 44 180
;

proc print data=Fitness2;
title 'Regression Scoring Example';
title2 'New Raw Data Set to be Scored';

run;

proc score data=Fitness2 score=RegOut out=NewPred type=parms
nostd predict;

var Oxygen Age Weight RunTime RunPulse RestPulse;
run;

proc print data=NewPred;
title2 'Predicted Scores for Regression';
title3 'for Additional Data from FITNESS2';

run;

Output 88.2.5 lists the Fitness2 data set.

Output 88.2.5 Listing of the Fitness2 Data Set

Regression Scoring Example
New Raw Data Set to be Scored

Regression Scoring Example
New Raw Data Set to be Scored

Obs Age Weight Oxygen RunTime RestPulse RunPulse

1 45 66.45 44.754 11.12 51 176

2 47 79.15 47.273 10.60 47 162

3 54 83.12 51.855 10.33 50 166

4 49 81.42 49.156 8.95 44 180

PROC SCORE scores the Fitness2 data set by using the parameter estimates in the RegOut data set. These
parameter estimates result from fitting a regression equation to the Fitness data set. The NOSTD option is
specified, so the raw data are not standardized before scoring. (However, the NOSTD option is not necessary
here. The SCORE= data set does not contain observations with _TYPE_=’MEAN’ or _TYPE_=’STD’, so
standardization is not performed.) The VAR statement contains the dependent variables and the independent
variables used in PROC REG. In addition, the PREDICT option is specified. This combination gives predicted
values for the new score variable. The name of the new score variable is OxyHat, from the value of the
_MODEL_ variable in the SCORE= data set. Output 88.2.6 shows the data set produced by PROC SCORE.
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Output 88.2.6 Predicted Scores from the OUT= Data Set Created by PROC SCORE and Reproduced
Using PROC PRINT

Regression Scoring Example
Predicted Scores for Regression

for Additional Data from FITNESS2

Regression Scoring Example
Predicted Scores for Regression

for Additional Data from FITNESS2

Obs Age Weight Oxygen RunTime RestPulse RunPulse OxyHat

1 45 66.45 44.754 11.12 51 176 47.5507

2 47 79.15 47.273 10.60 47 162 49.7802

3 54 83.12 51.855 10.33 50 166 43.9682

4 49 81.42 49.156 8.95 44 180 47.5949

Example 88.3: Custom Scoring Coefficients
This example uses a specially created custom scoring data set and produces Output 88.3.1 and Output 88.3.2.
The first scoring coefficient creates a variable that is Age–Weight; the second scoring coefficient evaluates
the variable RunPulse–RstPulse; and the third scoring coefficient totals all six variables. Since the scoring
coefficients data set (data set A) does not contain any observations with _TYPE_=’MEAN’ or _TYPE_=’STD’,
the data in the Fitness data set (see Example 88.1) are not standardized before scoring.

The following statements produce Output 88.3.1 and Output 88.3.2:

data A;
input _type_ $ _name_ $

Age Weight RunTime RunPulse RestPulse;
datalines;

SCORE AGE_WGT 1 -1 0 0 0
SCORE RUN_RST 0 0 0 1 -1
SCORE TOTAL 1 1 1 1 1
;

proc print data=A;
title 'Constructed Scoring Example';
title2 'Scoring Coefficients';

run;

proc score data=Fitness score=A out=B;
var Age Weight RunTime RunPulse RestPulse;

run;

proc print data=B;
title2 'Scored Data';

run;
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Output 88.3.1 Custom Scoring Data Set and Scored Fitness Data: PROC PRINT

Constructed Scoring Example
Scoring Coefficients

Constructed Scoring Example
Scoring Coefficients

Obs _type_ _name_ Age Weight RunTime RunPulse RestPulse

1 SCORE AGE_WGT 1 -1 0 0 0

2 SCORE RUN_RST 0 0 0 1 -1

3 SCORE TOTAL 1 1 1 1 1

Output 88.3.2 Custom Scored Fitness Data: PROC PRINT

Constructed Scoring Example
Scored Data

Constructed Scoring Example
Scored Data

Obs Age Weight Oxygen RunTime RestPulse RunPulse AGE_WGT RUN_RST TOTAL

1 44 89.47 44.609 11.37 62 178 -45.47 116 384.84

2 40 75.07 45.313 10.07 62 185 -35.07 123 372.14

3 44 85.84 54.297 8.65 45 156 -41.84 111 339.49

4 42 68.15 59.571 8.17 40 166 -26.15 126 324.32

5 38 89.02 49.874 9.22 55 178 -51.02 123 369.24

6 47 77.45 44.811 11.63 58 176 -30.45 118 370.08

7 40 75.98 45.681 11.95 70 176 -35.98 106 373.93

8 43 81.19 49.091 10.85 64 162 -38.19 98 361.04

9 44 81.42 39.442 13.08 63 174 -37.42 111 375.50

10 38 81.87 60.055 8.63 48 170 -43.87 122 346.50

11 44 73.03 50.541 10.13 45 168 -29.03 123 340.16

12 45 87.66 37.388 14.03 56 186 -42.66 130 388.69
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Overview: SEQDESIGN Procedure
The purpose of the SEQDESIGN procedure is to design interim analyses for clinical trials. Clinical trials are
experiments on human subjects to demonstrate the efficacy and safety of new drugs or treatments. A simple
example is a trial to test the effectiveness of a new drug in humans by comparing the outcomes in a group
of patients who receive the new drug with the outcomes in a comparable group of patients who receive a
placebo.

A clinical trial is conducted according to a plan called a protocol. A protocol details the objectives of the trial,
the data collection process, and the analysis. The protocol specifies the null hypothesis and an alternative
hypothesis, a test statistic, the probability ˛ of a Type I error, the probability ˇ of a Type II error, the sample
size needed to attain a specified power of 1 � ˇ at an alternative reference, and critical values that are
associated with the test statistic.

In a fixed-sample trial, data about all individuals are first collected and then examined at the end of the study.
Most major trials have committees that periodically monitor safety and efficacy data during the trial and
recommend that a trial be stopped for safety concerns such as an unacceptable toxicity level. In certain
situations, the committee might recommend that a trial be stopped for efficacy. In contrast to a fixed-sample
trial, a group sequential trial provides for interim analyses before the completion of the trial while maintaining
the specified overall Type I and Type II error probabilities.

A group sequential trial is most useful in situations where it is important to monitor the trial to prevent
unnecessary exposure of patients to an unsafe new drug, or alternatively to a placebo treatment if the new
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drug shows significant improvement. In most cases, if a group sequential trial stops early for safety concerns,
fewer patients are exposed to the new treatment than in the fixed-sample trial. If a trial stops early for efficacy
reasons, the new treatment is available sooner than it would be in a fixed-sample trial. Early stopping can
also save time and resources.

A group sequential design provides detailed specifications for a group sequential trial. In addition to the
usual specification for a fixed-sample design, it provides the total number of stages (the number of interim
stages plus a final stage) and a stopping criterion to reject, to accept, or to either reject or accept the null
hypothesis at each interim stage. It also provides critical values and the sample size at each stage for the trial.

At each interim stage, the data collected at the current stage in addition to the data collected at previous
stages are analyzed, and statistics such as a maximum likelihood test statistic and its associated standard error
are computed. The test statistic is then compared with critical values that are generated from the sequential
design, and the trial is stopped or continued. If a trial continues to the final stage, the null hypothesis is either
rejected or accepted. The critical values for each stage are chosen in such a way that the overall ˛ and ˇ are
maintained at the specified levels.

Figure 89.1 shows a two-sided symmetric group sequential trial that stops early to reject the null hypothesis
that the parameter Trt is zero.

Figure 89.1 Sequential Plot for Two-Sided Test
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The trial has four stages, which are indicated by the vertical lines labeled 1, 2, 3, and 4. With early stopping
to reject the null hypothesis, the lower rejection boundary is constructed by connecting the lower critical
values for the stages. Similarly, the upper rejection boundary is constructed by connecting the upper critical
values for the stages. The horizontal axis indicates the sample size for the group sequential trial, and the
vertical axis indicates the values of the test statistic on the standardized Z scale.

At each interim stage, if the test statistic falls into a rejection region (the darker shaded areas in Figure 89.1),
the trial stops and the null hypothesis is rejected. Otherwise, the trial continues to the next stage. At the final
stage (stage 4), the null hypothesis is rejected if Z falls into a rejection region. Otherwise, the null hypothesis
is not rejected. In Figure 89.1, the test statistic does not fall into the rejection regions for stages 1 and 2,
and so the trial continues to stage 3. At stage 3, the test statistic falls into the rejection region, and the null
hypothesis is rejected.

A group sequential trial usually involves six steps:

1. You specify the statistical details of the design, including the null and alternative hypotheses, a test
statistic for the hypothesis test, the Type I and II error probabilities, a stopping criterion, the total
number of stages, and the relative information level at each stage.

2. You compute the boundary values for the trial based on the specifications in Step 1. You also compute
the sample size required at each stage for the specified hypothesis test.

3. At each stage, you collect additional data with the required sample sizes. The data available at each
stage include the data collected at previous stages in addition to the data collected at the current stage.

4. At each stage, you analyze the available data with a procedure such as the REG procedure, and you
compute the test statistic.

5. At each stage, you compare the test statistic with the corresponding boundary values. You stop the trial
to reject or accept the hypothesis, or you continue the trial to the next stage. If you continue the trial to
the final stage, you either accept or reject the hypothesis.

6. After the trial stops, you compute parameter estimates, confidence limits for the parameter, and a
p-value for the hypothesis test.

You use the SEQDESIGN procedure at Step 2 to compute the initial boundary values and required sample
sizes for the trial. You use the companion SEQTEST procedure at Step 5 to compare the test statistic with
its boundary values. At stage 1, the boundary values are derived by using the boundary information tables
created by the SEQDESIGN procedure. These boundary information tables are structured for input to the
SEQTEST procedure. At each subsequent stage, the boundary values are derived by using the test information
tables are created by the SEQTEST procedure at the previous stage. These test information tables are also
structured for input to the SEQTEST procedure. You also use the SEQTEST procedure at Step 6 to compute
parameter estimates, confidence limits, and p-values after the trial stops.

The flowchart in Figure 89.2 summarizes the steps in a typical group sequential trial and the relevant SAS
procedures.
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Figure 89.2 Group Sequential Trial

Features of the SEQDESIGN Procedure
The SEQDESIGN procedure assumes that the standardized Z test statistics for the null hypothesisH0 W � D 0
at the stages have the joint canonical distribution with the information levels at the stages for the parameter � .
This implies that these test statistics are normally distributed. If the test statistic is not normally distributed,
then it is assumed that the test statistic is computed from a large sample such that the statistic has an
approximately normal distribution. See the section “Statistical Assumptions for Group Sequential Designs”
on page 7361 for a detailed description of the joint canonical distribution.

You can use the SEQDESIGN procedure to compute required sample sizes for commonly used hypothesis
tests. Note that for a fixed-sample design, you should use the POWER and GLMPOWER procedures to
compute sample sizes.

The applicable tests include tests for binomial proportions and the log-rank test for two survival distributions.
See the section “Applicable One-Sample Tests and Sample Size Computation” on page 7395, the section
“Applicable Two-Sample Tests and Sample Size Computation” on page 7397, and the section “Applicable
Regression Parameter Tests and Sample Size Computation” on page 7405 for examples of applicable tests in
group sequential trials.



7320 F Chapter 89: The SEQDESIGN Procedure

At each stage, the data are analyzed with a statistical procedure such as the REG procedure, and a test statistic
and its associated information level are computed. The information level is the amount of information
available about the unknown parameter. For a maximum likelihood statistic, the information level is the
inverse of its variance.

At each stage, you use the SEQTEST procedure to derive the boundary values that correspond to the
information level associated with the test statistic. You then use the SEQTEST procedure to compare the
test statistic with these boundary values. When a trial is stopped at an interim stage or at the final stage, the
SEQTEST procedure also derives parameter estimates, confidence limits for the parameter, and a p-value for
hypothesis testing.

Output from the SEQDESIGN Procedure
In addition to computing the boundary values for a group sequential design, the SEQDESIGN procedure
computes the following quantities:

• maximum sample size (as a percentage of the corresponding fixed-sample size) if the trial does not
stop at an interim stage

• average sample numbers (as percentages of the corresponding fixed-sample sizes for nonsurvival data
or fixed-sample numbers of events for survival data) under various hypothetical references, including
the null and alternative references

• stopping probabilities at each stage under various hypothetical references to indicate how likely it is
that the trial will stop at that stage

If you specify a SAMPLESIZE statement, the SEQDESIGN procedure also computes the following quantities:

• sample sizes that are required at each stage for the specified hypothesis test for nonsurvival data, in
both fractional and integer numbers

• the number of events, time, and sample size that are required at each stage for the specified hypothesis
test for survival data, in both fractional and integer-valued times or in both fractional and integer-valued
sample sizes

Furthermore, the CEILADJDESIGN=INCLUDE option in the SAMPLESIZE statement creates an addi-
tional group sequential design that corresponds to the integer-valued sample sizes at the stages for the
nonsurvival data, and to the integer-valued times or sample sizes at the stages for the survival data. When
CEILADJDESIGN=INCLUDE, the SEQDESIGN procedure also displays the ceiling-adjusted design infor-
mation in the “Design Information” table and the ceiling-adjusted design boundary information in the new
“Ceiling-Adjusted Design Boundary Information” table.

You can create more than one design by specifying multiple DESIGN statements, and then you can choose
the design that has the most desirable features. The next two subsections introduce some basic aspects of
group sequential designs that are useful for getting started with the SEQDESIGN procedure.
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Boundaries for Group Sequential Designs
A one-sided test is a test of a hypothesis with either a lower alternative (H1 W � < 0) or an upper alternative
(H1 W � > 0), and a two-sided test is a test with a two-sided alternative (H1 W � ¤ 0). The number of critical
values for a test depends on whether the alternative is one-sided or two-sided, and it also depends on whether
the trial is conducted with a fixed-sample design or a group sequential design.

For a fixed-sample trial, a one-sided test has one critical value and a two-sided test has two critical values.
These critical values are computed with the specified Type I error probability ˛. In contrast, at each interim
stage of a group sequential trial, a one-sided test has up to two critical values and a two-sided group sequential
test has up to four critical values. Thus, there are two or four possible boundaries for a group sequential
design, and each boundary is a set of critical values, one from each stage.

Figure 89.3 illustrates the boundaries for a one-sided test with an upper alternative that allows for early
stopping to either reject or accept the null hypothesis.

Figure 89.3 Boundary Plot for One-Sided Design

With an upper alternative, as in this example, the design has the following two boundaries: an upper ˛
(rejection) boundary for the rejection region that consists of upper rejection critical values and an upper ˇ
(acceptance) boundary for the acceptance region that consists of upper acceptance critical values. The stages
are indicated by vertical lines with accompanying stage numbers. In Figure 89.3, the horizontal axis indicates
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the cumulative sample size for the group sequential trial. The vertical axis indicates the critical values at each
stage on the standardized Z scale. Other scales can be used for the vertical axis, including the MLE scale,
score statistic scale, and p-value scale.

At each interim stage, if the test statistic is in the rejection region (darker shaded area in Figure 89.3), the
trial stops and the null hypothesis is rejected. If the test statistic is in the acceptance region (lightly shaded
area in Figure 89.3), the trial stops and the hypothesis is accepted. Otherwise, the trial continues to the next
stage. If the trial proceeds to the final stage (stage 4), the upper ˛ and upper ˇ critical values are identical,
and the trial stops to either reject or accept the null hypothesis.

If you do not want to stop a trial when a test statistic falls in the acceptance region at an interim stage, you
can derive a design with a nonbinding acceptance boundary to allow the trial to continue while maintaining
the Type I error level. You need to increase the sample size for a design with this nonbinding feature. See the
section “Acceptance (ˇ) Boundary” on page 7381 for a description of the nonbinding acceptance boundary.

Group Sequential Methods
For a group sequential design, there are two possible boundaries for a one-sided test and four possible
boundaries for a two-sided test. Each boundary consists of one boundary value (critical value) for each stage.
The SEQDESIGN procedure provides various methods for computing the boundary values.

The boundary value for a fixed-sample test cannot be applied to each stage of sequential design because, as
shown by Armitage, McPherson, and Rowe (1969), repeated significance tests at a fixed level on accumulating
data increase the probability of a Type I error. For example, with a fixed-sample two-sided test, the critical
values ˙1:96 for a standardized Z statistic produce a Type I error probability level ˛ D 0:05. But for a
two-sided group sequential test with two equally spaced stages, if the same critical values˙1:96 are used to
reject the null hypothesis at these two stages, the Type I error probability level is ˛ D 0:083, larger than the
fixed-sample ˛.

Numerous methods are available for deriving the critical values for each boundary in a sequential design.
Pocock (1977) applies repeated significance tests to group sequential trials with equal-size groups and derives
a constant critical value on the standardized normal Z scale across all stages that maintains the specified
Type I error probability level. O’Brien and Fleming (1979) propose a sequential procedure that has boundary
values (in absolute value) decrease over the stages on the standardized normal Z scale.

The SEQDESIGN procedure provides the following three types of methods:

• fixed boundary shape methods, which derive boundaries with specified boundary shapes

• Whitehead methods, which adjust boundaries derived for continuous monitoring so that they apply to
discrete monitoring

• error spending methods

Each type of methods uses a distinct approach to derive the boundary values for a group sequential trial.
Whitehead methods require much less computation with resulting Type I error probability and power that
are close but differ slightly from the specified values due to the approximations used in deriving the tests
(Jennison and Turnbull 2000, p. 106). Fixed boundary shape methods derive boundary values by estimating a
fixed number of parameters and require more computation. Error spending methods derive boundary values at
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each stage sequentially and require much more computation than other types of methods for group sequential
trials with a large number of stages.

Within each type of methods, you can choose methods that creating boundary values range from conservative
stopping boundary values at early stages to liberal stopping boundary values at very early stages.

You can use the SEQDESIGN procedure to specify methods from the same type for each design. A different
method can be specified for each boundary separately, but all methods in a design must be of the same type.

Fixed Boundary Shape Methods

The fixed boundary shape methods include the unified family methods and the Haybittle-Peto method. The
unified family methods (Kittelson and Emerson 1999) derive boundaries from specified boundary shapes.
These methods include Pocock’s method (Pocock 1977) and the O’Brien-Fleming method (O’Brien and
Fleming 1979) as special cases.

The Haybittle-Peto method (Haybittle 1971; Peto et al. 1976) uses a value of 3 for the critical values in interim
stages, so the critical value at the final stage is close to the critical value for the fixed-sample design. In the
SEQDESIGN procedure, the Haybittle-Peto method has been generalized to allow for different boundary
values at interim stages.

Whitehead Methods

Whitehead and Stratton (1983) and Whitehead (1997, 2001) develop triangular and straight-line boundaries
by adapting tests constructed for continuous monitoring to discrete monitoring of group sequential tests.
With continuous monitoring, the values for each boundary fall in a straight line when plotted on the score
statistic scale. The discrete boundary is derived by subtracting the expected overshoot from the continuous
boundary to obtain the desired Type I and Type II error probabilities. For a design with early stopping to
either reject or accept the null hypothesis, the boundaries form a triangle when plotted on the score statistic
scale. See the section “Score Statistic” on page 7351 for a detailed description of the score statistic.

Error Spending Methods

For every sequential design, the ˛ and ˇ errors at each stage can be computed from the boundary values. On
the other hand, you can derive the boundary values from specified ˛ and ˇ errors for each stage. The error
spending function approach (Lan and DeMets 1983) uses an error spending function to specify the errors at
each stage for each boundary and then derives the boundary values.

Getting Started: SEQDESIGN Procedure
This section illustrates a clinical study design that uses a two-sided O’Brien-Fleming design (O’Brien and
Fleming 1979) to stop the trial early for ethical concerns about possible harm or for unexpectedly strong
efficacy of the new drug.

Suppose that a pharmaceutical company is conducting a clinical trial to test the efficacy of a new cholesterol-
lowering drug. The primary focus is low-density lipoprotein (LDL), the so-called bad cholesterol, which is a
risk factor for coronary heart disease. LDL is measured in mg / dL, milligrams per deciliter of blood.
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The trial consists of two groups of equally allocated patients with elevated LDL levels: an experimental
group given the new drug and a placebo control group. Suppose the changes in LDL level after the treatment
for individuals in the experimental and control groups are normally distributed with means �e and �c ,
respectively, and have a common variance �2. Then the null hypothesis of no effect for the new drug is
H0 W � D 0, where � D �e � �c .

For a fixed-sample design with a total sample size N, the MLE for � is computed as O� D O�e � O�c , where
O�e and O�c are the sample means of the decreases in LDL level in the experimental and control groups,
respectively.

Following the derivation in the section “Test for the Difference between Two Normal Means” on page 7397,
the statistic O� has a normal distribution

O� � N

�
�;
4�2

N

�

Thus, under the null hypothesis H0 W � D 0, the standardized statistic

Z D
O�q
4�2

N

� N .0; 1/

The Z statistic can be used to test the null hypothesis H0. If the variance �2 is unknown, the sample variance
can be used to compute the test statistic if it is assumed that the sample variance is computed from a large
sample such that the Z statistic has an approximately standard normal distribution.

With a Type I error probability ˛ D 0:05, the critical values for the Z statistic are given byˆ�1.˛=2/ D �1:96
and ˆ�1.1 � ˛=2/ D 1:96, where ˆ is the cumulative standard normal distribution function. At the end
of study, if Z � 1:96, the null hypothesis is rejected for harmful drug effect, and if Z � �1:96, the null
hypothesis is rejected for efficacy of the new drug. Otherwise, the null hypothesis is not rejected and the drug
effect is not significant.

Also suppose that for the trial, the alternative reference � D �10 is the clinically meaningful difference that
the trial should detect with a high probability (power). Further suppose that a good estimate of the standard
deviation for the changes in LDL level is O� D 20. The following statements invoke the SEQDESIGN
procedure and request a four-stage O’Brien-Fleming design for standardized normal test statistics:

ods graphics on;
proc seqdesign altref=-10

plots=boundary(hscale=samplesize)
;

TwoSidedOBrienFleming: design nstages=4
method=obf
;

samplesize model=twosamplemean(stddev=20);
ods output Boundary=Bnd_LDL;
run;
ods graphics off;

The ALTREF= option specifies the alternative reference, and the actual maximum information is derived
in the SEQDESIGN procedure. With ODS Graphics enabled, the PLOTS=BOUNDARY option displays a
boundary plot with the rejection and acceptance regions.
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In the DESIGN statement, the label TwoSidedOBrienFleming identifies the design in the output tables. By
default (or equivalently if you specify ALT=TWOSIDED and STOP=REJECT in the DESIGN statement),
the design has a two-sided alternative hypothesis in which early stopping in the interim stages occurs to reject
the null hypothesis. That is, at each interim stage, the trial either is stopped to reject the null hypothesis or
continues to the next stage.

The NSTAGES=4 option in the DESIGN statement specifies the total number of stages in the group sequential
trial, including three interim stages and a final stage. In the SEQDESIGN procedure, the null hypothesis
for the design is H0 W � D 0. By default (or equivalently if you specify ALPHA=0.05 and BETA=0.10 in
the DESIGN statement), the design has a Type I error probability ˛ D 0:05, and a Type II error probability
ˇ D 0:10; the latter corresponds to a power of 1 � ˇ D 0:90 at the alternative reference H1 W � D �10.

For a two-sided design with early stopping to reject the null hypothesis, there are two boundaries for the
design: an upper ˛ boundary that consists of upper rejection critical values and a lower ˛ boundary that
consists of lower rejection critical values. Each boundary is a set of critical values, one from each stage.
With the METHOD=OBF option in the DESIGN statement, the O’Brien-Fleming method is used for the two
boundaries for the design; see Figure 89.7.

A property of the boundaries constructed with the O’Brien-Fleming design is that the null hypothesis is more
difficult to reject in the early stages than in the later stages. That is, the trial is rejected in the early stages only
with overwhelming evidence, because in these stages there might not be a sufficient number of responses for
a reliable estimate of the treatment effect.

The SAMPLESIZE statement with the MODEL=TWOSAMPLEMEAN option uses the derived maximum
information to compute required sample sizes for a two-sample test for mean difference. The ODS OUTPUT
statement with the BOUNDARY=BND_LDL option creates an output data set named BND_LDL which
contains the resulting boundary information.

In a clinical trial, the amount of information about an unknown parameter available from the data can be
measured by the Fisher information. For a maximum likelihood statistic, the information level is the inverse
of its variance. See the section “Maximum Likelihood Estimator” on page 7350 for a detailed description of
Fisher information. At each stage of the trial, data are collected and analyzed with a statistical procedure, and
a test statistic and its corresponding information level are computed.

In this example, you can use the REG procedure to compute the maximum likelihood estimate O� for the
drug effect and the corresponding standard error for O� . At stage 1, you can use the SEQTEST procedure
to compare the test statistic with adjusted boundaries derived from the boundary information stored in the
BOUND_LDL data set. At each subsequent stage, you can use the SEQTEST procedure to compare the test
statistic with adjusted boundaries derived from the boundary information stored in the test information table
created by the SEQTEST procedure at the previous stage. The test information tables are structured for input
to the SEQTEST procedure.

At each interim stage, the trial will either be stopped to reject the null hypothesis or continue to the next stage.
At the final stage, the null hypothesis is either rejected or accepted.

By default (or equivalently if you specify INFO=EQUAL in the DESIGN statement), the SEQDESIGN
procedure derives boundary values with equally spaced information levels for all stages—that is, the same
information increment between successive stages. The “Design Information,” “Method Information,” and
“Boundary Information” tables are displayed by default, as shown in Figure 89.4, Figure 89.5, and Figure 89.6,
respectively.

The “Design Information” table in Figure 89.4 displays design specifications and four derived statistics:
the actual maximum information, the maximum information, the average sample number under the null
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hypothesis (Null Ref ASN), and the average sample number under the alternative hypothesis (Alt Ref ASN).
Except for the actual maximum information, each statistic is expressed as a percentage of the identical statistic
for the corresponding fixed-sample information. The average sample number is the expected sample size
(for nonsurvival data) or expected number of events (for survival data). Note that for a symmetric two-sided
design, the ALTREF=–10 option implies a lower alternative reference of –10 and an upper alternative
reference of 10.

Figure 89.4 O’Brien-Fleming Design Information

The SEQDESIGN Procedure
Design: TwoSidedOBrienFleming

The SEQDESIGN Procedure
Design: TwoSidedOBrienFleming

Design Information

Statistic Distribution Normal

Boundary Scale Standardized Z

Alternative Hypothesis Two-Sided

Early Stop Reject Null

Method O'Brien-Fleming

Boundary Key Both

Alternative Reference -10

Number of Stages 4

Alpha 0.05

Beta 0.1

Power 0.9

Max Information (Percent of Fixed Sample) 102.2163

Max Information 0.107403

Null Ref ASN (Percent of Fixed Sample) 101.5728

Alt Ref ASN (Percent of Fixed Sample) 76.7397

The maximum information is the information level at the final stage of the group sequential trial. The Max
Information (Percent Fixed-Sample) is the maximum information for the sequential design expressed as a
percentage of the information for the corresponding fixed-sample design. In Figure 89.4, the Max Information
(Percent Fixed-Sample) is 102.22%, which means that the information needed for the group sequential trial is
2.22% more than that of the corresponding fixed-sample design if the trial does not stop at any interim stage.

The Null Ref ASN (Percent Fixed-Sample) is the average sample number (expected sample size) required
under the null hypothesis for the group sequential design expressed as a percentage of the sample size for the
corresponding fixed-sample design. In Figure 89.4, the Null Ref ASN is 101.57%, which means that the
expected sample size for the group sequential trial is 1.57% greater than the corresponding fixed-sample size.

Similarly, the Alt Ref ASN (Percent Fixed-Sample) is the average sample number (expected sample size)
required under the alternative hypothesis for the group sequential design expressed as a percentage of the
sample size for the corresponding fixed-sample design. In Figure 89.4, the Alt Ref ASN is 76.74%, which
means that the expected sample size for the group sequential trial is 76.74% of the corresponding fixed-sample
size. That is, if the alternative hypothesis is true, then on average, only 76.74% of the fixed-sample size is
needed for the group sequential trial.

In this example, the O’Brien-Fleming design requires only a slight increase in sample size if the trial proceeds
to the final stage. On the other hand, if the alternative hypothesis is correct, this design provides a substantial
saving in sample size on average.
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The “Method Information” table in Figure 89.5 displays the computed Type I and Type II error probabilities
˛ and ˇ, and the derived drift parameter for the design. For a two-sided test with early stopping to reject the
null hypothesis, both lower and upper ˛ boundaries are created. With the specified ALTREF= option, the
alternative references are also included.

With the zero null reference, the drift parameter is the standardized alternative reference at the final stage
�1
p
IX , where �1 is the alternative reference and IX is the maximum information. See the section “Specified

and Derived Parameters” on page 7385 for a detailed description of the drift parameter. The drift parameters
for the design are derived in the SEQDESIGN procedure even if the alternative reference is not specified or
derived in the procedure.

Figure 89.5 Method Information

Method Information

Unified Family

Boundary Method Alpha Beta Rho Tau C
Alternative
Reference Drift

Upper Alpha O'Brien-Fleming 0.02500 0.10000 0.5 0 2.02429 10 3.277238

Lower Alpha O'Brien-Fleming 0.02500 0.10000 0.5 0 2.02429 -10 -3.27724

The O’Brien-Fleming method belongs to the unified family of designs, which is parameterized by two
parameters, � and � , as implemented in the SEQDESIGN procedure. See Table 89.3 for parameter values
of commonly used methods in the unified family. The “Method Information” table in Figure 89.5 displays
the values of � D 0:5 and � D 0, which are the parameters for the O’Brien-Fleming method. The table also
displays the derived parameter C˛ D 2:0243, which is used in the construction of symmetric lower and upper
˛ boundaries; see the section “Unified Family Methods” on page 7371.

The “Boundary Information” table in Figure 89.6 displays the information level, including the proportion,
actual level, and corresponding sample size (N) at each stage. The table also displays the lower and upper
alternative references, and the lower and upper boundary values at each stage.

Figure 89.6 Boundary Information

Boundary Information (Standardized Z Scale)
Null Reference = 0

Alternative
Boundary

Values

Information Level Reference Lower Upper

_Stage_ Proportion Actual N Lower Upper Alpha Alpha

1 0.2500 0.026851 42.96116 -1.63862 1.63862 -4.04859 4.04859

2 0.5000 0.053701 85.92233 -2.31736 2.31736 -2.86278 2.86278

3 0.7500 0.080552 128.8835 -2.83817 2.83817 -2.33745 2.33745

4 1.0000 0.107403 171.8447 -3.27724 3.27724 -2.02429 2.02429

The information proportion is the proportion of maximum information available at each stage and N is
the corresponding sample size. By default (or equivalently if you specify BOUNDARYSCALE=STDZ),
the procedure displays boundary values with the standardized Z scale in the boundary information table
and the boundary plot. The alternative reference on the standardized Z scale at stage k is given by �1

p
Ik ,

where �1 is the alternative reference and Ik is the information available at stage k, k D 1; 2; 3; 4. These
standardized alternative references for the design are derived in the SEQDESIGN procedure even if the
alternative reference is not specified or derived in the procedure.
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In this example, a standardized Z statistic is computed by standardizing the parameter estimate of the effect
in LDL level. A lower Z test statistic indicates a beneficial effect. Consequently, at each interim stage, if the
standardized Z test statistic is less than or equal to the corresponding lower ˛ boundary value, the hypothesis
H0 W � D 0 is rejected for efficacy. If the test statistic is greater than or equal to the corresponding upper ˛
boundary value, the hypothesis H0 is rejected for harmful effect. Otherwise, the process continues to the
next stage. At the final stage (stage 4), the hypothesis H0 is rejected for efficacy if the Z statistic is less
than or equal to the corresponding lower ˛ boundary value –2.0243, and the hypothesis H0 is rejected for
harmful effect if the Z statistic is greater than or equal to the corresponding upper ˛ boundary value 2.0243.
Otherwise, the hypothesis of no significant difference is accepted.

Note that in a typical trial, the actual information levels do not match the information levels specified in the
design. The SEQTEST procedure modifies the boundary values stored in the BOUND_LDL data set to adjust
for these new information levels.

With ODS Graphics enabled, a detailed boundary plot with the rejection and acceptance regions is displayed,
as shown in Figure 89.7. This plot displays the boundary values in the “Boundary Information” table in
Figure 89.6. The stages are indicated by vertical lines with accompanying stage numbers. The horizontal
axis indicates the sample sizes for the stages. Note that comparing with a fixed-sample design, only a small
increase in sample size is needed for the O’Brien-Fleming design, as shown in Figure 89.7.

If a test statistic at an interim stage is in the rejection region (shaded area), the trial stops and the null
hypothesis is rejected. If the statistic is not in any rejection region, the trial continues to the next stage.

Figure 89.7 Boundary Plot
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The boundary plot also displays critical values for the corresponding fixed-sample design. The symbol “ı”
identifies the fixed-sample critical values of –1.96 and 1.96, and the accompanying vertical line indicates
the required sample size for the fixed-sample design at the horizontal axis. Note that the boundary values
˙2:0243 at the final stage are close to the fixed-sample critical values˙1:96.

When you specify the SAMPLESIZE statement, the maximum information (either explicitly specified or
derived in the SEQDESIGN procedure) is used to compute the required sample sizes for the study. The
MODEL=TWOSAMPLEMEAN(STDDEV=20) option specifies the test for the difference between two
normal means. See the section “Test for the Difference between Two Normal Means” on page 7397 for a
detailed derivation of these required sample sizes.

The “Sample Size Summary” table in Figure 89.8 displays the parameters for the sample size computation
and the resulting maximum and expected sample sizes.

Figure 89.8 Sample Size Summary

Sample Size Summary

Test Two-Sample Means

Mean Difference -10

Standard Deviation 20

Max Sample Size 171.8447

Expected Sample Size (Null Ref) 170.7627

Expected Sample Size (Alt Ref) 129.0137

The “Sample Sizes (N)” table in Figure 89.9 displays the required sample sizes at each stage for the trial, in
both fractional and integer numbers. The derived fractional sample sizes are displayed under the heading
“Fractional N.” These sample sizes are rounded up to integers under the heading “Ceiling N.” By default (or
equivalently if you specify WEIGHT=1 in the MODEL=TWOSAMPLEMEAN option), the sample sizes for
the two groups are equal for the two-sample test.

Figure 89.9 Derived Sample Sizes

Sample Sizes (N)
Two-Sample Z Test for Mean Difference

Fractional N Ceiling N

_Stage_ N N(Grp 1) N(Grp 2) Information N N(Grp 1) N(Grp 2) Information

1 42.96 21.48 21.48 0.0269 44 22 22 0.0275

2 85.92 42.96 42.96 0.0537 86 43 43 0.0538

3 128.88 64.44 64.44 0.0806 130 65 65 0.0812

4 171.84 85.92 85.92 0.1074 172 86 86 0.1075

In practice, integer sample sizes are used in the trial, and the resulting information levels increase slightly.
Thus, 22, 43, 65, and 86 individuals are needed in each of the two groups for the four stages, respectively.

You can also create an adjusted design that corresponds to these integer-valued sample sizes at the stages by
specifying the CEILADJDESIGN=INCLUDE option in the SAMPLESIZE statement.
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Syntax: SEQDESIGN Procedure
The following statements are available in the SEQDESIGN procedure:

PROC SEQDESIGN < options > ;
< label: > DESIGN options ;
SAMPLESIZE < MODEL= option > ;

The PROC SEQDESIGN statement and the DESIGN statement are required for the SEQDESIGN procedure.
Each DESIGN statement requests a new group sequential design, and multiple DESIGN statements can be
used to create more than one design for comparison of features. The label, which must be a valid SAS name,
is used to identify the design in the output tables and graphics. The SAMPLESIZE statement computes
the required sample sizes for the design specified in each DESIGN statement. With a selected design, the
SAMPLESIZE statement computes the required sample sizes for the trial.

PROC SEQDESIGN Statement
PROC SEQDESIGN < options > ;

The PROC SEQDESIGN statement invokes the SEQDESIGN procedure. Table 89.1 summarizes the options
available in the PROC SEQDESIGN statement.

Table 89.1 Summary of PROC SEQDESIGN Options

Option Description

Design Parameters
ALTREF= Specifies the alternative reference
BOUNDARYSCALE= Specifies the statistic scale for the boundary
MAXINFO= Specifies the maximum information level

Table Output
ERRSPEND Displays the cumulative error spending at each stage
PSS Displays powers and expected sample sizes
STOPPROB Displays expected cumulative stopping probabilities

Graphics Output
PLOTS=ASN Displays the expected sample numbers plot
PLOTS=BOUNDARY Displays the detailed boundary plot
PLOTS=COMBINEDBOUNDARY Displays the combined boundary plot
PLOTS=ERRSPEND Displays the error spending plot
PLOTS=POWER Displays the powers plot

By default, the SEQDESIGN procedure displays tables of design information, method information, and
boundary information for each specified design. If ODS Graphics is enabled, it also displays a detailed
boundary plot.
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In addition, you can use output options to display output tables such as expected cumulative stopping
probability at each stage under various hypothetical references. If ODS Graphics is enabled, you can also
use output options to display plots such as powers and expected sample sizes under various hypothetical
references.

The following options can be used in the PROC SEQDESIGN statement to derive boundary values for all
sequential designs in the procedure. They are listed in alphabetical order.

ALTREF=�1 < ( < LOWER=�1l > < UPPER=�1u > ) >
specifies the alternative reference—that is, the hypothetical reference under the alternative hypothesis at
which the power is computed. The LOWER= and UPPER= options are applicable only for a two-sided
design with different lower and upper alternative references.

For a one-sided design, �1l D �j�1j is the lower alternative reference and �1u D j�1j is the upper
alternative reference. For a two-sided design, the specified �1l and �1u are the lower and upper
alternative references, respectively. If the LOWER= option is not specified, �1l D �j�1j, and if the
UPPER= option is not specified, �1u D j�1j.

The specification of the ALTREF= option depends on the hypothesis used in the clinical trial. For
example, suppose the null hypothesis H0 W � D 0 with an alternative hypothesis H1 W � D �1 is used
to compare two binomial populations, pa D pb . Then �1 is the proportion difference under H1 if
� D pa � pb , and �1 is the log odds ratio under H1 if � D log

�
pa.1�pb/
pb.1�pa/

�
.

If the ALTREF= option is not specified, the alternative reference �1 can also be specified or derived in
the SAMPLESIZE statement. If �1 is specified or derived in the SAMPLESIZE statement, �1l D �j�1j
and �1u D j�1j are the lower and upper alternative references, respectively.

Note that if the SAMPLESIZE statement is specified with a two-sided design, the sample sizes derived
by using the lower and upper alternatives might be different. If �1 is specified or derived in the
SAMPLESIZE statement, it is used to compute the sample sizes. Otherwise, the �1 specified in the
ALTREF= option is used.

BOUNDARYSCALE=MLE | SCORE | STDZ | PVALUE
BSCALE=MLE | SCORE | STDZ | PVALUE

specifies the scale for the statistic that is displayed in the boundary table and boundary plots. The
keywords MLE, SCORE, STDZ, and PVALUE correspond to the boundary with the maximum
likelihood estimate scale, the score statistic scale, the standardized normal Z scale, and the p-value
scale, respectively. The default is BOUNDARYSCALE=STDZ.

With the BOUNDARYSCALE=MLE or BOUNDARYSCALE=SCORE option, the maximum infor-
mation must be either explicitly specified with the MAXINFO= option or derived in the SEQDESIGN
procedure to provide the necessary information level at each stage to compute the boundary values.
See the section “Boundary Scales” on page 7363 for a detailed description of the statistic scale for the
boundary values.

Note that for a two-sided design, the p-value scale displays the one-sided fixed-sample p-value under
the null hypothesis with a lower alternative hypothesis.

MAXINFO=number
specifies the maximum information level for the design. If the MAXINFO=option is specified and
the alternative reference is either specified explicitly with the ALTREF= option or derived from
the SAMPLESIZE statement, then the Type I and Type II error probability levels cannot be met
simultaneously. In this case, the ALPHA= option in the DESIGN statement is applicable only with the
BOUNDARYKEY=ALPHA option (which is the default) in the DESIGN statement, and the Type II



7332 F Chapter 89: The SEQDESIGN Procedure

error probability ˇ is derived. The BETA= option in the DESIGN statement is applicable only with
the BOUNDARYKEY=BETA option in the DESIGN statement, and the Type I error probability ˛ is
derived.

Table Output Options

The following options can be used in the PROC SEQDESIGN statement to display addition table output.
They are listed in alphabetical order.

ERRSPEND
displays the error spending at each stage for each boundary in the design.

PSS < ( CREF= c1 < c2 . . . > ) >
displays powers and expected sample sizes under various hypothetical references, where the numbers
ci � 0.

For a one-sided design, the power and expected sample sizes under hypotheses � D ci �1 are displayed,
where �1 is the alternative reference and ci are the values specified in the CREF= option.

For a two-sided design, the power and expected sample sizes under hypotheses � D ci�1l and
� D ci�1u are displayed, where �1l and �1u are the lower and upper alternative references, respectively.
The default is CREF= 0 0.5 1.0 1.5.

Note that for a symmetric two-sided design, only the power and expected sample sizes under hypotheses
� D ci �1u are derived. See the section “Type I and Type II Errors” on page 7368 for a detailed
description of the power computation. See the section “Powers and Expected Sample Sizes” on
page 7414 for a detailed description of the expected sample size computation.

STOPPROB < ( CREF= c1 < c2 . . . > ) >
displays expected cumulative stopping probabilities under various hypothetical references, where the
numbers ci � 0.

For a one-sided design, expected cumulative stopping probabilities at each stage under hypotheses
� D ci �1 are displayed, where �1 is the alternative reference and ci are the values specified in the
CREF= option.

For a two-sided design, expected cumulative stopping probabilities at each stage under hypotheses
� D ci�1l and � D ci�1u are displayed, where �1l and �1u are the lower and upper alternative
references, respectively. Note that for a symmetric two-sided design, only expected cumulative
stopping probabilities under hypotheses � D ci �1u are derived. The default is CREF= 0 0.5 1.0 1.5.

Graphics Output Options

This section describes the options for using ODS Graphics with the SEQDESIGN procedure to create plots.

ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;
proc seqdesign altref=-10 plots=boundary(hscale=samplesize);

TwoSidedOBrienFleming: design nstages=4 method=obf;
samplesize model=twosamplemean(stddev=20);

run;
ods graphics off;
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For more information about enabling and disabling ODS Graphics, see the section “Enabling and Disabling
ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The following options can be used in the PROC SEQDESIGN statement to display graphs with ODS Graphics.
They are listed in alphabetical order.

PLOTS < ( ONLY ) > < = plot-request >

PLOTS < ( ONLY ) > < = ( plot-request < . . . plot-request > ) >
specifies options that control the details of the plots. The default is PLOTS=BOUNDARY. The global
plot option ONLY suppresses the default plots and displays only plots specifically requested.

The plot request options are as follows.

ALL
produces all appropriate plots.

ASN < ( CREF= c1 < c2 . . . > ) >
displays a plot of the average sample numbers (expected sample sizes for nonsurvival data or
expected numbers of events for survival data) under various hypothetical references, where the
numbers ci � 0. These average sample numbers are displayed as percentages of the average
sample numbers for the corresponding fixed-sample design.

For a one-sided design, expected sample numbers under hypotheses � D ci �1 are displayed,
where �1 is the alternative reference and ci are the values specified in the CREF= option.

For a two-sided design, expected sample numbers under hypotheses � D ci�1l and � D ci�1u
are displayed, where �1l and �1u are the lower and upper alternative references, respectively.
Note that for a symmetric two-sided design, only the average sample numbers under hypotheses
� D ci �1u are derived. The default is CREF= 0 to 1.5 by 0.01.

BOUNDARY < ( HSCALE=INFO | SAMPLESIZE ) >
displays a plot of the resulting sequential boundaries with the acceptance and rejection re-
gions for each design. Either the information level (HSCALE=INFO) or the sample size
(HSCALE=SAMPLESIZE) is displayed on the horizontal axis. If the maximum information
is not available for the design, the information in percentage of its corresponding fixed-sample
design are used in the plot. The stage number for each stage is displayed inside the plot. The
default is HSCALE=INFO.

If the HSCALE=SAMPLESIZE option is specified. the SAMPLESIZE statement must also be
specified. The options MODEL=INPUTNEVENTS, MODEL=TWOSAMPLESURVIVAL, and
MODEL=PHREG in the SAMPLESIZE statement indicate survival data. For a sample that does
not contain survival data, the sample size at each stage is displayed on the horizontal axis. For
survival data, the number of events is displayed on the horizontal axis at each stage. The critical
values for the corresponding fixed-sample design are also displayed in the plot.

COMBINEDBOUNDARY < ( HSCALE=INFO | SAMPLESIZE | STAGE ) >
displays a plot of the resulting sequential boundaries for all designs simultaneously. You can
display the information level (HSCALE=INFO), the sample size (HSCALE=SAMPLESIZE), or
the stage number (HSCALE=STAGE) on the horizontal axis. The default is HSCALE=INFO.
With HSCALE=INFO, if the maximum information is not available for the design, then the
information in percentage of its corresponding fixed-sample design is used in the plot.
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If the HSCALE=SAMPLESIZE option is specified, the SAMPLESIZE statement must also be
specified. The options MODEL=INPUTNEVENTS, MODEL=TWOSAMPLESURVIVAL, and
MODEL=PHREG in the SAMPLESIZE statement indicate survival data. For a sample that does
not contain survival data, the sample size at each stage is displayed on the horizontal axis. For
survival data, the number of events is displayed on the horizontal axis at each stage.

ERRSPEND < ( HSCALE=INFO | STAGE ) >
displays a plot of the error spending for all sequential boundaries in the designs simultaneously.
You can display the information level (HSCALE=INFO) or the stage number (HSCALE=STAGE)
on the horizontal axis. With HSCALE=INFO, the information fractions are used in the plot. The
default is HSCALE=STAGE.

NONE
suppresses all plots.

POWER < ( CREF= c1 < c2 . . . > ) >
displays a plot of the power curves under various hypothetical references, where the numbers
ci � 0.

For a one-sided design, powers under hypotheses � D ci �1 are displayed, where �1 is the
alternative reference and ci are the values specified in the CREF= option.

For a two-sided design, powers under hypotheses � D ci�1l and � D ci�1u are displayed, where
�1l and �1u are the lower and upper alternative references, respectively. Note that for a symmetric
two-sided design, only powers under hypotheses � D ci �1u are derived. The default is CREF= 0
to 1.5 by 0.01.

DESIGN Statement
< label: > DESIGN < options > ;

The DESIGN statement requests a new group sequential design. You can use multiple DESIGN statements,
and each DESIGN statement corresponds to a separate group sequential design.

Table 89.2 summarizes the options available in the DESIGN statement.

Table 89.2 Design Statement Options

Option Description

Design Parameters
ALPHA= Specifies the Type I error probability level ˛
ALT= Specifies the type of alternative hypothesis
BETA= Specifies the Type II error probability level ˇ
BETAOVERLAP= Checks for overlapping of the lower and upper ˇ boundaries

in a two-sided design with error spending methods
BOUNDARYKEY= Specifies the type of error probability to maintain
INFO= Specifies the information levels
NSTAGES= Specifies the number of stages
STOP= Specifies the condition for early stopping
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Table 89.2 continued

Option Description

Boundary Methods
METHOD= Specifies methods for boundary values

The required NSTAGES= option specifies the number of stages. The METHOD= option is required if the
number of stages specified in the NSTAGES= option is greater than one. The following options can be used
in the DESIGN statement. They are listed in alphabetical order.

ALPHA=˛ < ( < LOWER=˛l > < UPPER=˛u > ) >
specifies the Type I error probability ˛. The default is ˛ D 0:05. The LOWER= and UPPER= options
are applicable only for the two-sided design. The LOWER= option specifies the lower Type I error
probability ˛l , and the upper Type I error probability is computed as ˛u D ˛�˛l . The UPPER= option
specifies the upper Type I error probability ˛u, and the lower Type I error probability is computed as
˛l D ˛ � ˛u. If both LOWER= and UPPER= options are not specified, ˛l D ˛u D ˛=2.

If both the MAXINFO= and ALTREF= options are specified, then the Type I and Type II error
probability levels cannot be met simultaneously. In this case, the ALPHA= option is applicable only
with the BOUNDARYKEY=ALPHA option (which is the default), and the Type II error probability ˇ
is derived.

ALT=LOWER | UPPER | TWOSIDED
specifies the type of alternative hypothesis in the design. For a test of H0 W � D 0, the keywords
LOWER, UPPER, and TWOSIDED correspond to the alternatives of � < 0, � > 0, and � ¤ 0,
respectively. The default is ALT=TWOSIDED.

BETA=ˇ < ( < LOWER=ˇl > < UPPER=ˇu > ) >
specifies the Type II error probability level ˇ. The default is ˇ D 0:10. The LOWER= and UPPER=
options are applicable only for the two-sided design. The LOWER= option specifies the lower Type II
error probability level ˇl , and the UPPER= option specifies the upper Type II error probability level
ˇu. If the LOWER= or UPPER= option is not specified, ˇ is used.

If both the MAXINFO= and ALTREF= options are specified, then the Type I and Type II error
probability levels cannot be met simultaneously. In this case, the BETA= option is applicable only
with the BOUNDARYKEY=BETA option, and the Type I error probability ˛ is derived.

BETAOVERLAP=ADJUST | NOADJUST

OVERLAP=ADJUST | NOADJUST
specifies whether to check for overlapping of the lower and upper ˇ boundaries for the two correspond-
ing one-sided tests. This option applies to two-sided designs with STOP=ACCEPT or STOP=BOTH
that are constructed with error spending methods, and this type of overlapping might result from a
small ˇ spending at an interim stage. When you specify BETAOVERLAP=ADJUST, the procedure
checks for this type of overlapping. If such overlapping is found, the ˇ boundaries for the two-sided
design at that stage are set to missing, and the ˇ spending values at subsequent stages are adjusted, as
described in the section “Boundary Adjustments for Overlapping Lower and Upper ˇ Boundaries” on
page 7384".

You can specify BETAOVERLAP=NOADJUST to request that no adjustment be made. The default is
BETAOVERLAP=ADJUST.
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BOUNDARYKEY=ALPHA | BETA | BOTH | NONE
specifies types of errors to be maintained in the resulting boundary. The default is BOUND-
ARYKEY=ALPHA if both ALTREF= and MAXINFO= options are specified. Otherwise, the default is
BOUNDARYKEY=NONE for Whitehead methods with the STOP=BOTH option, and it is BOUND-
ARYKEY=BOTH for others.

See the section “Applicable Boundary Keys” on page 7386 for a detailed description of applicable
boundary keys.

INFO=EQUAL | CUM( numbers )
specifies relative information levels for all stages in the design. The INFO=EQUAL option specifies
equally spaced information levels, and the INFO=CUM option specifies cumulative relative information
levels. The default is INFO=EQUAL.

If the number of information levels specified in the INFO=CUM option is less than the number of
stages specified in the NSTAGES= option, the last available information increment is used as the
information increment for each subsequent stage.

METHOD=WHITEHEAD < ( TAU=� < ( < LOWER=�l > < UPPER=�u > ) > ) >

METHOD=method

METHOD(boundary ) = method
specifies the methods for the boundaries in the design, where 0 � � < 0:5.

For a one-sided design, an ˛ boundary is created with the STOP=REJECT or STOP=BOTH option,
and a ˇ boundary is created with the STOP=ACCEPT or STOP=BOTH option. For a two-sided design,
lower and upper ˛ boundaries are created with the STOP=REJECT or STOP=BOTH option, and lower
and upper ˇ boundaries are created with the STOP=ACCEPT or STOP=BOTH option.

There are three types of methods available in the SEQDESIGN procedure. The unified family methods
and Haybittle-Peto methods derive boundary values with fixed boundary shape; the Whitehead methods
derive boundary values by adjusting the boundary values generated from continuous monitoring; and
the error spending methods derive the boundary values from the specified errors used at each stage.
You can specify different methods for the same design, but all methods must be from the same group.

For a design with early stopping to reject or accept the null hypothesis, the METHOD=WHITEHEAD
option uses Whitehead’s triangular design and double-triangular design for a one-sided design and
two-sided design, respectively (Whitehead and Stratton 1983; Whitehead 1997, 2001). For a design
with early stopping only to reject the null hypothesis or only to accept the null hypothesis, you can
specify the slope of the boundary line in the score statistic scale with the TAU= � option. The default
is TAU=0.25. See the section “Whitehead Methods” on page 7376 for a detailed description of the
Whitehead methods.

The following options specify available error spending methods for the boundary. Each of these meth-
ods can be specified with the METHOD= option for all boundaries, or with the METHOD(boundary)
= option for an individual boundary. See the section “Error Spending Methods” on page 7379 for a
detailed description of these error spending methods.

ERRFUNCGAMMA < ( GAMMA=  ) >
specifies a gamma cumulative error spending function for the boundary (Hwang, Shih, and
DeCani 1990). The GAMMA= option specifies the gamma parameter  in the function, where
 � 3. The boundaries created with  D 1 are similar to the boundaries from the Pocock method,
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and the boundaries created with  D �4 or  D �5 are similar to the boundaries from the
O’Brien-Fleming method. The default is GAMMA=–2, which is the average of  D 1 and
 D �5.

ERRFUNCOBF
specifies the O’Brien-Fleming-type cumulative error spending function for the boundary (Lan
and DeMets 1983).

ERRFUNCPOC
specifies the Pocock-type cumulative error spending function for the boundary (Lan and DeMets
1983).

ERRFUNCPOW < ( RHO=� ) >
specifies a power cumulative error spending function for the boundary (Jennison and Turnbull
2000, p. 148). The RHO= option specifies the power parameter � in the function, where � � 0:25.
The boundaries created with � D 1 are similar to the boundaries from the Pocock method, and the
boundaries created with � D 3 are similar to the boundaries from the O’Brien-Fleming method.
The default is RHO=2, which is the average of � D 1 and � D 3.

ERRSPEND ( numbers )
specifies the relative cumulative error spending at each stage.

With a fixed boundary shape, you can use the following available Haybittle-Peto methods and unified
family methods to derive the boundary. You can specify each of these methods in the METHOD=
option for all boundaries, or in the METHOD(boundary) = option for an individual boundary. See
the section “Haybittle-Peto Method” on page 7375 for a detailed description of the Haybittle-Peto
methods, and see the section “Unified Family Methods” on page 7371 for a detailed description of
unified family methods.

HP | HAYBITTLE | PETO < ( Z= numbers | PVALUE= numbers ) >
specifies the Haybittle-Peto method (Haybittle 1971; Peto et al. 1976). The values specified are
used to create the boundary values. The boundary value at the final stage can be derived in the
procedure to maintain the Type I and Type II error probability levels. The default is Z=3.

OBF | OBRIENFLEMING
specifies the O’Brien-Fleming method (O’Brien and Fleming 1979). The O’Brien-Fleming
method is equivalent to a power family method with RHO=0.5.

POC | POCOCK
specifies the Pocock method (Pocock 1977). The Pocock method is equivalent to a power family
method with RHO=0.

POW | POWER < ( RHO=� ) >
specifies a power family method (Wang and Tsiatis 1987; Emerson and Fleming 1989; Pampallona
and Tsiatis 1994). The RHO= option specifies the power parameter � in the power family method,
where � � �0:25. The power family method with � D 0 corresponds to the Pocock method,
and the power family method with � D 0:5 corresponds to the O’Brien-Fleming method. The
default is RHO=0.25, a value halfway between the Pocock and O’Brien-Fleming methods. A
power family method is equivalent to a unified family method with RHO=� and TAU=0.
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TRI | TRIANGULAR < ( TAU=� ) >
specifies a unified family triangular method (Kittelson and Emerson 1999), where 0 � � � 1. The
default is TAU=1.0. The triangular method is identical to the unified family method with RHO=0.5
and TAU=� . Note that this unified family triangular method is different from Whitehead’s
triangular method.

UNI | UNIFIED < ( < TAU=� > < RHO=� > ) >
specifies a unified family method (Kittelson and Emerson 1999). The TAU= and RHO= options
specify the � and � parameters in a unified family method, respectively, where � � 0 and
0 � � � 2�. The defaults are TAU=0 and RHO=0.25. See the section “Unified Family Methods”
on page 7371 for a detailed description of the unified family methods.

The O’Brien-Fleming, Pocock, power family, and triangular methods are all special cases of the unified
family methods. Table 89.3 summarizes the corresponding parameters in the unified family for these
methods.

Table 89.3 Parameters in the Unified Family for Various Methods

Unified Family
Method Option Rho Tau

Pocock POC 0 0
O’Brien-Fleming OBF 0.5 0
Power family POW (RHO=�) � 0
Triangular TRI (TAU=� ) 0.5 �

Note that the power parameter � D 1=2 �� D �� � 1=2, where � is the power parameter used in
Jennison and Turnbull (2000) and Wang and Tsiatis (1987) and �� is the power parameter used in
Kittelson and Emerson (1999).

If a method with specified parameters is used for all boundaries in the design, you can use the
METHOD= option to specify the method. Otherwise, you can use the following METHOD(boundary)=
options to specify different methods from the same group for the boundaries.

METHOD(ALPHA)=method

METHOD(REJECT)=method
specifies the method for the ˛ boundary of a one-sided design or the lower and upper ˛ boundaries for
a two-sided design.

METHOD(LOWERALPHA)=method

METHOD(LOWERREJECT)=method
specifies the method for the lower ˛ boundary of a two-sided design.

METHOD(UPPERALPHA)=method

METHOD(UPPERREJECT)=method
specifies the method for the upper ˛ boundary of a two-sided design.
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METHOD(BETA)=method

METHOD(ACCEPT)=method
specifies the method for the ˇ boundary of a one-sided design or the lower and upper ˇ boundaries for
a two-sided design.

METHOD(LOWERBETA)=method

METHOD(LOWERACCEPT)=method
specifies the method for the lower ˇ boundary of a two-sided design.

METHOD(UPPERBETA)=method

METHOD(UPPERACCEPT)=method
specifies the method for the upper ˇ boundary of a two-sided design.

NSTAGES=number
specifies the number of stages for the design. This option is required in the DESIGN statement, and
the maximum allowed number of stages is 25.

STOP=ACCEPT

STOP=REJECT

STOP=BOTH < ( BETABOUNDARY=BINDING | NONBINDING ) >
specifies the early stopping criterion for the design. The keywords ACCEPT, REJECT, and BOTH
correspond to early stopping only to accept, only to reject, and either to accept or reject the null
hypothesis H0, respectively. The default is STOP=REJECT. With STOP=BOTH, the BETABOUND-
ARY=BINDING suboption computes the Type I error probability with the acceptance boundary,
and the BETABOUNDARY=NONBINDING suboption computes the Type I error probability with-
out the acceptance boundary. The default is BETABOUNDARY=BINDING. The BETABOUND-
ARY=NONBINDING option is not applicable with METHOD=WHITEHEAD.

SAMPLESIZE Statement
SAMPLESIZE < option > ;

If each observation in the data set provides one unit of information in a hypothesis testing (such as a
one-sample test for the mean), the SAMPLESIZE statement computes the required sample sizes for each
sequential design that is specified in a DESIGN statement. However, for a survival analysis, an individual in
the survival time data might provide only partial information because of censoring. For this hypothesis, the
SAMPLESIZE statement computes the required numbers of events. With additional accrual information in a
survival analysis, the sample sizes can also be computed.

Only one SAMPLESIZE statement can be specified. For each specified group sequential design, the
SAMPLESIZE statement computes the required sample sizes or numbers of events. The SAMPLESIZE
statement is not required if the SEQDESIGN procedure is used only to compare features among different
designs.
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You can specify the following option:

MODEL < ( CEILADJDESIGN=INCLUDE | EXCLUDE ) > = model-request
specifies the input sample size or number of events from a fixed-sample study or specifies a statistical
model to compute the required sample size. Table 89.4 summarizes the types of model-request
that you can specify, and the subsections that follow Table 89.4 provide more information about the
model-request for each type of model.

You can also specify one of the following values for the optional CEILADJDESIGN= suboption:

EXCLUDE does not create a ceiling-adjusted design.

INCLUDE creates a ceiling-adjusted design that corresponds to integer-valued sample sizes at
the stages for nonsurvival data, and to integer-valued times or sample sizes at the
stages for survival data.

Because the information levels in the adjusted design are different from the levels
in the original design, the Type I and Type II error levels cannot be maintained
simultaneously. If BOUNDARYKEY=BOTH or BOUNDARYKEY=NONE in
the DESIGN statement, then the Type I error level is maintained. Otherwise, the
BOUNDARYKEY= option selects the type of error level to be maintained.

The CEILADJDESIGN=INCLUDE option adds the ceiling-adjusted design in-
formation in the design information table, and creates a ceiling-adjusted bound-
ary information table. See Example 89.2 for an illustration of the CEILADJDE-
SIGN=INCLUDE option for nonsurvival data and Example 89.14 for an illustration
of the option for survival data.

Other tables that are associated with the adjusted design, such as error-spending
information, are not displayed in the SEQDESIGN procedure, but you can easily
generate them from this adjusted-boundary information table in the companion
SEQTEST procedure. See Example 89.2 for an illustration of this usage.

By default, CEILADJDESIGN=EXCLUDE.

Table 89.4 summarizes the types of model-request that you can specify.

Table 89.4 MODEL= Option

Option Description

Fixed-Sample Models
INPUTNOBS Specifies the sample size for a fixed-sample design
INPUTNEVENTS Specifies the number of events for a fixed-sample design

One-Sample Models
ONESAMPLEMEAN Specifies the one-sample Z test for the mean
ONESAMPLEFREQ Specifies the one-sample test for the binomial proportion

Two-Sample Models
TWOSAMPLEMEAN Specifies the two-sample Z test for the mean difference
TWOSAMPLEFREQ Specifies the two-sample test for binomial proportions
TWOSAMPLESURVIVAL Specifies the log-rank test for two survival distributions
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Table 89.4 continued

Option Description

Regression Models
REG Specifies the test for a regression parameter
LOGISTIC Specifies the test for a logistic regression parameter
PHREG Specifies the test for a proportional hazards regression parameter

The MODEL=INPUTNOBS option specifies the input sample size from a fixed-sample study of nonsurvival
data, and the MODEL=INPUTNEVENTS option specifies the number of events from a fixed-sample study
of survival data. The remaining MODEL= options specify the statistical models that are used to compute the
required sample size. The default is MODEL=TWOSAMPLEMEAN, the two-sample Z test for the mean
difference.

When MODEL=INPUTNOBS or MODEL=INPUTNEVENTS, the required sample size or number of events
for the group sequential trial is computed by multiplying the input sample size or number of events by the
ratio of the design information level to its corresponding fixed-sample information level. This ratio can be
obtained by dividing the Max Information (Percent Fixed-Sample) in the “Design Information” table by 100.
For a description of the “Design Information” table, see the section “Design Information” on page 7412.

Fixed-Sample Models

The following two options compute the required sample size or number of events for a group sequential trial
by using the sample size or number of events for the fixed-sample design:

MODEL=INPUTNOBS ( options )
specifies the input sample size from a fixed-sample study of nonsurvival data. The available options
are as follows:

• N=n

• SAMPLE=ONE | TWO

• WEIGHT=wa < wb >

• MATCHNOBS=YES | NO

The required N=n option specifies the sample size n for the fixed-sample design. The SAMPLE=ONE
option specifies a one-sample test, and the SAMPLE=TWO option specifies a two-sample test. The
default is SAMPLE=ONE.

With a two-sample test, the WEIGHT= option specifies the sample size allocation weights for the two
groups. If wb is not specified, wb D 1 is used. The default is WEIGHT=1, which results in equal
allocation for the two groups. The derived fractional sample sizes are rounded up to integers, and the
MATCHNOBS=YES option requests these integer sample sizes to match the sample size allocation.

For more information about the input sample size for the fixed-sample design in sample size computa-
tion, see the section “Input Sample Size for Fixed-Sample Design” on page 7389.
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MODEL=INPUTNEVENTS ( D=d < options > )
specifies the number of events from a fixed-sample study of survival data. The required D=d option
specifies the fixed-sample number of events d . To derive the sample size, you need to specify additional
options from the following list:

• ACCNOBS=na
• ACCRATE=ra
• ACCRUAL=UNIFORM | EXP(PARM=0)

• ACCTIME=Ta
• CEILING=TIME | N

• FOLTIME=Tf
• HAZARD=ha < hb >

• LOSS=NONE | EXP(HAZARD=� | MEDLOSSTIME=t� )

• MEDSURVTIME=ta < tb >

• SAMPLE=ONE | TWO

• TOTALTIME=T

• WEIGHT=wa < wb >

The SAMPLE=ONE option specifies a one-sample test, and the SAMPLE=TWO option specifies
a two-sample test. The default is SAMPLE=ONE. With a two-sample test, the WEIGHT= option
specifies the sample size allocation weights for the two groups. If wb is not specified, wb=1 is used.
The default is WEIGHT=1.

For a one-sample test, the HAZARD= ha option specifies the hazard rate ha explicitly, and the
MEDSURVTIME=ta option specifies the hazard rate implicitly through the median survival time ta.
Similarly, for a two-sample test, the HAZARD= hahb option specifies the hazard rates ha and hb for
groups A and B explicitly, and the MEDSURVTIME=tatb option specifies hazard rates for groups A
and B implicitly through the median survival times ta and tb . Also, for a two-sample test, hb D ha if
hb is not specified and tb D ta if tb is not specified.

The ACCRUAL= option specifies the method for individual accrual. The ACCRUAL=UNIFORM
option (which is the default) specifies that the individual accrual is uniform in the accrual time Ta with
a constant accrual rate ra, and the ACCRUAL=EXP(PARM=0) option specifies that the individual
accrual is truncated exponential with a scaled power parameter 0, where 0 � �10 and 0 ¤ 0. With
a scaled parameter 0, the power parameter for the truncated exponential with the accrual time Ta is
given by  D 0=Ta.

The ACCTIME= and FOLTIME= options specify the accrual time Ta and follow-up time Tf , respec-
tively. The TOTALTIME= option specifies the total study time, T D Ta C Tf .

The ACCRATE= option specifies the constant accrual rate ra. If you specify the ACCRATE= option,
then you must also specify one of the ACCTIME=, FOLTIME=, and TOTALTIME= options for the
sample size computation. Otherwise, you must specify two of the ACCTIME=, FOLTIME=, and
TOTALTIME= options to compute the accrual rate and sample size.

The ACCNOBS= option specifies the total number of individuals in the study. If you specify the
ACCNOBS= option, then you must also specify one of the ACCTIME=, FOLTIME=, and TOTAL-
TIME= options for the sample size computation. Otherwise, you must specify two of the ACCTIME=,
FOLTIME=, and TOTALTIME= options to compute the accrual rate and sample size.
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The CEILING= option specifies the additional sample size information to be displayed in the “Number
of Events (D) and Sample Sizes (N)” table. The CEILING=TIME option (which is the default)
displays additional information that includes ceiling times at the stages, and the CEILING=N option
displays additional information that includes ceiling sample sizes at the stages. When you specify the
SAMPLE=TWO option along with the CEILING=N option, the ceiling sample sizes at each stage are
derived to match the sample size allocation weights for the two groups.

The LOSS= option specifies the individual loss to follow-up in the sample size computation. The
LOSS=NONE option (which is the default) specifies no loss to follow-up, and the LOSS=EXP option
specifies exponential loss function. The HAZARD=� suboption specifies the exponential loss hazard
rate � , and the MEDLOSSTIME=t� suboption specifies the exponential loss hazard rate through the
median loss times t� .

For a detailed description of the input number of events for the fixed-sample design in sample size
computation, see the section “Input Number of Events for Fixed-Sample Design” on page 7389.

One-Sample Models

The following two options compute the required sample size for a one-sample group sequential test:

MODEL=ONESAMPLEMEAN < ( options ) >
specifies the one-sample Z test for mean. The available options are as follows:

• MEAN= �1

• STDDEV= �

The MEAN= option specifies the alternative reference �1 and is required if the alternative reference is
not specified or derived in the procedure. If the MEAN=option is not specified, the specified or derived
alternative reference is used.

The STDDEV= option specifies the standard deviation � . The default is STDDEV=1. See the section
“Test for a Normal Mean” on page 7395 for a detailed description of the one-sample Z test for mean.

Note that the one-sample Z test for mean also includes the paired difference in two-treatment compari-
son (Jennison and Turnbull 2000, pp. 51–52), where �1 is the mean of differences within pairs under
the alternative hypothesis and � is the standard deviation for the mean of differences within pairs.

MODEL=ONESAMPLEFREQ < ( options ) >
specifies the one-sample test for binomial proportion with the null hypothesis H0 W � D 0 and the
alternative hypothesis H1 W � D �1, where � D p � p0 and �1 D p1 � p0. The available options are
as follows:

• NULLPROP= p0

• PROP= p1

• REF= NULLPROP | PROP

The NULLPROP= and PROP= options specify the proportions under the null and alternative hypotheses,
respectively. The default for the null reference is NULLPROP=0.5. The PROP= option is required
if the alternative reference is not specified or derived in the procedure. If the PROP= option is not
specified, the specified or derived alternative reference �1 is used to compute the alternative reference
p1 D p0 C �1.
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The REF= option specifies the hypothesis under which the proportion is used in the sample size
computation. The REF=NULLPROP option uses the null hypothesis, and the REF=PROP option uses
the alternative hypothesis to compute the sample size. The default is REF=PROP. See the section
“Test for a Binomial Proportion” on page 7396 for a detailed description of the one-sample tests for
proportion.

Two-Sample Models

The following three options compute the required sample size or number of events for a two-sample group
sequential trial.

MODEL=TWOSAMPLEMEAN < ( options ) >
specifies the two-sample Z test for mean difference. The available options are as follows:

• MEANDIFF= �1
• STDDEV= �a < �b >

• WEIGHT= wa < wb >

• MATCHNOBS= YES | NO

The MEANDIFF= option specifies the alternative reference �1 and is required if the alternative
reference is not specified or derived in the procedure. If the MEANDIFF= option is not specified, the
specified or derived alternative reference is used.

The STDDEV= option specifies the standard deviations �a and �b . If �b is not specified, �b D �a.
The default is STDDEV=1.

The WEIGHT= option specifies the sample size allocation weights for the two groups. If wb is not
specified, wb D 1 is used. The default is WEIGHT=1, equal sample size for the two groups. The
derived fractional sample sizes are rounded up to integers, and the MATCHNOBS=YES option requests
these integer sample sizes to match the sample size allocation. The default is MATCHNOBS=NO.

See the section “Test for the Difference between Two Normal Means” on page 7397 for a detailed
description of the two-sample Z test for mean difference.

MODEL=TWOSAMPLEFREQ < ( options ) >
specifies the two-sample test for binomial proportions. The available options are as follows:

• NULLPROP= p0a < p0b >

• PROP= p1a
• TEST= PROP | LOGOR | LOGRR

• REF= NULLPROP | PROP | AVGNULLPROP | AVGPROP

• WEIGHT= wa < wb >

• MATCHNOBS= YES | NO

The NULLPROP= option specifies proportions pa D p0a and pb D p0b in groups A and B, respec-
tively, under the null hypothesis. If p0b is not specified, p0b D p0a. The default is NULLPROP=0.5.

The PROP= option specifies proportion pa D p1a in group A under the alternative hypothesis. The
proportion p1b in group B under the alternative hypothesis is given by p1b D p0b . The PROP= option
is required if the alternative reference is not specified or derived in the procedure. If the PROP= option
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is not specified, the specified or derived alternative reference is used to compute p1a, the proportion in
group A under the alternative hypothesis.

The TEST= option specified the null hypothesis H0 W � D 0 in the test. The TEST=PROP option uses
the difference in proportions � D .pa � pb/ � .p0a � p0b/, the TEST=LOGOR option uses the log
odds-ratio test � D ı � ı0, where

ı D log
�
pa.1 � pb/

pb.1 � pa/

�
ı0 D log

�
p0a.1 � p0b/

p0b.1 � p0a/

�
and the TEST=LOGRR option uses the log relative risk test with � D ı � ı0, where

ı D log
�
pa

pb

�
ı0 D log

�
p0a

p0b

�
The default is TEST=LOGOR.

The REF= option specifies the hypothesis under which the proportions are used in the sample size
computation. The REF=NULLPROP option uses the null proportions p0a and p0b , the REF=PROP
option uses the alternative proportions p1a and p1b , the REF=AVGNULLPROP option uses the
average null proportion, and the REF=AVGPROP option uses the average alternative proportion. The
default is REF=PROP.

The WEIGHT= option specifies the sample size allocation weights for the two groups. If wb is not
specified, wb D 1 is used. The default is WEIGHT=1, equal sample size for the two groups. The
derived fractional sample sizes are also rounded up to integers, and the MATCHNOBS=YES option
requests that these integer sample sizes match the sample size allocation.

See the section “Test for the Difference between Two Binomial Proportions” on page 7399, the section
“Test for Two Binomial Proportions with a Log Odds Ratio Statistic” on page 7400, and the section
“Test for Two Binomial Proportions with a Log Relative Risk Statistic” on page 7401 for a detailed
description of the two-sample tests for proportions.

MODEL=TWOSAMPLESURVIVAL < ( options ) >

MODEL=TWOSAMPLESURV < ( options ) >
specifies the log-rank test for two survival distributions with the null hypothesis H0 W � D ı � ı0 D 0,
where the parameter ı D �log.ha=hb/, ı0 is the value of ı under the null hypothesis and the values
ha and hb are the constant hazard rates for groups A and B, respectively.

The available options for the number of events are as follows:

• NULLHAZARD= h0a < h0b >

• NULLMEDSURVTIME= t0a < t0b >

• HAZARD= h1a

• HAZARDRATIO= �1

• MEDSURVTIME= t1a

The NULLHAZARD= option specifies hazard rates ha D h0a and hb D h0b for groups A and B,
respectively, under the null hypothesis. If h0b is not specified, h0b D h0a. The NULLMEDSURV-
TIME= option specifies the median survival times ta D t0a and tb D t0b under the null hypothesis. If
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t0b is not specified, t0b D t0a. If both NULLHAZARD= and NULLMEDSURVTIME= option are not
specified, NULLHAZARD=0.06931, which corresponds to NULLMEDSURVTIME=10, is used.

The hazard rate for group B under the alternative hypothesis, h1b , is identical to the hazard rate
under the null hypothesis, h0b . The HAZARD=, MEDSURVTIME=, and HAZARDRATIO= options
specify the group A hazard rate h1a, the group A median survival time t1a, and the hazard ratio
�1 D h1a=h1b , respectively, under the alternative hypothesis. The HAZARD=, MEDSURVTIME=,
or HAZARDRATIO= option is required if the alternative reference is not specified or derived in the
procedure. If these three options are not specified, the specified or derived alternative reference �1 is
used to compute h1a from the equation:

�1 D �log
�
h1a

h1b

�
�

�
�log

�
h0a

h0b

��
D �log

�
h1a

h0a

�

To derive the sample size, you need to specify additional options from the following list:

• ACCNOBS=na

• ACCRATE=ra

• ACCRUAL=UNIFORM | EXP(PARM=0)

• ACCTIME=Ta

• CEILING=TIME | N

• FOLTIME=Tf

• LOSS=NONE | EXP(HAZARD=� | MEDLOSSTIME=t� )

• REF=NULLHAZARD | HAZARD

• TOTALTIME=T

• WEIGHT=wa < wb >

The REF= option specifies the hypothesis under which the hazard is used in the sample size computation.
The REF=NULLHAZARD option uses the null hypothesis, and the REF=HAZARD option uses the
alternative hypothesis. The default is REF=HAZARD.

The WEIGHT= option specifies the sample size allocation weights for the two groups. If wb is not
specified, wb D 1 is used. The default is WEIGHT=1, equal sample size for the two groups.

The ACCRUAL= option specifies the method for individual accrual. The ACCRUAL=UNIFORM
option (which is the default) specifies that the individual accrual is uniform in the accrual time Ta with
a constant accrual rate ra, and the ACCRUAL=EXP(PARM=0) option specifies that the individual
accrual is truncated exponential with a scaled power parameter 0, where 0 � �10 and 0 ¤ 0. With
a scaled parameter 0, the power parameter for the truncated exponential with the accrual time Ta is
given by  D 0=Ta.

The ACCTIME= and FOLTIME= options specify the accrual time Ta and follow-up time Tf , respec-
tively. The TOTALTIME= option specifies the total study time, T D Ta C Tf .

The ACCRATE= option specifies the constant accrual rate ra. If you specify the ACCRATE= option,
then you must also specify one of the ACCTIME=, FOLTIME=, and TOTALTIME= options for the
sample size computation. Otherwise, you must specify two of the ACCTIME=, FOLTIME=, and
TOTALTIME= options to compute the accrual rate and sample size.
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The ACCNOBS= option specifies the total number of individuals in the study. If you specify the
ACCNOBS= option, then you must also specify one of the ACCTIME=, FOLTIME=, and TOTAL-
TIME= options for the sample size computation. Otherwise, you must specify two of the ACCTIME=,
FOLTIME=, and TOTALTIME= options to compute the accrual rate and sample size.

The CEILING= option specifies the additional sample size information to be displayed in the “Number
of Events (D) and Sample Sizes (N)” table. The CEILING=TIME option (which is the default) displays
additional information that includes ceiling times at the stages, and the CEILING=N option displays
additional information that includes ceiling sample sizes at the stages. When you specify CEILING=N,
the ceiling sample sizes at each stage are derived to match the sample size allocation weights for the
two groups.

The LOSS= option specifies the individual loss to follow-up in the sample size computation. The
LOSS=NONE option (which is the default) specifies no loss to follow-up, and the LOSS=EXP option
specifies exponential loss function. The HAZARD=� suboption specifies the exponential loss hazard
rate � , and the MEDLOSSTIME=t� suboption specifies the exponential loss hazard rate through the
median loss times t� .

See the section “Test for Two Survival Distributions with a Log-Rank Test” on page 7403 for a detailed
description of the two-sample log-rank test for survival data.

Regression Models

The following three options compute the required sample size or number of events for group sequential tests
on a regression parameter.

MODEL=REG < ( options ) >
specifies the Z test for a normal regression parameter. The available options are as follows:

• BETA= ˇ1

• VARIANCE= �2y

• XVARIANCE= �2x
• XRSQUARE= r2x

The BETA= option specifies the alternative reference ˇ1 and is required if the alternative reference is
not specified or derived in the procedure. If the BETA= option is not specified, ˇ1 D �1, the specified
or derived alternative reference.

The VARIANCE= and XVARIANCE= options specify the variances for the response variable Y and
covariate X, respectively. The defaults are VARIANCE=1 and XVARIANCE=1. For a model with more
than one covariate, the XRSQUARE= option can be used to derive the variance of X after adjusting for
other covariates. The default is XRSQUARE=0.

See the section “Test for a Parameter in the Regression Model” on page 7405 for a detailed description
of the Z test for the regression parameter.
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MODEL=LOGISTIC < ( options ) >
specifies the Z test for a logistic regression parameter. The available options are as follows:

• BETA= ˇ1
• PROP= p
• XVARIANCE= �2x
• XRSQUARE= r2x

The BETA= option specifies the alternative reference ˇ1 and is required if the alternative reference is
not specified or derived in the procedure. If the BETA= option is not specified, ˇ1 D �1, the specified
or derived alternative reference.

The PROP= option specifies the proportion of the binary response variable Y. The default is PROP=0.5.
The XVARIANCE= option specifies the variance of the covariate X. The default is XVARIANCE=1.
For a model with more than one covariate, the XRSQUARE= option can be used to derive the variance
of X after adjusting for other covariates. The default is XRSQUARE=0.

See the section “Test for a Parameter in the Logistic Regression Model” on page 7406 for a detailed
description of the Z test for the logistic regression parameter.

MODEL=PHREG < ( options ) >
specifies the Z test for a proportional hazards regression parameter. The available options for the
number of events are as follows:

• BETA= ˇ1
• XVARIANCE= �2x
• XRSQUARE= r2x

The BETA= option specifies the alternative reference ˇ1 and is required if the alternative reference is
not specified or derived in the procedure. If the BETA= option is not specified, ˇ1 D �1, the specified
or derived alternative reference.

The XVARIANCE= option specifies the variance of the covariate X. The default is XVARIANCE=1.
For a model with more than one covariate, the XRSQUARE= option can be used to derive the variance
of X after adjusting for other covariates. The default is XRSQUARE=0.

To derive the sample size, you need to specify additional options from the following list:

• ACCNOBS=na
• ACCRATE=ra
• ACCRUAL=UNIFORM | EXP(PARM=0)

• ACCTIME=Ta
• CEILING=TIME | N

• FOLTIME=Tf
• HAZARD=ha
• LOSS=NONE | EXP(HAZARD=� | MEDLOSSTIME=t� )

• MEDSURVTIME=ta
• TOTALTIME=T
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The hazard rate is required for the sample size computation. The HAZARD= ha option specifies
the hazard rate ha explicitly, and the MEDSURVTIME=ta option specifies the hazard rate implicitly
through the median survival time ta.

The ACCRUAL= option specifies the method for individual accrual. The ACCRUAL=UNIFORM
option (which is the default) specifies that the individual accrual is uniform in the accrual time Ta with
a constant accrual rate ra, and the ACCRUAL=EXP(PARM=0) option specifies that the individual
accrual is truncated exponential with a scaled power parameter 0, where 0 � �10 and 0 ¤ 0. With
a scaled parameter 0, the power parameter for the truncated exponential with the accrual time Ta is
given by  D 0=Ta.

The ACCTIME= and FOLTIME= options specify the accrual time Ta and follow-up time Tf , respec-
tively. The TOTALTIME= option specifies the total study time, T D Ta C Tf .

The ACCRATE= option specifies the constant accrual rate ra. If you specify the ACCRATE= option,
then you must also specify one of the ACCTIME=, FOLTIME=, and TOTALTIME= options for the
sample size computation. Otherwise, you must specify two of the ACCTIME=, FOLTIME=, and
TOTALTIME= options to compute the accrual rate and sample size.

The ACCNOBS= option specifies the total number of individuals in the study. If you specify the
ACCNOBS= option, then you must also specify one of the ACCTIME=, FOLTIME=, and TOTAL-
TIME= options for the sample size computation. Otherwise, you must specify two of the ACCTIME=,
FOLTIME=, and TOTALTIME= options to compute the accrual rate and sample size.

The CEILING= option specifies the additional sample size information to be displayed in the “Number
of Events (D) and Sample Sizes (N)” table. The CEILING=TIME option (which is the default) displays
additional information that includes ceiling times at the stages, and the CEILING=N option displays
additional information that includes ceiling sample sizes at the stages.

The LOSS= option specifies the individual loss to follow-up in the sample size computation. The
LOSS=NONE option (which is the default) specifies no loss to follow-up, and the LOSS=EXP option
specifies exponential loss function. The HAZARD=� suboption specifies the exponential loss hazard
rate � , and the MEDLOSSTIME=t� suboption specifies the exponential loss hazard rate through the
median loss times t� .

For a detailed description of the Z test for the proportional hazards regression parameter, see the section
“Test for a Parameter in the Proportional Hazards Regression Model” on page 7407.

Details: SEQDESIGN Procedure

Fixed-Sample Clinical Trials
A clinical trial is a research study in consenting human beings to answer specific health questions. One
type of trial is a treatment trial, which tests the effectiveness of an experimental treatment. An example is a
planned experiment designed to assess the efficacy of a treatment in humans by comparing the outcomes in a
group of patients who receive the test treatment with the outcomes in a comparable group of patients who
receive a placebo control treatment, where patients in both groups are enrolled, treated, and followed over the
same time period.
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A clinical trial is conducted according to a plan called a protocol. The protocol provides detailed description
of the study. For a fixed-sample trial, the study protocol contains detailed information such as the null
hypothesis, the one-sided or two-sided test, and the Type I and II error probability levels. It also includes the
test statistic and its associated critical values in the hypothesis testing.

Generally, the efficacy of a new treatment is demonstrated by testing a hypothesis H0 W � D 0 in a clinical
trial, where � is the parameter of interest. For example, to test whether a population mean � is greater than a
specified value �0, � D � � �0 can be used with an alternative � > 0.

A one-sided test is a test of the hypothesis with either an upper (greater) or a lower (lesser) alternative, and
a two-sided test is a test of the hypothesis with a two-sided alternative. The drug industry often prefers to
use a one-sided test to demonstrate clinical superiority based on the argument that a study should not be run
if the test drug would be worse (Chow, Shao, and Wang 2003, p. 28). But in practice, two-sided tests are
commonly performed in drug development (Senn 1997, p. 161). For a fixed Type I error probability ˛, the
sample sizes required by one-sided and two-sided tests are different. See Senn (1997, pp. 161–167) for a
detailed description of issues involving one-sided and two-sided tests.

For independent and identically distributed observations y1; y2; : : : ; yn of a random variable, the likelihood
function for � is

L.�/ D

nY
jD1

Li .�/

where � is the population parameter and Li .�/ is the probability or probability density of yi . Using the
likelihood function, two statistics can be derived that are useful for inference: the maximum likelihood
estimator and the score statistic.

Maximum Likelihood Estimator

The maximum likelihood estimate (MLE) of � is the value O� that maximizes the likelihood function for � .
Under mild regularity conditions, O� is an asymptotically unbiased estimate of � with variance 1=E� .I.�//,
where I.�/ is the Fisher information

I.�/ D �
@2log.L.�//

@�2

and E� .I.�// is the expected Fisher information (Diggle et al. 2002, p. 340)

E� .I.�// D �E�

�
@2log.L.�//

@�2

�

The score function for � is defined as

S.�/ D
@ log.L.�//

@�

and usually, the MLE can be derived by solving the likelihood equation S.�/ D 0. Asymptotically, the MLE
is normally distributed (Lindgren 1976, p. 272):

O� � N

�
�;

1

E� .I.�//

�
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If the Fisher information I.�/ does not depend on � , then I.�/ is known. Otherwise, either the expected
information evaluated at the MLE O� (E

�D O�
.I.�//) or the observed information I. O�/ can be used for the

Fisher information (Cox and Hinkley 1974, p. 302; Efron and Hinkley 1978, p. 458), where the observed
Fisher information

I. O�/ D �

�
@2log.L.�//

@�2
j � D O�

�
If the Fisher information I.�/ does depend on � , the observed Fisher information is recommended for the
variance of the maximum likelihood estimator (Efron and Hinkley 1978, p. 457).

Thus, asymptotically, for large n,

O� � N

�
�;
1

I

�
where I is the information, either the expected Fisher information E�D0.I.�// or the observed Fisher
information I O�/.

So to test H0 W � D 0 versus H1 W � ¤ 0, you can use the standardized Z test statistic

Z D
O�q

Var. O�/
D O�
p
I � N . 0; 1/

and the two-sided p-value is given by

Prob.jZj > jz0j/ D 1 � 2ˆ.jz0j/

where ˆ is the cumulative standard normal distribution function and z0 is the observed Z statistic.

If the BOUNDARYSCALE=SCORE is specified in the SEQDESIGN procedure, the boundary values for
the test statistic are displayed in the score statistic scale. With the standardized Z statistic, the score statistic
S D Z

p
I D O�I and

S � N . 0; I /

Score Statistic

The score statistic is based on the score function for � ,

S.�/ D
@ log.L.�//

@�

Under the null hypothesis H0 W � D 0, the score statistic S.0/ is the first derivative of the log likelihood
evaluated at the null reference 0:

S.0/ D
@ log.L.�//

@�
j � D 0

Under regularity conditions, S.0/ is asymptotically normally distributed with mean zero and variance
E�D0.I.�//, the expected Fisher information evaluated at the null hypothesis � D 0 (Kalbfleisch and
Prentice 1980, p. 45), where I.�/ is the Fisher information

I.�/ D �E

�
@2 log.L.�//

@�2

�
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That is, for large n,

S.0/ � N . 0; E�D0.I.�///

Asymptotically, the variance of the score statistic S.0/, E�D0.I.�//, can also be replaced by the expected
Fisher information evaluated at the MLE � D O� (E

�D O�
.I.�//), the observed Fisher information evaluated at

the null hypothesis � D 0 (I.0//, or the observed Fisher information evaluated at the MLE � D O� (I. O�/)
(Kalbfleisch and Prentice 1980, p. 46), where

I.0/ D �

�
@2log.L.�//

@�2
j � D 0

�

I. O�/ D �

�
@2log.L.�//

@�2
j � D O�

�
Thus, asymptotically, for large n,

S.0/ � N . 0; I /

where I is the information, either an expected Fisher information (E�D0.I.�// or E
�D O�

.I.�//) or a observed
Fisher information (I.0/ or I. O�/).

So to test H0 W � D 0 versus H1 W � ¤ 0, you can use the standardized Z test statistic

Z D
S.0/
p
I

If the BOUNDARYSCALE=MLE is specified in the SEQDESIGN procedure, the boundary values for
the test statistic are displayed in the MLE scale. With the standardized Z statistic, the MLE statistic
O� D Z=

p
I D U.0/=I and

O� � N

�
0;
1

I

�

One-Sample Test for Mean

The following one-sample test for mean is used to demonstrate fixed-sample clinical trials in the section
“One-Sided Fixed-Sample Tests in Clinical Trials” on page 7354 and the section “Two-Sided Fixed-Sample
Tests in Clinical Trials” on page 7356.

Suppose y1; y2; : : : ; yn are n observations of a response variable Y from a normal distribution

yi � N
�
�; �2

�
where � is the unknown mean and �2 is the known variance.



Fixed-Sample Clinical Trials F 7353

Then the log likelihood function for � is

log.L.�// D
nX
jD1

�
1

2

.yj � �/
2

�2
C c

where c is a constant.

The first derivative is

@log.L.�//
@�

D
1

�2

nX
jD1

.yj � �/ D
n

�2
.y � �/

where y is the sample mean.

Setting the first derivative to zero, the MLE of � is O� D y, the sample mean. The variance for O� can be
derived from the Fisher information

I.�/ D �
@2log.L.�//

@�2
D

n

�2

Since the Fisher information I0 D I.�/ does not depend on � in this case, 1=I0 is used as the variance for O� .
Thus the sample mean y has a normal distribution with mean � and variance �2=n:

O� D y � N

�
�;

1

I0

�
D N

�
�;
�2

n

�
Under the null hypothesis H0 W � D 0, the score statistic

S.0/ D
@ log.L.�//

@�
j� D 0 D

n

�2
y

has a mean zero and variance

I.�/ D �
@2log.L.�//

@�2
D

n

�2

With the MLE O� , the corresponding standardized statistic is computed as Z D O�
p
I0 D y=.�=

p
n/, which

has a normal distribution with variance 1:

Z � N
�
�
p
I0; 1

�
D N

�
�

�=
p
n
; 1

�

Also, the corresponding score statistic is computed as S D O�I0 D ny=�2 and

S � N . �I0; I0/ D N

�
n�

�2
;
n

�2

�
which is identical to S.0/ computed under the null hypothesis H0 W � D 0.

Note that if the variable Y does not have a normal distribution, then it is assumed that the sample size n is
large such that the sample mean has an approximately normal distribution.
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One-Sided Fixed-Sample Tests in Clinical Trials
A one-sided test has either an upper (greater) or a lower (lesser) alternative. This section describes one-sided
tests with upper alternatives only. Corresponding results for one-sided tests with lower alternatives can be
derived similarly.

For a one-sided test of H0 W ı � ı0 with an upper alternative H1 W ı > ı0, an equivalent null hypothesis is
H0 W � � 0 with an upper alternative H1 W � > 0, where � D ı � ı0. A fixed-sample test rejects H0 if the
standardized test statistic Z0 D O�

p
I0 � C˛ , where O� is the sample estimate of � and C˛ D ˆ�1.1 � ˛/ is

the critical value.

The p-value of the test is given by 1 �ˆ.Z0/, and the hypothesis H0 is rejected if the p-value is less than ˛.
An upper .1 � ˛/ confidence interval has the lower limit

�l D O� �
ˆ�1.1 � ˛/
p
I0

D
Z0 �ˆ

�1.1 � ˛/
p
I0

The hypothesis H0 is rejected if the confidence interval for the parameter � does not contain zero—that is, if
the lower limit �l is greater than 0.

With an alternative reference � D �1, �1 > 0, a Type II error probability is defined as

ˇ D P�D�1.Z0 < C˛/

which is equivalent to

ˇ D P�D�1

�
Z0 � �1

p
I0 < C˛ � �1

p
I0

�
D ˆ

�
C˛ � �1

p
I0

�
Thus, ˆ�1.ˇ/ D C˛ � �1

p
I0. Then, with C˛ D ˆ�1.1 � ˛/,

�1
p
I0 D ˆ

�1.1 � ˛/Cˆ�1.1 � ˇ/

The drift parameter �1
p
I0 can be computed for specified ˛ and ˇ and the maximum information is given by

I0 D

�
ˆ�1.1 � ˛/Cˆ�1.1 � ˇ/

�1

�2
If the maximum information is available, then the required sample size can be derived. For example, in a
one-sample test for the mean with a specific standard deviation � , the sample size n required for the test is

n D �2 I0 D �2
�
ˆ�1.1 � ˛/Cˆ�1.1 � ˇ/

�1

�2
On the other hand, if the alternative reference �1, standard deviation � , and sample size n are all specified,
then ˛ can be derived for a given ˇ and, similarly, ˇ can be derived for a given ˛.

With an alternative reference � D �1, �1 > 0, the power 1 � ˇ is the probability of correctly rejecting the
null hypothesis H0 at �1:

1 � ˇ D 1 � P�D�1.Z0 < C˛/ D ˆ
�
�1
p
I0 � C˛

�
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Superiority Trials

A superiority trial that tests the response to a new drug is clinically superior to a comparative placebo control
or active control therapy. If a positive value indicates a beneficial effect, a test for superiority has

H0 W � � 0 H1 W � > 0

where H0 is the hypothesis of nonsuperiority and H1 is the alternative hypothesis of superiority.

The superiority test rejects the hypothesis H0 and declares superiority if the standardized statistic Z0 D
O�
p
I0 � C˛, where the critical value C˛ D ˆ�1.1 � ˛/.

For example, if � is the response difference between the treatment and placebo control groups, then a
superiority trial can be

H0 W � � 0 H1 W � D 6

with a Type I error probability level ˛ D 0:025 and a power 1 � ˇ D 0:90 at �1 D 6.

Noninferiority Trials

A noninferiority trial does not compare the response to a new treatment with the response to a placebo.
Instead, it demonstrates the effectiveness of a new treatment compared with that of a nonexisting placebo by
showing that the response of a new treatment is not clinically inferior to the response of a standard therapy
with an established effect. That is, this type of trial attempts to demonstrate that the new treatment effect is
not worse than the standard therapy effect by an acceptable margin. These trials are often performed when
there is an existing effective therapy for a serious disease, and therefore a placebo control group cannot be
ethically included.

It can be difficult to specify an appropriate noninferiority margin. One practice is to choose with reference to
the effect of the active control in historical placebo-controlled trials (Snapinn 2000, p. 20). With this practice,
there is some basis to imply that the new treatment is better than the placebo for a positive noninferiority trial.

If a positive value indicates a beneficial effect, a test for noninferiority has a null hypothesis ı � �ı0 and an
alternative hypothesis ı D ı1 > �ı0, where ı0 > 0 is the specified noninferiority margin.

An equivalent test has

H0 W � � 0 H1 W � D �1 > 0

where the parameter � D ıC ı0, H0 is the null hypothesis of inferiority, and H1 is the alternative hypothesis
of noninferiority,

The noninferiority test rejects the hypothesis H0 and declares noninferiority if the standardized statistic
Z0 D O�

p
I0 D . Oı C ı0/

p
I0 � C˛, where the critical value C˛ D ˆ�1.1 � ˛/.

For example, if ı is the response difference between the treatment and active control groups and ı0 D 2 is
the noninferiority margin, then a noninferiority trial with a power 1 � ˇ D 0:90 at ı1 D 1 might be

H0 W � � 0 H1 W � D 3

where � D ı C ı0 D ı C 2.
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Two-Sided Fixed-Sample Tests in Clinical Trials
A two-sided test is a test of a hypothesis with a two-sided alternative. Two-sided tests include simple
symmetric tests and more complicated asymmetric tests that might have distinct lower and upper alternative
references.

Symmetric Two-Sided Tests for Equality

For a symmetric two-sided test with the null hypothesis ı D ı0 against the alternative ı ¤ ı0, an equivalent
null hypothesis is H0 W � D 0 with a two-sided alternative H1 W � ¤ 0, where � D ı � ı0. A fixed-sample
test rejectsH0 if j O�

p
I0j � C˛=2, where O� is a sample estimate of � and C˛=2 D ˆ�1.1�˛=2/ is the critical

value.

A common two-sided test is the test for the response difference between a treatment group and a control
group. The null and alternative hypotheses are H0 W � D 0 and H1 W � ¤ 0, respectively, where � is the
response difference between the two groups. If a greater value indicates a beneficial effect, then there are
three possible results:

• The test rejects the hypothesis H0 of equality and indicates that the treatment is significantly better if
the standardized statistic Z0 D O�

p
I0 � C˛=2.

• The test rejects the hypothesis H0 and indicates the treatment is significantly worse if the standardized
statistic Z0 D O�

p
I0 � �C˛=2.

• The test indicates no significant difference between the two responses if �C˛=2 < O�
p
I0 < C˛=2.

The p-value of the test is 2.1 �ˆ.Z0// if Z0 > 0 and 2ˆ.Z0/ if Z0 � 0. The hypothesis H0 is rejected if
the p-value of the test is less than ˛—that is, if 1 �ˆ.Z0/ < ˛=2 or ˆ.Z0/ < ˛=2. A symmetric .1 � ˛/
confidence interval for � has lower and upper limits�

O� �
C˛=2
p
I0
; O� C

C˛=2
p
I0

�
which is�

1
p
I0

�
Z0 � C˛=2

�
;

1
p
I0

�
Z0 C C˛=2

��

The hypothesis H0 is rejected if the confidence interval for the parameter � does not contain zero. That is,
the lower limit is greater than zero or the upper limit is less than zero.

With an alternative reference � D �1 > 0, a Type II error probability is defined as

ˇ D P�D�1.�C˛=2 < Z0 < C˛=2/

which is

ˇ D P�D�1

�
.�C˛=2 � �1

p
I0/ < .Z0 � �1

p
I0/ < .C˛=2 � �1

p
I0/
�
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Thus

ˇ D ˆ
�
C˛=2 � �1

p
I0

�
�ˆ

�
�C˛=2 � �1

p
I0

�
The resulting power 1 � ˇ is the probability of correctly rejecting the null hypothesis, which includes the
probability for the lower alternative and the probability for the upper alternative. The SEQDESIGN procedure
uses only the probability of correctly rejecting the null hypothesis for the correct alternative in the power
computation.

Thus, under the upper alternative hypothesis, the power in the SEQDESIGN procedure is computed
as the probability of rejecting the null hypothesis for the upper alternative, 1: � ˆ

�
C˛=2 � �1

p
I0
�
D

ˆ
�
�1
p
I0 � C˛=2

�
, and a very small probability of rejecting the null hypothesis for the lower alternative,

ˆ
�
�C˛=2 � �1

p
I0
�
, is ignored. This power computation is more rational than the power based on the

probability of correctly rejecting the null hypothesis (Whitehead 1997, p. 75).

That is,

ˇ D P�D�1

�
.Z0 � �1

p
I0/ < .C˛=2 � �1

p
I0/
�
D ˆ

�
C˛=2 � �1

p
I0

�
Then with ˆ�1.ˇ/ D C˛=2 � �1

p
I0,

�1
p
I0 D C˛=2 �ˆ

�1.ˇ/ D ˆ�1.1 � ˛=2/Cˆ�1.1 � ˇ/

The drift parameter �1
p
I0 can be derived for specified ˛ and ˇ, and the maximum information is given by

I0 D

�
ˆ�1.1 � ˛=2/Cˆ�1.1 � ˇ/

�1

�2
If the maximum information is available, then the required sample size can be derived. For example, in a
one-sample test for mean, if the standard deviation � is known, the sample size n required for the test is

n D �2 I0 D �2
�
ˆ�1.1 � ˛=2/Cˆ�1.1 � ˇ/

�1

�2
On the other hand, if the alternative reference �1, standard deviation � , and sample size n are all known, then
˛ can be derived with a given ˇ and, similarly, ˇ can be derived with a given ˛.

Generalized Two-Sided Tests for Equality

For a generalized two-sided test with the null hypothesis ı D ı0 against the alternative ı ¤ ı0, an equivalent
null hypothesis is H0 W � � 0 with a two-sided alternative H1 W � ¤ 0, where � D ı � ı0. A fixed-sample
test rejects H0 if the standardized statistic Z0 D O�

p
I0 < �C˛l or Z0 D O�

p
I0 > C˛u , where the critical

values C˛l D ˆ
�1.1 � ˛l/ and C˛u D ˆ

�1.1 � ˛u/.

With the lower alternative reference �1l < 0, a lower Type II error probability is defined as

ˇl D P�D�1l

�
�C˛l � Z0l

p
I0

�
D P�D�1l

�
�C˛l � �1l

p
I0 � Z0l

p
I0 � �1l

p
I0

�
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This implies

ˇl D 1 �ˆ.�C˛l � �1l
p
I0/

and the power is the probability of correctly rejecting the null hypothesis for the lower alternative,

1 � ˇl D ˆ.�C˛l � �1l
p
I0/

The lower drift parameter is derived as

�1l
p
I0 D �

�
ˆ�1.1 � ˛l/Cˆ

�1.1 � ˇl/
�

Then, with specified ˛l and ˇl , if the maximum information is known, the lower alternative reference �1l
can be derived. If the maximum information is unknown, then with the specified lower alternative reference
�1l , the maximum information required is

I0l D

�
ˆ�1.1 � ˛l/Cˆ

�1.1 � ˇl/

��1l

�2
Similarly, the upper drift parameter is derived as

�1u
p
I0 D ˆ

�1.1 � ˛u/Cˆ
�1.1 � ˇu/

For a given ˛u, ˇu, and the upper alternative reference �1u, the maximum information required is

I0u D

�
ˆ�1.1 � ˛u/Cˆ

�1.1 � ˇu/

�1u

�2
Thus, the maximum information required for the design is given by

I0 D max . I0l ; I0u/

Note that with the maximum information level I0, if I0l < I0, then the derived power from the lower
alternative is larger than the specified 1 � ˇl . Similarly, if I0u < I0, then the derived power from the upper
alternative is larger than the specified 1 � ˇu.

If maximum information is available, the required sample size can be derived. For example, in a one-sample
test for mean, if the standard deviation � is known, the sample size n required for the test is n D �2 I0.

On the other hand, if the alternative references, Type I error probabilities ˛l and ˛u, standard deviation � ,
and sample size n are all specified, then the Type II error probabilities ˇl and ˇu and the corresponding
powers can be derived.

Group Sequential Methods
A group sequential design provides interim analyses before the formal completion of a trial. The monitoring
process provides possible early stopping for either positive or negative results and thus reduces the time to
complete the trial. With a specified number of stages, the design creates critical values such that at each
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interim analysis, a hypothesis can be rejected, accepted, or continued to the next time point. At the final stage,
a hypothesis is either rejected or accepted. Usually, the critical values are derived such that the specified
overall Type I and Type II error probability levels are maintained in the design.

For example, to test a null hypothesis H0 with an upper alternative in a fixed-sample design, a critical value
c˛ is created. The null hypothesisH0 is rejected if the test statistic is greater than or equal to the critical value
c˛ . Otherwise, H0 is accepted. But, for a group sequential design with early stopping to reject or accept the
null hypothesis H0, there are two critical values created at each interim analysis: an ˛ critical value c˛k to
reject the null hypothesis and a ˇ critical value cˇk to accept the null hypothesis. The null hypothesis H0
is rejected if the test statistic is greater than or equal to the ˛ critical value c˛k , and H0 is accepted if the
test statistic is less than the ˇ critical value cˇk . If the test statistic is between these two critical values, the
process continues to the next stage. At the final stage, the two critical values are equal, and the hypothesis is
either rejected or accepted.

Armitage, McPherson, and Rowe (1969) showed that repeated significance tests at a fixed level on accumulat-
ing data increase the probability of obtaining a significant result under the null hypothesis. For example, with
a significance level 0.05 in a two-sided fixed-sample test, the critical value is 1.96. If this value is used in
a five-stage group sequential trial with early stopping to reject the null hypothesis, then the probability of
rejecting the null hypothesis at or before the fifth stage is 0.14169, much larger than the nominal value 0.05
(Armitage, McPherson, and Rowe 1969, p. 239).

Pocock (1977) applied these repeated significance tests to group sequential trials with equally spaced
information levels and derives a constant critical value on the standardized normal Z scale across all stages
that maintains the Type I error probability level. For example, with a significance level 0.05 in a two-sided
test, the derived critical value at each stage is 2.413 on the standardized normal Z scale, larger than the
fixed-sample critical value 1.96. The corresponding nominal p-value is 0.0158, which is smaller than the
fixed-sample p-value 0.025 (Pocock 1977, p. 193).

O’Brien and Fleming (1979) proposed a sequential procedure that has boundary values decrease over the
stages on the standardized normal Z scale to make the early stop less likely. The procedure has conservative
stopping boundary values at very early stages, and boundary values at the final stage are close to the fixed-
sample design. For example, with a significance level 0.05 in a two-sided test, the derived critical values at
these five stages on the standardized normal Z scale are 4.562, 3.226, 2.634, 2.281, and 2.040.

The following references: Wang and Tsiatis (1987); Emerson and Fleming (1989); Pampallona and Tsiatis
(1994) generalized the Pocock and O’Brien-Fleming methods to the power family, where a power parameter
is used to allow a continuous set of designs between the Pocock and O’Brien-Fleming methods.

Kittelson and Emerson (1999) extended the methods in the power family even further to the unified family,
which also includes the exact triangular method. The shape and location of each of the four boundaries can
be independently specified in the unified family methods.

Whitehead and Stratton (1983) and Whitehead (1997, 2001) developed triangular methods by adapting tests
for continuous monitoring to discrete monitoring. With early stopping to reject or accept the null hypothesis
in a one-sided test, the derived continuation region has a triangular shape for the score-scaled boundaries.
Only elementary calculations are needed to derive the boundary values for Whitehead’s triangular methods.

For a sequential design, you can derive the ˛ and ˇ error probabilities at each stage from the boundaries. On
the other hand, you can derive the boundaries from specified ˛ and ˇ error probabilities at each stage. The
error spending function approach (Lan and DeMets 1983) uses the error spending function to specify the
error probabilities at each stage and then uses these probabilities to derive the boundaries. You can specify ˛
and ˇ explicitly or implicitly with an error spending function for the cumulative probabilities.
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See Jennison and Turnbull (2000, pp. 5–11) for a more detailed history of group sequential methods.

The following three types of methods are available in the SEQDESIGN procedure to derive boundaries in a
sequential design:

• fixed boundary shape methods, which derive boundaries with specified boundary shapes. These include
the unified family method and Haybittle-Peto method.

• Whitehead methods, which adjust the boundaries from continuous monitoring for discrete monitoring

• error spending methods

You can use the SEQDESIGN procedure to specify methods from the same group for each design. A different
method can be specified for each boundary separately, but all methods in a design must be from the same
group.

Fixed Boundary Shape Methods

The fixed boundary shape methods include the unified family method (Kittelson and Emerson 1999) and the
Haybittle-Peto method (Haybittle 1971; Peto et al. 1976). The unified family methods derive the boundary
values with the specified boundary shape. The unified family methods include the Pocock method (Pocock
1977), the O’Brien-Fleming method (O’Brien and Fleming 1979), the power family method (Wang and
Tsiatis 1987; Emerson and Fleming 1989; Pampallona and Tsiatis 1994), and the triangular method (Kittelson
and Emerson 1999). See the section “Unified Family Methods” on page 7371 for a detailed description of the
methods that use the unified family approach.

The Haybittle-Peto method uses a value of 3 for the critical values in interim stages, so that the critical value
at the final stage is close to the original design without interim monitoring. In the SEQDESIGN procedure,
the Haybittle-Peto method has been generalized to allow for different boundary values at different stages. See
the section “Haybittle-Peto Method” on page 7375 for a detailed description of the Haybittle-Peto method.

Whitehead Methods

The Whitehead methods (Whitehead and Stratton 1983; Whitehead 1997, 2001) derive the boundary values
by adapting the continuous monitoring tests to the discrete monitoring of group sequential tests. The Type I
error probability and power corresponding to the resulting boundaries are extremely close but differ slightly
from the specified values because of the approximations used in deriving the tests (Jennison and Turnbull
2000, p. 106). The SEQDESIGN procedure provides the BOUNDARYKEY= option to adjust the boundary
value at the final stage for the exact Type I or Type II error probability level. See the section “Whitehead
Methods” on page 7376 for a detailed description of Whitehead’s methods.

Error Spending Methods

An error spending method (Lan and DeMets 1983) uses the error spending function to specify the error
spending at each stage and then uses these error probabilities to derive the boundary values. You can specify
these errors explicitly or with an error spending function for these cumulative errors. See the section “Error
Spending Methods” on page 7379 for a detailed description of the error spending methods.

Error spending methods derive boundary values at each stage sequentially and require much more computation
than other types of methods for group sequential trials with a large number of stages, especially for a two-sided
asymmetric design with early stopping to accept H0, or to reject or accept H0.
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The sample size requirement for some applicable tests can also be computed in the procedure. After the
actual data from a clinical trial are collected, you can then use the boundary information created in the
SEQDESIGN procedure to perform a group sequential test in the SEQTEST procedure.

Statistical Assumptions for Group Sequential Designs
The SEQDESIGN procedure assumes that with a total number of stages K, the sequence of the standardized
test statistics fZ1; Z2; : : : ; ZKg has the canonical joint distribution with information levels fI1; I2; : : : ; IKg
for the parameter � (Jennison and Turnbull 2000, p. 49):

• .Z1; Z2; : : : ; ZK/ is multivariate normal

• Zk � N
�
�
p
Ik; 1

�
; k D 1; 2; : : : ; K

• Cov.Zk1 ; Zk2/ D
p
.Ik1=Ik2/, 1 � k1 � k2 � K

In terms of the maximum likelihood estimator, O�k D Zk=
p
Ik , k D 1; 2; : : : ; K, the canonical joint

distribution can be expressed as follows:

• . O�1; O�2; : : : ; O�K/ is multivariate normal

• O�k � N . �; 1=Ik/ ; k D 1; 2; : : : ; K

• Cov. O�k1 ; O�k2/ D 1=Ik2 , 1 � k1 � k2 � K

Furthermore, in terms of the score statistics Sk D Zk
p
Ik , k D 1; 2; : : : ; K, the canonical joint distribution

can be expressed as follows:

• .S1; S2; : : : ; SK/ is multivariate normal

• Sk � N . � Ik; Ik/ ; k D 1; 2; : : : ; K

• Cov.Sk1 ; Sk2/ D Var.Sk1/ D Ik1 , 1 � k1 � k2 � K

That is, the increments S1, S2 � S1, . . . , and SK � S.K�1/ are independently distributed.

If the test statistic is computed from the data that are not from a normal distribution, such as a binomial
distribution, then it is assumed that the test statistic is computed from a large sample such that the statistic
has an approximately normal distribution.

If the increments S1, S2�S1, . . . , and SK�S.K�1/ are not independently distributed, then it is inappropriate
to use group sequential methods in the SEQDESIGN procedure. One such example is the Gehan statistic,
which is a weighted log-rank statistic for censored data. See Jennison and Turnbull (2000, pp. 232–233, 276–
277) and Proschan, Lan, and Wittes (2006, pp. 150–151) for a description of statistics with nonindependent
increments.

If a trial stops at an early interim stage with only a small number of responses observed, it can lead to a
distrust of the statistical findings, which rely on the assumption that the sample is large (Whitehead 1997, p.
167). A group sequential design can be specified such that at the first interim analysis, there are a sufficient
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number of responses to ensure that the analysis to be conducted is both reliable and persuasive (Whitehead
1997, p. 167).

Alternatively, a method such as the O’Brien-Fleming method can be used to derive conservative stopping
boundary values at very early stages to make the early stop less likely. That is, the trial is stopped in early
stages only with overwhelming evidence.

A simple example of the group sequential tests is the test for a normal mean, � D �0. Suppose y1; y2; : : : ; yn
are n observations of a response variable Y in a data set from a normal distribution with an unknown mean �
and a known variance �2. Then the maximum likelihood estimate of � is the sample mean

y D
1

n

nX
jD1

yj

The sample mean has a normal distribution with mean � and variance �2=n:

y � N

�
�;

�2

n

�

An equivalent hypothesis for � D �0 is H0 W � D 0, where � D � � �0. The MLE statistic for � ,

O� D y � �0 � N
�
�; I0

�1
�

where the information I0 D n=�2.

For a group sequential test with K stages, there are N1; N2; : : : ; NK observations available at these stages.
At stage k, the sample mean is computed as

yk D
1

Nk

NkX
jD1

ykj

where ykj is the value of the jth observation available at the kth stage and Nk is the cumulative sample size at
stage k, which includes the Nk�1 observations collected at previous stages and the Nk �Nk�1 observations
collected at the current stage.

The maximum likelihood estimate

O�k D yk � �0 � N
�
�; Ik

�1
�

where the information

Ik D
1

Var.yk/
D
Nk

�2

is the inverse of the variance.

Thus, the standardized statistic

Zk D O�k
p
Ik D .yk � �0/

p
Ik � N

�
�
p
Ik; 1

�
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The covariance of Zk1 and Zk2 , 1 � k1 � k2 � K can be expressed as

Cov.Zk1 ; Zk2/ D
1p

.Ik1Ik2/
Cov.Sk1 ; Sk2/

where Sk1 D Zk1
p
Ik1 and Sk2 D Zk2

p
Ik2 .

Since Sk2 � Sk1 is independent of Sk1 , Cov.Sk1 ; Sk2/ D Var.Sk1/ D Ik1 and

Cov.Zk1 ; Zk2/ D
1p

.Ik1Ik2/
Ik1 D

q
Ik1=Ik2

Thus the statistics fZ1; Z2; : : : ; ZKg has the canonical joint distribution with information levels
fI1; I2; : : : ; IKg for the parameter �. See the section “Applicable One-Sample Tests and Sample Size
Computation” on page 7395, the section “Applicable Two-Sample Tests and Sample Size Computation”
on page 7397, and the section “Applicable Regression Parameter Tests and Sample Size Computation” on
page 7405 for more examples of applicable tests in group sequential trials.

Boundary Scales
The boundaries computed by the SEQDESIGN procedure are applied to test statistics computed during the
analysis, and so generally, the scale you select for the boundaries is determined by the scale of the statistics
that you will be using.

The following scales are available in the SEQDESIGN procedure:

• MLE, maximum likelihood estimate

• standardized Z

• score statistic S

• p-value

These scales are all equivalent for a given set of boundary values—that is, there exists a unique transformation
between any two of these scales. If you know the boundary values in terms of statistics from one scale, you
can uniquely derive the boundary values of statistics for other scales. You can specify the scale with the
BOUNDARYSCALE= option; the default is BOUNDARYSCALE=STDZ, the standardized Z scale.

You can also select the boundary scale to better examine the features of an individual group sequential design
or to compare features among multiple designs. For example, with the standardized Z scale, the boundary
values for the Pocock design are identical across all stages, and the O’Brien-Fleming design has boundary
values (in absolute value) that decrease over the stages.
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The remaining section demonstrates the transformations from one scale to the other scales. If the maximum
likelihood estimate O� is computed by the analysis, then

O� � N

�
�;

1

I

�
where I is the Fisher information if it does not depend on � . Otherwise, I is either the expected Fisher
information evaluated at O� or the observed Fisher information. See the section “Maximum Likelihood
Estimator” on page 7350 for a detailed description of these statistics.

With the MLE statistic O� , the corresponding standardized Z statistic is computed as

Z D O�
p
I � N

�
�
p
I ; 1

�
and the corresponding score statistic is computed as

S D O� I � N . � I; I /

Similarly, if a score statistic S is computed by the analysis, then with

S � N . � I; I /

where I is the information, either an expected Fisher information (E�D0.I.�// orE
�D O�

.I.�//) or an observed
Fisher information (I.0/ or I. O�/).

The corresponding standardized Z statistic is computed as

Z D
S
p
I
� N

�
�
p
I ; 1

�
and the corresponding MLE-scaled statistic is computed as

O� D
S

I
� N

�
�;

1

I

�

With a standardized normal Z statistic, the corresponding fixed-sample nominal p-value depends on the type
of alternative hypothesis. With an upper alternative, the nominal p-value is defined as the one-sided p-value
under the null hypothesis H0 W � D 0 with an upper alternative:

pk D 1 �ˆ.Z/

With a lower alternative or a two-sided alternative, the nominal p-value is defined as the one-sided p-value
under the null hypothesis H0 W � D 0 with a lower alternative:

pk D ˆ.Z/

which is an increasing function of the standardized Z statistic (Emerson, Kittelson, and Gillen 2005, p. 12).
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The BOUNDARYSCALE= MLE, STDZ, SCORE, and PVALUE options display the boundary values in the
MLE, standardize Z, score, and p-value scales, respectively. For example, suppose yk1; yk2; : : : ; yknk are
nk observations of a response variable Y in a data set from a normal distribution with an unknown mean �
and a known variance �2. Then

ykj � N
�
�; �2

�
for k D 1; 2; : : : ; K, where K is the number of groups and nk is the number of observations at group k.

If Nk is the cumulative number of observations for the first k groups, then the sample mean from these Nk
observations

yk D
1

Nk

NkX
jD1

ykj

has a normal distribution with mean � and variance �2=Nk:

yk � N

�
�;
�2

Nk

�

To test the null hypothesis � D �0, H0 W � D 0, where � D � � �0 can be used. The MLE of � is
O�k D yk � �0 and

O�k � N

�
�;

1

Ik

�
where the information is the inverse of the variance of yk ,

Ik D
Nk

�2

The corresponding standardized Z statistic is

Zk D O�k I
1
2

k
� N

�
� I

1
2

k
; 1

�

The score statistic in the SEQDESIGN procedure is then given by

Sk D O�k Ik D Zk I
1
2

k
� N . � Ik; Ik/

For a null hypothesisH0 W � D 0 with an upper alternative, the nominal p-value of the standardized Z statistic
is pk D 1�ˆ.Zk/. For a null hypothesis H0 W � D 0 with a lower alternative or a two-sided alternative, the
nominal p-value of the standardized Z statistic is pk D ˆ.Zk/.
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Boundary Variables
The boundaries created in group sequential trials depend on the type of the alternative hypothesis and the
early stopping criterion. Table 89.5 shows the boundaries created with various design specifications.

Table 89.5 Boundary Variables

Specifications Boundary Variables
Alternative Lower Upper
Hypothesis Early Stopping Alpha Beta Beta Alpha

Lower Accept H0 X
Reject H0 X
Accept/Reject H0 X X

Upper Accept H0 X
Reject H0 X
Accept/Reject H0 X X

Two-sided Accept H0 X X
Reject H0 X X
Accept/Reject H0 X X X X

Up to four boundaries can be generated in a group sequential design:

• the upper ˛ boundary, to reject the null hypothesis for the upper alternative

• the upper ˇ boundary, to accept the null hypothesis with an upper alternative

• the lower ˇ boundary, to accept the null hypothesis with a lower alternative

• the lower ˛ boundary, to reject the null hypothesis for the lower alternative

For a two-sided design, the null hypothesis is accepted only if both the hypothesis is accepted with an upper
alternative and the hypothesis is accepted with a lower alternative.

For a one-sided design with a lower alternative, only the lower boundaries are created. Similarly, for a
one-sided design with an upper alternative, only the upper boundaries are created. For example, Figure 89.10
shows the boundary plot for a one-sided test with an upper alternative.
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Figure 89.10 Boundary Plot for One-Sided Test

Figure 89.10 corresponds to a one-sided sequential design with early stopping to reject or accept the null
hypothesis. For a sequential test with early stopping only to reject the null hypothesis, there are no acceptance
boundary values at interim stages. The acceptance boundary value and its associated acceptance region are
displayed only at the final stage. Similarly, for a sequential test with early stopping only to accept the null
hypothesis, there are no rejection boundary values at interim stages. The rejection boundary value and its
associated rejection region are displayed only at the final stage.

For a two-sided design, both the lower and upper boundaries are created. For a design with early stopping to
reject the null hypothesis, ˛ boundaries are created. Similarly, for a design with early stopping to accept
the null hypothesis, ˇ boundaries are created. For a design with early stopping to accept or reject the null
hypothesis, both the ˛ and ˇ boundaries are created.

For example, Figure 89.11 shows the boundary plot for a two-sided test.
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Figure 89.11 Boundary Plot for Two-Sided Test

Figure 89.11 corresponds to a two-sided sequential design with early stopping to reject or accept the null
hypothesis. For a sequential test with early stopping only to reject the null hypothesis, there are no acceptance
boundary values at interim stages. The acceptance boundary value and its associated acceptance region are
displayed only at the final stage. Similarly, for a sequential test with early stopping only to accept the null
hypothesis, there are no rejection boundary values at interim stages. The rejection boundary value and its
associated rejection region are displayed only at the final stage.

Type I and Type II Errors
The Type I error is the error of rejecting the null hypothesis when the null hypothesis is correct, and the Type
II error is the error of not rejecting the null hypothesis when the null hypothesis is incorrect. The level of
significance ˛ is the probability of making a Type I error. The Type II error depends on the hypothetical
reference of the alternative hypothesis, and the Type II error probability ˇ is defined as the probability of not
rejecting the null hypothesis when a specific alternative reference is true. The power 1 � ˇ is then defined as
the probability of rejecting the null hypothesis at the alternative reference.

In a sequential design, if the maximum information and alternative reference are not both specified, the
critical values are created such that both the specified Type I and the specified Type II error probability levels
are maintained in the design. Otherwise, the critical values are created such that either the specified Type I
error probability or the specified Type II error probability is maintained.
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One-Sided Tests

For a K-stage group sequential design with an upper alternative hypothesis H1 W � D �1 and early stopping
to reject or accept the null hypothesis H0 W � D 0, the boundaries contain the upper ˛ critical values ak
and upper ˇ critical values bk , k D 1; 2; : : : ; K. At each interim stage, bk < ak , the null hypothesis H0 is
rejected if the observed statistic zk � ak , H0 is accepted if zk < bk , or the process is continued to the next
stage if bk � zk < ak . At the final stage bK D aK , the hypothesis is either rejected or accepted.

The overall Type I error probability ˛ is given by

˛ D

KX
kD1

˛k

where ˛k is the ˛ spending at stage k. That is, at stage 1,

˛1 D P�D0. z1 � a1 /

At a subsequent stage k,

˛k D P�D0. bj � zj < aj ; j D 1; 2; : : : ; k � 1; zk � ak/

Similarly, the Type II error probability

ˇ D

KX
kD1

ˇk

where ˇk is the ˇ spending at stage k. That is, at stage 1,

ˇ1 D P�D�1. z1 < b1 /

At a subsequent stage k,

ˇk D P�D�1. bj � zj < aj ; j D 1; 2; : : : ; k � 1; zk < bk /

With an upper alternative hypothesis H1 W � D �1 > 0, the power 1 � ˇ is the probability of rejecting the
null hypothesis for the upper alternative.

1 � ˇ D 1 �

KX
kD1

ˇk D

KX
kD1

P�D�1. bj � zj < aj ; j D 1; 2; : : : ; k � 1; zk � ak/

For a design with early stopping to reject H0 only, the interim upper ˇ critical values are set to �1,
bk D �1; k D 1; 2; : : : ; K � 1, and ˇ D ˇK . For a design with early stopping to accept H0 only, the
interim upper ˛ critical values are set to1, ak D1; k D 1; 2; : : : ; K � 1, and ˛ D ˛K .

Similarly, the Type I and Type II error probabilities for a K-stage design with a lower alternative hypothesis
H0 W � D ��1 can also be derived.
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Two-Sided Tests

For a K-stage group sequential design with two-sided alternative hypotheses H1u W � D �1u and H1l W � D
�1l , and early stopping to reject or accept the null hypothesis H0 W � D 0, the boundaries contain the upper ˛
critical values ak , upper ˇ critical values bk , lower ˇ critical values _bk , and lower ˛ critical values _ak ,
k D 1; 2; : : : ; K. At each interim stage, _ak < _bk � bk < ak , the null hypothesis H0 is rejected if the
observed statistic zk � ak or zk � _ak , H0 is accepted if _bk < zk < bk , or the process is continued to
the next stage if bk � zk < ak or _ak < zk � _bk . At the final stage bK D aK and _bK D _aK , the
hypothesis is either rejected or accepted.

The overall upper Type I error probability ˛u is given by

˛u D

KX
kD1

˛uk

where ˛uk is the ˛ spending at stage k for the upper alternative. That is, at stage 1,

˛u1 D P�D0. z1 � a1 /

At a subsequent stage k,

˛uk D P�D0. _aj < zj � _bj or bj � zj < aj ; j D 1; 2; : : : ; k � 1; zk � ak /

Similarly, the overall lower Type I error probability ˛l can also be derived, and the overall Type I error
probability ˛ D ˛l C ˛u.

The overall upper Type II error probability ˇu is given by

ˇu D

KX
kD1

ˇuk

where ˇuk is the upper ˇ spending at stage k. That is, at stage 1,

ˇu1 D P�D�1u. z1 < _a1 or _b1 < z1 < b1 /

At a subsequent stage k,

ˇuk D P�D�1u. _aj < zj � _bj or bj � zj < aj ; j D 1; 2; : : : ; k � 1; zk < _ak or _bk < zk < bk /

With an upper alternative hypothesis H1 W � D �1u > 0, the power 1 � ˇu is the probability of rejecting the
null hypothesis for the upper alternative:

1 � ˇu D 1 �

KX
kD1

ˇuk

which is

P�D�1u. _aj < zj � _bj or bj � zj < aj ; j D 1; 2; : : : ; k � 1; zk � ak /

The overall lower Type II error probability ˇl and power 1 � ˇl can be similarly derived.

For a design with early stopping only to reject H0, both the interim lower and upper ˇ critical values are set
to missing, k D 1; 2; : : : ; K � 1, and ˇlK D ˇl , ˇuK D ˇu. For a design with early stopping only to accept
H0, the interim upper ˛ critical values are set to1, auk D1, and the interim lower ˛ critical values are set
to �1, alk D �1, k D 1; 2; : : : ; K � 1, and ˛uK D ˛u, ˛lK D ˛l .
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Unified Family Methods
Unified family methods (Kittelson and Emerson 1999) derive boundary values with a specified boundary
shape. For example, Pocock’s method (Pocock 1977) derives equal boundary values for all stages in the
standardized Z scale. In addition to Pocock’s method, the unified family methods include the O’Brien-
Fleming, power family, and unified family triangular methods.

The boundary values at each stage depend on the information fractions

…k D
Ik

IX

where Ik is the information available at stage k and IX is the maximum information, the information available
at the end of the trial if the trial does not stop early.

Boundary Values in Standardized Z Scale

With the unified family method, the boundary values for the upper ˛ boundary Z˛u, upper ˇ boundary Zˇu,
lower ˇ boundary Zˇl , and lower ˛ boundary Z˛l , using the standardized normal scale, are given by the
following:

• Z˛u.…k/ D f˛u.…k/ C˛u

• Zˇu.…k/ D �1u I
1
2

k
� fˇu.…k/ Cˇu

• Zˇl.…k/ D �1l I
1
2

k
C fˇl.…k/ Cˇl

• Z˛l.…k/ D �f˛l.…k/ C˛l

where �1l.< 0/ and �1u.> 0/ are the lower and upper alternative references, f˛l.…k/, fˇl.…k/, fˇu.…k/,
and f˛u.…k/ are the specified shape functions, and C˛l , Cˇl , Cˇu, and C˛u are the critical values derived
to achieve the specified ˛ and ˇ levels.

If a derived lower ˇ boundary value Zˇl.…k/ is greater than its corresponding upper ˇ boundary value
Zˇu.…k/, then both values are set to missing.

Note that the drift parameters dl D �1l
p
IX and du D �1u

p
IX are derived in the SEQDESIGN procedure.

The boundary values in standardized Z scale can be derived without specifying the maximum information
and alternative reference.

Shape Parameters

The shape function in the SEQDESIGN procedure is given by

f .…k/ D f .…kI �; �/ D � …
1
2

k
C…

��

k
D …

1
2

k
.� C…

�.�C 1
2
/

k
/

where the parameters � � 0 and 0 � � � 2�. can be specified for each boundary separately.

The parameters � and � determine the shape of the boundaries. Special cases of the unified family methods
also include power family methods and triangular methods. Table 89.6 summarizes the corresponding
parameter values in the unified family for these methods.
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Table 89.6 Parameters in the Unified Family for Various Methods

Unified Family
Method Option Rho Tau

Pocock POC 0 0
O’Brien-Fleming OBF 0.5 0
Power family POW (RHO=�) � 0
Triangular TRI (TAU=� ) 0.5 �

Note that the power parameter � D 1=2 �� D �� � 1=2, where � is the power parameter used in Jennison
and Turnbull (2000) and Wang and Tsiatis (1987) and �� is the power parameter used in Kittelson and
Emerson (1999).

Also note that instead of the three parameters used in the unified family methods by Kittelson and Emerson
(1999), only two parameters are used in the SEQDESIGN procedure. The other parameter is fixed at zero.

Boundary Values in MLE Scale

If the maximum information is available, the boundary values derived from a unified family method can also
be displayed in the MLE scale:

• �˛u.…k/ D I
� 1
2

k
f˛u.…k/ C˛u

• �ˇu.…k/ D �1u � I
� 1
2

k
fˇu.…k/ Cˇu

• �ˇl.…k/ D �1l C I
� 1
2

k
fˇl.…k/ Cˇl

• �˛l.…k/ D �I
� 1
2

k
f˛l.…k/ C˛l

These MLE scale boundary values are computed by multiplying I
� 1
2

k
by the standardized Z scale boundary

values at stage k.

Boundary Values in Score Scale

If the maximum information is available, the boundary values derived from a unified family method can also
be displayed in the score scale:

• S˛u.…k/ D I
1
2

k
f˛u.…k/ C˛u

• Sˇu.…k/ D �1u Ik � I
1
2

k
fˇu.…k/ Cˇu

• Sˇl.…k/ D �1l Ik C I
1
2

k
fˇl.…k/ Cˇl

• S˛l.…k/ D �I
1
2

k
f˛l.…k/ C˛l
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These MLE scale boundary values are computed by multiplying I
1
2

k
by the standardized Z scale boundary

values at stage k.

Boundary Values in p-Value Scale

For a design with a lower alternative or a two-sided alternative, the p-value scale boundary values are the
cumulative normal distribution function values of the standardized Z boundary values:

• P˛u.…k/ D ˆ.Z˛u.…k//

• Pˇu.…k/ D ˆ.Zˇu.…k//

• Pˇl.…k/ D ˆ.Zˇl.…k//

• P˛l.…k/ D ˆ.Z˛l.…k//

These nominal p-values are the one-sided fixed-sample p-values under the null hypothesis with a lower
alternative.

For a one-sided design with an upper alternative, the p-value scale boundary values are the one-sided
fixed-sample p-values under the null hypothesis with an upper alternative:

• P˛u.…k/ D 1 �ˆ.Z˛u.…k//

• Pˇu.…k/ D 1 �ˆ.Zˇu.…k//

Pocock’s Method

The shape function for Pocock’s method (Pocock 1977) is given by

f .…k/ D 1

The resulting boundary values for a two-sided design with an early stopping to reject the null hypothesis
H0 W � D 0 are as follows:

• Z˛u.…k/ D C˛u

• Z˛l.…k/ D �C˛l

That is, the rejection boundary values are constant over all stages of different information levels in the
standardized Z scale.

Note that compared with other designs, Pocock’s design tends to stop the trials early with a larger p-value.
For a new treatment, Pocock’s design to stop a trial early with a large p-value might not be persuasive
enough to make a new treatment widely accepted (Pocock and White 1999). A Pocock design is illustrated in
Example 89.3.
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O’Brien-Fleming Method

The shape function for the O’Brien-Fleming method (O’Brien and Fleming 1979) is given by

f .…k/ D …
� 1
2

k

The resulting boundary values for a two-sided design with early stopping to reject the null hypothesis
H0 W � D 0 are as follows:

• Z˛u.…k/ D …
� 1
2

k
C˛u

• Z˛l.…k/ D �…
� 1
2

k
C˛l

That is, the rejection boundaries are inversely proportional to the square root of the information levels in the
standardized Z scale.

In the score scale, these boundaries can be displayed as follows:

• S˛u.…k/ D C˛u I
1
2

X

• S˛l.…k/ D �C˛l I
1
2

X

which are constants over all stages in the score scale. An O’Brien-Fleming design is illustrated in Exam-
ple 89.2.

Power Family Method

The shape function for a power family method (Wang and Tsiatis 1987; Emerson and Fleming 1989;
Pampallona and Tsiatis 1994) is given by

f .…k/ D …
��

k

The resulting boundary values for a two-sided design with early stopping to reject the null hypothesis
H0 W � D 0 are as follows:

• Z˛u.…k/ D …
��

k
C˛u

• Z˛l.…k/ D �…
��

k
C˛l

The rejection boundaries depend on the power parameter �. The power family includes the Pocock and
O’Brien-Fleming methods, and the power parameter is used to allow continuous movement between these
two methods.
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Triangular Method

The shape function for a triangular method (Kittelson and Emerson 1999) in the unified family is given by

f .…k/ D …
� 1
2

k
C � …

1
2

k

The resulting boundary values for a two-sided design with early stopping to reject the null hypothesis
H0 W � D 0 are as follows:

• Z˛u.…k/ D .…
� 1
2

k
C � …

1
2

k
/ C˛u D C˛u…

� 1
2

k
.1C � …k/

• Z˛l.…k/ D �.…
� 1
2

k
C � …

1
2

k
/ C˛l D �C˛l …

� 1
2

k
.1C � …k/

In the score scale, these boundaries are as follows:

• S˛u.…k/ D C˛u I
1
2

X .1C � …k/ D C˛u I
1
2

X C C˛u�I
� 1
2

X Ik

• S˛l.…k/ D �C˛l I
1
2

X .1C � …k/ D �C˛l I
1
2

X � C˛l�I
� 1
2

X Ik

Thus, in the score scale, the boundary function is a linear function of the information Ik . With these
straight-line boundaries, a triangular method for a one-sided trial with early stopping to reject or accept the
null hypothesis produces a triangular continuation region. Similarly, for a two-sided design, the continuation
region is a union of two separate triangular regions. A triangular method is illustrated in Example 89.6.

Haybittle-Peto Method
The Haybittle-Peto method (Haybittle 1971; Peto et al. 1976) uses a value of 3 for the critical values in
interim stages, so that the critical value at the final stage is close to the original design without interim
monitoring.

In the SEQDESIGN procedure, the Haybittle-Peto method has been generalized to allow for different
boundary values at different stages. That is, with the standardized normal scale, the boundary values are
given by the following:

• Z˛u.…k/ D z˛uk

• Zˇu.…k/ D �1u I
1
2

k
� zˇuk

• Zˇl.…k/ D �1l I
1
2

k
C zˇlk

• Z˛l.…k/ D �z˛lk

where �1l and �1u are the lower and upper alternative references and the boundary values z˛uk , zˇuk ,
zˇlk , and z˛lk are specified either explicitly with the HP( Z= numbers) option or implicitly with the HP(
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PVALUE= numbers) option. The HP( PVALUE= numbers) option specifies the nominal p-values pk for the
corresponding boundary values zk:

zk D ˆ
�1.1 � pk/

The Haybittle-Peto method is illustrated in Example 89.5.

Whitehead Methods
The Whitehead methods (Whitehead and Stratton 1983; Whitehead 1997, 2001) derive boundary values
by adjusting the boundary values generated from continuous monitoring. With continuous monitoring, the
boundary values are on a straight line in the score scale for each boundary. For a group sequential design, the
boundary values at an interim stage k depend on the information fractions

…k D
Ik

IX

where Ik is the information available at stage k and IX is the maximum information, the information available
at the end of the trial if the trial does not stop early.

One-Sided Symmetric Designs

A one-sided symmetric design is a one-sided design with identical Type I and Type II error probabilities. For
a one-sided symmetric design with an upper alternative, ˛u D ˇu, the boundary values in the score scale
from continuous monitoring are as follows:

• S˛u.…k/ D Cu��1u C �u�uIk

• Sˇu.…k/ D �u Ik � .Cu��1u � �u�uIk/

where �u is the upper alternative reference, �u is a specified constant for the slope, 0 � �u < 1
2

, and Cu is a
constant, fixed for STOP=BOTH and derived for STOP=ACCEPT and STOP=REJECT.

The upper ˇ boundary value can also be expressed as

• Sˇu.…k/ D �Cu��1u C .1 � �u/�uIk

Thus, these straight-line boundaries form a triangle in the score statistic scale.

To adjust for the nature of discrete monitoring, the group sequential boundary values are given by the
following:

• S˛u.…k/ D Cu��1u C �u�uIk � gk

• Sˇu.…k/ D �Cu��1u C .1 � �u/�uIk C gk

where g1 D 0:583
p
I1 and gk D 0:583

p
Ik � I.k�1/, k > 1 are the adjustments.

Note that with the adjustment gk , the resulting boundaries form a Christmas tree shape within the original
triangle and are referred to as the Christmas tree boundaries (Whitehead 1997, p. 73).
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One-Sided Asymmetric Designs

For a one-sided asymmetric design with an upper alternative, ˛u ¤ ˇu, the boundary values computed using
the score scale, are given by the following:

• S˛u.…k/ D Cu Q��1u C �u Q�uIk � gk

• Sˇu.…k/ D �Cu Q��1u C .1 � �u/ Q�uIk C gk

where Q�u is the modified alternative reference

Q�u D
2ˆ�1.1 � ˛u/

ˆ�1.1 � ˛u/Cˆ�1.1 � ˇu/
�u

The modified alternative reference Q�u D �u if ˛u D ˇu.

For a design with early stopping to reject or accept the null hypothesis, S˛u.1/ D Sˇu.1/, the boundary
values at the final stage are equal. The modified drift parameter Qdu is given by

Qdu D Q�u
p
IX D

1

1 � 2�u

�q
hK

2
C 2Cu.1 � 2�u/ � hK

�

where hK D gK I
� 1
2

X D 0:583
p
1 �….K�1/.

A one-sided Whitehead design with early stopping to reject or accept the null hypothesis is illustrated in
Example 89.7.

Two-Sided Designs

The boundary values for a two-sided design are generated by combining boundary values from two one-sided
designs. With the STOP=BOTH option, this produces a double triangular design (Whitehead 1997, p. 98).

The boundary values for a two-sided design, using the score scale, are then given by the following:

• S˛u.…k/ D Cu Q��1u C �u Q�uIk � gk

• Sˇu.…k/ D �Cu Q��1u C .1 � �u/ Q�uIk C gk

• Sˇl.…k/ D �Cl Q��1l C .1 � �l/
Q�lIk � gk

• S˛l.…k/ D Cl Q��1l C �l
Q�lIk C gk

where the modified alternative references are

Q�u D
2ˆ�1.1 � ˛u/

ˆ�1.1 � ˛u/Cˆ�1.1 � ˇu/
�u

Q�l D
2ˆ�1.1 � ˛l/

ˆ�1.1 � ˛l/Cˆ
�1.1 � ˇl/

�l

The modified alternative reference Q�u D �u if ˛u D ˇu and Q�l D �l if ˛l D ˇl .
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For a design with early stopping to reject or accept the null hypothesis, the two upper boundary values
at the final stage are identical and the two lower boundary values at the final stage are identical. That is,
S˛l.1/ D Sˇl.1/ and S˛u.1/ D Sˇu.1/. These modified drift parameters are then given by

Qdl D Q�l
p
IX D

1

1 � 2�l

�q
hK

2
C 2Cl.1 � 2�l/ � hK

�
Qdu D Q�u

p
IX D

1

1 � 2�u

�q
hK

2
C 2Cu.1 � 2�u/ � hK

�

where hK D gKI
� 1
2

X D 0:583
p
1 �….K�1/.

For a design with early stopping to reject the null hypothesis, or a design with early stopping to accept the
null hypothesis, you can specify the slope parameters �u and �l in the TAU= option, and then the intercept
parameters Cu and Cl , and the resulting boundary values are derived. If both the maximum information
and alternative references are specified, the procedure derives Cu and Cl by maintaining either the overall ˛
levels (BOUNDARYKEY=ALPHA) or the overall ˇ levels (BOUNDARYKEY=BETA). If the maximum
information and alternative reference are not both specified, the procedure derives the boundary values Cu
and Cl by maintaining both the overall ˛ and overall ˇ levels.

For a design with early stopping to reject or accept the null hypothesis (STOP=BOTH), Whitehead’s triangular
test uses �u D �l D 0:25 and compute Cu D �2 log.2˛u/ and Cl D �2 log.2˛l/ for the boundary values.
If the maximum information and alternative reference are both specified, the BOUNDARYKEY=ALPHA
option uses the specified ˛ values to compute the ˇ values and boundary values. The final-stage boundary
values are modified to maintain the overall ˛ levels if they exist. Similarly, the BOUNDARYKEY=BETA
option uses the specified ˇ values to compute the ˛ values and boundary values. The final-stage boundary
values are modified to maintain the overall ˇ levels if they exist.

If the maximum information and alternative reference are not both specified, the specified ˛ and ˇ values are
used to derive boundary values. The BOUNDARYKEY=NONE option uses these boundary values without
adjustment. The BOUNDARYKEY=ALPHA option modifies the final-stage boundary values to maintain
the overall ˛ levels if they exist. Similarly, the BOUNDARYKEY=BETA option modifies the final-stage
boundary values to maintain the overall ˇ levels if they exist.

Applicable Boundary Keys

Table 89.7 lists applicable boundary keys for a design that uses Whitehead methods.

Table 89.7 Applicable Boundary Keys for Whitehead Methods

Specified Parameters Boundary Keys
Early Stopping (Alt Ref – Max Info) Tau Alpha Beta None Both

Reject H0 X X X X
Accept H0 X X X X
Reject/Accept H0 X 0.25 X X

Reject H0 X X
Accept H0 X X
Reject/Accept H0 0.25 X X X
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Note that the symbol “X” under “(Alt Ref – Max Info)” indicates that both alternative reference and maximum
information are specified.

For a design with early stopping to reject the null hypothesis, or a design with early stopping to accept the null
hypothesis, you can specify the slope parameter �u in the TAU= option, and then the intercept parameter Cu
and the resulting boundary values are derived. If both the maximum information and alternative reference are
specified, the procedure derives Cu by maintaining either the overall ˛ levels (BOUNDARYKEY=ALPHA)
or the overall ˇ levels (BOUNDARYKEY=BETA). If the maximum information and alternative reference
are not both specified, the procedure derives the boundary values and Cu by maintaining both the overall ˛
and overall ˇ levels.

For a design with early stopping to reject or accept the null hypothesis (STOP=BOTH), Whitehead’s triangular
test uses �u D 0:25 and solves Cu D 2 log. 1

2˛u
/ for the boundary values. If the maximum information and

alternative reference are both specified, the BOUNDARYKEY=ALPHA option uses the specified ˛ value to
compute the ˇ value and boundary values. The final-stage boundary value is modified to maintain the overall
˛ level if it exists. Similarly, the BOUNDARYKEY=BETA option uses the specified ˇ value to compute the
˛ value and boundary values. The final-stage boundary value is modified to maintain the overall ˇ level if it
exists.

If the maximum information and alternative reference are not both specified, the specified ˛ and ˇ values are
used to derive boundary values. The BOUNDARYKEY=NONE option uses these boundary values without
adjustment. The BOUNDARYKEY=ALPHA option modifies the final-stage boundary value to maintain the
overall ˛ level if it exists. Similarly, the BOUNDARYKEY=BETA option modifies the final-stage boundary
value to maintain the overall ˇ level if it exists.

Error Spending Methods
For each sequential design, the ˛ and ˇ errors spent at each stage can be computed from the boundary values.
For example, for a K-stage design with an upper alternative hypothesis H1 W � D �1 and early stopping
to reject the null hypothesis H0 W � D 0, the boundary values in a standardized Z scale are the upper ˛
critical values ak , k D 1; 2; : : : ; K. At each interim stage, the null hypothesis H0 is rejected if the observed
standardized Z statistic zk � ak . Otherwise, the process continues to the next stage. At the final stage, the
hypothesis is rejected if zK � aK . Otherwise, the null hypothesis is accepted.

The boundary values ak are derived such that the overall Type I error probability

˛ D

KX
kD1

˛k

where ˛k is the ˛ spending at stage k. That is, at stage 1,

˛1 D P�D0 . z1 � a1 /

At a subsequent stage k,

˛k D P�D0 . zj < aj ; j D 1; 2; : : : ; k � 1; zk � ak /

Since each design can be uniquely identified by the ˛ and ˇ errors spent at each stage, a design can then
be derived by specifying the ˛ and ˇ errors to be used at each stage. The error spending method (Lan and
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DeMets 1983) distributes the error to be used at each stage and then derives the boundary values. Numerous
forms of the error spending function are available. Kim and DeMets (1987) examine the functions f .t/ D t ,
f .t/ D t

3
2 , and f .t/ D t2, where t is the information fraction. Jennison and Turnbull (2000, p. 148)

generalize these functions to the power functions f .t I �/ D t�; � > 0.

The ERRFUNCPOC option uses the cumulative error spending function (Lan and DeMets 1983)

E.t/ D

8<:
1 if t � 1
log. 1C .e � 1/t/ if 0 < t < 1
0 otherwise

With a specified error of ˛ or ˇ, the cumulative error spending at stage k is ˛ E.…k/ or ˇ E.…k/, where
…k D Ik=IX is the information fraction at stage k. The method produces boundaries similar to those
produced with Pocock’s method.

The ERRFUNCOBF option uses the cumulative error spending function (Lan and DeMets 1983)

E.t I a/ D

8̂<̂
:
1 if t � 1
1
a
2 .1 �ˆ.

z.1�a=2/p
t
// if 0 < t < 1

0 otherwise

where a is either ˛ for the ˛ spending function or ˇ for the ˇ spending function. That is, with a specified
error of ˛ or ˇ, the cumulative error spending at stage k is ˛ E.…kI˛/ or ˇ E.…kIˇ/. The method produces
boundaries similar to those produced with the O’Brien-Fleming method.

The ERRFUNCGAMMA option uses the gamma cumulative error spending function (Hwang, Shih, and
DeCani 1990)

E.t I / D

8̂̂<̂
:̂
1 if t � 1
1�e�t

1�e�
if 0 < t < 1;  ¤ 0

t if 0 < t < 1;  D 0
0 otherwise

where  is the parameter  specified in the GAMMA= option. That is, with a specified error of ˛ or ˇ, the
cumulative error spending at stage k is ˛ E.…kI / or ˇ E.…kI /.

The ERRFUNCPOW option uses the cumulative error spending function (Jennison and Turnbull 2000, p.
148)

E.t I �/ D

8<:
1 if t � 1
t� if 0 < t < 1
0 otherwise

where � is the power parameter specified in the RHO= option. That is, with a specified error of ˛ or ˇ, the
cumulative error spending at stage k is ˛ E.…kI �/ or ˇ E.…kI �/.

Error spending methods derive boundary values at each stage sequentially and require much more computation
than other types of methods for group sequential trials with a large number of stages, especially for a two-sided
asymmetric design with early stopping to accept H0, or to reject or accept H0.
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Note that for a two-sided design with the STOP=BOTH or STOP=ACCEPT option, at each interim stage,
the SEQDESIGN procedure first produces the lower and upper ˇ boundary values based on the one-sided ˇ
spending. If the lower ˇ boundary value is greater than or equal to its corresponding upper ˇ boundary value,
there is no early stopping to accept the null hypothesis at this stage, and the corresponding ˇ spending is
distributed proportionally to the remaining stages.

For the error spending functions not available in the SEQDESIGN procedure, you can first compute the corre-
sponding error spending at each stage explicitly, then use the SEQDESIGN procedure with the ERRSPEND=
option to specify these errors directly.

For example, if the information levels are equally spaced in a five-stage design, the option ERRFUNCPOW
(RHO=2) produces relative cumulative errors of .1=5/2, .2=5/2, .3=5/2, .4=5/2, and 1. This is equivalent to
using the option ERRSPEND (1 4 9 16 25).

A one-sided error spending design is illustrated in Example 89.8 and a two-sided asymmetric error spending
design is illustrated in Example 89.11.

Acceptance (ˇ) Boundary
In a group sequential trial, the rejection boundary is derived under the null hypothesis H0 and is used to stop
the trial early to reject H0. Similarly, the acceptance boundary is derived under the alternative hypothesis
and is used to stop the trial early to accept H0. But, for a trial with early stopping either to reject or to accept
the null hypothesis, dependency exists between these two boundaries. This section describes the effects of
the acceptance boundary on the derivation of the rejection boundary in a group sequential trial.

The following statements create a one-sided four-stage group sequential design with early stopping either to
reject or to accept H0:

ods graphics on;
proc seqdesign altref=10;

ErrSpendPower_2: design nstages=4
method=errfuncpow(rho=2)
alt=upper stop=both
alpha=0.025 beta=0.10;

run;
ods graphics off;

The ALTREF=10 option specifies the alternative reference 10. The METHOD=ERRFUNCPOW(RHO=2) op-
tion uses a � D 2 power family error spending method to generate the rejection boundary. The ALPHA=0.025
and BETA=0.10 options specify the Type I error level 0.025 and Type II error level 0.10, respectively.

The power parameter � D 2 used in the design lies between � D 1 and � D 3, where the boundaries
created with the � D 1 power family error spending method are similar to the boundaries created from
the Pocock method, and the boundaries created with � D 3 are similar to the boundaries created from the
O’Brien-Fleming method.

The “Boundary Information” table in Figure 89.12 shows the rejection and acceptance boundary values
at the stages. With an error spending function method, the boundary values are derived sequentially. In
particular, the rejection boundary value at a stage is derived conditionally on both rejection and acceptance
boundary values at the previous stage. See the section “Error Spending Methods” on page 7379 for a detailed
description of the error spending methods.
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Figure 89.12 Boundary Information

The SEQDESIGN Procedure
Design: ErrSpendPower_2

The SEQDESIGN Procedure
Design: ErrSpendPower_2

Boundary Information (Standardized Z Scale)
Null Reference = 0

Alternative
Boundary

Values

Information Level Reference Upper

_Stage_ Proportion Actual Upper Beta Alpha

1 0.2500 0.028605 1.69130 -0.80640 2.95517

2 0.5000 0.05721 2.39186 0.37356 2.55934

3 0.7500 0.085815 2.92942 1.24940 2.29904

4 1.0000 0.11442 3.38261 2.04182 2.04182

With ODS Graphics enabled, the “Boundary Plot” is displayed by default, as shown in Figure 89.13. The
continuation region is affected by the acceptance boundary, and the rejection boundary is thus adjusted for
this acceptance boundary to maintain the Type I error level.

Figure 89.13 Boundary Plot
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For a design with early stopping either to accept or to reject H0, the shapes of boundaries affect the critical
value at the final stage. For the acceptance boundary, a liberal method at early stages, such as a � D 1

power family error spending method, lowers the critical value at the final stage. For the rejection boundary, a
conservative method at early stages, such as a � D 3 power family error spending method, also lowers the
critical value at the final stage. In addition, a larger Type II error level also lowers the critical value at the
final stage. The resulting critical value at the final stage might even be less than the critical value for the
corresponding fixed-sample design.

To illustrates how this can occur, the following statements use a � D 1 power family error spending method
for the acceptance boundary and a � D 3 power family error spending method for the rejection boundary to
create a group sequential design:

proc seqdesign altref=10;
ErrSpendPower_3_1: design nstages=4

method(alpha)=errfuncpow(rho=3)
method(beta)= errfuncpow(rho=1)
alt=upper stop=both
alpha=0.025 beta=0.10;

run;

The resulting “Boundary Information” table in Figure 89.14 shows that the boundary value at the final stage
1.9267 is less than 1.96, the critical value of the corresponding fixed-sample design.

Figure 89.14 Boundary Information

The SEQDESIGN Procedure
Design: ErrSpendPower_3_1
The SEQDESIGN Procedure

Design: ErrSpendPower_3_1

Boundary Information (Standardized Z Scale)
Null Reference = 0

Alternative
Boundary

Values

Information Level Reference Upper

_Stage_ Proportion Actual Upper Beta Alpha

1 0.2500 0.029725 1.72410 -0.23587 3.35935

2 0.5000 0.05945 2.43824 0.63117 2.76024

3 0.7500 0.089175 2.98622 1.31554 2.35119

4 1.0000 0.1189 3.44819 1.92672 1.92672

That is, H0 can be rejected even if the test statistic at the final stage is less than the critical value for the
corresponding fixed-sample design, which is not desirable. Therefore, for a design with an acceptance
boundary, the design should be used with care.

Another reason why the rejection boundary should not be affected by the acceptance boundary is that a Data
and Safety Monitoring Board (DSMB) might not strictly adhere to this acceptance boundary, and thus the
Type I error level might not be maintained. Therefore, it might not be desirable for the rejection boundary to
be affected by the acceptance boundary (Lan and DeMets 2009, p. 103).

To use a design whose rejection boundary is not affected by the acceptance boundary and that can still stop
the trial early to accept H0, you can use one of the following strategies:

• You can use the conditional power approach for a design that stops early only to reject H0. For this
design, the conditional power at an interim stage k can be defined as the total probability of rejecting



7384 F Chapter 89: The SEQDESIGN Procedure

H0 at any future stages under a specified hypothetical reference, given the observed statistic at stage k.
A small conditional power indicates a small probability of success (rejecting H0) given the current
data, and the trial can be stopped early to accept H0 (Lan, Simon, and Halperin 1982; Lan and DeMets
2009, p. 101). For a detailed description of conditional power, see the section “Stochastic Curtailment”
in Chapter 90, “The SEQTEST Procedure.”

• You can use a design with a nonbinding acceptance boundary (Zhu, Ni, and Yao 2011, pp. 132–133).
For this design, the rejection boundary is created by ignoring the acceptance boundary. Thus, the
Type I error level is maintained even when a trial is allowed to continue for a test statistic that falls in
the acceptance region, and the rejection boundary values (with the standardized Z statistic scale) are
identical to the boundary values that are derived in the corresponding design that stops early only to
reject H0.

Boundary Adjustments for Overlapping Lower and Upper ˇ Boundaries
For the fixed boundary shape methods and Whitehead methods, the boundary values for all stages are
derived simultaneously for each boundary. For a two-sided design with STOP=ACCEPT or STOP=BOTH,
simultaneous derivation might result in overlapping of the lower and upper ˇ boundaries. That is, at an
interim stage k, the lower ˇ boundary value might be greater than its corresponding upper ˇ boundary value.
In this case, these two ˇ boundary values are set to missing and the design does not stop at stage k to accept
the null hypothesis (Jennison and Turnbull 2000, p. 113).

For the error spending methods, the boundary values are derived sequentially for the stages. For a two-sided
design with STOP=ACCEPT or STOP=BOTH, a small ˇ spending at an interim stage might result in
overlapping of the lower and upper ˇ boundaries for the two corresponding one-sided tests. Specifically, this
form of overlapping occurs at an interim stage k if the upper ˇ boundary value derived from the one-sided
test for the upper alternative is less than the lower ˇ boundary value derived from the one-sided test for the
lower alternative (Kittelson and Emerson 1999, pp. 881–882; Rudser and Emerson 2007, p. 6). You can use
the BETAOVERLAP= option to specify how this type of overlapping is to be handled.

If BETAOVERLAP=ADJUST (which is the default) is specified, the procedure derives the boundary values
for the two-sided design and then checks for overlapping of the two one-sided ˇ boundaries at interim stages.
If overlapping occurs at a particular stage, the ˇ boundary values for the two-sided design are set to missing
(so the trial does not stop to accept the null hypothesis at this stage), and the ˇ spending values at subsequent
stages are adjusted proportionally as follows.

If the ˇ boundary values are set to missing at stage k in a K-stage trial, the adjusted ˇ spending value at stage
k, e0

k
, is updated for these missing ˇ boundary values, and then the ˇ spending values at subsequent stages

are adjusted proportionally by

e0j D e
0
k C

ej � ek

eK � ek
.eK � e

0
k/

for j D k C 1; : : : ; K, where ej and e0j are the cumulative ˇ spending values st stage j before and after the
adjustment, respectively.

After all these adjusted ˇ spending values are computed, the boundary values are then further modified for
these adjusted ˇ spending values.

If you specify BETAOVERLAP=NOADJUST, no adjustment is made when overlapping of one-sided ˇ
boundaries occurs. The BETAOVERLAP= option is illustrated in Example 89.10.
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Specified and Derived Parameters
In the SEQDESIGN procedure, the type of alternative hypothesis (ALT= option) and the condition for early
stopping (STOP= option) must be specified for each sequential design. The drift parameters are derived
for each design specified. Other parameters, such as Type I error probability ˛, Type II error probability ˇ,
the alternative reference �1, and maximum information are either specified or derived in the SEQDESIGN
procedure.

Table 89.8 summarizes the available combinations for the specified and derived parameters in the SEQDE-
SIGN procedure.

Table 89.8 Specified and Derived Parameters in the SEQDESIGN Procedure

Specified Parameters Derived Parameters
Alt Ref Max Info Alpha Beta Alt Ref Max Info Alpha Beta Drift

Z X X X X
Z X X X X
Z X X X X

Z X X X X
X X X X X

X X X

The symbol “X” indicates that the parameter is either specified or derived in the design and the symbol “Z”
indicates that the alternative reference is either specified explicitly with the ALTREF= option or derived from
the SAMPLESIZE statement. The drift parameter is always derived in the SEQDESIGN procedure.

For example, if the ALTREF= option is specified without the MAXINFO= option being specified, then the
maximum information is derived in the SEQDESIGN procedure with the specified ˛ and ˇ, as illustrated in
Example 89.5.

The drift parameter is the standardized reference difference at the final stage. For a design, the drift parameter
is

dl D �1l
p
IX

if it has a lower alternative, and

du D �1u
p
IX

if it has an upper alternative, where IX is the maximum information and �1l and �1u are the lower and upper
alternative references, respectively.

If the alternative reference and the maximum information are not both specified, then the specified ˛ and ˇ
are used to derive the drift parameter. Then if either the alternative reference or the maximum information is
specified, the other is derived from the drift parameter.

If both the alternative reference and the maximum information are specified, then either the ˛ error or the ˇ
error is derived in the procedure. However, for a Haybittle-Peto method with the BOUNDARYKEY=NONE
option, both ˛ and ˇ errors are derived from the completely specified boundary values.
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For a nonsymmetric two-sided design with different lower and upper specifications (such as different lower
and upper ˛ errors, ˇ errors, or alternative references in absolute values), the derived lower and upper
boundaries are not symmetric. If the alternative references �1l and �1u are not both specified, then the
SEQDESIGN procedure assumes symmetric alternative references, �1 D �1u D ��1l , for the computation
of the boundary values.

Applicable Boundary Keys
In the SEQDESIGN procedure, the BOUNDARYKEY= option in the DESIGN statement specifies the types
of errors to be maintained for the design. Table 89.9 lists applicable boundary keys for designs that use
unified family and Haybittle-Peto methods, designs that use error spending methods, and designs that use the
Haybittle-Peto method only.

Table 89.9 Applicable Boundary Keys for Designs without Whitehead Methods

Specified Parameters Boundary Keys
Method (Alt Ref – Max Info) Alpha Beta None Both

Unified X X X
Unified/Haybittle-Peto X X X
Error spending X X X
Haybittle-Peto X X X X

Unified/Haybittle-Peto X
Error spending X
Haybittle-Peto X

Note that the symbol “X” under “(Alt Ref – Max Info)” indicates that both the alternative reference and
maximum information are specified, and the method “Unified/Haybittle-Peto” indicates that both the unified
method and the Haybittle-Peto method are used in the same design.

If the ALTREF= and MAXINFO= options are both specified, then Type I and Type II error probability levels
cannot be met simultaneously if both error probabilities are specified. The BOUNDARYKEY=ALPHA
option maintains the Type I error probability level ˛ and derives Type II error probability ˇ. The BOUND-
ARYKEY=BETA option maintains the Type II error probability level ˇ and derives Type I error probability
˛.

If the Haybittle-Peto method is used for all boundaries, the BOUNDARYKEY=NONE option uses the
specified ˛ boundary value (STOP=REJECT or STOP=BOTH) and the specified ˇ boundary value
(STOP=ACCEPT) at the final stage for the design.

If the ALTREF= and MAXINFO= options are not both specified, the BOUNDARYKEY=BOTH option
derives boundary values that maintain both Type I and Type II error probability levels.

Table 89.10 lists applicable boundary keys for a design that uses Whitehead methods.
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Table 89.10 Applicable Boundary Keys for Whitehead Methods

Specified Parameters Boundary Keys
Early Stopping (Alt Ref – Max Info) Tau Alpha Beta None Both

Reject H0 X X X X
Accept H0 X X X X
Reject/Accept H0 X 0.25 X X

Reject H0 X X
Accept H0 X X
Reject/Accept H0 0.25 X X X

Note that the symbol “X” under “(Alt Ref – Max Info)” indicates that both alternative reference and maximum
information are specified.

If the ALTREF= and MAXINFO= options are both specified, then Type I and Type II error probability levels
cannot be achieved simultaneously if both are specified. the BOUNDARYKEY=ALPHA option maintains
the Type I error probability level ˛ and derives Type II error probability ˇ. The BOUNDARYKEY=BETA
option maintains the Type II error probability level ˇ and derives the Type I error probability ˛.

If the ALTREF= and MAXINFO= options are not both specified, then for a design with the STOP=REJECT
or STOP=ACCEPT option, the BOUNDARYKEY=BOTH option derives boundary values that maintain both
Type I and Type II error probability levels. If the STOP=BOTH option is specified, Whitehead’s triangular
method produces boundaries with approximate Type I and Type II error probabilities. The BOUND-
ARYKEY=NONE option specifies no adjustment to these boundaries. The BOUNDARYKEY=ALPHA and
BOUNDARYKEY=BETA options maintain the Type I error probability level ˛ and Type II error probability
level ˇ, respectively, by adjusting boundary values at the final stage.

Sample Size Computation
The SEQDESIGN procedure assumes that the data are from a multivariate normal distribution and the
sequence of the standardized test statistics fZ1; Z2; : : : ; ZKg has the following canonical joint distribution:

• .Z1; Z2; : : : ; ZK/ is multivariate normal

• Zk � N
�
�
p
Ik; 1

�
• Cov.Zk1 ; Zk2/ D

p
Ik1=Ik2 , 1 � k1 � k2 � K

where K is the total number of stages and Ik is the information available at stage k.

If the test statistic is computed from the data that are not from a normal distribution, such as a binomial
distribution, then it is assumed that the test statistic is computed from a large sample such that the statistic
has an approximately normal distribution.

In a typical clinical trial, the sample size required depends on the Type I error probability level ˛, alternative
reference �1, power 1 � ˇ, and variance of the response variable. Given a one-sided null hypothesis
H0 W � D 0 with an upper alternative hypothesis H1 W � D �1, the information required for a fixed-sample
test is given by

I0 D
.ˆ�1.1 � ˛/Cˆ�1.1 � ˇ//2

�21



7388 F Chapter 89: The SEQDESIGN Procedure

The parameter � and the subsequent alternative reference �1 depend on the test specified in the clinical trial.
For example, suppose you are comparing two binomial populations pa D pb; then � D pa � pb is the
difference between two proportions if the proportion difference statistic is used, and � D log

�
pa.1�pb/
pb.1�pa/

�
,

the log odds ratio for the two proportions if the log odds ratio statistic is used.

If the maximum likelihood estimate O� from the likelihood function can be derived, then the asymptotic
variance for O� is Var. O�/ D 1=I , where I is Fisher information for � . The resulting statistic O� corresponds to
the MLE statistic scale as specified in the BOUNDARYSCALE=MLE option in the PROC SEQDESIGN
statement, O�

p
I corresponds to the standardized Z scale (BOUNDARYSCALE=STDZ), and O� I corresponds

to the score statistic scale (BOUNDARYSCALE=SCORE).

Alternatively, if the score statistic S is derived in a statistical procedure, it can be used as the test statistic and
its asymptotic variance is given by Fisher information, I. In this case, S=

p
I corresponds to the standardized

Z scale and S=I corresponds to the MLE statistic scale.

For a group sequential trial, the maximum information IX is derived in the SEQDESIGN procedure with the
specified ˛, ˇ, and �1. With the maximum information

IX D
1

Var. O�/

the sample size required for a specified test statistic in the trial can be evaluated or estimated from the known
or estimated variance of the response variable. Note that different designs might produce different maximum
information levels for the same hypothesis, and this in turn might require a different number of observations
for the trial.

If each observation in the data set provides one unit of information in a hypothesis testing, such as a one-
sample test for the mean, the required sample size for the sequential design can be derived from the maximum
information. However, for a survival analysis, an individual in the survival time data might provide only
partial information because of censoring. In this case, the required number of events can be derived from the
maximum information. With addition accrual information, the sample size can also be computed.

The SEQDESIGN procedure provides sample size computation for some one-sample and two-sample tests in
the SAMPLESIZE statement. It also provides sample size computation for tests of a parameter in regression
models such as normal regression, logistic regression, and proportional hazards regression. In addition, the
procedure can also compute the required sample size or number of events from the corresponding number in
the fixed-sample design.

Table 89.11 lists the options available in the SAMPLESIZE statement.

Table 89.11 SAMPLESIZE Statement Options

Option Description

Fixed-Sample Models
INPUTNOBS Specifies sample size for fixed-sample design
INPUTNEVENTS Specifies number of events for fixed-sample design

One-Sample Models
ONESAMPLEMEAN Specifies one-sample Z test for mean
ONESAMPLEFREQ Specifies one-sample test for binomial proportion

Two-Sample Models
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Table 89.11 continued

Option Description

TWOSAMPLEMEAN Specifies two-sample Z test for mean difference
TWOSAMPLEFREQ Specifies two-sample test for binomial proportions
TWOSAMPLESURVIVAL Specifies log-rank test for two survival distributions

Regression Models
REG Specifies test for a regression parameter
LOGISTIC Specifies test for a logistic regression parameter
PHREG Specifies test for a proportional hazards regression parameter

The MODEL=INPUTNOBS and MODEL=INPUTNEVENTS options are described next, and the remaining
options are described in the next three sections.

Input Sample Size for Fixed-Sample Design

The MODEL=INPUTNOBS option derives the sample size required for a group sequential trial from the
sample size n0 for the corresponding fixed-sample design. With the N= n0 option specifying the sample size
n0 for a fixed-sample design, the sample size required for a group sequential trial is then computed as

NX D
IX

I0
n0

where IX is the maximum information for the group sequential design and I0 is the information for the
corresponding fixed-sample design. The information ratio between IX and I0 is derived in the SEQDESIGN
procedure.

The SAMPLE=ONE option specifies a one-sample test, and the SAMPLE=TWO option specifies a two-
sample test. For a two-sample test, the WEIGHT= option specifies the sample size allocation weights for the
two groups.

Input Number of Events for Fixed-Sample Design

The MODEL=INPUTNEVENTS option derives the number of events required for a group sequential trial
from the number of events d0 for the corresponding fixed-sample design. With the D= d0 option specifies
the number of events d0 for a fixed-sample survival analysis, the number of events required for a group
sequential trial is then computed as

dX D
IX

I0
d0

where IX is the maximum information for the group sequential design and I0 is the information for the
corresponding fixed-sample design. The information ratio between IX and I0 is derived in the SEQDESIGN
procedure.

The SAMPLE=ONE option specifies a one-sample test, and the SAMPLE=TWO option specifies a two-
sample test. For a two-sample test, the WEIGHT= option specifies the sample size allocation weights for the
two groups.

The ACCRUAL= option specifies the method for individual accrual. The ACCRUAL=UNIFORM option
(which is the default) specifies that the individual accrual is uniform in the accrual time Ta with a constant
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accrual rate ra, and the ACCRUAL=EXP(PARM=0) option specifies that the individual accrual is truncated
exponential with a scaled power parameter 0, where 0 � �10 and 0 ¤ 0. With a scaled parameter 0, the
power parameter for the truncated exponential with the accrual time Ta is given by  D 0=Ta.

The LOSS= option specifies the individual loss to follow up in the sample size computation. The
LOSS=NONE option (which is the default) specifies no loss to follow up, and the EXP(POWER=�) option
specifies exponential loss function with a power parameter � .

With the computed number of events dX for a group sequential survival design, the required total sample
size and sample size at each stage can be derived from specifications of hazard rates, accrual information,
and losses to follow-up information. For each study group, the hazard rate h is constant (which corresponds
to an exponential survival distribution) in the sample size computation.

The next four subsections describe required sample sizes for uniform accrual (with and without losses to
follow up) and for truncated exponential accrual (with and without losses to follow up).

Uniform Accrual without Losses to Follow Up

For a study group with a constant hazard rate h, if the individual accrual is uniform in the accrual time Ta
with a constant accrual rate ra, Kim and Tsiatis (1990, pp. 83–84) show that the expected number of events
by time t is given by

Dh.t/ D

8<: ra

�
t � 1�e�ht

h

�
if t � Ta

ra

�
Ta �

e�ht

h
.ehTa � 1/

�
if t > Ta

For a one-sample design (such as a proportional hazards regression), the expected number of events by time t
is E.t/ D Dh.t/, where h is the hazard rate for the group. For a two-sample design (such as a log-rank test
for two survival distributions), the expected number of events by time t is

E.t/ D
R

RC 1
Dha.t/C

1

RC 1
Dhb .t/

where ha and hb are hazard rates in groups A and B, respectively, and R is the ratio of the sample size
allocation weights wa=wb .

If the accrual rate ra is specified with one of the three time parameters—the accrual time, follow-up time, and
total study time—then PROC SEQDESIGN derives the other two time parameters by solving the equation
for the expected number of events. Similarly, if the accrual rate ra is not specified but two of the three time
parameters are specified, then PROC SEQDESIGN derives the accrual rate.

If the accrual rate ra is specified without the accrual time Ta, follow-up time Tf , and total study time
T D Ta C Tf , the minimum and maximum accrual times can be computed from the following equation, as
described in Kim and Tsiatis (1990, p. 85):

dX

ra
� Ta � E

�1.dX /

With the accrual rate ra and the accrual time Ta, the total sample size is

NX D ra Ta

At each stage k, the number of events is given by

dk D
Ik

IX
dX
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The corresponding time Tk can be derived from the equation for the expected number of events, E.t/ D dk ,
and the resulting sample size is computed as

Nk D

�
ra Tk if Tk � Ta
ra Ta if Tk > Ta

Uniform Accrual with Losses to Follow Up

With the LOSS=EXP(HAZARD=� ) option, the individual loss to follow up has an exponential loss distribu-
tion function

H.t/ D 1 � e�� t

where � � 0 is the loss hazard rate. The loss hazard rate can also be specified implicitly with the
MEDTIME=t� suboption through the median loss time t� .

For a study group with a constant hazard rate h, if the individual accrual is uniform in the accrual time
Ta with a constant accrual rate ra and the individual loss to follow up has an exponential loss distribution
function H.t/, Lachin and Foulkes (1986, p. 511) derive the expected number of events by time t (where
t > Ta) as

Dh.t; Ta/ D ra Ta
h

hC �

�
1 �

1

.hC �/Ta
e�.hC�/t .ehC�/Ta � 1/

�
For t � Ta, the SEQDESIGN procedure estimates the expected number of events by time t as

Dh.t; Ta/ D ra t
h

hC �

�
1 �

1

.hC �/ t
.1 � e�.hC�/t /

�
For a one-sample design (such as a proportional hazards regression), the expected number of events by time
t is E.t; Ta/ D Dh.t; Ta/, where h is the hazard rate for the group. For a two-sample design (such as a
log-rank test for two survival distributions), the expected number of events by time t is

E.t; Ta/ D
R

RC 1
Dha.t; Ta/C

1

RC 1
Dhb .t; Ta/

where ha and hb are hazard rates in groups A and B, respectively, and R is the ratio of the sample size
allocation weights wa=wb .

If the accrual rate ra is specified with one of the three time parameters—the accrual time, follow-up time, and
total study time—then PROC SEQDESIGN derives the other two time parameters by solving the equation
for the expected number of events. Similarly, if the accrual rate ra is not specified, but two of the three time
parameters are specified, then PROC SEQDESIGN derives the accrual rate.

If the accrual rate ra is specified without the accrual time Ta, follow-up time Tf , and total study time
T D Ta C Tf , the SEQDESIGN procedure computes the minimum accrual time Ta by solving the equation

E.1; Ta/ D dX

A closed-form solution is then given by

dX

ra

�
R

RC 1

ha

ha C �
C

1

RC 1

hb

hb C �

��1
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Similarly, the SEQDESIGN procedure derives the maximum accrual time Ta by solving the equation

E.Ta; Ta/ D dX

The maximum accrual time Ta is then obtained by an iterative process.

With the accrual rate ra and the accrual time Ta, the total sample size is

NX D ra Ta

At each stage k, the number of events is given by

dk D
Ik

IX
dX

The corresponding time Tk can be derived from the equation for the expected number of events, E.t/ D dk ,
and the resulting sample size is computed as

Nk D

�
ra Tk if Tk � Ta
ra Ta if Tk > Ta

Truncated Exponential Accrual without Losses to Follow Up

For a study group with a constant hazard rate h, if the individual accrual is truncated exponential with
parameter  over the accrual period from 0 to Ta with distribution

F.t/ D
1 � e�t

1 � e�Ta
for 0 � t � Ta

Lachin and Foulkes (1986, p. 510) derive the expected number of events by time t (where t > Ta) as

Dh.t; N / D N

 
1C



h � 

e�ht � e�h.t�Ta/e�Ta

1 � e�Ta

!
where N is the total sample size.

For t � Ta, the SEQDESIGN procedure estimates the expected number of events by time t as

Dh.t; N / D N F.t/

 
1C



h � 

e�ht � e�t

1 � e�t

!

For the truncated exponential accrual function with a parameter  over the accrual period from 0 to Ta, you
specify the scaled parameter 0 D Ta in the ACCRUAL=EXP(PARM=0) option, where 0 � �10 and
0 ¤ 0.

For a one-sample design (such as a proportional hazards regression), the expected number of events by time t
is E.t;N / D Dh.t; N /, where h is the hazard rate for the group. For a two-sample design (such as a log-rank
test for two survival distributions), the expected number of events by time t is

E.t;N / D
R

RC 1
Dha.t; N /C

1

RC 1
Dhb .t; N /

where ha and hb are hazard rates in groups A and B, respectively, and R is the ratio of the sample size
allocation weights wa=wb .
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If the total sample size N is specified, then at least one of the three time parameters—the accrual time,
follow-up time, and total study time—must be specified, and then PROC SEQDESIGN derives the other two
time parameters by solving the equation for the expected number of events. Similarly, if the total sample size
N is not specified, then at least two of the three time parameters must be specified, and PROC SEQDESIGN
derives the sample size.

If the accrual sample size N is not specified, the SEQDESIGN procedure computes the minimum accrual
sample size by solving the equation

E.1; N / D dX

That is, N D dX .

Similarly, if the total sample size N is not specified but the accrual time Ta is specified, the SEQDESIGN
procedure derives the maximum accrual sample size N by solving the equation

E.Ta; N / D dX

At each stage k, the number of events is given by

dk D
Ik

IX
dX

The corresponding time Tk can be derived from the equation for the expected number of events, E.t/ D dk ,
and the resulting sample size is computed as

Nk D

�
N F.Tk/ if Tk � Ta

N if Tk > Ta

Truncated Exponential Accrual with Losses to Follow Up

With the LOSS=EXP(HAZARD=� ) option, the individual loss to follow up has an exponential loss distribu-
tion function

H.t/ D 1 � e�� t

where � � 0 is the loss hazard rate. The loss hazard rate can also be specified implicitly with the
MEDTIME=t� suboption through the median loss time t� .

For a study group with a constant hazard rate h, if the individual accrual is truncated exponential with
parameter  over the accrual period from 0 to Ta with distribution

F.t/ D
1 � e�t

1 � e�Ta
for 0 � t � Ta

and the individual loss to follow up has an exponential loss distribution function H.t/, Lachin and Foulkes
(1986, p. 513) derive the expected number of events by time t (where t > Ta) as

Dh.t; N / D N
h

hC �

 
1C



hC � � 

e�.hC�/t � e�.hC�/.t�Ta/e�Ta

1 � e�Ta

!
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For t � Ta, the SEQDESIGN procedure estimates the expected number of events by time t as

Dh.t; N / D N F.t/
h

hC �

 
1C



hC � � 

e�.hC�/t � e�t

1 � e�t

!

For the truncated exponential accrual function with a parameter  over the accrual period from 0 to Ta, you
specify the scaled parameter 0 D Ta in the ACCRUAL=EXP(PARM=0) option, where 0 � �10 and
0 ¤ 0.

For a one-sample design (such as a proportional hazards regression), the expected number of events by time t
is E.t;N / D Dh.t; N /, where h is the hazard rate for the group. For a two-sample design (such as a log-rank
test for two survival distributions), the expected number of events by time t is

E.t;N / D
R

RC 1
Dha.t; N /C

1

RC 1
Dhb .t; N /

where ha and hb are hazard rates in groups A and B, respectively, and R is the ratio of the sample size
allocation weights wa=wb .

If the total sample size N is specified, then at least one of the three time parameters—the accrual time,
follow-up time, and total study time—must be specified, and then PROC SEQDESIGN derives the other two
time parameters by solving the equation for the expected number of events. Similarly, if the total sample size
N is not specified, then at least two of the three time parameters must be specified, and PROC SEQDESIGN
derives the sample size.

If the accrual sample size is not specified, the SEQDESIGN procedure computes the minimum sample size N
by solving the equation

E.1; N / D dX

A closed-form solution is then given by

dX

�
R

RC 1

ha

ha C �
C

1

RC 1

hb

hb C �

��1
Similarly, if the accrual sample size N is not specified but the accrual time Ta is specified, the SEQDESIGN
procedure derives the maximum accrual sample size N by solving the equation

E.Ta; N / D dX

At each stage k, the number of events is given by

dk D
Ik

IX
dX

The corresponding time Tk can be derived from the equation for the expected number of events, E.t/ D dk ,
and the resulting sample size is computed as

Nk D

�
N F.Tk/ if Tk � Ta

N if Tk > Ta

The following three sections describe examples of test statistics with their resulting information levels, which
can then be used to derive the required sample size. The maximum likelihood estimators are used for all tests
except to compare two survival distributions with a log-rank test, where a score statistic is used.
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Applicable One-Sample Tests and Sample Size Computation
The SEQDESIGN procedure provides sample size computation for two one-sample tests: normal mean and
binomial proportion. The required sample size depends on the variance of the response variable—that is, the
sample proportion for a binomial proportion test.

In a typical clinical trial, a hypothesis is designed to reject, not accept, the null hypothesis to show the
evidence for the alternative hypothesis. Thus, in most cases, the proportion under the alternative hypothesis
is used to derive the required sample size. For a test of the binomial proportion, the REF=NULLPROP and
REF=PROP options use proportions under the null and alternative hypotheses, respectively.

Test for a Normal Mean

The MODEL=ONESAMPLEMEAN option in the SAMPLESIZE statement derives the sample size required
to test a normal mean by using the sample mean statistic for the null hypothesis � D �0. At stage k, the
sample mean is computed as

yk D
1

Nk

NkX
jD1

ykj

where ykj is the value of the jth observation available in the kth stage and Nk is the cumulative sample size
at stage k.

An equivalent hypothesis is H0 W � D 0, where � D � � �0.

The MLE statistic for � ,
O�k D yk � �0 � N

�
�; Ik

�1
�

where the information

Ik D
1

Var. O�/
D

1

Var.yk/
D
Nk

�2

is the inverse of the variance.

That is, the standardized statistic

Zk D O�k
p
Ik D .yk � �0/

p
Ik � N

�
�
p
Ik; 1

�
Thus, to test the hypothesis H0 W � D 0 against a two-sided alternative H1 W � D �1, H0 is rejected at stage
k if the statistic Zk is less than or equal to the lower ˛ boundary value or if Zk is greater than or equal to the
upper ˛ boundary value at stage k.

If the variance �2 is unknown, the sample variance can be used if it is assumed that the sample variance is
computed from a large sample such that the test statistic has an approximately normal distribution.

The maximum information is needed to derive the required sample size. If the maximum information is not
specified or derived with the ALTREF= option in the procedure, the MEAN=�1 option in the SAMPLESIZE
statement is used to specify the alternative reference and thus to derive the maximum information.
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In the SEQDESIGN procedure, the computed total sample size

NK D �
2 IX

where IX is the maximum information and � is the specified standard deviation. With an available maximum
information, you can specify the MODEL=ONESAMPLEMEAN( STDDEV= � ) option in the SAMPLESIZE
statement to compute the required total sample size and individual sample size at each stage. A procedure
such as PROC MEANS can be used to derive a one-sample Z test for a normal mean.

Test for a Binomial Proportion

The MODEL=ONESAMPLEFREQ option in the SAMPLESIZE statement derives the sample size required
to test a binomial proportion by using the null hypothesis p D p0, where p is the proportion of a binomial
population. At stage k, the MLE for p is computed as

Opk D
1

Nk

NkX
jD1

ykj

where ykj is the value of the jth observation available in the kth stage and Nk is the cumulative sample size
at stage k.

An equivalent hypothesis is H0 W � D 0, where � D p � p0. If p0 is not close to 0 or 1, then for a large
sample, O�k D Opk � p0 has an approximately normal distribution
O�k � N

�
�; I�1k

�
where the information Ik D .p .1 � p/ =Nk/�1 is the inverse of the variance Var. O�/.

Then the standardized statistic

Zk D O�k
p
Ik � N

�
�
p
Ik; 1

�
In practice, the estimated sample proportion Op at stage k can be used to derive the information Ik and test
statistic Zk . Thus, to test the hypothesis H0 against an upper alternative H1 W � D �1 > 0, H0 is rejected at
stage k if the statistic Zk is greater than or equal to the upper ˛ boundary at stage k.

The maximum information IX is needed to derive the required sample size. If the maximum information is
not specified or derived with the ALTREF= option in the procedure, the PROP= option in the SAMPLESIZE
statement is used to specify the alternative reference and to derive the maximum information for the sample
size calculation.

It is assumed that the sample size is sufficiently large such that the test statistic has an approximately normal
distribution. With the hypotheses H0 W p D p0 and H1 W p D p1, the SEQDESIGN procedure derives the
total sample size

NX D p
� .1 � p�/ IX

where p� D p0 if REF=NULLPROP is specified. Otherwise, p� D p1.

If the PROP= option in the SAMPLESIZE statement is not specified, then the alternative reference �1 derived
in the SEQDESIGN procedure is used to compute p1 D p0 C �1.

The ALTREF= option in the PROC statement can be used to specify �1. Otherwise, the PROP= option in the
SAMPLESIZE statement must be specified.
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For example, with H0 W p D 0:5, H1 W p D 0:6, and REF=PROP (which is the default),

NK D p
�.1 � p�/ IX D .0:6 � 0:4/ IX D 0:24 IX

You can specify the MODEL=ONESAMPLEFREQ option in the SAMPLESIZE statement to compute the
required total sample size and individual sample size at each stage. A procedure such as PROC GENMOD
with the default DIST=NORMAL option in the MODEL statement can be used to derive the Z test for a
binomial proportion.

Applicable Two-Sample Tests and Sample Size Computation
The SEQDESIGN procedure provides sample size computation for two-sample tests: the test for the difference
between two normal means, tests for binomial proportions, and the log-rank test for two survival distributions.
These tests for binomial proportions include the test for the difference between two binomial proportions, the
log odds ratio test for binomial proportions, and the log relative risk test for binomial proportions,

For a test of difference between two sample means, the required sample size depends on the assumed sample
variances. Similarly, for a test of two-sample proportions, the required sample size depends on the assumed
sample proportions. For a log-rank test of two survival distributions, the required sample size depends on the
assumed sample hazard rates, accrual rate, and accrual time.

If the REF=NULLPROP or REF=NULLHAZARD option is specified, the proportions or hazard rates
under the null hypothesis are used to derive the required sample size or number of events. Otherwise, the
REF=PROP option (which is the default in the MODEL=TWOSAMPLEFREQ option) or the REF=HAZARD
option (which is the default in the MODEL=TWOSAMPLESURVIVAL option) uses proportions or hazard
rates under the alternative hypothesis to derive the required sample size or number of events.

Test for the Difference between Two Normal Means

The MODEL=TWOSAMPLEMEAN option in the SAMPLESIZE statement derives the sample size required
to test the difference between the means of two normal populations �a and �b by using the null hypothesis
H0 W � D 0, where � D �a � �b .

At stage k, the MLE for � is computed as

O�k D yak � ybk D
1

Nak

NakX
jD1

yakj �
1

Nbk

NbkX
jD1

ybkj

where yakj and ybkj are the values of the jth observation available in the kth stage groups A and B,
respectively, and Nak and Nbk are the cumulative sample sizes at stage k for these two groups.

The statistic O�k has a normal distribution

O�k � N
�
�; Ik

�1
�

where the information Ik is the inverse of the variance Var. O�k/ D �2a=Nak C �
2
b
=Nbk .

Then the standardized statistic

Zk D O�k
p
Ik � N

�
�
p
Ik; 1

�
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Thus, to test the hypothesis H0 W � D 0 against an upper alternative H1 W � D �1; �1 > 0, H0 is rejected at
stage k if the statistic Zk � ak , the upper ˛ boundary for the standardized Z statistic at stage k.

If the variances �2a and �2
b

are unknown, the sample variances can be used to derive the information Ik if
it is assumed that each sample variance is computed from a large sample such that the test statistic has an
approximately normal distribution.

The maximum information is needed to derive the required sample size. If the maximum information is not
specified or derived in the procedure, the alternative reference ��1 specified in the MEANDIFF option is used
to derive the maximum information.

Note that in order to derive the sample sizes Nak and Nbk uniquely from the information, Nak D RNbk
is assumed for k D 1; 2; : : : ; K, where R D wa=wb is the constant allocation ratio computed from the
WEIGHT=wa wb option in the SAMPLESIZE statement.

In PROC SEQDESIGN, the computed total sample sizes for the two groups are

NaK D .�
2
a C R�2b / IX D R .

�2a
R
C �2b / IX

NbK D .
�2a
R
C �2b / IX

where IX is the maximum information derived in the SEQDESIGN procedure, R is the constant allocation
ratio, and �a and �b are the specified standard deviations.

For R D 1, the two sample sizes are equal, then

NaK D NbK D
NK

2
D .�2a C �

2
b / IX

If the variances from the two groups are equal, �2a D �
2
b
D �2, then the total sample sizes for the two groups

are

NaK D .1CR/ �
2 IX

NbK D .1C
1

R
/ �2 IX

and the total sample size is

NX D NaK CNbK D
.RC 1/2

R
�2 IX

Furthermore, for R D 1, the two sample sizes are equal, then

NaK D NbK D
NX

2
D 2 �2 IX

With an available maximum information, you can specify the MODEL=TWOSAMPLEMEAN( WEIGHT=
R STDDEV= �a �b) option in the SAMPLESIZE statement to compute the required total sample size and
individual sample size at each stage. A procedure such as PROC GLM can be used to derive the two-sample
Z test for the mean difference.



Applicable Two-Sample Tests and Sample Size Computation F 7399

Test for the Difference between Two Binomial Proportions

The MODEL=TWOSAMPLEFREQ(TEST=PROP) option in the SAMPLESIZE statement derives the sample
size required to test the difference between two binomial populations with H0 W � D 0, where � D pa � pb .
At stage k, the MLE for � is

O�k D Opak � Opbk D
1

Nak

NakX
jD1

yakj �
1

Nbk

NbkX
jD1

ybkj

where yakj and ybkj are the values of the jth observation available in the kth stage for groups A and B,
respectively, and Nak and Nbk are the cumulative sample sizes at stage k for these two groups.

For sufficiently large sample sizes Nak and Nbk , the statistic O�k has an approximate normal distribution

O�k � N
�
�; Ik

�1
�

where the information is the inverse of the variance

Var. O�k/ D
pa .1 � pa/

Nak
C
pb .1 � pb/

Nbk

Thus, the standardized statistic

Zk D O�k
p
Ik � N

�
�
p
Ik; 1

�
In practice, pa D Opa and pb D Opb , the estimated sample proportions for groups A and B, respectively, at
stage k, can be used to derive the information Ik and the test statistic Zk . Thus, to test the hypothesis H0
against an upper alternative H1 W � > 0, H0 is rejected at stage k if the statistic Zk � ak , the upper ˛
boundary for the standardized Z statistic at stage k.

The maximum information IX is needed to derive the required sample size. If the maximum information is
not specified or derived with the ALTREF= option in the procedure, the PROP= option in the SAMPLESIZE
statement is used to provide proportions under the alternative hypothesis for the alternative reference and
then to derive the maximum information.

The proportions in the two groups are needed to derive the sample size. Also, in order to derive the
sample sizes Nak and Nbk uniquely from the information, Nak D RNbk is assumed for k D 1; 2; : : : ; K,
where R D wa=wb is the constant allocation ratio computed from the WEIGHT=wa wb option in the
SAMPLESIZE statement. Then

IX D

�
pa .1 � pa/

NaK
C
pb .1 � pb/

NbK

��1
D

NaK

pa.1 � pa/CRpb.1 � pb/

In PROC SEQDESIGN, the total sample sizes in the two groups are computed as

NaK D
�
p�a .1 � p

�
a/CRp

�
b .1 � p

�
b /
�
IX

NbK D
1

R
NaK

where R D wa=wb is the constant allocation ratio, and p�a and p�
b

are proportions specified with the REF=
option:
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• REF=NULLPROP uses proportions under H0: p�a D p0a, p�
b
D p0b

• REF=AVGNULLPROP uses the average proportion under H0: p�a D p
�
b
D .Rp0a C p0b/=.RC 1/

• REF=PROP uses proportions under H1: p�a D p1a, p�
b
D p1b

• REF=AVGPROP uses the average proportion under H1 W p�a D p
�
b
D .Rp1a C p1b/=.RC 1/

The total sample size is given by

NX D NaK CNbK D .RC 1/

�
1

R
p�a .1 � p

�
a/C p

�
b .1 � p

�
b /

�
IX

For R D 1, the two sample sizes are equal,

NaK D NbK D
NX

2
D
�
p�a .1 � p

�
a/C p

�
b .1 � p

�
b /
�
IX

You can specify the MODEL=TWOSAMPLEFREQ( TEST=PROP WEIGHT=R ) option in the SAMPLE-
SIZE statement to compute the required total sample size and individual sample size at each stage. A
procedure such as PROC GENMOD with the default DIST=NORMAL option in the MODEL statement can
be used to derive the two-sample Z test for proportion difference.

Test for Two Binomial Proportions with a Log Odds Ratio Statistic

The MODEL=TWOSAMPLEFREQ(TEST=LOGOR) option in the SAMPLESIZE statement derives the
sample size required to test two binomial proportions by using a log odds ratio statistic. The odds ratio is the
ratio of the odds in one group to the odds in the other group, and the log odds ratio is the logarithm of the
odds ratio

� D log
�
pa=.1 � pa/

pb=.1 � pb/

�
D log

�
pa.1 � pb/

pb.1 � pa/

�
The hypothesis of no difference between two proportions, pa D pb , can be tested through the null hypothesis
H0 W � D 0, where � is the log odds ratio. For example, with H0 W pa D pb D 0:6 and H1 W pa D
0:8; pb D 0:6, it corresponds to the equivalent hypothesis H0 W � D 0 and H1 W � D log

�
0:8.1�0:6/
0:6.1�0:8/

�
D

log.8=3/ D 0:98083.

The maximum likelihood estimate of � is given by

O� D log
�
Opa.1 � Opb/

Opb.1 � Opa/

�
with an asymptotic variance

Var. O�/ D I�1 D
1

Napa.1 � pa/
C

1

Nbpb.1 � pb/

where I is the information (Diggle et al. 2002, pp. 341–342). That is, the standardized statistic

Zk D O�k
p
Ik � N

�
�
p
Ik; 1

�
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In practice, pa D Opa and pb D Opb , the estimated sample proportions for groups A and B, respectively, at
stage k, can be used to derive the information Ik and the test statistic Zk D O�k

p
Ik if the two sample sizes

Na and Nb are sufficiently large such that the test statistic has an approximately normal distribution.

The maximum information IX is needed to derive the required sample size. If the maximum information is
not specified or derived with the ALTREF= option in the procedure, the PROP= option in the SAMPLESIZE
statement is used to provide proportions under the alternative hypothesis for the alternative reference and
then to derive the maximum information.

In order to derive the sample sizes Nak and Nbk uniquely from the information, Nak D RNbk is assumed
for k D 1; 2; : : : ; K, where R D wa=wb is the constant allocation ratio computed from the WEIGHT=wa
wb option in the SAMPLESIZE statement. Then with

IX D NbK

�
1

Rpa.1 � pa/
C

1

pb.1 � pb/

��1
the sample size can be computed.

In PROC SEQDESIGN, the total sample sizes in the two groups are computed as

NbK D IX

 
1

Rp�a.1 � p
�
a/
C

1

p�
b
.1 � p�

b
/

!

NaK D RNbK

where R D wa=wb is the constant allocation ratio, and p�a and p�
b

are proportions specified with the REF=
option:

• REF=NULLPROP uses proportions under H0: p�a D p0a, p�
b
D p0b

• REF=AVGNULLPROP uses the average proportion under H0: p�a D p
�
b
D .Rp0a C p0b/=.RC 1/

• REF=PROP uses proportions under H1: p�a D p1a, p�
b
D p1b

• REF=AVGPROP uses the average proportion under H1 W p�a D p
�
b
D .Rp1a C p1b/=.RC 1/

You can specify the MODEL=TWOSAMPLEFREQ( TEST=LOGOR WEIGHT=R) option in the SAM-
PLESIZE statement to compute the required total sample size and individual sample size at each stage. A
procedure such as PROC LOGISTIC can be used to derive the log odds ratio statistic.

Test for Two Binomial Proportions with a Log Relative Risk Statistic

The MODEL=TWOSAMPLEFREQ(TEST=LOGRR) option in the SAMPLESIZE statement derives the
sample size required to test two binomial proportions by using a log relative risk statistic. The relative risk is
the ratio of the proportion in one group to the proportion in the other group. The log relative risk statistic is
the logarithm of the relative risk

� D log
�
pa

pb

�
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The hypothesis of no difference between two proportions, pa D pb , can be tested through the null hypothesis
H0 W � D 0. For example, with H0 W pa D pb D 0:6 and H1 W pa D 0:8; pb D 0:6, it corresponds to the
equivalent hypothesis H0 W � D 0 and H1 W � D log

�
0:8
0:6

�
D log.4=3/ D 0:28768.

The maximum likelihood estimate of � is given by

O� D log
�
Opa

Opb

�
with an asymptotic variance

I�1 D
1 � pa

Na pa
C
1 � pb

Nb pb

where I is the information (Chow and Liu 1998, p. 329).

In practice, pa D Opa and pb D Opb , the estimated sample proportions for groups A and B, respectively, at
stage k, are used to derive the information Ik and the test statistic Zk D O�k

p
Ik .

The maximum information IX and proportions pa and pb are needed to derive the required sample size. If
the maximum information is not specified or derived with the ALTREF= option in the procedure, the PROP=
option in the SAMPLESIZE statement is used to provide proportions under the alternative hypothesis for the
alternative reference and then to derive the maximum information.

Note that in order to derive the sample sizes Nak and Nbk uniquely from the information, Nak D RNbk
is assumed for k D 1; 2; : : : ; K, where R D wa=wb is the constant allocation ratio computed from the
WEIGHT=wa wb option in the SAMPLESIZE statement. Then the sample size can be computed from

IX D NbK

�
1 � pa

Rpa
C
1 � pb

pb

��1
In PROC SEQDESIGN, the computed sample sizes in the two groups are

NbK D IX

 
1 � p�a
Rp�a

C
1 � p�

b

p�
b

!
NaK D RNbK

where R D wa=wb is the constant allocation ratio, and p�a and p�
b

are proportions specified with the REF=
option:

• REF=NULLPROP uses proportions under H0: p�a D p0a, p�
b
D p0b

• REF=AVGNULLPROP uses the average proportion under H0: p�a D p
�
b
D .Rp0a C p0b/=.RC 1/

• REF=PROP uses proportions under H1: p�a D p1a, p�
b
D p1b

• REF=AVGPROP uses the average proportion under H1 W p�a D p
�
b
D .Rp1a C p1b/=.RC 1/

You can specify the MODEL=TWOSAMPLEFREQ( TEST=LOGRR WEIGHT=R) option in the SAM-
PLESIZE statement to compute the required total sample size and individual sample size at each stage. A
procedure such as PROC LOGISTIC can be used to derive the log relative risk statistic.
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Test for Two Survival Distributions with a Log-Rank Test

The MODEL=TWOSAMPLESURV option in the SAMPLESIZE statement derives the number of events
required for a log-rank test of two survival distributions. The analysis of survival data involves the survival
times for both censored and uncensored data. A noncensored survival time is the time from treatment to an
event such as remission or relapse for an individual. A censored survival time is the time from treatment to
the time of analysis for an individual surviving at that time, and the status is unknown beyond that time.

Let T be the random variable of the survival time. Then the survival function

S.t/ D Pr.T > t/

is the probability that an individual from the population has a survival time that exceeds t. And the hazard
function is given by

h.t/ D
f .t/

S.t/

where f .t/ is the density function of T.

The hazard functions can be used to test the equality of two survival distributions Sa.t/ D Sb.t/ with the
null hypothesis H0 W ha.t/ D hb.t/; t > 0, where Sa.t/ and Sb.t/ are survival functions for groups A and B,
respectively, and ha.t/ and hb.t/ are the corresponding hazard functions.

If the two hazards are proportional, ha.t/ D �hb.t/, where � is a constant, then an equivalent null hypothesis
is

H0 W � D
ha.t/

hb.t/
D 1

Alternatively, another equivalent null hypothesis is given by

H0 W � D �log.�/ D 0

Suppose that the hazard rate h is a constant. Then with a specified median survival time Tm, the hazard rate
can be derived from the equation

e�hTm D
1

2

Denote the distinct event times at stage k as �kj ; j D 1; 2; : : : ; tk , where tk is the total number of distinct
event times. Then the score statistic is the log-rank statistic (Jennison and Turnbull 2000, pp. 259–261;
Whitehead 1997, pp. 36–39)

Sk D

tkX
jD1

.dakj � eakj /

where dakj is the number of events from group A and eakj is the number of expected events from A. The
number of expected events from A is computed as

eakj D dkj
rakj

rkj

where dkj is the number of events from both groups, rakj is the number of individuals from the treatment
group who survived up to time �kj , and rkj is the number of individuals from both groups who survived up
to time �kj .
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If the number of events dkj is small relative to rkj , the number of individuals survived up to time �kj , then
with a sufficiently large sample size, Sk has an approximately normal distribution

Sk � N.� Ik; Ik/

where the variance of Sk is the estimated information

Ik D

tkX
jD1

rakj rbkj dkj

r2
kj

In order to derive the number of events from the information Ik , Nak D RNbk is assumed for k D
1; 2; : : : ; K, where R D wa=wb is the constant allocation ratio computed from the WEIGHT=wa wb option
in the SAMPLESIZE statement.

The maximum information IX is needed to derive the required sample size. If the maximum information
is specified or derived with the ALTREF= option in the procedure, the HAZARD=, MEDSURVTIME=,
and HAZARDRATIO= options are not applicable. Otherwise, the HAZARD=, MEDSURVTIME=, or
HAZARDRATIO= option is used to compute the alternative reference and then to derive the maximum
information for the sample size calculation.

With NaK D RNbK , if the number of events is few relative to the number of individuals who survived, then
raKj � R rbKj , and

IX �

tKX
jD1

R

.RC 1/2
dKj D

R

.RC 1/2
DX

where DX is the total number of events.

Thus, the required total number of events

DX D
.RC 1/2

R
IX

For a study group, if the hazard rate is constant, corresponding to an exponential survival distribution, and
the individual accrual is uniform in the accrual time Ta with a constant accrual rate ra, then the required
total sample size and sample size at each stage can be derived. See the section “Input Number of Events
for Fixed-Sample Design” on page 7389 for a detailed description of the sample size computation that uses
hazard rates, accrual rate, and accrual time.

You can specify the MODEL=TWOSAMPLESURVIVAL option in the SAMPLESIZE statement to compute
the required total number of events and individual number of events at each stage. With the specifications
of hazard rates, accrual rate, and accrual time, the required total sample size and individual sample size at
each stage can also be derived. If the REF=NULLHAZARD option is specified, the hazard rates under the
null hypothesis, h0a and h0b , are used in the sample size computation. Otherwise, the hazard rates under the
alternative hypothesis, h1a and h1b , are used. A procedure such as PROC LIFETEST can be used to derive
the log-rank statistic.
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Applicable Regression Parameter Tests and Sample Size Computation
The SEQDESIGN procedure provides sample size computation for tests of a regression parameter in three
regression models: normal regression, logistic regression, and proportional hazards regression.

To test a parameter ˇ1 in a regression model, the variance of the parameter estimate Ǒ1 is needed for the
sample size computation. In a simple regression model with one covariate X1, the variance of Ǒ1 is inversely
related to the variance of X1, �2x . That is,

Var. Ǒ1/ /
1

N �2x

for the normal regression and logistic regression models, where N is the sample size, and

Var. Ǒ1/ /
1

D �2x

for the proportional hazards regression model, where D is the number of events.

For a regression model with more than one covariate, the variance of Ǒ1 for the normal regression and logistic
regression models is inversely related to the variance of X1 after adjusting for other covariates. That is,

Var. Ǒ1/ /
1

N .1 � r2x/ �
2
x

where Ǒ1 is the estimate of the parameter ˇ1 in the model and r2x is the R square from the regression of X1
on other covariates—that is, the proportion of the variance �2x explained by these covariates.

Similarly, for a proportional hazards regression model,

Var. Ǒ1/ /
1

D .1 � r2x/ �
2
x

Thus, with the derived maximum information, the required sample size or number of events can also be
computed for the testing of a parameter in a regression model with covariates.

Test for a Parameter in the Regression Model

The MODEL=REG option in the SAMPLESIZE statement derives the sample size required for a Z test of a
normal regression. For a normal linear regression model, the response variable is normally distributed with
the mean equal to a linear function of the explanatory variables and the constant variance �2.

The normal linear model is

y � N
�
Xˇ; �2y I.N/

�
where Y.N�1/ is the vector of the N observed responses, X.N�p/ is the design matrix for these N observations,
ˇ.p�1/ is the parameter vector, and I.N/ is the .N �N/ identity matrix.

The least squares estimate is

Ǒ D
�
X0X

��1X0Y
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and is normally distributed with mean ˇ and variance

Var. Ǒ/ D �2y .X
0X/�1

For a model with only one covariate X1,

Ǒ
1 � N

�
ˇ1; Var. Ǒ1/

�
where the variance

Var. Ǒ1/ D I�1ˇ1 D �
2
y

1

N �2x

Thus, with the derived maximum information IX D Iˇ1 , the required sample size is given by

N D IX
�2y

�2x

For a normal linear model with more than one covariate, the variance of a single parameter ˇ1 is

Var. Ǒ1/ D �2y .X
0X/�1.11/ D �

2
y

1

N �2x .1 � r
2
x/

where .X0X/�1.11/ is the diagonal element of the .X0X/�1 matrix corresponding to the parameter ˇ1, �2x is the
variance of the variable X1, and r2x is the proportion of variance of X1 explained by other covariates. The
value �2x .1 � r

2
x/ represents the variance of X1 after adjusting for all other covariates.

Thus, with the derived maximum information IX , the required sample size is

N D IX
�2y

.1 � r2x/ �
2
x

In the SEQDESIGN procedure, you can specify the MODEL=REG( VARIANCE=�2y XVARIANCE=�2x
XRSQUARE=r2x ) option in the SAMPLESIZE statement to compute the required total sample size and
individual sample size at each stage. A SAS procedure such as PROC REG can be used to compute the
parameter estimate and its standard error at each stage.

Test for a Parameter in the Logistic Regression Model

The MODEL=LOGISTIC option in the SAMPLESIZE statement derives the sample size required for a Z
test of a logistic regression parameter. The linear logistic model has the form

logit.p/ D log
�

p

1 � p

�
D xˇ

where p is the response probability to be modeled and ˇ is a vector of parameters.

Following the derivation in the section “Test for a Parameter in the Regression Model” on page 7405, the
required sample size for testing a parameter in ˇ is given by

N D IX
�2y

.1 � r2x/ �
2
x
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With the variance of the logit response, �2y D 1=.p.1 � p//,

N D IX
1

p.1 � p/

1

.1 � r2x/ �
2
x

where �2x is the variance of X and r2x is the proportion of variance explained by other covariates.

In the SEQDESIGN procedure, you can specify the MODEL=LOGISTIC( PROP=p XVARIANCE=�2x
XRSQUARE=r2x ) option in the SAMPLESIZE statement to compute the required total sample size and
individual sample size at each stage.

A SAS procedure such as PROC LOGISTIC can be used to compute the parameter estimate and its standard
error at each stage.

Test for a Parameter in the Proportional Hazards Regression Model

The MODEL=PHREG option in the SAMPLESIZE statement derives the number of events required for a
Z test of a proportional hazards regression parameter. For analyses of survival data, Cox’s semiparametric
model is often used to examine the effect of explanatory variables on hazard rates. The survival time of each
observation in the population is assumed to follow its own hazard function, hi .t/, expressed as

hi .t/ D h.t IXi / D h0.t/ exp.X0iˇ/

where h0.t/ is an arbitrary and unspecified baseline hazard function, xi is the vector of explanatory variables
for the ith individual, and ˇ is the vector of regression parameters associated with the explanatory variables.

Hsieh and Lavori (2000, p. 553) show that the required number of events for testing a parameter in ˇ, ˇ1,
associated with the variable X1 is given by

DX D IX
1

.1 � r2x/ �
2
x

where �2x is the variance of X1 and r2x is the proportion of variance of X1 explained by other covariates.

In the SEQDESIGN procedure, you can specify the MODEL=PHREG( XVARIANCE=�2x XRSQUARE=r2x )
option in the SAMPLESIZE statement to compute the required number of events and individual number of
events at each stage.

A SAS procedure such as PROC PHREG can be used to compute the parameter estimate and its standard
error at each stage.

Note that for a two-sample test, X1 is an indicator variable and is the only covariate in the model. Thus, if the
two sample sizes are equal, then the variance �2x D 1=4 and the required number of events for testing the
parameter ˇ1 is given by

DX D IX
1

�2x
D 4 IX

See the section “Input Number of Events for Fixed-Sample Design” on page 7389 for a detailed description
of the sample size computation that uses hazard rates, accrual rate, and accrual time.
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Aspects of Group Sequential Designs
This section summarizes various aspects of group sequential designs that are encountered in applications of
the SEQDESIGN procedure. Features are illustrated through two-sided designs with ˛ D 0:05 and ˇ D 0:10.
The null hypothesis H0 W � D 0 and an alternative reference �1 D ˙0:25 are used for the designs with early
stopping only to reject the null hypothesis.

Canonical Joint Distribution

The SEQDESIGN procedure assumes that with a total number of stages K, the sequence of the standardized
test statistics fZ1; Z2; : : : ; ZKg has the canonical joint distribution with information levels fI1; I2; : : : ; IKg
for the parameter � (Jennison and Turnbull 2000, p. 49):

• .Z1; Z2; : : : ; ZK/ is multivariate normal

• Zk � N
�
�
p
Ik; 1

�
; k D 1; 2; : : : ; K

• Cov.Zk1 ; Zk2/ D
p
.Ik1=Ik2/, 1 � k1 � k2 � K

Normality Assumption

The SEQDESIGN procedure derives the boundary values by assuming that the sequence of the standardized
test statistics fZ1; Z2; : : : ; ZKg has the canonical joint distribution with information levels fI1; I2; : : : ; IKg
for the parameter � . If the test statistic Zk does not have a normal distribution, it is assumed that the
test statistic is computed from a large sample, so that the resulting statistic has an approximately normal
distribution.

Number of Stages

For group sequential trials with fixed significance level ˛, power 1 � ˇ, and alternative reference, if the
number of stages is increased, the required maximum information is also increased, but the average sample
number under the alternative hypothesis is likely to decrease.

For example, for two-sided designs with early stopping only to reject the null hypothesis H0 W � D 0,
˛ D 0:05, and ˇ D 0:10 at the alternative reference �1 D ˙0:25, the O’Brien-Fleming method increases the
maximum information from 168.12 for a fixed-sample design to 169.32 for a two-stage design, 172.57 for
a five-stage design, and then 174.42 for a ten-stage design. In the mean time, the average sample number
(as a percentage of fixed-sample) under the alternative hypothesis decreases from 100 for a fixed-sample
design to 85.11 for a two-stage design, 75.03 for a five-stage design, and then 71.80 for a ten-stage design.
The reduction in average sample number decreases as the number of stages increases. Thus there seems to be
little to gain from choosing a design with more than five stages (Pocock 1982, p. 155).

Alternative Reference

The alternative reference �1 is the hypothetical reference under the alternative hypothesis at which the power
is computed. It is a treatment value that the investigators would hope to detect with high probability (Jennison
and Turnbull 2000, p. 21).
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For a group sequential design with specified parameters such as ˛ and ˇ errors, the drift parameter �1
p
IX

is always derived in the SEQDESIGN procedure. Thus, with a smaller alternative reference �1, a larger
maximum information level IX is needed. That is, in order to detect a smaller difference with the same high
power, a larger sample size is required.

Maximum Information

In a clinical trial, the amount of information about an unknown parameter available from the data can be
measured by the Fisher information, the variance of the score statistic. The maximum information is the
information level needed at the final stage of the group sequential trial if the trial does not stop at an interim
stage. For a group sequential design, the maximum information can be derived with the specified alternative
reference.

The maximum information is proportional to the sample size or number of events required for the design.
Thus, it can also be used to compare different designs. Generally, a design with a larger probability to stop
the trial early tends to have a larger maximum information. For example, for two-sided four-stage designs
with early stopping only to reject H0, ˛ D 0:05, and ˇ D 0:10 at the alternative reference �1 D ˙0:25, the
Pocock method has a maximum information of 198.91 and the O’Brien-Fleming method has a maximum
information of 171.84, indicating a much larger information level required for the Pocock method.

Drift Parameter

The drift parameter �1
p
IX is derived for each design in the SEQDESIGN procedure, where �1 is the

alternative reference. It is proportional to the square root of maximum information required for the design and
can be used to compare maximum information for different designs with the same alternative reference. For
example, for two-sided four-stage designs with early stopping only to reject H0, ˛ D 0:05, and ˇ D 0:10,
the Pocock method has a drift parameter 3.526 and the O’Brien-Fleming method has a drift parameter
3.277, indicating that a larger maximum information level is required for the Pocock method than for the
O’Brien-Fleming method.

Average Sample Number

The average sample number is the expected sample size (for nonsurvival data) or expected number of events
(for survival data) of the design under a specific hypothetical reference. The percent average sample numbers
with respect to the corresponding fixed-sample design are displayed in the SEQDESIGN procedure.

The design that requires a larger maximum information level tends to have a smaller average sample number
under the alternative hypothesis. For example, for two-sided four-stage designs with early stopping only
to reject H0, ˛ D 0:05, and ˇ D 0:10 at the alternative reference �1 D ˙0:25, the Pocock design has a
maximum information of 198.91 and an average sample number (in percentage of fixed-sample design) of
69.75 under the alternative hypothesis, and the O’Brien-Fleming design has a maximum information of
171.84 and an average sample number of 76.74.

Sample Size

The maximum information for the sequential design expressed as a percentage of its corresponding fixed-
sample information is derived in the SEQDESIGN procedure. The sample size or number of events needed for
a group sequential trial is computed by multiplying the sample size or number of events for the corresponding
fixed-sample design by the derived percentage.



7410 F Chapter 89: The SEQDESIGN Procedure

If the sample size or number of events for the fixed-sample design is available, you can use the
MODEL=INPUTNOBS or MODEL=INPUTNEVENTS option in the SAMPLESIZE statement to derive the
sample size or number of events needed at each stage. Otherwise, with the specified or derived maximum
information, you can use the MODEL= option in the SAMPLESIZE statement to specify a hypothesis test
and then to derive the sample size or number of events needed at each stage. See the section “Sample Size
Computation” on page 7387 for the sample size computation for commonly used tests.

Summary of Methods in Group Sequential Designs
There are three different types of methods available in the SEQDESIGN procedure: fixed boundary shape
methods for specified boundary shape, Whitehead methods for boundaries from continuous monitoring, and
error spending methods for specified error spending at each stage.

The fixed boundary shape methods include unified family methods and Haybittle-Peto methods. The unified
family methods include Pocock, O’Brien-Fleming, power family, and triangular methods.

Pocock Method

Pocock derives the constant boundary on the standardized Z scale to demonstrate the sequential design while
maintaining the overall ˛ and ˇ levels (Pocock 1977). The resulting boundary tends to stop the trials early
with a larger p-value. This boundary is commonly called a Pocock boundary, but Pocock himself does not
advocate these boundary values for stopping a trial early to reject the null hypothesis, because large p-values
might not be persuasive enough (Pocock and White 1999). Also, the nominal p-value at the final stage is
much smaller than the overall p-value of the design. That is, the trial might stop at the final stage with a small
nominal p-value, but the test is not rejected, which might not be easy to justify.

O’Brien-Fleming Method

O’Brien-Fleming boundary values are inversely proportional to the square root of information levels on the
standardized Z scale (O’Brien and Fleming 1979). The O’Brien-Fleming boundary is conservative in the
early stages and tends to stop the trials early only with a small p-value. But the nominal value at the final
stage is close to the overall p-value of the design.

Power Family Method

The power family method (Wang and Tsiatis 1987; Emerson and Fleming 1989; Pampallona and Tsiatis
1994) generalizes the Pocock and O’Brien-Fleming methods with a power parameter to allow continuous
movement between the Pocock and O’Brien-Fleming methods. The power parameter is � D 0 for the Pocock
method and � D 0:5 for the O’Brien-Fleming method.

Triangular Method

The unified family triangular method (Kittelson and Emerson 1999) contains straight-line boundaries on the
score scale. For a one-sided trial with early stopping either to reject and to accept the null hypothesis, the
method produces a triangular continuation region. The boundary shape is specified with the slope parameter
� .
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Unified Family Method

The unified family method (Kittelson and Emerson 1999) extends power family methods to incorporate the
triangular method, which contains straight-line boundaries on the score scale.

Haybittle-Peto Method

The Haybittle-Peto method (Haybittle 1971; Peto et al. 1976) uses a Z value of 3 for the critical values in
interim stages and derives the critical value at the final stage. With this method, the final-stage critical value
is close to the original design without interim monitoring. The SEQDESIGN procedure extends this method
further to allow for different Z or nominal p-values for the boundaries.

Whitehead Method

Whitehead methods (Whitehead and Stratton 1983; Whitehead 1997, 2001) derive the boundary values by
adapting the continuous monitoring tests to the discrete monitoring of group sequential tests. With early
stopping to reject or accept the null hypothesis in a one-sided test, the derived continuation region has a
triangular shape on the score-scaled boundaries. Only elementary calculations are needed to derive the
boundary values in Whitehead’s triangular methods. The resulting Type I error probability and power are
extremely close but differ slightly from the specified values due to the approximations used in deriving the
tests (Jennison and Turnbull 2000, p. 106). The SEQDESIGN procedure provides the BOUNDARYKEY=
option to adjust the boundary value at the final stage for the exact Type I or Type II error probability levels.

Error Spending Method

The error spending method uses the specified ˛ and ˇ errors to be used at each stage of the design to derive
the boundary values.

Error Spending Function Method

The error spending function method uses the error spending function to compute the ˛ and ˇ errors to be
used at each stage of the design and then to derive the boundary values for these errors. The following four
error spending functions are available in the SEQDESIGN procedure:

• The Pocock-type error spending function (Lan and DeMets 1983) produces boundaries similar to those
produced with Pocock’s method.

• The O’Brien-Fleming-type error spending function (Lan and DeMets 1983) produces boundaries
similar to those produced with the O’Brien-Fleming method.

• The gamma error spending function (Hwang, Shih, and DeCani 1990) specifies a gamma cumulative
error spending function indexed by the gamma parameter  . The boundaries created with  D 1 are
similar to the boundaries from the Pocock method, and the boundaries created with  D �4 or  D �5
are similar to the boundaries from the O’Brien-Fleming method.

• The power error spending function (Jennison and Turnbull 2000, p. 148) specifies a power cumulative
error spending function indexed by the power parameter �. The boundaries created with � D 1 are
similar to the boundaries from the Pocock method, and the boundaries created with � D 3 are similar
to the boundaries from the O’Brien-Fleming method.
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Table Output
For each design, the SEQDESIGN procedure displays the “Design Information,” “Method Information,” and
“Boundary Information” tables by default.

Boundary Information and Ceiling-Adjusted Design Boundary Information

The “Boundary Information” and “Ceiling-Adjusted Design Boundary Information” tables display the
following information at each stage:

• Information Level Proportion, the information proportion

• Actual Information Level, if the maximum information is either specified or derived

• N, the required sample size for nonsurvival data, if the SAMPLESIZE statement is specified

• Events, the required number of events for survival data, if the SAMPLESIZE statement is specified

• Alternative References, alternative references that are displayed using the specified statistic scale (if a
p-value scale is specified, the standardized Z scale is used)

• Boundary Values, boundary values that are displayed using the specified statistic scale to reject or
accept the null hypothesis

The “Boundary Information” table displays the boundary information of the specified design, and the
“Ceiling-Adjusted Design Boundary Information” table displays the boundary information for the design that
corresponds to the integer-valued sample sizes at the stages for the nonsurvival data, and the integer-valued
times or sample sizes at the stages for the survival data.

Implicitly, the boundary information table also contains the variables for the boundary scale, the stopping
criterion, and the type of alternative hypothesis. That is, if an ODS statement is used to save the table, the
data set also contains the variables _Scale_ for the boundary scale, _Stop_ for the stopping criterion, and
_ALT_ for the type of alternative hypothesis.

Design Information

The “Design Information” table displays the following design information:

• Method, the method used to generate boundary values

• Boundary Key, the type of error level to maintain

• Number of Stages, the total number of stages

• Alpha, the Type I error level

• Beta, the Type II error level

• Power, the power of the design
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• Max Information (Percent Fixed-Sample), the maximum information for the sequential design, as a
percentage of the corresponding fixed-sample information

• Null Ref ASN (Percent Fixed-Sample), the average sample number (expected sample size for nonsur-
vival data or expected number of events for survival data) that is required under the null hypothesis for
the group sequential design, as a percentage of the corresponding fixed-sample design

• Alt Ref ASN (Percent Fixed-Sample), the average sample number that is required under the alternative
reference for the group sequential design, as a percentage of the corresponding fixed-sample design

If both the maximum information (MAXINFO= option) and the alternative reference �1 (ALTREF= option)
are specified in the PROC SEQDESIGN statement, then either the ALPHA= option is used to derive the Type
II error probability ˇ (BOUNDARYKEY=ALPHA) or the BETA= option is used to derive the Type I error
probability ˛ (BOUNDARYKEY=BETA).

If the CEILADJDESIGN=INCLUDE option is specified in the PROC SEQDESIGN statement, the “Design
Information” table also displays Alpha, Beta, Power, Max Information, Null Ref ASN, and Alt Ref ASN for
the adjusted design that corresponds to integer sample sizes at the stages for the nonsurvival data, and to
integer times or sample sizes at the stages for the survival data.

Error Spending Information

The “Error Spending Information” table displays the following information at each stage:

• proportion of information

• actual information level, if the maximum information is either specified or derived

• cumulative error spending for each boundary

Method Information

The “Method Information” table displays detailed method information for the design. For each boundary, it
displays the following:

• the group sequential method used

• the ˛ or ˇ errors

• the specified parameter �, if an error spending function is used

• the specified parameters � and � with the derived critical value C, if a unified family method is used

• the alternative reference �1, if either the ALTREF= or the MAXINFO= option is specified

• the derived drift parameter, �1
p
IX , where IX is the maximum information and �1 is the alternative

reference

Note that the alternative references are displayed with the MLE scale in the “Method Information” table.
In contrast, the alternative references in the “Boundary Information” table are displayed with the specified
statistic scale (if the p-value scale is not specified) or the standardized Z scale (if the p-value scale is specified).
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Powers and Expected Sample Sizes

The “Powers and Expected Sample Sizes” table displays the following information under each of the specified
hypothetical references � D ci�1, where �1 is the alternative reference and ci are values specified in the
CREF= option.

• coefficient ci for the hypothetical references. The value ci D 0 corresponds to the null hypothesis and
ci D 1 corresponds to the alternative hypothesis

• power

• expected sample size, as percentage of fixed-sample size

For a one-sided design, the power and expected sample sizes under the hypothetical references � D ci�1 are
displayed.

For a two-sided symmetric design, the power and expected sample sizes under each of the hypothetical
references � D ci�1u are displayed, where �1u is the upper alternative reference.

For a two-sided asymmetric design, the power and expected sample sizes under each of the hypothetical
references � D ci�1l and � D ci�1u are displayed, where �1l and �1u are the lower and upper alternative
references, respectively.

For a two-sided design, the power is the probability of correctly rejecting the null hypothesis for the correct
alternative. Thus, under the null hypothesis, the displayed power corresponds to a one-sided Type I error
probability level—that is, the lower ˛ level or the upper ˛ level.

The expected sample size as a percentage of the corresponding fixed-sample design is

100 �

PK
kD1 pk Ik

I0

where pk is the stopping probability at stage k,
PK
kD1 pk Ik is the expected information level, and I0 is the

information level for the fixed-sample design.

Sample Size Summary

When you use the SAMPLESIZE statement with the SEQDESIGN procedure, the “Sample Size Summary”
table displays parameters for the sample size computation. It also displays the expected sample sizes or
numbers of events for the model under both the null and alternative hypotheses.

The expected sample size is the average sample sizePK
kD1 pk Ik

I0
N0

where pk is the stopping probability at stage k,
PK
kD1 pk Ik is the expected information level, I0 is the

information level for the fixed-sample design, and N0 is the sample size for the fixed-sample design.

The expected number of events is the average number of eventsPK
kD1 pk Ik

I0
D0

where D0 is the fixed-sample number of events for the model.
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Sample Size Information

The “Sample Sizes (N)” table displays the required sample sizes and information levels at each stage, in both
fractional and integer numbers. The derived fractional sample sizes are under the heading “Fractional N.”
These sample sizes are rounded up to integers under the heading “Ceiling N.” The matched integer sample
sizes are also displayed for two-sample tests.

The “Required Number of Events (D)” table displays the required number of events required and information
level at each stage.

The “Number of Events (D) and Sample Sizes (N)” table displays the number of events and sample size
required at each stage with the study time. The derived times under the heading “Fractional Time” are not
integers. These times are rounded up to integers under the heading “Ceiling Time.”

Stopping Probabilities

The “Expected Cumulative Stopping Probabilities” table displays the following information under each of
the specified hypothetical references � D ci�1, where ci are values specified in the CREF= option, and �1 is
the alternative reference:

• coefficient ci for the hypothetical references. The value ci D 0 corresponds to the null hypothesis, and
ci D 1 corresponds to the alternative hypothesis

• expected stopping stage

• source of the stopping probability: reject H0 (with STOP=REJECT or STOP=BOTH), accept H0
(with STOP=ACCEPT or STOP=BOTH), or either reject or accept H0 (with STOP=BOTH)

• expected cumulative stopping probabilities at each stage

For a one-sided design, the expected cumulative stopping probabilities under the hypothetical references
� D ci�1 are displayed.

For a two-sided design, the expected cumulative stopping probabilities under each of the hypothetical
references � D ci�1l and � D ci�1u are displayed, where �1l and �1u are the lower and upper alternative
references, respectively.

Note that for a symmetric two-sided design, only the expected cumulative stopping probabilities under the
hypothetical references � D ci�1u are derived.

The expected stopping stage is given by k0 C d , where the integer k0 and the fraction d (0 � d < 1) are
derived from the expected information level equation

KX
kD1

pk Ik D Ik0 C d .I.k0C1/ � Ik0/

where pk is the stopping probability at stage k.

For equally spaced information levels, the expected stopping stage is reduced to the weighted average

KX
kD1

pk k
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ODS Table Names
PROC SEQDESIGN assigns a name to each table it creates. You must use these names to reference tables
when using the Output Delivery System (ODS). These names are listed in Table 89.12. For more information
about ODS, see Chapter 20, “Using the Output Delivery System.”

Table 89.12 ODS Tables Produced by PROC SEQDESIGN

ODS Table Name Description Statement Option

AdjustedBoundary Ceiling-adjusted design SAMPLESIZE MODEL
boundary values (CEILADJDESIGN=INCLUDE)

Boundary Boundary values
Design Design information
ErrSpend Error spending ERRSPEND
Method Method information
PowerSampleSize Power and expected sample size PSS
SampleSize Derived sample sizes SAMPLESIZE
SampleSizeSummary Sample size summary SAMPLESIZE
StopProb Stopping probabilities STOPPROB

Graphics Output
This section describes the use of ODS for creating graphics with the SEQDESIGN procedure. To request
these graphs, ODS Graphics must be enabled and you must specify the associated graphics options in the
PROC SEQDESIGN statement. Except for the PLOTS=BOUNDARY option, where a detailed boundary
plot is generated for each design separately, each option produces a plot for all designs together. For more
information about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.”

Sequential ASN Plot

The PLOTS=ASN option displays the average sample numbers (expected sample sizes for nonsurvival data
or expected numbers of events for survival data) under various hypothetical references. The average sample
numbers are connected for each design, and these connected curves for all designs are displayed in the
“Sequential ASN Plot” graph.

For a one-sided design, average sample numbers under the hypothetical references � D ci�1 are displayed,
where ci are the values specified in the CREF= option and �1 is the alternative reference. The horizontal axis
displays the ci values of these hypothetical references.

For a two-sided design, average sample numbers under each of the hypothetical references � D ci�1l and
� D ci�1u are displayed, where �1l and �1u are the lower and upper alternative references, respectively.
The horizontal axis displays �ci values for lower hypothetical references � D ci�1l and ci values for upper
hypothetical references � D ci�1u.

Note that for a symmetric two-sided design, only average sample numbers under the hypothetical references
� D ci�1u are derived.
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Sequential Boundary Plot

The PLOTS=BOUNDARY option displays boundary values and the acceptance and rejection regions at each
stage for each design separately in the “Detailed Boundary Information” graph. The BOUNDARYSCALE=
option is used to specify the scale of the boundaries on the vertical axis. The keywords MLE, SCORE, STDZ,
and PVALUE in the BOUNDARYSCALE= option correspond to the boundary with the MLE scale, score
statistic scale, standardized normal Z scale, and p-value scale, respectively.

The stage numbers are displayed on the horizontal axis. In addition, the HSCALE= option in the
PLOTS=BOUNDARY option can be used to specify the scale on the horizontal axis. The keywords
INFO and SAMPLESIZE in the HSCALE= option correspond to the information levels and sample sizes,
respectively.

Combined Sequential Boundary Plot

The PLOTS=COMBINEDBOUNDARY option displays boundary values. The boundary values are con-
nected for each boundary in each design, and these connected curves for all designs are displayed in the
“Sequential Boundary Information” graph. The BOUNDARYSCALE= option is used to specify the scale
of the boundaries on the vertical axis. The keywords MLE, SCORE, STDZ, and PVALUE in the BOUND-
ARYSCALE= option correspond to the boundary with the MLE scale, score statistic scale, standardized
normal Z scale, and p-value scale, respectively.

The HSCALE= option in the PLOTS=COMBINEDBOUNDARY option can be used to specify the scale on
the horizontal axis. The keywords INFO, SAMPLESIZE, and STAGE in the HSCALE= option correspond to
the information levels, sample sizes, and stage numbers, respectively.

Sequential Error Spending Plot

The PLOTS=ERRSPEND option displays the cumulative error spending at each stage on each boundary in
the “Sequential Error Spending Plot” graph. A legend table uses the design labels to identify the curves for
the corresponding design in the plot. Another legend table uses symbols to identify boundaries in the plot.

Sequential Power Plot

The PLOTS=POWER option displays the powers under various hypothetical references. The powers are
connected for each design, and these connected curves for all designs are displayed in the “Sequential Power
Plot” graph.

For a one-sided design, powers under hypothetical references � D ci�1 are displayed, where ci are the values
specified in the CREF= option and �1 is the alternative reference. The horizontal axis displays the ci values
of these hypothetical references.

For a two-sided design, powers under hypothetical references � D ci�1l and � D ci�1u are displayed,
where �1l and �1u are the lower and upper alternative references, respectively. The horizontal axis displays
�ci values for lower hypothetical references � D ci�1l and ci values for upper hypothetical references
� D ci�1u.

Note that for a symmetric two-sided design, only powers under hypothetical references � D ci�1u are
derived.
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ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

PROC SEQDESIGN assigns a name to each graph it creates. You can use these names to reference the graphs
when using ODS. To request these graphs, ODS Graphics must be enabled and you must specify the options
indicated in Table 89.13.

Table 89.13 Graphs Produced by PROC SEQDESIGN

ODS Graph Name Plot Description Option

ASNPlot Average sample numbers PLOTS=ASN
BoundaryPlot Detailed boundary values PLOTS=BOUNDARY
CombinedBoundaryPlot Boundary values PLOTS=COMBINEDBOUNDARY
ErrSpendPlot Error spending PLOTS=ERRSPEND
PowerPlot Power curves PLOTS=POWER

Examples: SEQDESIGN Procedure
The following examples demonstrate the usage of group sequential methods. Example 89.1 uses the
NSTAGES=1 option to derive boundaries of critical values for a fixed-sample design. The remaining
examples use different methods to create boundaries for various group sequential designs.

Example 89.1: Creating Fixed-Sample Designs
This example demonstrates a one-sided fixed-sample design and a two-sided fixed-sample design. The
following statements request a fixed-sample design with an upper alternative:

ods graphics on;
proc seqdesign pss

;
OneSidedFixedSample: design nstages=1

alt=upper
alpha=0.025 beta=0.10
;

samplesize model=onesamplemean(mean=0.25);
run;
ods graphics off;
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In the DESIGN statement, the label OneSidedFixedSample identifies the design in the output tables. The
NSTAGES=1 option specifies that the design has only one stage; this corresponds to a fixed-sample design.
In the SEQDESIGN procedure, the null hypothesis for the design is H0 W � D 0 and the ALT=UPPER option
specifies an upper alternative hypothesis H1 W � D �1 > 0. The MEAN=0.25 option in the SAMPLESIZE
statement specifies the upper alternative reference �1 D 0:25.

The options ALPHA=0.025 and BETA=0.10 specify the Type I error probability level ˛ D 0:025 and the
Type II error probability level ˇ D 0:10. That is, the design has a power 1 � ˇ D 0:90 at �1 D 0:25.

The “Design Information” table in Output 89.1.1 displays design specifications and the derived statistics
such as power. As expected, the derived statistics such as maximum information and average sample
number (in percentage of its corresponding fixed-sample information) are 100 for the fixed-sample design
(NSTAGES=1). Also, for a fixed-sample design, the STOP= and METHOD= options in the DESIGN
statement are not applicable.

Output 89.1.1 One-Sided Fixed-Sample Design Information

The SEQDESIGN Procedure
Design: OneSidedFixedSample

The SEQDESIGN Procedure
Design: OneSidedFixedSample

Design Information

Statistic Distribution Normal

Boundary Scale Standardized Z

Alternative Hypothesis Upper

Alternative Reference 0.25

Number of Stages 1

Alpha 0.025

Beta 0.1

Power 0.9

Max Information (Percent of Fixed Sample) 100

Max Information 168.1188

Null Ref ASN (Percent of Fixed Sample) 100

Alt Ref ASN (Percent of Fixed Sample) 100

The “Method Information” table in Output 89.1.2 displays the ˛ and ˇ error levels. It also displays the
derived drift parameter, which is the standardized reference improvement, �1

p
I0, where �1 is the alternative

reference and I0 is the maximum information for the design. If either �1 or I0 is specified, the other statistic
is derived in the SEQDESIGN procedure. For a fixed-sample design,

�1
p
I0 D ˆ

�1.1 � ˛/Cˆ�1.1 � ˇ/ D ˆ�1.0:975/Cˆ�1.0:90/ D 3:2415

Output 89.1.2 Method Information

Method Information

Boundary Alpha Beta
Alternative
Reference Drift

Upper Alpha 0.02500 0.10000 0.25 3.241516
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The “Boundary Information” table in Output 89.1.3 displays information level, alternative reference, and
boundary value at each stage. The information proportion indicates the proportion of maximum information
available at the stage. With only one stage for a fixed-sample design, the proportion is 1. With the
SAMPLESIZE statement, the required sample size N is also displayed under the heading “Information
Level.”

Output 89.1.3 Boundary Information

Boundary Information (Standardized Z Scale)
Null Reference = 0

Alternative
Boundary

Values

Information Level Reference Upper

_Stage_ Proportion Actual N Upper Alpha

1 1.0000 168.1188 168.1188 3.24152 1.95996

By default (or equivalently if you specify BOUNDARYSCALE=STDZ), output alternative references and
boundaries are displayed with the standardized normal Z scale. The alternative reference on the standardized
Z scale at stage 1 is given by �1

p
I1, where I1 is the information level at stage 1. With a boundary value

1.96, the hypothesis of � D 0 is rejected if the standardized normal statistic Z � 1:96.

With ODS Graphics enabled, a detailed boundary plot with the rejection and acceptance regions is displayed,
as shown in Output 89.1.4. The boundary values in the “Boundary Information” table in Figure 89.1.3 are
displayed in the plot.



Example 89.1: Creating Fixed-Sample Designs F 7421

Output 89.1.4 Boundary Plot

The “Sample Size Summary” table in Output 89.1.5 displays parameters for the sample size computation of
the test for a normal mean.

Output 89.1.5 Sample Size Summary

Sample Size Summary

Test One-Sample Mean

Mean 0.25

Standard Deviation 1

Max Sample Size 168.1188

Expected Sample Size (Null Ref) 168.1188

Expected Sample Size (Alt Ref) 168.1188
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The “Sample Sizes (N)” table in Output 89.1.6 displays the derived sample sizes, in both fractional and
integer numbers. With the resulting integer sample sizes, the corresponding information level is slightly
larger than the level from the design. This can increase the power slightly if the integer sample size is used in
the trial.

Output 89.1.6 Derived Sample Sizes

Sample Sizes (N)
One-Sample Z Test for Mean

Fractional N Ceiling N

_Stage_ N Information N Information

1 168.12 168.1 169 169.0

The following statements request a two-sided fixed-sample design with a specified alternative reference:

ods graphics on;
proc seqdesign altref=1.2

pss
;

TwoSidedFixedSample: design nstages=1
alt=twosided
alpha=0.05 beta=0.10
;

samplesize model=twosamplemean(stddev=2 weight=2);
run;
ods graphics off;

In the SEQDESIGN procedure, the null hypothesis for the design is H0 W � D 0. The ALT=TWOSIDED
option specifies a two-sided alternative hypothesis H1 W � D �1 ¤ 0. The ALTREF=1.2 option in the PROC
SEQDESIGN statement specifies the alternative reference �1 D ˙1:2.

The ALPHA=0.05 option (which is the default) specifies the two-sided Type I error probability level ˛ D 0:05.
That is, the lower and upper Type I error probabilities ˛l D ˛u D 0:025. The BETA=0.10 option (which is
the default) specifies the Type II error probability level ˇ D 0:10, and the design has a power 1 � ˇ D 0:90
at the alternative reference �1 D ˙1:2.

The “Design Information” table in Output 89.1.7 displays design specifications and the derived power. With
a specified alternative reference, the maximum information is derived.
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Output 89.1.7 Two-Sided Fixed-Sample Design Information

The SEQDESIGN Procedure
Design: TwoSidedFixedSample

The SEQDESIGN Procedure
Design: TwoSidedFixedSample

Design Information

Statistic Distribution Normal

Boundary Scale Standardized Z

Alternative Hypothesis Two-Sided

Alternative Reference 1.2

Number of Stages 1

Alpha 0.05

Beta 0.1

Power 0.9

Max Information (Percent of Fixed Sample) 100

Max Information 7.296822

Null Ref ASN (Percent of Fixed Sample) 100

Alt Ref ASN (Percent of Fixed Sample) 100

The “Method Information” table in Output 89.1.8 displays the ˛ and ˇ errors, alternative references, and
drift parameter. For a fixed-sample design, the derived drift parameter

�1
p
I0 D ˆ

�1.1 �
˛

2
/Cˆ�1.1 � ˇ/ D ˆ�1.0:975/Cˆ�1.0:90/ D 3:2415

Output 89.1.8 Method Information

Method Information

Boundary Alpha Beta
Alternative
Reference Drift

Upper Alpha 0.02500 0.10000 1.2 3.241516

Lower Alpha 0.02500 0.10000 -1.2 -3.24152

With a specified alternative reference �1 D 1:2, the maximum information

I0 D

�
3:2415

1:2

�2
D 7:2968

The default “Boundary Information” table in Output 89.1.9 displays information level, alternative reference,
and boundary values. By default (or equivalently if you specify BOUNDARYSCALE=STDZ), the alternative
reference and boundary values are displayed with the standardized normal Z scale. Thus, the standardized
alternative references˙�1

p
I0 are displayed.
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Output 89.1.9 Boundary Information

Boundary Information (Standardized Z Scale)
Null Reference = 0

Alternative
Boundary

Values

Information Level Reference Lower Upper

_Stage_ Proportion Actual N Lower Upper Alpha Alpha

1 1.0000 7.296822 131.3428 -3.24152 3.24152 -1.95996 1.95996

With boundary values of –1.96 and 1.96, the hypothesis of � D 0 is rejected if the standardized normal
statistic Z � 1:96 or Z � �1:96.

With ODS Graphics enabled, a detailed boundary plot with the rejection and acceptance regions is displayed,
as shown in Output 89.1.10 . The boundary values in the “Boundary Information” table in Figure 89.1.9 are
displayed in the plot.

Output 89.1.10 Boundary Plot

The “Sample Size Summary” table in Output 89.1.11 displays parameters for the sample size computation of
the test for a normal mean.
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Output 89.1.11 Sample Size Summary

Sample Size Summary

Test Two-Sample Means

Mean Difference 1.2

Standard Deviation 2

Max Sample Size 131.3428

Expected Sample Size (Null Ref) 131.3428

Expected Sample Size (Alt Ref) 131.3428

Weight (Group A) 2

Weight (Group B) 1

The “Sample Sizes (N)” table in Output 89.1.12 displays the derived sample sizes, in both fractional and
integer numbers. With the WEIGHT=2 option, the allocation ratio is 2 for the first group and 1 for the second
group. With the resulting integer sample sizes, the corresponding information level is slightly larger than the
level from the design. This can increase the power slightly if the integer sample size is used in the trial.

Output 89.1.12 Derived Sample Sizes

Sample Sizes (N)
Two-Sample Z Test for Mean Difference

Fractional N Ceiling N

_Stage_ N N(Grp 1) N(Grp 2) Information N N(Grp 1) N(Grp 2) Information

1 131.34 87.56 43.78 7.2968 132 88 44 7.3333

Example 89.2: Creating a One-Sided O’Brien-Fleming Design
This example demonstrates a group sequential design for a clinical study. A clinic is conducting a study on
the effect of vitamin C supplements in treating flu symptoms. The study groups consist of patients in the
clinic with their first sign of flu symptoms within the last 24 hours. These individuals are randomly assigned
to either the control group, which receives the placebo pills, or the treatment group, which receives large
doses of vitamin C supplements. At the end of a five-day period, the flu symptoms of each individual are
recorded.

Suppose that from past experience, 60% of individuals experiencing flu symptoms have the symptoms
disappeared within five days. The clinic wants to detect a 75% symptoms disappearance with a high
probability in the trial. A test that compares the proportions directly is to specify a null hypothesis H0 W
� D pa � pb D 0 with a Type I error probability level ˛ D 0:025, where pa and pb are the proportions of
symptoms’ disappearance in the treatment group and control group, respectively. A one-sided alternative
H1 W � > 0 is also specified with a power of 1 � ˇ D 0:80 at H1 W � D 0:15.

For a one-sided fixed-sample design, the critical value for the standardized Z test statistic is given by
C˛ D ˆ

�1.1� ˛/ D 1:96. That is, at the end of study, if the test statistic z � C˛ , then the null hypothesis is
rejected and the efficacy of vitamin C supplements is declared. Otherwise, the null hypothesis is not rejected
and the effect of vitamin C supplements is not significant.

To achieve a 1 � ˇ D 0:80 power at H1 W � D 0:15 for a fixed-sample design, the information required is
given by

I0 D
.ˆ�1.1 � ˛/Cˆ�1.1 � ˇ//2

0:152
D
.1:96C 0:8416/2

0:0225
D 348:84
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With an equal sample size on the treatment and control groups, Na D Nb , the sample size required for each
group under H1 is computed from the information I0:

Na D Nb D .p1a .1 � p1a/C p1b .1 � p1b// I0

where p1a D 0:75 and p1b D 0:60 are proportions in the treatment and control groups under H1. That is,

Na D Nb D .0:75 � 0:25C 0:6 � 0:4/ � 348:84 D 149:13

Thus, 150 individuals are required for each group in the fixed-sample study. See the section “Test for the
Difference between Two Binomial Proportions” on page 7399 for a detailed derivation of these required
sample sizes.

Instead of a fixed-sample design for the trial, a group sequential design is used to stop the trial early for
ethical concerns of possible harm or an unexpected strong efficacy outcome of the new drug. It can also save
time and resources in the process. The following statements invoke the SEQDESIGN procedure and request
a four-stage group sequential design that uses an O’Brien-Fleming method for normally distributed statistics.
The design uses a one-sided alternative hypothesis H1 with early stopping to reject or accept H0.

ods graphics on;
proc seqdesign altref=0.15

;
OneSidedOBrienFleming: design nstages=4

method=obf
alt=upper stop=both
alpha=0.025 beta=0.20
;

samplesize model(ceiladjdesign=include)
=twosamplefreq(nullprop=0.6 test=prop);

ods output AdjustedBoundary=Bnd_Prop;
run;
ods graphics off;

At each interim stage in a sequential design, a hypothesis can be rejected, accepted, or continued to the next
time point. The STOP=BOTH option specifies early stopping to reject or accept the null hypothesis. The
CEILADJDESIGN=INCLUDE option creates an additional design that corresponds to the integer-valued
sample sizes at the stages. The option adds this ceiling-adjusted design information to the design information
table and displays the ceiling-adjusted design boundary information in a separate boundary information table.

The ADJUSTEDBOUNDARY=BND_PROP option in the ODS OUTPUT statement creates an output data
set that contains the resulting ceiling-adjusted boundary information. After the actual data from the clinical
trial are collected and analyzed at each stage by a procedure such as PROC GENMOD, you can use the
SEQTEST procedure to test the resulting statistics at stage 1 by using the boundary information that is stored
in the BOUND_PROP data set.

The “Design Information,” “Method Information,” and “Boundary Information” tables are displayed by
default. The “Design Information” table in Output 89.2.1 displays design specifications and derived statistics
such as power and maximum information. If you specify an alternative reference (for example, AL-
TREF=0.15), the maximum information IX is derived.
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Output 89.2.1 Design Information

The SEQDESIGN Procedure
Design: OneSidedOBrienFleming

The SEQDESIGN Procedure
Design: OneSidedOBrienFleming

Design Information

Statistic Distribution Normal

Boundary Scale Standardized Z

Alternative Hypothesis Upper

Early Stop Accept/Reject Null

Method O'Brien-Fleming

Boundary Key Both

Alternative Reference 0.15

Number of Stages 4

Alpha 0.025

Beta 0.2

Power 0.8

Max Information (Percent of Fixed Sample) 111.5566

Max Information 389.1522

Null Ref ASN (Percent of Fixed Sample) 55.96565

Alt Ref ASN (Percent of Fixed Sample) 79.72258

Adj Design Alpha 0.025

Adj Design Beta 0.19835

Adj Design Power 0.80165

Adj Design Max Information (Percent of Fixed Sample) 111.5115

Adj Design Max Information 390.6433

Adj Design Null Ref ASN (Percent of Fixed Sample) 56.04399

Adj Design Alt Ref ASN (Percent of Fixed Sample) 79.62143

The Max Information (Percent Fixed-Sample) is the ratio in percentage between the maximum information
for the group sequential design and the information required for a corresponding fixed-sample design:

100 �
IX

I0
D 100 �

389:15

348:84
D 111:56

That is, if the group sequential trial does not stop at any interim stages, the information needed is 11.56% more
than is needed for the corresponding fixed-sample design. For a two-sample test for binomial proportions,
the information is proportional to the sample size. Thus, 11.56% more observations are needed for the group
sequential trial.

The Null Ref ASN (Percent Fixed-Sample) is the ratio in percentage between the expected sample size
required under the null hypothesis for the group sequential design and the sample size required for the
corresponding fixed-sample design. With a ratio of 56%, the expected sample size for the group sequential
trial under the null hypothesis is 56% of the sample size in the corresponding fixed-sample design.

Similarly, the Alt Ref ASN (Percent Fixed-Sample) is the ratio in percentage between the expected sample
size required under the alternative hypothesis for the group sequential design and the sample size required
for the corresponding fixed-sample design. With a ratio of 79.7%, the expected sample size for the group
sequential trial under the alternative hypothesis is 79.7% of the sample size in the corresponding fixed-sample
design.
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The CEILADJDESIGN=INCLUDE option creates an adjusted design that has ceiling sample sizes at the
stages. The “Design Information” table also includes design information for this adjusted design. Only the
Type I error level is maintained for the adjusted design when BOUNDARYKEY=BOTH (the default) in the
DESIGN statement.

For a one-sided design that has an upper alternative and early stopping to reject or accept the null hypothesis,
upper ˛ and ˇ boundaries are created. The “Method Information” table in Output 89.2.2 displays the Type I
error probability ˛, the Type II error probability ˇ, and the derived drift parameter. The drift parameter is the
standardized reference improvement between the alternative and null hypotheses at the final stage. It is also
the standardized alternative reference at the final stage if the null reference is zero.

Output 89.2.2 Method Information

Method Information

Unified Family

Boundary Method Alpha Beta Rho Tau C
Alternative
Reference Drift

Upper Alpha O'Brien-Fleming 0.02500 . 0.5 0 1.94947 0.15 2.959041

Upper Beta O'Brien-Fleming . 0.20000 0.5 0 1.00957 0.15 2.959041

With the METHOD=OBF option, the O’Brien-Fleming method is used for each boundary. The O’Brien-
Fleming method is one of the unified family methods, and the “Method Information” table displays the
corresponding parameter � in the unified family method. The table also displays the critical values C˛ D
1:9495 for the ˛ boundary and Cˇ D 1:0096 for the ˇ boundary. These critical values are used to create the
boundary values.

The “Boundary Information” table in Output 89.2.3 displays information level, alternative reference, and
boundary values at each stage. By default (or equivalently if you specify BOUNDARYSCALE=STDZ), the
alternative references and boundary values are displayed with the standardized Z statistic scale. The resulting
standardized alternative reference at stage k is given by �1

p
Ik , where �1 is the alternative reference and Ik

is the information level at stage k, k D 1; 2; 3; 4.

Output 89.2.3 Boundary Information

Boundary Information (Standardized Z Scale)
Null Reference = 0

Alternative
Boundary

Values

Information Level Reference Upper

_Stage_ Proportion Actual N Upper Beta Alpha

1 0.2500 97.28805 83.18128 1.47952 -0.53963 3.89893

2 0.5000 194.5761 166.3626 2.09236 0.66460 2.75696

3 0.7500 291.8641 249.5438 2.56260 1.39685 2.25105

4 1.0000 389.1522 332.7251 2.95904 1.94947 1.94947

By default (or equivalently if you specify INFO=EQUAL), equally spaced information levels are used. An
information proportion is the proportion of maximum information available at each stage. With the derived
maximum information, the actual information level at each stage is also displayed. With the SAMPLESIZE
statement, the required sample size N is also displayed under the heading “Information Level.”
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At each interim stage, if the standardized Z test statistic is larger than or equal to the corresponding upper ˛
boundary, then the hypothesis H0 W � D 0 is rejected. If the test statistic is less than the corresponding upper
ˇ boundary, then the trial is stopped and the hypothesis H0 is accepted. Otherwise, the process continues to
the next stage. At the final stage, stage 4, the trial stops and the hypothesis H0 is rejected if the standardized
Z statistic Z4 � 1:94947. Otherwise, the trial is accepted.

With ODS Graphics enabled, a detailed boundary plot with the rejection and acceptance regions is displayed,
as shown in Output 89.2.4.

Output 89.2.4 Boundary Plot

The horizontal axis indicates the information levels for the design. The stages are indicated by vertical lines
with accompanying stage numbers. If at any stage a test statistic is in a rejection region, the trial stops and the
hypothesis is rejected. If a test statistic is in an acceptance region, then the trial also stops and the hypothesis
is accepted. If the statistic is not in a rejection region or an acceptance region, the trial continues to the next
stage. The boundary plot also displays the information level and the critical value for the corresponding
fixed-sample design.

The SEQDESIGN procedure derives the drift parameter �1
p
IX , where �1 is the alternative reference and IX

is the maximum information. If either �1 or IX is specified, the other can be derived. With the SAMPLESIZE
statement, the maximum information is used to compute the required sample size for the study.
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The “Sample Size Summary” table in Output 89.2.5 displays parameters for the sample size computation.
With the MODEL=TWOSAMPLEFREQ( NULLPROP=0.6 TEST=PROP) option in the SAMPLESIZE
statement, the total sample size in each group for testing the difference between two proportions is computed.
By default (or equivalently if you specify REF=PROP in the MODEL=TWOSAMPLEFREQ option), the
required sample sizes are computed under the alternative hypothesis. That is,

Na D Nb D . p1a .1 � p1a/C p1b .1 � p1b/ / IX

where p1b D 0:60 and p1a D p1b C �1 D 0:75 are the proportions in the control and treatment groups,
respectively, under the alternative hypothesis H1. See the section “Test for the Difference between Two
Binomial Proportions” on page 7399 for a detailed description of these parameters.

Output 89.2.5 Sample Size Summary

Sample Size Summary

Test Two-Sample Proportions

Null Proportion 0.6

Proportion (Group A) 0.75

Test Statistic Z for Proportion

Reference Proportions Alt Ref

Max Sample Size 332.7251

Expected Sample Size (Null Ref) 166.9213

Expected Sample Size (Alt Ref) 237.7779

The “Sample Sizes (N)” table in Output 89.2.6 displays the required sample sizes at each stage, in both
fractional and integer numbers. The derived fractional sample sizes are under the heading “Fractional N.”
These sample sizes are rounded up to integers under the heading “Ceiling N.” In practice, integer sample
sizes are used, and the resulting information levels increase slightly. Thus, 42, 84, 125, and 167 individuals
are needed in each group for the four stages, respectively.

Output 89.2.6 Derived Sample Sizes

Sample Sizes (N)
Two-Sample Z Test for Proportion Difference

Fractional N Ceiling N

_Stage_ N N(Grp 1) N(Grp 2) Information N N(Grp 1) N(Grp 2) Information

1 83.18 41.59 41.59 97.2880 84 42 42 98.2456

2 166.36 83.18 83.18 194.6 168 84 84 196.5

3 249.54 124.77 124.77 291.9 250 125 125 292.4

4 332.73 166.36 166.36 389.2 334 167 167 390.6

When CEILADJDESIGN=INCLUDE in the SAMPLESIZE statement, the “Ceiling-Adjusted Design Bound-
ary Information” table in Figure 89.2.7 displays boundary information, similar to Figure 89.2.3 but with
ceiling sample sizes at the stages.
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Output 89.2.7 Adjusted O’Brien-Fleming Boundary Information

Ceiling-Adjusted Design Boundary Information (Standardized Z Scale)
Null Reference = 0

Alternative Boundary Values

Information Level Reference Upper

_Stage_ Proportion Actual N Upper Beta Alpha

1 0.2515 98.24561 84 1.48678 -0.53660 3.88835

2 0.5030 196.4912 168 2.10263 0.67188 2.74948

3 0.7485 292.3977 250 2.56495 1.39208 2.25390

4 1.0000 390.6433 334 2.96470 1.94999 1.94999

Because the sample sizes have integer values, the information levels at the stages are not equally spaced in
this example, but the design is still an O’Brien-Fleming design.

The CEILADJDESIGN=INCLUDE option displays the adjusted-design information in the “Design Informa-
tion” table and the adjusted boundary information in the “Ceiling-Adjusted Design Boundary Information”
table. You can use the SEQTEST procedure to create other tables, such as error spending tables. For example,
when you specify ADJUSTEDBOUNDARY=BND_PROP in the ODS OUTPUT statement, the following
statements create the error-spending information table for the adjusted design:

proc seqtest Boundary=Bnd_Prop
errspend
;

run;

Example 89.3: Creating Two-Sided Pocock and O’Brien-Fleming Designs
This example requests two 4-stage group sequential designs for normally distributed statistics with equally
spaced information levels at all stages. One design uses Pocock’s method and the other uses the O’Brien-
Fleming method. The following statements invoke the SEQDESIGN procedure and request these two
designs:

proc seqdesign altref=0.4
pss
stopprob
errspend
;

TwoSidedPocock: design nstages=4 method=poc;
TwoSidedOBrienFleming: design nstages=4 method=obf;
samplesize model=twosamplemean(stddev=0.8 weight=2);

run;

By default (or equivalently if you specify ALT=TWOSIDED and STOP=REJECT in the DESIGN statement),
each design has a null hypothesis H0 with a two-sided alternative with early stopping to reject H0.

The “Design Information” table in Output 89.3.1 displays design specifications and derived statistics for
the Pocock’s design. With the specified ALTREF= option, the maximum information IX D 77:6984 is also
derived.
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Output 89.3.1 Pocock Design Information

The SEQDESIGN Procedure
Design: TwoSidedPocock

The SEQDESIGN Procedure
Design: TwoSidedPocock

Design Information

Statistic Distribution Normal

Boundary Scale Standardized Z

Alternative Hypothesis Two-Sided

Early Stop Reject Null

Method Pocock

Boundary Key Both

Alternative Reference 0.4

Number of Stages 4

Alpha 0.05

Beta 0.1

Power 0.9

Max Information (Percent of Fixed Sample) 118.3143

Max Information 77.69844

Null Ref ASN (Percent of Fixed Sample) 115.6074

Alt Ref ASN (Percent of Fixed Sample) 69.74805

With the corresponding fixed-sample information

I0 D
.ˆ�1.1 � ˛=2/Cˆ�1.1 � ˇ//2

0:42
D
.1:96C 1:28155/2

0:16
D 65:6728

the fixed-sample information ratio is 77:6984=65:6728 D 1:1831.

For a two-sided design with early stopping to reject the null hypothesis, lower and upper ˛ boundaries are
created. The “Method Information” table in Output 89.3.2 displays the ˛ and ˇ errors, alternative references,
and derived drift parameters, which are the standardized alternative references at the final stage.

Output 89.3.2 Method Information

Method Information

Unified Family

Boundary Method Alpha Beta Rho Tau C
Alternative
Reference Drift

Upper Alpha Pocock 0.02500 0.10000 0 0 2.36129 0.4 3.525869

Lower Alpha Pocock 0.02500 0.10000 0 0 2.36129 -0.4 -3.52587

With the METHOD=POC option, the Pocock method is used for each boundary. The Pocock method is one
of the unified family methods, and the table also displays its corresponding parameters � D 0 as a unified
family method and the derived parameters C D 2:3613 for the boundary values.

With the PSS option, the “Power and Expected Sample Sizes” table in Output 89.3.3 displays powers and
expected sample sizes under various hypothetical references � D ci�1, where �1 is the alternative reference
and ci are values specified in the CREF= option. By default, ci D 0; 0:5; 1:0; 1:5.
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Output 89.3.3 Power and Expected Sample Size Information

Powers and Expected Sample Sizes
Reference = CRef * (Alt Reference)

Sample Size

CRef Power
Percent

Fixed-Sample

0.0000 0.02500 115.6074

0.5000 0.34252 104.0615

1.0000 0.90000 69.7480

1.5000 0.99869 43.6600

Note that at ci D 0, the null reference � D 0, and the power 0.025 corresponds to the one-sided Type I
error probability 0.025. At ci D 1, � D �1, the power 0.9 is the power of the design. The expected sample
sizes are displayed in a percentage scale to its corresponding fixed-sample size design. With the specified
SAMPLESIZE statement, the expected sample sizes for the specified model in the SAMPLESIZE statement
are also displayed.

With the STOPPROB option, the “Expected Cumulative Stopping Probabilities” table in Output 89.3.4
displays the expected cumulative stopping stage and cumulative stopping probability to reject the null
hypothesis H0 at each stage under various hypothetical references � D ci�1, where �1 is the alternative
reference and ci are values specified in the CREF= option. By default, ci D 0; 0:5; 1:0; 1:5.

Output 89.3.4 Stopping Probabilities

Expected Cumulative Stopping Probabilities
Reference = CRef * (Alt Reference)

Stopping Probabilities

CRef
Expected

Stopping Stage Source Stage_1 Stage_2 Stage_3 Stage_4

0.0000 3.908 Reject Null 0.01821 0.03155 0.04176 0.05000

0.5000 3.518 Reject Null 0.07005 0.15939 0.25242 0.34327

1.0000 2.358 Reject Null 0.27482 0.58074 0.78638 0.90002

1.5000 1.476 Reject Null 0.61145 0.92348 0.98900 0.99869

Note that at ci D 0, the cumulative stopping probability to reject H0 at the final stage is the overall Type I
error probability 0.05. At ci D 1, the alternative hypothesisH1 W � D �1, the cumulative stopping probability
to reject H0 includes both the probability in the lower rejection region and the probability in the upper
rejection region. This stopping probability to reject H0 at the final stage, 0.90002, is slightly greater than the
power 1 � ˇ D 0:90, which corresponds to the cumulative stopping probability in the upper rejection region
only. See the section “Type I and Type II Errors” on page 7368 for a detailed description of the Type II error
probability ˇ.

The “Boundary Information” table in Output 89.3.5 displays the information level, alternative references,
and boundary values at each stage. By default (or equivalently if you specify BOUNDARYSCALE=STDZ),
the standardized Z scale is used to display the alternative references and boundary values. The resulting
standardized alternative reference at stage k is given by �1

p
Ik , where �1 is the alternative reference and Ik

is the information level at stage k, k D 1; 2; 3; 4.
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Output 89.3.5 Boundary Information

Boundary Information (Standardized Z Scale)
Null Reference = 0

Alternative
Boundary

Values

Information Level Reference Lower Upper

_Stage_ Proportion Actual N Lower Upper Alpha Alpha

1 0.2500 19.42461 55.94288 -1.76293 1.76293 -2.36129 2.36129

2 0.5000 38.84922 111.8858 -2.49317 2.49317 -2.36129 2.36129

3 0.7500 58.27383 167.8286 -3.05349 3.05349 -2.36129 2.36129

4 1.0000 77.69844 223.7715 -3.52587 3.52587 -2.36129 2.36129

By default (or equivalently if you specify INFO=EQUAL in the DESIGN statement), equally spaced
information levels are used. With the SAMPLESIZE statement, the required sample size N is also displayed
under the heading “Information Level.” With the Pocock method, the standardized Z boundary values are
identical at all stages for each ˛ boundary.

At each interim stage, the hypothesis of H0 W � D 0 is rejected if the standardized normal test statistic
z � �2:36129, the lower ˛ boundary, or z � 2:36129, the upper ˛ boundary. Otherwise, the trial continues
to the next stage. At the final stage, stage 4, the trial stops and the hypothesis is rejected if the test statistic
jz4j � 2:36129. Otherwise, the hypothesis is accepted.

The “Error Spending Information” in Output 89.3.6 displays cumulative error spending at each stage for each
boundary. It shows that more ˛ errors are used in early stages than in later stages.

Output 89.3.6 Error Spending Information

Error Spending Information

Cumulative Error Spending

Information
Level Lower Upper

_Stage_ Proportion Alpha Beta Beta Alpha

1 0.2500 0.00911 0.00002 0.00002 0.00911

2 0.5000 0.01577 0.00002 0.00002 0.01577

3 0.7500 0.02088 0.00002 0.00002 0.02088

4 1.0000 0.02500 0.10000 0.10000 0.02500

The “Sample Size Summary” table in Output 89.3.7 displays the specified parameters for the sample size
computation of the two-sample test for mean difference.

Output 89.3.7 Sample Size Summary

Sample Size Summary

Test Two-Sample Means

Mean Difference 0.4

Standard Deviation 0.8

Max Sample Size 223.7715

Expected Sample Size (Null Ref) 218.652

Expected Sample Size (Alt Ref) 131.9167

Weight (Group A) 2

Weight (Group B) 1
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The “Sample Sizes (N)” table in Output 89.3.8 displays the derived sample sizes at each stage, in both
fractional and integer numbers. With the WEIGHT=2 option, the allocation ratio is 2 for the first group and 1
for the second group. See the section “Test for the Difference between Two Normal Means” on page 7397
for the derivation of these sample sizes. With the fixed-sample information ratio 1.1831, the derived sample
sizes in fractional numbers are derived by multiplying 1.1831 by the corresponding sample sizes in the
fixed-sample design.

Output 89.3.8 Sample Sizes

Sample Sizes (N)
Two-Sample Z Test for Mean Difference

Fractional N Ceiling N

_Stage_ N N(Grp 1) N(Grp 2) Information N N(Grp 1) N(Grp 2) Information

1 55.94 37.30 18.65 19.4246 57 38 19 19.7917

2 111.89 74.59 37.30 38.8492 113 75 38 39.4082

3 167.83 111.89 55.94 58.2738 168 112 56 58.3333

4 223.77 149.18 74.59 77.6984 225 150 75 78.1250

These fractional sample sizes are rounded up to integers under the heading “Ceiling N.” When the resulting
integer sample sizes are used, the corresponding information levels are slightly larger than the levels from the
design. This can increase the power slightly if a trial uses these integer sample sizes.

Note that compared with other designs, a Pocock design can stop the trial early with a larger p-value. However,
this might not be persuasive enough to make a new treatment widely accepted (Pocock and White 1999).

The “Design Information” table in Output 89.3.9 displays design specifications and the derived statistics for
the O’Brien-Fleming design. With the specified ALTREF= option, the maximum information IX D 67:1268
is derived.

Output 89.3.9 O’Brien-Fleming Design Information

The SEQDESIGN Procedure
Design: TwoSidedOBrienFleming

The SEQDESIGN Procedure
Design: TwoSidedOBrienFleming

Design Information

Statistic Distribution Normal

Boundary Scale Standardized Z

Alternative Hypothesis Two-Sided

Early Stop Reject Null

Method O'Brien-Fleming

Boundary Key Both

Alternative Reference 0.4

Number of Stages 4

Alpha 0.05

Beta 0.1

Power 0.9

Max Information (Percent of Fixed Sample) 102.2163

Max Information 67.12682

Null Ref ASN (Percent of Fixed Sample) 101.5728

Alt Ref ASN (Percent of Fixed Sample) 76.7397
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With the corresponding fixed-sample information

I0 D
.ˆ�1.1 � ˛=2/Cˆ�1.1 � ˇ//2

0:42
D
.1:96C 1:28155/2

0:16
D 65:6728

the fixed-sample information ratio is 67:1268=65:6728 D 1:022. That is, the maximum information for the
O’Brien-Fleming design is only 2.2% more than for the corresponding fixed-sample design.

The “Method Information” table in Output 89.3.10 displays the Type I ˛ level and Type II ˇ level. It also
displays the derived drift parameter �1

p
IX , which is the standardized alternative reference at the final stage.

Output 89.3.10 Method Information

Method Information

Unified Family

Boundary Method Alpha Beta Rho Tau C
Alternative
Reference Drift

Upper Alpha O'Brien-Fleming 0.02500 0.10000 0.5 0 2.02429 0.4 3.277238

Lower Alpha O'Brien-Fleming 0.02500 0.10000 0.5 0 2.02429 -0.4 -3.27724

With the METHOD=OBF option, the O’Brien-Fleming method is used for each boundary. The O’Brien-
Fleming method is one of the unified family methods, and the table also displays its corresponding parameters
� D 0:5 as a unified family method and the derived parameter C D 2:0243 for the boundary values.

With the PSS option, the “Power and Expected Sample Sizes” table in Output 89.3.11 displays powers and
expected sample sizes under various hypothetical references � D ci�1, where �1 is the alternative reference
and ci are values specified in the CREF= option.

Output 89.3.11 Power and Expected Sample Size Information

Powers and Expected Sample Sizes
Reference = CRef * (Alt Reference)

Sample Size

CRef Power
Percent

Fixed-Sample

0.0000 0.02500 101.5728

0.5000 0.36495 96.3684

1.0000 0.90000 76.7397

1.5000 0.99821 57.2590

Compared with the corresponding Pocock design, the O’Brien-Fleming design has a smaller maximum
sample size, and smaller expected sample sizes under hypothetical references � D 0 and � D 0:5 �1, but
larger expected sample sizes under hypothetical references � D �1 and � D 1:5 �1.

With the STOPPROB option, the “Expected Cumulative Stopping Probabilities” table in Output 89.3.12
displays the expected stopping stage and cumulative stopping probability to reject the null hypothesis at each
stage under various hypothetical references � D ci�1, where �1 is the alternative reference and ci are values
specified in the CREF= option.
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Output 89.3.12 Stopping Probabilities

Expected Cumulative Stopping Probabilities
Reference = CRef * (Alt Reference)

Stopping Probabilities

CRef
Expected

Stopping Stage Source Stage_1 Stage_2 Stage_3 Stage_4

0.0000 3.975 Reject Null 0.00005 0.00422 0.02091 0.05000

0.5000 3.771 Reject Null 0.00062 0.04430 0.18392 0.36515

1.0000 3.003 Reject Null 0.00798 0.29296 0.69603 0.90000

1.5000 2.241 Reject Null 0.05584 0.73031 0.97315 0.99821

Compared with the corresponding Pocock design, the O’Brien-Fleming design has smaller stopping probabil-
ities in early stages under each hypothetical reference.

The “Boundary Information” table in Output 89.3.13 displays the boundary values for the design that uses
the O’Brien-Fleming method. Compared with the Pocock method, the standardized statistics ˛ boundary
values derived from the O’Brien-Fleming method in absolute values are larger in early stages and smaller in
later stages. This makes the O’Brien-Fleming design less likely to reject the null hypothesis in early stages
than the Pocock design. With the derived parameter C D 2:0243 for the ˛ boundary, the ˛ boundaries at
stage j are computed as C

p
4=j , j D 1; : : : ; 4.

Output 89.3.13 Boundary Information

Boundary Information (Standardized Z Scale)
Null Reference = 0

Alternative
Boundary

Values

Information Level Reference Lower Upper

_Stage_ Proportion Actual N Lower Upper Alpha Alpha

1 0.2500 16.7817 48.33131 -1.63862 1.63862 -4.04859 4.04859

2 0.5000 33.56341 96.66262 -2.31736 2.31736 -2.86278 2.86278

3 0.7500 50.34511 144.9939 -2.83817 2.83817 -2.33745 2.33745

4 1.0000 67.12682 193.3252 -3.27724 3.27724 -2.02429 2.02429

The “Error Spending Information” in Output 89.3.14 displays cumulative error spending at each stage for
each boundary. With smaller ˛ spending in early stages for the O’Brien-Fleming method, it also indicates
that the O’Brien-Fleming design is less likely to reject the null hypothesis in early stages than the Pocock
design.

Output 89.3.14 Error Spending Information

Error Spending Information

Cumulative Error Spending

Information
Level Lower Upper

_Stage_ Proportion Alpha Beta Beta Alpha

1 0.2500 0.00003 0.00000 0.00000 0.00003

2 0.5000 0.00211 0.00000 0.00000 0.00211

3 0.7500 0.01046 0.00000 0.00000 0.01046

4 1.0000 0.02500 0.10000 0.10000 0.02500
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The “Sample Size Summary” table in Output 89.3.15 displays the specified parameters for the sample size
computation of the two-sample test for mean difference.

Output 89.3.15 Sample Size Summary

Sample Size Summary

Test Two-Sample Means

Mean Difference 0.4

Standard Deviation 0.8

Max Sample Size 193.3252

Expected Sample Size (Null Ref) 192.1081

Expected Sample Size (Alt Ref) 145.1404

Weight (Group A) 2

Weight (Group B) 1

The “Sample Sizes (N)” table in Output 89.3.16 displays the derived sample sizes at each stage, in both
fractional and integer numbers. With the fixed-sample information ratio 1.0222, the required sample sizes in
fractional numbers are derived by multiplying 1.0222 by the corresponding sample sizes in the fixed-sample
design.

Output 89.3.16 Derived Sample Sizes

Sample Sizes (N)
Two-Sample Z Test for Mean Difference

Fractional N Ceiling N

_Stage_ N N(Grp 1) N(Grp 2) Information N N(Grp 1) N(Grp 2) Information

1 48.33 32.22 16.11 16.7817 50 33 17 17.5313

2 96.66 64.44 32.22 33.5634 98 65 33 34.1996

3 144.99 96.66 48.33 50.3451 146 97 49 50.8669

4 193.33 128.88 64.44 67.1268 194 129 65 67.5338

Example 89.4: Generating Graphics Display for Sequential Designs
This example creates the same group sequential design as in Example 89.3 and creates graphics by using
ODS Graphics. The following statements request all available graphs in the SEQDESIGN procedure:

ods graphics on;
proc seqdesign altref=0.4

plots=all
;

TwoSidedPocock: design nstages=4 method=poc;
TwoSidedOBrienFleming: design nstages=4 method=obf;

run;
ods graphics off;

With the PLOTS=ALL option, a detailed boundary plot with the rejection region and acceptance region
is displayed for the Pocock design, as shown in Output 89.4.1. By default (or equivalently if you specify
STOP=REJECT), the rejection boundaries are also generated at interim stages.
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Output 89.4.1 Pocock Boundary Plot

The plot shows identical boundary values in each boundary in the standardized Z scale for the Pocock design.
The information level and the critical value for the corresponding fixed-sample design are also displayed.

With the PLOTS=ALL option, a detailed boundary plot with the rejection region and acceptance region is
also displayed for the O’Brien-Fleming design, as shown in Output 89.4.2. The plot shows that the rejection
boundary values are decreasing as the trial advances in the standardized Z scale.
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Output 89.4.2 O’Brien-Fleming Boundary Plot

With the PLOTS=ALL option, the procedure displays a plot of average sample numbers (expected sample
sizes for nonsurvival data or expected numbers of events for survival data) under various hypothetical
references for all designs simultaneously, as shown in Output 89.4.3. By default, the option CREF=
0; 0:01; 0:02; : : : ; 1:50 and expected sample sizes under the hypothetical references � D ci �1 are displayed,
where ci are values specified in the CREF= option. These CREF= values are displayed on the horizontal axis.
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Output 89.4.3 ASN Plot

The plot shows that the Pocock design has a larger expected sample size than the O’Brien-Fleming design
under the null hypothesis (ci D 0) and has a smaller expected sample size under the alternative hypothesis
(ci D 1).

With the PLOTS=ALL option, the procedure displays a plot of the power curves under various hypothetical
references for all designs simultaneously, as shown in Output 89.4.4. By default, the option CREF=
0; 0:01; 0:02; : : : ; 1:50 and powers under hypothetical references � D ci �1 are displayed, where ci are
values specified in the CREF= option. These CREF= values are displayed on the horizontal axis.
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Output 89.4.4 Power Plot

Under the null hypothesis, ci D 0, the power is 0.025, the upper Type I error probability. Under the alternative
hypothesis, ci D 1, the power is 0.9, one minus the Type II error probability. The plot shows only minor
difference between the two designs.

With the PLOTS=ALL option, the procedure displays a plot of sequential boundaries for all designs simul-
taneously, as shown in Output 89.4.5. By default (or equivalently if you specify HSCALE=INFO in the
COMBINEDBOUNDARY option), the information levels are used on the horizontal axis.
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Output 89.4.5 Combined Boundary Plot

The plot shows that the ˛ boundary values (in absolute value) created from the O’Brien-Fleming method are
greater in early stages and smaller in later stages than the boundary values from the Pocock method. The
plot also shows that the information level in the Pocock design is larger than the corresponding level in the
O’Brien-Fleming design at each stage.

With the PLOTS=ALL option, the procedure displays a plot of cumulative error spends for all boundaries
in the designs simultaneously, as shown in Output 89.4.6. With a symmetric two-sided design, cumulative
error spending is displayed only for the upper ˛ boundary. The plot shows that for the upper ˛ boundary,
the O’Brien-Fleming method spends fewer errors in early stages and more errors in later stages than the
corresponding Pocock method.
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Output 89.4.6 Error Spending Plot

Example 89.5: Creating Designs Using Haybittle-Peto Methods
This example requests two 3-stage group sequential designs for normally distributed statistics. Each design
uses a Haybittle-Peto method with a two-sided alternative and early stopping to reject the hypothesis. One
design uses the specified interim boundary Z values and derives the final-stage boundary value for the
specified ˛ and ˇ errors. The other design uses the specified boundary Z values and derives the overall ˛ and
ˇ errors.

The following statements specify the interim boundary Z values and derive the final-stage boundary value for
the specified ˛ D 0:05 and ˇ D 0:10:

ods graphics on;
proc seqdesign altref=0.25

errspend
stopprob
plots=errspend
;



Example 89.5: Creating Designs Using Haybittle-Peto Methods F 7445

OneSidedPeto: design nstages=3
method=peto( z=3)
alt=upper stop=reject
alpha=0.05 beta=0.10;

run;
ods graphics off;

The “Design Information” table in Output 89.5.1 displays design specifications and maximum information in
percentage of its corresponding fixed-sample design.

Output 89.5.1 Haybittle-Peto Design Information

The SEQDESIGN Procedure
Design: OneSidedPeto

The SEQDESIGN Procedure
Design: OneSidedPeto

Design Information

Statistic Distribution Normal

Boundary Scale Standardized Z

Alternative Hypothesis Upper

Early Stop Reject Null

Method Haybittle-Peto

Boundary Key Both

Alternative Reference 0.25

Number of Stages 3

Alpha 0.05

Beta 0.1

Power 0.9

Max Information (Percent of Fixed Sample) 100.2466

Max Information 137.3592

Null Ref ASN (Percent of Fixed Sample) 100.1192

Alt Ref ASN (Percent of Fixed Sample) 87.35

The “Method Information” table in Output 89.5.2 displays the ˛ and ˇ errors and the derived drift parameter,
which is the standardized alternative reference at the final stage.

Output 89.5.2 Method Information

Method Information

Boundary Method Alpha Beta
Alternative
Reference Drift

Upper Alpha Haybittle-Peto 0.05000 0.10000 0.25 2.930009

With the STOPPROB option, the “Expected Cumulative Stopping Probabilities” table in Output 89.5.3
displays the expected stopping stage and cumulative stopping probability to reject the null hypothesis
at each stage under various hypothetical references � D ci�1, where �1 is the alternative reference and
ci D 0; 0:5; 1; 1:5 are the default values in the CREF= option.
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Output 89.5.3 Stopping Probabilities

Expected Cumulative Stopping Probabilities
Reference = CRef * (Alt Reference)

Stopping Probabilities

CRef
Expected

Stopping Stage Source Stage_1 Stage_2 Stage_3

0.0000 2.996 Reject Null 0.00135 0.00246 0.05000

0.5000 2.941 Reject Null 0.01561 0.04372 0.42762

1.0000 2.614 Reject Null 0.09538 0.29057 0.90000

1.5000 1.944 Reject Null 0.32185 0.73442 0.99698

The “Boundary Information” table in Output 89.5.4 displays information level, alternative references, and
boundary values. By default (or equivalently if you specify BOUNDARYSCALE=STDZ), the standardized Z
scale is used to display the alternative references and boundary values. The resulting standardized alternative
reference at stage k is given by �1

p
Ik , where �1 is the alternative reference and Ik is the information level

at stage k, k D 1; 2; 3.

Output 89.5.4 Boundary Information

Boundary Information (Standardized Z Scale)
Null Reference = 0

Alternative
Boundary

Values

Information Level Reference Upper

_Stage_ Proportion Actual Upper Alpha

1 0.3333 45.7864 1.69164 3.00000

2 0.6667 91.57281 2.39234 3.00000

3 1.0000 137.3592 2.93001 1.65042

At each interim stage, if the standardized statistic z � 3, the trial is stopped and the null hypothesis is rejected.
If the statistic z < 3, the trial continues to the next stage. At the final stage, the null hypothesis is rejected
if the statistic z3 > 1:65. Otherwise, the hypothesis is accepted. Note that the boundary values at the final
stage, 1.65, are close to the critical values 1.645 in the corresponding fixed-sample design.

The “Error Spending Information” in Output 89.5.5 displays cumulative error spending at each stage for each
boundary. The stage 1 ˛ spending 0.00135 corresponds to the one-sided p-value for a standardized Z statistic,
Z > 3.

Output 89.5.5 Error Spending Information

Error Spending Information

Cumulative
Error Spending

Information
Level Upper

_Stage_ Proportion Beta Alpha

1 0.3333 0.00000 0.00135

2 0.6667 0.00000 0.00246

3 1.0000 0.10000 0.05000



Example 89.5: Creating Designs Using Haybittle-Peto Methods F 7447

With ODS Graphics enabled, a detailed boundary plot with the rejection and acceptance regions is displayed,
as shown in Output 89.5.6. With the STOP=REJECT option, the interim rejection boundaries are displayed.

Output 89.5.6 Boundary Plot

With the PLOTS=ERRSPEND option, the procedure displays a plot of error spending for each boundary, as
shown in Output 89.5.7. The error spending values in the “Error Spending Information” in Output 89.5.4
are displayed in the plot. As expected, the error spending at each of the first two stages is small, with the
standardized Z boundary value 3.
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Output 89.5.7 Error Spending Plot

The following statements specify the boundary Z values and derive the ˛ and ˇ errors from these completely
specified boundary values:

ods graphics on;
proc seqdesign altref=0.25

maxinfo=200
errspend
stopprob
plots=errspend
;

OneSidedPeto: design nstages=3
method=peto(z=3 2.5 2)
alt=upper stop=reject
boundarykey=none
;

run;
ods graphics off;
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The “Design Information” table in Output 89.5.8 displays design specifications and derived ˛ and ˇ error
levels.

Output 89.5.8 Design Information

The SEQDESIGN Procedure
Design: OneSidedPeto

The SEQDESIGN Procedure
Design: OneSidedPeto

Design Information

Statistic Distribution Normal

Boundary Scale Standardized Z

Alternative Hypothesis Upper

Early Stop Reject Null

Method Haybittle-Peto

Boundary Key None

Alternative Reference 0.25

Number of Stages 3

Alpha 0.02532

Beta 0.06035

Power 0.93965

Max Information (Percent of Fixed Sample) 101.6769

Max Information 200

Null Ref ASN (Percent of Fixed Sample) 101.3933

Alt Ref ASN (Percent of Fixed Sample) 73.74031

The “Method Information” table in Output 89.5.9 displays the ˛ and ˇ errors and the derived drift parameter
for each boundary.

Output 89.5.9 Method Information

Method Information

Boundary Method Alpha Beta
Alternative
Reference Drift

Upper Alpha Haybittle-Peto 0.02532 0.06035 0.25 3.535534

With the STOPPROB option, the “Expected Cumulative Stopping Probabilities” table in Output 89.5.10
displays the expected stopping stage and cumulative stopping probability to reject the null hypothesis
at each stage under various hypothetical references � D ci�1, where �1 is the alternative reference and
ci D 0; 0:5; 1; 1:5 are the default values in the CREF= option.

Output 89.5.10 Stopping Probabilities

Expected Cumulative Stopping Probabilities
Reference = CRef * (Alt Reference)

Stopping Probabilities

CRef
Expected

Stopping Stage Source Stage_1 Stage_2 Stage_3

0.0000 2.992 Reject Null 0.00135 0.00702 0.02532

0.5000 2.826 Reject Null 0.02389 0.15030 0.41775

1.0000 2.176 Reject Null 0.16884 0.65544 0.93965

1.5000 1.508 Reject Null 0.52466 0.96708 0.99954
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The “Boundary Information” table in Output 89.5.11 displays information level, alternative references, and
boundary values.

Output 89.5.11 Boundary Information

Boundary Information (Standardized Z Scale)
Null Reference = 0

Alternative
Boundary

Values

Information Level Reference Upper

_Stage_ Proportion Actual Upper Alpha

1 0.3333 66.66667 2.04124 3.00000

2 0.6667 133.3333 2.88675 2.50000

3 1.0000 200 3.53553 2.00000

The “Error Spending Information” in Output 89.5.12 displays cumulative error spending at each stage for
each boundary. The first-stage ˛ spending 0.00135 corresponds to the one-sided p-value for a standardized Z
statistic, Z > 3.

Output 89.5.12 Error Spending Information

Error Spending Information

Cumulative
Error Spending

Information
Level Upper

_Stage_ Proportion Beta Alpha

1 0.3333 0.00000 0.00135

2 0.6667 0.00000 0.00702

3 1.0000 0.06035 0.02532

With ODS Graphics enabled, a detailed boundary plot with the rejection and acceptance regions is displayed,
as shown in Output 89.5.13. With the STOP=REJECT option, the interim rejection boundaries are displayed.
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Output 89.5.13 Boundary Plot

With the PLOTS=ERRSPEND option, the procedure displays a plot of error spending for each boundary,
as shown in Output 89.5.14. The error spending values in the “Error Spending Information” table in
Output 89.5.10 are displayed in the plot.
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Output 89.5.14 Error Spending Plot

Example 89.6: Creating Designs with Various Stopping Criteria
This example requests three 5-stage group sequential designs for normally distributed statistics. Each design
uses a triangular method with the specified one-sided upper alternative reference �1 D 0:2. The resulting
boundary values are displayed with the score scale. Note that these unified family triangular designs are
different from Whitehead’s triangular designs.

The following statements request three designs with different stopping criterion:

ods graphics on;
proc seqdesign altref=0.2

bscale=score
errspend
plots=(combinedboundary errspend(hscale=info))
;

StopToRejectAccept: design nstages=5 method=tri alt=upper stop=both;
StopToReject: design nstages=5 method=tri alt=upper stop=reject;
StopToAccept: design nstages=5 method=tri alt=upper stop=accept;

run;
ods graphics off;
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The first design has early stopping to reject or accept the null hypothesis H0.

The “Design Information” table in Output 89.6.1 displays design specifications and derived statistics. With
the specified alternative reference, the maximum information is derived.

Output 89.6.1 Triangular Design Information

The SEQDESIGN Procedure
Design: StopToRejectAccept
The SEQDESIGN Procedure

Design: StopToRejectAccept

Design Information

Statistic Distribution Normal

Boundary Scale Score

Alternative Hypothesis Upper

Early Stop Accept/Reject Null

Method Triangular

Boundary Key Both

Alternative Reference 0.2

Number of Stages 5

Alpha 0.05

Beta 0.1

Power 0.9

Max Information (Percent of Fixed Sample) 140.0293

Max Information 299.797

Null Ref ASN (Percent of Fixed Sample) 59.11973

Alt Ref ASN (Percent of Fixed Sample) 66.94909

The “Method Information” table in Output 89.6.2 displays the ˛ and ˇ errors and the derived drift parameter,
which is the standardized alternative reference at the final stage. The table also shows the corresponding
parameters for a triangular method as a unified family method.

Output 89.6.2 Method Information

Method Information

Unified Family

Boundary Method Alpha Beta Rho Tau C
Alternative
Reference Drift

Upper Alpha Triangular 0.05000 . 0.5 1 0.94394 0.2 3.46293

Upper Beta Triangular . 0.10000 0.5 1 0.78753 0.2 3.46293

The “Boundary Information” table in Output 89.6.3 displays information level, alternative reference, and
boundary values. With the specified BOUNDARYSCALE=SCORE option, the alternative reference and
boundary values are displayed in the score statistic scale. With a score scale, the alternative reference is �1 Ik ,
where �1 is the specified alternative reference and Ik is the information level at stage k, k D 1; 2; : : : ; 5.
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Output 89.6.3 Boundary Information

Boundary Information (Score Scale)
Null Reference = 0

Alternative Boundary Values

Information Level Reference Upper

_Stage_ Proportion Actual Upper Beta Alpha

1 0.2000 59.9594 11.99188 -4.37102 19.61274

2 0.4000 119.9188 23.98376 4.89371 22.88154

3 0.6000 179.8782 35.97564 14.15845 26.15033

4 0.8000 239.8376 47.96752 23.42318 29.41912

5 1.0000 299.797 59.95940 32.68791 32.68791

The “Error Spending Information” table in Output 89.6.4 displays cumulative error spending at each stage
for each boundary.

Output 89.6.4 Error Spending Information

Error Spending Information

Cumulative
Error Spending

Information
Level Upper

_Stage_ Proportion Beta Alpha

1 0.2000 0.01729 0.00566

2 0.4000 0.04927 0.02138

3 0.6000 0.07611 0.03643

4 0.8000 0.09357 0.04641

5 1.0000 0.10000 0.05000

With ODS Graphics enabled, a detailed boundary plot with the rejection and acceptance regions is displayed,
as shown in Output 89.6.5. With the STOP=BOTH option, both the acceptance and rejection boundaries at
interim stages are displayed. With the score scale, the acceptance and rejection boundaries are straight lines
and form a triangular-shape continuation region.
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Output 89.6.5 Boundary Plot with Score Statistics

The second design has early stopping only to reject the null hypothesis H0.

The “Design Information” table in Output 89.6.6 displays design specifications and derived statistics. With
the specified alternative reference, the maximum information is derived.
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Output 89.6.6 Triangular Design Information

The SEQDESIGN Procedure
Design: StopToReject

The SEQDESIGN Procedure
Design: StopToReject

Design Information

Statistic Distribution Normal

Boundary Scale Score

Alternative Hypothesis Upper

Early Stop Reject Null

Method Triangular

Boundary Key Both

Alternative Reference 0.2

Number of Stages 5

Alpha 0.05

Beta 0.1

Power 0.9

Max Information (Percent of Fixed Sample) 113.4443

Max Information 242.8799

Null Ref ASN (Percent of Fixed Sample) 111.3399

Alt Ref ASN (Percent of Fixed Sample) 67.41968

The “Method Information” table in Output 89.6.7 displays the ˛ and ˇ errors and the derived drift parameter.
The table also shows the corresponding parameters for a triangular method as a unified family method.

Output 89.6.7 Method Information

Method Information

Unified Family

Boundary Method Alpha Beta Rho Tau C
Alternative
Reference Drift

Upper Alpha Triangular 0.05000 0.10000 0.5 1 0.9833 0.2 3.116921

The “Boundary Information” table in Output 89.6.8 displays information level, alternative reference, and
boundary values. With the specified BOUNDARYSCALE=SCORE option, the alternative reference and
boundary values are displayed in the score statistic scale.

Output 89.6.8 Boundary Information

Boundary Information (Score Scale)
Null Reference = 0

Alternative
Boundary

Values

Information Level Reference Upper

_Stage_ Proportion Actual Upper Alpha

1 0.2000 48.57597 9.71519 18.38919

2 0.4000 97.15194 19.43039 21.45405

3 0.6000 145.7279 29.14558 24.51891

4 0.8000 194.3039 38.86078 27.58378

5 1.0000 242.8799 48.57597 30.64864
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The “Error Spending Information” table in Output 89.6.9 displays cumulative error spending at each stage
for each boundary.

Output 89.6.9 Error Spending Information

Error Spending Information

Cumulative
Error Spending

Information
Level Upper

_Stage_ Proportion Beta Alpha

1 0.2000 0.00000 0.00416

2 0.4000 0.00000 0.01705

3 0.6000 0.00000 0.03027

4 0.8000 0.00000 0.04127

5 1.0000 0.10000 0.05000

With ODS Graphics enabled, a detailed boundary plot with the rejection and acceptance regions is displayed,
as shown in Output 89.6.10. For a triangular design, these rejection boundaries form a straight line with the
score scale.

Output 89.6.10 Boundary Plot with Score Statistics
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The third design has early stopping to accept the null hypothesis H0.

The “Design Information” table in Output 89.6.11 displays design specifications and derived statistics. With
the specified alternative reference, the maximum information is derived.

Output 89.6.11 Triangular Design Information

The SEQDESIGN Procedure
Design: StopToAccept

The SEQDESIGN Procedure
Design: StopToAccept

Design Information

Statistic Distribution Normal

Boundary Scale Score

Alternative Hypothesis Upper

Early Stop Accept Null

Method Triangular

Boundary Key Both

Alternative Reference 0.2

Number of Stages 5

Alpha 0.05

Beta 0.1

Power 0.9

Max Information (Percent of Fixed Sample) 114.9925

Max Information 246.1945

Null Ref ASN (Percent of Fixed Sample) 57.83208

Alt Ref ASN (Percent of Fixed Sample) 110.2477

The “Method Information” table in Output 89.6.12 displays the ˛ and ˇ errors and the derived drift parameter.
The table also shows the corresponding parameters for a triangular method as a unified family method.

Output 89.6.12 Method Information

Method Information

Unified Family

Boundary Method Alpha Beta Rho Tau C
Alternative
Reference Drift

Upper Beta Triangular 0.05000 0.10000 0.5 1 0.82154 0.2 3.138117

The “Boundary Information” table in Output 89.6.13 displays information level, alternative reference, and
boundary values. With the specified BOUNDARYSCALE=SCORE option, the alternative reference and
boundary values are displayed in the score statistic scale.
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Output 89.6.13 Boundary Information

Boundary Information (Score Scale)
Null Reference = 0

Alternative
Boundary

Values

Information Level Reference Upper

_Stage_ Proportion Actual Upper Beta

1 0.2000 49.2389 9.84778 -5.62074

2 0.4000 98.4778 19.69556 1.64895

3 0.6000 147.7167 29.54334 8.91865

4 0.8000 196.9556 39.39112 16.18834

5 1.0000 246.1945 49.23890 23.45803

The “Error Spending Information” table in Output 89.6.14 displays cumulative error spending at each stage
for each boundary.

Output 89.6.14 Error Spending Information

Error Spending Information

Cumulative
Error Spending

Information
Level Upper

_Stage_ Proportion Beta Alpha

1 0.2000 0.01375 0.00000

2 0.4000 0.04149 0.00000

3 0.6000 0.06594 0.00000

4 0.8000 0.08513 0.00000

5 1.0000 0.10000 0.05000

With ODS Graphics enabled, a detailed boundary plot with the rejection and acceptance regions is displayed,
as shown in Output 89.6.15. For a triangular design, these rejection boundaries form a straight line with the
score scale.
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Output 89.6.15 Boundary Plot with Score Scale

With the PLOTS=COMBINEDBOUNDARY option, a plot of the resulting sequential boundaries for all
designs is displayed, as shown in Output 89.6.16. The plot shows that the design with early stopping to reject
and to accept H0 has larger maximum information than the other two designs.
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Output 89.6.16 Combined Boundary Plot with Score Scale

With the PLOTS=ERRSPEND(HSCALE=INFO) option, the error spending plot is displayed with the
information level on the horizontal axis, as shown in Output 89.6.17. The design with early stopping to reject
or accept the null hypothesis H0 has larger ˛ spending and larger ˇ spending in early stages than the other
two designs.
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Output 89.6.17 Error Spending Plot

Example 89.7: Creating Whitehead’s Triangular Designs
This example requests three 4-stage Whitehead’s triangular designs for normally distributed statistics. Each
design has a one-sided alternative hypothesis H1 W �1 D 0:693147 with early stopping to reject or accept the
null hypothesis H0. Note that Whitehead’s triangular designs are different from unified family triangular
designs.

The following statements invoke the SEQDESIGN procedure and specify three Whitehead’s triangular
designs:

ods graphics on;
proc seqdesign altref=0.693147

bscale=score
plots=combinedboundary
;

BoundaryKeyNone: design nstages=4
method=whitehead
boundarykey=none
alt=upper stop=both
alpha=0.05 beta=0.20
;
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BoundaryKeyAlpha: design nstages=4
method=whitehead
boundarykey=alpha
alt=upper stop=both
alpha=0.05 beta=0.20
;

BoundaryKeyBeta: design nstages=4
method=whitehead
boundarykey=beta
alt=upper stop=both
alpha=0.05 beta=0.20
;

run;
ods graphics off;

Whitehead methods with early stopping to reject or accept the null hypothesis create boundaries that
approximately satisfy the Type I and Type II error probability specification. The BOUNDARYKEY=NONE
option specifies no adjustment to the boundary value at the final stage to maintain either a Type I or a Type II
error probability level.

The “Design Information” table in Output 89.7.1 displays design specifications and maximum information.
Note that with the BOUNDARYKEY=NONE option, the derived errors ˛ D 0:05071 and ˇ D 0:19771 are
not the same as the specified errors ˛ D 0:05 and ˇ D 0:20.

Output 89.7.1 Whitehead Design Information

The SEQDESIGN Procedure
Design: BoundaryKeyNone
The SEQDESIGN Procedure
Design: BoundaryKeyNone

Design Information

Statistic Distribution Normal

Boundary Scale Score

Alternative Hypothesis Upper

Early Stop Accept/Reject Null

Method Whitehead

Boundary Key None

Alternative Reference 0.693147

Number of Stages 4

Alpha 0.05071

Beta 0.19771

Power 0.80229

Max Information (Percent of Fixed Sample) 129.6815

Max Information 16.70639

Null Ref ASN (Percent of Fixed Sample) 62.48184

Alt Ref ASN (Percent of Fixed Sample) 73.82535
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The “Method Information” table in Output 89.7.2 displays the derived ˛ and ˇ errors and the derived drift
parameter. The derived errors ˛ D 0:05071 and ˇ D 0:19771 are not exactly the same as the specified errors
˛ D 0:05 and ˇ D 0:20 with the BOUNDARYKEY=NONE option.

Output 89.7.2 Method Information

Method Information

Whitehead

Boundary Method Alpha Beta Tau C
Alternative
Reference Drift

Upper Alpha Whitehead 0.05071 . 0.25 4.60517 0.693147 2.833131

Upper Beta Whitehead . 0.19771 0.25 4.60517 0.693147 2.833131

The “Boundary Information” table in Output 89.7.3 displays information level, alternative reference, and
boundary values. With the specified BOUNDARYSCALE=SCORE option, the alternative reference and
boundary values are displayed with the score statistics scale.

Output 89.7.3 Boundary Information

Boundary Information (Score Scale)
Null Reference = 0

Alternative
Boundary

Values

Information Level Reference Upper

_Stage_ Proportion Actual Upper Beta Alpha

1 0.2500 4.176597 2.89500 -0.95755 4.78775

2 0.5000 8.353195 5.78999 1.91510 5.74530

3 0.7500 12.52979 8.68499 4.78775 6.70285

4 1.0000 16.70639 11.57998 7.66039 7.66039

With ODS Graphics enabled, a detailed boundary plot with the rejection and acceptance regions is displayed,
as shown in Output 89.7.4.
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Output 89.7.4 Boundary Plot

The second design uses the BOUNDARYKEY=ALPHA option to adjust the boundary value at the final stage
to maintain the Type I error probability level.

The “Design Information” table in Output 89.7.5 displays design specifications and the derived maximum
information. Note that with the BOUNDARYKEY=ALPHA option, the specified Type I error probability
˛ D 0:05 is maintained.
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Output 89.7.5 Whitehead Design Information

The SEQDESIGN Procedure
Design: BoundaryKeyAlpha
The SEQDESIGN Procedure
Design: BoundaryKeyAlpha

Design Information

Statistic Distribution Normal

Boundary Scale Score

Alternative Hypothesis Upper

Early Stop Accept/Reject Null

Method Whitehead

Boundary Key Alpha

Alternative Reference 0.693147

Number of Stages 4

Alpha 0.05

Beta 0.20044

Power 0.79956

Max Information (Percent of Fixed Sample) 129.9894

Max Information 16.70639

Null Ref ASN (Percent of Fixed Sample) 62.6302

Alt Ref ASN (Percent of Fixed Sample) 74.00064

The “Method Information” table in Output 89.7.6 displays the specified and derived ˛ and ˇ errors and
the derived drift parameter. The derived Type I error probability is the same as the specified ˛ D 0:05

and the derived Type II error probability ˇ D 0:20044 is not the same as the specified ˇ D 0:20 with the
BOUNDARYKEY=ALPHA option.

Output 89.7.6 Method Information

Method Information

Whitehead

Boundary Method Alpha Beta Tau C
Alternative
Reference Drift

Upper Alpha Whitehead 0.05000 . 0.25 4.60517 0.693147 2.833131

Upper Beta Whitehead . 0.20044 0.25 4.60517 0.693147 2.833131

The “Boundary Information” table in Output 89.7.7 displays information level, alternative reference, and
boundary values.

Output 89.7.7 Boundary Information

Boundary Information (Score Scale)
Null Reference = 0

Alternative
Boundary

Values

Information Level Reference Upper

_Stage_ Proportion Actual Upper Beta Alpha

1 0.2500 4.176597 2.89500 -0.95755 4.78775

2 0.5000 8.353195 5.78999 1.91510 5.74530

3 0.7500 12.52979 8.68499 4.78775 6.70285

4 1.0000 16.70639 11.57998 7.81300 7.81300
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With ODS Graphics enabled, a detailed boundary plot with the rejection and acceptance regions is displayed,
as shown in Output 89.7.8.

Output 89.7.8 Boundary Plot

The third design specifies the BOUNDARYKEY=BETA option to derive the boundary values to maintain the
Type II error probability level ˇ.

The “Design Information” table in Output 89.7.9 displays design specifications and the derived maximum
information. Note that with the BOUNDARYKEY=BETA option, the specified Type II error probability
ˇ D 0:20 is maintained.
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Output 89.7.9 Whitehead Design Information

The SEQDESIGN Procedure
Design: BoundaryKeyBeta

The SEQDESIGN Procedure
Design: BoundaryKeyBeta

Design Information

Statistic Distribution Normal

Boundary Scale Score

Alternative Hypothesis Upper

Early Stop Accept/Reject Null

Method Whitehead

Boundary Key Beta

Alternative Reference 0.693147

Number of Stages 4

Alpha 0.05011

Beta 0.2

Power 0.8

Max Information (Percent of Fixed Sample) 129.9364

Max Information 16.70639

Null Ref ASN (Percent of Fixed Sample) 62.60462

Alt Ref ASN (Percent of Fixed Sample) 73.97042

The “Method Information” table in Output 89.7.10 displays the ˛ and ˇ errors and the derived drift parameter.
The derived Type II error probability is the same as the specified ˇ D 0:20 and the derived Type I error
probability ˛ D 0:05011 is not the same as the specified ˛ D 0:05 with the BOUNDARYKEY=BETA
option.

Output 89.7.10 Method Information

Method Information

Whitehead

Boundary Method Alpha Beta Tau C
Alternative
Reference Drift

Upper Alpha Whitehead 0.05011 . 0.25 4.60517 0.693147 2.833131

Upper Beta Whitehead . 0.20000 0.25 4.60517 0.693147 2.833131

The “Boundary Information” table in Output 89.7.11 displays information level, alternative reference, and
boundary values.

Output 89.7.11 Boundary Information

Boundary Information (Score Scale)
Null Reference = 0

Alternative
Boundary

Values

Information Level Reference Upper

_Stage_ Proportion Actual Upper Beta Alpha

1 0.2500 4.176597 2.89500 -0.95755 4.78775

2 0.5000 8.353195 5.78999 1.91510 5.74530

3 0.7500 12.52979 8.68499 4.78775 6.70285

4 1.0000 16.70639 11.57998 7.78899 7.78899
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With ODS Graphics enabled, a detailed boundary plot with the rejection and acceptance regions is displayed,
as shown in Output 89.7.12.

Output 89.7.12 Boundary Plot

With the PLOTS=COMBINEDBOUNDARY option, a combined plot of group sequential boundaries for
all designs is displayed, as shown in Output 89.7.13. It shows that three designs are similar, with a slightly
smaller boundary value at the final stage for the design with the BOUNDARYKEY=NONE option.
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Output 89.7.13 Combined Boundary Plot

Example 89.8: Creating a One-Sided Error Spending Design
This example requests a five-stage, one-sided group sequential design for normally distributed statistics. The
design uses an O’Brien-Fleming-type error spending function for the ˛ boundary and a Pocock-type error
spending function for the ˇ boundary. The following statements request a one-sided design by using different
˛ and ˇ spending functions:

ods graphics on;
proc seqdesign altref=0.2 errspend

pss(cref=0 0.5 1)
stopprob(cref=0 0.5 1)
plots=(asn power errspend)
;

OneSidedErrorSpending: design nstages=5
method(alpha)=errfuncobf
method(beta)=errfuncpoc
alt=upper stop=both
alpha=0.025
;

run;
ods graphics off;
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The “Design Information” table in Output 89.8.1 displays design specifications and the derived statistics.
With the specified alternative reference, the maximum information is derived.

Output 89.8.1 Error Spending Method Design Information

The SEQDESIGN Procedure
Design: OneSidedErrorSpending

The SEQDESIGN Procedure
Design: OneSidedErrorSpending

Design Information

Statistic Distribution Normal

Boundary Scale Standardized Z

Alternative Hypothesis Upper

Early Stop Accept/Reject Null

Method Error Spending

Boundary Key Both

Alternative Reference 0.2

Number of Stages 5

Alpha 0.025

Beta 0.1

Power 0.9

Max Information (Percent of Fixed Sample) 119.4278

Max Information 313.7196

Null Ref ASN (Percent of Fixed Sample) 50.35408

Alt Ref ASN (Percent of Fixed Sample) 78.77223

The “Method Information” table in Output 89.8.2 displays the ˛ and ˇ errors, alternative reference, and
derived drift parameter, which is the standardized alternative reference at the final stage.

Output 89.8.2 Method Information

Method Information

Error Spending

Boundary Method Alpha Beta Function
Alternative
Reference Drift

Upper Alpha Error Spending 0.02500 . Approx O'Brien-Fleming 0.2 3.542426

Upper Beta Error Spending . 0.10000 Approx Pocock 0.2 3.542426

With the STOPPROB option, the “Expected Cumulative Stopping Probabilities” table in Output 89.8.3
displays the expected stopping stage and cumulative stopping probability to reject the null hypothesis at each
stage under various hypothetical references � D ci�1, where �1 is the alternative reference and ci are values
specified in the CREF= option.
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Output 89.8.3 Stopping Probabilities

Expected Cumulative Stopping Probabilities
Reference = CRef * (Alt Reference)

Stopping Probabilities

CRef
Expected

Stopping Stage Source Stage_1 Stage_2 Stage_3 Stage_4 Stage_5

0.0000 2.108 Reject Null 0.00000 0.00039 0.00381 0.01221 0.02500

0.0000 2.108 Accept Null 0.38080 0.69133 0.86162 0.94170 0.97500

0.0000 2.108 Total 0.38080 0.69173 0.86543 0.95391 1.00000

0.5000 3.296 Reject Null 0.00002 0.01265 0.09650 0.24465 0.38724

0.5000 3.296 Accept Null 0.13665 0.28063 0.41080 0.52230 0.61276

0.5000 3.296 Total 0.13667 0.29328 0.50730 0.76695 1.00000

1.0000 3.298 Reject Null 0.00050 0.13209 0.52642 0.80390 0.90000

1.0000 3.298 Accept Null 0.02954 0.05231 0.07085 0.08648 0.10000

1.0000 3.298 Total 0.03004 0.18440 0.59728 0.89039 1.00000

With the PSS option, the “Power and Expected Sample Sizes” table in Output 89.8.4 displays powers and
expected sample sizes under various hypothetical references � D ci�1, where �1 is the alternative reference
and ci D 0; 0:5; 1; 1:5 are the default values in the CREF= option.

Output 89.8.4 Power and Expected Sample Size Information

Powers and Expected Sample Sizes
Reference = CRef * (Alt Reference)

Sample Size

CRef Power
Percent

Fixed-Sample

0.0000 0.02500 50.3541

0.5000 0.38724 78.7219

1.0000 0.90000 78.7722

With the PLOTS=ASN option, the procedure displays a plot of expected sample sizes under various hypothet-
ical references, as shown in Output 89.8.5. By default, expected sample sizes under the hypotheses � D ci �1,
ci D 0; 0:01; 0:02; : : : ; 1:50, are displayed, where �1 is the alternative reference.
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Output 89.8.5 ASN Plot

With the PLOTS=POWER option, the procedure displays a plot of the power curves under various hypothetical
references for all designs simultaneously, as shown in Output 89.8.6. By default, the option CREF=
0; 0:01; 0:02; : : : ; 1:50 and powers under hypothetical references � D ci �1 are displayed, where ci are
values specified in the CREF= option. These CREF= values are displayed on the horizontal axis.

Under the null hypothesis, ci D 0, the power is 0.025, the upper Type I error probability. Under the alternative
hypothesis, ci D 1, the power is 0.9, one minus the Type II error probability. The plot shows only minor
difference between the two designs.
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Output 89.8.6 Power Plot

The “Boundary Information” table in Output 89.8.7 displays information level, alternative reference, and
boundary values. By default (or equivalently if you specify BOUNDARYSCALE=STDZ), the alternative
reference and boundary values are displayed with the standardized Z scale. That is, the resulting standardized
alternative reference at stage k is given by �1

p
Ik , where �1 is the specified alternative reference and Ik is

the information level at stage k, k D 1; 2; : : : ; 5.

Output 89.8.7 Boundary Information

Boundary Information (Standardized Z Scale)
Null Reference = 0

Alternative
Boundary

Values

Information Level Reference Upper

_Stage_ Proportion Actual Upper Beta Alpha

1 0.2000 62.74393 1.58422 -0.30338 4.87688

2 0.4000 125.4879 2.24043 0.41667 3.35706

3 0.6000 188.2318 2.74395 0.97165 2.67766

4 0.8000 250.9757 3.16844 1.43627 2.26535

5 1.0000 313.7196 3.54243 1.87522 1.87522
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With ODS Graphics enabled, a detailed boundary plot with the rejection and acceptance regions is displayed,
as shown in Output 89.8.8. This plot displays the boundary values in the “Boundary Information” table in
Output 89.8.7.

Output 89.8.8 Boundary Plot

The “Error Spending Information” table in Output 89.8.9 displays cumulative error spending at each stage
for each boundary.

Output 89.8.9 Error Spending Information

Error Spending Information

Cumulative
Error Spending

Information
Level Upper

_Stage_ Proportion Beta Alpha

1 0.2000 0.02954 0.00000

2 0.4000 0.05231 0.00039

3 0.6000 0.07085 0.00381

4 0.8000 0.08648 0.01221

5 1.0000 0.10000 0.02500
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With the PLOTS=ERRSPEND option, the procedure displays a plot of error spending for each boundary,
as shown in Output 89.8.10. This plot displays the cumulative error spending at each stage in the “Error
Spending Information” table in Output 89.8.9. The O’Brien-Fleming-type ˛ spending function is conservative
in early stages because it uses much less at early stages than in the later stages. In contrast, the Pocock-type
ˇ spending function uses more at early stages than in the later stages.

Output 89.8.10 Error Spending Plot

Example 89.9: Creating Designs with Various Number of Stages
This example requests three group sequential designs for normally distributed statistics. Each design uses the
power family error spending function with the default power parameter � D 2. The specified error spending
method is between the approximated Pocock method (� D 1) and the approximated O’Brien-Fleming method
(� D 3) (Jennison and Turnbull 2000, p. 148). The three designs are identical except for the specified number
of stages. The following statements request these three group sequential designs:
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ods graphics on;
proc seqdesign plots=( asn

power
combinedboundary
errspend(hscale=info)
)

;
TwoStageDesign: design nstages=2

method=errfuncpow
alt=upper stop=reject
;

FiveStageDesign: design nstages=5
method=errfuncpow
alt=upper stop=reject
;

TenStageDesign: design nstages=10
method=errfuncpow
alt=upper stop=reject
;

run;
ods graphics off;

The “Design Information” table in Output 89.9.1 displays design information for the two-stage design.

Output 89.9.1 Design Information

The SEQDESIGN Procedure
Design: TwoStageDesign

The SEQDESIGN Procedure
Design: TwoStageDesign

Design Information

Statistic Distribution Normal

Boundary Scale Standardized Z

Alternative Hypothesis Upper

Early Stop Reject Null

Method Error Spending

Boundary Key Both

Number of Stages 2

Alpha 0.05

Beta 0.1

Power 0.9

Max Information (Percent of Fixed Sample) 102.4167

Null Ref ASN (Percent of Fixed Sample) 101.7766

Alt Ref ASN (Percent of Fixed Sample) 79.81021
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The “Boundary Information” table in Output 89.9.2 displays the information level, alternative reference, and
boundary values. By default (or equivalently if you specify BOUNDARYSCALE=STDZ), the alternative
reference and boundary values are displayed with the standardized normal Z scale. The resulting standardized
alternative reference at stage k is given by �1

p
Ik , where �1 is the alternative reference and Ik is the

information level at stage k, k D 1; 2.

Output 89.9.2 Boundary Information in Z Scale

Boundary Information (Standardized Z Scale)
Null Reference = 0

Alternative
Boundary
Values

Information
Level Reference Upper

_Stage_ Proportion Upper Alpha

1 0.5000 2.09414 2.24140

2 1.0000 2.96156 1.69970

The “Design Information” table in Output 89.9.3 displays design information for the five-stage design.
Compared with the two-stage design in Output 89.9.1, the maximum information increases from 102.42 to
105.62, and the average sample number under the alternative reference (Alt Ref ASN) decreases from 79.81
to 69.64.

Output 89.9.3 Design Information

The SEQDESIGN Procedure
Design: FiveStageDesign

The SEQDESIGN Procedure
Design: FiveStageDesign

Design Information

Statistic Distribution Normal

Boundary Scale Standardized Z

Alternative Hypothesis Upper

Early Stop Reject Null

Method Error Spending

Boundary Key Both

Number of Stages 5

Alpha 0.05

Beta 0.1

Power 0.9

Max Information (Percent of Fixed Sample) 105.6235

Null Ref ASN (Percent of Fixed Sample) 104.356

Alt Ref ASN (Percent of Fixed Sample) 69.64322

The “Boundary Information” table in Output 89.9.4 displays the information level, alternative reference, and
boundary values with the default standardized normal Z scale.
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Output 89.9.4 Boundary Information in Z Scale

Boundary Information (Standardized Z Scale)
Null Reference = 0

Alternative
Boundary
Values

Information
Level Reference Upper

_Stage_ Proportion Upper Alpha

1 0.2000 1.34502 2.87816

2 0.4000 1.90215 2.47023

3 0.6000 2.32965 2.20095

4 0.8000 2.69005 1.98182

5 1.0000 3.00756 1.79024

The “Design Information” table in Output 89.9.5 displays design information for the ten-stage design.
Compared with the five-stage design in Output 89.9.3, the maximum information increases further from
105.62 to 107.26 and under the alternative reference, the average sample number decreases further from
69.64 to 66.36.

Output 89.9.5 Design Information

The SEQDESIGN Procedure
Design: TenStageDesign

The SEQDESIGN Procedure
Design: TenStageDesign

Design Information

Statistic Distribution Normal

Boundary Scale Standardized Z

Alternative Hypothesis Upper

Early Stop Reject Null

Method Error Spending

Boundary Key Both

Number of Stages 10

Alpha 0.05

Beta 0.1

Power 0.9

Max Information (Percent of Fixed Sample) 107.256

Null Ref ASN (Percent of Fixed Sample) 105.7276

Alt Ref ASN (Percent of Fixed Sample) 66.35565
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The “Boundary Information” table in Output 89.9.6 displays the information level, alternative reference, and
boundary values with the default standardized normal Z scale.

Output 89.9.6 Boundary Information in Z Scale

Boundary Information (Standardized Z Scale)
Null Reference = 0

Alternative
Boundary
Values

Information
Level Reference Upper

_Stage_ Proportion Upper Alpha

1 0.1000 0.95840 3.29053

2 0.2000 1.35538 2.94037

3 0.3000 1.65999 2.72115

4 0.4000 1.91679 2.54808

5 0.5000 2.14304 2.40114

6 0.6000 2.34758 2.27127

7 0.7000 2.53568 2.15359

8 0.8000 2.71076 2.04503

9 0.9000 2.87519 1.94355

10 1.0000 3.03072 1.84765

With the PLOTS=ASN option, the procedure displays a plot of average sample numbers under various
hypothetical references for all designs simultaneously, as shown in Output 89.9.7. By default, the option
CREF= 0; 0:01; 0:02; : : : ; 1:50 and expected sample sizes under the hypothetical references � D ci �1 are
displayed, where ci are values specified in the CREF= option. These CREF= values are displayed on the
horizontal axis.
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Output 89.9.7 ASN Plot

The plot shows that as the number of stages increases, the average sample number as a percentage of
the fixed-sample design increases under the null hypothesis (ci D 0) but decreases under the alternative
hypothesis (ci D 1).

With the PLOTS=POWER option, the procedure displays a plot of the power curves under various hypothetical
references for all designs simultaneously, as shown in Output 89.9.8. By default, the option CREF=
0; 0:01; 0:02; : : : ; 1:50 and powers under hypothetical references � D ci �1 are displayed, where ci are
values specified in the CREF= option. These CREF= values are displayed on the horizontal axis.
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Output 89.9.8 Power Plot

Under the null hypothesis, ci D 0, the power is 0.05, the upper Type I error probability. Under the alternative
hypothesis, ci D 1, the power is 0.9, one minus the Type II error probability. The plot shows only minor
difference among the three designs.

With the PLOTS=COMBINEDBOUNDARY option, the procedure displays a plot of sequential boundaries
for all designs simultaneously, as shown in Output 89.9.9. By default (or equivalently if you specify
COMBINEDBOUNDARY(HSCALE=INFO)), the information levels are used on the horizontal axis. Since
the maximum information is not available for the design, the percent information ratios with respect to the
corresponding fixed-sample design are displayed in the plot.
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Output 89.9.9 Combined Boundary Plot

The plot shows that as the number of stages increases, the maximum information increases and the ˛ boundary
values also increase.

With the PLOTS=ERRSPEND(HSCALE=INFO) option, the procedure displays a plot of cumulative error
spends for all boundaries in the designs simultaneously, as shown in Output 89.9.10.
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Output 89.9.10 Error Spending Plot

The plot shows similar error spending for these three designs since all three designs are generated from the
same power family error spending function.

Example 89.10: Creating Two-Sided Error Spending Designs with and
without Overlapping Lower and Upper ˇ Boundaries

This example requests two three-stage group sequential designs for normally distributed statistics. Each design
uses a power family error spending function with a specified two-sided alternative hypothesisH1 W �1 D ˙0:2
and early stopping only to accept the null hypothesis H0.

The first design uses the BETAOVERLAP=NOADJUST option to derive acceptance boundary values
without adjusting for the possible overlapping of the lower and upper ˇ boundaries computed from the two
corresponding one-sided tests. The second design uses the BETAOVERLAP=ADJUST option to test the
overlapping of the ˇ boundaries at each interim stage based on the two corresponding one-sided tests and
then to set the ˇ boundary values at the stage to missing if overlapping occurs at that stage.
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The following statements request a two-sided design with the BETAOVERLAP=NOADJUST option:

ods graphics on;
proc seqdesign altref=0.2 errspend;

design nstages=3
method=errfuncpow
alt=twosided stop=accept
betaoverlap=noadjust
beta=0.09
;

run;
ods graphics off;

The “Design Information” table in Output 89.10.1 displays design specifications and the derived statistics for
the first design. With the specified alternative reference �1 D 0:2, the maximum information is derived.

Output 89.10.1 Design Information

The SEQDESIGN Procedure
Design: Design_1

The SEQDESIGN Procedure
Design: Design_1

Design Information

Statistic Distribution Normal

Boundary Scale Standardized Z

Alternative Hypothesis Two-Sided

Early Stop Accept Null

Method Error Spending

Boundary Key Both

Alternative Reference 0.2

Number of Stages 3

Alpha 0.05

Beta 0.09

Power 0.91

Max Information (Percent of Fixed Sample) 103.8789

Max Information 282.9328

Null Ref ASN (Percent of Fixed Sample) 79.20197

Alt Ref ASN (Percent of Fixed Sample) 102.1476

The “Boundary Information” table in Output 89.10.2 displays the information level, alternative reference,
and boundary values. With a specified alternative reference �1, the maximum information is derived from the
procedure, and the actual information level at each stage is displayed in the table. By default (or equivalently
if you specify BOUNDARYSCALE=STDZ), the alternative reference and boundary values are displayed
with the standardized Z scale. The alternative reference at stage k is given by �1

p
Ik , where �1 is the specified

alternative reference and Ik is the information level at stage k, k D 1; 2; 3.
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Output 89.10.2 Boundary Information

Boundary Information (Standardized Z Scale)
Null Reference = 0

Alternative
Boundary

Values

Information Level Reference Lower Upper

_Stage_ Proportion Actual Lower Upper Beta Beta

1 0.3333 94.31094 -1.94228 1.94228 -0.08239 0.08239

2 0.6667 188.6219 -2.74679 2.74679 -0.90351 0.90351

3 1.0000 282.9328 -3.36412 3.36412 -1.92519 1.92519

The “Error Spending Information” table in Output 89.10.3 displays the cumulative error spending at each
stage for each boundary.

Output 89.10.3 Error Spending Information

Error Spending Information

Cumulative Error Spending

Information
Level Lower Upper

_Stage_ Proportion Alpha Beta Beta Alpha

1 0.3333 0.00000 0.01000 0.01000 0.00000

2 0.6667 0.00000 0.04000 0.04000 0.00000

3 1.0000 0.02500 0.09000 0.09000 0.02500

With the STOP=ACCEPT option, the design does not stop at interim stages to reject H0, and the ˛ spending
at each interim stage is zero. For the power family error spending function with the default parameter � D 2,
the beta spending at stage 1 is .1=3/� ˇ D .1=3/2 0:09 D 0:01, and the cumulative beta spending at stage 2
is .2=3/� ˇ D .2=3/2 0:09 D 0:04.

With ODS Graphics enabled, a detailed boundary plot with the acceptance and rejection regions is displayed,
as shown in Output 89.10.4.
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Output 89.10.4 Boundary Plot

The following statements request a two-sided design with the BETAOVERLAP=ADJUST option, which is
the default:

ods graphics on;
proc seqdesign altref=0.2 errspend;

design nstages=3
method=errfuncpow
alt=twosided
stop=accept
betaoverlap=adjust
beta=0.09
;

run;
ods graphics off;

With the BETAOVERLAP=ADJUST option, the procedure first derives the usual ˇ boundary values for the
two-sided design and then checks for overlapping of the ˇ boundaries for the two corresponding one-sided
tests at each stage. If this type of overlapping occurs at a particular stage, the ˇ boundary values for that
stage are set to missing, the ˇ spending values at that stage are reset to zero, and the ˇ spending values at
subsequent stages are adjusted proportionally.
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The boundary values without adjusting for the possible overlapping of the two one-sided ˇ boundaries are
identical to the boundary values derived in the first design (with the BETAOVERLAP=NOADJUST option,
as shown in Output 89.10.2). At stage 1, the upper ˇ boundary value for the corresponding one-sided test is

�1
p
I1 �ˆ

�1.1 � ˇ1/ D 0:2
p
94:31094 �ˆ�1.0:99/ D 1:94228 � 2:32635 D �0:38407

where �1 D 0:2 is the upper alternative reference, I1 D 94:31094 is the information level at stage 1, and
ˇ1 D 0:01 is the ˇ spending at stage 1 (as shown in Output 89.10.3).

Similarly, the lower ˇ boundary value for the corresponding one-sided test is computed as 0.38407. Since
the upper ˇ boundary value is less than the lower ˇ boundary at stage 1, overlapping occurs, and so the ˇ
boundary values for the two-sided design are set to missing at stage 1.

With the ˇ boundary values set to missing at stage 1 and the ˇ spending ˇ01 D 0 the ˇ spending values at
subsequent interim stages are adjusted proportionally. In this example, the adjusted ˇ spending at stage 2 is
computed as

ˇ02 D ˇ
0
1 C

ˇ2 � ˇ1

ˇ3 � ˇ1
.ˇ3 � ˇ

0
1/ D 0C

0:04 � 0:01

0:09 � 0:01
0:09 D 0:03375

where ˇk is the cumulative ˇ spending at stage k before the adjustment, k D 1; 2; 3.

The “Design Information” table in Output 89.10.5 displays design specifications and derived statistics for the
design.

Output 89.10.5 Design Information

The SEQDESIGN Procedure
Design: Design_1

The SEQDESIGN Procedure
Design: Design_1

Design Information

Statistic Distribution Normal

Boundary Scale Standardized Z

Alternative Hypothesis Two-Sided

Early Stop Accept Null

Method Error Spending

Boundary Key Both

Alternative Reference 0.2

Number of Stages 3

Alpha 0.05

Beta 0.09

Power 0.91

Max Information (Percent of Fixed Sample) 101.9388

Max Information 277.649

Null Ref ASN (Percent of Fixed Sample) 80.56408

Alt Ref ASN (Percent of Fixed Sample) 100.792
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The “Boundary Information” table in Output 89.10.6 displays the information levels, alternative references,
and boundary values.

Output 89.10.6 Boundary Information

Boundary Information (Standardized Z Scale)
Null Reference = 0

Alternative
Boundary

Values

Information Level Reference Lower Upper

_Stage_ Proportion Actual Lower Upper Beta Beta

1 0.3333 92.54967 -1.92405 1.92405 . .

2 0.6667 185.0993 -2.72102 2.72102 -0.89469 0.89469

3 1.0000 277.649 -3.33256 3.33256 -1.93494 1.93494

The “Error Spending Information” table in Output 89.10.7 displays the cumulative error spending at each
stage for each boundary.

Output 89.10.7 Error Spending Information

Error Spending Information

Cumulative Error Spending

Information
Level Lower Upper

_Stage_ Proportion Alpha Beta Beta Alpha

1 0.3333 0.00000 0.00000 0.00000 0.00000

2 0.6667 0.00000 0.03375 0.03375 0.00000

3 1.0000 0.02500 0.09000 0.09000 0.02500

With ODS Graphics enabled, a detailed boundary plot with the acceptance and rejection regions is displayed,
as shown in Output 89.10.8.
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Output 89.10.8 Boundary Plot

Example 89.11: Creating a Two-Sided Asymmetric Error Spending Design
with Early Stopping to Reject H0

This example requests a three-stage two-sided asymmetric group sequential design for normally distributed
statistics.

The O’Brien-Fleming boundary can be approximated using a power family error spending function with
parameter � D 3, and the Pocock boundary can be approximated using a power family error spending
function with parameter � D 1 (Jennison and Turnbull 2000, p. 148). The following statements use the
power family error spending function to creates a two-sided asymmetric design with early stopping to reject
the null hypothesis H0:

ods graphics on;
proc seqdesign altref=1.0

pss(cref=0 0.5 1)
stopprob(cref=0 0.5 1)
errspend
plots=(asn power errspend)
;
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TwoSidedErrorSpending: design nstages=3
method(upperalpha)=errfuncpow(rho=3)
method(loweralpha)=errfuncpow(rho=1)
info=cum(2 3 4)
alt=twosided
stop=reject
alpha=0.075(upper=0.025)
;

run;
ods graphics off;

The design uses power family error spending functions with � D 1 for the lower ˛ boundary and � D 3 for
the upper ˛ boundary. Thus, the design is conservative in the early stages and tends to stop the trials early
only with a small p-value for the upper ˛ boundary. The upper ˛ level 0.025 is specified explicitly, and the
lower ˛ level is computed as 0.075 – 0.025 = 0.05.

The “Design Information” table in Output 89.11.1 displays design specifications and the derived maximum
information. Note that in order to attain the same information level for the asymmetric lower and upper
boundaries, the derived power at the lower alternative 0.92963 is larger than the default 0.90.

Output 89.11.1 Design Information

The SEQDESIGN Procedure
Design: TwoSidedErrorSpending

The SEQDESIGN Procedure
Design: TwoSidedErrorSpending

Design Information

Statistic Distribution Normal

Boundary Scale Standardized Z

Alternative Hypothesis Two-Sided

Early Stop Reject Null

Method Error Spending

Boundary Key Both

Alternative Reference 1

Number of Stages 3

Alpha 0.075

Alpha (Lower) 0.05

Alpha (Upper) 0.025

Beta (Lower) 0.07037

Beta (Upper) 0.1

Power (Lower) 0.92963

Power (Upper) 0.9

Max Information (Percent of Fixed Sample) 102.4384

Max Information 10.76365

Null Ref ASN (Percent of Fixed Sample) 100.4877

Lower Alt Ref ASN (Percent of Fixed Sample) 64.8288

Upper Alt Ref ASN (Percent of Fixed Sample) 75.98778
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The “Method Information” table in Output 89.11.2 displays the specified ˛ and ˇ error levels and the derived
drift parameter. With the same information level used for the asymmetric lower and upper boundaries, only
one of the ˇ levels is maintained, and the other is derived to have the level less than or equal to the default
level.

Output 89.11.2 Method Information

Method Information

Error Spending

Boundary Method Alpha Beta Function
Alternative
Reference Drift

Upper Alpha Error Spending 0.02500 0.10000 Power (Rho=3) 1 3.280801

Lower Alpha Error Spending 0.05000 0.07037 Power (Rho=1) -1 -3.2808

With the STOPPROB(CREF=0 0.5 1) option, the “Expected Cumulative Stopping Probabilities” table in
Output 89.11.3 displays the expected stopping stage and cumulative stopping probability to reject the null
hypothesis H0 at each stage under hypothetical references � D 0 (null hypothesis H0), � D 0:5 �1, and
� D �1 (alternative hypothesis H1), where �1 is the alternative reference.

Output 89.11.3 Stopping Probabilities

Expected Cumulative Stopping Probabilities
Reference = CRef * (Alt Reference)

Stopping Probabilities

CRef Ref
Expected

Stopping Stage Source Stage_1 Stage_2 Stage_3

0.0000 Lower Alt 2.924 Rej Null (Lower Alt) 0.02500 0.03750 0.05000

0.0000 Lower Alt 2.924 Rej Null (Upper Alt) 0.00313 0.01055 0.02500

0.0000 Lower Alt 2.924 Reject Null 0.02813 0.04805 0.07500

0.5000 Lower Alt 2.456 Rej Null (Lower Alt) 0.21185 0.33190 0.45370

0.5000 Lower Alt 2.456 Rej Null (Upper Alt) 0.00005 0.00012 0.00021

0.5000 Lower Alt 2.456 Reject Null 0.21190 0.33202 0.45391

1.0000 Lower Alt 1.531 Rej Null (Lower Alt) 0.64054 0.82803 0.92963

1.0000 Lower Alt 1.531 Rej Null (Upper Alt) 0.00000 0.00000 0.00000

1.0000 Lower Alt 1.531 Reject Null 0.64054 0.82803 0.92963

0.0000 Upper Alt 2.924 Rej Null (Lower Alt) 0.02500 0.03750 0.05000

0.0000 Upper Alt 2.924 Rej Null (Upper Alt) 0.00313 0.01055 0.02500

0.0000 Upper Alt 2.924 Reject Null 0.02813 0.04805 0.07500

0.5000 Upper Alt 2.758 Rej Null (Lower Alt) 0.00090 0.00110 0.00120

0.5000 Upper Alt 2.758 Rej Null (Upper Alt) 0.05769 0.18269 0.36458

0.5000 Upper Alt 2.758 Reject Null 0.05860 0.18379 0.36578

1.0000 Upper Alt 1.967 Rej Null (Lower Alt) 0.00001 0.00001 0.00001

1.0000 Upper Alt 1.967 Rej Null (Upper Alt) 0.33926 0.69356 0.90000

1.0000 Upper Alt 1.967 Reject Null 0.33927 0.69357 0.90001
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“Rej Null (Lower Alt)” and “Rej Null (Upper Alt)” under the heading “Source” indicate the probabilities of
rejecting the null hypothesis for the lower alternative and for the upper alternative, respectively. “Reject Null”
indicates the probability of rejecting the null hypothesis for either the lower or upper alternative.

Note that with the STOP=REJECT option, the cumulative stopping probability of accepting the null hypothesis
H0 at each interim stage is zero and is not displayed.

With the PSS(CREF=0 0.5 1.0) option, the “Power and Expected Sample Sizes” table in Output 89.11.4
displays powers and expected sample sizes under hypothetical references � D 0 (null hypothesis H0),
� D 0:5 �1, and � D �1 (alternative hypothesis H1), where �1 is the alternative reference. The expected
sample sizes are displayed in a percentage scale relative to the corresponding fixed-sample size design.

Output 89.11.4 Power and Expected Sample Size Information

Powers and Expected Sample Sizes
Reference = CRef * (Alt Reference)

Sample Size

CRef Ref Power
Percent

Fixed-Sample

0.0000 Lower Alt 0.05000 100.4877

0.5000 Lower Alt 0.45370 88.5090

1.0000 Lower Alt 0.92963 64.8288

0.0000 Upper Alt 0.02500 100.4877

0.5000 Upper Alt 0.36458 96.2309

1.0000 Upper Alt 0.90000 75.9878

Note that at ci D 0, the null reference � D 0, the power with the lower alternative is the lower ˛ error 0.05,
and the power with the upper alternative is the upper ˛ error 0.025. At ci D 1, the alternative reference
� D �1, the power with the upper alternative is the specified power 0.90, and the power with the lower
alternative 0.92963 is greater than the specified power 0.90 because the same information level is used for
these two asymmetric boundaries.

With the PLOTS=POWER option, the procedure displays a plot of the power curves under various hypothetical
references, as shown in Output 89.11.5. By default, powers under the lower hypotheses � D ci �1l
and under the upper hypotheses � D ci �1u are displayed for a two-sided asymmetric design, where
ci D 0; 0:01; 0:02; : : : ; 1:50 and �1l D �1 and �1u D 1 are the lower and upper alternative references,
respectively.
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Output 89.11.5 Power Plot

The horizontal axis displays the multiplier of the reference difference. A positive multiplier corresponds to ci
for the upper alternative hypothesis, and a negative multiplier corresponds to �ci for the lower alternative
hypothesis. For lower reference hypotheses, the power is the lower ˛ error 0.05 under the null hypothesis
(ci D 0) and is 0.92963 under the alternative hypothesis (ci D 1). For upper reference hypotheses, the power
is the upper ˛ error 0.025 under the null hypothesis (ci D 0) and is 0.90 under the alternative hypothesis
(ci D 1).

With the PLOTS=ASN option, the procedure displays a plot of expected sample sizes under various hypothet-
ical references, as shown in Output 89.11.6. By default, expected sample sizes under the lower hypotheses
� D ci �1l and under the upper hypotheses � D ci �1u, ci D 0; 0:01; 0:02; : : : ; 1:50, are displayed for a
two-sided asymmetric design, where �1l D �1 and �1u D 1 are the lower and upper alternative references,
respectively.
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Output 89.11.6 ASN Plot

The horizontal axis displays the multiplier of the reference difference. A positive multiplier corresponds to ci
for the upper alternative hypothesis and a negative multiplier corresponds to �ci for the lower alternative
hypothesis.

The “Boundary Information” table in Output 89.11.7 displays the information levels, alternative references,
and boundary values. By default (or equivalently if you specify BOUNDARYSCALE=STDZ), the standard-
ized Z scale is used to display the alternative references and boundary values. The resulting standardized
alternative references at stage k are given by ˙�1

p
Ik , where �1 is the specified alternative reference and Ik

is the information level at stage k, k D 1; 2; 3.
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Output 89.11.7 Boundary Information

Boundary Information (Standardized Z Scale)
Null Reference = 0

Alternative
Boundary

Values

Information Level Reference Lower Upper

_Stage_ Proportion Actual Lower Upper Alpha Alpha

1 0.5000 5.381827 -2.31988 2.31988 -1.95996 2.73437

2 0.7500 8.07274 -2.84126 2.84126 -1.98394 2.35681

3 1.0000 10.76365 -3.28080 3.28080 -1.90855 2.02853

With ODS Graphics enabled, a detailed boundary plot with the rejection and acceptance regions is displayed,
as shown in Output 89.11.8.

Output 89.11.8 Boundary Plot

The “Error Spending Information” table in Output 89.11.9 displays the cumulative error spending at each
stage for each boundary.
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Output 89.11.9 Error Spending Information

Error Spending Information

Cumulative Error Spending

Information
Level Lower Upper

_Stage_ Proportion Alpha Beta Beta Alpha

1 0.5000 0.02500 0.00000 0.00001 0.00313

2 0.7500 0.03750 0.00000 0.00001 0.01055

3 1.0000 0.05000 0.07037 0.10000 0.02500

With the STOP=REJECT option, there is no early stopping to accept H0, and the corresponding ˇ spending
at an interim stage is computed from the rejection region. For example, the upper ˇ spending at stage 1
(0.00001) is the probability of rejecting H0 for the lower alternative under the upper alternative reference.

With the PLOTS=ERRSPEND option, the procedure displays a plot of the cumulative error spending on each
boundary at each stage, as shown in Output 89.11.10.

Output 89.11.10 Error Spending Plot
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Example 89.12: Creating a Two-Sided Asymmetric Error Spending Design
with Early Stopping to Reject or Accept H0

This example requests a four-stage two-sided asymmetric group sequential design for normally distributed
statistics. The O’Brien-Fleming boundary can be approximated by a gamma family error spending function
with parameter  D �4 or –5, and the Pocock boundary can be approximated with parameter  D 1 (Hwang,
Shih, and DeCani 1990, p. 1440). The following statements use the gamma error spending function with
early stopping to reject or accept the null hypothesis H0:

ods graphics on;
proc seqdesign altref=2

pss(cref=0 0.5 1)
stopprob(cref=0 1)
errspend
plots=(asn power errspend)
;

TwoSidedAsymmetric: design nstages=4
method=errfuncgamma(gamma=1)
method(beta)=errfuncgamma(gamma=-2)
method(upperalpha)=errfuncgamma(gamma=-5)
alt=twosided
stop=both
beta=0.1
;

run;
ods graphics off;

The design uses gamma family error spending functions with  D �5 for the upper ˛ boundary,  D 1 for
the lower ˛ boundary, and  D �2 for the lower and upper ˇ boundaries.

The “Design Information” table in Output 89.12.1 displays design specifications and the derived maximum
information. Note that in order to attain the same information level for the asymmetric lower and upper
boundaries, the derived power at the upper alternative 0.93655 is larger than the specified 1 � ˇ D 0:90.
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Output 89.12.1 Design Information

The SEQDESIGN Procedure
Design: TwoSidedAsymmetric

The SEQDESIGN Procedure
Design: TwoSidedAsymmetric

Design Information

Statistic Distribution Normal

Boundary Scale Standardized Z

Alternative Hypothesis Two-Sided

Early Stop Accept/Reject Null

Method Error Spending

Boundary Key Both

Alternative Reference 2

Number of Stages 4

Alpha 0.05

Beta (Lower) 0.1

Beta (Upper) 0.06345

Power (Lower) 0.9

Power (Upper) 0.93655

Max Information (Percent of Fixed Sample) 104.0688

Max Information 3.162386

Null Ref ASN (Percent of Fixed Sample) 74.16654

Lower Alt Ref ASN (Percent of Fixed Sample) 59.10271

Upper Alt Ref ASN (Percent of Fixed Sample) 73.78797

The “Method Information” table in Output 89.11.2 displays the specified ˛ and ˇ error levels and the derived
drift parameter. With the same information level used for the asymmetric lower and upper boundaries, only
one of the ˇ levels is maintained and the other is derived to have the level less than or equal to the specified
level.

Output 89.12.2 Method Information

Method Information

Error Spending

Boundary Method Alpha Beta Function
Alternative
Reference Drift

Upper Alpha Error Spending 0.02500 . Gamma (Gamma=-5) 2 3.55662

Upper Beta Error Spending . 0.06345 Gamma (Gamma=-2) 2 3.55662

Lower Beta Error Spending . 0.10000 Gamma (Gamma=-2) -2 -3.55662

Lower Alpha Error Spending 0.02500 . Gamma (Gamma=1) -2 -3.55662

With the STOPPROB(CREF=0 1) option, the “Expected Cumulative Stopping Probabilities” table in Out-
put 89.12.3 displays the expected stopping stage and cumulative stopping probabilities at each stage under
the null reference � D 0 and under the alternative reference � D �1.
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Output 89.12.3 Stopping Probabilities

Expected Cumulative Stopping Probabilities
Reference = CRef * (Alt Reference)

Stopping Probabilities

CRef Ref
Expected

Stopping Stage Source Stage_1 Stage_2 Stage_3 Stage_4

0.0000 Lower Alt 2.851 Rej Null (Lower Alt) 0.00875 0.01556 0.02087 0.02500

0.0000 Lower Alt 2.851 Rej Null (Upper Alt) 0.00042 0.00190 0.00704 0.02500

0.0000 Lower Alt 2.851 Reject Null 0.00917 0.01746 0.02791 0.05000

0.0000 Lower Alt 2.851 Accept Null 0.00000 0.30125 0.79354 0.95000

0.0000 Lower Alt 2.851 Total 0.00917 0.31870 0.82145 1.00000

1.0000 Lower Alt 2.272 Rej Null (Lower Alt) 0.27499 0.58934 0.79601 0.90000

1.0000 Lower Alt 2.272 Rej Null (Upper Alt) 0.00000 0.00000 0.00000 0.00000

1.0000 Lower Alt 2.272 Reject Null 0.27499 0.58934 0.79601 0.90000

1.0000 Lower Alt 2.272 Accept Null 0.00000 0.01863 0.04935 0.10000

1.0000 Lower Alt 2.272 Total 0.27499 0.60797 0.84536 1.00000

0.0000 Upper Alt 2.851 Rej Null (Lower Alt) 0.00875 0.01556 0.02087 0.02500

0.0000 Upper Alt 2.851 Rej Null (Upper Alt) 0.00042 0.00190 0.00704 0.02500

0.0000 Upper Alt 2.851 Reject Null 0.00917 0.01746 0.02791 0.05000

0.0000 Upper Alt 2.851 Accept Null 0.00000 0.30125 0.79354 0.95000

0.0000 Upper Alt 2.851 Total 0.00917 0.31870 0.82145 1.00000

1.0000 Upper Alt 2.836 Rej Null (Lower Alt) 0.00002 0.00002 0.00002 0.00002

1.0000 Upper Alt 2.836 Rej Null (Upper Alt) 0.05945 0.33802 0.72323 0.93655

1.0000 Upper Alt 2.836 Reject Null 0.05947 0.33804 0.72325 0.93657

1.0000 Upper Alt 2.836 Accept Null 0.00000 0.01182 0.03131 0.06343

1.0000 Upper Alt 2.836 Total 0.05947 0.34986 0.75456 1.00000

“Rej Null (Lower Alt)” and “Rej Null (Upper Alt)” under the heading “Source” indicate the probabilities of
rejecting the null hypothesis for the lower alternative and for the upper alternative, respectively. “Reject Null”
indicates the probability of rejecting the null hypothesis for either the lower or upper alternative, “Accept
Null” indicates the probability of accepting the null hypothesis, and “Total” indicates the total probability of
stopping the trial.

With the PSS(CREF=0 0.5 1.0) option, the “Power and Expected Sample Sizes” table in Output 89.12.4
displays powers and expected sample sizes under hypothetical references � D 0 (null hypothesis H0),
� D 0:5 �1, and � D �1 (alternative hypothesis H1), where �1 is the alternative reference. The expected
sample sizes are displayed in a scale that indicates a percentage of its corresponding fixed-sample size design.

Output 89.12.4 Power and Expected Sample Size Information

Powers and Expected Sample Sizes
Reference = CRef * (Alt Reference)

Sample Size

CRef Ref Power
Percent

Fixed-Sample

0.0000 Lower Alt 0.02500 74.1665

0.5000 Lower Alt 0.34601 75.8425

1.0000 Lower Alt 0.90000 59.1027

0.0000 Upper Alt 0.02500 74.1665

0.5000 Upper Alt 0.41647 85.3976

1.0000 Upper Alt 0.93655 73.7880
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Note that at ci D 0, the null reference � D 0, the power with the lower alternative is the lower ˛ error 0.025,
and the power with the upper alternative is the upper ˛ error 0.025. At ci D 1, the alternative reference
� D �1, the power with the lower alternative is the specified power 0.90, and the power with the upper
alternative 0.93655 is greater than the specified power 0.90 because the same information level is used for
these two asymmetric boundaries.

With the PLOTS=POWER option, the procedure displays a plot of the power curves under various hypothetical
references, as shown in Output 89.12.5. By default, powers under the lower hypotheses � D ci �1l
and under the upper hypotheses � D ci �1u, are displayed for a two-sided asymmetric design, where
ci D 0; 0:01; 0:02; : : : ; 1:50 and �1l D �1 and �1u D 1 are the lower and upper alternative references,
respectively.

Output 89.12.5 Power Plot

The horizontal axis displays the multiplier of the reference difference. A positive multiplier corresponds to ci
for the upper alternative hypothesis, and a negative multiplier corresponds to �ci for the lower alternative
hypothesis. For lower reference hypotheses, the power is the lower ˛ error 0.025 under the null hypothesis
(ci D 0) and is 0.90 under the alternative hypothesis (ci D 1). For upper reference hypotheses, the power is
the upper ˛ error 0.025 under the null hypothesis (ci D 0) and is 0.93655 under the alternative hypothesis
(ci D 1).
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With the PLOTS=ASN option, the procedure displays a plot of expected sample sizes under various hypothet-
ical references, as shown in Output 89.12.6. By default, expected sample sizes under the lower hypotheses
� D ci �1l and under the upper hypotheses � D ci �1u are displayed for a two-sided asymmetric design,
where ci D 0; 0:01; 0:02; : : : ; 1:50 and �1l D �1 and �1u D 1 are the lower and upper alternative references,
respectively.

Output 89.12.6 ASN Plot

The horizontal axis displays the multiplier of the reference difference. A positive multiplier corresponds to ci
for the upper alternative hypothesis, and a negative multiplier corresponds to �ci for the lower alternative
hypothesis.

By default (or equivalently if you specify BETAOVERLAP=ADJUST), the SEQDESIGN procedure first
derives boundary values without adjusting for the possible overlapping of the two one-sided ˇ boundaries
based on two corresponding one-sided tests. Then the procedure checks for overlapping of the ˇ boundaries
at the interim stages. Since the two ˇ boundaries overlap at stage 1, the ˇ boundary values for stage 1 are set
to missing, the ˇ spending values at stage 1 are set to zero, and the ˇ spending values at subsequent stages
are adjusted proportionally.

The “Boundary Information” table in Output 89.12.7 displays the information levels, alternative references,
and boundary values. By default (or equivalently if you specify BOUNDARYSCALE=STDZ), the standard-
ized Z scale is used to display the alternative references and boundary values. The resulting standardized
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alternative references at stage k is given by˙�1
p
Ik , where �1 is the specified alternative reference and Ik is

the information level at stage k, k D 1; 2; 3; 4.

Output 89.12.7 Boundary Information

Boundary Information (Standardized Z Scale)
Null Reference = 0

Alternative Boundary Values

Information Level Reference Lower Upper

_Stage_ Proportion Actual Lower Upper Alpha Beta Beta Alpha

1 0.2500 0.790597 -1.77831 1.77831 -2.37610 . . 3.33772

2 0.5000 1.581193 -2.51491 2.51491 -2.35714 -0.48408 0.29400 2.94871

3 0.7500 2.37179 -3.08012 3.08012 -2.34861 -1.36183 1.13898 2.50473

4 1.0000 3.162386 -3.55662 3.55662 -2.32105 -2.32105 1.95675 1.95675

With ODS Graphics enabled, a detailed boundary plot with the rejection and acceptance regions is displayed,
as shown in Output 89.12.8.

Output 89.12.8 Boundary Plot



7504 F Chapter 89: The SEQDESIGN Procedure

The “Error Spending Information” in Output 89.12.9 displays the cumulative error spending at each stage for
each boundary.

Output 89.12.9 Error Spending Information

Error Spending Information

Cumulative Error Spending

Information
Level Lower Upper

_Stage_ Proportion Alpha Beta Beta Alpha

1 0.2500 0.00875 0.00000 0.00002 0.00042

2 0.5000 0.01556 0.01863 0.01184 0.00190

3 0.7500 0.02087 0.04935 0.03132 0.00704

4 1.0000 0.02500 0.10000 0.06345 0.02500

With the ˇ boundary values missing at stage 1, there is no early stopping to accept H0 at stage 1, and
the corresponding ˇ spending at stage 1 is computed from the rejection region. For example, the upper ˇ
spending at stage 1 (0.00002) is the probability of rejecting H0 for the lower alternative under the upper
alternative reference.

With the PLOTS=ERRSPEND option, the procedure displays a plot of the cumulative error spending on each
boundary at each stage, as shown in Output 89.12.10.
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Output 89.12.10 Error Spending Plot

Example 89.13: Creating a Design with a Nonbinding Beta Boundary
This example requests a two-sided design similar to Example 89.2, but with a nonbinding beta boundary.
With a nonbinding acceptance boundary, the trial does not need to stop to accept the null hypothesis when a
test statistic falls in the acceptance region at interim stages. The design maintains the specified Type I error
level, but at the cost of increased sample size.

The following statements invoke the SEQDESIGN procedure and request a four-stage group sequential
design with early stopping to reject or accept H0:

ods graphics on;
proc seqdesign altref=0.15 errspend

;
NonbindingDesign: design nstages=4

method=obf
alt=upper
stop=both(betaboundary=nonbinding)
alpha=0.025 beta=0.10
;

samplesize model=twosamplefreq(nullprop=0.6 test=prop);
run;
ods graphics off;
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The STOP=BOTH option specifies early stopping to reject or accept the null hypothesis, and the
BETABOUNDARY=NONBINDING suboption requests the nonbinding beta boundary.

The “Design Information,” “Method Information,” and “Boundary Information” tables are displayed by
default. The “Design Information” table in Output 89.13.1 displays design specifications and derived
statistics such as power and maximum information. With a specified alternative reference, ALTREF=0.15,
the maximum information IX is derived.

Output 89.13.1 Design Information

The SEQDESIGN Procedure
Design: NonbindingDesign
The SEQDESIGN Procedure
Design: NonbindingDesign

Design Information

Statistic Distribution Normal

Boundary Scale Standardized Z

Alternative Hypothesis Upper

Early Stop Accept(Nonbinding)/Reject Null

Method O'Brien-Fleming

Boundary Key Both

Alternative Reference 0.15

Number of Stages 4

Alpha (Binding Beta Boundary) 0.02228

Alpha (Nonbinding Beta Boundary) 0.025

Beta 0.1

Power 0.9

Max Information (Percent of Fixed Sample) 110.7138

Max Information 517.0296

Null Ref ASN (Percent of Fixed Sample) 62.29796

Alt Ref ASN (Percent of Fixed Sample) 78.5392

With the BETABOUNDARY=NONBINDING option, there are two ways to compute the Type I error level:
with or without the beta boundary. Alpha (Binding Beta Boundary) displays the Type I error level with
the beta boundary, and Alpha (Nonbinding Beta Boundary) displays the Type I error level without the beta
boundary.

The maximum information is the information level at the final stage of the group sequential trial. The
Max Information (Percent Fixed-Sample) row displays the maximum information for the sequential design
expressed as a percentage of the information for the corresponding fixed-sample design (which has a Type I
error level 0.025). In Output 89.13.1, Max Information (Percent Fixed-Sample) is 110.71%, which means
that the information needed for the group sequential trial is 10.71% more than the information needed for the
corresponding fixed-sample design if the trial does not stop at any interim stage.

Compared to the corresponding design with a binding beta boundary, which has a Max Information (Percent
Fixed-Sample) of 107.67% as displayed in Output 89.2.1, the nonbinding design requires a larger sample
size if the trial proceeds to the final stage.
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The “Method Information” table in Output 89.13.2 displays the values of � D 0:5 and � D 0, which are
the parameters for the O’Brien-Fleming method. The table also displays the drift parameter 3.4107, which
is greater than the drift parameter 3.3636 in the corresponding binding boundary design, as displayed in
Output 89.2.2.

Output 89.13.2 Method Information

Method Information

Unified Family

Boundary Method Alpha Beta Rho Tau C
Alternative
Reference Drift

Upper Alpha O'Brien-Fleming 0.02500 . 0.5 0 2.0243 0.15 3.410743

Upper Beta O'Brien-Fleming . 0.10000 0.5 0 1.38645 0.15 3.410743

The “Boundary Information” table in Output 89.13.3 displays information level, alternative reference, and
boundary values at each stage. By default (or equivalently if you specify BOUNDARYSCALE=STDZ), the
alternative reference and boundary values are displayed with the standardized Z statistic scale. The resulting
standardized alternative reference at stage k is given by �1

p
Ik , where �1 is the alternative reference and Ik

is the information level at stage k, for k= 1, 2, 3, 4.

Output 89.13.3 Boundary Information

Boundary Information (Standardized Z Scale)
Nonbinding Beta Boundary, Null Reference = 0

Alternative
Boundary

Values

Information Level Reference Upper

_Stage_ Proportion Actual N Upper Beta Alpha

1 0.2500 129.2574 110.5151 1.70537 -1.06752 4.04859

2 0.5000 258.5148 221.0302 2.41176 0.45103 2.86279

3 0.7500 387.7722 331.5452 2.95379 1.35286 2.33746

4 1.0000 517.0296 442.0603 3.41074 2.02430 2.02430

By default (or equivalently if you specify INFO=EQUAL), equally spaced information levels are used. With
the derived maximum information, the actual information level at each stage is also displayed. With the
SAMPLESIZE statement, the required sample size N is also displayed under the heading “Information
Level.”

Note that with the standardized Z statistic scale, the rejection boundary values are identical to the boundary
values that are derived in the corresponding design with early stopping to reject H0.

With ODS Graphics enabled, a detailed boundary plot with the rejection and acceptance regions is displayed,
as shown in Output 89.13.4.
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Output 89.13.4 Boundary Plot

The horizontal axis indicates the information levels for the design. The stages are indicated by vertical lines
with accompanying stage numbers. The boundary plot also displays the information level and the critical
value for the corresponding fixed-sample design.

The “Error Spending Information (Nonbinding Beta Boundary)” table in Output 89.13.5 displays cumulative
error spending at each stage for each boundary. With a nonbinding beta boundary, the ˛ spending at each
stage is computed by using the ˛ boundary only.

Output 89.13.5 Error Spending Information

Error Spending Information
(Nonbinding Beta Boundary)

Cumulative
Error Spending

Information
Level Upper

_Stage_ Proportion Beta Alpha

1 0.2500 0.00278 0.00003

2 0.5000 0.02603 0.00211

3 0.7500 0.06343 0.01046

4 1.0000 0.10000 0.02500
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The SEQDESIGN procedure derives the drift parameter �1
p
IX , where �1 is the alternative reference and

IX is the maximum information. With the SAMPLESIZE statement, the maximum information is used to
compute the required sample size for the study.

The “Sample Size Summary” table in Output 89.13.6 displays parameters for the sample size computation.
With the MODEL=TWOSAMPLEFREQ(NULLPROP=0.6 TEST=PROP) option in the SAMPLESIZE
statement, the total sample size and expected sample sizes under the null and alternative hypotheses for
testing the difference between two proportions are displayed.

Output 89.13.6 Sample Size Summary

Sample Size Summary

Test Two-Sample Proportions

Null Proportion 0.6

Proportion (Group A) 0.75

Test Statistic Z for Proportion

Reference Proportions Alt Ref

Max Sample Size 442.0603

Expected Sample Size (Null Ref) 248.7446

Expected Sample Size (Alt Ref) 313.5929

The “Sample Sizes (N)” table in Output 89.13.7 displays the required sample sizes at each stage, in both
fractional and integer numbers. The derived fractional sample sizes are under the heading “Fractional N.”
These sample sizes are rounded up to integers under the heading “Ceiling N.” As expected, the sample sizes
in the table are larger than the corresponding sample sizes in the corresponding design with binding beta
boundary.

Output 89.13.7 Derived Sample Sizes

Sample Sizes (N)
Two-Sample Z Test for Proportion Difference

Fractional N Ceiling N

_Stage_ N N(Grp 1) N(Grp 2) Information N N(Grp 1) N(Grp 2) Information

1 110.52 55.26 55.26 129.3 112 56 56 131.0

2 221.03 110.52 110.52 258.5 222 111 111 259.6

3 331.55 165.77 165.77 387.8 332 166 166 388.3

4 442.06 221.03 221.03 517.0 444 222 222 519.3

Example 89.14: Computing Sample Size for Survival Data That Have Uniform
Accrual

This example illustrates sample size computation for survival data when the accrual is uniform and when the
data do not contain individual loss to follow-up.

Suppose that a clinic is conducting a study of the effect of a new cancer treatment. The study consists of
exposing mice to a carcinogen and randomly assigning them to either the control group or the treatment
group. The event of interest is death from cancer induced by the carcinogen, and the response is the time
from randomization to death.
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Following the derivations in the section “Test for Two Survival Distributions with a Log-Rank Test” on
page 7403, the hypothesis H0 W � D �log.�/ D 0 with the alternative hypothesis H1 W � D �1 > 0 is used,
where � is the hazard ratio between the treatment group and the control group.

Also suppose that from past experience, the median survival time for the control group is t0 D 20 weeks, and
the study wants to detect a median survival time, t1 D 40 weeks, with an 80% power in the trial. Assuming
exponential survival functions for the two groups, the hazard rates can be computed from

Sj .tj / D e
�hj tj D

1

2

where j = 0, 1.

Thus, the hazard rates are h0 D 0:03466 and h1 D 0:01733 under the null and alternative hypotheses,
respectively.

The following statements invoke the SEQDESIGN procedure and specify the SAMPLESIZE statement to
derive required sample sizes for a log-rank test that compares two survival distributions for the treatment
effect (Jennison and Turnbull 2000, pp. 77–79; Whitehead 1997, pp. 36–39):

proc seqdesign;
ErrorSpend: design nstages=4 method=errfuncobf

;
samplesize model=twosamplesurvival

( nullhazard=0.03466 hazard=0.01733
accrual=uniform accrate=15);

run;

In the SAMPLESIZE statement, the MODEL=TWOSAMPLESURVIVAL option specifies a log-rank test to
compare two survival distributions for the treatment effect. The NULLHAZARD=0.03466 option specifies
null hazard rates for the two groups under the null hypothesis, and the HAZARD=0.01733 option specifies
the hazard rate for the first group under the alternative hypothesis.

The ACCRUAL= option specifies the method for individual accrual. The ACCRUAL=UNIFORM option
(which is the default) specifies that the individual accrual is uniform with a constant accrual rate, and the
ACCRATE= option specifies the accrual rate.

You do not have to specify the alternative reference explicitly for the sample size computation in the
SEQDESIGN procedure. For the specified null and alternative hazards, h0 D 0:03466 and h1 D 0:01733,
the hazard ratio �1 D h1=h0 D 1=2, and the alternative reference is

�1 D �log.�1/ D �log
�
1

2

�
D 0:6931

For a detailed derivation of these required sample sizes, see the section “Test for Two Survival Distributions
with a Log-Rank Test” on page 7403.

The “Design Information” table in Output 89.14.1 displays design specifications and four derived statistics:
the actual maximum information, the maximum information, the average sample number under the null
hypothesis (Null Ref ASN), and the average sample number under the alternative hypothesis (Alt Ref ASN).
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Output 89.14.1 Error Spending Design Information

The SEQDESIGN Procedure
Design: ErrorSpend

The SEQDESIGN Procedure
Design: ErrorSpend

Design Information

Statistic Distribution Normal

Boundary Scale Standardized Z

Alternative Hypothesis Two-Sided

Early Stop Reject Null

Method Error Spending

Boundary Key Both

Alternative Reference 0.693147

Number of Stages 4

Alpha 0.05

Beta 0.1

Power 0.9

Max Information (Percent of Fixed Sample) 101.8279

Max Information 22.26962

Null Ref ASN (Percent of Fixed Sample) 101.2586

Alt Ref ASN (Percent of Fixed Sample) 77.73131

The “Boundary Information” table in Output 89.14.2 displays the information level, including the proportion,
actual level, and corresponding number of events at each stage. The table also displays the lower and upper
alternative references, and the lower and upper boundary values at each stage.

Output 89.14.2 Boundary Information

Boundary Information (Standardized Z Scale)
Null Reference = 0

Alternative
Boundary

Values

Information Level Reference Lower Upper

_Stage_ Proportion Actual Events Lower Upper Alpha Alpha

1 0.2500 5.567405 22.26962 -1.63550 1.63550 -4.33263 4.33263

2 0.5000 11.13481 44.53924 -2.31295 2.31295 -2.96333 2.96333

3 0.7500 16.70221 66.80886 -2.83278 2.83278 -2.35902 2.35902

4 1.0000 22.26962 89.07847 -3.27101 3.27101 -2.01409 2.01409
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The “Sample Size Summary” table in Output 89.14.3 displays parameters for the sample size computation.
Because the ACCTIME= option is not specified along with the ACCRATE= option, the minimum and
maximum accrual times are derived.

Output 89.14.3 Sample Size Summary

Sample Size Summary

Test Two-Sample Survival

Null Hazard Rate 0.03466

Hazard Rate (Group A) 0.01733

Hazard Rate (Group B) 0.03466

Hazard Ratio 0.5

log(Hazard Ratio) -0.69315

Reference Hazards Alt Ref

Accrual Uniform

Accrual Rate 15

Min Accrual Time 5.938565

Min Sample Size 89.07847

Max Accrual Time 23.78469

Max Sample Size 356.7704

Max Number of Events 89.07847

With the minimum and maximum accrual times of 5.9386 and 23.7847, respectively, the ACCTIME=18
option specifies an accrual time of 18 for the trial.

The following statements invoke the SEQDESIGN procedure and specify the ACCTIME=18 option in the
SAMPLESIZE statement to derive required sample sizes:

proc seqdesign;
ErrorSpend: design nstages=4 method=errfuncobf

;
samplesize model(ceiladjdesign=include)=twosamplesurvival

( nullhazard=0.03466 hazard=0.01733
accrual=uniform accrate=15 acctime=18
ceiling=time);

run;

When CEILADJDESIGN=INCLUDE in the SAMPLESIZE statement, the “Design Information” table in
Output 89.14.4 also displays the information for the adjusted design with ceiling times at the stages.
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Output 89.14.4 Error Spending Design Information

The SEQDESIGN Procedure
Design: ErrorSpend

The SEQDESIGN Procedure
Design: ErrorSpend

Design Information

Statistic Distribution Normal

Boundary Scale Standardized Z

Alternative Hypothesis Two-Sided

Early Stop Reject Null

Method Error Spending

Boundary Key Both

Alternative Reference 0.693147

Number of Stages 4

Alpha 0.05

Beta 0.1

Power 0.9

Max Information (Percent of Fixed Sample) 101.8279

Max Information 22.26962

Null Ref ASN (Percent of Fixed Sample) 101.2586

Alt Ref ASN (Percent of Fixed Sample) 77.73131

Adj Design Alpha 0.05

Adj Design Beta 0.08832

Adj Design Power 0.91168

Adj Design Max Information (Percent of Fixed Sample) 101.8064

Adj Design Max Information 23.23194

Adj Design Null Ref ASN (Percent of Fixed Sample) 101.2299

Adj Design Alt Ref ASN (Percent of Fixed Sample) 76.32612

Because of the ceiling sample sizes in the adjusted design, Type I and Type II error levels cannot be maintained
simultaneously. When BOUNDARYKEY=BOTH (the default) in the DESIGN statement, only the Type I
error level is maintained for the adjusted design. The adjusted design has a power of 0.91168, and it reflects
the change of maximum information from 22.2696 to 23.2319.

The “Sample Size Summary” table in Output 89.14.5 displays the follow-up time and maximum sample size
with the specified accrual time. When you specify the CEILING=TIME option (which is the default), the
required times at the stages are rounded up to integers for additional statistics, and the table also displays the
follow-up time and total time that correspond to these ceiling times at the stages.
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Output 89.14.5 Sample Size Summary

Sample Size Summary

Test Two-Sample Survival

Null Hazard Rate 0.03466

Hazard Rate (Group A) 0.01733

Hazard Rate (Group B) 0.03466

Hazard Ratio 0.5

log(Hazard Ratio) -0.69315

Reference Hazards Alt Ref

Accrual Uniform

Accrual Rate 15

Accrual Time 18

Follow-up Time 7.133226

Total Time 25.13323

Max Number of Events 89.07847

Max Sample Size 270

Expected Sample Size (Null Ref) 269.9206

Expected Sample Size (Alt Ref) 263.1141

Follow-up Time (Ceiling Time) 8

Total Time (Ceiling Time) 26

The “Number of Events (D) and Sample Sizes (N)” table in Output 89.14.6 displays the required time at each
stage, in both fractional and integer numbers. The derived times under the heading “Fractional Time” are not
integers. These times are rounded up to integers under the heading “Ceiling Time.” The table also displays
the numbers of events and sample sizes at each stage.

Output 89.14.6 Number of Events and Sample Sizes

Numbers of Events (D) and Sample Sizes (N)
Two-Sample Log-Rank Test

Fractional Time

_Stage_ D D(Grp 1) D(Grp 2) Time N N(Grp 1) N(Grp 2) Information

1 22.27 7.73 14.54 11.2631 168.95 84.47 84.47 5.5674

2 44.54 15.73 28.81 16.2875 244.31 122.16 122.16 11.1348

3 66.81 23.93 42.88 20.4926 270.00 135.00 135.00 16.7022

4 89.08 32.51 56.57 25.1332 270.00 135.00 135.00 22.2696

Numbers of Events (D) and Sample Sizes (N)
Two-Sample Log-Rank Test

Ceiling Time

_Stage_ D D(Grp 1) D(Grp 2) Time N N(Grp 1) N(Grp 2) Information

1 25.11 8.74 16.37 12 180.00 90.00 90.00 6.2781

2 48.22 17.07 31.16 17 255.00 127.50 127.50 12.0552

3 69.39 24.90 44.48 21 270.00 135.00 135.00 17.3468

4 92.93 34.04 58.89 26 270.00 135.00 135.00 23.2319

The “Ceiling-Adjusted Design Boundary Information” table in Figure 89.14.7 displays boundary information,
similar to Figure 89.14.2 but with ceiling times at the stages.
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Output 89.14.7 Adjusted O’Brien-Fleming Boundary Information

Ceiling-Adjusted Design Boundary Information (Standardized Z Scale)
Null Reference = 0

Alternative Boundary Values

Information Level Reference Lower Upper

_Stage_ Proportion Actual Events Lower Upper Alpha Alpha

1 0.2702 6.278064 25.11225 -1.73675 1.73675 -4.15591 4.15591

2 0.5189 12.05517 48.22068 -2.40665 2.40665 -2.90189 2.90189

3 0.7467 17.34678 69.38712 -2.88692 2.88692 -2.36973 2.36973

4 1.0000 23.23194 92.92776 -3.34094 3.34094 -2.01362 2.01362

Because the times have integer values, the information levels at the stages are not equally spaced in this
example, but the design is still an O’Brien-Fleming error spending design.

Alternatively, you can specify the CEILING=N option in the SAMPLESIZE statement as follows to derive
additional sample size information that includes ceiling sample sizes at each stage:

proc seqdesign;
ErrorSpend: design nstages=4 method=errfuncobf

;
samplesize model(ceiladjdesign=include)=twosamplesurvival

( nullhazard=0.03466 hazard=0.01733
accrual=uniform accrate=15 acctime=18
ceiling=n);

run;

When CEILING=N, the required sample sizes at the stages are rounded up to integers, and the ceiling-adjusted
design has ceiling sample sizes at the stages.

Example 89.15: Computing Sample Size for Survival Data with Truncated
Exponential Accrual

This example illustrates sample size computation for survival data when the accrual is not uniform and when
the data contain individual loss to follow-up.

Following the derivations in Example 89.14, the following statements invoke the SEQDESIGN procedure for
sample size computation with exponential accrual and individual loss to follow-up:

proc seqdesign;
OBrienFleming: design nstages=4 method=obf

;
samplesize model=twosamplesurvival

( nullhazard=0.03466
hazard=0.01733
accrual=exp(parm=-0.1)
loss=exp(hazard=0.05)
acctime=20);

run;
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The SAMPLESIZE statement derives required sample sizes for the test. The MODEL=TWOSAMPLESURVIVAL
option specifies a log-rank test to compare two survival distributions for the treatment effect. The NULL-
HAZARD=0.03466 option specifies null hazard rates for the two groups under the null hypothesis, and the
HAZARD=0.01733 option specifies the hazard rate for the first group under the alternative hypothesis.

The ACCTIME= option specifies the accrual time Ta, and the ACCRUAL=EXP(POWER=–0.1) option
specifies that the individual accrual be truncated exponential with a scaled power parameter 0 D �0:1.
That is, the truncated exponential accrual has a power parameter  D 0 = Ta D �0:1 = 20 D �0:005 in
the accrual time Ta. The LOSS=EXP(HAZARD=0.05) option specifies an exponential loss function with a
hazard rate � D 0:05. For a detailed derivation of these required sample sizes, see the section “Test for Two
Survival Distributions with a Log-Rank Test” on page 7403.

The “Design Information” table in Output 89.15.1 displays design specifications and the derived maximum
information.

Output 89.15.1 O’Brien-Fleming Design Information

The SEQDESIGN Procedure
Design: OBrienFleming

The SEQDESIGN Procedure
Design: OBrienFleming

Design Information

Statistic Distribution Normal

Boundary Scale Standardized Z

Alternative Hypothesis Two-Sided

Early Stop Reject Null

Method O'Brien-Fleming

Boundary Key Both

Alternative Reference 0.693147

Number of Stages 4

Alpha 0.05

Beta 0.1

Power 0.9

Max Information (Percent of Fixed Sample) 102.2163

Max Information 22.35451

Null Ref ASN (Percent of Fixed Sample) 101.5728

Alt Ref ASN (Percent of Fixed Sample) 76.7397

The “Boundary Information” table in Output 89.15.2 displays information level, alternative reference, and
boundary values.

Output 89.15.2 Boundary Information

Boundary Information (Standardized Z Scale)
Null Reference = 0

Alternative
Boundary

Values

Information Level Reference Lower Upper

_Stage_ Proportion Actual Events Lower Upper Alpha Alpha

1 0.2500 5.588627 22.35451 -1.63862 1.63862 -4.04859 4.04859

2 0.5000 11.17725 44.70902 -2.31736 2.31736 -2.86278 2.86278

3 0.7500 16.76588 67.06352 -2.83817 2.83817 -2.33745 2.33745

4 1.0000 22.35451 89.41803 -3.27724 3.27724 -2.02429 2.02429
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The “Sample Size Summary” table in Output 89.15.3 displays parameters for the sample size computation.
Because the ACCNOBS= option is not specified along with the ACCTIME= option, the minimum and
maximum sample sizes are derived.

Output 89.15.3 Sample Size Summary

Sample Size Summary

Test Two-Sample Survival

Null Hazard Rate 0.03466

Hazard Rate (Group A) 0.01733

Hazard Rate (Group B) 0.03466

Hazard Ratio 0.5

log(Hazard Ratio) -0.69315

Reference Hazards Alt Ref

Accrual Truncated Exponential with Losses

Scaled Exponential Parameter -0.1

Loss Hazard Rate 0.05

Accrual Time 20

Min Accrual Sample Size 269

Max Accrual Sample Size 553

Max Number of Events 89.41803

With the minimum and maximum sample sizes of 269 and 553, respectively, the ACCNOBS=360 option
specifies an accrual sample size of 360 for the trial.

proc seqdesign;
OBrienFleming: design nstages=4

method=obf
;

samplesize model=twosamplesurvival
( nullhazard=0.03466
hazard=0.01733
accrual=exp(parm=-0.1)
loss=exp(hazard=0.05)
acctime=20 accnobs=360 );

run;

With the specified accrual sample size and accrual time, the “Sample Size Summary” table in Output 89.15.4
displays the follow-up time and maximum sample size with the specified accrual time. When you specify the
CEILING=TIME option (which is the default), the required times at the stages are rounded up to integers for
additional statistics, and the table also displays the follow-up time and total time that correspond to these
ceiling times at the stages.
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Output 89.15.4 Sample Size Summary

The SEQDESIGN Procedure
Design: OBrienFleming

The SEQDESIGN Procedure
Design: OBrienFleming

Sample Size Summary

Test Two-Sample Survival

Null Hazard Rate 0.03466

Hazard Rate (Group A) 0.01733

Hazard Rate (Group B) 0.03466

Hazard Ratio 0.5

log(Hazard Ratio) -0.69315

Reference Hazards Alt Ref

Accrual Truncated Exponential with Losses

Scaled Exponential Parameter -0.1

Loss Hazard Rate 0.05

Accrual Time 20

Follow-up Time 9.100306

Total Time 29.10031

Max Number of Events 89.41803

Max Sample Size 360

Expected Sample Size (Null Ref) 359.7605

Expected Sample Size (Alt Ref) 342.9204

Follow-up Time (Ceiling Time) 10

Total Time (Ceiling Time) 30

The “Number of Events (D) and Sample Sizes (N)” table in Output 89.15.5 displays the required time at each
stage, in both fractional and integer numbers. The derived times under the heading “Fractional Time” are not
integers. These times are rounded up to integers under the heading “Ceiling Time.” The table also displays
the numbers of events and sample sizes at each stage.

Output 89.15.5 Number of Events and Sample Sizes

Numbers of Events (D) and Sample Sizes (N)
Two-Sample Log-Rank Test

Fractional Time

_Stage_ D D(Grp 1) D(Grp 2) Time N N(Grp 1) N(Grp 2) Information

1 22.35 7.74 14.62 11.4005 200.79 100.39 100.39 5.5886

2 44.71 15.69 29.01 17.0454 304.52 152.26 152.26 11.1773

3 67.06 23.81 43.25 21.9812 360.00 180.00 180.00 16.7659

4 89.42 32.39 57.03 29.1003 360.00 180.00 180.00 22.3545

Numbers of Events (D) and Sample Sizes (N)
Two-Sample Log-Rank Test

Ceiling Time

_Stage_ D D(Grp 1) D(Grp 2) Time N N(Grp 1) N(Grp 2) Information

1 24.46 8.48 15.98 12 211.67 105.83 105.83 6.1162

2 48.97 17.23 31.75 18 322.36 161.18 161.18 12.2436

3 67.14 23.84 43.30 22 360.00 180.00 180.00 16.7851

4 91.46 33.21 58.25 30 360.00 180.00 180.00 22.8649
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Alternatively, you can specify the CEILING=N option in the SAMPLESIZE statement as follows to derive
additional sample size information with ceiling sample sizes at each stage:

proc seqdesign;
OBrienFleming: design nstages=4

method=obf
;

samplesize model=twosamplesurvival
( nullhazard=0.03466
hazard=0.01733
accrual=exp(parm=-0.1)
loss=exp(hazard=0.05)
acctime=20 accnobs=360
ceiling=n);

run;

When you specify CEILING=N, the required sample sizes at the stages are rounded up to integers for
additional statistics, and the “Sample Size Summary” table in Output 89.15.6 also displays the accrual time,
follow-up time, and maximum sample size that correspond to these ceiling sample sizes.

Output 89.15.6 Sample Size Summary

The SEQDESIGN Procedure
Design: OBrienFleming

The SEQDESIGN Procedure
Design: OBrienFleming

Sample Size Summary

Test Two-Sample Survival

Null Hazard Rate 0.03466

Hazard Rate (Group A) 0.01733

Hazard Rate (Group B) 0.03466

Hazard Ratio 0.5

log(Hazard Ratio) -0.69315

Reference Hazards Alt Ref

Accrual Truncated Exponential with Losses

Scaled Exponential Parameter -0.1

Loss Hazard Rate 0.05

Accrual Time 20

Follow-up Time 9.100306

Total Time 29.10031

Max Number of Events 89.41803

Max Sample Size 360

Expected Sample Size (Null Ref) 359.7605

Expected Sample Size (Alt Ref) 342.9204

Accrual Time (Ceiling N) 20

Follow-up Time (Ceiling N) 9.100306

Max Sample Size (Ceiling N) 360
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The “Number of Events (D) and Sample Sizes (N)” table in Output 89.15.7 displays the required sample sizes
at each stage, in both fractional and integer numbers. The derived numbers under the heading “Fractional N”
are not integers. These numbers are rounded up to integers to match the sample size allocation under the
heading “Ceiling N (Matched).” The table also displays the numbers of events and time at each stage.

Output 89.15.7 Number of Events and Sample Sizes

Numbers of Events (D) and Sample Sizes (N)
Two-Sample Log-Rank Test

Fractional N

_Stage_ D D(Grp 1) D(Grp 2) Time N N(Grp 1) N(Grp 2) Information

1 22.35 7.74 14.62 11.4005 200.79 100.39 100.39 5.5886

2 44.71 15.69 29.01 17.0454 304.52 152.26 152.26 11.1773

3 67.06 23.81 43.25 21.9812 360.00 180.00 180.00 16.7659

4 89.42 32.39 57.03 29.1003 360.00 180.00 180.00 22.3545

Numbers of Events (D) and Sample Sizes (N)
Two-Sample Log-Rank Test

Ceiling N (Matched)

_Stage_ D D(Grp 1) D(Grp 2) Time N N(Grp 1) N(Grp 2) Information

1 22.59 7.82 14.77 11.4674 202 101 101 5.6466

2 45.06 15.82 29.24 17.1246 306 153 153 11.2645

3 67.06 23.81 43.25 21.9812 360 180 180 16.7659

4 89.42 32.39 57.03 29.1003 360 180 180 22.3545
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Overview: SEQTEST Procedure
The purpose of the SEQTEST procedure is to perform interim analyses for clinical trials. Clinical trials are
experiments on human beings to demonstrate the efficacy and safety of new drugs or treatments. A simple
example is a trial to test the effectiveness of a new drug in humans by comparing the outcomes in a group
of patients who receive the new drug with the outcomes in a comparable group of patients who receive a
placebo.

A clinical trial is conducted according to a plan called a protocol. A protocol details the objectives of the
trial, the data collection process, and the analyses of the data. The protocol contains information such as a
null hypothesis and an alternative hypothesis, a test statistic, the probability ˛ of a Type I error (incorrectly
rejecting the null hypothesis), the probability ˇ of a Type II error (incorrectly accepting the null hypothesis),
the sample size needed to attain a specified power (probability of correctly rejecting the null hypothesis) of
1 � ˇ at an alternative reference, and critical values that are associated with the test statistic for hypothesis
testing.

In a fixed-sample trial, data about all individuals are first collected and then examined at the end of the study.
Most major trials have data safety monitoring boards or data monitoring committees that periodically monitor
safety and efficacy data during the trial and recommend that a trial be stopped for safety concerns such as an
unacceptable toxicity level. In certain rare situations, the board or committee might even recommend that a
trial be stopped for efficacy. In contrast to a fixed-sample trial, a group sequential trial provides for interim
analyses before the formal completion of the trial while maintaining the specified overall Type I and Type II
error probability levels.

A group sequential trial is most useful in situations where it is important to monitor the trial to prevent
unnecessary exposure of patients to an unsafe new drug, or alternatively to a placebo treatment if the new
drug shows significant improvement. If a group sequential trial stops early, then it usually requires fewer
participants than a corresponding fixed-sample trial.

Thus, in most cases, if a group sequential trial stops early for safety of the new treatment, fewer patients
will be exposed to the new treatment than in the fixed-sample trial. Also, if a trial stops early for efficacy
of the new treatment, the new treatment will be available sooner than it would be in a fixed-sample trial.
Furthermore, if a trial stops early, this can also save time and resources.

A group sequential design provides detailed specifications for a group sequential trial. In addition to the
usual specification for a fixed-sample design, it provides the total number of stages (the number of interim
stages plus a final stage) and a stopping criterion to reject, to accept, or to either reject or accept the null
hypothesis at each interim stage. It also provides critical values and the sample size at each stage for the trial.

At each interim stage, the data collected at the current stage in addition to the data collected at previous stages
are analyzed, and statistics such as a maximum likelihood test statistic and its associated standard error are
computed. The test statistic is then compared with its corresponding critical values at the stage, and the trial
is stopped or continued. If a trial continues to the final stage, the null hypothesis is either rejected or accepted.
The critical values for each stage are chosen in such a way to maintain the overall ˛ level, the overall ˇ level,
or both the overall ˛ and ˇ levels.
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Figure 90.1 shows a two-sided symmetric group sequential trial that stops early to reject the null hypothesis
that the parameter Trt is zero.

Figure 90.1 Sequential Plot for Two-Sided Test

The trial has four stages, which are indicated by vertical lines with accompanying stage numbers. With early
stopping to reject the null hypothesis, the lower rejection boundary is constructed by connecting the lower
critical values (boundary values) for the stages. Similarly, the upper rejection boundary is constructed by
connecting the upper critical values for the stages. The horizontal axis indicates the sample size for the group
sequential trial, and the vertical axis indicates the boundary values and test statistics on the standardized Z
scale.

At each interim stage, if the standardized Z test statistic falls into a rejection region (the darker shaded areas
in Figure 90.1), the trial stops and the null hypothesis is rejected. Otherwise, the trial continues to the next
stage. At the final stage (stage 4), the trial is rejected if Z falls into a rejection region. Otherwise, the trial is
accepted. In Figure 90.1, the test statistic does not fall into the rejection regions for stages 1 and 2, and so the
trial continues to stage 3. At stage 3, the test statistic falls into the rejection region, and the null hypothesis is
rejected.
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A group sequential trial usually involves six steps:

1. You specify the statistical details of the design, including the null and alternative hypotheses, a test
statistic for the hypothesis test, the Type I and II error probabilities, a stopping criterion, the total
number of stages, and the relative information level at each stage.

2. You compute the boundary values for the trial based on the specifications in Step 1. You also compute
the sample size required at each stage for the specified hypothesis test.

3. At each stage, you collect additional data with the required sample sizes. The data available at each
stage include the data collected at previous stages in addition to the data collected at the current stage.

4. At each stage, you analyze the available data with a procedure such as the REG procedure, and you
compute the test statistic.

5. At each stage, you compare the test statistic with the corresponding boundary values. You stop the trial
to reject or accept the hypothesis, or you continue the trial to the next stage. If you continue the trial to
the final stage, you either accept or reject the hypothesis.

6. After the trial stops, you compute parameter estimates, confidence limits for the parameter, and a
p-value for the hypothesis test.

You use the companion SEQDESIGN procedure at Step 2 to compute the boundary values and required
sample sizes for the trial. You use the SEQTEST procedure at Step 5 to compare the test statistic with its
boundary values. At stage 1, the boundary values are derived by using the boundary information tables
created by the SEQDESIGN procedure. These boundary information tables are structured for input to the
SEQTEST procedure. At each subsequent stage, the boundary values are derived by using the test information
tables created by the SEQTEST procedure at the previous stage. These test information tables are also
structured for input to the SEQTEST procedure. You also use the SEQTEST procedure at Step 6 to compute
parameter estimates, confidence limits, and p-values after the trial stops.

Note that for some clinical trials, the information levels are derived from statistics based on individuals
specified in the design plan and might not reach the target maximum information level. For example, if an
estimate of the variance is used to compute the required sample size for a group sequential trial, the computed
variance at each stage might not be the same as the estimated variance. Thus, instead of specifying the
number of individuals in the protocol, the information level can be specified. You can then adjust the sample
sizes with the updated variance estimates at interim stages to achieve the target maximum information level
for the trial (Jennison and Turnbull 2000, p. 295).

The flowchart in Figure 90.2 summarizes the steps in a typical group sequential trial and the relevant SAS
procedures.
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Figure 90.2 Group Sequential Trial

Features of the SEQTEST Procedure
At each stage, the data are analyzed with a statistical procedure such as the REG procedure, and a test statistic
and its associated information level are computed. The information level is the amount of information
available about the unknown parameter. For a maximum likelihood statistic, the information level is the
inverse of its variance.

At each stage, you use the SEQTEST procedure to compare the test statistic with its boundary values. At stage
1, the boundary values are derived by using the boundary information tables created by the SEQDESIGN
procedure. At each subsequent stage, the boundary values are derived by using the test information tables
created by the SEQTEST procedure at the previous stage.

If the observed information level does not match the corresponding information level in the BOUNDARY=
data set, the SEQTEST procedure modifies the boundary values to adjust for new information levels at the
current and subsequent stages. See the section “Boundary Adjustments for Information Levels” on page 7560
for a detailed description of these boundary adjustments.

Either you can specify the test statistic and its information level in the DATA= input data set, or you can
specify the test statistic and its associated standard error in the PARMS= input data set. With the PARMS=
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input data set, the information level for the test statistic is computed from its standard error. See the section
“Input Data Sets” on page 7554 for a detailed description of these input data sets.

At the end of a trial, the parameter estimate is computed. The median unbiased estimate, confidence limits,
and p-value depend on the specified sample space ordering. A sample space ordering specifies the ordering
for test statistics that result in the stopping of a trial. That is, for all the statistics in the rejection region
and in acceptance region, the SEQTEST procedure provides three different sample space orderings: the
stagewise ordering uses counterclockwise ordering around the continuation region, the LR ordering uses
the distance between the observed Z statistic z and its hypothetical value, and the MLE ordering uses the
observed maximum likelihood estimate. See the section “Available Sample Space Orderings in a Sequential
Test” on page 7567 for a detailed description of these orderings.

Output from the SEQTEST Procedure
In addition to the adjusted boundary values and test results for the group sequential trial, the SEQTEST
procedure also computes the following quantities:

• average sample numbers (as percentages of the corresponding fixed-sample sizes for nonsurvival data
or fixed-sample numbers of events for survival data) under various hypothetical references, including
the null and alternative references

• stopping probabilities at each stage under various hypothetical references to indicate how likely it is
that the trial will stop at that stage

• conditional power given the most recently observed statistic under specified hypothetical references

• predictive power given the most recently observed statistic

• repeated confidence intervals for the parameter from the observed statistic at each stage

• parameter estimate, p-value for hypothesis testing, and median and confidence limits for the parameter
at the conclusion of a sequential trial

Getting Started: SEQTEST Procedure
The following example illustrates a clinical study that uses a two-sided O’Brien-Fleming design (O’Brien
and Fleming 1979) to stop the trial early for ethical concerns about possible harm or for unexpectedly strong
efficacy of the new drug.

Suppose that a pharmaceutical company is conducting a clinical trial to test the efficacy of a new cholesterol-
lowering drug. The primary focus is low-density lipoprotein (LDL), the so-called bad cholesterol, which is a
risk factor for coronary heart disease. LDL is measured in mg / dL, milligrams per deciliter of blood.

The trial consists of two groups of equally allocated patients with elevated LDL level: an experimental
group given the new drug and a placebo control group. Suppose the changes in LDL level after the
treatment for patients in the experimental and control groups are normally distributed with means �e and
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�c , respectively, and have a common variance �2. Then the null hypothesis of no effect for the new drug is
H0 W � D �e � �c D 0. Also suppose that the alternative reference � D �10 is the clinically meaningful
difference that the trial should detect with a high probability (power), and that a good estimate of the standard
deviation for the changes in LDL level is O� D 20.

The following statements invoke the SEQDESIGN procedure and request a four-stage O’Brien-Fleming
design for standardized normal test statistics:

ods graphics on;
proc seqdesign altref=-10.0;

TwoSidedOBrienFleming: design nstages=4
method=obf
;

samplesize model=twosamplemean(stddev=20);
ods output Boundary=Bnd_LDL;

run;
ods graphics off;

The ALTREF= option specifies the alternative reference, and the actual maximum information is derived in
the SEQDESIGN procedure.

In the DESIGN statement, the label TwoSidedOBrienFleming identifies the design in the output tables. By
default (or equivalently if you specify ALT=TWOSIDED and STOP=REJECT), the design has a two-sided
alternative hypothesis with early stopping in the interim stages only to reject the null hypothesis. That is, at
each interim stage, the trial will either be stopped to reject the null hypothesis or continue to the next stage.

The NSTAGES=4 option in the DESIGN statement specifies the total number of stages in the group sequential
trial, including three interim stages and a final stage. In the SEQDESIGN procedure, the null hypothesis for
the design is H0 W � D 0. By default (or equivalently if you specify ALPHA=0.05 and BETA=0.10), the
design has a Type I error probability ˛ D 0:05, and a Type II error probability ˇ D 0:10, which corresponds
to a power of 1 � ˇ D 0:90 at the alternative reference H1 W � D �10.

For a two-sided design with early stopping to reject the null hypothesis, there are two boundaries for the
design: an upper ˛ (rejection) boundary that consists of upper rejection critical values and a lower ˛ boundary
that consists of lower rejection critical values. Each boundary is a set of critical values, one from each stage.
With the METHOD=OBF option in the DESIGN statement, the O’Brien-Fleming method is used for the two
boundaries for the design; see Figure 90.5.

The SAMPLESIZE statement with the MODEL=TWOSAMPLEMEAN option uses the derived maximum
information to compute required sample sizes for a two-sample test for mean difference.

The ODS OUTPUT statement with the BOUNDARY=BND_LDL option creates an output data set named
BND_LDL which contains the resulting boundary information. At each stage of the trial, data are collected
and analyzed with a statistical procedure, and a test statistic and its corresponding information level are
computed.

In this example, you can use the REG procedure to compute the maximum likelihood estimate O� for the
drug effect and the corresponding standard error for O� . At stage 1, you can use the SEQTEST procedure to
compare the test statistic with adjusted boundaries that are derived from the boundary information stored
in the BOUND_LDL data set. At each subsequent stage, you can use the SEQTEST procedure to compare
the test statistic with adjusted boundaries that are derived from the boundary information stored in the test
information table that was created by the SEQTEST procedure at the previous stage. The test information
tables are structured for input to the SEQTEST procedure.
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At each interim stage, the trial will either be stopped to reject the null hypothesis or continue to the next stage.
At the final stage, the null hypothesis is either rejected or accepted.

By default (or equivalently if you specify INFO=EQUAL), the SEQDESIGN procedure derives boundary
values with equally spaced information levels for all stages—that is, the same information increment between
successive stages.

The “Design Information” table in Figure 90.3 displays design specifications and three derived statistics:
the maximum information, the average sample number under the null hypothesis (Null Ref ASN), and the
average sample number under the alternative hypothesis (Alt Ref ASN). Each statistic is expressed as a
percentage of the identical statistic for the corresponding fixed-sample information. The average sample
number is the expected sample size (for nonsurvival data) or expected number of events (for survival data).
When you specify an alternative reference (in this case, ALTREF=–10), the actual maximum information
0.1074 is also computed. Note that for a symmetric two-sided design, the ALTREF=–10 option implies a
lower alternative reference of –10 and an upper alternative reference of 10.

Figure 90.3 O’Brien-Fleming Design Information

The SEQDESIGN Procedure
Design: TwoSidedOBrienFleming

The SEQDESIGN Procedure
Design: TwoSidedOBrienFleming

Design Information

Statistic Distribution Normal

Boundary Scale Standardized Z

Alternative Hypothesis Two-Sided

Early Stop Reject Null

Method O'Brien-Fleming

Boundary Key Both

Alternative Reference -10

Number of Stages 4

Alpha 0.05

Beta 0.1

Power 0.9

Max Information (Percent of Fixed Sample) 102.2163

Max Information 0.107403

Null Ref ASN (Percent of Fixed Sample) 101.5728

Alt Ref ASN (Percent of Fixed Sample) 76.7397
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The “Boundary Information” table in Figure 90.4 displays the information level, the lower and upper
alternative references, and the lower and upper boundary values at each stage. By default (or equivalently
if you specify INFO=EQUAL), the SEQDESIGN procedure uses equally spaced information levels for all
stages.

Figure 90.4 Boundary Information

Boundary Information (Standardized Z Scale)
Null Reference = 0

Alternative
Boundary

Values

Information Level Reference Lower Upper

_Stage_ Proportion Actual N Lower Upper Alpha Alpha

1 0.2500 0.026851 42.96116 -1.63862 1.63862 -4.04859 4.04859

2 0.5000 0.053701 85.92233 -2.31736 2.31736 -2.86278 2.86278

3 0.7500 0.080552 128.8835 -2.83817 2.83817 -2.33745 2.33745

4 1.0000 0.107403 171.8447 -3.27724 3.27724 -2.02429 2.02429

The information proportion is the proportion of maximum information available at each stage. By default (or
equivalently if you specify BOUNDARYSCALE=STDZ), the alternative references and boundary values are
displayed with the standardized Z statistic scale. The alternative reference in the standardized Z scale at stage
k is given by �1

p
Ik , where �1 is the alternative reference and Ik is the information available at stage k, k =

1, 2, 3, 4.

In this example, a standardized Z statistic is computed by standardizing the parameter estimate of the effect
in LDL level. A lower Z test statistic indicates a beneficial effect. Consequently, at each interim stage, if the
standardized Z test statistic is less than or equal to the corresponding lower ˛ boundary value, the hypothesis
H0 W � D 0 is rejected for efficacy. If the test statistic is greater than or equal to the corresponding upper ˛
boundary value, the hypothesis H0 is rejected for harmful effect. Otherwise, the process continues to the
next stage. At the final stage (stage 4), the hypothesis H0 is rejected for efficacy if the Z statistic is less
than or equal to the corresponding lower ˛ boundary value –2.0243, and the hypothesis H0 is rejected for
harmful effect if the Z statistic is greater than or equal to the corresponding upper ˛ boundary value 2.0243.
Otherwise, the hypothesis of no significant difference is accepted.

Note that in a typical trial, the actual information levels do not match the information levels specified in the
design. Consequently, the SEQTEST procedure modifies the boundary values stored in the BND_LDL data
set to adjust for these new information levels.

If ODS Graphics is enabled, a detailed boundary plot with the rejection and acceptance regions is displayed,
as shown in Figure 90.5.
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Figure 90.5 O’Brien-Fleming Boundary Plot

This boundary plot displays the boundary values in the “Boundary Information” table in Figure 90.4. The
stages are indicated by vertical lines with accompanying stage numbers. The horizontal axis indicates the
information levels for the stages. If a test statistic at an interim stage is in the rejection region (shaded
area), the trial stops and the null hypothesis is rejected. If the statistic is not in any rejection region, the trial
continues to the next stage. The plot also displays critical values for the corresponding fixed-sample design.
The symbol “ı” identifies the fixed-sample critical values of –1.96 and 1.96.

When you specify the SAMPLESIZE statement, the maximum information (either explicitly specified or
derived in the SEQDESIGN procedure) is used to compute the required sample sizes for the study. The
MODEL=TWOSAMPLEMEAN(STDDEV=20) option specifies the test for the difference between two
normal means. See the section “Test for the Difference between Two Normal Means” in the chapter “The
SEQDESIGN Procedure” for a detailed description of how these required sample sizes are calculated.
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The “Sample Size Summary” table in Figure 90.6 displays the parameters for the sample size computation
and the resulting maximum and expected sample sizes.

Figure 90.6 Required Sample Size Summary

Sample Size Summary

Test Two-Sample Means

Mean Difference -10

Standard Deviation 20

Max Sample Size 171.8447

Expected Sample Size (Null Ref) 170.7627

Expected Sample Size (Alt Ref) 129.0137

With the derived maximum information 0.1074 and the specified MODEL=TWOSAMPLEMEAN
(STDDEV=20) option in the SAMPLESIZE statement, the total sample size in each group is

Na D Nb D 2 �
2 IX D 2 � 20

2
� 0:1074 D 85:92

The “Sample Sizes (N)” table in Figure 90.7 displays the required sample sizes at each stage for the trial, in
both fractional and integer numbers. The derived fractional sample sizes are displayed under the heading
“Fractional N.” These sample sizes are rounded up to integers under the heading “Ceiling N.” By default (or
equivalently if you specify WEIGHT=1 in the MODEL=TWOSAMPLEMEAN option), the sample sizes for
the two groups are equal for the two-sample test.

Figure 90.7 Required Sample Sizes

Sample Sizes (N)
Two-Sample Z Test for Mean Difference

Fractional N Ceiling N

_Stage_ N N(Grp 1) N(Grp 2) Information N N(Grp 1) N(Grp 2) Information

1 42.96 21.48 21.48 0.0269 44 22 22 0.0275

2 85.92 42.96 42.96 0.0537 86 43 43 0.0538

3 128.88 64.44 64.44 0.0806 130 65 65 0.0812

4 171.84 85.92 85.92 0.1074 172 86 86 0.1075

In practice, integer sample sizes are used in the trial, and the resulting information levels increase slightly.
Thus, each of the two groups needs 22, 43, 65, and 86 patients for the four stages, respectively.

Suppose that 22 patients are available in each group at stage 1 and that their measurements for LDL are saved
in the data set LDL_1. Figure 90.8 lists the first 10 observations in the data set LDL_1.
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Figure 90.8 Clinical Trial Data

First 10 Obs in the Trial DataFirst 10 Obs in the Trial Data

Obs Trt Ldl

1 0 33.33

2 1 -14.89

3 0 15.30

4 1 4.71

5 0 26.89

6 1 -48.74

7 0 -39.35

8 1 -8.13

9 0 -8.22

10 1 12.35

The variable Trt is an indicator variable with value 1 for patients in the treatment group and value 0 for
patients in the placebo control group. The variable Ldl is the LDL level of these patients.

The following statements use the REG procedure to estimate the mean treatment difference and its associated
standard error at stage 1:

proc reg data=LDL_1;
model Ldl=Trt;
ods output ParameterEstimates=Parms_LDL1;

run;

The following statements create the data set for the mean treatment difference and its associated standard
error as a PARMS= data set, which will subsequently serve as an input data set for PROC SEQTEST. Note
that all of the variables are required for a PARMS= data set, as described in the section “PARMS= Data Set”
on page 7556.

data Parms_LDL1;
set Parms_LDL1;
if Variable='Trt';
_Scale_='MLE';
_Stage_= 1;
keep _Scale_ _Stage_ Variable Estimate StdErr;

run;

proc print data=Parms_LDL1;
title 'Statistics Computed at Stage 1';

run;

Figure 90.9 displays the statistics computed at stage 1.

Figure 90.9 Statistics Computed at Stage 1

Statistics Computed at Stage 1Statistics Computed at Stage 1

Obs Variable Estimate StdErr _Scale_ _Stage_

1 Trt -2.52591 5.68572 MLE 1
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Since the sample sizes derived are based on the estimated variance at the designing phase, the information
level that corresponds to the test statistic at stage 1 is estimated by

I1 D
1

s21
D

1

5:6862
D 0:0309

where s1 is the standard error of the treatment estimate.

The following statements invoke the SEQTEST procedure to test for early stopping at stage 1:

ods graphics on;
proc seqtest Boundary=Bnd_LDL

Parms(Testvar=Trt)=Parms_LDL1
infoadj=prop
;

ods output Test=Test_LDL1;
run;
ods graphics off;

The BOUNDARY= option specifies the input data set that provides the boundary information for the trial at
stage 1, which was generated in the SEQDESIGN procedure. The PARMS=PARMS_LDL1 option specifies
the input data set PARMS_LDL1 that contains the test statistic and its associated standard error at stage 1, and
the TESTVAR=TRT option identifies the test variable TRT in the data set.

By default (or equivalently if you specify BOUNDARYKEY=ALPHA), the maximum information and the
Type I error level are maintained. Furthermore, with the INFOADJ=PROP option (which is the default), the
information levels at future interim stages (2 and 3) are adjusted proportionally from the levels provided in
the BOUNDARY= data set.

The ODS OUTPUT statement with the TEST=TEST_LDL1 option creates an output data set named
TEST_LDL1 which contains the updated boundary information for the test at stage 1, and the bound-
ary information that is needed for the group sequential test at the next stage. See the section “Boundary
Adjustments for Information Levels” on page 7560 for details.

The “Design Information” table in Figure 90.10 displays design specifications. By default (or equivalently if
you specify BOUNDARYKEY=ALPHA), the boundary values are adjusted for the updated information levels
to maintain the Type I ˛ level, and the maximum information remains the same as in the BOUNDARY= data
set. But the derived Type II error probability ˇ and power 1 � ˇ are slightly different with new information
levels. With the updated power 1 � ˇ, the corresponding fixed-sample design is also updated.
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Figure 90.10 Design Information

The SEQTEST ProcedureThe SEQTEST Procedure

Design Information

BOUNDARY Data Set WORK.BND_LDL

Data Set WORK.PARMS_LDL1

Statistic Distribution Normal

Boundary Scale Standardized Z

Alternative Hypothesis Two-Sided

Early Stop Reject Null

Number of Stages 4

Alpha 0.05

Beta 0.10074

Power 0.89926

Max Information (Percent of Fixed Sample) 102.4815

Max Information 0.10740291

Null Ref ASN (Percent of Fixed Sample) 101.7765

Alt Ref ASN (Percent of Fixed Sample) 75.4928

The “Test Information” table in Figure 90.11 displays the boundary values for the test statistic. By default (or
equivalently if you specify BOUNDARYSCALE=STDZ), these statistics are displayed with the standardized
Z scale. With the INFOADJ=PROP option (which is the default), information levels at future interim stages
are derived proportionally from the corresponding levels provided in the BOUNDARY= data set.

Figure 90.11 Sequential Tests

Test Information (Standardized Z Scale)
Null Reference = 0

Alternative
Boundary

Values Test

Information Level Reference Lower Upper Trt

_Stage_ Proportion Actual Lower Upper Alpha Alpha Estimate Action

1 0.2880 0.030934 -1.75879 1.75879 -3.39532 3.39532 -0.44426 Continue

2 0.5253 0.056423 -2.37536 2.37536 -2.77374 2.77374 .

3 0.7627 0.081913 -2.86205 2.86205 -2.32412 2.32412 .

4 1.0000 0.107403 -3.27724 3.27724 -2.03147 2.03147 .

At stage 1, the standardized Z statistic –0.44426 is between the lower and upper ˛ boundary values, and so
the trial continues to the next stage. With the observed information level at stage 1, I1 D 0:0309 (which is
not substantially different from the target information level at stage 1), the trial continues to the next stage
without adjustment of the sample size according to the study plan.

If an observed information level is different from its target level at an interim stage, the sample sizes at future
stages can be adjusted to achieve the target maximum information level according to the study plan. That
is, a study plan might modify the final sample size to achieve the target maximum information level if the
observed information level is different from its target level by a specified amount at the interim stage. For
example, if the variance estimate is used to compute the required sample size of a two-sample Z test for mean
difference, the study plan might use the current variance estimate to update the required sample size for the
trial (Jennison and Turnbull 2000, p. 295). See the section “Applicable Two-Sample Tests and Sample Size
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Computation” in “The SEQDESIGN Procedure” for a description of how to compute the sample size from
the variance estimate.

If ODS Graphics is enabled, a detailed test plot with the rejection and acceptance regions is displayed, as
shown in Figure 90.12. This plot displays the boundary values in the “Test Information” table in Figure 90.11.
The stages are indicated by vertical lines with accompanying stage numbers. The horizontal axis indicates
the information levels for the stages. As expected, the test statistic is in the continuation region between the
lower and upper ˛ boundaries.

Figure 90.12 Sequential Test Plot

The following statements use the REG procedure with the data available at the first two stages to estimate the
mean treatment difference and its associated standard error at stage 2:

proc reg data=LDL_2;
model Ldl=Trt;
ods output ParameterEstimates=Parms_LDL2;

run;
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The following statements create and display (in Figure 90.13) the data set for the mean treatment difference
and its associated standard error:

data Parms_LDL2;
set Parms_LDL2;
if Variable='Trt';
_Scale_='MLE';
_Stage_= 2;
keep _Scale_ _Stage_ Variable Estimate StdErr;

run;

proc print data=Parms_LDL2;
title 'Statistics Computed at Stage 2';

run;

Figure 90.13 Statistics Computed at Stage 2

Statistics Computed at Stage 2Statistics Computed at Stage 2

Obs Variable Estimate StdErr _Scale_ _Stage_

1 Trt -8.37628 4.24405 MLE 2

Using the standard error for the treatment estimate available at stage 2, the information level that corresponds
to the test statistic at stage 2 is estimated by

I2 D
1

s22
D

1

4:2442
D 0:0555

where s2 is the standard error of the treatment estimate at stage 2.

The following statements invoke the SEQTEST procedure to test for early stopping at stage 2:

proc seqtest Boundary=Test_LDL1
Parms(Testvar=Trt)=Parms_LDL2
infoadj=prop
;

ods output Test=Test_LDL2;
run;

The BOUNDARY= option specifies the input data set that provides the boundary information for the trial
at stage 2, which was generated by the SEQTEST procedure at the previous stage. The PARMS= option
specifies the input data set that contains the test statistic and its associated standard error at stage 2, and the
TESTVAR= option identifies the test variable in the data set.

The ODS OUTPUT statement with the TEST=TEST_LDL2 option creates an output data set named
TEST_LDL2 which contains the updated boundary information for the test at stage 2. The data set also
provides the boundary information that is needed for the group sequential test at the next stage.

The “Test Information” table in Figure 90.14 displays the boundary values for the test statistic with the
default standardized Z scale
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Figure 90.14 Sequential Tests

The SEQTEST ProcedureThe SEQTEST Procedure

Test Information (Standardized Z Scale)
Null Reference = 0

Alternative
Boundary

Values Test

Information Level Reference Lower Upper Trt

_Stage_ Proportion Actual Lower Upper Alpha Alpha Estimate Action

1 0.2880 0.030934 -1.75879 1.75879 -3.39532 3.39532 -0.44426 Continue

2 0.5169 0.055519 -2.35624 2.35624 -2.78456 2.78456 -1.97365 Continue

3 0.7585 0.081461 -2.85413 2.85413 -2.32908 2.32908 .

4 1.0000 0.107403 -3.27724 3.27724 -2.03097 2.03097 .

At stage 2, the standardized test statistic, z D �8:37628=4:24405 D �1:97365, is between its corresponding
lower and upper ˛ boundary values. Therefore, the trial continues to the next stage.

The following statements use the REG procedure with the data available at the first three stages to estimate
the mean treatment difference and its associated standard error at stage 3:

proc reg data=LDL_3;
model Ldl=Trt;
ods output ParameterEstimates=Parms_LDL3;

run;

The following statements create and display (in Figure 90.15) the data set for the mean treatment difference
and its associated standard error:

data Parms_LDL3;
set Parms_LDL3;
if Variable='Trt';
_Scale_='MLE';
_Stage_= 3;
keep _Scale_ _Stage_ Variable Estimate StdErr;

run;

proc print data=Parms_LDL3;
title 'Statistics Computed at Stage 3';

run;

Figure 90.15 Statistics Computed at Stage 3

Statistics Computed at Stage 3Statistics Computed at Stage 3

Obs Variable Estimate StdErr _Scale_ _Stage_

1 Trt -9.21369 3.42149 MLE 3
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The following statements invoke the SEQTEST procedure to test for early stopping at stage 3:

ods graphics on;
proc seqtest Boundary=Test_LDL2

Parms(Testvar=Trt)=Parms_LDL3
infoadj=prop
;

ods output Test=Test_LDL3;
run;
ods graphics off;

The BOUNDARY= option specifies the input data set that provides the boundary information for the trial
at stage 3, which was generated by the SEQTEST procedure at the previous stage. The PARMS= option
specifies the input data set that contains the test statistic and its associated standard error at stage 3, and the
TESTVAR= option identifies the test variable in the data set.

The ODS OUTPUT statement with the TEST=TEST_LDL3 option creates an output data set named
TEST_LDL3 which contains the updated boundary information for the test at stage 3. The data set also
provides the boundary information that is needed for the group sequential test at the next stage.

The “Test Information” table in Figure 90.16 displays the boundary values for the test statistic with the
default standardized Z scale.

Figure 90.16 Sequential Tests

The SEQTEST ProcedureThe SEQTEST Procedure

Test Information (Standardized Z Scale)
Null Reference = 0

Alternative
Boundary

Values Test

Information Level Reference Lower Upper Trt

_Stage_ Proportion Actual Lower Upper Alpha Alpha Estimate Action

1 0.2880 0.030934 -1.75879 1.75879 -3.39532 3.39532 -0.44426 Continue

2 0.5169 0.055519 -2.35624 2.35624 -2.78456 2.78456 -1.97365 Continue

3 0.7953 0.085422 -2.92271 2.92271 -2.25480 2.25480 -2.69289 Reject Null

4 1.0000 0.107403 -3.27724 3.27724 -2.04573 2.04573 .

The sequential test stops at stage 3 to reject the null hypothesis for the lower alternative because the test
statistic –2.69289 is less than the corresponding upper ˛ boundary –2.25480. That is, the test demonstrates
significant beneficial effect for the new drug.

The “Test Plot” displays boundary values for the design and the test statistic at the first three stages, as shown
in Figure 90.17. It shows that the test statistic is in the “Rejection Region” below the lower ˛ boundary at
stage 3.
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Figure 90.17 Sequential Test Plot

When a trial stops, the “Parameter Estimates” table in Figure 90.18 displays the stopping stage, parameter
estimate, unbiased median estimate, confidence limits, and p-value under the null hypothesis H0 W � D 0. As
expected, the p-value 0.0108 is significant at the two-sided ˛ level, ˛ D 0:05, and the confidence interval
does not contain the value zero. The p-value, unbiased median estimate, and confidence limits depend on the
ordering of the sample space .k; z/, where k is the stage number and z is the standardized Z statistic. See the
section “Analysis after a Sequential Test” on page 7567 for a detailed description of these statistics.

Figure 90.18 Parameter Estimates

Parameter Estimates
Stagewise Ordering

Parameter
Stopping

Stage MLE
p-Value for
H0:Parm=0

Median
Estimate 95% Confidence Limits

Trt 3 -9.213692 0.0108 -9.022891 -15.79845 -2.13138
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Syntax: SEQTEST Procedure
The following statement is available in the SEQTEST procedure:

PROC SEQTEST < options > ;

PROC SEQTEST Statement
The PROC SEQTEST statement invokes the SEQTEST procedure. Table 90.1 summarizes the options
available in the PROC SEQTEST statement.

Table 90.1 Summary of PROC SEQTEST Options

Option Description

Input Data Sets
BOUNDARY= Specifies the data set for boundary information
DATA= Specifies the data set for parameter estimates and information levels
PARMS= Specifies the data set for parameter estimates and standard errors

Boundaries
BETABOUNDARY= Specifies whether the ˇ boundary is used in the computation

of the Type I error level ˛
BETAOVERLAP= Checks for overlapping of the lower and upper ˇ boundaries

at the current and subsequent interim stages in a two-sided design
BOUNDARYKEY= Specifies the boundary key to maintain Type I and II error probability levels
BOUNDARYSCALE= Specifies the boundary scale
ERRSPENDADJ= Specifies error spending methods for boundary adjustments
ERRSPENDMIN= Specifies minimum error spending values for the boundaries
INFOADJ= Specifies whether information levels at future interim stages should be

adjusted
NSTAGES= Specifies the number of stages

Test Statistics
DATA( INFOVAR= ) Specifies the information variable in the DATA= data set
DATA( TESTVAR= ) Specifies the test variable in the DATA= data set
PARMS( INFOVAR= ) Specifies the information variable in the PARMS= data set
PARMS( TESTVAR= ) Specifies the test variable in the PARMS= data set

p-Values and Confidence Intervals
CIALPHA= Specifies the significance levels for the confidence interval
CITYPE= Specifies the types of confidence interval
ORDER= Specifies the ordering of the sample space used to derive

the p-values and confidence limits

Table Output
CONDPOWER Displays conditional powers
ERRSPEND Displays the cumulative error spending at each stage
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Table 90.1 continued

Option Description

PREDPOWER Displays the predictive powers
PSS Displays the powers and expected sample sizes
RCI Displays the repeated confidence intervals
STOPPROB Displays the expected cumulative stopping probabilities

Graphics Output
PLOTS=ASN Displays the expected sample numbers plot
PLOTS=CONDPOWER Displays the conditional powers plot
PLOTS=ERRSPEND Displays the error spending plot
PLOTS=POWER Displays the powers plot
PLOTS=RCI Displays the repeated confidence intervals plot
PLOTS=TEST Displays the boundary plot with test statistics

The BOUNDARY= option provides the information for the design and is required in the PROC SEQTEST
statement. By default, the SEQTEST procedure displays tables of design information and test information. If
ODS Graphics is enabled, the procedure also displays a sequential test plot.

The following options can be used in the PROC SEQTEST statement. They are listed in alphabetical order.

BETABOUNDARY=BINDING | NONBINDING
specifies whether the ˇ boundary is used in the computation of the Type I error level ˛. The
BETABOUNDARY=BINDING option computes the Type I error probability with the ˇ (accep-
tance) boundary, and the BETABOUNDARY=NONBINDING suboption computes the Type I error
probability without the ˇ boundary (Zhu, Ni, and Yao 2011, pp. 132–133). For a detailed description
of nonbinding acceptance boundary, see the section “Acceptance (ˇ) Boundary” in Chapter 89, “The
SEQDESIGN Procedure.” The default is BETABOUNDARY=BINDING.

BETAOVERLAP=ADJUST | NOADJUST

OVERLAP=ADJUST | NOADJUST
specifies whether to check for overlapping of the lower and upper ˇ boundaries for the two correspond-
ing one-sided tests at the current and subsequent interim stages. This option applies to two-sided designs
with early stopping to accept H0, or to either accept or reject H0. This type of overlapping might
result from a small ˇ spending at an interim stage. When you specify BETAOVERLAP=ADJUST,
the procedure checks for this type of overlapping at the current and subsequent interim stages. If
such overlapping is found, the ˇ boundaries for the two-sided design at that stage are set to missing,
and the ˇ spending values at subsequent stages are adjusted, as described in the section “Boundary
Adjustments for Overlapping Lower and Upper ˇ Boundaries” on page 7563.

You can specify BETAOVERLAP=NOADJUST to request that no adjustment be made. The default is
BETAOVERLAP=ADJUST.

BOUNDARY=SAS-data-set
names the required SAS data set that contains the design boundary information. At stage 1, the data
set is usually created from the “Boundary Information” table created by the SEQDESIGN procedure.
At each subsequent stage, the data set is usually created from the “Test Information” table created by
the SEQTEST procedure at the previous stage. The data set includes the variables _Scale_ for the
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boundary scale, _Stop_ for the stopping criterion, and _ALT_ for the type of alternative hypothesis. It
also includes _Stage_ for the stage number, Info_Prop for the information proportion, and a set of the
boundary variables from Bound_LA, Bound_LB, Bound_UB, and Bound_UA for boundary values at
each stage.

The data set might also include _Info_ for the actual information level, NObs for the number of
observation, and Events for the number of events required at each stage.

BOUNDARYKEY=ALPHA | BETA | BOTH
specifies the boundary key to be maintained in the boundary adjustments. The BOUND-
ARYKEY=ALPHA option maintains the Type I ˛ level and derives the Type II error probability,
and the BOUNDARYKEY=BETA option maintains the Type II ˇ level and derives the Type I error
probability. The BOUNDARYKEY=BOTH option maintains both ˛ and ˇ levels simultaneously by
deriving a new maximum information. The default is BOUNDARYKEY=ALPHA.

BOUNDARYSCALE=MLE | SCORE | STDZ | PVALUE

BSCALE=MLE | SCORE | STDZ | PVALUE
specifies the boundary scale to be displayed in the output boundary table and plot. The BOUND-
ARYSCALE=MLE, BOUNDARYSCALE=SCORE, BOUNDARYSCALE=STDZ, and BOUND-
ARYSCALE=PVALUE options correspond to the boundary with the maximum likelihood estimator
scale, score statistic scale, standardized normal Z scale, and p-value scale, respectively. The default is
BOUNDARYSCALE=STDZ.

With the BOUNDARYSCALE=MLE or BOUNDARYSCALE=SCORE option, either the MAXINFO=
option must be specified or the _Info_ variable must be in the BOUNDARY= data set to provide the
necessary information level at each stage to derive the boundary values. Usually, these values are
obtained from analysis output in SAS procedures.

Note that for a two-sided design, the p-value scale displays the one-sided fixed-sample p-value under
the null hypothesis with a lower alternative hypothesis.

CIALPHA=˛ < ( < LOWER=˛l > < UPPER=˛u > ) >
specifies the significance levels for the confidence interval, where 0 < ˛ < 1, 0 < ˛l < 0:5, and
0 < ˛u < 0:5. The default is CIALPHA= 0.05.

For a lower confidence interval (CITYPE=LOWER), the CIALPHA=˛ option produces a .1 � ˛/
lower confidence interval. For an upper confidence interval (CITYPE=UPPER), the CIALPHA=˛
option produces a .1 � ˛/ upper confidence interval. The LOWER= and UPPER= suboptions are
applicable only for a two-sided confidence interval (CITYPE=TWOSIDED). The LOWER= suboption
specifies the lower significance level ˛l and the upper significance level ˛u D 1 � ˛l . The UPPER=
suboption specifies the upper significance level ˛u and the lower significance level ˛l D 1 � ˛u. If
both LOWER= and UPPER= suboptions are not specified, ˛l D ˛u D ˛=2. The significance levels
˛l and ˛u are then used for the .1 � ˛l/ lower confidence limit and .1 � ˛u/ upper confidence limit,
respectively.

CITYPE=LOWER | UPPER | TWOSIDED
specifies the type of confidence interval. The CITYPE=LOWER, CITYPE=UPPER, and
CITYPE=TWOSIDED options correspond to the lower confidence interval, upper confidence
interval, and two-sided confidence interval, respectively. The default is CITYPE=LOWER for the
design with an upper alternative, CITYPE=UPPER for the design with a lower alternative, and
CITYPE=TWOSIDED for the design with a two-sided alternative.
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DATA < ( TESTVAR=variable | INFOVAR=variable ) >=SAS-data-set
names the SAS data set that contains the test statistic and its associated information level for the stage.
The SAS-data-set includes the stage variable _Stage_. You can also specify the following options
within parentheses after the DATA keyword:

TESTVAR=variable
identifies the test variable in the SAS-data-set . If you specify this option, the data set also
includes the scale variable _Scale_ for the test statistic. Usually, these test variable values are
obtained from analysis output in SAS procedures.

INFOVAR=variable
identifies the information variable in the SAS-data-set to either identify or derive the information
levels. If you specify this option, the following information variables apply:

• _Info_ uses _Info_ for the information levels.
• Events uses Events for the numbers of events to derive the information levels.
• NObs uses NObs for the numbers of observations to derive the information levels.
• None uses the information levels in the BOUNDARY= data set.

If you do not specify the INFOVAR= option, PROC SEQTEST uses _Info_ (if it exists) in
the SAS-data-set for the information levels. Otherwise, the procedure uses NObs to derive
information levels from the numbers of observation or uses Events to derive information levels
from the numbers of events. If these variables are not in the SAS-data-set , the information
levels in the BOUNDARY= data set are used. See Example 90.4 for an illustration of the
INFOVAR=NObs option.

ERRSPENDADJ=method

ERRSPENDADJ(boundary )=method

BOUNDARYADJ=method

BOUNDARYADJ(boundary )=method
specifies methods to compute the error spending values at the current and future interim stages for the
boundaries. This option is applicable only if the observed information level at the current stage does
not match the value provided in the BOUNDARY= data set. These error spending values are then
used to derive the updated boundary values. The default is ERRSPENDADJ=ERRLINE. Note that the
information levels at future interim stages are determined by the INFOADJ= option.

The following options specify available error spending methods for boundary adjustment:

NONE
specifies that the cumulative error spending at each interim stage not be changed, even if the
corresponding information level has been changed.

ERRLINE
specifies the linear interpolation method for the adjustment.

ERRFUNCGAMMA < ( GAMMA=  ) >
specifies the gamma function method for the adjustment. The GAMMA= suboption specifies the
 parameter in the function, where  � 3. The default is GAMMA=–2.
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ERRFUNCOBF
specifies the approximate O’Brien-Fleming cumulative error spending function for the adjustment.

ERRFUNCPOC
specifies the approximate Pocock cumulative error spending function for the adjustment.

ERRFUNCPOW < ( RHO= � ) >
specifies the power function method for the adjustment. The RHO= suboption specifies the power
parameter � in the function, where � � 0:25. The default is RHO=2.

See the section “Boundary Adjustments for Information Levels” on page 7560 for a detailed description
of the available error spending methods for boundary adjustment in the SEQTEST procedure.

If an error spending method for boundary adjustments is used for all boundaries in a group sequential
test, you can use the ERRSPENDADJ=method option to specify the method. Otherwise, you can
use the following ERRSPENDADJ(boundary)=method options to specify different methods for the
boundaries.

ERRSPENDADJ(ALPHA)=method

ERRSPENDADJ(REJECT)=method

BOUNDARYADJ(ALPHA)=method

BOUNDARYADJ(REJECT)=method
specifies the adjustment method for the ˛ (rejection) boundary of a one-sided design or the lower and
upper ˛ boundaries of a two-sided design.

ERRSPENDADJ(LOWERALPHA)=method

ERRSPENDADJ(LOWERREJECT)=method

BOUNDARYADJ(LOWERALPHA)=method

BOUNDARYADJ(LOWERREJECT)=method
specifies the adjustment method for the lower ˛ boundary of a two-sided design.

ERRSPENDADJ(UPPERALPHA)=method

ERRSPENDADJ(UPPERREJECT)=method

BOUNDARYADJ(UPPERALPHA)=method

BOUNDARYADJ(UPPERREJECT)=method
specifies the adjustment method for the upper ˛ boundary of a two-sided design.

ERRSPENDADJ(BETA)=method

ERRSPENDADJ(ACCEPT)=method

BOUNDARYADJ(BETA)=method

BOUNDARYADJ(ACCEPT)=method
specifies the adjustment method for the ˇ (acceptance) boundary of a one-sided design or the lower
and upper ˇ boundaries of a two-sided design.
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ERRSPENDADJ(LOWERBETA)=method
ERRSPENDADJ(LOWERACCEPT)=method
BOUNDARYADJ(LOWERBETA)=method
BOUNDARYADJ(LOWERACCEPT)=method

specifies the adjustment method for the lower ˇ boundary of a two-sided design.

ERRSPENDADJ(UPPERBETA)=method
ERRSPENDADJ(UPPERACCEPT)=method
BOUNDARYADJ(UPPERBETA)=method
BOUNDARYADJ(UPPERACCEPT)=method

specifies the adjustment method for the upper ˇ boundary of a two-sided design.

ERRSPENDMIN=numbers
ERRSPENDMIN(boundary )=numbers

specifies the minimum error spending values at the current observed and future interim stages for the
boundaries specified in the BOUNDARYKEY= option. The default is ERRSPENDMIN=0.

If a set of numbers is used for each boundary in the design, you can use the ERRSPENDMIN=numbers
option. Otherwise, you can use the following ERRSPENDMIN(boundary)=numbers options to specify
different sets of minimum error spending values for the boundaries. For a boundary, the error spending
value at stage 1 is identical to its nominal p-value.

ERRSPENDMIN(ALPHA)=numbers
ERRSPENDMIN(REJECT)=numbers

specifies the minimum error spending values for the ˛ boundary of a one-sided design or the
lower and upper ˛ boundaries of a two-sided design.

ERRSPENDMIN(LOWERALPHA)=numbers
ERRSPENDMIN(LOWERREJECT)=numbers

specifies the minimum error spending values for the lower ˛ boundary of a two-sided design.

ERRSPENDMIN(UPPERALPHA)=numbers
ERRSPENDMIN(UPPERREJECT)=numbers

specifies the minimum error spending values for the upper ˛ boundary of a two-sided design.

ERRSPENDMIN(BETA)=numbers
ERRSPENDMIN(ACCEPT)=numbers

specifies the minimum error spending values for the ˇ boundary of a one-sided design or the
lower and upper ˇ boundaries of a two-sided design.

ERRSPENDMIN(LOWERBETA)=numbers
ERRSPENDMIN(LOWERACCEPT)=numbers

specifies the minimum error spending values for the lower ˇ boundary of a two-sided design.

ERRSPENDMIN(UPPERBETA)=numbers
ERRSPENDMIN(UPPERACCEPT)=numbers

specifies the minimum error spending values for the upper ˇ boundary of a two-sided design.
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INFOADJ=NONE | PROP
specifies whether information levels at future interim stages are to be adjusted. If you specify IN-
FOADJ=NONE, no adjustment is made, and the information levels are preserved at the levels provided
in the BOUNDARY= data set. If you specify INFOADJ=PROP (which is the default), the information
levels are adjusted proportionally from the levels provided in the BOUNDARY= data set. The section
“Information Level Adjustments at Future Stages” on page 7560 describes how the adjustments are
computed.

Note that if you specify BOUNDARYKEY=BOTH, the INFOADJ=NONE option is not applicable, and
the INFOADJ=PROP option is used to adjusted the information levels at future stages proportionally
from the levels provided in the BOUNDARY= data set to maintain both ˛ and ˇ levels.

NSTAGES=number
specifies the number of stages for the clinical trial. The default is the number derived from the
BOUNDARY= data set.

The specified NSTAGES= number might or might not be the same as the number derived in the
BOUNDARY= data set. You can use the NSTAGES= option to set the next stage as the final stage
to compute the conditional power, as described in the section “Conditional Power Approach” on
page 7564.

ORDER=LR | MLE | STAGEWISE
specifies the ordering of the sample space .k; z/, where k is the stage number and z is the observed
standardized Z statistic. The ordering is used to derive the p-values for the observed .k; z/ statistic and
to create unbiased median estimate and confidence limits from the statistic. The ORDER=LR option
specifies the LR ordering that compares the distances between observed standardized Z statistics and
their corresponding hypothetical values, the ORDER=MLE option specifies the MLE ordering that
compares values in the MLE scale, and the ORDER=STAGEWISE specifies the stagewise ordering that
uses counterclockwise ordering around the continuation region. The default is ORDER=STAGEWISE.
See the section “Available Sample Space Orderings in a Sequential Test” on page 7567 for a detailed
description of these sample space orderings.

PARMS < ( TESTVAR=variable | INFOVAR=variable ) >=SAS-data-set
names the SAS data set that contains the parameter estimate and its associated standard error for the
stage. The SAS-data-set includes the stage variable _Stage_. You can also specify the following
options within parentheses after the PARMS keyword:

TESTVAR=variable
identifies the test variable in the SAS-data-set . If you specify this option, the SAS-data-set
also includes the Parameter, Effect, Variable, or Parm variable that contains the variable. In
addition, the SAS-data-set also includes the test statistic Estimate, the standard error of the
estimate StdErr, and the test statistic scale variable _Scale_. Usually, these test variable values
are obtained from analysis output in SAS procedures.

INFOVAR=variable
identifies the information variable in the SAS-data-set to either identify or derive the information
levels. If you specify this option, the following information variables apply:

• Events uses Events for the numbers of events to derive the information levels.
• NObs uses NObs for the numbers of observations to derive the information levels.
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• None uses the information levels in the BOUNDARY= data set.
• StdErr uses StdErr to derive the information levels.

If you do not specify the INFOVAR= option, PROC SEQTEST uses StdErr (if it exists) in the
SAS-data-set to derive the information levels. Otherwise, the procedure uses NObs to derive
information levels from the numbers of observation or uses Events to derive information levels
from the numbers of events. If these variables are not in the SAS-data-set , the information levels
in the BOUNDARY= data set are used.

Table Output Options

You can specify the following options in the PROC SEQTEST statement to display additional table output.
They are listed in alphabetical order.

CONDPOWER < ( options ) >
displays conditional powers given the most recently observed statistic under specified hypothetical
references.

You can specify the following options:

CREF= c1 < c2 . . . >
specifies the hypothetical references, where ci � 0. For a one-sided test, the powers are derived
under the hypothetical references � D O� and � D ci�1, where O� is the observed statistic, �1 is the
alternative reference, and ci are the values specified in the CREF= option. For a two-sided test,
the powers are derived under hypothetical references � D O� , � D ci�1l , and � D ci�1u, where
�1l is the lower alternative reference and �1u is the upper alternative reference. The default is
CREF= 0 0.5 1.0 1.5.

TYPE=ALLSTAGES | FINALSTAGE
specifies the probability to be computed for the conditional power. Two types of conditional
power can be computed: TYPE=ALLSTAGES computes the conditional power as the total
probability of rejecting the null hypothesis at all future stages given the observed statistic, and
TYPE=FINALSTAGE computes the conditional power as the probability that the test statistic at
the final stage would exceed the rejection critical value given the observed statistic. The default
is TYPE=ALLSTAGES.

If interim stages exist between the current stage and the final stage, the conditional power that
is computed when TYPE=FINALSTAGE is not the conditional probability to reject the null
hypothesis H0. In this case, you can set the next stage as the final stage, and the resulting
conditional power is the conditional probability to reject H0.

ERRSPEND
displays the error spending at each stage for each sequential boundary.

PREDPOWER
displays predictive powers given the most recently observed statistic. The predictive power is the
posterior probability that the test statistic at the final stage would exceed the rejection critical value
given the observed statistic and a prior distribution of the hypothetical reference. A noninformative
prior is used in the procedure.
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PSS < ( CREF= c1 < c2 . . . > ) >
displays powers and expected sample sizes under various hypothetical references, where ci � 0.

For a one-sided design with the null reference �0 D 0, the power and expected sample sizes under
hypotheses � D ci �1 are displayed, where �1 is the alternative reference and ci are the values specified
in the CREF= option.

For a two-sided design, the power and expected sample sizes under hypotheses � D ci�1l and
� D ci�1u are displayed, where �1l and �1u are the lower and upper alternative references, respectively.
The default is CREF= 0 0.5 1.0 1.5.

Note that for a symmetric two-sided design, only the power and expected sample sizes under hypotheses
� D ci �1u are derived.

RCI
displays repeated confidence intervals for the parameter from the observed statistic at each stage.
Repeated confidence intervals include both rejection and acceptance confidence intervals.

With the STOP=REJECT or STOP=BOTH option, rejection confidence limits can be derived, and the
null hypothesis H0 W � D 0 is rejected if the lower rejection confidence limit is greater than 0 or the
upper rejection confidence limit is less than 0.

With the STOP=ACCEPT or STOP=BOTH option, acceptance confidence limits can be derived, and
the null hypothesis is accepted with alternative hypotheses H1l W � D �1l and H1u W � D �1u if the
upper acceptance confidence limit is less than �1u and the lower acceptance confidence limit is greater
than �1l .

STOPPROB < ( CREF= c1 < c2 . . . > ) >
displays expected cumulative stopping probabilities under various hypothetical references, where
ci � 0.

For a one-sided design, expected cumulative stopping probabilities at each stage under hypotheses
� D ci �1 are displayed, where �1 is the alternative reference and ci are the values specified in the
CREF= option.

For a two-sided design, expected cumulative stopping probabilities at each stage under hypotheses
� D ci�1l and � D ci�1u are displayed, where �1l and �1u are the lower and upper alternative
references, respectively. Note that for a symmetric two-sided design, only expected cumulative
stopping probabilities under hypotheses � D ci �1u are derived. The default is CREF= 0 0.5 1.0 1.5.

Graphics Output Options

The following options can be used in the PROC SEQTEST statement to display plots with ODS Graphics.
They are listed in alphabetical order.

PLOTS < ( ONLY ) > < = plot-request >

PLOTS < ( ONLY ) > < = ( plot-request < . . . plot-request > ) >
specifies options that control the details of the plots. The default is PLOTS=TEST. The global plot
option ONLY suppresses the default plots and displays only plots specifically requested.

ODS Graphics must be enabled before plots can be requested. For example:
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ods graphics on;
proc seqtest Boundary=Bnd_LDL

Parms(Testvar=Trt)=Parms_LDL1
Plots=(test errspend);

run;
ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The plot-request-options include the following.

ALL
produces all appropriate plots.

ASN < ( CREF= c1 < c2 . . . > ) >
displays a plot of the average sample numbers (expected sample sizes for nonsurvival data or
expected number of events for survival data) under various hypothetical references, where ci � 0.

For a one-sided design, expected sample numbers under hypotheses � D ci �1 are displayed,
where �1 is the alternative reference and ci are the values specified in the CREF= option.

For a two-sided design, expected sample numbers under hypotheses � D ci�1l and � D ci�1u
are displayed, where �1l and �1u are the lower and upper alternative references, respectively.
Note that for a symmetric two-sided design, only the average sample numbers under hypotheses
� D ci �1u are derived. The default is CREF= 0 to 1.5 by 0.01.

CONDPOWER < ( options ) >
displays a plot of conditional powers given the most recently observed statistic under specified
hypothetical references.

You can specify the following options:

CREF= c1 < c2 . . . >
specifies the hypothetical references, where ci � 0. For a one-sided test, the powers are
derived under hypothetical references � D O� and � D ci�1, where O� is the observed statistic,
�1 is the alternative reference, and ci are the values specified in the CREF= option. For
a two-sided test, the powers are derived under hypothetical references � D O� , � D ci�1l ,
and � D ci�1u, where �1l is the lower alternative reference and �1u is the upper alternative
reference. The default is CREF= 0 to 1.5 by 0.01.

TYPE=ALLSTAGES | FINALSTAGE
specifies the probability to be computed for the conditional power. Two types of conditional
power can be computed: TYPE=ALLSTAGES computes the conditional power as the total
probability of rejecting the null hypothesis at all future stages given the observed statistic,
and TYPE=FINALSTAGE computes the conditional power as the probability that the test
statistic at the final stage would exceed the rejection critical value given the observed statistic.
The default is TYPE=ALLSTAGES.
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ERRSPEND < ( HSCALE=INFO | STAGE ) >
displays a plot of the error spending for all sequential boundaries in the designs simultaneously.
You can display the information level (HSCALE=INFO) or the stage number (HSCALE=STAGE)
on the horizontal axis. With HSCALE=INFO, the information fractions are used in the plot. The
default is HSCALE=STAGE.

NONE
suppresses all plots.

POWER < ( CREF= c1 < c2 . . . > ) >
displays a plot of the power curves under various hypothetical references, where ci � 0.

For a one-sided design, powers under hypotheses � D ci �1 are displayed, where �1 is the
alternative reference and ci are the values specified in the CREF= option.

For a two-sided design, powers under hypotheses � D ci�1l and � D ci�1u are displayed, where
�1l and �1u are the lower and upper alternative references, respectively. Note that for a symmetric
two-sided design, only powers under hypotheses � D ci �1u are derived. The default is CREF= 0
to 1.5 by 0.01.

RCI
displays a plot of repeated confidence intervals. Repeated confidence intervals include both
rejection and acceptance confidence intervals.

With the STOP=REJECT or STOP=BOTH option, rejection confidence limits can be derived and
the null hypothesis H0 W � D 0 is rejected if the lower rejection confidence limit is greater than 0
or the upper rejection confidence limit is less than 0.

With the STOP=ACCEPT or STOP=BOTH option, acceptance confidence limits can be derived
and the null hypothesis is accepted with alternative hypothesesH1l W � D �1l andH1u W � D �1u
if the upper acceptance confidence limit is less than �1u and the lower acceptance confidence
limit is greater than �1l .

TEST < ( HSCALE=INFO | SAMPLESIZE ) >
displays a plot of the sequential boundaries and test variables. Either the information level
(HSCALE=INFO) or the sample size (HSCALE=SAMPLESIZE) is displayed on the horizontal
axis. The HSCALE=SAMPLESIZE option is applicable only if the sample size information is
available in both the input BOUNDARY= data set and input DATA= data set. The stage number
for each stage is displayed inside the plot. The default is HSCALE=INFO.

Details: SEQTEST Procedure

Input Data Sets
The BOUNDARY= data set option is required, and if neither the DATA= nor the PARMS= data set option is
specified, the procedure derives statistics such as Type I and Type II error probabilities from the BOUND-
ARY= data set. The resulting boundaries are displayed with the scale specified in the BOUNDARYSCALE=
option.
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BOUNDARY= Data Set

The BOUNDARY= data set provides the boundary information for the sequential test. At stage 1, the data
set is usually created with an ODS OUTPUT statement from the “Boundary Information” table created
by the SEQDESIGN procedure. At each subsequent stage, the data set is usually created with an ODS
OUTPUT statement from the “Test Information” table that was created by the SEQTEST procedure at the
previous stage. See the section “Getting Started: SEQTEST Procedure” on page 7530 for an illustration of
the BOUNDARY= data set option.

The BOUNDARY= data set contains the following variables:

• _Scale_, the boundary scale, with the value MLE for the maximum likelihood estimate, STDZ for the
standardized Z, SCORE for the score statistic, or PVALUE for the nominal p-value. Note that for a
two-sided design, the nominal p-value is the one-sided fixed-sample p-value under the null hypothesis
with a lower alternative hypothesis.

• _Stop_, the stopping criterion, with the value REJECT for rejecting the null hypothesis H0, ACCEPT
for accepting H0, or BOTH for both rejecting and accepting H0

• _ALT_, the type of alternative hypothesis, with the value UPPER for an upper alternative, LOWER for
a lower alternative, or TWOSIDED for a two-sided alternative

• _Stage_, the stage number

• the boundary variables, a subset of Bound_LA for lower ˛ boundary, Bound_LB for lower ˇ boundary,
Bound_UB for upper ˇ boundary, and Bound_UA for upper ˛ boundary

• AltRef_L, the lower alternative reference, if ALT=LOWER or ALT=TWOSIDED

• AltRef_U, the upper alternative reference, if ALT=UPPER or ALT=TWOSIDED

• _InfoProp_, the information proportion at each stage

Optionally, the BOUNDARY= data set also contains the following variables:

• _Info_, the information level at each stage

• NObs, the required number of observations for nonsurvival data at each stage

• Events, the required number of events for survival data at each stage

• Parameter, the variable specified in the DATA(TESTVAR=) or PARMS(TESTVAR=) option

• Estimate, the parameter estimate

If the BOUNDARY= data set contains the variable Parameter for the test variable that is specified in the
TESTVAR= option, and the variable Estimate for the test statistics, then these test statistics are also displayed
in the output test information table and output test plot.
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DATA= Data Set

The DATA= data set provides the test variable information for the current stage of the trial. Such data sets
are usually created with an ODS OUTPUT statement by using a procedure such as PROC MEANS. See
“Example 90.4: Testing a Binomial Proportion” on page 7614 for an illustration of the DATA= data set
option.

The DATA= data set includes the following variables:

• _Stage_, the stage number

• _Scale_, the scale for the test statistic, with the value MLE for the maximum likelihood estimate,
STDZ for the standardized Z, SCORE for the score statistic, or PVALUE for the nominal p-value

• _Info_, the information level

• NObs, the number of observations for nonsurvival data at each stage

• Events, the number of events for survival data at each stage

• test variable, specified in the TESTVAR= option, contains the test variable value in the scale specified
in the _Scale_ variable

With the specified DATA= data set, PROC SEQTEST derives boundary values from the information levels in
the _Info_ variable. If the data set does not include the _Info_ variable, then the information levels are derived
from the NObs or Events variable in the DATA= data set if that variable is also in the input BOUNDARY=
data set. That is, the information level at stage k is computed as I�

k
D Ik � .n

�
k
=nk/, where Ik and nk are

the information level and sample size, respectively, at stage k in the BOUNDARY= data set and n�
k

is the
sample size at stage k in the DATA= data set. Otherwise, the information levels from the BOUNDARY= data
set are used.

If the TESTVAR= option is specified, the DATA= data set must also include the test variable for the test
statistic and _Scale_ variable for the corresponding scale. Note that for a two-sided design, the nominal
p-value is the one-sided fixed-sample p-value under the null hypothesis with a lower alternative hypothesis.

PARMS= Data Set

The PARMS= data set provides a parameter estimate and associated standard error for the current stage of
the trial. Such data sets are usually created with an ODS OUTPUT statement by using procedures such as the
GENMOD, GLM, LOGISTIC, and REG procedures. See the section “Getting Started: SEQTEST Procedure”
on page 7530 for an illustration of the PARMS= data set option.

The PARMS= data set includes the following variables:

• _Stage_, the stage number

• _Scale_, the scale for the test statistic, with the value MLE for the maximum likelihood estimate,
STDZ for the standardized Z, SCORE for the score statistic, or PVALUE for the nominal p-value

• Parameter, Effect, Variable, or Parm, which contains the variable specified in the TESTVAR= option

• Estimate, the parameter estimate
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• StdErr, standard error of the parameter estimate

• NObs, the number of observations for nonsurvival data at each stage

• Events, the number of events for survival data at each stage

With the specified PARMS= data set, the information level is derived from the StdErr variable. For a score
statistic, the information level Ik is the variance of the statistic, Os2

k
, where Osk is the standard error in the

StdErr variable. Otherwise, the information level is the inverse of the variance of the statistic, Os�2
k

. If the data
set does not include the StdErr variable, the information levels derived from the BOUNDARY= data set are
used.

If the data set does not include the StdErr variable, then the information levels are derived from the NObs or
Events variable in the PARMS= data set if that variable is also in the input BOUNDARY= data set. That is,
the information level at stage k is computed as I�

k
D Ik � .n

�
k
=nk/, where Ik and nk are the information

level and sample size, respectively, at stage k in the BOUNDARY= data set and n�
k

is the sample size at stage
k in the PARMS= data set. Otherwise, the information levels from the BOUNDARY= data set are used.

If the TESTVAR= option is specified, the PARMS= data set also includes the variable Parameter, Effect,
Variable, or Parm for the test variable, Estimate for the test statistic, and _Scale_ variable for the correspond-
ing scale. Note that for a two-sided design, the nominal p-value is the one-sided fixed-sample p-value under
the null hypothesis with a lower alternative hypothesis.

Boundary Variables
The boundaries created in group sequential trials depend on the type of the alternative hypothesis and the
early stopping criterion. Table 90.2 shows the boundaries created with various design specifications.

Table 90.2 Boundary Variables

Specifications Boundary Variables
Alternative Lower Upper
Hypothesis Early Stopping Alpha Beta Beta Alpha

Lower Accept H0 X
Reject H0 X
Accept/Reject H0 X X

Upper Accept H0 X
Reject H0 X
Accept/Reject H0 X X

Two-sided Accept H0 X X
Reject H0 X X
Accept/Reject H0 X X X X
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Up to four different boundaries can be generated in a group sequential design:

• the upper ˛ boundary, used to reject the null hypothesis in favor of an upper alternative hypothesis

• the upper ˇ boundary, used to accept the null hypothesis with an upper alternative hypothesis

• the lower ˇ boundary, used to accept the null hypothesis with a lower alternative hypothesis

• the lower ˛ boundary, used to reject the null hypothesis in favor of a lower alternative hypothesis

For a two-sided design, the null hypothesis is accepted only if both the null hypothesis is accepted with an
upper alternative hypothesis and the null hypothesis is accepted with a lower alternative hypothesis.

For a one-sided design with a lower alternative, only the lower boundaries are created. Similarly, for a
one-sided design with an upper alternative, only the upper boundaries are created. For example, Figure 90.19
shows the boundary plot for a one-sided test with an upper alternative.

Figure 90.19 Boundary Plot for One-Sided Test

Figure 90.19 corresponds to a one-sided sequential design with early stopping to reject or accept the null
hypothesis. For a sequential test with early stopping only to reject the null hypothesis, there are no acceptance
boundary values at interim stages. The acceptance boundary value and its associated acceptance region are
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displayed only at the final stage. Similarly, for a sequential test with early stopping only to accept the null
hypothesis, there are no rejection boundary values at interim stages. The rejection boundary value and its
associated rejection region are displayed only at the final stage.

For a two-sided design, both the lower and upper boundaries are created. For a design with early stopping to
reject the null hypothesis, ˛ boundaries are created. Similarly, for a design with early stopping to accept
the null hypothesis, ˇ boundaries are created. For a design with early stopping to accept or reject the null
hypothesis, both the ˛ and ˇ boundaries are created.

For example, Figure 90.20 shows the boundary plot for a two-sided test.

Figure 90.20 Boundary Plot for Two-Sided Test

Figure 90.20 corresponds to a two-sided sequential design with early stopping to reject or accept the null
hypothesis. For a sequential test with early stopping only to reject the null hypothesis, there are no acceptance
boundary values at interim stages. The acceptance boundary value and its associated acceptance region are
displayed only at the final stage. Similarly, for a sequential test with early stopping only to accept the null
hypothesis, there are no rejection boundary values at interim stages. The rejection boundary value and its
associated rejection region are displayed only at the final stage.
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Information Level Adjustments at Future Stages
In a group sequential clinical trial, the information level for the observed test statistic at the current stage
generally does not match the corresponding information level in the BOUNDARY= data set. By default
(or equivalently if you specify INFOADJ=PROP), the SEQTEST procedure accommodates the observed
information level by adjusting the information levels at future interim stages. The adjustment of information
levels depends on the boundary key to be maintained in the boundary adjustments, which in turn is determined
by the BOUNDARYKEY= option.

If you specify BOUNDARYKEY=ALPHA (which is the default) or BOUNDARYKEY=BETA, the maximum
information level (the information level at the final stage) provided in the BOUNDARY= data set is maintained.
In this case, if an observed information level at the current stage is different from the level provided in the
BOUNDARY= data set, you can use the INFOADJ= option to determine whether the information levels at
subsequent interim stages are to be adjusted. Specifying INFOADJ=NONE preserves the levels provided
in the BOUNDARY= data set without adjustment. Specifying INFOADJ=PROP proportionally adjusts the
levels provided in the BOUNDARY= data set as follows.

Denote the information level at stage k for the K-stage design that is stored in the BOUNDARY= data
set by Ik , k D 1; 2; : : : ; K. Also denote the information level that corresponds to the test statistic at an
interim stage k0 by I 0

k0
, 1 � k0 � .K � 1/. Then for the updated design, the information level at stage k,

k D k0 C 1; : : : ; .K � 1/, is computed as

I 0k D I
0
k0
C .IK � I

0
k0
/
Ik � Ik0
IK � Ik0

Note that if I 0
k0
� IK , the information level at stage k0 reaches the maximum information level in the design,

the trial stops at stage k0, and no future information levels are derived.

If you specify BOUNDARYKEY=BOTH, the maximum information level for the trial is not necessarily
the same as the maximum information level saved in the BOUNDARY= data set. In this case, the IN-
FOADJ=NONE option is not applicable, and the INFOADJ=PROP option is used to proportionally adjust
the information levels at future interim stages with the updated maximum information I 0K . That is, with an
updated I 0K , the information level at a future interim stage k is computed as

I 0k D I
0
k0
C .I 0K � I

0
k0
/
Ik � Ik0
IK � Ik0

Boundary Adjustments for Information Levels
In a group sequential clinical trial, if the information level for the observed test statistic does not match the
corresponding information level in the BOUNDARY= data set, the INFOADJ=PROP option (which is the
default) can be used to modify information levels at future stages to accommodate this observed information
level. With the adjusted information levels, the ERRSPENDADJ= option provides various methods to
compute error spending values at the current and future interim stages. These error spending values are then
used to derive boundary values in the SEQTEST procedure. See the section “Error Spending Methods” in the
chapter “The SEQDESIGN Procedure” for a detailed description of how to use these error spending values to
derive boundary values.
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The ERRSPENDADJ=NONE option keeps the error spending the same at each stage. The
ERRSPENDADJ=ERRLINE option uses a linear interpolation on the cumulative error spending in
the design stored in the BOUNDARY= data set to derive the error spending for each unmatched information
level (Kittelson and Emerson 1999, p. 882). That is, the cumulative error spending for an information level I
is computed as

e.I / D

8̂̂<̂
:̂
e1

�
I
I1

�
if I < I1

ej C .˛jC1 � ˛j /
�

I�Ij
IjC1�Ij

�
if Ij � I < IjC1

eK if I � IK

where e1, e2, . . . , eK are the cumulative errors at the K stages of the design that is stored in the BOUNDARY=
data set.

The ERRSPENDADJ=ERRFUNCPOC option uses Pocock-type cumulative error spending function (Lan
and DeMets 1983):

E.t/ D

8<:
1 if t � 1
log. 1C .e � 1/t/ if 0 < t < 1
0 otherwise

With an error level of ˛ or ˇ, the cumulative error spending for an information level I is e.I / D ˛ E.I=IK/
or e.I / D ˇ E.I=IK/.

The ERRSPENDADJ=ERRFUNCOBF option uses O’Brien-Fleming-type cumulative error spending function
(Lan and DeMets 1983):

E.t I a/ D

8̂<̂
:
1 if t � 1
1
a
2 .1 �ˆ.

z.1�a=2/p
t
// if 0 < t < 1

0 otherwise

where a is either ˛ for the ˛ spending function or ˇ for the ˇ spending function, and ˆ is the cumulative
distribution function of the standardized Z statistic. That is, with an error level of ˛ or ˇ, the cumulative
error spending for an information level I is e.I / D ˛ E.I=IK I˛/ or e.I / D ˇ E.I=IK Iˇ/.

The ERRSPENDADJ=ERRFUNCGAMMA option uses gamma cumulative error spending function (Hwang,
Shih, and DeCani 1990):

E.t I / D

8̂̂<̂
:̂
1 if t � 1
1�e�t

1�e�
if 0 < t < 1;  ¤ 0

t if 0 < t < 1;  D 0
0 otherwise

where  is the parameter  specified in the GAMMA= option. That is, with an error level of ˛ or ˇ, the
cumulative error spending for an information level I is e.I / D ˛ E.I=IK I / or e.I / D ˇ E.I=IK I /.

The ERRSPENDADJ=ERRFUNCPOW option uses power cumulative error spending function (Jennison and
Turnbull 2000, p. 148):

E.t I �/ D

8<:
1 if t � 1
t� if 0 < t < 1
0 otherwise
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where � is the power parameter specified in the RHO= suboption. With an error level of ˛ or ˇ, the cumulative
error spending for an information level I is e.I / D ˛ E.I=IK I �/ or e.I / D ˇ E.I=IK I �/.

If the BOUNDARYKEY=BOTH option is specified, the maximum information required for the trial might
not be the same as the maximum information level stored in the BOUNDARY= data set. In this case, the
information levels at future stages are adjusted proportionally, and the same error spending values that were
computed based on the maximum information level stored in the BOUNDARY= data set are used to derive
boundary values for the trial.

If an error spending function is used to create boundaries for the design in the SEQDESIGN procedure,
then in order to better maintain the design features throughout the group sequential trial, the same error
spending function to create boundaries for the design in the SEQDESIGN procedure should be used to
modify boundaries in the SEQTEST procedure at each subsequent stage.

Boundary Adjustments for Minimum Error Spending
In a group sequential clinical trial, boundary values created from a design such as an O’Brien-Fleming design
might be too conservative in early stages. Thus the trial is unlikely to stop in early stages. Lan and DeMets
(1983, p. 662) suggest truncating boundary values to a number such as 3.5 for the trial to have a reasonable
probability of stopping at early stages. Instead of truncating boundary values by a specified number, the
ERRSPENDMIN= option provides individual minimum error spending at each interim stage to stop the trial
early.

For a K-stage trial, denote the derived cumulative error spending at stage k after adjusting for information
levels by ek; k D 1; 2; : : : ; K. Also denote the specified minimum error spending at interim stage k by
�k; k D 1; 2; : : : ; K � 1. Then the cumulative error spending at stage 1 is e01 D max.e1; �1/. If e1 < e01,
the error spending values at subsequent interim stages are adjusted proportionally by

e0j D e
0
1 C

ej � e1

eK � e1
.eK � e

0
1/

for j D 2; : : : ; K � 1.

The process is repeated at each subsequent interim stage. That is, at stage k; k D 2; : : : ; K � 1, denote the
updated cumulative ˇ spending at stage j by ej , j D k; kC 1; : : : ; K. Then the cumulative error spending at
stage k is e0

k
D max.ek; e0k�1 C �k/. If ek < e0k , the error spending values at subsequent interim stages are

adjusted proportionally by

e0j D e
0
k C

ej � ek

eK � ek
.eK � e

0
k/

for j D k C 1; : : : ; K � 1.

Note that the ERRSPENDMIN= option is applicable only to the boundaries specified in the BOUND-
ARYKEY= option. That is, the ERRSPENDMIN= option is applicable to the ˛ boundaries with BOUND-
ARYKEY=ALPHA or BOUNDARYKEY=BOTH, and it is applicable to the ˇ boundaries with BOUND-
ARYKEY=BETA or BOUNDARYKEY=BOTH.
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Boundary Adjustments for Overlapping Lower and Upper ˇ Boundaries
In the SEQTEST procedure, the ˛ and ˇ spending values at the stages are used to derive the boundary values
for the trial. For a two-sided design with early stopping to accept H0, or to either reject or accept H0, a zero
ˇ spending at an interim stage sets the ˇ boundary values to missing. A small ˇ spending at the current
or subsequent interim stage might result in overlapping of the lower and upper ˇ boundaries for the two
corresponding one-sided tests. Specifically, this form of overlapping occurs at an interim stage k if the upper
ˇ boundary value that is derived from the one-sided test for the upper alternative is less than the lower ˇ
boundary value that is derived from the one-sided test for the lower alternative (Kittelson and Emerson 1999,
pp. 881–882; Rudser and Emerson 2007, p. 6). You can use the BETAOVERLAP= option to specify how
this type of overlapping is to be handled.

If BETAOVERLAP=ADJUST (which is the default) is specified, the procedure derives the boundary values
for the two-sided design and then checks for overlapping of the two one-sided ˇ boundaries at the current
and subsequent interim stages. If overlapping occurs at a particular stage, the ˇ boundary values for the
two-sided design are set to missing (so the trial does not stop to accept the null hypothesis at this stage), and
the ˇ spending values at subsequent stages are adjusted proportionally as follows.

If the ˇ boundary values are set to missing at stage k in a K-stage trial, the adjusted ˇ spending value at stage
k, e0

k
, is updated for these missing ˇ boundary values, and then the ˇ spending values at subsequent stages

are adjusted proportionally by

e0j D e
0
k C

ej � ek

eK � ek
.eK � e

0
k/

for j D k C 1; : : : ; K, where ej and e0j are cumulative ˇ spending values at stage j before and after the
adjustment, respectively.

After all these adjusted ˇ spending values are computed, the boundary values are then further modified for
these adjusted ˇ spending values.

If you specify BETAOVERLAP=NOADJUST, no adjustment is made when overlapping of one-sided ˇ
boundaries occurs.

Stochastic Curtailment
Lan, Simon, and Halperin (1982) introduce stochastic curtailment to stop a trial if, given current data, it is
likely to predict the outcome of the trial with high probability. That is, a trial can be stopped to reject the null
hypothesis H0 if, given current data in the analyses, the conditional probability of rejecting H0 under H0 at
the end of the trial is greater than  , where the constant  should be between 0.5 and 1 and values of 0.8 or
0.9 are recommended (Jennison and Turnbull 2000, p. 206). Similarly, a trial can be stopped to accept the
null hypothesis H0 if, given current data in the analyses, the conditional probability of rejecting H0 under
the alternative hypothesis H1 at the end of the trial is less than  .

The following two approaches for stochastic curtailment are available in the SEQTEST procedures: condi-
tional power approach and predictive power approach. For each approach, the derived group sequential test is
used as the reference test for rejection.
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Conditional Power Approach

In the SEQTEST procedure, you can compute two types of conditional power as described in the following
sections:

TYPE=ALLSTAGES
The default TYPE=ALLSTAGES suboption in the CONDPOWER and PLOT=CONDPOWER options
computes the conditional power at an interim stage k as the total probability of rejecting the null hypothesis
at all future stages given the observed statistic (Zhu, Ni, and Yao 2011, pp. 131–132).

For a one-sided test with an upper alternative, the conditional power at an interim stage k is given by

pku.�/ D P� .zkC1 > akC1 j zk; �/

C P� .bkC1 � zkC1 < akC1; zkC2 > akC2 j zk; �/

C : : :

C P� .bj � zj < aj ; j D k C 1; : : : ; K � 1; zK > aK j zk; �/

where zk is the observed statistic and � is the hypothetical reference. The conditional power for a one-sided
test with a lower alternative is similarly derived.

For a two-sided test, the conditional power for the upper alternative is given by

pku.�/ D P� .zkC1 > akC1 j zk; �/

C P� ._akC1 < zkC1 � _bkC1 or bkC1 � zkC1 < akC1; zkC2 > akC2 j zk; �/
C : : :

C � ._aj < zj � _bj or bj � zj < aj ; j D k C 1; : : : ; K � 1; zK > aK j zk; �/

The conditional power for the lower alternative is similarly derived.

TYPE=FINALSTAGE
The TYPE=FINALSTAGE suboption in the CONDPOWER and PLOT=CONDPOWER options computes
the conditional power at an interim stage k as the probability that the test statistic at the final stage (stage K)
would exceed the rejection critical value given the observed statistic (Jennison and Turnbull 2000, p. 207).

The conditional distribution of ZK given the observed statistic zk at the kth stage and the hypothetical
reference � is

ZK j .zk; �/ � N

�
zk …

1
2

k
C � I

1
2

X .1 �…k/ ; 1 �…k

�
where …k D Ik=IX is the fraction of information at the kth stage.

The power for the upper alternative, prob.ZK > aK j zk; �/, is then given by

pku.�/ D ˆ

�
.1 �…k/

� 1
2 .zk…

1
2

k
� aK/ C � I

1
2

X .1 �…k/
1
2

�
where ˆ is the cumulative distribution function of the standardized Z statistic and aK is the upper critical
value at the final stage.
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Similarly, the power for the lower alternative, prob.ZK < a_K j zk; �/, is

pkl.�/ D 1 �ˆ

�
.1 �…k/

� 1
2 .zk…

1
2

k
� a_K/ C � I

1
2

X .1 �…k/
1
2

�
where a_K is the lower critical value at the final stage.

If � D O�k D zkI
� 1
2

k
, the maximum likelihood estimate at stage k, the powers for the upper and lower

alternatives can be simplified:

pku.�/ D ˆ

�
.1 �…k/

� 1
2 .zk…

� 1
2

k
� aK/

�

pkl.�/ D 1 �ˆ

�
.1 �…k/

� 1
2 .zk…

� 1
2

k
� a_K/

�
If there exist interim stages between the kth stage and the final stage, k < K � 1, the conditional power
computed with TYPE=FINALSTAGE is not the conditional probability to reject the null hypothesis H0. In
this case, you can set the next stage as the final stage, and the conditional power is the conditional probability
of rejecting H0.

A special case of the conditional power is the futility index (Ware, Muller, and Braunwald 1985). It is 1
minus the conditional power under H1 W � D �1:

1 � pku.�1/ or 1 � pkl.�1/

That is, it is the probability of accepting the null hypothesis under the alternative hypothesis given current
data. A high futility index indicates a small probability of success (rejecting H0) given the current data.

Predictive Power Approach

The conditional power depends on the specified reference � , which might be supported by the current data
(Jennison and Turnbull 2000, p. 210). An alternative is to use the predictive power (Herson 1979), which is a
weighted average of the conditional power over values of � . Without prior knowledge about � , then with
O� D zk=

p
Ik , the maximum likelihood estimate at stage k, the posterior distribution for � (Jennison and

Turnbull 2000, p. 211) is

� jZK � N

�
zk
p
Ik
;
1

Ik

�

Thus, the predictive power at stage k for the upper and lower alternatives can be derived as

pku D 1 �ˆ

�
.1 �…k/

� 1
2 .aK…

1
2

k
� zk/

�

pkl D ˆ

�
.1 �…k/

� 1
2 .a_K…

1
2

k
� zk/

�
where aK and a_K are the upper and lower critical values at the final stage.
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Repeated Confidence Intervals
In a group sequential test, repeated confidence intervals for a parameter � are defined as a sequence of
intervals . O�kl ; O�ku/, k D 1; 2; : : : ; K, for which a simultaneous coverage probability is maintained (Jennison
and Turnbull 2000, p. 189). That is, a .1 � ˛/ sequence of repeated confidence intervals has

Prob. O�kl � � � O�ku/ D 1 � ˛

These confidence limits O�kl and O�ku can be created from observed statistic and boundary values at each stage.

Two-Sided Repeated Confidence Intervals

Two sequences of repeated confidence intervals can be derived for a two-sided test. One is a .1 � ˛l � ˛u/
rejection repeated confidence intervals . O�kl.˛/; O�ku.˛//, k D 1; 2; : : : ; K, and the other is a .1 � ˇl � ˇu/
acceptance repeated confidence intervals . O�kl.ˇ/; O�ku.ˇ//, k D 1; 2; : : : ; K, where ˛l and ˛u are the lower
and upper Type I error probabilities for the test and ˇl and ˇu are the lower and upper Type II error
probabilities for the test (Jennison and Turnbull 2000, p. 196).

The rejection lower and upper repeated confidence limits at stage k are

O�kl.˛/ D O�k �
ak
p
Ik

O�ku.˛/ D O�k �
a_k
p
Ik

The hypothesis is rejected for upper alternative if the lower limit O�kl.˛/ > �0u and is rejected for lower
alternative if the upper limit O�ku.˛/ < �0l . That is, the hypothesis is rejected if both �0l and �0u are not in a
rejection repeated confidence interval . O�kl.˛/; O�ku.˛//.

The acceptance lower and upper repeated confidence limits at stage k are

O�kl.ˇ/ D O�k C

�
�1l �

b_k
p
Ik

�
O�ku.ˇ/ D O�k C

�
�1u �

bk
p
Ik

�
The hypothesis is accepted if the lower limit O�kl.ˇ/ > �1l and the upper limit O�ku.ˇ/ < �1u. That is, a
repeated confidence interval is contained in the interval .�1l ; �1u/.

One-Sided Repeated Confidence Intervals

Like the two-sided repeated confidence intervals, two sequences of repeated confidence intervals can be
derived for a one-sided test. Suppose the one-sided test has an upper alternative �1u. Then one sequence
of repeated confidence intervals is a .1 � ˛u/ rejection repeated confidence intervals . O�kl.˛/;1/, k D
1; 2; : : : ; K, and the other is a .1 � ˇu/ acceptance repeated confidence intervals .�1; O�ku.ˇ//, k D
1; 2; : : : ; K, where ˛u and ˇu are the upper Type I and Type II error probabilities for the test. Thus, a
sequence of repeated confidence intervals with confidence level greater than or equal to .1 � ˛u � ˇu/ is
given by . O�kl.˛/; O�ku.ˇ//.

The rejection lower repeated confidence limit and the acceptance upper repeated confidence limit at stage k
are

O�kl.˛/ D O�k �

�
ak
p
Ik
� �0u

�
O�ku.ˇ/ D O�k C

�
�1u �

bk
p
Ik

�
The hypothesis is rejected if the lower limit O�kl.˛/ > �0u. and it is accepted if the upper limit O�ku.ˇ/ < �1u.
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Analysis after a Sequential Test
At the end of a trial, the hypothesis is either rejected or accepted. But the p-value, median, and confidence
limits depend on the ordering the sample space .k; z/, where k is the stage number and z is the standardized
Z statistic.

Following the notations used in Jennison and Turnbull (2000, pp. 179–180), .k0; z0/ � .k; z/ if .k0; z0/ has a
higher order or more extreme than .k; z/. Then for a given ordering, the p-value, median, and confidence
limits associated with the observed statistics .k; z/ can be derived.

p-value

With the observed pair of statistics .k0; z0/ when the trial is stopped, a one-sided upper p-value is computed
as

Probf .k; z/ � .k0; z0/ g

A one-sided lower p-value is computed as

Probf .k; z/ � .k0; z0/ g

A two-sided p-value is twice the smaller of the lower and upper p-values.

Median Unbiased Estimate

With the observed pair .k0; z0/, a median unbiased estimate �m is computed from

Probf .k; z/ � .k0; z0/ j �m g D 0:50

Confidence Limits

With the observed pair .k0; z0/, a lower .1 � ˛l/ confidence limit for � , �l , is computed from

Probf .k; z/ � .k0; z0/ j �l g D ˛l

Similarly, an upper .1 � ˛u/ confidence limit for � , �u, is computed from

Probf .k; z/ � .k0; z0/ j �u g D ˛u

Available Sample Space Orderings in a Sequential Test
At the end of a trial, the hypothesis is either rejected or accepted. Denote the stage number and the statistic at
the end of a trial by a pair of statistics .k; z/, where k is the stage number and z is the standardized Z statistic.
Then an ordering on the sample space .k; z/ is needed to derive the p-value, median, and confidence limits
associated with the observed statistics .k�; z�/.

The SEQTEST procedure provides the stagewise, LR, and MLE orderings. See Jennison and Turnbull (2000,
pp. 179–187) for a detailed description and comparison of these orderings.
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Stagewise Ordering

If the continuation regions of a design are intervals, the stagewise ordering (Fairbanks and Madsen 1982;
Tsiatis, Rosner, and Mehta 1984; Jennison and Turnbull 2000, pp. 179–180) uses counter-clockwise ordering
around the continuation region to compute the p-value, unbiased median estimate, and confidence limits.
This ordering depends on the stopping region, stopping stage, and standardized statistic at the stopping stage.
But it does not depend on information levels beyond the observed stage. For a one-sided design with an
upper alternative, .k0; z0/ � .k; z/ if one of the following criteria holds:

• k0 D k and z0 > z

• k0 < k and z0 � ak0 , the upper ˛ boundary at stage k0

• k0 > k and z < bk , the upper ˇ boundary at stage k

Similar criteria can be derived for a one-sided design with a lower alternative.

For a two-sided design with early stopping to reject the null hypothesis, .k0; z0/ � .k; z/ if one of the
following criteria holds:

• k0 D k and z0 > z

• k0 < k and z0 � ak0 , the upper ˛ boundary at stage k0

• k0 > k and z � _ak , the lower ˛ boundary at stage k

Note that the stagewise ordering is not applicable for two-sided designs with early stopping to accept H0 or
to either accept or reject H0, which might have two disjoint continuous intervals at each interim stage.

For a two-sided design with early stopping either to reject or to accept the null hypothesis, .k0; z0/ � .k; z/ if
one of the following criteria holds:

• z0 � ak0 and z < bk

• z0 > _bk0 and z � _ak

That is, each value in the continuation region is less extreme than each value in the upper rejection region
and more extreme than each value in the lower rejection region. Then, combining with the ordering defined
for a two-sided design with early stopping to reject the null hypothesis, the p-value, median, and confidence
limits can be derived for the observed statistics in the lower or upper rejection region.

Thus, if the stagewise ordering is specified in the SEQTEST procedure for a two-sided design with early
stopping to either reject or accept the null hypothesis, the stagewise ordering is used to derive these statistics
only if the observed statistics is in the lower or upper rejection region. Otherwise, the LR ordering is used.
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LR Ordering

The LR ordering (Chang 1989) depends on the observed standardized Z statistic z, information levels, and a
specified hypothetical reference. For the LR ordering under a given hypothesis H W � D �g , .k0; z0/ � .k; z/
if

.z0 � �g
p
Ik0/ > .z � �g

p
Ik/

Under the null hypothesis H0 W � D 0, it reduces to

z0 > z

and can be used to derive statistics under H0, such as p-values.

The LR ordering is applicable to all designs if all information levels are available. But depending on the
boundary shape, some observed statistics .k; z/ in the rejection region might be less extreme than the statistics
in the acceptance region. That is, the p-value for observed statistics in the rejection region might be greater
than the significance level.

MLE Ordering

The MLE ordering (Emerson and Fleming 1990) depends only on the observed maximum likelihood estimate.
.k0; z0/ � .k; z/ if

z0
p
Ik0

>
z
p
Ik

The MLE ordering is applicable to all designs if all information levels are available.

Applicable Tests and Sample Size Computation
The SEQDESIGN procedure assumes that the data are from a multivariate normal distribution and the
sequence of the standardized test statistics fZ1; Z2; : : : ; ZKg have the following canonical joint distribution:

• Zk � N
�
�
p
Ik; 1

�
• Cov.Zk1 ; Zk2/ D

p
Ik1=Ik2 , 1 � k1 � k2 � K

where K is the total number of stages and Ik is the information available at stage k.

If the data are not from a normal distribution such as binomial distribution, then it is assumed that the test
statistic is computed from a large sample such that the statistic has an approximately normal distribution.

In a clinical trial, the sample size required depends on the Type I error probability ˛, reference improvement
�1, power 1 � ˇ, and variance of the response variable. Given a null hypothesis H0 W � D 0 with an upper
alternative hypothesis H1 W � D �1, the information required for a fixed-sample test is given by

I0 D
.ˆ�1.1 � ˛/Cˆ�1.1 � ˇ//2

�21
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where the parameter � depends on the test specified in the clinical trial. For example, if you are comparing
two binomial populations H0 W � D 0, then � D pt � pc is the difference between two proportions if the
proportion difference statistic is used, and � D log

�
pt .1�pc/
pc.1�pt /

�
, the log odds ratio for the two proportions if

the log odds ratio statistic is used.

If the maximum likelihood estimate O� from the likelihood function can be derived, then the asymptotic
variance for O� is Var. O�/ D 1=I , where I is Fisher’s information for � .

The resulting statistic O� corresponds to the MLE scale as specified in the BOUNDARYSCALE=MLE
option in the PROC SEQDESIGN statement, O�

p
I corresponds to the standardized Z scale (BOUND-

ARYSCALE=STDZ), and O�I corresponds to the score scale (BOUNDARYSCALE=SCORE).

Alternatively, if the score statistic is derived, it can also be used as the test statistic and its asymptotic variance
is given by Fisher’s information.

For a group sequential trial, the maximum information IX is derived in the SEQDESIGN procedure by using
the specified ˛, ˇ, and �1. With the maximum information

IX D
1

Var. O�/

the sample size required for a specified test statistic in the trial can be evaluated or estimated from the known
or estimated variance of the response variable. Note that different designs might produce different maximum
information levels for the same hypothesis, and this in turn might require a different number of observations
for the trial.

With a specified test statistic, the required sample sizes at the stages can be computed. These tests include
commonly used tests for normal means, binomial proportions, and survival distributions. See the section
“Sample Size Computation” in “The SEQDESIGN Procedure” for a description of these tests.

Table Output
The SEQTEST procedure displays the “Design Information” and “Test Information” tables by default.

Conditional Power

The “Conditional Power Information” table displays the following information under a hypothetical reference:

• stopping stage

• MLE, observed maximum likelihood estimate

• conditional power under the hypothetical reference

For a one-sided test, the power are derived under hypothetical references � D O� and � D ci�1, where O� is
the observed statistic, �1 is the alternative reference, and ci are the values specified in the CREF= option. For
a two-sided test, the power are derived under the hypothetical references � D O� , � D ci�1l , and � D ci�1u,
where �1l is the lower alternative reference and �1u is the upper alternative reference. The default is CREF=
0 0.5 1.0 1.5.
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Design Information

The “Design Information” table displays the design specifications and derived statistics. The derived Max
Information (Percent Fixed-Sample) is the maximum information for the sequential design in percentage of
the corresponding fixed-sample information.

The Null Ref ASN (Percent Fixed-Sample) is the average sample size required under the null hypothesis for
the group sequential design in percentage of the corresponding fixed-sample design. Similarly, the Alt Ref
ASN (Percent Fixed-Sample) is the average sample size required under the alternative reference for the group
sequential design in percentage of the corresponding fixed-sample design.

Error Spending Information

The “Error Spending Information” table displays the following information at each stage:

• proportion of information

• actual information level, if the maximum information is either specified or derived

• cumulative error spending for each boundary

Parameter Estimates

The “Parameter Estimates” table displays the following information at the conclusion of a sequential trial:

• stopping stage

• parameter estimate

• median and confidence limits based on the specified ordering

• p-value for the hypothesis H0 based on the specified ordering

Powers and Expected Sample Sizes

The “Powers and Expected Sample Sizes” table displays the following information under each of the specified
hypothetical references � D ci�1, where �1 is the alternative reference and ci are values specified in the
CREF= option.

• coefficient ci for the hypothetical references. The value ci D 0 corresponds to the null hypothesis and
ci D 1 corresponds to the alternative hypothesis

• power

• expected sample size, as percentage of fixed-sample size
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For a one-sided design, the power and expected sample sizes under the hypothetical references � D ci�1 are
displayed.

For a two-sided symmetric design, the power and expected sample sizes under each of the hypothetical
references � D ci�1u are displayed, where �1u is the upper alternative reference.

For a two-sided asymmetric design, the power and expected sample sizes under each of the hypothetical
references � D ci�1l and � D ci�1u are displayed, where �1l and �1u are the lower and upper alternative
references, respectively.

For a two-sided design, the power is the probability of correctly rejecting the null hypothesis for the correct
alternative. Thus, under the null hypothesis, the displayed power corresponds to a one-sided Type I error
probability level—that is, the lower ˛ level or the upper ˛ level.

The expected sample size as a percentage of the corresponding fixed-sample design is

100 �

PK
kD1 pk Ik

I0

where pk is the stopping probability at stage k,
PK
kD1 pk Ik is the expected information level, and I0 is the

information level for the fixed-sample design.

Predictive Power

The “Predictive Power Information” table displays the following information:

• stopping stage

• MLE, observed maximum likelihood estimate

• predictive power

Repeated Confidence Intervals

The “Repeated Confidence Intervals” table displays the following information for the observed statistic at
each stage:

• information level

• parameter estimate

• rejection confidence limits. The null hypothesis is rejected for the upper alternative if the lower
rejection confidence limit is greater than the null parameter value. Similarly, the null hypothesis is
rejected for the lower alternative if the upper rejection confidence limit is less than the null parameter
value.

• acceptance confidence limits. The upper alternative hypothesis is rejected if the upper acceptance
confidence limit is less than the upper alternative value. Similarly, the lower alternative hypothesis
is rejected if the lower acceptance confidence limit is greater than the upper alternative value. For a
two-sided design, if both upper and lower alternative hypothesis are rejected, the null hypothesis is
accepted.
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Stopping Probabilities

The “Expected Cumulative Stopping Probabilities” table displays the following information under each of
the specified hypothetical references � D ci�1, where ci are values specified in the CREF= option, and �1 is
the alternative reference:

• coefficient ci for the hypothetical references. The value ci D 0 corresponds to the null hypothesis, and
ci D 1 corresponds to the alternative hypothesis

• expected stopping stage

• source of the stopping probability: reject H0 (with STOP=REJECT or STOP=BOTH), accept H0
(with STOP=ACCEPT or STOP=BOTH), or either reject or accept H0 (with STOP=BOTH)

• expected cumulative stopping probabilities at each stage

For a one-sided design, the expected cumulative stopping probabilities under the hypothetical references
� D ci�1 are displayed.

For a two-sided design, the expected cumulative stopping probabilities under each of the hypothetical
references � D ci�1l and � D ci�1u are displayed, where �1l and �1u are the lower and upper alternative
references, respectively.

Note that for a symmetric two-sided design, only the expected cumulative stopping probabilities under the
hypothetical references � D ci�1u are derived.

The expected stopping stage is given by k0 C d and is derived from the expected information level

KX
kD1

pk Ik D Ik0 C d .I.k0C1/ � Ik0/

where pk is the stopping probability at stage k and 0 � d < 1.

For equally spaced information levels, the expected stopping stage is reduced to the weighted average

KX
kD1

pk k

Test Information

The “Test Information” table displays the following information at each stage:

• proportion of information

• actual information level, if the maximum information is available from the input BOUNDARY= data
set

• alternative references with the specified statistic scale. If a p-value scale is specified, the standardized
Z scale is used.

• boundary values with the specified statistic scale to reject or accept the null hypothesis
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Note that implicitly, the test information table also contains variables for the boundary scale, stopping
criterion, and type of alternative hypothesis. That is, if an ODS statement is used to save the table, the data
set also contains the variables _Scale_ for the boundary scale, _Stop_ for the stopping criterion, and _ALT_
for the type of alternative hypothesis.

If the test variable is specified, the table also displays the following:

• test statistic

• resulting action of test statistic: continue to the next stage, accept the null hypothesis H0, or reject H0

ODS Table Names
PROC SEQTEST assigns a name to each table it creates. You must use these names to reference tables when
using the Output Delivery System (ODS). These names are listed in Table 90.3. For more information about
ODS, see Chapter 20, “Using the Output Delivery System.”

Table 90.3 ODS Tables Produced by PROC SEQTEST

ODS Table Name Description Option

CondPower Conditional power CONDPOWER
Design Design information
ErrSpend Error spending ERRSPEND
ParameterEstimates Parameter estimates DATA( TESTVAR= ) or

PARMS( TESTVAR= )
PowerSampleSize Power and expected sample sizes PSS
PredPower Predictive power PREDPOWER
RepeatedCI Repeated confidence intervals RCI
StopProb Stopping probabilities STOPPROB
Test Test statistics and boundary values

Graphics Output
This section describes the use of ODS for creating graphics with the SEQTEST procedure. To request these
graphs, ODS Graphics must be enabled and you must specify the associated graphics options in the PROC
SEQTEST statement. For more information about ODS Graphics, see Chapter 21, “Statistical Graphics
Using ODS.”

Sequential ASN Plot

The PLOTS=ASN option displays the average sample numbers (expected sample sizes for nonsurvival data
or expected numbers of events for survival data) under various hypothetical references. The average sample
numbers are connected for each design, and these connected curves for all designs are displayed in the
“Sequential ASN Plot” graph.
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For a one-sided design, average sample numbers under the hypothetical references � D ci�1 are displayed,
where ci are the values specified in the CREF= option and �1 is the alternative reference. The horizontal axis
displays the ci values of these hypothetical references.

For a two-sided design, average sample numbers under each of the hypothetical references � D ci�1l and
� D ci�1u are displayed, where �1l and �1u are the lower and upper alternative references, respectively.
The horizontal axis displays �ci values for lower hypothetical references � D ci�1l and ci values for upper
hypothetical references � D ci�1u. Note that for a symmetric two-sided design, only average sample numbers
under the hypothetical references � D ci�1u are derived.

If the trial stops after the sequential test, the hypothetical reference corresponding to the test statistic is also
indicated in the plot.

Conditional Power Plot

The PLOTS=CONDPOWER option displays the conditional powers given the observed statistic under various
hypothetical references. These powers are connected and are displayed in the “Conditional Power Plot”
graph.

For a one-sided test, the power are derived under the hypothetical references � D O� and � D ci�1, where O�
is the observed statistic, �1 is the alternative reference, and ci are the values specified in the CREF= option.
The horizontal axis displays these ci values for hypothetical references.

For a two-sided test, the power are derived under hypothetical references � D O� , � D ci�1l , and � D ci�1u,
where �1l is the lower alternative reference and �1u is the upper alternative reference. The horizontal
axis displays �ci values for hypothetical references � D ci�1l and ci values for hypothetical references
� D ci�1u.

If the trial stops after the sequential test, the hypothetical reference corresponding to the test statistic is also
indicated in the plot.

Sequential Error Spending Plot

The PLOTS=ERRSPEND option displays the cumulative error spending at each stage on each boundary in
the “Sequential Error Spending Plot” graph. A legend table uses the design labels to identify the curves for
the corresponding design in the plot.

Sequential Power Plot

The PLOTS=POWER option displays the powers under various hypothetical references. The powers are
connected for each design, and these connected curves for all designs are displayed in the “Sequential Power
Plot” graph.

For a one-sided design, powers under hypothetical references � D ci�1 are displayed, where ci are the values
specified in the CREF= option and �1 is the alternative reference. The horizontal axis displays the ci values
of these hypothetical references.

For a two-sided design, powers under hypothetical references � D ci�1l and � D ci�1u are displayed, where
�1l and �1u are the lower and upper alternative references, respectively. The horizontal axis displays �ci
values for lower hypothetical references � D ci�1l and ci values for upper hypothetical references � D ci�1u.
Note that for a symmetric two-sided design, only powers under hypothetical references � D ci�1u are
derived.
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If the trial stops after the sequential test, the hypothetical reference corresponding to the test statistic is also
indicated in the plot.

Repeated Confidence Intervals Plot

The PLOTS=RCI option displays repeated confidence intervals at each stage given the observed statistic at
that stage. These repeated confidence intervals are displayed in the “Repeated Confidence Intervals Plot”
graph.

Sequential Test Plot

The PLOTS=TEST option displays boundary values and test statistics in the “Test Plot” graph. The boundary
values are connected for each boundary, and both the stage number and the information level at each stage
are displayed. The legend table identifies the acceptance and rejection regions in the plot.

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

PROC SEQTEST assigns a name to each graph it creates. You can use these names to reference the graphs
when using ODS. To request these graphs, ODS Graphics must be enabled and you must specify the options
indicated in Table 90.4.

Table 90.4 Graphs Produced by PROC SEQTEST

ODS Graph Name Plot Description Option

AsnPlot Average sample numbers PLOTS=ASN
CondPowerPlot Conditional power curves PLOTS=CONDPOWER
ErrSpendPlot Error spending PLOTS=ERRSPEND
PowerPlot Power curves PLOTS=POWER
RepeatedCIPlot Repeated confidence intervals PLOTS=RCI
TestPlot Boundary values and test statistics PLOTS=TEST
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Examples: SEQTEST Procedure
The following examples perform group sequential tests with various designs and test statistics.

Four statistic scales are available for the input boundary values, the input test statistic, and the displayed test
information in the SEQTEST procedure. These are the maximum likelihood estimator scale, score statistic
scale, standardized normal Z scale, and p-value scale. There is a unique one-to-one transformation between
any two of the scales, and you can use different scales for the input boundary values and input test statistic.
These boundary values and test statistic are displayed with the scale specified in the BOUNDARYSCALE=
option in the SEQTEST procedure.

Example 90.1: Testing the Difference between Two Proportions
This example demonstrates group sequential tests that use an O’Brien-Fleming group sequential design. A
clinic is studying the effect of vitamin C supplements in treating flu symptoms. The study consists of patients
in the clinic who have exhibited the first sign of flu symptoms within the last 24 hours. These patients are
randomly assigned to either the control group (which receives placebo pills) or the treatment group (which
receives large doses of vitamin C supplements). At the end of a five-day period, the flu symptoms of each
patient are recorded.

Suppose that you know from past experience that flu symptoms disappear in five days for 60% of patients
who experience flu symptoms. The clinic would like to detect a 75% symptom disappearance with a high
probability. A test that compares the proportions directly specifies the null hypothesisH0 W � D pt �pc D 0
with a one-sided alternative H1 W � > 0 and a power of 0.90 at H1 W � D 0:15, where pt and pc are the
proportions of symptom disappearance in the treatment group and control group, respectively.

The following statements invoke the SEQDESIGN procedure and request a four-stage group sequential
design by using an O’Brien-Fleming method for normally distributed data. The design uses a one-sided
alternative hypothesis with early stopping either to accept or reject the null hypothesis H0. The BOUND-
ARYSCALE=MLE option uses the MLE scale to display statistics in the boundary table and boundary
plots.

ods graphics on;
proc seqdesign altref=0.15

boundaryscale=mle
;

OBrienFleming: design method=obf
nstages=4
alt=upper
stop=both
alpha=0.025
;

samplesize model=twosamplefreq(nullprop=0.6 test=prop);
ods output Boundary=Bnd_Count;

run;
ods graphics off;

The ODS OUTPUT statement with the BOUNDARY=BND_COUNT option creates an output data set named
BND_COUNT which contains the resulting boundary information for the subsequent sequential tests.



7578 F Chapter 90: The SEQTEST Procedure

The “Design Information” table in Output 90.1.1 displays design specifications. With the specified alternative
hypothesis H1 W � D 0:15, the maximum information is derived to achieve a power of 0.90 at H1. The
derived fixed-sample information ratio 1.0767 is the maximum information needed for a group sequential
design relative to its corresponding fixed-sample design.

Output 90.1.1 O’Brien-Fleming Design Information

The SEQDESIGN Procedure
Design: OBrienFleming

The SEQDESIGN Procedure
Design: OBrienFleming

Design Information

Statistic Distribution Normal

Boundary Scale MLE

Alternative Hypothesis Upper

Early Stop Accept/Reject Null

Method O'Brien-Fleming

Boundary Key Both

Alternative Reference 0.15

Number of Stages 4

Alpha 0.025

Beta 0.1

Power 0.9

Max Information (Percent of Fixed Sample) 107.6741

Max Information 502.8343

Null Ref ASN (Percent of Fixed Sample) 61.12891

Alt Ref ASN (Percent of Fixed Sample) 75.89782

The “Boundary Information” table in Output 90.1.2 displays the information level, alternative reference, and
boundary values at each stage. With the BOUNDARYSCALE=MLE option, the SEQDESIGN procedure
displays the output boundaries with the maximum likelihood estimator scale.

Output 90.1.2 O’Brien-Fleming Boundary Information

Boundary Information (MLE Scale)
Null Reference = 0

Alternative
Boundary

Values

Information Level Reference Upper

_Stage_ Proportion Actual N Upper Beta Alpha

1 0.2500 125.7086 107.4808 0.15000 -0.09709 0.35291

2 0.5000 251.4171 214.9617 0.15000 0.02645 0.17645

3 0.7500 377.1257 322.4425 0.15000 0.06764 0.11764

4 1.0000 502.8343 429.9233 0.15000 0.08823 0.08823

With ODS Graphics enabled, a detailed boundary plot with the rejection and acceptance regions is displayed,
as shown in Output 90.1.3. The horizontal axis indicates the information levels for the design. The stages are
indicated by vertical lines with accompanying stage numbers. If the test statistic at a stage is in a rejection
region, the trial stops and the hypothesis is rejected. If the test statistic is in an acceptance region, then the
trial also stops and the hypothesis is accepted. If the statistic is not in a rejection or an acceptance region, the
trial continues to the next stage.
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Output 90.1.3 O’Brien-Fleming Boundary Plot

The boundary plot also displays the information level and critical value for the corresponding fixed-sample
design. The solid and dashed lines at the fixed-sample information level correspond to the rejection and
acceptance lines, respectively.

With the SAMPLESIZE statement, the maximum information is used to derive the required sample size
for the study. The “Sample Size Summary” table in Output 90.1.4 displays parameters for the sample size
computation.

Output 90.1.4 Required Sample Size Summary

Sample Size Summary

Test Two-Sample Proportions

Null Proportion 0.6

Proportion (Group A) 0.75

Test Statistic Z for Proportion

Reference Proportions Alt Ref

Max Sample Size 429.9233

Expected Sample Size (Null Ref) 244.0768

Expected Sample Size (Alt Ref) 303.0464
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With the derived maximum information and the specified MODEL= option in the SAMPLESIZE statement,
the total sample size in each group for testing the difference between two proportions under the alternative
hypothesis is

N1 D N2 D .p1c .1 � p1c/C p1t .1 � p1t // IX

where p1c D 0:6 and p1t D p1c C �1 D 0:75. By default (or equivalently if you specify REF=PROP in
the MODEL=TWOSAMPLEFREQ option), the required sample sizes are computed under the alternative
hypothesis. See the section “Test for the Difference between Two Binomial Proportions” in the chapter “The
SEQDESIGN Procedure” for a description of these parameters.

The “Sample Sizes (N)” table in Output 90.1.5 displays the required sample sizes at each stage, in both
fractional and integer numbers. The derived sample sizes under the heading Fractional N which correspond
to the design are not integers. These sample sizes are rounded up to integers under the heading Ceiling N. In
practice, integer sample sizes are used, and the information levels increase slightly. Thus, 54, 108, 162, and
215 patients are needed in each group for the four stages, respectively.

Output 90.1.5 Required Sample Sizes

Sample Sizes (N)
Two-Sample Z Test for Proportion Difference

Fractional N Ceiling N

_Stage_ N N(Grp 1) N(Grp 2) Information N N(Grp 1) N(Grp 2) Information

1 107.48 53.74 53.74 125.7 108 54 54 126.3

2 214.96 107.48 107.48 251.4 216 108 108 252.6

3 322.44 161.22 161.22 377.1 324 162 162 378.9

4 429.92 214.96 214.96 502.8 430 215 215 502.9

Suppose the trial follows the study plan, and 54 patients are available in each group at stage 1. The data set
count_1 contains these 108 patients. Output 90.1.6 lists the first 10 observations of the data set.

Output 90.1.6 Clinical Trial Data

First 10 Obs in the Trial DataFirst 10 Obs in the Trial Data

Obs Trt Resp

1 0 0

2 1 1

3 0 1

4 1 0

5 0 0

6 1 0

7 0 0

8 1 1

9 0 1

10 1 0

The Trt variable is a grouping variable with value 0 for a patient in the placebo control group and value 1
for a patient in the treatment group who is given vitamin C supplements. The Resp variable is an indicator
variable with value 1 for a patient without flu symptoms after five days and value 0 for a patient with flu
symptoms after five days.
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The following statements use the GENMOD procedure to estimate the treatment effect at stage 1:

proc genmod data=count_1;
model Resp= Trt;
ods output ParameterEstimates=Parms_Count1;

run;

Output 90.1.7 displays the treatment effect at stage 1.

Output 90.1.7 Stage 1 Treatment Difference

The GENMOD ProcedureThe GENMOD Procedure

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

Wald 95%
Confidence

Limits
Wald

Chi-Square Pr > ChiSq

Intercept 1 0.6296 0.0627 0.5066 0.7526 100.68 <.0001

Trt 1 0.1111 0.0887 -0.0628 0.2850 1.57 0.2105

Scale 1 0.4611 0.0314 0.4035 0.5269

Note: The scale parameter was estimated by maximum likelihood.

The test statistic is O�1 D Opt � Opc D 0:1111, and its associated standard error isq
Var. O�1/ D

r
Opc.1 � Opc/

54
C
Opt .1 � Opt /

54
D 0:0887

The following statements create and display (in Output 90.1.8) the data set that contains the parameter

estimate at stage 1, O�1 D 0:1111, and its associated standard error
q
Var. O�1/ D 0:0887 which are used in

the SEQTEST procedure:

data Parms_Count1;
set Parms_Count1;
if Parameter='Trt';
_Scale_='MLE';
_Stage_= 1;
keep _Scale_ _Stage_ Parameter Estimate StdErr;

run;

proc print data=Parms_Count1;
title 'Statistics Computed at Stage 1';

run;

Output 90.1.8 Statistics Computed at Stage 1

Statistics Computed at Stage 1Statistics Computed at Stage 1

Obs Parameter Estimate StdErr _Scale_ _Stage_

1 Trt 0.1111 0.0887 MLE 1
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The initial required sample sizes are derived with the proportions pc D 0:6 and pt D 0:75. If the observed
proportions are different from these assumed values, or if the number of available patients is different from
the study plan in one of the stages, then the information level that corresponds to the test statistic is estimated
from

Ik D
1

Var. O�k/

The following statements invoke the SEQTEST procedure and test for early stopping at stage 1:

ods graphics on;
proc seqtest Boundary=Bnd_Count

Parms(Testvar=Trt)=Parms_Count1
infoadj=none
errspendmin=0.001
boundaryscale=mle
errspend
plots=errspend
;

ods output Test=Test_Count1;
run;
ods graphics off;

The BOUNDARY= option specifies the input data set that provides the boundary information for the trial
at stage 1, which was generated in the SEQDESIGN procedure. The PARMS=PARMS_COUNT1 option
specifies the input data set PARMS_COUNT1 that contains the test statistic and its associated standard error at
stage 1, and the TESTVAR=TRT option identifies the test variable TRT in the data set. The INFOADJ=NONE
option maintains the information levels at future interim stages (2 and 3) as provided in the BOUNDARY=
data set. The BOUNDARYSCALE=MLE option displays the output boundaries in terms of the MLE scale.

The O’Brien-Fleming design is conservative in early stages and might not be desirable in a clinical trial. The
ERRSPENDMIN=0.001 option specifies the minimum error spending at each stage to be 0.001, and it might
increase the corresponding nominal p-value in early stages for the trial. The BOUNDARYSCALE=MLE
option uses the MLE scale to display test statistics in the boundary table and boundary plots.

The ODS OUTPUT statement with the TEST=TEST_COUNT1 option creates an output data set named
TEST_COUNT1 which contains the updated boundary information for the test at stage 1. The data set also
provides the boundary information that is needed for the group sequential test at the next stage.

The “Design Information” table in Output 90.1.9 displays design specifications. The derived statistics, such
as the overall ˛ and ˇ levels, are derived from the specified maximum information and boundary values in
the BOUNDARY= data set. Note that with a minor change in the information level at stage 1, the power also
changes slightly from the design provided in the BOUNDARY= data set.
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Output 90.1.9 Design Information

The SEQTEST ProcedureThe SEQTEST Procedure

Design Information

BOUNDARY Data Set WORK.BND_COUNT

Data Set WORK.PARMS_COUNT1

Statistic Distribution Normal

Boundary Scale MLE

Alternative Hypothesis Upper

Early Stop Accept/Reject Null

Number of Stages 4

Alpha 0.025

Beta 0.10147

Power 0.89853

Max Information (Percent of Fixed Sample) 108.2301

Max Information 502.834283

Null Ref ASN (Percent of Fixed Sample) 61.09917

Alt Ref ASN (Percent of Fixed Sample) 73.9745

With the ERRSPEND option, the “Error Spending Information” table in Output 90.1.10 displays cumulative
error spending at each stage for each boundary. By default (or equivalently if you specify BOUND-
ARYKEY=ALPHA), the Type I error level ˛ D 0:025 is maintained. Furthermore, with the ERRSPEND-
MIN=0.001 option, the ˛ spending at each stage is greater than or equal to 0.001.

Output 90.1.10 Error Spending Information

Error Spending Information

Cumulative
Error Spending

Information Level Upper

_Stage_ Proportion Actual Beta Alpha

1 0.2525 126.9871 0.00308 0.00100

2 0.5000 251.4171 0.02653 0.00343

3 0.7500 377.1257 0.06456 0.01254

4 1.0000 502.8343 0.10147 0.02500

With the PLOTS=ERRSPEND option, the procedure displays a plot of error spending for each boundary,
as shown in Output 90.1.11. The error spending values in the “Error Spending Information” table in
Output 90.1.10 are displayed in the plot.
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Output 90.1.11 Error Spending Plot

The “Test Information” table in Output 90.1.12 displays the boundary values for the design, test statistic,
and resulting action at each stage. With the BOUNDARYSCALE=MLE option, the maximum likelihood
estimator scale is used for the test statistic and boundary values. The table shows that the test statistic 0.1111
is between the upper ˛ and ˇ boundaries, so the trial continues to the next stage.

Output 90.1.12 Sequential Test

Test Information (MLE Scale)
Null Reference = 0

Alternative
Boundary

Values Test

Information Level Reference Upper Trt

_Stage_ Proportion Actual Upper Beta Alpha Estimate Action

1 0.2525 126.9871 0.15000 -0.09306 0.27423 0.11111 Continue

2 0.5000 251.4171 0.15000 0.02674 0.17527 .

3 0.7500 377.1257 0.15000 0.06805 0.11792 .

4 1.0000 502.8343 0.15000 0.08875 0.08875 .
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The information level at stage 1 is derived from the standard error,

I1 D
1

Var. O�1/
D

1

.s:e:. O�1//2
D 126:987

By default (or equivalently if you specify PLOTS=TEST), the “Test Plot” graph displays boundary values
of the design and the test statistic at stage 1, as shown in Output 90.1.13. It also shows that the observed
statistic is in the continuation region.

Output 90.1.13 Sequential Test Plot

The observed information level at stage 1, I1 D 126:987, is slightly larger than the target information level at
the design. If an observed information level in the study is substantially different from its target level in the
design, then the sample sizes should be adjusted in the subsequent stages to achieve the target information
levels.

Suppose the trial continues to the next stage, and 108 patients are available in each group at stage 2. The data
set COUNT_2 contains these 216 patients.
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The following statements use the GENMOD procedure to estimate the treatment effect at stage 2:

proc genmod data=Count_2;
model Resp= Trt;
ods output ParameterEstimates=Parms_Count2;

run;

The following statements create the parameter estimate at stage 2, O�2 D Op2� Op1 D 0:1759, and its associated

standard error
q
Var. O�2/ D 0:0623 into a test data set:

data Parms_Count2;
set Parms_Count2;
if Parameter='Trt';
_Scale_='MLE';
_Stage_= 2;
keep _Scale_ _Stage_ Parameter Estimate StdErr;

run;

proc print data=Parms_Count2;
title 'Statistics Computed at Stage 2';

run;

Output 90.1.14 displays the test statistics at stage 2.

Output 90.1.14 Statistics Computed at Stage 2

Statistics Computed at Stage 2Statistics Computed at Stage 2

Obs Parameter Estimate StdErr _Scale_ _Stage_

1 Trt 0.1759 0.0623 MLE 2

The following statements invoke the SEQTEST procedure and test for early stopping at stage 2:

ods graphics on;
proc seqtest Boundary=Test_Count1

Parms(Testvar=Trt)=Parms_Count2
infoadj=none
boundaryscale=mle
;

ods output Test=Test_Count2;
run;
ods graphics off;

The BOUNDARY= option specifies the input data set that provides the boundary information for the trial
at stage 2, which was generated by the SEQTEST procedure at the previous stage. The PARMS= option
specifies the input data set that contains the test statistic and its associated standard error at stage 2, and the
TESTVAR= option identifies the test variable in the data set.

The ODS OUTPUT statement with the TEST=TEST_COUNT2 option creates an output data set named
TEST_COUNT2 which contains the updated boundary information for the test at stage 2. The data set also
provides the boundary information that is needed for the group sequential test at the next stage.
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The “Test Information” table in Output 90.1.15 displays the boundary values, test statistic, and resulting
action at each stage. The table shows that the test statistic 0.17593 is larger than the corresponding upper
alpha boundary value, so the trial stops to reject the hypothesis.

Output 90.1.15 Sequential Test

The SEQTEST ProcedureThe SEQTEST Procedure

Test Information (MLE Scale)
Null Reference = 0

Alternative
Boundary

Values Test

Information Level Reference Upper Trt

_Stage_ Proportion Actual Upper Beta Alpha Estimate Action

1 0.2525 126.9871 0.15000 -0.09306 0.27423 0.11111 Continue

2 0.5122 257.5571 0.15000 0.03019 0.17001 0.17593 Reject Null

3 0.7500 377.1257 0.15000 0.06783 0.11826 .

4 1.0000 502.8343 0.15000 0.08878 0.08878 .

With ODS Graphics enabled, the “Test Plot” is displayed, as shown in Output 90.1.16. The plot displays
boundary values of the design and the test statistics at the first two stages. As expected, the test statistic at
stage 2 is in the “Upper Rejection Region” above the upper alpha boundary.

Output 90.1.16 Sequential Test Plot
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After a trial is stopped, the “Parameter Estimates” table in Output 90.1.17 displays the stopping stage and the
maximum likelihood estimate of the parameter. It also displays the p-value, median estimate, and confidence
limits for the parameter that correspond to the observed statistic by using the specified sample space ordering.

Output 90.1.17 Parameter Estimates

Parameter Estimates
Stagewise Ordering

Parameter
Stopping

Stage MLE
p-Value for
H0:Parm=0

Median
Estimate Lower 95% CL

Trt 2 0.175926 0.0031 0.174462 0.07059

The MLE statistic at the stopping stage is the maximum likelihood estimate of the parameter and is biased.
The computation of p-value, unbiased median estimate, and confidence limits depends on the ordering of the
sample space .k; z/, where k is the stage number and z is the observed standardized Z statistic. By default
(or equivalently if you specify ORDER=STAGEWISE), the stagewise ordering that uses counterclockwise
ordering around the continuation region is used to compute the p-value, unbiased median estimate, and
confidence limits. As expected, the p-value is less than 0.025, and the confidence interval does not contain
the null reference zero. With the stagewise ordering, the p-value is computed as

P�D0 .Z1 > a1/C P�D0 .Z2 > z2 j b1 < Z1 < a1/

where z2 is the observed standardized Z statistic at stage 2, Z1 is the standardized normal variate at stage 1,
Z2 is the standardized normal variate at stage 2, and a1 and b1 are the stage 1 upper rejection and acceptance
boundary values, respectively.

See the section “Available Sample Space Orderings in a Sequential Test” on page 7567 for a detailed
description of the stagewise ordering.

Example 90.2: Testing an Effect in a Regression Model
This example demonstrates a two-sided group sequential test that uses an error spending design with early
stopping to reject the null hypothesis. A study is conducted to examine the effects of Age (years), Weight (kg),
RunTime (time in minutes to run 1.5 miles), RunPulse (heart rate while running), and MaxPulse (maximum
heart rate recorded while running) on Oxygen (oxygen intake rate, ml per kg body weight per minute). The
primary interest is whether oxygen intake rate is associated with weight.

The hypothesis is tested using the following linear model:

Oxygen D AgeCWeightC RunTimeC RunPulseCMaxPulse

The null hypothesis is H0 W ˇw D 0, where ˇw is the regression parameter for the variable Weight. Suppose
that ˇw D 0:10 is the reference improvement that should be detected at a 0.90 level. Then the maximum
information IX can be derived in the SEQDESIGN procedure.

Following the derivations in the section “Test for a Parameter in the Regression Model” in the chapter “The
SEQDESIGN Procedure,” the required sample size can be derived from

N D IX
�2y

.1 � r2x/ �
2
x
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where �2y is the variance of the response variable in the regression model, r2x is the proportion of variance of
Weight explained by other covariates, and �2x is the variance of Weight.

Further suppose that from past experience, �2y D 5, r2x D 0:10, and �2x D 64. Then the required sample size
can be derived using the SAMPLESIZE statement in the SEQDESIGN procedure.

The following statements invoke the SEQDESIGN procedure and request a three-stage group sequential
design for normally distributed data to test the null hypothesis of a regression parameterH0 W ˇw D 0 against
the alternative H1 W ˇw ¤ 0:

ods graphics on;
proc seqdesign altref=0.10;

OBFErrorFunction: design method=errfuncobf
nstages=3
info=cum(2 3 4)
;

samplesize model=reg(variance=5 xvariance=64 xrsquare=0.10);
ods output Boundary=Bnd_Fit;

run;
ods graphics off;

By default (or equivalently if you specify ALPHA=0.05 and BETA=0.10), the procedure uses a Type I
error probability 0.05 and a Type II error probability 0.10. The ALTREF=0.10 option specifies a power of
1 � ˇ D 0:90 at the alternative hypothesis H1 W ˇw D ˙0:10. The INFO=CUM(2 3 4) option specifies that
the study perform the first interim analysis with information proportion 2=4 D 0:5—that is, after half of the
total observations are collected.

The ODS OUTPUT statement with the BOUNDARY=BND_FIT option creates an output data set named
BND_FIT which contains the resulting boundary information for the subsequent sequential tests.

The “Design Information” table in Output 90.2.1 displays design specifications and derived statistics. Since
the alternative reference is specified, the maximum information is derived.

Output 90.2.1 Design Information

The SEQDESIGN Procedure
Design: OBFErrorFunction
The SEQDESIGN Procedure
Design: OBFErrorFunction

Design Information

Statistic Distribution Normal

Boundary Scale Standardized Z

Alternative Hypothesis Two-Sided

Early Stop Reject Null

Method Error Spending

Boundary Key Both

Alternative Reference 0.1

Number of Stages 3

Alpha 0.05

Beta 0.1

Power 0.9

Max Information (Percent of Fixed Sample) 101.8276

Max Information 1069.948

Null Ref ASN (Percent of Fixed Sample) 101.2587

Alt Ref ASN (Percent of Fixed Sample) 77.81586
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The “Boundary Information” table in Output 90.2.2 displays information level, alternative reference, and
boundary values at each stage.

Output 90.2.2 Boundary Information

Boundary Information (Standardized Z Scale)
Null Reference = 0

Alternative
Boundary

Values

Information Level Reference Lower Upper

_Stage_ Proportion Actual N Lower Upper Alpha Alpha

1 0.5000 534.9738 46.43869 -2.31295 2.31295 -2.96259 2.96259

2 0.7500 802.4606 69.65804 -2.83277 2.83277 -2.35902 2.35902

3 1.0000 1069.948 92.87739 -3.27101 3.27101 -2.01409 2.01409

With ODS Graphics enabled, a detailed boundary plot with the rejection and acceptance regions is displayed,
as shown in Output 90.2.3. The boundary plot also displays the information level and critical value for
the corresponding fixed-sample design. This design has characteristics of an O’Brien-Fleming design; the
probability for early stopping is low, and the maximum information and critical values at the final stage are
similar to those of the corresponding fixed-sample design.

Output 90.2.3 Boundary Plot
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With the MODEL=REG option in the SAMPLESIZE statement, the “Sample Size Summary” table in
Output 90.2.4 displays the parameters for the sample size computation.

Output 90.2.4 Required Sample Size Summary

Sample Size Summary

Test Reg Parameter

Parameter 0.1

Variance 5

X Variance 64

R Square (X) 0.1

Max Sample Size 92.87739

Expected Sample Size (Null Ref) 92.35845

Expected Sample Size (Alt Ref) 70.97617

The “Sample Sizes” table in Output 90.2.5 displays the required sample sizes for the group sequential clinical
trial.

Output 90.2.5 Required Sample Sizes

Sample Sizes (N)
Z Test for Regression Parameter

Fractional N Ceiling N

_Stage_ N Information N Information

1 46.44 535.0 47 541.4

2 69.66 802.5 70 806.4

3 92.88 1069.9 93 1071.4

Thus, 47, 70, and 93 individuals are needed in stages 1, 2, and 3, respectively. Since the sample sizes are
derived from estimated values of �2y , r2x , and �2x , the actual information levels might not achieve the target
information levels. Thus, instead of specifying sample sizes in the protocol, you can specify the maximum
information levels. Then if an actual information level is much less than the target level, you can increase the
sample sizes for the remaining stages to achieve the desired information levels and power.

Suppose that 47 individuals are available at stage 1. Output 90.2.6 lists the first 10 observations of the trial
data.

Output 90.2.6 Clinical Trial Data

First 10 Obs in the Trial DataFirst 10 Obs in the Trial Data

Obs Oxygen Age Weight RunTime RunPulse MaxPulse

1 54.5521 44 87.7676 11.6949 178.435 181.607

2 52.2821 40 75.4853 9.8872 184.433 183.667

3 62.1871 44 89.0638 8.7950 155.540 167.108

4 65.3269 42 67.7310 8.4577 162.926 173.877

5 59.9809 37 93.1902 9.3228 179.033 180.144

6 52.5588 47 75.9044 12.0385 177.753 175.033

7 51.7838 40 73.5422 11.6607 175.838 178.140

8 57.0024 43 81.2861 11.2219 160.963 171.770

9 48.0775 44 85.2290 13.1789 173.722 176.548

10 68.3357 38 80.2490 8.5066 171.824 184.011
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The following statements use the REG procedure to estimate the slope ˇw and its associated standard error at
stage 1:

proc reg data=Fit_1;
model Oxygen=Age Weight RunTime RunPulse MaxPulse;
ods output ParameterEstimates=Parms_Fit1;

run;

The following statements create and display (in Output 90.2.7) the input data set that contains slope ˇw and
its associated standard error for the SEQTEST procedure:

data Parms_Fit1;
set Parms_Fit1;
if Variable='Weight';
_Scale_='MLE';
_Stage_= 1;
keep _Scale_ _Stage_ Variable Estimate StdErr;

run;

proc print data=Parms_Fit1;
title 'Statistics Computed at Stage 1';

run;

Output 90.2.7 Statistics Computed at Stage 1

Statistics Computed at Stage 1Statistics Computed at Stage 1

Obs Variable Estimate StdErr _Scale_ _Stage_

1 Weight 0.03772 0.04345 MLE 1

The following statements invoke the SEQTEST procedure to test for early stopping at stage 1:

ods graphics on;
proc seqtest Boundary=Bnd_Fit

Parms(Testvar=Weight)=Parms_Fit1
infoadj=prop
errspendadj=errfuncobf
order=lr
stopprob
;

ods output Test=Test_Fit1;
run;
ods graphics off;

The BOUNDARY= option specifies the input data set that provides the boundary information for the trial
at stage 1 (this data set was generated in the SEQDESIGN procedure). Recall that these boundary values
were derived for the information levels specified with the INFO=CUM(2 3 4) option in the SEQDESIGN
procedure. The PARMS=PARMS_FIT1 option specifies the input data set PARMS_FIT1 that contains the
test statistic and its associated standard error at stage 1, and the TESTVAR=WEIGHT option identifies the
test variable WEIGHT in the data set.

If the computed information level for stage 1 is not the same as the value provided in the BOUNDARY= data
set, the INFOADJ=PROP option (which is the default) proportionally adjusts the information levels at future
interim stages from the levels provided in the BOUNDARY= data set. The ORDER=LR option uses the LR



Example 90.2: Testing an Effect in a Regression Model F 7593

ordering to derive the p-value, the unbiased median estimate, and the confidence limits for the regression
slope estimate. The ERRSPENDADJ=ERRFUNCOBF option adjusts the boundaries with the updated error
spending values generated from an O’Brien-Fleming-type cumulative error spending function.

The ODS OUTPUT statement with the TEST=TEST_FIT1 option creates an output data set named
TEST_FIT1 which contains the updated boundary information for the test at stage 1. The adjustment
is needed because the observed information level is different from the information level in the BOUNDARY=
data set. The data set TEST_FIT1 also provides the boundary information that is needed for the group
sequential test at the next stage.

The “Design Information” table in Output 90.2.8 displays the design specifications. By default (or equivalently
if you specify BOUNDARYKEY=ALPHA), the boundary values are modified for the new information levels
to maintain the Type I ˛ level. The maximum information remains the same as in the BOUNDARY= data set,
but the derived Type II error probability ˇ and power 1 � ˇ are different because of the new information
level.

Output 90.2.8 Design Information

The SEQTEST ProcedureThe SEQTEST Procedure

Design Information

BOUNDARY Data Set WORK.BND_FIT

Data Set WORK.PARMS_FIT1

Statistic Distribution Normal

Boundary Scale Standardized Z

Alternative Hypothesis Two-Sided

Early Stop Reject Null

Number of Stages 3

Alpha 0.05

Beta 0.09994

Power 0.90006

Max Information (Percent of Fixed Sample) 101.8057

Max Information 1069.94751

Null Ref ASN (Percent of Fixed Sample) 101.2416

Alt Ref ASN (Percent of Fixed Sample) 77.87607

With the STOPPROB option, the “Expected Cumulative Stopping Probabilities” table in Output 90.2.9
displays the expected stopping stage and cumulative stopping probability to reject the null hypothesis
at each stage under various hypothetical references � D ci�1, where �1 is the alternative reference and
ci D 0; 0:5; 1; 1:5 by default. You can specify other values for ci with the CREF= option.

Output 90.2.9 Stopping Probabilities

Expected Cumulative Stopping Probabilities
Reference = CRef * (Alt Reference)

Stopping Probabilities

CRef
Expected

Stopping Stage Source Stage_1 Stage_2 Stage_3

0.0000 2.978 Reject Null 0.00289 0.01906 0.05000

0.5000 2.792 Reject Null 0.03373 0.17443 0.36566

1.0000 2.069 Reject Null 0.24884 0.68206 0.90006

1.5000 1.348 Reject Null 0.68172 0.97032 0.99820
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The “Test Information” table in Output 90.2.10 displays the boundary values for the test statistic. By
default (or equivalently if you specify BOUNDARYSCALE=STDZ), these statistics are displayed with the
standardized Z scale. The information level at stage 1 is derived from the standard error s1 in the PARMS=
data set,

I1 D
1

s21
D

1

0:0434532
D 529:62

Output 90.2.10 Sequential Tests

Test Information (Standardized Z Scale)
Null Reference = 0

Alternative
Boundary

Values Test

Information Level Reference Lower Upper Weight

_Stage_ Proportion Actual Lower Upper Alpha Alpha Estimate Action

1 0.4950 529.6232 -2.30135 2.30135 -2.97951 2.97951 0.86798 Continue

2 0.7475 799.7853 -2.82805 2.82805 -2.36291 2.36291 .

3 1.0000 1069.948 -3.27101 3.27101 -2.01336 2.01336 .

With the INFOADJ=PROP option (which is the default), the information level at stage 2 is derived propor-
tionally from the observed information at stage 1 and the information levels in the BOUNDARY= data set.
See the section “Boundary Adjustments for Information Levels” on page 7560 for details about how the
adjusted information levels are computed.

At stage 1, the standardized Z statistic 0.86798 is between the lower ˛ boundary –2.97951 and the upper ˛
boundary 2.97951, so the trial continues to the next stage.

With ODS Graphics enabled, a boundary plot with test statistics is displayed, as shown in Output 90.2.11. As
expected, the test statistic is in the continuation region between the lower and upper ˛ boundaries.
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Output 90.2.11 Sequential Test Plot

The following statements use the REG procedure to estimate the slope ˇw and its associated standard error at
stage 2:

proc reg data=Fit_2;
model Oxygen=Age Weight RunTime RunPulse MaxPulse;
ods output ParameterEstimates=Parms_Fit2;

run;

Note that the data set Fit_2 contains both the data from stage 1 and the data from stage 2.
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The following statements create and display (in Output 90.2.12) the input data set that contains slope ˇw and
its associated standard error at stage 2 for the SEQTEST procedure:

data Parms_Fit2;
set Parms_Fit2;
if Variable='Weight';
_Scale_='MLE';
_Stage_= 2;
keep _Scale_ _Stage_ Variable Estimate StdErr;

run;

proc print data=Parms_Fit2;
title 'Statistics Computed at Stage 2';

run;

Output 90.2.12 Statistics Computed at Stage 2

Statistics Computed at Stage 2Statistics Computed at Stage 2

Obs Variable Estimate StdErr _Scale_ _Stage_

1 Weight 0.02932 0.03520 MLE 2

The following statements invoke the SEQTEST procedure to test for early stopping at stage 2:

proc seqtest Boundary=Test_Fit1
Parms(Testvar=Weight)=Parms_Fit2
infoadj=prop
errspendadj=errfuncobf
order=lr
;

ods output Test=Test_Fit2;
run;

The BOUNDARY= option specifies the input data set that provides the boundary information for the trial
at stage 2, which was generated by the SEQTEST procedure at the previous stage. The PARMS= option
specifies the input data set that contains the test statistic and its associated standard error at stage 2, and the
TESTVAR= option identifies the test variable in the data set.

The ODS OUTPUT statement with the TEST=TEST_FIT2 option creates an output data set named
TEST_FIT2 which contains the updated boundary information for the test at stage 2. The data set also
provides the boundary information that is needed for the group sequential test at the next stage.

Since the data set PARMS_FIT2 does not contain the test information at stage 1, the information level at stage
1 in the TEST_FIT1 data set is used to generate boundary values for the test at stage 2.

Following the process at stage 1, the slope estimate is also between its corresponding lower and upper ˛
boundary values, so the trial continues to the next stage.

The following statements use the REG procedure to estimate the slope ˇw and its associated standard error at
the final stage:
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proc reg data=Fit_3;
model Oxygen=Age Weight RunTime RunPulse MaxPulse;
ods output ParameterEstimates=Parms_Fit3;

run;

The following statements create the input data set that contains slope ˇw and its associated standard error at
stage 3 for the SEQTEST procedure:

data Parms_Fit3;
set Parms_Fit3;
if Variable='Weight';
_Scale_='MLE';
_Stage_= 3;
keep _Scale_ _Stage_ Variable Estimate StdErr;

run;

The following statements print (in Output 90.2.13) the test statistics at stage 3:

proc print data=Parms_Fit3;
title 'Statistics Computed at Stage 3';

run;

Output 90.2.13 Statistics Computed at Stage 3

Statistics Computed at Stage 3Statistics Computed at Stage 3

Obs Variable Estimate StdErr _Scale_ _Stage_

1 Weight 0.02189 0.03028 MLE 3

The following statements invoke the SEQTEST procedure to test the hypothesis:

ods graphics on;
proc seqtest Boundary=Test_Fit2

Parms(testvar=Weight)=Parms_Fit3
errspendadj=errfuncobf
order=lr
pss
plots=(asn power)
;

ods output Test=Test_Fit3;
run;
ods graphics off;

The BOUNDARY= option specifies the input data set that provides the boundary information for the trial
at stage 3, which was generated by the SEQTEST procedure at the previous stage. The PARMS= option
specifies the input data set that contains the test statistic and its associated standard error at stage 3, and the
TESTVAR= option identifies the test variable in the data set.

The ODS OUTPUT statement with the TEST=TEST_FIT3 option creates an output data set named
TEST_FIT3 which contains the updated boundary information for the test at stage 3.

The “Design Information” table in Output 90.2.14 displays design specifications. By default (or equivalently
if you specify BOUNDARYKEY=ALPHA), the boundary values are modified for the new information levels
to maintain the Type I ˛ level.
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Output 90.2.14 Design Information

The SEQTEST ProcedureThe SEQTEST Procedure

Design Information

BOUNDARY Data Set WORK.TEST_FIT2

Data Set WORK.PARMS_FIT3

Statistic Distribution Normal

Boundary Scale Standardized Z

Alternative Hypothesis Two-Sided

Early Stop Reject Null

Number of Stages 3

Alpha 0.05

Beta 0.09514

Power 0.90486

Max Information (Percent of Fixed Sample) 102.0102

Max Information 1090.63724

Null Ref ASN (Percent of Fixed Sample) 101.4122

Alt Ref ASN (Percent of Fixed Sample) 77.22139

The maximum information is derived from the standard error associated with the slope estimate at the final
stage and is larger than the target level. The derived Type II error probability ˇ and power 1� ˇ are different
because of the new information levels.

With the PSS option, the “Power and Expected Sample Sizes” table in Output 90.2.15 displays powers and
expected mean sample sizes under various hypothetical references � D ci�1, where �1 is the alternative
reference and ci D 0; 0:5; 1; 1:5 by default. You can specify the ci values with the CREF= option.

Output 90.2.15 Power and Expected Sample Size Information

Powers and Expected Sample Sizes
Reference = CRef * (Alt Reference)

Sample Size

CRef Power
Percent

Fixed-Sample

0.0000 0.02500 101.4122

0.5000 0.37046 96.3754

1.0000 0.90486 77.2214

1.5000 0.99844 58.5301
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With the PLOTS=ASN option, the procedure displays a plot of expected sample sizes under various hypo-
thetical references, as shown in Output 90.2.16. By default, expected sample sizes under the hypotheses
� D ci �1, ci D 0; 0:01; 0:02; : : : ; 1:50, are displayed, where �1 is the alternative reference.

Output 90.2.16 ASN Plot

With the PLOTS=POWER option, the procedure displays a plot of powers under various hypothetical
references, as shown in Output 90.2.17. By default, powers under hypothetical references � D ci �1 are
displayed, where ci D 0; 0:01; 0:02; : : : ; 1:50 by default. You can specify ci values with the CREF= option.
The ci values are displayed on the horizontal axis.
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Output 90.2.17 Power Plot

Under the null hypothesis, ci D 0, the power is 0.025, which is the upper Type I error probability. Under the
alternative hypothesis, ci D 1, the power is 0.90486, which is one minus the Type II error probability.

The “Test Information” table in Output 90.2.18 displays the boundary values for the test statistic with the
default standardized Z scale. The information level at the current stage is derived from the standard error for
the current stage in the PARMS= data set. At stage 3, the standardized slope estimate 0.72284 is still between
the lower and upper ˛ boundary values. Since it is the final stage, the trial stops to accept the null hypothesis
that the variable Weight has no effect on the oxygen intake rate after adjusting for other covariates.

Output 90.2.18 Sequential Tests

Test Information (Standardized Z Scale)
Null Reference = 0

Alternative
Boundary

Values Test

Information Level Reference Lower Upper Weight

_Stage_ Proportion Actual Lower Upper Alpha Alpha Estimate Action

1 0.4856 529.6232 -2.30135 2.30135 -2.97951 2.97951 0.86798 Continue

2 0.7401 807.1954 -2.84112 2.84112 -2.34945 2.34945 0.83305 Continue

3 1.0000 1090.637 -3.30248 3.30248 -2.01885 2.01885 0.72284 Accept Null
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Since the data set FIT_3 contains the test information only at stage 3, the information levels at previous stages
in the TEST_FIT2 data set are used to generate boundary values for the test.

With ODS Graphics enabled, a boundary plot with test statistics is displayed, as shown in Output 90.2.19. As
expected, the test statistic is in the acceptance region between the lower and upper ˛ boundaries at the final
stage.

Output 90.2.19 Sequential Test Plot

After a trial is stopped, the “Parameter Estimates” table in Output 90.2.20 displays the stopping stage,
parameter estimate, unbiased median estimate, confidence limits, and the p-value under the null hypothesis
H0 W ˇw D 0.

Output 90.2.20 Parameter Estimates

Parameter Estimates
LR Ordering

Parameter
Stopping

Stage MLE
p-Value for
H0:Parm=0

Median
Estimate 95% Confidence Limits

Weight 3 0.021888 0.4699 0.021884 -0.03747 0.08123
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As expected, the p-value 0.4699 is not significant at the ˛ D 0:05 level, and the confidence interval does
contain the value zero. The p-value, unbiased median estimate, and confidence limits depend on the ordering
of the sample space .k; z/, where k is the stage number and z is the standardized Z statistic. With the
specified LR ordering, the p-values are computed with the ordering .k0; z0/ � .k; z/ if z0 > z. See the section
“Available Sample Space Orderings in a Sequential Test” on page 7567 for a detailed description of the LR
ordering.

Example 90.3: Testing an Effect with Early Stopping to Accept H0

This example demonstrates a two-sided group sequential test that uses an error spending design with early
stopping to accept the null hypothesis H0. The example is similar to Example 90.2 but with early stopping to
accept H0.

A study is conducted to examine the effects of Age (years), Weight (kg), RunTime (time in minutes to run 1.5
miles), RunPulse (heart rate while running), and MaxPulse (maximum heart rate recorded while running) on
Oxygen (oxygen intake rate, ml per kg body weight per minute). The primary interest is whether oxygen
intake rate is associated with weight.

The hypothesis is tested using the following linear model:

Oxygen D AgeCWeightC RunTimeC RunPulseCMaxPulse

The null hypothesis is H0 W ˇw D 0, where ˇw is the regression parameter for the variable Weight. Suppose
that ˇw D 0:10 is the reference improvement that should be detected at a 0.90 level. Then the maximum
information IX can be derived in the SEQDESIGN procedure.

Following the derivations in the section “Test for a Parameter in the Regression Model” in the chapter “The
SEQDESIGN Procedure,” the required sample size can be derived from

N D IX
�2y

.1 � r2x/ �
2
x

where �2y is the variance of the response variable in the regression model, r2x is the proportion of variance of
Weight explained by other covariates, and �2x is the variance of Weight.

Further suppose that from past experience, �2y D 5, r2x D 0:10, and �2x D 64. Then the required sample size
can be derived using the SAMPLESIZE statement in the SEQDESIGN procedure.

The following statements invoke the SEQDESIGN procedure and request a three-stage group sequential
design for normally distributed data to test the null hypothesis of a regression parameterH0 W ˇw D 0 against
the alternative H1 W ˇw ¤ 0:

ods graphics on;
proc seqdesign altref=0.10;

OBFErrorFunction: design method=errfuncgamma
stop=accept
nstages=3
info=cum(2 3 4);

samplesize model=reg( variance=5 xvariance=64 xrsquare=0.10);
ods output Boundary=Bnd_Fit;

run;
ods graphics off;
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By default (or equivalently if you specify ALPHA=0.05 and BETA=0.10), the procedure uses a Type I
error probability 0.05 and a Type II error probability 0.10. The ALTREF=0.10 option specifies a power of
1 � ˇ D 0:90 at the alternative hypothesis H1 W ˇw D ˙0:10. The INFO=CUM(2 3 4) option specifies that
the study perform the first interim analysis with information proportion 2=4 D 0:5—that is, after half of the
total observations are collected.

The ODS OUTPUT statement with the BOUNDARY=BND_FIT option creates an output data set named
BND_FIT which contains the resulting boundary information for the subsequent sequential tests.

The “Design Information” table in Output 90.3.1 displays design specifications and derived statistics. Since
the alternative reference is specified, the maximum information is derived.

Output 90.3.1 Error Spending Design Information

The SEQDESIGN Procedure
Design: OBFErrorFunction
The SEQDESIGN Procedure
Design: OBFErrorFunction

Design Information

Statistic Distribution Normal

Boundary Scale Standardized Z

Alternative Hypothesis Two-Sided

Early Stop Accept Null

Method Error Spending

Boundary Key Both

Alternative Reference 0.1

Number of Stages 3

Alpha 0.05

Beta 0.1

Power 0.9

Max Information (Percent of Fixed Sample) 103.9245

Max Information 1091.972

Null Ref ASN (Percent of Fixed Sample) 75.00521

Alt Ref ASN (Percent of Fixed Sample) 101.8099

The “Boundary Information” table in Output 90.3.2 displays information level, alternative reference, and
boundary values at each stage.

Output 90.3.2 Boundary Information

Boundary Information (Standardized Z Scale)
Null Reference = 0

Alternative
Boundary

Values

Information Level Reference Lower Upper

_Stage_ Proportion Actual N Lower Upper Beta Beta

1 0.5000 545.9862 47.39463 -2.33663 2.33663 -0.44937 0.44937

2 0.7500 818.9792 71.09195 -2.86178 2.86178 -1.13583 1.13583

3 1.0000 1091.972 94.78926 -3.30450 3.30450 -1.91428 1.91428

With ODS Graphics enabled, a detailed boundary plot with the rejection and acceptance regions is displayed,
as shown in Output 90.3.3. The boundary plot also displays the information level and critical value for the
corresponding fixed-sample design.
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Output 90.3.3 Boundary Plot

With the MODEL=REG option in the SAMPLESIZE statement, the “Sample Size Summary” table in
Output 90.3.4 displays the parameters for the sample size computation.

Output 90.3.4 Required Sample Size Summary

Sample Size Summary

Test Reg Parameter

Parameter 0.1

Variance 5

X Variance 64

R Square (X) 0.1

Max Sample Size 94.78926

Expected Sample Size (Null Ref) 68.41207

Expected Sample Size (Alt Ref) 92.86057

The “Sample Sizes” table in Output 90.3.5 displays the required sample sizes for the group sequential clinical
trial.
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Output 90.3.5 Required Sample Sizes

Sample Sizes (N)
Z Test for Regression Parameter

Fractional N Ceiling N

_Stage_ N Information N Information

1 47.39 546.0 48 553.0

2 71.09 819.0 72 829.4

3 94.79 1092.0 95 1094.4

Thus, 48, 72, and 95 individuals are needed in stages 1, 2, and 3, respectively. Since the sample sizes are
derived from estimated values of �2y , r2x , and �2x , the actual information levels might not achieve the target
information levels. Thus, instead of specifying sample sizes in the protocol, you can specify the maximum
information levels. Then if an actual information level is much less than the target level, you can increase the
sample sizes for the remaining stages to achieve the desired information levels and power.

Suppose that 48 individuals are available at stage 1. Output 90.3.6 lists the first 10 observations of the trial
data.

Output 90.3.6 Clinical Trial Data

First 10 Obs in the Trial DataFirst 10 Obs in the Trial Data

Obs Oxygen Age Weight RunTime RunPulse MaxPulse

1 54.5521 44 87.7676 11.6949 178.435 181.607

2 52.2821 40 75.4853 9.8872 184.433 183.667

3 62.1871 44 89.0638 8.7950 155.540 167.108

4 65.3269 42 67.7310 8.4577 162.926 173.877

5 59.9809 37 93.1902 9.3228 179.033 180.144

6 52.5588 47 75.9044 12.0385 177.753 175.033

7 51.7838 40 73.5422 11.6607 175.838 178.140

8 57.0024 43 81.2861 11.2219 160.963 171.770

9 48.0775 44 85.2290 13.1789 173.722 176.548

10 68.3357 38 80.2490 8.5066 171.824 184.011

The following statements use the REG procedure to estimate the slope ˇw and its associated standard error at
stage 1:

proc reg data=Fit_1;
model Oxygen=Age Weight RunTime RunPulse MaxPulse;
ods output ParameterEstimates=Parms_Fit1;

run;

The following statements create and display (in Output 90.3.7) the input data set that contains slope ˇw and
its associated standard error for the SEQTEST procedure:

data Parms_Fit1;
set Parms_Fit1;
if Variable='Weight';
_Scale_='MLE';
_Stage_= 1;
keep _Scale_ _Stage_ Variable Estimate StdErr;

run;
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proc print data=Parms_Fit1;
title 'Statistics Computed at Stage 1';

run;

Output 90.3.7 Statistics Computed at Stage 1

Statistics Computed at Stage 1Statistics Computed at Stage 1

Obs Variable Estimate StdErr _Scale_ _Stage_

1 Weight 0.04660 0.04308 MLE 1

The following statements invoke the SEQTEST procedure to test for early stopping at stage 1:

ods graphics on;
proc seqtest Boundary=Bnd_Fit

Parms(testvar=Weight)=Parms_Fit1
infoadj=none
errspendadj=errfuncgamma
stopprob
order=lr
;

ods output Test=Test_Fit1;
run;
ods graphics off;

The BOUNDARY= option specifies the input data set that provides the boundary information for the trial at
stage 1, which was generated in the SEQDESIGN procedure. The PARMS=PARMS_FIT1 option specifies
the input data set PARMS_FIT1 that contains the test statistic and its associated standard error at stage 1, and
the TESTVAR=WEIGHT option identifies the test variable WEIGHT in the data set. The INFOADJ=NONE
option maintains the information level for stage 2 at the value provided in the BOUNDARY= data set.

The ORDER=LR option uses the LR ordering to derive the p-value, the unbiased median estimate, and
the confidence limits for the regression slope estimate. The ERRSPENDADJ=ERRFUNCGAMMA option
adjusts the boundaries with the updated error spending values generated from a gamma cumulative error
spending function.

The ODS OUTPUT statement with the TEST=TEST_FIT1 option creates an output data set named
TEST_FIT1 which contains the updated boundary information for the test at stage 1. The data set also
provides the boundary information that is needed for the group sequential test at the next stage.

The “Design Information” table in Output 90.3.8 displays the design specifications. By default (or equivalently
if you specify BOUNDARYKEY=ALPHA), the boundary values are modified for the new information levels
to maintain the Type I ˛ level. The maximum information remains the same as in the BOUNDARY= data set,
but the derived Type II error probability ˇ and power 1 � ˇ are different because of the new information
level.
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Output 90.3.8 Design Information

The SEQTEST ProcedureThe SEQTEST Procedure

Design Information

BOUNDARY Data Set WORK.BND_FIT

Data Set WORK.PARMS_FIT1

Statistic Distribution Normal

Boundary Scale Standardized Z

Alternative Hypothesis Two-Sided

Early Stop Accept Null

Number of Stages 3

Alpha 0.05

Beta 0.10007

Power 0.89993

Max Information (Percent of Fixed Sample) 103.9498

Max Information 1091.97232

Null Ref ASN (Percent of Fixed Sample) 75.15846

Alt Ref ASN (Percent of Fixed Sample) 101.8296

With the STOPPROB option, the “Expected Cumulative Stopping Probabilities” table in Output 90.3.9
displays the expected stopping stage and the cumulative stopping probability of accepting the null hypothesis
at each stage under various hypothetical references � D ci�1, where �1 is the alternative reference and
ci D 0; 0:5; 1; 1:5 by default. You can specify other values for ci with the CREF= option.

Output 90.3.9 Stopping Probabilities

Expected Cumulative Stopping Probabilities
Reference = CRef * (Alt Reference)

Stopping Probabilities

CRef
Expected

Stopping Stage Source Stage_1 Stage_2 Stage_3

0.0000 1.895 Accept Null 0.33304 0.76607 0.95000

0.5000 2.409 Accept Null 0.17680 0.40947 0.62828

1.0000 2.918 Accept Null 0.02636 0.05453 0.10007

1.5000 2.997 Accept Null 0.00109 0.00166 0.00242

The “Test Information” table in Output 90.3.10 displays the boundary values for the test statistic. By
default (or equivalently if you specify BOUNDARYSCALE=STDZ), these statistics are displayed with the
standardized Z scale. The information level at stage 1 is derived from the standard error s1 in the PARMS=
data set,

I1 D
1

s21
D

1

0:043082
D 538:8
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Output 90.3.10 Sequential Tests

Test Information (Standardized Z Scale)
Null Reference = 0

Alternative
Boundary

Values Test

Information Level Reference Lower Upper Weight

_Stage_ Proportion Actual Lower Upper Beta Beta Estimate Action

1 0.4934 538.7887 -2.32118 2.32118 -0.43033 0.43033 1.08174 Continue

2 0.7500 818.9792 -2.86178 2.86178 -1.13623 1.13623 .

3 1.0000 1091.972 -3.30450 3.30450 -1.91431 1.91431 .

At stage 1, the standardized Z statistic 1.08174 is greater than the upper ˇ boundary 0.43033, so the trial
continues to the next stage.

With ODS Graphics enabled, a boundary plot with test statistics is displayed, as shown in Output 90.3.11. As
expected, the test statistic is in the continuation region.

Output 90.3.11 Sequential Test Plot

The following statements use the REG procedure to estimate the slope ˇw and its associated standard error at
stage 2:
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proc reg data=Fit_2;
model Oxygen=Age Weight RunTime RunPulse MaxPulse;
ods output ParameterEstimates=Parms_Fit2;

run;

Note that the data set Fit_2 contains both the data from stage 1 and the data from stage 2,

The following statements create and display (in Output 90.3.12) the input data set that contains slope ˇw and
its associated standard error at stage 2 for the SEQTEST procedure:

data Parms_Fit2;
set Parms_Fit2;
if Variable='Weight';
_Scale_='MLE';
_Stage_= 2;
keep _Scale_ _Stage_ Variable Estimate StdErr;

run;

proc print data=Parms_Fit2;
title 'Statistics Computed at Stage 2';

run;

Output 90.3.12 Statistics Computed at Stage 2

Statistics Computed at Stage 2Statistics Computed at Stage 2

Obs Variable Estimate StdErr _Scale_ _Stage_

1 Weight 0.02925 0.03490 MLE 2

The following statements invoke the SEQTEST procedure to test for early stopping at stage 2:

ods graphics on;
proc seqtest Boundary=Test_Fit1

Parms(testvar=Weight)=Parms_Fit2
errspendadj=errfuncgamma
order=lr
pss
plots=(asn power)
;

ods output Test=Test_Fit2;
run;
ods graphics off;

The BOUNDARY= option specifies the input data set that provides the boundary information for the trial
at stage 2, which was generated by the SEQTEST procedure at the previous stage. The PARMS= option
specifies the input data set that contains the test statistic and its associated standard error at stage 2, and the
TESTVAR= option identifies the test variable in the data set.

Since the data set PARMS_FIT2 does not contain the test information at stage 1, the information level at stage
1 in the TEST_FIT1 data set is used to generate boundary values for the test.

The ORDER=LR option uses the LR ordering to derive the p-value, unbiased median estimate, and confidence
limits for the regression slope estimate.
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The ODS OUTPUT statement with the TEST=TEST_FIT2 option creates an output data set named
TEST_FIT2 which contains the updated boundary information for the test at stage 2. The data set also
provides the boundary information that is needed for the group sequential test at the next stage.

The “Design Information” table in Output 90.3.13 displays design specifications. By default (or equivalently
if you specify BOUNDARYKEY=ALPHA), the boundary values are modified for the new information levels
to maintain the Type I ˛ level.

Output 90.3.13 Design Information

The SEQTEST ProcedureThe SEQTEST Procedure

Design Information

BOUNDARY Data Set WORK.TEST_FIT1

Data Set WORK.PARMS_FIT2

Statistic Distribution Normal

Boundary Scale Standardized Z

Alternative Hypothesis Two-Sided

Early Stop Accept Null

Number of Stages 3

Alpha 0.05

Beta 0.10009

Power 0.89991

Max Information (Percent of Fixed Sample) 103.9566

Max Information 1091.97232

Null Ref ASN (Percent of Fixed Sample) 75.18254

Alt Ref ASN (Percent of Fixed Sample) 101.8349

The derived Type II error probability ˇ and power 1 � ˇ are different because of the new information levels.

With the PSS option, the “Power and Expected Sample Sizes” table in Output 90.3.14 displays powers and
expected mean sample sizes under various hypothetical references � D ci�1, where �1 is the alternative
reference and ci D 0; 0:5; 1; 1:5 are the default values in the CREF= option.

Output 90.3.14 Power and Expected Sample Size Information

Powers and Expected Sample Sizes
Reference = CRef * (Alt Reference)

Sample Size

CRef Power
Percent

Fixed-Sample

0.0000 0.02500 75.1825

0.5000 0.37154 88.5975

1.0000 0.89991 101.8349

1.5000 0.99758 103.8843
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With the PLOTS=ASN option, the procedure displays a plot of expected sample sizes under various hypo-
thetical references, as shown in Output 90.3.15. By default, expected sample sizes under the hypotheses
� D ci �1, ci D 0; 0:01; 0:02; : : : ; 1:50, are displayed, where �1 is the alternative reference.

Output 90.3.15 ASN Plot

With the PLOTS=POWER option, the procedure displays a plot of the power curves under various hypothetical
references for all designs simultaneously, as shown in Output 90.3.16. By default, powers under hypothetical
references � D ci �1 are displayed, where ci D 0; 0:01; 0:02; : : : ; 1:50 by default. You can specify ci values
with the CREF= option. The ci values are displayed on the horizontal axis.
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Output 90.3.16 Power Plot

Under the null hypothesis, ci D 0, the power is 0.025, which is the upper Type I error probability. Under the
alternative hypothesis, ci D 1, the power is 0.89991, which is one minus the Type II error probability, as
displayed in the “Design Information” table in Output 90.3.13.

The “Test Information” table in Output 90.3.17 displays the boundary values for the test statistic with the
default standardized Z scale. At stage 2, the standardized slope estimate 0.83805 is between the lower and
upper ˇ boundary values. The trial stops to accept the null hypothesis that the variable Weight has no effect
on the oxygen intake rate after adjusting for other covariates.

Output 90.3.17 Sequential Tests

Test Information (Standardized Z Scale)
Null Reference = 0

Alternative
Boundary

Values Test

Information Level Reference Lower Upper Weight

_Stage_ Proportion Actual Lower Upper Beta Beta Estimate Action

1 0.4934 538.7887 -2.32118 2.32118 -0.43033 0.43033 1.08174 Continue

2 0.7517 820.8509 -2.86505 2.86505 -1.14239 1.14239 0.83805 Accept Null

3 1.0000 1091.972 -3.30450 3.30450 -1.91408 1.91408 .
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Since the data set PARMS_FIT2 contains the test information only at stage 2, the information level at stage 1
in the TEST_FIT1 data set is used to generate boundary values for the test.

With ODS Graphics enabled, a boundary plot with test statistics is displayed, as shown in Output 90.3.18. As
expected, the test statistic is in the acceptance region between the lower and upper ˛ boundaries at the final
stage.

Output 90.3.18 Sequential Test Plot

After a trial is stopped, the “Parameter Estimates” table in Output 90.3.19 displays the stopping stage,
parameter estimate, unbiased median estimate, confidence limits, and the p-value under the null hypothesis
H0 W ˇw D 0. As expected, the p-value 0.3056 is not significant at the ˛ D 0:05 level, and the confidence
interval does contain the value zero. The p-value, unbiased median estimate, and confidence limits depend
on the ordering of the sample space .k; z/, where k is the stage number and z is the standardized Z statistic.
With the specified LR ordering, the p-values are computed with the ordering .k0; z0/ � .k; z/ if z0 > z. See
the section “Available Sample Space Orderings in a Sequential Test” on page 7567 for a detailed description
of the LR ordering.
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Output 90.3.19 Parameter Estimates

Parameter Estimates
LR Ordering

Parameter
Stopping

Stage MLE
p-Value for
H0:Parm=0

Median
Estimate 95% Confidence Limits

Weight 2 0.029251 0.3056 0.037080 -0.03368 0.10532

Example 90.4: Testing a Binomial Proportion
This example tests a binomial proportion by using a four-stage group sequential design. Suppose a super-
market is developing a new store-brand coffee. From past studies, the positive response for the current
store-brand coffee from customers is around 60%. The store is interested in whether the new brand has a
better positive response than the current brand.

A power family method is used for the group sequential trial with the null hypothesis H0 W p D p0 D 0:60
and a one-sided upper alternative with a power of 0.80 at H1 W p D 0:70. To accommodate the zero
null reference that is assumed in the SEQDESIGN procedure, an equivalent hypothesis H0 W � D 0 with
H1 W � D 0:10 is used, where � D p � p0. The following statements request a power family method with
early stopping to reject the null hypothesis:

ods graphics on;
proc seqdesign altref=0.10

boundaryscale=mle
;

PowerFamily: design method=pow
nstages=4
alt=upper
beta=0.20
;

samplesize model(ceiladjdesign=include)=onesamplefreq( nullprop=0.6);
ods output AdjustedBoundary=Bnd_Prop;

run;
ods graphics off;

The NULLPROP= option in the SAMPLESIZE statement specifies p0 D 0:60 for the sample size compu-
tation. When BOUNDARYSCALE=MLE in the PROC SEQTEST statement, the procedure displays the
output boundaries in terms of the maximum likelihood estimates.

When CEILADJDESIGN=INCLUDE in the SAMPLESIZE statement, the table also displays the ceiling-
adjusted design information. When you specify ADJUSTEDBOUNDARY=BND_PROP in the ODS OUT-
PUT statement, PROC SEQTEST creates an output data set named BND_PROP, which contains the resulting
ceiling-adjusted design boundary information for the subsequent sequential tests.

The “Design Information” table in Output 90.4.1 displays design specifications and derived statistics. With
the specified alternative reference �1 D p1 � p0 D 0:7 � 0:6 D 0:1, the maximum information 670.38 is
also derived.
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Output 90.4.1 Design Information

The SEQDESIGN Procedure
Design: PowerFamily

The SEQDESIGN Procedure
Design: PowerFamily

Design Information

Statistic Distribution Normal

Boundary Scale MLE

Alternative Hypothesis Upper

Early Stop Reject Null

Method Power Family

Boundary Key Both

Alternative Reference 0.1

Number of Stages 4

Alpha 0.05

Beta 0.2

Power 0.8

Max Information (Percent of Fixed Sample) 108.4306

Max Information 670.3782

Null Ref ASN (Percent of Fixed Sample) 106.9276

Alt Ref ASN (Percent of Fixed Sample) 78.51072

Adj Design Alpha 0.05

Adj Design Beta 0.19951

Adj Design Power 0.80049

Adj Design Max Information (Percent of Fixed Sample) 108.4461

Adj Design Max Information 671.4286

Adj Design Null Ref ASN (Percent of Fixed Sample) 106.9406

Adj Design Alt Ref ASN (Percent of Fixed Sample) 78.42926

The “Boundary Information” table in Output 90.4.2 displays the information level, alternative reference,
and boundary values at each stage. With the STOP=REJECT option, only the rejection boundary values are
displayed.

Output 90.4.2 Boundary Information

Boundary Information (MLE Scale)
Null Reference = 0

Alternative
Boundary

Values

Information Level Reference Upper

_Stage_ Proportion Actual N Upper Alpha

1 0.2500 167.5945 35.19485 0.10000 0.20018

2 0.5000 335.1891 70.38971 0.10000 0.11903

3 0.7500 502.7836 105.5846 0.10000 0.08782

4 1.0000 670.3782 140.7794 0.10000 0.07077

With ODS Graphics enabled, a detailed boundary plot with the rejection and acceptance regions is displayed,
as shown in Output 90.4.3.
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Output 90.4.3 Boundary Plot

With the MODEL=ONESAMPLEFREQ option in the SAMPLESIZE statement, the “Sample Size Summary”
table in Output 90.4.4 displays the parameters for the sample size computation.

Output 90.4.4 Required Sample Size Summary

Sample Size Summary

Test One-Sample Proportion

Null Proportion 0.6

Proportion 0.7

Test Statistic Z for Proportion

Reference Proportion Alt Ref

Max Sample Size 140.7794

Expected Sample Size (Null Ref) 138.828

Expected Sample Size (Alt Ref) 101.9333

The “Sample Sizes” table in Output 90.4.5 displays the required sample sizes for the group sequential clinical
trial.
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Output 90.4.5 Required Sample Sizes

Sample Sizes (N)
One-Sample Z Test for Proportion

Fractional N Ceiling N

_Stage_ N Information N Information

1 35.19 167.6 36 171.4

2 70.39 335.2 71 338.1

3 105.58 502.8 106 504.8

4 140.78 670.4 141 671.4

When you specify CEILADJDESIGN=INCLUDE in the SAMPLESIZE statement, the “Ceiling-Adjusted
Design Boundary Information” table in Output 90.4.6 displays the boundary information for the ceiling-
adjusted design.

Output 90.4.6 Ceiling-Adjusted Design Boundary Information

Ceiling-Adjusted Design Boundary Information (MLE Scale)
Null Reference = 0

Alternative
Boundary

Values

Information Level Reference Upper

_Stage_ Proportion Actual N Upper Alpha

1 0.2553 171.4286 36 0.10000 0.19696

2 0.5035 338.0952 71 0.10000 0.11835

3 0.7518 504.7619 106 0.10000 0.08763

4 1.0000 671.4286 141 0.10000 0.07075

Thus, 36 customers are needed at stage 1, and 35 new customers are needed at each of the remaining stages.
Suppose that 36 customers are available at stage 1. Output 90.4.6 lists the 10 observations in the data set
count_1.

Output 90.4.7 Clinical Trial Data

First 10 Obs in the Trial DataFirst 10 Obs in the Trial Data

Obs Resp

1 1

2 1

3 0

4 0

5 1

6 1

7 0

8 1

9 1

10 1

The Resp variable is an indicator variable with a value of 1 for a customer with a positive response and a
value of 0 for a customer without a positive response.
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The following statements use the MEANS procedure to compute the mean response at stage 1:

proc means data=Prop_1;
var Resp;
ods output Summary=Data_Prop1;

run;

The following statements create and display (in Output 90.4.8) the data set for the centered mean positive
response, Op � p0:

data Data_Prop1;
set Data_Prop1;
_Scale_='MLE';
_Stage_= 1;
NObs= Resp_N;
PDiff= Resp_Mean - 0.6;
keep _Scale_ _Stage_ NObs PDiff;

run;
proc print data=Data_Prop1;

title 'Statistics Computed at Stage 1';
run;

Output 90.4.8 Statistics Computed at Stage 1

Statistics Computed at Stage 1Statistics Computed at Stage 1

Obs _Scale_ _Stage_ NObs PDiff

1 MLE 1 36 -0.016667

The following statements invoke the SEQTEST procedure to test for early stopping at stage 1:

ods graphics on;
proc seqtest Boundary=Bnd_Prop

Data(Testvar=PDiff Infovar=NObs)=Data_Prop1
infoadj=prop
boundarykey=both
boundaryscale=mle
;

ods output Test=Test_Prop1;
run;
ods graphics off;

The BOUNDARY= option specifies the input data set that provides the boundary information for the trial at
stage 1, which was generated in the SEQDESIGN procedure. The DATA=DATA_PROP1 option specifies
the input data set DATA_PROP1, which contains the test statistic and its associated sample size at stage 1.
The TESTVAR=PDIFF option identifies the test variable PDIFF, and the INFOVAR=NOBS option uses the
variable NOBS for the number of observations to derive the information level.

If the computed information level for stage 1 is not the same as the value provided in the BOUNDARY= data
set, the INFOADJ=PROP option (which is the default) proportionally adjusts the information levels at future
interim stages from the levels provided in the BOUNDARY= data set. The BOUNDARYKEY=BOTH option
maintains both the ˛ and ˇ levels. The BOUNDARYSCALE=MLE option displays the output boundaries in
terms of the MLE scale.
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The ODS OUTPUT statement with the TEST=TEST_PROP1 option creates an output data set named
TEST_PROP1 which contains the updated boundary information for the test at stage 1. The data set also
provides the boundary information that is needed for the group sequential test at the next stage.

The “Design Information” table in Output 90.4.9 displays design specifications. With the specified BOUND-
ARYKEY=BOTH option, the information levels and boundary values at future stages are modified to maintain
both the ˛ and ˇ levels.

Output 90.4.9 Design Information

The SEQTEST ProcedureThe SEQTEST Procedure

Design Information

BOUNDARY Data Set WORK.BND_PROP

Data Set WORK.DATA_PROP1

Statistic Distribution Normal

Boundary Scale MLE

Alternative Hypothesis Upper

Early Stop Reject Null

Number of Stages 4

Alpha 0.05

Beta 0.19951

Power 0.80049

Max Information (Percent of Fixed Sample) 108.4461

Max Information 671.428589

Null Ref ASN (Percent of Fixed Sample) 106.9406

Alt Ref ASN (Percent of Fixed Sample) 78.42929

The “Test Information” table in Output 90.4.10 displays the boundary values for the test statistic with the
specified MLE scale.

Output 90.4.10 Sequential Tests

Test Information (MLE Scale)
Null Reference = 0

Alternative
Boundary

Values Test

Information Level Reference Upper PDiff

_Stage_ Proportion Actual N Upper Alpha Estimate Action

1 0.2553 171.4286 36 0.10000 0.19696 -0.01667 Continue

2 0.5035 338.0952 71 0.10000 0.11835 .

3 0.7518 504.7619 106 0.10000 0.08763 .

4 1.0000 671.4286 141 0.10000 0.07075 .

When you specify INFOVAR=NOBS in the DATA= option in the PROC SEQTEST statement, the information
level at stage 1 is computed as I�1 D I1 � .n

�
1=n1/, where I1 and n1 are the information level and sample

size, respectively, at stage 1 in the BOUNDARY= data set, and where n�1 D 36 is the available sample size at
stage 1. Because n�1 D n1, the information level at stage 1 is not changed.

With INFOADJ=PROP (which is the default) in the PROC SEQTEST statement, the information levels at
interim stages 2 and 3 are derived proportionally from the information levels in the BOUNDARY= data set.
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At stage 1, the statistic O� D Op � p0 D 0:58333 � 0:6 D �0:01667 is less than the upper ˛ boundary value
0.19696, so the trial continues to the next stage.

When ODS Graphics is enabled, a boundary plot with the rejection and acceptance regions is displayed, as
shown in Output 90.4.11. As expected, the test statistic is in the continuation region.

Output 90.4.11 Sequential Test Plot

The following statements use the MEANS procedure to compute the mean response at stage 2:

proc means data=Prop_2;
var Resp;
ods output Summary=Data_Prop2;

run;

The following statements create and display (in Output 90.4.12) the data set for the centered mean positive
response ( Op � p0) at stage 2:
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data Data_Prop2;
set Data_Prop2;
_Scale_='MLE';
_Stage_= 2;
NObs= Resp_N;
PDiff= Resp_Mean - 0.6;
keep _Scale_ _Stage_ NObs PDiff;

run;

proc print data=Data_Prop2;
title 'Statistics Computed at Stage 2';

run;

Output 90.4.12 Statistics Computed at Stage 2

Statistics Computed at Stage 2Statistics Computed at Stage 2

Obs _Scale_ _Stage_ NObs PDiff

1 MLE 2 71 -0.064789

The following statements invoke the SEQTEST procedure to test for early stopping at stage 2:

ods graphics on;
proc seqtest Boundary=Test_Prop1

Data(Testvar=PDiff Infovar=NObs)=Data_Prop2
infoadj=prop
boundarykey=both
boundaryscale=mle
condpower(cref=1)
predpower
plots=condpower
;

ods output test=Test_Prop2;
run;
ods graphics off;

The BOUNDARY= option specifies the input data set that provides the boundary information for the trial at
stage 2, which was generated by the SEQTEST procedure at the previous stage. The DATA= option specifies
the input data set that contains the test statistic and its associated sample size at stage 2, and the TESTVAR=
option identifies the test variable in the data set.

The ODS OUTPUT statement with the TEST=TEST_PROP2 option creates an output data set named
TEST_PROP2 which contains the updated boundary information for the test at stage 2. The data set also
provides the boundary information that is needed for the group sequential test at the next stage.

The CONDPOWER(CREF=1) option requests the conditional power with the observed statistic under the
alternative hypothesis, in addition to the conditional power under the hypothetical reference � D O� , the MLE
estimate. The PREDPOWER option requests the noninformative predictive power with the observed statistic.

The “Test Information” table in Output 90.4.13 displays the boundary values for the test statistic with the
specified MLE scale. The test statistic O� D �0:06479 is less than the corresponding upper ˛ boundary
0.11835, so the sequential test does not stop at stage 2 to reject the null hypothesis.
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Output 90.4.13 Sequential Tests

The SEQTEST ProcedureThe SEQTEST Procedure

Test Information (MLE Scale)
Null Reference = 0

Alternative
Boundary

Values Test

Information Level Reference Upper PDiff

_Stage_ Proportion Actual N Upper Alpha Estimate Action

1 0.2553 171.4286 36 0.10000 0.19696 -0.01667 Continue

2 0.5035 338.0952 71 0.10000 0.11835 -0.06479 Continue

3 0.7518 504.7619 106 0.10000 0.08763 .

4 1.0000 671.4285 141 0.10000 0.07075 .

With ODS Graphics enabled, the “Test Plot” displays boundary values of the design and the test statistic, as
shown in Output 90.4.14. It also shows that the test statistic is in the “Continuation Region” below the upper
˛ boundary value at stage 2.

Output 90.4.14 Sequential Test Plot
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The “Conditional Power Information” table in Output 90.4.15 displays conditional powers given the observed
statistic under hypothetical references � D O� , the maximum likelihood estimate, and � D �1. The constant c
under CRef for the MLE is derived from O� D c�1; that is, c D O�=�1 D �0:06479=0:1 D �0:6479.

Output 90.4.15 Conditional Power

Conditional Power Information
Reference = CRef * (Alt Reference)

Reference

Stopping
Stage MLE Ref CRef

Conditional
Power

2 -0.06479 MLE -0.6479 0.00000

2 -0.06479 Alternative 1.0000 0.02410

The conditional power is the probability of rejecting the null hypothesis under these hypothetical references
given the observed statistic O� D �0:06479. The table in Output 90.4.14 shows a weak conditional power of
0.0241 under the alternative hypothesis.

With the default TYPE=ALLSTAGES suboption in the CONDPOWER option, the conditional power at the
interim stage 2 is the probability that the test statistic would exceed the rejection critical value at all future
stages given the observed statistic O� D �0:06479.

The “Conditional Power Plot” displays conditional powers given the observed statistic under various hypo-
thetical references, as shown in Output 90.4.16. These references include � D O� , the maximum likelihood
estimate, and � D ci�1, where �1 is the alternative reference and ci D 0; 0:01; : : : ; 1:50 are constants that
are specified in the CREF= option. Output 90.4.16 shows that the conditional power increases as ci increases.
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Output 90.4.16 Conditional Power Plot

The predictive power is the probability to reject the null hypothesis under the posterior distribution with a
noninformative prior given the observed statistic O� D �0:06479. The “Predictive Power Information” table
in Output 90.4.17 indicates that the predictive power at O� D �0:06479 is 0.0002.

Output 90.4.17 Predictive Power

Predictive Power Information

Stopping
Stage MLE

Predictive
Power

2 -0.06479 0.00020

With a predictive power 0.0002 and a conditional power of 0.0241 under H1, the supermarket decides to stop
the trial and accept the null hypothesis. That is, the positive response for the new store-brand coffee is not
better than that for the current store-brand coffee.

The following statements invoke the SEQTEST procedure to test for early stopping at stage 2. The
NSTAGES=3 option sets the next stage as the final stage (stage 3), and the BOUNDARYKEY=BOTH
option derives the information level at stage 3 that maintain both Type I and Type II error probability levels.
The CONDPOWER(CREF=1) option requests the conditional power with the observed statistic under the
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alternative hypothesis, in addition to the conditional power under the hypothetical reference � D O� , the MLE
estimate.

proc seqtest Boundary=Test_Prop1
Data(Testvar=PDiff Infovar=NObs)=Data_Prop2
nstages=3
boundarykey=both
boundaryscale=mle
condpower(cref=1)
;

run;

The “Test Information” table in Output 90.4.18 displays the boundary values for the test statistic with the
specified MLE scale, assuming that the next stage is the final stage.

Output 90.4.18 Sequential Tests

The SEQTEST ProcedureThe SEQTEST Procedure

Test Information (MLE Scale)
Null Reference = 0

Alternative
Boundary

Values Test

Information Level Reference Upper PDiff

_Stage_ Proportion Actual N Upper Alpha Estimate Action

1 0.2642 171.4286 36 0.10000 0.19696 -0.01667 Continue

2 0.5211 338.0952 71 0.10000 0.11835 -0.06479 Continue

3 1.0000 648.8122 136.2506 0.10000 0.06825 .

The “Conditional Power Information” table in Output 90.4.19 displays conditional powers given the observed
statistic, assuming that the next stage is the final stage.

Output 90.4.19 Conditional Power

Conditional Power Information
Reference = CRef * (Alt Reference)

Reference

Stopping
Stage MLE Ref CRef

Conditional
Power

2 -0.06479 MLE -0.6479 0.00000

2 -0.06479 Alternative 1.0000 0.02318

The conditional power is the probability of rejecting the null hypothesis under these hypothetical references
given the observed statistic O� D �0:06479. The table in Output 90.4.19 also shows a weak conditional power
of 0.02318 under the alternative hypothesis.

Example 90.5: Comparing Two Proportions with a Log Odds Ratio Test
This example compares two binomial proportions by using a log odds ratio statistic in a five-stage group
sequential test. A clinic is studying the effect of vitamin C supplements in treating flu symptoms. The study
consists of patients in the clinic who exhibit the first sign of flu symptoms within the last 24 hours. These
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patients are randomly assigned to either the control group (which receives placebo pills) or the treatment
group (which receives large doses of vitamin C supplements). At the end of a five-day period, the flu
symptoms of each patient are recorded.

Suppose that you know from past experience that flu symptoms disappear in five days for 60% of patients
who experience flu symptoms. The clinic would like to detect a 70% symptom disappearance with a high
probability. A test that compares the proportions directly specifies the null hypothesisH0 W � D pt �pc D 0
with a one-sided alternative H1 W � > 0 and a power of 0.90 at H1 W � D 0:10, where pt and pc are the
proportions of symptom disappearance in the treatment group and control group, respectively. An alternative
trial tests an equivalent hypothesis by using the log odds ratio statistics:

� D log

 
. pt
1�pt

/

. pc
1�pc

/

!

Then the null hypothesis is H0 W � D �0 D 0 and the alternative hypothesis is

H1 W � D �1 D log

 
.0:70
0:30

/

.0:6
0:4
/

!
D 0:441833

The following statements invoke the SEQDESIGN procedure and request a five-stage group sequential design
by using an error spending function method for normally distributed statistics. The design uses a two-sided
alternative hypothesis with early stopping to reject the null hypothesis H0.

ods graphics on;
proc seqdesign altref=0.441833

boundaryscale=mle
;

OneSidedErrorSpending: design method=errfuncpow
nstages=5
alt=upper
stop=accept
alpha=0.025;

samplesize model=twosamplefreq( nullprop=0.6 test=logor);
ods output Boundary=Bnd_CSup;

run;
ods graphics off;

The ODS OUTPUT statement with the BOUNDARY=BND_CSUP option creates an output data set named
BND_CSUP which contains the resulting boundary information for the subsequent sequential tests.

The “Design Information” table in Output 90.5.1 displays design specifications and derived statistics. With
the specified alternative reference, the maximum information 56.30934 is derived.
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Output 90.5.1 Design Information

The SEQDESIGN Procedure
Design: OneSidedErrorSpending

The SEQDESIGN Procedure
Design: OneSidedErrorSpending

Design Information

Statistic Distribution Normal

Boundary Scale MLE

Alternative Hypothesis Upper

Early Stop Accept Null

Method Error Spending

Boundary Key Both

Alternative Reference 0.441833

Number of Stages 5

Alpha 0.025

Beta 0.1

Power 0.9

Max Information (Percent of Fixed Sample) 104.6166

Max Information 56.30934

Null Ref ASN (Percent of Fixed Sample) 57.21399

Alt Ref ASN (Percent of Fixed Sample) 102.1058

The “Boundary Information” table in Output 90.5.2 displays information level, alternative reference, and
boundary values at each stage. With the specified BOUNDARYSCALE=MLE option, the procedure displays
the output boundaries in terms of the MLE scale.

Output 90.5.2 Boundary Information

Boundary Information (MLE Scale)
Null Reference = 0

Alternative
Boundary

Values

Information Level Reference Upper

_Stage_ Proportion Actual N Upper Beta

1 0.2000 11.26187 201.1048 0.44183 -0.34844

2 0.4000 22.52374 402.2096 0.44183 -0.02262

3 0.6000 33.7856 603.3144 0.44183 0.11527

4 0.8000 45.04747 804.4192 0.44183 0.19708

5 1.0000 56.30934 1005.524 0.44183 0.25345

With ODS Graphics enabled, a detailed boundary plot with the rejection and acceptance regions is displayed,
as shown in Output 90.5.3.
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Output 90.5.3 Boundary Plot

With the SAMPLESIZE statement, the “Sample Size Summary” table in Output 90.5.4 displays the parameters
for the sample size computation.

Output 90.5.4 Sample Size Summary

Sample Size Summary

Test Two-Sample Proportions

Null Proportion 0.6

Proportion (Group A) 0.7

Test Statistic Log Odds Ratio

Reference Proportions Alt Ref

Max Sample Size 1005.524

Expected Sample Size (Null Ref) 549.9132

Expected Sample Size (Alt Ref) 981.3914

The “Sample Sizes” table in Output 90.5.5 displays the required sample sizes for the group sequential clinical
trial.
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Output 90.5.5 Required Sample Sizes

Sample Sizes (N)
Two-Sample Log Odds Ratio Test for Proportion Difference

Fractional N Ceiling N

_Stage_ N N(Grp 1) N(Grp 2) Information N N(Grp 1) N(Grp 2) Information

1 201.10 100.55 100.55 11.2619 202 101 101 11.3120

2 402.21 201.10 201.10 22.5237 404 202 202 22.6240

3 603.31 301.66 301.66 33.7856 604 302 302 33.8240

4 804.42 402.21 402.21 45.0475 806 403 403 45.1360

5 1005.52 502.76 502.76 56.3093 1006 503 503 56.3360

Thus, 101 new patients are needed in each group at stages 1, 2, and 4, and 100 new patients are needed in
each group at stages 3 and 5. Suppose that 101 patients are available in each group at stage 1. Output 90.5.6
lists the 10 observations in the data set count_1.

Output 90.5.6 Clinical Trial Data

First 10 Obs in the Trial DataFirst 10 Obs in the Trial Data

Obs TrtGrp Resp

1 Control 1

2 C_Sup 0

3 Control 0

4 C_Sup 1

5 Control 1

6 C_Sup 1

7 Control 1

8 C_Sup 0

9 Control 0

10 C_Sup 1

The TrtGrp variable is a grouping variable with the value Control for a patient in the placebo control group
and the value C_Sup for a patient in the treatment group who receives vitamin C supplements. The Resp
variable is an indicator variable with the value 1 for a patient without flu symptoms after five days and the
value 0 for a patient with flu symptoms after five days.

The following statements use the LOGISTIC procedure to compute the log odds ratio statistic and its
associated standard error at stage 1:

proc logistic data=CSup_1 descending;
class TrtGrp / param=ref;
model Resp= TrtGrp;
ods output ParameterEstimates=Parms_CSup1;

run;

The DESCENDING option is used to reverse the order for the response levels, so the LOGISTIC procedure
is modeling the probability that Resp = 1.
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The following statements create and display (in Output 90.5.7) the data set for the log odds ratio statistic and
its associated standard error:

data Parms_CSup1;
set Parms_CSup1;
if Variable='TrtGrp' and ClassVal0='C_Sup';
_Scale_='MLE';
_Stage_= 1;
keep _Scale_ _Stage_ Variable Estimate StdErr;

run;

proc print data=Parms_CSup1;
title 'Statistics Computed at Stage 1';

run;

Output 90.5.7 Statistics Computed at Stage 1

Statistics Computed at Stage 1Statistics Computed at Stage 1

Obs Variable Estimate StdErr _Scale_ _Stage_

1 TrtGrp 0.3247 0.2856 MLE 1

The following statements invoke the SEQTEST procedure to test for early stopping at stage 1:

ods graphics on;
proc seqtest Boundary=Bnd_CSup

Parms(Testvar=TrtGrp)=Parms_CSup1
infoadj=prop
errspendadj=errfuncpow
boundarykey=both
boundaryscale=mle
;

ods output test=Test_CSup1;
run;
ods graphics off;

The BOUNDARY= option specifies the input data set that provides the boundary information for the trial at
stage 1, which was generated in the SEQDESIGN procedure. The PARMS=PARMS_CSUP1 option specifies
the input data set PARMS_CSUP1 that contains the test statistic and its associated standard error at stage 1,
and the TESTVAR=TRTGRP option identifies the test variable TRTGRP in the data set.

If the computed information level for stage 1 is not the same as the value provided in the BOUNDARY= data
set, the INFOADJ=PROP option (which is the default) proportionally adjusts the information levels at future
interim stages from the levels provided in the BOUNDARY= data set. The ERRSPENDADJ=ERRFUNCPOW
option adjusts the boundaries with the updated error spending values generated from the power error spend-
ing function. The BOUNDARYKEY=BOTH option maintains both the ˛ and ˇ levels. The BOUND-
ARYSCALE=MLE option displays the output boundaries in terms of the MLE scale.

The ODS OUTPUT statement with the TEST=TEST_CSUP1 option creates an output data set named
TEST_CSUP1 which contains the updated boundary information for the test at stage 1. The data set also
provides the boundary information that is needed for the group sequential test at the next stage.
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The “Design Information” table in Output 90.5.8 displays design specifications. With the specified BOUND-
ARYKEY=BOTH option, the information levels and boundary values at future stages are modified to maintain
both the ˛ and ˇ levels.

Output 90.5.8 Design Information

The SEQTEST ProcedureThe SEQTEST Procedure

Design Information

BOUNDARY Data Set WORK.BND_CSUP

Data Set WORK.PARMS_CSUP1

Statistic Distribution Normal

Boundary Scale MLE

Alternative Hypothesis Upper

Early Stop Accept Null

Number of Stages 5

Alpha 0.025

Beta 0.1

Power 0.9

Max Information (Percent of Fixed Sample) 104.6673

Max Information 56.3361718

Null Ref ASN (Percent of Fixed Sample) 57.02894

Alt Ref ASN (Percent of Fixed Sample) 102.1369

The “Test Information” table in Output 90.5.9 displays the boundary values for the test statistic with the
specified MLE scale. With the INFOADJ=PROP option (which is the default), the information levels at
future interim stages are derived proportionally from the observed information at stage 1 and the information
levels in the BOUNDARY= data set.

Since the information level at stage 1 is derived from the PARMS= data set and other information levels are
not specified, equal increments are used at remaining stages. At stage 1, the MLE statistic 0.32474 is greater
than the corresponding upper ˇ boundary value –0.29906, so the sequential test continues to the next stage.

Output 90.5.9 Sequential Tests

Test Information (MLE Scale)
Null Reference = 0

Alternative
Boundary

Values Test

Information Level Reference Upper TrtGrp

_Stage_ Proportion Actual Upper Beta Estimate Action

1 0.2176 12.26014 0.44183 -0.29906 0.32474 Continue

2 0.4132 23.27914 0.44183 -0.01067 .

3 0.6088 34.29815 0.44183 0.11942 .

4 0.8044 45.31716 0.44183 0.19829 .

5 1.0000 56.33617 0.44183 0.25325 .

With ODS Graphics enabled, a boundary plot with the boundary values and test statistics is displayed, as
shown in Output 90.5.10. As expected, the test statistic is in the continuation region.
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Output 90.5.10 Sequential Test Plot

The following statements use the LOGISTIC procedure to compute the log odds ratio statistic and its
associated standard error at stage 2:

proc logistic data=CSup_2 descending;
class TrtGrp / param=ref;
model Resp= TrtGrp;
ods output ParameterEstimates=Parms_CSup2;

run;

The following statements create and display (in Output 90.5.11) the data set for the mean positive response
and its associated standard error at stage 2:

data Parms_CSup2;
set Parms_CSup2;
if Variable='TrtGrp' and ClassVal0='C_Sup';
_Scale_='MLE';
_Stage_= 2;
keep _Scale_ _Stage_ Variable Estimate StdErr;

run;
proc print data=Parms_CSup2;

title 'Statistics Computed at Stage 2';
run;
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Output 90.5.11 Statistics Computed at Stage 2

Statistics Computed at Stage 2Statistics Computed at Stage 2

Obs Variable Estimate StdErr _Scale_ _Stage_

1 TrtGrp 0.2356 0.2073 MLE 2

The following statements invoke the SEQTEST procedure to test for early stopping at stage 2:

proc seqtest Boundary=Test_CSup1
Parms( testvar=TrtGrp)=Parms_CSup2
infoadj=prop
errspendadj=errfuncpow
boundarykey=both
boundaryscale=mle
;

ods output Test=Test_CSup2;
run;

The BOUNDARY= option specifies the input data set that provides the boundary information for the trial
at stage 2, which was generated by the SEQTEST procedure at the previous stage. The PARMS= option
specifies the input data set that contains the test statistic and its associated standard error at stage 2, and the
TESTVAR= option identifies the test variable in the data set.

The ODS OUTPUT statement with the TEST=CSUP_LDL2 option creates an output data set named
CSUP_LDL2 which contains the updated boundary information for the test at stage 2. The data set also
provides the boundary information that is needed for the group sequential test at the next stage.

The “Test Information” table in Output 90.5.12 displays the boundary values for the test statistic with the
specified MLE scale. The test statistic 0.2356 is greater than the corresponding upper ˇ boundary value
–0.01068, so the sequential test continues to the next stage.

Output 90.5.12 Sequential Tests

The SEQTEST ProcedureThe SEQTEST Procedure

Test Information (MLE Scale)
Null Reference = 0

Alternative
Boundary

Values Test

Information Level Reference Upper TrtGrp

_Stage_ Proportion Actual Upper Beta Estimate Action

1 0.2176 12.26014 0.44183 -0.29906 0.32474 Continue

2 0.4132 23.27916 0.44183 -0.01068 0.23560 Continue

3 0.6088 34.29799 0.44183 0.11942 .

4 0.8044 45.31681 0.44183 0.19829 .

5 1.0000 56.33563 0.44183 0.25325 .

Similar results are found at stages 3 and stage 4, so the trial continues to the final stage. The following
statements use the LOGISTIC procedure to compute the log odds ratio statistic and its associated standard
error at stage 5:
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proc logistic data=CSup_5 descending;
class TrtGrp / param=ref;
model Resp= TrtGrp;
ods output ParameterEstimates=Parms_CSup5;

run;

The following statements create and display (in Output 90.5.13) the data set for the log odds ratio statistic
and its associated standard error at stage 5:

data Parms_CSup5;
set Parms_CSup5;
if Variable='TrtGrp' and ClassVal0='C_Sup';
_Scale_='MLE';
_Stage_= 5;
keep _Scale_ _Stage_ Variable Estimate StdErr;

run;

proc print data=Parms_CSup5;
title 'Statistics Computed at Stage 5';

run;

Output 90.5.13 Statistics Computed at Stage 5

Statistics Computed at Stage 5Statistics Computed at Stage 5

Obs Variable Estimate StdErr _Scale_ _Stage_

1 TrtGrp 0.2043 0.1334 MLE 5

The following statements invoke the SEQTEST procedure to test for the hypothesis at stage 5:

ods graphics on;
proc seqtest Boundary=Test_CSup4

Parms( testvar=TrtGrp)=Parms_CSup5
errspendadj=errfuncpow
boundaryscale=mle
cialpha=.025
rci
plots=rci
;

run;
ods graphics off;

The BOUNDARY= option specifies the input data set that provides the boundary information for the trial
at stage 5, which was generated by the SEQTEST procedure at the previous stage. The PARMS= option
specifies the input data set that contains the test statistic and its associated standard error at stage 5, and
the TESTVAR= option identifies the test variable in the data set. By default (or equivalently if you specify
BOUNDARYKEY=ALPHA), the boundary value at stage 5 is derived to maintain the ˛ level.

The “Test Information” table in Output 90.5.14 displays the boundary values for the test statistic with the
specified MLE scale. The test statistic 0.2043 is less than the corresponding upper ˇ boundary 0.25375, so
the sequential test stops to accept the null hypothesis. That is, there is no reduction in duration of symptoms
for the group receiving vitamin C supplements.
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Output 90.5.14 Sequential Tests

The SEQTEST ProcedureThe SEQTEST Procedure

Test Information (MLE Scale)
Null Reference = 0

Alternative
Boundary

Values Test

Information Level Reference Upper TrtGrp

_Stage_ Proportion Actual Upper Beta Estimate Action

1 0.2183 12.26014 0.44183 -0.29906 0.32474 Continue

2 0.4145 23.27916 0.44183 -0.01068 0.23560 Continue

3 0.6141 34.48793 0.44183 0.12134 0.14482 Continue

4 0.8092 45.44685 0.44183 0.19899 0.20855 Continue

5 1.0000 56.16068 0.44183 0.25375 0.20430 Accept Null

The “Test Plot” displays boundary values of the design and the test statistics, as shown in Output 90.5.15. It
also shows that the test statistic is in the “Acceptance Region” at the final stage.

Output 90.5.15 Sequential Test Plot
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After a trial is stopped, the “Parameter Estimates” table in Output 90.5.16 displays the stopping stage,
parameter estimate, unbiased median estimate, confidence limits, and the p-value under the null hypothesis
H0 W � D 0. As expected, the p-value 0.0456 is not significant at ˛ D 0:025 level and the lower 97.5%
confidence limit is less than the value �0 D 0. The p-value, unbiased median estimate, and confidence limits
depend on the ordering of the sample space .k; z/, where k is the stage number and z is the standardized Z
statistic.

Output 90.5.16 Parameter Estimates

Parameter Estimates
Stagewise Ordering

Parameter
Stopping

Stage MLE
p-Value for
H0:Parm=0

Median
Estimate Lower 97.5% CL

TrtGrp 5 0.204303 0.0456 0.234494 -0.03712

Since the test is accepted at stage 5, the p-value computed by using the default stagewise ordering can be
expressed as

˛u D P�D0 .z5 < Z5 j bk < Zk; k < 5/

where z5 D 1:53105 is the test statistic at stage 5, Zk is a standardized normal variate at stage k, and bk is
the upper ˇ boundary value in the standardized Z scale at stage k; k D 1; 2; : : : ; 5.

With the RCI option, the “Repeated Confidence Intervals” table in Output 90.5.17 displays repeated confidence
intervals for the parameter. For a one-sided test with an upper alternative hypothesis, since the upper
acceptance repeated confidence limit 0.3924 at the final stage is less than the alternative reference 0.441833,
the null hypothesis is accepted.

Output 90.5.17 Repeated Confidence Intervals

Repeated Confidence Intervals

Acceptance
Boundary

_Stage_
Information

Level
Parameter

Estimate Upper 89.94% CL

1 12.2601 0.32474 1.0656

2 23.2792 0.23560 0.6881

3 34.4879 0.14482 0.4653

4 45.4468 0.20855 0.4514

5 56.1607 0.20430 0.3924

With the PLOTS=RCI option, the “Repeated Confidence Intervals Plot” displays repeated confidence intervals
for the parameter, as shown in Output 90.5.18. It shows that the upper acceptance repeated confidence limit
at the final stage is less than the alternative reference 0.441833. This implies that the study accepts the null
hypothesis at the final stage.



Example 90.6: Comparing Two Survival Distributions with a Log-Rank Test F 7637

Output 90.5.18 Repeated Confidence Intervals Plot

Example 90.6: Comparing Two Survival Distributions with a Log-Rank Test
This example requests a log-rank test that compares two survival distributions for the treatment effect
(Jennison and Turnbull 2000, pp. 77–79; Whitehead 1997, pp. 36–39).

A clinic is studying the effect of a new cancer treatment. The study consists of mice exposed to a carcinogen
and randomized to either the control group or the treatment group. The event of interest is the death from
cancer induced by the carcinogen, and the response is the time from randomization to death.

Following the derivations in the section “Test for Two Survival Distributions with a Log-Rank Test” in the
chapter “The SEQDESIGN Procedure,” the hypothesisH0 W � D �log.�/ D 0 with an alternative hypothesis
H1 W � D �1 > 0 can be used, where � is the hazard ratio between the treatment group and control group.

Suppose that from past experience, the median survival time for the control group is t0 D 20 weeks, and the
study would like to detect a t1 D 40 weeks median survival time with a 80% power in the trial. Assuming
exponential survival functions for the two groups, the hazard rates can be computed from

Sj .tj / D e
�hj tj D

1

2

where j D 0; 1.
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Thus, with h0 D 0:03466 and h1 D 0:01733, the hazard ratio �1 D h1=h0 D 1=2 and the alternative
hypothesis is

�1 D �log.�1/ D �log.
1

2
/ D 0:69315

The following statements invoke the SEQDESIGN procedure and request a four-stage group sequential
design for normally distributed data. The design uses a one-sided alternative hypothesis with early stopping to
reject and to accept the null hypothesis H0. Whitehead’s triangular method is used to derive the boundaries.

ods graphics on;
proc seqdesign boundaryscale=score

;
OneSidedWhitehead: design method=whitehead

nstages=4
boundarykey=alpha
alt=upper stop=both
beta=0.20;

samplesize model=twosamplesurvival
( nullhazard=0.03466
hazard=0.01733
accrate=10);

run;
ods graphics off;

A Whitehead method creates boundaries that approximately satisfy the Type I and Type II error probability
level specification. The BOUNDARYKEY=ALPHA option is used to adjust the boundary value at the last
stage and to meet the specified Type I probability level.

The specified ACCRATE=10 option indicates that 10 mice will be accrued each week and the resulting
minimum and maximum accrual times are displayed. With the BOUNDARYSCALE=SCORE option, the
procedure displays the output boundaries with the score statistics.

The “Design Information” table in Output 90.6.1 displays design specifications and derived statistics.
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Output 90.6.1 Design Information

The SEQDESIGN Procedure
Design: OneSidedWhitehead
The SEQDESIGN Procedure

Design: OneSidedWhitehead

Design Information

Statistic Distribution Normal

Boundary Scale Score

Alternative Hypothesis Upper

Early Stop Accept/Reject Null

Method Whitehead

Boundary Key Alpha

Alternative Reference 0.693147

Number of Stages 4

Alpha 0.05

Beta 0.20044

Power 0.79956

Max Information (Percent of Fixed Sample) 129.9894

Max Information 16.70638

Null Ref ASN (Percent of Fixed Sample) 62.6302

Alt Ref ASN (Percent of Fixed Sample) 74.00064

The “Boundary Information” table in Output 90.6.2 displays the information level, alternative reference, and
boundary values at each stage.

Output 90.6.2 Boundary Information

Boundary Information (Score Scale)
Null Reference = 0

Alternative
Boundary

Values

Information Level Reference Upper

_Stage_ Proportion Actual Events Upper Beta Alpha

1 0.2500 4.176595 16.70638 2.89500 -0.95755 4.78775

2 0.5000 8.35319 33.41276 5.78999 1.91510 5.74529

3 0.7500 12.52979 50.11914 8.68499 4.78775 6.70284

4 1.0000 16.70638 66.82552 11.57998 7.81300 7.81300

With ODS Graphics enabled, a detailed boundary plot with the rejection and acceptance regions is displayed,
as shown in Output 90.6.3.
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Output 90.6.3 Boundary Plot

With the MODEL=TWOSAMPLESURVIVAL option in the SAMPLESIZE statement, the “Sample Size
Summary” table in Output 90.6.4 displays the parameters for the sample size computation.

Output 90.6.4 Required Sample Size Summary

Sample Size Summary

Test Two-Sample Survival

Null Hazard Rate 0.03466

Hazard Rate (Group A) 0.01733

Hazard Rate (Group B) 0.03466

Hazard Ratio 0.5

log(Hazard Ratio) -0.69315

Reference Hazards Alt Ref

Accrual Uniform

Accrual Rate 10

Min Accrual Time 6.682552

Min Sample Size 66.82552

Max Accrual Time 25.40111

Max Sample Size 254.0111

Max Number of Events 66.82552
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With a minimum accrual time of 6.6826 weeks and a maximum accrual time of 25.401 weeks, an accrual
time of 20 weeks is used in the study.

The “Numbers of Events” table in Output 90.6.5 displays the required number of events for the group
sequential clinical trial.

Output 90.6.5 Required Numbers of Events

Numbers of Events (D)
Two-Sample Log-Rank Test

_Stage_ D Information

1 16.71 4.1766

2 33.41 8.3532

3 50.12 12.5298

4 66.83 16.7064

The following statements invoke the SEQDESIGN procedure and provide more detailed sample size informa-
tion:

proc seqdesign boundaryscale=score
;

OneSidedWhitehead: design method=whitehead
nstages=4
boundarykey=alpha
alt=upper
stop=both
beta=0.20;

samplesize model=twosamplesurvival
( nullhazard=0.03466
hazard=0.01733
accrate=10 acctime=20);

ods output Boundary=Bnd_Surv;
run;

The ODS OUTPUT statement with the BOUNDARY=BND_SURV option creates an output data set named
BND_SURV which contains the resulting boundary information for the subsequent sequential tests.

With an accrual time of 20 weeks, the “Sample Size Summary” table in Output 90.6.6 displays the follow-up
time for the trial.
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Output 90.6.6 Required Sample Size Summary

The SEQDESIGN Procedure
Design: OneSidedWhitehead
The SEQDESIGN Procedure

Design: OneSidedWhitehead

Sample Size Summary

Test Two-Sample Survival

Null Hazard Rate 0.03466

Hazard Rate (Group A) 0.01733

Hazard Rate (Group B) 0.03466

Hazard Ratio 0.5

log(Hazard Ratio) -0.69315

Reference Hazards Alt Ref

Accrual Uniform

Accrual Rate 10

Accrual Time 20

Follow-up Time 6.474366

Total Time 26.47437

Max Number of Events 66.82552

Max Sample Size 200

Expected Sample Size (Null Ref) 161.5941

Expected Sample Size (Alt Ref) 172.4692

Follow-up Time (Ceiling Time) 7

Total Time (Ceiling Time) 27

The “Numbers of Events and Sample Sizes” table in Output 90.6.7 displays the required sample sizes for the
group sequential clinical trial.

Output 90.6.7 Numbers of Events and Sample Sizes

Numbers of Events (D) and Sample Sizes (N)
Two-Sample Log-Rank Test

Fractional Time

_Stage_ D D(Grp 1) D(Grp 2) Time N N(Grp 1) N(Grp 2) Information

1 16.71 5.82 10.89 11.9867 119.87 59.93 59.93 4.1766

2 33.41 11.84 21.57 17.3585 173.58 86.79 86.79 8.3532

3 50.12 18.01 32.11 21.7480 200.00 100.00 100.00 12.5298

4 66.83 24.46 42.37 26.4744 200.00 100.00 100.00 16.7064

Numbers of Events (D) and Sample Sizes (N)
Two-Sample Log-Rank Test

Ceiling Time

_Stage_ D D(Grp 1) D(Grp 2) Time N N(Grp 1) N(Grp 2) Information

1 16.74 5.83 10.91 12 120.00 60.00 60.00 4.1854

2 35.73 12.68 23.04 18 180.00 90.00 90.00 8.9322

3 51.07 18.37 32.70 22 200.00 100.00 100.00 12.7667

4 68.55 25.14 43.41 27 200.00 100.00 100.00 17.1378

Thus the study will perform three interim analyses after 12, 18, and 22 weeks and a final analysis after 27
weeks if the study does not stop at any of the interim analyses.
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Note that the SEQDESIGN procedure does not compute numbers of events or sample sizes for all sta-
tistical models. If the number of events or sample size for a fixed-sample design is available, then the
MODEL=INPUTNEVENTS or MODEL=INPUTNOBS option can be used to input fixed-sample infor-
mation. For example, with a required fixed-sample number of events 51.41, the following SAMPLESIZE
statement can be used to produce the same sample size results:

samplesize model=inputnevents
( d=51.41 sample=two
hazard=0.03466 0.01733
accrate=10 acctime=20);

Suppose that 120 mice are available after week 12 for the first interim analysis. Output 90.6.8 lists the 10
observations in the data set weeks_1.

Output 90.6.8 Clinical Trial Data

First 10 Obs in the Trial DataFirst 10 Obs in the Trial Data

Obs TrtGp Event Weeks

1 0 0 11

2 1 0 11

3 0 0 11

4 1 0 11

5 0 1 6

6 1 0 11

7 0 0 11

8 1 0 11

9 0 1 9

10 1 0 11

The TrtGp variable is a grouping variable with the value 0 for a mouse in the placebo control group and the
value 1 for a mouse in the treatment group. The Weeks variable is the survival time variable measured in
weeks and the Event variable is the censoring variable with the value 0 indicating censoring. That is, the
values of Weeks are considered censored if the corresponding values of Event are 0; otherwise, they are
considered as event times.

The following statements use the LIFETEST procedure to estimate the log-rank statistic at stage 1:

proc lifetest data=Surv_1;
time Weeks*Event(0);
test TrtGp;
ods output logunichisq=Parms_Surv1;

run;

The following statements create and display (in Output 90.6.9) the data set for the log-rank statistic and its
associated standard error:

data Parms_Surv1;
set Parms_Surv1(rename=(Statistic=Estimate));
if Variable='TrtGp';
_Scale_='Score';
_Stage_= 1;
keep Variable _Scale_ _Stage_ StdErr Estimate;

run;
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proc print data=Parms_Surv1;
title 'Statistics Computed at Stage 1';

run;

Output 90.6.9 Statistics Computed at Stage 1

Statistics Computed at Stage 1Statistics Computed at Stage 1

Obs Variable Estimate StdErr _Scale_ _Stage_

1 TrtGp 3.2004 1.9979 Score 1

The following statements invoke the SEQTEST procedure to test for early stopping at stage 1:

ods graphics on;
proc seqtest Boundary=Bnd_Surv

Parms(Testvar=TrtGp)=Parms_Surv1
infoadj=none
boundaryscale=score
;

ods output Test=Test_Surv1;
run;
ods graphics off;

The BOUNDARY= option specifies the input data set that provides the boundary information for the trial at
stage 1, which was generated in the SEQDESIGN procedure. The PARMS=PARMS_SURV1 option specifies
the input data set PARMS_SURV1 that contains the test statistic and its associated standard error at stage 1,
and the TESTVAR=TRTGP option identifies the test variable TRTGP in the data set. The INFOADJ=NONE
option maintains the information levels for future interim stages (2 and 3) at the values provided in the
BOUNDARY= data set.

The ODS OUTPUT statement with the TEST=TEST_SURV1 option creates an output data set named
TEST_SURV1 which contains the updated boundary information for the test at stage 1. The data set also
provides the boundary information that is needed for the group sequential test at the next stage.

The “Design Information” table in Output 90.6.10 displays design specifications. By default (or equivalently
if you specify BOUNDARYKEY=ALPHA), the maximum information and the Type I error level ˛ are
preserved. Since the computed information level at stage 1 is not the same as the value provided in the
BOUNDARY= data set, the power has been modified.
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Output 90.6.10 Design Information

The SEQTEST ProcedureThe SEQTEST Procedure

Design Information

BOUNDARY Data Set WORK.BND_SURV

Data Set WORK.PARMS_SURV1

Statistic Distribution Normal

Boundary Scale Score

Alternative Hypothesis Upper

Early Stop Accept/Reject Null

Number of Stages 4

Alpha 0.05

Beta 0.20055

Power 0.79945

Max Information (Percent of Fixed Sample) 130.0335

Max Information 16.7063807

Null Ref ASN (Percent of Fixed Sample) 62.80859

Alt Ref ASN (Percent of Fixed Sample) 74.19158

The “Test Information” table in Output 90.6.11 displays the boundary values for the test statistic with the
SCORE statistic scale. Since only the information level at stage 1 is specified in the DATA= data set, the
information levels at subsequent stages are derived proportionally from the corresponding information levels
provided in the BOUNDARY= data set. At stage 1, the score statistic 3.2004 is between the upper ˇ boundary
value –1.0386 and the upper ˛ boundary value 4.7142, so the trial continues to the next stage.

Output 90.6.11 Sequential Tests

Test Information (Score Scale)
Null Reference = 0

Alternative
Boundary

Values Test

Information Level Reference Upper TrtGp

_Stage_ Proportion Actual Upper Beta Alpha Estimate Action

1 0.2389 3.991698 2.76683 -1.03862 4.71423 3.20040 Continue

2 0.5000 8.35319 5.78999 1.91799 5.73973 .

3 0.7500 12.52979 8.68499 4.78804 6.70287 .

4 1.0000 16.70638 11.57998 7.81349 7.81349 .

Note that the observed information level 3.9917 corresponds to a proportion of 0.2389 in information level.
If the observed information level is much smaller than the target proportion of 0.25, then you need to increase
the accrual rate, accrual time, or follow-up time to achieve the target maximum information level for the
trial. Scharfstein and Tsiatis (1998) use the simulation and bootstrap methods to modify the trial at interim
stages to achieve the target maximum information level. These modifications should be specified in the study
protocol or study plan before the study starts.

With ODS Graphics enabled, a boundary plot with test statistics is displayed, as shown in Output 90.6.12. As
expected, the test statistic is in the continuation region between the upper ˇ and ˛ boundary values.
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Output 90.6.12 Sequential Test Plot

Note that the input DATA= option can also be used for the test statistics. For example, the following statements
create and display (in Output 90.6.13) the data set for the log-rank statistic and its associated standard error
after the LIFETEST procedure. Since the log-rank statistic is a score statistic, the corresponding information
level is the variance of the statistic.

proc lifetest data=Surv_1;
time Weeks*Event(0);
test TrtGp;
ods output logunichisq=Parms_Surv1a;

run;

data Parms_Surv1a;
set Parms_Surv1a(rename=(Statistic=TrtGp));
keep _Scale_ _Stage_ _Info_ TrtGp;
_Scale_='Score';
_Stage_= 1;
_Info_= StdErr * StdErr;
if Variable='TrtGp';

run;
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proc print data=Parms_Surv1a;
title 'Statistics Computed at Stage 1';

run;

Output 90.6.13 Statistics Computed at Stage 1

Statistics Computed at Stage 1Statistics Computed at Stage 1

Obs TrtGp _Scale_ _Stage_ _Info_

1 3.2004 Score 1 3.99170

The following statements can be used to invoke the SEQTEST procedure to test for early stopping at stage 1:

ods graphics on;
proc seqtest Boundary=Bnd_Surv

Data(Testvar=TrtGp)=Parms_Surv1a
infoadj=none
boundaryscale=score
;

ods output Test=Test_Surv1;
run;
ods graphics off;

The following statements use the LIFETEST procedure to compute the log-rank statistic and its associated
standard error at stage 2:

proc lifetest data=Surv_2;
time Weeks*Event(0);
test TrtGp;
ods output logunichisq=Parms_Surv2;

run;

The following statements create and display (in Output 90.6.14) the data set for the log-rank statistic and its
associated standard error for each of the first two stages:

data Parms_Surv2;
set Parms_Surv2 (rename=(Statistic=Estimate));
if Variable='TrtGp';
_Scale_='Score';
_Stage_= 2;
keep Variable _Scale_ _Stage_ StdErr Estimate;

run;

proc print data=Parms_Surv2;
title 'Statistics Computed at Stage 2';

run;

Output 90.6.14 Statistics Computed at Stage 2

Statistics Computed at Stage 2Statistics Computed at Stage 2

Obs Variable Estimate StdErr _Scale_ _Stage_

1 TrtGp 7.3136 2.9489 Score 2
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The following statements invoke the SEQTEST procedure to test for early stopping at stage 2:

ods graphics on;
proc seqtest Boundary=Test_Surv1

Parms(Testvar=TrtGp)=Parms_Surv2
infoadj=none
boundaryscale=score
citype=lower
;

ods output Test=Test_Surv2;
run;
ods graphics off;

The BOUNDARY= option specifies the input data set that provides the boundary information for the trial
at stage 2, which was generated by the SEQTEST procedure at the previous stage. The PARMS= option
specifies the input data set that contains the test statistic and its associated standard error at stage 2, and the
TESTVAR= option identifies the test variable in the data set. The INFOADJ=NONE option maintains the
information level for stage 3 at the value provided in the BOUNDARY= data set.

The ODS OUTPUT statement with the TEST=TEST_SURV2 option creates an output data set named
TEST_SURV2 which contains the updated boundary information for the test at stage 2. The data set also
provides the boundary information that is needed for the group sequential test at the next stage if the trial
does not stop at the current stage.

The “Test Information” table in Output 90.6.15 displays the boundary values for the test statistic. The test
statistic 7.31365 is larger than the corresponding upper ˛ boundary 5.79334, so the study stops and rejects
the null hypothesis. That is, there is evidence of reduction in hazard rate for the new treatment.

Output 90.6.15 Sequential Tests

The SEQTEST ProcedureThe SEQTEST Procedure

Test Information (Score Scale)
Null Reference = 0

Alternative
Boundary

Values Test

Information Level Reference Upper TrtGp

_Stage_ Proportion Actual Upper Beta Alpha Estimate Action

1 0.2389 3.991698 2.76683 -1.03862 4.71423 3.20040 Continue

2 0.5205 8.696125 6.02769 2.17041 5.79334 7.31365 Reject Null

3 0.7500 12.52979 8.68499 4.76308 6.72917 .

4 1.0000 16.70638 11.57998 7.81290 7.81290 .

With ODS Graphics enabled, the “Test Plot” displays boundary values of the design and the test statistic
at the first two stages, as shown in Output 90.6.16. It also shows that the test statistic is in the “Rejection
Region” above the upper ˛ boundary value at stage 2.
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Output 90.6.16 Sequential Test Plot

After the stopping of a trial, the “Parameter Estimates” table in Output 90.6.17 displays the stopping stage,
parameter estimate, unbiased median estimate, confidence limits, and p-value under the null hypothesis
H0 W � D 0.

Output 90.6.17 Parameter Estimates

Parameter Estimates
Stagewise Ordering

Parameter
Stopping

Stage MLE
p-Value for
H0:Parm=0

Median
Estimate Lower 95% CL

TrtGp 2 0.841024 0.0139 0.810329 0.21615

As expected, the p-value 0.0139 is significant at the ˛ D 0:05 level and the lower 95% confidence limit
is larger than �0 D 0. The p-value, unbiased median estimate, and lower confidence limit depend on the
ordering of the sample space .k; z/, where k is the stage number and z is the standardized Z statistic. With
the specified stagewise ordering, the p-value is p1 C p2, where p1 is the ˛ spending at stage 1,

p1 D P�D0.Z1
p
I1 � 4:71423/ D 0:00915

p2 D P�D0.Z2
p
I2 � 7:31365 j � 1:03862 < Z1

p
I1 < 4:71423/

where Zk is a standardized normal variate and Ik is the information level at stage k for k = 1, 2.
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Example 90.7: Testing an Effect in a Proportional Hazards Regression Model
This example compares two survival distributions for the treatment effect. The example uses a power family
method to generate two-sided asymmetric boundaries and then uses a proportional hazards regression model
to test the hypothesis with a covariate.

A clinic is conducting a clinical study for the effect of a new cancer treatment. The study consists of mice
exposed to a carcinogen and randomized to either the control group or the treatment group. The event of
interest is the death from cancer induced by the carcinogen, and the response is the time from randomization
to death.

Consider the proportional hazards regression model

h.t I TrtGp; Wgt/ D h0.t/ exp.ˇg TrtGp C ˇwWgt/

where h0.t/ is an arbitrary and unspecified baseline hazard function, TrtGp is the grouping variable for the
two groups, Wgt is the initial weight of the mice, and ˇg and ˇw are the regression parameters associated
with the variables TrtGp and Wgt, respectively. The grouping variable has the value 0 for each mouse in the
control group and the value 1 for each mouse in the treatment group.

The hypothesis H0 W ˇg D 0 with an alternative hypothesis H1 W ˇg ¤ 0 is used for the study.

Suppose that from past experience, the median survival time for the control group is t0 D 20 weeks. The
study would like to detect a t1 D 40 weeks median survival time with a 80% power in the trial. Assuming
exponential survival functions for the two groups, the hazard rates can be computed from

Sj .tj / D e
�hj tj D

1

2

where j D 0; 1.

Thus, with the hazard rates h0 D 0:03466 and h1 D 0:01733, the hazard ratio exp.ˇg/ D h1=h0 D 1=2

and the alternative hypothesis

ˇg1 D log.
1

2
/ D �0:69315

Following the derivations in the section “Test for a Parameter in the Proportional Hazards Regression Model”
in the chapter “The SEQDESIGN Procedure,” the required number of events for testing a parameter in ˇ is
given by

DX D IX
1

.1 � r2x/ �
2
x

where �2x is the variance of TrtGp and r2x is the proportion of variance of TrtGp explained by the variable Wgt.

If the two groups have the same number of mice in the study, then the MLE of the variance is O�2x D 0:25.
Further, if r2x D 0:10, then you can specify the MODEL=PHREG( XVARIANCE=0.25 XRSQUARE=0.10)
option in the SAMPLESIZE statement in the SEQDESIGN procedure to compute the required number of
events and the individual number of events at each stage.

The following statements invoke the SEQDESIGN procedure and request a four-stage group sequential
design for normally distributed data. The design uses a two-sided alternative hypothesis with early stopping
to reject the null hypothesis H0. A power family method is used to derive the boundaries.
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ods graphics on;
proc seqdesign altref=0.69315;

TwoSidedPowerFamily: design method=pow
nstages=4
alpha=0.075(lower=0.025)
beta=0.20;

samplesize model=phreg( xvariance=0.25 xrsquare=0.10
hazard=0.02451 accrate=10);

run;
ods graphics off;

The ALPHA=0.075(LOWER=0.025) option specifies a lower ˛ level 0.025 for the lower rejection boundary
and an upper ˛ level 0:05 D 0:075 � 0:025 for the upper rejection boundary. The geometric average hazard
p
h0 � h1 D

p
0:03466 � 0:01733 D 0:02451 is used in the HAZARD= option in the SAMPLESIZE

statement to compute the required sample size. The specified ACCRATE=10 option indicates that 10 mice
will be accrued each week and the resulting minimum and maximum accrual times will be displayed.

The “Design Information” table in Output 90.7.1 displays the design specifications and the derived statistics.

Output 90.7.1 Design Information

The SEQDESIGN Procedure
Design: TwoSidedPowerFamily

The SEQDESIGN Procedure
Design: TwoSidedPowerFamily

Design Information

Statistic Distribution Normal

Boundary Scale Standardized Z

Alternative Hypothesis Two-Sided

Early Stop Reject Null

Method Power Family

Boundary Key Both

Alternative Reference 0.69315

Number of Stages 4

Alpha 0.075

Alpha (Lower) 0.025

Alpha (Upper) 0.05

Beta (Lower) 0.2

Beta (Upper) 0.12764

Power (Lower) 0.8

Power (Upper) 0.87236

Max Information (Percent of Fixed Sample) 106.468

Max Information 17.39288

Null Ref ASN (Percent of Fixed Sample) 104.3691

Lower Alt Ref ASN (Number of Events) 58.04014

Upper Alt Ref ASN (Number of Events) 52.05395

The “Boundary Information” table in Output 90.7.2 displays the information level, alternative reference, and
boundary values at each stage. By default (or equivalently if you specify BOUNDARYSCALE=STDZ), the
procedure displays the output boundaries with the standardized Z statistic.
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Output 90.7.2 Boundary Information

Boundary Information (Standardized Z Scale)
Null Reference = 0

Alternative
Boundary

Values

Information Level Reference Lower Upper

_Stage_ Proportion Actual Events Lower Upper Alpha Alpha

1 0.2500 4.348221 19.32543 -1.44538 1.44538 -2.98871 2.59149

2 0.5000 8.696441 38.65085 -2.04408 2.04408 -2.51320 2.17917

3 0.7500 13.04466 57.97628 -2.50348 2.50348 -2.27093 1.96910

4 1.0000 17.39288 77.3017 -2.89077 2.89077 -2.11334 1.83246

With ODS Graphics enabled, a detailed boundary plot with the rejection and acceptance regions is displayed,
as shown in Output 90.7.3.

Output 90.7.3 Boundary Plot

With the MODEL=PHREG option in the SAMPLESIZE statement, the “Sample Size Summary” table in
Output 90.7.4 displays the parameters used in the sample size computation for the proportional hazards
regression model.
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Output 90.7.4 Required Sample Size Summary

Sample Size Summary

Test PH Reg Parameter

Parameter 0.69315

X Variance 0.25

R Square (X) 0.1

Hazard Rate 0.02451

Accrual Uniform

Accrual Rate 10

Min Accrual Time 7.73017

Min Sample Size 77.3017

Max Accrual Time 27.97872

Max Sample Size 279.7872

Max Number of Events 77.3017

With a minimum accrual time of 7.73 weeks and maximum accrual time of 27.98 weeks, an accrual time of
20 weeks is used in the study. The “Numbers of Events” table in Output 90.7.5 displays the required numbers
of events for the group sequential clinical trial.

Output 90.7.5 Required Sample Sizes

Numbers of Events (D)
Z Test for PH Regression Parameter

_Stage_ D Information

1 19.33 4.3482

2 38.65 8.6964

3 57.98 13.0447

4 77.30 17.3929

The following statements invoke the SEQDESIGN procedure and provide more detailed sample size informa-
tion with a 20-week accrual time:

proc seqdesign altref=0.69315;
TwoSidedPowerFamily: design method=pow

nstages=4
alpha=0.075(lower=0.025)
beta=0.20;

samplesize model=phreg( xvariance=0.25 xrsquare=0.10
hazard=0.02451
accrate=10 acctime=20);

ods output Boundary=Bnd_Time;
run;

The ODS OUTPUT statement with the BOUNDARY=BND_TIME option creates an output data set named
BND_TIME which contains the resulting boundary information for the subsequent sequential tests.

With an accrual time of 20 weeks, the “Sample Size Summary” table in Output 90.7.6 displays the follow-up
time for the trial.
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Output 90.7.6 Sample Size Summary

The SEQDESIGN Procedure
Design: TwoSidedPowerFamily

The SEQDESIGN Procedure
Design: TwoSidedPowerFamily

Sample Size Summary

Test PH Reg Parameter

Parameter 0.69315

X Variance 0.25

R Square (X) 0.1

Hazard Rate 0.02451

Accrual Uniform

Accrual Rate 10

Accrual Time 20

Follow-up Time 10.34195

Total Time 30.34195

Max Number of Events 77.3017

Max Sample Size 200

Expected Sample Size (Null Ref) 199.4282

Expected Sample Size (Alt Ref) 188.6561

Follow-up Time (Ceiling Time) 11

Total Time (Ceiling Time) 31

The “Numbers of Events and Sample Sizes” table in Output 90.7.7 displays the required sample sizes for the
group sequential clinical trial.

Output 90.7.7 Numbers of Events and Sample Sizes

Numbers of Events (D) and Sample Sizes (N)
Z Test for PH Regression Parameter

Fractional Time Ceiling Time

_Stage_ D Time N Information D Time N Information

1 19.33 13.2362 132.36 4.3482 21.49 14 140.00 4.8359

2 38.65 19.1466 191.47 8.6964 41.90 20 200.00 9.4281

3 57.98 24.3744 200.00 13.0447 60.14 25 200.00 13.5309

4 77.30 30.3420 200.00 17.3929 79.26 31 200.00 17.8346

Thus, the study will perform three interim analyses after 14, 20, and 25 weeks and a final analysis after 31
weeks if the study does not stop at any of the interim analyses.

Suppose 140 mice are available for the first interim analysis after week 14. Output 90.7.8 lists the first 10
observations in the data set weeks_1.
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Output 90.7.8 Clinical Trial Data

First 10 Obs in the Trial DataFirst 10 Obs in the Trial Data

Obs TrtGp Event Wgt Weeks

1 0 0 22.1659 12

2 1 0 28.4458 12

3 0 0 26.2857 12

4 1 0 25.0283 12

5 0 0 21.5114 12

6 1 0 23.2240 12

7 0 1 22.6845 6

8 1 0 27.9292 12

9 0 0 22.5514 12

10 1 1 27.3793 11

The TrtGp variable is a grouping variable with the value 0 for a mouse in the placebo control group and the
value 1 for a mouse in the treatment group.

The Weeks variable is the survival time variable measured in weeks and the Event variable is the censoring
variable with the value 0 indicating censoring. That is, the values of Weeks are considered censored if the
corresponding values of Event are 0; otherwise, they are considered as event times.

The following statements use the PHREG procedure to estimate the treatment effect after adjusting for the
Wgt variable at stage 1:

proc phreg data=Time_1;
model Weeks*Event(0)= TrtGp Wgt;
ods output parameterestimates=Parms_Time1;

run;

The following statements create and display (in Output 90.7.9) the data set for the treatment effect MLE
statistic and its associated standard error. Note that for a MLE statistic, the inverse of the variance of the
statistic is the information.

data Parms_Time1;
set Parms_Time1;
if Parameter='TrtGp';
_Scale_='MLE';
_Stage_= 1;
keep _Scale_ _Stage_ Parameter Estimate StdErr;

run;

proc print data=Parms_Time1;
title 'Statistics Computed at Stage 1';

run;

Output 90.7.9 Statistics Computed at Stage 1

Statistics Computed at Stage 1Statistics Computed at Stage 1

Obs Parameter Estimate StdErr _Scale_ _Stage_

1 TrtGp 0.00836 0.46588 MLE 1
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The following statements invoke the SEQTEST procedure to test for early stopping at stage 1:

ods graphics on;
proc seqtest Boundary=Bnd_Time

Parms(Testvar=TrtGp)=Parms_Time1
infoadj=prop
order=lr
;

ods output Test=Test_Time1;
run;
ods graphics off;

The BOUNDARY= option specifies the input data set that provides the boundary information for the trial at
stage 1, which was generated in the SEQDESIGN procedure. The PARMS=PARMS_TIME1 option specifies
the input data set PARMS_TIME1 that contains the test statistic and its associated standard error at stage 1,
and the TESTVAR=TRTGP option identifies the test variable TRTGP in the data set.

If the computed information level for stage 1 is not the same as the value provided in the BOUNDARY= data
set, the INFOADJ=PROP option (which is the default) proportionally adjusts the information levels at future
interim stages from the levels provided in the BOUNDARY= data set. The ORDER=LR option uses the LR
ordering to derive the p-value, the unbiased median estimate, and the confidence limits for the regression
slope estimate.

The ODS OUTPUT statement with the TEST=TEST_TIME1 option creates an output data set named
TEST_TIME1 which contains the updated boundary information for the test at stage 1. The data set also
provides the boundary information that is needed for the group sequential test at the next stage.

The “Design Information” table in Output 90.7.10 displays design specifications. By default (or equivalently
if you specify BOUNDARYKEY=ALPHA), the boundary values are modified for the new information levels
to maintain the Type I ˛ level. Since the computed information level at stage 1 is not the same as the value
provided in the BOUNDARY= data set, the power has been modified.
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Output 90.7.10 Design Information

The SEQTEST ProcedureThe SEQTEST Procedure

Design Information

BOUNDARY Data Set WORK.BND_TIME

Data Set WORK.PARMS_TIME1

Statistic Distribution Normal

Boundary Scale Standardized Z

Alternative Hypothesis Two-Sided

Early Stop Reject Null

Number of Stages 4

Alpha 0.075

Alpha (Lower) 0.025

Alpha (Upper) 0.05

Beta (Lower) 0.20048

Beta (Upper) 0.12795

Power (Lower) 0.79952

Power (Upper) 0.87205

Max Information (Percent of Fixed Sample) 106.5982

Max Information 17.3928828

Null Ref ASN (Percent of Fixed Sample) 104.4715

Lower Alt Ref ASN (Percent of Fixed Sample) 79.7886

Upper Alt Ref ASN (Percent of Fixed Sample) 71.53877

The “Test Information” table in Output 90.7.11 displays the boundary values for the test statistic with the
MLE statistic scale.

Output 90.7.11 Sequential Tests

Test Information (Standardized Z Scale)
Null Reference = 0

Alternative
Boundary

Values Test

Information Level Reference Lower Upper TrtGp

_Stage_ Proportion Actual Lower Upper Alpha Alpha Estimate Action

1 0.2649 4.607347 -1.48783 1.48783 -2.92457 2.54086 0.01795 Continue

2 0.5099 8.869192 -2.06428 2.06428 -2.50505 2.17290 .

3 0.7550 13.13104 -2.51175 2.51175 -2.27093 1.96941 .

4 1.0000 17.39288 -2.89077 2.89077 -2.11635 1.83531 .

With the INFOADJ=PROP option (which is the default), the information levels at interim stages 2 and 3 are
derived proportionally from the information levels in the BOUNDARY= data set. At stage 1, the standardized
Z statistic 0.01795 is between the lower and upper ˛ boundary values of –2.92457 and 2.54086, so the trial
continues to the next stage.

Note that the observed information level 4.6073 corresponds to a proportion of 0.2649 in the information
level. If the observed information level is much larger than the target proportion of 0.25, then you can
decrease the accrual rate, accrual time, or follow-up time to achieve target information levels for subsequent
stages. These modifications should be specified in the study plan before the study begins.
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With ODS Graphics enabled, a boundary plot with test statistics is displayed, as shown in Output 90.7.12. As
expected, the test statistic is in the continuation region between the lower and upper ˛ boundary values.

Output 90.7.12 Sequential Test Plot

The following statements use the PHREG procedure to compute the MLE statistic and its associated standard
error at stage 2:

proc phreg data=Time_2;
model Weeks*Event(0)= TrtGp Wgt;
ods output parameterestimates= Parms_Time2;

run;

The following statements create the data set for the MLE statistic and its associated standard error at stage 2:

data Parms_Time2;
set Parms_Time2;
if Parameter='TrtGp';
_Scale_='MLE';
_Stage_= 2;
keep _Scale_ _Stage_ Parameter Estimate StdErr;

run;
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The following statements invoke the SEQTEST procedure to test for early stopping at stage 2:

proc seqtest Boundary=Test_Time1
Parms(Testvar=TrtGp)=Parms_Time2
infoadj=prop
order=lr
;

ods output Test=Test_Time2;
run;

The BOUNDARY= option specifies the input data set that provides the boundary information for the trial
at stage 2, which was generated by the SEQTEST procedure at the previous stage. The PARMS= option
specifies the input data set that contains the test statistic and its associated standard error at stage 2, and the
TESTVAR= option identifies the test variable in the data set.

The ODS OUTPUT statement with the TEST=TEST_TIME2 option creates an output data set named
TEST_TIME2 which contains the updated boundary information for the test at stage 2. The data set also
provides the boundary information that is needed for the group sequential test at the next stage.

The “Test Information” table in Output 90.7.13 displays the boundary values for the test statistic with the
MLE statistic scale. At stage 2, the standardized Z statistic –0.43552 is between the lower ˛ and upper
boundary values, –2.47689 and 2.14819, respectively, so the trial continues to the next stage.

Output 90.7.13 Sequential Tests

The SEQTEST ProcedureThe SEQTEST Procedure

Test Information (Standardized Z Scale)
Null Reference = 0

Alternative
Boundary

Values Test

Information Level Reference Lower Upper TrtGp

_Stage_ Proportion Actual Lower Upper Alpha Alpha Estimate Action

1 0.2649 4.607347 -1.48783 1.48783 -2.92457 2.54086 0.01795 Continue

2 0.5251 9.132918 -2.09475 2.09475 -2.47689 2.14819 -0.43552 Continue

3 0.7625 13.2629 -2.52433 2.52433 -2.26878 1.96770 .

4 1.0000 17.39288 -2.89077 2.89077 -2.12017 1.83880 .

Since the data set PARMS_Time2 contains the test information only at stage 2, the information level at stage
1 in the TEST_Time1 data set is used to generate boundary values for the test.

Similarly, the test statistic at stage 3 is also between its corresponding lower and upper ˛ boundary values.
The trial continues to the next stage.

The following statements use the PHREG procedure to compute the MLE statistic and its associated standard
error at the final stage:

proc phreg data=Time_4;
model Weeks*Event(0)= TrtGp Wgt;
ods output parameterestimates= Parms_Time4;

run;
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The following statements create and display (in Output 90.7.14) the data set for the MLE statistic and its
associated standard error at each stage of the study:

data Parms_Time4;
set Parms_Time4;
if Parameter='TrtGp';
_Scale_='MLE';
_Stage_= 4;
keep _Scale_ _Stage_ Parameter Estimate StdErr;

run;

proc print data=Parms_Time4;
title 'Statistics Computed at Stage 4';

run;

Output 90.7.14 Statistics Computed at Stage 4

Statistics Computed at Stage 4Statistics Computed at Stage 4

Obs Parameter Estimate StdErr _Scale_ _Stage_

1 TrtGp -0.04451 0.23971 MLE 4

The following statements invoke the SEQTEST procedure to test the hypothesis at stage 4:

ods graphics on;
proc seqtest Boundary=Test_Time3

Parms(Testvar=TrtGp)=Parms_Time4
order=lr
;

run;
ods graphics off;

The BOUNDARY= option specifies the input data set that provides the boundary information for the trial
at stage 4, which was generated by the SEQTEST procedure at the previous stage. The PARMS= option
specifies the input data set that contains the test statistic and its associated standard error at stage 4, and the
TESTVAR= option identifies the test variable in the data set.

The “Test Information” table in Output 90.7.15 displays the boundary values for the test statistic. The
standardized test statistic –0.1857 is between the lower and upper ˛ boundary values of –2.10447 and
1.82112, respectively, so the study stops and accepts the null hypothesis. That is, there is no evidence of
reduction in hazard rate for the new treatment.

Output 90.7.15 Sequential Tests

The SEQTEST ProcedureThe SEQTEST Procedure

Test Information (Standardized Z Scale)
Null Reference = 0

Alternative
Boundary

Values Test

Information Level Reference Lower Upper TrtGp

_Stage_ Proportion Actual Lower Upper Alpha Alpha Estimate Action

1 0.2647 4.607347 -1.48783 1.48783 -2.92457 2.54086 0.01795 Continue

2 0.5248 9.132918 -2.09475 2.09475 -2.47689 2.14819 -0.43552 Continue

3 0.7095 12.34753 -2.43566 2.43566 -2.32705 2.02634 0.34864 Continue

4 1.0000 17.40274 -2.89159 2.89159 -2.10447 1.82112 -0.18570 Accept Null
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The “Test Plot” displays boundary values of the design and the test statistic at the first two stages, as shown
in Output 90.7.16. It also shows that the test statistic is in the “Acceptance Region” between the lower and
upper ˛ boundary values at stage 4.

Output 90.7.16 Sequential Test Plot

After the stopping of a trial, the “Parameter Estimates” table in Output 90.7.17 displays the stopping stage,
parameter estimate, unbiased median estimate, confidence limits, and p-value under the null hypothesis
H0 W � D 0.

Output 90.7.17 Parameter Estimates

Parameter Estimates
LR Ordering

Parameter
Stopping

Stage MLE
p-Value for
H0:Parm=0

Median
Estimate 95% Confidence Limits

TrtGp 4 -0.044514 0.8525 -0.044577 -0.51461 0.42538

As expected, the two-sided p-value 0.8525 is not significant at the lower ˛ D 0:025 level and the upper
˛ D 0:05 level, and the two-sided 95% confidence interval contains the null value zero. The p-value, unbiased
median estimate, and lower confidence limit depend on the ordering of the sample space .k; z/, where k is



7662 F Chapter 90: The SEQTEST Procedure

the stage number and z is the standardized Z statistic. With the specified LR ordering, the two-sided p-value
is derived from the one-sided p-value

pu D

4X
kD1

P�D0
�
Zk � z4 j _ak0 < Zk0 < ak0 ; k

0 < k
�

where z4 D �0:1857 is the observed test statistic at stage 4, Zk is a standardized normal variate at stage k,
and _ak0 and ak0 are the stage k lower and upper rejection boundary values, respectively.

Thus,

pu D ˛u C P�D0
�
z4 � Z4 < a4 j _ak0 < Zk0 < ak0 ; k

0 < 4
�

where ˛u D 0:05 is the upper ˛ level and a4 D 1:82112.

Since P�D0 .z4 � Z4 � a4 j _ak0 < Zk0 < ak0 ; k0 < 4/ D 0:52374, pu D 0:05 C 0:52374 D 0:57374,
which is greater than 0.50. Thus, the two-sided p-value is given by 2 � .1:0 � pu/ D 0:8525.

Example 90.8: Testing an Effect in a Logistic Regression Model
This example requests a two-sided test for the dose effect in a dose-response model (Whitehead 1997, pp.
262–263). Consider the logistic regression model

logit.p/ D log.
p

1 � p
/ D ˇ0 C ˇ1 LDose

where p D Prob.Resp D 1 jLDose/ is the response probability to be modeled for the binary response Resp
and LDose = log( Dose +1) is the covariate. The dose levels are 0 for the control group, and they are 1, 3,
and 6 for the three treatment groups.

Following the derivations in the section “Test for a Parameter in the Logistic Regression Model” in the
chapter “The SEQDESIGN Procedure,” the required sample size can be derived from

N D IX
�2y

.1 � r2x/ �
2
x

where �2y is the variance of the response variable in the logistic regression model, r2x is the proportion of
variance of LDose explained by other covariates, and �2x is the variance of LDose.

Since LDose is the only covariate in the model, r2x D 0. For a logistic model, the variance �2 can be
estimated by

�2y D
1

Op.1 � Op/

where Op is the estimated probability of the response variable Resp. Thus, the sample size can be computed as

N D IX
1

p.1 � p/

1

�2x
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The null hypothesis H0 W ˇ1 D 0 corresponds to no treatment effect. Suppose that the alternative hypothesis
H1 W ˇ1 D 0:5 is the reference improvement that should be detected at a 0.90 level.

Note that ˇ1 D 0:5 corresponds to an odds ratio of 2 between the treatment group with dose level 3 and the
control group. The log odds ratio between the two groups is

log
�
pt .1 � pc/

.1 � pt /p0

�
D log

�
pt

1 � pt

�
� log

�
pc

1 � pc

�
which corresponds to

.ˇ0 C ˇ1 log.3C 1// � .ˇ0 C ˇ1 log.1// D ˇ1 log.4/ D log.2/

If the same number of patients are assigned in each of the four groups, then the MLE of the variance of
LDose is O�2x D 0:5345. Further, if the response rate is 0.40, then the required sample size can be derived
using the SAMPLESIZE statement in the SEQDESIGN procedure.

The following statements invoke the SEQDESIGN procedure and request a three-stage group sequential
design for normally distributed data. The design has a null hypothesis of no treatment effect H0 W ˇ1 D 0
with early stopping to reject the null hypothesis with a two-sided alternative hypothesis H1 W ˇ1 D ˙0:5.

ods graphics on;
proc seqdesign altref=0.5;

TwoSidedErrorSpending: design method=errfuncpow
method(loweralpha)=errfuncpow(rho=1)
method(upperalpha)=errfuncpow(rho=3)
nstages=3
stop=both;

samplesize model=logistic( prop=0.4 xvariance=0.5345);
ods output Boundary=Bnd_Dose;

run;
ods graphics off;

The ODS OUTPUT statement with the BOUNDARY=BND_DOSE option creates an output data set named
BND_DOSE which contains the resulting boundary information for the subsequent sequential tests.

The “Design Information” table in Output 90.8.1 displays design specifications and derived statistics. Since
the alternative reference is specified, the maximum information 47.22445 is derived.
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Output 90.8.1 Error Spending Design Information

The SEQDESIGN Procedure
Design: TwoSidedErrorSpending

The SEQDESIGN Procedure
Design: TwoSidedErrorSpending

Design Information

Statistic Distribution Normal

Boundary Scale Standardized Z

Alternative Hypothesis Two-Sided

Early Stop Accept/Reject Null

Method Error Spending

Boundary Key Both

Alternative Reference 0.5

Number of Stages 3

Alpha 0.05

Beta (Lower) 0.1

Beta (Upper) 0.07871

Power (Lower) 0.9

Power (Upper) 0.92129

Max Information (Percent of Fixed Sample) 103.7223

Max Information 47.22445

Null Ref ASN (Percent of Fixed Sample) 79.47628

Lower Alt Ref ASN (Sample Size) 234.1646

Upper Alt Ref ASN (Sample Size) 270.4058

The “Boundary Information” table in Output 90.8.2 displays the information level, alternative reference, and
boundary values at each stage. By default (or equivalently if you specify BOUNDARYSCALE=STDZ), the
boundary values are displayed with the standardized Z statistic scale.

Output 90.8.2 Boundary Information

Boundary Information (Standardized Z Scale)
Null Reference = 0

Alternative Boundary Values

Information Level Reference Lower Upper

_Stage_ Proportion Actual N Lower Upper Alpha Beta Beta Alpha

1 0.3333 15.74148 122.7119 -1.98378 1.98378 -2.39398 . . 3.11302

2 0.6667 31.48297 245.4238 -2.80548 2.80548 -2.29380 -1.02812 0.91855 2.46193

3 1.0000 47.22445 368.1357 -3.43600 3.43600 -2.17479 -2.17479 1.98311 1.98311

With ODS Graphics enabled, a detailed boundary plot with the rejection and acceptance regions is displayed,
as shown in Output 90.8.3.
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Output 90.8.3 Boundary Plot

With the SAMPLESIZE statement, the “Sample Size Summary” table in Output 90.8.4 displays the parameters
for the sample size computation.

Output 90.8.4 Required Sample Size Summary

Sample Size Summary

Test Logistic Reg Parameter

Parameter 0.5

Proportion 0.4

X Variance 0.5345

R Square (X) 0

Max Sample Size 368.1357

Expected Sample Size (Null Ref) 282.0807

Expected Sample Size (Alt Ref) 270.4058
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The “Sample Sizes” table in Output 90.8.5 displays the required sample sizes for the group sequential clinical
trial.

Output 90.8.5 Required Sample Sizes

Sample Sizes (N)
Z Test for Logistic Regression Parameter

Fractional N Ceiling N

_Stage_ N Information N Information

1 122.71 15.7415 123 15.7784

2 245.42 31.4830 246 31.5569

3 368.14 47.2245 369 47.3353

That is, 123 new patients are needed in each stage and the number is rounded up to 124 for each stage to
have a multiple of four for the four dose levels in the trial. Note that since the sample sizes are derived from
an estimated response probability and are rounded up, the actual information levels might not match the
corresponding target information levels.

Output 90.8.6 lists the first 10 observations of the trial data.

Output 90.8.6 Clinical Trial Data

First 10 Obs in the Trial DataFirst 10 Obs in the Trial Data

Obs Resp Dose LDose

1 0 0 0.00000

2 0 1 0.69315

3 1 3 1.38629

4 1 6 1.94591

5 1 0 0.00000

6 1 1 0.69315

7 1 3 1.38629

8 1 6 1.94591

9 0 0 0.00000

10 0 1 0.69315

The following statements use the LOGISTIC procedure to estimate the slope ˇ1 and its associated standard
error at stage 1:

proc logistic data=Dose_1;
model Resp(event='1')= LDose;
ods output ParameterEstimates=Parms_Dose1;

run;

The following statements create and display (in Output 90.8.7) the input data set that contains slope ˇ1 and
its associated standard error for the SEQTEST procedure:
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data Parms_Dose1;
set Parms_Dose1;
if Variable='LDose';
_Scale_='MLE';
_Stage_= 1;
keep _Scale_ _Stage_ Variable Estimate StdErr;

run;

proc print data=Parms_Dose1;
title 'Statistics Computed at Stage 1';

run;

Output 90.8.7 Statistics Computed at Stage 1

Statistics Computed at Stage 1Statistics Computed at Stage 1

Obs Variable Estimate StdErr _Scale_ _Stage_

1 LDose 0.5741 0.2544 MLE 1

The following statements invoke the SEQTEST procedure to test for early stopping at stage 1:

ods graphics on;
proc seqtest Boundary=Bnd_Dose

Parms(testvar=LDose)=Parms_Dose1
infoadj=prop
order=mle
boundaryscale=mle
;

ods output Test=Test_Dose1;
run;
ods graphics off;

The BOUNDARY= option specifies the input data set that provides the boundary information for the trial at
stage 1, which was generated in the SEQDESIGN procedure. The PARMS=PARMS_DOSE1 option specifies
the input data set PARMS_DOSE1 that contains the test statistic and its associated standard error at stage 1,
and the TESTVAR=LDOSE option identifies the test variable LDOSE in the data set.

If the computed information level for stage 1 is not the same as the value provided in the BOUNDARY=
data set, the INFOADJ=PROP option (which is the default) proportionally adjusts the information levels at
future interim stages from the levels provided in the BOUNDARY= data set. The ORDER=MLE option
uses the MLE ordering to derive the p-value, the unbiased median estimate, and the confidence limits for the
regression slope estimate.

The ODS OUTPUT statement with the TEST=TEST_DOSE1 option creates an output data set named
TEST_DOSE1 which contains the updated boundary information for the test at stage 1. The data set also
provides the boundary information that is needed for the group sequential test at the next stage.

The “Design Information” table in Output 90.8.8 displays design specifications. By default (or equivalently if
you specify BOUNDARYKEY=ALPHA), the boundary values are modified for the new information levels
to maintain the Type I ˛ level. The maximum information remains the same as the design stored in the
BOUNDARY= data set, but the derived Type II error probability ˇ and power 1 � ˇ are different because of
the new information levels.
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Output 90.8.8 Design Information

The SEQTEST ProcedureThe SEQTEST Procedure

Design Information

BOUNDARY Data Set WORK.BND_DOSE

Data Set WORK.PARMS_DOSE1

Statistic Distribution Normal

Boundary Scale MLE

Alternative Hypothesis Two-Sided

Early Stop Accept/Reject Null

Number of Stages 3

Alpha 0.05

Beta (Lower) 0.09992

Beta (Upper) 0.07871

Power (Lower) 0.90008

Power (Upper) 0.92129

Max Information (Percent of Fixed Sample) 103.7231

Max Information 47.2244524

Null Ref ASN (Percent of Fixed Sample) 79.45049

Lower Alt Ref ASN (Percent of Fixed Sample) 66.05269

Upper Alt Ref ASN (Percent of Fixed Sample) 76.24189

The “Test Information” table in Output 90.8.9 displays the boundary values for the test statistic with the
specified MLE scale.

Output 90.8.9 Sequential Tests

Test Information (MLE Scale)
Null Reference = 0

Alternative Boundary Values Test

Information Level Reference Lower Upper LDose

_Stage_ Proportion Actual Lower Upper Alpha Beta Beta Alpha Estimate Action

1 0.3272 15.45062 -0.50000 0.50000 -0.61078 . . 0.79337 0.57409 Continue

2 0.6636 31.33753 -0.50000 0.50000 -0.40974 -0.18169 0.16222 0.44033 .

3 1.0000 47.22445 -0.50000 0.50000 -0.31633 -0.31633 0.28860 0.28860 .

The information level at stage 1 is derived from the standard error s1 in the PARMS= data set,

I1 D
1

s21
D

1

0:25442
D 15:45

With the INFOADJ=PROP option (which is the default), the information level at stage 2 is derived propor-
tionally from the observed information at stage 1 and the information levels in the BOUNDARY= data set.
At stage 1, the ˇ boundary values are missing and there is no early stopping to accept H0. The MLE statistic
0.57409 is between the lower and upper ˛ boundaries, so the trial continues to the next stage.

With ODS Graphics enabled, a boundary plot with the boundary values and test statistics is displayed, as
shown in Output 90.8.10. As expected, the test statistic is in the continuation region below the upper alpha
boundary.
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Output 90.8.10 Sequential Test Plot

The following statements use the LOGISTIC procedure to estimate the slope ˇ1 and its associated standard
error at stage 2:

proc logistic data=dose_2;
model Resp(event='1')=LDose;
ods output ParameterEstimates=Parms_Dose2;

run;

The following statements create and display (in Output 90.8.11) the input data set that contains slope ˇ1 and
its associated standard error at stage 2 for the SEQTEST procedure:

data Parms_Dose2;
set Parms_Dose2;
if Variable='LDose';
_Scale_='MLE';
_Stage_= 2;
keep _Scale_ _Stage_ Variable Estimate StdErr;

run;

proc print data=Parms_Dose2;
title 'Statistics Computed at Stage 2';

run;
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Output 90.8.11 Statistics Computed at Stage 2

Statistics Computed at Stage 2Statistics Computed at Stage 2

Obs Variable Estimate StdErr _Scale_ _Stage_

1 LDose 0.5213 0.1788 MLE 2

The following statements invoke the SEQTEST procedure to test for early stopping at stage 2:

ods graphics on;
proc seqtest Boundary=Test_Dose1

Parms(Testvar=LDose)=Parms_Dose2
infoadj=prop
order=mle
boundaryscale=mle
rci
plots=rci
;

ods output Test=Test_Dose2;
run;
ods graphics off;

The BOUNDARY= option specifies the input data set that provides the boundary information for the trial
at stage 2, which was generated by the SEQTEST procedure at the previous stage. The PARMS= option
specifies the input data set that contains the test statistic and its associated standard error at stage 2, and the
TESTVAR= option identifies the test variable in the data set.

The ORDER=MLE option uses the MLE ordering to derive the p-value, unbiased median estimate, and
confidence limits for the regression slope estimate.

The ODS OUTPUT statement with the TEST=TEST_DOSE2 option creates an output data set named
TEST_DOSE2 which contains the updated boundary information for the test at stage 2. The data set also
provides the boundary information that is needed for the group sequential test at the next stage.

The “Design Information” table in Output 90.8.12 displays design specifications. By default (or equivalently
if you specify BOUNDARYKEY=ALPHA), the boundary values are modified for the new information levels
to maintain the Type I ˛ level.
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Output 90.8.12 Design Information

The SEQTEST ProcedureThe SEQTEST Procedure

Design Information

BOUNDARY Data Set WORK.TEST_DOSE1

Data Set WORK.PARMS_DOSE2

Statistic Distribution Normal

Boundary Scale MLE

Alternative Hypothesis Two-Sided

Early Stop Accept/Reject Null

Number of Stages 3

Alpha 0.05

Beta (Lower) 0.0999

Beta (Upper) 0.07871

Power (Lower) 0.9001

Power (Upper) 0.92129

Max Information (Percent of Fixed Sample) 103.7227

Max Information 47.2244524

Null Ref ASN (Percent of Fixed Sample) 79.44086

Lower Alt Ref ASN (Percent of Fixed Sample) 66.04641

Upper Alt Ref ASN (Percent of Fixed Sample) 76.22739

The information is derived from the standard error associated with the slope estimate at the final stage and is
larger than the target level. The derived Type II error probability ˇ and power 1 � ˇ are different because of
the new information levels.

The “Test Information” table in Output 90.8.13 displays the boundary values for the test statistic with the
specified MLE scale. The information levels are derived from the standard errors in the PARMS= data set.
At stage 2, the slope estimate 0.52128 is larger than 0.44091, the upper ˛ boundary value, the trial stops to
reject the null hypothesis of no treatment effect.

Output 90.8.13 Sequential Tests

Test Information (MLE Scale)
Null Reference = 0

Alternative Boundary Values Test

Information Level Reference Lower Upper LDose

_Stage_ Proportion Actual Lower Upper Alpha Beta Beta Alpha Estimate Action

1 0.3272 15.45062 -0.50000 0.50000 -0.61078 . . 0.79337 0.57409 Continue

2 0.6624 31.28346 -0.50000 0.50000 -0.41028 -0.18112 0.16166 0.44091 0.52128 Reject Null

3 1.0000 47.22445 -0.50000 0.50000 -0.31628 -0.31628 0.28861 0.28861 .

With ODS Graphics enabled, a boundary plot with the boundary values and test statistics is displayed, as
shown in Output 90.8.14. As expected, the test statistic is above the upper ˛ boundary in the upper rejection
region at stage 2.
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Output 90.8.14 Sequential Test Plot

After a trial is stopped, the “Parameter Estimates” table in Output 90.8.15 displays the stopping stage,
parameter estimate, unbiased median estimate, confidence limits, and the p-value under the null hypothesis
H0 W ˇ1 D 0.

Output 90.8.15 Parameter Estimates

Parameter Estimates
MLE Ordering

Parameter
Stopping

Stage MLE
p-Value for
H0:Parm=0

Median
Estimate 95% Confidence Limits

LDose 2 0.521275 0.0050 0.502647 0.15745 0.85154

With the ORDER=MLE option, the MLE ordering is used to compute the p-value, unbiased median estimate,
and confidence limits. As expected, the p-value 0.005 is significant at the ˛ D 0:05 level and the confidence
interval does not contain the null reference zero.

With the RCI option, the “Repeated Confidence Intervals” table in Output 90.8.16 displays repeated confidence
intervals for the parameter. For a two-sided test, since the rejection lower repeated confidence limit 0.0804 is
greater than the null reference zero, the trial is stopped to reject the hypothesis.
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Output 90.8.16 Repeated Confidence Intervals

Repeated Confidence Intervals

Rejection Boundary

_Stage_
Information

Level
Parameter

Estimate Lower 97.5% Repeated CL Upper 97.5% Repeated CL

1 15.4506 0.57409 -0.2193 1.1849

2 31.2835 0.52128 0.0804 0.9316

Repeated Confidence Intervals

Acceptance Boundary

_Stage_ Lower 90.01% Repeated CL Upper 92.13% Repeated CL

1 . .

2 0.2024 0.8596

With the PLOTS=RCI option, the “Repeated Confidence Intervals Plot” displays repeated confidence intervals
for the parameter, as shown in Output 90.8.17. It shows that the null reference zero is inside the rejection
repeated confidence interval at stage 1 but outside the rejection repeated confidence interval at stage 2. This
implies that the study stops at stage 2 to reject the hypothesis.

Output 90.8.17 Repeated Confidence Intervals Plot
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Note that the hypothesis is accepted if at any stage, the acceptance repeated confidence interval falls within
the interval .�0:5; 0:5/ of the alternative references.

Example 90.9: Conducting a Trial with a Nonbinding Acceptance Boundary
This example demonstrates a trail with a nonbinding acceptance boundary. The design is similar to the design
in Example 90.1, but has a nonbinding beta boundary.

A clinic is studying the effect of vitamin C supplements in treating flu symptoms. The study consists of
patients in the clinic who have exhibited the first sign of flu symptoms within the last 24 hours. These patients
are randomly assigned to either the control group (which receives placebo pills) or the treatment group (which
receives large doses of vitamin C supplements). At the end of a five-day period, the flu symptoms of each
patient are recorded.

Suppose that you know from past experience that flu symptoms disappear in five days for 60% of patients
who experience flu symptoms. The clinic would like to detect a 75% symptom disappearance with a high
probability. A test that compares the proportions directly specifies the null hypothesisH0 W � D pt �pc D 0
with a one-sided alternative H1 W � > 0 and a power of 0.90 at H1 W � D 0:15, where pt and pc are the
proportions of symptom disappearance in the treatment group and control group, respectively.

The following statements invoke the SEQDESIGN procedure and request a four-stage group sequential
design by using an O’Brien-Fleming method for normally distributed data.

ods graphics on;
proc seqdesign altref=0.15 errspend

;
NonbindingDesign: design nstages=4

method=obf
alt=upper
stop=both(betaboundary=nonbinding)
alpha=0.025
;

samplesize model=twosamplefreq(nullprop=0.6 test=prop);
ods output Boundary=Bnd_Count;
run;
ods graphics off;

The ALT=UPPER option specifies a one-sided alternative hypothesis, and the STOP=BOTH option specifies
early stopping to reject or accept the null hypothesisH0, The BETABOUNDARY=NONBINDING suboption
requests nonbinding beta boundary to have the flexibility to continue the trial when a test statistic falls in the
acceptance region at interim stages (Zhu, Ni, and Yao 2011, pp. 132–133). The ODS OUTPUT statement
with the BOUNDARY=BND_COUNT option creates an output data set named BND_COUNT which contains
the resulting boundary information for the subsequent sequential tests.

The “Design Information” table in Output 90.9.1 displays design specifications. With the specified alternative
hypothesisH1 W � D 0:15, the maximum information is derived to achieve a power of 0.90 atH1. The derived
fixed-sample information ratio 1.107 is the maximum information needed for a group sequential design
relative to its corresponding fixed-sample design. Compare to the default BETABOUNDARY=BINDING
option, the BETABOUNDARY=NONBINDING option requires a larger sample size for the design.
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Output 90.9.1 O’Brien-Fleming Design Information

The SEQDESIGN Procedure
Design: NonbindingDesign
The SEQDESIGN Procedure
Design: NonbindingDesign

Design Information

Statistic Distribution Normal

Boundary Scale Standardized Z

Alternative Hypothesis Upper

Early Stop Accept(Nonbinding)/Reject Null

Method O'Brien-Fleming

Boundary Key Both

Alternative Reference 0.15

Number of Stages 4

Alpha (Binding Beta Boundary) 0.02228

Alpha (Nonbinding Beta Boundary) 0.025

Beta 0.1

Power 0.9

Max Information (Percent of Fixed Sample) 110.7138

Max Information 517.0296

Null Ref ASN (Percent of Fixed Sample) 62.29796

Alt Ref ASN (Percent of Fixed Sample) 78.5392

The “Boundary Information” table in Output 90.9.2 displays the information level, alternative reference,
and boundary values at each stage. With the default BOUNDARYSCALE=STDZ option, the SEQDESIGN
procedure displays the output boundaries with the standardized normal Z scale.

Output 90.9.2 O’Brien-Fleming Boundary Information

Boundary Information (Standardized Z Scale)
Nonbinding Beta Boundary, Null Reference = 0

Alternative
Boundary

Values

Information Level Reference Upper

_Stage_ Proportion Actual N Upper Beta Alpha

1 0.2500 129.2574 110.5151 1.70537 -1.06752 4.04859

2 0.5000 258.5148 221.0302 2.41176 0.45103 2.86279

3 0.7500 387.7722 331.5452 2.95379 1.35286 2.33746

4 1.0000 517.0296 442.0603 3.41074 2.02430 2.02430

With ODS Graphics enabled, a detailed boundary plot with the rejection and acceptance regions is displayed,
as shown in Output 90.9.3. The horizontal axis indicates the information levels for the design. The stages are
indicated by vertical lines with accompanying stage numbers. If the test statistic at a stage is in a rejection
region, the trial stops and the hypothesis is rejected. If the test statistic is in an acceptance region, then the
trial either stops to accept the hypothesis or continues to the next stage. If the statistic is not in a rejection or
an acceptance region, the trial continues to the next stage.
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Output 90.9.3 O’Brien-Fleming Boundary Plot

The boundary plot also displays the information level and critical value for the corresponding fixed-sample
design. The solid and dashed lines at the fixed-sample information level correspond to the rejection and
acceptance lines, respectively.

The “Error Spending Information (Nonbinding Beta Boundary)” in Output 90.9.4 displays cumulative error
spending at each stage for each boundary. With a nonbinding beta boundary, the ˛ spending at each stage is
computed by using the ˛ boundary only.

Output 90.9.4 Error Spending Information

Error Spending Information
(Nonbinding Beta Boundary)

Cumulative
Error Spending

Information
Level Upper

_Stage_ Proportion Beta Alpha

1 0.2500 0.00278 0.00003

2 0.5000 0.02603 0.00211

3 0.7500 0.06343 0.01046

4 1.0000 0.10000 0.02500
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With the SAMPLESIZE statement, the maximum information is used to derive the required sample size
for the study. The “Sample Size Summary” table in Output 90.9.5 displays parameters for the sample size
computation.

Output 90.9.5 Required Sample Size Summary

Sample Size Summary

Test Two-Sample Proportions

Null Proportion 0.6

Proportion (Group A) 0.75

Test Statistic Z for Proportion

Reference Proportions Alt Ref

Max Sample Size 442.0603

Expected Sample Size (Null Ref) 248.7446

Expected Sample Size (Alt Ref) 313.5929

With the derived maximum information and the specified MODEL= option in the SAMPLESIZE statement,
the total sample size in each group for testing the difference between two proportions under the alternative
hypothesis is

N1 D N2 D .p1c .1 � p1c/C p1t .1 � p1t // IX

where p1c D 0:6 and p1t D p1c C �1 D 0:75. By default (or equivalently if you specify REF=PROP in
the MODEL=TWOSAMPLEFREQ option), the required sample sizes are computed under the alternative
hypothesis. See the section “Test for the Difference between Two Binomial Proportions” in the chapter “The
SEQDESIGN Procedure” for a description of these parameters.

The “Sample Sizes (N)” table in Output 90.9.6 displays the required sample sizes at each stage, in both
fractional and integer numbers. The derived sample sizes under the heading Fractional N which correspond
to the design are not integers. These sample sizes are rounded up to integers under the heading Ceiling N. In
practice, integer sample sizes are used, and the information levels increase slightly. Thus, 56, 111, 166, and
222 patients are needed in each group for the four stages, respectively.

Output 90.9.6 Required Sample Sizes

Sample Sizes (N)
Two-Sample Z Test for Proportion Difference

Fractional N Ceiling N

_Stage_ N N(Grp 1) N(Grp 2) Information N N(Grp 1) N(Grp 2) Information

1 110.52 55.26 55.26 129.3 112 56 56 131.0

2 221.03 110.52 110.52 258.5 222 111 111 259.6

3 331.55 165.77 165.77 387.8 332 166 166 388.3

4 442.06 221.03 221.03 517.0 444 222 222 519.3

Suppose the trial follows the study plan, and 56 patients are available in each group at stage 1. The data set
count_1 contains these 108 patients. Output 90.9.7 lists the first 10 observations of the data set.
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Output 90.9.7 Clinical Trial Data

First 10 Obs in the Trial DataFirst 10 Obs in the Trial Data

Obs Trt Resp

1 0 0

2 1 1

3 0 1

4 1 1

5 0 1

6 1 0

7 0 0

8 1 1

9 0 1

10 1 0

The Trt variable is a grouping variable with value 0 for a patient in the placebo control group and value 1
for a patient in the treatment group who is given vitamin C supplements. The Resp variable is an indicator
variable with value 1 for a patient without flu symptoms after five days and value 0 for a patient with flu
symptoms after five days.

The following statements use the GENMOD procedure to estimate the treatment effect at stage 1:

proc genmod data=count_1;
model Resp= Trt;

ods output ParameterEstimates=Parms_Count1;
run;

Output 90.9.8 displays the treatment effect at stage 1.

Output 90.9.8 Stage 1 Treatment Difference

The GENMOD ProcedureThe GENMOD Procedure

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

Wald 95%
Confidence

Limits
Wald

Chi-Square Pr > ChiSq

Intercept 1 0.6786 0.0619 0.5572 0.7999 120.07 <.0001

Trt 1 0.0179 0.0876 -0.1538 0.1895 0.04 0.8384

Scale 1 0.4634 0.0310 0.4065 0.5283

Note: The scale parameter was estimated by maximum likelihood.

The test statistic is O�1 D Opt � Opc D 0:0179, and its associated standard error isq
Var. O�1/ D

r
Opc.1 � Opc/

56
C
Opt .1 � Opt /

56
D 0:0876

The following statements create and display (in Output 90.9.9) the data set that contains the parameter

estimate at stage 1, O�1 D 0:0179, and its associated standard error
q
Var. O�1/ D 0:0876 which are used in

the SEQTEST procedure:
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data Parms_Count1;
set Parms_Count1;
if Parameter='Trt';
_Scale_='MLE';
_Stage_= 1;
keep _Scale_ _Stage_ Parameter Estimate StdErr;

run;

proc print data=Parms_Count1;
title 'Statistics Computed at Stage 1';

run;

Output 90.9.9 Statistics Computed at Stage 1

Statistics Computed at Stage 1Statistics Computed at Stage 1

Obs Parameter Estimate StdErr _Scale_ _Stage_

1 Trt 0.0179 0.0876 MLE 1

The initial required sample sizes are derived with the proportions pc D 0:6 and pt D 0:75. If the observed
proportions are different from these assumed values, or if the number of available patients is different from
the study plan in one of the stages, then the information level that corresponds to the test statistic is estimated
from

Ik D
1

Var. O�k/

The following statements invoke the SEQTEST procedure and test for early stopping at stage 1:

ods graphics on;
proc seqtest Boundary=Bnd_Count

Parms(Testvar=Trt)=Parms_Count1
betaboundary=nonbinding
infoadj=none
errspendmin=0.001
errspend
;

ods output Test=Test_Count1;
run;
ods graphics off;

The BOUNDARY= option specifies the input data set that provides the boundary information for the trial
at stage 1, which was generated in the SEQDESIGN procedure. The PARMS=PARMS_COUNT1 option
specifies the input data set PARMS_COUNT1 that contains the test statistic and its associated standard error
at stage 1, and the TESTVAR=TRT option identifies the test variable TRT in the data set.

The BETABOUNDARY=NONBINDING option requests nonbinding beta boundary to have the flexibility
to continue the trial when the test statistic falls in the acceptance region at stage 1. The INFOADJ=NONE
option maintains the information levels at future interim stages (2 and 3) as provided in the BOUNDARY=
data set. The default BOUNDARYSCALE=STDZ option displays the output boundaries in terms of the
standardized normal Z scale.
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The O’Brien-Fleming design is conservative in early stages and might not be desirable in a clinical trial.
The ERRSPENDMIN=0.001 option specifies the minimum error spending at each stage to be 0.001, and
it might increase the corresponding nominal p-value in early stages for the trial. The default BOUND-
ARYSCALE=STDZ option uses the standardized normal Z scale to display test statistics in the boundary
table and boundary plots.

The ODS OUTPUT statement with the TEST=TEST_COUNT1 option creates an output data set named
TEST_COUNT1 which contains the updated boundary information for the test at stage 1. The data set also
provides the boundary information that is needed for the group sequential test at the next stage.

The “Design Information” table in Output 90.9.10 displays design specifications. The derived statistics, such
as the overall ˛ and ˇ levels, are derived from the specified maximum information and boundary values in
the BOUNDARY= data set. Note that with a minor change in the information level at stage 1, the power also
changes slightly from the design provided in the BOUNDARY= data set.

Output 90.9.10 Design Information

The SEQTEST ProcedureThe SEQTEST Procedure

Design Information

BOUNDARY Data Set WORK.BND_COUNT

Data Set WORK.PARMS_COUNT1

Statistic Distribution Normal

Boundary Scale Standardized Z

Alternative Hypothesis Upper

Early Stop Accept(Nonbinding)/Reject Null

Number of Stages 4

Alpha (Binding Beta Boundary) 0.02237

Alpha (Nonbinding Beta Boundary) 0.025

Beta 0.10142

Power 0.89858

Max Information (Percent of Fixed Sample) 111.2654

Max Information 517.029617

Null Ref ASN (Percent of Fixed Sample) 62.27694

Alt Ref ASN (Percent of Fixed Sample) 76.31328

With the ERRSPEND option, the “Error Spending Information” table in Output 90.9.11 displays cumulative
error spending at each stage for each boundary. By default (or equivalently if you specify BOUND-
ARYKEY=ALPHA), the Type I error level with nonbinding beta boundary ˛ D 0:025 is maintained.
Furthermore, with the ERRSPENDMIN=0.001 option, the ˛ spending at each stage is greater than or equal
to 0.001.
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Output 90.9.11 Error Spending Information

Error Spending Information
(Nonbinding Beta Boundary)

Cumulative
Error Spending

Information Level Upper

_Stage_ Proportion Actual Beta Alpha

1 0.2522 130.3756 0.00302 0.00100

2 0.5000 258.5148 0.02640 0.00299

3 0.7500 387.7722 0.06433 0.01101

4 1.0000 517.0296 0.10142 0.02500

The “Test Information” table in Output 90.9.12 displays the boundary values for the design, test statistic,
and resulting action at each stage. With the default BOUNDARYSCALE=STDZ option, the standardized
normal Z scale is used for the test statistic and boundary values. The table shows that the test statistic 0.2039
is between the upper ˛ and ˇ boundaries, so the trial continues to the next stage.

Output 90.9.12 Sequential Test

Test Information (Standardized Z Scale)
Nonbinding Beta Boundary, Null Reference = 0

Alternative
Boundary

Values Test

Information Level Reference Upper Trt

_Stage_ Proportion Actual Upper Beta Alpha Estimate Action

1 0.2522 130.3756 1.71273 -1.03271 3.09023 0.20390 Continue

2 0.5000 258.5148 2.41176 0.45564 2.84016 .

3 0.7500 387.7722 2.95379 1.36069 2.34211 .

4 1.0000 517.0296 3.41074 2.03599 2.03599 .

The information level at stage 1 is derived from the standard error,

I1 D
1

Var. O�1/
D

1

.s:e:. O�1//2
D 130:376

By default (or equivalently if you specify PLOTS=TEST), the “Test Plot” graph displays boundary values
of the design and the test statistic at stage 1, as shown in Output 90.9.13. It also shows that the observed
statistic is in the continuation region.
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Output 90.9.13 Sequential Test Plot

The observed information level at stage 1, I1 D 130:376, is slightly larger than the target information level at
the design. If an observed information level in the study is substantially different from its target level in the
design, then the sample sizes should be adjusted in the subsequent stages to achieve the target information
levels.

Suppose the trial continues to the next stage, and 111 patients are available in each group at stage 2. The data
set COUNT_2 contains these 222 patients.

The following statements use the GENMOD procedure to estimate the treatment effect at stage 2:

proc genmod data=Count_2;
model Resp= Trt;

ods output ParameterEstimates=Parms_Count2;
run;

The following statements create the parameter estimate at stage 2, O�2 D Op2 � Op1 D 0:027, and its associated

standard error
q
Var. O�2/ D 0:0621 into a test data set:
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data Parms_Count2;
set Parms_Count2;
if Parameter='Trt';
_Scale_='MLE';
_Stage_= 2;
keep _Scale_ _Stage_ Parameter Estimate StdErr;

run;

proc print data=Parms_Count2;
title 'Statistics Computed at Stage 2';

run;

Output 90.9.14 displays the test statistics at stage 2.

Output 90.9.14 Statistics Computed at Stage 2

Statistics Computed at Stage 2Statistics Computed at Stage 2

Obs Parameter Estimate StdErr _Scale_ _Stage_

1 Trt 0.0270 0.0621 MLE 2

The following statements invoke the SEQTEST procedure and test for early stopping at stage 2:

ods graphics on;
proc seqtest Boundary=Test_Count1

Parms(Testvar=Trt)=Parms_Count2
betaboundary=nonbinding
infoadj=none
;

ods output Test=Test_Count2;
run;
ods graphics off;

The BOUNDARY= option specifies the input data set that provides the boundary information for the trial
at stage 2, which was generated by the SEQTEST procedure at the previous stage. The PARMS= option
specifies the input data set that contains the test statistic and its associated standard error at stage 2, and the
TESTVAR= option identifies the test variable in the data set.

The ODS OUTPUT statement with the TEST=TEST_COUNT2 option creates an output data set named
TEST_COUNT2 which contains the updated boundary information for the test at stage 2. The data set also
provides the boundary information that is needed for the group sequential test at the next stage.

The “Test Information” table in Output 90.9.15 displays the boundary values, test statistic, and resulting action
at each stage. The table shows that the test statistic 0.43522 is less than the corresponding upper beta boundary
value, so the trial can be stopped to accept the hypothesis. With the BETABOUNDARY=NONBINDING
option, The clinic has the option to continue the trial while still maintaining the Type I error level.
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Output 90.9.15 Sequential Test

The SEQTEST ProcedureThe SEQTEST Procedure

Test Information (Standardized Z Scale)
Nonbinding Beta Boundary, Null Reference = 0

Alternative
Boundary

Values Test

Information Level Reference Upper Trt

_Stage_ Proportion Actual Upper Beta Alpha Estimate Action

1 0.2522 130.3756 1.71273 -1.03271 3.09023 0.20390 Continue

2 0.5015 259.3157 2.41549 0.46349 2.83297 0.43522 Accept Null (Nonbinding)

3 0.7500 387.7722 2.95379 1.36018 2.34294 .

4 1.0000 517.0296 3.41074 2.03610 2.03610 .

With ODS Graphics enabled, the “Test Plot” is displayed, as shown in Output 90.9.16. The plot displays
boundary values of the design and the test statistics at the first two stages. As expected, the test statistic at
stage 2 is in the “Upper Acceptance Region” below the upper beta boundary.

Output 90.9.16 Sequential Test Plot
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Suppose the clinic decides to continue the trial, and at the next stage, 108 patients are available in each group
at stage 3. The data set COUNT_3 contains these 332 patients.

The following statements use the GENMOD procedure to estimate the treatment effect at stage 3:

proc genmod data=Count_3;
model Resp= Trt;

ods output ParameterEstimates=Parms_Count3;
run;

The following statements create the parameter estimate at stage 2, O�2 D Op2� Op1 D 0:1205, and its associated

standard error
q
Var. O�2/ D 0:0507 into a test data set:

data Parms_Count3;
set Parms_Count3;
if Parameter='Trt';
_Scale_='MLE';
_Stage_= 3;
keep _Scale_ _Stage_ Parameter Estimate StdErr;

run;

proc print data=Parms_Count3;
title 'Statistics Computed at Stage 3';

run;

Output 90.9.17 displays the test statistics at stage 3.

Output 90.9.17 Statistics Computed at Stage 3

Statistics Computed at Stage 3Statistics Computed at Stage 3

Obs Parameter Estimate StdErr _Scale_ _Stage_

1 Trt 0.1205 0.0507 MLE 3

The following statements invoke the SEQTEST procedure and test for early stopping at stage 3:

ods graphics on;
proc seqtest Boundary=Test_Count2

Parms(Testvar=Trt)=Parms_Count3
betaboundary=nonbinding
;

ods output Test=Test_Count3;
run;
ods graphics off;

The “Test Information” table in Output 90.9.18 displays the boundary values, test statistic, and resulting
action at each stage. The table shows that the test statistic 2.37437 is greater than the corresponding upper
alpha boundary value, so the trial stops to reject the hypothesis.
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Output 90.9.18 Sequential Test

The SEQTEST ProcedureThe SEQTEST Procedure

Test Information (Standardized Z Scale)
Nonbinding Beta Boundary, Null Reference = 0

Alternative
Boundary

Values Test

Information Level Reference Upper Trt

_Stage_ Proportion Actual Upper Beta Alpha Estimate Action

1 0.2522 130.3756 1.71273 -1.03271 3.09023 0.20390 Continue

2 0.5015 259.3157 2.41549 0.46349 2.83297 0.43522 Accept Null (Nonbinding)

3 0.7512 388.3763 2.95609 1.36434 2.34036 2.37437 Reject Null

4 1.0000 517.0296 3.41074 2.03658 2.03658 .

With ODS Graphics enabled, the “Test Plot” is displayed, as shown in Output 90.9.19. The plot displays
boundary values of the design and the test statistics at the first two stages. As expected, the test statistic at
stage 3 is in the “Upper Rejection Region” above the upper alpha boundary.

Output 90.9.19 Sequential Test Plot
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After a trial is stopped, the “Parameter Estimates” table in Output 90.9.20 displays the stopping stage and the
maximum likelihood estimate of the parameter. It also displays the p-value, median estimate, and confidence
limits for the parameter that correspond to the observed statistic by using the specified sample space ordering.

Output 90.9.20 Parameter Estimates

Parameter Estimates
Stagewise Ordering

Parameter
Stopping

Stage MLE
p-Value for
H0:Parm=0

Median
Estimate Lower 95% CL

Trt 3 0.120482 0.0103 0.119371 0.03494

The MLE statistic at the stopping stage is the maximum likelihood estimate of the parameter and is biased.
The computation of p-value, unbiased median estimate, and confidence limits depends on the ordering of the
sample space .k; z/, where k is the stage number and z is the observed standardized Z statistic. By default
(or equivalently if you specify ORDER=STAGEWISE), the stagewise ordering that uses counterclockwise
ordering around the continuation region is used to compute the p-value, unbiased median estimate, and
confidence limits. As expected, the p-value is less than 0.025, and the confidence interval does not contain
the null reference zero.

See the section “Available Sample Space Orderings in a Sequential Test” on page 7567 for a detailed
description of the stagewise ordering.
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Overview: SIM2D Procedure
The SIM2D procedure uses an LU decomposition technique to produce a spatial simulation for a Gaussian
random field with a specified mean and covariance structure in two dimensions.

The simulation can be conditional or unconditional. If it is conditional, a set of coordinates and associated
field values are read from a SAS data set. The resulting simulation honors these data values.

You can specify the mean structure as a quadratic function in the coordinates. Specify the semivariance by
naming the form and supplying the associated parameters, or by using the contents of an item store file that
was previously created by PROC VARIOGRAM.

PROC SIM2D can handle anisotropic and nested semivariogram models. Seven covariance models are
supported: Gaussian, exponential, spherical, cubic, pentaspherical, sine hole effect, and Matérn. A single
nugget effect is also supported.

You can specify the locations of simulation points in a GRID statement, or they can be read from a SAS
data set. The grid specification is most suitable for a regular grid; the data set specification can handle any
irregular pattern of points.

The SIM2D procedure writes the simulated values for each grid point to an output data set. The SIM2D
procedure uses ODS Graphics to create graphs as part of its output. For general information about ODS
Graphics, see Chapter 21, “Statistical Graphics Using ODS.” For more information about the graphics
available in PROC SIM2D, see the section “ODS Graphics” on page 7729.

Introduction to Spatial Simulation
The purpose of spatial simulation is to produce a set of partial realizations of a spatial random field (SRF)
Z.s/; s 2 D � R2 in a way that preserves a specified mean �.s/ D E ŒZ.s/� and covariance structure
Cz.s1 � s2/ D Cov .Z.s1/; Z.s2//. The realizations are partial in the sense that they occur only at a finite
set of locations .s1; s2; � � � ; sn/. These locations are typically on a regular grid, but they can be arbitrary
locations in the plane.

PROC SIM2D produces simulations for continuous processes in two dimensions by using the lower-upper
(LU) decomposition method. In these simulations the possible values of the measured quantity Z.s0/ at
location s0 D .x0; y0/ can vary continuously over a certain range. An additional assumption, needed for
computational purposes, is that the spatial random field Z.s/ is Gaussian. The section “Details: SIM2D
Procedure” on page 7724 provides more information about different types of spatial simulation and associated
computational methods.

Spatial simulation is different from spatial prediction, where the emphasis is on predicting a point value at
a given grid location. In this sense, spatial prediction is local. In contrast, spatial simulation is global; the
emphasis is on the entire realization .Z.s1/; Z.s2/; � � � ; Z.sn//.

Given the correct mean �.s/ and covariance structure Cz.s1 � s2/, SRF quantities that are difficult or
impossible to calculate in a spatial prediction context can easily be approximated by functions of multiple
simulations.
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Getting Started: SIM2D Procedure
Spatial simulation, just like spatial prediction, requires a model of spatial dependence, usually in terms of
the covariance Cz.h/. For a given set of spatial data Z.si /; i D 1; � � � ; n, the covariance structure (both the
form and parameter values) can be found by the VARIOGRAM procedure. This example uses the coal seam
thickness data that are also used in the section “Getting Started: VARIOGRAM Procedure” on page 8913 in
Chapter 109, “The VARIOGRAM Procedure.”

In this example, the data consist of coal seam thickness measurements (in feet) taken over an area of 100�100
(106 ft2). The coordinates are offsets from a point in the southwest corner of the measurement area, with the
north and east distances in units of thousands of feet.

Preliminary Spatial Data Analysis
A semivariance analysis of the coal seam thickness thick data set is performed in “Getting Started: VARI-
OGRAM Procedure” on page 8913 in Chapter 109, “The VARIOGRAM Procedure.” The analysis considers
the spatial random field (SRF) Z.s/ of the Thick variable to be free of surface trends. The expected value
EŒZ.s/� is then a constant �.s/ D �, which suggests that you can work with the original thickness data
rather than residuals from a trend surface fit. In fact, a reasonable approximation of the spatial process
generating the coal seam data is given by

Z.s/ D �C ".s/

where ".s/ is a Gaussian SRF with Gaussian covariance structure

Cz.h/ D c0 exp

 
�
h2

a20

!

Of note, the term “Gaussian” is used in two ways in this description. For a set of locations s1; s2; � � � ; sn, the
random vector

Z .s/ D

26664
Z.s1/

Z.s2/
:::

Z.sn/

37775
has a multivariate Gaussian or normal distribution Nn .�;†/. The (i,j) element of † is computed by
Cz.si � sj /, which happens to be a Gaussian functional form.
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Any functional form for Cz.h/ that yields a valid covariance matrix † can be used. Both the functional form
of Cz.h/ and the parameter values

� D 40:1173

c0 D 7:4599

a0 D 30:1111

are estimated by using PROC VARIOGRAM in section “Theoretical Semivariogram Model Fitting” on
page 8922 in Chapter 109, “The VARIOGRAM Procedure.” Specifically, the expected value � is reported in
the VARIOGRAM procedure OUTV output data set, and the parameters c0 and a0 are estimates derived from
a weighted least squares fit.

The choice of a Gaussian functional form for Cz.h/ is simply based on the data, and it is not at all crucial
to the simulation. However, it is crucial to the simulation method used in PROC SIM2D that Z.s/ be a
Gaussian SRF. For details, see the section “Computational and Theoretical Details of Spatial Simulation” on
page 7724.

Investigating Variability by Simulation
The variability of Z.s/, as modeled by

Z.s/ D �C ".s/

with the Gaussian covariance structure Cz.h/ found previously, is not obvious from the covariance model
form and parameters. The variation around the mean of the surface is relatively small, making it difficult
visually to pick up differences in surface plots of simulated realizations.

Instead, you can compute the mean for each location on a grid from a series of realizations in a simulation.
Then, the standard deviation of all the simulated values at each grid location provides you with a measure of
the variability of Z.s/ for the given covariance structure. You can also investigate variations at selected grid
points in more detail, as shown in the “Example 91.2: Variability at Selected Locations” on page 7735.

The present example shows how to use ODS Graphics with PROC SIM2D to investigate the mean and
standard deviation of simulated values. You use the thick data set which is available from the Sashelp library.
In the data set, the Thick variable represents simulated observations of coal seam thickness. For your goal,
you produce 5,000 realizations of a simulation with PROC SIM2D, where you specify the Gaussian model
with the parameters found previously. You want the simulated data to pass through the simulated values, so
first you define the data with the following data step:
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title 'Using PROC SIM2D for Spatial Simulation';

data thick;
input East North Thick @@;
label Thick='Coal Seam Thickness';
datalines;
0.7 59.6 34.1 2.1 82.7 42.2 4.7 75.1 39.5
4.8 52.8 34.3 5.9 67.1 37.0 6.0 35.7 35.9
6.4 33.7 36.4 7.0 46.7 34.6 8.2 40.1 35.4

13.3 0.6 44.7 13.3 68.2 37.8 13.4 31.3 37.8
17.8 6.9 43.9 20.1 66.3 37.7 22.7 87.6 42.8
23.0 93.9 43.6 24.3 73.0 39.3 24.8 15.1 42.3
24.8 26.3 39.7 26.4 58.0 36.9 26.9 65.0 37.8
27.7 83.3 41.8 27.9 90.8 43.3 29.1 47.9 36.7
29.5 89.4 43.0 30.1 6.1 43.6 30.8 12.1 42.8
32.7 40.2 37.5 34.8 8.1 43.3 35.3 32.0 38.8
37.0 70.3 39.2 38.2 77.9 40.7 38.9 23.3 40.5
39.4 82.5 41.4 43.0 4.7 43.3 43.7 7.6 43.1
46.4 84.1 41.5 46.7 10.6 42.6 49.9 22.1 40.7
51.0 88.8 42.0 52.8 68.9 39.3 52.9 32.7 39.2
55.5 92.9 42.2 56.0 1.6 42.7 60.6 75.2 40.1
62.1 26.6 40.1 63.0 12.7 41.8 69.0 75.6 40.1
70.5 83.7 40.9 70.9 11.0 41.7 71.5 29.5 39.8
78.1 45.5 38.7 78.2 9.1 41.7 78.4 20.0 40.8
80.5 55.9 38.7 81.1 51.0 38.6 83.8 7.9 41.6
84.5 11.0 41.5 85.2 67.3 39.4 85.5 73.0 39.8
86.7 70.4 39.6 87.2 55.7 38.8 88.1 0.0 41.6
88.4 12.1 41.3 88.4 99.6 41.2 88.8 82.9 40.5
88.9 6.2 41.5 90.6 7.0 41.5 90.7 49.6 38.9
91.5 55.4 39.0 92.9 46.8 39.1 93.4 70.9 39.7
55.8 50.5 38.1 96.2 84.3 40.3 98.2 58.2 39.5

;

Since this is a conditional simulation, you can specify the OBSERV option in the PLOTS option in PROC
SIM2D to see the locations and values of the measured points in the area where you want to perform spatial
simulations.

Furthermore, the SIM suboption in the PLOTS option specifies that you want to create a plot that shows the
means of the simulated values across the region. The SIM suboption with no other arguments produces a plot
that shows the contours of the simulated means in the foreground and the gradient of the simulated standard
deviations in the background.

You obtain these PROC SIM2D results at the nodes of an output grid that you specify according to your
application needs. In the present analysis, a convenient area that encompasses all the Thick data points is a
square with a side length of 100,000 feet. You define a regular grid for your simulation in this area. Assume a
distance of 2,500 feet between grid nodes in both directions for a smooth contour plot. Based on this choice,
your square grid has 41 nodes on each side. This means that PROC SIM2D computes the simulated values at
a total of 1,681 grid points. You use the GRID statement of the PROC SIM2D to specify this grid.
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The SIMULATE statement specifies the parameters of your simulation across the output grid. In particular,
the VAR= option specifies the conditional simulation variable. The number of realizations in the simulation
is specified with the NUMREAL= option. The SEED= option specifies the seed for the simulation random
number generator.

The spatial correlation model for the simulation is also specified in the SIMULATE statement. You specify
the model type by using the FORM= option. The options SCALE= and RANGE= specify the covariance
structure sill c0 and range a0 parameters, respectively, as discussed in the previous section.

Although it is not included in the original spatial structure, note that a minimal nugget effect is specified with
the NUGGET= option to avoid singularity issues. Singularity can appear in the present example as a result of
the combined use of the Gaussian covariance model and relatively short distances between nodes, data, or
nodes and data in the simulation area.

These steps are implemented using the following DATA step and statements:

ods graphics on;

proc sim2d data=thick outsim=sim plot=(observ sim);
coordinates xc=East yc=North;
simulate var=Thick numreal=5000 seed=79931

scale=7.4599 range=30.1111 nugget=1e-8 form=gauss;
mean 40.1173;
grid x=0 to 100 by 2.5 y=0 to 100 by 2.5;

run;

The table in Figure 91.1 shows the number of observations read and used in the conditional simulation. This
table can provide you with useful information in case you have missing values in the input data.

Figure 91.1 Number of Observations for the thick Data Set

Using PROC SIM2D for Spatial Simulation

The SIM2D Procedure

Simulation: SIM1, Dependent Variable: Thick

Using PROC SIM2D for Spatial Simulation

The SIM2D Procedure

Simulation: SIM1, Dependent Variable: Thick

Number of Observations Read 75

Number of Observations Used 75

The sample locations are then plotted in Figure 91.2. The figure clearly shows some small-scale variation
that is typical of spatial data.
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Figure 91.2 Scatter Plot of the Observations Spatial Distribution

PROC SIM2D also produces the table shown in Figure 91.3, which contains information about the type of
simulation you run and the number of realizations requested.

Figure 91.3 Simulation Analysis Information

Simulation Information

Simulation Grid Points 1681

Type Conditional

Number of Realizations 5000

The table in Figure 91.4 displays the spatial correlation model information that is used by PROC SIM2D
for the current simulation. If applicable, the table also provides the effective range. This is the distance r�
at which the covariance is 5% of its value at zero. Here you specified the Gaussian model, for which the
effective range r� is

p
3a0.
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Figure 91.4 Simulation Covariance Model Information

Covariance Model
Information

Type Gaussian

Sill 7.4599

Range 30.1111

Effective Range 52.153955

Nugget Effect 1E-8

Eventually, the SIM2D procedure produces the requested simulation plot shown in Figure 91.5. The contours
of the mean of the simulated values show the average of the simulated realizations at each grid node; the
average is based on the given spatial structure characteristics. In this case, these means are also conditioned
by the Thick observations across the region.

Figure 91.5 Contour Plot of Conditionally Simulated Coal Seam Thickness

Observe also the gradient that shows the standard deviation of the simulated values at each grid node. This
gradient appears to be generally small throughout the region. A few exceptions are evident close to the region
borders. In these areas the simulated realizations depend on a limited amount of neighboring data. The
simulation at these locations relies mainly on the underlying spatial structure.
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In addition to the simulation analysis, you can use the PROC SIM2D output to obtain statistical information
about the simulated values at selected locations. Assume that you would like some basic statistics for the
extreme southwest point at (East=0, North=0) and the point (East=75, North=75) toward the northeast corner
of the region. You use the following DATA step to select the realizations for these points from the OUTSIM=
output data set:

data selected;
set sim(where=((gxc=0 and gyc=0) or (gxc=75 and gyc=75)));
label gxc = "X-coord";
label gyc = "Y-coord";

run;

Then, you use PROC SORT to sort the selected data set entries and PROC MEANS to produce the simulation
statistics for the selected points. The following statements yield the mean, standard deviation, and maximum
values of the 5,000 realizations of the Thick values at each one of the selected locations:

proc sort data=selected;
by gxc gyc;

run;
proc means data=selected Mean Std Max;

class gxc gyc;
ways 2;
where ( ((gxc = 0) & (gyc = 0))

| ((gxc = 75) & (gyc = 75)));
var SValue;

run;

ods graphics off;

The requested statistics for the grid points (East=0, North=0) and (East=75,North=75) are shown in Fig-
ure 91.6.

Figure 91.6 Simulation Statistics at Grid Points (East=0, North=0) and (East=75, North=75)

Using PROC SIM2D for Spatial Simulation

The MEANS Procedure

Using PROC SIM2D for Spatial Simulation

The MEANS Procedure

Analysis Variable : SVALUE Simulated Value at Grid Point

X-coord Y-coord N Obs Mean Std Dev Maximum

0 0 5000 40.6968472 0.5328597 42.6616357

75 75 5000 40.1090845 0.0024556 40.1197239

“Example 91.2: Variability at Selected Locations” on page 7735 shows you how to perform a simulation at a
set of selected locations rather than on a domain-wide grid, and how to obtain more detailed statistics from
the simulation.
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Syntax: SIM2D Procedure
The following statements are available in the SIM2D procedure:

PROC SIM2D options ;
BY variables ;
COORDINATES coordinate-variables ;
GRID grid-options ;
ID variable ;
RESTORE store-options ;
SIMULATE simulate-options ;
MEAN mean-options ;

The SIMULATE and MEAN statements are hierarchical; you can specify any number of SIMULATE
statements, but you must specify at least one. If you specify a MEAN statement, it refers to the preceding
SIMULATE statement. If you omit the MEAN statement, a zero-mean model is simulated.

You must specify a single COORDINATES statement to identify the x and y coordinate variables in the input
data set when you perform a conditional simulation. You must also specify a single GRID statement to
specify the grid information.

Table 91.1 outlines the options available in PROC SIM2D classified by function.

Table 91.1 Options Available in the SIM2D Procedure

Task Statement Option

Data Set Options
Specify an input data set PROC SIM2D DATA=
Specify a grid data set GRID GDATA=
Specify labels for individual grid points or in 1-D GRID LABEL
Specify correlation model and parameters SIMULATE MDATA=
Write simulated values PROC SIM2D OUTSIM=
Specify plot display and options PROC SIM2D PLOTS
Specify a quadratic form data set MEAN QDATA=
Specify plot display and options PROC SIM2D PLOTS

Declaring the Role of Variables
Specify variables to define analysis subgroups BY
Specify a variable with observation labels ID
Specify the conditioning variable SIMULATE VAR=
Specify the x and y coordinate variables in the DATA=
data set

COORDINATES XC= YC=

Specify the x and y coordinate variables in the GDATA=
data set

GRID XC= YC=

Specify the constant coefficient variable in the QDATA=
data set

MEAN CONST=

Specify the linear x coefficient variable in the QDATA=
data set

MEAN CX=
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Table 91.1 continued

Task Statement Option

Specify the linear y coefficient variable in the QDATA=
data set

MEAN CY=

Specify the quadratic x coefficient variable in the
QDATA= data set

MEAN CXX=

Specify the quadratic y coefficient variable in the
QDATA= data set

MEAN CYY=

Specify the quadratic xy coefficient variable in the
QDATA= data set

MEAN CXY=

Controlling the Simulation
Specify the number of grid points in one-dimensional
cases

GRID NPTS=

Specify the number of realizations SIMULATE NUMREAL=
Specify the seed value for the random generator SIMULATE SEED=

Controlling the Mean Quadratic Surface
Specify the CONST term MEAN CONST=
Specify the linear x term MEAN CX=
Specify the linear y term MEAN CY=
Specify the quadratic x term MEAN CXX=
Specify the quadratic y term MEAN CYY=
Specify the quadratic cross term MEAN CXY=

Controlling the Semivariogram Model
Specify an angle for an anisotropic model SIMULATE ANGLE=
Specify nested angles SIMULATE ANGLE=(a1; � � � ; ak)
Specify a functional form SIMULATE FORM=
Specify nested functional forms SIMULATE FORM=(f1; � � � ; fk)
Specify a nugget effect SIMULATE NUGGET=
Specify a range parameter SIMULATE RANGE=
Specify nested range parameters SIMULATE RANGE=(r1; � � � ; rk)
Specify a minor-major axis ratio for an anisotropic model SIMULATE RATIO=
Specify nested minor-major axis ratios SIMULATE RATIO=(ra1; � � � ; rak)
Specify a scale parameter SIMULATE SCALE=
Specify nested scale parameters SIMULATE SCALE=(s1; � � � ; sk)
Specify item store with correlation information RESTORE IN=
Specify model and parameters from an item store SIMULATE STORESELECT
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PROC SIM2D Statement
PROC SIM2D options ;

The PROC SIM2D statement invokes the SIM2D procedure. Table 91.2 summarizes the options available in
the PROC SIM2D statement.

Table 91.2 PROC SIM2D Statement Options

Option Description

DATA= Specifies an input data set
IDGLOBAL Uses ascending observation numbers across BY groups
IDNUM Uses the observation number for the observation labels
NARROW Restricts the variables included in the OUTSIM= data set
NOPRINT Suppresses the normal display of results
OUTSIM= Writes simulated values to a SAS data set
PLOTS Specifies plot display and options

You can specify the following options with the PROC SIM2D statement.

DATA=SAS-data-set
specifies a SAS data set that contains the x and y coordinate variables and the VAR= variables that are
used in the SIMULATE statements. This data set is required if you specify the BY statement or the
COORDINATES statement or if any of the SIMULATE statements are conditional—that is, if you
specify the VAR= option in any of those. Otherwise, you do not need the DATA= option, and this
option is ignored if you specify it.

IDGLOBAL
specifies that ascending observation numbers be used across BY groups for the observation labels in
the appropriate output data sets and the OBSERVATIONS plot, instead of resetting the observation
number in the beginning of each BY group. The IDGLOBAL option is ignored if no BY variables are
specified. Also, if you specify the ID statement, then the IDGLOBAL option is ignored unless you
also specify the IDNUM option in the PROC SIM2D statement.

IDNUM
specifies that the observation number be used for the observation labels in the appropriate output
data sets and the OBSERVATIONS plot. The IDNUM option takes effect when you specify the ID
statement; otherwise, it is ignored.

NARROW
restricts the variables included in the OUTSIM= data set. When you specify the NARROW option,
only four variables are included. This option is useful when a large number of simulations are produced.
Including only four variables reduces the memory required for the OUTSIM= data set. For details
about the variables that are excluded with the NARROW option, see the section “Output Data Set” on
page 7727.
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NOPRINT
suppresses the normal display of results. The NOPRINT option is useful when you want only to create
one or more output data sets with the procedure. NOTE: This option temporarily disables the Output
Delivery System (ODS); see the section “ODS Graphics” on page 7729 for more information.

OUTSIM=SAS-data-set
specifies a SAS data set in which to store the simulation values, iteration number, simulate statement
label, variable name, and grid location. For details, see the section “Output Data Set” on page 7727.

PLOTS < (global-plot-option) > < = plot-request< (options) > >

PLOTS < (global-plot-option) > < = (plot-request< (options) > < ... plot-request< (options) > >) >
controls the plots produced through ODS Graphics. When you specify only one plot request, you can
omit the parentheses around the plot request. Here are some examples:

plots=none
plots=observ
plots=(observ(outl) sim)
plots=(sim(fill=mean line=sd obs=grad) sim(fill=sd))

ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;

proc sim2d data=thick outsim=sim;
coordinates xc=East yc=North;
simulate var=Thick numreal=5000 seed=79931

scale=7.4599 range=30.1111 form=gauss;
mean 40.1173;
grid x=0 to 100 by 2.5 y=0 to 100 by 2.5;

run;

ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

By default, no graphs are created; you must specify the PLOTS= option to make graphs.

The following global-plot-option is available:

ONLY
produces only plots that are specifically requested.

The following individual plot-requests and plot options are available:

ALL
produces all appropriate plots. You can specify other options with ALL. For example, to request
all appropriate plots and an additional simulation plot, specify PLOTS=(ALL SIM).
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EQUATE
specifies that all appropriate plots be produced in a way in which the axes coordinates have equal
size units.

NONE
suppresses all plots.

OBSERVATIONS < (observations-plot-options) >

OBSERV < (observations-plot-options) >

OBS < (observations-plot-options) >
produces the observed data plot in conditional simulations. Only one observations plot is created
if you specify the OBSERVATIONS option more than once within a PLOTS option.

The OBSERVATIONS option has the following suboptions:

GRADIENT
specifies that observations be displayed as circles colored by the observed measurement.

LABEL < ( label-option ) >
labels the observations. The label is the ID variable if the ID statement is specified; otherwise,
it is the observation number. The label-option can be one of the following:

EQ=number
specifies that labels show for any observation whose value is equal to the specified
number .

MAX=number
specifies that labels show for observations with values smaller than or equal to the
specified number .

MIN=number
specifies that labels show for observations with values equal to or greater than the
specified number .

If you specify multiple instances of the OBSERVATIONS option and you specify the LABEL
suboption in any of those, then the resulting observations plot displays the observations
labels. If more than one label-option is specified in multiple LABEL suboptions, then the
prevailing label-option in the resulting OBSERVATIONS plot emerges by adhering to the
choosing order: MIN, MAX, EQ.

OUTLINE
specifies that observations be displayed as circles with a border but with a completely
transparent fill.

OUTLINEGRADIENT
is the same as OBSERVATIONS(GRADIENT) except that a border is shown around each
observation.

SHOWMISSING
specifies that observations with missing values be displayed in addition to the observations
with nonmissing values. By default, missing values locations are not shown on the plot.
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If you specify multiple instances of the OBSERVATIONS option and you specify the
SHOWMISSING suboption in any of those, then the resulting observations plot displays the
observations with missing values.

If you omit any of the GRADIENT, OUTLINE, and OUTLINEGRADIENT suboptions, the
OUTLINEGRADIENT is the default suboption. If you specify multiple instances of the OBSER-
VATIONS option or multiple suboptions for OBSERVATIONS, then the resulting observations
plot honors the last specified GRADIENT, OUTLINE, or OUTLINEGRADIENT suboption.

SIMULATION < (sim-plot-options) >

SIM < (sim-plot-options) >
specifies that simulation plots be produced. You can specify the SIM option multiple times in the
same PLOTS option to request instances of plots with the following sim-plot-options:

ALPHA=number
specifies a parameter to obtain the confidence level for constructing confidence limits based
on the simulation standard deviation. The value of number must be between 0 and 1, and
the confidence level is 1�number . The default is ALPHA=0.05; this corresponds to the
confidence level of 95%. The ALPHA= suboption is used only for simulation plots in one
dimension, and it is incompatible with the FILL and LINE suboptions.

CLONLY
specifies that only the confidence limits be shown in a simulation plot without the simulation
mean. This suboption can be useful for identifying confidence limits when the simulation
standard deviation is small at the simulation locations. CLONLY is used only for simulation
band plots of simulations on a linear grid, and it is incompatible with the FILL and LINE
suboptions.

CONNP
specifies that grid points that you provide as individual simulation locations be connected
with a line on the area map. This suboption is ignored when you have a single grid point, a
prediction grid in two dimensions, or when you also specify the NOMAP suboption. The
CONNP suboption is incompatible with the FILL and LINE suboptions.

FILL=NONE | MEAN | SD
produces a surface plot for either the values of the means or the standard deviations.
FILL=SD is the default. However, if you omit the FILL suboption the behavior depends
on the LINE suboption as follows: If you specify LINE=NONE or entirely omit the LINE
suboption, then the FILL suboption is set to its default value. If LINE=PRED or LINE=SE,
then the FILL suboption is set to the same value as the LINE suboption.

LINE=NONE | MEAN | SD
produces a contour line plot for either the values of the means or the standard deviations.
LINE=MEAN is the default. However, if you omit the LINE suboption the behavior depends
on the FILL suboption as follows: If you specify FILL=NONE or entirely omit the FILL
suboption, then the LINE suboption is set to its default value. If FILL=PRED or FILL=SE,
then the LINE suboption is set to the same value as the FILL suboption.
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NOMAP
specifies that the simulation plot be produced without a map of the domain where you have
observations. The NOMAP suboption is used in the case of simulation in one dimension or at
individual points. It is ignored in the case of unconditional simulation, and it is incompatible
with the FILL and LINE suboptions.

OBS=obs-options
produces an overlaid scatter plot of the observations in addition to the specified contour plots.
The following obs-options are available:

GRAD
specifies that observations be displayed as circles colored by the observed measurement.
The same color gradient displays the means surface and the observations. The condi-
tional simulation honors the observed values, so the means surface at the observation
locations has the same color as the corresponding observations.

LINEGRAD
is the same as OBS=GRAD except that a border is shown around each observation.
This option is useful for identifying the location of observations where the standard
deviations are small, because at these points the color of the observations and the color
of the surface are indistinguishable.

NONE
specifies that no observations be displayed.

OUTL
specifies that observations be displayed as circles with a border but with a completely
transparent fill.

OBS=NONE is the default when you have a grid in two dimensions, and OBS=LINEGRAD
is the default used in the area map when you specify a conditional simulation in one
dimension.

SHOWD
specifies that the horizontal axis in scatter plots of linear simulation grids show the distance
between grid points instead of the grid points’ coordinates. When the area map is displayed,
the simulation locations are also connected with a line. In all other grid configurations the
SHOWD suboption is ignored, and it is incompatible with the FILL and LINE suboptions.

SHOWP
specifies that the grid points in band plots of linear simulation grids be shown as marks on
the band plot. In all other grid configurations the SHOWP suboption is ignored, and it is
incompatible with the FILL and LINE suboptions.

TYPE=BAND | BOX
requests a particular type of plot when you have a linear grid, regardless of the default SIM
plot behavior in this case. The TYPE suboption is incompatible with the FILL and LINE
suboptions.

If you specify multiple instances of the ALPHA, FILL, LINE, OBS, or TYPE suboptions in the
same SIM option, then the resulting simulation plot honors the last value specified for any of the
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suboptions. Any combination where you specify FILL=NONE and LINE=NONE is not available.
When the simulation grid is in two dimensions, only the FILL, LINE, and OBS suboptions apply.
If you specify incompatible suboptions in the same SIM plot, then the plot instance is skipped.

The SIM option produces a surface or contour line plot for grids in two dimensions and a band
plot or box plot for grids in one dimension or individual points. In two dimensions the plot
illustrates the means and standard deviations of the simulation realizations at each grid point. By
default, when you specify a linear grid with fewer than 10 points, PROC SIM2D produces a SIM
box plot that depicts the simulation distribution at each point. For 10 or more points in a linear
grid, the SIM plot is a band plot of the simulation means and the confidence limits at the 95%
confidence level. You can override the default behavior in linear grids with the TYPE suboption.
Simulation at individual locations always produces a SIM box plot.

In cases of conditional simulation in one dimension or at individual points an area map is
produced that shows the observations and the grid points. Band plots of linear grids display the
grid points as a line on the map. When you specify individual simulation locations, the grid
points are indicated with marks on the area map. The area map appears on the side of conditional
simulation band plots or box plots, unless you specify the NOMAP suboption. You can also label
individual grid points or the ends of linear grid segments with the LABEL option of the GRID
statement.

SEMIVARIOGRAM < (semivar-plot-option) >

SEMIVAR < (semivar-plot-option) >
specifies that the semivariogram used for the simulation be produced. You can use the following
semivar-plot-option:

MAXD=number
specifies a positive value for the upper limit of the semivariogram horizontal axis of distance.
The SEMIVARIOGRAM plot extends by default to a distance that depends on the correlation
model range. You can use the MAXD= option to adjust the default maximum distance value
for the plot.

The SEMIVARIOGRAM option produces a plot for each correlation model that you specify for
your simulation tasks. In an anisotropic case, the plot is not produced if you assign different
anisotropy angles for different model components. The only exception is when you specify zonal
components at right angles with the nonzonal model components. Also, the SEMIVARIOGRAM
option is ignored for models that consist of purely zonal components.

BY Statement
BY variables ;

You can specify a BY statement with PROC SIM2D to obtain separate analyses of observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:
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• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the SIM2D procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

In PROC SIM2D it makes sense to use the BY statement only in conditional simulations where observations
are involved. In particular, using the BY statement assumes that you have specified an input data set with
the DATA= option in the PROC SIM2D statement. In PROC SIM2D if you omit the VAR= option in the
SIMULATE statement, then this is a request for unconditional simulation even if you have specified the
DATA= option in the PROC SIM2D statement. Therefore, it is possible to specify the BY statement and
request mixed types of simulations by specifying multiple SIMULATE statements in the same PROC SIM2D
step.

A special case occurs when you omit the DATA= option in the PROC SIM2D statement, your unconditional
simulation correlation model input comes from an item store in the RESTORE statement, and this store has
its own BY groups. The SIM2D procedure exhibits then a BY-like behavior, even though you specified no
BY statement. This behavior enables you to distinguish the simulation tasks that depend on models in the
different store BY groups.

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

COORDINATES Statement
COORDINATES coordinate-variables ;

The two options in the COORDINATES statement give the name of the variables in the DATA= data set that
contains the values of the x and y coordinates of the conditioning data. You must specify the COORDINATES
statement when you specify an input data set with the DATA= option in the PROC SIM2D statement.

Only one COORDINATES statement is allowed, and it is applied to all SIMULATE statements that have the
VAR= specification. In other words, it is assumed that all the VAR= variables in all SIMULATE statements
have the same x and y coordinates.

You can abbreviate the COORDINATES statement as COORD.

XCOORD=(variable-name)

XC=(variable-name)
gives the name of the variable that contains the x coordinate of the data in the DATA= data set.

YCOORD=(variable-name)

YC=(variable-name)
gives the name of the variable that contains the y coordinate of the data locations in the DATA= data
set.
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GRID Statement
GRID grid-options < / option > ;

The GRID statement specifies the grid of spatial locations at which to perform the simulations. A single
GRID statement is required and is applied to all SIMULATE statements. Specify the grid in one of the
following three ways:

• Specify the x and y coordinates explicitly for a grid in two dimensions.

• Specify the NPTS= option in addition to the x and y coordinates to define a grid of individual points or
in one dimension.

• Specify the coordinates by using a SAS data set for a grid of individual points or in one dimension.

The GRID statement has the following grid-options:

NPTS=number | ALL
controls specification of a grid in one dimension or a grid of individual simulation locations.

When you specify the NPTS=number option and the coordinates of two points in the GRIDDATA=
data set or in both the X= and Y= options, you request a linear simulation grid. Its direction is across
the line defined by the specified points. The grid size is equal to the number of points that you specify
in the NPTS= option, where number � 2.

When you specify the NPTS=ALL option and the coordinates for any number of points in the
GRIDDATA= data set or in each of the X= and Y= options, the SIM2D procedure performs simulation
only at the specified individual locations. Use the NPTS=ALL option to examine a set of individual
points anywhere on the XY plane or to specify a custom grid in one dimension.

If the number of x coordinates and the number of y coordinates in the X= and Y= options, respectively,
are different, then the NPTS= option is ignored; in that case, a two-dimensional grid is used according
to the specified X= and Y= options.

If you specify a simulation grid with any number of points other than two in the GRIDDATA= data set,
then the option NPTS=ALL has the same effect as omitting the NPTS= option.

X=number
X=x1; : : : ; xm
X=x1 to xm
X=x1 to xm by ıx

specifies the x coordinate of the grid locations.

Y=number
Y=y1; : : : ; ym
Y=y1 to ym
Y=y1 to ym by ıy

specifies the y coordinate of the grid locations.

Use the X= and Y= options of the GRID statement to specify a grid in one or two dimensions, or a
grid of individual simulation locations.

For example, the following two GRID statements are equivalent:
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GRID X=1,2,3,4,5 Y=0,2,4,6,8,10;

GRID X=1 TO 5 Y=0 to 10 by 2;

In the following example, the first GRID statement produces a grid in two dimensions. The second
statement produces simulation output only for the four individual points at the locations (1,0), (2,5),
(3,7), and (4,10) on the XY plane.

GRID X=1 TO 4 Y=0,5,7,10;

GRID X=1 TO 4 Y=0,5,7,10 NPTS=ALL;

In the next example, the first GRID statement specifies a 2-by-2 grid in two dimensions. The second
GRID statement specifies a linear grid of eight points. The grid is in the direction of the line defined by
the specified points (2,8) and (3,5) on the XY plane and it extends between these two points.

GRID X=2,3 Y=8,5;

GRID x=2,3 Y=8,5 NPTS=8;

The last example shows a GRID statement that specifies a linear grid made of seven points across the
Y axis. In this case, the syntax is sufficient to fully define a linear grid without the NPTS= option.

GRID X=5 Y=3 TO 9;

To specify grid locations from a SAS data set, you must provide the name of the data set and the
variables that contain the values of the x and y coordinates.

GRIDDATA=SAS-data-set

GDATA=SAS-data-set
specifies a SAS data set that contains the x and y grid coordinates. Use the GRIDDATA= option of the
GRID statement to specify a grid in one dimension or a grid of individual simulation locations.

XCOORD=(variable-name)

XC=(variable-name)
gives the name of the variable that contains the x coordinate of the grid locations in the GRIDDATA=
data set.

YCOORD=(variable-name)

YC=(variable-name)
gives the name of the variable that contains the y coordinate of the grid locations in the GRIDDATA=
data set.

You can specify the following option in the GRID statement after a slash (/):
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LABEL < (suboption) > = (character-list)
specifies labels to tag grid points in simulation plots when you use grids in one dimension. You can
specify one or more such labels as quoted strings in the character-list.

When the number of labels in the character-list exceeds the number of points in your grid, the labels in
the list are used sequentially and any labels in excess are ignored. When the number of labels in the
character-list is smaller than the number of points in your grid, the behavior is as follows:

• If an area map is included in the simulation plot, then blank labels are assigned to the remaining
nonlabeled grid points on the map.

• For the simulation band and box plots, the coordinates of nonlabeled grid points are automatically
assigned as their labels.

If the grid points are collinear and the horizontal axis displays distance, then two labels appear by
default in the simulation plot. These are assigned to the first and the last points of the grid to help
identify the ends of the linear grid segment on the plot map. This label pair is shown only when the
plot includes an area map. Specifically, the two labels appear when you request simulation band plots,
or simulation box plots for which you specify the SIM(SHOWD) suboption, if applicable. The two
labels do not appear if you specify explicitly the NOMAP suboption in the PLOTS=SIM option.

The two labels have default values, unless you choose to specify your own labels with the LABEL=
option. If you specify more than two labels in the character-list under these conditions, then only the
first and last labels in the list are used; any additional labels in between are ignored.

The LABEL= option has the following suboption:

ALL
specifies that all individual points in the grid are assigned sequentially the labels you specify in
the LABEL(ALL)= option when the SIM(SHOWD) suboption is applicable and specified in a
simulation box plot. In all other cases, the ALL suboption is ignored.

The ALL suboption enables you to override the default behavior when the SIM(SHOWD)
suboption is specified (the default behavior is to display labels only for the first and last grid
points). As a result, you can use the ALL suboption to label grid grid points in both conditional
and unconditional simulation tasks regardless of whether you specify the NOMAP suboption in
the PLOTS=SIM option.

The LABEL= option is ignored when you produce simulation plots of grids in two dimensions.

ID Statement
ID variable ;

The ID statement specifies which variable to include for identification of the observations in the labels and
tool tips of the OBSERVATIONS plot and the tool tips of the SIM plot. The ID statement has an effect only
when you perform conditional simulation.

In the SIM2D procedure you can specify only one ID variable in the ID statement. If no ID statement is
given, then PROC SIM2D uses the observation number in the plots.
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RESTORE Statement
RESTORE IN=store-name < / option > ;

The RESTORE statement specifies an item store that provides spatial correlation model input for the PROC
SIM2D simulation tasks. An item store is a binary file defined by the SAS System. You cannot modify the
contents of an item store. The SIM2D procedure can use only item stores created by PROC VARIOGRAM.

Item stores enable you to use saved correlation models without having to repeat specification of these models
in the SIMULATE statement. In principle, an item store contains the chosen model from a model fitting
process in PROC VARIOGRAM. If more than one model form is fitted, then all successful fits are included
in the item store. In this case, you can choose any of the available models to use for simulation with the
STORESELECT(MODEL=) option in the SIMULATE statement. Successfully fitted models might include
questionable fits, which are so flagged when you specify the INFO option to display model names.

The store-name is a usual one- or two-level SAS name, as for SAS data sets. If you specify a one-level
name, then the item store resides in the WORK library and is deleted at the end of the SAS session. Since
item stores are often used for postprocessing tasks, typical usage specifies a two-level name of the form
libname.membername.

When you specify the RESTORE statement, the default output contains some general information about the
input item store. This information includes the store name, label (if assigned), the data set that was used to
create the store, BY group information, the procedure that created the store, and the creation date.

You can specify the following option in the RESTORE statement after a slash (/):

INFO < ( info-options ) >
specifies that additional information about the input item store be printed. This information is provided
in two ODS tables. One table displays the variables in the item store, in addition to the mean and
standard deviation for each of them. These statistics are based on the observations that were used to
produce the store results. The second table shows the model on top of the list of all fitted models for
each direction angle in the item store. The INFO option has the following info-options:

DETAILS

DET
specifies that more detailed information be displayed about the input item store. This option
produces the full list of models for each direction angle in the item store, in addition to the model
equivalence class. For more information about classes of equivalence, see the section “Classes
of Equivalence” on page 8984 in Chapter 109, “The VARIOGRAM Procedure.” The DETAILS
option is ignored if the input item store contains information about a single fitted model.

ONLY
specifies that only information about the input item store without any simulation tasks be
displayed.

Each variable in an item store has a mean value that is passed to PROC SIM2D and used in simulations.
If the mean in the item store is a missing value, then a zero mean is used by default. Specify the “MEAN
Statement” on page 7722 to override the mean information in the item store. For example, if you want to use
only the correlation model in the item store and exclude the accompanying mean, then explicitly specify a
zero mean in the “MEAN Statement” on page 7722.
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When you specify an input item store with the RESTORE statement in PROC SIM2D, all the DATA= input
data set variables must match input item store variables. If there are BY groups in the input DATA= set or in
the input RESTORE variables, then PROC SIM2D handles the different cases as follows:

• If both PROC SIM2D has BY groups and the RESTORE statement has BY groups, then the analysis
variables must match. This matching assumes implicitly that in each BY group of PROC SIM2D
and the item store, the corresponding set of observations and correlation model comes from the same
random field. This assumption is valid if you use the same data set, first in PROC VARIOGRAM to fit
a model and save it in the item store, and then in PROC SIM2D to run simulations with the resulting
correlation models.

• If PROC SIM2D has BY groups but the item store does not, then the item store is accepted only if
the procedure and the item store analysis variables match. In this case, the same item store model
choice iterates across the BY groups of the input data. You are advised to proceed with caution: each
BY group in the input DATA= set corresponds to a different realization of a random field. Hence, by
using the same correlation model for simulation purposes, you implicitly assume that all these different
realizations are instances of the same random field.

• If PROC SIM2D has an input DATA= set and no BY groups but the item store has BY groups, then the
item store is rejected

• If PROC SIM2D has no input DATA= set and the item store has BY groups, then PROC SIM2D runs
unconditional simulations for the models in the store BY groups. See also the BY statement for more
about the behavior in this case.

SIMULATE Statement
SIMULATE simulate-options ;

The SIMULATE statement specifies details on the simulation and the covariance model used in the simulation.
You can specify the following simulate-options with a SIMULATE statement, which can be abbreviated by
SIM.

Table 91.3 summarizes the options available in the SIMULATE statement.

Table 91.3 SIMULATE Statement Options

Option Description

Simulate-Options
NUMREAL= Specifies the number of realizations to produce
VAR= Specifies the conditioning variable

Covariance Model Specification
ANGLE= Specifies the angle of the major axis
FORM= Specifies the functional form
MDATA= Specifies the input data set containing parameter values
NUGGET= Specifies the nugget effect for the model
RANGE= Specifies the range parameter
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Table 91.3 continued

Option Description

RATIO= Specifies the ratio of the minor axis to the major axis
SCALE= Specifies the scale (or sill) parameter
SEED= Specifies the seed to use for the random number generator
SINGULAR= Gives the singularity criterion
SMOOTH= Specifies the smoothness parameter
STORESELECT Uses information from an input item store for prediction

NUMREAL=number

NUMR=number

NR=number
specifies the number of realizations to produce for the spatial process specified by the covariance model.
As a result, the number of observations in the OUTSIM= data set contributed by a given SIMULATE
statement is the product of the NUMREAL= value and the number of grid points. This can cause the
OUTSIM= data set to become large even for moderate values of the NUMREAL= option.

VAR=(variable-name)
specifies the single numeric variable used as the conditioning variable in the simulation. In other words,
the simulation is conditional on the values of the VAR= variable found in the DATA= data set. If
you omit the VAR= option or if all observations of the VAR= variable are missing values, then the
simulation is unconditional. Since multiple SIMULATE statements are allowed, you can perform both
unconditional and conditional simulations with a single PROC SIM2D statement.

Covariance Model Specification

You can specify a semivariogram or covariance model in three ways:

• You specify the required parameters SCALE, RANGE, FORM, and SMOOTH (if you specify the
MATERN form), and possibly the optional parameters NUGGET, ANGLE, and RATIO, explicitly in
the SIMULATE statement.

• You specify an MDATA= data set. This data set contains variables that correspond to the required
parameters SCALE, RANGE, FORM, and SMOOTH (if you specify the MATERN form), and,
optionally, variables for the NUGGET, ANGLE, and RATIO parameters.

• You can specify an input item store in the RESTORE statement. The item store contains one or
more correlation models for one or more direction angles. You can specify these models in the
STORESELECT option of the SIMULATE statement to run a simulation.

The three methods are mutually exclusive: you specify all parameters explicitly, they are all are read from
the MDATA= data set, or you select a model and its parameters from an input item store. The following
simulate-options are related to model specification:
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ANGLE=angle | (angle1, . . . , anglek )
specifies the angle of the major axis for anisotropic models, measured in degrees clockwise from the
N–S axis. The default is ANGLE=0.

In the case of a nested semivariogram model with k nestings, you have the following two ways to
specify the anisotropy major axis: you can specify only one angle which is then applied to all nested
forms, or you can specify one angle for each of the k nestings.

NOTE: The syntax makes it possible to specify different angles for different forms of the nested model,
but this practice is rarely used.

FORM=form | (form1, . . . , formk )
specifies the functional form (type) of the semivariogram model. Use the syntax with the single form
to specify a non-nested model. Use the syntax with forms formi, i D 1; : : : ; k, to specify a nested
model with k structures. Each of the forms can be any of the following:

CUBIC | EXPONENTIAL | GAUSSIAN | MATERN |

PENTASPHERICAL | SINEHOLEEFFECT | SPHERICAL

CUB | EXP | GAU | MAT | PEN | SHE | SPH
specify the functional form (type).

For example, the syntax

FORM=GAU

specifies a model with a single Gaussian structure. Also, the syntax

FORM=(EXP,SHE,MAT)

specifies a nested model with an exponential, a sine hole effect, and a Matérn structure. Finally

FORM=(EXP,EXP)

specifies a nested model with two structures both of which are exponential.

NOTE: In the documentation, models are named either by using their full names or by using the first
three letters of their structures. Also, the names of different structures in a nested model are separated
by a hyphen (-). According to this convention, the previous examples illustrate how to specify a GAU,
an EXP-SHE-MAT, and an EXP-EXP model, respectively, with the FORM= option.

All the supported model forms have two parameters specified by the SCALE= and RANGE= options,
except for the MATERN model which has a third parameter specified by the SMOOTH= option. A
FORM= value is required, unless you specify the MDATA= option or the STORESELECT option.

Computation of the MATERN covariance is numerically demanding. As a result, simulations that use
Matérn covariance structures can be time-consuming.
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MDATA=SAS-data-set
specifies the input data set that contains parameter values for the covariance or semivariogram model.
The MDATA= option cannot be combined with any of the FORM= or STORESELECT options.

The MDATA= data set must contain variables named SCALE, RANGE, and FORM, and it can optionally
contain variables NUGGET, ANGLE, and RATIO. If you specify the MATERN form, then you must
also include a variable named SMOOTH in the MDATA= data set.

The FORM variable must be a character variable, and it can assume only the values allowed in the
explicit FORM= syntax described previously. The RANGE, SCALE and SMOOTH variables must be
numeric. The optional variables ANGLE, RATIO, and NUGGET must also be numeric if present.

The number of observations present in the MDATA= data set corresponds to the level of nesting of the
covariance or semivariogram model. For example, to specify a non-nested model that uses a spherical
covariance, an MDATA= data set might contain the following statements:

data md1;
input scale range form $;
datalines;
25 10 SPH

;

The PROC SIM2D statement to use the MDATA= specification is of the form shown in the following:

proc sim2d data=...;
sim var=.... mdata=md1;

run;

This is equivalent to the following explicit specification of the covariance model parameters:

proc sim2d data=...;
sim var=.... scale=25 range=10 form=sph;

run;

The following MDATA= data set is an example of an anisotropic nested model:

data md2;
input scale range form $ nugget angle ratio smooth;
datalines;
20 8 SPH 5 35 .7 .
12 3 MAT 5 0 .8 2.8
4 1 GAU 5 45 .5 .

;

proc sim2d data=...;
sim var=.... mdata=md2;

run;

This is equivalent to the following explicit specification of the covariance model parameters:
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proc sim2d data=...;
sim var=.... scale=(20,12,4) range=(8,3,1) form=(SPH,MAT,GAU)

angle=(35,0,45) ratio=(.7,.8,.5) nugget=5 smooth=2.8;
run;

This example is somewhat artificial in that it is usually hard to detect different anisotropy directions and
ratios for different nestings by using an experimental semivariogram. NOTE: The NUGGET variable
value is the same for all nestings. This is always the case; the nugget effect is a single additive term for
all models. For further details, see the section “The Nugget Effect” on page 4160 in Chapter 55, “The
KRIGE2D Procedure.”

The example also shows that if you specify a MATERN form in the nested model, then the SMOOTH
variable must be specified for all nestings in the MDATA= data set. You simply specify the SMOOTH
value as missing for nestings other than MATERN.

The SIMULATE statement can be given a label. This is useful for identification in the OUTSIM= data
set when multiple SIMULATE statements are specified. For example:

proc sim2d data=...;
gauss1: sim var=.... form=gau;
mean ....;
gauss2: sim var=.... form gau;
mean ....;
exp1: sim var=.... form=exp;
mean ....;
exp2: sim var=.... form=exp;
mean ....;

run;

In the OUTSIM= data set, the values “GAUSS1,” “GAUSS2,” “EXP1,” and “EXP2” for the LABEL
variable help to identify the realizations that correspond to the four SIMULATE statements. If you
do not provide a label for a SIMULATE statement, a default label of SIMn is given, where n is the
number of unlabeled SIMULATE statements seen so far.

NUGGET=number
specifies the nugget effect for the model. This effect is due to a discontinuity in the semivariogram as
determined by plotting the sample semivariogram (see the section “The Nugget Effect” on page 4160
in Chapter 55, “The KRIGE2D Procedure,” for details). For models without any nugget effect, the
NUGGET= option is left out. The default is NUGGET=0.

RANGE=range | (range1, . . . , rangek )
specifies the range parameter in the semivariogram models. In the case of a nested semivariogram
model with k nestings, you must specify a range for each nesting.

The range parameter is the divisor in the exponent in all supported models. It has the units of distance
or distance squared for these models, and it is related to the correlation scale for the underlying spatial
process.

See the section “Theoretical Semivariogram Models” on page 4153 in Chapter 55, “The KRIGE2D
Procedure,” for details about how the RANGE= values are determined.
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RATIO=ratio | (ratio1, . . . , ratiok )
specifies the ratio of the length of the minor axis to the length of the major axis for anisotropic models.
The value of the RATIO= option must be between 0 and 1. In the case of a nested semivariogram
model with k nestings, you can specify a ratio for each nesting. The default is RATIO=1.

SCALE=scale | (scale1, . . . , scalek )
specifies the scale (or sill) parameter in semivariogram models. In the case of a nested semivari-
ogram model with k nestings, you must specify a scale for each nesting. The scale parameter is the
multiplicative factor in all supported models; it has the same units as the variance of the VAR= variable.

See the section “Theoretical Semivariogram Models” on page 4153 in Chapter 55, “The KRIGE2D
Procedure,” for details about how the SCALE= values are determined.

SEED=seed-value
specifies the seed to use for the random number generator. The SEED= option seed-value has to be an
integer.

SINGULAR=number
gives the singularity criterion for solving the set of linear equations involved in the computation of the
mean and covariance of the conditional distribution associated with a given SIMULATE statement.
The larger the value of the SINGULAR= option, the easier it is for the covariance matrix system to be
declared singular. The default is SINGULAR=1E–8.

For more details about the use of the SINGULAR= option, see the section “Computational and
Theoretical Details of Spatial Simulation” on page 7724.

SMOOTH=smooth | (smooth1, . . . , smoothm)
specifies the smoothness parameter � > 0 in the Matérn type of semivariance structures. The special
case � D 0:5 is equivalent to the exponential model, whereas � !1 gives the Gaussian model.

When you specify m different MATERN forms in the FORM= option, you must also provide m
smoothness values in the SMOOTH option. If you must specify more than one smoothness value, the
values are assigned sequentially to the MATERN nestings in the order the nestings are specified. If
you specify more smoothness values than necessary, then values in excess are ignored.

STORESELECT(ssel-options)

SSEL(ssel-options)
specifies that information from an input item store be used for the prediction. You cannot combine the
STORESELECT option with any of the FORM= or MDATA= options. The STORESELECT option
has the following ssel-options:

TYPE=field-type
specifies whether to perform isotropic or anisotropic simulation. You can choose the field-type
from one of the following:

ISO
specifies isotropic field for the simulation.

ANIGEO | GEO
specifies a field with geometric anisotropy for the simulation.
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ANIZON(zonal-form1, . . . , zonal-formn)
ZON(zonal-form1, . . . , zonal-formn)

specifies a field with zonal anisotropy for the simulation. Each zonal-formi, i D 1; : : : ; n,
can be any of the following:

CUB | EXP | GAU | MAT | PEN | SHE | SPH
specify a form for the simulation.

Each zonal-formi, i D 1; : : : ; n, is a structure in the purely zonal component of the
correlation model in the direction angle of the minor anisotropy axis. For this reason, when
you specify the TYPE=ANIZON suboption you must also specify the nonzonal component
of the correlation model in the MODEL= suboption of the STORESELECT option. Assume
the nonzonal component has k structures; these are common across all directions and each
one has the same scale in all directions. In that sense, you use the TYPE=ANIZON suboption
to specify only the n zonal anisotropy structures of an input store (k C n)-structure nested
model in the direction angle of the minor anisotropy axis.

Given this specification, kCnmust be up to the maximum number of nested model structures
that is supported by the item store. See also the MODEL= suboption of the STORESELECT
option.

In conclusion, you can use an input item store for prediction with zonal anisotropy if you
know that every structure in the nonzonal model component has the same scale across all
directions. When this condition does not apply for the item store models, specify the model
parameters explicitly in the SIMULATE statement.

Computation of the MATERN covariance is numerically demanding. As a result, predictions that
use Matérn covariance structures can be time-consuming.

If you omit the TYPE= option, the default behavior is TYPE=ISO when the input item store
contains information for only one angle or for the omnidirectional case. If you specify an item
store with information for more than one direction, then the default behavior is TYPE=ANIGEO.

When you specify TYPE=ISO to request isotropic analysis in the presence of an item store
with information for multiple directions, you must specify the ANGLEID= suboption of the
STORESELECT option with one argument. This argument specifies which of the direction
angles information to use for the isotropic analysis.

When you indicate the presence of anisotropy with the TYPE=ANIGEO or TYPE=ANIZON
suboptions of the STORESELECT option, the following conditions apply:

• You must specify the ANGLEID= suboption of the STORESELECT option to designate the
major and minor anisotropy axes. See the ANGLEID= suboption of the STORESELECT
option for details.

• – For TYPE=ANIGEO, ensure that you have the same scale in all anisotropy directions.
– For TYPE=ANIZON, ensure that the nonzonal component scale is the same in all

anisotropy directions.
If you import a nested model, these rules also apply to each one of the nested structures.

• Model ranges in the major anisotropy axis must be longer than ranges in the minor anisotropy
axis.

• Any Matérn covariance structure must maintain its smoothness parameter value in all
anisotropy directions.



7720 F Chapter 91: The SIM2D Procedure

ANGLEID=angleid1 | (angleid1, angleid2)
specifies which direction angles in the input item store be used for simulation. The angles are
identified by the corresponding number in the AngleID column of the “Store Models Information”
table, or by the AngleID parameter in the table title when you specify the INFO(DETAILS) option
in the RESTORE statement.

If you request isotropic prediction in the TYPE= suboption of the STORESELECT option and the
item store has omnidirectional contents or information about only one angle, then the ANGLEID=
option is ignored. The simulation input comes from the omnidirectional information. In the case
of a single angle, you still perform isotropic simulation and the model parameters are provided
by the model in the single direction angle in the item store. However, if the item store contains
information for more than one angle, then you must specify one angle ID in angleid1. The model
information from the corresponding angle is then used in your isotropic simulation.

When you specify an anisotropic simulation in the TYPE= option of the STORESELECT option,
you need to have information about two perpendicular direction angles. One of them is the major
and the other is the minor anisotropy axis. You must always specify the major anisotropy axis
angle ID in angleid1 and the minor anisotropy axis angle ID in angleid2. This means that the
range parameters of the model forms in the angle designated by the angleid1 need to be larger
than the corresponding ranges of the forms in the angle designated by the angleid2. Conveniently,
if the item store has only two angles, then you only need to specify the ID angleid1 of the major
anisotropy axis angle. If the item store has only one angle, then you cannot perform anisotropic
simulation with input from the item store.

NOTE: You can perform geometric anisotropic analysis even if the item store does not contain
information about a direction that is perpendicular to the one specified by angleid1. This is
possible due to the geometry of the ellipse. In particular, when you specify the major axis with
angleid1 and an angle ID for a second direction with a corresponding smaller range, then PROC
SIM2D automatically computes the minor anisotropy axis range and the necessary range ratio
parameter.

Anisotropic analysis is not possible when you specify instances of the same angle in the input
item store. It is possible that PROC VARIOGRAM produces an item store where two or more
directions can be the same if their corresponding correlation models were obtained for different
angle tolerances or bandwidths in the VARIOGRAM procedure. Consequently, you cannot
specify anisotropic simulation if the input store contains only two angles that are the same or if
you specify angleid1 and angleid2 that correspond to equal angles.

MODEL=form | (form1, . . . , formk )
specifies the theoretical semivariogram model selection to use for the simulation. Use any
combination of one, two, or three forms to describe a model in the input item store because up to
three nested structures are supported. Each formi, i D 1; : : : ; k, can be any of the following:

CUB | EXP | GAU | MAT | PEN | SHE | SPH
specify the selection model.

Computation of the MATERN covariance is numerically demanding. As a result, simulations
that use Matérn covariance structures can be time-consuming.

All fitted models that are stored in the input item store contain information about their compo-
nent parameters and also about the nugget effect if any. The SIM2D procedure retrieves this
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information when you make a model selection in the MODEL= option, and you do not need to
individually specify a nugget effect or any other parameter of the model.

By default, the model that is ranked first among the models for a given angle in the item store is
used for the simulation task. If more than one model is available in the item store, then you can
specify the MODEL= option to use a different model for the simulation.

In an anisotropic simulation, the default selection is the model that is ranked first in the direction
angle of the major anisotropy axis. If you specify the TYPE=ANIGEO option, then a model that
consists of identical structures needs to be present in the selected minor anisotropy axis angle in
the item store. If you specify the TYPE=ANIZON option, then a model with the exact same first
k structures must be present in the selected minor anisotropy axis angle, and it must feature at
least one more structure as a zonal component. The zonal component is specified separately in
the TYPE=ANIZON suboption of the STORESELECT option. Consequently, remember that
in zonal anisotropy the MODEL= suboption designates only the nonzonal component of the
correlation model in the minor anisotropy axis direction. In all, if there are k common structures
and n structures in the purely zonal component, then k C n must be up to the maximum number
of nested model structures that is supported by the item store.

SVAR=store-var | (store-varlist)
specifies one store-var item store variable or a list store-varlist of variables that are present in the
item store. This option selects one or more item store variables whose correlation models you
want to use in the current simulation task.

If you are performing a conditional simulation, then PROC SIM2D searches the input item store
for the variable that is specified in the VAR= option of the SIMULATE statement. Then, the
procedure selects the appropriate correlation model for the task. In this case, if you specify the
SVAR= option, it is ignored. However, when you request an unconditional simulation and specify
input from an item store, then you must also use SVAR= to specify a source for your correlation
model.

In comparison to the other two ways of specifying a correlation model in PROC SIM2D, the STORES-
ELECT option is quite different because you can avoid explicit specification of all parameter values of
a model. When you specify the STORESELECT option, then the corresponding scale, range, nugget
effect, and smoothness (if appropriate) parameter values are invoked as saved attributes of the model
that you select from the item store.

In the case of anisotropy, you specify the angles indirectly with the ANGLEID= option of the
STORESELECT option, and the ratios are computed implicitly by using the selected model ranges.
Explore how to specify valid anisotropical models imported from an input item store with the two
examples that follow.

In the first example, assume the input item store InStoreGeo contains exponential models in the
angles �1 D 0ı, �2 D 45ı, and �3 D 90ı. You know in advance that all models have the same scale
c1 D c2 D c3 across these directions and that the respective ranges are a1 D 15, a2 D 20, and
a3 D 25 in distance units. Hence, you have a case of geometric anisotropy where the major anisotropy
axis is in the direction of angle �3 and the minor anisotropy axis is in the direction of angle �1. The
following statements in PROC SIM2D use the information in the item store InStoreGeo to perform
simulation under the assumption of geometric anisotropy:
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proc sim2d data=...;
restore in=InStoreGeo;
simulate storeselect(model=exp type=anigeo angleid=(3,1));

run;

For the second example, assume a case of zonal anisotropy. Consider the input item store InStoreZon,
which contains models in the two angles, �1 D 30ı and �2 D 120ı. Specifically, in �1 you have an
exponential-spherical model: the exponential structure has scale c1E D 3 and range a1E D 10; the
spherical structure has scale c1S D 1 and range a1S D 6. In direction �2 you have an exponential
model with scale c1E D 3 and range a1E D 12. Hence, the zonal anisotropy major axis is in the
direction of the lowest total variance, which is in angle �2; then, the minor axis is in the direction of
angle �1. The following statements in PROC SIM2D use the information in the store InStoreZon to
perform simulation under the assumption of zonal anisotropy:

proc sim2d data=...;
restore in=InStoreZon;
simulate storeselect(model=exp type=anizon(sph) angleid=(2,1));

run;

MEAN Statement
MEAN spec1, . . . , spec6 ;

MEAN QDATA=SAS-data-set CONST=var1 CX=var2 CY=var3
CXX=var4 CYY=var5 CXY=var6 ;

MEAN QDATA=SAS-data-set ;

A mean function �.s/ that is a quadratic in the coordinates can be written as

�.s/ D �.x; y/ D ˇ0 C ˇ1x C ˇ2y C ˇ3x
2
C ˇ4y

2
C ˇ5xy

The MEAN statement specifies the quadratic surface to use as the mean function for the simulated SRF.
There are two ways to specify the MEAN statement. The MEAN statement allows the specification of the
coefficients ˇ0; � � � ; ˇ5 either explicitly or through a QDATA= data set.

An example of an explicit specification is the following:

mean 1.4 + 2.5*x + 3.6*y + 0.47*x*x + 0.58*y*y + 0.69*x*y;

In this example, all terms have a nonzero coefficient. Any term with a zero coefficient is simply left out of
the specification. For example,

mean 1.4;

is a valid quadratic form with all terms having zero coefficients except the constant term.
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An equivalent way of specifying the mean function is through the QDATA= data set. For example, the MEAN
statement

mean 1.4 + 2.5*x + 3.6*y + 0.47*x*x + 0.58*y*y + 0.69*x*y;

can be alternatively specified by the following DATA step and MEAN statement:

data q1;
input c1 c2 c3 c4 c5 c6;
datalines;
1.4 2.5 3.6 0.47 0.58 0.69

;

proc sim2d data=....;
simulate ...;
mean qdata=q1 const=c1 cx=c2 cy=c3 cxx=c4 cyy=c5 cxy=c6;

run;

The QDATA= data set specifies the data set containing the coefficients. The parameters CONST=, CX=, CY=,
CXX=, CYY=, and CYX= specify the variables in the QDATA= data set that correspond to the constant,
linear y, linear y, and so on. For any coefficient not specified in this list, the QDATA= data set is checked for
the presence of variables with default names of CONST, CX, CY, CXX, CYY, and CXY. If these variables
are present, their values are taken as the corresponding coefficients. Hence, you can rewrite the previous
example as follows:

data q1;
input const cx cy cxx cyy cxy;
datalines;
1.4 2.5 3.6 0.47 0.58 0.69

;

proc sim2d data=....;
simulate ...;
mean qdata=q1;

run;

If a given coefficient does not appear in the list or in the data set with the default name, a value of zero is
assumed.

If you run a simulation task with input from a RESTORE statement, then by default the simulation uses the
mean of the item store variable in the simulation. You can override this default behavior if you explicitly
specify the MEAN statement with a different mean function.
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Details: SIM2D Procedure

Computational and Theoretical Details of Spatial Simulation

Introduction

There are a number of approaches to simulating spatial random fields or, more generally, simulating sets of
dependent random variables. These include sequential indicator methods, turning bands, and the Karhunen-
Loeve expansion. See Christakos (1992, Chapter 8) and Deutsch and Journel (1992, Chapter V) for details.

A particularly simple method available for Gaussian spatial random fields is the LU decomposition method.
This method is computationally efficient. For a given covariance matrix, the LU D LL0 decomposition
is computed once, and the simulation proceeds by repeatedly generating a vector of independent N.0; 1/
random variables and multiplying by the L matrix.

One problem with this technique is memory requirements; memory is required to hold the full data and grid
covariance matrix in core. While this is especially limiting in the three-dimensional case, you can use PROC
SIM2D, which handles only two-dimensional data, for moderately sized simulation problems.

Theoretical Development

It is a simple matter to produce an N.0; 1/ random number, and by stacking k N.0; 1/ random numbers in a
column vector, you can obtain a vector with independent standard normal components W � Nk.0; I/. The
meaning of the terms independence and randomness in the context of a deterministic algorithm required for
the generation of these numbers is subtle; see Knuth (1981, Chapter 3) for details.

Rather than W � Nk.0; I/, what is required is the generation of a vector Z � Nk.0;C/—that is,

Z D

26664
Z1
Z2
:::

Zk

37775
with covariance matrix

C D

0BBB@
C11 C12 � � � C1k
C21 C22 � � � C2k

: : :

Ck1 Ck2 � � � Ckk

1CCCA
If the covariance matrix is symmetric and positive definite, it has a Cholesky root L such that C can be
factored as

C D LL0
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where L is lower triangular. See Ralston and Rabinowitz (1978, Chapter 9, Section 3-3) for details. This
vector Z can be generated by the transformation Z D LW. Here is where the assumption of a Gaussian SRF
is crucial. When W � Nk.0; I/, then Z D LW is also Gaussian. The mean of Z is

E.Z/ D L.E.W// D 0

and the variance is

Var.Z/ D Var.LW/ D E.LWW0L0/ D LE.WW0/L0 D LL0 D C

Consider now an SRFZ.s/; s 2 D � R2, with spatial covariance functionC.h/. Fix locations s1; s2; � � � ; sk ,
and let Z denote the random vector

Z D

26664
Z.s1/

Z.s2/
:::

Z.sk/

37775
with corresponding covariance matrix

Cz D

0BBB@
C.0/ C.s1 � s2/ � � � C.s1 � sk/

C.s2 � s1/ C.0/ � � � C.s2 � sk/
: : :

C.sk � s1/ C.sk � s2/ � � � C.0/

1CCCA
Since this covariance matrix is symmetric and positive definite, it has a Cholesky root, and the Z.si /; i D
1; � � � ; k, can be simulated as described previously. This is how the SIM2D procedure implements uncondi-
tional simulation in the zero-mean case. More generally,

Z.s/ D �.s/C ".s/

where �.s/ is a quadratic form in the coordinates s D .x; y/ and the ".s/ is an SRF that has the same
covariance matrix Cz as previously. In this case, the �.si /; i D 1; � � � ; k, is computed once and added to the
simulated vector ".si /; i D 1; � � � ; k, for each realization.

For a conditional simulation, this distribution of

Z D

26664
Z.s1/

Z.s2/
:::

Z.sk/

37775
must be conditioned on the observed data. The relevant general result concerning conditional distributions of
multivariate normal random variables is the following. Let X � Nm.�;†/, where

X D
�

X1
X2

�
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� D

�
�1
�2

�

† D

�
†11 †12
†21 †22

�

The subvector X1 is k � 1, X2 is n � 1, †11 is k � k, †22 is n � n, and †12 D †021 is k � n, with
k C n D m. The full vector X is partitioned into two subvectors, X1 and X2, and † is similarly partitioned
into covariances and cross covariances.

With this notation, the distribution of X1 conditioned on X2 D x2 is Nk. Q�; Q†/, with

Q� D �1 C†12†
�1
22 .x2 � �2/

and

Q† D †11 �†12†
�1
22†21

See Searle (1971, pp. 46–47) for details. The correspondence with the conditional spatial simulation
problem is as follows. Let the coordinates of the observed data points be denoted Qs1; Qs2; � � � ; Qsn, with values
Qz1; Qz2; � � � ; Qzn. Let QZ denote the random vector

QZ D

26664
Z.Qs1/

Z.Qs2/
:::

Z.Qsn/

37775

The random vector QZ corresponds to X2, while Z corresponds to X1. Then
�
Z j QZ D Qz

�
� Nk. Q�; QC/ as in

the previous distribution. The matrix

QC D C11 � C12C�122C21

is again positive definite, so a Cholesky factorization can be performed.

The dimension n for QZ is simply the number of nonmissing observations for the VAR= variable; the values
Qz1; Qz2; � � � ; Qzn are the values of this variable. The coordinates Qs1; Qs2; � � � ; Qsn are also found in the DATA=
data set, with the variables that correspond to the x and y coordinates identified in the COORDINATES
statement. NOTE: All VAR= variables use the same set of conditioning coordinates; this fixes the matrix
C22 for all simulations.

The dimension k for Z is the number of grid points specified in the GRID statement. Since there is a single
GRID statement, this fixes the matrix C11 for all simulations. Similarly, C12 is fixed.
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The Cholesky factorization QC D LL0 is computed once, as is the mean correction

Q� D �1 C C12C�122 .x2 � �2/

The means �1 and �2 are computed using the grid coordinates s1; s2; � � � ; sk , the data coordinates
Qs1; Qs2; � � � ; Qsn, and the quadratic form specification from the MEAN statement. The simulation is now
performed exactly as in the unconditional case. A k � 1 vector of independent standard N.0; 1/ random
variables is generated and multiplied by L, and Q� is added to the transformed vector. This is repeated N
times, where N is the value specified for the NR= option.

Computational Details

In the computation of Q� and† described in the previous section, the inverse†�122 is never actually computed;
an equation of the form

†22A D B

is solved for A by using a modified Gaussian elimination algorithm that takes advantage of the fact that †22
is symmetric with constant diagonal Cz.0/ that is larger than all off-diagonal elements. The SINGULAR=
option pertains to this algorithm. The value specified for the SINGULAR= option is scaled by Cz.0/ before
comparison with the pivot element.

Memory Usage
For conditional simulations, the largest matrix held in core memory at any one time depends on the number of
grid points and data points. Using the previous notation, the data-data covariance matrix C22 is n � n, where
n is the number of nonmissing observations for the VAR= variable in the DATA= data set. The grid-data
cross covariance C12 is n � k, where k is the number of grid points. The grid-grid covariance C11 is k � k.
The maximum memory required at any one time for storing these matrices is

max .k.k C 1/; n.nC 1/C 2.n � k// � sizeof.double/

There are additional memory requirements that add to the total memory usage, but usually these matrix
calculations dominate, especially when the number of grid points is large.

Output Data Set
The SIM2D procedure produces a single output data set: the OUTSIM=SAS-data-set . The OUTSIM= data
set contains all the needed information to uniquely identify the simulated values.

The OUTSIM= data set contains the following variables:

• LABEL, which is the label for the current SIMULATE statement

• VARNAME, which is the name of the conditioning variable for the current SIMULATE statement

• MODSVAR, which is the name of the input item store variable associated with the current correlation
model in an unconditional simulation
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• _ITER_, which is the iteration number within the current SIMULATE statement

• GXC, which is the x coordinate for the current grid point

• GYC, which is the y coordinate for the current grid point

• SVALUE, which is the value of the simulated variable

If you specify the NARROW option in the PROC SIM2D statement, the LABEL and VARNAME variables are
not included in the OUTSIM= data set. This option is useful in the case where the number of data points,
grid points, and realizations are such that they generate a very large OUTSIM= data set. The size of the
OUTSIM= data set is reduced when these variables are not included.

In unconditional simulation tasks where no input data set is specified, the VARNAME variable is excluded
from the OUTSIM= data set. In unconditional simulation tasks where you have specified an input data set, the
VARNAME variable is included but given a missing value. In the case of mixed conditional and unconditional
simulations (that is, when multiple SIMULATE statements are specified, among which one or more contain a
VAR= specification and one or more have no VAR= specification), the VARNAME variable is included but is
given a missing value for those observations that correspond to an unconditional simulation.

The MODSVAR variable is included in the OUTSIM= data set only when you specify an input item store
with the RESTORE statement, and it indicates the presence of that store. This variable helps you identify
the output of different unconditional simulations when the model input comes from an item store; it is not
suggesting that a simulation task is conditioned upon it.

Specifically, the MODSVAR variable has a missing value for conditional simulation tasks. The variable also
has a missing value for unconditional simulations for which you specify a correlation model explicitly, either
with the FORM= option or with the MDATA= data set in the SIMULATE statement. In all other cases, the
MODSVAR variable indicates the input item store variable that is associated with the store model used for the
current unconditional simulation task.

Displayed Output
In addition to the output data set, the SIM2D procedure produces output objects as well. The SIM2D
procedure output objects are the following:

• a default “Number of Observations” table that displays the number of observations read from the input
data set and the number of observations used in the analysis.

• a map that shows the spatial distribution of the observations of the current VAR variable in the
SIMULATE statement, in the case of conditional simulations. The observations are displayed by
default with circled markers whose color indicates the VAR value at the corresponding location.

• a default table for each SIMULATE statement that summarizes the simulation specifications.

• a default table for each SIMULATE statement that shows the covariance model parameters for the
corresponding simulation.

• plots of simulation outcome at each point of the specified output grid or at specified individual locations.
You can produce more than one of these plots for every SIMULATE statement with styles that you can
specify by using the available suboptions of the PLOTS=SIM option.
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• a “Store Info” table with basic information about the input item store. This table is produced by default
when you specify the RESTORE statement.

• a “Store Variables Information” table that describes the analysis variables of an input item store. The
table is produced by default when you specify an item store with the RESTORE statement.

• a “Store Models Information” table with detailed information about the models and direction angles
that are contained in an input item store. The table is produced by default when you specify an item
store with the RESTORE statement.

ODS Table Names
Each table created by PROC SIM2D has a name associated with it, and you must use this name to reference
the table when using ODS Graphics. These names are listed in Table 91.4.

Table 91.4 ODS Tables Produced by PROC SIM2D

ODS Table Name Description Statement Option

ModelInfo Parameters of the covariance model used
in current simulation

PROC Default output

NObs Number of observations read and used PROC Default output

SimuInfo General information about the simulation PROC Default output

StoreInfo Input item store identity information RESTORE Default output

StoreModelInfo Input item store direction angles and mod-
els information

RESTORE INFO

StoreVarInfo Input item store variables and their statis-
tics

RESTORE INFO

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

For additional control of the graphics that are displayed, see the PLOTS option in the section “PROC SIM2D
Statement” on page 7702.
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ODS Graph Names

PROC SIM2D assigns a name to each graph it creates by using ODS Graphics. You can use these names
to reference the graphs when using ODS Graphics. You must also specify the PLOTS= option indicated in
Table 91.5.

Table 91.5 Graphs Produced by PROC SIM2D

ODS Graph Name Plot Description Statement Option

SimulationPlot Outlines of the observation locations, and
either a contour plot of the simulated
means and surface of the standard devi-
ation in areal grids, or a band plot of the
simulated means or box plot of the simu-
lation distribution in linear grids or indi-
vidual locations

PROC PLOTS=SIM

ObservationsPlot Scatter plot of observed data and colored
markers indicating observed values

PROC PLOTS=OBSERV

Semivariogram Plots of the semivariogram models used
for all simulation tasks

PROC PLOTS=SEMIVAR

Examples: SIM2D Procedure

Example 91.1: Simulation and Economic Feasibility
You can use simulations to investigate the expected behavior of a stochastic process. Simulations with
PROC SIM2D can indicate spatial characteristics in your study that might be important for decision making
or general assessment. The present example and the one in section “Example 91.3: Risk Analysis with
Simulation” on page 7739 are two instances of this type of analysis in different fields.

Continuing with the coal seam thickness example from the section “Getting Started: SIM2D Procedure”
on page 7693, this example asks a rather complicated question of economic nature. For illustration, an
(approximate) answer is provided, which requires the use of simulation.

Simulating a Subregion for Economic Feasibility

The coal seam must be of a minimum thickness, called a cutoff value, for a mining operation to be profitable.
Suppose that, for a subregion of the measured area, the cost of mining is higher than in the remaining areas
due to the geology of the overburden. This higher cost results in a higher thickness cutoff value for the
subregion. Suppose also that it is determined from a detailed cost analysis that at least 60% of the subregion
must exceed a seam thickness of 39.7 feet for profitability.

How can you use the SRF model (� and Cz.s/) and the measured seam thickness valuesZ.si /; i D 1; � � � ; 75,
to determine, in some approximate way, whether at least 60% of the subregion exceeds this minimum?
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Spatial prediction does not appear to be helpful in answering this question. Although it is easy to determine
whether a predicted value at a location in the subregion is above the 39.7-feet cutoff value, it is not clear how
to incorporate the standard error associated with the predicted value. The standard error is what characterizes
the stochastic nature of the prediction (and the underlying SRF). It is clear that it must be included in any
realistic approach to the problem.

A conditional simulation, on the other hand, seems to be a natural way of obtaining an approximate answer.
By simulating the SRF on a sufficiently fine grid in the subregion, you can determine the proportion of grid
points in which the mean value over realizations exceeds the 39.7-feet cutoff and compare it with the 60%
value needed for profitability.

It is desirable in any simulation study that the quantity being estimated (in this case, the proportion that
exceeds the 39.7-feet cutoff) not depend on the number of simulations performed. For example, suppose
that the maximum seam thickness is simulated. It is likely that the maximum value increases as the number
of simulations performed increases. Hence, a simulation is not useful for such an estimate. A simulation
is useful for determining the distribution of the maximum, but there are general theoretical results for such
distributions, making such a simulation unnecessary. See Leadbetter, Lindgren, and Rootzen (1983) for
details.

In the case of simulating the proportion that exceeds the 39.7-feet cutoff, it is expected that this quantity will
settle down to a fixed value as the number of realizations increases. At a fixed grid point, the quantity being
compared with the cutoff value is the mean over all simulated realizations; this mean value settles down to a
fixed number as the number of realizations increases. In the same manner, the proportion of the grid where
the mean values exceed the cutoff also becomes constant. This can be tested using PROC SIM2D.

A crucial, nonprovable assumption in applying SRF theory to the coal seam thickness data is that the values
Z.si /; i D 1; � � � ; 75, represent a single realization from the set of all possible realizations consistent with
the SRF model (� and Cz.h//. A conditional simulation repeatedly produces other possible simulated
realizations consistent with the model and data. However, the only concern of the mining company is this
single unique realization. It is not concerned about similar coal fields to be mined sometime in the future; it
might never see another coal field remotely similar to this one, or it might not be in business in the future.

Hence the proportion found by generating repeated simulated realizations must somehow relate back to the
unique realization that is the coal field (seam thickness). This is done by interpreting the proportion found
from a simulation to the spatial mean proportion for the unique realization. The term “spatial mean” is simply
an appropriate integral over the fixed (but unknown) spatial function z.s/. (The SRF is denoted Z.s/; a
particular realization, a deterministic function of the spatial coordinates, is denoted z.s/.)

This interpretation requires an ergodic assumption, which is also needed in the original estimation of Cz.s/.
See Cressie (1993, pp. 53–58) for a discussion of ergodicity and Gaussian SRFs.

Implementation Using PROC SIM2D

The subregion to be considered is the southeast corner of the field, which is a square region with a length of
40 distance units (in thousands of feet). First, you input the thickness data as the following DATA step shows:

title 'Simulating a Subregion for Economic Feasibility';

data thick;
input East North Thick @@;
label Thick='Coal Seam Thickness';
datalines;
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0.7 59.6 34.1 2.1 82.7 42.2 4.7 75.1 39.5
4.8 52.8 34.3 5.9 67.1 37.0 6.0 35.7 35.9
6.4 33.7 36.4 7.0 46.7 34.6 8.2 40.1 35.4

13.3 0.6 44.7 13.3 68.2 37.8 13.4 31.3 37.8
17.8 6.9 43.9 20.1 66.3 37.7 22.7 87.6 42.8
23.0 93.9 43.6 24.3 73.0 39.3 24.8 15.1 42.3
24.8 26.3 39.7 26.4 58.0 36.9 26.9 65.0 37.8
27.7 83.3 41.8 27.9 90.8 43.3 29.1 47.9 36.7
29.5 89.4 43.0 30.1 6.1 43.6 30.8 12.1 42.8
32.7 40.2 37.5 34.8 8.1 43.3 35.3 32.0 38.8
37.0 70.3 39.2 38.2 77.9 40.7 38.9 23.3 40.5
39.4 82.5 41.4 43.0 4.7 43.3 43.7 7.6 43.1
46.4 84.1 41.5 46.7 10.6 42.6 49.9 22.1 40.7
51.0 88.8 42.0 52.8 68.9 39.3 52.9 32.7 39.2
55.5 92.9 42.2 56.0 1.6 42.7 60.6 75.2 40.1
62.1 26.6 40.1 63.0 12.7 41.8 69.0 75.6 40.1
70.5 83.7 40.9 70.9 11.0 41.7 71.5 29.5 39.8
78.1 45.5 38.7 78.2 9.1 41.7 78.4 20.0 40.8
80.5 55.9 38.7 81.1 51.0 38.6 83.8 7.9 41.6
84.5 11.0 41.5 85.2 67.3 39.4 85.5 73.0 39.8
86.7 70.4 39.6 87.2 55.7 38.8 88.1 0.0 41.6
88.4 12.1 41.3 88.4 99.6 41.2 88.8 82.9 40.5
88.9 6.2 41.5 90.6 7.0 41.5 90.7 49.6 38.9
91.5 55.4 39.0 92.9 46.8 39.1 93.4 70.9 39.7
55.8 50.5 38.1 96.2 84.3 40.3 98.2 58.2 39.5

;

PROC SIM2D is run on the entire data set for conditioning, while the simulation grid covers only this
subregion. It is convenient to be able to vary the seed, the grid increment, and the number of simulations
performed. The following macro implements the computation of the percent area that exceeds the cutoff
value by using the seed, the grid increment, and the number of simulated realizations as macro arguments.

Within the macro, the data set produced by PROC SIM2D is transposed with PROC TRANSPOSE so that
each grid location is a separate variable. The MEANS procedure averages then the simulated value at each
grid point over all realizations. It is this average that is compared to the cutoff value. The last DATA step
does the comparison, uses an appropriate loop to determine the percent of the grid locations that exceed this
cutoff value, and writes the results to the listing file in the form of a report. This sequence is implemented
with the following statements:

/* Construct macro for conditional simulation ------------------*/
%let cc0=7.4599;
%let aa0=30.1111;
%let ngt=1e-8;
%let form=gauss;
%let cut=39.7;

%macro area_sim(seed=,nr=,ginc=);
%let ngrid=%eval(40/&ginc+1);
%let tgrid=%eval(&ngrid*&ngrid);

proc sim2d data=thick outsim=sim1;
coordinates xc=east yc=north;
simulate var=thick numreal=&nr seed=&seed

scale=&cc0 range=&aa0 nugget=&ngt form=&form;
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mean 40.1173;
grid x=60 to 100 by &ginc

y= 0 to 40 by &ginc;
run;

proc transpose data=sim1 out=sim2 prefix=sims;
by _iter_;
var svalue;

run;

proc means data=sim2 noprint n mean;
var sims1-sims&tgrid;
output out=msim n=numsim mean=ms1-ms&tgrid;

run;

data _null_;
file print;
array simss ms1-ms&tgrid;
set msim;
cflag=0;
do ss=1 to &tgrid;

tempv=simss[ss];
if simss[ss] > &cut then do;

cflag + 1;
end;

end;

area_per=100*(cflag/&tgrid);
put // +5 'Conditional Simulation of Coal Seam'

' Thickness for Subregion';
put / +5 'Subregion is South-East Corner 40 by 40 distance units';
put / +5 "Seed:&seed" +2 "Grid Increment:&ginc";
put / +5 "Total Number of Grid Points:&tgrid" +2

"Number of Simulations:&nr";
put / +5 "Percent of Subregion Exceeding Cutoff of %left(&cut) ft.:"

+2 area_per 5.2;
run;

%mend area_sim;

In the following statement, you invoke the macro three times. Each time, the macro is invoked with a different
seed and combination of the grid increment and number of simulations. The macro is first invoked with a
relatively coarse grid (grid increment of 10 distance units) and a small number of realizations (5). The output
of this conditional simulation is shown in Output 91.1.1.

/* Execute macro for coarse grid -------------------------------*/
%area_sim(seed=12345,nr=5,ginc=10);
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Output 91.1.1 Conditional Simulation of Coal Seam Thickness on a Coarse Grid

Simulating a Subregion for Economic FeasibilitySimulating a Subregion for Economic Feasibility

     
     

     Conditional Simulation of Coal Seam Thickness for Subregion                
     

     Subregion is South-East Corner 40 by 40 distance units                     
     

     Seed:12345  Grid Increment:10                                              
     

     Total Number of Grid Points:25  Number of Simulations:5                    
     

     Percent of Subregion Exceeding Cutoff of 39.7 ft.:  76.00                  

The next invocation, in the following statement, uses a finer grid and 50 realizations. The output of the second
conditional simulation is shown in Output 91.1.2.

/* Execute macro for fine grid and fewer simulations -----------*/
%area_sim(seed=54321,nr=50,ginc=1);

Output 91.1.2 Conditional Simulation of Coal Seam Thickness on a Fine Grid

Simulating a Subregion for Economic FeasibilitySimulating a Subregion for Economic Feasibility

     
     

     Conditional Simulation of Coal Seam Thickness for Subregion                
     

     Subregion is South-East Corner 40 by 40 distance units                     
     

     Seed:54321  Grid Increment:1                                               
     

     Total Number of Grid Points:1681  Number of Simulations:50                 
     

     Percent of Subregion Exceeding Cutoff of 39.7 ft.:  76.09                  

The final invocation, in the following statement, uses the same grid increment and 500 realizations. The
output of this conditional simulation is shown in Output 91.1.3.

/* Execute macro for fine grid and more simulations ------------*/
%area_sim(seed=655311,nr=500,ginc=1);
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Output 91.1.3 Conditional Simulation of Coal Seam Thickness on a Fine Grid

Simulating a Subregion for Economic FeasibilitySimulating a Subregion for Economic Feasibility

     
     

     Conditional Simulation of Coal Seam Thickness for Subregion                
     

     Subregion is South-East Corner 40 by 40 distance units                     
     

     Seed:655311  Grid Increment:1                                              
     

     Total Number of Grid Points:1681  Number of Simulations:500                
     

     Percent of Subregion Exceeding Cutoff of 39.7 ft.:  76.09                  

The results from the preceding simulations indicate that about 76% of the subregion exceeds the cutoff value.

NOTE: The number of grid points in the simulation increases with the square of the decrease in the grid
increment, leading to long CPU processing times. Increasing the number of realizations results in a linear
increase in processing times. Hence, using as coarse a grid as possible allows for more realizations and
experimentation with different seeds.

Example 91.2: Variability at Selected Locations
This example exhibits a more detailed investigation of the variation of simulated Thick variable values. You
use the same thick data set from the section “Getting Started: SIM2D Procedure” on page 7693, and you are
interested in the simulated values statistics at two selected grid points.

Specifically, you perform a simulation asking for 5,000 realizations (iterations) at two points of the region
defined in the section “Preliminary Spatial Data Analysis” on page 7693. These are the extreme southwest
point and a point toward the northeast corner of the region. Since you want to avoid performing the simulation
across the whole region, you need to produce a GDATA= data set to specify the coordinates of the selected
points. These steps are implemented using the following DATA step and statements:
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title 'Investigation of Random Field Variability';

data thick;
input East North Thick @@;
label Thick='Coal Seam Thickness';
datalines;
0.7 59.6 34.1 2.1 82.7 42.2 4.7 75.1 39.5
4.8 52.8 34.3 5.9 67.1 37.0 6.0 35.7 35.9
6.4 33.7 36.4 7.0 46.7 34.6 8.2 40.1 35.4

13.3 0.6 44.7 13.3 68.2 37.8 13.4 31.3 37.8
17.8 6.9 43.9 20.1 66.3 37.7 22.7 87.6 42.8
23.0 93.9 43.6 24.3 73.0 39.3 24.8 15.1 42.3
24.8 26.3 39.7 26.4 58.0 36.9 26.9 65.0 37.8
27.7 83.3 41.8 27.9 90.8 43.3 29.1 47.9 36.7
29.5 89.4 43.0 30.1 6.1 43.6 30.8 12.1 42.8
32.7 40.2 37.5 34.8 8.1 43.3 35.3 32.0 38.8
37.0 70.3 39.2 38.2 77.9 40.7 38.9 23.3 40.5
39.4 82.5 41.4 43.0 4.7 43.3 43.7 7.6 43.1
46.4 84.1 41.5 46.7 10.6 42.6 49.9 22.1 40.7
51.0 88.8 42.0 52.8 68.9 39.3 52.9 32.7 39.2
55.5 92.9 42.2 56.0 1.6 42.7 60.6 75.2 40.1
62.1 26.6 40.1 63.0 12.7 41.8 69.0 75.6 40.1
70.5 83.7 40.9 70.9 11.0 41.7 71.5 29.5 39.8
78.1 45.5 38.7 78.2 9.1 41.7 78.4 20.0 40.8
80.5 55.9 38.7 81.1 51.0 38.6 83.8 7.9 41.6
84.5 11.0 41.5 85.2 67.3 39.4 85.5 73.0 39.8
86.7 70.4 39.6 87.2 55.7 38.8 88.1 0.0 41.6
88.4 12.1 41.3 88.4 99.6 41.2 88.8 82.9 40.5
88.9 6.2 41.5 90.6 7.0 41.5 90.7 49.6 38.9
91.5 55.4 39.0 92.9 46.8 39.1 93.4 70.9 39.7
55.8 50.5 38.1 96.2 84.3 40.3 98.2 58.2 39.5

;

data grid;
input xc yc;
datalines;
0 0
75 75

;

Then, you run PROC SIM2D with the same parameters and characteristics as those shown in the section
“Preliminary Spatial Data Analysis” on page 7693. This time, however, you ask for simulated values only at
the two locations you specified in the previous DATA step. The following statements execute the requested
simulation:

proc sim2d data=thick outsim=sim1;
coordinates xc=East yc=North;
simulate var=Thick numreal=5000 seed=79931

scale=7.4599 range=30.1111 form=gauss;
mean 40.1173;
grid gdata=grid xc=xc yc=yc;

run;
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After the simulation is performed, summary statistics are computed for each of the specified grid points.
In particular, you use PROC UNIVARIATE and a BY statement to request the quantiles and the extreme
observations at these locations, as the following statements show:

proc sort data=sim1;
by gxc gyc;

run;

proc univariate data=sim1;
var svalue;
by gxc gyc;
ods select Quantiles ExtremeObs;
title 'Simulation Statistics at Selected Grid Points';

run;

The summary statistics for the first grid point (East=0, North=0) are presented in Output 91.2.1.

Output 91.2.1 Simulation Statistics at Grid Point (East=0, North=0)

Simulation Statistics at Selected Grid Points

The UNIVARIATE Procedure
Variable:  SVALUE  (Simulated Value at Grid Point)

Simulation Statistics at Selected Grid Points

The UNIVARIATE Procedure
Variable:  SVALUE  (Simulated Value at Grid Point)

X-coordinate of the grid point=0 Y-coordinate of the grid point=0

Quantiles (Definition 5)

Level Quantile

100% Max 42.4207

99% 41.8960

95% 41.5315

90% 41.3419

75% Q3 41.0324

50% Median 40.6701

25% Q1 40.2871

10% 39.9904

5% 39.7825

1% 39.4181

0% Min 38.6864

X-coordinate of the grid point=0 Y-coordinate of the grid point=0

Extreme Observations

Lowest Highest

Value Obs Value Obs

38.6864 2691 42.2952 1149

38.8611 1817 42.3114 3612

38.9013 3026 42.3305 3757

38.9467 2275 42.4177 135

38.9823 3100 42.4207 4536

Finally, Output 91.2.2 displays the summary statistics for the second grid point (East=75, North=75).
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Output 91.2.2 Simulation Statistics at Grid Point (East=75, North=75)

Simulation Statistics at Selected Grid Points

The UNIVARIATE Procedure
Variable:  SVALUE  (Simulated Value at Grid Point)

Simulation Statistics at Selected Grid Points

The UNIVARIATE Procedure
Variable:  SVALUE  (Simulated Value at Grid Point)

X-coordinate of the grid point=75 Y-coordinate of the grid point=75

Quantiles (Definition 5)

Level Quantile

100% Max 40.1171

99% 40.1147

95% 40.1131

90% 40.1122

75% Q3 40.1108

50% Median 40.1092

25% Q1 40.1075

10% 40.1062

5% 40.1053

1% 40.1035

0% Min 40.1001

X-coordinate of the grid point=75 Y-coordinate of the grid point=75

Extreme Observations

Lowest Highest

Value Obs Value Obs

40.1001 7176 40.1167 8980

40.1007 6262 40.1167 9272

40.1011 7383 40.1169 5676

40.1016 7156 40.1170 6514

40.1017 5643 40.1171 5329

For each simulation location, a single realization might result in values that differ significantly from the
random field mean at that location. However, the averages of progressively larger numbers of realizations
tend to shorten this gap and reduce the simulation variability, as exhibited in the results for the two example
locations in Output 91.2.1 and Output 91.2.2. At the limit of an infinite number of realizations, the simulation
mean recovers the mean and covariance structure of the random field.
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Example 91.3: Risk Analysis with Simulation
This example is in the field of environmental risk assessment. A square region of size 500 km � 500 km
has been sampled for arsenic in drinking water. The logAsData data set consists of 138 simulated arsenic
logarithm concentration observations represented by the logAs variable. Section “Example 109.1: Aspects
of Semivariogram Model Fitting” on page 8997 in Chapter 109, “The VARIOGRAM Procedure,” treats
these observations as actual data in order to determine the spatial continuity structure for illustration in the
examples.

A preliminary analysis indicates that the population exposure to the pollutant is currently at a relatively low
level, as shown in the section “Example 55.1: Spatial Prediction of Pollutant Concentration” on page 4176 in
Chapter 55, “The KRIGE2D Procedure,” procedure. In particular, spatial prediction with kriging suggests
that less than 1% of the region is affected by arsenic concentration in water that exceeds the World Health
Organization (WHO) standard of 10 �g/lt.

You want to simulate the random field of the arsenic logarithm concentration so that you can gain insight
into the characteristics of this field. Your objective is to assess whether the occurrence of above-threshold
arsenic concentrations is a localized phenomenon, and whether you might expect more such occurrences
across the region. For the simulation you need the outcome of the spatial continuity analysis in section
“Example 109.1: Aspects of Semivariogram Model Fitting” on page 8997 in Chapter 109, “The VARIOGRAM
Procedure.” These results are the fitted semivariance models that are stored in the SemivAsStore item store
by PROC VARIOGRAM.

Based on the discussion in the section “Example 91.1: Simulation and Economic Feasibility” on page 7730,
you simulate the arsenic logarithm concentration on the premise of the ergodicity assumption. In brief, this
assumption relates the mean and covariances of each individual realization to the corresponding values of the
random field; see also the section “Ergodicity” on page 8965 in Chapter 109, “The VARIOGRAM Procedure.”
In the present case you are interested in the average of a large size of realizations, rather than individual ones.
A single realization could suggest possible locations where the WHO regulatory standard might be violated.
The average of multiple realizations has a smoothing effect on individual excessive-concentration episodes in
single realizations. The smoothing enables you to see general characteristics of the arsenic concentration
field behavior on the basis of its spatial correlation description.

For illustration, assume a rectangular grid of nodes with an equal spacing of 10 km between neighboring
nodes in the north and east directions. Then, simulated values are produced at a total of 51 � 51 D 2601

locations.

You begin by reading the logAsData data set with the following DATA step:
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title 'Risk Assessment with Simulation';

data logAsData;
input East North logAs @@;
label logAs='log(As) Concentration';
datalines;
193.0 296.6 -0.68153 232.6 479.1 0.96279 268.7 312.5 -1.02908
43.6 4.9 0.65010 152.6 54.9 1.87076 449.1 395.8 0.95932

310.9 493.6 -1.66208 287.8 164.9 -0.01779 330.0 8.0 2.06837
225.7 241.7 0.15899 452.3 83.4 -1.21217 156.5 462.5 -0.89031
11.5 84.4 -0.24496 144.4 335.7 0.11950 149.0 431.8 -0.57251

234.3 123.2 -1.33642 37.8 197.8 -0.27624 183.1 173.9 -2.14558
149.3 426.7 -1.06506 434.4 67.5 -1.04657 439.6 237.0 -0.09074
36.4 175.2 -1.21211 370.6 244.0 3.28091 452.0 96.5 -0.77081

247.0 86.8 0.04720 413.6 373.2 1.78235 253.5 291.7 0.56132
129.7 111.9 1.34000 352.7 42.1 0.23621 279.3 82.7 2.12350
382.6 290.7 0.86756 188.2 222.8 -1.23308 382.8 154.5 -0.94094
304.4 309.2 -1.95158 337.5 387.2 -1.31294 490.7 189.8 0.40206
159.0 100.1 -0.22272 245.5 329.2 -0.26082 372.1 379.5 -1.89078
417.8 84.1 -1.25176 173.9 407.6 -0.24240 121.5 107.7 1.54509
453.5 313.6 0.65895 143.5 346.7 -0.87196 157.4 125.5 -1.96165
371.8 353.2 -0.59464 358.9 338.2 -1.07133 8.6 437.8 1.44203
395.9 394.2 -0.24144 149.5 58.9 1.17459 453.5 420.6 -0.63951
182.3 85.0 1.00005 21.0 290.1 0.31016 11.1 352.2 -0.88418
131.2 238.4 -0.57184 104.9 6.3 1.12054 247.3 256.0 0.14019
428.4 383.7 0.92448 327.8 481.1 -2.72543 199.2 92.8 -0.05717
453.9 230.1 0.16571 205.0 250.6 0.07581 459.5 271.6 0.93700
229.5 262.8 1.83590 370.4 228.6 2.96611 330.2 281.9 1.79723
354.8 388.3 -3.18262 406.2 222.7 2.41594 254.4 393.1 2.03221
96.7 85.2 -0.47156 407.2 256.8 0.66747 498.5 273.8 1.03041

417.2 471.4 -1.42766 368.8 424.3 -0.70506 303.0 59.1 1.43070
403.1 264.1 1.64554 21.2 360.8 0.67094 148.2 78.1 2.15323
305.5 310.7 -1.47985 228.5 180.3 -0.68386 161.1 143.3 1.07901
70.5 155.1 0.54652 363.1 282.6 -0.43051 86.0 472.5 -1.18855

175.9 105.3 -2.08112 96.8 426.3 1.56592 475.1 453.1 -1.53776
125.7 485.4 1.40054 277.9 201.6 -0.54565 406.2 125.0 -1.38657
60.0 275.5 -0.59966 431.3 494.6 -0.36860 399.9 399.0 -0.77265
28.8 311.1 0.91693 166.1 348.2 -0.49056 266.6 83.5 0.67277
54.7 356.3 0.49596 433.5 460.3 -1.61309 201.7 167.6 -1.40678

158.1 203.6 -1.32499 67.6 230.4 1.14672 81.9 250.0 0.63378
372.0 50.7 0.72445 26.4 264.6 1.00862 300.1 91.7 -0.74089
303.0 447.4 1.74589 108.4 386.2 1.12847 55.6 191.7 0.95175
36.3 273.2 1.78880 94.5 298.3 -2.43320 366.1 187.3 -0.80526

130.7 389.2 -0.31513 37.2 324.2 0.24489 295.5 211.8 0.41899
58.6 206.2 0.18495 346.3 142.8 -0.92038 484.2 215.9 0.08012

451.4 415.7 0.02773 58.9 86.5 0.17652 212.6 363.9 0.17215
378.7 407.6 0.51516 265.9 305.0 -0.30718 123.2 314.8 -0.90591
26.9 471.7 1.70285 16.5 7.1 0.51736 255.1 472.6 2.02381

111.5 148.4 -0.09658 440.4 375.0 1.23285 406.4 19.5 1.01181
321.2 65.8 -0.02095 466.4 357.1 -0.49272 2.0 484.6 0.50994
200.9 205.1 0.43543 30.3 337.0 1.60882 297.0 12.7 1.79824
158.2 450.7 0.05295 122.8 105.3 1.53936 417.8 329.7 -2.08124

;
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For this simulation you use the spatial correlation information that is saved in the SemivAsStore item store in
the section “Example 109.1: Aspects of Semivariogram Model Fitting” on page 8997 in Chapter 109, “The
VARIOGRAM Procedure,” with the following statements:

ods graphics on;

proc variogram data=logAsData plots=none;
store out=SemivAsStore / label='LogAs Concentration Models';
compute lagd=5 maxlag=40;
coord xc=East yc=North;
model form=auto(mlist=(exp,gau,mat) nest=1 to 2);
var logAs;

run;

In PROC SIM2D you specify the container item store with the IN= option of the RESTORE statement. You
request correlation input from an item store by specifying the STORESELECT option in the SIMULATE
statement. You request 5,000 realizations for this simulation by specifying the number in the NUMREAL=
option of the SIMULATE statement.

Assume that you first want to review the saved models in the item store. Use the INFO option of the
RESTORE statement to produce a table with information about the top-ranking fitted model in the item store.
Use the DET and ONLY suboptions of the INFO option to request details about all fitted models included in
the item store. The ONLY suboption suppresses the simulation tasks and produces only the tables about the
item store. You specify the following statements:

proc sim2d data=logAsData outsim=Outsim plots=none;
restore in=SemivAsStore / info(det only);
coordinates xc=East yc=North;
simulate var=logAs numreal=5000 storeselect seed=39841;
grid x=0 to 500 by 10 y=0 to 500 by 10;

run;

PROC SIM2D produces a table with general information about the input item store identity, as shown in
Output 91.3.1.

Output 91.3.1 PROC SIM2D and Input Item Store General Information

Risk Assessment with Simulation

The SIM2D Procedure

Risk Assessment with Simulation

The SIM2D Procedure

Correlation Model Item Store Information

Input Item Store WORK.SEMIVASSTORE

Item Store Label LogAs Concentration Models

Data Set Created From WORK.LOGASDATA

By-group Information No By-groups Present

Created By PROC VARIOGRAM

Date Created 15MAY14:14:38:46
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Output 91.3.2 displays the item store variables, in addition to the mean and standard deviation of their data set
of origin. In this case, the logAs values come from the logAsData data set. By default, the SIM2D procedure
uses the variable mean in the item store for the simulation, unless you explicitly specify the MEAN statement.

Output 91.3.2 Variables in the Input Item Store

Item Store Variables

Variable Mean
Std

Deviation

logAs 0.084309 1.527707

The models in the SemivAsStore item store that have been fitted to the arsenic logarithm logAs empirical
semivariance are shown in Output 91.3.3. The default item store model selection is the model on top of the
list in Output 91.3.3.

Output 91.3.3 Angle and Models Information in the Input Item Store

Item Store
Models For

logAs

Class Model

1 Gau-Gau

Gau-Mat

2 Exp-Gau

3 Exp-Mat

4 Mat

5 Gau

6 Exp

Exp-Exp

Mat-Exp

Gau-Exp

You run again the SIM2D procedure without the INFO option in the RESTORE statement. This action prompts
PROC SIM2D to run the simulation tasks that you specify with the SIMULATE statement. You specify the
STORESELECT option in the SIMULATE statement without any suboptions, so that the simulation uses the
default model selection in the SemivAsStore item store. You save the simulation output in the Outsim output
data set. You also specify the SIM and the SEMIVAR suboptions in the PLOTS option of the PROC SIM2D
statement to obtain output plots. You use the following statements:

proc sim2d data=logAsData outsim=Outsim plots=(sim semivar);
restore in=SemivAsStore;
coordinates xc=East yc=North;
simulate var=logAs numreal=5000 storeselect seed=89702;
grid x=0 to 500 by 10 y=0 to 500 by 10;

run;
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NOTE: This step can take several minutes to run, and it produces a data set with over 10 million observations.
When you run these statements, PROC SIM2D again produces a table about the input item store identity.
This output is followed by a number of observations table and information about the simulation task, as
shown in Output 91.3.4.

Output 91.3.4 Number of Observations and Simulation Information Tables

Risk Assessment with Simulation

The SIM2D Procedure

Simulation: SIM1, Dependent Variable: logAs

Risk Assessment with Simulation

The SIM2D Procedure

Simulation: SIM1, Dependent Variable: logAs

Number of Observations Read 138

Number of Observations Used 138

Simulation Information

Simulation Grid Points 2601

Type Conditional

Number of Realizations 5000

The SIM2D procedure uses the selected fitted Gaussian-Gaussian model in the SemivAsStore item store.
Output 91.3.5 shows the saved parameter values of the model that are used in the simulation.

Output 91.3.5 Information about the Gaussian-Gaussian Model

Covariance Model Information

Nested Structure 1 Type Gaussian

Nested Structure 1 Sill 0.3276646

Nested Structure 1 Range 62.312728

Nested Structure 1 Effective Range 107.92881

Nested Structure 2 Type Gaussian

Nested Structure 2 Sill 1.261545

Nested Structure 2 Range 21.459563

Nested Structure 2 Effective Range 37.169053

Nugget Effect 0.0830758

Output 91.3.6 shows a plot of the correlation model used in the simulation. Its parameters come from the
stored information in the SemivAsStore item store.
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Output 91.3.6 Gaussian-Gaussian Semivariogram Model Used in Simulation

The PLOTS=SIM option produces contours of the mean value of the 5,000 realizations for each one of the
output grid locations, and a surface of the associated standard deviation. The resulting plot is shown in
Output 91.3.7. The mean value contours exhibit reduced variation compared to a SIM plot of one single
realization. In fact, Output 91.3.7 is very similar to the prediction plot of the same Gaussian model in the
section “Example 55.1: Spatial Prediction of Pollutant Concentration” on page 4176 in Chapter 55, “The
KRIGE2D Procedure.”

Clearly, there appears to be a small area of increased arsenic concentration values, which is located in
the central-eastern part of the domain. The WHO threshold of 10 �g/lt for the maximum allowed arsenic
concentration in water translates into about 2.3 in the log scale. The indicated area is the only one within the
region where the simulated means exceed the value 3. In addition, there appear to be two smaller areas of
simulated means values at or above 2 in the southern part of the region.
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Output 91.3.7 Simulated Arsenic Logarithm Values with Gaussian-Gaussian Covariance

The simulation plot indicates that arsenic concentration values in excess of the WHO health standard
is a rather localized phenomenon. If it were not so, then the plot would suggest that increased arsenic
concentrations extend across larger areas. In turn, this means that individual realizations would tend to
produce systematically higher arsenic concentrations at different neighboring locations, and their average
would appear as higher logAs values in the SIM plot. Instead, you conclude that the Gaussian-Gaussian
correlation that describes the spatial continuity for the arsenic logarithm observations leads to only localized
occurrence of the WHO standard violation.

Now you want to find out whether additional localized occurrences might take place on the basis of the
Gaussian-Gaussian spatial continuity behavior. The distribution of the simulation standard deviation values
in Output 91.3.7 offers important feedback about this issue. Observe the areas in the plot where the means
gradient indicates increasing values. The means contours create several pools where the values increase to
simulated means higher than 1.

With the clear exceptions of the isolated area in the central-eastern part of the domain and the pool in the
south-west that exhibit logAs values above 2, the simulation standard deviation seems to be around 1 or less
in almost all other pools with logAs values above 1. Due to those relatively low standard deviations, this
visual inspection suggests that even in individual realizations you might rarely expect the arsenic logarithm
to exceed the threshold value of around 2.3.
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However, in the few pools of logAs values above 1, there can be patches of increased standard deviation. In
these cases, you suspect that arsenic concentration could exceed occasionally the WHO regulatory standard,
even if the plot of the simulated means does not explicitly portray so.

Based on these remarks, you want to quantify the percentage of the region that could be affected by excessive
arsenic concentration. You begin with a DATA step that takes as input the simulation Outsim output data
set. The DATA step marks the simulated arsenic logarithm means values that are in excess of the WHO
concentration threshold of 10 �g/lt, and saves the outcome into an indicator variable OverLimit. At the same
time, the arsenic logarithm values are transformed back into arsenic concentration values so that they can be
compared to the threshold value. The simulated means in the Outsim data set are stored in the svalue variable.
You use the following statements:

data AsOverLimit;
set Outsim;
OverLimit = (exp(svalue) > 10) * 100;

run;

Then, you use the MEANS procedure to express the selected nodes population (where the WHO standard
violation occurs) as a percentage of the entire domain area. You invoke PROC MEANS twice. The first time,
you average over each realization in the PROC SIM2D output. For that purpose, you use the variable _ITER_
in the simulation sim1 output data set as a BY variable in PROC MEANS. You save the iteration-averaged
indicator values in the PctOverLimit variable. The second time, PROC MEANS averages the PctOverLimit
variable to obtain the percentage you want. You also specify the P5 and P95 options in the PROC MEANS
statement to request the lower and upper confidence limits, respectively, in this computation. The interval
between those limits expresses the 90% interval for the true area percentage based on the stochastic simulation.
You use the following statements:

proc means data=AsOverLimit noprint;
by _ITER_;
var OverLimit;
output out=OverLimitData mean=PctOverLimit;

run;
proc means data=OverLimitData mean p5 p95;

var PctOverLimit;
label PctOverLimit="Percent above threshold";

run;

The result is shown in Output 91.3.8. PROC MEANS accounts for all individual occurrences throughout
the simulation where the WHO arsenic concentration threshold is exceeded. This happens at about 3.9%
of the total area in 5,000 realizations. Compare this value to the less than 1% percentage in the PROC
KRIGE2D prediction, as reported in the beginning of this section. On one hand, the prediction outcome tells
you what goes on currently across the region within a degree of certainty given by the prediction error. On
the other hand, the simulation provides you with an indicator that under the given spatial continuity estimate
a relatively larger area is in potential danger of being affected by above-threshold arsenic concentration.
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In fact, the 5% and 95% confidence limits in Output 91.3.8 show the area percentage limits within which you
can expect excessive arsenic concentration. Based on the stochastic simulation, at the 90% confidence level
the arsenic concentration in drinking water is expected to violate the WHO regulatory standard in anywhere
from about 2.6% to 5.4% of the study region.

Output 91.3.8 Violation of Arsenic Concentration Threshold Using Gaussian-Gaussian Model

Risk Assessment with Simulation

The MEANS Procedure

Risk Assessment with Simulation

The MEANS Procedure

Analysis
Variable : PctOverLimit Percent

above threshold

Mean 5th Pctl 95th Pctl

3.9308727 2.6143791 5.4209919

You also want to compute the probability that individual areas in the region are expected to violate the WHO
arsenic concentration standard. Start by identifying again the simulated arsenic logarithm means values in
excess of the WHO concentration threshold of 10 �g/lt. The following DATA step saves the outcome into the
variable LocalOverLimit:

data LocalAsOverLimit;
set Outsim;
LocalOverLimit = (exp(svalue) > 10);

run;

Then you use the SORT procedure to sort the information based on location coordinates. This intermediate
step is necessary so that you can use the MEANS procedure with the LocalAsOverLimit data set. In the
following statements, PROC MEANS computes the expected violations of the WHO standard for each
location in the region across all realizations of the simulation:

proc sort data=LocalAsOverLimit;
by gxc gyc;

run;
proc means data=LocalAsOverLimit noprint;

by gxc gyc;
var LocalOverLimit;
output out=OverLimLoci mean=ProbOverLimit;

run;

The output is the probability that the WHO standard is violated at each one of the simulation locations across
the region. You create a plot of this probability with the help of the TEMPLATE and the SGRENDER
procedures. You use the following statements:
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proc template;
define statgraph surfacePlot;

dynamic _VARX _VARY _VAR _TITLE _LEGENDLABEL;
BeginGraph;
entrytitle _TITLE;
layout overlay /

xaxisopts = (offsetmax=0)
yaxisopts = (offsetmax=0);
contourplotparm x=_VARX y=_VARY z=_VAR /

nhint=10 name='probplot';
continuouslegend 'probplot' / title=_LEGENDLABEL;

endlayout;
EndGraph;

end;
run;

proc sgrender data=OverLimLoci template=surfacePlot;
dynamic _VARX ='gxc'

_VARY ='gyc'
_VAR ='ProbOverLimit'
_TITLE='Arsenic WHO Standard Violation'
_LEGENDLABEL='Violation Probability';

label gyc='North' gxc='East';
run;

ods graphics off;

Output 91.3.9 shows the map of probability that the arsenic concentration WHO standard is violated in
the region for the selected spatial correlation model of the pollutant. Based on the preceding analysis, the
probability is very close to 1 in the area where the simulation mean values are above the standard limit. A
few more areas that were indicated earlier in the analysis suggest a violation probability between 20% and
40%. The remaining areas in the region exhibit very low probability, which is notably nonzero at a few
scattered locations. These findings suggest that throughout the simulation there have been realizations where
the arsenic WHO standard was exceeded at locations whose simulated mean is well below that standard.

From the environmental risk assessment perspective, the preceding analysis can trigger a more detailed
investigation into areas in the region where the health standard might be violated. Although the original
observations in the logAsData data set indicate no existing problem in some of these areas, the present
example illustrates that spatial analysis and simulation can raise flags of caution. This type of analysis can
help to focus scientific, management, and policy efforts on these particular areas of the region and to monitor
closely the pollutant concentration for potential health risks.
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Output 91.3.9 Map of Violation of the Arsenic WHO Standard Probability
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Overview: SIMNORMAL Procedure
The SIMNORMAL procedure can perform conditional and unconditional simulation for a set of correlated
normal or Gaussian random variables.

The means, variances, and covariances (or correlations) are read from an input TYPE=CORR or TYPE=COV
data set. This data set is typically produced by the CORR procedure. Conditional simulations are performed
by appending a special observation, identified by the value of ’COND’ for the _TYPE_ variable, which
contains the conditioning value.

The output data set from PROC SIMNORMAL contains simulated values for each of the analysis variables.
Optionally, the output data set also contains the seed stream and the values of the conditioning variables.
PROC SIMNORMAL produces no printed output.

Getting Started: SIMNORMAL Procedure
The following example illustrates the use of PROC SIMNORMAL to generate two normal random variates
that have specified means and covariance.
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In this example, the means and covariances are given; these might have come from previous experiments,
observational studies, or other considerations.

First you create a _TYPE_=COV data set as the input data set, and then you run PROC SIMNORM with
NUMREAL=5000, creating a sample that contains 5,000 observations. The simple statistics of this sample
are checked using PROC CORR. The results are shown in Figure 92.1.

data scov(type=COV) ;
input _TYPE_ $ 1-4 _NAME_ $ 9-10 S1 S2 ;
datalines ;

COV S1 1.915 0.3873
COV S2 0.3873 4.321
MEAN 1.305 2.003
run;

proc simnorm data=scov outsim=ssim
numreal = 5000
seed = 54321 ;

var s1 s2 ;
run;

proc corr data=ssim cov ;
var s1 s2 ;
title "Statistics for PROC SIMNORM Sample Using NUMREAL=5000" ;

run;

Figure 92.1 Statistics for PROC SIMNORM Sample Using NUMREAL=5000

Statistics for PROC SIMNORM Sample Using NUMREAL=5000

The CORR Procedure

Statistics for PROC SIMNORM Sample Using NUMREAL=5000

The CORR Procedure

2  Variables: S1       S2

Covariance Matrix, DF = 4999

S1 S2

S1 1.895805499 0.424837163

S2 0.424837163 4.132974275

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

S1 5000 1.30254 1.37688 6513 -3.90682 6.49864

S2 5000 1.98790 2.03297 9940 -5.69812 9.42833

Syntax: SIMNORMAL Procedure
The following statements are available in the SIMNORMAL procedure:
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PROC SIMNORMAL DATA=SAS-data-set < options > ;
VAR variables ;
BY variables ;
CONDITION variables ;

Both the PROC SIMNORMAL and VAR statements are required. The following sections describe the PROC
SIMNORMAL statement and then describe the other statements in alphabetical order.

PROC SIMNORMAL Statement
PROC SIMNORMAL DATA=SAS-data-set < options > ;

The PROC SIMNORMAL statement invokes the SIMNORMAL procedure. Table 92.1 summarizes the
options available in the PROC SIMNORMAL statement.

Table 92.1 Summary of PROC SIMNORMAL Statement Options

Option Description

Specify Input and Output Data Sets
DATA= Specifies input data set (TYPE=CORR, COV, and so on)
OUT= Creates output data set that contains simulated values

Seed Values
SEED= Specifies seed value (integer)
SEEDBY Requests reinitialization of seed for each BY group

Control Contents of OUT= Data Set
OUTSEED Requests seed values written to OUT= data set
OUTCOND Requests conditioning variable values written to

OUT=data set

Control Number of Simulated Values
NUMREAL= Specifies the number of realizations for each BY group

written to the OUT= data set

Singularity Criteria

SINGULAR1= Sets the singularity criterion for Cholesky decomposition
SINGULAR2= Sets the singularity criterion for covariance matrix

sweeping

The following options can be used with the PROC SIMNORMAL statement.

DATA=SAS-data-set
specifies the input data set that must be a specially structured TYPE=CORR, COV, UCORR, UCOV,
or SSCP SAS data set. If the DATA= option is omitted, the most recently created SAS data set is used.
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SEED=seed-value
specifies the seed to use for the random number generator. If the SEED= value is omitted, the system
clock is used. If the system clock is used, a note is written to the log; the note gives the seed value
based on the system clock. In addition, the random seed stream is copied to the OUT= data set if the
OUTSEED option is specified.

SEEDBY
specifies that the seed stream be reinitialized for each BY group. By default, a single random stream is
used over all BY groups. If you specify SEEDBY, the random stream starts again at the initial seed
value. This initial value is from the SEED= value that you specify. If you do not specify a SEED=value,
the system clock generates this initial seed.

For example, suppose you had a TYPE=CORR data set with BY groups, and the mean, variances, and
covariance or correlation values were identical for each BY group. Then if you specified SEEDBY, the
simulated values in each BY group in the OUT= data set would be identical.

OUT=SAS-data-set
specifies a SAS data set in which to store the simulated values for the VAR variables. If you omit the
OUT=option, the output data set is created and given a default name by using the DATAn convention.

See the section “OUT= Output Data Set” on page 7755 for details.

NUMREAL=n
specifies the number of realizations to generate. A value of NUMREAL=500 generates 500 observa-
tions in the OUT=dataset, or 500 observations within each BY group if a BY statement is given.

NUMREAL can be abbreviated as NUMR or NR.

OUTSEED
requests that the seed values be included in the OUT= data set. The variable Seed is added to the
OUT= data set. The first value of Seed is the SEED= value specified in the PROC SIMNORMAL
statement (or obtained from the system clock); subsequent values are produced by the random number
generator.

OUTCOND
requests that the values of the conditioning variables be included in the OUT= data set. These values
are constant for the data set or within a BY group. Note that specifying OUTCOND can greatly
increase the size of the OUT= data set. This increase depends on the number of conditioning variables.

SINGULAR1=number
specifies the first singularity criterion, which is applied to the Cholesky decomposition of the covariance
matrix. The SINGULAR1= value must be in the range .0; 1/. The default value is 10�8. SINGULAR1
can be abbreviated SING1.

SINGULAR2=number
specifies the second singularity criterion, which is applied to the sweeping of the covariance or
correlation matrix to obtain the conditional covariance. The SINGULAR2=option is applicable only
when a CONDITION statement is given. The SINGULAR2= value must be in the range .0; 1/. The
default value is 10�8. SINGULAR2 can be abbreviated SING2.
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BY Statement
BY variables ;

A BY statement can be used with the SIMNORMAL procedure to obtain separate simulations for each
covariance structure defined by the BY variables. When a BY statement appears, the procedure expects the
input DATA= data set to be sorted in the order of the BY variables. If a CONDITION statement is used along
with a BY statement, there must be a _TYPE_=’COND’ observation within each BY group. Note that if a
BY statement is specified, the number of realizations specified by the NUMREAL= option are produced for
each BY group.

CONDITION Statement
CONDITION | COND variables ;

A CONDITION statement specifies the conditioning variables. The presence of a CONDITION statement
requests that a conditional simulation be performed.

The lack of a CONDITIONAL statement simply means that an unconditional simulation for the VAR variables
is to be performed.

If a CONDITION statement is given, the variables listed must be numeric variables in the DATA= data set.
This requires a conditioning value for each of the CONDITION variables. This value is supplied by adding a
_TYPE_=’COND’ observation for each CONDITION variable. Such observations are added to the DATA=
data set by a DATA step.

Note that a data set created by the CORR procedure is automatically given the TYPE=COV, UCOV, CORR,
or UCORR attribute, so you do not have to specify the TYPE= option in the DATA= option in the PROC
SIMNORMAL statement. However, when adding the conditioning values by using a DATA step with a SET
statement, you must use the TYPE=COV, UCOV, CORR, or UCORR attribute in the new data set. See the
section “Getting Started: SIMNORMAL Procedure” on page 7751 for an example in which the TYPE is set.

VAR Statement
VAR variables ;

Use the VAR statement to specify the analysis variables. Only numeric variables can be specified. If a VAR
statement is not given, all numeric variables in the DATA= data set that are not in the CONDITION or BY
statement are used.

OUT= Output Data Set
The SIMNORMAL procedure produces a single output data set: the OUT=SAS-data-set .

The OUT= data set contains the following variables:

• all variables listed in the VAR statement
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• all variables listed in the BY statement, if one is given

• Rnum, which is the realization number within the current BY group

• Seed, which is current seed value, if the OUTSEED option is specified

• all variables listed in the CONDITION statement, if a CONDITION statement is given and the
OUTCOND option is specified

The number of observations is determined by the value of the NUMREAL= option. If there are no BY groups,
the number of observations in the OUT= data set is equal to the value of the NUMREAL= option. If there are
BY groups, there are number of observations equals the value of the NUMREAL= option for each BY group.

Details: SIMNORMAL Procedure

Introduction
There are a number of approaches to simulating a set of dependent random variables. In the context of spatial
random fields, these include sequential indicator methods, turning bands, and the Karhunen-Loeve expansion.
See Christakos (1992, Chapter 8) and Deutsch and Journel (1992, Chapter 5) for details.

In addition, there is the LU decomposition method, a particularly simple and computationally efficient for
normal or Gaussian variates. For a given covariance matrix, the LU D LL0 decomposition is computed once,
and the simulation proceeds by repeatedly generating a vector of independent N.0; 1/ random variables and
multiplying by the L matrix.

One problem with this technique is that memory is required to hold the covariance matrix of all the analysis
and conditioning variables in core.

Unconditional Simulation
It is a simple matter to produce an N.0; 1/ random number, and by stacking k such numbers in a column
vector you obtain a vector with independent standard normal components W � Nk.0; I/. The meaning of the
terms independence and randomness in the context of a deterministic algorithm required for the generation
of these numbers is somewhat subtle; see Knuth (1973, Vol. 2, Chapter 3) for a discussion of these issues.

Rather than W � Nk.0; I/, what is required is the generation of a vector Z � Nk.0;V/—that is,

Z D

26664
Z1
Z2
:::

Zk

37775
with covariance matrix
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V D

0BBB@
�11 �12 � � � �1k
�21 �22 � � � �2k

: : :

�k1 �k2 � � � �kk

1CCCA
where

�ij D Cov.Zi ; Zj /

If the covariance matrix is symmetric and positive definite, it has a Cholesky root L such that V can be
factored as

V D LL0

where L is lower triangular. See Ralston and Rabinowitz (1978, Chapter 9, Section 3-3) for details. This
vector Z can be generated by the transformation Z D LW. Note that this is where the assumption of
multivariate normality is crucial. If W � Nk.0; Ik/, then Z D LW is also normal or Gaussian. The mean of
Z is

E.Z/ D L.E.W// D 0

and the variance is

Var.Z/ D Var.LW/ D E.LWW0L0/ D L E.WW0/ L0 D LL0 D V

Finally, let Yk D Zk C�k ; that is, you add a mean term to each variable Zk . The covariance structure of the
Y 0
k
s remains the same. Unconditional simulation is done by simply repeatedly generating k N.0; 1/ random

numbers, stacking them, and performing the transformation

W 7�! Z D LW 7�! Y D ZC �

Conditional Simulation
For a conditional simulation, this distribution of

Y D

26664
Y1
Y2
:::

Yk

37775
must be conditioned on the values of the CONDITION variables. The relevant general result concerning
conditional distributions of multivariate normal random variables is the following. Let X � Nm.�;†/,
where
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X D
�

X1
X2

�

� D

�
�1
�2

�

† D

�
†11 †12
†21 †22

�
and where bX1 is k � 1, X2 is n� 1,†11 is k � k,†22 is n� n, and†12 D †021 is k � n, with kC n D m.
The full vector X has simply been partitioned into two subvectors, X1 and X2, and † has been similarly
partitioned into covariances and cross covariances.

With this notation, the distribution of X1 conditioned on X2 D x2 is Nk. Q�; Q†/, with

Q� D �1 C†12†
�1
22 .x2 � �2/

and
Q† D †11 �†12†

�1
22†21

See Searle (1971, pp. 46–47) for details.

Using the SIMNORMAL procedure corresponds with the conditional simulation as follows. Let Y1; � � � ; Yk
be the VAR variables as before (k is the number of variables in the VAR list). Let the mean vector for Y be
denoted by �1 D E.Y/. Let the CONDITION variables be denoted by C1; � � � ; Cn (where n is the number
of variables in the COND list). Let the mean vector for C be denoted by �2 D E.C/ and the conditioning
values be denoted by

c D

26664
c1
c2
:::

cn

37775
Then stacking

X D
�

Y
C

�
the variance of X is

V D Var.X/ D † D
�

V11 V12
V21 V22

�
where V11 D Var.Y/, V12 D Cov.Y;C/, and V22 D Var.C/. By using the preceding general result, the
relevant covariance matrix is
QV D V11 � V12V�122V21

and the mean is

Q� D �1 C V12V�122 .c � �2/

By using QV and Q�, simulating .YjC D c/ � Nk. Q�; QV/ now proceeds as in the unconditional case.
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Example: SIMNORM Procedure
The following example illustrates the use of PROC SIMNORMAL to generate variable values conditioned
on a set of related or correlated variables.

Suppose you are given a sample of size 50 from ten normally distributed, correlated random variables,
IN 1;i ; � � � ; IN 5;i ;OUT 1;i ; � � � ;OUT 5;i ; i D 1; � � � ; 50. The first five variables represent input variables for
a chemical manufacturing process, and the last five are output variables.

First, the data are input and the correlation structure is determined by using PROC CORR, as in the following
statements. The results are shown in Figure 92.2.

data a ;
input in1-in5 out1-out5 ;
datalines ;

9.3500 10.0964 7.3177 10.3617 10.3444 9.4612
10.7443 9.9026 9.0144 11.7968
7.8599 10.4560 10.0075 8.5875 10.0014 10.3869

... more lines ...

8.9174 9.9623 9.5742 9.9713
run ;

proc corr data=a cov nocorr outp=outcov ;
var in1-in5 out1-out5 ;

run ;

Figure 92.2 Correlation of Chemical Process Variables

Statistics for PROC SIMNORM Sample Using NUMREAL=5000

The CORR Procedure

Statistics for PROC SIMNORM Sample Using NUMREAL=5000

The CORR Procedure

10  Variables: in1      in2      in3      in4      in5      out1     out2     out3     out4     out5
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Figure 92.2 continued

Covariance Matrix, DF = 49

in1 in2 in3 in4 in5 out1

in1 1.019198331 0.128086799 0.291646382 0.327014916 0.417546732 0.097650713

in2 0.128086799 1.056460818 0.143581799 0.095937707 0.104117743 0.056612934

in3 0.291646382 0.143581799 1.384051249 0.058853960 0.326107730 0.093498839

in4 0.327014916 0.095937707 0.058853960 1.023128678 0.347916864 0.022915645

in5 0.417546732 0.104117743 0.326107730 0.347916864 1.606858140 0.360270318

out1 0.097650713 0.056612934 0.093498839 0.022915645 0.360270318 0.807007554

out2 0.206698403 -0.121700731 0.078294087 0.125961491 0.297046593 0.217285879

out3 0.516271121 0.266581451 0.481576554 0.179627237 0.749212945 0.064816340

out4 0.118726106 0.092288067 0.057816322 0.075028230 0.220196337 -0.053931448

out5 0.261770905 -0.020971411 0.259053423 0.078147576 0.349618466 0.037758721

Covariance Matrix, DF = 49

out2 out3 out4 out5

in1 0.206698403 0.516271121 0.118726106 0.261770905

in2 -0.121700731 0.266581451 0.092288067 -0.020971411

in3 0.078294087 0.481576554 0.057816322 0.259053423

in4 0.125961491 0.179627237 0.075028230 0.078147576

in5 0.297046593 0.749212945 0.220196337 0.349618466

out1 0.217285879 0.064816340 -0.053931448 0.037758721

out2 0.929455806 0.206825664 0.138551008 0.054039499

out3 0.206825664 1.837505268 0.292963975 0.165910481

out4 0.138551008 0.292963975 0.832831377 -0.067396486

out5 0.054039499 0.165910481 -0.067396486 0.697717191

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

in1 50 10.18988 1.00955 509.49400 7.63500 12.58860

in2 50 10.10673 1.02784 505.33640 8.12580 13.78310

in3 50 10.14888 1.17646 507.44420 7.31770 12.40080

in4 50 10.03884 1.01150 501.94200 7.40490 11.99060

in5 50 10.22587 1.26762 511.29340 7.23350 12.93360

out1 50 9.85347 0.89834 492.67340 8.01220 12.24660

out2 50 9.96857 0.96408 498.42840 7.76420 12.09450

out3 50 10.29588 1.35555 514.79410 7.29660 13.74200

out4 50 10.15856 0.91260 507.92780 8.43090 12.45230

out5 50 10.26023 0.83529 513.01130 7.86060 11.96000

After the mean and correlation structure are determined, any subset of these variables can be simulated.
Suppose you are interested in a particular function of the output variables for two sets of values of the input
variables for the process. In particular, you are interested in the mean and variability of the following function
over 500 runs of the process conditioned on each set of input values:

f .out1; � � � ; out5/ D
out1 � out3

out1 C out2 C out3 C out4 C out5
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Although the distribution of these quantities could be determined theoretically, it is simpler to perform a
conditional simulation by using PROC SIMNORMAL.

To do this, you first append a _TYPE_=’COND’ observation to the covariance data set produced by PROC
CORR for each group of input values:

data cond1 ;
_TYPE_='COND' ;
in1 = 8 ;
in2 = 10.5 ;
in3 = 12 ;
in4 = 13.5 ;
in5 = 14.4 ;
output ;

run ;

data cond2 ;
_TYPE_='COND' ;
in1 = 15.4 ;
in2 = 13.7 ;
in3 = 11 ;
in4 = 7.9 ;
in5 = 5.5 ;
output ;

run ;

Next, each of these conditioning observations is appended to a copy of the OUTP=OUTCOV data from the
CORR procedure, as in the following statements. A new variable, INPUT, is added to distinguish the sets of
input values. This variable is used as a BY variable in subsequent steps.

data outcov1 ;
input=1 ;
set outcov cond1 ;

run ;

data outcov2 ;
input=2 ;
set outcov cond2 ;

run ;

Finally, these two data sets are concatenated:

data outcov ;
set outcov1 outcov2 ;

run ;
proc print data=outcov ;

where (_type_ ne 'COV') ;
run ;

Figure 92.3 shows the added observations.
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Figure 92.3 OUTP= Data Set from PROC CORR with _TYPE_=COND Observations Appended

Statistics for PROC SIMNORM Sample Using NUMREAL=5000Statistics for PROC SIMNORM Sample Using NUMREAL=5000

Obs input _TYPE_ _NAME_ in1 in2 in3 in4 in5 out1 out2 out3 out4 out5

11 1 MEAN 10.1899 10.1067 10.1489 10.0388 10.2259 9.8535 9.9686 10.2959 10.1586 10.2602

12 1 STD 1.0096 1.0278 1.1765 1.0115 1.2676 0.8983 0.9641 1.3555 0.9126 0.8353

13 1 N 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000

14 1 COND 8.0000 10.5000 12.0000 13.5000 14.4000 . . . . .

25 2 MEAN 10.1899 10.1067 10.1489 10.0388 10.2259 9.8535 9.9686 10.2959 10.1586 10.2602

26 2 STD 1.0096 1.0278 1.1765 1.0115 1.2676 0.8983 0.9641 1.3555 0.9126 0.8353

27 2 N 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000

28 2 COND 15.4000 13.7000 11.0000 7.9000 5.5000 . . . . .

You now run PROC SIMNORMAL, specifying the input data set and the VAR and COND variables. Note that
you must specify a TYPE=COV or TYPE=CORR for the input data set. PROC CORR automatically assigns
a TYPE=COV or TYPE=CORR attribute for the OUTP= data set. However, since the intermediate DATA
steps that appended the _TYPE_=’COND’ observations turned off this attribute, an explicit TYPE=CORR in
the DATA= option in the PROC SIMNORMAL statement is needed.

The specification of PROC SIMNORMAL now follows from the problem description. The condition variables
are IN1–IN5, the analysis variables are OUT1–OUT5, and 500 realizations are required. A seed value can be
chosen arbitrarily, or the system clock can be used. Note that in the following statements, the simulation is
done for each of the values of the BY variable INPUT:

proc simnormal data=outcov(type=cov)
out = osim
numreal = 500
seed = 33179
;

by input ;
var out1-out5 ;
cond in1-in5 ;

run;

data b;
set osim ;
denom = sum(of out1-out5) ;
if abs(denom) < 1e-8 then ff = . ;
else ff = (out1-out3)/denom ;

run ;

The DATA step that follows the simulation computes the function f .out1; � � � ; out5/; in the following
statements the UNIVARIATE procedure computes the simple statistics for this function for each set of
conditioning input values. This is shown in Figure 92.4, and Figure 92.5 shows the distribution of the function
values for each set of input values by using the SGPANEL procedure.

proc univariate data=b ;
by input ;
var ff ;

run ;
title ;
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proc sgpanel data=b ;
panelby input ;
REFLINE 0 / axis= x ;
density ff ;

run ;

Figure 92.4 Simple Statistics for ff for Each Set of Input Values

Statistics for PROC SIMNORM Sample Using NUMREAL=5000

The UNIVARIATE Procedure
Variable:  ff

Statistics for PROC SIMNORM Sample Using NUMREAL=5000

The UNIVARIATE Procedure
Variable:  ff

input=1

Moments

N 500 Sum Weights 500

Mean -0.0134833 Sum Observations -6.7416303

Std Deviation 0.02830426 Variance 0.00080113

Skewness 0.56773239 Kurtosis 1.31522925

Uncorrected SS 0.49066351 Corrected SS 0.39976435

Coeff Variation -209.92145 Std Error Mean 0.0012658

input=1

Basic Statistical Measures

Location Variability

Mean -0.01348 Std Deviation 0.02830

Median -0.01565 Variance 0.0008011

Mode . Range 0.21127

Interquartile Range 0.03618

input=1

Tests for Location: Mu0=0

Test Statistic p Value

Student's t t -10.6519 Pr > |t| <.0001

Sign M -106 Pr >= |M| <.0001

Signed Rank S -33682 Pr >= |S| <.0001

input=1

Quantiles (Definition 5)

Level Quantile

100% Max 0.11268600

99% 0.07245656

95% 0.03270269

90% 0.02064338

75% Q3 0.00370322

50% Median -0.01564850

25% Q1 -0.03247389

10% -0.04716239

5% -0.05572806

1% -0.07201126

0% Min -0.09858350
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Figure 92.4 continued

input=1

Extreme Observations

Lowest Highest

Value Obs Value Obs

-0.0985835 471 0.0750538 22

-0.0908179 472 0.0794747 245

-0.0802423 90 0.0840160 48

-0.0760645 249 0.1004812 222

-0.0756070 226 0.1126860 50

Statistics for PROC SIMNORM Sample Using NUMREAL=5000

The UNIVARIATE Procedure
Variable:  ff

Statistics for PROC SIMNORM Sample Using NUMREAL=5000

The UNIVARIATE Procedure
Variable:  ff

input=2

Moments

N 500 Sum Weights 500

Mean -0.0405913 Sum Observations -20.295631

Std Deviation 0.03027008 Variance 0.00091628

Skewness 0.1033062 Kurtosis -0.1458848

Uncorrected SS 1.28104777 Corrected SS 0.4572225

Coeff Variation -74.57289 Std Error Mean 0.00135372

input=2

Basic Statistical Measures

Location Variability

Mean -0.04059 Std Deviation 0.03027

Median -0.04169 Variance 0.0009163

Mode . Range 0.18332

Interquartile Range 0.04339

input=2

Tests for Location: Mu0=0

Test Statistic p Value

Student's t t -29.985 Pr > |t| <.0001

Sign M -203 Pr >= |M| <.0001

Signed Rank S -58745 Pr >= |S| <.0001
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Figure 92.4 continued

input=2

Quantiles (Definition 5)

Level Quantile

100% Max 0.06101208

99% 0.02693796

95% 0.01008202

90% -0.00111776

75% Q3 -0.01847726

50% Median -0.04169199

25% Q1 -0.06187039

10% -0.07798499

5% -0.08606522

1% -0.11026564

0% Min -0.12231183

input=2

Extreme Observations

Lowest Highest

Value Obs Value Obs

-0.122312 937 0.0272906 688

-0.119884 980 0.0291769 652

-0.113512 920 0.0388217 670

-0.112345 523 0.0477261 845

-0.110497 897 0.0610121 632
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Figure 92.5 Frequency Plot for ff for Each Set of Input Values
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Overview: SPP Procedure
The SPP procedure performs analysis for spatial point patterns in two dimensions. You can specify the point
process rectangular window or rely on the input data set coordinates. Summary descriptions are available
through the F, G, J, K functions, which compare the empirical function distributions to the theoretical
homogeneous Poisson functions.

The SPP procedure uses ODS Graphics to create graphs as part of its output. For general information about
ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.” For more information about the graphics
available in PROC SPP, see the section “ODS Graphics” on page 7812.

Classes of Spatial Data
There are three broad classes of spatial data:

• Point-referenced data are values that are sampled at specific locations within an area of a predefined
size. An example is air temperatures that are measured where weather monitoring instruments are
located. The stochastic nature of spatial processes can be described by using spatial random fields
(SRFs). A set of point-referenced data can be seen as a realization of a continuous SRF that takes
values over the entire study area. The values at unsampled locations are unknown but can be predicted
by means of geostatistical analysis. You can analyze point-referenced data by using the SAS/STAT
procedures VARIOGRAM, KRIGE2D, and SIM2D.

• Areal (lattice) data are values for a fixed number of areal units within a particular area. These data
differ from the point-referenced data in that one areal observation is assigned to a whole areal unit
instead of to a specific location. An example is crime rates that are aggregated over counties within a
state.

• Point pattern data are a collection of locations of single events of a spatial process. In this category,
the study area can have a variable size and observations might have associated covariates, but the main
interest is in their spatial patterns of occurrence. Examples include locations of tree growth, locations
of petty crimes, and so on. A set of point-pattern data can be seen as a realization of a discrete SRF
that has values only at the event locations (Illian et al. 2008, p. 44). A collection of this type of data
is known as a spatial point pattern. Point pattern analysis usually does not refer to the SRF concept.
The applied techniques in point patterns differ from the geostatistical approach, although both types of
analysis share corresponding measures to describe correlation among the data. You can use the SPP
procedure to analyze point pattern data.
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Introduction to Point Pattern Analysis
In point pattern analysis, you want to describe characteristics of the events (observations) that compose the
pattern. The events are manifestations of a phenomenon or process at random locations. Therefore, your
analysis goal is to investigate underlying connections among these events that could explain the phenomenon.

In some cases, events might have additional attributes, known as marks. If a point pattern has a mark, then it
is called a marked point pattern. There can be continuous marks or categorical marks, depending on whether
the mark attribute takes continuous values or values from a list of discrete levels, respectively. A marked
point pattern that has a categorical mark attribute is known as a multitype point pattern. A multitype point
pattern is also called a multivariate point pattern because you can view it as a collection of point patterns,
one for each type.

To study the events, you use the concepts of the study region (also called a study window) to represent the
area where the point pattern is defined. The window selection can be a subjective choice, and it definitely can
affect the analysis. When the window is a subregion of a larger region where the point process operates, you
might need to account for edge effects. This term describes discrepancies that can appear in the analysis,
depending on whether you consider that events close to the window edges have neighbors outside the window
area.

Point pattern analysis often focuses on whether interaction exists among the observations in a spatial point
pattern. That is, you test whether the points are spread evenly around the study region with no particular
pattern, or alternatively whether there tends to be more or less clumping of points than you would expect
purely from randomness. To this end, you usually test the hypothesis of complete spatial randomness (CSR)
in the point pattern. According to CSR, the events follow a Poisson distribution with constant mean, and they
have no interactions. A point pattern can follow CSR, in which case it is known as a homogeneous Poisson
process. Alternatively, a point pattern can demonstrate event interaction or clustering.

You can test CSR by using heuristic approaches that use sparse sampling methods in exploratory and summary
analysis. Two general approaches to this are as follows:

• distance methods, where you compare the empirical distribution function (EDF) of distance between
events with an EDF that is based on the CSR assumption

• quadrats, where you partition the spatial framework into smaller subregions and study the number of
events (also known as the quadrat count) in each subregion

The SPP procedure provides options for implementing both of these approaches. For more information, see
the sections “Testing for Complete Spatial Randomness” on page 7795 and “Statistics Based on Second-Order
Characteristics” on page 7797.

You can tell a lot about the behavior of a point pattern if you have an expression for the point pattern intensity,
which shows the number of events per unit area. A simple way to estimate intensity from the point pattern
events is to produce kernel density estimates. You can also model the intensity by maximizing suitable
pseudolikelihood expressions for the logarithmic intensity. Intensity models can also incorporate information
about covariate variables; together with distance methods, they enable you to examine whether a covariate
plays a significant role in the underlying process.

A SAS/STAT procedure that compares to PROC SPP is the KDE procedure, which fits the special case of
Gaussian bivariate kernels for the purpose of nonparametric density estimation. PROC SPP enables you to
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perform much more extensive nonparametric intensity estimation by using different types of kernels, and
it provides support for adaptive kernel estimation. In addition, PROC SPP enables you to fit parametric
inhomogeneous poisson process models and use a variety of residual diagnostics to perform model validation.

Getting Started: SPP Procedure
This example uses forestry data, which are shown in Figure 93.4, to show how you can use PROC SPP to fit
a model for the first-order intensity of a spatial point pattern. The Sashelp.BEI data set contains the locations
of 3,604 trees in tropical rain forests. A study window of 1,000 � 500 square kilometers is appropriate.
The data set also contains covariates that are represented by the variables Gradient and Elevation, which
are collected at 20,301 locations on a regular grid across the study region. The variable Trees distinguishes
the event observations in the data set. These data are a part of a much larger data set, which contains the
positions of hundreds of thousands of trees that belong to thousands of species (Condit 1998; Hubbell and
Foster 1983; Condit, Hubbell, and Foster 1996).1 The Sashelp.BEI data set contains five variables:

• X and Y: the X and Y coordinates for locations of trees and for measurements of the height and slope
of the study area

• Trees: a 0/1 variable that indicates which observation corresponds to locations of trees: 1 indicates the
presence of a tree, and 0 indicates absence

• Elevation: which measures how far the study area is above sea level

• Gradient: which measures the slope of the study area

The following statements produce a plot of the event observations (which is shown in Figure 93.4) and plots
of the covariates (which are shown in Figure 93.5 and Figure 93.6).

ods graphics on;
proc spp data=sashelp.bei plots(equate)=(trends observations);

process trees = (x, y /area=(0,0,1000,500) Event=Trees);
trend grad = field(x,y, gradient);
trend elev = field(x,y, elevation);

run;

In addition, the preceding statements produce three tables, which are shown in Figure 93.1, Figure 93.2, and
Figure 93.3. The number of observations in the combined data set is shown in Figure 93.1; it includes both
the number of event observations and the number of covariate observations.

1This data set is used with kind permission from Professor S. Hubbell, with acknowledgment of the support of the Center for
Tropical Forest Science of the Smithsonian Tropical Research Institute and the primary granting agencies that have supported the
BCI plot. The BCI forest dynamics research project was made possible by National Science Foundation grants to Stephen P. Hubbell:
DEB-0640386, DEB-0425651, DEB-0346488, DEB-0129874, DEB-00753102, DEB-9909347, DEB-9615226, DEB-9615226,
DEB-9405933, DEB-9221033, DEB-9100058, DEB-8906869, DEB-8605042, DEB-8206992, DEB-7922197, support from the
Center for Tropical Forest Science, the Smithsonian Tropical Research Institute, the John D. and Catherine T. MacArthur Foundation,
the Mellon Foundation, the Small World Institute Fund, and numerous private individuals, and through the hard work of over 100
people from 10 countries over the past two decades. The plot project is part of the Center for Tropical Forest Science, a global
network of large-scale demographic tree plots.
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Figure 93.1 Number of Events and Number of Covariate Observations

The SPP ProcedureThe SPP Procedure

Observations Read 23905

Observations Used 23905

Event Observations Read 3604

Event Observations Used 3604

Gradient Observations Read 20301

Gradient Observations Used 20301

Elevation Observations Read 20301

Elevation Observations Used 20301

Figure 93.2 provides some summary information about the point pattern, including the average intensity or
the number of events per unit area.

Figure 93.2 Exploratory Information about the Point Pattern

Summary of Point Pattern

Data Type Point Pattern

Pattern Name trees

Region Type User Defined Window

Region X Range [0,1000] Units

Region Y Range [0,500] Units

Region X Size 1000 Units

Region Y Size 500 Units

Region Area 500000 Square Units

Observations in Window 3604

Average Intensity 0.007208

Grid Nodes in X 50

Grid Nodes in Y 50

Grid Nodes in Window 2500

Quadrat Dimension in X 10

Quadrat Dimension in Y 10

Figure 93.3 provides the results of a default 10 � 10 quadrat-based Pearson chi-square test for CSR.

Figure 93.3 Pearson Chi-Square Test for CSR

Pearson Chi-Square Test for CSR

Expected
Frequency DF

Dispersion
Index Chi-Square Pr > ChiSq

36.04 99 33.222 3288.95 <.0001
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Figure 93.4 Spatial Point Pattern of Tropical Rain forest Trees

Figure 93.5 Spatial Covariate Gradient
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Figure 93.6 Spatial Covariate Elevation

The variables Gradient and Elevation are both continuous functions, because any arbitrary point that is chosen
in the study area has a value for both these variables. However, these variables are sampled at select points
where measuring them is easy. In spatial analysis and geographic information systems (GISs), such variables
are termed field variables and are associated with a spatial trend. You can include such variables in the SPP
procedure by using the TREND statement.

The sashelp.bei data contains combined information for both the point pattern and the spatial covariates.
However, the SPP procedure requires you to identify the point pattern event identifier separately. This is
done by using the EVENT= option in the PROCESS statement to specify that the variable Trees identifies
the event.

It is natural to suppose that tree growth is affected by the gradient and elevation of the surrounding land.
Hence, you can use the gradient and elevation in a parametric model to model the intensity of tree growth
in the study area. Such a model is an inhomogeneous Poisson process (Baddeley 2010, p. 354), whose
first-order intensity, �.s/, is log linear in the covariates. You can use the MODEL statement to compose
models for a point pattern’s intensity. In the MODEL statement, you specify the response pattern on the left
side. The response pattern is a process that you define before you specify the MODEL statement. You can
specify any covariates that are likely to influence the target point pattern on the right side of the MODEL
statement syntax.

To obtain a plot of the model-based intensity estimate, you specify the PLOTS=INTENSITY option. In
addition, if you want to request residual diagnostics, you can specify the PLOTS=RESIDUAL option. If you
want to specify a response grid to obtain the intensity estimates, you can use the GRID option in the MODEL
statement. The following statements explore the influence of the covariates Elevation and Gradient on the
intensity of Tree presence:
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proc spp data=sashelp.bei plots(equate)=(residual intensity);
process trees = (x,y /area=(0,0,1000,500) event=Trees);
trend elev = field(x,y,elevation);
trend grad = field(x,y,gradient);
model trees = elev grad / grid(64,64) residual(B=70) ;

run;

In addition to the tables shown in previous figures, these statements produce a table that contains the parameter
estimates (Figure 93.7) and a fit summary table (Figure 93.8). The parameter estimates designate the intercept
value and the values of the factors of the model terms. The relative values of the parameter estimates indicate
how much each factor contributes to the model. In this case, Gradient is much more important in modeling
where trees grow than Elevation, although both are significant.

Figure 93.7 Parameter Estimates Table

The SPP ProcedureThe SPP Procedure

Parameter Estimates

Parameter Estimate
Standard

Error DF t Value
Approx
Pr > |t|

Intercept -8.5672 0.3415 2 -25.09 0.0016

Elevation 0.02146 0.002290 2 9.37 0.0112

Gradient 5.8616 0.2567 2 22.83 0.0019

The fit summary table in Figure 93.8 shows the model fit statistics. You can use these values to compare
multiple fits from different models and to select an optimal model in your study.

Figure 93.8 Fit Summary Table

Fit Statistics

Criterion Value

-2 Log Likelihood 42290.0

AIC (smaller is better) 42296.0

BIC (smaller is better) 42316.8

The corresponding fitted intensity is shown in Figure 93.9.
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Figure 93.9 Intensity Estimates of Tree presence in Study Area

The resulting residual diagnostics are shown in Figure 93.10.
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Figure 93.10 Residual Diagnostics for Fitted Log-Intensity Model

The residual diagnostics plot in Figure 93.10 provides an informal assessment of the fitted parametric model.
In particular, the smoothed residual plot in the right bottom corner reveals a trend in the residual that is not
accounted for by the model. In addition, the lurking variable plots with respect to the coordinate variables
show significant deviation from the 2� limits, indicating that the model does not account for a variation in
intensity with respect to these variables.

Syntax: SPP Procedure
The following statements are available in PROC SPP:

PROC SPP options ;
BY variables ;
PROCESS name = (variables < /pattern-options >)< /process-options < distance-function-options > >

;
TREND name = FIELD(field-definition ) ;
COVTEST process-name = trend-name < trend-name, . . . >< /options > ;
MODEL process-name = < trend-name, . . . >< /model-options > ;
PARMS value-list < / PARMSDATA=SAS-data set > ;
NLOPTIONS < options > ;

You must specify at least one PROCESS statement. The MODEL statement and the COVTEST statements
must have one process variable on the left side and can have one or more processes or trends on the right
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side. When you specify the PARMS and NLOPTIONS statements, they must be preceded by the MODEL
statement.

The following sections describe the PROC SPP statement and then describe the other statements in alphabeti-
cal order.

PROC SPP Statement
PROC SPP options ;

The PROC SPP statement invokes the SPP procedure. Table 93.1 summarizes the options available in the
PROC SPP statement.

Table 93.1 Options Available in the PROC SPP Statement

Option Description

DATA= Specifies the input data set
EDGECORR= Requests edge correction in the analysis
NODUP Specifies inclusion or exclusion of collocated observations
NOPRINT Suppresses normal display of results
PLOTS Specifies the plot display and options
SEED= Specifies the seed value for the random number generator

You can specify the following options in the PROC SPP statement.

DATA=SAS-data-set
specifies a SAS data set that contains the x and y coordinate variables of one or more point patterns,
associated mark variables, and event identifiers. Mark variables and event identifiers are specified using
MARK= and EVENT= options, respectively, in the PROCESS statement. If your analysis involves
covariates, you must also include them in the DATA= data set. When you include covariates, you must
identify individual point patterns by specifying the EVENT= option in the PROCESS statement. You
must specify a DATA=SAS-data-set; there is no default.

EDGECORR=ON | OFF
specifies whether you want to correct edge effects in the distance function computations and kernel
density estimation. Edge correction is not applicable for the J function. For more information about
how SPP implements edge correction, see the section “Border Edge Correction for Distance Functions”
on page 7800. By default, EDGECORR=ON.

NODUP=nodup-option
specifies whether to eliminate multiple records of data that have the same pairs of coordinates in
the DATA= data set. When multiple such records exist among observations of the event, or among
observations of the same covariate variable, they are known as duplicates. For example, if two or
more event records feature the same coordinates, then your data contain duplicates. However, if your
data contain a record of an event and a record of a covariate that happen to be sampled at the same
coordinates, then they are not duplicates.
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The analysis of a spatial point pattern usually requires that no two events can share the same location.
If your data include such duplicates, this option enables you to deal with them in different ways. You
can specify the following values:

TRUE < (true-suboption) >
removes duplicates from the analysis. You can also specify the following true-suboption:

KEEP=AVG | ONE
specifies how to treat removal of duplicate records. You can specify the following values.

AVG removes all but one record from a set of records that contain duplicate
coordinates. In addition, if the duplicates are records of a numeric mark
or covariate, then the average attribute value of all duplicate records is
assigned to the single record that is retained. If any of the duplicate
records has a missing value for the numeric mark or covariate, then
it does not contribute to the average. Character variables ignore the
KEEP=AVG suboption and retain only the last value in any series of
collocated records.

ONE keeps only a single record out of multiple records that have the same
duplicate coordinates. When you specify KEEP=ONE, PROC SPP retains
the last record in any series of collocated records.

By default, KEEP=ONE.

FALSE
retains and uses all duplicates in the analysis.

If mark or covariate variables are included in the analysis, the NODUP= option specification applies
the same mode of action to each individual variable. If PROC SPP finds duplicates, then it issues a
note. By default, NODUP=TRUE(KEEP=ONE).

NOPRINT
suppresses the normal display of results. This option is useful when you want only to create one or
more output data sets with the procedure.
NOTE: This option temporarily disables the Output Delivery System (ODS). For more information,
see the section “ODS Graphics” on page 7812.

PLOTS < (global-plot-options) > < = plot-request < (options) > >

PLOTS < (global-plot-options) > < = (plot-request < (options) > < ... plot-request < (options) > >) >
controls the plots that are produced through ODS Graphics. When you specify only one plot-request ,
you can omit the parentheses around the plot request. Here are some examples:

plots=none
plots=observ
plots=(observ intensity)
plots(unpack)=observ
plots=(observ(attr=mark level=split(unpack)) observ(attr=event))

ODS Graphics must be enabled before plots can be requested. For example:
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ods graphics on;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

You can specify the following global-plot-options:

EQUATE
produces all plots that have coordinates so that the axes coordinates have equal size units. This
option is ignored for panel plots.

ONLY
suppresses the default plots. Only plots that are specifically requested are displayed.

UNPACKPANEL

UNPACK
suppresses paneling. By default, multiple plots can appear in some output panels. Specify
UNPACKPANEL to get each plot in a separate panel. You can specify PLOTS(UNPACKPANEL)
to unpack the default plots. You can also unpack individual panel plots by specifying the the
UNP suboption in the FFUN, GFUN, KFUN, LFUN, and OBSERVATIONS(LEVEL=(SPLIT))
plot options.

You can specify the following individual plot-requests and options:

ALL
produces all appropriate plots. You can also specify other options with ALL.

CSRKSTEST
produces a plot for the Kolmogorov-Smirnov weighted EDF test for complete spatial randomness
in the presence of covariates. To request this plot, you must specify the COVTEST statement and
include trends on the right side of the COVTEST statement.

EMPTYSPACE < (emptyspace-plot-options) >
produces a plot of the nearest-neighbor distance for every grid node in the window. You can
specify the following emptyspace-plot-options:

FILL=ON | OFF
specifies whether to produce a surface plot of the nearest neighbor distances. By default,
FILL=ON.

LINE=ON | OFF
specifies whether to produce a contour line plot of the nearest neighbor distances. By default,
LINE=OFF.

OBS=ON | OFF
specifies whether to produce an overlaid scatter plot of the observations in addition to nearest
neighbor distances. By default, OBS=OFF.
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F < (UNPACK) >
requests that a panel of diagnostics for the empty space function F be produced. The F function
is the empirical distribution of observed distances to the nearest observation from any location
in the point pattern window. The panel contains four plots: an EDF plot that shows simulation
envelopes for CSR, an EDF-CSR difference plot, a PP plot that compares the EDF of the summary
statistic, and a confidence interval plot that shows envelopes for the confidence intervals of the
summary statistic. If you specify the PLOTS=F option without requesting any distance function
calculations in the PROCESS statement, then it is ignored. You can specify the following option:

UNPACK
suppresses paneling of the F function plots and produces each constituent plot in the panel
separately.

The F plot is produced when you specify the F option in the PROCESS statement.

G < (UNPACK) >
produces a panel of diagnostics for the nearest-neighbor distance function G. The G function
is the empirical distribution function of observed distances to the nearest observation from any
other observation in the point pattern window. The panel contains four plots: an EDF plot that
shows simulation envelopes for CSR, an EDF-CSR difference plot, a PP plot that compares
the EDF of the summary statistic, and a confidence interval plot that shows envelopes for the
confidence intervals of the summary statistic. If you specify PLOTS=G option without requesting
any distance function calculations in the PROCESS statement, then it is ignored.

You can specify the following option:

UNPACK
suppresses paneling of the G function plots and produces each constituent plot in the panel
separately.

The G plot is produced when you specify the G if you specify the G function option in the
PROCESS statement.

INTENSITY < (intensity-plot-options) >
produces a plot of the estimated intensity function for every grid node in the window. You can
specify the following intensity-plot-options:

EST=KERNEL | FIT
specifies the source to use for the intensity estimate. You can specify the following values:

KERNEL produces a plot of the intensity kernel density estimate. This subop-
tion is incompatible with requests for standard error in the FILL= and
LINE= intensity plot options. If you specify EST=KERNEL and either
the FILL=SE suboption or the LINE=SE suboption, then intensity plot
request is ignored.

FIT produces a plot of the estimated intensity on the basis of a model fit when
you fit an intensity model by specifying the MODEL statement.
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FILL=INTENSITY | NONE | SE
specifies which type of surface plot to produce. You can specify the following values:

INTENSITY produces an estimated intensity surface plot.

NONE produces no surface plot.

SE produces a standard errors surface plot.

The default behavior depends on the LINE suboption as follows: If you specify
LINE=NONE or entirely omit the LINE suboption, then FILL=INTENSTIY. If you specify
LINE=INTENSITY or LINE=SE, then the FILL= suboption is set to the same value as the
LINE suboption.

LINE=INTENSITY | NONE | SE
specifies which type of plot to produce. You can specify the following values:

INTENSITY produces an estimated intensity contour line plot.

NONE produces no contour line plot.

SE produces a standard errors contour line plot.

If you omit the LINE suboption, the behavior depends on the FILL suboption as follows: If
you specify FILL=NONE or entirely omit the FILL= suboption, then LINE=INTENSITY. If
you specify FILL=INTENSITY or FILL=SE, then the LINE suboption is set to the same
value as the FILL suboption.

OBS=ON | OFF
specifies whether to produce an overlaid scatter plot of the observations in addition to the
intensity plot. By default, OBS=OFF.

You can specify multiple instances of the INTENSITY plot option to produce intensity plots that
have different characteristics. If you specify multiple instances of any of the FILL=, LINE=, or
OBS= suboptions in the same INTENSITY plot request, then one plot is produced that honors
the last value specified for any of these suboptions. If you explicitly specify (or the suboptions
imply) the combination FILL=NONE and LINE=NONE, then the intensity plot is not produced.

J < (UNPACK) >
produces a combined plot of the J function. The J function is the ratio of transformations of the F
and G nearest-neighbor functions. The combined plot shows both the confidence intervals for the
summary statistic and the simulation envelope for comparison with CSR. You can specify the
following option:

UNPACK
produces each constituent J plot separately.

J plots are produced when you specify the J option in the PROCESS statement. If you specify
PLOTS=J without specifying the J option in the PROCESS statement, then PLOTS=J is ignored.
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K < (UNPACK) >
produces a panel of Ripley’s K function. The K function is the ratio of the expected number
of point pattern observations within distance r of any other observation divided by the average
intensity value of the point pattern. The panel contains four plots: an EDF plot that shows
simulation envelopes for CSR, an EDF-CSR difference plot, a PP plot that compares the EDF
of the summary statistic, and a confidence interval plot that shows envelopes for the confidence
intervals of the summary statistic.

The K plot is produced when you specify the K option in the PROCESS statement. If you
specify PLOTS=K without specifying the K option in the PROCESS statement, then PLOTS=K
is ignored. You can specify the following option:

UNPACK
suppresses paneling of the K function plots and produces each constituent plot separately.

L < (UNPACK) >
produces a panel of the L function, which is a transformation of the K function. The panel
contains four plots: an EDF plot with simulation envelopes for CSR, an EDF-CSR difference
plot, a PP plot that compares the EDF of the summary statistic, and a confidence interval plot
that shows envelopes for the confidence intervals of the summary statistic.

The L plot is produced when you specify the L option in the PROCESS statement. If you specify
the PLOTS=L option without requesting the L option in the PROCESS statement, then PLOTS=L
is ignored. You can specify the following option:

UNPACK
suppresses paneling of the L function plots and produces each constituent plot separately.

LURKING < (lurking-plot-options) >
requests lurking variable plots, which show the cumulative raw residual with respect to the
covariates or the coordinate variables or both. By default, PROC SPP computes lurking variable
panel plots with respect to both covariates and coordinates. You can specify the following
lurking-plot-options:

ALL
creates lurking variable plots of the model’s covariates and of the coordinate variables that
are specified in the PROCESS statement.

COORD
creates lurking variable plots only of the coordinate variables that are specified in the
PROCESS statement.

COVAR
creates lurking variable plots only of the covariates and does not create plots with respect to
the coordinate variables X and Y.

UNPACK
unpacks the lurking variable panel plots into individual lurking variable plots.

The default is LURKING(ALL).
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NONE
suppresses all plots.

OBSERVATIONS < (observations-plot-option) >

OBSERV < (observations-plot-option) >

OBS < (observations-plot-option) >
produces the observed data plot. You can specify the following observations-plot-options:

ATTR=EVENT | MARK
specifies the observations attribute that you want to plot. You can specify the following
values:

EVENT
specifies a plot of the locations of the point-pattern event observations.

MARK
specifies a plot of the locations and the mark values of the point-pattern event observa-
tions. If you do not specify OBS(MARK) or if the analysis skips the specified mark
variable, then the observations plot request is ignored.

PCF < (UNPACK) >
produces a combined plot of the pair correlation function, g. The combined plot shows both the
confidence intervals for the summary statistic and the simulation envelope for comparison with CSR.

The PCF plot is produced when you specify the PCF option in the PROCESS statement. If you
specify the PLOTS=PCF option without specifying the PCF option in the PROCESS statement, then
PLOTS=PCF is ignored. You can specify the following option:

UNPACK
suppresses the combination of different PCF plots into a single plot and produces each constituent
plot separately.

RESIDUAL < (residual-plot-options) >
produces a plot of the residual diagnostics. By default, the SPP procedure produces a panel plot that
contains smoothed raw residuals, raw residuals, and lurking variable plots with respect to the X and Y
coordinates. In addition, you can specify the following residual-plot-options:

TYPE=CUM | RES
specifies the type of residual to be plotted in the lurking variable plots of the coordinate variables.
You can specify the following values:

CUM plots the cumulative residual

RES plots a noncumulative residual as a scatter plot.

UNPACK
unpacks the panel plot, which contains smoothed raw residuals, raw residuals, and a lurking
variable plot, into four separate plots.
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SEED=seed-value
specifies the seed to use for the random number generator. The SEED= value has to be an integer.

TRENDS
produces a plot of all trend covariates. This option is ignored if no trend covariates are specified in the
TREND statement.

BY Statement
BY variables ;

You can specify a BY statement with PROC SPP to obtain separate analyses of observations in groups that
are defined by the BY variables. When a BY statement appears, the procedure expects the input data set to be
sorted in order of the BY variables. If you specify more than one BY statement, only the last one specified is
used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the SPP procedure. The
NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

COVTEST Statement
COVTEST process-name = trend-name < trend-name, . . . >< /options > ;

You use the COVTEST statement to perform covariate dependency tests that are based on an empirical
distribution function (EDF). The COVTEST statement contains two essential parts: a process-name (which
must be declared in a PROCESS statement that precedes the COVTEST statement) that you specify on the
left side and a list of trend-names (which must be defined in a preceding TREND statement within the same
PROC SPP call) that you specify on the right side. The procedure performs separate EDF tests for every
trend-name that is specified in the right side of the COVTEST statement. When you include a trend on the
right side of the COVTEST statement, PROC SPP performs a weighted EDF test. Performing EDF tests
involves computing EDF statistics, for which the SPP procedure calculates the Kolmogorov-Smirnov D
statistic by default. PROC SPP also produces an EDF plot for the Kolmogorov-Smirnov D statistic, which
you can request by using the TEST=D option. If you are interested instead in the Cramér–von Mises W 2

statistic, you need to request it via the following covtest-option:
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TEST= CM | D
requests the test statistics for any type of requested weighted tests. This option applies only if you have
specified a trend on the right side of the COVTEST statement. The requested weighted test statistic is
applied to every trend that is specified on the right side of the COVTEST statement. You can specify
the following values:

D requests the Kolmogorov-Smirnov D statistic.

CM requests the Cramér–von Mises W 2 statistic.

By default, TEST=D.

MODEL Statement
MODEL process-name = < trend-name, . . . > < /model-options > ;

The MODEL statement enables you to fit an inhomogeneous Poisson process model. You must specify a
process-name as the dependent variable. In addition, the MODEL statement enables you to specify multiple
trends as covariates. If you do not specify any trends as covariates in the MODEL statement, PROC SPP fits a
second-degree polynomial. The process-name must be defined in a preceding PROCESS statement, and each
trend-name must be defined in a preceding TREND statement. Table 93.2 summarizes the model-options
that you can specify.

Table 93.2 MODEL Statement Options

Option Description

CENSCALE Displays optimization centering and scaling information
CORRB Requests the approximate correlation matrix
COVB Requests the approximate covariance matrix
CL Constructs a t-type confidence interval
GOF Performs a chi-square-based goodness-of-fit
GRID Specifies the intensity response GRID size
ITHIST Requests the optimization iteration history
OUTINTENSITY Specifies an output data set to store the intensity estimates
OUTSIM Specifies an output data set to store the simulations from an intensity model
POLYNOMIAL Requests an additional polynomial component to be included in the model

fitting process
RESIDUAL Requests residual computations and specifies the bandwidth for smoothed

residuals
SOLUTION Requests display of raw results

You can specify the following model-options:

CENSCALE
lists the centering and scaling (standardization) information for each coordinate and covariate in the
model.
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CL< (alpha-value) >
requests a t-type confidence interval for the estimated parameters. You can also specify the significance
level via the alpha-value. The default alpha-value is 0.05, which corresponds to the default confidence
level of 95%.

CORRB
requests the estimated correlation matrix for the parameter estimates. To request the estimated
correlation matrix for the model parameters with respect to the standardized covariates, specify both
this model-option and the SOLUTION model-option.

COVB
requests the estimated covariance matrix for the parameter estimates. To request the estimated
covariance matrix for the model parameters with respect to the standardized covariates, specify this
model-option and the SOLUTION model-option.

GOF(num-simulations )
requests a goodness-of-fit test for the fitted intensity model. You can specify the number of Monte
Carlo simulation runs as an integer in num-simulations. By default, the SPP procedure performs 100
simulations when you specify this option. It is recommended that you specify a QUADRAT option
in the definition of the response/dependent point pattern in the PROCESS statement. If you do not
specify such an option, the SPP procedure uses a default 10 � 10 quadrat.

GRID(value-NX ,value-NY )
specifies the grid resolution for model fitting, where value-NX specifies the number of grids in the
horizontal direction and value-NY specifies the number of grids in the vertical direction. By default,
the SPP procedure fits the model on a 128 � 128 grid.

ITHIST< (PARM) >
requests an iteration history table for the model-fitting optimization. Specify this option to produce
additional levels of output detail. You can specify the following value:

PARM
includes the fitting parameters in the iteration history table.

OUTINTENSITY=SAS-data-set
specifies a SAS-data-set in which to store the output intensity estimate.

OUTSIM< (iter-value) >=SAS-data-set
specifies a SAS-data-set in which to store a simulated point pattern from a fitted intensity model.
Specify the number of iterations in < iter-value > to generate multiple point pattern data sets. By default,
the number of simulation iterations is set to 1.

POLYNOMIAL|POLY< (degree ) >
specifies a polynomial trend in the coordinates. You can also specify the degree of the polynomial
component. If you do not specify the degree, PROC SPP procedure uses a second-degree polynomial
by default.

RESIDUAL(B=value)
requests residual diagnostics for the inhomogeneous Poisson process model. If you specify this option,
you must also specify the residual bandwidth for computing smoothed residuals via the B= suboption.
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SOLUTION
displays the parameter estimates table in a location- and scale-standardized space. For optimization
purposes, any polynomial coordinates and covariates in the model are centered and scaled. The
parameters and the approximate covariance and the correlation matrices are displayed by default in
the untransformed, unstandardized space. This option causes the output to be displayed on the basis
of the actual fitted parameters in the transformed space. If you also specify the COVB or CORRB
model-option (or both), then PROC SPP also displays the estimated covariance or correlation matrix,
respectively (or both), in the transformed space.

You can specify additional options that are related to the nonlinear optimization aspects of the MODEL
fitting process via the NLOPTIONS statement.

NLOPTIONS Statement
NLOPTIONS < options > ;

The NLOPTIONS statement specifies details about the nonlinear optimization technique that PROC SPP
uses to maximize the log-likelihood function for the first-order intensity model. By default, PROC SPP uses
the Newton-Raphson with ridging optimization technique. For more information about the NLOPTIONS
statement, see the section “NLOPTIONS Statement” on page 488 in Chapter 19, “Shared Concepts and
Topics.”

PARMS Statement
PARMS value-list < / PARMSDATA=SAS-data-set > ;

The PARMS statement specifies initial values for the parameters in the MODEL statement. Alternatively, the
PARMS statement can request a grid search over several values of these parameters. The PARMS statement
is optional and must follow the associated MODEL statement.

Table 93.3 PARMS Statement Options

Option Description

Component Options
PARMSDATA= Specifies an input data set that contains initial values for the model parame-

ters

Specification of parameter values in the PARMS statement is ordered, but the order is unrelated to the order in
which you specify covariates in the MODEL statement. In particular, you must specify the initial parameter
values by starting with the intercept parameter. Depending on the terms you specify in the model, you must
continue sequentially by specifying the initial values for each of the monomials in a polynomial, and finally
specify the coefficients that correspond to plain covariate terms in the model. If you have no initial value for
one or more of the model parameters, then you can specify missing values as initial values. You can specify
the value-list in any of following forms:
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m a single value

m1;m2; : : : ; mn several values

m to n a sequence in which m equals the starting value, n equals the ending value, and the
increment equals 1

m to n by i a sequence in which m equals the starting value, n equals the ending value, and i equals
the increment

m1;m2 to m3 mixed values and sequences

For example, suppose you are fitting an intensity model that consists of a polynomial of first degree in each of
the coordinates x and y and a term with the covariate variable Elevation. You want to specify an initial value
of –3.5 for the intercept, and an initial value of –5 for the covariate Elevation. In the PARMS statement, you
specify initial values for the Intercept parameter and the parameter of the Elevation variable, and no initial
values for the parameters of the polynomial terms x, xy, and y. The following SAS statements implement
these specifications:

proc spp data=sashelp.bei plots(equate) = intensity;
process trees = (x,y /area=(0,0,1000,500) event=Trees);
trend grad = field(x,y,gradient);
trend elev = field(x,y,elevation);
model trees = elev / grid(50,25) poly(1);
parms (-3.5) (.) (-5);

run;

If you specify more than one set of initial values, a grid of initial values sets is created. PROC SPP searches
among the specified sets for the set that yields the lowest objective function value. Then, the procedure uses
the initial values in the selected set for the optimization.

The results from the PARMS statement are the values of the parameters on the specified grid.

You can specify the following option after a slash (/) in the PARMS statement:

PARMSDATA=SAS-data-set

PDATA=SAS-data-set
specifies the SAS data set from which to read model parameter values. The data set should contain the
values in the sequence that is required by the PARMS statement in either of the following two ways:

• Specify one single column under the variable Estimate (Est) that contains all the parameter
values.

• Use one column for each parameter, and place the n columns under the Parm1–Parmn variables.

For example, the following two data sets are equivalent ways to specify initial values for a model that
requires four parameters:

data parData1;
input Estimate @@;
datalines;

0.5 -2 0.03 -3.4
;
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data parData2;
input Parm1 Parm2 Parm3 Parm4 Parm5 Parm6 Parm7;
datalines;

0.5 -2 0.3 . . 1 -5
0.5 -2 0.1 . . 0.1 -5
;

You can specify more than one set of initial values in the SAS-data-set . PROC SPP seeks among the
specified sets for the one that gives the lowest objective function value. Then, the procedure uses the
initial values in the selected set for the fitting optimization.

You can either explicitly specify initial parameter values in the PARMS statement or use the PDATA=
option, but you cannot use both at the same time.

PROCESS Statement
PROCESS name = (variables < /pattern-options > )< /process-options < distance-function-options > > ;

The PROCESS statement defines a point pattern for analysis. You must use a valid SAS variable name to
define the process and you can described it by using variables that contain the X and Y coordinates of the
points within the point pattern. The variables must also be in the DATA= data set. You can also specify
pattern-options and process-options. The pattern-options are related to different attributes of the observed
point pattern that is read from the DATA= data set. The process-options represent different analyses that are
associated with a point pattern. These analyses are usually helpful in characterizing the underlying stochastic
process that might have generated the point pattern. The PROCESS statement’s pattern-options are listed in
Table 93.4. The PROCESS statement’s process-options are listed in Table 93.5.

Table 93.4 Point Pattern Definition Options

Option Description

AREA= Specifies a rectangular study window
EVENT= Specifies an EVENT variable that identifies individual point pattern events
MARK= Specifies the MARK variable for the point pattern

You can specify the following pattern-options, which enable you to describe various aspects of a point pattern
data set:

AREA=(xmin-number, ymin-number, xmax-number, ymax-number )
specifies parameters that define the study area bounds for the spatial point pattern. This option describes
is a key attribute that governs the intensity estimates that are obtained by different methods in PROC
SPP. When you specify this option, you must identify all the following area specifications:

• xmin-number , the lower left limit for the x coordinate

• ymin-number , the lower left limit for the y coordinate

• xmax-number , the upper right limit for the x coordinate and

• ymax-number , the upper right limit for the y coordinate
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If there are BY groups in the DATA= data set, then the explicit bounds remain the same across all
BY groups. If you do not specify this option, then PROC SPP estimates a default area based on the
Ripley-Rasson window estimator. For more information about the Ripley-Rasson window estimate,
see the section “Ripley-Rasson Window Estimator” on page 7801.

EVENT=variable-name
specifies an event variable that is associated with instances (points) in this point pattern. If your DATA=
data set also contains information about covariates, use this option to identify the events in the point
pattern.

MARK=variable-name
specifies a character or quantitative variable from the DATA= data set as a mark variable. Character
variable marks are used for requesting distance function summary statistics across different variable
values.

Table 93.5 PROCESS Statement Options

Option Description

F Computes the empty-space F function
G Computes the G function
J Computes the J function
K Computes the K function to test for complete spatial randomness (CSR)
KERNEL Obtains a nonparametric intensity estimate of the point pattern
L Computes the L function
OUTSIM Specifies an output data set to store the simulated data sets in computation

of distance functions
PCF Computes the PCF function
QUADRAT Performs a quadrat based test for CSR

You can specify the following process-options to study the point pattern data set and the underlying spatial
point process that is likely to have generated this pattern:

F< GRID(value-NX ,value-NY ) >
performs a test for complete spatial randomness that is based on the empty-space F function. For
more information about the F function and related functions see the section “Statistics Based on
Second-Order Characteristics” on page 7797. You can specify the following suboption:

GRID(value-NX , value-NY )
specifies a reference grid for computing the empty-space F function, where value-NX represents
the number of horizontal divisions and value-NY represents the number of vertical divisions. By
default, the SPP procedure uses a 50 � 50 grid.

G
performs a test for complete spatial randomness that is based on the nearest-neighbor G function.

J< GRID(value-NX , value-NY ) >
performs a test for complete spatial randomness that is based on the J function. You can specify the
following suboption:
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GRID(value-NX , value-NY )
specifies a reference grid for computing the J function, where value-NX represents the number of
horizontal divisions and value-NY represents the number of vertical divisions. By default, the
SPP procedure uses a 50 � 50 grid.

K
performs a test for complete spatial randomness that is based on the K function.

KERNEL< (kernel-suboptions) >
produces a nonparametric estimate of the first-order intensity, or a nonparametric smoothed estimate of
a quantitative mark variable of the point pattern, depending on the kernel-suboptions. When you do not
specify the kernel-suboptions, PROC SPP computes a nonparametric intensity estimate that is based
on a default bandwidth and uses a Gaussian kernel. You can specify the following kernel-suboptions.

TYPE=EPANECHNIKOV | GAUSSIAN | QUARTIC | TRIANGULAR | UNIFORM
specifies the kernel type for obtaining the nonparametric estimate. For more information about
the different kernel types that PROC SPP supports, see the section “Nonparametric Intensity
Estimation” on page 7803. By default, TYPE=GAUSSIAN.

B=value
specifies the value for the kernel bandwidth parameter. The bandwidth is a nonnegative number.
By default, the SPP procedure uses a bandwidth of 0:1=

p
�, where � is the CSR average intensity

of the point pattern (Illian et al. 2008, p. 236).

ADAPTIVE
performs adaptive kernel estimation. Adaptive kernel estimation requires an initial bandwidth
value to compute bandwidth estimates for each data point. If you specify a bandwidth in the B=
kernel-suboption, then the SPP procedure uses this value as the initial bandwidth. Otherwise,
it uses a default bandwidth value that is based on the suggestion by Illian et al. (2008, p.236).
For more information about adaptive kernel estimation, see the section “Nonparametric Intensity
Estimation” on page 7803.

OUT=SAS-data-set
specifies the name of a SAS-data-set to contain the kernel based nonparametric estimates.

GRID(value-NX , value-NY )
specifies a reference grid for computing the kernel estimate, where value-NX represents the
number of horizontal divisions and value-NY represents the number of vertical divisions. By
default, the SPP procedure uses a 50 � 50 grid.

L
performs a test for complete spatial randomness that is based on the L function.

OUTSIM=SAS-data-set
specifies the name of a SAS-data-set to contain the results of simulations in distance functions. This
option is ignored unless one of the distance functions is specified in the PROCESS statement.

PCF< B=value >
performs a test for complete spatial randomness that is based on the pair correlation function (PCF)
function. The pair correlation function is calculated only when you specify EDGECORR=ON in the
PROC SPP statement. You can specify the following suboption:
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B=value
specifies the bandwidth value to use in the kernel density estimation inside the pair correlation
function. The value must be a nonnegative real number. Otherwise, it is assigned a default value
of 0:1=

p
�, where � is the CSR average intensity of the point pattern or of the current categorical

mark type (Illian et al. 2008, p. 236).

QUADRAT< (< value-NX ,value-NY > < /DETAILS >) >
performs a test for complete spatial randomness. You can specify value-NX and value-NY to provide
a quadrat specification that includes the number of horizontal and vertical divisions. If you do not
specify the number of horizontal and vertical divisions, PROC SPP computes a default quadrat of
10 � 10. By default, the QUADRAT option displays only the Pearson chi-square test for CSR. If you
also specify the DETAILS suboption, then PROC SPP displays the quadrat count in addition to the
Pearson residual information.

When you specify an F, G, J, K, L, or PCF process-option (shown in Table 93.5), you can also specify the
following distance-function-options.

Table 93.6 Distance Function Options

Option Description

BYTYPE Requests categorical mark typewise calculation of distance functions
CROSS Requests cross-type distance function analysis that is based on the categori-

cal mark that is specified in the MARK= option
MAXDIST= Specifies the ending distance for distance functions
MINDIST= Specifies the starting distance for distance functions
NDIST= Specifies the number of distances to use for different distance functions
NSIM= Specifies the number of simulations to compute the CSR envelope
BLOCKS Specifies the block size for calculation of confidence intervals for distance

functions

BYTYPE(ALL|value-list)
requests distance function calculation by values of the mark variable. This option produces individual
distance function calculations for each mark type. You can specify the following options:

ALL
requests distance function calculation for all available character mark variable values in the
DATA= data set.

value-list
requests distance function calculation for certain formatted mark variable values, which you
specify as quoted strings in the value-list .

CROSS=TYPES(value-list1< ,value-list2 >)
requests cross-type distance function analysis between different mark values. For cross-type analysis,
you must specify a mark variable in the point pattern definition by using the MARK= pattern-option.
The CROSS= option applies only to any requested distance functions K, L, G, J, or PCF. You must
specify the TYPES suboption as follows:
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TYPES(value-list1< ,value-list2 >)
requests cross-type analysis only among types that are specified in value-list1 and an optional
value-list2. If you specify only value-list1, then PROC SPP performs cross-type analysis within
all the types that are specified in value-list1. If you also specify the additional value-list2, PROC
SPP performs cross-type analysis across both lists. For value-list1 and value-list2, specify quoted
strings that correspond to values of the variable that is specified in the MARK=pattern-option.

MAXDIST=value | MAX | AUTO | CUT
specifies the option to be used for computing the maximum distance for different distance functions.
You can specify the following options:

value
specifies a value for the maximum distance for performing distance function calculations. The
value must be positive and larger than the value of the MINDIST=value option. You can specify
any positive value for the maximum distance. However, values that are too large might produce
artifacts that do not reflect the true underlying process.

MAX
uses the maximum possible distance, based on the suggestion by Baddeley and Turner (2013).
The maximum possible distance is calculated as follows:

• For the K, L, and PCF functions, the maximum possible distance is calculated as

minfminfRange.x/;Range.y/g=4;
p
1000=.� � �/g

where � is the intensity of the point pattern in the study area and the ranges of x and y are
computed over the minimum bounding rectangular window of the study area.

• For the F and G functions, the maximum possible distance is calculated as

minfDiameter.W /=2;
p
log.100000/=� � �g

where � is the intensity of the point pattern in the study area andW is the minimum bounding
rectangular window of the study area.

• For the J function, the maximum possible distance is calculated as Diameter.W /=2.

AUTO
uses the maximum possible distance as follows:

• for the F and G functions, uses the distance at which the upper confidence limit is greater
than 1

• for the J and PCF functions, uses the distance at which the variance for the confidence
interval is 0

• for the K and L functions, uses the distance that is based on the rule in the MAX.

CUT
uses the maximum distance at certain cutoff values that are recommended by Baddeley (2014).
The cutoff values are as follows:

• for the F and G functions, the distance at which the F or G value reaches 0.9
• for the J function, the distance at which the F or G value in the calculation of the J function

reaches 0.9
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• for the PCF function, the distance that corresponds to the MAX option that is applied to
individual subdivisions of the study area for computing the confidence interval of the PCF
statistic

• for the K and L functions, the distance that corresponds to theMAX option that is applied to
the entire study area

By default, PROC SPP uses the value of MAXDIST is CUT.

MINDIST=value
specifies a positive number for the minimum distance (or starting) distance for all distance function
calculations. The value of this option cannot be more than the value of MAXDIST= option.

NDIST=value
specifies the number of distance bins with which to compute all the specified distance functions. This
is a global option that applies to all specified distance functions. When you specify a value for this
option, the SPP procedure uses this value instead of others for distance function calculations.

NSIM=value
specifies a positive integer for the number of simulations to be used to compute envelopes for the
CSR tests in all distance functions. When you specify this option, it applies to all specified distance
functions.

BLOCKS(NX , NY )
specifies the block size that is required for calculating the confidence intervals of distance functions,
where NX specifies the number of horizontal blocks and NY specifies the number of vertical blocks.
The block size should be neither too small nor too large for this option to behave reasonably. For
more information about estimating the confidence intervals for distance functions see the section
“Confidence Intervals for Summary Statistics” on page 7800. The default block size is 5 � 5.

TREND Statement
TREND name = FIELD(field-definition) ;

The TREND statement enables you to define a spatial trend covariate, where name is a standard SAS variable
name that names the trend and the FIELD suboption describes the field as follows:

FIELD (X-variable, Y-variable, field-variable )
specifies a spatial field variable as a trend by using any spatial field covariates that are available in the
DATA= data set, where X-variable specifies the X coordinate and Y-variable specifies the Y coordinate
of the spatial field. The third argument is the field-variable, which is a numeric variable in the DATA=
data set.
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Details: SPP Procedure

Testing for Complete Spatial Randomness
The homogeneous Poisson point process serves as a reference model for a completely spatially random (CSR)
point pattern. A homogeneous Poisson point process that has intensity � > 0 has the following properties:

• The number of points N.X \W / that fall in any region W has a Poisson distribution whose mean is
� � jW j, where jW j denotes the area of W.

• If W1 and W2 are disjoint sets, then N.X \W1/ and N.X \W2/ are independent random variables.

• The N.X \W / points within a study area W are independent and uniformly distributed.

Quadrat Count Test for CSR

The quadrat test is a test of complete spatial randomness (CSR) that uses the �2 statistic based on quadrat
counts. In the quadrat test, the study area window W is divided into subregions called quadrats (W1,W2,....Wm)
of equal area. The test counts the number of points that fall in each quadrat nj D n.X\Wj / for j D 1; :::; m.
Under the null hypothesis of CSR, the nj are iid Poisson random variables. The following Pearson �2 test
statistic assesses whether there is a departure from the homogeneous poisson process:

�2 D

P
j .nj � n=m/

n=m

A significant p-value indicates that the underlying point pattern is not CSR.

Exploring Interpoint Interaction
A common question that arises while exploring point pattern data sets is whether points are distributed
independent of each other or whether there exists some kind of interaction between points. There are two
broad categories of summary statistics, which are based on distances between points:

• nearest-neighbor statistics, such as the F, G, and J functions

• statistics that are based on second-order characteristics, such as the K, L, and g functions (Illian et al.
2008).

The following subsections discuss these statistics in detail.
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Nearest-Neighbor Distance Functions

The SPP procedure implements the following nearest-neighbor distance functions:

• empty-space F function

• nearest-neighbor G function

• J function

A typical test that uses any nearest-neighbor function compares the empirical distribution function with the
corresponding function for a homogeneous Poisson process that has first-order intensity �. Usually, the
first-order intensity is obtained as the number of observations per unit of area, O� D n.x/=jW j.

The empty-space F function is defined as the empirical distribution function of the observed empty-space
distances, d.g; x/, which is measured from a set of reference grid points g to the nearest point in the point
pattern. The empty-space distance can be defined as

d.g; x/ D minfjjg � xi jj; for xi 2 xg

In practice, the computation of the empty-space F function also involves an edge correction. The edge-
corrected empty-space F function is defined as

OF .r/ D
X
j

e.gj ; r/1fd.gj ; x/ � rg

where e.gj ; r/ is an edge correction. PROC SPP implements the border edge correction (Illian et al. 2008, p.
185–186) as described in the section “Border Edge Correction for Distance Functions” on page 7800.

For a homogeneous Poisson process that has first-order intensity �, the F function is

FP .r/ D 1 � exp .���r2/

You compare the empirical and Poisson empty-space F function by using the EDF and the P-P plot in the
F function summary panel plot. Values of OF .r/ > FP .r/ suggest a regularly spaced pattern, and values of
OF .r/ < FP .r/ suggest a clustered pattern (Baddeley and Turner 2005).

The nearest-neighbor G function is the empirical distribution of the observed nearest-neighbor distance of the
points within the point pattern. In practice, the G function also involves an edge correction and is defined as

OG.r/ D
X
i

e.xi ; r/1fdi � rg

where e.xi ; r/ is the border edge correction (Illian et al. 2008, p. 185-186) as described in the section “Border
Edge Correction for Distance Functions” on page 7800 and di is the distance to the nearest neighbor for the
ith point.

For a homogeneous Poisson process that has first-order intensity �, the G function can be defined as

GP .r/ D 1 � exp .���r2/

The interpretation of OG.r/ is opposite to the interpretation of OF .r/. That is, values of OG.r/ > GP .r/ imply
a clustered pattern, and values of OG.r/ < GP .r/ suggest a regular pattern (Baddeley and Turner 2005).
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The third type of nearest-neighbor distance function is the J function, which is defined as a combination of
both the F and G functions (van Lieshout and Baddeley 1996). The J function is defined for all distances r
such that F.r/ < 1. The J function can be defined as

J.r/ D
1 �G.r/

1 � F.r/

For a homogeneous Poisson process, JP .r/ D 1. When J.r/ takes values greater than 1, regularity is
indicated; when J.r/ takes values less than 1, the underlying process is more clustered than expected. As can
be seen from the expression of J.r/, its computation does not require an edge correction.

Statistics Based on Second-Order Characteristics

Statistics that are based on second-order characteristics include Ripley’s K function, Besag’s L function, and
the pair correlation function (also called the g function). To understand why these functions are based on
second-order characteristics, see Illian et al. (2008, p. 223-243). These functions usually involve computation
of pairwise distances between points.

The K function of a stationary point process is defined such that �K.r/ is the expected number of points
within a distance of r from an arbitrary point of the process. The empirical K function of a set of points is the
weighted and renormalized empirical distribution function of the set of pairwise distances between points.
The empirical K function can be written as

OK.r/ D
1

O�2jW j

X
i

X
j¤i

1fjjxi � xj jj � rge.xi ; xj I r/

where e.xi ; xj I r/ is the border edge correction that is described in the section “Border Edge Correction for
Distance Functions” on page 7800.

For a homogeneous Poisson process, KP .r/ can be written as

KP .r/ D �r
2

Exploratory analysis usually involves computing both the empirical K function, OK.r/, and the K function
for a Poisson process, KP .r/. A comparison of OK.r/ and KP .r/ might indicate clustering or regularity
depending on whether OK.r/ > KP .r/ or OK.r/ < KP .r/.

Besag’s L function is a transformation of the K function and is defined as

L.r/ D

r
K.r/

�

For a homogeneous Poisson process, LP .r/ D r .

The pair correlation function, g(r), can also be expressed as a transformation of the K function:

g.r/ D
K 0.r/

2�r

Illian et al. (2008), Stoyan (1987), and Fiksel (1988) suggest an alternative expression for g.r/:

g.r/ D �.r/=�2
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where �.r/ is the second-order product density function. Cressie and Collins (2001) provides an expression
for �.r/ as

�.r/ D
O�2K 0.r/

2�r

where O�2K 0.r/ can be written as a kernel estimate,

O�2K 0.r/ D
1

a

nX
iD1

X
j¤i

kh.jjxi � xj jj � r/

where a is the area, kh.u/ D k.u=h/=h, and k.:/ is a kernel such as the uniform kernel or the Epanechnikov
kernel (Silverman 1986). PROC SPP uses the version that is based on the uniform kernel; for more information
about the uniform kernel, see the section “Nonparametric Intensity Estimation” on page 7803. Based on the
formula for the second-order product density �.r/ in terms of the kernel estimate, Stoyan (1987) gives an
edge-corrected kernel estimate for �.r/ as

�.r/ D
1

2�r

X
i

X
j¤i

kh.jjxi � xj jj � r/

a.Wi \Wj /

Based on the preceding expression for the product density and a planar version of Moller and Waagepetersen
(2004), g.r/ can be written as

g.r/ D
�.r/

O�2
D

1

2�r O�2jW j

X
i

X
j¤i

kh.jjxi � xj jj � r/

jW \Wi�j j

A border-edge-corrected version of g.r/ can be written as

g.r/ D
1

2�r O�

P
i

P
j¤i kh.jjxi � xj jj � r/P

i 1fbi � rg

where xi and xj are points within the boundary at a distance greater than or equal to r; where bi is the
distance of xi to the boundary of W , @W ; and where kh.u/ D k.u=h/=h for a kernel k.:/, such as the
uniform kernel or the Epanechnikov kernel. For more information about the uniform kernel, see the section
“Nonparametric Intensity Estimation” on page 7803. For a homogeneous Poisson process, g.r/ D 1. For any
point pattern, values of g.r/ greater than 1 indicate clustering or attraction at distance r, whereas values of
g.r/ less than 1 indicate regularity.

Distance Functions for Multitype Point Patterns
Distance functions (such as G, J, K, L, and g) can also be defined for point patterns that are “marked” with a
categorical mark variable, called a type. Usually you consider mark variables that have more than one type to
define distance functions. When distance functions are defined between two types, they are called cross-type
distance functions. For any pair of types i and j, the cross-distance functions Gij , Jij , Kij , Lij , and gij
can be defined analogously to the single-type distance functions. The interpretation of cross-type distance
functions is slightly different from the interpretation of single type functions. Suppose that X is the point
pattern, Xj refers to the subpattern of points of type j; Xi refers to the subpattern of points of type i, and �j
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represents the intensity of the subpattern Xj . Then the interpretation is to treat Xj as a homogeneous Poisson
process and independent of Xi . If the computed empirical cross-type function is identical to the function that
corresponds to a homogeneous Poisson process, then Xi and Xj can be treated as independent of each other.

The empirical cross-G-function, Gij , is defined as the distribution of the distance from a point of type i in Xi
to the nearest point of type j in Xj . Formally, Gij can be written as

Gij .r/ D
X
i

e.xi ; r/1fdij � rg

where e.xi ; r/ is an edge correction and dij is the distance from a point of type i to the nearest point of type
j. If the two subpatterns Xi and Xj are independent of each other, then the theoretical cross-G-function is

G�ij .r/ D 1 � exp .�j�r2/

The empirical cross-type J-function, Jij , can be defined again in terms of the Gij function and the empty-
space F function for subpattern Xj as

Jij .r/ D Jij .r/ D
1 �Gij .r/

1 � Fj .r/

where Fj .r/ is the empty-space function for the subpattern Xj . If the two subpatterns Xi and Xj are
independent of each other, then the theoretical cross-J-function is J �ij .r/ D 1.

The empirical cross-type K function, Kij , is 1=�j times the expected number of points of type j within a
distance r of a typical point of type i. Formally, Kij can be written as

Kij .r/ D Kij .r/ D
1

�j�i jW j

X
i

X
j

1fjjxi � xj jj � rge.xi ; xj I r/

where e.xi ; xj I r/ is an edge correction. If the two subpatterns Xi and Xj are independent of each other,
then the theoretical cross-K-function is K�ij .r/ D �r

2.

The empirical cross-type L function, Lij , is a transformation of Kij . Formally, Lij can be written as

Lij .r/ D Lij .r/ D

r
Kij .r/

2�r

If the two subpatterns Xi and Xj are independent of each other, then the theoretical cross-type L-function is
L�ij .r/ D r .

The empirical cross-type pair correlation function, gij , is a kernel estimate of the form

gij .r/ D
�.r/

O�2
D

1

2�r O�i O�j jW j

X
i

X
j

kh.jjxi � xj jj � r/

jW \Wi�j j/

A border-edge-corrected version of gij .r/ can be written as

gij .r/ D
1

2�r O�j

P
i

P
j kh.jjxi � xj jj � r/P

i 1fbi � rg

where bi is the distance of xi to the boundary of W , which is denoted as @W . If the two subpatterns Xi and
Xj are independent of each other, then the theoretical cross-type pair correlation function is g�ij .r/ D 1.
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Border Edge Correction for Distance Functions
To compute the edge correction factors e.xi ; r/ that appear in the formulas of the distance functions, the SPP
procedure implements border edge correction (Illian et al. 2008; Ripley 1988; Baddeley 2007). Border edge
correction is necessary because the data are given for a bounded observation window W , but the pattern itself
is assumed to extend beyond the observation window. However, because you can observe only what is within
the window, a disc b.x; r/ of radius r around a point x that lies close to the boundary of W might extend
outside W . Because the original process X is not observed outside W , the number of points of X in b.x; r/
is not observable (Baddeley 2007). Ignoring the fact that the observable quantity n.X \W \ b.x; r// is less
than or equal to n.X \ b.x; r// leads to a bias that is caused by edge effects. The border edge corrector is a
simple strategy to eliminate the bias that is caused by edge effects. Under the border method, the window W

is replaced by a reduced window,

W�r D W � b.0; r/ D fx 2 W W jjx � @W jj � rg

where jjx � @W jj denotes the minimum distance from X to a point on the boundary. The reduced window
contains all the points in W that are at least r units away from the boundary @W .

Based on the preceding definition, the border edge corrected F, K, and G functions are

OF .r/ D
1

�jW�r j

X
gj2W�r

1fd.gj ; x/ � rg

OK.r/ D

Pn
iD1

P
j¤i 1fjjxi � xj jj � rg
Ǒn.x \W�r/

OG.r/ D

P
xi2W�r 1fjjxi �X= xi jj � rg

n.X \W�r/

OG.r/ D

P
i 1fdi � r; bi � rgP

i 1fbi � rg

where Ǒ D n.x/=�jW j; jjxi �X= xi jj is the observed nearest-neighbor distance, di , for the ith point xi ; and
bi is the distance from xi to the boundary @W . For more information about these border-edge-corrected
functions, see Baddeley (2007).

Confidence Intervals for Summary Statistics
The SPP procedure computes confidence intervals for the true value of a summary statistic such as the K,
L, F, G, J, or PCF function. The window that contains the point pattern is divided into a number of blocks.
By default, PROC SPP divides the window into 5 � 5 blocks. The summary statistic is calculated in each
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block, and the pointwise sample mean, sample variance, and sample standard deviation of these summary
statistics are computed. If any edge corrections are required, they are also applied in the calculation of the
individual summary statistics within each block. If the summary statistic is a function such as the K function,
the estimate for a particular block B is computed by counting pairs of points in which the first point lies in B
and the second point lies elsewhere (Baddeley and Turner 2013).

The variance of the summary statistics is estimated by

var. QK.t// �
Pm
iD1fki �

QK.t/g

fm.m � 1/g

where m is the number of blocks, ki is the value of the summary statistic in individual blocks, and QK.t/ DPm
iD1 ki=m (Diggle 2003, 52–53).

Ripley-Rasson Window Estimator
When the sampling window for a point pattern is unknown, it can be estimated from the data. A common error
is to assume that W is the smallest rectangle that contains the data points, or is the convex hull that encloses
the data points (Baddeley 2010). Either choice is an underestimate of the true region W and usually yields an
overestimate of the point process intensity � or summary statistics such as the K function. The Ripley-Rasson
window estimator is an estimate of the spatial window from which the points were drawn (Ripley and Rasson
1977). For estimating a rectangular study region, the Ripley-Rasson estimate is the rescaled copy of the
minimum bounding box of the collection of points, centered at the box’s centroid and expanded using a

scaling factor of 1=
q
1 � 4

n
, where n is the number of data points.

Covariate Dependence Tests
For analyses that include covariates, the SPP procedure implements nonparametric goodness-of-fit tests that
are based on the empirical distribution function (EDF). PROC SPP provides weighted EDF tests that depend
primarily on the covariate values.

The next subsection reviews the EDF tests that are at the heart of covariate dependency testing, and the
subsequent subsection describes the covariate dependency tests in more detail.

EDF Goodness-of-Fit Tests

You use goodness-of-fit tests to examine the fit of a parametric distribution. In the SPP procedure, this task
emerges when you test your data for dependence on a covariate. You can examine the goodness of fit by
using tests that are based on the EDF. These tests offer advantages over traditional chi-square goodness-of-fit
tests, as discussed in D’Agostino and Stephens (1986). The empirical distribution function is defined for a
set of n independent observations, X1; : : : ; Xn, that have a common distribution function F.x/ as follows.
Denote the observations ordered from smallest to largest as X.1/; : : : ; X.n/. Then the empirical distribution
function, Fn.x/, is

Fn.x/ D

8̂<̂
:
0; x < X.1/
i
n
; X.i/ � x < X.iC1/ i D 1; : : : ; n � 1

1; X.n/ � x
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Fn.x/ is a step function that takes a step of height 1
n

at each observation. This function estimates the
distribution function F.x/. At any value x, Fn.x/ is the proportion of observations that are less than or equal
to x, whereas F.x/ is the probability of an observation being less than or equal to x. EDF statistics measure
the discrepancy between Fn.x/ and F.x/.

The computational formulas for the EDF statistics make use of the probability integral transformation
Z D F.X/. If F.X/ is the true distribution function of X, then the random variable Z is uniformly distributed
between 0 and 1. For example, assume that you believe X � N.�; �2/. In this case, the probability integral
transformZ D F.X/ for the normalN.�; �2/ is given by the EDF of the standardized value .X��/ = � . To
test the fit of your sample EDF Fn.x/ to the assumed exact F.X/, you can equivalently test the fit of Fn.z/ to
the EDF F.Z/ of Z. AsZ � U.0; 1/, F.Z/ is the cumulative density function (CDF) of the standard uniform
U.0; 1/, which is simply F.Z/ D z. This also means that your empirical Fn.x/ D Fn.z/. Consequently,
the probability integral transform translates the initial fit task into an easier comparison between Fn.z/ and
F.Z/.

There are two main classes of EDF statistics: the supremum and the quadratic class. The supremum class is
based on the largest vertical difference between F.x/ and Fn.x/. The quadratic class is based on the squared
difference .Fn.x/ � F.x//2. Quadratic statistics have the following general form:

Q D n

Z C1
�1

.Fn.x/ � F.x//
2 .x/dF.x/

The function  .x/ weights the squared difference .Fn.x/ � F.x//2.

As previously discussed, the SPP procedure considers the ordered observations X.1/; : : : ; X.n/ and computes
the values Z.i/ D F.X.i// by applying the probability integral transform. PROC SPP examines the goodness
of fit by computing the following two EDF statistics:

• Kolmogorov-Smirnov two-sided D from the supremum class

• Cramér-von Mises W 2 from the quadratic class

Within the different classes of EDF statistics, the quadratic class is known to have more powerful statistics
than the supremum class. The details of the statistics used by PROC SPP are discussed in the following
subsection.

After the EDF test statistics are computed, the SPP procedure computes the associated significance values.
In the scope of the PROC SPP analysis, the true distribution function, F.X/, is a completely specified
distribution. For computations in this scenario, PROC SPP applies slightly modified D and W 2 statistics, as
described by D’Agostino and Stephens (1986).

Testing Covariate Dependency with EDF Tests

In a test for covariate dependency, the goal is to test the null hypothesis H0 that the point process is
independent of the covariate. PROC SPP tests H0 by interpolating the covariate values at the event locations.
The EDF is weighted by the intensity at the corresponding locations (Baddeley and Turner 2005). PROC
SPP performs this weighted EDF test for covariates that are defined in a TREND statement.
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Weighted EDF Tests
To test dependence on a trend covariate, PROC SPP initially computes the covariate EDF. The EDF is
weighted by using intensity-based weights to account for the current intensity model. For example, under
the CSR assumption the intensity � is constant across the study area; hence, the weight for each of the
M observations of a covariate is �i=

P
i M�i D �=M� D 1=M . This weighted EDF is the predicted

distribution that any other set of independent covariate observations should follow under the assumed
intensity model.

Next, the covariate is interpolated at the n event locations si ; i D 1; : : : ; n, using ordinary kriging; kriging
analysis assumes a linear semivariance correlation function and considers the four closest covariate observa-
tions for each event location. The outcome is a set of covariate values Xi . With the Xi in hand, PROC SPP
assumes that the probability integral transform Z D F.X/ is the linear interpolation of the weighted EDF at
the covariate values Xi , and it produces the transformed EDF Z in Œ0; 1�. If the intensity model assumption is
correct, then Z follows a uniform distribution U.0; 1/. Finally, PROC SPP uses EDF tests to examine the fit
of the EDF Fn.x/ D Fn.z/ to a standard uniform EDF.

Nonparametric Intensity Estimation
The KERNEL option in the PROCESS statement enables you to perform nonparametric intensity estimation.
You can use five different kernel types: Epanechnikov, Gaussian, uniform, triangular, and quartic (Silverman
1986), whose kernel functions are as follows, where t D

p
.sx � x/2 C .sy � y/2=h, sx , sy are the grid

point coordinates, x and y are the point coordinates, and h is the bandwidth parameter:

• Epanechnikov

K.t/ D

(
3
4
.1 � t2

5
/ 1p

5
jt j <

p
5

0 otherwise

• Gaussian

K.t/ D
e�

t2

2

p
2�

• uniform

K.t/ D

(
1
2
jt j < 1

0 otherwise

• triangular

K.t/ D

(
1 � jt j jt j < 1

0 otherwise

• quartic

K.t/ D

(
15
16
.1 � t2/2 jt j < 1

0 otherwise
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Given the preceding kernel definitions, the nonparametric intensity estimate can be computed as

�.s/ D

nX
iD1

h�2 �K
�s � si

h

�
where h is the fixed bandwidth. In practice, nonparametric intensity estimation also involves an edge
correction. By default, PROC SPP divides the nonparametric estimate �.s/ by an edge correction factor

�.s/ D

Z
A

h�2 �K
�s � si

h

�
where A is the study area. The choice of the bandwidth parameter that nonparametric intensity estimation
requires is more important than the choice of the kernel type itself (Silverman 1986). The bandwidth can be
spatially fixed or spatial varying. If the bandwidth is spatially varying, it is called adaptive kernel estimation.
For adaptive kernel estimation, the SPP procedure uses the technique suggested in Silverman (1986, p. 101)
and Diggle, Rowlingson, and Su (2005, p. 426), which is computed in two steps:

1. Use an initial bandwidth h to compute pilot estimates of the first-order intensity as

�0.s/ D

nX
iD1

h�2 �K
�s � si

h

�
where K(.) is a kernel.

2. Compute bandwidth factors as

hi D h �

�
�0.s/bg

��0:5
wherebg is the geometric mean of the pilot estimates �0.s/.

Based on the computed bandwidth estimates, hi , the nonparametric intensity estimates are computed as

�.s/ D

nX
iD1

h�2i �K

�
s � si

hi

�
In PROC SPP, adaptive kernel estimation does not incorporate edge correction.

Inhomogeneous Poisson Process Model Fitting
An inhomogeneous Poisson process that has intensity function �.s/ is a point process in which the number
of points that fall in a spatial region W, N.X \W / has the following expectation:

EŒN.X \W /� D

Z
W

�.s/ds

Also, the N.X \ W / points are independent and identically distributed for disjoint subsets W with a
probability density of

f .s/ D
�.s/R

W �.s/ds

.
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Likelihood Methods for Model Fitting

The intensity function �� .s/ is assumed to be log linear in the parameters � . So

log �� .s/ D � �Z.s/

where Z.s/ is a real-valued or vector-valued function of location s. Z.s/ can include a polynomial function
of coordinate variables or a spatial covariate. The log likelihood for the parameters � is given by

logL.� I x/ D
nX
iD1

log �� .xi / �
Z
W

�� .s/ds

The integral in the expression for the log likelihood can be approximated using quadrature asZ
W

�� .sI x/ds �

mX
jD1

�� .sj I x/wj

for some quadrature weights wj . Hence, the log likelihood can be rewritten as follows:

logL.� I x/ �
n.x/X
iD1

log �� .xi I x/ �
mX
jD1

�� .sj I x/wj

Based on the observation by Berman and Turner (1992) and Baddeley and Turner (2000), the log likelihood
can be approximated as

logL.� I x/ �
mX
jD1

.yj log �j � �j /wj

where �j D �� .sj /. If the list of points fsj ,j D 1, . . . , mg also includes the collection of data points
fxi ,i D 1, . . . , ng, then yj D zj =wj and

zj D

(
1 if sj is a data point, sj 2 x
0 if sj is a dummy point, sj 62 x

The log pseudolikelihood can be maximized using standard optimization algorithms.

Fit Statistics

The SPP procedure displays three fit statistics for model selection. For a model that has p parameters, uses
n event observations, and produces a maximum log likelihood Log L, these criteria are calculated as in
Table 93.7.
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Table 93.7 Fit Statistics

Option Description

–2 log likelihood 2LL D �2 Log L
Akaike’s information criterion (AIC) AIC D �2 Log LC 2p
Schwarz criterion or Bayesian informa-
tion criterion (BIC)

BIC D �2 Log LC p log.n/

The AIC and BIC statistics give two different ways of adjusting the –2 Log L statistic for the number of
terms in the model and the number of observations used. These statistics can be used when different models
for the same data are compared. Lower values of the statistics indicate a more desirable model.

Fitted Model Validation That Uses Goodness-of-Fit Tests

If you want to check how likely the data are to be generated by the fitted model, you can perform a goodness-
of-fit test that is based on a chi-square statistic. The model goodness-of-fit test that is displayed by the
GOF option in the MODEL statement uses quadrats to compute the observed and expected counts and
subsequently to perform the chi-square test. The model goodness-of-fit test is a simulation-based test that
uses the fitted model to generate different realizations of the point process. For each simulated realization,
the SPP procedure calculates the expected count under the model and computes the mean of this expected
count over all the realizations. The mean of this expected count over all realizations is used to compute a
Pearson residual as

Pearson residual D
Oc �Ec
p
Ec

where Oc is the observed count in each quadrat, based on the data, and Ec is the expected count under
the model. Based on these observed and expected counts, a chi-square statistic is computed and a Pearson
chi-square test is performed. A small p-value indicates that the data are not likely to be generated by the
model.

Fitted Model Validation That Uses Residuals

Residual diagnostics are tools for checking and examining the fitted model. Residual plots and influence
diagnostics help you identify influential observations, assess model assumptions, and recognize departures
from the model. Baddeley et al. (2005) define four types of residuals: raw residuals, inverse residuals,
Pearson residuals, and score residuals. PROC SPP implements only raw residuals. Given a point pattern x
and using a parameter estimate O� D O�.x/, the raw residuals can be defined as

R O� .W / D n.x \W / �

Z
W

O�.s; x/ds

In order to be able to compute the raw residual, Baddeley et al. (2005) suggest a discretization of this residual
measure. According to Baddeley and Turner (2013), discretization of the raw residuals yields

rj D zj � wj�j

at the quadrature points uj , where zj is an indicator equal to 1 if uj is a data point or 0 if uj is a dummy
point, wj is the quadrature weight that is attached to uj , and �j D O�.uj ; x/ is the conditional intensity of
the fitted model at uj .
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Smoothed Residuals
The smoothed raw residuals are defined as

s.u/ D O�.u/ � Q�.u/

where O�.u/ is a nonparametric kernel estimate of the intensity,

O�.u/ D e.u/

n.x/X
iD1

k.u � xi /

where e.u/ is an edge correction and Q�.u/ is a smoothed version of the parametric estimate of the intensity
according to the fitted model:

Q�.u/ D e.u/

Z
W

k.u � s/� O� .s/ds

If the fitted model is correct, the kernel estimate and the kernel smoothed estimate of the fitted intensity
should be approximately equal. Positive values of s.u/ suggest that the model underestimates the intensity
(Baddeley and Turner 2005).

Lurking Variable Plots
Lurking variable plots help detect dependence on an unobserved covariate. Any systematic pattern in these
plots indicate a departure from the model (Baddeley and Turner 2005). For point process models, you can
plot the residuals against a spatial covariate or one of the coordinates to investigate the presence of a spatial
trend and to assess whether the true trend differs from the trend that is specified by the fitted model. For a
spatial covariate Z.u/ that is defined at each location u 2 W , the residual on each sublevel set,

W.z/ D fu 2 W W Z.u/ � zg

yields a cumulative residual function for the raw residuals as follows:

A.z/ D n.fx \W.z/g/ �

Z
W.z/

O�.u; x/du

In addition to plotting the cumulative residual function, the lurking variable plot also shows 2� limits based
on the variance of the innovations under an inhomogeneous Poisson process (Baddeley et al. 2005). The
variance of the innovations under an inhomogeneous Poisson process is

varfA.z/g D varfI fW.z/gg D
Z
W.z/

�.u/du

The 2� limits can be interpreted as pointwise significance limits. A systematic violation of the limits suggests
that the proposed model does not account for the dependence on the covariate under consideration (Baddeley
et al. 2005).
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Output Data Sets
The SPP procedure produces output data sets that are specified in the OUT= suboption of the KERNEL
option in the PROCESS statement, and in the OUTINTESITY= and OUTSIM= options in the MODEL
statement. These data sets are described in the following sections.

OUT= Suboption in the KERNEL Option in the PROCESS Statement

specifies the name of an output data set to store the kernel-based nonparametric estimates. This data set
contains the following variables:

• KERNEL, the kernel type that is used for the corresponding intensity estimate

• BANDW, the kernel bandwidth that is used for the corresponding intensity estimate

• VARNAME, the label of the event variable

• GXC, the x coordinate of the grid point at which the intensity estimate is made

• GYC, the y coordinate of the grid point at which the intensity estimate is made

• ESTIMATE, the intensity estimate

OUTSIM= Option in the PROCESS Statement

specifies the name of an output data set to store the simulations of distance functions that are included as
options in the PROCESS statement. This data set contains the following variables:

• GXC, X coordinate of current simulated event location

• GYC, Y coordinate of current simulated event location

• ITER, current iteration

• IXY, simulated event observation number in the current iteration

• MARK, label of current mark

• MTYPE, categorical mark level

• MVALUE, numeric mark simulated value

• NITER, number of iterations in simulation

• NXY, number of simulated events in current iteration

• VARNAME, label of the event the results refer to



Displayed Output F 7809

OUTINTENSITY= Option in the MODEL Statement

specifies the name of an output data set to store the output intensity estimate. This data set contains the
following variables:

• ESTIMATE, fitted intensity at current location

• GXC, X coordinate of current output grid location

• GYC, Y coordinate of current output grid location

• STDERR, standard error for the intensity estimate

• VARNAME, event label from the DATA= data sets that are associated with events and identified during
the procedure call

OUTSIM= Option in the MODEL Statement

specifies the name of an output data set to store a simulated point pattern from a fitted intensity model. This
data set contains the following variables:

• ESTIMATE, fitted intensity estimate at the simulated event location

• GXC, X coordinate of current simulated event location

• GYC, Y coordinate of current simulated event location

• ITER, current simulation iteration

• NITER, number of iterations in current simulation

• NXY, number of simulated events in current iteration

• VARNAME, event label from the DATA= data set that is associated with events and identified during
the procedure call

Displayed Output
The SPP procedure produces the following output objects.

• By default, PROC SPP outputs a “Number of Observations” table, which displays the number of
observations that are read from the input data set and the number of valid observations that are used.
The actual number of observations that are used in the analysis can be equal to or smaller than the
number of valid observations, depending on the specification of the study window and the existence
and handling of duplicate observations. When you include a covariate variable in your analysis, this
table contains more detailed information about the number of observations that are used in the study
window for each variable.
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• If you use the PROCESS statement to specify a point pattern, PROC SPP outputs a table is displayed
by default that contains exploratory information about the point pattern, any mark variable that is
present, and information about the point pattern domain window and grid.

• If you use the PROCESS statement to specify a point pattern, PROC SPP outputs a default plot of the
event observations in the point pattern.

• If you specify a mark variable for the point pattern, PROC SPP outputs a table that contains information
about the mark variable.

• If you do not specify any options for the PROCESS statement, PROC SPP performs the quadrat test by
default and outputs a table that shows the Pearson chi-square test for CSR by default. If you specify the
QUADRAT option with the DETAILS suboption, PROC SPP outputs a detailed quadrat counts table, a
quadrat information table that contains Pearson residuals, and a table for the Pearson chi-square test
for CSR.

• If you specify a KERNEL option in the PROCESS statement, PROC SPP outputs a kernel intensity
information table. In addition, if you request the ADAPTIVE suboption in the KERNEL option, an
adaptive kernel information table is displayed. In addition, if you specify the KERNEL option and
ODS Graphics is enabled, a map of the kernel intensity estimate is also produced.

• If you specify one or more of the K, L, G, and F options in the PROCESS statement, PROC SPP
outputs an information table for each of the specified distance functions. The information table contains
basic information, such as the minimum analysis distance, maximum analysis distance, maximum
difference between the empirical distribution function of the summary statistic and the CSR function,
and the distance at which the maximum difference is observed. In addition, PROC SPP outputs a panel
plot for each distance function that is included as an option in the PROCESS statement. Each panel
plot contains four constituent plots: the empirical distribution function (EDF) plot, the EDF�CSR
difference plot, a probability-probability plot that compares the EDF and CSR, and a confidence
interval plot for the summary statistic.

• If you specify the J and PCF options in the PROCESS statement, PROC SPP outputs a combined plot
that shows the EDF, the simulation intervals, and the confidence interval for the summary statistic.

• If you specify a COVTEST statement that has appropriate trend covariates on the right side, PROC
SPP outputs a table for the Kolmogorov-Smirnov EDF test statistic and creates a plot of the empirical
and transformed EDF by default for each covariate that you include in the COVTEST statement.
The plot illustrates the Kolmogorov-Smirnov test analysis for testing for point pattern dependency
on covariates. If you specify the Cramér–von Mises EDF test statistic in the TEST= option in the
COVTEST statement, PROC SPP outputs the table for the Cramér–von Mises EDF test statistic.

• If you specify a MODEL statement to fit a model for the first-order intensity of the point pattern that is
defined in a preceding PROCESS statement, PROC SPP produces the following results by default:

– a “Model Information” table that lists the intercept, covariates, and polynomial terms that are
included in the model, along with the initial values for the coefficients

– an optimization information table that shows the optimization technique, the number of parameters
in the optimization, and the number of fixed parameters and starting values

– a table for the convergence status that shows the convergence criterion
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– a “Parameter Estimates” table that shows the estimate for each parameter, the standard error, the
number of degrees of freedom, a t value, and a p-value

– a “Fit Statistics” table that shows different fit statistics, such as the log likelihood, Akaike’s
information criterion, and the Bayesian information criterion

– a map that shows the fitted intensity estimate based on the model

• If you specify the MODEL statement and include the ITHIST option, PROC SPP outputs an iteration
history table that shows the value of the objective function and the maximum value of the gradient
over different iterations of the optimization algorithm.

• If you specify the MODEL statement and include the CORRB option, PROC SPP outputs the approxi-
mate correlation matrix.

• If you specify the MODEL statement and include the COVB option, PROC SPP outputs the approximate
covariance matrix.

• If you specify the MODEL statement and include the GOF option, PROC SPP outputs a table that
shows the Pearson chi-square test for goodness of fit. This table shows a p-value that indicates how
likely it is for the data to be generated by the fitted model. In addition, if you also specify a QUADRAT
option with the DETAILS suboption for the response process in a preceding PROCESS statement,
PROC SPP also displays a quadrat information table that shows Pearson residuals that are based on
the expected counts under the fitted model and observed counts from the point pattern data set that is
defined for the response process.

The complete listing of the PROC SPP output follows in the sections “ODS Table Names” on page 7811 and
“ODS Graph Names” on page 7813.

ODS Table Names
Each table that PROC SPP creates has a name that is associated with it, and you must use this name to refer
to the table when you use ODS Graphics. Table 93.8 lists these names and shows the statement and options
that you must specify to produce the table.

Table 93.8 ODS Tables Produced by PROC SPP

ODS Table Name Description Statement Option

CenScale Model parameter standardization in-
formation

MODEL CENSCALE

CenScaleCorrB Approximate correlation matrix of
model-standardized parameter esti-
mates

MODEL CORRB, SOLUTION

CenScaleCovB Approximate covariance matrix of
model-standardized parameter esti-
mates

MODEL COVB, SOLUTION

CenScaleParms Parameter estimates for standardized
output

MODEL SOLUTION

ConvergenceStatus Status of optimization at conclusion MODEL Default output
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Table 93.8 continued

ODS Table Name Description Required
Statement

Option

CorrB Approximate correlation matrix of
model parameter estimates

MODEL CORRB

CovariateInfo Numerical covariate information COVTEST Default output

CovariateLevelInfo Levels of categorical covariate COVTEST Default output

CovB Approximate covariance matrix of
model parameter estimates

MODEL COVB

EdfCsrTest EDF test for complete spatial ran-
domness

COVTEST Default output

ExploratoryInfo General point pattern information PROC Default output

FitStatistics Goodness-of-fit information MODEL Default output

IterHist Iteration history MODEL Default output

KernIntensityInfo Intensity function information from
kernel density estimation

PROCESS KERNEL

NObs Number of observations read and
used

PROC SPP Default output

MarkInfo Numerical mark information PROC SPP Default output

MarkLevelInfo Levels of categorical mark PROC SPP Default output

ModelInfo Model information MODEL Default output

OptInfo Optimization information MODEL Default output

ParameterEstimates Model-fitting solution and statistics MODEL Default output

ParmSearch Parameter search values PARMS Default output

PearsonsChiSq Chi-square test for CSR PROCESS QUADRAT

QuadratCount Counts of quadrats PROCESS QUADRAT

QuadratInfo Detailed quadrat information PROCESS QUADRAT /DETAILS

FFuncInfo F function information PROCESS F
GFuncInfo G function information PROCESS G
KFuncInfo K function information PROCESS K
LFuncInfo L function information PROCESS L

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by using the ODS GRAPHICS ON
statement). For more information about enabling and disabling ODS Graphics, see the section “Enabling
and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.” For additional
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control of the graphics that are displayed, see the PLOTS= option in the section “PROC SPP Statement” on
page 7777.

ODS Graph Names

PROC SPP assigns a name to each graph it creates by using ODS Graphics. You can use these names to refer
to the graphs when you use ODS Graphics. Table 93.9 lists the names and shows the statement and option
that you must specify to produce the graph.

Table 93.9 Graphs Produced by PROC SPP

ODS Graph Name Plot Description Statement Option

CovariateEDFPlot Plot of Kolmogorov-Smirnov test analy-
sis for CSR

COVTEST PLOTS=CSRKSTEST

EmptySpacePlot Surface plot of nearest-neighbor dis-
tances from any window location

PROCESS

PROC SPP PLOTS=EMPTYSPACE

IntensityPlot Surface plot of estimated intensity Default Default

ObservationsPlot Scatter plot of observed events, marked
events, or covariate variables

PROC SPP PLOTS=OBSERV

FPanelPlot Panel plot of empty-space function F PROCESS F

PROC SPP PLOTS=F(ALL)

FEdfPlot EDF plot of empty-space function F PROCESS F

PROC SPP PLOTS=F(UNPACK)

FDiffPlot Difference plot of empty-space function
F and CSR

PROCESS F

PROC SPP PLOTS=F(UNPACK)

FNppPlot PP plot of empty-space function F and
CSR

PROCESS F

PROC SPP PLOTS=F(UNPACK)

FCIPlot Confidence interval plot of empty-space
function F

PROCESS F

PROC SPP PLOTS=F(UNPACK)

GPanelPlot Plot of nearest-neighbor function G PROCESS G

PROC SPP PLOTS=G(ALL)

GEdfPlot EDF plot of nearest-neighbor function
G

PROCESS G

PROC SPP PLOTS=G(UNPACK)

GDiffPlot Difference plot of nearest-neighbor func-
tion G and CSR

PROCESS G

PROC SPP PLOTS=G(UNPACK)

GNppPlot PP plot of nearest-neighbor function G
and CSR

PROCESS G

PROC SPP PLOTS=G(UNPACK)
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Table 93.9 continued

ODS Graph Name Plot Description Statement Option

GCIPlot CI plot of nearest-neighbor function G PROCESS G

PROC SPP PLOTS=G(UNPACK)

JCombinedPlot Plot of function J PROCESS J

PROC SPP PLOTS=J(ALL)

JEdfPlot EDF plot of function J PROCESS J

PROC SPP PLOTS=J(UNPACK)

JCIPlot CI plot of function J PROCESS J

PROC SPP PLOTS=J(UNPACK)

KPanelPlot Plot of Ripley’s function K PROCESS K

PROC SPP PLOTS=K(ALL)

KEdfPlot EDF plot of Ripley’s function K PROCESS K

PROC SPP PLOTS=K(UNPACK)

KDiffPlot Difference plot of Ripley’s function K
and CSR

PROCESS K

PROC SPP PLOTS=K(UNPACK)

KNppPlot PP plot of Ripley’s function K and CSR PROCESS K

PROC SPP PLOTS=K(UNPACK)

KCIPlot CI plot of Ripley’s function K PROCESS K

PROC SPP PLOTS=K(UNPACK)

LPanelPlot Plot of Besag’s L function PROCESS L

PROC SPP PLOTS=L(ALL)

LEdfPlot EDF plot of Besag’s L function PROCESS L

PROC SPP PLOTS=L(UNPACK)

LDiffPlot Difference plot of Besag’s L function
and CSR

PROCESS L

PROC SPP PLOTS=L(UNPACK)

LNppPlot PP plot of Besag’s L function PROCESS L

PROC SPP PLOTS=L(UNPACK)

LCIPlot CI plot of Besag’s L function PROCESS L

PROC SPP PLOTS=L(UNPACK)

PCFCombinedPlot Plot of the pair correlation function, g PROCESS PCF

PROC SPP PLOTS=PCF(ALL)

PCFEdfPlot EDF plot of the pair correlation function,
g

PROCESS PCF

PROC SPP PLOTS=PCF(UNPACK)

PCFCIPlot CI plot of the pair correlation function,
g

PROCESS PCF
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Table 93.9 continued

ODS Graph Name Plot Description Statement Option

PROC SPP PLOTS=PCF(UNPACK)

ResidualPanel Raw residual panel plot MODEL RESIDUAL

PROC SPP PLOTS=RESIDUAL

RawResidual Raw residual plot MODEL RESIDUAL

PROC SPP PLOTS=RESIDUAL(UNPACK)

ResidualScatter Cumulative residual plot MODEL RESIDUAL

PROC SPP PLOTS=RESIDUAL(UNPACK)

SmoothedResidual Cumulative residual plot MODEL RESIDUAL

PROC SPP PLOTS=RESIDUAL(UNPACK)

LurkingPanel Cumulative residual and lurking variable
panel plot

MODEL

PROC SPP PLOTS=LURKING(ALL)

LurkingVariable Cumulative residual and lurking variable
plot

MODEL

PROC SPP PLOTS=LURKING(UNPACK)

To request these graphs, you must specify the ODS GRAPHICS statement in addition to the statements
indicated in Table 93.9. For more information about the ODS GRAPHICS statement, see Chapter 21,
“Statistical Graphics Using ODS.”

Examples: SPP Procedure

Example 93.1: Exploration of a Multitype Point Pattern
This example demonstrates how you can use PROC SPP to explore a multitype point pattern. Consider the
following data set, which consists of locations of retinal amacrine cells in a rabbit’s eye. The data set contains
three variables: X and Y are the coordinates of the cell locations, and Type is the type of each cell (which is
based on whether it turns on or off when exposed to light). The data were originally analyzed by Diggle,
Eglen, and Troy (2006) and Hughes (1985).

data amacrine;
input X Y Type $ @@;
label Type='Cell Type';
datalines;

0.0224 0.0243 on
0.0243 0.1028 on
0.1626 0.1477 on
0.1215 0.0729 on
0.2411 0.0486 on
0.0766 0.1776 on
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0.1047 0.2579 on

... more lines ...

1.5729 0.729 off
1.457 0.6822 off
1.4168 0.7374 off
;

Accounting for mark types enables you to study possible interaction across types. You can study such
interactions by using the cross-type variants of distance functions. The following statements compute the
cross-K-function between the types of amacrine cells:

proc spp data=amacrine edgecorr=on seed=1
plots(equate)= (observations(attr=mark) K);

process cells= (X,Y / area=(0,0,1.6,1) mark=Type)
/ K cross=types('on' 'off');

run;

Output 93.1.1 shows two types of cells that are characterized by their state as on (in red) and off (in blue).

Output 93.1.1 Amacrine Cell Types

Output 93.1.2 lists exploratory information for the amacrine point pattern, and identifies it as a marked point
pattern.
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Output 93.1.2 Exploratory Information for the Amacrine Marked Point Pattern

Summary of Point Pattern

Data Type Marked Point Pattern

Pattern Name cells

Region Type User Defined Window

Region X Range [0,1.6] Units

Region Y Range [0,1] Units

Region X Size 1.6 Units

Region Y Size 1 Unit

Region Area 1.6 Square Units

Observations in Window 294

Average Intensity 183.75

Grid Nodes in X 50

Grid Nodes in Y 50

Grid Nodes in Window 2500

Mark Type

Mark Type Multitype

Output 93.1.3 shows the information for each mark type, including the frequency, percentage in the data set,
and the first-order intensity, which measures the number of events of that particular mark type per unit of
area that is contained in the marked point pattern.

Output 93.1.3 Mark Information for the Amacrine Marked Point Pattern

Level Information for Type

Value Frequency Percentage Intensity

off 142 48.30% 88.7500

on 152 51.70% 95.0000

Output 93.1.4 shows the cross-K-function test to detect a clustering of points for which Type=off around
points for which Type=on and vice versa. It is very clear from the plots in the top left corner and top right
corner that there is no significant difference between the computed cross-K function and the theoretical
cross-K function. This clearly indicates that there is no significant clustering of on amacrine cells around off
amacrine cells.
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Output 93.1.4 Cross-K Function Panel

Example 93.2: Testing Covariate Dependence of a Point Pattern
In most spatial analysis applications, you are likely to have one or more covariates in addition to the point
pattern data set. Hence, you can test for a possible dependency between the observed point pattern and the
covariates by using covariate dependency tests that compute empirical distribution function (EDF) statistics.
These tests are nonparametric, and the selected EDF statistic indicates whether events are independent from
a covariate. Covariate dependency testing serves a broader purpose and can help you design point process
intensity models.

To request a covariate dependency test that is based on an EDF statistic, you use the COVTEST statement,
in which you specify the point process and the covariates that need to be tested. The following statements
perform a covariate dependency test that is based on an EDF statistic:

proc spp data=sashelp.bei;
process trees = (x,y /area=(0,0,1000,500) event=Trees);
trend grad = field(x,y,Gradient);
trend elev = field(x,y,Elevation);
covtest trees = grad elev;

run;

When you do not request any specific EDF test statistic, by default the SPP procedure produces an EDF test
that uses the Kolmogorov-Smirnov statistic for each covariate that is specified in the COVTEST statement,
as shown in Output 93.2.1.
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Output 93.2.1 Weighted EDF Test Statistic

The SPP ProcedureThe SPP Procedure

Kolmogorov-Smirnov
Weighted EDF Test for

Covariate Values

Source
D

Statistic p Value

Gradient 0.194805 <0.0010

Elevation 0.106492 <0.0010

Output 93.2.1 reports the value of the Kolmogorov-Smirnov D test statistic and a p-value. The p-value
indicates that the null hypothesis of independence on the covariate is rejected. In addition to the test
statistic and the p-value, PROC SPP produces a plot of the empirical and transformed distribution function
for each covariate. Output 93.2.2 and Output 93.2.3 show the plots of the Kolmogorov-Smirnov statistic
for the covariates Gradient and Elevation, respectively. In each figure, the plot on the left includes the
empirical density function (EDF) of the variable (solid blue line) and the weighted EDF (transformed EDF or
transformed line). The plot on the right compares the EDF of the transformed EDF (green line) against the
cumulative density function of the standard uniform distribution U.0; 1/ (red line). The same plot also shows
the largest vertical difference between the normal and uniform lines, which is the Kolmogorov-Smirnov
statistic D. From the right plots in Output 93.2.2 and Output 93.2.3, it is quite apparent that the normal
line overlaps only at the ends for the Gradient covariate and crosses the uniform line once for the Elevation
covariate. Thus, you can infer that the Gradient covariate (in addition to having a higher D statistic value)
deviates considerably from the uniform line.

Output 93.2.2 Kolmogorov-Smirnov CSR Test Plot for Gradient
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Output 93.2.3 Kolmogorov-Smirnov CSR Test Plot for Elevation

Example 93.3: Intensity Model Validation Diagnostics
Model validation diagnostics help you evaluate whether the fitted model that involves the covariates is
appropriate for the specified point pattern. The SPP procedure provides two types of diagnostics:

• goodness-of-fit test

• residual diagnostics

This example demonstrates the usage of these diagnostics for model validation. It uses a simulated point
pattern data set and also simulates two covariates over a 50 � 50 grid. The following statements define
functions for simulating a spatial point pattern given an intensity function by the method of random thinning
of Lewis and Shedler (1979), as discussed in Schabenberger and Gotway (2005) and Wicklin (2013). For
more information about the method and the code, see Wicklin (2013). The functions are saved in a SAS/IML
storage catalog to make them available for reuse.

ods graphics on;

proc iml;
start Uniform2d(n, a, b);

u = j(n, 2);
call randgen(u, "Uniform");
return( u # (a||b) );

finish;

start HomogPoissonProcess(lambda, a, b);
n = 1;
call randgen(n,"Poisson", lambda*2500);
return( Uniform2d(n, a, b) );

finish;
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start InhomogPoissonProcess(a, b) global(lambda0);
u = HomogPoissonProcess(lambda0, a, b);
lambda = Intensity(u[,1], u[,2]);
r = shape(.,sum(lambda<=lambda0),1);
call randgen(r,"Bernoulli", lambda[loc(lambda<=lambda0)]/lambda0);
return( u[loc(r),] );

finish;

reset storage=sasuser.SPPThin;
store module=Uniform2d

module=HomogPoissonProcess
module=InhomogPoissonProcess;

quit;

The following statements define a certain intensity function that is based on the elevation and slope of the land
around particular hills, with hills characterized by a four-column matrix Hills, where the first two columns
give the X and Y coordinates of each hill center and the last two columns give their height and radii. In the
model, both elevation and slope are assumed to be positive, with a negative effect on intensity, so lambda0
(the maximum value of intensity) is the value at Elevation=Slope=0.

proc iml;
%let xH = Hills[iHill,1];
%let yH = Hills[iHill,2];
%let hH = Hills[iHill,3];
%let rH = Hills[iHill,4];

start Elevation(x,y) global(Hills);
Elevation = 0;
do iHill = 1 to nrow(Hills);

Height = &hH*exp(-((x - &xH)##2 + (y - &yH)##2)/&rH);
Elevation = Elevation + Height;

end;
return(Elevation);

finish;

start Slope(x,y) global(Hills);
xslope = 0;
yslope = 0;
do iHill = 1 to nrow(Hills);

Height = &hH*exp(-((x - &xH)##2 + (y - &yH)##2)/&rH);
dxHeight = -2*Height#(x - &xH)/&rH;
dyHeight = -2*Height#(y - &yH)/&rH;
xslope = xslope + dxHeight;
yslope = yslope + dyHeight;

end;
Slope = sqrt(xslope##2 + yslope##2);
return(Slope);

finish;

start Intensity(x,y) global(lambda0);
lin = 0.5 - 2*Elevation(x,y) - 10*Slope(x,y);
return(exp(lin));

finish;
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lambda0 = exp(0.5);

reset storage=sasuser.SPPFlowers;
store lambda0 module=Elevation module=Slope module=Intensity;

quit;

Finally, the following statements use the simulation method of Wicklin (2013) and the previously defined
intensity to simulate a spatial point pattern on 10 hills in an area of 50 � 50 units. The covariates, Elevation
and Slope, are also computed over a grid of points in the region of interest.

proc iml;
reset storage=sasuser.SPPThin;
load module=Uniform2d

module=HomogPoissonProcess
module=InhomogPoissonProcess;

reset storage=sasuser.SPPFlowers;
load module=Elevation module=Slope module=Intensity lambda0;

a = 50;
b = 50;

Hills = { 9.2 48.5 0.2 13.0,
46.1 48.5 0.3 26.6,
2.5 3.3 0.7 26.2,

42.7 3.4 0.9 14.9,
13.6 34.5 1.0 11.3,
34.4 20.6 0.3 14.4,
23.8 42.2 0.4 29.5,
29.1 18.9 0.5 25.3,
46.6 46.5 0.3 14.9,
19.6 23.6 0.5 8.4};

call randseed(12345);

free Cov;
do x = 0 to 50; do y = 0 to 50;

Cov = Cov // (x || y || Elevation(x,y) || Slope(x,y) || Intensity(x,y));
end; end;
create Covariates var {"x" "y" "Elevation" "Slope" "Intensity"};
append from Cov;
close Covariates;

Hills = Hills // {25 5 2 15};
z = InhomogPoissonProcess(a, b);

create Events var {"x" "y"};
append from z;
close;

quit;
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The point pattern data set and the covariate data set are combined in the simAll data set and the event
observations can be identified by using a variable Flowers.

proc spp data=simAll plots(equate)=(trends observations);
process trees = (x, y /area=(0,0,50,50) Event=Flowers);
trend grad = field(x,y, Elevation);
trend elev = field(x,y, Slope);

run;

Output 93.3.1 shows the point pattern. The point pattern has been simulated to include a Gaussian bump at
the center of the study region.

Output 93.3.1 Spatial Point Pattern of Simulated Flowers

Output 93.3.2 shows the spatial covariate Elevation, and Output 93.3.3 shows the spatial covariate Slope. The
covariates have been simulated to include several Gaussian hills, and they are continuous within the 50 � 50
study region (that is, every point in the region has a value for these covariates).
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Output 93.3.2 Spatial Covariate Elevation

Output 93.3.3 Spatial Covariate Slope
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The following code fits an intensity model for the simulated point pattern that involves the simulated covariates
Elevation and Slope. It also requests model validation diagnostics, including residuals and the goodness-of-fit
test.

proc spp data=simAll seed=1 plots(equate)=(residual);
process trees = (x,y /area=(0,0,50,50) Event=Flowers) /quadrat(4,2 /details);
trend elev = field(x,y, Elevation);
trend slope = field(x,y, Slope);
model trees = elev slope/residual(b=5) gof;

run;

Output 93.3.4 shows the fitted intensity estimate that is based on the model that involves just the covariates
Elevation and Slope.

Output 93.3.4 Fitted Intensity Estimate for the Simulated Point Pattern

Output 93.3.5 shows the residual diagnostics for the model. It is clear from the smoothed residual plot at the
bottom right corner of Output 93.3.5 that the model that involves just the covariates Elevation and Slope fails
to account for the Gaussian bump in the middle of the study region. This is revealed by the trend at the center
of the smoothed residual plot at the bottom right corner of Output 93.3.5.
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Output 93.3.5 Residual Diagnostics for the Fitted Model

Consequently, the goodness-of-fit test rejects the hypothesis that the point pattern was generated by the fitted
model. This is evident in the low p-value that is obtained for the Pearson chi-square test for goodness of fit,
which is shown in Output 93.3.6.

Output 93.3.6 Pearson Chi-Square Test for Goodness of Fit

Pearson Chi-Square Test for
Goodness-of-Fit

DF
Dispersion

Index Chi-Square Pr > ChiSq

7 12.742 89.19 <.0001

Output 93.3.7 shows the corresponding Pearson residuals for the goodness-of-fit test.
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Output 93.3.7 Quadrat Information and Pearson Residuals for Goodness-of-Fit test

Quadrat Information for Goodness-of-Fit Test

ID Quadrat
Expected

Frequency Count Percentage
Pearson
Residual

1 (1,1) 352 375 13.58% 1.20

2 (2,1) 398 310 11.22% -4.41

3 (3,1) 298 184 6.66% -6.60

4 (4,1) 323 349 12.64% 1.45

5 (1,2) 383 450 16.29% 3.43

6 (2,2) 261 264 9.56% 0.19

7 (3,2) 383 397 14.37% 0.70

8 (4,2) 371 433 15.68% 3.22

When the model involves only the covariates Elevation and Slope, the residual diagnostics and the goodness-
of-fit test both reveal discrepancies in the model that do not fully account for the simulated point pattern. In
particular, the model misses the Gaussian bump in the middle of the study region.
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Overview: STDIZE Procedure
The STDIZE procedure standardizes one or more numeric variables in a SAS data set by subtracting a
location measure and dividing by a scale measure. A variety of location and scale measures are provided,
including estimates that are resistant to outliers and clustering. Some of the well-known standardization
methods such as mean, median, standard deviation, range, Huber’s estimate, Tukey’s biweight estimate, and
Andrew’s wave estimate are available in the STDIZE procedure.
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In addition, you can multiply each standardized value by a constant and add a constant. Thus, the final output
value is

result D add Cmultiply �
original � location

scale

where

result = final output value
add = constant to add (ADD= option)
multiply = constant to multiply by (MULT= option)
original = original input value
location = location measure
scale = scale measure

PROC STDIZE can also find quantiles in one pass of the data, a capability that is especially useful for very
large data sets. With such data sets, the UNIVARIATE procedure might have high or excessive memory or
time requirements.

Getting Started: STDIZE Procedure
The following example demonstrates how you can use the STDIZE procedure to obtain location and scale
measures of your data.

In the following hypothetical data set, a random sample of grade twelve students is selected from a number
of coeducational schools. Each school is classified as one of two types: Urban or Rural. There are 40
observations.

The variables are id (student identification), Type (type of school attended: ‘urban’=urban area and ‘ru-
ral’=rural area), and total (total assessment scores in History, Geometry, and Chemistry).

The following DATA step creates the SAS data set TotalScores.

data TotalScores;
title 'High School Scores Data';
input id Type $ total @@;
datalines;

1 rural 135 2 rural 125 3 rural 223 4 rural 224 5 rural 133
6 rural 253 7 rural 144 8 rural 193 9 rural 152 10 rural 178

11 rural 120 12 rural 180 13 rural 154 14 rural 184 15 rural 187
16 rural 111 17 rural 190 18 rural 128 19 rural 110 20 rural 217
21 urban 192 22 urban 186 23 urban 64 24 urban 159 25 urban 133
26 urban 163 27 urban 130 28 urban 163 29 urban 189 30 urban 144
31 urban 154 32 urban 198 33 urban 150 34 urban 151 35 urban 152
36 urban 151 37 urban 127 38 urban 167 39 urban 170 40 urban 123
;
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Suppose you now want to standardize the total scores in different types of schools prior to any further analysis.
Before standardizing the total scores, you can use the box plot from PROC BOXPLOT to summarize the
total scores for both types of schools.

ods graphics on;
proc boxplot data=TotalScores;

plot total*Type / boxstyle=schematic noserifs;
run;

The PLOT statement in the PROC BOXPLOT statement creates the schematic plots (without the serifs) when
you specify boxstyle=schematic noserifs. Figure 94.1 displays a box plot for each type of school.

Figure 94.1 Schematic Plots from PROC BOXPLOT
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Inspection reveals that one urban score is a low outlier. Also, if you compare the lengths of two box plots,
there seems to be twice as much dispersion for the rural scores as for the urban scores.

The following PROC UNIVARIATE statement reports the information about the extreme values of the Score
variable for each type of school:

proc univariate data=TotalScores;
var total;
by Type;

run;

Figure 94.2 displays the table from PROC UNIVARIATE for the lowest and highest five total scores for
urban schools. The outlier (Obs = 23), marked in Figure 94.2 by the symbol ‘0’, has a score of 64.

Figure 94.2 Table for Extreme Observations When Type=urban

High School Scores Data

The UNIVARIATE Procedure
Variable:  total

High School Scores Data

The UNIVARIATE Procedure
Variable:  total

Type=urban

Extreme Observations

Lowest Highest

Value Obs Value Obs

64 23 170 39

123 40 186 22

127 37 189 29

130 27 192 21

133 25 198 32

The following PROC STDIZE procedure requests the METHOD=STD option for computing the location and
scale measures:

proc stdize data=totalscores method=std pstat;
title2 'METHOD=STD';
var total;
by Type;

run;

Figure 94.3 displays the table of location and scale measures from the PROC STDIZE statement. PROC
STDIZE uses the sample mean as the location measure and the sample standard deviation as the scale measure
for standardizing. The PSTAT option displays a table containing these two measures.
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Figure 94.3 Location and Scale Measures Table When METHOD=STD

High School Scores Data
METHOD=STD

The STDIZE Procedure

High School Scores Data
METHOD=STD

The STDIZE Procedure

Type=rural

Location and Scale Measures

Location = mean    
Scale = standard deviation

Name Location Scale N

total 167.050000 41.956713 20

High School Scores Data
METHOD=STD

The STDIZE Procedure

High School Scores Data
METHOD=STD

The STDIZE Procedure

Type=urban

Location and Scale Measures

Location = mean    
Scale = standard deviation

Name Location Scale N

total 153.300000 30.066768 20

The ratio of the scale of rural scores to the scale of urban scores is approximately 1.4 (41.96/30.07). This
ratio is smaller than the dispersion ratio observed in the previous schematic plots.

The STDIZE procedure provides several location and scale measures that are resistant to outliers. The
following statements invoke three different standardization methods and display the tables for the location
and scale measures:

proc stdize data=totalscores method=mad pstat;
title2 'METHOD=MAD';
var total;
by Type;

run;

proc stdize data=totalscores method=iqr pstat;
title2 'METHOD=IQR';
var total;
by Type;

run;
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proc stdize data=totalscores method=abw(4) pstat;
title2 'METHOD=ABW(4)';
var total;
by Type;

run;

Figure 94.4 displays the table of location and scale measures when the standardization method is median
absolute deviation (MAD). The location measure is the median, and the scale measure is the median absolute
deviation from the median. The ratio of the scale of rural scores to the scale of urban scores is approximately
2.06 (32.0/15.5) and is close to the dispersion ratio observed in the previous schematic plots.

Figure 94.4 Location and Scale Measures Table When METHOD=MAD

High School Scores Data
METHOD=MAD

The STDIZE Procedure

High School Scores Data
METHOD=MAD

The STDIZE Procedure

Type=rural

Location and Scale Measures

Location = median    
Scale = median abs dev from
median

Name Location Scale N

total 166.000000 32.000000 20

High School Scores Data
METHOD=MAD

The STDIZE Procedure

High School Scores Data
METHOD=MAD

The STDIZE Procedure

Type=urban

Location and Scale Measures

Location = median    
Scale = median abs dev from
median

Name Location Scale N

total 153.000000 15.500000 20

Figure 94.5 displays the table of location and scale measures when the standardization method is IQR. The
location measure is the median, and the scale measure is the interquartile range. The ratio of the scale of
rural scores to the scale of urban scores is approximately 2.03 (61/30) and is, in fact, the dispersion ratio
observed in the previous schematic plots.
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Figure 94.5 Location and Scale Measures Table When METHOD=IQR

High School Scores Data
METHOD=IQR

The STDIZE Procedure

High School Scores Data
METHOD=IQR

The STDIZE Procedure

Type=rural

Location and Scale Measures

Location = median    
Scale = interquartile range

Name Location Scale N

total 166.000000 61.000000 20

High School Scores Data
METHOD=IQR

The STDIZE Procedure

High School Scores Data
METHOD=IQR

The STDIZE Procedure

Type=urban

Location and Scale Measures

Location = median    
Scale = interquartile range

Name Location Scale N

total 153.000000 30.000000 20

Figure 94.6 displays the table of location and scale measures when the standardization method is ABW,
for which the location measure is the biweight one-step M-estimate, and the scale measure is the biweight
A-estimate. Note that the initial estimate for ABW is MAD. The following steps help to decide the value of
the tuning constant:

1. For rural scores, the location estimate for MAD is 166.0, and the scale estimate for MAD is 32.0. The
maximum of the rural scores is 253 (not shown), and the minimum is 110 (not shown). Thus, the
tuning constant needs to be 3 so that it does not reject any observation that has a score between 110 to
253.

2. For urban scores, the location estimate for MAD is 153.0, and the scale estimate for MAD is 15.5.
The maximum of the rural scores is 198, and the minimum (also an outlier) is 64. Thus, the tuning
constant needs to be 4 so that it rejects the outlier (64) but includes the maximum (198) as an normal
observation.

3. The maximum of the tuning constants, obtained in steps 1 and 2, is 4.

See Goodall (1983, Chapter 11) for details about the tuning constant. The ratio of the scale of rural scores to
the scale of urban scores is approximately 2.06 (32.0/15.5). It is also close to the dispersion ratio observed in
the previous schematic plots.
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Figure 94.6 Location and Scale Measures Table When METHOD=ABW

High School Scores Data
METHOD=ABW(4)

The STDIZE Procedure

High School Scores Data
METHOD=ABW(4)

The STDIZE Procedure

Type=rural

Location and Scale Measures

Location = biweight 1-step
M-estimate     Scale = biweight
A-estimate

Name Location Scale N

total 162.889603 56.662855 20

High School Scores Data
METHOD=ABW(4)

The STDIZE Procedure

High School Scores Data
METHOD=ABW(4)

The STDIZE Procedure

Type=urban

Location and Scale Measures

Location = biweight 1-step
M-estimate     Scale = biweight
A-estimate

Name Location Scale N

total 156.014608 28.615980 20

The preceding analysis shows that METHOD=MAD, METHOD=IQR, and METHOD=ABW all provide
better dispersion ratios than METHOD=STD does.

You can recompute the standard deviation after deleting the outlier from the original data set for comparison.
The following statements create a data set NoOutlier that excludes the outlier from the TotalScores data set
and invoke PROC STDIZE with METHOD=STD.

data NoOutlier;
set totalscores;
if (total = 64) then delete;

run;

proc stdize data=NoOutlier method=std pstat;
title2 'After Removing Outlier, METHOD=STD';
var total;
by Type;

run;

Figure 94.7 displays the location and scale measures after deleting the outlier. The lack of resistance of the
standard deviation to outliers is clearly illustrated: if you delete the outlier, the sample standard deviation of
urban scores changes from 30.07 to 22.09. The new ratio of the scale of rural scores to the scale of urban
scores is approximately 1.90 (41.96/22.09).
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Figure 94.7 Location and Scale Measures Table When METHOD=STD without the Outlier

High School Scores Data
After Removing Outlier, METHOD=STD

The STDIZE Procedure

High School Scores Data
After Removing Outlier, METHOD=STD

The STDIZE Procedure

Type=rural

Location and Scale Measures

Location = mean    
Scale = standard deviation

Name Location Scale N

total 167.050000 41.956713 20

High School Scores Data
After Removing Outlier, METHOD=STD

The STDIZE Procedure

High School Scores Data
After Removing Outlier, METHOD=STD

The STDIZE Procedure

Type=urban

Location and Scale Measures

Location = mean    
Scale = standard deviation

Name Location Scale N

total 158.000000 22.088207 19

Syntax: STDIZE Procedure
The following statements are available in the STDIZE procedure:

PROC STDIZE < options > ;
BY variables ;
FREQ variable ;
LOCATION variables ;
SCALE variables ;
VAR variables ;
WEIGHT variable ;

The PROC STDIZE statement is required. The BY, LOCATION, FREQ, VAR, SCALE, and WEIGHT
statements are described in alphabetical order following the PROC STDIZE statement.

PROC STDIZE Statement
PROC STDIZE < options > ;

The PROC STDIZE statement invokes the STDIZE procedure. You can specify the following options in the
PROC STDIZE statement. Table 94.1 summarizes the options available in the PROC STDIZE statement.
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Table 94.1 Summary of PROC STDIZE Statement Options

Option Description

Specify standardization methods
METHOD= Specifies the name of the standardization method
INITIAL= Specifies the method for computing initial estimates for the A

estimates

Unstandardize variables
UNSTD Unstandardizes variables when you also specify the METHOD=IN

option

Process missing values
NOMISS Omits observations with any missing values from computation
MISSING= Specifies the method or a numeric value for replacing missing

values
REPLACE Replaces missing data with zero in the standardized data
REPONLY Replaces missing data with the location measure (does not stan-

dardize the data)

Specify data set details
DATA= Specifies the input data set
KEEPLEN Specifies that output variables inherit the length of the analysis

variable
OUT= Specifies the output data set
OPREFIX= Specifies that original variables appear in the OUT= data set
SPREFIX= Specifies a prefix for the standardized variable names
OUTSTAT= Specifies the output statistic data set

Specify computational settings
VARDEF= Specifies the variances divisor
NMARKERS= Specifies the number of markers when you also specify

PCTLMTD=ONEPASS
MULT= Specifies the constant to multiply each value by after standardizing
ADD= Specifies the constant to add to each value after standardizing and

multiplying by the value specified in the MULT= option
FUZZ= Specifies the relative fuzz factor for writing the output

Specify percentiles
PCTLDEF= Specifies the definition of percentiles when you also specify the

PCTLMTD=ORD_STAT option
PCTLMTD= Specifies the method used to estimate percentiles
PCTLPTS= Writes observations containing percentiles to the data set specified

in the OUTSTAT= option

Normalize scale estimators
NORM Normalizes the scale estimator to be consistent for the standard

deviation of a normal distribution
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Table 94.1 continued

Option Description

SNORM Normalizes the scale estimator to have an expectation of approxi-
mately 1 for a standard normal distribution

Specify output
PSTAT Displays the location and scale measures

These options and their abbreviations are described (in alphabetical order) in the remainder of this section.

ADD=c
specifies a constant, c, to add to each value after standardizing and multiplying by the value you specify
in the MULT= option. The default value is 0.

DATA=SAS-data-set
specifies the input data set to be standardized. If you omit the DATA= option, the most recently created
data set is used.

FUZZ=c
specifies the relative fuzz factor. The default value is 1E–14. For the OUT= data set, the score is
computed as follows:

if jresult j < m � c then result D 0

where m is the constant specified in the MULT= option, or 1 if MULT= option is not specified.

For the OUTSTAT= data set and the location and scale table, the scale and location values are computed
as follows:

if scale < jlocationj � c then scale D 0

Otherwise,

if jlocationj < m � c then location D 0

INITIAL=method
specifies the method for computing initial estimates for the A estimates (ABW, AWAVE, and AHUBER).
You cannot specify the following methods for initial estimates: INITIAL=ABW, INITIAL=AHUBER,
INITIAL=AWAVE, and INITIAL=IN. The default is INITIAL=MAD.

KEEPLEN
specifies that the standardized variables inherit the lengths of the analysis variables that PROC STDIZE
uses to derive them. PROC STDIZE stores numbers in double-precision without this option.

Caution: The KEEPLEN option causes the standardized variables to permanently lose numeric
precision by truncating or rounding the values. However, the precision of the output variables will
match that of the input.
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METHOD=name
specifies the name of the method for computing location and scale measures. Valid values for name
are as follows: MEAN, MEDIAN, SUM, EUCLEN, USTD, STD, RANGE, MIDRANGE, MAXABS,
IQR, MAD, ABW, AHUBER, AWAVE, AGK, SPACING, L, and IN.

For details about these methods, see the descriptions in the section “Standardization Methods” on
page 7845. The default is METHOD=STD.

MISSING=method | value
specifies the method (or a numeric value) for replacing missing values. If you omit the MISSING= op-
tion, the REPLACE option replaces missing values with the location measure given by the METHOD=
option. Specify the MISSING= option when you want to replace missing values with a different
value. You can specify any name that is valid in the METHOD= option except the name IN. The
corresponding location measure is used to replace missing values.

If a numeric value is given, the value replaces missing values after standardizing the data. However,
you can specify the REPONLY option with the MISSING= option to suppress standardization for
cases in which you want only to replace missing values.

MULT=c
specifies a constant, c, by which to multiply each value after standardizing. The default value is 1.

NMARKERS=n
specifies the number of markers used when you specify the one-pass algorithm (PCTLMTD=ONEPASS).
The value n must be greater than or equal to 5. The default value is 105.

NOMISS
omits observations with missing values for any of the analyzed variables from calculation of the
location and scale measures. If you omit the NOMISS option, all nonmissing values are used.

NORM
normalizes the scale estimator to be consistent for the standard deviation of a normal distri-
bution when you specify the option METHOD=AGK, METHOD=IQR, METHOD=MAD, or
METHOD=SPACING.

OPREFIX< =o-prefix >
specifies that the original variables should appear in the OUT= data set. You can optionally specify
an equal sign and a prefix. For example, if OPREFIX=Original, then the names of the variables are
OriginalVAR1, OriginalVAR2, and so on, where VAR1 and VAR2 are the original variable names. The
value of OPREFIX= must be different from the value of SPREFIX=. If you specify OPREFIX, without
an equal sign and a prefix, then the default prefix is null and you must specify SPREFIX=s-prefix .

OUT=SAS-data-set
specifies the name of the SAS data set created by PROC STDIZE. By default, the output data set is
a copy of the DATA= data set except that the analyzed variables have been standardized. Analyzed
variables are those specified in the VAR statement or, if there is no VAR statement, all numeric variables
not listed in any other statement. However, you can use the OPREFIX option to request that both the
original and standardized variables be included in the output data set. You can change variable names
by specifying prefixes with the OPREFIX= and SPREFIX= options. See the section “Output Data Sets”
on page 7850 for more information.
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If you want to create a SAS data set in a permanent library, you must specify a two-level name.
For more information about permanent libraries and SAS data sets, see SAS Language Reference:
Concepts.

If you omit the OUT= option, PROC STDIZE creates an output data set named according to the DATAn
convention.

OUTSTAT=SAS-data-set
specifies the name of the SAS data set containing the location and scale measures and other computed
statistics. See the section “Output Data Sets” on page 7850 for more information.

PCTLDEF=percentiles
specifies which of five definitions is used to calculate percentiles when you specify the option
PCTLMTD=ORD_STAT. By default, PCTLDEF=5. Note that the option PCTLMTD=ONEPASS
implies PCTLDEF=5. See the section “Computational Methods for the PCTLDEF= Option” on
page 7848 for details about percentile definition.

You cannot use PCTLDEF= when you compute weighted quantiles.

PCTLMTD=ORD_STAT | ONEPASS | P2
specifies the method used to estimate percentiles. Specify the PCTLMTD=ORD_STAT option to
compute the percentiles by the order statistics method.

The PCTLMTD=ONEPASS option modifies an algorithm invented by Jain and Chlamtac (1985). See
the section “Computing Quantiles” on page 7848 for more details about this algorithm.

PCTLPTS=n
writes percentiles to the OUTSTAT= data set. Values of n can be any decimal number between 0 and
100, inclusive.

A requested percentile is identified by the _TYPE_ variable in the OUTSTAT= data set with a value of
Pn. For example, suppose you specify the option PCTLPTS=10, 30. The corresponding observations
in the OUTSTAT= data set that contain the 10th and the 30th percentiles would then have values
_TYPE_=P10 and _TYPE_=P30, respectively.

PSTAT
displays the location and scale measures.

REPLACE
replaces missing data with the value 0 in the standardized data (this value corresponds to the location
measure before standardizing). To replace missing data by other values, see the preceding description
of the MISSING= option. You cannot specify both the REPLACE and REPONLY options.

REPONLY
replaces missing data only; PROC STDIZE does not standardize the data. Missing values are replaced
with the location measure unless you also specify the MISSING=value option, in which case missing
values are replaced with value. You cannot specify both the REPLACE and REPONLY options.

SNORM
normalizes the scale estimator to have an expectation of approximately 1 for a standard normal
distribution when you specify the METHOD=SPACING option.
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SPREFIX< =s-prefix >
specifies a prefix for the standardized variables. For example, if SPREFIX=Std, then the names of
the standardized variables are StdVAR1, StdVAR2, and so on, where VAR1 and VAR2 are the original
variable names. The value of SPREFIX= must be different from the value of OPREFIX=. The default
prefix is null. If you omit the SPREFIX option, the standardized variables still appear in the OUT=
data set by default and the variable names remain the same. If you want to have the variable names
changed, you need to specify a prefix with SPREFIX=s-prefix .

UNSTD
UNSTDIZE

unstandardizes variables when you specify the METHOD=IN(ds) option. The location and scale
measures, along with constants for addition and multiplication that the unstandardization is based on,
are identified by the _TYPE_ variable in the ds data set.

The ds data set must have a _TYPE_ variable and contain the following two observations: a _TYPE_=
‘LOCATION’ observation and a _TYPE_= ‘SCALE’ observation. The variable _TYPE_ can also
contain the optional observations, ‘ADD’ and ‘MULT’; if these observations are not found in the ds
data set, the constants specified in the ADD= and MULT= options (or their default values) are used for
unstandardization.

See the section “OUTSTAT= Data Set” on page 7850 for details about the statistics that each value of
_TYPE_ represents. The formula used for unstandardization is as follows: If the final output value
from the previous standardization is calculated as

result D add Cmultiply �
original � location

scale

The unstandardized variable is computed as

original D scale �
result � add
multiply

C location

VARDEF=DF | N | WDF | WEIGHT | WGT
specifies the divisor to be used in the calculation of variances. By default, VARDEF=DF. The values
and associated divisors are as follows.

Value Divisor Formula
DF Degrees of freedom n � 1

N Number of observations n
WDF Sum of weights minus 1 (

P
i wi / � 1

WEIGHT | WGT Sum of weights
P
i wi

BY Statement
BY variables ;

You can specify a BY statement with PROC STDIZE to obtain separate analyses of observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:
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• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the STDIZE procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

When you specify the option METHOD=IN(ds), the following rules are applied to BY-group processing:

• If the ds data set does not contain any of the BY variables, the entire DATA= data set is standardized
by the location and scale measures (along with the constants for addition and multiplication) in the ds
data set.

• If the ds data set contains some, but not all, of the BY variables or if some BY variables do not have the
same type or length in the ds data set that they have in the DATA= data set, PROC STDIZE displays
an error message and stops.

• If all of the BY variables appear in the ds data set with the same type and length as in the DATA= data
set, each BY group in the DATA= data set is standardized using the location and scale measures (along
with the constants for addition and multiplication) from the corresponding BY group in the ds data set.
The BY groups in the ds data set must be in the same order in which they appear in the DATA= data
set. All BY groups in the DATA= data set must also appear in the ds data set. If you do not specify the
NOTSORTED option, some BY groups can appear in the ds data set but not in the DATA= data set;
such BY groups are not used in standardizing data.

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

FREQ Statement
FREQ variable ;

If one variable in the input data set represents the frequency of occurrence for other values in the observation,
specify the variable name in a FREQ statement. PROC STDIZE treats the data set as if each observation
appeared n times, where n is the value of the FREQ variable for the observation. Nonintegral values of the
FREQ variable are truncated to the largest integer less than the FREQ value. If the FREQ variable has a value
that is less than 1 or is missing, the observation is not used in the analysis.

NOTRUNCATE
NOTRUNC

specifies that frequency values are not truncated to integers.

The nonintegral values of the FREQ variable can be used for the following standardization methods:
AGK, ABW, AHUBER, AWAVE, EUCLEN, IQR, L, MAD, MEAN, MEDIAN, SPACING, STD,
SUM, and USTD. The nonintegral frequency values are used for the MAD, MEDIAN, or IQR
method only when PCTLMTD=ORD_STAT is specified. If PCTLMTD=ONEPASS is specified, the
NOTRUNCATE option is ignored.
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LOCATION Statement
LOCATION variables ;

The LOCATION statement specifies a list of numeric variables that contain location measures in the input
data set specified by the METHOD=IN option.

SCALE Statement
SCALE variables ;

The SCALE statement specifies the list of numeric variables that contain scale measures in the input data set
specified by the METHOD=IN option.

VAR Statement
VAR variable ;

The VAR statement lists numeric variables to be standardized. If you omit the VAR statement, all numeric
variables not listed in the BY, FREQ, and WEIGHT statements are used.

WEIGHT Statement
WEIGHT variable ;

The WEIGHT statement specifies a numeric variable in the input data set with values that are used to weight
each observation. Only one variable can be specified.

The WEIGHT variable values can be nonintegers. An observation is used in the analysis only if the value of
the WEIGHT variable is greater than zero.

The WEIGHT variable applies only when you specify the following standardization methods: AGK, EU-
CLEN, IQR, L, MAD, MEAN, MEDIAN, STD, SUM, and USTD. Weights are used for the METHOD=MAD,
MEDIAN, or IQR only when PCTLMTD=ORD_STAT is specified; if PCTLMTD=ONEPASS is specified,
the WEIGHT statement is ignored.

PROC STDIZE uses the value of the WEIGHT variable to calculate the sample mean and sample variances:

xw D
P
i wixi=

P
i wi (sample mean)

us2w D
P
i wix

2
i =d (uncorrected sample variances)

s2w D
P
i wi .xi � xw/

2=d (sample variances)
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where wi is the weight value of the ith observation, xi is the value of the ith observation, and d is the divisor
controlled by the VARDEF= option (see the VARDEF= option for details).

The following weighted statistics are defined accordingly:

MEAN the weighted mean, xw

SUM the weighted sum,
P
i wixi

USTD the weighted uncorrected standard deviation,
p
us2w

STD the weighted standard deviation,
p
s2w

EUCLEN the weighted Euclidean length, computed as the square root of the weighted uncorrected
sum of squares:sX

i

wix
2
i

MEDIAN the weighted median. See the section “Weighted Percentiles” on page 7849 for the for-
mulas and descriptions.

MAD the weighted median absolute deviation from the weighted median. See the section
“Weighted Percentiles” on page 7849 for the formulas and descriptions.

IQR the weighted median, 25th percentile, and the 75th percentile. See the section
“Weighted Percentiles” on page 7849 for the formulas and descriptions.

AGK the AGK estimate. This estimate is documented further in the ACECLUS procedure
as the METHOD=COUNT option. See the discussion of the WEIGHT statement in
Chapter 24, “The ACECLUS Procedure,” for information about how the WEIGHT vari-
able is applied to the AGK estimate.

L the Lp estimate. This estimate is documented further in the FASTCLUS proce-
dure as the LEAST= option. See the discussion of the WEIGHT statement in
Chapter 38, “The FASTCLUS Procedure,” for information about how the WEIGHT vari-
able is used to compute weighted cluster means. The number of clusters is always
1.

Details: STDIZE Procedure

Standardization Methods
The following table lists standardization methods and their corresponding location and scale measures
available with the METHOD= option.

Table 94.2 Available Standardization Methods

Method Location Scale

MEAN Mean 1
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Table 94.2 (continued)

Method Location Scale

MEDIAN Median 1
SUM 0 Sum
EUCLEN 0 Euclidean length
USTD 0 Standard deviation about origin
STD Mean Standard deviation
RANGE Minimum Range
MIDRANGE Midrange Range/2
MAXABS 0 Maximum absolute value
IQR Median Interquartile range
MAD Median Median absolute deviation from median
ABW(c) Biweight one-step M-estimate Biweight A-estimate
AHUBER(c) Huber one-step M-estimate Huber A-estimate
AWAVE(c) Wave one-step M-estimate Wave A-estimate
AGK(p) Mean AGK estimate (ACECLUS)
SPACING(p) Mid-minimum spacing Minimum spacing
L(p) L(p) L(p)
IN(ds) Read from data set Read from data set

For METHOD=ABW(c), METHOD=AHUBER(c), or METHOD=AWAVE(c), c is a positive numeric tuning
constant.

For METHOD=AGK(p), p is a numeric constant that gives the proportion of pairs to be included in the
estimation of the within-cluster variances.

For METHOD=SPACING(p), p is a numeric constant that gives the proportion of data to be contained in the
spacing.

For METHOD=L(p), p is a numeric constant greater than or equal to 1 that specifies the power to which
differences are to be raised in computing an L(p) or Minkowski metric.

For METHOD=IN(ds), ds is the name of a SAS data set that meets either of the following two conditions:

• The data set contains a _TYPE_ variable. The observation that contains the location measure cor-
responds to the value _TYPE_= ‘LOCATION’, and the observation that contains the scale measure
corresponds to the value _TYPE_= ‘SCALE’. You can also use a data set created by the OUTSTAT=
option from another PROC STDIZE statement as the ds data set. See the section “Output Data Sets”
on page 7850 for the contents of the OUTSTAT= data set.

• The data set contains the location and scale variables specified by the LOCATION and SCALE
statements.

PROC STDIZE reads in the location and scale variables in the ds data set by first looking for the _TYPE_
variable in the ds data set. If it finds this variable, PROC STDIZE continues to search for all variables
specified in the VAR statement. If it does not find the _TYPE_ variable, PROC STDIZE searches for the
location variables specified in the LOCATION statement and the scale variables specified in the SCALE
statement.
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The variable _TYPE_ can also contain the optional observations, ‘ADD’ and ‘MULT’. If these observations
are found in the ds data set, the values in the observation of _TYPE_ = ‘MULT’ are the multiplication
constants, and the values in the observation of _TYPE_ = ‘ADD’ are the addition constants; otherwise, the
constants specified in the ADD= and MULT= options (or their default values) are used.

For robust estimators, see Goodall (1983) and Iglewicz (1983). The MAD method has the highest breakdown
point (50%), but it is somewhat inefficient. The ABW, AHUBER, and AWAVE methods provide a good
compromise between breakdown and efficiency. The L(p) location estimates are increasingly robust as p
drops from 2 (which corresponds to least squares, or mean estimation) to 1 (which corresponds to least
absolute value, or median estimation). However, the L(p) scale estimates are not robust.

The SPACING method is robust to both outliers and clustering (Janssen et al. 1995) and is, therefore, a good
choice for cluster analysis or nonparametric density estimation. The mid-minimum spacing method estimates
the mode for small p. The AGK method is also robust to clustering and more efficient than the SPACING
method, but it is not as robust to outliers and takes longer to compute. If you expect g clusters, the argument
to METHOD=SPACING or METHOD=AGK should be 1

g
or less. The AGK method is less biased than the

SPACING method for small samples. As a general guide, it is reasonable to use AGK for samples of size 100
or less and SPACING for samples of size 1,000 or more, with the treatment of intermediate sample sizes
depending on the available computer resources.

Computation of the Statistics
Formulas for statistics of METHOD=MEAN, METHOD=MEDIAN, METHOD=SUM, METHOD=USTD,
METHOD=STD, METHOD=RANGE, and METHOD=IQR are given in the chapter “Elementary Statistics
Procedures” (Base SAS Procedures Guide).

Note that the computations of median and upper and lower quartiles depend on the PCTLMTD= option.

The other statistics listed in Table 94.2, except for METHOD=IN, are described as follows:

EUCLEN Euclidean length.qPn
iD1 x

2
i , where xi is the ith observation and n is the total number of observations in

the sample.

L(p) Minkowski metric. This metric is documented as the LEAST=p option in the PROC
FASTCLUS statement of the FASTCLUS procedure (see Chapter 38, “The FASTCLUS
Procedure”).

If you specify METHOD=L(p) in the PROC STDIZE statement, your results are similar
to those obtained from PROC FASTCLUS if you specify the LEAST=p option with
MAXCLUS=1 (and use the default values of the MAXITER= option). The difference
between the two types of calculations concerns the maximum number of iterations. In
PROC STDIZE, it is a criterion for convergence on all variables; in PROC FASTCLUS, it
is a criterion for convergence on a single variable.

The location and scale measures for L(p) are output to the OUTSEED= data set in PROC
FASTCLUS.

MIDRANGE .maximum Cminimum/=2

ABW(c) Tukey’s biweight. See Goodall (1983, pp. 376–378, p. 385) for the biweight one-step
M-estimate. Also see Iglewicz (1983, pp. 416-418) for the biweight A-estimate.



7848 F Chapter 94: The STDIZE Procedure

AHUBER(c) Hubers. See Goodall (1983, pp. 371–374) for the Huber one-step M-estimate. Also see
Iglewicz (1983, pp. 416-418) for the Huber A-estimate of scale.

AWAVE(c) Andrews’ wave. See Goodall (1983, p. 376) for the Wave one-step M-estimate. Also see
Iglewicz (1983, pp. 416-418) for the Wave A-estimate of scale.

AGK(p) The noniterative univariate form of the estimator described by Art, Gnanadesikan, and
Kettenring (1982).
The AGK estimate is documented in the section on the METHOD= option in the PROC
ACECLUS statement of the ACECLUS procedure (also see the section “Background” on
page 858 in Chapter 24, “The ACECLUS Procedure”). Specifying METHOD=AGK(p) in
the PROC STDIZE statement is the same as specifying METHOD=COUNT and P=p in
the PROC ACECLUS statement.

SPACING(p) The absolute difference between two data values. The minimum spacing for a proportion
p is the minimum absolute difference between two data values that contain a proportion
p of the data between them. The mid-minimum spacing is the mean of these two data
values.

Computing Quantiles
PROC STDIZE offers two methods for computing quantiles: the one-pass approach and the order-statistics
approach (like that used in the UNIVARIATE procedure).

The one-pass approach used in PROC STDIZE modifies the P2 algorithm for histograms proposed by Jain
and Chlamtac (1985). The primary difference comes from the movement of markers. The one-pass method
allows a marker to move to the right (or left) by more than one position (to the largest possible integer) as
long as it does not result in two markers being in the same position. The modification is necessary in order to
incorporate the FREQ variable.

You might obtain inaccurate results if you use the one-pass approach to estimate quantiles beyond the quartiles
(that is, when you estimate quantiles < P25 or quantiles > P75). A large sample size (10,000 or more) is often
required if the tail quantiles (quantiles � P10 or quantiles � P90) are requested. Note that, for variables with
highly skewed or heavy-tailed distributions, tail quantile estimates might be inaccurate.

The order-statistics approach for estimating quantiles is faster than the one-pass method but requires that
the entire data set be stored in memory. The accuracy in estimating the quantiles is comparable for
both methods when the requested percentiles are between the lower and upper quartiles. The default
is PCTLMTD=ORD_STAT if enough memory is available; otherwise, PCTLMTD=ONEPASS.

Computational Methods for the PCTLDEF= Option

You can specify one of five methods for computing quantile statistics when you use the order-statistics
approach (PCTLMTD=ORD_STAT); otherwise, the PCTLDEF=5 method is used when you use the one-pass
approach (PCTLMTD=ONEPASS).

Percentile Definitions Let n be the number of nonmissing values for a variable, and let x1; x2; : : : ; xn
represent the ordered values of the variable. For the tth percentile, let p D t=100. In the following definitions
numbered 1, 2, 3, and 5, let

np D j C g
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where j is the integer part and g is the fractional part of np. For definition 4, let

.nC 1/p D j C g

Given the preceding definitions, the tth percentile, y, is defined as follows:

PCTLDEF=1 weighted average at xnp

y D .1 � g/xj C gxjC1

where x0 is taken to be x1
PCTLDEF=2 observation numbered closest to np

y D xi

where i is the integer part of np C 1=2 if g ¤ 1=2. If g D 1=2, then
y D xj if j is even, or
y D xjC1 if j is odd

PCTLDEF=3 empirical distribution function

y D xj if g D 0

y D xjC1 if g > 0

PCTLDEF=4 weighted average aimed at xp.nC1/

y D .1 � g/xj C gxjC1

where xnC1 is taken to be xn
PCTLDEF=5 empirical distribution function with averaging

y D .xj C xjC1/=2 if g D 0

y D xjC1 if g > 0

Weighted Percentiles

When you specify a WEIGHT statement, or specify the NOTRUNCATE option in a FREQ statement, the
percentiles are computed differently. The 100pth weighted percentile y is computed from the empirical
distribution function with averaging

y D

(
1
2
.xi C xiC1/ if

Pi
jD1wj D pW

xiC1 if
Pi
jD1wj < pW <

PiC1
jD1wj

where wi is the weight associated with xi , and where W D
Pn
iD1wi is the sum of the weights.

For PCTLMTD= ORD_STAT, the PCTLDEF= option is not applicable when a WEIGHT statement is used,
or when a NOTRUNCATE option is specified in a FREQ statement. However, in this case, if all the weights
are identical, the weighted percentiles are the same as the percentiles that would be computed without a
WEIGHT statement and with PCTLDEF=5.

For PCTLMTD= ONEPASS, the quantile computation currently does not use any weights.
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Constant Data
Constant variables are not standardized. The scale value is set to missing when the data are constant.

Missing Values
Missing values can be replaced by the location measure or by any specified constant (see the REPLACE
option and the MISSING= option). You can also suppress standardization if you want only to replace missing
values (see the REPONLY option).

If you specify the NOMISS option, PROC STDIZE omits observations with any missing values in the
analyzed variables from computation of the location and scale measures.

Output Data Sets

OUT= Data Set

By default, the output data set is a copy of the DATA= data set except that the analyzed variables have been
standardized. Analyzed variables are those specified in the VAR statement or, if there is no VAR statement,
all numeric variables not listed in any other statement. However, you can use the OPREFIX option to request
that both the original and standardized variables be included in the output data set. You can change variable
names by specifying prefixes with the OPREFIX=o-prefix and SPREFIX=s-prefix options, but keep in mind
that the two prefixes must be different. See OPREFIX and SPREFIX for more information.

OUTSTAT= Data Set

The new data set contains the following variables:

• the BY variables, if any

• _TYPE_, a character variable

• the analyzed variables

Each observation in the new data set contains a type of statistic as indicated by the _TYPE_ variable. The
values of the _TYPE_ variable are as follows:

LOCATION location measure of each variable

SCALE scale measure of each variable

ADD constant specified in the ADD= option. This value is the same for each variable.

MULT constant specified in the MULT= option. This value is the same for each variable.

N total number of nonmissing positive frequencies of each variable



Displayed Output F 7851

NORM norm measure of each variable. This observation is produced only when you specify
the NORM option with METHOD=AGK, METHOD=IQR, METHOD=MAD,
or METHOD=SPACING or when you specify the SNORM option with
METHOD=SPACING.

NObsRead number of physical records read

NObsUsed number of physical records used in the analysis

NObsMiss number of physical records containing missing values

Pn percentiles of each variable, as specified by the PCTLPTS= option. The argument n
is any real number such that 0 � n � 100

SumFreqsRead sum of the frequency variable (or the sum of NObsUsed ones when there is no
frequency variable) for all observations read

SumFreqsUsed sum of the frequency variable (or the sum of NObsUsed ones when there is no
frequency variable) for all observations used in the analysis

SumWeightsRead sum of the weight variable (or the sum of NObsUsed ones when there is no weight
variable) for all observations read

SumWeightsUsed sum of the weight variable (or the sum of NObsUsed ones when there is no weight
variable) for all observations used in the analysis

Displayed Output
If you specify the PSTAT option, PROC STDIZE displays the following statistics for each variable:

• the name of the variable, Name

• the location estimate, Location

• the scale estimate, Scale

• the norm estimate, Norm (when you specify the NORM option with METHOD=AGK, METHOD=IQR,
METHOD=MAD, or METHOD=SPACING or when you specify the SNORM option with
METHOD=SPACING)

• sum of nonmissing positive frequencies, N

• sum of nonmissing positive weights if the WEIGHT statement is specified, Sum of Weights

ODS Table Names
PROC STDIZE assigns a name to the single table it creates. You can use this name to reference the table
when using the Output Delivery System (ODS) to select a table or create an output data set. This name is
listed in Table 94.3. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”
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Table 94.3 ODS Table Produced by PROC STDIZE

ODS Table Name Description Statement Option

Statistics Location and Scale Measures PROC PSTAT

Example: STDIZE Procedure

Example 94.1: Standardization of Variables in Cluster Analysis
To illustrate the effect of standardization in cluster analysis, this example uses the Fish data set described in
the “Getting Started” section of Chapter 38, “The FASTCLUS Procedure.” The numbers are measurements
taken on 159 fish caught from the same lake (Laengelmaevesi) near Tampere in Finland (Puranen 1917). The
fish data set is available from the Sashelp library.

The species (bream, parkki, pike, perch, roach, smelt, and whitefish), weight, three different length measure-
ments (measured from the nose of the fish to the beginning of its tail, the notch of its tail, and the end of its
tail), height, and width of each fish are recorded.

A couple of new variables are created in the Fish data set: Weight3 and logLengthRatio. The weight of a fish
indicates its size—a heavier pike tends to be larger than a lighter pike. To get a one-dimensional measure of
the size of a fish, take the cubic root of the weight (Weight3). The variables Height, Width, Length1, Length2,
and Length3 are rescaled in order to adjust for dimensionality. The logLengthRatio variable measures the tail
length.

Because the new variables Weight3–logLengthRatio depend on the variable Weight, observations with missing
values for Weight are not added to the data set. Consequently, there are 157 observations in the SAS data set
Sashelp.Fish.

Before you perform a cluster analysis on coordinate data, it is necessary to consider scaling or transforming
the variables since variables with large variances tend to have a larger effect on the resulting clusters than
variables with small variances do.

This example uses three different approaches to standardize or transform the data prior to the cluster analysis.
The first approach uses several standardization methods provided in the STDIZE procedure. However, since
standardization is not always appropriate prior to the clustering (see Milligan and Cooper (1987) for a
Monte Carlo study on various methods of variable standardization), the second approach performs the cluster
analysis with no standardization. The third approach invokes the ACECLUS procedure to transform the data
into a within-cluster covariance matrix.

The clustering is performed by the FASTCLUS procedure to find seven clusters. Note that the variables
Length2 and Length3 are eliminated from this analysis since they both are significantly and highly correlated
with the variable Length1. The correlation coefficients are 0.9958 and 0.9604, respectively. An output data
set is created, and the FREQ procedure is invoked to compare the clusters with the species classification.

The DATA step is as follows:
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title 'Fish Measurement Data';

data Fish;
set sashelp.fish;
if Weight <= 0 or Weight = . then delete;
Weight3 = Weight ** (1/3);
Height = Height / Weight3;
Width = Width / Weight3;
Length1 = Length1 / Weight3;
Length2 = Length2 / Weight3;
Length3 = Length3 / Weight3;
LogLengthRatio = log(Length3 / Length1);

run;

The following macro, Std, standardizes the Fish data. The macro reads a single argument, mtd, which selects
the METHOD= specification to be used in PROC STDIZE.

/*--- macro for standardization ---*/

%macro Std(mtd);
title2 "Data are Standardized by PROC STDIZE with METHOD= &mtd";
proc stdize data=fish out=sdzout method=&mtd;

var Length1 logLengthRatio Height Width Weight3;
run;

%mend Std;

The following macro, FastFreq, includes a PROC FASTCLUS statement for performing cluster analysis and
a PROC FREQ statement for crosstabulating species with the cluster membership information that is derived
from the previous PROC FASTCLUS statement. The macro reads a single argument, ds, which selects the
input data set to be used in PROC FASTCLUS.

/*--- macro for clustering and crosstabulating ---*/
/*--- cluster membership with species ---*/

%macro FastFreq(ds);
proc fastclus data=&ds out=clust maxclusters=7 maxiter=100 noprint;

var Length1 logLengthRatio Height Width Weight3;
run;

proc freq data=clust;
tables species*cluster;

run;
%mend FastFreq;

The following analysis (labeled ‘Approach 1’) includes 18 different methods of standardization followed by
clustering. Since there is a large amount of output from this approach, only results from METHOD=STD,
METHOD=RANGE, METHOD=AGK(0.14), and METHOD=SPACING(0.14) are shown. The following
statements produce Output 94.1.1 through Output 94.1.4.

/* Approach 1: data are standardized by PROC STDIZE */

%Std(MEAN);
%FastFreq(sdzout);
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%Std(MEDIAN);
%FastFreq(sdzout);

%Std(SUM);
%FastFreq(sdzout);

%Std(EUCLEN);
%FastFreq(sdzout);

%Std(USTD);
%FastFreq(sdzout);

%Std(STD);
%FastFreq(sdzout);

%Std(RANGE);
%FastFreq(sdzout);

%Std(MIDRANGE);
%FastFreq(sdzout);

%Std(MAXABS);
%FastFreq(sdzout);

%Std(IQR);
%FastFreq(sdzout);

%Std(MAD);
%FastFreq(sdzout);

%Std(AGK(.14));
%FastFreq(sdzout);

%Std(SPACING(.14));
%FastFreq(sdzout);

%Std(ABW(5));
%FastFreq(sdzout);

%Std(AWAVE(5));
%FastFreq(sdzout);

%Std(L(1));
%FastFreq(sdzout);

%Std(L(1.5));
%FastFreq(sdzout);

%Std(L(2));
%FastFreq(sdzout);
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Output 94.1.1 Data Are Standardized by PROC STDIZE with METHOD=STD

Fish Measurement Data
Data are Standardized by PROC STDIZE with METHOD= STD

The FREQ Procedure

Fish Measurement Data
Data are Standardized by PROC STDIZE with METHOD= STD

The FREQ Procedure

Frequency
Percent
Row Pct
Col Pct

Table of Species by CLUSTER

Species

CLUSTER(Cluster)

1 2 3 4 5 6 7 Total

Bream 0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

34
21.66
100.00
100.00

0
0.00
0.00
0.00

34
21.66

Parkki 0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

11
7.01

100.00
100.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

11
7.01

Perch 0
0.00
0.00
0.00

17
10.83
30.36
89.47

0
0.00
0.00
0.00

12
7.64
21.43
92.31

0
0.00
0.00
0.00

0
0.00
0.00
0.00

27
17.20
48.21
54.00

56
35.67

Pike 17
10.83
100.00
100.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

17
10.83

Roach 0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

19
12.10
100.00
38.00

19
12.10

Smelt 0
0.00
0.00
0.00

0
0.00
0.00
0.00

13
8.28
92.86
100.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

1
0.64
7.14
2.00

14
8.92

Whitefish 0
0.00
0.00
0.00

2
1.27
33.33
10.53

0
0.00
0.00
0.00

1
0.64
16.67
7.69

0
0.00
0.00
0.00

0
0.00
0.00
0.00

3
1.91
50.00
6.00

6
3.82

Total 17
10.83

19
12.10

13
8.28

13
8.28

11
7.01

34
21.66

50
31.85

157
100.00
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Output 94.1.2 Data Are Standardized by PROC STDIZE with METHOD=RANGE

Fish Measurement Data
Data are Standardized by PROC STDIZE with METHOD= RANGE

The FREQ Procedure

Fish Measurement Data
Data are Standardized by PROC STDIZE with METHOD= RANGE

The FREQ Procedure

Frequency
Percent
Row Pct
Col Pct

Table of Species by CLUSTER

Species

CLUSTER(Cluster)

1 2 3 4 5 6 7 Total

Bream 0
0.00
0.00
0.00

0
0.00
0.00
0.00

34
21.66
100.00
100.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

34
21.66

Parkki 0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

11
7.01

100.00
100.00

0
0.00
0.00
0.00

11
7.01

Perch 0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

9
5.73
16.07
29.03

20
12.74
35.71
86.96

0
0.00
0.00
0.00

27
17.20
48.21
100.00

56
35.67

Pike 17
10.83
100.00
100.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

17
10.83

Roach 0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

19
12.10
100.00
61.29

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

19
12.10

Smelt 0
0.00
0.00
0.00

14
8.92

100.00
100.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

14
8.92

Whitefish 0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

3
1.91
50.00
9.68

3
1.91
50.00
13.04

0
0.00
0.00
0.00

0
0.00
0.00
0.00

6
3.82

Total 17
10.83

14
8.92

34
21.66

31
19.75

23
14.65

11
7.01

27
17.20

157
100.00
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Output 94.1.3 Data Are Standardized by PROC STDIZE with METHOD=AGK(0.14)

Fish Measurement Data
Data are Standardized by PROC STDIZE with METHOD= AGK(.14)

The FREQ Procedure

Fish Measurement Data
Data are Standardized by PROC STDIZE with METHOD= AGK(.14)

The FREQ Procedure

Frequency
Percent
Row Pct
Col Pct

Table of Species by CLUSTER

Species

CLUSTER(Cluster)

1 2 3 4 5 6 7 Total

Bream 0
0.00
0.00
0.00

0
0.00
0.00
0.00

34
21.66
100.00
100.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

34
21.66

Parkki 11
7.01

100.00
100.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

11
7.01

Perch 0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

3
1.91
5.36
13.04

0
0.00
0.00
0.00

20
12.74
35.71
86.96

33
21.02
58.93
94.29

56
35.67

Pike 0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

17
10.83
100.00
100.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

17
10.83

Roach 0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

17
10.83
89.47
73.91

0
0.00
0.00
0.00

0
0.00
0.00
0.00

2
1.27
10.53
5.71

19
12.10

Smelt 0
0.00
0.00
0.00

14
8.92

100.00
100.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

14
8.92

Whitefish 0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

3
1.91
50.00
13.04

0
0.00
0.00
0.00

3
1.91
50.00
13.04

0
0.00
0.00
0.00

6
3.82

Total 11
7.01

14
8.92

34
21.66

23
14.65

17
10.83

23
14.65

35
22.29

157
100.00
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Output 94.1.4 Data Are Standardized by PROC STDIZE with METHOD=SPACING(0.14)

Fish Measurement Data
Data are Standardized by PROC STDIZE with METHOD= SPACING(.14)

The FREQ Procedure

Fish Measurement Data
Data are Standardized by PROC STDIZE with METHOD= SPACING(.14)

The FREQ Procedure

Frequency
Percent
Row Pct
Col Pct

Table of Species by CLUSTER

Species

CLUSTER(Cluster)

1 2 3 4 5 6 7 Total

Bream 0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

34
21.66
100.00
100.00

34
21.66

Parkki 0
0.00
0.00
0.00

0
0.00
0.00
0.00

11
7.01

100.00
100.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

11
7.01

Perch 20
12.74
35.71
86.96

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

36
22.93
64.29
94.74

0
0.00
0.00
0.00

56
35.67

Pike 0
0.00
0.00
0.00

17
10.83
100.00
100.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

17
10.83

Roach 0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

17
10.83
89.47
85.00

0
0.00
0.00
0.00

2
1.27
10.53
5.26

0
0.00
0.00
0.00

19
12.10

Smelt 0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

14
8.92

100.00
100.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

14
8.92

Whitefish 3
1.91
50.00
13.04

0
0.00
0.00
0.00

0
0.00
0.00
0.00

3
1.91
50.00
15.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

6
3.82

Total 23
14.65

17
10.83

11
7.01

20
12.74

14
8.92

38
24.20

34
21.66

157
100.00

The following analysis (labeled ‘Approach 2’) applies the cluster analysis directly to the original data. The
following statements produce Output 94.1.5.

/* Approach 2: data are untransformed */

title2 'Data are Untransformed';
%FastFreq(fish);
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Output 94.1.5 Untransformed Data

Fish Measurement Data
Data are Untransformed

The FREQ Procedure

Fish Measurement Data
Data are Untransformed

The FREQ Procedure

Frequency
Percent
Row Pct
Col Pct

Table of Species by CLUSTER

Species

CLUSTER(Cluster)

1 2 3 4 5 6 7 Total

Bream 13
8.28
38.24
44.83

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

21
13.38
61.76
47.73

34
21.66

Parkki 2
1.27
18.18
6.90

3
1.91
27.27
18.75

0
0.00
0.00
0.00

0
0.00
0.00
0.00

6
3.82
54.55
15.38

0
0.00
0.00
0.00

0
0.00
0.00
0.00

11
7.01

Perch 8
5.10
14.29
27.59

9
5.73
16.07
56.25

0
0.00
0.00
0.00

1
0.64
1.79
6.67

20
12.74
35.71
51.28

0
0.00
0.00
0.00

18
11.46
32.14
40.91

56
35.67

Pike 0
0.00
0.00
0.00

0
0.00
0.00
0.00

10
6.37
58.82
100.00

0
0.00
0.00
0.00

1
0.64
5.88
2.56

4
2.55
23.53
100.00

2
1.27
11.76
4.55

17
10.83

Roach 3
1.91
15.79
10.34

4
2.55
21.05
25.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

12
7.64
63.16
30.77

0
0.00
0.00
0.00

0
0.00
0.00
0.00

19
12.10

Smelt 0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

14
8.92

100.00
93.33

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

14
8.92

Whitefish 3
1.91
50.00
10.34

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

3
1.91
50.00
6.82

6
3.82

Total 29
18.47

16
10.19

10
6.37

15
9.55

39
24.84

4
2.55

44
28.03

157
100.00

The following analysis (labeled ‘Approach 3’) transforms the original data with the ACECLUS procedure and
creates a TYPE=ACE output data set that is used as an input data set for the cluster analysis. The following
statements produce Output 94.1.6.

/* Approach 3: data are transformed by PROC ACECLUS */

title2 'Data are Transformed by PROC ACECLUS';
proc aceclus data=fish out=ace p=.02 noprint;

var Length1 logLengthRatio Height Width Weight3;
run;
%FastFreq(ace);



7860 F Chapter 94: The STDIZE Procedure

Output 94.1.6 Data Are Transformed by PROC ACECLUS

Fish Measurement Data
Data are Transformed by PROC ACECLUS

The FREQ Procedure

Fish Measurement Data
Data are Transformed by PROC ACECLUS

The FREQ Procedure

Frequency
Percent
Row Pct
Col Pct

Table of Species by CLUSTER

Species

CLUSTER(Cluster)

1 2 3 4 5 6 7 Total

Bream 13
8.28
38.24
44.83

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

21
13.38
61.76
47.73

34
21.66

Parkki 2
1.27
18.18
6.90

3
1.91
27.27
18.75

0
0.00
0.00
0.00

0
0.00
0.00
0.00

6
3.82
54.55
15.38

0
0.00
0.00
0.00

0
0.00
0.00
0.00

11
7.01

Perch 8
5.10
14.29
27.59

9
5.73
16.07
56.25

0
0.00
0.00
0.00

1
0.64
1.79
6.67

20
12.74
35.71
51.28

0
0.00
0.00
0.00

18
11.46
32.14
40.91

56
35.67

Pike 0
0.00
0.00
0.00

0
0.00
0.00
0.00

10
6.37
58.82
100.00

0
0.00
0.00
0.00

1
0.64
5.88
2.56

4
2.55
23.53
100.00

2
1.27
11.76
4.55

17
10.83

Roach 3
1.91
15.79
10.34

4
2.55
21.05
25.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

12
7.64
63.16
30.77

0
0.00
0.00
0.00

0
0.00
0.00
0.00

19
12.10

Smelt 0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

14
8.92

100.00
93.33

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

14
8.92

Whitefish 3
1.91
50.00
10.34

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

0
0.00
0.00
0.00

3
1.91
50.00
6.82

6
3.82

Total 29
18.47

16
10.19

10
6.37

15
9.55

39
24.84

4
2.55

44
28.03

157
100.00

Table 94.4 displays a table summarizing each classification results. In this table, the first column represents
the standardization method, the second column represents the number of clusters that the seven species are
classified into, and the third column represents the total number of observations that are misclassified.
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Table 94.4 Summary of Clustering Results

Method of Standardization Number of Clusters Misclassification

MEAN 5 71
MEDIAN 5 71
SUM 6 51
EUCLEN 6 45
USTD 6 45
STD 5 33
RANGE 7 32
MIDRANGE 7 32
MAXABS 7 26
IQR 5 28
MAD 4 35
ABW(5) 6 34
AWAVE(5) 6 29
AGK(0.14) 7 28
SPACING(0.14) 7 25
L(1) 6 41
L(1.5) 5 33
L(2) 5 33
untransformed 5 71
PROC ACECLUS 5 71

Consider the results displayed in Output 94.1.1. In that analysis, the method of standardization is STD, and
the number of clusters and the number of misclassifications are computed as shown in Table 94.5.

Table 94.5 Computations of Numbers of Clusters and Misclassification When Standardization Method Is
STD

Species Cluster Number Misclassification in Each Species
Bream 6 0
Parkki 5 0
Perch 7 29
Pike 1 0
Roach 7 0
Smelt 3 1
Whitefish 7 3

In Output 94.1.1, the bream species is classified as cluster 6 since all 34 bream are categorized into cluster 6
with no misclassification. A similar pattern is seen with the roach, parkki, pike, and smelt species.

For the whitefish species, two fish are categorized into cluster 2, one fish is categorized into cluster 4, and
three fish are categorized into cluster 7. Because the majority of this species is categorized into cluster 7, it is
recorded in Table 94.5 as being classified as cluster 7 with 3 misclassifications. A similar pattern is seen with
the perch species: it is classified as cluster 7 with 29 misclassifications.
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In summary, when the standardization method is STD, seven species of fish are classified into only five
clusters and the total number of misclassified observations is 33.

The result of this analysis demonstrates that when variables are standardized by the STDIZE procedure with
methods including RANGE, MIDRANGE, MAXABS, AGK(0.14), and SPACING(0.14), the FASTCLUS
procedure produces the correct number of clusters and less misclassification than it does when other stan-
dardization methods are used. The SPACING method attains the best result, probably because the variables
Length1 and Height both exhibit marked groupings (bimodality) in their distributions.
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Overview: STDRATE Procedure
Epidemiology is the study of the occurrence and distribution of health-related states or events in specified
populations. Epidemiology also includes the study of the determinants that influence these states, and the
application of this knowledge to control health problems (Porta 2008). It is a discipline that describes,
quantifies, and postulates causal mechanisms for health phenomena in populations (Friss and Sellers 2009).
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A common goal is to establish relationships between various factors (such as exposure to a specific chemical)
and the event outcomes (such as incidence of disease). But the measure of an association between an exposure
and an event outcome can be biased due to confounding. That is, the association of the exposure to some other
variables, such as age, influences the occurrence of the event outcome. With confounding, the usual effect
between an exposure and an event outcome can be biased because some of the effect might be accounted for
by other variables. For example, with an event rate discrepancy among different age groups of a population,
the overall crude rate might not provide a useful summary statistic to compare populations.

One strategy to control confounding is stratification. In stratification, a population is divided into several
subpopulations according to specific criteria for the confounding variables, such as age and sex groups. The
effect of the exposure on the event outcome is estimated within each stratum, and then these stratum-specific
effect estimates are combined into an overall estimate.

Two commonly used event frequency measures are rate and risk:

• A rate is a measure of the frequency with which an event occurs in a defined population in a specified
period of time. It measures the change in one quantity per unit of another quantity. For example,
an event rate measures how fast the events are occurring. That is, an event rate of a population
over a specified time period can be defined as the number of new events divided by population-time
(Kleinbaum, Kupper, and Morgenstern 1982, p. 100) over the same time period.

• A risk is the probability that an event occurs in a specified time period. It is assumed that only one
event can occur in the time period for each subject or item. The overall crude risk of a population over
a specified time period is the number of new events in the time period divided by the population size at
the beginning of the time period.

Standardized overall rate and risk estimates based on stratum-specific estimates can be derived with the
effects of confounding variables removed. These estimates provide useful summary statistics and allow valid
comparison of the populations. There are two types of standardization:

• Direct standardization computes the weighted average of stratum-specific estimates in the study
population, using the weights from a standard or reference population. This standardization is
applicable when the study population is large enough to provide stable stratum-specific estimates. The
directly standardized estimate is the overall crude rate in the study population if it has the same strata
distribution as the reference population. When standardized estimates for different populations are
derived by using the same reference population, the resulting estimates can also be compared by using
the estimated difference and estimated ratio statistics.

• Indirect standardization computes the weighted average of stratum-specific estimates in the reference
population, using the weights from the study population. The ratio of the overall crude rate or risk
in the study population and the corresponding weighted estimate in the reference population is the
standardized morbidity ratio (SMR). This ratio is also the standardized mortality ratio if the event is
death. SMR is used to compare rates or risks in the study and reference populations. With SMR, the
indirectly standardized estimate is then computed as the product of the SMR and the overall crude
estimate for the reference population. SMR and indirect standardization are applicable even when the
study population is so small that the resulting stratum-specific rates are not stable.
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Assuming that an effect, such as the rate difference between two populations, is homogeneous across
strata, each stratum provides an estimate of the same effect. A pooled estimate of the effect can then be
derived from these stratum-specific effect estimates. One way to estimate a homogeneous effect is the
Mantel-Haenszel method (Greenland and Rothman 2008, p. 271). For a homogeneous rate difference
effect between two populations, the Mantel-Haenszel estimate is identical to the difference between two
directly standardized rates, but with weights derived from the two populations instead of from an explicitly
specified reference population. The Mantel-Haenszel method can also be applied to other homogeneous
effects between populations, such as the rate ratio, risk difference, and risk ratio.

The STDRATE procedure computes directly standardized rates and risks for study populations. For two
study populations with the same reference population, PROC STDRATE compares directly standardized
rates or risks from these two populations. For homogeneous effects across strata, PROC STDRATE computes
Mantel-Haenszel estimates. The STDRATE procedure also computes indirectly standardized rates and risks,
including SMR.

The attributable fraction measures the excess event rate or risk fraction in the exposed population that
can be attributed to the exposure. The rate or risk ratio statistic is required in the attributable fraction
computation, and the STDRATE procedure estimates the ratio by using either SMR or the rate ratio statistic
in the Mantel-Haenszel estimates.

Although the STDRATE procedure provides useful summary standardized statistics, standardization is not a
substitute for individual comparisons of stratum-specific estimates. PROC STDRATE provides summary
statistics, such as rate and risk estimates and their confidence limits, in each stratum. In addition, PROC
STDRATE also displays these stratum-specific statistics by using ODS Graphics.

Note that the term standardization has different meanings in other statistical applications. For example, the
STDIZE procedure standardizes numeric variables in a SAS data set by subtracting a location measure and
dividing by a scale measure.

Getting Started: STDRATE Procedure
This example illustrates indirect standardization and uses the standardized mortality ratio to compare the
death rate from skin cancer between people who live in the state of Florida and people who live in the United
States as a whole.

The Florida_C43 data set contains the stratum-specific mortality information for skin cancer in year 2000 for
the state of Florida (Florida Department of Health 2000, 2013). The variable Age is a grouping variable that
forms the strata in the standardization, and the variables Event and PYear identify the number of events and
total person-years, respectively. The COMMA9. format is specified in the DATA step to input numerical
values that contain commas in PYear.
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data Florida_C43;
input Age $1-5 Event PYear:comma9.;
datalines;

00-04 0 953,785
05-14 0 1,997,935
15-24 4 1,885,014
25-34 14 1,957,573
35-44 43 2,356,649
45-54 72 2,088,000
55-64 70 1,548,371
65-74 126 1,447,432
75-84 136 1,087,524
85+ 73 335,944
;

The US_C43 data set contains the corresponding stratum-specific mortality information for the United States
in year 2000 (Miniño et al. 2002; U.S. Bureau of the Census 2011). The variable Age is the grouping variable,
and the variables Event and PYear identify the number of events and the total person-years, respectively.

data US_C43;
input Age $1-5 Event:comma5. PYear:comma10.;
datalines;

00-04 0 19,175,798
05-14 1 41,077,577
15-24 41 39,183,891
25-34 186 39,892,024
35-44 626 45,148,527
45-54 1,199 37,677,952
55-64 1,303 24,274,684
65-74 1,637 18,390,986
75-84 1,624 12,361,180
85+ 803 4,239,587
;

The following statements invoke the STDRATE procedure and request indirect standardization to compare
death rates between the state of Florida and the United States:

ods graphics on;
proc stdrate data=Florida_C43 refdata=US_C43

method=indirect
stat=rate(mult=100000)
plots=all
;

population event=Event total=PYear;
reference event=Event total=PYear;
strata Age / stats smr;

run;
ods graphics off;
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The DATA= and REFDATA= options name the study data set and reference data set, respectively. The
METHOD=INDIRECT option requests indirect standardization. The STAT=RATE option specifies the
rate as the frequency measure for standardization, and the MULT=100000 suboption (which is the default)
displays the rates per 100,000 person-years in the table output and graphics output. The PLOTS=ALL option
requests all appropriate plots with indirect standardization.

The POPULATION statement specifies the options that are related to the study population, and the EVENT=
and TOTAL= options specify variables for the number of events and person-years in the study population,
respectively.

The REFERENCE statement specifies the options related to the reference population, and the EVENT= and
TOTAL= options specify variables for the number of events and person-years in the reference population,
respectively.

The STRATA statement lists the variable Age that forms the strata. The STATS option requests a strata
information table that contains stratum-specific statistics such as rates, and the SMR option requests a table
of stratum-specific SMR estimates.

The “Standardization Information” table in Figure 95.1 displays the standardization information.

Figure 95.1 Standardization Information

The STDRATE ProcedureThe STDRATE Procedure

Standardization Information

Data Set WORK.FLORIDA_C43

Reference Data Set WORK.US_C43

Method Indirect Standardization

Statistic Rate

Number of Strata 10

Rate Multiplier 100000

The STATS option in the STRATA statement requests that the “Indirectly Standardized Strata Statistics”
table in Figure 95.2 display the strata information and expected number of events at each stratum. The
MULT=100000 suboption in the STAT=RATE option requests that crude rates per 100; 000 person-years be
displayed. The Expected Events column displays the expected number of events when the stratum-specific
rates in the reference data set are applied to the corresponding person-years in the study data set.
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Figure 95.2 Strata Information (Indirect Standardization)

The STDRATE ProcedureThe STDRATE Procedure

Indirectly Standardized Strata Statistics
Rate Multiplier = 100000

Study Population Reference Population

Population-Time Population-Time

Stratum
Index Age

Observed
Events Value Proportion

Crude
Rate

Standard
Error

95%
Normal

Confidence
Limits Value Proportion

Crude
Rate

1 00-04 0 953785 0.0609 0.0000 0.00000 0.0000 0.0000 19175798 0.0681 0.0000

2 05-14 0 1997935 0.1276 0.0000 0.00000 0.0000 0.0000 41077577 0.1460 0.0024

3 15-24 4 1885014 0.1204 0.2122 0.10610 0.0042 0.4202 39183891 0.1392 0.1046

4 25-34 14 1957573 0.1250 0.7152 0.19114 0.3405 1.0898 39892024 0.1418 0.4663

5 35-44 43 2356649 0.1505 1.8246 0.27825 1.2793 2.3700 45148527 0.1604 1.3865

6 45-54 72 2088000 0.1333 3.4483 0.40638 2.6518 4.2448 37677952 0.1339 3.1822

7 55-64 70 1548371 0.0989 4.5209 0.54035 3.4618 5.5799 24274684 0.0863 5.3677

8 65-74 126 1447432 0.0924 8.7051 0.77551 7.1851 10.2250 18390986 0.0654 8.9011

9 75-84 136 1087524 0.0695 12.5055 1.07234 10.4037 14.6072 12361180 0.0439 13.1379

10 85+ 73 335944 0.0215 21.7298 2.54328 16.7451 26.7146 4239587 0.0151 18.9405

Indirectly
Standardized

Strata Statistics
Rate Multiplier =

100000

Stratum
Index

Expected
Events

1 0.000

2 0.049

3 1.972

4 9.127

5 32.676

6 66.445

7 83.112

8 128.837

9 142.878

10 63.630

With ODS Graphics enabled, the PLOTS=ALL option displays all appropriate plots. With indirect standard-
ization and a rate statistic, these plots include the strata distribution plot, the strata rate plot, and the strata
SMR plot. By default, strata levels are displayed on the vertical axis for these plots.
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The strata distribution plot displays proportions for stratum-specific person-years in the study and reference
populations, as shown in Figure 95.3.

Figure 95.3 Strata Distribution Plot

The strata distribution plot displays the proportions in the “Indirectly Standardized Strata Statistics” table
in Figure 95.2. In the plot, the proportions of the study population are identified by the blue lines, and
the proportions of the reference population are identified by the red lines. The plot shows that the study
population has higher proportions in older age groups and lower proportions in younger age groups than the
reference population.
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The strata rate plot displays stratum-specific rate estimates in the study and reference populations, as shown
in Figure 95.4. This plot displays the rate estimates in the “Indirectly Standardized Strata Statistics” table in
Figure 95.2. In addition, the plot displays the confidence limits for the rate estimates in the study population
and the overall crude rates for the two populations.

Figure 95.4 Strata Rate Plot
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The SMR option in the STRATA statement requests that the “Strata SMR Estimates” table in Figure 95.5
display the strata SMR at each stratum. The MULT=100000 suboption in the STAT=RATE option requests
that the reference rates per 100; 000 person-years be displayed.

Figure 95.5 Strata SMR Information

Strata SMR Estimates
Rate Multiplier = 100000

Study Population

Stratum
Index Age

Observed
Events

Population-
Time

Reference
Crude

Rate
Expected

Events SMR
Standard

Error

95%
Normal

Confidence
Limits

1 00-04 0 953785 0.0000 0.000 . . . .

2 05-14 0 1997935 0.0024 0.049 0.0000 . . .

3 15-24 4 1885014 0.1046 1.972 2.0280 1.0140 0.0406 4.0154

4 25-34 14 1957573 0.4663 9.127 1.5339 0.4099 0.7304 2.3373

5 35-44 43 2356649 1.3865 32.676 1.3160 0.2007 0.9226 1.7093

6 45-54 72 2088000 3.1822 66.445 1.0836 0.1277 0.8333 1.3339

7 55-64 70 1548371 5.3677 83.112 0.8422 0.1007 0.6449 1.0395

8 65-74 126 1447432 8.9011 128.837 0.9780 0.0871 0.8072 1.1487

9 75-84 136 1087524 13.1379 142.878 0.9519 0.0816 0.7919 1.1118

10 85+ 73 335944 18.9405 63.630 1.1473 0.1343 0.8841 1.4104

The “Strata SMR Estimates” table shows that although SMR is less than 1 only at three age strata (55–64,
65–74, and 75–84), these three strata contain about 60% of the total events.
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The strata SMR plot displays stratum-specific SMR estimates with confidence limits, as shown in Figure 95.6.
The plot displays the SMR estimates in the “Strata SMR Estimates” table in Figure 95.5.

Figure 95.6 Strata SMR Plot

The METHOD=INDIRECT option requests that the “Standardized Morbidity/Mortality Ratio” table in
Figure 95.7 be displayed. The table displays the SMR, its confidence limits, and the test for the null
hypothesis H0 W SMR D 1. The default ALPHA=0.05 option requests that 95% confidence limits be
constructed.

Figure 95.7 Standardized Morbidity/Mortality Ratio

Standardized Morbidity/Mortality Ratio

Observed
Events

Expected
Events SMR

Standard
Error

95%
Normal

Confidence
Limits Z Pr > |Z|

538 528.726 1.0175 0.0439 0.9316 1.1035 0.40 0.6893

The 95% normal confidence limits contain the null hypothesis value SMR D 1, and the hypothesis of
SMR D 1 is not rejected at the ˛ D 0:05 level from the normal test.
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The “Indirectly Standardized Rate Estimates” table in Figure 95.8 displays the indirectly standardized rate
and related statistics.

Figure 95.8 Standardized Rate Estimates (Indirect Standardization)

Indirectly Standardized Rate Estimates
Rate Multiplier = 100000

Study Population Standardized Rate

Observed
Events

Population-
Time

Crude
Rate

Reference
Crude

Rate
Expected

Events SMR Estimate
Standard

Error

95%
Normal

Confidence
Limits

538 15658227 3.4359 2.6366 528.726 1.0175 2.6829 0.1157 2.4562 2.9096

The indirectly standardized rate estimate is the product of the SMR and the crude rate estimate for the
reference population. The table shows that although the crude rate in the state of Florida (3.4359) is 30%
higher than the crude rate in the U.S. (2.6366), the resulting standardized rate (2.6829) is close to the crude
rate in the U.S.

Syntax: STDRATE Procedure
The following statements are available in PROC STDRATE:

PROC STDRATE < options > ;
BY variables ;
POPULATION options ;
REFERENCE options ;
STRATA variables < / option > ;

The PROC STDRATE statement invokes the procedure, names the data sets, specifies the standardization
method, and identifies the statistic for standardization. The BY statement requests separate analyses of groups
defined by the BY variables. The required POPULATION statement specifies the rate or risk information in
study populations, and the REFERENCE statement specifies the rate or risk information in the reference
population. The STRATA statement lists the variables that form the strata.

The following sections describe the PROC STDRATE statement and then describe the other statements in
alphabetical order.
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PROC STDRATE Statement
PROC STDRATE < options > ;

Table 95.1 summarizes the options in the PROC STDRATE statement.

Table 95.1 Summary of PROC STDRATE Options

Option Description

Input Data Sets
DATA= Names the SAS data set that contains the study populations
REFDATA= Names the SAS data set that contains the reference population

Standardization Methods
METHOD= Specifies the method for standardization
STAT= Specifies the statistic for standardization
EFFECT Specifies the test to compare study populations for direct

standardization and Mantel-Haenszel estimation

Displayed Output
ALPHA= Specifies the significance level for confidence intervals
CL= Requests the confidence limits for the standardized estimates
PLOTS Requests stratum-specific plots

You can specify the following options in the PROC STDRATE statement to compute standardized rates and
risks in the procedure. They are listed in alphabetical order.

ALPHA=˛
requests that confidence limits be constructed with confidence level 100.1 � ˛/%, where 0 < ˛ < 1.
The default is ALPHA=0.05. These confidence limits include confidence limits for the stratum-specific
rates or risks, standardized rate and risk, standardized morbidity/mortality ratio, and population
attributable rate and risk.

CL=GAMMA < (TYPE=AVERAGE | CONSERVATIVE) > | LOGNORMAL | NONE | NORMAL | POISSON

specifies the method to construct confidence limits for SMR and standardized rate and risk. You can
specify the following values for this option:

GAMMA
requests confidence limits based on a gamma distribution for METHOD=DIRECT
and METHOD=MH. This value applies only when STAT=RATE. You can specify the
TYPE=CONSERVATIVE suboption to request conservative confidence limits that are based on a
gamma distribution and were developed by Fay and Feuer (1997), or you can use the default
TYPE=AVERAGE suboption to request modified confidence limits proposed by Tiwari, Clegg,
and Zou (2006).
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LOGNORMAL
requests confidence limits based on a lognormal distribution.

NONE
suppresses construction of confidence limits.

NORMAL
requests confidence limits based on a normal distribution.

POISSON
requests confidence limits based on a Poisson distribution. This value applies only when
METHOD=INDIRECT.

The default is CL=NORMAL.

DATA=SAS-data-set
names the required SAS data set that contains the event information in the study populations.

EFFECT < =DIFF | RATIO >
displays a table of the effect estimate and associated confidence limits. This option applies only
when METHOD=DIRECT with two study populations and when METHOD=MH, where two study
populations are required.

EFFECT and EFFECT=RATIO display a test on the ratio effect of estimates between the study
populations, and the EFFECT=DIFF option displays a test on the difference effect.

METHOD= DIRECT | INDIRECT < (AF) > | MH < (AF) >

M= DIRECT | INDIRECT < (AF) > | MH < (AF) >
specifies the required method for standardization. The AF suboption (available only for
METHOD=INDIRECT or METHOD=MH) requests the attributable fraction, which measures
how much of the excess event rate or risk fraction in the exposed population is attributable to the
exposure. This suboption also requests the population attributable fraction, which measures how much
of the excess event rate or risk fraction in the total population is attributable to the exposure.

You can specify the following values:

DIRECT requests direct standardization.

INDIRECT requests indirect standardization. If you specify the AF suboption, the study
population is treated as the exposed population and the reference population is
treated as the unexposed population.

MH requests Mandel-Haenszel estimation. The order of the two study populations is
indicated by the ORDER= suboption in the GROUP option in the POPULATION
statement. If you specify the AF suboption, the exposed population is identified by
the EXPOSED= suboption in the GROUP option in the POPULATION statement.
If the EXPOSED= suboption is not specified, then the first study population is
treated as the exposed population and the second study population is treated as the
unexposed population.
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PLOTS < ( global-options ) > < = plot-request >

PLOTS < ( global-options ) > < = ( plot-request < . . . plot-request > ) >
specifies options that control the details of the plots. The default is PLOTS=RATE for STAT=RATE
and PLOTS=RISK for STAT=RISK.

You can specify the following global-options:

DISPLAY=INDEX | LEVEL
specifies tick mark values for the strata axis. DISPLAY=LEVEL displays strata levels on the
strata axis, and DISPLAY=INDEX displays strata indices of sequential strata identification
numbers on the strata axis. The default is DISPLAY=LEVEL.

ONLY
suppresses the default plots and displays only plots that are specifically requested.

STRATUM=HORIZONTAL | VERTICAL
controls the orientation of the plots. STRATUM=VERTICAL places the strata information on
the vertical axis, and STRATUM=HORIZONTAL places the strata information on the horizontal
axis. The default is STRATUM=VERTICAL.

You can specify the following plot-requests:

ALL
produces all appropriate plots.

DIST | DISTRIBUTION
displays a plot of the proportions for stratum-specific exposed time or sample size.

EFFECT
displays a plot of the stratum-specific effect estimates and associated confidence limits.
This option applies only when METHOD=DIRECT with two study populations and when
METHOD=MH, where two study populations are required. If the EFFECT=DIFF option is
specified, the stratum-specific rate or risk difference effects are displayed. Otherwise, the stratum-
specific rate or risk ratio effects are displayed.

NONE
suppresses all plots.

RATE
displays a plot of the stratum-specific rates and associated confidence limits. This option applies
only when STAT=RATE. If a confidence limits method is specified in the STATS(CL=) option in
the STRATA statement, that method is used to compute the confidence limits. Otherwise, the
normal approximation is used.

RISK
displays a plot of the stratum-specific risks and associated confidence limits. This option applies
only when STAT=RISK. If a confidence limits method is specified in the STATS(CL=) option in
the STRATA statement, that method is used to compute the confidence limits. Otherwise, the
normal approximation is used.
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SMR
displays a plot of the stratum-specific SMR estimates and associated confidence limits. This
option applies only when METHOD=INDIRECT. If a method is specified in the SMR(CL=)
option in the STRATA statement, that method is used to compute the confidence limits. Otherwise,
the normal approximation is used.

REFDATA=SAS-data-set
names the required SAS data set that contains the event information in the reference population.

STAT=RATE < ( MULT =c ) >

STAT=RISK
specifies the statistic for standardization. STAT=RATE computes standardized rates, and STAT=RISK
computes standardized risks. The default is STAT=RATE.

The MULT= suboption in the STAT=RATE option specifies a power of 10 constant c, and requests
that rates per c population-time units be displayed in the output tables and graphics. The default is
MULT=100000, which specifies rates per 100,000 population-time units.

BY Statement
BY variables ;

You can specify a BY statement with PROC STDRATE to obtain separate analyses of observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the STDRATE procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.
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POPULATION Statement
POPULATION < options > ;

The required POPULATION statement specifies the information in the study data set. You can specify the
following options in the POPULATION statement:

EVENT=variable
specifies the variable for the number of events in the study data set.

GROUP < ( group-options ) > =variable
specifies the variable whose values identify the various populations. The GROUP= option is required
when METHOD=MH and also applies when METHOD=DIRECT in the PROC STDRATE statement.

You can specify the following group-options:

EXPOSED=’group’
identifies the exposed group in the derivation of the attributable fraction. This option applies only
when you specify METHOD=MH(AF). If you do not specify the EXPOSED= option, the first
study population, as indicated by the ORDER= option, is treated as the exposed population.

ORDER=DATA | FORMATTED | INTERNAL
specifies the order in which the values of the variable are to be displayed. You can specify the
following values for the ORDER= suboption:

DATA sorts by the order in which the values appear in the input data set.

FORMATTED sorts by their external formatted values.

INTERNAL sorts by the unformatted values, which yields the same order that the SORT
procedure does.

By default, ORDER=INTERNAL. For ORDER=FORMATTED and ORDER=INTERNAL, the
sort order is machine-dependent.

POPEVENT=number
specifies the total number of events in the study data set. This option applies only when
METHOD=INDIRECT is specified in the PROC STDRATE statement and the total number of events
is not available in the study data set.

RATE < ( MULT=c ) > = variable
specifies the variable for the observed rate in the study data set. This option applies only when
STAT=RATE is specified in the PROC STDRATE statement. The MULT=c suboption specifies a
power of 10 constant c and requests that the rates per c population-time units be read from the data
set. The default is the value of the MULT= suboption used in the STAT=RATE option in the PROC
STDRATE statement.

RISK=variable
specifies the variable for the observed risk in the study data set. This option applies only when
STAT=RISK is specified in the PROC STDRATE statement.
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TOTAL=variable
specifies the variable for either the population-time (STAT=RATE) or the number of observations
(STAT=RISK) in the study data set.

REFERENCE Statement
REFERENCE < options > ;

The REFERENCE statement specifies the information in the reference data set. This statement is required
when METHOD=DIRECT or METHOD=INDIRECT is specified in the PROC STDRATE statement.

You can specify the following options in the REFERENCE statement:

EVENT=variable
specifies the variable for the number of events in the reference data set.

RATE < ( MULT=c ) > = variable
specifies the variable for the observed rate in the reference data set. This option applies only when
STAT=RATE is specified in the PROC STDRATE statement. The MULT=c suboption specifies a
power of 10 constant c and requests that the rates per c population-time units be read from the data
set. The default is the value of the MULT= suboption used in the STAT=RATE option in the PROC
STDRATE statement.

RISK=variable
specifies the variable for the observed risk in the reference data set. This option applies only when
STAT=RISK is specified in the PROC STDRATE statement.

TOTAL=variable
specifies the variable for either the population-time (STAT=RATE) or the number of observations
(STAT=RISK) in the reference data set.

When METHOD=INDIRECT is specified in the PROC STDRATE statement, the overall reference population
rate and risk are needed to compute indirect standardized rate and risk, respectively. If the information is not
available in the reference data set, you can specify the following options for overall reference population rate
and risk.

REFEVENT=number
specifies the total number of events in the reference data set.

REFRATE < ( MULT=c ) > = number
specifies the crude rate in the reference data set. This option applies only when STAT=RATE is
specified in the PROC STDRATE statement. The MULT=c suboption specifies a power of 10 constant
c, and the number is the crude rate per c population-time units in the data set. The default is the value
of the MULT= suboption in the STAT=RATE option in the PROC STDRATE statement.

REFRISK=number
specifies the crude risk in the reference data set. This option applies only when STAT=RISK is specified
in the PROC STDRATE statement.
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REFTOTAL=number
specifies either the total population-time (STAT=RATE) or the total number of observations
(STAT=RISK) in the reference data set.

When STAT=RATE, the REFRATE= option specifies the crude reference rate for the indirect standardized
rate. If the REFRATE= option is not specified, the REFEVENT= and REFTOTAL options can be used to
compute the crude reference rate. Similarly, when STAT=RISK, the REFRISK= option specifies the crude
reference risk for the indirect standardized rate. If the REFRISK= option is not specified, the REFEVENT=
and REFTOTAL options can be used to compute the crude reference risk.

STRATA Statement
STRATA variables < / options > ;

The STRATA statement names variables that form the strata in the standardization. The combinations of
categories of STRATA variables define the strata in the population.

The STRATA variables are one or more variables in all input data sets. These variables can be either character
or numeric. The formatted values of the STRATA variables determine the levels. Thus, you can use formats
to group values into levels. See the FORMAT procedure in the Base SAS Procedures Guide and the FORMAT
statement and SAS formats in SAS Language Reference: Dictionary for more information.

When the STRATA statement is not specified or the statement is specified without variables, all observations
in a data set are treated as though they are from a single stratum.

You can specify the following options in the STRATA statement after a slash (/):

EFFECT
displays a table of the stratum-specific effect estimates and associated confidence limits. This option
applies only when METHOD=DIRECT with two study populations and when METHOD=MH, where
two study populations are required. If the EFFECT=DIFF option in the PROC STDRATE statement
is specified, the stratum-specific rate or risk difference effects are displayed. Otherwise, the stratum-
specific rate or risk ratio effects are displayed.

MISSING
treats missing values as a valid (nonmissing) category for all STRATA variables. When PROC
STDRATE determines levels of a STRATA variable, an observation with missing values for that
STRATA variable is excluded, unless the MISSING option is specified.

ORDER=DATA | FORMATTED | INTERNAL
specifies the order in which the values of the categorical variables are to be displayed. You can specify
the following values for the ORDER= option:

DATA sorts by the order in which the values appear in the input data set.

FORMATTED sorts by their external formatted values.

INTERNAL sorts by the unformatted values, which yields the same order that the SORT
procedure does.

By default, ORDER=INTERNAL. For ORDER=FORMATTED and ORDER=INTERNAL, the sort
order is machine-dependent.
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STATS < ( CL=LOGNORMAL | NONE | NORMAL | POISSON ) >
displays tables for stratum-specific statistics such as stratum-specific rates and risks. You can specify
the following values of the CL= suboption to request confidence limits for the rate or risk estimate in
each stratum:

LOGNORMAL
requests confidence limits based on a lognormal approximation.

NONE
suppresses confidence limits.

NORMAL
requests confidence limits based on a normal approximation and also displays the standard error
for the rate estimate in each stratum.

POISSON
requests confidence limits based on a Poisson distribution for stratum-specific rates. This values
applies only when STAT=RATE in the PROC STDRATE statement.

The default is CL=NORMAL.

SMR < ( CL=LOGNORMAL | NONE | NORMAL | POISSON ) >
displays tables for stratum-specific SMR estimates. This option applies only when
METHOD=INDIRECT is specified in the PROC STDRATE statement. You can specify the
following values of the CL= suboption to request confidence limits for the SMR estimate in each
stratum:

LOGNORMAL
requests confidence limits based on a lognormal approximation.

NONE
suppresses confidence limits.

NORMAL
requests confidence limits based on a normal approximation and also displays the standard error
for the SMR estimate in each stratum.

POISSON
requests confidence limits based on a Poisson distribution for stratum-specific SMR estimates.
This values applies only when STAT=RATE in the PROC STDRATE statement.

The default is CL=NORMAL.
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Details: STDRATE Procedure

Rate
A major task in epidemiology is to compare event frequencies for groups of people. Both rate and risk are
commonly used to measure event frequency in the comparison. Rate is a measure of change in one quantity
per unit of another quantity. An event rate measures how fast the events are occurring. In contrast, an event
risk is the probability that an event occurs over a specified follow-up time period.

An event rate of a population over a specified time period can be defined as the number of new events divided
by the population-time of the population over the same time period,

O� D
d

T

where d is the number of events and T is the population-time that is computed by adding up the time
contributed by each subject in the population over the specified time period.

For a general population, the subsets (strata) might not be homogeneous enough to have a similar rate. Thus,
the rate for each stratum should be computed separately to reflect this discrepancy. For a population that
consists of K homogeneous strata (such as different age groups), the stratum-specific rate for the jth stratum
in a population is computed as

O�j D
dj

Tj

where dj is the number of events and Tj is the population-time for subjects in the jth stratum of the
population.

Assuming the number of events in the jth stratum, dj , has a Poisson distribution, the variance of O�j is

V. O�j / D V.
dj

Tj
/ D

1

Tj 2
V.dj / D

dj

T 2j
D

O�j

Tj

By using the method of statistical differentials (Elandt-Johnson and Johnson 1980, pp. 70–71), the variance
of the logarithm of rate can be estimated by

V.log. O�j // D
1

O�2j

V. O�j / D
1

O�2j

O�j

Tj
D

1

O�j Tj
D

1

dj

Because the rate value can be very small, especially for rare events, it is sometimes expressed in terms of the
product of a multiplier and the rate itself. For example, a rate can be expressed as the number of events per
100,000 person-years.
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Normal Distribution Confidence Interval for Rate

A .1 � ˛/ confidence interval for O�j based on a normal distribution is given by�
O�j � z

q
V. O�j / ; O�j C z

q
V. O�j /

�
where z D ˆ�1.1 � ˛=2/ is the .1 � ˛=2/ quantile of the standard normal distribution.

Lognormal Distribution Confidence Interval for Rate

A .1 � ˛/ confidence interval for log. O�j / based on a normal distribution is given by�
log. O�j / � z

q
V.log. O�j // ; log. O�j /C z

q
V.log. O�j //

�
where z D ˆ�1.1 � ˛=2/ is the .1 � ˛=2/ quantile of the standard normal distribution and the variance
V.log. O�j // D 1=dj .

Thus, a .1 � ˛/ confidence interval for O�j based on a lognormal distribution is given by�
O�j e

� zp
dj ; O�j e

zp
dj

�

Poisson Distribution Confidence Interval for Rate

Denote the .˛=2/ quantile for the �2 distribution with 2 dj degrees of freedom by

qlj D .�
2
2dj

/
�1
.˛=2/

Denote the .1 � ˛=2/ quantiles for the �2 distribution with 2.dj C 1/ degrees of freedom by

quj D .�
2
2 .djC1/

/
�1
.1 � ˛=2/

Then a .1 � ˛/ confidence interval for O�j based on the �2 distribution is given by�
qlj

2 Tj
;
quj

2 Tj

�

Confidence Interval for Rate Difference Statistic

For rate estimates from two independent samples, O�1j and O�2j , a .1 � ˛/ confidence interval for the rate
difference O�dj D O�1j � O�2j is�

O�dj � z

q
V. O�dj / ; O�dj C z

q
V. O�dj /

�
where z D ˆ�1.1 � ˛=2/ is the .1 � ˛=2/ quantile of the standard normal distribution and the variance

V. O�dj / D V. O�1j /C V. O�2j /
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Confidence Interval for Rate Ratio Statistic

For rate estimates from two independent samples, O�1j and O�2j , a .1 � ˛/ confidence interval for the log rate
ratio statistic log. O�rj / D log. O�1j = O�2j / is�

log. O�rj / � z
q
V.log. O�rj // ; log. O�rj /C z

q
V.log. O�rj //

�
where z D ˆ�1.1 � ˛=2/ is the .1 � ˛=2/ quantile of the standard normal distribution and the variance

V.log. O�rj // D V.log. O�1j //C V.log. O�2j //

Thus, a .1 � ˛/ confidence interval for the rate ratio statistic O�rj is given by 
O�1j

O�2j
e�z

q
V.log. O�rj // ;

O�1j

O�2j
ez
q
V.log. O�rj //

!

Confidence Interval for Rate SMR

At stratum j, a stratum-specific standardized morbidity/mortality ratio is

Rj D
dj

Ej
where Ej is the expected number of events.

With the rate

O�j D
dj

Tj
SMR can be expressed as

Rj D
Tj
Ej
O�j

Thus, a .1 � ˛/ confidence interval for Rj is given by�
Tj
Ej
O�jl ;

Tj
Ej
O�ju

�
where . O�jl ; O�ju / is a .1 � ˛/ confidence interval for the rate O�j .

Risk
An event risk of a population over a specified time period can be defined as the number of new events in the
follow-up time period divided by the event-free population size at the beginning of the time period,

O D
d

N
where N is the population size.
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For a general population, the subsets (strata) might not be homogeneous enough to have a similar risk. Thus,
the risk for each stratum should be computed separately to reflect this discrepancy. For a population that
consists of K homogeneous strata (such as different age groups), the stratum-specific risk for the jth stratum
in a population is computed as

Oj D
dj

Nj
where Nj is the population size in the jth stratum of the population.

Assuming the number of events, dj , has a binomial distribution, then a variance estimate of Oj is

V. Oj / D
Oj .1 � Oj /

Nj

By using the method of statistical differentials (Elandt-Johnson and Johnson 1980, pp. 70–71), the variance
of the logarithm of risk can be estimated by

V.log. Oj // D
1

O2j
V. Oj / D

1

O2j

Oj .1 � Oj /

Nj
D
1 � Oj

Oj Nj
D

1

dj
�

1

Nj

Normal Distribution Confidence Interval for Risk

A .1 � ˛/ confidence interval for Oj based on a normal distribution is given by�
Oj � z

q
V. Oj / ; Oj C z

q
V. Oj /

�
where z D ˆ�1.1 � ˛=2/ is the .1 � ˛=2/ quantile of the standard normal distribution.

Lognormal Distribution Confidence Interval for Risk

A .1 � ˛/ confidence interval for log. Oj / based on a normal distribution is given by�
log. Oj / � z

q
V.log. Oj // ; log. Oj /C z

q
V.log. Oj //

�
where z D ˆ�1.1 � ˛=2/ is the .1 � ˛=2/ quantile of the standard normal distribution and the variance
V.log. Oj // D 1=dj � 1=Nj .

Thus, a .1 � ˛/ confidence interval for Oj based on a lognormal distribution is given by�
Oj e
�z

q
1
dj
� 1

Nj ; Oj e
z
q

1
dj
� 1

Nj

�

Confidence Interval for Risk Difference Statistic

For rate estimates from two independent samples, O1j and O2j , a .1 � ˛/ confidence interval for the risk
difference Odj D O1j � O2j is�

Odj � z
q
V. Odj / ; Odj C z

q
V. Odj /

�
where z D ˆ�1.1 � ˛=2/ is the .1 � ˛=2/ quantile of the standard normal distribution and the variance

V. Odj / D V. O1j /C V. O2j /
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Confidence Interval for Risk Ratio Statistic

For rate estimates from two independent samples, O1j and O2j , a .1 � ˛/ confidence interval for the log risk
ratio statistic log. Orj / D log. O1j = O2j / is�

log. Orj / � z
q
V.log. Orj // ; log. Orj /C z

q
V.log. Orj //

�
where z D ˆ�1.1 � ˛=2/ is the .1 � ˛=2/ quantile of the standard normal distribution and the variance

V.log. Orj / D V.log. O1j //C V.log. O2j //

Thus, a .1 � ˛/ confidence interval for the risk ratio statistic Orj is given by�
O1j

O2j
e�z
p
V.log. Orj // ;

O1j

O2j
ez
p
V.log. Orj //

�

Confidence Interval for Risk SMR

At stratum j, a stratum-specific standardized morbidity/mortality ratio is

Rj D
dj

Ej

where Ej is the expected number of events.

With the risk

Oj D
dj

Nj

SMR can be expressed as

Rj D
Nj
Ej
Oj

Thus, a .1 � ˛/ confidence interval for Rj is given by�
Nj
Ej
Ojl ;

Nj
Ej
Oju

�
where . Ojl ; Oju / is a .1 � ˛/ confidence interval for the risk Oj .

Direct Standardization
Direct standardization uses the weights from a reference population to compute the standardized rate of a
study group as the weighted average of stratum-specific rates in the study population. The standardized rate
is computed as

O�ds D

P
j Trj O�sj
Tr



Direct Standardization F 7887

where O�sj is the rate in the jth stratum of the study population, Trj is the population-time in the jth stratum
of the reference population, and Tr D

P
k Trk is the population-time in the reference population.

Similarly, direct standardization uses the weights from a reference population to compute the standardized risk
of a study group as the weighted average of stratum-specific risks in the study population. The standardized
risk is computed as

Ods D

P
j Nrj Osj
Nr

where Osj is the risk in the jth stratum of the study population, Nrj is the number of observations in the jth
stratum of the reference population, and Nr D

P
k Nrk is the total number of observations in the reference

population.

That is, the directly standardized rate and risk of a study population are weighted averages of the stratum-
specific rates and risks, respectively, where the weights are the corresponding strata population sizes in the
reference population. The direct standardization can be used when the study population is large enough to
provide stable stratum-specific rates or risks. When the same reference population is used for multiple study
populations, directly standardized rates and risks provide valid comparisons between study populations.

The variances of the directly standardized rate and risk are

V. O�ds/ D V

 P
j Trj O�sj
Tr

!
D

P
j T 2rj V. O�sj /

T 2r

V. Ods/ D V

 P
j Nrj Osj
Nr

!
D

P
j N 2

rj V. Osj /

N 2
r

By using the method of statistical differentials (Elandt-Johnson and Johnson 1980, pp. 70–71), the variance
of the logarithm of directly standardized rate and risk can be estimated by

V.log. O�ds// D
1

O�2
ds

V. O�ds/

V .log. Ods// D
1

O2
ds

V. Ods/

The confidence intervals for O�ds and Ods can be constructed based on normal and lognormal distributions. A
gamma distribution confidence interval can also be constructed for O�ds .

In the next four subsections, ˇ D � denotes the rate statistic and ˇ D  denotes the risk statistic.

Normal Distribution Confidence Intervals for Standardized Rate and Risk

A .1 � ˛/ confidence interval for Ǒds based on a normal distribution is then given by�
Ǒ
ds � z

q
V. Ǒds/ ; Ǒds C z

q
V. Ǒds/

�
where z D ˆ�1.1 � ˛=2/ is the .1 � ˛=2/ quantile of the standard normal distribution.
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Lognormal Distribution Confidence Intervals for Standardized Rate and Risk

A .1 � ˛/ confidence interval for log. Ǒds/ based on a normal distribution is given by�
log. Ǒds/ � z

q
V.log. Ǒds// ; log. Ǒds/C z

q
V.log. Ǒds//

�
where z D ˆ�1.1 � ˛=2/ is the .1 � ˛=2/ quantile of the standard normal distribution.

Thus, a .1 � ˛/ confidence interval for Ǒds based on a lognormal distribution is given by�
Ǒ
ds e

�z

q
V.log. Ǒds// ; Ǒds e

z

q
V.log. Ǒds//

�

Gamma Distribution Confidence Interval for Standardized Rate

Fay and Feuer (1997) use the relationship between the Poisson and gamma distributions to derive approximate
confidence intervals for the standardized rate O�ds based on the gamma distribution. As in the construction of
the asymptotic normal confidence intervals, it is assumed that the number of events has a Poisson distribution,
and the standardized rate is a weighted sum of independent Poisson random variables. A confidence interval
for O�ds is then given by0@ v

2 O�ds
.�2/�1

2 O�2
ds
v

�˛
2

�
;

v C w2x

2. O�ds C wx/
.�2/�1

2. O�dsCwx/
2

vCw2x

�
1 �

˛

2

� 1A
where

v D
X
j

w2j

O�sj

Tsj

wj D
Trj
Tr

1

Tsj
and wx is the maximum wj .

Tiwari, Clegg, and Zou (2006) propose a less conservative confidence interval for O�ds with a different upper
confidence limit, 

v

2 O�ds
.�2/�1

2 O�2
ds
v

�˛
2

�
;

v C w2m

2. O�ds C wm/
.�2/�1

2. O�dsCwm/
2

vCw2m

�
1 �

˛

2

� !

where wm is the average wj and w2m is the average w2j .

Comparing Standardized Rates and Comparing Standardized Risks

By using the same reference population, two directly standardized rates or risks from different populations
can be compared. Both the difference and ratio statistics can be used in the comparison. Assume that Ǒ1 and
Ǒ
2 are directly standardized rates or risks for two populations with variances V. Ǒ1/ and V. Ǒ2/, respectively.

The difference test assumes that the difference statistic

Ǒ
1 �
Ǒ
2
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has a normal distribution with mean 0 under the null hypothesis H0 W ˇ1 D ˇ2. The variance is given by

V. Ǒ1 � Ǒ2/ D V. Ǒ1/C V. Ǒ2/

The ratio test assumes that the log ratio statistic,

log

 
Ǒ
1

Ǒ
2

!
has a normal distribution with mean 0 under the null hypothesisH0 W ˇ1 D ˇ2, or equivalently, log.ˇ1=ˇ2/ D
0. An estimated variance is given by

V

 
log

 
Ǒ
1

Ǒ
2

!!
D V.log. Ǒ1//C V.log. Ǒ2// D

1

Ǒ2
1

V. Ǒ1/ C
1

Ǒ2
2

V. Ǒ2/

Mantel-Haenszel Effect Estimation
In direct standardization, the derived standardized rates and risks in a study population are the weighted
average of the stratum-specific rates and risks in the population, respectively, where the weights are given by
the population-time for standardized rate and the number of observations for standardized risk in a reference
population.

Assuming that an effect, such as rate difference, rate ratio, risk difference, and risk ratio between two
populations, is homogeneous across strata, the Mantel-Haenszel estimates of this effect can be constructed
from directly standardized rates or risks in the two populations, where the weights are constructed from the
stratum-specific population-times for rate and number of observations for risk of the two populations.

That is, for population k, k=1 and 2, the standardized rate and risk are

O�k D

P
j wj

O�kjP
j wj

and Ok D

P
j wj OkjP
j wj

where the weights are

wj D
T1j T2j

T1j C T2j

for standardized rate, and

wj D
N1j N2j

N1j CN2j

for standardized risk.

Rate and Risk Difference Statistics

Denote ˇ D � for rate and ˇ D  for risk. The variance is

V. Ǒk/ D V

 P
j wj

Ǒ
kjP

j wj

!
D

1

.
P
j wj /

2

X
j

w2j V.
Ǒ
kj /
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The Mantel-Haenszel difference statistic is

Ǒ
1 �
Ǒ
2

with variance

V. Ǒ1 � Ǒ2/ D V. Ǒ1/C V. Ǒ2/

Under the null hypothesisH0 W ˇ1 D ˇ2, the difference statistic Ǒ1� Ǒ2 has a normal distribution with mean
0.

Rate Ratio Statistic

The Mantel-Haenszel rate ratio statistic is O�1= O�2, and the log ratio statistic is

log

 
O�1

O�2

!

Under the null hypothesis H0 W �1 D �2 (or equivalently, log.�1=�2/ D 0), the log ratio statistic has a
normal distribution with mean 0 and variance

V

 
log

 
O�1

O�2

!!
D

P
j wj

O�pj

.
P
j wj

O�1j / .
P
j wj

O�2j /

where

O�pj D
d1j C d2j

T1j C T2j

is the combined rate estimate in stratum j under the null hypothesis of equal rates (Greenland and Robins
1985; Greenland and Rothman 2008, p. 273).

Risk Ratio Statistic

The Mantel-Haenszel risk ratio statistic is O1= O2, and the log ratio statistic is

log
�
O1

O2

�
Under the null hypothesisH0 W 1 D 2 (or equivalently, log.1=2/ D 0), the log ratio statistic has a normal
distribution with mean 0 and variance

V

�
log

�
O1

O2

��
D

P
j wj . Opj � O1j O2j /

.
P
j wj O1j / .

P
j wj O2j /

where

Opj D
d1j C d2j

N1j CN2j

is the combined risk estimate in stratum j under the null hypothesis of equal risks (Greenland and Robins
1985; Greenland and Rothman 2008, p. 275).
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Indirect Standardization and Standardized Morbidity/Mortality Ratio
Indirect standardization compares the rates of the study and reference populations by applying the stratum-
specific rates in the reference population to the study population, where the stratum-specific rates might not
be reliable.

The expected number of events in the study population is

E D
X
j

Tsj O�rj

where Tsj is the population-time in the jth stratum of the study population and O�rj is the rate in the jth
stratum of the reference population.

With the expected number of events, E , the standardized morbidity ratio or standardized mortality ratio can
be expressed as

Rsm D
D
E

where D is the observed number of events (Breslow and Day 1987, p. 65).

The ratio Rsm > 1 indicates that the mortality rate or risk in the study population is larger than the estimate
in the reference population, and Rsm < 1 indicates that the mortality rate or risk in the study population is
smaller than the estimate in the reference population.

With the ratio Rsm, an indirectly standardized rate for the study population is computed as

O�is D Rsm O�r

where O�r is the overall crude rate in the reference population.

Similarly, to compare the risks of the study and reference populations, the stratum-specific risks in the
reference population are used to compute the expected number of events in the study population

E D
X
j

Nsj Orj

where Nsj is the number of observations in the jth stratum of the study population and Orj is the risk in the
jth stratum of the reference population.

Also, with the standardized morbidity ratio Rsm D D=E , an indirectly standardized risk for the study
population is computed as

Ois D Rsm Or

where Or is the overall crude risk in the reference population.

The observed number of events in the study population is D D
P
j dsj , where dsj is the number of events in

the jth stratum of the population. For the rate estimate, if dsj has a Poisson distribution, then the variance of
the standardized mortality ratio Rsm D D =E is

V.Rsm/ D
1

E2
X
j

V.dsj / D
1

E2
X
j

dsj D
D
E2
D

Rsm
E
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For the risk estimate, if dsj has a binomial distribution, then the variance of Rsm D D =E is

V.Rsm/ D V

0@ 1
E
X
j

dsj

1A D 1

E2
X
j

V.dsj / D
1

E2
X
j

N 2
sjV. Osj /

where

V. Osj / D
Osj .1 � Osj /

Nsj

By using the method of statistical differentials (Elandt-Johnson and Johnson 1980, pp. 70–71), the variance
of the logarithm of Rsm can be estimated by

V.log.Rsm// D
1

R2sm
V.Rsm/

For the rate estimate,

V.log.Rsm// D
1

R2sm
V.Rsm/ D

1

R2sm
Rsm
E
D

1

Rsm
1

E
D
1

D

The confidence intervals for Rsm can be constructed based on normal, lognormal, and Poisson distributions.

Normal Distribution Confidence Interval for SMR

A .1 � ˛/ confidence interval for Rsm based on a normal distribution is given by

.Rl ; Ru/ D
�
Rsm � z

p
V.Rsm/ ; Rsm C z

p
V.Rsm/

�
where z D ˆ�1.1 � ˛=2/ is the .1 � ˛=2/ quantile of the standard normal distribution.

A test statistic for the null hypothesis H0 W SMR D 1 is then given by

Rsm � 1p
V.Rsm/

The test statistic has an approximate standard normal distribution under H0.

Lognormal Distribution Confidence Interval for SMR

A .1 � ˛/ confidence interval for log.Rsm/ based on a normal distribution is given by�
log.Rsm/ � z

p
V.log.Rsm// ; log.Rsm/C z

p
V.log.Rsm//

�
where z D ˆ�1.1 � ˛=2/ is the .1 � ˛=2/ quantile of the standard normal distribution.

Thus, a .1 � ˛/ confidence interval for Rsm based on a lognormal distribution is given by�
Rsm e�z

p
V.log.Rsm// ; Rsm ez

p
V.log.Rsm//

�
A test statistic for the null hypothesis H0 W SMR D 1 is then given by

log.Rsm/p
V.log.Rsm//

The test statistic has an approximate standard normal distribution under H0.
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Poisson Distribution Confidence Interval for SMR

Denote the .˛=2/ quantile for the �2 distribution with 2D degrees of freedom by

ql D .�
2
2D/
�1
.˛=2/

Denote the .1 � ˛=2/ quantiles for the �2 distribution with 2.DC 1/ degrees of freedom by

qu D .�
2
2.DC1//

�1
.1 � ˛=2/

Then a .1 � ˛/ confidence interval for Rsm based on the �2 distribution is given by

.Rl ; Ru/ D
� ql

2 E
;
qu

2 E

�
A p-value for the test of the null hypothesis H0 W SMR D 1 is given by

2min

 DX
kD0

e�EEk

kŠ
;

1X
kDD

e�EEk

kŠ

!

Indirectly Standardized Rate and Its Confidence Interval

With a rate-standardized mortality ratio Rsm, an indirectly standardized rate for the study population is
computed as

O�is D Rsm O�r

where O�r is the overall crude rate in the reference population.

The .1 � ˛=2/ confidence intervals for O�is can be constructed as

.Rl O�r ; Ru O�r/

where .Rl ; Ru/ is the confidence interval for Rsm.

Indirectly Standardized Risk and Its Confidence Interval

With a risk-standardized mortality ratio Rsm, an indirectly standardized risk for the study population is
computed as

Ois D Rsm Or

where Or is the overall crude risk in the reference population.

The .1 � ˛=2/ confidence intervals for Ois can be constructed as

.Rl Or ; Ru Or/

where .Rl ; Ru/ is the confidence interval for Rsm.
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Attributable Fraction and Population Attributable Fraction
The attributable fraction measures the excess event rate or risk fraction in the exposed population that is
attributable to the exposure. That is, it is the proportion of event rate or risk in the exposed population that
would be reduced if the exposure were not present. In contrast, the population attributable fraction measures
the excess event rate or risk fraction in the total population that is attributable to the exposure.

In the STDRATE procedure, you can compute the attributable fraction by using either indirect standardization
or Mantel-Haenszel estimation.

Indirect Standardization

With indirect standardization, you specify a study population that consists of subjects who are exposed to
a factor, such as smoking, and a reference population that consists of subjects who are not exposed to the
factor. Denote the numbers of events in the study and reference populations by Ds and Dr , respectively.

For the rate estimate, denote the population-times in the study and reference populations by Ts and Tr ,
respectively. Then the event rates in the two populations can be expressed as the following equations,
respectively:

O�s D
Ds
Ts

and O�r D
Dr
Tr

Similarly, for the risk estimate, denote the numbers of observations in the study and reference populations
by Ns and Nr , respectively. Then the event risks in the two populations can be expressed as the following
equations, respectively:

Os D
Ds
Ns

and Or D
Dr
Nr

In the next two subsections, ˇ D � denotes the rate statistic and ˇ D  denotes the risk statistic.

Attributable Fraction with Indirect Standardization

The attributable fraction is the fraction of event rate or risk in the exposed population that is attributable to
exposure:

Ra D
Ǒ
s �
Ǒ
r

Ǒ
s

With a standardized mortality ratio Rsm, the attributable fraction is estimated by

Ra D
Rsm � 1
Rsm

The confidence intervals for the attributable fraction can be computed using the confidence intervals for Rsm.
That is, with a confidence interval .Rl ; Ru/ for Rsm, the corresponding Ra confidence interval is given by�

Rl � 1
Rl

;
Ru � 1
Ru

�
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Population Attributable Fraction with Indirect Standardization

The population attributable fraction for a population is the fraction of event rate or risk in a given time period
that is attributable to exposure. The population attributable fraction is

Rpa D
Ǒ
0 �
Ǒ
r

Ǒ
0

where

Ǒ
0 D

Ds CDr
Ts C Tr

is the combined rate in the total population for the rate statistic and where

Ǒ
0 D

Ds CDr
Ns CNr

is the combined risk in the total population for the risk statistic.

Denote � D Ds=.Ds CDr/, the proportion of exposure among events, then Rpa can also be expressed as

Rpa D �
Rsm � 1
Rsm

where Rsm is the standardized mortality ratio.

An approximate confidence interval for the population attributable rate Rpa can be derived by using the
complementary log transformation (Greenland 2008, p. 296). That is, with

H D log.1 �Rpa/

a variance estimator for the estimated H is given by

Var. OH/ D
R2pa

.1 �Rpa/2

 
OV

.Rsm � 1/2
C

2

Ds .Rsm � 1/
C

Dr
Ds .Ds CDr/

!
where OV is a variance estimate for log.Rsm/.

Mantel-Haenszel Estimation

With Mantel-Haenszel estimation, you specify one study population that consists of subjects who are exposed
to a factor and another study population that consists of subjects who are not exposed to the factor. Denote
the numbers of events in the exposed and nonexposed study populations by D1 and D2, respectively.

For the rate estimate, denote the population-times in the two populations by T1 and T2, respectively. Then
the event rates in the two populations can be expressed as the following equations, respectively:

O�1 D
D1
T1

and O�2 D
D2
T2

Similarly, for the risk estimate, denote the numbers of observations in the two populations by N1 and
N2, respectively. Then the event risks in the two populations can be expressed as the following equations,
respectively:

O1 D
D1
N1

and O2 D
D2
N2

In the next two subsections, ˇ D � denotes the rate statistic and ˇ D  denotes the risk statistic.
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Attributable Fraction with Mantel-Haenszel Estimation

The attributable fraction is the fraction of event rate or risk in the exposed population that is attributable to
exposure:

Ra D
Ǒ
1 �
Ǒ
2

Ǒ
1

Denote the rate or risk ratio by R D Ǒ1= Ǒ2. The attributable fraction is given by

Ra D
R � 1
R

The confidence intervals for the attributable fraction can be computed using the confidence intervals for the
rate or risk ratio R. That is, with a confidence interval .Rl ; Ru/ for R, the corresponding Ra confidence
interval is given by�

Rl � 1
Rl

;
Ru � 1
Ru

�

For Mantel-Haenszel estimation, you can use the Mantel-Haenszel rate or risk ratio to estimate R.

Population Attributable Fraction with Mantel-Haenszel Estimation

The population attributable fraction for a population is the fraction of event rate or risk in a given time period
that is attributable to exposure. The population attributable fraction is

Rpa D
Ǒ
0 �
Ǒ
2

Ǒ
0

where

Ǒ
0 D

D1 CD2
T1 C T2

is the combined rate in the total population for the rate statistic and where

Ǒ
0 D

D1 CD2
N1 CN2

is the combined risk in the total population for the risk statistic.

Denote the proportion of exposure among events as � D D1=.D1CD2/. Then Rpa can also be expressed as

Rpa D �
R � 1
R

where R D Ǒ1= Ǒ2 is the rate or risk ratio.

An approximate confidence interval for the population attributable rate Rpa can be derived by using the
complementary log transformation (Greenland 2008, p. 296). That is, with

H D log.1 �Rpa/
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a variance estimator for the estimated H is given by

Var. OH/ D
R2pa

.1 �Rpa/2

 
OV

.R � 1/2
C

2

D1 .R � 1/
C

D2
D1 .D1 CD2/

!

where OV is a variance estimate for log.R/.

For Mantel-Haenszel estimation, you can use the Mantel-Haenszel rate or risk ratio to estimate R.

Applicable Data Sets and Required Variables for Method Specifications
The METHOD= and DATA= options are required in the STDRATE procedure. The METHOD= option
specifies the standardization method, and the DATA= and REFDATA= options specify the study populations
and reference population, respectively. You can use the GROUP= option in the POPULATION statement to
identify various study populations. Table 95.2 lists applicable data sets for each method.

Table 95.2 Applicable Data Sets for Method Specifications

Number of Populations
METHOD= in DATA= Data Set REFDATA= Data Set

DIRECT 1 X
2 X

MH 2

INDIRECT 1 X

Table 95.3 lists the required variables for each method.

Table 95.3 Required Variables for Method Specifications

DATA= Data Set REFDATA= Data Set
METHOD= STAT= RATE RISK TOTAL RATE RISK TOTAL

DIRECT RATE X X
RISK X X

MH RATE X X
RISK X X

INDIRECT RATE X X
RISK X X
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The symbol “X” indicates that the variable is either explicitly specified or implicitly available from other
variables. For example, when STAT=RATE, the variable RATE is available if the corresponding variables
EVENT and TOTAL are specified.

Applicable Confidence Limits for Rate and Risk Statistics
In the STDRATE procedure, the METHOD= option specifies the standardization method, and the STAT=
option specifies either either rate or risk for standardization. Table 95.4 lists applicable confidence limits for
different methods with standardized rate, rate SMR, standardized risk, and risk SMR.

Table 95.4 Applicable Confidence Limits for Standardized Rate and Risk Statistics

Confidence Limits
Statistic METHOD= Normal Lognormal Gamma Poisson

Rate DIRECT X X X
MH X X X
INDIRECT X X X

Rate SMR INDIRECT X X X

Risk DIRECT X X
MH X X
INDIRECT X X X

Risk SMR INDIRECT X X X

Table 95.5 lists applicable confidence limits for stratum-specific rate, rate SMR, risk, and risk SMR.

Table 95.5 Applicable Confidence Limits for Strata Rate and Risk Statistics

Confidence Limits
Statistic Normal Lognormal Poisson

Rate X X X
Rate SMR X X X

Risk X X
Risk SMR X X
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Table Output
The STDRATE procedure displays the “Standardization Information” table by default. In addition, the
procedure also displays the “Standardized Rate Estimates” table (with the default STAT=RATE option in the
PROC STDRATE statement) and the “Standardized Risk Estimates” table (with the STAT=RISK option) by
default. The rest of this section describes the output tables in alphabetical order.

Attributable Fraction Estimates

The “Attributable Fraction Estimates” table displays the following information:

• Parameter: attributable rate and population attributable rate for the rate statistic, and attributable risk
and population attributable risk for the risk statistic

• Estimate: estimate of the parameter

• Method: method to construct confidence limits

• Lower and Upper: lower and upper confidence limits

Effect Estimates

The “Effect Estimates” table displays the following information:

• Standardized Rate: directly standardized rates for study populations

• Standardized Risk: directly standardized risks for study populations

When EFFECT=RATIO, the table displays the following:

• Estimate: the rate or risk ratio estimate

• Log Ratio: the logarithm of rate ratio or risk ratio estimate

• Standard Error: standard error of the logarithm of the ratio estimate

• Z: the standard Z statistic

• Pr > |Z|: the p-value for the test

When EFFECT=DIFF, the table displays the following:

• Estimate: the rate or risk difference estimate

• Standard Error: standard error of the difference estimate

• Z: the standard Z statistic

• Pr > |Z|: the p-value for the test
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Standardization Information

The “Standardization Information” table displays the input data sets, type of statistic to be standardized,
standardization method, and number of strata. The table also displays the variance divisor for the risk
estimate, and the rate multiplier for the rate estimate. With a rate multiplier c, the rates per c population-time
units are displayed in the output tables.

Standardized Morbidity/Mortality Ratio

The “Standardized Morbidity/Mortality Ratio” table displays the following information:

• SMR: standardized morbidity/mortality ratio

• Standard Error: standard error for SMR

• Lower and Upper: lower and upper confidence limits for SMR

• Test Statistic: SMR-1, for the test of SMR=1

• Estimate: value of test statistic

• Standard Error: standard error of the estimate

• Z: the standard Z statistic

• Pr > |Z|: the p-value for the test

Standardized Rate Estimates

The “Standardized Rate Estimates” table displays the following information:

• Population: study populations, and reference population for indirect standardization

• Number of Events: number of events in population

• Population-Time: total contributed time in population, for the rate statistic

• Crude Rate: event rate in the population

• Expected Number of Events

• SMR: standardized morbidity/mortality ratio, for indirect standardization

• Standardized Rate: for the rate statistic

• Standard Error: standard error of the standardized estimate of rate

• Confidence Limits: lower and upper confidence limits for standardized estimate
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Standardized Risk Estimates

The “Standardized Risk Estimates” table displays the following information:

• Population: study populations, and reference population for indirect standardization

• Number of Events: number of events in population

• Number of Observations: number of observations in population

• Crude Risk: event risk in the population

• Expected Number of Events

• SMR: standardized morbidity/mortality ratio, for indirect standardization

• Standardized Risk

• Standard Error: standard error of the standardized estimate of risk

• Confidence Limits: lower and upper confidence limits for standardized estimate

Strata Effect Estimates

The “Strata Effect Estimates” table displays the following information for each stratum:

• Stratum Index: a sequential stratum identification number

• STRATA variables: the levels of STRATA variables

• Rate: rates for the study populations, for the rate statistic

• Risk: risks for the study populations, for the risk statistic

When EFFECT=DIFF, the table displays the following information for each stratum:

• Estimate: rate or risk difference estimate of the study populations

• Standard Error: the standard error of the difference estimate

• Confidence Limits: confidence limits for the difference estimate

When EFFECT=RATIO, the table displays the following information for each stratum:

• Estimate: rate or risk ratio estimate of the study populations

• Confidence Limits: confidence limits for the ratio estimate
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Strata Statistics

For each POPULATION statement, the “Strata Information” table displays the following information for
each stratum:

• Stratum Index: a sequential stratum identification number

• STRATA variables: the levels of STRATA variables

If the REFERENCE statement is specified, the table displays the following information for each stratum in
the reference population:

• Population-Time Value: population-time for the rate statistic for direct standardization

• Population-Time Proportion: proportion for the population-time

• Number of Observations Value: number of observations for the risk statistic for direct standardization

• Number of Observations Proportion: proportion for the number of observations

• Rate: for the rate statistic for indirect standardization

• Risk: for the risk statistic for indirect standardization

For the rate statistic, the table displays the following information for each stratum in the specified study data
set:

• Number of Events

• Population-Time Value

• Population-Time Proportion

• Rate Estimate

• Standard Error: standard error for the rate estimate if the CL=NORMAL suboption is specified in the
STATS option in the STRATA statement

• Confidence Limits: confidence limits for the risk estimate if the CL suboption is specified in the STATS
option in the STRATA statement

• Expected Number of Events: expected number of events that use the reference population population-
time for direct standardization, Mantel-Haenszel weight for Mantel-Haenszel estimation, or reference
population rate for indirect standardization
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For the risk statistic, the table displays the following information for each stratum in the specified study data
set:

• Number of Events

• Number of Observations Value

• Number of Observations Proportion

• Risk

• Standard Error: standard error for the risk estimate, if the CL=NORMAL suboption is specified in the
STATS option in the STRATA statement

• Confidence Limits: confidence limits for the risk estimate, if the CL suboption is specified in the
STATS option in the STRATA statement

• Expected Number of Events: expected number of events that uses the reference population number of
observations for direct standardization, Mantel-Haenszel weight for Mantel-Haenszel estimation, or
reference population risk for indirect standardization

Strata SMR Estimates

The “Strata SMR Estimates” table displays the following information for each stratum:

• Stratum Index: a sequential stratum identification number

• STRATA variables: the levels of STRATA variables

• Number of Events

• Expected Number of Observations

• SMR Estimate

• Standard Error: standard error for the SMR estimate, if the CL=NORMAL suboption is specified in
the SMR option in the STRATA statement

• Confidence Limits: confidence limits for the SMR estimate, if the CL suboption is specified in the
SMR option in the STRATA statement

For the rate statistic, the table also displays the following information for each stratum:

• Population-Time

• Reference Rate

For the risk statistic, the table also displays the following information for each stratum:

• Number of Observations

• Reference Risk
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ODS Table Names
PROC STDRATE assigns a name to each table it creates. You must use these names to refer to tables when
you use the Output Delivery System (ODS). These names are listed in Table 95.6. For more information
about ODS, see Chapter 20, “Using the Output Delivery System.”

Table 95.6 ODS Tables Produced by PROC STDRATE

ODS Table Name Description Statement Option

AttrFraction Attributable fraction PROC STDRATE METHOD=INDIRECT(AF)
PROC STDRATE METHOD=MH(AF)

Effect Effect estimates PROC STDRATE EFFECT
SMR Standardized morbidity/mortality ratio PROC STDRATE METHOD=INDIRECT
StdInfo Standardization information PROC STDRATE
StdRate Standardized rate estimates PROC STDRATE STAT=RATE
StdRisk Standardized risk estimates PROC STDRATE STAT=RISK
StrataEffect Strata effect estimates STRATA EFFECT
StrataStats Strata statistics STRATA STATS
StrataSMR Strata SMR estimates STRATA SMR

Graphics Output
This section describes the use of ODS for creating graphics with the STDRATE procedure. To request these
graphs, ODS Graphics must be enabled and you must specify the associated graphics options in the PROC
STDRATE statement. For more information about ODS Graphics, see Chapter 21, “Statistical Graphics
Using ODS.”

Strata Distribution Plot

The PLOTS=DIST option displays the proportion of exposed time or sample size for each stratum in the
populations.

Strata Effect Plot

The PLOTS=EFFECT option displays the stratum-specific effect measure of rate difference, rate ratio, risk
difference, or risk ratio. In addition, the crude effect measure and confidence limits of these stratum-specific
effect estimates are also displayed.

Strata Rate Plot

The PLOTS=RATE option displays the stratum-specific rate estimates and their confidence limits of popula-
tions. In addition, the overall crude rates of populations are also displayed.
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Strata Risk Plot

The PLOTS=RISK option displays the stratum-specific risk estimates and their confidence limits of popula-
tions. In addition, the overall crude risks of populations are also displayed.

Strata SMR Plot

The PLOTS=SMR option displays the SMR for each stratum in the populations.

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

PROC STDRATE assigns a name to each graph it creates. You can use these names to refer to the graphs
when you use ODS. To request the graph, ODS Graphics must be enabled and you must use the PLOTS
option in the PROC STDRATE statement to specify the plot-request indicated in Table 95.7.

Table 95.7 Graphs Produced by PROC STDRATE

ODS Graph Name Plot Description plot-request in PLOTS Option

StrataDistPlot Strata proportion of exposed time or sample size DIST
StrataEffectPlot Strata effect measure of rate difference, rate ratio, EFFECT

risk difference, or risk ratio
StrataRatePlot Strata rate estimates RATE
StrataRiskPlot Strata risk estimates RISK
StrataSMRPlot Strata SMR of rates or risks SMR

Examples: STDRATE Procedure

Example 95.1: Comparing Directly Standardized Rates
This example computes directly standardized mortality rates for populations in the states of Alaska and
Florida, and then compares these two standardized rates with a rate ratio statistic.
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The Alaska data set contains the stratum-specific mortality information in a given period of time for the state
of Alaska (Alaska Bureau of Vital Statistics 2000a, b). Variables Sex and Age are the grouping variables
that form the strata in the standardization, and variables Death and PYear indicate the number of events and
person-years, respectively. The COMMA7. format is specified in the DATA step to input numerical values
that contain commas in PYear.

data Alaska;
State='Alaska';
input Sex $ Age $ Death PYear:comma7.;
datalines;

Male 00-14 37 81,205
Male 15-34 68 93,662
Male 35-54 206 108,615
Male 55-74 369 35,139
Male 75+ 556 5,491
Female 00-14 78 77,203
Female 15-34 181 85,412
Female 35-54 395 100,386
Female 55-74 555 32,118
Female 75+ 479 7,701
;

The Florida data set contains the corresponding stratum-specific mortality information for the state of Florida
(Florida Department of Health 2000, 2013). Variables Sex and Age are the grouping variables that form the
strata in the standardization, and variables Death and PYear indicate the number of events and person-years,
respectively.

data Florida;
State='Florida';
input Sex $ Age $ Death:comma6. PYear:comma9.;
datalines;

Male 00-14 1,189 1,505,889
Male 15-34 2,962 1,972,157
Male 35-54 10,279 2,197,912
Male 55-74 26,354 1,383,533
Male 75+ 42,443 554,632
Female 00-14 906 1,445,831
Female 15-34 1,234 1,870,430
Female 35-54 5,630 2,246,737
Female 55-74 18,309 1,612,270
Female 75+ 53,489 868,838
;

The TwoStates data set contains the data sets Alaska and Florida:

data TwoStates;
length State $ 7.;
set Alaska Florida;

run;

The US data set contains the corresponding stratum-specific person-years information for the United States
(U.S. Bureau of the Census 2011). Variables Sex and Age are the grouping variables that form the strata in
the standardization, and the variable PYear indicates the person-years.



Example 95.1: Comparing Directly Standardized Rates F 7907

data US;
input Sex $ Age $ PYear:comma10.;
datalines;

Male 00-14 30,854,207
Male 15-34 40,199,647
Male 35-54 40,945,028
Male 55-74 19,948,630
Male 75+ 6,106,351
Female 00-14 29,399,168
Female 15-34 38,876,268
Female 35-54 41,881,451
Female 55-74 22,717,040
Female 75+ 10,494,416
;

The following statements invoke the STDRATE procedure and compute the direct standardized rates for
the states of Florida and Alaska by using the United States as the reference population. The DATA= option
names the data set for the study populations, and the REFDATA= option names the data set for the reference
population.

ods graphics on;
proc stdrate data=TwoStates

refdata=US
method=direct
stat=rate(mult=1000)
effect
plots(only)=(dist effect)
;

population group=State event=Death total=PYear;
reference total=PYear;
strata Sex Age / effect;

run;
ods graphics off;

The METHOD=DIRECT option requests direct standardization, and the STAT=RATE option specifies the
rate statistic for standardization. With the EFFECT option, the procedure computes the rate effect between
the study populations with the default rate ratio statistics.

The “Standardization Information” table in Output 95.1.1 displays the standardization information.

Output 95.1.1 Standardization Information

The STDRATE ProcedureThe STDRATE Procedure

Standardization Information

Data Set WORK.TWOSTATES

Group Variable State

Reference Data Set WORK.US

Method Direct Standardization

Statistic Rate

Number of Strata 10

Rate Multiplier 1000
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With ODS Graphics enabled, the PLOTS(ONLY)=(DIST EFFECT) option displays the strata distribution
plot and the strata effect plot, but does not display the default strata rate plot.

The strata distribution plot displays proportions for stratum-specific person-years in the study populations
and reference population, as shown in Output 95.1.2.

Output 95.1.2 Strata Distribution Plot

The EFFECT option in the STRATA statement and the STAT=RATE option request that the “Strata Rate
Effect Estimates” table in Output 95.1.3 display the stratum-specific rate effect statistics between the two
study populations. The default EFFECT=RATIO in the PROC STDRATE statement requests that the
stratum-specific rate ratio statistics be displayed.
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Output 95.1.3 Strata Effect Estimates

Strata Rate Effect Estimates (Rate Multiplier = 1000)

State

Stratum
Index Sex Age Alaska Florida

Rate
Ratio

95%
Lognormal
Confidence

Limits

1 Female 00-14 1.010 0.6266 1.61231 1.27940 2.03185

2 Female 15-34 2.119 0.6597 3.21208 2.74812 3.75437

3 Female 35-54 3.935 2.5059 1.57025 1.41795 1.73889

4 Female 55-74 17.280 11.3560 1.52166 1.39844 1.65574

5 Female 75+ 62.200 61.5638 1.01033 0.92341 1.10542

6 Male 00-14 0.456 0.7896 0.57707 0.41604 0.80044

7 Male 15-34 0.726 1.5019 0.48339 0.38010 0.61476

8 Male 35-54 1.897 4.6767 0.40554 0.35330 0.46552

9 Male 55-74 10.501 19.0483 0.55129 0.49746 0.61094

10 Male 75+ 101.257 76.5246 1.32319 1.21699 1.43866

The “Strata Rate Effect Estimates” table shows that except for the age group 75+, Alaska has lower mortality
rates for male groups and higher mortality rates for female groups than Florida. For age group 75+, Alaska
has higher mortality rates than Florida for both male and female groups.

With ODS Graphics enabled and two study populations, the PLOTS=EFFECT option displays the stratum-
specific effect measures and their associated confidence limits, as shown in Output 95.1.4. The STAT=RATE
option and the default EFFECT=RATIO option request that the strata rate ratios be displayed. By default,
confidence limits are generated with 95% confidence level. This plot displays the stratum-specific rate ratios
in the “Strata Rate Effect Estimates” table in Output 95.1.3.
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Output 95.1.4 Strata Effect Measure Plot

The “Directly Standardized Rate Estimates” table in Output 95.1.5 displays directly standardized rates and
related statistics.

Output 95.1.5 Directly Standardized Rate Estimates

Directly Standardized Rate Estimates
Rate Multiplier = 1000

Study Population Reference Population Standardized Rate

State
Observed

Events
Population-

Time
Crude

Rate
Expected

Events
Population-

Time Estimate
Standard

Error

95%
Normal

Confidence
Limits

Alaska 2924 626932 4.6640 2270876 281422206 8.0693 0.1643 7.7472 8.3913

Florida 162795 15658229 10.3968 2176572 281422206 7.7342 0.0195 7.6959 7.7725

The MULT=1000 suboption in the STAT=RATE option requests that rates per 1; 000 person-years be
displayed. The table shows that the although the crude rate in the Florida population (10.3968) is higher
than the crude rate in the Alaska population (4.664), the resulting standardized rate in the Florida population
(7.7342) is lower than the crude rate in the Alaska population (8.0693).



Example 95.2: Computing Mantel-Haenszel Risk Estimation F 7911

The EFFECT option requests that the “Rate Effect Estimates” table in Output 95.1.6 display the log rate ratio
statistics of the two directly standardized rates by default.

Output 95.1.6 Effect Estimates

Rate Effect Estimates (Rate Multiplier = 1000)

State

Alaska Florida
Rate

Ratio

95%
Lognormal
Confidence

Limits

Log
Rate

Ratio
Standard

Error Z Pr > |Z|

8.0693 7.7342 1.0433 1.00220 1.08614 0.0424 0.0205 2.07 0.0387

The table shows that with a log rate ratio statistic 1.0433, the resulting p-value is 0.0387, which indicates that
the death rate is significantly higher in Alaska than in Florida at the 5% significance level.

Example 95.2: Computing Mantel-Haenszel Risk Estimation
This example uses Mantel-Haenszel method to estimate the effect of household smoking on respiratory
symptoms of school children, after adjusting for the effects of the student’s grade and household pets.

Suppose that the School data set contains the stratum-specific numbers of cases of respiratory symptoms
in a given school year for a school district. Variables Pet and Grade are the grouping variables that form
the strata in the standardization, and the variable Smoking identifies students who have smokers in their
households. The variables Case and Student indicate the number of cases with respiratory symptoms and the
total number of students, respectively.

data School;
input Smoking $ Pet $ Grade $ Case Student;
datalines;

Yes Yes K-1 109 807
Yes Yes 2-3 106 791
Yes Yes 4-5 112 868
Yes No K-1 168 1329
Yes No 2-3 162 1337
Yes No 4-5 183 1594
No Yes K-1 284 2403
No Yes 2-3 266 2237
No Yes 4-5 273 2279
No No K-1 414 3398
No No 2-3 372 3251
No No 4-5 382 3270
;

The following statements invoke the STDRATE procedure and compute the Mantel-Haenszel rate difference
statistic between students with household smokers and students without household smokers:

ods graphics on;
proc stdrate data=School

method=mh
stat=risk
effect=diff
plots=all
;
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population group=Smoking event=Case total=Student;
strata Pet Grade / order=data stats(cl=none) effect;

run;
ods graphics off;

The ORDER=DATA option in the STRATA statement sorts the strata by the order of appearance in the input
data set.

The “Standardization Information” table in Output 95.2.1 displays the standardization information.

Output 95.2.1 Standardization Information

The STDRATE ProcedureThe STDRATE Procedure

Standardization Information

Data Set WORK.SCHOOL

Group Variable Smoking

Method Mantel-Haenszel

Statistic Risk

Number of Strata 6

The STATS option in the STRATA statement requests that the STDRATE procedure display a “Mantel-
Haenszel Standardized Strata Statistics” table for study populations, as shown in Output 95.2.2. The
table displays the strata information and the expected number of events in each stratum. The Expected
Events column shows the expected number of events when the Mantel-Haenszel weights are applied to
the corresponding stratum-specific risks in the study populations. The CL=NONE suboption requests that
confidence limits for strata risks not be displayed.

Output 95.2.2 Mantel-Haenszel Standardized Strata Statistics

The STDRATE ProcedureThe STDRATE Procedure

Mantel-Haenszel Standardized Strata Statistics

Study Population

Number of
Observations Mantel-Haenszel

Smoking
Stratum

Index Pet Grade
Observed

Events Value Proportion
Crude

Risk Weight
Expected

Events

No 1 Yes K-1 284 2403 0.1427 0.118186 604.12 71.398

No 2 Yes 2-3 266 2237 0.1329 0.118909 584.37 69.487

No 3 Yes 4-5 273 2279 0.1353 0.119789 628.59 75.298

No 4 No K-1 414 3398 0.2018 0.121836 955.35 116.396

No 5 No 2-3 372 3251 0.1931 0.114426 947.38 108.405

No 6 No 4-5 382 3270 0.1942 0.116820 1071.62 125.187

Yes 1 Yes K-1 109 807 0.1200 0.135068 604.12 81.597

Yes 2 Yes 2-3 106 791 0.1176 0.134008 584.37 78.310

Yes 3 Yes 4-5 112 868 0.1291 0.129032 628.59 81.108

Yes 4 No K-1 168 1329 0.1976 0.126411 955.35 120.767

Yes 5 No 2-3 162 1337 0.1988 0.121167 947.38 114.791

Yes 6 No 4-5 183 1594 0.2370 0.114806 1071.62 123.028
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With ODS Graphics enabled, the PLOTS=ALL option displays all appropriate plots. With the METHOD=MH
and STAT=RISK options, these plots include the strata distribution plot, strata risk plot, and strata effect plot.

The strata distribution plot displays proportions for stratum-specific numbers of students in the study
populations, as shown in Output 95.2.3.

Output 95.2.3 Strata Distribution Plot

The strata risk plot displays stratum-specific risk estimates with confidence limits in the study populations,
as shown in Output 95.2.4. This plot displays stratum-specific risk estimates in the “Mantel-Haenszel
Standardized Strata Statistics” table in Output 95.2.2. In addition, the overall crude risks for the two study
populations are also displayed. By default, strata levels are displayed on the vertical axis.
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Output 95.2.4 Strata Risk Plot

The EFFECT option in the STRATA statement requests that the “Strata Risk Effect Estimates” table be
displayed, as shown in Output 95.2.5. The EFFECT=DIFF option in the PROC STDRATE statement requests
that strata risk differences be displayed.

Output 95.2.5 Strata Effect Estimates

Strata Risk Effect Estimates

Smoking

Stratum
Index Pet Grade No Yes

Risk
Difference

Standard
Error

95%
Normal

Confidence Limits

1 Yes K-1 0.11819 0.13507 -.016883 0.013716 -.043766 0.010001

2 Yes 2-3 0.11891 0.13401 -.015098 0.013912 -.042366 0.012169

3 Yes 4-5 0.11979 0.12903 -.009243 0.013257 -.035225 0.016740

4 No K-1 0.12184 0.12641 -.004574 0.010704 -.025554 0.016405

5 No 2-3 0.11443 0.12117 -.006740 0.010527 -.027373 0.013892

6 No 4-5 0.11682 0.11481 0.002014 0.009762 -.017120 0.021148
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The “Strata Risk Effect Estimates” table shows that for the stratum of students without household pets in
Grade 4–5, the risk is higher for students without household smokers than for students with household
smokers. For all other strata, the risk is lower for students without household smokers than for students with
household smokers. The difference is not significant in each stratum because the null value 0 is between the
lower and upper confidence limits.

With ODS Graphics enabled, the PLOTS=EFFECT option displays the plot with the stratum-specific risk
effect measures and their associated confidence limits, as shown in Output 95.2.6. The EFFECT=DIFF
option requests that the risk difference be displayed. By default, confidence limits are generated with 95%
confidence level. This plot displays the stratum-specific risk differences in the “Strata Risk Effect Estimates”
table in Output 95.2.5.

Output 95.2.6 Strata Risk Plot
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The “Mantel-Haenszel Standardized Risk Estimates” table in Output 95.2.7 displays the Mantel-Haenszel
standardized risks and related statistics.

Output 95.2.7 Standardized Risk Estimates (Mantel-Haenszel Estimation)

Mantel-Haenszel Standardized Risk Estimates

Study Population Mantel-Haenszel Standardized Risk

Smoking
Observed

Events
Number of

Observations
Crude

Risk
Expected

Events Weight Estimate
Standard

Error

95%
Normal

Confidence
Limits

No 1991 16838 0.1182 566.172 4791.43 0.1182 0.00250 0.1133 0.1231

Yes 840 6726 0.1249 599.602 4791.43 0.1251 0.00404 0.1172 0.1331

The EFFECT=DIFF option requests that the “Risk Effect Estimates” table display the risk difference statistic
for the two directly standardized risks, as shown in Output 95.2.8.

Output 95.2.8 Mantel-Haenszel Effect Estimates

Risk Effect Estimates

Smoking

No Yes
Risk

Difference

95%
Normal

Confidence Limits
Standard

Error Z Pr > |Z|

0.1182 0.1251 -0.00698 -.016284 0.002330 0.00475 -1.47 0.1418

The table shows that although the standardized risk for students without household smokes is lower than the
standardized risk for students with household smokes, the difference (–0.00698) is not significant at the 5%
significance level, (p-value 0.1418).

Example 95.3: Computing Attributable Fraction Estimates
This example computes the excess event risk fraction that is attributable to a specific chemical exposure for
workers in a factory.

Suppose that the Factory data set contains the stratum-specific event information for exposure to a specific
chemical agent. The variable Age is the grouping variable that forms the strata. The variables Event_E
and Count_E indicate the number of events and number of workers for workers with the specific chemical
exposure, respectively. The variables Event_NE and Count_NE indicate the number of events and number of
workers for workers without the specific chemical exposure, respectively.

data Factory;
input Age $ Event_E Count_E Event_NE Count_NE;
datalines;

20-29 31 352 143 2626
30-39 57 486 392 4124
40-49 62 538 459 4662
50-59 50 455 337 3622
60-69 38 322 199 2155
70+ 9 68 35 414
;
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The following statements invoke the STDRATE procedure and compute the attributable risk and population
attributable risk for the chemical exposure:

ods graphics on;
proc stdrate data=Factory

refdata=Factory
method=indirect(af)
stat=risk
plots(stratum=horizontal)
;

population event=Event_E total=Count_E;
reference event=Event_NE total=Count_NE;
strata Age / stats;

run;
ods graphics off;

The “Standardization Information” table in Output 95.3.1 displays the standardization information.

Output 95.3.1 Standardization Information

The STDRATE ProcedureThe STDRATE Procedure

Standardization Information

Data Set WORK.FACTORY

Reference Data Set WORK.FACTORY

Method Indirect Standardization

Statistic Risk

Number of Strata 6

The STATS option in the STRATA statement requests that the “Indirectly Standardized Strata Statistics”
table in Output 95.3.2 display the strata information and the expected number of events at each stratum.
The Expected Events column shows the expected numbers of events when the stratum-specific risks in the
reference data set are applied to the corresponding numbers of workers in the study data set.
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Output 95.3.2 Strata Information (Indirect Standardization)

The STDRATE ProcedureThe STDRATE Procedure

Indirectly Standardized Strata Statistics

Study Population Reference Population

Number of
Observations

Number of
Observations

Stratum
Index Age

Observed
Events Value Proportion

Crude
Risk

Standard
Error

95%
Normal

Confidence Limits Value Proportion
Crude

Risk

1 20-29 31 352 0.1585 0.088068 0.015105 0.058463 0.117673 2626 0.1492 0.05446

2 30-39 57 486 0.2188 0.117284 0.014595 0.088678 0.145890 4124 0.2343 0.09505

3 40-49 62 538 0.2422 0.115242 0.013767 0.088260 0.142224 4662 0.2648 0.09846

4 50-59 50 455 0.2049 0.109890 0.014662 0.081153 0.138627 3622 0.2058 0.09304

5 60-69 38 322 0.1450 0.118012 0.017979 0.082774 0.153251 2155 0.1224 0.09234

6 70+ 9 68 0.0306 0.132353 0.041095 0.051809 0.212897 414 0.0235 0.08454

Indirectly
Standardized

Strata Statistics

Stratum
Index

Expected
Events

1 19.1683

2 46.1959

3 52.9691

4 42.3343

5 29.7346

6 5.7488

With ODS Graphics enabled and the specified STAT=RISK option, the default PLOTS=RISK option displays
the stratum-specific risk estimates in the study and reference populations, as shown in Output 95.3.3. The
STRATUM=HORIZONTAL global option in the PLOTS option displays the strata information on the
horizontal axis. The plot displays the stratum-specific risk estimates in the “Indirect Standardized Strata
Statistics” table in Output 95.3.2. In addition, confidence limits for the risk estimates in the study population
and the overall crude risks for the two populations are also displayed
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Output 95.3.3 Strata Risk Plot

The METHOD=INDIRECT option requests that the “Standardized Morbidity/Mortality Ratio” table in
Output 95.3.4 display the SMR, its 95% confidence limits, and the test for the null hypothesisH0 W SMR D 1.

Output 95.3.4 Standardized Morbidity/Mortality Ratio

Standardized Morbidity/Mortality Ratio

Observed
Events

Expected
Events SMR

Standard
Error

95%
Normal

Confidence
Limits Z Pr > |Z|

247 196.151 1.2592 0.0755 1.1113 1.4072 3.43 0.0006

The “Standardized Morbidity/Mortality Ratio” table shows that SMR=1.259, the 95% confidence limits do
not contain the null value SMR=1, and the null hypothesis of SMR=1 is rejected at ˛ D 0:05 level from the
normal test.
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The “Indirectly Standardized Risk Estimates” table in Output 95.3.5 displays the standardized risks and
related statistics.

Output 95.3.5 Standardized Risks (Indirect Standardization)

Indirectly Standardized Risk Estimates

Study Population Standardized Risk

Observed
Events

Number of
Observations

Crude
Risk

Reference
Crude

Risk
Expected

Events SMR Estimate
Standard

Error

95%
Normal

Confidence
Limits

247 2221 0.1112 0.0889 196.151 1.2592 0.1120 0.00671 0.0988 0.1251

The AF suboption in the METHOD=INDIRECT option requests that the “Attributable Fraction Estimates”
table display the attributable risk and population attributable risk, as shown in Output 95.3.6

Output 95.3.6 Attributable Fraction Estimates

Attributable Fraction Estimates

Parameter Estimate

95%
Confidence

Limits

Attributable Risk 0.20587 0.10013 0.28937

Population Attributable Risk 0.02806 0.01159 0.04426

The attributable risk fraction 0.206 indicates that 20:6% of all events in the chemical exposure group are
attributed to the chemical exposure, and the population attributable risk fraction 0.028 indicates that about
2:8% of all events in the total population are attributed to the chemical exposure.

The Attributable fraction can also be computed by using Mantel-Haenszel method.

Suppose that the Factory1 data set contains the stratum-specific event information for exposure to a specific
chemical agent. The variable Age is the grouping variable that forms the strata, and the variable Exposure
identifies workers with chemical exposure. The variables Event and Count indicate the number of events and
number of workers, respectively.

data Factory1;
input Exposure $ Age $ Event Count;
datalines;

Yes 20-29 31 352
Yes 30-39 57 486
Yes 40-49 62 538
Yes 50-59 50 455
Yes 60-69 38 322
Yes 70+ 9 68
No 20-29 143 2626
No 30-39 392 4124
No 40-49 459 4662
No 50-59 337 3622
No 60-69 199 2155
No 70+ 35 414
;
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The following statements invoke the STDRATE procedure and compute the attributable risk and population
attributable risk for the chemical exposure:

proc stdrate data=Factory1
method=mh(af)
stat=risk
effect
;

population group(order=data exposed='Yes')=Exposure
event=Event total=Count;

strata Age;
run;

The GROUP=EXPOSURE option specifies the variable Exposure, whose values identify the various popula-
tions. The ORDER= suboption specifies the order in which the values of Exposure are to be displayed, and
the EXPOSED= option identifies the exposed group in the derivation of the attributable fraction.

The “Standardization Information” table in Output 95.3.7 displays the standardization information.

Output 95.3.7 Standardization Information

The STDRATE ProcedureThe STDRATE Procedure

Standardization Information

Data Set WORK.FACTORY1

Group Variable Exposure

Method Mantel-Haenszel

Statistic Risk

Number of Strata 6

The “Mantel-Haenszel Standardized Risk Estimates” table in Output 95.3.8 displays the Mantel-Haenszel
standardized risks and related statistics.

Output 95.3.8 Standardized Risk Estimates (Mantel-Haenszel Estimation)

Mantel-Haenszel Standardized Risk Estimates

Study Population Mantel-Haenszel Standardized Risk

Exposure
Observed

Events
Number of

Observations
Crude

Risk
Expected

Events Weight Estimate
Standard

Error

95%
Normal

Confidence
Limits

Yes 247 2221 0.1112 219.122 1970.26 0.1112 0.00667 0.0981 0.1243

No 1565 17603 0.0889 174.134 1970.26 0.0884 0.00214 0.0842 0.0926
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The EFFECT option requests that the “Risk Effect Estimates” table display the risk ratio statistic for the two
directly standardized risks, as shown in Output 95.3.9.

Output 95.3.9 Mantel-Haenszel Effect Estimates

Risk Effect Estimates

Exposure

Yes No
Risk

Ratio

95%
Lognormal
Confidence

Limits

Log
Risk

Ratio
Standard

Error Z Pr > |Z|

0.1112 0.0884 1.2584 1.10851 1.42845 0.2298 0.0647 3.55 0.0004

The AF suboption in the METHOD=MH option requests that the “Attributable Fraction Estimates” table
display the attributable risk and population attributable risk, as shown in Output 95.3.10

Output 95.3.10 Attributable Fraction Estimates

Attributable Fraction Estimates
Exposed = Yes

Parameter Estimate

95%
Confidence

Limits

Attributable Risk 0.20531 0.09789 0.29994

Population Attributable Risk 0.02799 0.01070 0.04497

Similar to the results of using the SMR estimates, the attributable risk fraction (0.205) indicates that 20:5%
of all events in the chemical exposure group are attributed to the chemical exposure, and the population
attributable risk fraction (0.028) indicates that about 2:8% of all events in the total population are attributed
to the chemical exposure.

Example 95.4: Displaying SMR Results from BY Groups
This example illustrates the use of ODS OUTPUT statement to save standardized mortality ratios for different
causes and to display these statistics together in a table and in a plot.

The Florida_Cs data set contains the stratum-specific mortality information for stomach cancer and skin
cancer in year 2000 for the state of Florida (Florida Department of Health 2000, 2013). The variable Age
is the grouping variable that forms the strata in the standardization. The variables Event_C16, Event_C43,
and PYear identify the number of events for stomach cancer, the number of events for skin cancer, and the
person-years, respectively. The COMMA9. format is specified in the DATA step to input numerical values
that contain commas in PYear.

data Florida_Cs;
input Age $1-5 Event_C16 Event_C43 PYear:comma9.;
datalines;

00-04 0 0 953,785
05-14 0 0 1,997,935
15-24 0 4 1,885,014
25-34 1 14 1,957,573



Example 95.4: Displaying SMR Results from BY Groups F 7923

35-44 19 43 2,356,649
45-54 64 72 2,088,000
55-64 114 70 1,548,371
65-74 201 126 1,447,432
75-84 294 136 1,087,524
85+ 136 73 335,944
;

The following statements construct and list the mortality information by cancer cause:

data Florida_Cs;
set Florida_Cs;
Cause='Stomach'; Event=Event_C16; output;
Cause='Skin'; Event=Event_C43; output;
drop Event_C16 Event_C43;

run;

proc sort data=Florida_Cs;
by Cause;

run;

proc print data=Florida_Cs;
var Cause Age Event PYear;

run;

Output 95.4.1 Florida Data

Obs Cause Age Event PYear

1 Skin 00-04 0 953785

2 Skin 05-14 0 1997935

3 Skin 15-24 4 1885014

4 Skin 25-34 14 1957573

5 Skin 35-44 43 2356649

6 Skin 45-54 72 2088000

7 Skin 55-64 70 1548371

8 Skin 65-74 126 1447432

9 Skin 75-84 136 1087524

10 Skin 85+ 73 335944

11 Stomach 00-04 0 953785

12 Stomach 05-14 0 1997935

13 Stomach 15-24 0 1885014

14 Stomach 25-34 1 1957573

15 Stomach 35-44 19 2356649

16 Stomach 45-54 64 2088000

17 Stomach 55-64 114 1548371

18 Stomach 65-74 201 1447432

19 Stomach 75-84 294 1087524

20 Stomach 85+ 136 335944
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The US_Cs data set contains the corresponding stratum-specific mortality information for the United States
(Miniño et al. 2002; U.S. Bureau of the Census 2011). The variable Age is the grouping variable that forms
the strata in the standardization. The variables Event_C16, Event_C43, and PYear identify the number of
events for stomach cancer, the number of events for skin cancer, and the person-years, respectively.

data US_Cs;
input Age $1-5 Event_C16 Event_C43 PYear:comma10.;
datalines;

00-04 0 0 19,175,798
05-14 1 1 41,077,577
15-24 14 41 39,183,891
25-34 124 186 39,892,024
35-44 484 626 45,148,527
45-54 1097 1199 37,677,952
55-64 1804 1303 24,274,684
65-74 3054 1637 18,390,986
75-84 3833 1624 12,361,180
85+ 2234 803 4,239,587
;

The following statements construct and list the mortality information by cancer cause:

data US_Cs;
set US_Cs;
Cause='Stomach'; Event=Event_C16; output;
Cause='Skin'; Event=Event_C43; output;
drop Event_C16 Event_C43;

run;

proc sort data=US_Cs;
by Cause;

run;

proc print data=US_Cs;
var Cause Age Event PYear;

run;
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Output 95.4.2 lists the mortality information by cancer cause.

Output 95.4.2 Florida Data

Obs Cause Age Event PYear

1 Skin 00-04 0 19175798

2 Skin 05-14 1 41077577

3 Skin 15-24 41 39183891

4 Skin 25-34 186 39892024

5 Skin 35-44 626 45148527

6 Skin 45-54 1199 37677952

7 Skin 55-64 1303 24274684

8 Skin 65-74 1637 18390986

9 Skin 75-84 1624 12361180

10 Skin 85+ 803 4239587

11 Stomach 00-04 0 19175798

12 Stomach 05-14 1 41077577

13 Stomach 15-24 14 39183891

14 Stomach 25-34 124 39892024

15 Stomach 35-44 484 45148527

16 Stomach 45-54 1097 37677952

17 Stomach 55-64 1804 24274684

18 Stomach 65-74 3054 18390986

19 Stomach 75-84 3833 12361180

20 Stomach 85+ 2234 4239587

The following statements invoke the STDRATE procedure and request indirect standardization to compute
the skin and stomach SMR estimates for the state of Florida. The BY statement requests separate analyses of
causes that are defined by the Cause variable.

ods graphics on;
ods select StdInfo StrataSmrPlot Smr;
proc stdrate data=Florida_Cs refdata=US_Cs

stat=rate
method=indirect
plots=smr
;

population event=Event total=PYear;
reference event=Event total=PYear;
strata Age;
by Cause;

ods output smr=Smr_Cs;
run;
ods graphics off;

Only the tables and plots that are specified in the ODS SELECT statement are displayed.
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The STDINFO option in the ODS SELECT statement requests that the “Standardization Information” table
display the standardization information for the first BY group, skin cancer, as shown in Output 95.4.3

Output 95.4.3 Standardization Information

The STDRATE ProcedureThe STDRATE Procedure

Cause=Skin

Standardization Information

Data Set WORK.FLORIDA_CS

Reference Data Set WORK.US_CS

Method Indirect Standardization

Statistic Rate

Number of Strata 10

Rate Multiplier 100000

The STRATASMRPLOT option in the ODS SELECT statement requests that the strata SMR plot display
stratum-specific SMR estimates for skin cancer with confidence limits, as shown in Output 95.4.4.

Output 95.4.4 Strata SMR Plot
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The SMR option in the ODS SELECT statement requests that the “Standardized Morbidity/Mortality Ratio”
table display the SMR, its confidence limits, and the test for the null hypothesis H0 W SMR D 1 for skin
cancer, as shown in Output 95.4.5. With the default ALPHA=0.05, 95% confidence limits are constructed.

Output 95.4.5 Standardized Morbidity/Mortality Ratio

Cause=Skin

Standardized Morbidity/Mortality Ratio

Observed
Events

Expected
Events SMR

Standard
Error

95%
Normal

Confidence
Limits Z Pr > |Z|

538 528.726 1.0175 0.0439 0.9316 1.1035 0.40 0.6893

Similarly, the “Standardization Information” table in Output 95.4.6 displays the standardization information
for the second BY group, stomach cancer.

Output 95.4.6 Standardization Information

The STDRATE ProcedureThe STDRATE Procedure

Cause=Stomach

Standardization Information

Data Set WORK.FLORIDA_CS

Reference Data Set WORK.US_CS

Method Indirect Standardization

Statistic Rate

Number of Strata 10

Rate Multiplier 100000
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The “Strata SMR Plot” displays stratum-specific SMR estimates with confidence limits for stomach cancer,
as shown in Output 95.4.7.

Output 95.4.7 Strata SMR Plot

The “Standardized Morbidity/Mortality Ratio” table displays the SMR, its confidence limits, and the test for
the null hypothesis H0 W SMR D 1 for stomach cancer, as shown in Output 95.4.8.

Output 95.4.8 Standardized Morbidity/Mortality Ratio

Cause=Stomach

Standardized Morbidity/Mortality Ratio

Observed
Events

Expected
Events SMR

Standard
Error

95%
Normal

Confidence
Limits Z Pr > |Z|

829 962.537 0.8613 0.0299 0.8026 0.9199 -4.64 <.0001

The ODS OUTPUT SMR=SMR_CS statement requests that the “Standardized Morbidity/Mortality Ratio”
tables for the two cancer causes be saved in the data set Smr_Cs. The following statements display the
selected output variables for the data set:
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proc print data=Smr_Cs;
var Cause ObservedEvents ExpectedEvents Smr SmrLcl SmrUcl;

run;

Output 95.4.9 SMR Results from BY Groups

Obs Cause ObservedEvents ExpectedEvents Smr SmrLcl SmrUcl

1 Skin 538 528.726 1.0175 0.9316 1.1035

2 Stomach 829 962.537 0.8613 0.8026 0.9199

The table in Output 95.4.9 shows that the study population (state of Florida) has a higher skin cancer rate and
a lower stomach cancer rate than the reference population (United States), but only the lower stomach cancer
rate is significant because its corresponding SMR upper confidence limit (0.9199) is less than 1.

The following statements display the standardized morbidity/mortality ratios for the two causes in a plot:

proc sgplot data=Smr_Cs;
scatter y=Cause x=Smr / group=Cause;
highlow y=Cause high=SmrUcl low=SmrLcl / highcap=serif lowcap=serif;
yaxis type=discrete;
xaxis label="SMR";
refline 1 / axis=x transparency=0.5;

run;
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Output 95.4.10 SMR Results

Alternatively, you can also use the following statements to obtain separate analyses for the two cancer causes,
and then to display these standardized mortality ratios together in a table and in a plot:

/*----- Perform Separate Analyses for Different Causes ------*/
ods graphics on;
ods select StdInfo StrataSmrPlot Smr;
proc stdrate data=Florida_Cs refdata=US_Cs

stat=rate
method=indirect
plots=smr
;

population event=Event_C43 total=PYear;
reference event=Event_C43 total=PYear;
strata Age;

ods output smr=Smr_c43;
run;
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ods select StdInfo StrataSmrPlot Smr;
proc stdrate data=Florida_Cs refdata=US_Cs

stat=rate
method=indirect
plots=smr
;

population event=Event_C16 total=PYear;
reference event=Event_C16 total=PYear;
strata Age;

ods output smr=Smr_c16;
run;
ods graphics off;

/*------------ Combine SMRs -----------*/
data Smr_C43;

set Smr_C43;
length Cause $ 7.;
Cause='Skin';

run;

data Smr_C16;
set Smr_C16;
length Cause $ 7.;
Cause='Stomach';

run;

data Smr_Cs;
set Smr_C43 Smr_C16;

run;

/*------- Display the Cause-Specific SMRs --------*/
proc print data=Smr_Cs;

var Cause ObservedEvents ExpectedEvents Smr SmrLcl SmrUcl;
run;

proc sgplot data=Smr_Cs;
scatter y=Cause x=Smr / group=Cause;
highlow y=Cause high=SmrUcl low=SmrLcl / highcap=serif lowcap=serif;
yaxis type=discrete;
xaxis label="SMR";
refline 1 / axis=x transparency=0.5;

run;
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Overview: STEPDISC Procedure
Given a classification variable and several quantitative variables, the STEPDISC procedure performs a
stepwise discriminant analysis to select a subset of the quantitative variables for use in discriminating among
the classes. The set of variables that make up each class is assumed to be multivariate normal with a common
covariance matrix. The STEPDISC procedure can use forward selection, backward elimination, or stepwise
selection (Klecka 1980). The STEPDISC procedure is a useful prelude to further analyses with the CANDISC
procedure or the DISCRIM procedure.

With PROC STEPDISC, variables are chosen to enter or leave the model according to one of two criteria:
• the significance level of an F test from an analysis of covariance, where the variables already chosen

act as covariates and the variable under consideration is the dependent variable

• the squared partial correlation for predicting the variable under consideration from the CLASS variable,
controlling for the effects of the variables already selected for the model
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Forward selection begins with no variables in the model. At each step, PROC STEPDISC enters the variable
that contributes most to the discriminatory power of the model as measured by Wilks’ lambda, the likelihood
ratio criterion. When none of the unselected variables meet the entry criterion, the forward selection process
stops.

Backward elimination begins with all variables in the model except those that are linearly dependent on
previous variables in the VAR statement. At each step, the variable that contributes least to the discriminatory
power of the model as measured by Wilks’ lambda is removed. When all remaining variables meet the
criterion to stay in the model, the backward elimination process stops.

Stepwise selection begins, like forward selection, with no variables in the model. At each step, the model
is examined. If the variable in the model that contributes least to the discriminatory power of the model as
measured by Wilks’ lambda fails to meet the criterion to stay, then that variable is removed. Otherwise, the
variable not in the model that contributes most to the discriminatory power of the model is entered. When all
variables in the model meet the criterion to stay and none of the other variables meet the criterion to enter,
the stepwise selection process stops. Stepwise selection is the default method of variable selection.

It is important to realize that, in the selection of variables for entry, only one variable can be entered into the
model at each step. The selection process does not take into account the relationships between variables that
have not yet been selected. Thus, some important variables could be excluded in the process. Also, Wilks’
lambda might not be the best measure of discriminatory power for your application. However, if you use
PROC STEPDISC carefully, in combination with your knowledge of the data and careful cross validation, it
can be a valuable aid in selecting variables for a discrimination model.

As with any stepwise procedure, it is important to remember that when many significance tests are performed,
each at a level of, for example, 5% (0.05), the overall probability of rejecting at least one true null hypothesis
is much larger than 5%. If you want to prevent including any variables that do not contribute to the
discriminatory power of the model in the population, you should specify a very small significance level. In
most applications, all variables considered have some discriminatory power, however small. To choose the
model that provides the best discrimination by using the sample estimates, you need only to guard against
estimating more parameters than can be reliably estimated with the given sample size.

Costanza and Afifi (1979) use Monte Carlo studies to compare alternative stopping rules that can be used
with the forward selection method in the two-group multivariate normal classification problem. Five different
numbers of variables, ranging from 10 to 30, are considered in the studies. The comparison is based on
conditional and estimated unconditional probabilities of correct classification. They conclude that the use of
a moderate significance level, in the range of 10 to 25 percent, often performs better than the use of a much
larger or a much smaller significance level.

The significance level and the squared partial correlation criteria select variables in the same order, although
they might select different numbers of variables. Increasing the sample size tends to increase the number of
variables selected when you are using significance levels, but it has little effect on the number selected by
using squared partial correlations.

See Chapter 10, “Introduction to Discriminant Procedures,” for more information about discriminant analysis.

Getting Started: STEPDISC Procedure
The data in this example are measurements of 159 fish caught in Finland’s Lake Laengelmaevesi; this data
set is available from the Puranen. For each of the seven species (bream, roach, whitefish, parkki, perch, pike,
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and smelt) the weight, length, height, and width of each fish are tallied. Three different length measurements
are recorded: from the nose of the fish to the beginning of its tail, from the nose to the notch of its tail, and
from the nose to the end of its tail. The height and width are recorded as percentages of the third length
variable. The fish data set is available from the Sashelp library. PROC STEPDISC will select a subset of the
six quantitative variables that might be useful for differentiating between the fish species. This subset is used
in conjunction with PROC CANDISC and PROC DISCRIM to develop discrimination models.

The following steps use PROC STEPDISC to select a subset of potential discriminator variables. By default,
PROC STEPDISC uses stepwise selection on all numeric variables that are not listed in other statements, and
the significance levels for a variable to enter the subset and to stay in the subset are set to 0.15. The following
statements produce Figure 96.1 through Figure 96.5:

title 'Fish Measurement Data';

proc stepdisc data=sashelp.fish;
class Species;

run;

PROC STEPDISC begins by displaying summary information about the analysis (see Figure 96.1). This
information includes the number of observations with nonmissing values, the number of classes in the
classification variable (specified by the CLASS statement), the number of quantitative variables under
consideration, the significance criteria for variables to enter and to stay in the model, and the method of
variable selection being used. The frequency of each class is also displayed.

Figure 96.1 Summary Information

Fish Measurement Data

The STEPDISC Procedure

Fish Measurement Data

The STEPDISC Procedure

The Method for Selecting Variables is STEPWISE

Total Sample Size 158 Variable(s) in the Analysis 6

Class Levels 7 Variable(s) Will Be Included 0

Significance Level to Enter 0.15

Significance Level to Stay 0.15

Number of Observations Read 159

Number of Observations Used 158

Class Level Information

Species
Variable
Name Frequency Weight Proportion

Bream Bream 34 34.0000 0.215190

Parkki Parkki 11 11.0000 0.069620

Perch Perch 56 56.0000 0.354430

Pike Pike 17 17.0000 0.107595

Roach Roach 20 20.0000 0.126582

Smelt Smelt 14 14.0000 0.088608

Whitefish Whitefish 6 6.0000 0.037975
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For each entry step, the statistics for entry are displayed for all variables not currently selected (see Fig-
ure 96.2). The variable selected to enter at this step (if any) is displayed, as well as all the variables currently
selected. Next are multivariate statistics that take into account all previously selected variables and the newly
entered variable.

Figure 96.2 Step 1: Variable HEIGHT Selected for Entry

Fish Measurement Data

The STEPDISC Procedure
Stepwise Selection: Step 1

Fish Measurement Data

The STEPDISC Procedure
Stepwise Selection: Step 1

Statistics for Entry, DF = 6, 151

Variable R-Square F Value Pr > F Tolerance

Weight 0.3750 15.10 <.0001 1.0000

Length1 0.6017 38.02 <.0001 1.0000

Length2 0.6098 39.32 <.0001 1.0000

Length3 0.6280 42.49 <.0001 1.0000

Height 0.7553 77.69 <.0001 1.0000

Width 0.4806 23.29 <.0001 1.0000

Variable Height will be entered.

Variable(s)
That Have

Been
Entered

Height

Multivariate Statistics

Statistic Value F Value Num DF Den DF Pr > F

Wilks' Lambda 0.244670 77.69 6 151 <.0001

Pillai's Trace 0.755330 77.69 6 151 <.0001

Average Squared Canonical Correlation 0.125888

For each removal step (Figure 96.3), the statistics for removal are displayed for all variables currently entered.
The variable to be removed at this step (if any) is displayed. If no variable meets the criterion to be removed
and the maximum number of steps as specified by the MAXSTEP= option has not been attained, then the
procedure continues with another entry step.

Figure 96.3 Step 2: No Variable Is Removed; Variable Length2 Added

Fish Measurement Data

The STEPDISC Procedure
Stepwise Selection: Step 2

Fish Measurement Data

The STEPDISC Procedure
Stepwise Selection: Step 2

Statistics for Removal, DF = 6, 151

Variable R-Square F Value Pr > F

Height 0.7553 77.69 <.0001

No variables can be removed.
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Figure 96.3 continued

Statistics for Entry, DF = 6, 150

Variable
Partial

R-Square F Value Pr > F Tolerance

Weight 0.7388 70.71 <.0001 0.4690

Length1 0.9220 295.35 <.0001 0.6083

Length2 0.9229 299.31 <.0001 0.5892

Length3 0.9173 277.37 <.0001 0.5056

Width 0.8783 180.44 <.0001 0.3699

Variable Length2 will be entered.

Variable(s)
That Have

Been Entered

Length2 Height

Multivariate Statistics

Statistic Value F Value Num DF Den DF Pr > F

Wilks' Lambda 0.018861 157.04 12 300 <.0001

Pillai's Trace 1.554349 87.78 12 302 <.0001

Average Squared Canonical Correlation 0.259058

The stepwise procedure terminates either when no variable can be removed and no variable can be entered
or when the maximum number of steps as specified by the MAXSTEP= option has been attained. In this
example at step 7 no variables can be either removed or entered (Figure 96.4). Steps 3 through 6 are not
displayed in this document.

Figure 96.4 Step 7: No Variables Entered or Removed

Fish Measurement Data

The STEPDISC Procedure
Stepwise Selection: Step 7

Fish Measurement Data

The STEPDISC Procedure
Stepwise Selection: Step 7

Statistics for Removal, DF = 6, 146

Variable
Partial

R-Square F Value Pr > F

Weight 0.4521 20.08 <.0001

Length1 0.2987 10.36 <.0001

Length2 0.5250 26.89 <.0001

Length3 0.7948 94.25 <.0001

Height 0.7257 64.37 <.0001

Width 0.5757 33.02 <.0001

No variables can be removed.

PROC STEPDISC ends by displaying a summary of the steps.
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Figure 96.5 Step Summary

No further steps are possible.

Fish Measurement Data

The STEPDISC Procedure

Fish Measurement Data

The STEPDISC Procedure

Stepwise Selection Summary

Step
Number

In Entered Removed
Partial

R-Square F Value Pr > F
Wilks'

Lambda
Pr <

Lambda

Average
Squared

Canonical
Correlation

Pr >
ASCC

1 1 Height 0.7553 77.69 <.0001 0.24466983 <.0001 0.12588836 <.0001

2 2 Length2 0.9229 299.31 <.0001 0.01886065 <.0001 0.25905822 <.0001

3 3 Length3 0.8826 186.77 <.0001 0.00221342 <.0001 0.38427100 <.0001

4 4 Width 0.5775 33.72 <.0001 0.00093510 <.0001 0.45200732 <.0001

5 5 Weight 0.4461 19.73 <.0001 0.00051794 <.0001 0.49488458 <.0001

6 6 Length1 0.2987 10.36 <.0001 0.00036325 <.0001 0.51744189 <.0001

All the variables in the data set are found to have potential discriminatory power. These variables are used to
develop discrimination models in both the CANDISC and DISCRIM procedure chapters.

Syntax: STEPDISC Procedure
The following statements are available in the STEPDISC procedure:

PROC STEPDISC < options > ;
CLASS variable ;
BY variables ;
FREQ variable ;
VAR variables ;
WEIGHT variable ;

The BY, CLASS, FREQ, VAR, and WEIGHT statements are described after the PROC STEPDISC statement.

PROC STEPDISC Statement
PROC STEPDISC < options > ;

The PROC STEPDISC statement invokes the STEPDISC procedure. Table 96.1 summarizes the options
available in the PROC STEPDISC statement.

Table 96.1 STEPDISC Procedure Options

Option Description

Input Data Set
DATA= Specifies input SAS data set
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Table 96.1 continued

Option Description

Method Details
MAXMACRO= Specifies maximum macro variable lists
METHOD= Specifies method
SINGULAR= Specifies singularity

Control Stepwise Selection
SLENTRY= Specifies entry significance
SLSTAY= Specifies staying significance
PR2ENTRY= Specifies entry partial R square
PR2STAY= Specifies staying partial R square
INCLUDE= Forces inclusion of variables
MAXSTEP= Specifies maximum number of steps
START= Specifies variables to begin
STOP= Specifies number of variables in final model

Control Displayed Output
ALL Displays all
BCORR Displays between correlations
BCOV Displays between covariances
BSSCP Displays between SSCPs
PCORR Displays pooled correlations
PCOV Displays pooled covariances
PSSCP Displays pooled SSCPs
SHORT Suppresses output
SIMPLE Displays descriptive statistics
STDMEAN Displays standardized class means
TCORR Displays total correlations
TCOV Displays total covariances
TSSCP Displays total SSCPs
WCORR Displays within correlations
WCOV Displays within covariances
WSSCP Displays within SSCPs

ALL
activates all of the display options.

BCORR
displays between-class correlations.

BCOV
displays between-class covariances. The between-class covariance matrix equals the between-class
SSCP matrix divided by n.c � 1/=c, where n is the number of observations and c is the number of
classes. The between-class covariances should be interpreted in comparison with the total-sample and
within-class covariances, not as formal estimates of population parameters.
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BSSCP
displays the between-class SSCP matrix.

DATA=SAS-data-set
specifies the data set to be analyzed. The data set can be an ordinary SAS data set or one of several
specially structured data sets created by statistical procedures available with SAS/STAT software.
These specially structured data sets include TYPE=CORR, COV, CSSCP, and SSCP. If the DATA=
option is omitted, the procedure uses the most recently created SAS data set.

INCLUDE=n
includes the first n variables in the VAR statement in every model. By default, INCLUDE=0.

MAXMACRO=n
specifies the maximum number of macro variables with independent variable lists to create. By
default, MAXMACRO=100. PROC STEPDISC saves the list of selected variables in a macro variable,
&_StdVar. Suppose your input variable list consists of x1-x10; then &_StdVar would be set to x1 x3 x4
x10 if, for example, the first, third, fourth, and tenth variables were selected for the model. This list
can be used, for example, in a subsequent procedure’s VAR statement as follows:

var &_stdvar;

With BY processing, one macro variable is created for each BY group, and the macro variables are
indexed by the BY-group number. The MAXMACRO= option can be used to either limit or increase
the number of these macro variables in processing data sets with many BY groups. The macro variables
are created as follows:

With no BY processing, PROC STEPDISC creates the following:
_StdVar selected variables
_StdVar1 selected variables
_StdNumBys number of BY groups (1)
_StdNumMacroBys number of _StdVari macro variables actually made (1)

With BY processing, PROC STEPDISC creates the following:
_StdVar selected variables for BY group 1
_StdVar1 selected variables for BY group 1
_StdVar2 selected variables for BY group 2
.
.
.
_StdVarm selected variables for BY group m, where a number is

substituted for m
_StdNumBys n, the number of BY groups
_StdNumMacroBys the number m of _StdVari macro variables actually made.

This value might be less than _StdNumbys = n, and it is
less than or equal to the MAXMACRO= value.

MAXSTEP=n
specifies the maximum number of steps. By default, MAXSTEP= two times the number of variables in
the VAR statement.
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METHOD=BACKWARD | BW

METHOD=FORWARD | FW

METHOD=STEPWISE | SW
specifies the method used to select the variables in the model. The BACKWARD method specifies
backward elimination, FORWARD specifies forward selection, and STEPWISE specifies stepwise
selection. By default, METHOD=STEPWISE.

PCORR
displays pooled within-class correlations (partial correlations based on the pooled within-class covari-
ances).

PCOV
displays pooled within-class covariances.

PR2ENTRY=p

PR2E=p
specifies the partial R square for adding variables in the forward selection mode, where p � 1.

PR2STAY=p

PR2S=p
specifies the partial R square for retaining variables in the backward elimination mode, where p � 1.

PSSCP
displays the pooled within-class corrected SSCP matrix.

SHORT
suppresses the displayed output from each step.

SIMPLE
displays simple descriptive statistics for the total sample and within each class.

SINGULAR=p
specifies the singularity criterion for entering variables, where 0 < p < 1. PROC STEPDISC precludes
the entry of a variable if the squared multiple correlation of the variable with the variables already
in the model exceeds 1 – p. With more than one variable already in the model, PROC STEPDISC
also excludes a variable if it would cause any of the variables already in the model to have a squared
multiple correlation (with the entering variable and the other variables in the model) exceeding 1 – p.
By default, SINGULAR= 1E–8.

SLENTRY=p

SLE=p
specifies the significance level for adding variables in the forward selection mode, where 0 � p � 1.
The default value is 0.15.

SLSTAY=p

SLS=p
specifies the significance level for retaining variables in the backward elimination mode, where
0 � p � 1. The default value is 0.15.
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START=n
specifies that the first n variables in the VAR statement be used to begin the selection process. When
you specify METHOD=FORWARD or METHOD=STEPWISE, the default value is 0; when you
specify METHOD=BACKWARD, the default value is the number of variables in the VAR statement.

STDMEAN
displays total-sample and pooled within-class standardized class means.

STOP=n
specifies the number of variables in the final model. The STEPDISC procedure stops the selec-
tion process when a model with n variables is found. This option applies only when you specify
METHOD=FORWARD or METHOD=BACKWARD. When you specify METHOD=FORWARD,
the default value is the number of variables in the VAR statement; when you specify
METHOD=BACKWARD, the default value is 0.

TCORR
displays total-sample correlations.

TCOV
displays total-sample covariances.

TSSCP
displays the total-sample corrected SSCP matrix.

WCORR
displays within-class correlations for each class level.

WCOV
displays within-class covariances for each class level.

WSSCP
displays the within-class corrected SSCP matrix for each class level.

BY Statement
BY variables ;

You can specify a BY statement with PROC STEPDISC to obtain separate analyses of observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the STEPDISC procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.
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• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

CLASS Statement
CLASS variable ;

The values of the CLASS variable define the groups for analysis. Class levels are determined by the formatted
values of the CLASS variable. The CLASS variable can be numeric or character. A CLASS statement is
required.

FREQ Statement
FREQ variable ;

If a variable in the data set represents the frequency of occurrence for the other values in the observation,
include the name of the variable in a FREQ statement. The procedure then treats the data set as if each
observation appears n times, where n is the value of the FREQ variable for the observation. The total number
of observations is considered to be equal to the sum of the FREQ variable when the procedure determines
degrees of freedom for significance probabilities.

If the value of the FREQ variable is missing or is less than one, the observation is not used in the analysis. If
the value is not an integer, the value is truncated to an integer.

VAR Statement
VAR variables ;

The VAR statement specifies the quantitative variables eligible for selection. The default is all numeric
variables not listed in other statements.

WEIGHT Statement
WEIGHT variable ;

To use relative weights for each observation in the input data set, place the weights in a variable in the data
set and specify the name in a WEIGHT statement. This is often done when the variance associated with each
observation is different and the values of the WEIGHT variable are proportional to the reciprocals of the
variances. If the value of the WEIGHT variable is missing or is less than zero, then a value of zero for the
weight is assumed.

The WEIGHT and FREQ statements have a similar effect except that the WEIGHT statement does not alter
the degrees of freedom.
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Details: STEPDISC Procedure

Missing Values
Observations containing missing values are omitted from the analysis.

Input Data Sets
The input data set can be an ordinary SAS data set or one of several specially structured data sets created by
statistical procedures available with SAS/STAT software. For more information about these data sets, see
Appendix A, “Special SAS Data Sets.” The BY variable in these data sets becomes the CLASS variable in
PROC STEPDISC. These specially structured data sets include the following:

• TYPE=CORR data sets created by PROC CORR by using a BY statement

• TYPE=COV data sets created by PROC PRINCOMP by using both the COV option and a BY statement

• TYPE=CSSCP data sets created by PROC CORR by using the CSSCP option and a BY statement,
where the OUT= data set is assigned TYPE=CSSCP with the TYPE= data set option

• TYPE=SSCP data sets created by PROC REG by using both the OUTSSCP= option and a BY statement

When the input data set is TYPE=CORR, TYPE=COV, or TYPE=CSSCP, the STEPDISC procedure reads
the number of observations for each class from the observations with _TYPE_=’N’ and the variable means
in each class from the observations with _TYPE_=’MEAN’. The procedure then reads the within-class
correlations from the observations with _TYPE_=’CORR’, the standard deviations from the observations
with _TYPE_=’STD’ (data set TYPE=CORR), the within-class covariances from the observations with
_TYPE_=’COV’ (data set TYPE=COV), or the within-class corrected sums of squares and crossproducts
from the observations with _TYPE_=’CSSCP’ (data set TYPE=CSSCP).

When the data set does not include any observations with _TYPE_=’CORR’ (data set TYPE=CORR),
_TYPE_=’COV’ (data set TYPE=COV), or _TYPE_=’CSSCP’ (data set TYPE=CSSCP) for each class,
PROC STEPDISC reads the pooled within-class information from the data set. In this case, the STEPDISC
procedure reads the pooled within-class correlations from the observations with _TYPE_=’PCORR’, the
pooled within-class standard deviations from the observations with _TYPE_=’PSTD’ (data set TYPE=CORR),
the pooled within-class covariances from the observations with _TYPE_=’PCOV’ (data set TYPE=COV),
or the pooled within-class corrected SSCP matrix from the observations with_TYPE_=’PSSCP’ (data set
TYPE=CSSCP).
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When the input data set is TYPE=SSCP, the STEPDISC procedure reads the number of observations
for each class from the observations with _TYPE_=’N’, the sum of weights of observations from the
variable INTERCEPT in observations with _TYPE_=’SSCP’ and _NAME_=’INTERCEPT’, the variable
sums from the analysis variables in observations with _TYPE_=’SSCP’ and _NAME_=’INTERCEPT’,
and the uncorrected sums of squares and crossproducts from the analysis variables in observations with
_TYPE_=’SSCP’ and _NAME_=variable-names.

Computational Resources
In the following discussion, let

n D number of observations

c D number of class levels

v D number of variables in the VAR list

l D length of the CLASS variable

t D v C c � 1

Memory Requirements

The amount of memory in bytes for temporary storage needed to process the data is

c.4v2 C 28v C 3l C 4c C 72/C 16v2 C 92v C 4t2 C 20t C 4l

Additional temporary storage of 72 bytes at each step is also required to store the results.

Time Requirements

The following factors determine the time requirements of a stepwise discriminant analysis:

• The time needed for reading the data and computing covariance matrices is proportional to nv2. The
STEPDISC procedure must also look up each class level in the list. This is faster if the data are sorted
by the CLASS variable. The time for looking up class levels is proportional to a value ranging from n
to n ln.c/.

• The time needed for stepwise discriminant analysis is proportional to the number of steps required to
select the set of variables in the discrimination model. The number of steps required depends on the
data set itself and the selection method and criterion used in the procedure. Each forward or backward
step takes time proportional to .v C c/2.
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Displayed Output
The displayed output from PROC STEPDISC includes the class level information table. For each level of the
classification variable, the following information is provided: the output data set variable name, frequency
sum, weight sum, and the proportion of the total sample.

The optional output from PROC STEPDISC includes the following:

The optional output includes the following:

• Within-class SSCP matrices for each group

• Pooled within-class SSCP matrix

• Between-class SSCP matrix

• Total-sample SSCP matrix

• Within-class covariance matrices for each group

• Pooled within-class covariance matrix

• Between-class covariance matrix, equal to the between-class SSCP matrix divided by n.c � 1/=c,
where n is the number of observations and c is the number of classes

• Total-sample covariance matrix

• Within-class correlation coefficients and Pr > jr j to test the hypothesis that the within-class population
correlation coefficients are zero

• Pooled within-class correlation coefficients and Pr > jr j to test the hypothesis that the partial
population correlation coefficients are zero

• Between-class correlation coefficients and Pr > jr j to test the hypothesis that the between-class
population correlation coefficients are zero

• Total-sample correlation coefficients and Pr > jr j to test the hypothesis that the total population
correlation coefficients are zero

• Simple statistics, including N (the number of observations), sum, mean, variance, and standard
deviation for the total sample and within each class

• Total-sample standardized class means, obtained by subtracting the grand mean from each class mean
and dividing by the total-sample standard deviation

• Pooled within-class standardized class means, obtained by subtracting the grand mean from each class
mean and dividing by the pooled within-class standard deviation
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At each step, the following statistics are displayed:

• for each variable considered for entry or removal: partial R-square, the squared (partial) correlation,
the F statistic, and Pr > F , the probability level, from a one-way analysis of covariance

• the minimum tolerance for entering each variable. A variable is entered only if its tolerance and the
tolerances for all variables already in the model are greater than the value specified in the SINGULAR=
option. The tolerance for the entering variable is 1 �R2 from regressing the entering variable on the
other variables already in the model. The tolerance for a variable already in the model is 1 �R2 from
regressing that variable on the entering variable and the other variables already in the model. With m
variables already in the model, for each entering variable, m + 1 multiple regressions are performed by
using the entering variable and each of the m variables already in the model as a dependent variable.
These m + 1 tolerances are computed for each entering variable, and the minimum tolerance is displayed
for each.

The tolerance is computed by using the total-sample correlation matrix. It is customary to compute
tolerance by using the pooled within-class correlation matrix (Jennrich 1977), but it is possible
for a variable with excellent discriminatory power to have a high total-sample tolerance and a low
pooled within-class tolerance. For example, PROC STEPDISC enters a variable that yields perfect
discrimination (that is, produces a canonical correlation of one), but a program that uses pooled
within-class tolerance does not.

• the variable label, if any

• the name of the variable chosen

• the variables already selected or removed

• Wilks’ lambda and the associated F approximation with degrees of freedom and Pr < F , the associated
probability level after the selected variable has been entered or removed. Wilks’ lambda is the likelihood
ratio statistic for testing the hypothesis that the means of the classes on the selected variables are
equal in the population (see the section “Multivariate Tests” on page 90 in Chapter 4, “Introduction to
Regression Procedures.”) Lambda is close to zero if any two groups are well separated.

• Pillai’s trace and the associated F approximation with degrees of freedom and Pr > F , the associated
probability level after the selected variable has been entered or removed. Pillai’s trace is a multivariate
statistic for testing the hypothesis that the means of the classes on the selected variables are equal in the
population (see the section “Multivariate Tests” on page 90 in Chapter 4, “Introduction to Regression
Procedures”).

• Average squared canonical correlation (ASCC). The ASCC is Pillai’s trace divided by the number of
groups minus 1. The ASCC is close to 1 if all groups are well separated and if all or most directions in
the discriminant space show good separation for at least two groups.

• Summary to give statistics associated with the variable chosen at each step. The summary includes the
following:

– Step number

– Variable entered or removed

– Number in, the number of variables in the model
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– Partial R-square

– the F value for entering or removing the variable

– Pr > F , the probability level for the F statistic

– Wilks’ lambda

– Pr < Lambda based on the F approximation to Wilks’ lambda

– Average squared canonical correlation

– Pr > ASCC based on the F approximation to Pillai’s trace

– the variable label, if any

ODS Table Names
PROC STEPDISC assigns a name to each table it creates. You can use these names to reference the table
when using the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed in Table 96.2 along with the PROC STEPDISC statement options needed to produce the table. For
more information about ODS, see Chapter 20, “Using the Output Delivery System.”

Table 96.2 ODS Tables Produced by PROC STEPDISC

ODS Table Name Description Option

BCorr Between-class correlations BCORR
BCov Between-class covariances BCOV
BSSCP Between-class SSCP matrix BSSCP
Counts Number of observations, variables, classes, df default
CovDF Nonprinting table of df for covariance matrices any *COV option
Levels Class level information default
Messages Entry/removal messages default
Multivariate Multivariate statistics default
NObs Number of observations default
PCorr Pooled within-class correlations PCORR
PCov Pooled within-class covariances PCOV
PSSCP Pooled within-class SSCP matrix PSSCP
PStdMeans Pooled standardized class means STDMEAN
SimpleStatistics Simple statistics SIMPLE
Steps Stepwise selection entry/removal default
Summary Stepwise selection summary default
TCorr Total-sample correlations TCORR
TCov Total-sample covariances TCOV
TSSCP Total-sample SSCP matrix TSSCP
TStdMeans Total standardized class means STDMEAN
Variables Variable lists default
WCorr Within-class correlations WCORR
WCov Within-class covariances WCOV
WSSCP Within-class SSCP matrices WSSCP
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Example: STEPDISC Procedure

Example 96.1: Performing a Stepwise Discriminant Analysis
The iris data published by Fisher (1936) have been widely used for examples in discriminant analysis and
cluster analysis. The sepal length, sepal width, petal length, and petal width are measured in millimeters on
50 iris specimens from each of three species: Iris setosa, I. versicolor, and I. virginica. The iris data set is
available from the Sashelp library.

A stepwise discriminant analysis is performed by using stepwise selection.

In the PROC STEPDISC statement, the BSSCP and TSSCP options display the between-class SSCP matrix
and the total-sample corrected SSCP matrix. By default, the significance level of an F test from an analysis
of covariance is used as the selection criterion. The variable under consideration is the dependent variable,
and the variables already chosen act as covariates. The following SAS statements produce Output 96.1.1
through Output 96.1.8:

title 'Fisher (1936) Iris Data';

%let _stdvar = ;
proc stepdisc data=sashelp.iris bsscp tsscp;

class Species;
var SepalLength SepalWidth PetalLength PetalWidth;

run;

Output 96.1.1 Iris Data: Summary Information

Fisher (1936) Iris Data

The STEPDISC Procedure

Fisher (1936) Iris Data

The STEPDISC Procedure

The Method for Selecting Variables is STEPWISE

Total Sample Size 150 Variable(s) in the Analysis 4

Class Levels 3 Variable(s) Will Be Included 0

Significance Level to Enter 0.15

Significance Level to Stay 0.15

Number of Observations Read 150

Number of Observations Used 150

Class Level Information

Species
Variable
Name Frequency Weight Proportion

Setosa Setosa 50 50.0000 0.333333

Versicolor Versicolor 50 50.0000 0.333333

Virginica Virginica 50 50.0000 0.333333
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Output 96.1.2 Iris Data: Between-Class and Total-Sample SSCP Matrices

Fisher (1936) Iris Data

The STEPDISC Procedure

Fisher (1936) Iris Data

The STEPDISC Procedure

Between-Class SSCP Matrix

Variable Label SepalLength SepalWidth PetalLength PetalWidth

SepalLength Sepal Length (mm) 6321.21333 -1995.26667 16524.84000 7127.93333

SepalWidth Sepal Width (mm) -1995.26667 1134.49333 -5723.96000 -2293.26667

PetalLength Petal Length (mm) 16524.84000 -5723.96000 43710.28000 18677.40000

PetalWidth Petal Width (mm) 7127.93333 -2293.26667 18677.40000 8041.33333

Total-Sample SSCP Matrix

Variable Label SepalLength SepalWidth PetalLength PetalWidth

SepalLength Sepal Length (mm) 10216.83333 -632.26667 18987.30000 7692.43333

SepalWidth Sepal Width (mm) -632.26667 2830.69333 -4911.88000 -1812.42667

PetalLength Petal Length (mm) 18987.30000 -4911.88000 46432.54000 19304.58000

PetalWidth Petal Width (mm) 7692.43333 -1812.42667 19304.58000 8656.99333

In step 1, the tolerance is 1.0 for each variable under consideration because no variables have yet entered
the model. The variable PetalLength is selected because its F statistic, 1180.161, is the largest among all
variables.

Output 96.1.3 Iris Data: Stepwise Selection Step 1

Fisher (1936) Iris Data

The STEPDISC Procedure
Stepwise Selection: Step 1

Fisher (1936) Iris Data

The STEPDISC Procedure
Stepwise Selection: Step 1

Statistics for Entry, DF = 2, 147

Variable Label R-Square F Value Pr > F Tolerance

SepalLength Sepal Length (mm) 0.6187 119.26 <.0001 1.0000

SepalWidth Sepal Width (mm) 0.4008 49.16 <.0001 1.0000

PetalLength Petal Length (mm) 0.9414 1180.16 <.0001 1.0000

PetalWidth Petal Width (mm) 0.9289 960.01 <.0001 1.0000

Variable PetalLength will be entered.

Variable(s)
That Have

Been
Entered

PetalLength

Multivariate Statistics

Statistic Value F Value Num DF Den DF Pr > F

Wilks' Lambda 0.058628 1180.16 2 147 <.0001

Pillai's Trace 0.941372 1180.16 2 147 <.0001

Average Squared Canonical Correlation 0.470686
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In step 2, with the variable PetalLength already in the model, PetalLength is tested for removal before a
new variable is selected for entry. Since PetalLength meets the criterion to stay, it is used as a covariate in
the analysis of covariance for variable selection. The variable SepalWidth is selected because its F statistic,
43.035, is the largest among all variables not in the model and because its associated tolerance, 0.8164, meets
the criterion to enter. The process is repeated in steps 3 and 4. The variable PetalWidth is entered in step 3,
and the variable SepalLength is entered in step 4.

Output 96.1.4 Iris Data: Stepwise Selection Step 2

Fisher (1936) Iris Data

The STEPDISC Procedure
Stepwise Selection: Step 2

Fisher (1936) Iris Data

The STEPDISC Procedure
Stepwise Selection: Step 2

Statistics for Removal, DF = 2, 147

Variable Label R-Square F Value Pr > F

PetalLength Petal Length (mm) 0.9414 1180.16 <.0001

No variables can be removed.

Statistics for Entry, DF = 2, 146

Variable Label
Partial

R-Square F Value Pr > F Tolerance

SepalLength Sepal Length (mm) 0.3198 34.32 <.0001 0.2400

SepalWidth Sepal Width (mm) 0.3709 43.04 <.0001 0.8164

PetalWidth Petal Width (mm) 0.2533 24.77 <.0001 0.0729

Variable SepalWidth will be entered.

Variable(s)
That Have Been

Entered

SepalWidth PetalLength

Multivariate Statistics

Statistic Value F Value Num DF Den DF Pr > F

Wilks' Lambda 0.036884 307.10 4 292 <.0001

Pillai's Trace 1.119908 93.53 4 294 <.0001

Average Squared Canonical Correlation 0.559954
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Output 96.1.5 Iris Data: Stepwise Selection Step 3

Fisher (1936) Iris Data

The STEPDISC Procedure
Stepwise Selection: Step 3

Fisher (1936) Iris Data

The STEPDISC Procedure
Stepwise Selection: Step 3

Statistics for Removal, DF = 2, 146

Variable Label
Partial

R-Square F Value Pr > F

SepalWidth Sepal Width (mm) 0.3709 43.04 <.0001

PetalLength Petal Length (mm) 0.9384 1112.95 <.0001

No variables can be removed.

Statistics for Entry, DF = 2, 145

Variable Label
Partial

R-Square F Value Pr > F Tolerance

SepalLength Sepal Length (mm) 0.1447 12.27 <.0001 0.1323

PetalWidth Petal Width (mm) 0.3229 34.57 <.0001 0.0662

Variable PetalWidth will be entered.

Variable(s)
That Have Been Entered

SepalWidth PetalLength PetalWidth

Multivariate Statistics

Statistic Value F Value Num DF Den DF Pr > F

Wilks' Lambda 0.024976 257.50 6 290 <.0001

Pillai's Trace 1.189914 71.49 6 292 <.0001

Average Squared Canonical Correlation 0.594957
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Output 96.1.6 Iris Data: Stepwise Selection Step 4

Fisher (1936) Iris Data

The STEPDISC Procedure
Stepwise Selection: Step 4

Fisher (1936) Iris Data

The STEPDISC Procedure
Stepwise Selection: Step 4

Statistics for Removal, DF = 2, 145

Variable Label
Partial

R-Square F Value Pr > F

SepalWidth Sepal Width (mm) 0.4295 54.58 <.0001

PetalLength Petal Length (mm) 0.3482 38.72 <.0001

PetalWidth Petal Width (mm) 0.3229 34.57 <.0001

No variables can be removed.

Statistics for Entry, DF = 2, 144

Variable Label
Partial

R-Square F Value Pr > F Tolerance

SepalLength Sepal Length (mm) 0.0615 4.72 0.0103 0.0320

Variable SepalLength will be entered.

All variables have been entered.

Multivariate Statistics

Statistic Value F Value Num DF Den DF Pr > F

Wilks' Lambda 0.023439 199.15 8 288 <.0001

Pillai's Trace 1.191899 53.47 8 290 <.0001

Average Squared Canonical Correlation 0.595949

Since no more variables can be added to or removed from the model, the procedure stops at step 5 and
displays a summary of the selection process.

Output 96.1.7 Iris Data: Stepwise Selection Step 5

Fisher (1936) Iris Data

The STEPDISC Procedure
Stepwise Selection: Step 5

Fisher (1936) Iris Data

The STEPDISC Procedure
Stepwise Selection: Step 5

Statistics for Removal, DF = 2, 144

Variable Label
Partial

R-Square F Value Pr > F

SepalLength Sepal Length (mm) 0.0615 4.72 0.0103

SepalWidth Sepal Width (mm) 0.2335 21.94 <.0001

PetalLength Petal Length (mm) 0.3308 35.59 <.0001

PetalWidth Petal Width (mm) 0.2570 24.90 <.0001

No variables can be removed.
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Output 96.1.8 Iris Data: Stepwise Selection Summary

No further steps are possible.

Fisher (1936) Iris Data

The STEPDISC Procedure

Fisher (1936) Iris Data

The STEPDISC Procedure

Stepwise Selection Summary

Step
Number

In Entered Removed Label
Partial

R-Square F Value Pr > F
Wilks'

Lambda
Pr <

Lambda

Average
Squared

Canonical
Correlation

Pr >
ASCC

1 1 PetalLength Petal Length (mm) 0.9414 1180.16 <.0001 0.05862828 <.0001 0.47068586 <.0001

2 2 SepalWidth Sepal Width (mm) 0.3709 43.04 <.0001 0.03688411 <.0001 0.55995394 <.0001

3 3 PetalWidth Petal Width (mm) 0.3229 34.57 <.0001 0.02497554 <.0001 0.59495691 <.0001

4 4 SepalLength Sepal Length
(mm)

0.0615 4.72 0.0103 0.02343863 <.0001 0.59594941 <.0001

PROC STEPDISC automatically creates a list of the selected variables and stores it in a macro variable. You
can submit the following statement to see the list of selected variables:

* print the macro variable list;
%put &_stdvar;

The macro variable _StdVar contains the following variable list:

SepalLength SepalWidth PetalLength PetalWidth

You could use this macro variable if you want to analyze these variables in subsequent steps as follows:

proc discrim data=sashelp.iris;
class Species;
var &_stdvar;

run;

The results of this step are not shown.
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Overview: SURVEYFREQ Procedure
The SURVEYFREQ procedure produces one-way to n-way frequency and crosstabulation tables from sample
survey data. These tables include estimates of population totals, population proportions, and their standard
errors. Confidence limits, coefficients of variation, and design effects are also available. The procedure
provides a variety of options to customize the table display.

For one-way frequency tables, PROC SURVEYFREQ provides Rao-Scott chi-square goodness-of-fit tests,
which are adjusted for the sample design. You can test a null hypothesis of equal proportions for a one-way
frequency table, or you can input custom nu5ll hypothesis proportions for the test. For two-way tables,
PROC SURVEYFREQ provides design-adjusted tests of independence, or no association, between the row
and column variables. These tests include the Rao-Scott chi-square test, the Rao-Scott likelihood ratio test,
the Wald chi-square test, and the Wald log-linear chi-square test. For 2 � 2 tables, PROC SURVEYFREQ
computes estimates and confidence limits for risks (row proportions), the risk difference, the odds ratio, and
relative risks.

PROC SURVEYFREQ computes variance estimates based on the sample design used to obtain the survey
data. The design can be a complex multistage survey design with stratification, clustering, and unequal
weighting. PROC SURVEYFREQ provides a choice of variance estimation methods, which include Taylor
series linearization, balanced repeated replication (BRR), and the jackknife.

PROC SURVEYFREQ uses ODS Graphics to create graphs as part of its output. For general information
about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.” For specific information about the
statistical graphics available with the SURVEYFREQ procedure, see the PLOTS= option in the TABLES
statement and the section “ODS Graphics” on page 8046.

Getting Started: SURVEYFREQ Procedure
The following example shows how you can use PROC SURVEYFREQ to analyze sample survey data. The
example uses data from a customer satisfaction survey for a student information system (SIS), which is a
software product that provides modules for student registration, class scheduling, attendance, grade reporting,
and other functions.
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The software company conducted a survey of school personnel who use the SIS. A probability sample of SIS
users was selected from the study population, which included SIS users at middle schools and high schools
in the three-state area of Georgia, South Carolina, and North Carolina. The sample design for this survey
was a two-stage stratified design. A first-stage sample of schools was selected from the list of schools in the
three-state area that use the SIS. The list of schools (the first-stage sampling frame) was stratified by state
and by customer status (whether the school was a new user of the system or a renewal user). Within the
first-stage strata, schools were selected with probability proportional to size and with replacement, where
the size measure was school enrollment. From each sample school, five staff members were randomly
selected to complete the SIS satisfaction questionnaire. These staff members included three teachers and two
administrators or guidance department members.

The SAS data set SIS_Survey contains the survey results, as well as the sample design information needed to
analyze the data. This data set includes an observation for each school staff member responding to the survey.
The variable Response contains the staff member’s response about overall satisfaction with the system.

The variable State contains the school’s state, and the variable NewUser contains the school’s customer
status (‘New Customer’ or ‘Renewal Customer’). These two variables determine the first-stage strata from
which schools were selected. The variable School contains the school identification code and identifies the
first-stage sampling units (clusters). The variable SamplingWeight contains the overall sampling weight for
each respondent. Overall sampling weights were computed from the selection probabilities at each stage of
sampling and were adjusted for nonresponse.

Other variables in the data set SIS_Survey include SchoolType and Department. The variable SchoolType
identifies the school as a high school or a middle school. The variable Department identifies the staff member
as a teacher, or an administrator or guidance department member.

The following PROC SURVEYFREQ statements request a one-way frequency table for the variable
Response:

title 'Student Information System Survey';
proc surveyfreq data=SIS_Survey;

tables Response;
strata State NewUser;
cluster School;
weight SamplingWeight;

run;

The PROC SURVEYFREQ statement invokes the procedure and identifies the input data set to be analyzed.
The TABLES statement requests a one-way frequency table for the variable Response. The table request
syntax for PROC SURVEYFREQ is very similar to the table request syntax for PROC FREQ. This example
shows a request for a single one-way table, but you can also request two-way tables and multiway tables.
As in PROC FREQ, you can request more than one table in the same TABLES statement, and you can use
multiple TABLES statements in the same invocation of the procedure.

The STRATA, CLUSTER, and WEIGHT statements provide sample design information for the procedure,
so that the analysis is done according to the sample design used for the survey, and the estimates apply to
the study population. The STRATA statement names the variables State and NewUser, which identify the
first-stage strata. The design for this example also includes stratification at the second stage of selection
(by type of school personnel), but you specify only the first-stage strata for PROC SURVEYFREQ. The
CLUSTER statement names the variable School, which identifies the clusters (primary sampling units). The
WEIGHT statement names the sampling weight variable.
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Figure 97.1 and Figure 97.2 display the output produced by PROC SURVEYFREQ, which includes the “Data
Summary” table and the one-way table, “Table of Response.” The “Data Summary” table is produced by
default unless you specify the NOSUMMARY option. This table shows there are 6 strata, 370 clusters or
schools, and 1850 observations (respondents) in the SIS_Survey data set. The sum of the sampling weights
is approximately 39,000, which estimates the total number of school personnel in the study area that use the
SIS.

Figure 97.1 SIS_Survey Data Summary

Student Information System Survey

The SURVEYFREQ Procedure

Student Information System Survey

The SURVEYFREQ Procedure

Data Summary

Number of Strata 6

Number of Clusters 370

Number of Observations 1850

Sum of Weights 38899.6482

Figure 97.2 displays the one-way table of Response, which provides estimates of the population total
(weighted frequency) and the population percentage for each category (level) of the variable Response. The
response level ‘Very Unsatisfied’ has a frequency of 304, which means that 304 sample respondents fall into
this category. It is estimated that 17.17% of all school personnel in the study population fall into this category,
and the standard error of this estimate is 1.29%. The estimates apply to the population of all SIS users in the
study area, as opposed to describing only the sample of 1850 respondents. The estimate of the total number
of school personnel that are ‘Very Unsatisfied’ is 6,678, with a standard deviation of 502. The standard errors
computed by PROC SURVEYFREQ are based on the multistage stratified design of the survey. This differs
from some of the traditional analysis procedures, which assume the design is simple random sampling from
an infinite population.

Figure 97.2 One-Way Table of Response

Table of Response

Response Frequency
Weighted

Frequency
Std Dev of
Wgt Freq Percent

Std Err of
Percent

Very Unsatisfied 304 6678 501.61039 17.1676 1.2872

Unsatisfied 326 6907 495.94101 17.7564 1.2712

Neutral 581 12291 617.20147 31.5965 1.5795

Satisfied 455 9309 572.27868 23.9311 1.4761

Very Satisfied 184 3714 370.66577 9.5483 0.9523

Total 1850 38900 129.85268 100.000
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The following PROC SURVEYFREQ statements request confidence limits for the percentages, a chi-square
goodness-of-fit test, and a weighted frequency plot for the one-way table of Response. The ODS GRAPHICS
ON statement enables ODS Graphics.

title 'Student Information System Survey';
ods graphics on;
proc surveyfreq data=SIS_Survey nosummary;

tables Response / clwt nopct chisq
plots=WtFreqPlot;

strata State NewUser;
cluster School;
weight SamplingWeight;

run;
ods graphics off;

The NOSUMMARY option in the PROC SURVEYFREQ statement suppresses the “Data Summary” table.
In the TABLES statement, the CLWT option requests confidence limits for the weighted frequencies (totals).
The NOPCT option suppresses display of the weighted frequencies and their standard deviations. The CHISQ
option requests a Rao-Scott chi-square goodness-of-fit test, and the PLOTS= option requests a weighted
frequency plot. ODS Graphics must be enabled before producing plots.

Figure 97.3 shows the one-way table of Response, which includes confidence limits for the weighted
frequencies. The 95% confidence limits for the total number of users that are ‘Very Unsatisfied’ are 5692 and
7665. You can change the confidence level by specifying the ALPHA= option; by default, ALPHA=0.05,
which produces 95% confidence limits. Like the other estimates and standard errors produced by PROC
SURVEYFREQ, these confidence limit computations take into account the complex survey design and apply
to the entire study population.

Figure 97.3 Confidence Limits for Response Totals

Student Information System Survey

The SURVEYFREQ Procedure

Student Information System Survey

The SURVEYFREQ Procedure

Table of Response

Response Frequency
Weighted

Frequency
Std Dev of
Wgt Freq

95% Confidence Limits
for Wgt Freq

Very Unsatisfied 304 6678 501.61039 5692 7665

Unsatisfied 326 6907 495.94101 5932 7882

Neutral 581 12291 617.20147 11077 13505

Satisfied 455 9309 572.27868 8184 10435

Very Satisfied 184 3714 370.66577 2985 4443

Total 1850 38900 129.85268 38644 39155

Figure 97.4 displays the weighted frequency plot of Response. The plot displays weighted frequencies
(totals) together with their confidence limits in the form of a vertical bar chart. You can use the PLOTS=
option to request a dot plot instead of a bar chart or to plot percentages instead of weighted frequencies.
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Figure 97.4 Bar Chart of Response Totals

Figure 97.5 shows the chi-square goodness-of-fit results for the table of Response. The null hypothesis for this
test is equal proportions for the levels of the one-way table. (To test a null hypothesis of specified proportions
instead of equal proportions, you can use the TESTP= option to specify null hypothesis proportions.)

The chi-square test provided by the CHISQ option is the Rao-Scott design-adjusted chi-square test, which
takes the sample design into account and provides inferences for the study population. To produce the Rao-
Scott chi-square statistic, PROC SURVEYFREQ first computes the usual Pearson chi-square statistic based
on the weighted frequencies, and then adjusts this value by using a design correction. An F approximation is
also provided. For the table of Response, the F value is 30.0972 with a p-value of <0.0001, which indicates
rejection of the null hypothesis of equal proportions for all response levels.
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Figure 97.5 Chi-Square Goodness-of-Fit Test for Response

Rao-Scott Chi-Square Test

Pearson Chi-Square 251.8105

Design Correction 2.0916

Rao-Scott Chi-Square 120.3889

DF 4

Pr > ChiSq <.0001

F Value 30.0972

Num DF 4

Den DF 1456

Pr > F <.0001

Sample Size = 1850

Continuing to analyze the SIS_Survey data, the following PROC SURVEYFREQ statements request a
two-way table of SchoolType by Response:

title 'Student Information System Survey';
ods graphics on;
proc surveyfreq data=SIS_Survey nosummary;

tables SchoolType * Response /
plots=wtfreqplot(type=dot scale=percent groupby=row);

strata State NewUser;
cluster School;
weight SamplingWeight;

run;
ods graphics off;

The STRATA, CLUSTER, and WEIGHT statements do not change from the one-way table analysis, because
the sample design and the input data set are the same. These SURVEYFREQ statements request a different
table but specify the same sample design information.

The ODS GRAPHICS ON statement enables ODS Graphics. The PLOTS= option in the TABLES statement
requests a plot of SchoolType by Response, and the TYPE=DOT plot-option specifies a dot plot instead of
the default bar chart. The SCALE=PERCENT plot-option requests a plot of percentages instead of totals.
The GROUPBY=ROW plot-option groups the graph cells by the row variable (SchoolType).

Figure 97.6 shows the two-way table produced for SchoolType by Response. The first variable named in the
two-way table request, SchoolType, is referred to as the row variable, and the second variable, Response, is
referred to as the column variable. Two-way tables display all column variable levels for each row variable
level. This two-way table lists all levels of the column variable Response for each level of the row variable
SchoolType, ‘Middle School’ and ‘High School’. Also SchoolType = ‘Total’ shows the distribution of
Response overall for both types of schools. And Response = ‘Total’ provides totals over all levels of
response, for each type of school and overall. To suppress these totals, you can specify the NOTOTAL option.
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Figure 97.6 Two-Way Table of SchoolType by Response

Student Information System Survey

The SURVEYFREQ Procedure

Student Information System Survey

The SURVEYFREQ Procedure

Table of SchoolType by Response

SchoolType Response Frequency
Weighted

Frequency
Std Dev of
Wgt Freq Percent

Std Err of
Percent

Middle School Very Unsatisfied 116 2496 351.43834 6.4155 0.9030

Unsatisfied 109 2389 321.97957 6.1427 0.8283

Neutral 234 4856 504.20553 12.4847 1.2953

Satisfied 197 4064 443.71188 10.4467 1.1417

Very Satisfied 94 1952 302.17144 5.0193 0.7758

Total 750 15758 1000 40.5089 2.5691

High School Very Unsatisfied 188 4183 431.30589 10.7521 1.1076

Unsatisfied 217 4518 446.31768 11.6137 1.1439

Neutral 347 7434 574.17175 19.1119 1.4726

Satisfied 258 5245 498.03221 13.4845 1.2823

Very Satisfied 90 1762 255.67158 4.5290 0.6579

Total 1100 23142 1003 59.4911 2.5691

Total Very Unsatisfied 304 6678 501.61039 17.1676 1.2872

Unsatisfied 326 6907 495.94101 17.7564 1.2712

Neutral 581 12291 617.20147 31.5965 1.5795

Satisfied 455 9309 572.27868 23.9311 1.4761

Very Satisfied 184 3714 370.66577 9.5483 0.9523

Total 1850 38900 129.85268 100.000

Figure 97.7 displays the weighted frequency dot plot that PROC SURVEYFREQ produces for the table
of SchoolType and Response. The GROUPBY=ROW plot-option groups the graph cells by the row
variable (SchoolType). If you do not specify GROUPBY=ROW, the procedure groups the graph cells by
the column variable by default. You can plot percentages instead of weighted frequencies by specifying the
SCALE=PERCENT plot-option. You can use other plot-options to change the orientation of the plot or to
request a different two-way layout.
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Figure 97.7 Dot Plot of Percentages for SchoolType by Response

By default, without any other TABLES statement options, a two-way table displays the frequency, the
weighted frequency and its standard deviation, and the percentage and its standard error for each table cell
(combination of row and column variable levels). But there are several options available to customize your
table display by adding more information or by suppressing some of the default information.

The following PROC SURVEYFREQ statements request a two-way table of SchoolType by Response that
displays row percentages, and also request a chi-square test of association between the two variables:

title 'Student Information System Survey';
proc surveyfreq data=SIS_Survey nosummary;

tables SchoolType * Response / row nowt chisq;
strata State NewUser;
cluster School;
weight SamplingWeight;

run;
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The ROW option in the TABLES statement requests row percentages, which give the distribution of Response
within each level of the row variable SchoolType. The NOWT option suppresses display of the weighted
frequencies and their standard deviations. The CHISQ option requests a Rao-Scott chi-square test of
association between SchoolType and Response.

Figure 97.8 displays the two-way table of SchoolType by Response. For middle schools, it is estimated that
25.79% of school personnel are satisfied with the student information system and 12.39% are very satisfied.
For high schools, these estimates are 22.67% and 7.61%, respectively.

Figure 97.9 displays the chi-square test results. The Rao-Scott chi-square statistic equals 9.04, and the
corresponding F value is 2.26 with a p-value of 0.0605. This indicates an association between school type
(middle school or high school) and satisfaction with the student information system at the 10% significance
level.

Figure 97.8 Two-Way Table with Row Percentages

Student Information System Survey

The SURVEYFREQ Procedure

Student Information System Survey

The SURVEYFREQ Procedure

Table of SchoolType by Response

SchoolType Response Frequency Percent
Std Err of

Percent
Row

Percent
Std Err of

Row Percent

Middle School Very Unsatisfied 116 6.4155 0.9030 15.8373 1.9920

Unsatisfied 109 6.1427 0.8283 15.1638 1.8140

Neutral 234 12.4847 1.2953 30.8196 2.5173

Satisfied 197 10.4467 1.1417 25.7886 2.2947

Very Satisfied 94 5.0193 0.7758 12.3907 1.7449

Total 750 40.5089 2.5691 100.000

High School Very Unsatisfied 188 10.7521 1.1076 18.0735 1.6881

Unsatisfied 217 11.6137 1.1439 19.5218 1.7280

Neutral 347 19.1119 1.4726 32.1255 2.0490

Satisfied 258 13.4845 1.2823 22.6663 1.9240

Very Satisfied 90 4.5290 0.6579 7.6128 1.0557

Total 1100 59.4911 2.5691 100.000

Total Very Unsatisfied 304 17.1676 1.2872

Unsatisfied 326 17.7564 1.2712

Neutral 581 31.5965 1.5795

Satisfied 455 23.9311 1.4761

Very Satisfied 184 9.5483 0.9523

Total 1850 100.000
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Figure 97.9 Chi-Square Test of No Association

Rao-Scott Chi-Square Test

Pearson Chi-Square 18.7829

Design Correction 2.0766

Rao-Scott Chi-Square 9.0450

DF 4

Pr > ChiSq 0.0600

F Value 2.2613

Num DF 4

Den DF 1456

Pr > F 0.0605

Sample Size = 1850

Syntax: SURVEYFREQ Procedure
The following statements are available in the SURVEYFREQ procedure:

PROC SURVEYFREQ < options > ;
BY variables ;
CLUSTER variables ;
REPWEIGHTS variables < / options > ;
STRATA variables < / option > ;
TABLES requests < / options > ;
WEIGHT variable ;

The PROC SURVEYFREQ statement invokes the procedure, identifies the data set to be analyzed, and
specifies the variance estimation method to use. The PROC SURVEYFREQ statement is required.

The TABLES statement specifies frequency or crosstabulation tables and requests tests and statistics for
those tables. The STRATA statement lists the variables that form the strata in a stratified sample design. The
CLUSTER statement specifies cluster identification variables in a clustered sample design. The WEIGHT
statement names the sampling weight variable. The REPWEIGHTS statement names replicate weight
variables for BRR or jackknife variance estimation. The BY statement requests completely separate analyses
of groups defined by the BY variables.

All statements can appear multiple times except the PROC SURVEYFREQ statement and the WEIGHT
statement, which can appear only once.

The rest of this section gives detailed syntax information for the BY, CLUSTER, REPWEIGHTS, STRATA,
TABLES, and WEIGHT statements in alphabetical order after the description of the PROC SURVEYFREQ
statement.
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PROC SURVEYFREQ Statement
PROC SURVEYFREQ < options > ;

The PROC SURVEYFREQ statement invokes the SURVEYFREQ procedure. It also identifies the data set to
be analyzed, specifies the variance estimation method to use, and provides sample design information. The
DATA= option names the input data set to be analyzed. The VARMETHOD= option specifies the variance
estimation method, which is the Taylor series method by default. For Taylor series variance estimation,
you can include a finite population correction factor in the analysis by providing either the sampling rate or
population total in the RATE= or TOTAL= option, respectively. If your design is stratified with different
sampling rates or totals for different strata, you can input these stratum rates or totals in a SAS data set that
contains the stratification variables.

Table 97.1 summarizes the options available in the PROC SURVEYFREQ statement.

Table 97.1 PROC SURVEYFREQ Statement Options

Option Description

DATA= Names the input SAS data set
MISSING Treats missing values as a valid level
NOMCAR Treats missing values as not missing completely at random
NOSUMMARY Suppresses the display of the “Data Summary” table
ORDER= Specifies the order of variable levels
PAGE Displays only one table per page
RATE= Specifies the first-stage sampling rate
TOTAL= Specifies the total number of primary sampling units
VARHEADER= Specifies the variable identification to display
VARMETHOD= Specifies the variance estimation method

You can specify the following options in the PROC SURVEYFREQ statement:

DATA=SAS-data-set
names the SAS-data-set to be analyzed by PROC SURVEYFREQ. If you omit the DATA= option, the
procedure uses the most recently created SAS data set.

MISSING
treats missing values as a valid (nonmissing) category for all categorical variables, which include
TABLES, STRATA, and CLUSTER variables.

By default, if you do not specify the MISSING option, an observation is excluded from the analysis if
it has a missing value for any STRATA or CLUSTER variable. Additionally, PROC SURVEYFREQ
excludes an observation from a frequency or crosstabulation table if that observation has a missing
value for any of the variables in the table request, unless you specify the MISSING option. For more
information, see the section “Missing Values” on page 8001.
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NOMCAR
includes observations with missing values of TABLES variables in the variance computation as not
missing completely at random (NOMCAR) for Taylor series variance estimation. When you specify the
NOMCAR option, PROC SURVEYFREQ computes variance estimates by analyzing the nonmissing
values as a domain (subpopulation), where the entire population includes both nonmissing and missing
domains. For more information, see the section “Missing Values” on page 8001.

By default, PROC SURVEYFREQ completely excludes an observation from a frequency or crosstab-
ulation table (and the corresponding variance computations) if that observation has a missing value
for any of the variables in the table request, unless you specify the MISSING option. The NOMCAR
option has no effect when you specify the MISSING option, which treats missing values as a valid
nonmissing level.

The NOMCAR option applies only to Taylor series variance estimation. The replication methods,
which you can request by specifying the VARMETHOD=BRR and VARMETHOD=JACKKNIFE
options, do not use the NOMCAR option.

NOSUMMARY
suppresses the display of the “Data Summary” table, which PROC SURVEYFREQ produces by default.
For information about this table, see the section “Data Summary Table” on page 8038.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the order of the variable levels in the frequency and crosstabulation tables, which you request
in the TABLES statement. The ORDER= option also controls the order of the STRATA variable levels
in the “Stratum Information” table.

The ORDER= option can take the following values:

ORDER= Levels Ordered By

DATA Order of appearance in the input data set

FORMATTED External formatted value, except for numeric variables with
no explicit format, which are sorted by their unformatted
(internal) value

FREQ Descending frequency count; levels with the most observa-
tions come first in the order

INTERNAL Unformatted value

By default, ORDER=INTERNAL. The FORMATTED and INTERNAL orders are machine-dependent.
The frequency count used by ORDER=FREQ is the nonweighted frequency (sample size), rather than
the weighted frequency.

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

PAGE
displays only one table per page. Otherwise, PROC SURVEYFREQ displays multiple tables per page
as space permits.
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RATE=value | SAS-data-set

R=value | SAS-data-set
specifies the sampling rate, which PROC SURVEYFREQ uses to compute a finite population correction
for Taylor series variance estimation. You can provide a single sampling rate value, or you can provide
stratum sampling rates by specifying a SAS-data-set .

If your sample design has multiple stages, you should specify the first-stage sampling rate, which is
the ratio of the number of primary sampling units (PSUs) in the sample to the total number of PSUs in
the population.

For a nonstratified sample design, or for a stratified sample design that uses the same sampling rate in
all strata, you should specify a single sampling rate value. If your design is stratified and uses different
sampling rates in different strata, you should name a SAS-data-set that contains the stratification
variables and the stratum sampling rates. You should provide the stratum sampling rates in the data
set variable named _RATE_. For more information, see the section “Population Totals and Sampling
Rates” on page 8000.

The sampling rate values must be nonnegative numbers. You can specify sampling rates as numbers
between 0 and 1. Or you can specify sampling rates in percentage form as numbers between 1 and
100, which PROC SURVEYFREQ converts to proportions. The procedure treats the value 1 as 100%
instead of 1%.

If you do not specify the RATE= or the TOTAL= option, the Taylor series variance estimation does not
include a finite population correction. You cannot specify both the RATE= and the TOTAL= option in
the same PROC SURVEYFREQ statement.

PROC SURVEYSELECT does not use the RATE= or the TOTAL= option for BRR or jack-
knife variance estimation (which you can request by specifying the VARMETHOD=BRR or
VARMETHOD=JACKKNIFE option, respectively).

TOTAL=value | SAS-data-set

N=value | SAS-data-set
specifies the total number of primary sampling units (PSUs), which PROC SURVEYFREQ uses to
compute a finite population correction for Taylor series variance estimation. You can provide a single
total value, or you can provide stratum totals by specifying a SAS-data-set . The totals must be positive
numbers.

If your sample design has multiple stages, you should specify the total number of primary sampling
units (PSUs).

For a nonstratified sample design, you should specify a single total value, which refers to the total
number of PSUs in the population. For a stratified sample design that has the same population total
in each stratum, you can specify a single total value, which refers to the total number of PSUs in
each stratum. If your design is stratified and has different totals in different strata, you should name
a SAS-data-set that contains the stratification variables and the stratum totals. You should provide
the stratum totals in the data set variable named _TOTAL_. For more information, see the section
“Population Totals and Sampling Rates” on page 8000.

If you do not specify the RATE= or the TOTAL= option, the Taylor series variance estimation does not
include a finite population correction. You cannot specify both the RATE= and the TOTAL= option in
the same PROC SURVEYFREQ statement.

PROC SURVEYSELECT does not use the RATE= or the TOTAL= option for BRR or jack-
knife variance estimation (which you can request by specifying the VARMETHOD=BRR or
VARMETHOD=JACKKNIFE option, respectively).
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VARHEADER=LABEL | NAME | NAMELABEL
specifies the variable identification to use in the displayed output. By default VARHEADER=NAME,
which displays variable names in the output. The VARHEADER= option affects the headers of
the variable level columns in one-way frequency tables, crosstabulation tables, and the “Stratum
Information” table. The VARHEADER= option also controls variable identification in the table
headers.

The VARHEADER= option can take the following values:

VARHEADER= Variable Identification Displayed

LABEL Variable label
NAME Variable name
NAMELABEL Variable name and label, as Name (Label)

VARMETHOD=BRR < (method-options) >

VARMETHOD=JACKKNIFE | JK < (method-options) >

VARMETHOD=TAYLOR
specifies the variance estimation method. VARMETHOD=TAYLOR requests the Taylor series method,
which is the default if you do not specify the VARMETHOD= option or the REPWEIGHTS statement.
VARMETHOD=BRR requests variance estimation by balanced repeated replication (BRR), and
VARMETHOD=JACKKNIFE requests variance estimation by the delete-1 jackknife method.

For VARMETHOD=BRR and VARMETHOD=JACKKNIFE, you can specify method-options in
parentheses after the variance method name. For example:

varmethod=BRR(reps=60 outweights=myReplicateWeights)

Table 97.2 summarizes the available method-options.

Table 97.2 Variance Estimation Options

VARMETHOD= Variance Estimation Method Method Options

BRR Balanced repeated replication DFADJ
FAY < =value >
HADAMARD=SAS-data-set
OUTWEIGHTS=SAS-data-set
PRINTH
REPS=number

JACKKNIFE | JK Jackknife DFADJ
OUTJKCOEFS=SAS-data-set
OUTWEIGHTS=SAS-data-set

TAYLOR Taylor series linearization None
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You can specify the following values for the VARMETHOD= option:

BRR < (method-options) >
requests variance estimation by balanced repeated replication (BRR). The BRR method requires
a stratified sample design that has two primary sampling units (PSUs) in each stratum. If you
specify this option, you must also specify a STRATA statement unless you use a REPWEIGHTS
statement to provide replicate weights. For more information, see the section “Balanced Repeated
Replication (BRR)” on page 8011.

You can specify the following method-options:

DFADJ
computes the degrees of freedom as the number of nonmissing strata for the individual table
request. If you specify this option, PROC SURVEYFREQ does not count any empty strata
that occur when observations that have missing values of the TABLES variables are removed
from the analysis of the table. By default, PROC SURVEYFREQ computes the degrees of
freedom by counting the number of nonmissing strata for all valid observations in the input
data set.

For more information, see the section “Degrees of Freedom” on page 8019. For information
about valid observations, see the section “Data Summary Table” on page 8038.

This method-option has no effect when you specify the MISSING option, which treats
missing values as a valid nonmissing level.

This method-option is not used when you specify the degrees of freedom in the DF= option in
the TABLES statement or when you specify a REPWEIGHTS statement to provide replicate
weights. When you specify a REPWEIGHTS statement, the degrees of freedom are the
number of REPWEIGHTS variables (replicates) unless you specify the DF= option in the
REPWEIGHTS or the TABLES statement.

FAY < =value >
requests Fay’s method, which is a modification of the BRR method. For more information,
see the section “Fay’s BRR Method” on page 8012.

You can specify the value of the Fay coefficient, which is used in converting the original
sampling weights to replicate weights. The Fay coefficient must be a nonnegative number
less than 1. By default, the Fay coefficient is 0.5.

HADAMARD=SAS-data-set

H=SAS-data-set
names a SAS-data-set that contains the Hadamard matrix for BRR replicate construction.
If you do not specify this method-option, PROC SURVEYFREQ generates an appropriate
Hadamard matrix for replicate construction. For more information, see the sections “Bal-
anced Repeated Replication (BRR)” on page 8011 and “Hadamard Matrix” on page 8013.

If a Hadamard matrix of a particular dimension exists, it is not necessarily unique. Therefore,
if you want to use a specific Hadamard matrix, you must provide the matrix as a SAS-data-set
in this method-option.
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In the HADAMARD= input data set, each variable corresponds to a column and each
observation corresponds to a row of the Hadamard matrix. You can use any variable names
in the HADAMARD= data set. All values in the data set must equal either 1 or –1. You must
ensure that the matrix you provide is indeed a Hadamard matrix—that is, A0A D RI, where
A is the Hadamard matrix of dimension R and I is an identity matrix. PROC SURVEYFREQ
does not check the validity of the Hadamard matrix that you provide.

The HADAMARD= input data set must contain at least H variables, where H denotes the
number of first-stage strata in your design. If the data set contains more than H variables,
PROC SURVEYFREQ uses only the first H variables. Similarly, the HADAMARD= input
data set must contain at least H observations.

If you do not specify the REPS= method-option, the number of replicates is assumed to be the
number of observations in the HADAMARD= input data set. If you specify the number of
replicates—for example, REPS=nreps—the first nreps observations in the HADAMARD=
data set are used to construct the replicates.

You can specify the PRINTH method-option to display the Hadamard matrix that PROC
SURVEYFREQ uses to construct replicates for BRR.

OUTWEIGHTS=SAS-data-set
names a SAS-data-set to store the replicate weights that PROC SURVEYFREQ creates
for BRR variance estimation. For information about replicate weights, see the section
“Balanced Repeated Replication (BRR)” on page 8011. For information about the contents
of the OUTWEIGHTS= data set, see the section “Replicate Weight Output Data Set” on
page 8037.

The OUTWEIGHTS= method-option is not available when you provide replicate weights in
a REPWEIGHTS statement.

PRINTH
displays the Hadamard matrix that PROC SURVEYFREQ uses to construct replicates for
BRR variance estimation. When you provide the Hadamard matrix in the HADAMARD=
method-option, PROC SURVEYFREQ displays only the rows and columns that are actually
used to construct replicates. For more information, see the sections “Balanced Repeated
Replication (BRR)” on page 8011 and “Hadamard Matrix” on page 8013.

The PRINTH method-option is not available when you provide replicate weights in a
REPWEIGHTS statement because the procedure does not use a Hadamard matrix in this
case.

REPS=number
specifies the number of replicates for BRR variance estimation. The value of number must
be an integer greater than 1.

If you do not use the HADAMARD= method-option to provide a Hadamard matrix, the
number of replicates should be greater than the number of strata and should be a multiple
of 4. For more information, see the section “Balanced Repeated Replication (BRR)” on
page 8011. If PROC SURVEYFREQ cannot construct a Hadamard matrix for the REPS=
value that you specify, the value is increased until a Hadamard matrix of that dimension can
be constructed. Therefore, the actual number of replicates that PROC SURVEYFREQ uses
might be larger than number .
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If you use the HADAMARD= method-option to provide a Hadamard matrix, the value of
number must not be less than the number of rows in the Hadamard matrix. If you provide a
Hadamard matrix and do not specify the REPS= method-option, the number of replicates
equals the number of rows in the Hadamard matrix.

If you do not specify the REPS= or the HADAMARD= method-option and do not use a
REPWEIGHTS statement, the number of replicates equals the smallest multiple of 4 that is
greater than the number of strata.

If you use a REPWEIGHTS statement to provide replicate weights, PROC SURVEYFREQ
does not use the REPS= method-option; the number of replicates equals the number of
REPWEIGHTS variables.

JACKKNIFE < (method-options) >

JK < (method-options) >
requests variance estimation by the delete-1 jackknife method. For more information, see the
section “The Jackknife Method” on page 8014. If you use a REPWEIGHTS statement to provide
replicate weights, VARMETHOD=JACKKNIFE is the default variance estimation method.

The delete-1 jackknife method requires at least two primary sampling units (PSUs) in each
stratum for stratified designs unless you use a REPWEIGHTS statement to provide replicate
weights.

You can specify the following method-options:

DFADJ
computes the degrees of freedom by using the number of nonmissing strata and clusters for
the individual table request. If you specify this method-option, PROC SURVEYFREQ does
not count any empty strata or clusters that occur when observations that have missing values
of the TABLES variables are removed from the analysis of the table. By default, PROC
SURVEYFREQ computes the degrees of freedom by counting the number of nonmissing
strata and clusters for all valid observations in the input data set. The degrees of freedom for
VARMETHOD=JACKKNIFE equal the number of clusters minus the number of strata.

For more information, see the section “Degrees of Freedom” on page 8019. For information
about valid observations, see the section “Data Summary Table” on page 8038.

This method-option has no effect when you specify the MISSING option, which treats
missing values as a valid nonmissing level.

This method-option is not used when you specify the degrees of freedom in the DF= option in
the TABLES statement or when you specify a REPWEIGHTS statement to provide replicate
weights. When you specify a REPWEIGHTS statement, the degrees of freedom are the
number of REPWEIGHTS variables (replicates) unless you specify the DF= option in the
REPWEIGHTS or the TABLES statement.

OUTJKCOEFS=SAS-data-set
names a SAS-data-set to store the jackknife coefficients. For information about jackknife
coefficients, see the section “The Jackknife Method” on page 8014. For information about
the contents of the OUTJKCOEFS= data set, see the section “Jackknife Coefficient Output
Data Set” on page 8038.
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OUTWEIGHTS=SAS-data-set
names a SAS-data-set to store the replicate weights that PROC SURVEYFREQ creates for
jackknife variance estimation. For information about replicate weights, see the section “The
Jackknife Method” on page 8014. For information about the contents of the OUTWEIGHTS=
data set, see the section “Replicate Weight Output Data Set” on page 8037.

This method-option is not available when you use a REPWEIGHTS statement to provide
replicate weights.

TAYLOR
requests Taylor series variance estimation. This is the default method if you do not specify the
VARMETHOD= option or a REPWEIGHTS statement. For more information, see the section
“Taylor Series Variance Estimation” on page 8004.

BY Statement
BY variables ;

You can specify a BY statement with PROC SURVEYFREQ to obtain separate analyses of observations in
groups that are defined by the BY variables. When a BY statement appears, the procedure expects the input
data set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last
one specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the SURVEYFREQ
procedure. The NOTSORTED option does not mean that the data are unsorted but rather that the
data are arranged in groups (according to values of the BY variables) and that these groups are not
necessarily in alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

Using a BY statement provides completely separate analyses of the BY groups. It does not provide a
statistically valid domain (subpopulation) analysis, where the total number of units in the subpopulation is
not known with certainty. You should include the domain variable(s) in your TABLES request to obtain
domain analysis. For more information, see the section “Domain Analysis” on page 8001.

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

CLUSTER Statement
CLUSTER variables ;

The CLUSTER statement names one or more variables that identify the first-stage clusters in a clustered
sample design. First-stage clusters are also known as primary sampling units (PSUs). The combinations of
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levels of the CLUSTER variables define the clusters in the sample. If there is a STRATA statement, clusters
are nested within strata.

If your sample design has clustering at multiple stages, you should specify only the first-stage clusters
(PSUs) in the CLUSTER statement. See the section “Specifying the Sample Design” on page 7999 for more
information.

If you provide replicate weights for BRR or jackknife variance estimation by using the REPWEIGHTS
statement, you do not need to specify a CLUSTER statement.

The CLUSTER variables are one or more variables in the DATA= input data set. These variables can be
either character or numeric, but the procedure treats them as categorical variables. The formatted values
of the CLUSTER variables determine the CLUSTER variable levels. Thus, you can use formats to group
values into levels. See the discussion of the FORMAT procedure in the Base SAS Procedures Guide and the
discussions of the FORMAT statement and SAS formats in SAS Formats and Informats: Reference.

An observation is excluded from the analysis if it has a missing value for any CLUSTER variable unless you
specify the MISSING option in the PROC SURVEYFREQ statement. For more information, see the section
“Missing Values” on page 8001.

You can use multiple CLUSTER statements to specify CLUSTER variables. The procedure uses variables
from all CLUSTER statements to create clusters.

REPWEIGHTS Statement
REPWEIGHTS variables < / options > ;

The REPWEIGHTS statement names variables that provide replicate weights for BRR or jackknife variance
estimation, which you can request by specifying the VARMETHOD=BRR or VARMETHOD=JACKKNIFE
option in the PROC SURVEYFREQ statement. If you do not provide replicate weights for these methods by
using a REPWEIGHTS statement, then PROC SURVEYFREQ constructs replicate weights for the analysis.
See the sections “Balanced Repeated Replication (BRR)” on page 8011 and “The Jackknife Method” on
page 8014 for information about replicate weights.

Each REPWEIGHTS variable should contain the weights for a single replicate, and the number of replicates
equals the number of REPWEIGHTS variables. The REPWEIGHTS variables must be numeric, and the
variable values must be nonnegative numbers.

If you provide replicate weights by using a REPWEIGHTS statement, you do not need to specify a CLUSTER
or STRATA statement. If you use a REPWEIGHTS statement and do not specify the VARMETHOD= option
in the PROC SURVEYFREQ statement, the procedure uses VARMETHOD=JACKKNIFE by default.

If you specify a REPWEIGHTS statement but do not include a WEIGHT statement, PROC SURVEYFREQ
uses the average of each observation’s replicate weights as the observation’s weight.

You can specify the following options in the REPWEIGHTS statement after a slash (/):

DF=df
specifies the degrees of freedom for the analysis. The value of df must be a positive number. By
default, the degrees of freedom equal the number of REPWEIGHTS variables. For more information,
see the section “Degrees of Freedom” on page 8019.
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PROC SURVEYFREQ uses the value df to obtain the t-percentile for confidence limits for proportions,
totals, and other statistics. For more information, see the section “Confidence Limits for Proportions”
on page 8016. PROC SURVEYFREQ also uses df to compute the denominator degrees of freedom for
the F statistics in the Rao-Scott and Wald chi-square tests. For more information, see the sections “Rao-
Scott Chi-Square Test” on page 8028, “Rao-Scott Likelihood Ratio Chi-Square Test” on page 8033,
“Wald Chi-Square Test” on page 8035, and “Wald Log-Linear Chi-Square Test” on page 8036.

JKCOEFS=value | < ( >values < ) > | SAS-data-set
specifies the jackknife coefficients for jackknife variance estimation (which you can request by
specifying VARMETHOD=JACKKNIFE). You can provide a single jackknife coefficient value to
use for all replicates, or you can provide a value for each replicate by specifying a list of values or a
SAS-data-set . The jackknife coefficient values must be nonnegative numbers. For more information,
see the section “The Jackknife Method” on page 8014.

You can provide jackknife coefficients by specifying one of the following forms:

value
specifies a single jackknife coefficient value to use for all replicates. The coefficient value must
be a nonnegative number.

values
specifies a list of jackknife coefficient values, where each value corresponds to a single replicate
that is identified by a REPWEIGHTS variable. You can separate the values with blanks or
commas, and you can enclose the list of values in parentheses. The coefficient values must be
nonnegative numbers. The number of coefficient values should equal the number of replicate
weight variables that you specify in the REPWEIGHTS statement.

You should list the jackknife coefficient values in the same order in which you list the correspond-
ing replicate weight variables in the REPWEIGHTS statement.

SAS-data-set
names a SAS-data-set that contains the jackknife coefficients. You should provide the jackknife
coefficients in the data set variable named JKCoefficient. Each coefficient value must be a
nonnegative number. Each observation in this data set should correspond to a replicate that is
identified by a REPWEIGHTS variable. The number of observations in this data set must not be
less than the number of REPWEIGHTS variables.

STRATA Statement
STRATA variables < / option > ;

The STRATA statement names one or more variables that identify the first-stage strata in a stratified sample
design. The combinations of levels of STRATA variables define the strata in the sample, where strata are
nonoverlapping subgroups that were sampled independently.

If your sample design has stratification at multiple stages, you should specify only the first-stage strata in the
STRATA statement. For more information, see the section “Specifying the Sample Design” on page 7999.

If you use a REPWEIGHTS statement to provide replicate weights for BRR or jackknife variance estimation,
you do not need to specify a STRATA statement.
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The STRATA variables are one or more variables in the DATA= input data set. These variables can be either
character or numeric, but the procedure treats them as categorical variables. The formatted values of the
STRATA variables determine the STRATA variable levels. Thus, you can use formats to group values into
levels. See the discussion of the FORMAT procedure in the Base SAS Procedures Guide and the discussions
of the FORMAT statement and SAS formats in SAS Formats and Informats: Reference.

PROC SURVEYFREQ excludes an observation from the analysis if it has a missing value for any STRATA
variable unless you specify the MISSING option in the PROC SURVEYFREQ statement. For more informa-
tion, see the section “Missing Values” on page 8001.

You can use multiple STRATA statements to specify STRATA variables. The procedure uses variables from
all STRATA statements to define strata.

You can specify the following option in the STRATA statement after a slash (/):

LIST
displays the “Stratum Information” table, which lists all strata together with the corresponding values
of the STRATA variables. This table provides the number of observations and the number of clusters
in each stratum, as well as the sampling fraction if you specify the RATE= or TOTAL= option in the
PROC SURVEYFREQ statement. For more information, see the section “Stratum Information Table”
on page 8039.

TABLES Statement
TABLES requests < / options > ;

The TABLES statement requests one-way to n-way frequency and crosstabulation tables and statistics for
these tables.

If you omit the TABLES statement, PROC SURVEYFREQ generates one-way frequency tables for all
DATA= data set variables that are not listed in the other statements.

The following argument is required in the TABLES statement:

requests
specify the frequency and crosstabulation tables to produce. A request is composed of one variable
name or several variable names separated by asterisks. To request a one-way frequency table, use a
single variable. To request a two-way crosstabulation table, use an asterisk between two variables. To
request a multiway table (an n-way table, where n > 2), separate the desired variables with asterisks.
The unique values of these variables form the rows, columns, and layers of the table.

For two-way tables to multiway tables, the values of the last variable form the crosstabulation table
columns, while the values of the next-to-last variable form the rows. Each level (or combination of
levels) of the other variables forms one layer. PROC SURVEYFREQ produces a separate crosstabula-
tion table for each layer. For example, a specification of A*B*C*D in a TABLES statement produces k
tables, where k is the number of different combinations of levels for A and B. Each table lists the levels
for D (columns) within each level of C (rows).

You can use multiple TABLES statements in a single PROC SURVEYFREQ step. You can also specify
any number of table requests in a single TABLES statement. To specify multiple table requests quickly,
use a grouping syntax by placing parentheses around several variables and joining other variables or
variable combinations. Table 97.3 shows some examples of grouping syntax.
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Table 97.3 Grouping Syntax

TABLES Request Equivalent to

A*(B C) A*B A*C
(A B)*(C D) A*C B*C A*D B*D
(A B C)*D A*D B*D C*D
A – – C A B C
(A – – C)*D A*D B*D C*D

The TABLES statement variables are one or more variables from the DATA= input data set. These vari-
ables can be either character or numeric, but the procedure treats them as categorical variables. PROC
SURVEYFREQ uses the formatted values of the TABLES variable to determine the categorical variable
levels. If you assign a format to a variable by using a FORMAT statement, PROC SURVEYFREQ
formats the values before dividing observations into the levels of a frequency or crosstabulation table.
See the discussion of the FORMAT procedure in the Base SAS Procedures Guide and the discussions
of the FORMAT statement and SAS formats in SAS Formats and Informats: Reference.

By default, the frequency or crosstabulation table lists the values of both character and numeric
variables in ascending order based on internal (unformatted) variable values. You can change the order
of the values in the table by specifying the ORDER= option in the PROC SURVEYFREQ statement.
To list the values in ascending order by formatted value, use ORDER=FORMATTED.

Without Options

If you request a frequency or crosstabulation table without specifying options, PROC SURVEYFREQ
produces the following for each table level or cell:

• frequency (sample size)

• weighted frequency, which estimates the population total

• standard deviation of the weighted frequency

• percentage, which estimates the population proportion

• standard error of the percentage

The table displays weighted frequencies if your analysis includes a WEIGHT statement, or if you specify
the WTFREQ option in the TABLES statement. The table also displays the number of observations that
have missing values. For more information, see the sections “One-Way Frequency Tables” on page 8040 and
“Crosstabulation Tables” on page 8041.

Options

Table 97.4 summarizes the options available in the TABLES statement. Descriptions of the options follow
the table in alphabetical order.
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Table 97.4 TABLES Statement Options

Option Description

Control Statistical Analysis
AGREE Requests kappa coefficients
ALPHA= Sets level for confidence limits
CHISQ Requests Rao-Scott chi-square test
CL Requests confidence limits for percentages and

specifies confidence limit type for percentages
CLWT Requests confidence limits for weighted frequencies
COV Requests covariances of frequency estimates
COVP Requests covariances of proportion estimates
DF= Specifies degrees of freedom
KAPPA Requests simple kappa coefficient
LRCHISQ Requests Rao-Scott likelihood ratio test
OR Requests odds ratio and relative risks
RISK Requests risks and risk difference
TESTP= Specifies null proportions for one-way chi-square test
WCHISQ Requests Wald chi-square test
WLLCHISQ Requests Wald log-linear chi-square test
WTKAPPA Requests weighted kappa coefficient

Request Additional Table Information
CELLCHI2 Displays cell contributions to the Pearson chi-square
CLWT Displays confidence limits for weighted frequencies
COLUMN Displays column percentages and standard errors
CV Displays coefficients of variation for percentages
CVWT Displays coefficients of variation for weighted frequencies
DEFF Displays design effects for percentages
DEVIATION Displays deviations of weighted frequencies
EXPECTED Displays expected weighted frequencies
PEARSONRES Displays Pearson residuals
ROW Displays row percentages and standard errors
VAR Displays variances of percentages
VARWT Displays variances of weighted frequencies
WTFREQ Displays totals and standard errors

when there is no WEIGHT statement

Control Displayed Output
NOCELLPERCENT Suppresses display of overall percentages
NOFREQ Suppresses display of frequency counts
NOPERCENT Suppresses display of all percentages
NOPRINT Suppresses display of tables but displays statistical tests
NOSPARSE Suppresses display of zero rows and columns
NOSTD Suppresses display of standard errors for all estimates
NOTOTAL Suppresses display of row and column totals
NOWT Suppresses display of weighted frequencies

Produce Statistical Graphics
PLOTS= Requests plots from ODS Graphics
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You can specify the following options in a TABLES statement:

AGREE < (options) >
requests the simple and weighted kappa coefficients with their standard errors and confidence limits.
Kappa coefficients can be computed for square two-way tables, where the number of rows equals the
number of columns. For 2�2 tables, the weighted kappa coefficient equals the simple kappa coefficient,
and PROC SURVEYFREQ displays only the simple kappa coefficient. For more information, see the
section “Kappa Coefficients” on page 8025.

Kappa coefficients are available when you specify variance estimation by the jackknife method
(VARMETHOD=JACKKNIFE) or by balanced repeated replication (VARMETHOD=BRR); kappa
coefficients are not available with the Taylor series method (VARMETHOD=TAYLOR).

The weighted kappa coefficient is computed by using agreement weights that reflect the relative
agreement between pairs of variable levels. Agreement weights are not the same as sampling weights,
which you provide by specifying the WEIGHT statement. PROC SURVEYFREQ uses sampling
weights to compute both the simple and weighted kappa coefficients. For more information, see the
section “Weighted Kappa Coefficient” on page 8026.

You can specify the level for the kappa confidence limits in the ALPHA= option. By default, AL-
PHA=0.05, which produces 95% confidence limits.

You can request the simple kappa coefficient or the weighted kappa coefficient separately by specifying
the KAPPA or WTKAPPA option, respectively.

You can specify the following options:

PRINTKWTS
displays the agreement weights that PROC SURVEYFREQ uses to compute the weighted kappa
coefficient. Agreement weights reflect the relative agreement between pairs of variable levels. By
default, PROC SURVEYFREQ uses the Cicchetti-Allison form of agreement weights. If you
specify the WT=FC option, the procedure uses the Fleiss-Cohen form of agreement weights. For
more information, see the section “Weighted Kappa Coefficient” on page 8026.

WT=FC
requests Fleiss-Cohen agreement weights for the weighted kappa computation. By default,
PROC SURVEYFREQ uses Cicchetti-Allison agreement weights to compute the weighted kappa
coefficient. Agreement weights reflect the relative agreement between pairs of variable levels.
For more information, see the section “Weighted Kappa Coefficient” on page 8026.

ALPHA=˛
specifies the level for confidence limits. The value of ˛ must be between 0 and 1; a confidence level of
˛ produces 100.1�˛/% confidence limits. By default, ALPHA=0.05, which produces 95% confidence
limits.

You can request confidence limits for percentages by specifying the CL option, and you can request
confidence limits for weighted frequencies by specifying the CLWT option. For more information, see
the sections “Confidence Limits for Proportions” on page 8016 and “Confidence Limits for Totals” on
page 8016.

The ALPHA= option also applies to confidence limits for the risks and risk difference (which you can
request by specifying the RISK option) and to confidence limits for the odds ratio and relative risks
(which you can request by specifying the OR option). For more information, see the sections “Risks
and Risk Difference” on page 8022 and “Odds Ratio and Relative Risks” on page 8023.
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CELLCHI2
displays each table cell’s contribution to the Pearson chi-square statistic in the crosstabulation table.
The cell chi-square is computed as .weighted frequency � expected/2 = expected, where weighted
frequency is the weighted frequency of the table cell and expected is the expected weighted frequency,
which is computed under the null hypothesis that the row and column variables are independent. You
can display the expected weighted frequencies by specifying the EXPECTED option, and you can
display the deviations (weighted frequency – expected) by specifying the DEVIATION option. For
more information, see the sections “Expected Weighted Frequency” on page 8021 and “Rao-Scott
Chi-Square Test” on page 8028. This option has no effect for one-way tables.

CHISQ < (options) >
requests the Rao-Scott chi-square test. This is a design-adjusted test that is computed by applying
a design correction to the weighted Pearson chi-square statistic. By default, PROC SURVEYFREQ
provides a first-order Rao-Scott chi-square test. If you specify CHISQ(SECONDORDER), the proce-
dure provides a second-order (Satterthwaite) Rao-Scott chi-square test. For more information, see the
section “Rao-Scott Chi-Square Test” on page 8028.

For one-way tables, the CHISQ option produces a design-based goodness-of-fit test. By default,
this is a goodness-of-fit test for equal proportions. If you specify the null hypothesis proportions in
the TESTP= option, the CHISQ option produces a chi-square goodness-of-fit test for the specified
proportions.

By default for one-way tables, and for first-order tests for two-way tables, the design correction is
computed from proportion estimates. If you specify CHISQ(MODIFIED), the design correction is
computed from null hypothesis proportions. For second-order tests for two-way tables, the design
correction is always computed from null hypothesis proportions.

You can specify the following options:

FIRSTORDER
requests a first-order Rao-Scott chi-square test. This is the default for the CHISQ option; if you
do not specify CHISQ(SECONDORDER), the procedure provides a first-order Rao-Scott test.

MODIFIED
uses the null hypothesis proportions to compute the Rao-Scott design correction. By default (if
you do not specify CHISQ(MODIFIED)), the procedure uses proportion estimates to compute
the design correction for all first-order tests and for second-order tests for one-way tables. For
second-order tests for two-way tables, the procedure always uses null hypothesis proportions to
compute the design correction.

SECONDORDER
requests a second-order (Satterthwaite) Rao-Scott chi-square test. For more information, see the
section “Rao-Scott Chi-Square Test” on page 8028.

CL < (options) >
requests confidence limits for the percentages (proportions) in the crosstabulation table. By default,
PROC SURVEYFREQ computes standard Wald (“linear”) confidence limits for proportions by using
the variance estimates that are based on the sample design. For more information, see the section
“Confidence Limits for Proportions” on page 8016. You can specify the confidence level in the
ALPHA= option. By default, ALPHA=0.05, which produces 95% confidence limits.
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You can specify options in parentheses after the CL option to control the confidence limit computations.
You can use the TYPE= option to request an alternative confidence limit type. In addition to Wald
confidence limits, the following types of design-based confidence limits are available for proportions:
modified Clopper-Pearson (exact), modified Wilson (score), and logit confidence limits.

If you specify the PSMALL option, PROC SURVEYFREQ uses the alternative confidence limit
type for extreme (small or large) proportion estimates and uses Wald confidence limits for all other
proportion estimates. If you do not specify the PSMALL option, PROC SURVEYFREQ computes the
specified confidence limit type for all proportion values.

You can specify the following options:

ADJUST=NO | YES
controls the degrees-of-freedom adjustment to the effective sample size for the modified Clopper-
Pearson and Wilson confidence limits. By default, ADJUST=YES. If you specify ADJUST=NO,
the confidence limit computations do not apply the degrees-of-freedom adjustment to the effective
sample size. For more information, see the section “Modified Confidence Limits” on page 8017.

The ADJUST= option is available for TYPE=CLOPPERPEARSON and TYPE=WILSON confi-
dence limits.

PSMALL < =p >
uses the alternative confidence limit type that you specify in the TYPE= option for extreme (small
or large) proportion values.

The PSMALL value p defines the range of extreme proportion values, where those proportions
less than or equal to p or greater than or equal to (1 – p) are considered to be extreme, and those
proportions between p and (1 – p) are not extreme. If you do not specify a PSMALL value p,
PROC SURVEYFREQ uses p = 0.25 by default. For p D 0:25, the procedure computes Wald
confidence limits for proportions between 0.25 and 0.75 and computes the alternative confidence
limit type for proportions less than or equal to 0.25 or greater than or equal to 0.75.

The PSMALL value p must be a nonnegative number. You can specify p as a proportion between
0 and 0.5. Or you can specify p in percentage form as a number between 1 and 50, and PROC
SURVEYFREQ converts that number to a proportion. The procedure treats the value 1 as the
percentage form 1%.

The PSMALL option is available for TYPE=CLOPPERPEARSON, TYPE=LOGIT, and
TYPE=WILSON confidence limits. For more information, see the section “Confidence Limits
for Proportions” on page 8016.

TRUNCATE=NO | YES
controls the truncation of the effective sample size for the modified Clopper-Pearson and Wilson
confidence limits. By default, TRUNCATE=YES truncates the effective sample size if it is larger
than the original sample size. If you specify TRUNCATE=NO, the effective sample size is not
truncated. For more information, see the section “Modified Confidence Limits” on page 8017.

The TRUNCATE= option is available for TYPE=CLOPPERPEARSON and TYPE=WILSON
confidence limits.
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TYPE=type
specifies the type of confidence limits to compute for proportions. If you do not specify the
TYPE= option, PROC SURVEYFREQ computes Wald confidence limits (TYPE=WALD) by
default.

If you specify the CL(PSMALL) option, the procedure uses the specified confidence limit type for
extreme proportions (outside the PSMALL range) and uses Wald confidence limits for proportions
that are not outside the range. If you do not specify the CL(PSMALL) option, the procedure uses
the specified confidence limit type for all proportions.

You can specify one of the following confidence limit types:

CLOPPERPEARSON

CP
requests modified Clopper-Pearson (exact) confidence limits for proportions. For more
information, see the section “Modified Clopper-Pearson Confidence Limits” on page 8018.

LOGIT
requests logit confidence limits for proportions. For more information, see the section “Logit
Confidence Limits” on page 8018.

WALD
requests standard Wald (“linear”) confidence limits for proportions. This is the default
confidence limit type if you do not specify the TYPE= option. For more information, see the
section “Wald Confidence Limits” on page 8017.

WILSON

SCORE
requests modified Wilson (score) confidence limits for proportions. For more information,
see the section “Modified Wilson Confidence Limits” on page 8018.

CLWT
requests confidence limits for the weighted frequencies (totals) in the crosstabulation table. You can
specify the confidence level in the ALPHA= option. By default, ALPHA=0.05, which produces 95%
confidence limits. For more information, see the section “Confidence Limits for Totals” on page 8016.

COLUMN < (option) >
displays the column percentage (estimated proportion of the column total) for each cell in a two-way
table. The COLUMN option also provides the standard errors of the column percentages. For more
information, see the section “Row and Column Proportions” on page 8010. This option has no effect
for one-way tables.

You can specify the following option:

DEFF
displays the design effect for each column percentage in the crosstabulation table. For more
information, see the section “Design Effect” on page 8020.
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COV
requests the covariance matrix of the table cell frequency estimates. For more information, see the
section “Covariances of Frequency Estimates” on page 8008.

COVP
requests the covariance matrix of the proportion estimates.

CV
displays the coefficient of variation for each percentage (proportion) estimate in the crosstabulation
table. For more information, see the section “Coefficient of Variation” on page 8020.

CVWT
displays the coefficient of variation for each weighted frequency (estimated total), in the crosstabulation
table. For more information, see the section “Coefficient of Variation” on page 8020.

DEFF
displays the design effect for each overall percentage (proportion) estimate in the crosstabulation table.
For more information, see the section “Design Effect” on page 8020.

To request design effects for row or column percentages, specify the DEFF option in parentheses after
the ROW or COLUMN option.

DEVIATION
displays the deviations of the weighted frequencies from the expected weighted frequencies (weighted
frequency – expected) in the crosstabulation table. The expected weighted frequencies are computed
under the null hypothesis that the row and column variables are independent. You can display the
expected values by specifying the EXPECTED option. For more information, see the section “Expected
Weighted Frequency” on page 8021. This option has no effect for one-way tables.

DF=df
specifies the degrees of freedom for the analysis. The value of df must be a nonnegative number. By
default, PROC SURVEYFREQ computes the degrees of freedom as described in the section “Degrees
of Freedom” on page 8019.

PROC SURVEYFREQ uses the value df to obtain the t-percentile for confidence limits for proportions,
totals, and other statistics. For more information, see the section “Confidence Limits for Proportions”
on page 8016. PROC SURVEYFREQ also uses df to compute the denominator degrees of freedom for
the F statistics in the Rao-Scott and Wald chi-square tests. For more information, see the sections “Rao-
Scott Chi-Square Test” on page 8028, “Rao-Scott Likelihood Ratio Chi-Square Test” on page 8033,
“Wald Chi-Square Test” on page 8035, and “Wald Log-Linear Chi-Square Test” on page 8036.

EXPECTED
displays the expected weighted frequencies for the cells in the crosstabulation table. The expected
weighted frequencies are computed under the null hypothesis that the row and column variables are
independent. For more information, see the section “Expected Weighted Frequency” on page 8021.
This option has no effect for one-way tables.

KAPPA
requests the simple kappa coefficient with its standard error and confidence limits. The kappa coefficient
can be computed for square two-way tables, where the number of rows equals the number of columns.
For more information, see the section “Simple Kappa Coefficient” on page 8025.
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The kappa coefficient is available when you specify variance estimation by the jackknife method
(VARMETHOD=JACKKNIFE) or by balanced repeated replication (VARMETHOD=BRR); the kappa
coefficient is not available with the Taylor series method (VARMETHOD=TAYLOR).

You can specify the level for the kappa confidence limits in the ALPHA= option. By default, AL-
PHA=0.05, which produces 95% confidence limits.

LRCHISQ < (options) >
requests the Rao-Scott likelihood ratio chi-square test. This is a design-adjusted test that is com-
puted by applying a design correction to the weighted likelihood ratio chi-square statistic. By de-
fault, PROC SURVEYFREQ provides a first-order Rao-Scott likelihood ratio test. If you specify
LRCHISQ(SECONDORDER), the procedure provides a second-order (Satterthwaite) Rao-Scott likeli-
hood ratio test. For more information, see the section “Rao-Scott Likelihood Ratio Chi-Square Test”
on page 8033.

For one-way tables, the LRCHISQ option produces a design-based likelihood ratio goodness-of-fit test.
By default, the null hypothesis is equal proportions. If you specify null hypothesis proportions in the
TESTP= option, the LRCHISQ option produces a design-based likelihood ratio test for the specified
proportions.

By default for one-way tables, and for first-order tests for two-way tables, the design correction is
computed from proportion estimates. If you specify LRCHISQ(MODIFIED), the design correction
is computed from null hypothesis proportions. For second-order tests for two-way tables, the design
correction is always computed from null hypothesis proportions.

You can specify the following options:

FIRSTORDER
requests a first-order Rao-Scott likelihood ratio test. This is the default for the LRCHISQ
option; if you do not specify LRCHISQ(SECONDORDER), the procedure provides a first-order
Rao-Scott test.

MODIFIED
uses the null hypothesis proportions to compute the Rao-Scott design correction. By default (if
you do not specify LRCHISQ(MODIFIED)), the procedure uses proportion estimates to compute
the design correction for all first-order tests and for second-order tests for one-way tables. For
second-order tests for two-way tables, the procedure always uses null hypothesis proportions to
compute the design correction.

SECONDORDER
requests a second-order (Satterthwaite) Rao-Scott likelihood ratio test. For more information, see
the section “Rao-Scott Likelihood Ratio Chi-Square Test” on page 8033.

NOCELLPERCENT
suppresses the display of overall cell percentages in the crosstabulation table, as well as the standard
errors of the percentages. The NOCELLPERCENT option does not suppress the display of row or
column percentages, which you can request by specifying the ROW or COLUMN option.

NOFREQ
suppresses the display of cell frequencies in the crosstabulation table. The NOFREQ option also
suppresses the display of row, column, and overall table frequencies.
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NOPERCENT
suppresses the display of all percentages in the crosstabulation table. The NOPERCENT option also
suppresses the display of standard errors of the percentages. Use the NOCELLPERCENT option to
suppress display of overall cell percentages but allow display of row or column percentages.

NOPRINT
suppresses the display of frequency and crosstabulation tables but displays all requested statistical
tests. This option disables the Output Delivery System (ODS) for the suppressed tables. For more
information, see Chapter 20, “Using the Output Delivery System.”

NOSPARSE
suppresses the display of variable levels with zero frequency in two-way tables. By default, the
procedure displays all levels of the column variable within each level of the row variable, including any
column variable levels with zero frequency for that row. For multiway tables, the procedure displays
all levels of the row variable for each layer of the table by default, including any row variable levels
with zero frequency for the layer.

NOSTD
suppresses the display of all standard errors in the crosstabulation table.

NOTOTAL
suppresses the display of row totals, column totals, and overall totals in the crosstabulation table.

NOWT
suppresses the display of weighted frequencies in the crosstabulation table. The NOWT option also
suppresses the display of standard errors of the weighted frequencies.

OR

RELRISK
requests estimates of the odds ratio, the column 1 relative risk, and the column 2 relative risk for 2 � 2
tables. The OR option also provides confidence limits for these statistics. For more information, see
the section “Odds Ratio and Relative Risks” on page 8023.

You can specify the confidence level in the ALPHA= option. By default, ALPHA=0.05, which produces
95% confidence limits.

PEARSONRES
displays each crosstabulation table cell’s Pearson residual, which is the square root of the ta-
ble cell’s contribution to the Pearson chi-square statistic. The Pearson residual is computed as
.weighted frequency � expected/ =

p
expected, where weighted frequency is the weighted frequency

of the table cell and expected is the expected weighted frequency, which is computed under the null
hypothesis that the row and column variables are independent. You can display the expected values,
the deviations, and the cell chi-squares by specifying the EXPECTED, DEVIATION, and CELLCHI2
options, respectively. For more information, see the sections “Expected Weighted Frequency” on
page 8021 and “Rao-Scott Chi-Square Test” on page 8028. This option has no effect for one-way
tables.
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PLOTS < (global-plot-options) > < =plot-request < (plot-options) > >

PLOTS < (global-plot-options) >

< =(plot-request < (plot-options) > < . . . plot-request < (plot-options) > > ) >
controls the plots that are produced through ODS Graphics. Plot-requests identify the plots, and
plot-options control the appearance and content of the plots. You can specify plot-options in parentheses
after a plot-request . A global-plot-option applies to all plots for which it is available unless it is altered
by a specific plot-option. You can specify global-plot-options in parentheses after the PLOTS option.

When you specify only one plot-request , you can omit the parentheses around the plot-request . For
example:

plots=all
plots=wtfreqplot
plots=(wtfreqplot oddsratioplot)
plots(only)=(riskdiffplot relriskplot)

ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;
proc surveyfreq;

tables treatment*response / chisq plots=wtfreqplot;
weight wt;

run;
ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

If ODS Graphics is enabled but you do not specify the PLOTS= option, PROC SURVEYFREQ
produces all plots that are associated with the analyses that you request, with the exception of weighted
frequency plots and mosaic plots. To produce a weighted frequency plot or mosaic plot when ODS
Graphics is enabled, you must specify the WTFREQPLOT or MOSAICPLOT plot-request, or you
must specify the PLOTS=ALL option. PROC SURVEYFREQ produces the remaining plots (listed in
Table 97.5) by default when you request the corresponding TABLES statement options.

You can suppress default plots and request specific plots by using the PLOTS(ONLY)= option;
PLOTS(ONLY)=(plot-requests) produces only the plots that are specified as plot-requests. You can
suppress all plots by specifying the PLOTS=NONE option.

See Figure 97.4 and Figure 97.7 for examples of plots that PROC SURVEYFREQ produces. For
information about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.”
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Plot Requests

Table 97.5 lists the available plot-requests together with their required TABLES statement options.
Descriptions of the plot-requests follow the table in alphabetical order.

Table 97.5 Plot Requests

Plot Request Description Required TABLES Statement Option

ALL All plots None
KAPPAPLOT Kappa plot AGREE or KAPPA (h � r � r table)
MOSAICPLOT Mosaic plot Crosstabulation table request
NONE No plots None
ODDSRATIOPLOT Odds ratio plot OR (h � 2 � 2 table)
RELRISKPLOT Relative risk plot OR (h � 2 � 2 table)
RISKDIFFPLOT Risk difference plot RISK, RISK1, or RISK2 (h � 2 � 2 table)
WTFREQPLOT Weighted frequency plot Frequency or crosstabulation table request
WTKAPPAPLOT Weighted kappa plot AGREE or WTKAPPA (h � r � r table, r > 2)

The following plot-requests are available:

ALL
requests all plots that are associated with the specified analyses. If you specify the PLOTS=ALL
option, PROC SURVEYFREQ also produces the weighted frequency and mosaic plots that are
associated with the tables that you request. (PROC SURVEYFREQ does not produce weighted
frequency and mosaic plots by default when ODS Graphics is enabled.)

KAPPAPLOT < (plot-options) >
requests a plot of kappa coefficients with confidence limits. Kappa plots are available for multiway
square tables and display the simple kappa coefficient (with confidence limits) for each two-way
table layer. To produce a kappa plot, you must specify the KAPPA or AGREE option in the
TABLES statement to compute kappa coefficients.

Table 97.6 lists the plot-options that are available for kappa plots. For descriptions of the
plot-options, see the subsection “Plot Options.”

Table 97.6 Plot Options for KAPPAPLOT and WTKAPPAPLOT

Plot Option Description Values

CLDISPLAY= Error bar type BAR, LINE, LINEARROW,
SERIF�, or SERIFARROW

NPANELPOS= Statistics per graphic Number (All�)
ORDER= Order of two-way levels ASCENDING or DESCENDING
RANGE= Range to display Values or CLIP
STATS Statistic values None
�Default
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MOSAICPLOT < (plot-options) >
requests a mosaic plot. Mosaic plots are available for crosstabulation tables. For multiway tables,
PROC SURVEYFREQ provides a mosaic plot for each two-way table layer.

To produce a mosaic plot, you must specify the MOSAICPLOT plot-request in the PLOTS=
option, or you must specify the PLOTS=ALL option. PROC SURVEYFREQ does not produce
mosaic plots by default when ODS Graphics is enabled.

Mosaic plots display tiles that correspond to the crosstabulation table cells. The areas of the tiles
are proportional to the weighted frequencies of the table cells. The column variable is displayed
on the X axis, and the tile widths are proportional to the relative weighted frequencies of the
column variable levels. The row variable is displayed on the Y axis, and the tile heights are
proportional to the relative weighted frequencies of the row levels within column levels. For
more information, see Friendly (2000).

By default, the colors of the tiles correspond to the row variable levels. If you specify the
COLORSTAT plot-option, the tiles are colored according to the values of the Pearson residuals.

You can specify the following plot-options:

COLORSTAT < =PEARSONRES >
colors the mosaic plot tiles according to the values of the Pearson residuals. A table cell’s
Pearson residual is the square root of its contribution to the Pearson chi-square statistic.
The Pearson residual is computed as .weighted frequency � expected/ =

p
expected, where

weighted frequency is the weighted frequency of the table cell and expected is the expected
weighted frequency. You can specify the PEARSONRES option to display the Pearson
residuals in the crosstabulation table.

SQUARE
produces a square mosaic plot, where the height of the Y axis equals the width of the X axis.
In a square mosaic plot, the scale of the relative weighted frequencies is the same on both
axes. By default, PROC SURVEYFREQ produces a rectangular mosaic plot.

NONE
suppresses all plots.

ODDSRATIOPLOT < (plot-options) >
requests a plot of odds ratios with confidence limits. Odds ratio plots are available for multiway
2 � 2 tables and display the odds ratio (with confidence limits) for each 2 � 2 table layer. To
produce an odds ratio plot, you must specify the OR option in the TABLES statement for a
multiway 2 � 2 table.

Table 97.7 lists the plot-options that are available for odds ratio plots. For descriptions of the
plot-options, see the subsection “Plot Options.”
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Table 97.7 Plot Options for ODDSRATIOPLOT, RELRISKPLOT, and RISKDIFFPLOT

Plot Option Description Values

CLDISPLAY= Error bar type BAR, LINE, LINEARROW,
SERIF�, or SERIFARROW

COLUMN=�� Risk column 1� or 2
LOGBASE=��� Axis scale 2, E, or 10
NPANELPOS= Statistics per graphic Number (All�)
ORDER= Order of two-way levels ASCENDING or DESCENDING
RANGE= Range to display Values or CLIP
STATS Statistic values None
�Default
��Available for RELRISKPLOT and RISKDIFFPLOT
���Available for ODDSRATIOPLOT and RELRISKPLOT

RELRISKPLOT < (plot-options) >
requests a plot of relative risks with confidence limits. Relative risk plots are available for
multiway 2 � 2 tables and display the relative risk (with confidence limits) for each 2 � 2 table
layer. To produce a relative risk plot, you must specify the OR option in the TABLES statement
for a multiway 2 � 2 table.

Table 97.7 lists the plot-options that are available for relative risk plots. For descriptions of the
plot-options, see the subsection “Plot Options.”

RISKDIFFPLOT < (plot-options) >
requests a plot of risk differences with confidence limits. Risk difference plots are available for
multiway 2� 2 tables and display the risk difference (with confidence limits) for each 2� 2 table
layer. To produce a risk difference plot, you must specify the RISK, RISK1, or RISK2 option in
the TABLES statement for a multiway 2 � 2 table.

Table 97.7 lists the plot-options that are available for risk difference plots. For descriptions of the
plot-options, see the subsection “Plot Options.”

WTFREQPLOT < (plot-options) >
requests a weighted frequency plot. Weighted frequency plots are available for frequency and
crosstabulation tables. For multiway tables, PROC SURVEYFREQ provides a two-way weighted
frequency plot for each two-way table layer.

To produce a weighted frequency plot, you must specify the WTFREQPLOT plot-request in the
PLOTS= option, or you must specify the PLOTS=ALL option. PROC SURVEYFREQ does not
produce weighted frequency plots by default when ODS Graphics is enabled.

By default, PROC SURVEYFREQ displays weighted frequency plots as bar charts. You can
specify the TYPE=DOTPLOT plot-option to display frequency plots as dot plots. You can
plot weighted percentages instead of frequencies by specifying the SCALE=PERCENT plot-
option. There are four frequency plot layouts available, which you can request by specifying the
TWOWAY= plot-option. For more information, see the subsection “Plot Options.”
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By default, the primary grouping of graph cells in a two-way layout is by column variable.
Row variable levels are then displayed within column variable levels. You can specify the
GROUPBY=ROW plot-option to group first by row variable.

Weighted frequency plots for one-way tables display confidence limits by default. For
two-way tables, weighted frequency plots display confidence limits by default in the
TWOWAY=GROUPVERTICAL and TWOWAY=GROUPHORIZONTAL layouts. You can
suppress confidence limits by specifying the CLBAR=NO plot-option. Confidence limits are not
available for two-way plots in the TWOWAY=CLUSTER and TWOWAY=STACKED layouts.

Table 97.8 lists the plot-options that are available for weighted frequency plots. For descriptions
of the plot-options, see the subsection “Plot Options.”

Table 97.8 Plot Options for WTFREQPLOT

Plot Option Description Values

CLBAR= Confidence limit bars NO or YES�

GROUPBY=�� Primary group COLUMN� or ROW
NPANELPOS=�� Sections per panel Number (4�)
ORIENT= Orientation HORIZONTAL or VERTICAL�

SCALE= Scale PERCENT or WTFREQ�

TWOWAY=�� Two-way layout CLUSTER, GROUPHORIZONTAL,
GROUPVERTICAL�, or STACKED

TYPE= Type BARCHART� or DOTPLOT
�Default
��For two-way tables

WTKAPPAPLOT < (plot-options) >
requests a plot of weighted kappa coefficients with confidence limits. Weighted kappa plots are
available for multiway square tables and display the weighted kappa coefficient (with confidence
limits) for each two-way table layer. To produce a weighted kappa plot, you must specify the
WTKAPPA or AGREE option in the TABLES statement to compute weighted kappa coefficients,
and the table dimension must be greater than 2.

Table 97.6 lists the plot-options that are available for weighted kappa plots. For descriptions of
the plot-options, see the subsection “Plot Options.”

Global Plot Options

A global-plot-option applies to all plots for which the option is available unless it is altered by an
individual plot-option. All plot-options that are listed in Table 97.8 and Table 97.7 are available as
global-plot-options. The ONLY option is also available as a global-plot-option.

You can specify global-plot-options in parentheses after the PLOTS option. For example:

plots(order=ascending stats)=(riskdiffplot oddsratioplot)
plots(only)=wtfreqplot
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In addition to the plot-options that are listed in Table 97.8 and Table 97.7, you can specify the following
global-plot-option in parentheses after the PLOTS option:

ONLY
suppresses the default plots and requests only the plots that are specified as plot-requests.

Plot Options

You can specify the following plot-options in parentheses after a plot-request .

CLBAR=NO | YES
controls the confidence limit error bars in weighted frequency plots (WTFREQPLOT). By default,
CLBAR=YES, which displays confidence limits error bars; CLBAR=NO suppresses confidence
limit error bars.

This plot-option applies to all weighted frequency plots except those two-way plots that are
displayed in the TWOWAY=CLUSTER or TWOWAY=STACKED layout. Confidence limit error
bars are not available in the TWOWAY=CLUSTER and TWOWAY=STACKED layouts.

CLDISPLAY=BAR < width > | LINE | LINEARROW | SERIF | SERIFARROW
controls the appearance of the confidence limit error bars. This plot-option is available for the
following plots: KAPPAPLOT, ODDSRATIOPLOT, RELRISKPLOT, RISKDIFFPLOT, and
WTKAPPAPLOT.

The default is CLDISPLAY=SERIF, which displays the confidence limits as lines with serifs.
CLDISPLAY=LINE displays the confidence limits as plain lines without serifs. The CLDIS-
PLAY=SERIFARROW and CLDISPLAY=LINEARROW plot-options display arrowheads on
any error bars that are clipped by the RANGE= plot-option; if an entire error bar is cut from the
plot, the plot displays an arrowhead that points toward the statistic.

CLDISPLAY=BAR displays the confidence limits as bars. By default, the width of the bars
equals the size of the marker for the estimate. You can control the width of the bars and the
size of the marker by specifying the value of width as a percentage of the distance between bars,
0 < width � 1. The bar might disappear when the value of width is very small.

COLUMN=1 | 2
specifies the 2�2 table column to use to compute the risk (proportion). This plot-option is available
for the relative risk plot (RELRISKPLOT) and the risk difference plot (RISKDIFFPLOT). If
you specify COLUMN=1, the plot displays the column 1 relative risks or the column 1 risk
differences. Similarly, if you specify COLUMN=2, the plot displays the column 2 relative risks
or risk differences.

For relative risk plots, the default is COLUMN=1. For risk difference plots, the default if
COLUMN=1 if you request computation of both column 1 and column 2 risk differences with the
RISK option. If you request computation of only column 1 (or only column 2) risk differences by
specifying the RISK1 (or RISK2) option, by default the risk difference plot displays these risk
differences.
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GROUPBY=COLUMN | ROW
specifies the primary grouping for two-way weighted frequency plots, which you can request by
specifying the WTFREQPLOT plot-request .

The default is GROUPBY=COLUMN, which groups graph cells first by column variable and
displays row variable levels within column variable levels. You can specify GROUPBY=ROW to
group first by row variable. In two-way and multiway table requests, the column variable is the
last variable specified and forms the columns of the crosstabulation table. The row variable is the
next-to-last variable specified and forms the rows of the table.

By default for a bar chart that is displayed in the TWOWAY=STACKED layout, bars correspond
to the column variable levels and row levels are displayed (stacked) within each column bar.
By default for a bar chart that is displayed in the TWOWAY=CLUSTER layout, bars are first
grouped by column variable levels, and row levels are displayed as adjacent bars within each
column-level group. You can reverse the default row and column variable groupings by specifying
GROUPBY=ROW.

LOGBASE=2 | E | 10
applies to the odds ratio plot (ODDSRATIOPLOT) and the relative risk plot (RELRISKPLOT).
This plot-option displays the odds ratio or relative risk axis on the log scale that you specify.

NPANELPOS=n
divides the plot into multiple panels that display at most jnj statistics or sections.

If n is positive, the number of statistics or sections per panel is balanced; if n is negative, the
number of statistics per panel is not balanced. For example, suppose you want to display 21 odds
ratios. NPANELPOS=20 displays two panels, the first with 11 odds ratios and the second with
10 odds ratios; NPANELPOS=–20 displays 20 odds ratios in the first panel but only 1 in the
second panel. This plot-option is available for all plots except mosaic plots and one-way weighted
frequency plots.

For two-way weighted frequency plots (WTFREQPLOT), NPANELPOS=n requests that pan-
els display at most jnj sections, where sections correspond to row or column variable lev-
els, depending on the type of plot and the grouping. By default, n=4 and each panel
includes at most four sections. This plot-option applies to two-way plots that are dis-
played in the TWOWAY=GROUPVERTICAL or TWOWAY=GROUPHORIZONTAL lay-
out. The NPANELPOS= plot-option does not apply to the TWOWAY=CLUSTER and
TWOWAY=STACKED layouts, which are always displayed in a single panel.

For plots that display statistics with confidence limits, NPANELPOS=n requests that panels
display at most jnj statistics. By default, n=0 and all statistics are displayed in a single panel. This
plot-option applies to the following plots: KAPPAPLOT, ODDSRATIOPLOT, RELRISKPLOT,
RISKDIFFPLOT, and WTKAPPAPLOT.

ORDER=ASCENDING | DESCENDING
displays the two-way table (layer) statistics in order of the statistic value. If you specify OR-
DER=ASCENDING or ORDER=DESCENDING, the plot displays the statistics in ascending or
descending order, respectively. By default, the order of the statistics in the plot matches the order
that the two-way table layers appear in the multiway table.

This plot-option is available for the following plots: KAPPAPLOT, ODDSRATIOPLOT, REL-
RISKPLOT, RISKDIFFPLOT, and WTKAPPAPLOT.
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ORIENT=HORIZONTAL | VERTICAL
controls the orientation of weighted frequency plots (WTFREQPLOT). This plot-option places
the variable levels on the Y axis and the weighted frequencies or percentages on the X axis.
ORIENT=VERTICAL places the variable levels on the X axis. The default orientation is
ORIENT=VERTICAL for bar charts (TYPE=BARCHART) and ORIENT=HORIZONTAL for
dot plots (TYPE=DOTPLOT).

RANGE=(< min > < , max > )| CLIP
specifies the range of values to display. If you specify RANGE=CLIP, the confidence limits
are clipped and the display range is determined by the minimum and maximum values of the
estimates. By default, the display range includes all confidence limits.

This plot-option is available for the following plots: KAPPAPLOT, ODDSRATIOPLOT, REL-
RISKPLOT, RISKDIFFPLOT, and WTKAPPAPLOT.

SCALE=PERCENT | WTFREQ
specifies the scale of the frequencies in weighted frequency plots (WTFREQPLOT).
SCALE=WTFREQ displays weighted frequencies (totals), and SCALE=PERCENT displays
percentages. The default scale is SCALE=WTFREQ.

STATS
displays the values of the statistics and their confidence limits on the right side of the plot. If you
do not specify this plot-option, the statistic values are not displayed.

This plot-option is available for the following plots: KAPPAPLOT, ODDSRATIOPLOT, REL-
RISKPLOT, RISKDIFFPLOT, and WTKAPPAPLOT.

TWOWAY=CLUSTER | GROUPHORIZONTAL | GROUPVERTICAL | STACKED
specifies the layout for two-way weighted frequency plots (WTFREQPLOT).

All TWOWAY= layouts are available for bar charts (TYPE=BARCHART). All TWOWAY=
layouts except TWOWAY=CLUSTER are available for dot plots (TYPE=DOTPLOT). Confidence
limits (CLBAR=) can be displayed in the GROUPVERTICAL and GROUPHORIZONTAL
layouts. Confidence limits are not available in the STACKED and CLUSTER layouts. The
ORIENT= and GROUPBY= plot-options are available for all TWOWAY= layouts.

The default two-way layout is TWOWAY=GROUPVERTICAL, which produces a grouped
plot that has a vertical common baseline. By default for bar charts (TYPE=BARCHART,
ORIENT=VERTICAL), the X axis displays column variable levels, and the Y axis displays
weighted frequencies. The plot includes a vertical (Y-axis) block for each row variable level. The
relative positions of the graph cells in this plot layout are the same as the relative positions of the
table cells in the crosstabulation table. You can reverse the default row and column grouping by
specifying the GROUPBY=ROW plot-option.

The TWOWAY=GROUPHORIZONTAL layout produces a grouped plot that has a horizontal
common baseline. By default (GROUPBY=COLUMN), the plot displays a block on the X axis
for each column variable level. Within each column-level block, the plot displays row variable
levels.

The TWOWAY=STACKED layout produces stacked displays of weighted frequencies. By default
(GROUPBY=COLUMN) in a stacked bar chart, the bars correspond to column variable levels,
and row levels are stacked within each column level. By default in a stacked dot plot, the dotted
lines correspond to column levels, and cell weighted frequencies are plotted as data dots on the
corresponding column line. The dot color identifies the row level.
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The TWOWAY=CLUSTER layout, which is available only for bar charts, displays groups of
adjacent bars. By default, the primary grouping is by column variable level, and row levels are
displayed within each column level.

You can reverse the default row and column grouping in any layout by specifying the
GROUPBY=ROW plot-option. The default is GROUPBY=COLUMN, which groups first by
column variable.

TYPE=BARCHART | DOTPLOT
specifies the type (form) of the weighted frequency plots (WTFREQPLOT). TYPE=BARCHART
produces a bar chart and TYPE=DOTPLOT produces a dot plot. The default type is
TYPE=BARCHART.

RISK

RISKDIFF
requests risk statistics for 2 � 2 tables. The RISK option also provides standard errors and confidence
limits for these statistics. Risk statistics include the row 1 risk (proportion), row 2 risk, overall risk,
and risk difference. For more information, see the section “Risks and Risk Difference” on page 8022.

The RISK option provides both column 1 and column 2 risks. To request only column 1 or column 2
risks, use the RISK1 or RISK2 option.

You can specify the confidence level in the ALPHA= option. By default, ALPHA=0.05, which produces
95% confidence limits.

RISK1

RISKDIFF1
requests column 1 risk statistics for 2 � 2 tables, together with their standard errors and confidence
limits. Risk statistics include the row 1 risk (proportion), row 2 risk, overall risk, and risk difference.
For more information, see the section “Risks and Risk Difference” on page 8022.

You can specify the confidence level in the ALPHA= option. By default, ALPHA=0.05, which produces
95% confidence limits.

RISK2

RISKDIFF2
requests column 2 risk statistics for 2 � 2 tables, together with their standard errors and confidence
limits. Risk statistics include the row 1 risk (proportion), row 2 risk, overall risk, and risk difference.
For more information, see the section “Risks and Risk Difference” on page 8022.

You can specify the confidence level in the ALPHA= option. By default, ALPHA=0.05, which produces
95% confidence limits.

ROW < (option) >
displays the row percentage (estimated proportion of the row total) for each cell in a two-way table.
The ROW option also provides the standard errors of the row percentages. For more information, see
the section “Row and Column Proportions” on page 8010. This option has no effect for one-way tables.

You can specify the following option:

DEFF
displays the design effect for each row percentage in the crosstabulation table. For more informa-
tion, see the section “Design Effect” on page 8020.
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TESTP=(values)
specifies null hypothesis proportions (test percentages) for chi-square tests for one-way tables
(goodness-of-fit tests). You can separate values with blanks or commas, and you must enclose
the list of values in parentheses. Specify values in probability form as numbers between 0 and 1, where
the proportions sum to 1. Or specify values in percentage form as numbers between 0 and 100, where
the percentages sum to 100. PROC SURVEYFREQ treats the value 1 as the percentage form 1%. The
number of TESTP= values must equal the number of variable levels in the one-way table. List these
values in the same order in which the corresponding variable levels appear in the output.

When you specify the TESTP= option, PROC SURVEYFREQ displays the specified test percentages
in the one-way frequency table. The TESTP= option has no effect for two-way tables.

PROC SURVEYFREQ uses the TESTP= values for the one-way Rao-Scott chi-square test (CHISQ)
and for the one-way Rao-Scott likelihood ratio chi-square test (LRCHISQ). See the sections “Rao-Scott
Chi-Square Test” on page 8028 and For more information, see the section “Rao-Scott Likelihood Ratio
Chi-Square Test” on page 8033.

VAR
displays the variance estimate for each percentage in the crosstabulation table. For more information,
see the section “Proportions” on page 8008. By default, PROC SURVEYFREQ displays the standard
errors of the percentages.

VARWT
displays the variance estimate for each weighted frequency, or estimated total, in the crosstabulation
table. For more information, see the section “Totals” on page 8006. By default, PROC SURVEYFREQ
displays the standard deviations of the weighted frequencies.

WCHISQ
requests the Wald chi-square test for two-way tables. For more information, see the section “Wald
Chi-Square Test” on page 8035.

WLLCHISQ
requests the Wald log-linear chi-square test for two-way tables. For more information, see the section
“Wald Log-Linear Chi-Square Test” on page 8036.

WTFREQ
displays totals (weighted frequencies) and their standard errors when you do not specify a WEIGHT or
REPWEIGHTS statement. By default, PROC SURVEYFREQ displays the weighted frequencies only
when you specify a WEIGHT or REPWEIGHTS statement. When you do not specify a WEIGHT or
REPWEIGHTS statement, PROC SURVEYFREQ assigns all observations a weight of one.

WTKAPPA < (options) >
requests the weighted kappa coefficient with its standard error and confidence limits. Weighted kappa
coefficients can be computed for square two-way tables, where the number of rows equals the number
of columns. For 2 � 2 tables, the weighted kappa coefficient equals the simple kappa coefficient, and
PROC SURVEYFREQ displays only the simple kappa coefficient. For more information, see the
section “Weighted Kappa Coefficient” on page 8026.
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Weighted kappa coefficients are available when you specify variance estimation by the jackknife method
(VARMETHOD=JACKKNIFE) or by balanced repeated replication (VARMETHOD=BRR); weighted
kappa coefficients are not available with the Taylor series method (VARMETHOD=TAYLOR).

The weighted kappa coefficient is computed by using agreement weights that reflect the relative
agreement between pairs of variable levels. Agreement weights are not the same as sampling weights,
which you provide by specifying the WEIGHT statement. PROC SURVEYFREQ uses the sampling
weights to compute both the simple kappa and weighted kappa coefficients. For more information, see
the section “Weighted Kappa Coefficient” on page 8026.

You can specify the confidence level in the ALPHA= option. By default, ALPHA=0.05, which produces
95% confidence limits.

You can specify the following options:

PRINTKWTS
displays the agreement weights that PROC SURVEYFREQ uses to compute the weighted kappa
coefficient. Agreement weights reflect the relative agreement between pairs of variable levels. By
default, PROC SURVEYFREQ computes these weights by using the Cicchetti-Allison form. If
you specify the WT=FC option, the procedure uses the Fleiss-Cohen form of agreement weights.
For more information, see the section “Weighted Kappa Coefficient” on page 8026.

WT=FC
requests Fleiss-Cohen agreement weights for the weighted kappa computation. By default,
PROC SURVEYFREQ uses Cicchetti-Allison agreement weights to compute the weighted kappa
coefficient. Agreement weights reflect the relative agreement between pairs of variable levels.
For more information, see the section “Weighted Kappa Coefficient” on page 8026.

WEIGHT Statement
WEIGHT variable ;

The WEIGHT statement names the variable that contains the sampling weights. This variable must be
numeric, and the sampling weights must be positive numbers. If an observation has a weight that is
nonpositive or missing, then the procedure omits that observation from the analysis. For more information,
see the section “Missing Values” on page 8001. If you specify more than one WEIGHT statement, the
procedure uses only the first WEIGHT statement and ignores the rest.

If you do not specify a WEIGHT statement but provide replicate weights by specifying a REPWEIGHTS
statement, PROC SURVEYFREQ uses the average of each observation’s replicate weights as the observation’s
weight.

If you do not specify a WEIGHT statement or a REPWEIGHTS statement, PROC SURVEYFREQ assigns
all observations a weight of one.
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Details: SURVEYFREQ Procedure

Specifying the Sample Design
PROC SURVEYFREQ produces tables and statistics that are based on the sample design used to obtain the
survey data. PROC SURVEYFREQ can be used for single-stage or multistage designs, with or without strati-
fication, and with or without unequal weighting. To analyze your survey data with PROC SURVEYFREQ,
you need to provide sample design information for the procedure. This information can include design strata,
clusters, and sampling weights. You can provide sample design information by specifying the STRATA,
CLUSTER, and WEIGHT statements and the RATE= or TOTAL= option in the PROC SURVEYFREQ
statement.

If you provide replicate weights for BRR or jackknife variance estimation, you do not need to specify a
STRATA or CLUSTER statement. Otherwise, you should specify STRATA and CLUSTER statements
whenever your design includes stratification and clustering.

When there are clusters (PSUs) in the sample design, the procedure estimates the variance by using the
PSUs, as described in the section “Statistical Computations” on page 8004. For a multistage sample design,
the variance estimation depends only on the first stage of the sample design. Therefore, the required input
includes only first-stage cluster (PSU) and first-stage stratum identification. You do not need to input design
information about any additional stages of sampling.

Stratification

If your sample design is stratified at the first stage of sampling, use the STRATA statement to name the
variables that form the strata. The combinations of categories of STRATA variables define the strata in the
sample, where strata are nonoverlapping subgroups that were sampled independently. If your sample design
has stratification at multiple stages, you should identify only the first-stage strata in the STRATA statement.

If you use a REPWEIGHTS statement to provide replicate weights for BRR or jackknife variance estimation,
you do not need to specify a STRATA statement. Otherwise, you should specify a STRATA statement
whenever your design includes stratification. If you do not specify a STRATA statement or a REPWEIGHTS
statement, then PROC SURVEYFREQ assumes there is no stratification at the first stage.

Clustering

If your sample design selects clusters at the first stage of sampling, use the CLUSTER statement to name
the variables that identify the first-stage clusters, which are also called primary sampling units (PSUs). The
combinations of categories of CLUSTER variables define the clusters in the sample. If there is a STRATA
statement, clusters are nested within strata. If your sample design has clustering at multiple stages, you should
specify only the first-stage clusters (PSUs) in the CLUSTER statement. PROC SURVEYFREQ assumes that
each cluster that is defined by the CLUSTER statement variables represents a PSU in the sample, and that
each observation belongs to one PSU.

If you use a REPWEIGHTS statement to provide replicate weights for BRR or jackknife variance estimation,
you do not need to specify a CLUSTER statement. Otherwise, you should specify a CLUSTER statement
whenever your design includes clustering at the first stage of sampling. If you do not specify a CLUSTER
statement, then PROC SURVEYFREQ treats each observation as a PSU.
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Weighting

If your sample design includes unequal weighting, use the WEIGHT statement to name the variable that
contains the sampling weights. Sampling weights must be positive numbers. If an observation has a weight
that is nonpositive or missing, the procedure omits that observation from the analysis. For more information,
see the section “Missing Values” on page 8001.

If you do not specify a WEIGHT statement but include a REPWEIGHTS statement, PROC SURVEYFREQ
uses the average of each observation’s replicate weights as the observation’s weight. If you do not specify a
WEIGHT statement or a REPWEIGHTS statement, PROC SURVEYFREQ assigns all observations a weight
of one.

Population Totals and Sampling Rates

To include a finite population correction (fpc) in Taylor series variance estimation, you can input either the
sampling rate or the population total by using the RATE= or TOTAL= option in the PROC SURVEYFREQ
statement. (You cannot specify both of these options in the same PROC SURVEYFREQ statement.) The
RATE= and TOTAL= options apply only to Taylor series variance estimation. The procedure does not use a
finite population correction for BRR or jackknife variance estimation.

If you do not specify the RATE= or TOTAL= option, Taylor series variance estimation does not include a
finite population correction. For fairly small sampling fractions, it is appropriate to ignore this correction.
For more information, see Cochran (1977) and Kish (1965).

If your design has multiple stages of selection and you are specifying the RATE= option, you should input
the first-stage sampling rate, which is the ratio of the number of PSUs in the sample to the total number of
PSUs in the study population. If you are specifying the TOTAL= option for a multistage design, you should
input the total number of PSUs in the study population.

For a nonstratified sample design, or for a stratified sample design with the same sampling rate or the same
population total in all strata, you can use the RATE=value or TOTAL=value option. If your sample design is
stratified with different sampling rates or population totals in different strata, use the RATE=SAS-data-set or
TOTAL=SAS-data-set option to name a SAS data set that contains the stratum sampling rates or totals. This
data set is called a secondary data set, as opposed to the primary data set that you specify in the DATA=
option.

The secondary data set must contain all the stratification variables listed in the STRATA statement and
all the variables in the BY statement. Furthermore, the BY groups must appear in the same order as
in the primary data set. If there are formats that are associated with the STRATA variables and the BY
variables, then the formats must be consistent in the primary and the secondary data sets. If you specify the
TOTAL=SAS-data-set option, the secondary data set must have a variable named _TOTAL_ that contains the
stratum population totals. If you specify the RATE=SAS-data-set option, the secondary data set must have a
variable named _RATE_ that contains the stratum sampling rates. If the secondary data set contains more
than one observation for any one stratum, the procedure uses the first value of _TOTAL_ or _RATE_ for that
stratum and ignores the rest.

The value in the RATE= option or the values of _RATE_ in the secondary data set must be nonnegative
numbers. You can specify value as a number between 0 and 1. Or you can specify value in percentage
form as a number between 1 and 100, and PROC SURVEYFREQ converts that number to a proportion. The
procedure treats the value 1 as 100% instead of 1%.

If you specify the TOTAL=value option, value must not be less than the sample size. If you provide stratum
population totals in a secondary data set, these values must not be less than the corresponding stratum sample
sizes.
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Domain Analysis
PROC SURVEYFREQ provides domain analysis through its multiway table capability. Domain analysis
refers to the computation of statistics for domains (subpopulations), in addition to the computation of statistics
for the entire study population. Formation of subpopulations can be unrelated to the sample design, and so
the domain sample sizes can actually be random variables. Domain analysis takes this variability into account
by using the entire sample to estimate the variance of domain estimates. Domain analysis is also known as
subgroup analysis, subpopulation analysis, and subdomain analysis. For more information about domain
analysis, see Lohr (2010), Cochran (1977), Fuller et al. (1989).

To request domain analysis, you should include the domain variable(s) in your TABLES statement request.
For example, specifying DOMAIN * A * B in a TABLES statement produces separate two-way tables of A
by B for each level of DOMAIN. If your domains are formed by more than one variable, you can specify
DomainVariable_1 * DomainVariable_2 * A * B, for example, to obtain two-way tables of A by B for each
domain formed by the different combinations of levels for DomainVariable_1 and DomainVariable_2. See
Example 97.2 for an example of domain analysis.

If you specify DOMAIN * A in a TABLES statement, the values of the variable DOMAIN form the table rows.
The two-way table lists levels of the variable A within each level of the row variable DOMAIN. Specify the
ROW option in the TABLES statement to obtain the row percentages and their standard errors. This provides
the one-way distribution of A for each domain (level of the variable DOMAIN).

Including the domain variables in a TABLES statement request provides a different analysis from the analysis
that you obtain by using a BY statement; a BY statement provides completely separate analyses of the BY
groups. You can use the BY statement to analyze the data set by subgroups, but it is critical to note that this
does not produce a valid domain analysis. The BY statement is appropriate only when the number of units in
each subgroup is known with certainty. For example, you can use a BY statement to obtain stratum level
estimates when the stratum sample sizes are fixed. When the subgroup sample size is a random variable, you
should include the domain variables in your TABLES statement request.

Missing Values

WEIGHT Variable

If an observation has a missing or nonpositive value for the WEIGHT variable, PROC SURVEYFREQ
excludes that observation from the analysis.

REPWEIGHTS Variables

If you provide replicate weights by specifying a REPWEIGHTS statement, all REPWEIGHTS variable
values must be nonmissing. Similarly, if you provide jackknife coefficients by specifying the JKCOEFS=
option in the REPWEIGHTS statement, all values of the JKCoefficient variable must be nonmissing. If any
replicate weight or jackknife coefficient is missing, PROC SURVEYFREQ does not perform the analysis.

STRATA and CLUSTER Variables

If an observation has a missing value for any STRATA or CLUSTER variable, PROC SURVEYFREQ
excludes that observation from the analysis unless you specify the MISSING option in the PROC
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SURVEYFREQ statement. If you specify the MISSING option, PROC SURVEYFREQ treats missing
values as a valid (nonmissing) category for all categorical variables, which include STRATA, CLUSTER,
and TABLES variables.

TABLES Variables

If an observation has a missing value for any variable in the TABLES request, PROC SURVEYFREQ
excludes that observation from the crosstabulation table (and all associated analyses) unless you specify
the MISSING or NOMCAR option in the PROC SURVEYFREQ statement. When the procedure excludes
observations with missing values from a table, it displays the total frequency of missing observations below
the table.

If you specify the MISSING option, PROC SURVEYFREQ treats missing values as a valid (nonmissing)
level for each TABLES variable. The procedure displays these levels in the crosstabulation table and includes
them in the computation of totals, percentages, and all other table statistics.

If you specify the NOMCAR option in the PROC SURVEYFREQ statement for Taylor series variance
estimation, the procedure includes observations with missing values of TABLES variables in the variance
computations. The NOMCAR option does not display missing levels in the crosstabulation table or compute
percentages and totals for missing levels.

The NOMCAR Option

The NOMCAR option in the PROC SURVEYFREQ statement includes observations with missing values of
TABLES variables in the variance computations as not missing completely at random (NOMCAR) for Taylor
series variance estimation. By default, observations are completely excluded from the analysis if they have
missing values for any of the variables in the current TABLES request. This default treatment is based on the
assumption that the values are missing completely at random (MCAR), and assumes that the analysis results
should not be substantially different between the missing and nonmissing groups. For more information, see
the section “Analysis Considerations” on page 8003.

When you specify the NOMCAR option, PROC SURVEYFREQ computes variance estimates by analyzing
the nonmissing values as a domain (subpopulation), where the entire population includes both nonmissing
and missing domains.

The NOMCAR option has no effect when you specify the MISSING option, which treats missing values as a
valid nonmissing level. The NOMCAR option does not affect the inclusion of observations with missing
values of the WEIGHT, CLUSTER, or STRATA variables. Observations with missing values of the WEIGHT
variable are always excluded from the analysis. Observations with missing values of the CLUSTER or
STRATA variables are excluded unless you specify the MISSING option.

The NOMCAR option applies only to Taylor series variance estimation VARMETHOD=TAYLOR.
The replication methods, which you can request by specifying the VARMETHOD=BRR and
VARMETHOD=JACKKNIFE options, do not use the NOMCAR option.

Degrees of Freedom

PROC SURVEYFREQ computes the degrees of freedom to obtain the t-percentile for confidence limits for
proportions, totals, and other statistics. The procedure also uses the degrees of freedom for the F statistics
in the Rao-Scott and Wald chi-square tests. The degrees of freedom computation depends on the sample
design and the variance estimation method. For more information, see the section “Degrees of Freedom” on
page 8019. Missing values can affect the degrees of freedom computation.
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Taylor Series Variance Estimation
The degrees of freedom can depend on the number of clusters, the number of strata, and the number of
observations. For Taylor series variance estimation, these numbers are based on the observations included in
the analysis of the individual table. These numbers do not count observations that are excluded from the table
due to missing values. If all values in a stratum are excluded from the analysis of a table as missing values,
then that stratum is called an empty stratum. Empty strata are not counted in the total number of strata for the
table. Similarly, empty clusters and missing observations are not included in the total counts of clusters and
observations that are used to compute the degrees of freedom for the analysis.

If you specify the MISSING option, missing values are treated as valid nonmissing levels and are included in
computing degrees of freedom. If you specify the NOMCAR option for Taylor series variance estimation,
observations with missing values of the TABLES variables are included in computing degrees of freedom.

Replicate-Based Variance Estimation
For BRR or jackknife variance estimation, by default PROC SURVEYFREQ computes the degrees of
freedom by using all valid observations in the input data set. A valid observation is an observation that has a
positive value of the WEIGHT variable and nonmissing values of the STRATA and CLUSTER variables
unless you specify the MISSING option. For information about valid observations, see the section “Data
Summary Table” on page 8038.

If you specify the DFADJ method-option for VARMETHOD=BRR or VARMETHOD=JACKKNIFE, the
procedure computes the degrees of freedom based on the nonmissing observations included in the individual
table request. This excludes any empty strata or clusters that occur when observations with missing values of
the TABLES variables are removed from the analysis for that table.

Table Summary Output Data Set

For each table request, PROC SURVEYFREQ produces a nondisplayed ODS table, “Table Summary,” which
contains the number of (nonmissing) observations, strata, and clusters that are included in the analysis of
the individual table. If there are missing observations, empty strata, or empty clusters excluded from the
analysis, the “Table Summary” data set also contains this information. If you request any confidence limits or
chi-square tests for the table, which require degrees of freedom, the “Table Summary” data set provides the
degrees of freedom.

Due to missing values, the number of observations used for an individual table analysis can differ from the
number of valid observations in the input data set, which is reported in the “Data Summary” table. Similarly,
a difference can also occur for the number of clusters or strata. See Example 97.3 for more information about
the “Table Summary” output data set.

If you specify the NOMCAR option for Taylor series variance estimation, the “Table Summary” data set
reflects all observations used for variance estimation, which includes those observations with missing values
of the TABLES variables.

Analysis Considerations

If you have missing values in your survey data for any reason (such as nonresponse), this can compromise the
quality of your survey results. An observation without missing values is called a complete respondent, and an
observation with missing values is called an incomplete respondent. If the complete respondents are different
from the incomplete respondents with regard to a survey effect or outcome, then survey estimates will be
biased and will not accurately represent the survey population. There are a variety of techniques in sample
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design and survey operations that can reduce nonresponse. After data collection is complete, you can use
imputation to replace missing values with acceptable values, and you can use sampling weight adjustments to
compensate for nonresponse. You should complete this data preparation and adjustment before you analyze
your data with PROC SURVEYFREQ. For more information, see Cochran (1977), Kalton and Kasprzyk
(1986), and Brick and Kalton (1996).

Statistical Computations

Variance Estimation

PROC SURVEYFREQ provides a choice of variance estimation methods for complex survey data. In addition
to the Taylor series linearization method, the procedures offer two replication-based (resampling) methods—
balanced repeated replication (BRR) and the delete-1 jackknife. These variance estimation methods usually
give similar, satisfactory results (Lohr 2010; Särndal, Swensson, and Wretman 1992; Wolter 1985). The
choice of a variance estimation method can depend on the sample design used, the sample design information
available, the parameters to be estimated, and computational issues. For more information, see Lohr (2010).

Taylor Series Variance Estimation
The Taylor series linearization method can be used to estimate standard errors of proportions and other
statistics for crosstabulation tables. For sample survey data, the proportion estimator is a ratio estimator
formed from estimators of totals. For example, to estimate the proportion in a crosstabulation table cell, the
procedure uses the ratio of the estimator of the cell total frequency to the estimator of the overall population
total, where these totals are linear statistics computed from the survey data. The Taylor series expansion
method obtains a first-order linear approximation for the ratio estimator and then uses the variance estimate
for this approximation to estimate the variance of the estimate itself (Woodruff 1971; Fuller 1975). For
more information about Taylor series variance estimation for sample survey data, see Lohr (2010), Särndal,
Swensson, and Wretman (1992), Lee, Forthofer, and Lorimor (1989), and Wolter (1985).

When there are clusters (PSUs) in the sample design, the Taylor series method estimates variance from the
variance among PSUs. When the design is stratified, the procedure combines stratum variance estimates
to compute the overall variance estimate. For a multistage sample design, the variance estimation depends
only on the first stage of the sample design. So the required input includes only first-stage cluster (PSU) and
first-stage stratum identification. You do not need to input design information about any additional stages of
sampling. This variance estimation method assumes that the first-stage sampling fraction is small, or the
first-stage sample is drawn with replacement, as it often is in practice.

For more information about Taylor series variance estimation, see the sections “Proportions” on page 8008,
“Row and Column Proportions” on page 8010, “Risks and Risk Difference” on page 8022, and “Odds Ratio
and Relative Risks” on page 8023.

Replication-Based Variance Estimation
Replication-based methods for variance estimation draw multiple replicates (subsamples) from the full
sample by following a specific resampling scheme. Commonly used resampling schemes include balanced
repeated replication (BRR) and the jackknife. PROC SURVEYFREQ estimates the parameter of interest
(a proportion, total, odds ratio, or other statistic) from each replicate, and then uses the variability among
replicate estimates to estimate the overall variance of the parameter estimate. For more information, see
Wolter (1985) and Lohr (2010).
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The BRR variance estimation method requires a stratified sample design with two PSUs in each stratum.
Each replicate is obtained by deleting one PSU per stratum according to the corresponding Hadamard matrix
and adjusting the original weights of the remaining PSUs. The adjusted weights are called replicate weights.
PROC SURVEYFREQ also provides Fay’s method, which is a modification of the BRR method. For more
information, see the section “Balanced Repeated Replication (BRR)” on page 8011.

The jackknife method deletes one PSU at a time from the full sample to create replicates, and modifies the
original weights to obtain replicate weights. The total number of replicates equals the number of PSUs. If
the sample design is stratified, each stratum must contain at least two PSUs, and the jackknife is applied
separately within each stratum. For more information, see the section “The Jackknife Method” on page 8014.

Instead of having PROC SURVEYFREQ generate replicate weights for the analysis, you can input your own
replicate weights with a REPWEIGHTS statement. This can be useful if you need to do multiple analyses
with the same set of replicate weights, or if you have access to replicate weights instead of design information.
For more information, see the section “Replicate Weight Output Data Set” on page 8037.

Definitions and Notation

For a stratified clustered sample design, define the following:

h D 1; 2; : : : ;H is the stratum number,
with a total of H strata

i D 1; 2; : : : ; nh is the cluster number within stratum h;

with a total of nh sample clusters in stratumh

j D 1; 2; : : : ; mhi is the unit number within cluster i of stratum h

with a total of mhi sample units from cluster i of stratum h

n D
PH
hD1

Pnh
iD1 mhi is the total number of observations in the sample

fh D first-stage sampling rate for stratum h

Whij D sampling weight of unit j in cluster i of stratum h

The sampling rate fh, which is used in Taylor series variance estimation, is the fraction of first-stage units
(PSUs) selected for the sample. You can specify the stratum sampling rates with the RATE= option. Or if
you specify population totals with the TOTAL= option, PROC SURVEYFREQ computes fh as the ratio of
stratum sample size to the stratum total, in terms of PSUs. For more information, see the section “Population
Totals and Sampling Rates” on page 8000. If you do not specify the RATE= option or the TOTAL= option,
then the procedure assumes that the stratum sampling rates fh are negligible and does not use a finite
population correction when computing variances.

This notation is also applicable to other sample designs. For example, for a design without stratification, you
can let H = 1; for a sample design without clustering, you can let mhi D 1 for every h and i, which replaces
clusters with individual sampling units.
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For a two-way table representing the crosstabulation of two variables, define the following, where there are R
levels of the row variable and C levels of the column variable:

r D 1; 2; : : : ; R is the row number, with a total of R rows

c D 1; 2; : : : ; C is the column number, with a total of C columns

Nrc is the population total in row r and column c

Nr � D
PC
cD1Nrc is the total in row r

N�c D
PR
rD1Nrc is the total in column c

N D
PR
rD1

PC
cD1Nrc is the overall total

Prc D Nrc = N is the population proportion in row r and column c

Pr: D Nr � = N is the proportion in row r

P:c D N�c = N is the proportion in column c

P r
rc D Nrc = Nr � is the row proportion for table cell .r; c/

P c
rc D Nrc = N�c is the column proportion for table cell .r; c/

For a specified observation (identified by stratum, cluster, and unit number within the cluster), define the
following to indicate whether or not that observation belongs to cell (r, c), row r and column c, of the two-way
table, for r D 1; 2; : : : ; R and c D 1; 2; : : : ; C :

ıhij .r; c/ D

(
1 if observation .hij / is in cell .r; c/

0 otherwise

Similarly, define the following functions to indicate the observation’s row and column classification:

ıhij .r �/ D

(
1 if observation .hij / is in row r

0 otherwise

ıhij .� c/ D

(
1 if observation .hij / is in column c

0 otherwise

Totals

PROC SURVEYFREQ estimates population frequency totals for the specified crosstabulation tables, including
totals for two-way table cells, rows, columns, and overall totals. The procedure computes the estimate of the
total frequency in table cell (r, c) as the weighted frequency sum,

bN rc D

HX
hD1

nhX
iD1

mhiX
jD1

ıhij .r; c/ Whij

Similarly, PROC SURVEYFREQ computes estimates of row totals, column totals, and overall totals as

bN r � D

HX
hD1

nhX
iD1

mhiX
jD1

ıhij .r �/ Whij
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bN �c D HX
hD1

nhX
iD1

mhiX
jD1

ıhij .� c/ Whij

bN D

HX
hD1

nhX
iD1

mhiX
jD1

Whij

PROC SURVEYFREQ estimates the variances of totals by using the variance estimation method that you
request. If you request BRR variance estimation (by specifying the VARMETHOD=BRR option in the PROC
SURVEYFREQ statement), the procedure estimates the variances as described in the section “Balanced
Repeated Replication (BRR)” on page 8011. If you request jackknife variance estimation (by specifying the
VARMETHOD=JACKKNIFE option), the procedure estimates the variances as described in the section “The
Jackknife Method” on page 8014.

If you do not specify the VARMETHOD= option or a REPWEIGHTS statement, the default variance
estimation method is Taylor series, which you can also request by specifying the VARMETHOD=TAYLOR
option. Since totals are linear statistics, their variances can be estimated directly, without the approximation
that is used for proportions and other nonlinear statistics. PROC SURVEYFREQ estimates the variance of
the total frequency in table cell (r, c) as

bVar.bN rc/ D

HX
hD1

bVarh.bN rc/

where if nh > 1,

bVarh.bN rc/ D
nh.1 � fh/

nh � 1

nhX
iD1

.n hirc � Nn
h
rc/

2

n hirc D

mhiX
jD1

ıhij .r; c/ Whij

Nn hrc D

 
nhX
iD1

n hirc

!
= nh

and if nh D 1,

bVarh.bN rc/ D

�
missing if nh0 D 1 for h0 D 1; 2; : : : ;H
0 if nh0 > 1 for some 1 � h0 � H

The standard deviation of the total is computed as

Std.bN rc/ D

q
bVar.bN rc/

The variances and standard deviations are computed in a similar manner for row totals, column totals, and
overall table totals.
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Covariances of Frequency Estimates

The covariance matrix of the table cell frequency estimates is an rc � rc matrix that contains the pairwise
cell frequency covariances. bV.bN/ denotes the covariance matrix and bCov.bN rc ; bN ab/ denotes the pairwise
covariances, for r D 1; : : : ; R; c D 1; : : : ; C ; a D 1; : : : ; R; and b D 1; : : : ; C .

PROC SURVEYFREQ estimates the covariances by using the variance estimation method that you request.
If you request BRR variance estimation (by specifying the VARMETHOD=BRR option in the PROC
SURVEYFREQ statement), PROC SURVEYFREQ estimates the covariances by using the BRR method. If
you request jackknife variance estimation (by specifying the VARMETHOD=JACKKNIFE option), PROC
SURVEYFREQ estimates the covariances by using the jackknife method. For more information, see the
sections “Balanced Repeated Replication (BRR)” on page 8011 and “The Jackknife Method” on page 8014.

By default, or if you request Taylor series variance estimation, PROC SURVEYFREQ estimates the covariance
between frequency estimates for table cells (r,c) and (a,b) as

bCov.bN rc ; bN ab/ D

HX
hD1

 
nh.1 � fh/

nh � 1

nhX
iD1

.n hirc � Nn
h
rc/ .n

hi
ab � Nn

h
ab/

!

Proportions

PROC SURVEYFREQ computes the estimate of the proportion in table cell (r, c) as the ratio of the estimated
total for the table cell to the estimated overall total,

bP rc D bN rc = bN
D

0@ HX
hD1

nhX
iD1

mhiX
jD1

ıhij .r; c/ Whij

1A =

0@ HX
hD1

nhX
iD1

mhiX
jD1

Whij

1A
If you request BRR variance estimation (by specifying the VARMETHOD=BRR option in the PROC
SURVEYFREQ statement), the procedure estimates the variances of proportion estimates as described in the
section “Balanced Repeated Replication (BRR)” on page 8011. If you request jackknife variance estimation
(by specifying the VARMETHOD=JACKKNIFE option), the procedure estimates the variances as described
in the section “The Jackknife Method” on page 8014.

If you do not specify the VARMETHOD= option or a REPWEIGHTS statement, the default variance
estimation method is Taylor series, which you can also request by specifying the VARMETHOD=TAYLOR
option. By using Taylor series linearization, the variance of a proportion estimate can be expressed as

bVar.bP rc/ D HX
hD1

bVarh.bP rc/
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where if nh > 1,

bVarh.bP rc/ D nh.1 � fh/

nh � 1

nhX
iD1

.e hirc � Ne
h
rc/

2

e hirc D

0@mhiX
jD1

.ıhij .r; c/ � bP rc/ Whij
1A = bN

Ne hrc D

 
nhX
iD1

e hirc

!
= nh

and if nh D 1,

bVarh.bP rc/ D � missing if nh0 D 1 for h0 D 1; 2; : : : ;H
0 if nh0 > 1 for some 1 � h0 � H

The standard error of the proportion is computed as

StdErr.bP rc/ DqbVar.bP rc/
Similarly, the estimate of the proportion in row r isbP r � D bN r � = bN
And its variance estimate is

bVar.bP r �/ D HX
hD1

bVarh.bP r �/
where if nh > 1,

bVarh.bP r �/ D nh.1 � fh/

nh � 1

nhX
iD1

.e hir � � Ne
h
r � /

2

ehir � D

0@mhiX
jD1

.ıhij .r �/ � bP r �/ Whij
1A = bN

Nehr � D

 
nhX
iD1

e hir �

!
= nh

and if nh D 1,

bVarh.bP r �/ D � missing if nh0 D 1 for h0 D 1; 2; : : : ;H
0 if nh0 > 1 for some 1 � h0 � H

The standard error of the proportion in row r is computed as

StdErr.bP r �/ DqbVar.bP r �/
Computations for the proportion in column c are done in the same way.
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Row and Column Proportions

PROC SURVEYFREQ computes the estimate of the row proportion for table cell (r, c) as the ratio of the
estimated total for the table cell to the estimated total for row r,

bP r
rc D

bN rc = bN r �

D

0@ HX
hD1

nhX
iD1

mhiX
jD1

ıhij .r; c/ Whij

1A =

0@ HX
hD1

nhX
iD1

mhiX
jD1

ıhij .r �/ Whij

1A
Similarly, PROC SURVEYFREQ estimates the column proportion for table cell (r, c) as the ratio of the
estimated total for the table cell to the estimated total for column c,

bP c
rc D

bN rc = bN �c
D

0@ HX
hD1

nhX
iD1

mhiX
jD1

ıhij .r; c/ Whij

1A =

0@ HX
hD1

nhX
iD1

mhiX
jD1

ıhij .� c/ Whij

1A
If you request BRR variance estimation (VARMETHOD=BRR), PROC SURVEYFREQ estimates the
variances of the row and column proportions as described in the section “Balanced Repeated Replication
(BRR)” on page 8011. If you request jackknife variance estimation (VARMETHOD=JACKKNIFE), the
procedure estimates the variances as described in the section “The Jackknife Method” on page 8014.

If you do not specify the VARMETHOD= option or a REPWEIGHTS statement, the default variance
estimation method is Taylor series (VARMETHOD=TAYLOR). By using Taylor series linearization, the
variance of the row proportion estimate can be expressed as

bVar.bP r
rc/ D

HX
hD1

bVarh.bP rc/
where if nh > 1,

bVarh.bP r
rc/ D

nh.1 � fh/

nh � 1

nhX
iD1

.g hirc � Ng
h
rc/

2

g hirc D

0@mhiX
jD1

.ıhij .r; c/ � bP r
rc ıhij .r �// Whij

1A = bN r �

Ng hrc D

 
nhX
iD1

g hirc

!
= nh

and if nh D 1,

bVarh.bP r
rc/ D

�
missing if nh0 D 1 for h0 D 1; 2; : : : ;H
0 if nh0 > 1 for some 1 � h0 � H
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The standard error of the row proportion is computed as

StdErr.bP r
rc/ D

q
bVar.bP r

rc/

The Taylor series variance estimate for the column proportion is computed as described previously for the
row proportion, but with

g hirc D

0@mhiX
jD1

.ıhij .r; c/ � bP c
rc ıhij .� c// Whij

1A = bN �c
Balanced Repeated Replication (BRR)

If you specify the VARMETHOD=BRR option, then PROC SURVEYFREQ uses balanced repeated repli-
cation (BRR) for variance estimation. The BRR variance estimation method requires a stratified sample
design with two PSUs in each stratum. You can provide replicate weights for BRR variance estimation by
using a REPWEIGHTS statement, or the procedure can construct replicate weights for the analysis. PROC
SURVEYFREQ estimates the parameter of interest (a proportion, total, odds ratio, or other statistic) from
each replicate, and then uses the variability among replicate estimates to estimate the overall variance of
the parameter estimate. For more information about BRR variance estimation, see Wolter (1985) and Lohr
(2010).

If you do not provide replicate weights with a REPWEIGHTS statement, PROC SURVEYFREQ constructs
replicates based on the stratified design with two PSUs in each stratum. This section describes replicate
construction by the traditional BRR method. If you specify the FAY method-option for VARMETHOD=BRR,
the procedure uses Fay’s modified BRR method, which is described in the section “Fay’s BRR Method” on
page 8012.

With the traditional BRR method, each replicate is obtained by deleting one PSU per stratum according to
the corresponding Hadamard matrix of dimension R, where R is the number of replicates. The number of
replicates equals the smallest multiple of 4 that is greater than the number of strata H. Alternatively, you can
specify the number of replicates with the REPS= method-option. If a Hadamard matrix cannot be constructed
for the REPS= value that you specify, the value is increased until a Hadamard matrix of that dimension can
be constructed. Therefore, it is possible for the actual number of replicates used to be larger than the REPS=
value that you specify.

You can provide a Hadamard matrix for BRR replicate construction by using the HADAMARD= method-
option. Otherwise, PROC SURVEYFREQ generates an appropriate Hadamard matrix. For more information,
see the section “Hadamard Matrix” on page 8013. You can display the Hadamard matrix by specifying the
PRINTH method-option.

PROC SURVEYFREQ constructs replicates by using the first H columns of the R �R Hadamard matrix,
where H denotes the number of strata. The rth replicate (r D 1; 2; : : : ; R) is drawn from the full sample
according to the rth row of the Hadamard matrix as follows:

• If element (r, h) of the Hadamard matrix equals 1, then the first PSU of stratum h is included in the rth
replicate, and the second PSU of stratum h is excluded.

• If element (r, h) of the Hadamard matrix equals –1, then the second PSU of stratum h is included in
the rth replicate, and the first PSU of stratum h is excluded.
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For the PSUs included in replicate r, the original weights are doubled to form the replicate r weights. For the
PSUs not included in replicate r, the replicate r weights equal zero. You can use the OUTWEIGHTS=SAS-
data-set method-option to store the replicate weights in a SAS data set. For information about the contents
of the OUTWEIGHTS= data set, see the section “Replicate Weight Output Data Set” on page 8037. You
can provide these replicate weights to the procedure for subsequent analyses by using a REPWEIGHTS
statement.

Let � denote the population parameter to be estimated—for example, a proportion, total, odds ratio, or other
statistic. Let O� denote the estimate of � from the full sample, and let O�r denote the estimate from the rth BRR
replicate, which is computed by using the replicate weights. The BRR variance estimate for O� is computed as

bV . O�/ D 1

R

RX
rD1

�
O�r � O�

�2
where R is the total number of replicates.

If a parameter cannot be estimated from some replicate(s), then the variance estimate is computed by using
those replicates from which the parameter can be estimated. For example, suppose the parameter is a column
proportion—the proportion of column j for table cell (i, j). If a replicate r contains no observations in column
j, then the column j proportion is not estimable from replicate r. In this case, the BRR variance estimate is
computed as

bV . O�/ D 1

R0

R0X
rD1

�
O�r � O�

�2
where the summation is over the replicates where the parameter � is estimable, and R0 is the number of those
replicates.

Fay’s BRR Method
If you specify the FAY method-option for VARMETHOD=BRR, then PROC SURVEYFREQ uses Fay’s
BRR method, which is a modification of the traditional BRR variance estimation method. As for traditional
BRR, Fay’s method requires a stratified sample design with two PSUs in each stratum. You can provide
replicate weights by using a REPWEIGHTS statement, or the procedure can construct replicate weights for
the analysis. PROC SURVEYFREQ estimates the parameter of interest (a proportion, total, odds ratio, or
other statistic) from each replicate, and then uses the variability among replicate estimates to estimate the
overall variance of the parameter estimate.

If you do not provide replicate weights with a REPWEIGHTS statement, PROC SURVEYFREQ constructs
replicates based on the stratified design with two PSUs in each stratum. As for traditional BRR, the number
of replicates R equals the smallest multiple of 4 that is greater than the number of strata H, or you can specify
the number of replicates with the REPS= method-option. You can provide a Hadamard matrix for replicate
construction in the HADAMARD= method-option, or PROC SURVEYFREQ generates an appropriate
Hadamard matrix.

The traditional BRR method constructs half-sample replicates by deleting one PSU per stratum according
to the Hadamard matrix and doubling the original weights to form replicate weights. Fay’s BRR method
adjusts the original weights by a coefficient �, where 0 � � < 1. You can specify the value of � with the
FAY= method-option. If you do not specify the value of �, PROC SURVEYFREQ uses � D 0:5 by default.
For information about the value of the Fay coefficient, see Judkins (1990) and Rao and Shao (1999). When
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� D 0, Fay’s method becomes the traditional BRR method. For more information, see Dippo, Fay, and
Morganstein (1984), Fay (1989), and Judkins (1990).

PROC SURVEYFREQ constructs Fay BRR replicates by using the first H columns of the R �R Hadamard
matrix, where H denotes the number of strata. The rth replicate (r D 1; 2; : : : ; R) is drawn from the full
sample according to the rth row of the Hadamard matrix as follows:

• If element (r, h) of the Hadamard matrix equals 1, the sampling weight of the first PSU in stratum h is
multiplied by �, and the sampling weight of the second PSU is multiplied by .2 � �/ to form the rth
replicate weights.

• If element (r, h) of the Hadamard matrix equals –1, then the sampling weight of the second PSU in
stratum h is multiplied by �, and the sampling weight of the first PSU is multiplied by .2 � �/ to form
the rth replicate weights.

You can use the OUTWEIGHTS= method-option to store the replicate weights in a SAS data set. For
information about the contents of the OUTWEIGHTS= data set, see the section “Replicate Weight Output
Data Set” on page 8037. You can provide these replicate weights to the procedure for subsequent analyses by
using a REPWEIGHTS statement.

Let � denote the population parameter to be estimated—for example, a proportion, total, odds ratio, or other
statistic. Let O� denote the estimate of � from the full sample, and let O�r denote the estimate from the rth
BRR replicate, which is computed by using the replicate weights. The Fay BRR variance estimate for O� is
computed as

bV . O�/ D 1

R.1 � �/2

RX
rD1

�
O�r � O�

�2
where R is the total number of replicates and � is the Fay coefficient.

If you request Fay’s BRR method and also include a REPWEIGHTS statement, PROC SURVEYFREQ uses
the replicate weights that you provide and includes the Fay coefficient � in the denominator of the variance
estimate in the preceding expression.

If a parameter cannot be estimated from some replicate(s), then the variance estimate is computed by using
those replicates from which the parameter can be estimated. For example, suppose the parameter is a column
proportion—the proportion of column j for table cell (i, j). If a replicate r contains no observations in column
j, then the column j proportion is not estimable from replicate r. In this case, the BRR variance estimate is
computed as

bV . O�/ D 1

R0.1 � �/2

R0X
rD1

�
O�r � O�

�2
where the summation is over the replicates where the parameter � is estimable, and R0 is the number of those
replicates.

Hadamard Matrix
PROC SURVEYFREQ uses a Hadamard matrix to construct replicates for BRR variance estimation.
You can provide a Hadamard matrix for replicate construction in the HADAMARD= method-option for
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VARMETHOD=BRR. Otherwise, PROC SURVEYFREQ generates an appropriate Hadamard matrix. You
can display the Hadamard matrix by specifying the PRINTH method-option.

A Hadamard matrix A of dimension R is a square matrix that has all elements equal to 1 or –1. A Hadamard
matrix must satisfy the requirement that A0A D RI, where I is an identity matrix. The dimension of a
Hadamard matrix must equal 1, 2, or a multiple of 4.

For example, the following matrix is a Hadamard matrix of dimension k = 8:

1 1 1 1 1 1 1 1

1 �1 1 �1 1 �1 1 �1

1 1 �1 �1 1 1 �1 �1

1 �1 �1 1 1 �1 �1 1

1 1 1 1 �1 �1 �1 �1

1 �1 1 �1 �1 1 �1 1

1 1 �1 �1 �1 �1 1 1

1 �1 �1 1 �1 1 1 �1

For BRR replicate construction, the dimension of the Hadamard matrix must be at least H, where H denotes
the number of first-stage strata in your design. If a Hadamard matrix of a given dimension exists, it is not
necessarily unique. Therefore, if you want to use a specific Hadamard matrix, you must provide the matrix as
a SAS data set in the HADAMARD=SAS-data-set method-option. You must ensure that the matrix that you
provide is actually a Hadamard matrix; PROC SURVEYFREQ does not check the validity of your Hadamard
matrix.

For information about how the Hadamard matrix is used to construct replicates for BRR variance estimation,
see the sections “Balanced Repeated Replication (BRR)” on page 8011 and “Fay’s BRR Method” on
page 8012.

The Jackknife Method

If you specify the VARMETHOD=JACKKNIFE option, PROC SURVEYFREQ uses the delete-1 jackknife
method for variance estimation. The jackknife method can be used for stratified sample designs and for
designs with no stratification. If your design is stratified, the jackknife method requires at least two PSUs in
each stratum. You can provide replicate weights for jackknife variance estimation by using a REPWEIGHTS
statement, or the procedure can construct replicate weights for the analysis. PROC SURVEYFREQ estimates
the parameter of interest (a proportion, total, odds ratio, or other statistic) from each replicate, and then uses
the variability among replicate estimates to estimate the overall variance of the parameter estimate. For more
information about jackknife variance estimation, see Wolter (1985) and Lohr (2010).

If you do not provide replicate weights with a REPWEIGHTS statement, PROC SURVEYFREQ constructs
the replicates. The number of replicates R equals the number of PSUs, and the procedure deletes one PSU
from the full sample to form each replicate. The sampling weights are modified by the jackknife coefficient
for the replicate to create the replicate weights.

If your design is not stratified (no STRATA statement), the jackknife coefficient has the same value for each
replicate r. The jackknife coefficient equals

˛r D .R � 1/=R for r D 1; 2; : : : ; R

where R is the total number of replicates (or total number of PSUs). For the PSUs included in a replicate, the
replicate weights are computed by dividing the original sampling weights by the jackknife coefficient. For
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the deleted PSU, which is not included in the replicate, the replicate weights equal zero. The replicate weight
for the jth member of the ith PSU can be expressed as follows when the design is not stratified:

W r
ij D

(
Wij =˛r if PSU i is included in replicate r

0 otherwise

where Wij is the original sampling weight of unit .ij /, r is the replicate number, and ˛r is the jackknife
coefficient.

If your design is stratified, the jackknife method requires at least two PSUs in each stratum. Let stratum h 0r
be the stratum from which a PSU is deleted to form the rth replicate. Stratum h 0r is called the donor stratum.
The jackknife coefficients are defined as

˛r D .nh 0r � 1/=nh 0r for r D 1; 2; : : : ; R

where nh 0r is the total number of PSUs in the donor stratum for replicate r. For all strata other than the
donor stratum, the replicate r weights equal the original sampling weights. For PSUs included from the
donor stratum, the replicate weights are computed by dividing the original sampling weights by the jackknife
coefficient. For the deleted PSU, which is not included in the replicate, the replicate weights equal zero. The
replicate weight for the jth member of the ith PSU in stratum h can be expressed as

W r
hij D

8̂̂<̂
:̂
Whij if h ¤ h 0r

Whij =˛r if h D h 0r and PSU .hi/ is included in replicate r

0 if h D h 0r and PSU .hi/ is not included in replicate r

You can use the OUTWEIGHTS= method-option to store the replicate weights in a SAS data set. You
can also use the OUTJKCOEFS= method-option to store the jackknife coefficients in a SAS data set. For
information about the contents of these output data sets, see the sections “Jackknife Coefficient Output Data
Set” on page 8038 and “Replicate Weight Output Data Set” on page 8037. You can provide replicate weights
and jackknife coefficients to the procedure for subsequent analyses by using a REPWEIGHTS statement.
If you provide replicate weights but do not provide jackknife coefficients, PROC SURVEYFREQ uses
˛r D .R � 1/=R as the jackknife coefficient for all replicates.

Let � denote the population parameter to be estimated—for example, a proportion, total, odds ratio, or
other statistic. Let O� denote the estimate of � from the full sample, and let O�r be the estimate from the rth
jackknife replicate, which is computed by using the replicate weights. The jackknife variance estimate for O�
is computed as

bV . O�/ D RX
rD1

˛r

�
O�r � O�

�2
where R is the total number of replicates and ˛r is the jackknife coefficient for replicate r.

If a parameter cannot be estimated from some replicate(s), then the variance estimate is computed by using
those replicates from which the parameter can be estimated. For example, suppose the parameter is a column
proportion—the proportion of column j for table cell (i, j). If a replicate r contains no observations in column
j, then the column j proportion is not estimable from replicate r. In this case, the jackknife variance estimate
is computed as

bV . O�/ D R

R0

R0X
rD1

˛r

�
O�r � O�

�2
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where the summation is over the replicates where the parameter � is estimable, and R0 is the number of those
replicates.

Confidence Limits for Totals

If you specify the CLWT option in the TABLES statement, PROC SURVEYFREQ computes confidence
limits for the weighted frequencies (totals) in the crosstabulation tables.

For the total in table cell (r, c), the confidence limits are computed as

bN rc ˙

�
tdf ;˛=2 � StdErr.bN rc/

�
where bN rc is the estimate of the total frequency in table cell (r, c), StdErr. ONrc/ is the standard error of the
estimate, and tdf ;˛=2 is the 100.1 � ˛=2/ percentile of the t distribution with df degrees of freedom. (For
more information, see the section “Degrees of Freedom” on page 8019.) The confidence level ˛ is determined
by the value of the ALPHA= option; by default, ALPHA=0.05, which produces 95% confidence limits.

The confidence limits for row totals, column totals, and the overall total are computed similarly to the
confidence limits for table cell totals.

For each table request, PROC SURVEYFREQ produces a nondisplayed ODS table, “Table Summary,” which
contains the number of observations, strata, and clusters that are included in the analysis of the requested table.
When you request confidence limits, the “Table Summary” data set also contains the degrees of freedom df
and the value of tdf ;˛=2 that is used to compute the confidence limits. For more information about this output
data set, see Example 97.3.

Confidence Limits for Proportions

If you specify the CL option in the TABLES statement, PROC SURVEYFREQ computes confidence limits
for the proportions in the frequency and crosstabulation tables.

By default, PROC SURVEYFREQ computes Wald (“linear”) confidence limits if you do not specify an
alternative confidence limit type with the CL(TYPE=) option. In addition to Wald confidence limits, the
following types of design-based confidence limits are available for proportions: modified Clopper-Pearson
(exact), modified Wilson (score), and logit confidence limits.

PROC SURVEYFREQ also provides the CL(PSMALL) option, which uses the alternative confidence limit
type for extreme (small or large) proportions and uses the Wald confidence limits for all other proportions
(not extreme). For the default PSMALL= value of 0.25, the procedure computes Wald confidence limits for
proportions between 0.25 and 0.75 and computes the alternative confidence limit type for proportions that are
outside of this range. For more information, see Curtin et al. (2006).

For information about design-based confidence limits for proportions (including comparisons of their
performance), see Korn and Graubard (1999), Korn and Graubard (1998), Curtin et al. (2006), and Sukasih
and Jang (2005). For more information about binomial confidence limits, see Brown, Cai, and DasGupta
(2001) and Agresti and Coull (1998), in addition to the references cited in the following sections.

For each table request, PROC SURVEYFREQ produces a nondisplayed ODS table, “Table Summary,” which
contains the number of observations, strata, and clusters that are included in the analysis of the requested table.
When you request confidence limits, the “Table Summary” data set also contains the degrees of freedom df
and the value of tdf ;˛=2 that is used to compute the confidence limits. For more information about this output
data set, see Example 97.3.
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Wald Confidence Limits
PROC SURVEYFREQ computes standard Wald (“linear”) confidence limits for proportions by default.
These confidence limits use the variance estimates that are based on the sample design. For the proportion in
table cell (r, c), the Wald confidence limits are computed as

bP rc ˙ �tdf ;˛=2 � StdErr.bP rc/�
where bP rc is the estimate of the proportion in table cell (r, c), StdErr.bP rc/ is the standard error of the
estimate, and tdf ;˛=2 is the 100.1 � ˛=2/ percentile of the t distribution with df degrees of freedom. (For
more information, see the section “Degrees of Freedom” on page 8019.) The confidence level ˛ is determined
by the value of the ALPHA= option; by default, ALPHA=0.05, which produces 95% confidence limits.

The confidence limits for row proportions and column proportions are computed similarly to the confidence
limits for table cell proportions.

Modified Confidence Limits
PROC SURVEYFREQ uses the modification described in Korn and Graubard (1998) to compute design-
based Clopper-Pearson (exact) and Wilson (score) confidence limits. This modification substitutes the
degrees-of-freedom adjusted effective sample size for the original sample size in the confidence limit
computations.

The effective sample size ne is computed as

ne D n = Deff

where n is the original sample size (unweighted frequency) that corresponds to the total domain of the
proportion estimate, and Deff is the design effect.

If the proportion is computed for a table cell of a two-way table, then the domain is the two-way table, and
the sample size n is the frequency of the two-way table. If the proportion is a row proportion, which is based
on a two-way table row, then the domain is the row, and the sample size n is the frequency of the row.

The design effect for an estimate is the ratio of the actual variance (estimated based on the sample design) to
the variance of a simple random sample with the same number of observations. For more information, see
the section “Design Effect” on page 8020.

If you do not specify the CL(ADJUST=NO) option, the procedure applies a degrees-of-freedom adjustment
to the effective sample size to compute the modified sample size. If you specify CL(ADJUST=NO), the
procedure does not apply the adjustment and uses the effective sample size ne in the confidence limit
computations.

The modified sample size n�e is computed by applying a degrees-of-freedom adjustment to the effective
sample size ne as

n�e D ne

�
t.n�1 /;˛=2

tdf ;˛=2

�2
where df is the degrees of freedom and tdf ;˛=2 is the 100.1 � ˛=2/ percentile of the t distribution with df
degrees of freedom. The degrees of freedom computation depends on the sample design and the variance
estimation method. For more information, see the section “Degrees of Freedom” on page 8019. The
confidence level ˛ is determined by the value of the ALPHA= option; by default, ALPHA=0.05, which
produces 95% confidence limits.
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The design effect is usually greater than 1 for complex survey designs, and in that case the effective sample
size is less than the actual sample size. If the adjusted effective sample size n�e is greater than the actual
sample size n, the procedure truncates the value of n�e to n, as recommended by Korn and Graubard (1998).
If you specify the CL(TRUNCATE=NO) option, the procedure does not truncate the value of n�e .

Modified Clopper-Pearson Confidence Limits Clopper-Pearson (exact) confidence limits for the bino-
mial proportion are constructed by inverting the equal-tailed test based on the binomial distribution. This
method is attributed to Clopper and Pearson (1934). For a derivation of the F distribution expression for the
confidence limits, see Leemis and Trivedi (1996).

PROC SURVEYFREQ computes modified Clopper-Pearson confidence limits according to the approach of
Korn and Graubard (1998). The degrees-of-freedom adjusted effective sample size n�e is substituted for the
sample size in the Clopper-Pearson computation, and the adjusted effective sample size times the proportion
estimate n�e Op is substituted for the number of positive responses. (Or if you specify the CL(ADJUST=NO)
option, the procedure uses the unadjusted effective sample size ne instead of n�e .)

The modified Clopper-Pearson confidence limits for a proportion (PL and PU ) are computed as

PL D

�
1C

n�e � Opn
�
e C 1

Opn�e F. ˛=2; 2 Opn
�
e ; 2.n

�
e � Opn

�
e C 1/ /

��1

PU D

�
1C

n�e � Opn
�
e

. Opn�e C 1/ F. 1 � ˛=2; 2. Opn
�
e C 1/; 2.n

�
e � Opn

�
e / /

��1
where F.˛=2; b; c/ is the ˛=2 percentile of the F distribution with b and c degrees of freedom, n�e is the
adjusted effective sample size, and Op is the proportion estimate.

Modified Wilson Confidence Limits Wilson confidence limits for the binomial proportion are also known
as score confidence limits and are attributed to Wilson (1927). The confidence limits are based on inverting
the normal test that uses the null proportion in the variance (the score test). For more information, see
Newcombe (1998) and Korn and Graubard (1999).

PROC SURVEYFREQ computes modified Wilson confidence limits by substituting the degrees-of-freedom
adjusted effective sample size n�e for the original sample size in the standard Wilson computation. (Or if you
specify the CL(ADJUST=NO) option, the procedure substitutes the unadjusted effective sample size ne.)

The modified Wilson confidence limits for a proportion are computed as

�
Op C .�/2=2n�e

�
˙

�
�

q�
Op.1 � Op/C .�/2

�
=4n�e =

�
1C .�/2=n�e

��
where n�e is the adjusted effective sample size and Op is the estimate of the proportion. With the degrees-of-
freedom adjusted effective sample size n�e , the computation uses � D z˛=2. With the unadjusted effective
sample size, which you request with the ADJUST=NO option, the computation uses � D tdf ;˛=2. For more
information, see Curtin et al. (2006).

Logit Confidence Limits
If you specify the CL(TYPE=LOGIT) option, PROC SURVEYFREQ computes logit confidence limits for
proportions. For more information, see Agresti (2013) and Korn and Graubard (1998).
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Logit confidence limits for proportions are based on the logit transformation Y D log. Op=.1 � Op//. The logit
confidence limits PL and PU are computed as

PL D exp.YL/ = . 1C exp.YL/ /

PU D exp.YU / = . 1C exp.YU / /

where

. YL; YU / D log. Op=.1 � Op// ˙
�
tdf ;˛=2 � StdErr. Op/ = . Op.1 � Op//

�
where Op is the estimate of the proportion, StdErr. Op/ is the standard error of the estimate, and tdf ;˛=2 is the
100.1 � ˛=2/ percentile of the t distribution with df degrees of freedom. (For more information, see the
section “Degrees of Freedom” on page 8019.) The confidence level ˛ is determined by the value of the
ALPHA= option; by default, ALPHA=0.05, which produces 95% confidence limits.

Degrees of Freedom

PROC SURVEYFREQ uses the degrees of freedom of the variance estimator to obtain the t-percentile for
confidence limits for proportions, totals, and other statistics. The procedure also uses the degrees of freedom
in computing the F statistics for the Rao-Scott and Wald chi-square tests.

PROC SURVEYFREQ computes the degrees of freedom based on the variance estimation method and the
sample design. Alternatively, you can use the DF= option in the TABLES statement to specify the degrees of
freedom.

For Taylor series variance estimation, PROC SURVEYFREQ calculates the degrees of freedom (df ) as
the number of clusters minus the number of strata. If there are no clusters, then df equals the number of
observations minus the number of strata. If the design is not stratified, then df equals the number of clusters
minus one. These numbers are based on the observations included in the analysis of the individual table
request. These numbers do not count observations that are excluded from the table due to missing values.
For more information, see the section “Missing Values” on page 8001. If you specify the MISSING option,
missing values are treated as valid nonmissing levels and are included when computing degrees of freedom.
If you specify the NOMCAR option for Taylor series variance estimation, observations with missing values
of the TABLES variables are included when computing degrees of freedom.

If you use a REPWEIGHTS statement to provide replicate weights, the degrees of freedom equal the number
of replicates, which is the number of REPWEIGHTS variables that you provide. Alternatively, you can use
the DF= option in the REPWEIGHTS or the TABLES statement to specify the degrees of freedom.

For BRR variance estimation (when you do not use a REPWEIGHTS statement), PROC SURVEYFREQ
calculates the degrees of freedom as the number of strata. PROC SURVEYFREQ bases the number of strata on
all valid observations in the data set, unless you specify the DFADJ method-option for VARMETHOD=BRR.
When you specify the DFADJ option, the procedure computes the degrees of freedom as the number of
nonmissing strata for the individual table request. This excludes any empty strata that occur when observations
with missing values of the TABLES variables are removed from the analysis for that table.

For jackknife variance estimation (when you do not use a REPWEIGHTS statement), PROC SURVEYFREQ
calculates the degrees of freedom as the number of clusters minus the number of strata. If there are no
clusters, then df equals the number of observations minus the number of strata. If the design is not stratified,
then df equals the number of clusters minus one. For jackknife variance estimation, PROC SURVEYFREQ
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bases the number of strata and clusters on all valid observations in the data set, unless you specify the DFADJ
method-option for VARMETHOD=JACKKNIFE. When you specify the DFADJ option, the procedure
computes the degrees of freedom from the number of nonmissing strata and clusters for the individual table
request. This excludes any empty strata or clusters that occur when observations with missing values of the
TABLES variables are removed from the analysis for that table.

For each table request, PROC SURVEYFREQ produces a nondisplayed ODS table, “Table Summary,” which
contains the number of (nonmissing) observations, strata, and clusters that are included in the analysis of
the table. If there are missing observations, empty strata, or empty clusters excluded from the analysis, the
“Table Summary” data set also contains this information. If you request confidence limits or chi-square tests,
which depend on the degrees of freedom of the variance estimator, the “Table Summary” data set provides
the degrees of freedom df. For more information about this output data set, see Example 97.3.

Coefficient of Variation

If you specify the CV option in the TABLES statement, PROC SURVEYFREQ computes the coefficients of
variation for the proportion estimates in the frequency and crosstabulation tables. The coefficient of variation
is the ratio of the standard error to the estimate.

For the proportion in table cell (r, c), the coefficient of variation is computed as

CV.bP rc/ D StdErr.bP rc/ = bP rc
where bP rc is the estimate of the proportion in table cell (r, c), and StdErr.bP rc/ is the standard error of the
estimate. The coefficients of variation for row proportions and column proportions are computed similarly.

If you specify the CVWT option in the TABLES statement, PROC SURVEYFREQ computes the coefficients
of variation for the weighted frequencies (estimated totals) in the crosstabulation tables. For the total in table
cell (r, c), the coefficient of variation is computed as

CV.bN rc/ D StdErr.bN rc/ = bN rc

where bN rc is the estimate of the total in table cell (r, c), and StdErr.bN rc/ is the standard error of the
estimate. The coefficients of variation for row totals, column totals, and the overall total are computed
similarly.

Design Effect

If you specify the DEFF option in the TABLES statement, PROC SURVEYFREQ computes design effects for
the overall proportion estimates in the frequency and crosstabulation tables. If you specify the ROW(DEFF) or
COLUMN(DEFF) option, the procedure provides design effects for the row or column proportion estimates,
respectively. The design effect for an estimate is the ratio of the actual variance (estimated based on the
sample design) to the variance of a simple random sample with the same number of observations. For more
information, see Lohr (2010) and Kish (1965).

For Taylor series variance estimation, PROC SURVEYFREQ computes the design effect for the proportion
in table cell (r, c) as

Deff.bP rc/ D bVar.bP rc/ = bVarsrs.bP rc/
D bVar.bP rc/ = �.1 � f / bP rc .1 � bP rc/ = .n � 1/�
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where bP rc is the estimate of the proportion in table cell (r, c), bVar.bP rc/ is the variance of the estimate, f is
the overall sampling fraction, and n is the sample size (unweighted frequency) for the two-way table.

For Taylor series variance estimation, PROC SURVEYFREQ determines the value of f, the overall sampling
fraction, based on the RATE= or TOTAL= option. If you do not specify either of these options, PROC
SURVEYFREQ assumes the value of f is negligible and does not use a finite population correction in the
analysis, as described in the section “Population Totals and Sampling Rates” on page 8000. If you specify
RATE=value, PROC SURVEYFREQ uses this value as the overall sampling fraction f. If you specify
TOTAL=value, PROC SURVEYFREQ computes f as the ratio of the number of PSUs in the sample to the
specified total.

If you specify stratum sampling rates with the RATE=SAS-data-set option, then PROC SURVEYFREQ
computes stratum totals based on these stratum sampling rates and the number of sample PSUs in each stratum.
The procedure sums the stratum totals to form the overall total, and computes f as the ratio of the number of
sample PSUs to the overall total. Alternatively, if you specify stratum totals with the TOTAL=SAS-data-set
option, then PROC SURVEYFREQ sums these totals to compute the overall total. The overall sampling
fraction f is then computed as the ratio of the number of sample PSUs to the overall total.

For BRR and jackknife variance estimation, PROC SURVEYFREQ computes the design effect for the
proportion in table cell (r, c) as

Deff.bP rc/ D bVar.bP rc/ = bVarsrs.bP rc/
D bVar.bP rc/ = �bP rc .1 � bP rc/ = .n � 1/�

where bP rc is the estimate of the proportion in table cell (r, c), bVar.bP rc/ is the variance of the estimate, and
n is the sample size (unweighted frequency) for the two-way table. This computation does not include the
overall sampling fraction.

The procedure computes design effects similarly for proportions in one-way frequency tables, and also for
row and column proportions in two-way tables. In these design effect computations, the value of n is the
sample size (unweighted frequency) that corresponds to the total domain of the proportion estimate. For table
cell proportions of a two-way table, the domain is the two-way table and the sample size n is the frequency of
the two-way table. For row proportions, which are based on a two-way table row, the domain is the row and
the sample size n is the frequency of the row.

Expected Weighted Frequency

If you specify the EXPECTED option in the TABLES statement, PROC SURVEYFREQ computes expected
weighted frequencies for the table cells in two-way tables. The expected weighted frequencies are computed
under the null hypothesis that the row and column variables are independent. The expected weighted
frequency for table cell (r, c) equals

Erc D bN r �
bN �c = bN

where bN r � is the estimated total for row r, bN �c is the estimated total for column c, and bN is the estimated
overall total. Equivalently, the expected weighted frequency can be expressed as

Erc D bP r � bP �c bN
These expected values are used in the design-based chi-square tests of independence, as described in the
sections “Rao-Scott Chi-Square Test” on page 8028 and “Wald Chi-Square Test” on page 8035.
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Risks and Risk Difference

The RISK option provides estimates of risks (binomial proportions) and risk differences for 2 � 2 tables,
together with their standard errors and confidence limits. Risk statistics include the row 1 risk, row 2 risk,
overall risk, and risk difference. If you specify the RISK option, PROC SURVEYFREQ provides both
column 1 and column 2 risks. You can request only column 1 (or only column 2) risks by specifying the
RISK1 (or RISK2) option.

The column 1 risk for row 1 is the row 1 proportion for table cell (1,1). The column 1 risk estimate is
computed as the ratio of the estimated total for table cell (1,1) to the estimated total for row 1,

bP .1/
11 D

bN 11 = bN 1�

where the total estimates are computed as described in the section “Totals” on page 8006. The column 1 risk
for row 2 is the row 2 proportion for table cell (2,1), which is estimated as

bP .2/
21 D

bN 21 = bN 2�

The overall column 1 risk is the overall proportion in column 1, and its estimate is computed as

bP �1 D bN �1 = bN
The column 2 risk estimates are computed similarly.

The row 1 and row 2 risks are the same as the row proportions for a 2 � 2 table, and their variances are
computed as described in the section “Row and Column Proportions” on page 8010. The overall risk is the
overall proportion in the column, and its variance computation is described in the section “Proportions” on
page 8008. Confidence limits for the column 1 risk for row 1 are computed as

bP .1/
11 ˙

�
tdf ;˛=2 � StdErr.bP .1/

11 /
�

where StdErr.bP .1/
11 / is the standard error of the risk estimate and tdf ;˛=2 is the 100.1 � ˛=2/ percentile of

the t distribution with df degrees of freedom. (For more information, see the section “Degrees of Freedom”
on page 8019.) The value of the confidence coefficient ˛ is determined by the ALPHA= option; by default,
ALPHA=0.05, which produces 95% confidence limits. Confidence limits for the other risks are computed
similarly.

The risk difference is defined as the row 1 risk minus the row 2 risk. The estimate of the column 1 risk
difference bRD1 is computed as

bRD1 D bP .1/
11 �

bP .2/
21

D

�bN 11 = bN 1�

�
�

�bN 21 = bN 2�

�
The column 2 risk difference is computed similarly.

PROC SURVEYFREQ estimates the variance of the risk difference by using the variance estimation method
that you request. If you request BRR variance estimation (VARMETHOD=BRR), the procedure estimates
the variance as described in the section “Balanced Repeated Replication (BRR)” on page 8011. If you
request jackknife variance estimation (VARMETHOD=JACKKNIFE), the procedure estimates the variance
as described in the section “The Jackknife Method” on page 8014.



Statistical Computations F 8023

If you do not specify the VARMETHOD= option or a REPWEIGHTS statement, the default variance
estimation method is Taylor series (VARMETHOD=TAYLOR). By using Taylor series linearization, the
variance estimate for the column 1 risk difference bVar.bRD1/ can be expressed as

bVar.bRD1/ D bD bV.bX/ bD0
where bV.bX/ is the covariance matrix of bX,

bX D � bN 11; bN 1�; bN 21; bN 2�

�
and bD is an array that contains the partial derivatives of the risk difference with respect to the elements of bX,

bD D � 1=bN 1�; �bN 11=bN 2
1� ; �1=

bN 2�; �bN 21=bN 2
2�

�
For more information, see Wolter (1985, pp. 239–242). The variance estimate for the column 2 risk difference
is computed similarly.

The standard error of the column 1 risk difference is

StdErr.bRD1/ D
q
bVar.bRD1/

Confidence limits for the column 1 risk difference are computed as

bRD1 ˙
�
tdf ;˛=2 � StdErr.bRD1/

�
where tdf ;˛=2 is the 100.1 � ˛=2/ percentile of the t distribution with df degrees of freedom. (For more
information, see the section “Degrees of Freedom” on page 8019.) The value of the confidence coefficient ˛
is determined by the ALPHA= option; by default, ALPHA=0.05, which produces 95% confidence limits.
Confidence limits for the column 2 risk difference are computed in the same way.

Odds Ratio and Relative Risks

The OR option provides estimates of the odds ratio, the column 1 relative risk, and the column 2 relative risk
for 2 � 2 tables, together with their confidence limits.

Odds Ratio
For a 2 � 2 table, the odds of a positive (column 1) response in row 1 is N11=N12. Similarly, the odds of a
positive response in row 2 is N21=N22. The odds ratio is formed as the ratio of the row 1 odds to the row 2
odds. The estimate of the odds ratio is computed as

bOR D
bN 11 = bN 12bN 21 = bN 22

D
bN 11

bN 22bN 12
bN 21

The value of the odds ratio can be any nonnegative number. When the row and column variables are
independent, the true value of the odds ratio equals 1. An odds ratio greater than 1 indicates that the odds of
a positive response are higher in row 1 than in row 2. An odds ratio less than 1 indicates that the odds of
positive response are higher in row 2. The strength of association increases with the deviation from 1. For
more information, see Stokes, Davis, and Koch (2000) and Agresti (2007).
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PROC SURVEYFREQ constructs confidence limits for the odds ratio by using the log transform. The
100.1 � ˛/% confidence limits for the odds ratio are computed as�bOR � exp.�tdf ;˛=2

p
v/; bOR � exp.tdf ;˛=2

p
v/
�

where

v DbVar.lnbOR/ DbVar.bOR/ =bOR 2

is the estimate of the variance of the log odds ratio and tdf ;˛=2 is the 100.1 � ˛=2/ percentile of the t
distribution with df degrees of freedom. (For more information, see the section “Degrees of Freedom” on
page 8019.) The value of the confidence coefficient ˛ is determined by the ALPHA= option; by default,
ALPHA=0.05, which produces 95% confidence limits.

If you request BRR variance estimation (VARMETHOD=BRR), PROC SURVEYFREQ estimates the
variance of the odds ratio as described in the section “Balanced Repeated Replication (BRR)” on page 8011.
If you request jackknife variance estimation (VARMETHOD=JACKKNIFE), the procedure estimates the
variance as described in the section “The Jackknife Method” on page 8014.

If you do not specify the VARMETHOD= option or a REPWEIGHTS statement, the default variance
estimation method is Taylor series (VARMETHOD=TAYLOR). By using Taylor series linearization, the
variance estimate for the odds ratio can be expressed as

bVar.bOR/ D bD bV.bN/ bD0
where bV.bN/ is the covariance matrix of the estimates of the cell totals bN,

bN D � bN 11; bN 12; bN 21; bN 22

�
and bD is an array that contains the partial derivatives of the odds ratio with respect to the elements of bN. The
section “Covariances of Frequency Estimates” on page 8008 describes the computation of bV.bN/. The arraybD is computed as

bD D � bN 22=.bN 12
bN 21/; �bN 11

bN 22=.bN 21
bN 2
12/; �

bN 11
bN 22=.bN 12

bN 2
21/;

bN 11=.bN 12
bN 21/

�
For more information, see Wolter (1985, pp. 239–242).

Relative Risks
For a 2� 2 table, the column 1 relative risk is the ratio of the column 1 risks for row 1 to row 2. As described
in the section “Risks and Risk Difference” on page 8022, the column 1 risk for row 1 is the proportion of row
1 observations classified in column 1, and the column 1 risk for row 2 is the proportion of row 2 observations
classified in column 1. The estimate of the column 1 relative risk is computed as

bRR1 D
bN 11 = bN 1�bN 21 = bN 2�

Similarly, the estimate of the column 2 relative risk is computed as

bRR2 D
bN 12 = bN 1�bN 22 = bN 2�
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A relative risk greater than 1 indicates that the probability of positive response is greater in row 1 than in row
2. Similarly, a relative risk less than 1 indicates that the probability of positive response is less in row 1 than
in row 2. The strength of association increases with the deviation from 1. For more information, see Stokes,
Davis, and Koch (2000) and Agresti (2007).

PROC SURVEYFREQ constructs confidence limits for the relative risk by using the log transform, which
is similar to the odds ratio computations described previously. The 100.1 � ˛/% confidence limits for the
column 1 relative risk are computed as�bRR1 � exp.�tdf ;˛=2

p
v/; bRR1 � exp.tdf ;˛=2

p
v/
�

where

v DbVar.lnbRR1/ DbVar.bRR1/ =bRR 2
1

is the estimate of the variance of the log column 1 relative risk and tdf ;˛=2 is the 100.1 � ˛=2/ percentile of
the t distribution with df degrees of freedom. (For more information, see the section “Degrees of Freedom”
on page 8019.) The value of the confidence coefficient ˛ is determined by the ALPHA= option; by default,
ALPHA=0.05, which produces 95% confidence limits.

If you request BRR variance estimation (VARMETHOD=BRR), PROC SURVEYFREQ estimates the
variance of the column 1 relative risk as described in the section “Balanced Repeated Replication (BRR)”
on page 8011. If you request jackknife variance estimation (VARMETHOD=JACKKNIFE), the procedure
estimates the variance as described in the section “The Jackknife Method” on page 8014.

If you do not specify the VARMETHOD= option or a REPWEIGHTS statement, the default variance
estimation method is Taylor series (VARMETHOD=TAYLOR). By using Taylor series linearization, the
variance estimate for the column 1 relative risk can be expressed as

bVar.bRR1/ D bD bV.bX/ bD0
where bV.bX/ is the covariance matrix of bX,

bX D � bN 11; bN 1�; bN 21; bN 2�

�
and bD is an array that contains the partial derivatives of the column 1 relative risk with respect to the elements
of bX,

bD D � bN 2�=.bN 21
bN 1�/; �bN 11

bN 2�=.bN 21
bN 2
1�/; �

bN 11
bN 2�=.bN 1�

bN 2
21/;

bN 11=.bN 21
bN 1�/

�
For more information, see Wolter (1985, pp. 239–242).

Confidence limits for the column 2 relative risk are computed similarly.

Kappa Coefficients

Simple Kappa Coefficient
The KAPPA option provides an estimate of the simple kappa coefficient, its standard error, and the confidence
limits. This option is available with replication-based variance estimation methods (which you can request by
specifying the VARMETHOD=JACKKNIFE or VARMETHOD=BRR option).

The simple kappa coefficient (Cohen 1960) is a measure of interrater agreement, where the row and column
variables of the two-way table are viewed as two independent ratings. When there is perfect agreement
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between the two ratings, the kappa coefficient equals +1. When the observed agreement exceeds chance
agreement, the value of kappa is positive, and its magnitude reflects the strength of agreement. The minimum
value of kappa is between –1 and 0, depending on the marginal proportions. For more information, see Fleiss,
Levin, and Paik (2003).

PROC SURVEYFREQ computes the simple kappa coefficient as

O� D .Po � Pe/ = .1 � Pe/

where

Po D
X
i

bP i i
Pe D

X
i

�bP i �bP �i�
where bP i i is the estimate of the proportion in table cell (i, i), bP i � is the estimate of the proportion in row i,
and bP �i is the estimate of the proportion in column i. For information about how PROC SURVEYFREQ
computes the proportion estimates, see the section “Proportions” on page 8008.

If you request jackknife variance estimation (by specifying the VARMETHOD=JACKKNIFE option), PROC
SURVEYFREQ estimates the variance of the simple kappa coefficient as described in the section “The Jack-
knife Method” on page 8014. If you request BRR variance estimation (by specifying the VARMETHOD=BRR
option in the PROC SURVEYFREQ statement), the procedure estimates the variance as described in the
section “Balanced Repeated Replication (BRR)” on page 8011.

PROC SURVEYFREQ computes confidence limits for the simple kappa coefficient as

O� ˙
�
tdf ;˛=2 � StdErr. O�/

�
where StdErr. O�/ is the standard error of the kappa coefficient and tdf ;˛=2 is the 100.1 � ˛=2/ percentile of
the t distribution with df degrees of freedom. (For more information, see the section “Degrees of Freedom”
on page 8019.) The value of the confidence coefficient ˛ is determined by the ALPHA= option; by default,
ALPHA=0.05, which produces 95% confidence limits.

Weighted Kappa Coefficient
The weighted kappa coefficient is a generalization of the simple kappa coefficient that uses agreement
weights to quantify the relative difference between categories (levels). By default, PROC SURVEYFREQ
uses Cicchetti-Allison agreement weights to compute the weighted kappa coefficient; if you specify the
WTKAPPA(WT=FC) option, the procedure uses Fleiss-Cohen agreement weights. For information about
how the agreement weights are computed, see the section “Kappa Agreement Weights” on page 8027. For
more information, see Fleiss, Cohen, and Everitt (1969) and Fleiss, Levin, and Paik (2003).

For 2 � 2 tables, the weighted kappa coefficient equals the simple kappa coefficient; PROC SURVEYFREQ
displays the weighted kappa coefficient only for tables larger than 2 � 2.

PROC SURVEYFREQ computes the weighted kappa coefficient as

O�w D
�
Po.w/ � Pe.w/

�
=
�
1 � Pe.w/

�
where

Po.w/ D
X
i

X
j

�
wijbP ij�
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Pe.w/ D
X
i

X
j

�
wijbP i �bP �j�

where wij is the agreement weight for table cell (i, j), bP ij is the estimate of the proportion in table cell
(i, j), bP i � is the estimate of the proportion in row i, and bP �i is the estimate of the proportion in column
i. For information about how PROC SURVEYFREQ computes the proportion estimates, see the section
“Proportions” on page 8008.

If you request jackknife variance estimation (by specifying the VARMETHOD=JACKKNIFE option),
PROC SURVEYFREQ estimates the variance of the weighted kappa coefficient as described in the sec-
tion “The Jackknife Method” on page 8014. If you request BRR variance estimation (by specifying the
VARMETHOD=BRR option in the PROC SURVEYFREQ statement), the procedure estimates the variance
as described in the section “Balanced Repeated Replication (BRR)” on page 8011.

PROC SURVEYFREQ computes confidence limits for the weighted kappa coefficient as

O�w ˙
�
tdf ;˛=2 � StdErr. O�w/

�
where StdErr. O�w/ is the standard error of the weighted kappa coefficient and tdf ;˛=2 is the 100.1 � ˛=2/
percentile of the t distribution with df degrees of freedom. (For more information, see the section “Degrees
of Freedom” on page 8019.) The value of the confidence coefficient ˛ is determined by the ALPHA= option;
by default, ALPHA=0.05, which produces 95% confidence limits.

Kappa Agreement Weights PROC SURVEYFREQ computes the weighted kappa coefficient by using
the Cicchetti-Allison form (by default) or the Fleiss-Cohen form of agreement weights. These weights are
based on the scores of the column variable in the two-way table request. If the column variable is numeric,
the column scores are the numeric values of the column levels. If the column variable is a character variable,
the column scores are the column numbers, where the columns are numbered in the order in which they
appear in the crosstabulation table.

PROC SURVEYFREQ computes Cicchetti-Allison agreement weights as

wij D 1 �
�
jCi � Cj j = .Cc � C1/

�
where Ci is the score for column i and c is the number of columns (categories). For more information, see
Cicchetti and Allison (1971).

PROC SURVEYFREQ computes Fleiss-Cohen agreement weights as

wij D 1 �
�
.Ci � Cj / = .Cc � C1/

�2
For more information, see Fleiss and Cohen (1973).

The agreement weights wij are constructed so that wi i D 1 for all i, and wij D wj i . For i 6D j , the
agreement weights must be nonnegative and less than 1, which is always true for character variables (where
the scores are the column numbers). For numeric variables, you should assign numeric variable levels (scores)
so that all agreement weights are nonnegative and less than 1.

You can assign numeric values to the variable levels in a way that reflects their degree of similarity. For
example, suppose the column variable is numeric and has four levels, which you order according to similarity.
If you assign the values 0, 2, 4, and 10 to the column variable levels, the Cicchetti-Allison agreement weights
take the following values: w12 = 0.8, w13 = 0.6, w14 = 0.0, w23 = 0.8, w24 = 0.2, and w34 = 0.4. For this
example, the Fleiss-Cohen agreement weights are as follows: w12 = 0.96, w13 = 0.84, w14 = 0.00, w23 =
0.96, w24 = 0.36, and w34 = 0.64.

To display the kappa agreement weights, you can specify the WTKAPPA(PRINTKWTS) option.
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Rao-Scott Chi-Square Test

The Rao-Scott chi-square test is a design-adjusted version of the Pearson chi-square test, which involves
differences between observed and expected frequencies. For information about design-adjusted chi-square
tests, see Lohr (2010, Section 10.3.2), Rao and Scott (1981), Rao and Scott (1984), Rao and Scott (1987),
and Thomas, Singh, and Roberts (1996).

PROC SURVEYFREQ provides a first-order Rao-Scott chi-square test by default. If you specify the
CHISQ(SECONDORDER) option, PROC SURVEYFREQ provides a second-order (Satterthwaite) Rao-
Scott chi-square test. The first-order design correction depends only on the design effects of the table cell
proportion estimates and, for two-way tables, the design effects of the marginal proportion estimates. The
second-order design correction requires computation of the full covariance matrix of the proportion estimates.
The second-order test requires more computational resources than the first-order test, but it can provide
some performance advantages (for Type I error and power), particularly when the design effects are variable
(Thomas and Rao 1987; Rao and Thomas 1989).

One-Way Tables
For one-way tables, the CHISQ option provides a Rao-Scott (design-based) goodness-of-fit test for one-way
tables. By default, this is a test for the null hypothesis of equal proportions. If you specify null hypothesis
proportions in the TESTP= option, the goodness-of-fit test uses the specified proportions.

First-Order Test The first-order Rao-Scott chi-square statistic for the goodness-of-fit test is computed as

QRS1 D QP = D

where QP is the Pearson chi-square based on the estimated totals and D is the first-order design correction
described in the section “First-Order Design Correction” on page 8029. For more information, see Rao and
Scott (1979), Rao and Scott (1981), Rao and Scott (1984).

For a one-way table with C levels, the Pearson chi-square is computed as

QP D .n=bN/ X
c

.bN c �Ec/
2 = Ec

where n is the sample size, bN is the estimated overall total, bN c is the estimated total for level c, and Ec is the
expected total for level c under the null hypothesis. For the null hypothesis of equal proportions, the expected
total for each level is

Ec D bN = C

For specified null proportions, the expected total for level c equals

Ec D bN � P 0
c

where P 0
c is the null proportion that you specify for level c.

Under the null hypothesis, the first-order Rao-Scott chi-square QRS1 approximately follows a chi-square
distribution with (C – 1) degrees of freedom. A better approximation can be obtained by the F statistic,

F1 D QRS1 = .C � 1/

which has an F distribution with .C � 1/ and �.C � 1/ degrees of freedom under the null hypothesis
(Thomas and Rao 1984, 1987). The value of � is the degrees of freedom for the variance estimator. The
degrees of freedom computation depends on the sample design and the variance estimation method. For more
information, see the section “Degrees of Freedom” on page 8019.
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First-Order Design Correction By default for one-way tables, the first-order design correction is com-
puted from the proportion estimates as

D D
X
c

.1 � bP c/ Deff.bP c/ = .C � 1/
where

Deff.bP c/ D bVar.bP c/ = Varsrs.bP c/
D bVar.bP c/ = �.1 � f / bP c .1 � bP c/ = .n � 1/�

as described in the section “Design Effect” on page 8020. bP c is the proportion estimate for level c, bVar.bP c/
is the variance of the estimate, f is the overall sampling fraction, and n is the number of observations in the
sample. The factor (1 – f ) is included only for Taylor series variance estimation (VARMETHOD=TAYLOR)
when you specify the RATE= or TOTAL= option. For more information, see the section “Design Effect” on
page 8020.

If you specify the CHISQ(MODIFIED) or LRCHISQ(MODIFIED) option, the design correction is computed
by using null hypothesis proportions instead of proportion estimates. By default, null hypothesis proportions
are equal proportions for all levels of the one-way table. Alternatively, you can specify null proportion values
in the TESTP= option. The modified design correction D0 is computed from null hypothesis proportions as

D0 D
X
c

.1 � P 0
c / Deff0.bP c/ = .C � 1/

where

Deff0.bP c/ D bVar.bP c/ = Varsrs.P 0
c /

D bVar.bP c/ = �.1 � f /P 0
c .1 � P 0

c / = .n � 1/
�

The null hypothesis proportion P 0
c equals 1=C for equal proportions (the default), or P 0

c equals the null
proportion that you specify for level c if you use the TESTP= option.

Second-Order Test The second-order (Satterthwaite) Rao-Scott chi-square statistic for the goodness-of-fit
test is computed as

QRS2 D QRS1 = .1C Oa
2/

where QRS1 is the first-order Rao-Scott chi-square statistic described in the section “First-Order Test” on
page 8028 and Oa2 is the second-order design correction described in the section “Second-Order Design
Correction” on page 8030. For more information, see Rao and Scott (1979), Rao and Scott (1981), and Rao
and Thomas (1989).

Under the null hypothesis, the second-order Rao-Scott chi-square QRS2 approximately follows a chi-square
distribution with .C � 1/=.1C Oa2/ degrees of freedom. The corresponding F statistic is

FRS2 D QRS2 = .C � 1/

which has an F distribution with .C � 1/=.1C Oa2/ and �.C � 1/=.1C Oa2/ degrees of freedom under the
null hypothesis (Thomas and Rao 1984, 1987). The value of � is the degrees of freedom for the variance
estimator. The degrees of freedom computation depends on the sample design and the variance estimation
method. For more information, see the section “Degrees of Freedom” on page 8019.
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Second-Order Design Correction The second-order (Satterthwaite) design correction for one-way tables
is computed from the eigenvalues of the estimated design effects matrix b�, which are known as generalized
design effects. The design effects matrix is computed as

b� D .n � 1/=.1 � f /
�
Covsrs.bP/�1 bCov.bP/�

where Covsrs.bP/ is the covariance under multinomial sampling (srs with replacement) and bCov.bP/ is the
covariance matrix of the first (C – 1) proportion estimates. For more information, see Rao and Scott (1979),
Rao and Scott (1981), and Rao and Thomas (1989).

By default, the srs covariance matrix is computed from the proportion estimates as

Covsrs.bP/ D Diag.bP/ �bPbP 0
where bP is an array of (C – 1) proportion estimates. If you specify the CHISQ(MODIFIED) or
LRCHISQ(MODIFIED) option, the srs covariance matrix is computed from the null hypothesis proportions
P0 as

Covsrs.P0/ D Diag.P0/ � P0 P0
0

where P0 is an array of (C – 1) null hypothesis proportions. The null hypothesis proportions equal 1=C
by default. If you use the TESTP= option to specify null hypothesis proportions, P0 is an array of (C – 1)
proportions that you specify.

The second-order design correction is computed as

Oa2 D

 
C�1X
cD1

d2c =.C � 1/
Nd2

!
� 1

where dc are the eigenvalues of the design effects matrix b� and Nd is the average of the eigenvalues.

Two-Way Tables
For two-way tables, the CHISQ option provides a Rao-Scott (design-based) test of association between
the row and column variables. PROC SURVEYFREQ provides a first-order Rao-Scott chi-square test by
default. If you specify the CHISQ(SECONDORDER) option, PROC SURVEYFREQ provides a second-order
(Satterthwaite) Rao-Scott chi-square test.

First-Order Test The first-order Rao-Scott chi-square statistic is computed as

QRS1 D QP = D

where QP is the Pearson chi-square based on the estimated totals and D is the design correction described in
the section “First-Order Design Correction” on page 8031. For more information, see Rao and Scott (1979),
Rao and Scott (1984), and Rao and Scott (1987).

For a two-way tables with R rows and C columns, the Pearson chi-square is computed as

QP D .n=bN/ X
r

X
c

.bN rc �Erc/
2 = Erc
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where n is the sample size, bN is the estimated overall total, bN rc is the estimated total for table cell (r, c), and
Erc is the expected total for table cell (r,c) under the null hypothesis of no association,

Erc D bN r �
bN �c = bN

Under the null hypothesis of no association, the first-order Rao-Scott chi-squareQRS1 approximately follows
a chi-square distribution with (R – 1)(C – 1) degrees of freedom. A better approximation can be obtained by
the F statistic,

F1 D QRS1 = .R � 1/.C � 1/

which has an F distribution with .R � 1/.C � 1/ and �.R � 1/.C � 1/ degrees of freedom under the null
hypothesis (Thomas and Rao 1984, 1987). The value of � is the degrees of freedom for the variance estimator.
The degrees of freedom computation depends on the sample design and the variance estimation method. For
more information, see the section “Degrees of Freedom” on page 8019.

First-Order Design Correction By default for a first-order test, PROC SURVEYFREQ computes the de-
sign correction from proportion estimates. If you specify the CHISQ(MODIFIED) or LRCHISQ(MODIFIED)
option for a first-order test, the procedure computes the design correction from null hypothesis proportions.

Second-order tests, which you request by specifying the CHISQ(SECONDORDER) or
LRCHISQ(SECONDORDER) option, are computed by applying both first-order and second-order de-
sign corrections to the weighted chi-square statistic. For second-order tests for two-way tables, PROC
SURVEYFREQ always uses null hypothesis proportions to compute both the first-order and second-order
design corrections.

The first-order design correction D that is based on proportion estimates is computed as

D D
� P

r

P
c.1 �

bP rc/ Deff.bP rc/ �Pr.1 �
bP r �/ Deff.bP r �/

�
P
c.1 �

bP �c/ Deff.bP �c/� = .R � 1/.C � 1/
where

Deff.bP rc/ D bVar.bP rc/ = Varsrs.bP rc/
D Var.bP rc/ = �.1 � f / bP rc .1 � bP rc/ = .n � 1/�

as described in the section “Design Effect” on page 8020. bP rc is the estimate of the proportion in table
cell (r, c), bVar.bP rc/ is the variance of the estimate, f is the overall sampling fraction, and n is the number
of observations in the sample. The factor (1 – f ) is included only for Taylor series variance estimation
(VARMETHOD=TAYLOR) when you specify the RATE= or TOTAL= option. For more information, see the
section “Design Effect” on page 8020.

The design effects for the estimate of the proportion in row r and the estimate of the proportion in column c
(Deff.bP r �/ and Deff.bP �c/, respectively) are computed in the same way.

If you specify the CHISQ(MODIFIED) or LRCHISQ(MODIFIED) option for a first-order Rao-
Scott test, or if you request a second-order test for a two-way table (CHISQ(SECONDORDER) or
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LRCHISQ(SECONDORDER)), the procedure computes the design correction from the null hypothesis cell
proportions instead of the estimated cell proportions. For two-way tables, the null hypothesis cell proportions
are computed as the products of the corresponding row and column proportion estimates. The modified
design correction D0 (based on null hypothesis proportions) is computed as

D0 D
� P

r

P
c.1 � P

0
rc/ Deff0.bP rc/ �Pr.1 �

bP r �/ Deff.bP r �/
�
P
c.1 �

bP �c/ Deff.bP �c/� = .R � 1/.C � 1/
where

P 0
rc D

bP r � � bP �c
and

Deff0.bP rc/ D bVar.bP rc/ = Varsrs.P 0
rc/

D bVar.bP rc/ = �.1 � f / P 0
rc .1 � P

0
rc/ = .n � 1/

�
Second-Order Test The second-order (Satterthwaite) Rao-Scott chi-square statistic for two-way tables is
computed as

QRS2 D QRS1 = .1C Oa
2/

where QRS1 is the first-order Rao-Scott chi-square statistic described in the section “First-Order Test” on
page 8030 and Oa2 is the second-order design correction described in the section “Second-Order Design
Correction” on page 8032. For more information, see Rao and Scott (1979), Rao and Scott (1981), and Rao
and Thomas (1989).

Under the null hypothesis, the second-order Rao-Scott chi-square QRS2 approximately follows a chi-square
distribution with .R � 1/.C � 1/=.1C Oa2/ degrees of freedom. The corresponding F statistic is

FRS2 D QRS2 .1C Oa
2/ = .R � 1/.C � 1/

which has an F distribution with .R�1/.C �1/=.1C Oa2/ and �.R�1/.C �1/=.1C Oa2/ degrees of freedom
under the null hypothesis (Thomas and Rao 1984, 1987). The value of � is the degrees of freedom for the
variance estimator. The degrees of freedom computation depends on the sample design and the variance
estimation method. For more information, see the section “Degrees of Freedom” on page 8019.

Second-Order Design Correction The second-order (Satterthwaite) design correction for two-way tables
is computed from the eigenvalues of the estimated design effects matrix b�, which are known as generalized
design effects. The design effects matrix is defined as

b� D .n � 1/=.1 � f /
�
Covsrs.bP/�1 H bCov.bP/ H 0�

where bCov.bP/ is the covariance matrix of the R � C proportion estimates and Covsrs.bP/ is the covariance
under multinomial sampling (srs with replacement). For more information, see Rao and Scott (1979), Rao
and Scott (1981), and Rao and Thomas (1989).
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The second-order design correction is computed from the design effects matrix b� as

Oa2 D

 
KX
iD1

d2c =K
Nd2

!
� 1

where K = (R – 1)(C – 1), dc are the eigenvalues of b�, and Nd is the average eigenvalue.

The srs covariance matrix is computed as

Covsrs.bP/ D bPr ˝bPc

wherebPr is an .R�1/� .R�1/ matrix that is constructed from the array of (R – 1) row proportion estimatesbpr asbPr D Diag.bpr/ �bprbp 0r
Similarly,bPc is a .C � 1/ � .C � 1/ matrix that is constructed from the array of (C – 1) column proportion
estimatesbpc asbPc D Diag.bpc/ �bpcbp 0c
The .R � 1/.C � 1/ � .R � 1/.C � 1/ matrix H is computed as

H D Jr ˝ Jc � .bpr l 0r /˝ Jc � Jr ˝ .bpr l 0r /

where Jr D .I.R�1/j0/, Jc D .I.C�1/j0/, lr is an .R � 1/ array of ones, and lc is an .C � 1/ array of ones.
For more information, see Rao and Scott (1979, p. 61).

Rao-Scott Likelihood Ratio Chi-Square Test

The Rao-Scott likelihood ratio chi-square test is a design-adjusted version of the likelihood ratio test, which
involves ratios of observed and expected frequencies. For information about design-adjusted chi-square tests,
see Lohr (2010, Section 10.3.2), Rao and Scott (1981), Rao and Scott (1984), Rao and Scott (1987), and
Thomas, Singh, and Roberts (1996).

PROC SURVEYFREQ provides a first-order Rao-Scott likelihood ratio test by default. If you specify
the LRCHISQ(SECONDORDER) option, PROC SURVEYFREQ provides a second-order (Satterthwaite)
likelihood ratio chi-square test.

The procedure computes the Rao-Scott likelihood ratio test by applying design adjustments to the weighted
likelihood ratio statistic that is based on estimated totals. This computation is identical to the Rao-Scott
chi-square test computation except that it uses the likelihood ratio statistic G2 in place of the Pearson
chi-square statistic QP . For more information, see the section “Rao-Scott Chi-Square Test” on page 8028.

One-Way Tables
For one-way tables, the LRCHISQ option provides a Rao-Scott (design-based) goodness-of-fit test for
one-way tables. By default, this is a test for the null hypothesis of equal proportions. If you specify null
hypothesis proportions in the TESTP= option, the goodness-of-fit test uses the specified proportions.

The Rao-Scott likelihood ratio test uses the likelihood ratio statistic that is based on the estimated totals,

G2 D 2 . n = bN /
X
c

bN c ln
�bN c = Ec

�
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where n is the sample size, bN is the estimated overall total, bN c is the estimated total for level c, and Ec is the
expected total for level c under the null hypothesis. For the null hypothesis of equal proportions, the expected
total for each level equals

Ec D bN = C

For specified null proportions, the expected total for level c equals

Ec D bN � P 0
c

where P 0
c is the null proportion that you specify for level c.

The computation of the Rao-Scott likelihood ratio test for one-way tables uses G2 in place of QP in the
Rao-Scott chi-square test computation and is otherwise identical to the chi-square test computation. For more
information, see the sections “First-Order Test” on page 8028 and “Second-Order Test” on page 8029.

If you specify the LRCHISQ(MODIFIED) option, PROC SURVEYFREQ computes the design corrections
by using null hypothesis proportions instead of proportion estimates. By default, null hypothesis proportions
are equal proportions for all levels of the one-way table. Alternatively, you can specify null proportion values
in the TESTP= option.

Two-Way Tables
For two-way tables, the LRCHISQ option provides a Rao-Scott (design-based) test of association between
the row and column variables.

The Rao-Scott likelihood ratio test uses the likelihood ratio statistic that is based on the estimated totals,

G2 D 2 .n=bN/ X
r

X
c

bN rc ln
�bN rc = Erc

�
where n is the sample size, bN is the estimated overall total, bN rc is the estimated total for table cell (r, c), and
Erc is the expected total for cell (r, c) under the null hypothesis of no association. The expected total for cell
(r, c) equals

Erc D bN r �
bN �c = bN

The computation of the Rao-Scott likelihood ratio test for two-way tables uses G2 in place of QP in the
Rao-Scott chi-square test computation and is otherwise identical to the chi-square test computation. For more
information, see the sections “First-Order Test” on page 8030 and “Second-Order Test” on page 8032.

By default for a first-order test, PROC SURVEYFREQ computes the design correction from proportion
estimates. If you specify the LRCHISQ(MODIFIED) option for a first-order test, the procedure computes the
design correction from null hypothesis proportions.

Second-order tests, which you request by specifying the LRCHISQ(SECONDORDER) option, are computed
by applying both first-order and second-order design corrections to the weighted likelihood ratio statistic. For
second-order tests for two-way tables, PROC SURVEYFREQ always uses null hypothesis proportions to
compute both the first-order and second-order design corrections.
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Wald Chi-Square Test

PROC SURVEYFREQ provides two Wald chi-square tests for independence of the row and column variables
in a two-way table: a Wald chi-square test based on the difference between observed and expected weighted
cell frequencies, and a Wald log-linear chi-square test based on the log odds ratios. These statistics test for
independence of the row and column variables in two-way tables, taking into account the complex survey
design. For information about Wald statistics and their applications to categorical data analysis, see Bedrick
(1983), Koch, Freeman, and Freeman (1975), and Wald (1943).

For these two tests, PROC SURVEYFREQ computes the generalized Wald chi-square statistic, the corre-
sponding F statistic, and also an adjusted F statistic for tables larger than 2 � 2. Under the null hypoth-
esis of independence, the Wald chi-square statistic approximately follows a chi-square distribution with
(R – 1)(C – 1) degrees of freedom for large samples. However, it has been shown that this test can perform
poorly in terms of actual significance level and power, especially for tables with a large number of cells or
for samples with a relatively small number of clusters. For more information, see Thomas and Rao (1984),
Thomas and Rao (1985), and Lohr (2010). For information about the adjusted F statistic, see Felligi (1980)
and Hidiroglou, Fuller, and Hickman (1980). Thomas and Rao (1984) found that the adjusted F statistic
provides a more stable test than the chi-square statistic, although its power can be low when the number of
sample clusters is not large. See also Korn and Graubard (1990) and Thomas, Singh, and Roberts (1996).

If you specify the WCHISQ option in the TABLES statement, PROC SURVEYFREQ computes a Wald
test for independence in the two-way table based on the differences between the observed (weighted) cell
frequencies and the expected frequencies.

Under the null hypothesis of independence of the row and column variables, the expected cell frequencies are
computed as

Erc D bN r �
bN �c = bN

where bN r � is the estimated total for row r, bN �c is the estimated total for column c, and bN is the estimated
overall total, as described in the section “Expected Weighted Frequency” on page 8021. The null hypothesis
that the population weighted frequencies equal the expected frequencies can be expressed as

H0WYrc D Nrc � Erc D 0

for all r D 1; : : : .R � 1/ and c D 1; : : : .C � 1/. This null hypothesis can be stated equivalently in terms
of cell proportions, with the expected cell proportions computed as the products of the marginal row and
column proportions.

The generalized Wald chi-square statistic QW is computed as

QW D bY0 .H bV.bN/ H0/�1 bY
where bY is an array of (R – 1)(C – 1) differences between the observed and expected weighted frequencies
.bN rc �Erc/, and .H bV.bN/ H0/ estimates the variance of bY.bV.bN/ is the covariance matrix of the estimates bN rc , and its computation is described in the section “Covari-
ances of Frequency Estimates” on page 8008.

H is an (R – 1)(C – 1) by RC matrix that contains the partial derivatives of the elements of bY with respect to
the elements of bN. The elements of H are computed as follows, where a denotes a row different from row r,
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and b denotes a column different from column c:

@bY rc=@bN rc D 1 �
�bN r � C bN �c � bN �c bN r � = bN� = bN

@bY rc=@bN ac D �

�bN r � � bN r �
bN �c = bN� = bN

@bY rc=@bN rb D �

�bN �c � bN r �
bN �c = bN� = bN

@bY rc=@bY ab D bN r �
bN �c = bN 2

Under the null hypothesis of independence, the statistic QW approximately follows a chi-square distribution
with (R – 1)(C – 1) degrees of freedom for large samples.

PROC SURVEYFREQ computes the Wald F statistic as

FW D QW = .R � 1/.C � 1/

Under the null hypothesis of independence, FW approximately follows an F distribution with (R – 1)(C
– 1) numerator degrees of freedom. The denominator degrees of freedom are the degrees of freedom for
the variance estimator and depend on the sample design and the variance estimation method. For more
information, see the section “Degrees of Freedom” on page 8019. Alternatively, you can use the DF= option
in the TABLES statement to specify the denominator degrees of freedom.

For tables larger than 2 � 2, PROC SURVEYFREQ also computes the adjusted Wald F statistic as

FAdj_W D QW .s � k C 1/ = .ks/

where k = (R – 1)(C – 1), and s is the degrees of freedom. (For more information, see the section “Degrees of
Freedom” on page 8019.) Alternatively, you can use the DF= option in the TABLES statement to specify the
value of s. For 2 � 2 tables, k = (R – 1 )(C – 1) = 1, and therefore the adjusted Wald F statistic equals the
(unadjusted) Wald F statistic and has the same numerator and denominator degrees of freedom.

Under the null hypothesis, FAdj_W approximately follows an F distribution with k numerator degrees of
freedom and (s – k + 1) denominator degrees of freedom.

Wald Log-Linear Chi-Square Test

If you specify the WLLCHISQ option in the TABLES statement, PROC SURVEYFREQ computes a Wald
test for independence based on the log odds ratios. For more information about Wald tests, see the section
“Wald Chi-Square Test” on page 8035.

For a two-way table of R rows and C columns, the Wald log-linear test is based on the (R – 1)(C – 1)-
dimensional array of elements bY rc ,bY rc D log bN rc � log bN rC � log bNRc C log bNRC

where bN rc is the estimated total for table cell (r, c). The null hypothesis of independence between the row
and column variables can be expressed as H0WYrc D 0 for all r D 1; : : : .R � 1/ and c D 1; : : : .C � 1/.
This null hypothesis can be stated equivalently in terms of cell proportions.

The generalized Wald log-linear chi-square statistic is computed as

QL D bY0 bV.bY/�1 bY
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where bY is the (R – 1)(C – 1)-dimensional array of the bY rc , and bV.bY/ estimates the variance of bY,

bV.bY/ D A D�1 bV .bN/ D�1 A0
where bV.bN/ is the covariance matrix of the estimates bN rc , which is computed as described in the section
“Covariances of Frequency Estimates” on page 8008. D is a diagonal matrix with the estimated totals bN rc on
the diagonal, and A is the .R � 1/.C � 1/ by RC �RC linear contrast matrix.

Under the null hypothesis of independence, the statistic QL approximately follows a chi-square distribution
with (R – 1)(C – 1) degrees of freedom for large samples.

PROC SURVEYFREQ computes the Wald log-linear F statistic as

FL D QL = .R � 1/.C � 1/

Under the null hypothesis of independence, FL approximately follows an F distribution with (R – 1)(C – 1)
numerator degrees of freedom. PROC SURVEYFREQ computes the denominator degrees of freedom as
described in the section “Degrees of Freedom” on page 8019. Alternatively, you can use the DF= option in
the TABLES statement to specify the denominator degrees of freedom.

For tables larger than 2 � 2, PROC SURVEYFREQ also computes the adjusted Wald log-linear F statistic as

FAdj_L D QL .s � k C 1/ = .ks/

where k = (R – 1)(C – 1), and s is the denominator degrees of freedom, which is computed as described in
the section “Degrees of Freedom” on page 8019. Alternatively, you can use the DF= option in the TABLES
statement to specify the value of s. For 2� 2 tables, k = (R – 1)(C – 1) = 1, and therefore the adjusted Wald F
statistic equals the (unadjusted) Wald F statistic and has the same numerator and denominator degrees of
freedom.

Under the null hypothesis, FAdj_L approximately follows an F distribution with k numerator degrees of
freedom and (s – k + 1) denominator degrees of freedom.

Output Data Sets
You can use the Output Delivery System to create a SAS data set from any piece of PROC SURVEYFREQ
output. For more information, see the section “ODS Table Names” on page 8045 and Example 97.3.

PROC SURVEYFREQ also provides an output data set that stores the replicate weights for BRR or jackknife
variance estimation and an output data set that stores the jackknife coefficients for jackknife variance
estimation.

Replicate Weight Output Data Set

If you specify the OUTWEIGHTS= method-option for VARMETHOD=BRR or VARMETHOD=JACKKNIFE,
PROC SURVEYFREQ stores the replicate weights in an output data set. The OUTWEIGHTS= output
data set contains all observations from the DATA= input data set that are valid (used in the analysis). A
valid observation must have a positive value of the WEIGHT variable. A valid observations must also have
nonmissing values of the STRATA and CLUSTER variables unless you specify the MISSING option in the
PROC SURVEYFREQ statement. For information about valid observations, see the section “Data Summary
Table” on page 8038.
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The OUTWEIGHTS= data set contains the following variables:

• all variables in the DATA= input data set

• RepWt_1, RepWt_2, : : :, RepWt_n, which are the replicate weight variables, where n is the total
number of replicates in the analysis

Each replicate weight variable contains the replicate weights for the corresponding replicate. Replicate
weights equal zero for those observations not included in the replicate.

After the procedure creates and stores replicate weights for a particular input data set and survey design, you
can use them again in subsequent analyses, either in PROC SURVEYFREQ or in another survey procedure.
You use a REPWEIGHTS statement to provide replicate weights to the procedure.

Jackknife Coefficient Output Data Set

If you specify the OUTJKCOEFS= method-option for VARMETHOD=JACKKNIFE, PROC SURVEYFREQ
stores the jackknife coefficients in an output data set. The OUTJKCOEFS= output data set contains one
observation for each replicate. The OUTJKCOEFS= data set contains the following variables:

• Replicate, which is the replicate number for the jackknife coefficient

• JKCoefficient, which is the jackknife coefficient

• DonorStratum, which is the stratum of the PSU that was deleted to construct the replicate, if you
specify a STRATA statement

After the procedure creates jackknife coefficients for a particular input data set and survey design, you can
use the OUTJKCOEFS= method-option to store these coefficients and then use them again in subsequent
analyses, either in PROC SURVEYFREQ or in another survey procedure. You use the JKCOEFS= option in
the REPWEIGHTS statement to provide jackknife coefficients for the procedure.

Displayed Output

Data Summary Table

The “Data Summary” table provides information about the input data set and the sample design.
PROC SURVEYFREQ displays this table unless you specify the NOSUMMARY option in the PROC
SURVEYFREQ statement.

The “Data Summary” table displays the total number of valid observations. To be considered valid, an
observation must have a nonmissing, positive sampling weight value if you specify a WEIGHT statement.
If you do not specify the MISSING option, a valid observation must also have nonmissing values for
all STRATA and CLUSTER variables. The number of valid observations can differ from the number of
nonmissing observations for an individual table request, which the procedure displays in the frequency or
crosstabulation tables. For more information, see the section “Missing Values” on page 8001.
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PROC SURVEYFREQ displays the following information in the “Data Summary” table:

• Number of Strata, if you specify a STRATA statement

• Number of Clusters, if you specify a CLUSTER statement

• Number of Observations, which is the total number of valid observations

• Sum of Weights, which is the sum over all valid observations, if you specify a WEIGHT or
REPWEIGHTS statement

Stratum Information Table

If you specify the LIST option in the STRATA statement, PROC SURVEYFREQ displays a “Stratum
Information” table. This table provides the following information for each stratum:

• Stratum Index, which is a sequential stratum identification number

• STRATA variables, which list the levels of STRATA variables for the stratum

• Number of Observations, which is the number of valid observations in the stratum

• Population Total for the stratum, if you specify the TOTAL= option

• Sampling Rate for the stratum, if you specify the TOTAL= or RATE= option. If you specify the
TOTAL= option, the sampling rate is based on the number of valid observations in the stratum.

• Number of Clusters, which is the number of clusters in the stratum, if you specify a CLUSTER
statement

Variance Estimation Table

If you specify the VARMETHOD=BRR, VARMETHOD=JACKKNIFE, or NOMCAR option in the PROC
SURVEYFREQ statement, the procedure displays a “Variance Estimation” table. If you do not specify any of
these options, the procedure creates a “Variance Estimation” table but does not display it. You can store this
nondisplayed table in an output data set by using the Output Delivery System (ODS). For more information,
see the section “ODS Table Names” on page 8045.

The “Variance Estimation” table provides the following information:

• Method, which is the variance estimation method—Taylor Series, Balanced Repeated Replication, or
Jackknife

• Replicate Weights input data set name, if you use a REPWEIGHTS statement to provide replicate
weights

• Number of Replicates, if you specify VARMETHOD=BRR or VARMETHOD=JACKKNIFE

• Hadamard Data Set name, if you specify the HADAMARD= method-option for VARMETHOD=BRR

• Fay Coefficient, if you specify the FAY method-option for VARMETHOD=BRR

• Missing Levels Included (MISSING), if you specify the MISSING option

• Missing Levels Included (NOMCAR), if you specify the NOMCAR option
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Hadamard Matrix

If you specify the PRINTH method-option for VARMETHOD=BRR, PROC SURVEYFREQ displays the
Hadamard matrix that it uses to construct replicates for BRR variance estimation. If you provide a Hadamard
matrix by specifying the HADAMARD= method-option for VARMETHOD=BRR but the procedure does
not use the entire matrix, the procedure displays only the rows and columns that are actually used to construct
replicates.

One-Way Frequency Tables

PROC SURVEYFREQ displays one-way frequency tables for all one-way table requests in the TABLES
statements, unless you specify the NOPRINT option in the TABLES statement. A one-way table shows the
sample frequency distribution of a single variable, and provides estimates for its population distribution in
terms of totals and proportions.

If you request a one-way table without specifying options, PROC SURVEYFREQ displays the following
information for each level of the variable:

• Frequency count, which is the number of sample observations in the level

• Weighted Frequency, which estimates the population total for the level

• Standard Deviation of Weighted Frequency

• Percent, which estimates the population proportion for the level

• Standard Error of Percent

The one-way table displays weighted frequencies if your analysis includes a WEIGHT or REPWEIGHTS
statement, or if you specify the WTFREQ option in the TABLES statement.

The one-way table also displays the Frequency Missing, which is the number of observations with missing
values.

You can suppress the frequency counts by specifying the NOFREQ option in the TABLES statement. Also,
the NOWT option suppresses the weighted frequencies and their standard deviations. The NOPERCENT
option suppresses the percentages and their standard errors. The NOSTD option suppresses the standard
errors of the percentages and the standard deviations of the weighted frequencies. The NOTOTAL option
suppresses the total row of the one-way table.

PROC SURVEYFREQ optionally displays the following information in a one-way table:

• Variance of Weighted Frequency, if you specify the VARWT option

• Confidence Limits for Weighted Frequency, if you specify the CLWT option

• Coefficient of Variation for Weighted Frequency, if you specify the CVWT option

• Test Percent, if you specify the TESTP= option

• Variance of Percent, if you specify the VAR option

• Confidence Limits for Percent, if you specify the CL option

• Coefficient of Variation for Percent, if you specify the CV option

• Design Effect for Percent, if you specify the DEFF option
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Crosstabulation Tables

PROC SURVEYFREQ displays all table requests in the TABLES statements, unless you specify the
NOPRINT option in the TABLES statement. For two-way to multiway crosstabulation tables, the values of
the last variable in the table request form the table columns. The values of the next-to-last variable form the
rows. Each level (or combination of levels) of the other variables forms one layer. PROC SURVEYFREQ
produces a separate two-way crosstabulation table for each layer of a multiway table.

For each layer, the crosstabulation table displays the row and column variable names and values (levels).
Each two-way table lists levels of the column variable within each level of the row variable.

By default, the procedure displays all levels of the column variable within each level of the row variables,
including any column variable levels with zero frequency for that row. For multiway tables, the procedure
displays all levels of the row variable for each layer of the table by default, including any row levels with zero
frequency for that layer. You can suppress the display of zero frequency levels by specifying the NOSPARSE
option.

If you request a crosstabulation table without specifying options, the table displays the following information
for each combination of variable levels (table cell):

• Frequency, which is the number of sample observations in the table cell

• Weighted Frequency, which estimates the population total for the table cell

• Standard Deviation of Weighted Frequency

• Percent, which estimates the population proportion for the table cell

• Standard Error of Percent

The two-way table displays weighted frequencies if your analysis includes a WEIGHT or REPWEIGHTS
statement, or if you specify the WTFREQ option in the TABLES statement.

The two-way table also displays the Frequency Missing, which is the number of observations with missing
values.

You can suppress the frequency counts by specifying the NOFREQ option in the TABLES statement. Also,
the NOWT option suppresses the weighted frequencies and their standard deviations. The NOPERCENT
option suppresses all percentages and their standard errors. The NOCELLPERCENT option suppresses
overall cell percentages and their standard errors, but displays any other percentages (and standard errors)
that you request, such as row or column percentages. The NOSTD option suppresses the standard errors of
the percentages and the standard deviations of the weighted frequencies. The NOTOTAL option suppresses
the row totals and column totals, as well as the overall total.

PROC SURVEYFREQ optionally displays the following information in a two-way table:

• Expected Weighted Frequency, if you specify the EXPECTED option

• Deviation from Expected Weighted Frequency, if you specify the DEVIATION option
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• Pearson Residual, if you specify the PEARSONRES option

• Cell Chi-Square, if you specify the CELLCHI2 option

• Variance of Weighted Frequency, if you specify the VARWT option

• Confidence Limits for Weighted Frequency, if you specify the CLWT option

• Coefficient of Variation for Weighted Frequency, if you specify the CVWT option

• Variance of Percent, if you specify the VAR option

• Confidence Limits for Percent, if you specify the CL option

• Coefficient of Variation for Percent, if you specify the CV option

• Design Effect for Percent, if you specify the DEFF option

• Row Percent, which estimates the population proportion of the row total, if you specify the ROW
option

• Standard Error of Row Percent, if you specify the ROW option

• Variance of Row Percent, if you specify the VAR option and the ROW option

• Confidence Limits for Row Percent, if you specify the CL option and the ROW option

• Coefficient of Variation for Row Percent, if you specify the CV option and the ROW option

• Design Effect for Row Percent, if you specify the ROW(DEFF) option

• Column Percent, which estimates the population proportion of the column total, if you specify the
COLUMN option

• Standard Error of Column Percent, if you specify the COLUMN option

• Variance of Column Percent, if you specify the VAR option and the COLUMN option

• Confidence Limits for Column Percent, if you specify the CL option and the COLUMN option

• Coefficient of Variation for Column Percent, if you specify the CV option and the COLUMN option

• Design Effects for Column Percent, if you specify the COLUMN(DEFF) option

Covariance Matrices of Estimates

If you specify the COV option, PROC SURVEYFREQ displays the covariance matrix of the cell total
frequency estimates. If you specify the COVP option, PROC SURVEYFREQ displays the covariance matrix
of the proportion estimates.
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Statistical Tests

If you specify the CHISQ option for the Rao-Scott chi-square test or the LRCHISQ option for the Rao-Scott
likelihood ratio chi-square test, PROC SURVEYFREQ displays the following information:

• Pearson Chi-Square, if you specify the CHISQ option

• Likelihood Ratio Chi-Square, if you specify the LRCHISQ option

• Design Correction

• Rao-Scott Chi-Square, by default or if you specify the FIRSTORDER option

• First-Order Chi-Square, if you specify the SECONDORDER option

• Second-Order Chi-Square, if you specify the SECONDORDER option

• DF, which is the degrees of freedom for the chi-square test

• Pr > ChiSq, which is the p-value for the chi-square test

• F Value

• Num DF, which is the numerator degrees of freedom for F

• Den DF, which is the denominator degrees of freedom for F

• Pr > F, which is the p-value for the F test

If you specify the WCHISQ option for the Wald chi-square test or the WLLCHISQ option for the Wald
log-linear chi-square test, PROC SURVEYFREQ displays the following information:

• Wald Chi-Square, if you specify the WCHISQ option

• Wald Log-Linear Chi-Square, if you specify the WLLCHISQ option

• F Value

• Num DF, which is the numerator degrees of freedom for F

• Den DF, which is the denominator degrees of freedom for F

• Pr > F, which is the p-value for the F test

• Adjusted F Value, for tables larger than 2 � 2

• Num DF, which is the numerator degrees of freedom for Adjusted F

• Den DF, which is the denominator degrees of freedom for Adjusted F

• Pr > Adj F, which is the p-value for the Adjusted F test
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Risks and Risk Difference

If you specify the RISK option in the TABLES statement for a 2 � 2 table, PROC SURVEYFREQ displays
“Column 1 Risk Estimates” and “Column 2 Risk Estimates” tables. You can display only column 1 or column
2 risks by specifying the RISK1 or RISK2 option, respectively.

The “Risk Estimates” table displays the following information for Row 1, Row 2, Total, and Difference:

• Row, which identifies the risk as Row 1, Row 2, Total, or Difference

• Risk estimate

• Standard Error

• Confidence Limits

In the “Column 1 Risk Estimates” table, the row 1 risk is the column 1 percentage of row 1. The row 2 risk is
the column 1 percentage of row 2, and the total risk is the column 1 percentage of the entire table. The risk
difference is the row 1 risk minus the row 2 risk. In the “Column 2 Risk Estimates” table, these computations
are based on column 2.

Odds Ratio and Relative Risks

If you specify the OR option in the TABLES statement for a 2 � 2 table, PROC SURVEYFREQ displays the
“Odds Ratio” table. This table includes the following information:

• Statistic, which identifies the statistic as the Odds Ratio, the Column 1 Relative Risk, or the Column 2
Relative Risk

• Estimate

• Confidence Limits

Kappa Statistics

If you specify the AGREE, KAPPA, or WTKAPPA option in the TABLES statement for a square table,
PROC SURVEYFREQ displays the “Kappa Statistics” table. This table includes the following information:

• Statistic, which identifies the statistic as the Simple Kappa Coefficient or the Weighted Kappa Coeffi-
cient

• Estimate

• Standard Error

• Confidence Limits
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Kappa Weights

If you specify the AGREE(PRINTKWTS) or WTKAPPA(PRINTKWTS) option for a square table whose
dimension is greater than 2, PROC SURVEYFREQ displays the “Kappa Weights” table. This table provides
the matrix of kappa agreement weights that the procedure uses to compute the weighted kappa coefficient.
The matrix contains an agreement weight for each pair of column variable levels.

ODS Table Names
PROC SURVEYFREQ assigns a name to each table that it creates. You can use these names to refer to
tables when you use the Output Delivery System (ODS) to select tables and create output data sets. For
more information about ODS, see Chapter 20, “Using the Output Delivery System.” See Example 97.3 for
examples of storing PROC SURVEYFREQ tables as output data sets.

Table 97.9 lists the ODS table names together with their descriptions and the options required to produce the
tables.

Table 97.9 ODS Tables Produced by PROC SURVEYFREQ

ODS Table Name Description Statement Option

ChiSq Chi-square test TABLES CHISQ
ChiSq1 Modified chi-square test TABLES CHISQ(MODIFIED)
Cov Covariances of frequencies TABLES COV
CovP Covariances of proportions TABLES COVP
CrossTabs Crosstabulation table TABLES n-way table request, n > 1
HadamardMatrix Hadamard matrix PROC VARMETHOD=BRR(PRINTH)
Kappa Kappa coefficients TABLES AGREE, KAPPA, or

WTKAPPA (r � r table)
KappaWeights Kappa agreement weights TABLES WTKAPPA(PRINTKWTS)

(r � r table, r > 2)
LRChiSq Likelihood ratio test TABLES LRCHISQ
LRChiSq1 Modified likelihood ratio test TABLES LRCHISQ(MODIFIED)
OddsRatio Odds ratio and relative risks TABLES OR (2 � 2 table)
OneWay One-way frequency table PROC No TABLES statement

or TABLES One-way table request
Risk1 Column 1 risk estimates TABLES RISK or RISK1 (2 � 2 table)
Risk2 Column 2 risk estimates TABLES RISK or RISK2 (2 � 2 table)
StrataInfo Stratum information STRATA LIST
Summary Data summary PROC Default
TableSummary Table summary (not displayed) TABLES Default
VarianceEstimation Variance estimation PROC VARMETHOD=BRR,

VARMETHOD=JACKKNIFE,
or NOMCAR

WChiSq Wald chi-square test TABLES WCHISQ (two-way table)
WLLChiSq Wald log-linear chi-square test TABLES WLLCHISQ (two-way table)
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ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

When ODS Graphics is enabled, you can request specific plots by specifying the PLOTS= option in the
TABLES statement. To produce a weighted frequency plot or mosaic plot, you must specify the WTFREQ-
PLOT or MOSAICPLOT plot-request in the PLOTS= option, or you must specify the PLOTS=ALL option.
By default, PROC SURVEYFREQ produces all other plots that are associated with the analyses that you
request in the TABLES statement. You can suppress default plots and request specific plots by using the
PLOTS(ONLY)= option. For more information, see the description of the PLOTS= option.

PROC SURVEYFREQ assigns a name to each graph that it creates by using ODS Graphics. You can use
these names to refer to the graphs. Table 97.10 lists the names of the graphs that PROC SURVEYFREQ
generates together with their descriptions, their PLOTS= options (plot-requests), and the TABLES statement
options that are required to produce the graphs.

Table 97.10 ODS Graphs Produced by PROC SURVEYFREQ

ODS Graph Name Description PLOTS= Option TABLES Statement Option

KappaPlot Kappa plot KAPPAPLOT AGREE or KAPPA
(h � r � r table)

MosaicPlot Mosaic plot MOSAICPLOT Two-way or multiway table request
ORPlot Odds ratio plot ODDSRATIOPLOT OR (h � 2 � 2 table)
RelRiskPlot Relative risk plot RELRISKPLOT OR (h � 2 � 2 table)
RiskDiffPlot Risk difference plot RISKDIFFPLOT RISK (h � 2 � 2 table)
WtFreqPlot Weighted frequency plot WTFREQPLOT Any table request
WtKappaPlot Weighted kappa plot WTKAPPAPLOT AGREE or WTKAPPA

(h � r � r table, r > 2)

Examples: SURVEYFREQ Procedure

Example 97.1: Two-Way Tables
This example uses the SIS_Survey data set from the section “Getting Started: SURVEYFREQ Procedure” on
page 7958. The data set contains results from a customer satisfaction survey for a student information system
(SIS).
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The following PROC SURVEYFREQ statements request a two-way table for Department by Response and
customize the crosstabulation table display:

title 'Student Information System Survey';
proc surveyfreq data=SIS_Survey;

tables Department * Response / cv deff nowt nostd nototal;
strata State NewUser / list;
cluster School;
weight SamplingWeight;

run;

The TABLES statement requests a two-way table of Department by Response. The CV option requests
coefficients of variation for the percentage estimates. The DEFF option requests design effects for the
percentage estimates. The NOWT option suppresses display of the weighted frequencies, and the NOSTD
option suppresses display of standard errors for the estimates. The NOTOTAL option suppresses the row
totals, column totals, and overall totals.

The STRATA, CLUSTER, and WEIGHT statements provide sample design information for the procedure, so
that the analysis is done according to the sample design used for the survey. The STRATA statement names
the variables State and NewUser, which identify the first-stage strata. The LIST option in the STRATA
statement requests a “Stratum Information” table. The CLUSTER statement names the variable School,
which identifies the clusters (primary sampling units). The WEIGHT statement names the sampling weight
variable.

Output 97.1.1 displays the “Data Summary” and “Stratum Information” tables produced by PROC
SURVEYFREQ. The “Stratum Information” table lists the six strata in the survey and shows the num-
ber of observations and the number of clusters (schools) in each stratum.

Output 97.1.1 Data Summary and Stratum Information

Student Information System Survey

The SURVEYFREQ Procedure

Student Information System Survey

The SURVEYFREQ Procedure

Data Summary

Number of Strata 6

Number of Clusters 370

Number of Observations 1850

Sum of Weights 38899.6482

Stratum Information

Stratum
Index State NewUser

Number of
Obs

Number of
Clusters

1 GA Renewal Customer 315 63

2 GA New Customer 355 71

3 NC Renewal Customer 280 56

4 NC New Customer 420 84

5 SC Renewal Customer 210 42

6 SC New Customer 270 54
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Output 97.1.2 displays the two-way table of Department by Response. According to the TABLES statement
options that are specified, this two-way table includes coefficients of variation and design effects for the
percentage estimates, and it does not show the weighted frequencies or the standard errors of the estimates. It
also does not show the row, column, and overall totals.

Output 97.1.2 Two-Way Table of Department by Response

Table of Department by Response

Department Response Frequency Percent
CV for

Percent
Design

Effect

Faculty Very Unsatisfied 209 13.4987 0.0865 2.1586

Unsatisfied 203 13.0710 0.0868 2.0962

Neutral 346 22.4127 0.0629 2.1157

Satisfied 254 16.2006 0.0806 2.3232

Very Satisfied 98 6.2467 0.1362 2.2842

Admin/Guidance Very Unsatisfied 95 3.6690 0.1277 1.1477

Unsatisfied 123 4.6854 0.1060 1.0211

Neutral 235 9.1838 0.0700 0.9166

Satisfied 201 7.7305 0.0756 0.8848

Very Satisfied 86 3.3016 0.1252 0.9892

The following PROC SURVEYFREQ statements request a two-way table of Department by Response that
includes row percentages, and also a Wald chi-square test of association between the two table variables:

title 'Student Information System Survey';
proc surveyfreq data=SIS_Survey nosummary;

tables Department * Response / row nowt wchisq;
strata State NewUser;
cluster School;
weight SamplingWeight;

run;

Output 97.1.3 displays the two-way table. The row percentages show the distribution of Response for Depart-
ment = ‘Faculty’ and for Department = ‘Admin/Guidance’. This is equivalent to a domain (subpopulation)
analysis of Response, where the domains are Department = ‘Faculty’ and Department = ‘Admin/Guidance’.

Output 97.1.4 displays the Wald chi-square test of association between Department and Response. The
Wald chi-square is 11.44, and the corresponding adjusted F value is 2.84 with a p-value of 0.0243. This
indicates a significant association between department (faculty or admin/guidance) and satisfaction with the
student information system.
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Output 97.1.3 Table of Department by Response with Row Percentages

Student Information System Survey

The SURVEYFREQ Procedure

Student Information System Survey

The SURVEYFREQ Procedure

Table of Department by Response

Department Response Frequency Percent
Std Err of

Percent
Row

Percent
Std Err of

Row Percent

Faculty Very Unsatisfied 209 13.4987 1.1675 18.8979 1.6326

Unsatisfied 203 13.0710 1.1350 18.2992 1.5897

Neutral 346 22.4127 1.4106 31.3773 1.9705

Satisfied 254 16.2006 1.3061 22.6805 1.8287

Very Satisfied 98 6.2467 0.8506 8.7452 1.1918

Total 1110 71.4297 0.1468 100.000

Admin/Guidance Very Unsatisfied 95 3.6690 0.4684 12.8419 1.6374

Unsatisfied 123 4.6854 0.4966 16.3995 1.7446

Neutral 235 9.1838 0.6430 32.1447 2.2300

Satisfied 201 7.7305 0.5842 27.0579 2.0406

Very Satisfied 86 3.3016 0.4133 11.5560 1.4466

Total 740 28.5703 0.1468 100.000

Total Very Unsatisfied 304 17.1676 1.2872

Unsatisfied 326 17.7564 1.2712

Neutral 581 31.5965 1.5795

Satisfied 455 23.9311 1.4761

Very Satisfied 184 9.5483 0.9523

Total 1850 100.000

Output 97.1.4 Wald Chi-Square Test

Wald Chi-Square
Test

Chi-Square 11.4454

F Value 2.8613

Num DF 4

Den DF 364

Pr > F 0.0234

Adj F Value 2.8378

Num DF 4

Den DF 361

Pr > Adj F 0.0243

Sample Size = 1850
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Example 97.2: Multiway Tables (Domain Analysis)
Continuing to use the SIS_Survey data set from the section “Getting Started: SURVEYFREQ Procedure”
on page 7958, this example shows how to produce multiway tables. The following PROC SURVEYFREQ
statements request a table of Department by SchoolType by Response for the student information system
survey:

title 'Student Information System Survey';
proc surveyfreq data=SIS_Survey;

tables Department * SchoolType * Response
SchoolType * Response;

strata State NewUser;
cluster School;
weight SamplingWeight;

run;

The TABLES statement requests a multiway table with SchoolType as the row variable, Response as the
column variable, and Department as the layer variable. This request produces a separate two-way table of
SchoolType by Response for each level of the variable Department. The TABLES statement also requests a
two-way table of SchoolType by Response, which totals the multiway table over both levels of Department.
As in the previous examples, the STRATA, CLUSTER, and WEIGHT statements provide sample design
information, so that the analysis will be done according to the design used for this survey.

Output 97.2.1 displays the multiway table produced by PROC SURVEYFREQ, which includes a table
of SchoolType by Response for Department = ‘Faculty’ and for Department = ‘Admin/Guidance’. This
is equivalent to a domain (subpopulation) analysis of SchoolType by Response, where the domains are
Department = ‘Faculty’ and Department = ‘Admin/Guidance’.
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Output 97.2.1 Multiway Table of Department by SchoolType by Response

Student Information System Survey

The SURVEYFREQ Procedure

Student Information System Survey

The SURVEYFREQ Procedure

Table of SchoolType by Response

Controlling for Department=Faculty

SchoolType Response Frequency
Weighted

Frequency
Std Dev of
Wgt Freq Percent

Std Err of
Percent

Middle School Very Unsatisfied 74 1846 301.22637 6.6443 1.0838

Unsatisfied 78 1929 283.11476 6.9428 1.0201

Neutral 130 3289 407.80855 11.8369 1.4652

Satisfied 113 2795 368.85087 10.0597 1.3288

Very Satisfied 55 1378 261.63311 4.9578 0.9411

Total 450 11237 714.97120 40.4415 2.5713

High School Very Unsatisfied 135 3405 389.42313 12.2536 1.3987

Unsatisfied 125 3155 384.56734 11.3563 1.3809

Neutral 216 5429 489.37826 19.5404 1.7564

Satisfied 141 3507 417.54773 12.6208 1.5040

Very Satisfied 43 1052 221.59367 3.7874 0.7984

Total 660 16549 719.61536 59.5585 2.5713

Total Very Unsatisfied 209 5251 454.82598 18.8979 1.6326

Unsatisfied 203 5085 442.39032 18.2992 1.5897

Neutral 346 8718 550.81735 31.3773 1.9705

Satisfied 254 6302 507.01711 22.6805 1.8287

Very Satisfied 98 2430 330.97602 8.7452 1.1918

Total 1110 27786 119.25529 100.000

Table of SchoolType by Response

Controlling for Department=Admin/Guidance

SchoolType Response Frequency
Weighted

Frequency
Std Dev of
Wgt Freq Percent

Std Err of
Percent

Middle School Very Unsatisfied 42 649.43427 133.06194 5.8435 1.1947

Unsatisfied 31 460.35557 100.80158 4.1422 0.9076

Neutral 104 1568 186.99946 14.1042 1.6804

Satisfied 84 1269 165.71127 11.4142 1.4896

Very Satisfied 39 574.93878 110.37243 5.1732 0.9942

Total 300 4521 287.86832 40.6774 2.5801

High School Very Unsatisfied 53 777.77725 136.41869 6.9983 1.2285

Unsatisfied 92 1362 175.40862 12.2573 1.5806

Neutral 131 2005 212.34804 18.0404 1.8990

Satisfied 117 1739 190.07798 15.6437 1.7118

Very Satisfied 47 709.37033 126.54394 6.3828 1.1371

Total 440 6593 288.92483 59.3226 2.5801

Total Very Unsatisfied 95 1427 182.28132 12.8419 1.6374

Unsatisfied 123 1823 193.43045 16.3995 1.7446

Neutral 235 3572 250.22739 32.1447 2.2300

Satisfied 201 3007 226.82311 27.0579 2.0406

Very Satisfied 86 1284 160.83434 11.5560 1.4466

Total 740 11114 60.78850 100.000
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Example 97.3: Output Data Sets
PROC SURVEYFREQ uses the Output Delivery System (ODS) to create output data sets. This is a departure
from older SAS procedures that provide OUTPUT statements for similar functionality. By using ODS, you
can create a SAS data set from any piece of PROC SURVEYFREQ output. For more information about ODS,
see Chapter 20, “Using the Output Delivery System.”

When selecting tables for ODS output data sets, you refer to tables by their ODS table names. Each table
created by PROC SURVEYFREQ is assigned a name. See the section “ODS Table Names” on page 8045 for
a list of the table names provided by PROC SURVEYFREQ.

To save the one-way table of Response from Figure 97.3 in an output data set, use an ODS OUTPUT
statement as follows:

proc surveyfreq data=SIS_Survey;
tables Response / cl nowt;
ods output OneWay=ResponseTable;
strata State NewUser;
cluster School;
weight SamplingWeight;

run;

Output 97.3.1 displays the output data set ResponseTable, which contains the one-way table of Response.
This data set has six observations, and each of these observations corresponds to a row of the one-way table.
The first five observations correspond to the five levels of Response, as they are ordered in the one-way table
display, and the last observation corresponds to the overall total, which is the last row of the one-way table.
The data set ResponseTable includes a variable corresponding to each column of the one-way table. For
example, the variable Percent contains the percentage estimates, and the variables LowerCL and UpperCL
contain the lower and upper confidence limits for the percentage estimates.

Output 97.3.1 ResponseTable Output Data Set

Obs Table Response Frequency Percent StdErr LowerCL UpperCL

1 Table Response Very Unsatisfied 304 17.1676 1.2872 14.6364 19.6989

2 Table Response Unsatisfied 326 17.7564 1.2712 15.2566 20.2562

3 Table Response Neutral 581 31.5965 1.5795 28.4904 34.7026

4 Table Response Satisfied 455 23.9311 1.4761 21.0285 26.8338

5 Table Response Very Satisfied 184 9.5483 0.9523 7.6756 11.4210

6 Table Response . 1850 100.000 _ _ _

PROC SURVEYFREQ also creates a table summary that is not displayed. Some of the information in this
table is similar to that contained in the “Data Summary” table, but the table summary describes the data that
are used to analyze the specified table, while the data summary describes the entire input data set. Due to
missing values, for example, the number of observations (or strata or clusters) used to analyze a particular
table can differ from the number of observations (or strata or clusters) reported for the input data set in the
“Data Summary” table. For more information, see the section “Missing Values” on page 8001. If you request
confidence limits, the “Table Summary” table also contains the degrees of freedom and the t-value used to
compute the confidence limits.
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The following statements store the nondisplayed “Table Summary” table in the output data set
ResponseSummary:

proc surveyfreq data=SIS_Survey;
tables Response / cl nowt;
ods output TableSummary=ResponseSummary;
strata State NewUser;
cluster School;
weight SamplingWeight;

run;

Output 97.3.2 displays the output data set ResponseSummary.

Output 97.3.2 ResponseSummary Output Data Set

Obs Table
Number of

Observations

Number
of

Strata

Number
of

Clusters

Degrees
of

Freedom
t

Percentile

1 Table Response 1850 6 370 364 1.966503
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Overview: SURVEYLOGISTIC Procedure
Categorical responses arise extensively in sample survey. Common examples of responses include the
following:

• binary: for example, attended graduate school or not

• ordinal: for example, mild, moderate, and severe pain

• nominal: for example, ABC, NBC, CBS, FOX TV network viewed at a certain hour

Logistic regression analysis is often used to investigate the relationship between such discrete responses and
a set of explanatory variables. For a description of logistic regression for sample survey data, see Binder
(1981, 1983); Roberts, Rao, and Kumar (1987); Skinner, Holt, and Smith (1989); Morel (1989); Lehtonen
and Pahkinen (1995).

For binary response models, the response of a sampling unit can take a specified value or not (for example,
attended graduate school or not). Suppose x is a row vector of explanatory variables and � is the response
probability to be modeled. The linear logistic model has the form

logit.�/ � log
� �

1 � �

�
D ˛ C xˇ

where ˛ is the intercept parameter and ˇ is the vector of slope parameters.

The logistic model shares a common feature with the more general class of generalized linear models—
namely, that a function g D g.�/ of the expected value, �, of the response variable is assumed to be linearly
related to the explanatory variables. Since � implicitly depends on the stochastic behavior of the response,
and since t he explanatory variables are assumed to be fixed, the function g provides the link between the
random (stochastic) component and the systematic (deterministic) component of the response variable. For
this reason, Nelder and Wedderburn (1972) refer to g.�/ as a link function. One advantage of the logit
function over other link functions is that differences on the logistic scale are interpretable regardless of
whether the data are sampled prospectively or retrospectively (McCullagh and Nelder 1989, Chapter 4).
Other link functions that are widely used in practice are the probit function and the complementary log-log
function. The SURVEYLOGISTIC procedure enables you to choose one of these link functions, resulting in
fitting a broad class of binary response models of the form

g.�/ D ˛ C xˇ

For ordinal response models, the response Y of an individual or an experimental unit might be restricted
to one of a usually small number of ordinal values, denoted for convenience by 1; : : : ;D;D C 1 .D � 1/.
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For example, pain severity can be classified into three response categories as 1=mild, 2=moderate, and
3=severe. The SURVEYLOGISTIC procedure fits a common slopes cumulative model, which is a parallel
lines regression model based on the cumulative probabilities of the response categories rather than on their
individual probabilities. The cumulative model has the form

g.Pr.Y � d j x// D ˛d C xˇ; 1 � d � D

where ˛1; : : : ; ˛k are k intercept parameters and ˇ is the vector of slope parameters. This model has been
considered by many researchers. Aitchison and Silvey (1957) and Ashford (1959) employ a probit scale
and provide a maximum likelihood analysis; Walker and Duncan (1967) and Cox and Snell (1989) discuss
the use of the log-odds scale. For the log-odds scale, the cumulative logit model is often referred to as the
proportional odds model.

For nominal response logistic models, where the D C 1 possible responses have no natural ordering, the
logit model can also be extended to a generalized logit model, which has the form

log
�

Pr.Y D i j x/
Pr.Y D D C 1 j x/

�
D ˛i C xˇi ; i D 1; : : : ;D

where the ˛1; : : : ; ˛D are D intercept parameters and the ˇ1; : : : ;ˇD are D vectors of parameters. These
models were introduced by McFadden (1974) as the discrete choice model, and they are also known as
multinomial models.

The SURVEYLOGISTIC procedure fits linear logistic regression models for discrete response survey data
by the method of maximum likelihood. For statistical inferences, PROC SURVEYLOGISTIC incorporates
complex survey sample designs, including designs with stratification, clustering, and unequal weighting.

The maximum likelihood estimation is carried out with either the Fisher scoring algorithm or the Newton-
Raphson algorithm. You can specify starting values for the parameter estimates. The logit link function in
the ordinal logistic regression models can be replaced by the probit function or the complementary log-log
function.

Odds ratio estimates are displayed along with parameter estimates. You can also specify the change in the
explanatory variables for which odds ratio estimates are desired.

Variances of the regression parameters and odds ratios are computed by using either the Taylor series
(linearization) method or replication (resampling) methods to estimate sampling errors of estimators based
on complex sample designs (Binder 1983; Särndal, Swensson, and Wretman 1992; Wolter 2007; Rao, Wu,
and Yue 1992).

The SURVEYLOGISTIC procedure enables you to specify categorical variables (also known as CLASS
variables) as explanatory variables. It also enables you to specify interaction terms in the same way as in the
LOGISTIC procedure.

Like many procedures in SAS/STAT software that allow the specification of CLASS variables, the
SURVEYLOGISTIC procedure provides a CONTRAST statement for specifying customized hypothe-
sis tests concerning the model parameters. The CONTRAST statement also provides estimation of individual
rows of contrasts, which is particularly useful for obtaining odds ratio estimates for various levels of the
CLASS variables.
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Getting Started: SURVEYLOGISTIC Procedure
The SURVEYLOGISTIC procedure is similar to the LOGISTIC procedure and other regression procedures
in the SAS System. See Chapter 60, “The LOGISTIC Procedure,” for general information about how to
perform logistic regression by using SAS. PROC SURVEYLOGISTIC is designed to handle sample survey
data, and thus it incorporates the sample design information into the analysis.

The following example illustrates how to use PROC SURVEYLOGISTIC to perform logistic regression for
sample survey data.

In the customer satisfaction survey example in the section “Getting Started: SURVEYSELECT Procedure”
on page 8403 in Chapter 102, “The SURVEYSELECT Procedure,” an Internet service provider conducts
a customer satisfaction survey. The survey population consists of the company’s current subscribers from
four states: Alabama (AL), Florida (FL), Georgia (GA), and South Carolina (SC). The company plans to
select a sample of customers from this population, interview the selected customers and ask their opinions
on customer service, and then make inferences about the entire population of subscribers from the sample
data. A stratified sample is selected by using the probability proportional to size (PPS) method. The sample
design divides the customers into strata depending on their types (‘Old’ or ‘New’) and their states (AL, FL,
GA, SC). There are eight strata in all. Within each stratum, customers are selected and interviewed by using
the PPS with replacement method, where the size variable is Usage. The stratified PPS sample contains
192 customers. The data are stored in the SAS data set SampleStrata. Figure 98.1 displays the first 10
observations of this data set.

Figure 98.1 Stratified PPS Sample (First 10 Observations)

Customer Satisfaction Survey
Stratified PPS Sampling
(First 10 Observations)

Customer Satisfaction Survey
Stratified PPS Sampling
(First 10 Observations)

Obs State Type CustomerID Rating Usage SamplingWeight

1 AL New 24394278 Neutral 13.17 26.358

2 AL New 64798692 Extremely Unsatisfied 15.53 22.352

3 AL New 75375074 Unsatisfied 99.11 3.501

4 AL New 262831809 Neutral 5.40 64.228

5 AL New 294428658 Extremely Satisfied 1.17 297.488

6 AL New 336222949 Unsatisfied 38.69 8.970

7 AL New 351929023 Extremely Satisfied 2.72 127.475

8 AL New 366142640 Satisfied 2.61 132.958

9 AL New 371478614 Neutral 14.36 24.173

10 AL New 477172230 Neutral 4.06 85.489

In the SAS data set SampleStrata, the variable CustomerID uniquely identifies each customer. The variable
State contains the state of the customer’s address. The variable Type equals ‘Old’ if the customer has
subscribed to the service for more than one year; otherwise, the variable Type equals ‘New’. The variable
Usage contains the customer’s average monthly service usage, in hours. The variable Rating contains the
customer’s responses to the survey. The sample design uses an unequal probability sampling method, with
the sampling weights stored in the variable SamplingWeight.
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The following SAS statements fit a cumulative logistic model between the satisfaction levels and the Internet
usage by using the stratified PPS sample:

title 'Customer Satisfaction Survey';
proc surveylogistic data=SampleStrata;

strata state type/list;
model Rating (order=internal) = Usage;
weight SamplingWeight;

run;

The PROC SURVEYLOGISTIC statement invokes the SURVEYLOGISTIC procedure. The STRATA
statement specifies the stratification variables State and Type that are used in the sample design. The LIST
option requests a summary of the stratification. In the MODEL statement, Rating is the response variable and
Usage is the explanatory variable. The ORDER=internal is used for the response variable Rating to ask the
procedure to order the response levels by using the internal numerical value (1–5) instead of the formatted
character value. The WEIGHT statement specifies the variable SamplingWeight that contains the sampling
weights.

The results of this analysis are shown in the following figures.

Figure 98.2 Stratified PPS Sample, Model Information

Customer Satisfaction Survey

The SURVEYLOGISTIC Procedure

Customer Satisfaction Survey

The SURVEYLOGISTIC Procedure

Model Information

Data Set WORK.SAMPLESTRATA

Response Variable Rating

Number of Response Levels 5

Stratum Variables State

Type

Number of Strata 8

Weight Variable SamplingWeight Sampling Weight

Model Cumulative Logit

Optimization Technique Fisher's Scoring

Variance Adjustment Degrees of Freedom (DF)

PROC SURVEYLOGISTIC first lists the following model fitting information and sample design information
in Figure 98.2:

• The link function is the logit of the cumulative of the lower response categories.

• The Fisher scoring optimization technique is used to obtain the maximum likelihood estimates for the
regression coefficients.

• The response variable is Rating, which has five response levels.

• The stratification variables are State and Type.

• There are eight strata in the sample.
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• The weight variable is SamplingWeight.

• The variance adjustment method used for the regression coefficients is the default degrees of freedom
adjustment.

Figure 98.3 lists the number of observations in the data set and the number of observations used in the
analysis. Since there is no missing value in this example, observations in the entire data set are used in the
analysis. The sums of weights are also reported in this table.

Figure 98.3 Stratified PPS Sample, Number of Observations

Number of Observations Read 192

Number of Observations Used 192

Sum of Weights Read 11326.25

Sum of Weights Used 11326.25

The “Response Profile” table in Figure 98.4 lists the five response levels, their ordered values, and their total
frequencies and total weights for each category. Due to the ORDER=INTERNAL option for the response
variable Rating, the category “Extremely Unsatisfied” has the Ordered Value 1, the category “Unsatisfied”
has the Ordered Value 2, and so on.

Figure 98.4 Stratified PPS Sample, Response Profile

Response Profile

Ordered
Value Rating

Total
Frequency

Total
Weight

1 Extremely Unsatisfied 58 2368.8598

2 Unsatisfied 47 1606.9657

3 Neutral 44 2594.3564

4 Satisfied 35 1898.5839

5 Extremely Satisfied 8 2857.4848

Probabilities modeled are cumulated over the lower Ordered Values.

Figure 98.5 displays the output of the stratification summary. There are a total of eight strata, and each
stratum is defined by the customer types within each state. The table also shows the number of customers
within each stratum.

Figure 98.5 Stratified PPS Sample, Stratification Summary

Stratum Information

Stratum
Index State Type N Obs

1 AL New 24

2 Old 23

3 FL New 25

4 Old 22

5 GA New 25

6 Old 24

7 SC New 24

8 Old 25
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Figure 98.6 shows the chi-square test for testing the proportional odds assumption. The test is highly
significant, which indicates that the cumulative logit model might not adequately fit the data.

Figure 98.6 Stratified PPS Sample, Testing the Proportional Odds Assumption

Score Test for the
Proportional Odds

Assumption

Chi-Square DF Pr > ChiSq

617.8597 3 <.0001

Figure 98.7 shows the iteration algorithm converged to obtain the MLE for this example. The “Model Fit
Statistics” table contains the Akaike information criterion (AIC), the Schwarz criterion (SC), and the negative
of twice the log likelihood (�2 logL) for the intercept-only model and the fitted model. AIC and SC can be
used to compare different models, and the ones with smaller values are preferred.

Figure 98.7 Stratified PPS Sample, Model Fitting Information

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Criterion
Intercept

Only

Intercept
and

Covariates

AIC 35996.656 35312.584

SC 36009.686 35328.872

-2 Log L 35988.656 35302.584

The table “Testing Global Null Hypothesis: BETA=0” in Figure 98.8 shows the likelihood ratio test, the
efficient score test, and the Wald test for testing the significance of the explanatory variable (Usage). All
tests are significant.

Figure 98.8 Stratified PPS Sample

Testing Global Null Hypothesis: BETA=0

Test F Value Num DF Den DF Pr > F

Likelihood Ratio 686.07 1 Infty <.0001

Score 123.54 1 184 <.0001

Wald 3.89 1 184 0.0500

Figure 98.9 shows the parameter estimates of the logistic regression and their standard errors.
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Figure 98.9 Stratified PPS Sample, Parameter Estimates

Analysis of Maximum Likelihood Estimates

Parameter Estimate
Standard

Error t Value Pr > |t|

Intercept Extremely Unsatisfied -1.6784 0.3874 -4.33 <.0001

Intercept Unsatisfied -0.9356 0.3645 -2.57 0.0111

Intercept Neutral 0.0438 0.4177 0.10 0.9166

Intercept Satisfied 0.8440 0.5699 1.48 0.1403

Usage 0.0350 0.0175 1.99 0.0475

NOTE: The degrees of freedom for the t tests is 184.

Figure 98.10 displays the odds ratio estimate and its confidence intervals.

Figure 98.10 Stratified PPS Sample, Odds Ratios

Odds Ratio Estimates

Effect
Point

Estimate

95%
Confidence

Limits

Usage 1.036 1.000 1.072

NOTE:
The degrees of freedom in
computing the confidence

limits is 184.

Syntax: SURVEYLOGISTIC Procedure
The following statements are available in the SURVEYLOGISTIC procedure:

PROC SURVEYLOGISTIC < options > ;
BY variables ;
CLASS variable < (v-options) > < variable < (v-options) > . . . > < / v-options > ;
CLUSTER variables ;
CONTRAST 'label ' effect values < , . . . effect values > < / options > ;
DOMAIN variables < variable�variable variable�variable�variable . . . > ;
EFFECT name = effect-type (variables < / options >) ;
ESTIMATE < 'label ' > estimate-specification < / options > ;
FREQ variable ;
LSMEANS < model-effects > < / options > ;
LSMESTIMATE model-effect lsmestimate-specification < / options > ;
MODEL events/trials = < effects < / options > > ;
MODEL variable < (v-options) > = < effects > < / options > ;
OUTPUT < OUT=SAS-data-set > < options > < / option > ;
REPWEIGHTS variables < / options > ;
SLICE model-effect < / options > ;
STORE < OUT= >item-store-name < / LABEL='label ' > ;
STRATA variables < / option > ;
< label: > TEST equation1 < , . . . , equationk > < / options > ;
UNITS independent1 = list1 < . . . independentk = listk > < / option > ;
WEIGHT variable ;
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The PROC SURVEYLOGISTIC and MODEL statements are required.

The CLASS, CLUSTER, CONTRAST, EFFECT, ESTIMATE, LSMEANS, LSMESTIMATE,
REPWEIGHTS, SLICE, STRATA, TEST statements can appear multiple times. You should use only one of
each following statements: MODEL, WEIGHT, STORE, OUTPUT, and UNITS.

The CLASS statement (if used) must precede the MODEL statement, and the CONTRAST statement (if
used) must follow the MODEL statement.

The rest of this section provides detailed syntax information for each of the preceding statements, except the
EFFECT, ESTIMATE, LSMEANS, LSMESTIMATE, SLICE, STORE statements. These statements are also
available in many other procedures. Summary descriptions of functionality and syntax for these statements
are shown in this chapter, and full documentation about them is available in Chapter 19, “Shared Concepts
and Topics.”

The syntax descriptions begin with the PROC SURVEYLOGISTIC statement; the remaining statements are
covered in alphabetical order.

PROC SURVEYLOGISTIC Statement
PROC SURVEYLOGISTIC < options > ;

The PROC SURVEYLOGISTIC statement invokes the SURVEYLOGISTIC procedure. Optionally, it
identifies input data sets, controls the ordering of the response levels, and specifies the variance estimation
method. The PROC SURVEYLOGISTIC statement is required.

Table 98.1 summarizes the options available in the PROC SURVEYLOGISTIC statement.

Table 98.1 PROC SURVEYLOGISTIC Statement Options

Option Description

ALPHA= Sets the confidence level for confidence intervals
DATA= Names the SAS data set containing the data to be analyze
INEST= Names the SAS data set that contains initial estimates
MISSING Treats missing values as a nonmissing category
NAMELEN= Specifies the length of effect names
NOMCAR Treats missing values as not missing completely at random
NOSORT Suppresses the internal sorting process
ORDER= Specifies the sort order
RATE= Specifies the sampling rate
TOTAL= Specifies the total number of primary sampling units
VARMETHOD= Specifies the variance estimation method

ALPHA=value
sets the confidence level for confidence intervals. The value of the ALPHA= option must be between
0 and 1, and the default value is 0.05. A confidence level of ˛ produces 100.1 � ˛/% confidence
intervals. The default of ALPHA=0.05 produces 95% confidence intervals.
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DATA=SAS-data-set
names the SAS data set containing the data to be analyzed. If you omit the DATA= option, the
procedure uses the most recently created SAS data set.

INEST=SAS-data-set
names the SAS data set that contains initial estimates for all the parameters in the model. BY-group
processing is allowed in setting up the INEST= data set. See the section “INEST= Data Set” on
page 8108 for more information.

MISSING
treats missing values as a valid (nonmissing) category for all categorical variables, which include
CLASS, STRATA, CLUSTER, and DOMAIN variables.

By default, if you do not specify the MISSING option, an observation is excluded from the analysis if
it has a missing value. For more information, see the section “Missing Values” on page 8098.

NAMELEN=n
specifies the length of effect names in tables and output data sets to be n characters, where n is a value
between 20 and 200. The default length is 20 characters.

NOMCAR
requests that the procedure treat missing values in the variance computation as not missing completely
at random (NOMCAR) for Taylor series variance estimation. When you specify the NOMCAR option,
PROC SURVEYLOGISTIC computes variance estimates by analyzing the nonmissing values as a
domain or subpopulation, where the entire population includes both nonmissing and missing domains.
See the section “Missing Values” on page 8098 for more details.

By default, PROC SURVEYLOGISTIC completely excludes an observation from analysis if that
observation has a missing value, unless you specify the MISSING option. Note that the NOMCAR
option has no effect on a classification variable when you specify the MISSING option, which treats
missing values as a valid nonmissing level.

The NOMCAR option applies only to Taylor series variance estimation. The replication methods,
which you request with the VARMETHOD=BRR and VARMETHOD=JACKKNIFE options, do not
use the NOMCAR option.

NOSORT
suppresses the internal sorting process to shorten the computation time if the data set is presorted by the
STRATA and CLUSTER variables. By default, the procedure sorts the data by the STRATA variables
if you use the STRATA statement; then the procedure sorts the data by the CLUSTER variables within
strata. If your data are already stored by the order of STRATA and CLUSTER variables, then you can
specify this option to omit this sorting process to reduce the usage of computing resources, especially
when your data set is very large. However, if you specify this NOSORT option while your data are
not presorted by STRATA and CLUSTER variables, then any changes in these variables creates a new
stratum or cluster.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of the response variable. This option, except for ORDER=FREQ,
also determines the sort order for the levels of ClUSTER and DOMAIN variables and controls STRATA
variable levels in the “Stratum Information” table. By default, ORDER=INTERNAL. However, if an
ORDER= option is specified after the response variable, in the MODEL statement, it overrides this
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option for the response variable. This option does not affect the ordering of the CLASS variable levels;
see the ORDER= option in the CLASS statement for more information.

RATE=value | SAS-data-set

R=value | SAS-data-set
specifies the sampling rate as a nonnegative value, or specifies an input data set that contains the stratum
sampling rates. The procedure uses this information to compute a finite population correction for Taylor
series variance estimation. The procedure does not use the RATE= option for BRR or jackknife variance
estimation, which you request with the VARMETHOD=BRR or VARMETHOD=JACKKNIFE option.

If your sample design has multiple stages, you should specify the first-stage sampling rate, which is
the ratio of the number of PSUs selected to the total number of PSUs in the population.

For a nonstratified sample design, or for a stratified sample design with the same sampling rate in
all strata, you should specify a nonnegative value for the RATE= option. If your design is stratified
with different sampling rates in the strata, then you should name a SAS data set that contains the
stratification variables and the sampling rates. See the section “Specification of Population Totals and
Sampling Rates” on page 8109 for more details.

The value in the RATE= option or the values of _RATE_ in the secondary data set must be nonnegative
numbers. You can specify value as a number between 0 and 1. Or you can specify value in percentage
form as a number between 1 and 100, and PROC SURVEYLOGISTIC converts that number to a
proportion. The procedure treats the value 1 as 100% instead of 1%.

If you do not specify the TOTAL= or RATE= option, then the Taylor series variance estimation does
not include a finite population correction. You cannot specify both the TOTAL= and RATE= options.

TOTAL=value | SAS-data-set

N=value | SAS-data-set
specifies the total number of primary sampling units in the study population as a positive value,
or specifies an input data set that contains the stratum population totals. The procedure uses this
information to compute a finite population correction for Taylor series variance estimation. The
procedure does not use the TOTAL= option for BRR or jackknife variance estimation, which you
request with the VARMETHOD=BRR or VARMETHOD=JACKKNIFE option.

For a nonstratified sample design, or for a stratified sample design with the same population total in all
strata, you should specify a positive value for the TOTAL= option. If your sample design is stratified
with different population totals in the strata, then you should name a SAS data set that contains the
stratification variables and the population totals. See the section “Specification of Population Totals
and Sampling Rates” on page 8109 for more details.

If you do not specify the TOTAL= or RATE= option, then the Taylor series variance estimation does
not include a finite population correction. You cannot specify both the TOTAL= and RATE= options.

VARMETHOD=BRR < (method-options) >

VARMETHOD=JACKKNIFE | JK < (method-options) >

VARMETHOD=TAYLOR
specifies the variance estimation method. VARMETHOD=TAYLOR requests the Taylor series method,
which is the default if you do not specify the VARMETHOD= option or the REPWEIGHTS statement.
VARMETHOD=BRR requests variance estimation by balanced repeated replication (BRR), and
VARMETHOD=JACKKNIFE requests variance estimation by the delete-1 jackknife method.
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For VARMETHOD=BRR and VARMETHOD=JACKKNIFE you can specify method-options in
parentheses. Table 98.2 summarizes the available method-options.

Table 98.2 Variance Estimation Options

VARMETHOD= Variance Estimation Method Method-Options

BRR Balanced repeated replication FAY < =value >
HADAMARD=SAS-data-set
OUTWEIGHTS=SAS-data-set
PRINTH
REPS=number

JACKKNIFE Jackknife OUTJKCOEFS=SAS-data-set
OUTWEIGHTS=SAS-data-set

TAYLOR Taylor series linearization None

Method-options must be enclosed in parentheses following the method keyword. For example:

varmethod=BRR(reps=60 outweights=myReplicateWeights)

The following values are available for the VARMETHOD= option:

BRR < (method-options) >
requests balanced repeated replication (BRR) variance estimation. The BRR method
requires a stratified sample design with two primary sampling units (PSUs) per
stratum. See the section “Balanced Repeated Replication (BRR) Method” on
page 8115 for more information.

You can specify the following method-options in parentheses following
VARMETHOD=BRR:

FAY < =value >
requests Fay’s method, a modification of the BRR method, for variance estima-
tion. See the section “Fay’s BRR Method” on page 8116 for more information.

You can specify the value of the Fay coefficient, which is used in converting
the original sampling weights to replicate weights. The Fay coefficient must be
a nonnegative number less than 1. By default, the value of the Fay coefficient
equals 0.5.

HADAMARD=SAS-data-set

H=SAS-data-set
names a SAS data set that contains the Hadamard matrix for BRR repli-
cate construction. If you do not provide a Hadamard matrix with the
HADAMARD= method-option, PROC SURVEYLOGISTIC generates an
appropriate Hadamard matrix for replicate construction. See the sections “Bal-
anced Repeated Replication (BRR) Method” on page 8115 and “Hadamard
Matrix” on page 8118 for details.
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If a Hadamard matrix of a given dimension exists, it is not necessarily unique.
Therefore, if you want to use a specific Hadamard matrix, you must provide
the matrix as a SAS data set in the HADAMARD= method-option.

In the HADAMARD= input data set, each variable corresponds to a column
of the Hadamard matrix, and each observation corresponds to a row of the
matrix. You can use any variable names in the HADAMARD= data set. All
values in the data set must equal either 1 or –1. You must ensure that the
matrix you provide is indeed a Hadamard matrix—that is, A0A D RI, where
A is the Hadamard matrix of dimension R and I is an identity matrix. PROC
SURVEYLOGISTIC does not check the validity of the Hadamard matrix that
you provide.

The HADAMARD= input data set must contain at least H variables, where H
denotes the number of first-stage strata in your design. If the data set contains
more than H variables, the procedure uses only the first H variables. Similarly,
the HADAMARD= input data set must contain at least H observations.

If you do not specify the REPS= method-option, then the number of replicates
is taken to be the number of observations in the HADAMARD= input data set.
If you specify the number of replicates—for example, REPS=nreps—then the
first nreps observations in the HADAMARD= data set are used to construct
the replicates.

You can specify the PRINTH option to display the Hadamard matrix that the
procedure uses to construct replicates for BRR.

OUTWEIGHTS=SAS-data-set
names a SAS data set that contains replicate weights. See the section “Balanced
Repeated Replication (BRR) Method” on page 8115 for information about
replicate weights. See the section “Replicate Weights Output Data Set” on
page 8129 for more details about the contents of the OUTWEIGHTS= data
set.

The OUTWEIGHTS= method-option is not available when you provide repli-
cate weights with the REPWEIGHTS statement.

PRINTH
displays the Hadamard matrix.

When you provide your own Hadamard matrix with the HADAMARD=
method-option, only the rows and columns of the Hadamard matrix that
are used by the procedure are displayed. See the sections “Balanced Re-
peated Replication (BRR) Method” on page 8115 and “Hadamard Matrix” on
page 8118 for details.

The PRINTH method-option is not available when you provide replicate
weights with the REPWEIGHTS statement because the procedure does not use
a Hadamard matrix in this case.
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REPS=number
specifies the number of replicates for BRR variance estimation. The value of
number must be an integer greater than 1.

If you do not provide a Hadamard matrix with the HADAMARD= method-
option, the number of replicates should be greater than the number of strata
and should be a multiple of 4. See the section “Balanced Repeated Replication
(BRR) Method” on page 8115 for more information. If a Hadamard matrix
cannot be constructed for the REPS= value that you specify, the value is
increased until a Hadamard matrix of that dimension can be constructed.
Therefore, it is possible for the actual number of replicates used to be larger
than the REPS= value that you specify.

If you provide a Hadamard matrix with the HADAMARD= method-option,
the value of REPS= must not be less than the number of rows in the Hadamard
matrix. If you provide a Hadamard matrix and do not specify the REPS=
method-option, the number of replicates equals the number of rows in the
Hadamard matrix.

If you do not specify the REPS= or HADAMARD= method-option and do
not include a REPWEIGHTS statement, the number of replicates equals the
smallest multiple of 4 that is greater than the number of strata.

If you provide replicate weights with the REPWEIGHTS statement, the proce-
dure does not use the REPS= method-option. With a REPWEIGHTS statement,
the number of replicates equals the number of REPWEIGHTS variables.

JACKKNIFE | JK < (method-options) >
requests variance estimation by the delete-1 jackknife method. See the section
“Jackknife Method” on page 8117 for details. If you provide replicate weights with
a REPWEIGHTS statement, VARMETHOD=JACKKNIFE is the default variance
estimation method.

You can specify the following method-options in parentheses following
VARMETHOD=JACKKNIFE:

OUTJKCOEFS=SAS-data-set
names a SAS data set that contains jackknife coefficients. See the section
“Jackknife Method” on page 8117 for information about jackknife coefficients.
See the section “Jackknife Coefficients Output Data Set” on page 8130 for
more details about the contents of the OUTJKCOEFS= data set.

OUTWEIGHTS=SAS-data-set
names a SAS data set that contains replicate weights. See the section “Jackknife
Method” on page 8117 for information about replicate weights. See the section
“Replicate Weights Output Data Set” on page 8129 for more details about the
contents of the OUTWEIGHTS= data set.

The OUTWEIGHTS= method-option is not available when you provide repli-
cate weights with the REPWEIGHTS statement.

TAYLOR
requests Taylor series variance estimation. This is the default method if you do not
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specify the VARMETHOD= option or a REPWEIGHTS statement. See the section
“Taylor Series (Linearization)” on page 8114 for more information.

BY Statement
BY variables ;

You can specify a BY statement with PROC SURVEYLOGISTIC to obtain separate analyses of observations
in groups that are defined by the BY variables. When a BY statement appears, the procedure expects the
input data set to be sorted in order of the BY variables. If you specify more than one BY statement, only the
last one specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the SURVEYLOGISTIC
procedure. The NOTSORTED option does not mean that the data are unsorted but rather that the
data are arranged in groups (according to values of the BY variables) and that these groups are not
necessarily in alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

Note that using a BY statement provides completely separate analyses of the BY groups. It does not provide
a statistically valid domain (subpopulation) analysis, where the total number of units in the subpopulation
is not known with certainty. You should use the DOMAIN statement to obtain domain analysis. For more
information about subpopulation analysis for sample survey data, see Cochran (1977).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

CLASS Statement
CLASS variable < (v-options) > < variable < (v-options) > . . . > < / v-options > ;

The CLASS statement names the classification variables to be used in the analysis. The CLASS statement
must precede the MODEL statement. You can specify various v-options for each variable by enclosing them
in parentheses after the variable name. You can also specify global v-options for the CLASS statement
by placing them after a slash (/). Global v-options are applied to all the variables specified in the CLASS
statement. However, individual CLASS variable v-options override the global v-options.

CPREFIX= n
specifies that, at most, the first n characters of a CLASS variable name be used in creating names for
the corresponding dummy variables. The default is 32�min.32;max.2; f //, where f is the formatted
length of the CLASS variable.
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DESCENDING

DESC
reverses the sort order of the classification variable.

LPREFIX= n
specifies that, at most, the first n characters of a CLASS variable label be used in creating labels for the
corresponding dummy variables.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the order in which to sort the levels of the classification variables. This option applies to
the levels for all classification variables, except when you use the (default) ORDER=FORMATTED
option with numeric classification variables that have no explicit format. In that case, the levels of such
variables are ordered by their internal value.

The ORDER= option can take the following values:

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set

FORMATTED External formatted value, except for numeric variables with
no explicit format, which are sorted by their unformatted
(internal) value

FREQ Descending frequency count; levels with the most observa-
tions come first in the order

INTERNAL Unformatted value

By default, ORDER=FORMATTED. For ORDER=FORMATTED and ORDER=INTERNAL, the sort
order is machine-dependent.

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

PARAM=keyword
specifies the parameterization method for the classification variable or variables. Design matrix
columns are created from CLASS variables according to the following coding schemes; the default is
PARAM=EFFECT.

EFFECT specifies effect coding

GLM specifies less-than-full-rank, reference cell coding; this option can be used only as
a global option

ORDINAL specifies the cumulative parameterization for an ordinal CLASS variable

POLYNOMIAL | POLY specifies polynomial coding

REFERENCE | REF specifies reference cell coding

ORTHEFFECT orthogonalizes PARAM=EFFECT

ORTHORDINAL | ORTHOTHERM orthogonalizes PARAM=ORDINAL

ORTHPOLY orthogonalizes PARAM=POLYNOMIAL
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ORTHREF orthogonalizes PARAM=REFERENCE

If PARAM=ORTHPOLY or PARAM=POLY, and the CLASS levels are numeric, then the ORDER=
option in the CLASS statement is ignored, and the internal, unformatted values are used.

EFFECT, POLYNOMIAL, REFERENCE, ORDINAL, and their orthogonal parameterizations are
full rank. The REF= option in the CLASS statement determines the reference level for EFFECT,
REFERENCE, and their orthogonal parameterizations.

Parameter names for a CLASS predictor variable are constructed by concatenating the CLASS variable
name with the CLASS levels. However, for the POLYNOMIAL and orthogonal parameterizations,
parameter names are formed by concatenating the CLASS variable name and keywords that reflect the
parameterization.

REFERENCE=’level’ | keyword

REF=’level’ | keyword
specifies the reference level for PARAM=EFFECT or PARAM=REFERENCE. For an individual (but
not a global) variable REF= option, you can specify the level of the variable to use as the reference
level. For a global or individual variable REF= option, you can use one of the following keywords.
The default is REF=LAST.

FIRST designates the first ordered level as reference

LAST designates the last ordered level as reference

CLUSTER Statement
CLUSTER variables ;

The CLUSTER statement names variables that identify the clusters in a clustered sample design. The
combinations of categories of CLUSTER variables define the clusters in the sample. If there is a STRATA
statement, clusters are nested within strata.

If you provide replicate weights for BRR or jackknife variance estimation with the REPWEIGHTS statement,
you do not need to specify a CLUSTER statement.

If your sample design has clustering at multiple stages, you should identify only the first-stage clusters
(primary sampling units (PSUs)), in the CLUSTER statement. See the section “Primary Sampling Units
(PSUs)” on page 8109 for more information.

The CLUSTER variables are one or more variables in the DATA= input data set. These variables can be
either character or numeric. The formatted values of the CLUSTER variables determine the CLUSTER
variable levels. Thus, you can use formats to group values into levels. See the FORMAT procedure in the
Base SAS Procedures Guide and the FORMAT statement and SAS formats in SAS Formats and Informats:
Reference for more information.

When determining levels of a CLUSTER variable, an observation with missing values for this CLUSTER
variable is excluded, unless you specify the MISSING option. For more information, see the section “Missing
Values” on page 8098.

You can use multiple CLUSTER statements to specify cluster variables. The procedure uses variables from
all CLUSTER statements to create clusters.
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CONTRAST Statement
CONTRAST 'label ' row-description < , . . . , row-description < / options > > ;

where a row-description is defined as follows:

effect values < , . . . , effect values >

The CONTRAST statement provides a mechanism for obtaining customized hypothesis tests. It is similar to
the CONTRAST statement in PROC LOGISTIC and PROC GLM, depending on the coding schemes used
with any classification variables involved.

The CONTRAST statement enables you to specify a matrix, L, for testing the hypothesis L� D 0, where
� is the parameter vector. You must be familiar with the details of the model parameterization that PROC
SURVEYLOGISTIC uses (for more information, see the PARAM= option in the section “CLASS Statement”
on page 8071). Optionally, the CONTRAST statement enables you to estimate each row, li� , of L� and
test the hypothesis li� D 0. For more information, see the section “Testing Linear Hypotheses about the
Regression Coefficients” on page 8122.

There is no limit to the number of CONTRAST statements that you can specify, but they must appear after
the MODEL statement.

The following parameters can be specified in the CONTRAST statement:

label identifies the contrast on the output. A label is required for every contrast specified, and it must be
enclosed in quotes.

effect identifies an effect that appears in the MODEL statement. The name INTERCEPT can be used as
an effect when one or more intercepts are included in the model. You do not need to include all
effects that are included in the MODEL statement.

values are constants that are elements of the L matrix associated with the effect. To correctly specify your
contrast, it is crucial to know the ordering of parameters within each effect and the variable levels
associated with any parameter. The “Class Level Information” table shows the ordering of levels
within variables. The E option, described later in this section, enables you to verify the proper
correspondence of values to parameters.

The rows of L are specified in order and are separated by commas. Multiple degree-of-freedom hypotheses
can be tested by specifying multiple row-descriptions. For any of the full-rank parameterizations, if an effect
is not specified in the CONTRAST statement, all of its coefficients in the L matrix are set to 0. If too many
values are specified for an effect, the extra ones are ignored. If too few values are specified, the remaining
ones are set to 0.

When you use effect coding (by default or by specifying PARAM=EFFECT in the CLASS statement), all
parameters are directly estimable (involve no other parameters).

For example, suppose an effect that is coded CLASS variable A has four levels. Then there are three
parameters (˛1; ˛2; ˛3) that represent the first three levels, and the fourth parameter is represented by

�˛1 � ˛2 � ˛3

To test the first versus the fourth level of A, you would test

˛1 D �˛1 � ˛2 � ˛3
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or, equivalently,

2˛1 C ˛2 C ˛3 D 0

which, in the form L� D 0, is

�
2 1 1

�24 ˛1
˛2
˛3

35 D 0
Therefore, you would use the following CONTRAST statement:

contrast '1 vs. 4' A 2 1 1;

To contrast the third level with the average of the first two levels, you would test

˛1 C ˛2

2
D ˛3

or, equivalently,

˛1 C ˛2 � 2˛3 D 0

Therefore, you would use the following CONTRAST statement:

contrast '1&2 vs. 3' A 1 1 -2;

Other CONTRAST statements are constructed similarly. For example:

contrast '1 vs. 2 ' A 1 -1 0;
contrast '1&2 vs. 4 ' A 3 3 2;
contrast '1&2 vs. 3&4' A 2 2 0;
contrast 'Main Effect' A 1 0 0,

A 0 1 0,
A 0 0 1;

When you use the less-than-full-rank parameterization (by specifying PARAM=GLM in the CLASS state-
ment), each row is checked for estimability. If PROC SURVEYLOGISTIC finds a contrast to be nonestimable,
it displays missing values in corresponding rows in the results. PROC SURVEYLOGISTIC handles missing
level combinations of classification variables in the same manner as PROC LOGISTIC. Parameters corre-
sponding to missing level combinations are not included in the model. This convention can affect the way in
which you specify the L matrix in your CONTRAST statement. If the elements of L are not specified for
an effect that contains a specified effect, then the elements of the specified effect are distributed over the
levels of the higher-order effect just as the LOGISTIC procedure does for its CONTRAST and ESTIMATE
statements. For example, suppose that the model contains effects A and B and their interaction A*B. If you
specify a CONTRAST statement involving A alone, the L matrix contains nonzero terms for both A and
A*B, since A*B contains A.

The degrees of freedom is the number of linearly independent constraints implied by the CONTRAST
statement—that is, the rank of L.

You can specify the following options after a slash (/):
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ALPHA=value
sets the confidence level for confidence intervals. The value of the ALPHA= option must be between
0 and 1, and the default value is 0.05. A confidence level of ˛ produces 100.1 � ˛/% confidence
intervals. The default of ALPHA=0.05 produces 95% confidence intervals.

E
requests that the L matrix be displayed.

ESTIMATE=keyword
requests that each individual contrast (that is, each row, liˇ, of Lˇ) or exponentiated contrast (eliˇ) be
estimated and tested. PROC SURVEYLOGISTIC displays the point estimate, its standard error, a t
or Wald confidence interval, and a t or Wald chi-square test for each contrast. The significance level
of the confidence interval is controlled by the ALPHA= option. You can estimate the contrast or the
exponentiated contrast (eliˇ), or both, by specifying one of the following keywords:

PARM specifies that the contrast itself be estimated

EXP specifies that the exponentiated contrast be estimated

BOTH specifies that both the contrast and the exponentiated contrast be estimated

SINGULAR=value
tunes the estimability checking. If v is a vector, define ABS(v) to be the largest absolute value of the
elements of v. For a row vector l of the matrix L , define

c D

�
ABS.l/ if ABS.l/ > 0
1 otherwise

If ABS(l � lH) is greater than c*value, then lˇ is declared nonestimable. The H matrix is the Hermite
form matrix I�0 I0, where I�0 represents a generalized inverse of the information matrix I0 of the null
model. The value must be between 0 and 1; the default is 10�4.

DOMAIN Statement
DOMAIN variables < variable�variable variable�variable�variable . . . > ;

The DOMAIN statement requests analysis for domains (subpopulations) in addition to analysis for the entire
study population. The DOMAIN statement names the variables that identify domains, which are called
domain variables.

It is common practice to compute statistics for domains. The formation of these domains might be unrelated
to the sample design. Therefore, the sample sizes for the domains are random variables. Use a DOMAIN
statement to incorporate this variability into the variance estimation.

Note that a DOMAIN statement is different from a BY statement. In a BY statement, you treat the sample
sizes as fixed in each subpopulation, and you perform analysis within each BY group independently. See the
section “Domain Analysis” on page 8119 for more details.

Use the DOMAIN statement on the entire data set to perform a domain analysis. Creating a new data set
from a single domain and analyzing that with PROC SURVEYLOGISTIC yields inappropriate estimates of
variance.
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A domain variable can be either character or numeric. The procedure treats domain variables as categorical
variables. If a variable appears by itself in a DOMAIN statement, each level of this variable determines a
domain in the study population. If two or more variables are joined by asterisks (�), then every possible
combination of levels of these variables determines a domain. The procedure performs a descriptive analysis
within each domain that is defined by the domain variables.

When determining levels of a DOMAIN variable, an observation with missing values for this DOMAIN
variable is excluded, unless you specify the MISSING option. For more information, see the section “Missing
Values” on page 8098.

The formatted values of the domain variables determine the categorical variable levels. Thus, you can use
formats to group values into levels. See the FORMAT procedure in the Base SAS Procedures Guide and the
FORMAT statement and SAS formats in SAS Formats and Informats: Reference for more information.

EFFECT Statement
EFFECT name=effect-type (variables < / options >) ;

The EFFECT statement enables you to construct special collections of columns for design matrices. These
collections are referred to as constructed effects to distinguish them from the usual model effects that are
formed from continuous or classification variables, as discussed in the section “GLM Parameterization of
Classification Variables and Effects” on page 387 in Chapter 19, “Shared Concepts and Topics.”

You can specify the following effect-types:

COLLECTION is a collection effect that defines one or more variables as a single effect with
multiple degrees of freedom. The variables in a collection are considered as
a unit for estimation and inference.

LAG is a classification effect in which the level that is used for a given period
corresponds to the level in the preceding period.

MULTIMEMBER | MM is a multimember classification effect whose levels are determined by one or
more variables that appear in a CLASS statement.

POLYNOMIAL | POLY is a multivariate polynomial effect in the specified numeric variables.

SPLINE is a regression spline effect whose columns are univariate spline expansions
of one or more variables. A spline expansion replaces the original variable
with an expanded or larger set of new variables.

Table 98.3 summarizes the options available in the EFFECT statement.

Table 98.3 EFFECT Statement Options

Option Description

Collection Effects Options
DETAILS Displays the constituents of the collection effect

Lag Effects Options
DESIGNROLE= Names a variable that controls to which lag design an observation

is assigned
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Table 98.3 continued

Option Description

DETAILS Displays the lag design of the lag effect

NLAG= Specifies the number of periods in the lag

PERIOD= Names the variable that defines the period

WITHIN= Names the variable or variables that define the group within which
each period is defined

Multimember Effects Options
NOEFFECT Specifies that observations with all missing levels for the multi-

member variables should have zero values in the corresponding
design matrix columns

WEIGHT= Specifies the weight variable for the contributions of each of the
classification effects

Polynomial Effects Options
DEGREE= Specifies the degree of the polynomial
MDEGREE= Specifies the maximum degree of any variable in a term of the

polynomial
STANDARDIZE= Specifies centering and scaling suboptions for the variables that

define the polynomial

Spline Effects Options
BASIS= Specifies the type of basis (B-spline basis or truncated power func-

tion basis) for the spline effect
DEGREE= Specifies the degree of the spline effect
KNOTMETHOD= Specifies how to construct the knots for the spline effect

For more information about the syntax of these effect-types and how columns of constructed effects are
computed, see the section “EFFECT Statement” on page 397 in Chapter 19, “Shared Concepts and Topics.”

ESTIMATE Statement
ESTIMATE < 'label ' > estimate-specification < (divisor=n) >

< , . . . < 'label ' > estimate-specification < (divisor=n) > >
< / options > ;

The ESTIMATE statement provides a mechanism for obtaining custom hypothesis tests. Estimates are
formed as linear estimable functions of the form Lˇ. You can perform hypothesis tests for the estimable
functions, construct confidence limits, and obtain specific nonlinear transformations.

Table 98.4 summarizes the options available in the ESTIMATE statement.
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Table 98.4 ESTIMATE Statement Options

Option Description

Construction and Computation of Estimable Functions
DIVISOR= Specifies a list of values to divide the coefficients
NOFILL Suppresses the automatic fill-in of coefficients for higher-order

effects
SINGULAR= Tunes the estimability checking difference

Degrees of Freedom and p-values
ADJUST= Determines the method for multiple comparison adjustment of

estimates
ALPHA=˛ Determines the confidence level (1 � ˛)
LOWER Performs one-sided, lower-tailed inference
STEPDOWN Adjusts multiplicity-corrected p-values further in a step-down fash-

ion
TESTVALUE= Specifies values under the null hypothesis for tests
UPPER Performs one-sided, upper-tailed inference

Statistical Output
CL Constructs confidence limits
CORR Displays the correlation matrix of estimates
COV Displays the covariance matrix of estimates
E Prints the L matrix
JOINT Produces a joint F or chi-square test for the estimable functions
SEED= Specifies the seed for computations that depend on random numbers

Generalized Linear Modeling
CATEGORY= Specifies how to construct estimable functions with multinomial

data
EXP Exponentiates and displays estimates
ILINK Computes and displays estimates and standard errors on the inverse

linked scale

For details about the syntax of the ESTIMATE statement, see the section “ESTIMATE Statement” on
page 444 in Chapter 19, “Shared Concepts and Topics.”

FREQ Statement
FREQ variable ;

The variable in the FREQ statement identifies a variable that contains the frequency of occurrence of each
observation. PROC SURVEYLOGISTIC treats each observation as if it appears n times, where n is the value
of the FREQ variable for the observation. If it is not an integer, the frequency value is truncated to an integer.
If the frequency value is less than 1 or missing, the observation is not used in the model fitting. When the
FREQ statement is not specified, each observation is assigned a frequency of 1.
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If you use the events/trials syntax in the MODEL statement, the FREQ statement is not allowed because the
event and trial variables represent the frequencies in the data set.

If you use the FREQ statement and specify the VARMETHOD=BRR or VARMETHOD=JACKKNIFE option
to estimate the variance, then you must identify the primary sampling units with a CLUSTER statement
unless you also provide replicate weights with a REPWEIGHTS statement.

LSMEANS Statement
LSMEANS < model-effects > < / options > ;

The LSMEANS statement computes and compares least squares means (LS-means) of fixed effects. LS-means
are predicted margins—that is, they estimate the marginal means over a hypothetical balanced population
on the linked scale. For example, in a binomial model with logit link, the least squares means are predicted
population margins of the logits.

Table 98.5 the summarizes available options in the LSMEANS statement.

Table 98.5 LSMEANS Statement Options

Option Description

Construction and Computation of LS-Means
AT Modifies the covariate value in computing LS-means
BYLEVEL Computes separate margins
DIFF Requests differences of LS-means
OM= Specifies the weighting scheme for LS-means computation as de-

termined by the input data set
SINGULAR= Tunes estimability checking

Degrees of Freedom and p-values
ADJUST= Determines the method for multiple-comparison adjustment of LS-

means differences
ALPHA=˛ Determines the confidence level (1 � ˛)
STEPDOWN Adjusts multiple-comparison p-values further in a step-down

fashion

Statistical Output
CL Constructs confidence limits for means and mean differences
CORR Displays the correlation matrix of LS-means
COV Displays the covariance matrix of LS-means
E Prints the L matrix
LINES Produces a “Lines” display for pairwise LS-means differences
MEANS Prints the LS-means
PLOTS= Requests graphs of means and mean comparisons
SEED= Specifies the seed for computations that depend on random numbers
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Table 98.5 continued

Option Description

Generalized Linear Modeling
EXP Exponentiates and displays estimates of LS-means or LS-means

differences
ILINK Computes and displays estimates and standard errors of LS-means

(but not differences) on the inverse linked scale
ODDSRATIO Reports (simple) differences of least squares means in terms of

odds ratios if permitted by the link function

For details about the syntax of the LSMEANS statement, see the section “LSMEANS Statement” on page 460
in Chapter 19, “Shared Concepts and Topics.”

LSMESTIMATE Statement
LSMESTIMATE model-effect < 'label ' > values < divisor=n >

< , . . . < 'label ' > values < divisor=n > >
< / options > ;

The LSMESTIMATE statement provides a mechanism for obtaining custom hypothesis tests among least
squares means.

Table 98.6 summarizes the options available in the LSMESTIMATE statement.

Table 98.6 LSMESTIMATE Statement Options

Option Description

Construction and Computation of LS-Means
AT Modifies covariate values in computing LS-means
BYLEVEL Computes separate margins
DIVISOR= Specifies a list of values to divide the coefficients
OM= Specifies the weighting scheme for LS-means computation as de-

termined by a data set
SINGULAR= Tunes estimability checking

Degrees of Freedom and p-values
ADJUST= Determines the method for multiple-comparison adjustment of LS-

means differences
ALPHA=˛ Determines the confidence level (1 � ˛)
LOWER Performs one-sided, lower-tailed inference
STEPDOWN Adjusts multiple-comparison p-values further in a step-down fash-

ion
TESTVALUE= Specifies values under the null hypothesis for tests
UPPER Performs one-sided, upper-tailed inference
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Table 98.6 continued

Option Description

Statistical Output
CL Constructs confidence limits for means and mean differences
CORR Displays the correlation matrix of LS-means
COV Displays the covariance matrix of LS-means
E Prints the L matrix
ELSM Prints the K matrix
JOINT Produces a joint F or chi-square test for the LS-means and LS-

means differences
SEED= Specifies the seed for computations that depend on random numbers

Generalized Linear Modeling
CATEGORY= Specifies how to construct estimable functions with multinomial

data
EXP Exponentiates and displays LS-means estimates
ILINK Computes and displays estimates and standard errors of LS-means

(but not differences) on the inverse linked scale

For details about the syntax of the LSMESTIMATE statement, see the section “LSMESTIMATE Statement”
on page 476 in Chapter 19, “Shared Concepts and Topics.”

MODEL Statement
MODEL events/trials = < effects < / options > > ;

MODEL variable < (v-options) > = < effects > < / options > ;

The MODEL statement names the response variable and the explanatory effects, including covariates, main
effects, interactions, and nested effects; see the section “Specification of Effects” on page 3453 in Chapter 45,
“The GLM Procedure,” for more information. If you omit the explanatory variables, the procedure fits an
intercept-only model. Model options can be specified after a slash (/).

Two forms of the MODEL statement can be specified. The first form, referred to as single-trial syntax, is
applicable to binary, ordinal, and nominal response data. The second form, referred to as events/trials syntax,
is restricted to the case of binary response data. The single-trial syntax is used when each observation in
the DATA= data set contains information about only a single trial, such as a single subject in an experiment.
When each observation contains information about multiple binary-response trials, such as the counts of the
number of subjects observed and the number responding, then events/trials syntax can be used.

In the events/trials syntax, you specify two variables that contain count data for a binomial experiment. These
two variables are separated by a slash. The value of the first variable, events, is the number of positive
responses (or events), and it must be nonnegative. The value of the second variable, trials, is the number of
trials, and it must not be less than the value of events.
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In the single-trial syntax, you specify one variable (on the left side of the equal sign) as the response
variable. This variable can be character or numeric. Options specific to the response variable can be specified
immediately after the response variable with parentheses around them.

For both forms of the MODEL statement, explanatory effects follow the equal sign. Variables can be either
continuous or classification variables. Classification variables can be character or numeric, and they must be
declared in the CLASS statement. When an effect is a classification variable, the procedure enters a set of
coded columns into the design matrix instead of directly entering a single column containing the values of
the variable.

Response Variable Options

You specify the following options by enclosing them in parentheses after the response variable:

DESCENDING

DESC
reverses the order of response categories. If both the DESCENDING and the ORDER= options are
specified, PROC SURVEYLOGISTIC orders the response categories according to the ORDER= option
and then reverses that order. See the section “Response Level Ordering” on page 8099 for more detail.

EVENT=’category ’ | keyword
specifies the event category for the binary response model. PROC SURVEYLOGISTIC models the
probability of the event category. The EVENT= option has no effect when there are more than two
response categories. You can specify the value (formatted if a format is applied) of the event category
in quotes or you can specify one of the following keywords. The default is EVENT=FIRST.

FIRST designates the first ordered category as the event

LAST designates the last ordered category as the event

One of the most common sets of response levels is {0,1}, with 1 representing the event for which the
probability is to be modeled. Consider the example where Y takes the values 1 and 0 for event and
nonevent, respectively, and Exposure is the explanatory variable. To specify the value 1 as the event
category, use the following MODEL statement:

model Y(event='1') = Exposure;

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of the response variable. By default, ORDER=INTERNAL. For
ORDER=FORMATTED and ORDER=INTERNAL, the sort order is machine-dependent.

When the default ORDER=FORMATTED is in effect for numeric variables for which you have
supplied no explicit format,
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Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set

FORMATTED External formatted value, except for numeric
variables with no explicit format, which are
sorted by their unformatted (internal) value

FREQ Descending frequency count; levels with the
most observations come first in the order

INTERNAL Unformatted value

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

REFERENCE=’category ’ | keyword

REF=’category ’ | keyword
specifies the reference category for the generalized logit model and the binary response model. For the
generalized logit model, each nonreference category is contrasted with the reference category. For the
binary response model, specifying one response category as the reference is the same as specifying
the other response category as the event category. You can specify the value (formatted if a format is
applied) of the reference category in quotes or you can specify one of the following keywords. The
default is REF=LAST.

FIRST designates the first ordered category as the reference

LAST designates the last ordered category as the reference

Model Options

Model options can be specified after a slash (/). Table 98.7 summarizes the options available in the MODEL
statement.

Table 98.7 MODEL Statement Options

Option Description

Model Specification Options
LINK= Specifies link function
NOINT Suppresses intercept(s)
OFFSET= Specifies offset variable

Convergence Criterion Options
ABSFCONV= Specifies absolute function convergence criterion
FCONV= Specifies relative function convergence criterion
GCONV= Specifies relative gradient convergence criterion
XCONV= Specifies relative parameter convergence criterion
MAXITER= Specifies maximum number of iterations
NOCHECK Suppresses checking for infinite parameters
RIDGING= Specifies technique used to improve the log-likelihood function when its

value is worse than that of the previous step
SINGULAR= Specifies tolerance for testing singularity
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Table 98.7 (continued)

Option Description

TECHNIQUE= Specifies iterative algorithm for maximization

Options for Adjustment to Variance Estimation
VADJUST= Chooses variance estimation adjustment method

Options for Confidence Intervals
DF= Specifies the degrees of freedom
ALPHA= Specifies ˛ for the 100.1 � ˛/% confidence intervals
CLPARM Computes confidence intervals for parameters
CLODDS Computes confidence intervals for odds ratios

Options for Display of Details
CORRB Displays correlation matrix
COVB Displays covariance matrix
EXPB Displays exponentiated values of estimates
GRADIENT Displays gradients evaluated at null hypothesis
ITPRINT Displays iteration history
NODUMMYPRINT Suppresses “Class Level Information” table
PARMLABEL Displays parameter labels
RSQUARE Displays generalized R2

STB Displays standardized estimates

The following list describes these options:

ABSFCONV=value
specifies the absolute function convergence criterion. Convergence requires a small change in the
log-likelihood function in subsequent iterations:

jl.i/ � l.i�1/j < value

where l.i/ is the value of the log-likelihood function at iteration i. See the section “Convergence
Criteria” on page 8106.

ALPHA=value
sets the level of significance ˛ for 100.1 � ˛/% confidence intervals for regression parameters or odds
ratios. The value ˛ must be between 0 and 1. By default, ˛ is equal to the value of the ALPHA= option
in the PROC SURVEYLOGISTIC statement, or ˛ D 0:05 if the ALPHA= option is not specified. This
option has no effect unless confidence intervals for the parameters or odds ratios are requested.

CLODDS
requests confidence intervals for the odds ratios. Computation of these confidence intervals is based on
individual t tests or Wald tests. The degrees of freedom for a t test degrees of freedom is described in
the section “Degrees of Freedom” on page 8119. The confidence coefficient can be specified with the
ALPHA= option. See the section “Wald Confidence Intervals for Parameters” on page 8122 for more
information.
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CLPARM
requests confidence intervals for the parameters. Computation of these confidence intervals is based on
the t tests or Wald tests. The degrees of freedom for a t test is described in the section “Degrees of
Freedom” on page 8119. The confidence level can be specified with the ALPHA=.

CORRB
displays the correlation matrix of the parameter estimates.

COVB
displays the covariance matrix of the parameter estimates.

DF=value | type
specifies the denominator degrees of freedom (df ) for F statistics in hypothesis testing, and the degrees
of freedom in t tests for parameter estimates, odds ratio estimates, and their t percentiles for confidence
limits. You can specify DF=value, where value is a nonnegative number, or you can specify DF=type,
where type can be DESIGN, INFINITY, or PARMADJ.

If you specify both this option and the DF= option in a REPWEIGHTS statement, PROC
SURVEYLOGISTIC uses this option to determine the df.

You can specify one of the following types:

DESIGN
determines the df from the survey design and the variance estimation method. For more informa-
tion, see the section “Degrees of Freedom” on page 8119. When you specify this option, PROC
SURVEYLOGISTIC determines the value of df as follows.

• For Taylor series variance estimation, df is calculated as follows:
– the number of clusters minus the number of strata if the design is stratified and has

clusters
– the number of clusters minus 1 if the design has clusters and is not stratified
– the total sample size minus the number of strata if the design is stratified and has no

clusters
– the total sample size minus the number of strata if the design is not stratified and has no

clusters
• If you provide replicate weights (in the REPWEIGHTS statement), df is the number of

replicates. Alternatively, you can use the DF= option in a REPWEIGHTS statement to
specify the value of df.

• For BRR (including Fay’s method) variance estimation (when you do not specify a
REPWEIGHTS statement), df is the number of strata.

• For jackknife variance estimation (when you do not specify a REPWEIGHTS statement),
PROC SURVEYLOGISTIC computes df as the number of replicates minus the number of
strata. If the design is not stratified, df is the number of replicates minus one.

INFINITY
NONE

specifies that the df is infinite. When the denominator degrees of freedom for an F test is infinite,
the F tests is equivalent to a chi-square test. When the degrees of freedom for a t percentile
is infinite, the t percentile is equivalent to a normal percentile. Therefore, when you specify
DF=INFINITY, PROC SURVEYLOGISTIC uses chi-square tests (instead of F tests) and normal
percentiles (instead of t percentiles).
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PARMADJ
modifies the df by the number of nonsingular parameters in the model. This option applies
only when the Taylor variance estimation method is used (either by default or by specifying
VARMETHOD=TAYLOR). This option can be useful when you are fitting a model that has many
parameters relative to the default degrees of freedom. See the section “Degrees of Freedom” on
page 8119 for more information.

By default, DF=DESIGN. For more information, see the section “Degrees of Freedom” on
page 8119.

EXPB

EXPEST
displays the exponentiated values (e O�i ) of the parameter estimates O�i in the “Analysis of Maximum
Likelihood Estimates” table for the logit model. These exponentiated values are the estimated odds
ratios for the parameters corresponding to the continuous explanatory variables.

FCONV=value
specifies the relative function convergence criterion. Convergence requires a small relative change in
the log-likelihood function in subsequent iterations:

jl.i/ � l.i�1/j

jl.i�1/j C 1E–6
< value

where l.i/ is the value of the log likelihood at iteration i. See the section “Convergence Criteria” on
page 8106 for details.

GCONV=value
specifies the relative gradient convergence criterion. Convergence requires that the normalized predic-
tion function reduction is small:

g.i/
0
I.i/g.i/

jl.i/j C 1E–6
< value

where l.i/ is the value of the log-likelihood function, g.i/ is the gradient vector, and I.i/ the (expected)
information matrix. All of these functions are evaluated at iteration i. This is the default convergence
criterion, and the default value is 1E–8. For more information, see the section “Convergence Criteria”
on page 8106.

GRADIENT
displays the gradient vector, which is evaluated at the global null hypothesis.

ITPRINT
displays the iteration history of the maximum-likelihood model fitting. The ITPRINT option also
displays the last evaluation of the gradient vector and the final change in the �2 logL.

LINK=keyword

L=keyword
specifies the link function that links the response probabilities to the linear predictors. You can specify
one of the following keywords. The default is LINK=LOGIT.
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CLOGLOG specifies the complementary log-log function. PROC SURVEYLOGISTIC fits the
binary complementary log-log model for binary response and fits the cumulative
complementary log-log model when there are more than two response categories.
Aliases: CCLOGLOG, CCLL, CUMCLOGLOG.

GLOGIT specifies the generalized logit function. PROC SURVEYLOGISTIC fits the general-
ized logit model where each nonreference category is contrasted with the reference
category. You can use the response variable option REF= to specify the reference
category.

LOGIT specifies the cumulative logit function. PROC SURVEYLOGISTIC fits the binary
logit model when there are two response categories and fits the cumulative logit
model when there are more than two response categories. Aliases: CLOGIT,
CUMLOGIT.

PROBIT specifies the inverse standard normal distribution function. PROC
SURVEYLOGISTIC fits the binary probit model when there are two response
categories and fits the cumulative probit model when there are more than two
response categories. Aliases: NORMIT, CPROBIT, CUMPROBIT.

See the section “Link Functions and the Corresponding Distributions” on page 8102 for details.

MAXITER=n
specifies the maximum number of iterations to perform. By default, MAXITER=25. If convergence
is not attained in n iterations, the displayed output created by the procedure contains results that are
based on the last maximum likelihood iteration.

NOCHECK
disables the checking process to determine whether maximum likelihood estimates of the regression
parameters exist. If you are sure that the estimates are finite, this option can reduce the execution time
when the estimation takes more than eight iterations. For more information, see the section “Existence
of Maximum Likelihood Estimates” on page 8106.

NODUMMYPRINT
suppresses the “Class Level Information” table, which shows how the design matrix columns for the
CLASS variables are coded.

NOINT
suppresses the intercept for the binary response model or the first intercept for the ordinal response
model.

OFFSET=name
names the offset variable. The regression coefficient for this variable is fixed at 1.

PARMLABEL
displays the labels of the parameters in the “Analysis of Maximum Likelihood Estimates” table.

RIDGING=ABSOLUTE | RELATIVE | NONE
specifies the technique used to improve the log-likelihood function when its value in the current
iteration is less than that in the previous iteration. If you specify the RIDGING=ABSOLUTE option,
the diagonal elements of the negative (expected) Hessian are inflated by adding the ridge value. If you
specify the RIDGING=RELATIVE option, the diagonal elements are inflated by a factor of 1 plus the
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ridge value. If you specify the RIDGING=NONE option, the crude line search method of taking half a
step is used instead of ridging. By default, RIDGING=RELATIVE.

RSQUARE
requests a generalized R2 measure for the fitted model.

For more information, see the section “Generalized Coefficient of Determination” on page 8108.

SINGULAR=value
specifies the tolerance for testing the singularity of the Hessian matrix (Newton-Raphson algorithm)
or the expected value of the Hessian matrix (Fisher scoring algorithm). The Hessian matrix is the
matrix of second partial derivatives of the log likelihood. The test requires that a pivot for sweeping
this matrix be at least this value times a norm of the matrix. Values of the SINGULAR= option must
be numeric. By default, SINGULAR=10�12.

STB
displays the standardized estimates for the parameters for the continuous explanatory variables in
the “Analysis of Maximum Likelihood Estimates” table. The standardized estimate of �i is given by
O�i=.s=si /, where si is the total sample standard deviation for the ith explanatory variable and

s D

8<:
�=
p
3 Logistic

1 Normal
�=
p
6 Extreme-value

For the intercept parameters and parameters associated with a CLASS variable, the standardized
estimates are set to missing.

TECHNIQUE=FISHER | NEWTON

TECH=FISHER | NEWTON
specifies the optimization technique for estimating the regression parameters. NEWTON (or NR) is
the Newton-Raphson algorithm and FISHER (or FS) is the Fisher scoring algorithm. Both techniques
yield the same estimates, but the estimated covariance matrices are slightly different except for the case
where the LOGIT link is specified for binary response data. The default is TECHNIQUE=FISHER.
If the LINK=GLOGIT option is specified, then Newton-Raphson is the default and only available
method. See the section “Iterative Algorithms for Model Fitting” on page 8104 for details.

VADJUST=DF | MOREL < (Morel-options) > | NONE
specifies an adjustment to the variance estimation for the regression coefficients.

By default, PROC SURVEYLOGISTIC uses the degrees of freedom adjustment VADJUST=DF.

If you do not want to use any variance adjustment, you can specify the VADJUST=NONE option. You
can specify the VADJUST=MOREL option for the variance adjustment proposed by Morel (1989).

You can specify the following Morel-options within parentheses after the VADJUST=MOREL option:

ADJBOUND=�
sets the upper bound coefficient � in the variance adjustment. This upper bound must be positive.
By default, the procedure uses � D 0:5. See the section “Adjustments to the Variance Estimation”
on page 8115 for more details on how this upper bound is used in the variance estimation.
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DEFFBOUND=ı
sets the lower bound of the estimated design effect in the variance adjustment. This lower bound
must be positive. By default, the procedure uses ı D 1. See the section “Adjustments to the
Variance Estimation” on page 8115 for more details about how this lower bound is used in the
variance estimation.

XCONV=value
specifies the relative parameter convergence criterion. Convergence requires a small relative parameter
change in subsequent iterations:

max
j
jı
.i/
j j < value

where

ı
.i/
j D

8<: �
.i/
j � �

.i�1/
j j�

.i�1/
j j < 0:01

�
.i/

j
��

.i�1/

j

�
.i�1/

j

otherwise

and � .i/j is the estimate of the jth parameter at iteration i. See the section “Convergence Criteria” on
page 8106 for details.

OUTPUT Statement
OUTPUT < OUT=SAS-data-set > < options > < / option > ;

The OUTPUT statement creates a new SAS data set that contains all the variables in the input data set and,
optionally, the estimated linear predictors and their standard error estimates, the estimates of the cumulative
or individual response probabilities, and the confidence limits for the cumulative probabilities. Formulas for
the statistics are given in the section “Linear Predictor, Predicted Probability, and Confidence Limits” on
page 8127.

If you use the single-trial syntax, the data set also contains a variable named _LEVEL_, which indicates the
level of the response that the given row of output is referring to. For example, the value of the cumulative
probability variable is the probability that the response variable is as large as the corresponding value of
_LEVEL_. For details, see the section “OUT= Data Set in the OUTPUT Statement” on page 8128.

The estimated linear predictor, its standard error estimate, all predicted probabilities, and the confidence
limits for the cumulative probabilities are computed for all observations in which the explanatory variables
have no missing values, even if the response is missing. By adding observations with missing response values
to the input data set, you can compute these statistics for new observations, or for settings of the explanatory
variables not present in the data, without affecting the model fit.

Table 98.8 summarizes the options available in the OUTPUT statement.

Table 98.8 OUTPUT Statement Options

Option Description

ALPHA= Sets the level of significance
LOWER Names the variable that contains the lower confidence limits
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Table 98.8 continued

Option Description

OUT= Names the output data set
PREDICTED Names the variable that contains the predicted probabilities
PREDPROBS= Requests predicted probabilities
STDXBETA= Names the variable that contains the standard error estimates
UPPER Names the variable that contains the upper confidence limits
XBETA= Names the variable that contains the estimates of the linear predictor

You can specify the following options in the OUTPUT statement:

LOWER | L=name
names the variable that contains the lower confidence limits for � , where � is the probability of the
event response if events/trials syntax or the single-trial syntax with binary response is specified; � is
cumulative probability (that is, the probability that the response is less than or equal to the value of
_LEVEL_) for a cumulative model; and � is the individual probability (that is, the probability that the
response category is represented by the value of _LEVEL_) for the generalized logit model. See the
ALPHA= option for information about setting the confidence level.

OUT=SAS-data-set
names the output data set. If you omit the OUT= option, the output data set is created and given a
default name by using the DATAn convention.

The statistic options in the OUTPUT statement specify the statistics to be included in the output data
set and name the new variables that contain the statistics.

PREDICTED | P=name
names the variable that contains the predicted probabilities. For the events/trials syntax or the single-
trial syntax with binary response, it is the predicted event probability. For a cumulative model, it is the
predicted cumulative probability (that is, the probability that the response variable is less than or equal
to the value of _LEVEL_); and for the generalized logit model, it is the predicted individual probability
(that is, the probability of the response category represented by the value of _LEVEL_).

PREDPROBS=(keywords)
requests individual, cumulative, or cross validated predicted probabilities. Descriptions of the keywords
are as follows.

INDIVIDUAL | I requests the predicted probability of each response level. For a response variable Y
with three levels, 1, 2, and 3, the individual probabilities are Pr(Y=1), Pr(Y=2), and
Pr(Y=3).

CUMULATIVE | C requests the cumulative predicted probability of each response level. For a
response variable Y with three levels, 1, 2, and 3, the cumulative probabilities
are Pr(Y�1), Pr(Y�2), and Pr(Y�3). The cumulative probability for the last
response level always has the constant value of 1. For generalized logit models, the
cumulative predicted probabilities are not computed and are set to missing.

CROSSVALIDATE | XVALIDATE | X requests the cross validated individual predicted probability
of each response level. These probabilities are derived from the leave-one-out
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principle; that is, dropping the data of one subject and reestimating the parameter es-
timates. PROC SURVEYLOGISTIC uses a less expensive one-step approximation
to compute the parameter estimates. This option is valid only for binary response
models; for nominal and ordinal models, the cross validated probabilities are not
computed and are set to missing.

See the section “Details of the PREDPROBS= Option” on page 8092 at the end of this section for
further details.

STDXBETA=name
names the variable that contains the standard error estimates of XBETA (the definition of which
follows).

UPPER | U=name
names the variable that contains the upper confidence limits for � , where � is the probability of the
event response if events/trials syntax or single-trial syntax with binary response is specified; � is
cumulative probability (that is, the probability that the response is less than or equal to the value of
_LEVEL_) for a cumulative model; and � is the individual probability (that is, the probability that the
response category is represented by the value of _LEVEL_) for the generalized logit model. See the
ALPHA= option for information about setting the confidence level.

XBETA=name
names the variable that contains the estimates of the linear predictor ˛i C xˇ, where i is the corre-
sponding ordered value of _LEVEL_.

You can specify the following option in the OUTPUT statement after a slash (/):

ALPHA=value
sets the level of significance ˛ for 100.1 � ˛/% confidence limits for the appropriate response
probabilities. The value ˛ must be between 0 and 1. By default, ˛ is equal to the value of the ALPHA=
option in the PROC SURVEYLOGISTIC statement, or 0.05 if the ALPHA= option is not specified.

Details of the PREDPROBS= Option

You can request any of the three given types of predicted probabilities. For example, you can request both the
individual predicted probabilities and the cross validated probabilities by specifying PREDPROBS=(I X).

When you specify the PREDPROBS= option, two automatic variables _FROM_ and _INTO_ are included for
the single-trial syntax and only one variable, _INTO_, is included for the events/trials syntax. The _FROM_
variable contains the formatted value of the observed response. The variable _INTO_ contains the formatted
value of the response level with the largest individual predicted probability.

If you specify PREDPROBS=INDIVIDUAL, the OUTPUT data set contains k additional variables represent-
ing the individual probabilities, one for each response level, where k is the maximum number of response
levels across all BY groups. The names of these variables have the form IP_xxx, where xxx represents the
particular level. The representation depends on the following situations:

• If you specify the events/trials syntax, xxx is either Event or Nonevent. Thus, the variable that contains
the event probabilities is named IP_Event and the variable containing the nonevent probabilities is
named IP_Nonevent.
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• If you specify the single-trial syntax with more than one BY group, xxx is 1 for the first ordered level
of the response, 2 for the second ordered level of the response, and so forth, as given in the “Response
Profile” table. The variable that contains the predicted probabilities Pr(Y=1) is named IP_1, where Y is
the response variable. Similarly, IP_2 is the name of the variable containing the predicted probabilities
Pr(Y=2), and so on.

• If you specify the single-trial syntax with no BY-group processing, xxx is the left-justified formatted
value of the response level (the value can be truncated so that IP_xxx does not exceed 32 characters).
For example, if Y is the response variable with response levels ‘None,’ ‘Mild,’ and ‘Severe,’ the
variables representing individual probabilities Pr(Y=‘None’), Pr(Y=‘Mild’), and Pr(Y=‘Severe’) are
named IP_None, IP_Mild, and IP_Severe, respectively.

If you specify PREDPROBS=CUMULATIVE, the OUTPUT data set contains k additional variables that rep-
resent the cumulative probabilities, one for each response level, where k is the maximum number of response
levels across all BY groups. The names of these variables have the form CP_xxx, where xxx represents the
particular response level. The naming convention is similar to that given by PREDPROBS=INDIVIDUAL.
The PREDPROBS=CUMULATIVE values are the same as those output by the PREDICT=keyword, but they
are arranged in variables in each output observation rather than in multiple output observations.

If you specify PREDPROBS=CROSSVALIDATE, the OUTPUT data set contains k additional variables rep-
resenting the cross validated predicted probabilities of the k response levels, where k is the maximum number
of response levels across all BY groups. The names of these variables have the form XP_xxx, where xxx
represents the particular level. The representation is the same as that given by PREDPROBS=INDIVIDUAL,
except that for the events/trials syntax there are four variables for the cross validated predicted probabilities
instead of two:

XP_EVENT_R1E is the cross validated predicted probability of an event when a current event trial is
removed.

XP_NONEVENT_R1E is the cross validated predicted probability of a nonevent when a current event trial
is removed.

XP_EVENT_R1N is the cross validated predicted probability of an event when a current nonevent trial is
removed.

XP_NONEVENT_R1N is the cross validated predicted probability of a nonevent when a current nonevent
trial is removed.

REPWEIGHTS Statement
REPWEIGHTS variables < / options > ;

The REPWEIGHTS statement names variables that provide replicate weights for BRR or jackknife variance
estimation, which you request with the VARMETHOD=BRR or VARMETHOD=JACKKNIFE option in the
PROC SURVEYLOGISTIC statement. If you do not provide replicate weights for these methods by using a
REPWEIGHTS statement, then the procedure constructs replicate weights for the analysis. See the sections
“Balanced Repeated Replication (BRR) Method” on page 8115 and “Jackknife Method” on page 8117 for
information about replicate weights.
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Each REPWEIGHTS variable should contain the weights for a single replicate, and the number of replicates
equals the number of REPWEIGHTS variables. The REPWEIGHTS variables must be numeric, and the
variable values must be nonnegative numbers.

If you provide replicate weights with a REPWEIGHTS statement, you do not need to specify a CLUSTER or
STRATA statement. If you use a REPWEIGHTS statement and do not specify the VARMETHOD= option in
the PROC SURVEYLOGISTIC statement, the procedure uses VARMETHOD=JACKKNIFE by default.

If you specify a REPWEIGHTS statement but do not include a WEIGHT statement, the procedure uses the
average of replicate weights of each observation as the observation’s weight.

You can specify the following options in the REPWEIGHTS statement after a slash (/):

DF=df
specifies the degrees of freedom for the analysis. The value of df must be a positive number. By
default, the degrees of freedom equals the number of REPWEIGHTS variables.

JKCOEFS=value
specifies a jackknife coefficient for VARMETHOD=JACKKNIFE. The coefficient value must be a
nonnegative number. See the section “Jackknife Method” on page 8117 for details about jackknife
coefficients.

You can use this option to specify a single value of the jackknife coefficient, which the procedure uses
for all replicates. To specify different coefficients for different replicates, use the JKCOEFS=values or
JKCOEFS=SAS-data-set option.

JKCOEFS=values
specifies jackknife coefficients for VARMETHOD=JACKKNIFE, where each coefficient corresponds
to an individual replicate that is identified by a REPWEIGHTS variable. You can separate values
with blanks or commas. The coefficient values must be nonnegative numbers. The number of values
must equal the number of replicate weight variables named in the REPWEIGHTS statement. List
these values in the same order in which you list the corresponding replicate weight variables in the
REPWEIGHTS statement.

See the section “Jackknife Method” on page 8117 for details about jackknife coefficients.

To specify different coefficients for different replicates, you can also use the JKCOEFS=SAS-data-set
option. To specify a single jackknife coefficient for all replicates, use the JKCOEFS=value option.

JKCOEFS=SAS-data-set
names a SAS data set that contains the jackknife coefficients for VARMETHOD=JACKKNIFE. You
provide the jackknife coefficients in the JKCOEFS= data set variable JKCoefficient. Each coefficient
value must be a nonnegative number. The observations in the JKCOEFS= data set should correspond
to the replicates that are identified by the REPWEIGHTS variables. Arrange the coefficients or
observations in the JKCOEFS= data set in the same order in which you list the corresponding replicate
weight variables in the REPWEIGHTS statement. The number of observations in the JKCOEFS= data
set must not be less than the number of REPWEIGHTS variables.

See the section “Jackknife Method” on page 8117 for details about jackknife coefficients.

To specify different coefficients for different replicates, you can also use the JKCOEFS=values option.
To specify a single jackknife coefficient for all replicates, use the JKCOEFS=value option.
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SLICE Statement
SLICE model-effect < / options > ;

The SLICE statement provides a general mechanism for performing a partitioned analysis of the LS-means
for an interaction. This analysis is also known as an analysis of simple effects.

The SLICE statement uses the same options as the LSMEANS statement, which are summarized in Ta-
ble 19.21. For details about the syntax of the SLICE statement, see the section “SLICE Statement” on
page 505 in Chapter 19, “Shared Concepts and Topics.”

STORE Statement
STORE < OUT= >item-store-name < / LABEL='label ' > ;

The STORE statement requests that the procedure save the context and results of the statistical analysis. The
resulting item store has a binary file format that cannot be modified. The contents of the item store can be
processed with the PLM procedure.

For details about the syntax of the STORE statement, see the section “STORE Statement” on page 508 in
Chapter 19, “Shared Concepts and Topics.”

STRATA Statement
STRATA variables < / option > ;

The STRATA statement specifies variables that form the strata in a stratified sample design. The combinations
of categories of STRATA variables define the strata in the sample.

If your sample design has stratification at multiple stages, you should identify only the first-stage strata in the
STRATA statement. See the section “Specification of Population Totals and Sampling Rates” on page 8109
for more information.

If you provide replicate weights for BRR or jackknife variance estimation with the REPWEIGHTS statement,
you do not need to specify a STRATA statement.

The STRATA variables are one or more variables in the DATA= input data set. These variables can be either
character or numeric. The formatted values of the STRATA variables determine the levels. Thus, you can use
formats to group values into levels. See the FORMAT procedure in the Base SAS Procedures Guide and the
FORMAT statement and SAS formats in SAS Formats and Informats: Reference for more information.

When determining levels of a STRATA variable, an observation with missing values for this STRATA variable
is excluded, unless you specify the MISSING option. For more information, see the section “Missing Values”
on page 8098.

You can use multiple STRATA statements to specify stratum variables.

You can specify the following option in the STRATA statement after a slash (/):
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LIST
displays a “Stratum Information” table, which includes values of the STRATA variables and the number
of observations, number of clusters, population total, and sampling rate for each stratum. See the
section “Stratum Information” on page 8132 for more details.

TEST Statement
< label: > TEST equation1 < , equation2, . . . > < / option > ;

The TEST statement tests linear hypotheses about the regression coefficients. The Wald test is used to jointly
test the null hypotheses (H0WL� D c) specified in a single TEST statement. When c D 0 you should specify
a CONTRAST statement instead.

Each equation specifies a linear hypothesis (a row of the L matrix and the corresponding element of the c
vector); multiple equations are separated by commas. The label, which must be a valid SAS name, is used to
identify the resulting output and should always be included. You can submit multiple TEST statements.

The form of an equation is as follows:

term < ˙ term . . . > < =˙ term < ˙ term . . . > >

where term is a parameter of the model, or a constant, or a constant times a parameter. For a binary
response model, the intercept parameter is named INTERCEPT; for an ordinal response model, the intercept
parameters are named INTERCEPT, INTERCEPT2, INTERCEPT3, and so on. When no equal sign appears,
the expression is set to 0. The following illustrates possible uses of the TEST statement:

proc surveylogistic;
model y= a1 a2 a3 a4;
test1: test intercept + .5 * a2 = 0;
test2: test intercept + .5 * a2;
test3: test a1=a2=a3;
test4: test a1=a2, a2=a3;

run;

Note that the first and second TEST statements are equivalent, as are the third and fourth TEST statements.

You can specify the following option in the TEST statement after a slash (/):

PRINT
displays intermediate calculations in the testing of the null hypothesis H0WL� D c. This includes
L OV. O�/L0 bordered by .L O� � c/ and ŒL OV. O�/L0��1 bordered by ŒL OV. O�/L0��1.L O� � c/, where O� is the
pseudo-estimator of � and OV. O�/ is the estimated covariance matrix of O� .

For more information, see the section “Testing Linear Hypotheses about the Regression Coefficients”
on page 8122.

UNITS Statement
UNITS independent1 = list1 < . . . independentk = listk > < / option > ;
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The UNITS statement enables you to specify units of change for the continuous explanatory variables so that
customized odds ratios can be estimated. An estimate of the corresponding odds ratio is produced for each
unit of change specified for an explanatory variable. The UNITS statement is ignored for CLASS variables.
If the CLODDS option is specified in the MODEL statement, the corresponding confidence intervals for the
odds ratios are also displayed.

The term independent is the name of an explanatory variable, and list represents a list of units of change,
separated by spaces, that are of interest for that variable. Each unit of change in a list has one of the following
forms:

• number

• SD or –SD

• number * SD

where number is any nonzero number and SD is the sample standard deviation of the corresponding
independent variable. For example, X D �2 requests an odds ratio that represents the change in the odds
when the variable X is decreased by two units. X D 2�SD requests an estimate of the change in the odds
when X is increased by two sample standard deviations.

You can specify the following option in the UNITS statement after a slash (/):

DEFAULT=list
gives a list of units of change for all explanatory variables that are not specified in the UNITS statement.
Each unit of change can be in any of the forms described previously. If the DEFAULT= option is
not specified, PROC SURVEYLOGISTIC does not produce customized odds ratio estimates for any
explanatory variable that is not listed in the UNITS statement.

For more information, see the section “Odds Ratio Estimation” on page 8124.

WEIGHT Statement
WEIGHT variable ;

The WEIGHT statement names the variable that contains the sampling weights. This variable must be numeric,
and the sampling weights must be positive numbers. If an observation has a weight that is nonpositive or
missing, then the procedure omits that observation from the analysis. See the section “Missing Values” on
page 8098 for more information. If you specify more than one WEIGHT statement, the procedure uses only
the first WEIGHT statement and ignores the rest.

If you do not specify a WEIGHT statement but provide replicate weights with a REPWEIGHTS statement,
PROC SURVEYLOGISTIC uses the average of replicate weights of each observation as the observation’s
weight.

If you do not specify a WEIGHT statement or a REPWEIGHTS statement, PROC SURVEYLOGISTIC
assigns all observations a weight of one.
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Details: SURVEYLOGISTIC Procedure

Missing Values
If you have missing values in your survey data for any reason, such as nonresponse, this can compromise the
quality of your survey results. If the respondents are different from the nonrespondents with regard to a survey
effect or outcome, then survey estimates might be biased and cannot accurately represent the survey population.
There are a variety of techniques in sample design and survey operations that can reduce nonresponse. After
data collection is complete, you can use imputation to replace missing values with acceptable values, and/or
you can use sampling weight adjustments to compensate for nonresponse. You should complete this data
preparation and adjustment before you analyze your data with PROC SURVEYLOGISTIC. For more
information, see Cochran (1977); Kalton and Kasprzyk (1986); Brick and Kalton (1996).

If an observation has a missing value or a nonpositive value for the WEIGHT or FREQ variable, then that
observation is excluded from the analysis.

An observation is also excluded if it has a missing value for any design (STRATA, CLUSTER, or DOMAIN)
variable, unless you specify the MISSING option in the PROC SURVEYLOGISTIC statement. If you specify
the MISSING option, the procedure treats missing values as a valid (nonmissing) category for all categorical
variables.

By default, if an observation contains missing values for the response, offset, or any explanatory variables
used in the independent effects, the observation is excluded from the analysis. This treatment is based on the
assumption that the missing values are missing completely at random (MCAR). However, this assumption is
not true sometimes. For example, evidence from other surveys might suggest that observations with missing
values are systematically different from observations without missing values. If you believe that missing
values are not missing completely at random, then you can specify the NOMCAR option to include these
observations with missing values in the dependent variable and the independent variables in the variance
estimation.

Whether or not the NOMCAR option is used, observations with missing or invalid values for WEIGHT,
FREQ, STRATA, CLUSTER, or DOMAIN variables are always excluded, unless the MISSING option is
also specified.

When you specify the NOMCAR option, the procedure treats observations with and without missing values
for variables in the regression model as two different domains, and it performs a domain analysis in the
domain of nonmissing observations.

If you use a REPWEIGHTS statement, all REPWEIGHTS variables must contain nonmissing values.
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Model Specification

Response Level Ordering

Response level ordering is important because, by default, PROC SURVEYLOGISTIC models the probabilities
of response levels with lower Ordered Values. Ordered Values, displayed in the “Response Profile” table, are
assigned to response levels in ascending sorted order. That is, the lowest response level is assigned Ordered
Value 1, the next lowest is assigned Ordered Value 2, and so on. For example, if your response variable Y
takes values in f1; : : : ;D C 1g, then the functions of the response probabilities modeled with the cumulative
model are

logit.Pr.Y � i jx//; i D 1; : : : ;D

and for the generalized logit model they are

log
�

Pr.Y D i jx/
Pr.Y D D C 1jx/

�
; i D 1; : : : ;D

where the highest Ordered Value Y D D C 1 is the reference level. You can change these default functions
by specifying the EVENT=, REF=, DESCENDING, or ORDER= response variable options in the MODEL
statement.

For binary response data with event and nonevent categories, the procedure models the function

logit.p/ D log
�

p

1 � p

�
where p is the probability of the response level assigned to Ordered Value 1 in the “Response Profiles” table.
Since

logit.p/ D �logit.1 � p/

the effect of reversing the order of the two response levels is to change the signs of ˛ and ˇ in the model
logit.p/ D ˛ C xˇ.

If your event category has a higher Ordered Value than the nonevent category, the procedure models the
nonevent probability. You can use response variable options to model the event probability. For example,
suppose the binary response variable Y takes the values 1 and 0 for event and nonevent, respectively, and
Exposure is the explanatory variable. By default, the procedure assigns Ordered Value 1 to response level
Y=0, and Ordered Value 2 to response level Y=1. Therefore, the procedure models the probability of the
nonevent (Ordered Value=1) category. To model the event probability, you can do the following:

• Explicitly state which response level is to be modeled by using the response variable option EVENT=
in the MODEL statement:

model Y(event='1') = Exposure;
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• Specify the response variable option DESCENDING in the MODEL statement:

model Y(descending)=Exposure;

• Specify the response variable option REF= in the MODEL statement as the nonevent category for the
response variable. This option is most useful when you are fitting a generalized logit model.

model Y(ref='0') = Exposure;

• Assign a format to Y such that the first formatted value (when the formatted values are put in sorted
order) corresponds to the event. For this example, Y=1 is assigned formatted value ‘event’ and Y=0 is
assigned formatted value ‘nonevent.’ Since ORDER= FORMATTED by default, Ordered Value 1 is
assigned to response level Y=1 so the procedure models the event.

proc format;
value Disease 1='event' 0='nonevent';

run;

proc surveylogistic;
format Y Disease.;
model Y=Exposure;

run;

CLASS Variable Parameterization

Consider a model with one CLASS variable A with four levels: 1, 2, 5, and 7. Details of the possible choices
for the PARAM= option follow.

EFFECT Three columns are created to indicate group membership of the nonreference levels. For
the reference level, all three dummy variables have a value of –1. For instance, if the
reference level is 7 (REF=7), the design matrix columns for A are as follows.

Design Matrix
A A1 A2 A5

1 1 0 0
2 0 1 0
5 0 0 1
7 –1 –1 –1

For CLASS main effects that use the EFFECT coding scheme, individual parameters
correspond to the difference between the effect of each nonreference level and the average
over all four levels.

GLM As in PROC GLM, four columns are created to indicate group membership. The design
matrix columns for A are as follows.
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Design Matrix
A A1 A2 A5 A7

1 1 0 0 0
2 0 1 0 0
5 0 0 1 0
7 0 0 0 1

For CLASS main effects that use the GLM coding scheme, individual parameters corre-
spond to the difference between the effect of each level and the last level.

ORDINAL Three columns are created to indicate group membership of the higher levels of the effect.
For the first level of the effect (which for A is 1), all three dummy variables have a value
of 0. The design matrix columns for A are as follows.

Design Matrix
A A2 A5 A7

1 0 0 0
2 1 0 0
5 1 1 0
7 1 1 1

The first level of the effect is a control or baseline level.

For CLASS main effects that use the ORDINAL coding scheme, the first level of the
effect is a control or baseline level; individual parameters correspond to the difference
between effects of the current level and the preceding level. When the parameters for an
ordinal main effect have the same sign, the response effect is monotonic across the levels.

POLYNOMIAL | POLY Three columns are created. The first represents the linear term (x), the second
represents the quadratic term (x2), and the third represents the cubic term (x3), where x is
the level value. If the CLASS levels are not numeric, they are translated into 1, 2, 3, : : :
according to their sort order. The design matrix columns for A are as follows.

Design Matrix
A APOLY1 APOLY2 APOLY3

1 1 1 1
2 2 4 8
5 5 25 125
7 7 49 343

REFERENCE | REF Three columns are created to indicate group membership of the nonreference levels.
For the reference level, all three dummy variables have a value of 0. For instance, if the
reference level is 7 (REF=7), the design matrix columns for A are as follows.

Design Matrix
A A1 A2 A5

1 1 0 0
2 0 1 0
5 0 0 1
7 0 0 0
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For CLASS main effects that use the REFERENCE coding scheme, individual parame-
ters correspond to the difference between the effect of each nonreference level and the
reference level.

ORTHEFFECT The columns are obtained by applying the Gram-Schmidt orthogonalization to the columns
for PARAM=EFFECT. The design matrix columns for A are as follows.

Design Matrix
A AOEFF1 AOEFF2 AOEFF3

1 1.41421 –0.81650 –0.57735
2 0.00000 1.63299 –0.57735
5 0.00000 0.00000 1.73205
7 –1.41421 –0.81649 –0.57735

ORTHORDINAL | ORTHOTHERM The columns are obtained by applying the Gram-Schmidt orthogonal-
ization to the columns for PARAM=ORDINAL. The design matrix columns for A are as
follows.

Design Matrix
A AOORD1 AOORD2 AOORD3

1 –1.73205 0.00000 0.00000
2 0.57735 –1.63299 0.00000
5 0.57735 0.81650 –1.41421
7 0.57735 0.81650 1.41421

ORTHPOLY The columns are obtained by applying the Gram-Schmidt orthogonalization to the columns
for PARAM=POLY. The design matrix columns for A are as follows.

Design Matrix
A AOPOLY1 AOPOLY2 AOPOLY5

1 –1.153 0.907 –0.921
2 –0.734 –0.540 1.473
5 0.524 –1.370 –0.921
7 1.363 1.004 0.368

ORTHREF The columns are obtained by applying the Gram-Schmidt orthogonalization to the columns
for PARAM=REFERENCE. The design matrix columns for A are as follows.

Design Matrix
A AOREF1 AOREF2 AOREF3

1 1.73205 0.00000 0.00000
2 –0.57735 1.63299 0.00000
5 –0.57735 –0.81650 1.41421
7 –0.57735 –0.81650 –1.41421

Link Functions and the Corresponding Distributions

Four link functions are available in the SURVEYLOGISTIC procedure. The logit function is the default. To
specify a different link function, use the LINK= option in the MODEL statement. The link functions and the
corresponding distributions are as follows:
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• The logit function

g.p/ D log
�

p

1 � p

�
is the inverse of the cumulative logistic distribution function, which is

F.x/ D
1

1C e�x

• The probit (or normit) function

g.p/ D ˆ�1.p/

is the inverse of the cumulative standard normal distribution function, which is

F.x/ D ˆ.x/ D
1
p
2�

Z x

�1

e�
1
2
z2dz

Traditionally, the probit function includes an additive constant 5, but throughout PROC
SURVEYLOGISTIC, the terms probit and normit are used interchangeably, previously defined
as g.p/.

• The complementary log-log function

g.p/ D log.� log.1 � p//

is the inverse of the cumulative extreme-value function (also called the Gompertz distribution), which
is

F.x/ D 1 � e�e
x

• The generalized logit function extends the binary logit link to a vector of levels .�1; : : : ; �kC1/ by
contrasting each level with a fixed level

g.�i / D log
�

�i

�kC1

�
i D 1; : : : ; k

The variances of the normal, logistic, and extreme-value distributions are not the same. Their respective
means and variances are

Distribution Mean Variance

Normal 0 1
Logistic 0 �2=3

Extreme-value � �2=6

where  is the Euler constant. In comparing parameter estimates that use different link functions, you need to
take into account the different scalings of the corresponding distributions and, for the complementary log-log
function, a possible shift in location. For example, if the fitted probabilities are in the neighborhood of 0.1 to
0.9, then the parameter estimates from using the logit link function should be about �=

p
3 � 1:8 larger than

the estimates from the probit link function.
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Model Fitting

Determining Observations for Likelihood Contributions

If you use the events/trials syntax, each observation is split into two observations. One has the response value
1 with a frequency equal to the value of the events variable. The other observation has the response value 2
and a frequency equal to the value of (trials – events). These two observations have the same explanatory
variable values and the same WEIGHT values as the original observation.

For either the single-trial or the events/trials syntax, let j index all observations. In other words, for the single-
trial syntax, j indexes the actual observations. And, for the events/trials syntax, j indexes the observations
after splitting (as described previously). If your data set has 30 observations and you use the single-trial
syntax, j has values from 1 to 30; if you use the events/trials syntax, j has values from 1 to 60.

Suppose the response variable in a cumulative response model can take on the ordered values 1; : : : ; k; kC 1,
where k is an integer � 1. The likelihood for the jth observation with ordered response value yj and
explanatory variables vector ( row vectors) xj is given by

Lj D

8<:
F.˛1 C xjˇ/ yj D 1

F.˛i C xjˇ/ � F.˛i�1 C xjˇ/ 1 < yj D i � k

1 � F.˛k C xjˇ/ yj D k C 1

where F.:/ is the logistic, normal, or extreme-value distribution function; ˛1; : : : ; ˛k are ordered intercept
parameters; and ˇ is the slope parameter vector.

For the generalized logit model, letting the k C 1st level be the reference level, the intercepts ˛1; : : : ; ˛k are
unordered and the slope vector ˇi varies with each logit. The likelihood for the jth observation with ordered
response value yj and explanatory variables vector xj (row vectors) is given by

Lj D Pr.Y D yj jxj /

D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

e˛iCxjˇi

1C
Pk
iD1 e

˛iCxjˇi
1 � yj D i � k

1

1C
Pk
iD1 e

˛iCxjˇi
yj D k C 1

Iterative Algorithms for Model Fitting

Two iterative maximum likelihood algorithms are available in PROC SURVEYLOGISTIC to obtain the
pseudo-estimate O� of the model parameter � . The default is the Fisher scoring method, which is equivalent
to fitting by iteratively reweighted least squares. The alternative algorithm is the Newton-Raphson method.
Both algorithms give the same parameter estimates; the covariance matrix of O� is estimated in the section
“Variance Estimation” on page 8113. For a generalized logit model, only the Newton-Raphson technique is
available. You can use the TECHNIQUE= option in the MODEL statement to select a fitting algorithm.
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Iteratively Reweighted Least Squares Algorithm (Fisher Scoring)
Let Y be the response variable that takes values 1; : : : ; k; k C 1 .k � 1/. Let j index all observations and Yj
be the value of response for the jth observation. Consider the multinomial variable Zj D .Z1j ; : : : ; Zkj /0

such that

Zij D

�
1 if Yj D i
0 otherwise

and Z.kC1/j D 1�
Pk
iD1Zij . With �ij denoting the probability that the jth observation has response value

i, the expected value of Zj is �j D .�1j ; : : : ; �kj /0, and �.kC1/j D 1 �
Pk
iD1 �ij . The covariance matrix

of Zj is Vj , which is the covariance matrix of a multinomial random variable for one trial with parameter
vector �j . Let � be the vector of regression parameters—for example, � D .˛1; : : : ; ˛k;ˇ0/0 for cumulative
logit model. Let Dj be the matrix of partial derivatives of �j with respect to � . The estimating equation for
the regression parameters isX

j

D0jWj .Zj � �j / D 0

where Wj D wjfjV�1j , and wj and fj are the WEIGHT and FREQ values of the jth observation.

With a starting value of �.0/, the pseudo-estimate of � is obtained iteratively as

�.iC1/ D �.i/ C .
X
j

D0jWjDj /�1
X
j

D0jWj .Zj � �j /

where Dj , Wj , and �j are evaluated at the ith iteration �.i/. The expression after the plus sign is the step
size. If the log likelihood evaluated at �.iC1/ is less than that evaluated at �.i/, then �.iC1/ is recomputed by
step-halving or ridging. The iterative scheme continues until convergence is obtained—that is, until �.iC1/ is
sufficiently close to �.i/. Then the maximum likelihood estimate of � is O� D �.iC1/.

By default, starting values are zero for the slope parameters, and starting values are the observed cumulative
logits (that is, logits of the observed cumulative proportions of response) for the intercept parameters.
Alternatively, the starting values can be specified with the INEST= option in the PROC SURVEYLOGISTIC
statement.

Newton-Raphson Algorithm
Let

g D
X
j

wjfj
@lj

@�

H D

X
j

�wjfj
@2lj

@�2

be the gradient vector and the Hessian matrix, where lj D logLj is the log likelihood for the jth observation.
With a starting value of �.0/, the pseudo-estimate O� of � is obtained iteratively until convergence is obtained:

�.iC1/ D �.i/ CH�1g
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where H and g are evaluated at the ith iteration �.i/. If the log likelihood evaluated at �.iC1/ is less than that
evaluated at �.i/, then �.iC1/ is recomputed by step-halving or ridging. The iterative scheme continues until
convergence is obtained—that is, until �.iC1/ is sufficiently close to �.i/. Then the maximum likelihood
estimate of � is O� D �.iC1/.

Convergence Criteria

Four convergence criteria are allowed: ABSFCONV=, FCONV=, GCONV=, and XCONV=. If you specify
more than one convergence criterion, the optimization is terminated as soon as one of the criteria is satisfied.
If none of the criteria is specified, the default is GCONV=1E–8.

Existence of Maximum Likelihood Estimates

The likelihood equation for a logistic regression model does not always have a finite solution. Sometimes
there is a nonunique maximum on the boundary of the parameter space, at infinity. The existence, finiteness,
and uniqueness of pseudo-estimates for the logistic regression model depend on the patterns of data points in
the observation space (Albert and Anderson 1984; Santner and Duffy 1986).

Consider a binary response model. Let Yj be the response of the ith subject, and let xj be the row vector
of explanatory variables (including the constant 1 associated with the intercept). There are three mutually
exclusive and exhaustive types of data configurations: complete separation, quasi-complete separation, and
overlap.

Complete separation There is a complete separation of data points if there exists a vector b that
correctly allocates all observations to their response groups; that is,�

xjb > 0 Yj D 1

xjb < 0 Yj D 2

This configuration gives nonunique infinite estimates. If the iterative pro-
cess of maximizing the likelihood function is allowed to continue, the log
likelihood diminishes to zero, and the dispersion matrix becomes unbounded.

Quasi-complete separation The data are not completely separable, but there is a vector b such that�
xjb � 0 Yj D 1

xjb � 0 Yj D 2

and equality holds for at least one subject in each response group. This
configuration also yields nonunique infinite estimates. If the iterative process
of maximizing the likelihood function is allowed to continue, the dispersion
matrix becomes unbounded and the log likelihood diminishes to a nonzero
constant.

Overlap If neither complete nor quasi-complete separation exists in the sample points,
there is an overlap of sample points. In this configuration, the pseudo-
estimates exist and are unique.

Complete separation and quasi-complete separation are problems typically encountered with small data sets.
Although complete separation can occur with any type of data, quasi-complete separation is not likely with
truly continuous explanatory variables.
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The SURVEYLOGISTIC procedure uses a simple empirical approach to recognize the data configurations
that lead to infinite parameter estimates. The basis of this approach is that any convergence method of
maximizing the log likelihood must yield a solution that gives complete separation, if such a solution
exists. In maximizing the log likelihood, there is no checking for complete or quasi-complete separation if
convergence is attained in eight or fewer iterations. Subsequent to the eighth iteration, the probability of
the observed response is computed for each observation. If the probability of the observed response is one
for all observations, there is a complete separation of data points and the iteration process is stopped. If the
complete separation of data has not been determined and an observation is identified to have an extremely
large probability (�0.95) of the observed response, there are two possible situations. First, there is overlap
in the data set, and the observation is an atypical observation of its own group. The iterative process, if
allowed to continue, stops when a maximum is reached. Second, there is quasi-complete separation in the
data set, and the asymptotic dispersion matrix is unbounded. If any of the diagonal elements of the dispersion
matrix for the standardized observations vectors (all explanatory variables standardized to zero mean and
unit variance) exceeds 5,000, quasi-complete separation is declared and the iterative process is stopped. If
either complete separation or quasi-complete separation is detected, a warning message is displayed in the
procedure output.

Checking for quasi-complete separation is less foolproof than checking for complete separation. The
NOCHECK option in the MODEL statement turns off the process of checking for infinite parameter
estimates. In cases of complete or quasi-complete separation, turning off the checking process typically
results in the procedure failing to converge.

Model Fitting Statistics

Suppose the model contains s explanatory effects. For the jth observation, let O�j be the estimated probability
of the observed response. The three criteria displayed by the SURVEYLOGISTIC procedure are calculated
as follows:

• –2 log likelihood:

�2 Log L D �2
X
j

wjfj log. O�j /

where wj and fj are the weight and frequency values, respectively, of the jth observation. For binary
response models that use the events/trials syntax, this is equivalent to

�2 Log L D �2
X
j

wjfj frj log. O�j /C .nj � rj / log.1 � O�j /g

where rj is the number of events, nj is the number of trials, and O�j is the estimated event probability.

• Akaike information criterion:

AIC D �2 Log LC 2p

where p is the number of parameters in the model. For cumulative response models, p D k C s, where
k is the total number of response levels minus one, and s is the number of explanatory effects. For the
generalized logit model, p D k.s C 1/.
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• Schwarz criterion:

SC D �2 Log LC p log.
X
j

fj /

where p is the number of parameters in the model. For cumulative response models, p D k C s, where
k is the total number of response levels minus one, and s is the number of explanatory effects. For the
generalized logit model, p D k.s C 1/.

The –2 log likelihood statistic has a chi-square distribution under the null hypothesis (that all the explanatory
effects in the model are zero), and the procedure produces a p-value for this statistic. The AIC and SC
statistics give two different ways of adjusting the –2 log likelihood statistic for the number of terms in the
model and the number of observations used.

Generalized Coefficient of Determination

Cox and Snell (1989, pp. 208–209) propose the following generalization of the coefficient of determination
to a more general linear model:

R2 D 1 �

�
L.0/

L. O�/

� 2
n

where L.0/ is the likelihood of the intercept-only model, L. O�/ is the likelihood of the specified model, and
n is the sample size. The quantity R2 achieves a maximum of less than 1 for discrete models, where the
maximum is given by

R2max D 1 � fL.0/g
2
n

Nagelkerke (1991) proposes the following adjusted coefficient, which can achieve a maximum value of 1:

QR2 D
R2

R2max

Properties and interpretation of R2 and QR2 are provided in Nagelkerke (1991). In the “Testing Global Null
Hypothesis: BETA=0” table, R2 is labeled as “RSquare” and QR2 is labeled as “Max-rescaled RSquare.” Use
the RSQUARE option to request R2 and QR2.

INEST= Data Set

You can specify starting values for the iterative algorithm in the INEST= data set.

The INEST= data set contains one observation for each BY group. The INEST= data set must contain the
intercept variables (named Intercept for binary response models and Intercept, Intercept2, Intercept3, and so
forth, for ordinal response models) and all explanatory variables in the MODEL statement. If BY processing
is used, the INEST= data set should also include the BY variables, and there must be one observation for
each BY group. If the INEST= data set also contains the _TYPE_ variable, only observations with _TYPE_
value ‘PARMS’ are used as starting values.
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Survey Design Information

Specification of Population Totals and Sampling Rates

To include a finite population correction (fpc) in Taylor series variance estimation, you can input either the sam-
pling rate or the population total by using the RATE= or TOTAL= option in the PROC SURVEYLOGISTIC
statement. (You cannot specify both of these options in the same PROC SURVEYLOGISTIC statement.)
The RATE= and TOTAL= options apply only to Taylor series variance estimation. The procedure does not
use a finite population correction for BRR or jackknife variance estimation.

If you do not specify the RATE= or TOTAL= option, the Taylor series variance estimation does not include a
finite population correction. For fairly small sampling fractions, it is appropriate to ignore this correction.
See Cochran (1977) and Kish (1965) for more information.

If your design has multiple stages of selection and you are specifying the RATE= option, you should input
the first-stage sampling rate, which is the ratio of the number of PSUs in the sample to the total number of
PSUs in the study population. If you are specifying the TOTAL= option for a multistage design, you should
input the total number of PSUs in the study population. See the section “Primary Sampling Units (PSUs)” on
page 8109 for more details.

For a nonstratified sample design, or for a stratified sample design with the same sampling rate or the same
population total in all strata, you can use the RATE=value or TOTAL=value option. If your sample design is
stratified with different sampling rates or population totals in different strata, use the RATE=SAS-data-set or
TOTAL=SAS-data-set option to name a SAS data set that contains the stratum sampling rates or totals. This
data set is called a secondary data set, as opposed to the primary data set that you specify with the DATA=
option.

The secondary data set must contain all the stratification variables listed in the STRATA statement and all
the variables in the BY statement. If there are formats associated with the STRATA variables and the BY
variables, then the formats must be consistent in the primary and the secondary data sets. If you specify the
TOTAL=SAS-data-set option, the secondary data set must have a variable named _TOTAL_ that contains the
stratum population totals. Or if you specify the RATE=SAS-data-set option, the secondary data set must
have a variable named _RATE_ that contains the stratum sampling rates. If the secondary data set contains
more than one observation for any one stratum, then the procedure uses the first value of _TOTAL_ or _RATE_
for that stratum and ignores the rest.

The value in the RATE= option or the values of _RATE_ in the secondary data set must be nonnegative
numbers. You can specify value as a number between 0 and 1. Or you can specify value in percentage form
as a number between 1 and 100, and PROC SURVEYLOGISTIC converts that number to a proportion. The
procedure treats the value 1 as 100% instead of 1%.

If you specify the TOTAL=value option, value must not be less than the sample size. If you provide stratum
population totals in a secondary data set, these values must not be less than the corresponding stratum sample
sizes.

Primary Sampling Units (PSUs)

When you have clusters, or primary sampling units (PSUs), in your sample design, the procedure estimates
variance from the variation among PSUs when the Taylor series variance method is used. See the section
“Taylor Series (Linearization)” on page 8114 for more information.
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BRR or jackknife variance estimation methods draw multiple replicates (or subsamples) from the full sample
by following a specific resampling scheme. These subsamples are constructed by deleting PSUs from the full
sample.

If you use a REPWEIGHTS statement to provide replicate weights for BRR or jackknife variance estimation,
you do not need to specify a CLUSTER statement. Otherwise, you should specify a CLUSTER statement
whenever your design includes clustering at the first stage of sampling. If you do not specify a CLUSTER
statement, then PROC SURVEYLOGISTIC treats each observation as a PSU.

Logistic Regression Models and Parameters
The SURVEYLOGISTIC procedure fits a logistic regression model and estimates the corresponding re-
gression parameters. Each model uses the link function you specified in the LINK= option in the MODEL
statement. There are four types of model you can use with the procedure: cumulative logit model, comple-
mentary log-log model, probit model, and generalized logit model.

Notation

Let Y be the response variable with categories 1; 2; : : : ;D;D C 1. The p covariates are denoted by a
p-dimension row vector x.

For a stratified clustered sample design, each observation is represented by a row vector,
.whij ; y0hij ; yhij.DC1/; xhij /, where

• h D 1; 2; : : : ;H is the stratum index

• i D 1; 2; : : : ; nh is the cluster index within stratum h

• j D 1; 2; : : : ; mhi is the unit index within cluster i of stratum h

• whij denotes the sampling weight

• yhij is a D-dimensional column vector whose elements are indicator variables for the first D categories
for variable Y. If the response of the jth unit of the ith cluster in stratum h falls in category d, the dth
element of the vector is one, and the remaining elements of the vector are zero, where d D 1; 2; : : : ;D.

• yhij.DC1/ is the indicator variable for the .D C 1/ category of variable Y

• xhij denotes the k-dimensional row vector of explanatory variables for the jth unit of the ith cluster in
stratum h. If there is an intercept, then xhij1 � 1.

• Qn D
PH
hD1 nh is the total number of clusters in the sample

• n D
PH
hD1

Pnh
iD1mhi is the total sample size
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The following notations are also used:

• fh denotes the sampling rate for stratum h

• �hij is the expected vector of the response variable:

�hij D E.yhij jxhij /
D .�hij1; �hij2; : : : ; �hijD/

0

�hij.DC1/ D E.yhij.DC1/jxhij /

Note that �hij.DC1/ D 1 � 10�hij , where 1 is a D-dimensional column vector whose elements are 1.

Logistic Regression Models

If the response categories of the response variable Y can be restricted to a number of ordinal values, you
can fit cumulative probabilities of the response categories with a cumulative logit model, a complementary
log-log model, or a probit model. Details of cumulative logit models (or proportional odds models) can
be found in McCullagh and Nelder (1989). If the response categories of Y are nominal responses without
natural ordering, you can fit the response probabilities with a generalized logit model. Formulation of the
generalized logit models for nominal response variables can be found in Agresti (2002). For each model,
the procedure estimates the model parameter � by using a pseudo-log-likelihood function. The procedure
obtains the pseudo-maximum likelihood estimator O� by using iterations described in the section “Iterative
Algorithms for Model Fitting” on page 8104 and estimates its variance described in the section “Variance
Estimation” on page 8113.

Cumulative Logit Model
A cumulative logit model uses the logit function

g.t/ D log
�

t

1 � t

�
as the link function.

Denote the cumulative sum of the expected proportions for the first d categories of variable Y by

Fhijd D

dX
rD1

�hijr

for d D 1; 2; : : : ;D: Then the cumulative logit model can be written as

log
�

Fhijd

1 � Fhijd

�
D ˛d C xhijˇ

with the model parameters

ˇ D .ˇ1; ˇ2; : : : ; ˇk/
0

˛ D .˛1; ˛2; : : : ; ˛D/
0; ˛1 < ˛2 < � � � < ˛D

� D .˛0;ˇ0/0
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Complementary Log-Log Model
A complementary log-log model uses the complementary log-log function

g.t/ D log.� log.1 � t //

as the link function. Denote the cumulative sum of the expected proportions for the first d categories of
variable Y by

Fhijd D

dX
rD1

�hijr

for d D 1; 2; : : : ;D: Then the complementary log-log model can be written as

log.� log.1 � Fhijd // D ˛d C xhijˇ

with the model parameters

ˇ D .ˇ1; ˇ2; : : : ; ˇk/
0

˛ D .˛1; ˛2; : : : ; ˛D/
0; ˛1 < ˛2 < � � � < ˛D

� D .˛0;ˇ0/0

Probit Model
A probit model uses the probit (or normit) function, which is the inverse of the cumulative standard normal
distribution function,

g.t/ D ˆ�1.t/

as the link function, where

ˆ.t/ D
1
p
2�

Z t

�1

e�
1
2
z2dz

Denote the cumulative sum of the expected proportions for the first d categories of variable Y by

Fhijd D

dX
rD1

�hijr

for d D 1; 2; : : : ;D: Then the probit model can be written as

Fhijd D ˆ.˛d C xhijˇ/

with the model parameters

ˇ D .ˇ1; ˇ2; : : : ; ˇk/
0

˛ D .˛1; ˛2; : : : ; ˛D/
0; ˛1 < ˛2 < � � � < ˛D

� D .˛0;ˇ0/0
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Generalized Logit Model
For nominal response, a generalized logit model is to fit the ratio of the expected proportion for each response
category over the expected proportion of a reference category with a logit link function.

Without loss of generality, let category D C 1 be the reference category for the response variable Y. Denote
the expected proportion for the dth category by �hijd as in the section “Notation” on page 8110. Then the
generalized logit model can be written as

log
�

�hijd

�hij.DC1/

�
D xhijˇd

for d D 1; 2; : : : ;D; with the model parameters

ˇd D .ˇd1; ˇd2; : : : ; ˇdk/
0

� D .ˇ01;ˇ
0
2; : : : ;ˇ

0
D/
0

Likelihood Function

Let g.�/ be a link function such that

� D g.x;�/

where � is a column vector for regression coefficients. The pseudo-log likelihood is

l.�/ D

HX
hD1

nhX
iD1

mhiX
jD1

whij
�
.log.�hij //0yhij C log.�hij.DC1//yhij.DC1/

�

Denote the pseudo-estimator as O� , which is a solution to the estimating equations:

HX
hD1

nhX
iD1

mhiX
jD1

whijDhij
�
diag.�hij / � �hij� 0hij

��1
.yhij � �hij / D 0

where Dhij is the matrix of partial derivatives of the link function g with respect to � .

To obtain the pseudo-estimator O� , the procedure uses iterations with a starting value �.0/ for � . See the
section “Iterative Algorithms for Model Fitting” on page 8104 for more details.

Variance Estimation
Due to the variability of characteristics among items in the population, researchers apply scientific sample
designs in the sample selection process to reduce the risk of a distorted view of the population, and they make
inferences about the population based on the information from the sample survey data. In order to make
statistically valid inferences for the population, they must incorporate the sample design in the data analysis.

The SURVEYLOGISTIC procedure fits linear logistic regression models for discrete response survey data
by using the maximum likelihood method. In the variance estimation, the procedure uses the Taylor series
(linearization) method or replication (resampling) methods to estimate sampling errors of estimators based
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on complex sample designs, including designs with stratification, clustering, and unequal weighting (Binder
1981, 1983; Roberts, Rao, and Kumar 1987; Skinner, Holt, and Smith 1989; Binder and Roberts 2003; Morel
1989; Lehtonen and Pahkinen 1995; Woodruff 1971; Fuller 1975; Särndal, Swensson, and Wretman 1992;
Fuller 2009; Wolter 2007; Rust 1985; Dippo, Fay, and Morganstein 1984; Rao and Shao 1999; Rao, Wu, and
Yue 1992; Rao and Shao 1996).

You can use the VARMETHOD= option to specify a variance estimation method to use. By default, the Taylor
series method is used. However, replication methods have recently gained popularity for estimating variances
in complex survey data analysis. One reason for this popularity is the relative simplicity of replication-based
estimates, especially for nonlinear estimators; another is that modern computational capacity has made
replication methods feasible for practical survey analysis.

Replication methods draw multiple replicates (also called subsamples) from a full sample according to
a specific resampling scheme. The most commonly used resampling schemes are the balanced repeated
replication (BRR) method and the jackknife method. For each replicate, the original weights are modified
for the PSUs in the replicates to create replicate weights. The parameters of interest are estimated by using
the replicate weights for each replicate. Then the variances of parameters of interest are estimated by the
variability among the estimates derived from these replicates. You can use the REPWEIGHTS statement to
provide your own replicate weights for variance estimation.

The following sections provide details about how the variance-covariance matrix of the estimated regression
coefficients is estimated for each variance estimation method.

Taylor Series (Linearization)

The Taylor series (linearization) method is the most commonly used method to estimate the covariance matrix
of the regression coefficients for complex survey data. It is the default variance estimation method used by
PROC SURVEYLOGISTIC.

Using the notation described in the section “Notation” on page 8110, the estimated covariance matrix of
model parameters O� by the Taylor series method is

OV . O�/ D OQ�1 OG OQ�1

where

OQ D

HX
hD1

nhX
iD1

mhiX
jD1

whij ODhij
�

diag. O�hij / � O�hij O�
0
hij

��1
OD0hij

OG D
n � 1

n � p

HX
hD1

nh.1 � fh/

nh � 1

nhX
iD1

.ehi � � Neh��/.ehi � � Neh��/0

ehi � D
mhiX
jD1

whij ODhij
�

diag. O�hij / � O�hij O�
0
hij

��1
.yhij � O�hij /

Neh�� D
1

nh

nhX
iD1

ehi �

and Dhij is the matrix of partial derivatives of the link function g with respect to � and ODhij and the response
probabilities O�hij are evaluated at O� .
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If you specify the TECHNIQUE=NEWTON option in the MODEL statement to request the Newton-Raphson
algorithm, the matrix OQ is replaced by the negative (expected) Hessian matrix when the estimated covariance
matrix OV . O�/ is computed.

Adjustments to the Variance Estimation
The factor .n� 1/=.n� p/ in the computation of the matrix OG reduces the small sample bias associated with
using the estimated function to calculate deviations (Morel 1989; Hidiroglou, Fuller, and Hickman 1980). For
simple random sampling, this factor contributes to the degrees-of-freedom correction applied to the residual
mean square for ordinary least squares in which p parameters are estimated. By default, the procedure uses
this adjustment in Taylor series variance estimation. It is equivalent to specifying the VADJUST=DF option
in the MODEL statement. If you do not want to use this multiplier in the variance estimation, you can specify
the VADJUST=NONE option in the MODEL statement to suppress this factor.

In addition, you can specify the VADJUST=MOREL option to request an adjustment to the variance estimator
for the model parameters O� , introduced by Morel (1989):

OV . O�/ D OQ�1 OG OQ�1 C �� OQ�1

where for given nonnegative constants ı and �,

� D max
�
ı; p�1tr

�
OQ�1 OG

��
� D min

�
�;

p

Qn � p

�

The adjustment �� OQ�1 does the following:

• reduces the small sample bias reflected in inflated Type I error rates

• guarantees a positive-definite estimated covariance matrix provided that OQ�1 exists

• is close to zero when the sample size becomes large

In this adjustment, � is an estimate of the design effect, which has been bounded below by the positive constant
ı. You can use DEFFBOUND=ı in the VADJUST=MOREL option in the MODEL statement to specify this
lower bound; by default, the procedure uses ı D 1. The factor � converges to zero when the sample size
becomes large, and � has an upper bound �. You can use ADJBOUND=� in the VADJUST=MOREL option
in the MODEL statement to specify this upper bound; by default, the procedure uses � D 0:5.

Balanced Repeated Replication (BRR) Method

The balanced repeated replication (BRR) method requires that the full sample be drawn by using a stratified
sample design with two primary sampling units (PSUs) per stratum. Let H be the total number of strata. The
total number of replicates R is the smallest multiple of 4 that is greater than H. However, if you prefer a larger
number of replicates, you can specify the REPS=number option. If a number � number Hadamard matrix
cannot be constructed, the number of replicates is increased until a Hadamard matrix becomes available.

Each replicate is obtained by deleting one PSU per stratum according to the corresponding Hadamard matrix
and adjusting the original weights for the remaining PSUs. The new weights are called replicate weights.
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Replicates are constructed by using the first H columns of the R � R Hadamard matrix. The rth (r D
1; 2; :::; R) replicate is drawn from the full sample according to the rth row of the Hadamard matrix as
follows:

• If the .r; h/ element of the Hadamard matrix is 1, then the first PSU of stratum h is included in the rth
replicate and the second PSU of stratum h is excluded.

• If the .r; h/ element of the Hadamard matrix is –1, then the second PSU of stratum h is included in the
rth replicate and the first PSU of stratum h is excluded.

Note that the “first” and “second” PSUs are determined by data order in the input data set. Thus, if you
reorder the data set and perform the same analysis by using BRR method, you might get slightly different
results, because the contents in each replicate sample might change.

The replicate weights of the remaining PSUs in each half-sample are then doubled to their original weights.
For more details about the BRR method, see Wolter (2007) and Lohr (2010).

By default, an appropriate Hadamard matrix is generated automatically to create the replicates. You
can request that the Hadamard matrix be displayed by specifying the VARMETHOD=BRR(PRINTH)
method-option. If you provide a Hadamard matrix by specifying the VARMETHOD=BRR(HADAMARD=)
method-option, then the replicates are generated according to the provided Hadamard matrix.

You can use the VARMETHOD=BRR(OUTWEIGHTS=) method-option to save the replicate weights into a
SAS data set.

Let O� be the estimated regression coefficients from the full sample for � , and let O�r be the estimated
regression coefficient from the rth replicate by using replicate weights. PROC SURVEYLOGISTIC estimates
the covariance matrix of O� by

OV. O�/ D
1

R

RX
rD1

�
O�r � O�

� �
O�r � O�

�0
with H degrees of freedom, where H is the number of strata.

Fay’s BRR Method

Fay’s method is a modification of the BRR method, and it requires a stratified sample design with two
primary sampling units (PSUs) per stratum. The total number of replicates R is the smallest multiple of 4 that
is greater than the total number of strata H. However, if you prefer a larger number of replicates, you can
specify the REPS= method-option.

For each replicate, Fay’s method uses a Fay coefficient 0 � � < 1 to impose a perturbation of the original
weights in the full sample that is gentler than using only half-samples, as in the traditional BRR method.
The Fay coefficient 0 � � < 1 can be set by specifying the FAY = � method-option. By default, � D 0:5

if the FAY method-option is specified without providing a value for � (Judkins 1990; Rao and Shao 1999).
When � D 0, Fay’s method becomes the traditional BRR method. For more details, see Dippo, Fay, and
Morganstein (1984); Fay (1984, 1989); Judkins (1990).

Let H be the number of strata. Replicates are constructed by using the first H columns of theR�R Hadamard
matrix, where R is the number of replicates, R > H . The rth (r D 1; 2; :::; R) replicate is created from the
full sample according to the rth row of the Hadamard matrix as follows:
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• If the .r; h/ element of the Hadamard matrix is 1, then the full sample weight of the first PSU in stratum
h is multiplied by � and the full sample weight of the second PSU is multiplied by 2 � � to obtain the
rth replicate weights.

• If the .r; h/ element of the Hadamard matrix is –1, then the full sample weight of the first PSU in
stratum h is multiplied by 2 � � and the full sample weight of the second PSU is multiplied by � to
obtain the rth replicate weights.

You can use the VARMETHOD=BRR(OUTWEIGHTS=) method-option to save the replicate weights into a
SAS data set.

By default, an appropriate Hadamard matrix is generated automatically to create the replicates. You
can request that the Hadamard matrix be displayed by specifying the VARMETHOD=BRR(PRINTH)
method-option. If you provide a Hadamard matrix by specifying the VARMETHOD=BRR(HADAMARD=)
method-option, then the replicates are generated according to the provided Hadamard matrix.

Let O� be the estimated regression coefficients from the full sample for � . Let O�r be the estimated regression
coefficient obtained from the rth replicate by using replicate weights. PROC SURVEYLOGISTIC estimates
the covariance matrix of O� by

OV. O�/ D
1

R.1 � �/2

RX
rD1

�
O�r � O�

� �
O�r � O�

�0
with H degrees of freedom, where H is the number of strata.

Jackknife Method

The jackknife method of variance estimation deletes one PSU at a time from the full sample to create
replicates. The total number of replicates R is the same as the total number of PSUs. In each replicate, the
sample weights of the remaining PSUs are modified by the jackknife coefficient ˛r . The modified weights
are called replicate weights.

The jackknife coefficient and replicate weights are described as follows.

Without Stratification If there is no stratification in the sample design (no STRATA statement), the
jackknife coefficients ˛r are the same for all replicates:

˛r D
R � 1

R
where r D 1; 2; :::; R

Denote the original weight in the full sample for the jth member of the ith PSU as wij . If the ith PSU is
included in the rth replicate (r D 1; 2; :::; R), then the corresponding replicate weight for the jth member of
the ith PSU is defined as

w
.r/
ij D wij =˛r

With Stratification If the sample design involves stratification, each stratum must have at least two PSUs
to use the jackknife method.

Let stratum Qhr be the stratum from which a PSU is deleted for the rth replicate. Stratum Qhr is called the
donor stratum. Let n Qhr be the total number of PSUs in the donor stratum Qhr . The jackknife coefficients are
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defined as

˛r D
n Qhr
� 1

n Qhr

where r D 1; 2; :::; R

Denote the original weight in the full sample for the jth member of the ith PSU as wij . If the ith PSU is
included in the rth replicate (r D 1; 2; :::; R), then the corresponding replicate weight for the jth member of
the ith PSU is defined as

w
.r/
ij D

�
wij if i th PSU is not in the donor stratum Qhr
wij =˛r if i th PSU is in the donor stratum Qhr

You can use the VARMETHOD=JACKKNIFE(OUTJKCOEFS=) method-option to save the jackknife
coefficients into a SAS data set and use the VARMETHOD=JACKKNIFE(OUTWEIGHTS=) method-option
to save the replicate weights into a SAS data set.

If you provide your own replicate weights with a REPWEIGHTS statement, then you can also provide
corresponding jackknife coefficients with the JKCOEFS= option. If you provide replicate weights but do not
provide jackknife coefficients, PROC SURVEYLOGISTIC uses ˛r D .R� 1/=R as the jackknife coefficient
for all replicates.

Let O� be the estimated regression coefficients from the full sample for � . Let O�r be the estimated regression
coefficient obtained from the rth replicate by using replicate weights. PROC SURVEYLOGISTIC estimates
the covariance matrix of O� by

OV. O�/ D
RX
rD1

˛r

�
O�r � O�

� �
O�r � O�

�0
with R �H degrees of freedom, where R is the number of replicates and H is the number of strata, or R � 1
when there is no stratification.

Hadamard Matrix

A Hadamard matrix H is a square matrix whose elements are either 1 or –1 such that

HH0 D kI

where k is the dimension of H and I is the identity matrix of order k. The order k is necessarily 1, 2, or a
positive integer that is a multiple of 4.

For example, the following matrix is a Hadamard matrix of dimension k = 8:

1 1 1 1 1 1 1 1

1 �1 1 �1 1 �1 1 �1

1 1 �1 �1 1 1 �1 �1

1 �1 �1 1 1 �1 �1 1

1 1 1 1 �1 �1 �1 �1

1 �1 1 �1 �1 1 �1 1

1 1 �1 �1 �1 �1 1 1

1 �1 �1 1 �1 1 1 �1
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Domain Analysis
A DOMAIN statement requests that the procedure perform logistic regression analysis for each domain.

For a domain �, let I� be the corresponding indicator variable:

I�.h; i; j / D

�
1 if observation .h; i; j / belongs to �
0 otherwise

Let

vhij D whij I�.h; i; j / D

�
whij if observation .h; i; j / belongs to �
0 otherwise

The regression in domain � uses v as the weight variable.

Hypothesis Testing and Estimation

Degrees of Freedom

In this section, the degrees of freedom (df ) refers to the denominator degrees of freedom for F statistics in
hypothesis testing, and the degrees of freedom in t tests in parameter estimates, odds ratio estimates, and
their t percentiles for confidence limits.

Design Degrees of Freedom
By default, or if you specify DF=DESIGN in the MODEL statement, the degrees of freedom (also called
the design degrees of freedom), is determined by the survey design and the variance estimation method as
follows:

Design df for Taylor Series Method For Taylor series variance estimation, the df can depend on the
number of clusters, the number of strata, and the number of observations. These numbers are based on the
observations that are included in the analysis; they do not count observations that are excluded from the
analysis because of missing values. If all values in a stratum are excluded from the analysis as missing values,
then that stratum is called an empty stratum. Empty strata are not counted in the total number of strata for the
analysis. Similarly, empty clusters and missing observations are not included in the totals counts of clusters
and observations that are used to compute the df for the analysis.

If you specify the MISSING option in the CLASS statement, missing values are treated as valid nonmissing
levels and are included in determining the df. If you specify the NOMCAR option for Taylor series variance
estimation, observations that have missing values for variables in the regression model are included. For
more information about missing values, see the section “Missing Values” on page 8098.

By using the notation that is defined in the section “Notation” on page 8110, let Qn be the total number of
clusters if the design has a CLUSTER statement, let n be the total sample size, and let H be the number of
strata if there is a STRATA statement or H=1 otherwise. Define

f D

�
Qn �H if the design contains clusters
n �H if the design does not contain clusters

Then for Taylor series variance estimation, the design df D f .
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Design df for Replication Method For replication variance estimation method, the design df depends on
the replication method you use or whether you use replication weights.

• If you provide replicate weights but you do not specify DF=value in the REPWEIGHTS statement, df
is the number of replicates.

• If you specify the DF=value option in a REPWEIGHTS statement, then df =value.

• If you do not provide replicate weights and use BRR (including Fay’s method) method, then df =H,
which is the number of strata.

• If you do not provide replicate weights and use the jackknife method, then df D R �H , where R is
the number of replicates and H is the number of strata if you specify a STRATA statement or H = 1
otherwise.

Setting Design Degrees of Freedom to a Specific Value
If you do not want to use the default design degrees of freedom, then you can specify the DF=value option in
the MODEL statement, where value is a positive number. Then, df =value.

However, if you specify the DF=value option in the MODEL statement together with the DF= option in a
REPWEIGHTS statement, then the df is set to the value in the MODEL statement, and the DF= option in a
REPWEIGHTS statement is ignored.

Setting Design Degrees of Freedom to Infinity
If you specify DF=INFINITY in the MODEL statement, then the df is set to be infinite.

When the denominator degrees of freedom for an F test is infinite, the F tests is equivalent to a chi-square test.
When the degrees of freedom for a t percentile is infinite, the t percentile is equivalent to a normal percentile.
Therefore, when you specify DF=INFINITY, PROC SURVEYLOGISTIC uses chi-square tests (instead of F
tests) and normal percentiles (instead of t percentiles).

Modifying Design Degrees of Freedom with Number of Parameters
When you use Taylor series variance estimation (by default or when you specify VARMETHOD=TAYLOR
in the MODEL statement), and you are fitting a model that has many parameters relative to the design degrees
of freedom, it is appropriate to modify the design degrees of freedom by using the number of nonsingular
parameters p in the model (Korn and Graubard (1999, section 5.2), Rao, Scott, and Skinner (1998)). You
can specify DF=PARMADJ in the MODEL statement to request this modification only for Taylor series
variance estimation method; and this option does not apply to the replication variance estimation method. Let
f be the design degrees of freedom that is described in the section “Design df for Taylor Series Method” on
page 8119. If you specify the DF=PARMADJ option, the df is modified as df D f � p C 1.

Score Statistics and Tests

To express the general form of the score statistic, let � be the parameter vector you want to estimate and
let g.�/ be the vector of first partial derivatives (gradient vector) of the log likelihood with respect to the
parameter vector � .

Consider a null hypothesis H0 that has r restrictions imposed on � . Let O� be the MLE of � under H0, let
g. O�/ be the gradient vector evaluated at O� , and let OV. O�/ be the estimated covariance matrix for O� , which is
described in the section “Variance Estimation” on page 8113.
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For the Taylor series variance estimation method, PROC SURVEYLOGISTIC computes the score test statistic
for the null hypothesis H0 as

WF D

�
f � r C 1

f r

�
g. O�/0

h
OV. O�/

i�1
g. O�/

where f is the design degrees of freedom that is described in the section “Design df for Taylor Series Method”
on page 8119.

For the replication variance estimation method, PROC SURVEYLOGISTIC computes the score test statistic
for the null hypothesis H0 as

WF D
1

r
g. O�/0

h
OV. O�/

i�1
g. O�/

Under H0, WF has an F distribution with .r; df / degrees of freedom, where the denominator degrees of
freedom df is described in the section “Degrees of Freedom” on page 8119.

If you specify DF=INFINITY in the MODEL statement, the value of df is set to infinity. In this case the
score test statistic for both Taylor series and replication methods for testing the null hypothesis H0 can be
expressed as

W�2 D g. O�/0
h
OV. O�/

i�1
g. O�/

W�2 has a chi-square distribution with r degrees of freedom under the null hypothesis H0.

Testing Global Null Hypothesis: BETA=0

The global null hypothesis refers to the null hypothesis that all the explanatory effects can be eliminated and
the model contains only intercepts. By using the notations in the section “Logistic Regression Models” on
page 8111, the global null hypothesis is defined as the following:

• For a cumulative model whose model parameters are � D .˛0;ˇ0/0, where ˛ are the parameters for the
intercepts and ˇ are the parameters for the explanatory effects, H0 W ˇ D 0.

• For a generalized logit model whose model parameters are � D .ˇ01;ˇ
0
2; : : : ;ˇ

0
D/
0 and ˇd D

.ˇd1; ˇd2; : : : ; ˇdk/
0 .d D 1; 2; : : : ;D/, then H0 W .ˇd2; : : : ; ˇdk/0 D 0 .d D 1; 2; : : : ;D/.

PROC SURVEYLOGISTIC displays these tests in the “Testing Global Null Hypothesis: BETA=0” table.

Testing the Parallel Lines Assumption

For a model that has an ordinal response, the parallel lines assumption depends on the link function, which you
can specify in the LINK= option in the MODEL statement. When the link function is probit or complementary
log-log, the parallel lines assumption is the equal slopes assumption; PROC SURVEYLOGISTIC displays
the corresponding test in the “Score Test for the Equal Slopes Assumption” table. When the link function is
logit, the parallel lines assumption is the proportional odds assumption; PROC SURVEYLOGISTIC displays
the corresponding test in the “Score Test for the Proportional Odds Assumption” table. This section describes
the computation of the score tests of these assumptions.
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For this test, the number of response levels, D C 1, is assumed to be strictly greater than 2. Let Y be the
response variable taking values 1; : : : ;D;D C 1. Suppose there are k explanatory variables. Consider the
general cumulative model without making the parallel lines assumption:

g.Pr.Y � d j x// D .1; x/�d ; 1 � d � D

where g.�/ is the link function, and �d D .˛d ; ˇd1; : : : ; ˇdk/0 is a vector of unknown parameters consisting
of an intercept ˛d and k slope parameters ˇk1; : : : ; ˇkd . The parameter vector for this general cumulative
model is

� D .� 01; : : : ;�
0
D/
0

Under the null hypothesis of parallelism H0Wˇ1i D ˇ2i D � � � D ˇDi ; 1 � i � k, there is a single common
slope parameter for each of the s explanatory variables. Let ˇ1; : : : ; ˇk be the common slope parameters.
Let Ǫ1; : : : ; ǪD and Ǒ1; : : : ; ǑD be the MLEs of the intercept parameters and the common slope parameters.
Then, under H0, the MLE of � is

O� D . O� 01; : : : ;
O� 0D/
0 with O�d D . Ǫd ; Ǒ1; : : : ; Ǒk/

0; 1 � d � D

and the chi-square score statistic g0. O�/I�1. O�/g. O�/ has an asymptotic chi-square distribution with k.D � 1/
degrees of freedom. This tests the parallel lines assumption by testing the equality of separate slope parameters
simultaneously for all explanatory variables.

Wald Confidence Intervals for Parameters

Wald confidence intervals are sometimes called normal confidence intervals. They are based on the asymptotic
normality of the parameter estimators. The 100.1 � ˛/% Wald confidence interval for �j is given by

O�j ˙ z1�˛=2 O�j

where z1�˛=2 is the 100.1� ˛=2/ percentile of the standard normal distribution, O�j is the pseudo-estimate of
�j , and O�j is the standard error estimate of O�j in the section “Variance Estimation” on page 8113.

Testing Linear Hypotheses about the Regression Coefficients

Linear hypotheses for � can be expressed in matrix form as

H0WL� D c

where L is a matrix of coefficients for the linear hypotheses and c is a vector of constants whose rank is r.
The vector of regression coefficients � includes both slope parameters and intercept parameters.

Let O� be the MLE of � , and let OV. O�/ be the estimated covariance matrix that is described in the section
“Variance Estimation” on page 8113.

For the Taylor series variance estimation method, PROC SURVEYLOGISTIC computes the test statistic for
the null hypothesis H0 as

WF D

�
f � p C 1

f r

�
.L O� � c/0ŒL OV. O�/L0��1.L O� � c/
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where p is the number of nonsingular parameters in the model and f is the design degrees of freedom as
described in the section “Design df for Taylor Series Method” on page 8119.

For the replication variance estimation method, PROC SURVEYLOGISTIC computes the test statistic for
the null hypothesis H0 as

WF D
1

r
.L O� � c/0ŒL OV. O�/L0��1.L O� � c/

Under the H0, WF has an F distribution with .r; df / degrees of freedom, and the denominator degrees of
freedom df is described in the section “Degrees of Freedom” on page 8119.

If you specify DF=INFINITY in the MODEL statement, then the df is set to infinite. PROC
SURVEYLOGISTIC computes the test statistic for both Taylor series and replication methods for test-
ing the null hypothesis H0 as

W�2 D .L O� � c/0ŒL OV. O�/L0��1.L O� � c/

Under H0, �2W has an asymptotic chi-square distribution with r degrees of freedom.

Type 3 Tests
For models that use less-than-full-rank parameterization (as specified by the PARAM=GLM option in the
CLASS statement), a Type 3 test of an effect of interest (main effect or interaction) is a test of the Type III
estimable functions that are defined for that effect. When the model contains no missing cells, the Type 3 test
of a main effect corresponds to testing the hypothesis of equal marginal means. For more information about
Type III estimable functions, see Chapter 45, “The GLM Procedure,” and Chapter 15, “The Four Types of
Estimable Functions.” Also see Littell, Freund, and Spector (1991).

For models that use full-rank parameterization, all parameters are estimable when there are no missing
cells, so it is unnecessary to define estimable functions. The standard test of an effect of interest in this
case is the joint test that the values of the parameters associated with that effect are zero. For a model that
uses effects parameterization (as specified by the PARAM=EFFECT option in the CLASS statement), the
joint test for a main effect is equivalent to testing the equality of marginal means. For a model that uses
reference parameterization (as specified by the PARAM=REF option in the CLASS statement), the joint test
is equivalent to testing the equality of cell means at the reference level of the other model effects. For more
information about the coding scheme and the associated interpretation of results, see Muller and Fetterman
(2002, Chapter 14).

If there is no interaction term, the Type 3 test of an effect for a model with GLM parameterization is the same
as the joint test of the effect for the model with full-rank parameterization. In this situation, the joint test is
also called the Type 3 test. For a model that contains an interaction term and no missing cells, the Type 3 test
for a component main effect under GLM parameterization is the same as the joint test of the component main
effect under effect parameterization. Both test the equality of cell means. But this Type 3 test differs from the
joint test under reference parameterization, which tests the equality of cell means at the reference level of the
other component main effect. If some cells are missing, you can obtain meaningful tests only by testing a
Type III estimation function, so in this case you should use GLM parameterization.

The results of a Type 3 test or a joint test do not depend on the order in which the terms are specified in the
MODEL statement.



8124 F Chapter 98: The SURVEYLOGISTIC Procedure

Odds Ratio Estimation

Consider a dichotomous response variable with outcomes event and nonevent. Let a dichotomous risk factor
variable X take the value 1 if the risk factor is present and 0 if the risk factor is absent. According to the
logistic model, the log odds function, g.X/, is given by

g.X/ � log
�

Pr. event j X/
Pr. nonevent j X/

�
D ˇ0 C ˇ1X

The odds ratio  is defined as the ratio of the odds for those with the risk factor (X = 1) to the odds for those
without the risk factor (X = 0). The log of the odds ratio is given by

log. / � log. .X D 1;X D 0// D g.X D 1/ � g.X D 0/ D ˇ1

The parameter, ˇ1, associated with X represents the change in the log odds from X = 0 to X = 1. So the odds
ratio is obtained by simply exponentiating the value of the parameter associated with the risk factor. The
odds ratio indicates how the odds of event change as you change X from 0 to 1. For instance,  D 2 means
that the odds of an event when X = 1 are twice the odds of an event when X = 0.

Suppose the values of the dichotomous risk factor are coded as constants a and b instead of 0 and 1. The
odds when X D a become exp.ˇ0 C aˇ1/, and the odds when X D b become exp.ˇ0 C bˇ1/. The odds
ratio corresponding to an increase in X from a to b is

 D expŒ.b � a/ˇ1� D Œexp.ˇ1/�b�a � Œexp.ˇ1/�c

Note that for any a and b such that c D b � a D 1;  D exp.ˇ1/. So the odds ratio can be interpreted as
the change in the odds for any increase of one unit in the corresponding risk factor. However, the change in
odds for some amount other than one unit is often of greater interest. For example, a change of one pound in
body weight might be too small to be considered important, while a change of 10 pounds might be more
meaningful. The odds ratio for a change in X from a to b is estimated by raising the odds ratio estimate for a
unit change in X to the power of c D b � a, as shown previously.

For a polytomous risk factor, the computation of odds ratios depends on how the risk factor is parameterized.
For illustration, suppose that Race is a risk factor with four categories: White, Black, Hispanic, and Other.

For the effect parameterization scheme (PARAM=EFFECT) with White as the reference group, the design
variables for Race are as follows.

Design Variables
Race X1 X2 X3

Black 1 0 0
Hispanic 0 1 0

Other 0 0 1
White –1 –1 –1

The log odds for Black is

g.Black/ D ˇ0 C ˇ1.X1 D 1/C ˇ2.X2 D 0/C ˇ3.X3 D 0/

D ˇ0 C ˇ1



Hypothesis Testing and Estimation F 8125

The log odds for White is

g.White/ D ˇ0 C ˇ1.X1 D �1/C ˇ2.X2 D �1/C ˇ3.X3 D �1//

D ˇ0 � ˇ1 � ˇ2 � ˇ3

Therefore, the log odds ratio of Black versus White becomes

log. .Black;White// D g.Black/ � g.White/

D 2ˇ1 C ˇ2 C ˇ3

For the reference cell parameterization scheme (PARAM=REF) with White as the reference cell, the design
variables for race are as follows.

Design Variables
Race X1 X2 X3

Black 1 0 0
Hispanic 0 1 0

Other 0 0 1
White 0 0 0

The log odds ratio of Black versus White is given by

log. .Black;White// D g.Black/ � g.White/

D .ˇ0 C ˇ1.X1 D 1/C ˇ2.X2 D 0//C ˇ3.X3 D 0// �

.ˇ0 C ˇ1.X1 D 0/C ˇ2.X2 D 0/C ˇ3.X3 D 0//

D ˇ1

For the GLM parameterization scheme (PARAM=GLM), the design variables are as follows.

Design Variables
Race X1 X2 X3 X4

Black 1 0 0 0
Hispanic 0 1 0 0

Other 0 0 1 0
White 0 0 0 1

The log odds ratio of Black versus White is

log. .Black;White// D g.Black/ � g.White/

D .ˇ0 C ˇ1.X1 D 1/C ˇ2.X2 D 0/C ˇ3.X3 D 0/C ˇ4.X4 D 0// �

.ˇ0 C ˇ1.X1 D 0/C ˇ2.X2 D 0/C ˇ3.X3 D 0/C ˇ4.X4 D 1//

D ˇ1 � ˇ4

Consider the hypothetical example of heart disease among race in Hosmer and Lemeshow (2000, p. 51). The
entries in the following contingency table represent counts.
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Race
Disease Status White Black Hispanic Other

Present 5 20 15 10
Absent 20 10 10 10

The computation of odds ratio of Black versus White for various parameterization schemes is shown in
Table 98.9.

Table 98.9 Odds Ratio of Heart Disease Comparing Black to White

Parameter Estimates
PARAM= Ǒ

1
Ǒ
2

Ǒ
3

Ǒ
4 Odds Ratio Estimates

EFFECT 0.7651 0.4774 0.0719 exp.2 � 0:7651C 0:4774C 0:0719/ D 8
REF 2.0794 1.7917 1.3863 exp.2:0794/ D 8
GLM 2.0794 1.7917 1.3863 0.0000 exp.2:0794/ D 8

Since the log odds ratio (log. /) is a linear function of the parameters, the Wald confidence interval for
log. / can be derived from the parameter estimates and the estimated covariance matrix. Confidence
intervals for the odds ratios are obtained by exponentiating the corresponding confidence intervals for the
log odd ratios. In the displayed output of PROC SURVEYLOGISTIC, the “Odds Ratio Estimates” table
contains the odds ratio estimates and the corresponding t or Wald confidence intervals computed by using the
covariance matrix in the section “Variance Estimation” on page 8113. For continuous explanatory variables,
these odds ratios correspond to a unit increase in the risk factors.

To customize odds ratios for specific units of change for a continuous risk factor, you can use the UNITS
statement to specify a list of relevant units for each explanatory variable in the model. Estimates of these
customized odds ratios are given in a separate table. Let .Lj ; Uj / be a confidence interval for log. /. The
corresponding lower and upper confidence limits for the customized odds ratio exp.cˇj / are exp.cLj /
and exp.cUj /, respectively, (for c > 0); or exp.cUj / and exp.cLj /, respectively, (for c < 0). You use the
CLODDS option in the MODEL statement to request confidence intervals for the odds ratios.

For a generalized logit model, odds ratios are computed similarly, except D odds ratios are computed for
each effect, corresponding to the D logits in the model.

Rank Correlation of Observed Responses and Predicted Probabilities

The predicted mean score of an observation is the sum of the Ordered Values (shown in the “Response Profile”
table) minus one, weighted by the corresponding predicted probabilities for that observation; that is, the
predicted means score is

PDC1
dD1 .d � 1/ O�d , where D + 1 is the number of response levels and O�d is the

predicted probability of the dth (ordered) response.

A pair of observations with different observed responses is said to be concordant if the observation with the
lower ordered response value has a lower predicted mean score than the observation with the higher ordered
response value. If the observation with the lower ordered response value has a higher predicted mean score
than the observation with the higher ordered response value, then the pair is discordant. If the pair is neither
concordant nor discordant, it is a tie. Enumeration of the total numbers of concordant and discordant pairs is
carried out by categorizing the predicted mean score into intervals of length D=500 and accumulating the
corresponding frequencies of observations.
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Let N be the sum of observation frequencies in the data. Suppose there are a total of t pairs with different
responses, nc of them are concordant, nd of them are discordant, and t � nc � nd of them are tied. PROC
SURVEYLOGISTIC computes the following four indices of rank correlation for assessing the predictive
ability of a model:

c D .nc C 0:5.t � nc � nd //=t

Somers’ D D .nc � nd /=t

Goodman-Kruskal Gamma D .nc � nd /=.nc C nd /

Kendall’s Tau-a D .nc � nd /=.0:5N.N � 1//

Note that c also gives an estimate of the area under the receiver operating characteristic (ROC) curve when
the response is binary (Hanley and McNeil 1982).

For binary responses, the predicted mean score is equal to the predicted probability for Ordered Value 2. As
such, the preceding definition of concordance is consistent with the definition used in previous releases for
the binary response model.

Linear Predictor, Predicted Probability, and Confidence Limits
This section describes how predicted probabilities and confidence limits are calculated by using the pseudo-
estimates (MLEs) obtained from PROC SURVEYLOGISTIC. For a specific example, see the section “Getting
Started: SURVEYLOGISTIC Procedure” on page 8060. Predicted probabilities and confidence limits can be
output to a data set with the OUTPUT statement.

Cumulative Response Models

For a row vector of explanatory variables x, the linear predictor

�i D g.Pr.Y � i j x// D ˛i C xˇ; 1 � i � k

is estimated by

O�i D Ǫ i C x Ǒ

where Ǫ i and Ǒ are the MLEs of ˛i and ˇ. The estimated standard error of �i is O�. O�i /, which can be
computed as the square root of the quadratic form .1; x0/ OVb.1; x0/0, where OVb is the estimated covariance
matrix of the parameter estimates. The asymptotic 100.1 � ˛/% confidence interval for �i is given by

O�i ˙ z˛=2 O�. O�i /

where z˛=2 is the 100.1 � ˛=2/ percentile point of a standard normal distribution.

The predicted value and the 100.1 � ˛/% confidence limits for Pr.Y � i j x/ are obtained by back-
transforming the corresponding measures for the linear predictor.
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Link Predicted Probability 100.1 � ˛/ Confidence Limits

LOGIT 1=.1C e�O�i / 1=.1C e�O�i˙z˛=2 O�. O�i //

PROBIT ˆ. O�i / ˆ. O�i ˙ z˛=2 O�. O�i //

CLOGLOG 1 � e�e
O�i 1 � e�e

O�i˙z˛=2 O�. O�i /

Generalized Logit Model

For a vector of explanatory variables x, let �i denote the probability of obtaining the response value i:

�i D

8̂<̂
:
�kC1e

˛iCxˇi 1 � i � k
1

1C
Pk
jD1 e

˛jCxˇj
i D k C 1

By the delta method,

�2.�i / D

�
@�i

@�

�0
V.�/

@�i

@�

A 100(1�˛)% confidence level for �i is given by

O�i ˙ z˛=2 O�. O�i /

where O�i is the estimated expected probability of response i and O�. O�i / is obtained by evaluating �.�i / at
� D O� .

Output Data Sets
You can use the Output Delivery System (ODS) to create a SAS data set from any piece of PROC
SURVEYLOGISTIC output. See the section “ODS Table Names” on page 8135 for more information.
For a more detailed description of using ODS, see Chapter 20, “Using the Output Delivery System.”

PROC SURVEYLOGISTIC also provides an OUTPUT statement to create a data set that contains estimated
linear predictors, the estimates of the cumulative or individual response probabilities, and their confidence
limits.

If you use BRR or jackknife variance estimation, PROC SURVEYLOGISTIC provides an output data set that
stores the replicate weights and an output data set that stores the jackknife coefficients for jackknife variance
estimation.

OUT= Data Set in the OUTPUT Statement

The OUT= data set in the OUTPUT statement contains all the variables in the input data set along with
statistics you request by using keyword=name options or the PREDPROBS= option in the OUTPUT
statement. In addition, if you use the single-trial syntax and you request any of the XBETA=, STDXBETA=,
PREDICTED=, LCL=, and UCL= options, the OUT= data set contains the automatic variable _LEVEL_.
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The value of _LEVEL_ identifies the response category upon which the computed values of XBETA=,
STDXBETA=, PREDICTED=, LCL=, and UCL= are based.

When there are more than two response levels, only variables named by the XBETA=, STDXBETA=,
PREDICTED=, LOWER=, and UPPER= options and the variables given by PREDPROBS=(INDIVIDUAL
CUMULATIVE) have their values computed; the other variables have missing values. If you fit a generalized
logit model, the cumulative predicted probabilities are not computed.

When there are only two response categories, each input observation produces one observation in the OUT=
data set.

If there are more than two response categories and you specify only the PREDPROBS= option, then each
input observation produces one observation in the OUT= data set. However, if you fit an ordinal (cumulative)
model and specify options other than the PREDPROBS= options, each input observation generates as many
output observations as one fewer than the number of response levels, and the predicted probabilities and their
confidence limits correspond to the cumulative predicted probabilities. If you fit a generalized logit model
and specify options other than the PREDPROBS= options, each input observation generates as many output
observations as the number of response categories; the predicted probabilities and their confidence limits
correspond to the probabilities of individual response categories.

For observations in which only the response variable is missing, values of the XBETA=, STDXBETA=,
PREDICTED=, UPPER=, LOWER=, and PREDPROBS= options are computed even though these observa-
tions do not affect the model fit. This enables, for instance, predicted probabilities to be computed for new
observations.

Replicate Weights Output Data Set

If you specify the OUTWEIGHTS= method-option for VARMETHOD=BRR or VARMETHOD=JACKKNIFE,
PROC SURVEYLOGISTIC stores the replicate weights in an output data set. The OUTWEIGHTS= output
data set contains all observations from the DATA= input data set that are valid (used in the analysis). (A valid
observation is an observation that has a positive value of the WEIGHT variable. Valid observations must also
have nonmissing values of the STRATA and CLUSTER variables, unless you specify the MISSING option.)

The OUTWEIGHTS= data set contains the following variables:

• all variables in the DATA= input data set

• RepWt_1, RepWt_2, : : :, RepWt_n, which are the replicate weight variables

where n is the total number of replicates in the analysis. Each replicate weight variable contains the replicate
weights for the corresponding replicate. Replicate weights equal zero for those observations not included in
the replicate.

After the procedure creates replicate weights for a particular input data set and survey design, you can use the
OUTWEIGHTS= method-option to store these replicate weights and then use them again in subsequent anal-
yses, either in PROC SURVEYLOGISTIC or in the other survey procedures. You can use the REPWEIGHTS
statement to provide replicate weights for the procedure.
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Jackknife Coefficients Output Data Set

If you specify the OUTJKCOEFS= method-option for VARMETHOD=JACKKNIFE, PROC
SURVEYLOGISTIC stores the jackknife coefficients in an output data set. The OUTJKCOEFS=
output data set contains one observation for each replicate. The OUTJKCOEFS= data set contains the
following variables:

• Replicate, which is the replicate number for the jackknife coefficient

• JKCoefficient, which is the jackknife coefficient

• DonorStratum, which is the stratum of the PSU that was deleted to construct the replicate, if you
specify a STRATA statement

After the procedure creates jackknife coefficients for a particular input data set and survey design, you can
use the OUTJKCOEFS= method-option to store these coefficients and then use them again in subsequent
analyses, either in PROC SURVEYLOGISTIC or in the other survey procedures. You can use the JKCOEFS=
option in the REPWEIGHTS statement to provide jackknife coefficients for the procedure.

Displayed Output
The SURVEYLOGISTIC procedure produces output that is described in the following sections.

Output that is generated by the EFFECT, ESTIMATE, LSMEANS, LSMESTIMATE, and SLICE statements
are not listed below. For information about the output that is generated by these statements, see the
corresponding sections of Chapter 19, “Shared Concepts and Topics.”

Model Information

By default, PROC SURVEYLOGISTIC displays the following information in the “Model Information” table:

• name of the input Data Set

• name and label of the Response Variable if the single-trial syntax is used

• number of Response Levels

• name of the Events Variable if the events/trials syntax is used

• name of the Trials Variable if the events/trials syntax is used

• name of the Offset Variable if the OFFSET= option is specified

• name of the Frequency Variable if the FREQ statement is specified

• name(s) of the Stratum Variable(s) if the STRATA statement is specified

• total Number of Strata if the STRATA statement is specified

• name(s) of the Cluster Variable(s) if the CLUSTER statement is specified

• total Number of Clusters if the CLUSTER statement is specified
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• name of the Weight Variable if the WEIGHT statement is specified

• Variance Adjustment method

• Upper Bound ADJBOUND parameter used in the VADJUST=MOREL(ADJBOUND= ) option

• Lower Bound DEFFBOUND parameter used in the VADJUST=MOREL(DEFFBOUND= ) option

• whether FPC (finite population correction) is used

Variance Estimation

By default, PROC SURVEYLOGISTIC displays the following variance estimation information in the
“Variance Estimation” table:

• Method, which is the variance estimation method

• Variance Adjustment method

• Upper Bound ADJBOUND parameter specified in the VADJUST=MOREL(ADJBOUND= ) option

• Lower Bound DEFFBOUND parameter specified in the VADJUST=MOREL(DEFFBOUND= ) option

• whether FPC (finite population correction) is used

• Number of Replicates, if you specify the VARMETHOD=BRR or VARMETHOD=JACKKNIFE
option

• Number of Replicates Used, if you specify the VARMETHOD=BRR or VARMETHOD=JACKKNIFE
option and some of the replicates are excluded due to unattained convergence

• Hadamard Data Set name, if you specify the VARMETHOD=BRR(HADAMARD=) method-option

• Fay Coefficient, if you specify the VARMETHOD=BRR(FAY) method-option

• Replicate Weights input data set name, if you use a REPWEIGHTS statement

• whether Missing Levels are created for categorical variables by the MISSING option

• whether observations with Missing Values are included in the analysis by the NOMCAR option

Data Summary

By default, PROC SURVEYLOGISTIC displays the following information for the entire data set:

• Number of Observations read from the input data set

• Number of Observations used in the analysis

If there is a DOMAIN statement, PROC SURVEYLOGISTIC also displays the following:

• Number of Observations in the current domain
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• Number of Observations not in the current domain

If there is a FREQ statement, PROC SURVEYLOGISTIC also displays the following:

• Sum of Frequencies of all the observations read from the input data set

• Sum of Frequencies of all the observations used in the analysis

If there is a WEIGHT statement, PROC SURVEYLOGISTIC also displays the following:

• Sum of Weights of all the observations read from the input data set

• Sum of Weights of all the observations used in the analysis

• Sum of Weights of all the observations in the current domain, if DOMAIN statement is also specified.

Response Profile

By default, PROC SURVEYLOGISTIC displays a “Response Profile” table, which gives, for each response
level, the ordered value (an integer between one and the number of response levels, inclusive); the value
of the response variable if the single-trial syntax is used or the values “EVENT” and “NO EVENT” if the
events/trials syntax is used; the count or frequency; and the sum of weights if the WEIGHT statement is
specified.

Class Level Information

If you use a CLASS statement to name classification variables, PROC SURVEYLOGISTIC displays a "Class
Level Information" table. This table contains the following information for each classification variable:

• Class, which lists each CLASS variable name

• Value, which lists the values of the classification variable. The values are separated by a white space
character; therefore, to avoid confusion, you should not include a white space character within a
classification variable value.

• Design Variables, which lists the parameterization used for the classification variables

Stratum Information

When you specify the LIST option in the STRATA statement, PROC SURVEYLOGISTIC displays a "Stratum
Information" table, which provides the following information for each stratum:

• Stratum Index, which is a sequential stratum identification number

• STRATA variable(s), which lists the levels of STRATA variables for the stratum

• Population Total, if you specify the TOTAL= option

• Sampling Rate, if you specify the TOTAL= or RATE= option. If you specify the TOTAL= option, the
sampling rate is based on the number of nonmissing observations in the stratum.



Displayed Output F 8133

• N Obs, which is the number of observations

• number of Clusters, if you specify a CLUSTER statement

Maximum Likelihood Iteration History

The “Maximum Likelihood Iterative Phase” table gives the iteration number, the step size (in the scale of 1.0,
0.5, 0.25, and so on) or the ridge value, –2 log likelihood, and parameter estimates for each iteration. Also
displayed are the last evaluation of the gradient vector and the last change in the –2 log likelihood. You need
to use the ITPRINT option in the MODEL statement to obtain this table.

Score Test for the Parallel Lines Assumption

The “Score Test” table displays the score test result for testing the parallel lines assumption, if an ordinal
response model is fitted. If LINK=CLOGLOG or LINK=PROBIT, this test is labeled “Score Test for the
Parallel Slopes Assumption.” The proportion odds assumption is a special case of the parallel lines assumption
when LINK=LOGIT. In this case, the test is labeled “Score Test for the Proportional Odds Assumption.” See
the section “Testing the Parallel Lines Assumption” on page 8121 for more information.

Model Fit Statistics

By default, PROC SURVEYLOGISTIC displays the following information in the “Model Fit Statistics” table:

• “Model Fit Statistics” and “Testing Global Null Hypothesis: BETA=0” tables, which give the various
criteria (–2 Log L, AIC, SC) based on the likelihood for fitting a model with intercepts only and for
fitting a model with intercepts and explanatory variables. If you specify the NOINT option, these
statistics are calculated without considering the intercept parameters. The third column of the table
gives the chi-square statistics and p-values for the –2 Log L statistic and for the Score statistic. These
test the joint effect of the explanatory variables included in the model. The Score criterion is always
missing for the models identified by the first two columns of the table. Note also that the first two rows
of the Chi-Square column are always missing, since tests cannot be performed for AIC and SC.

• generalized R2 measures for the fitted model if you specify the RSQUARE option in the MODEL
statement

Type III Analysis of Effects

PROC SURVEYLOGISTIC displays the “Type III Analysis of Effects” table if the model contains an effect
involving a CLASS variable. This table gives the degrees of freedom, the Wald Chi-square statistic, and the
p-value for each effect in the model.

Analysis of Maximum Likelihood Estimates

By default, PROC SURVEYLOGISTIC displays the following information in the “Analysis of Maximum
Likelihood Estimates” table:

• maximum likelihood estimate of the parameter
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• estimated standard error of the parameter estimate, computed as the square root of the corresponding
diagonal element of the estimated covariance matrix

• t value, which is the t statistic for testing H0WParameter D 0

• Pr > j t j, which is the two-sided p-value for the t test

• 100.1 � ˛/% confidence intervals for estimated parameters. You need to specify the CLPARM option
in the MODEL statement to display these estimates.

• standardized estimate for the slope parameter, given by Ǒi=.s=si /, where si is the total sample standard
deviation for the ith explanatory variable and

s D

8<:
�=
p
3 logistic

1 normal
�=
p
6 extreme-value

You need to specify the STB option in the MODEL statement to obtain these estimates. Standardized
estimates of the intercept parameters are set to missing.

• value of (e Ǒi / for each slope parameter ˇi if you specify the EXPB option in the MODEL statement.
For continuous variables, this is equivalent to the estimated odds ratio for a one-unit change.

• label of the variable (if space permits) if you specify the PARMLABEL option in the MODEL statement.
Because of constraints on the line size, the variable label might be suppressed in order to display the
table in one panel. Use the SAS system option LINESIZE= to specify a larger line size to accommodate
variable labels. A shorter line size can break the table into two panels, allowing labels to be displayed.

Odds Ratio Estimates

The “Odds Ratio Estimates” table displays the odds ratio estimates and the corresponding 95% Wald
confidence intervals. For continuous explanatory variables, these odds ratios correspond to a unit increase in
the risk factors.

Association of Predicted Probabilities and Observed Responses

The “Association of Predicted Probabilities and Observed Responses” table displays measures of association
between predicted probabilities and observed responses, which include a breakdown of the number of pairs
with different responses, and four rank correlation indexes: Somers’ D, Goodman-Kruskal Gamma, and
Kendall’s Tau-a, and c.

Estimated Covariance Matrix

PROC SURVEYLOGISTIC displays the following information in the “Estimated Covariance Matrix” table:

• estimated covariance matrix of the parameter estimates if you use the COVB option in the MODEL
statement

• estimated correlation matrix of the parameter estimates if you use the CORRB option in the MODEL
statement
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Linear Hypotheses Testing Results

The “Linear Hypothesis Testing” table gives the result of the Wald test for each TEST statement (if specified).

Hadamard Matrix

If you specify the VARMETHOD=BRR(PRINTH) method-option in the PROC SURVEYLOGISTIC state-
ment, the procedure displays the Hadamard matrix.

When you provide a Hadamard matrix with the VARMETHOD=BRR(HADAMARD=) method-option, the
procedure displays only used rows and columns of the Hadamard matrix.

ODS Table Names
PROC SURVEYLOGISTIC assigns a name to each table it creates; these names are listed in Table 98.10.
You can use these names to refer the table when using the Output Delivery System (ODS) to select tables and
create output data sets. The EFFECT, ESTIMATE, LSMEANS, LSMESTIMATE, and SLICE statements also
create tables, which are not listed in Table 98.10. For information about these tables, see the corresponding
sections of Chapter 19, “Shared Concepts and Topics.”

For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

Table 98.10 ODS Tables Produced by PROC
SURVEYLOGISTIC

ODS Table Name Description Statement Option

Association Association of predicted probabil-
ities and observed responses

MODEL Default

ClassLevelInfo CLASS variable levels and design
variables

MODEL Default (with CLASS
variables)

CLOddsWald Confidence intervals for odds ra-
tios

MODEL CLODDS

CLparmWald Confidence intervals for parame-
ters

MODEL CLPARM

ContrastCoeff L matrix from CONTRAST CONTRAST E
ContrastEstimate Estimates from CONTRAST CONTRAST ESTIMATE=
ContrastTest Wald test for CONTRAST CONTRAST Default
ConvergenceStatus Convergence status MODEL Default
CorrB Estimated correlation matrix

of parameter estimators
MODEL CORRB

CovB Estimated covariance matrix
of parameter estimators

MODEL COVB

CumulativeModelTest Test of the cumulative model as-
sumption

MODEL (Ordinal response)

DomainSummary Domain summary DOMAIN Default
FitStatistics Model fit statistics MODEL Default
GlobalTests Test for global null hypothesis MODEL Default
Gradient Gradient evaluated at global null

hypothesis
MODEL GRADIENT
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Table 98.10 continued

ODS Table Name Description Statement Option

HadamardMatrix Hadamard matrix PROC PRINTH
IterHistory Iteration history MODEL ITPRINT
LastGradient Last evaluation of gradient MODEL ITPRINT
Linear Linear combination PROC Default
LogLikeChange Final change in the log likelihood MODEL ITPRINT
ModelInfo Model information PROC Default
NObs Number of observations PROC Default
OddsEst Adjusted odds ratios UNITS Default
OddsRatios Odds ratios MODEL Default
ParameterEstimates Maximum likelihood estimates of

model parameters
MODEL Default

RSquare R-square MODEL RSQUARE
ResponseProfile Response profile PROC Default
StrataInfo Stratum information STRATA LIST
TestPrint1 LŒcov.b/�L0 and Lb � c TEST PRINT
TestPrint2 Ginv.LŒcov.b/�L0/ and

Ginv.LŒcov.b/�L0/.Lb � c/
TEST PRINT

TestStmts Linear hypotheses testing results TEST Default
Type3 Type III tests of effects MODEL Default (with CLASS

variables)
VarianceEstimation Variance estimation PROC Default

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

When ODS Graphics is enabled, then the ESTIMATE, LSMEANS, LSMESTIMATE, and SLICE state-
ments can produce plots that are associated with their analyses. For information about these plots, see the
corresponding sections of Chapter 19, “Shared Concepts and Topics.”
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Examples: SURVEYLOGISTIC Procedure

Example 98.1: Stratified Cluster Sampling
A market research firm conducts a survey among undergraduate students at a certain university to evaluate
three new Web designs for a commercial Web site targeting undergraduate students at the university.

The sample design is a stratified sample where the strata are students’ classes. Within each class, 300 students
are randomly selected by using simple random sampling without replacement. The total number of students
in each class in the fall semester of 2001 is shown in the following table:

Class Enrollment

1 - Freshman 3,734
2 - Sophomore 3,565
3 - Junior 3,903
4 - Senior 4,196

This total enrollment information is saved in the SAS data set Enrollment by using the following SAS
statements:

proc format;
value Class

1='Freshman' 2='Sophomore'
3='Junior' 4='Senior';

run;

data Enrollment;
format Class Class.;
input Class _TOTAL_;
datalines;

1 3734
2 3565
3 3903
4 4196
;

In the data set Enrollment, the variable _TOTAL_ contains the enrollment figures for all classes. They are also
the population size for each stratum in this example.

Each student selected in the sample evaluates one randomly selected Web design by using the following
scale:

1 Dislike very much
2 Dislike
3 Neutral
4 Like
5 Like very much
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The survey results are collected and shown in the following table, with the three different Web designs coded
as A, B, and C.

Evaluation of New Web Designs

Rating Counts
Strata Design 1 2 3 4 5

Freshman A 10 34 35 16 15
B 5 6 24 30 25
C 11 14 20 34 21

Sophomore A 19 12 26 18 25
B 10 18 32 23 26
C 15 22 34 9 20

Junior A 8 21 23 26 22
B 1 4 15 33 47
C 16 19 30 23 12

Senior A 11 14 24 33 18
B 8 15 25 30 22
C 2 34 30 18 16

The survey results are stored in a SAS data set WebSurvey by using the following SAS statements:

proc format;
value Design 1='A' 2='B' 3='C';
value Rating

1='dislike very much'
2='dislike'
3='neutral'
4='like'
5='like very much';

run;

data WebSurvey;
format Class Class. Design Design. Rating Rating.;
do Class=1 to 4;

do Design=1 to 3;
do Rating=1 to 5;

input Count @@;
output;

end;
end;

end;
datalines;

10 34 35 16 15 8 21 23 26 22 5 10 24 30 21
1 14 25 23 37 11 14 20 34 21 16 19 30 23 12

19 12 26 18 25 11 14 24 33 18 10 18 32 23 17
8 15 35 30 12 15 22 34 9 20 2 34 30 18 16

;

data WebSurvey;
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set WebSurvey;
if Class=1 then Weight=3734/300;
if Class=2 then Weight=3565/300;
if Class=3 then Weight=3903/300;
if Class=4 then Weight=4196/300;

run;

The data set WebSurvey contains the variables Class, Design, Rating, Count, and Weight. The variable
class is the stratum variable, with four strata: freshman, sophomore, junior, and senior. The variable Design
specifies the three new Web designs: A, B, and C. The variable Rating contains students’ evaluations of
the new Web designs. The variable counts gives the frequency with which each Web design received each
rating within each stratum. The variable weight contains the sampling weights, which are the reciprocals of
selection probabilities in this example.

Output 98.1.1 shows the first 20 observations of the data set.

Output 98.1.1 Web Design Survey Sample (First 20 Observations)

Obs Class Design Rating Count Weight

1 Freshman A dislike very much 10 12.4467

2 Freshman A dislike 34 12.4467

3 Freshman A neutral 35 12.4467

4 Freshman A like 16 12.4467

5 Freshman A like very much 15 12.4467

6 Freshman B dislike very much 8 12.4467

7 Freshman B dislike 21 12.4467

8 Freshman B neutral 23 12.4467

9 Freshman B like 26 12.4467

10 Freshman B like very much 22 12.4467

11 Freshman C dislike very much 5 12.4467

12 Freshman C dislike 10 12.4467

13 Freshman C neutral 24 12.4467

14 Freshman C like 30 12.4467

15 Freshman C like very much 21 12.4467

16 Sophomore A dislike very much 1 11.8833

17 Sophomore A dislike 14 11.8833

18 Sophomore A neutral 25 11.8833

19 Sophomore A like 23 11.8833

20 Sophomore A like very much 37 11.8833

The following SAS statements perform the logistic regression:

proc surveylogistic data=WebSurvey total=Enrollment;
stratum Class;
freq Count;
class Design;
model Rating (order=internal) = design;
weight Weight;

run;

The PROC SURVEYLOGISTIC statement invokes the procedure. The TOTAL= option specifies the data set
Enrollment, which contains the population totals in the strata. The population totals are used to calculate
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the finite population correction factor in the variance estimates. The response variable Rating is in the
ordinal scale. A cumulative logit model is used to investigate the responses to the Web designs. In the
MODEL statement, rating is the response variable, and Design is the effect in the regression model. The
ORDER=INTERNAL option is used for the response variable Rating to sort the ordinal response levels of
Rating by its internal (numerical) values rather than by the formatted values (for example, ‘like very much’).
Because the sample design involves stratified simple random sampling, the STRATA statement is used to
specify the stratification variable Class. The WEIGHT statement specifies the variable Weight for sampling
weights.

The sample and analysis summary is shown in Output 98.1.2. There are five response levels for the Rating,
with ‘dislike very much’ as the lowest ordered value. The regression model is modeling lower cumulative
probabilities by using logit as the link function. Because the TOTAL= option is used, the finite population
correction is included in the variance estimation. The sampling weight is also used in the analysis.

Output 98.1.2 Web Design Survey, Model Information

The SURVEYLOGISTIC ProcedureThe SURVEYLOGISTIC Procedure

Model Information

Data Set WORK.WEBSURVEY

Response Variable Rating

Number of Response Levels 5

Frequency Variable Count

Stratum Variable Class

Number of Strata 4

Weight Variable Weight

Model Cumulative Logit

Optimization Technique Fisher's Scoring

Variance Adjustment Degrees of Freedom (DF)

Finite Population Correction Used

Response Profile

Ordered
Value Rating

Total
Frequency

Total
Weight

1 dislike very much 116 1489.0733

2 dislike 227 2933.0433

3 neutral 338 4363.3767

4 like 283 3606.8067

5 like very much 236 3005.7000

Probabilities modeled are cumulated over the lower Ordered Values.

In Output 98.1.3, the score chi-square for testing the proportional odds assumption is 98.1957, which is
highly significant. This indicates that the cumulative logit model might not adequately fit the data.

Output 98.1.3 Web Design Survey, Testing the Proportional Odds Assumption

Score Test for the
Proportional Odds

Assumption

Chi-Square DF Pr > ChiSq

98.1957 6 <.0001
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An alternative model is to use the generalized logit model with the LINK=GLOGIT option, as shown in the
following SAS statements:

proc surveylogistic data=WebSurvey total=Enrollment;
stratum Class;
freq Count;
class Design;
model Rating (ref='neutral') = Design /link=glogit;
weight Weight;

run;

The REF=‘neutral’ option is used for the response variable Rating to indicate that all other response levels
are referenced to the level ‘neutral.’ The option LINK=GLOGIT option requests that the procedure fit a
generalized logit model.

The summary of the analysis is shown in Output 98.1.4, which indicates that the generalized logit model is
used in the analysis.

Output 98.1.4 Web Design Survey, Model Information

The SURVEYLOGISTIC ProcedureThe SURVEYLOGISTIC Procedure

Model Information

Data Set WORK.WEBSURVEY

Response Variable Rating

Number of Response Levels 5

Frequency Variable Count

Stratum Variable Class

Number of Strata 4

Weight Variable Weight

Model Generalized Logit

Optimization Technique Newton-Raphson

Variance Adjustment Degrees of Freedom (DF)

Finite Population Correction Used

Response Profile

Ordered
Value Rating

Total
Frequency

Total
Weight

1 dislike 227 2933.0433

2 dislike very much 116 1489.0733

3 like 283 3606.8067

4 like very much 236 3005.7000

5 neutral 338 4363.3767

Logits modeled use Rating='neutral' as the reference category.

Output 98.1.5 shows the parameterization for the main effect Design.
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Output 98.1.5 Web Design Survey, Class Level Information

Class Level Information

Class Value
Design

Variables

Design A 1 0

B 0 1

C -1 -1

The parameter and odds ratio estimates are shown in Output 98.1.6. For each odds ratio estimate, the 95%
confidence intervals shown in the table contain the value 1.0. Therefore, no conclusion about which Web
design is preferred can be made based on this survey.

Output 98.1.6 Web Design Survey, Parameter and Odds Ratio Estimates

Analysis of Maximum Likelihood Estimates

Parameter Rating Estimate
Standard

Error t Value Pr > |t|

Intercept dislike -0.3964 0.0832 -4.77 <.0001

Intercept dislike very much -1.0826 0.1045 -10.36 <.0001

Intercept like -0.1892 0.0780 -2.43 0.0154

Intercept like very much -0.3767 0.0824 -4.57 <.0001

Design A dislike -0.0942 0.1166 -0.81 0.4196

Design A dislike very much -0.0647 0.1469 -0.44 0.6597

Design A like -0.1370 0.1104 -1.24 0.2149

Design A like very much 0.0446 0.1130 0.39 0.6934

Design B dislike 0.0391 0.1201 0.33 0.7451

Design B dislike very much 0.2721 0.1448 1.88 0.0605

Design B like 0.1669 0.1102 1.52 0.1300

Design B like very much 0.1420 0.1174 1.21 0.2265

NOTE: The degrees of freedom for the t tests is 1196.

Odds Ratio Estimates

Effect Rating
Point

Estimate

95%
Confidence

Limits

Design A vs C dislike 0.861 0.583 1.272

Design A vs C dislike very much 1.153 0.691 1.924

Design A vs C like 0.899 0.618 1.306

Design A vs C like very much 1.260 0.851 1.866

Design B vs C dislike 0.984 0.658 1.471

Design B vs C dislike very much 1.615 0.975 2.677

Design B vs C like 1.218 0.838 1.769

Design B vs C like very much 1.389 0.924 2.087

NOTE:
The degrees of freedom in computing the confidence

limits is 1196.
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Example 98.2: The Medical Expenditure Panel Survey (MEPS)
The U.S. Department of Health and Human Services conducts the Medical Expenditure Panel Survey (MEPS)
to produce national and regional estimates of various aspects of health care. The MEPS has a complex sample
design that includes both stratification and clustering. The sampling weights are adjusted for nonresponse and
raked with respect to population control totals from the Current Population Survey. See the MEPS Survey
Background (2006) and Machlin, Yu, and Zodet (2005) for details.

In this example, the 1999 full-year consolidated data file HC-038 (MEPS HC-038, 2002) from the MEPS
is used to investigate the relationship between medical insurance coverage and the demographic variables.
The data can be downloaded directly from the Agency for Healthcare Research and Quality (AHRQ) Web
site at http://www.meps.ahrq.gov/mepsweb/data_stats/download_data_files_detail.
jsp?cboPufNumber=HC-038 in either ASCII format or SAS transport format. The Web site includes a
detailed description of the data as well as the SAS program used to access and format it.

For this example, the SAS transport format data file for HC-038 is downloaded to ‘C:H38.ssp’ on a Windows-
based PC. The instructions on the Web site lead to the following SAS statements for creating a SAS data set
MEPS, which contains only the sample design variables and other variables necessary for this analysis.

proc format;
value racex

-9 = 'NOT ASCERTAINED'
-8 = 'DK'
-7 = 'REFUSED'
-1 = 'INAPPLICABLE'
1 = 'AMERICAN INDIAN'
2 = 'ALEUT, ESKIMO'
3 = 'ASIAN OR PACIFIC ISLANDER'
4 = 'BLACK'
5 = 'WHITE'
91 = 'OTHER'
;

value sex
-9 = 'NOT ASCERTAINED'
-8 = 'DK'
-7 = 'REFUSED'
-1 = 'INAPPLICABLE'
1 = 'MALE'
2 = 'FEMALE'
;

value povcat9h
1 = 'NEGATIVE OR POOR'
2 = 'NEAR POOR'
3 = 'LOW INCOME'
4 = 'MIDDLE INCOME'
5 = 'HIGH INCOME'
;

value inscov9f
1 = 'ANY PRIVATE'
2 = 'PUBLIC ONLY'
3 = 'UNINSURED'
;

run;

http://www.meps.ahrq.gov/mepsweb/data_stats/download_data_files_detail.jsp?cboPufNumber=HC-038
http://www.meps.ahrq.gov/mepsweb/data_stats/download_data_files_detail.jsp?cboPufNumber=HC-038
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libname mylib '';
filename in1 'H38.SSP';
proc xcopy in=in1 out=mylib import;
run;

data meps;
set mylib.H38;
label racex= sex= inscov99= povcat99=

varstr99= varpsu99= perwt99f= totexp99=;
format racex racex. sex sex.

povcat99 povcat9h. inscov99 inscov9f.;
keep inscov99 sex racex povcat99 varstr99

varpsu99 perwt99f totexp99;
run;

There are a total of 24,618 observations in this SAS data set. Each observation corresponds to a person
in the survey. The stratification variable is VARSTR99, which identifies the 143 strata in the sample. The
variable VARPSU99 identifies the 460 PSUs in the sample. The sampling weights are stored in the variable
PERWT99F. The response variable is the health insurance coverage indicator variable, INSCOV99, which
has three values:

1 The person had any private insurance coverage any time during 1999
2 The person had only public insurance coverage during 1999
3 The person was uninsured during all of 1999

The demographic variables include gender (SEX), race (RACEX), and family income level as a percent of the
poverty line (POVCAT99). The variable RACEX has five categories:

1 American Indian
2 Aleut, Eskimo
3 Asian or Pacific Islander
4 Black
5 White

The variable POVCAT99 is constructed by dividing family income by the applicable poverty line (based on
family size and composition), with the resulting percentages grouped into five categories:

1 Negative or poor (less than 100%)
2 Near poor (100% to less than 125%)
3 Low income (125% to less than 200%)
4 Middle income (200% to less than 400%)
5 High income (greater than or equal to 400%)

The data set also contains the total health care expenditure in 1999, TOTEXP99, which is used as a covariate
in the analysis.
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Output 98.2.1 displays the first 30 observations of this data set.

Output 98.2.1 1999 Full-Year MEPS (First 30 Observations)

Obs SEX RACEX POVCAT99 INSCOV99 TOTEXP99 PERWT99F VARSTR99 VARPSU99

1 MALE WHITE MIDDLE INCOME PUBLIC ONLY 2735 14137.86 131 2

2 FEMALE WHITE MIDDLE INCOME ANY PRIVATE 6687 17050.99 131 2

3 MALE WHITE MIDDLE INCOME ANY PRIVATE 60 35737.55 131 2

4 MALE WHITE MIDDLE INCOME ANY PRIVATE 60 35862.67 131 2

5 FEMALE WHITE MIDDLE INCOME ANY PRIVATE 786 19407.11 131 2

6 MALE WHITE MIDDLE INCOME ANY PRIVATE 345 18499.83 131 2

7 MALE WHITE MIDDLE INCOME ANY PRIVATE 680 18499.83 131 2

8 MALE WHITE MIDDLE INCOME ANY PRIVATE 3226 22394.53 136 1

9 FEMALE WHITE MIDDLE INCOME ANY PRIVATE 2852 27008.96 136 1

10 MALE WHITE MIDDLE INCOME ANY PRIVATE 112 25108.71 136 1

11 MALE WHITE MIDDLE INCOME ANY PRIVATE 3179 17569.81 136 1

12 MALE WHITE MIDDLE INCOME ANY PRIVATE 168 21478.06 136 1

13 FEMALE WHITE MIDDLE INCOME ANY PRIVATE 1066 21415.68 136 1

14 MALE WHITE NEGATIVE OR POOR PUBLIC ONLY 0 12254.66 125 1

15 MALE WHITE NEGATIVE OR POOR ANY PRIVATE 0 17699.75 125 1

16 FEMALE WHITE NEGATIVE OR POOR UNINSURED 0 18083.15 125 1

17 MALE BLACK NEGATIVE OR POOR PUBLIC ONLY 230 6537.97 78 10

18 MALE WHITE LOW INCOME UNINSURED 408 8951.36 95 2

19 FEMALE WHITE LOW INCOME UNINSURED 0 11833.00 95 2

20 MALE WHITE LOW INCOME UNINSURED 40 12754.07 95 2

21 FEMALE WHITE LOW INCOME UNINSURED 51 14698.57 95 2

22 MALE WHITE LOW INCOME UNINSURED 0 3890.20 92 19

23 FEMALE WHITE LOW INCOME UNINSURED 610 5882.29 92 19

24 MALE WHITE LOW INCOME PUBLIC ONLY 24 8610.47 92 19

25 FEMALE BLACK MIDDLE INCOME UNINSURED 1758 0.00 64 1

26 MALE BLACK MIDDLE INCOME PUBLIC ONLY 551 7049.70 64 1

27 MALE BLACK MIDDLE INCOME ANY PRIVATE 65 34067.03 64 1

28 FEMALE BLACK NEGATIVE OR POOR PUBLIC ONLY 0 9313.84 73 12

29 FEMALE BLACK NEGATIVE OR POOR PUBLIC ONLY 10 14697.03 73 12

30 MALE BLACK NEGATIVE OR POOR PUBLIC ONLY 0 4574.73 73 12

The following SAS statements fit a generalized logit model for the 1999 full-year consolidated MEPS data:

proc surveylogistic data=meps;
stratum VARSTR99;
cluster VARPSU99;
weight PERWT99F;
class SEX RACEX POVCAT99;
model INSCOV99 = TOTEXP99 SEX RACEX POVCAT99 / link=glogit;

run;
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The STRATUM statement specifies the stratification variable VARSTR99. The CLUSTER statement specifies
the PSU variable VARPSU99. The WEIGHT statement specifies the sample weight variable PERWT99F.
The demographic variables SEX, RACEX, and POVCAT99 are listed in the CLASS statement to indicate that
they are categorical independent variables in the MODEL statement. In the MODEL statement, the response
variable is INSCOV99, and the independent variables are TOTEXP99 along with the selected demographic
variables. The LINK= option requests that the procedure fit the generalized logit model because the response
variable INSCOV99 has nominal responses.

The results of this analysis are shown in the following outputs.

PROC SURVEYLOGISTIC lists the model fitting information and sample design information in Out-
put 98.2.2.

Output 98.2.2 MEPS, Model Information

The SURVEYLOGISTIC ProcedureThe SURVEYLOGISTIC Procedure

Model Information

Data Set WORK.MEPS

Response Variable INSCOV99

Number of Response Levels 3

Stratum Variable VARSTR99

Number of Strata 143

Cluster Variable VARPSU99

Number of Clusters 460

Weight Variable PERWT99F

Model Generalized Logit

Optimization Technique Newton-Raphson

Variance Adjustment Degrees of Freedom (DF)

Output 98.2.3 displays the number of observations and the total of sampling weights both in the data set
and used in the analysis. Only the observations with positive person-level weight are used in the analysis.
Therefore, 1,053 observations with zero person-level weights were deleted.

Output 98.2.3 MEPS, Number of Observations

Number of Observations Read 24618

Number of Observations Used 23565

Sum of Weights Read 2.7641E8

Sum of Weights Used 2.7641E8

Output 98.2.4 lists the three insurance coverage levels for the response variable INSCOV99. The “UNIN-
SURED” category is used as the reference category in the model.
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Output 98.2.4 MEPS, Response Profile

Response Profile

Ordered
Value INSCOV99

Total
Frequency

Total
Weight

1 ANY PRIVATE 16130 204403997

2 PUBLIC ONLY 4241 41809572

3 UNINSURED 3194 30197198

Logits modeled use INSCOV99='UNINSURED' as the reference category.

Output 98.2.5 shows the parameterization in the regression model for each categorical independent variable.

Output 98.2.5 MEPS, Classification Levels

Class Level Information

Class Value
Design

Variables

SEX FEMALE 1

MALE -1

RACEX ALEUT, ESKIMO 1 0 0 0

AMERICAN INDIAN 0 1 0 0

ASIAN OR PACIFIC ISLANDER 0 0 1 0

BLACK 0 0 0 1

WHITE -1 -1 -1 -1

POVCAT99 HIGH INCOME 1 0 0 0

LOW INCOME 0 1 0 0

MIDDLE INCOME 0 0 1 0

NEAR POOR 0 0 0 1

NEGATIVE OR POOR -1 -1 -1 -1

Output 98.2.6 displays the parameter estimates and their standard errors.

Output 98.2.7 displays the odds ratio estimates and their standard errors.

For example, after adjusting for the effects of sex, race, and total health care expenditures, a person with high
income is estimated to be 11.595 times more likely than a poor person to choose private health care insurance
over no insurance, but only 0.274 times as likely to choose public health insurance over no insurance.
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Output 98.2.6 MEPS, Parameter Estimates

Analysis of Maximum Likelihood Estimates

Parameter INSCOV99 Estimate
Standard

Error t Value Pr > |t|

Intercept ANY PRIVATE 2.7703 0.1906 14.54 <.0001

Intercept PUBLIC ONLY 1.9216 0.1562 12.30 <.0001

TOTEXP99 ANY PRIVATE 0.000215 0.000071 3.03 0.0026

TOTEXP99 PUBLIC ONLY 0.000241 0.000072 3.34 0.0009

SEX FEMALE ANY PRIVATE 0.1208 0.0248 4.87 <.0001

SEX FEMALE PUBLIC ONLY 0.1741 0.0308 5.65 <.0001

RACEX ALEUT, ESKIMO ANY PRIVATE 7.1457 0.6976 10.24 <.0001

RACEX ALEUT, ESKIMO PUBLIC ONLY 7.6303 0.5024 15.19 <.0001

RACEX AMERICAN INDIAN ANY PRIVATE -2.0904 0.2615 -7.99 <.0001

RACEX AMERICAN INDIAN PUBLIC ONLY -1.8992 0.2909 -6.53 <.0001

RACEX ASIAN OR PACIFIC ISLANDER ANY PRIVATE -1.8055 0.2299 -7.85 <.0001

RACEX ASIAN OR PACIFIC ISLANDER PUBLIC ONLY -1.9914 0.2285 -8.71 <.0001

RACEX BLACK ANY PRIVATE -1.7517 0.1983 -8.83 <.0001

RACEX BLACK PUBLIC ONLY -1.7038 0.1692 -10.07 <.0001

POVCAT99 HIGH INCOME ANY PRIVATE 1.4560 0.0685 21.26 <.0001

POVCAT99 HIGH INCOME PUBLIC ONLY -0.6092 0.0903 -6.75 <.0001

POVCAT99 LOW INCOME ANY PRIVATE -0.3066 0.0666 -4.60 <.0001

POVCAT99 LOW INCOME PUBLIC ONLY -0.0239 0.0754 -0.32 0.7512

POVCAT99 MIDDLE INCOME ANY PRIVATE 0.6467 0.0587 11.01 <.0001

POVCAT99 MIDDLE INCOME PUBLIC ONLY -0.3496 0.0807 -4.33 <.0001

POVCAT99 NEAR POOR ANY PRIVATE -0.8015 0.1076 -7.45 <.0001

POVCAT99 NEAR POOR PUBLIC ONLY 0.2985 0.0952 3.14 0.0019

NOTE: The degrees of freedom for the t tests is 317.
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Output 98.2.7 MEPS, Odds Ratios

Odds Ratio Estimates

Effect INSCOV99
Point

Estimate
95%

Confidence Limits

TOTEXP99 ANY PRIVATE 1.000 1.000 1.000

TOTEXP99 PUBLIC ONLY 1.000 1.000 1.000

SEX      FEMALE vs MALE ANY PRIVATE 1.273 1.155 1.404

SEX      FEMALE vs MALE PUBLIC ONLY 1.417 1.255 1.599

RACEX    ALEUT, ESKIMO             vs WHITE ANY PRIVATE >999.999 >999.999 >999.999

RACEX    ALEUT, ESKIMO             vs WHITE PUBLIC ONLY >999.999 >999.999 >999.999

RACEX    AMERICAN INDIAN           vs WHITE ANY PRIVATE 0.553 0.339 0.903

RACEX    AMERICAN INDIAN           vs WHITE PUBLIC ONLY 1.146 0.601 2.185

RACEX    ASIAN OR PACIFIC ISLANDER vs WHITE ANY PRIVATE 0.735 0.499 1.084

RACEX    ASIAN OR PACIFIC ISLANDER vs WHITE PUBLIC ONLY 1.045 0.655 1.670

RACEX    BLACK                     vs WHITE ANY PRIVATE 0.776 0.638 0.944

RACEX    BLACK                     vs WHITE PUBLIC ONLY 1.394 1.129 1.721

POVCAT99 HIGH INCOME   vs NEGATIVE OR POOR ANY PRIVATE 11.595 9.293 14.467

POVCAT99 HIGH INCOME   vs NEGATIVE OR POOR PUBLIC ONLY 0.274 0.213 0.353

POVCAT99 LOW INCOME    vs NEGATIVE OR POOR ANY PRIVATE 1.990 1.606 2.466

POVCAT99 LOW INCOME    vs NEGATIVE OR POOR PUBLIC ONLY 0.492 0.395 0.615

POVCAT99 MIDDLE INCOME vs NEGATIVE OR POOR ANY PRIVATE 5.162 4.197 6.348

POVCAT99 MIDDLE INCOME vs NEGATIVE OR POOR PUBLIC ONLY 0.356 0.280 0.452

POVCAT99 NEAR POOR     vs NEGATIVE OR POOR ANY PRIVATE 1.213 0.901 1.632

POVCAT99 NEAR POOR     vs NEGATIVE OR POOR PUBLIC ONLY 0.680 0.526 0.878

NOTE: The degrees of freedom in computing the confidence limits is 317.

References

Agresti, A. (1984), Analysis of Ordinal Categorical Data, New York: John Wiley & Sons.

Agresti, A. (2002), Categorical Data Analysis, 2nd Edition, New York: John Wiley & Sons.

Aitchison, J. and Silvey, S. (1957), “The Generalization of Probit Analysis to the Case of Multiple Responses,”
Biometrika, 44, 131–140.

Albert, A. and Anderson, J. A. (1984), “On the Existence of Maximum Likelihood Estimates in Logistic
Regression Models,” Biometrika, 71, 1–10.

Ashford, J. R. (1959), “An Approach to the Analysis of Data for Semi-quantal Responses in Biology
Response,” Biometrics, 15, 573–581.

Binder, D. A. (1981), “On the Variances of Asymptotically Normal Estimators from Complex Surveys,”
Survey Methodology, 7, 157–170.

Binder, D. A. (1983), “On the Variances of Asymptotically Normal Estimators from Complex Surveys,”
International Statistical Review, 51, 279–292.



8150 F Chapter 98: The SURVEYLOGISTIC Procedure

Binder, D. A. and Roberts, G. R. (2003), “Design-Based and Model-Based Methods for Estimating Model
Parameters,” in C. Skinner and R. Chambers, eds., Analysis of Survey Data, New York: John Wiley &
Sons.

Brick, J. M. and Kalton, G. (1996), “Handling Missing Data in Survey Research,” Statistical Methods in
Medical Research, 5, 215–238.

Cochran, W. G. (1977), Sampling Techniques, 3rd Edition, New York: John Wiley & Sons.

Collett, D. (1991), Modelling Binary Data, London: Chapman & Hall.

Cox, D. R. and Snell, E. J. (1989), The Analysis of Binary Data, 2nd Edition, London: Chapman & Hall.

Dippo, C. S., Fay, R. E., and Morganstein, D. H. (1984), “Computing Variances from Complex Samples with
Replicate Weights,” in Proceedings of the Survey Research Methods Section, 489–494, Alexandria, VA:
American Statistical Association.

Fay, R. E. (1984), “Some Properties of Estimates of Variance Based on Replication Methods,” in Proceedings
of the Survey Research Methods Section, 495–500, Alexandria, VA: American Statistical Association.

Fay, R. E. (1989), “Theory and Application of Replicate Weighting for Variance Calculations,” in Proceedings
of the Survey Research Methods Section, 212–217, Alexandria, VA: American Statistical Association.

Freeman, D. H., Jr. (1987), Applied Categorical Data Analysis, New York: Marcel Dekker.

Fuller, W. A. (1975), “Regression Analysis for Sample Survey,” Sankhy Na, Series C, 37, 117–132.

Fuller, W. A. (2009), Sampling Statistics, Hoboken, NJ: John Wiley & Sons.

Hanley, J. A. and McNeil, B. J. (1982), “The Meaning and Use of the Area under a Receiver Operating
Characteristic (ROC) Curve,” Radiology, 143, 29–36.

Hidiroglou, M. A., Fuller, W. A., and Hickman, R. D. (1980), SUPER CARP, Ames: Iowa State University
Statistical Laboratory.

Hosmer, D. W., Jr. and Lemeshow, S. (2000), Applied Logistic Regression, 2nd Edition, New York: John
Wiley & Sons.

Judkins, D. R. (1990), “Fay’s Method for Variance Estimation,” Journal of Official Statistics, 6, 223–239.

Kalton, G. and Kasprzyk, D. (1986), “The Treatment of Missing Survey Data,” Survey Methodology, 12,
1–16.

Kish, L. (1965), Survey Sampling, New York: John Wiley & Sons.

Korn, E. L. and Graubard, B. I. (1999), Analysis of Health Surveys, New York: John Wiley & Sons.

Lancaster, H. O. (1961), “Significance Tests in Discrete Distributions,” Journal of the American Statistical
Association, 56, 223–234.

Lehtonen, R. and Pahkinen, E. (1995), Practical Methods for Design and Analysis of Complex Surveys,
Chichester, UK: John Wiley & Sons.

Littell, R. C., Freund, R. J., and Spector, P. C. (1991), SAS System for Linear Models, 3rd Edition, Cary, NC:
SAS Institute Inc.



References F 8151

Lohr, S. L. (2010), Sampling: Design and Analysis, 2nd Edition, Boston: Brooks/Cole.

Machlin, S., Yu, W., and Zodet, M. (2005), “Computing Standard Errors for MEPS Estimates,” .
URL http://www.meps.ahrq.gov/mepsweb/survey_comp/standard_errors.jsp

McCullagh, P. and Nelder, J. A. (1989), Generalized Linear Models, 2nd Edition, London: Chapman & Hall.

McFadden, D. (1974), “Conditional Logit Analysis of Qualitative Choice Behavior,” in P. Zarembka, ed.,
Frontiers in Econometrics, New York: Academic Press.

MEPS (2002), “MEPS HC-038: 1999 Full Year Consolidated Data File,” Accessed July 22, 2011.
URL http://www.meps.ahrq.gov/mepsweb/data_stats/download_data_files_
detail.jsp?cboPufNumber=HC-038

MEPS (2006), “MEPS Survey Background,” Accessed July 22, 2011.
URL http://www.meps.ahrq.gov/mepsweb/about_meps/survey_back.jsp

Morel, J. G. (1989), “Logistic Regression under Complex Survey Designs,” Survey Methodology, 15, 203–
223.

Muller, K. E. and Fetterman, B. A. (2002), Regression and ANOVA: An Integrated Approach Using SAS
Software, Cary, NC: SAS Institute Inc.

Nagelkerke, N. J. D. (1991), “A Note on a General Definition of the Coefficient of Determination,” Biometrika,
78, 691–692.

Nelder, J. A. and Wedderburn, R. W. M. (1972), “Generalized Linear Models,” Journal of the Royal Statistical
Society, Series A, 135, 370–384.

Rao, J. N. K., Scott, A. J., and Skinner, C. J. (1998), “Quasi-score Tests with Survey Data,” Statistica Sinica,
8, 1059–1070.

Rao, J. N. K. and Shao, J. (1996), “On Balanced Half-Sample Variance Estimation in Stratified Random
Sampling,” Journal of the American Statistical Association, 91, 343–348.

Rao, J. N. K. and Shao, J. (1999), “Modified Balanced Repeated Replication for Complex Survey Data,”
Biometrika, 86, 403–415.

Rao, J. N. K., Wu, C. F. J., and Yue, K. (1992), “Some Recent Work on Resampling Methods for Complex
Surveys,” Survey Methodology, 18, 209–217.

Roberts, G., Rao, J. N. K., and Kumar, S. (1987), “Logistic Regression Analysis of Sample Survey Data,”
Biometrika, 74, 1–12.

Rust, K. (1985), “Variance Estimation for Complex Estimators in Sample Surveys,” Journal of Official
Statistics, 1, 381–397.

Rust, K. and Kalton, G. (1987), “Strategies for Collapsing Strata for Variance Estimation,” Journal of Official
Statistics, 3, 69–81.

Santner, T. J. and Duffy, D. E. (1986), “A Note on A. Albert and J. A. Anderson’s Conditions for the Existence
of Maximum Likelihood Estimates in Logistic Regression Models,” Biometrika, 73, 755–758.

http://www.meps.ahrq.gov/mepsweb/survey_comp/standard_errors.jsp
http://www.meps.ahrq.gov/mepsweb/data_stats/download_data_files_detail.jsp?cboPufNumber=HC-038
http://www.meps.ahrq.gov/mepsweb/data_stats/download_data_files_detail.jsp?cboPufNumber=HC-038
http://www.meps.ahrq.gov/mepsweb/about_meps/survey_back.jsp


8152 F Chapter 98: The SURVEYLOGISTIC Procedure

Särndal, C. E., Swensson, B., and Wretman, J. (1992), Model Assisted Survey Sampling, New York: Springer-
Verlag.

Skinner, C. J., Holt, D., and Smith, T. M. F. (1989), Analysis of Complex Surveys, New York: John Wiley &
Sons.

Stokes, M. E., Davis, C. S., and Koch, G. G. (2000), Categorical Data Analysis Using the SAS System, 2nd
Edition, Cary, NC: SAS Institute Inc.

Walker, S. H. and Duncan, D. B. (1967), “Estimation of the Probability of an Event as a Function of Several
Independent Variables,” Biometrika, 54, 167–179.

Wolter, K. M. (2007), Introduction to Variance Estimation, 2nd Edition, New York: Springer.

Woodruff, R. S. (1971), “A Simple Method for Approximating the Variance of a Complicated Estimate,”
Journal of the American Statistical Association, 66, 411–414.



Chapter 99

The SURVEYMEANS Procedure

Contents
Overview: SURVEYMEANS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8154
Getting Started: SURVEYMEANS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 8154

Simple Random Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8154
Stratified Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8157
Output Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8159

Syntax: SURVEYMEANS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8160
PROC SURVEYMEANS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 8161
BY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8173
CLASS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8173
CLUSTER Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8174
DOMAIN Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8174
POSTSTRATA Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8175
RATIO Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8177
REPWEIGHTS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8179
STRATA Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8180
VAR Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8181
WEIGHT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8181

Details: SURVEYMEANS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8182
Missing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8182
Survey Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8183
Statistical Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8184
Replication Methods for Variance Estimation . . . . . . . . . . . . . . . . . . . . . . 8209
Computational Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8213
Output Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8215
Displayed Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8218
ODS Table Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8223
ODS Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8224

Examples: SURVEYMEANS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8225
Example 99.1: Stratified Cluster Sample Design . . . . . . . . . . . . . . . . . . . . 8225
Example 99.2: Domain Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8228
Example 99.3: Ratio Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8232
Example 99.4: Analyzing Survey Data with Missing Values . . . . . . . . . . . . . . 8232
Example 99.5: Variance Estimation Using Replication Methods . . . . . . . . . . . . 8234

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8237



8154 F Chapter 99: The SURVEYMEANS Procedure

Overview: SURVEYMEANS Procedure
The SURVEYMEANS procedure estimates characteristics of a survey population by using statistics computed
from a survey sample. It enables you to estimate statistics such as means, totals, proportions, quantiles,
geometric means, and ratios. PROC SURVEYMEANS also provides domain analysis, which computes
estimates for subpopulations or domains. PROC SURVEYMEANS also estimates variances and confidence
limits and performs t tests for these statistics. PROC SURVEYMEANS uses either the Taylor series
(linearization) method or replication (subsampling) methods to estimate sampling errors of estimators based
on complex sample designs. The sample design can be a complex survey sample design with stratification,
clustering, and unequal weighting. For more information, see Fuller (2009); Lohr (2010); Särndal, Swensson,
and Wretman (1992); Wolter (2007).

PROC SURVEYMEANS uses the Output Delivery System (ODS), a SAS subsystem that provides capabilities
for displaying and controlling the output from SAS procedures. ODS enables you to convert any of the
output from PROC SURVEYMEANS into a SAS data set. For more information, see the section “ODS Table
Names” on page 8223.

PROC SURVEYMEANS uses ODS Graphics to create graphs as part of its output. For general information
about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.” For specific information about the
statistical graphics available with the SURVEYMEANS procedure, see the PLOTS= option in the PROC
SURVEYMEANS statement and the section “ODS Graphics” on page 8224.

Getting Started: SURVEYMEANS Procedure
This section demonstrates how you can use the SURVEYMEANS procedure to produce descriptive statistics
from sample survey data. For a complete description of PROC SURVEYMEANS, see the section “Syntax:
SURVEYMEANS Procedure” on page 8160. The section “Examples: SURVEYMEANS Procedure” on
page 8225 provides more complicated examples to illustrate the applications of PROC SURVEYMEANS.

Simple Random Sampling
This example illustrates how you can use PROC SURVEYMEANS to estimate population means and
proportions from sample survey data. The study population is a junior high school with a total of 4,000
students in grades 7, 8, and 9. Researchers want to know how much these students spend weekly for ice
cream, on average, and what percentage of students spend at least $10 weekly for ice cream.

To answer these questions, 40 students were selected from the entire student population by using simple
random sampling (SRS). Selection by simple random sampling means that all students have an equal chance
of being selected and no student can be selected more than once. Each student selected for the sample was
asked how much he or she spends for ice cream per week, on average. The SAS data set IceCream saves the
responses of the 40 students:
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data IceCream;
input Grade Spending @@;
if (Spending < 10) then Group='less';
else Group='more';
datalines;

7 7 7 7 8 12 9 10 7 1 7 10 7 3 8 20 8 19 7 2
7 2 9 15 8 16 7 6 7 6 7 6 9 15 8 17 8 14 9 8
9 8 9 7 7 3 7 12 7 4 9 14 8 18 9 9 7 2 7 1
7 4 7 11 9 8 8 10 8 13 7 2 9 6 9 11 7 2 7 9
;

The variable Grade contains a student’s grade. The variable Spending contains a student’s response regarding
how much he spends per week for ice cream, in dollars. The variable Group is created to indicate whether
a student spends at least $10 weekly for ice cream: Group=‘more’ if a student spends at least $10, or
Group=‘less’ if a student spends less than $10.

You can use PROC SURVEYMEANS to produce estimates for the entire student population, based on this
random sample of 40 students:

ods graphics on;
title1 'Analysis of Ice Cream Spending';
title2 'Simple Random Sample Design';
proc surveymeans data=IceCream total=4000;

var Spending Group;
run;
ods graphics off;

The PROC SURVEYMEANS statement invokes the procedure. The TOTAL=4000 option specifies the
total number of students in the study population, or school. PROC SURVEYMEANS uses this total to
adjust variance estimates for the effects of sampling from a finite population. The VAR statement names the
variables to analyze, Spending and Group.

Figure 99.1 displays the results from this analysis. There are a total of 40 observations used in the analysis.
The “Class Level Information” table lists the two levels of the variable Group. This variable is a character
variable, and so PROC SURVEYMEANS provides a categorical analysis for it, estimating the relative
frequency or proportion for each level. If you want a categorical analysis for a numeric variable, you can
name that variable in the CLASS statement.

Figure 99.1 Analysis of Ice Cream Spending

Analysis of Ice Cream Spending
Simple Random Sample Design

The SURVEYMEANS Procedure

Analysis of Ice Cream Spending
Simple Random Sample Design

The SURVEYMEANS Procedure

Data Summary

Number of Observations 40

Class Level Information

CLASS
Variable Levels Values

Group 2 less more
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Figure 99.1 continued

Statistics

Variable Level N Mean
Std Error

of Mean 95% CL for Mean

Spending 40 8.750000 0.845139 7.04054539 10.4594546

Group less 23 0.575000 0.078761 0.41568994 0.7343101

more 17 0.425000 0.078761 0.26568994 0.5843101

The “Statistics” table displays the estimates for each analysis variable. By default, PROC SURVEYMEANS
displays the number of observations, the estimate of the mean, its standard error, and the 95% confidence
limits for the mean. You can obtain other statistics by specifying the corresponding statistic-keywords in the
PROC SURVEYMEANS statement.

The estimate of the average weekly ice cream expense is $8.75 for students at this school. The standard error
of this estimate if $0.85, and the 95% confidence interval for weekly ice cream expense is from $7.04 to
$10.46. The analysis variable Group is a character variable, and so PROC SURVEYMEANS analyzes it as
categorical, estimating the relative frequency or proportion for each level or category. These estimates are
displayed in the Mean column of the “Statistics” table. It is estimated that 57.5% of all students spend less
than $10 weekly on ice cream, while 42.5% of the students spend at least $10 weekly. The standard error of
each estimate is 7.9%.

When ODS Graphics is enabled, PROC SURVEYMEANS also displays plots that depict the distribution of
the continuous variables. Figure 99.2 displays such a plot for the variable Spending.

Figure 99.2 Distribution of Spending
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Stratified Sampling
Suppose that the sample of students described in the previous section was actually selected by using stratified
random sampling. In stratified sampling, the study population is divided into nonoverlapping strata, and
samples are selected from each stratum independently.

The list of students in this junior high school was stratified by grade, yielding three strata: grades 7, 8, and 9.
A simple random sample of students was selected from each grade. Table 99.1 shows the total number of
students in each grade.

Table 99.1 Number of Students by Grade

Grade Number of Students

7 1,824
8 1,025
9 1,151

Total 4,000

To analyze this stratified sample, you need to provide the population totals for each stratum to PROC
SURVEYMEANS. The SAS data set StudentTotals contains the information from Table 99.1:

data StudentTotals;
input Grade _total_;
datalines;

7 1824
8 1025
9 1151
;

The variable Grade is the stratum identification variable, and the variable _TOTAL_ contains the total number
of students for each stratum. PROC SURVEYMEANS requires you to use the variable name _TOTAL_ for
the stratum population totals.

PROC SURVEYMEANS uses the stratum population totals to adjust variance estimates for the effects of
sampling from a finite population. If you do not provide population totals or sampling rates, then PROC
SURVEYMEANS assumes that the proportion of the population in the sample is very small, and the
computation does not involve a finite population correction.

In a stratified sample design, when the sampling rates in the strata are unequal, you need to use sampling
weights to reflect this information in order to produce an unbiased mean estimator. In this example, the
appropriate sampling weights are reciprocals of the probabilities of selection. You can use the following
DATA step to create the sampling weights:

data IceCream;
set IceCream;
if Grade=7 then Prob=20/1824;
if Grade=8 then Prob=9/1025;
if Grade=9 then Prob=11/1151;
Weight=1/Prob;

run;



8158 F Chapter 99: The SURVEYMEANS Procedure

When you use PROC SURVEYSELECT to select your sample, the procedure creates these sampling weights
for you.

The following SAS statements perform the stratified analysis of the survey data:

title1 'Analysis of Ice Cream Spending';
title2 'Stratified Sample Design';
proc surveymeans data=IceCream total=StudentTotals;

stratum Grade / list;
var Spending Group;
weight Weight;

run;

The PROC SURVEYMEANS statement invokes the procedure. The DATA= option names the SAS data set
IceCream as the input data set to be analyzed. The TOTAL= option names the data set StudentTotals as
the input data set that contains the stratum population totals. Comparing this to the analysis in the section
“Simple Random Sampling” on page 8154, notice that the TOTAL=StudentTotals option is used here instead
of the TOTAL=4000 option. In this stratified sample design, the population totals are different for different
strata, and so you need to provide them to PROC SURVEYMEANS in a SAS data set.

The STRATA statement identifies the stratification variable Grade. The LIST option in the STRATA statement
requests that PROC SURVEYMEANS display stratum information. The WEIGHT statement tells PROC
SURVEYMEANS that the variable Weight contains the sampling weights.

Figure 99.3 displays information about the input data set. There are three strata in the design and 40
observations in the sample. The categorical variable Group has two levels, ‘less’ and ‘more.’

Figure 99.4 displays information for each stratum. The table displays a stratum index and the values of the
STRATA variable. The stratum index identifies each stratum by a sequentially assigned number. For each
stratum, the table gives the population total (total number of students), the sampling rate, and the sample size.
The stratum sampling rate is the ratio of the number of students in the sample to the number of students in the
population for that stratum. The table also lists each analysis variable and the number of stratum observations
for that variable. For categorical variables, the table lists each level and the number of sample observations in
that level.

Figure 99.3 Data Summary

Analysis of Ice Cream Spending
Stratified Sample Design

The SURVEYMEANS Procedure

Analysis of Ice Cream Spending
Stratified Sample Design

The SURVEYMEANS Procedure

Data Summary

Number of Strata 3

Number of Observations 40

Sum of Weights 4000

Class Level Information

CLASS
Variable Levels Values

Group 2 less more
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Figure 99.4 Stratum Information

Stratum Information

Stratum
Index Grade

Population
Total

Sampling
Rate N Obs Variable Level N

1 7 1824 1.10% 20 Spending 20

Group less 17

more 3

2 8 1025 0.88% 9 Spending 9

Group less 0

more 9

3 9 1151 0.96% 11 Spending 11

Group less 6

more 5

Figure 99.5 shows the following:

• The estimate of average weekly ice cream expense is $9.14 for students in this school, with a standard
error of $0.53, and a 95% confidence interval from $8.06 to $10.22.

• An estimate of 54.5% of all students spend less than $10 weekly on ice cream, and 45.5% spend more,
with a standard error of 5.8%.

Figure 99.5 Analysis of Ice Cream Spending

Statistics

Variable Level N Mean
Std Error

of Mean 95% CL for Mean

Spending 40 9.141298 0.531799 8.06377052 10.2188254

Group less 23 0.544555 0.058424 0.42617678 0.6629323

more 17 0.455445 0.058424 0.33706769 0.5738232

Output Data Sets
PROC SURVEYMEANS uses the Output Delivery System (ODS) to create output data sets. This is a
departure from older SAS procedures that provide OUTPUT statements for similar functionality. For more
information about ODS, see Chapter 20, “Using the Output Delivery System.”

For example, to save the “Statistics” table shown in Figure 99.5 in the previous section in an output data set,
you use the ODS OUTPUT statement as follows:

title1 'Analysis of Ice Cream Spending';
title2 'Stratified Sample Design';
proc surveymeans data=IceCream total=StudentTotals;

stratum Grade / list;
var Spending Group;
weight Weight;
ods output Statistics=MyStat;

run;
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The statement

ods output Statistics=MyStat;

requests that the “Statistics” table that appears in Figure 99.5 be placed in a SAS data set MyStat.

The PRINT procedure displays observations of the data set MyStat:

proc print data=MyStat;
run;

Figure 99.6 displays the data set MyStat. The section “ODS Table Names” on page 8223 gives the complete
list of tables produced by PROC SURVEYMEANS.

Figure 99.6 Output Data Set MyStat

Analysis of Ice Cream Spending
Stratified Sample Design

Analysis of Ice Cream Spending
Stratified Sample Design

Obs VarName VarLevel N Mean StdErr LowerCLMean UpperCLMean

1 Spending 40 9.141298 0.531799 8.06377052 10.2188254

2 Group less 23 0.544555 0.058424 0.42617678 0.6629323

3 Group more 17 0.455445 0.058424 0.33706769 0.5738232

Syntax: SURVEYMEANS Procedure
The following statements are available in the SURVEYMEANS procedure:

PROC SURVEYMEANS < options > < statistic-keywords > ;
BY variables ;
CLASS variables ;
CLUSTER variables ;
DOMAIN variables < variable�variable variable�variable�variable . . . > < / option > ;
POSTSTRATA variables / PSTOTAL= < option > ;
POSTSTRATA variables / PSPCT= < option > ;
RATIO < 'label ' > variables / variables ;
REPWEIGHTS variables < / options > ;
STRATA variables < / option > ;
VAR variables ;
WEIGHT variable ;

The PROC SURVEYMEANS statement invokes the procedure. It optionally names the input data sets,
specifies statistics for the procedure to compute, and specifies the variance estimation method. The PROC
SURVEYMEANS statement is required.

The VAR statement identifies the variables to be analyzed. The CLASS statement identifies numeric variables
that are to be analyzed as categorical variables. The STRATA statement lists the variables that form the strata
in a stratified sample design. The CLUSTER statement specifies cluster identification variables in a clustered
sample design. The DOMAIN statement lists the variables that define domains for subpopulation analysis.
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The RATIO statement requests ratio analysis for means or proportions of analysis variables. The WEIGHT
statement names the sampling weight variable. The POSTSTRATA statement lists the variables that are used
to form poststrata for poststratification. The REPWEIGHTS statement names replicate weight variables for
BRR or jackknife variance estimation. You can use a BY statement with PROC SURVEYMEANS to obtain
separate analyses for groups defined by the BY variables.

All statements can appear multiple times except the PROC SURVEYMEANS statement, POSTSTRATA
statement, and WEIGHT statement, which can appear only once.

The rest of this section gives detailed syntax information for the BY, CLASS, CLUSTER, DOMAIN,
POSTSTRATA, RATIO, REPWEIGHTS, STRATA, VAR, and WEIGHT statements in alphabetical order
after the description of the PROC SURVEYMEANS statement.

PROC SURVEYMEANS Statement
PROC SURVEYMEANS < options > statistic-keywords ;

The PROC SURVEYMEANS statement invokes the SURVEYMEANS procedure. In this statement, you
identify the data set to be analyzed, specify the variance estimation method, and provide sample design
information. The DATA= option names the input data set to be analyzed. The VARMETHOD= option
specifies the variance estimation method, which is the Taylor series method by default. For Taylor series
variance estimation, you can include a finite population correction factor in the analysis by providing either
the sampling rate or population total with the RATE= or TOTAL= option. If your design is stratified, with
different sampling rates or totals for different strata, then you can input these stratum rates or totals in a SAS
data set that contains the stratification variables.

In the PROC SURVEYMEANS statement, you also can use statistic-keywords to specify statistics, such as
population mean and population total, for PROC SURVEYMEANS to compute. You can also request data
set summary information and sample design information.

Table 99.2 summarizes the options available in the PROC SURVEYMEANS statement.

Table 99.2 PROC SURVEYMEANS Statement Options

Option Description

ALPHA= Sets the confidence level for confidence limits
DATA= Specifies the SAS data set to be analyzed
MISSING Treats missing values as a valid
NOMCAR Computes variance estimates by analyzing the nonmissing values as a

domain
NONSYMCL Requests nonsymmetric confidence limits for quantiles
NOSPARSE Suppresses the display of analysis variables with zero frequency
ORDER= Specifies the order in which to report the values of the categorical variables
PERCENTILE= Specifies percentiles that you want the procedure to compute
PLOTS= Requests plots from ODS Graphics
QUANTILE= Specifies quantiles that you want the procedure to compute
RATE= Specifies the sampling rate
STACKING Produces the output data sets by using a stacking table structure
TOTAL= Specifies the total number of primary sampling units
VARMETHOD= Specifies the variance estimation method
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You can specify the following options in the PROC SURVEYMEANS statement:

ALPHA=˛
sets the confidence level for confidence limits. The value of the ALPHA= option must be between 0
and 1, and the default value is 0.05. A confidence level of ˛ produces 100.1 � ˛/% confidence limits.
The default of ALPHA=0.05 produces 95% confidence limits.

DATA=SAS-data-set
specifies the SAS data set to be analyzed by PROC SURVEYMEANS. If you omit the DATA= option,
the procedure uses the most recently created SAS data set.

MISSING
treats missing values as a valid (nonmissing) category for all categorical variables, which include
CLASS, STRATA, CLUSTER, DOMAIN, and POSTSTRATA variables.

By default, if you do not specify the MISSING option, an observation is excluded from the analysis if
it has a missing value. For more information, see the section “Missing Values” on page 8182.

NOMCAR
requests that PROC SURVEYMEANS treat missing values in the variance computation as not missing
completely at random (NOMCAR) for Taylor series variance estimation. When you specify the
NOMCAR option, PROC SURVEYMEANS computes variance estimates by analyzing the nonmissing
values as a domain (subpopulation), where the entire population includes both nonmissing and missing
domains. For more details, see the section “Missing Values” on page 8182.

By default, PROC SURVEYMEANS completely excludes an observation from analysis if that observa-
tion has a missing value, unless you specify the MISSING option for categorical variables. Note that
the NOMCAR option has no effect on a categorical variable when you specify the MISSING option,
which treats missing values as a valid nonmissing level.

The NOMCAR option applies only to Taylor series variance estimation. The replication methods,
which you request with the VARMETHOD=BRR and VARMETHOD=JACKKNIFE options, do not
use the NOMCAR option.

The NOMCAR option is not available for geometric means or poststratification.

NONSYMCL
requests nonsymmetric confidence limits for quantiles when you request quantiles with
PERCENTILE= or QUANTILE= option. This option applies only to the default
VARMETHOD=TAYLOR option. For more details, see the section “Confidence Limits” on
page 8196.

NOSPARSE
suppresses the display of analysis variables with zero frequency. By default, the procedure displays all
continuous variables and all levels of categorical variables.

ORDER=DATA | FORMATTED | INTERNAL
specifies the order in which the values of the categorical variables are to be reported.

This option also determines the sort order for the levels of ClUSTER and DOMAIN variables and
controls STRATA variable levels in the “Stratum Information” table.

The following shows how PROC SURVEYMEANS interprets values of the ORDER= option:
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DATA orders values according to their order in the input data set.

FORMATTED orders values by their formatted values. This order is operating environment
dependent. By default, the order is ascending.

INTERNAL orders values by their unformatted values, which yields the same order that the
SORT procedure does. This order is operating environment dependent.

By default, ORDER=INTERNAL. For ORDER=FORMATTED and ORDER=INTERNAL, the sort
order is machine-dependent.

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

PERCENTILE=(values)
specifies percentiles you want the procedure to compute. You can separate values with blanks or
commas. Each value must be between 0 and 100. You can also use the statistic-keywords DECILES,
MEDIAN, Q1, Q3, and QUARTILES to request common percentiles.

PROC SURVEYMEANS uses Woodruff’s method (Dorfman and Valliant 1993; Särndal, Swensson,
and Wretman 1992; Francisco and Fuller 1991) to estimate the variances of quantiles. For more details,
see the section “Quantiles” on page 8194.

PLOTS < ( global-plot-options ) > < = plot-request < (plot-option) > >

PLOTS < ( global-plot-options ) > < = ( plot-request < (plot-option) > < . . . plot-request < (plot-option) > > ) >

controls the plots that are produced through ODS Graphics.

A plot-request identifies the plot, and a plot-option controls the appearance and content of the plot. You
can specify plot-options in parentheses after a plot-request . A global-plot-option applies to all plots for
which it is available. You can specify global-plot-options in parentheses after the PLOTS option.

When you specify only one plot-request , you can omit the parentheses around it. Here are a few
examples of requesting plots:

plots=all
plots(unpack)=summary
plots=(summary(unpack) domain)
plots=boxplot
plots=(domain(packvar) histogram)

You can suppress default plots and request specific plots by specifying the PLOTS(ONLY)= option;
PLOTS(ONLY)=(plot-requests) produces only the plots that are specified as plot-requests.

ODS Graphics must be enabled before you can request plots. For example:

ods graphics on;
proc surveymeans plots=boxplot;

variable income;
run;
ods graphics off;
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For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

When ODS Graphics is enabled but you do not specify the PLOTS= option, PROC SURVEYMEANS
produces summary plots, and it also produces domain plots when you specify a DOMAIN statement.
You can suppress all plots by specifying PLOTS=NONE.

For a continuous analytical variable, PROC SURVEYMEANS provides a summary plot, which
contains a box plot and a histogram plot. For a categorical variable, PROC SURVEYFREQ provides
corresponding plots for it.

For general information about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.”

Global Plot Option

A global-plot-option applies to all plots for which the option is available. You can specify the following
global-plot-options:

ONLY
suppresses the default plots and requests only the plots that are specified as plot-requests.

NBINS=value
specifies the number of bins in a histogram plot. If you do not specify this option, then by default
the number of bins is determined by the method of Terrell and Scott (1985).

UNPACK
requests that the procedure create a histogram with overlaid densities and a box plot along with a
confidence interval band separately.

Plot Requests

You can specify the following plot-requests:

ALL
requests all appropriate plots.

BOXPLOT | BOX
requests a box plot for continuous variables.

DOMAIN < ( plot-options ) >
requests box plots for domain statistics for each domain definition. By default, the procedure
plots each domain in a single panel for all continuous analysis variables. This plot is produced by
default if you specify a DOMAIN statement. You can specify the following plot-options:

EXCLUDE
requests that the procedure create box plots for every domain level of a domain but exclude
the box plot for the full sample. By default, the box plot includes the full sample box plot.

PACKDOMAIN
requests box plots for all domain definitions in one panel for each analytical variable.
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PACKVAR
requests box plots for all analytical variables in one panel for each domain definition. This
is the default when you do not specify the UNPACK option.

UNPACK
requests a box plot for each domain and for each analytical variable in a single panel.

HISTOGRAM < ( plot-option ) >
HIST < ( plot-option ) >

requests a histogram with overlaid normal and kernel densities. You can specify the following
plot-option:

NBINS=value
specifies the number of bins in a histogram plot. If you do not specify this option, then by
default the number of bins is determined by the method of Terrell and Scott (1985).

NONE
suppresses all plots.

SUMMARY < ( plot-options ) >
requests that a histogram and a box plot be displayed together in a single panel, sharing the same
X axis. This packed plot is produced by default. You can specify the following plot-options:

NBINS=value
specifies the number of bins in a histogram plot. If you do not specify this option, then by
default the number of bins is determined by the method of Terrell and Scott (1985).

UNPACK
requests that a histogram with overlaid densities be displayed in one panel and a
box plot along with a confidence interval band be displayed separately. Note that
specifying PLOTS(ONLY)=SUMMARY(UNPACK) is exactly the same as specifying
PLOTS(ONLY)=(BOX HISTOGRAM).

PLOTS=SUMMARY overwrites the PLOTS=BOX and the PLOTS=HISTOGRAM plot-requests.
That is, if you do not specify the UNPACK option, PROC SURVEYMEANS does not display a
histogram plot or a box plot by itself when PLOTS=SUMMARY is specified.

QUANTILE=(values)
specifies quantiles you want the procedure to compute. You can separate values with blanks or commas.
Each value must be between 0 and 1. You can also use the statistic-keywords DECILES, MEDIAN,
Q1, Q3, and QUARTILES to request common quantiles.

PROC SURVEYMEANS uses Woodruff’s method (Dorfman and Valliant 1993; Särndal, Swensson,
and Wretman 1992; Francisco and Fuller 1991) to estimate the variances of quantiles. For more details,
see the section “Quantiles” on page 8194.

RATE=value | SAS-data-set
R=value | SAS-data-set

specifies the sampling rate as a nonnegative value, or specifies an input data set that contains the stratum
sampling rates. The procedure uses this information to compute a finite population correction for Taylor
series variance estimation. The procedure does not use the RATE= option for BRR or jackknife variance
estimation, which you request with the VARMETHOD=BRR or VARMETHOD=JACKKNIFE option.
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If your sample design has multiple stages, you should specify the first-stage sampling rate, which is
the ratio of the number of PSUs selected to the total number of PSUs in the population.

For a nonstratified sample design, or for a stratified sample design with the same sampling rate in
all strata, you should specify a nonnegative value for the RATE= option. If your design is stratified
with different sampling rates in the strata, then you should name a SAS data set that contains the
stratification variables and the sampling rates. For more details, see the section “Specification of
Population Totals and Sampling Rates” on page 8183.

The value in the RATE= option or the values of _RATE_ in the secondary data set must be nonnegative
numbers. You can specify value as a number between 0 and 1. Or you can specify value in percentage
form as a number between 1 and 100, and PROC SURVEYMEANS converts that number to a
proportion. The procedure treats the value 1 as 100% instead of 1%.

If you do not specify the TOTAL= or RATE= option, then the Taylor series variance estimation does
not include a finite population correction. You cannot specify both the TOTAL= and RATE= options.

STACKING
requests that the procedure produce the output data sets by using a stacking table structure, which was
the default before SAS 9. The new default is to produce a rectangular table structure in the output data
sets.

A rectangular structure creates one observation for each analysis variable in the data set. A stacking
structure creates only one observation in the output data set for all analysis variables.

The STACKING option affects the following tables:

• Domain

• Ratio

• Statistics

• StrataInfo

For more details, see the section “Rectangular and Stacking Structures in an Output Data Set” on
page 8216.

TOTAL=value | SAS-data-set

N=value | SAS-data-set
specifies the total number of primary sampling units in the study population as a positive value,
or specifies an input data set that contains the stratum population totals. The procedure uses this
information to compute a finite population correction for Taylor series variance estimation. The
procedure does not use the TOTAL= option for BRR or jackknife variance estimation, which you
request with the VARMETHOD=BRR or VARMETHOD=JACKKNIFE option.

For a nonstratified sample design, or for a stratified sample design with the same population total in all
strata, you should specify a positive value for the TOTAL= option. If your sample design is stratified
with different population totals in the strata, then you should name a SAS data set that contains the
stratification variables and the population totals. For more details, see the section “Specification of
Population Totals and Sampling Rates” on page 8183.

If you do not specify the TOTAL= or RATE= option, then the Taylor series variance estimation does
not include a finite population correction. You cannot specify both the TOTAL= and RATE= options.
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statistic-keywords
specifies the statistics for the procedure to compute. If you do not specify any statistic-keywords,
PROC SURVEYMEANS computes the NOBS, MEAN, STDERR, and CLM statistics by default.

The statistics produced depend on the type of the analysis variable. If you name a numeric variable
in the CLASS statement, then the procedure analyzes that variable as a categorical variable. The
procedure always analyzes character variables as categorical. For more information, see the section
“CLASS Statement” on page 8173.

PROC SURVEYMEANS computes MIN, MAX, and RANGE for numeric variables but not for
categorical variables. For numeric variables, the keyword MEAN produces the mean, but for categorical
variables it produces the proportion in each category or level. Also, for categorical variables, the
keyword NOBS produces the number of observations for each variable level, and the keyword NMISS
produces the number of missing observations for each level. If you request the keyword NCLUSTER
for a categorical variable, PROC SURVEYMEANS displays for each level the number of clusters with
observations in that level. PROC SURVEYMEANS computes SUMWGT in the same way for both
categorical and numeric variables, as the sum of the weights over all nonmissing observations.

PROC SURVEYMEANS performs univariate analysis, analyzing each variable separately. Thus the
number of nonmissing and missing observations might not be the same for all analysis variables. For
more information, see the section “Missing Values” on page 8182.

The following statistics are available for ratios (which you request with a RATIO statement): N, NCLU,
SUMWGT, RATIO, STDERR, DF, T, PROBT, and CLM, as shown in the following list. If no statistics
are requested, the procedure computes the ratio and its standard error by default.

You can specify the following statistic-keywords:

ALL requests all available statistics except those that are associated with geometric
means.

ALLGEO requests all available statistics that are associated with geometric means.

CLM requests the 100.1 � ˛/% two-sided confidence limits for MEAN, where ˛ is
determined by the ALPHA= option; the default is ˛ D 0:05.

CLSUM requests the 100.1 � ˛/% two-sided confidence limits for SUM, where ˛ is deter-
mined by the ALPHA= option; the default is ˛ D 0:05.

CV requests the coefficient of variation for MEAN.

CVSUM requests the coefficient of variation for SUM.

DECILES requests the 10th through the 90th percentiles, including their standard errors and
confidence limits.

DF requests the degrees of freedom for the t test.

GEOMEAN requests the geometric mean of a numeric variable that contains positive values.

GMCLM requests the 100.1 � ˛/% two-sided confidence limits for GEOMEAN, where ˛ is
determined by the ALPHA= option; the default is ˛ D 0:05.

GMSTDERR requests the standard error of GEOMEAN. When you specify GEOMEAN,
SURVEYMEANS procedure computes GMSTDERR by default.

LCLM requests the 100.1 � ˛/% one-sided lower confidence limit for MEAN, where ˛ is
determined by the ALPHA= option; the default is ˛ D 0:05.
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LCLSUM requests the 100.1 � ˛/% one-sided lower confidence limit for SUM, where ˛ is
determined by the ALPHA= option; the default is ˛ D 0:05.

LGMCLM requests the 100.1� ˛/% one-sided lower confidence limit for GEOMEAN, where
˛ is determined by the ALPHA= option; the default is ˛ D 0:05.

MAX requests the maximum value.

MEAN requests the mean for a numeric variable, or the proportion in each category for a
categorical variable.

MEDIAN requests the median (50th percentile) for a numeric variable.

MIN requests the minimum value.

NCLUSTER requests the number of clusters.

NMISS requests the number of missing observations.

NOBS requests the number of nonmissing observations.

Q1 requests the lower quartile (25th percentile).

Q3 requests the upper quartile (75th percentile).

QUARTILES requests Q1 (25th percentile), MEDIAN (50th percentile), and Q3 (75th percentile),
including their standard errors and confidence limits.

RANGE requests the range, MAX–MIN.

RATIO requests the ratio of means or proportions.

STD requests the standard deviation of SUM. When you request SUM, the procedure
computes STD by default.

STDERR requests the standard error of MEAN or RATIO. When you request MEAN or
RATIO, the procedure computes STDERR by default.

SUM requests the weighted sum,
P
wiyi , or estimated population total when the appro-

priate sampling weights are used.

SUMWGT requests the sum of the weights,
P
wi .

T requests the t value and its corresponding p-value with DF degrees of freedom for
H0 W � D 0, where � is a requested statistic.

UCLM requests the 100.1 � ˛/% one-sided upper confidence limit for MEAN, where ˛ is
determined by the ALPHA= option; the default is ˛ D 0:05.

UCLSUM requests the 100.1 � ˛/% one-sided upper confidence limit for SUM, where ˛ is
determined by the ALPHA= option; the default is ˛ D 0:05.

UGMCLM requests the 100.1� ˛/% one-sided upper confidence limit for GEOMEAN, where
˛ is determined by the ALPHA= option; the default is ˛ D 0:05.

VAR requests the variance of MEAN or RATIO.

VARSUM requests the variance of SUM.

For details about how PROC SURVEYMEANS computes these statistics, see the section “Statistical
Computations” on page 8184.
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VARMETHOD=BRR < (method-options) >

VARMETHOD=JACKKNIFE | JK < (method-options) >

VARMETHOD=TAYLOR
specifies the variance estimation method. VARMETHOD=TAYLOR requests the Taylor series method,
which is the default if you do not specify the VARMETHOD= option or the REPWEIGHTS statement.
VARMETHOD=BRR requests variance estimation by balanced repeated replication (BRR), and
VARMETHOD=JACKKNIFE requests variance estimation by the delete-1 jackknife method.

For VARMETHOD=BRR and VARMETHOD=JACKKNIFE you can specify method-options in
parentheses. Table 99.3 summarizes the available method-options.

Table 99.3 Variance Estimation Options

VARMETHOD= Variance Estimation Method Method-Options

BRR Balanced repeated replication DFADJ
FAY < =value >
HADAMARD=SAS-data-set
OUTWEIGHTS=SAS-data-set
PRINTH
REPS=number

JACKKNIFE Jackknife DFADJ
OUTJKCOEFS=SAS-data-set
OUTWEIGHTS=SAS-data-set

TAYLOR Taylor series linearization None

Method-options must be enclosed in parentheses following the method keyword. For example:

varmethod=BRR(reps=60 outweights=myReplicateWeights)

The following values are available for the VARMETHOD= option:

BRR < (method-options) >
requests balanced repeated replication (BRR) variance estimation. The BRR method
requires a stratified sample design with two primary sampling units (PSUs) per
stratum. See the section “Balanced Repeated Replication (BRR) Method” on
page 8210 for more information.

You can specify the following method-options in parentheses following
VARMETHOD=BRR:

DFADJ
computes the degrees of freedom as the number of nonmissing strata for an
analysis variable. The degrees of freedom for VARMETHOD=BRR equal the
number of strata, which by default is based on all valid observations in the data
set. But if you specify the DFADJ method-option, PROC SURVEYMEANS
does not count any empty strata that are due to all observations containing
missing values for an analysis variable.
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See the section “Degrees of Freedom” on page 8187 for more information.
See the section “Data and Sample Design Summary” on page 8218 for details
about valid observations.

The DFADJ method-option has no effect on categorical variables when you
specify the MISSING option, which treats missing values as a valid nonmissing
level.

The DFADJ method-option cannot be used when you provide replicate weights
with a REPWEIGHTS statement. When you use a REPWEIGHTS statement,
the degrees of freedom equal the number of REPWEIGHTS variables (or
replicates), unless you specify an alternative value in the DF= option in the
REPWEIGHTS statement.

FAY < =value >
requests Fay’s method, a modification of the BRR method, for variance estima-
tion. See the section “Fay’s BRR Method” on page 8211 for more information.

You can specify the value of the Fay coefficient, which is used in converting
the original sampling weights to replicate weights. The Fay coefficient must be
a nonnegative number less than 1. By default, the value of the Fay coefficient
equals 0.5.

HADAMARD=SAS-data-set

H=SAS-data-set
names a SAS data set that contains the Hadamard matrix for BRR replicate con-
struction. If you do not provide a Hadamard matrix with the HADAMARD=
method-option, PROC SURVEYMEANS generates an appropriate Hadamard
matrix for replicate construction. See the sections “Balanced Repeated Repli-
cation (BRR) Method” on page 8210 and “Hadamard Matrix” on page 8213
for details.

If a Hadamard matrix of a given dimension exists, it is not necessarily unique.
Therefore, if you want to use a specific Hadamard matrix, you must provide
the matrix as a SAS data set in the HADAMARD= method-option.

In the HADAMARD= input data set, each variable corresponds to a column
of the Hadamard matrix, and each observation corresponds to a row of the
matrix. You can use any variable names in the HADAMARD= data set. All
values in the data set must equal either 1 or –1. You must ensure that the
matrix you provide is indeed a Hadamard matrix—that is, A0A D RI, where
A is the Hadamard matrix of dimension R and I is an identity matrix. PROC
SURVEYMEANS does not check the validity of the Hadamard matrix that
you provide.

The HADAMARD= input data set must contain at least H variables, where H
denotes the number of first-stage strata in your design. If the data set contains
more than H variables, the procedure uses only the first H variables. Similarly,
the HADAMARD= input data set must contain at least H observations.

If you do not specify the REPS= method-option, then the number of replicates
is taken to be the number of observations in the HADAMARD= input data set.
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If you specify the number of replicates—for example, REPS=nreps—then the
first nreps observations in the HADAMARD= data set are used to construct
the replicates.

You can specify the PRINTH option to display the Hadamard matrix that the
procedure uses to construct replicates for BRR.

OUTWEIGHTS=SAS-data-set
names a SAS data set that contains replicate weights. See the section “Balanced
Repeated Replication (BRR) Method” on page 8210 for information about
replicate weights. See the section “Replicate Weights Output Data Set” on
page 8215 for more details about the contents of the OUTWEIGHTS= data
set.

The OUTWEIGHTS= method-option is not available when you provide repli-
cate weights with the REPWEIGHTS statement.

PRINTH
displays the Hadamard matrix.

When you provide your own Hadamard matrix with the HADAMARD=
method-option, only the rows and columns of the Hadamard matrix that
are used by the procedure are displayed. See the sections “Balanced Re-
peated Replication (BRR) Method” on page 8210 and “Hadamard Matrix” on
page 8213 for details.

The PRINTH method-option is not available when you provide replicate
weights with the REPWEIGHTS statement because the procedure does not use
a Hadamard matrix in this case.

REPS=number
specifies the number of replicates for BRR variance estimation. The value of
number must be an integer greater than 1.

If you do not provide a Hadamard matrix with the HADAMARD= method-
option, the number of replicates should be greater than the number of strata
and should be a multiple of 4. See the section “Balanced Repeated Replication
(BRR) Method” on page 8210 for more information. If a Hadamard matrix
cannot be constructed for the REPS= value that you specify, the value is
increased until a Hadamard matrix of that dimension can be constructed.
Therefore, it is possible for the actual number of replicates used to be larger
than the REPS= value that you specify.

If you provide a Hadamard matrix with the HADAMARD= method-option,
the value of REPS= must not be less than the number of rows in the Hadamard
matrix. If you provide a Hadamard matrix and do not specify the REPS=
method-option, the number of replicates equals the number of rows in the
Hadamard matrix.

If you do not specify the REPS= or HADAMARD= method-option and do
not include a REPWEIGHTS statement, the number of replicates equals the
smallest multiple of 4 that is greater than the number of strata.
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If you provide replicate weights with the REPWEIGHTS statement, the proce-
dure does not use the REPS= method-option. With a REPWEIGHTS statement,
the number of replicates equals the number of REPWEIGHTS variables.

JACKKNIFE | JK < (method-options) >
requests variance estimation by the delete-1 jackknife method. See the section
“Jackknife Method” on page 8211 for details. If you provide replicate weights with
a REPWEIGHTS statement, VARMETHOD=JACKKNIFE is the default variance
estimation method.

You can specify the following method-options in parentheses following
VARMETHOD=JACKKNIFE:

DFADJ
computes the degrees of freedom as the number of nonmissing strata for an
analysis variable. The degrees of freedom for VARMETHOD=JACKKNIFE
equal the number of clusters (or number of observations if there is no clusters)
minus the number of strata (or one if there is no strata). By default, the number
of strata is based on all valid observations in the data set. But if you specify the
DFADJ method-option, PROC SURVEYMEANS does not count any empty
strata that are due to all observations containing missing values for an analysis
variable.

See the section “Degrees of Freedom” on page 8187 for more information.
See the section “Data and Sample Design Summary” on page 8218 for details
about valid observations.

The DFADJ method-option has no effect on categorical variables when you
specify the MISSING option, which treats missing values as a valid nonmissing
level.

The DFADJ method-option cannot be used when you provide replicate weights
with a REPWEIGHTS statement. When you use a REPWEIGHTS statement,
the degrees of freedom equal the number of REPWEIGHTS variables (or
replicates), unless you specify an alternative value in the DF= option in the
REPWEIGHTS statement.

OUTJKCOEFS=SAS-data-set
names a SAS data set that contains jackknife coefficients. See the section
“Jackknife Method” on page 8211 for information about jackknife coefficients.
See the section “Jackknife Coefficients Output Data Set” on page 8215 for
more details about the contents of the OUTJKCOEFS= data set.

OUTWEIGHTS=SAS-data-set
names a SAS data set that contains replicate weights. See the section “Jackknife
Method” on page 8211 for information about replicate weights. See the section
“Replicate Weights Output Data Set” on page 8215 for more details about the
contents of the OUTWEIGHTS= data set.

The OUTWEIGHTS= method-option is not available when you provide repli-
cate weights with the REPWEIGHTS statement, unless you specify a POST-
STRATA statement.
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TAYLOR
requests Taylor series variance estimation. This is the default method if you do not
specify the VARMETHOD= option or a REPWEIGHTS statement. See the section
“Taylor Series Method” on page 8186 for more information.

BY Statement
BY variables ;

You can specify a BY statement with PROC SURVEYMEANS to obtain separate analyses of observations in
groups that are defined by the BY variables. When a BY statement appears, the procedure expects the input
data set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last
one specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the SURVEYMEANS
procedure. The NOTSORTED option does not mean that the data are unsorted but rather that the
data are arranged in groups (according to values of the BY variables) and that these groups are not
necessarily in alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

Note that using a BY statement provides completely separate analyses of the BY groups. It does not provide
a statistically valid domain (subpopulation) analysis, where the total number of units in the subpopulation
is not known with certainty. You should use the DOMAIN statement to obtain domain analysis. For more
information about subpopulation analysis for sample survey data, see Cochran (1977).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

CLASS Statement
CLASS variables ;

The CLASS statement names variables to be analyzed as categorical variables. For categorical variables,
PROC SURVEYMEANS estimates the proportion in each category or level, instead of the overall mean.
PROC SURVEYMEANS always analyzes character variables as categorical. If you want categorical analysis
for a numeric variable, you must include that variable in the CLASS statement.

The CLASS variables are one or more variables in the DATA= input data set. These variables can be either
character or numeric. The formatted values of the CLASS variables determine the categorical variable
levels. Thus, you can use formats to group values into levels. See the FORMAT procedure in the Base SAS
Procedures Guide and the FORMAT statement and SAS formats in SAS Formats and Informats: Reference
for more information.
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When determining levels of a CLASS variable, an observation with missing values for this CLASS variable
is excluded, unless you specify the MISSING option. For more information, see the section “Missing Values”
on page 8182.

You can use multiple CLASS statements to specify categorical variables.

When you specify classification variables, you can use the SAS system option SUMSIZE= to limit (or to
specify) the amount of memory that is available for data analysis. See the chapter on SAS system options in
SAS System Options: Reference for a description of the SUMSIZE= option.

CLUSTER Statement
CLUSTER variables ;

The CLUSTER statement names variables that identify the clusters in a clustered sample design. The
combinations of categories of CLUSTER variables define the clusters in the sample. If there is a STRATA
statement, clusters are nested within strata.

If you provide replicate weights for BRR or jackknife variance estimation with the REPWEIGHTS statement,
you do not need to specify a CLUSTER statement.

If your sample design has clustering at multiple stages, you should identify only the first-stage clusters
(primary sampling units (PSUs)), in the CLUSTER statement. See the section “Primary Sampling Units
(PSUs)” on page 8183 for more information.

The CLUSTER variables are one or more variables in the DATA= input data set. These variables can be
either character or numeric. The formatted values of the CLUSTER variables determine the CLUSTER
variable levels. Thus, you can use formats to group values into levels. See the FORMAT procedure in the
Base SAS Procedures Guide and the FORMAT statement and SAS formats in SAS Formats and Informats:
Reference for more information.

When determining levels of a CLUSTER variable, an observation with missing values for this CLUSTER
variable is excluded, unless you specify the MISSING option. For more information, see the section “Missing
Values” on page 8182.

You can use multiple CLUSTER statements to specify cluster variables. The procedure uses variables from
all CLUSTER statements to create clusters.

DOMAIN Statement
DOMAIN variables < variable�variable variable�variable�variable . . . > < / option > ;

The DOMAIN statement requests analysis for domains (subpopulations) in addition to analysis for the entire
study population. The DOMAIN statement names the variables that identify domains, which are called
domain variables.

It is common practice to compute statistics for domains. The formation of these domains might be unrelated
to the sample design. Therefore, the sample sizes for the domains are random variables. Use a DOMAIN
statement to incorporate this variability into the variance estimation.
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Note that a DOMAIN statement is different from a BY statement. In a BY statement, you treat the sample
sizes as fixed in each subpopulation, and you perform analysis within each BY group independently. See the
section “Domain Analysis” on page 8184 for more details.

Use the DOMAIN statement on the entire data set to perform a domain analysis. Creating a new data set from
a single domain and analyzing that with PROC SURVEYMEANS yields inappropriate estimates of variance.

A domain variable can be either character or numeric. The procedure treats domain variables as categorical
variables. If a variable appears by itself in a DOMAIN statement, each level of this variable determines a
domain in the study population. If two or more variables are joined by asterisks (�), then every possible
combination of levels of these variables determines a domain. The procedure performs a descriptive analysis
within each domain that is defined by the domain variables.

When determining levels of a DOMAIN variable, an observation with missing values for this DOMAIN
variable is excluded, unless you specify the MISSING option. For more information, see the section “Missing
Values” on page 8182.

The formatted values of the domain variables determine the categorical variable levels. Thus, you can use
formats to group values into levels. See the FORMAT procedure in the Base SAS Procedures Guide and the
FORMAT statement and SAS formats in SAS Formats and Informats: Reference for more information.

You can specify the following option in the DOMAIN statement after a slash (/):

DFADJ
computes the degrees of freedom by using the number of non-empty strata for an analysis variable in a
domain.

In a domain analysis, it is possible that some strata contain no sampling units for a specific domain. Or
some strata in the domain might be empty due to missing values. By default, the procedure counts
these empty strata when computing the degrees of freedom.

However, if you specify the DFADJ option, the procedure excludes any empty strata when computing
the degrees of freedom. Prior to SAS 9.2, the procedure excluded empty strata by default.

The DFADJ option has no effect on categorical variables when you specify the MISSING option,
which treats missing values as a valid nonmissing level.

For more information about valid observations, see the section “Data and Sample Design Summary”
on page 8218. For more information about degrees of freedom, see the section “Degrees of Freedom”
on page 8187.

POSTSTRATA Statement
POSTSTRATA variables / PSTOTAL= < option > ;

POSTSTRATA variables / PSPCT= < option > ;

The POSTSTRATA statement names variables that form the poststrata to adjust the sampling weight for
analyzing the survey. The combinations of categories of POSTSTRATA variables define the poststrata in the
sample.

The POSTSTRATA variables are one or more variables in the DATA= input data set. These variables can be
either character or numeric. The formatted values of the POSTSTRATA variables determine the categorical
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levels. Thus, you can use formats to group values into levels. See the FORMAT procedure in the Base SAS
Procedures Guide and the FORMAT statement and SAS formats in SAS Formats and Informats: Reference
for more information.

You must specify either poststratification totals or poststratification proportions, but not both, in the POST-
STRATA statement after a slash (/).

PSTOTAL=SAS-data-set | values

POSTTOTAL=SAS-data-set | values

PSCONTROL=SAS-data-set | values
specifies an input data set that contains the poststratum totals or specifies the population poststratum
totals as positive values. The SURVEYMEANS procedure uses this information to compute weight
adjustment for poststratification.

You can provide poststratification totals by specifying PSTOTAL=SAS-data-set , which names a SAS
data set that contains the poststratification variables and the poststratum totals. This data set is called
the poststratum total data set.

A poststratum total data set must contain all the poststratification variables that are listed in the
POSTSTRATA statement and all the variables listed in the BY statement. If there are formats
associated with the POSTSTRATA variables and the BY variables, then the formats in the poststratum
total data set for these variables must be consistent with those in the DATA= data set in the PROC
SURVEYMEANS statement.

A poststratum total data set must have a variable named _PSTOTAL_ that contains the poststratum
totals. The value of _PSTOTAL_ must be positive.

When poststratum levels are easy to identify, their corresponding poststratum totals can be specified as
a list of positive numbers.

ORDER=FORMATTED is used to order the levels of poststratum levels.

You can separate values in the PSTOTAL= option with blanks or commas. The number of values must
equal the number of poststrata in the data. List the values in the order of the corresponding poststratum
level. The sum of the values should equal the total sampling weights.

PSPCT=SAS-data-set | values

POSTPCT=SAS-data-set | values
specifies an input data set that contains the population poststratum proportions or specifies the popula-
tion poststratum proportions as positive values. The SURVEYMEANS procedure uses this information
to compute weight adjustment for poststratification.

You can provide poststratification proportions by specifying POSTPCT=SAS-data-set , which names a
SAS data set that contains the poststratification variables and the poststratum poststratification. This
data set is called the poststratum proportion data set.

A poststratum proportion data set must contain all the poststratification variables that are listed in
the POSTSTRATA statement and all the variables listed in the BY statement. If there are formats
associated with the POSTSTRATA variables and the BY variables, then the formats in the poststratum
proportion data set for these variables must be consistent with those in the DATA= data set in the
PROC SURVEYMEANS statement.

A poststratum proportion data set must have a variable named _PSPCT_ that contains the poststratum
proportions. The value of _PSPCT_ must be positive.
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You can provide poststratum proportions either as positive decimal numbers between 0 and 1 for all
poststrata or as positive percentages that must be less than 100 for all poststrata. If any value of the
proportions is greater than 1, the procedure treats all proportions as percentages instead of decimal
numbers.

When poststratum levels are easy to identify, their corresponding poststratum proportions can be
specified as a list of positive numbers.

ORDER=FORMATTED is used to order the levels of poststratum levels.

You can separate values in the POSTPCT= option with blanks or commas. The number of values must
equal the number of poststrata in the data. List the values in the order of the corresponding poststratum
level.

If you provide the proportions as decimal numbers, then the sum of these values over all poststrata
must be 1.

If you provide the proportions as percentages, then the sum of these percentages over all poststrata
must be 100.

You can also optionally specify the following option to create an output data set to store the poststratification
weights.

OUTPSWGT=SAS-data-set

OUT=SAS-data-set
names a SAS data set to contain poststratification weights. For information about poststratification
weights, see the section “Poststratification” on page 8203.

If you also specify an OUTWEIGHTS= method-option for VARMETHOD=BRR or
VARMETHOD=JACKKNIFE in the PROC SURVEYMEANS statement, the OUTPSWGT=
option is ignored. The poststratification weights for the full sample and the replication weights adjusted
for poststratification are stored in the OUTWEIGHTS= data set.

For more information about the contents of the OUTPSWGT= data set, see the section “Poststrat-
ification Weights Output Data Set” on page 8216. For more information about the contents of the
OUTWEIGHTS= data set, see the section “Replicate Weights Output Data Set” on page 8215.

RATIO Statement
RATIO < 'label ' > variables / variables ;

The RATIO statement requests ratio analysis for means or proportions of analysis variables. A ratio statement
names the variables whose means are used as numerators or denominators in a ratio. Variables that appear
before the slash (/) are called numerator variables and are used as numerators. Variables that appear after the
slash (/) are called denominator variables and are used as denominators. These variables can be any number
of analysis variables, either continuous or categorical, except those named in the BY, CLUSTER, STRATA,
DOMAIN, POSTSTRATA, REPWEIGHTS, and WEIGHT statements.

You can optionally specify a label for each RATIO statement to identify the ratios in the output. Labels must
be enclosed in single quotes.
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The computation of ratios depends on whether the numerator and denominator variables are continuous or
categorical.

For continuous variables, ratios are calculated from the variable means. For example, for continuous variables
X, Y, Z, and T, the following RATIO statement requests that the procedure analyze the ratios Nx= Nz, Nx=Nt , Ny= Nz,
and Ny=Nt :

ratio x y / z t;

If a continuous variable appears as both a numerator and a denominator variable, the ratio of this variable to
itself is ignored.

For categorical variables, ratios are calculated with the proportions for the categories. For example, if the cat-
egorical variable Gender has the values ‘Male’ and ‘Female,’ with the proportions pm D Pr(Gender=’Male’)
and pf D Pr(Gender=’Female’), and Y is a continuous variable, then the following RATIO statement
requests that the procedure analyze the ratios pm=pf , pf =pm, Ny=pm, and Ny=pf :

ratio Gender y / Gender;

If a categorical variable appears as both a numerator and denominator variable, then the ratios of the
proportions for all categories are computed, except the ratio of each category to itself.

You can have more than one RATIO statement. Each RATIO statement produces ratios independently by
using its own numerator and denominator variables. Each RATIO statement also produces its own ratio
analysis table.

Available statistics for a ratio are as follows:

• N, number of observations used to compute the ratio

• NCLU, number of clusters

• SUMWGT, sum of weights

• RATIO, ratio

• STDERR, standard error of ratio

• VAR, variance of ratio

• T, t-value of ratio

• PROBT, p-value of t

• DF, degrees of freedom of t

• CLM, two-sided confidence limits for ratio

• UCLM, one-sided upper confidence limit for ratio

• LCLM, one-sided lower confidence limit for ratio

The procedure calculates these statistics based on the statistic-keywords that you specify in the PROC
SURVEYMEANS statement. If a statistic-keyword is not appropriate for a RATIO statement, that statistic-
keyword is ignored for the ratios. If no valid statistics are requested for a RATIO statement, the procedure
computes the ratio and its standard error by default.
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When the means or proportions for the numerator and denominator variables in a ratio are calculated, an
observation is excluded if it has a missing value for a continuous numerator or denominator variable. The
procedure also excludes an observation with a missing value for a categorical numerator or denominator
variable unless you specify the MISSING option.

When the denominator for a ratio is zero, then the value of the ratio is displayed as ‘–Infty’, ‘Infty’, or
a missing value, depending on whether the numerator is negative, positive, or zero, respectively, and the
corresponding internal value is the special missing value ‘.M’, the special missing value ‘.I’, or the usual
missing value, respectively.

REPWEIGHTS Statement
REPWEIGHTS variables < / options > ;

The REPWEIGHTS statement names variables that provide replicate weights for BRR or jackknife variance
estimation, which you request with the VARMETHOD=BRR or VARMETHOD=JACKKNIFE option in the
PROC SURVEYMEANS statement. If you do not provide replicate weights for these methods by using a
REPWEIGHTS statement, then the procedure constructs replicate weights for the analysis. See the sections
“Balanced Repeated Replication (BRR) Method” on page 8210 and “Jackknife Method” on page 8211 for
information about replicate weights.

Each REPWEIGHTS variable should contain the weights for a single replicate, and the number of replicates
equals the number of REPWEIGHTS variables. The REPWEIGHTS variables must be numeric, and the
variable values must be nonnegative numbers.

If you provide replicate weights with a REPWEIGHTS statement, you do not need to specify a CLUSTER or
STRATA statement. If you use a REPWEIGHTS statement and do not specify the VARMETHOD= option in
the PROC SURVEYMEANS statement, the procedure uses VARMETHOD=JACKKNIFE by default.

If you specify a REPWEIGHTS statement but do not include a WEIGHT statement, the procedure uses the
average of replicate weights of each observation as the observation’s weight.

You can specify the following options in the REPWEIGHTS statement after a slash (/):

DF=df
specifies the degrees of freedom for the analysis. The value of df must be a positive number. By
default, the degrees of freedom equals the number of REPWEIGHTS variables.

JKCOEFS=value
specifies a jackknife coefficient for VARMETHOD=JACKKNIFE. The coefficient value must be a
nonnegative number. See the section “Jackknife Method” on page 8211 for details about jackknife
coefficients.

You can use this option to specify a single value of the jackknife coefficient, which the procedure uses
for all replicates. To specify different coefficients for different replicates, use the JKCOEFS=values or
JKCOEFS=SAS-data-set option.

JKCOEFS=values
specifies jackknife coefficients for VARMETHOD=JACKKNIFE, where each coefficient corresponds
to an individual replicate that is identified by a REPWEIGHTS variable. You can separate values
with blanks or commas. The coefficient values must be nonnegative numbers. The number of values
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must equal the number of replicate weight variables named in the REPWEIGHTS statement. List
these values in the same order in which you list the corresponding replicate weight variables in the
REPWEIGHTS statement.

See the section “Jackknife Method” on page 8211 for details about jackknife coefficients.

To specify different coefficients for different replicates, you can also use the JKCOEFS=SAS-data-set
option. To specify a single jackknife coefficient for all replicates, use the JKCOEFS=value option.

JKCOEFS=SAS-data-set
names a SAS data set that contains the jackknife coefficients for VARMETHOD=JACKKNIFE. You
provide the jackknife coefficients in the JKCOEFS= data set variable JKCoefficient. Each coefficient
value must be a nonnegative number. The observations in the JKCOEFS= data set should correspond
to the replicates that are identified by the REPWEIGHTS variables. Arrange the coefficients or
observations in the JKCOEFS= data set in the same order in which you list the corresponding replicate
weight variables in the REPWEIGHTS statement. The number of observations in the JKCOEFS= data
set must not be less than the number of REPWEIGHTS variables.

See the section “Jackknife Method” on page 8211 for details about jackknife coefficients.

To specify different coefficients for different replicates, you can also use the JKCOEFS=values option.
To specify a single jackknife coefficient for all replicates, use the JKCOEFS=value option.

STRATA Statement
STRATA variables < / option > ;

The STRATA statement specifies variables that form the strata in a stratified sample design. The combinations
of categories of STRATA variables define the strata in the sample.

If your sample design has stratification at multiple stages, you should identify only the first-stage strata in the
STRATA statement. See the section “Specification of Population Totals and Sampling Rates” on page 8183
for more information.

If you provide replicate weights for BRR or jackknife variance estimation with the REPWEIGHTS statement,
you do not need to specify a STRATA statement.

The STRATA variables are one or more variables in the DATA= input data set. These variables can be either
character or numeric. The formatted values of the STRATA variables determine the levels. Thus, you can use
formats to group values into levels. See the FORMAT procedure in the Base SAS Procedures Guide and the
FORMAT statement and SAS formats in SAS Formats and Informats: Reference for more information.

When determining levels of a STRATA variable, an observation with missing values for this STRATA variable
is excluded, unless you specify the MISSING option. For more information, see the section “Missing Values”
on page 8182.

You can use multiple STRATA statements to specify stratum variables.

You can specify the following option in the STRATA statement after a slash (/):
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LIST
displays a “Stratum Information” table, which includes values of the STRATA variables and the number
of observations, number of clusters, population total, and sampling rate for each stratum. See the
section “Stratum Information” on page 8218 for more details.

VAR Statement
VAR variables ;

The VAR statement names the variables to be analyzed.

A variable in the VAR statement should not appear in any of the BY, CLUSTER, DOMAIN, POSTSTRATA,
REPWEIGHTS, STRATA, and WEIGHT statements.

If you want a categorical analysis for a numeric variable, you must also name that variable in the CLASS
statement. For categorical variables, PROC SURVEYMEANS estimates the proportion in each category or
level, instead of the overall mean. Character variables are always analyzed as categorical variables. For more
information, see the section “CLASS Statement” on page 8173.

When you specify a variable in a RATIO statement but not in a VAR statement, PROC SURVEYMEANS
includes this variable as an analysis variable.

If you do not specify a VAR statement, but you have a RATIO statement, then PROC SURVEYMEANS
analyzes only the variables in the RATIO statement.

If you do not specify a VAR statement nor a RATIO statement, then PROC SURVEYMEANS analyzes all
variables in the DATA= input data set, except those named in the BY, CLUSTER, DOMAIN, POSTSTRATA,
REPWEIGHTS, STRATA, and WEIGHT statements.

WEIGHT Statement
WEIGHT variable ;

The WEIGHT statement names the variable that contains the sampling weights. This variable must be numeric,
and the sampling weights must be positive numbers. If an observation has a weight that is nonpositive or
missing, then the procedure omits that observation from the analysis. See the section “Missing Values” on
page 8182 for more information. If you specify more than one WEIGHT statement, the procedure uses only
the first WEIGHT statement and ignores the rest.

If you do not specify a WEIGHT statement but provide replicate weights with a REPWEIGHTS statement,
PROC SURVEYMEANS uses the average of replicate weights of each observation as the observation’s
weight.

If you do not specify a WEIGHT statement or a REPWEIGHTS statement, PROC SURVEYMEANS assigns
all observations a weight of one.
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Details: SURVEYMEANS Procedure

Missing Values
If you have missing values in your survey data for any reason, such as nonresponse, this can compromise the
quality of your survey results. If the respondents are different from the nonrespondents with regard to a survey
effect or outcome, then survey estimates might be biased and cannot accurately represent the survey population.
There are a variety of techniques in sample design and survey operations that can reduce nonresponse. After
data collection is complete, you can use imputation to replace missing values with acceptable values,
and/or you can use sampling weight adjustments to compensate for nonresponse. You should complete this
data preparation and adjustment before you analyze your data with PROC SURVEYMEANS. For more
information, see Cochran (1977); Kalton and Kasprzyk (1986); Brick and Kalton (1996).

If an observation has a missing value or a nonpositive value for the WEIGHT variable, then that observation
is excluded from the analysis.

An observation is also excluded from the analysis if it has a missing value for any design (STRATA, CLUS-
TER, or POSTSTRATA) variable, unless you specify the MISSING option in the PROC SURVEYMEANS
statement. If you specify the MISSING option, the procedure treats missing values as a valid (nonmissing)
category for all categorical variables. An observation is also excluded from a domain analysis if it has a
missing value for a DOMAIN variable that defines a domain.

By default, when computing statistics for an analysis variable, PROC SURVEYMEANS omits observations
with missing values for that analysis variable. The procedure computes statistics for each variable based only
on observations that have nonmissing values for that variable. This treatment is based on the assumption
that the missing values are missing completely at random (MCAR). However, this assumption is sometimes
not true. For example, evidence from other surveys might suggest that observations with missing values are
systematically different from observations without missing values. If you believe that missing values are not
missing completely at random, then you can specify the NOMCAR option to let variance estimation include
these observations with missing values in the analysis variables.

Whether or not you specify the NOMCAR option, PROC SURVEYMEANS always excludes observations
that have missing or invalid values for the WEIGHT, STRATA, and CLUSTER variables unless you specify
the MISSING option. Similarly, the procedure always excludes observations that have missing or invalid
values for DOMAIN variables in domain analysis unless you specify the MISSING option.

When you specify the NOMCAR option, the procedure treats observations with and without missing values
for analysis variables as two different domains, and it performs a domain analysis in the domain of nonmissing
observations.

The procedure performs univariate analysis and analyzes each VAR variable separately. Thus, the number of
missing observations might be different for different variables. You can specify the keyword NMISS in the
PROC SURVEYMEANS statement to display the number of missing values for each analysis variable in the
“Statistics” table.

When you specify a RATIO statement, the procedure excludes any observation that has a missing value for a
continuous numerator or denominator variable. The procedure also excludes an observation with a missing
value for a categorical numerator or denominator variable unless you specify the MISSING option.

If you use a REPWEIGHTS statement, all REPWEIGHTS variables must contain nonmissing values.
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Survey Data Analysis

Specification of Population Totals and Sampling Rates

To include a finite population correction (fpc) in Taylor series variance estimation, you can input either the
sampling rate or the population total by using the RATE= or TOTAL= option in the PROC SURVEYMEANS
statement. (You cannot specify both of these options in the same PROC SURVEYMEANS statement.) The
RATE= and TOTAL= options apply only to Taylor series variance estimation. The procedure does not use a
finite population correction for BRR or jackknife variance estimation.

If you do not specify the RATE= or TOTAL= option, the Taylor series variance estimation does not include a
finite population correction. For fairly small sampling fractions, it is appropriate to ignore this correction.
For more information, see Cochran (1977); Kish (1965).

If your design has multiple stages of selection and you are specifying the RATE= option, you should input
the first-stage sampling rate, which is the ratio of the number of PSUs in the sample to the total number of
PSUs in the study population. If you are specifying the TOTAL= option for a multistage design, you should
input the total number of PSUs in the study population. See the section “Primary Sampling Units (PSUs)” on
page 8183 for more details.

For a nonstratified sample design, or for a stratified sample design with the same sampling rate or the same
population total in all strata, you can use the RATE=value or TOTAL=value option. If your sample design is
stratified with different sampling rates or population totals in different strata, use the RATE=SAS-data-set or
TOTAL=SAS-data-set option to name a SAS data set that contains the stratum sampling rates or totals. This
data set is called a secondary data set, as opposed to the primary data set that you specify with the DATA=
option.

The secondary data set must contain all the stratification variables listed in the STRATA statement and all
the variables in the BY statement. If there are formats associated with the STRATA variables and the BY
variables, then the formats must be consistent in the primary and the secondary data sets. If you specify the
TOTAL=SAS-data-set option, the secondary data set must have a variable named _TOTAL_ that contains the
stratum population totals. Or if you specify the RATE=SAS-data-set option, the secondary data set must
have a variable named _RATE_ that contains the stratum sampling rates. If the secondary data set contains
more than one observation for any one stratum, then the procedure uses the first value of _TOTAL_ or _RATE_
for that stratum and ignores the rest.

The value in the RATE= option or the values of _RATE_ in the secondary data set must be nonnegative
numbers. You can specify value as a number between 0 and 1. Or you can specify value in percentage form
as a number between 1 and 100, and PROC SURVEYMEANS converts that number to a proportion. The
procedure treats the value 1 as 100% instead of 1%.

If you specify the TOTAL=value option, value must not be less than the sample size. If you provide stratum
population totals in a secondary data set, these values must not be less than the corresponding stratum sample
sizes.

Primary Sampling Units (PSUs)

When you have clusters, or primary sampling units (PSUs), in your sample design, the procedure estimates
variance from the variation among PSUs when the Taylor series variance method is used. See the section
“Variance and Standard Error of the Mean” on page 8186 and the section “Variance and Standard Deviation
of the Total” on page 8190 for more information.
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BRR or jackknife variance estimation methods draw multiple replicates (or subsamples) from the full sample
by following a specific resampling scheme. These subsamples are constructed by deleting PSUs from the full
sample.

If you use a REPWEIGHTS statement to provide replicate weights for BRR or jackknife variance estimation,
you do not need to specify a CLUSTER statement. Otherwise, you should specify a CLUSTER statement
whenever your design includes clustering at the first stage of sampling. If you do not specify a CLUSTER
statement, then PROC SURVEYMEANS treats each observation as a PSU.

Domain Analysis

It is common practice to compute statistics for domains (subpopulations), in addition to computing statistics
for the entire study population. Analysis for domains that uses the entire sample is called domain analysis
(also called subgroup analysis, subpopulation analysis, or subdomain analysis). The formation of these
subpopulations of interest might be unrelated to the sample design. Therefore, the sample sizes for the
subpopulations might actually be random variables.

Use a DOMAIN statement to incorporate this variability into the variance estimation. Note that using a BY
statement provides completely separate analyses of the BY groups. It does not provide a statistically valid
subpopulation or domain analysis, where the total number of units in the subpopulation is not known with
certainty.

For more detailed information about domain analysis, see Kish (1965).

Statistical Computations
The SURVEYMEANS procedure uses the Taylor series (linearization) method or replication (resampling)
methods to estimate sampling errors of estimators based on complex sample designs. For more information,
see Fuller (2009); Wolter (2007); Lohr (2010); Kalton (1983); Hidiroglou, Fuller, and Hickman (1980);
Fuller et al. (1989); Lee, Forthofer, and Lorimor (1989); Cochran (1977); Kish (1965); Hansen, Hurwitz,
and Madow (1953); Rust (1985); Dippo, Fay, and Morganstein (1984); Rao and Shao (1999); Rao, Wu, and
Yue (1992); Rao and Shao (1996). You can use the VARMETHOD= option to specify a variance estimation
method to use. By default, the Taylor series method is used.

The Taylor series method obtains a linear approximation for the estimator and then uses the variance estimate
for this approximation to estimate the variance of the estimate itself (Woodruff 1971; Fuller 1975). When
there are clusters, or PSUs, in the sample design, the procedure estimates variance from the variation among
PSUs. When the design is stratified, the procedure pools stratum variance estimates to compute the overall
variance estimate. For t tests of the estimates, the degrees of freedom equal the number of clusters minus the
number of strata in the sample design.

For a multistage sample design, the Taylor series estimation depends only on the first stage of the sample
design. Therefore, the required input includes only first-stage cluster (PSU) and first-stage stratum identifica-
tion. You do not need to input design information about any additional stages of sampling. This variance
estimation method assumes that the first-stage sampling fraction is small, or that the first-stage sample is
drawn with replacement, as it often is in practice.

Quite often in complex surveys, respondents have unequal weights, which reflect unequal selection probabili-
ties and adjustments for nonresponse. In such surveys, the appropriate sampling weights must be used to
obtain valid estimates for the study population.
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However, replication methods have recently gained popularity for estimating variances in complex survey data
analysis. One reason for this popularity is the relative simplicity of replication-based estimates, especially for
nonlinear estimators; another is that modern computational capacity has made replication methods feasible
for practical survey analysis.

Replication methods draw multiple replicates (also called subsamples) from a full sample according to
a specific resampling scheme. The most commonly used resampling schemes are the balanced repeated
replication (BRR) method and the jackknife method. For each replicate, the original weights are modified for
the PSUs in the replicates to create replicate weights. The population parameters of interest are estimated by
using the replicate weights for each replicate. Then the variances of parameters of interest are estimated by
the variability among the estimates derived from these replicates. You can use a REPWEIGHTS statement to
provide your own replicate weights for variance estimation. For more information about using replication
methods to analyze sample survey data, see the section “Replication Methods for Variance Estimation” on
page 8209.

Definitions and Notation

For a stratified clustered sample design, together with the sampling weights, the sample can be represented
by an n � .P C 1/ matrix

.w;Y/ D
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whij ; yhij
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where

• h D 1; 2; : : : ;H is the stratum index

• i D 1; 2; : : : ; nh is the cluster index within stratum h

• j D 1; 2; : : : ; mhi is the unit index within cluster i of stratum h

• p D 1; 2; : : : ; P is the analysis variable number, with a total of P variables

• n D
PH
hD1

Pnh
iD1mhi is the total number of observations in the sample

• whij denotes the sampling weight for unit j in cluster i of stratum h

• yhij D
�
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; : : : ; y
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�
are the observed values of the analysis variables for unit j in cluster i

of stratum h, including both the values of numerical variables and the values of indicator variables for
levels of categorical variables.

For a categorical variable C, let l denote the number of levels of C, and denote the level values as c1; c2; : : : ; cl .
Let y.q/ .q 2 f1; 2; : : : ; P g/ be an indicator variable for the category C D ck .k D 1; 2; : : : ; l/ with the
observed value in unit j in cluster i of stratum h:

y
.q/

hij
D IfCDckg.h; i; j / D

�
1 if Chij D ck
0 otherwise

Note that the indicator variable y.q/
hij

is set to missing when Chij is missing. Therefore, the total number
of analysis variables, P, is the total number of numerical variables plus the total number of levels of all
categorical variables.
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The sampling rate fh for stratum h, which is used in Taylor series variance estimation, is the fraction of first-
stage units (PSUs) selected for the sample. You can use the TOTAL= or RATE= option to input population
totals or sampling rates. See the section “Specification of Population Totals and Sampling Rates” on page 8183
for details. If you input stratum totals, PROC SURVEYMEANS computes fh as the ratio of the stratum
sample size to the stratum total. If you input stratum sampling rates, PROC SURVEYMEANS uses these
values directly for fh. If you do not specify the TOTAL= or RATE= option, then the procedure assumes that
the stratum sampling rates fh are negligible, and a finite population correction is not used when computing
variances. Replication methods specified by the VARMETHOD=BRR or the VARMETHOD=JACKKNIFE
option do not use this finite population correction fh.

Mean

When you specify the keyword MEAN, the procedure computes the estimate of the mean (mean per element)
from the survey data. Also, the procedure computes the mean by default if you do not specify any statistic-
keywords in the PROC SURVEYMEANS statement.

PROC SURVEYMEANS computes the estimate of the mean as

bNY D
0@ HX
hD1

nhX
iD1

mhiX
jD1

whij yhij

1A = w���
where

w��� D

HX
hD1

nhX
iD1

mhiX
jD1

whij

is the sum of the weights over all observations in the sample.

Variance and Standard Error of the Mean

When you specify the keyword STDERR, the procedure computes the standard error of the mean. Also, the
procedure computes the standard error by default if you specify the keyword MEAN, or if you do not specify
any statistic-keywords in the PROC SURVEYMEANS statement. The keyword VAR requests the variance of
the mean.

Taylor Series Method
When you use VARMETHOD=TAYLOR, or by default if you do not specify the VARMETHOD= option,
PROC SURVEYMEANS uses the Taylor series method to estimate the variance of the mean bNY . The
procedure computes the estimated variance as

bV .bNY / D HX
hD1

cVh.bNY /
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where, if nh > 1, then

cVh.bNY / D nh.1 � fh/

nh � 1

nhX
iD1

.ehi � � Neh��/
2

ehi � D

0@mhiX
jD1

whij .yhij �
bNY /
1A = w���

Neh�� D

 
nhX
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!
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and if nh D 1, then

cVh.bNY / D � missing if nh0 D 1 for h0 D 1; 2; : : : ;H
0 if nh0 > 1 for some 1 � h0 � H

Replication Methods
When you specify VARMETHOD=BRR or VARMETHOD=JACKKNIFE, the procedure computes the
variance bV .bNY / with replication methods by using the variability among replicate estimates to estimate the
overall variance. See the section “Replication Methods for Variance Estimation” on page 8209 for more
details.

Standard Error
The standard error of the mean is the square root of the estimated variance.

StdErr.bNY / DqbV .bNY /
t Test for the Mean

If you specify the keyword T, PROC SURVEYMEANS computes the t-value for testing that the population
mean equals zero, H0 W NY D 0. The test statistic equals

t .bNY / D bNY = StdErr.bNY /
The two-sided p-value for this test is

Prob. jT j > jt .bNY /j /
where T is a random variable with the t distribution with df degrees of freedom.

Degrees of Freedom

PROC SURVEYMEANS computes degrees of freedom df to obtain the 100.1 � ˛/% confidence limits for
means, proportions, totals, ratios, and other statistics. The degrees of freedom computation depends on the
variance estimation method that you request. Missing values can affect the degrees of freedom computation.
See the section “Missing Values” on page 8182 for details.
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Taylor Series Variance Estimation
For the Taylor series method, PROC SURVEYMEANS calculates the degrees of freedom for the t test as the
number of clusters minus the number of strata. If there are no clusters, then the degrees of freedom equal the
number of observations minus the number of strata. If the design is not stratified, then the degrees of freedom
equal the number of PSUs minus one.

If all observations in a stratum are excluded from the analysis due to missing values, then that stratum is
called an empty stratum. Empty strata are not counted in the total number of strata for the table. Similarly,
empty clusters and missing observations are not included in the total counts of cluster and observations that
are used to compute the degrees of freedom for the analysis.

If you specify the MISSING option, missing values are treated as valid nonmissing levels for a categorical
variable and are included in computing degrees of freedom. If you specify the NOMCAR option for Taylor
series variance estimation, observations with missing values for an analysis variable are included in computing
degrees of freedom.

Replicate-Based Variance Estimation
When there is a REPWEIGHTS statement, the degrees of freedom equal the number of REPWEIGHTS
variables, unless you specify an alternative in the DF= option in a REPWEIGHTS statement.

For BRR or jackknife variance estimation without a REPWEIGHT statement, by default PROC
SURVEYMEANS computes the degrees of freedom by using all valid observations in the input data
set. A valid observation is an observation that has a positive value of the WEIGHT variable and nonmissing
values of the STRATA and CLUSTER variables unless you specify the MISSING option. See the section
“Data and Sample Design Summary” on page 8218 for details about valid observations.

For BRR variance estimation (including Fay’s method) without a REPWEIGHTS statement, PROC
SURVEYMEANS calculates the degrees of freedom as the number of strata. PROC SURVEYMEANS bases
the number of strata on all valid observations in the data set, unless you specify the DFADJ method-option
for VARMETHOD=BRR. When you specify the DFADJ option, the procedure computes the degrees of
freedom as the number of nonmissing strata for an analysis variable. This excludes any empty strata that
occur when observations with missing values of that analysis variable are removed.

For jackknife variance estimation without a REPWEIGHTS statement, PROC SURVEYMEANS calculates
the degrees of freedom as the number of clusters (or number of observations if there are no clusters) minus the
number of strata (or one if there are no strata). For jackknife variance estimation, PROC SURVEYMEANS
bases the number of strata and clusters on all valid observations in the data set, unless you specify the DFADJ
method-option for VARMETHOD=JACKKNIFE. When you specify the DFADJ option, the procedure
computes the degrees of freedom from the number of nonmissing strata and clusters for an analysis variable.
This excludes any empty strata or clusters that occur when observations with missing values of an analysis
variable are removed.

The procedure displays the degrees of freedom for the t test if you specify the keyword DF in the PROC
SURVEYMEANS statement.

Confidence Limits for the Mean

If you specify the keyword CLM, the procedure computes two-sided confidence limits for the mean. Also,
the procedure includes the confidence limits by default if you do not specify any statistic-keywords in the
PROC SURVEYMEANS statement.
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The confidence coefficient is determined by the value of the ALPHA= option, which by default equals 0.05
and produces 95% confidence limits. The confidence limits are computed as

bNY ˙ StdErr.bNY / tdf ; ˛=2
where bNY is the estimate of the mean, StdErr.bNY / is the standard error of the mean, and tdf ; ˛=2 is the
100.1 � ˛=2/ percentile of the t distribution with df calculated as in the section “t Test for the Mean” on
page 8187.

If you specify the keyword UCLM, the procedure computes the one-sided upper 100.1 � ˛/% confidence
limit for the mean:bNY C StdErr.bNY / tdf ; ˛
If you specify the keyword LCLM, the procedure computes the one-sided lower 100.1 � ˛/% confidence
limit for the mean:bNY � StdErr.bNY / tdf ; ˛

Coefficient of Variation

If you specify the keyword CV, PROC SURVEYMEANS computes the coefficient of variation, which is the
ratio of the standard error of the mean to the estimated mean:

cv. NY / D StdErr.bNY / = bNY
If you specify the keyword CVSUM, PROC SURVEYMEANS computes the coefficient of variation for the
estimated total, which is the ratio of the standard deviation of the sum to the estimated total:

cv.Y / D Std.bY / = bY
Proportions

If you specify the keyword MEAN for a categorical variable, PROC SURVEYMEANS estimates the
proportion, or relative frequency, for each level of the categorical variable. If you do not specify any statistic-
keywords in the PROC SURVEYMEANS statement, the procedure estimates the proportions for levels of the
categorical variables, together with their standard errors and confidence limits.

The procedure estimates the proportion in level ck for variable C as

Op D

PH
hD1

Pnh
iD1

Pmhi
jD1 whij y

.q/

hijPH
hD1

Pnh
iD1

Pmhi
jD1 whij

where y.q/
hij

is the value of the indicator function for level C D ck , defined in the section “Definitions and

Notation” on page 8185, and y.q/
hij

equals 1 if the observed value of variable C equals ck , and y.q/
hij

equals 0
otherwise. Since the proportion estimator is actually an estimator of the mean for an indicator variable, the
procedure computes its variance and standard error according to the method outlined in the section “Variance
and Standard Error of the Mean” on page 8186. Similarly, the procedure computes confidence limits for
proportions as in the section “Confidence Limits for the Mean” on page 8188.
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Total

If you specify the keyword SUM, the procedure computes the estimate of the population total from the survey
data. The estimate of the total is the weighted sum over the sample:

bY D HX
hD1

nhX
iD1

mhiX
jD1

whij yhij

For a categorical variable level, bY estimates its total frequency in the population.

Variance and Standard Deviation of the Total

When you specify the keyword STD or the keyword SUM, the procedure estimates the standard deviation of
the total. The keyword VARSUM requests the variance of the total.

Taylor Series Method
When you use VARMETHOD=TAYLOR, or by default, PROC SURVEYMEANS uses the Taylor series
method to estimate the variance of the total as

bV .bY / D HX
hD1

cVh.bY /
where, if nh > 1, then

cVh.bY / D nh.1 � fh/

nh � 1

nhX
iD1

.yhi � � Nyh��/
2

yhi � D

mhiX
jD1

whij yhij

Nyh�� D

 
nhX
iD1

yhi �

!
= nh

and if nh D 1, then

cVh.bY / D � missing if nh0 D 1 for h0 D 1; 2; : : : ;H
0 if nh0 > 1 for some 1 � h0 � H

Replication Methods
When you specify VARMETHOD=BRR or VARMETHOD=JACKKNIFE option, the procedure computes
the variance bV .bY / with replication methods by measuring the variability among the estimates derived from
these replicates. See the section “Replication Methods for Variance Estimation” on page 8209 for more
details.

Standard Deviation
The standard deviation of the total equals

Std.bY / DqbV .bY /



Statistical Computations F 8191

Confidence Limits for the Total

If you specify the keyword CLSUM, the procedure computes confidence limits for the total. The confidence
coefficient is determined by the value of the ALPHA= option, which by default equals 0.05 and produces
95% confidence limits. The confidence limits are computed as

bY ˙ Std.bY / tdf ; ˛=2
wherebY is the estimate of the total, Std.bY / is the estimated standard deviation, and tdf ; ˛=2 is the 100.1�˛=2/
percentile of the t distribution with df calculated as described in the section “t Test for the Mean” on page 8187.

If you specify the keyword UCLSUM, the procedure computes the one-sided upper 100.1 � ˛/% confidence
limit for the sum:

bY C Std.bY / tdf ; ˛
If you specify the keyword LCLSUM, the procedure computes the one-sided lower 100.1 � ˛/% confidence
limit for the sum:

bY � Std.bY / tdf ; ˛
Ratio

When you use a RATIO statement, the procedure produces statistics requested by the statistic-keywords in
the PROC SURVEYMEANS statement.

Suppose that you want to calculate the ratio of variable Y to variable X. Let xhij be the value of variable X
for the jth member in cluster i in the hth stratum.

The ratio of Y to X is

bR D PH
hD1

Pnh
iD1

Pmhi
jD1 whij yhijPH

hD1

Pnh
iD1

Pmhi
jD1 whij xhij

PROC SURVEYMEANS uses the Taylor series method to estimate the variance of the ratio bR as

bV .bR/ D HX
hD1

cVh.bR/
where, if nh > 1, then

cVh.bR/ D nh.1 � fh/

nh � 1

nhX
iD1

.ghi � � Ngh��/
2

ghi � D

Pmhi
jD1whij .yhij � xhij

bR/PH
hD1

Pnh
iD1

Pmhi
jD1 whij xhij

Ngh�� D

 
nhX
iD1

ghi �

!
= nh
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and if nh D 1, then

cVh.bR/ D � missing if nh0 D 1 for h0 D 1; 2; : : : ;H
0 if nh0 > 1 for some 1 � h0 � H

The standard error of the ratio is the square root of the estimated variance:

StdErr.bR/ DqbV .bR/
When the denominator for a ratio is zero, then the value of the ratio is displayed as ‘–Infty’, ‘Infty’, or
a missing value, depending on whether the numerator is negative, positive, or zero, respectively; and the
corresponding internal value is the special missing value ‘.M’, the special missing value ‘.I’, or the usual
missing value, respectively.

Domain Statistics

When you use a DOMAIN statement to request a domain analysis, the procedure computes the requested
statistics for each domain.

For a domain D, let ID be the corresponding indicator variable:

ID.h; i; j / D

�
1 if observation .h; i; j / belongs to D
0 otherwise

Let

zhij D yhij ID.h; i; j / D

�
yhij if observation .h; i; j / belongs to D
0 otherwise

Let

vhij D whij ID.h; i; j / D

�
whij if observation .h; i; j /belongs toD
0 otherwise

The requested statistics for variable y in domain D are computed by using the new weights v.

Note that zhij is set to missing if yhij represents a level of a categorical variable and yhij is missing.

Domain Mean
The estimated mean of y in the domain D is

cNYD D
0@ HX
hD1

nhX
iD1

mhiX
jD1

vhij yhij

1A = v���
where

v��� D

HX
hD1

nhX
iD1

mhiX
jD1

vhij

The variance of cNYD is estimated by

bV .cNYD/ D HX
hD1

cVh.cNYD/
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where, if nh > 1, then

cVh.cNYD/ D nh.1 � fh/

nh � 1

nhX
iD1

.rhi � � Nrh��/
2

rhi � D

0@mhiX
jD1

vhij .yhij �
cNYD/

1A = v���
Nrh�� D

 
nhX
iD1

rhi �

!
= nh

and if nh D 1, then

cVh.cNYD/ D � missing if nh0 D 1 for h0 D 1; 2; : : : ;H
0 if nh0 > 1 for some 1 � h0 � H

Domain Total
The estimated total in domain D is

bYD D HX
hD1

nhX
iD1

mhiX
jD1

vhij yhij

and its estimated variance is

bV .bYD/ D HX
hD1

cVh.bYD/
where, if nh > 1, then

cVh.bYD/ D nh.1 � fh/

nh � 1

nhX
iD1

.zhi � � Nzh��/
2

zhi � D

mhiX
jD1

vhij zhij

Nzh�� D

 
nhX
iD1

zhi �

!
= nh

and if nh D 1, then

cVh.bYD/ D � missing if nh0 D 1 for h0 D 1; 2; : : : ;H
0 if nh0 > 1 for some 1 � h0 � H
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Domain Ratio
The estimated ratio of Y to X in domain D is

bRD D PH
hD1

Pnh
iD1

Pmhi
jD1 vhij yhijPH

hD1

Pnh
iD1

Pmhi
jD1 vhij xhij

and its estimated variance is

bV .bRD/ D HX
hD1

cVh.bRD/
where, if nh > 1, then

cVh.bRD/ D nh.1 � fh/

nh � 1

nhX
iD1

.ghi � � Ngh��/
2

ghi � D

Pmhi
jD1 vhij .yhij � xhij

bRD/PH
hD1

Pnh
iD1

Pmhi
jD1 vhij xhij

Ngh�� D

 
nhX
iD1

ghi �

!
= nh

and if nh D 1, then

cVh.bRD/ D � missing if nh0 D 1 for h0 D 1; 2; : : : ;H
0 if nh0 > 1 for some 1 � h0 � H

For domain analysis with poststratification, see the section “Poststratification” on page 8203. For quantile
estimation in a domain, see the section “Domain Quantile” on page 8198. For quantile estimation in a domain
with poststratification, see the section “Domain Quantile Estimation with Poststratification” on page 8200.

Quantiles

Let Y be the variable of interest in a complex survey. Denote F.t/ D Pr.Y � t / as the cumulative distribution
function of Y. For 0 < p < 1, the pth quantile of the population cumulative distribution function is

Q.p/ D inffy W F.y/ � pg

Estimate of Quantile
Let fyhij ; whij g be the observed values for variable Y that are associated with sampling weights, where
.h; i; j / are the stratum index, cluster index, and member index, respectively, as shown in the section
“Definitions and Notation” on page 8185. Let y.1/ < y.2/ < � � � < y.n/ denote the sample order statistics for
variable Y.

An estimate of quantile Q.p/ is

OQ.p/ D

8̂̂̂<̂
ˆ̂:
y.1/ if p < OF .y.1//

y.k/ C
p � OF .y.k//

OF .y.kC1// � OF .y.k//
.y.kC1/ � y.k// if OF .y.k// � p < OF .y.kC1//

y.n/ if p D 1
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where OF .t/ is the estimated cumulative distribution for Y,

OF .t/ D

PH
hD1

Pnh
iD1

Pmhi
jD1whij I.yhij � t /PH

hD1

Pnh
iD1

Pmhi
jD1whij

and I.�/ is the indicator function.

Standard Error
When you specify VARMETHOD=TAYLOR, or by default if you do not specify the VARMETHOD= option,
PROC SURVEYMEANS uses Woodruff’s method (Dorfman and Valliant 1993; Särndal, Swensson, and
Wretman 1992; Francisco and Fuller 1991) to estimate the variances of quantiles. This method first constructs
a confidence interval on a quantile. Then it uses the width of the confidence interval to estimate the standard
error of a quantile.

In order to estimate the variance of OQ.p/, PROC SURVEYMEANS first estimates the variance of the
estimated distribution function OF . OQ.p// by

OV . OF . OQ.p/// D

HX
hD1

nh.1 � fh/

nh � 1

nhX
iD1

.ehi � � Neh��/
2

where

ehi � D

0@mhiX
jD1

whij .I.yhij � OQ.p// � OF . OQ.p///

1A = w���
Neh�� D

 
nhX
iD1

ehi �

!
= nh

w��� D

HX
hD1

nhX
iD1

mhiX
jD1

whij

Then 100.1 � ˛/% confidence limits for OF . OQ.p// can be constructed by

. OpL; OpU / D

�
OF . OQ.p// � tdf ; ˛=2

q
OV . OF . OQ.p///; OF . OQ.p//C tdf ; ˛=2

q
OV . OF . OQ.p///

�
where tdf ; ˛=2 is the 100.1 � ˛=2/ percentile of the t distribution with df degrees of freedom, described in
the section “Degrees of Freedom” on page 8187.

When . OpL; OpU / is out of the range of [0,1], the procedure does not compute the standard error of OQ.p/.

The OpLth quantile is defined as

OQ. OpL/ D

8̂̂̂<̂
ˆ̂:
y.1/ if OpL < OF .y.1//

y.kL/ C
OpL � OF .y.kL//

OF .y.kLC1// �
OF .y.kL//

.y.kLC1/ � y.kL// if OF .y.kL// � OpL < OF .y.kLC1//

y.d/ if OpL D 1
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and the OpU th quantile is defined as

OQ. OpU / D

8̂̂̂<̂
ˆ̂:
y.1/ if OpU < OF .y.1//

y.kU / C
OpU � OF .y.kU //

OF .y.kUC1// �
OF .y.kU //

.y.kUC1/ � y.kU // if OF .y.kU // � OpU < OF .y.kUC1//

y.d/ if OpU D 1

The standard error of OQ.p/ is then estimated by

Osd. OQ.p// D
OQ. OpU / � OQ. OpL/

2tdf ; ˛=2

where tdf ; ˛=2 is the 100.1 � ˛=2/ percentile of the t distribution with df degrees of freedom.

When you use the replication method, PROC SURVEYMEANS uses the usual variance estimates for a
quantile as described in the section “Replication Methods for Variance Estimation” on page 8209. However,
you should proceed cautiously, because this variance estimator can have poor properties (Dorfman and
Valliant 1993).

Confidence Limits
Symmetric 100.1 � ˛/% confidence limits are computed as�

OQ.p/ � Osd. OQ.p// tdf ; ˛=2; OQ.p/C Osd. OQ.p// tdf ; ˛=2
�

If you specify the NONSYMCL option in the PROC SURVEYMEANS statement when you use the
VARMETHOD=TAYLOR option, the procedure computes 100.1 � ˛/% nonsymmetric confidence limits:�

OQ. OpL/; OQ. OpU /
�

Quantile Estimation with Poststratification
When you specify a POSTSTRATA statement, the quantile estimation and its variance estimation incorporate
poststratification. For more information about poststratification, see the section “Poststratification” on
page 8203.

For a selected sample, let r D 1; 2; : : : ; R be the poststratum index; let Z1; Z2; : : : ; ZR be the population
totals for each corresponding poststratum, and let Ir be the indicator variable for the poststratum r that is
defined by

Ir.h; i; j / D

�
1 if observation .h; i; j / belongs to the r th poststratum
0 otherwise

Denote the total sum of original weights in the sample for each poststratum as

 r D

HX
hD1

nhX
iD1

mhiX
jD1

whij Ir.h; i; j /
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Assume that the observation (h, i, j) belongs to the rth poststratum. Then the poststratification weight for the
observation (h, i, j) is

Qwhij D whij
Zr

 r

Then the estimated cumulative distribution function of Y, OF .t/ and the estimated pth quantile estimation
OQ.p/ can be computed as in the section “Estimate of Quantile” on page 8194 by replacing the original

weights, whij , with the poststratification weights, Qwhij .

When you specify VARMETHOD=TAYLOR (or by default), the variance of OQ.p/ is estimated as in the
section “Standard Error” on page 8195, except that the variance of the estimated distribution function
OF . OQ.p// is computed as follows.

For each poststratum r D 1; 2; : : : ; r , define

O� .r/. OQ.p// D Z�1r

HX
hD1

nhX
iD1

mhiX
jD1

Ir.h; i; j / Qwhij .I.yhij � OQ.p// � OF . OQ.p///

where I.�/ is the indicator function.

Assume that the observation (h, i, j) belongs to the rth poststratum. Let

Qyhij D I.yhij � OQ.p// � OF . OQ.p// � O�
.r/. OQ.p//

PROC SURVEYMEANS estimates the variance of the estimated distribution function OF . OQ.p// with
poststratification by

OV . OF . OQ.p/// D

HX
hD1

nh.1 � fh/

nh � 1

nhX
iD1

.uhi � � Nuh��/
2

where

uhi � D

0@mhiX
jD1

Qwhij Qyhij

1A = Qw���
Nuh�� D

 
nhX
iD1

uhi �

!
= nh

Qw��� D

HX
hD1

nhX
iD1

mhiX
jD1

Qwhij
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Domain Quantile
Let Y be the variable of interest in a complex survey, and let a subpopulation of interest be domain D. Denote
FD.t/ as the cumulative distribution function of Y in domain D. For 0 < p < 1, the pth quantile of the
population cumulative distribution function is

QD.p/ D inffy W FD.y/ � pg

Let ID be the corresponding indicator variable:

ID.h; i; j / D

�
1 if observation .h; i; j / belongs to D
0 otherwise

Assume that there are a total of d observations among the n observations in the entire sample that belong to
domain D. Let y.1/ < y.2/ < � � � < y.d/ denote the order statistics of variable Y for these d observations that
fall in domain D.

The cumulative distribution function of Y in domain D is estimated by

OFD.t/ D

PH
hD1

Pnh
iD1

Pmhi
jD1whij I.yhij � t /ID.h; i; j /PH

hD1

Pnh
iD1

Pmhi
jD1whij ID.h; i; j /

and I.�/ is the indicator function. Then the estimated quantile in domain D is

OQD.p/ D

8̂̂̂<̂
ˆ̂:
y.1/ if p < OFD.y.1//

y.k/ C
p � OFD.y.k//

OFD.y.kC1// � OFD.y.k//
.y.kC1/ � y.k// if OFD.y.k// � p < OFD.y.kC1//

y.d/ if p D 1

In order to estimate the variance for OQD.p/, PROC SURVEYMEANS first estimates the variance of the
estimated distribution function OFD. OQD.p// in domain D. When you specify VARMETHOD=TAYLOR (or
by default), the variance of OFD. OQD.p// is estimated by

OV . OFD. OQD.p/// D

HX
hD1

nh.1 � fh/

nh � 1

nhX
iD1

.dhi � � Ndh��/
2

where

vhij D ID.h; i; j /whij

v��� D

HX
hD1

nhX
iD1

mhiX
jD1

vhij

dhi � D

0@mhiX
jD1

vhij .I.yhij � OQD.p// � OFD. OQD.p///

1A = v���
Ndh�� D

 
nhX
iD1

dhi �

!
= nh
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Then 100.1 � ˛/% confidence limits for OFD. OQD.p// can be constructed by . OpDL; OpDU /, where

OpDL D OFD. OQD.p// � tdf ; ˛=2

q
OV . OFD. OQD.p///

OpDU D OFD. OQD.p//C tdf ; ˛=2

q
OV . OFD. OQD.p///

and tdf ; ˛=2 is the 100.1 � ˛=2/ percentile of the t distribution with df degrees of freedom, described in
the section “Degrees of Freedom” on page 8187. When . OpDL; OpDU / is out of the range of [0,1], PROC
SURVEYMEANS does not compute the standard error of OQD.p/.

The OpDLth quantile is then estimated as

OQD. OpDL/ D

8̂̂̂<̂
ˆ̂:
y.1/ if OpDL < OFD.y.1//

y.kL/ C
. OpDL � OFD.y.kL///.y.kLC1/ � y.kL//

OFD.y.kLC1// �
OFD.y.kL//

if OFD.y.kL// � OpDL < OFD.y.kLC1//

y.d/ if OpDL D 1

The OpDU th quantile is then estimated as

OQD. OpDU / D

8̂̂̂<̂
ˆ̂:
y.1/ if OpDU < OFD.y.1//

y.kU / C
. OpDU � OFD.y.kU ///.y.kUC1/ � y.kU //

OFD.y.kUC1// �
OFD.y.kU //

if OFD.y.kU // � OpDU < OFD.y.kUC1//

y.d/ if OpDU D 1

The standard error of OQD.p/ is then estimated by

Osd. OQD.p// D
OQD. OpDU / � OQD. OpDL/

2tdf ; ˛=2

where tdf ; ˛=2 is the 100.1 � ˛=2/ percentile of the t distribution with df degrees of freedom.

Symmetric 100.1 � ˛/% confidence limits for OQD.p/ are computed as�
OQD.p/ � Osd. OQD.p// tdf ; ˛=2; OQD.p/C Osd. OQD.p// tdf ; ˛=2

�
If you specify the NONSYMCL option in the PROC SURVEYMEANS statement, the procedure displays
100.1 � ˛/% nonsymmetric confidence limits as

�
OQD. OpDL/; OQD. OpDU /

�
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Domain Quantile Estimation with Poststratification
When you specify both a POSTSTRATA statement and a DOMAIN statement, the domain quantile estimation
and its variance estimation incorporate poststratification. For more information about poststratification, see
the section “Poststratification” on page 8203.

For a selected sample, let r D 1; 2; : : : ; R be the poststratum index, let Z1; Z2; : : : ; ZR be the population
totals for each corresponding poststratum, and let Ir be the indicator variable for the poststratum r:

Ir.h; i; j / D

�
1 if observation .h; i; j / belongs to the r th poststratum
0 otherwise

The poststratification weights, Qwhij , are defined as in the section “Quantile Estimation with Poststratification”
on page 8196.

For domain D, let ID be the corresponding indicator variable:

ID.h; i; j / D

�
1 if observation .h; i; j / belongs to D
0 otherwise

With poststratification, for variable Y, the estimated cumulative distribution in domain D, OFD.t/, and its
pth quantile estimation, OQD.p/, can be computed as in the section “Domain Quantile” on page 8198 by
replacing the original weights, whij , with the poststratification weights, Qwhij . However, the variance of
OFD. OQD.p//, which is described in the section “Domain Quantile” on page 8198, is computed as follows

when you specify the VARMETHOD=TAYLOR option (or by default).

Define

O�
.r/
D . OQD.p// D Z�1r

HX
hD1

nhX
iD1

mhiX
jD1

ID.h; i; j /Ir.h; i; j / Qwhij .I.yhij � OQD.p// � OFD. OQD.p///

ONI
.r/

D D Z�1r

HX
hD1

nhX
iD1

mhiX
jD1

Ir.h; i; j / ID.h; i; j / Qwhij

O�D.p/ D

PH
hD1

Pnh
iD1

Pmhi
jD1 ID.h; i; j / Qwhij .I.yhij �

OQD.p// � OFD. OQD.p///PH
hD1

Pnh
iD1

Pmhi
jD1 ID.h; i; j / Qwhij

Assume that the observation (h, i, j) belongs to the rth poststratum. Then the variance of OFD. OQD.p// is
estimated by
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OV . OFD. OQD.p/// D

HX
hD1

nh.1 � fh/

nh � 1

nhX
iD1

.ehi � � Neh��/
2

ehij D ID.h; i; j /
�
I.yhij � OQD.p// � OFD. OQD.p//

�
� O�

.r/
D . OQD.p//

�

�
ID.h; i; j / �

ONI
.r/

D

�
O�D.p/

ehi � D

mhiX
jD1

Qwhij ehij = Qw���

Neh�� D

 
nhX
iD1

ehi �

!
= nh

Geometric Mean

For a continuous variable Y that has positive values, the SURVEYMEANS procedure can compute its
geometric mean and associated standard error and confidence limits. To request these statistics, you can
specify statistic-keywords such as GEOMEAN, GMSTDERR, and GMCLM.

The geometric mean of Y from a sample is computed as

bNY G D

0@ HY
hD1

nhY
iD1

mhiY
jD1

yhij
whij

1A 1
w���

D exp

0@ 1

w���

HX
hD1

nhX
iD1

mhiX
jD1

whij ln.yhij /

1A

where

w��� D

HX
hD1

nhX
iD1

mhiX
jD1

whij

is the sum of the weights over all observations in the data set.

When you use the Taylor series method, the variance estimation for the geometric mean is computed as

OV .bNY G/ D �bNY G�2 HX
hD1

nh.1 � fh/

nh � 1

nhX
iD1

.rhi � � Nrh��/
2



8202 F Chapter 99: The SURVEYMEANS Procedure

where

rhi � D

0@mhiX
jD1

whij .ln.yhij / � ln.bNY G//
1A = w���

Nrh�� D

 
nhX
iD1

rhi �

!
= nh

The standard error of the geometric mean is the square root of the estimated variance:

StdErr.cNYG/ Dq OV .bNY G/
The confidence limits for the geometric means are computed based on the confidence limits for the log
transformation of the Y variable as�

exp.ln.bNY G/ � /; exp.ln.bNY G/ C /
�

where

 D tdf ; ˛=2 � StdErr.cNYG/=bNY G
and tdf ; ˛=2 is the 100.1� ˛=2/ percentile of the t distribution, with df calculated as in the section “t Test for
the Mean” on page 8187.

If you use replication methods to estimate the variance by specifying VARMETHOD=BRR or
VARMETHOD=JACKKNIFE, the procedure computes the variance of a geometric means OVR.bNY G/
by using the variability among replicate estimates to estimate the overall variance. See the section
“Replication Methods for Variance Estimation” on page 8209 for more information.

Then the standard error is the square root of the estimated variance:

StdErrR.cNYG/ Dq OVR.bNY G/
The confidence limits for the geometric means are computed based on the confidence limits for the log
transformation of the variable Y as

�
exp.ln.bNY G/ � �/; exp.ln.bNY G/ C �/

�
where

� D tdf ; ˛=2 � StdErrR.cNYG/=cNYG
and tdf ; ˛=2 is the 100.1� ˛=2/ percentile of the t distribution, with df calculated as in the section “t Test for
the Mean” on page 8187.



Statistical Computations F 8203

Poststratification

After a probability sample is drawn and survey data are collected, researchers sometimes want to stratify
the sample according to auxiliary information about the sampled population. This process is often called
poststratification.

When poststratification is done properly, it can improve efficiency. It can also be used to adjust the sampling
weights such that the marginal distribution of the sampling weights is in agreement with known auxiliary
information from other resources, such as the census. The adjusted weight is often called the poststratification
weight. It is quite common for researchers to use poststratification techniques in survey data analysis.

Poststratification is also used by epidemiologists, who frequently analyze health survey data. They often
compute statistics based on a process called direct standardization, a form of poststratification. For example,
certain diseases, such as cancer, are more common among older populations. Therefore, to compare the
prevalence rates among geographic regions that are populated with different age groups, it is necessary to
make adjustments according to such demographic categories and to compute relative prevalence rates of the
diseases.

For more information about poststratification, see Fuller (2009); Lohr (2010); Wolter (2007); Rao, Yung, and
Hidiroglou (2002).

After you provide the population controls for each poststratum that is defined by the poststratification
variables, the SURVEYMEANS procedure creates the poststratification weights accordingly. Then the
procedure computes statistics that you request by using poststratification weights.

You can save the poststratification weights in an OUTPSWGT= data set to be used in subsequent analyses.

For a selected sample, let p D 1; 2; : : : ; P be the poststratum index; let Z1; Z2; : : : ; ZP be the population
totals for the corresponding poststrata; and let Ip be a corresponding indicator variable for poststratum p
defined by

Ip.h; i; j / D

�
1 if observation .h; i; j / belongs to poststratump
0 otherwise

Denote the total sum of original weights in the sample for each poststratum as

 p D

HX
hD1

nhX
iD1

mhiX
jD1

whij Ip.h; i; j /

Then the poststratification weight for observation (h, i, j) is

Qwhij D whij
Zp

 p

The SURVEYMEANS procedure computes statistics by using the poststratification weights Qwhij instead of
the original weights whij .

The standard error and confidence intervals of computed statistics are based on the estimated variances,
which are computed by using either a replication method or the Taylor series method.
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Replication Methods
When you specify VARMETHOD=BRR or VARMETHOD=JACKKNIFE, PROC SURVEYMEANS com-
putes the variance of a statistic by using replication methods, as described in the section “Replication Methods
for Variance Estimation” on page 8209. However, with poststratification, an extra step is needed to adjust the
weights.

First, PROC SURVEYMEANS constructs a replicate and computes appropriate replicate weights for the
replicate. Then, by using the poststratification control totals, the procedure adjusts these replicate weights
in the same way as described previously for constructing the poststratification weights for the full sample.
Finally, PROC SURVEYMEANS computes the estimate for a desired statistics by using the poststratification
weights that are adjusted from the replicate weights in the current replicate. Then the final variance is
estimated by the variability among replicate estimates, as described in the section “Replication Methods for
Variance Estimation” on page 8209.

Taylor Series Method
When you specify VARMETHOD=TAYLOR, or by default when you do not specify the VARMETHOD=
option, PROC SURVEYMEANS uses the Taylor series method to estimate the variances of requested
statistics.

Variance of the Mean and Sum The sum and mean of variable Y under poststratification are

OY .PS/ D

HX
hD1

nhX
iD1

mhiX
jD1

Qwhij yhij

ONY
.PS/

D OY .PS/= Qw���

where

Qw��� D

HX
hD1

nhX
iD1

mhiX
jD1

Qwhij

is the sum of the poststratification weights over all observations in the sample.

For each poststratum p D 1; 2; : : : ; P , let the mean of variable Y be

ONY
.p/
D

0@ HX
hD1

nhX
iD1

mhiX
jD1

Ip.h; i; j / Qwhij yhij

1A = Zp
where Zp is the total of the poststratification weights in poststratum p.

For observation (h, i, j), assume that it belongs to the pth poststratum. Let

Qyhij D yhij �
ONY .p/
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PROC SURVEYMEANS estimates the variance of ONY
.PS/

as

OV

�
ONY
.PS/

�
D

HX
hD1

OVh

�
ONY
.PS/

�

where, if nh > 1, then

OVh

�
ONY
.PS/

�
D

nh.1 � fh/

nh � 1

nhX
iD1

.ehi � � Neh��/
2

ehi � D

0@mhiX
jD1

Qwhij Qyhij

1A = Qw���
Neh�� D

 
nhX
iD1

ehi �

!
= nh

and if nh D 1, then

OVh

�
ONY
.PS/

�
D

�
missing if nh0 D 1 for h0 D 1; 2; : : : ;H
0 if nh0 > 1 for some 1 � h0 � H

PROC SURVEYMEANS estimates the variance of OY .PS/ as

OVh

�
OY .PS/

�
D OVh

�
ONY
.PS/

�
Qw2���

Variance of the Domain Mean and Sum For a domain D, let ID be the corresponding indicator variable:

ID.h; i; j / D

�
1 if observation .h; i; j / belongs to D
0 otherwise

Let

Qvhij D Qwhij ID.h; i; j / D

�
Qwhij if observation .h; i; j / belongs to D
0 otherwise

The sum and mean of variable Y under poststratification in domain D are

OY
.PS/
D D

HX
hD1

nhX
iD1

mhiX
jD1

Qvhij yhij

ONYD
.PS/

D OY
.PS/
D = Qv���
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where

Qv��� D

HX
hD1

nhX
iD1

mhiX
jD1

Qvhij

is the sum of the poststratification weights over all observations in the sample in domain D. For each
poststratum p D 1; 2; : : : ; P , let the mean of variable Y and the mean of the domain indicator variable in
each poststratum be

ONY
.p/

D D

0@ HX
hD1

nhX
iD1

mhiX
jD1

Ip.h; i; j / ID.h; i; j / Qwhij yhij

1A = Zp
ONI
.p/

D D

0@ HX
hD1

nhX
iD1

mhiX
jD1

Ip.h; i; j / ID.h; i; j / Qwhij

1A = Zp
Assume that the observation (h, i, j) belongs to the pth poststratum. Let

dhij D yhij ID.h; i; j / �
ONY
.p/

D

ehij D dhij �

�
ID.h; i; j / �

ONI
.p/

D

�
ONYD
.PS/

Then PROC SURVEYMEANS estimates the variance of domain sum OY .PS/D as

OV
�
OY
.PS/
D

�
D

HX
hD1

OVh

�
OY
.PS/
D

�

where, if nh > 1, then

OVh

�
OY
.PS/
D

�
D

nh.1 � fh/

nh � 1

nhX
iD1

.dhi � � Ndh��/
2

dhi � D

mhiX
jD1

Qwhijdhij

Ndh�� D

 
nhX
iD1

dhi �

!
= nh
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and if nh D 1, then

OVh

�
OY
.PS/
D

�
D

�
missing if nh0 D 1 for h0 D 1; 2; : : : ;H
0 if nh0 > 1 for some 1 � h0 � H

Then PROC SURVEYMEANS estimates the variance of domain mean ONYD
.PS/

as

OV

�
ONYD
.PS/

�
D

HX
hD1

OVh

�
ONYD
.PS/

�

where, if nh > 1, then

OVh

�
ONYD
.PS/

�
D

nh.1 � fh/

nh � 1

nhX
iD1

.ehi � � Neh��/
2

ehi � D

mhiX
jD1

Qwhij ehij = Qw���

Neh�� D

 
nhX
iD1

ehi �

!
= nh

and if nh D 1, then

OVh

�
ONYD
.PS/

�
D

�
missing if nh0 D 1 for h0 D 1; 2; : : : ;H
0 if nh0 > 1 for some 1 � h0 � H

Variance of the Ratio Suppose you want to calculate the ratio of variable Y to variable X. Let xhij and
yhij be the values of variable X and variable Y, respectively, for observation (h, i, j).

The ratio of Y to X after poststratification is

OR.PS/ D

PH
hD1

Pnh
iD1

Pmhi
jD1 Qwhij yhijPH

hD1

Pnh
iD1

Pmhi
jD1 Qwhij xhij

where Qwhij is the poststratification weight for observation .h; i; j /.

Assume that the observation (h, i, j) belongs to the pth poststratum. Let

Qyhij D yhij �
ONY .p/

Qxhij D xhij �
ONX .p/

where ONY .p/ and ONX .p/ are the means of variable Y and variable X, respectively, in poststratum p.
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The variance of OR.PS/ is estimated by

OV . OR.PS// D

HX
hD1

OVh. OR
.PS//

where, if nh > 1, then

OVh. OR
.PS// D

nh.1 � fh/

nh � 1

nhX
iD1

.ghi � � Ngh��/
2

ghi � D

Pmhi
jD1 Qwhij . Qyhij � Qxhij

OR.PS//PH
hD1

Pnh
iD1

Pmhi
jD1 Qwhij xhij

Ngh�� D

 
nhX
iD1

ghi �

!
= nh

and if nh D 1, then

OVh. OR
.PS// D

�
missing if nh0 D 1 for h0 D 1; 2; : : : ;H
0 if nh0 > 1 for some 1 � h0 � H

Variance of the Domain Ratio For a domain D, let ID be the corresponding indicator variable:

ID.h; i; j / D

�
1 if observation .h; i; j / belongs to D
0 otherwise

Let

Qvhij D Qwhij ID.h; i; j / D

�
Qwhij if observation .h; i; j / belongs to D
0 otherwise

The ratio of variable Y to variable X in domain D after poststratification is estimated by

OR
.PS/
D D

PH
hD1

Pnh
iD1

Pmhi
jD1 Qwhij yhij ID.h; i; j /PH

hD1

Pnh
iD1

Pmhi
jD1 Qwhij xhij ID.h; i; j /

For each poststratum p D 1; 2; : : : ; P , let the mean of variable X and Y in each poststratum be

ONY
.p/

D D

0@ HX
hD1

nhX
iD1

mhiX
jD1

Ip.h; i; j / Qvhij xhij

1A = Zp
ONX
.p/

D D

0@ HX
hD1

nhX
iD1

mhiX
jD1

Ip.h; i; j / Qvhij yhij

1A = Zp
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Assume that the observation (h, i, j) belongs to the pth poststratum. Let

rhij D yhij ID.h; i; j / �
ONY
.p/

D �

�
xhij ID.h; i; j / �

ONX
.p/

D

�
OR
.PS/
D

Then PROC SURVEYMEANS estimates the variance of domain ratio OR.PS/D after poststratification as

OV
�
OR
.PS/
D

�
D

HX
hD1

OVh

�
OR
.PS/
D

�

where, if nh > 1, then

OVh

�
OR
.PS/
D

�
D

nh.1 � fh/

nh � 1

nhX
iD1

.rhi � � Nrh��/
2

rhi � D

mhiX
jD1

Qwhij rhij =

HX
hD1

nhX
iD1

mhiX
jD1

Qvhij xhij

Nrh�� D

 
nhX
iD1

rhi �

!ı
nh

and if nh D 1, then

OVh

�
OR
.PS/
D

�
D

�
missing if nh0 D 1 for h0 D 1; 2; : : : ;H
0 if nh0 > 1 for some 1 � h0 � H

Replication Methods for Variance Estimation
Recently replication methods have gained popularity for estimating variances in complex survey data analysis.
One reason for this popularity is the relative simplicity of replication-based estimates, especially for nonlinear
estimators; another is that modern computational capacity has made replication methods feasible for practical
survey analysis. For more information, see Lohr (2010); Wolter (2007); Rust (1985); Dippo, Fay, and
Morganstein (1984); Rao and Shao (1999); Rao, Wu, and Yue (1992); Rao and Shao (1996).

Replication methods draw multiple replicates (also called subsamples) from a full sample according to
a specific resampling scheme. The most commonly used resampling schemes are the balanced repeated
replication (BRR) method and the jackknife method. For each replicate, the original weights are modified
for the PSUs in the replicates to create replicate weights. The statistics of interest are estimated by using
the replicate weights for each replicate. Then the variances of parameters of interest are estimated by the
variability among the estimates derived from these replicates. You can use the REPWEIGHTS statement to
provide your own replicate weights for variance estimation.



8210 F Chapter 99: The SURVEYMEANS Procedure

Balanced Repeated Replication (BRR) Method

The balanced repeated replication (BRR) method requires that the full sample be drawn by using a stratified
sample design with two primary sampling units (PSUs) per stratum. Let H be the total number of strata. The
total number of replicates R is the smallest multiple of 4 that is greater than H. However, if you prefer a larger
number of replicates, you can specify the REPS=number option. If a number � number Hadamard matrix
cannot be constructed, the number of replicates is increased until a Hadamard matrix becomes available.

Each replicate is obtained by deleting one PSU per stratum according to the corresponding Hadamard matrix
and adjusting the original weights for the remaining PSUs. The new weights are called replicate weights.

Replicates are constructed by using the first H columns of the R � R Hadamard matrix. The rth (r D
1; 2; :::; R) replicate is drawn from the full sample according to the rth row of the Hadamard matrix as
follows:

• If the .r; h/ element of the Hadamard matrix is 1, then the first PSU of stratum h is included in the rth
replicate and the second PSU of stratum h is excluded.

• If the .r; h/ element of the Hadamard matrix is –1, then the second PSU of stratum h is included in the
rth replicate and the first PSU of stratum h is excluded.

Note that the “first” and “second” PSUs are determined by data order in the input data set. Thus, if you
reorder the data set and perform the same analysis by using BRR method, you might get slightly different
results, because the contents in each replicate sample might change.

The replicate weights of the remaining PSUs in each half-sample are then doubled to their original weights.
For more details about the BRR method, see Wolter (2007) and Lohr (2010).

By default, an appropriate Hadamard matrix is generated automatically to create the replicates. You
can request that the Hadamard matrix be displayed by specifying the VARMETHOD=BRR(PRINTH)
method-option. If you provide a Hadamard matrix by specifying the VARMETHOD=BRR(HADAMARD=)
method-option, then the replicates are generated according to the provided Hadamard matrix.

You can use the VARMETHOD=BRR(OUTWEIGHTS=) method-option to save the replicate weights into a
SAS data set.

Suppose that � is a population parameter of interest. Let O� be the estimate from the full sample for � . Let
O�r be the estimate from the rth replicate subsample by using replicate weights. PROC SURVEYMEANS

estimates the variance of O� by

bV . O�/ D 1

R

RX
rD1

�
O�r � O�

�2
with H degrees of freedom, where H is the number of strata.

If a parameter cannot be computed from one or more replicates, then the variance estimate is computed by
using those replicates from which the parameter can be estimated. For example, suppose the parameter is
a ratio. If a replicate r contains observations such that the denominator of the ratio is zero, then the ratio
cannot be computed from replicate r. In this case, the BRR variance estimate is computed as

bV . O�/ D 1

R0

R0X
rD1

�
O�r � O�

�2
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where the summation is over the replicates where the parameter � can be computed, and R0 is the number of
those replicates.

Fay’s BRR Method

Fay’s method is a modification of the BRR method, and it requires a stratified sample design with two
primary sampling units (PSUs) per stratum. The total number of replicates R is the smallest multiple of 4 that
is greater than the total number of strata H. However, if you prefer a larger number of replicates, you can
specify the REPS= method-option.

For each replicate, Fay’s method uses a Fay coefficient 0 � � < 1 to impose a perturbation of the original
weights in the full sample that is gentler than using only half-samples, as in the traditional BRR method.
The Fay coefficient 0 � � < 1 can be set by specifying the FAY = � method-option. By default, � D 0:5

if the FAY method-option is specified without providing a value for � (Judkins 1990; Rao and Shao 1999).
When � D 0, Fay’s method becomes the traditional BRR method. For more details, see Dippo, Fay, and
Morganstein (1984); Fay (1984, 1989); Judkins (1990).

Let H be the number of strata. Replicates are constructed by using the first H columns of theR�R Hadamard
matrix, where R is the number of replicates, R > H . The rth (r D 1; 2; :::; R) replicate is created from the
full sample according to the rth row of the Hadamard matrix as follows:

• If the .r; h/ element of the Hadamard matrix is 1, then the full sample weight of the first PSU in stratum
h is multiplied by � and the full sample weight of the second PSU is multiplied by 2 � � to obtain the
rth replicate weights.

• If the .r; h/ element of the Hadamard matrix is –1, then the full sample weight of the first PSU in
stratum h is multiplied by 2 � � and the full sample weight of the second PSU is multiplied by � to
obtain the rth replicate weights.

You can use the VARMETHOD=BRR(OUTWEIGHTS=) method-option to save the replicate weights into a
SAS data set.

By default, an appropriate Hadamard matrix is generated automatically to create the replicates. You
can request that the Hadamard matrix be displayed by specifying the VARMETHOD=BRR(PRINTH)
method-option. If you provide a Hadamard matrix by specifying the VARMETHOD=BRR(HADAMARD=)
method-option, then the replicates are generated according to the provided Hadamard matrix.

Suppose that � is a population parameter of interest. Let O� be the estimate from the full sample for � . Let
O�r be the estimate from the rth replicate subsample by using replicate weights. PROC SURVEYMEANS

estimates the variance of O� by

bV . O�/ D 1

R.1 � �/2

RX
rD1

�
O�r � O�

�2
with H degrees of freedom, where H is the number of strata.

Jackknife Method

The jackknife method of variance estimation deletes one PSU at a time from the full sample to create
replicates. The total number of replicates R is the same as the total number of PSUs. In each replicate, the
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sample weights of the remaining PSUs are modified by the jackknife coefficient ˛r . The modified weights
are called replicate weights.

The jackknife coefficient and replicate weights are described as follows.

Without Stratification If there is no stratification in the sample design (no STRATA statement), the
jackknife coefficients ˛r are the same for all replicates:

˛r D
R � 1

R
where r D 1; 2; :::; R

Denote the original weight in the full sample for the jth member of the ith PSU as wij . If the ith PSU is
included in the rth replicate (r D 1; 2; :::; R), then the corresponding replicate weight for the jth member of
the ith PSU is defined as

w
.r/
ij D wij =˛r

With Stratification If the sample design involves stratification, each stratum must have at least two PSUs
to use the jackknife method.

Let stratum Qhr be the stratum from which a PSU is deleted for the rth replicate. Stratum Qhr is called the
donor stratum. Let n Qhr be the total number of PSUs in the donor stratum Qhr . The jackknife coefficients are
defined as

˛r D
n Qhr
� 1

n Qhr

where r D 1; 2; :::; R

Denote the original weight in the full sample for the jth member of the ith PSU as wij . If the ith PSU is
included in the rth replicate (r D 1; 2; :::; R), then the corresponding replicate weight for the jth member of
the ith PSU is defined as

w
.r/
ij D

�
wij if i th PSU is not in the donor stratum Qhr
wij =˛r if i th PSU is in the donor stratum Qhr

You can use the VARMETHOD=JACKKNIFE(OUTJKCOEFS=) method-option to save the jackknife
coefficients into a SAS data set and use the VARMETHOD=JACKKNIFE(OUTWEIGHTS=) method-option
to save the replicate weights into a SAS data set.

If you provide your own replicate weights with a REPWEIGHTS statement, then you can also provide
corresponding jackknife coefficients with the JKCOEFS= option. If you provide replicate weights but do not
provide jackknife coefficients, PROC SURVEYMEANS uses ˛r D .R � 1/=R as the jackknife coefficient
for all replicates.

Suppose that � is a population parameter of interest. Let O� be the estimate from the full sample for � . Let
O�r be the estimate from the rth replicate subsample by using replicate weights. PROC SURVEYMEANS

estimates the variance of O� by

bV . O�/ D RX
rD1

˛r

�
O�r � O�

�2
with R �H degrees of freedom, where R is the number of replicates and H is the number of strata, or R – 1
when there is no stratification.
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Hadamard Matrix

A Hadamard matrix H is a square matrix whose elements are either 1 or –1 such that

HH0 D kI

where k is the dimension of H and I is the identity matrix of order k. The order k is necessarily 1, 2, or a
positive integer that is a multiple of 4.

For example, the following matrix is a Hadamard matrix of dimension k = 8:

1 1 1 1 1 1 1 1

1 �1 1 �1 1 �1 1 �1

1 1 �1 �1 1 1 �1 �1

1 �1 �1 1 1 �1 �1 1

1 1 1 1 �1 �1 �1 �1

1 �1 1 �1 �1 1 �1 1

1 1 �1 �1 �1 �1 1 1

1 �1 �1 1 �1 1 1 �1

Computational Resources
Due to the complex nature of survey data analysis, the SURVEYMEANS procedure usually requires more
memory than an analysis by the MEANS procedure for the same analysis variables. PROC SURVEYMEANS
requires memory resources to keep a a copy of each unique value of the STRATUM, CLUSTER, and
DOMAIN variables in addition to the memory needed for the categorical analysis variables and other
computations.

The estimated memory needed by the SURVEYMEANS procedure is described as follows.

Let:

• Tstr be the total number of STRATUM variables

• Lstr.t/ be the number of unique values for the tth STRATUM variable, where t D 1; 2; : : : ; Tstr

• H be the total number of strata

• Tclu be the total number of CLUSTER variables

• Lclu.t/ be the number of unique values for the tth CLUSTER variable, where t D 1; 2; : : : ; Tclu

• Tdom be the total number of DOMAIN variables in a domain (you might have multiple domains
defined in a DOMAIN statement)

• Ldom.t/ be the number of unique values for the tth DOMAIN variable, where t D 1; 2; : : : ; Tdom

• D be the total number of domains

• Tcont be the total number of continuous analysis variables

• Tclas be the total number of categorical analysis variables (CLASS variable)
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• Lclas.t/ be the number of unique values for the tth CLASS variable, where t D 1; 2; : : : ; Tclas

• Tratio be the total number of ratios

• Tpctl be the total number of percentiles

• c be a constant on the order of 32 bytes (64 for 64-bit architectures) plus the maximum combined
unformatted and formatted length among all the STRATUM, CLUSTER, DOMAIN, and CLASS
variables

If all combinations of levels of categorical variables exist, the maximum potential memory (in bytes)
requirements for the analysis is estimated by

c � P �QC 2000 � .H C 1/ � .D C 1/ �Q

where

P D

TstrY
tD1

Lstr.t/

TcluY
tD1

Lclu.t/

TdomY
tD1

Ldom.t/

Q D Tcont C

TclasX
tD1

Lclas.t/C Tratio C Tpctl

A relatively small amount of memory, compared to the memory usage described in the preceding calculation,
is also needed for the analysis.

When the data-dependent memory usage overwhelms what is available in the computer system, the procedure
might open one or more utility files to complete the analysis. This process can be controlled by the SAS
system option SUMSIZE=, which sets the memory threshold where utility file operations begin. For best
results, set SUMSIZE= to be less than the amount of real memory that is likely to be available for the task.
See the chapter on SAS system options in SAS System Options: Reference for a description of the SUMSIZE=
option.

If PROC SURVEYMEANS reports that there is insufficient memory, increase SUMSIZE=. A SUMSIZE=
value greater than MEMSIZE= has no effect. Therefore, you might also need to increase MEMSIZE=.

The MEMSIZE option can be specified at system invocation, on the SAS command line, or in a configuration
file. However, the MEMSIZE system option is not available in some operating environments. See the SAS
Companion for your operating environment for more information and for the syntax specification.

To report a procedure’s memory consumption, you can use the FULLSTIMER option. The syntax is described
in the SAS Companion for your operating environment.

Also see the SAS System Options: Reference for more information about how to adjust your computation
resource parameters for your operating environment.

For additional information about the memory usage for categorical variables, see the section “Computa-
tional Resources” in the chapter “The MEANS Procedure” in the Base SAS Procedures Guide: Statistical
Procedures.
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Output Data Sets
You can use the Output Delivery System to create a SAS data set from any piece of PROC SURVEYMEANS
output. See the section “ODS Table Names” on page 8223 for more information.

PROC SURVEYMEANS also provides an output data set that stores the replicate weights for BRR or
jackknife variance estimation and an output data set that stores the jackknife coefficients for jackknife
variance estimation.

Replicate Weights Output Data Set

If you specify the OUTWEIGHTS= method-option for VARMETHOD=BRR or VARMETHOD=JACKKNIFE,
PROC SURVEYMEANS stores the replicate weights in an output data set. The OUTWEIGHTS= output
data set contains all observations from the DATA= input data set that are valid (used in the analysis). (A valid
observation is an observation that has a positive value of the WEIGHT variable. Valid observations must also
have nonmissing values of the STRATA and CLUSTER variables, unless you specify the MISSING option.
See the section “Data and Sample Design Summary” on page 8218 for details about valid observations.)

The OUTWEIGHTS= data set contains the following variables:

• all variables in the DATA= input data set

• RepWt_1, RepWt_2, : : :, RepWt_n, which are the replicate weight variables

where n is the total number of replicates in the analysis. Each replicate weight variable contains the replicate
weights for the corresponding replicate. Replicate weights equal zero for those observations not included in
the replicate.

After the procedure creates replicate weights for a particular input data set and survey design, you can use the
OUTWEIGHTS= method-option to store these replicate weights and then use them again in subsequent anal-
yses, either in PROC SURVEYMEANS or in the other survey procedures. You can use the REPWEIGHTS
statement to provide replicate weights for the procedure.

Jackknife Coefficients Output Data Set

If you specify the OUTJKCOEFS= method-option for VARMETHOD=JACKKNIFE, PROC
SURVEYMEANS stores the jackknife coefficients in an output data set. The OUTJKCOEFS= out-
put data set contains one observation for each replicate. The OUTJKCOEFS= data set contains the following
variables:

• Replicate, which is the replicate number for the jackknife coefficient

• JKCoefficient, which is the jackknife coefficient

• DonorStratum, which is the stratum of the PSU that was deleted to construct the replicate, if you
specify a STRATA statement

After the procedure creates jackknife coefficients for a particular input data set and survey design, you can
use the OUTJKCOEFS= method-option to store these coefficients and then use them again in subsequent
analyses, either in PROC SURVEYMEANS or in the other survey procedures. You can use the JKCOEFS=
option in the REPWEIGHTS statement to provide jackknife coefficients for the procedure.
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Poststratification Weights Output Data Set

If you specify the OUTPSWGT= option in the POSTSTRATA statement, PROC SURVEYMEANS stores the
poststratification weights in an output data set. The OUTPSWGT= output data set contains all observations
from the DATA= input data set that are valid (used in the analysis). (A valid observation is an observation
that has a positive value of the WEIGHT variable. Valid observations must also have nonmissing values of
the STRATA and CLUSTER variables, unless you specify the MISSING option. See the section “Data and
Sample Design Summary” on page 8218 for more information about valid observations.)

For VARMETHOD=TAYLOR, the OUTPSWGT= data set contains the following variables:

• all variables in the DATA= input data set

• _PSWt_, which contains poststratification weights

For VARMETHOD=BRR and VARMETHOD=JACKKNIFE, the OUTPSWGT= option is the same OUT-
WEIGHTS= method-option that you specify in the PROC SURVEYMEANS statement, except that it also
contains the variable _PSWt_, which contains poststratification weights for the full sample. The replication
weights, adjusted for poststratification, are stored in the OUTWEIGHTS= data set. See the section “Replicate
Weights Output Data Set” on page 8215 for the contents of the OUTWEIGHTS= data set.

However, if you also specify an OUTWEIGHTS= method-option in the PROC SURVEYMEANS statement
and use a different data set name, the data set in OUTPSWGT= option is ignored.

If you provide your own replicate weights by using a REPWEIGHTS statement for VARMETHOD=BRR or
VARMETHOD=JACKKNIFE, the poststratification replicate weights replace the original replicate weights
in the OUTPSWGT= data set.

Rectangular and Stacking Structures in an Output Data Set

When you use an ODS output statement to create SAS data sets for certain tables in PROC SURVEYMEANS,
there are two possible types of table structure for the output data sets: rectangular and stacking. A rectangular
structure creates one observation for each analysis variable in the data set. A stacking structure creates only
one observation in the output data set for all analysis variables.

Before SAS 9, the stacking table structure, similar to the table structure in PROC MEANS, was the default in
PROC SURVEYMEANS. Since SAS 9, the new default is to produce a rectangular table in the output data
sets. You can use the STACKING option to request that the procedure produce the output data sets by using a
stacking table structure.

The STACKING option affects the following tables:

• Domain

• Ratio

• Statistics

• StrataInfo
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Figure 99.7 and Figure 99.8 shows these two structures for analyzing the following data set:

data new;
input sex$ x;
datalines;

M 12
F 5
M 13
F 23
F 11
;

The following statements request the default rectangular structure of the output data set for the statistics table:

proc surveymeans data=new mean;
ods output statistics=rectangle;

run;

proc print data=rectangle;
run;

Figure 99.7 shows the rectangular structure.

Figure 99.7 Rectangular Structure in the Output Data Set

Rectangular Structure in the Output Data SetRectangular Structure in the Output Data Set

Obs VarName VarLevel Mean StdErr

1 x 12.800000 2.905168

2 sex F 0.600000 0.244949

3 sex M 0.400000 0.244949

The following statements specify the STACKING option to request that the output data set have a stacking
structure:

proc surveymeans data=new mean stacking;
ods output statistics=stacking;

run;

proc print data=stacking;
run;

Figure 99.8 shows the stacking structure of the output data set for the statistics table requested by the
STACKING option.

Figure 99.8 Stacking Structure in the Output Data Set Requested by the STACKING option

Stacking Structure in the Output Data SetStacking Structure in the Output Data Set

Obs x x_Mean x_StdErr sex_F sex_F_Mean sex_F_StdErr sex_M sex_M_Mean sex_M_StdErr

1 x 12.800000 2.905168 sex=F 0.600000 0.244949 sex=M 0.400000 0.244949
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Displayed Output
The SURVEYMEANS procedure produces output that is described in the following sections.

Data and Sample Design Summary

The “Data Summary” table provides information about the input data set and the sample design. This
table displays the total number of valid observations, where an observation is considered valid if it has
nonmissing values for all procedure variables other than the analysis variables—that is, for all specified
STRATA, CLUSTER, DOMAIN, POSTSTRATA, and WEIGHT variables. This number might differ from
the number of nonmissing observations for an individual analysis variable, which the procedure displays in
the “Statistics” table. See the section “Missing Values” on page 8182 for more information.

PROC SURVEYMEANS displays the following information in the “Data Summary” table:

• Number of Strata, if you specify a STRATA statement

• Number of Poststrata, if you specify a POSTSTRATA statement

• Number of Clusters, if you specify a CLUSTER statement

• Number of Observations, which is the total number of valid observations

• Sum of Weights, which is the sum over all valid observations, if you specify a WEIGHT statement

Class Level Information

If you use a CLASS statement to name classification variables for categorical analysis, or if you list any
character variables in the VAR statement, then PROC SURVEYMEANS displays a “Class Level Information”
table. This table contains the following information for each classification variable:

• CLASS Variable, which lists each CLASS variable name

• Levels, which is the number of values or levels of the classification variable

• Values, which lists the values of the classification variable. The values are separated by a white space
character; therefore, to avoid confusion, you should not include a white space character within a
classification variable value.

Stratum Information

If you specify the LIST option in the STRATA statement, PROC SURVEYMEANS displays a “Stratum
Information” table. This table displays the number of valid observations in each stratum, as well as the
number of nonmissing stratum observations for each analysis variable. The “Stratum Information” table
provides the following for each stratum:

• Stratum Index, which is a sequential stratum identification number

• STRATA variable(s), which lists the levels of STRATA variables for the stratum
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• Population Total, if you specify the TOTAL= option

• Sampling Rate, if you specify the TOTAL= or RATE= option. If you specify the TOTAL= option, the
sampling rate is based on the number of valid observations in the stratum.

• N Obs, which is the number of valid observations

• Variable, which lists each analysis variable name

• Levels, which identifies each level for categorical variables

• N, which is the number of nonmissing observations for the analysis variable

• Clusters, which is the number of clusters, if you specify a CLUSTER statement

Variance Estimation

If the variance method is not Taylor series or if the NOMCAR option is used, by default, PROC
SURVEYMEANS displays the following variance estimation specifications in the “Variance Estimation”
table:

• Method, which is the variance estimation method

• Replicate Weights Data Set, which is the name of the SAS data set that contains the replicate weights

• Number of Replicates, which is the number of replicates if you specify the VARMETHOD=BRR or
VARMETHOD=JACKKNIFE option

• Hadamard Data Set, which is the name of the SAS data set for the HADAMARD matrix if you specify
the VARMETHOD=BRR(HADAMARD=) method-option

• Fay Coefficient, which is the value of the FAY coefficient if you specify the VARMETHOD=BRR(FAY)
method-option

• Missing Levels Included (MISSING), if you specify the MISSING option

• Missing Levels Included (NOMCAR), if you specify the NOMCAR option

Statistics

The “Statistics” table displays all of the statistics that you request with statistic-keywords in the PROC
SURVEYMEANS statement, except DECILES, MEDIAN, Q1, Q3, and QUARTILES, which are displayed
in the “Quantiles” table. If you do not specify any statistic-keywords, then by default this table displays the
following information for each analysis variable: the sample size, the mean, the standard error of the mean,
and the confidence limits for the mean. The “Statistics” table can contain the following information for each
analysis variable, depending on which statistic-keywords you request:

• Variable name

• Variable Label
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• Level, which identifies each level for categorical variables

• N, which is the number of nonmissing observations

• N Miss, which is the number of missing observations

• Minimum

• Maximum

• Range

• Number of Clusters

• Sum of Weights

• DF, which is the degrees of freedom for the t test

• Mean

• Std Error of Mean, which is the standard error of the mean

• Var of Mean, which is the variance of the mean

• t Value, for testing H0 W population MEAN D 0

• Pr > j t j, which is the two-sided p-value for the t test

• 100.1 � ˛/% CL for Mean, which are two-sided confidence limits for the mean

• 100.1 � ˛/% Upper CL for Mean, which is a one-sided upper confidence limit for the mean

• 100.1 � ˛/% Lower CL for Mean, which is a one-sided lower confidence limit for the mean

• Coeff of Variation, which is the coefficient of variation for the mean

• Sum

• Std Dev, which is the standard deviation of the sum

• Var of Sum, which is the variance of the sum

• 100.1 � ˛/% CL for Sum, which are two-sided confidence limits for the sum

• 100.1 � ˛/% Upper CL for Sum, which is a one-sided upper confidence limit for the sum

• 100.1 � ˛/% Lower CL for Sum, which is a one-sided lower confidence limit for the Sum

• Coeff of Variation for sum, which is the coefficient of variation for the sum
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Quantiles

The “Quantiles” table displays all the quantiles that you request with either statistic-keywords such as
DECILES, MEDIAN, Q1, Q3, and QUARTILES, or the PERCENTILE= option, or the QUANTILE=
option in the PROC SURVEYMEANS statement.

The “Quantiles” table contains the following information for each quantile:

• Variable name

• Variable Label

• Percentile, which is the requested quantile in the format of %

• Percentile Label, which is the corresponding common name for a percentile if it exists—for example,
Median for 50th percentile

• Estimate, which is the estimate for a requested quantile with respect to the population distribution

• Std Error, which is the standard error of the quantile

• 100.1 � ˛/% Confidence Limits, which are two-sided confidence limits for the quantile

Domain Analysis

If you specify a DOMAIN statement, the procedure displays domain statistics in a “Domain Analysis” table.
A “Domain Analysis” table displays all the requested statistics for each level of the domain request. The
procedure produces a separate “Domain Analysis” for each separate domain request. For example, the
DOMAIN statement

domain A B*C*D A*C C;

specifies four domain requests:

• A: all the levels of A

• C: all the levels of C

• A*C: all the interactive levels of A and C

• B*C*D: all the interactive levels of B, C, and D

The procedure displays four “Domain Analysis” tables, one for each domain definition. If you use an ODS
OUTPUT statement to create an output data set for domain analysis, the output data set contains a variable
Domain whose values are these domain definitions. It contains all the columns in the “Statistics” table plus
columns of domain variable values.

Domain Quantiles

If you specify a DOMAIN statement, and if you request statistics by specifying either statistic-keywords such
as DECILES, MEDIAN, Q1, Q3, and QUARTILES, or the PERCENTILE= option, or the QUANTILE=
option in the PROC SURVEYMEANS statement, then the procedure displays domain quantiles in a “Domain
Quantiles” table. This table displays all the quantile statistics for each level of the domain request. It contains
all the columns in the “Quantiles” table plus columns of DOMAIN variable values.
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Ratio Analysis

The “Ratio Analysis” table displays statistics for all the ratios that you request in the RATIO statement. If you
do not specify any statistic-keywords in the PROC SURVEYMEANS statement, then by default this table
displays the ratios and standard errors. The “Ratio Analysis” table can contain the following information for
each ratio, depending on which statistic-keywords you request:

• Numerator, which identifies the numerator variable of the ratio

• Denominator, which identifies the denominator variable of the ratio

• N, which is the number of observations used in the ratio analysis

• number of Clusters

• Sum of Weights

• DF, which is the degrees of freedom for the t test

• Ratio

• Std Err of Ratio, which is the standard error of the ratio

• Var, which is the variance of the ratio

• t Value, for testing H0 W population RATIO D 0

• Pr > j t j, which is the two-sided p-value for the t test

• 100.1 � ˛/% CL for Ratio, which are two-sided confidence limits for the Ratio

• Upper 100.1 � ˛/% CL for Ratio, which are one-sided upper confidence limits for the Ratio

• Lower 100.1 � ˛/% CL for Ratio, which are one-sided lower confidence limits for the Ratio

When you use the ODS OUTPUT statement to create an output data set, if you use labels for your RATIO
statement, these labels are saved in the variable Ratio Statement in the output data set.

Domain Ratio Analysis

If you specify a DOMAIN statement with a RATIO statement, the procedure displays domain ratios in a
“Domain Ratio Analysis” table. A “Domain Ratio Analysis” table displays all the ratio statistics for each
level of the domain request. It contains all the columns in the “Ratio Analysis” table plus columns of domain
variable values.

Hadamard Matrix

If you specify the VARMETHOD=BRR(PRINTH) method-option in the PROC SURVEYMEANS statement,
PROC SURVEYMEANS displays the Hadamard matrix that is used to construct replicates for BRR variance
estimation.

If you provide a Hadamard matrix with the VARMETHOD=BRR(HADAMARD=) method-option but the
procedure does not use the entire matrix, the procedure displays only the rows and columns that are actually
used to construct replicates.
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Geometric Means

The “Geometric Means” table displays all the statistics related to geometric mean that you request with
statistic-keywords in the PROC SURVEYMEANS statement. The “Geometric Means” table can contain the
following information for each analysis variable, depending on which statistic-keywords you request:

• Variable Name

• Variable Label

• Geometric Mean

• Std Error of Geometric Mean

• 100.1 � ˛/% CL for Geometric Mean, which are two-sided confidence limits for the geometric mean

• 100.1 � ˛/% Lower CL for Geometric Mean, which is a one-sided lower confidence limit for the
geometric mean

• 100.1 � ˛/% Upper CL for Geometric Mean, which is a one-sided upper confidence limit for the
geometric mean

Domain Geometric Means

If you specify a DOMAIN statement and request any statistics related to geometric mean with statistic-
keywords in the PROC SURVEYMEANS statement, the procedure displays these statistics for each domain
level in a “Domain Geometric Means” table. It contains all the columns in the “Geometric Means” table plus
columns of domain variable values.

ODS Table Names
PROC SURVEYMEANS assigns a name to each table it creates; these names are listed in Table 99.4. You
can use these names to refer to tables when you use the Output Delivery System (ODS) to select tables
and create output data sets. For more information about ODS, see Chapter 20, “Using the Output Delivery
System.”

Table 99.4 ODS Tables Produced by PROC SURVEYMEANS

ODS Table Name Description Statement Option

ClassVarInfo Class level information CLASS Default

Domain Statistics in domains DOMAIN Default

DomainRatio Statistics for ratios in domains DOMAIN and RATIO Default

DomainGeoMeans Statistics related to geometric
means in domains

PROC and DOMAIN Keywords

DomainQuantiles Quantiles in domains DOMAIN Default

GeometricMeans Statistics related to geometric
means

PROC Keywords
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Table 99.4 (continued)

ODS Table Name Description Statement Option

HadamardMatrix Hadamard matrix PROC PRINTH

Ratio Statistics for ratios RATIO Default

Quantiles Quantiles PROC Default

Statistics Statistics PROC Default

StrataInfo Stratum information STRATA LIST

Summary Data summary PROC Default

VarianceEstimation Variance estimation PROC VARMETHOD=JK | BRR
or NOMCAR

For example, the following statements create an output data set MyStrata, which contains the StrataInfo table,
and an output data set MyStat, which contains the Statistics table for the ice cream study discussed in the
section “Stratified Sampling” on page 8157:

title1 'Analysis of Ice Cream Spending';
proc surveymeans data=IceCream total=StudentTotals;

strata Grade / list;
var Spending Group;
weight Weight;
ods output

StrataInfo = MyStrata
Statistics = MyStat;

run;

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

When ODS Graphics is enabled, you can request specific plots by specifying the PLOTS= option in the
PROC SURVEYMEANS statement.

PROC SURVEYMEANS provides a summary plot that includes a box plot and a histogram plot for continuous
analytical variables. For categorical variables, plots are available in PROC SURVEYFREQ.



Examples: SURVEYMEANS Procedure F 8225

By default, PROC SURVEYMEANS produces summary plots. When you specify a DOMAIN statement,
PROC SURVEYMEANS also produce domain plots by default. You can suppress default plots and request
specific plots by specifying the PLOTS(ONLY)= option. For more information, see the description of the
PLOTS= option.

PROC SURVEYMEANS assigns a name to each graph that it creates using ODS Graphics. You can use these
names to refer to the graphs. Table 99.5 lists the names of the graphs that PROC SURVEYMEANS generates,
together with their descriptions and the PLOTS= options (plot-requests) and statements that produce them.

Table 99.5 ODS Graphs Produced by PROC SURVEYMEANS

ODS Graph Name Description PLOTS= Option Statement

BoxPlot Box plots BOXPLOT PROC
DomainPlot Box plots for domain statistics for

each domain definition
DOMAIN DOMAIN

Histogram Histograms with overlaid kernel
densities and normal densities

HISTOGRAM PROC

SummaryPanel Histograms with overlaid kernel
densities and normal densities,
and box plots in a single panel

SUMMARY PROC

Examples: SURVEYMEANS Procedure
The section “Getting Started: SURVEYMEANS Procedure” on page 8154 contains examples of analyzing
data from simple random sampling and stratified simple random sample designs. This section provides more
examples that illustrate how to use PROC SURVEYMEANS.

Example 99.1: Stratified Cluster Sample Design
Consider the example in the section “Stratified Sampling” on page 8157. The study population is a junior
high school with a total of 4,000 students in grades 7, 8, and 9. Researchers want to know how much these
students spend weekly for ice cream, on the average, and what percentage of students spend at least $10
weekly for ice cream.

The example in the section “Stratified Sampling” on page 8157 assumes that the sample of students was
selected using a stratified simple random sample design. This example shows analysis based on a more
complex sample design.

Suppose that every student belongs to a study group and that study groups are formed within each grade
level. Each study group contains between two and four students. Table 99.6 shows the total number of study
groups for each grade.
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Table 99.6 Study Groups and Students by Grade

Grade Number of Study Groups Number of Students

7 608 1,824
8 252 1,025
9 403 1,151

Total 1263 4,000

It is quicker and more convenient to collect data from students in the same study group than to collect data
from students individually. Therefore, this study uses a stratified clustered sample design. The primary
sampling units, or clusters, are study groups. The list of all study groups in the school is stratified by grade
level. From each grade level, a sample of study groups is randomly selected, and all students in each selected
study group are interviewed. The sample consists of eight study groups from the 7th grade, three groups
from the 8th grade, and five groups from the 9th grade.

The SAS data set IceCreamStudy saves the responses of the selected students:

data IceCreamStudy;
input Grade StudyGroup Spending @@;
if (Spending < 10) then Group='less';

else Group='more';
datalines;

7 34 7 7 34 7 7 412 4 9 27 14
7 34 2 9 230 15 9 27 15 7 501 2
9 230 8 9 230 7 7 501 3 8 59 20
7 403 4 7 403 11 8 59 13 8 59 17
8 143 12 8 143 16 8 59 18 9 235 9
8 143 10 9 312 8 9 235 6 9 235 11
9 312 10 7 321 6 8 156 19 8 156 14
7 321 3 7 321 12 7 489 2 7 489 9
7 78 1 7 78 10 7 489 2 7 156 1
7 78 6 7 412 6 7 156 2 9 301 8
;

In the data set IceCreamStudy, the variable Grade contains a student’s grade. The variable StudyGroup
identifies a student’s study group. It is possible for students from different grades to have the same study
group number because study groups are sequentially numbered within each grade. The variable Spending
contains a student’s response regarding how much he spends per week for ice cream, in dollars. The variable
GROUP indicates whether a student spends at least $10 weekly for ice cream. It is not necessary to store the
data in order of grade and study group.

The SAS data set StudyGroup is created to provide PROC SURVEYMEANS with the sample design
information shown in Table 99.6:

data StudyGroups;
input Grade _total_;
datalines;

7 608
8 252
9 403
;
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The variable Grade identifies the strata, and the variable _TOTAL_ contains the total number of study groups
in each stratum. As discussed in the section “Specification of Population Totals and Sampling Rates” on
page 8183, the population totals stored in the variable _TOTAL_ should be expressed in terms of the primary
sampling units (PSUs), which are study groups in this example. Therefore, the variable _TOTAL_ contains
the total number of study groups for each grade, rather than the total number of students.

In order to obtain unbiased estimates, you create sampling weights by using the following SAS statements:

data IceCreamStudy;
set IceCreamStudy;
if Grade=7 then Prob=8/608;
if Grade=8 then Prob=3/252;
if Grade=9 then Prob=5/403;
Weight=1/Prob;

run;

The sampling weights are the reciprocals of the probabilities of selections. The variable Weight contains the
sampling weights. Because the sampling design is clustered and all students from each selected cluster are
interviewed, the sampling weights equal the inverse of the cluster (or study group) selection probabilities.

The following SAS statements perform the analysis for this sample design:

title1 'Analysis of Ice Cream Spending';
proc surveymeans data=IceCreamStudy total=StudyGroups;

strata Grade / list;
cluster StudyGroup;
var Spending Group;
weight Weight;

run;

Output 99.1.1 provides information about the sample design and the input data set. There are three strata in
the sample design, and the sample contains 16 clusters and 40 observations. The variable Group has two
levels, ‘less’ and ‘more.’

Output 99.1.1 Data Summary and Class Information

Analysis of Ice Cream Spending

The SURVEYMEANS Procedure

Analysis of Ice Cream Spending

The SURVEYMEANS Procedure

Data Summary

Number of Strata 3

Number of Clusters 16

Number of Observations 40

Sum of Weights 3162.6

Class Level Information

CLASS
Variable Levels Values

Group 2 less more

Output 99.1.2 displays information for each stratum. Since the primary sampling units in this design are
study groups, the population totals shown in Output 99.1.2 are the total numbers of study groups for each
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stratum or grade. This differs from Output 99.4, which provides the population totals in terms of students
since students were the primary sampling units for that design. Output 99.1.2 also displays the number of
clusters for each stratum and analysis variable.

Output 99.1.2 Stratum Information

Stratum Information

Stratum
Index Grade

Population
Total

Sampling
Rate N Obs Variable Level N Clusters

1 7 608 1.32% 20 Spending 20 8

Group less 17 8

more 3 3

2 8 252 1.19% 9 Spending 9 3

Group less 0 0

more 9 3

3 9 403 1.24% 11 Spending 11 5

Group less 6 4

more 5 4

Output 99.1.3 displays the estimates of the average weekly ice cream expenditure and the percentage of
students spending at least $10 weekly for ice cream.

Output 99.1.3 Statistics

Statistics

Variable Level N Mean
Std Error

of Mean 95% CL for Mean

Spending 40 8.923860 0.650859 7.51776370 10.3299565

Group less 23 0.561437 0.056368 0.43966057 0.6832130

more 17 0.438563 0.056368 0.31678698 0.5603394

Example 99.2: Domain Analysis
Suppose that you are studying profiles of 800 top-performing companies to provide information about their
impact on the economy. You are also interested in the company profiles within each market type. A sample of
66 companies is selected with unequal probability across market types. However, market type is not included
in the sample design. Thus, the number of companies within each market type is a random variable in your
sample. To obtain statistics within each market type, you should use domain analysis. The data of the 66
companies are saved in the following data set:

data Company;
length Type $14;
input Type$ Asset Sale Value Profit Employee Weight;
datalines;

Other 2764.0 1828.0 1850.3 144.0 18.7 9.6
Energy 13246.2 4633.5 4387.7 462.9 24.3 42.6
Finance 3597.7 377.8 93.0 14.0 1.1 12.2
Transportation 6646.1 6414.2 2377.5 348.2 47.1 21.8
HiTech 1068.4 1689.8 1430.2 72.9 4.6 4.3
Manufacturing 1125.0 1719.4 1057.5 98.1 20.4 4.5
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Other 1459.0 1241.4 452.7 24.5 20.1 5.5
Finance 2672.3 262.5 296.2 23.1 2.2 9.3
Finance 311.0 566.2 932.0 52.8 2.7 1.9
Energy 1148.6 1014.6 485.1 60.6 4.0 4.5
Finance 5327.0 572.4 372.9 25.2 4.2 17.7
Energy 1602.7 678.4 653.0 75.6 2.8 6.0
Energy 5808.8 1288.4 2007.0 318.8 5.9 19.2
Medical 268.8 204.4 820.9 45.6 3.7 1.8
Transportation 5222.6 2627.8 1910.0 245.6 22.8 17.4
Other 872.7 1419.4 939.3 69.7 12.2 3.7
Retail 4461.7 8946.8 4662.7 289.0 132.1 15.0
HiTech 6719.2 6942.0 8240.2 381.3 85.8 22.1
Retail 833.4 1538.8 1090.3 64.9 15.4 3.5
Finance 415.9 167.3 1126.8 56.8 0.7 2.2
HiTech 442.4 1139.9 1039.9 57.6 22.7 2.3
Other 801.5 1157.0 664.2 56.9 15.5 3.4
Finance 4954.8 468.8 366.4 41.7 3.0 16.5
Finance 2661.9 257.9 181.1 21.2 2.1 9.3
Finance 5345.8 530.1 337.4 36.4 4.3 17.8
Energy 3334.3 1644.7 1407.8 157.6 6.4 11.4
Manufacturing 1826.6 2671.7 483.2 71.3 25.3 6.7
Retail 618.8 2354.7 767.7 58.6 19.0 2.9
Retail 1529.1 6534.0 826.3 58.3 65.8 5.7
Manufacturing 4458.4 4824.5 3132.1 28.9 67.0 15.0
HiTech 5831.7 6611.1 9464.7 459.6 86.7 19.3
Medical 6468.3 4199.2 3170.4 270.1 59.5 21.3
Energy 1720.7 473.1 811.1 86.6 1.6 6.3
Energy 1679.7 1379.9 721.1 91.8 4.5 6.2
Retail 4018.2 16823.4 2038.3 178.1 162.0 13.6
Other 227.1 575.8 1083.8 62.6 1.9 1.6
Finance 3872.8 362.0 209.3 27.6 2.4 13.1
Retail 3359.3 4844.7 2651.4 224.1 75.6 11.5
Energy 1295.6 356.9 180.8 162.3 0.6 5.0
Energy 1658.0 626.6 688.0 126.0 3.5 6.1
Finance 12156.7 1345.5 680.7 106.6 9.4 39.2
HiTech 3982.6 4196.0 3946.8 313.9 64.3 13.5
Finance 8760.7 886.4 1006.9 90.0 7.5 28.5
Manufacturing 2362.2 3153.3 1080.0 137.0 25.2 8.4
Transportation 2499.9 3419.0 992.6 47.2 25.3 8.8
Energy 1430.4 1610.0 664.3 77.7 3.5 5.4
Energy 13666.5 15465.4 2736.7 411.4 26.6 43.9
Manufacturing 4069.3 4174.7 2907.6 289.2 38.2 13.7
Energy 2924.7 711.9 1067.8 146.7 3.4 10.1
Transportation 1262.1 1716.0 364.3 71.2 14.5 4.9
Medical 684.4 672.9 287.4 61.8 6.0 3.1
Energy 3069.3 1719.0 1439.0 196.4 4.9 10.6
Medical 246.5 318.8 924.1 43.8 3.1 1.7
Finance 11562.2 1128.5 580.4 64.2 6.7 37.3
Finance 9316.0 1059.4 816.5 95.9 8.0 30.2
Retail 1094.3 3848.0 563.3 29.4 44.7 4.4
Retail 1102.1 4878.3 932.4 65.2 47.3 4.4
HiTech 466.4 675.8 845.7 64.5 5.2 2.4
Manufacturing 10839.4 5468.7 1895.4 232.8 47.8 35.0
Manufacturing 733.5 2135.3 96.6 10.9 2.7 3.2
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Manufacturing 10354.2 14477.4 5607.2 321.9 188.5 33.5
Energy 1902.1 2697.9 329.3 34.2 2.2 6.9
Other 2245.2 2132.2 2230.4 198.9 8.0 8.0
Transportation 949.4 1248.3 298.9 35.4 10.4 3.9
Retail 2834.4 2884.6 458.2 41.2 49.8 9.8
Retail 2621.1 6173.8 1992.7 183.7 115.1 9.2
;

For each company in your sample, the variables are defined as follows:

• Type identifies the type of market for the company.

• Asset contains the company’s assets, in millions of dollars.

• Sale contains sales, in millions of dollars.

• Value contains the market value of the company, in millions of dollars.

• Profit contains the profit, in millions of dollars.

• Employee contains the number of employees, in thousands.

• Weight contains the sampling weight.

The following SAS statements use PROC SURVEYMEANS to perform the domain analysis, estimating
means, and other statistics for the overall population and also for the subpopulations (or domain) defined by
market type. The DOMAIN statement specifies Type as the domain variable:

ods graphics on;
title 'Top Companies Profile Study';
proc surveymeans data=Company total=800 mean sum;

var Asset;
weight Weight;
domain Type;

run;
ods graphics off;

Output 99.2.1 shows that there are 66 observations in the sample. The sum of the sampling weights equals
799.8, which is close to the total number of companies in the study population.

Output 99.2.1 Company Profile Study

Top Companies Profile Study

The SURVEYMEANS Procedure

Top Companies Profile Study

The SURVEYMEANS Procedure

Data Summary

Number of Observations 66

Sum of Weights 799.8

Statistics

Variable Mean
Std Error

of Mean Sum Std Dev

Asset 6523.488510 720.557075 5217486 1073829
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The “Statistics” table in Output 99.2.1 displays the estimates of the mean and total for all analysis variables
for the entire set of 800 companies, while Output 99.2.2 shows the mean and total estimates for each company
type.

When ODS Graphics is enabled, PROC SURVEYMEANS also displays Figure 99.2.3, which depicts the
domain statistics for each company type in addition to the statistics in the full sample.

Output 99.2.2 Domain Analysis for Company Profile Study

Top Companies Profile Study

The SURVEYMEANS Procedure

Top Companies Profile Study

The SURVEYMEANS Procedure

Domain Statistics in Type

Type Variable Mean
Std Error of

Mean Sum Std Dev

Energy Asset 7868.302932 1941.699163 1449341 785962

Finance Asset 7890.190264 1057.185336 1855773 704506

HiTech Asset 5031.959781 732.436967 321542 183302

Manufacturing Asset 7403.004250 1454.921083 888361 492577

Medical Asset 5046.570609 1218.444638 140799 131942

Other Asset 1850.250000 338.128984 58838 31375

Retail Asset 2939.845750 393.692369 235188 94605

Transportation Asset 4712.047359 888.954411 267644 163516

Output 99.2.3 Domain Analysis for Company Profile Study
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Example 99.3: Ratio Analysis
Suppose you are interested in the profit per employee and the sale per employee among the 800 top-performing
companies in the data in the previous example. The following SAS statements illustrate how you can use
PROC SURVEYMEANS to estimate these ratios:

title 'Ratio Analysis in Top Companies Profile Study';
proc surveymeans data=Company total=800 ratio;

var Profit Sale Employee;
weight Weight;
ratio Profit Sale / Employee;

run;

The RATIO statement requests the ratio of the profit and the sales to the number of employees.

Output 99.3.1 shows the estimated ratios and their standard errors. Because the profit and the sales figures
are in millions of dollars, and the employee numbers are in thousands, the profit per employee is estimated as
$5,120 with a standard error of $1,059, and the sales per employee are $114,332 with a standard error of
$20,503.

Output 99.3.1 Estimate Ratios

Ratio Analysis in Top Companies Profile Study

The SURVEYMEANS Procedure

Ratio Analysis in Top Companies Profile Study

The SURVEYMEANS Procedure

Ratio Analysis

Numerator Denominator Ratio Std Err

Sale Employee 114.332497 20.502742

Profit Employee 5.119698 1.058939

Example 99.4: Analyzing Survey Data with Missing Values
As described in the section “Missing Values” on page 8182, the SURVEYMEANS procedure excludes an
observation from the analysis if it has a missing value for the analysis variable or a nonpositive value for the
WEIGHT variable.

However, if there is evidence indicating that the nonrespondents are different from the respondents for your
study, you can use the NOMCAR option to compute descriptive statistics among respondents while still
counting the number of nonrespondents.

This example continues the ice cream example in the section “Stratified Sampling” on page 8157 to illustrate
how to perform a similar analysis when you have missing values.

Suppose that some of the students failed to provide the amounts spent on ice cream, as shown in the following
data set, IceCream:

data IceCream;
input Grade Spending @@;
if Grade=7 then Prob=20/1824;
if Grade=8 then Prob=9/1025;
if Grade=9 then Prob=11/1151;
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Weight=1/Prob;
datalines;

7 7 7 7 8 . 9 10 7 . 7 10 7 3 8 20 8 19 7 2
7 . 9 15 8 16 7 6 7 6 7 6 9 15 8 17 8 14 9 .
9 8 9 7 7 3 7 12 7 4 9 14 8 18 9 9 7 2 7 1
7 4 7 11 9 8 8 . 8 13 7 . 9 . 9 11 7 2 7 9
;

data StudentTotals;
input Grade _total_;
datalines;

7 1824
8 1025
9 1151
;

Considering the possibility that those students who did not respond spend differently than those students who
did respond, you can use the NOMCAR option to request the analysis to treat the respondents as a domain
rather than exclude the nonrespondents.

The following SAS statements produce the desired analysis:

title 'Analysis of Ice Cream Spending';
proc surveymeans data=IceCream total=StudentTotals nomcar mean sum;

strata Grade;
var Spending;
weight Weight;

run;

Output 99.4.1 summarizes the analysis including the variance estimation method.

Output 99.4.1 Analysis of Incomplete Ice Cream Data Excluding Observations with Missing Values

Analysis of Ice Cream Spending

The SURVEYMEANS Procedure

Analysis of Ice Cream Spending

The SURVEYMEANS Procedure

Data Summary

Number of Strata 3

Number of Observations 40

Sum of Weights 4000

Variance Estimation

Method Taylor Series

Missing Values NOMCAR

Output 99.4.2 shows the mean and total estimates when treating respondents as a domain in the student
population. Although the point estimates are the same as the analysis without the NOMCAR option, for this
particular example, the variance estimations are slightly higher when you assume that the missingness is not
completely at random.
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Output 99.4.2 Analysis of Incomplete Ice Cream Data Excluding Observations with Missing Values

Statistics

Variable Mean
Std Error

of Mean Sum Std Dev

Spending 9.770542 0.652347 32139 3515.126876

Example 99.5: Variance Estimation Using Replication Methods
In order to improve service, the San Francisco Municipal Railway (MUNI) conducts a survey to estimated
passenger’s average waiting time for MUNI’s subway system.

The study uses a stratified cluster sample design. Each MUNI subway line is a stratum. The subway lines
included in the study are ‘J-Church,’ ‘K-Ingleside,’ ‘L-Taraval,’ ‘M-Ocean View,’ ‘N-Judah,’ and the street
car ‘F-Market & Wharves.’ The MUNI vehicles in service for these lines during a day are primary sampling
units. Within each stratum, two vehicles (PSUs) are randomly selected. Then the waiting times of passengers
for a selected MUNI vehicle are collected.

Table 99.7 shows the number of passengers that are interviewed in each of the selected MUNI vehicles.

Table 99.7 The Sample of the MUNI Waiting Time Study

MUNI Line Vehicle Number of Passengers

F-Market & Wharves 1 65
2 102

J-Church 1 101
2 142

K-Ingleside 1 145
2 180

L-Taraval 1 135
2 185

M-Ocean View 1 139
2 203

N-Judah 1 306
2 234

The collected data are saved in the SAS data set MUNIsurvey. The variable Line indicates which MUNI line
a passenger is riding. The variable vehicle identifies the vehicle that a passenger is boarding. The variable
Waittime is the time (in minutes) that a passenger waited. The variable weight contains the sampling weights,
which are determined by selection probabilities within each stratum.

Output 99.5.1 displays the first 10 observations of the data set MUNIsurvey.
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Output 99.5.1 First 10 Observations in the Data Set from the MUNI Subway Survey

MUNI Subway Passenger Waiting Time Survey DataMUNI Subway Passenger Waiting Time Survey Data

Obs line vehicle passenger waittime weight

1 F-Market & Wharves 1 1 18 59

2 F-Market & Wharves 1 2 0 59

3 F-Market & Wharves 1 3 16 59

4 F-Market & Wharves 1 4 13 59

5 F-Market & Wharves 1 5 5 59

6 F-Market & Wharves 1 6 13 59

7 F-Market & Wharves 1 7 7 59

8 F-Market & Wharves 1 8 5 59

9 F-Market & Wharves 1 9 16 59

10 F-Market & Wharves 1 10 5 59

Using the VARMETHOD=BRR option, the following SAS statements analyze the MUNI subway survey by
using the BRR method to estimate the variance:

title 'MUNI Passenger Waiting Time Analysis Using BRR';
proc surveymeans data=MUNIsurvey mean varmethod=brr mean clm;

strata line;
cluster vehicle;
var waittime;
weight weight;

run;

The STRATUM variable is line, which corresponds to MUNI lines. The two clusters within each stratum are
identified by the variable vehicle. The sampling weights are stored in the variable weight. The mean and
confident limits for passenger waiting time (in minutes) are requested statistics.

Output 99.5.2 summarizes the data and indicates that the variance estimation method is BRR with 8 replicates.

Output 99.5.2 MUNI Passenger Waiting Time Analysis Using the BRR Method

MUNI Passenger Waiting Time Analysis Using BRR

The SURVEYMEANS Procedure

MUNI Passenger Waiting Time Analysis Using BRR

The SURVEYMEANS Procedure

Data Summary

Number of Strata 6

Number of Clusters 12

Number of Observations 1937

Sum of Weights 143040

Variance Estimation

Method BRR

Number of Replicates 8

Output 99.5.3 reports that the average passenger waiting time for a MUNI vehicle is 7.33 minutes, with
an estimated standard of 0.24 minutes, using the BRR method. The 95% confident limits for the mean are
estimated as 6.75 to 7.91 minutes.
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Output 99.5.3 MUNI Passenger Waiting Time Analysis Using the BRR Method

Statistics

Variable Mean
Std Error

of Mean 95% CL for Mean

waittime 7.333012 0.237557 6.75172983 7.91429366

Alternatively, the variance can be estimated using the jackknife method if the VARMETHOD=JACKKNIFE
option is used. The following SAS statements analyze the MUNI subway survey by using the jackknife
method to estimate the variance:

title 'MUNI Passenger Waiting Time Analysis Using Jackknife';
proc surveymeans data=MUNIsurvey mean varmethod=jackknife mean clm;

strata line;
cluster vehicle;
var waittime;
weight weight;

run;

Output 99.5.4 summarizes the data and indicates that the variance estimation method is jackknife with 12
replicates.

Output 99.5.4 MUNI Passenger Waiting Time Analysis Using the Jackknife Method

MUNI Passenger Waiting Time Analysis Using Jackknife

The SURVEYMEANS Procedure

MUNI Passenger Waiting Time Analysis Using Jackknife

The SURVEYMEANS Procedure

Data Summary

Number of Strata 6

Number of Clusters 12

Number of Observations 1937

Sum of Weights 143040

Variance Estimation

Method Jackknife

Number of Replicates 12

Output 99.5.5 reports the statistics computed using the jackknife method. Although the average passenger
waiting time remains the same (7.33 minutes), the standard error is slightly smaller 0.23 minutes when the
jackknife method is used, as opposed to 0.24 minutes when the BRR method is used. The 95% confidence
limits are between 6.76 and 7.90 minutes when the jackknife method is used.

Output 99.5.5 MUNI Passenger Waiting Time Analysis Using the Jackknife Method

Statistics

Variable Mean
Std Error

of Mean 95% CL for Mean

waittime 7.333012 0.232211 6.76481105 7.90121244
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Overview: SURVEYPHREG Procedure
The SURVEYPHREG procedure performs regression analysis based on the Cox proportional hazards model
for sample survey data. Cox’s semiparametric model is widely used in the analysis of survival data to
estimate hazard rates when adequate explanatory variables are available. The procedure provides design-
based variance estimates, confidence intervals, and hypothesis tests concerning the parameters and model
effects. See Chapter 3, “Introduction to Statistical Modeling with SAS/STAT Software,” and Chapter 14,
“Introduction to Survey Procedures,” for an introduction to the basic concepts of survey data analysis; see
Chapter 13, “Introduction to Survival Analysis Procedures,” for an introduction to the basic concepts of
survival analysis.

The survival time of each member of a finite population is assumed to follow its own hazard function, �i .t/,
expressed as

�i .t/ D �.t IZi .t// D �0.t/ exp.Z0i .t/ˇ/

where �0.t/ is an arbitrary and unspecified baseline hazard function, Zi .t/ is the vector of explanatory
variables for the ith population unit at time t, and ˇ is the vector of unknown regression parameters.

The finite population regression parameter ˇN is defined as the maximizer of the partial log likelihood when
the entire finite population is observed. The SURVEYPHREG procedure produces a sample-based estimate
Ǒ of the proportional hazards regression parameters ˇN for the finite population by maximizing the partial

pseudo-log-likelihood l�.ˇIZi .t/; ti / based on observed covariates Zi .t/ and observed survival time ti . The
procedure also produces an estimate of the sampling variance V. ǑjFN /, which assumes that the values of
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the finite population FN are fixed. For statistical inference, PROC SURVEYPHREG incorporates complex
survey sample designs, including designs with stratification, clustering, and unequal weighting.

The procedure also allows time-dependent explanatory variables. An explanatory variable is time-dependent
if its value for any given individual can change over time. Time-dependent variables have many useful
applications in survival analysis. You can include time-dependent variables such as blood pressure or blood
chemistry measures that vary with time during the course of a study. You can also use time-dependent
variables to test the validity of the proportional hazards model.

Several optimization techniques are available in SURVEYPHREG to maximize the log likelihood. Hazard
ratio estimates can also be obtained along with parameter estimates. Sampling errors of the regression
parameters and hazard ratios are computed by using either the Taylor series (linearization) method or one of
the replication (resampling) methods that are based on complex sample designs (Binder 1983; Wolter 2007;
Särndal, Swensson, and Wretman 1992; Binder 1992; Lohr 2010; Fuller 2009). These variance estimators
essentially assume the finite population as fixed and estimate the variability due to the random sample
selection mechanism.

The remaining sections of this chapter contain information about how to use PROC SURVEYPHREG,
information about the underlying statistical methodology, and some applications of the procedure. The
section “Getting Started: SURVEYPHREG Procedure” on page 8241 introduces PROC SURVEYPHREG
with an example. The section “Syntax: SURVEYPHREG Procedure” on page 8244 describes the syntax of
the procedure. The section “Details: SURVEYPHREG Procedure” on page 8268 summarizes the statistical
techniques employed in PROC SURVEYPHREG. The section “Examples: SURVEYPHREG Procedure” on
page 8297 includes some additional examples of useful applications. Experienced SAS/STAT software users
might decide to proceed to the “Syntax” section, while other users might choose to read both the “Getting
Started” and “Examples” sections before proceeding to “Syntax” and “Details.”

Getting Started: SURVEYPHREG Procedure
This section uses a data set that is obtained by stratified random sampling from a simulated finite population
to illustrate some of the basic features of PROC SURVEYPHREG.

Suppose the library system for a small county wants to study the length of time that books are borrowed over
a specified study period, adjusting for the age of the borrower and accounting for the fact that some books are
never returned. Suppose there are 10 branch libraries in the county. Assume that a list of 11,617 (simulated)
transactions is available for the study period October 1, 2008, to December 31, 2008, and assume that this
list can be used as the sampling frame. A stratified random sample with replacement is used to select 100
transactions, where branch libraries are the strata. The total number of transactions within branches range
from 510 to 2,011 for the study period. The total sample size of 100 transactions is allocated proportionally
across branches based on the number of transactions. For each selected transaction, telephone interviews
were conducted to find out additional characteristics of the borrower. The data set LibrarySurvey contains the
following variables for all units (transactions) in the sample:

• Branch, the library branch from which the book was borrowed

• SampleWeight, the survey sampling weight for the transaction

• CheckOut, the date the book was borrowed
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• CheckIn, the date the book was returned, with a missing value if the book was not returned by December
31, 2008

• Age, the age of the borrower

data LibrarySurvey;
input Branch 2.

SamplingWeight 7.2
CheckOut date10.
CheckIn date10.
Age;

datalines;
1 103.60 08NOV2008 13NOV2008 18
1 103.60 01OCT2008 07OCT2008 30
1 103.60 05NOV2008 06NOV2008 73
1 103.60 25OCT2008 26OCT2008 53
1 103.60 09NOV2008 10NOV2008 55
2 127.50 10DEC2008 15DEC2008 39
2 127.50 19DEC2008 . 33
2 127.50 26NOV2008 27NOV2008 41
2 127.50 03NOV2008 07NOV2008 33

... more lines ...

10 118.35 14NOV2008 17NOV2008 29
10 118.35 11DEC2008 13DEC2008 35
10 118.35 21NOV2008 23NOV2008 46
;

data LibrarySurvey;
set LibrarySurvey;
Returned = (CheckIn ^= .);
if (Returned) then

lenBorrow = CheckIn - CheckOut;
else
lenBorrow = input('31Dec2008',date9.) - CheckOut;

run;

PROC SURVEYPHREG can be used to estimate the regression parameters of a proportional hazards model
and the design-based variance of the estimated coefficients. The design-based variance is useful when the
finite population is considered fixed, as in this example. See Lohr (2010) and Särndal, Swensson, and
Wretman (1992) for details.

The following statements request a proportional hazards regression of lenBorrow on Age with Returned as
the censor indicator. A transaction is considered to be censored if its check-in date is missing. The WEIGHT
statement specifies the sampling weight variable (SamplingWeight), and the STRATA statement specifies the
stratification variable (Branch).

proc surveyphreg data = LibrarySurvey;
weight SamplingWeight;
strata Branch;
model lenBorrow*Returned(0) = Age;

run;
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Summary information about the model, number of observations, survey design, censored values, and variance
estimation method are shown in Output 100.1. The “Model Information” table summarizes the model you fit.
The “Number of Observations” table displays the number of observations read and used by the procedure.
This table also displays the sum of weights read and used. The sum of weights read (11,616.79) can be
used as an estimator of the population size, and the sum of weights used can be used as an estimator of the
respondent size in the population. The “Design Summary” table displays survey design information such
as stratification and clustering. This example implements a stratified design with 10 strata. The “Censored
Summary” and “Weighted Censored Summary” tables display the (weighted) number of censored and event
units. Weighted counts can be used as estimators of the corresponding finite population quantities. For
example, Output 100.1 shows that 10% of the sampled units are censored and an estimated 10.05% of the
population units are censored.

Figure 100.1 Summary Statistics

The SURVEYPHREG ProcedureThe SURVEYPHREG Procedure

Model Information

Data Set WORK.LIBRARYSURVEY

Dependent Variable lenBorrow

Censoring Variable Returned

Censoring Value(s) 0

Weight Variable SamplingWeight

Stratum Variable Branch

Ties Handling BRESLOW

Number of Observations Read 100

Number of Observations Used 100

Sum of Weights Read 11616.79

Sum of Weights Used 11616.79

Design Summary

Number of Strata 10

Summary of the Number of Event
and Censored Values

Total Event Censored
Percent

Censored

100 90 10 10.00

Summary of the Weighted Number of
Event and Censored Values

Total Event Censored
Percent

Censored

11616.79 10449.22 1167.57 10.05

Variance Estimation

Method Taylor Series

Parameter estimates and their standard errors are shown in Output 100.2. The estimated regression coefficient
is highly significant with a value of 0.062, indicating a positive association between age and the length
of time books are borrowed (recall that these are simulated data). In this example, the procedure uses the
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STRATA and WEIGHT statements to incorporate stratification and unequal weighting, respectively, into
variance estimation. The degrees of freedom are calculated as the number of sampling units (100) minus the
number of strata (10). Note that the estimated variance reported in Output 100.2 ignores the finite population
correction (fpc). You can use the TOTAL= or RATE= option in the PROC statement to include an fpc in your
variance estimator.

Figure 100.2 Weighted Estimates and Their Standard Errors

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error t Value Pr > |t|
Hazard

Ratio

Age 90 0.061593 0.008366 7.36 <.0001 1.064

Syntax: SURVEYPHREG Procedure
The following statements are available in the SURVEYPHREG procedure. Items within < > are optional.

PROC SURVEYPHREG < options > ;
BY variables ;
CLASS variable < (options) > < . . . variable < (options) > > < / options > ;
CLUSTER variables ;
DOMAIN variables < variable� variable variable� variable� variable . . . > ;
ESTIMATE < 'label ' > estimate-specification < / options > ;
FREQ variable ;
LSMEANS < model-effects > < / options > ;
LSMESTIMATE model-effect lsmestimate-specification < / options > ;
MODEL response <� censor (list) > = effects < / options > ;
NLOPTIONS < options > ;
OUTPUT < OUT=SAS-data-set > < keyword=name . . . keyword=name > < / options > ;
Programming statements ;
REPWEIGHTS variables < / options > ;
SLICE model-effect < / options > ;
STRATA variables < / option > ;
STORE < OUT= >item-store-name < / LABEL='label ' > ;
TEST < model-effects > < / options > ;
WEIGHT variable ;

The PROC SURVEYPHREG and MODEL statements are required. The CLASS statement, if present, must
precede the MODEL statement.

The MODEL statement specifies the analysis model. The CLASS statement specifies the categorical variables.
The STRATA statement lists the variables that form the strata in a stratified sample design. The CLUSTER
statement specifies cluster identification variables in a clustered sample design. The WEIGHT statement
names the sampling weight variable. The NLOPTIONS statement specifies the optimization techniques. The
REPWEIGHTS statement names replicate weight variables for BRR or jackknife variance estimation. The
DOMAIN statement lists the variables that define domains for subpopulation analysis. The BY statement
requests completely separate analyses of groups defined by the BY variables.
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The rest of this section provides detailed syntax information for each statement, beginning with the PROC
SURVEYPHREG statement. The remaining statements are covered in alphabetical order.

The ESTIMATE, LSMEANS, LSMESTIMATE, SLICE, STORE, and TEST statements are also available in
other procedures. Summary descriptions of functionality and syntax for these statements are provided in this
chapter, and you can find full documentation about them in Chapter 19, “Shared Concepts and Topics.”

PROC SURVEYPHREG Statement
PROC SURVEYPHREG < options > ;

The PROC SURVEYPHREG statement invokes the SURVEYPHREG procedure. It also identifies the data
set to be analyzed. Table 100.1 summarizes the options available in the PROC SURVEYPHREG statement.

Table 100.1 PROC SURVEYPHREG Statement Options

Option Description

DATA= Names the input SAS data set
MISSING Treats missing values as a valid category
NOPRINT Suppresses all displayed output
NOMCAR Uses missing observations specified as not missing completely at random
ORDER= Specifies the sort order of CLASS variables
RATE= Specifies the sampling rate
TOTAL= Specifies the total number of primary sampling units
VARMETHOD= Specifies the variance estimation method

You can specify the following options in the PROC SURVEYPHREG statement:

DATA=SAS-data-set
names the SAS data set that contains the data to be analyzed. If you omit the DATA= option, the
procedure uses the most recently created SAS data set.

MISSING
treats missing values as a valid (nonmissing) category for all categorical variables, which include
CLASS, STRATA, CLUSTER, and DOMAIN variables. By default, if you do not specify the MISSING
option, an observation is excluded from the analysis if it has a missing value for any of these categorical
variables. For more information, see the section “Missing Values” on page 8277.

NOPRINT
suppresses all displayed output. Note that this option temporarily disables the Output Delivery System
(ODS); see Chapter 20, “Using the Output Delivery System,” for more information.

NOMCAR
includes observations with missing values of the analysis variables that are specified in the MODEL
statement as not missing completely at random (NOMCAR) for Taylor series variance estimation.
When you specify the NOMCAR option, PROC SURVEYPHREG computes variance estimates by
analyzing the nonmissing values as a domain (subpopulation), where the entire population includes
both nonmissing and missing domains. See the section “Missing Values” on page 8277 for details.
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By default, PROC SURVEYPHREG excludes an observation from analyses (and the corresponding
variance computations) if that observation has a missing value for any of the variables in the MODEL
statement. Note that if you specify the MISSING option for classification variables, then the procedure
treats the missing values as a valid nonmissing level.

The NOMCAR option applies only to Taylor series variance estimation. The replication methods,
which you request with the VARMETHOD=BRR and VARMETHOD=JACKKNIFE options, do not
use the NOMCAR option.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of the classification variables (which are specified in the CLASS
statement).

This option applies to the levels for all classification variables, except when you use the (default)
ORDER=FORMATTED option with numeric classification variables that have no explicit format. In
that case, the levels of such variables are ordered by their internal value.

The ORDER= option can take the following values:

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set

FORMATTED External formatted value, except for numeric variables with
no explicit format, which are sorted by their unformatted
(internal) value

FREQ Descending frequency count; levels with the most observa-
tions come first in the order

INTERNAL Unformatted value

By default, ORDER=FORMATTED. For ORDER=FORMATTED and ORDER=INTERNAL, the sort
order is machine-dependent.

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

RATE=value | SAS-data-set

R=value | SAS-data-set
specifies the sampling rate as a nonnegative value, or identifies an input data set that gives the
stratum sampling rates in a variable named _RATE_. PROC SURVEYPHREG uses this information
to compute a finite population correction for Taylor series variance estimation. The procedure does
not use the RATE= option for BRR or jackknife variance estimation, which you request with the
VARMETHOD=BRR or VARMETHOD=JACKKNIFE option.

If your sample design has multiple stages, you should specify the first-stage sampling rate, which is
the ratio of the number of primary sampling units (PSUs) that are selected to the total number of PSUs
in the population.
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For a nonstratified sample design, or for a stratified sample design with the same sampling rate in
all strata, you should specify a nonnegative value for the RATE= option. If your design is stratified
with different sampling rates in different strata, then you should name a SAS data set that contains the
stratification variables and the stratum sampling rates. See the section “Population Totals and Sampling
Rates” on page 8276 for details.

The sampling rate value must be a nonnegative number. You can specify value as a number between
0 and 1. Or you can specify value in percentage form as a number between 1 and 100, and PROC
SURVEYPHREG converts that number to a proportion. The procedure treats the value 1 as 100%
instead of 1%.

If you do not specify the RATE= or TOTAL= option, then the Taylor series variance estimation does
not include a finite population correction. You cannot specify both the TOTAL= option and the RATE=
option in the same PROC SURVEYPHREG statement.

TOTAL=value | SAS-data-set

N=value | SAS-data-set
specifies the total number of primary sampling units (PSUs) in the study population as a positive value,
or identifies an input data set that gives the stratum population totals in a variable named _TOTAL_.
PROC SURVEYPHREG uses this information to compute a finite population correction for Taylor
series variance estimation. The procedure does not use the TOTAL= option for BRR or jackknife vari-
ance estimation, which you request with the VARMETHOD=BRR or VARMETHOD=JACKKNIFE
option.

For a nonstratified sample design, or for a stratified sample design with the same population total in all
strata, you should specify a positive value for the TOTAL= option, which refers to the total number of
PSUs in each stratum. If your sample design is stratified with different population totals in different
strata, then you should name a SAS data set that contains the stratification variables and the stratum
totals. See the section “Population Totals and Sampling Rates” on page 8276 for details.

If you do not specify the TOTAL= or RATE= option, then the Taylor series variance estimation does
not include a finite population correction. You cannot specify both the TOTAL= option and the RATE=
option in the same PROC SURVEYPHREG statement.

VARMETHOD=BRR < (method-options) > | JACKKNIFE < (method-options) > | TAYLOR
specifies the variance estimation method. VARMETHOD=TAYLOR requests the Taylor series method,
which is the default if you do not specify the VARMETHOD= option or a REPWEIGHTS statement.
VARMETHOD=BRR requests variance estimation by balanced repeated replication (BRR), and
VARMETHOD=JACKKNIFE requests variance estimation by the delete-1 jackknife method.

For VARMETHOD=BRR and VARMETHOD=JACKKNIFE, you can specify method-options in
parentheses following the variance method name. Table 100.2 summarizes the available method-
options.
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Table 100.2 Variance Estimation Options

VARMETHOD= Variance Estimation Method Method Options

BRR Balanced repeated replication CENTER=FULLSAMPLE | REPLICATES
DETAILS
FAY < =value >
HADAMARD=SAS-data-set
OUTWEIGHTS=SAS-data-set
PRINTH
REPS=number

JACKKNIFE Jackknife CENTER=FULLSAMPLE | REPLICATES
DETAILS
OUTJKCOEFS=SAS-data-set
OUTWEIGHTS=SAS-data-set

TAYLOR Taylor series linearization None

The following values are available for the VARMETHOD= option:

BRR < (method-options) >
requests variance estimation by balanced repeated replication (BRR). The BRR method requires
a stratified sample design with two primary sampling units (PSUs) in each stratum. If you
specify the VARMETHOD=BRR option, you must also specify a STRATA statement unless you
provide replicate weights with a REPWEIGHTS statement. See the section “Balanced Repeated
Replication (BRR) Method” on page 8280 for details.

You can specify the following method-options in parentheses after the VARMETHOD=BRR
option:

CENTER=FULLSAMPLE | REPLICATES
defines how to compute the deviations for the BRR method. CENTER=FULLSAMPLE is
the default, which computes the deviations of the replicate estimates from the full sample
estimate. Alternatively, you can specify CENTER=REPLICATES to compute the deviations
of the replicate estimates from the average of the replicate estimates. See the section
“Balanced Repeated Replication (BRR) Method” on page 8280 for details.

DETAILS
displays the maximum likelihood estimates of model parameters for replicate samples
when the replicate parameter estimates are available. A replicate sample might not provide
useful parameter estimates (replicate estimates), for reasons such as nonconvergence of the
optimization or inestimability of some parameters in that replicate sample.

FAY < =value >
requests Fay’s method, which is a modification of the BRR method. See the section “Fay’s
BRR Method” on page 8282 for details.

You can specify the value of the Fay coefficient, which is used in converting the original
sampling weights to replicate weights. The Fay coefficient must be a nonnegative number
less than 1. By default, the value of the Fay coefficient equals 0.5.
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HADAMARD=SAS-data-set
H=SAS-data-set

names a SAS data set that contains the Hadamard matrix for BRR replicate construction.
If you do not provide a Hadamard matrix with the HADAMARD= method-option, PROC
SURVEYPHREG generates an appropriate Hadamard matrix for replicate construction. See
the sections “Balanced Repeated Replication (BRR) Method” on page 8280 and “Hadamard
Matrix” on page 8282 for details.

If a Hadamard matrix of a given dimension exists, it is not necessarily unique. Therefore, if
you want to use a specific Hadamard matrix, you must provide the matrix as a SAS data set
in the HADAMARD= method-option.

In the HADAMARD= input data set, each variable corresponds to a column of the Hadamard
matrix, and each observation corresponds to a row of the matrix. You can use any variable
names in the HADAMARD= data set. All values in the data set must equal either 1 or
–1. You must ensure that the matrix you provide is indeed a Hadamard matrix—that is,
A0A D RI, where A is the Hadamard matrix of dimension R and I is an identity matrix.
PROC SURVEYPHREG does not check the validity of the Hadamard matrix that you
provide.

The HADAMARD= input data set must contain at least H variables, where H denotes the
number of first-stage strata in your design. If the data set contains more than H variables,
PROC SURVEYPHREG uses only the first H variables. Similarly, the HADAMARD= input
data set must contain at least H observations.

If you do not specify the REPS= method-option, then the number of replicates is taken
to be the number of observations in the HADAMARD= input data set. If you specify the
number of replicates—for example, REPS=nreps—then the first nreps observations in the
HADAMARD= data set are used to construct the replicates.

You can specify the PRINTH method-option to display the Hadamard matrix that the
procedure uses to construct replicates for BRR.

OUTWEIGHTS=SAS-data-set
names an output SAS data set to store the replicate weights that PROC SURVEYPHREG
creates for BRR variance estimation. See the section “Balanced Repeated Replication
(BRR) Method” on page 8280 for information about replicate weights. See the section
“Replicate Weights Output Data Set” on page 8291 for details about the contents of the
OUTWEIGHTS= data set.

The OUTWEIGHTS= method-option is not available when you provide replicate weights
with a REPWEIGHTS statement.

PRINTH
displays the Hadamard matrix used to construct replicates for BRR. When you provide the
Hadamard matrix in the HADAMARD= method-option, PROC SURVEYPHREG displays
only the rows and columns that are actually used to construct replicates. See the sections
“Balanced Repeated Replication (BRR) Method” on page 8280 and “Hadamard Matrix” on
page 8282 for more information.

The PRINTH method-option is not available when you provide replicate weights with a
REPWEIGHTS statement because the procedure does not use a Hadamard matrix in this
case.
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REPS=number
specifies the number of replicates for BRR variance estimation. The value of number must
be an integer greater than 1.

If you do not provide a Hadamard matrix with the HADAMARD= method-option, the
number of replicates should be greater than the number of strata and should be a multiple
of 4. See the section “Balanced Repeated Replication (BRR) Method” on page 8280 for
more information. If a Hadamard matrix cannot be constructed for the REPS= value that you
specify, the value is increased until a Hadamard matrix of that dimension can be constructed.
Therefore, it is possible for the actual number of replicates used to be larger than the REPS=
value that you specify.

If you provide a Hadamard matrix with the HADAMARD= method-option, the value of
REPS= must not be less than the number of rows in the Hadamard matrix. If you provide a
Hadamard matrix and do not specify the REPS= method-option, the number of replicates
equals the number of rows in the Hadamard matrix.

If you do not specify the REPS= or HADAMARD= method-option and do not include a
REPWEIGHTS statement, the number of replicates equals the smallest multiple of 4 that is
greater than the number of strata.

If you provide replicate weights with a REPWEIGHTS statement, the procedure does not
use the REPS= method-option. With a REPWEIGHTS statement, the number of replicates
equals the number of REPWEIGHTS variables.

JACKKNIFE | JK < (method-options) >
requests variance estimation by the delete-1 jackknife method. See the section “Jackknife Method”
on page 8283 for details. If you provide replicate weights with a REPWEIGHTS statement,
VARMETHOD=JACKKNIFE is the default variance estimation method. The JACKKNIFE
method requires at least two primary sampling units (PSUs) in each stratum for stratified designs
unless you provide replicate weights with a REPWEIGHTS statement.

You can specify the following method-options in parentheses following VARMETHOD=JACKKNIFE:

CENTER=FULLSAMPLE | REPLICATES
defines how to compute the deviations for the jackknife method. CENTER=FULLSAMPLE
is the default, which computes the deviations of the replicate estimates from the full sample
estimate. Alternatively, you can specify CENTER=REPLICATES to compute the deviations
of the replicate estimates from the average of the replicate estimates. See the section
“Jackknife Method” on page 8283 for details.

DETAILS
displays the maximum likelihood estimates of model parameters for replicate samples
when the replicate parameter estimates are available. A replicate sample might not provide
useful parameter estimates (replicate estimates), for reasons such as nonconvergence of the
optimization or inestimability of some parameters in that replicate sample.

OUTWEIGHTS=SAS-data-set
names an output SAS data set that contains replicate weights. See the section “Jackknife
Method” on page 8283 for information about replicate weights. See the section “Repli-
cate Weights Output Data Set” on page 8291 for more details about the contents of the
OUTWEIGHTS= data set.
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The OUTWEIGHTS= method-option is not available when you provide replicate weights
with the REPWEIGHTS statement.

OUTJKCOEFS=SAS-data-set
names an output SAS data set that contains jackknife coefficients. See the section “Jackknife
Coefficients Output Data Set” on page 8292 for more details about the contents of the
OUTJKCOEFS= data set.

TAYLOR
requests Taylor series variance estimation. This is the default method if you do not specify
the VARMETHOD= option or a REPWEIGHTS statement. See the section “Taylor Series
Linearization” on page 8279 for more information.

BY Statement
BY variables ;

You can specify a BY statement with PROC SURVEYPHREG to obtain separate analyses of observations in
groups that are defined by the BY variables. When a BY statement appears, the procedure expects the input
data set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last
one specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the SURVEYPHREG
procedure. The NOTSORTED option does not mean that the data are unsorted but rather that the
data are arranged in groups (according to values of the BY variables) and that these groups are not
necessarily in alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

Note that using a BY statement provides completely separate analyses of the BY groups. It does not provide
a domain (subpopulation) analysis, where the number of sampling units in the subpopulation is not known at
the time the survey is designed. For such an analysis use the DOMAIN statement.

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

CLASS Statement
CLASS variable < (options) > . . . < variable < (options) > > < / options > ;

The CLASS statement names the classification variables to be used as explanatory variables in the analysis.
The CLASS statement must precede the MODEL statement. Most options can be specified either as individual
variable options or as global options. You can specify options for each variable by enclosing the options in
parentheses after the variable name. You can also specify global options for the CLASS statement by placing
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the options after a slash (/). Global options are applied to all the variables specified in the CLASS statement.
If you specify more than one CLASS statement, the global options specified in any one CLASS statement
apply to all CLASS statements. However, individual CLASS variable options override the global options.
The following options are available:

DESCENDING

DESC
reverses the sort order of the classification variable. If both the DESCENDING and ORDER= options
are specified, PROC SURVEYPHREG orders the categories according to the ORDER= option and
then reverses that order.

MISSING
treats missing values (“.”, ._, .A, . . . , .Z for numeric variables and blanks for character variables) as
valid values for the CLASS variable.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of classification variables. This ordering determines which
parameters in the model correspond to each level in the data, so the ORDER= option can be useful when
you use the CONTRAST statement. By default, ORDER=FORMATTED. For ORDER=FORMATTED
and ORDER=INTERNAL, the sort order is machine-dependent. When ORDER=FORMATTED is in
effect for numeric variables for which you have supplied no explicit format, the levels are ordered by
their internal values.

The following table shows how PROC SURVEYPHREG interprets values of the ORDER= option.

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set
FORMATTED External formatted values, except for numeric

variables with no explicit format, which are sorted
by their unformatted (internal) values

FREQ Descending frequency count; levels with more
observations come earlier in the order

INTERNAL Unformatted value

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

PARAM=keyword
specifies the parameterization method for the classification variable or variables. You can specify any
of the keywords shown in the following table;

Design matrix columns are created from CLASS variables according to the corresponding coding
schemes:
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Value of PARAM= Coding

EFFECT Effect coding

GLM Less-than-full-rank reference cell coding (this
keyword can be used only in a global option)

ORDINAL
THERMOMETER

Cumulative parameterization for an ordinal
CLASS variable

POLYNOMIAL
POLY

Polynomial coding

REFERENCE
REF

Reference cell coding

ORTHEFFECT Orthogonalizes PARAM=EFFECT coding

ORTHORDINAL
ORTHOTHERM

Orthogonalizes PARAM=ORDINAL coding

ORTHPOLY Orthogonalizes PARAM=POLYNOMIAL coding

ORTHREF Orthogonalizes PARAM=REFERENCE coding

All parameterizations are full rank, except for the GLM parameterization. The REF= option in the
CLASS statement determines the reference level for EFFECT and REFERENCE coding and for their
orthogonal parameterizations. It also indirectly determines the reference level for a singular GLM
parameterization through the order of levels.

If PARAM=ORTHPOLY or PARAM=POLY and the classification variable is numeric, then the
ORDER= option in the CLASS statement is ignored, and the internal unformatted values are used. See
the section “Other Parameterizations” on page 391 in Chapter 19, “Shared Concepts and Topics,” for
further details.

REF=’level’ | keyword
specifies the reference level for PARAM=EFFECT, PARAM=REFERENCE, and their orthogonaliza-
tions. For PARAM=GLM, the REF= option specifies a level of the classification variable to be put at
the end of the list of levels. This level thus corresponds to the reference level in the usual interpretation
of the linear estimates with a singular parameterization.

For an individual variable REF= option (but not for a global REF= option), you can specify the level
of the variable to use as the reference level. Specify the formatted value of the variable if a format is
assigned. For a global or individual variable REF= option, you can use one of the following keywords.
The default is REF=LAST.

FIRST designates the first ordered level as reference.

LAST designates the last ordered level as reference.

TRUNCATE< =n >
specifies the length n of CLASS variable values to use in determining CLASS variable levels. The
default is to use the full formatted length of the CLASS variable. If you specify TRUNCATE without
the length n, the first 16 characters of the formatted values are used. When formatted values are longer
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than 16 characters, you can use this option to revert to the levels as determined in releases before SAS
9. The TRUNCATE option is available only as a global option.

CLUSTER Statement
CLUSTER variables ;

The CLUSTER statement names variables that identify the first-stage clusters in a clustered sample design.
First-stage clusters are also known as primary sampling units (PSUs). The combinations of categories of
CLUSTER variables define the clusters in the sample. If there is a STRATA statement, clusters are nested
within strata.

If your sample design has clustering at multiple stages, you should specify only the first-stage clusters
(PSUs) in the CLUSTER statement. See the section “Specifying the Sample Design” on page 8275 for more
information.

If you provide replicate weights for BRR or jackknife variance estimation with a REPWEIGHTS statement,
you do not need to specify a CLUSTER statement.

The CLUSTER variables are one or more variables in the DATA= input data set. These variables can be
either character or numeric, but the procedure treats them as categorical variables. The formatted values
of the CLUSTER variables determine the CLUSTER variable levels. Thus, you can use formats to group
values into levels. See the discussion of the FORMAT procedure in the Base SAS Procedures Guide and the
discussions of the FORMAT statement and SAS formats in SAS Formats and Informats: Reference.

You can use multiple CLUSTER statements to specify CLUSTER variables. The procedure uses variables
from all CLUSTER statements to create clusters. Cluster variables must not occur in the CLASS statement.

DOMAIN Statement
DOMAIN variables < variable� variable variable� variable� variable . . . > ;

The DOMAIN statement requests analysis for domains (subpopulations), in addition to analysis for the entire
study population. The DOMAIN statement names the variables that identify domains, which are called
domain variables.

It is common practice to compute statistics for domains. The formation of these domains might not be known
at the design stage. Therefore, the sample sizes for the domains are often random. Use a DOMAIN statement
to incorporate this variability into the variance estimation.

Note that a DOMAIN statement is different from a BY statement. In a BY statement, you treat the sample
sizes as fixed in each subpopulation, and you perform analysis within each BY group independently.

Use the DOMAIN statement on the entire data set to perform a domain analysis. Creating a new data set from
a single domain and analyzing that with PROC SURVEYPHREG yields inappropriate estimates of variance.

A domain variable can be either character or numeric. The procedure treats domain variables as categorical
variables. If a variable appears by itself in a DOMAIN statement, each level of this variable determines a
domain in the study population. If two or more variables are joined by asterisks (*), then every possible
combination of levels of these variables determines a domain. The procedure performs a descriptive analysis
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within each domain that is defined by the domain variables. Domain variables must not occur in the CLASS
statement.

The formatted values of the domain variables determine the categorical variable levels. Thus, you can
use formats to group values into levels. For more information, see the FORMAT procedure in the Base
SAS Procedures Guide and the FORMAT statement and SAS formats in the SAS Formats and Informats:
Reference.

ESTIMATE Statement
ESTIMATE < 'label ' > estimate-specification < (divisor=n) >

< , . . . < 'label ' > estimate-specification < (divisor=n) > >
< / options > ;

The ESTIMATE statement provides a mechanism for obtaining custom hypothesis tests. Estimates are
formed as linear estimable functions of the form Lˇ. You can perform hypothesis tests for the estimable
functions, construct confidence limits, and obtain specific nonlinear transformations.

Table 100.3 summarizes the options available in the ESTIMATE statement.

Table 100.3 ESTIMATE Statement Options

Option Description

Construction and Computation of Estimable Functions
DIVISOR= Specifies a list of values to divide the coefficients
NOFILL Suppresses the automatic fill-in of coefficients for higher-order

effects
SINGULAR= Tunes the estimability checking difference

Degrees of Freedom and p-values
ADJUST= Determines the method for multiple comparison adjustment of

estimates
ALPHA=˛ Determines the confidence level (1 � ˛)
LOWER Performs one-sided, lower-tailed inference
STEPDOWN Adjusts multiplicity-corrected p-values further in a step-down fash-

ion
TESTVALUE= Specifies values under the null hypothesis for tests
UPPER Performs one-sided, upper-tailed inference

Statistical Output
CL Constructs confidence limits
CORR Displays the correlation matrix of estimates
COV Displays the covariance matrix of estimates
E Prints the L matrix
JOINT Produces a joint F or chi-square test for the estimable functions
SEED= Specifies the seed for computations that depend on random numbers
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For details about the syntax of the ESTIMATE statement, see the section “ESTIMATE Statement” on
page 444 in Chapter 19, “Shared Concepts and Topics.”

FREQ Statement
FREQ variable ;

The FREQ statement names a numeric variable that provides a frequency for each observation in the input
data set. PROC SURVEYPHREG treats each observation as if it appears n times, where n is the value of
the FREQ variable for the observation. If not an integer, the frequency value is truncated to an integer. If
the frequency value is missing, the observation is not used in the analysis. The FREQ statement allows one
frequency variable.

If you use the FREQ statement and request the jackknife or BRR variance estimator by specifying the
VARMETHOD=JACKKNIFE or VARMETHOD=BRR option in the PROC SURVEYPHREG statement,
then you must identify the primary sampling units with a CLUSTER statement unless you also provide
replicate weights with a REPWEIGHTS statement.

LSMEANS Statement
LSMEANS < model-effects > < / options > ;

The LSMEANS statement computes and compares least squares means (LS-means) of fixed effects. LS-means
are predicted population margins—that is, they estimate the marginal means over a balanced population. In a
sense, LS-means are to unbalanced designs as class and subclass arithmetic means are to balanced designs.

Table 100.4 summarizes the options available in the LSMEANS statement.

Table 100.4 LSMEANS Statement Options

Option Description

Construction and Computation of LS-Means
AT Modifies the covariate value in computing LS-means
BYLEVEL Computes separate margins
DIFF Requests differences of LS-means
OM= Specifies the weighting scheme for LS-means computation as de-

termined by the input data set
SINGULAR= Tunes estimability checking

Degrees of Freedom and p-values
ADJUST= Determines the method for multiple-comparison adjustment of LS-

means differences
ALPHA=˛ Determines the confidence level (1 � ˛)
STEPDOWN Adjusts multiple-comparison p-values further in a step-down

fashion
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Table 100.4 continued

Option Description

Statistical Output
CL Constructs confidence limits for means and mean differences
CORR Displays the correlation matrix of LS-means
COV Displays the covariance matrix of LS-means
E Prints the L matrix
LINES Produces a “Lines” display for pairwise LS-means differences
MEANS Prints the LS-means
PLOTS= Requests graphs of means and mean comparisons
SEED= Specifies the seed for computations that depend on random numbers

For details about the syntax of the LSMEANS statement, see the section “LSMEANS Statement” on page 460
in Chapter 19, “Shared Concepts and Topics.”

LSMESTIMATE Statement
LSMESTIMATE model-effect < 'label ' > values < divisor=n >

< , . . . < 'label ' > values < divisor=n > >
< / options > ;

The LSMESTIMATE statement provides a mechanism for obtaining custom hypothesis tests among least
squares means.

Table 100.5 summarizes the options available in the LSMESTIMATE statement.

Table 100.5 LSMESTIMATE Statement Options

Option Description

Construction and Computation of LS-Means
AT Modifies covariate values in computing LS-means
BYLEVEL Computes separate margins
DIVISOR= Specifies a list of values to divide the coefficients
OM= Specifies the weighting scheme for LS-means computation as de-

termined by a data set
SINGULAR= Tunes estimability checking
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Table 100.5 continued

Option Description

Degrees of Freedom and p-values
ADJUST= Determines the method for multiple-comparison adjustment of LS-

means differences
ALPHA=˛ Determines the confidence level (1 � ˛)
LOWER Performs one-sided, lower-tailed inference
STEPDOWN Adjusts multiple-comparison p-values further in a step-down fash-

ion
TESTVALUE= Specifies values under the null hypothesis for tests
UPPER Performs one-sided, upper-tailed inference

Statistical Output
CL Constructs confidence limits for means and mean differences
CORR Displays the correlation matrix of LS-means
COV Displays the covariance matrix of LS-means
E Prints the L matrix
ELSM Prints the K matrix
JOINT Produces a joint F or chi-square test for the LS-means and LS-

means differences
SEED= Specifies the seed for computations that depend on random numbers

For details about the syntax of the LSMESTIMATE statement, see the section “LSMESTIMATE Statement”
on page 476 in Chapter 19, “Shared Concepts and Topics.”

MODEL Statement
MODEL response <� censor (list) > = effects < / options > ;

The MODEL statement identifies the variable to be used as the failure time variable, the optional censoring
variable, and the explanatory effects, including covariates, main effects, and interactions; see the section
“Specification of Effects” on page 3453 in Chapter 45, “The GLM Procedure,” for more information. A
note of caution: specifying the effect T*A in the MODEL statement, where T is the time variable and A is a
CLASS variable, does not make the effect time-dependent. You must specify exactly one MODEL statement.

The MODEL statement allows one response variable. In the MODEL statement, the failure time variable
precedes the equal sign. This can optionally be followed by an asterisk, the name of the censoring variable, and
a list of censoring values (separated by blanks or commas if there is more than one) enclosed in parentheses.
If the censoring variable takes on one of these values, the corresponding failure time is considered to be
censored. The variables following the equal sign are the explanatory variables (sometimes called independent
variables or covariates) for the model.

The censoring variable must be numeric. The failure time variable must contain nonnegative values. Any
observation with a negative failure time is excluded from the analysis, as is any observation with a missing
value for any of the variables listed in the MODEL statement. See “Missing Values” on page 8277 for details.
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Table 100.6 summarizes the options available in the MODEL statement, which can be specified after a slash
(/).

Table 100.6 MODEL Statement Options

Option Description

ALPHA= Specifies ˛ for the 100.1 � ˛/% confidence limits
CLPARM Computes confidence limits for regression parameters
COVB Displays covariance matrix
DF= Specifies the denominator degrees of freedom
HESS Displays the Hessian matrix
INVHESS Displays the inverse of the Hessian matrix
RISKLIMITS Computes confidence limits for the exponentials of the

regression parameters
SERATIO= Computes the ratio of two standard errors for the

regression coefficients
SINGULAR= Specifies tolerance for testing singularity
TIES= Specifies the method of handling ties in failure times
VADJUST= Specifies a variance adjustment factor
VARRATIO= Computes the ratio of two variances for the regression

coefficients

ALPHA=˛
sets the level of the confidence limits for the estimated regression parameters and the hazard ratios.
The value of alpha must be between 0 and 1, and the default is 0.05. A confidence level of ˛ produces
100.1 � ˛/% confidence limits. The default of ALPHA=0.05 produces 95% confidence limits.

The ALPHA= option has no effect unless the CLPARM or RISKLIMITS option is also specified.

CLPARM
produces confidence limits for regression parameters of Cox proportional hazards models. The
confidence coefficient can be specified with the ALPHA= option. Classification main effects that
use parameterizations other than REF, EFFECT, or GLM are ignored. See “Confidence Intervals” on
page 8288 for details.

COVB
displays the estimated covariance matrix of the parameter estimates.

DF=value | keyword
specifies the denominator degrees of freedom for hypothesis tests and the degrees of freedom to use
for confidence limits. If a value is specified, it must be a nonnegative number. By default, PROC
SURVEYPHREG computes the degrees of freedom as described in the section “Degrees of Freedom”
on page 8284. DF=value is also used to adjust the Wald test statistics that are reported in the “Testing
Global Null Hypothesis” table. For more information, see the section “Testing the Global Null
Hypothesis” on page 8287. Instead of a value, you can specify one of the following keywords:
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NONE
specifies the denominator degrees of freedom to be infinite. Use this option if you want to
compute chi-square tests and normal confidence intervals. This option is applicable to both the
Taylor series linearization and the replication methods.

PARMADJ
computes the denominator degrees of freedom as the number of clusters (or observations if no
CLUSTER statement is specified) minus the number of strata (or one if no STRATA statement is
specified) minus the number of nonsingular parameters plus one in the model. This option can be
useful if you are fitting a model with many parameters relative to the number of clusters minus
the number of strata. See Korn and Graubard (1999, section 5.2) for further details. This option
is applicable only for the Taylor series linearization method.

ALLREPS
computes the denominator degrees of freedom for replication methods by using the total number
of replicate samples. By default, PROC SURVEYPHREG computes the denominator degrees of
freedom based on the number of replicate samples used. See “Degrees of Freedom” on page 8284
for details.

HESS
displays the last evaluation of the Hessian matrix.

INVHESS
displays the inverse of the Hessian matrix that is evaluated at the estimated regression parameters.

RISKLIMITS

RL
produces confidence limits for hazard ratios and related quantities. See the section “Hazard Ratios” on
page 8289 for details. The confidence coefficient can be specified with the ALPHA= option. Great
care needs to be taken with any interpretation of the estimates and their confidence limits if interaction
effects are involved in the model or if parameterizations other than REF, EFFECT, or GLM are used.

SERATIO=ALL | MODEL | IND
computes the ratio of two standard errors for the regression parameters. The standard error in the
numerator uses the complete design information that you specify. You can specify the following
options to compute different standard errors for the denominator:

ALL
requests both MODEL and IND standard error ratios.

MODEL
computes the standard errors in the denominator as the square root of the diagonals of the inverse
Hessian matrix evaluated at the estimated regression parameters. See the section “Variance Ratios
and Standard Error Ratios” on page 8285 for more information.

IND
computes the standard errors in the denominator by ignoring stratification and clustering. See the
section “Variance Ratios and Standard Error Ratios” on page 8285 for more information.
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SINGULAR=value
specifies the singularity criterion for determining linear dependencies in the set of explanatory variables.
The default value is 10�12.

TIES=method
specifies how to handle ties in the failure time. The available methods are as follows:

BRESLOW
uses the approximate partial likelihood of Breslow (1974). This is the default value.

EFRON
uses the approximate partial likelihood of Efron (1977).

If there are no ties, both methods result in the same likelihood and yield identical estimates. The
default, TIES=BRESLOW, is the most efficient method when there are no ties.

VADJUST=DF | PARMADJ | NONE | AVGREPSS
specifies variance adjustment factors. You can use the following key words:

DF

PARMADJ
requests degrees of freedom adjustment .n � 1/=.n � p/ in the computation of the matrix G for
the Taylor series linearization variance estimation. By default, VADJUST=DF.

NONE
excludes the degrees of freedom adjustment .n � 1/=.n � p/ from the computation of the matrix
G for the Taylor series linearization variance estimation.

AVGREPSS
use the average sum of squares from all the usable replicate samples for the unusable replicates.
This option is applicable only for the jackknife replication method. AVGREPSS multiplies the
default jackknife variance estimator by the factor R=Ra, where Ra is the number of usable
replicates and R is the total number of replicates. See the section “Variance Adjustment Factors”
on page 8285 for details.

VARRATIO=ALL | MODEL | IND
computes the ratio of two variances for the regression parameters. The variance in the numerator uses
the complete design information. You can specify the following options to compute different variances
for the denominator:

ALL
requests both MODEL and IND variance ratios.

MODEL
computes the variances in the denominator as the diagonals of the inverse Hessian matrix
evaluated at the estimated regression parameters. See the section “Variance Ratios and Standard
Error Ratios” on page 8285 for more information.
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IND
computes the variances in the denominator by ignoring stratification and clustering. See the
section “Variance Ratios and Standard Error Ratios” on page 8285 for more information.

NLOPTIONS Statement
NLOPTIONS < options > ;

The NLOPTIONS statement specifies details of the nonlinear optimization used by PROC SURVEYPHREG
to maximize the log likelihood function. By default, the procedure uses the Newton-Raphson optimization
technique. For more information about the NLOPTIONS statement, see the section “NLOPTIONS Statement”
on page 488 in Chapter 19, “Shared Concepts and Topics.”

OUTPUT Statement
OUTPUT < OUT=SAS-data-set > < keyword=name . . . keyword=name > < / options > ;

The OUTPUT statement creates a new SAS data set that contains statistics that are calculated for each
observation unit. These statistics can include the estimated linear predictor (z0j Ǒ) and its standard error,
residuals, and influence statistics. In addition, this data set includes all the variables from the DATA= input
data set.

Only score residuals are available in the OUTPUT data set if the model contains a time-dependent variable
that is defined by means of programming statements.

The following list explains specifications in the OUTPUT statement:

OUT=SAS-data-set
names the output data set. If you omit the OUT= option, the OUTPUT data set is named by using the
DATAn convention. See the section “OUT= Data Set for the OUTPUT statement” on page 8291 for
more information.

keyword=name
specifies the statistics to include in the OUTPUT data set and names the new variables that contain
the statistics. Specify a keyword for each desired statistic (see the following list of keywords), and
optionally an equal sign with either a variable or a list of variables in parentheses to contain the
statistics. If you specify a keyword without a variable name, then the procedure uses default names.
The keywords that accept a list of variables are RESSCH, RESSCO, and WTRESSCH. For these
keywords, you can specify as many names in name as the number of explanatory variables in the
MODEL statement. If you specify k names and k is less than the total number of explanatory variables,
only the first k names are taken from the list; the procedure assigns default names for the rest of the
statistics. The keywords and the corresponding statistics are as follows:

ATRISK
specifies the number of subjects at risk at the observation time �j .
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RESDEV
specifies the deviance residual ODj . This is a transform of the martingale residual to achieve a
more symmetric distribution.

RESMART
specifies the martingale residual OMj . The residual at the observation time �j can be interpreted
as the difference over Œ0; �j � in the observed number of events minus the expected number of
events given by the model.

RESSCH
specifies the Schoenfeld residuals. These residuals are useful in assessing the proportional
hazards assumption.

RESSCO
specifies the score residuals. These residuals are a decomposition of the first partial derivative of
the log likelihood. They can be used to assess the leverage that is exerted by each subject in the
parameter estimation. They are also useful in constructing design-based variance estimators.

STDXBETA
specifies the standard error of the estimated linear predictor,

q
z0j OV. ǑjF /zj .

WTATRISK
specifies the weighted number of subjects at risk at the observation time �j .

XBETA
specifies the estimate of the linear predictor, z0j Ǒ.

Programming Statements
Programming statements are used to create or modify the values of the explanatory variables in the MODEL
statement. They are especially useful in fitting models with time-dependent explanatory variables. Pro-
gramming statements can also be used to create explanatory variables that are not time-dependent. PROC
SURVEYPHREG programming statements cannot be used to create or modify the values of the response
variable, the censoring variable, the frequency variable, the WEIGHT variable, the CLASS variables, the
STRATA variables, the CLUSTER variables, or the DOMAIN variables.

The following DATA step statements are available in PROC SURVEYPHREG:
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ABORT;
ARRAY arrayname < [ dimensions ] > < $ > < variables-and-constants >;
CALL name < (expression < , expression . . . >) >;
DELETE;
DO < variable = expression < TO expression > < BY expression > >

< , expression < TO expression > < BY expression > > . . .
< WHILE expression > < UNTIL expression >;

END;
GOTO statement-label;
IF expression;
IF expression THEN program-statement;

ELSE program-statement;
variable = expression;
variable + expression;
LINK statement-label;
PUT < variable > < = > . . . ;
RETURN;
SELECT < (expression) >;
STOP;
SUBSTR(variable, index , length)= expression;
WHEN (expression)program-statement;

OTHERWISE program-statement;

By default, the PUT statement in PROC SURVEYPHREG writes results to the Output window instead of
the Log window. If you want the results of the PUT statements to go to the Log window, add the following
statement before the PUT statement:

FILE LOG;

DATA step functions are also available. Use these programming statements the same way you use them in
the DATA step. For detailed information, see the SAS Functions and CALL Routines: Reference.

Consider the following example of using programming statements in PROC SURVEYPHREG. Suppose
blood pressure is measured at multiple times during the course of a study that investigates the effect of blood
pressure on some survival time. By treating the blood pressure as a time-dependent explanatory variable, you
can use the value of the most recent blood pressure at each specific point of time in the modeling process
rather than using the initial blood pressure or the final blood pressure. The values of the following variables
are recorded for each patient, if they are available. Otherwise, the variables contain missing values.

Time survival time

Censor censoring indicator (with 0 as the censoring value)

BP0 blood pressure on entry to the study

T1 time 1

BP1 blood pressure at T1

T2 time 2

BP2 blood pressure at T2

WT design weight
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PSU identification of primary sampling units

The following programming statements create a variable BP. At each time T, the value of BP is the blood
pressure reading for that time, if available. Otherwise, it is the last blood pressure reading.

proc surveyphreg;
weight WT;
model Time*Censor(0)=BP;
cluster PSU;
BP = BP0;
if Time>=T1 and T1^=. then BP=BP1;
if Time>=T2 and T2^=. then BP=BP2;

run;

REPWEIGHTS Statement
REPWEIGHTS variables < / options > ;

The REPWEIGHTS statement names variables that provide replicate weights for BRR or jackknife variance
estimation, which you request with the VARMETHOD=BRR or VARMETHOD=JACKKNIFE option in the
PROC SURVEYPHREG statement. If you do not provide replicate weights for these methods by using a
REPWEIGHTS statement, then PROC SURVEYPHREG constructs replicate weights for the analysis. See
the sections “Balanced Repeated Replication (BRR) Method” on page 8280 and “Jackknife Method” on
page 8283 for more information.

Each REPWEIGHTS variable should contain the weights for a single replicate, and the number of replicates
equals the number of REPWEIGHTS variables. The REPWEIGHTS variables must be numeric, and the
variable values must be nonnegative numbers.

If you provide replicate weights with a REPWEIGHTS statement, you do not need to specify a CLUSTER or
STRATA statement. If you use a REPWEIGHTS statement and do not specify the VARMETHOD= option in
the PROC SURVEYPHREG statement, the procedure uses VARMETHOD=JACKKNIFE by default.

If you specify a REPWEIGHTS statement but do not include a WEIGHT statement, PROC SURVEYPHREG
uses the average of each observation’s replicate weights as the observation’s weight.

You can specify the following options in the REPWEIGHTS statement after a slash (/):

DF=df
specifies the degrees of freedom for the analysis. The value of df must be a positive number. See the
section “Degrees of Freedom” on page 8284 for details.

PROC SURVEYPHREG also use the DF= value in computing the denominator degrees of freedom for
the F statistics in Wald type tests and confidence intervals.

JKCOEFS=jackknife-coefficient-specification
specifies jackknife coefficients for VARMETHOD=JACKKNIFE. The default value for the jackknife
coefficient is .R � 1/=R, where R is the total number of replicates. You can specify an alternative
value with one of the following three forms:
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JKCOEFS=value
specifies a single jackknife coefficient for all replicates. The coefficient value must be a nonnega-
tive number.

JKCOEFS=(values)
specifies jackknife coefficients for VARMETHOD=JACKKNIFE, where each coefficient corre-
sponds to an individual replicate identified by a REPWEIGHTS variable. You can separate values
with blanks or commas. The coefficient values must be nonnegative numbers. The number
of values must equal the number of replicate weight variables named in the REPWEIGHTS
statement. List these values in the same order in which you list the corresponding replicate weight
variables in the REPWEIGHTS statement.

JKCOEFS=SAS-data-set
names a SAS data set that contains the jackknife coefficients for VARMETHOD=JACKKNIFE.
You provide the jackknife coefficients in the JKCOEFS= data set variable JKCoefficient. Each
coefficient value must be a nonnegative number. The observations in the JKCOEFS= data set
should correspond to the replicates that are identified by the REPWEIGHTS variables. Arrange
the coefficients or observations in the JKCOEFS= data set in the same order in which you list
the corresponding replicate weight variables in the REPWEIGHTS statement. The number of
observations in the JKCOEFS= data set must not be less than the number of REPWEIGHTS
variables.

See the section “Jackknife Method” on page 8283 for details about jackknife coefficients.

SLICE Statement
SLICE model-effect < / options > ;

The SLICE statement provides a general mechanism for performing a partitioned analysis of the LS-means
for an interaction. This analysis is also known as an analysis of simple effects.

The SLICE statement uses the same options as the LSMEANS statement, which are summarized in Ta-
ble 19.21. For details about the syntax of the SLICE statement, see the section “SLICE Statement” on
page 505 in Chapter 19, “Shared Concepts and Topics.”

STORE Statement
STORE < OUT= >item-store-name < / LABEL='label ' > ;

The STORE statement requests that the procedure save the context and results of the statistical analysis. The
resulting item store has a binary file format that cannot be modified. The contents of the item store can be
processed with the PLM procedure.

For details about the syntax of the STORE statement, see the section “STORE Statement” on page 508 in
Chapter 19, “Shared Concepts and Topics.”



STRATA Statement F 8267

STRATA Statement
STRATA variables < / option > ;

The STRATA statement names variables that form the strata in a stratified sample design. The combinations
of levels of STRATA variables define the strata in the sample, where strata are nonoverlapping subgroups
that were sampled independently.

If your sample design has stratification at multiple stages, you should identify only the first-stage strata in the
STRATA statement. See the section “Specifying the Sample Design” on page 8275 for more information.

If you provide replicate weights for BRR or jackknife variance estimation with a REPWEIGHTS statement,
you do not need to specify a STRATA statement.

The STRATA variables are one or more variables in the DATA= input data set. These variables can be either
character or numeric, but the procedure treats them as categorical variables. The formatted values of the
STRATA variables determine the STRATA variable levels. Thus, you can use formats to group values into
levels. See the discussion of the FORMAT procedure in the Base SAS Procedures Guide and the discussions
of the FORMAT statement and SAS formats in the SAS Formats and Informats: Reference. Strata variables
must not occur in the CLASS statement.

The STRATA statement in PROC SURVEYPHREG is different from the STRATA statement in PROC
PHREG (Chapter 73, “The PHREG Procedure”). PROC PHREG fits different baseline hazard functions in
different strata, which is useful if the proportional hazards assumption is not satisfied.

You can specify the following option in the STRATA statement after a slash (/):

LIST
displays a “Stratum Information” table, which lists all strata together with the corresponding values of
the STRATA variables. This table provides the number of observations and the number of clusters in
each stratum, as well as the sampling fraction if you specify the RATE= or TOTAL= option.

TEST Statement
TEST < model-effects > < / options > ;

The TEST statement enables you to perform F tests for model effects that test Type I, Type II, or Type III
hypotheses. See Chapter 15, “The Four Types of Estimable Functions,” for details about the construction of
Type I, II, and III estimable functions.

Table 100.7 summarizes the options available in the TEST statement.



8268 F Chapter 100: The SURVEYPHREG Procedure

Table 100.7 TEST Statement Options

Option Description

CHISQ Requests chi-square tests
DDF= Specifies denominator degrees of freedom for fixed effects
E Requests Type I, Type II, and Type III coefficients
E1 Requests Type I coefficients
E2 Requests Type II coefficients
E3 Requests Type III coefficients
HTYPE= Indicates the type of hypothesis test to perform
INTERCEPT Adds a row that corresponds to the overall intercept

For details about the syntax of the TEST statement, see the section “TEST Statement” on page 509 in
Chapter 19, “Shared Concepts and Topics.”

WEIGHT Statement
WEIGHT variable ;

The WEIGHT statement names the variable that contains the sampling weights. This variable must be numeric,
and the sampling weights must be positive numbers. If an observation has a weight that is nonpositive or
missing, then the procedure omits that observation from the analysis. See the section “Missing Values” on
page 8277 for more information. The WEIGHT statement allows one weight variable.

If you do not specify a WEIGHT statement but provide replicate weights with a REPWEIGHTS statement,
PROC SURVEYPHREG uses the average of each observation’s replicate weights as the observation’s weight.

If you specify neither a WEIGHT statement nor a REPWEIGHTS statement, PROC SURVEYPHREG
assigns all observations a weight of one.

Details: SURVEYPHREG Procedure

Notation and Estimation
Let U D f1; 2; : : : ; N g be the set of indices and let FN be the set of values for a finite population of size
N. The survival time of each member of the finite population is assumed to follow its own hazard function,
�i .t/, expressed as

�i .t/ D �.t IZi .t// D �0.t/ exp.Z0i .t/ˇ/

where �0.t/ is an arbitrary and unspecified baseline hazard function, Zi .t/ is the vector of explanatory
variables for the ith unit at time t, and ˇ is the vector of unknown regression parameters that are associated
with the explanatory variables. The vector ˇ is assumed to be the same for all individuals.
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The partial likelihood function introduced by Cox (1972, 1975) eliminates the unknown baseline hazard �0.t/
and accounts for censored survival times. If the entire population is observed, then this partial likelihood
can be used to estimate ˇ. Let ˇN be the desired estimator. Assuming a working model with uncorrelated
responses, ˇN is obtained by maximizing the partial log likelihood,

l.ˇ/ D
X
i2U

log
�

L.ˇIZi .t/; ti /
�

with respect to ˇ, where L.ˇIZi .t/; ti / is Cox’s partial likelihood function.

Assume that probability sample A is selected from the finite population U and �i is the selection probability
for unit i. Further assume that covariates Zi .t/ and survival time ti are available for every unit in the sample
A. An estimator of the finite population log likelihood is

l�.ˇ/ D
X
i2A

��1i log
�

L.ˇIZi .t/; ti /
�

See “Partial Likelihood Function for the Cox Model” on page 8274 for more details.

A sample-based estimator Ǒ for the finite population quantity ˇN can be obtained by maximizing the partial
pseudo-log-likelihood l�.ˇIZi .t/; ti / with respect to ˇ. The design-based variance for Ǒ is obtained by
assuming the set of finite population values FN as fixed. For more information about maximum pseudo-
likelihood estimators and other inferential approaches for survey data, see Kish and Frankel (1974); Godambe
and Thompson (1986); Pfeffermann (1993), Korn and Graubard (1999, chapter 3), Chambers and Skinner
(2003, chapter 2), and Fuller (2009, section 6.5). Maximum pseudo-likelihood estimators and their properties
for Cox’s proportional hazards model for survey data are discussed in Binder (1990, 1992); Lin and Wei
(1989); Lin (2000); Boudreau and Lawless (2006).

Without loss of generality, the rest of this section uses indices for stratified clustered designs. For a stratified
clustered sample design, observations are represented by a matrix

.w; t;�;Z/ D .whij ; thij ; �hij ; zhij /

where

• w denotes the vector of sampling weights

• t denotes the event time variable

• � denotes the event indicator

• Z denotes the n � p matrix of auxiliary information

• h D 1; 2; : : : ;H is the stratum index

• i D 1; 2; : : : ; nh is the cluster index within stratum h

• j D 1; 2; : : : ; mhi is the unit index within cluster i of stratum h

• p is the total number of parameters

• n D
PH
hD1

Pnh
iD1mhi is the total number of observations in the sample

• yhij .t/ D I.thij � t /, where I.�/ is an indicator function

• nhij .t/ D I.thij � t /, where I.�/ is an indicator function
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Let
P
B D

P
.h;i;j /2B denote the summation over the set of indices such that the observation unit j in PSU i

and stratum h belongs to the index set B. Typically, B is the set of all population indices that are in the sample,
the risk set, or the set of all units with a failure.

The first-stage sampling rate (fraction of PSUs selected for the sample) is denoted by fh. The first-stage
sampling rate is used in Taylor series variance estimation. You can specify the stratum sampling rates with
the RATE= option. Or if you specify population totals with the TOTAL= option, PROC SURVEYFREQ
computes fh as the ratio of stratum sample size to the stratum total, in terms of PSUs. See the section
“Population Totals and Sampling Rates” on page 8276 for details. If you do not specify the RATE= option or
the TOTAL= option, then the procedure assumes that the stratum sampling rates fh are negligible and does
not use a finite population correction when computing variances.

Failure Time Distribution
Let T be a nonnegative random variable that represents the failure time of an individual from a homogeneous
superpopulation. The survival distribution function (also known as the survivor function) of T is written as

S.t/ D Pr.T � t /

A mathematically equivalent way of specifying the distribution of T is through its hazard function. The
hazard function �.t/ specifies the instantaneous failure rate at t. If T is a continuous random variable, �.t/ is
expressed as

�.t/ D lim
�t!0C

Pr.t � T < t C�t j T � t /
�t

D
f .t/

S.t/

where f .t/ is the probability density function of T.

Time and CLASS Variables Usage
The following DATA step creates an artificial data set, Test, to be used in this section. There are six variables
in Test: the variable T contains the failure times; the variable Status is the censoring indicator variable with
the value 1 for an uncensored failure time and the value 0 for a censored time; the variable A is a categorical
variable with values 1, 2, and 3 representing three different categories; the variable MirrorT is an exact copy
of T; the variable W is the observation weight; and the variable S is the strata indicator.

data Test;
input T Status A W S @@;
MirrorT = T;
datalines;

23 1 1 10 1 7 0 1 20 2
23 1 1 10 1 10 1 1 20 2
20 0 1 10 1 13 0 1 20 2
24 1 1 10 1 10 1 1 20 2
18 1 2 10 1 6 1 2 20 2
18 0 2 10 1 6 1 2 20 2
13 0 2 10 1 13 1 2 20 2
9 0 2 10 1 15 1 2 20 2
8 1 3 10 1 6 1 3 20 2
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12 0 3 10 1 4 1 3 20 2
11 1 3 10 1 8 1 1 20 2
6 1 3 10 1 7 1 3 20 2
7 1 3 10 1 12 1 3 20 2
9 1 2 10 1 15 1 2 20 2
3 1 2 10 1 14 0 3 20 2
6 1 1 10 1 13 1 2 20 2

;

Time Variable on the Right Side of the MODEL Statement

The time variable cannot be used explicitly as an explanatory effect in the MODEL statement. The following
statements produce an error message:

proc surveyphreg data=Test;
weight W;
strata S;
class A;
model T*Status(0)=T*A;

run;

To use the time variable as an explanatory effect, replace T by MirrorT as an effect, which is an exact copy of
T, as in the following statements:

proc surveyphreg data=Test;
weight W;
strata S;
class A;
model T*Status(0)=A*MirrorT;

run;

Note that neither T*A nor MirrorT*A in the MODEL statement is time-dependent. The results of fitting this
model are shown in Figure 100.3.

Figure 100.3 T*A Effect

The SURVEYPHREG ProcedureThe SURVEYPHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error t Value Pr > |t|
Hazard

Ratio

MirrorT*A 1 30 -17.560699 0.337239 -52.07 <.0001 0.000

MirrorT*A 2 30 -17.424235 0.331186 -52.61 <.0001 0.000

MirrorT*A 3 30 -17.448672 0.290159 -60.13 <.0001 0.000

CLASS Variables and Programming Statements

In PROC SURVEYPHREG, the levels of CLASS variables are determined by the CLASS statement and the
input data and are not affected by user-supplied programming statements. Consider the following statements,
which produce the results in Figure 100.4. Variable A is declared as a CLASS variable in the CLASS
statement.
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proc surveyphreg data=Test;
weight W;
strata S;
class A;
model T*Status(0)=A;

run;

Figure 100.4 shows the parameters that correspond to A and their respective regression coefficients estimates.

Figure 100.4 Design Variable and Regression Coefficient Estimates

The SURVEYPHREG ProcedureThe SURVEYPHREG Procedure

Class Level
Information

Class Levels Values

A 3 1 2 3

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error t Value Pr > |t|
Hazard

Ratio

A 1 30 -1.162184 0.655136 -1.77 0.0862 0.313

A 2 30 -0.616962 0.521841 -1.18 0.2464 0.540

A 3 30 0 . . . 1.000

Now consider the programming statement that attempts to change the value of the CLASS variable A as in
the following specification:

proc surveyphreg data=Test;
weight W;
strata S;
class A;
model T*Status(0)=A;
if A=3 then A=2;

run;

Results of this analysis are shown in Figure 100.5 and are identical to those in Figure 100.4. The if A=3

then A=2 programming statement has no effect on the explanatory variable for A, which have already been
determined.

Figure 100.5 Design Variable and Regression Coefficient Estimates

The SURVEYPHREG ProcedureThe SURVEYPHREG Procedure

Class Level
Information

Class Levels Values

A 3 1 2 3
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Figure 100.5 continued

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error t Value Pr > |t|
Hazard

Ratio

A 1 30 -1.162184 0.655136 -1.77 0.0862 0.313

A 2 30 -0.616962 0.521841 -1.18 0.2464 0.540

A 3 30 0 . . . 1.000

Additionally any variable used in a programming statement that has already been declared in the CLASS
statement is not treated as a collection of the corresponding design variables. Consider the following
statements:

proc surveyphreg data=Test;
class A;
model T*Status(0)=A X;
X=T*A;

run;

The CLASS variable A generates two design variables as explanatory variables. The variable X created by
the X=T*A programming statement is a single time-dependent covariate whose values are evaluated using
the exact values of A given in the data, not the dummy coded values that represent A. In the data set Test,
A has the values of 1, 2, and 3, and these values are multiplied by the values of T to produce X. If A were
a character variable with values ‘Bird’, ‘Cat’, and ‘Dog’, the programming statement X=T*A would have
produced an error in the attempt to multiply a number with a character value.

Figure 100.6 Single Time-Dependent Variable X*A

The SURVEYPHREG ProcedureThe SURVEYPHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error t Value Pr > |t|
Hazard

Ratio

A 1 31 0.158010 1.222654 0.13 0.8980 1.171

A 2 31 0.008993 0.674629 0.01 0.9894 1.009

A 3 31 0 . . . 1.000

X 31 0.092679 0.073746 1.26 0.2182 1.097

The following statements are not the same as in the preceding program. If you want to create time-dependent
covariates from the values of a CLASS variable, you could use syntax like the following:

proc surveyphreg data=Test;
class A;
model T*Status(0)=A X1 X2;
X1= T*(A=1);
X2= T*(A=2);

run;

The Boolean parenthetical expressions (A=1) and (A=2) resolve to a value of 1 or 0, depending on whether
the expression is true or false, respectively.

Results of this test are shown in Figure 100.7.



8274 F Chapter 100: The SURVEYPHREG Procedure

Figure 100.7 Simple Test of Proportional Hazards Assumption

The SURVEYPHREG ProcedureThe SURVEYPHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error t Value Pr > |t|
Hazard

Ratio

A 1 31 -0.007655 1.284875 -0.01 0.9953 0.992

A 2 31 -0.881383 1.834533 -0.48 0.6343 0.414

A 3 31 0 . . . 1.000

X1 31 -0.155220 0.172914 -0.90 0.3763 0.856

X2 31 0.011554 0.198796 0.06 0.9540 1.012

In general, when your model contains a categorical explanatory variable that is time-dependent, it might be
necessary to use hardcoded dummy variables to represent the categories of the categorical variable.

Partial Likelihood Function for the Cox Model
Let t.1/ < t.2/ < : : : < t.K/ denote the K distinct, ordered event times. Let dk denote the multiplicity
of failures at t.k/; that is, dk is the size of the set Dk of individuals that fail at t.k/. Let whij be the
weight associated with the jth observation unit in the ith cluster in stratum h. Using this notation, the
pseudo-likelihood functions used in PROC SURVEYPHREG to estimate ˇN are described in the following
sections.

Continuous Time Scale

Let Rk denote the risk set just before the kth ordered event time t.k/.

The Breslow likelihood is expressed as

LBreslow.ˇ/ D

KY
kD1

exp
�
ˇ0
P

Dk whijZhij .t/
�8<:X

Rk

whij exp.ˇ0Zhij .t//

9=;
P

Dk whij

The Efron likelihood is expressed as

LEfron.ˇ/ D

KY
kD1

exp
�
ˇ0
P

Dk whijZhij .t/
�

f�.ˇ;Z;w; k/g
1
dk

P
Dk whij

where �.ˇ;Z;w; k/ is

�.ˇ;Z;w; k/ D
dkY
lD1

8<:X
Rk

whij exp
�
ˇ0Zhij .t/

�
�
l � 1

dk

X
Dk

whij exp
�
ˇ0Zhij .t/

�9=;
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Specifying the Sample Design
PROC SURVEYPHREG produces statistics that are based on the sample design used to obtain the survey data.
PROC SURVEYPHREG can be used for single-stage or multistage designs, with or without stratification,
and with or without unequal weighting. To analyze your survey data with PROC SURVEYPHREG, you need
to provide sample design information for the procedure. This information can include design (or variance)
strata, clusters, and sampling weights. You provide sample design information with the STRATA, CLUSTER,
and WEIGHT statements, and with the RATE= or TOTAL= option in the PROC SURVEYPHREG statement.

If you provide replicate weights for BRR or jackknife variance estimation, you do not need to specify a
STRATA or CLUSTER statement. Otherwise, you should specify STRATA and CLUSTER statements
whenever your design includes stratification and clustering.

When there are clusters (PSUs) in the sample design, the procedure estimates variance by using the PSUs,
as described in the section “Variance Estimation” on page 8279. For a multistage sample design, PROC
SURVEYPHREG uses only the first stage of the sample design for variance estimation. So, the required
input includes only first-stage cluster (PSU) and first-stage stratum identification. You do not need to input
design information about any additional stages of sampling.

Stratification

If your sample design is stratified at the first stage of sampling, use the STRATA statement to name the
variables that form the strata. The combinations of categories of STRATA variables define the strata in the
sample, where strata are nonoverlapping subgroups that were sampled independently. If your sample design
has stratification at multiple stages, you should identify only the first-stage strata in the STRATA statement.

If you use a REPWEIGHTS statement to provide replicate weights for BRR or jackknife variance estimation,
you do not need to specify a STRATA statement. Otherwise, you should specify a STRATA statement
whenever your design includes stratification. If you do not specify a STRATA statement or a REPWEIGHTS
statement, then PROC SURVEYPHREG assumes there is no stratification at the first stage. In other words,
in this case, the procedure assumes that all observation units are in the same stratum.

Clustering

If your sample design selects clusters at the first stage of sampling, use the CLUSTER statement to name
the variables that identify the first-stage clusters, which are also called primary sampling units (PSUs). The
combinations of categories of CLUSTER variables define the clusters in the sample. If there is a STRATA
statement, clusters are nested within strata. If your sample design has clustering at multiple stages, you should
specify only the first-stage clusters (PSUs) in the CLUSTER statement. PROC SURVEYPHREG assumes
that each cluster that is defined by the CLUSTER statement variables represents a PSU in the sample.

If you use a REPWEIGHTS statement to provide replicate weights for BRR or jackknife variance estimation,
you do not need to specify a CLUSTER statement. Otherwise, you should specify a CLUSTER statement
whenever your design includes clustering at the first stage of sampling. If you do not specify a CLUSTER
statement, then PROC SURVEYPHREG treats each observation as a PSU.
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Weighting

If your sample design includes unequal weighting, use the WEIGHT statement to name the variable that
contains the sampling weights. Sampling weights must be positive numbers. If an observation has a weight
that is nonpositive or missing, then the procedure omits that observation from the analysis. See the section
“Missing Values” on page 8277 for more information.

If you do not specify a WEIGHT statement but include a REPWEIGHTS statement, PROC SURVEYPHREG
uses the average of each observation’s replicate weights as the observation’s weight. If you specify neither
a WEIGHT statement nor a REPWEIGHTS statement, PROC SURVEYPHREG assumes all observations
have a weight of one.

Population Totals and Sampling Rates

To include a finite population correction (fpc) in Taylor series variance estimation, you can input either the
sampling rate or the population total by using the RATE= or TOTAL= option in the PROC SURVEYPHREG
statement. You cannot specify both of these options in the same PROC SURVEYPHREG statement. The
RATE= and TOTAL= options apply only to Taylor series variance estimation. The procedure does not use a
finite population correction for BRR or jackknife variance estimation.

If you do not specify the RATE= or TOTAL= option, the Taylor series variance estimation does not include a
finite population correction. For fairly small sampling fractions, this correction is often ignored. See Cochran
(1977) and Kish (1965) for more information.

If your design has multiple stages of selection and you are specifying the RATE= option, you should input
the first-stage sampling rate, which is the ratio of the number of PSUs in the sample to the total number of
PSUs in the study population. If you are specifying the TOTAL= option for a multistage design, you should
input the total number of PSUs in the study population.

For a nonstratified sample design, or for a stratified sample design with the same sampling rate or the same
population total in all strata, you can use the RATE=value or TOTAL=value option. If your sample design is
stratified with different sampling rates or population totals in different strata, use the RATE=SAS-data-set or
TOTAL=SAS-data-set option to name a SAS data set that contains the stratum sampling rates or totals. This
data set is called a secondary data set, as opposed to the primary data set that you specify with the DATA=
option.

The secondary data set must contain all the stratification variables listed in the STRATA statement and all the
variables in the BY statement. Furthermore, the BY groups must appear in the same order as in the primary
data set. If there are formats associated with the STRATA variables and the BY variables, then the formats
must be consistent in the primary and the secondary data sets. If you specify the TOTAL=SAS-data-set
option, the secondary data set must have a variable named _TOTAL_ that contains the stratum population
totals. If you specify the RATE=SAS-data-set option, the secondary data set must have a variable named
_RATE_ that contains the stratum sampling rates. If the secondary data set contains more than one observation
for any one stratum, the procedure uses the first value of _TOTAL_ or _RATE_ for that stratum and ignores
the rest.

The value in the RATE= option or the values of _RATE_ in the secondary data set must be nonnegative
numbers. You can specify value as a number between 0 and 1. Or you can specify value in percentage form
as a number between 1 and 100, and PROC SURVEYPHREG converts that number to a proportion. The
procedure treats the value 1 as 100% instead of 1%.
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If you specify the TOTAL=value option, value must not be less than the sample size. If you provide stratum
population totals in a secondary data set, these values must not be less than the corresponding stratum sample
sizes.

Missing Values
Missing values in your survey data can compromise the quality of your survey results. Some missing
values for survey data are because of nonresponses. An observation whose response to every survey item is
available is called a complete respondent, and an observation whose response to one or more survey items
are missing is called an incomplete respondent. If the complete respondents are different from the incomplete
respondents with regard to a survey effect or outcome, then survey estimates will be biased and will not
accurately represent the survey population. There are a variety of techniques in sample design and survey
operations that can reduce nonresponse. After data collection is complete, you can use imputation to replace
missing values with acceptable values, and you can use sampling weight adjustments to compensate for
nonresponse. You should complete this data preparation and adjustment before you analyze your data with
PROC SURVEYPHREG. For more details, see Cochran (1977); Kalton and Kasprzyk (1986); Brick and
Kalton (1996).

WEIGHT Variable

If an observation has a missing value or a nonpositive value for the WEIGHT variable, then PROC SUR-
VEYPHREG excludes that observation from the analysis.

REPWEIGHTS Variables

If you provide replicate weights with a REPWEIGHTS statement for BRR or jackknife variance estimation,
all REPWEIGHTS variable values must be nonmissing. Similarly, if you provide jackknife coefficients with
the JKCOEFS= option in the REPWEIGHTS statement, all values of the JKCoefficient variable must be
nonmissing. The procedure does not perform the analysis when any replicate weight or jackknife coefficient
value is missing.

CLASS, STRATA, CLUSTER, and DOMAIN Variables

An observation is excluded from the analysis if it has a missing value for any CLASS, STRATA, CLUSTER,
or DOMAIN variable, unless you specify the MISSING option in the PROC SURVEYPHREG statement.
If you specify the MISSING option, the procedure treats missing values as a valid (nonmissing) category
for all categorical variables, which include STRATA variables, CLUSTER variables, CLASS variables, and
DOMAIN variables.

Analysis Variables

By default, PROC SURVEYPHREG excludes an observation from the likelihood estimation and all associated
analyses if the observation has a missing value for any of the variables in the MODEL statement, unless you
specify the MISSING or NOMCAR option in the PROC SURVEYPHREG statement. When the procedure
excludes observations with missing values from analyses, it displays the total frequency of observations used
in the NObs table.



8278 F Chapter 100: The SURVEYPHREG Procedure

If you specify time-dependent covariates by using programming statements, the procedure computes the
values of the covariates for all observations in the risk set at every event time. If an observation contains
missing values for any of the time-dependent covariates at a given event time, then the observation is not used
at that event time. However, that same observation can be used at some other event times where it contains
no missing values. Therefore, an observation with missing time-dependent covariates can be used at some
event times but ignored at other event times, depending on whether any of the corresponding time-dependent
covariates are missing.

If you specify the MISSING option, the procedure treats missing levels as a valid (nonmissing) level for each
categorical analysis variable.

If you specify the NOMCAR option for Taylor series variance estimation, the procedure includes observations
with missing values of analysis variables in the variance computations.

The NOMCAR Option

When you specify the NOMCAR option, PROC SURVEYPHREG computes variance estimates by analyzing
the nonmissing values for variables in the regression model as a domain or subpopulation, where the entire
population includes both nonmissing and missing domains. By default, if an observation contains missing
values for the dependent variable or for any variable used in the independent effects, the observation is
excluded from the analysis. See the section “Missing Values” on page 8277 for more information.

Note that the NOMCAR option has no effect on categorical predictors when you specify the MISSING
option, which treats missing values as a valid nonmissing level. The NOMCAR option does not affect the
inclusion of observations with missing values of the WEIGHT, FREQ, CLUSTER, STRATA, or DOMAIN
variables. Observations with missing values of the WEIGHT and FREQ variables are always excluded from
the analysis. Observations with missing values of the CLUSTER, DOMAIN, or STRATA variables are
excluded unless you specify the MISSING option.

The NOMCAR option applies only to Taylor series variance estimation. The replication methods, which you
request with the VARMETHOD=BRR and VARMETHOD=JACKKNIFE options, do not use the NOMCAR
option.

Degrees of Freedom

PROC SURVEYPHREG computes degrees of freedom to compute confidence limits and F statistics. The
degrees of freedom computation depends on the variance estimation method that you request. See the
section “Degrees of Freedom” on page 8284 for details. Missing values can affect the degrees of freedom
computation.

Taylor Series Variance Estimation
The degrees of freedom can depend on the number of clusters, the number of strata, and the number of
observations. For Taylor series variance estimation, these numbers are based on the observations included in
the analysis. These numbers do not count observations that are excluded from the analysis due to missing
values. If all values in a stratum are excluded from the analysis as missing values, then that stratum is called
an empty stratum. Empty strata are not counted in the total number of strata for the analysis. Similarly, empty
clusters and missing observations are not included in the totals counts of clusters and observations that are
used to compute the degrees of freedom for the analysis.

If you specify the MISSING option, missing values are treated as valid nonmissing levels and are included in
computing degrees of freedom. If you specify the NOMCAR option for Taylor series variance estimation,
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observations with missing values for variables in the regression model are included in computing degrees of
freedom.

Replicate-Based Variance Estimation
For BRR or jackknife variance estimation, by default PROC SURVEYPHREG computes the degrees of
freedom by using all valid observations in the input data set. A valid observation is an observation that has a
positive value of the WEIGHT variable and nonmissing values of the STRATA and CLUSTER variables
unless you specify the MISSING option.

Variance Estimation
PROC SURVEYPHREG uses the Taylor series method or replication (resampling) methods to estimate
sampling errors of estimators that are based on complex sample designs (Fuller 1975; Särndal, Swensson,
and Wretman 1992; Wolter 2007; Rust 1985; Dippo, Fay, and Morganstein 1984; Rao and Shao 1999, 1996;
and Binder 1992). You can use the VARMETHOD= option in the PROC statement to specify the variance
estimation method. By default, PROC SURVEYPHREG uses the Taylor series method.

However, replication methods have recently gained popularity for estimating variances in complex survey data
analysis. One reason for this popularity is the relative simplicity of replication-based estimates, especially for
nonlinear estimators; another is that modern computational capacity has made replication methods feasible
for practical survey analysis.

Replication methods draw multiple replicates (also called subsamples) from a full sample according to
a specific resampling scheme. The most commonly used resampling schemes are the balanced repeated
replication (BRR) method and the jackknife method. For each replicate, the original weights are modified
for the PSUs in the replicates to create replicate weights. The parameters of interest are estimated by using
the replicate weights for each replicate. Then the variances of parameters of interest are estimated by the
variability among the estimates derived from these replicates. The procedure automatically creates replicate
weights based on the replication method you specify; alternatively you can use the REPWEIGHTS statement
to provide your own replicate weights for variance estimation.

The following sections provide details about how the variance-covariance matrix of the estimated regression
coefficients is estimated for each variance estimation method.

Taylor Series Linearization

The Taylor series linearization method is the default variance estimation method used by PROC SUR-
VEYPHREG. See the section “Notation and Estimation” on page 8268 for definitions of the notation used in
this section. Let

S .r/.ˇ; t / D
X
A

whijyhij .t/ exp
�
ˇ0Zhij .t/

�
Z
N
r

hij
.t/

where r D 0; 1. Let A be the set of indices in the selected sample. Let

a
N
r
D

�
aa‘ ; r D 1

Idim.a/ ; r D 0

and let Idim.a/ be the identity matrix of appropriate dimension.
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Let NZ.ˇ; t / D S.1/.ˇ;t/

S.0/.ˇ;t/
. The score residual for the .h; i; j / subject is

Lhij .ˇ/ D �hij

�
Zhij .thij / � NZ.ˇ; thij /

�
�

X
.h0;i 0;j 0/2A

�h0i 0j 0
wh0i 0j 0Yhij .th0i 0j 0/ exp

�
ˇ0Zhij .th0i 0j 0/

�
S .0/.ˇ; th0i 0j 0/

�
Zhij .th0i 0j 0/ � NZ.ˇ; th0i 0j 0/

�

For TIES=EFRON, the computation of the score residuals is modified to comply with the Efron partial
likelihood. See the section “Residuals” on page 8289 for more information.

The Taylor series estimate of the covariance matrix of Ǒ is

OV. Ǒ/ D I�1. Ǒ/GI�1. Ǒ/

where I. Ǒ/ is the observed information matrix and the p � p matrix G is defined as

G D
n � 1

n � p

HX
hD1

nh.1 � fh/

nh � 1

nhX
iD1

.ehiC � Neh��/0.ehiC � Neh��/

The observed residuals, their sums and means are defined as follows:

ehij D whijLhij . Ǒ/

ehiC D

mhiX
jD1

ehij

Neh�� D
1

nh

nhX
iD1

ehiC

The factor .n�1/=.n�p/ in the computation of the matrix G reduces the small sample bias that is associated
with using the estimated function to calculate deviations (Fuller et al. (1989), pp. 77–81). For simple random
sampling, this factor contributes to the degrees of freedom correction applied to the residual mean square for
ordinary least squares in which p parameters are estimated. By default, the procedure uses this adjustment in
the variance estimation. If you do not want to use this multiplier in the variance estimator, then specify the
VADJUST=NONE option in the MODEL statement.

Balanced Repeated Replication (BRR) Method

The balanced repeated replication (BRR) method requires that the full sample be drawn by using a stratified
sample design with two primary sampling units (PSUs) per stratum. The BRR method constructs half-sample
replicates by deleting one PSU per stratum according to a Hadamard matrix and doubling the original weight
of the other PSU in that stratum. Let H be the total number of strata. The total number of replicates R is
the smallest multiple of 4 that is greater than H. However, if you prefer a larger number of replicates, you
can specify the REPS=n method-option. If a n � n Hadamard matrix cannot be constructed, the number of
replicates is increased until a Hadamard matrix becomes available.

Each replicate is obtained by deleting one PSU per stratum according to a corresponding Hadamard matrix
and adjusting the original weights for the remaining PSUs. The new weights are called replicate weights.
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Replicates are constructed by using the first H columns of the R � R Hadamard matrix. The rth (r D
1; 2; :::; R) replicate is drawn from the full sample according to the rth row of the Hadamard matrix as
follows:

• If the .r; h/ element of the Hadamard matrix is 1, then the first PSU of stratum h is included in the rth
replicate and the second PSU of stratum h is excluded.

• If the .r; h/ element of the Hadamard matrix is –1, then the second PSU of stratum h is included in the
rth replicate and the first PSU of stratum h is excluded.

The replicate weights of the remaining PSUs in each half sample are then doubled to their original weights.
For more detail about the BRR method, see Wolter (2007) and Lohr (2010).

By default, an appropriate Hadamard matrix is generated automatically to create the replicates. You
can display the Hadamard matrix by specifying the VARMETHOD=BRR(PRINTH) method-option.
If you provide a Hadamard matrix by specifying the VARMETHOD=BRR(HADAMARD=) method-
option, then the replicates are generated according to the provided Hadamard matrix. You can use the
VARMETHOD=BRR(OUTWEIGHTS=) method-option to store the replicate weights in a SAS data set.

Let Ǒ be the estimated proportional hazards regression coefficients from the full sample, and let Ǒr be the
estimated proportional hazards regression coefficients from the rth replicate by using replicate weights.
PROC SURVEYPHREG estimates the covariance matrix of Ǒ by

bV. Ǒ/ D 1

R

RX
rD1

�
Ǒ
r �
Ǒ
� �
Ǒ
r �
Ǒ
�0

with H degrees of freedom, where H is the number of strata.

If you specify the CENTER=REPLICATES method-option, then PROC SURVEYPHREG computes the
covariance matrix of Ǒ by

bV. Ǒ/ D 1

R

RX
rD1

�
Ǒ
r �
Ǒ
r

� �
Ǒ
r �
Ǒ
r

�0
where Ǒr is the average of the replicate estimates as follows:

Ǒ
r D

1

R

RX
rD1

Ǒ
r

If one or more components of Ǒr cannot be calculated for some replicates, then the variance estimate is
computed by using only the replicates for which the proportional hazards regression coefficients can be
estimated. Estimability and nonconvergence are the two most common reasons why Ǒr might not be available
for a replicate sample even if Ǒ is defined for the full sample. Let Ra be the number of replicates where Ǒr is
available, and let R �Ra be the number of replicates where Ǒr is not available. Without loss of generality,
assume that Ǒr is available only for the first Ra replicates; then the BRR variance estimator is

bV. Ǒ/ D 1

Ra

RaX
rD1

�
Ǒ
r �
Ǒ
� �
Ǒ
r �
Ǒ
�0

with degrees of freedom equal to the minimum of H and Ra, where H is the number of strata. Alternatively,
you can use the FAY= method-option to request Fay’s BRR method, as discussed in the following section.
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Fay’s BRR Method
The traditional BRR method constructs half-sample replicates by deleting one PSU per stratum according
to a Hadamard matrix and doubling the original weight of the other PSU. Fay’s BRR method uses the Fay
coefficient, � .0 � � < 1/, and instead of deleting one PSU per stratum, it multiplies the original weight by
the coefficient �. The original weight of the remaining PSU in that stratum is multiplied by 2 � �. PROC
SURVEYPHREG uses � D 0:5 as the default value; alternatively, you can specify a value for � with the
FAY= method-option. When � D 0, Fay’s method becomes the traditional BRR method. For more details, see
Dippo, Fay, and Morganstein (1984); Fay (1984, 1989); Judkins (1990). Because the traditional BRR method
uses only half of the total sample in every replicate, several replicate estimators ( Ǒr ) might be undefined
even when the full sample estimator ( Ǒ) is defined. Fay’s BRR method is especially useful for this situation
because it uses all the sampled units in every replicate.

Let Ǒ be the estimated proportional hazards regression coefficients from the full sample, and let Ǒr be the
estimated regression coefficients that are obtained from the rth replicate by using replicate weights. PROC
SURVEYPHREG estimates the covariance matrix of Ǒ by

bV. Ǒ/ D 1

R.1 � �/2

RX
rD1

�
Ǒ
r �
Ǒ
� �
Ǒ
r �
Ǒ
�0

with H degrees of freedom, where H is the number of strata.

Hadamard Matrix
PROC SURVEYPHREG uses a Hadamard matrix to construct replicates for BRR variance estimation. You
can provide a Hadamard matrix for replicate construction by using the HADAMARD= method-option for
VARMETHOD=BRR. Otherwise, PROC SURVEYPHREG generates an appropriate Hadamard matrix. You
can display the Hadamard matrix by specifying the PRINTH method-option.

A Hadamard matrix A of dimension R is a square matrix that has all elements equal to 1 or –1 such that
A0A D RI, where I is an identity matrix of appropriate order. The dimension of a Hadamard matrix must
equal 1, 2, or a multiple of 4.

For example, the following matrix is a Hadamard matrix of dimension k = 8:

1 1 1 1 1 1 1 1

1 �1 1 �1 1 �1 1 �1

1 1 �1 �1 1 1 �1 �1

1 �1 �1 1 1 �1 �1 1

1 1 1 1 �1 �1 �1 �1

1 �1 1 �1 �1 1 �1 1

1 1 �1 �1 �1 �1 1 1

1 �1 �1 1 �1 1 1 �1

For BRR replicate construction, the dimension of the Hadamard matrix must be at least H, where H denotes
the number of first-stage strata in your design. If a Hadamard matrix of a given dimension exists, it is not
necessarily unique. Therefore, if you want to use a specific Hadamard matrix, you must provide the matrix as
a SAS data set in the HADAMARD= method-option. You must ensure that the matrix that you provide is
actually a Hadamard matrix; PROC SURVEYPHREG does not check the validity of your Hadamard matrix.

See the section “Balanced Repeated Replication (BRR) Method” on page 8280 for details about how the
Hadamard matrix is used to construct replicates for BRR variance estimation.
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Jackknife Method

The jackknife method of variance estimation deletes one PSU at a time from the full sample to create
replicates. This method is also known as the delete-1 jackknife method because it deletes exactly one PSU in
every replicate. The total number of replicates R is the same as the total number of PSUs. In each replicate,
the sampling weights of the remaining PSUs are modified by the jackknife coefficient ˛r . The modified
weights are called replicate weights.

Let PSU i in stratum hr be omitted for the rth replicate; then the jackknife coefficient and replicate weights
are computed as

˛r D

8<:
nhr�1

nhr
for a stratified design

R�1
R

for designs without stratification

and

w
.r/

hij
D

8<:
whij if observation unit j is not in donor stratum hr
0 if observation unit j is in PSU i of donor stratum hr
whij =˛r if observation unit j is not in PSU i but in donor stratum hr

You can use the VARMETHOD=JACKKNIFE(OUTJKCOEFS=) method-option to store the jackknife
coefficients in a SAS data set and use the VARMETHOD=JACKKNIFE(OUTWEIGHTS=) method-option
to store the replicate weights in a SAS data set.

If you provide your own replicate weights with a REPWEIGHTS statement, then you can also provide
corresponding jackknife coefficients with the JKCOEFS= option. If you provide replicate weights with a
REPWEIGHTS statement but do not provide jackknife coefficients, then the procedure uses .R � 1/=R as
the default jackknife coefficient for every replicate, where R is the total number of replicates.

Let Ǒ be the estimated proportional hazards regression coefficients from the full sample, and let Ǒr be the
estimated regression coefficients for the rth replicate. PROC SURVEYPHREG estimates the covariance
matrix of Ǒ by

bV. Ǒ/ D RX
rD1

˛r

�
Ǒ
r �
Ǒ
� �
Ǒ
r �
Ǒ
�0

with R �H degrees of freedom, where R is the number of replicates and H is the number of strata, or R – 1
when there is no stratification.

If you specify the CENTER=REPLICATES method-option, then PROC SURVEYPHREG computes the
covariance matrix of Ǒ by

bV. Ǒ/ D RX
rD1

˛r

�
Ǒ
r �
Ǒ
r

� �
Ǒ
r �
Ǒ
r

�0
where Ǒr is the average of the replicate estimates as follows:

Ǒ
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1

R
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rD1

Ǒ
r
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If one or more components of Ǒr cannot be calculated for some replicates, then the variance estimator uses
only the replicates for which the proportional hazards regression coefficients can be estimated. Estimability
and nonconvergence are two common reasons why Ǒr might not be available for a replicate sample even if Ǒ
is defined for the full sample. Let Ra be the number of replicates where Ǒr are available, and let R �Ra be
the number of replicates where Ǒr are not available. Without loss of generality, assume that Ǒr is available
only for the first Ra replicates; then the jackknife variance estimator is

bV. Ǒ/ D RaX
rD1

˛r

�
Ǒ
r �
Ǒ
� �
Ǒ
r �
Ǒ
�0

with Ra �H degrees of freedom, where H is the number of strata. Alternatively, you can use the VAD-
JUST=AVGREPSS option in the MODEL statement to use the average sum of squares for the invalid replicate
samples. See “Variance Adjustment Factors” on page 8285 for details.

Degrees of Freedom

PROC SURVEYPHREG uses the degrees of freedom of the variance estimator to obtain t confidence limits
and Wald type F tests. PROC SURVEYPHREG computes the degrees of freedom based on the variance
estimation method and the sample design. Alternatively, you can specify the degrees of freedom in the DF=
option in the MODEL statement.

For Taylor series variance estimation, PROC SURVEYPHREG calculates the degrees of freedom (df ) as
the number of clusters minus the number of strata. If the CLUSTER statement is not specified, then the
procedure treats each observation as a cluster. If the STRATA statement is not specified, then the procedure
assumes that all observations are in the same stratum. These numbers are based on the observations included
in the analysis. These numbers do not count observations that are excluded from the analysis due to missing
values. See the section “Missing Values” on page 8277 for details. If you specify the MISSING option in
the CLASS statement, missing values are treated as valid nonmissing levels and are included in computing
degrees of freedom. If you specify the NOMCAR option for Taylor series variance estimation, observations
with missing values of the analysis variables are included in computing the degrees of freedom.

If you provide replicate weights with a REPWEIGHTS statement, the degrees of freedom is equal the
number of replicates used, which is the number of REPWEIGHTS variables that provide replicate estimates.
Alternatively, you can specify the degrees of freedom in the DF= option in the REPWEIGHTS or MODEL
statement.

For BRR variance estimation (when you do not use a REPWEIGHTS statement), PROC SURVEYPHREG
calculates the degrees of freedom as the number of strata. PROC SURVEYPHREG bases the number of
strata on all valid observations in the data set. If some replicate samples are not usable in the sense that these
replicate samples cannot be used for parameter estimation (say, for nonconvergence or inestimability), then
df equals the minimum of the number of strata and the number of replicates used. Alternatively, you can use
the DF=ALLREPS option in the MODEL statement to specify that df equals the number of strata.

For jackknife variance estimation (when you do not use a REPWEIGHTS statement), PROC
SURVEYPHREG calculates the degrees of freedom as the number of clusters minus the number of
strata. If the CLUSTER statement is not specified, then the procedure treats each observation as a cluster. If
the STRATA statement is not specified, then the procedure assumes that all observations are in the same
stratum. For jackknife variance estimation, PROC SURVEYPHREG bases the number of strata and clusters
on all valid observations in the data set. If some replicate samples are not usable in the sense that these
replicate samples cannot be used for parameter estimation (say, for nonconvergence or inestimability), then
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df equals the number of clusters (or observations if no CLUSTER statement is specified) minus the number
of strata (or one in if no STRATA statement is specified) minus the number of replicate samples that are not
used. Alternatively, you can use the DF=ALLREPS option in the MODEL statement to specify that df equals
the number of clusters minus the number of strata.

Variance Adjustment Factors

PROC SURVEYPHREG provides options for adjustment of the default variance estimators.
VADJUST=NONE and VADJUST=DF are available for the Taylor series linearization variance esti-
mator. VADJUST=AVGREPSS is available for the jackknife replication variance estimators.

For models with large number of parameters, it is reasonable to adjust the Taylor series linearized variance
estimator by the number of estimable parameters in the analysis model. Fuller et al. (1989, pp. 77–81) use an
adjustment factor .n � 1/=.n � p/ to estimate the linearized variance for regression coefficients, where n is
the total number of observation units and p is the number of estimable parameters in the analysis model. By
default, PROC SURVEYPHREG uses this adjustment in the computation of the matrix G for the Taylor series
linearization variance estimation. If you do not want to use this adjustment, then specify VADJUST=NONE.

Variance adjustment factors can be useful for replication variance estimations, especially if some replicate
samples are not usable. A replicate sample might not provide useful parameter estimates (replicate esti-
mates) for reasons such as nonconvergence of the optimization or inestimability of some parameters in that
subsample. For example, consider the jackknife variance estimator with R replicates. Suppose that only
Ra.< R/ replicates are used to obtain replicate estimates and R �Ra replicates cannot be used due to, say,
nonconvergence of the optimization. Without loss of generality, assume that the first Ra replicates are used.
By default SURVEYPHREG uses

bV. Ǒ/ D RaX
rD1

˛r

�
Ǒ
r �
Ǒ
� �
Ǒ
r �
Ǒ
�0

as the jackknife variance estimator. An alternative estimator is

bV. Ǒ/ D RaX
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D
R
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RaX
rD1

˛r. Ǒr � Ǒ/. Ǒr � Ǒ/
0

which uses the average replicate sum of squares for the R �Ra unusable replicate samples. If you specify
the VADJUST=AVGREPSS option, PROC SURVEYPHREG uses the second variance estimator for the
jackknife replication method. Note that you can specify the FAY method-option for the BRR method to avoid
nonconvergence of the optimization or inestimability of some parameters in subsamples.

Variance Ratios and Standard Error Ratios

PROC SURVEYPHREG provides options to compute different variance ratios and standard error ratios.

If you specify the VARRATIO=MODEL option, then the procedure computes the variance ratio of the

estimated regression parameter Ǒj as
OV . Ǒj /

OVM . Ǒj /
, where OV . Ǒj /, the estimated variance of Ǒj , uses the complete

design information and OVM . Ǒj / is the jth diagonal element of the observed information matrix I�1. Ǒ/.
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If you specify the VARRATIO=IND option, then the procedure computes the variance ratio of the estimated

regression parameter Ǒj as
OV . Ǒj /

OVIND. Ǒj /
, where OV . Ǒj /, the estimated variance of Ǒj , uses the complete design

information and OVIND. Ǒj / is the jth diagonal element of OVIND. Ǒ/. OVIND. Ǒ/ is the sandwich variance estimator,
which ignores the strata and the clusters and is computed as

OVIND. Ǒ/ D I�1. Ǒ/

8<: n

n � 1
.1 � f /

X
h

X
i

X
j

.ehij � Ne���/0.ehij � Ne���/

9=; I�1. Ǒ/

where ehij are the weighted score residuals, f is the overall sampling fraction, and n is the number of
observation units. The three sums are over the observation units (j) across the PSUs (i) and the strata (h).

For Taylor series variance estimation, PROC SURVEYPHREG determines the value of f, the overall sampling
fraction, based on the RATE= or TOTAL= option. If you do not specify either of these options, PROC
SURVEYPHREG assumes that the value of f is negligible and does not use a finite population correction
in the analysis. If you specify RATE=value, PROC SURVEYPHREG uses value as the overall sampling
fraction f. If you specify TOTAL=value, PROC SURVEYPHREG computes f as the ratio of the number of
PSUs in the sample to the specified total.

If you specify stratum sampling rates by using the RATE=SAS-data-set option, then PROC SURVEYPHREG
computes stratum totals based on these stratum sampling rates and the number of sample PSUs in each
stratum. The procedure sums the stratum totals to form the overall total and then computes f as the ratio
of the number of sample PSUs to the overall total. Alternatively, if you specify stratum totals with the
TOTAL=SAS-data-set option, then PROC SURVEYPHREG sums these totals to compute the overall total.
The overall sampling fraction f is then computed as the ratio of the number of sample PSUs to the overall
total.

The replication methods do not use the finite population correction factor .1 � f / in the denominator.

Standard error ratios are computed as the square root of the variance ratios.

Domain Analysis
Domain analysis refers to the computation of statistics for domains (subpopulations). Formation of sub-
populations can be unrelated to the sample design, and so the domain sample sizes can actually be random
variables. Domain analysis takes this variability into account to compute variance estimates for estimated
model parameters. Domain analysis is also known as subgroup analysis, subpopulation analysis, and sub-
domain analysis. For more information about domain analysis, see Lohr (2010); Särndal, Swensson, and
Wretman (1992); Cochran (1977).

To request domain analysis with PROC SURVEYPHREG, use the DOMAIN statement. If your domains are
formed by more than one variable, you can specify DomainVariable_1 * DomainVariable_2 in the DOMAIN
statement. If you use the DOMAIN statement, the procedure performs separate analyses for all domains, in
addition to the overall analysis.

Including the domain variables in a DOMAIN statement request provides a different analysis from that
obtained by using a BY statement, which provides completely separate analyses of the BY groups. The BY
statement can also be used to analyze the data set by subgroups, but it is critical to note that this does not
account for random sample sizes that often occur for domain analyses. The BY statement is appropriate only
when the number of units in each subgroup is known with certainty. For example, the BY statement can be
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used to obtain stratum level estimates when you have fixed sample sizes for the strata. When the subgroup
sample size is random, include the domain variables in DOMAIN statement.

Hypothesis Tests, Confidence Intervals, and Residuals

Testing the Global Null Hypothesis

The following statistics can be used to test the global null hypothesis H0Wˇ D 0. Let d be the number of
clusters (or observations) minus the number of strata (or one) and p be the number of estimable parameters in
the analysis model.

The likelihood ratio test is expressed as

�2LR D 2
h
log

n
L. Ǒ/

o
� log fL.0/g

i
where L(�) denotes the partial pseudo-likelihood described in “Partial Likelihood Function for the Cox Model”
on page 8274. The p-value is computed by using a chi-square distribution with p degrees of freedom. The
usual assumptions required for a likelihood ratio test do not hold for the pseudo-likelihood that is used by
PROC SURVEYPHREG, leading to other methods for testing the global null hypothesis, such as the Wald
test discussed below.

Wald’s test is expressed as

WF D

�
d � p C 1

dp

�
Ǒ0
hbV. Ǒ/i�1 Ǒ

The p-value is computed by using an F distribution with (p, d) degrees of freedom. For the Taylor series
linearization method, the DF=PARMADJ option in the MODEL statement computes the p-value by using an
F distribution with (p, d – p + 1) degrees of freedom. The DF=q option in the MODEL statement replaces
the (d – p + 1) factor in the numerator of the Wald’s statistics by q and computes the p-value by using an F
distribution with (p, q) degrees of freedom.

If you specify the DF=NONE option in the MODEL statement, then the procedure computes

W�2 D
Ǒ0
hbV. Ǒ/i�1 Ǒ

and the p-value is computed by using a chi-square distribution with p degrees of freedom.

Model Fit Statistics

Suppose the model contains p estimable parameters. Then the following two criteria are displayed for model
fit statistics:

• –2 log likelihood:

�2 Log L D �2 log.L. Ǒ//

where L.:/ is a partial pseudo-likelihood function for the corresponding TIES= option as described in
the section “Partial Likelihood Function for the Cox Model” on page 8274, and Ǒ is the maximum
pseudo-log-likelihood estimate of the proportional hazards regression coefficients.
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• Akaike’s information criterion (AIC):

AIC D �2 Log LC 2p

The AIC statistics gives a different way of adjusting the –2 log likelihood statistic for the number of estimable
parameters in the model.

Contrasts

For a testable hypothesis H0WLˇ D 0, the Wald F statistic is computed as

FWald D
.L� Ǒ/0.L�0bVL�/�1.L� Ǒ/

rank.L/

where L is a contrast vector or matrix that you specify, ˇ is the vector of regression parameters, Ǒ is the
estimated regression coefficients, bV is the estimated covariance matrix of Ǒ, rank(L) is the rank of L, and L�

is a matrix such that

• L� has the same number of columns as L

• L� has full row rank

• the rank of L� equals the rank of the L matrix

• all rows of L� are estimable functions

• the Wald F statistic computed by using the L� matrix is equivalent to the Wald F statistic computed by
using the L matrix with any row deleted that is a linear combination of previous rows

If L is a full-rank matrix and all rows of L are estimable functions, then L� is the same as L. It is possible that
L matrix cannot be constructed for a given set of linear contrasts, in which case the contrasts are not testable.

If the DF=NONE option in the MODEL statement is specified, then the procedure performs a chi-square
significance test.

Confidence Intervals

By default, the SURVEYPHREG procedure computes t confidence limits for the estimated regression
coefficients. Alternatively, you can specify the DF=NONE option in the MODEL statement to request
standard normal confidence intervals. The t confidence interval for a linear combination l0ˇ of the regression
coefficients is computed as�

l0 Ǒ ˙ tdf ;˛=2
q
l0 OV. Ǒ/l

�
where tdf ;˛=2 is the 100.1 � ˛=2/ percentile point of the t distribution with df degrees of freedom. See the
section “Degrees of Freedom” on page 8284 for more information about df. If you use the DF=NONE option
in the MODEL statement, then the procedure uses the 100.1 � ˛=2/ percentile point of the standard normal
distribution.
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Hazard Ratios

The hazard ratio for a quantitative effect with regression coefficient ˇj D e0jˇ is defined as exp.ˇj /, where
ej denotes the jth unit vector. In general, a log-hazard ratio can be written as l0ˇ, a linear combination of the
regression coefficients, and the hazard ratio exp.l0ˇ/ is obtained by replacing ej with l.

The confidence intervals for hazard ratios are obtained by exponentiating the confidence limits of the
corresponding linear combination. Thus, the 100.1 � ˛/ confidence limits are

exp
�
e0j Ǒ ˙ tdf ;˛=2

q
e0j OV. Ǒ/ej

�
where tdf ;˛=2 is the 100.1 � ˛=2/ percentile point of the t distribution with df degrees of freedom. See the
section “Degrees of Freedom” on page 8284 for more information about df. If you use the DF=NONE option
in the MODEL statement, then the procedure uses the 100.1 � ˛=2/ percentile point of the standard normal
distribution.

Residuals

This section describes the computation of residuals (RESMART, RESDEV, RESSCH, and RESSCO in the
OUTPUT statement). See the section “Notation and Estimation” on page 8268 for definition of notation that
is used in this section. The residuals are calculated based on the TIES= option in the MODEL statement.

TIES=BRESLOW
This is the default option. Let

S .r/.ˇ; t / D
X
A

whijyhij .t/ exp
�
ˇ0Zhij .t/

�
Z
N
r

hij
.t/

NZ.ˇ; t / D
S .1/.ˇ; t /

S .0/.ˇ; t /

where r D 0; 1; and A be the set of indices in the selected sample.

Further let

dƒ0.ˇ; t / D
X
A

whijdnhij .t/

S .0/.ˇ; t /

dMhij .ˇ; t / D dnhij .t/ � yhij .t/ exp
�
ˇ0Zhij .t/

�
dƒ0.ˇ; t /

The martingale residual at t is defined as

OMhij .t/ D

Z t

0

dMhij . Ǒ; �/

D nhij .t/ �

Z t

0

yhij .�/ exp
�
Ǒ0Zhij .�/

�
dƒ0. Ǒ; �/

Here OMhij .t/ estimates the difference over .0; t � between the observed number of events for the .h; i; j /
observation unit and a conditional expected number of events. The quantity OMhij �

OMhij .1/ is referred
to as the martingale residual for the .h; i; j / observation unit. For the Cox model with no time-dependent
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explanatory variables, the martingale residual for the .h; i; j / unit with observation time t.h;i;j / and event
status �.h;i;j / is

OM.h;i;j / D �.h;i;j / � e Ǒ
0Z.h;i;j /

Z t.h;i;j /

0

dƒ0. Ǒ; s/

The deviance residual Dhij for the .h; i; j / observation unit is a transformation of the corresponding
martingale residuals,

Dhij D sign. OMhij /

s
2

�
� OMhij � nhij .1/ log

�
nhij .1/ � OMhij

nhij .1/

��
The square root shrinks large negative martingale residuals, while the logarithmic transformation expands
martingale residuals that are close to unity. As such, the deviance residuals are more symmetrically distributed
around zero than the martingale residuals. For the Cox model, the deviance residual reduces to the form

Dhij D sign. OMhij /

q
2Œ� OMhij ��hij log.�hij � OMhij /�

The Schoenfeld (1982) residual vector is calculated on a per-event-time basis. At the kth event time thij;k of
the .h; i; j / observation unit, the Schoenfeld residual
OUhij .thij;k/ D Zhij .thij;k/ � NZ. Ǒ; thij;k/

is the difference between the observed covariate vector for the .h; i; j / observation unit and the average of
the covariate vectors over the risk set at thij;k . Under the proportional hazards assumption, the Schoenfeld
residuals have the sample path of a random walk; therefore, they are useful in assessing time trend or lack of
proportionality.

The score process for the .h; i; j / subject at time t is

Lhij .ˇ; t / D
Z t

0

ŒZhij .�/ � NZ.ˇ; �/�dMhij .ˇ; �/

The vector OLhij � Lhij . Ǒ;1/ is the score residual for the .h; i; j / observation unit.

The score residuals are a decomposition of the first partial derivative of the log likelihood. They are useful in
assessing the influence of each subject on individual parameter estimates. They also play an important role in
the computation of the variance estimators.

TIES=EFRON
For TIES=EFRON, the preceding computation is modified to comply with the Efron partial likelihood. For a
given uncensored time t, let ıhij .t/ D 1 if t is an event time for the .h; i; j / observation, and 0 otherwise. Let
d.t/ D

P
hij2A ıhij .t/, which is the number of observation units that have an event at t. For 1 � l � d.t/,

let

S .r/.ˇ; l; t / D
X
A

whijyhij .t/

�
1 �

l � 1

d.t/
ıhij .t/

�
exp

�
ˇ0Zhij .t/

�
Z
N
r

hij
.t/

NZ.ˇ; l; t / D
S .1/.ˇ; l; t /

S .0/.ˇ; l; t /

dƒ0.ˇ; l; t / D
X
A

whijdnhij .t/

S .0/.ˇ; l; t /

dMhij .ˇ; l; t / D dnhij .t/ � yhij .t/

�
1 � ıhij .t/

l � 1

d.t/

�
exp

�
ˇ0Zhij .t/

�
dƒ0.ˇ; l; t /
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where r D 0; 1, and A are the set of indices in the selected sample.

The martingale residual at t for the .h; i; j / observation unit is defined as

OMhij .t/ D

Z t

0

1

d.�/

d.�/X
lD1

dMhij . Ǒ; l; �/

D nhij .t/ �

Z t

0

1

d.�/

d.�/X
lD1

yhij .�/

�
1 � ıhij .�/

l � 1

d.�/

�
exp

�
Ǒ0Zhij .�/

�
dƒ0. Ǒ; l; �/

Deviance residuals are computed by using the same transform on the corresponding martingale residuals as
in TIES=BRESLOW.

The Schoenfeld residual vector for the .h; i; j / observation unit at event time thij;k is

OUhij .thij;k/ D Zhij .thij;k/ �
1

d.thij;k/

d.thij;k/X
lD1

NZ. Ǒ; l; thij;k/

The score process for the .h; i; j / observation unit at time t is

Lhij .ˇ; t / D
Z t

0

1

d.�/

d.�/X
lD1

�
Zhij .�/ � NZ.ˇ; l; �/

�
dMhij .ˇ; l; �/

Output Data Sets
You can use the Output Delivery System to create a SAS data set from any piece of PROC SURVEYPHREG
output. See the section “ODS Table Names” on page 8295 for more information. PROC SURVEYPHREG
also provides an output data set to store observation-level statistics, an output data set to store the replicate
weights for BRR or jackknife variance estimation, and an output data set to store the jackknife coefficients
for jackknife variance estimation.

OUT= Data Set for the OUTPUT statement

The OUTPUT statement can be used to store observation-level statistics, such as the predicted values and
their standard errors, the (weighted) number of observation units at risk, martingale residuals, Schoenfeld
residuals, score residuals, and deviance residuals. See the section “Residuals” on page 8289 for details about
how these statistics are calculated.

Replicate Weights Output Data Set

If you specify the OUTWEIGHTS= method-option for VARMETHOD=BRR or JACKKNIFE, PROC
SURVEYPHREG stores the replicate weights in an output data set. The OUTWEIGHTS= output data set
contains all observations that are used in the analysis or all valid observations in the DATA= input data set.
See the section “Missing Values” on page 8277 for details about valid observations.



8292 F Chapter 100: The SURVEYPHREG Procedure

The OUTWEIGHTS= data set contains the following variables:

• all variables in the DATA= input data set

• RepWt_1, RepWt_2, : : :, RepWt_R, which are the replicate weight variables, where R is the total
number of replicates in the analysis

Each replicate weight variable contains the replicate weights for the corresponding replicate. Replicate
weights equal zero for those observations not included in the replicate.

After the procedure creates replicate weights for a particular input data set and survey design, you can use
the OUTWEIGHTS= method-option to store these replicate weights and then use them again in subsequent
analyses, either in PROC SURVEYPHREG or in the other survey procedures. You can use a REPWEIGHTS
statement to provide replicate weights for the procedure.

Jackknife Coefficients Output Data Set

If you specify the OUTJKCOEFS= method-option for VARMETHOD=JACKKNIFE, PROC
SURVEYPHREG stores the jackknife coefficients in an output data set. The OUTJKCOEFS= output
data set contains one observation for each replicate. The OUTJKCOEFS= data set contains the following
variables:

• Replicate, which is the replicate number for the jackknife coefficient

• JKCoefficient, which is the jackknife coefficient for the replicate

• DonorStratum, which is the stratum of the PSU that was deleted to construct the replicate, if you
specify a STRATA statement

After the procedure creates jackknife coefficients for a particular input data set and survey design, you can
use the OUTJKCOEFS= method-option to store these coefficients and then use them again in subsequent
analyses, either in PROC SURVEYPHREG or in the other survey procedures. You can use the JKCOEFS=
option in the REPWEIGHTS statement to provide jackknife coefficients for the procedure.

Displayed Output
If you use the NOPRINT option in the PROC SURVEYPHREG statement, the procedure does not display
any output. Otherwise, PROC SURVEYPHREG displays results of the analysis in a collection of tables.

Model Information

The “Model Information” table displays the two-level name of the input data set, the name and label of
the failure time variable, the name and label of the censoring variable and the values that indicate censored
times, the model, the name and label of the FREQ variable, the name and label of the WEIGHT variable, the
name and label of the STRATA variables, the name and label of the CLUSTER variables, and the method
of handling ties in the failure time for the Cox model. The ODS name of the “Model Information” table is
ModelInfo.
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Number of Observations

The “Number of Observations” table displays the number of observations that are read and used, the sum of
frequencies read and used, the sum of weights read and used, and the weighted sum of frequencies that are
read and used in the analysis. The ODS name of the “Number of Observations” table is NObs.

Summary of the Number of Event and Censored Values

The “Summary of the Number of Event and Censored Values” table displays the number of events and
censored values. The ODS name of the “Summary of the Number of Event and Censored Values” table is
CensoredSummary.

Summary of the Weighted Number of Event and Censored Values

The “Summary of the Weighted Number of Event and Censored Values” table displays the weighted number
of events and censored values. The ODS name of the “Summary of the Weighted Number of Event and
Censored Values” table is WeightedCensoredSummary.

Class Level Information

The “Class Level Information” table is displayed when there are CLASS variables in the model. The table
lists the categories of every CLASS variable that is used in the model and the corresponding design variable
values. The ODS name of the “Class Level Information” table is ClassLevelInfo.

Design Summary Table

The “Design Summary” table provides information about the sample design. The table displays the total
number of strata that are read and used, and the total number of clusters read and used. The table is displayed
only if you specify a STRATA or CLUSTER statement. The ODS name of the “Design Summary” table is
DesignSummary.

Stratum Information Table

If you specify the LIST option in the STRATA statement, PROC SURVEYPHREG displays a “Stratum
Information” table. The ODS name of the “Stratum Information Table” is StrataInfo. This table provides the
following information for each stratum:

• Stratum Index, which is a sequential stratum identification number

• STRATA variables, which list the levels of STRATA variables for the stratum

• Number of Observations, which is the number of observations used in the stratum

• Population Total for the stratum, if you specify the TOTAL= option

• Sampling Rate for the stratum, if you specify the TOTAL= or RATE= option. If you specify the
TOTAL= option, the sampling rate is based on the number of valid observations in the stratum.

• Number of Clusters, which is the number of clusters in the stratum, if you specify a CLUSTER
statement
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Convergence Status

The “Convergence Status” table displays the convergence status of the optimization routine. The procedure
displays this table only when you specify the NLOPTIONS statement. The ODS name of the “Convergence
Status” table is ConvergenceStatus.

Model Fit Statistics

The “Model Fit Statistics” table displays the values of –2 log likelihood and the AIC for the null model and
the fitted model. The ODS name of the “Model Fit Statistics” table is FitStatistics.

Testing Global Null Hypothesis: BETA=0

The “Testing Global Null Hypothesis: BETA=0” table displays results of the likelihood ratio test and the
Wald test for testing the hypothesis that all parameters are zero. The ODS name of the “Testing Global Null
Hypothesis: BETA=0” table is GlobalTests.

Analysis of Maximum Likelihood Estimates

The “Analysis of Maximum Likelihood Estimates” table displays the denominator degrees of freedom, which
is computed as described in the section “Degrees of Freedom” on page 8284; the maximum likelihood
estimate of the parameter; the estimated standard error, computed as the square root of the corresponding
diagonal element of the estimated covariance matrix; the t statistic, computed as the parameter estimate
divided by the standard error; the p-value of the t statistic with respect to a t distribution with denominator
degrees of freedom; and the hazard ratio estimate. The t confidence limits for the parameter estimates and
estimated hazard ratios are displayed if you specify the CLPARM or RISKLIMITS option in the MODEL
statement. You can specify the DF=NONE option in the MODEL statement to request p-values and confidence
intervals from a standard normal distribution. If you specify the VARRATIO=ALL | MODEL | IND option in
the MODEL statement, then the variance ratios for model or independence (or both) are displayed. If you
specify the SERATIO=ALL | MODEL | IND option in the MODEL statement, then the standard error ratios
for model or independence (or both) are displayed.

The ODS name of the “Analysis of Maximum Likelihood Estimates” table is ParameterEstimates.

Covariance Matrix

The “Covariance Matrix” table is displayed if you specify the COVB option in the MODEL statement. The
table contains the estimated covariance matrix for the parameter estimates. The ODS name of the “Covariance
Matrix” table is CovB.

Hessian Matrix

The “Hessian Matrix” table is displayed if you specify the HESS option in the MODEL statement. The table
contains the Hessian matrix that is evaluated at the estimated regression parameters. The ODS name of the
“Hessian Matrix” table is Hessian.

Inverse Hessian Matrix

The “Inverse Hessian Matrix” table is displayed if you specify the INVHESS option in the MODEL statement.
The table contains the inverse of the Hessian matrix evaluated at the estimated regression parameters. The
ODS name of the “Inverse Hessian Matrix” table is InvHessian.
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Variance Estimation Table

The “Variance Estimation” table provides the following information:

• Method, which is the variance estimation method—Taylor Series, Balanced Repeated Replication, or
Jackknife

• Replicate Weights input data set name, if you provide replicate weights with a REPWEIGHTS
statement

• Number of Replicates, for VARMETHOD=BRR or VARMETHOD=JACKKNIFE

• Hadamard Data Set name, if you specify the HADAMARD= method-option for VARMETHOD=BRR

• Fay Coefficient, if you specify the FAY method-option for VARMETHOD=BRR

• Missing Values Included (MISSING), if you specify the MISSING option

• Missing Values Included (NOMCAR), if you specify the NOMCAR option

• Missing Values Excluded, if you have missing values and you do not specify the NOMCAR option

The ODS name of the “Variance Estimation” table is VarianceEstimation.

Hadamard Matrix

If you specify the PRINTH method-option for VARMETHOD=BRR, PROC SURVEYPHREG displays the
Hadamard matrix that is used to construct replicates for BRR variance estimation. If you provide a Hadamard
matrix with the HADAMARD= method-option for VARMETHOD=BRR but the procedure does not use the
entire matrix, the procedure displays only the rows and columns that are actually used to construct replicates.
The ODS name of the “Hadamard Matrix” table is HadamardMatrix.

Maximum Likelihood Estimates for Replicate Samples

If you specify the DETAILS method-option for VARMETHOD=BRR or the DETAILS method-option for
VARMETHOD=JACKKNIFE, PROC SURVEYPHREG displays the “Maximum Likelihood Estimates for
Replicate Samples” table. The Replicate Number column displays the replication number, the Replicate
Weight column displays the name of the replicate weight variable, and the Status column displays the
convergence status. The replicate number for the full sample is set to 0. If you do not specify replicate weights,
then PROC SURVEYPHRG uses default names to identify the replicate weights. For more information, see
“Replicate Weights Output Data Set” on page 8291. The convergence status is 1 if the maximum likelihood
estimates are available for a replicate sample and 0 otherwise. If the maximum likelihood estimates are not
available for a replicate sample, then the parameter estimates are set to missing for that replicate. The ODS
name of the “Maximum Likelihood Estimates for Replicate Samples” table is RepEstimates.

ODS Table Names
PROC SURVEYPHREG assigns a name to each table it creates. You can use this name to refer to the
table when using the Output Delivery System (ODS) to select tables and create output data sets. For more
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information about ODS, see Chapter 20, “Using the Output Delivery System.” Table 100.8 lists the table
names, along with the corresponding analysis options.

Table 100.8 ODS Tables Produced by PROC SURVEYPHREG

ODS Table Name Description Statement / Option

CensoredSummary Summary of event and censored
observations

Default

ClassLevelInfo CLASS variable levels CLASS
ConvergenceStatus Convergence status NLOPTIONS / PALL
CovB Covariance of parameter estimates MODEL / COVB
DesignSummary Design summary STRATA or CLUSTER
FitStatistics Model fit statistics Default
GlobalTests Tests of the global null

hypothesis
Default

Hadamard Hadamard matrix PROC /
VARMETHOD=BRR(PRINTH)

Hessian Observed Hessian matrix MODEL / HESSIAN
InvHessian Inverse Hessian matrix MODEL / INVHESS
IterHist Iteration history NLOPTIONS / PHISTORY
ModelInfo Model information Default
NObs Number of observations Default
ParameterEstimates Maximum likelihood estimates Default
ParameterEstimatesStart Initial parameter values NLOPTIONS / PALL
RepEstimates Maximum likelihood estimates for

replicate samples
PROC /
VARMETHOD=BRR(DETAILS)
or
VARMETHOD=JACKKNIFE(DETAILS)

StrataInfo Stratum information STRATA / LIST
VarianceEstimation Variance estimation Default
WeightedCensoredSummary Summary of weighted number of

event and censored observations
WEIGHT

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”
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When ODS Graphics is enabled, the ESTIMATE, LSMEANS, LSMESTIMATE, and SLICE statements can
produce plots that are associated with their analyses. For information about these plots, see the corresponding
sections of Chapter 19, “Shared Concepts and Topics.”

Examples: SURVEYPHREG Procedure

Example 100.1: Analysis of Clustered Data
When experimental units are naturally or artificially clustered, failure times of experimental units within a
cluster are correlated. Lee, Wei, and Amato (1992) estimate the regression parameters in the Cox model by
maximizing a partial likelihood function under an independent working correlation assumption and estimate
the variance of the estimated regression coefficients by using a robust sandwich variance estimator that
accounts for the intracluster dependence.

The Diabetic Retinopathy Study (DRS) is a randomized, controlled clinical trial of more than 1,700 patients
across 15 medical centers. One objective of this study was to determine if photocoagulation treatment delays
the occurrence of blindness. One eye of each patient was randomly assigned to treatment and the other eye to
control. See Example 73.11 in Chapter 73, “The PHREG Procedure,” for more information about the data
set and a similar analysis; see http://www.nei.nih.gov/neitrials/static/study62.asp for
more information about the DRS.

Each patient is a cluster that contributes two observations to the input data set, one for each eye. The
following variables are available:

• ID, patient’s identification

• Time, failure time

• Status, event indicator (0=censored, and 1=uncensored)

• Treatment, treatment received (1=laser photocoagulation, and 0=otherwise)

• DiabeticType, type of diabetes (0=juvenile onset with age of onset at 20 or under, and 1= adult onset
with age of onset over 20)

The following DATA step creates the data set Blind, which represents 197 diabetic patients from the DRS:

data Blind;
input ID Time Status DiabeticType Treatment @@;
datalines;
5 46.23 0 1 1 5 46.23 0 1 0 14 42.50 0 0 1 14 31.30 1 0 0
16 42.27 0 0 1 16 42.27 0 0 0 25 20.60 0 0 1 25 20.60 0 0 0
29 38.77 0 0 1 29 0.30 1 0 0 46 65.23 0 0 1 46 54.27 1 0 0
49 63.50 0 0 1 49 10.80 1 0 0 56 23.17 0 0 1 56 23.17 0 0 0
61 1.47 0 0 1 61 1.47 0 0 0 71 58.07 0 1 1 71 13.83 1 1 0

100 46.43 1 1 1 100 48.53 0 1 0 112 44.40 0 1 1 112 7.90 1 1 0
120 39.57 0 1 1 120 39.57 0 1 0 127 30.83 1 1 1 127 38.57 1 1 0
133 66.27 0 1 1 133 14.10 1 1 0 150 20.17 1 0 1 150 6.90 1 0 0

http://www.nei.nih.gov/neitrials/static/study62.asp
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167 58.43 0 1 1 167 41.40 1 1 0 176 58.20 0 0 1 176 58.20 0 0 0
185 57.43 0 1 1 185 57.43 0 1 0 190 56.03 0 0 1 190 56.03 0 0 0

... more lines ...

1705 8.00 0 0 1 1705 8.00 0 0 0 1717 51.60 0 1 1 1717 42.33 1 1 0
1727 49.97 0 1 1 1727 2.90 1 1 0 1746 45.90 0 0 1 1746 1.43 1 0 0
1749 41.93 0 1 1 1749 41.93 0 1 0
;

The following SAS statements request a proportional hazards regression of Time on Treatment, DiabeticType,
and the Treatment � DiabeticType interaction, with Status as the censoring indicator. The CLUSTER
statement indicates the observations that came from the same patient.

proc surveyphreg data=Blind;
model Time*Status(0) = Treatment DiabeticType Treatment*DiabeticType;
cluster id;

run;

Output 100.1.1 displays some summary information. There are 394 observations and 197 patients (clusters).
Almost 61% of the observations are censored. The p-values for the null model are less than 0.0001 for both
the likelihood ratio test and the Wald test (Output 100.1.2), which indicates that the survival time is highly
dependent on Treatment and DiabeticType. In this example, the likelihood ratio statistic has a chi-square
distribution with 3 degrees of freedom and the Wald statistics has the F distribution with the numerator
degrees of freedom 3 and the denominator degrees of freedom 196. The denominator degrees of freedom are
calculated as the number of clusters (197) minus one.

Output 100.1.1 Summary Information

The SURVEYPHREG ProcedureThe SURVEYPHREG Procedure

Number of Observations Read 394

Number of Observations Used 394

Design Summary

Number of Clusters 197

Summary of the Number of Event
and Censored Values

Total Event Censored
Percent

Censored

394 155 239 60.66

Variance Estimation

Method Taylor Series

Output 100.1.2 Global Test Results

Testing Global Null Hypothesis: BETA=0

Test
Test

Statistic Num DF Den DF p-Value

Likelihood Ratio 28.4556 3 Infty <.0001

Wald 11.3872 3 196 <.0001



Example 100.2: Stratification, Clustering, and Unequal Weights F 8299

Output 100.1.3 displays parameter estimates, standard errors, t statistics, denominator degrees of freedom,
p-values, and hazard ratios. In this example data set, Treatment and Treatment � DiabeticType interaction are
significant with p-values 0.023 and 0.006, respectively. Since the model contains Treatment � DiabeticType
interaction, the exponential of the estimated regression coefficient is not the hazard ratio. Use the ESTIMATE
statement to calculate the hazard ratios.

Output 100.1.3 Parameter Estimates

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error t Value Pr > |t|
Hazard

Ratio

Treatment 196 -0.424672 0.185912 -2.28 0.0234 0.654

DiabeticType 196 0.340841 0.196577 1.73 0.0845 1.406

Treatment*DiabeticTy 196 -0.845665 0.305081 -2.77 0.0061 0.429

Example 100.2: Stratification, Clustering, and Unequal Weights
This example uses a data set from the National Health and Nutrition Examination Survey I (NHANES I)
Epidemiologic Followup Study (NHEFS). The NHEFS is a national longitudinal survey that is conducted by
the National Center for Health Statistics, the National Institute on Aging, and some other agencies of the Public
Health Service in the United States. Some important objectives of this survey are to determine the relationships
between clinical, nutritional, and behavioral factors; to determine mortality and hospital utilizations; and to
monitor changes in risk factors for the initial cohort that represents the NHANES I population. A cohort of
size 14,407, which includes all persons 25 to 74 years old who completed a medical examination at NHANES
I in 1971–1975, was selected for the NHEFS. Personal interviews were conducted for every selected unit
during the first wave of data collection from the year 1982 to 1984. Follow-up studies were conducted in
1986, 1987, and 1992. In the year 1986, only nondeceased persons 55 to 74 years old (as reported in the base
year survey) were interviewed. The 1987 and 1992 NHEFS contain the entire nondeceased NHEFS cohort.
Vital and tracing status data, interview data, health care facility stay data, and mortality data for all four waves
are available for public use. See http://www.cdc.gov/nchs/nhanes/nhefs/nhefs.htm for more
information about the survey and the data sets.

For illustration purposes, 1,018 observations from the 1987 NHEFS public use interview data are used to
create the data set cancer. The observations are obtained from 10 strata that contain 596 PSUs. The sum
of observation weights for these selected units is over 19 million. Observation weights range from 359 to
129,359 with a mean of 18,747.69 and a median of 11,414. Several observation weights have large values;
therefore it is reasonable to rescale the observation weights to facilitate the optimization routine. Different
scaling techniques are proposed in the literature. For example, Binder (1992) uses scaled weights such that
the sum of weights over the sampled units is one. Without loss of generality, the analysis weights in this
example are obtained by dividing each observation weight by a large number (130,000). Because of this
rescaling, you must be careful interpreting some results from PROC SURVEYPHREG.

The following variables are used in this example:

• ObsNo, unit identification

• Strata, stratum identification

• PSU, identification for primary sampling units

• ObservationWt, sampling weight associated with each unit

http://www.cdc.gov/nchs/nhanes/nhefs/nhefs.htm


8300 F Chapter 100: The SURVEYPHREG Procedure

• AnalysisWt, obtained from the sampling weights by dividing each ObservationWt by 130,000

• Smoke, smoking status (–1 = not applicable, 1 = never smoked, 2 = current or former smoker in
1982–1984 follow-up, and 3 = current or former smoker in 1987 follow-up)

• Age, the event-time variable, defined as follows:

– age of the subject when the first cancer was reported for subjects with reported cancer

– age of the subject at death for deceased subjects without reported cancer

– age of the subject as reported in 1987 follow-up (this value is used for nondeceased subjects who
never reported cancer)

– age of the subject for the entry year 1971–1975 survey if the subject has cancer (or is deceased)
but the date of incident is not reported

• Cancer, cancer indicator (1 = cancer reported, 0 = cancer not reported)

• BodyWeight, body weight of the subject as reported in the 1987 follow-up, or an imputed body weight
based on the subject’s age in the entry year 1971–1975 survey

The following SAS statements create the data set cancer. Note that BodyWeight for a few observations (8%)
is imputed based on Age by using a deterministic regression imputation model (Särndal and Lundström
(2005, chapter 12)). The imputed values are treated as observed values in this example. In other words, this
example treats the data set cancer as the observed data set.

data cancer;
input ObsNo Strata PSU AnalysisWt ObservationWt Smoke

Age Cancer BodyWeight;
datalines;
1 3 002 0.02927 3805 2 53 1 175
2 3 002 0.04698 6107 2 77 0 175
3 3 039 0.02283 2968 2 50 0 160
4 3 084 0.23414 30438 2 52 0 145
5 3 007 0.03908 5081 1 80 0 127
6 3 009 0.02993 3891 1 62 0 180
7 3 009 0.02754 3580 2 50 0 157
8 3 022 0.02283 2968 2 56 0 142
9 3 050 0.18268 23748 2 60 0 140

... more lines ...

1016 4 002 0.02068 2689 2 40 0 120
1017 4 092 0.35298 45888 2 52 0 166
1018 4 035 0.03344 4347 -1 58 0 156
;

Suppose you want to study the occurrence of cancer for the base year survey population and its relation to
smoking status and body weight. The following statements request a proportional hazards regression of Age
on BodyWeight and Smoke with Cancer as the censor indicator. The STRATA, CLUSTER, and WEIGHT
statements identify the variance strata, PSUs, and analysis weights respectively. The CLASS statement
specifies that Smoke is a categorical variable, and the MODEL statement provides information about the
analysis model. The TIES= option in the MODEL statement requests the Efron likelihood to handle tied
events. If you do not specify the TIES= option in the MODEL statement, then the procedure uses the Breslow
likelihood. The PHISTORY option in the NLOPTIONS statement is used to display the iteration history table.
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The ESTIMATE statement computes a contrast between subjects who are reported as current (or former)
smokers and the others. The EXP option in the ESTIMATE statement requests that the linear contrast be
estimated in the exponential scale, which is the hazard ratio. The TEST statement requests the Type 3 test for
each effect that is specified in the MODEL statement.

proc surveyphreg data = cancer;
strata strata;
cluster psu;
weight analysiswt;
class smoke;
model age*cancer(0) = bodyweight smoke / ties = efron;
nloptions phistory;
estimate smoke 0.5 0.5 -0.5 -0.5 / exp;
test ;

run;

Some summary statistics are shown in Output 100.2.1. The “Model Information” table contains information
about the model such as the names for the dependent and censoring variables, and the likelihood. The
“Number of Observations” table displays the number of observations and the sum of weights. A total of
1,018 observations are read from the cancer data set, but one observation is not used in the analysis because
it has a zero sampling weight. The sum of weights is 146.81, which gives an estimated population size of
19,085,105 (D 146:8085� 130; 000). Note that the estimated population size would be 19,085,151 if you use
the sampling weights (ObservationWt) instead of the analysis weights (AnalysisWt). The difference is due to
the rounding errors in AnalysisWt. For simplicity, analysis weights are rounded at the fifth decimal place. The
“Design Summary” table shows that there are 596 PSUs and 10 strata. From the censored summary tables,
11.7% subjects in the sample have reported cancer and an estimated 11.6% subjects in the study population
have cancer. The “Variance Estimation” table shows that the Taylor series linearization variance estimation
method is used and the observation units with missing values are excluded from the analysis. Note that the
only missing unit in this data set has a zero sampling weight and hence it is not included in the analysis.

Output 100.2.1 Model Information, Data Summary, Design Summary, and Information about Variance
Estimation

The SURVEYPHREG ProcedureThe SURVEYPHREG Procedure

Model Information

Data Set WORK.CANCER

Dependent Variable Age

Censoring Variable Cancer

Censoring Value(s) 0

Weight Variable AnalysisWt

Stratum Variable Strata

Cluster Variable PSU

Ties Handling EFRON

Number of Observations Read 1018

Number of Observations Used 1017

Sum of Weights Read 146.8085

Sum of Weights Used 146.8085

Design Summary

Number of Strata 10

Number of Clusters 596
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Output 100.2.1 continued

Summary of the Number of Event
and Censored Values

Total Event Censored
Percent

Censored

1017 119 898 88.30

Summary of the Weighted Number of
Event and Censored Values

Total Event Censored
Percent

Censored

146.8085 17.01185 129.7966 88.41

Variance Estimation

Method Taylor Series

Missing Values Excluded

The “Iteration History” table in Output 100.2.2 shows that the procedure converged after four iterations.
The “Objective Function” column contains the value of the likelihood after every iteration. The “Objective
Function Change” column measures the change in the objective function between iterations; however, this
is not the monitored convergence criterion. The SURVEYPHREG procedure monitors several features
simultaneously to determine whether to stop an optimization.

Output 100.2.2 Iteration History

Maximum Likelihood Iteration History

Iteration Restarts
Function

Calls
Active

Constraints
Objective
Function

Objective
Function

Change

Max Abs
Gradient
Element Ridge

Ratio
Between

Actual
and

Predicted
Change

1 0 4 0 -63.34004 1.6501 21.9620 0 0.916

2 0 6 0 -63.29819 0.0418 0.2005 0 1.052

3 0 8 0 -63.29776 0.000430 0.00293 0 1.012

4 0 10 0 -63.29776 1.528E-7 1.102E-6 0 1.000

Estimates for proportional hazards regression coefficients and their standard errors are shown in Out-
put 100.2.3. The categorical variable Smoke has four levels, and GLM parameterization is used by PROC
SURVEYPHREG. You can use the PARAM= option in the CLASS statement to specify other types of
parameterizations. The estimated regression coefficient for BodyWeight is 0.012 with a standard error of
0.003. The degrees of freedom for the t test are equal to the number of PSUs (596) minus the number of
strata (10). The “Estimates” table displays the estimated contrast and the corresponding hypothesis test. The
estimated value for the contrast is –0.75. The estimated hazard for the nonsmokers is 0.47 times the estimated
hazard for the current or former smokers. In this example data set, the contrast of interest is not significant at
0.05 levels. The “Type III Tests of Model Effects” table displays the Type 3 analysis. The effect variable
Smoke has four levels. The F Value for Smoke is 1.49 with three numerator degrees of freedom and 586
denominator degrees of freedom.
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Output 100.2.3 Parameter Estimates

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error t Value Pr > |t|
Hazard

Ratio

BodyWeight 586 0.011920 0.003155 3.78 0.0002 1.012

Smoke -1 586 -1.174048 0.739450 -1.59 0.1129 0.309

Smoke 1 586 -1.006515 0.578810 -1.74 0.0826 0.365

Smoke 2 586 -0.674183 0.558412 -1.21 0.2278 0.510

Smoke 3 586 0 . . . 1.000

Type III Tests of Model Effects

Effect
Num

DF
Den

DF F Value Pr > F

BodyWeight 1 586 14.27 0.0002

Smoke 3 586 1.49 0.2160

Estimate

Label Estimate
Standard

Error DF t Value Pr > |t| Exponentiated

Row 1 -0.7532 0.3870 586 -1.95 0.0521 0.4709

Example 100.3: Domain Analysis
This example uses a data set from the NHANES I Epidemiologic Followup Study (NHEFS); see Exam-
ple 100.2 for more information about the NHEFS.

For illustration purposes, 1,891 observations from the 1992 NHEFS vital and tracing status data set are used
to estimate the regression coefficients of a proportional hazards model. The observations are obtained from
22 strata; each stratum contains either two or three primary sampling units. The sum of observation weights
for these selected units is almost 103 million. Observation weights range from 1,498 to 470,154 with a
mean of 54,457.11 and a median of 45,246. The following variables are used in this example. Although this
example uses the observation weights directly, Binder (1992) suggests that a scaled version of the observation
weights would be useful to improve the performance of the optimization routine.

The following variables are created in the data set mortality:
• ID, unit identification

• VARSTRATA, stratum identification

• VARPSU, identification for primary sampling units

• SWEIGHT, sampling weight associated with each unit

• AGE, the subject’s reported age at the 1992 interview if the subject was alive at that time; otherwise,
the subject’s age at death

• VITALSTATUS, vital status of subject in 1992 (1 = alive, 3 = dead, 4 = unknown, 5 = traced alive with
direct subject contact, 6 = traced alive without direct subject contact)
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• POVARIND, indicator for poverty area where subject’s household was located at NHANES I (1971–
1975) exam, (1 = poverty area, 2 = non-poverty area)

• GENDER, (1 = male, 2 = female)

data mortality;
input ID VARSTRATA VARPSU SWEIGHT AGE VITALSTATUS POVARIND GENDER;
datalines;

1 03 1 13312 66 1 1 1
2 03 1 7941 71 3 1 2
3 03 1 16048 . 4 1 1
4 03 3 9298 58 3 1 1
5 03 2 15336 56 3 1 2
6 03 1 14744 63 1 1 1
7 03 2 83729 70 1 2 2
8 03 3 106492 57 1 2 1
9 03 3 78083 81 3 2 2

10 03 3 55957 79 3 2 1

... more lines ...

1890 13 1 88939 59 1 2 1
1891 13 1 59218 75 1 2 2

;

Suppose you want to estimate the hazard function for mortality time after adjusting for the poverty area
indicator in the base year survey population. The following SAS statements request a proportional hazards
regression of age (AGE) on poverty indicator (POVARIND):

proc surveyphreg data = mortality nomcar;
class povarind;
strata varstrata;
cluster varpsu;
weight sweight;
model age*vitalstatus(1 4 5 6) = povarind;
domain gender;

run;

Subjects with VITALSTATUS 1, 4, 5, or 6 are considered alive. The CLASS statement specifies that
POVARIND is a categorical variable, the WEIGHT statement identifies the sampling weights, the STRATA
statement identifies variance strata, and the CLUSTER statement identifies variance PSUs. The DOMAIN
statement requests three separate analyses: for the overall data set, the male subpopulation, and the female
subpopulation respectively. There are 223 observation units with missing values on age. All the units with
missing age have vital status 1, 4, 5, or 6. Therefore, these subjects are considered to be alive in the current
survey year 1992. Age for every observation unit in the base year survey was known from 1971–1975
NHANES I. One reasonable approach is to determine the age of these 223 units based on their age from
the NHANES I data set. However, for illustration purposes, this example does not include the observation
units with missing age when estimating the regression coefficients. Instead, an analysis of just the set of
respondents is requested by specifying the NOMCAR option in the PROC SURVEYPHREG statement. This
option uses a variance estimator that accounts for the random size of the set of respondents.

Output 100.3.1 shows summary statistics for the overall analysis. A total of 1,891 observations are read
from the input DATA= data set, but only 1,668 observations are used in the analysis. The remaining 223
observations have missing values in the variable age. The respondent data set represents almost 89.5 million
units in the population. There are 22 strata and 55 clusters. Although only 57% observation units in the
sample are alive, an estimated 69% observation units in the population are alive. This difference is reasonable
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because selection probabilities for observation units are not the same. If you do not use the sampling weights,
then your sample-based estimators might be biased for the corresponding finite population quantities. The
“Variance Estimation” table indicates that the NOMCAR option is used for variance estimation.

Output 100.3.1 Summary Statistics for the Entire Population

The SURVEYPHREG ProcedureThe SURVEYPHREG Procedure

Number of Observations Read 1891

Number of Observations Used 1668

Sum of Weights Read 1.0298E8

Sum of Weights Used 89439590

Design Summary

Number of Strata 22

Number of Clusters 55

Summary of the Number of Event
and Censored Values

Total Event Censored
Percent

Censored

1668 717 951 57.01

Summary of the Weighted Number of
Event and Censored Values

Total Event Censored
Percent

Censored

89439590 27650348 61789242 69.08

Variance Estimation

Method Taylor Series

Missing Values NOMCAR

Output 100.3.2 displays the estimated regression coefficients and their standard errors. Poverty index has
two levels, and only one level is estimable. By default, PROC SURVEYPHREG estimates the first level
(POVARIND 1) and assigns a zero value for the second level. The estimated regression coefficient is 0.385
with a standard error of 0.078. The estimated hazard for the poverty areas is 1.47 times higher than the
estimated hazard for the non-poverty areas. The degrees of freedom are equal to the number of PSUs (55)
minus the number of strata (22).

Output 100.3.2 Inference for the Entire Population

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error t Value Pr > |t|
Hazard

Ratio

POVARIND 1 33 0.384961 0.077586 4.96 <.0001 1.470

POVARIND 2 33 0 . . . 1.000

Output 100.3.3 shows that 813 observation units in the sample are male, and they account for over 42.6
million males in the base year survey population. Approximately half of these observation units in the sample
are censored, and an estimated 64.5% observation units are censored for the male subpopulation.
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Output 100.3.3 Summary Statistics for the Male Subpopulation

The SURVEYPHREG Procedure

Domain Analysis for domain GENDER=1

The SURVEYPHREG Procedure

Domain Analysis for domain GENDER=1

Number of Observations Read 1891

Number of Observations Used 813

Sum of Weights Read 48887067

Sum of Weights Used 42629905

Summary of the Number of Event
and Censored Values

Total Event Censored
Percent

Censored

813 404 409 50.31

Summary of the Weighted Number of
Event and Censored Values

Total Event Censored
Percent

Censored

42629905 15126321 27503584 64.52

Output 100.3.4 shows that the estimated regression coefficient for POVARIND 1 is 0.425 with a standard
error of 0.157. The estimated hazard for the males in the poverty areas is 1.53 times higher than the estimated
hazard for the males in the non-poverty areas. The degrees of freedom for the t significant test for the male
subpopulation are equal to the total number of PSUs (55) minus the total number of strata (22).

Output 100.3.4 Inference for the Male Subpopulation

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error t Value Pr > |t|
Hazard

Ratio

POVARIND 1 33 0.424922 0.156583 2.71 0.0105 1.529

POVARIND 2 33 0 . . . 1.000

Output 100.3.5 displays some summary statistics for the female subpopulation. There are 855 observation
units for females in the sample, and they represent over 46.8 million females in the base year survey population.
Although 63.4% females in the sample are alive, an estimated 73.2% females in the subpopulation are alive.

Output 100.3.5 Summary Statistics for the Female Subpopulation

The SURVEYPHREG Procedure

Domain Analysis for domain GENDER=2

The SURVEYPHREG Procedure

Domain Analysis for domain GENDER=2

Number of Observations Read 1891

Number of Observations Used 855

Sum of Weights Read 54091604

Sum of Weights Used 46809685
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Output 100.3.5 continued

Summary of the Number of Event
and Censored Values

Total Event Censored
Percent

Censored

855 313 542 63.39

Summary of the Weighted Number of
Event and Censored Values

Total Event Censored
Percent

Censored

46809685 12524027 34285658 73.24

Output 100.3.6 shows that the estimated proportional hazards regression coefficients for POVARIND for the
females subpopulation (0.435) is higher than the estimated proportional hazards regression coefficients for
POVARIND for the males subpopulation. The estimated hazard for the females in the poverty areas is 1.54
times higher than the estimated hazard for the females in the non-poverty areas. The degrees of freedom for
the t significant test for the female subpopulation are equal to the total number of PSUs (55) minus the total
number of strata (22).

Output 100.3.6 Inference for the Female Subpopulation

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error t Value Pr > |t|
Hazard

Ratio

POVARIND 1 33 0.434579 0.115766 3.75 0.0007 1.544

POVARIND 2 33 0 . . . 1.000

Example 100.4: Variance Estimation by Using Replicate Weights
Consider the data set LibrarySurvey from “Getting Started: SURVEYPHREG Procedure” on page 8241. The
selected sample contains 100 transactions from ten branch libraries. A set of replicate weights and jackknife
coefficients are created by randomly assigning observation units in disjoint groups of nearly equal size within
each stratum. A total of 46 different groups are created. The data set LibraryRepWeights is similar to the
data set LibrarySurvey except that it also contains replicate weights repwt_1 to repwt_46. Each column of
replicate weights is obtained by deleting one group of observations and adjusting the sampling weights for
the other groups in that stratum (Rust 1985).

The data set LibraryJKCOEF contains the jackknife coefficient for every replicate sample. The variable
replicate denotes the replicate number, donorstratum denotes the stratum identification for that replicate, and
jkcoefficient denotes the jackknife coefficient for that replicate sample.

data LibrarySurvey;
set LibrarySurvey;
randomorder = ranuni(12345);

run;
proc sort data = LibrarySurvey out = LibrarySurvey;

by Branch randomorder;
run;
data LibrarySurvey;
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set LibrarySurvey;
array nGroup{10} (2 2 2 4 4 4 4 8 8 8);
GroupPSU = mod(_N_,nGroup{Branch});
drop randomorder nGroup1 nGroup2 nGroup3 nGroup4

nGroup5 nGroup6 nGroup7 nGroup8 nGroup9 nGroup10;
run;

proc surveymeans data = LibrarySurvey varmethod = jk
(outweights = LibraryRepWeights outjkcoefs = LibraryJKCOEF);

weight SamplingWeight;
strata Branch;
cluster GroupPSU;
var Age;

run;

It is not necessary to provide replicate weights to compute jackknife variance estimates using the SUR-
VEYPHREG procedure. If you do not specify the replicate weights, then the procedure creates replicate
weights for you. For this illustration, assume that LibraryRepWeights and LibraryJKCOEF are the only two
data sets available for analysis.

The following SAS statements request a proportional hazards regression of lenBorrow on Age. The variable
Returned is the censor indicator, and the value 0 indicates a censored observation. The WEIGHT statement
specifies the sampling weight variable, and the REPWEIGHTS statement specifies replicate weight variables
RepWt_1 to RepWt_46. The JKCOEFS= option in the REPWEIGHTS statement specifies the jackknife
coefficient for each replicate sample. The VARMETHOD= option in the MODEL statement requests the
jackknife variance estimation method. A STRATA statement is not required when the REPWEIGHTS
statement is specified.

proc surveyphreg data = LibraryRepWeights varmethod = jk;
weight SamplingWeight;
repweights RepWt_: / jkcoefs = LibraryJKCOEF;
model lenBorrow*Returned(0) = Age;

run;

Output 100.4.1 displays some summary information. The “Number of Observations,” “Censored Summary,”
and “Weighted Censored Summary” tables are exactly the same as in the example discussed in “Getting
Started: SURVEYPHREG Procedure” on page 8241. The “Variance Estimation” table displays information
about the variance estimation, such as the name of the variance estimation method and the number of replicate
samples.

Output 100.4.1 Summary Statistics for Overall Analysis

The SURVEYPHREG ProcedureThe SURVEYPHREG Procedure

Number of Observations Read 100

Number of Observations Used 100

Sum of Weights Read 11616.79

Sum of Weights Used 11616.79

Summary of the Number of Event
and Censored Values

Total Event Censored
Percent

Censored

100 90 10 10.00
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Output 100.4.1 continued

Summary of the Weighted Number of
Event and Censored Values

Total Event Censored
Percent

Censored

11616.79 10449.22 1167.57 10.05

Variance Estimation

Method Jackknife

Replicate Weights WORK.LIBRARYREPWEIGHTS

Number of Replicates 46

Output 100.4.2 shows that the estimated regression coefficient is 0.0616 with a standard error of 0.009. The
denominator degrees of freedom (46) for the t test is equal to the number of replicates used. Note that
the estimated proportional hazards regression coefficient is the same as the estimated proportional hazards
regression coefficient in the example in “Getting Started: SURVEYPHREG Procedure” on page 8241, but the
standard error and the denominator degrees of freedom are different. This is not surprising because these two
examples use the same estimator to estimate the regression coefficients but different estimators to estimate
the variance.

Output 100.4.2 Inferences Based on Survey Design for Overall Analysis

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error t Value Pr > |t|
Hazard

Ratio

Age 46 0.061593 0.009159 6.73 <.0001 1.064

Example 100.5: A Test of the Proportional Hazards Assumption by Using the
Programming Statements

You can use programming statements in PROC SURVEYPHREG to create time-dependent covariates to
test the proportional hazards assumption for complex survey data. Consider the data set mortality from
Example 100.3. The data set contains 1,891 observations from the 1992 NHANES I Epidemiologic Followup
study (NHEFS) vital and tracing status.

Suppose you want to fit a proportional hazards model to this data and construct a test for the proportional
hazards assumption on gender. The following statements request a proportional hazards regression of age
on gender and x, where the time-dependent covariate x is created using the programing statements. The
explanatory variable x assumes the value of the time variable age for the male subgroup. The variable
vitalstatus is the censor indicator, and a value of 1, 4, 5, or 6 indicates a censored observation. The WEIGHT
statement specifies the sampling weight, and the CLASS statement specifies that gender is a classification
variable.

proc surveyphreg data = mortality nomcar;
class gender;
strata varstrata;
cluster varpsu;
weight sweight;
model age*vitalstatus(1 4 5 6) = gender x;
x = age*(gender=1);

run;
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Output 100.5.1 displays some summary information. The “Number of Observations,” “Censored Sum-
mary,” and “Weighted Censored Summary” tables are exactly the same as in the example discussed in
“Example 100.3: Domain Analysis” on page 8303.

Output 100.5.1 Data Summary, Censored Summary, and Information about Variance Estimation

The SURVEYPHREG ProcedureThe SURVEYPHREG Procedure

Number of Observations Read 1891

Number of Observations Used 1891

Sum of Weights Read 1.0298E8

Sum of Weights Used 1.0298E8

Summary of the Number of Event
and Censored Values

Total Event Censored
Percent

Censored

1891 717 1174 62.08

Summary of the Weighted Number of
Event and Censored Values

Total Event Censored
Percent

Censored

1.0298E8 27650348 75328323 73.15

Variance Estimation

Method Taylor Series

Missing Values NOMCAR

Output 100.5.2 displays the estimated regression coefficients and their standard errors. The variable gender
has two levels, and only one level is estimable. By default, PROC SURVEYPHREG estimates the first level
(GENDER 1) and assigns a zero value for the second level. The estimated regression coefficient is 1.61 with
a standard error of 0.71. The estimated regression coefficient for x is –0.02 with a standard error of 0.01.
The t statistic for x is –1.55 with a p-value of 0.13 on 33 degrees of freedom. This test suggests that an
interaction between the time variable age and gender is not significant. Therefore, there is little evidence of
an exponential trend over time in the hazard ratio for gender.

Output 100.5.2 Parameter Estimates

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error t Value Pr > |t|
Hazard

Ratio

GENDER 1 33 1.605505 0.709269 2.26 0.0303 4.980

GENDER 2 33 0 . . . 1.000

x 33 -0.015648 0.010082 -1.55 0.1302 0.984
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Overview: SURVEYREG Procedure
The SURVEYREG procedure performs regression analysis for sample survey data. This procedure can handle
complex survey sample designs, including designs with stratification, clustering, and unequal weighting.
The procedure fits linear models for survey data and computes regression coefficients and their variance-
covariance matrix. PROC SURVEYREG also provides significance tests for the model effects and for any
specified estimable linear functions of the model parameters. Using the regression model, the procedure can
compute predicted values for the sample survey data.

PROC SURVEYREG uses elementwise regression to compute the regression coefficient estimators by
generalized least squares estimation. The procedure assumes that the regression coefficients are the same
across strata and primary sampling units (PSUs). To estimate the variance-covariance matrix for the
regression coefficients, PROC SURVEYREG uses either the Taylor series (linearization) method or replication
(resampling) methods to estimate sampling errors of estimators, based on complex sample designs. For
details see Woodruff (1971); Fuller (1975); Särndal, Swensson, and Wretman (1992); Wolter (2007); Rust
(1985); Dippo, Fay, and Morganstein (1984); Rao and Shao (1999); Rao, Wu, and Yue (1992); and Rao and
Shao (1996).

PROC SURVEYREG uses the Output Delivery System (ODS), a SAS subsystem that provides capabilities
for displaying and controlling the output from SAS procedures. ODS enables you to convert any of the output
from PROC SURVEYREG into a SAS data set. For more information, see the section “ODS Table Names”
on page 8365.

PROC SURVEYREG uses ODS Graphics to create graphs as part of its output. For general information
about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.” For specific information about
the statistical graphics available with the SURVEYREG procedure, see the PLOTS= option in the PROC
SURVEYREG statement and the section “ODS Graphics” on page 8366.
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Getting Started: SURVEYREG Procedure
This section demonstrates how you can use PROC SURVEYREG to perform a regression analysis for sample
survey data. For a complete description of the usage of PROC SURVEYREG, see the section “Syntax:
SURVEYREG Procedure” on page 8321. The section “Examples: SURVEYREG Procedure” on page 8367
provides more detailed examples that illustrate the applications of PROC SURVEYREG.

Simple Random Sampling
Suppose that, in a junior high school, there are a total of 4,000 students in grades 7, 8, and 9. You want to
know how household income and the number of children in a household affect students’ average weekly
spending for ice cream.

In order to answer this question, you draw a sample by using simple random sampling from the student
population in the junior high school. You randomly select 40 students and ask them their average weekly
expenditure for ice cream, their household income, and the number of children in their household. The
answers from the 40 students are saved as the following SAS data set IceCream:

data IceCream;
input Grade Spending Income Kids @@;
datalines;

7 7 39 2 7 7 38 1 8 12 47 1
9 10 47 4 7 1 34 4 7 10 43 2
7 3 44 4 8 20 60 3 8 19 57 4
7 2 35 2 7 2 36 1 9 15 51 1
8 16 53 1 7 6 37 4 7 6 41 2
7 6 39 2 9 15 50 4 8 17 57 3
8 14 46 2 9 8 41 2 9 8 41 1
9 7 47 3 7 3 39 3 7 12 50 2
7 4 43 4 9 14 46 3 8 18 58 4
9 9 44 3 7 2 37 1 7 1 37 2
7 4 44 2 7 11 42 2 9 8 41 2
8 10 42 2 8 13 46 1 7 2 40 3
9 6 45 1 9 11 45 4 7 2 36 1
7 9 46 1
;

In the data set IceCream, the variable Grade indicates a student’s grade. The variable Spending contains the
dollar amount of each student’s average weekly spending for ice cream. The variable Income specifies the
household income, in thousands of dollars. The variable Kids indicates how many children are in a student’s
family.

The following PROC SURVEYREG statements request a regression analysis:

title1 'Ice Cream Spending Analysis';
title2 'Simple Random Sample Design';
proc surveyreg data=IceCream total=4000;

class Kids;
model Spending = Income Kids / solution;

run;
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The PROC SURVEYREG statement invokes the procedure. The TOTAL=4000 option specifies the total
in the population from which the sample is drawn. The CLASS statement requests that the procedure use
the variable Kids as a classification variable in the analysis. The MODEL statement describes the linear
model that you want to fit, with Spending as the dependent variable and Income and Kids as the independent
variables. The SOLUTION option in the MODEL statement requests that the procedure output the regression
coefficient estimates.

Figure 101.1 displays the summary of the data, the summary of the fit, and the levels of the classification
variable Kids. The “Fit Statistics” table displays the denominator degrees of freedom, which are used in F
tests and t tests in the regression analysis.

Figure 101.1 Summary of Data

Ice Cream Spending Analysis
Simple Random Sample Design

The SURVEYREG Procedure

Regression Analysis for Dependent Variable Spending

Ice Cream Spending Analysis
Simple Random Sample Design

The SURVEYREG Procedure

Regression Analysis for Dependent Variable Spending

Data Summary

Number of Observations 40

Mean of Spending 8.75000

Sum of Spending 350.00000

Fit Statistics

R-Square 0.8132

Root MSE 2.4506

Denominator DF 39

Class Level
Information

CLASS
Variable Levels Values

Kids 4 1 2 3 4

Figure 101.2 displays the tests for model effects. The effect Income is significant in the linear regression
model, while the effect Kids is not significant at the 5% level.

Figure 101.2 Testing Effects in the Regression

Tests of Model Effects

Effect Num DF F Value Pr > F

Model 4 119.15 <.0001

Intercept 1 153.32 <.0001

Income 1 324.45 <.0001

Kids 3 0.92 0.4385

Note: The denominator degrees of freedom for the F tests is 39.

The regression coefficient estimates and their standard errors and associated t tests are displayed in Fig-
ure 101.3.
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Figure 101.3 Regression Coefficients

Estimated Regression Coefficients

Parameter Estimate
Standard

Error t Value Pr > |t|

Intercept -26.084677 2.46720403 -10.57 <.0001

Income 0.775330 0.04304415 18.01 <.0001

Kids 1 0.897655 1.12352876 0.80 0.4292

Kids 2 1.494032 1.24705263 1.20 0.2381

Kids 3 -0.513181 1.33454891 -0.38 0.7027

Kids 4 0.000000 0.00000000 . .

Note: The degrees of freedom for the t tests is 39.
Matrix X'X is singular and a generalized inverse was used to solve the normal equations.  Estimates are not unique.

Stratified Sampling
Suppose that the previous student sample is actually selected by using a stratified sample design. The strata
are the grades in the junior high school: 7, 8, and 9. Within the strata, simple random samples are selected.
Table 101.1 provides the number of students in each grade.

Table 101.1 Students in Grades

Grade Number of Students

7 1,824
8 1,025
9 1,151

Total 4,000

In order to analyze this sample by using PROC SURVEYREG, you need to input the stratification information
by creating a SAS data set that contains the information in Table 101.1. The following SAS statements create
such a data set, named StudentTotals:

data StudentTotals;
input Grade _TOTAL_;
datalines;

7 1824
8 1025
9 1151
;

The variable Grade is the stratification variable, and the variable _TOTAL_ contains the total numbers of
students in each stratum in the survey population. PROC SURVEYREG requires you to use the keyword
_TOTAL_ as the name of the variable that contains the population totals.

When the sample design is stratified and the stratum sampling rates are unequal, you should use sampling
weights to reflect this information in the analysis. For this example, the appropriate sampling weights are the
reciprocals of the probabilities of selection. You can use the following DATA step to create the sampling
weights:
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data IceCream;
set IceCream;
if Grade=7 then Prob=20/1824;
if Grade=8 then Prob=9/1025;
if Grade=9 then Prob=11/1151;
Weight=1/Prob;

run;

If you use PROC SURVEYSELECT to select your sample, PROC SURVEYSELECT creates these sampling
weights for you.

The following statements demonstrate how you can fit a linear model while incorporating the sample design
information (stratification and unequal weighting):

ods graphics on;
title1 'Ice Cream Spending Analysis';
title2 'Stratified Sample Design';
proc surveyreg data=IceCream total=StudentTotals;

strata Grade /list;
model Spending = Income;
weight Weight;

run;
ods graphics off;

Comparing these statements to those in the section “Simple Random Sampling” on page 8315, you can see
how the TOTAL=StudentTotals option replaces the previous TOTAL=4000 option.

The STRATA statement specifies the stratification variable Grade. The LIST option in the STRATA statement
requests that the stratification information be displayed. The WEIGHT statement specifies the weight
variable.

Figure 101.4 summarizes the data information, the sample design information, and the fit information.
Because of the stratification, the denominator degrees of freedom for F tests and t tests are 37, which are
different from those in the analysis in Figure 101.1.

Figure 101.4 Summary of the Regression

Ice Cream Spending Analysis
Stratified Sample Design

The SURVEYREG Procedure

Regression Analysis for Dependent Variable Spending

Ice Cream Spending Analysis
Stratified Sample Design

The SURVEYREG Procedure

Regression Analysis for Dependent Variable Spending

Data Summary

Number of Observations 40

Sum of Weights 4000.0

Weighted Mean of Spending 9.14130

Weighted Sum of Spending 36565.2

Design Summary

Number of Strata 3
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Figure 101.4 continued

Fit Statistics

R-Square 0.8037

Root MSE 2.4371

Denominator DF 37

Figure 101.5 displays the following information for each stratum: the value of the stratification variable, the
number of observations (sample size), the total population size, and the sampling rate (fraction).

Figure 101.5 Stratification Information

Stratum Information

Stratum
Index Grade N Obs

Population
Total

Sampling
Rate

1 7 20 1824 1.10%

2 8 9 1025 0.88%

3 9 11 1151 0.96%

Figure 101.6 displays the tests for significance of the model effects. The Income effect is strongly significant
at the 5% level.

Figure 101.6 Testing Effects

Tests of Model Effects

Effect Num DF F Value Pr > F

Model 1 492.39 <.0001

Intercept 1 225.81 <.0001

Income 1 492.39 <.0001

Note: The denominator degrees of freedom for the F tests is 37.

Figure 101.7 displays the regression coefficient estimates, their standard errors, and the associated t tests for
the stratified sample.

Figure 101.7 Regression Coefficients

Estimated Regression Coefficients

Parameter Estimate
Standard

Error t Value Pr > |t|

Intercept -23.416322 1.55827214 -15.03 <.0001

Income 0.731052 0.03294520 22.19 <.0001

Note: The degrees of freedom for the t tests is 37.

You can request other statistics and tests by using PROC SURVEYREG. You can also analyze data from a
more complex sample design. The remainder of this chapter provides more detailed information.

When ODS Graphics is enabled and the model contains a single continuous regressor, PROC SURVEYREG
provides a fit plot that displays the regression line and the confidence limits of the mean predictions.
Figure 101.8 displays the fit plot for the regression model of Spending as a function of Income. The
regression line and confidence limits of mean prediction are overlaid by a bubble plot of the data, in which
the bubble area is proportional to the sampling weight of an observation.
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Figure 101.8 Regression Fitting

Output Data Sets
You can use the OUTPUT statement to create a new SAS data set that contains the estimated linear predictors
and their standard error estimates, the residuals from the linear regression, and the confidence limits for the
predictors. See the section “OUTPUT Statement” on page 8341 for more details.

You can use the Output Delivery System (ODS) to create SAS data sets that capture the outputs from PROC
SURVEYREG. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

For example, to save the ParameterEstimates table (Figure 101.7) in the previous section in an output data
set, you use the ODS OUTPUT statement as follows:

title1 'Ice Cream Spending Analysis';
title2 'Stratified Sample Design';
proc surveyreg data=IceCream total=StudentTotals;

strata Grade /list;
model Spending = Income;
weight Weight;
ods output ParameterEstimates = MyParmEst;

run;
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The statement

ods output ParameterEstimates = MyParmEst;

requests that the ParameterEstimates table that appears in Figure 101.7 be placed into a SAS data set
MyParmEst.

The PRINT procedure displays observations of the data set MyParmEst:

proc print data=MyParmEst;
run;

Figure 101.9 displays the observations in the data set MyParmEst. The section “ODS Table Names” on
page 8365 gives the complete list of the tables produced by PROC SURVEYREG.

Figure 101.9 The Data Set MyParmEst

Ice Cream Spending Analysis
Stratified Sample Design

Ice Cream Spending Analysis
Stratified Sample Design

Obs Parameter Estimate StdErr DenDF tValue Probt

1 Intercept -23.416322 1.55827214 37 -15.03 <.0001

2 Income 0.731052 0.03294520 37 22.19 <.0001

Syntax: SURVEYREG Procedure
The following statements are available in the SURVEYREG procedure:

PROC SURVEYREG < options > ;
BY variables ;
CLASS variables ;
CLUSTER variables ;
CONTRAST ’label’ effect values < . . . effect values > < / options > ;
DOMAIN variables < variable�variable variable�variable�variable . . . > ;
EFFECT name = effect-type (variables < / options >) ;
ESTIMATE < ‘label’ > estimate-specification < / options > ;
LSMEANS < model-effects > < / options > ;
LSMESTIMATE model-effect lsmestimate-specification < / options > ;
MODEL dependent = < effects > < / options > ;
OUTPUT < keyword< =variable-name > . . . keyword< =variable-name > > < / option > ;
REPWEIGHTS variables < / options > ;
SLICE model-effect < / options > ;
STORE < OUT= >item-store-name < / LABEL=‘label’ > ;
STRATA variables < / options > ;
TEST < model-effects > < / options > ;
WEIGHT variable ;
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The PROC SURVEYREG and MODEL statements are required. If your model contains classification effects,
you must list the classification variables in a CLASS statement, and the CLASS statement must precede the
MODEL statement. If you use a CONTRAST statement or an ESTIMATE statement, the MODEL statement
must precede the CONTRAST or ESTIMATE statement.

The rest of this section provides detailed syntax information for each of the preceding statements, except
the EFFECT, ESTIMATE, LSMEANS, LSMESTIMATE, SLICE, STORE, and TEST statements. These
statements are also available in many other procedures. Summary descriptions of functionality and syntax for
these statements are shown in this chapter, and full documentation about them is available in Chapter 19,
“Shared Concepts and Topics.”

The CLASS, CLUSTER, CONTRAST, EFFECT, ESTIMATE, LSMEANS, LSMESTIMATE,
REPWEIGHTS, SLICE, STRATA, TEST statements can appear multiple times. You should use only one of
each of the following statements: MODEL, WEIGHT, STORE, and OUTPUT.

The syntax descriptions begin with the PROC SURVEYREG statement; the remaining statements are covered
in alphabetical order.

PROC SURVEYREG Statement
PROC SURVEYREG < options > ;

The PROC SURVEYREG statement invokes the SURVEYREG procedure. It optionally names the input data
sets and specifies the variance estimation method.

Table 101.2 summarizes the options available in the PROC SURVEYREG statement.

Table 101.2 PROC SURVEYREG Statement Options

Option Description

ALPHA= Sets the confidence level
DATA= Specifies the SAS data set to be analyzed
MISSING Treats missing values as a nonmissing
NAMELEN= Specifies the length of effect names
NOMCAR Treats missing values as not missing completely at random
ORDER= Specifies the sort order
PLOTS= Requests plots from ODS Graphics
RATE= Specifies the sampling rate
TOTAL= Specifies the total number of primary sampling units
TRUNCATE Specifies class levels using no more than the first 16 characters of the

formatted values
VARMETHOD= Specifies the variance estimation method

You can specify the following options in the PROC SURVEYREG statement:

ALPHA=˛
sets the confidence level for confidence limits. The value of the ALPHA= option must be between 0
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and 1, and the default value is 0.05. A confidence level of ˛ produces 100.1 � ˛/% confidence limits.
The default of ALPHA=0.05 produces 95% confidence limits.

DATA=SAS-data-set
specifies the SAS data set to be analyzed by PROC SURVEYREG. If you omit the DATA= option, the
procedure uses the most recently created SAS data set.

MISSING
treats missing values as a valid (nonmissing) category for all categorical variables, which include
CLASS, STRATA, CLUSTER, and DOMAIN variables.

By default, if you do not specify the MISSING option, an observation is excluded from the analysis if
it has a missing value. For more information, see the section “Missing Values” on page 8346.

NAMELEN=n
specifies the length of effect names in tables and output data sets to be n characters, where n is a value
between 40 and 200. The default length is 40 characters.

NOMCAR
requests that the procedure treat missing values in the variance computation as not missing completely
at random (NOMCAR) for Taylor series variance estimation. When you specify the NOMCAR option,
PROC SURVEYREG computes variance estimates by analyzing the nonmissing values as a domain or
subpopulation, where the entire population includes both nonmissing and missing domains. See the
section “Missing Values” on page 8346 for more details.

By default, PROC SURVEYREG completely excludes an observation from analysis if that observation
has a missing value, unless you specify the MISSING option. Note that the NOMCAR option has no
effect on a classification variable when you specify the MISSING option, which treats missing values
as a valid nonmissing level.

The NOMCAR option applies only to Taylor series variance estimation. The replication methods,
which you request with the VARMETHOD=BRR and VARMETHOD=JACKKNIFE options, do not
use the NOMCAR option.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of the classification variables (which are specified in the CLASS
statement).

This option also determines the sort order for the levels of DOMAIN variables.

This option applies to the levels for all classification variables, except when you use the (default)
ORDER=FORMATTED option with numeric classification variables that have no explicit format. In
that case, the levels of such variables are ordered by their internal value.

The ORDER= option can take the following values:
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Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set

FORMATTED External formatted value, except for numeric variables with
no explicit format, which are sorted by their unformatted
(internal) value

FREQ Descending frequency count; levels with the most observa-
tions come first in the order

INTERNAL Unformatted value

By default, ORDER=FORMATTED. For ORDER=FORMATTED and ORDER=INTERNAL, the sort
order is machine-dependent.

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

PLOTS < ( global-plot-options ) > < = plot-request < (plot-option) > >
PLOTS < ( global-plot-options ) > < = ( plot-request < (plot-option) > < . . . plot-request < (plot-option) > > ) >

controls the plots that are produced through ODS Graphics.

When ODS Graphics is enabled and when the regression model depends on at most one continuous
variable as a regressor, excluding the intercept, the PLOTS= option in the PROC SURVEYREG
statement controls fit plots for the regression.

A plot-request identifies the plot, and a plot-option controls the appearance and content of the plot. You
can specify plot-options in parentheses after a plot-request . A global-plot-option applies to all plots for
which it is available unless it is altered by a specific plot-option. You can specify global-plot-options in
parentheses after the PLOTS option.

When you specify only one plot-request , you can omit the parentheses around it. Here are a few
examples of requesting plots:

plots=all
plots(weight=heatmap)=fit

When the regression model depends on at most one continuous variable as a regressor, excluding the
intercept, PROC SURVEYREG provides a bubble plot or a heat map for model fitting. In a bubble plot,
the bubble area is proportional to the weight of an observation. In a heat map, the heat color represents
the sum of the weights at the corresponding location. The default plot depends on the number of
observations in your data. That is, for a data set that contains 100 observations or less, a bubble plot is
the default. For a data set that contains more than 100 observations, a heat map is the default.

ODS Graphics must be enabled before you can request a plot. For example:

ods graphics on;
proc surveyreg plots=fit;

model height=weight;
run;
ods graphics off;
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For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

When ODS Graphics is enabled, the ESTIMATE, LSMEANS, LSMESTIMATE, and SLICE statements
can produce plots that are associated with their analyses. For information about these plots, see the
corresponding sections of Chapter 19, “Shared Concepts and Topics.”

For general information about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.”

Global Plot Option

A global-plot-option applies to all plots for which the option is available unless it is altered by a specific
plot-option. You can specify the following global-plot-options:

ONLY
suppresses the default plots and requests only the plots that are specified as plot-requests.

NBINS=nbin1 < nbin2 >
specifies the number of bins for the heat map of the observation weights in the fit plot. Thus,
this option implies WEIGHT=HEATMAP by default. If you specify only one number, nbin1,
then it is used for both the horizontal and vertical axes; if you specify two numbers, nbin1 and
nbin2, then the first, nbin1, is used for the horizontal axis and the second, nbin2, is used for the
vertical axis. If you do not specify this option, then by default the number of bins is determined
by first using the algorithm that is discussed in the section “ODS Graphics” on page 4099 in
Chapter 54, “The KDE Procedure,” and then multiplying the resulting numbers of bins by 3. If
you request hexagonal bins by specifying SHAPE=HEXAGONAL, then the hexagonal bins have
approximately the same area as the same number of rectangular bins would have.

WEIGHT=BUBBLE

WEIGHT=HEATMAP | HEAT
requests either a bubble plot or a heat map of the data as an overlay on the regression line
and confidence limits band of the prediction in a fit plot. In a bubble plot, the bubble area is
proportional to the weight of an observation. In a heat map, the heat color represents the sum of
the weights at the corresponding location.

If you do not specify this option, the default plot depends on the number of observations in your
data: For a data set that contains 100 observations or less, the default is a bubble plot. For a
data set that contains more than 100 observations, the default is a heat map. If you specify the
NBINS= option, then WEIGHT=HEATMAP by default.

Plot Requests

You can specify the following plot-requests:

ALL
requests all appropriate plots.

FIT < (plot-options) >
requests a plot that displays the model fitting for a model that depends on at most one regressor,
excluding the intercept. The plot is either a bubble plot or a heat map that is overlaid with the
regression line and confidence band of the prediction.
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The FIT plot request has the following plot-options:

NBINS=nbin1 < nbin2 >
specifies the number of bins for the heat map of the observation weights in the fit plot. Thus,
this option implies WEIGHT=HEATMAP by default. If you specify only one number, nbin1,
then it is used for both the horizontal and vertical axes; if you specify two numbers, nbin1
and nbin2, then the first, nbin1, is used for the horizontal axis and the second, nbin2, is used
for the vertical axis. If you do not specify this option, then by default the number of bins is
determined by first using the algorithm that is discussed in the section “ODS Graphics” on
page 4099 in Chapter 54, “The KDE Procedure,” and then multiplying the resulting numbers
of bins by 3. If you request hexagonal bins by specifying SHAPE=HEXAGONAL, then the
hexagonal bins have approximately the same area as the same number of rectangular bins
would have.

WEIGHT=BUBBLE

WEIGHT=HEATMAP | HEAT
requests either a bubble plot or a heat map of the data as an overlay on the regression line
and confidence limits band of the prediction in a fit plot. In a bubble plot, the bubble area is
proportional to the weight of an observation. In a heat map, the heat color represents the
sum of the weights at the corresponding location.

If you do not specify this option, the default plot depends on the number of observations in
your data: For a data set that contains 100 observations or less, the default is a bubble plot.
For a data set that contains more than 100 observations, the default is a heat map. If you
specify either the NBINS= or the SHAPE= option, then WEIGHT=HEATMAP by default.

SHAPE=RECTANGULAR | REC

SHAPE=HEXAGONAL | HEX
requests either rectangular or hexagonal bins for a heat map of the data. Thus, this option
implies WEIGHT=HEATMAP by default.

NONE
suppresses all plots.

RATE=value | SAS-data-set

R=value | SAS-data-set
specifies the sampling rate as a nonnegative value, or specifies an input data set that contains the stratum
sampling rates. The procedure uses this information to compute a finite population correction for Taylor
series variance estimation. The procedure does not use the RATE= option for BRR or jackknife variance
estimation, which you request with the VARMETHOD=BRR or VARMETHOD=JACKKNIFE option.

If your sample design has multiple stages, you should specify the first-stage sampling rate, which is
the ratio of the number of PSUs selected to the total number of PSUs in the population.

For a nonstratified sample design, or for a stratified sample design with the same sampling rate in
all strata, you should specify a nonnegative value for the RATE= option. If your design is stratified
with different sampling rates in the strata, then you should name a SAS data set that contains the
stratification variables and the sampling rates. See the section “Specification of Population Totals and
Sampling Rates” on page 8347 for more details.
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The value in the RATE= option or the values of _RATE_ in the secondary data set must be nonnegative
numbers. You can specify value as a number between 0 and 1. Or you can specify value in percentage
form as a number between 1 and 100, and PROC SURVEYREG converts that number to a proportion.
The procedure treats the value 1 as 100%, and not the percentage form 1%.

If you do not specify the TOTAL= or RATE= option, then the Taylor series variance estimation does
not include a finite population correction. You cannot specify both the TOTAL= and RATE= options.

TOTAL=value | SAS-data-set

N=value | SAS-data-set
specifies the total number of primary sampling units in the study population as a positive value,
or specifies an input data set that contains the stratum population totals. The procedure uses this
information to compute a finite population correction for Taylor series variance estimation. The
procedure does not use the TOTAL= option for BRR or jackknife variance estimation, which you
request with the VARMETHOD=BRR or VARMETHOD=JACKKNIFE option.

For a nonstratified sample design, or for a stratified sample design with the same population total in all
strata, you should specify a positive value for the TOTAL= option. If your sample design is stratified
with different population totals in the strata, then you should name a SAS data set that contains the
stratification variables and the population totals. See the section “Specification of Population Totals
and Sampling Rates” on page 8347 for more details.

If you do not specify the TOTAL= or RATE= option, then the Taylor series variance estimation does
not include a finite population correction. You cannot specify both the TOTAL= and RATE= options.

TRUNCATE
specifies that class levels should be determined using no more than the first 16 characters of the
formatted values of the CLASS, STRATA, and CLUSTER variables. When formatted values are longer
than 16 characters, you can use this option in order to revert to the levels as determined in releases
before SAS 9.

VARMETHOD=BRR < (method-options) >

VARMETHOD=JACKKNIFE | JK < (method-options) >

VARMETHOD=TAYLOR
specifies the variance estimation method. VARMETHOD=TAYLOR requests the Taylor series method,
which is the default if you do not specify the VARMETHOD= option or the REPWEIGHTS statement.
VARMETHOD=BRR requests variance estimation by balanced repeated replication (BRR), and
VARMETHOD=JACKKNIFE requests variance estimation by the delete-1 jackknife method.

For VARMETHOD=BRR and VARMETHOD=JACKKNIFE you can specify method-options in
parentheses. Table 101.3 summarizes the available method-options.
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Table 101.3 Variance Estimation Options

VARMETHOD= Variance Estimation Method Method-Options

BRR Balanced repeated replication FAY < =value >
HADAMARD=SAS-data-set
OUTWEIGHTS=SAS-data-set
PRINTH
REPS=number

JACKKNIFE Jackknife OUTJKCOEFS=SAS-data-set
OUTWEIGHTS=SAS-data-set

TAYLOR Taylor series linearization None

Method-options must be enclosed in parentheses following the method keyword. For example:

varmethod=BRR(reps=60 outweights=myReplicateWeights)

The following values are available for the VARMETHOD= option:

BRR < (method-options) >
requests balanced repeated replication (BRR) variance estimation. The BRR method
requires a stratified sample design with two primary sampling units (PSUs) per
stratum. See the section “Balanced Repeated Replication (BRR) Method” on
page 8353 for more information.

You can specify the following method-options in parentheses following
VARMETHOD=BRR:

FAY < =value >
requests Fay’s method, a modification of the BRR method, for variance estima-
tion. See the section “Fay’s BRR Method” on page 8353 for more information.

You can specify the value of the Fay coefficient, which is used in converting
the original sampling weights to replicate weights. The Fay coefficient must be
a nonnegative number less than 1. By default, the value of the Fay coefficient
equals 0.5.

HADAMARD=SAS-data-set

H=SAS-data-set
names a SAS data set that contains the Hadamard matrix for BRR replicate con-
struction. If you do not provide a Hadamard matrix with the HADAMARD=
method-option, PROC SURVEYREG generates an appropriate Hadamard
matrix for replicate construction. See the sections “Balanced Repeated Repli-
cation (BRR) Method” on page 8353 and “Hadamard Matrix” on page 8355
for details.

If a Hadamard matrix of a given dimension exists, it is not necessarily unique.
Therefore, if you want to use a specific Hadamard matrix, you must provide
the matrix as a SAS data set in the HADAMARD= method-option.
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In the HADAMARD= input data set, each variable corresponds to a column
of the Hadamard matrix, and each observation corresponds to a row of the
matrix. You can use any variable names in the HADAMARD= data set. All
values in the data set must equal either 1 or –1. You must ensure that the
matrix you provide is indeed a Hadamard matrix—that is, A0A D RI, where
A is the Hadamard matrix of dimension R and I is an identity matrix. PROC
SURVEYREG does not check the validity of the Hadamard matrix that you
provide.

The HADAMARD= input data set must contain at least H variables, where H
denotes the number of first-stage strata in your design. If the data set contains
more than H variables, the procedure uses only the first H variables. Similarly,
the HADAMARD= input data set must contain at least H observations.

If you do not specify the REPS= method-option, then the number of replicates
is taken to be the number of observations in the HADAMARD= input data set.
If you specify the number of replicates—for example, REPS=nreps—then the
first nreps observations in the HADAMARD= data set are used to construct
the replicates.

You can specify the PRINTH option to display the Hadamard matrix that the
procedure uses to construct replicates for BRR.

OUTWEIGHTS=SAS-data-set
names a SAS data set that contains replicate weights. See the section “Balanced
Repeated Replication (BRR) Method” on page 8353 for information about
replicate weights. See the section “Replicate Weights Output Data Set” on
page 8359 for more details about the contents of the OUTWEIGHTS= data
set.

The OUTWEIGHTS= method-option is not available when you provide repli-
cate weights with the REPWEIGHTS statement.

PRINTH
displays the Hadamard matrix.

When you provide your own Hadamard matrix with the HADAMARD=
method-option, only the rows and columns of the Hadamard matrix that
are used by the procedure are displayed. See the sections “Balanced Re-
peated Replication (BRR) Method” on page 8353 and “Hadamard Matrix” on
page 8355 for details.

The PRINTH method-option is not available when you provide replicate
weights with the REPWEIGHTS statement because the procedure does not use
a Hadamard matrix in this case.

REPS=number
specifies the number of replicates for BRR variance estimation. The value of
number must be an integer greater than 1.

If you do not provide a Hadamard matrix with the HADAMARD= method-
option, the number of replicates should be greater than the number of strata
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and should be a multiple of 4. See the section “Balanced Repeated Replication
(BRR) Method” on page 8353 for more information. If a Hadamard matrix
cannot be constructed for the REPS= value that you specify, the value is
increased until a Hadamard matrix of that dimension can be constructed.
Therefore, it is possible for the actual number of replicates used to be larger
than the REPS= value that you specify.

If you provide a Hadamard matrix with the HADAMARD= method-option,
the value of REPS= must not be less than the number of rows in the Hadamard
matrix. If you provide a Hadamard matrix and do not specify the REPS=
method-option, the number of replicates equals the number of rows in the
Hadamard matrix.

If you do not specify the REPS= or HADAMARD= method-option and do
not include a REPWEIGHTS statement, the number of replicates equals the
smallest multiple of 4 that is greater than the number of strata.

If you provide replicate weights with the REPWEIGHTS statement, the proce-
dure does not use the REPS= method-option. With a REPWEIGHTS statement,
the number of replicates equals the number of REPWEIGHTS variables.

JACKKNIFE | JK < (method-options) >
requests variance estimation by the delete-1 jackknife method. See the section
“Jackknife Method” on page 8354 for details. If you provide replicate weights with
a REPWEIGHTS statement, VARMETHOD=JACKKNIFE is the default variance
estimation method.

You can specify the following method-options in parentheses following
VARMETHOD=JACKKNIFE:

OUTJKCOEFS=SAS-data-set
names a SAS data set that contains jackknife coefficients. See the section
“Jackknife Method” on page 8354 for information about jackknife coefficients.
See the section “Jackknife Coefficients Output Data Set” on page 8360 for
more details about the contents of the OUTJKCOEFS= data set.

OUTWEIGHTS=SAS-data-set
names a SAS data set that contains replicate weights. See the section “Jackknife
Method” on page 8354 for information about replicate weights. See the section
“Replicate Weights Output Data Set” on page 8359 for more details about the
contents of the OUTWEIGHTS= data set.

The OUTWEIGHTS= method-option is not available when you provide repli-
cate weights with the REPWEIGHTS statement.

TAYLOR
requests Taylor series variance estimation. This is the default method if you do not
specify the VARMETHOD= option or a REPWEIGHTS statement. See the section
“Taylor Series (Linearization)” on page 8352 for more information.
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BY Statement
BY variables ;

You can specify a BY statement with PROC SURVEYREG to obtain separate analyses of observations in
groups that are defined by the BY variables. When a BY statement appears, the procedure expects the input
data set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last
one specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the SURVEYREG
procedure. The NOTSORTED option does not mean that the data are unsorted but rather that the
data are arranged in groups (according to values of the BY variables) and that these groups are not
necessarily in alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

Note that using a BY statement provides completely separate analyses of the BY groups. It does not provide
a statistically valid domain (subpopulation) analysis, where the total number of units in the subpopulation
is not known with certainty. You should use the DOMAIN statement to obtain domain analysis. For more
information about subpopulation analysis for sample survey data, see Cochran (1977).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

CLASS Statement
CLASS variables ;

The CLASS statement names the classification variables to be used in the model. Typical classification
variables are Treatment, Sex, Race, Group, and Replication. If you use the CLASS statement, it must appear
before the MODEL statement.

Classification variables can be either character or numeric. By default, class levels are determined from the
entire set of formatted values of the CLASS variables.

NOTE: Prior to SAS 9, class levels were determined by using no more than the first 16 characters of the
formatted values. To revert to this previous behavior, you can use the TRUNCATE option in the PROC
SURVEYREG statement.

In any case, you can use formats to group values into levels. See the discussion of the FORMAT procedure
in the Base SAS Procedures Guide and the discussions of the FORMAT statement and SAS formats in SAS
Formats and Informats: Reference. You can adjust the order of CLASS variable levels with the ORDER=
option in the PROC SURVEYREG statement.

You can use multiple CLASS statements to specify classification variables.
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CLUSTER Statement
CLUSTER variables ;

The CLUSTER statement names variables that identify the clusters in a clustered sample design. The
combinations of categories of CLUSTER variables define the clusters in the sample. If there is a STRATA
statement, clusters are nested within strata.

If you provide replicate weights for BRR or jackknife variance estimation with the REPWEIGHTS statement,
you do not need to specify a CLUSTER statement.

If your sample design has clustering at multiple stages, you should identify only the first-stage clusters
(primary sampling units (PSUs)), in the CLUSTER statement. See the section “Primary Sampling Units
(PSUs)” on page 8348 for more information.

The CLUSTER variables are one or more variables in the DATA= input data set. These variables can be
either character or numeric. The formatted values of the CLUSTER variables determine the CLUSTER
variable levels. Thus, you can use formats to group values into levels. See the FORMAT procedure in the
Base SAS Procedures Guide and the FORMAT statement and SAS formats in SAS Formats and Informats:
Reference for more information.

When determining levels of a CLUSTER variable, an observation with missing values for this CLUSTER
variable is excluded, unless you specify the MISSING option. For more information, see the section “Missing
Values” on page 8346.

You can use multiple CLUSTER statements to specify cluster variables. The procedure uses variables from
all CLUSTER statements to create clusters.

Prior to SAS 9, clusters were determined by using no more than the first 16 characters of the formatted
values. If you want to revert to this previous behavior, you can use the TRUNCATE option in the PROC
SURVEYREG statement.

CONTRAST Statement
CONTRAST ’label’ effect values < / options > ;

CONTRAST ’label’ effect values < . . . effect values > < / options > ;

The CONTRAST statement provides custom hypothesis tests for linear combinations of the regression
parameters H0WLˇ D 0, where L is the vector or matrix you specify and ˇ is the vector of regression
parameters. Thus, to use this feature, you must be familiar with the details of the model parameterization used
by PROC SURVEYREG. For information about the parameterization, see the section “GLM Parameterization
of Classification Variables and Effects” on page 387 in Chapter 19, “Shared Concepts and Topics.”

Each term in the MODEL statement, called an effect , is a variable or a combination of variables. You can
specify an effect with a variable name or a special notation by using variable names and operators. For more
details about how to specify an effect, see the section “Specification of Effects” on page 3453 in Chapter 45,
“The GLM Procedure.”

For each CONTRAST statement, PROC SURVEYREG computes Wald’s F test. The procedure displays this
value with the degrees of freedom, and identifies it with the contrast label. The numerator degrees of freedom
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for Wald’s F test equal rank(L). The denominator degrees of freedom equal the number of clusters (or the
number of observations if there is no CLUSTER statement) minus the number of strata. Alternatively, you
can use the DF= option in the MODEL statement to specify the denominator degrees of freedom.

You can specify any number of CONTRAST statements, but they must appear after the MODEL statement.

In the CONTRAST statement,

label identifies the contrast in the output. A label is required for every contrast specified.
Labels must be enclosed in single quotes.

effect identifies an effect that appears in the MODEL statement. You can use the INTER-
CEPT keyword as an effect when an intercept is fitted in the model. You do not need
to include all effects that are in the MODEL statement.

values are constants that are elements of L associated with the effect.

You can specify the following options in the CONTRAST statement after a slash (/):

E
displays the entire coefficient L vector or matrix.

NOFILL
requests no filling in higher-order effects. When you specify only certain portions of L, by default
PROC SURVEYREG constructs the remaining elements from the context. (For more information,
see the section “Specification of ESTIMATE Expressions” on page 3472 in Chapter 45, “The GLM
Procedure.”)

When you specify the NOFILL option, PROC SURVEYREG does not construct the remaining portions
and treats the vector or matrix L as it is defined in the CONTRAST statement.

SINGULAR=value
tunes the estimability checking. If v is a vector, define ABS(v) to be the largest absolute value of the
elements of v. For a row vector l of the matrix L , define

c D

�
ABS.l/ if ABS.l/ > 0
1 otherwise

If ABS(l � lH) is greater than c*value, then lˇ is declared nonestimable. Here, H is the matrix
.X0X/�X0X. The value must be between 0 and 1; the default is 10�7.

As stated previously, the CONTRAST statement enables you to perform hypothesis tests H0WLˇ D 0.

If the L matrix contains more than one contrast, then you can separate the rows of the L matrix with commas.

For example, for the model

proc surveyreg;
class A B;
model Y=A B;

run;

with A at 5 levels and B at 2 levels, the parameter vector is

.� ˛1 ˛2 ˛3 ˛4 ˛5 ˇ1 ˇ2/
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To test the hypothesis that the pooled A linear and A quadratic effect is zero, you can use the following L
matrix:

L D
�
0 �2 �1 0 1 2 0 0

0 2 �1 �2 �1 2 0 0

�
The corresponding CONTRAST statement is

contrast 'A Linear & Quadratic'
a -2 -1 0 1 2,
a 2 -1 -2 -1 2;

DOMAIN Statement
DOMAIN variables < variable�variable variable�variable�variable . . . > ;

The DOMAIN statement requests analysis for domains (subpopulations) in addition to analysis for the entire
study population. The DOMAIN statement names the variables that identify domains, which are called
domain variables.

It is common practice to compute statistics for domains. The formation of these domains might be unrelated
to the sample design. Therefore, the sample sizes for the domains are random variables. Use a DOMAIN
statement to incorporate this variability into the variance estimation.

Note that a DOMAIN statement is different from a BY statement. In a BY statement, you treat the sample
sizes as fixed in each subpopulation, and you perform analysis within each BY group independently. See the
section “Domain Analysis” on page 8358 for more details.

Use the DOMAIN statement on the entire data set to perform a domain analysis. Creating a new data set from
a single domain and analyzing that with PROC SURVEYREG yields inappropriate estimates of variance.

A domain variable can be either character or numeric. The procedure treats domain variables as categorical
variables. If a variable appears by itself in a DOMAIN statement, each level of this variable determines a
domain in the study population. If two or more variables are joined by asterisks (�), then every possible
combination of levels of these variables determines a domain. The procedure performs a descriptive analysis
within each domain that is defined by the domain variables.

When determining levels of a DOMAIN variable, an observation with missing values for this DOMAIN
variable is excluded, unless you specify the MISSING option. For more information, see the section “Missing
Values” on page 8346.

The formatted values of the domain variables determine the categorical variable levels. Thus, you can use
formats to group values into levels. See the FORMAT procedure in the Base SAS Procedures Guide and the
FORMAT statement and SAS formats in SAS Formats and Informats: Reference for more information.
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EFFECT Statement
EFFECT name=effect-type (variables < / options >) ;

The EFFECT statement enables you to construct special collections of columns for design matrices. These
collections are referred to as constructed effects to distinguish them from the usual model effects that are
formed from continuous or classification variables, as discussed in the section “GLM Parameterization of
Classification Variables and Effects” on page 387 in Chapter 19, “Shared Concepts and Topics.”

You can specify the following effect-types:

COLLECTION is a collection effect that defines one or more variables as a single effect with
multiple degrees of freedom. The variables in a collection are considered as
a unit for estimation and inference.

LAG is a classification effect in which the level that is used for a given period
corresponds to the level in the preceding period.

MULTIMEMBER | MM is a multimember classification effect whose levels are determined by one or
more variables that appear in a CLASS statement.

POLYNOMIAL | POLY is a multivariate polynomial effect in the specified numeric variables.

SPLINE is a regression spline effect whose columns are univariate spline expansions
of one or more variables. A spline expansion replaces the original variable
with an expanded or larger set of new variables.

Table 101.4 summarizes the options available in the EFFECT statement.

Table 101.4 EFFECT Statement Options

Option Description

Collection Effects Options
DETAILS Displays the constituents of the collection effect

Lag Effects Options
DESIGNROLE= Names a variable that controls to which lag design an observation

is assigned

DETAILS Displays the lag design of the lag effect

NLAG= Specifies the number of periods in the lag

PERIOD= Names the variable that defines the period

WITHIN= Names the variable or variables that define the group within which
each period is defined

Multimember Effects Options
NOEFFECT Specifies that observations with all missing levels for the multi-

member variables should have zero values in the corresponding
design matrix columns

WEIGHT= Specifies the weight variable for the contributions of each of the
classification effects
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Table 101.4 continued

Option Description

Polynomial Effects Options
DEGREE= Specifies the degree of the polynomial
MDEGREE= Specifies the maximum degree of any variable in a term of the

polynomial
STANDARDIZE= Specifies centering and scaling suboptions for the variables that

define the polynomial

Spline Effects Options
BASIS= Specifies the type of basis (B-spline basis or truncated power func-

tion basis) for the spline effect
DEGREE= Specifies the degree of the spline effect
KNOTMETHOD= Specifies how to construct the knots for the spline effect

For more information about the syntax of these effect-types and how columns of constructed effects are
computed, see the section “EFFECT Statement” on page 397 in Chapter 19, “Shared Concepts and Topics.”

ESTIMATE Statement
ESTIMATE < 'label ' > estimate-specification < (divisor=n) >

< , . . . < 'label ' > estimate-specification < (divisor=n) > >
< / options > ;

The ESTIMATE statement provides a mechanism for obtaining custom hypothesis tests. Estimates are
formed as linear estimable functions of the form Lˇ. You can perform hypothesis tests for the estimable
functions, construct confidence limits, and obtain specific nonlinear transformations.

Table 101.5 summarizes the options available in the ESTIMATE statement.

Table 101.5 ESTIMATE Statement Options

Option Description

Construction and Computation of Estimable Functions
DIVISOR= Specifies a list of values to divide the coefficients
NOFILL Suppresses the automatic fill-in of coefficients for higher-order

effects
SINGULAR= Tunes the estimability checking difference
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Table 101.5 continued

Option Description

Degrees of Freedom and p-values
ADJUST= Determines the method for multiple comparison adjustment of

estimates
ALPHA=˛ Determines the confidence level (1 � ˛)
LOWER Performs one-sided, lower-tailed inference
STEPDOWN Adjusts multiplicity-corrected p-values further in a step-down fash-

ion
TESTVALUE= Specifies values under the null hypothesis for tests
UPPER Performs one-sided, upper-tailed inference

Statistical Output
CL Constructs confidence limits
CORR Displays the correlation matrix of estimates
COV Displays the covariance matrix of estimates
E Prints the L matrix
JOINT Produces a joint F or chi-square test for the estimable functions
SEED= Specifies the seed for computations that depend on random numbers

For details about the syntax of the ESTIMATE statement, see the section “ESTIMATE Statement” on
page 444 in Chapter 19, “Shared Concepts and Topics.”

LSMEANS Statement
LSMEANS < model-effects > < / options > ;

The LSMEANS statement computes and compares least squares means (LS-means) of fixed effects. LS-means
are predicted margins—that is, they estimate the marginal means over a hypothetical balanced population.

Table 101.6 the summarizes available options in the LSMEANS statement.

Table 101.6 LSMEANS Statement Options

Option Description

Construction and Computation of LS-Means
AT Modifies the covariate value in computing LS-means
BYLEVEL Computes separate margins
DIFF Requests differences of LS-means
OM= Specifies the weighting scheme for LS-means computation as de-

termined by the input data set
SINGULAR= Tunes estimability checking
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Table 101.6 continued

Option Description

Degrees of Freedom and p-values
ADJUST= Determines the method for multiple-comparison adjustment of LS-

means differences
ALPHA=˛ Determines the confidence level (1 � ˛)
STEPDOWN Adjusts multiple-comparison p-values further in a step-down

fashion

Statistical Output
CL Constructs confidence limits for means and mean differences
CORR Displays the correlation matrix of LS-means
COV Displays the covariance matrix of LS-means
E Prints the L matrix
LINES Produces a “Lines” display for pairwise LS-means differences
MEANS Prints the LS-means
PLOTS= Requests graphs of means and mean comparisons
SEED= Specifies the seed for computations that depend on random numbers

For details about the syntax of the LSMEANS statement, see the section “LSMEANS Statement” on page 460
in Chapter 19, “Shared Concepts and Topics.”

LSMESTIMATE Statement
LSMESTIMATE model-effect < 'label ' > values < divisor=n >

< , . . . < 'label ' > values < divisor=n > >
< / options > ;

The LSMESTIMATE statement provides a mechanism for obtaining custom hypothesis tests among least
squares means.

Table 101.7 summarizes the options available in the LSMESTIMATE statement.

Table 101.7 LSMESTIMATE Statement Options

Option Description

Construction and Computation of LS-Means
AT Modifies covariate values in computing LS-means
BYLEVEL Computes separate margins
DIVISOR= Specifies a list of values to divide the coefficients
OM= Specifies the weighting scheme for LS-means computation as de-

termined by a data set
SINGULAR= Tunes estimability checking
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Table 101.7 continued

Option Description

Degrees of Freedom and p-values
ADJUST= Determines the method for multiple-comparison adjustment of LS-

means differences
ALPHA=˛ Determines the confidence level (1 � ˛)
LOWER Performs one-sided, lower-tailed inference
STEPDOWN Adjusts multiple-comparison p-values further in a step-down fash-

ion
TESTVALUE= Specifies values under the null hypothesis for tests
UPPER Performs one-sided, upper-tailed inference

Statistical Output
CL Constructs confidence limits for means and mean differences
CORR Displays the correlation matrix of LS-means
COV Displays the covariance matrix of LS-means
E Prints the L matrix
ELSM Prints the K matrix
JOINT Produces a joint F or chi-square test for the LS-means and LS-

means differences
SEED= Specifies the seed for computations that depend on random numbers

For details about the syntax of the LSMESTIMATE statement, see the section “LSMESTIMATE Statement”
on page 476 in Chapter 19, “Shared Concepts and Topics.”

MODEL Statement
MODEL dependent = < effects > < / options > ;

The MODEL statement specifies the dependent (response) variable and the independent (regressor) variables
or effects. The dependent variable must be numeric. Each term in a MODEL statement, called an effect ,
is a variable or a combination of variables. You can specify an effect with a variable name or with special
notation by using variable names and operators. For more information about how to specify an effect, see the
section “Specification of Effects” on page 3453 in Chapter 45, “The GLM Procedure.”

Only one MODEL statement is allowed for each PROC SURVEYREG statement. If you specify more than
one MODEL statement, the procedure uses the first model and ignores the rest.

Table 101.8 summarizes the options available in the MODEL statement.

Table 101.8 MODEL Statement Options

Option Description

ADJRSQ Compute the adjusted multiple R-square
ANOVA Produces the ANOVA table
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Table 101.8 continued

Option Description

CLPARM Requests confidence limits
COVB Displays the estimated covariance matrix
DEFF Displays design effects
DF= Specifies the denominator degrees of freedom
I Displays the inverse or the generalized inverse of the X0X matrix
NOINT Omits the intercept
PARMLABEL Displays the labels of the parameters
SINGULAR= Tunes the estimability checking
SOLUTION Displays parameter estimates
STB Displays standardized parameter estimates
VADJUST= Specifies whether to use degrees of freedom adjustment
X Displays the X0X matrix, or the X0WX matrix

You can specify the following options in the MODEL statement after a slash (/):

ADJRSQ
requests the procedure compute the adjusted multiple R-square.

ANOVA
requests the ANOVA table be produced in the output. By default, the ANOVA table is not printed in
the output.

CLPARM
requests confidence limits for the parameter estimates. The SURVEYREG procedure determines the
confidence coefficient by using the ALPHA= option, which by default equals 0.05 and produces 95%
confidence bounds. The CLPARM option also requests confidence limits for all the estimable linear
functions of regression parameters in the ESTIMATE statements.

Note that when there is a CLASS statement, you need to use the SOLUTION option with the CLPARM
option to obtain the parameter estimates and their confidence limits.

COVB
displays the estimated covariance matrix of the estimated regression estimates.

DEFF
displays design effects for the regression coefficient estimates.

DF=value
specifies the denominator degrees of freedom for the F tests and the degrees of freedom for the t tests.
For details about the default denominator degrees of freedom, see the section “Denominator Degrees
of Freedom” on page 8356 for details.

I | INVERSE
displays the inverse or the generalized inverse of the X0X matrix. When there is a WEIGHT variable,
the procedure displays the inverse or the generalized inverse of the X0WX matrix, where W is the
diagonal matrix constructed from WEIGHT variable values.
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NOINT
omits the intercept from the model.

PARMLABEL
displays the labels of the parameters in the “Estimated Regression Coefficients” table, if the effect
contains a single continuous variable that has a label.

SINGULAR=value
tunes the estimability checking. If v is a vector, define ABS(v) to be the largest absolute value of the
elements of v. For a row vector l of the matrix L , define

c D

�
ABS.l/ if ABS.l/ > 0
1 otherwise

If ABS(l � lH) is greater than c*value, then lˇ is declared nonestimable. Here, H is the matrix
.X0X/�X0X. The value must be between 0 and 1; the default is 10�4.

SOLUTION
displays a solution to the normal equations, which are the parameter estimates. The SOLUTION option
is useful only when you use a CLASS statement. If you do not specify a CLASS statement, PROC
SURVEYREG displays parameter estimates by default. But if you specify a CLASS statement, PROC
SURVEYREG does not display parameter estimates unless you also specify the SOLUTION option.

STB
produces standardized regression coefficients. A standardized regression coefficient is computed by
dividing a parameter estimate by the ratio of the sample standard deviation of the dependent variable
to the sample standard deviation of the regressor.

VADJUST=DF | NONE
specifies whether to use degrees of freedom adjustment .n � 1/=.n � p/ in the computation of the
matrix G for the variance estimation. If you do not specify the VADJUST= option, by default, PROC
SURVEYREG uses the degrees-of-freedom adjustment that is equivalent to the VARADJ=DF option.
If you do not want to use this variance adjustment, you can specify the VADJUST=NONE option.

X | XPX
displays the X0X matrix, or the X0WX matrix when there is a WEIGHT variable, where W is
the diagonal matrix constructed from WEIGHT variable values. The X option also displays the
crossproducts vector X0y or X0Wy.

OUTPUT Statement
OUTPUT < OUT=SAS-data-set > < keyword< =variable-name > . . . keyword< =variable-name > >

< / option > ;

The OUTPUT statement creates a new SAS data set that contains all the variables in the input data set and,
optionally, the estimated linear predictors and their standard error estimates, the residuals from the linear
regression, and the confidence limits for the predictors.

You can specify the following options in the OUTPUT statement:
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OUT=SAS-data-set
gives the name of the new output data set. By default, the procedure uses the DATAn convention to
name the new data set.

keyword < =variable-name >
specifies the statistics to include in the output data set and names the new variables that contain the
statistics. You can specify a keyword for each desired statistic (see the following list of keywords).
Optionally, you can name a statistic by providing a variable name followed an equal sign to contain the
statistic. For example,

output out=myOutDataSet p=myPredictor;

creates a SAS data set myOutDataSet that contains the predicted values in the variable myPredictor.

The keywords allowed and the statistics they represent are as follows:

LCLM | L lower bound of a 100.1� ˛/% confidence interval for the expected value (mean) of
the predicted value. The ˛ level is equal to the value of the ALPHA= option in the
OUTPUT statement or, if this option is not specified, to the ALPHA= option in the
PROC SURVEYREG statement. If neither of these options is set, then ˛ D 0:05 by
default, resulting in the lower bound for a 95% confidence interval. If no variable
name is given for this keyword, the default variable name is _LCLM_.

PREDICTED | PRED | P predicted values. If no variable name is given for this keyword, the default
variable name is _PREDICTED_.

RESIDUAL | R residuals, calculated as ACTUAL – PREDICTED. If no variable name is given for
this keyword, the default variable name is _RESIDUAL_.

STDP | STD standard error of the mean predicted value. If no variable name is given for this
keyword, the default variable name is _STD_.

UCLM | U upper bound of a 100.1� ˛/% confidence interval for the expected value (mean) of
the predicted value. The ˛ level is equal to the value of the ALPHA= option in the
OUTPUT statement or, if this option is not specified, to the ALPHA= option in the
PROC SURVEYREG statement. If neither of these options is set, then ˛ D 0:05 by
default, resulting in the upper bound for a 95% confidence interval. If no variable
name is given for this keyword, the default variable name is _UCLM_.

The following option is available in the OUTPUT statement and is specified after a slash (/):

ALPHA=˛
specifies the level of significance ˛ for 100.1 � ˛/% confidence intervals. By default, ˛ is equal to
the value of the ALPHA= option in the PROC SURVEYREG statement or 0.05 if that option is not
specified. You can use values between 0 and 1.
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REPWEIGHTS Statement
REPWEIGHTS variables < / options > ;

The REPWEIGHTS statement names variables that provide replicate weights for BRR or jackknife variance
estimation, which you request with the VARMETHOD=BRR or VARMETHOD=JACKKNIFE option in
the PROC SURVEYREG statement. If you do not provide replicate weights for these methods by using a
REPWEIGHTS statement, then the procedure constructs replicate weights for the analysis. See the sections
“Balanced Repeated Replication (BRR) Method” on page 8353 and “Jackknife Method” on page 8354 for
information about replicate weights.

Each REPWEIGHTS variable should contain the weights for a single replicate, and the number of replicates
equals the number of REPWEIGHTS variables. The REPWEIGHTS variables must be numeric, and the
variable values must be nonnegative numbers.

If you provide replicate weights with a REPWEIGHTS statement, you do not need to specify a CLUSTER or
STRATA statement. If you use a REPWEIGHTS statement and do not specify the VARMETHOD= option in
the PROC SURVEYREG statement, the procedure uses VARMETHOD=JACKKNIFE by default.

If you specify a REPWEIGHTS statement but do not include a WEIGHT statement, the procedure uses the
average of replicate weights of each observation as the observation’s weight.

You can specify the following options in the REPWEIGHTS statement after a slash (/):

DF=df
specifies the degrees of freedom for the analysis. The value of df must be a positive number. By
default, the degrees of freedom equals the number of REPWEIGHTS variables.

JKCOEFS=value
specifies a jackknife coefficient for VARMETHOD=JACKKNIFE. The coefficient value must be a
nonnegative number. See the section “Jackknife Method” on page 8354 for details about jackknife
coefficients.

You can use this option to specify a single value of the jackknife coefficient, which the procedure uses
for all replicates. To specify different coefficients for different replicates, use the JKCOEFS=values or
JKCOEFS=SAS-data-set option.

JKCOEFS=values
specifies jackknife coefficients for VARMETHOD=JACKKNIFE, where each coefficient corresponds
to an individual replicate that is identified by a REPWEIGHTS variable. You can separate values
with blanks or commas. The coefficient values must be nonnegative numbers. The number of values
must equal the number of replicate weight variables named in the REPWEIGHTS statement. List
these values in the same order in which you list the corresponding replicate weight variables in the
REPWEIGHTS statement.

See the section “Jackknife Method” on page 8354 for details about jackknife coefficients.

To specify different coefficients for different replicates, you can also use the JKCOEFS=SAS-data-set
option. To specify a single jackknife coefficient for all replicates, use the JKCOEFS=value option.
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JKCOEFS=SAS-data-set
names a SAS data set that contains the jackknife coefficients for VARMETHOD=JACKKNIFE. You
provide the jackknife coefficients in the JKCOEFS= data set variable JKCoefficient. Each coefficient
value must be a nonnegative number. The observations in the JKCOEFS= data set should correspond
to the replicates that are identified by the REPWEIGHTS variables. Arrange the coefficients or
observations in the JKCOEFS= data set in the same order in which you list the corresponding replicate
weight variables in the REPWEIGHTS statement. The number of observations in the JKCOEFS= data
set must not be less than the number of REPWEIGHTS variables.

See the section “Jackknife Method” on page 8354 for details about jackknife coefficients.

To specify different coefficients for different replicates, you can also use the JKCOEFS=values option.
To specify a single jackknife coefficient for all replicates, use the JKCOEFS=value option.

SLICE Statement
SLICE model-effect < / options > ;

The SLICE statement provides a general mechanism for performing a partitioned analysis of the LS-means
for an interaction. This analysis is also known as an analysis of simple effects.

The SLICE statement uses the same options as the LSMEANS statement, which are summarized in Ta-
ble 19.21. For details about the syntax of the SLICE statement, see the section “SLICE Statement” on
page 505 in Chapter 19, “Shared Concepts and Topics.”

STORE Statement
STORE < OUT= >item-store-name < / LABEL='label ' > ;

The STORE statement requests that the procedure save the context and results of the statistical analysis. The
resulting item store has a binary file format that cannot be modified. The contents of the item store can be
processed with the PLM procedure.

For details about the syntax of the STORE statement, see the section “STORE Statement” on page 508 in
Chapter 19, “Shared Concepts and Topics.”

STRATA Statement
STRATA variables < / options > ;

The STRATA statement specifies variables that form the strata in a stratified sample design. The combinations
of categories of STRATA variables define the strata in the sample.

If your sample design has stratification at multiple stages, you should identify only the first-stage strata in the
STRATA statement. See the section “Specification of Population Totals and Sampling Rates” on page 8347
for more information.

If you provide replicate weights for BRR or jackknife variance estimation with the REPWEIGHTS statement,
you do not need to specify a STRATA statement.
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The STRATA variables are one or more variables in the DATA= input data set. These variables can be either
character or numeric. The formatted values of the STRATA variables determine the levels. Thus, you can use
formats to group values into levels. See the FORMAT procedure in the Base SAS Procedures Guide and the
FORMAT statement and SAS formats in SAS Formats and Informats: Reference for more information.

When determining levels of a STRATA variable, an observation with missing values for this STRATA variable
is excluded, unless you specify the MISSING option. For more information, see the section “Missing Values”
on page 8346.

You can use multiple STRATA statements to specify stratum variables.

You can specify the following options in the STRATA statement after a slash (/):

LIST
displays a “Stratum Information” table, which includes values of the STRATA variables and the number
of observations, number of clusters, population total, and sampling rate for each stratum. See the
section “Stratum Information” on page 8362 for more details.

NOCOLLAPSE
prevents the procedure from collapsing (combining) strata that have only one sampling unit for the
Taylor series variance estimation. By default, the procedure collapses strata that contain only one
sampling unit for the Taylor series method. See the section “Stratum Collapse” on page 8350 for
details.

TEST Statement
TEST < model-effects > < / options > ;

The TEST statement enables you to perform F tests for model effects that test Type I, Type II, or Type III
hypotheses. See Chapter 15, “The Four Types of Estimable Functions,” for details about the construction of
Type I, II, and III estimable functions.

Table 101.9 summarizes the options available in the TEST statement.

Table 101.9 TEST Statement Options

Option Description

CHISQ Requests chi-square tests
DDF= Specifies denominator degrees of freedom for fixed effects
E Requests Type I, Type II, and Type III coefficients
E1 Requests Type I coefficients
E2 Requests Type II coefficients
E3 Requests Type III coefficients
HTYPE= Indicates the type of hypothesis test to perform
INTERCEPT Adds a row that corresponds to the overall intercept

For details about the syntax of the TEST statement, see the section “TEST Statement” on page 509 in
Chapter 19, “Shared Concepts and Topics.”
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WEIGHT Statement
WEIGHT variable ;

The WEIGHT statement names the variable that contains the sampling weights. This variable must be numeric,
and the sampling weights must be positive numbers. If an observation has a weight that is nonpositive or
missing, then the procedure omits that observation from the analysis. See the section “Missing Values” on
page 8346 for more information. If you specify more than one WEIGHT statement, the procedure uses only
the first WEIGHT statement and ignores the rest.

If you do not specify a WEIGHT statement but provide replicate weights with a REPWEIGHTS statement,
PROC SURVEYREG uses the average of replicate weights of each observation as the observation’s weight.

If you do not specify a WEIGHT statement or a REPWEIGHTS statement, PROC SURVEYREG assigns all
observations a weight of one.

Details: SURVEYREG Procedure

Missing Values
If you have missing values in your survey data for any reason, such as nonresponse, this can compromise
the quality of your survey results. If the respondents are different from the nonrespondents with regard
to a survey effect or outcome, then survey estimates might be biased and cannot accurately represent the
survey population. There are a variety of techniques in sample design and survey operations that can reduce
nonresponse. After data collection is complete, you can use imputation to replace missing values with
acceptable values, and/or you can use sampling weight adjustments to compensate for nonresponse. You
should complete this data preparation and adjustment before you analyze your data with PROC SURVEYREG.
For more information, see Cochran (1977); Kalton and Kasprzyk (1986); Brick and Kalton (1996).

If an observation has a missing value or a nonpositive value for the WEIGHT variable, then that observation
is excluded from the analysis.

An observation is also excluded from the analysis if it has a missing value for any design (STRATA,
CLUSTER, or DOMAIN) variable, unless you specify the MISSING option in the PROC SURVEYREG
statement. If you specify the MISSING option, the procedure treats missing values as a valid (nonmissing)
category for all categorical variables.

By default, if an observation contains missing values for the dependent variable or for any variable used in the
independent effects, the observation is excluded from the analysis. This treatment is based on the assumption
that the missing values are missing completely at random (MCAR). However, this assumption sometimes is
not true. For example, evidence from other surveys might suggest that observations with missing values are
systematically different from observations without missing values. If you believe that missing values are not
missing completely at random, then you can specify the NOMCAR option to include these observations with
missing values in the dependent variable and the independent variables in the variance estimation.

Whether or not you specify the NOMCAR option, the procedure always excludes observations with missing
or invalid values for the WEIGHT, STRATA, CLUSTER, and DOMAIN variables, unless you specify the
MISSING option.
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When you specify the NOMCAR option, the procedure treats observations with and without missing values
for variables in the regression model as two different domains, and it performs a domain analysis in the
domain of nonmissing observations.

If you use a REPWEIGHTS statement, all REPWEIGHTS variables must contain nonmissing values.

Survey Design Information

Specification of Population Totals and Sampling Rates

To include a finite population correction (fpc) in Taylor series variance estimation, you can input either the
sampling rate or the population total by using the RATE= or TOTAL= option in the PROC SURVEYREG
statement. (You cannot specify both of these options in the same PROC SURVEYREG statement.) The
RATE= and TOTAL= options apply only to Taylor series variance estimation. The procedure does not use a
finite population correction for BRR or jackknife variance estimation.

If you do not specify the RATE= or TOTAL= option, the Taylor series variance estimation does not include a
finite population correction. For fairly small sampling fractions, it is appropriate to ignore this correction.
See Cochran (1977) and Kish (1965) for more information.

If your design has multiple stages of selection and you are specifying the RATE= option, you should input
the first-stage sampling rate, which is the ratio of the number of PSUs in the sample to the total number of
PSUs in the study population. If you are specifying the TOTAL= option for a multistage design, you should
input the total number of PSUs in the study population. See the section “Primary Sampling Units (PSUs)” on
page 8348 for more details.

For a nonstratified sample design, or for a stratified sample design with the same sampling rate or the same
population total in all strata, you can use the RATE=value or TOTAL=value option. If your sample design is
stratified with different sampling rates or population totals in different strata, use the RATE=SAS-data-set or
TOTAL=SAS-data-set option to name a SAS data set that contains the stratum sampling rates or totals. This
data set is called a secondary data set, as opposed to the primary data set that you specify with the DATA=
option.

The secondary data set must contain all the stratification variables listed in the STRATA statement and all
the variables in the BY statement. If there are formats associated with the STRATA variables and the BY
variables, then the formats must be consistent in the primary and the secondary data sets. If you specify the
TOTAL=SAS-data-set option, the secondary data set must have a variable named _TOTAL_ that contains the
stratum population totals. Or if you specify the RATE=SAS-data-set option, the secondary data set must
have a variable named _RATE_ that contains the stratum sampling rates. If the secondary data set contains
more than one observation for any one stratum, then the procedure uses the first value of _TOTAL_ or _RATE_
for that stratum and ignores the rest.

The value in the RATE= option or the values of _RATE_ in the secondary data set must be nonnegative
numbers. You can specify value as a number between 0 and 1. Or you can specify value in percentage
form as a number between 1 and 100, and PROC SURVEYREG converts that number to a proportion. The
procedure treats the value 1 as 100%, and not the percentage form 1%.

If you specify the TOTAL=value option, value must not be less than the sample size. If you provide stratum
population totals in a secondary data set, these values must not be less than the corresponding stratum sample
sizes.
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Primary Sampling Units (PSUs)

When you have clusters, or primary sampling units (PSUs), in your sample design, the procedure estimates
variance from the variation among PSUs when the Taylor series variance method is used. See the section
“Variance Estimation” on page 8351 for more information.

BRR or jackknife variance estimation methods draw multiple replicates (or subsamples) from the full sample
by following a specific resampling scheme. These subsamples are constructed by deleting PSUs from the full
sample.

If you use a REPWEIGHTS statement to provide replicate weights for BRR or jackknife variance estimation,
you do not need to specify a CLUSTER statement. Otherwise, you should specify a CLUSTER statement
whenever your design includes clustering at the first stage of sampling. If you do not specify a CLUSTER
statement, then PROC SURVEYREG treats each observation as a PSU.

Computational Details

Notation

For a stratified clustered sample design, observations are represented by an n � .p C 2/ matrix

.w; y;X/ D .whij ; yhij ; xhij /

where

• w denotes the sampling weight vector

• y denotes the dependent variable

• X denotes the n� p design matrix. (When an effect contains only classification variables, the columns
of X that correspond this effect contain only 0s and 1s; no reparameterization is made.)

• h D 1; 2; : : : ;H is the stratum index

• i D 1; 2; : : : ; nh is the cluster index within stratum h

• j D 1; 2; : : : ; mhi is the unit index within cluster i of stratum h

• p is the total number of parameters (including an intercept if the INTERCEPT effect is included in the
MODEL statement)

• n D
PH
hD1

Pnh
iD1mhi is the total number of observations in the sample

Also, fh denotes the sampling rate for stratum h. You can use the TOTAL= or RATE= option to input
population totals or sampling rates. See the section “Specification of Population Totals and Sampling Rates”
on page 8347 for details. If you input stratum totals, PROC SURVEYREG computes fh as the ratio of the
stratum sample size to the stratum total. If you input stratum sampling rates, PROC SURVEYREG uses these
values directly for fh. If you do not specify the TOTAL= or RATE= option, then the procedure assumes that
the stratum sampling rates fh are negligible, and a finite population correction is not used when computing
variances.
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Regression Coefficients

PROC SURVEYREG solves the normal equations X0WXˇ D X0Wy by using a modified sweep routine that
produces a generalized (g2) inverse .X0WX/� and a solution (Pringle and Rayner 1971)

Ǒ D .X0WX/�X0Wy

where W is the diagonal matrix constructed from WEIGHT variable values.

For models with CLASS variables, there are more design matrix columns than there are degrees of freedom
(df ) for the effect. Thus, there are linear dependencies among the columns. In this case, the parameters are
not estimable; there is an infinite number of least squares solutions. PROC SURVEYREG uses a generalized
(g2) inverse to obtain values for the estimates. The solution values are not displayed unless you specify the
SOLUTION option in the MODEL statement. The solution has the characteristic that estimates are zero
whenever the design column for that parameter is a linear combination of previous columns. (In strict terms,
the solution values should not be called estimates.) With this full parameterization, hypothesis tests are
constructed to test linear functions of the parameters that are estimable.

Design Effect

If you specify the DEFF option in the MODEL statement, PROC SURVEYREG calculates the design effects
for the regression coefficients. The design effect of an estimate is the ratio of the actual variance to the
variance computed under the assumption of simple random sampling:

DEFF D
variance under the sample design

variance under simple random sampling

See Kish (1965, p. 258) for more details. PROC SURVEYREG computes the numerator as described in the
section “Variance Estimation” on page 8351. And the denominator is computed under the assumption that
the sample design is simple random sampling, with no stratification and no clustering.

To compute the variance under the assumption of simple random sampling, PROC SURVEYREG calculates
the sampling rate as follows. If you specify both sampling weights and sampling rates (or population totals)
for the analysis, then the sampling rate under simple random sampling is calculated as

fSRS D n = w���

where n is the sample size and w��� (the sum of the weights over all observations) estimates the population
size. If the sum of the weights is less than the sample size, fSRS is set to zero. If you specify sampling rates
for the analysis but not sampling weights, then PROC SURVEYREG computes the sampling rate under
simple random sampling as the average of the stratum sampling rates:

fSRS D
1

H

HX
hD1

fh

If you do not specify sampling rates (or population totals) for the analysis, then the sampling rate under
simple random sampling is assumed to be zero:

fSRS D 0
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Stratum Collapse

If there is only one sampling unit in a stratum, then PROC SURVEYREG cannot estimate the variance for
this stratum for the Taylor series method. To estimate stratum variances, by default the procedure collapses,
or combines, those strata that contain only one sampling unit. If you specify the NOCOLLAPSE option in
the STRATA statement, PROC SURVEYREG does not collapse strata and uses a variance estimate of zero
for any stratum that contains only one sampling unit.

Note that stratum collapse only applies to Taylor series variance estimation (the default method, also specified
by VARMETHOD=TAYLOR). The procedure does not collapse strata for BRR or jackknife variance
estimation, which you request with the VARMETHOD=BRR or VARMETHOD=JACKKNIFE option.

If you do not specify the NOCOLLAPSE option for the Taylor series method, PROC SURVEYREG collapses
strata according to the following rules. If there are multiple strata that contain only one sampling unit each,
then the procedure collapses, or combines, all these strata into a new pooled stratum. If there is only one
stratum with a single sampling unit, then PROC SURVEYREG collapses that stratum with the preceding
stratum, where strata are ordered by the STRATA variable values. If the stratum with one sampling unit is
the first stratum, then the procedure combines it with the following stratum.

If you specify stratum sampling rates by using the RATE=SAS-data-set option, PROC SURVEYREG
computes the sampling rate for the new pooled stratum as the weighted average of the sampling rates for the
collapsed strata. See the section “Computational Details” on page 8348 for details. If the specified sampling
rate equals 0 for any of the collapsed strata, then the pooled stratum is assigned a sampling rate of 0. If you
specify stratum totals by using the TOTAL=SAS-data-set option, PROC SURVEYREG combines the totals
for the collapsed strata to compute the sampling rate for the new pooled stratum.

Sampling Rate of the Pooled Stratum from Collapse

Assuming that PROC SURVEYREG collapses single-unit strata h1; h2; : : : ; hc into the pooled stratum, the
procedure calculates the sampling rate for the pooled stratum as

fPooled Stratum D

8̂<̂
:
0 if any of fhl D 0 where l D 1; 2; : : : ; c 

cX
lD1

nhlf
�1
hl

!�1 cX
lD1

nhl otherwise

Analysis of Variance (ANOVA)

PROC SURVEYREG produces an analysis of variance table for the model specified in the MODEL statement.
This table is identical to the one produced by the GLM procedure for the model. PROC SURVEYREG
computes ANOVA table entries by using the sampling weights, but not the sample design information about
stratification and clustering.

The degrees of freedom (df ) displayed in the ANOVA table are the same as those in the ANOVA table
produced by PROC GLM. The Total DF is the total degrees of freedom used to obtain the regression
coefficient estimates. The Total DF equals the total number of observations minus 1 if the model includes an
intercept. If the model does not include an intercept, the Total DF equals the total number of observations.
The Model DF equals the degrees of freedom for the effects in the MODEL statement, not including the
intercept. The Error DF equals the Total DF minus the Model DF.
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Multiple R-Square

PROC SURVEYREG computes a multiple R-square for the weighted regression as

R2 D 1 �
SSerror
SStotal

where SSerror is the error sum of squares in the ANOVA table

SSerror D r0Wr

and SStotal is the total sum of squares

SStotal D

8̂̂<̂
:̂

y0Wy if no intercept

y0Wy �

0@ HX
hD1

nhX
iD1

mhiX
jD1

whijyhij

1A2 = w��� otherwise

where w��� is the sum of the sampling weights over all observations.

Adjusted R-Square

If you specify the ADJRSQ option in the MODEL statement, PROC SURVEYREG computes an multiple
R-square adjusted as the weighted regression as

ADJRSQ D

8̂̂̂̂
<̂
ˆ̂̂:
1 �

n.1 �R2/

n � p
if no intercept

1 �
.n � 1/.1 �R2/

n � p
otherwise

where R2 is the multiple R-square.

Root Mean Square Errors

PROC SURVEYREG computes the square root of mean square errors as
p

MSE D
p
n SSerror = .n � p/ w���

where w��� is the sum of the sampling weights over all observations.

Variance Estimation
PROC SURVEYREG uses the Taylor series method or replication (resampling) methods to estimate sampling
errors of estimators based on complex sample designs (Fuller 2009; Woodruff 1971; Fuller 1975; Fuller
et al. 1989; Särndal, Swensson, and Wretman 1992; Wolter 2007; Rust 1985; Dippo, Fay, and Morganstein
1984; Rao and Shao 1999; Rao, Wu, and Yue 1992; Rao and Shao 1996). You can use the VARMETHOD=
option to specify a variance estimation method to use. By default, the Taylor series method is used. However,
replication methods have recently gained popularity for estimating variances in complex survey data analysis.
One reason for this popularity is the relative simplicity of replication-based estimates, especially for nonlinear
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estimators; another is that modern computational capacity has made replication methods feasible for practical
survey analysis.

Replication methods draw multiple replicates (also called subsamples) from a full sample according to
a specific resampling scheme. The most commonly used resampling schemes are the balanced repeated
replication (BRR) method and the jackknife method. For each replicate, the original weights are modified
for the PSUs in the replicates to create replicate weights. The parameters of interest are estimated by using
the replicate weights for each replicate. Then the variances of parameters of interest are estimated by the
variability among the estimates derived from these replicates. You can use the REPWEIGHTS statement to
provide your own replicate weights for variance estimation.

The following sections provide details about how the variance-covariance matrix of the estimated regression
coefficients is estimated for each variance estimation method.

Taylor Series (Linearization)

The Taylor series (linearization) method is the most commonly used method to estimate the covariance matrix
of the regression coefficients for complex survey data. It is the default variance estimation method used by
PROC SURVEYREG.

Use the notation described in the section “Notation” on page 8348 to denote the residuals from the linear
regression as

r D y �X Ǒ

with rhij as its elements. Let the p � p matrix G be defined as

G D
n � 1

n � p

HX
hD1

nh.1 � fh/

nh � 1

nhX
iD1

.ehi � � Neh��/0.ehi � � Neh��/

where

ehij D whij rhijxhij

ehi � D
mhiX
jD1

ehij

Neh�� D
1

nh

nhX
iD1

ehi �

The Taylor series estimate of the covariance matrix of Ǒ isbV. Ǒ/ D .X0WX/�G.X0WX/�

The factor .n� 1/=.n� p/ in the computation of the matrix G reduces the small sample bias associated with
using the estimated function to calculate deviations (Hidiroglou, Fuller, and Hickman 1980). For simple
random sampling, this factor contributes to the degrees of freedom correction applied to the residual mean
square for ordinary least squares in which p parameters are estimated. By default, the procedure use this
adjustment in the variance estimation. If you do not want to use this multiplier in variance estimation, you
can specify the VADJUST=NONE option in the MODEL statement to suppress this factor.
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Balanced Repeated Replication (BRR) Method

The balanced repeated replication (BRR) method requires that the full sample be drawn by using a stratified
sample design with two primary sampling units (PSUs) per stratum. Let H be the total number of strata. The
total number of replicates R is the smallest multiple of 4 that is greater than H. However, if you prefer a larger
number of replicates, you can specify the REPS=number option. If a number � number Hadamard matrix
cannot be constructed, the number of replicates is increased until a Hadamard matrix becomes available.

Each replicate is obtained by deleting one PSU per stratum according to the corresponding Hadamard matrix
and adjusting the original weights for the remaining PSUs. The new weights are called replicate weights.

Replicates are constructed by using the first H columns of the R � R Hadamard matrix. The rth (r D
1; 2; :::; R) replicate is drawn from the full sample according to the rth row of the Hadamard matrix as
follows:

• If the .r; h/ element of the Hadamard matrix is 1, then the first PSU of stratum h is included in the rth
replicate and the second PSU of stratum h is excluded.

• If the .r; h/ element of the Hadamard matrix is –1, then the second PSU of stratum h is included in the
rth replicate and the first PSU of stratum h is excluded.

Note that the “first” and “second” PSUs are determined by data order in the input data set. Thus, if you
reorder the data set and perform the same analysis by using BRR method, you might get slightly different
results, because the contents in each replicate sample might change.

The replicate weights of the remaining PSUs in each half-sample are then doubled to their original weights.
For more details about the BRR method, see Wolter (2007) and Lohr (2010).

By default, an appropriate Hadamard matrix is generated automatically to create the replicates. You
can request that the Hadamard matrix be displayed by specifying the VARMETHOD=BRR(PRINTH)
method-option. If you provide a Hadamard matrix by specifying the VARMETHOD=BRR(HADAMARD=)
method-option, then the replicates are generated according to the provided Hadamard matrix.

You can use the VARMETHOD=BRR(OUTWEIGHTS=) method-option to save the replicate weights into a
SAS data set.

Let Ǒ be the estimated regression coefficients from the full sample for ˇ, and let Ǒr be the estimated
regression coefficient from the rth replicate by using replicate weights. PROC SURVEYREG estimates the
covariance matrix of Ǒ by

bV. Ǒ/ D 1

R

RX
rD1

�
Ǒ
r �
Ǒ
� �
Ǒ
r �
Ǒ
�0

with H degrees of freedom, where H is the number of strata.

Fay’s BRR Method

Fay’s method is a modification of the BRR method, and it requires a stratified sample design with two
primary sampling units (PSUs) per stratum. The total number of replicates R is the smallest multiple of 4 that
is greater than the total number of strata H. However, if you prefer a larger number of replicates, you can
specify the REPS= method-option.
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For each replicate, Fay’s method uses a Fay coefficient 0 � � < 1 to impose a perturbation of the original
weights in the full sample that is gentler than using only half-samples, as in the traditional BRR method.
The Fay coefficient 0 � � < 1 can be set by specifying the FAY = � method-option. By default, � D 0:5

if the FAY method-option is specified without providing a value for � (Judkins 1990; Rao and Shao 1999).
When � D 0, Fay’s method becomes the traditional BRR method. For more details, see Dippo, Fay, and
Morganstein (1984); Fay (1984, 1989); Judkins (1990).

Let H be the number of strata. Replicates are constructed by using the first H columns of theR�R Hadamard
matrix, where R is the number of replicates, R > H . The rth (r D 1; 2; :::; R) replicate is created from the
full sample according to the rth row of the Hadamard matrix as follows:

• If the .r; h/ element of the Hadamard matrix is 1, then the full sample weight of the first PSU in stratum
h is multiplied by � and the full sample weight of the second PSU is multiplied by 2 � � to obtain the
rth replicate weights.

• If the .r; h/ element of the Hadamard matrix is –1, then the full sample weight of the first PSU in
stratum h is multiplied by 2 � � and the full sample weight of the second PSU is multiplied by � to
obtain the rth replicate weights.

You can use the VARMETHOD=BRR(OUTWEIGHTS=) method-option to save the replicate weights into a
SAS data set.

By default, an appropriate Hadamard matrix is generated automatically to create the replicates. You
can request that the Hadamard matrix be displayed by specifying the VARMETHOD=BRR(PRINTH)
method-option. If you provide a Hadamard matrix by specifying the VARMETHOD=BRR(HADAMARD=)
method-option, then the replicates are generated according to the provided Hadamard matrix.

Let Ǒ be the estimated regression coefficients from the full sample for ˇ. Let Ǒr be the estimated regression
coefficient obtained from the rth replicate by using replicate weights. PROC SURVEYREG estimates the
covariance matrix of Ǒ by

bV. Ǒ/ D 1

R.1 � �/2

RX
rD1

�
Ǒ
r �
Ǒ
� �
Ǒ
r �
Ǒ
�0

with H degrees of freedom, where H is the number of strata.

Jackknife Method

The jackknife method of variance estimation deletes one PSU at a time from the full sample to create
replicates. The total number of replicates R is the same as the total number of PSUs. In each replicate, the
sample weights of the remaining PSUs are modified by the jackknife coefficient ˛r . The modified weights
are called replicate weights.

The jackknife coefficient and replicate weights are described as follows.

Without Stratification If there is no stratification in the sample design (no STRATA statement), the
jackknife coefficients ˛r are the same for all replicates:

˛r D
R � 1

R
where r D 1; 2; :::; R
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Denote the original weight in the full sample for the jth member of the ith PSU as wij . If the ith PSU is
included in the rth replicate (r D 1; 2; :::; R), then the corresponding replicate weight for the jth member of
the ith PSU is defined as

w
.r/
ij D wij =˛r

With Stratification If the sample design involves stratification, each stratum must have at least two PSUs
to use the jackknife method.

Let stratum Qhr be the stratum from which a PSU is deleted for the rth replicate. Stratum Qhr is called the
donor stratum. Let n Qhr be the total number of PSUs in the donor stratum Qhr . The jackknife coefficients are
defined as

˛r D
n Qhr
� 1

n Qhr

where r D 1; 2; :::; R

Denote the original weight in the full sample for the jth member of the ith PSU as wij . If the ith PSU is
included in the rth replicate (r D 1; 2; :::; R), then the corresponding replicate weight for the jth member of
the ith PSU is defined as

w
.r/
ij D

�
wij if i th PSU is not in the donor stratum Qhr
wij =˛r if i th PSU is in the donor stratum Qhr

You can use the VARMETHOD=JACKKNIFE(OUTJKCOEFS=) method-option to save the jackknife
coefficients into a SAS data set and use the VARMETHOD=JACKKNIFE(OUTWEIGHTS=) method-option
to save the replicate weights into a SAS data set.

If you provide your own replicate weights with a REPWEIGHTS statement, then you can also provide
corresponding jackknife coefficients with the JKCOEFS= option. If you provide replicate weights but do not
provide jackknife coefficients, PROC SURVEYREG uses ˛r D .R � 1/=R as the jackknife coefficient for
all replicates.

Let Ǒ be the estimated regression coefficients from the full sample for ˇ. Let Ǒr be the estimated regression
coefficient obtained from the rth replicate by using replicate weights. PROC SURVEYREG estimates the
covariance matrix of Ǒ by

bV. Ǒ/ D RX
rD1

˛r

�
Ǒ
r �
Ǒ
� �
Ǒ
r �
Ǒ
�0

with R–H degrees of freedom, where R is the number of replicates and H is the number of strata, or R–1
when there is no stratification.

Hadamard Matrix

A Hadamard matrix H is a square matrix whose elements are either 1 or –1 such that

HH0 D kI

where k is the dimension of H and I is the identity matrix of order k. The order k is necessarily 1, 2, or a
positive integer that is a multiple of 4.
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For example, the following matrix is a Hadamard matrix of dimension k = 8:

1 1 1 1 1 1 1 1

1 �1 1 �1 1 �1 1 �1

1 1 �1 �1 1 1 �1 �1

1 �1 �1 1 1 �1 �1 1

1 1 1 1 �1 �1 �1 �1

1 �1 1 �1 �1 1 �1 1

1 1 �1 �1 �1 �1 1 1

1 �1 �1 1 �1 1 1 �1

Degrees of Freedom

PROC SURVEYREG produces tests for the significance of model effects, regression parameters, estimable
functions specified in the ESTIMATE statement, and contrasts specified in the CONTRAST statement. It
computes all these tests taking into account the sample design. The degrees of freedom for these tests differ
from the degrees of freedom for the ANOVA table, which does not consider the sample design.

Denominator Degrees of Freedom
The denominator df refers to the denominator degrees of freedom for F tests and to the degrees of freedom
for t tests in the analysis.

For the Taylor series method, the denominator df equals the number of clusters minus the actual number
of strata. If there are no clusters, the denominator df equals the number of observations minus the actual
number of strata. The actual number of strata equals the following:

• one, if there is no STRATA statement

• the number of strata in the sample, if there is a STRATA statement but the procedure does not collapse
any strata

• the number of strata in the sample after collapsing, if there is a STRATA statement and the procedure
collapses strata that have only one sampling unit

Alternatively, you can specify your own denominator df by using the DF= option in the MODEL statement.

For the BRR method (including Fay’s method) without a REPWEIGHTS statement, the denominator df
equals the number of strata.

For the jackknife method without a REPWEIGHTS statement, the denominator df is equal to the number of
replicates minus the actual number of strata.

When there is a REPWEIGHTS statement, the denominator df equals the number of REPWEIGHTS variables,
unless you specify an alternative in the DF= option in a REPWEIGHTS statement.

Numerator Degrees of Freedom
The numerator df refers to the numerator degrees of freedom for the Wald F statistic associated with an effect
or with a contrast. The procedure computes the Wald F statistic for an effect as a Type III test; that is, the test
has the following properties:
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• The hypothesis for an effect does not involve parameters of other effects except for containing effects
(which it must involve to be estimable).

• The hypotheses to be tested are invariant to the ordering of effects in the model.

See the section “Testing Effects” on page 8357 for more information. The numerator df for the Wald F
statistic for a contrast is the rank of the L matrix that defines the contrast.

Testing

Testing Effects

For each effect in the model, PROC SURVEYREG computes an L matrix such that every element of Lˇ is
estimable; the L matrix has the maximum possible rank that is associated with the effect. To test the effect,
the procedure uses the Wald F statistic for the hypothesis H0WLˇ D 0. The Wald F statistic equals

FWald D
.L Ǒ/0.L0bVL/�1.L Ǒ/

rank.L0bVL/

with numerator degrees of freedom equal to rank.L0bVL/.

In the Taylor series method, the denominator degrees of freedom is equal to the number of clusters minus
the number of strata (unless you specify the denominator degrees of freedom with the DF= option in the
MODEL statement). For details about denominator degrees of freedom in replication methods, see the section
“Denominator Degrees of Freedom” on page 8356. It is possible that the L matrix cannot be constructed for an
effect, in which case that effect is not testable. For more information about how the matrix L is constructed,
see the discussion in Chapter 15, “The Four Types of Estimable Functions.”

You can use the TEST statement to perform F tests that test Type I, Type II, or Type III hypotheses. For
details about the syntax of the TEST statement, see the section “TEST Statement” on page 509 in Chapter 19,
“Shared Concepts and Topics.”

Contrasts

You can use the CONTRAST statement to perform custom hypothesis tests. If the hypothesis is testable in
the univariate case, the Wald F statistic for H0 W Lˇ D 0 is computed as

FWald D
.LFull Ǒ/

0.L0Full
bVLFull/

�1.LFull Ǒ/

rank.L/

where L is the contrast vector or matrix you specify, ˇ is the vector of regression parameters, Ǒ D
.X0WX/�X0WY, bV is the estimated covariance matrix of Ǒ, rank(L) is the rank of L, and LFull is a
matrix such that

• LFull has the same number of columns as L

• LFull has full row rank

• the rank of LFull equals the rank of the L matrix
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• all rows of LFull are estimable functions

• the Wald F statistic computed using the LFull matrix is equivalent to the Wald F statistic computed by
using the L matrix with any row deleted that is a linear combination of previous rows

If L is a full-rank matrix and all rows of L are estimable functions, then LFull is the same as L. It is possible
that LFull matrix cannot be constructed for contrasts in a CONTRAST statement, in which case the contrasts
are not testable.

Domain Analysis
A DOMAIN statement requests that the procedure perform regression analysis for each domain.

For a domain D, let ID be the corresponding indicator variable:

ID.h; i; j / D

�
1 if observation .h; i; j /belongs to domain D
0 otherwise

Let

vhij D whij ID.h; i; j / D

�
whij if observation .h; i; j / belongs to domain D
0 otherwise

The regression in domain D uses v as the weight variable.

Computational Resources
Due to the complex nature of survey data analysis, the SURVEYREG procedure requires more memory than
an analysis of the same regression model by the GLM procedure. For details about the amount of memory
related to the modeling, see the section “Computational Resources” on page 3505 in Chapter 45, “The GLM
Procedure.”

The memory needed by the SURVEYREG procedure to handle the survey design is described as follows.

Let

• H be the total number of strata

• nc be the total number of clusters in your sample across all H strata, if you specify a CLUSTER
statement

• p be the total number of parameters in the model

The memory needed (in bytes) is

48H C 8pH C 4p.p C 1/H

For a cluster sample, the additional memory needed (in bytes) is
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48H C 8pH C 4p.p C 1/H C 4p.p C 1/nc C 16nc

The SURVEYREG procedure also uses other small amounts of additional memory. However, when you have
a large number of clusters or strata, or a large number of parameters in your model, the memory described
previously dominates the total memory required by the procedure.

Output Data Sets
You can use the Output Delivery System (ODS) to create a SAS data set from any piece of PROC
SURVEYREG output. See the section “ODS Table Names” on page 8365 for more information. For
a more detailed description of using ODS, see Chapter 20, “Using the Output Delivery System.”

PROC SURVEYREG also provides an OUTPUT statement to create a data set that contains estimated linear
predictors and their standard error estimates, the residuals from the linear regression, and the confidence
limits for the predictors.

If you use BRR or jackknife variance estimation, PROC SURVEYREG provides an output data set that
stores the replicate weights and an output data set that stores the jackknife coefficients for jackknife variance
estimation.

OUT= Data Set Created by the OUTPUT Statement

The OUTPUT statement produces an output data set that contains the following:

• all original data from the SAS data set input to PROC SURVEYREG

• the new variables corresponding to the diagnostic measures specified with statistics keywords in the
OUTPUT statement (PREDICTED=, RESIDUAL=, and so on)

When any independent variable in the analysis (including all classification variables) is missing for an
observation, then all new variables that correspond to diagnostic measures are missing for the observation in
the output data set.

When a dependent variable in the analysis is missing for an observation, then the residual variable that
corresponds to R is also missing in the output data set. However, the variables corresponding to LCLM, P,
STDP, and UCLM are not missing.

Replicate Weights Output Data Set

If you specify the OUTWEIGHTS= method-option for VARMETHOD=BRR or VARMETHOD=JACKKNIFE,
PROC SURVEYREG stores the replicate weights in an output data set. The OUTWEIGHTS= output data
set contains all observations from the DATA= input data set that are valid (used in the analysis). (A valid
observation is an observation that has a positive value of the WEIGHT variable. Valid observations must also
have nonmissing values of the STRATA and CLUSTER variables, unless you specify the MISSING option.)
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The OUTWEIGHTS= data set contains the following variables:

• all variables in the DATA= input data set

• RepWt_1, RepWt_2, : : :, RepWt_n, which are the replicate weight variables

where n is the total number of replicates in the analysis. Each replicate weight variable contains the replicate
weights for the corresponding replicate. Replicate weights equal zero for those observations not included in
the replicate.

After the procedure creates replicate weights for a particular input data set and survey design, you can use
the OUTWEIGHTS= method-option to store these replicate weights and then use them again in subsequent
analyses, either in PROC SURVEYREG or in the other survey procedures. You can use the REPWEIGHTS
statement to provide replicate weights for the procedure.

Jackknife Coefficients Output Data Set

If you specify the OUTJKCOEFS= method-option for VARMETHOD=JACKKNIFE, PROC SURVEYREG
stores the jackknife coefficients in an output data set. The OUTJKCOEFS= output data set contains one
observation for each replicate. The OUTJKCOEFS= data set contains the following variables:

• Replicate, which is the replicate number for the jackknife coefficient

• JKCoefficient, which is the jackknife coefficient

• DonorStratum, which is the stratum of the PSU that was deleted to construct the replicate, if you
specify a STRATA statement

After the procedure creates jackknife coefficients for a particular input data set and survey design, you can
use the OUTJKCOEFS= method-option to store these coefficients and then use them again in subsequent
analyses, either in PROC SURVEYREG or in the other survey procedures. You can use the JKCOEFS=
option in the REPWEIGHTS statement to provide jackknife coefficients for the procedure.

Displayed Output
The SURVEYREG procedure produces output that is described in the following sections.

Output that is generated by the EFFECT, ESTIMATE, LSMEANS, LSMESTIMATE, and SLICE statements is
not listed below. For information about the output that is generated by these statements, see the corresponding
sections of Chapter 19, “Shared Concepts and Topics.”

Data Summary

By default, PROC SURVEYREG displays the following information in the “Data Summary” table:

• Number of Observations, which is the total number of observations used in the analysis, excluding
observations with missing values
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• Sum of Weights, if you specify a WEIGHT statement

• Mean of the dependent variable in the MODEL statement, or Weighted Mean if you specify a WEIGHT
statement

• Sum of the dependent variable in the MODEL statement, or Weighted Sum if you specify a WEIGHT
statement

Design Summary

When you specify a CLUSTER statement or a STRATA statement, the procedure displays a “Design
Summary” table, which provides the following sample design information:

• Number of Strata, if you specify a STRATA statement

• Number of Strata Collapsed, if the procedure collapses strata

• Number of Clusters, if you specify a CLUSTER statement

• Overall Sampling Rate used to calculate the design effect, if you specify the DEFF option in the
MODEL statement

Domain Summary

By default, PROC SURVEYREG displays the following information in the “Domain Summary” table:

• Number of Observations, which is the total number of observations used in the analysis

• total number of observations in the current domain

• total number of observations not in the current domain

• Sum of Weights for the observations in the current domain, if you specify a WEIGHT statement

Fit Statistics

By default, PROC SURVEYREG displays the following regression statistics in the “Fit Statistics” table:

• R-square for the regression

• Root MSE, which is the square root of the mean square error

• Denominator DF, which is the denominator degrees of freedom for the F tests and also the degrees of
freedom for the t tests produced by the procedure
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Variance Estimation

If the variance method is not Taylor series (see the section “Variance Estimation” on page 8351) or if the
NOMCAR option is used, by default, PROC SURVEYREG displays the following variance estimation
information in the “Variance Estimation” table:

• Method, which is the variance estimation method

• Number of Replicates, if you specify the VARMETHOD=BRR or VARMETHOD=JACKKNIFE
option

• Hadamard Data Set name, if you specify the VARMETHOD=BRR(HADAMARD=) method-option

• Fay Coefficient, if you specify the VARMETHOD=BRR(FAY) method-option

• Replicate Weights input data set name, if you provide replicate weights with a REPWEIGHTS
statement

• Missing Levels, which indicates whether missing levels of categorical variables are included by the
MISSING option

• Missing Values, which indicates whether observations with missing values are included in the analysis
by the NOMCAR option

Stratum Information

When you specify the LIST option in the STRATA statement, PROC SURVEYREG displays a “Stratum
Information” table, which provides the following information for each stratum:

• Stratum Index, which is a sequential stratum identification number

• STRATA variable(s), which lists the levels of STRATA variables for the stratum

• Population Total, if you specify the TOTAL= option

• Sampling Rate, if you specify the TOTAL= option or the RATE= option. If you specify the TOTAL=
option, the sampling rate is based on the number of nonmissing observations in the stratum.

• N Obs, which is the number of observations

• number of Clusters, if you specify a CLUSTER statement

• Collapsed, which has the value ‘Yes’ if the stratum is collapsed with another stratum before analysis

If PROC SURVEYREG collapses strata, the “Stratum Information” table also displays stratum information
for the new, collapsed stratum. The new stratum has a Stratum Index of 0 and is labeled ‘Pooled.’
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Class Level Information

If you use a CLASS statement to name classification variables, PROC SURVEYREG displays a “Class Level
Information” table. This table contains the following information for each classification variable:

• CLASS Variable, which lists each CLASS variable name

• Levels, which is the number of values or levels of the classification variable

• Values, which lists the values of the classification variable. The values are separated by a white space
character; therefore, to avoid confusion, you should not include a white space character within a
classification variable value.

X’X Matrix

If you specify the XPX option in the MODEL statement, PROC SURVEYREG displays the X0X matrix.
When there is a WEIGHT variable, the procedure displays the X0WX matrix. This option also displays the
crossproducts vector X0y or X0Wy, where y is the response vector (dependent variable).

Inverse Matrix of X’X

If you specify the INVERSE option in the MODEL statement, PROC SURVEYREG displays the inverse or
the generalized inverse of the X0X matrix. When there is a WEIGHT variable, the procedure displays the
inverse or the generalized inverse of the X0WX matrix.

ANOVA for Dependent Variable

If you specify the ANOVA option in the model statement, PROC SURVEYREG displays an analysis of
variance table for the dependent variable. This table is identical to the ANOVA table displayed by the GLM
procedure.

Tests of Model Effects

By default, PROC SURVEYREG displays a “Tests of Model Effects” table, which provides Wald’s F test for
each effect in the model. The table contains the following information for each effect:

• Effect, which is the effect name

• Num DF, which is the numerator degrees of freedom for Wald’s F test

• F Value, which is Wald’s F statistic

• Pr > F, which is the significance probability corresponding to the F Value

A footnote displays the denominator degrees of freedom, which is the same for all effects.
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Estimated Regression Coefficients

PROC SURVEYREG displays the “Estimated Regression Coefficients” table by default when there is no
CLASS statement. Also, the procedure displays this table when you specify a CLASS statement and also
specify the SOLUTION option in the MODEL statement. This table contains the following information for
each regression parameter:

• Parameter, which identifies the effect or regressor variable

• Estimate, which is the estimate of the regression coefficient

• Standardized Estimate, which is the standardized regression coefficient

• Standard Error, which is the standard error of the estimate

• t Value, which is the t statistic for testing H0WParameter D 0

• Pr > | t |, which is the two-sided significance probability corresponding to the t Value

Covariance of Estimated Regression Coefficients

When you specify the COVB option in the MODEL statement, PROC SURVEYREG displays the “Covariance
of Estimated Regression Coefficients” matrix.

Coefficients of Contrast

When you specify the E option in a CONTRAST statement, PROC SURVEYREG displays a “Coefficients
of Contrast” table for the contrast. You can use this table to check the coefficients you specified in the
CONTRAST statement. Also, this table gives a note for a nonestimable contrast.

Analysis of Contrasts

If you specify a CONTRAST statement, PROC SURVEYREG produces an “Analysis of Contrasts” table,
which displays Wald’s F test for the contrast. If you use more than one CONTRAST statement, the procedure
displays all results in the same table. The “Analysis of Contrasts” table contains the following information
for each contrast:

• Contrast, which is the label of the contrast

• Num DF, which is the numerator degrees of freedom for Wald’s F test

• F Value, which is Wald’s F statistic for testing H0WContrast D 0

• Pr > F, which is the significance probability corresponding to the F Value

Hadamard Matrix

If you specify the VARMETHOD=BRR(PRINTH) method-option in the PROC SURVEYREG statement,
the procedure displays the Hadamard matrix.

When you provide a Hadamard matrix with the VARMETHOD=BRR(HADAMARD=) method-option but
the procedure does not use the entire matrix, the procedure displays only the rows and columns that are
actually used to construct replicates.
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ODS Table Names
PROC SURVEYREG assigns a name to each table it creates; these names are listed in Table 101.10. You can
use these names to refer to tables when you use the Output Delivery System (ODS) to select tables and create
output data sets. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

To improve the consistency among procedures, tables that are generated by the ESTIMATE statements are
changed slightly in appearance and formatting compared to releases prior to SAS/STAT 9.22. However, the
statistics in the “Estimates” table remain unchanged. The Coef table replaces the previous EstimateCoef table
that displays the L matrix coefficients of an estimable function of the parameters.

The EFFECT, ESTIMATE, LSMEANS, LSMESTIMATE, and SLICE statements also create tables, which
are not listed in Table 101.10. For information about these tables, see the corresponding sections of Chapter 19,
“Shared Concepts and Topics.”

Table 101.10 ODS Tables Produced by PROC SURVEYREG

ODS Table Name Description Statement Option

ANOVA ANOVA for dependent variable MODEL ANOVA

ClassVarInfo Class level information CLASS Default

ContrastCoef Coefficients of contrast CONTRAST E

Contrasts Analysis of contrasts CONTRAST Default

CovB Covariance of estimated
regression coefficients

MODEL COVB

DataSummary Data summary PROC Default

DesignSummary Design summary STRATA | CLUSTER Default

DomainSummary Domain summary DOMAIN Default

Effects Tests of model effects MODEL Defect

FitStatistics Fit statistics MODEL Default

HadamardMatrix Hadamard matrix PROC PRINTH

InvXPX Inverse matrix of X0X MODEL I

ParameterEstimates Estimated regression
coefficients

MODEL SOLUTION

StrataInfo Stratum information STRATA LIST

VarianceEstimation Variance estimation PROC Default

XPX X0X matrix MODEL XPX

By referring to the names of such tables, you can use the ODS OUTPUT statement to place one or more of
these tables in output data sets.

For example, the following statements create an output data set MyStrata, which contains the StrataInfo table,
an output data set MyParmEst, which contains the ParameterEstimates table, and an output data set Cov,
which contains the CovB table for the ice cream study discussed in the section “Stratified Sampling” on
page 8317:
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title1 'Ice Cream Spending Analysis';
title2 'Stratified Sample Design';
proc surveyreg data=IceCream total=StudentTotals;

strata Grade /list;
class Kids;
model Spending = Income Kids / solution covb;
weight Weight;
ods output StrataInfo = MyStrata

ParameterEstimates = MyParmEst
CovB = Cov;

run;

Note that the option CovB is specified in the MODEL statement in order to produce the covariance matrix
table.

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

When ODS Graphics is enabled, the ESTIMATE, LSMEANS, LSMESTIMATE, and SLICE statements can
produce plots that are associated with their analyses. For information about these plots, see the corresponding
sections of Chapter 19, “Shared Concepts and Topics.”

When ODS Graphics is enabled and when the regression model depends on at most one continuous variable
as a regressor, excluding the intercept, the PLOTS= option in the PROC SURVEYREG statement controls fit
plots for the regression.

PROC SURVEYREG provides a bubble plot or a heat map for model fitting. You can request a specific type
of presentation of the weights by specifying the PLOTS(WEIGHT=) global plot option to request either
a bubble plot or a heat map plot of the data that overlays the regression line and confidence limits band
of the prediction in a fit plot. If you do not specify this option, the default plot depends on the number of
observations in your data. That is, for a data set that contains 100 observations or less, the default is a bubble
plot, in which the bubble area is proportional to the sampling weight of an observation. For a data set that
contains more than 100 observations, the default is a heat map, in which the color of heat represents the sum
of weights at the corresponding location.

PROC SURVEYREG assigns a name to each graph that it creates using ODS Graphics. You can use the
name to refer to the graph. Table 101.11 lists the name of the graph that PROC SURVEYREG generates,
together with its description and the PLOTS= option plot-request that produces it.



Examples: SURVEYREG Procedure F 8367

Table 101.11 ODS Graphs Produced by PROC SURVEYREG

ODS Graph Name Description PLOTS= Option

FitPlot Regression line and confidence limits band of the
prediction overlaid on a bubble plot or a heat map
of the data

FIT

Examples: SURVEYREG Procedure

Example 101.1: Simple Random Sampling
This example investigates the relationship between the labor force participation rate (LFPR) of women in
1968 and 1972 in large cities in the United States. A simple random sample of 19 cities is drawn from a
total of 200 cities. For each selected city, the LFPRs are recorded and saved in a SAS data set Labor. In
the following DATA step, LFPR in 1972 is contained in the variable LFPR1972, and the LFPR in 1968 is
identified by the variable LFPR1968:

data Labor;
input City $ 1-16 LFPR1972 LFPR1968;
datalines;

New York .45 .42
Los Angeles .50 .50
Chicago .52 .52
Philadelphia .45 .45
Detroit .46 .43
San Francisco .55 .55
Boston .60 .45
Pittsburgh .49 .34
St. Louis .35 .45
Connecticut .55 .54
Washington D.C. .52 .42
Cincinnati .53 .51
Baltimore .57 .49
Newark .53 .54
Minn/St. Paul .59 .50
Buffalo .64 .58
Houston .50 .49
Patterson .57 .56
Dallas .64 .63
;

Assume that the LFPRs in 1968 and 1972 have a linear relationship, as shown in the following model:

LFPR1972 D ˇ0 C ˇ1 � LFPR1968C error

You can use PROC SURVEYREG to obtain the estimated regression coefficients and estimated standard
errors of the regression coefficients. The following statements perform the regression analysis:
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ods graphics on;
title 'Study of Labor Force Participation Rates of Women';
proc surveyreg data=Labor total=200;

model LFPR1972 = LFPR1968;
run;
ods graphics off;

Here, the TOTAL=200 option specifies the finite population total from which the simple random sample of
19 cities is drawn. You can specify the same information by using the sampling rate option RATE=0.095
(19/200=.095).

Output 101.1.1 summarizes the data information and the fit information.

Output 101.1.1 Summary of Regression Using Simple Random Sampling

Study of Labor Force Participation Rates of Women

The SURVEYREG Procedure

Regression Analysis for Dependent Variable LFPR1972

Study of Labor Force Participation Rates of Women

The SURVEYREG Procedure

Regression Analysis for Dependent Variable LFPR1972

Data Summary

Number of Observations 19

Mean of LFPR1972 0.52684

Sum of LFPR1972 10.01000

Fit Statistics

R-Square 0.3970

Root MSE 0.05657

Denominator DF 18

Output 101.1.2 presents the significance tests for the model effects and estimated regression coefficients. The
F tests and t tests for the effects in the model are also presented in these tables.

Output 101.1.2 Regression Coefficient Estimates

Tests of Model Effects

Effect Num DF F Value Pr > F

Model 1 13.84 0.0016

Intercept 1 4.63 0.0452

LFPR1968 1 13.84 0.0016

Note: The denominator degrees of freedom for the F tests is 18.

Estimated Regression Coefficients

Parameter Estimate
Standard

Error t Value Pr > |t|

Intercept 0.20331056 0.09444296 2.15 0.0452

LFPR1968 0.65604048 0.17635810 3.72 0.0016

Note: The degrees of freedom for the t tests is 18.
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From the regression performed by PROC SURVEYREG, you obtain a positive estimated slope for the linear
relationship between the LFPR in 1968 and the LFPR in 1972. The regression coefficients are all significant
at the 5% level. The effects Intercept and LFPR1968 are significant in the model at the 5% level. In this
example, the F test for the overall model without intercept is the same as the effect LFPR1968.

When ODS graphics is enabled and you have only one regressor in the model, PROC SURVEYREG displays
a plot of the model fitting, which is shown in Figure 101.1.3.

Output 101.1.3 Regression Fitting

Example 101.2: Cluster Sampling
This example illustrates the use of regression analysis in a simple random cluster sample design. The data
are from Särndal, Swensson, and Wretman (1992, p. 652). A total of 284 Swedish municipalities are
grouped into 50 clusters of neighboring municipalities. Five clusters with a total of 32 municipalities are
randomly selected. The results from the regression analysis in which clusters are used in the sample design
are compared to the results of a regression analysis that ignores the clusters. The linear relationship between
the population in 1975 and in 1985 is investigated.

The 32 selected municipalities in the sample are saved in the data set Municipalities:
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data Municipalities;
input Municipality Cluster Population85 Population75;
datalines;

205 37 5 5
206 37 11 11
207 37 13 13
208 37 8 8
209 37 17 19

6 2 16 15
7 2 70 62
8 2 66 54
9 2 12 12

10 2 60 50
94 17 7 7
95 17 16 16
96 17 13 11
97 17 12 11
98 17 70 67
99 17 20 20

100 17 31 28
101 17 49 48
276 50 6 7
277 50 9 10
278 50 24 26
279 50 10 9
280 50 67 64
281 50 39 35
282 50 29 27
283 50 10 9
284 50 27 31
52 10 7 6
53 10 9 8
54 10 28 27
55 10 12 11
56 10 107 108

;

The variable Municipality identifies the municipalities in the sample; the variable Cluster indicates the cluster
to which a municipality belongs; and the variables Population85 and Population75 contain the municipality
populations in 1985 and in 1975 (in thousands), respectively. A regression analysis is performed by PROC
SURVEYREG with a CLUSTER statement:

title1 'Regression Analysis for Swedish Municipalities';
title2 'Cluster Sampling';
proc surveyreg data=Municipalities total=50;

cluster Cluster;
model Population85=Population75;

run;

The TOTAL=50 option specifies the total number of clusters in the sampling frame.

Output 101.2.1 displays the data and design summary. Since the sample design includes clusters, the
procedure displays the total number of clusters in the sample in the “Design Summary” table.
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Output 101.2.1 Regression Analysis for Cluster Sampling

Regression Analysis for Swedish Municipalities
Cluster Sampling

The SURVEYREG Procedure

Regression Analysis for Dependent Variable Population85

Regression Analysis for Swedish Municipalities
Cluster Sampling

The SURVEYREG Procedure

Regression Analysis for Dependent Variable Population85

Data Summary

Number of Observations 32

Mean of Population85 27.50000

Sum of Population85 880.00000

Design Summary

Number of Clusters 5

Output 101.2.2 displays the fit statistics and regression coefficient estimates. In the “Estimated Regression
Coefficients” table, the estimated slope for the linear relationship is 1.05, which is significant at the 5% level;
but the intercept is not significant. This suggests that a regression line crossing the original can be established
between populations in 1975 and in 1985.

Output 101.2.2 Regression Analysis for Cluster Sampling

Fit Statistics

R-Square 0.9860

Root MSE 3.0488

Denominator DF 4

Estimated Regression Coefficients

Parameter Estimate
Standard

Error t Value Pr > |t|

Intercept -0.0191292 0.89204053 -0.02 0.9839

Population75 1.0546253 0.05167565 20.41 <.0001

Note: The degrees of freedom for the t tests is 4.

The CLUSTER statement is necessary in PROC SURVEYREG in order to incorporate the sample design.
If you do not specify a CLUSTER statement in the regression analysis, as in the following statements, the
standard deviation of the regression coefficients are incorrectly estimated.

title1 'Regression Analysis for Swedish Municipalities';
title2 'Simple Random Sampling';
proc surveyreg data=Municipalities total=284;

model Population85=Population75;
run;

The analysis ignores the clusters in the sample, assuming that the sample design is a simple random sampling.
Therefore, the TOTAL= option specifies the total number of municipalities, which is 284.

Output 101.2.3 displays the regression results ignoring the clusters. Compared to the results in Output 101.2.2,
the regression coefficient estimates are the same. However, without using clusters, the regression coefficients
have a smaller variance estimate, as in Output 101.2.3. By using clusters in the analysis, the estimated
regression coefficient for effect Population75 is 1.05, with the estimated standard error 0.05, as displayed in
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Output 101.2.2; without using the clusters, the estimate is 1.05, but with the estimated standard error 0.04, as
displayed in Output 101.2.3. To estimate the variance of the regression coefficients correctly, you should
include the clustering information in the regression analysis.

Output 101.2.3 Regression Analysis for Simple Random Sampling

Regression Analysis for Swedish Municipalities
Simple Random Sampling

The SURVEYREG Procedure

Regression Analysis for Dependent Variable Population85

Regression Analysis for Swedish Municipalities
Simple Random Sampling

The SURVEYREG Procedure

Regression Analysis for Dependent Variable Population85

Data Summary

Number of Observations 32

Mean of Population85 27.50000

Sum of Population85 880.00000

Fit Statistics

R-Square 0.9860

Root MSE 3.0488

Denominator DF 31

Estimated Regression Coefficients

Parameter Estimate
Standard

Error t Value Pr > |t|

Intercept -0.0191292 0.67417606 -0.03 0.9775

Population75 1.0546253 0.03668414 28.75 <.0001

Note: The degrees of freedom for the t tests is 31.

Example 101.3: Regression Estimator for Simple Random Sample
By using auxiliary information, you can construct regression estimators to provide more accurate estimates
of population characteristics. With ESTIMATE statements in PROC SURVEYREG, you can specify a
regression estimator as a linear function of the regression parameters to estimate the population total. This
example illustrates this application by using the data set Municipalities from Example 101.2.

In this sample, a linear model between the Swedish populations in 1975 and in 1985 is established:

Population85 D ˛ C ˇ � Population75C error

Assuming that the total population in 1975 is known to be 8200 (in thousands), you can use the ESTIMATE
statement to predict the 1985 total population by using the following statements:

title1 'Regression Analysis for Swedish Municipalities';
title2 'Estimate Total Population';
proc surveyreg data=Municipalities total=50;

cluster Cluster;
model Population85=Population75;
estimate '1985 population' Intercept 284 Population75 8200;

run;
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Since each observation in the sample is a municipality and there is a total of 284 municipalities in Sweden,
the coefficient for Intercept (˛) in the ESTIMATE statement is 284 and the coefficient for Population75 (ˇ)
is the total population in 1975 (8.2 million).

Output 101.3.1 displays the regression results and the estimation of the total population. By using the linear
model, you can predict the total population in 1985 to be 8.64 million, with a standard error of 0.26 million.

Output 101.3.1 Use the Regression Estimator to Estimate the Population Total

Regression Analysis for Swedish Municipalities
Estimate Total Population

The SURVEYREG Procedure

Regression Analysis for Dependent Variable Population85

Regression Analysis for Swedish Municipalities
Estimate Total Population

The SURVEYREG Procedure

Regression Analysis for Dependent Variable Population85

Estimate

Label Estimate
Standard

Error DF t Value Pr > |t|

1985 population 8642.49 258.56 4 33.43 <.0001

Example 101.4: Stratified Sampling
This example illustrates the use of the SURVEYREG procedure to perform a regression in a stratified sample
design. Consider a population of 235 farms producing corn in Nebraska and Iowa. You are interested in the
relationship between corn yield (CornYield) and total farm size (FarmArea).

Each state is divided into several regions, and each region is used as a stratum. Within each stratum, a simple
random sample with replacement is drawn. A total of 19 farms is selected by using a stratified simple random
sample. The sample size and population size within each stratum are displayed in Table 101.12.

Table 101.12 Number of Farms in Each Stratum

Number of Farms
Stratum State Region Population Sample

1 Iowa 1 100 3
2 2 50 5
3 3 15 3
4 Nebraska 1 30 6
5 2 40 2

Total 235 19

The following three models are considered:

• Model I — Common intercept and slope:

Corn Yield D ˛ C ˇ � Farm Area
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• Model II — Common intercept, different slope:

Corn Yield D
�
˛ C ˇIowa � Farm Area if the farm is in Iowa
˛ C ˇNebraska � Farm Area if the farm is in Nebraska

• Model III — Different intercept and different slope:

Corn Yield D
�
˛Iowa C ˇIowa � Farm Area if the farm is in Iowa
˛Nebraska C ˇNebraska � Farm Area if the farm is in Nebraska

Data from the stratified sample are saved in the SAS data set Farms. The variable Weight contains the
sampling weights, which are reciprocals of the selection probabilities.

data Farms;
input State $ Region FarmArea CornYield Weight;
datalines;

Iowa 1 100 54 33.333
Iowa 1 83 25 33.333
Iowa 1 25 10 33.333
Iowa 2 120 83 10.000
Iowa 2 50 35 10.000
Iowa 2 110 65 10.000
Iowa 2 60 35 10.000
Iowa 2 45 20 10.000
Iowa 3 23 5 5.000
Iowa 3 10 8 5.000
Iowa 3 350 125 5.000
Nebraska 1 130 20 5.000
Nebraska 1 245 25 5.000
Nebraska 1 150 33 5.000
Nebraska 1 263 50 5.000
Nebraska 1 320 47 5.000
Nebraska 1 204 25 5.000
Nebraska 2 80 11 20.000
Nebraska 2 48 8 20.000
;

The SAS data set StratumTotals contains the stratum population sizes.

data StratumTotals;
input State $ Region _TOTAL_;
datalines;

Iowa 1 100
Iowa 2 50
Iowa 3 15
Nebraska 1 30
Nebraska 2 40
;

Using the sample data from the data set Farms and the control information data from the data set StratumTotals,
you can fit Model I by using the following statements in PROC SURVEYREG:
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ods graphics on;
title1 'Analysis of Farm Area and Corn Yield';
title2 'Model I: Same Intercept and Slope';
proc surveyreg data=Farms total=StratumTotals;

strata State Region / list;
model CornYield = FarmArea / covB;
weight Weight;

run;
ods graphics off;

Output 101.4.1 displays the data summary and stratification information fitting Model I. The sampling rates
are automatically computed by the procedure based on the sample sizes and the population totals in strata.

Output 101.4.1 Data Summary and Stratum Information Fitting Model I

Analysis of Farm Area and Corn Yield
Model I: Same Intercept and Slope

The SURVEYREG Procedure

Regression Analysis for Dependent Variable CornYield

Analysis of Farm Area and Corn Yield
Model I: Same Intercept and Slope

The SURVEYREG Procedure

Regression Analysis for Dependent Variable CornYield

Data Summary

Number of Observations 19

Sum of Weights 234.99900

Weighted Mean of CornYield 31.56029

Weighted Sum of CornYield 7416.6

Design Summary

Number of Strata 5

Fit Statistics

R-Square 0.3882

Root MSE 20.6422

Denominator DF 14

Stratum Information

Stratum
Index State Region N Obs

Population
Total

Sampling
Rate

1 Iowa 1 3 100 3.00%

2 2 5 50 10.0%

3 3 3 15 20.0%

4 Nebraska 1 6 30 20.0%

5 2 2 40 5.00%

Output 101.4.2 displays tests of model effects and the estimated regression coefficients.
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Output 101.4.2 Estimated Regression Coefficients and the Estimated Covariance Matrix

Tests of Model Effects

Effect Num DF F Value Pr > F

Model 1 21.74 0.0004

Intercept 1 4.93 0.0433

FarmArea 1 21.74 0.0004

Note: The denominator degrees of freedom for the F tests is 14.

Estimated Regression Coefficients

Parameter Estimate
Standard

Error t Value Pr > |t|

Intercept 11.8162978 5.31981027 2.22 0.0433

FarmArea 0.2126576 0.04560949 4.66 0.0004

Note: The degrees of freedom for the t tests is 14.

Covariance of Estimated Regression
Coefficients

Intercept FarmArea

Intercept 28.300381277 -0.146471538

FarmArea -0.146471538 0.0020802259

Output 101.4.3 Regression Fitting
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Figure 101.4.3 displays the fit of the regression.

Alternatively, you can assume that the linear relationship between corn yield (CornYield) and farm area
(FarmArea) is different among the states (Model II). In order to analyze the data by using this model, you
create auxiliary variables FarmAreaNE and FarmAreaIA to represent farm area in different states:

FarmAreaNE D
�
0 if the farm is in Iowa
FarmArea if the farm is in Nebraska

FarmAreaIA D
�

FarmArea if the farm is in Iowa
0 if the farm is in Nebraska

The following statements create these variables in a new data set called FarmsByState and use PROC
SURVEYREG to fit Model II:

data FarmsByState;
set Farms;
if State='Iowa' then do;

FarmAreaIA=FarmArea;
FarmAreaNE=0;

end;

else do;
FarmAreaIA=0;
FarmAreaNE=FarmArea;

end;
run;

The following statements perform the regression by using the new data set FarmsByState. The analysis uses
the auxiliary variables FarmAreaIA and FarmAreaNE as the regressors:

title1 'Analysis of Farm Area and Corn Yield';
title2 'Model II: Same Intercept, Different Slopes';
proc surveyreg data=FarmsByState total=StratumTotals;

strata State Region;
model CornYield = FarmAreaIA FarmAreaNE / covB;
weight Weight;

run;

Output 101.4.4 displays the fit statistics and parameter estimates. The estimated slope parameters for each
state are quite different from the estimated slope in Model I. The results from the regression show that Model
II fits these data better than Model I.
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Output 101.4.4 Regression Results from Fitting Model II

Analysis of Farm Area and Corn Yield
Model II: Same Intercept, Different Slopes

The SURVEYREG Procedure

Regression Analysis for Dependent Variable CornYield

Analysis of Farm Area and Corn Yield
Model II: Same Intercept, Different Slopes

The SURVEYREG Procedure

Regression Analysis for Dependent Variable CornYield

Fit Statistics

R-Square 0.8158

Root MSE 11.6759

Denominator DF 14

Estimated Regression Coefficients

Parameter Estimate
Standard

Error t Value Pr > |t|

Intercept 4.04234816 3.80934848 1.06 0.3066

FarmAreaIA 0.41696069 0.05971129 6.98 <.0001

FarmAreaNE 0.12851012 0.02495495 5.15 0.0001

Note: The degrees of freedom for the t tests is 14.

Covariance of Estimated Regression Coefficients

Intercept FarmAreaIA FarmAreaNE

Intercept 14.511135861 -0.118001232 -0.079908772

FarmAreaIA -0.118001232 0.0035654381 0.0006501109

FarmAreaNE -0.079908772 0.0006501109 0.0006227496

For Model III, different intercepts are used for the linear relationship in two states. The following statements
illustrate the use of the NOINT option in the MODEL statement associated with the CLASS statement to fit
Model III:

title1 'Analysis of Farm Area and Corn Yield';
title2 'Model III: Different Intercepts and Slopes';
proc surveyreg data=FarmsByState total=StratumTotals;

strata State Region;
class State;
model CornYield = State FarmAreaIA FarmAreaNE / noint covB solution;
weight Weight;

run;

The model statement includes the classification effect State as a regressor. Therefore, the parameter estimates
for effect State present the intercepts in two states.

Output 101.4.5 displays the regression results for fitting Model III, including parameter estimates, and
covariance matrix of the regression coefficients. The estimated covariance matrix shows a lack of correlation
between the regression coefficients from different states. This suggests that Model III might be the best
choice for building a model for farm area and corn yield in these two states.

However, some statistics remain the same under different regression models—for example, Weighted Mean
of CornYield. These estimators do not rely on the particular model you use.
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Output 101.4.5 Regression Results for Fitting Model III

Analysis of Farm Area and Corn Yield
Model III: Different Intercepts and Slopes

The SURVEYREG Procedure

Regression Analysis for Dependent Variable CornYield

Analysis of Farm Area and Corn Yield
Model III: Different Intercepts and Slopes

The SURVEYREG Procedure

Regression Analysis for Dependent Variable CornYield

Fit Statistics

R-Square 0.9300

Root MSE 11.9810

Denominator DF 14

Estimated Regression Coefficients

Parameter Estimate
Standard

Error t Value Pr > |t|

State Iowa 5.27797099 5.27170400 1.00 0.3337

State Nebraska 0.65275201 1.70031616 0.38 0.7068

FarmAreaIA 0.40680971 0.06458426 6.30 <.0001

FarmAreaNE 0.14630563 0.01997085 7.33 <.0001

Note: The degrees of freedom for the t tests is 14.

Covariance of Estimated Regression Coefficients

State Iowa
State

Nebraska FarmAreaIA FarmAreaNE

State Iowa 27.790863033 0 -0.205517205 0

State Nebraska 0 2.8910750385 0 -0.027354011

FarmAreaIA -0.205517205 0 0.0041711265 0

FarmAreaNE 0 -0.027354011 0 0.0003988349

Example 101.5: Regression Estimator for Stratified Sample
This example uses the corn yield data set FARMS from Example 101.4 to illustrate how to construct a
regression estimator for a stratified sample design.

As in Example 101.3, by incorporating auxiliary information into a regression estimator, the procedure can
produce more accurate estimates of the population characteristics that are of interest. In this example, the
sample design is a stratified sample design. The auxiliary information is the total farm areas in regions of
each state, as displayed in Table 101.13. You want to estimate the total corn yield by using this information
under the three linear models given in Example 101.4.
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Table 101.13 Information for Each Stratum

Number of Farms
Stratum State Region Population Sample Total Farm Area

1 Iowa 1 100 3
2 2 50 5 13,200
3 3 15 3
4 Nebraska 1 30 6 8,750
5 2 40 2

Total 235 19 21,950

The regression estimator to estimate the total corn yield under Model I can be obtained by using PROC
SURVEYREG with an ESTIMATE statement:

title1 'Estimate Corn Yield from Farm Size';
title2 'Model I: Same Intercept and Slope';
proc surveyreg data=Farms total=StratumTotals;

strata State Region / list;
class State Region;
model CornYield = FarmArea State*Region /solution;
weight Weight;
estimate 'Estimate of CornYield under Model I'

INTERCEPT 235 FarmArea 21950
State*Region 100 50 15 30 40 /e;

run;

To apply the constraint in each stratum that the weighted total number of farms equals to the total number of
farms in the stratum, you can include the strata as an effect in the MODEL statement, effect State*Region.
Thus, the CLASS statement must list the STRATA variables, State and Region, as classification variables.
The following ESTIMATE statement specifies the regression estimator, which is a linear function of the
regression parameters:

estimate 'Estimate of CornYield under Model I'
INTERCEPT 235 FarmArea 21950
State*Region 100 50 15 30 40 /e;

This linear function contains the total for each explanatory variable in the model. Because the sampling
units are farms in this example, the coefficient for Intercept in the ESTIMATE statement is the total number
of farms (235); the coefficient for FarmArea is the total farm area listed in Table 101.13 (21950); and the
coefficients for effect State*Region are the total number of farms in each strata (as displayed in Table 101.13).

Output 101.5.1 displays the results of the ESTIMATE statement. The regression estimator for the total of
CornYield in Iowa and Nebraska is 7464 under Model I, with a standard error of 927.
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Output 101.5.1 Regression Estimator for the Total of CornYield under Model I

Estimate Corn Yield from Farm Size
Model I: Same Intercept and Slope

The SURVEYREG Procedure

Regression Analysis for Dependent Variable CornYield

Estimate Corn Yield from Farm Size
Model I: Same Intercept and Slope

The SURVEYREG Procedure

Regression Analysis for Dependent Variable CornYield

Estimate

Label Estimate
Standard

Error DF t Value Pr > |t|

Estimate of CornYield under Model I 7463.52 926.84 14 8.05 <.0001

Under Model II, a regression estimator for totals can be obtained by using the following statements:

title1 'Estimate Corn Yield from Farm Size';
title2 'Model II: Same Intercept, Different Slopes';
proc surveyreg data=FarmsByState total=StratumTotals;

strata State Region;
class State Region;
model CornYield = FarmAreaIA FarmAreaNE

state*region /solution;
weight Weight;
estimate 'Total of CornYield under Model II'

INTERCEPT 235 FarmAreaIA 13200 FarmAreaNE 8750
State*Region 100 50 15 30 40 /e;

run;

In this model, you also need to include strata as a fixed effect in the MODEL statement. Other regressors
are the auxiliary variables FarmAreaIA and FarmAreaNE (defined in Example 101.4). In the following
ESTIMATE statement, the coefficient for Intercept is still the total number of farms; and the coefficients for
FarmAreaIA and FarmAreaNE are the total farm area in Iowa and Nebraska, respectively, as displayed in
Table 101.13. The total number of farms in each strata are the coefficients for the strata effect:

estimate 'Total of CornYield under Model II'
INTERCEPT 235 FarmAreaIA 13200 FarmAreaNE 8750
State*Region 100 50 15 30 40 /e;

Output 101.5.2 displays that the results of the regression estimator for the total of corn yield in two states
under Model II is 7580 with a standard error of 859. The regression estimator under Model II has a slightly
smaller standard error than under Model I.
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Output 101.5.2 Regression Estimator for the Total of CornYield under Model II

Estimate Corn Yield from Farm Size
Model II: Same Intercept, Different Slopes

The SURVEYREG Procedure

Regression Analysis for Dependent Variable CornYield

Estimate Corn Yield from Farm Size
Model II: Same Intercept, Different Slopes

The SURVEYREG Procedure

Regression Analysis for Dependent Variable CornYield

Estimate

Label Estimate
Standard

Error DF t Value Pr > |t|

Total of CornYield under Model II 7580.49 859.18 14 8.82 <.0001

Finally, you can apply Model III to the data and estimate the total corn yield. Under Model III, you can also
obtain the regression estimators for the total corn yield for each state. Three ESTIMATE statements are used
in the following statements to create the three regression estimators:

title1 'Estimate Corn Yield from Farm Size';
title2 'Model III: Different Intercepts and Slopes';
proc surveyreg data=FarmsByState total=StratumTotals;

strata State Region;
class State Region;
model CornYield = state FarmAreaIA FarmAreaNE

State*Region /noint solution;
weight Weight;
estimate 'Total CornYield in Iowa under Model III'

State 165 0 FarmAreaIA 13200 FarmAreaNE 0
State*region 100 50 15 0 0 /e;

estimate 'Total CornYield in Nebraska under Model III'
State 0 70 FarmAreaIA 0 FarmAreaNE 8750
State*Region 0 0 0 30 40 /e;

estimate 'Total CornYield in both states under Model III'
State 165 70 FarmAreaIA 13200 FarmAreaNE 8750
State*Region 100 50 15 30 40 /e;

run;

The fixed effect State is added to the MODEL statement to obtain different intercepts in different states, by
using the NOINT option. Among the ESTIMATE statements, the coefficients for explanatory variables are
different depending on which regression estimator is estimated. For example, in the ESTIMATE statement

estimate 'Total CornYield in Iowa under Model III'
State 165 0 FarmAreaIA 13200 FarmAreaNE 0
State*region 100 50 15 0 0 /e;

the coefficients for the effect State are 165 and 0, respectively. This indicates that the total number of farms
in Iowa is 165 and the total number of farms in Nebraska is 0, because the estimation is the total corn yield in
Iowa only. Similarly, the total numbers of farms in three regions in Iowa are used for the coefficients of the
strata effect State*Region, as displayed in Table 101.13.

Output 101.5.3 displays the results from the three regression estimators by using Model III. Since the
estimations are independent in each state, the total corn yield from both states is equal to the sum of the
estimated total of corn yield in Iowa and Nebraska, 6246C 1334 D 7580. This regression estimator is the
same as the one under Model II. The variance of regression estimator of the total corn yield in both states is
the sum of variances of regression estimators for total corn yield in each state. Therefore, it is not necessary
to use Model III to obtain the regression estimator for the total corn yield unless you need to estimate the
total corn yield for each individual state.
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Output 101.5.3 Regression Estimator for the Total of CornYield under Model III

Estimate Corn Yield from Farm Size
Model III: Different Intercepts and Slopes

The SURVEYREG Procedure

Regression Analysis for Dependent Variable CornYield

Estimate Corn Yield from Farm Size
Model III: Different Intercepts and Slopes

The SURVEYREG Procedure

Regression Analysis for Dependent Variable CornYield

Estimate

Label Estimate
Standard

Error DF t Value Pr > |t|

Total CornYield in Iowa under Model III 6246.11 851.27 14 7.34 <.0001

Example 101.6: Stratum Collapse
In a stratified sample, it is possible that some strata might have only one sampling unit. When this happens,
PROC SURVEYREG collapses the strata that contain a single sampling unit into a pooled stratum. For more
detailed information about stratum collapse, see the section “Stratum Collapse” on page 8350.

Suppose that you have the following data:

data Sample;
input Stratum X Y W;
datalines;

10 0 0 5
10 1 1 5
11 1 1 10
11 1 2 10
12 3 3 16
33 4 4 45
14 6 7 50
12 3 4 16
;

The variable Stratum is again the stratification variable, the variable X is the independent variable, and the
variable Y is the dependent variable. You want to regress Y on X. In the data set Sample, both Stratum=33
and Stratum=14 contain one observation. By default, PROC SURVEYREG collapses these strata into one
pooled stratum in the regression analysis.

To input the finite population correction information, you create the SAS data set StratumTotals:

data StratumTotals;
input Stratum _TOTAL_;
datalines;

10 10
11 20
12 32
33 40
33 45
14 50
15 .
66 70
;
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The variable Stratum is the stratification variable, and the variable _TOTAL_ contains the stratum totals. The
data set StratumTotals contains more strata than the data set Sample. Also in the data set StratumTotals,
more than one observation contains the stratum totals for Stratum=33:

33 40
33 45

PROC SURVEYREG allows this type of input. The procedure simply ignores strata that are not present in
the data set Sample; for the multiple entries of a stratum, the procedure uses the first observation. In this
example, Stratum=33 has the stratum total _TOTAL_=40.

The following SAS statements perform the regression analysis:

title1 'Stratified Sample with Single Sampling Unit in Strata';
title2 'With Stratum Collapse';
proc surveyreg data=Sample total=StratumTotals;

strata Stratum/list;
model Y=X;
weight W;

run;

Output 101.6.1 shows that there are a total of five strata in the input data set and two strata are collapsed into a
pooled stratum. The denominator degrees of freedom is 4, due to the collapse (see the section “Denominator
Degrees of Freedom” on page 8356).

Output 101.6.1 Summary of Data and Regression

Stratified Sample with Single Sampling Unit in Strata
With Stratum Collapse

The SURVEYREG Procedure

Regression Analysis for Dependent Variable Y

Stratified Sample with Single Sampling Unit in Strata
With Stratum Collapse

The SURVEYREG Procedure

Regression Analysis for Dependent Variable Y

Data Summary

Number of Observations 8

Sum of Weights 157.00000

Weighted Mean of Y 4.31210

Weighted Sum of Y 677.00000

Design Summary

Number of Strata 5

Number of Strata Collapsed 2

Fit Statistics

R-Square 0.9564

Root MSE 0.5111

Denominator DF 4

Output 101.6.2 displays the stratification information, including stratum collapse. Under the column Col-
lapsed, the fourth stratum (Stratum=14) and the fifth (Stratum=33) are marked as ‘Yes,’ which indicates that
these two strata are collapsed into the pooled stratum (Stratum Index=0). The sampling rate for the pooled
stratum is 2% (see the section “Sampling Rate of the Pooled Stratum from Collapse” on page 8350).
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Output 101.6.3 displays the parameter estimates and the tests of the significance of the model effects.

Output 101.6.2 Stratification Information

Stratum Information

Stratum
Index Collapsed Stratum N Obs

Population
Total

Sampling
Rate

1 10 2 10 20.0%

2 11 2 20 10.0%

3 12 2 32 6.25%

4 Yes 14 1 50 2.00%

5 Yes 33 1 40 2.50%

0 Pooled 2 90 2.22%

Note: Strata with only one observation are collapsed into the stratum with Stratum Index "0".

Output 101.6.3 Parameter Estimates and Effect Tests

Tests of Model Effects

Effect Num DF F Value Pr > F

Model 1 173.01 0.0002

Intercept 1 0.00 0.9961

X 1 173.01 0.0002

Note: The denominator degrees of freedom for the F tests is 4.

Estimated Regression Coefficients

Parameter Estimate
Standard

Error t Value Pr > |t|

Intercept 0.00179469 0.34306373 0.01 0.9961

X 1.12598708 0.08560466 13.15 0.0002

Note: The degrees of freedom for the t tests is 4.

Alternatively, if you prefer not to collapse strata with a single sampling unit, you can specify the NOCOL-
LAPSE option in the STRATA statement:

title1 'Stratified Sample with Single Sampling Unit in Strata';
title2 'Without Stratum Collapse';
proc surveyreg data=Sample total=StratumTotals;

strata Stratum/list nocollapse;
model Y = X;
weight W;

run;

Output 101.6.4 does not contain the stratum collapse information displayed in Output 101.6.1, and the
denominator degrees of freedom are 3 instead of 4.
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Output 101.6.4 Summary of Data and Regression

Stratified Sample with Single Sampling Unit in Strata
Without Stratum Collapse

The SURVEYREG Procedure

Regression Analysis for Dependent Variable Y

Stratified Sample with Single Sampling Unit in Strata
Without Stratum Collapse

The SURVEYREG Procedure

Regression Analysis for Dependent Variable Y

Data Summary

Number of Observations 8

Sum of Weights 157.00000

Weighted Mean of Y 4.31210

Weighted Sum of Y 677.00000

Design Summary

Number of Strata 5

Fit Statistics

R-Square 0.9564

Root MSE 0.5111

Denominator DF 3

In Output 101.6.5, although the fourth stratum and the fifth stratum contain only one observation, no stratum
collapse occurs.

Output 101.6.5 Stratification Information

Stratum Information

Stratum
Index Stratum N Obs

Population
Total

Sampling
Rate

1 10 2 10 20.0%

2 11 2 20 10.0%

3 12 2 32 6.25%

4 14 1 50 2.00%

5 33 1 40 2.50%

As a result of not collapsing strata, the standard error estimates of the parameters, shown in Output 101.6.6,
are different from those in Output 101.6.3, as are the tests of the significance of model effects.

Output 101.6.6 Parameter Estimates and Effect Tests

Tests of Model Effects

Effect Num DF F Value Pr > F

Model 1 347.27 0.0003

Intercept 1 0.00 0.9962

X 1 347.27 0.0003

Note: The denominator degrees of freedom for the F tests is 3.
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Output 101.6.6 continued

Estimated Regression Coefficients

Parameter Estimate
Standard

Error t Value Pr > |t|

Intercept 0.00179469 0.34302581 0.01 0.9962

X 1.12598708 0.06042241 18.64 0.0003

Note: The degrees of freedom for the t tests is 3.

Example 101.7: Domain Analysis
You can use PROC SURVEYREG to perform domain analysis in a subgroup of your interest. To illustrate,
this example uses a data set from the National Health and Nutrition Examination Survey I (NHANES I) Epi-
demiologic Followup Study (NHEFS), described in Example 100.2 in Chapter 100, “The SURVEYPHREG
Procedure.”

The NHEFS is a national longitudinal survey that is conducted by the National Center for Health Statistics,
the National Institute on Aging, and some other agencies of the Public Health Service in the United States.
Some important objectives of this survey are to determine the relationships between clinical, nutritional, and
behavioral factors; to determine the relationship between mortality and hospital utilization; and to monitor
changes in risk factors for the initial cohort that represents the NHANES I population. A cohort of size
14,407, which includes all persons 25 to 74 years old who completed a medical examination at NHANES I in
1971–1975, was selected for the NHEFS. Personal interviews were conducted for every selected unit during
the first wave of data collection from the year 1982 to 1984. Follow-up studies were conducted in 1986,
1987, and 1992. In the year 1986, only nondeceased persons 55 to 74 years old (as reported in the base year
survey) were interviewed. The 1987 and 1992 NHEFS contain the entire nondeceased NHEFS cohort. Vital
and tracing status data, interview data, health care facility stay data, and mortality data for all four waves
are available for public use. See http://www.cdc.gov/nchs/nhanes/nhefs/nhefs.htm for more
information about the survey and the data sets.

For illustration purposes, 1,018 observations from the 1987 NHEFS public use interview data are used to
create the data set cancer. The observations are obtained from 10 strata that contain 596 PSUs. The sum
of observation weights for these selected units is over 19 million. Observation weights range from 359 to
129,359 with a mean of 18,747.69 and a median of 11,414.

The following variables are used in this example:

• ObsNo, unit identification

• Strata, stratum identification

• PSU, identification for primary sampling units

• ObservationWt, sampling weight associated with each unit

• Age, the event-time variable, defined as follows:

– age of the subject when the first cancer was reported for subjects with reported cancer

– age of the subject at death for deceased subjects without reported cancer

– age of the subject as reported in 1987 follow-up (this value is used for nondeceased subjects who
never reported cancer)

http://www.cdc.gov/nchs/nhanes/nhefs/nhefs.htm
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– age of the subject for the entry year 1971–1975 survey if the subject has cancer (or is deceased)
but the date of incident is not reported

• Cancer, cancer indicator (1 = cancer reported, 0 = cancer not reported)

• BodyWeight, body weight of the subject as reported in the 1987 follow-up, or an imputed body weight
based on the subject’s age in the entry year 1971–1975 survey

The following SAS statements create the data set cancer. Note that BodyWeight for a few observations (8%)
is imputed based on Age by using a deterministic regression imputation model (Särndal and Lundström
(2005, chapter 12)). The imputed values are treated as observed values in this example. In other words, this
example treats the data set Cancer as the observed data set.

data cancer;
input ObsNo Strata PSU ObservationWt Age Cancer BodyWeight;
datalines;
1 3 002 3805 53 1 175
2 3 002 6107 77 0 175
3 3 039 2968 50 0 160
4 3 084 30438 52 0 145
5 3 007 5081 80 0 127
6 3 009 3891 62 0 180
7 3 009 3580 50 0 157
8 3 022 2968 56 0 142
9 3 050 23748 60 0 140
10 3 060 48264 69 0 168

... more lines ...

1016 4 002 2689 40 0 120
1017 4 092 45888 52 0 166
1018 4 035 4347 58 0 156
;

Suppose you want to study how aging affects body weight in the subgroup of cancer patients for the base
year survey population. Because whether an individual has cancer or not is unrelated to the design of the
sample, this kind of analysis is called domain analysis (subgroup analysis).

The following statements request a linear regression of BodyWeight on Age among cancer patients. The
STRATA, CLUSTER, and WEIGHT statements identify the variance strata, PSUs, and analysis weights,
respectively. The DOMAIN statement defines the subgroups of people who have been diagnosed with cancer
and people who do not have cancer. The ODS SELECT statement requests that PROC SURVEYREG display
only the analysis in the subgroup Cancer = 1 in the output. The PLOT= option in the PROC statement
requests that weights be represented as a heat map with hexagonal bins.
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title1 'Study of Body Weight and Age among Cancer Patients';
ods graphics on;
proc surveyreg data=cancer plot=fit(weight=heatmap shape=hex);

strata strata;
cluster psu;
weight ObservationWt;
model bodyweight = age;
domain cancer;
ods select where=(_labelpath_ ? 'Cancer=1');

run;
ods graphics off;

Output 101.7.1 gives a summary of the data and the parameter estimates of the linear regression in domain
Cancer = 1. The analysis indicates that aging does not significantly affect body weight among cancer patients.

Output 101.7.1 Domain Analysis Among Cancer Patients

Study of Body Weight and Age among Cancer Patients

The SURVEYREG Procedure

Cancer=1

Domain Regression Analysis for Variable BodyWeight

Study of Body Weight and Age among Cancer Patients

The SURVEYREG Procedure

Cancer=1

Domain Regression Analysis for Variable BodyWeight

Domain Summary

Number of Observations 1017

Number of Observations in Domain 119

Number of Observations Not in Domain 898

Sum of Weights in Domain 2211545.0

Weighted Mean of BodyWeight 164.87655

Weighted Sum of BodyWeight 364631909

Estimated Regression Coefficients

Parameter Estimate
Standard

Error t Value Pr > |t|

Intercept 189.614789 14.9467889 12.69 <.0001

Age -0.398556 0.2398447 -1.66 0.0971

Note: The degrees of freedom for the t tests is 586.

When ODS Graphics is enabled and the model contains a single continuous regressor, PROC SURVEYREG
displays a plot of the model fitting, which is shown in Figure 101.7.2.
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Output 101.7.2 Regression Fitting

Example 101.8: Compare Domain Statistics
Recall the example in the section “Getting Started: SURVEYREG Procedure” on page 8315, which analyzed
a stratified simple random sample from a junior high school to examine how household income and the
number of children in a household affect students’ average weekly spending for ice cream. You can use the
same sample to analyze the average weekly spending among male and female students. Because student
gender is unrelated to the design of the sample, this kind of analysis is called domain analysis (subgroup
analysis).

The data set follows:

data IceCreamDataDomain;
input Grade Spending Income Gender$ @@;
datalines;

7 7 39 M 7 7 38 F 8 12 47 F
9 10 47 M 7 1 34 M 7 10 43 M
7 3 44 M 8 20 60 F 8 19 57 M
7 2 35 M 7 2 36 F 9 15 51 F
8 16 53 F 7 6 37 F 7 6 41 M
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7 6 39 M 9 15 50 M 8 17 57 F
8 14 46 M 9 8 41 M 9 8 41 F
9 7 47 F 7 3 39 F 7 12 50 M
7 4 43 M 9 14 46 F 8 18 58 M
9 9 44 F 7 2 37 F 7 1 37 M
7 4 44 M 7 11 42 M 9 8 41 M
8 10 42 M 8 13 46 F 7 2 40 F
9 6 45 F 9 11 45 M 7 2 36 F
7 9 46 F
;
data IceCreamDataDomain;

set IceCreamDataDomain;
if Grade=7 then Prob=20/1824;
if Grade=8 then Prob=9/1025;
if Grade=9 then Prob=11/1151;
Weight=1/Prob;

run;
data StudentTotals;

input Grade _TOTAL_;
datalines;

7 1824
8 1025
9 1151
;

In the data set IceCreamDataDomain, the variable Grade indicates a student’s grade, which is the stratification
variable. The variable Spending contains the dollar amount of each student’s average weekly spending for ice
cream. The variable Income specifies the household income, in thousands of dollars. The variable Gender
indicates a student’s gender. The sampling weights are created by using the reciprocals of the probabilities of
selection.

In the data set StudentTotals, the variable Grade is the stratification variable, and the variable _TOTAL_
contains the total numbers of students in the strata in the survey population.

Suppose that you are now interested in estimating the gender domain means of weekly ice cream spending
(that is, the average spending for males and females, respectively). You can use the SURVEYMEANS
procedure to produce these domain statistics by using the following statements:

proc surveymeans data=IceCreamDataDomain total=StudentTotals;
strata Grade;
var spending;
domain Gender;
weight Weight;

run;

Output 101.8.1 shows the estimated spending among male and female students.
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Output 101.8.1 Estimated Domain Means

The SURVEYMEANS ProcedureThe SURVEYMEANS Procedure

Domain Statistics in Gender

Gender Variable N Mean
Std Error

of Mean 95% CL for Mean

F Spending 19 9.376111 1.077927 7.19202418 11.5601988

M Spending 21 8.923052 1.003423 6.88992385 10.9561807

You can also use PROC SURVEYREG to estimate these domain means. The benefit of this alternative
approach is that PROC SURVEYREG provides more tools for additional analysis, such as domain means
comparisons in a LSMEANS statement.

Suppose that you want to test whether there is a significant difference for the ice cream spending between
male and female students. You can use the following statements to perform the test:

title1 'Ice Cream Spending Analysis';
title2 'Compare Domain Statistics';
proc surveyreg data=IceCreamDataDomain total=StudentTotals;

strata Grade;
class Gender;
model Spending = Gender / vadjust=none;
lsmeans Gender / diff;
weight Weight;

run;

The variable Gender is used as a model effect. The VADJUST=NONE option is used to produce variance
estimates for domain means that are identical to those produced by PROC SURVEYMEANS. The LSMEANS
statement requests that PROC SURVEYREG estimate the average spending in each gender group. The DIFF
option requests that the procedure compute the difference among domain means.

Output 101.8.2 displays the estimated weekly spending on ice cream among male and female students,
respectively, and their standard errors. Female students spend $9.38 per week on average, and male students
spend $8.92 per week on average. These domain means, including their standard errors, are identical to those
in Output 101.8.1 which are produced by PROC SURVEYMEANS.

Output 101.8.2 Domain Means between Gender

Ice Cream Spending Analysis
Compare Domain Statistics

The SURVEYREG Procedure

Regression Analysis for Dependent Variable Spending

Ice Cream Spending Analysis
Compare Domain Statistics

The SURVEYREG Procedure

Regression Analysis for Dependent Variable Spending

Gender Least Squares Means

Gender Estimate
Standard

Error DF t Value Pr > |t|

F 9.3761 1.0779 37 8.70 <.0001

M 8.9231 1.0034 37 8.89 <.0001

Output 101.8.3 shows the estimated difference for weekly ice scream spending between the two gender
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groups. The female students spend $0.45 more than male students on average, and the difference is not
statistically significant based on the t test.

Output 101.8.3 Domain Means Comparison

Differences of Gender Least Squares Means

Gender _Gender Estimate
Standard

Error DF t Value Pr > |t|

F M 0.4531 1.7828 37 0.25 0.8008

If you want to investigate whether there is any significant difference in ice cream spending among grades,
you can use the following similar statements to compare:

ods graphics on;
title1 'Ice Cream Spending Analysis';
title2 'Compare Domain Statistics';
proc surveyreg data=IceCreamDataDomain total=StudentTotals;

strata Grade;
class Grade;
model Spending = Grade / vadjust=none;
lsmeans Grade / diff plots=(diff meanplot(cl));
weight Weight;

run;
ods graphics off;

The Grade is specified in the CLASS statement to be used as an effect in the MODEL statement. The
DIFF option in the LSMEANS statement requests that the procedure compute the difference among the
domain means for the effect Grade. The ODS GRAPHICS statement enables ODS to create graphics. The
PLOTS=(DIFF MEANPLOT(CL)) option requests two graphics: the domain means plot MeanPlot and
their pairwise difference plot DiffPlot. The CL suboption requests the MeanPlot to display confidence. For
information about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.”

Output 101.8.4 shows the estimated weekly spending on ice cream for students within each grade. Students
in Grade 7 spend the least, only $5.00 per week. Students in Grade 8 spend the most, $15.44 per week.
Students in Grade 9 spend a little less at $10.09 per week.

Output 101.8.4 Domain Means among Grades

Ice Cream Spending Analysis
Compare Domain Statistics

The SURVEYREG Procedure

Regression Analysis for Dependent Variable Spending

Ice Cream Spending Analysis
Compare Domain Statistics

The SURVEYREG Procedure

Regression Analysis for Dependent Variable Spending

Grade Least Squares Means

Grade Estimate
Standard

Error DF t Value Pr > |t|

7 5.0000 0.7636 37 6.55 <.0001

8 15.4444 1.1268 37 13.71 <.0001

9 10.0909 0.9719 37 10.38 <.0001

Output 101.8.5 plots the weekly spending results that are shown in Output 101.8.4.
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Output 101.8.5 Plot of Means of Ice Cream Spending within Grades

Output 101.8.6 displays pairwise comparisons for weekly ice scream spending among grades. All the
differences are significant based on t tests.

Output 101.8.6 Domain Means Comparison

Differences of Grade Least Squares Means

Grade _Grade Estimate
Standard

Error DF t Value Pr > |t|

7 8 -10.4444 1.3611 37 -7.67 <.0001

7 9 -5.0909 1.2360 37 -4.12 0.0002

8 9 5.3535 1.4880 37 3.60 0.0009

Output 101.8.7 plots the comparisons that are shown in Output 101.8.6.
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Output 101.8.7 Plot of Pairwise Comparisons of Spending among Grades

In Output 101.8.7, the spending for each grade is shown in the background grid on both axes. Comparisons
for each pair of domain means are shown by colored bars at intersections of these grids. The length of each
bar represents the width of the confidence intervals for the corresponding difference between domain means.
The significance of these pairwise comparisons are indicated in the plot by whether these bars cross the
45-degree background dash-line across the plot. Since none of the three bars cross the dash-line, all pairwise
comparisons are significant, as shown in Output 101.8.6.

Example 101.9: Variance Estimate Using the Jackknife Method
This example uses the stratified sample from the section “Getting Started: SURVEYREG Procedure” on
page 8315 to illustrate how to estimate the variances with replication methods.

As shown in the section “Stratified Sampling” on page 8317, the sample is saved in the SAS data set IceCream.
The variable Grade that indicates a student’s grade is the stratification variable. The variable Spending
contains the dollar amount of each student’s average weekly spending for ice cream. The variable Income
specifies the household income, in thousands of dollars. The variable Kids indicates how many children are
in a student’s family. The variable Weight contains sampling weights.
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In this example, the procedure uses the jackknife method to estimate the variance, saving the replicate weights
that PROC SURVEYREG generates in a SAS data set:

title1 'Ice Cream Spending Analysis';
title2 'Use the Jackknife Method to Estimate the Variance';
proc surveyreg data=IceCream

varmethod=JACKKNIFE(outweights=JKWeights);
strata Grade;
class Kids;
model Spending = Income Kids / solution;
weight Weight;

run;

The VARMETHOD=JACKKNIFE option requests the procedure to estimate the variance by using the
jackknife method. The OUTWEIGHTS=JKWeights option provides a SAS data set named JKWeights that
contains the replicate weights used in the computation.

Output 101.9.1 shows the summary of the data and the variance estimation method. There are a total of 40
replicates generated by the procedure.

Output 101.9.1 Variance Estimation Using the Jackknife Method

Ice Cream Spending Analysis
Use the Jackknife Method to Estimate the Variance

The SURVEYREG Procedure

Regression Analysis for Dependent Variable Spending

Ice Cream Spending Analysis
Use the Jackknife Method to Estimate the Variance

The SURVEYREG Procedure

Regression Analysis for Dependent Variable Spending

Data Summary

Number of Observations 40

Sum of Weights 4000.0

Weighted Mean of Spending 9.14130

Weighted Sum of Spending 36565.2

Design Summary

Number of Strata 3

Variance Estimation

Method Jackknife

Number of Replicates 40

Output 101.9.2 displays the parameter estimates and their standard errors, as well as the tests of model effects
that use the jackknife method.
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Output 101.9.2 Variance Estimation Using the Jackknife Method

Tests of Model Effects

Effect Num DF F Value Pr > F

Model 4 110.48 <.0001

Intercept 1 133.30 <.0001

Income 1 289.16 <.0001

Kids 3 0.90 0.4525

Note: The denominator degrees of freedom for the F tests is 37.

Estimated Regression Coefficients

Parameter Estimate
Standard

Error t Value Pr > |t|

Intercept -26.086882 2.58771182 -10.08 <.0001

Income 0.776699 0.04567521 17.00 <.0001

Kids 1 0.888631 1.12799263 0.79 0.4358

Kids 2 1.545726 1.25598146 1.23 0.2262

Kids 3 -0.526817 1.42555453 -0.37 0.7138

Kids 4 0.000000 0.00000000 . .

Note: The degrees of freedom for the t tests is 37.
Matrix X'WX is singular and a generalized inverse was used to solve the normal equations.  Estimates are not unique.

Output 101.9.3 prints the first 6 observation in the output data set JKWeights, which contains the replicate
weights.

The data set JKWeights contains all the variable in the data set IceCream, in addition to the replicate weights
variables named RepWt_1, RepWt_2, ..., RepWt_40.

For example, the first observation (student) from stratum Grade=7 is deleted to create the first replicate.
Therefore, stratum Grade=7 is the donor stratum for the first replicate, and the corresponding replicate
weights are saved in the variable RepWt_1.

Because the first observation is deleted in the first replicate, RepWt_1=0 for the first observation. For
observations from strata other than the donor stratum Grade=7, their replicate weights remain the same as in
the variable Weight, while the rest of the observations in stratum Grade=7 are multiplied by the reciprocal of
the corresponding jackknife coefficient, 0.95 for the first replicate.



8398 F Chapter 101: The SURVEYREG Procedure

Output 101.9.3 The Jackknife Replicate Weights for the First 6 Observations

The Jackknife Weights for the First 6 ObsThe Jackknife Weights for the First 6 Obs

Obs Grade Spending Income Kids Prob Weight RepWt_1 RepWt_2 RepWt_3 RepWt_4 RepWt_5

1 7 7 39 2 0.010965 91.200 0.000 96.000 91.200 91.200 96.000

2 7 7 38 1 0.010965 91.200 96.000 0.000 91.200 91.200 96.000

3 8 12 47 1 0.008780 113.889 113.889 113.889 0.000 113.889 113.889

4 9 10 47 4 0.009557 104.636 104.636 104.636 104.636 0.000 104.636

5 7 1 34 4 0.010965 91.200 96.000 96.000 91.200 91.200 0.000

6 7 10 43 2 0.010965 91.200 96.000 96.000 91.200 91.200 96.000

Obs RepWt_6 RepWt_7 RepWt_8 RepWt_9 RepWt_10 RepWt_11 RepWt_12 RepWt_13 RepWt_14

1 96.000 96.000 91.200 91.200 96.000 96.000 91.200 91.200 96.000

2 96.000 96.000 91.200 91.200 96.000 96.000 91.200 91.200 96.000

3 113.889 113.889 128.125 128.125 113.889 113.889 113.889 128.125 113.889

4 104.636 104.636 104.636 104.636 104.636 104.636 115.100 104.636 104.636

5 96.000 96.000 91.200 91.200 96.000 96.000 91.200 91.200 96.000

6 0.000 96.000 91.200 91.200 96.000 96.000 91.200 91.200 96.000

Obs RepWt_15 RepWt_16 RepWt_17 RepWt_18 RepWt_19 RepWt_20 RepWt_21 RepWt_22 RepWt_23

1 96.000 96.000 91.200 91.200 91.200 91.200 91.200 91.200 96.000

2 96.000 96.000 91.200 91.200 91.200 91.200 91.200 91.200 96.000

3 113.889 113.889 113.889 128.125 128.125 113.889 113.889 113.889 113.889

4 104.636 104.636 115.100 104.636 104.636 115.100 115.100 115.100 104.636

5 96.000 96.000 91.200 91.200 91.200 91.200 91.200 91.200 96.000

6 96.000 96.000 91.200 91.200 91.200 91.200 91.200 91.200 96.000

Obs RepWt_24 RepWt_25 RepWt_26 RepWt_27 RepWt_28 RepWt_29 RepWt_30 RepWt_31 RepWt_32

1 96.000 96.000 91.200 91.200 91.200 96.000 96.000 96.000 96.000

2 96.000 96.000 91.200 91.200 91.200 96.000 96.000 96.000 96.000

3 113.889 113.889 113.889 128.125 113.889 113.889 113.889 113.889 113.889

4 104.636 104.636 115.100 104.636 115.100 104.636 104.636 104.636 104.636

5 96.000 96.000 91.200 91.200 91.200 96.000 96.000 96.000 96.000

6 96.000 96.000 91.200 91.200 91.200 96.000 96.000 96.000 96.000

Obs RepWt_33 RepWt_34 RepWt_35 RepWt_36 RepWt_37 RepWt_38 RepWt_39 RepWt_40

1 91.200 91.200 91.200 96.000 91.200 91.200 96.000 96.000

2 91.200 91.200 91.200 96.000 91.200 91.200 96.000 96.000

3 113.889 128.125 128.125 113.889 113.889 113.889 113.889 113.889

4 115.100 104.636 104.636 104.636 115.100 115.100 104.636 104.636

5 91.200 91.200 91.200 96.000 91.200 91.200 96.000 96.000

6 91.200 91.200 91.200 96.000 91.200 91.200 96.000 96.000
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Overview: SURVEYSELECT Procedure
The SURVEYSELECT procedure provides a variety of methods for selecting probability-based random
samples. The procedure can select a simple random sample or can sample according to a complex multistage
sample design that includes stratification, clustering, and unequal probabilities of selection. With probability
sampling, each unit in the survey population has a known, positive probability of selection. This property of
probability sampling avoids selection bias and enables you to use statistical theory to make valid inferences
from the sample to the survey population.

To select a sample with PROC SURVEYSELECT, you input a SAS data set that contains the sampling frame,
which is the list of units from which the sample is to be selected. The sampling units can be individual
observations or groups of observations (clusters). You also specify the selection method, the desired sample
size or sampling rate, and other selection parameters. PROC SURVEYSELECT selects the sample and
produces an output data set that contains the selected units, their selection probabilities, and their sampling
weights. When you select a sample in multiple stages, you invoke the procedure separately for each stage of
selection, inputting the frame and selection parameters for each current stage.

PROC SURVEYSELECT provides methods for both equal probability sampling and probability proportional
to size (PPS) sampling. In equal probability sampling, each unit in the sampling frame, or in a stratum, has
the same probability of being selected for the sample. In PPS sampling, a unit’s selection probability is
proportional to its size measure. For information about probability sampling methods, see Lohr (2010), Kish
(1965), Kish (1987), Kalton (1983), and Cochran (1977).

PROC SURVEYSELECT provides the following equal probability sampling methods:

• simple random sampling (without replacement)

• unrestricted random sampling (with replacement)

• systematic random sampling

• sequential random sampling

• Bernoulli sampling
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This procedure also provides Poisson sampling and the following probability proportional to size (PPS)
sampling methods:

• PPS sampling without replacement

• PPS sampling with replacement

• PPS systematic sampling

• PPS algorithms for selecting two units per stratum

• sequential PPS sampling with minimum replacement

The procedure uses fast, efficient algorithms for these sample selection methods. Thus, it performs well even
for large input data sets or sampling frames.

PROC SURVEYSELECT can perform stratified sampling by selecting samples independently within strata,
which are nonoverlapping subgroups of the survey population. Stratification controls the distribution of the
sample size in the strata. It is widely used in practice toward meeting a variety of survey objectives. For
example, with stratification you can ensure adequate sample sizes for subgroups of interest, including small
subgroups, or you can use stratification toward improving the precision of the overall estimates. When you
use a systematic or sequential selection method, PROC SURVEYSELECT can also sort by control variables
within strata for the additional control of implicit stratification.

For stratified sampling, PROC SURVEYSELECT provides survey design methods to allocate the total sample
size among the strata. Available allocation methods include proportional, Neyman, and optimal allocation.
Optimal allocation maximizes the estimation precision within the available resources, taking into account
stratum sizes, costs, and variances.

PROC SURVEYSELECT provides replicated sampling, where the total sample is composed of a set of
replicates, and each replicate is selected in the same way. You can use replicated sampling to study variable
nonsampling errors, such as variability in the results obtained by different interviewers. You can also use
replication to estimate standard errors for combined sample estimates and to perform a variety of other
resampling and simulation tasks.

Getting Started: SURVEYSELECT Procedure
In this example, an Internet service provider conducts a customer satisfaction survey. The survey population
consists of the company’s current subscribers. The company plans to select a sample of customers from this
population, interview the selected customers, and then make inferences about the entire survey population
from the sample data.

The SAS data set Customers contains the sampling frame, which is the list of units in the survey population.
The sample of customers will be selected from this sampling frame. The data set Customers is constructed
from the company’s customer database. It contains one observation for each customer, with a total of 13,471
observations.
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The following PROC PRINT statements display the first 10 observations of the data set Customers and
produce Figure 102.1:

title1 'Customer Satisfaction Survey';
title2 'First 10 Observations';
proc print data=Customers(obs=10);
run;

Figure 102.1 Customers Data Set (First 10 Observations)

Customer Satisfaction Survey
First 10 Observations

Customer Satisfaction Survey
First 10 Observations

Obs CustomerID State Type Usage

1 416-87-4322 AL New 839

2 288-13-9763 GA Old 224

3 339-00-8654 GA Old 2451

4 118-98-0542 GA New 349

5 421-67-0342 FL New 562

6 623-18-9201 SC New 68

7 324-55-0324 FL Old 137

8 832-90-2397 AL Old 1563

9 586-45-0178 GA New 615

10 801-24-5317 SC New 728

In the SAS data set Customers, the variable CustomerID uniquely identifies each customer. The variable
State contains the state of the customer’s address. The company has customers in four states: Georgia (GA),
Alabama (AL), Florida (FL), and South Carolina (SC). The variable Type equals ‘Old’ if the customer has
subscribed to the service for more than one year; otherwise, the variable Type equals ‘New’. The variable
Usage contains the customer’s average monthly service usage, in minutes.

The following sections illustrate the use of PROC SURVEYSELECT for probability sampling with three
different designs for the customer satisfaction survey. All three designs are one-stage, with customers as
the sampling units. The first design is simple random sampling without stratification. In the second design,
customers are stratified by state and type, and the sample is selected by simple random sampling within strata.
In the third design, customers are sorted within strata by usage, and the sample is selected by systematic
random sampling within strata.

Simple Random Sampling
The following PROC SURVEYSELECT statements select a probability sample of customers from the
Customers data set by using simple random sampling:

title1 'Customer Satisfaction Survey';
title2 'Simple Random Sampling';
proc surveyselect data=Customers method=srs n=100

out=SampleSRS;
run;
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The PROC SURVEYSELECT statement invokes the procedure. The DATA= option names the SAS data
set Customers as the input data set from which to select the sample. The METHOD=SRS option specifies
simple random sampling as the sample selection method. In simple random sampling, each unit has an equal
probability of selection, and sampling is without replacement. Without-replacement sampling means that a
unit cannot be selected more than once. The N= option specifies a sample size of 100 customers. The OUT=
option stores the sample in the SAS data set named SampleSRS.

Figure 102.2 displays the output from PROC SURVEYSELECT, which summarizes the sample selection. A
sample of 100 customers is selected from the data set Customers by simple random sampling. With simple
random sampling and no stratification in the sample design, the selection probability is the same for all units
in the sample. In this sample, the selection probability for each customer is 0.007423, which is the sample
size (100) divided by the population size (13,471). The sampling weight is 134.71 for each customer in the
sample, where the weight is the inverse of the selection probability. If you specify the STATS option, PROC
SURVEYSELECT includes the selection probabilities and sampling weights in the output data set. (This
information is always included in the output data set for more complex designs.)

The random number seed is 39647. PROC SURVEYSELECT uses this number as the initial seed for random
number generation. Because the SEED= option is not specified in the PROC SURVEYSELECT statement,
the seed value is obtained by using the time of day from the computer’s clock. You can specify SEED=39647
to reproduce this sample.

Figure 102.2 Sample Selection Summary

Customer Satisfaction Survey
Simple Random Sampling

The SURVEYSELECT Procedure

Customer Satisfaction Survey
Simple Random Sampling

The SURVEYSELECT Procedure

Selection Method Simple Random Sampling

Input Data Set CUSTOMERS

Random Number Seed 39647

Sample Size 100

Selection Probability 0.007423

Sampling Weight 134.71

Output Data Set SAMPLESRS

The sample of 100 customers is stored in the SAS data set SampleSRS. PROC SURVEYSELECT does not
display this output data set. The following PROC PRINT statements display the first 20 observations of
SampleSRS:

title1 'Customer Satisfaction Survey';
title2 'Sample of 100 Customers, Selected by SRS';
title3 '(First 20 Observations)';
proc print data=SampleSRS(obs=20);
run;
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Figure 102.3 displays the first 20 observations of the output data set SampleSRS, which contains the sample
of customers. This data set includes all the variables from the DATA= input data set Customers. If you do
not want to include all variables, you can use the ID statement to specify which variables to copy from the
input data set to the output (sample) data set.

Figure 102.3 Customer Sample (First 20 Observations)

Customer Satisfaction Survey
Sample of 100 Customers, Selected by SRS

(First 20 Observations)

Customer Satisfaction Survey
Sample of 100 Customers, Selected by SRS

(First 20 Observations)

Obs CustomerID State Type Usage

1 017-27-4096 GA New 168

2 026-37-3895 AL New 59

3 038-54-9276 GA New 785

4 046-40-3131 FL New 60

5 070-37-6924 GA New 524

6 100-58-3342 FL New 302

7 107-61-9029 AL New 235

8 110-95-0432 FL New 12

9 112-81-9251 SC New 347

10 137-33-0478 GA New 551

11 143-83-4677 AL New 203

12 147-19-9164 GA New 172

13 159-51-0606 FL New 102

14 164-14-7799 GA Old 388

15 165-05-7323 SC New 606

16 174-69-3566 AL Old 111

17 177-69-6934 FL New 202

18 181-58-3508 AL Old 261

19 207-41-8446 AL Old 183

20 207-64-7308 GA New 193

Stratified Sampling
In this section, stratification is added to the sample design for the customer satisfaction survey. The sampling
frame, which is the list of all customers, is stratified by State and Type. This divides the sampling frame into
nonoverlapping subgroups formed from the values of the State and Type variables. Samples are then selected
independently within the strata.

PROC SURVEYSELECT requires that the input data set be sorted by the STRATA variables. The following
PROC SORT statements sort the Customers data set by the stratification variables State and Type:

proc sort data=Customers;
by State Type;

run;
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The following PROC FREQ statements display the crosstabulation of the Customers data set by State and
Type:

title1 'Customer Satisfaction Survey';
title2 'Strata of Customers';
proc freq data=Customers;

tables State*Type;
run;

Figure 102.4 presents the table of State by Type for the 13,471 customers. There are four states and two
levels of Type, forming a total of eight strata.

Figure 102.4 Stratification of Customers by State and Type
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Frequency
Percent
Row Pct
Col Pct

Table of State by Type

State

Type

New Old Total

AL 1238
9.19
63.68
14.43

706
5.24
36.32
14.43

1944
14.43

FL 2170
16.11
61.30
25.29

1370
10.17
38.70
28.01

3540
26.28

GA 3488
25.89
64.26
40.65

1940
14.40
35.74
39.66

5428
40.29

SC 1684
12.50
65.81
19.63

875
6.50
34.19
17.89

2559
19.00

Total 8580
63.69

4891
36.31

13471
100.00

The following PROC SURVEYSELECT statements select a probability sample of customers from the
Customers data set according to the stratified sample design:

title1 'Customer Satisfaction Survey';
title2 'Stratified Sampling';
proc surveyselect data=Customers method=srs n=15

seed=1953 out=SampleStrata;
strata State Type;

run;

The STRATA statement names the stratification variables State and Type. In the PROC
SURVEYSELECT statement, the METHOD=SRS option specifies simple random sampling. The N=
option specifies a sample size of 15 customers in each stratum. If you want to specify different sample sizes
for different strata, you can use the N=SAS-data-set option to name a secondary data set that contains the
stratum sample sizes. The SEED= option specifies 1953 as the initial seed for random number generation.
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Figure 102.5 displays the output from PROC SURVEYSELECT, which summarizes the sample selection. A
total of 120 customers are selected.

Figure 102.5 Sample Selection Summary
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The SURVEYSELECT Procedure

Selection Method Simple Random Sampling

Strata Variables State

Type

Input Data Set CUSTOMERS

Random Number Seed 1953

Stratum Sample Size 15

Number of Strata 8

Total Sample Size 120

Output Data Set SAMPLESTRATA

The following PROC PRINT statements display the first 30 observations of the output data set SampleStrata:

title1 'Customer Satisfaction Survey';
title2 'Sample Selected by Stratified Design';
title3 '(First 30 Observations)';
proc print data=SampleStrata(obs=30);
run;

Figure 102.6 displays the first 30 observations of the output data set SampleStrata, which contains the
sample of 120 customers, 15 customers from each of the eight strata. The variable SelectionProb contains the
selection probability for each customer in the sample. Because customers are selected with equal probability
within strata in this design, the selection probability equals the stratum sample size (15) divided by the stratum
population size. The selection probabilities differ from stratum to stratum because the stratum population
sizes differ. The selection probability for each customer in the first stratum (State=‘AL’ and Type=‘New’)
is 0.012116, and the selection probability for customers in the second stratum is 0.021246. The variable
SamplingWeight contains the sampling weights, which are computed as inverse selection probabilities.
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Figure 102.6 Customer Sample (First 30 Observations)
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Obs State Type CustomerID Usage SelectionProb SamplingWeight

1 AL New 015-57-9903 26 0.012116 82.5333

2 AL New 052-18-5029 576 0.012116 82.5333

3 AL New 064-72-0145 88 0.012116 82.5333

4 AL New 291-22-2497 1221 0.012116 82.5333

5 AL New 305-62-6833 187 0.012116 82.5333

6 AL New 309-63-9722 534 0.012116 82.5333

7 AL New 413-76-0209 435 0.012116 82.5333

8 AL New 492-18-7867 70 0.012116 82.5333

9 AL New 508-16-8324 189 0.012116 82.5333

10 AL New 561-82-0366 392 0.012116 82.5333

11 AL New 685-24-1718 74 0.012116 82.5333

12 AL New 800-20-2155 21 0.012116 82.5333

13 AL New 857-94-2672 77 0.012116 82.5333

14 AL New 918-29-9618 540 0.012116 82.5333

15 AL New 963-93-4916 33 0.012116 82.5333

16 AL Old 000-88-0484 401 0.021246 47.0667

17 AL Old 005-80-0241 114 0.021246 47.0667

18 AL Old 171-99-9085 210 0.021246 47.0667

19 AL Old 182-45-1938 160 0.021246 47.0667

20 AL Old 208-99-1105 60 0.021246 47.0667

21 AL Old 229-48-6213 1169 0.021246 47.0667

22 AL Old 265-55-4763 1370 0.021246 47.0667

23 AL Old 467-73-7465 14 0.021246 47.0667

24 AL Old 509-38-7128 173 0.021246 47.0667

25 AL Old 601-71-3629 142 0.021246 47.0667

26 AL Old 603-40-7787 302 0.021246 47.0667

27 AL Old 702-39-0977 270 0.021246 47.0667

28 AL Old 861-79-5340 101 0.021246 47.0667

29 AL Old 908-20-0603 340 0.021246 47.0667

30 AL Old 937-69-9106 182 0.021246 47.0667
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Stratified Sampling with Control Sorting
The next sample design for the customer satisfaction survey uses stratification by State and also control
sorting by Type and Usage within State. After stratification and control sorting, customers are selected by
systematic random sampling within strata. Selection by systematic sampling, together with control sorting
before selection, spreads the sample uniformly over the range of type and usage values within each stratum
(state). The following PROC SURVEYSELECT statements select a probability sample of customers from
the Customers data set according to this design:

title1 'Customer Satisfaction Survey';
title2 'Stratified Sampling with Control Sorting';
proc surveyselect data=Customers method=sys rate=.02

seed=1234 out=SampleControl;
strata State;
control Type Usage;

run;

The STRATA statement names the stratification variable State. The CONTROL statement names the control
variables Type and Usage. In the PROC SURVEYSELECT statement, the METHOD=SYS option requests
systematic random sampling. The RATE= option specifies a sampling rate of 2% for each stratum. The
SEED= option specifies the initial seed for random number generation.

Figure 102.7 displays the output from PROC SURVEYSELECT, which summarizes the sample selection. A
sample of 271 customers is selected by using systematic random sampling within strata determined by State.
The sampling frame Customers is sorted by control variables Type and Usage within strata. The type of
sorting is serpentine, which is the default when SORT=NEST is not specified. See the section “Sorting by
CONTROL Variables” on page 8439 for a description of serpentine sorting. The sorted data set replaces the
input data set. (To leave the input data set unsorted and store the sorted input data in another data set, use the
OUTSORT= option.) The output data set SampleControl contains the sample of customers.

Figure 102.7 Sample Selection Summary
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Selection Method Systematic Random Sampling

Strata Variable State

Control Variables Type

Usage

Control Sorting Serpentine

Input Data Set CUSTOMERS

Random Number Seed 1234

Stratum Sampling Rate 0.02

Number of Strata 4

Total Sample Size 270

Output Data Set SAMPLECONTROL
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Syntax: SURVEYSELECT Procedure
The following statements are available in the SURVEYSELECT procedure:

PROC SURVEYSELECT options ;
CONTROL variables ;
FREQ variable ;
ID variables ;
SAMPLINGUNIT | CLUSTER variables < / options > ;
SIZE variable ;
STRATA variables < / options > ;

The PROC SURVEYSELECT statement invokes the SURVEYSELECT procedure. Optionally, it identifies
input and output data sets. It also specifies the selection method, the sample size, and other sample design
parameters. The PROC SURVEYSELECT statement is required.

The SIZE statement identifies the variable that contains the size measures of the sampling units. This
statement is required for any probability proportional to size (PPS) selection method unless you specify the
PPS option in the SAMPLINGUNIT statement.

The remaining statements are optional. The STRATA statement identifies a variable or set of variables
that stratify the input data set. When you specify a STRATA statement, PROC SURVEYSELECT selects
samples independently from the strata that are formed by the STRATA variables. The STRATA statement
also provides options to allocate the total sample size among the strata.

The SAMPLINGUNIT statement identifies a variable or set of variables that group the input data set
observations into sampling units (clusters). Sampling units are nested within strata. When you specify a
SAMPLINGUNIT statement, PROC SURVEYSELECT selects clusters instead of individual observations.

The CONTROL statement identifies variables for ordering units within strata. It can be used for systematic
and sequential sampling methods. The ID statement identifies variables to copy from the input data set to the
output data set of selected units.

The FREQ statement identifies a variable that contains the frequency of occurrence for each observation. The
FREQ statement is available only for sample allocation when no sample is selected, which you can request
by specifying the ALLOC= and NOSAMPLE options in the STRATA statement.

The following sections describe the PROC SURVEYSELECT statement and then describe the other statements
in alphabetical order.

PROC SURVEYSELECT Statement
PROC SURVEYSELECT options ;

The PROC SURVEYSELECT statement invokes the SURVEYSELECT procedure. Optionally, it identifies
input and output data sets. If you do not name a DATA= input data set, the procedure selects the sample from
the most recently created SAS data set. If you do not name an OUT= output data set to contain the sample of
selected units, the procedure still creates an output data set and names it according to the DATAn convention.

The PROC SURVEYSELECT statement also specifies the sample selection method, the sample size, and
other sample design parameters.
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If you do not specify a selection method, PROC SURVEYSELECT uses simple random sampling
(METHOD=SRS) by default unless you specify a SIZE statement or the PPS option in the SAMPLINGUNIT
statement. If you do specify a SIZE statement (or the PPS option), PROC SURVEYSELECT uses probability
proportional to size selection without replacement (METHOD=PPS) by default. For more information, see
the description of the METHOD= option.

You can use the SAMPSIZE=n option to specify the sample size, or you can use the SAMPSIZE=SAS-
data-set option to name a secondary input data set that contains stratum sample sizes. You must specify a
sample size or sampling rate except when you request one of the following: random assignment (GROUPS=);
Poisson sampling (METHOD=POISSON); Brewer’s method or Murthy’s method, either of which selects two
units from each stratum (METHOD=PPS_BREWER or METHOD=PPS_MURTHY); or sample allocation
for a specified margin (MARGIN=).

You can provide stratum sample sizes, sampling rates, initial seeds, minimum size measures, maximum
size measures, and certainty size measures in a secondary input data set. For more information, see the
descriptions of the SAMPSIZE=, SAMPRATE=, SEED=, MINSIZE=, MAXSIZE=, CERTSIZE=, and
CERTSIZE=P= options. You can name only one secondary input data set in each invocation of PROC
SURVEYSELECT. For more information, see the section “Secondary Input Data Set” on page 8454.

Table 102.1 summarizes the options available in the PROC SURVEYSELECT statement. Descriptions of the
options follow in alphabetical order.

Table 102.1 PROC SURVEYSELECT Statement Options

Option Description

Input and Output Data Sets
DATA= Names the input SAS data set
OUT= Names the output SAS data set that contains the sample
OUTSORT= Names an output SAS data set that stores the sorted input data set

Selection Method
METHOD= Specifies the sample selection method

Sample Size
SAMPSIZE= Specifies the sample size
SELECTALL Selects all stratum units when the sample size exceeds the total

Sampling Rate
SAMPRATE= Specifies the sampling rate
NMIN= Specifies the minimum stratum sample size
NMAX= Specifies the maximum stratum sample size

Replicated Sampling
REPS= Specifies the number of sample replicates

Size Measures
MINSIZE= Specifies the minimum size measure
MAXSIZE= Specifies the maximum size measure
CERTSIZE= Specifies the certainty size measure
CERTSIZE=P= Specifies the certainty proportion

Control Sorting
SORT= Specifies the type of sorting
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Table 102.1 continued

Option Description

Random Number Generation
SEED= Specifies the initial seed
RANUNI Requests the RANUNI random number generator

Random Assignment
GROUPS= Requests random assignment

Displayed Output
NOPRINT Suppresses the display of all output

OUT= Data Set Contents
CERTUNITS= Includes number of certainty units
JTPROBS Includes joint probabilities of selection
OUTALL Includes all observations from the DATA= input data set
OUTHITS Includes a distinct copy of each selected unit
OUTSEED Includes the initial seed for each stratum
OUTSIZE Includes additional design and sampling frame information
STATS Includes selection probabilities and sampling weights

You can specify the following options in the PROC SURVEYSELECT statement:

CERTSIZE < =value | SAS-data-set >
specifies the certainty size measure that PROC SURVEYSELECT uses to identify units that are
selected with certainty. You can provide a single certainty value for the entire sample selection, or you
can provide stratum-level certainty values by specifying a SAS-data-set . The certainty size values
must be positive numbers.

You can use the SIZE statement to provide size measures for the sampling units. PROC
SURVEYSELECT selects with certainty all sampling units whose size measures are greater than
or equal to the certainty size value. After removing the certainty units, the procedure selects the
remainder of the sample by using the method that you specify in the METHOD= option. The OUT=
output data set contains a variable named Certain that identifies units that are selected with certainty.
The selection probability of each certainty unit is one.

This option is available for the following PPS selection methods: METHOD=PPS,
METHOD=PPS_SAMPFORD, METHOD=PPS_SYS, and METHOD=PPS_WR. The CERTSIZE=
option is not available when you specify a SAMPLINGUNIT statement.

You can provide certainty size values by specifying one of the following forms:

CERTSIZE
indicates that certainty size values are provided in a secondary input data set that you name in
another option (for example, the SAMPSIZE=SAS-data-set option). This data set should include
a variable named _CERTSIZE_ that contains the certainty values. For more information, see the
section “Secondary Input Data Set” on page 8454. You can name only one secondary input data
set in each invocation of PROC SURVEYSELECT.

CERTSIZE=value
specifies a single certainty size value, which must be a positive number. If you request a stratified
sample design by specifying the STRATA statement, PROC SURVEYSELECT uses the certainty
value to determine certainty selections for all strata.
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CERTSIZE=SAS-data-set
names a SAS-data-set that contains stratum-level certainty size values. You should provide
the certainty values in the data set variable named _CERTSIZE_. Each observation in this data
set should correspond to a stratum group, which is determined by the values of the STRATA
variables.

This data set, which is a secondary input data set, must contain all stratification variables that
you specify in the STRATA statement. The data set must also contain all stratum groups that
appear in the DATA= data set. The order of the stratum groups in the CERTSIZE= data set must
match the order of the groups in the DATA= data set. If formats are associated with the STRATA
variables, the formats must be consistent in the two data sets. For more information, see the
section “Secondary Input Data Set” on page 8454. You can name only one secondary input data
set in each invocation of PROC SURVEYSELECT.

CERTSIZE=P < =p | SAS-data-set >
specifies the certainty proportion that PROC SURVEYSELECT uses for iterative certainty selection.
You can provide a single certainty proportion p for the entire sample, or you can provide stratum-level
certainty proportions by specifying a SAS-data-set .

The certainty proportions must be positive numbers. You can specify a certainty proportion as a number
between 0 and 1. Or you can specify a proportion in percentage form as a number between 1 and 100,
which PROC SURVEYSELECT converts to a proportion. The procedure treats the value 1 as 100%
instead of 1%.

You can use the SIZE statement to provide size measures for the sampling units. PROC
SURVEYSELECT computes the certainty size as the certainty proportion p of the total size for
all units. The procedure selects with certainty the sampling units whose size measures are greater than
or equal to the certainty size. After removing these certainty units from consideration, the procedure
computes a new certainty size as the certainty proportion of the total size of the remaining units and
again identifies certainty units. PROC SURVEYSELECT repeats this process until no more certainty
units are selected. After certainty selection is complete, the remainder of the sample is selected by
using the method that you specify in the METHOD= option. The OUT= output data set contains a
variable named Certain that identifies units that are selected with certainty. The selection probability
of each certainty unit is one.

This option is available for METHOD=PPS and METHOD=PPS_SAMPFORD. This option is not
available when you specify a SAMPLINGUNIT statement.

You can provide certainty size proportions by specifying one of the following forms:

CERTSIZE=P
indicates that certainty size proportions are provided in a secondary input data set that you name
in another option (for example, the SAMPSIZE=SAS-data-set option). You should provide the
certainty proportions in the data set variable named _CERTP_. For more information, see the
section “Secondary Input Data Set” on page 8454. You can name only one secondary input data
set in each invocation of PROC SURVEYSELECT.

CERTSIZE=P=p
specifies a single certainty size proportion p, which must be a positive number. If you request a
stratified sample design by specifying the STRATA statement, PROC SURVEYSELECT uses the
certainty proportion p to determine certainty selections for all strata.
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CERTSIZE=P=SAS-data-set
names a SAS-data-set that contains stratum-level certainty size proportions. You should provide
the certainty proportions in the data set variable named _CERTP_. Each observation in the data
set should correspond to a stratum group, which is determined by the values of the STRATA
variables.

This data set, which is a secondary input data set, must contain all stratification variables that
you specify in the STRATA statement. The data set must also contain all stratum groups that
appear in the DATA= input data set. The order of the stratum groups in the CERTSIZE=P= data
set must match the order of the groups in the DATA= data set. If formats are associated with the
STRATA variables, the formats must be consistent in the two data sets. For more information,
see the section “Secondary Input Data Set” on page 8454. You can name only one secondary
input data set in each invocation of PROC SURVEYSELECT.

CERTUNITS=NOPRINT | OUTPUT
controls the display and output of information about certainty selection. This option is available when
you specify the CERTSIZE= or CERTSIZE=P= option. CERTUNITS=NOPRINT suppresses display
of the number of certainty units in the “Sample Selection Summary” table. For more information,
see the section “Displayed Output” on page 8460. CERTUNITS=OUTPUT includes the number of
certainty units in the output data set. For more information about the contents of the output data set,
see the section “Sample Output Data Set” on page 8454.

DATA=SAS-data-set
names the SAS-data-set from which PROC SURVEYSELECT selects the sample. If you omit the
DATA= option, the procedure uses the most recently created SAS data set. In sampling terminology,
the input data set is the sampling frame (the list of units from which the sample is selected).

By default, the procedure uses input data set observations as sampling units and selects a sample of
these units. Alternatively, you can use the SAMPLINGUNIT statement to define sampling units as
groups of observations (clusters).

GROUPS=n | (values)
requests random assignment of the observations in the input data set to groups. You can specify the
total number of groups as n, which must be a positive integer. Or you can provide a list of group
size values, which are positive integers that specify the number of observations in the groups. When
you use a STRATA statement, PROC SURVEYSELECT performs the specified random assignment
independently in each stratum. Otherwise, the procedure performs the random assignment for the
entire data set.

When you specify GROUPS=n, PROC SURVEYSELECT randomly assigns the observations in the
data set (or stratum) to n groups. The number of observations in each group is equal, or as nearly equal
as possible. For example, if the data set contains 100 observations and you specify GROUPS=3, PROC
SURVEYSELECT creates three groups that contain 33, 33, and 34 observations. This is equivalent to
specifying GROUPS=(33, 33, 34).

When you specify GROUPS=values, the number of groups is determined by the number of group size
values that you list. You can separate the values with blanks or commas, and you must enclose the list
of values in parentheses. The sum of the group size values must equal the total number of observations
in the data set (or in the stratum, if you specify a STRATA statement).

The OUT= data set includes a variable named GroupID that identifies the group assignment of each
observation. When you specify the OUTSIZE option, the output data set includes a variable named
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GroupSize that provides the number of units in the group; the output data set also includes the
total number of units and the number of groups (in the data set, or in the stratum if you specify a
STRATA statement). For more information, see the section “Random Assignment Output Data Set” on
page 8459.

The following options are available when you specify the GROUPS= option: the SEED=, RANUNI,
and OUTSEED options, which pertain to random number generation; the REPS= option, which
provides independent replicates of the random assignment; the NOPRINT option, which suppresses
display of the “Random Assignment” table; and the OUTSIZE option.

The GROUPS= option does not select a sample; you cannot specify sample selection options (for
example, METHOD= or SAMPSIZE=) when you use the GROUPS= option. The SAMPLINGUNIT
statement is not available when you use the GROUPS= option.

JTPROBS
includes joint probabilities of selection in the OUT= output data set. This option is avail-
able for the following probability proportional to size selection methods: METHOD=PPS,
METHOD=PPS_SAMPFORD, and METHOD=PPS_WR. By default, PROC SURVEYSELECT out-
puts joint selection probabilities for METHOD=PPS_BREWER and METHOD=PPS_MURTHY,
which select two units per stratum.

For information about joint selection probabilities for a particular sampling method, see the method
description in the section “Sample Selection Methods” on page 8440. For more information about the
contents of the output data set, see the section “Sample Output Data Set” on page 8454.

MAXSIZE < =value | SAS-data-set >
specifies the maximum size measure. You can provide a single maximum value for the entire sample
selection, or you can provide stratum-level maximum values by specifying a SAS-data-set . The
maximum size values must be positive numbers.

PROC SURVEYSELECT uses the maximum size values to adjust the size measures, which you can
provide by specifying the SIZE statement or by specifying the PPS option in the SAMPLINGUNIT
statement. When a size measure exceeds the maximum value, the procedure replaces the size measure
with the maximum value.

If you use a SAMPLINGUNIT statement to define sampling units (clusters), PROC SURVEYSELECT
adjusts the sampling unit sizes (instead of the observation sizes). If you specify a SIZE statement, the
size of a sampling unit is the sum of the size measures of the observations in the unit. If you specify
the SAMPLINGUNIT PPS option, the size of a sampling unit is the number of observations in the unit.

When you use a SAMPLINGUNIT statement, the OUT= data set includes a variable named UnitSize
that contains the adjusted sampling unit size measures. When you do not use a SAMPLINGUNIT
statement, the OUT= data set includes a variable named AdjustedSize that contains the adjusted
observation size measures.

You can provide maximum size values by specifying one of the following forms:

MAXSIZE
indicates that maximum size values are provided in a secondary input data set that you name in
another option (for example, the SAMPSIZE=SAS-data-set option). You should provide the
maximum size values in the data set variable named _MAXSIZE_. For more information, see the
section “Secondary Input Data Set” on page 8454. You can specify only one secondary input
data set in each invocation of PROC SURVEYSELECT.



PROC SURVEYSELECT Statement F 8417

MAXSIZE=value
specifies a single maximum size value, which must be a positive number. If you request a
stratified sample design by specifying the STRATA statement, PROC SURVEYSELECT uses the
value to adjust size measures in all strata.

MAXSIZE=SAS-data-set
names a SAS-data-set that contains stratum-level maximum size values. You should provide
the maximum size values in the data set variable named _MAXSIZE_. Each observation in the
data set should correspond to a stratum group, which is determined by the values of the STRATA
variables.

This data set, which is a secondary input data set, must contain all stratification variables that
you specify in the STRATA statement. The data set must also contain all stratum groups that
appear in the DATA= data set. The order of the stratum groups in the MAXSIZE= data set must
match the order of the groups in the DATA= data set. If formats are associated with the STRATA
variables, the formats must be consistent in the two data sets. For more information, see the
section “Secondary Input Data Set” on page 8454. You can name only one secondary input data
set in each invocation of PROC SURVEYSELECT.

METHOD=name

M=name
specifies the method for sample selection.

If you do not specify the METHOD= option, PROC SURVEYSELECT uses simple random
sampling (METHOD=SRS) by default unless you specify a SIZE statement or the PPS option
in the SAMPLINGUNIT statement. If you do specify a SIZE statement (or the PPS option),
PROC SURVEYSELECT uses probability proportional to size selection without replacement
(METHOD=PPS) by default.

The following values are available for the METHOD= option:

BERNOULLI
requests Bernoulli sampling, which consists of N independent selection trials, each with constant
inclusion probability � , where N is the total number of sampling units in the stratum or data
set. The sample size is not fixed but is a random variable. For more information, see the section
“Bernoulli Sampling” on page 8444.

When you specify this method, you must provide the sampling rate (inclusion probability �) in the
SAMPRATE= option. For stratified sampling (which you request with the STRATA statement),
you can specify the same sampling rate for each stratum in the SAMPRATE=value option. Or
you can specify different sampling rates for different strata in the SAMPRATE=(values) or
SAMPRATE=SAS-data-set option.

Because Bernoulli sampling is based on a specified inclusion probability instead of a fixed sample
size, METHOD=BERNOULLI does not use the SAMPSIZE= option. Also, the ALLOC= option
in the STRATA statement (which allocates the total sample size among strata) is not available
with METHOD=BERNOULLI.
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POISSON
requests Poisson sampling. A generalization of Bernoulli sampling, Poisson sampling consists of
N independent selection trials with a separate inclusion probability specified for each unit, where
N is the total number of sampling units in the stratum or data set. The sample size is not fixed but
is a random variable. For more information, see the section “Poisson Sampling” on page 8444.

You must provide inclusion probabilities for Poisson sampling in the SIZE variable. The proba-
bility values should be between 0 and 1. If a value of the SIZE variable is missing, nonpositive,
or greater than 1, PROC SURVEYSELECT omits the observation from sample selection.

Because Poisson sampling is based on specified inclusion probabilities instead of a fixed sample
size, you cannot specify the SAMPSIZE= option when you specify METHOD=POISSON.
You also cannot specify the ALLOC= option in the STRATA statement when you specify
METHOD=POISSON.

The SAMPLINGUNIT statement is not available when you specify METHOD=POISSON.

When you specify the SAMPRATE= option for METHOD=POISSON but do not specify a SIZE
statement, PROC SURVEYSELECT uses METHOD=BERNOULLI.

PPS
requests selection with probability proportional to size and without replacement. For more
information, see the section “PPS Sampling without Replacement” on page 8445. When you
specify this method, you must name a size measure variable in the SIZE statement or specify the
PPS option in the SAMPLINGUNIT statement.

PPS_BREWER

BREWER
requests selection according to Brewer’s method. Brewer’s method selects two units from each
stratum with probability proportional to size and without replacement. For more information, see
the section “Brewer’s PPS Method” on page 8449. When you specify this method, you must name
a size measure variable in the SIZE statement or specify the PPS option in the SAMPLINGUNIT
statement. You do not need to specify the sample size in the SAMPSIZE= option because
Brewer’s method selects two units from each stratum.

PPS_MURTHY

MURTHY
requests selection according to Murthy’s method. Murthy’s method selects two units from each
stratum with probability proportional to size and without replacement. For more information,
see the section “Murthy’s PPS Method” on page 8449. When you specify this method, you
must name a size measure variable in the SIZE statement or specify the PPS option in the
SAMPLINGUNIT statement. You do not need to specify the sample size in the SAMPSIZE=
option because Murthy’s method selects two units from each stratum.

PPS_SAMPFORD

SAMPFORD
requests selection according to Sampford’s method. Sampford’s method selects units with
probability proportional to size and without replacement. For more information, see the section
“Sampford’s PPS Method” on page 8450. When you specify this method, you must name a
size measure variable in the SIZE statement or specify the PPS option in the SAMPLINGUNIT
statement.
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PPS_SEQ

CHROMY
requests sequential selection with probability proportional to size and with minimum replacement.
This method is also known as Chromy’s method. For more information, see the section “PPS
Sequential Sampling” on page 8447. When you specify this method, you must name a size
measure variable in the SIZE statement or specify the PPS option in the SAMPLINGUNIT
statement.

PPS_SYS < (method-options) >
requests systematic selection with probability proportional to size. For more information, see the
section “PPS Systematic Sampling” on page 8447. When you specify this method, you must pro-
vide size measures by specifying the SIZE statement or the PPS option in the SAMPLINGUNIT
statement.

You can specify the following method-options:

DETAILS
displays the random start and the systematic interval in the “Sample Selection Summary”
table when the design does not include strata or replicates. For more information, see the
section “Displayed Output” on page 8460.

INTERVAL=value
specifies the interval value for PPS systematic selection. The interval value must be a
positive number. It must not exceed the total of the size measures in the data set (or in each
stratum if you specify a STRATA statement). By default, the systematic interval is the ratio
of the size measure total to the sample size (which you provide in the SAMPSIZE= option).
For more information, see the section “PPS Systematic Sampling” on page 8447.

You cannot use the INTERVAL= method-option when you specify a sample size in the
SAMPSIZE= option or when you specify the ALLOC= option, which allocates the total
sample size among strata.

START=value
specifies the starting value for PPS systematic selection. The starting value must be a positive
number that is less than the systematic interval. By default, PROC SURVEYSELECT
randomly determines a starting point in the systematic interval. For more information, see
the section “PPS Systematic Sampling” on page 8447.

When you use this option to specify a systematic starting point (instead of allowing the
procedure to randomly determine the starting point), the following options for random
number generation have no effect: SEED=, RANUNI, and OUTSEED. You cannot use the
REPS= option when you specify the START= method-option.

When the starting value that you provide is not randomly determined, the resulting selection
is not a probability-based sample.

PPS_WR
requests selection with probability proportional to size and with replacement. For more informa-
tion, see the section “PPS Sampling with Replacement” on page 8446. When you specify this
method, you must name a size measure variable in the SIZE statement or specify the PPS option
in the SAMPLINGUNIT statement.
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SEQ

CHROMY
requests sequential selection according to Chromy’s method. If you specify this method and do
not specify a SIZE statement (or the PPS option in the SAMPLINGUNIT statement), PROC
SURVEYSELECT uses sequential zoned selection with equal probability and without replace-
ment. For more information, see the section “Sequential Random Sampling” on page 8443.

If you specify METHOD=SEQ and also specify a SIZE statement (or the PPS option in the
SAMPLINGUNIT statement), PROC SURVEYSELECT uses METHOD=PPS_SEQ, which is
sequential selection with probability proportional to size and with minimum replacement. For
more information, see the section “PPS Sequential Sampling” on page 8447.

SRS
requests simple random sampling, which is selection with equal probability and without re-
placement. For more information, see the section “Simple Random Sampling” on page 8441.
METHOD=SRS is the default selection method if you do not specify the METHOD= option and
also do not specify a SIZE statement (or the PPS option in the SAMPLINGUNIT statement).

SYS < (method-options) >
requests systematic random sampling. If you specify this method and do not specify a SIZE
statement (or the PPS option in the SAMPLINGUNIT statement), PROC SURVEYSELECT
uses systematic random sampling with equal probability. For more information, see the section
“Systematic Random Sampling” on page 8442.

If you specify this method and also specify a SIZE statement (or the PPS option in the
SAMPLINGUNIT statement), PROC SURVEYSELECT uses systematic random sampling
with probability proportional to size (METHOD=PPS_SYS). For more information, see the
section “PPS Systematic Sampling” on page 8447.

You can specify the following method-options:

DETAILS
displays the random start and the systematic interval in the “Sample Selection Summary”
table when the design does not include strata or replicates. For more information, see the
section “Displayed Output” on page 8460.

INTERVAL=value
specifies the interval for systematic random sampling. The interval value must be a positive
number and must not exceed the number of sampling units in the data set (or the number of
units in each stratum, if you specify a STRATA statement).

By default, PROC SURVEYSELECT determines the systematic interval from the sampling
rate or sample size that you provide in the SAMPRATE= or SAMPSIZE= option, respectively.
When you specify the sampling rate, PROC SURVEYSELECT computes the systematic
interval as the inverse of the sampling rate. When you specify the sample size, the procedure
computes the interval as the ratio of the number of sampling units to the sample size. For
more information, see the section “Systematic Random Sampling” on page 8442.

You cannot use the INTERVAL= method-option when you specify the SAMPSIZE= option,
the SAMPRATE= option, or the ALLOC= option (which allocates the total sample size
among strata).
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START=value
specifies the starting value for systematic selection. The starting value must be a positive
number that is less than the systematic interval. By default, PROC SURVEYSELECT
randomly determines a starting point in the systematic interval. For more information, see
the section “Systematic Random Sampling” on page 8442.

When you use this option to specify a systematic starting point (instead of allowing the
procedure to randomly determine the starting point), the following options for random
number generation have no effect: SEED=, RANUNI, and OUTSEED. You cannot use the
REPS= option when you specify the START= method-option.

When the starting value that you provide is not randomly determined, the resulting selection
is not a probability-based sample.

URS
requests unrestricted random sampling, which is selection with equal probability and with replace-
ment. For more information, see the section “Unrestricted Random Sampling” on page 8442.

MINSIZE < =value | SAS-data-set >
specifies the minimum size measure. You can provide a single minimum value for the entire sample
selection, or you can provide stratum-level minimum values by specifying a SAS-data-set . The
minimum size values must be positive numbers.

PROC SURVEYSELECT uses the minimum size values to adjust the size measures, which you provide
by specifying the SIZE statement or by specifying the PPS option in the SAMPLINGUNIT statement.
When a size measure is less than the minimum value, the procedure replaces the size measure with the
minimum value.

If you use a SAMPLINGUNIT statement to define sampling units (clusters), PROC SURVEYSELECT
adjusts the sampling unit sizes (not the observation sizes). If you specify a SIZE statement, the size
of a sampling unit is the sum of the size measures of the observations in the unit. If you specify the
SAMPLINGUNIT PPS option, the size of a sampling unit is the number of observations in the unit.

When you use a SAMPLINGUNIT statement, the OUT= data set includes a variable named UnitSize
that contains the adjusted sampling unit size measures. When you do not use a SAMPLINGUNIT
statement, the OUT= data set includes a variable named AdjustedSize that contains the adjusted
observation size measures.

You can provide minimum size values by specifying one of the following forms:

MINSIZE
indicates that minimum size values are provided in a secondary input data set that you name in
another option (for example, the SAMPSIZE=SAS-data-set option). You should provide the
minimum size values in the data set variable named _MINSIZE_. For more information, see the
section “Secondary Input Data Set” on page 8454. You can specify only one secondary input
data set in each invocation of PROC SURVEYSELECT.

MINSIZE=value
specifies a single minimum size value, which must be a positive number. If you request a
stratified sample design by specifying the STRATA statement, PROC SURVEYSELECT uses the
minimum value to adjust size measures in all strata.



8422 F Chapter 102: The SURVEYSELECT Procedure

MINSIZE=SAS-data-set
names a SAS-data-set that contains stratum-level minimum size values. You should provide
the minimum size values in the data set variable named _MINSIZE_. Each observation in the
data set should correspond to a stratum group, which is determined by the values of the STRATA
variables.

This data set, which is a secondary input data set, must contain all stratification variables that you
specify in the STRATA statement. The data set must also contain all stratum groups that appear
in the DATA= input data set. The order of the stratum groups in the MINSIZE= data set must
match the order of the groups in the DATA= input data set. If formats are associated with the
STRATA variables, the formats must be consistent in the two data sets. For more information,
see the section “Secondary Input Data Set” on page 8454. You can name only one secondary
input data set in each invocation of PROC SURVEYSELECT.

NMAX=n
specifies the maximum stratum sample size n for the SAMPRATE= option. When you specify the
SAMPRATE= option, PROC SURVEYSELECT calculates the stratum sample size by multiplying the
total number of units in the stratum by the specified sampling rate. If this sample size is greater than
the value NMAX=n, PROC SURVEYSELECT selects only n units.

The maximum sample size n must be a positive integer. The NMAX= option is available only with the
SAMPRATE= option, which you can specify for equal probability selection methods (METHOD=SRS,
METHOD=URS, METHOD=SYS, and METHOD=SEQ). The NMAX= option is not available with
METHOD=BERNOULLI, where the SAMPRATE= option specifies the constant inclusion probability.

NMIN=n
specifies the minimum stratum sample size n for the SAMPRATE= option. When you specify the
SAMPRATE= option, PROC SURVEYSELECT calculates the stratum sample size by multiplying the
total number of units in the stratum by the specified sampling rate. If this sample size is less than the
value NMIN=n, PROC SURVEYSELECT selects n units.

The minimum sample size n must be a positive integer. The NMIN= option is available only with the
SAMPRATE= option, which you can specify for equal probability selection methods (METHOD=SRS,
METHOD=URS, METHOD=SYS, and METHOD=SEQ). The NMIN= option is not available with
METHOD=BERNOULLI, where the SAMPRATE= option specifies the constant inclusion probability.

NOPRINT
suppresses the display of all output. You can use the NOPRINT option when you want only to create
an output data set. This option temporarily disables the Output Delivery System (ODS). For more
information, see Chapter 20, “Using the Output Delivery System.”

OUT=SAS-data-set
names the output data set. If you omit the OUT= option, the data set is named DATAn, where n is
the smallest integer that makes the name unique. If you request sample selection by specifying the
METHOD= option, the output data set contains the observations that are selected for the sample. If
you request sample allocation without sample selection by specifying the ALLOC= and NOSAMPLE
options in the STRATA statement, the output data set contains the allocated sample sizes. If you request
random assignment by specifying the GROUPS= option, the output data set contains all observations
in the input data set together with their assigned group identification.

When PROC SURVEYSELECT selects a sample, the output data set contains the units that are selected,
sample design information, and selection statistics. You can specify options that control the information
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to include in the output data set. For more information, see the descriptions of the following options:
JTPROBS, OUTALL, OUTHITS, OUTSEED, OUTSIZE, and STATS. For more information about the
contents of the output data set, see the section “Sample Output Data Set” on page 8454.

By default, the sample output data set contains only those units that are selected for the sample. To
include all observations from the input data set in the output data set, use the OUTALL option.

By default, the sample output data set includes one copy of each selected unit, even when a unit is se-
lected more than once, which can occur when you use with-replacement or with-minimum-replacement
selection methods. For with-replacement or with-minimum-replacement selection methods, the output
data set includes a variable NumberHits that records the number of hits (selections) for each unit. To
include a distinct copy of each selection in the output data set when the same unit is selected more than
once, use the OUTHITS option.

When you specify the ALLOC= and NOSAMPLE options in the STRATA statement, PROC
SURVEYSELECT allocates the total sample size among the strata but does not select a sample.
In this case, the OUT= data set contains the allocated sample sizes. For more information, see the
section “Allocation Output Data Set” on page 8458.

When you specify the GROUPS= option, PROC SURVEYSELECT randomly assigns observations
to groups; it does not select a sample. In this case, the OUT= data set contains all observations from
the input data set and includes a variable named GroupID that identifies group assignments. For more
information, see the section “Random Assignment Output Data Set” on page 8459.

OUTALL
includes all observations from the DATA= input data set in the OUT= output data set. By default, the
output data set includes only those units selected for the sample. When you specify the OUTALL
option, the output data set includes all observations from the input data set and also contains a variable
that indicates each observation’s selection status. For an observation that is selected, the value of
the variable Selected is 1; for an observation that is not selected, the value of Selected is 0. For
information about the contents of the output data set, see the section “Sample Output Data Set” on
page 8454.

The OUTALL option is available for equal probability selection methods (METHOD=SRS,
METHOD=URS, METHOD=SYS, METHOD=SEQ, and METHOD=BERNOULLI). The OUTALL
option is also available for METHOD=POISSON.

OUTHITS
includes a distinct copy of each selected unit in the OUT= output data set when the same sampling unit
is selected more than once. By default, the output data set contains a single copy of each unit selected,
even when a unit is selected more than once, and the variable NumberHits records the number of hits
(selections) for each unit. If you specify the OUTHITS option, the output data set contains m copies of
a sampling unit for which NumberHits is m; for example, the output data set contains three copies of a
unit that is selected three times (NumberHits is 3).

A sampling unit can be selected more than once by with-replacement and with-minimum-replacement
selection methods, which include METHOD=URS, METHOD=PPS_WR, METHOD=PPS_SYS, and
METHOD=PPS_SEQ. The OUTHITS option is available for these selection methods.

For information about the contents of the output data set, see the section “Sample Output Data Set” on
page 8454.
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OUTSEED
includes the initial seed for each stratum in the OUT= output data set. The variable InitialSeed contains
the stratum initial seeds. For information about the contents of the output data set, see the section
“Sample Output Data Set” on page 8454.

To reproduce the same sample for any stratum in a subsequent execution of PROC SURVEYSELECT,
you can specify the same stratum initial seed in the SEED=SAS-data-set option together with the same
sample selection parameters. For more information, see the section “Random Number Generation” on
page 8440.

The “Sample Selection Summary” table displays the initial random number seed for the entire sample
selection, which is the same as the initial seed for the first stratum when the design is stratified. To
reproduce the entire sample, you can specify this same seed value in the SEED= option, along with the
same sample selection parameters.

Beginning in SAS/STAT 12.1, PROC SURVEYSELECT uses the Mersenne-Twister random number
generator by default. In previous releases, PROC SURVEYSELECT uses the RANUNI random number
generator, which you can now request by specifying the RANUNI option. To reproduce samples that
PROC SURVEYSELECT selects in releases prior to SAS/STAT 12.1, specify the RANUNI option
with the SEED= option (for the same input data set and sample selection parameters).

OUTSIZE
includes additional design and sampling frame information in the OUT= output data set.

If you use a STRATA statement, the OUTSIZE option provides stratum-level values in the output data
set. Otherwise, the OUTSIZE option provides overall values.

The OUTSIZE option includes the sample size or sampling rate in the output data set, depending
on whether you specify the SAMPSIZE= option or the SAMPRATE= option, respectively. For PPS
selection methods, the OUTSIZE option includes the total size measure in the output data set. If you
do not provide size measures, or if you specify a SAMPLINGUNIT statement, the OUTSIZE option
includes the total number of sampling units.

If you request size measure adjustment or certainty selection, the OUTSIZE option includes the
following information in the output data set: the minimum size measure if you specify the MINSIZE=
option, the maximum size measure if you specify the MAXSIZE= option, the certainty size measure if
you specify the CERTSIZE= option, and the certainty proportion if you specify the CERTSIZE=P=
option.

For METHOD=BERNOULLI, the OUTSIZE option includes the following information in the output
data set: total number of sampling units, selection probability (sampling rate), expected sample size,
and actual sample size. See the section “Bernoulli Sampling” on page 8444 for descriptions of these
statistics.

For more information about the contents of the output data set, see the section “Sample Output Data
Set” on page 8454.

If you specify the GROUPS= option for random assignment, the OUTSIZE option adds the following
information to the output data set: total number of units, number of groups, and number of units in the
group. For more information, see the section “Random Assignment Output Data Set” on page 8459.
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OUTSORT=SAS-data-set
names an output data set to store the sorted input data set. This option is available when you specify a
CONTROL statement to sort the DATA= input data set for systematic or sequential selection methods
(METHOD=SYS, METHOD=PPS_SYS, METHOD=SEQ, and METHOD=PPS_SEQ).

If you specify CONTROL variables but do not name an output data set in the OUTSORT= option, the
sorted data set replaces the input data set.

RANUNI
requests uniform random number generation by the method of Fishman and Moore (1982), which
PROC SURVEYSELECT uses in releases before SAS/STAT 12.1. This is the same random number
generator that the RANUNI function provides.

Beginning in SAS/STAT 12.1, PROC SURVEYSELECT uses the Mersenne-Twister random number
generator by default. Developed by Matsumoto and Nishimura (1998), the Mersenne-Twister random
number generator has a very long period and good statistical properties. This is the random number
generator that the RAND function provides for the uniform distribution.

For more information, see the section “Random Number Generation” on page 8440. For information
about the RANUNI and RAND functions, see SAS Functions and CALL Routines: Reference.

You can specify the RANUNI option with the SEED= option to reproduce samples that PROC
SURVEYSELECT selects in releases before SAS/STAT 12.1. To reproduce a sample by using the
RANUNI and SEED= options, you must also specify the same input data set and sample selection
parameters.

REPS=nreps
specifies the number of sample replicates. The value of nreps must be a positive integer.

When you specify the REPS= option, PROC SURVEYSELECT selects nreps independent samples,
each with the same sample size or sampling rate and the same sample design that you request. The
variable Replicate in the OUT= data set contains the sample replicate number.

You can use replicated sampling to provide a simple method of variance estimation for any form
of statistic, and also to evaluate variable nonsampling errors such as interviewer differences. For
information about replicated sampling, see Lohr (2010), Wolter (2007), Kish (1965), Kish (1987),
and Kalton (1983). You can also use the REPS= option to perform a variety of other resampling and
simulation tasks. For more information, see Cassell (2007).

SAMPRATE=value | (values)| SAS-data-set

RATE=value | (values)| SAS-data-set
specifies the sampling rate, which is the proportion of units to select for the sample. You can provide a
single sampling rate value for the entire sample selection, or you can provide stratum sampling rates
by specifying values or a SAS-data-set .

The sampling rate value must be a positive number. The stratum sampling rate values and the stratum
sampling rates that you provide in the SAS-data-set must be nonnegative numbers. You can specify a
sampling rate as a number between 0 and 1. Or you can specify a rate in percentage form as a number
between 1 and 100, which PROC SURVEYSELECT converts to a proportion. The procedure treats the
value 1 as 100% instead of 1%.

This option is available for equal probability selection methods (METHOD=SRS, METHOD=URS,
METHOD=SYS, METHOD=SEQ, and METHOD=BERNOULLI). For systematic random sampling
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(METHOD=SYS), PROC SURVEYSELECT computes the selection interval as the inverse of the
sampling rate. For more information, see the section “Systematic Random Sampling” on page 8442.
For Bernoulli sampling (METHOD=BERNOULLI), the procedure uses the sampling rate as the
inclusion probability. For more information, see the section “Bernoulli Sampling” on page 8444. For
the other equal probability selection methods, PROC SURVEYSELECT converts the sampling rate to
the sample size before selection by multiplying the total number of units in the stratum or data set by
the sampling rate and rounding up to the nearest integer.

You cannot specify both the SAMPRATE= option and the SAMPSIZE= option.

You can provide sampling rates by specifying one of the following forms:

SAMPRATE=value
RATE=value

specifies a single sampling rate value, which must be a positive number. If you request a stratified
sample design by specifying the STRATA statement, PROC SURVEYSELECT uses the rate
value for all strata.

SAMPRATE=(values)
RATE=(values)

specifies a list of stratum sampling rate values. You can separate the values with blanks or
commas, and you must enclose the list of values in parentheses. The number of stratum sampling
rate values should equal the number of strata in the input data set.

The order of the stratum sampling rate values must match the order of the stratum groups in the
DATA= input data set. When you specify a list of values, the input data set must be sorted by
the STRATA variables in ascending order; you cannot use the DESCENDING or NOTSORTED
option in the STRATA statement.

The stratum sampling rate values must be nonnegative numbers. If you specify a stratum sampling
rate of zero, PROC SURVEYSELECT does not select a sample from the stratum. This has the
effect of subsetting the input data set before sample selection; the stratum that you omit is not
included in the sampling frame or represented in the sample.

SAMPRATE=SAS-data-set
RATE=SAS-data-set

names a SAS-data-set that contains stratum sampling rates. You should provide the sampling
rates in the data set variable named _RATE_. Each observation in the data set should correspond
to a stratum group, which is determined by the values of the STRATA variables.

This data set, which is a secondary input data set, must contain all stratification variables that
you specify in the STRATA statement. The data set must also contain all stratum groups that
appear in the DATA= input data set. The order of the stratum groups in the SAMPRATE= data
set must match the order of the groups in the DATA= data set. If formats are associated with the
STRATA variables, the formats must be consistent in the two data sets. For more information,
see the section “Secondary Input Data Set” on page 8454. You can name only one secondary
input data set in each invocation of PROC SURVEYSELECT.

The stratum sampling rates must be nonnegative numbers. If you specify a stratum sampling rate
of zero, PROC SURVEYSELECT does not select a sample from the stratum. This has the effect
of subsetting the input data set before sample selection; the stratum that you omit is not included
in the sampling frame or represented in the sample.
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SAMPSIZE=n |(values)| SAS-data-set

N=n | (values)| SAS-data-set
specifies the sample size, which is the number of units to select for the sample. You can provide
a single sample size n for the entire sample selection, or you can provide stratum sample sizes by
specifying values or a SAS-data-set .

The value of n must be a positive integer. The stratum sample size values and the stratum sample sizes
that you provide in the SAS-data-set must be nonnegative numbers. For selection methods that select
without replacement, the sample size must not exceed the total number of units in the data set (or the
number of units in the stratum, if you specify a STRATA statement).

This option specifies the number of sampling units to select. If you do not specify a SAMPLINGUNIT
statement, PROC SURVEYSELECT defines sampling units as observations and selects the number of
observations that you specify. If you specify a SAMPLINGUNIT statement, PROC SURVEYSELECT
defines sampling units as groups of observations (clusters) and selects the number of clusters that you
specify.

If you specify SAMPSIZE=n and the ALLOC= option in the STRATA statement, PROC
SURVEYSELECT allocates the sample size n among the strata according to the allocation method that
you request. For more information, see the section “Sample Size Allocation” on page 8450. You cannot
specify SAMPSIZE=values or SAMPSIZE=SAS-data-set when you use the ALLOC= option. You
cannot specify SAMPSIZE= with the MARGIN= option, which determines stratum sample sizes that
provide the specified margin of error. For more information, see the section “Specifying the Margin of
Error” on page 8452.

You cannot specify both the SAMPSIZE= option and the SAMPRATE= option.

You can provide sample size values by specifying one of the following forms:

SAMPSIZE=n

N=n
specifies a single sample size value n, which must be a positive integer. If you request a stratified
sample design, PROC SURVEYSELECT selects n units from each stratum (unless you also
specify the ALLOC= option in the STRATA statement, which allocates the total sample size
among the strata).

For methods that select without replacement, the sample size n must not exceed the number
of units in the stratum unless you also specify the SELECTALL option. If you specify the
SELECTALL option, PROC SURVEYSELECT selects all stratum units when the stratum sample
size exceeds the total number of units in the stratum.

SAMPSIZE=(values)

N=(values)
specifies a list of stratum sample size values. You can separate the values with blanks or commas,
and you must enclose the list of values in parentheses. The number of sample size values must
equal the number of strata in the input data set.

The order of the stratum sample size values must match the order of the stratum groups in the
DATA= input data set. When you specify a list of values, the input data set must be sorted by
the STRATA variables in ascending order; you cannot use the DESCENDING or NOTSORTED
option in the STRATA statement.
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The values of the stratum sample sizes must be nonnegative numbers. If you specify a stratum
sample size of zero, PROC SURVEYSELECT does not select a sample from the stratum. This
has the effect of subsetting the input data set before sample selection; the stratum that you omit is
not included in the sampling frame or represented in the sample.

SAMPSIZE=SAS-data-set

N=SAS-data-set
names a SAS-data-set that contains stratum sample sizes. You should provide the sample sizes
in the data set variable named _NSIZE_ or SampleSize. Each observation in the data set should
correspond to a stratum group, which is determined by the values of the STRATA variables.

This data set, which is a secondary data set, must contain all stratification variables that you
specify in the STRATA statement. The data set must also contain all stratum groups that appear
in the DATA= input data set. The order of the stratum groups in the SAMPSIZE= data set must
match the order of the groups in the DATA= data set. If formats are associated with the STRATA
variables, the formats must be consistent in the two data sets. For more information, see the
section “Secondary Input Data Set” on page 8454. You can name only one secondary input data
set in each invocation of PROC SURVEYSELECT.

The stratum sample sizes must be nonnegative numbers. If you specify a stratum sample size of
zero, PROC SURVEYSELECT does not select a sample from the stratum. This has the effect of
subsetting the input data set before sample selection; the stratum that you omit is not included in
the sampling frame or represented in the sample.

SEED < =value | SAS-data-set >
specifies the initial seed for random number generation. You can provide a single seed value for the
entire sample selection, or you can provide stratum initial seeds by specifying a SAS-data-set . To
initialize random number generation, a seed must be a positive integer. If you do not specify this
option, or if you specify an initial seed that is negative or zero, PROC SURVEYSELECT uses the
time of day from the computer’s clock to obtain an initial seed. For more information, see the section
“Random Number Generation” on page 8440.

PROC SURVEYSELECT displays the value of the initial seed in the “Sample Selection Summary”
table. To reproduce the same sample in a subsequent execution of PROC SURVEYSELECT, you can
specify the same initial seed in the SEED= option (for the same input data set and sample selection
parameters).

If you specify a STRATA statement, you can provide stratum initial seeds by specifying a SAS-data-set .
If you do not provide stratum initial seeds, the procedure generates random numbers continuously
across strata from the random number stream that is initialized by the single seed value or by default.
You can specify the OUTSEED option to include stratum initial seeds in the output data set.

Beginning in SAS/STAT 12.1, PROC SURVEYSELECT uses the Mersenne-Twister random number
generator by default. In previous releases, PROC SURVEYSELECT uses the RANUNI random
number generator, which you can now request by specifying the RANUNI option. To reproduce
samples that PROC SURVEYSELECT selects in releases before SAS/STAT 12.1, use the RANUNI
option with the SEED= option (for the same input data set and sample selection parameters).
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You can provide initial seeds by specifying one of the following forms:

SEED
indicates that stratum initial seeds are provided in a secondary input data set that you name in
another option (for example, the SAMPSIZE=SAS-data-set option). You should provide the
initial seeds in the data set variable named _SEED_ or InitialSeed. For more information, see the
section “Secondary Input Data Set” on page 8454. You can name only one secondary input data
set in each invocation of PROC SURVEYSELECT.

SEED=value
specifies a single initial seed value for random number generation. To initialize random number
generation, the value must be a positive integer.

SEED=SAS-data-set
names a SAS-data-set that contains stratum initial seeds. You should provide the stratum initial
seeds in the data set variable named _SEED_ or InitialSeed. Each observation in the data
set should correspond to a stratum group, which is determined by the values of the STRATA
variables.

This data set, which is a secondary input data set, must contain all stratification variables that
you specify in the STRATA statement. The data set must also contain all stratum groups that
appear in the DATA= input data set. The order of the stratum groups in the SEED= data set must
match the order of the groups in the DATA= data set. If formats are associated with the STRATA
variables, the formats must be consistent in the two data sets. For more information, see the
section “Secondary Input Data Set” on page 8454. You can name only one secondary input data
set in each invocation of PROC SURVEYSELECT.

The OUTSEED option includes the stratum initial seeds in the OUT= output data set. You can
reproduce the same sample in a subsequent execution of PROC SURVEYSELECT by specifying
the same stratum initial seeds (for the same input data set and sample selection parameters). If
you need to reproduce the same sample for only a subset of the strata, you can use the same initial
seeds for the strata in the subset.

SELECTALL
requests that PROC SURVEYSELECT select all stratum units when the stratum sample size exceeds
the total number of units in the stratum. By default, PROC SURVEYSELECT does not allow you to
specify a stratum sample size that is greater than the total number of units in the stratum, unless you
are using a with-replacement selection method.

The SELECTALL option is available for the following without-replacement selection
methods: METHOD=SRS, METHOD=SYS, METHOD=SEQ, METHOD=PPS, and
METHOD=PPS_SAMPFORD.

The SELECTALL option is not available for with-replacement selection methods, with-minimum-
replacement methods, or those PPS methods that select two units per stratum.

SORT=NEST | SERP
specifies the type of sorting by CONTROL variables. The option SORT=NEST requests nested sorting,
and SORT=SERP requests hierarchic serpentine sorting. The default is SORT=SERP. See the section
“Sorting by CONTROL Variables” on page 8439 for descriptions of serpentine and nested sorting.
Where there is only one CONTROL variable, the two types of sorting are equivalent.

The SORT= option is available when you specify a CONTROL statement for systematic or
sequential selection methods (METHOD=SYS, METHOD=PPS_SYS, METHOD=SEQ, and
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METHOD=PPS_SEQ). When you specify a CONTROL statement, PROC SURVEYSELECT sorts
the input data set by the CONTROL variables within strata before selecting the sample.

The SORT= option and the CONTROL statement are not available when you specify a
SAMPLINGUNIT statement. For more information, see the descriptions of the CONTROL
and SAMPLINGUNIT statements.

When you specify a CONTROL statement, you can also use the OUTSORT= option to name an output
data set that contains the sorted input data set. Otherwise, if you do not specify the OUTSORT= option,
the sorted data set replaces the input data set.

STATS
includes the selection probability and sampling weight in the OUT= output data set for equal probability
selection methods when you do not specify a STRATA statement. By default, the output data set does
not include these values for equal probability selection methods unless you specify a STRATA statement.
The STATS option applies to the following selection methods: METHOD=SRS, METHOD=URS,
METHOD=SYS, METHOD=SEQ, and METHOD=BERNOULLI.

In addition to the selection probability and sampling weight, the STATS option includes the following
statistics in the output data set for METHOD=BERNOULLI: total number of sampling units, expected
sample size, actual sample size, and adjusted sampling weight. For more information, see the section
“Bernoulli Sampling” on page 8444.

For PPS selection methods, the output data set contains selection probabilities and sampling weights
by default. The STATS option has no effect for PPS methods.

For more information about the contents of the output data set, see the section “Sample Output Data
Set” on page 8454.

CONTROL Statement
CONTROL variables ;

The CONTROL statement names one or more variables for sorting the input data set before sample selection.
The CONTROL variables can be character or numeric. If you also specify a STRATA statement, PROC
SURVEYSELECT sorts by CONTROL variables within strata.

Control sorting is available for systematic and sequential selection methods (METHOD=SYS,
METHOD=PPS_SYS, METHOD=SEQ, and METHOD=PPS_SEQ). Ordering the sampling units be-
fore systematic or sequential selection can provide additional control over the distribution of the sample.

Control sorting is not available when you use a SAMPLINGUNIT statement, which defines groups of
observations as units (clusters) for sample selection. See the description of the SAMPLINGUNIT statement
for information about ordering clusters before systematic or sequential selection.

By default (or if you specify the SORT=SERP option in the PROC SURVEYSELECT statement), PROC
SURVEYSELECT uses hierarchic serpentine sorting by the CONTROL variables. If you specify the
SORT=NEST option, the procedure uses nested sorting. For more information about serpentine and nested
sorting, see the section “Sorting by CONTROL Variables” on page 8439.

You can use the OUTSORT= option in the PROC SURVEYSELECT statement to name an output data
set that contains the sorted input data set. If you do not specify the OUTSORT= option when you use the
CONTROL statement, then the sorted data set replaces the input data set.
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FREQ Statement
FREQ variable ;

The FREQ statement names a numeric variable that contains the frequency of occurrence of each observation.
If you use a FREQ statement, PROC SURVEYSELECT assumes that an observation represents n observations,
where n is the value of the FREQ variable for the observation. The FREQ statement is not available when
you specify a SAMPLINGUNIT statement.

The FREQ statement is available only for sample allocation when no sample is selected, which you can
request by specifying the ALLOC= and NOSAMPLE options in the STRATA statement. The ALLOC=
option requests allocation of the total sample size among the strata, and the NOSAMPLE option requests that
no sample be selected after allocation. When you specify the NOSAMPLE option, the procedure computes
stratum sample sizes according to the allocation method that you request, but does not select the sample. For
more information, see the section “Sample Size Allocation” on page 8450.

The sum of the FREQ variable values (frequencies) represents the total number of sampling units. The sum
of the frequencies in a stratum represents the total number of sampling units in the stratum. When you use a
FREQ statement, the sample size allocation is based on the expanded total and stratum frequencies.

Values of the FREQ variable must be nonmissing and nonnegative. If a value of the FREQ variable is 0,
PROC SURVEYSELECT ignores the observation. If a value of the FREQ variable is not an integer, PROC
SURVEYSELECT uses only the integer portion as the frequency of the observation.

ID Statement
ID variables ;

The ID statement names one or more variables from the DATA= input data set to include in the OUT= output
data set of selected units. If there is no ID statement, PROC SURVEYSELECT includes all variables from
the input data set in the output data set. The ID variables can be either character or numeric.

SAMPLINGUNIT | CLUSTER Statement
SAMPLINGUNIT | CLUSTER variables < / options > ;

The SAMPLINGUNIT statement names one or more variables that identify the sampling units as groups of
observations (clusters). The combinations of categories of SAMPLINGUNIT variables define the sampling
units. If there is a STRATA statement, sampling units are nested within strata.

When you use a SAMPLINGUNIT statement to define units (clusters), PROC SURVEYSELECT se-
lects a sample of these units by using the selection method and design parameters that you specify in
the PROC SURVEYSELECT statement. If you do not use a SAMPLINGUNIT statement, then PROC
SURVEYSELECT uses the input data set observations as sampling units by default.

The SAMPLINGUNIT variables are one or more variables in the DATA= input data set. These variables
can be either character or numeric. The formatted values of the SAMPLINGUNIT variables determine
the SAMPLINGUNIT variable levels. Thus, you can use formats to group values into levels. For more
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information, see the FORMAT procedure in the Base SAS Procedures Guide and the FORMAT statement
and SAS formats in SAS Formats and Informats: Reference.

You can use a SAMPLINGUNIT statement with any equal probability selection method or PPS selection
method. The SAMPLINGUNIT statement is not available for Poisson sampling (METHOD=POISSON).

If you specify the PPS option in the SAMPLINGUNIT statement and do not specify a SIZE statement, the
procedure computes sampling unit size as the number of observations in the sampling unit. If you specify a
SIZE statement and a SAMPLINGUNIT statement, the procedure computes sampling unit size by summing
the size measures of all observations in the sampling unit.

By default, PROC SURVEYSELECT sorts the input data set by the SAMPLINGUNIT variables within
strata before sample selection. This groups the observations into sampling units and orders the sampling
units by the SAMPLINGUNIT variables. If you do not want the procedure to sort the input data set by the
SAMPLINGUNIT variables, then specify the PRESORTED option in the SAMPLINGUNIT statement. By
using the PRESORTED option, you can provide the order of the sampling units for systematic and sequential
selection methods. The CONTROL statement is not available with the SAMPLINGUNIT statement.

The SAMPLINGUNIT statement defines groups of observations (clusters) to use as sampling units, and
PROC SURVEYSELECT selects a sample of these units. When you use a SAMPLINGUNIT statement,
PROC SURVEYSELECT does not select samples of observations from within the sampling units (clusters).
To select independent samples within groups, use the STRATA statement.

You can specify the following options in the SAMPLINGUNIT statement after a slash (/):

PPS
computes a sampling unit’s size measure as the number of observations in the sampling unit. The
procedure then uses these size measures to select a sample according to the PPS selection method that
you specify in the METHOD= option in the PROC SURVEYSELECT statement.

This option has no effect when you specify a SIZE statement. When you specify a SIZE statement, the
procedure computes sampling unit size by summing the size measures of all observations that belong
to the sampling unit.

PRESORTED
requests that PROC SURVEYSELECT not sort the input data set by the SAMPLINGUNIT variables
within strata. By default, the procedure sorts the input data set by the SAMPLINGUNIT variables,
which groups the observations into sampling units and orders the units by the SAMPLINGUNIT
variables.

The PRESORTED option enables you to provide the order of the sampling units. For systematic
and sequential selection methods, ordering provides additional control over the distribution of the
sample and gives some benefits of proportionate stratification. Systematic and sequential methods
include METHOD=SYS, METHOD=PPS_SYS, METHOD=SEQ, and METHOD=PPS_SEQ. For
more information, see the descriptions of these methods in the section “Sample Selection Methods” on
page 8440.

When you specify the PRESORTED option, the procedure treats the sampling unit groups as
NOTSORTED. Like the BY statement option NOTSORTED, this does not mean that the data are
unsorted by the SAMPLINGUNIT variables, but rather that the data are arranged in groups (according
to values of the SAMPLINGUNIT variables) and that these groups are not necessarily in alphabetical
or increasing numeric order. For more information about the BY statement NOTSORTED option, see
SAS Language Reference: Concepts.
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SIZE Statement
SIZE variable ;

The SIZE statement names one and only one variable that contains size measures that are used for PPS
selection. The SIZE variable must be numeric.

If you specify a SAMPLINGUNIT statement together with a SIZE statement, the procedure computes a
sampling unit’s size by summing the size measures of all observations that belong to the sampling unit.
Alternatively, if you specify the PPS option in the SAMPLINGUNIT statement and do not specify a SIZE
statement, the procedure computes sampling unit size as the number of observations in the sampling unit.

When the value of a sampling unit’s size measure is missing or nonpositive, that sampling unit is excluded
from the sample selection. For more information, see the section “Missing Values” on page 8438.

You can adjust the size measure values by using the MAXSIZE= option, the MINSIZE= option, or both of
these options in the PROC SURVEYSELECT statement.

All PPS selection methods require size measures, which you can provide by specifying a SIZE statement (or by
specifying the PPS option in the SAMPLINGUNIT statement). PPS selection methods include the following:
METHOD=PPS, METHOD=PPS_BREWER, METHOD=PPS_MURTHY, METHOD=PPS_SAMPFORD,
METHOD=PPS_SEQ, METHOD=PPS_SYS, and METHOD=PPS_WR. For information about how size
measures are used in sample selection, see the descriptions of PPS selection methods in the section “Sample
Selection Methods” on page 8440.

A sampling unit’s size measure, which you provide for PPS selection by specifying a SIZE statement, is not
the same as the sample size. The sample size is the number of units to select for the sample; you specify the
sample size in the SAMPSIZE= option in the PROC SURVEYSELECT statement.

For METHOD=POISSON, the variable that you specify in the SIZE statement provides inclusion probabilities
for Poisson sampling. For more information, see the section “Poisson Sampling” on page 8444. When the
value of the SIZE variable is missing, nonpositive, or greater than 1, the sampling unit is not included in the
sample selection.

STRATA Statement
STRATA variables < / options > ;

You can specify a STRATA statement to obtain stratified sampling. The STRATA statement names one or
more variables that partition the input data set into nonoverlapping groups (strata). The combinations of
levels of the STRATA variables define the strata. PROC SURVEYSELECT independently selects samples
from the strata according to the selection method and design parameters that you specify in the PROC
SURVEYSELECT statement. For information about stratification in sample design, see Lohr (2010), Kalton
(1983), Kish (1965), Kish (1987), and Cochran (1977).

The STRATA variables are one or more variables in the DATA= input data set. These variables can be either
character or numeric, but PROC SURVEYSELECT treats them as categorical variables. The formatted values
of the STRATA variables determine the STRATA variable levels. Thus, you can use formats to group values
into levels. For more information, see the FORMAT procedure in the Base SAS Procedures Guide and the
FORMAT statement and SAS formats in SAS Formats and Informats: Reference.
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The STRATA variables function much like BY variables, and PROC SURVEYSELECT expects the input
data set to be sorted by the STRATA variables. The BY statement options DESCENDING and NOTSORTED
are available in the STRATA statement. For more information about these BY statement options, see SAS
Language Reference: Concepts.

If you specify a CONTROL statement or METHOD=PPS in the PROC SURVEYSELECT statement, the
input data set must be sorted by the STRATA variables in ascending order. In this case, you cannot specify
the NOTSORTED or DESCENDING option in the STRATA statement.

If your input data set is not sorted by the STRATA variables, use one of the following alternatives:

• Sort the data by using the SORT procedure with the STRATA variables in a BY statement.

• Specify the NOTSORTED or DESCENDING option in the STRATA statement (if you do not specify
a CONTROL statement or METHOD=PPS in the PROC SURVEYSELECT statement). The NOT-
SORTED option does not mean that the data are unsorted but rather that the data are arranged in groups
(according to values of the STRATA variables) and that these groups are not necessarily in alphabetical
or increasing numeric order.

• Create an index on the STRATA variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

Table 102.2 summarizes the options available in the STRATA statement. Descriptions of the options follow
in alphabetical order.

Table 102.2 STRATA Statement Options for Sample Allocation

Option Description

ALLOC=name Specifies the allocation method
ALLOC=(values) Provides allocation proportions
ALLOCMIN= Specifies the minimum sample size per stratum
ALPHA= Specifies the confidence level for the MARGIN= option
COST= Provides stratum costs
MARGIN= Specifies the margin of error
NOSAMPLE Allocates but does not select the sample
STATS Displays additional allocation statistics
VAR= Provides stratum variances

You can specify the following options in the STRATA statement after a slash (/):

ALLOC=name | (values)| SAS-data-set
specifies the allocation method name or specifies the stratum allocation proportions as a list of
values or a SAS-data-set . You can use the ALLOC= option with any selection method (which
you specify in the PROC SURVEYSELECT statement) except METHOD=PPS_BREWER and
METHOD=PPS_MURTHY, either of which selects two units from each stratum.
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You can specify the sample size allocation by using one of the following forms:

ALLOC=name
specifies the method for allocating the total sample size among the strata. You can specify one of
the following values for name:

NEYMAN
requests Neyman allocation, which allocates the total sample size among the strata in
proportion to the stratum sizes and variances. For more information, see the section “Neyman
Allocation” on page 8452. If you specify ALLOC=NEYMAN, you must provide the stratum
variances by also specifying the VAR= option.

OPTIMAL

OPT
requests optimal allocation, which allocates the total sample size among the strata in propor-
tion to the stratum sizes, stratum variances, and stratum costs. For more information, see the
section “Optimal Allocation” on page 8451. If you specify ALLOC=OPTIMAL, you must
provide the stratum variances by also specifying the VAR= option, and you must provide the
stratum costs by also specifying the COST= option.

PROPORTIONAL

PROP
requests proportional allocation, which allocates the total sample size in proportion to the
stratum sizes, where stratum size is the number of sampling units in the stratum. For more
information, see the section “Proportional Allocation” on page 8451.

ALLOC=(values)
specifies a list of stratum allocation proportion values. You can separate the values with blanks or
commas, and you must enclose the list of values in parentheses. Each value should correspond to
a stratum group, and the number of values must equal the number of strata in the input data set.

A stratum allocation proportion specifies the proportion of the total sample size to allocate to the
stratum. The sum of the allocation proportions must be 1 or 100%.

The allocation proportions must be positive numbers. You can specify the proportion values
as numbers between 0 and 1. Or you can specify the values in percentage form (as numbers
between 1 and 100), and PROC SURVEYSELECT converts the numbers to proportions. PROC
SURVEYSELECT treats the value 1 as 100% instead of 1%.

The order of the stratum allocation proportions must match the order of the stratum groups in
the DATA= input data set. When you specify a list of proportion values, the input data set must
be sorted by the STRATA variables in ascending order; you cannot use the DESCENDING or
NOTSORTED option in the STRATA statement.

ALLOC=SAS-data-set
names a SAS-data-set that contains stratum allocation proportions. You should provide the
stratum allocation proportions in the data set variable named _ALLOC_. Each observation in the
data set should correspond to a stratum group, which is determined by the values of the STRATA
variables.

A stratum allocation proportion specifies the proportion of the total sample size to allocate to the
corresponding stratum. The sum of the allocation proportions must be 1 or 100%.



8436 F Chapter 102: The SURVEYSELECT Procedure

The allocation proportions must be positive numbers. You can specify the proportion values
as numbers between 0 and 1. Or you can specify the values in percentage form (as numbers
between 1 and 100), and PROC SURVEYSELECT converts the numbers to proportions. PROC
SURVEYSELECT treats the value 1 as 100% instead of 1%.

The ALLOC= data set, which is a secondary input data set, must contain all stratification variables
that you specify in the STRATA statement. The data set must also contain all stratum groups
that appear in the DATA= input data set. The order of the stratum groups in the ALLOC= data
set must match the order of the groups in the DATA= data set. If formats are associated with
the STRATA variables, the formats must be consistent between the two data sets. For more
information, see the section “Secondary Input Data Set” on page 8454. You can name only one
secondary data set in each invocation of PROC SURVEYSELECT.

ALLOCMIN=n
specifies the minimum sample size to allocate to a stratum. If you specify ALLOCMIN=n, PROC
SURVEYSELECT allocates at least n sampling units to each stratum.

The minimum stratum sample size n must be a positive integer. The value of n times the number of
strata must not exceed the total sample size to be allocated. For without-replacement selection methods,
the value of n must not exceed the number of sampling units in any stratum.

By default, PROC SURVEYSELECT allocates at least one sampling unit to each stratum.

ALPHA=˛
specifies the confidence level that PROC SURVEYSELECT uses in the MARGIN= computations. For
more information, see the section “Specifying the Margin of Error” on page 8452.

The value of ˛ must be between 0 and 1; a confidence level of ˛ produces a 100.1 � ˛/% confidence
interval. By default, ALPHA=0.05, which produces a 95% confidence interval.

COST < =values | SAS-data-set >
specifies the stratum-level costs that PROC SURVEYSELECT uses to compute optimal allocation
when you specify ALLOC=OPTIMAL. For more information, see the section “Optimal Allocation”
on page 8451. The stratum costs must be positive numbers. A stratum cost represents the per-unit cost,
which is the survey cost of a single unit in the stratum.

You can provide stratum costs by specifying one of the following forms:

COST
indicates that stratum costs are provided in a secondary input data set that you name in another
option (for example, the VAR=SAS-data-set option). You should provide the stratum costs in
the data set variable named _COST_. For more information, see the section “Secondary Input
Data Set” on page 8454. You can name only one secondary input data set in each invocation of
PROC SURVEYSELECT.

COST=(values)
specifies a list of stratum cost values. You can separate the values with blanks or commas, and
you must enclose the list of values in parentheses. Each value should correspond to a stratum
group, and the number of values must equal the number of strata in the input data set.

The order of the stratum cost values must match the order of the stratum groups in the DATA=
input data set. When you specify a list of values, the input data set must be sorted by the STRATA
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variables in ascending order; you cannot use the DESCENDING or NOTSORTED option in the
STRATA statement.

COST=SAS-data-set
names a SAS-data-set that contains the stratum costs. You should provide the stratum costs in
the data set variable named _COST_. Each observation in the data set should correspond to a
stratum group, which is determined by the values of the STRATA variables.

This data set, which is a secondary data set, must contain all stratification variables that you
specify in the STRATA statement. The data set must also contain all stratum groups that appear
in the DATA= input data set. The order of the stratum groups in the COST= data set must match
the order of the groups in the DATA= data set. If formats are associated with the STRATA
variables, the formats must be consistent in the two data sets. For more information, see the
section “Secondary Input Data Set” on page 8454. You can name only one secondary input data
set in each invocation of PROC SURVEYSELECT.

MARGIN=value
specifies the desired margin of error for estimating the overall mean from the stratified sample. When
you specify this option, PROC SURVEYSELECT determines the stratum sample sizes that achieve the
margin value by using the allocation method or proportions that you specify in the ALLOC= option.
For more information, see the section “Specifying the Margin of Error” on page 8452.

The value must be a positive number. When you specify this option, you must also provide the stratum
variances in the VAR= option.

You can use the ALPHA= option to specify the confidence level for the MARGIN= computations. By
default, ALPHA=0.05, which produces a 95% confidence interval.

You can specify the MARGIN= option with any allocation method (proportional, optimal, or Neyman)
or with allocation proportions (ALLOC=(values) or ALLOC=SAS-data-set).

Allocation to achieve a specified margin is an alternative approach to the allocation of a specified
total sample size. Therefore, when you specify the MARGIN= option, you cannot also specify a total
sample size in the SAMPSIZE= option in the PROC SURVEYSELECT statement.

NOSAMPLE
requests that PROC SURVEYSELECT not select a sample after computing the allocation. When
you specify this option, the OUT= output data set contains the stratum sample sizes that PROC
SURVEYSELECT computes. For more information, see the section “Allocation Output Data Set” on
page 8458. (By default, PROC SURVEYSELECT selects a sample after computing the allocation.)

STATS
displays sample allocation statistics. When you specify the MARGIN= option, the STATS option dis-
plays the expected margin of error for the allocation. For more information, see the section “Specifying
the Margin of Error” on page 8452. When you specify ALLOC=OPTIMAL or ALLOC=NEYMAN
but do not specify the MARGIN= option, the STATS option displays the expected variance, which is
computed from the stratum variances that you provide and the allocated stratum sample sizes. When
you specify ALLOC=OPTIMAL, the STATS option also displays the total stratum-level cost, which is
computed from the stratum costs that you provide and the allocated stratum sample sizes.
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VAR < =values | SAS-data-set >
specifies the stratum variances that PROC SURVEYSELECT uses to compute optimal allocation
(ALLOC=OPTIMAL), Neyman allocation (ALLOC=NEYMAN), or allocation for a specified margin
(MARGIN=). The stratum variances must be positive numbers.

You can provide stratum variances by specifying one of the following forms:

VAR
indicates that stratum variances are provided in a secondary input data set that you name in
another option (for example, the COST=SAS-data-set option). You should provide the stratum
variances in the data set variable named _VAR_. For more information, see the section “Secondary
Input Data Set” on page 8454. You can name only one secondary input data set in each invocation
of PROC SURVEYSELECT.

VAR=(values)
specifies a list of stratum variance values. You can separate the values with blanks or commas,
and you must enclose the list of values in parentheses. Each value should correspond to a stratum
group, and the number of values must equal the number of strata in the input data set.

The order of the stratum variance values must match the order of the stratum groups in the
DATA= input data set. When you specify a list of values, the input data set must be sorted by
the STRATA variables in ascending order; you cannot use the DESCENDING or NOTSORTED
option in the STRATA statement.

VAR=SAS-data-set
names a SAS-data-set that contains the stratum variances. You should provide the stratum
variances in the data set variable named _VAR_. Each observation in the data set should
correspond to a stratum group, which is determined by the values of the STRATA variables.

This data set, which is a secondary data set, must contain all stratification variables that you
specify in the STRATA statement. The data set must also contain all stratum groups that appear
in the DATA= input data set. The order of the stratum groups in the VAR= data set must match
the order of the groups in the DATA= data set. If formats are associated with the STRATA
variables, the formats must be consistent in the two data sets. For more information, see the
section “Secondary Input Data Set” on page 8454. You can name only one secondary input data
set in each invocation of PROC SURVEYSELECT.

Details: SURVEYSELECT Procedure

Missing Values
PROC SURVEYSELECT treats missing values of STRATA and SAMPLINGUNIT variables like any other
STRATA or SAMPLINGUNIT variable value. The missing values form a separate, valid variable level.

When you use a FREQ statement for sample size allocation, all values of the frequency variable must be
nonmissing. If there is a missing or nonpositive frequency, PROC SURVEYSELECT does not perform the
allocation.
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When you specify a SIZE variable, any sampling units that have missing or nonpositive size measures
are excluded from the sample selection. The procedure provides a log note that reports the number of
observations omitted due to missing or nonpositive size measures.

If you do not use a SAMPLINGUNIT statement with the SIZE statement, your sampling units are input
data set observations, and observations that have missing or nonpositive size measures are excluded from
the sample selection. If you do use a SAMPLINGUNIT statement with the SIZE statement, the procedure
computes sampling unit size by summing the size measures of all observations in the unit. When summing
the observation size measures, the procedure omits any observations that have missing or nonpositive size
measures. If the size of an entire sampling unit is missing or nonpositive, the procedure excludes that unit
from the sample selection. When a sampling unit is selected, the output data set includes all observations that
belong to the selected unit, regardless of whether an observation’s size measure is missing.

If you provide stratum-level design or allocation information in a secondary input data set, the variable values
should be nonmissing. For example, if a stratum value of _NSIZE_ (or SampleSize) in the SAMPSIZE=
secondary input data set is missing or negative, PROC SURVEYSELECT cannot select a sample from
the stratum. The procedure gives an error message and skips the stratum. Similarly, if other secondary
data set variables have missing values for a stratum, a sample cannot be selected from the stratum. These
variables include _NRATE_, _MINSIZE_, _MAXSIZE_, _CERTSIZE_, and _CERTP_. Additionally, if any of
the sample allocation variables in the secondary input data set have missing or nonpositive values, PROC
SURVEYSELECT cannot compute the sample allocation. Variables that provide information for allocation
include _ALLOC_, _VAR_, and _COST_. For more information, see the section “Secondary Input Data Set”
on page 8454.

Sorting by CONTROL Variables
If you specify a CONTROL statement, PROC SURVEYSELECT sorts the input data set by the CONTROL
variables before selecting the sample. If you also specify a STRATA statement, the procedure sorts by
CONTROL variables within strata. Sorting by CONTROL variables is available for systematic and se-
quential selection methods, which include METHOD=SYS, METHOD=PPS_SYS, METHOD=SEQ, and
METHOD=PPS_SEQ. Sorting provides additional control over the distribution of the sample and gives some
benefits of proportionate stratification.

Control sorting is not available when you use a SAMPLINGUNIT statement, which defines groups of
observations as units (clusters) for sample selection. See the description of the SAMPLINGUNIT statement
for information about ordering clusters before systematic or sequential selection.

When you specify a CONTROL statement, the sorted data set replaces the input data set by default. Alter-
natively, you can use the OUTSORT= option to name an output data set that contains the sorted input data
set.

PROC SURVEYSELECT provides two types of sorting: hierarchic serpentine sorting and nested sorting. By
default (or if you specify the SORT=SERP option), the procedure uses serpentine sorting. If you specify
the SORT=NEST option, then the procedure sorts by the CONTROL variables according to nested sorting.
These two types of sorting are equivalent when there is only one CONTROL variable.

If you request nested sorting, PROC SURVEYSELECT sorts observations in the same order as PROC SORT
does for an ascending sort by the CONTROL variables. For more information, see the chapter “The SORT
Procedure” in the Base SAS Procedures Guide. PROC SURVEYSELECT sorts within strata if you also
specify a STRATA statement. The procedure first arranges the input observations in ascending order of
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the first CONTROL variable. Then within each level of the first control variable, the procedure arranges
the observations in ascending order of the second CONTROL variable. This continues for all CONTROL
variables that are specified.

In hierarchic serpentine sorting, PROC SURVEYSELECT sorts by the first CONTROL variable in ascending
order. Then within the first level of the first CONTROL variable, the procedure sorts by the second CONTROL
variable in ascending order. Within the second level of the first CONTROL variable, the procedure sorts by
the second CONTROL variable in descending order. Sorting by the second CONTROL variable continues to
alternate between ascending and descending sorting throughout all levels of the first CONTROL variable. If
there is a third CONTROL variable, the procedure sorts by that variable within levels formed from the first
two CONTROL variables, again alternating between ascending and descending sorting. This continues for all
CONTROL variables that are specified. This sorting algorithm minimizes the change from one observation
to the next with respect to the CONTROL variable values, thus making nearby observations more similar.
For more information about serpentine sorting, see Chromy (1979) and Williams and Chromy (1980).

Random Number Generation
The probability sampling methods provided by PROC SURVEYSELECT use random numbers in their selec-
tion algorithms, as described in the following sections and in the references cited. PROC SURVEYSELECT
uses a uniform random number function to generate streams of pseudo-random numbers from an initial
starting point, or seed. You can use the SEED= option to specify the initial seed. If you do not specify the
SEED= option, PROC SURVEYSELECT uses the time of day from the computer’s clock to obtain the initial
seed. For information about specifying initial seeds for strata, storing stratum seeds in the output data set,
and reproducing samples, see the description of the SEED= option.

Beginning in SAS/STAT 12.1, PROC SURVEYSELECT uses the Mersenne-Twister random number generator
by default. The Mersenne-Twister generator (Matsumoto and Nishimura 1998) has a very long period
(219937 � 1) and very good statistical properties. The algorithm is a twisted generalized feedback shift
register. This is the same random number generator that the RAND function provides for the uniform
distribution. For more information, see SAS Functions and CALL Routines: Reference.

In previous releases, PROC SURVEYSELECT uses the RANUNI random number generator, which you can
now request by specifying the RANUNI option. This uniform random number generator is based on the
method of Fishman and Moore (1982), which uses a prime modulus multiplicative generator with modulus
231 and multiplier 397,204,094. This is the same uniform random number generator that the RANUNI
function provides. For more information about the RANUNI function, see SAS Functions and CALL Routines:
Reference.

To reproduce samples that PROC SURVEYSELECT selects in releases before SAS/STAT 12.1, you can use
the RANUNI option with the SEED= option (for the same input data set and selection parameters).

Sample Selection Methods
PROC SURVEYSELECT provides a variety of methods for selecting probability-based random samples.
With probability sampling, each unit in the survey population has a known, positive probability of selection.
This property of probability sampling avoids selection bias and enables you to use statistical theory to make
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valid inferences from the sample to the survey population. For more information about probability sampling,
see Lohr (2010), Kish (1965), Kish (1987), Kalton (1983), and Cochran (1977).

In equal probability sampling, each unit in the sampling frame, or in a stratum, has the same probability of
being selected for the sample. PROC SURVEYSELECT provides the following methods that select units
with equal probability: simple random sampling, unrestricted random sampling, systematic random sampling,
sequential random sampling, and Bernoulli sampling. In simple random sampling, units are selected without
replacement, which means that a unit cannot be selected more than once. Both systematic and sequential
equal probability sampling are also without replacement. In unrestricted random sampling, units are selected
with replacement, which means that a unit can be selected more than once. In with-replacement sampling,
the number of hits refers to the number of times a unit is selected.

In probability proportional to size (PPS) sampling, a unit’s selection probability is proportional to its
size measure. PROC SURVEYSELECT provides the following methods that select units with probability
proportional to size (PPS): PPS sampling without replacement, PPS sampling with replacement, PPS
systematic sampling, PPS sequential sampling, Brewer’s method, Murthy’s method, and Sampford’s method.
PPS sampling is often used in cluster sampling, where you select clusters (or groups of sampling units) of
varying size in the first stage of selection. For example, clusters might be schools, hospitals, or geographical
areas, and the final sampling units might be students, patients, or citizens. Cluster sampling can provide
efficiencies in frame construction and other survey operations. For more information, see Lohr (2010), Kalton
(1983), and Kish (1965), in addition to the other references cited in the following sections.

The following sections give detailed descriptions of the sample selection methods available in PROC
SURVEYSELECT. In these sections, nh denotes the sample size (the number of units in the sample)
for stratum h, and Nh denotes the population size (number of units in the population) for stratum h, for
h D 1; 2; : : : ;H . When the sample design is not stratified, n denotes the sample size, and N denotes the
population size. For PPS sampling, Mhi represents the size measure for unit i in stratum h, Mh� is the total of
all size measures for the population of stratum h, and Zhi DMhi=Mh� is the relative size of unit i in stratum
h.

Simple Random Sampling

The method of simple random sampling (METHOD=SRS) selects units with equal probability and without
replacement. Each possible sample of n different units out of N has the same probability of being selected.
The selection probability for each individual unit is n=N . When you request stratified sampling by using a
STRATA statement, PROC SURVEYSELECT selects samples independently within strata. The selection
probability for a unit in stratum h is nh=Nh for stratified simple random sampling.

By default, PROC SURVEYSELECT uses Floyd’s ordered hash table algorithm for simple random sampling.
This algorithm is fast, efficient, and appropriate for large data sets. For more information, see Bentley and
Floyd (1987) and Bentley and Knuth (1986).

If there is not enough memory available for Floyd’s algorithm, PROC SURVEYSELECT switches to the
sequential algorithm of Fan, Muller, and Rezucha (1962), which requires less memory but might require
more time to select the sample. When PROC SURVEYSELECT uses the alternative sequential algorithm, it
writes a note to the log. To request the sequential algorithm, even if enough memory is available for Floyd’s
algorithm, you can specify METHOD=SRS2 in the PROC SURVEYSELECT statement.
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Unrestricted Random Sampling

The method of unrestricted random sampling (METHOD=URS) selects units with equal probability and with
replacement. Because units are selected with replacement, a unit can be selected for the sample more than
once. The expected number of hits (selections) for each unit is n=N when sampling without stratification.
For stratified sampling, the expected number of hits for a unit in stratum h is nh=Nh. The expected number
of hits exceeds one when the sample size n is greater than the population size N.

For unrestricted random sampling, by default, the output data set contains a single copy of each unit selected,
even when a unit is selected more than once, and the variable NumberHits records the number of hits
(selections) for each unit. If you specify the OUTHITS option, the output data set contains m copies of a
sampling unit for which NumberHits is m; for example, the output data set contains three copies of a sampling
unit that is selected three times (NumberHits is three). For information about the contents of the output data
set, see the section “Sample Output Data Set” on page 8454.

Systematic Random Sampling

Systematic random sampling (METHOD=SYS) selects units at a fixed interval throughout the sampling frame
(or stratum) after a random start. If you request stratified sampling by specifying a STRATA statement, PROC
SURVEYSELECT independently selects systematic samples from the strata. PROC SURVEYSELECT
applies systematic selection to sampling units in the order of their appearance in the input data set, or in their
sorted order if you specify a CONTROL statement.

This section describes equal-probability systematic sampling, where each sampling unit in the sampling
frame (or stratum) has the same probability of selection. For information about PPS systematic sampling, see
the section “PPS Systematic Sampling” on page 8447.

When you specify the sample size in the SAMPSIZE= option, PROC SURVEYSELECT computes the
systematic selection interval as the ratio of the total number of sampling units to the sample size (N=n, or
Nh=nh for stratified sampling). The procedure uses a fractional systematic interval to provide the specified
sample size exactly. The selection probability for each unit is computed as n=N (or nh=Nh for stratified
sampling).

When you specify the sampling rate in the SAMPRATE= option, PROC SURVEYSELECT computes the
systematic selection interval as the inverse of the sampling rate. The selection probability for each unit is the
sampling rate.

Instead of specifying the sample size or sampling rate, you can directly specify the systematic interval in
the INTERVAL= option. When you specify the interval, PROC SURVEYSELECT computes the selection
probability as the inverse of the interval value.

By default, PROC SURVEYSELECT randomly determines a starting value in the selection interval. Op-
tionally, you can specify the starting value in the START= option. The random component of systematic
sampling is the random selection of a starting value in the systematic interval. If you use the START= option
to provide a purposely chosen (nonrandom) starting value, the resulting systematic selection does not provide
a random, probability-based sample.

Systematic sampling controls the distribution of the sample by spreading the selections throughout the
sampling frame (or stratum) at equal intervals and thus provides implicit stratification. You can specify a
CONTROL statement to order the input data set by CONTROL variables before sample selection. If you also
specify a STRATA statement, PROC SURVEYSELECT sorts by the CONTROL variables within strata. If
you do not specify a CONTROL statement, PROC SURVEYSELECT applies systematic selection to the
observations in the order in which they appear in the input data set.
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Sequential Random Sampling

If you specify the METHOD=SEQ option and do not include a SIZE statement, PROC SURVEYSELECT
uses the equal probability version of Chromy’s method for sequential random sampling. This method selects
units sequentially with equal probability and without replacement. For more information, see Chromy (1979)
and Williams and Chromy (1980). For information about Chromy’s PPS selection method, see the section
“PPS Sequential Sampling” on page 8447.

Sequential random sampling controls the distribution of the sample by spreading it throughout the sampling
frame or stratum, thus providing implicit stratification according to the order of units in the frame or stratum.
You can use the CONTROL statement to sort the input data set by the CONTROL variables before sample
selection. If you also use a STRATA statement, PROC SURVEYSELECT sorts by the CONTROL variables
within strata. By default (or if you specify the SORT=SERP option), the procedure uses hierarchic serpentine
ordering for sorting. If you specify the SORT=NEST option, the procedure uses nested sorting. See the
section “Sorting by CONTROL Variables” on page 8439 for descriptions of serpentine and nested sorting.
If you do not specify a CONTROL statement, PROC SURVEYSELECT applies sequential selection to the
observations in the order in which they appear in the input data set.

Following Chromy’s method of sequential selection, PROC SURVEYSELECT randomly chooses a starting
unit from the entire stratum (or frame, if the design is not stratified). With this unit as the first one, the
procedure treats the stratum units as a closed loop. This is done so that all pairwise (joint) selection
probabilities are positive and an unbiased variance estimator can be obtained. The procedure numbers units
sequentially from the random start to the end of the stratum and then continues from the beginning of the
stratum until all units are numbered.

Beginning with the randomly chosen starting unit, PROC SURVEYSELECT accumulates the expected
number of selections (hits), where the expected number of selections E.Shi / is nh=Nh for all units i in
stratum h. The procedure computes

Ihi D Int
� iX
jD1

E.Shj /
�
D Int.inh=Nh/

Fhi D Frac
� iX
jD1

E.Shj /
�
D Frac.inh=Nh/

where Int.�/ denotes the integer part of the number, and Frac.�/ denotes the fractional part.

Considering each unit sequentially, Chromy’s method determines whether unit i is selected by comparing the
total number of selections for the first (i – 1) units,

Th.i�1/ D

i�1X
jD1

Shj

with the value of Ih.i�1/.

If Th.i�1/ D Ih.i�1/, Chromy’s method determines whether or not unit i is selected as follows. If Fhi D 0
or Fh.i�1/ > Fhi , then unit i is selected with certainty. Otherwise, unit i is selected with probability

.Fhi � Fh.i�1//=.1 � Fh.i�1//
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If Th.i�1/ D .Ih.i�1/ C 1/, Chromy’s method determines whether or not unit i is selected as follows. If
Fhi D 0 or Fhi > Fh.i�1/, then the unit is not selected. Otherwise, unit i is selected with probability

Fhi=Fh.i�1/

Bernoulli Sampling

Bernoulli sampling, which you request by specifying the METHOD=BERNOULLI option, is an equal
probability selection method for which the total sample size is not fixed. PROC SURVEYSELECT performs
an independent random selection trial for each of the N sampling units in the input data set by using the
constant inclusion probability (sampling rate) that you specify. You can specify a single value of the inclusion
probability � to use for all N sampling units, or you can specify separate stratum-level values of �h to use
for the Nh units in each stratum.

You provide the inclusion probability (or probabilities) by specifying the SAMPRATE= option. For stratified
sampling (which you request by using the STRATA statement), you can specify the same sampling rate for
each stratum in the SAMPRATE=value option. Or you can specify different sampling rates for different
strata by using the SAMPRATE=(values) or SAMPRATE=SAS-data-set option.

In Bernoulli sampling, the sample size n (number of units selected) is not fixed; it is a random variable
that has a binomial distribution with parameters N and � . The possible values of n range from 0 to N. The
expected value of the sample size is �N (or �hNh for stratified sampling), and the variance of the sample
size is �.1 � �/N .

For Bernoulli sampling, the selection probability is the inclusion probability that you specify in the SAM-
PRATE= option. PROC SURVEYSELECT computes the sampling weight as the inverse of the selection
probability, which is 1=� . For Bernoulli sampling, the procedure also computes an adjusted sampling weight
as the ratio of the total number of sampling units to the actual sample size, N=n (or Nh=nh for stratified
sampling). The joint selection probability for any two distinct units is �2. For more information, see Särndal,
Swensson, and Wretman (1992).

You can specify the STATS option to include the following information in the OUT= output data set for
METHOD=BERNOULLI: total number of sampling units, selection probability, expected sample size, actual
sample size, sampling weight, and adjusted sampling weight.

Poisson Sampling

Poisson sampling, which you request by specifying the METHOD=POISSON option, is an unequal probabil-
ity sampling method for which the total sample size is not fixed. A generalization of Bernoulli sampling,
Poisson sampling also consists of independent random selection trials for the N sampling units in the input
data set, but the sampling units can have different inclusion probabilities. You provide inclusion probabilities
for Poisson sampling in the variable that you specify in the SIZE statement.

The expected value of the sample size for Poisson sampling is
P
i �i , where �i is the inclusion probability

for sampling unit i. The variance of the sample size is
P
i �i .1 � �i /.

For Poisson sampling, the selection probability for unit i is the inclusion probability �i that you specify by
using the SIZE statement. PROC SURVEYSELECT computes the sampling weight for unit i as the inverse
of the selection probability, which is 1=�i . The joint selection probability for any two distinct units i and j is
�i�j for Poisson sampling. For more information, see Särndal, Swensson, and Wretman (1992).
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PPS Sampling without Replacement

If you specify the METHOD=PPS option, PROC SURVEYSELECT selects units with probability propor-
tional to size and without replacement. The selection probability for unit i in stratum h is nhZhi , where nh is
the sample size for stratum h, and Zhi is the relative size of unit i in stratum h. The relative size is Mhi=Mh�,
which is the ratio of the size measure for unit i in stratum h (Mhi ) to the total of all size measures for stratum
h (Mh�).

Because selection probabilities cannot exceed 1, the relative size for each unit must not exceed 1=nh for
METHOD=PPS. This requirement can be expressed as Zhi � 1=nh, or equivalently, Mhi �Mh�=nh. If
your size measures do not meet this requirement, you can adjust the size measures by using the MAXSIZE=
or MINSIZE= option. Or you can request certainty selection for the larger units by using the CERTSIZE= or
CERTSIZE=P= option. Alternatively, you can use a selection method that does not have this relative size
restriction, such as PPS with minimum replacement (METHOD=PPS_SEQ).

PROC SURVEYSELECT uses the Hanurav-Vijayan algorithm for PPS selection without replacement.
Hanurav (1967) introduced this algorithm for the selection of two units per stratum, and Vijayan (1968)
generalized it for the selection of more than two units. The algorithm enables computation of joint selection
probabilities and provides joint selection probability values that usually ensure nonnegativity and stability of
the Sen-Yates-Grundy variance estimator. For more information, see Fox (1989), Golmant (1990), and Watts
(1991).

Notation in the remainder of this section drops the stratum subscript h for simplicity, but selection is still
done independently within strata if you specify a stratified design. For a stratified design, n now denotes the
sample size for the current stratum, N denotes the stratum population size, and Mi denotes the size measure
for unit i in the stratum. If the design is not stratified, this notation applies to the entire sampling frame.

According to the Hanurav-Vijayan algorithm, PROC SURVEYSELECT first orders units within the stratum
in ascending order by size measure, so that M1 � M2 � : : : � MN . Then the procedure selects the PPS
sample of n observations as follows:

1. The procedure randomly chooses one of the integers 1; 2; : : : ; n with probability �1; �2; : : : ; �n, where

�i D n.ZN�nCiC1 �ZN�nCi /.T C iZN�nC1/=T

where Zj DMj =M and

T D

N�nX
jD1

Zj

By definition, ZNC1 D 1=n to ensure that
Pn
iD1 �i D 1.

2. If i is the integer selected in step 1, the procedure includes the last .n � i/ units of the stratum in the
sample, where the units are ordered by size measure as described previously. The procedure then
selects the remaining i units according to steps 3 through 6.

3. The procedure defines new normed size measures for the remaining .N � nC i/ stratum units that
were not selected in steps 1 and 2:

Z�j D

(
Zj =.T C iZN�nC1/ for j D 1; : : : ; N � nC 1

ZN�nC1=.T C iZN�nC1/ for j D N � nC 2; : : : ; N � nC i
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4. The procedure selects the next unit from the first .N �nC1/ stratum units with probability proportional
to aj .1/, where

a1.1/ D iZ�1

aj .1/ D iZ�j
Qj�1

kD1

�
1 � .i � 1/ Pk

�
for j D 2; : : : ; N � nC 1

and

Pk DMk=.MkC1 CMkC2 C � � � CMN�nCi /

5. If stratum unit j1 is the unit selected in step 4, then the procedure selects the next unit from units
.j1 C 1/ through .N � nC 2/ with probability proportional to aj .2; j1/, where

aj1C1.2; j1/ D .i � 1/Z
�
j1C1

aj .2; j1/ D .i � 1/Z
�
j

j�1Y
kDj1C1

�
1 � .i � 2/Pk

�
for j D j1 C 2; : : : ; N � nC 2

6. The procedure repeats step 5 until all n sample units are selected.

If you specify the JTPROBS option, PROC SURVEYSELECT computes the joint selection probabilities for
all pairs of selected units in each stratum. The joint selection probability for units i and j in the stratum is

P.ij / D

nX
rD1

�rK
.r/
ij

where

Kij D

8̂̂̂̂
<̂
ˆ̂̂:
1 N � nC r < i � N � 1

rZN�nC1=.T C rZN�nC1/ N � n < i � N � nC r; j > N � nC r

rZi=.T C rZN�nC1/ 1 � i � N � n; j > N � nC r

�
.r/
ij j � N � nC r

�
.r/
ij D

r.r � 1/

2
PiZj

i�1Y
kD1

.1 � Pk/

Pk DMk=.MkC1 CMkC2 C � � � CMN�nCr/

PPS Sampling with Replacement

If you specify the METHOD=PPS_WR option, PROC SURVEYSELECT selects units with probability
proportional to size and with replacement. The procedure makes nh independent random selections from
the stratum of Nh units, selecting with probability Zhi D Mhi=Mh�. Because units are selected with
replacement, a unit can be selected for the sample more than once. The expected number of hits (selections)
for unit i in stratum h is nhZhi . If you specify the JTPROBS option, PROC SURVEYSELECT computes the
joint expected number of hits for all pairs of selected units in each stratum. The joint expected number of hits
for units i and j in stratum h is

Ph.ij / D

(
nh.nh � 1/ZhiZhj for j ¤ i

nh.nh � 1/ZhiZhi=2 for j D i
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PPS Systematic Sampling

If you specify the METHOD=PPS_SYS option, PROC SURVEYSELECT selects the sample by using
systematic random sampling with probability proportional to size. Systematic sampling selects units at a fixed
interval throughout the sampling frame (or stratum) after a random start. If you request stratified sampling
by specifying a STRATA statement, PROC SURVEYSELECT independently selects systematic samples
from the strata. PROC SURVEYSELECT applies systematic selection to sampling units in the order of their
appearance in the input data set, or in their sorted order if you specify a CONTROL statement.

When you specify the sample size in the SAMPSIZE= option, PROC SURVEYSELECT computes the
systematic selection interval as the ratio of the total size to the sample size (M=n, or Mh�=nh for stratified
sampling). The procedure uses a fractional systematic interval to provide the specified sample size exactly.
Depending on the sample size and the values of the size measures, it might be possible for a sampling unit to
be selected more than once. The expected number of hits (selections) for unit i in stratum h is computed as
nhMhi=Mh� D nhZhi . For more information, see Cochran (1977, pp. 265–266) and Madow (1949).

Instead of specifying the sample size for systematic sampling, you can directly specify the systematic interval
in the INTERVAL= option. When you specify the interval, PROC SURVEYSELECT computes the expected
number of hits as the inverse of the interval value.

By default, PROC SURVEYSELECT randomly determines a starting value in the selection interval. Op-
tionally, you can specify the starting value in the START= option. The random component of systematic
sampling is the random selection of a starting value in the systematic interval. If you use the START= option
to provide a purposely chosen (nonrandom) starting value, the resulting systematic selection does not provide
a random, probability-based sample.

Systematic sampling controls the distribution of the sample by spreading the selections throughout the
sampling frame (or stratum) at equal intervals and thus provides implicit stratification. You can specify a
CONTROL statement to order the input data set by the CONTROL variables before sample selection. If you
also specify a STRATA statement, PROC SURVEYSELECT sorts by the CONTROL variables within strata.
If you do not specify a CONTROL statement, PROC SURVEYSELECT applies systematic selection to the
observations in the order in which they appear in the input data set.

PPS Sequential Sampling

If you specify the METHOD=PPS_SEQ option, PROC SURVEYSELECT uses Chromy’s method of se-
quential random sampling. For more information, see Chromy (1979) and Williams and Chromy (1980).
Chromy’s method selects units sequentially with probability proportional to size and with minimum replace-
ment. Selection with minimum replacement means that the actual number of hits for a unit can equal the
integer part of the expected number of hits for that unit, or the next largest integer. This can be compared to
selection without replacement, where each unit can be selected only once, so the number of hits can equal 0
or 1. The other alternative is selection with replacement, where there is no restriction on the number of hits
for each unit, so the number of hits can equal 0; 1; � � � ; nh, where nh is the stratum sample size.

Sequential random sampling controls the distribution of the sample by spreading it throughout the sampling
frame or stratum, thus providing implicit stratification according to the order of units in the frame or stratum.
You can use the CONTROL statement to sort the input data set by the CONTROL variables before sample
selection. If you also use a STRATA statement, PROC SURVEYSELECT sorts by the CONTROL variables
within strata. By default (or if you specify the SORT=SERP option), the procedure uses hierarchic serpentine
ordering to sort the sampling frame by the CONTROL variables within strata. If you specify the SORT=NEST
option, the procedure uses nested sorting. See the section “Sorting by CONTROL Variables” on page 8439
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for descriptions of serpentine and nested sorting. If you do not specify a CONTROL statement, PROC
SURVEYSELECT applies sequential selection to the observations in the order in which they appear in the
input data set.

According to Chromy’s method of sequential selection, PROC SURVEYSELECT first chooses a starting
unit randomly from the entire stratum, with probability proportional to size. The procedure uses this unit
as the first one and treats the stratum observations as a closed loop. This is done so that all pairwise (joint)
expected number of hits are positive and an unbiased variance estimator can be obtained. The procedure
numbers observations sequentially from the random start to the end of the stratum and then continues from
the beginning of the stratum until all units are numbered.

Beginning with the randomly chosen starting unit, Chromy’s method partitions the ordered stratum sampling
frame into nh zones of equal size. There is one selection from each zone and a total of nh hits (selections),
although fewer than nh distinct units might be selected. Beginning with the random start, the procedure
accumulates the expected number of hits and computes

E.Shi / D nhZhi

Ihi D Int
� iX
jD1

E.Shj /
�

Fhi D Frac
� iX
jD1

E.Shj /
�

where E.Shi / represents the expected number of hits for unit i in stratum h, Int.�/ denotes the integer part of
the number, and Frac.�/ denotes the fractional part.

Considering each unit sequentially, Chromy’s method determines the actual number of hits for unit i by
comparing the total number of hits for the first (i – 1) units,

Th.i�1/ D

i�1X
jD1

Shj

with the value of Ih.i�1/.

If Th.i�1/ D Ih.i�1/, Chromy’s method determines the total number of hits for the first i units as follows. If
Fhi D 0 or Fh.i�1/ > Fhi , then Thi D Ihi . Otherwise, Thi D Ihi C 1 with probability

.Fhi � Fh.i�1//=.1 � Fh.i�1//

And the number of hits for unit i is Thi � Th.i�1/.

If Th.i�1/ D .Ih.i�1/ C 1/, Chromy’s method determines the total number of hits for the first i units as
follows. If Fhi D 0, then Thi D Ihi . If Fhi > Fh.i�1/, then Thi D Ihi C 1. Otherwise, Thi D Ihi C 1 with
probability

Fhi=Fh.i�1/
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Brewer’s PPS Method

Brewer’s method (METHOD=PPS_BREWER) selects two units from each stratum, with probability propor-
tional to size and without replacement. The selection probability for unit i in stratum h is 2Mhi=Mh� D 2Zhi .
(Because selection probabilities cannot exceed 1, the relative size for each unit, Zhi , must not exceed 1=2.)

Brewer’s algorithm first selects a unit with probability

Zhi .1 �Zhi /

Dh.1 � 2Zhi /

where

Dh D

NhX
iD1

Zhi .1 �Zhi /

1 � 2Zhi

Then a second unit is selected from the remaining units with probability

Zhj

1 �Zhi

where unit i is the first unit selected. The joint selection probability for units i and j in stratum h is

Ph.ij / D
2ZhiZhj

Dh

�
1 �Zhi �Zhj

.1 � 2Zhi /.1 � 2Zhj /

�

For more information, see Cochran (1977, pp. 261–263) and Brewer (1963). Brewer’s method yields the
same selection probabilities and joint selection probabilities as Durbin’s method (Cochran 1977; Durbin
1967).

Murthy’s PPS Method

Murthy’s method (METHOD=PPS_MURTHY) selects two units from each stratum, with probability propor-
tional to size and without replacement. The selection probability for unit i in stratum h is

Phi D Zhi
�
1CKh � .Zhi=.1 �Zhi /

�
where Zhi DMhi=Mh� and

Kh D

NhX
jD1

�
Zhj =.1 �Zhj /

�

Murthy’s algorithm first selects a unit with probabilityZhi . Then a second unit is selected from the remaining
units with probability Zhj =.1 �Zhi /, where unit i is the first unit selected. The joint selection probability
for units i and j in stratum h is

Ph.ij / D ZhiZhj

�
2 �Zhi �Zhj

.1 �Zhi /.1 �Zhj /

�

For more information, see Cochran (1977, pp. 263–265) and Murthy (1957).
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Sampford’s PPS Method

Sampford’s method (METHOD=PPS_SAMPFORD) is an extension of Brewer’s method that selects more
than two units from each stratum, with probability proportional to size and without replacement. The selection
probability for unit i in stratum h is nhMhi=Mh� D nhZhi . (Because selection probabilities cannot exceed 1,
the relative size for each unit, Zhi , must not exceed 1=nh.)

Sampford’s method first selects a unit from stratum h with probability Zhi . Then subsequent units are
selected with probability proportional to

�hi D Zhi = .1 � nh Zhi /

and with replacement. If the same unit appears more than once in the sample of size nh, then Sampford’s
algorithm rejects that sample and selects a new sample. The sample is accepted if it contains nh distinct units.

If you specify the JTPROBS option, PROC SURVEYSELECT computes the joint selection probabilities for
all pairs of selected units in each stratum. The joint selection probability for units i and j in stratum h is

Ph.ij / D Kh �hi �hj

nhX
tD2

� �
t � nh .Zhi CZhj /

�
Lh;.nh�t/.

Nij /
�
= nt�2h

where

Kh D 1 =

nhX
tD1

�
t Lh;.nh�t/ = n

t
h

�
Lh;m D

X
Sh.m/

�hi1 �hi2 � � � �him

and Sh.m/ denotes all possible samples of size m, for m D 1; 2; : : : ; Nh . The sum Lh;m. Nij / is defined
similarly to Lh;m but sums over all possible samples of size m that do not include units i and j. For more
information, see Cochran (1977, pp. 262–263) and Sampford (1967).

Sample Size Allocation
If you specify the ALLOC= option in the STRATA statement, PROC SURVEYSELECT allocates the
total sample size among the strata according to the method that you request. PROC SURVEYSELECT
provides proportional allocation (ALLOC=PROPORTIONAL), optimal allocation (ALLOC=OPTIMAL),
and Neyman allocation (ALLOC=NEYMAN). For more information about these allocation methods, see Lohr
(2010), Kish (1965), and Cochran (1977). You can also directly provide the allocation proportions by using
the ALLOC=(values) option or the ALLOC=SAS-data-set option. Then PROC SURVEYSELECT allocates
the sample size among the strata according to the proportions that you provide. Allocation proportions are the
relative stratum sample sizes, nh=n, where nh is the sample size for stratum h and n is the total sample size.

You can use the SAMPSIZE=n option in the PROC SURVEYSELECT statement to specify the total sample
size to allocate among the strata. Or you can specify the desired margin of error in the MARGIN= option
in the STRATA statement, and PROC SURVEYSELECT computes the stratum sample sizes necessary to
achieve that margin of error for the allocation method that you request. For more information, see the section
“Specifying the Margin of Error” on page 8452.
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Proportional Allocation

When you specify the ALLOC=PROPORTIONAL option in the STRATA statement, PROC
SURVEYSELECT allocates the total sample size among the strata in proportion to the stratum sizes,
where the stratum size is the number of sampling units in the stratum. The allocation proportion of the total
sample size for stratum h is

f �h D Nh=N

where Nh is the number of sampling units in stratum h and N is the total number of sampling units for all
strata. If you specify the total sample size n in the SAMPSIZE= option in the PROC SURVEYSELECT
statement, the procedure computes the target sample size for stratum h as

n�h D f
�
h � n

The target sample size values, n�
h

, might not be integers, but the stratum sample sizes are required to be
integers. PROC SURVEYSELECT uses a rounding algorithm to convert the n�

h
to integer values nh and

maintain the requested total sample size n. The rounding algorithm includes the restriction that all values of
nh must be at least 1, so that at least one unit is selected from each stratum. If you specify a minimum stratum
sample size nmin in the ALLOCMIN= option in the STRATA statement, then all values of nh are required to
be at least nmin . For without-replacement selection methods, PROC SURVEYSELECT also requires that
each stratum sample size must not exceed the total number of sampling units in the stratum, nh � Nh. If a
target stratum sample size exceeds the number of units in the stratum, PROC SURVEYSELECT allocates
the maximum number of units, Nh, to the stratum, and then allocates the remaining total sample size
proportionally among the remaining strata.

PROC SURVEYSELECT provides the target allocation proportions f �
h

in the output data set variable
AllocProportion. The variable ActualProportion contains the actual proportions for the allocated sample sizes
nh. For stratum h, the actual proportion is computed as

fh D nh=n

where nh is the allocated sample size for stratum h and n is the total sample size. The actual proportions
fh can differ from the target allocation proportions f �

h
due to rounding, the requirement that nh � 1 (or

nh � nmin ), and the requirement that nh � Nh for without-replacement selection methods.

Optimal Allocation

When you specify the ALLOC=OPTIMAL option in the STRATA statement, PROC SURVEYSELECT
allocates the total sample size among the strata in proportion to stratum sizes, stratum costs, and stratum
variances. You provide the stratum costs and variances in the COST= and VAR= options, respectively.

Optimal allocation minimizes the overall variance for a specified cost, or equivalently minimizes the overall
cost for a specified variance. For more information, see Lohr (2010), Cochran (1977), and Kish (1965). For
optimal allocation, PROC SURVEYSELECT computes the proportion of the total sample size for stratum h
as

f �h D
NhSh
p
Ch

=

HX
iD1

NiSi
p
Ci

where Nh is the number of sampling units in stratum h, Sh is the standard deviation within stratum h, Ch is
the unit cost within stratum h, and H is the total number of strata.
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If you specify the total sample size n in the SAMPSIZE= option in the PROC SURVEYSELECT statement,
the procedure computes the target sample size for stratum h as

n�h D f
�
h � n

As described in the section “Proportional Allocation” on page 8451, the values of n�
h

are converted to integer
sample sizes nh by using a rounding algorithm that requires the sum of the stratum sample sizes to equal n.
The final stratum sample sizes nh are also required to be at least 1, or at least nmin if you specify a minimum
stratum sample size in the ALLOCMIN= option in the STRATA statement. For without-replacement selection
methods, the final sample sizes cannot exceed the stratum sizes.

Neyman Allocation

When you specify the ALLOC=NEYMAN option in the STRATA statement, PROC SURVEYSELECT
allocates the total sample size among the strata in proportion to stratum sizes and stratum variances. Neyman
allocation is a special case of optimal allocation (described in the section “Optimal Allocation” on page 8451),
where the costs per unit are the same for all strata. For Neyman allocation, the proportion of the total sample
size for stratum h is computed as

f �h D NhSh =

HX
iD1

NiSi

If you specify the total sample size n in the SAMPSIZE= option in the PROC SURVEYSELECT statement,
the procedure computes the target sample size for stratum h as n�

h
D f �

h
� n. The n�

h
are converted to integer

sample sizes nh by using a rounding algorithm that requires the sum of the stratum sizes to equal n. The
final sample sizes nh are required to be at least 1, or at least nmin if you specify a minimum sample size in
the ALLOCMIN= option in the STRATA statement. For without-replacement selection methods, the final
sample sizes must not exceed the stratum sizes.

Specifying the Margin of Error

Instead of specifying the total sample size to allocate among the strata, you can specify the desired margin of
error for estimating the overall mean from the stratified sample. Based on the requested allocation method
and the stratum variances that you provide, PROC SURVEYSELECT computes the stratum sample sizes that
are required to achieve this margin of error. You specify the margin of error in the MARGIN= option in the
STRATA statement, and you provide stratum variances in the VAR= option. You can use the MARGIN=
option with any allocation method (proportional, optimal, or Neyman) or with allocation proportions that you
provide (ALLOC=(values) or ALLOC=SAS-data-set).

The margin of error e is the half-width of the 100.1 � ˛/% confidence interval for the overall mean based on
the stratified sample,

e D z˛=2 �
p
Var. Nystr /

where Var. Nystr / is the variance of the estimate of the mean from the stratified sample and z˛=2 is the
100.1 � ˛=2/ percentile of the standard normal distribution. You can specify the value of ˛ in the ALPHA=
option in the STRATA statement. By default, PROC SURVEYSELECT uses a 95% confidence interval
(ALPHA=0.05).
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For the specified margin of error e, PROC SURVEYSELECT computes the target stratum sample sizes n�
h

for without-replacement selection methods as

n�h D f
�
h
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where Ni is the number of sampling units in stratum i, S2i is the variance within stratum i, N is the total
number of sampling units for all strata, and H is the total number of strata.

The values of f �
h

are the stratum allocation proportions, which PROC SURVEYSELECT computes according
to the allocation method that you request. For more information, see the sections “Proportional Allocation”
on page 8451, “Optimal Allocation” on page 8451, and “Neyman Allocation” on page 8452.

For with-replacement selection methods, PROC SURVEYSELECT computes the target stratum sample sizes
as

n�h D f
�
h
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For more information, see Lohr (2010, p. 91), Cochran (1977, Chapter 5), and Arkin (1984, Chapter 10).

The target sample size values n�
h

might not be integers, but the stratum sample sizes are required to be
integers. PROC SURVEYSELECT rounds all fractional target sample sizes up to integer sample sizes. If you
specify a minimum stratum sample size nmin in the ALLOCMIN= option in the STRATA statement, then all
stratum sample sizes nh are required to be at least nmin .

For without-replacement selection methods, a stratum sample size cannot exceed the number of units in the
stratum. If a target stratum sample size does exceed the number of units in the stratum, the procedure sets
nh D Nh for that stratum, removes the stratum from the variance computation (because it contributes nothing
to the sampling error), revises the allocation proportions f �

h
for the remaining strata, and computes the

stratum sample sizes again. If a stratum sample size equals the number of units in its stratum, the procedure
also removes that stratum from the variance computation and revises the sample sizes for the remaining strata.
For more information, see Cochran (1977, p. 104) and Arkin (1984, p. 176).

When you specify the STATS option with the MARGIN= option in the STRATA statement, PROC
SURVEYSELECT displays the expected margin of error for the sample allocation. The expected mar-
gin of error (for the overall mean based on the stratified sample) is computed from the stratum sizes (Ni ), the
stratum variances that you provide (S2i ), and the allocated stratum sample sizes that the procedure computes
(ni ). For without-replacement selection methods, the expected margin of error is

e D z˛=2 �
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For with-replacement selection methods, the expected margin of error is

e D z˛=2 �
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The expected margin of error should be less than or equal to the value specified in the MARGIN= option.
Any difference between the expected margin and the specified value is due to rounding the target stratum
sample sizes up to integer values and increasing stratum sample sizes to equal the required minimum value
(ALLOCMIN=).
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Secondary Input Data Set
The primary input data set for PROC SURVEYSELECT is the DATA= data set, which contains the list of
units from which the sample is selected. You can use a secondary input data set to provide stratum-level
design and selection information, such as sample sizes or rates, certainty size values, or stratum costs. This
secondary input data set is sometimes called the SAMPSIZE= input data set. You can provide stratum sample
sizes in the _NSIZE_ (or SampleSize) variable in the SAMPSIZE= data set.

The secondary input data set must contain all the STRATA variables, with the same type and length as in the
DATA= data set. The STRATA groups should appear in the same order in the secondary data set as in the
DATA= data set. You can name only one secondary data set in each invocation of PROC SURVEYSELECT.

You must name the secondary input data set in the appropriate PROC SURVEYSELECT or STRATA option,
and use the designated variable name to provide the stratum-level values. For example, if you want to provide
stratum-level costs for sample allocation, you name the secondary data set in the COST=SAS-data-set option
in the STRATA statement. The data set must include the stratum costs in a variable named _COST_. You can
use the secondary input data set for more than one option if it is appropriate for your design. For example,
the secondary data set can include both stratum costs and stratum variances, which are required for optimal
allocation (ALLOC=OPTIMAL).

Instead of using a separate secondary input data set, you can include secondary information in the DATA=
data set along with the sampling frame. When you include secondary information in the DATA= data set,
name the DATA= data set in the appropriate options, and include the required variables in the DATA= data
set.

Table 102.3 lists the available secondary data set variables, together with their descriptions and the corre-
sponding options.

Table 102.3 PROC SURVEYSELECT Secondary Data Set Variables

Variable Description Statement Option

_ALLOC_ Allocation proportion STRATA ALLOC=
_CERTP_ Certainty proportion PROC CERTSIZE=P=
_CERTSIZE_ Certainty size PROC CERTSIZE=
_COST_ Cost STRATA COST=
_MAXSIZE_ Maximum size PROC MAXSIZE=
_MINSIZE_ Minimum size PROC MINSIZE=
_NSIZE_ Sample size PROC SAMPSIZE=
_RATE_ Sampling rate PROC SAMPRATE=
_SEED_ Random number seed PROC SEED=
_VAR_ Variance STRATA VAR=

Sample Output Data Set
PROC SURVEYSELECT selects a sample and creates a SAS data set that contains the sample of selected
units unless you specify the NOSAMPLE option in the STRATA statement or the GROUPS= option in the
PROC SURVEYSELECT statement. When you specify the NOSAMPLE option, PROC SURVEYSELECT
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allocates the total sample size among strata but does not select a sample; the output data set contains the
allocated sample sizes. For more information, see the section “Allocation Output Data Set” on page 8458.
When you specify the GROUPS= option, PROC SURVEYSELECT randomly assigns observations to groups
and does not select a sample. For more information, see the section “Random Assignment Output Data Set”
on page 8459.

You can specify the name of the sample output data set in the OUT= option in the PROC SURVEYSELECT
statement. If you omit the OUT= option, the data set is named DATAn, where n is the smallest integer that
makes the name unique.

The output data set contains the units that are selected for the sample. These units are either observations or
groups of observations (clusters) that you define by specifying the SAMPLINGUNIT statement. If you do
not specify the SAMPLINGUNIT statement to define units (clusters), then PROC SURVEYSELECT uses
observations as sampling units by default.

By default, the output data set contains only those units that are selected for the sample. But if you specify
the OUTALL option, the output data set includes all observations from the input data set and also contains a
variable that indicates each observation’s selection status. For an observation that is selected, the value of
the variable Selected is 1; for an observation that is not selected, the value of Selected is 0. The OUTALL
option is available for equal probability selection methods.

By default, the output data set contains a single copy of each selected unit, even if the unit is selected more
than once, and the variable NumberHits records the number of hits (selections) for each unit. A unit can
be selected more than once if you use a with-replacement or with-minimum-replacement selection method
(METHOD=URS, METHOD=PPS_WR, METHOD=PPS_SYS, or METHOD=PPS_SEQ). If you specify
the OUTHITS option, the output data set includes a distinct copy of each selection in the output data set; for
example, the output data set includes three copies of a unit that is selected three times (NumberHits is three).

The output data set also contains design information and selection statistics, depending on the selection
method and output options you specify. The output data set can include the following variables:

• Selected, which indicates whether or not the observation is selected for the sample. This variable
is included if you specify the OUTALL option. For an observation that is selected, the value of the
variable Selected is 1; for an observation that is not selected, the value of Selected is 0.

• STRATA variables, which you specify in the STRATA statement.

• Replicate, which is the sample replicate number. This variable is included when you request replicated
sampling with the REPS= option.

• SAMPLINGUNIT (CLUSTER) variables, which you specify in the SAMPLINGUNIT statement.

• ID variables, which you name in the ID statement.

• CONTROL variables, which you specify in the CONTROL statement.

• Zone, which is the selection zone. This variable is included for METHOD=PPS_SEQ.

• SIZE variable, which you specify in the SIZE statement.

• AdjustedSize, which is the adjusted size measure. This variable is included if you request adjusted
sizes with the MINSIZE= or MAXSIZE= option when your sampling units are observations.
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• UnitSize, which is the sampling unit (or cluster) size measure. This variable is included if you specify
the SAMPLINGUNIT statement.

• Certain, which indicates certainty selection. This variable is included if you specify the CERTSIZE=
or CERTSIZE=P= option. For units that are selected with certainty (because their size measures exceed
the certainty size value or the certainty proportion), the value of Certain is 1; for other units, the value
of Certain is 0.

• NumberHits, which is the number of hits (selections). This variable is included for selection methods
that are with replacement or with minimum replacement (METHOD=URS, METHOD=PPS_WR,
METHOD=PPS_SYS, and METHOD=PPS_SEQ).

The output data set includes the following variables if you request a PPS selection method or if you specify
the STATS option in the PROC SURVEYSELECT statement for other methods:

• ExpectedHits, which is the expected number of hits (selections). This variable is included for se-
lection methods that are with replacement or with minimum replacement, where the same unit can
be selected more than once (METHOD=URS, METHOD=PPS_WR, METHOD=PPS_SYS, and
METHOD=PPS_SEQ).

• SelectionProb, which is the probability of selection. This variable is included for selection methods
that are without replacement.

• SamplingWeight, which is the sampling weight. The value of this variable is the inverse of
ExpectedHits or SelectionProb.

If you specify the STATS or OUTSIZE option for METHOD=BERNOULLI, the output data set contains the
following variables. If you specify a STRATA statement, the output data set includes stratum-level values of
these variables; otherwise, the output data set includes overall values.

• Total, which is the total number of sampling units

• SelectionProb, which is the selection probability that you specify in the SAMPRATE= option

• ExpectedN, which is the expected value of the sample size

• SampleSize, which is the actual sample size

If you specify the STATS option for METHOD=BERNOULLI, the output data set also contains the following
variable:

• AdjSamplingWeight, which is the adjusted sampling weight

For METHOD=PPS_BREWER and METHOD=PPS_MURTHY, either of which selects two units from each
stratum with probability proportional to size, the output data set contains the following variable:

• JtSelectionProb, which is the joint probability of selection for the two units selected from the stratum.
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If you specify the JTPROBS option to compute joint probabilities of selection for METHOD=PPS or
METHOD=PPS_SAMPFORD, then the output data set contains the following variables:

• Unit, which is an identification variable that numbers the selected units sequentially within each
stratum.

• JtProb_1, JtProb_2, JtProb_3, . . . , where the variable JtProb_1 contains the joint probability of
selection for the current unit and unit 1. Similarly, JtProb_2 contains the joint probability of selection
for the current unit and unit 2, and so on.

If you specify the JTPROBS option for METHOD=PPS_WR, then the output data set contains the following
variables:

• Unit, which is an identification variable that numbers the selected units sequentially within each
stratum.

• JtHits_1, JtHits_2, JtHits_3, . . . , where the variable JtHits_1 contains the joint expected number of hits
for the current unit and unit 1. Similarly, JtHits_2 contains the joint expected number of hits for the
current unit and unit 2, and so on.

If you specify the OUTSIZE option, the output data set contains the following variables. If you specify a
STRATA statement, the output data set includes stratum-level values of these variables; otherwise, the output
data set includes overall values.

• MinimumSize, which is the minimum size measure that you specify in the MINSIZE= option. This
variable is included if you specify the MINSIZE= option.

• MaximumSize, which is the maximum size measure that you specify in the MAXSIZE= option. This
variable is included if you specify the MAXSIZE= option.

• CertaintySize, which is the certainty size measure that you specify in the CERTSIZE= option. This
variable is included if you specify the CERTSIZE= option.

• CertaintyProp, which is the certainty proportion that you specify in the CERTSIZE=P= option. This
variable is included if you specify the CERTSIZE=P= option.

• Total, which is the total number of sampling units in the stratum. This variable is included if you do
not specify a SIZE statement or a SAMPLINGUNIT statement.

• TotalSize, which is the total of size measures in the stratum. This variable is included if you specify a
SIZE statement or the PPS option in the SAMPLINGUNIT statement.

• TotalAdjSize, which is the total of adjusted size measures in the stratum. This variable is included if
you request adjusted sizes in the MAXSIZE= or MINSIZE= option.

• SamplingRate, which is the sampling rate. This variable is included if you specify the SAMPRATE=
option.
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• SampleSize, which is the sample size. This variable is included if you specify the SAMPSIZE= option,
or if you specify METHOD=PPS_BREWER or METHOD=PPS_MURTHY, either of which selects
two units from each stratum.

• Interval, which is the specified systematic interval. This variable is included if you specify the
INTERVAL= option for METHOD=SYS or METHOD=PPS_SYS.

• NCertain, which is the number of certainty units. This variable is included if you specify the CERT-
SIZE= or CERTSIZE=P= option and CERTUNITS=OUTPUT.

If you specify the OUTSEED option, the output data set contains the following variable:

• InitialSeed, which is the initial seed for the stratum.

If you specify the ALLOC= option in the STRATA statement, the output data set contains the following
variables:

• Total, which is the total number of sampling units in the stratum.

• Variance, which is the stratum variance. This variable is included if you specify the VAR,
VAR=(values), or VAR=SAS-data-set option for the ALLOC=OPTIMAL, ALLOC=NEYMAN,
or MARGIN= allocation option.

• Cost, which is the stratum cost. This variable is included if you specify the COST, COST=(values), or
COST=SAS-data-set option for ALLOC=OPTIMAL.

• AllocProportion, which is the target allocation proportion (the proportion of the total sample size to
allocate to the stratum). PROC SURVEYSELECT computes this proportion by using the allocation
method that you specify.

• SampleSize, which is the sample size allocated to the stratum.

• ActualProportion, which is the actual proportion allocated to the stratum. The value of ActualProportion
equals the allocated stratum sample size divided by the total sample size. This value can differ from
the target AllocProportion due to rounding and other restrictions. For more information, see the section
“Sample Size Allocation” on page 8450.

Allocation Output Data Set
When you specify the NOSAMPLE option in the STRATA statement, PROC SURVEYSELECT allocates
the total sample size among the strata but does not select the sample. In this case, the OUT= data set contains
the allocated sample sizes.

You can specify the name of the allocation output data set with the OUT= option in the PROC
SURVEYSELECT statement. If you omit the OUT= option, the data set is named DATAn, where n is
the smallest integer that makes the name unique.
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The allocation output data set contains one observation for each stratum. The data set can include the
following variables:

• STRATA variables, which you specify in the STRATA statement.

• Total, which is the total number of sampling units in the stratum.

• Variance, which is the stratum variance. This variable is included if you specify the VAR,
VAR=(values), or VAR=SAS-data-set option for the ALLOC=OPTIMAL, ALLOC=NEYMAN,
or MARGIN= allocation option.

• Cost, which is the stratum cost. This variable is included if you specify the COST, COST=(values), or
COST=SAS-data-set option for ALLOC=OPTIMAL.

• AllocProportion, which is the target allocation proportion (the proportion of the total sample size to
allocate to the stratum). PROC SURVEYSELECT computes this proportion by using the allocation
method that you specify.

• SampleSize, which is the sample size allocated to the stratum.

• ActualProportion, which is the actual proportion allocated to the stratum. The value of ActualProportion
equals the allocated stratum sample size divided by the total sample size. This value can differ from
the target AllocProportion due to rounding and other restrictions. For more information, see the section
“Sample Size Allocation” on page 8450.

Random Assignment Output Data Set
When you specify the GROUPS= option, PROC SURVEYSELECT provides random assignment of the
observations in the DATA= input data set. The OUT= output data set contains all observations in the input
data set and identifies the assigned groups. If you do not specify an ID statement, the output data set contains
all variables in the input data set. If you specify an ID statement, PROC SURVEYSELECT copies those
variable that you specify from the input data set to the output data set.

You can specify the name of the output data set in the OUT= option in the PROC SURVEYSELECT statement.
If you omit the OUT= option, the data set is named DATAn, where n is the smallest integer that makes the
name unique.

The random assignment output data set can include the following variables:

• STRATA variables, if you specify a STRATA statement

• Replicate, which is the replicate identification number. This variable is included when you specify the
REPS= option.

• ID variables, if you specify an ID statement

• GroupID, which is the group identification number. If you specify a STRATA statement, PROC
SURVEYSELECT performs random assignment independently within strata, and the groups are nested
within strata.

• InitialSeed, which is the initial seed for random number generation
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If you specify the OUTSIZE option, the random assignment output data set also includes the following
variables:

• Total, which is the total number of units in the data set, or the total in the stratum if you specify a
STRATA statement

• NGroups, which is the number of groups in the data set, or the number in the stratum if you specify a
STRATA statement

• GroupSize, which is the number of units in the observation’s group

Displayed Output
By default, PROC SURVEYSELECT displays two tables that summarize the sample selection: the “Sample
Selection Method” table and the “Sample Selection Summary” table.

If you request sample allocation but no sample selection, PROC SURVEYSELECT displays two tables that
summarize the allocation: the “Sample Allocation Method” table and the “Sample Allocation Summary”
table.

If you request random assignment, the procedure displays the “Random Assignment” table.

You can suppress display of these tables by specifying the NOPRINT option.

PROC SURVEYSELECT creates an output data set that contains the units that are selected for the sample.
Or if you request sample allocation but no sample selection, PROC SURVEYSELECT creates an output data
set that contains the sample size allocation results. If you request random assignment, the procedure creates
an output data set that contains the assignments. For more information, see the sections “Sample Output Data
Set” on page 8454, “Allocation Output Data Set” on page 8458, and “Random Assignment Output Data Set”
on page 8459. The procedure does not display the output data set that it creates. Use PROC PRINT, PROC
REPORT, or any other SAS reporting tool to display the output data set.

Sample Selection Method Table

PROC SURVEYSELECT displays the following information in the “Sample Selection Method” table:

• Selection Method

• Sampling Unit Variables, if you specify a SAMPLINGUNIT statement

• Size Measure variable, if you specify a SIZE statement

• Size Measure: Number of Observations, if you specify the PPS option in the SAMPLINGUNIT
statement and do not specify a SIZE statement

• Minimum Size Measure, if you specify the MINSIZE= option

• Maximum Size Measure, if you specify the MAXSIZE= option

• Certainty Size Measure, if you specify the CERTSIZE= option
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• Certainty Proportion, if you specify the CERTSIZE=P= option

• Strata Variables, if you specify a STRATA statement

• Control Variables, if you specify a CONTROL statement

• Control Sorting (Serpentine or Nested), if you specify a CONTROL statement

• Allocation (Proportional, Neyman, Optimal, or Input), if you specify the ALLOC= option in the
STRATA statement

• Margin of Error, if you specify the MARGIN= option in the STRATA statement

• Confidence Level, if you specify the ALPHA= option in the STRATA statement

Sample Selection Summary Table

PROC SURVEYSELECT displays the following information in the “Sample Selection Summary” table:

• Input Data Set name

• Sorted Data Set name, if you specify the OUTSORT= option

• Random Number Seed

• Sample Size or Stratum Sample Size, if you specify the SAMPSIZE=n option

• Sample Size Data Set, if you specify the SAMPSIZE=SAS-data-set option

• Sampling Rate or Stratum Sampling Rate, if you specify the SAMPRATE=value option for
METHOD=SRS, METHOD=URS, METHOD=SYS, or METHOD=SEQ.

• Selection Probability or Stratum Selection Probability, if you specify the SAMPRATE=value option
for METHOD=BERNOULLI

• Sampling Rate Data Set, if you specify the SAMPRATE=SAS-data-set option

• Minimum Sample Size or Stratum Minimum Sample Size, if you specify the NMIN= option in the
SAMPRATE= option

• Maximum Sample Size or Stratum Maximum Sample Size, if you specify the NMAX= option in the
SAMPRATE= option

• Number of Certainty Units, if you specify the CERTSIZE= or CERTSIZE=P= option and do not
specify a STRATA statement

• Specified Start, if you specify the START= option for METHOD=SYS or METHOD=PPS_SYS

• Random Start, if you specify the DETAILS option for METHOD=SYS or METHOD=PPS_SYS and
do not specify a STRATA statement or the REPS= option

• Specified Interval, if you specify the INTERVAL= option for METHOD=SYS or METHOD=PPS_SYS
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• Systematic Interval, if you specify the DETAILS option for METHOD=SYS or METHOD=PPS_SYS
and do not specify a STRATA statement or the REPS= option

• Sample Size, if you specify the INTERVAL= option for METHOD=SYS or METHOD=PPS_SYS and
do not specify a STRATA statement or the REPS= option

• Allocation Input Data Set name, if you specify the ALLOC=SAS-data-set option in the STRATA
statement

• Variance Input Data Set name, if you specify the VAR=SAS-data-set option in the STRATA statement

• Cost Input Data Set name, if you specify the COST=SAS-data-set option in the STRATA statement

• Selection Probability, if you specify METHOD=SRS, METHOD=SYS, or METHOD=SEQ and do not
specify a SIZE statement or a STRATA statement

• Expected Number of Hits, if you specify METHOD=URS and do not specify a STRATA statement

• Total Number of Units, if you specify METHOD=BERNOULLI or METHOD=POISSON and do not
specify a STRATA statement

• Expected Sample Size, if you specify METHOD=BERNOULLI or METHOD=POISSON and do not
specify a STRATA statement

• Sample Size, if you specify METHOD=BERNOULLI or METHOD=POISSON and do not specify a
STRATA statement

• Sampling Weight, if you specify an equal probability selection method (METHOD=SRS,
METHOD=URS, METHOD=SYS, METHOD=SEQ, or METHOD=BERNOULLI) and do not
specify a STRATA statement

• Adjusted Sampling Weight, if you specify METHOD=BERNOULLI and do not specify a STRATA
statement

• Number of Strata, if you specify a STRATA statement

• Stratum Minimum Sample Size, if you specify the ALLOCMIN= option in the STRATA statement

• Number of Replicates, if you specify the REPS= option

• Total Sample Size, if you specify a STRATA statement or the REPS= option

• Expected Margin of Error, if you specify the STATS option with the MARGIN= option in the STRATA
statement

• Expected Variance, if you specify the STATS option without the MARGIN= option in the STRATA
statement for ALLOC=OPTIMAL or ALLOC=NEYMAN

• Total Stratum Costs, if you specify the STATS option with ALLOC=OPTIMAL in the STRATA
statement

• Output Data Set name
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Sample Allocation Method Table

If you specify the NOSAMPLE option in the STRATA statement, PROC SURVEYSELECT allocates the total
sample among the strata but does not select the sample. When you specify the NOSAMPLE option, PROC
SURVEYSELECT displays the “Sample Allocation Method” table and the “Sample Allocation Summary”
table. The “Sample Allocation Method” table includes the following information:

• Allocation (Proportional, Neyman, Optimal, or Input)

• Margin of Error, if you specify the MARGIN= option in the STRATA statement

• Confidence Level, if you specify the ALPHA= option in the STRATA statement

• Sampling Unit Variables, if you specify a SAMPLINGUNIT statement

• Strata Variables

• Frequency Variable

• Selection Method, if you specify the METHOD= option

Sample Allocation Summary Table

PROC SURVEYSELECT displays the following information in the “Sample Allocation Summary” table.

• Input Data Set name

• Allocation Input Data Set name, if you specify the ALLOC=SAS-data-set option in the STRATA
statement

• Variance Input Data Set name, if you specify the VAR=SAS-data-set option in the STRATA statement

• Cost Input Data Set name, if you specify the COST=SAS-data-set option in the STRATA statement

• Number of Strata

• Stratum Minimum Sample Size, if you specify the ALLOCMIN= option in the STRATA statement

• Total Sample Size

• Expected Margin of Error, if you specify the STATS option with the MARGIN= option in the STRATA
statement

• Expected Variance, if you specify the STATS option without the MARGIN= option in the STRATA
statement for ALLOC=OPTIMAL or ALLOC=NEYMAN

• Total Stratum Costs, if you specify the STATS option with ALLOC=OPTIMAL in the STRATA
statement

• Allocation Output Data Set name
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Random Assignment Table

If you specify the GROUPS= option, PROC SURVEYSELECT displays the following information in the
“Random Assignment” table:

• Input Data Set name

• Strata Variables, if you specify a STRATA statement

• Random Number Seed

• Number of Groups

• Total Number of Units, if you specify the GROUPS=n option and do not specify a STRATA statement

• Number of Units per Group, if you specify the GROUPS=n option and do not specify a STRATA
statement

• Number of Replicates, if you specify the REPS= option

• Number of Strata, if you specify a STRATA statement

• Total Number of Groups, if you specify a STRATA statement or the REPS= option

• Output Data Set name

ODS Table Names
PROC SURVEYSELECT assigns a name to each table that it creates. You can use these names to refer to
tables when you use the Output Delivery System (ODS) to select tables and create output data sets. For more
information about ODS, see Chapter 20, “Using the Output Delivery System.” Table 102.4 lists the table
names.

Table 102.4 ODS Tables Produced by PROC SURVEYSELECT

ODS Table Name Description Statement Option

Groups Random assignment summary PROC GROUPS=
Method Sample selection method PROC Default
Method Sample allocation method STRATA NOSAMPLE
Summary Sample selection summary PROC Default
Summary Sample allocation summary STRATA NOSAMPLE
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Examples: SURVEYSELECT Procedure

Example 102.1: Replicated Sampling
This example uses the Customers data set from the section “Getting Started: SURVEYSELECT Procedure”
on page 8403. The data set Customers contains an Internet service provider’s current subscribers, and the
service provider wants to select a sample from this population for a customer satisfaction survey.

This example illustrates replicated sampling, which selects multiple samples from the survey population
according to the same design. You can use replicated sampling to provide a simple method of variance
estimation, or to evaluate variable nonsampling errors such as interviewer differences. For information about
replicated sampling, see Lohr (2010), Wolter (2007), Kish (1965), Kish (1987), and Kalton (1983).

This design includes four replicates, each with a sample size of 50 customers. The sampling frame is stratified
by State and sorted by Type and Usage within strata. Customers are selected by sequential random sampling
with equal probability within strata. The following PROC SURVEYSELECT statements select a probability
sample of customers from the Customers data set by using this design:

title1 'Customer Satisfaction Survey';
title2 'Replicated Sampling';
proc surveyselect data=Customers method=seq n=(8 12 20 10)

reps=4 seed=40070 ranuni out=SampleRep;
strata State;
control Type Usage;

run;

The STRATA statement names the stratification variable State. The CONTROL statement names the control
variables Type and Usage.

In the PROC SURVEYSELECT statement, the METHOD=SEQ option requests sequential random sampling.
The REPS= option specifies four replicates of this sample. The N=(8 12 20 10) option lists the stratum sample
sizes for each replicate. The N= option lists the stratum sample sizes in the same order as the strata appear in
the Customers data set, which has been sorted by State. The sample size of eight customers corresponds to
the first stratum, State = ‘AL’. The sample size 12 corresponds to the next stratum, State = ‘FL’, and so on.

The SEED= option specifies 40070 as the initial seed for random number generation. The RANUNI option
requests random number generation by the RANUNI generator, which PROC SURVEYSELECT uses in
releases before SAS/STAT 12.1. (Beginning in SAS/STAT 12.1, PROC SURVEYSELECT uses the Mersenne-
Twister random number generator by default.) You can specify the RANUNI option with the SEED= option
to reproduce samples that PROC SURVEYSELECT selects in releases before SAS/STAT 12.1. To reproduce
a sample by using the RANUNI and SEED= options, you must also specify the same input data set and
sample selection parameters.

Output 102.1.1 displays the output from PROC SURVEYSELECT, which summarizes the sample selection.
A total of 200 customers is selected in four replicates. PROC SURVEYSELECT selects each replicate by
using sequential random sampling within strata determined by State. The sampling frame Customers is
sorted by the control variables Type and Usage within strata, according to hierarchic serpentine sorting. The
output data set SampleRep contains the sample.
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Output 102.1.1 Sample Selection Summary

Customer Satisfaction Survey
Replicated Sampling

The SURVEYSELECT Procedure

Customer Satisfaction Survey
Replicated Sampling

The SURVEYSELECT Procedure

Selection Method Sequential Random Sampling

With Equal Probability

Strata Variable State

Control Variables Type

Usage

Control Sorting Serpentine

Input Data Set CUSTOMERS

Random Number Seed 40070

Number of Strata 4

Number of Replicates 4

Total Sample Size 200

Output Data Set SAMPLEREP

The following PROC PRINT statements display the selected customers for the first stratum, State = ‘AL’,
from the output data set SampleRep:

title1 'Customer Satisfaction Survey';
title2 'Sample Selected by Replicated Design';
title3 '(First Stratum)';
proc print data=SampleRep;

where State = 'AL';
run;

Output 102.1.2 displays the 32 sample customers of the first stratum (State = ‘AL’) from the output data set
SampleRep, which includes the entire sample of 200 customers. The variable SelectionProb contains the
selection probability, and SamplingWeight contains the sampling weight. Because customers are selected
with equal probability within strata in this design, all customers in the same stratum have the same selection
probability. These selection probabilities and sampling weights apply to a single replicate, and the variable
Replicate contains the sample replicate number.
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Output 102.1.2 Customer Sample (First Stratum)

Customer Satisfaction Survey
Sample Selected by Replicated Design

(First Stratum)

Customer Satisfaction Survey
Sample Selected by Replicated Design

(First Stratum)

Obs State Replicate CustomerID Type Usage SelectionProb SamplingWeight

1 AL 1 882-37-7496 New 572 .004115226 243

2 AL 1 581-32-5534 New 863 .004115226 243

3 AL 1 980-29-2898 Old 571 .004115226 243

4 AL 1 172-56-4743 Old 128 .004115226 243

5 AL 1 998-55-5227 Old 35 .004115226 243

6 AL 1 625-44-3396 New 60 .004115226 243

7 AL 1 627-48-2509 New 114 .004115226 243

8 AL 1 257-66-6558 New 172 .004115226 243

9 AL 2 622-83-1680 New 22 .004115226 243

10 AL 2 343-57-1186 New 53 .004115226 243

11 AL 2 976-05-3796 New 110 .004115226 243

12 AL 2 859-74-0652 New 303 .004115226 243

13 AL 2 476-48-1066 New 839 .004115226 243

14 AL 2 109-27-8914 Old 2102 .004115226 243

15 AL 2 743-25-0298 Old 376 .004115226 243

16 AL 2 722-08-2215 Old 105 .004115226 243

17 AL 3 668-57-7696 New 200 .004115226 243

18 AL 3 300-72-0129 New 471 .004115226 243

19 AL 3 073-60-0765 New 656 .004115226 243

20 AL 3 526-87-0258 Old 672 .004115226 243

21 AL 3 726-61-0387 Old 150 .004115226 243

22 AL 3 632-29-9020 Old 51 .004115226 243

23 AL 3 417-17-8378 New 56 .004115226 243

24 AL 3 091-26-2366 New 93 .004115226 243

25 AL 4 336-04-1288 New 419 .004115226 243

26 AL 4 827-04-7407 New 650 .004115226 243

27 AL 4 317-70-6496 Old 452 .004115226 243

28 AL 4 002-38-4582 Old 206 .004115226 243

29 AL 4 181-83-3990 Old 33 .004115226 243

30 AL 4 675-34-7393 New 47 .004115226 243

31 AL 4 228-07-6671 New 65 .004115226 243

32 AL 4 298-46-2434 New 161 .004115226 243
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Example 102.2: PPS Selection of Two Units per Stratum
This example describes hospital selection for a survey by using PROC SURVEYSELECT. A state health
agency plans to conduct a statewide survey of a variety of different hospital services. The agency plans to
select a probability sample of individual discharge records within hospitals by using a two-stage sample
design. First-stage units are hospitals, and second-stage units are patient discharges during the study period.
Hospitals are stratified first according to geographic region and then by rural/urban type and size of hospital.
Two hospitals are selected from each stratum with probability proportional to size.

The data set HospitalFrame contains all hospitals in the first geographical region of the state:

data HospitalFrame;
input Hospital$ Type$ SizeMeasure @@;
if (SizeMeasure < 20) then Size='Small ';

else if (SizeMeasure < 50) then Size='Medium';
else Size='Large ';

datalines;
034 Rural 0.870 107 Rural 1.316
079 Rural 2.127 223 Rural 3.960
236 Rural 5.279 165 Rural 5.893
086 Rural 0.501 141 Rural 11.528
042 Urban 3.104 124 Urban 4.033
006 Urban 4.249 261 Urban 4.376
195 Urban 5.024 190 Urban 10.373
038 Urban 17.125 083 Urban 40.382
259 Urban 44.942 129 Urban 46.702
133 Urban 46.992 218 Urban 48.231
026 Urban 61.460 058 Urban 65.931
119 Urban 66.352
;

In the SAS data set HospitalFrame, the variable Hospital identifies the hospital. The variable Type equals
‘Urban’ if the hospital is located in an urban area, and ‘Rural’ otherwise. The variable SizeMeasure contains
the hospital’s size measure, which is constructed from past data on service utilization for the hospital together
with the desired sampling rates for each service. This size measure reflects the amount of relevant survey
information expected from the hospital. For information about this type of size measure, see Drummond
et al. (1982). The value of the variable Size is ‘Small’, ‘Medium’, or ‘Large’, depending on the value of the
hospital’s size measure.

The following PROC PRINT statements display the data set Hospital Frame and produce Output 102.2.1:

title1 'Hospital Utilization Survey';
title2 'Sampling Frame, Region 1';
proc print data=HospitalFrame;
run;
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Output 102.2.1 Sampling Frame

Hospital Utilization Survey
Sampling Frame, Region 1
Hospital Utilization Survey
Sampling Frame, Region 1

Obs Hospital Type SizeMeasure Size

1 034 Rural 0.870 Small

2 107 Rural 1.316 Small

3 079 Rural 2.127 Small

4 223 Rural 3.960 Small

5 236 Rural 5.279 Small

6 165 Rural 5.893 Small

7 086 Rural 0.501 Small

8 141 Rural 11.528 Small

9 042 Urban 3.104 Small

10 124 Urban 4.033 Small

11 006 Urban 4.249 Small

12 261 Urban 4.376 Small

13 195 Urban 5.024 Small

14 190 Urban 10.373 Small

15 038 Urban 17.125 Small

16 083 Urban 40.382 Medium

17 259 Urban 44.942 Medium

18 129 Urban 46.702 Medium

19 133 Urban 46.992 Medium

20 218 Urban 48.231 Medium

21 026 Urban 61.460 Large

22 058 Urban 65.931 Large

23 119 Urban 66.352 Large

The following PROC SURVEYSELECT statements select a probability sample of hospitals from the
HospitalFrame data set by using a stratified design with PPS selection of two units from each stratum:

title1 'Hospital Utilization Survey';
title2 'Stratified PPS Sampling';
proc surveyselect data=HospitalFrame method=pps_brewer

seed=48702 out=SampleHospitals;
size SizeMeasure;
strata Type Size notsorted;

run;

The STRATA statement names the stratification variables Type and Size. The NOTSORTED option specifies
that observations with the same STRATA variable values are grouped together but are not necessarily sorted
in alphabetical or increasing numerical order. In the HospitalFrame data set, Size = ‘Small’ precedes Size =
‘Medium’.

In the PROC SURVEYSELECT statement, the METHOD=PPS_BREWER option requests sample selection
by Brewer’s method, which selects two units per stratum with probability proportional to size. The SEED=
option specifies 48702 as the initial seed for random number generation. The SIZE statement names
SizeMeasure as the size measure variable. It is not necessary to specify the sample size in the N= option,
because Brewer’s method always selects two units from each stratum.
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Output 102.2.2 displays the output from PROC SURVEYSELECT. A total of eight hospitals were selected
from the four strata. The data set SampleHospitals contains the selected hospitals.

Output 102.2.2 Sample Selection Summary

Hospital Utilization Survey
Stratified PPS Sampling

The SURVEYSELECT Procedure

Hospital Utilization Survey
Stratified PPS Sampling

The SURVEYSELECT Procedure

Selection Method Brewer's PPS Method

Size Measure SizeMeasure

Strata Variables Type

Size

Input Data Set HOSPITALFRAME

Random Number Seed 48702

Stratum Sample Size 2

Number of Strata 4

Total Sample Size 8

Output Data Set SAMPLEHOSPITALS

The following PROC PRINT statements display the sample hospitals and produce Output 102.2.3:

title1 'Hospital Utilization Survey';
title2 'Sample Selected by Stratified PPS Design';
proc print data=SampleHospitals;
run;

Output 102.2.3 Sample Hospitals

Hospital Utilization Survey
Sample Selected by Stratified PPS Design

Hospital Utilization Survey
Sample Selected by Stratified PPS Design

Obs Type Size Hospital SizeMeasure SelectionProb SamplingWeight JtSelectionProb

1 Rural Small 165 5.893 0.37447 2.67046 0.22465

2 Rural Small 141 11.528 0.73254 1.36511 0.22465

3 Urban Small 006 4.249 0.17600 5.68181 0.01454

4 Urban Small 195 5.024 0.20810 4.80533 0.01454

5 Urban Medium 129 46.702 0.41102 2.43297 0.11211

6 Urban Medium 218 48.231 0.42448 2.35584 0.11211

7 Urban Large 058 65.931 0.68060 1.46929 0.36555

8 Urban Large 119 66.352 0.68495 1.45996 0.36555

The variable SelectionProb contains the selection probability for each hospital in the sample. The variable
JtSelectionProb contains the joint probability of selection for the two sample hospitals in the same stratum.
The variable SamplingWeight contains the sampling weight component for this first stage of the design.
The final-stage weight components, which correspond to patient record selection within hospitals, can be
multiplied by the hospital weight components to obtain the overall sampling weights.
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Example 102.3: PPS (Dollar-Unit) Sampling
A small company wants to audit employee travel expenses in an effort to improve the expense reporting
procedure and possibly reduce expenses. The company does not have resources to examine all expense
reports and wants to use statistical sampling to objectively select expense reports for audit.

The data set TravelExpense contains the dollar amount of all employee travel expense transactions during the
past month:

data TravelExpense;
input ID$ Amount @@;
if (Amount < 500) then Level='1_Low ';

else if (Amount > 1500) then Level='3_High';
else Level='2_Avg ';

datalines;
110 237.18 002 567.89 234 118.50
743 74.38 411 1287.23 782 258.10
216 325.36 174 218.38 568 1670.80
302 134.71 285 2020.70 314 47.80
139 1183.45 775 330.54 425 780.10
506 895.80 239 620.10 011 420.18
672 979.66 142 810.25 738 670.85
192 314.58 243 87.50 263 1893.40
496 753.30 332 540.65 486 2580.35
614 230.56 654 185.60 308 688.43
784 505.14 017 205.48 162 650.42
289 1348.34 691 30.50 545 2214.80
517 940.35 382 217.85 024 142.90
478 806.90 107 560.72
;

In the SAS data set TravelExpense, the variable ID identifies the travel expense report. The variable Amount
contains the dollar amount of the reported expense. The variable Level equals ‘1_Low’, ‘2_Avg’, or ‘3_High’,
depending on the value of Amount.

In the sample design for this audit, expense reports are stratified by Level. This ensures that each of these
expense levels is included in the sample and also permits a disproportionate allocation of the sample, selecting
proportionately more of the expense reports from the higher levels. Within strata, the sample of expense
reports is selected with probability proportional to the amount of the expense, thus giving a greater chance
of selection to larger expenses. In auditing terms, this is known as monetary-unit sampling. For more
information, see Wilburn (1984).

PROC SURVEYSELECT requires that the input data set be sorted by the STRATA variables. The following
PROC SORT statements sort the TravelExpense data set by the stratification variable Level.

proc sort data=TravelExpense;
by Level;

run;

Output 102.3.1 displays the sampling frame data set TravelExpense, which contains 41 observations.
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Output 102.3.1 Sampling Frame

Travel Expense AuditTravel Expense Audit

Obs ID Amount Level

1 110 237.18 1_Low

2 234 118.50 1_Low

3 743 74.38 1_Low

4 782 258.10 1_Low

5 216 325.36 1_Low

6 174 218.38 1_Low

7 302 134.71 1_Low

8 314 47.80 1_Low

9 775 330.54 1_Low

10 011 420.18 1_Low

11 192 314.58 1_Low

12 243 87.50 1_Low

13 614 230.56 1_Low

14 654 185.60 1_Low

15 017 205.48 1_Low

16 691 30.50 1_Low

17 382 217.85 1_Low

18 024 142.90 1_Low

19 002 567.89 2_Avg

20 411 1287.23 2_Avg

21 139 1183.45 2_Avg

22 425 780.10 2_Avg

23 506 895.80 2_Avg

24 239 620.10 2_Avg

25 672 979.66 2_Avg

26 142 810.25 2_Avg

27 738 670.85 2_Avg

28 496 753.30 2_Avg

29 332 540.65 2_Avg

30 308 688.43 2_Avg

31 784 505.14 2_Avg

32 162 650.42 2_Avg

33 289 1348.34 2_Avg

34 517 940.35 2_Avg

35 478 806.90 2_Avg

36 107 560.72 2_Avg

37 568 1670.80 3_High

38 285 2020.70 3_High

39 263 1893.40 3_High

40 486 2580.35 3_High

41 545 2214.80 3_High
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The following PROC SURVEYSELECT statements select a probability sample of expense reports from the
TravelExpense data set by using the stratified design with PPS selection within strata:

title1 'Travel Expense Audit';
title2 'Stratified PPS (Dollar-Unit) Sampling';
proc surveyselect data=TravelExpense method=pps n=(6 10 4)

seed=47279 out=AuditSample;
size Amount;
strata Level;

run;

The STRATA statement names the stratification variable Level. The SIZE statement specifies the size measure
variable Amount. In the PROC SURVEYSELECT statement, the METHOD=PPS option requests sample
selection with probability proportional to size and without replacement. The N=(6 10 4) option specifies the
stratum sample sizes, listing the sample sizes in the same order as the strata appear in the TravelExpense data
set. The sample size of 6 corresponds to the first stratum, Level = ‘1_Low’; the sample size of 10 corresponds
to the second stratum, Level = ‘2_Avg’; and 4 corresponds to the last stratum, Level = ‘3_High’. The SEED=
option specifies 47279 as the initial seed for random number generation.

Output 102.3.2 displays the output from PROC SURVEYSELECT. A total of 20 expense reports are selected
for audit. The data set AuditSample contains the sample of travel expense reports.

Output 102.3.2 Sample Selection Summary

Travel Expense Audit
Stratified PPS (Dollar-Unit) Sampling

The SURVEYSELECT Procedure

Travel Expense Audit
Stratified PPS (Dollar-Unit) Sampling

The SURVEYSELECT Procedure

Selection Method PPS, Without Replacement

Size Measure Amount

Strata Variable Level

Input Data Set TRAVELEXPENSE

Random Number Seed 47279

Number of Strata 3

Total Sample Size 20

Output Data Set AUDITSAMPLE

The following PROC PRINT statements display the audit sample, which is shown in Output 102.3.3:

title1 'Travel Expense Audit';
title2 'Sample Selected by Stratified PPS Design';
proc print data=AuditSample;
run;
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Output 102.3.3 Audit Sample

Travel Expense Audit
Sample Selected by Stratified PPS Design

Travel Expense Audit
Sample Selected by Stratified PPS Design

Obs Level ID Amount SelectionProb SamplingWeight

1 1_Low 024 142.90 0.23949 4.17553

2 1_Low 614 230.56 0.38640 2.58797

3 1_Low 110 237.18 0.39750 2.51574

4 1_Low 782 258.10 0.43256 2.31183

5 1_Low 192 314.58 0.52721 1.89676

6 1_Low 216 325.36 0.54528 1.83392

7 2_Avg 332 540.65 0.37057 2.69853

8 2_Avg 239 620.10 0.42503 2.35278

9 2_Avg 162 650.42 0.44581 2.24310

10 2_Avg 738 670.85 0.45981 2.17479

11 2_Avg 506 895.80 0.61400 1.62866

12 2_Avg 517 940.35 0.64454 1.55151

13 2_Avg 672 979.66 0.67148 1.48925

14 2_Avg 139 1183.45 0.81116 1.23280

15 2_Avg 411 1287.23 0.88229 1.13341

16 2_Avg 289 1348.34 0.92418 1.08204

17 3_High 568 1670.80 0.64385 1.55316

18 3_High 263 1893.40 0.72963 1.37056

19 3_High 285 2020.70 0.77869 1.28421

20 3_High 545 2214.80 0.85348 1.17167

Example 102.4: Proportional Allocation
This example uses the Customers data set from the section “Getting Started: SURVEYSELECT Procedure”
on page 8403. The data set Customers contains an Internet service provider’s current subscribers, and the
service provider wants to select a sample from this population for a customer satisfaction survey. This example
illustrates proportional allocation, which allocates the total sample size among the strata in proportion to the
strata sizes.

The section “Getting Started: SURVEYSELECT Procedure” on page 8403 gives an example of stratified
sampling, where the list of customers is stratified by State and Type. Figure 102.4 displays the strata in a
table of State by Type for the 13,471 customers. There are four states and two levels of Type, forming a
total of eight strata. A sample of 15 customers was selected from each stratum by using the following PROC
SURVEYSELECT statements:

title1 'Customer Satisfaction Survey';
title2 'Stratified Sampling';
proc surveyselect data=Customers method=srs n=15

seed=1953 out=SampleStrata;
strata State Type;

run;

The STRATA statement names the stratification variables State and Type. In the PROC
SURVEYSELECT statement, the N= option specifies a sample size of 15 customers in each stratum.
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Instead of specifying the number of customers to select from each stratum, you can specify the total sample
size and request allocation of the total sample size among the strata. The following PROC SURVEYSELECT
statements request proportional allocation, which allocates the total sample size in proportion to the stratum
sizes:

title1 'Customer Satisfaction Survey';
title2 'Proportional Allocation';
proc surveyselect data=Customers n=1000

out=SampleSizes;
strata State Type / alloc=prop nosample;

run;

The STRATA statement names the stratification variables State and Type. In the STRATA statement, the
ALLOC=PROP option requests proportional allocation. The NOSAMPLE option requests that no sample be
selected after the procedure computes the sample size allocation. In the PROC SURVEYSELECT statement,
the N= option specifies a total sample size of 1000 customers to be allocated among the strata.

Output 102.4.1 displays the output from PROC SURVEYSELECT, which summarizes the sample allocation.
The total sample size of 1000 is allocated among the eight strata by using proportional allocation. The
allocated sample sizes are stored in the SAS data set SampleSizes.

Output 102.4.1 Proportional Allocation Summary

Customer Satisfaction Survey
Proportional Allocation

The SURVEYSELECT Procedure

Customer Satisfaction Survey
Proportional Allocation

The SURVEYSELECT Procedure

Allocation Proportional

Strata Variables State

Type

Input Data Set CUSTOMERS

Number of Strata 8

Total Sample Size 1000

Allocation Output Data Set SAMPLESIZES

The following PROC PRINT statements display the allocation output data set SampleSizes, which is shown
in Output 102.4.2:

title1 'Customer Satisfaction Survey';
title2 'Proportional Allocation';
proc print data=SampleSizes;
run;
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Output 102.4.2 Stratum Sample Sizes

Customer Satisfaction Survey
Proportional Allocation

Customer Satisfaction Survey
Proportional Allocation

Obs State Type Total AllocProportion SampleSize ActualProportion

1 AL New 1238 0.09190 92 0.092

2 AL Old 706 0.05241 52 0.052

3 FL New 2170 0.16109 161 0.161

4 FL Old 1370 0.10170 102 0.102

5 GA New 3488 0.25893 259 0.259

6 GA Old 1940 0.14401 144 0.144

7 SC New 1684 0.12501 125 0.125

8 SC Old 875 0.06495 65 0.065

The output data set SampleSizes includes one observation for each of the eight strata, which are identified by
the stratification variables State and Type. The variable Total contains the number of sampling units in the
stratum, and the variable AllocProportion contains the proportion of the total sample size to allocate to the
stratum. The variable SampleSize contains the allocated stratum sample size. For the first stratum (State=‘AL’
and Type=‘New’), the total number of sampling units is 1238 customers, the allocation proportion is 0.09190,
and the allocated sample size is 92 customers. The sum of the allocated sample sizes equals the requested
total sample size of 1000 customers.

The output data set also includes the variable ActualProportion, which contains actual stratum proportions
of the total sample size. The actual proportion for a stratum is the stratum sample size divided by the total
sample size. For the first stratum (State=‘AL’ and Type=‘New’), the actual proportion is 0.092, while the
allocation proportion is 0.09190. The target sample sizes computed from the allocation proportions are often
not integers, and PROC SURVEYSELECT uses a rounding algorithm to obtain integer sample sizes and
maintain the requested total sample size. Due to rounding and other restrictions, the actual proportions can
differ from the target allocation proportions. For more information, see the section “Sample Size Allocation”
on page 8450.

If you want to use the allocated sample sizes in a later invocation of PROC SURVEYSELECT, you can name
the allocation data set in the N=SAS-data-set option, as shown in the following PROC SURVEYSELECT
statements:

title1 'Customer Satisfaction Survey';
title2 'Stratified Sampling';
proc surveyselect data=Customers method=srs n=SampleSizes

seed=1953 out=SampleStrata;
strata State Type;

run;
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Overview: TPSPLINE Procedure
The TPSPLINE procedure uses the penalized least squares method to fit a nonparametric regression model.
It computes thin-plate smoothing splines to approximate smooth multivariate functions observed with noise.
The TPSPLINE procedure allows great flexibility in the possible form of the regression surface. In particular,
PROC TPSPLINE makes no assumptions of a parametric form for the model. The generalized cross validation
(GCV) function can be used to select the amount of smoothing.

The TPSPLINE procedure complements the methods provided by the standard SAS regression procedures
such as the GLM, REG, and NLIN procedures. These procedures can handle most situations in which you
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specify the regression model and the model is known up to a fixed number of parameters. However, when
you have no prior knowledge about the model, or when you know that the data cannot be represented by a
model with a fixed number of parameters, you can use the TPSPLINE procedure to model the data.

The TPSPLINE procedure uses the penalized least squares method to fit the data with a flexible model in
which the number of effective parameters can be as large as the number of unique design points. Hence, as
the sample size increases, the model space also increases, enabling the thin-plate smoothing spline to fit more
complicated situations.

The main features of the TPSPLINE procedure are as follows:

• provides penalized least squares estimates

• supports the use of multidimensional data

• supports multiple SCORE statements

• fits both semiparametric models and nonparametric models

• provides options for handling large data sets

• supports multiple dependent variables

• enables you to choose a particular model by specifying the model degrees of freedom or smoothing
parameter

• produces graphs with ODS Graphics

Penalized Least Squares Estimation
Penalized least squares estimation provides a way to balance fitting the data closely and avoiding excessive
roughness or rapid variation. A penalized least squares estimate is a surface that minimizes the penalized
squared error over the class of all surfaces that satisfy sufficient regularity conditions.

Define xi as a d-dimensional covariate vector from an n� d matrix X, zi as a p-dimensional covariate vector,
and yi as the observation associated with .xi ; zi /. Assuming that the relation between zi and yi is linear but
the relation between xi and yi is unknown, you can fit the data by using a semiparametric model as follows:

yi D f .xi /C ziˇ C �i

where f is an unknown function that is assumed to be reasonably smooth, �i ; i D 1; � � � ; n, are independent,
zero-mean random errors, and ˇ is a p-dimensional unknown parameter vector.
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This model consists of two parts. The ziˇ is the parametric part of the model, and the zi are the regression
variables. The f .xi / is the nonparametric part of the model, and the xi are the smoothing variables. The
ordinary least squares method estimates f .xi / and ˇ by minimizing the quantity:

1

n

nX
iD1

.yi � f .xi / � ziˇ/2

However, the functional space of f .x/ is so large that you can always find a function f that interpolates the
data points. In order to obtain an estimate that fits the data well and has some degree of smoothness, you can
use the penalized least squares method.

The penalized least squares function is defined as

S�.f / D
1

n

nX
iD1

.yi � f .xi / � ziˇ/2 C �J2.f /

where J2.f / is the penalty on the roughness of f and is defined, in most cases, as the integral of the square
of the second derivative of f.

The first term measures the goodness of fit and the second term measures the smoothness associated with f.
The � term is the smoothing parameter, which governs the tradeoff between smoothness and goodness of fit.
When � is large, it more heavily penalizes rougher fits. Conversely, a small value of � puts more emphasis
on the goodness of fit.

The estimate f� is selected from a reproducing kernel Hilbert space, and it can be represented as a linear
combination of a sequence of basis functions. Hence, the final estimates of f can be written as

Of�.xi / D �0 C
dX
jD1

�jxi j C
pX
jD1

ıjBj .xj /

where Bj is the basis function, which depends on where the data xi are located, and � D f�0; : : : ; �d g and
ı D fı1; : : : ; ıpg are the coefficients that need to be estimated.

For a fixed �, the coefficients .�; ı;ˇ/ can be estimated by solving an n � n system.

The smoothing parameter can be chosen by minimizing the generalized cross validation (GCV) function.

If you write

Oy D A.�/y

then A.�/ is referred to as the hat or smoothing matrix, and the GCV function GCV.�/ is defined as

GCV.�/ D
.1=n/k.I �A.�//yk2

Œ.1=n/tr.I �A.�//�2
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PROC TPSPLINE with Large Data Sets
The calculation of the penalized least squares estimate is computationally intensive. The amount of memory
and CPU time needed for the analysis depends on the number of unique design points, which corresponds to
the number of unknown parameters to be estimated.

You can specify the D= option in the MODEL statement to reduce the number of unknown parameters. The
option groups design points by the specified range (see the D= option on page 8498).

PROC TPSPLINE selects one design point from the group and treats all observations in the group as replicates
of that design point. Calculation of the thin-plate smoothing spline estimates is based on the reprocessed data.
The way to choose the design point from a group depends on the order of the data. Hence, different orders of
input data might result in different estimates.

By combining several design points into one, this option reduces the number of unique design points, thereby
approximating the original data. The value you specify for the D= option determines the width of the range
used to group the data.

Getting Started: TPSPLINE Procedure
The following example demonstrates how you can use the TPSPLINE procedure to fit a semiparametric
model.

Suppose that y is a continuous variable and x1 and x2 are two explanatory variables of interest. To fit a
bivariate thin-plate spline model, you can use a MODEL statement similar to that used in many regression
procedures in the SAS System:

proc tpspline;
model y = (x1 x2);

run;

The TPSPLINE procedure can fit semiparametric models; the parentheses in the preceding MODEL statement
separate the smoothing variables from the regression variables. The following statements illustrate this
syntax:

proc tpspline;
model y = z1 (x1 x2);

run;

This model assumes a linear relation with z1 and an unknown functional relation with x1 and x2.

If you want to fit several responses by using the same explanatory variables, you can save computation
time by using the multiple responses feature in the MODEL statement. For example, if y1 and y2 are two
response variables, the following MODEL statement can be used to fit two models. Separate analyses are
then performed for each response variable.
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proc tpspline;
model y1 y2 = (x1 x2);

run;

The following example illustrates the use of PROC TPSPLINE. The data are from Bates et al. (1987).

data Measure;
input x1 x2 y @@;
datalines;

-1.0 -1.0 15.54483570 -1.0 -1.0 15.76312613
-.5 -1.0 18.67397826 -.5 -1.0 18.49722167
.0 -1.0 19.66086310 .0 -1.0 19.80231311
.5 -1.0 18.59838649 .5 -1.0 18.51904737

1.0 -1.0 15.86842815 1.0 -1.0 16.03913832
-1.0 -.5 10.92383867 -1.0 -.5 11.14066546
-.5 -.5 14.81392847 -.5 -.5 14.82830425
.0 -.5 16.56449698 .0 -.5 16.44307297
.5 -.5 14.90792284 .5 -.5 15.05653924

1.0 -.5 10.91956264 1.0 -.5 10.94227538
-1.0 .0 9.61492010 -1.0 .0 9.64648093
-.5 .0 14.03133439 -.5 .0 14.03122345
.0 .0 15.77400253 .0 .0 16.00412514
.5 .0 13.99627680 .5 .0 14.02826553

1.0 .0 9.55700164 1.0 .0 9.58467047
-1.0 .5 11.20625177 -1.0 .5 11.08651907
-.5 .5 14.83723493 -.5 .5 14.99369172
.0 .5 16.55494349 .0 .5 16.51294369
.5 .5 14.98448603 .5 .5 14.71816070

1.0 .5 11.14575565 1.0 .5 11.17168689
-1.0 1.0 15.82595514 -1.0 1.0 15.96022497
-.5 1.0 18.64014953 -.5 1.0 18.56095997
.0 1.0 19.54375504 .0 1.0 19.80902641
.5 1.0 18.56884576 .5 1.0 18.61010439

1.0 1.0 15.86586951 1.0 1.0 15.90136745
;

The data set Measure contains three variables x1, x2, and y. Suppose that you want to fit a surface by
using the variables x1 and x2 to model the response y. The variables x1 and x2 are spaced evenly on a
Œ�1� 1�� Œ�1� 1� square, and the response y is generated by adding a random error to a function f .x1; x2/.
The raw data are plotted in three-dimensional scatter plot by using the G3D procedure. In order to visualize
those replicates, half of the data are shifted a little bit by adding a small value (0.001) to x1 values, as in the
following statements:

data Measure1;
set Measure;

run;

proc sort data=Measure1;
by x2 x1;

run;
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data Measure1;
set Measure1;
if mod(_N_, 2) = 0 then x1=x1+0.001;

run;

proc g3d data=Measure1;
scatter x2*x1=y /size=.5

zmin=9 zmax=21
zticknum=4;

title "Raw Data";
run;

Figure 103.1 displays the raw data.

Figure 103.1 Plot of Data Set MEASURE
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The following statements invoke the TPSPLINE procedure, to analyze the Measure data set as input. In
the MODEL statement, the x1 and x2 variables are listed as smoothing variables. The LOGNLAMBDA=
option specifies that PROC TPSPLINE examine a list of models with log10.n�/ ranging from –4 to –2.5.
The OUTPUT statement creates the data set estimate to contain the predicted values and the 95% upper and
lower confidence limits from the best model selected by the GCV criterion.

ods graphics on;

proc tpspline data=Measure;
model y=(x1 x2) /lognlambda=(-4 to -2.5 by 0.1);
output out=estimate pred uclm lclm;

run;

proc print data=estimate;
run;

When ODS Graphics is enabled, PROC TPSPLINE produces several default plots. One of the default plots is
the contour plot of the fitted surface, shown in Figure 103.2. The surface exhibits nonlinear patterns along
the directions of both predictors.

Figure 103.2 Fitted Surface from PROC TPSPLINE
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Figure 103.3 shows the “Criterion Plot” that provides a graphical display of the GCV selection process. Three
sets of values are shown in the plot: the specified smoothing values and their GCV values, the examined
smoothing values and their GCV values during the optimization process, and the best smoothing parameter
and its GCV value. The final thin-plate smoothing spline estimate is based on log10.n�/ D �3:4762, which
minimizes the GCV.

Figure 103.3 The GCV Criterion by log10.n�/

Figure 103.4 shows that the data set Measure contains 50 observations with 25 unique design points. The
final model contains no parametric regression terms and two smoothing variables. The order of the derivative
in the penalty is 2 by default, and the dimension of polynomial space is 3. See the section “Computational
Formulas” on page 8501 for definitions.

Figure 103.4 also lists the GCV values along with the supplied values of log10.n�/. The value that minimizes
the GCV function is –3.5 among the given list of log10.n�/.

The residual sum of squares from the fitted model is 0.246110, and the model degrees of freedom are
24.593203. The standard deviation, defined as RSS=.tr.I � A//, is 0.098421. The predictions and 95%
confidence limits are displayed in Figure 103.5.
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Figure 103.4 Fitted Model Summaries from PROC TPSPLINE

Raw Data

The TPSPLINE Procedure
Dependent Variable:  y

Raw Data

The TPSPLINE Procedure
Dependent Variable:  y

Summary of Input Data Set

Number of Non-Missing Observations 50

Number of Missing Observations 0

Unique Smoothing Design Points 25

Summary of Final Model

Number of Regression Variables 0

Number of Smoothing Variables 2

Order of Derivative in the Penalty 2

Dimension of Polynomial Space 3

GCV Function

log10(n*Lambda) GCV

-4.000000 0.019215

-3.900000 0.019183

-3.800000 0.019148

-3.700000 0.019113

-3.600000 0.019082

-3.500000 0.019064 *

-3.400000 0.019074

-3.300000 0.019135

-3.200000 0.019286

-3.100000 0.019584

-3.000000 0.020117

-2.900000 0.021015

-2.800000 0.022462

-2.700000 0.024718

-2.600000 0.028132

-2.500000 0.033165

Note: * indicates minimum GCV value.

Summary Statistics of Final
Estimation

log10(n*Lambda) -3.4762

Smoothing Penalty 2558.1432

Residual SS 0.2461

Tr(I-A) 25.4068

Model DF 24.5932

Standard Deviation 0.0984

GCV 0.0191
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Figure 103.5 Data Set ESTIMATE

Raw DataRaw Data

Obs x1 x2 y P_y LCLM_y UCLM_y

1 -1.0 -1.0 15.5448 15.6474 15.5115 15.7832

2 -1.0 -1.0 15.7631 15.6474 15.5115 15.7832

3 -0.5 -1.0 18.6740 18.5783 18.4430 18.7136

4 -0.5 -1.0 18.4972 18.5783 18.4430 18.7136

5 0.0 -1.0 19.6609 19.7270 19.5917 19.8622

6 0.0 -1.0 19.8023 19.7270 19.5917 19.8622

7 0.5 -1.0 18.5984 18.5552 18.4199 18.6905

8 0.5 -1.0 18.5190 18.5552 18.4199 18.6905

9 1.0 -1.0 15.8684 15.9436 15.8077 16.0794

10 1.0 -1.0 16.0391 15.9436 15.8077 16.0794

11 -1.0 -0.5 10.9238 11.0467 10.9114 11.1820

12 -1.0 -0.5 11.1407 11.0467 10.9114 11.1820

13 -0.5 -0.5 14.8139 14.8246 14.6896 14.9597

14 -0.5 -0.5 14.8283 14.8246 14.6896 14.9597

15 0.0 -0.5 16.5645 16.5102 16.3752 16.6452

16 0.0 -0.5 16.4431 16.5102 16.3752 16.6452

17 0.5 -0.5 14.9079 14.9812 14.8461 15.1162

18 0.5 -0.5 15.0565 14.9812 14.8461 15.1162

19 1.0 -0.5 10.9196 10.9497 10.8144 11.0850

20 1.0 -0.5 10.9423 10.9497 10.8144 11.0850

21 -1.0 0.0 9.6149 9.6372 9.5019 9.7724

22 -1.0 0.0 9.6465 9.6372 9.5019 9.7724

23 -0.5 0.0 14.0313 14.0188 13.8838 14.1538

24 -0.5 0.0 14.0312 14.0188 13.8838 14.1538

25 0.0 0.0 15.7740 15.8822 15.7472 16.0171

26 0.0 0.0 16.0041 15.8822 15.7472 16.0171

27 0.5 0.0 13.9963 14.0006 13.8656 14.1356

28 0.5 0.0 14.0283 14.0006 13.8656 14.1356

29 1.0 0.0 9.5570 9.5769 9.4417 9.7122

30 1.0 0.0 9.5847 9.5769 9.4417 9.7122

31 -1.0 0.5 11.2063 11.1614 11.0261 11.2967

32 -1.0 0.5 11.0865 11.1614 11.0261 11.2967

33 -0.5 0.5 14.8372 14.9182 14.7831 15.0532

34 -0.5 0.5 14.9937 14.9182 14.7831 15.0532

35 0.0 0.5 16.5549 16.5386 16.4036 16.6736

36 0.0 0.5 16.5129 16.5386 16.4036 16.6736

37 0.5 0.5 14.9845 14.8549 14.7199 14.9900

38 0.5 0.5 14.7182 14.8549 14.7199 14.9900

39 1.0 0.5 11.1458 11.1727 11.0374 11.3080

40 1.0 0.5 11.1717 11.1727 11.0374 11.3080

41 -1.0 1.0 15.8260 15.8851 15.7493 16.0210

42 -1.0 1.0 15.9602 15.8851 15.7493 16.0210

43 -0.5 1.0 18.6401 18.5946 18.4593 18.7299

44 -0.5 1.0 18.5610 18.5946 18.4593 18.7299

45 0.0 1.0 19.5438 19.6729 19.5376 19.8081

46 0.0 1.0 19.8090 19.6729 19.5376 19.8081

47 0.5 1.0 18.5688 18.5832 18.4478 18.7185
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Figure 103.5 continued

Raw Data

Obs x1 x2 y P_y LCLM_y UCLM_y

48 0.5 1.0 18.6101 18.5832 18.4478 18.7185

49 1.0 1.0 15.8659 15.8761 15.7402 16.0120

50 1.0 1.0 15.9014 15.8761 15.7402 16.0120

You can also use the TEMPLATE and SGRENDER procedures to create a perspective plot for visualizing the
fitted surface. Because the data in the data set Measure are very sparse, the fitted surface is not smooth. To
produce a smoother surface, the following statements generate the data set pred in order to obtain a finer grid.
The LOGNLAMBDA0= option requests that PROC TPSPLINE fit a model with a fixed log10.n�/ value of
–3.4762. The SCORE statement evaluates the fitted surface at those new design points.

data pred;
do x1=-1 to 1 by 0.1;

do x2=-1 to 1 by 0.1;
output;

end;
end;

run;

proc tpspline data=measure;
model y=(x1 x2)/lognlambda0=-3.4762;
score data=pred out=predy;

run;

proc template;
define statgraph surface;

dynamic _X _Y _Z _T;
begingraph /designheight=360;

entrytitle _T;
layout overlay3d/rotate=120 cube=false xaxisopts=(label="x1")

yaxisopts=(label="x2") zaxisopts=(label="P_y");
surfaceplotparm x=_X y=_Y z=_Z;

endlayout;
endgraph;

end;
run;

proc sgrender data=predy template=surface;
dynamic _X='x1' _Y='x2' _Z='P_y'

_T='Plot of Fitted Surface on a Fine Grid';
run;
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The surface plot based on the finer grid is displayed in Figure 103.6. The plot indicates that a parametric
model with quadratic terms of x1 and x2 provides a reasonable fit to the data.

Figure 103.6 Plot of TPSPLINE Fit

Figure 103.7 shows a panel of fit diagnostics for the selected model that indicate a reasonable fit:

• The predicted values closely approximate the observed values.

• The residuals are approximately normally distributed and do not show obvious systematic patterns.

• The RFPLOT shows that much variation in the response variable is addressed by the fit and only a
little remains in the residuals.
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Figure 103.7 Fit Diagnostics

Syntax: TPSPLINE Procedure
The following statements are available in the TPSPLINE procedure:

PROC TPSPLINE < options > ;
MODEL dependents = < variables > (variables)< / options > ;
SCORE DATA=SAS-data-set OUT=SAS-data-set < keyword . . . keyword > ;
OUTPUT < OUT=SAS-data-set > keyword . . . keyword ;
BY variables ;
FREQ variable ;
ID variables ;

The syntax in PROC TPSPLINE is similar to that of other regression procedures in the SAS System. The
PROC TPSPLINE and MODEL statements are required. The SCORE statement can appear multiple times;
all other statements appear no more than once.

The statements available for PROC TPSPLINE are described in alphabetical order after the description of the
PROC TPSPLINE statement.
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PROC TPSPLINE Statement
PROC TPSPLINE < options > ;

The PROC TPSPLINE statement invokes the TPSPLINE procedure. Table 103.1 summarizes the options
available in the TPSPLINE statement.

Table 103.1 PROC TPSPLINE Statement Options

Option Description

DATA= Specifies the SAS data set to be read
PLOTS Controls the plots that are produced through ODS Graphics

You can specify the following options:

DATA=SAS-data-set
specifies the SAS data set to be read by PROC TPSPLINE. The default value is the most recently
created data set.

PLOTS < (global-plot-options) > < = plot-request< (options) > >

PLOTS < (global-plot-options) > < = (plot-request< (options) > < . . . plot-request< (options) > >) >
controls the plots that are produced through ODS Graphics. When you specify only one plot request,
you can omit the parentheses around the plot request. Here are some examples:

plots=none
plots=residuals(smooth)
plots(unpack)=diagnostics
plots(only)=(fit residualHistogram)

ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;

proc tpspline;
model y = (x);

run;

ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

If ODS Graphics is enabled but you do not specify the PLOTS= option, then PROC TPSPLINE
produces a default set of plots. The following table lists the plots that are produced.
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Table 103.2 Graphs Produced

Plot Conditional on:

ContourFitPanel LAMBDA= or LOGNLAMBDA= option specified in the MODEL statement
ContourFit Model with two predictors
CriterionPlot Multiple values for the smoothing parameter
DiagnosticsPanel Unconditional
ResidualBySmooth LAMBDA= or LOGNLAMBDA= option specified in the MODEL statement
ResidualPanel Unconditional
FitPanel LAMBDA= or LOGNLAMBDA= option specified in the MODEL statement
FitPlot Model with one predictor
ScorePlot One or more SCORE statements and a model with one predictor

For models with multiple dependent variables, separate plots are produced for each dependent vari-
able. For models in which multiple smoothing parameters are specified with the LAMBDA= or
LOGNLAMBDA= option in the MODEL statement, the plots are produced for the selected model
only.

Global Plot Options

The global-plot-options apply to all relevant plots generated by the TPSPLINE procedure, unless they are
overridden by a specific-plot-option. The following global-plot-options are supported by the TPSPLINE
procedure:

ONLY
suppresses the default plots. Only the plots specifically requested are produced.

UNPACK
suppresses paneling. By default, multiple plots can appear in some output panels. Specify UNPACK to
get each plot individually. You can specify PLOTS(UNPACK) to unpack the default plots. You can
also specify UNPACK as a suboption with the CONTOURFITPANEL, DIAGNOSTICS, FITPANEL,
RESIDUALS and RESIDUALSBYSMOOTH options.

Plot Requests

You can specify the following specific plot-requests and controls for them:

ALL
produces all plots appropriate for the particular analysis. You can specify other options with ALL; for
example, to request that all plots be produced and that only the residual plots be unpacked, specify
PLOTS=(ALL RESIDUALS(UNPACK)).

CONTOURFIT < (OBS=contour-options) >
produces a contour plot of the fitted surface overlaid with a scatter plot of the data for models with two
predictors. You can use the following contour-options to control how the observations are displayed:
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GRADIENT
displays observations as circles colored by the observed response. The same color gradient is
used to display the fitted surface and the observations. Observations where the predicted response
is close to the observed response have similar colors—the greater the contrast between the color
of an observation and the surface, the larger the residual is at that point. OBS=GRADIENT is the
default if you do not specify any contour-options.

NONE
suppresses the observations.

OUTLINE
displays observations as circles with a border but with a completely transparent fill.

OUTLINEGRADIENT
is the same as OBS=GRADIENT except that a border is shown around each observation. This
option is useful for identifying the location of observations where the residuals are small, because
at these points the color of the observations and the color of the surface are indistinguishable.

CONTOURFITPANEL < (options) >
produces panels of contour plots overlaid with a scatter plot of the data for each smoothing parameter
specified in the LAMBDA= or LOGNLAMBDA= option in the MODEL statement, for models with
two predictors. If you do not specify the LAMBDA= or LOGNLAMBDA= option or if the model
does not have two predictors, then this plot is not produced. Each panel contains at most six plots, and
multiple panels are used when there are more than six smoothing parameters in the LAMBDA= or
LOGNLAMBDA= option. The following options are available:

OBS=contour-options
specifies how the observations are displayed. See contour-options for the CONTOURFIT option
for details.

UNPACK
suppresses paneling.

CRITERIONPLOT | CRITERION < (NOPATH) >
displays a scatter plot of the value of the GCV criterion versus the smoothing parameter value for all
smoothing parameter values examined in the selection process. This plot is not produced when you
specify one smoothing parameter with either the LAMBDA0= or LOGNLAMBDA0= option in the
MODEL statement. When you supply a list of values for the smoothing parameter with the LAMBDA=
or LOGNLAMBDA= option and PROC TPSPLINE obtains the optimal smoothing parameter by
minimizing the GCV criterion, then the plot contains the supplied list of smoothing values and the
optimal smoothing parameter in addition to the values examined during the optimization process. You
can use the NOPATH suboption to disable the display of the optimization path in the plot in this case.

DIAGNOSTICSPANEL | DIAGNOSTICS < (UNPACK) >
produces a summary panel of fit diagnostics that consists of the following:

• residuals versus the predicted values

• a histogram of the residuals

• a normal quantile plot of the residuals
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• a “Residual-Fit” (RF) plot that consists of side-by-side quantile plots of the centered fit and the
residuals

• response values versus the predicted values

You can request the five plots in this panel as individual plots by specifying the UNPACK option. You
can also request individual plots in the panel by name without having to unpack the panel. The fit
diagnostics panel is produced by default whenever ODS Graphics is enabled.

FITPANEL < (options) >
produces panels of plots that show the fitted TPSPLINE curve overlaid on a scatter plot of the input
data for each smoothing parameter specified in the LAMBDA= or LOGNLAMBDA= option in the
MODEL statement. If you do not specify the LAMBDA= or LOGNLAMBDA= option or the model
has more than one predictor, then this plot is not produced. Each panel contains at most six plots, and
multiple panels are used when there are more than six smoothing parameters in the LAMBDA= or
LOGNLAMBDA= option. The following options are available:

CLM
includes a confidence band at the significance level specified in the ALPHA= option in the
MODEL statement in each plot in the panels.

UNPACK
suppresses paneling.

FITPLOT | FIT < (CLM) >
produces a scatter plot of the input data with the fitted TPSPLINE curve overlaid for models with
a single predictor. If the CLM option is specified, then a confidence band at the significance level
specified in the ALPHA= option in the MODEL statement is included in the plot.

NONE
suppresses all plots.

OBSERVEDBYPREDICTED
produces a scatter plot of the dependent variable values by the predicted values.

QQPLOT | QQ
produces a normal quantile plot of the residuals.

RESIDUALBYSMOOTH < (SMOOTH) >
produces, for each predictor, panels of plots that show the residuals of the TPSPLINE fit versus the
predictor for each smoothing parameter specified in the LAMBDA= or LOGNLAMBDA= option in
the MODEL statement. If you do not specify the LAMBDA= or LOGNLAMBDA= option, then this
plot is not produced. Each panel contains at most six plots, and multiple panels are used when there are
more than six smoothing parameters in the LAMBDA= or LOGNLAMBDA= option in the MODEL
statement. The SMOOTH option displays a nonparametric fit line in each plot in the panel. The type
of nonparametric fit and the options used are controlled by the underlying template for this plot. In
the standard template that is provided, the nonparametric smooth is specified to be a loess fit that
corresponds to the default options of PROC LOESS, except that the PRESEARCH suboption in the
SELECT statement is always used. It is important to note that the loess fit that is shown in each of the
residual plots is computed independently of the smoothing spline fit that is used to obtain the residuals.
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RESIDUALBYPREDICTED
produces a scatter plot of the residuals by the predicted values.

RESIDUALHISTOGRAM
produces a histogram of the residuals.

RESIDUALPANEL | RESIDUALS < (options ) >
produces panels of the residuals versus the predictors in the model. Each panel contains at most six
plots, and multiple panels are used when there are more than six predictors in the model.

The following options are available:

SMOOTH
displays a nonparametric fit line in each plot in the panel. The type of nonparametric fit and the
options used are controlled by the underlying template for this plot. In the standard template that
is provided, the nonparametric smooth is specified to be a loess fit that corresponds to the default
options of PROC LOESS, except that the PRESEARCH suboption in the SELECT statement is
always used. It is important to note that the loess fit that is shown in each of the residual plots is
computed independently of the smoothing spline fit that is used to obtain the residuals.

UNPACK
suppresses paneling.

RFPLOT | RF
produces a “Residual-Fit” (RF) plot that consists of side-by-side quantile plots of the centered fit and
the residuals. This plot “shows how much variation in the data is explained by the fit and how much
remains in the residuals” (Cleveland 1993).

SCOREPLOT | SCORE
produces a scatter plot of the scored values at the score points for each SCORE statement. SCORE
plots are not produced for models with more than one predictor.

BY Statement
BY variables ;

You can specify a BY statement with PROC TPSPLINE to obtain separate analyses of observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the TPSPLINE procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.
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• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

FREQ Statement
FREQ variable ;

If one variable in your input data set represents the frequency of occurrence for other values in the observation,
specify the variable’s name in a FREQ statement. PROC TPSPLINE treats the data as if each observation
appears n times, where n is the value of the FREQ variable for the observation. If the value of the FREQ
variable is less than one, the observation is not used in the analysis. Only the integer portion of the value is
used.

ID Statement
ID variables ;

The ID statement is optional, and more than one ID statement can be used. If variables are specified in the
ID statement, their values are displayed in tooltips to identify observations in the plots produced by PROC
TPSPLINE.

MODEL Statement
MODEL dependent-variables = < regression-variables > (smoothing-variables)< / options > ;

The MODEL statement specifies the dependent variables, the independent regression variables, which are
listed with no parentheses, and the independent smoothing variables, which are listed inside parentheses.

The regression variables are optional. At least one smoothing variable is required, and it must be listed after
the regression variables. No variables can be listed in both the regression variable list and the smoothing
variable list.

If you specify more than one dependent variable, PROC TPSPLINE calculates a thin-plate smoothing spline
estimate for each dependent variable by using the regression variables and smoothing variables specified on
the right side.

If you specify regression variables, PROC TPSPLINE fits a semiparametric model by using the regression
variables as the linear part of the model.
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Table 103.3 summarizes the options available in the MODEL statement.

Table 103.3 MODEL Statement Options

Option Description

ALPHA= Specifies the significance level
DF= Specifies the degrees of freedom
DISTANCE= Defines a range in which points are treated as replicates
LAMBDA0= Specifies the smoothing parameter
LAMBDA= Specifies a set of values for the � parameter
LOGNLAMBDA0= Specifies the smoothing parameter on the log10.n�/ scale
LOGNLAMBDA= Specifies a set of values for the � parameter on the log10.n�/ scale
M= Specifies the order of the derivative
RANGE= Specifies the range for smoothing values to be evaluated

You can specify the following options in the MODEL statement:

ALPHA=number
specifies the significance level ˛ of the confidence limits on the final thin-plate smoothing spline
estimate when you request confidence limits to be included in the output data set. Specify number as a
value between 0 and 1. The default value is 0.05. See the section “OUTPUT Statement” on page 8500
for more information about the OUTPUT statement.

DF=df
specifies the degrees of freedom of the thin-plate smoothing spline estimate, defined as

df D tr.A.�//

where A.�/ is the hat matrix. Specify df as a value between zero and the number of unique design
points nq . Smaller df values cause more penalty on the roughness and thus smoother fits.

DISTANCE=number

D=number
defines a range such that if the L1 distance between two data points .xi ; zi / and .xj ; zj / satisfies

kxi � xj k1 � D=2

then these data points are treated as replicates, where xi are the smoothing variables and zi are the
regression variables.

You can use the DISTANCE= option to reduce the number of unique design points by treating nearby
data as replicates. This can be useful when you have a large data set. Larger DISTANCE= option
values cause fewer nq points. The default value is 0.

PROC TPSPLINE uses the DISTANCE= value to group points as follows: The data are first sorted by
the smoothing variables in the order in which they appear in the MODEL statement. The first point in
the sorted data becomes the first unique point. Subsequent points have their values set equal to that
point until the first point where the maximum distance in one dimension is larger than D=2. This point
becomes the next unique point, and so on. Because of this sequential processing, the set of unique
points differs depending on the order of the smoothing variables in the MODEL statement.
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For example, with a model that has two smoothing variables (x1, x2), the data are first sorted by x1
and x2 (in that order), and then uniqueness is assessed sequentially. The first point in the sorted data
x1 D .x11; x21/ becomes the first unique point, u1 D .u11; u21/. Subsequent points xi D .x1i ; x2i /
are set equal to u1 until the algorithm comes to a point with max.jx1i � u11j; jx2i � u21j/ > D=2.
This point becomes the second unique point u2, and data sorting proceeds from there.

LAMBDA0=number
specifies the smoothing parameter, �0, to be used in the thin-plate smoothing spline estimate. By
default, PROC TPSPLINE uses the � parameter that minimizes the GCV function for the final fit. The
LAMBDA0= value must be positive. Larger �0 values cause smoother fits.

LAMBDA=list-of-values
specifies a set of values for the � parameter. PROC TPSPLINE returns a GCV value for each � point
that you specify. You can use the LAMBDA= option to study the GCV function curve for a set of
values for �. All values listed in the LAMBDA= option must be positive.

LOGNLAMBDA0=number

LOGNL0=number
specifies the smoothing parameter �0 on the log10.n�/ scale. If you specify both the LOGNL0= and
LAMBDA0= options, only the value provided by the LOGNL0= option is used. Larger log10.n�0/
values cause smoother fits. By default, PROC TPSPLINE uses the � parameter that minimizes the
GCV function for the estimate.

LOGNLAMBDA=list-of-values

LOGNL=list-of-values
specifies a set of values for the � parameter on the log10.n�/ scale. PROC TPSPLINE returns a GCV
value for each � point that you specify. You can use the LOGNLAMBDA= option to study the GCV
function curve for a set of � values. If you specify both the LOGNL= and LAMBDA= options, only
the list of values provided by the LOGNL= option is used.

In some cases, the LOGNL= option might be preferred over the LAMBDA= option. Because the
LAMBDA= value must be positive, a small change in that value can result in a major change in the
GCV value. If you instead specify � on the log10.n�/ scale, the allowable range is enlarged to include
negative values. Thus, the GCV function is less sensitive to changes in LOGNLAMBDA.

The DF= option, LAMBDA0= option, and LOGNLAMBDA0= option all specify exact smoothness
of a nonparametric fit. If you want to fit a model with specified smoothness, the DF= option is
preferable to the other two options because .0; nq/, the range of df, is much smaller in length than
.0;1/ of � and .�1;1/ of log10.n�/.

M=number
specifies the order of the derivative in the penalty term. The number must be a positive integer. The
default value is max.2; int.d=2/C 1/, where d is the number of smoothing variables.

RANGE=(lower , upper )
specifies that on the log10.n�/ scale only smoothing values greater than or equal to lower and less
than or equal to upper be evaluated to minimize the GCV function.
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OUTPUT Statement
OUTPUT OUT=SAS-data-set < keyword . . . keyword > ;

The OUTPUT statement creates a new SAS data set that contains diagnostic measures calculated after fitting
the model.

All the variables in the original data set are included in the new data set, along with variables created by
specifying keywords in the OUTPUT statement. These new variables contain the values of a variety of
statistics and diagnostic measures that are calculated for each observation in the data set. If no keyword is
present, the data set contains only the original data set and predicted values.

Details about the specifications in the OUTPUT statement are as follows.

OUT=SAS-data-set
specifies the name of the new data set to contain the diagnostic measures. This specification is required.

keyword
specifies the statistics to include in the output data set. The names of the new variables that contain the
statistics are formed by using a prefix of one or more characters to identify the statistic, followed by an
underscore (_), followed by the dependent variable name.

For example, suppose that you have two dependent variables—say, y1 and y2—and you specify the
keywords PRED, ADIAG, and UCLM. The output SAS data set will contain the following variables:

• P_y1 and P_y2

• ADIAG_y1 and ADIAG_y2

• UCLM_y1 and UCLM_y2

The keywords and the statistics they represent are as follows:

RESID | R residual values, calculated as fitted values subtracted from the observed response
values: y � Oy. The default prefix is R_.

PRED predicted values. The default prefix is P_.

STD standard error of the mean predicted value. The default prefix is STD_.

UCLM upper limit of the Bayesian confidence interval for the expected value of the de-
pendent variables. By default, PROC TPSPLINE computes 95% confidence limits.
The default prefix is UCLM_.

LCLM lower limit of the Bayesian confidence interval for the expected value of the de-
pendent variables. By default, PROC TPSPLINE computes 95% confidence limits.
The default prefix is LCLM_.

ADIAG diagonal element of the hat matrix associated with the observation. The default
prefix is ADIAG_.

COEF coefficients arranged in the order of .�0; �1; � � � ; �d ; ı1; � � � ınq /, where nq is the
number of unique data points. This option can be used only when there is only one
dependent variable in the model. The default prefix is COEF_.
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SCORE Statement
SCORE DATA=SAS-data-set OUT=SAS-data-set < keyword . . . keyword > ;

The SCORE statement calculates predicted statistics for a new data set. If you have multiple data sets to
predict, you can specify multiple SCORE statements. You must use a SCORE statement for each data set.

You can request diagnostic measures that are calculated for each observation in the SCORE data set. The
new data set contains all the variables in the SCORE data set in addition to the requested variables. If no
keyword is present, the data set contains only the predicted values.

The following keywords must be specified in the SCORE statement:

DATA=SAS-data-set
specifies the input SAS data set that contains the smoothing variables x and regression variables z. The
predicted response ( Oy) value is computed for each .x; z/ pair. The data set must include all independent
variables specified in the MODEL statement.

OUT=SAS-data-set
specifies the name of the SAS data set to contain the predictions.

keyword
specifies the statistics to include in the output data set for the current SCORE statement. The names of
the new variables that contain the statistics are formed by using a prefix of one or more characters to
identify the statistic, followed by an underscore (_), followed by the dependent variable name. The
keywords and the statistics they represent are as follows:

PRED predicted values

STD standard error of the mean predicted value

UCLM upper limit of the Bayesian confidence interval for the expected value of the depen-
dent variables. By default, PROC TPSPLINE computes 95% confidence limits.

LCLM lower limit of the Bayesian confidence interval for the expected value of the depen-
dent variables. By default, PROC TPSPLINE computes 95% confidence limits.

Details: TPSPLINE Procedure

Computational Formulas
The theoretical foundations for the thin-plate smoothing spline are described in Duchon (1976, 1977) and
Meinguet (1979). Further results and applications are given in: Wahba and Wendelberger (1980); Hutchinson
and Bischof (1983); Seaman and Hutchinson (1985).

Suppose that Hm is a space of functions whose partial derivatives of total order m are in L2.Ed /, where Ed

is the domain of x.
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Now, consider the data model

yi D f .xi /C �i ; i D 1; : : : ; n

where f 2 Hm.

Using the notation from the section “Penalized Least Squares Estimation” on page 8480, for a fixed �,
estimate f by minimizing the penalized least squares function

1

n

nX
iD1

.yi � f .xi / � ziˇ/2 C �Jm.f /

�Jm.f / is the penalty term to enforce smoothness on f. There are several ways to define Jm.f /. For the
thin-plate smoothing spline, with x D .x1; : : : ; xd / of dimension d, define Jm.f / as

Jm.f / D

Z 1
�1

� � �

Z 1
�1

X mŠ

˛1Š � � �˛d Š

�
@mf

@x1
˛1 ���@xd

˛d

�2
dx1 � � � dxd

where
P
i ˛i D m. Under this definition, Jm.f / gives zero penalty to some functions. The space that is

spanned by the set of polynomials that contribute zero penalty is called the polynomial space. The dimension
of the polynomial space M is a function of dimension d and order m of the smoothing penalty,M D

�
mCd�1
d

�
.

Given the condition that 2m > d , the function that minimizes the penalized least squares criterion has the
form

Of .x/ D
MX
jD1

�j�j .x/C
nX
iD1

ıi�md .kx � xik/

where � and ı are vectors of coefficients to be estimated. The M functions �j are linearly independent
polynomials that span the space of functions for which Jm.f / is zero. The basis functions �md are defined
as

�md .r/ D

8<:
.�1/mC1Cd=2

22m�1�d=2.m�1/Š.m�d=2/Š
r2m�d log.r/ if di is even

�.d=2�m/

22m�d=2.m�1/Š
r2m�d if d is odd

When d = 2 and m = 2, then M D
�
3
2

�
D 3, �1.x/ D 1, �2.x/ D x1, and �3.x/ D x2. Jm.f / is as follows:

J2.f / D

Z 1
�1

Z 1
�1

��
@2f

@x12

�2
C 2

�
@2f
@x1@x2

�2
C

�
@2f

@x22

�2�
dx1dx2

For the sake of simplicity, the formulas and equations that follow assume m = 2. See Wahba (1990) and Bates
et al. (1987) for more details.

Duchon (1976) showed that f� can be represented as

f�.xi / D �0 C
dX
jD1

�jxi j C
nX
jD1

ıjE2.xi � xj /

where E2.s/ D 1
23�
ksk2 log.ksk/ for d = 2. For derivations of E2.s/ for other values of d, see Villalobos

and Wahba (1987).
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If you define K with elements Kij D E2.xi � xj / and T with elements Tij D .Xij /, the goal is to find
vectors of coefficients ˇ;�; and ı that minimize

S�.ˇ;�; ı/ D
1

n
ky � T� �Kı � Zˇk2 C �ı0Kı

A unique solution is guaranteed if the matrix T is of full rank and ı0Kı � 0.

If ˛ D
�
�

ˇ

�
and X D .T Z/, the expression for S� becomes

1

n
ky �X˛ �Kık2 C �ı0Kı

The coefficients ˛ and ı can be obtained by solving

.KC n�In/ı CX˛ D y
X0ı D 0

To compute ˛ and ı, let the QR decomposition of X be

X D .Q1 Q2/
�

R
0

�
where .Q1 Q2/ is an orthogonal matrix and R is an upper triangular, with X0Q2 D 0 (Dongarra et al. 1979).

Since X0ı D 0, ı must be in the column space of Q2. Therefore, ı can be expressed as ı D Q2 for a vector
 . Substituting ı D Q2 into the preceding equation and multiplying through by Q02 gives

Q02.KC n�I/Q2 D Q02y

or

ı D Q2 D Q2ŒQ02.KC n�I/Q2�
�1Q02y

The coefficient ˛ can be obtained by solving

R˛ D Q01Œy � .KC n�I/ı�

The influence matrix A.�/ is defined as

Oy D A.�/y

and has the form

A.�/ D I � n�Q2ŒQ02.KC n�I/Q2�
�1Q02

Similar to the regression case, if you consider the trace of A.�/ as the degrees of freedom for the model and
the trace of .I �A.�// as the degrees of freedom for the error, the estimate �2 can be represented as

O�2 D
RSS.�/

tr.I �A.�//

where RSS.�/ is the residual sum of squares. Theoretical properties of these estimates have not yet been
published. However, good numerical results in simulation studies have been described by several authors. For
more information, see O’Sullivan and Wong (1987); Nychka (1986a, b, 1988); Hall and Titterington (1987).
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Confidence Intervals

Viewing the spline model as a Bayesian model, Wahba (1983) proposed Bayesian confidence intervals for
smoothing spline estimates as

Of�.xi /˙ z˛=2
q
O�2ai i .�/

where ai i .�/ is the ith diagonal element of the A.�/ matrix and z˛=2 is the 1 � ˛=2 quantile of the standard
normal distribution. The confidence intervals are interpreted as intervals “across the function” as opposed to
pointwise intervals.

For SCORE data sets, the hat matrix A.�/ is not available. To compute the Bayesian confidence interval for
a new point xnew, let

S D X; M D KC n�I

and let � be an n � 1 vector with ith entry

�md .kxnew � xik/

When d = 2 and m = 2, �i is computed with

E2.xi � xnew/ D
1

23�
kxi � xnewk2 log.kxi � xnewk/

� is a vector of evaluations of xnew by the polynomials that span the functional space where Jm.f / is zero.
The details for X, K, and E2 are discussed in the previous section. Wahba (1983) showed that the Bayesian
posterior variance of xnew satisfies

n�Var.xnew/ D �0.S0M�1S/�1� � 2�0d� � �0c�

where

c� D .M�1 �M�1S.S0M�1S/�1S0M�1/�
d� D .S0M�1S/�1S0M�1�

Suppose that you fit a spline estimate that consists of a true function f and a random error term �i to
experimental data. In repeated experiments, it is likely that about 100.1 � ˛/% of the confidence intervals
cover the corresponding true values, although some values are covered every time and other values are not
covered by the confidence intervals most of the time. This effect is more pronounced when the true surface
or surface has small regions of particularly rapid change.

Smoothing Parameter

The quantity � is called the smoothing parameter, which controls the balance between the goodness of fit and
the smoothness of the final estimate.

A large � heavily penalizes the mth derivative of the function, thus forcing f .m/ close to 0. A small � places
less of a penalty on rapid change in f .m/.x/, resulting in an estimate that tends to interpolate the data points.
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The smoothing parameter greatly affects the analysis, and it should be selected with care. One method is to
perform several analyses with different values for � and compare the resulting final estimates.

A more objective way to select the smoothing parameter � is to use the “leave-out-one” cross validation
function, which is an approximation of the predicted mean squares error. A generalized version of the leave-
out-one cross validation function is proposed by Wahba (1990) and is easy to calculate. This generalized
cross validation (GCV) function is defined as

GCV.�/ D
.1=n/k.I �A.�//yk2

Œ.1=n/tr.I �A.�//�2

The justification for using the GCV function to select � relies on asymptotic theory. Thus, you cannot expect
good results for very small sample sizes or when there is not enough information in the data to separate the
model from the error component. Simulation studies suggest that for independent and identically distributed
Gaussian noise, you can obtain reliable estimates of � for n greater than 25 or 30. Note that, even for
large values of n (say, n � 50), in extreme Monte Carlo simulations there might be a small percentage of
unwarranted extreme estimates in which O� D 0 or O� D1 (Wahba 1983). Generally, if �2 is known to within
an order of magnitude, the occasional extreme case can be readily identified. As n gets larger, the effect
becomes weaker.

The GCV function is fairly robust against nonhomogeneity of variances and non-Gaussian errors (Villalobos
and Wahba 1987). Andrews (1988) has provided favorable theoretical results when variances are unequal.
However, this selection method is likely to give unsatisfactory results when the errors are highly correlated.

The GCV value might be suspect when � is extremely small because computed values might become
indistinguishable from zero. In practice, calculations with � D 0 or � near 0 can cause numerical instabilities
that result in an unsatisfactory solution. Simulation studies have shown that a � with log10.n�/ > �8 is
small enough that the final estimate based on this � almost interpolates the data points. A GCV value based
on a � � 10�8 might not be accurate.

ODS Table Names
PROC TPSPLINE assigns a name to each table it creates. You can use these names to reference the table
when using the Output Delivery System (ODS) to select tables and create output data sets. Table 103.4 lists
these names. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

Table 103.4 ODS Tables Produced by PROC TPSPLINE
ODS Table Name Description Statement Option
DataSummary Data summary PROC Default
FitSummary Fit parameters and

fit summary
PROC Default

FitStatistics Model fit statistics PROC Default
GCVFunction GCV table MODEL LOGNLAMBDA, LAMBDA
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By referring to the names of such tables, you can use the ODS OUTPUT statement to place one or more of
these tables in output data sets.

For example, the following statements create an output data set named FitStats which contains the FitStatistics
table, an output data set named DataInfo which contains the DataSummary table, an output data set named
ModelInfo which contains the FitSummary table, and an output data set named GCVFunc which contains the
GCVFunction table.

proc tpspline data=Melanoma;
model Incidences=Year /LOGNLAMBDA=(-4 to 0 by 0.2);
ods output FitStatistics = FitStats

DataSummary = DataInfo
FitSummary = ModelInfo
GCVFunction = GCVFunc;

run;

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

You can reference every graph produced through ODS Graphics with a name. Table 103.5 lists the names of
the graphs, along with the relevant PLOTS= options.

Table 103.5 Graphs Produced by PROC TPSPLINE

ODS Graph Name Plot Description PLOTS Option

ContourFitPanel Panel of thin-plate spline contour sur-
faces overlaid on scatter plots of data

CONTOURFITPANEL

ContourFit Thin-plate spline contour surface
overlaid on scatter plot of data

CONTOURFITPANEL

DiagnosticsPanel Panel of fit diagnostics DIAGNOSTICS
FitPanel Panel of thin-plate spline curves over-

laid on scatter plots of data
FITPANEL

FitPlot Thin-plate spline curve overlaid on
scatter plot of data

FIT

ObservedByPredicted Dependent variable versus thin-plate
spline fit

OBSERVEDBYPREDICTED

QQPlot Normal quantile plot of residuals QQPLOT
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Table 103.5 continued

ODS Graph Name Plot Description PLOTS Option

ResidualBySmooth Panel of residuals versus predictor by
smoothing parameter values

RESIDUALBYSMOOTH

ResidualByPredicted Residuals versus thin-plate spline fit RESIDUALBYPREDICTED
ResidualHistogram Histogram of fit residuals RESIDUALHISTOGRAM
ResidualPanel Panel of residuals versus predictors

for fixed smoothing parameter value
RESIDUALS

ResidualPlot Plot of residuals versus predictor RESIDUALS
RFPlot Side-by-side plots of quantiles of cen-

tered fit and residuals
RFPLOT

ScorePlot Thin-plate spline fit evaluated at scor-
ing points

SCOREPLOT

CriterionPlot GCV criterion versus smoothing pa-
rameter

CRITERION

Examples: TPSPLINE Procedure

Example 103.1: Partial Spline Model Fit
This example analyzes the data set Measure that was introduced in the section “Getting Started: TPSPLINE
Procedure” on page 8482. That analysis determined that the final estimated surface can be represented by a
quadratic function for one or both of the independent variables. This example illustrates how you can use
PROC TPSPLINE to fit a partial spline model. The data set Measure is fit by using the following model:

y D ˇ0 C ˇ1x1 C ˇx
2
1 C f .x2/

The model has a parametric component (associated with the x1 variable) and a nonparametric component
(associated with the x2 variable). The following statements fit a partial spline model:

data Measure;
set Measure;
x1sq = x1*x1;

run;

data pred;
do x1=-1 to 1 by 0.1;

do x2=-1 to 1 by 0.1;
x1sq = x1*x1;
output;

end;
end;

run;
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proc tpspline data= measure;
model y = x1 x1sq (x2);
score data = pred out = predy;

run;

Output 103.1.1 displays the results from these statements.

Output 103.1.1 Output from PROC TPSPLINE

Raw Data

The TPSPLINE Procedure
Dependent Variable:  y

Raw Data

The TPSPLINE Procedure
Dependent Variable:  y

Summary of Input Data Set

Number of Non-Missing Observations 50

Number of Missing Observations 0

Unique Smoothing Design Points 5

Summary of Final Model

Number of Regression Variables 2

Number of Smoothing Variables 1

Order of Derivative in the Penalty 2

Dimension of Polynomial Space 4

Summary Statistics of Final
Estimation

log10(n*Lambda) -2.2374

Smoothing Penalty 205.3461

Residual SS 8.5821

Tr(I-A) 43.1534

Model DF 6.8466

Standard Deviation 0.4460

GCV 0.2304

As displayed in Output 103.1.1, there are five unique design points for the smoothing variable x2 and two
regression variables in the model .x1; x21/. The dimension of the polynomial space is the number of columns
in .f1; x1; x21 ; x2g/ D 4. The standard deviation of the estimate is much larger than the one based on the
model with both x1 and x2 as smoothing variables (0.445954 compared to 0.098421). One of the many
possible explanations might be that the number of unique design points of the smoothing variable is too small
to warrant an accurate estimate for f .x2/.
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The following statements produce a surface plot for the partial spline model by using the surface template
that is defined in the section “Getting Started: TPSPLINE Procedure” on page 8482.

proc sgrender data=predy template=surface;
dynamic _X='x1' _Y='x2' _Z='P_y' _T='Plot of Fitted Surface on a Fine Grid';

run;

The surface displayed in Output 103.1.2 is similar to the one estimated by using the full nonparametric model
(displayed in Output 103.2 and Output 103.6).

Output 103.1.2 Plot of PROC TPSPLINE Fit from the Partial Spline Model
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Example 103.2: Spline Model with Higher-Order Penalty
This example continues the analysis of the data set Measure to illustrate how you can use PROC TPSPLINE
to fit a spline model with a higher-order penalty term. Spline models with high-order penalty terms move
low-order polynomial terms into the polynomial space. Hence, there is no penalty for these terms, and they
can vary without constraint.

As shown in the previous analyses, the final model for the data set Measure must include quadratic terms for
both x1 and x2. This example fits the following model:

y D ˇ0 C ˇ1x1 C ˇ2x
2
1 C ˇ3x2 C ˇ4x

2
2 C ˇ5x1x2 C f .x1; x2/

The model includes quadratic terms for both variables, although it differs from the usual linear model. The
nonparametric term f .x1; x2/ explains the variation of the data that is unaccounted for by a simple quadratic
surface.

To modify the order of the derivative in the penalty term, specify the M= option. The following statements
specify the option M=3 in order to include the quadratic terms in the polynomial space:

data Measure;
set Measure;
x1sq = x1*x1;
x2sq = x2*x2;
x1x2 = x1*x2;

run;

proc tpspline data= Measure;
model y = (x1 x2) / m=3;
score data = pred out = predy;

run;



Example 103.2: Spline Model with Higher-Order Penalty F 8511

Output 103.2.1 displays the results from these statements.

Output 103.2.1 Output from PROC TPSPLINE with M=3

Raw Data

The TPSPLINE Procedure
Dependent Variable:  y

Raw Data

The TPSPLINE Procedure
Dependent Variable:  y

Summary of Input Data Set

Number of Non-Missing Observations 50

Number of Missing Observations 0

Unique Smoothing Design Points 25

Summary of Final Model

Number of Regression Variables 0

Number of Smoothing Variables 2

Order of Derivative in the Penalty 3

Dimension of Polynomial Space 6

Summary Statistics of Final
Estimation

log10(n*Lambda) -3.7831

Smoothing Penalty 2092.4495

Residual SS 0.2731

Tr(I-A) 29.1716

Model DF 20.8284

Standard Deviation 0.0968

GCV 0.0160

The model contains six terms in the polynomial space is the number of columns in (.f1; x1; x21 ; x1x2; x2; x
2
2g/ D

6). Compare Output 103.2.1 with Output 103.1.1: the log10.n�/ value and the smoothing penalty differ
significantly. In general, these terms are not directly comparable for different models. The final estimate
based on this model is close to the estimate based on the model by using the default, M=2.

In the following statements, the REG procedure fits a quadratic surface model to the data set Measure:

proc reg data= Measure;
model y = x1 x1sq x2 x2sq x1x2;

run;
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The results are displayed in Output 103.2.2.

Output 103.2.2 Quadratic Surface Model: The REG Procedure

Raw Data

The REG Procedure
Model: MODEL1

Dependent Variable: y

Raw Data

The REG Procedure
Model: MODEL1

Dependent Variable: y

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 5 443.20502 88.64100 436.33 <.0001

Error 44 8.93874 0.20315

Corrected Total 49 452.14376

Root MSE 0.45073 R-Square 0.9802

Dependent Mean 15.08548 Adj R-Sq 0.9780

Coeff Var 2.98781

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 14.90834 0.12519 119.09 <.0001

x1 1 0.01292 0.09015 0.14 0.8867

x1sq 1 -4.85194 0.15237 -31.84 <.0001

x2 1 0.02618 0.09015 0.29 0.7729

x2sq 1 5.20624 0.15237 34.17 <.0001

x1x2 1 -0.04814 0.12748 -0.38 0.7076

The REG procedure produces slightly different results. To fit a similar model with PROC TPSPLINE, you
can use a MODEL statement that specifies the degrees of freedom with the DF= option. You can also use a
large value for the LOGNLAMBDA0= option to force a parametric model fit.

Because there is one degree of freedom for each of the terms intercept, x1, x2, x1sq, x2sq, and x1x2, the
DF=6 option is used as follows:

proc tpspline data=measure;
model y=(x1 x2) /m=3 df=6 lognlambda=(-4 to 1 by 0.5);
score data = pred

out = predy;
run;
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The fit statistics are displayed in Output 103.2.3.

Output 103.2.3 Output from PROC TPSPLINE Using M=3 and DF=6

Raw Data

The TPSPLINE Procedure
Dependent Variable:  y

Raw Data

The TPSPLINE Procedure
Dependent Variable:  y

Summary of Final Model

Number of Regression Variables 0

Number of Smoothing Variables 2

Order of Derivative in the Penalty 3

Dimension of Polynomial Space 6

GCV Function

log10(n*Lambda) GCV

-4.000000 0.016330 *

-3.500000 0.016889

-3.000000 0.027496

-2.500000 0.067672

-2.000000 0.139642

-1.500000 0.195727

-1.000000 0.219512

-0.500000 0.227306

0 0.229740

0.500000 0.230504

1.000000 0.230745

Note: * indicates minimum GCV value.

Summary Statistics of Final
Estimation

log10(n*Lambda) 2.3830

Smoothing Penalty 0.0000

Residual SS 8.9384

Tr(I-A) 43.9997

Model DF 6.0003

Standard Deviation 0.4507

GCV 0.2309
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Output 103.2.4 shows the GCV values for the list of supplied log10.n�/ values in addition to the fitted model
with fixed degrees of freedom 6. The fitted model has a larger GCV value than all other examined models.

Output 103.2.4 Criterion Plot

The final estimate is based on 6.000330 degrees of freedom because there are already 6 degrees of freedom in
the polynomial space and the search range for � is not large enough (in this case, setting DF=6 is equivalent
to setting � D1).

The standard deviation and RSS (Output 103.2.3) are close to the sum of squares for the error term and the
root MSE from the linear regression model (Output 103.2.2), respectively.

For this model, the optimal log10.n�/ is around –3.8, which produces a standard deviation estimate of
0.096765 (see Output 103.2.1) and a GCV value of 0.016051, while the model that specifies DF=6 results
in a log10.n�/ larger than 1 and a GCV value larger than 0.23074. The nonparametric model, based on the
GCV, should provide better prediction, but the linear regression model can be more easily interpreted.
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Example 103.3: Multiple Minima of the GCV Function
The data in this example represent the deposition of sulfate (SO4) at 179 sites in the 48 contiguous states of
the United States in 1990. Each observation records the latitude and longitude of the site in addition to the
SO4 deposition at the site measured in grams per square meter (g=m2).

You can use PROC TPSPLINE to fit a surface that reflects the general trend and that reveals underlying
features of the data, which are shown in the following DATA step:

data so4;
input latitude longitude so4 @@;
datalines;

32.45833 87.24222 1.403 34.28778 85.96889 2.103
33.07139 109.86472 0.299 36.07167 112.15500 0.304
31.95056 112.80000 0.263 33.60500 92.09722 1.950
34.17944 93.09861 2.168 36.08389 92.58694 1.578

... more lines ...

43.87333 104.19222 0.306 44.91722 110.42028 0.210
45.07611 72.67556 2.646
;

data pred;
do latitude = 25 to 47 by 1;

do longitude = 68 to 124 by 1;
output;

end;
end;

run;

The preceding statements create the SAS data set so4 and the data set pred in order to make predictions on a
regular grid. The following statements fit a surface for SO4 deposition:

ods graphics on;
proc tpspline data=so4 plots(only)=criterion;

model so4 = (latitude longitude) /lognlambda=(-6 to 1 by 0.1);
score data=pred out=prediction1;

run;
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Partial output from these statements is displayed in Output 103.3.1 and Output 103.3.2.

Output 103.3.1 Partial Output from PROC TPSPLINE for Data Set SO4
Raw Data

The TPSPLINE Procedure
Dependent Variable:  so4

Raw Data

The TPSPLINE Procedure
Dependent Variable:  so4

Summary of Input Data Set

Number of Non-Missing Observations 179

Number of Missing Observations 0

Unique Smoothing Design Points 179

Summary of Final Model

Number of Regression Variables 0

Number of Smoothing Variables 2

Order of Derivative in the Penalty 2

Dimension of Polynomial Space 3

Output 103.3.2 Partial Output from PROC TPSPLINE for Data Set SO4

Summary Statistics of Final
Estimation

log10(n*Lambda) 0.2770

Smoothing Penalty 2.4588

Residual SS 12.4450

Tr(I-A) 140.2750

Model DF 38.7250

Standard Deviation 0.2979

GCV 0.1132
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Output 103.3.3 displays the CriterionPlot of the GCV function versus log10.n�/.

Output 103.3.3 GCV Function of SO4 Data Set

The GCV function has two minima. PROC TPSPLINE locates the global minimum at 0.277005. The plot
also displays a local minimum located around –2.56. The TPSPLINE procedure might not always find
the global minimum, although it did in this case. If there is a predetermined search range based on prior
knowledge, you can use the RANGE= option to narrow the search range in order to find a desired smoothing
value. For example, if you believe a better smoothing parameter should be within the .�4;�2/ range, you
can obtain the model with log10.n�/ D �2:56 with the following statements.

proc tpspline data=so4;
model so4 = (latitude longitude) / range=(-4,-2);
score data=pred out=prediction2;

run;
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Output 103.3.4 displays the output from PROC TPSPLINE with a specified search range from the smoothing
parameter.

Output 103.3.4 Output from PROC TPSPLINE for Data Set SO4 with log10.n�/ D �2:56

Raw Data

The TPSPLINE Procedure
Dependent Variable:  so4

Raw Data

The TPSPLINE Procedure
Dependent Variable:  so4

Summary of Input Data Set

Number of Non-Missing Observations 179

Number of Missing Observations 0

Unique Smoothing Design Points 179

Summary of Final Model

Number of Regression Variables 0

Number of Smoothing Variables 2

Order of Derivative in the Penalty 2

Dimension of Polynomial Space 3

Summary Statistics of Final
Estimation

log10(n*Lambda) -2.5600

Smoothing Penalty 177.2160

Residual SS 0.0438

Tr(I-A) 7.2083

Model DF 171.7917

Standard Deviation 0.0779

GCV 0.1508

The smoothing penalty in Output 103.3.4 is much larger than that displayed in Output 103.3.2. The estimate
in Output 103.3.2 uses a large � value; therefore, the surface is smoother than the estimate by using
log10.n�/ D �2:56 (Output 103.3.4).

The estimate based on log10.n�/ D �2:56 has a larger value of degrees of freedom, and it has a much
smaller standard deviation.

However, a smaller standard deviation in nonparametric regression does not necessarily mean that the estimate
is good: a small � value always produces an estimate closer to the data and, therefore, a smaller standard
deviation.
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When ODS Graphics is enabled, you can compare the two fits by supplying 0.277 and –2.56 to the LOGN-
LAMBDA= option:

proc tpspline data=so4;
model so4 = (latitude longitude) / lognlambda=(0.277 -2.56);

run;

Output 103.3.5 shows the contour surfaces of two models with the two minima. The fit that corresponds to
the global minimum 0.277 shows a smoother fit that captures the general structure in the data set. The fit at
the local minimum –2.56 is a rougher fit that captures local details. The response values are also displayed as
circles with the same color gradient by the default GRADIENT contour-option. The contrast between the
predicted and observed SO4 deposition is greater for the smoother fit than for the other one, which means the
smoother fit has larger absolute residual values.

Output 103.3.5 Panel of Contour Fit Plots by 0.277 and –2.56

The residuals for the two fits can be visualized in RESIDUALBYSMOOTH panels. Output 103.3.6 is a panel
of plots of residuals against smoothing variable Latitude. Output 103.3.7 is a panel of plots of residuals
against smoothing variable Longitude. Both panels show that the residuals from the model with the global
minimum are larger in absolute values than the ones from the local minimum. This is expected, since
the optimal model achieves the smallest GCV value by significantly increasing the smoothness of fit and
sacrificing a little in the goodness of fit.
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Output 103.3.6 Panel of Residuals by Latitude Plots

Output 103.3.7 Panel of Residuals by Longitude Plots

In summary, the fit with log10.n�/ D 0:277 represents the underlying surface, while the fit with the
log10.n�/ D �2:56 overfits the data and captures the additional noise component.
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Example 103.4: Large Data Set Application
This example illustrates how you can use the D= option to decrease the computation time needed by the
TPSPLINE procedure. Although the D= option can be helpful in decreasing computation time for large data
sets, it might produce unexpected results when used with small data sets.

The following statements generate the data set large:

data large;
do x=-5 to 5 by 0.02;

y=5*sin(3*x)+1*rannor(57391);
output;

end;
run;

The data set large contains 501 observations with one independent variable x and one dependent variable y.
The following statements invoke PROC TPSPLINE to produce a thin-plate smoothing spline estimate and the
associated 99% confidence interval. The output statistics are saved in the data set fit1.

proc tpspline data=large;
model y =(x) /lognlambda=(-5 to -1 by 0.2) alpha=0.01;
output out=fit1 pred lclm uclm;

run;

The results from this MODEL statement are displayed in Output 103.4.1.

Output 103.4.1 Output from PROC TPSPLINE without the D= Option

Raw Data

The TPSPLINE Procedure
Dependent Variable:  y

Raw Data

The TPSPLINE Procedure
Dependent Variable:  y

Summary of Input Data Set

Number of Non-Missing Observations 501

Number of Missing Observations 0

Unique Smoothing Design Points 501

Summary of Final Model

Number of Regression Variables 0

Number of Smoothing Variables 1

Order of Derivative in the Penalty 2

Dimension of Polynomial Space 2
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Output 103.4.1 continued

GCV Function

log10(n*Lambda) GCV

-5.000000 1.258653

-4.800000 1.228743

-4.600000 1.205835

-4.400000 1.188371

-4.200000 1.174644

-4.000000 1.163102

-3.800000 1.152627

-3.600000 1.142590

-3.400000 1.132700

-3.200000 1.122789

-3.000000 1.112755

-2.800000 1.102642

-2.600000 1.092769

-2.400000 1.083779

-2.200000 1.076636

-2.000000 1.072763 *

-1.800000 1.074636

-1.600000 1.087152

-1.400000 1.120339

-1.200000 1.194023

-1.000000 1.344213

Note: * indicates minimum GCV value.

Summary Statistics of Final
Estimation

log10(n*Lambda) -1.9483

Smoothing Penalty 9953.7066

Residual SS 475.0984

Tr(I-A) 471.0861

Model DF 29.9139

Standard Deviation 1.0042

GCV 1.0726

The following statements specify an identical model, but with the additional specification of the D= option.
The estimates are obtained by treating nearby points as replicates.

proc tpspline data=large;
model y =(x) /lognlambda=(-5 to -1 by 0.2) d=0.05 alpha=0.01;
output out=fit2 pred lclm uclm;

run;
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The output is displayed in Output 103.4.2.

Output 103.4.2 Output from PROC TPSPLINE with the D= Option

Raw Data

The TPSPLINE Procedure
Dependent Variable:  y

Raw Data

The TPSPLINE Procedure
Dependent Variable:  y

Summary of Input Data Set

Number of Non-Missing Observations 501

Number of Missing Observations 0

Unique Smoothing Design Points 251

Summary of Final Model

Number of Regression Variables 0

Number of Smoothing Variables 1

Order of Derivative in the Penalty 2

Dimension of Polynomial Space 2

GCV Function

log10(n*Lambda) GCV

-5.000000 1.306536

-4.800000 1.261692

-4.600000 1.226881

-4.400000 1.200060

-4.200000 1.179284

-4.000000 1.162776

-3.800000 1.149072

-3.600000 1.137120

-3.400000 1.126220

-3.200000 1.115884

-3.000000 1.105766

-2.800000 1.095730

-2.600000 1.085972

-2.400000 1.077066

-2.200000 1.069954

-2.000000 1.066076 *

-1.800000 1.067929

-1.600000 1.080419

-1.400000 1.113564

-1.200000 1.187172

-1.000000 1.337252

Note: * indicates minimum GCV value.
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Output 103.4.2 continued

Summary Statistics of Final
Estimation

log10(n*Lambda) -1.9477

Smoothing Penalty 9943.5618

Residual SS 472.1424

Tr(I-A) 471.0901

Model DF 29.9099

Standard Deviation 1.0011

GCV 1.0659

The difference between the two estimates is minimal. However, the CPU time for the second MODEL
statement is only about 1=7 of the CPU time used in the first model fit.

The following statements produce a plot for comparison of the two estimates:

data fit2;
set fit2;
P1_y = P_y;
LCLM1_y = LCLM_y;
UCLM1_y = UCLM_y;
drop P_y LCLM_y UCLM_y;

run;

proc sort data=fit1;
by x y;

run;

proc sort data=fit2;
by x y;

run;

data comp;
merge fit1 fit2;

by x y;
label p1_y ="Yhat1" p_y="Yhat0"

lclm_y ="Lower CL"
uclm_y ="Upper CL";

run;

proc sgplot data=comp;
title "Comparison of Two Estimates";
title2 "with and without the D= Option";

yaxis label="Predicted y Values";
xaxis label="x";

band x=x lower=lclm_y upper=uclm_y /name="range"
legendlabel="99% CI of Predicted y without D=";

series x=x y=P_y/ name="P_y" legendlabel="Predicted y without D="
lineattrs=graphfit(thickness=1px pattern=shortdash);

series x=x y=P1_y/ name="P1_y" legendlabel="Predicted y with D="
lineattrs=graphfit(thickness=1px color=red);

discretelegend "range" "P_y" "P1_y";
run;
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The estimates from fit1 and fit2 are displayed in Output 103.4.3 with the 99% confidence interval from the fit1
output data set.

Output 103.4.3 Comparison of Two PROC TPSPLINE Fits with and without the D= Option

Example 103.5: Computing a Bootstrap Confidence Interval
This example illustrates how you can construct a bootstrap confidence interval by using the multiple responses
feature in PROC TPSPLINE.

Numerous epidemiological observations have indicated that exposure to solar radiation is an important factor
in the etiology of melanoma. The following data present age-adjusted melanoma incidences for 37 years from
the Connecticut Tumor Registry (Houghton, Flannery, and Viola 1980). The data are analyzed by Ramsay
and Silverman (1997).
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data melanoma;
input year incidences @@;
datalines;

1936 0.9 1937 0.8 1938 0.8 1939 1.3
1940 1.4 1941 1.2 1942 1.7 1943 1.8
1944 1.6 1945 1.5 1946 1.5 1947 2.0
1948 2.5 1949 2.7 1950 2.9 1951 2.5
1952 3.1 1953 2.4 1954 2.2 1955 2.9
1956 2.5 1957 2.6 1958 3.2 1959 3.8
1960 4.2 1961 3.9 1962 3.7 1963 3.3
1964 3.7 1965 3.9 1966 4.1 1967 3.8
1968 4.7 1969 4.4 1970 4.8 1971 4.8
1972 4.8
;

The variable incidences records the number of melanoma cases per 100; 000 people for the years 1936 to
1972. The following model fits the data and requests a 90% Bayesian confidence interval along with the
estimate:

ods graphics on;
proc tpspline data=melanoma plots(only)=(criterionplot fitplot(clm));

model incidences = (year) /alpha = 0.1;
output out = result pred uclm lclm;

run;

The output is displayed in Output 103.5.1

Output 103.5.1 Output from PROC TPSPLINE for the MELANOMA Data

Comparison of Two Estimates
with and without the D= Option

The TPSPLINE Procedure
Dependent Variable:  incidences

Comparison of Two Estimates
with and without the D= Option

The TPSPLINE Procedure
Dependent Variable:  incidences

Summary of Input Data Set

Number of Non-Missing Observations 37

Number of Missing Observations 0

Unique Smoothing Design Points 37

Summary of Final Model

Number of Regression Variables 0

Number of Smoothing Variables 1

Order of Derivative in the Penalty 2

Dimension of Polynomial Space 2
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Output 103.5.1 continued

Summary Statistics of Final
Estimation

log10(n*Lambda) -0.0607

Smoothing Penalty 0.5171

Residual SS 1.2243

Tr(I-A) 22.5852

Model DF 14.4148

Standard Deviation 0.2328

GCV 0.0888

The estimated curve is displayed with 90% confidence interval bands in Output 103.5.2. The number of
melanoma incidences exhibits a periodic pattern and increases over the years. The periodic pattern is related
to sunspot activity and the accompanying fluctuations in solar radiation.

Output 103.5.2 PROC TPSPLINE Estimate and 90% Confidence Interval of Data Set MELANOMA
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Wang and Wahba (1995) compare several bootstrap confidence intervals to Bayesian confidence intervals
for smoothing splines. Both bootstrap and Bayesian confidence intervals are across-the-curve intervals, not
pointwise intervals. They concluded that bootstrap confidence intervals work as well as Bayesian intervals
concerning average coverage probability. Additionally, bootstrap confidence intervals appear to be better for
small sample sizes. Based on their simulation, the “percentile-t interval” bootstrap interval performs better
than the other types of bootstrap intervals.

Suppose that Of O� and O� are the estimates of f and � from the data. Assume that Of O� is the “true” f, and generate
the bootstrap sample as

y�i D
Of O�.xi /C �

�
i ; i D 1; � � � ; n

where �� D .��1 ; � � � ; �
�
n/
0 � N.0; O�I/. Denote f �

O�
.xi / as the random variable of the bootstrap estimate at xi .

Repeat this process K times, so that at each point xi , you have K bootstrap estimates Of O�.xi / or K realizations
of f �

O�
.xi /. For each fixed xi , consider the statistic D�i , which is similar to the Student’s t statistic,

D�i D
�
f �
O�
.xi / � Of O�.xi /

�
= O�i
�

where O�i� is the estimate of O� based on the ith bootstrap sample.

Suppose �˛=2 and �1�˛=2 are the lower and upper ˛=2 points, respectively, of the empirical distribution of
D�i . The .1 � ˛/100% bootstrap confidence interval is defined as�

Of O�.xi / � �1�˛=2 O�;
Of O�.xi / � �˛=2 O�

�
Bootstrap confidence intervals are easy to interpret and can be used with any distribution. However, because
they require K model fits, their construction is computationally intensive.

The feature of multiple dependent variables in PROC TPSPLINE enables you to fit multiple models with the
same independent variables. The procedure calculates the matrix decomposition part of the calculations only
once, regardless of the number of dependent variables in the model. These calculations are responsible for
most of the computing time used by the TPSPLINE procedure. This feature is particularly useful when you
need to generate a bootstrap confidence interval.

To construct a bootstrap confidence interval, perform the following tasks:

• Fit the data by using PROC TPSPLINE and obtain estimates Of O�.xi / and O� .

• Generate K bootstrap samples based on Of O�.xi / and O� .

• Fit the K bootstrap samples with the TPSPLINE procedure to obtain estimates of Of �
O�
.xi / and O��i .

• Compute D�i and the values �˛=2 and �1�˛=2.
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The following statements illustrate this process:

proc tpspline data=melanoma plots(only)=fitplot(clm);
model incidences = (year) /alpha = 0.1;
output out=result pred uclm lclm;

run;

The output from the initial PROC TPSPLINE analysis is displayed in Output 103.5.3. The data set result
contains the predicted values and confidence limits from the analysis.

Output 103.5.3 Output from PROC TPSPLINE for the MELANOMA Data

Comparison of Two Estimates
with and without the D= Option

The TPSPLINE Procedure
Dependent Variable:  incidences

Comparison of Two Estimates
with and without the D= Option

The TPSPLINE Procedure
Dependent Variable:  incidences

Summary of Input Data Set

Number of Non-Missing Observations 37

Number of Missing Observations 0

Unique Smoothing Design Points 37

Summary of Final Model

Number of Regression Variables 0

Number of Smoothing Variables 1

Order of Derivative in the Penalty 2

Dimension of Polynomial Space 2

Summary Statistics of Final
Estimation

log10(n*Lambda) -0.0607

Smoothing Penalty 0.5171

Residual SS 1.2243

Tr(I-A) 22.5852

Model DF 14.4148

Standard Deviation 0.2328

GCV 0.0888

The following statements illustrate how you can obtain a bootstrap confidence interval for the Melanoma data
set. The following statements create the data set bootstrap. The observations are created with information
from the preceding PROC TPSPLINE execution; as displayed in Output 103.5.3, O� D 0:232823. The values
of Of O�.xi / are stored in the data set result in the variable P_incidence.
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data bootstrap;
set result;
array y{1070} y1-y1070;
do i=1 to 1070;

y{i} = p_incidences + 0.232823*rannor(123456789);
end;
keep y1-y1070 p_incidences year;

run;

ods listing close;
proc tpspline data=bootstrap plots=none;

ods output FitStatistics=FitResult;
id p_incidences;
model y1-y1070 = (year);
output out=result2;

run;
ods listing;

The DATA step generates 1,070 bootstrap samples based on the previous estimate from PROC TPSPLINE.
For this data set, some of the bootstrap samples result in �s (selected by the GCV function) that cause
problematic behavior. Thus, an additional 70 bootstrap samples are generated.

The ODS listing destination is closed before PROC TPSPLINE is invoked. The PLOTS=NONE option
suppresses all graphical output. The model fits all the y1. . . y1070 variables as dependent variables, and the
models are fit for all bootstrap samples simultaneously. The output data set result2 contains the variables
year, y1. . . y1070, p_y1. . . p_y1070, and p_incidences.

The ODS OUTPUT statement writes the FitStatistics table to the data set FitResult. The data set FitResult
contains the two variables Parameter and Value. The FitResult data set is used in subsequent calculations for
D�i .

In the data set FitResult, there are 63 estimates with a standard deviation of zero, suggesting that the estimates
provide perfect fits of the data and are caused by O�s that are approximately equal to zero. For small sample
sizes, there is a positive probability that the � chosen by the GCV function will be zero (Wang and Wahba
1995).

In the following steps, these cases are removed from the bootstrap samples as “bad” samples: they represent
failure of the GCV function.

The following SAS statements manipulate the data set FitResult, retaining the standard deviations for all
bootstrap samples and merging FitResult with the data set result2, which contains the estimates for bootstrap
samples. In the final data set boot, the D�i statistics are calculated.

data FitResult;
set FitResult;
if Parameter="Standard Deviation";
keep Value;

run;

proc transpose data=FitResult out=sd prefix=sd;

data result2;
if _N_ = 1 then set sd;
set result2;

run;



Example 103.5: Computing a Bootstrap Confidence Interval F 8531

data boot;
set result2;
array y{1070} p_y1-p_y1070;
array sd{1070} sd1-sd1070;
do i=1 to 1070;

if sd{i} > 0 then do;
d = (y{i} - P_incidences)/sd{i};
obs = _N_;
output;

end;
end;
keep d obs P_incidences year;

run;

The following SAS statements retain the first 1,000 bootstrap samples and calculate the values �˛=2 and
�1�˛=2 with ˛ D 0:1.

proc sort data=boot;
by obs;

run;

data boot;
set boot;

by obs;
retain n;

if first.obs then n=1;
else n=n+1;

if n > 1000 then delete;
run;

proc sort data=boot;
by obs d;

run;

data chi1 chi2 ;
set boot;
if (_N_ = (obs-1)*1000+50) then output chi1;
if (_N_ = (obs-1)*1000+950) then output chi2;

run;

proc sort data=result;
by year;

run;

proc sort data=chi1;
by year;

run;

proc sort data=chi2;
by year;

run;
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data result;
merge result

chi1(rename=(d=chi05))
chi2(rename=(d=chi95));

keep year incidences P_incidences lower upper
LCLM_incidences UCLM_incidences;

lower = -chi95*0.232823 + P_incidences;
upper = -chi05*0.232823 + P_incidences;

label lower="Lower 90% CL (Bootstrap)"
upper="Upper 90% CL (Bootstrap)"
lclm_incidences="Lower 90% CL (Bayesian)"
uclm_incidences="Upper 90% CL (Bayesian)";

run;

The data set result contains the variables year and incidences, the PROC TPSPLINE estimate P_incidences,
and the 90% Bayesian and 90% bootstrap confidence intervals.

The following statements produce Output 103.5.4:

proc sgplot data=result;
title "Age-adjusted Melanoma Incidence for 37 Years";

xaxis label="year";
yaxis label="Incidences";

band x=year lower=lclm_incidences upper=uclm_incidences/name="bayesian"
legendlabel="90% Bayesian CI of Predicted incidences"
fillattrs=(color=red);

band x=year lower=lower upper=upper/name="bootstrap"
legendlabel="90% Bootstrap CI of Predicted incidences"
transparency=0.05;

scatter x=year y=incidences/name="obs" legendlabel="incidences";
series x=year y=p_incidences/name="pred"

legendlabel="predicted values of incidences"
lineattrs=graphfit(thickness=1px);

discretelegend "bayesian" "bootstrap" "obs" "pred";
run;

ods graphics off;

Output 103.5.4 displays the plot of the variable incidences, the predicted values, and the Bayesian and
bootstrap confidence intervals.

The plot shows that the bootstrap confidence interval is similar to the Bayesian confidence interval. However,
the Bayesian confidence interval is symmetric around the estimates, while the bootstrap confidence interval
is not.
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Overview: TRANSREG Procedure
The TRANSREG (transformation regression) procedure fits linear models, optionally with smooth, spline,
Box-Cox, and other nonlinear transformations of the variables. You can use PROC TRANSREG to fit a
curve through a scatter plot or fit multiple curves, one for each level of a classification variable. You can also
constrain the functions to be parallel or monotone or have the same intercept. PROC TRANSREG can be
used to code experimental designs and classification variables prior to their use in other analyses.
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The TRANSREG procedure fits many types of linear models, including the following:

• ordinary regression and ANOVA

• metric and nonmetric conjoint analysis (Green and Wind 1975; De Leeuw, Young, and Takane 1976)

• linear models with Box-Cox (1964) transformations of the dependent variables

• regression with a smooth (Reinsch 1967), spline (De Boor 1978; van Rijckevorsel 1982), monotone
spline (Winsberg and Ramsay 1980), or penalized B-spline (Eilers and Marx 1996) fit function

• metric and nonmetric vector and ideal point preference mapping (Carroll 1972)

• simple, multiple, and multivariate regression with variable transformations (Young, de Leeuw, and
Takane 1976; Winsberg and Ramsay 1980; Breiman and Friedman 1985)

• redundancy analysis (Stewart and Love 1968) with variable transformations (Israels 1984)

• canonical correlation analysis with variable transformations (Van der Burg and De Leeuw 1983)

• response surface regression (Myers 1976; Khuri and Cornell 1987) with variable transformations

The data set can contain variables measured on nominal, ordinal, interval, and ratio scales (Siegel 1956). You
can specify any mix of these variable types for the dependent and independent variables. PROC TRANSREG
can do the following:

• transform nominal variables by scoring the categories to minimize squared error (Fisher 1938), or treat
nominal variables as classification variables

• transform ordinal variables by monotonically scoring the ordered categories so that order is weakly
preserved (adjacent categories can be merged) and squared error is minimized. Ties can be optimally
untied or left tied (Kruskal 1964). Ordinal variables can also be transformed to ranks.

• transform interval and ratio scale of measurement variables linearly or nonlinearly with spline (De Boor
1978; van Rijckevorsel 1982), monotone spline (Winsberg and Ramsay 1980), penalized B-spline
(Eilers and Marx 1996), smooth (Reinsch 1967), or Box-Cox (Box and Cox 1964) transformations. In
addition, logarithmic, exponential, power, logit, and inverse trigonometric sine transformations are
available.

Transformations produced by the PROC TRANSREG multiple regression algorithm, requesting spline
transformations, are often similar to transformations produced by the ACE smooth regression method of
Breiman and Friedman (1985). However, ACE does not explicitly optimize a loss function (De Leeuw 1986),
while PROC TRANSREG explicitly minimizes a squared-error criterion.
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PROC TRANSREG extends the ordinary general linear model by providing optimal variable transformations
that are iteratively derived. PROC TRANSREG iterates until convergence, alternating two major steps:
finding least squares estimates of the model parameters given the current scoring of the data, and finding
least squares estimates of the scoring parameters given the current set of model parameters. This is called the
method of alternating least squares (Young 1981).

For more background on alternating least squares optimal scaling methods and transformation regression
methods, see Young, de Leeuw, and Takane (1976); Winsberg and Ramsay (1980); Young (1981); Gifi (1990);
Schiffman, Reynolds, and Young (1981); Van der Burg and De Leeuw (1983); Israels (1984); Breiman and
Friedman (1985); Hastie and Tibshirani (1986). (These are just a few of the many relevant sources.)

Getting Started: TRANSREG Procedure
This section provides several examples that illustrate a few of the more basic features of PROC TRANSREG.

Fitting a Curve through a Scatter Plot
PROC TRANSREG can fit curves through data and detect nonlinear relationships among variables. This
example uses a subset of the data from an experiment in which nitrogen oxide emissions from a single
cylinder engine are measured for various combinations of fuel and equivalence ratio (Brinkman 1981). This
gas data set is available from the Sashelp library. The following step creates a subset of the data for analysis:

title 'Gasoline and Emissions Data';

data gas;
set sashelp.gas;
if fuel in ('Ethanol', '82rongas', 'Gasohol');

run;

The next step fits a spline or curve through the data and displays the regression results. For information about
splines and knots, see the sections “Smoothing Splines” on page 8641, “Linear and Nonlinear Regression
Functions” on page 8629, “Simultaneously Fitting Two Regression Functions” on page 8633, and “Using
Splines and Knots” on page 8614, as well as Example 104.1. The following statements produce Figure 104.1:

ods graphics on;

* Request a Spline Transformation of Equivalence Ratio;
proc transreg data=Gas solve ss2 plots=(transformation obp residuals);

model identity(nox) = spline(EqRatio / nknots=4);
run;

The SOLVE algorithm option, or a-option, requests a direct solution for both the transformation and the
parameter estimates. For many models, PROC TRANSREG with the SOLVE a-option can produce exact
results without iteration. The SS2 (Type II sums of squares) a-option requests regression and ANOVA results.
The PLOTS= option requests plots of the variable transformations, a plot of the observed values by the
predicted values, and a plot of the residuals. The dependent variable NOx was specified with an IDENTITY
transformation, which means that it will not be transformed, just as in ordinary regression. The independent
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variable EqRatio, in contrast, is transformed by using a cubic spline with four knots. The NKNOTS= option is
known as a transformation option, or t-option. Graphical results are enabled when ODS Graphics is enabled.
The results are shown in Figure 104.1 through Figure 104.5.

Figure 104.1 Iteration, ANOVA, and Regression Results

Gasoline and Emissions Data

The TRANSREG Procedure

Gasoline and Emissions Data

The TRANSREG Procedure

Dependent Variable Identity(NOx)
Nitrogen Oxide

Number of Observations Read 112

Number of Observations Used 110

TRANSREG MORALS Algorithm Iteration History for
Identity(NOx)

Iteration
Number

Average
Change

Maximum
Change R-Square

Criterion
Change Note

0 1.04965 3.46121 0.00917

1 0.00000 0.00000 0.82429 0.81512 Converged

Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(NOx)
Nitrogen Oxide

Univariate ANOVA Table Based on the Usual Degrees of
Freedom

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 7 180.0951 25.72788 68.36 <.0001

Error 102 38.3891 0.37636

Corrected Total 109 218.4842

Root MSE 0.61348 R-Square 0.8243

Dependent Mean 2.25022 Adj R-Sq 0.8122

Coeff Var 27.26334

Univariate Regression Table Based on the Usual Degrees of Freedom

Variable DF Coefficient

Type II
Sum of

Squares
Mean

Square F Value Pr > F Label

Intercept 1 8.3165407 324.065 324.065 861.04 <.0001 Intercept

Spline(EqRatio) 7 -6.5740158 180.095 25.728 68.36 <.0001 Equivalence Ratio

PROC TRANSREG increases the squared multiple correlation from the original value of 0.00917 to 0.82429.
Iteration 0 shows the fit before the data are transformed, and iteration 1 shows the fit after the transformation,
which was directly solved for in the initial iteration. The change values for iteration 0 show the change from
the original EqRatio variable to the transformed EqRatio variable. For this model, no improvement on the
initial solution is possible, so in iteration 1, all change values are zero. The ANOVA and regression results
show that you are fitting a model with 7 model parameters, 4 knots plus a degree 3 or cubic spline. The
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overall model fit is identical to the test for the spline transformation, since there is only one term in the model
besides the intercept, and the results are significant at the 0.0001 level. The transformations are shown next
in Figure 104.2.

Figure 104.2 Transformations

The transformation plots show the identity transformation of NOx and the nonlinear spline transformation
of EqRatio. These plots are requested with the PLOTS=TRANSFORMATION option. The plot on the left
shows that NOx is unchanged, which is always the case with the IDENTITY transformation. In contrast, the
spline transformation of EqRatio is nonlinear. It is this nonlinear transformation of EqRatio that accounts for
the increase in fit that is shown in the iteration history table.
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Figure 104.3 Residuals

The residuals plot in Figure 104.3 shows the residuals as a function of the transformed independent variable.

The “Spline Regression Fit” plot in Figure 104.4 displays the nonlinear regression function plotted through
the original data, along with 95% confidence and prediction limits. This plot clearly shows that nitrous oxide
emissions are largest in the middle range of equivalence ratio, 0.08 to 1.0, and are much lower for the extreme
values of equivalence ratio, such as around 0.6 and 1.2.
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Figure 104.4 Fitting a Curve through a Scatter Plot

This plot is produced by default when ODS Graphics is enabled and when there is an IDENTITY dependent
variable and one non-CLASS independent variable. The plot consists of an ordinary scatter plot of NOx
plotted as a function of EqRatio. It also contains the predicted values of NOx, which are a function of the
spline transformation of EqRatio (or TEqRatio shown previously), and are plotted as a function of EqRatio.
Similarly, it contains confidence limits based on NOx and TEqRatio.

The “Observed by Predicted” values plot in Figure 104.5 displays the dependent variable plotted as a function
of the regression predicted values along with a linear regression line, which for this plot always has a slope
of 1. This plot was requested with the OBP or OBSERVEDBYPREDICTED suboption in the PLOTS=
option. The residual differences between the transformed data and the regression line show how well the
nonlinearly transformed data fit a linear-regression model. The residuals look mostly random; however, they
are larger for larger values of NOx, suggesting that maybe this is not the optimal model. You can also see this
by examining the fit of the function through the original scatter plot in Figure 104.4. Near the middle of the
function, the residuals are much larger. You can refit the model, this time requesting separate functions for
each type of fuel. You can request the original scatter plot, without any regression information and before the
variables are transformed, by specifying the SCATTER suboption in the PLOTS= option.
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Figure 104.5 Observed by Predicted

These next statements fit an additive model with separate functions for each of the different fuels. The
statements produce Figure 104.6 through Figure 104.9.

* Separate Curves and Intercepts;
proc transreg data=Gas solve ss2 additive plots=(transformation obp);

model identity(nox) = class(Fuel / zero=none) |
spline(EqRatio / nknots=4 after);

run;

The ADDITIVE a-option requests an additive model, where the regression coefficients are absorbed into
the transformations, and so the final regression coefficients are all one. The specification CLASS(Fuel /
ZERO=NONE) recodes fuel into a set of three binary variables, one for each of the three fuels in this data set.
The vertical bar between the CLASS and SPLINE specifications request both main effects and interactions.
For this model, it requests both a separate intercept and a separate spline function for each fuel. The original
two variables, Fuel and EqRatio, are replaced by six variables—three binary intercept terms and three spline
variables. The three spline variables are zero when their corresponding intercept binary variable is zero,
and nonzero otherwise. The nonzero parts are optimally transformed by the analysis. The AFTER t-option
specified with the SPLINE transformation specifies that the four knots should be selected independently for
each of the three spline transformations, after EqRatio is crossed with the CLASS variable. Alternatively,
and by default, the knots are chosen by examining EqRatio before it is crossed with the CLASS variable, and
the same knots are used for all three transformations. The results are shown in Figure 104.6.
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Figure 104.6 Iteration, ANOVA, and Regression Results

Gasoline and Emissions Data

The TRANSREG Procedure

Gasoline and Emissions Data

The TRANSREG Procedure

Dependent Variable Identity(NOx)
Nitrogen Oxide

Class Level Information

Class Levels Values

Fuel 3 82rongas Ethanol Gasohol

Number of Observations Read 112

Number of Observations Used 110

Implicit Intercept Model

TRANSREG MORALS Algorithm Iteration History for
Identity(NOx)

Iteration
Number

Average
Change

Maximum
Change R-Square

Criterion
Change Note

0 0.12476 1.13866 0.18543

1 0.00000 0.00000 0.95870 0.77327 Converged

Algorithm converged.

Hypothesis Test Iterations Excluding
Spline(Fuel82rongasEqRatio)

TRANSREG MORALS Algorithm Iteration History for
Identity(NOx)

Iteration
Number

Average
Change

Maximum
Change R-Square

Criterion
Change Note

0 0.00000 0.00000 0.80234

1 0.00000 0.00000 0.80234 -.00000 Converged

Algorithm converged.

Hypothesis Test Iterations Excluding
Spline(FuelEthanolEqRatio)

TRANSREG MORALS Algorithm Iteration History for
Identity(NOx)

Iteration
Number

Average
Change

Maximum
Change R-Square

Criterion
Change Note

0 0.00000 0.00000 0.48801

1 0.00000 0.00000 0.48801 -.00000 Converged

Algorithm converged.
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Figure 104.6 continued

Hypothesis Test Iterations Excluding
Spline(FuelGasoholEqRatio)

TRANSREG MORALS Algorithm Iteration History for
Identity(NOx)

Iteration
Number

Average
Change

Maximum
Change R-Square

Criterion
Change Note

0 0.00000 0.00000 0.80052

1 0.00000 0.00000 0.80052 -.00000 Converged

Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(NOx)
Nitrogen Oxide

Univariate ANOVA Table Based on the Usual Degrees of
Freedom

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 23 209.4613 9.107012 86.80 <.0001

Error 86 9.0229 0.104918

Corrected Total 109 218.4842

Root MSE 0.32391 R-Square 0.9587

Dependent Mean 2.25022 Adj R-Sq 0.9477

Coeff Var 14.39461

Univariate Regression Table Based on the Usual Degrees of Freedom

Variable DF Coefficient

Type II
Sum of

Squares
Mean

Square F Value Pr > F Label

Class.Fuel82rongas 1 1.00000000 32.634 32.6338 311.04 <.0001 Fuel 82rongas

Class.FuelEthanol 1 1.00000000 97.406 97.4058 928.40 <.0001 Fuel Ethanol

Class.FuelGasohol 1 1.00000000 34.672 34.6720 330.47 <.0001 Fuel Gasohol

Spline(Fuel82rongasEqRatio) 7 1.00000000 34.162 4.8803 46.52 <.0001 Fuel 82rongas * Equivalence Ratio

Spline(FuelEthanolEqRatio) 7 1.00000000 102.840 14.6914 140.03 <.0001 Fuel Ethanol * Equivalence Ratio

Spline(FuelGasoholEqRatio) 7 1.00000000 34.561 4.9372 47.06 <.0001 Fuel Gasohol * Equivalence Ratio

ZERO=SUM and ZERO=NONE coefficient tests are not exact when there are iterative
transformations.  Those tests are performed holding all transformations fixed, and so are
generally liberal.

The first iteration history table in Figure 104.6 shows that PROC TRANSREG increases the squared multiple
correlation from the original value of 0.18543 to 0.95870. The remaining iteration histories pertain to
PROC TRANSREG’s process of comparing models to test hypotheses. The important thing to look for is
convergence in all of the tables.
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Figure 104.7 Transformations

The transformations, shown in Figure 104.7, show that for all three groups, the transformation of EqRatio is
approximately quadratic.
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Figure 104.8 Fitting Curves through a Scatter Plot

The fit plot, shown in Figure 104.8, shows that there are in fact three distinct functions in the data. The
increase in fit over the previous model comes from individually fitting each group instead of providing an
aggregate fit.
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Figure 104.9 Observed by Predicted

The residuals in the observed by predicted plot displayed in Figure 104.9 are much better for this analysis.

You could fit a model that is “in between” the two models shown previously. This next model provides for
separate intercepts for each group, but calls for a common function. There are still three functions, one per
group, but their shapes are the same, and they are equidistant or parallel. This model is requested by omitting
the vertical bar so that separate intercepts are requested, but not separate curves within each group. The
following statements fit the separate intercepts model and create Figure 104.10:

* Separate Intercepts;
proc transreg data=Gas solve ss2 additive;

model identity(nox) = class(Fuel / zero=none)
spline(EqRatio / nknots=4);

run;

The ANOVA table and fit plot are shown in Figure 104.10.



Fitting a Curve through a Scatter Plot F 8549

Figure 104.10 Separate Intercepts Only

Gasoline and Emissions Data

The TRANSREG Procedure

Gasoline and Emissions Data

The TRANSREG Procedure

Univariate ANOVA Table Based on the Usual Degrees of
Freedom

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 9 196.7548 21.86165 100.61 <.0001

Error 100 21.7294 0.21729

Corrected Total 109 218.4842

Figure 104.10 continued

Now, squared multiple correlation is 0.9005, which is smaller than the model with the unconstrained separate
curves, but larger than the model with only one curve. Because of the restrictions on the shapes, these curves
do not track the data as well as the previous model. However, this model is more parsimonious with many
fewer parameters.
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There are other ways to fit curves through scatter plots in PROC TRANSREG. For example, you could use
smoothing splines or penalized B-splines, as is illustrated next. The following statements fit separate curves
through each group by using penalized B-splines and produce Figure 104.11:

* Separate Curves and Intercepts with Penalized B-Splines;
proc transreg data=Gas ss2 plots=transformation lprefix=0;

model identity(nox) = class(Fuel / zero=none) * pbspline(EqRatio);
run;

This example asks for a separate penalized B-spline transformation, PBSPLINE, of equivalence ratio for
each type of fuel. The LPREFIX=0 a-option is specified in the PROC statement so that zero characters of the
CLASS variable name (Fuel) are used in constructing the labels for the coded variables. The result is label
components like “Ethanol” instead of the more redundant “Fuel Ethanol”. The results of this analysis are
shown in Figure 104.11.

Figure 104.11 Penalized B-Splines

Figure 104.11 continued

Dependent Variable Identity(NOx)
Nitrogen Oxide

Class Level Information

Class Levels Values

Fuel 3 82rongas Ethanol Gasohol
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Figure 104.11 continued

Number of Observations Read 112

Number of Observations Used 110

Implicit Intercept Model

TRANSREG Univariate Algorithm
Iteration History for Identity(NOx)

Iteration
Number

Average
Change

Maximum
Change Note

1 0.00000 0.00000 Converged

Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(NOx)
Nitrogen Oxide

Univariate ANOVA Table,
Penalized B-Spline Transformation

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 33.194 211.4818 6.371106 68.97 <.0001

Error 75.806 7.0024 0.092373

Corrected Total 109 218.4842

Root MSE 0.30393 R-Square 0.9680

Dependent Mean 2.25022 Adj R-Sq 0.9539

Coeff Var 13.50663

Penalized B-Spline Transformation

Variable DF Coefficient Lambda AICC Label

Pbspline(Fuel82rongasEqRatio) 9.000 1.000 1.287E-7 -57.7841 82rongas * Equivalence Ratio

Pbspline(FuelEthanolEqRatio) 12.19 1.000 785.7 -1.1736 Ethanol * Equivalence Ratio

Pbspline(FuelGasoholEqRatio) 13.00 1.000 7.019E-9 -64.2961 Gasohol * Equivalence Ratio
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Figure 104.11 continued

Figure 104.11 continued
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With penalized B-splines, the degrees of freedom are based on the trace of the transformation hat matrix
and are typically not integers. The first panel of plots shows AICC as a function of lambda, the smoothing
parameter. The smoothing parameter is automatically chosen, and since the smoothing parameters range
from essentially 0 to almost 800, it is clear that some functions are smoother than others. The plots of the
criterion (AICC in this example) as a function of lambda use a linear scale for the horizontal axis when the
range of lambdas is small, as in the first and third plot, and a log scale when the range is large, as in the
second plot. The transformation for equivalence ratio for Ethanol required more smoothing than for the other
two fuels. All three have an overall quadratic shape, but for Ethanol, the function more closely follows the
smaller variations in the data. You could get similar results with SPLINE by using more knots.

For other examples of curve fitting by using PROC TRANSREG, see the sections “Smoothing Splines”
on page 8641, “Linear and Nonlinear Regression Functions” on page 8629, “Simultaneously Fitting Two
Regression Functions” on page 8633, and “Using Splines and Knots” on page 8614, as well as Example 104.3.
These examples include cases where multiple curves are fit through scatter plots with multiple groups. Special
cases include linear models with separate slopes and separate intercepts. Many constraints on the slopes,
curves, and intercepts are possible.

Main-Effects ANOVA
This example shows how to use PROC TRANSREG to code and fit a main-effects ANOVA model. PROC
TRANSREG has very extensive and versatile options for coding or creating so-called dummy variables.
PROC TRANSREG is commonly used to code classification variables before they are used for analysis in
other procedures. See the sections “Using the DESIGN Output Option” on page 8706 and “Discrete Choice
Experiments: DESIGN, NORESTORE, NOZERO” on page 8709. In this example, the input data set contains
the dependent variables y, factors x1 and x2, and 12 observations. PROC TRANSREG can be useful for
coding even before running procedures with a CLASS statement because of its detailed options that enable
you to control how the coded variable names and labels are constructed. The following statements perform a
main-effects ANOVA and display the results in Figure 104.12 and Figure 104.13:

title 'Introductory Main-Effects ANOVA Example';

data a;
input y x1 $ x2 $;
datalines;

8 a a
7 a a
4 a b
3 a b
5 b a
4 b a
2 b b
1 b b
8 c a
7 c a
5 c b
2 c b
;
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* Fit a main-effects ANOVA model with 1, 0, -1 coding;
proc transreg ss2;

model identity(y) = class(x1 x2 / effects);
output coefficients replace;

run;

* Display TRANSREG output data set;
proc print label;

format intercept -- x2a 5.2;
run;

The SS2 a-option requests results based on Type II sums of squares. The simple ANOVA model is fit by
designating y as an IDENTITY variable, which specifies no transformation. The independent variables are
specified with a CLASS expansion, which replaces them with coded variables. There are .3�1/C.2�1/ D 3
coded variables created by the CLASS specification, since the two CLASS variables have 3 and 2 different
values or levels. In this case, the EFFECTS t-option is specified. This option requests an effects coding
(displayed in Figure 104.13), which is also called a deviations from means or 0, 1, –1 coding. The OUTPUT
statement requests an output data set with the data and coded variables. The COEFFICIENTS output option,
or o-option, adds the parameter estimates and marginal means to the data set. The REPLACE o-option
specifies that the transformed variables should replace the original variables in the output data set. The output
data set variable names are the same as the original variable name. In an example like this, there are no
nonlinear transformations; the transformed variables are the same as the original variables. The REPLACE
o-option is used to eliminate unnecessary and redundant transformed variables from the output data set. The
results of the PROC TRANSREG step are shown in Figure 104.12.

Figure 104.12 ANOVA Example Output from PROC TRANSREG

Introductory Main-Effects ANOVA Example

The TRANSREG Procedure

Introductory Main-Effects ANOVA Example

The TRANSREG Procedure

Dependent Variable Identity(y)

Class Level
Information

Class Levels Values

x1 3 a b c

x2 2 a b

Number of Observations Read 12

Number of Observations Used 12
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Figure 104.12 continued

The TRANSREG Procedure Hypothesis Tests for Identity(y)

Univariate ANOVA Table Based on the Usual Degrees
of Freedom

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 3 57.00000 19.00000 19.83 0.0005

Error 8 7.66667 0.95833

Corrected Total 11 64.66667

Root MSE 0.97895 R-Square 0.8814

Dependent Mean 4.66667 Adj R-Sq 0.8370

Coeff Var 20.97739

Univariate Regression Table Based on the Usual Degrees of
Freedom

Variable DF Coefficient

Type II
Sum of

Squares
Mean

Square F Value Pr > F Label

Intercept 1 4.6666667 261.333 261.333 272.70 <.0001 Intercept

Class.x1a 1 0.8333333 4.167 4.167 4.35 0.0705 x1 a

Class.x1b 1 -1.6666667 16.667 16.667 17.39 0.0031 x1 b

Class.x2a 1 1.8333333 40.333 40.333 42.09 0.0002 x2 a

Figure 104.12 shows the ANOVA results, fit statistics, and regression tables. The output data set, with the
coded design, parameter estimates and means, is shown in Figure 104.13. For more information about PROC
TRANSREG for ANOVA and other codings, see the section “ANOVA Codings” on page 8649.

Figure 104.13 Output Data Set from PROC TRANSREG

Introductory Main-Effects ANOVA ExampleIntroductory Main-Effects ANOVA Example

Obs _TYPE_ _NAME_ y Intercept x1 a x1 b x2 a x1 x2

1 SCORE ROW1 8 1.00 1.00 0.00 1.00 a a

2 SCORE ROW2 7 1.00 1.00 0.00 1.00 a a

3 SCORE ROW3 4 1.00 1.00 0.00 -1.00 a b

4 SCORE ROW4 3 1.00 1.00 0.00 -1.00 a b

5 SCORE ROW5 5 1.00 0.00 1.00 1.00 b a

6 SCORE ROW6 4 1.00 0.00 1.00 1.00 b a

7 SCORE ROW7 2 1.00 0.00 1.00 -1.00 b b

8 SCORE ROW8 1 1.00 0.00 1.00 -1.00 b b

9 SCORE ROW9 8 1.00 -1.00 -1.00 1.00 c a

10 SCORE ROW10 7 1.00 -1.00 -1.00 1.00 c a

11 SCORE ROW11 5 1.00 -1.00 -1.00 -1.00 c b

12 SCORE ROW12 2 1.00 -1.00 -1.00 -1.00 c b

13 M COEFFI y . 4.67 0.83 -1.67 1.83

14 MEAN y . . 5.50 3.00 6.50
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The output data set has three kinds of observations, identified by values of _TYPE_ as follows:

• When _TYPE_=’SCORE’, the observation contains the following information about the dependent
and independent variables:

– y is the original dependent variable.

– x1 and x2 are the independent classification variables, and the Intercept through x2 a columns
contain the main-effects design matrix that PROC TRANSREG creates. The variable names are
Intercept, x1a, x1b, and x2a. Their labels are shown in the listing.

• When _TYPE_=’M COEFFI’, the observation contains coefficients of the final linear model (parameter
estimates).

• When _TYPE_=’MEAN’, the observation contains the marginal means.

The observations with _TYPE_=’SCORE’ form the score or data partition of the output data set, and the
observations with _TYPE_=’M COEFFI’ and _TYPE_=’MEAN’ form the output statistics partition of the
output data set.

Syntax: TRANSREG Procedure
The following statements are available in the TRANSREG procedure:

PROC TRANSREG < DATA=SAS-data-set >
< PLOTS=(plot-requests) >
< OUTTEST=SAS-data-set > < a-options > < o-options > ;

MODEL < transform(dependents < / t-options >) >
< transform(dependents < / t-options >). . . = >

transform(independents < / t-options >)
< transform(independents < / t-options >). . . > < / a-options > ;

OUTPUT < OUT=SAS-data-set > < o-options > ;
ID variables ;
FREQ variable ;
WEIGHT variable ;
BY variables ;

To use PROC TRANSREG, you need both the PROC TRANSREG and MODEL statements. To produce an
OUT= output data set, the OUTPUT statement is required. PROC TRANSREG enables you to specify the
same options in more than one statement. All of the MODEL statement a-options (algorithm options) and
all of the OUTPUT statement o-options (output options) can also be specified in the PROC TRANSREG
statement. You can abbreviate all a-options, o-options, and t-options (transformation options) to their first
three letters. This is a special feature of PROC TRANSREG and is not generally true of other SAS/STAT
procedures. See Table 104.1 for a list of options available in the PROC TRANSREG statement.

The PROC TRANSREG statement starts the TRANSREG procedure. Optionally, this statement identifies an
input and an OUTTEST= data set, specifies the algorithm and other computational details, requests displayed
output, and controls the contents of the OUT= data set (which is created with the OUTPUT statement). The
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DATA= and OUTTEST= options can appear only in the PROC TRANSREG statement. All a-options and
o-options are described in the sections on either the MODEL or OUTPUT statement, in which these options
can also be specified.

The rest of this section provides detailed syntax information for each of the preceding statements, beginning
with the PROC TRANSREG statement. The remaining statements are described in alphabetical order.

PROC TRANSREG Statement
PROC TRANSREG < DATA=SAS-data-set >

< PLOTS=(plot-requests) >
< OUTTEST=SAS-data-set > < a-options > < o-options > ;

The PROC TRANSREG statement invokes the TRANSREG procedure. Optionally, this statement identifies
an input and an OUTTEST= data set, specifies the algorithm and other computational details, requests
displayed output, and controls the contents of the OUT= data set (which is created with the OUTPUT
statement). The DATA=, OUTTEST=, and PLOTS= options can appear only in the PROC TRANSREG
statement. Table 104.1 summarizes the options available in the PROC TRANSREG statement. The a-options
are also available in the MODEL statement, and the o-options are also available in the OUTPUT statement.

Table 104.1 Options Available in the PROC TRANSREG
Statement

Option Description

Data Set Options (PROC Statement)
DATA= Specifies input SAS data set
OUTTEST= Specifies output test statistics data set

ODS Graphics (PROC Statement)
PLOTS= Specifies ODS Graphics selection

Input Control (PROC or MODEL)
REITERATE Restarts the iterations
TYPE= Specifies input observation type

Method and Iterations (PROC or MODEL)
CCONVERGE= Specifies minimum criterion change
CONVERGE= Specifies minimum data change
MAXITER= Specifies maximum number of iterations
METHOD= Specifies iterative algorithm
NCAN= Specifies number of canonical variables
NSR Specifies no restrictions on smoothing models
SINGULAR= Specifies singularity criterion
SOLVE Attempts direct solution instead of iteration

Missing Data Handling (PROC or MODEL)
INDIVIDUAL Fits each model individually (METHOD=MORALS)
MONOTONE= Includes monotone special missing values
NOMISS Excludes observations with missing values
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Table 104.1 continued

Option Description

UNTIE= Unties special missing values

Intercept and CLASS Variables (PROC or MODEL)
CPREFIX= Specifies CLASS coded variable name prefix
LPREFIX= Specifies CLASS coded variable label prefix
NOINT Specifies no intercept or centering
ORDER= Specifies order of CLASS variable levels
REFERENCE= Controls output of reference levels
SEPARATORS= Controls CLASS coded variable label separators

Control Displayed Output (PROC or MODEL)
ALPHA= Specifies confidence limits alpha
CL Displays parameter estimate confidence limits
DETAIL Displays model specification details
HISTORY Displays iteration histories
NOPRINT Suppresses displayed output
PBOXCOXTABLE Prints the Box-Cox log likelihood table
RSQUARE Displays the R square
SHORT Suppresses the iteration histories
SS2 Displays regression results
TEST Displays ANOVA table
TSUFFIX= Shortens transformed variable labels
UTILITIES Displays conjoint part-worth utilities

Standardization (PROC or MODEL)
ADDITIVE Fits additive model
NOZEROCONSTANT Does not zero constant variables
TSTANDARD= Specifies transformation standardization

Predicted Values, Residuals, Scores (PROC or OUTPUT)
CANONICAL Outputs canonical scores
CLI Outputs individual confidence limits
CLM Outputs mean confidence limits
DESIGN= Specifies design matrix coding
DREPLACE Replaces dependent variables
IREPLACE Replaces independent variables
LEVERAGE Outputs leverage
NORESTOREMISSING Does not restore missing values
NOSCORES Suppresses output of scores
PREDICTED Outputs predicted values
REDUNDANCY= Outputs redundancy variables
REPLACE Replaces all variables
RESIDUALS Outputs residuals

Output Data Set Coefficients (PROC or OUTPUT)
COEFFICIENTS Outputs coefficients
COORDINATES= Outputs ideal point coordinates
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Table 104.1 continued

Option Description

MEANS Outputs marginal means
MREDUNDANCY Outputs redundancy analysis coefficients

Output Data Set Variable Name Prefixes (PROC or OUTPUT)
ADPREFIX= Specifies dependent variable approximations
AIPREFIX= Specifies independent variable approximations
CDPREFIX= Specifies canonical dependent variables
CILPREFIX= Specifies conservative individual lower CL
CIPREFIX= Specifies canonical independent variables
CIUPREFIX= Specifies conservative-individual-upper CL
CMLPREFIX= Specifies conservative-mean-lower CL
CMUPREFIX= Specifies conservative-mean-upper CL
DEPENDENT= Specifies METHOD=MORALS untransformed dependent
LILPREFIX= Specifies liberal-individual-lower CL
LIUPREFIX= Specifies liberal-individual-upper CL
LMLPREFIX= Specifies liberal-mean-lower CL
LMUPREFIX= Specifies liberal-mean-upper CL
PPREFIX= Specifies predicted values
RDPREFIX= Specifies residuals
RPREFIX= Specifies redundancy variables
TDPREFIX= Specifies transformed dependents
TIPREFIX= Specifies transformed independents

Macros Variables (PROC or OUTPUT)
MACRO Creates macro variables

Other Options (PROC or OUTPUT)
APPROXIMATIONS Outputs dependent and independent approximations
CCC Outputs canonical correlation coefficients
CEC Outputs canonical elliptical point coordinates
CPC Outputs canonical point coordinates
CQC Outputs canonical quadratic point coordinates
DAPPROXIMATIONS Outputs approximations to transformed dependents
IAPPROXIMATIONS Outputs approximations to transformed independents
MEC Outputs elliptical point coordinates
MPC Outputs point coordinates
MQC Outputs quadratic point coordinates
MRC Outputs multiple regression coefficients

DATA=SAS-data-set
specifies the SAS data set to be analyzed. If you do not specify the DATA= option, PROC TRANSREG
uses the most recently created SAS data set. The data set must be an ordinary SAS data set; it cannot
be a special TYPE= data set.
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OUTTEST=SAS-data-set
specifies an output data set to contain hypothesis tests results. When you specify the OUTTEST=
option, the data set contains ANOVA results. When you specify the SS2 a-option, regression tables are
also output. When you specify the UTILITIES o-option, conjoint analysis part-worth utilities are also
output. For more information about the OUTTEST= data set, see the section “OUTTEST= Output
Data Set” on page 8691.

PLOTS < (global-plot-options) > < = plot-request < (options) > >

PLOTS < (global-plot-options) > < = (plot-request < (options) > < ... plot-request < (options) > >) >
controls the plots produced through ODS Graphics. When you specify only one plot request, you can
omit the parentheses around the plot request. Here are some examples:

plots=none
plots=(residuals transformation)
plots(unpack)=boxcox
plots(unpack)=(transformation boxcox(p=0))
plots=(residuals(unpack) transformation(dep unp) boxcox(t rmse))

ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;

proc transreg plots=all;
model identity(y) = pbspline(x);

run;

ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

If ODS Graphics is enabled, but you do not specify the PLOTS= option, then PROC TRANSREG
produces a default set of plots. The fit, scatter, residual, and observed-by-predicted plots are available
with METHOD=MORALS and also with METHOD=UNIVARIATE when there is only one dependent
variable. When no method is specified and there is more than one dependent variable, and when
regression plots are requested, the default method is set to METHOD=MORALS. When there is more
than one dependent variable, when METHOD= is not specified, or when METHOD=MORALS is
specified and PLOTS=ALL is specified, the plots that are produced might be different from those you
would see with METHOD=UNIVARIATE and PLOTS=ALL. Certain plots appear by default when
ODS Graphics is enabled and certain combinations of options are specified. The Box-Cox F D t2

and log-likelihood plots appear when a BOXCOX dependent variable transformation is specified.
The regression fit plot appears for models with a single dependent variable that is not transformed
(for example, IDENTITY(y)), a single quantitative independent variable that might or might not be
transformed, and at most one CLASS independent variable. Preference mapping plots appear when the
COORDINATES o-option is used.

The global plot options include the following:
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INTERPOLATE

INT
uses observations that are excluded from the analysis for interpolation in the fit and transformation
plots. By default, observations with zero weight are excluded from all plots. These include
observations with a zero, negative, or missing weight or frequency and observations excluded
due to missing and invalid values. You can specify PLOTS(INTERPOLATE)=(plot-requests) to
include some of these observations in the plots. You might want to use this option, for example,
with sparse data sets to show smoother functions over the range of the data (see the section “The
PLOTS(INTERPOLATE) Option” on page 8714). Observations with missing values in CLASS
variables are excluded from the plots even when PLOTS(INTERPOLATE) is specified.

ONLY

ONL
suppresses the default plots. Only plots specifically requested are displayed.

UNPACKPANEL

UNPACK

UNP
suppresses paneling. By default, multiple plots can appear in some output panels. Specify
UNPACKPANEL to get each plot in a separate panel. You can specify PLOTS(UNPACKPANEL)
to unpack the default plots. You can also specify UNPACKPANEL as a suboption with TRANS-
FORMATION, RESIDUALS, PBSPLINE, and BOXCOX.

The plot requests include the following:

ALL
produces all appropriate plots. You can specify other options with ALL; for example, to request
all plots and unpack only the residuals, specify PLOTS=(ALL RES(UNP)).

BOXCOX < (options ) >

BOX < (options ) >
requests a display of the results of the Box-Cox transformation. These results are displayed by
default when there is a Box-Cox transformation. The BOXCOX plot request has the following
options:

P=n
adds t or F D t2 curves to the legend for the functions where p.t/ < n, where t is the t
statistic corresponding to the optimal lambda. You can specify P=0 to suppress the legend
and P=1 to see all curves in the legend. The default value comes from the BOXCOX(variable
/ ALPHA=p) specification, which by default is 0.05.

RMSE

RMS
plots the root mean square error as a function of lambda.

T
plots t statistics rather than F D t2 statistics.
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UNPACKPANEL

UNPACK

UNP
plots the t or F D t2 and log-likelihood plots in separate panels.

FIT < (options ) >
requests a regression fit plot. This plot is produced by default whenever it is appropriate. It is
produced when the dependent variable is specified with the IDENTITY transform, and when
there is one quantitative independent variable (for example, IDENTITY for linear fit, SPLINE
or one of the other transformations for a nonlinear fit, or PSPLINE) and at most one CLASS
variable. When there is a CLASS variable, separate fits are produced within levels based on your
model. You would specify the FIT plot request only to specify a FIT option or with the ONLY
global plot option. The FIT plot request has the following options:

FORMULA

FOR
displays the fit function as an equation in regression fit plots. This option is valid when
a fit plot is produced and either an IDENTITY transform or a PSPLINE expansion with
degree less than ten and no knots is specified for a single independent variable. When
this option is specified, you can output the formula to a data set by using the ods output

formula=SAS-data-set statement. This is the formula, complete with Unicode specifica-
tions for polynomials, that is used in the fit plot template to make the formula.

NOCLM
suppresses the confidence limits in regression fit plots.

NOCLI
suppresses the individual prediction limits in regression fit plots.

NOOBS
suppresses the observations showing only the fit function and optionally the confidence and
prediction limits.

NONE
suppresses all plots.

OBSERVEDBYPREDICTED

OBP

OBS
plots the transformed dependent variable as a function of the regression predicted values.

PBSPLINE < (UNPACKPANEL) >

PBS < (UNPACK) >
requests the penalized B-spline criterion plots. You would specify the PBSPLINE plot request
only to specify a PBSPLINE option or with the ONLY global plot option. The PBSPLINE plot
request has the following option:
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UNPACKPANEL

UNPACK

UNP
plots each criterion plot in a separate panel.

PREFMAP

PRE
plots ideal point or vector preference mapping results when either two IDENTITY or two POINT
independent variables are specified along with the COORDINATES option.

RESIDUALS < (options) >

RES < (options) >
plots the residuals as a function of each of the transformed independent variables, except coded
CLASS variables. The RESIDUALS plot request has the following options:

CLASS

CLA
plots the residuals as a function of each of the transformed independent variables, including
coded CLASS variables. Note that the ALL plot request, which you use to request all plots,
specifies the RESIDUALS plot request without the CLASS option.

UNPACKPANEL

UNPACK

UNP
plots the residuals in separate plots, not several per panel.

SMOOTH

SMO
adds a LOESS smooth function to the residuals plots.

SCATTER

SCA
plots the scatter plot of observed data, before the transformations, for models with a single
quantitative dependent variable, a single quantitative independent variable, and at most one
CLASS independent variable.

TRANSFORMATION < (options) >

TRA < (options) >
plots the variable transformations. The TRANSFORMATION plot request has the following
options:

DEPENDENTS

DEP
plots only the dependent variable transformations.
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INDEPENDENTS

IND
plots only the independent variable transformations.

UNPACKPANEL

UNPACK

UNP
plots the transformations in separate plots, not several per panel.

BY Statement
BY variables ;

You can specify a BY statement with PROC TRANSREG to obtain separate analyses of observations in
groups that are defined by the BY variables. When a BY statement appears, the procedure expects the input
data set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last
one specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the TRANSREG proce-
dure. The NOTSORTED option does not mean that the data are unsorted but rather that the data are
arranged in groups (according to values of the BY variables) and that these groups are not necessarily
in alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

FREQ Statement
FREQ variable ;

If one variable in the input data set represents the frequency of occurrence for other values in the observation,
specify the variable’s name in a FREQ statement. PROC TRANSREG then treats the data set as if each
observation appeared n times, where n is the value of the FREQ variable for the observation. Noninteger
values of the FREQ variable are truncated to the largest integer less than the FREQ value. The observation is
used in the analysis only if the value of the FREQ statement variable is greater than or equal to 1.
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ID Statement
ID variables ;

The ID statement includes additional character or numeric variables in the OUT= data set. The variables
must be contained in the input data set. The first variable is used to label points in PREFMAP plots. These
variables are also used in some plots as tip variables.

MODEL Statement
MODEL < transform(dependents < / t-options >) >

< transform(dependents < / t-options >). . . = >
transform(independents < / t-options >)

< transform(independents < / t-options >). . . > < / a-options > ;

The MODEL statement specifies the dependent and independent variables (dependents and independents,
respectively) and specifies the transformation (transform) to apply to each variable. Only one MODEL
statement can appear in PROC TRANSREG. The t-options are transformation options, and the a-options are
algorithm options. The t-options provide details for the transformation; these depend on the transform chosen.
The t-options are listed after a slash in the parentheses that enclose the variable list (either dependents or
independents). The a-options control the algorithm used, details of iteration, details of how the intercept
and coded variables are generated, and displayed output details. The a-options are listed after the entire
model specification (the dependents, independents, transformations, and t-options) and after a slash. You
can also specify the algorithm options in the PROC TRANSREG statement. When you specify the DESIGN
o-option, dependents and an equal sign are not required. The operators *, |, and @ from the GLM procedure
are available for interactions with the CLASS expansion and the IDENTITY transformation. They are used
as follows:

Class(a * b ...
c | d ...
e | f ... @ n)

Identity(a * b ...
c | d ...
e | f ... @ n)

In addition, transformations and spline expansions can be crossed with classification variables as follows:

transform(var) * class(group)

transform(var) | class(group)

See the section “Types of Effects” on page 3453 in Chapter 45, “The GLM Procedure,” for a description
of the @, *, and | operators and see the section “Model Statement Usage” on page 8602 for information
about how to use these operators in PROC TRANSREG. Note that nesting is not implemented in PROC
TRANSREG.
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The next three sections discuss the transformations available (transforms) (see the section “Families of
Transformations” on page 8566), the transformation options (t-options) (see the section “Transformation
Options (t-options)” on page 8572), and the algorithm options (a-options) (see the section “Algorithm
Options (a-options)” on page 8583).

Families of Transformations

In the MODEL statement, transform specifies a transformation in one of the following five families:

Variable expansions preprocess the specified variables, replacing them with more variables.

Nonoptimal transformations preprocess the specified variables, replacing each one with a single new
nonoptimal, nonlinear transformation.

Nonlinear fit transformations preprocess the specified variable, replacing it with a smooth transformation,
fitting one or more nonlinear functions through a scatter plot.

Optimal transformations replace the specified variables with new, iteratively derived optimal transfor-
mation variables that fit the specified model better than the original variable
(except for contrived cases where the transformation fits the model exactly as
well as the original variable).

Other transformations are the IDENTITY and SSPLINE transformations. These do not fit into the
preceding categories.

The transformations and expansions listed in Table 104.2 are available in the MODEL statement.

Table 104.2 Transformation Families

Transformation Description

Variable Expansions
BSPLINE B-spline basis
CLASS set of coded variables
EPOINT elliptical response surface
POINT circular response surface & PREFMAP
PSPLINE piecewise polynomial basis
QPOINT quadratic response surface

Nonoptimal Transformations
ARSIN inverse trigonometric sine
EXP exponential
LOG logarithm
LOGIT logit
POWER raises variables to specified power
RANK transforms to ranks

Nonlinear Fit Transformations
BOXCOX Box-Cox
PBSPLINE penalized B-splines
SMOOTH noniterative smoothing spline
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Table 104.2 continued

Transformation Description

Optimal Transformations
LINEAR linear
MONOTONE monotonic, ties preserved
MSPLINE monotonic B-spline
OPSCORE optimal scoring
SPLINE B-spline
UNTIE monotonic, ties not preserved

Other Transformations
IDENTITY identity, no transformation
SSPLINE iterative smoothing spline

You can use any transformation with either dependent or independent variables (except the SMOOTH and
PBSPLINE transformations, which can be used only with independent variables, and BOXCOX, which can
be used only with dependent variables). However, the variable expansions are usually more appropriate for
independent variables.

The transform is followed by a variable (or list of variables) enclosed in parentheses. Here is an example:

model log(y) = class(x);

This example finds a LOG transformation of y and performs a CLASS expansion of x. Optionally, depending
on the transform, the parentheses can also contain t-options, which follow the variables and a slash. Here is
an example:

model identity(y) = spline(x1 x2 / nknots=3);

The preceding statement finds SPLINE transformations of x1 and x2. The NKNOTS= t-option used with the
SPLINE transformation specifies three knots. The identity(y) transformation specifies that y is not to be
transformed.

The rest of this section provides syntax details for members of the five families of transformations listed at
the beginning of this section. The t-options are discussed in the section “Transformation Options (t-options)”
on page 8572.

Variable Expansions

PROC TRANSREG performs variable expansions before iteration begins. Variable expansions expand the
original variables into a typically larger set of new variables. The original variables are those that are listed in
parentheses after transform, and they are sometimes referred to by the name of the transform. For example,
in CLASS(x1 x2), x1 and x2 are sometimes referred to as CLASS expansion variables or simply CLASS
variables, and the expanded variables are referred to as coded or sometimes “dummy” variables. Similarly, in
POINT(Dim1 Dim2), Dim1 and Dim2 are sometimes referred to as POINT variables.

The resulting variables are not transformed by the iterative algorithms after the initial preprocessing. Obser-
vations with missing values for these types of variables are excluded from the analysis.

The POINT, EPOINT, and QPOINT variable expansions are used in preference mapping analyses (also called
PREFMAP, external unfolding, ideal point regression) (Carroll 1972) and for response surface regressions.
These three expansions create circular, elliptical, and quadratic response or preference surfaces (see the
section “Point Models” on page 8672 and Example 104.6). The CLASS variable expansion is used for
main-effects ANOVA.
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The following list provides syntax and details for the variable expansion transforms.

BSPLINE

BSP
expands each variable to a B-spline basis. You can specify the DEGREE=, KNOTS=, NKNOTS=, and
EVENLY= t-options with the BSPLINE expansion. When DEGREE=n (3 by default) with k knots (0
by default), nCkC 1 variables are created. In addition, the original variable appears in the OUT= data
set before the ID variables. For example, bspline(x) expands x into x_0 x_1 x_2 x_3 and outputs x
as well. The x_: variables contain the B-spline basis vectors (which are the same basis vectors that the
SPLINE and MSPLINE transformations use internally). The columns of the BSPLINE expansion sum
to a column of ones, so an implicit intercept model is fit when the BSPLINE expansion is specified.
If you specify the BSPLINE expansion for more than one variable, the model is less than full rank.
Variables specified in a BSPLINE expansion must be numeric, and they are typically continuous. See
the sections “SPLINE and MSPLINE Transformations” on page 8678 and “SPLINE, BSPLINE, and
PSPLINE Comparisons” on page 8680 for more information about B-splines.

CLASS

CLA
expands the variables to a set of coded or “dummy” variables. PROC TRANSREG uses the val-
ues of the formatted variables to determine class membership. The specification class(x1 x2)

fits a simple main-effects model, class(x1 | x2) fits a main-effects and interactions model, and
class(x1|x2|x3|x4@2 x1*x2*x3) fits a model with all main effects, all two-way interactions, and
one three-way interaction. Variables specified with the CLASS expansion can be either character or
numeric; numeric variables should be discrete. See the section “ANOVA Codings” on page 8649 for
more information about CLASS variables. See the section “Model Statement Usage” on page 8602 for
information about how to use the operators @, *, and | in PROC TRANSREG.

EPOINT

EPO
expands the variables for an elliptical response surface regression or for an elliptical ideal point
regression. Specify the COORDINATES o-option to output PREFMAP ideal elliptical point model
coordinates to the OUT= data set. Each axis of the ellipse (or ellipsoid) is oriented in the same direction
as one of the variables. The EPOINT expansion creates a new variable for each original variable. The
value of each new variable is the square of each observed value for the corresponding original variable.
The regression analysis then uses both sets of variables (original and squared). Variables specified with
the EPOINT expansion must be numeric, and they are typically continuous. See the section “Point
Models” on page 8672 and Example 104.6 for more information about point models.

POINT

POI
expands the variables for a circular response surface regression or for a circular ideal point regression.
Specify the COORDINATES o-option to output PREFMAP ideal point model coordinates to the OUT=
data set. The POINT expansion creates a new variable having a value for each observation that is the
sum of squares of all the POINT variables. This new variable is added to the set of variables and is
used in the regression analysis. For more information about ideal point regression, see Carroll (1972).
Variables specified with the POINT expansion must be numeric, and they are typically continuous. See
the section “Point Models” on page 8672 and Example 104.6 for more information about point models.
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PSPLINE

PSP
expands each variable to a piecewise polynomial basis. You can specify the DEGREE=, KNOTS=,
NKNOTS=, and EVENLY t-options with PSPLINE. When DEGREE=n (3 by default) with k knots
(0 by default), n C k variables are created. In addition, the original variable appears in the OUT=
data set before the ID variables. For example, pspline(x / nknots=1) expands x into x_1 x_2 x_3
x_4 and outputs x as well. Unlike BSPLINE, an intercept is not implicit in the columns of PSPLINE.
Variables specified with the PSPLINE expansion must be numeric, and they are typically continuous.
See the sections “SPLINE, BSPLINE, and PSPLINE Comparisons” on page 8680 and “Using Splines
and Knots” on page 8614 for more information about splines. Also see Smith (1979) for a good
introduction to piecewise polynomial splines.

QPOINT

QPO
expands the variables for a quadratic response surface regression or for a quadratic ideal point regression.
Specify the COORDINATES o-option to output PREFMAP quadratic ideal point model coordinates to
the OUT= data set. For m QPOINT variables, m.mC 1/=2 new variables are created containing the
squares and crossproducts of the original variables. The regression analysis uses both sets (original
and crossed). Variables specified with the QPOINT expansion must be numeric, and they are typically
continuous. See the section “Point Models” on page 8672 and Example 104.6 for more information
about point models.

Nonoptimal Transformations

The nonoptimal transformations, like the variable expansions, are computed before the iterative algorithm
begins. Nonoptimal transformations create a single new transformed variable that replaces the original
variable. The new variable is not transformed by the subsequent iterative algorithms (except for a possible
linear transformation with missing value estimation). The following list provides syntax and details for
nonoptimal variable transformations.

ARSIN

ARS
finds an inverse trigonometric sine transformation. Variables specified in the ARSIN transform must
be numeric and in the interval .�1:0 � x � 1:0/, and they are typically continuous.

EXP
exponentiates variables (x is transformed to ax). To specify the value of a, use the PARAMETER=
t-option. By default, a is the mathematical constant e = 2.718. . . . Variables specified with the EXP
transform must be numeric, and they are typically continuous.

LOG
transforms variables to logarithms (x is transformed to loga.x/). To specify the base of the logarithm,
use the PARAMETER= t-option. The default is a natural logarithm with base e = 2.718. . . . Variables
specified with the LOG transform must be numeric and positive, and they are typically continuous.

LOGIT
finds a logit transformation on the variables. The logit of x is log.x=.1� x//. Unlike other transforma-
tions, LOGIT does not have a three-letter abbreviation. Variables specified with the LOGIT transform
must be numeric and in the interval (0.0 < x < 1.0), and they are typically continuous.
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POWER

POW
raises variables to a specified power (x is transformed to xa). You must specify the power parameter a
by specifying the PARAMETER= t-option following the variables. Here is an example:

power(variable / parameter=number)

You can use POWER for squaring variables (PARAMETER=2), reciprocal transformations
(PARAMETER=–1), square roots (PARAMETER=0.5), and so on. Variables specified with the
POWER transform must be numeric, and they are typically continuous.

RANK

RAN
transforms variables to ranks. Ranks are averaged within ties. The smallest input value is assigned the
smallest rank. Variables specified in the RANK transform must be numeric.

Nonlinear Fit Transformations

Nonlinear fit transformations, like nonoptimal transformations, are computed before the iterative algorithm
begins. Nonlinear fit transformations create a single new transformed variable that replaces the original
variable and provides one or more smooth functions through a scatter plot. The new variable is not trans-
formed by the subsequent iterative algorithms. The nonlinear fit transformations, unlike the nonoptimal
transformations, use information in the other variables in the model to find the transformations. The nonlinear
fit transformations, unlike the optimal transformations, do not minimize a squared-error criterion. The
following list provides syntax and details for nonoptimal variable transformations.

BOXCOX

BOX
finds a Box-Cox (1964) transformation of the specified variables. The BOXCOX transformation can
be used only with dependent variables. The ALPHA=, CLL=, CONVENIENT, GEOMETRICMEAN,
LAMBDA=, and PARAMETER= t-options can be used with the BOXCOX transformation. Variables
specified in the BOXCOX transform must be numeric, and they are typically continuous. See the
section “Box-Cox Transformations” on page 8605 and Example 104.2 for more information about
Box-Cox transformations.

PBSPLINE

PBS
is a noniterative penalized B-spline transformation (Eilers and Marx 1996). The PBSPLINE transfor-
mation can be used only with independent variables. By default with PBSPLINE, a cubic spline is fit
with 100 evenly spaced knots, three evenly spaced exterior knots, and a difference matrix of order three
(DEGREE=3 NKNOTS=100 EVENLY=3 PARAMETER=3). Variables specified in the PBSPLINE
transform must be numeric, and they are typically continuous. See the section “Penalized B-Splines”
on page 8639 and Example 104.3 for more information about penalized B-splines.
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SMOOTH
SMO

is a noniterative smoothing spline transformation (Reinsch 1967). You can specify the smoothing
parameter with either the SM= or the PARAMETER= t-option. The default smoothing parameter is
SM=0. The SMOOTH transformation can be used only with independent variables. Variables specified
with the SMOOTH transform must be numeric, and they are typically continuous. See the sections
“Smoothing Splines” on page 8641 and “Smoothing Splines Changes and Enhancements” on page 8646
for more information about smoothing splines.

Optimal Transformations

Optimal transformations are iteratively derived. Missing values for these types of variables can be optimally
estimated (see the section “Missing Values” on page 8666). The following list provides syntax and details for
optimal transformations.

LINEAR
LIN

finds an optimal linear transformation of each variable. For variables with no missing values, the
transformed variable is the same as the original variable. For variables with missing values, the
transformed nonmissing values have a different scale and origin than the original values. Variables
specified in the LINEAR transform must be numeric. See the section “OPSCORE, MONOTONE,
UNTIE, and LINEAR Transformations” on page 8676 for more information about optimal scaling.

MONOTONE
MON

finds a monotonic transformation of each variable, with the restriction that ties are preserved. The
Kruskal (1964) secondary least squares monotonic transformation is used. This transformation weakly
preserves order and category membership (ties). Variables specified with the MONOTONE transform
must be numeric, and they are typically discrete. See the section “OPSCORE, MONOTONE, UNTIE,
and LINEAR Transformations” on page 8676 for more information about optimal scaling.

MSPLINE
MSP

finds a monotonically increasing B-spline transformation with monotonic coefficients (De Boor 1978;
De Leeuw 1986) of each variable. You can specify the DEGREE=, KNOTS=, NKNOTS=, and
EVENLY= t-options with MSPLINE. By default, PROC TRANSREG fits a quadratic spline with
no knots. Variables specified with the MSPLINE transform must be numeric, and they are typically
continuous. See the section “SPLINE and MSPLINE Transformations” on page 8678 for more
information about monotone splines.

OPSCORE
OPS

finds an optimal scoring of each variable. The OPSCORE transformation assigns scores to each class
(level) of the variable. The Fisher (1938) optimal scoring method is used. Variables specified with the
OPSCORE transform can be either character or numeric; numeric variables should be discrete. See the
sections “Character OPSCORE Variables” on page 8671 and “OPSCORE, MONOTONE, UNTIE, and
LINEAR Transformations” on page 8676 for more information about optimal scaling.
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SPLINE

SPL
finds a B-spline transformation (De Boor 1978) of each variable. By default, PROC TRANSREG fits a
cubic spline with no knots. You can specify the DEGREE=, KNOTS=, NKNOTS=, and EVENLY=
t-options with SPLINE. Variables specified with the SPLINE transform must be numeric, and they
are typically continuous. See the sections “SPLINE and MSPLINE Transformations” on page 8678,
“Specifying the Number of Knots” on page 8679, and “SPLINE, BSPLINE, and PSPLINE Comparisons”
on page 8680, and “Using Splines and Knots” on page 8614 for more information about splines.

UNTIE

UNT
finds a monotonic transformation of each variable without the restriction that ties are preserved. PROC
TRANSREG uses the Kruskal (1964) primary least squares monotonic transformation method. This
transformation weakly preserves order but not category membership (it might untie some previously
tied values). Variables specified with the UNTIE transform must be numeric, and they are typically
discrete. See the section “OPSCORE, MONOTONE, UNTIE, and LINEAR Transformations” on
page 8676 for more information about optimal scaling.

Other Transformations

IDENTITY

IDE
specifies variables that are not changed by the iterations. Typically, the IDENTITY transformation is
used with a simple variable list, such as identity(x1-x5). However, you can also specify interaction
terms. For example, identity(x1 | x2) creates x1, x2, and the product x1*x2; and identity(x1

| x2 | x3) creates x1, x2, x1*x2, x3, x1*x3, x2*x3, and x1*x2*x3. See the section “Model Statement
Usage” on page 8602 for information about how to use the operators @, *, and | in PROC TRANSREG.
Variables specified in the IDENTITY transform must be numeric.

The IDENTITY transformation is used for variables when no transformation and no missing data estima-
tion are desired. However, the REFLECT t-option, the ADDITIVE a-option, and the TSTANDARD=Z,
and TSTANDARD=CENTER options can linearly transform all variables, including IDENTITY vari-
ables, after the iterations. Observations with missing values in IDENTITY variables are excluded from
the analysis, and no optimal scores are computed for missing values in IDENTITY variables.

SSPLINE

SSP
finds an iterative smoothing spline transformation of each variable. The SSPLINE transformation
does not generally minimize squared error. You can specify the smoothing parameter with either the
SM= t-option or the PARAMETER= t-option. The default smoothing parameter is SM=0. Variables
specified with the SSPLINE transform must be numeric, and they are typically continuous.

Transformation Options (t-options)

If you use a nonoptimal, nonlinear fit, optimal, or other transformation, you can use t-options, which specify
additional details of the transformation. The t-options are specified within the parentheses that enclose
variables and are listed after a slash. You can use t-options with both the dependent and the independent
variables. Here is an example of using just one t-option:
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proc transreg;
model identity(y)=spline(x / nknots=3);
output;

run;

The preceding statements find an optimal variable transformation (SPLINE) of the independent variable, and
they use a t-option to specify the number of knots (NKNOTS=). The following is a more complex example:

proc transreg;
model mspline(y / nknots=3)=class(x1 x2 / effects);
output;

run;

These statements find a monotone spline transformation (MSPLINE with three knots) of the dependent
variable and perform a CLASS expansion with effects coding of the independents.

Table 104.3 summarizes the t-options available in the MODEL statement.

Table 104.3 Transformation Options

Option Description

Nonoptimal Transformation
ORIGINAL Uses original mean and variance

Parameter Specification
PARAMETER= Specifies miscellaneous parameters
SM= Specifies smoothing parameter

Penalized B-Spline
AIC Uses Akaike’s information criterion
AICC Uses corrected AIC
CV Uses cross validation criterion
GCV Uses generalized cross validation criterion
LAMBDA= Specifies smoothing parameter list or range
RANGE Specifies a LAMBDA= range, not a list
SBC Uses Schwarz’s Bayesian criterion

Spline
DEGREE= Specifies the degree of the spline
EVENLY= Spaces the knots evenly
EXKNOTS= Specifies exterior knots
KNOTS= Specifies the interior knots or break points
NKNOTS= Creates n knots

CLASS Variable
CPREFIX= Specifies CLASS coded variable name prefix
DEVIATIONS Specifies a deviations-from-means coding
EFFECTS Specifies a deviations-from-means coding
LPREFIX= Specifies CLASS coded variable label prefix
ORDER= Specifies order of CLASS variable levels
ORTHOGONAL Specifies an orthogonal-contrast coding
SEPARATORS= Specifies CLASS coded variable label separators
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Table 104.3 continued

Option Description

STANDORTH Specifies a standardized-orthogonal coding
ZERO= Controls reference levels

Box-Cox
ALPHA= Specifies confidence interval alpha
CLL= Specifies convenient lambda list
CONVENIENT Uses a convenient lambda
GEOMETRICMEAN Scales transformation using geometric mean
LAMBDA= Specifies power parameter list

Other t-options
AFTER Specifies operations occur after the expansion
CENTER Specifies center before the analysis begins
NAME= Renames variables
REFLECT Reflects the variable around the mean
TSTANDARD= Specifies transformation standardization
Z Standardizes before the analysis begins

The following sections discuss the t-options available for nonoptimal, nonlinear fit, optimal, and other
transformations.

Nonoptimal Transformation t-options

ORIGINAL

ORI
matches the variable’s final mean and variance to the mean and variance of the original variable. By
default, the mean and variance are based on the transformed values. The ORIGINAL t-option is
available for all of the nonoptimal transformations.

Parameter t-options

PARAMETER=number

PAR=number
specifies the transformation parameter. The PARAMETER= t-option is available for the BOXCOX,
EXP, LOG, POWER, SMOOTH, SSPLINE, and PBSPLINE transformations. For BOXCOX, the
parameter is the value to add to each value of the variable before a Box-Cox transformation. For EXP,
the parameter is the value to be exponentiated; for LOG, the parameter is the base value; and for
POWER, the parameter is the power. For SMOOTH and SSPLINE, the parameter is the raw smoothing
parameter. (See the SM= option for an alternative way to specify the smoothing parameter.) The
default for the PARAMETER= t-option for the BOXCOX transformation is 0 and for the LOG and
EXP transformations is e = 2.718. . . . The default parameter for SMOOTH and SSPLINE is computed
from SM=0. For the POWER transformation, you must specify the PARAMETER= t-option; there is
no default. For PBSPLINE, the parameter is the order of the difference matrix, which provides some
control over the smoothness of the transformation. The default order parameter with PBSPLINE is
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the maximum of the DEGREE= t-option, and 1. With PBSPLINE, the default is DEGREE=3 and
PARAMETER=3, which works well for most problems.

SM=n
specifies a smoothing parameter in the range 0 to 100, just like PROC GPLOT uses. For example,
SM=50 in PROC TRANSREG is equivalent to I=SM50 in the SYMBOL statement with PROC
GPLOT. You can specify the SM= t-option only with the SMOOTH and SSPLINE transformations.
The smoothness of the function increases as the value of the smoothing parameter increases. By default,
SM=0.

Spline t-options

The following t-options are available with the SPLINE, MSPLINE and PBSPLINE transformations and with
the PSPLINE and BSPLINE expansions.

DEGREE=n

DEG=n
specifies the degree of the spline transformation. The degree must be a nonnegative integer. The defaults
are DEGREE=3 for SPLINE, PSPLINE, and BSPLINE variables and DEGREE=2 for MSPLINE
variables.

The polynomial degree should be a small integer, usually 0, 1, 2, or 3. Larger values are rarely useful.
If you have any doubt as to what degree to specify, use the default.

EVENLY< =n >

EVE< =n >
is used with the NKNOTS= t-option to space the knots evenly. The differences between adjacent knots
are constant.

If you specify NKNOTS=k and EVENLY, k knots are created at

minimumC i..maximum �minimum/=.k C 1//

for i D 1; : : : ; k. Here is an example:

spline(x / nknots=2 evenly)

When the variable x has a minimum of 4 and a maximum of 10, then the two interior knots are 6 and 8.
Without the EVENLY t-option, the NKNOTS= t-option places knots at percentiles, so the knots are not
evenly spaced. By default for the BSPLINE expansion and the SPLINE and MSPLINE transformations,
the smaller exterior knots are all the same and all just a little smaller than the minimum. Similarly, by
default, the larger exterior knots are all the same and all just a little larger than the maximum. However,
if you specify EVENLY=n, then the n exterior knots are evenly spaced as well. The number of exterior
knots must be greater than or equal to the degree. You can specify values larger than the degree when
you want to interpolate slightly beyond the range or your data. The exterior knots must be less than the
minimum or greater than the maximum; hence the knots across all sets are not precisely equally spaced.
For example, with data ranging from 0 to 10, and with EVENLY=3 and NKNOTS=4, the first exterior
knots are –4.000000000001, –2.000000000001, and –0.000000000001, the interior knots are 2, 4, 6,
and 8, and the second exterior knots are 10.000000000001, 12.000000000001, and 14.000000000001.
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With the BSPLINE and PSPLINE expansions and the SPLINE and MSPLINE transformations, evenly
spaced knots are not the default. With the PBSPLINE transformation, evenly spaced interior and
exterior knots are the default. If you want unevenly spaced knots with PBSPLINE, you must use the
KNOTS= t-option.

EXKNOTS=number-list

EXK=number-list
specifies exterior knots for SPLINE and MSPLINE transformations and BSPLINE expansions. Usually,
this t-option is not needed; PROC TRANSREG automatically picks suitable exterior knots. The only
time you need to use this option is when you want to ensure that the exact same basis is used for
different splines, such as when you apply coefficients from one spline transformation to a variable in a
different data set (see the section “Scoring Spline Variables” on page 8624).

Specify one or two values. If the minimum EXKNOTS= value is less than the minimum data value, it is
used as the exterior knot. If the maximum EXKNOTS= value is greater than the maximum data value,
it is used as the exterior knot. Otherwise these values are ignored. When EXKNOTS= is specified with
the CENTER or Z t-options, the knots apply to the original variable, not to the centered or standardized
variable.

The B-spline transformations and expansions use a knot list consisting of exterior knots (values just
smaller than the minimum), the specified (interior) knots, and exterior knots (values just larger than the
minimum). You can use the DETAIL a-option to see all of these knots. If you use different exterior
knots, you get different but equivalent B-spline bases. You can specify exterior knots in either the
KNOTS= or EXKNOTS= t-options; however, for the BSPLINE expansion, the KNOTS= t-option
creates extra all-zero basis columns, whereas the EXKNOTS= t-option gives you the correct basis. See
the EVENLY= t-option for an alternative way to specify exterior knots.

KNOTS=number-list | n TO m BY p

KNO=number-list | n TO m BY p
specifies the interior knots or break points. By default, there are no knots. The first time you specify
a value in the knot list, it indicates a discontinuity in the nth (from DEGREE=n) derivative of the
transformation function at the value of the knot. The second mention of a value indicates a discontinuity
in the (n – 1) derivative of the transformation function at the value of the knot. Knots can be repeated
any number of times for decreasing smoothness at the break points, but the values in the knot list can
never decrease.

You cannot use the KNOTS= t-option with the NKNOTS= t-option. You should keep the number of
knots small (see the section “Specifying the Number of Knots” on page 8679).

NKNOTS=n

NKN=n
creates n knots, the first at the 100=.nC 1/ percentile, the second at the 200=.nC 1/ percentile, and
so on. Knots are always placed at data values; there is no interpolation. For example, if NKNOTS=3,
knots are placed at the 25th percentile, the median, and the 75th percentile. You can use the EVENLY=
t-option along with NKNOTS= to get evenly spaced knots. By default, with the BSPLINE and
PSPLINE expansions and the SPLINE and MSPLINE transformations, NKNOTS=0. By default, with
the PBSPLINE transformation, NKNOTS=100.
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The value specified for the NKNOTS= t-option must be � 0.

You cannot use the NKNOTS= t-option with the KNOTS= t-option.

You should keep the number of knots small (see the section “Specifying the Number of Knots” on
page 8679).

Penalized B-Spline t-options

The following t-options are available with the PBSPLINE transformation.

AIC
specifies that the procedure should select the smoothing parameter, �, that minimizes the (Akaike
1973) information criterion (AIC). By default, the (AICC) criterion is minimized.

AICC
specifies that the procedure should select the smoothing parameter, �, that minimizes the corrected
Akaike information criterion (Hurvich, Simonoff, and Tsai 1998). This is the default criterion unless
the AIC, CV, GCV, or SBC t-option is specified.

CV
specifies that the procedure should select the smoothing parameter, �, that minimizes the cross
validation criterion (CV). By default, the (AICC) criterion is minimized.

GCV
specifies that the procedure should select the smoothing parameter, �, that minimizes the generalized
cross validation criterion (Craven and Wahba 1979). By default, the (AICC) criterion is minimized.

LAMBDA=number-list

LAM=number-list
specifies a list of penalized B-spline smoothing parameters. By default, PROC TRANSREG considers
lambdas in the range 0 to 1E6. Alternatively, you can specify the RANGE t-option with LAMBDA=,
such as LAMBDA=1E3 1E5 RANGE, to only consider lambdas in a narrower range. Note that the
algorithm might not actually evaluate the criterion at the minimum and maximum if it does not have
to. In particular, it avoids evaluating the criterion at LAMBDA=0 (no smoothing) unless it is the only
LAMBDA= value specified. You can also specify a list of lambdas, such as LAMBDA=1 TO 10, and
the procedure selects the best lambda from the list. In all cases, the lambda that minimizes the specified
criterion (or AICC by default) is chosen.

RANGE

RAN
specifies that the LAMBDA= t-option specifies two lambdas that define a range of values, from which
an optimal lambda is selected. By default, PROC TRANSREG considers lambdas in the range 0 to
1E6.

SBC
specifies that the procedure should select the smoothing parameter, �, that minimizes Schwarz’s
Bayesian criterion (Schwarz 1978; Judge et al. 1980). By default, the (AICC) criterion is minimized.
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Class Variable t-options

CPREFIX=n | number-list
CPR=n | number-list

specifies the number of first characters of a CLASS expansion variable’s name to use in constructing
names for coded variables. When you specify CPREFIX= as an a-option or an o-option, it specifies the
default for all CLASS variables. When you specify CPREFIX= as a t-option, it overrides the default
only for selected variables. A different CPREFIX= value can be specified for each CLASS variable by
specifying the CPREFIX=number-list t-option, like the ZERO=formatted-value t-option.

DEVIATIONS
DEV

requests a deviations-from-means coding of CLASS variables. The coded design matrix has values
of 0, 1, and –1 for reference levels. This coding is referred to as “deviations-from-means,” “effects,”
“center-point,” or “full-rank” coding. For example, here is the coding for two-, three-, four-, and
five-level factors:

Number of Levels
Two Three Four Five

a 1 1 0 1 0 0 1 0 0 0
b -1 0 1 0 1 0 0 1 0 0
c -1 -1 0 0 1 0 0 1 0
d -1 -1 -1 0 0 0 1
e -1 -1 -1 -1

EFFECTS
EFF

See the DEVIATIONS t-option.

LPREFIX=n | number-list
LPR=n | number-list

specifies the number of first characters of a CLASS expansion variable’s label (or name if no label
is specified) to use in constructing labels for the coded variables. When you specify LPREFIX=
as an a-option or an o-option, it specifies the default for all CLASS variables. When you specify
LPREFIX= as a t-option, it overrides the default only for selected variables. A different LPREFIX=
value can be specified for each CLASS variable by specifying the LPREFIX=number-list t-option, like
the ZERO=formatted-value t-option.

ORDER=DATA | FREQ | FORMATTED | INTERNAL
ORD=DAT | FRE | FOR | INT

specifies the order in which the CLASS variable levels are to be reported. The default is OR-
DER=INTERNAL. For ORDER=FORMATTED and ORDER=INTERNAL, the sort order is machine
dependent. When you specify ORDER= as an a-option or an o-option, it specifies the default ordering
for all CLASS variables. When you specify ORDER= as a t-option, it overrides the default ordering
only for selected variables. You can specify a different ORDER= value for each CLASS specification.

ORTHOGONAL
ORT

requests an orthogonal-contrast coding of CLASS variables. For example, here is the orthogonal-
contrast coding for two-, three-, four-, and five-level factors:
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Number of Levels
Two Three Four Five

a 1 1 -1 1 -1 -1 1 -1 -1 -1
b -1 0 2 0 2 -1 0 2 -1 -1
c -1 -1 0 0 3 0 0 3 -1
d -1 -1 -1 0 0 0 4
e -1 -1 -1 -1

The sum of the coded values within each column is zero, all columns within a factor are orthogonal,
and the ith column represents a contrast between the ith level and the combination of all preceding
levels and the last level. The X matrix is orthogonal and X0X is diagonal with this coding only if the
experimental design is orthogonal.

SEPARATORS=’string-1’ < ’string-2’ >
SEP=’string-1’ < ’string-2’ >

specifies separators for creating CLASS expansion variable labels. By default, SEPARATORS=’ ’ ’ * ’
(“blank” and “blank asterisk blank”). When you specify SEPARATORS= as an a-option or an o-option,
it specifies the default separators for all CLASS variables. When you specify SEPARATORS= as a
t-option, it overrides the default only for selected variables. You can specify a different SEPARATORS=
value for each CLASS specification.

STANDORTH
STA
ORTHEFFECT

requests a standardized-orthogonal coding of CLASS variables. For example, here is the standardized-
orthogonal coding for two-, three-, four-, and five-level factors:

Number of Levels
Two Three Four Five

a 1 1.22 -0.71 1.41 -0.82 -0.58 1.58 -0.91 -0.65 -0.50
b -1 0.00 1.41 0.00 1.63 -0.58 0.00 1.83 -0.65 -0.50
c -1.22 -0.71 0.00 0.00 1.73 0.00 0.00 1.94 -0.50
d -1.41 -0.82 -0.58 0.00 0.00 0.00 2.00
e -1.58 -0.91 -0.65 -0.50

The sum of the coded values within each column is zero, the sum of squares of the coded values within
each column is equal to the number of levels, all columns within a factor are orthogonal, and the ith
column represents a contrast between the ith level and the combination of all preceding levels and the
last level. The X matrix is orthogonal and X0X is diagonal (X0X D nI, the number of observations
times an identity matrix) with this coding only if the experimental design is orthogonal.

ZERO=FIRST | LAST | NONE | SUM
ZER=FIR | LAS | NON | SUM
ZERO=’formatted-value’ < ’formatted-value’ . . . >

is used with CLASS variables. The default is ZERO=LAST.

The specification CLASS(variable / ZERO=FIRST) sets to missing the coded variable for the first of
the sorted categories, implying a zero coefficient for that category.

The specification CLASS(variable / ZERO=LAST) sets to missing the coded variable for the last of
the sorted categories, implying a zero coefficient for that category.
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The specification CLASS(variable / ZERO=’formatted-value’) sets to missing the coded variable
for the category with a formatted value that matches ’formatted-value’, implying a zero coefficient
for that category. With ZERO=formatted-value, the first formatted value applies to the first variable
in the specification, the second formatted value applies to the next variable that was not previously
mentioned, and so on. For example, class(a a*b b b*c c / zero=’x’ ’y’ ’z’) specifies that
the reference level for a is ’x’, for b is ’y’, and for c is ’z’. With ZERO=’formatted-value’, the
procedure first looks for exact matches between the formatted values and the specified value. If none
are found, leading blanks are stripped from both and the values are compared again. If zero or two or
more matches are found, warnings are issued.

The specifications ZERO=FIRST, ZERO=LAST, and ZERO=’formatted-value’ are used for reference
cell models. The Intercept parameter estimate is the marginal mean for the reference cell, and the other
marginal means are obtained by adding the intercept to the coded variable coefficients.

The specification CLASS(variable / ZERO=NONE) sets to missing none of the coded variables. The
columns of the expansion sum to a column of ones, so an implicit intercept model is fit. If you specify
ZERO=NONE for more than one variable, the model is less than full rank. In the model model
identity(y) = class(x / zero=none), the coefficients are cell means.

The specification CLASS(variable / ZERO=SUM) sets to missing none of the coded variables, and the
coefficients for the coded variables created from the variable sum to 0. This creates a less-than-full-rank
model, but the coefficients are uniquely determined due to the sum-to-zero constraint.

In the presence of iterative transformations, hypothesis tests for ZERO=NONE and ZERO=SUM levels
are not exact; they are liberal because a model with an explicit intercept is fit inside the iterations.
There is no provision for adjusting the transformations while setting to 0 a parameter that is redundant
given the explicit intercept and the other parameters.

Box-Cox t-options

The following t-options are available only with the BOXCOX transformation of the dependent variable (see
the section “Box-Cox Transformations” on page 8605 and Example 104.2).

ALPHA=p

ALP=p
specifies the Box-Cox alpha for the confidence interval for the power parameter. By default, AL-
PHA=0.05.

CLL=number-list
specifies the Box-Cox convenient lambda list. When the confidence interval for the power parameter
includes one of the values in this list, PROC TRANSREG reports it and can optionally use the
convenient power parameter instead of the more optimal power parameter. The default is CLL=1.0 0.0
0.5 –1.0 –0.5 2.0 –2.0 3.0 –3.0. By default, a linear transformation is preferred over log, square root,
inverse, inverse square root, quadratic, inverse quadratic, cubic, and inverse cubic. If you specify the
CONVENIENT t-option, then PROC TRANSREG uses the first convenient power parameter in the list
that is in the confidence interval. For example, if the optimal power parameter is 0.25 and 0.0 is in the
confidence interval but not 1.0, then the convenient power parameter is 0.0.
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CONVENIENT

CON
specifies that a power parameter from the CLL= t-option list is to be used for the final transformation
instead of the LAMBDA= t-option value if a CLL= value is in the confidence interval. See the CLL=
t-option for more information about its usage.

GEOMETRICMEAN

GEO
divides the Box-Cox transformation by Py��1, where Py is the geometric mean of the variable to be
transformed. This form of the Box-Cox transformation essentially converts the transformation back to
original units, and hence it permits direct comparison of the residual sums of squares for models with
different power parameters.

LAMBDA=number-list

LAM=number-list
specifies a list of Box-Cox power parameters. The default is LAMBDA=–3 TO 3 BY 0.25. PROC
TRANSREG tries each power parameter in the list and picks the best one. However, when the CON-
VENIENT t-option is specified, PROC TRANSREG chooses a convenient value from the confidence
interval instead of the optimal value. For example, if the optimal power parameter is 0.25 and 0.0 is in
the confidence interval but not 1.0, then the convenient power parameter 0.0 (log transformation) is
chosen instead of the more optimal parameter 0.25. See the CLL= t-option for more information about
its usage.

Other t-options
AFTER

AFT
requests that certain operations occur after the expansion. This t-option affects the NKNOTS= t-option
when the SPLINE or MSPLINE transformation is crossed with a CLASS specification. For example, if
the original spline variable (1 2 3 4 5 6 7 8 9) is expanded into the three variables (1 2 3 0 0 0 0 0 0), (0
0 0 4 5 6 0 0 0), and (0 0 0 0 0 0 7 8 9), then, by default, NKNOTS=1 would use the overall median of
5 as the knot for all three variables. When you specify the AFTER t-option, the knots for the three
variables are 2, 5, and 8. Note that the structural zeros are ignored when the internal knot list is created,
but they are not ignored for the exterior knots.

You can also specify the AFTER t-option with the RANK, SMOOTH, and PBSPLINE transformations.
The following specifications compute ranks and smooth transformations within groups, after crossing,
ignoring the structural zeros:

class(x / zero=none) | rank(z / after)
class(x / zero=none) | smooth(z / after)

CENTER

CEN
centers the variables before the analysis begins (in contrast to the TSTANDARD=CENTER option,
which centers after the analysis ends). The CENTER t-option can be used instead of running PROC
STANDARD before PROC TRANSREG (see the section “Centering” on page 8711). When the
KNOTS= t-option is specified with CENTER, the knots apply to the original variable, not to the
centered variable. PROC TRANSREG centers the knots.
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NAME=(variable-list)

NAM=(variable-list)
renames variables as they are used in the MODEL statement. This t-option lets you use a variable more
than once.

For example, if x is a character variable, then the following step stores both the original character
variable x and a numeric variable xc that contains category numbers in the OUT= data set:

proc transreg data=a;
model identity(y) = opscore(x / name=(xc));
output;
id x;

run;

With the CLASS and IDENTITY transformations, which can contain interaction effects, the first name
applies to the first variable in the specification, the second name applies to the next variable that was
not previously mentioned, and so on. For example, identity(a a * b b b * c c / name=(g h

i)) specifies that the new name for a is g, for b is h, and for c is i. The same assignment is used for
the (not useful) specification identity(a a b b c c / name=(g h i)). For all transforms other
than CLASS and IDENTITY (all those in which interactions are not supported), repeated variables
are not handled specially. For example, spline(a a b b c c / name=(a g b h c i)) creates
six variables: a copy of a named a, another copy of a named g, a copy of b named b, another copy of b
named h, a copy of c named c, and another copy of c named i.

REFLECT

REF
reflects the transformation

y D �.y � Ny/C Ny

after the iterations are completed and before the final standardization and results calculations. This
t-option is particularly useful with the dependent variable in a conjoint analysis. When the dependent
variable consists of ranks with the most preferred combination assigned 1.0, the REFLECT t-option
reflects the transformation so that positive utilities mean high preference. (See Example 104.4.)

TSTANDARD=CENTER | NOMISS | ORIGINAL | Z

TST=CEN | NOM | ORI | Z
specifies the standardization of the transformed variables for the hypothesis tests and in the OUT= data
set (see the section “Centering” on page 8711). By default, TSTANDARD=ORIGINAL. When you
specify TSTANDARD= as an a-option or an o-option, it determines the default standardization for
all variables. When you specify TSTANDARD= as a t-option, it overrides the default standardization
only for selected variables. You can specify a different TSTANDARD= value for each transformation.
For example, to perform a redundancy analysis with standardized dependent variables, specify the
following:

model identity(y1-y4 / tstandard=z) = identity(x1-x10);
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Z
centers and standardizes the variables to variance one before the analysis begins (in contrast to the
TSTANDARD=Z option, which standardizes after the analysis ends). The Z t-option can be used
instead of running PROC STANDARD before PROC TRANSREG (see the section “Centering” on
page 8711). When the KNOTS= t-option is specified with Z, the knots apply to the original variable,
not to the standardized variable. PROC TRANSREG standardizes the knots.

Algorithm Options (a-options)

This section discusses the options that can appear in the PROC TRANSREG or MODEL statement as
a-options. They are listed after the entire model specification and after a slash. Here is an example:

proc transreg;
model spline(y / nknots=3)=log(x1 x2 / parameter=2)

/ nomiss maxiter=50;
output;

run;

In the preceding statements, NOMISS and MAXITER= are a-options. (SPLINE and LOG are transforms,
and NKNOTS= and PARAMETER= are t-options.) The statements find a spline transformation with 3 knots
on y and a base 2 logarithmic transformation on x1 and x2. The NOMISS a-option excludes all observations
with missing values, and the MAXITER= a-option specifies the maximum number of iterations.

Table 104.4 summarizes the a-options available in the PROC TRANSREG or MODEL statement.

Table 104.4 Options Available in the PROC TRANSREG or
MODEL Statement

Option Description

Input Control
REITERATE Restarts iterations
TYPE= Specifies input observation type

Method and Iterations
CCONVERGE= Specifies minimum criterion change
CONVERGE= Specifies minimum data change
MAXITER= Specifies maximum number of iterations
METHOD= Specifies iterative algorithm
NCAN= Specifies number of canonical variables
NSR Specifies no restrictions on smoothing models
SINGULAR= Specifies singularity criterion
SOLVE Attempts direct solution instead of iteration

Missing Data Handling
INDIVIDUAL Fits each model individually (METHOD=MORALS)
MONOTONE= Includes monotone special missing values
NOMISS Excludes observations with missing values
UNTIE= Unties special missing values

Intercept and CLASS Variables
CPREFIX= Specifies CLASS coded variable name prefix



8584 F Chapter 104: The TRANSREG Procedure

Table 104.4 continued

Option Description

LPREFIX= Specifies CLASS coded variable label prefix
NOINT Specifies no intercept or centering
ORDER= Specifies order of CLASS variable levels
REFERENCE= Controls output of reference levels
SEPARATORS= Specifies CLASS coded variable label separators

Control Displayed Output
ALPHA= Specifies confidence limits alpha
CL Displays parameter estimate confidence limits
DETAIL Displays model specification details
HISTORY Displays iteration histories
NOPRINT Suppresses displayed output
PBOXCOXTABLE Prints the Box-Cox log likelihood table
RSQUARE Displays the R square
SHORT Suppresses the iteration histories
SS2 Displays regression results
TEST Displays ANOVA table
TSUFFIX= Shortens transformed variable labels
UTILITIES Displays conjoint part-worth utilities

Standardization
ADDITIVE Fits additive model
NOZEROCONSTANT Does not zero constant variables
TSTANDARD= Specifies transformation standardization

The following list provides details about these a-options. The a-options are available in the PROC
TRANSREG or MODEL statement.

ADDITIVE
ADD

creates an additive model by multiplying the values of each independent variable (after the TSTAN-
DARD= standardization) by that variable’s corresponding multiple regression coefficient. This process
scales the independent variables so that the predicted-values variable for the final dependent variable
is simply the sum of the final independent variables. An additive model is a univariate multiple
regression model. As a result, the ADDITIVE a-option is not valid if METHOD=CANALS, or if
METHOD=REDUNDANCY or METHOD=UNIVARIATE with more than one dependent variable.

ALPHA=number

ALP=number
specifies the level of significance for all of the confidence limits. By default, ALPHA=0.05.

CCONVERGE=n

CCO=n
specifies the minimum change in the criterion being optimized (squared multiple correlation for
METHOD=MORALS and METHOD=UNIVARIATE, average squared multiple correlation for
METHOD=REDUNDANCY, average squared canonical correlation for METHOD=CANALS) that is
required to continue iterating. By default, CCONVERGE=0.0.
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CL
requests confidence limits on the parameter estimates in the displayed output.

CONVERGE=n

CON=n
specifies the minimum average absolute change in standardized variable scores that is required to
continue iterating. By default, CONVERGE=0.00001. Average change is computed over only those
variables that can be transformed by the iterations; that is, all LINEAR, OPSCORE, MONOTONE,
UNTIE, SPLINE, MSPLINE, and SSPLINE variables and nonoptimal transformation variables with
missing values.

CPREFIX=n

CPR=n
specifies the number of first characters of a CLASS expansion variable’s name to use in constructing
names for coded variables. Coded variable names are constructed from the first n characters of the
CLASS expansion variable’s name and the first 32 � n characters of the formatted CLASS expansion
variable’s value. For example, if the variable ClassVariable has values 1, 2, and 3, then, by default,
the coded variables are named ClassVariable1, ClassVariable2, and ClassVariable3. However, with
CPREFIX=5, the coded variables are named Class1, Class2, and Class3. When CPREFIX=0, coded
variable names are created entirely from the CLASS expansion variable’s formatted values. Valid
values range from –1 to 31, where –1 indicates the default calculation and 0 to 31 are the number of
prefix characters to use. The default, –1, sets n to 32 – min(32, max(2, fl)), where fl is the format
length. When you specify CPREFIX= as an a-option or an o-option, it specifies the default for all
CLASS variables. When you specify CPREFIX= as a t-option, it overrides the default only for selected
variables.

DETAIL

DET
reports on details of the model specification. For example, it reports the knots and coefficients for
splines, reference levels for CLASS variables, Box-Cox results, the smoothing parameter, and so on.
The DETAIL option can take two optional suboptions, NOCOEFFICIENTS and NOKNOTS (or NOC
and NOK). To suppress knots from the details listing, specify DETAIL(NOKNOTS). To suppress
coefficients from the details listing, specify DETAIL(NOCOEFFICIENTS). To suppress both knots
and coefficients from the details listing, specify DETAIL(NOKNOTS NOCOEFFICIENTS).

SOLVE

SOL

DUMMY

DUM
provides a canonical initialization. When there are no monotonicity constraints, when there is at most
one canonical variable in each set, and when there is enough available memory, PROC TRANSREG
(with the SOLVE a-option) can usually directly solve for the optimal solution in only one iteration.
The initialization iteration is number 0, which is slower and uses more memory than other iterations.
However, for some models, specifying the SOLVE a-option can greatly decrease the amount of time
required to find the optimal transformations. During iteration 0, each variable is replaced by an
expanded variable and the model is fit to the larger, expanded set of variables. For example, an
OPSCORE variable is expanded into coded (or “dummy”) variables, as if CLASS were specified, and
a SPLINE variable is expanded into a B-spline basis, as if BSPLINE were specified. Then for each
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expanded variable, the results of iteration zero are constructed by multiplying the expanded basis times
the ˇ subvector to get the optimal transformation. This a-option can be useful even in models where a
direct solution is not possible, because it provides good initial transformations of all the variables.

HISTORY

HIS
displays the iteration histories even when the NOPRINT a-option is specified.

INDIVIDUAL

IND
fits each model for each dependent variable individually. This means, for example, that when INDI-
VIDUAL is specified, missing values in one dependent variable will not cause that observation to be
deleted for the other models with the other dependent variables. In contrast, by default, missing values
in any variable in any model can cause the observation to be deleted for all models. The INDIVIDUAL
a-option can be specified only with METHOD=MORALS.

This a-option also affects the order of the output. By default, the number of observations table is
printed once at the beginning of the output. With INDIVIDUAL, a number of observations table
appears for each model.

LPREFIX=n

LPR=n
specifies the number of first characters of a CLASS expansion variable’s label (or name if no label
is specified) to use in constructing labels for coded variables. Coded variable labels are constructed
from the first n characters of the CLASS expansion variable’s name and the first 127 – n characters
of the formatted CLASS expansion variable’s value. Valid values range from –1 to 127. Values of 0
to 127 specify the number of name or label characters to use. The default is –1, which specifies that
PROC TRANSREG should pick a value depending on the length of the prefix and the formatted class
value. When you specify LPREFIX= as an a-option or an o-option, it determines the default for all
CLASS variables. When you specify LPREFIX= as a t-option, it overrides the default only for selected
variables.

MAXITER=n

MAX=n
specifies the maximum number of iterations (see the section “Controlling the Number of Iterations”
on page 8668). By default, MAXITER=30. You can specify MAXITER=0 to save time when no
transformations are requested.

METHOD=CANALS | MORALS | REDUNDANCY | UNIVARIATE

MET=CAN | MOR | RED | UNI
specifies the iterative algorithm. By default, METHOD=UNIVARIATE, unless you specify options that
cannot be handled by the UNIVARIATE algorithm. Specifically, the default is METHOD=MORALS
for the following situations:

• if you specify LINEAR, OPSCORE, MONOTONE, UNTIE, SPLINE, MSPLINE, or SSPLINE
transformations for the independent variables

• if you specify the ADDITIVE a-option with more than one dependent variable

• if you specify the IAPPROXIMATIONS o-option
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• if you specify the INDIVIDUAL a-option

• if ODS Graphics is enabled, regression plots are produced, and there is more than one dependent
variable

CANALS specifies canonical correlation with alternating least squares. This jointly transforms
all dependent and independent variables to maximize the average of the first n
squared canonical correlations, where n is the value of the NCAN= a-option.

MORALS specifies multiple optimal regression with alternating least squares. This transforms
each dependent variable, along with the set of independent variables, to maximize
the squared multiple correlation.

REDUNDANCY jointly transforms all dependent and independent variables to maximize the average
of the squared multiple correlations (see the section “Redundancy Analysis” on
page 8673).

UNIVARIATE transforms each dependent variable to maximize the squared multiple correlation,
while the independent variables are not transformed.

MONOTONE=two-letters

MON=two-letters
specifies the first and last special missing value in the list of those special missing values to be estimated
with within-variable order and category constraints. By default, there are no order constraints on
missing value estimates. The two-letters value must consist of two letters in alphabetical order. For
example, MONOTONE=DF means that the estimate of .D must be less than or equal to the estimate of
.E, which must be less than or equal to the estimate of .F; no order constraints are placed on estimates
of ._, .A through .C, and .G through .Z. For details, see the section “Missing Values” on page 8666.

NCAN=n

NCA=n
specifies the number of canonical variables to use in the METHOD=CANALS algorithm. By default,
NCAN=1. The value of the NCAN= a-option must be � 1.

When canonical coefficients and coordinates are included in the OUT= data set, the NCAN= a-option
also controls the number of rows of the canonical coefficient matrices in the data set. If you specify
an NCAN= value larger than the minimum of the number of dependent variables and the number of
independent variables, PROC TRANSREG displays a warning and sets the NCAN= a-option to the
maximum value.

NOINT

NOI
omits the intercept from the OUT= data set and suppresses centering of data. You cannot specify the
NOINT a-option with iterative transformations since there is no provision for optimal scaling without
an intercept. The NOINT a-option can be specified only when there is no implicit intercept and when
all of the data in a BY group absolutely will not change during the iterations.
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NOMISS

NOM
excludes all observations with missing values from the analysis, but does not exclude them from the
OUT= data set. If you omit the NOMISS a-option, PROC TRANSREG simultaneously computes
the optimal transformations of the nonmissing values and estimates the missing values that minimize
squared error. For details, see the section “Missing Values” on page 8666.

Casewise deletion of observations with missing values occurs when the NOMISS a-option is
specified, when there are missing values in expansions, when there are missing values in
METHOD=UNIVARIATE independent variables, when there are weights less than or equal to 0,
or when there are frequencies less than 1. Excluded observations are output with a blank value for the
_TYPE_ variable, and they have a weight of 0. They do not contribute to the analysis but are scored
and transformed as supplementary or passive observations.

See the section “Passive Observations” on page 8672 for more information about excluded observations.

NOPRINT

NOP
suppresses the display of all output unless you specify the HISTORY a-option. The NOPRINT a-option
without the HISTORY a-option disables the Output Delivery System (ODS), including ODS Graphics,
for the duration of the procedure run. The NOPRINT a-option with the HISTORY a-option disables all
output except the iteration history, again including ODS Graphics, for the duration of the procedure
run. For more information, see Chapter 20, “Using the Output Delivery System.”

NOZEROCONSTANT

NOZERO

NOZ
specifies that constant variables are expected and should not be zeroed. By default, constant variables
are zeroed. This option is useful when PROC TRANSREG is used to code experimental designs
for discrete choice models (see the section “Discrete Choice Experiments: DESIGN, NORESTORE,
NOZERO” on page 8709). When these designs are very large, it might be more efficient to use the
DESIGN=n a-option. It might be that attributes are constant within a block of n observations, so you
need to specify the NOZEROCONSTANT a-option to get the correct results. You can specify this
option in the PROC TRANSREG, MODEL, and OUTPUT statements.

NSR
specifies that no restrictions are placed on the use of SMOOTH and SSPLINE and the ordinary least
squares is used to find the coefficients and predicted values. By default, only certain types of models
can be specified with SMOOTH and ordinary least squares is not used to find the coefficients and
predicted values. See the section “Smoothing Splines Changes and Enhancements” on page 8646 for
more information about the NSR option and smooth transformations.

ORDER=DATA | FREQ | FORMATTED | INTERNAL

ORD=DAT | FRE | FOR | INT
specifies the order in which the CLASS variable levels are to be reported. The default is OR-
DER=INTERNAL. For ORDER=FORMATTED and ORDER=INTERNAL, the sort order is machine
dependent. When you specify ORDER= as an a-option or an o-option, it determines the default
ordering for all CLASS variables. When you specify ORDER= as a t-option, it overrides the default
ordering only for selected variables.
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DATA sorts by order of appearance in the input data set.

FORMATTED sorts by formatted value.

FREQ sorts by descending frequency count; levels with the most observations appear first.

INTERNAL sorts by unformatted value.

PBOXCOXTABLE
PBO

prints the Box-Cox table with the log likelihood displayed as a function of lambda. The important
information in this table is displayed in the Box-Cox plot, so when ODS Graphics is enabled and the
plot is produced, the table is not produced by default. When ODS Graphics is not enabled or when the
plot is not produced, the table is produced by default. Specify the PBOXCOXTABLE option if you
want to see the table in addition to the plot.

REFERENCE=NONE | MISSING | ZERO
REF=NON | MIS | ZER

specifies how reference levels of CLASS variables are to be treated. The options are REFER-
ENCE=NONE, the default, in which reference levels are suppressed; REFERENCE=MISSING,
in which reference levels are displayed and output with missing values; and REFERENCE=ZERO, in
which reference levels are displayed and output with zeros. You can specify the REFERENCE= option
in the PROC TRANSREG, MODEL, or OUTPUT statement, and you can specify it independently for
the OUT= data set and the displayed output. When you specify it in only one statement, it sets the
option for both the displayed output and the OUT= data set.

REITERATE
REI

enables PROC TRANSREG to use previous transformations as starting points. The REITERATE
a-option affects only variables that are iteratively transformed (specified as LINEAR, OPSCORE,
MONOTONE, UNTIE, SPLINE, MSPLINE, and SSPLINE). For iterative transformations, the REIT-
ERATE a-option requests a search in the input data set for a variable that consists of the value of the
TDPREFIX= or TIPREFIX= o-option followed by the original variable name. If such a variable is
found, it is used to provide the initial values for the first iteration. The final transformation is a member
of the transformation family defined by the original variable, not the transformation family defined by
the initialization variable. See the section “Using the REITERATE Algorithm Option” on page 8669
for more information about the REITERATE option.

RSQUARE
RSQ

prints a table with only the model R square.

SEPARATORS=’string-1’ < ’string-2’ >
SEP=’string-1’ < ’string-2’ >

specifies separators for creating CLASS expansion variable labels. By default, SEPARATORS=’ ’ ’ *
’ (“blank” and “blank asterisk blank”). The first value is used to separate variable names and values
in interactions. The second value is used to separate interaction components. For example, the label
for the coded variable for the A=1 and B=2 cell is, by default, ’A 1 * B 2’. If SEPARATORS=’=’
’x’ is specified, then the label is ’A=1xB=2’. When you specify SEPARATORS= as an a-option
or an o-option, it determines the default separators for all CLASS variables. When you specify
SEPARATORS= as a t-option, it overrides the default only for selected variables.
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SHORT

SHO
suppresses the iteration histories.

SINGULAR=n

SIN=n
specifies the largest value within rounding error of zero. By default, SINGULAR=1E–12. PROC
TRANSREG uses the value of the SINGULAR= a-option for checking 1 � R2 when constructing
full-rank matrices of predictor variables, checking denominators before dividing, and so on. PROC
TRANSREG computes the regression coefficients by sweeping with rational pivoting.

SS2
produces a regression table based on Type II sums of squares. Tests of the contribution of each
transformation to the overall model are displayed and output to the OUTTEST= data set when you
specify the OUTTEST= option. When you specify the SS2 a-option, the TEST a-option is automatically
specified for you. See the section “Hypothesis Tests” on page 8681 for more information about the
TEST and SS2 options. You can suppress the variable labels in the regression tables by specifying the
NOLABEL option in the OPTIONS statement.

TEST

TES
generates an ANOVA table. PROC TRANSREG tests the null hypothesis that the vector of scoring
coefficients for all of the transformations is zero. See the section “Hypothesis Tests” on page 8681 for
more information about the TEST option.

TSUFFIX=n

TSU=n
specifies the number of characters in “Transformation” to append to variable labels for transformed
variables. By default, all characters are used.

TSTANDARD=CENTER | NOMISS | ORIGINAL | Z

TST=CEN | NOM | ORI | Z
specifies the standardization of the transformed variables for the hypothesis tests and in the OUT= data
set. By default, TSTANDARD=ORIGINAL. When you specify TSTANDARD= as an a-option or an
o-option, it determines the default standardization for all variables. When you specify TSTANDARD=
as a t-option, it overrides the default standardization only for selected variables.

CENTER centers the output variables to mean zero, but the variances are the same as the variances
of the input variables.

NOMISS sets the means and variances of the transformed variables in the OUT= data set,
computed over all output values that correspond to nonmissing values in the input data
set, to the means and variances computed from the nonmissing observations of the
original variables. The TSTANDARD=NOMISS specification is useful with missing
data. When a variable is linearly transformed, the final variable contains the original
nonmissing values and the missing value estimates. In other words, the nonmissing
values are unchanged. If your data have no missing values, TSTANDARD=NOMISS
and TSTANDARD=ORIGINAL produce the same results.
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ORIGINAL sets the means and variances of the transformed variables to the means and variances
of the original variables. This is the default.

Z standardizes the variables to mean zero, variance one.

The final standardization is affected by other options. If you also specify the ADDITIVE a-option,
the TSTANDARD= option specifies an intermediate step in computing the final means and variances.
The final independent variables, along with their means and standard deviations, are scaled by the
regression coefficients, creating an additive model with all coefficients equal to one.

For nonoptimal variable transformations, the means and variances of the original variables are actually
the means and variances of the nonlinearly transformed variables, unless you specify the ORIGINAL
nonoptimal t-option in the MODEL statement. For example, if a variable x with no missing values is
specified as LOG, then, by default, the final transformation of x is simply the log of x, not the log of x
standardized to the mean of x and variance of x.

TYPE=’text ’|name

TYP=’text ’|name
specifies the valid value for the _TYPE_ variable in the input data set. If PROC TRANSREG finds
an input _TYPE_ variable, it uses only observations with a _TYPE_ value that matches the TYPE=
value. This enables a PROC TRANSREG OUT= data set containing coefficients to be used as input to
PROC TRANSREG without requiring a WHERE statement to exclude the coefficients. If a _TYPE_
variable is not in the data set, all observations are used. The default is TYPE=’SCORE’, so if you do
not specify the TYPE= a-option, only observations with _TYPE_=’SCORE’ are used. Do not confuse
this a-option with the data set TYPE= option. The DATA= data set must be an ordinary SAS data set.

PROC TRANSREG displays a note when it reads observations with blank values of _TYPE_, but
it does not automatically exclude those observations. Data sets created by the TRANSREG and
PRINQUAL procedures have blank _TYPE_ values for those observations that were excluded from the
analysis due to nonpositive weights, nonpositive frequencies, or missing data. When these observations
are read again, they are excluded for the same reason that they were excluded from their original
analysis, not because their _TYPE_ value is blank.

UNTIE=two-letters

UNT=two-letters
specifies the first and last special missing values in the list of those special missing values that are
to be estimated with within-variable order constraints but no category constraints. The two-letters
value must consist of two letters in alphabetical order. By default, there are category constraints but no
order constraints on special missing value estimates. For details, see the sections “Missing Values” on
page 8666 and “Optimal Scaling” on page 8676.

UTILITIES

UTI
produces a table of the part-worth utilities from a conjoint analysis. Utilities, their standard errors, and
the relative importance of each factor are displayed and output to the OUTTEST= data set when you
specify the OUTTEST= option. When you specify the UTILITIES a-option, the TEST a-option is
automatically specified for you. See Example 104.4 and Example 104.5 for more information about
conjoint analysis.
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OUTPUT Statement
OUTPUT OUT=SAS-data-set < o-options > ;

The OUTPUT statement creates a new SAS data set that contains coefficients, marginal means, and informa-
tion about the original and transformed variables. The information about original and transformed variables
composes the score partition of the data set; observations have _TYPE_=’SCORE’. The coefficients and
marginal means compose the coefficient partition of the data set; observations have _TYPE_=’M COEFFI’ or
_TYPE_=’MEAN’. Other values of _TYPE_ are possible; for details, see “_TYPE_ and _NAME_ Variables”
later in this chapter. For details about data set structure, see the section “Output Data Set” on page 8683. To
specify the name of the output data set, use the OUT= option.

OUT=SAS-data-set
specifies the output data set for the data, transformed data, predicted values, residuals, scores, coeffi-
cients, and so on. When you use an OUTPUT statement but do not use the OUT= specification, PROC
TRANSREG creates a data set and uses the DATAn convention. If you want to create a SAS data set
in a permanent library, you must specify a two-level name. For more information about permanent
libraries and SAS data sets, see SAS Language Reference: Concepts.

To control the contents of the data set and variable names, use one or more of the o-options. You can also
specify these options in the PROC TRANSREG statement.

Output Options (o-options)

Table 104.5 summarizes the options available in the OUTPUT statement. These options include the OUT=
option and all of the o-options. Many of the statistics created in the OUTPUT statement are exactly the same
as statistics created by PROC REG. More details are given in the sections “Predicted and Residual Values”
on page 7055, “Model Fit and Diagnostic Statistics” on page 7062 in Chapter 85, “The REG Procedure,” and
Chapter 4, “Introduction to Regression Procedures.”

Table 104.5 Options Available in the OUTPUT Statement

Option Description

Identify output data set
OUT= Outputs data set

Predicted Values, Residuals, Scores
CANONICAL Outputs canonical scores
CLI Outputs individual confidence limits
CLM Outputs mean confidence limits
DESIGN= Specifies design matrix coding
DREPLACE Replaces dependent variables
IREPLACE Replaces independent variables
LEVERAGE Outputs leverage
NORESTOREMISSING Does not restore missing values
NOSCORES Suppresses output of scores
PREDICTED Outputs predicted values
REDUNDANCY= Outputs redundancy variables
REPLACE Replaces all variables
RESIDUALS Outputs residuals
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Table 104.5 continued

Option Description

Output Data Set Coefficients
COEFFICIENTS Outputs coefficients
COORDINATES= Outputs ideal point coordinates
MEANS Outputs marginal means
MREDUNDANCY Outputs redundancy analysis coefficients

Output Data Set Variable Name Prefixes
ADPREFIX= Specifies dependent variable approximations
AIPREFIX= Specifies independent variable approximations
CDPREFIX= Specifies canonical dependent variables
CILPREFIX= Specifies conservative individual lower CL
CIPREFIX= Specifies canonical independent variables
CIUPREFIX= Specifies conservative-individual-upper CL
CMLPREFIX= Specifies conservative-mean-lower CL
CMUPREFIX= Specifies conservative-mean-upper CL
DEPENDENT= Specifies METHOD=MORALS untransformed dependent
LILPREFIX= Specifies liberal-individual-lower CL
LIUPREFIX= Specifies liberal-individual-upper CL
LMLPREFIX= Specifies liberal-mean-lower CL
LMUPREFIX= Specifies liberal-mean-upper CL
RDPREFIX= Specifies residuals
PPREFIX= Specifies predicted values
RPREFIX= Specifies redundancy variables
TDPREFIX= Specifies transformed dependents
TIPREFIX= Specifies transformed independents

Macros Variables
MACRO Creates macro variables

Other Options
APPROXIMATIONS Outputs dependent and independent approximations
CCC Outputs canonical correlation coefficients
CEC Outputs canonical elliptical point coordinates
CPC Outputs canonical point coordinates
CQC Outputs canonical quadratic point coordinates
DAPPROXIMATIONS Outputs approximations to transformed dependents
IAPPROXIMATIONS Outputs approximations to transformed independents
MEC Outputs elliptical point coordinates
MPC Outputs point coordinates
MQC Outputs quadratic point coordinates
MRC Outputs multiple regression coefficients

For the coefficients partition, the COEFFICIENTS, COORDINATES, and MEANS o-options provide the
coefficients that are appropriate for your model. For more explicit control of the coefficient partition, use the
options that control details and prefixes. The following list provides details about these options.
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ADPREFIX=name
ADP=name

specifies a prefix for naming the dependent variable predicted values. The default is ADPREFIX=P
when you specify the PREDICTED o-option; otherwise, it is ADPREFIX=A. When you specify the
ADPREFIX= o-option, the PREDICTED o-option is automatically specified for you. The ADPREFIX=
o-option is the same as the PPREFIX= o-option.

AIPREFIX=name
AIP=name

specifies a prefix for naming the independent variable approximations. The default is AIPREFIX=A.
When you specify the AIPREFIX= o-option, the IAPPROXIMATIONS o-option is automatically
specified for you.

APPROXIMATIONS
APPROX
APP

is equivalent to specifying both the DAPPROXIMATIONS and the IAPPROXIMATIONS o-options.
If you specify METHOD=UNIVARIATE, then the APPROXIMATIONS o-option specifies only the
DAPPROXIMATIONS o-option.

CANONICAL
CAN

outputs canonical variables to the OUT= data set. When you specify METHOD=CANALS, the
CANONICAL o-option is automatically specified for you. The CDPREFIX= o-option specifies a prefix
for naming the dependent canonical variables (default Cand), and the CIPREFIX= o-option specifies a
prefix for naming the independent canonical variables (default Cani).

CCC
outputs canonical correlation coefficients to the OUT= data set.

CDPREFIX=name
CDP=name

provides a prefix for naming the canonical dependent variables. The default is CDPREFIX=Cand.
When you specify the CDPREFIX= o-option, the CANONICAL o-option is automatically specified for
you.

CEC
outputs canonical elliptical point model coordinates to the OUT= data set.

CILPREFIX=name
CIL=name

specifies a prefix for naming the conservative-individual-lower confidence limits. The default prefix is
CIL. When you specify the CILPREFIX= o-option, the CLI o-option is automatically specified for you.

CIPREFIX=name
CIP=name

provides a prefix for naming the canonical independent variables. The default is CIPREFIX=Cani.
When you specify the CIPREFIX= o-option, the CANONICAL o-option is automatically specified for
you.
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CIUPREFIX=name
CIU=name

specifies a prefix for naming the conservative-individual-upper confidence limits. The default prefix is
CIU. When you specify the CIUPREFIX= o-option, the CLI o-option is automatically specified for
you.

CLI
outputs individual confidence limits to the OUT= data set. The names of the confidence limits
variables are constructed from the original dependent variable names and the prefixes specified in the
following o-options: LILPREFIX= (default LIL for liberal individual lower), CILPREFIX= (default
CIL for conservative individual lower), LIUPREFIX= (default LIU for liberal individual upper), and
CIUPREFIX= (default CIU for conservative individual upper). When there are no monotonicity
constraints, the liberal and conservative limits are the same.

CLM
outputs mean confidence limits to the OUT= data set. The names of the confidence limits variables
are constructed from the original dependent variable names and the prefixes specified in the following
o-options: LMLPREFIX= (default LML for liberal mean lower), CMLPREFIX= (default CML for
conservative mean lower), LMUPREFIX= (default LMU for liberal mean upper), and CMUPREFIX=
(default CMU for conservative mean upper). When there are no monotonicity constraints, the liberal
and conservative limits are the same.

CMLPREFIX=name
CML=name

specifies a prefix for naming the conservative-mean-lower confidence limits. The default prefix is CML.
When you specify the CMLPREFIX= o-option, the CLM o-option is automatically specified for you.

CMUPREFIX=name
CMU=name

specifies a prefix for naming the conservative-mean-upper confidence limits. The default prefix is CMU.
When you specify the CMUPREFIX= o-option, the CLM o-option is automatically specified for you.

COEFFICIENTS
COE

outputs either multiple regression coefficients or raw canonical coefficients to the OUT= data set.
If you specify METHOD=CANALS (in the MODEL or PROC TRANSREG statement), then the
COEFFICIENTS o-option outputs the first n canonical variables, where n is the value of the NCAN=
a-option (specified in the MODEL or PROC TRANSREG statement). Otherwise, the COEFFICIENTS
o-option includes multiple regression coefficients in the OUT= data set. In addition, when you
specify the CLASS expansion for any independent variable, the COEFFICIENTS o-option also outputs
marginal means.

COORDINATES< =n >
COO< =n >

outputs either ideal point or vector model coordinates for preference mapping to the OUT= data set.
When METHOD=CANALS, these coordinates are computed from canonical coefficients; otherwise,
the coordinates are computed from multiple regression coefficients. For details, see the section “Point
Models” on page 8672.

When ODS Graphics is enabled and vector model coordinates are requested, a plot is produced with
points for each row and vectors for each column. If the vectors are plotted based on the actual
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computed coordinates, then often the vectors are short. A better graphical display is produced when
the vectors are stretched. The absolute lengths of each vector can optionally be changed by specifying
COORDINATES=n. Then the vector coordinates are all multiplied by n. Usually, n is a value such as
2, 2.5, or 3. The default is 2.5. Specify COORDINATES=1 if you want to see the vectors without any
stretching. The relative lengths of the different vectors are important and interpretable, and these are
preserved by the stretching.

CPC
outputs canonical point model coordinates to the OUT= data set.

CQC
outputs canonical quadratic point model coordinates to the OUT= data set.

DAPPROXIMATIONS

DAP
outputs the approximations of the transformed dependent variables to the OUT= data set. These
are the target values for the optimal transformations. With METHOD=UNIVARIATE and
METHOD=MORALS, the dependent variable approximations are the ordinary predicted values from
the linear model. The names of the approximation variables are constructed from the ADPREFIX=
o-option (default A) and the original dependent variable names. For ordinary predicted values, use the
PREDICTED o-option instead of the DAPPROXIMATIONS o-option, since the PREDICTED o-option
uses a more relevant prefix (“P” instead of “A”) and a more relevant variable label suffix (“Predicted
Values” instead of “Approximations”).

DESIGN< =n >

DES< =n >
specifies that your primary goal is design matrix coding, not analysis. Specifying the DESIGN o-option
makes the procedure run faster. The DESIGN o-option sets the default method to UNIVARIATE and
the default MAXITER= value to zero. It suppresses computing the regression coefficients, unless they
are needed for some other option. Furthermore, when the DESIGN o-option is specified, the MODEL
statement is not required to have an equal sign. When no MODEL statement equal sign is specified, all
variables are considered independent variables, all options that require dependent variables are ignored,
and the IREPLACE o-option is automatically specified for you.

You can use DESIGN=n for coding very large data sets, where n is the number of observations to code
at one time. For example, to code a data set with a large number of observations, you can specify
DESIGN=100 or DESIGN=1000 to process the data set in blocks of 100 or 1000 observations. If
you specify the DESIGN o-option rather than DESIGN=n, PROC TRANSREG tries to process all
observations at once, which might not work with very large data sets. Specify the NOZEROCON-
STANT a-option with DESIGN=n to ensure that constant variables within blocks are not zeroed. See
the sections “Using the DESIGN Output Option” on page 8706 and “Discrete Choice Experiments:
DESIGN, NORESTORE, NOZERO” on page 8709 for more information about the DESIGN option.

DEPENDENT=name

DEP=name
specifies the untransformed dependent variable for OUT= data sets with METHOD=MORALS when
there is more than one dependent variable. The default is DEPENDENT=_DEPEND_.
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DREPLACE
DRE

replaces the original dependent variables with the transformed dependent variables in the OUT= data
set. The names of the transformed variables in the OUT= data set correspond to the names of the
original dependent variables in the input data set. By default, both the original dependent variables
and the transformed dependent variables (with names constructed from the TDPREFIX= (default T)
o-option and the original dependent variable names) are included in the OUT= data set.

IAPPROXIMATIONS
IAP

outputs the approximations of the transformed independent variables to the OUT= data set. These
are the target values for the optimal transformations. The names of the approximation variables are
constructed from the AIPREFIX= o-option (default A) and the original independent variable names.
When you specify the AIPREFIX= o-option, the IAPPROXIMATIONS o-option is automatically
specified for you. The IAPPROXIMATIONS o-option is not valid when METHOD=UNIVARIATE.

IREPLACE
IRE

replaces the original independent variables with the transformed independent variables in the OUT=
data set. The names of the transformed variables in the OUT= data set correspond to the names of the
original independent variables in the input data set. By default, both the original independent variables
and the transformed independent variables (with names constructed from the TIPREFIX= o-option
(default T) and the original independent variable names) are included in the OUT= data set.

LEVERAGE< =name >
LEV< =name >

creates a variable with the specified name in the OUT= data set that contains leverages. Specifying the
LEVERAGE o-option is equivalent to specifying LEVERAGE=Leverage.

LILPREFIX=name
LIL=name

specifies a prefix for naming the liberal-individual-lower confidence limits. The default prefix is LIL.
When you specify the LILPREFIX= o-option, the CLI o-option is automatically specified for you.

LIUPREFIX=name
LIU=name

specifies a prefix for naming the liberal-individual-upper confidence limits. The default prefix is LIU.
When you specify the LIUPREFIX= o-option, the CLI o-option is automatically specified for you.

LMLPREFIX=name
LML=name

specifies a prefix for naming the liberal-mean-lower confidence limits. The default prefix is LML. When
you specify the LMLPREFIX= o-option, the CLM o-option is automatically specified for you.

LMUPREFIX=name
LMU=name

specifies a prefix for naming the liberal-mean-upper confidence limits. The default prefix is LMU.
When you specify the LMUPREFIX= o-option, the CLM o-option is automatically specified for you.
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MACRO(keyword=name. . . )

MAC(keyword=name. . . )
creates macro variables. Most of the options available within the MACRO o-option are rarely needed.
By default, PROC TRANSREG creates a macro variable named _TrgInd with a complete list of
independent variables created by the procedure. When PROC TRANSREG is being used for design
matrix creation prior to running a procedure without a CLASS statement, this macro provides a
convenient way to use the results from PROC TRANSREG. For example, a PROC LOGISTIC step
that uses a design matrix coded by PROC TRANSREG can use the following MODEL statement:

model y=&_trgind;

PROC TRANSREG, also by default, creates a macro variable named _TrgIndN, which contains the
number of variables in the _TrgInd list. These macro variables can be used in an ARRAY statement as
follows:

array indvars[&_trgindn] &_trgind;

See the sections “Using the DESIGN Output Option” on page 8706 and “Discrete Choice Experiments:
DESIGN, NORESTORE, NOZERO” on page 8709 for examples of using the default macro variables.

The available keywords are as follows.

DN=name specifies the name of a macro variable that contains the number of dependent
variables. By default, a macro variable named _TrgDepN is created. This is the
number of variables in the DL= list and the number of macro variables created by
the DV= and DE= specifications.

IN=name specifies the name of a macro variable that contains the number of independent
variables. By default, a macro variable named _TrgIndN is created. This is the
number of variables in the IL= list and the number of macro variables created by
the IV= and IE= specifications.

DL=name specifies the name of a macro variable that contains the list of the dependent
variables. By default, a macro variable named _TrgDep is created. These are the
variable names of the final transformed variables in the OUT= data set. For example,
if there are three dependent variables, y1–y3, then _TrgDep contains, by default,
Ty1 Ty2 Ty3 (or y1 y2 y3 if you specify the REPLACE o-option).

IL=name specifies the name of a macro variable that contains the list of the independent
variables. By default, a macro variable named _TrgInd is created. These are the
variable names of the final transformed variables in the OUT= data set. For example,
if there are three independent variables, x1–x3, then _TrgInd contains, by default,
Tx1 Tx2 Tx3 (or x1 x2 x3 if you specify the REPLACE o-option).

DV=prefix specifies a prefix for creating a list of macro variables, each of which contains
one dependent variable name. For example, if there are three dependent variables,
y1–y3, and you specify macro(dv=Dep), then three macro variables, Dep1, Dep2,
and Dep3, are created, containing Ty1, Ty2, and Ty3, respectively (or y1, y2, and y3
if you specify the REPLACE o-option). By default, no list is created.
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IV=prefix specifies a prefix for creating a list of macro variables, each of which contains one
independent variable name. For example, if there are three independent variables,
x1–x3, and you specify macro(iv=Ind), then three macro variables, Ind1, Ind2,
and Ind3, are created, containing Tx1, Tx2, and TX3, respectively (or x1, x2, and x3
if you specify the REPLACE o-option). By default, no list is created.

DE=prefix specifies a prefix for creating a list of macro variables, each of which contains one
dependent variable effect. This list shows the origin of each model term. Each
effect consists of two or more parts, and each part consists of a value in 32 columns
followed by a blank. For example, if you specify macro(de=d), then a macro
variable d1 is created for identity(y). The d1 macro variable is shown next,
wrapped onto two lines:

4 TY
IDENTITY Y

The first part is the number of parts (4), the second part is the transformed variable
name, the third part is the transformation, and the last part is the input variable
name. By default, no list is created.

IE=prefix specifies a prefix for creating a list of macro variables, each of which contains one
independent variable effect. This list shows the origin of each model term. Each
effect consists of two or more parts, and each part consists of a value in 32 columns
followed by a blank. For example, if you specify macro(ie=I), then three macro
variables, I1, I2, and I3, are created for class(x1 | x2) when both x1 and x2
have values of 1 and 2. These macro variables are shown next, with extra white
space removed:

5 Tx11 CLASS x1 1
5 Tx21 CLASS x2 1
8 Tx11x21 CLASS x1 1 CLASS x2 1

For CLASS variables, the formatted level appears after the variable name. The first
two effects are the main effects, and the last is the interaction term. By default, no
list is created.

MEANS
MEA

outputs marginal means for CLASS variable expansions to the OUT= data set.

MEC
outputs multiple regression elliptical point model coordinates to the OUT= data set.

MPC
outputs multiple regression point model coordinates to the OUT= data set.

MQC
outputs multiple regression quadratic point model coordinates to the OUT= data set.

MRC
outputs multiple regression coefficients to the OUT= data set.
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MREDUNDANCY

MRE
outputs multiple redundancy analysis coefficients to the OUT= data set.

NORESTOREMISSING

NORESTORE

NOR
specifies that missing values should not be restored when the OUT= data set is created. By default, the
coded CLASS variable contains a row of missing values for observations in which the CLASS variable
is missing. When you specify the NORESTOREMISSING o-option, these observations contain a row
of zeros instead. This is useful when PROC TRANSREG is used to code experimental designs for
discrete choice models and there is a constant alternative indicated by a missing value.

NOSCORES

NOS
excludes original variables, transformed variables, predicted values, residuals, and scores from the
OUT= data set. You can use the NOSCORES o-option with various other options to create an
OUT= data set that contains only a coefficient partition (for example, a data set consisting entirely of
coefficients and coordinates).

PREDICTED

PRE

P
outputs predicted values, which for METHOD=UNIVARIATE and METHOD=MORALS are the
ordinary predicted values from the linear model, to the OUT= data set. The names of the predicted
values’ variables are constructed from the PPREFIX= o-option (default P) and the original dependent
variable names. When you specify the PPREFIX= o-option, the PREDICTED o-option is automatically
specified for you.

PPREFIX=name

PDPREFIX=name

PDP=name
specifies a prefix for naming the dependent variable predicted values. The default is PPREFIX=P when
you specify the PREDICTED o-option; otherwise, it is PPREFIX=A. When you specify the PPREFIX=
o-option, the PREDICTED o-option is automatically specified for you. The PPREFIX= o-option is the
same as the ADPREFIX= o-option.

RDPREFIX=name

RDP=name
specifies a prefix for naming the residual (dependent) variables to the OUT= data set. The default is RD-
PREFIX=R. When you specify the RDPREFIX= o-option, the RESIDUALS o-option is automatically
specified for you.
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REDUNDANCY< =STANDARDIZE | UNSTANDARDIZE >

RED< =STA | UNS >
outputs redundancy variables to the OUT= data set, either standardized or unstandardized. Speci-
fying the REDUNDANCY o-option is the same as specifying REDUNDANCY=STANDARDIZE.
The results of the REDUNDANCY o-option depends on the TSTANDARD= option. You
must specify TSTANDARD=Z to get results based on standardized data. The TSTANDARD=
option controls how the data that go into the redundancy analysis are scaled, and REDUN-
DANCY=STANDARDIZE|UNSTANDARDIZE controls how the redundancy variables are
scaled. The REDUNDANCY o-option is automatically specified for you when you specify the
METHOD=REDUNDANCY a-option. The RPREFIX= o-option specifies a prefix (default Red) for
naming the redundancy variables.

REFERENCE=NONE | MISSING | ZERO

REF=NON | MIS | ZER
specifies how reference levels of CLASS variables are to be treated. The options are REFER-
ENCE=NONE, the default, in which reference levels are suppressed; REFERENCE=MISSING,
in which reference levels are displayed and output with missing values; and REFERENCE=ZERO, in
which reference levels are displayed and output with zeros. You can specify the REFERENCE= option
in the PROC TRANSREG, MODEL, or OUTPUT statement, and you can specify it independently for
the OUT= data set and the displayed output. When you specify it in only one statement, it sets the
option for both the displayed output and the OUT= data set.

REPLACE

REP
is equivalent to specifying both the DREPLACE and the IREPLACE o-options.

RESIDUALS

RES

R
outputs the differences between the transformed dependent variables and their predicted values. The
names of the residual variables are constructed from the RDPREFIX= o-option (default R) and the
original dependent variable names.

RPREFIX=name

RPR=name
provides a prefix for naming the redundancy variables. The default is RPREFIX=Red. When you
specify the RPREFIX= o-option, the REDUNDANCY o-option is automatically specified for you.

TDPREFIX=name

TDP=name
specifies a prefix for naming the transformed dependent variables. By default, TDPREFIX=T. The
TDPREFIX= o-option is ignored when you specify the DREPLACE o-option.

TIPREFIX=name

TIP=name
specifies a prefix for naming the transformed independent variables. By default, TIPREFIX=T. The
TIPREFIX= o-option is ignored when you specify the IREPLACE o-option.
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WEIGHT Statement
WEIGHT variable ;

When you use a WEIGHT statement, a weighted residual sum of squares is minimized. The WEIGHT
statement has no effect on degrees of freedom or number of observations, but the weights affect most other
calculations. The observation is used in the analysis only if the value of the WEIGHT statement variable is
greater than 0.

Details: TRANSREG Procedure

Model Statement Usage
MODEL < transform(dependents < / t-options >) >

< transform(dependents < / t-options >). . . = >
transform(independents < / t-options >)

< transform(independents < / t-options >). . . > < / a-options > ;

Here are some examples of model statements:

• linear regression

model identity(y) = identity(x);

• a linear model with a nonlinear regression function

model identity(y) = spline(x / nknots=5);

• multiple regression

model identity(y) = identity(x1-x5);

• multiple regression with nonlinear transformations

model spline(y / nknots=3) = spline(x1-x5 / nknots=3);

• multiple regression with nonlinear but monotone transformations

model mspline(y / nknots=3) = mspline(x1-x5 / nknots=3);

• multivariate multiple regression

model identity(y1-y4) = identity(x1-x5);

• canonical correlation
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model identity(y1-y4) = identity(x1-x5) / method=canals;

• redundancy analysis

model identity(y1-y4) = identity(x1-x5) / method=redundancy;

• preference mapping, vector model (Carroll 1972)

model identity(Attrib1-Attrib3) = identity(Dim1-Dim2);

• preference mapping, ideal point model (Carroll 1972)

model identity(Attrib1-Attrib3) = point(Dim1-Dim2);

• preference mapping, ideal point model, elliptical (Carroll 1972)

model identity(Attrib1-Attrib3) = epoint(Dim1-Dim2);

• preference mapping, ideal point model, quadratic (Carroll 1972)

model identity(Attrib1-Attrib3) = qpoint(Dim1-Dim2);

• metric conjoint analysis

model identity(Subj1-Subj50) = class(a b c d e f / zero=sum);

• nonmetric conjoint analysis

model monotone(Subj1-Subj50) = class(a b c d e f / zero=sum);

• main effects, two-way interaction

model identity(y) = class(a|b);

• less-than-full-rank model—main effects and two-way interaction are constrained to sum to zero

model identity(y) = class(a|b / zero=sum);

• main effects and all two-way interactions

model identity(y) = class(a|b|c@2);

• main effects and all two- and three-way interactions

model identity(y) = class(a|b|c);

• main effects and only the b*c two-way interaction
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model identity(y) = class(a b c b*c);

• seven main effects, three two-way interactions

model identity(y) = class(a b c d e f g a*b a*c a*d);

• deviations-from-means (effects or .1; 0;�1/) coding, with an a reference level of ’1’ and a b reference
level of ’2’

model identity(y) = class(a|b / deviations zero='1' '2');

• cell-means coding (implicit intercept)

model identity(y) = class(a*b / zero=none);

• reference cell model

model identity(y) = class(a|b / zero='1' '1');

• reference line with change in line parameters

model identity(y) = class(a) | identity(x);

• reference curve with change in curve parameters

model identity(y) = class(a) | spline(x);

• separate curves and intercepts

model identity(y) = class(a / zero=none) | spline(x);

• quantitative effects with interaction

model identity(y) = identity(x1 | x2);

• separate quantitative effects with interaction within each cell

model identity(y) = class(a * b / zero=none) | identity(x1 | x2);
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Box-Cox Transformations
Box-Cox (1964) transformations are used to find potentially nonlinear transformations of a dependent variable.
The Box-Cox transformation has the form

.y� � 1/=� � ¤ 0

log.y/ � D 0

This family of transformations of the positive dependent variable y is controlled by the parameter �. Trans-
formations linearly related to square root, inverse, quadratic, cubic, and so on are all special cases. The limit
as � approaches 0 is the log transformation. More generally, Box-Cox transformations of the following form
can be fit:

..y C c/� � 1/=.�g/ � ¤ 0

log.y C c/=g � D 0

By default, c = 0. The parameter c can be used to rescale y so that it is strictly positive. By default, g = 1.
Alternatively, g can be Py��1, where Py is the geometric mean of y.

The BOXCOX transformation in PROC TRANSREG can be used to perform a Box-Cox transformation
of the dependent variable. You can specify a list of power parameters by using the LAMBDA= t-option.
By default, LAMBDA=–3 TO 3 BY 0.25. The procedure chooses the optimal power parameter by using a
maximum likelihood criterion (Draper and Smith 1981, pp. 225–226). You can specify the PARAMETER=c
transformation option when you want to shift the values of y, usually to avoid negatives. To divide by Py��1,
specify the GEOMETRICMEAN t-option.

Here are three examples of using the LAMBDA= t-option:

model BoxCox(y / lambda=0) = identity(x1-x5);
model BoxCox(y / lambda=-2 to 2 by 0.1) = identity(x1-x5);
model BoxCox(y) = identity(x1-x5);

Here is the first example:

model BoxCox(y / lambda=0) = identity(x1-x5);

LAMBDA=0 specifies a Box-Cox transformation with a power parameter of 0. Since a single value of 0 was
specified for LAMBDA=, there is no difference between the following models:

model BoxCox(y / lambda=0) = identity(x1-x5);
model log(y) = identity(x1-x5);

Here is the second example:

model BoxCox(y / lambda=-2 to 2 by 0.1) = identity(x1-x5);

LAMBDA= specifies a list of power parameters. PROC TRANSREG tries each power parameter in the list
and picks the best transformation. A maximum likelihood approach (Draper and Smith 1981, pp. 225–226)
is used. With Box-Cox transformations, PROC TRANSREG finds the transformation before the usual
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iterations begin. Note that this is quite different from PROC TRANSREG’s usual approach of iteratively
finding optimal transformations with ordinary and alternating least squares. It is analogous to SMOOTH and
PBSPLINE, which also find transformations before the iterations begin based on a criterion other than least
squares.

Here is the third example:

model BoxCox(y) = identity(x1-x5);

The default LAMBDA= list of –3 TO 3 BY 0.25 is used.

The procedure prints the optimal power parameter, a confidence interval on the power parameter (based on
the ALPHA= t-option), a “convenient” power parameter (selected from the CLL= t-option list), and the log
likelihood for each power parameter tried (see Example 104.2).

To illustrate how Box-Cox transformations work, data were generated from the model

y D exC�

where � � N.0; 1/. The transformed data can be fit with a linear model

log.y/ D x C �

The following statements produce Figure 104.14 through Figure 104.15:

title 'Basic Box-Cox Example';

data x;
do x = 1 to 8 by 0.025;

y = exp(x + normal(7));
output;

end;
run;

ods graphics on;

title2 'Default Options';

proc transreg data=x test;
model BoxCox(y) = identity(x);

run;
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Figure 104.14 Basic Box-Cox Example, Default Output

Figure 104.14 shows that PROC TRANSREG correctly selects the log transformation � D 0, with a narrow
confidence interval. The F D t2 plot shows that F is at its largest in the vicinity of the optimal Box-Cox
transformation.

The rest of the output, which contains the ANOVA results, is shown in Figure 104.15.

Figure 104.15 Basic Box-Cox Example, Default Output

Dependent Variable BoxCox(y)

Number of Observations Read 281

Number of Observations Used 281

The TRANSREG Procedure Hypothesis Tests for BoxCox(y)

Univariate ANOVA Table Based on the Usual Degrees of
Freedom

Source DF
Sum of

Squares
Mean

Square F Value Liberal p

Model 1 1145.884 1145.884 1053.66 >= <.0001

Error 279 303.421 1.088

Corrected Total 280 1449.305

The above statistics are not adjusted for the fact that the
dependent variable was transformed and so are generally
liberal.
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Figure 104.15 continued

Root MSE 1.04285 R-Square 0.7906

Dependent Mean 4.49653 Adj R-Sq 0.7899

Coeff Var 23.19225 Lambda 0.0000

This next example uses several options. The LAMBDA= t-option specifies power parameters sparsely
from –2 to –0.5 and 0.5 to 2 just to get the general shape of the log-likelihood function in that region.
Between –0.5 and 0.5, more power parameters are tried. The CONVENIENT t-option is specified so that if a
power parameter like � D 1 or � D 0 is found in the confidence interval, it is used instead of the optimal
power parameter. PARAMETER=2 is specified to add 2 to each y before performing the transformations.
ALPHA=0.00001 specifies a wide confidence interval.

These next statements perform the Box-Cox analysis and produce Figure 104.16 and Figure 104.17:

title2 'Several Options Demonstrated';

proc transreg data=x ss2 details
plots=(transformation(dependent) scatter

observedbypredicted);
model BoxCox(y / lambda=-2 -1 -0.5 to 0.5 by 0.05 1 2

convenient parameter=2 alpha=0.00001) =
identity(x);

run;

Figure 104.16 Basic Box-Cox Example, Several Options Demonstrated
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The results in Figure 104.16 and Figure 104.17 show that the optimal power parameter is –0.1, but 0 is in
the confidence interval, and hence a log transformation is chosen. The actual Box-Cox transformation, the
original scatter plot, and observed by predicted values plot are shown in Figure 104.17.

Figure 104.17 Basic Box-Cox Example, Several Options Demonstrated

Dependent Variable BoxCox(y)

Number of Observations Read 281

Number of Observations Used 281

Model Statement Specification Details

Type DF Variable Description Value

Dep 1 BoxCox(y) Lambda Used 0

Lambda -0.1

Log Likelihood -1280.1

Conv. Lambda 0

Conv. Lambda LL -1287.7

CI Limit -1289.9

Alpha 0.00001

Parameter 2

Options Convenient Lambda Used

Ind 1 Identity(x) DF 1

The TRANSREG Procedure Hypothesis Tests for BoxCox(y)

Univariate ANOVA Table Based on the Usual Degrees of
Freedom

Source DF
Sum of

Squares
Mean

Square F Value Liberal p

Model 1 999.438 999.4381 1064.82 >= <.0001

Error 279 261.868 0.9386

Corrected Total 280 1261.306

The above statistics are not adjusted for the fact that the
dependent variable was transformed and so are generally
liberal.

Root MSE 0.96881 R-Square 0.7924

Dependent Mean 4.61429 Adj R-Sq 0.7916

Coeff Var 20.99591 Lambda 0.0000

Univariate Regression Table Based on the Usual Degrees of
Freedom

Variable DF Coefficient

Type II
Sum of

Squares
Mean

Square F Value Liberal p

Intercept 1 0.42939328 8.746 8.746 9.32 >= 0.0025

Identity(x) 1 0.92997620 999.438 999.438 1064.82 >= <.0001

The above statistics are not adjusted for the fact that the dependent variable was transformed
and so are generally liberal.
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Figure 104.17 continued
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Figure 104.17 continued

The next example shows how to find a Box-Cox transformation without an independent variable. This seeks
to normalize the univariate histogram. This example generates 500 random observations from a lognormal
distribution. In addition, a constant variable z is created that is all zero. This is because PROC TRANSREG
requires some independent variable to be specified, even if it is constant. Two options are specified in
the PROC TRANSREG statement. MAXITER=0 is specified because the Box-Cox transformation is
performed before any iterations are begun. No iterations are needed since no other work is required. The
NOZEROCONSTANT a-option (which can be abbreviated NOZ) is specified so that PROC TRANSREG
does not print any warnings when it encounters the constant independent variable. The MODEL statement
asks for a Box-Cox transformation of y and an IDENTITY transformation (which does nothing) of the
constant variable z. Finally, PROC UNIVARIATE is run to show a histogram of the original variable y, and
the Box-Cox transformation, Ty. The following statements fit the univariate Box-Cox model and produce
Figure 104.18:
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title 'Univariate Box-Cox';

data x;
call streaminit(17);
z = 0;
do i = 1 to 500;

y = rand('lognormal');
output;

end;
run;

proc transreg maxiter=0 nozeroconstant;
model BoxCox(y) = identity(z);
output;

run;

proc univariate noprint;
histogram y ty;

run;

The PROC TRANSREG results in Figure 104.18 show that zero is chosen for lambda, so a log transformation
is chosen. The first histogram shows that the original data are skewed, but a log transformation makes the
data appear much more nearly normal.

Figure 104.18 Box-Cox with No Independent Variable
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Figure 104.18 continued
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Using Splines and Knots
This section illustrates some properties of splines. Splines are curves, and they are usually required to be
continuous and smooth. Splines are usually defined as piecewise polynomials of degree n with function
values and first n – 1 derivatives that agree at the points where they join. The abscissa or X-axis values of
the join points are called knots. The term “spline” is also used for polynomials (splines with no knots) and
piecewise polynomials with more than one discontinuous derivative. Splines with no knots are generally
smoother than splines with knots, which are generally smoother than splines with multiple discontinuous
derivatives. Splines with few knots are generally smoother than splines with many knots; however, increasing
the number of knots usually increases the fit of the spline function to the data. Knots give the curve freedom
to bend to more closely follow the data. See Smith (1979) for an excellent introduction to splines.

In this section, an artificial data set is created with a variable y that is a discontinuous function of x. (See
Figure 104.20.) Notice that the function has four unconnected parts, each of which is a curve. Notice too
that there is an overall quadratic trend—that is, ignoring the shapes of the individual curves, at first the y
values tend to decrease as x increases, then y values tend to increase. While these artificial data are clearly
not realistic, their distinct pattern helps illustrate how splines work. The following statements create the data
set, fit a simple linear regression model, and produce Figure 104.19 through Figure 104.20:

title 'An Illustration of Splines and Knots';

* Create in y a discontinuous function of x.;

data a;
x = -0.000001;
do i = 0 to 199;

if mod(i, 50) = 0 then do;
c = ((x / 2) - 5)**2;
if i = 150 then c = c + 5;
y = c;

end;
x = x + 0.1;
y = y - sin(x - c);
output;

end;
run;

ods graphics on;

title2 'A Linear Regression Fit';
proc transreg data=a plots=scatter rsquare;

model identity(y) = identity(x);
run;
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The R square for the linear regression is 0.1006. The linear fit results in Figure 104.19 show the predicted
values of y given x. It can clearly be seen in Figure 104.19 that the linear regression model is not appropriate
for these data.

Figure 104.19 A Linear Regression Fit

An Illustration of Splines and Knots
A Linear Regression Fit

The TRANSREG Procedure

An Illustration of Splines and Knots
A Linear Regression Fit

The TRANSREG Procedure

The TRANSREG Procedure Hypothesis Tests for Identity(y)

R-Square 0.1006

Figure 104.19 continued
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Figure 104.20 The Original Scatter Plot

The next PROC TRANSREG step finds a degree-two spline transformation with no knots, which is a quadratic
polynomial. The spline is a weighted sum of a single constant, a single straight line, and a single quadratic
curve. The following statements perform the quadratic analysis and produce Figure 104.21:

title2 'A Quadratic Polynomial Fit';

proc transreg data=A;
model identity(y)=spline(x / degree=2);

run;

The R square in Figure 104.21 increases from 0.10061, which is the linear fit value from before, to 0.40720.
The plot shows that the quadratic regression function does not fit any of the individual curves well, but it
does follow the overall trend in the data. Since the overall trend is quadratic, if you were to fit a degree-three
spline with no knots (not shown) would increase R square by only a small amount.



Using Splines and Knots F 8617

Figure 104.21 A Quadratic Polynomial Fit

An Illustration of Splines and Knots
A Quadratic Polynomial Fit

The TRANSREG Procedure

An Illustration of Splines and Knots
A Quadratic Polynomial Fit

The TRANSREG Procedure

TRANSREG MORALS Algorithm Iteration History for
Identity(y)

Iteration
Number

Average
Change

Maximum
Change R-Square

Criterion
Change Note

1 0.82127 2.77121 0.10061

2 0.00000 0.00000 0.40720 0.30659 Converged

Algorithm converged.

Figure 104.21 continued

The next step uses the default degree of three, for a piecewise cubic polynomial, and requests knots at the
known break points, x=5, 10, and 15. This requests a spline that is continuous, has continuous first and
second derivatives, and has a third derivative that is discontinuous at 5, 10, and 15. The spline is a weighted
sum of a single constant, a single straight line, a single quadratic curve, a cubic curve for the portion of x less
than 5, a different cubic curve for the portion of x between 5 and 10, a different cubic curve for the portion of
x between 10 and 15, and another cubic curve for the portion of x greater than 15. The following statements
fit the spline model and produce Figure 104.22:
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title2 'A Cubic Spline Fit with Knots at X=5, 10, 15';

proc transreg data=a;
model identity(y) = spline(x / knots=5 10 15);

run;

The new R square in Figure 104.22 is 0.61730. The plot shows that the spline is less smooth than the quadratic
polynomial and follows the data more closely than the quadratic polynomial.

Figure 104.22 A Cubic Spline Fit

An Illustration of Splines and Knots
A Cubic Spline Fit with Knots at X=5, 10, 15

The TRANSREG Procedure

An Illustration of Splines and Knots
A Cubic Spline Fit with Knots at X=5, 10, 15

The TRANSREG Procedure

TRANSREG MORALS Algorithm Iteration History for
Identity(y)

Iteration
Number

Average
Change

Maximum
Change R-Square

Criterion
Change Note

1 0.85367 3.88449 0.10061

2 0.00000 0.00000 0.61730 0.51670 Converged

Algorithm converged.

Figure 104.22 continued
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The same model could be fit with a DATA step and PROC REG, as follows:

data b; /* A is the data set used by transreg */
set a(keep=x y);
x1=x; /* x */
x2=x**2; /* x squared */
x3=x**3; /* x cubed */
x4=(x> 5)*((x-5)**3); /* change in x**3 after 5 */
x5=(x>10)*((x-10)**3); /* change in x**3 after 10 */
x6=(x>15)*((x-15)**3); /* change in x**3 after 15 */

run;

proc reg;
model y=x1-x6;

run; quit;

The output from these previous statements is not displayed. The assignment statements and comments show
how you can construct terms that can be used to fit the same model.

In the next step, each knot is repeated three times, so the first, second, and third derivatives are discontinuous
at x=5, 10, and 15, but the spline is continuous at the knots. The spline is a weighted sum of the following:

• a single constant
• a line for the portion of x less than 5
• a quadratic curve for the portion of x less than 5
• a cubic curve for the portion of x less than 5
• a different line for the portion of x between 5 and 10
• a different quadratic curve for the portion of x between 5 and 10
• a different cubic curve for the portion of x between 5 and 10
• a different line for the portion of x between 10 and 15
• a different quadratic curve for the portion of x between 10 and 15
• a different cubic curve for the portion of x between 10 and 15
• another line for the portion of x greater than 15
• another quadratic curve for the portion of x greater than 15
• another cubic curve for the portion of x greater than 15

The spline is continuous since there is not a separate constant or separate intercept in the formula for the
spline for each knot. The following statements perform this analysis and produce Figure 104.23:

title3 'First - Third Derivatives Discontinuous at X=5, 10, 15';

proc transreg data=a;
model identity(y) = spline(x / knots=5 5 5 10 10 10 15 15 15);

run;

Now the R square in Figure 104.23 is 0.95542, and the spline closely follows the data, except at the knots.
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Figure 104.23 Spline with Discontinuous Derivatives

An Illustration of Splines and Knots
A Cubic Spline Fit with Knots at X=5, 10, 15

First - Third Derivatives Discontinuous at X=5, 10, 15

The TRANSREG Procedure

An Illustration of Splines and Knots
A Cubic Spline Fit with Knots at X=5, 10, 15

First - Third Derivatives Discontinuous at X=5, 10, 15

The TRANSREG Procedure

TRANSREG MORALS Algorithm Iteration History for
Identity(y)

Iteration
Number

Average
Change

Maximum
Change R-Square

Criterion
Change Note

1 0.92492 3.50038 0.10061

2 0.00000 0.00000 0.95542 0.85481 Converged

Algorithm converged.

Figure 104.23 continued

The same model could be fit with a DATA step and PROC REG, as follows:

data b;
set a(keep=x y);
x1=x; /* x */
x2=x**2; /* x squared */
x3=x**3; /* x cubed */
x4=(x>5) * (x- 5); /* change in x after 5 */
x5=(x>10) * (x-10); /* change in x after 10 */
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x6=(x>15) * (x-15); /* change in x after 15 */
x7=(x>5) * ((x-5)**2); /* change in x**2 after 5 */
x8=(x>10) * ((x-10)**2); /* change in x**2 after 10 */
x9=(x>15) * ((x-15)**2); /* change in x**2 after 15 */
x10=(x>5) * ((x-5)**3); /* change in x**3 after 5 */
x11=(x>10) * ((x-10)**3); /* change in x**3 after 10 */
x12=(x>15) * ((x-15)**3); /* change in x**3 after 15 */

run;

proc reg;
model y=x1-x12;

run; quit;

The output from these previous statements is not displayed. The assignment statements and comments show
how you can construct terms that can be used to fit the same model.

Each knot is repeated four times in the next step. Now the spline function is discontinuous at the knots, and it
can follow the data more closely. The following statements perform this analysis and produce Figure 104.24:

title3 'Discontinuous Function and Derivatives';

proc transreg data=a;
model identity(y) = spline(x / knots=5 5 5 5 10 10 10 10

15 15 15 15);
run;

Now the R square in Figure 104.24 is 0.99254. In this step, each separate curve is approximated by a cubic
polynomial (with no knots within the separate polynomials). (Note, however, that the separate functions are
connected in the plot, because PROC TRANSREG cannot currently produce separate functions for a model
like this. Usually, you would use a CLASS variable to get separate functions.)

Figure 104.24 Discontinuous Spline Fit

An Illustration of Splines and Knots
A Cubic Spline Fit with Knots at X=5, 10, 15

Discontinuous Function and Derivatives

The TRANSREG Procedure

An Illustration of Splines and Knots
A Cubic Spline Fit with Knots at X=5, 10, 15

Discontinuous Function and Derivatives

The TRANSREG Procedure

TRANSREG MORALS Algorithm Iteration History for
Identity(y)

Iteration
Number

Average
Change

Maximum
Change R-Square

Criterion
Change Note

1 0.90271 3.29184 0.10061

2 0.00000 0.00000 0.99254 0.89193 Converged

Algorithm converged.
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Figure 104.24 continued

To solve this problem with a DATA step and PROC REG, you would need to create all of the variables in the
preceding DATA step (the B data set for the piecewise polynomial with discontinuous third derivatives), plus
the following three variables:

x13=(x > 5); /* intercept change after 5 */
x14=(x > 10); /* intercept change after 10 */
x15=(x > 15); /* intercept change after 15 */

The next two examples use the NKNOTS= t-option to specify the number of knots but not their location.
NKNOTS=4 places knots at the quintiles, whereas NKNOTS=9 places knots at the deciles. The spline and its
first two derivatives are continuous. The following statements produce Figure 104.25 and Figure 104.26:

title3 'Four Knots';

proc transreg data=a;
model identity(y) = spline(x / nknots=4);

run;

title3 'Nine Knots';

proc transreg data=a;
model identity(y) = spline(x / nknots=9);

run;
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The R-square values displayed in Figure 104.25 and Figure 104.26 are 0.74450 and 0.95256, respectively.
Even though the knots are not optimally placed, the spline can closely follow the data with NKNOTS=9.

Figure 104.25 Spline Fit with Knots at the Quintiles

An Illustration of Splines and Knots
A Cubic Spline Fit with Knots at X=5, 10, 15

Four Knots

The TRANSREG Procedure

An Illustration of Splines and Knots
A Cubic Spline Fit with Knots at X=5, 10, 15

Four Knots

The TRANSREG Procedure

TRANSREG MORALS Algorithm Iteration History for
Identity(y)

Iteration
Number

Average
Change

Maximum
Change R-Square

Criterion
Change Note

1 0.90305 4.46027 0.10061

2 0.00000 0.00000 0.74450 0.64389 Converged

Algorithm converged.

Figure 104.25 continued
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Figure 104.26 Spline Fit with Knots at the Deciles

An Illustration of Splines and Knots
A Cubic Spline Fit with Knots at X=5, 10, 15

Nine Knots

The TRANSREG Procedure

An Illustration of Splines and Knots
A Cubic Spline Fit with Knots at X=5, 10, 15

Nine Knots

The TRANSREG Procedure

TRANSREG MORALS Algorithm Iteration History for
Identity(y)

Iteration
Number

Average
Change

Maximum
Change R-Square

Criterion
Change Note

1 0.94832 3.03488 0.10061

2 0.00000 0.00000 0.95256 0.85196 Converged

Algorithm converged.

Figure 104.26 continued

Scoring Spline Variables
This section shows you how to find spline transformations of variables in one data set and apply the same
transformations to variables in another data set. This is illustrated with artificial data. In these data sets, the
variable y is approximately a linear function of nonlinear transformations of the variables x, w, and z. The
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model is fit using data set X, and those results are used to score data set Z. The following statements create
the two data sets:

title 'An Illustration of Splines and Knots';
title2 'Scoring Spline Variables';

data x;
do i = 1 to 5000;

w = normal(7);
x = normal(7);
z = normal(7);
y = w * w + log(5 + x) + sin(z) + normal(7);
output;

end;
run;

data z;
do i = 1 to 5000;

w = normal(1);
x = normal(1);
z = normal(1);
y = w * w + log(5 + x) + sin(z) + normal(1);
output;

end;
run;

First, you run PROC TRANSREG to fit the transformation regression model asking for spline transformations
of the three independent variables. You must use the EXKNOTS= t-option, because you need to use the same
knots, both interior and exterior, with both data sets. By default, the exterior knots will be different if the
minima and maxima are different in the two data sets, so you get the wrong results if you do not specify the
EXKNOTS= t-option with values less than the minima and greater than the maxima of the six x, y, and w
variables. If the ranges in all three pairs were different, you would need separate spline transformation for
each variable with different knot and exterior knot specifications. The following statements fit the spline
model:

proc transreg data=x solve details ss2;
ods output splinecoef=c;
model identity(y) = spline(w x z / knots=-1.5 to 1.5 by 0.5

exknots=-5 5);
output out=d;

run;

The results of this step are not displayed. The nonprinting SplineCoef table is output to a SAS data set. This
data set contains the coefficients that were used to get the spline transformations and can be used to transform
variables in other data sets. These coefficients are also in the details table. However, in the SplineCoef table,
they are in a form directly suitable for use with PROC SCORE.

The next step reads the second input data set, Z, and generates an output data set with the B-spline basis for
each of the variables:

proc transreg data=z design;
model bspl(w x z / knots=-1.5 to 1.5 by 0.5 exknots=-5 5);
output out=b;

run;
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Note that the same interior and exterior knots are used in both of the previous steps. The next three steps
score the B-spline bases created in the previous step by using the coefficients generated in the first PROC
TRANSREG step. PROC SCORE is run once for each SPLINE variable in the statements that follow:

proc score data=b score=c out=o1(rename=(spline=bw w=nw));
var w:;

run;

proc score data=b score=c out=o2(rename=(spline=bx x=nx));
var x:;

run;

proc score data=b score=c out=o3(rename=(spline=bz z=nz));
var z:;

run;

The following steps merge the three transformations with the original data and plot the results:

data all;
merge d(keep=w x z tw tx tz) o1(keep=nw bw)

o2(keep=nx bx) o3(keep=nz bz);
run;

proc template;
define statgraph twobytwo;

begingraph;
layout lattice / rows=2 columns=2;

layout overlay;
seriesplot y=tw x=w / connectorder=xaxis;
seriesplot y=bw x=nw / connectorder=xaxis;

endlayout;
layout overlay;

seriesplot y=tx x=x / connectorder=xaxis;
seriesplot y=bx x=nx / connectorder=xaxis;

endlayout;
layout overlay;

seriesplot y=tz x=z / connectorder=xaxis;
seriesplot y=bz x=nz / connectorder=xaxis;

endlayout;
endlayout;

endgraph;
end;

run;

proc sgrender data=all template=twobytwo;
run;

The plots in Figure 104.27 show that the two transformations for each variable, original and scored, are the
same function. The two functions in each plot are on top of each other and are indistinguishable. Furthermore,
PROC TRANSREG found the functional forms that were used to generate the data: quadratic for w, log for x,
and sine for z.
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Figure 104.27 Scoring Spline Variables Example

The next statements show how to run PROC TRANSREG, output the interior and exterior knots to an output
data set with ODS, extract the knots, and use them in a DATA step to re-create the B-spline basis that PROC
TRANSREG makes. In practice, you would never need to use a DATA step to make the B-spline basis since
PROC TRANSREG does it automatically. The following statements show how you could do it yourself:

data x;
input x @@;
datalines;

1 2 3 4 5 6 7 8 9 10
;

ods output details=d;
proc transreg details design;

model bspline(x / nkn=3);
output out=y;

run;

%let k = 0;
data d;

set d;
length d $ 20;
retain d ' ';
if description ne ' ' then d = description;
if d = 'Degree' then call symput('d', compress(formattedvalue));
if d = 'Number of Knots'

then call symput('k', compress(formattedvalue));



8628 F Chapter 104: The TRANSREG Procedure

if index(d, 'Knots') and not index(d, 'Number');
keep d numericvalue;

run;

%let nkn = %eval(&d * 2 + &k); /* total number of knots */
%let nb = %eval(&d + 1 + &k); /* number of cols in basis */

proc transpose data=d out=k(drop=_name_) prefix=Knot;
run;

proc print; format k: 20.16;
run;

data b(keep=x:);
if _n_ = 1 then set k; /* read knots from transreg */
array k[&nkn] knot1-knot&nkn; /* knots */
array b[&nb] x_0 - x_%eval(&nb - 1); /* basis */
array w[%eval(2 * &d)]; /* work */
set x;
do i = 1 to &nb; b[i] = 0; end;

* find the index of first knot greater than current data value;
do ki = 1 to &nkn while(k[ki] le x); end;
kki = ki - &d - 1;

* make the basis;
b[1 + kki] = 1;
do j = 1 to &d;

w[&d + j] = k[ki + j - 1] - x;
w[j] = x - k[ki - j];
s = 0;
do i = 1 to j;

t = w[&d + i] + w[j + 1 - i];
if t ne 0.0 then t = b[i + kki] / t;
b[i + kki] = s + w[&d + i] * t;
s = w[j + 1 - i] * t;

end;
b[j + 1 + kki] = s;

end;
run;

proc compare data=y(keep=x:) compare=b
criterion=1e-12 note nosummary;
title3 "should be no differences";

run;
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The output from these steps is not shown. There are several things to note about the DATA step. It produces
the same basis as PROC TRANSREG only because it uses exactly the same interior and exterior knots. The
exterior knots (0.999999999999 and 10.000000000001) are just slightly smaller than 1 (the minimum in x)
and just slightly greater than 10 (the maximum in x). Both exterior knots appear in the list three times, because
a cubic (degree 3) polynomial was requested. The complete knot list is: 0.999999999999 0.999999999999
0.999999999999 3 6 8 10.000000000001 10.000000000001 10.000000000001. The exterior knots do not
have any particular interpretation, but they are needed by the algorithm to construct the proper basis. The
construction method computes differences between each value and the nearby knots. The algorithm that
makes the B-spline basis is not very obvious, particularly compared to the polynomial spline basis. However,
the B-spline basis is much better behaved numerically than a polynomial-spline basis, so that is why it is
used.

Linear and Nonlinear Regression Functions
This section shows how to use PROC TRANSREG in simple regression (one dependent variable and one
independent variable) to find the optimal regression line, a nonlinear but monotone regression function, and a
nonlinear and nonmonotone regression function. To find a linear regression function, specify the IDENTITY
transformation of the independent variable. For a monotone curve, specify the MSPLINE transformation of
the independent variable. To relax the monotonicity constraint, specify the SPLINE transformation. You can
get more flexibility in spline functions by specifying knots. The more knots you specify, the more freedom
the function has to follow minor variations in the data. This example uses artificial data. While these artificial
data are clearly not realistic, their distinct pattern helps illustrate how splines work. The following statements
generate the data and produce Figure 104.28 through Figure 104.31:

title 'Linear and Nonlinear Regression Functions';

* Generate an Artificial Nonlinear Scatter Plot;
data a;

do i = 1 to 500;
x = i / 2.5;
y = -((x/50)-1.5)**2 + sin(x/8) + sqrt(x)/5 + 2*log(x) + cos(x);
x = x / 21;
if y > 2 then output;

end;
run;

ods graphics on;
ods select fitplot(persist);

title2 'Linear Regression';

proc transreg data=a;
model identity(y)=identity(x);

run;

title2 'A Monotone Regression Function';
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proc transreg data=a;
model identity(y)=mspline(x / nknots=9);

run;

title2 'A Nonlinear Regression Function';

proc transreg data=a;
model identity(y)=spline(x / nknots=9);

run;

title2 'A Nonlinear Regression Function, 100 Knots';

proc transreg data=a;
model identity(y)=spline(x / nknots=100);

run;

ods select all;

Figure 104.28 Linear Regression
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Figure 104.29 A Monotone Regression Function

Figure 104.30 A Nonlinear Regression Function
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Figure 104.31 A Less-Smooth Nonlinear Regression Function

The squared correlation is only 0.15 for the linear regression in Figure 104.28. Clearly, a simple linear
regression model is not appropriate for these data. By relaxing the constraints placed on the regression line,
the proportion of variance accounted for increases from 0.15 (linear) to 0.61 (monotone in Figure 104.29) to
0.90 (nonlinear but smooth in Figure 104.30) to almost 1.0 with 100 knots (nonlinear and not very smooth in
Figure 104.28). Relaxing the linearity constraint permits the regression function to bend and more closely
follow the right portion of the scatter plot. Relaxing the monotonicity constraint permits the regression
function to follow the periodic portion of the left side of the plot more closely. The nonlinear MSPLINE
transformation is a quadratic spline with knots at the deciles. The first nonlinear nonmonotonic SPLINE
transformation is a cubic spline with knots at the deciles.

Different knots and different degrees would produce slightly different results. The two nonlinear regression
functions could be closely approximated by simpler piecewise linear regression functions. The monotone
function could be approximated by a two-piece line with a single knot at the elbow. The first nonmonotone
function could be approximated by a six-piece function with knots at the five elbows.

With this type of problem (one dependent variable with no missing values that is not transformed and one
independent variable that is nonlinearly transformed), PROC TRANSREG always iterates exactly twice
(although only one iteration is necessary). The first iteration reports the R square for the linear regression line
and finds the optimal transformation of x. Since the data change in the first iteration, a second iteration is
performed, which reports the R square for the final nonlinear regression function, and zero data change. The
predicted values, which are a linear function of the optimal transformation of x, contain the Y coordinates
for the nonlinear regression function. The variance of the predicted values divided by the variance of y
is the R square for the fit of the nonlinear regression function. When x is monotonically transformed, the
transformation of x is always monotonically increasing, but the predicted values increase if the correlation is
positive and decrease for negative correlations.
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Simultaneously Fitting Two Regression Functions
One application of ordinary multiple regression is fitting two or more regression lines through a single scatter
plot. With PROC TRANSREG, this application can easily be generalized to fit separate or parallel curves. To
illustrate, consider a data set with two groups and a group membership variable g that has the value 1 for one
group and 2 for the other group. The data set also has a continuous independent variable x and a continuous
dependent variable y. When g is crossed with x, the variables g1x and g2x both have a large partition of zeros.
For this reason, the KNOTS= t-option is specified instead of the NKNOTS= t-option. (The latter would put a
number of knots in the partition of zeros.) The following example generates an artificial data set with two
curves. While these artificial data are clearly not realistic, their distinct pattern helps illustrate how fitting
simultaneous regression functions works. The following statements generate data and show how PROC
TRANSREG fits lines, curves, and monotone curves through a scatter plot:

title 'Separate Curves, Separate Intercepts';

data a;
do x = -2 to 3 by 0.025;

g = 1;
y = 8*(x*x + 2*cos(x*6)) + 15*normal(7654321);
output;
g = 2;
y = 4*(-x*x + 4*sin(x*4)) - 40 + 15*normal(7654321);
output;

end;
run;

ods graphics on;
ods select fitplot(persist);

title 'Parallel Lines, Separate Intercepts';

proc transreg data=a solve;
model identity(y)=class(g) identity(x);

run;

title 'Parallel Monotone Curves, Separate Intercepts';

proc transreg data=a;
model identity(y)=class(g) mspline(x / knots=-1.5 to 2.5 by 0.5);

run;

title 'Parallel Curves, Separate Intercepts';

proc transreg data=a solve;
model identity(y)=class(g) spline(x / knots=-1.5 to 2.5 by 0.5);

run;

title 'Separate Slopes, Same Intercept';
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proc transreg data=a;
model identity(y)=class(g / zero=none) * identity(x);

run;

title 'Separate Monotone Curves, Same Intercept';

proc transreg data=a;
model identity(y) = class(g / zero=none) *

mspline(x / knots=-1.5 to 2.5 by 0.5);
run;

title 'Separate Curves, Same Intercept';

proc transreg data=a solve;
model identity(y) = class(g / zero=none) *

spline(x / knots=-1.5 to 2.5 by 0.5);
run;

title 'Separate Slopes, Separate Intercepts';

proc transreg data=a;
model identity(y) = class(g / zero=none) | identity(x);

run;

title 'Separate Monotone Curves, Separate Intercepts';

proc transreg data=a;
model identity(y) = class(g / zero=none) |

mspline(x / knots=-1.5 to 2.5 by 0.5);
run;

title 'Separate Curves, Separate Intercepts';

proc transreg data=a solve;
model identity(y) = class(g / zero=none) |

spline(x / knots=-1.5 to 2.5 by 0.5);
run;
ods select all;

The previous statements produce Figure 104.32 through Figure 104.40. Only the fit plots are generated and
displayed.
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Figure 104.32 Parallel Lines, Separate Intercepts

Figure 104.33 Parallel Monotone Curves, Separate Intercepts
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Figure 104.34 Parallel Curves, Separate Intercepts

Figure 104.35 Separate Slopes, Same Intercept
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Figure 104.36 Separate Monotone Curves, Same Intercept

Figure 104.37 Separate Curves, Same Intercept
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Figure 104.38 Separate Slopes, Separate Intercepts

Figure 104.39 Separate Monotone Curves, Separate Intercepts
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Figure 104.40 Separate Curves, Separate Intercepts

Penalized B-Splines
You can use penalized B-splines (Eilers and Marx 1996) to fit a smooth curve through a scatter plot with
an automatic selection of the smoothing parameter. See Example 104.3 for an example. With penalized
B-splines, you can find a transformation that minimizes any of the following criteria: CV, GCV, AIC, AICC,
or SBC. These criteria are all functions of �. For many problems, all of these criteria produce nearly identical
results. However, for some problems, the choice of criterion can have a large effect. When the default results
are not satisfactory, try the other criteria. Information criteria such as AIC and AICC are defined in different
ways in the statistical literature, and these differences can be seen in different SAS procedures. Typically,
the definitions differ only by a positive (additive or multiplicative) constant, so they are equivalent, and
each of the definitions of the same criterion produces the same selection of �. The definitions that PROC
TRANSREG uses match the definitions that PROC REG uses. The penalized B-spline matrices, statistics,
and criteria are defined as follows:

n number of observations
y dependent variable
W diagonal matrix of observation weights
wi weight for the ith observation
B B-spline basis for the independent variable
� nonnegative smoothing parameter
D difference matrix, penalizes lack of smoothness
H D B.B0WBC �D0D/�1B0W hat matrix
hi i ith diagonal element of H
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Oy D Hy penalized B-spline transformation of y

SSE D
nX
iD1

wi .yi � Oyi /
2 error sum of squares

t D

nX
iD1

hi i trace of H

nX
iD1

wi

�
yi � Oyi

1 � hi i

�2
CV - cross validation criterion

nX
iD1

wi

�
yi � Oyi

n � t

�2
GCV - generalized cross validation criterion

n log.SSE=n/C 2t AIC - Akaike’s information criterion

1C log.SSE=n/C
2.t C 1/

n � t � 2
AICC - corrected AIC (default)

n log.SSE=n/C t log.n/ SBC - Schwarz’s Bayesian criterion

For more information about constructing the B-spline basis, see “SPLINE and MSPLINE Transformations”
on page 8678 and the section “Using Splines and Knots” on page 8614. The nonzero elements of D, order 1
are (1 –1), order 2 are (1 –2 1), order 3 (the default) are (1 –3 3 –1), order 4 are (1 –4 6 –4 1), and so on. The
nonzero elements for each order are made from the nonzero elements from the preceding order by subtraction:
d0iC1 D .d

0
i 0/ � .0 d0i /. Within an order, the first nonzero element of row i is in column i—that is, each

row of D is made from the preceding row by shifting the nonzero elements to the right one position. For
example, with k = 4 knots, order o = 3, and degree d = 3, D is the ..d C 1C k � o/ � .d C 1C k// matrix:

266664
1 �3 3 �1 0 0 0 0

0 1 �3 3 �1 0 0 0

0 0 1 �3 3 �1 0 0

0 0 0 1 �3 3 �1 0

0 0 0 0 1 �3 3 �1

377775 where

1 �1 0

� 0 1 �1

1 �2 1 0

� 0 1 �2 1

1 �3 3 �1

The trace of the hat matrix, t D
Pn
iD1 hi i , provides an estimate of the number of parameters needed to

find the transformation and is used in df calculations. Note, however, that in some cases, particularly with
error-free or nearly error-free data, this value can be much larger than you might expect. You might be able to
directly create a function by using SPLINE or BSPLINE with many fewer parameters that fits essentially just
as well as the penalized B-spline function.

By default with PBSPLINE, a cubic spline is fit with 100 evenly spaced knots, three evenly spaced exterior
knots, and a difference matrix of order three. Options are specified as follows: PBSPLINE(x / DEGREE=3
NKNOTS=100 EVENLY=3 PARAMETER=3). By default, PROC TRANSREG searches for an optimal
lambda in the range 0 to 1E6 by using parabolic interpolation and Brent’s (Brent 1973; Press et al. 1989)
method. Alternatively, you can specify a lambda range or a list of lambdas by using the LAMBDA= option.
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Be aware, however, LAMBDA=0 and values near zero might cause numerical problems including floating
point errors. Also be aware that larger lambdas might cause numerical problems—for example, the error sum
of squares for the model, †.y � Oy/2, might be greater than the total sum of squares, †.y � Ny/2—implying
that the model with the transformation fits less well than simply predicting by using the mean. When this
happens, you will see this message: ERROR: Degenerate transformation with PBSPLINE.

You can fit a single curve through a scatter plot (y � x) as follows:

model identity(y) = pbspline(x);

Alternatively, you can fit multiple curves through a scatter plot, one for each level of Group, as follows:

model identity(y) = class(group / zero=none) * pbspline(x);

There are several options for how the smoothing parameter, �, is chosen. Usually, you do not specify
the smoothing parameter, �, and you let PROC TRANSREG choose � for you by minimizing one of the
information or cross validation criteria. By default, PROC TRANSREG first considers ranges defined by
� D 0 and � D 1; 10; 100; 1000; 10; 000; 100; 000; 1; 000; 000. If it finds a range that includes the minimum,
it stops and does not consider larger � values. Then it performs further searches in that range. For example,
if the initial evaluations at � D 1 and � D 10 show that there is at least a local minimum in the range 0 to 10,
then larger values are not considered. Note that the zero smoothing case, � D 0, provides a boundary on
the range even though the criterion is not evaluated at � D 0. The criterion is not evaluated at � D 0 unless
LAMBDA=0 is the only value specified. Also note that the default approach is not the same as specifying the
options LAMBDA=0 1E6 RANGE. When a range of values is specified, along with the RANGE t-option,
PROC TRANSREG does not try to find smaller ranges based on powers of 10.

PROC TRANSREG avoids evaluating the criterion for LAMBDA= values at or near zero unless you force
it to consider them. This is because zero smoothing is rarely interesting and the results are numerically
unstable. Values of � at or near zero often result in predicted values that are far outside the range of the data,
particularly with interpolation and x values that do not appear in the data set. Also, zero smoothing is prone
to numerical problems including floating point errors. This is particularly true when there is a small number
of observations, a large number of knots, a high degree, or a perfect or near perfect fit. If you force PROC
TRANSREG to evaluate the criterion at or near � D 0, you can easily get bad results.

Note that when some observations appear more than once, such as when you have the kind of data where
you can use a FREQ statement, then you should consider directly specifying lambda based on a preliminary
analysis, ignoring the frequencies. Alternatively, specify a range of � values, such as LAMBDA=0.1 1E6
RANGE, that steers � away from values near zero. With the default lambda list, a cross validation criterion
does not perform well in choosing a smoothing parameter with replicated data. Leaving one observation out
of the computations changes the frequency for that observation from one positive integer to the next smaller
positive integer, so in some sense, the point corresponding to that observation is never really left out of any
computations. The resulting fit will be undersmoothed unless you specify a larger �.

Smoothing Splines
You can use PROC TRANSREG to plot and output to a SAS data set the same smoothing spline function that
the GPLOT procedure creates. You request a smoothing spline transformation by specifying SMOOTH in the
MODEL statement. The smoothing parameter can be specified with either the SM= or the PARAMETER=
o-option. The results are saved in the independent variable transformation (for example, Tx, when the
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independent variable is x) and the predicted values variable (for example, Py, when the dependent variable is
y).

You can display the smoothing spline by using PROC TRANSREG and ODS Graphics (as shown in
Figure 104.41). The following statements produce Figure 104.41:

title h=1.5 'Smoothing Splines';

ods graphics on;

data x;
do x = 1 to 100 by 2;

do rep = 1 to 3;
y = log(x) + sin(x / 10) + normal(7);
output;

end;
end;

run;

proc transreg;
model identity(y) = smooth(x / sm=50);
output p;

run;

Figure 104.41 Smoothing Spline Displayed with ODS Graphics
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You can also use PROC GPLOT to verify that the two procedures produce the same results. The PROC
GPLOT plot request y * x = 1 displays the data as stars. The specification y * x = 2 with I=SM50
requests the smooth curve through the scatter plot. It is overlaid with Py * x = 3, which displays with large
dots the smooth function created by PROC TRANSREG. The results of the following step are not displayed:

proc gplot;
axis1 minor=none label=(angle=90 rotate=0);
axis2 minor=none;
symbol1 color=blue v=circle i=none; /* data */
symbol2 color=blue v=none i=sm50; /* gplot's smooth */
symbol3 color=red v=dot i=none; /* transreg's smooth */
plot y*x=1 y*x=2 py*x=3 / overlay haxis=axis2 vaxis=axis1 frame;

run; quit;

You can plot multiple nonlinear functions, one for each of several groups as defined by the levels of a CLASS
variable. When you cross a SMOOTH variable with a CLASS variable, specify ZERO=NONE with the
CLASS expansion. The following statements create artificial data and produce Figure 104.42:

title2 'Two Groups';

data x;
do x = 1 to 100;

Group = 1;
do rep = 1 to 3;

y = log(x) + sin(x / 10) + normal(7);
output;

end;
group = 2;
do rep = 1 to 3;

y = -log(x) + cos(x / 10) + normal(7);
output;

end;
end;

run;

proc transreg ss2 data=x;
model identity(y) = class(group / zero=none) *

smooth(x / sm=50);
output p;

run;

The ANOVA table in Figure 104.42 shows the overall model fit. The degrees of freedom are based on the
trace of the transformation hat matrix, and are typically not integers. The “Smooth Transformation” table
reports the degrees of freedom for each term, which includes an intercept for each group; the regression
coefficients, which are always 1 with smoothing splines; the 0 to 100 smoothing parameter (like the one
PROC GPLOT uses); the actual computed smoothing parameter; and the name and label for each term.
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Figure 104.42 Smoothing Spline Example 2

Smoothing Splines
Two Groups

The TRANSREG Procedure

Smoothing Splines
Two Groups

The TRANSREG Procedure

Dependent Variable Identity(y)

Class Level
Information

Class Levels Values

Group 2 1 2

Number of Observations Read 600

Number of Observations Used 600

Implicit Intercept Model

The TRANSREG Procedure Hypothesis Tests for Identity(y)

Univariate ANOVA Table, Smooth Transformation

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 16.794 9195.493 547.5365 562.03 <.0001

Error 582.21 567.195 0.9742

Corrected Total 599 9762.688

Root MSE 0.98702 R-Square 0.9419

Dependent Mean 0.03651 Adj R-Sq 0.9402

Coeff Var 2703.13908

Smooth Transformation

Variable DF Coefficient SM Parameter Label

Smooth(Group1x) 8.8971 1.000 50 2405.265 Group 1 * x

Smooth(Group2x) 8.8971 1.000 50 2405.265 Group 2 * x
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Figure 104.42 continued

The SMOOTH transformation is valid only with independent variables. Typically, it is used only, as in
the two preceding examples, in models with a single dependent variable, a single independent variable,
and optionally, a single classification variable that is crossed with the independent variable. The various
standardization options such as TSTANDARD=, CENTER, Z, and REFLECT are by default not permitted
when the SMOOTH transformation is part of the model.

The SMOOTH transformation can also be used in other ways, but only when you specify the NSR a-option.
(See the section “Smoothing Splines Changes and Enhancements” on page 8646.) When you specify the
NSR a-option, and there are multiple independent variables designated as SMOOTH, PROC TRANSREG
tries to smooth the ith independent variable by using the ith dependent variable as a target. When there are
more independent variables than dependent variables, the last dependent variable is reused as often as is
necessary. For example, consider the following statements:

proc transreg nsr;
model identity(y1-y3) = smooth(x1-x5);

run;

Smoothing is based on the pairs (y1, x1), (y2, x2), (y3, x3), (y3, x4), and (y3, x5).

The SMOOTH transformation is a noniterative transformation. The smoothing of each variable occurs before
the iterations begin. In contrast, SSPLINE provides an iterative smoothing spline transformation. It does not
generally minimize squared error; hence, divergence is possible with SSPLINE.
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Smoothing Splines Changes and Enhancements
How the results of the transformation are processed in PROC TRANSREG has changed with SAS 9.2.
In particular, some aspects of the syntax along the coefficients and predicted values have changed. The
new behavior was required to make the smoothing splines work properly with ODS Graphics and to make
SMOOTH work consistently with the new PBSPLINE (penalized B-spline; see the section “Penalized
B-Splines” on page 8639) capabilities. However, you can use the new NSR a-option, if you want the old
functionality. Here are two typical uses of the SMOOTH transformation:

proc transreg;
model identity(y) = smooth(x / sm=50);
output p;

run;

proc transreg;
model identity(y) = class(group / zero=none) * smooth(x / sm=50);
output p;

run;

For the first model, the variable x is smoothly transformed by using a smoothing parameter of SM=50, and
the results are stored in the transformed variable Tx. The second model has two groups of observations
corresponding to group=1 and Group=2. Separate curves are fit through each group. The results for the first
group are stored in the transformed variable TGroup1x, and the results for the second group are stored in
the transformed variable TGroup2x. The predicted values are stored in Py. In the first case, Py = Tx, and in
the second case, Py = TGroup1x + TGroup2x. These represent the two standard usages of the SMOOTH
transformation, and you can use ODS Graphics to display fit plots with a single or multiple smooth functions.
For the first model, which is the most typical usage, the syntax has not changed, nor has the transformed
variable. For the second model, the syntax has slightly changed, but the transformed variables have not. The
details of the syntax changes are discussed later in this section. The primary change involves what happens
after the SMOOTH transformation is found. Now, by default, ordinary least squares (OLS) is no longer used
to find the coefficients when there are smooth transformations, and in the iteration history table the OLS R
square is no longer produced.

Here is some background for the change. The first three of the four models shown next have much in
common:

model identity(y) = smooth(x / sm=50);
model identity(y) = rank(x);
model identity(y) = log(x);
model identity(y) = spline(x);

Before SAS 9.2, the SMOOTH, RANK, and LOG transformations all requested that PROC TRANSREG
preprocess the data, nonlinearly transforming x before using OLS to fit a model to the preprocessed results.
All of these first three transformations of x are nonoptimal in the sense that none of them is based in any way
on the OLS regression model that follows the preprocessing of the data. In contrast, the fourth model requests
a spline transformation. In this model, both the nonlinear transformation and the final regression model
seek to minimize the same OLS criterion. Some PROC TRANSREG transformations, such as SPLINE,
MSPLINE, OPSCORE, MONOTONE, and so on, seek to minimize squared error, whereas others, such as
SMOOTH, LOG, EXP, and RANK, do not. For the latter, the data are simply preprocessed before analysis.
There is a philosophical difference, however, between SMOOTH and the nonoptimal transformations. The



Smoothing Splines Changes and Enhancements F 8647

SMOOTH and PBSPLINE transformations use the dependent variable and a model (but not OLS) to compute
the transformation, whereas LOG, EXP, RANK, and the other nonoptimal transformations do not. A log
transformation, for example, would be the same, regardless of context, whereas the SMOOTH and PBSPLINE
transformations depend on the model.

The principal change to SMOOTH in PROC TRANSREG with SAS 9.2 involves making PROC TRANSREG
aware of the underlying smoothing spline model. This makes SMOOTH and PBSPLINE perform similarly,
and less like LOG, EXP, RANK, and the other nonoptimal transformations. Previously, if you specified
SMOOTH and then examined the regression coefficients, you would probably get an intercept very close to
but not exactly 0, and the remaining coefficients would be very close to but not exactly 1. This is because
PROC TRANSREG was using OLS to find the coefficients. This has changed. Now, PROC TRANSREG
recognizes that the SMOOTH transformation has an implicit intercept (see the section “Implicit and Explicit
Intercepts” on page 8671); hence there is no separate intercept. Furthermore, now the other parameters are
exactly 1, which are the correct parameters for the non-OLS smoothing spline model. Hence, the predicted
values are now the sum of the transformed variables. When there is no CLASS variable, the predicted values
exactly match the transformed variable. The SMOOTH transformation is no longer a form of preprocessing;
it now changes the nature of the model from OLS to a true smoothing-spline model. If you still want the
old behavior, preprocessing and then OLS, you can get the old default functionality by specifying the NSR
a-option.

The new, default functionality assumes that you either want to fit a smooth function through the data or fit
separate functions, one for each level of a CLASS variable. It also recognizes the smoothing-spline model
as a model with an implicit intercept. For these reasons, the syntax for models with a CLASS variable has
slightly changed, as is shown next:

proc transreg nsr; /* old */
model identity(y) = class(group / zero=none) |

smooth(x / after sm=50);
output p;

run;

proc transreg; /* new */
model identity(y) = class(group / zero=none) *

smooth(x / sm=50);
output p;

run;

Previously, the AFTER t-option was required when you wanted to fit separate and independent functions
within each group. This t-option specifies that PROC TRANSREG should find the smoothing spline
transformations after it crosses the independent variable with the CLASS variable. Previously, by default,
PROC TRANSREG found an overall smooth transformation and then crossed it with the CLASS variable,
which is probably not what you want. You can still specify the AFTER t-option, but now it is assumed with
CLASS * SMOOTH. If you specify AFTER without the NSR a-option, PROC TRANSREG suppresses the
note that AFTER is assumed. It does not affect the model. If you do not want AFTER to be in effect by
default, you must specify the NSR a-option. Also previously, you typically needed to specify the vertical
bar instead of the asterisk to cross the CLASS and SMOOTH variables. The difference is that the bar adds
both crossed variables and separate group intercepts to the model, whereas the asterisk adds only the crossed
variables to the model. Since the SMOOTH transformation is now recognized as providing an implicit
intercept, you should use the asterisk and not the vertical bar.
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The default behavior of the SMOOTH transformation needed to change for several reasons. SMOOTH was
originally provided as nothing more than a way to get PROC GPLOT’s smoothing splines into an output
data set in the transformed variables. However, with new enhancements to PROC TRANSREG such as ODS
Graphics and PBSPLINE, the old method for SMOOTH did not fit well. The old method produced predicted
values that were not the correct values to plot in order to show the smoothing spline fit. Now, with this change,
ODS Graphics can always plot the predicted values. PBSPLINE and SMOOTH are similar in spirit, and for
both, OLS results are not truly appropriate. Before SAS 9.2, PROC TRANSREG fit linear models, linear
models with nonlinearly preprocessed variables, and linear models with optimal nonlinear transformations
that minimized squared error. Now it also has the ability to fit non-OLS models for scatter plot smoothing.

One aspect of the SMOOTH transformation has unconditionally changed with SAS 9.2. Previously, PROC
TRANSREG did not evaluate the effective degrees of freedom by examining the trace of the transformation
hat matrix. It simply used the number of categories in the df calculations, which for continuous variables
is the number of observations. This made it impossible to get a sensible ANOVA test for the overall fit.
With SAS 9.2, the degrees of freedom are always based on the trace. This df change also affects the
SSPLINE transformation, which finds a smooth transformation by using the same algorithm as SMOOTH.
The difference is that the SMOOTH transformation occurs once, as an analysis preprocessing step, whereas
SSPLINE transformations occur iteratively and in the body of the alternating least squares algorithm.

Iteration History Changes and Enhancements
With SAS 9.2, PROC TRANSREG no longer always prints an iteration history table by default, and in some
cases, the table it prints is not the same as it was previously. This change is due to the increasing use of PROC
TRANSREG with transformations that are not based on alternating least squares. Here is some background
for the change. PROC TRANSREG’s processing can be divided into three steps. In the first step, the data are
read and certain transformations, such as SMOOTH, PBSPLINE, BOXCOX, RANK, LOG and the other
nonoptimal transformations, are performed. These transformations are not based on OLS. In the second step,
the alternating least squares iterations are performed according to METHOD=UNIVARIATE, MORALS,
REDUNDANCY, or CANALS. It is in the second step that the alternating least squares transformations
(SPLINE, MSPLINE, MONOTONE, OPSCORE, LINEAR, and UNTIE) are iteratively found. In the third
step, the results are displayed. In some cases, the results are appropriately based on using the method of OLS
applied to the optimally transformed variables. In other cases, such as with smoothing splines and penalized
B-splines, OLS-based results are not appropriate. Furthermore, for many of these types of models, nothing
changes in the iterations, so the computations needed to realize that nothing changes are not needed, nor is
the iteration history table.

With SAS 9.2, the iteration history is not printed for models where it is known that nothing will change in the
iterations. Suppose the NOMISS option is specified or there are no missing data. If METHOD=UNIVARIATE,
if there are no iterative transformations (SPLINE, MSPLINE, MONOTONE, OPSCORE, LINEAR, and
UNTIE), and if the MAXITER= option is not specified, then by default, an iteration history table is not
produced. If you want to see an iteration history, there are many things you can do, such as specifying
MAXITER=, changing the method to MORALS, or changing IDENTITY to LINEAR.

With models with smoothing splines or penalized B-splines, the iteration history will not contain an R square.
This is because the iterations are based on the method of alternating least squares, but the smoothing splines
and penalized B-splines are not based on a least squares model. Hence, an ordinary R square in the iterations,
based on a computed intercept, which is typically not exactly zero, and a computed slope, which is typically
not exactly one, will not be exactly the same as the correct R square, which is based on an intercept and
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slope of zero and one. The final reported results include the correct R square in the fit statistics table after the
ANOVA table. If you want to see only the correct R square from the results, without the iteration history, you
can specify the new RSQUARE option.

ANOVA Codings
This section illustrates several different codings of classification variables and hence several different ways
of fitting two-way ANOVA models to some data. Each example fits an ANOVA model, displays the ANOVA
table and parameter estimates, and displays the coded design matrix. Note throughout that the ANOVA tables
and R squares are identical for all of the models, showing that the codings are equivalent. For each model,
the parameter estimates are stated as a function of the cell means. The formulas are appropriate for a design
such as this one, which is balanced and orthogonal (every level and every pair of levels occurs equally often).
They will not work with unequal frequencies. Since this data set has 3� 2 D 6 cells, the full-rank codings all
have six parameters. The following statements create the input data set, and display it in Figure 104.43:

title 'Two-Way ANOVA Models';

data x;
input a b @@;
do i = 1 to 2; input y @@; output; end;
drop i;
datalines;

1 1 16 14 1 2 15 13
2 1 1 9 2 2 12 20
3 1 14 8 3 2 18 20
;

proc print label;
run;

Figure 104.43 Input Data Set

Two-Way ANOVA ModelsTwo-Way ANOVA Models

Obs a b y

1 1 1 16

2 1 1 14

3 1 2 15

4 1 2 13

5 2 1 1

6 2 1 9

7 2 2 12

8 2 2 20

9 3 1 14

10 3 1 8

11 3 2 18

12 3 2 20
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The following statements fit a cell-means model and produce Figure 104.44 and Figure 104.45:

proc transreg data=x ss2 short;
title2 'Cell-Means Model';
model identity(y) = class(a * b / zero=none);
output replace;

run;

proc print label;
run;

Figure 104.44 Cell-Means Model

Two-Way ANOVA Models
Cell-Means Model

The TRANSREG Procedure

Two-Way ANOVA Models
Cell-Means Model

The TRANSREG Procedure

Dependent Variable Identity(y)

Class Level
Information

Class Levels Values

a 3 1 2 3

b 2 1 2

Number of Observations Read 12

Number of Observations Used 12

Implicit Intercept Model

The TRANSREG Procedure Hypothesis Tests for Identity(y)

Univariate ANOVA Table Based on the Usual Degrees
of Freedom

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 5 234.6667 46.93333 3.20 0.0946

Error 6 88.0000 14.66667

Corrected Total 11 322.6667

Root MSE 3.82971 R-Square 0.7273

Dependent Mean 13.33333 Adj R-Sq 0.5000

Coeff Var 28.72281

Univariate Regression Table Based on the Usual Degrees of Freedom

Variable DF Coefficient

Type II
Sum of

Squares
Mean

Square F Value Pr > F Label

Class.a1b1 1 15.0000000 450.000 450.000 30.68 0.0015 a 1 * b 1

Class.a1b2 1 14.0000000 392.000 392.000 26.73 0.0021 a 1 * b 2

Class.a2b1 1 5.0000000 50.000 50.000 3.41 0.1144 a 2 * b 1

Class.a2b2 1 16.0000000 512.000 512.000 34.91 0.0010 a 2 * b 2

Class.a3b1 1 11.0000000 242.000 242.000 16.50 0.0066 a 3 * b 1

Class.a3b2 1 19.0000000 722.000 722.000 49.23 0.0004 a 3 * b 2
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The parameter estimates are

O�11 D y11 D 15

O�12 D y12 D 14

O�21 D y21 D 5

O�22 D y22 D 16

O�31 D y31 D 11

O�32 D y32 D 19

Figure 104.45 Cell-Means Model, Design Matrix

Two-Way ANOVA Models
Cell-Means Model

Two-Way ANOVA Models
Cell-Means Model

Obs _TYPE_ _NAME_ y Intercept

a
1 * b

1

a
1 * b

2

a
2 * b

1

a
2 * b

2

a
3 * b

1

a
3 * b

2 a b

1 SCORE ROW1 16 . 1 0 0 0 0 0 1 1

2 SCORE ROW2 14 . 1 0 0 0 0 0 1 1

3 SCORE ROW3 15 . 0 1 0 0 0 0 1 2

4 SCORE ROW4 13 . 0 1 0 0 0 0 1 2

5 SCORE ROW5 1 . 0 0 1 0 0 0 2 1

6 SCORE ROW6 9 . 0 0 1 0 0 0 2 1

7 SCORE ROW7 12 . 0 0 0 1 0 0 2 2

8 SCORE ROW8 20 . 0 0 0 1 0 0 2 2

9 SCORE ROW9 14 . 0 0 0 0 1 0 3 1

10 SCORE ROW10 8 . 0 0 0 0 1 0 3 1

11 SCORE ROW11 18 . 0 0 0 0 0 1 3 2

12 SCORE ROW12 20 . 0 0 0 0 0 1 3 2

The next model is a reference cell model, and the default reference cell is the last cell, which in this case is the
(3,2) cell. The following statements fit a reference cell model and produce Figure 104.46 and Figure 104.47:

proc transreg data=x ss2 short;
title2 'Reference Cell Model, (3,2) Reference Cell';
model identity(y) = class(a | b);
output replace;

run;

proc print label;
run;
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Figure 104.46 Reference Cell Model, (3,2) Reference Cell

Two-Way ANOVA Models
Reference Cell Model, (3,2) Reference Cell

The TRANSREG Procedure

Two-Way ANOVA Models
Reference Cell Model, (3,2) Reference Cell

The TRANSREG Procedure

Dependent Variable Identity(y)

Class Level
Information

Class Levels Values

a 3 1 2 3

b 2 1 2

Number of Observations Read 12

Number of Observations Used 12

The TRANSREG Procedure Hypothesis Tests for Identity(y)

Univariate ANOVA Table Based on the Usual Degrees
of Freedom

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 5 234.6667 46.93333 3.20 0.0946

Error 6 88.0000 14.66667

Corrected Total 11 322.6667

Root MSE 3.82971 R-Square 0.7273

Dependent Mean 13.33333 Adj R-Sq 0.5000

Coeff Var 28.72281

Univariate Regression Table Based on the Usual Degrees of Freedom

Variable DF Coefficient

Type II
Sum of

Squares
Mean

Square F Value Pr > F Label

Intercept 1 19.0000000 722.000 722.000 49.23 0.0004 Intercept

Class.a1 1 -5.0000000 25.000 25.000 1.70 0.2395 a 1

Class.a2 1 -3.0000000 9.000 9.000 0.61 0.4632 a 2

Class.b1 1 -8.0000000 64.000 64.000 4.36 0.0817 b 1

Class.a1b1 1 9.0000000 40.500 40.500 2.76 0.1476 a 1 * b 1

Class.a2b1 1 -3.0000000 4.500 4.500 0.31 0.5997 a 2 * b 1
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The parameter estimates are

O�32 D y32 D 19

Ǫ1 D y12 � y32 D 14 � 19 D �5

Ǫ2 D y22 � y32 D 16 � 19 D �3

Ǒ
1 D y31 � y32 D 11 � 19 D �8

O11 D y11 � . O�32 C Ǫ1 C
Ǒ
1/ D 15 � .19C�5C�8/ D 9

O21 D y21 � . O�32 C Ǫ2 C
Ǒ
1/ D 5 � .19C�3C�8/ D �3

Figure 104.47 Reference Cell Model, (3,2) Reference Cell, Design Matrix

Two-Way ANOVA Models
Reference Cell Model, (3,2) Reference Cell

Two-Way ANOVA Models
Reference Cell Model, (3,2) Reference Cell

Obs _TYPE_ _NAME_ y Intercept
a
1

a
2

b
1

a
1 * b

1

a
2 * b

1 a b

1 SCORE ROW1 16 1 1 0 1 1 0 1 1

2 SCORE ROW2 14 1 1 0 1 1 0 1 1

3 SCORE ROW3 15 1 1 0 0 0 0 1 2

4 SCORE ROW4 13 1 1 0 0 0 0 1 2

5 SCORE ROW5 1 1 0 1 1 0 1 2 1

6 SCORE ROW6 9 1 0 1 1 0 1 2 1

7 SCORE ROW7 12 1 0 1 0 0 0 2 2

8 SCORE ROW8 20 1 0 1 0 0 0 2 2

9 SCORE ROW9 14 1 0 0 1 0 0 3 1

10 SCORE ROW10 8 1 0 0 1 0 0 3 1

11 SCORE ROW11 18 1 0 0 0 0 0 3 2

12 SCORE ROW12 20 1 0 0 0 0 0 3 2

The next model is a deviations-from-means model. This coding is also called effects coding. The default
reference cell is the last cell (3,2). The following statements produce Figure 104.48 and Figure 104.49:

proc transreg data=x ss2 short;
title2 'Deviations from Means, (3,2) Reference Cell';
model identity(y) = class(a | b / deviations);
output replace;

run;

proc print label;
run;
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Figure 104.48 Deviations-from-Means Model, (3,2) Reference Cell

Two-Way ANOVA Models
Deviations from Means, (3,2) Reference Cell

The TRANSREG Procedure

Two-Way ANOVA Models
Deviations from Means, (3,2) Reference Cell

The TRANSREG Procedure

Dependent Variable Identity(y)

Class Level
Information

Class Levels Values

a 3 1 2 3

b 2 1 2

Number of Observations Read 12

Number of Observations Used 12

The TRANSREG Procedure Hypothesis Tests for Identity(y)

Univariate ANOVA Table Based on the Usual Degrees
of Freedom

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 5 234.6667 46.93333 3.20 0.0946

Error 6 88.0000 14.66667

Corrected Total 11 322.6667

Root MSE 3.82971 R-Square 0.7273

Dependent Mean 13.33333 Adj R-Sq 0.5000

Coeff Var 28.72281

Univariate Regression Table Based on the Usual Degrees of Freedom

Variable DF Coefficient

Type II
Sum of

Squares
Mean

Square F Value Pr > F Label

Intercept 1 13.3333333 2133.33 2133.33 145.45 <.0001 Intercept

Class.a1 1 1.1666667 8.17 8.17 0.56 0.4837 a 1

Class.a2 1 -2.8333333 48.17 48.17 3.28 0.1199 a 2

Class.b1 1 -3.0000000 108.00 108.00 7.36 0.0349 b 1

Class.a1b1 1 3.5000000 73.50 73.50 5.01 0.0665 a 1 * b 1

Class.a2b1 1 -2.5000000 37.50 37.50 2.56 0.1609 a 2 * b 1
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The parameter estimates are

O� D y D 13:3333

Ǫ1 D .y11 C y12/=2 � y D .15C 14/=2 � 13:3333 D 1:1667

Ǫ2 D .y21 C y22/=2 � y D .5C 16/=2 � 13:3333 D �2:8333

Ǒ
1 D .y11 C y21 C y31/=3 � y D .15C 5C 11/=3 � 13:3333 D �3

O11 D y11 � .y C Ǫ1 C
Ǒ
1/ D 15 � .13:3333C 1:1667C�3/ D 3:5

O21 D y21 � .y C Ǫ2 C
Ǒ
1/ D 5 � .13:3333C�2:8333C�3/ D �2:5

Figure 104.49 Deviations-from-Means Model, (3,2) Reference Cell, Design Matrix

Two-Way ANOVA Models
Deviations from Means, (3,2) Reference Cell

Two-Way ANOVA Models
Deviations from Means, (3,2) Reference Cell

Obs _TYPE_ _NAME_ y Intercept
a
1

a
2

b
1

a
1 * b

1

a
2 * b

1 a b

1 SCORE ROW1 16 1 1 0 1 1 0 1 1

2 SCORE ROW2 14 1 1 0 1 1 0 1 1

3 SCORE ROW3 15 1 1 0 -1 -1 0 1 2

4 SCORE ROW4 13 1 1 0 -1 -1 0 1 2

5 SCORE ROW5 1 1 0 1 1 0 1 2 1

6 SCORE ROW6 9 1 0 1 1 0 1 2 1

7 SCORE ROW7 12 1 0 1 -1 0 -1 2 2

8 SCORE ROW8 20 1 0 1 -1 0 -1 2 2

9 SCORE ROW9 14 1 -1 -1 1 -1 -1 3 1

10 SCORE ROW10 8 1 -1 -1 1 -1 -1 3 1

11 SCORE ROW11 18 1 -1 -1 -1 1 1 3 2

12 SCORE ROW12 20 1 -1 -1 -1 1 1 3 2

The next model is a less-than-full-rank model. The parameter estimates are constrained to sum to zero within
each effect. The following statements produce Figure 104.50 and Figure 104.51:

proc transreg data=x ss2 short;
title2 'Less-Than-Full-Rank Model';
model identity(y) = class(a | b / zero=sum);
output replace;

run;

proc print label;
run;
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Figure 104.50 Less-Than-Full-Rank Model

Two-Way ANOVA Models
Less-Than-Full-Rank Model

The TRANSREG Procedure

Two-Way ANOVA Models
Less-Than-Full-Rank Model

The TRANSREG Procedure

Dependent Variable Identity(y)

Class Level
Information

Class Levels Values

a 3 1 2 3

b 2 1 2

Number of Observations Read 12

Number of Observations Used 12

The TRANSREG Procedure Hypothesis Tests for Identity(y)

Univariate ANOVA Table Based on the Usual Degrees
of Freedom

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 5 234.6667 46.93333 3.20 0.0946

Error 6 88.0000 14.66667

Corrected Total 11 322.6667

Root MSE 3.82971 R-Square 0.7273

Dependent Mean 13.33333 Adj R-Sq 0.5000

Coeff Var 28.72281

Univariate Regression Table Based on the Usual Degrees of Freedom

Variable DF Coefficient

Type II
Sum of

Squares
Mean

Square F Value Pr > F Label

Intercept 1 13.3333333 2133.33 2133.33 145.45 <.0001 Intercept

Class.a1 1 1.1666667 8.17 8.17 0.56 0.4837 a 1

Class.a2 1 -2.8333333 48.17 48.17 3.28 0.1199 a 2

Class.a3 1 1.6666667 16.67 16.67 1.14 0.3274 a 3

Class.b1 1 -3.0000000 108.00 108.00 7.36 0.0349 b 1

Class.b2 1 3.0000000 108.00 108.00 7.36 0.0349 b 2

Class.a1b1 1 3.5000000 73.50 73.50 5.01 0.0665 a 1 * b 1

Class.a1b2 1 -3.5000000 73.50 73.50 5.01 0.0665 a 1 * b 2

Class.a2b1 1 -2.5000000 37.50 37.50 2.56 0.1609 a 2 * b 1

Class.a2b2 1 2.5000000 37.50 37.50 2.56 0.1609 a 2 * b 2

Class.a3b1 1 -1.0000000 6.00 6.00 0.41 0.5461 a 3 * b 1

Class.a3b2 1 1.0000000 6.00 6.00 0.41 0.5461 a 3 * b 2

The sum of the regression table DF's, minus one for the intercept, will be greater than the model
df when there are ZERO=SUM constraints.
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The parameter estimates are

O� D y D 13:3333

Ǫ1 D .y11 C y12/=2 � y D .15C 14/=2 � 13:3333 D 1:1667

Ǫ2 D .y21 C y22/=2 � y D .5C 16/=2 � 13:3333 D �2:8333

Ǫ3 D .y31 C y32/=2 � y D .11C 19/=2 � 13:3333 D 1:6667

Ǒ
1 D .y11 C y21 C y31/=3 � y D .15C 5C 11/=3 � 13:3333 D �3

Ǒ
2 D .y12 C y22 C y32/=3 � y D .14C 16C 19/=3 � 13:3333 D 3

O11 D y11 � .y C Ǫ1 C
Ǒ
1/ D 15 � .13:3333C 1:1667C�3/ D 3:5

O12 D y12 � .y C Ǫ1 C
Ǒ
2/ D 14 � .13:3333C 1:1667C 3/ D �3:5

O21 D y21 � .y C Ǫ2 C
Ǒ
1/ D 5 � .13:3333C�2:8333C�3/ D �2:5

O22 D y22 � .y C Ǫ2 C
Ǒ
2/ D 16 � .13:3333C�2:8333C 3/ D 2:5

O31 D y31 � .y C Ǫ3 C
Ǒ
1/ D 11 � .13:3333C 1:6667C�3/ D �1

O32 D y32 � .y C Ǫ3 C
Ǒ
2/ D 19 � .13:3333C 1:6667C 3/ D 1

The constraints are

˛1 C ˛2 C ˛3 � ˇ1 C ˇ2 � 0

11 C 12 � 21 C 22 � 31 C 32 � 11 C 21 C 31 � 12 C 22 C 32 � 0

Only four of the five interaction constraints are needed. The fifth constraint is implied by the other four.
(Given a 2 � 3 table with four marginal sum-to-zero constraints, you can freely fill in only two cells. The
values in the other four cells are determined from the first two cells and the constraints.) A full-rank model
has six estimable parameters. This less-than-full-rank model has one parameter for the intercept, two for the
first main effect (plus one more as determined by the first constraint), one for the second main effect (plus one
more as determined by the second constraint), and two for the interactions (plus four more as determined by
the next four constraints). Six of the twelve parameters are determined given the other six and the constraints.
Notice that O�; Ǫ1; Ǫ2; Ǒ1; O11; and O21 match the corresponding estimates from the effects coding.
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Figure 104.51 Less-Than-Full-Rank Model, Design Matrix

Two-Way ANOVA Models
Less-Than-Full-Rank Model

Two-Way ANOVA Models
Less-Than-Full-Rank Model

Obs _TYPE_ _NAME_ y Intercept
a
1

a
2

a
3

b
1

b
2

a
1 * b

1

a
1 * b

2

a
2 * b

1

a
2 * b

2

a
3 * b

1

a
3 * b

2 a b

1 SCORE ROW1 16 1 1 0 0 1 0 1 0 0 0 0 0 1 1

2 SCORE ROW2 14 1 1 0 0 1 0 1 0 0 0 0 0 1 1

3 SCORE ROW3 15 1 1 0 0 0 1 0 1 0 0 0 0 1 2

4 SCORE ROW4 13 1 1 0 0 0 1 0 1 0 0 0 0 1 2

5 SCORE ROW5 1 1 0 1 0 1 0 0 0 1 0 0 0 2 1

6 SCORE ROW6 9 1 0 1 0 1 0 0 0 1 0 0 0 2 1

7 SCORE ROW7 12 1 0 1 0 0 1 0 0 0 1 0 0 2 2

8 SCORE ROW8 20 1 0 1 0 0 1 0 0 0 1 0 0 2 2

9 SCORE ROW9 14 1 0 0 1 1 0 0 0 0 0 1 0 3 1

10 SCORE ROW10 8 1 0 0 1 1 0 0 0 0 0 1 0 3 1

11 SCORE ROW11 18 1 0 0 1 0 1 0 0 0 0 0 1 3 2

12 SCORE ROW12 20 1 0 0 1 0 1 0 0 0 0 0 1 3 2

The next model is a reference cell model, but this time the reference cell is the first cell (1,1). The following
statements produce Figure 104.52 and Figure 104.53:

proc transreg data=x ss2 short;
title2 'Reference Cell Model, (1,1) Reference Cell';
model identity(y) = class(a | b / zero=first);
output replace;

run;

proc print label;
run;

Figure 104.52 Reference Cell Model, (1,1) Reference Cell

Two-Way ANOVA Models
Reference Cell Model, (1,1) Reference Cell

The TRANSREG Procedure

Two-Way ANOVA Models
Reference Cell Model, (1,1) Reference Cell

The TRANSREG Procedure

Dependent Variable Identity(y)

Class Level
Information

Class Levels Values

a 3 1 2 3

b 2 1 2

Number of Observations Read 12

Number of Observations Used 12
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Figure 104.52 continued

The TRANSREG Procedure Hypothesis Tests for Identity(y)

Univariate ANOVA Table Based on the Usual Degrees
of Freedom

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 5 234.6667 46.93333 3.20 0.0946

Error 6 88.0000 14.66667

Corrected Total 11 322.6667

Root MSE 3.82971 R-Square 0.7273

Dependent Mean 13.33333 Adj R-Sq 0.5000

Coeff Var 28.72281

Univariate Regression Table Based on the Usual Degrees of Freedom

Variable DF Coefficient

Type II
Sum of

Squares
Mean

Square F Value Pr > F Label

Intercept 1 15.000000 450.000 450.000 30.68 0.0015 Intercept

Class.a2 1 -10.000000 100.000 100.000 6.82 0.0401 a 2

Class.a3 1 -4.000000 16.000 16.000 1.09 0.3365 a 3

Class.b2 1 -1.000000 1.000 1.000 0.07 0.8027 b 2

Class.a2b2 1 12.000000 72.000 72.000 4.91 0.0686 a 2 * b 2

Class.a3b2 1 9.000000 40.500 40.500 2.76 0.1476 a 3 * b 2

The parameter estimates are

O�11 D y11 D 15

Ǫ2 D y21 � y11 D 5 � 15 D �10

Ǫ3 D y31 � y11 D 11 � 15 D �4

Ǒ
2 D y12 � y11 D 14 � 15 D �1

O22 D y22 � . O�11 C Ǫ2 C
Ǒ
2/ D 16 � .15C�10C�1/ D 12

O32 D y32 � . O�11 C Ǫ3 C
Ǒ
2/ D 19 � .15C�4C�1/ D 9



8660 F Chapter 104: The TRANSREG Procedure

Figure 104.53 Reference Cell Model, (1,1) Reference Cell, Design Matrix

Two-Way ANOVA Models
Reference Cell Model, (1,1) Reference Cell

Two-Way ANOVA Models
Reference Cell Model, (1,1) Reference Cell

Obs _TYPE_ _NAME_ y Intercept
a
2

a
3

b
2

a
2 * b

2

a
3 * b

2 a b

1 SCORE ROW1 16 1 0 0 0 0 0 1 1

2 SCORE ROW2 14 1 0 0 0 0 0 1 1

3 SCORE ROW3 15 1 0 0 1 0 0 1 2

4 SCORE ROW4 13 1 0 0 1 0 0 1 2

5 SCORE ROW5 1 1 1 0 0 0 0 2 1

6 SCORE ROW6 9 1 1 0 0 0 0 2 1

7 SCORE ROW7 12 1 1 0 1 1 0 2 2

8 SCORE ROW8 20 1 1 0 1 1 0 2 2

9 SCORE ROW9 14 1 0 1 0 0 0 3 1

10 SCORE ROW10 8 1 0 1 0 0 0 3 1

11 SCORE ROW11 18 1 0 1 1 0 1 3 2

12 SCORE ROW12 20 1 0 1 1 0 1 3 2

The next model is a deviations-from-means model, but this time the reference cell is the first cell (1,1). This
coding is also called effects coding. The following statements produce Figure 104.54 and Figure 104.55:

proc transreg data=x ss2 short;
title2 'Deviations from Means, (1,1) Reference Cell';
model identity(y) = class(a | b / deviations zero=first);
output replace;

run;

proc print label;
run;

Figure 104.54 Deviations-from-Means Model, (1,1) Reference Cell

Two-Way ANOVA Models
Deviations from Means, (1,1) Reference Cell

The TRANSREG Procedure

Two-Way ANOVA Models
Deviations from Means, (1,1) Reference Cell

The TRANSREG Procedure

Dependent Variable Identity(y)

Class Level
Information

Class Levels Values

a 3 1 2 3

b 2 1 2

Number of Observations Read 12

Number of Observations Used 12
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Figure 104.54 continued

The TRANSREG Procedure Hypothesis Tests for Identity(y)

Univariate ANOVA Table Based on the Usual Degrees
of Freedom

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 5 234.6667 46.93333 3.20 0.0946

Error 6 88.0000 14.66667

Corrected Total 11 322.6667

Root MSE 3.82971 R-Square 0.7273

Dependent Mean 13.33333 Adj R-Sq 0.5000

Coeff Var 28.72281

Univariate Regression Table Based on the Usual Degrees of Freedom

Variable DF Coefficient

Type II
Sum of

Squares
Mean

Square F Value Pr > F Label

Intercept 1 13.3333333 2133.33 2133.33 145.45 <.0001 Intercept

Class.a2 1 -2.8333333 48.17 48.17 3.28 0.1199 a 2

Class.a3 1 1.6666667 16.67 16.67 1.14 0.3274 a 3

Class.b2 1 3.0000000 108.00 108.00 7.36 0.0349 b 2

Class.a2b2 1 2.5000000 37.50 37.50 2.56 0.1609 a 2 * b 2

Class.a3b2 1 1.0000000 6.00 6.00 0.41 0.5461 a 3 * b 2

The parameter estimates are

O� D y D 13:3333

Ǫ2 D .y21 C y22/=2 � y D .5C 16/=2 � 13:3333 D �2:8333

Ǫ3 D .y31 C y32/=2 � y D .11C 19/=2 � 13:3333 D 1:6667

Ǒ
2 D .y12 C y22 C y32/=3 � y D .14C 16C 19/=3 � 13:3333 D 3

O22 D y22 � .y C Ǫ2 C
Ǒ
2/ D 16 � .13:3333C�2:8333C 3/ D 2:5

O32 D y32 � .y C Ǫ3 C
Ǒ
2/ D 19 � .13:3333C 1:6667C 3/ D 1

Notice that all of the parameter estimates match the corresponding estimates from the less-than-full-rank
coding.
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Figure 104.55 Deviations-from-Means Model, (1,1) Reference Cell, Design Matrix

Two-Way ANOVA Models
Deviations from Means, (1,1) Reference Cell

Two-Way ANOVA Models
Deviations from Means, (1,1) Reference Cell

Obs _TYPE_ _NAME_ y Intercept
a
2

a
3

b
2

a
2 * b

2

a
3 * b

2 a b

1 SCORE ROW1 16 1 -1 -1 -1 1 1 1 1

2 SCORE ROW2 14 1 -1 -1 -1 1 1 1 1

3 SCORE ROW3 15 1 -1 -1 1 -1 -1 1 2

4 SCORE ROW4 13 1 -1 -1 1 -1 -1 1 2

5 SCORE ROW5 1 1 1 0 -1 -1 0 2 1

6 SCORE ROW6 9 1 1 0 -1 -1 0 2 1

7 SCORE ROW7 12 1 1 0 1 1 0 2 2

8 SCORE ROW8 20 1 1 0 1 1 0 2 2

9 SCORE ROW9 14 1 0 1 -1 0 -1 3 1

10 SCORE ROW10 8 1 0 1 -1 0 -1 3 1

11 SCORE ROW11 18 1 0 1 1 0 1 3 2

12 SCORE ROW12 20 1 0 1 1 0 1 3 2

The following statements fit a model with an orthogonal-contrast coding and produce Figure 104.56 and
Figure 104.57:

proc transreg data=x ss2 short;
title2 'Orthogonal Contrast Coding';
model identity(y) = class(a | b / orthogonal);
output replace;

run;

proc print label;
run;

Figure 104.56 Orthogonal-Contrast Coding

Two-Way ANOVA Models
Orthogonal Contrast Coding

The TRANSREG Procedure

Two-Way ANOVA Models
Orthogonal Contrast Coding

The TRANSREG Procedure

Dependent Variable Identity(y)

Class Level
Information

Class Levels Values

a 3 1 2 3

b 2 1 2

Number of Observations Read 12

Number of Observations Used 12
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Figure 104.56 continued

The TRANSREG Procedure Hypothesis Tests for Identity(y)

Univariate ANOVA Table Based on the Usual Degrees
of Freedom

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 5 234.6667 46.93333 3.20 0.0946

Error 6 88.0000 14.66667

Corrected Total 11 322.6667

Root MSE 3.82971 R-Square 0.7273

Dependent Mean 13.33333 Adj R-Sq 0.5000

Coeff Var 28.72281

Univariate Regression Table Based on the Usual Degrees of Freedom

Variable DF Coefficient

Type II
Sum of

Squares
Mean

Square F Value Pr > F Label

Intercept 1 13.3333333 2133.33 2133.33 145.45 <.0001 Intercept

Class.a1 1 -0.2500000 0.50 0.50 0.03 0.8596 a 1

Class.a2 1 -1.4166667 48.17 48.17 3.28 0.1199 a 2

Class.b1 1 -3.0000000 108.00 108.00 7.36 0.0349 b 1

Class.a1b1 1 2.2500000 40.50 40.50 2.76 0.1476 a 1 * b 1

Class.a2b1 1 -1.2500000 37.50 37.50 2.56 0.1609 a 2 * b 1

The parameter estimates are

O� D y D 13:3333

Ǫ1 D ..y11 C y12/ � .y31 C y32//=4 D ..15C 14/ � .11C 19//=4 D �0:25

Ǫ2 D ..y21 C y22/ � .y11 C y12 C y31 C y32/=2/=6

D ..5C 16/ � .15C 14C 11C 19/=2/=6 D �1:417

Ǒ
1 D ..y11 C y21 C y31/ � .y12 C y22 C y32//=6

D ..15C 5C 11/ � .14C 16C 19//=6 D �3

O11 D .y11 � y12 � y31 C y32/=4 D .15 � 14 � 11C 19/=4 D 2:25

O21 D ..�y11 C y12 � y31 C y32/=2C .y21 � y22//=6

D ..�15C 14 � 11C 19/=2C .5 � 16//=6 D �1:25



8664 F Chapter 104: The TRANSREG Procedure

Figure 104.57 Orthogonal-Contrast Coding, Design Matrix

Two-Way ANOVA Models
Orthogonal Contrast Coding

Two-Way ANOVA Models
Orthogonal Contrast Coding

Obs _TYPE_ _NAME_ y Intercept
a
1

a
2

b
1

a
1 * b

1

a
2 * b

1 a b

1 SCORE ROW1 16 1 1 -1 1 1 -1 1 1

2 SCORE ROW2 14 1 1 -1 1 1 -1 1 1

3 SCORE ROW3 15 1 1 -1 -1 -1 1 1 2

4 SCORE ROW4 13 1 1 -1 -1 -1 1 1 2

5 SCORE ROW5 1 1 0 2 1 0 2 2 1

6 SCORE ROW6 9 1 0 2 1 0 2 2 1

7 SCORE ROW7 12 1 0 2 -1 0 -2 2 2

8 SCORE ROW8 20 1 0 2 -1 0 -2 2 2

9 SCORE ROW9 14 1 -1 -1 1 -1 -1 3 1

10 SCORE ROW10 8 1 -1 -1 1 -1 -1 3 1

11 SCORE ROW11 18 1 -1 -1 -1 1 1 3 2

12 SCORE ROW12 20 1 -1 -1 -1 1 1 3 2

The following statements fit a model with a standardized-orthogonal coding and produce Figure 104.58 and
Figure 104.59:

proc transreg data=x ss2 short;
title2 'Standardized-Orthogonal Coding';
model identity(y) = class(a | b / standorth);
output replace;

run;

proc print label;
run;

Figure 104.58 Standardized-Orthogonal Coding

Two-Way ANOVA Models
Standardized-Orthogonal Coding

The TRANSREG Procedure

Two-Way ANOVA Models
Standardized-Orthogonal Coding

The TRANSREG Procedure

Dependent Variable Identity(y)

Class Level
Information

Class Levels Values

a 3 1 2 3

b 2 1 2

Number of Observations Read 12

Number of Observations Used 12



ANOVA Codings F 8665

Figure 104.58 continued

The TRANSREG Procedure Hypothesis Tests for Identity(y)

Univariate ANOVA Table Based on the Usual Degrees
of Freedom

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 5 234.6667 46.93333 3.20 0.0946

Error 6 88.0000 14.66667

Corrected Total 11 322.6667

Root MSE 3.82971 R-Square 0.7273

Dependent Mean 13.33333 Adj R-Sq 0.5000

Coeff Var 28.72281

Univariate Regression Table Based on the Usual Degrees of Freedom

Variable DF Coefficient

Type II
Sum of

Squares
Mean

Square F Value Pr > F Label

Intercept 1 13.3333333 2133.33 2133.33 145.45 <.0001 Intercept

Class.a1 1 -0.2041241 0.50 0.50 0.03 0.8596 a 1

Class.a2 1 -2.0034692 48.17 48.17 3.28 0.1199 a 2

Class.b1 1 -3.0000000 108.00 108.00 7.36 0.0349 b 1

Class.a1b1 1 1.8371173 40.50 40.50 2.76 0.1476 a 1 * b 1

Class.a2b1 1 -1.7677670 37.50 37.50 2.56 0.1609 a 2 * b 1

The parameter estimates are

O� D y D 13:3333

Ǫ1 D ...y11 C y12/ � .y31 C y32//=4/ �
p
2=3

D ...15C 14/ � .11C 19//=4/ �
p
2=3 D �0:2041

Ǫ2 D ...y21 C y22/ � .y11 C y12 C y31 C y32/=2/=6/ �
p
6=3

D ...5C 16/ � .15C 14C 11C 19/=2/=6/ �
p
6=3 D �2:0035

Ǒ
1 D ...y11 C y21 C y31/ � .y12 C y22 C y32//=6/ �

p
2=2

D ...15C 5C 11/ � .14C 16C 19//=6/ �
p
2=2 D �3

O11 D ..y11 � y12 � y31 C y32/=4/ �
p
2=3 �

p
2=2

D ..15 � 14 � 11C 19/=4/ �
p
2=3 �

p
2=2 D 1:8371

O21 D ...�y11 C y12 � y31 C y32/=2C .y21 � y22//=6/ �
p
6=3 �

p
2=2

D ...�15C 14 � 11C 19/=2C .5 � 16//=6/ �
p
6=3 �

p
2=2 D �1:7678

The numerators in the square roots are sums of squares of the coded values for the unstandardized-orthogonal
codings, and the denominators are the numbers of levels. These terms convert the estimates from the
orthogonal contrast coding to the standardized-orthogonal coding. The term

p
2=2, which is 1 and could be

dropped, is included in the preceding formulas to show the general pattern. Notice the regression tables for
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the orthogonal-contrast coding and the standardized-orthogonal coding. Some of the coefficients are different,
but the rest of the table is the same since the coded variables for the two models differ only by a constant.

Figure 104.59 Standardized-Orthogonal Coding, Design Matrix

Two-Way ANOVA Models
Standardized-Orthogonal Coding

Two-Way ANOVA Models
Standardized-Orthogonal Coding

Obs _TYPE_ _NAME_ y Intercept a 1 a 2
b
1 a 1 * b 1 a 2 * b 1 a b

1 SCORE ROW1 16 1 1.22474 -0.70711 1 1.22474 -0.70711 1 1

2 SCORE ROW2 14 1 1.22474 -0.70711 1 1.22474 -0.70711 1 1

3 SCORE ROW3 15 1 1.22474 -0.70711 -1 -1.22474 0.70711 1 2

4 SCORE ROW4 13 1 1.22474 -0.70711 -1 -1.22474 0.70711 1 2

5 SCORE ROW5 1 1 0.00000 1.41421 1 0.00000 1.41421 2 1

6 SCORE ROW6 9 1 0.00000 1.41421 1 0.00000 1.41421 2 1

7 SCORE ROW7 12 1 0.00000 1.41421 -1 0.00000 -1.41421 2 2

8 SCORE ROW8 20 1 0.00000 1.41421 -1 0.00000 -1.41421 2 2

9 SCORE ROW9 14 1 -1.22474 -0.70711 1 -1.22474 -0.70711 3 1

10 SCORE ROW10 8 1 -1.22474 -0.70711 1 -1.22474 -0.70711 3 1

11 SCORE ROW11 18 1 -1.22474 -0.70711 -1 1.22474 0.70711 3 2

12 SCORE ROW12 20 1 -1.22474 -0.70711 -1 1.22474 0.70711 3 2

Missing Values
PROC TRANSREG can estimate missing values, with or without category or monotonicity constraints, so
that the regression model fit is optimized. Several approaches to missing data handling are provided. All ob-
servations with missing values in IDENTITY, CLASS, POINT, EPOINT, QPOINT, SMOOTH, PBSPLINE,
PSPLINE, and BSPLINE variables are excluded from the analysis. When METHOD=UNIVARIATE (spec-
ified in the PROC TRANSREG or MODEL statement), observations with missing values in any of the
independent variables are excluded from the analysis. When you specify the NOMISS a-option, observations
with missing values in the other analysis variables are excluded. Otherwise, missing data are estimated, and
the variable means are the initial estimates.

You can specify the LINEAR, OPSCORE, MONOTONE, UNTIE, SPLINE, MSPLINE, SSPLINE, LOG,
LOGIT, POWER, ARSIN, BOXCOX, RANK, and EXP transformations in any combination with nonmissing
values, ordinary missing values, and special missing values, as long as the nonmissing values in each variable
have positive variance. No category or order restrictions are placed on the estimates of ordinary missing
values. You can force missing value estimates within a variable to be identical by using special missing values
(see “DATA Step Processing” in SAS Language Reference: Concepts. You can specify up to 27 categories of
missing values, in which within-category estimates must be the same, by coding the missing values with ._
and .A through .Z.

You can also specify an ordering of some missing value estimates. You can use the MONOTONE= a-option
in the PROC TRANSREG or MODEL statement to indicate a range of special missing values (a subset of the
list from .A to .Z) with estimates that must be weakly ordered within each variable in which they appear.
For example, if MONOTONE=AI, the nine classes, .A, .B, . . . , .I, are monotonically scored and optimally
scaled just as MONOTONE transformation values are scored. In this case, category but not order restrictions
are placed on the missing values ._ and .J through .Z. You can also use the UNTIE= a-option (in the PROC
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TRANSREG or MODEL statement) to indicate a range of special missing values with estimates that must be
weakly ordered within each variable in which they appear but can be untied.

The missing value estimation facilities enable you to have partitioned or mixed-type variables. For example,
a variable can be considered part nominal and part ordinal. Nominal classes of otherwise ordinal variables
are coded with special missing values. This feature can be useful with survey research. The class “unfamiliar
with the product” in the variable “Rate your preference for ’Brand X’ on a 1 to 9 scale, or if you are unfamiliar
with the product, check ’unfamiliar with the product”’ is an example. You can code “unfamiliar with the
product” as a special missing value, such as .A. The 1s to 9s can be monotonically transformed, while no
monotonic restrictions are placed on the quantification of the “unfamiliar with the product” class.

A variable specified for a LINEAR transformation, with special missing values and ordered categorical
missing values, can be part interval, part ordinal, and part nominal. A variable specified for a MONOTONE
transformation can have two independent ordinal parts. A variable specified for an UNTIE transformation
can have an ordered categorical part and an ordered part without category restrictions. Many other mixes are
possible.

Missing Values, UNTIE, and Hypothesis Tests
PROC TRANSREG can estimate missing data and monotonically transform variables while untying tied
values. Estimates of ordinary missing values (.) are all permitted to be different. Analyses with UNTIE
transformations, the UNTIE= a-option, and ordinary missing data estimation are all prone to degeneracy
problems. Consider the following example. A perfect fit is found by collapsing all observations except the
one with two missing values into a single value in y and x1. The following statements produce Figure 104.60:

title 'Missing Data';

data x;
input y x1 x2 @@;
datalines;

1 3 7 8 3 9 1 8 6 . . 9 3 3 9
8 5 1 6 7 3 2 7 2 1 8 2 . 9 1
;

proc transreg solve;
model linear(y) = linear(x1 x2);
output;

run;

proc print;
run;
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Figure 104.60 Missing Values Example

Missing DataMissing Data

Obs _TYPE_ _NAME_ y Ty Intercept x1 x2 TIntercept Tx1 Tx2

1 SCORE ROW1 1 2.7680 1 3 7 1 5.1233 7

2 SCORE ROW2 8 2.7680 1 3 9 1 5.1233 9

3 SCORE ROW3 1 2.7680 1 8 6 1 5.1233 6

4 SCORE ROW4 . 12.5878 1 . 9 1 12.7791 9

5 SCORE ROW5 3 2.7680 1 3 9 1 5.1233 9

6 SCORE ROW6 8 2.7680 1 5 1 1 5.1233 1

7 SCORE ROW7 6 2.7680 1 7 3 1 5.1233 3

8 SCORE ROW8 2 2.7680 1 7 2 1 5.1233 2

9 SCORE ROW9 1 2.7680 1 8 2 1 5.1233 2

10 SCORE ROW10 . 2.7680 1 9 1 1 5.1233 1

Generally, the use of ordinary missing data estimation, the UNTIE transformation, and the UNTIE= a-option
should be avoided, particularly with hypothesis tests. With these options, parameters are estimated based on
only a single observation, and they can exert tremendous influence over the results. Each of these parameters
has one model degree of freedom associated with it, so small or zero error degrees of freedom can also be a
problem.

Controlling the Number of Iterations
Several a-options in the PROC TRANSREG or MODEL statement control the number of iterations performed.
Iteration terminates when any one of the following conditions is satisfied:

• The number of iterations equals the value of the MAXITER= a-option.

• The average absolute change in variable scores from one iteration to the next is less than the value of
the CONVERGE= a-option.

• The criterion change is less than the value of the CCONVERGE= a-option.

You can specify negative values for either convergence a-option if you want to define convergence only in
terms of the other option. The criterion change can become negative when the data have converged, so it
is numerically impossible, within machine precision, to increase the criterion. Usually, a negative criterion
change is the result of very small amounts of rounding error, since the algorithms are (usually) convergent.
However, there are cases where a negative criterion change is a sign of divergence, which is not necessarily
an error. When you specify an SSPLINE transformation or the REITERATE or SOLVE a-option, divergence
is perfectly normal.

When there are no monotonicity constraints and there is only one canonical variable in each set, PROC
TRANSREG (with the SOLVE a-option) can usually find the optimal solution in only one iteration. (There
are no monotonicity constraints when none of the following is specified: MONOTONE, MSPLINE, or
UNTIE transformation or the UNTIE= or MONOTONE= a-option. There is only one canonical variable in
each set when METHOD=MORALS or METHOD=UNIVARIATE, or when METHOD=REDUNDANCY
with only one dependent variable, or when METHOD=CANALS and NCAN=1.)
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The initialization iteration is number 0. When there are no monotonicity constraints and there is only one
canonical variable in each set, the next iteration shows no change, and iteration stops. At least two iterations
(0 and 1) are performed with the SOLVE a-option even if nothing changes in iteration 0. The MONOTONE,
MSPLINE, and UNTIE variables are not transformed by the canonical initialization. Note that divergence
with the SOLVE a-option, particularly in the second iteration, is not an error. The initialization iteration
is slower and uses more memory than other iterations. However, for many models, specifying the SOLVE
a-option can greatly decrease the amount of time required to find the optimal transformations.

You can increase the number of iterations to ensure convergence by increasing the value of the MAXITER=
a-option and decreasing the value of the CONVERGE= a-option. Since the average absolute change
in standardized variable scores seldom decreases below 1E–11, you should not specify a value for the
CONVERGE= a-option less than 1E–8 or 1E–10. Most of the data changes occur during the first few
iterations, but the data can still change after 50 or even 100 iterations. You can try different combinations of
values for the CONVERGE= and MAXITER= a-options to ensure convergence without extreme overiteration.
If the data do not converge with the default specifications, try CONVERGE=1E–8 and MAXITER=50, or
CONVERGE=1E–10 and MAXITER=200. Note that you can specify the REITERATE a-option to start
iterating where the previous analysis stopped.

Using the REITERATE Algorithm Option
You can use the REITERATE a-option to perform additional iterations when PROC TRANSREG stops
before the data have adequately converged. For example, suppose that you execute the following step:

proc transreg data=a;
model mspline(y) = mspline(x1-x5);
output out=b coefficients;

run;

If the transformations do not converge in the default 30 iterations, you can perform more iterations without
repeating the first 30 iterations, as follows:

proc transreg data=b reiterate;
model mspline(y) = mspline(x1-x5);
output out=b coefficients;

run;

Note that a WHERE statement is not necessary to exclude the coefficient observations. They are automatically
excluded because their _TYPE_ value is not SCORE.

You can also use the REITERATE a-option to specify starting values other than the original values for the
transformations. Providing alternate starting points might help avoid local optima. Here are two examples:

proc transreg data=a;
model rank(y) = rank(x1-x5);
output out=b;

run;

proc transreg data=b reiterate;
/* Use ranks as the starting point. */
model mspline(y) = mspline(x1-x5);
output out=c coefficients;
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run;

data b;
set a;
array tx[6] ty tx1-tx5;
do j = 1 to 6;

tx[j] = normal(7);
end;

run;

proc transreg data=b reiterate;
/* Use a random starting point. */
model mspline(y) = mspline(x1-x5);
output out=c coefficients;

run;

Note that divergence with the REITERATE a-option, particularly in the second iteration, is not an error since
the initial transformation is not required to be a valid member of the transformation family. When you specify
the REITERATE a-option, the iteration does not terminate when the criterion change is negative during the
first 10 iterations.

Avoiding Constant Transformations
There are times when the optimal scaling produces a constant transformed variable. This can happen with
the MONOTONE, UNTIE, and MSPLINE transformations when the target is negatively correlated with the
original input variable. It can happen with all transformations when the target is uncorrelated with the original
input variable. When this happens, the procedure modifies the target to avoid a constant transformation. This
strategy avoids certain nonoptimal solutions.

If the transformation is monotonic and a constant transformed variable results, the procedure multiplies the
target by –1 and tries the optimal scaling again. If the transformation is not monotonic or if the multiplication
by –1 did not help, the procedure tries using a random target. If the transformation is still constant, the
previous nonconstant transformation is retained. When a constant transformation is avoided by any strategy,
this message is displayed: “A constant transformation was avoided for name.”

With extreme collinearity, small amounts of rounding error might interact with the instability of the coefficients
to produce target vectors that are not positively correlated with the original scaling. If a regression coefficient
for a variable is zero, the formula for the target for that variable contains a zero divide. In a multiple regression
model, after many iterations, one independent variable can be scaled the same way as the current scaling
of the dependent variable, so the other independent variables have coefficients of zero. When the constant
transformation warning appears, you should interpret your results with extreme caution, and recheck your
model.

Constant Variables
Constant and almost constant variables are zeroed and ignored. When constant variables are expected and
should not be zeroed, specify the NOZEROCONSTANT a-option.
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Character OPSCORE Variables
Character OPSCORE variables are replaced by a numeric variable containing category numbers before the
iterations, and the character values are discarded. Only the first eight characters are considered in determining
category membership. If you want the original character variable in the output data set, give it a different
name in the OPSCORE specification (OPSCORE(x / name=(x2)) and name the original variable in the ID
statement (ID x;).

Convergence and Degeneracies
When you specify the SSPLINE transformation, divergence is normal. The rest of this section assumes
that you did not specify SSPLINE. For all the methods available in PROC TRANSREG, the algorithms are
convergent, in terms of both the criterion being optimized and the parameters being estimated. The value of
the criterion being maximized (squared multiple correlation, average squared multiple correlation, or average
squared canonical correlation) can, theoretically, never decrease from one iteration to the next. The values of
the parameters being solved for (the scores and weights of the transformed variables) become stable after
sufficient iteration.

In practice, the criterion being maximized can decrease with overiteration. When the statistic has very nearly
reached its maximum, further iterations might report a decrease in the criterion in the last few decimal places.
This is a normal result of very small amounts of rounding error. By default, iteration terminates when this
occurs because, by default, CCONVERGE=0.0. Specifying CCONVERGE=–1, an impossible change, turns
off this check for convergence.

Even though the algorithms are convergent, they might not converge to a global optimum. Also, under
extreme circumstances, the solution might degenerate. Because two points always form a straight line, the
algorithms sometimes try to reach this degenerate optimum. This sometimes occurs when one observation is
an ordinal outlier (when one observation has the extreme rank on all variables). The algorithm can reach an
optimal solution that ties all other categories producing two points. Similar results can occur when there
are many missing values. More generally, whenever there are very few constraints on the scoring of one or
more points, degeneracies can be a problem. In a well-behaved analysis, the maximum data change, average
data change, and criterion change all decrease at a rapid rate with each iteration. When the rate of change
increases for several iterations, the solution might be degenerating.

Implicit and Explicit Intercepts
Depending on several options, the model intercept is nonzero, zero, or implicit, or there is no intercept.
Ordinarily, the model contains an explicit nonzero intercept, and the Intercept variable in the OUT= data
set contains ones. When TSTANDARD=CENTER or TSTANDARD=Z is specified, the model contains an
explicit, zero intercept and the Intercept variable contains zeros. When METHOD=CANALS, the model is
fit with centered variables and the Intercept variable is set to missing.

If you specify CLASS with ZERO=NONE or BSPLINE for one or more independent variables, and TSTAN-
DARD=NOMISS or TSTANDARD=ORIGINAL (the default), an implicit intercept model is fit. The intercept
is implicit in a set of the independent variables since there exists a set of independent variables the sum of
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which is a column of ones. All statistics are mean corrected. The implicit intercept is not an option; it is
implied by the model. Specifying SMOOTH or PBSPLINE also implies an implicit intercept model.

With METHOD=CANALS, the Intercept variable contains the canonical intercept for canonical coefficients
observations: Ǒ0 D y0 Ǫ � x0 Ǒ where Y Ǫ � X Ǒ.

Passive Observations
Observations can be excluded from the analysis for several reasons; these include zero weight; zero fre-
quency; missing values in variables designated IDENTITY, CLASS, POINT, EPOINT, QPOINT, SMOOTH,
PBSPLINE, PSPLINE, or BSPLINE; and missing values with the NOMISS a-option specified. These
observations are passive in that they do not contribute to determining transformations, R square, sums of
squares, degrees of freedom, and so on. However, some information can be computed for them. For example,
if no independent variable values are missing, predicted values and redundancy variable values can both
be computed. Residuals can be computed for observations with a nonmissing dependent and nonmissing
predicted value. Canonical variables for dependent variables can be computed when no dependent variables
are missing; canonical variables for independent variables can be computed when no independent variables
are missing, and so on. Passive observations in the OUT= data set have a blank value for _TYPE_.

Point Models
The expanded set of independent variables generated from the POINT, EPOINT, and QPOINT expansions
can be used to perform ideal point regressions (Carroll 1972) and compute ideal point coordinates for plotting
in a biplot (Gabriel 1981). The three types of ideal point coordinates can all be described as transformed
coefficients. Assume that m independent variables are specified in one of the three point expansions. Let
b0 be a 1 �m row vector of coefficients for these variables and one of the dependent variables. Let R be a
matrix created from the coefficients of the extra variables. When coordinates are requested with the MPC,
MEC, or MQC o-option, b0 and R are created from multiple regression coefficients. When coordinates are
requested with the CPC, CEC, or CQC o-option, b0 and R are created from canonical coefficients.

If you specify the POINT expansion in the MODEL statement, R is an m � m identity matrix times the
coefficient for the sums of squares (_ISSQ_) variable. If you specify the EPOINT expansion, R is an m �m
diagonal matrix of coefficients from the squared variables. If you specify the QPOINT expansion, R is
an m � m symmetric matrix of coefficients from the squared variables on the diagonal and crossproduct
variables off the diagonal. The MPC, MEC, MQC, CPC, CEC, and CQC ideal point coordinates are defined
as �0:5b0R�1. When R is singular, the ideal point coordinates are infinitely far away and are set to missing,
so you should try a simpler version of the model. The version that is simpler than the POINT model is the
vector model, where no extra variables are created. In the vector model, designate all independent variables
as IDENTITY. Then draw vectors from the origin to the COEFFICIENTS points.

Typically, when you request ideal point coordinates, the MODEL statement should consist of a single
transformation for the dependent variables (usually IDENTITY, MONOTONE, or MSPLINE) and a single
expansion for the independent variables (one of POINT, EPOINT, or QPOINT).
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Redundancy Analysis
Redundancy analysis (Stewart and Love 1968) is a principal component analysis of multivariate regression
predicted values. These first steps show the redundancy analysis results produced by PROC TRANSREG. The
specification TSTANDARD=Z sets all variables to mean zero and variance one. METHOD=REDUNDANCY
specifies redundancy analysis and outputs the redundancy variables to the OUT= data set. The MREDUN-
DANCY o-option outputs two sets of redundancy analysis coefficients to the OUT= data set.

The following statements produce Figure 104.61:

title 'Redundancy Analysis';

data x;
input y1-y3 x1-x4;
datalines;

6 8 8 15 18 26 27
1 12 16 18 9 20 8
5 6 15 20 17 29 31
6 9 15 14 10 16 22
7 5 12 14 6 13 9
3 6 7 2 14 26 22
3 5 9 13 18 10 22
6 3 11 3 15 22 29
6 3 7 10 20 21 27
7 5 9 8 10 12 18

;

proc transreg data=x tstandard=z method=redundancy;
model identity(y1-y3) = identity(x1-x4);
output out=red mredundancy replace;

run;

proc print data=red(drop=Intercept);
format _numeric_ 4.1;

run;
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Figure 104.61 Redundancy Analysis Example

Redundancy AnalysisRedundancy Analysis

Obs _TYPE_ _NAME_ y1 y2 y3 x1 x2 x3 x4 Red1 Red2 Red3

1 SCORE ROW1 0.5 0.6 -0.8 0.6 0.9 1.0 0.7 0.2 -0.5 -0.9

2 SCORE ROW2 -2.0 2.1 1.5 1.1 -1.0 0.1 -1.7 1.6 -1.5 0.4

3 SCORE ROW3 0.0 -0.1 1.2 1.4 0.7 1.5 1.2 1.0 0.8 -1.3

4 SCORE ROW4 0.5 1.0 1.2 0.4 -0.8 -0.5 0.1 0.5 1.7 0.1

5 SCORE ROW5 1.0 -0.4 0.3 0.4 -1.6 -1.0 -1.6 1.0 0.1 0.9

6 SCORE ROW6 -1.0 -0.1 -1.1 -1.6 0.1 1.0 0.1 -0.8 -0.9 1.4

7 SCORE ROW7 -1.0 -0.4 -0.6 0.2 0.9 -1.5 0.1 -1.0 -0.4 -1.3

8 SCORE ROW8 0.5 -1.2 0.0 -1.5 0.3 0.4 1.0 -1.2 0.8 0.7

9 SCORE ROW9 0.5 -1.2 -1.1 -0.3 1.3 0.2 0.7 -1.0 -0.9 -0.8

10 SCORE ROW10 1.0 -0.4 -0.6 -0.6 -0.8 -1.1 -0.4 -0.4 0.8 0.7

11 M REDUND Red1 . . . 0.7 -0.6 0.4 -0.1 . . .

12 M REDUND Red2 . . . 0.3 -1.5 -0.6 1.9 . . .

13 M REDUND Red3 . . . -0.7 -0.7 0.3 -0.3 . . .

14 R REDUND x1 . . . . . . . 0.8 -0.0 -0.6

15 R REDUND x2 . . . . . . . -0.6 -0.2 -0.7

16 R REDUND x3 . . . . . . . 0.1 -0.2 -0.1

17 R REDUND x4 . . . . . . . -0.5 0.3 -0.5

The _TYPE_=’SCORE’ observations of the Red1–Red3 variables contain the redundancy variables. The
nonmissing “M REDUND” values are coefficients for predicting the redundancy variables from the inde-
pendent variables. The nonmissing “R REDUND” values are coefficients for predicting the independent
variables from the redundancy variables.

The next steps show how to generate the same results manually. The data set is standardized, predicted values
are computed, and principal components of the predicted values are computed. The following statements
produce the redundancy variables, shown in Figure 104.62:

proc standard data=x out=std m=0 s=1;
title2 'Manually Generate Redundancy Variables';

run;

proc reg noprint data=std;
model y1-y3 = x1-x4;
output out=p p=ay1-ay3;

run; quit;

proc princomp data=p cov noprint std out=p;
var ay1-ay3;

run;

proc print data=p(keep=Prin:);
format _numeric_ 4.1;

run;
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Figure 104.62 Redundancy Analysis Example

Redundancy Analysis
Manually Generate Redundancy Variables

Redundancy Analysis
Manually Generate Redundancy Variables

Obs Prin1 Prin2 Prin3

1 0.2 -0.5 -0.9

2 1.6 -1.5 0.4

3 1.0 0.8 -1.3

4 0.5 1.7 0.1

5 1.0 0.1 0.9

6 -0.8 -0.9 1.4

7 -1.0 -0.4 -1.3

8 -1.2 0.8 0.7

9 -1.0 -0.9 -0.8

10 -0.4 0.8 0.7

The following statements produce the coefficients for predicting the redundancy variables from the indepen-
dent variables, shown in Figure 104.63:

proc reg data=p outest=redcoef noprint;
title2 'Manually Create Redundancy Coefficients';
model Prin1-Prin3 = x1-x4;

run; quit;

proc print data=redcoef(keep=x1-x4);
format _numeric_ 4.1;

run;

Figure 104.63 Redundancy Analysis Example

Redundancy Analysis
Manually Create Redundancy Coefficients

Redundancy Analysis
Manually Create Redundancy Coefficients

Obs x1 x2 x3 x4

1 0.7 -0.6 0.4 -0.1

2 0.3 -1.5 -0.6 1.9

3 -0.7 -0.7 0.3 -0.3

The following statements produce the coefficients for predicting the independent variables from the redun-
dancy variables, shown in Figure 104.64:

proc reg data=p outest=redcoef2 noprint;
title2 'Manually Create Other Coefficients';
model x1-x4 = prin1-prin3;

run; quit;

proc print data=redcoef2(keep=Prin1-Prin3);
format _numeric_ 4.1;

run;
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Figure 104.64 Redundancy Analysis Example

Redundancy Analysis
Manually Create Other Coefficients

Redundancy Analysis
Manually Create Other Coefficients

Obs Prin1 Prin2 Prin3

1 0.8 -0.0 -0.6

2 -0.6 -0.2 -0.7

3 0.1 -0.2 -0.1

4 -0.5 0.3 -0.5

Optimal Scaling
An alternating least squares optimal scaling algorithm can be divided into two major stages. The first major
stage estimates the parameters of the linear model. These parameters are used to create the predicted values
or target for each variable that can be transformed. Each target minimizes squared error (as explained in
the discussion of the algorithms in SAS Technical Report R-108). The definition of the target depends on
many factors, such as whether a variable is independent or dependent, which algorithm is used (for example,
regression, redundancy, CANALS, or principal components), and so on. The definition of the target is
independent of the transformation family you specify for the variable. However, the target values for a
variable typically do not fit the prescribed transformation family for the variable. They might not have the
right category structure; they might not have the right order; they might not be a linear combination of the
columns of a B-spline basis; and so on.

The second major stage is optimal scaling. Optimal scaling can be defined as a possibly constrained, least
squares regression problem. When you specify an optimal transformation, or when missing data are estimated
for any variable, the full representation of the variable is not simply a vector; it is a matrix with more than
one column. The optimal scaling phase finds the vector that is a linear combination of the columns of this
matrix that is closest to the target (in terms of minimum squared error), among those that do not violate any
of the constraints imposed by the transformation family. Optimal scaling methods are independent of the
data analysis method that generated the target. In all cases, optimal scaling can be accomplished by creating
a design matrix based on the original scaling of the variable and the transformation family specified for that
variable. The optimally scaled variable is a linear combination of the columns of the design matrix. The
coefficients of the linear combination are found by using (possibly constrained) least squares. Many optimal
scaling problems are solved without actually constructing design and projection matrices. The next two
sections describe the algorithms used by PROC TRANSREG for optimal scaling. The first section discusses
optimal scaling for OPSCORE, MONOTONE, UNTIE, and LINEAR transformations, including how missing
values are handled. The second section addresses SPLINE and MSPLINE transformations.

OPSCORE, MONOTONE, UNTIE, and LINEAR Transformations
Two vectors of information are needed to produce the optimally scaled variable: the initial variable scaling
vector x and the target vector y. For convenience, both vectors are first sorted on the values of the initial
scaling vector. If you request an UNTIE transformation, the target vector is sorted within ties in the initial
scaling vector. The normal SAS collating sequence for missing and nonmissing values is used. Sorting
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simply permits the constraints to be specified in terms of relationships among adjoining coefficients. The
sorting process partitions x and y into missing and nonmissing parts .x0mx

0
n/
0, and .y0my

0
n/
0.

Next, PROC TRANSREG determines category membership. Every ordinary missing value (.) forms a
separate category. (Three ordinary missing values form three categories.) Every special missing value within
the range specified in the UNTIE= a-option forms a separate category. (If UNTIE= BC and there are three .B
and two .C missing values, five categories are formed from them.) For all other special missing values, a
separate category is formed for each different value. (If there are four .A missing values, one category is
formed from them.)

Each distinct nonmissing value forms a separate category for OPSCORE and MONOTONE transformations (1
1 1 2 2 3 form three categories). Each nonmissing value forms a separate category for all other transformations
(1 1 1 2 2 3 form six categories). When category membership is determined, category means are computed.
Here is an example:

x: (. . .A .A .B 1 1 1 2 2 3 3 3 4)'

y: (5 6 2 4 2 1 2 3 4 6 4 5 6 7)'

OPSCORE and
MONOTONE means: (5 6 3 2 2 5 5 7)'

other means: (5 6 3 2 1 2 3 4 6 4 5 6 7)'

The category means are the coefficients of a category indicator design matrix. The category means are the
Fisher (1938) optimal scores. For MONOTONE and UNTIE transformations, order constraints are imposed
on the category means for the nonmissing partition by merging categories that are out of order. The algorithm
checks upward until an order violation is found, and then averages downward until the order violation is
averaged away. (The average of Nx1 computed from n1 observations and Nx2 computed from n2 observations
is .n1 Nx1 C n2 Nx2/=.n1 C n2/.) The MONOTONE algorithm (Kruskal 1964, secondary approach to ties) for
this example with means for the nonmissing values .2 5 5 7/0 would do the following checks: 2 < 5: OK,
5 D 5: OK, 5 < 7: OK. The means are in the proper order, so no work is needed.

The UNTIE transformation (Kruskal 1964, primary approach to ties) uses the same algorithm on the means
of the nonmissing values .1 2 3 4 6 4 5 6 7/0 but with different results for this example: 1 < 2: OK, 2 < 3:
OK, 3 < 4: OK, 4 < 6: OK, 6 > 4: average 6 and 4 and replace 6 and 4 by the average. The new means
of the nonmissing values are .1 2 3 4 5 5 5 6 7/0. The check resumes: 4 < 5: OK, 5 D 5: OK, 5 D 5:
OK, 5 < 6: OK, 6 < 7: OK. If some of the special missing values are ordered, the upward-checking,
downward-averaging algorithm is applied to them also, independently of the other missing and nonmissing
partitions. When the means conform to any required category or order constraints, an optimally scaled vector
is produced from the means. The following example results from a MONOTONE transformation:

x: (. . .A .A .B 1 1 1 2 2 3 3 3 4)0

y: (5 6 2 4 2 1 2 3 4 6 4 5 6 7)0

result: (5 6 3 3 2 2 2 2 5 5 5 5 5 7)0

The upward-checking, downward-averaging algorithm is equivalent to creating a category indicator design
matrix, solving for least squares coefficients with order constraints, and then computing the linear combination
of design matrix columns.

For the optimal transformation LINEAR and for nonoptimal transformations, missing values are handled as
just described. The nonmissing target values are regressed onto the matrix defined by the nonmissing initial
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scaling values and an intercept. In this example, the target vector yn D .1 2 3 4 6 4 5 6 7/0 is regressed onto
the design matrix�

1 1 1 1 1 1 1 1 1

1 1 1 2 2 3 3 3 4

�0
Although only a linear transformation is performed, the effect of a linear regression optimal scaling is not
eliminated by the later standardization step (unless the variable has no missing values). In the presence of
missing values, the linear regression is necessary to minimize squared error.

SPLINE and MSPLINE Transformations
The missing portions of variables subjected to SPLINE or MSPLINE transformations are handled the same
way as for OPSCORE, MONOTONE, UNTIE, and LINEAR transformations (see the previous section). The
nonmissing partition is handled by first creating a B-spline basis of the specified degree with the specified
knots for the nonmissing partition of the initial scaling vector and then regressing the target onto the basis.
The optimally scaled vector is a linear combination of the B-spline basis vectors. Ordinary least squares
regression coefficients are used. An algorithm for generating the B-spline basis is given in De Boor (1978,
pp. 134–135). B-splines are both a computationally accurate and efficient way of constructing a basis for
piecewise polynomials; however, they are not the most natural method of describing splines.

Consider an initial scaling vector x D .1 2 3 4 5 6 7 8 9/0 and a degree-three spline with interior knots at 3.5
and 6.5. The B-spline basis for the transformation is the left matrix, and the natural piecewise polynomial
spline basis is the right matrix.

B-Spline Basis Piecewise Polynomial Splines26666666666664

1:000 0:000 0:000 0:000 0 0

0:216 0:608 0:167 0:009 0 0

0:008 0:458 0:461 0:073 0 0

0 0:172 0:585 0:241 0:001 0

0 0:037 0:463 0:463 0:037 0

0 0:001 0:241 0:585 0:172 0

0 0 0:073 0:461 0:458 0:008

0 0 0:009 0:167 0:608 0:216

0 0 0:000 0:000 0:000 1:000

37777777777775

26666666666664

1 1 1 1 0 0

1 2 4 8 0 0

1 3 9 27 0 0

1 4 16 64 0:125 0

1 5 25 125 3:375 0

1 6 36 216 15:625 0

1 7 49 343 42:875 0:125

1 8 64 512 91:125 3:375

1 9 81 729 166:375 15:625

37777777777775
The two matrices span the same column space. The natural basis has an intercept, a linear term, a quadratic
term, a cubic term, and two more terms since there are two interior knots. These terms are generated (for
knot k and x element x) by the formula .x � k/3 � I.x>k/. The indicator variable I.x>k/ evaluates to 1.0 if x
is greater than k and to 0.0 otherwise. If knot k had been repeated, there would be a .x � k/2 � I.x>k/ term
also. Notice that the fifth column makes no contribution to the curve before 3.5, makes zero contribution at
3.5 (the transformation is continuous), and makes an increasing contribution beyond 3.5. The same pattern of
results holds for the last term with knot 6.5. The coefficient of the fifth column represents the change in the
cubic portion of the curve after 3.5. The coefficient of the sixth column represents the change in the cubic
portion of the curve after 6.5.
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The numbers in the B-spline basis do not have a simple interpretation like the numbers in the natural piecewise
polynomial basis. The B-spline basis has a diagonally banded structure. The band shifts one column to
the right after every knot. The number of entries in each row that can potentially be nonzero is one greater
than the degree. The elements within a row always sum to one. The B-spline basis is accurate because
of the smallness of the numbers and the lack of extreme collinearity inherent in the natural polynomials.
B-splines are efficient because PROC TRANSREG can take advantage of the sparseness of the B-spline basis
when it accumulates crossproducts. The number of required multiplications and additions to accumulate
the crossproduct matrix does not increase with the number of knots but does increase with the degree of
the spline, so it is much more computationally efficient to increase the number of knots than to increase the
degree of the polynomial.

MSPLINE transformations are handled like SPLINE transformations except that constraints are placed on the
coefficients to ensure monotonicity. When the coefficients of the B-spline basis are monotonically increasing,
the transformation is monotonically increasing. When the polynomial degree is two or less, monotone
coefficient splines, integrated splines (Winsberg and Ramsay 1980), and the general class of all monotone
splines are equivalent.

Specifying the Number of Knots
Keep the number of knots small (usually less than 10, although you can specify more). A degree-three spline
with nine knots, one at each decile, can closely follow a large variety of curves. Each spline transformation
of degree p with q knots fits a model with p C q parameters. The total number of parameters should be
much less than the number of observations. Usually in regression analyses, it is recommended that there be
at least five or ten observations for each parameter in order to get stable results. For example, when spline
transformations of degree three with nine knots are requested for six variables, the number of observations in
the data set should be at least 5 or 10 times 72 (since 6 � .3C 9/ is the total number of parameters). The
overall model can also have a parameter for the intercept and one or more parameters for each nonspline
variable in the model.

Increasing the number of knots gives the spline more freedom to bend and follow the data. Increasing the
degree also gives the spline more freedom, but to a lesser extent. Specifying a large number of knots is much
better than increasing the degree beyond three.

When you specify NKNOTS=q for a variable with n observations, then each of the q + 1 segments of the
spline contains n=.q C 1/ observations on the average. When you specify KNOTS=number-list, make sure
that there is a reasonable number of observations in each interval.

The following statements find a cubic polynomial transformation of x and no transformation of y:

proc transreg;
model identity(y)=spline(x);
output;

run;

The following statements find a cubic-spline transformation for x that consists of the weighted sum of a
single constant, a single straight line, a quadratic curve for the portion of the variable less than 3.0, a different
quadratic curve for the portion greater than 3.0 (since the 3.0 knot is repeated), and a different cubic curve for
each of the intervals: (minimum to 1.5), (1.5 to 2.4), (2.4 to 3.0), (3.0 to 4.0), and (4.0 to maximum):
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proc transreg;
model identity(y)=spline(x / knots=1.5 2.4 3.0 3.0 4.0);
output;

run;

The transformation is continuous everywhere, its first derivative is continuous everywhere, its second
derivative is continuous everywhere except at 3.0, and its third derivative is continuous everywhere except at
1.5, 2.4, 3.0, and 4.0.

The following statements find a quadratic spline transformation that consists of a polynomial x_t D b0 C
b1xC b2x2 for the range (x < 3.0) and a completely different polynomial x_t D b3 C b4xC b5x2 for the
range (x > 3.0):

proc transreg;
model identity(y)=spline(x / knots=3 3 3 degree=2);
output;

run;

The two curves are not required to be continuous at 3.0.

The following statements categorize y into 10 intervals and find a step-function transformation:

proc transreg;
model identity(y)=spline(x / degree=0 nknots=9);
output;

run;

One aspect of this transformation family is unlike all other optimal transformation families. The initial
scaling of the data does not fit the restrictions imposed by the transformation family. This is because the
initial variable can be continuous, but a discrete step-function transformation is sought. Zero-degree spline
variables are categorized before the first iteration.

The following statements find a continuous, piecewise linear transformation of x:

proc transreg;
model identity(y)=spline(x / degree=1 nknots=8);
output;

run;

SPLINE, BSPLINE, and PSPLINE Comparisons
SPLINE is a transformation. It takes a variable as input and produces a transformed variable as output.
Internally, with SPLINE, a B-spline basis is used to find the transformation, which is a linear combination of
the columns of the B-spline basis. However, with SPLINE, the basis is not made available in any output.

BSPLINE is an expansion. It takes a variable as input and produces more than one variable as output. The
output variables are the same B-spline basis that is used internally by SPLINE.

PSPLINE is an expansion. It takes a variable as input and produces more than one variable as output. The
difference between PSPLINE and BSPLINE is that PSPLINE produces a piecewise polynomial, whereas
BSPLINE produces a B-spline. A matrix consisting of a piecewise polynomial basis and an intercept spans
the same space as the B-spline matrix, but the basis vectors are quite different. The numbers in the piecewise
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polynomials can get quite large; the numbers in the B-spline basis range between 0 and 1. There are many
more zeros in the B-spline basis.

Interchanging SPLINE, BSPLINE, and PSPLINE should have no effect on the fit of the overall model except
for the fact that PSPLINE is much more prone to numerical problems. Similarly, interchanging a CLASS
expansion and an OPSCORE transformation should have no effect on the fit of the overall model.

Hypothesis Tests
PROC TRANSREG has a set of options for testing hypotheses in models with a single dependent variable.
The TEST a-option produces an ANOVA table. It tests the null hypothesis that the vector of coefficients for
all of the transformations is zero. The SS2 a-option produces a regression table with Type II tests of the
contribution of each transformation to the overall model. In some cases, exact tests are provided; in other
cases, the tests are approximate, liberal, or conservative.

There are two reasons why it is typically not appropriate to test hypotheses by using the output from PROC
TRANSREG as input to other procedures such as the REG procedure. First, PROC REG has no way of
determining how many degrees of freedom were used for each transformation. Second, the Type II sums of
squares for the tests of the individual regression coefficients are not correct for the transformation regression
model because PROC REG, as it evaluates the effect of each variable, cannot change the transformations of
the other variables. PROC TRANSREG uses the correct degrees of freedom and sums of squares.

In an ordinary univariate linear model, there is one parameter for each independent variable, including the
intercept. In the transformation regression model, many of the “variables” are used internally in the bases
for the transformations. Each basis column has one parameter or scoring coefficient, and each linearly
independent column has one model degree of freedom associated with it. Coefficients applied to transformed
variables, model coefficients, do not enter into the degrees-of-freedom calculations. They are byproducts of
the standardizations and can be absorbed into the transformations by specifying the ADDITIVE a-option.
The word parameter is reserved for model and scoring coefficients that have a degree of freedom associated
with them.

For expansions, there is one model parameter for each variable created by the expansion (except for all
missing CLASS columns and expansions that have an implicit intercept). Each IDENTITY variable has
one model parameter. If there are m POINT variables, they expand to m + 1 variables and hence have m +
1 model parameters. For m EPOINT variables, there are 2m model parameters. For m QPOINT variables,
there are m.mC 3/=2 model parameters. If a variable with m categories is designated CLASS, there are
m – 1 parameters. For BSPLINE and PSPLINE variables of DEGREE=n with NKNOTS=k, there are
nC k parameters. Note that one of the nC k C 1 BSPLINE columns and one of the m CLASS(variable /
ZERO=NONE) columns are not counted due to the implicit intercept.

There are scoring parameters for missing values in nonexcluded observations. Each ordinary missing value (.)
has one scoring parameter. Each different special missing value (._ and .A through .Z) within each variable
has one scoring parameter. Missing values specified in the UNTIE= and MONOTONE= options follow the
rules for UNTIE and MONOTONE transformations, which are described later in this chapter.

For all nonoptimal transformations (LOG, LOGIT, ARSIN, POWER, EXP, RANK, BOXCOX), there is one
parameter per variable in addition to any missing value scoring parameters.

For SPLINE, OPSCORE, and LINEAR transformations, the number of scoring parameters is the number of
basis columns that are used internally to find the transformations minus 1 for the intercept. The number of



8682 F Chapter 104: The TRANSREG Procedure

scoring parameters for SPLINE variables is the same as the number of model parameters for BSPLINE and
PSPLINE variables. If DEGREE=n and NKNOTS=k, there are nC k scoring parameters. The number of
scoring parameters for OPSCORE, SMOOTH, and SSPLINE variables is the same as the number of model
parameters for CLASS variables. If there are m categories, there are m – 1 scoring parameters. There is
one parameter for each LINEAR variable. For SPLINE, OPSCORE, LINEAR, MONOTONE, UNTIE, and
MSPLINE transformations, missing value scoring parameters are computed as described previously with the
nonoptimal transformations.

The number of scoring parameters for MONOTONE, UNTIE, and MSPLINE transformations is less pre-
cise than for SPLINE, OPSCORE, and LINEAR transformations. One way of handling a MONOTONE
transformation is to treat it as if it were the same as an OPSCORE transformation. If there are m categories,
there are m – 1 potential scoring parameters. However, there are typically fewer than m – 1 unique parameter
estimates, since some of those m – 1 scoring parameter estimates might be tied during the optimal scaling to
impose the order constraints. Imposing ties on the scoring parameter estimates is equivalent to fitting a model
with fewer parameters. So there are two available scoring parameter counts: m – 1 and a smaller number
that is determined during the analysis. Using m – 1 as the model degrees of freedom for MONOTONE
variables (treating OPSCORE and MONOTONE transformations the same way) is conservative, since
the MONOTONE scoring parameter estimates are more restricted than the OPSCORE scoring parameter
estimates. Using the smaller count (the number of scoring parameter estimates that are different, minus 1 for
the intercept) in the model degrees of freedom is liberal, since the data and the model together are being
used to determine the number of parameters. PROC TRANSREG reports tests that use both liberal and
conservative degrees of freedom to provide lower and upper bounds on the “true” p-values.

For the UNTIE transformation, the conservative scoring parameter count is the number of distinct obser-
vations, whereas the liberal scoring parameter count is the number of scoring parameter estimates that are
different, minus 1 for the intercept. Hence, when you specify UNTIE, conservative tests have zero error
degrees of freedom unless there are replicated observations.

For MSPLINE variables of DEGREE=n and NKNOTS=k, the conservative scoring parameter count is nC k,
whereas the liberal parameter count is the number of scoring parameter estimates that are different, minus 1
for the intercept. A liberal degrees of freedom of 1 does not necessarily imply a linear transformation. It
implies only that n plus k minus the number of ties imposed equals 1. An example of a one-degree-of-freedom
nonlinear transformation is a two-piece linear transformation in which the slope of one piece is 0.

The number of scoring parameters is determined during each iteration. After the last iteration, enough
information is available for the TEST a-option to produce an ANOVA table that reports the overall fit of
the model. If you specify the SS2 a-option, further iterations are necessary to test the contribution of each
transformation to the overall model.

The liberal tests do not compensate for overparameterization. For example, requesting a spline transformation
with k knots when a linear transformation will suffice results in “liberal” tests that are actually conservative
because too many degrees of freedom are being used for the transformations. To avoid this problem, use as
few knots as possible.

In ordinary multiple regression, an F test of the null hypothesis that the coefficient for variable xj is zero can
be constructed by comparing two linear models. One model is the full model with all parameters, and the
other is a reduced model that has all parameters except the parameter for variable xj . The difference between
the model sum of squares for the full model and the model sum of squares for the reduced model is the Type
II sum of squares for the test of the null hypothesis that the coefficient for variable xj is 0. The numerator
of the F test has one degree of freedom. The mean square error for the full model is the denominator of
the F test of variable xj . Note that the estimates of the coefficients for the two models are not usually the
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same. When variable xj is removed, the coefficients for the other variables change to compensate for the
removal of xj . In a transformation regression model, the transformations of the other variables must be
permitted to change and the numerator degrees of freedom are not always ones. It is not correct to simply let
the model coefficients for the transformed variables change and apply the new model coefficients to the old
transformations computed with the old scoring parameter estimates. In a transformation regression model,
further iteration is needed to test each transformation, because all the scoring parameter estimates for other
variables must be permitted to change to test the effect of variable xj . This can be quite time-consuming for
a large model if the SOLVE a-option cannot be used to solve directly for the transformations.

Output Data Set
The OUT= output data set can contain a great deal of information; however, in most cases, the output data set
contains a small portion of the entire range of available information.

Output Data Set Examples

This section provides three brief examples, illustrating some typical OUT= output data sets. See the section
“Output Data Set Contents” on page 8688 for a complete list of the contents of the OUT= data set.

The first example shows the output data set from a two-way ANOVA model. The following statements
produce Figure 104.65:

title 'ANOVA Output Data Set Example';

data ReferenceCell;
input y x1 $ x2 $;
datalines;

11 a a
12 a a
10 a a
4 a b
5 a b
3 a b
5 b a
6 b a
4 b a
2 b b
3 b b
1 b b

;

* Fit Reference Cell Two-Way ANOVA Model;
proc transreg data=ReferenceCell;

model identity(y) = class(x1 | x2);
output coefficients replace predicted residuals;

run;

* Print the Results;
proc print;
run;
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proc contents position;
ods select position;

run;

Figure 104.65 ANOVA Example Output Data Set Contents

ANOVA Output Data Set ExampleANOVA Output Data Set Example

Obs _TYPE_ _NAME_ y Py Ry Intercept x1a x2a x1ax2a x1 x2

1 SCORE ROW1 11 11 0 1 1.0 1 1 a a

2 SCORE ROW2 12 11 1 1 1.0 1 1 a a

3 SCORE ROW3 10 11 -1 1 1.0 1 1 a a

4 SCORE ROW4 4 4 0 1 1.0 0 0 a b

5 SCORE ROW5 5 4 1 1 1.0 0 0 a b

6 SCORE ROW6 3 4 -1 1 1.0 0 0 a b

7 SCORE ROW7 5 5 0 1 0.0 1 0 b a

8 SCORE ROW8 6 5 1 1 0.0 1 0 b a

9 SCORE ROW9 4 5 -1 1 0.0 1 0 b a

10 SCORE ROW10 2 2 0 1 0.0 0 0 b b

11 SCORE ROW11 3 2 1 1 0.0 0 0 b b

12 SCORE ROW12 1 2 -1 1 0.0 0 0 b b

13 M COEFFI y . . . 2 2.0 3 4

14 MEAN y . . . . 7.5 8 11

ANOVA Output Data Set Example

The CONTENTS Procedure

ANOVA Output Data Set Example

The CONTENTS Procedure

Variables in Creation Order

# Variable Type Len Label

1 _TYPE_ Char 8

2 _NAME_ Char 32

3 y Num 8

4 Py Num 8 y Predicted Values

5 Ry Num 8 y Residuals

6 Intercept Num 8 Intercept

7 x1a Num 8 x1 a

8 x2a Num 8 x2 a

9 x1ax2a Num 8 x1 a * x2 a

10 x1 Char 32

11 x2 Char 32

The _TYPE_ variable indicates observation type: score, multiple regression coefficient (parameter estimates),
and marginal means. The _NAME_ variable contains the default observation labels, “ROW1”, “ROW2”, and
so on, and contains the dependent variable name (y) for the remaining observations. If you specify an ID
statement, _NAME_ contains the values of the first ID variable for score observations. The y variable is the
dependent variable, Py contains the predicted values, Ry contains the residuals, and the variables Intercept
through x1ax2a contain the design matrix. The x1 and x2 variables are the original CLASS variables.
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The next example shows the contents of the output data set from fitting a curve through a scatter plot. The
following statements produce Figure 104.66:

title 'Output Data Set for Curve Fitting Example';

data a;
do x = 1 to 100;

y = log(x) + sin(x / 10) + normal(7);
output;

end;
run;

proc transreg;
model identity(y) = spline(x / nknots=9);
output predicted out=b;

run;

proc contents position;
ods select position;

run;

Figure 104.66 Predicted Values Example Output Data Set Contents

Output Data Set for Curve Fitting Example

The CONTENTS Procedure

Output Data Set for Curve Fitting Example

The CONTENTS Procedure

Variables in Creation Order

# Variable Type Len Label

1 _TYPE_ Char 8

2 _NAME_ Char 32

3 y Num 8

4 Ty Num 8 y Transformation

5 Py Num 8 y Predicted Values

6 Intercept Num 8 Intercept

7 x Num 8

8 TIntercept Num 8 Intercept Transformation

9 Tx Num 8 x Transformation

The OUT= data set contains _TYPE_ and _NAME_ variables. Since no coefficients or coordinates are
requested, all observations are _TYPE_=’SCORE’. The y variable is the original dependent variable, Ty is the
transformed dependent variable, Py contains the predicted values, x is the original independent variable, and
Tx is the transformed independent variable. The data set also contains an Intercept and transformed intercept
TIntercept variable. (In this case, the transformed intercept is the same as the intercept. However, if you
specify the TSTANDARD= and ADDITIVE options, these are not always the same.)
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The following example shows the results from specifying METHOD=MORALS when there is more than one
dependent variable:

title 'METHOD=MORALS Output Data Set Example';

data x;
input y1 y2 x1 $ x2 $;
datalines;

11 1 a a
10 4 b a
5 2 a b
5 9 b b
4 3 c c
3 6 b a
1 8 a b

;

* Fit Reference Cell Two-Way ANOVA Model;
proc transreg data=x noprint solve;

model spline(y1 y2) = opscore(x1 x2 / name=(n1 n2));
output coefficients predicted residuals;
id x1 x2;

run;

* Print the Results;
proc print;
run;

proc contents position;
ods select position;

run;

These statements produce Figure 104.67.
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Figure 104.67 METHOD=MORALS Rolled Output Data Set

METHOD=MORALS Output Data Set ExampleMETHOD=MORALS Output Data Set Example

Obs _DEPVAR_ _TYPE_ _NAME_ _DEPEND_ T_DEPEND_ P_DEPEND_

1 Spline(y1) SCORE a 11 13.1600 11.1554

2 Spline(y1) SCORE b 10 6.1931 6.8835

3 Spline(y1) SCORE a 5 2.4467 4.7140

4 Spline(y1) SCORE b 5 2.4467 0.4421

5 Spline(y1) SCORE c 4 4.2076 4.2076

6 Spline(y1) SCORE b 3 5.5693 6.8835

7 Spline(y1) SCORE a 1 4.9766 4.7140

8 Spline(y1) M COEFFI y1 . . .

9 Spline(y2) SCORE a 1 -0.5303 -0.5199

10 Spline(y2) SCORE b 4 5.5487 4.5689

11 Spline(y2) SCORE a 2 3.8940 4.5575

12 Spline(y2) SCORE b 9 9.6358 9.6462

13 Spline(y2) SCORE c 3 5.6210 5.6210

14 Spline(y2) SCORE b 6 3.5994 4.5689

15 Spline(y2) SCORE a 8 5.2314 4.5575

16 Spline(y2) M COEFFI y2 . . .

Obs R_DEPEND_ Intercept n1 n2 TIntercept Tn1 Tn2 x1 x2

1 2.00464 1 0 0 1.0000 0.06711 -0.09384 a a

2 -0.69041 1 1 0 1.0000 1.51978 -0.09384 b a

3 -2.26724 1 0 1 1.0000 0.06711 1.32038 a b

4 2.00464 1 1 1 1.0000 1.51978 1.32038 b b

5 0.00000 1 2 2 1.0000 0.23932 1.32038 c c

6 -1.31422 1 1 0 1.0000 1.51978 -0.09384 b a

7 0.26261 1 0 1 1.0000 0.06711 1.32038 a b

8 . . . . 10.9253 -2.94071 -4.55475 y1 y1

9 -0.01043 1 0 0 1.0000 0.03739 -0.09384 a a

10 0.97988 1 1 0 1.0000 1.51395 -0.09384 b a

11 -0.66347 1 0 1 1.0000 0.03739 1.32038 a b

12 -0.01043 1 1 1 1.0000 1.51395 1.32038 b b

13 0.00000 1 2 2 1.0000 0.34598 1.32038 c c

14 -0.96945 1 1 0 1.0000 1.51395 -0.09384 b a

15 0.67390 1 0 1 1.0000 0.03739 1.32038 a b

16 . . . . -0.3119 3.44636 3.59024 y2 y2
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Figure 104.67 continued

METHOD=MORALS Output Data Set Example

The CONTENTS Procedure

METHOD=MORALS Output Data Set Example

The CONTENTS Procedure

Variables in Creation Order

# Variable Type Len Label

1 _DEPVAR_ Char 42 Dependent Variable Transformation(Name)

2 _TYPE_ Char 8

3 _NAME_ Char 32

4 _DEPEND_ Num 8 Dependent Variable

5 T_DEPEND_ Num 8 Dependent Variable Transformation

6 P_DEPEND_ Num 8 Dependent Variable Predicted Values

7 R_DEPEND_ Num 8 Dependent Variable Residuals

8 Intercept Num 8 Intercept

9 n1 Num 8

10 n2 Num 8

11 TIntercept Num 8 Intercept Transformation

12 Tn1 Num 8 n1 Transformation

13 Tn2 Num 8 n2 Transformation

14 x1 Char 32

15 x2 Char 32

If you specify METHOD=MORALS with multiple dependent variables, PROC TRANSREG performs
separate univariate analyses and stacks the results in the OUT= data set. For this example, the results of the
first analysis are in the partition designated by _DEPVAR_=’Spline(y1)’ and the results of the second analysis
are in the partition designated by _DEPVAR_=’Spline(y2)’, which are the transformation and dependent
variable names. Each partition has _TYPE_=’SCORE’ observations for the variables and a _TYPE_=’M
COEFFI’ observation for the coefficients. In this example, an ID variable is specified, so the _NAME_
variable contains the formatted values of the first ID variable. Since both dependent variables have to go
into the same column, the dependent variable is given a new name, _DEPEND_. The dependent variable
transformation is named T_DEPEND_, the predicted values variable is named P_DEPEND_, and the residuals
variable is named R_DEPEND_.

The independent variables are character OPSCORE variables. By default, PROC TRANSREG replaces
character OPSCORE variables with category numbers and discards the original character variables. To avoid
this, the input variables are renamed from x1 and x2 to n1 and n2 and the original x1 and x2 are added to the
data set as ID variables. The n1 and n2 variables contain the initial values for the OPSCORE transformations,
and the Tn1 and Tn2 variables contain optimal scores. The data set also contains an Intercept and transformed
intercept TIntercept variable. The regression coefficients are in the transformation columns, which also
contain the variables to which they apply.

Output Data Set Contents

Table 104.7 summarizes the various matrices that can result from PROC TRANSREG processing and that
appear in the OUT= data set. The exact contents of an OUT= data set depends on many options.
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Table 104.7 PROC TRANSREG OUT= Data Set Contents

_TYPE_ Contents Options, Default Prefix

SCORE dependent variables DREPLACE not specified
SCORE independent variables IREPLACE not specified
SCORE transformed dependent variables default, TDPREFIX=T
SCORE transformed independent variables default, TIPREFIX=T
SCORE predicted values PREDICTED, PPREFIX=P
SCORE residuals RESIDUALS, RDPREFIX=R
SCORE leverage LEVERAGE, LEVERAGE=Leverage
SCORE lower individual confidence limits CLI, LILPREFIX=LIL,

CILPREFIX=CIL
SCORE upper individual confidence limits CLI, LIUPREFIX=LIU,

CIUPREFIX=CIU
SCORE lower mean confidence limits CLM, LMLPREFIX=LML,

CMLPREFIX=CML
SCORE upper mean confidence limits CLM, LMUPREFIX=LMU,

CMUPREFIX=CMU
SCORE dependent canonical variables CANONICAL, CDPREFIX=Cand
SCORE independent canonical variables CANONICAL, CIPREFIX=Cani
SCORE redundancy variables REDUNDANCY, RPREFIX=Red
SCORE ID, CLASS, BSPLINE variables ID, CLASS, BSPLINE,
SCORE independent variables approximations IAPPROXIMATIONS, AIPREFIX=A

M COEFFI multiple regression coefficients COEFFICIENTS, MRC
C COEFFI canonical coefficients COEFFICIENTS, CCC
MEAN marginal means COEFFICIENTS, MEANS
M REDUND multiple redundancy coefficients MREDUNDANCY
R REDUND multiple redundancy coefficients MREDUNDANCY
M POINT point coordinates COORDINATES or MPC, POINT
M EPOINT elliptical point coordinates COORDINATES or MEC, EPOINT
M QPOINT quadratic point coordinates COORDINATES or MQC, QPOINT
C POINT canonical point coordinates COORDINATES or CPC, POINT
C EPOINT canonical elliptical point coordinates COORDINATES or CEC, EPOINT
C QPOINT canonical quadratic point coordinates COORDINATES or CQC, QPOINT

The independent and dependent variables are created from the original input data. Several potential differences
exist between these variables and the actual input data. An intercept variable can be added, new variables
can be added for POINT, EPOINT, QPOINT, CLASS, IDENTITY, PSPLINE, and BSPLINE variables, and
category numbers are substituted for character OPSCORE variables. These matrices are not always what is
input to the first iteration. After the expanded data set is stored for inclusion in the output data set, several
things happen to the data before they are input to the first iteration: column means are substituted for missing
values; zero-degree SPLINE and MSPLINE variables are transformed so that the iterative algorithms get
step-function data as input, which conform to the zero-degree transformation family restrictions; and the
nonoptimal transformations are performed.
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Details for the UNIVARIATE Method
When you specify METHOD=UNIVARIATE (in the MODEL or PROC TRANSREG statement), PROC
TRANSREG can perform several analyses, one for each dependent variable. While each dependent variable
can be transformed, their independent variables are not transformed. The OUT= data set optionally contains
all of the _TYPE_=’SCORE’ observations, optionally followed by coefficients or coordinates.

Details for the MORALS Method
When you specify METHOD=MORALS (in the MODEL or PROC TRANSREG statement), successive
analyses are performed, one for each dependent variable. Each analysis transforms one dependent variable
and the entire set of the independent variables. All information for the first dependent variable (scores then,
optionally, coefficients) appears first. Then all information for the second dependent variable (scores then,
optionally, coefficients) appears next. This arrangement is repeated for all dependent variables.

Details for the CANALS and REDUNDANCY Methods
For METHOD=CANALS and METHOD=REDUNDANCY (specified in either the MODEL or PROC
TRANSREG statement), one analysis is performed that simultaneously transforms all dependent and indepen-
dent variables. The OUT= data set optionally contains all of the _TYPE_=’SCORE’ observations, optionally
followed by coefficients or coordinates.

Variable Names

As shown in the preceding examples, some variables in the output data set directly correspond to input
variables, and some are created. All original optimal and nonoptimal transformation variable names are
unchanged.

The names of the POINT, QPOINT, and EPOINT expansion variables are also left unchanged, but new
variables are created. When independent POINT variables are present, the sum-of-squares variable _ISSQ_
is added to the output data set. For each EPOINT and QPOINT variable, a new squared variable is created
by appending “_2”. For example, Dim1 and Dim2 are expanded into Dim1, Dim2, Dim1_2, and Dim2_2. In
addition, for each pair of QPOINT variables, a new crossproduct variable is created by combining the two
names—for example, Dim1Dim2.

The names of the CLASS variables are constructed from original variable names and levels. Lengths are
controlled by the CPREFIX= a-option. For example, when x1 and x2 both have values of ’a’ and ’b’,
CLASS(x1 | x2 / ZERO=NONE) creates x1 main-effect variable names x1a x1b, x2 main-effect variable
names x2a x2b, and interaction variable names x1ax2a x1ax2b x1bx2a x1bx2b.

PROC TRANSREG then uses these variable names when creating the transformed, predicted, and residual
variable names by affixing the relevant prefix and dropping extra characters if necessary.

METHOD=MORALS Variable Names
When you specify METHOD=MORALS and only one dependent variable is present, the output data set
is structured exactly as if METHOD=REDUNDANCY (see the section “Details for the CANALS and
REDUNDANCY Methods” on page 8690). When more than one dependent variable is present, the dependent
variables are output in the variable _DEPEND_, transformed dependent variables are output in the variable
T_DEPEND_, predicted values are output in the variable P_DEPEND_, and residuals are output in the
variable R_DEPEND_. You can partition the data set into BY groups, one per dependent variable, by
referring to the character variable _DEPVAR_, which contains the original dependent variable names and
transformations.
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Duplicate Variable Names
When the same name is generated from multiple variables in the OUT= data set, new names are created by
appending ’2’, ’3’, or ’4’, and so on, until a unique name is created. For 32-character names, the last character
is replaced with a numeric suffix until a unique name is created. For example, if there are two output variables
that otherwise would be named x, then x and x2 are created instead. If there are two output variables that
otherwise would be named ThisIsAThirtyTwoCharacterVarName, then ThisIsAThirtyTwoCharacterVarName
and ThisIsAThirtyTwoCharacterVarNam2 are created instead.

OUTTEST= Output Data Set
The OUTTEST= data set contains hypothesis test results. The OUTTEST= data set always contains ANOVA
results. When you specify the SS2 a-option, regression tables are also output. When you specify the
UTILITIES a-option, conjoint analysis part-worth utilities are also output. The OUTTEST= data set has the
following variables:

_DEPVAR_ is a 42-character variable that contains the dependent variable transformation and name.

_TYPE_ is an 8-character variable that contains the table type. The first character is “U” for
univariate or “M” for multivariate. The second character is blank. The third character
is “A” for ANOVA, “2” for Type II sum of squares, or “U” for UTILITIES. The fourth
character is blank. The fifth character is “L” for liberal tests, “C” for conservative tests, or
“U” for the usual tests.

Title is an 80-character variable that contains the table title.

Variable is a 42-character variable that contains the independent variable transformations and
names for regression tables and blanks for ANOVA tables.

Coefficient contains the multiple regression coefficients for regression tables and underscore special
missing values for ANOVA tables.

Statistic is a 24-character variable that contains the names for statistics in other variables, such as
Value.

Value contains multivariate test statistics and all other information that does not fit in one of the
other columns including R square, dependent mean, adjusted R square, and coefficient
of variation. Whenever Value is not an underscore special missing value, the Statistic
variable describes the contents of the Value variable.

NumDF contains numerator degrees of freedom for F tests.

DenDF contains denominator degrees of freedom for F tests.

SSq contains sums of squares.

MeanSquare contains mean squares.

F contains F statistics.

NumericP contains the p-value for the F statistic, stored in a numeric variable.

P is a 9-character variable that contains the formatted p-value for the F statistic, including
the appropriate �, <=, >=, or blank symbols.

LowerLimit contains lower confidence limits on the parameter estimates.
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UpperLimit contains upper confidence limits on the parameter estimates.

StdError contains standard errors. For SS2 and UTILITIES tables, standard errors are output for
each coefficient with one degree of freedom.

Importance contains the relative importance of each factor for UTILITIES tables.

Label is a 256-character variable that contains variable labels.

There are several possible tables in the OUTTEST= data set corresponding to combinations of univariate and
multivariate tests; ANOVA and regression results; and liberal, conservative, and the usual tests. Each table is
composed of only a subset of the variables. Numeric variables contain underscore special missing values
when they are not a column in a table. Ordinary missing values (.) appear in variables that are part of a table
when a nonmissing value cannot be produced. For example, the F is missing for a test with zero degrees of
freedom.

Computational Resources
This section provides information about the computational resources required to use PROC TRANSREG.

Let

n D number of observations

q D number of expanded independent variables

r D number of expanded dependent variables

k D maximum spline degree

p D maximum number of knots

More than 56.q C r/ plus the maximum of the data matrix size, the optimal scaling work space, and the
covariance matrix size bytes of array space are required. The data matrix size is 8n.qC r/ bytes. The optimal
scaling work space requires less than 8.6nC .p C k C 2/.p C k C 11// bytes. The covariance matrix size
is 4.q C r/.q C r C 1/ bytes.

PROC TRANSREG tries to store the original and transformed data in memory. If there is not enough memory,
a utility data set is used, potentially resulting in a large increase in execution time. The amount of memory for
the preceding data formulas is an underestimate of the amount of memory needed to handle most problems.
These formulas give the absolute minimum amount of memory required. If a utility data set is used, and if
memory can be used with perfect efficiency, then roughly the amount of memory stated previously is needed.
In reality, most problems require at least two or three times the minimum.

PROC TRANSREG sorts the data once. The sort time is roughly proportional to .q C r/n3=2.

One regression analysis per iteration is required to compute model parameters (or two canonical correlation
analyses per iteration for METHOD=CANALS). The time required to accumulate the crossproducts matrix
is roughly proportional to n.q C r/2. The time required to compute the regression coefficients is roughly
proportional to q3.

Each optimal scaling is a multiple regression problem, although some transformations are handled with faster
special-case algorithms. The number of regressors for the optimal scaling problems depends on the original



Unbalanced ANOVA without CLASS Variables F 8693

values of the variable and the type of transformation. For each monotone spline transformation, an unknown
number of multiple regressions is required to find a set of coefficients that satisfies the constraints. The
B-spline basis is generated twice for each SPLINE and MSPLINE transformation for each iteration. The
time required to generate the B-spline basis is roughly proportional to nk2.

Unbalanced ANOVA without CLASS Variables
This section illustrates that an analysis of variance model can be formulated as a simple regression model
with optimal scoring. The purpose of the example is to explain one aspect of how PROC TRANSREG works,
not to propose an alternative way of performing an analysis of variance.

Finding the overall fit of a large, unbalanced analysis of variance model can be handled as an optimal
scoring problem without creating large, sparse design matrices. For example, consider an unbalanced full
main-effects and interactions ANOVA model with six factors. Assume that a SAS data set is created with
factor-level indicator variables c1 through c6 and dependent variable y. If each factor level consists of
nonblank single characters, you can create a cell indicator in a DATA step with the statement as follows:

x=compress(c1||c2||c3||c4||c5||c6);

The following statements optimally score x (by using the OPSCORE transformation) and do not transform y:

proc transreg;
model identity(y)=opscore(x);
output;

run;

The final R square reported is the R square for the full analysis of variance model. This R square is the same
R square that would be reported by both of the following PROC GLM steps:

proc glm;
class x;
model y=x;

run;

proc glm;
class c1-c6;
model y=c1|c2|c3|c4|c5|c6;

run;

PROC TRANSREG optimally scores the classes of x, within the space of a single variable with values
linearly related to the cell means, so the full ANOVA problem is reduced to a simple regression problem with
an optimal independent variable. PROC TRANSREG requires only one iteration to find the optimal scoring
of x but, by default, performs a second iteration, which reports no data changes.

Hypothesis Tests for Simple Univariate Models
If the dependent variable has one parameter (IDENTITY, LINEAR with no missing values, and so on) and if
there are no monotonicity constraints, PROC TRANSREG fits univariate models, which can also be fit with a
DATA step and PROC REG. This is illustrated with the following artificial data set:
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data htex;
do i = 0.5 to 10 by 0.5;

x1 = log(i);
x2 = sqrt(i) + sin(i);
x3 = 0.05 * i * i + cos(i);
y = x1 - x2 + x3 + 3 * normal(7);
x1 = x1 + normal(7);
x2 = x2 + normal(7);
x3 = x3 + normal(7);
output;

end;
run;

Both PROC TRANSREG and PROC REG are run to fit the same polynomial regression model as follows:

proc transreg data=htex ss2 short;
title 'Fit a Polynomial Regression Model with PROC TRANSREG';
model identity(y) = spline(x1);

run;

data htex2;
set htex;
x1_1 = x1;
x1_2 = x1 * x1;
x1_3 = x1 * x1 * x1;

run;

proc reg;
title 'Fit a Polynomial Regression Model with PROC REG';
model y = x1_1 - x1_3;

run; quit;

The ANOVA and regression tables from PROC TRANSREG are displayed in Figure 104.68. The ANOVA
and regression tables from PROC REG are displayed in Figure 104.69. The SHORT a-option is specified
with PROC TRANSREG to suppress the iteration history.

Figure 104.68 ANOVA and Regression Output from PROC TRANSREG

Fit a Polynomial Regression Model with PROC TRANSREG

The TRANSREG Procedure

Fit a Polynomial Regression Model with PROC TRANSREG

The TRANSREG Procedure

Dependent Variable Identity(y)

Number of Observations Read 20

Number of Observations Used 20

Identity(y)

Algorithm converged.
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Figure 104.68 continued

The TRANSREG Procedure Hypothesis Tests for Identity(y)

Univariate ANOVA Table Based on the Usual Degrees
of Freedom

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 3 5.8365 1.94550 0.14 0.9329

Error 16 218.3073 13.64421

Corrected Total 19 224.1438

Root MSE 3.69381 R-Square 0.0260

Dependent Mean 0.85490 Adj R-Sq -0.1566

Coeff Var 432.07258

Univariate Regression Table Based on the Usual Degrees of
Freedom

Variable DF Coefficient

Type II
Sum of

Squares
Mean

Square F Value Pr > F

Intercept 1 1.4612767 18.8971 18.8971 1.38 0.2565

Spline(x1) 3 -0.3924013 5.8365 1.9455 0.14 0.9329

Figure 104.69 ANOVA and Regression Output from PROC REG

Fit a Polynomial Regression Model with PROC REG

The REG Procedure
Model: MODEL1

Dependent Variable: y

Fit a Polynomial Regression Model with PROC REG

The REG Procedure
Model: MODEL1

Dependent Variable: y

Number of Observations Read 20

Number of Observations Used 20

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 3 5.83651 1.94550 0.14 0.9329

Error 16 218.30729 13.64421

Corrected Total 19 224.14380

Root MSE 3.69381 R-Square 0.0260

Dependent Mean 0.85490 Adj R-Sq -0.1566

Coeff Var 432.07258

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 1.22083 1.47163 0.83 0.4190

x1_1 1 0.79743 1.75129 0.46 0.6550

x1_2 1 -0.49381 1.50449 -0.33 0.7470

x1_3 1 0.04422 0.32956 0.13 0.8949



8696 F Chapter 104: The TRANSREG Procedure

The PROC TRANSREG regression table differs in several important ways from the parameter estimate table
produced by PROC REG. The REG procedure displays standard errors and t statistics. PROC TRANSREG
displays Type II sums of squares, mean squares, and F statistics. The difference is because the numerator
degrees of freedom are not always 1, so t tests are not uniformly appropriate. When the degrees of freedom
for variable xj is 1, the following relationships hold between the standard errors .sˇj / and the Type II sums
of squares (SSj ):

sˇj D .
Ǒ2
j =Fj /

1=2

and

SSj D Ǒ2j �MSE=s2ˇj

PROC TRANSREG does not provide tests of the individual terms that go into the transformation. (However,
it could if BSPLINE or PSPLINE had been specified instead of SPLINE.) The test of spline(x1) is the
same as the test of the overall model. The intercepts are different due to the different numbers of variables
and their standardizations.

In the next example, both x1 and x2 are transformed in the first PROC TRANSREG step, and PROC
TRANSREG is used instead of a DATA step to create the polynomials for PROC REG. Both PROC
TRANSREG and PROC REG fit the same polynomial regression model. The following statements run PROC
TRANSREG and PROC REG and produce Figure 104.70 and Figure 104.71:

title 'Two-Variable Polynomial Regression';

proc transreg data=htex ss2 solve;
model identity(y) = spline(x1 x2);

run;

proc transreg noprint data=htex maxiter=0;
/* Use PROC TRANSREG to prepare input to PROC REG */
model identity(y) = pspline(x1 x2);
output out=htex2;

run;

proc reg data=htex2;
model y = x1_1-x1_3 x2_1-x2_3;
test x1_1, x1_2, x1_3;
test x2_1, x2_2, x2_3;

run; quit;

Figure 104.70 Two-Variable Polynomial Regression Output from PROC TRANSREG

Two-Variable Polynomial Regression

The TRANSREG Procedure

Two-Variable Polynomial Regression

The TRANSREG Procedure

Dependent Variable Identity(y)

Number of Observations Read 20

Number of Observations Used 20
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Figure 104.70 continued

TRANSREG MORALS Algorithm Iteration History for
Identity(y)

Iteration
Number

Average
Change

Maximum
Change R-Square

Criterion
Change Note

0 0.69502 4.73421 0.08252

1 0.00000 0.00000 0.17287 0.09035 Converged

Algorithm converged.

Hypothesis Test Iterations Excluding Spline(x1)

TRANSREG MORALS Algorithm Iteration History for
Identity(y)

Iteration
Number

Average
Change

Maximum
Change R-Square

Criterion
Change Note

0 0.03575 0.32390 0.15097

1 0.00000 0.00000 0.15249 0.00152 Converged

Algorithm converged.

Hypothesis Test Iterations Excluding Spline(x2)

TRANSREG MORALS Algorithm Iteration History for
Identity(y)

Iteration
Number

Average
Change

Maximum
Change R-Square

Criterion
Change Note

0 0.45381 1.43736 0.00717

1 0.00000 0.00000 0.02604 0.01886 Converged

Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(y)

Univariate ANOVA Table Based on the Usual Degrees
of Freedom

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 6 38.7478 6.45796 0.45 0.8306

Error 13 185.3960 14.26123

Corrected Total 19 224.1438

Root MSE 3.77640 R-Square 0.1729

Dependent Mean 0.85490 Adj R-Sq -0.2089

Coeff Var 441.73431

Univariate Regression Table Based on the Usual Degrees of
Freedom

Variable DF Coefficient

Type II
Sum of

Squares
Mean

Square F Value Pr > F

Intercept 1 3.5437125 35.2282 35.2282 2.47 0.1400

Spline(x1) 3 0.3644562 4.5682 1.5227 0.11 0.9546

Spline(x2) 3 -1.3551738 32.9112 10.9704 0.77 0.5315



8698 F Chapter 104: The TRANSREG Procedure

There are three iteration histories: one for the overall model and two for the two independent variables. The
first PROC TRANSREG iteration history shows the R square of 0.17287 for the fit of the overall model. The
second is for the following model:

model identity(y) = spline(x2);

This model excludes spline(x1). The third iteration history is for the following model:

model identity(y) = spline(x1);

This model excludes spline(x2). The difference between the first and second R square times the total sum
of squares is the model sum of squares for spline(x1):

.0:17287 � 0:15249/ � 224:143800 D 4:568165

The difference between the first and third R square times the total sum of squares is the model sum of squares
for spline(x2):

.0:17287 � 0:02604/ � 224:143800 D 32:911247

Figure 104.71 displays the PROC REG results. The TEST statement in PROC REG tests the null hypothesis
that the vector of parameters for x1_1 x1_2 x1_3 is zero. This is the same test as the spline(x1) test used by
PROC TRANSREG. Similarly, the PROC REG test that the vector of parameters for x2_1 x2_2 x2_3 is zero
is the same as the PROC TRANSREG SPLINE(x2) test. So for models with no monotonicity constraints and
no dependent variable transformations, PROC TRANSREG provides little more than a different packaging
of standard least squares methodology.

Figure 104.71 Two-Variable Polynomial Regression Output from PROC REG

Two-Variable Polynomial Regression

The REG Procedure
Model: MODEL1

Dependent Variable: y

Two-Variable Polynomial Regression

The REG Procedure
Model: MODEL1

Dependent Variable: y

Number of Observations Read 20

Number of Observations Used 20

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 6 38.74775 6.45796 0.45 0.8306

Error 13 185.39605 14.26123

Corrected Total 19 224.14380

Root MSE 3.77640 R-Square 0.1729

Dependent Mean 0.85490 Adj R-Sq -0.2089

Coeff Var 441.73431
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Figure 104.71 continued

Parameter Estimates

Variable Label DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept Intercept 1 10.77824 7.55244 1.43 0.1771

x1_1 x1 1 1 0.40112 1.81024 0.22 0.8281

x1_2 x1 2 1 0.25652 1.66023 0.15 0.8796

x1_3 x1 3 1 -0.11639 0.36775 -0.32 0.7567

x2_1 x2 1 1 -14.07054 12.50521 -1.13 0.2809

x2_2 x2 2 1 5.95610 5.97952 1.00 0.3374

x2_3 x2 3 1 -0.80608 0.87291 -0.92 0.3726

Two-Variable Polynomial Regression

The REG Procedure
Model: MODEL1

Two-Variable Polynomial Regression

The REG Procedure
Model: MODEL1

Test 1 Results for Dependent Variable y

Source DF
Mean

Square F Value Pr > F

Numerator 3 1.52272 0.11 0.9546

Denominator 13 14.26123

Two-Variable Polynomial Regression

The REG Procedure
Model: MODEL1

Two-Variable Polynomial Regression

The REG Procedure
Model: MODEL1

Test 2 Results for Dependent Variable y

Source DF
Mean

Square F Value Pr > F

Numerator 3 10.97042 0.77 0.5315

Denominator 13 14.26123

Hypothesis Tests with Monotonicity Constraints
Now consider a model with monotonicity constraints. This model has no counterpart in PROC REG. The
following statements fit a monotone-spline model and produce Figure 104.72:

title 'Monotone Splines';

proc transreg data=htex ss2 short;
model identity(y) = mspline(x1-x3 / nknots=3);

run;

The SHORT a-option is specified to suppress the iteration histories. Two ANOVA tables are displayed—one
by using liberal degrees of freedom and one by using conservative degrees of freedom. All sums of squares
and the R squares are the same for both tables. What differs are the degrees of freedom and statistics that use
degrees of freedom. The liberal test has 8 model degrees of freedom and 11 error degrees of freedom, whereas
the conservative test has 15 model degrees of freedom and only 4 error degrees of freedom. The “true”
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p-value is between 0.8462 and 0.9997, so clearly you would fail to reject the null hypothesis. Unfortunately,
results are not always this clear. (See Figure 104.72.)

Figure 104.72 Monotone Spline Transformations

Monotone Splines

The TRANSREG Procedure

Monotone Splines

The TRANSREG Procedure

Dependent Variable Identity(y)

Number of Observations Read 20

Number of Observations Used 20

Identity(y)

Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(y)

Univariate ANOVA Table Based on Liberal Degrees of
Freedom

Source DF
Sum of

Squares
Mean

Square F Value Liberal p

Model 8 58.0534 7.25667 0.48 >= 0.8462

Error 11 166.0904 15.09913

Corrected Total 19 224.1438

Root MSE 3.88576 R-Square 0.2590

Dependent Mean 0.85490 Adj R-Sq -0.2799

Coeff Var 454.52581

Univariate ANOVA Table Based on Conservative Degrees of
Freedom

Source DF
Sum of

Squares
Mean

Square F Value
Conservative

p

Model 15 58.0534 3.87022 0.09 <= 0.9997

Error 4 166.0904 41.52261

Corrected Total 19 224.1438

Root MSE 6.44380 R-Square 0.2590

Dependent Mean 0.85490 Adj R-Sq -2.5197

Coeff Var 753.74578

Univariate Regression Table Based on Liberal Degrees of
Freedom

Variable DF Coefficient

Type II
Sum of

Squares
Mean

Square F Value Liberal p

Intercept 1 4.8687676 54.7372 54.7372 3.63 >= 0.0834

Mspline(x1) 2 -0.6886834 12.1943 6.0972 0.40 >= 0.6773

Mspline(x2) 3 -1.8237319 46.3155 15.4385 1.02 >= 0.4199

Mspline(x3) 3 0.8646155 24.6840 8.2280 0.54 >= 0.6616
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Figure 104.72 continued

Univariate Regression Table Based on Conservative Degrees of
Freedom

Variable DF Coefficient

Type II
Sum of

Squares
Mean

Square F Value
Conservative

p

Intercept 1 4.8687676 54.7372 54.7372 1.32 <= 0.3149

Mspline(x1) 5 -0.6886834 12.1943 2.4389 0.06 <= 0.9959

Mspline(x2) 5 -1.8237319 46.3155 9.2631 0.22 <= 0.9344

Mspline(x3) 5 0.8646155 24.6840 4.9368 0.12 <= 0.9809

Hypothesis Tests with Dependent Variable Transformations
PROC TRANSREG can also provide approximate tests of hypotheses when the dependent variable is trans-
formed, but the output is more complicated. When a dependent variable has more than one degree of freedom,
the problem becomes multivariate. Hypothesis tests are performed in the context of a multivariate linear
model with the number of dependent variables equal to the number of scoring parameters for the dependent
variable transformation. The transformation regression model with a dependent variable transformation
differs from the usual multivariate linear model in two important ways. First, the usual assumption of multi-
variate normality is always violated. This fact is simply ignored. This is one reason why all hypothesis tests
in the presence of a dependent variable transformation should be considered approximate at best. Multivariate
normality is assumed even though it is known that the assumption is violated.

The second difference concerns the usual multivariate test statistics: Pillai’s trace, Wilks’ lambda, Hotelling-
Lawley trace, and Roy’s greatest root. The first three statistics are defined in terms of all the squared canonical
correlations. Here, there is only one linear combination (the transformation), and hence only one squared
canonical correlation of interest, which is equal to the R square. It might seem that Roy’s greatest root, which
uses only the largest squared canonical correlation, is the only statistic of interest. Unfortunately, Roy’s
greatest root is very liberal and provides only a lower bound on the p-value. Approximate upper bounds are
provided by adjusting the other three statistics for the one linear combination case. Wilks’ lambda, Pillai’s
trace, and Hotelling-Lawley trace are a conservative adjustment of the usual statistics.

These statistics are normally defined in terms of the squared canonical correlations, which are the eigenvalues
of the matrix H.HCE/�1, where H is the hypothesis sum-of-squares matrix and E is the error sum-of-squares
matrix. Here the R square is used for the first eigenvalue, and all other eigenvalues are set to 0 since only
one linear combination is used. Degrees of freedom are computed assuming that all linear combinations
contribute to the lambda and trace statistics, so the F tests for those statistics are conservative. The p-values
for the liberal and conservative statistics provide approximate lower and upper bounds on p. In practice, the
adjusted Pillai’s trace is very conservative—perhaps too conservative to be useful. Wilks’ lambda is less
conservative, and the Hotelling-Lawley trace seems to be the least conservative. The conservative statistics
and the liberal Roy’s greatest root provide a bound on the true p-value. Unfortunately, they sometimes report
a bound of 0.0001 and 1.0000.

The following example has a dependent variable transformation and produces Figure 104.73:

title 'Transform Dependent and Independent Variables';

proc transreg data=htex ss2 solve short;
model spline(y) = spline(x1-x3);

run;
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The univariate results match Roy’s greatest root results. Clearly, the proper action is to fail to reject the null
hypothesis. However, as stated previously, results are not always this clear.

Figure 104.73 Transform Dependent and Independent Variables

Transform Dependent and Independent Variables

The TRANSREG Procedure

Transform Dependent and Independent Variables

The TRANSREG Procedure

Dependent Variable Spline(y)

Number of Observations Read 20

Number of Observations Used 20

Spline(y)

Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Spline(y)

Univariate ANOVA Table Based on the Usual Degrees of
Freedom

Source DF
Sum of

Squares
Mean

Square F Value Liberal p

Model 9 110.8822 12.32025 1.09 >= 0.4452

Error 10 113.2616 11.32616

Corrected Total 19 224.1438

The above statistics are not adjusted for the fact that the
dependent variable was transformed and so are generally
liberal.

Root MSE 3.36544 R-Square 0.4947

Dependent Mean 0.85490 Adj R-Sq 0.0399

Coeff Var 393.66234

Adjusted Multivariate ANOVA Table Based on the Usual Degrees of
Freedom

Dependent Variable Scoring Parameters=3   S=3   M=2.5   N=3

Statistic Value F Value Num DF Den DF p

Wilks' Lambda 0.505308 0.23 27 24.006 <= 0.9998

Pillai's Trace 0.494692 0.22 27 30 <= 0.9999

Hotelling-Lawley Trace 0.978992 0.26 27 11.589 <= 0.9980

Roy's Greatest Root 0.978992 1.09 9 10 >= 0.4452

The Wilks' Lambda, Pillai's Trace, and Hotelling-Lawley Trace statistics are a conservative
adjustment of the normal statistics.  Roy's Greatest Root is liberal.  These statistics are normally
defined in terms of the squared canonical correlations which are the eigenvalues of the matrix
H*inv(H+E).  Here the R-Square is used for the first eigenvalue and all other eigenvalues are set
to zero since only one linear combination is used.  Degrees of freedom are computed assuming
all linear combinations contribute to the Lambda and Trace statistics, so the F tests for those
statistics are conservative.  The p values for the liberal and conservative statistics provide
approximate lower and upper bounds on p.  A liberal test statistic with conservative degrees of
freedom and a conservative test statistic with liberal degrees of freedom yield at best an
approximate p value, which is indicated by a "~" before the p value.
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Figure 104.73 continued

Univariate Regression Table Based on the Usual Degrees of
Freedom

Variable DF Coefficient

Type II
Sum of

Squares
Mean

Square F Value Liberal p

Intercept 1 6.9089087 117.452 117.452 10.37 >= 0.0092

Spline(x1) 3 -1.0832321 32.493 10.831 0.96 >= 0.4504

Spline(x2) 3 -2.1539191 45.251 15.084 1.33 >= 0.3184

Spline(x3) 3 0.4779207 10.139 3.380 0.30 >= 0.8259

The above statistics are not adjusted for the fact that the dependent variable was transformed
and so are generally liberal.

Adjusted Multivariate Regression Table Based on the Usual Degrees of Freedom

Variable Coefficient Statistic Value F Value Num DF Den DF p

Intercept 6.9089087 Wilks' Lambda 0.49092 2.77 3 8 0.1112

Pillai's Trace 0.50908 2.77 3 8 0.1112

Hotelling-Lawley Trace 1.036993 2.77 3 8 0.1112

Roy's Greatest Root 1.036993 2.77 3 8 0.1112

Spline(x1) -1.0832321 Wilks' Lambda 0.777072 0.24 9 19.621 <= 0.9840

Pillai's Trace 0.222928 0.27 9 30 <= 0.9787

Hotelling-Lawley Trace 0.286883 0.24 9 9.8113 <= 0.9784

Roy's Greatest Root 0.286883 0.96 3 10 >= 0.4504

Spline(x2) -2.1539191 Wilks' Lambda 0.714529 0.32 9 19.621 <= 0.9572

Pillai's Trace 0.285471 0.35 9 30 <= 0.9494

Hotelling-Lawley Trace 0.399524 0.33 9 9.8113 <= 0.9424

Roy's Greatest Root 0.399524 1.33 3 10 >= 0.3184

Spline(x3) 0.4779207 Wilks' Lambda 0.917838 0.08 9 19.621 <= 0.9998

Pillai's Trace 0.082162 0.09 9 30 <= 0.9996

Hotelling-Lawley Trace 0.089517 0.07 9 9.8113 <= 0.9997

Roy's Greatest Root 0.089517 0.30 3 10 >= 0.8259

These statistics are adjusted in the same way as the multivariate statistics above.

Hypothesis Tests with One-Way ANOVA
One-way ANOVA models are fit with either an explicit or implicit intercept. In implicit intercept models, the
ANOVA table of PROC TRANSREG is the correct table for a model with an intercept, and the regression
table is the correct table for a model that does not have a separate explicit intercept. The PROC TRANSREG
implicit intercept ANOVA table matches the PROC REG table when the NOINT a-option is not specified, and
the PROC TRANSREG implicit intercept regression table matches the PROC REG table when the NOINT
a-option is specified. The following statements illustrate this relationship and produce Figure 104.74:

data oneway;
input y x $;
datalines;

0 a
1 a
2 a
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7 b
8 b
9 b
3 c
4 c
5 c
;

title 'Implicit Intercept Model';

proc transreg ss2 data=oneway short;
model identity(y) = class(x / zero=none);
output out=oneway2;

run;

proc reg data=oneway2;
model y = xa xb xc; /* Implicit Intercept ANOVA */
model y = xa xb xc / noint; /* Implicit Intercept Regression */

run; quit;

Figure 104.74 Implicit Intercept Model

Implicit Intercept Model

The TRANSREG Procedure

Implicit Intercept Model

The TRANSREG Procedure

Dependent Variable Identity(y)

Class Level
Information

Class Levels Values

x 3 a b c

Number of Observations Read 9

Number of Observations Used 9

Implicit Intercept Model

The TRANSREG Procedure Hypothesis Tests for Identity(y)

Univariate ANOVA Table Based on the Usual Degrees
of Freedom

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 2 74.00000 37.00000 37.00 0.0004

Error 6 6.00000 1.00000

Corrected Total 8 80.00000

Root MSE 1.00000 R-Square 0.9250

Dependent Mean 4.33333 Adj R-Sq 0.9000

Coeff Var 23.07692
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Figure 104.74 continued

Univariate Regression Table Based on the Usual Degrees of
Freedom

Variable DF Coefficient

Type II
Sum of

Squares
Mean

Square F Value Pr > F Label

Class.xa 1 1.00000000 3.000 3.000 3.00 0.1340 x a

Class.xb 1 8.00000000 192.000 192.000 192.00 <.0001 x b

Class.xc 1 4.00000000 48.000 48.000 48.00 0.0004 x c

Implicit Intercept Model

The REG Procedure
Model: MODEL1

Dependent Variable: y

Implicit Intercept Model

The REG Procedure
Model: MODEL1

Dependent Variable: y

Number of Observations Read 9

Number of Observations Used 9

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 2 74.00000 37.00000 37.00 0.0004

Error 6 6.00000 1.00000

Corrected Total 8 80.00000

Root MSE 1.00000 R-Square 0.9250

Dependent Mean 4.33333 Adj R-Sq 0.9000

Coeff Var 23.07692

Note: Model is not full rank. Least-squares solutions for the parameters are not unique. Some statistics will be misleading. A reported
DF of 0 or B means that the estimate is biased.

Note: Model is not full rank. Least-squares solutions for the parameters are not unique. Some statistics will be misleading. A reported
DF of 0 or B means that the estimate is biased.

Note: The following parameters have been set to 0, since the variables are a linear combination of other variables as shown.

xc = Intercept - xa - xb

Parameter Estimates

Variable Label DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept Intercept B 4.00000 0.57735 6.93 0.0004

xa x a B -3.00000 0.81650 -3.67 0.0104

xb x b B 4.00000 0.81650 4.90 0.0027

xc x c 0 0 . . .

Implicit Intercept Model

The REG Procedure
Model: MODEL2

Dependent Variable: y

Implicit Intercept Model

The REG Procedure
Model: MODEL2

Dependent Variable: y

Number of Observations Read 9

Number of Observations Used 9
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Figure 104.74 continued

Note: No intercept in model. R-Square is redefined.

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 3 243.00000 81.00000 81.00 <.0001

Error 6 6.00000 1.00000

Uncorrected Total 9 249.00000

Root MSE 1.00000 R-Square 0.9759

Dependent Mean 4.33333 Adj R-Sq 0.9639

Coeff Var 23.07692

Parameter Estimates

Variable Label DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

xa x a 1 1.00000 0.57735 1.73 0.1340

xb x b 1 8.00000 0.57735 13.86 <.0001

xc x c 1 4.00000 0.57735 6.93 0.0004

Using the DESIGN Output Option
This example uses PROC TRANSREG and the DESIGN o-option to prepare an input data set with classifica-
tion variables for the LOGISTIC procedure. The DESIGN o-option specifies that the goal is design matrix
creation, not analysis. When you specify DESIGN, dependent variables are not required. The DEVIATIONS
(or EFFECTS) t-option requests a deviations-from-means .1; 0;�1/ coding of the classification variables,
which is the same coding the CATMOD procedure uses. PROC TRANSREG automatically creates a macro
variable &_TrgInd that contains the list of independent variables created. This macro is used in the PROC
LOGISTIC MODEL statement. (See Figure 104.75.) For comparison, the same analysis is also performed
with PROC CATMOD. The following statements create Figure 104.75:

title 'Using PROC TRANSREG to Create a Design Matrix';

data a;
do y = 1, 2;

do a = 1 to 4;
do b = 1 to 3;

w = ceil(uniform(1) * 10 + 10);
output;

end;
end;

end;
run;

proc transreg data=a design;
model class(a b / deviations);
id y w;
output out=coded;

run;
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proc print;
title2 'PROC TRANSREG Output Data Set';

run;

title2 'PROC LOGISTIC with Classification Variables';

proc logistic;
freq w;
model y = &_trgind;

run;

title2 'PROC CATMOD Should Produce the Same Results';

proc catmod data=a;
model y = a b;
weight w;

run;

Figure 104.75 The PROC TRANSREG Design Matrix

Using PROC TRANSREG to Create a Design Matrix
PROC LOGISTIC with Classification Variables

The LOGISTIC Procedure

Using PROC TRANSREG to Create a Design Matrix
PROC LOGISTIC with Classification Variables

The LOGISTIC Procedure

Model Information

Data Set WORK.CODED

Response Variable y

Number of Response Levels 2

Frequency Variable w

Model binary logit

Optimization Technique Fisher's scoring

Number of Observations Read 24

Number of Observations Used 24

Sum of Frequencies Read 375

Sum of Frequencies Used 375

Response Profile

Ordered
Value y

Total
Frequency

1 1 188

2 2 187

Probability modeled is y=1.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.
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Figure 104.75 continued

Model Fit Statistics

Criterion
Intercept

Only

Intercept
and

Covariates

AIC 521.858 524.378

SC 525.785 547.939

-2 Log L 519.858 512.378

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 7.4799 5 0.1873

Score 7.4312 5 0.1905

Wald 7.3356 5 0.1969

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept 1 -0.00040 0.1044 0.0000 0.9969

a1 1 -0.0802 0.1791 0.2007 0.6542

a2 1 0.2001 0.1800 1.2363 0.2662

a3 1 -0.1350 0.1819 0.5514 0.4578

b1 1 -0.2392 0.1500 2.5436 0.1107

b2 1 0.3433 0.1474 5.4223 0.0199

Odds Ratio Estimates

Effect
Point

Estimate
95% Wald

Confidence Limits

a1 0.923 0.650 1.311

a2 1.222 0.858 1.738

a3 0.874 0.612 1.248

b1 0.787 0.587 1.056

b2 1.410 1.056 1.882

Association of Predicted Probabilities and
Observed Responses

Percent Concordant 54.0 Somers' D 0.163

Percent Discordant 37.8 Gamma 0.177

Percent Tied 8.2 Tau-a 0.082

Pairs 35156 c 0.581

Using PROC TRANSREG to Create a Design Matrix
PROC CATMOD Should Produce the Same Results

The CATMOD Procedure

Using PROC TRANSREG to Create a Design Matrix
PROC CATMOD Should Produce the Same Results

The CATMOD Procedure

Data Summary

Response y Response Levels 2

Weight Variable w Populations 12

Data Set A Total Frequency 375

Frequency Missing 0 Observations 24
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Figure 104.75 continued

Population Profiles

Sample a b Sample Size

1 1 1 31

2 1 2 31

3 1 3 34

4 2 1 26

5 2 2 33

6 2 3 37

7 3 1 36

8 3 2 29

9 3 3 28

10 4 1 26

11 4 2 35

12 4 3 29

Response
Profiles

Response y

1 1

2 2

Maximum Likelihood Analysis

Maximum likelihood computations converged.

Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq

Intercept 1 0.00 0.9969

a 3 1.50 0.6823

b 2 5.64 0.0597

Likelihood Ratio 6 2.81 0.8329

Analysis of Maximum Likelihood Estimates

Parameter Estimate
Standard

Error
Chi-

Square Pr > ChiSq

Intercept -0.00040 0.1044 0.00 0.9969

a 1 -0.0802 0.1791 0.20 0.6542

2 0.2001 0.1800 1.24 0.2662

3 -0.1350 0.1819 0.55 0.4578

b 1 -0.2392 0.1500 2.54 0.1107

2 0.3434 0.1474 5.42 0.0199

Discrete Choice Experiments: DESIGN, NORESTORE, NOZERO
A discrete choice experiment is constructed consisting of four product brands, each available at three different
prices, $1.49, $1.99, $2.49. In addition, each choice set contains a constant “other” alternative available
at $1.49. In the fifth choice set, price is constant. PROC TRANSREG is used to code the design, and
the PHREG procedure fits the multinomial logit choice model (not shown). See Kuhfeld (2010) for more
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information about discrete choice modeling and the multinomial logit model; look for the latest “Discrete
Choice” report. The following statements produce Figure 104.76:

title 'Choice Model Coding';

data design;
array p[4];
input p1-p4 @@;
set = _n_;
do brand = 1 to 4;

price = p[brand];
output;

end;
brand = .; price = 1.49; output; /* constant alternative */
keep set brand price;
datalines;

1.49 1.99 1.49 1.99 1.99 1.99 2.49 1.49 1.99 1.49 1.99 1.49
1.99 1.49 2.49 1.99 1.49 1.49 1.49 1.49 2.49 1.49 1.99 2.49
1.49 1.49 2.49 2.49 2.49 2.49 1.49 1.49 1.49 2.49 2.49 1.99
2.49 2.49 2.49 1.49 1.99 2.49 1.49 2.49 2.49 1.99 2.49 2.49
2.49 1.49 1.49 1.99 1.49 1.99 1.99 1.49 2.49 1.99 1.99 1.99
1.99 1.99 1.49 2.49 1.99 2.49 1.99 1.99 1.49 2.49 1.99 2.49
;

proc transreg data=design design norestoremissing nozeroconstant;
model class(brand / zero=none) identity(price);
output out=coded;
by set;

run;

proc print data=coded(firstobs=21 obs=25);
var set brand &_trgind;

run;

In the interest of space, only the fifth choice set is displayed in Figure 104.76.

Figure 104.76 The Fifth Choice Set

Choice Model CodingChoice Model Coding

Obs set brand brand1 brand2 brand3 brand4 price

21 5 1 1 0 0 0 1.49

22 5 2 0 1 0 0 1.49

23 5 3 0 0 1 0 1.49

24 5 4 0 0 0 1 1.49

25 5 . 0 0 0 0 1.49

For the constant alternative (Brand = .), the brand coding is a row of zeros due to the NORESTOREMISSING
o-option, and Price is a constant $1.49 (instead of 0) due to the NOZEROCONSTANT.

The data set was coded by choice set (BY set;). This is a small problem. With very large problems, it might
be necessary to restrict the number of observations that are coded at one time so that the procedure uses
less time and memory. Coding by choice set is one option. When coding is performed after the data are
merged in, coding by subject and choice set combinations is another option. Alternatively, you can specify
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DESIGN=n, where n is the number of observations to code at one time. For example, you can specify
DESIGN=100 or DESIGN=1000 to process the data set in blocks of 100 or 1000 observations. Specify the
NOZEROCONSTANT a-option to ensure that constant variables within blocks are not zeroed. When you
specify DESIGN=n, or perform coding after the data are merged in, specify the dependent variable and any
other variables needed for analysis as ID variables.

Centering
You can use transformation options to center and standardize the variables in several ways. For example, the
following MODEL statement creates three independent variables, x, x2, and x3:

model identity(y) = pspline(x);

The variables are not centered.

When the CENTER t-option is specified, as in the following statement, the independent variable is centered
before squaring and cubing:

model identity(y) = pspline(x / center);

The three independent variables are x � Nx, .x � Nx/2, and .x � Nx/3.

Since operations such as squaring occur after the centering, the resulting variables are not always centered.
The CENTER t-option is particularly useful with polynomials since centering before squaring and cubing can
help reduce collinearity and numerical problems. For example, if one of your variables is year, with values
all greater than 1900, squaring and cubing without centering first will create variables that are all essentially
perfectly correlated.

When the TSTANDARD=CENTER t-option is specified, as in the following model, the three independent
variables are squared and cubed and then centered:

model identity(y) = pspline(x / tstandard=center);

The three independent variables are x � Nx, x2 � x2, and x3 � x3.

You can specify both the CENTER and TSTANDARD=CENTER t-options to center the variables, then
square and cube them, and then center the results, as in the following statement:

model identity(y) = pspline(x / center tstandard=center);

The three independent variables are x � Nx, .x � Nx/2 � .x � Nx/2, and .x � Nx/3 � .x � Nx/3.

Displayed Output
The display options control the amount of displayed output. The displayed output can contain the following:

• an iteration history and convergence status table (by default when there are iterations)

• an ANOVA table when the TEST, SS2, or UTILITIES a-option is specified

• a regression table when the SS2 a-option is specified

• conjoint analysis part-worth utilities when the UTILITIES a-option is specified
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• model details when the DETAIL a-option is specified

• a multivariate ANOVA table when the dependent variable is transformed and the TEST or SS2 a-option
is specified

• a multivariate regression table when the dependent variable is transformed and it is specified

• liberal and conservative ANOVA, multivariate ANOVA, regression, and multivariate regression tables
when there is a MONOTONE, UNTIE, or MSPLINE transformation and the TEST or SS2 a-option is
specified

ODS Table Names
PROC TRANSREG assigns a name to each table it creates. You can use these names to reference the table
when using the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed in Table 104.8. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

Table 104.8 ODS Tables Produced by PROC TRANSREG

ODS Table Name Description Statement & Option

ANOVA ANOVA MODEL/PROC, TEST/SS2
BoxCox Box-Cox transformation results MODEL, BOXCOX
CANALS CANALS iteration history MODEL/PROC,

METHOD=CANALS
ClassLevels ANOVA MODEL/PROC, TEST/SS2
Coef Regression results MODEL/PROC, SS2
ConservANOVA ANOVA, *1 MODEL/PROC, TEST/SS2
ConservCoef Regression results, *1 MODEL/PROC, SS2
ConservFitStatistics Fit statistics, *1 MODEL/PROC, TEST/SS2
ConservMVANOVA Multivariate ANOVA, *1, *2 MODEL/PROC, TEST/SS2
ConservMVCoef Multivariate regression results,

*1, *2
MODEL/PROC, SS2

ConservUtilities Conjoint analysis utilities, *1 MODEL/PROC, UTILITIES
ConvergenceStatus Convergence status default
Details Model Details MODEL/PROC, DETAIL
Equation Linear dependency equation less-than-full-rank model
FitStatistics Fit statistics like R square MODEL/PROC, TEST/SS2
Footnotes Iteration history footnotes default
Formula Fit plot formula (nonprinting) PROC,

PLOTS=FIT(FORMULA)
LiberalANOVA ANOVA, *1 MODEL/PROC, TEST/SS2
LiberalCoef Regression results, *1 MODEL/PROC, SS2
LiberalFitStatistics Fit statistics, *1 MODEL/PROC, TEST/SS2
LiberalMVANOVA Multivariate ANOVA, *1, *2 MODEL/PROC, TEST/SS2
LiberalMVCoef Multivariate regression results,

*1, *2
MODEL/PROC, SS2

LiberalUtilities Conjoint analysis utilities, *1 MODEL/PROC, UTILITIES
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Table 104.8 continued

ODS Table Name Description Statement & Option

MORALS MORALS iteration history MODEL/PROC,
METHOD=MORALS

MVANOVA Multivariate ANOVA, *2 MODEL/PROC, TEST/SS2
MVCoef Multivariate regression results, *2 MODEL/PROC, SS2
NObs ANOVA MODEL/PROC, TEST/SS2
PBSplineCriteria Penalized B-spline criteria (non-

printing)
MODEL, PBSPLINE

RSquare R square MODEL/PROC, RSQUARE
Redundancy Redundancy iteration history MODEL/PROC,

METHOD=REDUNDANCY
SplineCoef Spline coefficients (nonprinting) MODEL, SPLINE/MSPLINE
TestIterations Hypothesis test iterations itera-

tion history
MODEL/PROC, SS2

Univariate Univariate iteration history MODEL/PROC,
METHOD=UNIVARIATE

Utilities Conjoint analysis utilities MODEL/PROC, UTILITIES

*1. Liberal and conservative test tables are produced when a MONOTONE, UNTIE, or MSPLINE transformation is requested.

*2. Multivariate tables are produced when the dependent variable is iteratively transformed.

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

Some graphs are produced by default; other graphs are produced by using statements and options. You can
reference every graph produced through ODS Graphics with a name. The names of the graphs that PROC
TRANSREG generates are listed in Table 104.9, along with the required statements and options.

Table 104.9 Graphs Produced by PROC TRANSREG

ODS Graph Name Plot Description Statement & Option

BoxCoxFPlot Box-Cox F D t2 MODEL & PROC, BOXCOX transform &
PLOTS(UNPACK)

BoxCoxLogLikePlot Box-Cox Log
Likelihood

MODEL & PROC, BOXCOX transform &
PLOTS(UNPACK)
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Table 104.9 continued

ODS Graph Name Plot Description Statement & Option

BoxCoxPlot Box-Cox t or F D t2 &
Log Likelihood

MODEL, BOXCOX transform

BoxCoxtPlot Box-Cox t MODEL & PROC, BOXCOX transform &
PLOTS(UNPACK)=BOXCOX(T)

FitPlot Simple Regression and
Separate Group Regres-
sions

MODEL, a dependent variable that is not
transformed, one non-CLASS independent
variable, and at most one CLASS variable

ObservedByPredicted Dependent Variable by
Predicted Values

MODEL, PLOTS=OBSERVEDBYPREDICTED

PBSPlineCritPlot Penalized B-Spline
Criterion Plot

MODEL, PBSPLINE transform

PrefMapVecPlot Preference Mapping
Vector Plot

MODEL & PROC, IDENTITY transform
& COORDINATES

PrefMapIdealPlot Preference Mapping
Ideal Point Plot

MODEL & PROC, POINT expansion &
COORDINATES

ResidualPlot Residuals PROC, PLOTS=RESIDUALS
RMSEPlot Box-Cox Root Mean

Square Error
MODEL & PROC, BOXCOX transform &
PLOTS=BOXCOX(RMSE)

ScatterPlot Scatter Plot of Observed
Data

MODEL, one non-CLASS independent
variable, and at most one CLASS variable,
PLOTS=SCATTER

TransformationPlot Variable Transformations PROC, PLOTS=TRANSFORMATION

The PLOTS(INTERPOLATE) Option

This section illustrates one use of the PLOTS(INTERPOLATE) option for use with ODS Graphics. The data
set has two groups of observations, c = 1 and c = 2. Each group is sparse, having only five observations,
so the plots of the transformations and fit functions are not smooth. A second DATA step adds additional
observations to the data set, over the range of x, with y missing. These observations do not contribute to the
analysis, but they are used in computations of transformed and predicted values. The resulting plots are much
smoother in the latter case than in the former. The other results of the analysis are the same. The following
statements produce Figure 104.77 and Figure 104.78:

title 'Smoother Interpolation with PLOTS(INTERPOLATE)';

data a;
input c y x;
output;
datalines;

1 1 1
1 2 2
1 4 3
1 6 4
1 7 5
2 3 1
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2 4 2
2 5 3
2 4 4
2 5 5
;

ods graphics on;

proc transreg data=a plots=(tran fit) ss2;
model ide(y) = pbs(x) * class(c / zero=none);

run;

data b;
set a end=eof;
output;
if eof then do;

y = .;
do x = 1 to 5 by 0.05;

c = 1; output;
c = 2; output;

end;
end;

run;

proc transreg data=b plots(interpolate)=(tran fit) ss2;
model ide(y) = pbs(x) * class(c / zero=none);

run;

The results with no interpolation are shown in Figure 104.77. The transformation and fit functions are not at
all smooth. The results with interpolation are shown in Figure 104.78. The transformation and fit functions
are smooth in Figure 104.78, because there are intermediate points to plot.

Figure 104.77 No Interpolation

Smoother Interpolation with PLOTS(INTERPOLATE)

The TRANSREG Procedure

Smoother Interpolation with PLOTS(INTERPOLATE)

The TRANSREG Procedure

Univariate ANOVA Table,
Penalized B-Spline Transformation

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 9 28.90000 3.211111 Infty <.0001

Error 12E-10 0.00000 0.000000

Corrected Total 9 28.90000

Root MSE 0 R-Square 1.0000

Dependent Mean 4.10000 Adj R-Sq 1.0000

Coeff Var 0

Penalized B-Spline Transformation

Variable DF Coefficient Lambda AICC Label

Pbspline(xc1) 5.0000 1.000 2.642E-7 -66.4281 x * c 1

Pbspline(xc2) 5.0000 1.000 2.516E-7 -60.6430 x * c 2
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Figure 104.77 continued
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Figure 104.78 Interpolation with PLOTS(INTERPOLATE)

Smoother Interpolation with PLOTS(INTERPOLATE)

The TRANSREG Procedure

Smoother Interpolation with PLOTS(INTERPOLATE)

The TRANSREG Procedure

Univariate ANOVA Table,
Penalized B-Spline Transformation

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 9 28.90000 3.211111 Infty <.0001

Error 12E-10 0.00000 0.000000

Corrected Total 9 28.90000

Root MSE 0 R-Square 1.0000

Dependent Mean 4.10000 Adj R-Sq 1.0000

Coeff Var 0

Penalized B-Spline Transformation

Variable DF Coefficient Lambda AICC Label

Pbspline(xc1) 5.0000 1.000 2.642E-7 -66.4281 x * c 1

Pbspline(xc2) 5.0000 1.000 2.516E-7 -60.6430 x * c 2

Figure 104.78 continued
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Figure 104.78 continued
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Examples: TRANSREG Procedure

Example 104.1: Transformation Regression of Exhaust Emissions Data
In this example, the data are from an experiment in which nitrogen oxide emissions from a single cylinder
engine are measured for various combinations of fuel, compression ratio, and equivalence ratio. The data are
provided by Brinkman (1981). This gas data set is available from the Sashelp library.

The equivalence ratio and nitrogen oxide variables are continuous and numeric, so spline transformations of
these variables are requested. The spline transformation of the dependent variable is restricted to be monotonic.
Each spline is degree three with nine knots (one at each decile) in order to give PROC TRANSREG a great
deal of freedom in finding transformations. The compression ratio variable has only five discrete values, so
an optimal scoring is requested with monotonicity constraints. The character variable Fuel is nominal, so it is
optimally scored without any monotonicity constraints. Observations with missing values are excluded with
the NOMISS a-option.

ods graphics on;

title 'Gasoline Example';
title2 'Iteratively Estimate NOx, CpRatio, EqRatio, and Fuel';

* Fit the Nonparametric Model;
proc transreg data=sashelp.Gas solve test nomiss plots=all;

ods exclude where=(_path_ ? 'MV');
model mspline(NOx / nknots=9) = spline(EqRatio / nknots=9)

monotone(CpRatio) opscore(Fuel);
run;

Output 104.1.1 Transformation Regression Example: The Nonparametric Model

Gasoline Example
Iteratively Estimate NOx, CpRatio, EqRatio, and Fuel

The TRANSREG Procedure

Gasoline Example
Iteratively Estimate NOx, CpRatio, EqRatio, and Fuel

The TRANSREG Procedure

Dependent Variable Mspline(NOx)
Nitrogen Oxide

Number of Observations Read 171

Number of Observations Used 169
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Output 104.1.1 continued

TRANSREG MORALS Algorithm Iteration History for
Mspline(NOx)

Iteration
Number

Average
Change

Maximum
Change R-Square

Criterion
Change Note

0 0.41900 3.80550 0.05241

1 0.11984 0.83327 0.91028 0.85787

2 0.03727 0.17688 0.93981 0.02953

3 0.02795 0.10880 0.94969 0.00987

4 0.02088 0.07279 0.95382 0.00413

5 0.01530 0.05031 0.95582 0.00201

6 0.01130 0.03922 0.95688 0.00106

7 0.00852 0.03197 0.95748 0.00060

8 0.00657 0.02531 0.95783 0.00035

9 0.00510 0.01975 0.95805 0.00022

10 0.00398 0.01534 0.95818 0.00013

11 0.00314 0.01200 0.95827 0.00009

12 0.00250 0.00953 0.95832 0.00005

13 0.00199 0.00752 0.95836 0.00003

14 0.00159 0.00594 0.95838 0.00002

15 0.00127 0.00470 0.95839 0.00001

16 0.00102 0.00373 0.95840 0.00001

17 0.00081 0.00297 0.95841 0.00001

18 0.00065 0.00237 0.95841 0.00000

19 0.00052 0.00189 0.95841 0.00000

20 0.00042 0.00151 0.95842 0.00000

21 0.00033 0.00120 0.95842 0.00000

22 0.00027 0.00096 0.95842 0.00000

23 0.00021 0.00077 0.95842 0.00000

24 0.00017 0.00061 0.95842 0.00000

25 0.00014 0.00049 0.95842 0.00000

26 0.00011 0.00039 0.95842 0.00000

27 0.00009 0.00031 0.95842 0.00000

28 0.00007 0.00025 0.95842 0.00000

29 0.00006 0.00020 0.95842 0.00000

30 0.00005 0.00016 0.95842 0.00000 Not Converged

WARNING: Failed to converge, however criterion change is less than 0.0001.
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Output 104.1.1 continued

The TRANSREG Procedure Hypothesis Tests for Mspline(NOx)
Nitrogen Oxide

Univariate ANOVA Table Based on the Usual Degrees of
Freedom

Source DF
Sum of

Squares
Mean

Square F Value Liberal p

Model 21 326.0176 15.52465 161.35 >= <.0001

Error 147 14.1443 0.09622

Corrected Total 168 340.1619

The above statistics are not adjusted for the fact that the
dependent variable was transformed and so are generally
liberal.

Root MSE 0.31019 R-Square 0.9584

Dependent Mean 2.34593 Adj R-Sq 0.9525

Coeff Var 13.22262

Output 104.1.1 continued
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Output 104.1.1 continued
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The squared multiple correlation for the initial model is approximately 0.05. PROC TRANSREG increases
the R square to over 0.95 by transforming the variables. The transformation plots show how each variable is
transformed. The transformation of compression ratio (TCpRatio) is nearly linear. The transformation of
equivalence ratio (TEqRatio) is nearly parabolic. It can be seen from this plot that the optimal transformation
of equivalence ratio is nearly uncorrelated with the original scoring. This suggests that the large increase
in R square is due to this transformation. The transformation of nitrogen oxide (TNOx) is similar to a log
transformation. The final plot shows the transformed dependent variable plotted as a function of the predicted
values. This plot is reasonably linear, showing that the nonlinearities in the data are being accounted for fairly
well by the TRANSREG model.

These results suggest the parametric model

log.NOX/ D b0 C b1 � EqRatioC b2 � EqRatio2 C b3 � CpRatio

C

X
j

bj classj .Fuel/C error

You can perform this analysis with PROC TRANSREG. The following statements produce Output 104.1.2:

title2 'Now fit log(NOx) = b0 + b1*EqRatio + b2*EqRatio**2 +';
title3 'b3*CpRatio + Sum b(j)*Fuel(j) + Error';

*-Fit the Parametric Model Suggested by the Nonparametric Analysis-;
proc transreg data=sashelp.Gas solve ss2 short nomiss plots=all;

model log(NOx) = pspline(EqRatio / deg=2) identity(CpRatio)
opscore(Fuel);

run;

Output 104.1.2 Transformation Regression Example: The Parametric Model

Gasoline Example
Now fit log(NOx) = b0 + b1*EqRatio + b2*EqRatio**2 +

b3*CpRatio + Sum b(j)*Fuel(j) + Error

The TRANSREG Procedure

Gasoline Example
Now fit log(NOx) = b0 + b1*EqRatio + b2*EqRatio**2 +

b3*CpRatio + Sum b(j)*Fuel(j) + Error

The TRANSREG Procedure

Dependent Variable Log(NOx)
Nitrogen Oxide

Number of Observations Read 171

Number of Observations Used 169

Log(NOx)

Algorithm converged.
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Output 104.1.2 continued

The TRANSREG Procedure Hypothesis Tests for Log(NOx)
Nitrogen Oxide

Univariate ANOVA Table Based on the Usual Degrees of
Freedom

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 8 79.33838 9.917298 213.09 <.0001

Error 160 7.44659 0.046541

Corrected Total 168 86.78498

Root MSE 0.21573 R-Square 0.9142

Dependent Mean 0.63130 Adj R-Sq 0.9099

Coeff Var 34.17294

Univariate Regression Table Based on the Usual Degrees of Freedom

Variable DF Coefficient

Type II
Sum of

Squares
Mean

Square F Value Pr > F Label

Intercept 1 -15.274649 57.1338 57.1338 1227.60 <.0001 Intercept

Pspline.EqRatio_1 1 35.102914 62.7478 62.7478 1348.22 <.0001 Equivalence Ratio 1

Pspline.EqRatio_2 1 -19.386468 64.6430 64.6430 1388.94 <.0001 Equivalence Ratio 2

Identity(CpRatio) 1 0.032058 1.4445 1.4445 31.04 <.0001 Compression Ratio

Opscore(Fuel) 5 0.158388 5.5619 1.1124 23.90 <.0001 Fuel

Output 104.1.2 continued
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Output 104.1.2 continued
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The LOG transformation computes the natural log. The PSPLINE expansion expands EqRatio into a linear
term, EqRatio, and a squared term, EqRatio2. An identity transformation of CpRatio and an optimal scoring of
Fuel is requested. These should provide a good parametric operationalization of the optimal transformations.
The final model has an R square of 0.91 (smaller than before since the model has fewer parameters, but still
quite good).

Example 104.2: Box-Cox Transformations
This example shows Box-Cox transformations with a yarn failure data set. For more information about
Box-Cox transformations, including using a Box-Cox transformation in a model with no independent variable,
to normalize the distribution of the data, see the section “Box-Cox Transformations” on page 8605. In
this example, a simple 33 design was used to study the effects of different factors on the failure of a yarn
manufacturing process. The design factors are as follows:

• the length of test specimens of yarn, with levels of 250, 300, and 350 mm
• the amplitude of the loading cycle, with levels of 8, 9, and 10 mmd
• the load with levels of 40, 45, and 50 grams

The measured response was time (in cycles) until failure. However, you could just as well have measured the
inverse of time until failure (in other words, the failure rate). Hence, the correct metric with which to analyze
the response is not apparent. You can use PROC TRANSREG to find an optimum power transformation for
the analysis. The following statements create the input SAS data set:

title 'Yarn Strength';

proc format;
value a -1 = 8 0 = 9 1 = 10;
value l -1 = 250 0 = 300 1 = 350;
value o -1 = 40 0 = 45 1 = 50;

run;

data yarn;
input Fail Amplitude Length Load @@;
format amplitude a. length l. load o.;
label fail = 'Time in Cycles until Failure';
datalines;

674 -1 -1 -1 370 -1 -1 0 292 -1 -1 1 338 0 -1 -1
266 0 -1 0 210 0 -1 1 170 1 -1 -1 118 1 -1 0
90 1 -1 1 1414 -1 0 -1 1198 -1 0 0 634 -1 0 1

1022 0 0 -1 620 0 0 0 438 0 0 1 442 1 0 -1
332 1 0 0 220 1 0 1 3636 -1 1 -1 3184 -1 1 0

2000 -1 1 1 1568 0 1 -1 1070 0 1 0 566 0 1 1
1140 1 1 -1 884 1 1 0 360 1 1 1
;

PROC TRANSREG is run to find the Box-Cox transformation. The lambda list is –2 TO 2 BY 0.05, which
produces 81 lambdas, and a convenient lambda is requested. This many power parameters makes a nice
graphical display with plenty of detail around the confidence interval. In the interest of space, only part of
this table is displayed. The independent variables are designated with the QPOINT expansion. QPOINT, for
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quadratic point model, gets its name from PROC TRANSREG’s ideal point modeling capabilities, which
process variables for a response surface analysis. What QPOINT does is create a set of independent variables
consisting of the following: the m original variables (Length Amplitude Load), the m original variables
squared (Length_2 Amplitude_2 Load_2), and the m � .m � 1/=2 D 3 pairs of products between the m
variables (LengthAmplitude LengthLoad AmplitudeLoad). The following statements produce Output 104.2.1:

ods graphics on;

proc transreg details data=yarn ss2
plots=(transformation(dependent) obp);

model BoxCox(fail / convenient lambda=-2 to 2 by 0.05) =
qpoint(length amplitude load);

run;

Output 104.2.1 Box-Cox Yarn Data

Output 104.2.1 continued

Dependent Variable BoxCox(Fail)
Time in Cycles until Failure

Number of Observations Read 27

Number of Observations Used 27
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Output 104.2.1 continued

Model Statement Specification Details

Type DF Variable Description Value

Dep 1 BoxCox(Fail) Lambda Used 0

Lambda -0.2

Log Likelihood -125.9

Conv. Lambda 0

Conv. Lambda LL -126.7

CI Limit -127.8

Alpha 0.05

Options Convenient Lambda Used

Label Time in Cycles until Failure

Ind 1 Qpoint.Length DF 1

Ind 1 Qpoint.Amplitude DF 1

Ind 1 Qpoint.Load DF 1

Ind 1 Qpoint.Length_2 DF 1

Ind 1 Qpoint.Amplitude_2 DF 1

Ind 1 Qpoint.Load_2 DF 1

Ind 1 Qpoint.LengthAmplitude DF 1

Ind 1 Qpoint.LengthLoad DF 1

Ind 1 Qpoint.AmplitudeLoad DF 1

The TRANSREG Procedure Hypothesis Tests for BoxCox(Fail)
Time in Cycles until Failure

Univariate ANOVA Table Based on the Usual Degrees of
Freedom

Source DF
Sum of

Squares
Mean

Square F Value Liberal p

Model 9 22.56498 2.507220 66.73 >= <.0001

Error 17 0.63871 0.037571

Corrected Total 26 23.20369

The above statistics are not adjusted for the fact that the
dependent variable was transformed and so are generally
liberal.

Root MSE 0.19383 R-Square 0.9725

Dependent Mean 6.33466 Adj R-Sq 0.9579

Coeff Var 3.05987 Lambda 0.0000
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Output 104.2.1 continued

Univariate Regression Table Based on the Usual Degrees of Freedom

Variable DF Coefficient

Type II
Sum of

Squares
Mean

Square F Value Liberal p Label

Intercept 1 6.4206207 159.008 159.008 4232.19 >= <.0001 Intercept

Qpoint.Length 1 0.8323842 12.472 12.472 331.94 >= <.0001 Length

Qpoint.Amplitude 1 -0.6309916 7.167 7.167 190.75 >= <.0001 Amplitude

Qpoint.Load 1 -0.3924940 2.773 2.773 73.80 >= <.0001 Load

Qpoint.Length_2 1 -0.0856974 0.044 0.044 1.17 >= 0.2939 Length_2

Qpoint.Amplitude_2 1 0.0242183 0.004 0.004 0.09 >= 0.7633 Amplitude_2

Qpoint.Load_2 1 -0.0674555 0.027 0.027 0.73 >= 0.4058 Load_2

Qpoint.LengthAmplitude 1 -0.0382414 0.018 0.018 0.47 >= 0.5035 LengthAmplitude

Qpoint.LengthLoad 1 -0.0684146 0.056 0.056 1.49 >= 0.2381 LengthLoad

Qpoint.AmplitudeLoad 1 -0.0208340 0.005 0.005 0.14 >= 0.7142 AmplitudeLoad

The above statistics are not adjusted for the fact that the dependent variable was transformed
and so are generally liberal.

Output 104.2.1 continued
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Output 104.2.1 continued

The optimal power parameter is –0.20, but since 0.0 is in the confidence interval, and since the CONVENIENT
t-option was specified, the procedure chooses a log transformation. The F D t2 plot shows in the vicinity of
the optimal Box-Cox transformation, the parameters for the three original variables (Length Amplitude Load),
particularly Length, are significant and the others become essentially zero.

Example 104.3: Penalized B-Spline
The ENSO data set contains measurements of monthly averaged atmospheric pressure differences between
Easter Island and Darwin, Australia, for a period of 168 months (National Institute of Standards and
Technology 1998). The ENSO data set is available from the Sashelp library.

You can fit a curve through these data by using a penalized B-spline (Eilers and Marx 1996) function and the
following statements:

title 'Atmospheric Pressure Changes Between'
' Easter Island & Darwin, Australia';

ods graphics on;

proc transreg data=sashelp.enso;
model identity(pressure) = pbspline(year);

run;
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The dependent variable Pressure is specified along with an IDENTITY transformation, so Pressure is
analyzed as is, with no transformations. The independent variable Year is specified with a PBSPLINE
transformation, so a penalized B-spline model is fit. By default, a DEGREE=3 B-spline basis is used along
with 100 evenly spaced knots and three evenly spaced exterior knots on each side of the data. The penalized
spline function is typically much smoother than you would get by using a SPLINE transformation or a
BSPLINE expansion since changes in the coefficients of the basis are penalized to make a smoother fit. The
output is shown next in Output 104.3.1.

Output 104.3.1 Change in Atmospheric Pressure, AICC
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Output 104.3.1 continued

The results show a yearly cycle of pressure change. The procedure chose a smoothing parameter of � D 0:709.
With data such as these, with many peaks and valleys, it might be useful to perform another analysis, this
time asking for a smoother plot. The Schwarz Bayesian criterion (SBC) is sometimes a better choice than
the default criterion when you want a smoother plot. The following PROC TRANSREG step requests a
penalized B-spline analysis minimizing the SBC criterion:

proc transreg data=sashelp.enso;
model identity(pressure) = pbspline(year / sbc);

run;

The plot of SBC as a function of � is shown in Output 104.3.2.
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Output 104.3.2 Change in Atmospheric Pressure, SBC

The fit plot (not shown) is essentially the same as the one shown in Output 104.3.1 due to the similar
choice of smoothing parameters: � D 0:709 versus � D 1:14. You can analyze these data again, this time
forcing PROC TRANSREG to consider only larger smoothing parameters. The specification LAMBDA=2
10000 RANGE eliminates from consideration the two lambdas that you previously saw and considers only
2 � � � 10; 000. The following statements produce Output 104.3.3:

proc transreg data=sashelp.enso;
model identity(pressure) = pbspline(year / sbc lambda=2 10000 range);

run;
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Output 104.3.3 Change in Atmospheric Pressure, SBC, Lambda > 1

Output 104.3.3 continued
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The results clearly show that there is a local minimum in the SBC(�) function at � D 1801:1. Using this
lambda results in a much smoother regression function with a longer cycle than you saw previously. This
second cycle can be identified as the periodic warming of the Pacific Ocean known as “El Niño.” The SBC(�)
function has at least two minima since there are at least two trends in the data. In the first analysis, PROC
TRANSREG found what is probably the globally optimal solution, and in the second set of analyses, with a
little nudging away from the global optimum, it found a very interesting locally optimal solution.

You can specify a list of lambdas to see SBC as a function of lambda over the range that includes both minima
as follows:

proc transreg data=sashelp.enso;
model identity(pressure) = pbspline(year / sbc lambda=.1 .5 1 5

10 50 100 500 to 2500 by 500);
run;

The plot of SBC as a function of � is shown in Output 104.3.4.

Output 104.3.4 Change in Atmospheric Pressure, SBC, Over the Range of Both Minima

Example 104.4: Nonmetric Conjoint Analysis of Tire Data
This example uses PROC TRANSREG to perform a nonmetric conjoint analysis of tire preference data.
Conjoint analysis decomposes rank-ordered evaluation judgments of products or services into components
based on qualitative product attributes. For each level of each attribute of interest, a numerical “part-worth
utility” value is computed. The sum of the part-worth utilities for each product is an estimate of the utility
for that product. The goal is to compute part-worth utilities such that the product utilities are as similar as
possible to the original rank ordering. (This example is a greatly simplified introductory example.)
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The stimuli for the experiment are 18 hypothetical tires. The stimuli represent different brands (Goodstone,
Pirogi, Machismo),1 prices ($69.99, $74.99, $79.99), expected tread life (50,000, 60,000, 70,000 miles),
and road hazard insurance plans (Yes, No). There are 3 � 3 � 3 � 2 D 54 possible combinations. From
these, 18 combinations are selected that form an efficient experimental design for a main-effects model. The
combinations are then ranked from 1 (most preferred) to 18 (least preferred). In this simple example, there is
one set of rankings. A real conjoint study would have many more.

First, the FORMAT procedure is used to specify the meanings of the factor levels, which are entered as
numbers in the DATA step along with the ranks. PROC TRANSREG is used to perform the conjoint analysis.
A maximum of 50 iterations is requested. The specification monotone(Rank / reflect) in the MODEL
statement requests that the dependent variable Rank should be monotonically transformed and reflected so
that positive utilities mean high preference. The variables Brand, Price, Life, and Hazard are designated as
CLASS variables, and the part-worth utilities are constrained by ZERO=SUM to sum to zero within each
factor. The UTILITIES a-option displays the conjoint analysis results.

The importance column of the utilities table shows that price is the most important attribute in determining
preference (57%), followed by expected tread life (18%), brand (15%), and road hazard insurance (10%).
Looking at the utilities table for the maximum part-worth utility within each attribute, you see from the
results that the most preferred combination is Pirogi brand tires, at $69.99, with a 70,000-mile expected tread
life and road hazard insurance. This product is not actually in the data set. The sum of the part-worth utilities
for this combination is as follows:

20:64 D 9:50C 1:90C 5:87C 2:41C 0:96

The following statements produce Output 104.4.1.

title 'Nonmetric Conjoint Analysis of Ranks';

proc format;
value BrandF

1 = 'Goodstone'
2 = 'Pirogi '
3 = 'Machismo ';

value PriceF
1 = '$69.99'
2 = '$74.99'
3 = '$79.99';

value LifeF
1 = '50,000'
2 = '60,000'
3 = '70,000';

value HazardF
1 = 'Yes'
2 = 'No ';

run;

1In real conjoint experiments, real brand names would be used.
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data Tires;
input Brand Price Life Hazard Rank;
format Brand BrandF9. Price PriceF9. Life LifeF6. Hazard HazardF3.;
datalines;

1 1 2 1 3
1 1 3 2 2
1 2 1 2 14
1 2 2 2 10
1 3 1 1 17
1 3 3 1 12
2 1 1 2 7
2 1 3 2 1
2 2 1 1 8
2 2 3 1 5
2 3 2 1 13
2 3 2 2 16
3 1 1 1 6
3 1 2 1 4
3 2 2 2 15
3 2 3 1 9
3 3 1 2 18
3 3 3 2 11
;

proc transreg maxiter=50 utilities short;
ods select TestsNote ConvergenceStatus FitStatistics Utilities;
model monotone(Rank / reflect) =

class(Brand Price Life Hazard / zero=sum);
output ireplace predicted;

run;

proc print label;
var Rank TRank PRank Brand Price Life Hazard;
label PRank = 'Predicted Ranks';

run;

Output 104.4.1 Simple Conjoint Analysis

Nonmetric Conjoint Analysis of Ranks

The TRANSREG Procedure

Nonmetric Conjoint Analysis of Ranks

The TRANSREG Procedure

Monotone(Rank)

Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Monotone(Rank)

Root MSE 0.49759 R-Square 0.9949

Dependent Mean 9.50000 Adj R-Sq 0.9913

Coeff Var 5.23783
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Output 104.4.1 continued

Utilities Table Based on the Usual Degrees of Freedom

Label Utility
Standard

Error

Importance
(% Utility

Range) Variable

Intercept 9.5000 0.11728 Intercept

Brand Goodstone -1.1718 0.16586 15.463 Class.BrandGoodstone

Brand Pirogi 1.8980 0.16586 Class.BrandPirogi

Brand Machismo -0.7262 0.16586 Class.BrandMachismo

Price $69.99 5.8732 0.16586 56.517 Class.Price_69_99

Price $74.99 -0.5261 0.16586 Class.Price_74_99

Price $79.99 -5.3471 0.16586 Class.Price_79_99

Life 50,000 -1.2350 0.16586 18.361 Class.Life50_000

Life 60,000 -1.1751 0.16586 Class.Life60_000

Life 70,000 2.4101 0.16586 Class.Life70_000

Hazard Yes 0.9588 0.11728 9.659 Class.HazardYes

Hazard No -0.9588 0.11728 Class.HazardNo

The standard errors are not adjusted for the fact that the dependent
variable was transformed and so are generally liberal (too small).

Output 104.4.1 continued

Nonmetric Conjoint Analysis of RanksNonmetric Conjoint Analysis of Ranks

Obs Rank
Rank

Transformation
Predicted

Ranks Brand Price Life Hazard

1 3 14.4462 13.9851 Goodstone $69.99 60,000 Yes

2 2 15.6844 15.6527 Goodstone $69.99 70,000 No

3 14 5.7229 5.6083 Goodstone $74.99 50,000 No

4 10 5.7229 5.6682 Goodstone $74.99 60,000 No

5 17 2.6699 2.7049 Goodstone $79.99 50,000 Yes

6 12 5.7229 6.3500 Goodstone $79.99 70,000 Yes

7 7 14.4462 15.0774 Pirogi $69.99 50,000 No

8 1 18.7699 18.7225 Pirogi $69.99 70,000 No

9 8 11.1143 10.5957 Pirogi $74.99 50,000 Yes

10 5 14.4462 14.2408 Pirogi $74.99 70,000 Yes

11 13 5.7229 5.8346 Pirogi $79.99 60,000 Yes

12 16 3.8884 3.9170 Pirogi $79.99 60,000 No

13 6 14.4462 14.3708 Machismo $69.99 50,000 Yes

14 4 14.4462 14.4307 Machismo $69.99 60,000 Yes

15 15 5.7229 6.1139 Machismo $74.99 60,000 No

16 9 11.1143 11.6166 Machismo $74.99 70,000 Yes

17 18 1.1905 1.2330 Machismo $79.99 50,000 No

18 11 5.7229 4.8780 Machismo $79.99 70,000 No
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Example 104.5: Metric Conjoint Analysis of Tire Data
This example, which is more detailed than the previous one, uses PROC TRANSREG to perform a metric
conjoint analysis of tire preference data. Conjoint analysis can be used to decompose preference ratings of
products or services into components based on qualitative product attributes. For each level of each attribute
of interest, a numerical “part-worth utility” value is computed. The sum of the part-worth utilities for each
product is an estimate of the utility for that product. The goal is to compute part-worth utilities such that
the product utilities are as similar as possible to the original ratings. Metric conjoint analysis, as shown
in this example, fits an ordinary linear model directly to data assumed to be measured on an interval scale.
Nonmetric conjoint analysis, as shown in Example 104.4, finds an optimal monotonic transformation of
original data before fitting an ordinary linear model to the transformed data.

This example has three parts. In the first part, an experimental design is created. In the second part, a DATA
step creates descriptions of the stimuli for the experiment. The third part of the example performs the conjoint
analyses.

The stimuli for the experiment are 18 hypothetical tires. The stimuli represent different brands (Goodstone,
Pirogi, Machismo),2 prices ($69.99, $74.99, $79.99), expected tread life (50,000, 60,000, 70,000 miles), and
road hazard insurance plans (Yes, No).

For a conjoint study such as this, you need to create an experimental design with 3 three-level factors, 1
two-level factor, and 18 combinations or runs. The easiest way to get this design is with the %MktEx autocall
macro. The %MktEx macro requires you to specify the number of levels of each of the four factors, followed
by N=18, the number of runs. Specifying a random number seed, while not strictly necessary, helps ensure
that the design is reproducible. The %MktLab macro assigns the actual factor names instead of the default
names x1, x2, and so on, and it assigns formats to the factor levels. The %MktEval macro helps you evaluate
the design. It shows how correlated or independent the factors are, how often each factor level appears in the
design, how often each pair occurs for every factor pair, and how often each product profile or run occurs in
the design. See Kuhfeld (2010) for more information about experimental design and conjoint analysis; look
for the latest “Conjoint Analysis” report. The following statements create, evaluate, and display the design:

title 'Tire Study, Experimental Design';

proc format;
value BrandF

1 = 'Goodstone'
2 = 'Pirogi '
3 = 'Machismo ';

value PriceF
1 = '$69.99'
2 = '$74.99'
3 = '$79.99';

value LifeF
1 = '50,000'
2 = '60,000'
3 = '70,000';

value HazardF
1 = 'Yes'
2 = 'No ';

run;

2In real conjoint experiments, real brand names would be used.
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%mktex(3 3 3 2, n=18, seed=448)

%mktlab(vars=Brand Price Life Hazard, out=sasuser.TireDesign,
statements=format Brand BrandF9. Price PriceF9.

Life LifeF6. Hazard HazardF3.)

%mkteval;

proc print data=sasuser.TireDesign;
run;

The %MktEx macro (Kuhfeld 2010) output displayed in Output 104.5.1 shows you that the design is
100% efficient, which means it is orthogonal and balanced. The %MktEval macro output displayed in
Output 104.5.2 shows you that all of the factors are uncorrelated or orthogonal, the design is balanced (each
level occurs once), and every pair of factor levels occurs equally often (again showing that the design is
orthogonal). The n-way frequencies show that each product profile occurs once (there are no duplicates). The
design is shown in Output 104.5.3. The design is automatically randomized (the profiles were sorted into a
random order and the original levels are randomly reassigned). Orthogonality, balance, randomization, and
other design concepts are discussed in detail in Kuhfeld (2010), in the “Experimental Design, Efficiency,
Coding, and Choice Designs” report.

Output 104.5.1 Tire Study, Design Efficiency

Tire Study, Experimental DesignTire Study, Experimental Design

Algorithm Search History

                                   Current          Best                        
           Design    Row,Col  D-Efficiency  D-Efficiency  Notes                 
           ----------------------------------------------------------           
                1      Start      100.0000      100.0000  Tab                   
                1        End      100.0000                                      
                                                                                

Tire Study, Experimental DesignTire Study, Experimental Design

     
                              The OPTEX Procedure                               

     
                            Class Level Information                             

     
                             Class  Levels  Values                              

     
                             x1       3     1 2 3                               
                             x2       3     1 2 3                               
                             x3       3     1 2 3                               
                             x4       2     1 2                                 
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Output 104.5.1 continued

Tire Study, Experimental DesignTire Study, Experimental Design

Design
Number D-Efficiency A-Efficiency G-Efficiency

Average
Prediction
Standard

Error

1 100.0000 100.0000 100.0000 0.6667

Output 104.5.2 Tire Study, Design Evaluation

Tire Study, Experimental Design
Canonical Correlations Between the Factors

There are 0 Canonical Correlations Greater Than 0.316

Tire Study, Experimental Design
Canonical Correlations Between the Factors

There are 0 Canonical Correlations Greater Than 0.316

Brand Price Life Hazard

Brand 1 0 0 0

Price 0 1 0 0

Life 0 0 1 0

Hazard 0 0 0 1

Tire Study, Experimental Design
Summary of Frequencies

There are 0 Canonical Correlations Greater Than 0.316

Tire Study, Experimental Design
Summary of Frequencies

There are 0 Canonical Correlations Greater Than 0.316

Frequencies

Brand 6 6 6

Price 6 6 6

Life 6 6 6

Hazard 9 9

Brand Price 2 2 2 2 2 2 2 2 2

Brand Life 2 2 2 2 2 2 2 2 2

Brand Hazard 3 3 3 3 3 3

Price Life 2 2 2 2 2 2 2 2 2

Price Hazard 3 3 3 3 3 3

Life Hazard 3 3 3 3 3 3

N-Way 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Output 104.5.3 Tire Study, Design

Tire Study, Experimental DesignTire Study, Experimental Design

Obs Brand Price Life Hazard

1 Pirogi $79.99 50,000 No

2 Machismo $79.99 60,000 No

3 Machismo $74.99 70,000 Yes

4 Machismo $74.99 50,000 No

5 Goodstone $74.99 60,000 Yes

6 Pirogi $69.99 60,000 Yes

7 Goodstone $69.99 50,000 Yes

8 Machismo $69.99 50,000 Yes

9 Pirogi $74.99 60,000 Yes

10 Pirogi $74.99 50,000 No

11 Goodstone $79.99 60,000 No

12 Goodstone $69.99 70,000 No

13 Pirogi $79.99 70,000 Yes

14 Goodstone $74.99 70,000 No

15 Machismo $69.99 60,000 No

16 Machismo $79.99 70,000 Yes

17 Pirogi $69.99 70,000 No

18 Goodstone $79.99 50,000 Yes

The %MktEx macro requires SAS/STAT, SAS/QC, and SAS/IML software. Alternatively, you can make a
design for this experiment using the %MktDes macro, which requires only SAS/STAT and SAS/QC software.
The %MktDes macro contains a small subset of the functionality of the %MktEx macro. It can be used as
follows:

%mktdes(factors=Brand=3 Price=3 Life=3 Hazard=2, n=18)

The results of this step are not shown or used.

Next, the questionnaires are printed and given to the subjects, who are asked to rate the tires.
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The following statements produce Output 104.5.4:

data _null_;
title;
set sasuser.TireDesign;
file print;
if mod(_n_,4) eq 1 then do;

put _page_;
put +55 'Subject ________';

end;
length hazardstring $ 7.;
if put(hazard, hazardf3.) = 'Yes'

then hazardstring = 'with';
else hazardstring = 'without';

s = 3 + (_n_ >= 10);
put // _n_ +(-1) ') For your next tire purchase, '

'how likely are you to buy this product?'
// +s Brand 'brand tires at ' Price +(-1) ','
/ +s 'with a ' Life 'tread life guarantee, '
/ +s 'and ' hazardstring 'road hazard insurance.'
// +s 'Definitely Would Definitely Would'
/ +s 'Not Purchase Purchase'
// +s '1 2 3 4 5 6 7 8 9 ';

run;

This output in Output 104.5.4 is abbreviated in the interest of conserving space; the statements actually
produce stimuli for all combinations.
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Output 104.5.4 Conjoint Analysis, Stimuli Descriptions

                                                       Subject ________         
     
     

1) For your next tire purchase, how likely are you to buy this product?         
     

   Pirogi brand tires at $79.99,                                                
   with a 50,000 tread life guarantee,                                          
   and without road hazard insurance.                                           

     
   Definitely Would                 Definitely Would                            
   Not Purchase                             Purchase                            

     
   1     2     3     4     5     6     7     8     9                            

     
     

2) For your next tire purchase, how likely are you to buy this product?         
     

   Machismo brand tires at $79.99,                                              
   with a 60,000 tread life guarantee,                                          
   and without road hazard insurance.                                           

     
   Definitely Would                 Definitely Would                            
   Not Purchase                             Purchase                            

     
   1     2     3     4     5     6     7     8     9                            

     
     

3) For your next tire purchase, how likely are you to buy this product?         
     

   Machismo brand tires at $74.99,                                              
   with a 70,000 tread life guarantee,                                          
   and with road hazard insurance.                                              

     
   Definitely Would                 Definitely Would                            
   Not Purchase                             Purchase                            

     
   1     2     3     4     5     6     7     8     9                            

     
     

4) For your next tire purchase, how likely are you to buy this product?         
     

   Machismo brand tires at $74.99,                                              
   with a 50,000 tread life guarantee,                                          
   and without road hazard insurance.                                           

     
   Definitely Would                 Definitely Would                            
   Not Purchase                             Purchase                            

     
   1     2     3     4     5     6     7     8     9                            

The third part of the example performs the conjoint analyses. The DATA step reads the data. Only the ratings
are entered, one row per subject. Real conjoint studies have many more subjects than five. The TRANSPOSE
procedure transposes this (5 � 18) data set into an (18 � 5) data set that can be merged with the factor level
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data set sasuser.TireDesign. The next DATA step does the merge. The PRINT procedure displays the input
data set.

PROC TRANSREG fits the five individual conjoint models, one for each subject. The UTILITIES a-option dis-
plays the conjoint analysis results. The SHORT a-option suppresses the iteration histories, OUTTEST=UTILS
creates an output data set with all of the conjoint results, and the SEPARATORS= option requests that the
labels constructed for each category contain two blanks between the variable name and the level value. The
ODS SELECT statement is used to limit the displayed output. The MODEL statement specifies IDENTITY
for the ratings, which specifies a metric conjoint analysis—the ratings are not transformed. The variables
Brand, Price, Life, and Hazard are designated as CLASS variables, and the part-worth utilities are constrained
to sum to zero within each factor.

The following statements produce Output 104.5.5:

title 'Tire Study, Data Entry, Preprocessing';

data Results;
input (c1-c18) (1.);
datalines;

233279766526376493
124467885349168274
262189456534275794
184396375364187754
133379775526267493
;

* Create an Object by Subject Data Matrix;
proc transpose data=Results out=Results(drop=_name_) prefix=Subj;
run;

* Merge the Factor Levels with the Data Matrix;
data Both;

merge sasuser.TireDesign Results;
run;

proc print;
title2 'Data Set for Conjoint Analysis';

run;

title 'Tire Study, Individual Conjoint Analyses';

* Fit Each Subject Individually;
proc transreg data=Both utilities short outtest=utils separators=' ';

ods select TestsNote FitStatistics Utilities;
model identity(Subj1-Subj5) =

class(Brand Price Life Hazard / zero=sum);
run;

The output contains two tables per subject, one with overall fit statistics and one with the conjoint analysis
results.
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Output 104.5.5 Conjoint Analysis

Tire Study, Data Entry, Preprocessing
Data Set for Conjoint Analysis

Tire Study, Data Entry, Preprocessing
Data Set for Conjoint Analysis

Obs Brand Price Life Hazard Subj1 Subj2 Subj3 Subj4 Subj5

1 Pirogi $79.99 50,000 No 2 1 2 1 1

2 Machismo $79.99 60,000 No 3 2 6 8 3

3 Machismo $74.99 70,000 Yes 3 4 2 4 3

4 Machismo $74.99 50,000 No 2 4 1 3 3

5 Goodstone $74.99 60,000 Yes 7 6 8 9 7

6 Pirogi $69.99 60,000 Yes 9 7 9 6 9

7 Goodstone $69.99 50,000 Yes 7 8 4 3 7

8 Machismo $69.99 50,000 Yes 6 8 5 7 7

9 Pirogi $74.99 60,000 Yes 6 5 6 5 5

10 Pirogi $74.99 50,000 No 5 3 5 3 5

11 Goodstone $79.99 60,000 No 2 4 3 6 2

12 Goodstone $69.99 70,000 No 6 9 4 4 6

13 Pirogi $79.99 70,000 Yes 3 1 2 1 2

14 Goodstone $74.99 70,000 No 7 6 7 8 6

15 Machismo $69.99 60,000 No 6 8 5 7 7

16 Machismo $79.99 70,000 Yes 4 2 7 7 4

17 Pirogi $69.99 70,000 No 9 7 9 5 9

18 Goodstone $79.99 50,000 Yes 3 4 4 4 3

Output 104.5.5 continued

Tire Study, Individual Conjoint Analyses

The TRANSREG Procedure

Tire Study, Individual Conjoint Analyses

The TRANSREG Procedure

The TRANSREG Procedure Hypothesis Tests for Identity(Subj1)

Root MSE 1.34164 R-Square 0.8043

Dependent Mean 5.00000 Adj R-Sq 0.6674

Coeff Var 26.83282
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Output 104.5.5 continued

Utilities Table Based on the Usual Degrees of Freedom

Label Utility
Standard

Error

Importance
(% Utility

Range) Variable

Intercept 5.0000 0.31623 Intercept

Brand  Goodstone 0.3333 0.44721 20.833 Class.BrandGoodstone

Brand  Pirogi 0.6667 0.44721 Class.BrandPirogi

Brand  Machismo -1.0000 0.44721 Class.BrandMachismo

Price  $69.99 2.1667 0.44721 54.167 Class.Price_69_99

Price  $74.99 0.0000 0.44721 Class.Price_74_99

Price  $79.99 -2.1667 0.44721 Class.Price_79_99

Life  50,000 -0.8333 0.44721 16.667 Class.Life50_000

Life  60,000 0.5000 0.44721 Class.Life60_000

Life  70,000 0.3333 0.44721 Class.Life70_000

Hazard  Yes 0.3333 0.31623 8.333 Class.HazardYes

Hazard  No -0.3333 0.31623 Class.HazardNo

Tire Study, Individual Conjoint Analyses

The TRANSREG Procedure

Tire Study, Individual Conjoint Analyses

The TRANSREG Procedure

The TRANSREG Procedure Hypothesis Tests for Identity(Subj2)

Root MSE 0.56765 R-Square 0.9710

Dependent Mean 4.94444 Adj R-Sq 0.9506

Coeff Var 11.48049

Utilities Table Based on the Usual Degrees of Freedom

Label Utility
Standard

Error

Importance
(% Utility

Range) Variable

Intercept 4.9444 0.13380 Intercept

Brand  Goodstone 1.2222 0.18922 25.658 Class.BrandGoodstone

Brand  Pirogi -0.9444 0.18922 Class.BrandPirogi

Brand  Machismo -0.2778 0.18922 Class.BrandMachismo

Price  $69.99 2.8889 0.18922 65.132 Class.Price_69_99

Price  $74.99 -0.2778 0.18922 Class.Price_74_99

Price  $79.99 -2.6111 0.18922 Class.Price_79_99

Life  50,000 -0.2778 0.18922 7.895 Class.Life50_000

Life  60,000 0.3889 0.18922 Class.Life60_000

Life  70,000 -0.1111 0.18922 Class.Life70_000

Hazard  Yes 0.0556 0.13380 1.316 Class.HazardYes

Hazard  No -0.0556 0.13380 Class.HazardNo
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Output 104.5.5 continued

Tire Study, Individual Conjoint Analyses

The TRANSREG Procedure

Tire Study, Individual Conjoint Analyses

The TRANSREG Procedure

The TRANSREG Procedure Hypothesis Tests for Identity(Subj3)

Root MSE 2.48104 R-Square 0.3902

Dependent Mean 4.94444 Adj R-Sq -0.0367

Coeff Var 50.17832

Utilities Table Based on the Usual Degrees of Freedom

Label Utility
Standard

Error

Importance
(% Utility

Range) Variable

Intercept 4.9444 0.58479 Intercept

Brand  Goodstone 0.0556 0.82701 18.261 Class.BrandGoodstone

Brand  Pirogi 0.5556 0.82701 Class.BrandPirogi

Brand  Machismo -0.6111 0.82701 Class.BrandMachismo

Price  $69.99 1.0556 0.82701 31.304 Class.Price_69_99

Price  $74.99 -0.1111 0.82701 Class.Price_74_99

Price  $79.99 -0.9444 0.82701 Class.Price_79_99

Life  50,000 -1.4444 0.82701 41.739 Class.Life50_000

Life  60,000 1.2222 0.82701 Class.Life60_000

Life  70,000 0.2222 0.82701 Class.Life70_000

Hazard  Yes 0.2778 0.58479 8.696 Class.HazardYes

Hazard  No -0.2778 0.58479 Class.HazardNo

Tire Study, Individual Conjoint Analyses

The TRANSREG Procedure

Tire Study, Individual Conjoint Analyses

The TRANSREG Procedure

The TRANSREG Procedure Hypothesis Tests for Identity(Subj4)

Root MSE 1.90321 R-Square 0.6185

Dependent Mean 5.05556 Adj R-Sq 0.3514

Coeff Var 37.64598
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Output 104.5.5 continued

Utilities Table Based on the Usual Degrees of Freedom

Label Utility
Standard

Error

Importance
(% Utility

Range) Variable

Intercept 5.0556 0.44859 Intercept

Brand  Goodstone 0.6111 0.63440 36.885 Class.BrandGoodstone

Brand  Pirogi -1.5556 0.63440 Class.BrandPirogi

Brand  Machismo 0.9444 0.63440 Class.BrandMachismo

Price  $69.99 0.2778 0.63440 12.295 Class.Price_69_99

Price  $74.99 0.2778 0.63440 Class.Price_74_99

Price  $79.99 -0.5556 0.63440 Class.Price_79_99

Life  50,000 -1.5556 0.63440 49.180 Class.Life50_000

Life  60,000 1.7778 0.63440 Class.Life60_000

Life  70,000 -0.2222 0.63440 Class.Life70_000

Hazard  Yes 0.0556 0.44859 1.639 Class.HazardYes

Hazard  No -0.0556 0.44859 Class.HazardNo

Tire Study, Individual Conjoint Analyses

The TRANSREG Procedure

Tire Study, Individual Conjoint Analyses

The TRANSREG Procedure

The TRANSREG Procedure Hypothesis Tests for Identity(Subj5)

Root MSE 1.36219 R-Square 0.8162

Dependent Mean 4.94444 Adj R-Sq 0.6875

Coeff Var 27.54987

Utilities Table Based on the Usual Degrees of Freedom

Label Utility
Standard

Error

Importance
(% Utility

Range) Variable

Intercept 4.9444 0.32107 Intercept

Brand  Goodstone 0.2222 0.45406 9.023 Class.BrandGoodstone

Brand  Pirogi 0.2222 0.45406 Class.BrandPirogi

Brand  Machismo -0.4444 0.45406 Class.BrandMachismo

Price  $69.99 2.5556 0.45406 67.669 Class.Price_69_99

Price  $74.99 -0.1111 0.45406 Class.Price_74_99

Price  $79.99 -2.4444 0.45406 Class.Price_79_99

Life  50,000 -0.6111 0.45406 15.789 Class.Life50_000

Life  60,000 0.5556 0.45406 Class.Life60_000

Life  70,000 0.0556 0.45406 Class.Life70_000

Hazard  Yes 0.2778 0.32107 7.519 Class.HazardYes

Hazard  No -0.2778 0.32107 Class.HazardNo

The next steps summarize the results. Three tables are displayed, showing the following: all of the importance
values, the average importance, and the part-worth utilities. The first DATA step selects the importance
information from the UTILS data set. The final assignment statement stores just the variable name from
the label, relying on the fact that the separator is two blanks. PROC TRANSPOSE creates the data set of
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importances, one row per subject, and PROC PRINT displays the results. The MEANS procedure displays
the average importance of each attribute across the subjects. The next DATA step selects the part-worth
utilities information from the UTILS data set. PROC TRANSPOSE creates the data set of utilities, one row
per subject, and PROC PRINT displays the results. The following statements produce Output 104.5.6:

title 'Tire Study Results';

* Gather the Importance Values;
data Importance;

set utils(keep=_depvar_ Importance Label);
if n(Importance);
label = substr(label, 1, index(label, ' '));

run;

proc transpose out=Importance2(drop=_:);
by _depvar_;
id Label;

run;

proc print;
title2 'Importance Values';

run;

proc means;
title2 'Average Importance';

run;

* Gather the Part-Worth Utilities;
data Utilities;

set utils(keep=_depvar_ Coefficient Label);
if n(Coefficient);

run;

proc transpose out=Utilities2(drop=_:);
by _depvar_;
id Label;
idlabel Label;

run;

proc print label;
title2 'Utilities';

run;

Output 104.5.6 Summary of Conjoint Analysis Results

Tire Study Results
Importance Values
Tire Study Results
Importance Values

Obs Brand Price Life Hazard

1 20.8333 54.1667 16.6667 8.33333

2 25.6579 65.1316 7.8947 1.31579

3 18.2609 31.3043 41.7391 8.69565

4 36.8852 12.2951 49.1803 1.63934

5 9.0226 67.6692 15.7895 7.51880
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Output 104.5.6 continued

Tire Study Results
Average Importance

The MEANS Procedure

Tire Study Results
Average Importance

The MEANS Procedure

Variable N Mean Std Dev Minimum Maximum

Brand
Price
Life
Hazard

5
5
5
5

22.1319800
46.1133697
26.2540671
5.5005832

10.2301014
23.7391251
18.0547195
3.6989117

9.0225564
12.2950820
7.8947368
1.3157895

36.8852459
67.6691729
49.1803279
8.6956522

Output 104.5.6 continued

Tire Study Results
Utilities

Tire Study Results
Utilities

Obs Intercept
Brand 

Goodstone
Brand 
Pirogi

Brand 
Machismo

Price 
$69.99

Price 
$74.99

Price 
$79.99

Life 
50,000

Life 
60,000

Life 
70,000

Hazard
Yes

Hazard 
No

1 5.00000 0.33333 0.66667 -1.00000 2.16667 0.00000 -2.16667 -0.83333 0.50000 0.33333 0.33333 -0.33333

2 4.94444 1.22222 -0.94444 -0.27778 2.88889 -0.27778 -2.61111 -0.27778 0.38889 -0.11111 0.05556 -0.05556

3 4.94444 0.05556 0.55556 -0.61111 1.05556 -0.11111 -0.94444 -1.44444 1.22222 0.22222 0.27778 -0.27778

4 5.05556 0.61111 -1.55556 0.94444 0.27778 0.27778 -0.55556 -1.55556 1.77778 -0.22222 0.05556 -0.05556

5 4.94444 0.22222 0.22222 -0.44444 2.55556 -0.11111 -2.44444 -0.61111 0.55556 0.05556 0.27778 -0.27778

Based on the importance values, price is the most important attribute for some of the respondents, but
expected tread life is most important for others. On the average, price is most important, followed by
expected tread life and brand. Road hazard insurance is less important. Each of the brands is preferred by
some of the respondents. All respondents preferred a lower price over a higher price, a longer tread life, and
road hazard insurance.

Example 104.6: Preference Mapping of Automobile Data
This example uses PROC TRANSREG to perform a preference mapping (PREFMAP) analysis (Carroll 1972)
of automobile preference data after a PROC PRINQUAL principal component analysis. The PREFMAP
analysis is a response surface regression that locates ideal points for each dependent variable in a space
defined by the independent variables.

The data are ratings obtained from 25 judges of their preference for each of 17 automobiles. The ratings
were made on a scale of zero (very weak preference) to nine (very strong preference). These judgments were
made in 1980 about that year’s products. There are two character variables that indicate the manufacturer
and model of the automobile. The data set also contains three ratings: miles per gallon (MPG), projected
reliability (Reliability), and quality of the ride (Ride). These ratings are on a scale of one (bad) to five (good).
PROC PRINQUAL creates an OUT= data set containing standardized principal component scores (Prin1 and
Prin2), along with the ID variables Model, MPG, Reliability, and Ride.

While this data set contains all of the information needed for the subsequent preference mapping, you can
make slightly more informative plots by adding new variable labels to the principal component score variables.
The default labels are ’Component 1’, ’Component 2’, and so on. These are by necessity rather generic since
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they are created before any data are read, and they must be appropriate across BY groups when a BY variable
is specified. In contrast, the MDPREF plot in PROC PRINQUAL has axis labels of the form ’Component 1
(43.54%)’ and ’Component 2 (23.4%)’ that show the proportion of variance accounted for by each component.
You can create an output data set from the MDPREF plot by using the ODS OUTPUT statement and then
use only the label information from it to reset the labels in the output data set from PROC PRINQUAL. In
the DATA PLOT step, the SET statement for the MD data set is specified before the SET statement for the
PRESULTS data set. The if 0 ensures that no data are actually read from it, but nevertheless the properties
of the Prin1 and Prin2 variables including the variable labels are set based on the properties of those variables
in the MD data set.

The first PROC TRANSREG step fits univariate regression models for MPG and Reliability. All variables are
designated IDENTITY. A vector drawn in the plot of Prin1 and Prin2 from the origin to the point defined by
an attribute’s regression coefficients approximately shows how the autos differ on that attribute. See Carroll
(1972) for more information. The Prin1 and Prin2 columns of the TResult1 OUT= data set contain the
automobile coordinates (_Type_=’SCORE’ observations) and endpoints of the MPG and Reliability vectors
(_Type_=’M COEFFI’ observations).

The second PROC TRANSREG step fits a univariate regression model with Ride designated IDENTITY,
and Prin1 and Prin2 designated POINT. The POINT expansion creates an additional independent variable
_ISSQ_, which contains the sum of Prin1 squared and Prin2 squared. The OUT= data set TResult2 contains no
_Type_=’SCORE’ observations, only ideal point (_Type_=’M POINT’) coordinates for Ride. The coordinates
of both the vectors and the ideal points are output by specifying COORDINATES in the OUTPUT statement
in PROC TRANSREG.

A vector model is used for MPG and Reliability because perfectly efficient and reliable automobiles do not
exist in the data set. The ideal points for MPG and Reliability are far removed from the plot of the automobiles.
It is more likely that an ideal point for quality of the ride is in the plot, so an ideal point model is used for the
ride variable. See Carroll (1972) and Schiffman, Reynolds, and Young (1981) for discussions of the vector
model and point models (including the EPOINT and QPOINT versions of the point model that are not used
in this example). For the vector model, the default coordinates stretch factor of 2.5 was used. This extends
the vectors by a factor of 2.5 from their standard lengths, making a better graphical display. Sometimes the
default vectors are short and near the origin, and they look better when they are extended.

The following statements produce Output 104.6.1 through Output 104.6.5:

title 'Preference Ratings for Automobiles Manufactured in 1980';

options validvarname=any;

data CarPreferences;
input Make $ 1-10 Model $ 12-22 @25 ('1'n-'25'n) (1.)

MPG Reliability Ride;
datalines;

Cadillac Eldorado 8007990491240508971093809 3 2 4
Chevrolet Chevette 0051200423451043003515698 5 3 2
Chevrolet Citation 4053305814161643544747795 4 1 5
Chevrolet Malibu 6027400723121345545668658 3 3 4
Ford Fairmont 2024006715021443530648655 3 3 4
Ford Mustang 5007197705021101850657555 3 2 2
Ford Pinto 0021000303030201500514078 4 1 1
Honda Accord 5956897609699952998975078 5 5 3
Honda Civic 4836709507488852567765075 5 5 3
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Lincoln Continental 7008990592230409962091909 2 4 5
Plymouth Gran Fury 7006000434101107333458708 2 1 5
Plymouth Horizon 3005005635461302444675655 4 3 3
Plymouth Volare 4005003614021602754476555 2 1 3
Pontiac Firebird 0107895613201206958265907 1 1 5
Volkswagen Dasher 4858696508877795377895000 5 3 4
Volkswagen Rabbit 4858509709695795487885000 5 4 3
Volvo DL 9989998909999987989919000 4 5 5
;

ods graphics on;

* Compute Coordinates for a 2-Dimensional Scatter Plot of Automobiles;
proc prinqual data=CarPreferences out=PResults(drop='1'n-'25'n)

n=2 replace standard scores mdpref=2;
id Model MPG Reliability Ride;
transform identity('1'n-'25'n);
title2 'Multidimensional Preference (MDPREF) Analysis';
ods output mdprefplot=md;

run;

options validvarname=v7;

title2 'Preference Mapping (PREFMAP) Analysis';

* Add the Labels from the Plot to the Results Data Set;
data plot;

if 0 then set md(keep=prin:);
set presults;

run;

* Compute Endpoints for MPG and Reliability Vectors;
proc transreg data=plot rsquare;

Model identity(MPG Reliability)=identity(Prin1 Prin2);
output tstandard=center coordinates replace out=TResult1;
id Model;

run;

* Compute Ride Ideal Point Coordinates;
proc transreg data=plot rsquare;

Model identity(Ride)=point(Prin1 Prin2);
output tstandard=center coordinates replace noscores out=TResult2;
id Model;

run;

proc print;
run;
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Output 104.6.1 Preference Ratings Example Output

Preference Ratings for Automobiles Manufactured in 1980
Multidimensional Preference (MDPREF) Analysis

The PRINQUAL Procedure

Preference Ratings for Automobiles Manufactured in 1980
Multidimensional Preference (MDPREF) Analysis

The PRINQUAL Procedure

PRINQUAL MTV Algorithm Iteration History

Iteration
Number

Average
Change

Maximum
Change

Proportion
of Variance

Criterion
Change Note

1 0.00000 0.00000 0.66946 Converged

Algorithm converged.

Output 104.6.2 MDPREF Plot

Output 104.6.3 shows that an unreliable-to-reliable direction extends from the left and slightly below the
origin to the right and slightly above the origin. The Japanese and European automobiles are rated, on the
average, as more reliable. A low MPG to good MPG direction extends from the top left of the plot to the
bottom right. The smaller automobiles, on the average, get better gas mileage.
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Output 104.6.3 Preference Mapping Vector Plot

Preference Ratings for Automobiles Manufactured in 1980
Preference Mapping (PREFMAP) Analysis

The TRANSREG Procedure

Preference Ratings for Automobiles Manufactured in 1980
Preference Mapping (PREFMAP) Analysis

The TRANSREG Procedure

The TRANSREG Procedure Hypothesis Tests for Identity(MPG)

R-Square 0.5720

The TRANSREG Procedure Hypothesis Tests for Identity(Reliability)

R-Square 0.5086

Output 104.6.3 continued

The ideal point for Ride in Output 104.6.4 is in the top, just right of the center of the plot. Automobiles near
the Ride ideal point tend to have a better ride than automobiles far away. It can be seen from the R squares
that none of these ratings perfectly fits the model, so all of the interpretations are approximate.
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Output 104.6.4 Preference Mapping Ideal Point Plot

Preference Ratings for Automobiles Manufactured in 1980
Preference Mapping (PREFMAP) Analysis

The TRANSREG Procedure

Preference Ratings for Automobiles Manufactured in 1980
Preference Mapping (PREFMAP) Analysis

The TRANSREG Procedure

The TRANSREG Procedure Hypothesis Tests for Identity(Ride)

R-Square 0.3780

Output 104.6.4 continued

The Ride point is a “negative-negative” ideal point. The point models assume that small ratings mean the
object (automobile) is similar to the rating name and large ratings imply dissimilarity to the rating name.
Because the opposite scoring is used, the interpretation of the Ride point must be reversed to a negative
ideal point (bad ride). However, the coefficient for the _ISSQ_ variable in Output 104.6.5 is negative, so the
interpretation is reversed again, back to the original interpretation.

Output 104.6.5 Preference Mapping Ideal Point Coefficients

Preference Ratings for Automobiles Manufactured in 1980
Preference Mapping (PREFMAP) Analysis

Preference Ratings for Automobiles Manufactured in 1980
Preference Mapping (PREFMAP) Analysis

Obs _TYPE_ _NAME_ Ride Intercept Prin1 Prin2 _ISSQ_ Model

1 M POINT Ride . . 0.49461 2.46539 -0.17448 Ride



References F 8757

References

Akaike, H. (1973), “Information Theory and an Extension of the Maximum Likelihood Principle,” in B. N.
Petrov and F. Csáki, eds., Proceedings of the Second International Symposium on Information Theory,
267–281, Budapest: Akademiai Kiado.

Box, G. E. P. and Cox, D. R. (1964), “An Analysis of Transformations,” Journal of the Royal Statistical
Society, Series B, 26, 211–234.

Breiman, L. and Friedman, J. H. (1985), “Estimating Optimal Transformations for Multiple Regression and
Correlation,” Journal of the American Statistical Association, 77, 580–619, with discussion.

Brent, R. P. (1973), Algorithms for Minimization without Derivatives, Englewood Cliffs, NJ: Prentice-Hall,
chapter 5.

Brinkman, N. D. (1981), “Ethanol Fuel: A Single-Cylinder Engine Study of Efficiency and Exhaust Emis-
sions,” Society of Automotive Engineers Transactions, 90, 1410–1424.

Carroll, J. D. (1972), “Individual Differences and Multidimensional Scaling,” in R. N. Shepard, A. K. Romney,
and S. B. Nerlove, eds., Multidimensional Scaling: Theory and Applications in the Behavioral Sciences,
volume 1, New York: Seminar Press.

Craven, P. and Wahba, G. (1979), “Smoothing Noisy Data with Spline Functions,” Numerical Mathematics,
31, 377–403.

De Boor, C. (1978), A Practical Guide to Splines, New York: Springer-Verlag.

De Leeuw, J. (1986), Regression with Optimal Scaling of the Dependent Variable, Leiden, Netherlands:
Department of Data Theory, University of Leiden.

De Leeuw, J., Young, F. W., and Takane, Y. (1976), “Additive Structure in Qualitative Data: An Alternating
Least Squares Approach with Optimal Scaling Features,” Psychometrika, 41, 471–503.

Draper, N. R. and Smith, H. (1981), Applied Regression Analysis, 2nd Edition, New York: John Wiley &
Sons.

Eilers, P. H. C. and Marx, B. D. (1996), “Flexible Smoothing with B-Splines and Penalties,” Statistical
Science, 11, 89–121, with discussion.

Fisher, R. A. (1938), Statistical Methods for Research Workers, 10th Edition, Edinburgh: Oliver & Boyd.

Gabriel, K. R. (1981), “Biplot Display of Multivariate Matrices for Inspection of Data and Diagnosis,” in
V. Barnett, ed., Interpreting Multivariate Data, London: John Wiley & Sons.

Gifi, A. (1990), Nonlinear Multivariate Analysis, New York: John Wiley & Sons.

Green, P. E. and Wind, Y. (1975), “New Way to Measure Consumers’ Judgments,” Harvard Business Review,
53, 107–117.

Hastie, T. J. and Tibshirani, R. J. (1986), “Generalized Additive Models,” Statistical Science, 3, 297–318.



8758 F Chapter 104: The TRANSREG Procedure

Hurvich, C. M., Simonoff, J. S., and Tsai, C.-L. (1998), “Smoothing Parameter Selection in Nonparametric
Regression Using an Improved Akaike Information Criterion,” Journal of the Royal Statistical Society,
Series B, 60, 271–293.

Israels, A. Z. (1984), “Redundancy Analysis for Qualitative Variables,” Psychometrika, 49, 331–346.

Judge, G. G., Griffiths, W. E., Hill, R. C., and Lee, T.-C. (1980), The Theory and Practice of Econometrics,
New York: John Wiley & Sons.

Khuri, A. I. and Cornell, J. A. (1987), Response Surfaces, New York: Marcel Dekker.

Kruskal, J. B. (1964), “Nonmetric Multidimensional Scaling by Optimizing Goodness of Fit to a Nonmetric
Hypothesis,” Psychometrika, 29, 1–27.

Kuhfeld, W. F. (2010), Marketing Research Methods in SAS, Technical report, SAS Institute Inc., http:
//support.sas.com/resources/papers/tnote/tnote_marketresearch.html.

Myers, R. H. (1976), Response Surface Methodology, Blacksburg: Virginia Polytechnic Institute and State
University.

National Institute of Standards and Technology (1998), “Statistical Reference Data Sets,” http://www.
itl.nist.gov/div898/strd/general/dataarchive.html, accessed June 6, 2011.

Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. (1989), Numerical Recipes in PASCAL,
Cambridge: Cambridge University Press.

Reinsch, C. H. (1967), “Smoothing by Spline Functions,” Numerische Mathematik, 10, 177–183.

SAS Institute Inc. (1993), Algorithms for the PRINQUAL and TRANSREG Procedures, Technical Re-
port R-108, SAS Institute Inc., Cary, NC, http://support.sas.com/publishing/pubcat/
techreports/59040.pdf.

Schiffman, S. S., Reynolds, M. L., and Young, F. W. (1981), Introduction to Multidimensional Scaling, New
York: Academic Press.

Schwarz, G. (1978), “Estimating the Dimension of a Model,” Annals of Statistics, 6, 461–464.

Siegel, S. (1956), Nonparametric Statistics, New York: McGraw-Hill.

Smith, P. L. (1979), “Splines as a Useful and Convenient Statistical Tool,” American Statistician, 33, 57–62.

Stewart, D. K. and Love, W. A. (1968), “A General Canonical Correlation Index,” Psychological Bulletin, 70,
160–163.

Van der Burg, E. and De Leeuw, J. (1983), “Non-linear Canonical Correlation,” British Journal of Mathemat-
ical and Statistical Psychology, 36, 54–80.

van Rijckevorsel, J. L. (1982), “Canonical Analysis with B-Splines,” in H. Caussinus, P. Ettinger, and
R. Tomassone, eds., COMPUSTAT 1982, Part I, Vienna: Physica-Verlag.

Winsberg, S. and Ramsay, J. O. (1980), “Monotonic Transformations to Additivity Using Splines,” Biometrika,
67, 669–674.

Young, F. W. (1981), “Quantitative Analysis of Qualitative Data,” Psychometrika, 46, 357–388.

http://support.sas.com/resources/papers/tnote/tnote_marketresearch.html
http://support.sas.com/resources/papers/tnote/tnote_marketresearch.html
http://www.itl.nist.gov/div898/strd/general/dataarchive.html
http://www.itl.nist.gov/div898/strd/general/dataarchive.html
http://support.sas.com/publishing/pubcat/techreports/59040.pdf
http://support.sas.com/publishing/pubcat/techreports/59040.pdf


References F 8759

Young, F. W., de Leeuw, J., and Takane, Y. (1976), “Regression with Qualitative and Quantitative Variables:
An Alternating Least Squares Approach with Optimal Scaling Features,” Psychometrika, 41, 505–529.



8760



Chapter 105

The TREE Procedure

Contents
Overview: TREE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8762
Getting Started: TREE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8762
Syntax: TREE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8768

PROC TREE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8768
BY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8774
COPY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8774
FREQ Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8774
HEIGHT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8775
ID Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8775
NAME Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8775
PARENT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8775

Details: TREE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8776
Missing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8776
Output Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8776
Displayed Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8777
ODS Table Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8777

Examples: TREE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8778
Example 105.1: Mammals’ Teeth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8778
Example 105.2: Iris Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8785

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8786



8762 F Chapter 105: The TREE Procedure

Overview: TREE Procedure
The TREE procedure reads a data set created by the CLUSTER or VARCLUS procedure and produces a tree
diagram (also known as a dendrogram or phenogram), which displays the results of a hierarchical clustering
analysis as a tree structure. The TREE procedure uses the data set to produce a diagram of the tree structure
in the style of Johnson (1967), with the root at the top. Alternatively, the diagram can be oriented horizontally,
with the root at the left. Any numeric variable in the output data set can be used to specify the heights of
the clusters. PROC TREE can also create an output data set that contains a variable to indicate the disjoint
clusters at a specified level in the tree.

Tree diagrams are discussed in the context of cluster analysis by Duran and Odell (1974); Hartigan (1975);
Everitt (1980). Knuth (1973) provides a general treatment of tree diagrams in computer programming.

The literature on tree diagrams contains a mixture of botanical and genealogical terminology. The objects
that are clustered are leaves. The cluster that contains all objects is the root. A cluster that contains at least
two objects but not all of them is a branch. The general term for leaves, branches, and roots is node. If a
cluster A is the union of clusters B and C, then A is the parent of B and C, and B and C are children of A.
A leaf is thus a node with no children, and a root is a node with no parent. If every cluster has at most two
children, the tree diagram is a binary tree. The CLUSTER procedure always produces binary trees. The
VARCLUS procedure can produce tree diagrams with clusters that have many children.

Getting Started: TREE Procedure
The TREE procedure creates tree diagrams from a SAS data set that contains the tree structure. You can
create this type of data set with the CLUSTER or VARCLUS procedure. See Chapter 33, “The CLUSTER
Procedure,” and Chapter 107, “The VARCLUS Procedure,” for more information.

In the following example, the VARCLUS procedure is used to divide a set of variables into hierarchical
clusters and to create the SAS data set that contains the tree structure. The TREE procedure then generates
the tree diagrams.

The following data, from Hand et al. (1994), represent the amount of protein consumed from nine food groups
for each of 25 European countries. The nine food groups are red meat (RedMeat), white meat (WhiteMeat),
eggs (Eggs), milk (Milk), fish (Fish), cereal (Cereal), starch (Starch), nuts (Nuts), and fruits and vegetables
(FruVeg).
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The following SAS statements create the data set Protein:

data Protein;
input Country $15. RedMeat WhiteMeat Eggs Milk

Fish Cereal Starch Nuts FruVeg;
datalines;

Albania 10.1 1.4 0.5 8.9 0.2 42.3 0.6 5.5 1.7
Austria 8.9 14.0 4.3 19.9 2.1 28.0 3.6 1.3 4.3
Belgium 13.5 9.3 4.1 17.5 4.5 26.6 5.7 2.1 4.0
Bulgaria 7.8 6.0 1.6 8.3 1.2 56.7 1.1 3.7 4.2
Czechoslovakia 9.7 11.4 2.8 12.5 2.0 34.3 5.0 1.1 4.0
Denmark 10.6 10.8 3.7 25.0 9.9 21.9 4.8 0.7 2.4
E Germany 8.4 11.6 3.7 11.1 5.4 24.6 6.5 0.8 3.6
Finland 9.5 4.9 2.7 33.7 5.8 26.3 5.1 1.0 1.4
France 18.0 9.9 3.3 19.5 5.7 28.1 4.8 2.4 6.5
Greece 10.2 3.0 2.8 17.6 5.9 41.7 2.2 7.8 6.5
Hungary 5.3 12.4 2.9 9.7 0.3 40.1 4.0 5.4 4.2
Ireland 13.9 10.0 4.7 25.8 2.2 24.0 6.2 1.6 2.9
Italy 9.0 5.1 2.9 13.7 3.4 36.8 2.1 4.3 6.7
Netherlands 9.5 13.6 3.6 23.4 2.5 22.4 4.2 1.8 3.7
Norway 9.4 4.7 2.7 23.3 9.7 23.0 4.6 1.6 2.7
Poland 6.9 10.2 2.7 19.3 3.0 36.1 5.9 2.0 6.6
Portugal 6.2 3.7 1.1 4.9 14.2 27.0 5.9 4.7 7.9
Romania 6.2 6.3 1.5 11.1 1.0 49.6 3.1 5.3 2.8
Spain 7.1 3.4 3.1 8.6 7.0 29.2 5.7 5.9 7.2
Sweden 9.9 7.8 3.5 4.7 7.5 19.5 3.7 1.4 2.0
Switzerland 13.1 10.1 3.1 23.8 2.3 25.6 2.8 2.4 4.9
UK 17.4 5.7 4.7 20.6 4.3 24.3 4.7 3.4 3.3
USSR 9.3 4.6 2.1 16.6 3.0 43.6 6.4 3.4 2.9
W Germany 11.4 12.5 4.1 18.8 3.4 18.6 5.2 1.5 3.8
Yugoslavia 4.4 5.0 1.2 9.5 0.6 55.9 3.0 5.7 3.2
;

The data set Protein contains the character variable Country and the nine numeric variables that represent the
food groups. The $15. in the INPUT statement specifies that the variable Country is a character variable
with a length of 15.

The following statements cluster the variables in the data set Protein:

ods graphics on;

proc varclus data=Protein outtree=Tree centroid maxclusters=4
plots=dendrogram(vertical height=ncl);

var RedMeat--FruVeg;
run;

The OUTTREE= option creates an output data set named Tree to contain the tree structure. The CENTROID
option specifies the centroid clustering method, and the MAXCLUSTERS= option specifies that the largest
number of clusters desired is four. The VAR statement specifies that all numeric variables (RedMeat—
FruVeg) are used by the procedure. Since ODS Graphics is enabled, PROC VARCLUS creates a dendrogram,
which is displayed in Figure 105.1. The option plots=dendrogram(vertical height=ncl) specifies a
vertical dendrogram with the number of clusters on the vertical axis. The default is a horizontal dendrogram
with, for this cluster analysis, the proportion of variance explained on the horizontal axis.
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Figure 105.1 Dendrogram from PROC VARCLUS and ODS Graphics

The output data set Tree, created by the OUTTREE= option in the previous statements, contains the following
variables:

_NAME_ the name of the cluster

_PARENT_ the parent of the cluster

_NCL_ the number of clusters

_VAREXP_ the amount of variance explained by the cluster

_PROPOR_ the proportion of variance explained by the clusters at the current level of the tree diagram

_MINPRO_ the minimum proportion of variance explained by a cluster

_MAXEIGEN_ the maximum second eigenvalue of a cluster
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Figure 105.2 Graphical Tree Diagram from PROC TREE

The following statements use PROC TREE to produce tree diagrams of the clusters created by PROC
VARCLUS:

proc tree data=tree;
run;

proc tree data=tree lineprinter;
run;

PROC TREE is invoked twice. In the first invocation, the tree diagram is presented using the default graphical
output. In the second invocation, the LINEPRINTER option specifies line printer output.

Figure 105.2 displays the default graphical representation of the tree diagram. The line printer plot is not
displayed.

In each diagram the name of the cluster is displayed on the horizontal axis and the number of clusters is
displayed on the vertical (height) axis.
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As you look up from the bottom of either diagram, clusters are progressively joined until a single, all-
encompassing cluster is formed at the top (or root) of the tree. Clusters exist at each level of the diagram. For
example, at the level where the diagram indicates three clusters, the clusters are as follows:

• Cluster 1: RedMeat WhiteMeat Eggs Milk

• Cluster 2: Fish Starch

• Cluster 3: Cereal Nuts FruVeg

As you proceed up the diagram one level, the number of clusters is two:

• Cluster 1: RedMeat WhiteMeat Eggs Milk Fish Starch

• Cluster 2: Cereal Nuts FruVeg

The following statements illustrate how you can specify the numeric variable that defines the height of each
node (cluster) in the tree:

axis1 order=(0 to 1 by 0.2);
proc tree data=Tree horizontal haxis=axis1;

height _PROPOR_;
run;

The ORDER= option in the AXIS1 statement (see SAS/GRAPH: Reference) specifies the data values in the
order in which they are to appear on the axis. The HORIZONTAL option in the PROC TREE statement
orients the tree diagram horizontally. The HAXIS= option specifies that the AXIS1 statement be used to
customize the appearance of the horizontal axis. The HEIGHT statement specifies the variable _PROPOR_
(the proportion of variance explained) as the height variable.

The resulting tree diagram is shown in Figure 105.3.
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Figure 105.3 Horizontal Tree Diagram with _PROPOR_ as the HEIGHT Variable

As you look from left to right in the diagram, objects and clusters are progressively joined until a single,
all-encompassing cluster is formed at the right (or root) of the tree.

Clusters exist at each level of the diagram, represented by horizontal line segments. Each vertical line
segment represents a point where leaves and branches are connected into progressively larger clusters.

For example, three clusters are formed at the leftmost point along the axis where three horizontal line
segments exist. At that point, where a vertical line segment connects the Cereal-Nuts and FruVeg clusters, the
proportion of variance explained is about 0.6 (_PROPOR_ = 0.6). At the next clustering level the variables
Fish and Starch are clustered with variables RedMeat through Milk, resulting in a total of two clusters. The
proportion of variance explained is about 0.45 at that point.
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Syntax: TREE Procedure
The following statements are available in the TREE procedure:

PROC TREE < options > ;
NAME variables ;
HEIGHT variable ;
PARENT variables ;
BY variables ;
COPY variables ;
FREQ variable ;
ID variable ;

If the input data set has been created by CLUSTER or VARCLUS, the only statement required is the PROC
TREE statement. The BY, COPY, FREQ, HEIGHT, ID, NAME, and PARENT statements are described after
the PROC TREE statement.

PROC TREE Statement
PROC TREE < options > ;

The PROC TREE statement invokes the TREE procedure.

Table 105.1 summarizes the options available in the PROC TREE statement.

Table 105.1 PROC TREE Statement Options

Option Description

Data Sets
DATA= specifies input data set
DOCK= specifies that small clusters not be counted in OUT= data

set
LEVEL= defines disjoint cluster in OUT= data set
NCLUSTERS= specifies number of clusters in OUT= data set
OUT= specifies output data set
ROOT= displays root of a subtree
Cluster Heights
HEIGHT= specifies variable for the height axis
DISSIMILAR specifies that height values indicate dissimilarity
SIMILAR specifies that height values indicate similarity
Horizontal Trees
HORIZONTAL specifies that height axis be horizontal
Sort Order
DESCENDING reverses sort order
SORT sorts children by HEIGHT variable
Displayed Output
INC= specifies increment between tick values
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Table 105.1 continued

Option Description

LINEPRINTER displays tree by using line printer graphics
LIST displays all nodes in tree
MAXHEIGHT= specifies maximum value on axis
MINHEIGHT= specifies minimum value on axis
NOPRINT suppresses display of tree
NTICK= specifies number of tick intervals
Graphics
CFRAME= specifies color of the frame
DESCRIPTION= specifies catalog description
GOUT= specifies catalog name
HAXIS= customizes horizontal axis
HORDISPLAY= displays horizontal tree with leaves on right
HPAGES= specifies number of pages to expand tree horizontally
LINES= specifies line color and thickness, dots at nodes
NAME= specifies name of graph in catalog
VAXIS= customizes vertical axis
VPAGES= specifies number of pages to expand tree vertically
Line Printer Graphics
PAGES= specifies number of pages
POS= specifies number of column positions
SPACES= specifies number of spaces between objects
TICKPOS= specifies number of column positions between ticks
FILLCHAR= specifies fill character between unjoined leaves
JOINCHAR= specifies character displayed between joined leaves
LEAFCHAR= specifies character representing clusters with no children
TREECHAR= specifies character representing clusters with children

CFRAME=color
specifies a color for the frame, which is the rectangle bounded by the axes.

DATA=SAS-data-set
specifies the input data set that defines the tree. If you omit the DATA= option, the most recently
created SAS data set is used.

DESCENDING

DES
reverses the sort order for the SORT option.

DESCRIPTION=entry-description
specifies a description for the graph in the GOUT= catalog. The default is “Proc Tree Graph Output.”
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DISSIMILAR

DIS
specifies that the values of the HEIGHT variable are dissimilarities; that is, a large height value means
that the clusters are very dissimilar or far apart.

If neither the SIMILAR nor the DISSIMILAR option is specified, PROC TREE attempts to infer from
the data whether the height values are similarities or dissimilarities. If PROC TREE cannot tell this
from the data, it issues an error message and does not display a tree diagram.

DOCK=n
causes observations in the OUT= data set that have a frequency of n or less to be given missing values
for the output variables CLUSTER and CLUSNAME. If the NCLUSTERS= option is also specified,
DOCK= also prevents clusters with a frequency of n or less from being counted toward the number of
clusters requested by the NCLUSTERS= option. By default, DOCK=0.

FILLCHAR=’c’

FC=’c’
specifies the character displayed between leaves that are not joined into a cluster. The character should
be enclosed in single quotes. The default is a blank. The LINEPRINTER option must also be specified.

GOUT=< libref. >member-name
specifies the catalog in which the generated graph is stored. The default is Work.Gseg.

HAXIS=AXISn
specifies that the AXISn statement be used to customize the appearance of the horizontal axis.

HEIGHT=name

H=name
specifies certain conventional variables to be used for the height axis of the tree diagram. For many
situations, the only option you need is the HEIGHT= option. Valid values for name and their meanings
are as follows:

HEIGHT | H specifies the _HEIGHT_ variable.

LENGTH | L defines the height of each node as its path length from the root. This can also be
interpreted as the number of ancestors of the node.

MODE | M specifies the _MODE_ variable.

NCL | N specifies the _NCL_ (number of clusters) variable.

RSQ | R specifies the _RSQ_ variable.

See also the section “HEIGHT Statement” on page 8775. The HEIGHT statement can specify any
variable in the input data set to be used for the height axis. In rare cases, you might need to specify
either the DISSIMILAR option or the SIMILAR option.

HORDISPLAY=RIGHT
specifies that the graph be oriented horizontally with the leaf nodes on the right side, when the
HORIZONTAL option is also specified. By default, the leaf nodes are on the left side.



PROC TREE Statement F 8771

HORIZONTAL

HOR
displays the tree diagram with the height axis oriented horizontally. The leaf nodes are on the side
specified in the HORDISPLAY= option. If you do not specify the HORIZONTAL option, the height
axis is vertical, with the root at the top. When the tree takes up more than one page, horizontal
orientation can make the tree diagram considerably easier to read.

HPAGES=n1
specifies that the original graph be enlarged to cover n1 pages. If you also specify the VPAGES=n2
option, the original graph is enlarged to cover n1 � n2 graphs. For example, if HPAGES=2 and
VPAGES=3, then the original graph is generated, followed by 2 � 3 D 6 more graphs. In these six
graphs, the original is enlarged by a factor of 2 in the horizontal direction and by a factor of 3 in the
vertical direction. The graphs are generated in left-to-right and top-to-bottom order.

INC=n
specifies the increment between tick values on the height axis. If the HEIGHT variable is _NCL_, the
default is usually 1, although a different value can be specified for consistency with other options. For
any other HEIGHT variable, the default is some power of 10 times 1, 2, 2.5, or 5.

JOINCHAR=’c’

JC=’c’
specifies the character displayed between leaves that are joined into a cluster. The character should be
enclosed in single quotes. The default is ‘X’. The LINEPRINTER option must also be specified.

LEAFCHAR=’c’

LC=’c’
specifies the character used to represent clusters that have no children. The character should be enclosed
in single quotes. The default is a period. The LINEPRINTER option must also be specified.

LEVEL=n
specifies the level of the tree that defines disjoint clusters for the OUT= data set. The LEVEL= option
also causes only clusters between the root and a height of n to be displayed. The clusters in the output
data set are those that exist at a height of n on the tree diagram. For example, if the HEIGHT variable is
_NCL_ (number of clusters) and LEVEL=5 is specified, then the OUT= data set contains five disjoint
clusters. If the HEIGHT variable is _RSQ_ (R square) and LEVEL=0.9 is specified, then the OUT=
data set contains the smallest number of clusters that yields an R square of at least 0.9.

LINEPRINTER
specifies that the tree diagram be displayed using line printer graphics.

LINES=( < COLOR=color > < WIDTH=n > < DOTS >)
specifies the color and the thickness of the lines of the tree, and whether a dot is drawn at each leaf
node. If the frame and the lines are specified to be the same color, PROC TREE selects a different
color for the lines.

LIST
lists all the nodes in the tree, displaying the height, parent, and children of each node.
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MAXHEIGHT=n

MAXH=n
specifies the maximum value displayed on the height axis.

MINHEIGHT=n

MINH=n
specifies the minimum value displayed on the height axis.

NAME=name
specifies the entry name for the generated graph in the GOUT= catalog. Each time another graph is
generated with the same name, the name is modified by appending a number to make it unique.

NCLUSTERS=n

NCL=n

N=n
specifies the number of clusters desired in the OUT= data set. The number of clusters obtained might
not equal the number specified if (1) there are fewer than n leaves in the tree, (2) there are more than n
unconnected trees in the data set, (3) a multiway tree does not contain a level with the specified number
of clusters, or (4) the DOCK= option eliminates too many clusters.

The NCLUSTERS= option uses the _NCL_ variable to determine the order in which the clusters are
formed. If there is no _NCL_ variable, the height variable (as determined by the HEIGHT statement or
HEIGHT= option) is used instead.

NTICK=n
specifies the number of tick intervals on the height axis. The default depends on the values of other
options.

NOPRINT
suppresses the display of the tree. Specify the NOPRINT option if you want only to create an OUT=
data set.

OUT=SAS-data-set
creates an output data set that contains one observation for each object in the tree or subtree being pro-
cessed and variables called CLUSTER and CLUSNAME that show cluster membership at any specified
level in the tree. If you specify the OUT= option, you must also specify either the NCLUSTERS= or
LEVEL= option in order to define the output partition level. If you want to create a SAS data set in a
permanent library, you must specify a two-level name. For more information about permanent libraries
and SAS data sets, see SAS Language Reference: Concepts.

PAGES=n
specifies the number of pages over which the tree diagram (from root to leaves) is to extend. The
default is 1. The LINEPRINTER option must also be specified.

POS=n
specifies the number of column positions on the height axis. The default depends on the value of the
PAGES= option, the orientation of the tree diagram, and the values specified by the PAGESIZE= and
LINESIZE= options. The LINEPRINTER option must also be specified.
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ROOT=’name’
specifies the value of the NAME statement variable for the root of a subtree to be displayed if you do
not want to display the entire tree. If you also specify the OUT= option, the output data set contains
only objects that belong to the subtree specified by the ROOT= option.

SIMILAR

SIM
specifies that the values of the HEIGHT variable represent similarities; that is, a large height value
means that the clusters are very similar or close together.

If neither the SIMILAR nor the DISSIMILAR option is specified, PROC TREE attempts to infer from
the data whether the height values are similarities or dissimilarities. If PROC TREE cannot tell this
from the data, it issues an error message and does not display a tree diagram.

SORT
sorts the children of each node by the HEIGHT variable, in the order of cluster formation. See the
DESCENDING option for details.

SPACES=s

S=s
specifies the number of spaces between objects in the output. The default depends on the number
of objects, the orientation of the tree diagram, and the values specified by the PAGESIZE= and
LINESIZE= options. The LINEPRINTER option must also be specified.

TICKPOS=n
specifies the number of column positions per tick interval on the height axis. The default value is
usually between 5 and 10, although a different value can be specified for consistency with other options.

TREECHAR=’c’

TC=’c’
specifies the character used to represent clusters with children. The character should be enclosed in
single quotes. The default is ‘X’. The LINEPRINTER option must also be specified.

VAXIS=AXISn
specifies that the AXISn statement be used to customize the appearance of the vertical axis.

VPAGES=n2
specifies that the original graph be enlarged to cover n2 pages. If you also specify the HPAGES=n1
option, the original graph is enlarged to cover n1 � n2 pages. For example, if HPAGES=2 and
VPAGES=3, then the original graph is generated, followed by 2 � 3 D 6 more graphs. In these six
graphs, the original is enlarged by a factor of 2 in the horizontal direction and by a factor of 3 in the
vertical direction. The graphs are generated in left-to-right and top-to-bottom order.
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BY Statement
BY variables ;

You can specify a BY statement with PROC TREE to obtain separate analyses of observations in groups that
are defined by the BY variables. When a BY statement appears, the procedure expects the input data set to be
sorted in order of the BY variables. If you specify more than one BY statement, only the last one specified is
used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the TREE procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

COPY Statement
COPY variables ;

The COPY statement specifies one or more character or numeric variables to be copied to the OUT= data set.

FREQ Statement
FREQ variable ;

The FREQ statement specifies one numeric variable that tells how many clustering observations belong to
the cluster. If the FREQ statement is omitted, PROC TREE uses the variable _FREQ_ to specify the number
of observations per cluster. If neither the FREQ statement nor the _FREQ_ variable is present, each leaf
is assumed to represent one clustering observation, and the frequency for each internal node is found by
summing the frequencies of its children.
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HEIGHT Statement
HEIGHT variable ;

The HEIGHT statement specifies the name of a numeric variable to define the height of each node (cluster) in
the tree. The height variable can also be specified by the HEIGHT= option in the PROC TREE statement. If
both the HEIGHT statement and the HEIGHT= option are omitted, PROC TREE uses the variable _HEIGHT_.
If the data set does not contain _HEIGHT_, PROC TREE uses the variable _NCL_. If _NCL_ is not present
either, the height of each node is defined to be its path length from the root.

ID Statement
ID variable ;

The ID variable is used to identify the objects (leaves) in the tree on the output. The ID variable can be
a character or numeric variable of any length. If the ID statement is omitted, the variable in the NAME
statement is used instead. If both the ID and NAME statements are omitted, PROC TREE uses the variable
_NAME_. If the _NAME_ variable is not found in the data set, PROC TREE issues an error message and
stops. The ID variable is copied to the OUT= data set.

NAME Statement
NAME variable ;

The NAME statement specifies a character or numeric variable that identifies the node represented by each
observation. The NAME statement variable and the PARENT statement variable jointly define the tree
structure. If the NAME statement is omitted, PROC TREE uses the variable _NAME_. If the _NAME_
variable is not found in the data set, PROC TREE issues an error message and stops.

PARENT Statement
PARENT variable ;

The PARENT statement specifies a character or numeric variable that identifies the node in the tree that is the
parent of each observation. The PARENT statement variable must have the same formatted length as the
NAME statement variable. If the PARENT statement is omitted, PROC TREE uses the variable _PARENT_.
If the _PARENT_ variable is not found in the data set, PROC TREE issues an error message and stops.
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Details: TREE Procedure

Missing Values
An observation with a missing value for the NAME statement variable is omitted from processing. If the
PARENT statement variable has a missing value but the NAME statement variable is present, the observation
is treated as the root of a tree. A data set can contain several roots and, hence, several trees.

Missing values of the HEIGHT variable are set to upper or lower bounds determined from the nonmissing
values under the assumption that the heights are monotonic with respect to the tree structure.

Missing values of the FREQ variable are inferred from nonmissing values where possible; otherwise, they
are treated as zero.

Output Data Set
The OUT= data set contains one observation for each leaf in the tree or subtree being processed. The variables
are as follows:

• the BY variables, if any

• the ID variable, or the NAME statement variable if the ID statement is not used

• the COPY variables

• a numeric variable CLUSTER that takes values from 1 to c, where c is the number of disjoint clusters.
The cluster to which the first observation belongs is given the number 1, the cluster to which the next
observation belongs that does not belong to cluster 1 is given the number 2, and so on.

• a character variable CLUSNAME that gives the value of the NAME statement variable of the cluster to
which the observation belongs

The CLUSTER and CLUSNAME variables are missing if the corresponding leaf has a nonpositive frequency.
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Displayed Output
The displayed output from the TREE procedure includes the following:

• the names of the objects in the tree

• the height axis

• the tree diagram.

The leaves of the tree diagram are displayed at the bottom of the graph. Horizontal lines connect the leaves
into branches, while the topmost horizontal line indicates the root.

If the LINEPRINTER option is specified, the root (the cluster that contains all the objects) is indicated by a
solid line of the character specified by the TREECHAR= option (the default character is ‘X’). At each level
of the tree, clusters are shown by unbroken lines of the TREECHAR= symbol with the FILLCHAR= symbol
(the default is a blank) separating the clusters. The LEAFCHAR= symbol (the default character is a period)
represents single-member clusters.

By default, the tree diagram is oriented with the height axis vertical and the object names at the top of the
diagram. If the HORIZONTAL option is specified, then the height axis is horizontal and the object names are
on the left.

ODS Table Names
PROC TREE assigns a name to each table it creates. You can use table names to refer to tables when using
the Output Delivery System (ODS) to select tables and create output data sets. The name of PROC TREE’s
only table is listed in Table 105.2. For more information about ODS, see Chapter 20, “Using the Output
Delivery System.”

Table 105.2 ODS Tables Produced by PROC TREE

ODS Table Name Description Statement Option

TreeListing Listing of all nodes in the tree PROC LIST
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Examples: TREE Procedure

Example 105.1: Mammals’ Teeth
The following statements produce a data set that contains the numbers of different kinds of teeth for a variety
of mammals:

data teeth;
title 'Mammals'' Teeth';
input mammal & $16. v1-v8 @@;
label v1='Right Top Incisors'

v2='Right Bottom Incisors'
v3='Right Top Canines'
v4='Right Bottom Canines'
v5='Right Top Premolars'
v6='Right Bottom Premolars'
v7='Right Top Molars'
v8='Right Bottom Molars';

datalines;
Brown Bat 2 3 1 1 3 3 3 3 Mole 3 2 1 0 3 3 3 3
Silver Hair Bat 2 3 1 1 2 3 3 3 Pigmy Bat 2 3 1 1 2 2 3 3
House Bat 2 3 1 1 1 2 3 3 Red Bat 1 3 1 1 2 2 3 3
Pika 2 1 0 0 2 2 3 3 Rabbit 2 1 0 0 3 2 3 3
Beaver 1 1 0 0 2 1 3 3 Groundhog 1 1 0 0 2 1 3 3
Gray Squirrel 1 1 0 0 1 1 3 3 House Mouse 1 1 0 0 0 0 3 3
Porcupine 1 1 0 0 1 1 3 3 Wolf 3 3 1 1 4 4 2 3
Bear 3 3 1 1 4 4 2 3 Raccoon 3 3 1 1 4 4 3 2
Marten 3 3 1 1 4 4 1 2 Weasel 3 3 1 1 3 3 1 2
Wolverine 3 3 1 1 4 4 1 2 Badger 3 3 1 1 3 3 1 2
River Otter 3 3 1 1 4 3 1 2 Sea Otter 3 2 1 1 3 3 1 2
Jaguar 3 3 1 1 3 2 1 1 Cougar 3 3 1 1 3 2 1 1
Fur Seal 3 2 1 1 4 4 1 1 Sea Lion 3 2 1 1 4 4 1 1
Grey Seal 3 2 1 1 3 3 2 2 Elephant Seal 2 1 1 1 4 4 1 1
Reindeer 0 4 1 0 3 3 3 3 Elk 0 4 1 0 3 3 3 3
Deer 0 4 0 0 3 3 3 3 Moose 0 4 0 0 3 3 3 3
;

The following statements use the CLUSTER procedure to cluster the mammals by average linkage and use
ODS Graphics and the TREE procedure to produce a horizontal tree diagram that uses the average-linkage
distance as its height axis:

ods graphics on;

proc cluster method=average std pseudo noeigen outtree=tree;
id mammal;
var v1-v8;

run;

proc tree horizontal;
run;
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Output 105.1.1 displays the information about how the clusters are joined. For example, the cluster history
shows that the mammals ‘Wolf’ and ‘Bear’ form cluster 29, which is merged with ‘Raccoon’ to form cluster
11.

Output 105.1.1 Output from PROC CLUSTER

Mammals' Teeth

The CLUSTER Procedure
Average Linkage Cluster Analysis

Mammals' Teeth

The CLUSTER Procedure
Average Linkage Cluster Analysis

The data have been standardized to mean 0 and variance 1

Root-Mean-Square Total-Sample Standard Deviation 1

Root-Mean-Square Distance Between Observations 4

Cluster History

Number
of

Clusters Clusters Joined Freq
Pseudo F

Statistic
Pseudo

t-Squared
Norm RMS

Distance Tie

31 Beaver Groundhog 2 . . 0 T

30 Gray Squirrel Porcupine 2 . . 0 T

29 Wolf Bear 2 . . 0 T

28 Marten Wolverine 2 . . 0 T

27 Weasel Badger 2 . . 0 T

26 Jaguar Cougar 2 . . 0 T

25 Fur Seal Sea Lion 2 . . 0 T

24 Reindeer Elk 2 . . 0 T

23 Deer Moose 2 . . 0

22 Pigmy Bat Red Bat 2 281 . 0.2289

21 CL28 River Otter 3 139 . 0.2292

20 CL31 CL30 4 83.2 . 0.2357 T

19 Brown Bat Silver Hair Bat 2 76.7 . 0.2357 T

18 Pika Rabbit 2 73.2 . 0.2357

17 CL27 Sea Otter 3 67.4 . 0.2462

16 CL22 House Bat 3 62.9 1.7 0.2859

15 CL21 CL17 6 47.4 6.8 0.3328

14 CL25 Elephant Seal 3 45.0 . 0.3362

13 CL19 CL16 5 40.8 3.5 0.3672

12 CL15 Grey Seal 7 38.9 2.8 0.4078

11 CL29 Raccoon 3 38.0 . 0.423

10 CL18 CL20 6 34.5 10.3 0.4339

9 CL12 CL26 9 30.0 7.3 0.5071

8 CL24 CL23 4 28.7 . 0.5473

7 CL9 CL14 12 25.7 7.0 0.5668

6 CL10 House Mouse 7 28.3 4.1 0.5792

5 CL11 CL7 15 26.8 6.9 0.6621

4 CL13 Mole 6 31.9 7.2 0.7156

3 CL4 CL8 10 31.0 12.7 0.8799

2 CL3 CL6 17 27.8 16.1 1.0316

1 CL2 CL5 32 . 27.8 1.1938
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Output 105.1.2 shows the tree diagram produced by PROC CLUSTER.

Output 105.1.2 Dendrogram from PROC CLUSTER
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Output 105.1.3 shows the corresponding tree diagram produced by PROC TREE.

Output 105.1.3 Tree Diagram of Mammal Teeth Clusters

As you view the diagram in Output 105.1.3 from left to right, objects and clusters are progressively joined
until a single, all-encompassing cluster is formed at the right (or root) of the tree. Clusters exist at each level
of the diagram, and every vertical line connects leaves and branches into progressively larger clusters. For
example, the five bats form a cluster at the 0.6 level, while the next cluster consists only of the mole. The
mammals ‘Reindeer’, ‘Elk’, ‘Deer’, and ‘Moose’ form the next cluster at the 0.6 level, the mammals ‘Pika’
through ‘House Mouse’ are in the fourth cluster, the mammals ‘Wolf’, ‘Bear’, and ‘Raccoon’ form the fifth
cluster, and the last cluster contains the mammals ‘Marten’ through ‘Elephant Seal’.

The following statements create the same tree with line printer graphics in a vertical orientation:

proc tree lineprinter;
run;

The line printer plot is not displayed.
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The next statements sort the clusters at each branch in order of formation and use the number of clusters as
the height axis:

proc tree sort height=n horizontal;
run;

The resulting tree is displayed in Output 105.1.4.

Output 105.1.4 PROC TREE with SORT and HEIGHT= Options

Because the CLUSTER procedure always produces binary trees, the number of internal (root and branch)
nodes in the tree is one less than the number of leaves. Therefore 31 clusters are formed from the 32 mammals
in the input data set. These are represented by the 31 vertical line segments in the tree diagram, each at a
different value along the horizontal axis.

As you examine the tree from left to right, the first vertical line segment is where ‘Beaver’ and ‘Groundhog’
are clustered and the number of clusters is 31. The next cluster is formed from ‘Gray Squirrel’ and ‘Porcupine’.
The third contains ‘Wolf’ and ‘Bear’. Note how the tree graphically displays the clustering order information
that was presented in tabular form by the CLUSTER procedure in Output 105.1.1.

The same clusters as in Output 105.1.3 can be seen at the six-cluster level of the tree diagram in Output 105.1.4,
although the SORT and HEIGHT= options make them appear in a different order.
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The following statements create these six clusters and save the result in the output data set part:

proc tree noprint out=part nclusters=6;
id mammal;
copy v1-v8;

run;

proc sort;
by cluster;

run;

PROC TREE with the NOPRINT option displays no output but creates an output data set that indicates the
cluster to which each observation belongs at the six-cluster level in the tree. The following statements print
the data set part, with the results shown in Output 105.1.5:

proc print label uniform;
id mammal;
var v1-v8;
format v1-v8 1.;
by cluster;

run;

Output 105.1.5 PROC TREE OUT= Data Set

Mammals' TeethMammals' Teeth

CLUSTER=1

mammal

Right
Top

Incisors

Right
Bottom
Incisors

Right
Top

Canines

Right
Bottom

Canines
Right Top
Premolars

Right
Bottom

Premolars

Right
Top

Molars

Right
Bottom
Molars

Beaver 1 1 0 0 2 1 3 3

Groundhog 1 1 0 0 2 1 3 3

Gray Squirrel 1 1 0 0 1 1 3 3

Porcupine 1 1 0 0 1 1 3 3

Pika 2 1 0 0 2 2 3 3

Rabbit 2 1 0 0 3 2 3 3

House Mouse 1 1 0 0 0 0 3 3

CLUSTER=2

mammal

Right
Top

Incisors

Right
Bottom
Incisors

Right
Top

Canines

Right
Bottom

Canines
Right Top
Premolars

Right
Bottom

Premolars

Right
Top

Molars

Right
Bottom
Molars

Wolf 3 3 1 1 4 4 2 3

Bear 3 3 1 1 4 4 2 3

Raccoon 3 3 1 1 4 4 3 2
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Output 105.1.5 continued

CLUSTER=3

mammal

Right
Top

Incisors

Right
Bottom
Incisors

Right
Top

Canines

Right
Bottom

Canines
Right Top
Premolars

Right
Bottom

Premolars

Right
Top

Molars

Right
Bottom
Molars

Marten 3 3 1 1 4 4 1 2

Wolverine 3 3 1 1 4 4 1 2

Weasel 3 3 1 1 3 3 1 2

Badger 3 3 1 1 3 3 1 2

Jaguar 3 3 1 1 3 2 1 1

Cougar 3 3 1 1 3 2 1 1

Fur Seal 3 2 1 1 4 4 1 1

Sea Lion 3 2 1 1 4 4 1 1

River Otter 3 3 1 1 4 3 1 2

Sea Otter 3 2 1 1 3 3 1 2

Elephant Seal 2 1 1 1 4 4 1 1

Grey Seal 3 2 1 1 3 3 2 2

CLUSTER=4

mammal

Right
Top

Incisors

Right
Bottom
Incisors

Right
Top

Canines

Right
Bottom

Canines
Right Top
Premolars

Right
Bottom

Premolars

Right
Top

Molars

Right
Bottom
Molars

Reindeer 0 4 1 0 3 3 3 3

Elk 0 4 1 0 3 3 3 3

Deer 0 4 0 0 3 3 3 3

Moose 0 4 0 0 3 3 3 3

CLUSTER=5

mammal

Right
Top

Incisors

Right
Bottom
Incisors

Right
Top

Canines

Right
Bottom

Canines
Right Top
Premolars

Right
Bottom

Premolars

Right
Top

Molars

Right
Bottom
Molars

Pigmy Bat 2 3 1 1 2 2 3 3

Red Bat 1 3 1 1 2 2 3 3

Brown Bat 2 3 1 1 3 3 3 3

Silver Hair Bat 2 3 1 1 2 3 3 3

House Bat 2 3 1 1 1 2 3 3

CLUSTER=6

mammal

Right
Top

Incisors

Right
Bottom
Incisors

Right
Top

Canines

Right
Bottom

Canines
Right Top
Premolars

Right
Bottom

Premolars

Right
Top

Molars

Right
Bottom
Molars

Mole 3 2 1 0 3 3 3 3
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Example 105.2: Iris Data
Fisher (1936)’s iris data give sepal and petal dimensions for three different species of iris. The data, which are
available in the Sashelp library, are clustered by kth-nearest-neighbor density linkage by using the CLUSTER
procedure with K=8. Observations are identified by species (‘Setosa’, ‘Versicolor’, or ‘Virginica’) in the tree
diagram, which is oriented with the height axis horizontal.

The following statements produce the results shown in Output 105.2.1:

title 'Fisher (1936) Iris Data';
ods graphics on;

proc cluster data=sashelp.iris method=twostage print=10
outtree=tree k=8 noeigen;

var SepalLength SepalWidth PetalLength PetalWidth;
copy Species;

run;

proc tree data=tree horizontal lineprinter pages=1 maxh=10;
id species;

run;

The PAGES=1 option specifies that the tree diagram extend over one page from tree to root. Since the
HORIZONTAL option is also specified, the horizontal extent of the diagram is one page. The number of
vertical pages required for the diagram is dictated by the number of leaves in the tree.

The MAXH=10 limits the values displayed on the height axis to a maximum of 10. This prunes the tree
diagram so that only the portion from the leaves to level 10 is produced. The line printer plot is not displayed.

Output 105.2.1 Clustering of Fisher’s Iris Data

Fisher (1936) Iris Data

The CLUSTER Procedure
Two-Stage Density Linkage Clustering

Fisher (1936) Iris Data

The CLUSTER Procedure
Two-Stage Density Linkage Clustering

K = 8

Root-Mean-Square Total-Sample Standard Deviation 10.69224
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Output 105.2.1 continued

Cluster History

MaximumDensity
in Each Cluster

Number
of

Clusters
Clusters
Joined Freq

Normalized
Fusion

Density Lesser Greater Tie

10 CL11 OB79 48 0.2879 0.1479 8.3678

9 CL13 OB112 46 0.2802 0.2005 3.5156

8 CL10 OB113 49 0.2699 0.1372 8.3678

7 CL8 OB91 50 0.2586 0.1372 8.3678

6 CL9 OB120 47 0.1412 0.0832 3.5156

5 CL6 OB118 48 0.107 0.0605 3.5156

4 CL5 OB110 49 0.0969 0.0541 3.5156

3 CL4 OB135 50 0.0715 0.0370 3.5156

2 CL7 CL3 100 2.6277 3.5156 8.3678

3 modal clusters have been formed.
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Overview: TTEST Procedure
The TTEST procedure performs t tests and computes confidence limits for one sample, paired observations,
two independent samples, and the AB/BA crossover design. Two-sided, TOST (two one-sided test) equiva-
lence, and upper and lower one-sided hypotheses are supported for means, mean differences, and mean ratios
for either normal or lognormal data.

Table 106.1 summarizes the designs, analysis criteria, hypotheses, and distributional assumptions supported
in the TTEST procedure, along with the syntax used to specify them.

Table 106.1 Features Supported in the TTEST Procedure

Feature Syntax

Design
One-sample VAR statement
Paired PAIRED statement
Two-independent-sample CLASS statement, VAR statement
AB/BA crossover VAR / CROSSOVER=

Analysis Criterion
Mean difference PROC TTEST TEST=DIFF
Mean ratio PROC TTEST TEST=RATIO

Hypothesis
Two-sided PROC TTEST SIDES=2
Equivalence PROC TTEST TOST ( < lower , > upper )
Lower one-sided PROC TTEST SIDES=L
Upper one-sided PROC TTEST SIDES=U

Distribution
Normal PROC TTEST DIST=NORMAL
Lognormal PROC TTEST DIST=LOGNORMAL

FREQ and WEIGHT statements are available. Data can be input in the form of observations or, in certain
cases, summary statistics. Output includes summary statistics; confidence limits for means, standard
deviations, and coefficients of variation; hypothesis tests; and a variety of graphical displays, including
histograms, densities, box plots, confidence intervals, Q-Q plots, profiles, and agreement plots.

PROC TTEST uses ODS Graphics to create graphs as part of its output. For general information about ODS
Graphics, see Chapter 21, “Statistical Graphics Using ODS.” For specific information about the statistical
graphics available with the TTEST procedure, see the PLOTS option in the PROC TTEST statement and the
section “ODS Graphics” on page 8821.



One-Sample t Test F 8789

Getting Started: TTEST Procedure

One-Sample t Test
A one-sample t test can be used to compare a sample mean to a given value. This example, taken from
Huntsberger and Billingsley (1989, p. 290), tests whether the mean length of a certain type of court case is
more than 80 days by using 20 randomly chosen cases. The data are read by the following DATA step:

data time;
input time @@;
datalines;

43 90 84 87 116 95 86 99 93 92
121 71 66 98 79 102 60 112 105 98
;

The only variable in the data set, time, is assumed to be normally distributed. The trailing at signs (@@)
indicate that there is more than one observation on a line. The following statements invoke PROC TTEST for
a one-sample t test:

ods graphics on;

proc ttest h0=80 plots(showh0) sides=u alpha=0.1;
var time;

run;

ods graphics off;

The VAR statement indicates that the time variable is being studied, while the H0= option specifies that
the mean of the time variable should be compared to the null value 80 rather than the default of 0. The
PLOTS(SHOWH0) option requests that this null value be displayed on all relevant graphs. The SIDES=U
option reflects the focus of the research question, namely whether the mean court case length is greater than
80 days, rather than different than 80 days (in which case you would use the default SIDES=2 option). The
ALPHA=0.1 option requests 90% confidence intervals rather than the default 95% confidence intervals. The
output is displayed in Figure 106.1.

Figure 106.1 One-Sample t Test Results

The TTEST Procedure

Variable:  time

The TTEST Procedure

Variable:  time

N Mean Std Dev Std Err Minimum Maximum

20 89.8500 19.1456 4.2811 43.0000 121.0

Mean
90%

CL Mean Std Dev
90%

CL Std Dev

89.8500 84.1659 Infty 19.1456 15.2002 26.2374

DF t Value Pr > t

19 2.30 0.0164
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Summary statistics appear at the top of the output. The sample size (N), mean, standard deviation, and
standard error are displayed with the minimum and maximum values of the time variable. The 90% confidence
limits for the mean and standard deviation are shown next. Due to the SIDES=U option, the interval for the
mean is an upper one-sided interval with a finite lower bound (84.1659 days). The limits for the standard
deviation are the equal-tailed variety, per the default CI=EQUAL option in the PROC TTEST statement. At
the bottom of the output are the degrees of freedom, t statistic value, and p-value for the t test. At the 10% ˛

level, this test indicates that the mean length of the court cases is significantly greater than from 80 days (t =
2.30, p = 0.0164).

The summary panel in Figure 106.2 shows a histogram with overlaid normal and kernel densities, a box plot,
the 90% confidence interval for the mean, and the null value of 80 days.

Figure 106.2 Summary Panel

The confidence interval excludes the null value, consistent with the rejection of the null hypothesis at ˛ = 0.1.

The Q-Q plot in Figure 106.3 assesses the normality assumption.
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Figure 106.3 Q-Q Plot

The curvilinear shape of the Q-Q plot suggests a possible slight deviation from normality. You could use the
UNIVARIATE procedure with the NORMAL option to numerically check the normality assumptions.

Comparing Group Means
If you want to compare values obtained from two different groups, and if the groups are independent of each
other and the data are normally or lognormally distributed in each group, then a group t test can be used.
Examples of such group comparisons include the following:

• test scores for two third-grade classes, where one of the classes receives tutoring

• fuel efficiency readings of two automobile nameplates, where each nameplate uses the same fuel

• sunburn scores for two sunblock lotions, each applied to a different group of people

• political attitude scores of males and females

In the following example, the golf scores for males and females in a physical education class are compared.
The sample sizes from each population are equal, but this is not required for further analysis. The scores
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are thought to be approximately normally distributed within gender. The data are read by the following
statements:

data scores;
input Gender $ Score @@;
datalines;

f 75 f 76 f 80 f 77 f 80 f 77 f 73
m 82 m 80 m 85 m 85 m 78 m 87 m 82
;

The dollar sign ($) following Gender in the INPUT statement indicates that Gender is a character variable.
The trailing at signs (@@) enable the procedure to read more than one observation per line.

You can use a group t test to determine whether the mean golf score for the men in the class differs significantly
from the mean score for the women. If you also suspect that the distributions of the golf scores of males
and females have unequal variances, then you might want to specify the COCHRAN option in order to use
the Cochran approximation (in addition to the Satterthwaite approximation, which is included by default).
The following statements invoke PROC TTEST for the case of unequal variances, along with both types of
confidence limits for the pooled standard deviation.

ods graphics on;

proc ttest cochran ci=equal umpu;
class Gender;
var Score;

run;

ods graphics off;

The CLASS statement contains the variable that distinguishes the groups being compared, and the VAR
statement specifies the response variable to be used in calculations. The COCHRAN option produces p-values
for the unequal variance situation by using the Cochran and Cox (1950) approximation. Equal-tailed and
uniformly most powerful unbiased (UMPU) confidence intervals for � are requested by the CI= option.
Output from these statements is displayed in Figure 106.4 through Figure 106.7.

Figure 106.4 Simple Statistics

The TTEST Procedure

Variable:  Score

The TTEST Procedure

Variable:  Score

Gender N Mean Std Dev Std Err Minimum Maximum

f 7 76.8571 2.5448 0.9619 73.0000 80.0000

m 7 82.7143 3.1472 1.1895 78.0000 87.0000

Diff (1-2) -5.8571 2.8619 1.5298

Simple statistics for the two populations being compared, as well as for the difference of the means between
the populations, are displayed in Figure 106.4. The Gender column indicates the population corresponding to
the statistics in that row. The sample size (N), mean, standard deviation, standard error, and minimum and
maximum values are displayed.

Confidence limits for means and standard deviations are shown in Figure 106.5.
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Figure 106.5 Simple Statistics

Gender Method Mean 95% CL Mean Std Dev
95%

CL Std Dev

95%
UMPU CL Std

Dev

f 76.8571 74.5036 79.2107 2.5448 1.6399 5.6039 1.5634 5.2219

m 82.7143 79.8036 85.6249 3.1472 2.0280 6.9303 1.9335 6.4579

Diff (1-2) Pooled -5.8571 -9.1902 -2.5241 2.8619 2.0522 4.7242 2.0019 4.5727

Diff (1-2) Satterthwaite -5.8571 -9.2064 -2.5078

For the mean differences, both pooled (assuming equal variances for males and females) and Satterthwaite
(assuming unequal variances) 95% intervals are shown. The confidence limits for the standard deviations are
of the equal-tailed variety.

The test statistics, associated degrees of freedom, and p-values are displayed in Figure 106.6.

Figure 106.6 t Tests

Method Variances DF t Value Pr > |t|

Pooled Equal 12 -3.83 0.0024

Satterthwaite Unequal 11.496 -3.83 0.0026

Cochran Unequal 6 -3.83 0.0087

The Method column denotes which t test is being used for that row, and the Variances column indicates
what assumption about variances is being made. The pooled test assumes that the two populations have
equal variances and uses degrees of freedom n1 C n2 � 2, where n1 and n2 are the sample sizes for the
two populations. The remaining two tests do not assume that the populations have equal variances. The
Satterthwaite test uses the Satterthwaite approximation for degrees of freedom, while the Cochran test uses
the Cochran and Cox approximation for the p-value. All three tests result in highly significant p-values,
supporting the conclusion of a significant difference between males’ and females’ golf scores.

The “Equality of Variances” test in Figure 106.7 reveals insufficient evidence of unequal variances (the
Folded F statistic F 0 = 1.53, with p = 0.6189).

Figure 106.7 Tests of Equality of Variances

Equality of Variances

Method Num DF Den DF F Value Pr > F

Folded F 6 6 1.53 0.6189

The summary panel in Figure 106.8 shows comparative histograms, normal and kernel densities, and box
plots, comparing the distribution of golf scores between genders.
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Figure 106.8 Summary Panel

The Q-Q plots in Output 106.9 assess the normality assumption for each gender.
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Figure 106.9 Q-Q Plot

The plots for both males and females show no obvious deviations from normality. You can check the
assumption of normality more rigorously by using PROC UNIVARIATE with the NORMAL option; if the
assumption of normality is not reasonable, you should analyze the data with the nonparametric Wilcoxon
rank sum test by using PROC NPAR1WAY.

Syntax: TTEST Procedure
The following statements are available in the TTEST procedure:

PROC TTEST < options > ;
CLASS variable ;
PAIRED variables ;
BY variables ;
VAR variables < / options > ;
FREQ variable ;
WEIGHT variable ;

No statement can be used more than once. There is no restriction on the order of the statements after the
PROC TTEST statement.
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PROC TTEST Statement
PROC TTEST < options > ;

The PROC TTEST statement invokes the TTEST procedure. Table 106.2 summarizes the options available
in the PROC TTEST statement. The options are then described fully in alphabetical order.

Table 106.2 PROC TTEST Statement Options

Option Description

Basic Options
DATA= Specifies input data set
ORDER= Determines sort order of CLASS variable or CROSSOVER= treat-

ment variables

Analysis Options
ALPHA= Specifies 1 – confidence level
DIST= Specifies distributional assumption (normal or lognormal)
H0= Specifies null value
SIDES= Specifies number of sides and direction
TEST= Specifies test criterion (difference or ratio)
TOST Requests equivalence test and specifies bounds

Displayed Output
CI= Requests confidence interval for standard deviation or CV
COCHRAN Requests Cochran t test
PLOTS Produces ODS statistical graphics

Output Ordering
BYVAR Groups results by PAIRED or VAR variables
NOBYVAR Groups results by tables

The following options can appear in the PROC TTEST statement.

ALPHA=p
specifies that confidence intervals (except test-based mean confidence intervals when the TOST option
is used) are to be 100(1 – p)% confidence intervals, where 0 < p < 1. When the TOST option is used,
the test-based mean confidence intervals are 100(1 – 2p)% confidence intervals. By default, PROC
TTEST uses ALPHA=0.05. If p is 0 or less, or 1 or more, an error message is printed.

BYVAR
groups the results by the PAIRED or VAR variables. The BYVAR option is enabled by default. Note
that this represents a change from previous releases for how the results are grouped with respect to
variables and tables. Prior to SAS 9.2, multiple variables were included in each table, similar to the
new NOBYVAR option.
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CI=EQUAL | UMPU | NONE

CL=EQUAL | UMPU | NONE
specifies whether a confidence interval is displayed for � and, if so, what kind. The CI=EQUAL option
specifies an equal-tailed confidence interval, and it is the default. The CI=UMPU option specifies an
interval based on the uniformly most powerful unbiased test of H0W � D �0. The CI=NONE option
requests that no confidence interval be displayed for � . The values EQUAL and UMPU together
request that both types of confidence intervals be displayed. If the value NONE is specified with one
or both of the values EQUAL and UMPU, NONE takes precedence. For more information, see the
section “Two-Independent-Sample Design” on page 8811.

COCHRAN
requests the Cochran and Cox (1950) approximation of the probability level for the unequal variances
situation. For more information, see the section “Two-Independent-Sample Design” on page 8811.

DATA=SAS-data-set
names the SAS data set for the procedure to use. By default, PROC TTEST uses the most recently
created SAS data set. The input data set can contain summary statistics of the observations instead
of the observations themselves. The number, mean, and standard deviation of the observations are
required for each BY group (one sample and paired differences) or for each class within each BY
group (two samples). For more information about the DATA= option, see the section “Input Data Set
of Statistics” on page 8805.

DIST=LOGNORMAL | NORMAL
specifies the underlying distribution assumed for the data. The default is NORMAL, unless
TEST=RATIO is specified, in which case the default is LOGNORMAL.

H0=m
requests tests against a null value of m, unless the TOST option is used, in which case m is merely
used to derive the lower and upper equivalence bounds. For the crossover design, the value m applies
for both treatment and period tests. By default, PROC TTEST uses H0=0 when TEST=DIFF (or
DIST=NORMAL for a one-sample design) and H0=1 when TEST=RATIO (or DIST=LOGNORMAL
for a one-sample design).

NOBYVAR
includes all PAIRED or VAR variables together in each output table. If the NOBYVAR option is not
specified, then the BYVAR option is enabled, grouping the results by the PAIRED and VAR variables.

ORDER=DATA | FORMATTED | FREQ | INTERNAL | MIXED
specifies the order in which to sort the levels of the classification variables (which are specified in
the CLASS statement) and treatment variables (which are specified in the CROSSOVER= option in
the VAR statement). The default is ORDER=MIXED, which corresponds to the ordering in releases
previous to SAS 9.2.

This option applies to the levels for all classification or treatment variables, except when you use the
ORDER=FORMATTED option with numeric classification or treatment variables that have no explicit
format. With this option, the levels of such variables are ordered by their internal value.

The ORDER= option can take the following values:
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Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set.

FORMATTED External formatted value, except for numeric variables with
no explicit format, which are sorted by their unformatted
(internal) value.

FREQ Descending frequency count; levels with the most obser-
vations come first in the order. In the event of a tie, OR-
DER=MIXED is used.

INTERNAL Unformatted value.
MIXED Same as ORDER=FORMATTED if the unformatted vari-

able is character-valued; same as ORDER=INTERNAL
otherwise (the unformatted variable is numeric-valued).

For FORMATTED and INTERNAL, the sort order is machine-dependent.

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

PLOTS < (global-plot-options) > < = plot-request< (options) > >

PLOTS < (global-plot-options) > < = (plot-request< (options) > < ... plot-request< (options) > >) >
controls the plots produced through ODS Graphics. When you specify only one plot-request , you can
omit the parentheses around the plot-request . Here are some examples:

plots=none
plots=(histogram boxplot interval qq profiles agreement)
plots(unpack)=summary
plots(showh0)=interval(type=pergroup)
plots=(summary(unpack) interval(type=period))

ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;

proc ttest plots=all;
var oxygen;

run;

ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

If ODS Graphics is enabled but you do not specify the PLOTS option, then PROC TTEST produces
a default set of plots. (NOTE: The graphical results are unavailable if your input data set contains
summary statistics rather than observation values.)
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For a one-sample design, the default plots are the following:

• summary plot (histogram with overlaid normal and kernel densities, box plot, and confidence
interval band)

• Q-Q plot

For a two-independent-sample design, the default plots are the following:

• summary plot (comparative histograms with overlaid densities and box plots)

• Q-Q plot

For a paired design, the default plots are the following:

• summary plot (histogram, densities, box plot, and confidence interval) of the difference or ratio

• Q-Q plot of the difference or ratio

• profiles plot

• agreement plot

For a crossover design, the default plots are the following:

• comparative histograms with overlaid densities by treatment and period

• comparative box plots by treatment and period

• Q-Q plots by treatment and period

• profiles over treatment plot

• agreement of treatments plot

For more detailed descriptions of plots, see the section “Interpreting Graphs” on page 8822.

The global-plot-options include the following:

ONLY
suppresses the default plots. Only plots specifically requested are displayed.

SHOWH0

SHOWNULL
shows the null value (as specified by the H0= option in the PROC TTEST statement) in all
relevant plots. For one-sample and paired designs, the null value can appear in SUMMARY,
BOX, and INTERVAL. For two-independent-sample and crossover designs, the null value can
appear only in INTERVAL.

UNPACKPANEL

UNPACK
suppresses paneling. By default, multiple plots can appear in some output panels. Specify
UNPACKPANEL to get each plot in a separate panel. You can specify PLOTS(UNPACKPANEL)
to unpack the default plots. You can also specify UNPACK as a suboption with SUMMARY.
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The plot-requests include the following:

ALL
produces all appropriate plots. You can specify other options with ALL; for example, to request
all plots and specify that intervals should be for the period difference in a crossover design,
specify PLOTS=(ALL INTERVAL(TYPE=PERIOD)).

AGREEMENT
AGREEMENTPLOT

requests an agreement plot. This plot is produced by default for paired and crossover designs, the
only designs for which the AGREEMENT option is valid.

For paired designs, the second response in each pair is plotted against the first response. See the
section “Agreement Plots for Paired Designs” on page 8822 for further details.

For crossover designs, the AGREEMENT plot request has the following options:

TYPE=PERIOD
plots the response in the second period against the response in the first period. See the
section “Period Agreement Plots for Crossover Designs” on page 8822 for further details.

TYPE=TREATMENT
plots the response associated with the second treatment against the response associated with
the first treatment. This is the default TYPE= option for crossover designs. See the section
“Treatment Agreement Plots for Crossover Designs” on page 8823 for further details.

BOX
BOXPLOT

requests a box plot or comparative box plots. This plot is produced by default for crossover
designs. For other designs, a box plot appears as part of the SUMMARY plot by default.

For one-sample and paired designs, a confidence interval for the mean is shown as a band in the
background, along with the equivalence bounds if the TOST option is used in the PROC TTEST
statement.

For a two-independent-sample design, comparative box plots (one for each class) are shown. For
a crossover design, comparative box plots for all four combinations of the two treatments and
two periods are shown.

See the section “Box Plots” on page 8823 for further details.

HISTOGRAM
HIST
HISTDENS

requests a histogram or comparative histograms with overlaid normal and kernel densities. This
plot is produced by default for crossover designs. For other designs, it appears as part of the
SUMMARY plot by default.

For one-sample and paired designs, the histogram and densities are based on the test criterion
(which is the mean difference or ratio for a paired design). For a two-independent-sample design,
comparative histograms (one for each class) are shown. For a crossover design, histograms for
all four combinations of the two treatments and two periods are shown.

See the section “Histograms” on page 8823 for further details.
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INTERVAL
INTERVALPLOT

requests plots of confidence interval for means.

For a two-independent-sample design, the INTERVAL plot request has the following options:

TYPE=PERGROUP
shows two separate two-sided confidence intervals, one for each class. This option cannot
be used along with the SHOWH0 global plot option.

TYPE=TEST
shows pooled and Satterthwaite confidence intervals. This is the default TYPE= option for
two-independent-sample designs.

For a crossover design, The INTERVAL plot request has the following options:

TYPE=PERGROUP
shows four separate two-sided intervals, one for each treatment-by-period combination. This
option cannot be used along with the SHOWH0 global plot option.

TYPE=PERIOD
shows pooled and Satterthwaite confidence intervals for the period difference or ratio. This
option is invalid if the IGNOREPERIOD option is used in the VAR statement.

TYPE=TREATMENT
shows pooled and Satterthwaite confidence intervals for the treatment difference or ratio.
This is the default TYPE= option for crossover designs.

See the section “Confidence Intervals” on page 8823 for further details.

NONE
suppresses all plots.

PROFILES
PROFILESPLOT

requests a profiles plot. This plot is produced by default for paired and crossover designs, the
only designs for which the PROFILES option is valid.

For paired designs, a line is drawn for each observation from left to right connecting the first
response to the second response. See the section “Profiles for Paired Designs” on page 8824 for
further details.

For crossover designs, the PROFILES plot request has the following options:

TYPE=PERIOD
shows response profiles over period, connecting the first period on the left to the second
period on the right for each subject. See the section “Profiles over Period for Crossover
Designs” on page 8824 for further details.

TYPE=TREATMENT
shows response profiles over treatment values, connecting the first treatment on the left to
the second treatment on the right for each observation. This is the default TYPE= option
for crossover designs. See the section “Profiles over Treatment for Crossover Designs” on
page 8824 for further details.
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QQ

QQPLOT
requests a normal quantile-quantile (Q-Q) plot. This plot is produced by default for all designs.

For two-sample designs, separate plots are shown for each class in a single panel. For crossover
design, separate plots are shown for each treatment-by-period combination in a single panel.

See the section “Q-Q Plots” on page 8824 for further details.

SUMMARY

SUMMARYPLOT
requests HISTOGRAM and BOX plots together in a single panel, sharing common X axes. This
plot is produced by default for one-sample, paired, and two-independent-sample designs, the
only designs for which the SUMMARY option is valid. See the documentation for the BOX and
HISTOGRAM plot requests for details. The SUMMARY plot request has the following option:

UNPACK
plots histograms with overlaid densities in one panel and box plots (along with
confidence interval bands, if one-sample or paired design) in another. Note that
specifying PLOTS(ONLY)=SUMMARY(UNPACK) is exactly the same as specifying
PLOTS(ONLY)=(BOX HISTOGRAM).

SIDES=2 | L | U

SIDED=2 | L | U

SIDE=2 | L | U
specifies the number of sides (or tails) and direction of the statistical tests and test-based confidence
intervals. The values are interpreted as follows:

2 (the default) specifies two-sided tests and confidence intervals for means.

L specifies lower one-sided tests, in which the alternative hypothesis indicates a mean less
than the null value, and lower one-sided confidence intervals between minus infinity
and the upper confidence limit.

U specifies upper one-sided tests, in which the alternative hypothesis indicates a mean
greater than the null value, and upper one-sided confidence intervals between the lower
confidence limit and infinity.

TEST=DIFF | RATIO
specifies the test criterion. Use TEST=DIFF to test the difference of means and TEST=RATIO to test
the ratio of means. The default is DIFF, unless DIST=LOGNORMAL is specified, in which case the
default is RATIO. This option is ignored for one-sample designs.

TOST ( < lower , > upper )
requests Schuirmann’s TOST equivalence test. The upper equivalence bound must be specified. If
TEST=DIFF, then the default value for the lower equivalence bound is 2m�upper , where m is the
value of the H0= option. If TEST=RATIO, then the default value for lower is m / upper .
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BY Statement
BY variables ;

You can specify a BY statement with PROC TTEST to obtain separate analyses of observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the TTEST procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

CLASS Statement
CLASS variable ;

A CLASS statement giving the name of the classification (or grouping) variable must accompany the PROC
TTEST statement in the two-independent-sample case. It should be omitted for the one-sample, paired, and
AB/BA crossover designs. If it is used without the VAR statement, all numeric variables in the input data set
(except those that appear in the CLASS, BY, FREQ, or WEIGHT statement) are included in the analysis.

The classification variable must have two, and only two, levels. PROC TTEST divides the observations into
the two groups for the t test by using the levels of this variable. You can use either a numeric or a character
variable in the CLASS statement.

Class levels are determined from the formatted values of the CLASS variable. Thus, you can use formats to
define group levels. See the discussions of the FORMAT procedure, the FORMAT statement, formats, and
informats in SAS Formats and Informats: Reference.

FREQ Statement
FREQ variable ;

The variable in the FREQ statement identifies a variable that contains the frequency of occurrence of each
observation. PROC TTEST treats each observation as if it appears n times, where n is the value of the FREQ
variable for the observation. If the value is not an integer, only the integer portion is used. If the frequency
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value is less than 1 or is missing, the observation is not used in the analysis. When the FREQ statement is not
specified, each observation is assigned a frequency of 1. The FREQ statement cannot be used if the DATA=
data set contains statistics instead of the original observations.

PAIRED Statement
PAIRED pair-lists ;

The pair-lists in the PAIRED statement identifies the variables to be compared in paired comparisons. You
can use one or more pair-lists. Variables or lists of variables are separated by an asterisk (*) or a colon (:).
The asterisk requests comparisons between each variable on the left with each variable on the right. The
colon requests comparisons between the first variable on the left and the first on the right, the second on the
left and the second on the right, and so forth. The number of variables on the left must equal the number on
the right when the colon is used. The differences are calculated by taking the variable on the left minus the
variable on the right for both the asterisk and colon. A pair formed by a variable with itself is ignored. Use
the PAIRED statement only for paired comparisons. The CLASS and VAR statements cannot be used with
the PAIRED statement.

Examples of the use of the asterisk and the colon are shown in Table 106.3.

Table 106.3 PAIRED Statement in the TTEST Procedure

These PAIRED statements. . . yield these comparisons

PAIRED A*B; A-B

PAIRED A*B C*D; A-B and C-D

PAIRED (A B)*(C D); A-C, A-D, B-C, and B-D

PAIRED (A B)*(C B); A-C, A-B, and B-C

PAIRED (A1-A2)*(B1-B2); A1-B1, A1-B2, A2-B1, and A2-B2

PAIRED (A1-A2):(B1-B2); A1-B1 and A2-B2

VAR Statement
VAR variables < / options > ;

The VAR statement names the variables to be used in the analyses. One-sample comparisons are conducted
when the VAR statement is used without the CROSSOVER= option or CLASS statement. Two-independent-
sample comparisons are conducted when the VAR statement is used with a CLASS statement.

An AB/BA crossover analysis is conducted when the CROSSOVER= option is used in the VAR statement. In
this case, you must specify an even number of variables. Each set of two variables represents the responses in
the first and second periods of the AB/BA crossover design. For example, if you use the CROSSOVER=
option and specify VAR x1 x2 x3 x4, then you will get two analyses. One analysis will have x1 as the
period 1 response and x2 as the period 2 response. The other analysis will have x3 as the period 1 response
and x4 as the period 2 response.
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The VAR statement cannot be used with the PAIRED statement. If the VAR statement is omitted, all numeric
variables in the input data set (except a numeric variable appearing in the BY, CLASS, FREQ, or WEIGHT
statement) are included in the analysis.

You can specify the following options after a slash (/):

CROSSOVER= ( variable1 variable2 )
specifies the variables representing the treatment applied in each of the two periods in an AB/BA
crossover design. The treatment variables must have two, and only two, levels. For any given
observation, the levels for the two variables must be different, due to the restrictions of the AB/BA
crossover design. You can use either numeric or character variables.

Treatment levels are determined from the formatted values of the variables. Thus, you can use formats
to define the treatment levels. See the discussions of the FORMAT procedure, the FORMAT statement,
formats, and informats in SAS Formats and Informats: Reference.

IGNOREPERIOD
indicates that the period effect shall be ignored—that is, assumed to be equal to 0 (if TEST=DIFF) or
1 (if TEST=RATIO). This assumption increases the degrees of freedom for the test of the treatment
difference by one and is usually more powerful, but it risks incorrect results if there is actually a period
effect.

WEIGHT Statement
WEIGHT variable ;

The WEIGHT statement weights each observation in the input data set by the value of the WEIGHT variable.
The values of the WEIGHT variable can be nonintegral, and they are not truncated. Observations with
negative, zero, or missing values for the WEIGHT variable are not used in the analyses. Each observation is
assigned a weight of 1 when the WEIGHT statement is not used. The WEIGHT statement cannot be used
with an input data set of summary statistics.

Details: TTEST Procedure

Input Data Set of Statistics
PROC TTEST accepts data containing either observation values or summary statistics. Observation values
are supported for all analyses, whereas summary statistics are supported only for a subset of analyses. If the
analysis involves the paired design, the AB/BA crossover design, or the lognormal distributional assumption
(DIST=LOGNORMAL), then observation values must be used. The graphical results are unavailable if your
input data set contains summary statistics rather than raw observed values.

PROC TTEST assumes that the DATA= data set contains statistics if it contains a character variable with
name _TYPE_ or _STAT_. The TTEST procedure expects this character variable to contain the names of
statistics. If both _TYPE_ and _STAT_ variables exist and are of type character, PROC TTEST expects
_TYPE_ to contain the names of statistics including ‘N’, ‘MEAN’, and ‘STD’ for each BY group (or for
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each class within each BY group for two-sample t tests). If no ‘N’, ‘MEAN’, or ‘STD’ statistics exist, an
error message is printed.

FREQ, WEIGHT, and PAIRED statements cannot be used with input data sets of statistics. BY, CLASS,
and VAR statements are the same regardless of data set type. For paired comparisons, see the _DIF_ values
for the _TYPE_=T observations in output produced by the OUTSTATS= option in the PROC COMPARE
statement (see the Base SAS Procedures Guide).

Missing Values
An observation is omitted from the calculations if it has a missing value for either the CLASS variable, a
CROSSOVER= variable, a PAIRED variable, the variable to be tested (in a one-sample or two-independent-
sample design), or either of the two response variables (in a crossover design). If more than one variable or
pair of variables is listed in the VAR statement, a missing value in one variable or pair does not eliminate the
observation from the analysis of other nonmissing variables or variable pairs.

Computational Methods
This section describes the computational formulas for the estimates, confidence limits, and tests for each
analysis in the TTEST procedure. The first subsection defines some common notation. The second subsection
discusses the distinction between arithmetic and geometric means. The third subsection explains the concept
of the coefficient of variation. The following four subsections address the four supported designs (one-sample,
paired, two-independent-sample, and AB/BA crossover). The content in each of those subsections is divided
into separate discussions according to different values of the DIST= and TEST= options in the PROC TTEST
statement. The last subsection describes TOST equivalence analyses.

Common Notation

Table 106.4 displays notation for some of the commonly used symbols.

Table 106.4 Common Notation

Symbol Description

� Population value of (arithmetic) mean

�0 Null value of test (value of H0= option in PROC TTEST statement)

�2 Population variance

� Population value of standard deviation

 Population value of geometric mean

CV Population value of coefficient of variation (ratio of population
standard deviation and population arithmetic mean)

˛ Value of ALPHA= option in PROC TTEST statement
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Table 106.4 continued

Symbol Description

tp;� pth percentile of t distribution with � degrees of freedom (df )

Fp;�1;�2 pth percentile of F distribution with �1 numerator df and �2 de-
nominator df

�2p;� pth percentile of chi-square distribution with � df

Arithmetic and Geometric Means

The arithmetic mean (more commonly called simply the mean) of the distribution of a random variable X is
its expected value, E.X/. The arithmetic mean is the natural parameter of interest for a normal distribution
because the distribution of the difference of normal random variables has a known normal distribution, and
the arithmetic mean of a normal difference is equal to the difference of the individual arithmetic means. (No
such convenient property holds for geometric means with normal data, with either differences or ratios.)

The usual estimate of an arithmetic mean is the sum of the values divided by the number of values:

arithmetic mean D
1

n

nX
iD1

yi

The geometric mean of the distribution of a random variable X is exp.E.log.X//, the exponentiation of
the mean of the natural logarithm. The geometric mean is the natural parameter of interest for a lognormal
distribution because the distribution of a ratio of lognormal random variables has a known lognormal
distribution, and the geometric mean of a lognormal ratio is equal to the ratio of the individual geometric
means. (No such convenient property holds for arithmetic means with lognormal data, with either differences
or ratios.)

The usual estimate of a geometric mean is the product of the values raised to the power 1=n, where n is the
number of values:

geometric mean D

 
nY
iD1

yi

! 1
n

Coefficient of Variation

The coefficient of variation (abbreviated “CV”) of the distribution of a random variable X is the ratio of
the standard deviation to the (arithmetic) mean, or

p
Var.X/=E.X/. Conceptually, it is a measure of the

variability of X expressed in units corresponding to the mean of X.

For lognormal data, the CV is the natural measure of variability (rather than the standard deviation) because
the CV is invariant to multiplication of a lognormal variable by a constant. For a two-independent-sample
design, the assumption of equal CVs on a lognormal scale is analogous to the assumption of equal variances
on the normal scale. When the CVs of two independent samples of lognormal data are assumed equal, the
pooled estimate of variability is used.
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One-Sample Design

Define the following notation:

n? D number of observations in data set

yi D value of i th observation, i 2 f1; : : : ; n?g

fi D frequency of i th observation, i 2 f1; : : : ; n?g

wi D weight of i th observation, i 2 f1; : : : ; n?g

n D sample size D
n?X
i

fi

Normal Data (DIST=NORMAL)
The mean estimate Ny, standard deviation estimate s, and standard error SE are computed as follows:

Ny D

Pn?

i fiwiyiPn?

i fiwi

s D

 Pn?

i fiwi .yi � Ny/
2

n � 1

! 1
2

SE D
sPn?

i fiwi

The 100(1 – ˛)% confidence interval for the mean � is�
Ny � t1�˛

2
;n�1SE ; Ny C t1�˛

2
;n�1SE

�
; SIDES=2�

�1 ; Ny C t1�˛;n�1SE
�
; SIDES=L�

Ny � t1�˛;n�1SE ; 1
�
; SIDES=U

The t value for the test is computed as

t D
Ny � �0

SE
The p-value of the test is computed as

p-value D

8<:
P
�
t2 > F1�˛;1;n�1

�
; 2-sided

P
�
t < t˛;n�1

�
; lower 1-sided

P
�
t > t1�˛;n�1

�
; upper 1-sided

The equal-tailed confidence interval for the standard deviation (CI=EQUAL) is based on the acceptance
region of the test of H0W � D �0 that places an equal amount of area (˛

2
) in each tail of the chi-square

distribution:(
�2˛
2
;n�1
�
.n � 1/s2

�20
� �21�˛

2
;n�1

)
The acceptance region can be algebraically manipulated to give the following 100(1 – ˛)% confidence
interval for �2:0@ .n � 1/s2

�2
1�˛

2
;n�1

;
.n � 1/s2

�2˛
2
;n�1

1A
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Taking the square root of each side yields the 100(1 – ˛)% CI=EQUAL confidence interval for � :0B@
0@ .n � 1/s2
�2
1�˛

2
;n�1

1A 1
2

;

0@.n � 1/s2
�2˛
2
;n�1

1A 1
2

1CA
The other confidence interval for the standard deviation (CI=UMPU) is derived from the uniformly most
powerful unbiased test of H0W � D �0 (Lehmann 1986). This test has acceptance region(

c1 �
.n � 1/s2

�20
� c2

)
where the critical values c1 and c2 satisfyZ c2

c1

fn�1.y/dy D 1 � ˛

and Z c2

c1

yfn�1.y/dy D .n � 1/.1 � ˛/

where f�.y/ is the PDF of the chi-square distribution with � degrees of freedom. This acceptance region can
be algebraically manipulated to arrive at

P

�
.n � 1/s2

c2
� �2 �

.n � 1/s2

c1

�
D 1 � ˛

where c1 and c2 solve the preceding two integrals. To find the area in each tail of the chi-square distribution
to which these two critical values correspond, solve c1 D �21�˛2;n�1 and c2 D �2˛1;n�1 for ˛1 and ˛2; the
resulting ˛1 and ˛2 sum to ˛. Hence, a 100(1 – ˛)% confidence interval for �2 is given by 

.n � 1/s2

�21�˛2;n�1
;
.n � 1/s2

�2˛1;n�1

!
Taking the square root of each side yields the 100(1 – ˛)% CI=UMPU confidence interval for � :0@ .n � 1/s2

�21�˛2;n�1

! 1
2

;

 
.n � 1/s2

�2˛1;n�1

! 1
2

1A

Lognormal Data (DIST=LOGNORMAL)
The DIST=LOGNORMAL analysis is handled by log-transforming the data and null value, performing a
DIST=NORMAL analysis, and then transforming the results back to the original scale. This simple technique
is based on the properties of the lognormal distribution as discussed in Johnson, Kotz, and Balakrishnan
(1994, Chapter 14).

Taking the natural logarithms of the observation values and the null value, define

zi D log.yi / ; i 2 f1; : : : ; n?g
0 D log.�0/
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First, a DIST=NORMAL analysis is performed on fzig with the null value 0, producing the mean estimate
Nz, the standard deviation estimate sz , a t value, and a p-value. The geometric mean estimate O and the CV
estimate bCV of the original lognormal data are computed as follows:

O D exp. Nz/

bCV D �exp.s2z / � 1� 12
The t value and p-value remain the same. The confidence limits for the geometric mean and CV on the
original lognormal scale are computed from the confidence limits for the arithmetic mean and standard
deviation in the DIST=NORMAL analysis on the log-transformed data, in the same way that O is derived
from Nz and bCV is derived from sz .

Paired Design

Define the following notation:

n? D number of observations in data set

y1i D value of i th observation for first PAIRED variable, i 2 f1; : : : ; n?g

y2i D value of i th observation for second PAIRED variable, i 2 f1; : : : ; n?g

fi D frequency of i th observation, i 2 f1; : : : ; n?g

wi D weight of i th observation, i 2 f1; : : : ; n?g

n D sample size D
n?X
i

fi

Normal Difference (DIST=NORMAL TEST=DIFF)
The analysis is the same as the analysis for the one-sample design in the section “Normal Data
(DIST=NORMAL)” on page 8808 based on the differences

di D y1i � y2i ; i 2 f1; : : : ; n
?
g

Lognormal Ratio (DIST=LOGNORMAL TEST=RATIO)
The analysis is the same as the analysis for the one-sample design in the section “Lognormal Data
(DIST=LOGNORMAL)” on page 8809 based on the ratios

ri D y1i=y2i ; i 2 f1; : : : ; n
?
g

Normal Ratio (DIST=NORMAL TEST=RATIO)
The hypothesis H0W�1=�2 D �0, where �1 and �2 are the means of the first and second PAIRED variables,
respectively, can be rewritten as H0W�1 ��0�2 D 0. The t value and p-value are computed in the same way
as in the one-sample design in the section “Normal Data (DIST=NORMAL)” on page 8808 based on the
transformed values

zi D y1i � �0y2i ; i 2 f1; : : : ; n
?
g

Estimates and confidence limits are not computed for this situation.
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Two-Independent-Sample Design

Define the following notation:

n?1 D number of observations at first class level

n?2 D number of observations at second class level

y1i D value of i th observation at first class level, i 2 f1; : : : ; n?1g

y2i D value of i th observation at second class level, i 2 f1; : : : ; n?2g

f1i D frequency of i th observation at first class level, i 2 f1; : : : ; n?1g

f2i D frequency of i th observation at second class level, i 2 f1; : : : ; n?2g

w1i D weight of i th observation at first class level, i 2 f1; : : : ; n?1g

w2i D weight of i th observation at second class level, i 2 f1; : : : ; n?2g

n1 D sample size for first class level D
n?1X
i

f1i

n2 D sample size for second class level D
n?2X
i

f2i

Normal Difference (DIST=NORMAL TEST=DIFF)
Observations at the first class level are assumed to be distributed as N.�1; �21 /, and observations at the second
class level are assumed to be distributed as N.�2; �22 /, where �1, �2, �1, and �2 are unknown.

The within-class-level mean estimates ( Ny1 and Ny2), standard deviation estimates (s1 and s2), standard errors
(SE1 and SE2), and confidence limits for means and standard deviations are computed in the same way as for
the one-sample design in the section “Normal Data (DIST=NORMAL)” on page 8808.

The mean difference �1 � �2 D �d is estimated by

Nyd D Ny1 � Ny2

Under the assumption of equal variances (�21 D �
2
2 ), the pooled estimate of the common standard deviation

is

sp D

 
.n1 � 1/s

2
1 C .n2 � 1/s

2
2

n1 C n2 � 2

! 1
2

The pooled standard error (the estimated standard deviation of Nyd assuming equal variances) is

SEp D sp

0@ 1Pn?1
iD1 f1iw1i

C
1Pn?2

iD1 f2iw2i

1A 1
2

The pooled 100(1 – ˛)% confidence interval for the mean difference �d is�
Nyd � t1�˛

2
;n1Cn2�2SEp ; Nyd C t1�˛

2
;n1Cn2�2SEp

�
; SIDES=2�

�1 ; Nyd C t1�˛;n1Cn2�2SEp
�
; SIDES=L�

Nyd � t1�˛;n1Cn2�2SEp ; 1
�
; SIDES=U
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The t value for the pooled test is computed as

tp D
Nyd � �0

SEp

The p-value of the test is computed as

p-value D

8<:
P
�
t2p > F1�˛;1;n1Cn2�2

�
; 2-sided

P
�
tp < t˛;n1Cn2�2

�
; lower 1-sided

P
�
tp > t1�˛;n1Cn2�2

�
; upper 1-sided

Under the assumption of unequal variances (the Behrens-Fisher problem), the unpooled standard error is
computed as

SEu D

0@ s21Pn?1
iD1 f1iw1i

C
s22Pn?2

iD1 f2iw2i

1A 1
2

Satterthwaite’s (1946) approximation for the degrees of freedom, extended to accommodate weights, is
computed as

dfu D
SE4u

s41

.n1�1/

�Pn?
1
iD1

f1iw1i

�2 C s42

.n2�1/

�Pn?
2
iD1

f2iw2i

�2
The unpooled Satterthwaite 100(1 – ˛)% confidence interval for the mean difference �d is�

Nyd � t1�˛
2
;dfuSEu ; Nyd C t1�˛

2
;dfuSEu

�
; SIDES=2�

�1 ; Nyd C t1�˛;dfuSEu
�
; SIDES=L�

Nyd � t1�˛;dfuSEu ; 1
�
; SIDES=U

The t value for the unpooled Satterthwaite test is computed as

tu D
Nyd � �0

SEu

The p-value of the unpooled Satterthwaite test is computed as

p � value D

8<:
P
�
t2u > F1�˛;1;dfu

�
; 2-sided

P
�
tu < t˛;dfu

�
; lower 1-sided

P
�
tu > t1�˛;dfu

�
; upper 1-sided

When the COCHRAN option is specified in the PROC TTEST statement, the Cochran and Cox (1950)
approximation of the p-value of the tu statistic is the value of p such that

tu D

 
s21Pn?

1
iD1

f1iw1i

!
t1 C

 
s22Pn?

2
iD1

f2iw2i

!
t2 

s21Pn?
1
iD1

f1iw1i

!
C

 
s22Pn?

2
iD1

f2iw2i

!
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where t1 and t2 are the critical values of the t distribution corresponding to a significance level of p and
sample sizes of n1 and n2, respectively. The number of degrees of freedom is undefined when n1 ¤ n2. In
general, the Cochran and Cox test tends to be conservative (Lee and Gurland 1975).

The 100(1 – ˛)% CI=EQUAL and CI=UMPU confidence intervals for the common population standard devi-
ation � assuming equal variances are computed as discussed in the section “Normal Data (DIST=NORMAL)”
on page 8808 for the one-sample design, except replacing s2 by s2p and .n � 1/ by .n1 C n2 � 1/.

The folded form of the F statistic, F 0, tests the hypothesis that the variances are equal (Steel and Torrie 1980),
where

F 0 D
max.s21 ; s

2
2/

min.s21 ; s
2
2/

A test of F 0 is a two-tailed F test because you do not specify which variance you expect to be larger. The
p-value gives the probability of a greater F value under the null hypothesis that �21 D �

2
2 . Note that this test

is not very robust to violations of the assumption that the data are normally distributed, and thus it is not
recommended without confidence in the normality assumption.

Lognormal Ratio (DIST=LOGNORMAL TEST=RATIO)
The DIST=LOGNORMAL analysis is handled by log-transforming the data and null value, perform-
ing a DIST=NORMAL analysis, and then transforming the results back to the original scale. See
the section “Normal Data (DIST=NORMAL)” on page 8808 for the one-sample design for details on
how the DIST=NORMAL computations for means and standard deviations are transformed into the
DIST=LOGNORMAL results for geometric means and CVs. As mentioned in the section “Coefficient of
Variation” on page 8807, the assumption of equal CVs on the lognormal scale is analogous to the assumption
of equal variances on the normal scale.

Normal Ratio (DIST=NORMAL TEST=RATIO)
The distributional assumptions, equality of variances test, and within-class-level mean estimates ( Ny1 and Ny2),
standard deviation estimates (s1 and s2), standard errors (SE1 and SE2), and confidence limits for means and
standard deviations are the same as in the section “Normal Difference (DIST=NORMAL TEST=DIFF)” on
page 8811 for the two-independent-sample design.

The mean ratio �1=�2 D �r is estimated by

O�r D Ny1= Ny2

No estimates or confidence intervals for the ratio of standard deviations are computed.

Under the assumption of equal variances (�21 D �
2
2 ), the pooled confidence interval for the mean ratio is the

Fieller (1954) confidence interval, extended to accommodate weights. Let

ap D
s2pt

2
1�˛

2
;n1Cn2�2Pn?2

iD1 f2iw2i

� Ny22

bp D Ny1 Ny2

cp D
s2pt

2
1�˛

2
;n1Cn2�2Pn?1

iD1 f1iw1i

� Ny21
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where sp is the pooled standard deviation defined in the section “Normal Difference (DIST=NORMAL
TEST=DIFF)” on page 8811 for the two-independent-sample design. If ap � 0 (which occurs when Ny2 is
too close to zero), then the pooled two-sided 100(1 – ˛)% Fieller confidence interval for �r does not exist. If
a < 0, then the interval is0@�bp

ap
C

�
b2p � apcp

� 1
2

ap
;�
bp

ap
�

�
b2p � apcp

� 1
2

ap

1A
For the one-sided intervals, let

a?p D
s2pt

2
1�˛;n1Cn2�2Pn?2
iD1 f2iw2i

� Ny22

c?p D
s2pt

2
1�˛;n1Cn2�2Pn?1
iD1 f1iw1i

� Ny21

which differ from ap and cp only in the use of ˛ in place of ˛=2. If a?p � 0, then the pooled one-sided 100(1
– ˛)% Fieller confidence intervals for �r do not exist. If a?p < 0, then the intervals are0@�1 ;�

bp

a?p
�

�
b2p � a

?
pc
?
p

� 1
2

a?p

1A; SIDES=L

0@�bp
a?p
C

�
b2p � a

?
pc
?
p

� 1
2

a?p
; 1

1A; SIDES=U

The pooled t test assuming equal variances is the Sasabuchi (1988a, b) test. The hypothesis H0W�r D �0 is
rewritten as H0W�1 � �0�2 D 0, and the pooled t test in the section “Normal Difference (DIST=NORMAL
TEST=DIFF)” on page 8811 for the two-independent-sample design is conducted on the original y1i values
(i 2 f1; : : : ; n?1g) and transformed values of y2i

y?2i D �0y2i ; i 2 f1; : : : ; n
?
2g

with a null difference of 0. The t value for the Sasabuchi pooled test is computed as

tp D
Ny1 � �0 Ny2

sp

 
1Pn?

1
iD1

f1iw1i

C
�20Pn?

2
iD1

f2iw2i

! 1
2

The p-value of the test is computed as

p-value D

8<:
P
�
t2p > F1�˛;1;n1Cn2�2

�
; 2-sided

P
�
tp < t˛;n1Cn2�2

�
; lower 1-sided

P
�
tp > t1�˛;n1Cn2�2

�
; upper 1-sided

Under the assumption of unequal variances, the unpooled Satterthwaite-based confidence interval for the
mean ratio �r is computed according to the method in Dilba, Schaarschmidt, and Hothorn (2006), extended
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to accommodate weights. The degrees of freedom are computed as

dfu D

 
s21Pn?

1
iD1

f1iw1i

C
O�2r s

2
2Pn?

2
iD1

f2iw2i

!2
s41

.n1�1/

�Pn?
1
iD1

f1iw1i

�2 C O�4r s
4
2

.n2�1/

�Pn?
2
iD1

f2iw2i

�2
Note that the estimate O�r D Ny1= Ny2 is used in dfu. Let

au D
s22 t

2
1�˛

2
;dfuPn?2

iD1 f2iw2i

� Ny22

bu D Ny1 Ny2

cu D
s21 t

2
1�˛

2
;dfuPn?1

iD1 f1iw1i

� Ny21

where s1 and s2 are the within-class-level standard deviations defined in the section “Normal Difference
(DIST=NORMAL TEST=DIFF)” on page 8811 for the two-independent-sample design. If au � 0 (which
occurs when Ny2 is too close to zero), then the unpooled Satterthwaite-based two-sided 100(1 – ˛)% confidence
interval for �r does not exist. If au < 0, then the interval is0@�bu

au
C

�
b2u � aucu

� 1
2

au
;�
bu

au
�

�
b2u � aucu

� 1
2

au

1A
The t test assuming unequal variances is the test derived in Tamhane and Logan (2004). The hypothesis
H0W�r D �0 is rewritten as H0W�1 � �0�2 D 0, and the Satterthwaite t test in the section “Normal Differ-
ence (DIST=NORMAL TEST=DIFF)” on page 8811 for the two-independent-sample design is conducted on
the original y1i values (i 2 f1; : : : ; n?1g) and transformed values of y2i

y?2i D �0y2i ; i 2 f1; : : : ; n
?
2g

with a null difference of 0. The degrees of freedom used in the unpooled t test differs from the dfu used
in the unpooled confidence interval. The mean ratio �0 under the null hypothesis is used in place of the
estimate O�r :

df?u D

 
s21Pn?

1
iD1

f1iw1i

C
�20s

2
2Pn?

2
iD1

f2iw2i

!2
s41

.n1�1/

�Pn?
1
iD1

f1iw1i

�2 C �40s
4
2

.n2�1/

�Pn?
2
iD1

f2iw2i

�2
The t value for the Satterthwaite-based unpooled test is computed as

tu D
Ny1 � �0 Ny2 

s21Pn?
1
iD1

f1iw1i

C
�20s

2
2Pn?

2
iD1

f2iw2i

! 1
2
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The p-value of the test is computed as

p-value D

8̂̂̂<̂
ˆ̂:
P
�
t2u > F1�˛;1;df?u

�
; 2-sided

P
�
tu < t˛;df?u

�
; lower 1-sided

P
�
tu > t1�˛;df?u

�
; upper 1-sided

AB/BA Crossover Design

Let “A” and “B” denote the two treatment values. Define the following notation:

n?1 D number of observations with treatment sequence AB

n?2 D number of observations with treatment sequence BA

y11i D response value of i th observation in sequence AB during period 1, i 2 f1; : : : ; n?1g

y12i D response value of i th observation in sequence AB during period 2, i 2 f1; : : : ; n?1g

y21i D response value of i th observation in sequence BA during period 1, i 2 f1; : : : ; n?2g

y22i D response value of i th observation in sequence BA during period 2, i 2 f1; : : : ; n?2g

So fy11i ; : : : ; y11n?1 g and fy22i ; : : : ; y22n?2 g are all observed at treatment level A, and fy12i ; : : : ; y12n?2 g and
fy21i ; : : : ; y21n?1

g are all observed at treatment level B.

Define the period difference for an observation as the difference between period 1 and period 2 response
values:

pdkji D yk1i � yk2i

for k 2 f1; 2g and i 2 f1; : : : ; n?
k
g . Similarly, the period ratio is the ratio between period 1 and period 2

response values:

prkji D yk1i=yk2i

The crossover difference for an observation is the difference between treatment A and treatment B response
values:

cdkji D
�
yk1i � yk2i ; k D 1

yk2i � yk1i ; k D 2

Similarly, the crossover ratio is the ratio between treatment A and treatment B response values:

crkji D
�
yk1i=yk2i ; k D 1

yk2i=yk1i ; k D 2

In the absence of the IGNOREPERIOD option in the PROC TTEST statement, the data are split into
two groups according to treatment sequence and analyzed as a two-independent-sample design. If
DIST=NORMAL, then the analysis of the treatment effect is based on the half period differences fpdkji=2g,
and the analysis for the period effect is based on the half crossover differences fcdkji=2g. The computations
for the normal difference analysis are the same as in the section “Normal Difference (DIST=NORMAL
TEST=DIFF)” on page 8811 for the two-independent-sample design. The normal ratio analysis without the
IGNOREPERIOD option is not supported for the AB/BA crossover design. If DIST=LOGNORMAL, then
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the analysis of the treatment effect is based on the square root of the period ratios fpprkjig, and the analysis
for the period effect is based on the square root of the crossover ratios fpcrkjig. The computations are the
same as in the section “Lognormal Ratio (DIST=LOGNORMAL TEST=RATIO)” on page 8813 for the
two-independent-sample design.

If the IGNOREPERIOD option is specified, then the treatment effect is analyzed as a paired analysis on the
(treatment A, treatment B) response value pairs, regardless of treatment sequence. So the set of pairs is taken
to be the concatenation of f.y111; y121/; : : : ; .y11n?1 ; y12n?1 /g and f.y221; y211/; : : : ; .y22n?2 ; y22n?2 /g. The
computations are the same as in the section “Paired Design” on page 8810.

See Senn (2002, Chapter 3) for a more detailed discussion of the AB/BA crossover design.

TOST Equivalence Test

The hypotheses for an equivalence test are

H0W� < �L or � > �U

H1W�L � � � �U

where �L and �U are the lower and upper bounds specified in the TOST option in the PROC TTEST
statement, and � is the analysis criterion (mean, mean ratio, or mean difference, depending on the analysis).
Following the two one-sided tests (TOST) procedure of Schuirmann (1987), the equivalence test is conducted
by performing two separate tests:

Ha0W� < �L

Ha1W� � �L

and

Hb0W� > �U

Hb1W� � �U

The overall p-value is the larger of the two p-values of those tests.

Rejection of H0 in favor of H1 at significance level ˛ occurs if and only if the 100(1 – 2 ˛)% confidence
interval for � is contained completely within .�L; �U /. So, the 100(1 – 2 ˛)% confidence interval for � is
displayed in addition to the usual 100(1 – ˛)% interval.

For further discussion of equivalence testing for the designs supported in the TTEST procedure, see Phillips
(1990); Diletti, Hauschke, and Steinijans (1991); Hauschke et al. (1999).

Displayed Output
For an AB/BA crossover design, the CrossoverVarInfo table shows the variables specified for the response
and treatment values in each period of the design.

The summary statistics in the Statistics table and confidence limits in the ConfLimits table are displayed
for certain variables and/or transformations or subgroups of the variables in the analysis, depending on the
design. For a one-sample design, summary statistics are displayed for all variables in the analysis. For a
paired design, statistics are displayed for the difference if you specify the TEST=DIFF option in the PROC
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TTEST statement, or for the ratio if you specify TEST=RATIO. For a two-independent-sample design, the
statistics for each of the two groups and for the difference (if TEST=DIFF) or ratio (if TEST=RATIO) are
displayed. For an AB/BA crossover design, statistics are displayed for each of the four cells in the design (all
four combinations of the two periods and two treatments). If the IGNOREPERIOD option is absent, then
if TEST=DIFF is specified, statistics are displayed for the treatment difference within each sequence and
overall, and also for the period difference. If TEST=RATIO, statistics are displayed for the treatment ratio
within each sequence and overall, and also for the period ratio. If the IGNOREPERIOD option is specified in
the VAR statement, then statistics are displayed for the overall treatment difference if TEST=DIFF or for the
overall treatment ratio if TEST=RATIO.

The Statistics table displays the following summary statistics:

• the name of the variable(s), displayed if the NOBYVAR option is used in the PROC TTEST statement

• the name of the classification variable (if two-independent-sample design) or treatment and period (if
AB/BA crossover design)

• N, the number of nonmissing values

• the (arithmetic) Mean, displayed if the DIST=NORMAL option is specified in the PROC TTEST
statement

• the Geometric Mean, displayed if the DIST=LOGNORMAL option is specified in the PROC TTEST
statement

• Std Dev, the standard deviation, displayed if the DIST=NORMAL option is specified in the PROC
TTEST statement

• the Coefficient of Variation, displayed if the DIST=LOGNORMAL option is specified in the PROC
TTEST statement

• Std Err, the standard error of the mean, displayed if the DIST=NORMAL option is specified in the
PROC TTEST statement

• the Minimum value

• the Maximum value

The ConfLimits table displays the following:

• the name of the variable(s), displayed if the NOBYVAR option is used in the PROC TTEST statement

• the name of the classification variable (if two-independent-sample design) or treatment and period (if
AB/BA crossover design)

• the (arithmetic) Mean, displayed if the DIST=NORMAL option is specified in the PROC TTEST
statement

• the Geometric Mean, displayed if the DIST=LOGNORMAL option is specified in the PROC TTEST
statement
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• 100(1 – ˛)% CL Mean, the lower and upper confidence limits for the mean. Separate pooled and
Satterthwaite confidence limits are shown for the difference or ratio transformations in two-independent-
sample designs and AB/BA crossover designs without the IGNOREPERIOD option.

• Std Dev, the standard deviation, displayed if the DIST=NORMAL option is specified in the PROC
TTEST statement

• the Coefficient of Variation, displayed if the DIST=LOGNORMAL option is specified in the PROC
TTEST statement

• 100(1 – ˛)% CL Std Dev, the equal-tailed confidence limits for the standard deviation, displayed if the
DIST=NORMAL and CI=EQUAL options are specified in the PROC TTEST statement

• 100(1 – ˛)% UMPU CL Std Dev, the UMPU confidence limits for the standard deviation, displayed if
the DIST=NORMAL and CI=UMPU options are specified in the PROC TTEST statement

• 100(1 – ˛)% CL CV, the equal-tailed confidence limits for the coefficient of variation, displayed if the
DIST=LOGNORMAL and CI=EQUAL options are specified in the PROC TTEST statement

• 100(1 – ˛)% UMPU CL CV, the UMPU confidence limits for the coefficient of variation, displayed if
the DIST=LOGNORMAL and CI=UMPU options are specified in the PROC TTEST statement

The confidence limits in the EquivLimits table and test results in the TTests and EquivTests tables are
displayed only for the test criteria—that is, the variables or transformations being tested. For a one-sample
design, results are displayed for all variables in the analysis. For a paired design, results are displayed for
the difference if you specify the TEST=DIFF option in the PROC TTEST statement, or for the ratio if you
specify TEST=RATIO. For a two-independent-sample design, the results for the difference (if TEST=DIFF)
or ratio (if TEST=RATIO) are displayed. For an AB/BA crossover design, results are displayed for the
treatment difference (if TEST=DIFF) or ratio (if TEST=RATIO). If the IGNOREPERIOD option is absent,
then results are also displayed for the period difference (if TEST=DIFF) or ratio (if TEST=RATIO).

The EquivLimits table, produced only if the TOST option is specified in the PROC TTEST statement, displays
the following:

• the name of the variable(s), displayed if the NOBYVAR option is used in the PROC TTEST statement

• the (arithmetic) Mean, displayed if the DIST=NORMAL option is specified in the PROC TTEST
statement

• the Geometric Mean, displayed if the DIST=LOGNORMAL option is specified in the PROC TTEST
statement

• Lower Bound, the lower equivalence bound for the mean specified in the TOST option in the PROC
TTEST statement

• 100(1 – 2 ˛)% CL Mean, the lower and upper confidence limits for the mean relevant to the equivalence
test. Separate pooled and Satterthwaite confidence limits are shown for two-independent-sample
designs and AB/BA crossover designs without the IGNOREPERIOD option.

• Upper Bound, the upper equivalence bound for the mean specified in the TOST option in the PROC
TTEST statement
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• Assessment, the result of the equivalence test at the significance level specified by the ALPHA= option
in the PROC TTEST statement, either “Equivalent” or “Not equivalent”

The TTests table is produced only if the TOST option is not specified in the PROC TTEST statement.
Separate results for pooled and Satterthwaite tests (and also the Cochran and Cox test, if the COCHRAN
option is specified in the PROC TTEST statement) are displayed for two-independent-sample designs and
AB/BA crossover designs without the IGNOREPERIOD option. The table includes the following results:

• the name of the variable(s), displayed if the NOBYVAR option is used in the PROC TTEST statement

• t Value, the t statistic for comparing the mean to the null value as specified by the H0= option in the
PROC TTEST statement

• DF, the degrees of freedom

• the p-value, the probability of obtaining a t statistic at least as extreme as the observed t value under
the null hypothesis

The EquivTests table is produced only if the TOST option is specified in the PROC TTEST statement.
Separate results for pooled and Satterthwaite tests are displayed for two-independent-sample designs and
AB/BA crossover designs without the IGNOREPERIOD option. Each test consists of two separate one-sided
tests. The overall p-value is the larger p-value from these two tests. The table includes the following results:

• the name of the variable(s), displayed if the NOBYVAR option is used in the PROC TTEST statement

• Null, the lower equivalence bound for the Upper test or the upper equivalence bound for the Lower
test, as specified by the TOST option in the PROC TTEST statement

• t Value, the t statistic for comparing the mean to the Null value

• DF, the degrees of freedom

• the p-value, the probability of obtaining a t statistic at least as extreme as the observed t value under
the null hypothesis

The Equality table gives the results of the test of equality of variances. It is displayed for two-independent-
sample designs and AB/BA crossover designs without the IGNOREPERIOD option. The table includes the
following results:

• the name of the variable(s), displayed if the NOBYVAR option is used in the PROC TTEST statement

• Num DF and Den DF, the numerator and denominator degrees of freedom

• F Value, the F 0 (folded) statistic

• Pr > F, the probability of a greater F 0 value. This is the two-tailed p-value.
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ODS Table Names
PROC TTEST assigns a name to each table it creates. You can use these names to reference the table when
using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed
in Table 106.5. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

Table 106.5 ODS Tables Produced by PROC TTEST

ODS Table Name Description Syntax

ConfLimits 100(1 – ˛)% confidence limits for means, standard
deviations, and/or coefficients of variation

By default

Equality Tests for equality of variance CLASS statement or
VAR / CROSSOVER=

EquivLimits 100(1 – 2 ˛)% confidence limits for means PROC TTEST TOST
EquivTests Equivalence t tests PROC TTEST TOST
Statistics Univariate summary statistics By default
TTests t tests By default

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

ODS Graph Names

You can reference every graph produced through ODS Graphics with a name. The names of the graphs that
PROC TTEST generates are listed in Table 106.6, along with the required statements and options.

Table 106.6 Graphs Produced by PROC TTEST

ODS Graph Name Plot Description Option

AgreementOfPeriods Plot of period 2 against pe-
riod 1 response values for an
AB/BA crossover design

VAR / CROSSOVER=
PLOTS=AGREEMENT(TYPE=PERIOD)

AgreementOfTreatments Plot of second treatment
against first treatment re-
sponse values for an AB/BA
crossover design

VAR / CROSSOVER=
PLOTS=AGREEMENT
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Table 106.6 continued

ODS Graph Name Plot Description Option

AgreementPlot Plot of second response
against first response for a
paired design

PAIRED statement
PLOTS=AGREEMENT

BoxPlot Box plots, also with confi-
dence band for one-sample or
paired design

PLOTS=BOX
PLOTS=SUMMARY(UNPACK)

Histogram Histograms with overlaid ker-
nel densities, and also normal
densities if DIST=NORMAL

PLOTS=HISTOGRAM
PLOTS=SUMMARY(UNPACK)

Interval Confidence intervals for
means

PLOTS=INTERVAL

ProfilesOverPrd Plot of response profiles over
periods 1 and 2 for an AB/BA
crossover design

VAR / CROSSOVER=
PLOTS=PROFILES(TYPE=PERIOD)

ProfilesOverTrt Plot of response profiles over
first and second treatments for
an AB/BA crossover design

VAR / CROSSOVER=
PLOTS=PROFILES

ProfilesPlot Plot of response profiles over
first and second response val-
ues for a paired design

PAIRED statement
PLOTS=PROFILES

QQPlot Normal quantile-quantile
plots

PLOTS=QQ

SummaryPanel Histograms with overlaid ker-
nel densities (and also normal
densities if DIST=NORMAL)
and box plots (and also
with confidence band for one-
sample or paired design)

PLOTS=SUMMARY

Interpreting Graphs

Agreement Plots for Paired Designs
For paired designs, the second response of each pair is plotted against the first response, with the mean shown
as a large bold symbol. If the WEIGHT statement is used, then the mean is the weighted mean. A diagonal
line with slope=0 and y-intercept=1 is overlaid. The location of the points with respect to the diagonal line
reveals the strength and direction of the difference or ratio. The tighter the clustering along the same direction
as the line, the stronger the positive correlation of the two measurements for each subject. Clustering along a
direction perpendicular to the line indicates negative correlation.

Period Agreement Plots for Crossover Designs
The response in the second period is plotted against the response in the first period, with plot symbols
distinguishing the two treatment sequences and the two sequence means shown larger in bold. If the WEIGHT
statement is used, then the means are weighted means. A diagonal line with slope=0 and y-intercept=1 is
overlaid.
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In the absence of a strong period effect, the points from each sequence will appear as mirror images about the
diagonal line, farther apart with stronger treatment effects. Deviations from symmetry about the diagonal
line indicate a period effect. The spread of points within each treatment sequence is an indicator of between-
subject variability. The tighter the clustering along the same direction as the line (within each treatment
sequence), the stronger the positive correlation of the two measurements for each subject. Clustering along a
direction perpendicular to the line indicates negative correlation.

The period agreement plot is usually less informative than the treatment agreement plot. The exception is
when the period effect is stronger than the treatment effect.

Treatment Agreement Plots for Crossover Designs
The response associated with the second treatment is plotted against the response associated with the first
treatment, with plot symbols distinguishing the two treatment sequences and the two sequence means shown
larger in bold. If the WEIGHT statement is used, then the means are weighted means. A diagonal line with
slope=0 and y-intercept=1 is overlaid.

The location of the points with respect to the diagonal line reveals the strength and direction of the treatment
effect. Substantial location differences between the two sequences indicates a strong period effect. The
spread of points within each treatment sequence is an indicator of between-subject variability. The tighter the
clustering along the same direction as the line (within each treatment sequence), the stronger the positive
correlation of the two measurements for each subject. Clustering along a direction perpendicular to the line
indicates negative correlation.

Box Plots
The box is drawn from the 25th percentile (lower quartile) to the 75th percentile (upper quartile). The vertical
line inside the box shows the location of the median. If DIST=NORMAL, then a diamond symbol shows the
location of the mean. The whiskers extend to the minimum and maximum observations, and circles beyond
the whiskers identify outliers.

For one-sample and paired designs, a confidence interval for the mean is shown as a band in the background.
If the analysis is an equivalence analysis (with the TOST option in the PROC TTEST statement), then the
interval is a 100(1 – 2 ˛)% confidence interval shown along with the equivalence bounds. The inclusion
of this interval completely within the bounds is indicative of a significant p-value. If the analysis is not an
equivalence analysis, then the confidence level is 100(1 – ˛)%. If the SHOWH0 global plot option is used,
then the null value for the test is shown. If the WEIGHT statement is used, then weights are incorporated in
the confidence intervals.

Histograms
The WEIGHT statement is ignored in the computation of the normal and kernel densities.

Confidence Intervals
If the analysis is an equivalence analysis (with the TOST option in the PROC TTEST statement), then unless
the TYPE=PERGROUP option is used, the interval is a 100(1 – 2 ˛)% mean confidence interval shown along
with the equivalence bounds. The inclusion of this interval completely within the bounds is indicative of a
significant p-value.

If the analysis is not an equivalence analysis, or if the TYPE=PERGROUP option is used, then the confidence
level is 100(1 – ˛)%. If the SHOWH0 global plot option is used, then the null value for the test is shown.
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If the SIDES=L or SIDES=U option is used in the PROC TTEST statement, then the unbounded side of
the one-sided interval is represented with an arrowhead. Note that the actual location of the arrowhead is
irrelevant.

If the WEIGHT statement is used, then weights are incorporated in the confidence intervals.

Profiles for Paired Designs
For paired designs, a line is drawn for each observation from left to right connecting the first response to the
second response. The mean first response and mean second response are connected with a bold line. If the
WEIGHT statement is used, then the means are weighted means. The more extreme the slope, the stronger
the effect. A wide spread of profiles indicates high between-subject variability. Consistent positive slopes
indicate strong positive correlation. Widely varying slopes indicate lack of correlation, while consistent
negative slopes indicate strong negative correlation.

Profiles over Period for Crossover Designs
For each observation, the response for the first period is connected to the response for second period,
regardless of the treatment applied in each period. The means for each treatment sequence are shown in bold.
If the WEIGHT statement is used, then the means are weighted means.

In the absence of a strong period effect, the profiles for each sequence will appear as mirror images about
an imaginary horizontal line in the center. Deviations from symmetry about this imaginary horizontal line
indicate a period effect. A wide spread of profiles within sequence indicates high between-subject variability.

The TYPE=PERIOD plot is usually less informative than the TYPE=TREATMENT plot. The exception is
when the period effect is stronger than the treatment effect.

Profiles over Treatment for Crossover Designs
For each observation, the response for the first treatment is connected to the response for the second treatment,
regardless of the periods in which they occur. The means for each treatment sequence are shown in bold. If
the WEIGHT statement is used, then the means are weighted means.

In general, the more extreme the slope, the stronger the treatment effect. Slope differences between the two
treatment sequences measure the period effect. A wide spread of profiles within sequence indicates high
between-subject variability.

Q-Q Plots
Q-Q plots are useful for diagnosing violations of the normality and homoscedasticity assumptions. If the
data in a Q-Q plot come from a normal distribution, the points will cluster tightly around the reference line.
You can use the UNIVARIATE procedure with the NORMAL option to numerically check the normality
assumption.
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Examples: TTEST Procedure

Example 106.1: Using Summary Statistics to Compare Group Means
This example, taken from Huntsberger and Billingsley (1989), compares two grazing methods using 32 steers.
Half of the steers are allowed to graze continuously while the other half are subjected to controlled grazing
time. The researchers want to know if these two grazing methods affect weight gain differently. The data are
read by the following DATA step:

data graze;
length GrazeType $ 10;
input GrazeType $ WtGain @@;
datalines;

controlled 45 controlled 62
controlled 96 controlled 128
controlled 120 controlled 99
controlled 28 controlled 50
controlled 109 controlled 115
controlled 39 controlled 96
controlled 87 controlled 100
controlled 76 controlled 80
continuous 94 continuous 12
continuous 26 continuous 89
continuous 88 continuous 96
continuous 85 continuous 130
continuous 75 continuous 54
continuous 112 continuous 69
continuous 104 continuous 95
continuous 53 continuous 21
;

The variable GrazeType denotes the grazing method: “controlled” is controlled grazing and “continuous” is
continuous grazing. The dollar sign ($) following GrazeType makes it a character variable, and the trailing at
signs (@@) tell the procedure that there is more than one observation per line.

If you have summary data—that is, just means and standard deviations, as computed by PROC MEANS—
then you can still use PROC TTEST to perform a simple t test analysis. This example demonstrates this
mode of input for PROC TTEST. Note, however, that graphics are unavailable when summary statistics are
used as input.

The MEANS procedure is invoked to create a data set of summary statistics with the following statements:

proc sort;
by GrazeType;

run;

proc means data=graze noprint;
var WtGain;
by GrazeType;
output out=newgraze;

run;
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The NOPRINT option eliminates all printed output from the MEANS procedure. The VAR statement tells
PROC MEANS to compute summary statistics for the WtGain variable, and the BY statement requests a
separate set of summary statistics for each level of GrazeType. The OUTPUT OUT= statement tells PROC
MEANS to put the summary statistics into a data set called newgraze so that it can be used in subsequent
procedures. This new data set is displayed in Output 106.1.1 by using PROC PRINT as follows:

proc print data=newgraze;
run;

The _STAT_ variable contains the names of the statistics, and the GrazeType variable indicates which group
the statistic is from.

Output 106.1.1 Output Data Set of Summary Statistics

Obs GrazeType _TYPE_ _FREQ_ _STAT_ WtGain

1 continuous 0 16 N 16.000

2 continuous 0 16 MIN 12.000

3 continuous 0 16 MAX 130.000

4 continuous 0 16 MEAN 75.188

5 continuous 0 16 STD 33.812

6 controlled 0 16 N 16.000

7 controlled 0 16 MIN 28.000

8 controlled 0 16 MAX 128.000

9 controlled 0 16 MEAN 83.125

10 controlled 0 16 STD 30.535

The following statements invoke PROC TTEST with the newgraze data set, as denoted by the DATA= option:

proc ttest data=newgraze;
class GrazeType;
var WtGain;

run;

The CLASS statement contains the variable that distinguishes between the groups being compared, in this case
GrazeType. The summary statistics and confidence intervals are displayed first, as shown in Output 106.1.2.

Output 106.1.2 Summary Statistics and Confidence Limits

The TTEST Procedure

Variable:  WtGain

The TTEST Procedure

Variable:  WtGain

GrazeType N Mean Std Dev Std Err Minimum Maximum

continuous 16 75.1875 33.8117 8.4529 12.0000 130.0

controlled 16 83.1250 30.5350 7.6337 28.0000 128.0

Diff (1-2) -7.9375 32.2150 11.3897

GrazeType Method Mean 95% CL Mean Std Dev
95%

CL Std Dev

continuous 75.1875 57.1705 93.2045 33.8117 24.9768 52.3300

controlled 83.1250 66.8541 99.3959 30.5350 22.5563 47.2587

Diff (1-2) Pooled -7.9375 -31.1984 15.3234 32.2150 25.7434 43.0609

Diff (1-2) Satterthwaite -7.9375 -31.2085 15.3335
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In Output 106.1.2, The GrazeType column specifies the group for which the statistics are computed. For each
class, the sample size, mean, standard deviation and standard error, and maximum and minimum values are
displayed. The confidence bounds for the mean are also displayed; however, since summary statistics are
used as input, the confidence bounds for the standard deviation of the groups are not calculated.

Output 106.1.3 shows the results of tests for equal group means and equal variances.

Output 106.1.3 t Tests

Method Variances DF t Value Pr > |t|

Pooled Equal 30 -0.70 0.4912

Satterthwaite Unequal 29.694 -0.70 0.4913

Equality of Variances

Method Num DF Den DF F Value Pr > F

Folded F 15 15 1.23 0.6981

A group test statistic for the equality of means is reported for both equal and unequal variances. Both tests
indicate a lack of evidence for a significant difference between grazing methods (t = –0.70 and p = 0.4912 for
the pooled test, t = –0.70 and p = 0.4913 for the Satterthwaite test). The equality of variances test does not
indicate a significant difference in the two variances .F 0 D 1:23; p D 0:6981/. Note that this test assumes
that the observations in both data sets are normally distributed; this assumption can be checked in PROC
UNIVARIATE by using the NORMAL option with the raw data.

Although the ability to use summary statistics as input is useful if you lack access to the original data, some
of the output that would otherwise be produced in an analysis on the original data is unavailable. There are
also limitations on the designs and distributional assumptions that can be used with summary statistics as
input. For more information, see the section “Input Data Set of Statistics” on page 8805.

Example 106.2: One-Sample Comparison with the FREQ Statement
This example examines children’s reading skills. The data consist of Degree of Reading Power (DRP) test
scores from 44 third-grade children and are taken from Moore (1995, p. 337). Their scores are given in the
following DATA step:

data read;
input score count @@;
datalines;

40 2 47 2 52 2 26 1 19 2
25 2 35 4 39 1 26 1 48 1
14 2 22 1 42 1 34 2 33 2
18 1 15 1 29 1 41 2 44 1
51 1 43 1 27 2 46 2 28 1
49 1 31 1 28 1 54 1 45 1
;

The following statements invoke the TTEST procedure to test if the mean test score is equal to 30.



8828 F Chapter 106: The TTEST Procedure

ods graphics on;

proc ttest data=read h0=30;
var score;
freq count;

run;

ods graphics off;

The count variable contains the frequency of occurrence of each test score; this is specified in the FREQ
statement. The output, shown in Output 106.2.1, contains the results.

Output 106.2.1 TTEST Results

The TTEST Procedure

Variable:  score

The TTEST Procedure

Variable:  score

N Mean Std Dev Std Err Minimum Maximum

44 34.8636 11.2303 1.6930 14.0000 54.0000

Mean 95% CL Mean Std Dev
95%

CL Std Dev

34.8636 31.4493 38.2780 11.2303 9.2788 14.2291

DF t Value Pr > |t|

43 2.87 0.0063
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The SAS log states that 30 observations and two variables have been read. However, the sample size given in
the TTEST output is N=44. This is due to specifying the count variable in the FREQ statement. The test is
significant (t = 2.87, p = 0.0063) at the 5% level, so you can conclude that the mean test score is different
from 30.

The summary panel in Output 106.2.2 shows a histogram with overlaid normal and kernel densities, a box
plot, and the 95% confidence interval for the mean.

Output 106.2.2 Summary Panel

The Q-Q plot in Output 106.2.3 assesses the normality assumption.
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Output 106.2.3 Q-Q Plot

The tight clustering of the points around the diagonal line is consistent with the normality assumption.
You could use the UNIVARIATE procedure with the NORMAL option to numerically check the normality
assumption.

Example 106.3: Paired Comparisons
When it is not feasible to assume that two groups of data are independent, and a natural pairing of the data
exists, it is advantageous to use an analysis that takes the correlation into account. Using this correlation
results in higher power to detect existing differences between the means. The differences between paired
observations are assumed to be normally distributed. Some examples of this natural pairing are as follows:

• pre- and post-test scores for a student receiving tutoring

• fuel efficiency readings of two fuel types observed on the same automobile

• sunburn scores for two sunblock lotions, one applied to the individual’s right arm, one to the left arm

• political attitude scores of husbands and wives
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In this example, taken from the SUGI Supplemental Library User’s Guide, Version 5 Edition, a stimulus
is being examined to determine its effect on systolic blood pressure. Twelve men participate in the study.
Each man’s systolic blood pressure is measured both before and after the stimulus is applied. The following
statements input the data:

data pressure;
input SBPbefore SBPafter @@;
datalines;

120 128 124 131 130 131 118 127
140 132 128 125 140 141 135 137
126 118 130 132 126 129 127 135
;

The variables SBPbefore and SBPafter denote the systolic blood pressure before and after the stimulus,
respectively.

The statements to perform the test follow:

ods graphics on;

proc ttest;
paired SBPbefore*SBPafter;

run;

ods graphics off;

The PAIRED statement is used to test whether the mean change in systolic blood pressure is significantly
different from zero. The tabular output is displayed in Output 106.3.1.

Output 106.3.1 TTEST Results

The TTEST Procedure

Difference:  SBPbefore - SBPafter

The TTEST Procedure

Difference:  SBPbefore - SBPafter

N Mean Std Dev Std Err Minimum Maximum

12 -1.8333 5.8284 1.6825 -9.0000 8.0000

Mean 95% CL Mean Std Dev
95%

CL Std Dev

-1.8333 -5.5365 1.8698 5.8284 4.1288 9.8958

DF t Value Pr > |t|

11 -1.09 0.2992

The variables SBPbefore and SBPafter are the paired variables with a sample size of 12. The summary
statistics of the difference are displayed (mean, standard deviation, and standard error) along with their
confidence limits. The minimum and maximum differences are also displayed. The t test is not significant (t
= –1.09, p = 0.2992), indicating that the stimuli did not significantly affect systolic blood pressure.

The summary panel in Output 106.3.2 shows a histogram, normal and kernel densities, box plot, and 100(1 –
˛)% = 95% confidence interval of the SBPbefore – SBPafter difference.
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Output 106.3.2 Summary Panel

The agreement plot in Output 106.3.3 reveals that only three men have higher blood pressure before the
stimulus than after.
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Output 106.3.3 Agreement of Treatments

But the differences for these men are relatively large, keeping the mean difference only slightly negative.

The profiles plot in Output 106.3.4 is a different view of the same information contained in Output 106.3.3,
plotting the blood pressure from before to after the stimulus.
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Output 106.3.4 Profiles over Treatments

The Q-Q plot in Output 106.3.5 assesses the normality assumption.
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Output 106.3.5 Q-Q Plot

The Q-Q plot shows no obvious deviations from normality. You can check the assumption of normality more
rigorously by using PROC UNIVARIATE with the NORMAL option.

Example 106.4: AB/BA Crossover Design
Senn (2002, Chapter 3) discusses a study comparing the effectiveness of two bronchodilators, formoterol
(“for”) and salbutamol (“sal”), in the treatment of childhood asthma. A total of 13 children are recruited for
an AB/BA crossover design. A random sample of 7 of the children are assigned to the treatment sequence
for/sal, receiving a dose of formoterol upon an initial visit (“period 1”) and then a dose of salbutamol upon a
later visit (“period 2”). The other 6 children are assigned to the sequence sal/for, receiving the treatments
in the reverse order but otherwise in a similar manner. Periods 1 and 2 are sufficiently spaced so that no
carryover effects are suspected. After a child inhales a dose of a bronchodilator, peak expiratory flow (PEF)
is measured. Higher PEF indicates greater effectiveness. The data are assumed to be approximately normally
distributed.
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The data set is generated with the following statements:

data asthma;
input Drug1 $ Drug2 $ PEF1 PEF2 @@;
datalines;

for sal 310 270 for sal 310 260 for sal 370 300
for sal 410 390 for sal 250 210 for sal 380 350
for sal 330 365
sal for 370 385 sal for 310 400 sal for 380 410
sal for 290 320 sal for 260 340 sal for 90 220
;

You can display the data by using the following statements, which produce Output 106.4.1:

proc print data=asthma;
run;

Output 106.4.1 Asthma Study Data

Obs Drug1 Drug2 PEF1 PEF2

1 for sal 310 270

2 for sal 310 260

3 for sal 370 300

4 for sal 410 390

5 for sal 250 210

6 for sal 380 350

7 for sal 330 365

8 sal for 370 385

9 sal for 310 400

10 sal for 380 410

11 sal for 290 320

12 sal for 260 340

13 sal for 90 220

The variables PEF1 and PEF2 represent the responses for the first and second periods, respectively. The
variables Drug1 and Drug2 represent the treatment in each period.

You can analyze this crossover design by using the CROSSOVER= option after a slash (/) in the VAR
statement:

ods graphics on;

proc ttest data=asthma plots=interval;
var PEF1 PEF2 / crossover= (Drug1 Drug2);

run;

ods graphics off;

With the default PROC TTEST options TEST=DIFF and DIST=NORMAL and the lack of the IGNOREPE-
RIOD option in the VAR statement, both the treatment difference and the period difference are assessed.
The PROC TTEST default options H0=0, SIDES=2, and ALPHA=0.05 specify a two-sided analysis with
95% confidence limits comparing treatment and period differences to a default difference of zero. The
default CI=EQUAL option in the PROC TTEST statement requests equal-tailed confidence intervals for
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standard deviations. The PLOTS=INTERVAL option produces TYPE=TREATMENT confidence inter-
vals, in addition to the default plots AGREEMENT(TYPE=TREATMENT), BOX, HISTOGRAM, PRO-
FILES(TYPE=TREATMENT), and QQ.

Output 106.4.2 summarizes the response and treatment variables for each period.

Output 106.4.2 Crossover Variable Information

The TTEST Procedure

Response Variables:  PEF1, PEF2

The TTEST Procedure

Response Variables:  PEF1, PEF2

Crossover Variable
Information

Period Response Treatment

1 PEF1 Drug1

2 PEF2 Drug2

Output 106.4.3 displays basic summary statistics (sample size, mean, standard deviation, standard error,
minimum, and maximum) for each of the four cells in the design, the treatment difference within each
treatment sequence, the overall treatment difference, and the overall period difference.

Output 106.4.3 Statistics

Sequence Treatment Period N Mean Std Dev Std Err Minimum Maximum

1 for 1 7 337.1 53.7631 20.3206 250.0 410.0

2 for 2 6 345.8 70.8814 28.9372 220.0 410.0

2 sal 1 6 283.3 105.4 43.0245 90.0000 380.0

1 sal 2 7 306.4 64.7247 24.4636 210.0 390.0

1 Diff (1-2) 7 30.7143 32.9682 12.4608 -35.0000 70.0000

2 Diff (1-2) 6 62.5000 44.6934 18.2460 15.0000 130.0

Both Diff (1-2) 46.6071 19.3702 10.7766

Both Diff (1-2) -15.8929 19.3702 10.7766

The treatment difference “Diff (1-2)” corresponds to the “for” treatment minus the “sal” treatment, because
“for” appears before “sal” in the output, according to the ORDER=MIXED default PROC TTEST option. Its
mean estimate is 46.6071, favoring formoterol over salbutamol.

The standard deviation (Std Dev) reported for a “difference” is actually the pooled standard deviation across
both treatment sequence (for/sal and sal/for), assuming equal variances. The standard error (Std Err) is the
standard deviation of the mean estimate.

The top half of the table in Output 106.4.4 shows 95% two-sided confidence limits for the means for the
same criteria addressed in the table in Output 106.4.3.
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Output 106.4.4 Confidence Limits

Sequence Treatment Period Method Mean 95% CL Mean Std Dev
95%

CL Std Dev

1 for 1 337.1 287.4 386.9 53.7631 34.6446 118.4

2 for 2 345.8 271.4 420.2 70.8814 44.2447 173.8

2 sal 1 283.3 172.7 393.9 105.4 65.7841 258.5

1 sal 2 306.4 246.6 366.3 64.7247 41.7082 142.5

1 Diff (1-2) 30.7143 0.2238 61.2048 32.9682 21.2445 72.5982

2 Diff (1-2) 62.5000 15.5972 109.4 44.6934 27.8980 109.6

Both Diff (1-2) Pooled 46.6071 22.8881 70.3262 19.3702 13.7217 32.8882

Both Diff (1-2) Satterthwaite 46.6071 21.6585 71.5558

Both Diff (1-2) Pooled -15.8929 -39.6119 7.8262 19.3702 13.7217 32.8882

Both Diff (1-2) Satterthwaite -15.8929 -40.8415 9.0558

For the mean differences, both pooled (assuming equal variances for both treatment sequences) and Satterth-
waite (assuming unequal variances) intervals are shown. For example, the pooled confidence limits for the
overall treatment mean difference (for – sal) assuming equal variances are 22.8881 and 70.3262.

The bottom half of Output 106.4.4 shows 95% equal-tailed confidence limits for the standard deviations
within each cell and for the treatment difference within each sequence. It also shows confidence limits for the
pooled common standard deviation assuming equal variances. Note that the pooled standard deviation of
19.3702 and associated confidence limits 13.7217 and 32.8882 apply to both difference tests (treatment and
period), since each of those tests involves the same pooled standard deviation.

Output 106.4.5 shows the results of t tests of treatment and period differences.

Output 106.4.5 t Tests

Treatment Period Method Variances DF t Value Pr > |t|

Diff (1-2) Pooled Equal 11 4.32 0.0012

Diff (1-2) Satterthwaite Unequal 9.1017 4.22 0.0022

Diff (1-2) Pooled Equal 11 -1.47 0.1683

Diff (1-2) Satterthwaite Unequal 9.1017 -1.44 0.1838

Both pooled and Satterthwaite versions of the test of treatment difference are highly significant (p = 0.0012
and p = 0.0022), and both versions of the test of period difference are insignificant (p = 0.1683 and p =
0.1838).

The folded F test of equal variances in each treatment sequence is shown in Output 106.4.6.

Output 106.4.6 Equality of Variances Test

Equality of Variances

Method Num DF Den DF F Value Pr > F

Folded F 5 6 1.84 0.4797

The insignificant result (p = 0.48) implies a lack of evidence for unequal variances. However, it does not
demonstrate equal variances, and it is not very robust to deviations from normality.
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Output 106.4.7 shows the distribution of the response variables PEF1 and PEF2 within each of the four cells
(combinations of two treatments and two periods) of the AB/BA crossover design, in terms of histograms
and normal and kernel density estimates.

Output 106.4.7 Comparative Histograms

The distributions for the first treatment sequence (for/sal) appear to be somewhat symmetric, and the
distributions for the sal/for sequence appear to be skewed to the left.

Output 106.4.8 shows a similar distributional summary but in terms of box plots.
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Output 106.4.8 Comparative Box Plots

The relative locations of means and medians in each box plot corroborate the fact that the distributions for
the sal/for sequence are skewed to the left. The distributions for the for/sal sequence appear to be skewed
slightly to the right. The box plot for the salbutamol treatment in the first period shows an outlier (the circle
on the far left side of the plot).

The treatment agreement plot in Output 106.4.9 reveals that only a single observation has a higher peak
expiratory flow for salbutamol.
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Output 106.4.9 Agreement of Treatments Plot

The mean for the sal/for treatment sequence is farther from the diagonal equivalence line, revealing that
the treatment difference is more pronounced for the 6 observations in the sal/for sequence than for the 7
observations in the for/sal sequence. This fact is also seen numerically in Output 106.4.3 and Output 106.4.4,
which show within-sequence treatment differences of 30.7 for for/sal and 62.5 for sal/for.

The profiles over treatment plot in Output 106.4.10 is a different view of the same information contained
in Output 106.4.9, plotting the profiles from formoterol to salbutamol treatments. The lone observation for
which the peak expiratory flow is higher for salbutamol appears as the only line with negative slope.
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Output 106.4.10 Profiles over Treatment

The Q-Q plots in Output 106.4.11 assess normality assumption within each of the four cells of the design.
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Output 106.4.11 Q-Q Plots

The two Q-Q plots for the sal/for sequence (lower left and upper right) suggest some possible normality
violations in the tails, but the sample size is too small to make any strong conclusions. You could use the
UNIVARIATE procedure with the NORMAL option to numerically check the normality assumptions.

Finally, Output 106.4.12 shows both pooled and Satterthwaite two-sided 95% confidence intervals for the
treatment difference.
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Output 106.4.12 Confidence Intervals for Treatment Difference

The pooled interval is slightly smaller than the Satterthwaite interval. (This is not always the case.)

Example 106.5: Equivalence Testing with Lognormal Data
Wellek (2003, p. 212) discusses an average bioequivalence study comparing the AUC (area under serum-
concentration curve) measurements for two different drugs, denoted “Test” and “Reference,” over a period of
20 hours. This example looks at a portion of Wellek’s data, conducting an equivalence analysis with a paired
design that uses AUC values on the original scale (assumed to be lognormally distributed). Each subject in
the study received the Test drug upon one visit and then the Reference drug upon a later visit, sufficiently
spaced so that no carryover effects would occur.

The goal is to test whether the geometric mean AUC ratio between Test and Reference is between 0.8 and
1.25, corresponding to the traditional FDA (80%, 125%) equivalence criterion. See the section “Arithmetic
and Geometric Means” on page 8807 for a discussion of the use of geometric means for lognormal data.

The following SAS statements generate the data set:

data auc;
input TestAUC RefAUC @@;
datalines;

103.4 90.11 59.92 77.71 68.17 77.71 94.54 97.51
69.48 58.21 72.17 101.3 74.37 79.84 84.44 96.06
96.74 89.30 94.26 97.22 48.52 61.62 95.68 85.80
;
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You can display the data by using the following statements, which produce Output 106.5.1:

proc print data=auc;
run;

Output 106.5.1 AUC Data for Test and Reference Drugs

Obs TestAUC RefAUC

1 103.40 90.11

2 59.92 77.71

3 68.17 77.71

4 94.54 97.51

5 69.48 58.21

6 72.17 101.30

7 74.37 79.84

8 84.44 96.06

9 96.74 89.30

10 94.26 97.22

11 48.52 61.62

12 95.68 85.80

The TestAUC and RefAUC variables represent the AUC measurements for each subject under the Test and
Reference drugs, respectively. Use the following SAS statements to perform the equivalence analysis:

ods graphics on;

proc ttest data=auc dist=lognormal tost(0.8, 1.25);
paired TestAUC*RefAUC;

run;

ods graphics off;

The DIST=LOGNORMAL option specifies the lognormal distributional assumption and requests an analysis
in terms of geometric mean and coefficient of variation. The TOST option specifies the equivalence bounds
0.8 and 1.25.

Output 106.5.2 shows basic summary statistics for the ratio of TestAUC to RefAUC.

Output 106.5.2 Summary Statistics

The TTEST Procedure

Ratio:  TestAUC / RefAUC

The TTEST Procedure

Ratio:  TestAUC / RefAUC

N
Geometric

Mean
Coefficient

of Variation Minimum Maximum

12 0.9412 0.1676 0.7124 1.1936
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The geometric mean ratio of 0.9412 is the sample mean of the log-transformed data exponentiated to bring it
back to the original scale. So the plasma concentration over the 20-hour period is slightly lower for the Test
drug than for the Reference drug. The CV of 0.1676 is the ratio of the standard deviation to the (arithmetic)
mean.

Output 106.5.3 shows the 100(1 – ˛)% = 95% confidence limits for the geometric mean ratio (0.8467 and
1.0462) and CV (0.1183 and 0.2884).

Output 106.5.3 Confidence Limits

Geometric
Mean 95% CL Mean

Coefficient
of Variation 95% CL CV

0.9412 0.8467 1.0462 0.1676 0.1183 0.2884

Output 106.5.4 shows the 100(1 – 2 ˛)% = 90% confidence limits for the geometric mean ratio, 0.8634 and
1.0260.

Output 106.5.4 Equivalence Limits

Geometric
Mean

Lower
Bound 90% CL Mean

Upper
Bound Assessment

0.9412 0.8 < 0.8634 1.0260 < 1.25 Equivalent

The assessment of “Equivalent” reflects the fact that these limits are contained within the equivalence bounds
0.8 and 1.25. This result occurs if and only if the p-value of the test is less than the ˛ value specified in the
ALPHA= option in the PROC TTEST statement, and it is the reason that 100(1 – 2 ˛)% confidence limits are
shown in addition to the usual 100(1 – ˛)% limits.

Output 106.5.5 shows the p-values for the two one-sided tests against the upper and lower equivalence
bounds.

Output 106.5.5 TOST Equivalence Test

Test Null DF t Value P-Value

Upper 0.8 11 3.38 0.0031

Lower 1.25 11 -5.90 <.0001

Overall 0.0031

The overall p-value of 0.0031, the larger of the two one-sided p-values, indicates significant evidence of
equivalence between the Test and Reference drugs.

The summary panel in Output 106.5.6 shows a histogram, kernel density, box plot, and 100(1 – 2 ˛)% = 90%
confidence interval of the Test-to-Reference ratio of AUC, along with the equivalence bounds.
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Output 106.5.6 Summary Panel

The confidence interval is closer to the lower equivalence bound than the upper bound and contained entirely
within the bounds.

The agreement plot in Output 106.5.7 reveals that the only four subjects with higher AUC for the Test drug
are at the far lower or far upper end of the AUC distribution. This might merit further investigation.
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Output 106.5.7 Agreement Plot

The profiles plot in Output 106.5.8 is a different view of the same information contained in Output 106.5.7,
plotting the AUC from Test to Reference drug.
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Output 106.5.8 Profiles Plot
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Overview: VARCLUS Procedure
The VARCLUS procedure divides a set of numeric variables into disjoint or hierarchical clusters. Associated
with each cluster is a linear combination of the variables in the cluster. This linear combination can be
either the first principal component (the default) or the centroid component (if you specify the CENTROID
option). The first principal component is a weighted average of the variables that explains as much variance
as possible. See Chapter 79, “The PRINCOMP Procedure,” for further details. Centroid components are
unweighted averages of either the standardized variables (the default) or the raw variables (if you specify the
COVARIANCE option). PROC VARCLUS tries to maximize the variance that is explained by the cluster
components, summed over all the clusters.
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The cluster components are oblique, not orthogonal, even when the cluster components are first principal
components. In an ordinary principal component analysis, all components are computed from the same
variables, and the first principal component is orthogonal to the second principal component and to every
other principal component. In PROC VARCLUS, each cluster component is computed from a set of variables
that is different from all the other cluster components. The first principal component of one cluster might be
correlated with the first principal component of another cluster. Hence, the PROC VARCLUS algorithm is a
type of oblique component analysis.

As in principal component analysis, either the correlation or the covariance matrix can be analyzed. If
correlations are used, all variables are treated as equally important. If covariances are used, variables with
larger variances have more importance in the analysis.

PROC VARCLUS displays a dendrogram (tree diagram of hierarchical clusters) by using ODS Graphics.
PROC VARCLUS can also can create an output data set that can be used by the TREE procedure to draw the
dendrogram. A second output data set can be used with the SCORE procedure to compute component scores
for each cluster.

PROC VARCLUS can be used as a variable-reduction method. A large set of variables can often be replaced
by the set of cluster components with little loss of information. A given number of cluster components
does not generally explain as much variance as the same number of principal components on the full set of
variables, but the cluster components are usually easier to interpret than the principal components, even if the
latter are rotated.

For example, an educational test might contain 50 items. PROC VARCLUS can be used to divide the items
into, say, five clusters. Each cluster can then be treated as a subtest, with the subtest scores given by the
cluster components. If the cluster components are centroid components of the covariance matrix, each subtest
score is simply the sum of the item scores for that cluster.

The VARCLUS algorithm is both divisive and iterative. By default, PROC VARCLUS begins with all
variables in a single cluster. It then repeats the following steps:

1. A cluster is chosen for splitting. Depending on the options specified, the selected cluster has either the
smallest percentage of variation explained by its cluster component (using the PROPORTION= option)
or the largest eigenvalue associated with the second principal component (using the MAXEIGEN=
option).

2. The chosen cluster is split into two clusters by finding the first two principal components, performing
an orthoblique rotation (raw quartimax rotation on the eigenvectors; Harris and Kaiser 1964), and
assigning each variable to the rotated component with which it has the higher squared correlation.

3. Variables are iteratively reassigned to clusters to try to maximize the variance accounted for by the
cluster components. You can require the reassignment algorithms to maintain a hierarchical structure
for the clusters.
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The procedure stops splitting when either of the following conditions holds:

• The number of clusters is greater than or equal to the maximum number of clusters as specified by the
MAXCLUSTERS= option is reached.

• Every cluster satisfies the stopping criteria specified by the PROPORTION= option (percentage of
variation explained) or the MAXEIGEN= option (second eigenvalue) or both.

By default, VARCLUS stops splitting when every cluster has only one eigenvalue greater than one, thus
satisfying the most popular criterion for determining the sufficiency of a single underlying dimension.

The iterative reassignment of variables to clusters proceeds in two phases. The first is a nearest component
sorting (NCS) phase, similar in principle to the nearest centroid sorting algorithms described by Anderberg
(1973). In each iteration, the cluster components are computed, and each variable is assigned to the component
with which it has the highest squared correlation. The second phase involves a search algorithm in which
each variable is tested to see if assigning it to a different cluster increases the amount of variance explained. If
a variable is reassigned during the search phase, the components of the two clusters involved are recomputed
before the next variable is tested. The NCS phase is much faster than the search phase but is more likely to
be trapped by a local optimum.

If principal components are used, the NCS phase is an alternating least squares method and converges rapidly.
The search phase can be very time-consuming for a large number of variables. But if the default initialization
method is used, the search phase is rarely able to substantially improve the results of the NCS phase, so
the search takes few iterations. If random initialization is used, the NCS phase might be trapped by a local
optimum from which the search phase can escape.

If centroid components are used, the NCS phase is not an alternating least squares method and might not
increase the amount of variance explained; therefore it is limited, by default, to one iteration.

You can have VARCLUS do the clustering hierarchically by restricting the reassignment of variables such
that the clusters maintain a tree structure. In this case, when a cluster is split, a variable in one of the two
resulting clusters can be reassigned to the other cluster that results from the split but not to a cluster that is
not part of the original cluster (the one that is split).

Getting Started: VARCLUS Procedure
This example demonstrates how you can use PROC VARCLUS to cluster variables.

The following data are job ratings of police officers. The officers were rated by their supervisors on 13 job
skills on a scale from 1 to 9. There is also an overall rating that is not used in this analysis. The following
DATA step creates the SAS data set JobRat:
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data JobRat;
input

(Communication_Skills
Problem_Solving
Learning_Ability
Judgement_under_Pressure
Observational_Skills
Willingness_to_Confront_Problems
Interest_in_People
Interpersonal_Sensitivity
Desire_for_Self_Improvement
Appearance
Dependability
Physical_Ability
Integrity
Overall_Rating)

(1.);
datalines;

26838853879867
74758876857667
56757863775875
67869777988997
99997798878888

... more lines ...

99997899799799
99899899899899
76656399567486
;

The following statements cluster the variables:

proc varclus data=JobRat maxclusters=3;
var Communication_Skills--Integrity;

run;

The DATA= option specifies the SAS data set JobRat as input.

The MAXCLUSTERS=3 option specifies that no more than three clusters be computed. By default, PROC
VARCLUS splits and optimizes clusters until all clusters have a second eigenvalue less than one. In this
example, the default setting would produce only two clusters, but going to three clusters produces a more
interesting result.

The VAR statement lists the numeric variables (Communication_Skills -- Integrity) to be used in the analysis.
The overall rating is omitted from the list of variables.

Although PROC VARCLUS displays output for one cluster, two clusters, and three clusters, the following
figures display only the final analysis for three clusters.

For each cluster, Figure 107.1 displays the number of variables in the cluster, the cluster variation, the total
explained variation, and the proportion of the total variance explained by the variables in the cluster. The
variance explained by the variables in a cluster is similar to the variance explained by a factor in common
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factor analysis, but it includes contributions only from the variables in the cluster rather than from all
variables.

The line labeled “Total variation explained” in Figure 107.1 gives the sum of the explained variation over
all clusters. The final “Proportion” represents the total explained variation divided by the sum of cluster
variation. This value, 0.6715, indicates that about 67% of the total variation in the data can be accounted for
by the three cluster components.

Figure 107.1 Cluster Summary for Three Clusters from PROC VARCLUS

Oblique Principal Component Cluster AnalysisOblique Principal Component Cluster Analysis

Cluster Summary for 3 Clusters

Cluster Members
Cluster

Variation
Variation

Explained
Proportion

Explained
Second

Eigenvalue

1 6 6 3.771349 0.6286 0.7093

2 5 5 3.575933 0.7152 0.5035

3 2 2 1.382005 0.6910 0.6180

Total variation explained = 8.729286 Proportion = 0.6715

Figure 107.2 shows how the variables are clustered. Figure 107.2 also displays the R-square value of each
variable with its own cluster and the R-square value with its nearest cluster. The R-square value for a variable
with the nearest cluster should be low if the clusters are well separated. The last column displays the ratio of
.1 �R2own/=.1 �R

2
nearest / for each variable. Small values of this ratio indicate good clustering.

Figure 107.2 R-Square Values from PROC VARCLUS

3 Clusters R-squared with

Cluster Variable
Own

Cluster
Next

Closest
1-R**2

Ratio

Cluster 1 Communication_Skills 0.6403 0.3599 0.5620

Problem_Solving 0.5412 0.2895 0.6458

Learning_Ability 0.6561 0.1692 0.4139

Observational_Skills 0.6889 0.2584 0.4194

Willingness_to_Confront_Problems 0.6480 0.3402 0.5335

Desire_for_Self_Improvement 0.5968 0.3473 0.6177

Cluster 2 Judgement_under_Pressure 0.6263 0.3719 0.5950

Interest_in_People 0.8122 0.1885 0.2314

Interpersonal_Sensitivity 0.7566 0.1387 0.2826

Dependability 0.6163 0.4419 0.6875

Integrity 0.7645 0.2724 0.3237

Cluster 3 Appearance 0.6910 0.3047 0.4444

Physical_Ability 0.6910 0.1871 0.3801

Figure 107.3 displays the standardized scoring coefficients that are used to compute the first principal
component of each cluster. Since each variable is assigned to one and only one cluster, each row of the
scoring coefficients contains only one nonzero value.
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Figure 107.3 Standardized Scoring Coefficients from PROC VARCLUS

Standardized Scoring Coefficients

Cluster 1 2 3

Communication_Skills 0.212170 0.000000 0.000000

Problem_Solving 0.195058 0.000000 0.000000

Learning_Ability 0.214781 0.000000 0.000000

Judgement_under_Pressure 0.000000 0.221313 0.000000

Observational_Skills 0.220086 0.000000 0.000000

Willingness_to_Confront_Problems 0.213452 0.000000 0.000000

Interest_in_People 0.000000 0.252025 0.000000

Interpersonal_Sensitivity 0.000000 0.243245 0.000000

Desire_for_Self_Improvement 0.204848 0.000000 0.000000

Appearance 0.000000 0.000000 0.601493

Dependability 0.000000 0.219544 0.000000

Physical_Ability 0.000000 0.000000 0.601493

Integrity 0.000000 0.244507 0.000000

Figure 107.4 displays the cluster structure and the intercluster correlations. The structure table displays
the correlation of each variable with each cluster component. The table of intercorrelations contains the
correlations between the cluster components.

Figure 107.4 Cluster Correlations and Intercorrelations from PROC VARCLUS

Cluster Structure

Cluster 1 2 3

Communication_Skills 0.800169 0.599909 0.427341

Problem_Solving 0.735630 0.538017 0.425463

Learning_Ability 0.810014 0.411316 0.376333

Judgement_under_Pressure 0.609876 0.791401 0.345399

Observational_Skills 0.830021 0.407807 0.508305

Willingness_to_Confront_Problems 0.805002 0.362927 0.583265

Interest_in_People 0.434138 0.901225 0.387770

Interpersonal_Sensitivity 0.372371 0.869826 0.287658

Desire_for_Self_Improvement 0.772554 0.589334 0.494842

Appearance 0.552003 0.393759 0.831266

Dependability 0.664778 0.785073 0.574460

Physical_Ability 0.432590 0.416070 0.831266

Integrity 0.521876 0.874342 0.477885

Inter-Cluster Correlations

Cluster 1 2 3

1 1.00000 0.60851 0.59223

2 0.60851 1.00000 0.48711

3 0.59223 0.48711 1.00000

PROC VARCLUS next displays the summary table of statistics for the cluster history (Figure 107.5). The
first three columns give the number of clusters, the total variation explained by clusters, and the proportion of
variation explained by clusters, respectively.
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As displayed in the first row of Figure 107.5, the variation explained by the first principal component of all
the variables is 6.547402, and the proportion of variation explained is 0.5036.

When the number of clusters is two, the total variation explained is 7.96775 and the proportion of variation
explained by the two clusters is 0.6129. The larger second eigenvalue of the clusters is 0.937902; so by
default, PROC VARCLUS would stop splitting clusters at this point. But because the MAXCLUSTERS=3
option was specified in this example, PROC VARCLUS continues to the three-cluster solution.

When the number of clusters increases to three, the total variation explained is 8.729286 and the proportion
of variation explained by the two clusters is 0.6715. The largest second eigenvalue of the clusters is 0.709323.
The statistical improvement from increasing the number of clusters from two to three seems modest, but the
interpretability of the three clusters argues for the three-cluster solution.

Figure 107.5 also displays the minimum proportion of variance explained by a cluster, the minimum R square
for a variable, and the maximum (1 �R2) ratio for a variable. The last quantity is the maximum ratio of the
value 1 �R2 for a variable’s own cluster to the value 1 �R2 for its nearest cluster.

Figure 107.5 Final Cluster Summary Table from PROC VARCLUS

Number
of

Clusters

Total
Variation
Explained

by
Clusters

Proportion
of

Variation
Explained

by Clusters

Minimum
Proportion
Explained

by a
Cluster

Maximum
Second

Eigenvalue
in a

Cluster

Minimum
R-squared

for a
Variable

Maximum
1-R**2
Ratio
for a

Variable

1 6.547402 0.5036 0.5036 1.772715 0.2995

2 7.967753 0.6129 0.5475 0.937902 0.3123 0.8026

3 8.729286 0.6715 0.6286 0.709323 0.5412 0.6875

Syntax: VARCLUS Procedure
The following statements are available in the VARCLUS procedure:

PROC VARCLUS < options > ;
VAR variables ;
SEED variables ;
PARTIAL variables ;
WEIGHT variables ;
FREQ variables ;
BY variables ;

Usually you need only the VAR statement in addition to the PROC VARCLUS statement. The following
sections give detailed syntax information about each of the statements, beginning with the PROC VARCLUS
statement. The remaining statements are listed in alphabetical order.
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PROC VARCLUS Statement
PROC VARCLUS < options > ;

The PROC VARCLUS statement invokes the VARCLUS procedure. By default, VARCLUS clusters the
numeric variables in the most recently created SAS data set, starting with one cluster and splitting clusters
until all clusters have at most one eigenvalue greater than one.

Table 107.1 summarizes the options available in the PROC VARCLUS statement.

Table 107.1 Options Available in the PROC VARCLUS
Statement

Option Description

Data Sets
DATA= Specifies the input SAS data set
OUTSTAT= Specifies the output SAS data set to contain statistics
OUTTREE= Specifies the output SAS data set for use with PROC TREE

Input Data Processing
COVARIANCE Uses the covariance matrix instead of the correlation matrix
NOINT Omits the intercept
VARDEF= Specifies the divisor for variances

Number of Clusters
MAXCLUSTERS= Specifies the maximum number of clusters
MINCLUSTERS= Specifies the minimum number of clusters
MAXEIGEN= Specifies the maximum second eigenvalue in a cluster
PROPORTION= Specifies the minimum proportion of variance explained by a cluster component

Clustering Methods
CENTROID Uses centroid components instead of principal components
HIERARCHY Clusters hierarchically
INITIAL= Specifies the initialization method
MAXITER= Specifies the maximum iterations during the alternating least squares phase
MAXSEARCH= Specifies the maximum iterations during the search phase
MULTIPLEGROUP Performs a multiple group component analysis
RANDOM= Specifies the random number seed

Control Displayed Output
CORR Displays the correlation matrix
NOPRINT Suppresses displayed output
PLOTS= Specifies ODS Graphics details
SHORT Suppresses display of large matrices
SIMPLE Displays means and standard deviations
SUMMARY Suppresses all default displayed output except the final summary table
TRACE Displays the cluster to which each variable is assigned during the iterations
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VARCLUS chooses which cluster to split based on the MAXEIGEN= and PROPORTION= options.

1. If you specify either or both of these two options, then only the specified options affect the choice of
the cluster to split.

2. If you specify neither of these options, the criterion for choice of cluster to split depends on the
CENTROID option:

a) If you specify CENTROID, VARCLUS splits the cluster with the smallest percentage of variation
explained by its cluster component, as if you had specified the PROPORTION= option.

b) If you do not specify CENTROID, VARCLUS splits the cluster with the largest eigenvalue
associated with the second principal component, as if you had specified the MAXEIGEN=
option.

The final number of clusters is controlled by three options: MAXCLUSTERS=, MAXEIGEN=, and PRO-
PORTION=.

1. If you specify any of these three options, then only the options you specify affect the final number of
clusters.

2. If you specify none of these options, VARCLUS continues to split clusters until the default splitting
criterion is satisfied. The default splitting criterion depends on the CENTROID option:

a) If you specify CENTROID, the default splitting criterion is PROPORTION=0.75.
b) If you do not specify CENTROID, splitting is based on the MAXEIGEN= criterion, with a default

depending on the COVARIANCE option:
i. For analyzing a correlation matrix (no COVARIANCE option), the default value for MAX-

EIGEN= is one.
ii. For analyzing a covariance matrix (using the COVARIANCE option), the default value for

MAXEIGEN= is the average variance of the variables being clustered.

VARCLUS continues to split clusters until any of the following conditions holds:

• The number of cluster equals the value specified for MAXCLUSTERS=.

• No cluster qualifies for splitting according to the MAXEIGEN= or PROPORTION= criterion.

• A cluster was chosen for splitting, but after iteratively reassigning variables to clusters, one of the
cluster has no members.

The following list gives details about the options.

CENTROID
uses centroid components rather than principal components. You should specify centroid components if
you want the cluster components to be unweighted averages of the standardized variables (the default)
or the unstandardized variables (if you specify the COVARIANCE option). It is possible to obtain
locally optimal clusterings in which a variable is not assigned to the cluster component with which
it has the highest squared correlation. You cannot specify both the CENTROID and MAXEIGEN=
options.
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CORR

C
displays the correlation matrix.

COVARIANCE

COV
analyzes the covariance matrix instead of the correlation matrix. The COVARIANCE option causes
variables with a large variance to have more effect on the cluster components than variables with a
small variance.

DATA=SAS-data-set
specifies the input data set to be analyzed. The data set can be an ordinary SAS data set or
TYPE=CORR, UCORR, COV, UCOV, FACTOR, or SSCP. If you do not specify the DATA= op-
tion, the most recently created SAS data set is used. See Appendix A, “Special SAS Data Sets,” for
more information about types of SAS data sets.

HIERARCHY

HI
requires the clusters at different levels to maintain a hierarchical structure. To draw a tree diagram,
enable ODS Graphics or use the OUTTREE= option and the TREE procedure.

INITIAL=GROUP

INITIAL=INPUT

INITIAL=RANDOM

INITIAL=SEED
specifies the method for initializing the clusters. If the INITIAL= option is omitted and the MINCLUS-
TERS= option is greater than 1, the initial cluster components are obtained by extracting the required
number of principal components and performing an orthoblique rotation (raw quartimax rotation on
the eigenvectors; Harris and Kaiser 1964). The following list describes the values for the INITIAL=
option:

GROUP obtains the cluster membership of each variable from an observation in the DATA=
data set where the _TYPE_ variable has a value of ‘GROUP’. In this observation,
the variables to be clustered must each have an integer value ranging from one to
the number of clusters. You can use this option only if the DATA= data set is a
TYPE=CORR, UCORR, COV, UCOV, or FACTOR data set. You can use a data set
created either by a previous run of PROC VARCLUS or in a DATA step.

INPUT obtains scoring coefficients for the cluster components from observations in the
DATA= data set where the _TYPE_ variable has a value of ‘SCORE’. You can use
this option only if the DATA= data set is a TYPE=CORR, UCORR, COV, UCOV,
or FACTOR data set. You can use scoring coefficients from the FACTOR procedure
or a previous run of PROC VARCLUS, or you can enter other coefficients in a
DATA step.

RANDOM assigns variables randomly to clusters.

SEED initializes each cluster component to be one of the variables named in the SEED
statement. Each variable listed in the SEED statement becomes the sole member of
a cluster, and the other variables are initially unassigned. If you do not specify the
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SEED statement, the first MINCLUSTERS= variables in the VAR statement are
used as seeds.

MAXCLUSTERS=n
MAXC=n

specifies the largest number of clusters desired. The default value is the number of variables. VARCLUS
stops splitting clusters after the number of clusters reaches the value of the MAXCLUSTERS= option,
regardless of what other splitting options are specified.

MAXEIGEN=n
specifies that when choosing a cluster to split, VARCLUS should choose the cluster with the largest
second eigenvalue, provided that its second eigenvalue is greater than the MAXEIGEN= value. The
MAXEIGEN= option cannot be used with the CENTROID or MULTIPLEGROUP options.

If you do not specify MAXEIGEN=, the default behavior depends on other options as follows:

• If you specify PROPORTION=, CENTROID, or MULTIPLEGROUP, cluster splitting does not
depend on the second eigenvalue.

• Otherwise, if you specify MAXCLUSTERS=, the default value for MAXEIGEN= is zero.

• Otherwise, the default value for MAXEIGEN= is either 1.0 if the correlation matrix is analyzed
or the average variance if the COVARIANCE option is specified.

If you specify both MAXEIGEN= and MAXCLUSTERS=, the number of clusters will never exceed
the value of the MAXCLUSTERS= option.

If you specify both MAXEIGEN= and PROPORTION=, VARCLUS first looks for a cluster to split
based on the MAXEIGEN= criterion. If no cluster meets that criterion, VARCLUS then looks for a
cluster to split based on the PROPORTION= criterion.

MAXITER=n
specifies the maximum number of iterations during the NCS phase. The default value is 1 if you
specify the CENTROID option; the default is 10 otherwise.

MAXSEARCH=n
specifies the maximum number of iterations during the search phase. The default is 1,000 divided by
the number of variables.

MINCLUSTERS=n
MINC=n

specifies the smallest number of clusters desired. The default value is 2 for INITIAL=RANDOM or
INITIAL=SEED; otherwise, VARCLUS begins with one cluster and tries to split it in accordance with
the PROPORTION= option or the MAXEIGEN= option or both.

MULTIPLEGROUP
MG

performs a multiple group component analysis (Harman 1976). You specify which variables belong to
which clusters. No clusters are split, and no variables are reassigned to a different cluster. The input data
set must be TYPE=CORR, UCORR, COV, UCOV, FACTOR, or SSCP and must contain an observation
with _TYPE_=‘GROUP’ that defines the variable groups. Specifying the MULTIPLEGROUP option
is equivalent to specifying all of the following options: INITIAL=GROUP, MINC=1, MAXITER=0,
MAXSEARCH=0, PROPORTION=0, and MAXEIGEN=large number.
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NOINT
requests that no intercept be used; covariances or correlations are not corrected for the mean. If you
specify the NOINT option, the OUTSTAT= data set is TYPE=UCORR.

NOPRINT
suppresses displayed output. This option temporarily disables the Output Delivery System (ODS). For
more information, see Chapter 20, “Using the Output Delivery System.”

OUTSTAT=SAS-data-set
creates an output data set to contain statistics including means, standard deviations, correlations, cluster
scoring coefficients, and the cluster structure. The OUTSTAT= data set is TYPE=UCORR if the
NOINT option is specified. If you want to create a SAS data set in a permanent library, you must
specify a two-level name. For more information about permanent libraries and SAS data sets, see
SAS Language Reference: Concepts. For information about types of SAS data sets, see Appendix A,
“Special SAS Data Sets.”

OUTTREE=SAS-data-set
creates an output data set to contain information about the tree structure that can be used by the TREE
procedure to display a tree diagram. The OUTTREE= option implies the HIERARCHY option. See
Example 107.1 for use of the OUTTREE= option. If you want to create a SAS data set in a permanent
library, you must specify a two-level name. For more information about permanent libraries and SAS
data sets, see SAS Language Reference: Concepts.

PLOTS < (global-plot-options) > < = plot-request >

PLOTS < (global-plot-options) > < = (plot-request < ... plot-request >) >
controls the plots produced through ODS Graphics.

ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;

proc varclus plots=dendrogram(height=ncl);
run;

ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

By default, PROC VARCLUS produces a dendrogram.

The global-plot-options, UNPACK and ONLY, that are commonly used in the PLOTS= option in
other procedures are accepted in PROC VARCLUS, but they currently have no effect since PROC
VARCLUS produces only a dendrogram.

The following plot-requests can be specified:

ALL
produces all plots, which for PROC VARCLUS is only a dendrogram.
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MAXPOINTS=n

MAXPTS=n
suppresses the dendrogram when the number of variables (clusters) exceeds the n value. This
prevents an unreadable plot from being produced. The default is MAXPOINTS=200.

DENDROGRAM < ( dendrogram-options ) >
requests a dendrogram and specifies dendrogram-options.

Unlike most graphs, the size of the dendrogram can vary as a function of the number of objects
that appear in the dendrogram. You can specify the following dendrogram-options to control the
size and appearance of the dendrogram:

COMPUTEHEIGHT=a b

CH=a b
specifies the constants for computing the height of the dendrogram. For n points being
clustered, intercept a, and slope b, the height is based in part on aC bn. For a horizontal
dendrogram, the default (given in pixels) is COMPUTEHEIGHT=100 12, the default height
in pixels is max(100C 12n, 480), the default height in inches is max(1:04167C 0:125n,
5), and the default height in centimeters is max(2:64583C 0:3175n, 12.7). For a vertical
dendrogram, the default height is 480 pixels. The default unit is pixels, and you can use
the UNIT= dendrogram-option to change the unit to inches or centimeters for this option.
Inches equals pixels divided by 96, and centimeters equals inches times 2.54.

COMPUTEWIDTH=a b

CW=a b
specifies the constants for computing the width of the dendrogram. For n points being
clustered, intercept a, and slope b, the width is based in part on a C bn. For a vertical
dendrogram, the default (given in pixels) is COMPUTEWIDTH=100 12, the default width
in pixels is max(100 C 12n, 640), the default width in inches is max(1:04167 C 0:125n,
6.66667), and the default width in centimeters is max(2:64583C 0:3175n, 16.933). For a
horizontal dendrogram, the default width is 640 pixels. The default unit is pixels, and you
can use the UNIT= dendrogram-option to change the unit to inches or centimeters for this
option. Inches equals pixels divided by 96, and centimeters equals inches times 2.54.

HEIGHT=PROPORTION | NCL | VAREXP

H=P | N | V
specifies the method for drawing the height of the dendrogram. HEIGHT=PROPORTION is
the default.

HEIGHT=PROPORTION specifies that the total proportion of variance explained by the
clusters at the current level of the tree is used.

HEIGHT=NCL specifies that the number of clusters is used.

HEIGHT=VAREXP specifies that the total variance explained by the clusters at the current
level of the tree is used.

HORIZONTAL | VERTICAL
specifies either a horizontal dendrogram with the objects on the vertical axis (HORIZONTAL)
or a vertical dendrogram with the objects on the horizontal axis (VERTICAL). The default
is HORIZONTAL.
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SETHEIGHT=height

SH=height
specifies the height of the dendrogram. By default, the height is based on the COMPUTE-
HEIGHT= option. The default unit is pixels, and you can use the UNIT= dendrogram-option
to change the unit to inches or centimeters for this dendrogram-option.

SETWIDTH=width

SW=width
specifies the width of the dendrogram. By default, the width is based on the COM-
PUTEWIDTH= option. The default unit is pixels, and you can use the UNIT= dendrogram-
option to change the unit to inches or centimeters for this dendrogram-option.

UNIT=PX | IN | CM
specifies the unit (pixels, inches, or centimeters) for the SETHEIGHT=, SETWIDTH=,
COMPUTEHEIGHT=, and COMPUTEWIDTH= dendrogram-options.

NONE
suppresses all plots.

The names of the graphs that PROC VARCLUS generates are listed in Table 107.4, along with the
required statements and options.

PROPORTION=n

PERCENT=n
specifies that when choosing a cluster to split, VARCLUS should choose the cluster with the smallest
proportion of variation explained, provided that the proportion of variation explained is less than
the PROPORTION= value. Values greater than 1.0 are considered to be percentages, so PROPOR-
TION=0.75 and PERCENT=75 are equivalent.

However, if you specify both MAXEIGEN= and PROPORTION=, VARCLUS first looks for a cluster
to split based on the MAXEIGEN= criterion. If no cluster meets that criterion, VARCLUS then looks
for a cluster to split based on the PROPORTION= criterion.

If you do not specify PROPORTION=, the default behavior depends on other options as follows:

• If you specify MAXEIGEN=, cluster splitting does not depend on the proportion of variation
explained.

• Otherwise, if you specify CENTROID and MAXCLUSTERS=, the default value for PROPOR-
TION= is 1.0.

• Otherwise, if you specify CENTROID without MAXCLUSTERS=, the default value is PRO-
PORTION=0.75 or PERCENT=75.

• Otherwise, cluster splitting does not depend on the proportion of variation explained.

If you specify both PROPORTION= and MAXCLUSTERS=, the number of clusters will never exceed
the value of the MAXCLUSTERS= option.

RANDOM=n
specifies a positive integer as a starting value for use with REPLACE=RANDOM. If you do not specify
the RANDOM= option, the time of day is used to initialize the pseudorandom number sequence.
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SHORT
suppresses display of the cluster structure, scoring coefficient, and intercluster correlation matrices.

SIMPLE
S

displays means and standard deviations.

SUMMARY
suppresses all default displayed output except the final summary table.

TRACE
displays the cluster to which each variable is assigned during the iterations.

VARDEF=DF
VARDEF=N
VARDEF=WDF
VARDEF=WEIGHT | WGT

specifies the divisor to be used in the calculation of variances and covariances. The default value is
VARDEF=DF. The values and associated divisors are displayed in the following table.

Value Divisor Formula
DF Degrees of freedom n � i

N Number of observations n
WDF Sum of weights minus one .

P
j wj / � 1

WEIGHT | WGT Sum of weights
P
j wj

In the preceding table, i = 0 if the NOINT option is specified, and i = 1 otherwise.

BY Statement
BY variables ;

You can specify a BY statement with PROC VARCLUS to obtain separate analyses of observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the VARCLUS procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.
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FREQ Statement
FREQ variable ;

If a variable in your data set represents the frequency of occurrence for the other values in the observation,
include the variable’s name in a FREQ statement. The procedure then treats the data set as if each observation
appears n times, where n is the value of the FREQ variable for the observation. If the value of the FREQ
variable is less than 1, the observation is not used in the analysis. Only the integer portion of the value is
used. The total number of observations is considered equal to the sum of the FREQ variable.

PARTIAL Statement
PARTIAL variables ;

If you want to base the clustering on partial correlations, list the variables to be partialed out in the PARTIAL
statement.

SEED Statement
SEED variables ;

The SEED statement specifies variables to be used as seeds to initialize the clusters. It is not necessary to use
INITIAL=SEED if the SEED statement is present, but if any other INITIAL= option is specified, the SEED
statement is ignored.

VAR Statement
VAR variables ;

The VAR statement specifies the variables to be clustered. If you do not specify the VAR statement and do
not specify TYPE=SSCP, all numeric variables not listed in other statements (except the SEED statement) are
processed. The default VAR variable list does not include the variable INTERCEPT if the DATA= data set is
TYPE=SSCP. If the variable INTERCEPT is explicitly specified in the VAR statement with a TYPE=SSCP
data set, the NOINT option is enabled.

WEIGHT Statement
WEIGHT variables ;

If you want to specify relative weights for each observation in the input data set, place the weights in a
variable in the data set and specify the name in a WEIGHT statement. This is often done when the variance
associated with each observation is different and the values of the weight variable are proportional to the
reciprocals of the variances. The WEIGHT variable can take nonintegral values. An observation is used in
the analysis only if the value of the WEIGHT variable is greater than zero.
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Details: VARCLUS Procedure

Missing Values
Observations that contain missing values are omitted from the analysis.

Using the VARCLUS procedure
Default options for PROC VARCLUS often provide satisfactory results. If you want to change the final
number of clusters, use one or more of the MAXCLUSTERS=, MAXEIGEN=, or PROPORTION= options.
The MAXEIGEN= and PROPORTION= options usually produce similar results but occasionally cause
different clusters to be selected for splitting. The MAXEIGEN= option tends to choose clusters with a large
number of variables, while the PROPORTION= option is more likely to select a cluster with a small number
of variables.

Execution Time

PROC VARCLUS usually requires more computer time than principal factor analysis, but it can be faster
than some of the iterative factoring methods. If you have more than 30 variables, you might want to reduce
execution time by one or more of the following methods:

• Specify the MINCLUSTERS= and MAXCLUSTERS= options if you know how many clusters you
want.

• Specify the HIERARCHY option.

• Specify the SEED statement if you have some prior knowledge of what clusters to expect.

If computer time is not a limiting factor, you might want to try one of the following methods to obtain a
better solution:

• If the clustering algorithm has not converged, specify larger values for MAXITER= and
MAXSEARCH=.

• Try several factoring and rotation methods with PROC FACTOR to use as input to PROC VARCLUS.

• Run PROC VARCLUS several times, specifying INITIAL=RANDOM.
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Output Data Sets

OUTSTAT= Data Set

The OUTSTAT= data set is TYPE=CORR, and it can be used as input to the SCORE procedure or a
subsequent run of PROC VARCLUS. The OUSTAT= data set contains the following variables:

• BY variables

• _NCL_, a numeric variable that gives the number of clusters

• _TYPE_, a character variable that indicates the type of statistic the observation contains

• _NAME_, a character variable that contains a variable name or a cluster name, which is of the form
CLUSn, where n is the number of the cluster

• the variables that are clustered

The values of the _TYPE_ variable are listed in the following table.

Table 107.2 _TYPE_

_TYPE_ Contents

‘MEAN’ Means
‘STD’ Standard deviations
‘USTD’ Uncorrected standard deviations, produced when the NOINT option is specified
‘N’ Number of observations
‘CORR’ Correlations
‘UCORR’ Uncorrected correlation matrix, produced when the NOINT option is specified
‘MEMBERS’ Number of members in each cluster
‘VAREXP’ Variance explained by each cluster
‘PROPOR’ Proportion of variance explained by each cluster
‘GROUP’ Number of the cluster to which each variable belongs
‘RSQUARED’ Squared multiple correlation of each variable with its cluster component
‘SCORE’ Standardized scoring coefficients
‘USCORE’ Scoring coefficients to be applied without subtracting the mean from the raw

variables, produced when the NOINT option is specified
‘STRUCTUR’ Cluster structure
‘CCORR’ Correlations between cluster components

The observations with _TYPE_=‘MEAN’, ‘STD’, ‘N’, and ‘CORR’ have missing values for the _NCL_
variable. All other values of the _TYPE_ variable are repeated for each cluster solution, with different
solutions distinguished by the value of the _NCL_ variable. If you want to specify the OUTSTAT= data set
with the SCORE procedure, you can use a DATA step to select observations with the _NCL_ variable missing
or equal to the desired number of clusters as follows:
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data Coef2;
set Coef;
if _ncl_ = . or _ncl_ = 3;
drop _ncl_;

run;

proc score data=NewScore score=Coef2;
run;

PROC SCORE standardizes the new data by subtracting the original variable means that are stored in
the _TYPE_=‘MEAN’ observations and dividing by the original variable standard deviations from the
_TYPE_=‘STD’ observations. Then PROC SCORE multiplies the standardized variables by the coefficients
from the _TYPE_=‘SCORE’ observations to get the cluster scores.

OUTTREE= Data Set

The OUTTREE= data set contains one observation for each variable clustered plus one observation for each
cluster of two or more variables—that is, one observation for each node of the cluster tree. The total number
of output observations is between n and 2n � 1, where n is the number of variables clustered.

The OUTTREE= data set contains the following variables:

• BY variables, if any

• _NAME_, a character variable that gives the name of the node. If the node is a cluster, the name is
CLUSn, where n is the number of the cluster. If the node is a single variable, the variable name is used.

• _PARENT_, a character variable that gives the value of _NAME_ of the parent of the node. If the node
is the root of the tree, _PARENT_ is blank.

• _LABEL_, a character variable that gives the label of the node. If the node is a cluster, the label is
CLUSn, where n is the number of the cluster. If the node is a single variable, the variable label is used.

• _NCL_, the number of clusters

• _VAREXP_, the total variance explained by the clusters at the current level of the tree

• _PROPOR_, the total proportion of variance explained by the clusters at the current level of the tree

• _MINPRO_, the minimum proportion of variance explained by a cluster component

• _MAXEIG_, the maximum second eigenvalue of a cluster

Computational Resources
Let

n D number of observations

v D number of variables

c D number of clusters
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It is assumed that, at each stage of clustering, the clusters all contain the same number of variables.

Time

The time required for PROC VARCLUS to analyze a given data set varies greatly depending on the number
of clusters requested, the number of iterations in both the alternating least squares and search phases, and
whether centroid or principal components are used.

The time required to compute the correlation matrix is roughly proportional to nv2.

Default cluster initialization requires time roughly proportional to v3. Any other method of initialization
requires time roughly proportional to cv2.

In the alternating least squares phase, each iteration requires time roughly proportional to cv2 if centroid
components are used or�

c C 5
v

c2

�
v2

if principal components are used.

In the search phase, each iteration requires time roughly proportional to v3=c if centroid components are
used or v4=c2 if principal components are used. The HIERARCHY option speeds up each iteration after the
first split by as much as c=2.

Memory

The amount of memory, in bytes, needed by PROC VARCLUS is approximately

v2 C 2vc C 20v C 15c

Interpreting VARCLUS Procedure Output
Because the VARCLUS algorithm is a type of oblique component analysis, its output is similar to the output
from the FACTOR procedure for oblique rotations. The scoring coefficients have the same meaning in both
PROC VARCLUS and PROC FACTOR; they are coefficients applied to the standardized variables to compute
component scores. The cluster structure is analogous to the factor structure that contains the correlations
between each variable and each cluster component. A cluster pattern is not displayed because it would be the
same as the cluster structure, except that zeros would appear in the same places in which zeros appear in
the scoring coefficients. The intercluster correlations are analogous to interfactor correlations; they are the
correlations among cluster components.

PROC VARCLUS also displays a cluster summary and a cluster listing. The cluster summary gives the
number of variables in each cluster and the variation explained by the cluster component. The latter is similar
to the variation explained by a factor but includes contributions from only the variables in that cluster rather
than from all variables, as in PROC FACTOR. The proportion of variance explained is obtained by dividing
the variance explained by the total variance of variables in the cluster. If the cluster contains two or more
variables and the CENTROID option is omitted, the second largest eigenvalue of the cluster is also displayed.

The cluster listing gives the variables in each cluster. Two squared correlations are calculated for each
cluster. The column labeled “Own Cluster” gives the squared correlation of the variable with its own cluster
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component. This value should be higher than the squared correlation with any other cluster unless an iteration
limit has been exceeded or the CENTROID option has been used. The larger the squared correlation is, the
better. The column labeled “Next Closest” contains the next-highest squared correlation of the variable with
a cluster component. This value is low if the clusters are well separated. The column labeled “1–R**2 Ratio”
gives the ratio of one minus the “Own Cluster” R square to one minus the “Next Closest” R square. A small
“1–R**2 Ratio” indicates a good clustering.

Displayed Output
The following items are displayed for each cluster solution unless the NOPRINT or SUMMARY option is
specified. The CLUSTER SUMMARY table includes the following columns:

• the Cluster number

• Members, the number of members in the cluster

• Cluster Variation of the variables in the cluster

• Variation Explained by the cluster component. This statistic is based only on the variables in the cluster
rather than on all variables.

• Proportion Explained, the result of dividing the variation explained by the cluster variation

• Second Eigenvalue, the second largest eigenvalue of the cluster. This is displayed if the cluster contains
more than one variable and the CENTROID option is not specified

PROC VARCLUS also displays the following:

• Total variation explained, the sum across clusters of the variation explained by each cluster

• Proportion, the total explained variation divided by the total variation of all the variables

The cluster listing includes the following columns:

• Variable, the variables in each cluster

• R square with Own Cluster (the squared correlation of the variable with its own cluster component),
and R square with Next Closest (the next highest squared correlation of the variable with a cluster
component). Own Cluster values should be higher than the R square with any other cluster unless an
iteration limit is exceeded or you specify the CENTROID option. Next Closest should be a low value
if the clusters are well separated.

• 1–R**2 Ratio, the ratio of one minus the value in the Own Cluster column to one minus the value in
the Next Closest column. The occurrence of low ratios indicates well-separated clusters.

If the SHORT option is not specified, PROC VARCLUS also displays the following tables:
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• Standardized Scoring Coefficients, standardized regression coefficients for predicting cluster compo-
nents from variables

• Cluster Structure, the correlations between each variable and each cluster component

• Inter-Cluster Correlations, the correlations between the cluster components

If the analysis includes partitions for two or more numbers of clusters, a final summary table is displayed.
Each row of the table corresponds to one partition. The columns include the following:

• Number of Clusters

• Total Variation Explained by Clusters

• Proportion of Variation Explained by Clusters

• Minimum Proportion (of variation) Explained by a Cluster

• Maximum Second Eigenvalue in a Cluster

• Minimum R square for a Variable

• Maximum 1–R**2 Ratio for a Variable

ODS Table Names
PROC VARCLUS assigns a name to each table it creates. You can use this name to refer to the table when
using the Output Delivery System (ODS) to select tables and create output data sets. These ODS table names
are listed in Table 107.3. For more information about ODS, see Chapter 20, “Using the Output Delivery
System.”

Table 107.3 ODS Tables Produced by PROC VARCLUS

ODS Table Name Description Option

ClusterQuality Cluster quality default
ClusterStructure Cluster structure default
ClusterSummary Cluster summary default
ConvergenceStatus Convergence status default
Corr Correlations between variables CORR
DataOptSummary Data and options summary table default
InterClusterCorr Correlations between cluster components default
IterHistory Iteration history TRACE
RSquare R squares between variables and clusters default
SimpleStatistics Means and standard deviations SIMPLE
StdScoreCoef Standardized scoring coefficients default
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ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

By default, PROC VARCLUS produces a dendrogram.

You can refer to every graph produced through ODS Graphics with a name. The name of the graph that
PROC VARCLUS generates is listed in Table 107.4, along with the statement and option required to produce
it.

Table 107.4 Graphs Produced by PROC VARCLUS

ODS Graph Name Plot Description Statement and Option

Dendrogram Dendrogram
(tree diagram)

PROC VARCLUS PLOTS=DENDROGRAM

Example: VARCLUS Procedure

Example 107.1: Correlations among Physical Variables
The data in this example are correlations among eight physical variables as given by Harman (1976). The
first PROC VARCLUS run clusters on the basis of principal components. The second run clusters on the
basis of centroid components. The third analysis is hierarchical, and the TREE procedure is used to display a
tree diagram. The following statements create the data set and perform the analysis:

data phys8(type=corr);
title 'Eight Physical Measurements on 305 School Girls';
title2 'Harman: Modern Factor Analysis, 3rd Ed, p22';
label ArmSpan='Arm Span' Forearm='Length of Forearm'

LowerLeg='Length of Lower Leg' BitDiam='Bitrochanteric Diameter'
Girth='Chest Girth' Width='Chest Width';

input _Name_ $ 1-8
(Height ArmSpan Forearm LowerLeg Weight BitDiam
Girth Width)(7.);

_Type_='corr';
datalines;

Height 1.0 .846 .805 .859 .473 .398 .301 .382
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ArmSpan .846 1.0 .881 .826 .376 .326 .277 .415
Forearm .805 .881 1.0 .801 .380 .319 .237 .345
LowerLeg .859 .826 .801 1.0 .436 .329 .327 .365
Weight .473 .376 .380 .436 1.0 .762 .730 .629
BitDiam .398 .326 .319 .329 .762 1.0 .583 .577
Girth .301 .277 .237 .327 .730 .583 1.0 .539
Width .382 .415 .345 .365 .629 .577 .539 1.0
;

proc varclus data=phys8;
run;

The PROC VARCLUS statement invokes the procedure. By default, PROC VARCLUS clusters using
principal components.

As displayed in Output 107.1.1, when there is only one cluster, the cluster component (by default, the first
principal component) explains 58.41% of the total variation of the eight variables.

The cluster is split because the second eigenvalue is greater than 1 (the default value of the MAXEIGEN
option).

The two resulting cluster components explain 80.33% of the variation in the original variables. The cluster
summary table shows that the variables Height, ArmSpan, Forearm, and LowerLeg have been assigned to the
first cluster, and that the variables Weight, BitDiam, Girth, and Width have been assigned to the second cluster.

The standardized scoring coefficients in Output 107.1.1 show that each cluster component has similar scores
for each of its associated variables. This suggests that the principal cluster component solution should be
similar to the centroid cluster component solution, which follows in the next PROC VARCLUS run.

The cluster structure table displays high correlations between the variables and their own cluster component.
The correlations between the variables and the opposite cluster component are all moderate.

The intercluster correlation table shows that the two cluster components have a moderate correlation of
0.44513.

Output 107.1.1 Principal Component Clusters

Eight Physical Measurements on 305 School Girls
Harman: Modern Factor Analysis, 3rd Ed, p22

Oblique Principal Component Cluster Analysis

Eight Physical Measurements on 305 School Girls
Harman: Modern Factor Analysis, 3rd Ed, p22

Oblique Principal Component Cluster Analysis

Observations 10000 Proportion 0

Variables 8 Maxeigen 1

Clustering algorithm converged.

Cluster Summary for 1 Cluster

Cluster Members
Cluster

Variation
Variation

Explained
Proportion

Explained
Second

Eigenvalue

1 8 8 4.67288 0.5841 1.7710

Total variation explained = 4.67288 Proportion = 0.5841
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Output 107.1.1 continued

Cluster 1 will be split because it has the largest second eigenvalue, 1.770983, which is greater
than the MAXEIGEN=1 value.

Clustering algorithm converged.

Cluster Summary for 2 Clusters

Cluster Members
Cluster

Variation
Variation

Explained
Proportion

Explained
Second

Eigenvalue

1 4 4 3.509218 0.8773 0.2361

2 4 4 2.917284 0.7293 0.4764

Total variation explained = 6.426502 Proportion = 0.8033

2 Clusters R-squared with

Cluster Variable
Own

Cluster
Next

Closest
1-R**2

Ratio
Variable
Label

Cluster 1 ArmSpan 0.9002 0.1658 0.1196 Arm Span

Forearm 0.8661 0.1413 0.1560 Length of Forearm

LowerLeg 0.8652 0.1829 0.1650 Length of Lower Leg

Height 0.8777 0.2088 0.1545

Cluster 2 BitDiam 0.7386 0.1341 0.3019 Bitrochanteric Diameter

Girth 0.6981 0.0929 0.3328 Chest Girth

Width 0.6329 0.1619 0.4380 Chest Width

Weight 0.8477 0.1974 0.1898

Standardized Scoring Coefficients

Cluster 1 2

ArmSpan Arm Span 0.270377 0.000000

Forearm Length of Forearm 0.265194 0.000000

LowerLeg Length of Lower Leg 0.265057 0.000000

BitDiam Bitrochanteric Diameter 0.000000 0.294591

Girth Chest Girth 0.000000 0.286407

Width Chest Width 0.000000 0.272710

Height 0.266977 0.000000

Weight 0.000000 0.315597

Cluster Structure

Cluster 1 2

ArmSpan Arm Span 0.948813 0.407210

Forearm Length of Forearm 0.930624 0.375865

LowerLeg Length of Lower Leg 0.930142 0.427715

BitDiam Bitrochanteric Diameter 0.366201 0.859404

Girth Chest Girth 0.304779 0.835529

Width Chest Width 0.402430 0.795572

Height 0.936881 0.456908

Weight 0.444281 0.920686
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Output 107.1.1 continued

Inter-Cluster
Correlations

Cluster 1 2

1 1.00000 0.44513

2 0.44513 1.00000

No cluster meets the criterion for splitting.

Number
of

Clusters

Total
Variation

Explained
by

Clusters

Proportion
of

Variation
Explained

by Clusters

Minimum
Proportion

Explained
by a

Cluster

Maximum
Second

Eigenvalue
in a

Cluster

Minimum
R-squared

for a
Variable

Maximum
1-R**2

Ratio
for a

Variable

1 4.672880 0.5841 0.5841 1.770983 0.3810

2 6.426502 0.8033 0.7293 0.476418 0.6329 0.4380

In the following statements, the CENTROID option in the PROC VARCLUS statement specifies that cluster
centroids be used as the basis for clustering:

proc varclus data=phys8 centroid;
run;

The first cluster component, which in the centroid method is an unweighted sum of the standardized variables,
explains 57.89% of the variation in the data. This value is near the maximum possible variance explained,
58.41%, which is attained by the first principal component shown previously in Output 107.1.1.

The default behavior in the centroid method is to split any cluster with less than 75% of the total cluster
variance explained by the centroid component. Since the centroid component for the one-cluster solution
explains only 57.89% of the variation as shown in Output 107.1.2, the variables are split into two clusters.
The resulting clusters are the same two clusters created by the principal component method. Recall that this
outcome was suggested by the similar standardized scoring coefficients in the principal cluster component
solution.

In the two-cluster solution, the centroid component of the second cluster explains only 72.75% of the total
variation of the cluster. Since this percentage is less than 75%, the second cluster is split.

In the R-square table for two clusters, the Width variable has a weaker relation to its cluster than any other
variable. In the three-cluster solution this variable is in a cluster of its own.

Each cluster component is an unweighted average of the cluster’s standardized variables. Thus, the coefficients
for each of the cluster’s associated variables are identical in the centroid cluster component solution.

The centroid method stops at the three-cluster solution. The three centroid components account for 86.15%
of the variability in the eight variables, and all cluster components account for at least 79.44% of the total
variation in the corresponding cluster. Additionally, the smallest squared correlation between the variables
and their own cluster component is 0.7482.

If the PROPORTION= option were set to a value between 0.5789 (the proportion of variance explained in the
one-cluster solution) and 0.7275 (the minimum proportion of variance explained in the two-cluster solution),
PROC VARCLUS would stop at the two-cluster solution, and the centroid solution would find the same
clusters as the principal components solution, although the cluster components would be slightly different.
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Output 107.1.2 Centroid Component Clusters

Eight Physical Measurements on 305 School Girls
Harman: Modern Factor Analysis, 3rd Ed, p22

Oblique Centroid Component Cluster Analysis

Eight Physical Measurements on 305 School Girls
Harman: Modern Factor Analysis, 3rd Ed, p22

Oblique Centroid Component Cluster Analysis

Observations 10000 Proportion 0.75

Variables 8 Maxeigen 0

Clustering algorithm converged.

Cluster Summary for 1 Cluster

Cluster Members
Cluster

Variation
Variation

Explained
Proportion

Explained

1 8 8 4.631 0.5789

Total variation explained = 4.631 Proportion = 0.5789

Cluster 1 will be split because it has the smallest proportion of variation explained, 0.578875,
which is less than the PROPORTION=0.75 value.

Clustering algorithm converged.

Cluster Summary for 2 Clusters

Cluster Members
Cluster

Variation
Variation

Explained
Proportion

Explained

1 4 4 3.509 0.8773

2 4 4 2.91 0.7275

Total variation explained = 6.419 Proportion = 0.8024

2 Clusters R-squared with

Cluster Variable
Own

Cluster
Next

Closest
1-R**2

Ratio
Variable
Label

Cluster 1 ArmSpan 0.8994 0.1669 0.1208 Arm Span

Forearm 0.8663 0.1410 0.1557 Length of Forearm

LowerLeg 0.8658 0.1824 0.1641 Length of Lower Leg

Height 0.8778 0.2075 0.1543

Cluster 2 BitDiam 0.7335 0.1341 0.3078 Bitrochanteric Diameter

Girth 0.6988 0.0929 0.3321 Chest Girth

Width 0.6473 0.1618 0.4207 Chest Width

Weight 0.8368 0.1975 0.2033

Standardized Scoring Coefficients

Cluster 1 2

ArmSpan Arm Span 0.266918 0.000000

Forearm Length of Forearm 0.266918 0.000000

LowerLeg Length of Lower Leg 0.266918 0.000000

BitDiam Bitrochanteric Diameter 0.000000 0.293105

Girth Chest Girth 0.000000 0.293105

Width Chest Width 0.000000 0.293105

Height 0.266918 0.000000

Weight 0.000000 0.293105
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Output 107.1.2 continued

Cluster Structure

Cluster 1 2

ArmSpan Arm Span 0.948361 0.408589

Forearm Length of Forearm 0.930744 0.375468

LowerLeg Length of Lower Leg 0.930477 0.427054

BitDiam Bitrochanteric Diameter 0.366212 0.856453

Girth Chest Girth 0.304821 0.835936

Width Chest Width 0.402246 0.804574

Height 0.936883 0.455485

Weight 0.444419 0.914781

Inter-Cluster
Correlations

Cluster 1 2

1 1.00000 0.44484

2 0.44484 1.00000

Cluster 2 will be split because it has the smallest proportion of variation explained, 0.7275, which
is less than the PROPORTION=0.75 value.

Clustering algorithm converged.

Cluster Summary for 3 Clusters

Cluster Members
Cluster

Variation
Variation

Explained
Proportion

Explained

1 4 4 3.509 0.8773

2 3 3 2.383333 0.7944

3 1 1 1 1.0000

Total variation explained = 6.892333 Proportion = 0.8615

3 Clusters R-squared with

Cluster Variable
Own

Cluster
Next

Closest
1-R**2

Ratio
Variable
Label

Cluster 1 ArmSpan 0.8994 0.1722 0.1215 Arm Span

Forearm 0.8663 0.1225 0.1524 Length of Forearm

LowerLeg 0.8658 0.1668 0.1611 Length of Lower Leg

Height 0.8778 0.1921 0.1513

Cluster 2 BitDiam 0.7691 0.3329 0.3461 Bitrochanteric Diameter

Girth 0.7482 0.2905 0.3548 Chest Girth

Weight 0.8685 0.3956 0.2175

Cluster 3 Width 1.0000 0.4259 0.0000 Chest Width
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Output 107.1.2 continued

Standardized Scoring Coefficients

Cluster 1 2 3

ArmSpan Arm Span 0.26692 0.00000 0.00000

Forearm Length of Forearm 0.26692 0.00000 0.00000

LowerLeg Length of Lower Leg 0.26692 0.00000 0.00000

BitDiam Bitrochanteric Diameter 0.00000 0.37398 0.00000

Girth Chest Girth 0.00000 0.37398 0.00000

Width Chest Width 0.00000 0.00000 1.00000

Height 0.26692 0.00000 0.00000

Weight 0.00000 0.37398 0.00000

Cluster Structure

Cluster 1 2 3

ArmSpan Arm Span 0.94836 0.36613 0.41500

Forearm Length of Forearm 0.93074 0.35004 0.34500

LowerLeg Length of Lower Leg 0.93048 0.40838 0.36500

BitDiam Bitrochanteric Diameter 0.36621 0.87698 0.57700

Girth Chest Girth 0.30482 0.86501 0.53900

Width Chest Width 0.40225 0.65259 1.00000

Height 0.93688 0.43830 0.38200

Weight 0.44442 0.93196 0.62900

Inter-Cluster Correlations

Cluster 1 2 3

1 1.00000 0.41716 0.40225

2 0.41716 1.00000 0.65259

3 0.40225 0.65259 1.00000

No cluster meets the criterion for splitting.

Number
of

Clusters

Total
Variation

Explained
by

Clusters

Proportion
of

Variation
Explained

by Clusters

Minimum
Proportion

Explained
by a

Cluster

Minimum
R-squared

for a
Variable

Maximum
1-R**2

Ratio
for a

Variable

1 4.631000 0.5789 0.5789 0.4306

2 6.419000 0.8024 0.7275 0.6473 0.4207

3 6.892333 0.8615 0.7944 0.7482 0.3548

In the following statements, the MAXC= option computes all clustering solutions, from one to eight clusters,
and the SUMMARY option suppresses all output except the final cluster quality table:

ods graphics on;

proc varclus data=phys8 maxc=8 summary;
run;

The results from PROC VARCLUS are shown in Output 107.1.3.
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Output 107.1.3 Hierarchical Clusters and the SUMMARY Option

Eight Physical Measurements on 305 School Girls
Harman: Modern Factor Analysis, 3rd Ed, p22

Oblique Principal Component Cluster Analysis

Eight Physical Measurements on 305 School Girls
Harman: Modern Factor Analysis, 3rd Ed, p22

Oblique Principal Component Cluster Analysis

Observations 10000 Proportion 1

Variables 8 Maxeigen 0

Clustering algorithm converged.

Number
of

Clusters

Total
Variation
Explained

by
Clusters

Proportion
of

Variation
Explained

by Clusters

Minimum
Proportion
Explained

by a
Cluster

Maximum
Second

Eigenvalue
in a

Cluster

Minimum
R-squared

for a
Variable

Maximum
1-R**2
Ratio
for a

Variable

1 4.672880 0.5841 0.5841 1.770983 0.3810

2 6.426502 0.8033 0.7293 0.476418 0.6329 0.4380

3 6.895347 0.8619 0.7954 0.418369 0.7421 0.3634

4 7.271218 0.9089 0.8773 0.238000 0.8652 0.2548

5 7.509218 0.9387 0.8773 0.236135 0.8652 0.1665

6 7.740000 0.9675 0.9295 0.141000 0.9295 0.2560

7 7.881000 0.9851 0.9405 0.119000 0.9405 0.2093

8 8.000000 1.0000 1.0000 0.000000 1.0000 0.0000

The principal component method first separates the variables into the same two clusters that were created in
the first PROC VARCLUS run. In creating the third cluster, the principal component method identifies the
variable Width. This is the same variable that is put into its own cluster in the preceding centroid method
example. The tree diagram in Output 107.1.4 displays the cluster hierarchy.

Output 107.1.4 Dendrogram
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It appears from the diagram that there are two, or possibly three, clusters present. However, the MAXC=8
option forces PROC VARCLUS to split the clusters until each variable is in its own cluster.
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Overview: VARCOMP Procedure
The VARCOMP procedure handles general linear models that have random effects. Random effects are
classification effects with levels that are assumed to be randomly selected from an infinite population of
possible levels. PROC VARCOMP estimates the contribution of each of the random effects to the variance of
the dependent variable.

A single MODEL statement specifies the dependent variables and the effects: main effects, interactions, and
nested effects. The effects must be composed of classification variables; no continuous variables are allowed
on the right side of the equal sign.
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You can specify certain effects as fixed (nonrandom) by putting them first in the MODEL statement and
indicating the number of fixed effects with the FIXED= option. An intercept is always fitted and assumed
fixed. Except for the effects specified as fixed, all other effects are assumed to be random. Their contribution
to the model can be thought of as an observation from a distribution that is normally and independently
distributed.

The dependent variables are grouped based on the similarity of their missing values. Each group of dependent
variables is then analyzed separately. The columns of the design matrix X are formed in the same order in
which the effects are specified in the MODEL statement. A singular parameterization involving just 0–1
dummy variables is used, as in the GLM procedure.

You can specify four general methods of estimation in the PROC VARCOMP statement by using the
METHOD= option. They are TYPE1 (based on computation of Type I sum of squares for each effect),
MIVQUE0, maximum likelihood (METHOD=ML), and restricted maximum likelihood (METHOD=REML).
A fifth method, METHOD=GRR, provides a specialized analysis for gauge repeatability and reproducibility
(R&R) studies. See the section “Gauge Repeatability and Reproducibility Analysis” on page 8895 for further
details. Note that this method, along with the CL option in the MODEL statement for confidence limits,
applies only to certain designs, namely balanced one-way or two-way designs. The other four general
methods apply to any random-effects model and design.

Other procedures, such as PROC GLM, PROC MIXED, and PROC GLIMMIX, fit similar random effects
models. The VARCOMP procedure is usually more computationally efficient for certain special designs and
models. See the section “Relationship to PROC MIXED” on page 8900 for a more precise comparison with
the MIXED procedure in particular.

The GAUGE application in SAS/QC software provides a graphical interface for computing many of the same
statistics as METHOD=GRR in PROC VARCOMP.

Getting Started: VARCOMP Procedure

Analyzing the Cure Rate of Rubber
This example, using data from Hicks (1973), concerns an experiment to determine the sources of variability
in cure rates of rubber. The goal of the experiment was to find out if the different laboratories contributed
more to the variance of cure rates than did the different batches of raw materials. This information would be
useful in trying to control the cure rate of the final product because it would provide insight into the sources
of the variability in cure rates. The rubber used was cured at three temperatures, which were taken to be fixed.
Three laboratories were chosen at random, and three different batches of raw material were tested at each
combination of temperature and laboratory. The following statements read the data into the SAS data set
Cure.
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data Cure;
input Lab Temp Batch $ Cure @@;
datalines;

1 145 A 18.6 1 145 A 17.0 1 145 A 18.7 1 145 A 18.7
1 145 B 14.5 1 145 B 15.8 1 145 B 16.5 1 145 B 17.6
1 145 C 21.1 1 145 C 20.8 1 145 C 21.8 1 145 C 21.0
1 155 A 9.5 1 155 A 9.4 1 155 A 9.5 1 155 A 10.0
1 155 B 7.8 1 155 B 8.3 1 155 B 8.9 1 155 B 9.1
1 155 C 11.2 1 155 C 10.0 1 155 C 11.5 1 155 C 11.1
1 165 A 5.4 1 165 A 5.3 1 165 A 5.7 1 165 A 5.3
1 165 B 5.2 1 165 B 4.9 1 165 B 4.3 1 165 B 5.2
1 165 C 6.3 1 165 C 6.4 1 165 C 5.8 1 165 C 5.6
2 145 A 20.0 2 145 A 20.1 2 145 A 19.4 2 145 A 20.0
2 145 B 18.4 2 145 B 18.1 2 145 B 16.5 2 145 B 16.7
2 145 C 22.5 2 145 C 22.7 2 145 C 21.5 2 145 C 21.3
2 155 A 11.4 2 155 A 11.5 2 155 A 11.4 2 155 A 11.5
2 155 B 10.8 2 155 B 11.1 2 155 B 9.5 2 155 B 9.7
2 155 C 13.3 2 155 C 14.0 2 155 C 12.0 2 155 C 11.5
2 165 A 6.8 2 165 A 6.9 2 165 A 6.0 2 165 A 5.7
2 165 B 6.0 2 165 B 6.1 2 165 B 5.0 2 165 B 5.2
2 165 C 7.7 2 165 C 8.0 2 165 C 6.6 2 165 C 6.3
3 145 A 19.7 3 145 A 18.3 3 145 A 16.8 3 145 A 17.1
3 145 B 16.3 3 145 B 16.7 3 145 B 14.4 3 145 B 15.2
3 145 C 22.7 3 145 C 21.9 3 145 C 19.3 3 145 C 19.3
3 155 A 9.3 3 155 A 10.2 3 155 A 9.8 3 155 A 9.5
3 155 B 9.1 3 155 B 9.2 3 155 B 8.0 3 155 B 9.0
3 155 C 11.3 3 155 C 11.0 3 155 C 10.9 3 155 C 11.4
3 165 A 6.7 3 165 A 6.0 3 165 A 5.0 3 165 A 4.8
3 165 B 5.7 3 165 B 5.5 3 165 B 4.6 3 165 B 5.4
3 165 C 6.6 3 165 C 6.5 3 165 C 5.9 3 165 C 5.8
;

The variables Lab, Temp, and Batch contain levels of laboratory, temperature, and batch, respectively. The
Cure variable contains the response values.

The following SAS statements perform a restricted maximum likelihood variance component analysis.

title 'Analyzing the Cure Rate of Rubber';
proc varcomp method=reml data=cure;

class temp lab batch;
model cure=temp|lab batch(lab temp) / fixed=1;

run;

The FIXED=1 option indicates that the first factor, Temp, is fixed. The effect specification Temp|Lab
is equivalent to putting the three terms Temp, Lab, and Temp*Lab in the model. Batch(Lab Temp) is
equivalent to putting Batch(Temp*Lab) in the MODEL statement. The results of this analysis are displayed
in Figure 108.1 through Figure 108.4.
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Figure 108.1 Class Level Information

Analyzing the Cure Rate of Rubber

Variance Components Estimation Procedure

Analyzing the Cure Rate of Rubber

Variance Components Estimation Procedure

Class Level Information

Class Levels Values

Temp 3 145 155 165

Lab 3 1 2 3

Batch 3 A B C

Number of Observations Read 108

Number of Observations Used 108

Dependent Variable: Cure

Figure 108.1 provides information about the variables used in the analysis and the number of observations
and specifies the dependent variable.

Figure 108.2 Iteration History

REML Iterations

Iteration Objective Var(Lab) Var(Temp*Lab) Var(Batch(Temp*Lab)) Var(Error)

0 13.4500060254 0.5094464340 0 2.4004888633 0.5787185225

1 13.0898262160 0.3194348317 0 2.0869636935 0.6016005334

2 13.0893125570 0.3176048001 0 2.0738906134 0.6026217204

3 13.0893125555 0.3176017115 0 2.0738685461 0.6026234568

Convergence criteria met.

The “REML Iterations” table in Figure 108.2 displays the iteration history, which includes the value of the
objective function associated with REML and the values of the variance components at each iteration.

Figure 108.3 REML Estimates

REML Estimates

Variance Component Estimate

Var(Lab) 0.31760

Var(Temp*Lab) 0

Var(Batch(Temp*Lab)) 2.07387

Var(Error) 0.60262

Figure 108.3 displays the REML estimates of the variance components.
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Figure 108.4 Covariance Matrix for REML Estimates

Asymptotic Covariance Matrix of Estimates

Var(Lab) Var(Temp*Lab) Var(Batch(Temp*Lab)) Var(Error)

Var(Lab) 0.32452 0 -0.04998 1.026E-12

Var(Temp*Lab) 0 0 0 0

Var(Batch(Temp*Lab)) -0.04998 0 0.45042 -0.0022417

Var(Error) 1.026E-12 0 -0.0022417 0.0089668

The “Asymptotic Covariance Matrix of Estimates” table in Figure 108.4 displays the asymptotic covariance
matrix of the REML estimates.

The results of the analysis show that the variance attributable to Batch(Temp*Lab) (with a variance component
of 2.0739) is considerably larger than the variance attributable to Lab (0.3176). Therefore, attempts to reduce
the variability of cure rates should concentrate on improving the homogeneity of the batches of raw material
used rather than standardizing the practices or equipment within the laboratories. Also, note that since
the Batch(Temp*Lab) variance is considerably larger than the experimental error (Var(Error)=0.6026), the
Batch(Temp*Lab) variability plays an important part in the overall variability of the cure rates.

Syntax: VARCOMP Procedure
The following statements are available in the VARCOMP procedure:

PROC VARCOMP < options > ;
CLASS variables ;
MODEL dependent = < effects > < / options > ;
BY variables ;

Only one MODEL statement is allowed. The BY, CLASS, and MODEL statements are described after the
PROC VARCOMP statement.

PROC VARCOMP Statement
PROC VARCOMP < options > ;

The PROC VARCOMP statement invokes the VARCOMP procedure. Table 108.1 summarizes the options
available in the VARCOMP statement.

Table 108.1 PROC VARCOMP Statement Options

Option Description

DATA= Specifies the input SAS data set to use
EPSILON= Specifies the convergence value of the objective function
MAXITER= Specifies the maximum number of iterations for METHOD=ML or

METHOD=REML
METHOD= Specifies which of the five methods to use
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Table 108.1 continued

Option Description

SEED= Specifies an unsigned integer used to start the pseudo-random number
generator

You can specify the following options in the PROC VARCOMP statement.

DATA=SAS-data-set
specifies the input SAS data set to use. If this option is omitted, the most recently created SAS data set
is used.

EPSILON=number
specifies the convergence value of the objective function for METHOD=ML or
METHOD=REML. By default, EPSILON=1E–8.

MAXITER=number
specifies the maximum number of iterations for METHOD=ML or METHOD=REML. By default,
MAXITER=50.

METHOD=TYPE1 | MIVQUE0 | ML | REML | GRR < (options) >
specifies which of the five methods (TYPE1, MIVQUE0, ML, REML, or GRR) you want to use. By
default, METHOD=MIVQUE0. METHOD=GRR provides a specialized analysis only for certain
designs, whereas the other four methods apply to any random-effects model and design. You can
specify the following options in parentheses after METHOD=GRR.

SPECLIMITS=(LSL,USL,< k >)

SL=(LSL,USL,< k >)
specifies the specification limits for the first random factor, which is regarded as the product being
tested in the gauge R&R study. The lower limit (LSL) must be smaller than the upper limit (USL).
The value k is optional. The default value is 6, which corresponds to the number of standard
deviations between the “natural” tolerance limits containing the middle 99.73% of a normal
process. SPECLIMITS=(LSL,USL,k) requests the estimates of the parameters PTR(LSL,USL,k)
and Cp(LSL,USL,k) to be displayed.

RATIO
specifies that certain additional ratios of variance components should also be computed and
displayed, such as proportion of total variance due to the process. These ratios are listed in
Table 108.5.

For more information see the section “Computational Methods” on page 8894.

SEED=n
specifies an unsigned integer used to start the pseudo-random number generator. If you do not specify
a seed or if you specify zero, the seed is generated from reading the time of day from the computer
clock. You can use a SAS date as a seed. The random number generation is used in the computation of
generalized confidence limits; see the section “Confidence Limits” on page 8897.
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BY Statement
BY variables ;

You can specify a BY statement with PROC VARCOMP to obtain separate analyses of observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the VARCOMP procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

CLASS Statement
CLASS variables ;

The CLASS statement specifies the classification variables to be used in the analysis. All effects in the
MODEL statement must be composed of effects that appear in the CLASS statement. Classification variables
can be either numeric or character; if they are character, only the first 16 characters are used.

Numeric classification variables are not restricted to integers since a variable’s format determines the
levels. For more information, see the discussion of the FORMAT statement in SAS Formats and Informats:
Reference.

MODEL Statement
MODEL dependent = < effects > < / options > ;

The MODEL statement gives the dependent variables and independent effects. If you specify more than one
dependent variable, a separate analysis is performed for each one. The independent effects are limited to
main effects, interactions, and nested effects; no continuous effects are allowed. All independent effects
must be composed of effects that appear in the CLASS statement. Effects are specified in the VARCOMP
procedure in the same way as described for the ANOVA procedure. Only one MODEL statement is allowed.

The following options are available in the MODEL statement.
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FIXED=n
specifies that the first n effects in the MODEL statement are fixed effects. The remaining effects are
assumed to be random. By default, PROC VARCOMP assumes that all effects are random in the model.
Keep in mind that if you use bar notation and, for example, specify Y=A|B / FIXED=2, then A*B is
considered a random effect.

CL=MLS | GCL< (options) >
specifies that confidence limits for all of the parameters of interest be computed and displayed. It also
optionally specifies the method to use for computing the confidence limits. There are two methods:
the modified large-sample (MLS) method and the generalized confidence limits (GCL) method. The
default method is MLS. For more information about these two methods, see the section “Confidence
Limits” on page 8897.

You can specify the following options in parentheses after CL=GCL.

NSAMPLE=n
specifies the sample size for generalized pivot quantities (GPQ) sampling. The default value is
12,605.

EPSILON=number
specifies a small positive value used in some GPQ computations. The default value is 0.001.

The CL option applies only to balanced one-way or two-way designs for METHOD=TYPE1 or GRR.

ALPHA=˛
specifies the level of significance ˛ for .1� ˛/100% two-sided confidence limits. The value of ˛ must
be between 0 and 1. By default, ˛ is equal to 0.05.

Details: VARCOMP Procedure

Missing Values
If an observation has a missing value for any variable used in the independent effects, then the analyses of all
dependent variables omit this observation. An observation is deleted from the analysis of a given dependent
variable if the observation’s value for that dependent variable is missing. Note that a missing value in one
dependent variable does not eliminate an observation from the analysis of the other dependent variables.

During processing, PROC VARCOMP groups the dependent variables on their missing values across
observations so that sums of squares and crossproducts can be computed in the most efficient manner.

Fixed and Random Effects
Central to the idea of variance components models is the idea of fixed and random effects. Each effect in
a variance components model must be classified as either a fixed or a random effect. Fixed effects arise
when the levels of an effect constitute the entire population in which you are interested. For example,
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if a plant scientist is comparing the yields of three varieties of soybeans, then Variety would be a fixed
effect, providing that the scientist was concerned about making inferences about only these three varieties of
soybeans. Similarly, if an industrial experiment focused on the effectiveness of two brands of a machine,
Machine would be a fixed effect only if the experimenter’s interest did not go beyond the two machine brands.

On the other hand, an effect is classified as a random effect when you want to make inferences about an entire
population, and the levels in your experiment represent only a sample from that population. Psychologists
comparing test results between different groups of subjects would consider Subject as a random effect.
Depending on the psychologists’ particular interest, the Group effect might be either fixed or random. For
example, if the groups are based on the sex of the subject, then Sex would be a fixed effect. But if the
psychologists are interested in the variability in test scores due to different teachers, then they might choose a
random sample of teachers as being representative of the total population of teachers, and Teacher would be
a random effect. Note that, in the soybean example presented earlier, if the scientists are interested in making
inferences about the entire population of soybean varieties and randomly choose three varieties for testing,
then Variety would be a random effect.

If all the effects in a model (except for the intercept) are considered random effects, then the model is called
a random-effects model; likewise, a model with only fixed effects is called a fixed-effects model. The more
common case, where some factors are fixed and others are random, is called a mixed model. In PROC
VARCOMP, by default, effects are assumed to be random. You specify which effects are fixed by using the
FIXED= option in the MODEL statement. In general, if an interaction or nested effect contains any effect
that is random, then the interaction or nested effect should be considered a random effect as well.

In the linear model, each level of a fixed effect contributes a fixed amount to the expected value of the
dependent variable. What makes a random effect different is that each level of a random effect contributes an
amount that is viewed as a sample from a population of normally distributed variables, each with mean 0, and
an unknown variance, much like the usual random error term that is a part of all linear models. The estimate
of the variance associated with the random effect is known as the variance component because it measures
the part of the overall variance contributed by that effect. Thus, PROC VARCOMP estimates the variance of
the random variables that are associated with the random effects in your model, and the variance components
tell you how much each of the random factors contributes to the overall variability in the dependent variable.

Negative Variance Component Estimates
The variance components estimated by PROC VARCOMP should theoretically be nonnegative because
they are assumed to represent the variance of a random variable. Nevertheless, when you are using
METHOD=MIVQUE0, TYPE1, or GRR, some estimates of variance components might become nega-
tive. (Due to the nature of the algorithms used for METHOD=ML and METHOD=REML, negative estimates
are constrained to zero.) These negative estimates might arise for a variety of reasons:

• The variability in your data might be large enough to produce a negative estimate, even though the true
value of the variance component is positive.

• Your data might contain outliers. See Hocking (1983) for a graphical technique for detecting outliers
in variance components models by using the SAS System.

• A different model for interpreting your data might be appropriate. Under some statistical models for
variance components analysis, negative estimates are an indication that observations in your data are
negatively correlated. See Hocking (1985) for further information about these models.
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Assuming you are satisfied that the model that PROC VARCOMP is using is appropriate for your data, it is
common practice to treat negative variance components as if they are zero.

Computational Methods
Four methods of estimation can be specified in the PROC VARCOMP statement by using the METHOD=
option. They are described in the following sections.

The Type I Method

This method (METHOD=TYPE1) computes the Type I sum of squares for each effect, equates each mean
square involving only random effects to its expected value, and solves the resulting system of equations
(Gaylor, Lucas, and Anderson 1970). The X0X j X0Y matrix is computed and adjusted in segments whenever
memory is not sufficient to hold the entire matrix.

The MIVQUE0 Method

Based on the technique suggested by Hartley, Rao, and LaMotte (1978), the MIVQUE0 method
(METHOD=MIVQUE0) produces unbiased estimates that are invariant with respect to the fixed ef-
fects of the model and that are locally best quadratic unbiased estimates given that the true ratio of each
component to the residual error component is zero. The technique is similar to TYPE1 except that the
random effects are adjusted only for the fixed effects. This affords a considerable timing advantage over the
TYPE1 method; thus, MIVQUE0 is the default method used in PROC VARCOMP. The X0XjX0Y matrix
is computed and adjusted in segments whenever memory is not sufficient to hold the entire matrix. Each
element .i; j / of the form

SSQ.X0iMXj /

is computed, where

M D I � X0.X00X0/�X00

and where X0 is part of the design matrix for the fixed effects, Xi is part of the design matrix for one of the
random effects, and SSQ is an operator that takes the sum of squares of the elements. For more information
see Rao (1971, 1972) and Goodnight (1978).

The Maximum Likelihood Method

The maximum likelihood method ( METHOD=ML) computes maximum likelihood estimates of the vari-
ance components; see Searle, Casella, and McCulloch (1992). The computing algorithm makes use of the
W-transformation developed by Hemmerle and Hartley (1973) and Goodnight and Hemmerle (1979). The
procedure uses a Newton-Raphson algorithm, iterating until the log-likelihood objective function converges.

The objective function for METHOD=ML is ln.jVj/C r0V�1r, where

V D �20 IC
nrX
iD1

�2i XiX0i
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and where �20 is the residual variance, nr is the number of random effects in the model, �2i represents the
variance components, Xi is part of the design matrix for one of the random effects, and

r D y � X0.X00V�1X0/�X00V�1y

is the vector of residuals.

The Restricted Maximum Likelihood Method

The restricted maximum likelihood method ( METHOD=REML) is similar to the maximum likelihood
method, but it first separates the likelihood into two parts: one that contains the fixed effects and one that
does not (Patterson and Thompson 1971). The procedure uses a Newton-Raphson algorithm, iterating until
convergence is reached for the log-likelihood objective function of the portion of the likelihood that does not
contain the fixed effects. Using notation from earlier methods, the objective function for METHOD=REML
is ln.jVj/C r0V�1rC ln.jX00V�1X0j/. See Searle, Casella, and McCulloch (1992) for additional details.

The GRR Method

Based on the technique suggested by Burdick, Borror, and Montgomery (2005), the GRR method
(METHOD=GRR) produces minimum variance unbiased estimators.

Gauge Repeatability and Reproducibility Analysis
In a typical gauge R&R experiment, each operator (Oj ) makes multiple observations on each of several
similar parts (Pi ) from a monitored process. The statistical model used to describe the response variable is
the balanced two-factor crossed random model with interaction

yijk D �y C Pi COj C .PO/ij CEijk

where i D 1; : : : ; p; j D 1; : : : ; o; k D 1; : : : ; r; �y is an unknown constant, andPi ; Oj ; .PO/ij ; Eijk are
jointly independent normal random variables with means of zero and variances Var.P /;Var.O/;Var.PO/;
and Var.E/, respectively. The corresponding SAS statements are as follows:

proc varcomp method=grr;
class P O;
model y = P|O;

run;

The first random effect in the MODEL statement is assumed to be the “Part” effect and the second is
“Operator.”

The ANOVA table for the preceding model is shown in Table 108.2.

Table 108.2 GRR Analysis of Variance

Source DF Mean Square Expected Mean Square

Parts(P) p � 1 S2P Var.E/C rVar.PO/C orVar.P /
Operators(O) o � 1 S2O Var.E/C rVar.PO/C prVar.O/
P�O .p � 1/.o � 1/ S2PO Var.E/C rVar.PO/
Error(E) po.r � 1/ S2E Var.E/
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The gauge R&R parameters of interest are given in Table 108.3 in terms of Var.P /;Var.O/;Var.PO/; and
Var.E/:

Table 108.3 Gauge R&R Parameters

Parameter Formula

Mean of population of measurements �y D Ny��� D †ijkyijk=por

Variance of the monitored process P D Var.P /
Variance of the measurement system M D Var.O/CVar.PO/CVar.E/
Total variance of the response variable y D Var.y/ D P C M
Ratio of process variance to measurement variance R D P =M
Proportion of total variance due to the process �P D P =y D

R
1CR

Proportion of total variance due to the measurement �M D M=y D 1 � �P
Signal-to-noise ratio SNR D

p
2 � R

Discrimination ratio DR D 1C 2R

For a one-way model, M D Var.E/; and for a two-way model with no interaction, M D Var.O/CVar.E/:

If you use the SPECLIMITS option to give specification limits, the two parameters in Table 108.4 will also
be estimated and displayed.

Table 108.4 Gauge R&R Parameters Related to Specification Limits

Parameter Formula

Precision-to-tolerance ratio PTR.LSL;USL; k/ D kpM=.USL � LSL/
Process capability ratio Cp.LSL;USL; k/ D .USL � LSL/=.kpP /

Here, USL and LSL are the specification limits, and the value k corresponds to the number of standard
deviations between the “natural” tolerance limits of a normal process.

If you use the RATIO option, the ratios in Table 108.5 will also be estimated and displayed.

Table 108.5 Gauge R&R Ratios

Ratio Formula

Ratio of process variance to total variance Var.P /=y
Ratio of operator variance to total variance Var.O/=y
Ratio of process by operator variance to total variance Var.PO/=y
Ratio of process variance to residual variance Var.P /=Var.E/
Ratio of operator variance to residual variance Var.O/=Var.E/
Ratio of process by operator variance to residual variance Var.PO/=Var.E/
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Confidence Limits
When no exact confidence limits exist, it is common practice to use approximate confidence limits. Two such
approximations are the modified large-sample (MLS) method and the generalized confidence limit (GCL)
method as discussed in Burdick, Borror, and Montgomery (2005). When analyzing a balanced one-way or
two-way design, if you specify the CL= option with METHOD=TYPE1 or GRR, the VARCOMP procedure
computes confidence limits by using either the MLS method (the default) or the GCL method. Generalized
confidence limits are obtained by specifying the CL=GCL option in the MODEL statement.

MLS Confidence Limits

The method of MLS confidence limits was first introduced by Graybill and Wang (1980). It starts with
approximate large-sample confidence limits; then it modifies the limits to be exact under certain parameter
conditions.

For a balanced two-way crossed random model with interaction, formulas for the MLS method are given
in Table 108.6. See Burdick, Borror, and Montgomery (2005) for the formulas for one-way or balanced
two-way with no interaction models.

Confidence limits for parameters such as variances and their ratios might not contain the corresponding point
estimates, because negative confidence bounds are increased to zero.

Table 108.6 100(1 � ˛)% MLS Confidence Limits

Parameter Lower Bound Upper Bound

�y Ny��� � C
q

K
por

Ny��� C C
q

K
por

P OP �
p
VLP =.or/ OP C

p
VUP =.or/

M OM �
p
VLM=.pr/ OM C

p
VUM=.pr/

y Oy �
p
VLT =.por/ Oy C

p
VUT =.por/

R LR UR
�P LR=.1C LR/ UR=.1C UR/

�M 1=.1C UR/ 1=.1C LR/
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The terms in Table 108.6 are defined as follows:

VLP D G
2
1S

4
P CH

2
3S

4
PO CG13S

2
PS

2
PO

VUP D H
2
1S

4
P CG

2
3S

4
PO CH13S

2
PS

2
PO

VLM D G
2
2S

4
O CG

2
3.p � 1/

2S4PO CG
2
4p

2.r � 1/2S4E

VUM D H
2
2S

4
O CH

2
3 .p � 1/

2S4PO CH
2
4p

2.r � 1/2S4E

VLT D G
2
1p

2S4P CG
2
2o
2S4O CG

2
3.po � p � o/

2S4PO CG
2
4.po/

2.r � 1/2S4E

VUT D H
2
1p

2S4P CH
2
2 o
2S4O CH

2
3 .po � p � o/

2S4PO CH
2
4 .po/

2.r � 1/2S4E

LR D
p.1 �G1/.S

2
P � F1S

2
PO/

po.r � 1/S2E C o.1 �G1/F3S
2
O C o.p � 1/S

2
PO

UR D
p.1CH1/.S

2
P � F2S

2
PO/

po.r � 1/S2E C o.1CH1/F4S
2
O C o.p � 1/S

2
PO

G1 D 1 � F˛=2W1;p�1

G2 D 1 � F˛=2W1;o�1

G3 D 1 � F˛=2W1;.p�1/.o�1/

G4 D 1 � F˛=2W1;po.r�1/

H1 D F1�˛=2W1;p�1 � 1

H2 D F1�˛=2W1;o�1 � 1

H3 D F1�˛=2W1;.p�1/.o�1/ � 1

H4 D F1�˛=2W1;po.r�1/ � 1

F1 D F1�˛=2Wp�1;.p�1/.o�1/

F2 D F˛=2Wp�1;.p�1/.o�1/

F3 D F1�˛=2Wp�1;o�1

F4 D F˛=2Wp�1;o�1

G13 D
.F1 � 1/

2 �G21F
2
1 �H

2
3

F1

H13 D
.1 � F2/

2 �H 2
1F

2
2 �G

2
3

F2

K D s2P C s
2
O � s

2
PO

C D
s2P
p
F1�˛W1;p�1 C s

2
O

p
F1�˛W1;o�1 � s

2
PO

p
F1�˛W1;.p�1/.o�1/

K

The symbol F˛Wdf1 ;df2 represents the percentile of an F distribution with df1 and df2 degrees of freedom and
area ˛ to the left.
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Generalized Confidence Limits

The method of generalized confidence limits was first introduced by Weerahandi (1993). The 100(1-˛)%
generalized confidence limits are determined as follows:

1. Initialize the random number generator with the seed. The seed value is specified by the SEED=
option.

2. Sample N generalized pivot quantities (GPQ), defined to have a distribution that is independent of the
parameters under study. The value N is specified by the NSAMPLE= option.

3. Define the lower and upper limits as the ˛=2 and 1 � ˛=2 quantiles of the sampled GPQ values.

Formulas for generalized confidence limits are given in Table 108.7, where Z denotes a standard normal
random variable and W1; W2; W3; and W4 denote jointly independent chi-square random variables that are
independent of Z with degrees of freedom p � 1; o � 1; .p � 1/.o � 1/ and po.r � 1/, respectively. The
value of � in Table 108.7 is specified by the EPSILON= option.

Table 108.7 100(1 � ˛)% Generalized Confidence Limits

Parameter GPQ

�y Ny��� �Z

s
max

�
�;
.p�1/s2p
porW1

C
.o�1/s2O
porW2

�
.p�1/.o�1/s2PO

porW3

�
P max

�
0;
.p�1/s2p
orW1

�
.p�1/.o�1/s2po

prW3

�
M

.o�1/s2o
prW2

C
.p�1/2.0�1/s2po

prW3
C

po.r�1/2s2E
rW4

y
.p�1/s2p
orW1

C
.o�1/s2O
prW2

C
.po�p�o/.p�1/.o�1/s2PO

porW3
C

po.r�1/2s2E
rW4

R
GPQ.P /
GPQ.M /

In general, the GCL method provides a more accurate confidence interval with a shorter interval width than
the MLS method. However, the greater accuracy comes at the cost of being somewhat nondeterministic,
because of the reliance on simulation.

Displayed Output
PROC VARCOMP displays the following items:

• Class Level Information for verifying the levels in your data

• Number of observations read from the data set and number of observations used in the analysis

• for METHOD=TYPE1, an analysis-of-variance table with Source, DF, Type I Sum of Squares, Type I
Mean Square, and Expected Mean Square, and a table of Type I variance component estimates

• for METHOD=MIVQUE0, the SSQ Matrix containing sums of squares of partitions of the X0X
crossproducts matrix adjusted for the fixed effects
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• for METHOD=ML and METHOD=REML, the iteration history, including the objective function,
a table of variance component estimates, and the estimated Asymptotic Covariance Matrix of the
variance components

• for METHOD=GRR, an analysis-of-variance table with Source, DF, GRR Sum of Squares, GRR Mean
Square, and Expected Mean Square, and a table of GRR parameter estimates. If the CL option is
specified, confidence limits for each parameter estimate will also be displayed.

ODS Table Names
PROC VARCOMP assigns a name to each table it creates. You can use these names to reference the table
when using the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed in Table 108.8. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

Table 108.8 ODS Tables Produced by PROC VARCOMP

ODS Table Name Description Statement

ANOVA Type 1 analysis of variance METHOD=TYPE1 or GRR
AsyCov Asymptotic covariance matrix of

estimates
METHOD=ML or REML

ClassLevels Class level information default
ConvergenceStatus Convergence status METHOD=ML or REML
DepVar Dependent variable METHOD=TYPE1, REML, ML, or GRR
DependentInfo Dependent variable info (multiple

variables)
Estimates Variance component estimates default
IterHistory Iteration history METHOD=ML or REML
NObs Number of observations default
SSCP Sum of squares matrix METHOD=MIVQUE0

In situations where multiple dependent variables are analyzed that differ in their missing value pattern,
separate names for ANOVAn, AsyCovn, Estimatesn, IterHistoryn, and SSCPn tables are no longer required.
The results are combined into a single output data set. For METHOD=TYPE1, ML, or REML, the variable
Dependent in the output data set identifies the dependent variable. For METHOD=MIVQUE0, a variable is
added to the output data set for each dependent variable.

Relationship to PROC MIXED
The MIXED procedure effectively performs the same analyzes as PROC VARCOMP and many others,
including Type I, Type II, and Type III tests of fixed effects, confidence limits, customized contrasts, and
least squares means. Furthermore, continuous variables are permitted as both fixed and random effects in
PROC MIXED, and numerous other covariance structures besides variance components are available. The
VARCOMP procedure is more computationally efficient for some special designs and models.
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To translate PROC VARCOMP code into PROC MIXED code, move all random effects to the RANDOM
statement in PROC MIXED. For example, the syntax for the example in the section “Getting Started:
VARCOMP Procedure” on page 8886 is as follows:

proc mixed;
class Temp Lab Batch;
model Cure = Temp;
random Lab Temp*Lab Batch(Lab Temp);

run;

REML is the default estimation method in PROC MIXED, and you can specify other methods by using the
METHOD= option.

Examples: VARCOMP Procedure

Example 108.1: Using the Four General Estimation Methods
In this example, a and b are classification variables and y is the dependent variable. a is declared fixed,
and b and a*b are random. Note that this design is unbalanced because the cell sizes are not all the same.
PROC VARCOMP is invoked four times, once for each of the general estimation methods. The data are from
Hemmerle and Hartley (1973). The following statements produce Output 108.1.1.

data a;
input a b y @@;
datalines;

1 1 237 1 1 254 1 1 246 1 2 178 1 2 179
2 1 208 2 1 178 2 1 187 2 2 146 2 2 145 2 2 141
3 1 186 3 1 183 3 2 142 3 2 125 3 2 136
;

proc varcomp method=type1 data=a;
class a b;
model y=a|b / fixed=1;

run;

Output 108.1.1 VARCOMP Procedure: Method=TYPE1

Variance Components Estimation ProcedureVariance Components Estimation Procedure

Class Level
Information

Class Levels Values

a 3 1 2 3

b 2 1 2

Number of Observations Read 16

Number of Observations Used 16

Dependent Variable: y
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Output 108.1.1 continued

Type 1 Analysis of Variance

Source DF
Sum of

Squares Mean Square Expected Mean Square

a 2 11736 5868.218750 Var(Error) + 2.725 Var(a*b) + 0.1 Var(b) + Q(a)

b 1 11448 11448 Var(Error) + 2.6308 Var(a*b) + 7.8 Var(b)

a*b 2 299.041026 149.520513 Var(Error) + 2.5846 Var(a*b)

Error 10 786.333333 78.633333 Var(Error)

Corrected Total 15 24270

Type 1 Estimates

Variance Component Estimate

Var(b) 1448.4

Var(a*b) 27.42659

Var(Error) 78.63333

The “Class Level Information” table in Output 108.1.1 displays the levels of each variable specified in the
CLASS statement. You can check this table to make sure the data are input correctly.

The Type I analysis of variance in Output 108.1.1 consists of a sequential partition of the total sum of squares.
The mean square is the sum of squares divided by the degrees of freedom, and the expected mean square
is the expected value of the mean square under the mixed model. The “Q” notation in the expected mean
squares refers to a quadratic form in parameters of the parenthesized effect.

The Type I estimates of the variance components in Output 108.1.1 result from solving the linear system of
equations established by equating the observed mean squares to their expected values.

The following statements are the same as before, except that the estimation method is MIVQUE0 instead of
the default TYPE1. They produce Output 108.1.2.

proc varcomp method=mivque0 data=a;
class a b;
model y=a|b / fixed=1;

run;

Output 108.1.2 VARCOMP Procedure: Method=MIVQUE0

Variance Components Estimation ProcedureVariance Components Estimation Procedure

MIVQUE(0) SSQ Matrix

Source b a*b Error y

b 60.84000 20.52000 7.80000 89295.4

a*b 20.52000 20.52000 7.80000 30181.3

Error 7.80000 7.80000 13.00000 12533.5

MIVQUE(0) Estimates

Variance Component y

Var(b) 1466.1

Var(a*b) -35.49170

Var(Error) 105.73660
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The MIVQUE0 estimates in Output 108.1.2 result from solving the equations established by the MIVQUE0
SSQ matrix. Note that the estimate of the variance component for the interaction effect, Var(a*b), is negative
for this example.

The following statements use METHOD=ML to invoke maximum likelihood estimation. They produce
Output 108.1.3.

proc varcomp method=ml data=a;
class a b;
model y=a|b / fixed=1;

run;

Output 108.1.3 VARCOMP Procedure: Method=ML

Variance Components Estimation ProcedureVariance Components Estimation Procedure

Maximum Likelihood Iterations

Iteration Objective Var(b) Var(a*b) Var(Error)

0 78.3850371200 1031.49070 0 74.3909717935

1 78.2637043807 732.3606453635 0 77.4011688154

2 78.2635471161 723.6867470850 0 77.5301774839

3 78.2635471152 723.6658365289 0 77.5304926877

Convergence criteria met.

Maximum Likelihood
Estimates

Variance
Component Estimate

Var(b) 723.66584

Var(a*b) 0

Var(Error) 77.53049

Asymptotic Covariance Matrix of Estimates

Var(b) Var(a*b) Var(Error)

Var(b) 537826.1 0 -107.33905

Var(a*b) 0 0 0

Var(Error) -107.33905 0 858.71104

The “Maximum Likelihood Iterations” table in Output 108.1.3 shows that the Newton-Raphson algorithm
used by PROC VARCOMP requires three iterations to converge.

The ML estimate of Var(a*b) is zero for this example, and the other two estimates are smaller than their Type
I and MIVQUE0 counterparts.

One benefit of using likelihood-based methods is that an approximate covariance matrix is available from the
matrix of second derivatives evaluated at the ML solution. This covariance matrix is valid asymptotically and
can be unreliable in small samples.

Here the variance component estimates for B and the Error are negatively correlated, and the elements for
Var(a*b) are set to zero because the estimate equals zero. Also, the very large variance for Var(b) indicates a
lot of uncertainty about the estimate for Var(b), and one contributing explanation is that B has only two levels
in this data set.
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Finally, the following statements use the restricted maximum likelihood (REML) for estimation. They
produce Output 108.1.4.

proc varcomp method=reml data=a;
class a b;
model y=a|b / fixed=1;

run;

Output 108.1.4 VARCOMP Procedure: Method=REML

Variance Components Estimation ProcedureVariance Components Estimation Procedure

REML Iterations

Iteration Objective Var(b) Var(a*b) Var(Error)

0 63.4134144942 1269.52701 0 91.5581191305

1 63.0446869787 1601.84199 32.7632417174 76.9355562461

2 63.0311530508 1468.82932 27.2258186561 78.7548276319

3 63.0311265148 1464.33646 26.9564053003 78.8431476502

4 63.0311265127 1464.36727 26.9588525177 78.8423898761

Convergence criteria met.

REML Estimates

Variance
Component Estimate

Var(b) 1464.4

Var(a*b) 26.95885

Var(Error) 78.84239

Asymptotic Covariance Matrix of Estimates

Var(b) Var(a*b) Var(Error)

Var(b) 4401703.8 1.29359 -273.39651

Var(a*b) 1.29359 3559.1 -502.85157

Var(Error) -273.39651 -502.85157 1249.7

The “REML Iterations” table in Output 108.1.4 shows that the REML optimization requires four iterations to
converge.

The REML estimates in Output 108.1.4 are all larger than the corresponding ML estimates (adjusting for
potential downward bias) and are fairly similar to the Type I estimates.

The “Asymptotic Covariance Matrix of Estimates” table in Output 108.1.4 shows that the Error variance
component estimate is negatively correlated with the other two variance component estimates, and the
estimated variances are all larger than their ML counterparts.

Example 108.2: Using the GRR Method
In this example from Houf and Burman (1988), the response variable is the thermal performance of a module
measured in Celsius degrees per watt. Each of three operators measures 10 parts three times. It is assumed
that parts and operators are selected at random from larger populations. The following statements produce
Output 108.2.1.
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data Houf;
input a b y @@;
datalines;

1 1 37 1 1 38 1 1 37
1 2 41 1 2 41 1 2 40
1 3 41 1 3 42 1 3 41
2 1 42 2 1 41 2 1 43
2 2 42 2 2 42 2 2 42
2 3 43 2 3 42 2 3 43
3 1 30 3 1 31 3 1 31
3 2 31 3 2 31 3 2 31
3 3 29 3 3 30 3 3 28
4 1 42 4 1 43 4 1 42
4 2 43 4 2 43 4 2 43
4 3 42 4 3 42 4 3 42
5 1 28 5 1 30 5 1 29
5 2 29 5 2 30 5 2 29
5 3 31 5 3 29 5 3 29
6 1 42 6 1 42 6 1 43
6 2 45 6 2 45 6 2 45
6 3 44 6 3 46 6 3 45
7 1 25 7 1 26 7 1 27
7 2 28 7 2 28 7 2 30
7 3 29 7 3 27 7 3 27
8 1 40 8 1 40 8 1 40
8 2 43 8 2 42 8 2 42
8 3 43 8 3 43 8 3 41
9 1 25 9 1 25 9 1 25
9 2 27 9 2 29 9 2 28
9 3 26 9 3 26 9 3 26
10 1 35 10 1 34 10 1 34
10 2 35 10 2 35 10 2 34
10 3 35 10 3 34 10 3 35
;

proc varcomp data=Houf method=grr (speclimits=(18,58) ratio);
class a b;
model y=a|b/cl;

run;

You specify METHOD=GRR in this example to drive the VARCOMP procedure to produce a gauge
repeatability and reproducibility analysis. With the option speclimits=(18 58), the parameters PTR and Cp
are estimated and displayed. With the RATIO option, certain additional ratios of variance components are
also estimated and displayed. Finally, the CL= option in the MODEL statement specifies that estimates of
GRR quantities should have the corresponding confidence limits.
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Output 108.2.1 Class Level Information Using Method=GRR

Variance Components Estimation ProcedureVariance Components Estimation Procedure

Class Level Information

Class Levels Values

a 10 1 2 3 4 5 6 7 8 9 10

b 3 1 2 3

Number of Observations Read 90

Number of Observations Used 90

Dependent Variable: y

The “Class Level Information” table in Output 108.2.1 displays the levels of each variable specified in the
CLASS statement.

Output 108.2.2 Analysis of Variance Using Method=GRR

GRR Analysis of Variance

Source DF
Sum of

Squares Mean Square Expected Mean Square

a 9 3935.955556 437.328395 Var(Error) + 3 Var(a*b) + 9 Var(a)

b 2 39.266667 19.633333 Var(Error) + 3 Var(a*b) + 30 Var(b)

a*b 18 48.511111 2.695062 Var(Error) + 3 Var(a*b)

Error 60 30.666667 0.511111 Var(Error)

Corrected Total 89 4054.400000

The GRR analysis of variance in Output 108.2.2 is the same as for the Type I analysis when the design is
balanced.
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Finally, the estimates of the GRR parameters of interest and their confidence limits are displayed in Out-
put 108.2.3.

Output 108.2.3 Parameter Estimates Using Method=GRR

GRR Estimates

Parameter Estimate
95%

Confidence Limits

Mu Y 35.80000 30.49477 41.10523

Var(a) 48.29259 22.69452 161.63918

Var(b) 0.56461 0.07296 25.75077

Var(a*b) 0.72798 0.33273 1.79272

Var(Error) 0.51111 0.36816 0.75754

Gamma Y 50.09630 24.48844 166.22217

Gamma P 48.29259 22.69452 161.63918

Gamma M 1.80370 1.20623 27.01724

Gamma R 26.77413 1.69168 105.60895

SNR 7.31767 1.83939 14.53334

PTR(18,58,6) 0.20145 0.16474 0.77967

Cp(18,58,6) 0.95933 0.52437 1.39942

DR 54.54825 4.38336 212.21791

Rho P 0.96400 0.62848 0.99062

Rho M 0.03600 0.0093801 0.37152

Var(a)/Gamma Y 0.96400 0.62848 0.99062

Var(b)/Gamma Y 0.01127 0.0008700 0.34151

Var(a*b)/Gamma Y 0.01453 0.0027083 0.04744

Var(a)/Var(Error) 94.48551 40.19199 327.32469

Var(b)/Var(Error) 1.10467 0.13662 50.37744

Var(a*b)/Var(Error) 1.42432 0.55232 3.74691

You can draw the following inferences from the results of the analysis. Most of the variation is due to
differences between parts because of the relative larger value of Gamma R. The measurement system is nearly
inadequate because the PTR exceeds 20%. However, the measurement system is of value in monitoring
the process since the SNR is greater than five. See Burdick, Borror, and Montgomery (2003) for more
information about interpreting gauge R&R studies.

The confidence limits in Output 108.2.3 are based on large-sample asymptotic approximation. You can alter-
natively compute more accurate and usually smaller confidence intervals by using CL=GCL for generalized
confidence limits. The following statements produce Output 108.2.4:

proc varcomp data=Houf method=grr (speclimits=(18,58) ratio) seed=104;
class a b;
model y=a|b/cl=gcl;

run;
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Output 108.2.4 Generalized Confidence Limits

Variance Components Estimation ProcedureVariance Components Estimation Procedure

GRR Estimates

Parameter Estimate

95%
Generalized

Confidence Limits

Mu Y 35.80000 30.48351 41.31148

Var(a) 48.29259 22.79316 168.91421

Var(b) 0.56461 0.07157 24.28846

Var(a*b) 0.72798 0.33476 1.75806

Var(Error) 0.51111 0.36816 0.75754

Gamma Y 50.09630 25.47092 180.85535

Gamma P 48.29259 22.79316 168.91421

Gamma M 1.80370 1.18494 25.76890

Gamma R 26.77413 1.91286 87.60026

SNR 7.31767 1.95594 13.23633

PTR(18,58,6) 0.20145 0.16328 0.76145

Cp(18,58,6) 0.95933 0.51295 1.39639

DR 54.54825 4.82572 176.20052

Rho P 0.96400 0.65669 0.98871

Rho M 0.03600 0.01129 0.34331

Var(a)/Gamma Y 0.96400 0.65669 0.98871

Var(b)/Gamma Y 0.01127 0.0010082 0.32122

Var(a*b)/Gamma Y 0.01453 0.0032088 0.04300

Var(a)/Var(Error) 94.48551 40.44585 336.50782

Var(b)/Var(Error) 1.10467 0.12886 47.19043

Var(a*b)/Var(Error) 1.42432 0.55232 3.74691

Note that the generalized confidence interval widths from Output 108.2.4 for parameters R and DR are 85.7
and 171.4, respectively. These widths are much shorter than the MLS-based widths, which are 103.9 and
207.8 from Output 108.2.3.

In general, the GCL method provides a more accurate confidence interval with a shorter interval width than
the MLS method. However, as discussed in the section “Generalized Confidence Limits” on page 8899,
they are computationally intensive and somewhat nondeterministic, because they are based on an underlying
Monte Carlo simulation.
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Overview: VARIOGRAM Procedure
The VARIOGRAM procedure computes empirical measures of spatial continuity for two-dimensional spatial
data. These measures are a function of the distances between the sample data pairs. When the data are free of
nonrandom (or systematic) surface trends, the estimated continuity measures are the empirical semivariance
and covariance. The procedure also fits permissible theoretical models to the empirical semivariograms, so
that you can use them in subsequent analysis to perform spatial prediction. You can produce plots of the
empirical semivariograms in addition to plots of the fitted models. Both isotropic and anisotropic continuity
measures are available.

PROC VARIOGRAM also provides the Moran’s I and Geary’s c spatial autocorrelation statistics, in addition
to the Moran scatter plot to visualize spatial associations within a specified neighborhood around observa-
tions. The procedure produces the OUTVAR=, OUTPAIR=, and OUTDISTANCE= data sets that contain
information about the semivariogram analysis. Also, the OUTACWEIGHTS= and the OUTMORAN= output
data sets contain information about the autocorrelation analysis.

The VARIOGRAM procedure uses ODS Graphics to create graphs as part of its output. For general
information about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.” For more information
about the graphics available in PROC VARIOGRAM, see the section “ODS Graphics” on page 8996.
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Introduction to Spatial Prediction
Many activities in science and technology involve measurements of one or more quantities at given spatial
locations, with the goal of predicting the measured quantities at unsampled locations. Application areas
include reservoir prediction in mining and petroleum exploration, in addition to modeling in a broad spectrum
of fields (for example, environmental health, environmental pollution, natural resources and energy, hydrology,
and risk analysis). Often, the unsampled locations are on a regular grid, and the predictions are used to
produce surface plots or contour maps.

The preceding tasks fall within the scope of spatial prediction, which, in general, is any prediction method
that incorporates spatial dependence. The study of these tasks involves naturally occurring uncertainties
that cannot be ignored. Stochastic analysis frameworks and methods are often used to account for these
uncertainties. Hence, the terms stochastic spatial prediction and stochastic modeling are also used to
characterize this type of analysis.

A popular method of spatial prediction is ordinary kriging, which produces both predicted values and
associated standard errors. Ordinary kriging requires the complete specification (the form and parameter
values) of the spatial dependence that characterizes the spatial process. For this purpose, models for the
spatial dependence are expressed in terms of the distance between any two locations in the spatial domain of
interest. These models take the form of a covariance or semivariance function.

Spatial prediction, then, involves two steps. First, you model the covariance or semivariance of the spatial
process. These measures are typically not known in advance. This step involves computing an empirical
estimate, in addition to determining both the mathematical form and the values of any parameters for a
theoretical form of the dependence model. Second, you use this dependence model to solve the kriging
system at a specified set of spatial points, resulting in predicted values and associated standard errors.

SAS/STAT software has two procedures that correspond to these steps for spatial prediction of two-
dimensional data. The VARIOGRAM procedure is used in the first step (that is, calculating and modeling
the dependence model), and the KRIGE2D procedure performs the kriging operations to produce the final
predictions.

This introduction concludes with a note on terminology. You might commonly encounter the terms estimation
and prediction used interchangeably by experts in different fields; this could be a source of confusion. A
precise statistical vernacular uses the term estimation to refer to inferences about the value of fixed but
unknown parameters, whereas prediction concerns inferences about the value of random variables—see,
for example, Cressie (1993, p. 106). In light of these definitions, kriging methods are clearly predictive
techniques, since they are concerned with making inferences about the value of a spatial random field at
observed or unobserved locations. The SAS/STAT suite of procedures for spatial analysis and prediction
(VARIOGRAM, KRIGE2D, and SIM2D) follows the statistical vernacular in the use of the terms estimation
and prediction.

Getting Started: VARIOGRAM Procedure
PROC VARIOGRAM uses your data to compute the empirical semivariogram. This computation refers to
the steps you take to derive the empirical semivariance from the data, and then to produce the corresponding
semivariogram plot.
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You can proceed further with the semivariogram analysis if the data are free of systematic trends. In
that case, you can use the empirical outcome to determine a theoretical semivariogram model by using
the automated methods provided by the VARIOGRAM procedure. The model characterizes the type of
theoretical semivariance function you use to describe spatial dependence in your data set.

Graphical displays are requested by enabling ODS Graphics. For general information about ODS Graphics,
see Chapter 21, “Statistical Graphics Using ODS.” For specific information about the graphics available in
the VARIOGRAM procedure, see the section “ODS Graphics” on page 8996.

Preliminary Spatial Data Analysis
The thick data set is available from the Sashelp library. The data set simulates measurements of coal seam
thickness (in feet) taken over an approximately square area. The Thick variable has the thickness values in
the thick data set. The coordinates are offsets from a point in the southwest corner of the measurement area,
with the north and east distances in units of thousands of feet.

It is instructive to see the locations of the measured points in the area where you want to perform spatial
prediction. It is desirable to have the sampling locations scattered evenly throughout the prediction area. If
the locations are not scattered evenly, the prediction error might be unacceptably large where measurements
are sparse.

You can run PROC VARIOGRAM in this preliminary analysis to determine potential problems. In the
following statements, the NOVARIOGRAM option in the COMPUTE statement specifies that only the
descriptive summaries and a plot of the raw data be produced.

title 'Spatial Correlation Analysis with PROC VARIOGRAM';

ods graphics on;

proc variogram data=sashelp.thick plots=pairs(thr=30);
compute novariogram nhc=20;
coordinates xc=East yc=North;
var Thick;

run;

PROC VARIOGRAM produces the table in Figure 109.1 that shows the number of Thick observations read
and used. This table provides you with useful information in case you have missing values in the input data.

Figure 109.1 Number of Observations for the thick Data Set

Spatial Correlation Analysis with PROC VARIOGRAM

The VARIOGRAM Procedure

Dependent Variable: Thick

Spatial Correlation Analysis with PROC VARIOGRAM

The VARIOGRAM Procedure

Dependent Variable: Thick

Number of Observations Read 75

Number of Observations Used 75

Then, the scatter plot of the observed data is produced as shown in Figure 109.2. According to the figure,
although the locations are not ideally spread around the prediction area, there are not any extended areas
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lacking measurements. The same graph also provides the values of the measured variable by using colored
markers.

Figure 109.2 Scatter Plot of the Observations Spatial Distribution

The following is a crucial step. Any obvious surface trend must be removed before you compute the empirical
semivariogram and proceed to estimate a model of spatial dependence (the theoretical semivariogram model).
You can observe in Figure 109.2 the small-scale variation typical of spatial data, but a first inspection indicates
no obvious major systematic trend.

Assuming, therefore, that the data are free of surface trends, you can work with the original thickness rather
than residuals obtained from a trend removal process. The following analysis also assumes that the spatial
characterization is independent of the direction of the line that connects any two equidistant pairs of data;
this is a property known as isotropy. See “Example 109.2: An Anisotropic Case Study with Surface Trend in
the Data” on page 9007 for a more detailed approach to trend analysis and the issue of anisotropy.

Following the previous exploratory analysis, you then need to classify each data pair as a member of a distance
interval (lag). PROC VARIOGRAM performs this grouping with two required options for semivariogram
computation: the LAGDISTANCE= and MAXLAGS= options. These options are based on your assessment
of how to group the data pairs within distance classes.
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The meaning of the required LAGDISTANCE= option is as follows. Classify all pairs of points into intervals
according to their pairwise distance. The width of each distance interval is the LAGDISTANCE= value. The
meaning of the required MAXLAGS= option is simply the number of intervals you consider. The problem
is that given only the scatter plot of the measurement locations, it is not clear what values to give to the
LAGDISTANCE= and MAXLAGS= options.

Ideally, you want a sufficient number of distance classes that capture the extent to which your data are
correlated and you want each class to contain a minimum of data pairs to increase the accuracy in your
computations. A rule of thumb used in semivariogram computations is that you should have at least 30 pairs
per lag class. This is an empirical arbitrary threshold; see the section “Choosing the Size of Classes” on
page 8973 for further details.

In the preliminary analysis, you use the option NHCLASSES= in the COMPUTE statement to help you
experiment with these numbers and choose values for the LAGDISTANCE= and MAXLAGS= options. Here,
in particular, you request NHCLASSES=20 to preview a classification that uses 20 distance classes across
your spatial domain. A zero lag class is always considered; therefore the output shows the number of distance
classes to be one more than the number you specified.

Based on your selection of the NHCLASSES= option, the NOVARIOGRAM option produces a pairwise dis-
tances table from your observations shown in Figure 109.3, and the corresponding histogram in Figure 109.4.
For illustration purposes, you also specify a threshold of minimum data pairs per distance class in the PAIRS
option as THR=30. As a result, a reference line appears in the histogram so that you can visually identify any
lag classes with pairs that fall below your specified threshold.

Figure 109.3 Pairwise Distance Intervals Table

Pairwise Distance Intervals

Lag
Class Bounds

Number
of Pairs

Percentage
of Pairs

0 0.00 3.48 7 0.25%

1 3.48 10.45 81 2.92%

2 10.45 17.42 138 4.97%

3 17.42 24.39 167 6.02%

4 24.39 31.36 204 7.35%

5 31.36 38.33 210 7.57%

6 38.33 45.30 213 7.68%

7 45.30 52.27 253 9.12%

8 52.27 59.24 237 8.54%

9 59.24 66.20 280 10.09%

10 66.20 73.17 252 9.08%

11 73.17 80.14 230 8.29%

12 80.14 87.11 217 7.82%

13 87.11 94.08 154 5.55%

14 94.08 101.05 71 2.56%

15 101.05 108.02 41 1.48%

16 108.02 114.99 14 0.50%

17 114.99 121.96 5 0.18%

18 121.96 128.93 1 0.04%

19 128.93 135.89 0 0.00%

20 135.89 142.86 0 0.00%
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The NOVARIOGRAM option also produces a table with useful facts about the pairs and the distances
between the most remote data in selected directions, shown in Figure 109.5. In particular, the lag distance
value is calculated based on your selection of the NHCLASSES= option. The last three table entries report
the overall maximum distance among your data pairs, in addition to the maximum distances in the main axes
directions—that is, the vertical (N–S) axis and the horizontal (E–W) axis. This information is also provided
in the inset of Figure 109.4. When you specify a threshold in the PAIRS suboption of the PLOTS option, as
in this example, the threshold also appears in the table. Then, the line that follows indicates the highest lag
class with the following property: each one of the distance classes that lie farther away from this lag features
a pairs population below the specified threshold.

With the preceding information you can determine appropriate values for the LAGDISTANCE= and
MAXLAGS= options in the COMPUTE statement. In particular, the classification that uses 20 distance
classes is satisfactory, and you can choose LAGDISTANCE=7 after following the suggestion in Figure 109.5.

Figure 109.4 Distribution of Pairwise Distances
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Figure 109.5 Pairs Information Table

Pairs Information

Number of Lags 21

Lag Distance 6.97

Minimum Pairs Threshold 30

Highest Lag With Pairs > Threshold 15

Maximum Data Distance in East 97.50

Maximum Data Distance in North 99.60

Maximum Data Distance 139.38

The MAXLAGS= option needs to be specified based on the spatial extent to which your data are correlated.
Unless you know this size, in the present omnidirectional case you can assume the correlation extent to be
roughly equal to half the overall maximum distance between data points.

The table in Figure 109.5 suggests that this number corresponds to 139,380 feet, which is most likely on or
close to a diagonal direction (that is, the northeast–southwest or northwest–southeast direction). Hence, you
can expect the correlation extent in this scale to be around 139:4=2 D 69; 700 feet. Consequently, consider
lag classes up to this distance for the empirical semivariogram computations. Given your lag size selection,
Figure 109.3 indicates that this distance corresponds to about 10 lags; hence you can set MAXLAGS=10.

Overall, for a specific NHCLASSES= choice of class count, you can expect your choice of MAXLAGS=
to be approximately half the number of the lag classes (see the section “Spatial Extent of the Empirical
Semivariogram” on page 8974 for more details).

After you have starting values for the LAGDISTANCE= and MAXLAGS= options, you can run the VARI-
OGRAM procedure multiple times to inspect and compare the results you get by specifying different values
for these options.

Empirical Semivariogram Computation
Using the values of LAGDISTANCE=7 and MAXLAGS=10 computed previously, rerun PROC VARI-
OGRAM without the NOVARIOGRAM option in order to compute the empirical semivariogram. You
specify the CL option in the COMPUTE statement to calculate the 95% confidence limits for the classical
semivariance. The section “COMPUTE Statement” on page 8935 describes how to use the ALPHA= option
to specify a different confidence level.

Also, you can request a robust version of the semivariance with the ROBUST option in the COMPUTE
statement. PROC VARIOGRAM produces a plot that shows both the classical and the robust empirical
semivariograms. See the details of the PLOTS option to specify different instances of plots of the empirical
semivariogram. The following statements implement the preceding requests:
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proc variogram data=sashelp.thick outv=outv;
compute lagd=7 maxlag=10 cl robust;
coordinates xc=East yc=North;
var Thick;

run;

Figure 109.6 displays the PROC VARIOGRAM output empirical semivariogram table for the preceding
statements. The table displays a total of eleven lag classes, even though you specified MAXLAGS=10. The
VARIOGRAM procedure always includes a zero lag class in the computations in addition to the MAXLAGS
classes you request with the MAXLAGS= option. Hence, semivariance is actually computed at MAXLAGS+1
lag classes; see the section “Distance Classification” on page 8969 for more details.

Figure 109.6 Output Table for the Empirical Semivariogram Analysis

Spatial Correlation Analysis with PROC VARIOGRAM

The VARIOGRAM Procedure

Dependent Variable: Thick

Spatial Correlation Analysis with PROC VARIOGRAM

The VARIOGRAM Procedure

Dependent Variable: Thick

Empirical Semivariogram

Semivariance

Lag
Class

Pair
Count

Average
Distance Robust Classical

Standard
Error

95%
Confidence

Limits

0 7 2.64 0.028 0.034 0.018 0 0.069

1 82 7.29 0.210 0.394 0.061 0.273 0.514

2 138 14.16 1.008 1.179 0.142 0.901 1.458

3 169 21.08 3.018 2.799 0.304 2.202 3.396

4 205 27.93 4.811 4.602 0.455 3.711 5.493

5 213 35.17 5.990 5.928 0.574 4.802 7.054

6 214 42.20 8.104 7.518 0.727 6.094 8.943

7 250 48.78 7.533 7.221 0.646 5.955 8.487

8 247 56.16 8.066 7.195 0.647 5.926 8.464

9 281 62.89 8.279 6.845 0.577 5.713 7.976

10 250 69.93 8.144 6.358 0.569 5.243 7.472

Figure 109.7 shows both the classical and robust empirical semivariograms. In addition, the plot features the
approximate 95% confidence limits for the classical semivariance. The figure exhibits a typical behavior of
the computed semivariance uncertainty, where in general the variance increases with distance from the origin
at Distance=0.



8920 F Chapter 109: The VARIOGRAM Procedure

Figure 109.7 Classical and Robust Empirical Semivariograms for Coal Seam Thickness Data

The needle plot in the lower part of the Figure 109.7 provides the number of pairs that were used in the
computation of the empirical semivariance for each lag class shown. In general, this is a pairwise distribution
that is different from the distribution depicted in Figure 109.4. First, the number of pairs shown in the needle
plot depends on the particular criteria you specify in the COMPUTE statement of PROC VARIOGRAM.
Second, the distances shown for each lag on the Distance axis are not the midpoints of the lag classes as in
the pairwise distances plot, but rather the average distance from the origin Distance=0 of all pairs in a given
lag class.
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Autocorrelation Analysis
You can use the autocorrelation analysis features of PROC VARIOGRAM to compute the autocorrelation
Moran’s I and Geary’s c statistics and to obtain the Moran scatter plot. In the following statements, you ask
for the Moran’s I and Geary’s c statistics under the assumption of randomization using binary weights, in
addition to the Moran scatter plot:

proc variogram data=sashelp.thick outv=outv plots(only)=moran;
compute lagd=7 maxlag=10 autocorr(assum=random);
coordinates xc=East yc=North;
var Thick;

run;

For the autocorrelation analysis with binary weights and the Moran scatter plot, the LAGDISTANCE= option
indicates that you consider as neighbors of an observation all other observations within the specified distance
from it.

Figure 109.8 shows the output from the requested autocorrelation analysis. This includes the observed
(computed) Moran’s I and Geary’s c coefficients, the expected value and standard deviation for each coeffi-
cient, the corresponding Z score, and the p-value in the Pr >j Z j column. The low p-values suggest strong
autocorrelation for both statistics types. A two-sided p-value is reported, which is the probability that the
observed coefficient lies farther away from j Z j on either side of the coefficient’s expected value—that is,
lower than –Z or higher than Z. The sign of Z for both Moran’s I and Geary’s c coefficients indicates positive
autocorrelation in the Thick data values; see the section “Interpretation” on page 8988 for more details.

Figure 109.8 Output Table for the Autocorrelation Statistics

Spatial Correlation Analysis with PROC VARIOGRAM

The VARIOGRAM Procedure

Dependent Variable: Thick

Spatial Correlation Analysis with PROC VARIOGRAM

The VARIOGRAM Procedure

Dependent Variable: Thick

Autocorrelation Statistics

Assumption Coefficient Observed Expected
Std
Dev Z Pr > |Z|

Randomization Moran's I 0.9240 -0.0244 0.145 6.53 <.0001

Randomization Geary's c 0.0162 1.0000 0.175 -5.62 <.0001

The requested Moran scatter plot is shown in Figure 109.9. The plot includes all nonmissing observations that
have neighbors within the specified LAGDISTANCE= distance. The horizontal axis displays the standardized
Thick values, and the vertical axis displays the corresponding weighted average of their neighbors. The plot
data points are concentrated in the upper right and lower left quadrants defined by the lines x = 0 and y =
0, and clearly around the axes’ diagonal reference line y = x of slope 1. This fact indicates strong positive
spatial association in the thick data set observations. Therefore, for each observation its neighbors within
the specified LAGDISTANCE= distance have overall similar Thick values to that observation. The plot
also displays the linear regression slope, whose value is the Moran’s I coefficient when the binary weights
are row-averaged. See the section “The Moran Scatter Plot” on page 8988 for more details about the Moran
scatter plot.
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Figure 109.9 Moran Scatter Plot for Coal Seam Thickness Data

Theoretical Semivariogram Model Fitting
PROC VARIOGRAM features automated semivariogram fitting. In particular, the procedure selects a
theoretical semivariogram model to fit the empirical semivariance and produces estimates of the model
parameters in addition to a fit plot. You have the option to save these estimates in an item store, which is a
binary file format that is defined by the SAS System and that you cannot modify. Then, you can retrieve this
information at a later point from the item store for future analysis with PROC KRIGE2D or PROC SIM2D.

The coal seam thickness empirical semivariogram in Figure 109.7 shows first a slow, then rapid, rise from the
origin. This behavior suggests that you can approximate the empirical semivariance with a Gaussian-type
form
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as shown in the section “Theoretical Semivariogram Models” on page 8958. Based on this remark, you
choose to fit a Gaussian model to your classical semivariogram. Run PROC VARIOGRAM again and specify
the MODEL statement with the FORM=GAU option. By default, PROC VARIOGRAM uses the weighted
least squares (WLS) method to fit the specified model, although you can explicitly specify the METHOD=
option to request the fitting method. You want additional information about the estimated parameters, so
you specify the CL option in the MODEL statement to compute their 95% confidence limits and the COVB
option of the MODEL statement to produce a table with their approximate covariances. You also specify the
STORE statement to save the fitting outcome into an item store file with the name SemivStoreGau and a
desired label. You run the following statements:

proc variogram data=sashelp.thick outv=outv;
store out=SemivStoreGau / label='Thickness Gaussian WLS Fit';
compute lagd=7 maxlag=10;
coordinates xc=East yc=North;
model form=gau cl / covb;
var Thick;

run;

ods graphics off;

After you run the procedure you get a series of output objects from the fitting analysis. In particular,
Figure 109.10 shows first a model fitting table with the name and a short label of the model that you requested
to use for the fit. The table also displays the name and label of the specified item store.

Figure 109.10 Semivariogram Model Fitting General Information

Spatial Correlation Analysis with PROC VARIOGRAM

The VARIOGRAM Procedure

Dependent Variable: Thick
Angle: Omnidirectional

Current Model: Gaussian

Spatial Correlation Analysis with PROC VARIOGRAM

The VARIOGRAM Procedure

Dependent Variable: Thick
Angle: Omnidirectional

Current Model: Gaussian

Semivariogram Model Fitting

Name Gaussian

Label Gau

Output Item Store WORK.SEMIVSTOREGAU

Item Store Label Thickness Gaussian WLS Fit

If you specify no parameters, as in the current example, then PROC VARIOGRAM initializes the model
parameters for you with default values based on the empirical semivariance; for more details, see the section
“Theoretical Semivariogram Model Fitting” on page 8977. The initial values provided by the VARIOGRAM
procedure for the Gaussian model are displayed in the table in Figure 109.11.

Figure 109.11 Semivariogram Fitting Model Information

Model Information

Parameter
Initial
Value

Nugget 0

Scale 6.7992

Range 34.9635
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Otherwise, in PROC VARIOGRAM you can specify initial values for parameters with the PARMS statement.
Alternatively, you can specify fixed values for the model scale and range with the SCALE= and RANGE=
options, respectively, in the MODEL statement. A nugget effect is always used in model fitting. Unless you
explicitly specify a fixed nugget effect with the NUGGET= option in the MODEL statement or initialize the
nugget parameter in the PARMS statement, the nugget effect is automatically initialized to zero. See the
section “Syntax: VARIOGRAM Procedure” on page 8927 for more details about how the MODEL statement
and the PARMS statement handle model parameters.

The output in Figure 109.12 comes from the optimization process that takes place during the model parameter
estimation. The optimizer produces an optimization information table, information about the optimization
technique that is used, optimization-related results, and notification about the optimization convergence.

Figure 109.12 Fitting Optimization Information

Optimization Information

Optimization Technique Dual Quasi-Newton

Parameters in Optimization 3

Lower Boundaries 3

Upper Boundaries 0

Starting Values From PROC

Spatial Correlation Analysis with PROC VARIOGRAM

The VARIOGRAM Procedure

Dependent Variable: Thick
Angle: Omnidirectional

Current Model: Gaussian

Dual Quasi-Newton Optimization

Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)

Spatial Correlation Analysis with PROC VARIOGRAM

The VARIOGRAM Procedure

Dependent Variable: Thick
Angle: Omnidirectional

Current Model: Gaussian

Dual Quasi-Newton Optimization

Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)

Hessian Computed by Finite Differences (Using Analytic Gradient)

Optimization Results

Iterations 12 Function Calls 45

Gradient Calls 0 Active Constraints 1

Objective Function 11.433894152 Max Abs Gradient Element 3.0128744E-8

Slope of Search Direction -3.986332E-8

Convergence criterion (GCONV=1E-8) satisfied.

The fitting process is successful, and the parameters converge to the estimated values shown in Figure 109.13.
For each parameter, the same table also displays the approximate standard error, the degrees of freedom, the t
value, the approximate p-value, and the requested 95% confidence limits.
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Figure 109.13 Semivariogram Fitting Parameter Estimates

Parameter Estimates

Approximate
95%

Confidence
Limits

Parameter Estimate
Approx

Std Error Lower Upper DF t Value
Approx
Pr > |t|

Nugget 0 0 0 0 8 . .

Scale 7.4599 0.2621 6.8555 8.0643 8 28.46 <.0001

Range 30.1111 1.1443 27.4724 32.7498 8 26.31 <.0001

The approximate covariance matrix of the estimated parameters is displayed in Figure 109.14.

Figure 109.14 Approximate Covariance Matrix of Parameter Estimates

Approximate Covariance Matrix

Parameter Nugget Scale Range

Nugget 0.0000 0.0000 0.0000

Scale 0.0000 0.0687 0.2326

Range 0.0000 0.2326 1.3094

The fitting summary table in Figure 109.15 displays statistics about the quality of the fitting process.
In particular, the table shows the weighted error sum of squares in the Weighted SSE column and the
Akaike information criterion in the AIC column. See more information about the fitting criteria in section
“Quality of Fit” on page 8981.

Figure 109.15 Semivariogram Model Fitting Summary

Fit Summary

Model
Weighted

SSE AIC

Gau 11.43389 6.42556
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Figure 109.16 demonstrates the fitted theoretical semivariogram against the empirical semivariance
estimates with the weighted least squares method. The fit seems to be more accurate closer to
the origin h D 0, and this is explained as follows: A smaller h corresponds to smaller semi-
variance; in turn, this corresponds to smaller semivariance variance, as shown in the section
“Theoretical and Computational Details of the Semivariogram” on page 8963. By definition, the WLS
optimization weights increase with decreasing variance, which leads to a more accurate fit for smaller
distances h in the WLS fitting results.

Figure 109.16 Fitted Theoretical and Empirical Semivariogram for Coal Seam Thickness
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Syntax: VARIOGRAM Procedure
The following statements are available in the VARIOGRAM procedure:

PROC VARIOGRAM options ;
BY variables ;
COMPUTE computation-options ;
COORDINATES coordinate-variables ;
DIRECTIONS directions-list ;
ID variable ;
MODEL model-options ;
PARMS parameters-list < / parameters-options > ;
NLOPTIONS < options > ;
STORE store-options ;
VAR analysis-variables-list ;

The COMPUTE and COORDINATES statements are required. The MODEL and PARMS statements are
hierarchical. If you specify a PARMS statement, it must follow a MODEL statement.

PROC VARIOGRAM Statement
PROC VARIOGRAM options ;

The PROC VARIOGRAM statement invokes the VARIOGRAM procedure. Table 109.1 summarizes the
options available in the PROC VARIOGRAM statement.

Table 109.1 PROC VARIOGRAM Statement Options

Option Description

DATA= Specifies the input data set
IDGLOBAL Labels observations across BY groups using ascending observation numbers
IDNUM Labels observations using the observation number
NOPRINT Suppresses normal display of results
OUTACWEIGHTS= Specifies a data set to store autocorrelation weights information
OUTDISTANCE= Specifies a data set to store summary distance information
OUTMORAN= Specifies a data set to store Moran scatter plot information
OUTPAIR= Specifies a data set to store pairwise point information
OUTVAR= Specifies a data set to store spatial continuity measures
PLOTS Specifies the plot display and options

You can specify the following options in the PROC VARIOGRAM statement.

DATA=SAS-data-set
specifies a SAS data set that contains the x and y coordinate variables and the VAR statement variables.
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IDGLOBAL
specifies that ascending observation numbers be used across BY groups for the observation labels in
the appropriate output data sets and the OBSERVATIONS plot, instead of resetting the observation
number in the beginning of each BY group. The IDGLOBAL option is ignored if no BY variables are
specified. Also, if you specify the ID statement, then the IDGLOBAL option is ignored unless you
also specify the IDNUM option in the PROC VARIOGRAM statement.

IDNUM
specifies that the observation number be used for the observation labels in the appropriate output
data sets and the OBSERVATIONS plot. The IDNUM option takes effect when you specify the ID
statement; otherwise, it is ignored.

NOPRINT
suppresses the normal display of results. The NOPRINT option is useful when you want only to create
one or more output data sets with the procedure.

NOTE: This option temporarily disables the Output Delivery System (ODS); see the section “ODS
Graphics” on page 8996 for more information.

OUTACWEIGHTS=SAS-data-set
OUTACW=SAS-data-set
OUTA=SAS-data-set

specifies a SAS data set in which to store the autocorrelation weights information for each pair of
points in the DATA= data set. Use this option with caution when the DATA= data set is large. If n
denotes the number of observations in the DATA= data set, then the OUTACWEIGHTS= data set
contains Œn.n � 1/�=2 observations.

See the section “OUTACWEIGHTS=SAS-data-set” on page 8990 for details.

OUTDISTANCE=SAS-data-set
OUTDIST=SAS-data-set
OUTD=SAS-data-set

specifies a SAS data set in which to store summary distance information. This data set contains a
count of all pairs of data points within a given distance interval. The number of distance intervals is
controlled by the NHCLASSES= option in the COMPUTE statement. The OUTDISTANCE= data set
is useful for plotting modified histograms of the count data for determining appropriate lag distances.
See the section “OUTDIST=SAS-data-set” on page 8991 for details.

OUTMORAN=SAS-data-set
OUTM=SAS-data-set

specifies a SAS data set in which to store information that is illustrated in the Moran plot, namely the
standardized value of each observation in the DATA= data set and the weighted average of its local
neighbors. You must also specify the LAGDISTANCE= and AUTOCORRELATION options in the
COMPUTE statement; otherwise, the OUTMORAN= data set request is ignored.

The OUTMORAN= data set is useful when you want to save the information that is illustrated in
the Moran scatter plot. The data set can also contain entries of missing observations with neighbors,
although these observations are not displayed in the Moran plot. However, if the only observations
with neighbors in your input data set are observations with missing values, then the OUTMORAN=
output data set is empty.

See the section “OUTMORAN=SAS-data-set” on page 8991 for details.
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OUTPAIR=SAS-data-set

OUTP=SAS-data-set
specifies a SAS data set in which to store distance and angle information for each pair of points in the
DATA= data set.

Use this option with caution when your DATA= data set is large. Assume that your DATA= data set
has n observations. When you specify the NOVARIOGRAM option in the COMPUTE statement, the
OUTPAIR= data set is populated with all Œn.n� 1/�=2 pairs that can be formed with the n observations.

If the NOVARIOGRAM option is not specified, then the OUTPAIR= data set contains only pairs of
data that are located within a certain distance away from each other. Specifically, it contains pairs
whose distance between observations belongs to a lag class up to the specified MAXLAGS= option
in the COMPUTE statement. Then, depending on your specification of the LAGDISTANCE= and
MAXLAGS= options, the OUTPAIR= data set might contain Œn.n � 1/�=2 or fewer pairs.

Finally, you can restrict the number of pairs in the OUTPAIR= data set with the OUTPDISTANCE=
option in the COMPUTE statement. The OUTPDISTANCE= option in the COMPUTE statement
excludes pairs of points when the distance between the pairs exceeds the OUTPDISTANCE= value.

See the section “OUTPAIR=SAS-data-set” on page 8992 for details.

OUTVAR=SAS-data-set

OUTVR=SAS-data-set
specifies a SAS data set in which to store the continuity measures.

See the section “OUTVAR=SAS-data-set” on page 8993 for details.

PLOTS < (global-plot-options) > < = plot-request< (options) > >

PLOTS < (global-plot-options) > < = (plot-request< (options) > < ... plot-request< (options) > >) >
controls the plots produced through ODS Graphics. When you specify only one plot request, you can
omit the parentheses around the plot request. Here are some examples:

plots=none
plots=observ
plots=(observ semivar)
plots(unpack)=semivar
plots=(semivar(cla unpack) semivar semivar(rob))

ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;

proc variogram data=sashelp.thick;
compute novariogram;
coordinates xc=East yc=North;
var Thick;

run;

ods graphics off;
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For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

If ODS Graphics is enabled but you omit the PLOTS option or have specified PLOTS=ALL, then
PROC VARIOGRAM produces a default set of plots, which might be different for different COMPUTE
statement options, as discussed in the following.

• If you specify NOVARIOGRAM in the COMPUTE statement, the VARIOGRAM procedure
produces a scatter plot of your observations spatial distribution, in addition to the histogram of
the pairwise distances of your data. For an example of the observations plot, see Figure 109.2.
For an example of the pairwise distances plot, see Figure 109.4.

• If you omit NOVARIOGRAM in the COMPUTE statement, the VARIOGRAM procedure
computes the empirical semivariogram for the specified LAGDISTANCE= and MAXLAGS=
options. The observations plot appears by default in this case too. The VARIOGRAM procedure
also produces a plot of the classical empirical semivariogram. If you also specify ROBUST in
the COMPUTE statement, then the VARIOGRAM procedure instead produces a plot of both
the classical and robust empirical semivariograms, in addition to the observations plot. For an
example of the empirical semivariogram plot, see Output 109.7. Moreover, if you specify the
MODEL statement and perform model fitting, then PROC VARIOGRAM also produces a fit plot
of the fitted semivariogram. An example of the fit plot is shown in Figure 109.16.

The following global-plot-options are available:

ONLY
suppresses the default plots. Only plots that are specifically requested are displayed.

UNPACKPANEL

UNPACK
suppresses paneling. By default, multiple plots can appear in some output panels. Specify
UNPACKPANEL to get each plot in a separate panel. You can specify PLOTS(UNPACKPANEL)
to unpack the default plots. You can also specify UNPACKPANEL as a suboption with the
SEMIVAR option.

The following individual plot-requests and plot options are available:

ALL
produces all appropriate plots. You can specify other options with ALL. For example, to request
all default plots and an additional classical empirical semivariogram, specify PLOTS=(ALL
SEMIVAR(CLA)).

EQUATE
specifies that all appropriate plots be produced in a way that the coordinates of the axes have
equal size units.

FITPLOT < (fitplot-options) >

FIT < (fitplot-options) >
requests a plot that shows the model fitting results against the empirical semivariogram. By
default, FITPLOT displays one plot of the fitted model (or a panel of plots for different angles in
the anisotropic case).
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If you specify the FORM=AUTO option in the MODEL statement, then each class of equivalent
fitted models is displayed with a different curve on the plot. The best fitting model class is chosen
based on the criteria that you specify in the CHOOSE option of the MODEL statement, and a
thicker line on top of any other curve is shown for it. The plot legend shows the ranked classes
by displaying the label of the representative model of each class in the plot. If appropriate, the
number of additional models in the same equivalence class also shows within parentheses.

You can specify the following fitplot-options:

NCLASSES=number

NCLASSES=ALL
specifies the maximum number of classes to display on the fit plot, where number is a
positive integer. The default is NCLASSES=5 for nonpaneled plots and NCLASSES=3
for paneled plots. The option takes effect when you specify the FORM=AUTO option in
the MODEL statement, and it is ignored when you fit one single model. If you specify
NCLASSES=ALL or a larger number than the available classes, then all available classes
are shown on the fit plot. If you specify multiple instances of the NCLASSES= option, then
only the last specified instance is honored.

UNPACK
suppresses paneling in paneled fit plots. By default, fit plots appear in a panel, when
appropriate.

MORAN < (moran-options) >

MOR < (moran-options) >
produces a Moran scatter plot of the observations with nonmissing values. For more details about
this plot, see the section “The Moran Scatter Plot” on page 8988. In addition to the Moran scatter
plot points, the plot also displays the fit line for the linear regression of the weighted average on
the standardized observation values, the regression fit line slope, and a reference line with slope
equal to 1. The MORAN plot has the following moran-options:

LABEL < ( label-options ) >
labels the observations. The label is the ID variable if the ID statement is specified; otherwise,
it is the observation number. The label-options can be one or more of the following:

HH
specifies that labels show for observations in the upper right (high-high) plot quadrant
of positive spatial association.

HL
specifies that labels show for observations in the lower right (high-low) plot quadrant of
negative spatial association.

LH
specifies that labels show for observations in the upper left (low-high) plot quadrant of
negative spatial association.
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LL
specifies that labels show for observations in the lower left (low-low) plot quadrant of
positive spatial association.

If you specify multiple instances of the MORAN option and you specify the LABEL subop-
tion in any of those, then the resulting Moran scatter plot displays the observations labels.
By default, when you specify none of the label-options, the PLOTS=MORAN(LABEL)
request puts labels in all observations.

ROWAVG=rowavg-option
specifies the flag value for row-averaging of weights in the computation of the weighted
average. The rowavg-option can be either of the following:

OFF
specifies that autocorrelation weights not be row-averaged.

ON
specifies that row-averaged autocorrelation weights be used.

The default behavior is ROWAVG=ON. If you specify the ROWAVG= option more than
once in the same MORAN plot request, then the behavior is set to ROWAVG=ON unless
any of the instances is ROWAVG=OFF.

When you specify the PLOTS=MORAN option, you must specify both the AUTOCORRELATION
and the LAGDISTANCE= options in the COMPUTE statement to produce the Moran scatter plot.
For more information about the plot, see the section “The Moran Scatter Plot” on page 8988.

NONE
suppresses all plots.

OBSERVATIONS < (observations-plot-options) >

OBSERV < (observations-plot-options) >

OBS < (observations-plot-options) >
produces the observed data plot. Only one observations plot is created if you specify the
OBSERVATIONS option more than once within a PLOTS option.

The OBSERVATIONS option has the following suboptions:

GRADIENT
specifies that observations be displayed as circles colored by the observed measurement.

LABEL < ( label-option ) >
labels the observations. The label is the ID variable if the ID statement is specified; otherwise,
it is the observation number. The label-option can be one of the following:

EQ=number
specifies that labels show for any observation whose value is equal to the specified
number .
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MAX=number
specifies that labels show for observations with values smaller than or equal to the
specified number .

MIN=number
specifies that labels show for observations with values equal to or greater than the
specified number .

If you specify multiple instances of the OBSERVATIONS option and you specify the LABEL
suboption in any of those, then the resulting observations plot displays the observations
labels. If more than one label-option is specified in multiple LABEL suboptions, then the
prevailing label-option in the resulting OBSERVATIONS plot emerges by adhering to the
choosing order: MIN, MAX, EQ.

OUTLINE
specifies that observations be displayed as circles with a border but with a completely
transparent fill.

OUTLINEGRADIENT
is the same as OBSERVATIONS(GRADIENT) except that a border is shown around each
observation.

SHOWMISSING
specifies that observations with missing values be displayed in addition to the observations
with nonmissing values. By default, missing values locations are not shown on the plot.
If you specify multiple instances of the OBSERVATIONS option and you specify the
SHOWMISSING suboption in any of those, then the resulting observations plot displays the
observations with missing values.

If you omit any of the GRADIENT, OUTLINE, and OUTLINEGRADIENT suboptions, the
OUTLINEGRADIENT is the default suboption. If you specify multiple instances of the OBSER-
VATIONS option or multiple suboptions for OBSERVATIONS, then the resulting observations
plot honors the last specified GRADIENT, OUTLINE, or OUTLINEGRADIENT suboption.

PAIRS < (pairs-plot-options) >
specifies that the pairwise distances histogram be produced. By default, the horizontal axis
displays the lag class number. The vertical axis shows the frequency (count) of pairs in the lag
classes. Notice that the zero lag class width is half the width of the other classes.

The PAIRS option has the following suboptions:

MIDPOINT

MID
specifies that the plot that is created with the PAIRS option display the lag class midpoint
value on the horizontal axis, rather than the default lag class number. The midpoint value is
the actual distance of a lag class center from the assumed origin point at distance zero. See
also the illustration in Figure 109.22.
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NOINSET

NOI
specifies that the plot created with the PAIRS option be produced without the default inset
that provides additional information about the pairs distribution.

THRESHOLD=minimum pairs

THR=minimum pairs
specifies that a reference line appear in the plot that is created with the PAIRS option to
indicate the minimum pairs frequency of data pairs. You can use this line as an exploratory
tool when you want to select lag classes that contain at least THRESHOLD point pairs. The
option helps you to identify visually any portion of the PAIRS distribution that lies below
the specified THRESHOLD value.

Only one pairwise distances histogram is created if you specify the PAIRS option within a PLOTS
option. If you specify multiple instances of the PAIRS option, the resulting plot has the following
features:

• If the MIDPOINT or NOINSET suboption has been specified in any of the instances, it is
activated in the resulting plot.

• If you have specified the THRESHOLD= suboption more than once, then the THRESHOLD=
value specified last prevails.

SEMIVARIOGRAM < (semivar-plot-options) >

SEMIVAR < (semivar-plot-options) >
specifies that the empirical semivariogram plot be produced. You can specify the SEMIVAR
option multiple times in the same PLOTS option to request instances of plots with the following
semivar-plot-options:

ALL | CLASSICAL | ROBUST

ALL | CLA | ROB
specifies a single type of empirical semivariogram (classical or robust) to plot, or specifies
that all the available types be included in the same plot. The default is ALL.

UNPACKPANEL

UNPACK
specifies that paneled semivariogram plots be displayed separately. By default, plots appear
in a panel, when appropriate.

BY Statement
BY variables ;

You can specify a BY statement with PROC VARIOGRAM to obtain separate analyses of observations in
groups that are defined by the BY variables. When a BY statement appears, the procedure expects the input
data set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last
one specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:
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• Sort the data by using the SORT procedure with a similar BY statement.

• Specify the NOTSORTED or DESCENDING option in the BY statement for the VARIOGRAM
procedure. The NOTSORTED option does not mean that the data are unsorted but rather that the
data are arranged in groups (according to values of the BY variables) and that these groups are not
necessarily in alphabetical or increasing numeric order.

• Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

COMPUTE Statement
COMPUTE computation-options ;

The COMPUTE statement provides a number of options that control the computation of the semivariance,
the robust semivariance, and the covariance.

Table 109.2 summarizes the options available in the COMPUTE statement.

Table 109.2 COMPUTE Statement Options

Option Description

ALPHA= Specifies the confidence level
ANGLETOLERANCE= Specifies the tolerance
AUTOCORRELATION Calculates autocorrelation statistics
BANDWIDTH= Specifies the bandwidth
CL Requests confidence limits
DEPSILON= Specifies the distance value for declaring that two distinct points are zero

distance apart
LAGDISTANCE= Specifies the basic distance unit that defines the lags
LAGTOLERANCE= Specifies the tolerance around the LAGDISTANCE= value
MAXLAGS= Specifies the maximum number of lag classes to be used
NDIRECTIONS= Specifies the number of angle classes to be used
NHCLASSES= Specifies the number of distance classes to be used
NOVARIOGRAM Prevents the computation of the continuity measures
OUTPDISTANCE= Specifies the cutoff distance for writing observations to the OUTPAIR=

data set
ROBUST Calculates a robust version of the semivarianc

ALPHA=number
specifies a parameter to obtain the confidence level for constructing confidence limits in the classical
empirical semivariance estimation. The value of number must be in .0; 1/, and the confidence level is
1�number . The default is ALPHA=0.05, which corresponds to the default confidence level of 95%. If
the CL option is not specified, ALPHA= is ignored.
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ANGLETOLERANCE=angle-tolerance

ANGLETOL=angle-tolerance

ATOL=angle-tolerance
specifies the tolerance, in degrees, around the angles determined by the NDIRECTIONS= specification.
The default is 180ı=.2nd /, where nd is the NDIRECTIONS= specification. If you do not specify the
NDIRECTIONS= option or the DIRECTIONS statement, ANGLETOLERANCE= is ignored.

See the section “Theoretical and Computational Details of the Semivariogram” on page 8963 for
further information.

AUTOCORRELATION < (autocorrelation-options) >

AUTOCORR < (autocorrelation-options) >

AUTOC < (autocorrelation-options) >
specifies that autocorrelation statistics be calculated. You can further specify the following
autocorrelation-options in parentheses following the AUTOCORRELATION option.

ASSUMPTION < = assumption-options >

ASSUM < = assumption-options >
specifies the type of autocorrelation assumption to use. The assumption-options can be one of
the following:

NORMALITY | NORMAL | NOR
specifies use of the normality assumption.

RANDOMIZATION | RANDOM | RAN
specifies use of the randomization assumption.

The default is ASSUMPTION=NORMALITY.

STATISTICS < = (stats-options) >

STATS < = (stats-options) >
specifies the autocorrelation statistics in detail. The stats-options can be one or more of the
following:

ALL
applies all available types of autoregression statistics.

GEARY | GEA
specifies use of the Geary’s c statistics.

MORAN | MOR
specifies use of the Moran’s I statistics.

The default is STATISTICS=ALL.

WEIGHTS < = weights-options >

WEI < = weights-options >
specifies the scheme used for the computation of the autocorrelation weights. You can choose
one of the following weights-options:
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BINARY < (binary-option) >
specifies that binary weights be used. You also have the following binary-option:

ROWAVERAGING | ROWAVG | ROW
specifies that asymmetric autocorrelation weights be assigned to data pairs. For each
observation, if there are nonzero weights, the ROWAVG option standardizes those
weights so that they sum to 1. No row averaging is performed by default.

DISTANCE < (distance-options) >
specifies that autocorrelation weights be assigned based on the point pair distances. You also
have the following distance-options:

NORMALIZE | NORMAL | NOR
specifies that normalized pair distances be used in the distance-based weights expression.
The distances are normalized with respect to the maximum pairwise distance hb , as it is
defined in the section “Computation of the Distribution Distance Classes” on page 8971.
By default, nonnormalized values are used in the computations.

POWER=number

POW=number
specifies the power to which the pair distance is raised in the distance-based weights
expression. POWER is a nonnegative number, and its default value is POWER=1.

ROWAVERAGING | ROWAVG | ROW
specifies that asymmetric autocorrelation weights be assigned to data pairs. For each
observation, if there are nonzero weights, the ROWAVG option standardizes those
weights so that they sum to 1. No row averaging is performed by default.

SCALE=number

SCA=number
specifies the scaling factor in the distance-based weights expression. SCALE is a
nonnegative number, and its default value is SCALE=1.

The default is WEIGHTS=BINARY. See the section “Autocorrelation Statistics” on page 8985
for further details about the autocorrelation weights.

When you specify the AUTOCORRELATION option with no autocorrelation-options, PROC VAR-
IOGRAM computes by default both the Moran’s I and Geary’s c statistics with p-values computed
under the normality assumption with binary weights.

If you specify more than one ASSUMPTION in the autocorrelation-options, all but the last specified
ASSUMPTION are ignored. The same holds if you specify more than one POWER= or SCALE=
parameter in the WEIGHT=DISTANCE distance-options.

If you specify the WEIGHT=BINARY option in the AUTOCORRELATION option and the NOVAR-
IOGRAM option at the same time, then you must also specify the LAGDISTANCE= option in the
COMPUTE statement. See the section “Autocorrelation Weights” on page 8985 for more information.
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BANDWIDTH=bandwidth-distance

BANDW=bandwidth-distance
specifies the bandwidth, or perpendicular distance cutoff for determining the angle class for a given
pair of points. The distance classes define a series of cylindrically shaped areas, while the angle classes
radially cut these cylindrically shaped areas. For a given angle class .�1 � ı�1; �1 C ı�1/, as you
proceed out radially, the area encompassed by this angle class becomes larger. The BANDWIDTH=
option restricts this area by excluding all points with a perpendicular distance from the line � D �1
that is greater than the BANDWIDTH= value. See Figure 109.23 for a visual representation of the
bandwidth.

If you omit the BANDWIDTH= option, no restriction occurs. If you omit the NDIRECTIONS= option
or the DIRECTIONS statement, BANDWIDTH= is ignored.

CL
requests confidence limits for the classical semivariance estimate. The lower bound of the confidence
limits is always nonnegative, adhering to the behavior of the theoretical semivariance. You can control
the confidence level with the ALPHA= option.

DEPSILON=distance-value

DEPS=distance-value
specifies the distance value for declaring that two distinct points are zero distance apart. Such pairs,
if they occur, cause numeric problems. If you specify DEPSILON=�", then pairs of points P1 and
P2 for which the distance between them j P1P2 j< �" are excluded from the continuity measure
calculations. The default value of the DEPSILON= option is 100 times the machine precision; this
product is approximately 1E–10 on most computers.

LAGDISTANCE=distance-unit

LAGDIST=distance-unit

LAGD=distance-unit
specifies the basic distance unit that defines the lags. For example, a specification of LAGDISTANCE=x
results in lag distance classes that are multiples of x. For a given pair of points P1 and P2, the distance
between them, denoted j P1P2 j, is calculated. If j P1P2 jD x, then this pair is in the first lag class. If
j P1P2 jD 2x, then this pair is in the second lag class, and so on.

For irregularly spaced data, the pairwise distances are unlikely to fall exactly on multiples of the
LAGDISTANCE= value. In this case, a distance tolerance of ıx accommodates a spread of distances
around multiples of x (the LAGTOLERANCE= option specifies the distance tolerance). For example,
if j P1P2 j is within x ˙ ıx, you would place this pair in the first lag class; if j P1P2 j is within
2x ˙ ıx, you would place this pair in the second lag class; and so on.

You can experiment and determine the candidate values for the LAGDISTANCE= option by plotting
the pairwise distance histogram for different numbers of histogram classes, using the NHCLASSES=
option.

A LAGDISTANCE= value is required for the semivariance and the autocorrelation computations.
However, when you specify the NOVARIOGRAM option without the AUTOCORRELATION option,
you need not specify the LAGDISTANCE= option.

See the section “Theoretical and Computational Details of the Semivariogram” on page 8963 for more
information.
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LAGTOLERANCE=tolerance-number

LAGTOL=tolerance-number

LAGT=tolerance-number
specifies the tolerance around the LAGDISTANCE= value for grouping distance pairs into lag classes.
See the description of the LAGDISTANCE= option for information about the use of the LAGTOLER-
ANCE= option, and the section “Theoretical and Computational Details of the Semivariogram” on
page 8963 for more details.

If you omit the LAGTOLERANCE= option, a default value of 1
2

times the LAGDISTANCE= value is
used.

MAXLAGS=number-of-lags

MAXLAG=number-of-lags

MAXL=number-of-lags
specifies the maximum number of lag classes to be used in constructing the continuity measures in
addition to a zero lag class; see also the section “Distance Classification” on page 8969. This option
excludes any pair of points P1 and P2 for which the distance between them, j P1P2 j, exceeds the
MAXLAGS= value times the LAGDISTANCE= value.

You can determine candidate values for the MAXLAGS= option by plotting or displaying the OUT-
DISTANCE= data set.

A MAXLAGS= value is required unless you specify the NOVARIOGRAM option.

NDIRECTIONS=number-of-directions

NDIR=number-of-directions

ND=number-of-directions
specifies the number of angle classes to use in computing the continuity measures. This option is useful
when there is potential anisotropy in the spatial continuity measures. Anisotropy is a field property in
which the characterization of spatial continuity depends on the data pair orientation (or angle between
the N–S direction and the axis defined by the data pair). Isotropy is the absence of this effect; that is,
the description of spatial continuity depends only on the distance between the points, not the angle.

The angle classes formed from the NDIRECTIONS= option start from N–S and proceed clockwise.
For example, NDIRECTIONS=3 produces three angle classes. In terms of compass points, these
classes are centered at 0ı (or its reciprocal, 180ı), 60ı (or its reciprocal, 240ı), and 120ı (or its
reciprocal, 300ı). For irregularly spaced data, the angles between pairs are unlikely to fall exactly in
these directions, so an angle tolerance of ı� is used (the ANGLETOLERANCE= option specifies the
angle tolerance). If NDIRECTIONS=nd , the base angle is � D 180ı=nd , and the angle classes are

.k� � ı�; k� C ı�/ k D 0; : : : ; nd � 1

If you omit the NDIRECTIONS= option, no angles are formed. This is the omnidirectional case where
the spatial continuity measures are assumed to be isotropic.

The NDIRECTIONS= option is useful for exploring possible anisotropy. The DIRECTIONS statement,
described in the section “DIRECTIONS Statement” on page 8941, provides greater control over the
angle classes.

See the section “Theoretical and Computational Details of the Semivariogram” on page 8963 for more
information.
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NHCLASSES=number-of-histogram-classes
NHCLASS=number-of-histogram-classes
NHC=number-of-histogram-classes

specifies the number of distance classes to consider in the spatial domain in the exploratory stage
of the empirical semivariogram computation. The actual number of classes is one more than the
NHCLASSES= value, since a special lag zero class is also computed. The NHCLASSES= option
is used to produce the distance intervals table, the histogram of pairwise distances, and the OUT-
DISTANCE= data set. See the OUTDISTANCE= option, the section “OUTDIST=SAS-data-set”
on page 8991, and the section “Theoretical and Computational Details of the Semivariogram” on
page 8963 for more information.

The default value is NHCLASSES=10.

NOVARIOGRAM
prevents the computation of the continuity measures. This option is useful for preliminary analysis, or
when you require only the OUTDISTANCE= or OUTPAIR= data sets.

OUTPDISTANCE=distance-limit
OUTPDIST=distance-limit
OUTPD=distance-limit

specifies the cutoff distance for writing observations to the OUTPAIR= data set. If you specify
OUTPDISTANCE=dmax , the distance j P1P2 j between each pair of points P1 and P2 is checked
against dmax . If j P1P2 j> dmax , the observation for this pair is not written to the OUTPAIR= data
set. If you omit the OUTPDISTANCE= option, all distinct pairs are written. This option is ignored if
you omit the OUTPAIR= data set.

ROBUST
requests that a robust version of the semivariance be calculated in addition to the classical semivariance.

COORDINATES Statement
COORDINATES coordinate-variables ;

The following two options give the names of the variables in the DATA= data set that contains the values of
the x and y coordinates of the data.

Only one COORDINATES statement is allowed, and it is applied to all the analysis variables. In other words,
it is assumed that all the VAR variables have the same x and y coordinates.

XCOORD=(variable-name)
XC=(variable-name)
X=(variable-name)

gives the name of the variable that contains the x coordinate of the data in the DATA= data set.

YCOORD=(variable-name)
YC=(variable-name)
Y=(variable-name)

gives the name of the variable that contains the y coordinate of the data in the DATA= data set.
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DIRECTIONS Statement
DIRECTIONS directions-list ;

You use the DIRECTIONS statement to define angle classes. You can specify angle classes as a list of angles,
separated by commas, with optional angle tolerances and bandwidths within parentheses following the angle.
You must specify at least one angle.

If you do not specify the optional angle tolerance, the default value of 45ı is used. If you do not specify the
optional bandwidth, no bandwidth is checked. If you specify a bandwidth, you must also specify an angle
tolerance.

For example, suppose you want to compute three separate semivariograms at angles �1 D 0ı, �2 D 60ı,
and �3 D 120ı, with corresponding angle tolerances ı�1 D 22:5ı, ı�2 D 12:5ı, and ı�3 D 22:5ı, with
bandwidths 50 and 40 distance units on the first two angle classes and no bandwidth check on the last angle
class.

The appropriate DIRECTIONS statement is as follows:

directions 0.0(22.5,50), 60.0(12.5,40),120(22.5);

ID Statement
ID variable ;

The ID statement specifies which variable to include for identification of the observations in the OUTPAIR=
and the OUTACWEIGHTS= output data sets. The ID statement variable is also used for the labels and tool
tips in the OBSERVATIONS plot.

In the VARIOGRAM procedure you can specify only one ID variable in the ID statement. If no ID statement
is given, then PROC VARIOGRAM uses the observation number in the data sets and the OBSERVATIONS
plot.

MODEL Statement
MODEL fitting-options < / model-options > ;

You specify the MODEL statement if you want to fit a theoretical semivariogram model to the empirical
semivariogram data that are produced in the COMPUTE statement. You must have nonmissing empirical
semivariogram estimates at a minimum of three lags to perform model fitting.

Table 109.3 summarizes the options available in the MODEL statement.
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Table 109.3 MODEL Statement Options

Option Description

Fitting Options
ALPHA= Specifies confidence level
CHOOSE= Ranks the fitted models and chooses the optimally fit model
CL Constructs a t-type confidence interval
EQUIVTOL= Specifies a positive upper value tolerance
FIT= Specifies which type of empirical semivariogram to fit
FORM= Specifies the functional form (type) of the semivariogram model
MDATA= Specifies the input data set
METHOD= Fits a theoretical model to the empirical semivariance
NEPSILON= Adds a minimal nugget effect
NUGGET= Specifies the nugget effect
RANGE= Specifies the range parameter
RANGELAG= Uses consecutive nonmissing empirical semivariance lags to fit model
RANKEPS= Specifies the minimum threshold to compare fit quality
SCALE= Specifies the scale parameter in semivariogram models
SMOOTH= Specifies the positive smoothness parameter �

Model Options
COVB Requests the covariance matrix
CORRB Requests the approximate correlation matrix
DETAILS Produces different levels of output
GRADIENT Displays the gradient of the objective function
MTOGTOL= Specifies a threshold value for the smoothness parameter
NOFIT Suppresses the model fitting process
NOITPRINT Suppresses the display of the iteration history table

You can choose to perform a fully automated fitting or to fit one model with specific forms. In the first case
you simply specify a list of forms or no forms at all. All suitable combinations are tested, and the result is the
model that produces the best fit according to specified criteria. In the second case you specify one theoretical
semivariogram model, and you have more control over its parameters for the fitting process.

Furthermore, you can specify a theoretical semivariogram model in two ways:

• You explicitly specify the FORM option and any of the options SCALE, RANGE, and NUGGET in
the MODEL statement.

• You can specify an MDATA= data set. This data set contains variables that correspond to the FORM
option and to any of the options SCALE, RANGE, NUGGET, and SMOOTH. You can also use an
MDATA= data set to request a fully automated fitting.

The two methods are exclusive; either you specify all parameters explicitly, or they all are read from the
MDATA= data set.
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The MODEL statement has the following fitting-options:

ALPHA=number
requests that a t-type confidence interval be constructed for each of the fitting parameters with
confidence level 1 – number . The value of number must be in .0; 1/; the default is 0.05 which
corresponds to the default confidence level of 95%. If the CL option of the MODEL statement is not
specified, then ALPHA= is ignored.

CHOOSE=criterion | (criterion1 . . . criterionk )
specifies that if the fitting task has more than one model to fit, then PROC VARIOGRAM ranks the
fitted models and chooses the optimally fit model according to one or more available criteria.

If you want to use multiple fitting criteria, then the order in which you specify them in the CHOOSE=
option defines how they are applied. This feature is useful when fitting suggests that two or more
models perform equally well according to a certain criterion. For example, if two models are equivalent
according to criterioni , then they are further ranked in the list based on the next criterion, criterionj ,
where j = i + 1.

Each criterion can be one of the following:

AIC
specifies Akaike’s information criterion.

SSE
specifies the weighted sum of squares error for each fitted model when METHOD=WLS, and the
residual sum of squares error for each fitted model when METHOD=OLS.

STATUS
classifies models based on their fitting process convergence status. CHOOSE=STATUS places on
top models for which the fitting process is successful.

By default, the models are ranked in the fit summary table with the best fitted model at the top of the
list, based on the criteria that you specify in the CHOOSE= option. This model is the fit choice of
PROC VARIOGRAM for the particular fitting task. If you omit the CHOOSE= option, then the default
behavior is CHOOSE=(SSE AIC).

Regardless of the specified fitting criteria, models for which the fitting process is unsuccessful always
appear at the bottom of the fit summary table. For more details about the fitting criteria, see the section
“Fitting Criteria” on page 8982. After multiple models are ranked, they are further categorized in
classes of equivalence depending on whether any two models calculate the same semivariance value
at the same distance for a series of different distances. For more details, see the section “Classes of
Equivalence” on page 8984.

If you specify the same criterion multiple times in the CHOOSE= option, then only the first instance is
used for the ranking process and any additional ones are ignored. If you specify only one model to fit
in the MODEL statement and you specify the CHOOSE= option, then the option is ignored.
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CL
requests that t-type confidence limits be constructed for each of the fitting parameters estimates. The
confidence level is 0.95 by default; this can be changed with the ALPHA= option of the MODEL
statement.

EQUIVTOL=etol-value

ETOL=etol-value
specifies a positive upper value tolerance to use when categorizing multiple models in classes of
equivalence. For this categorization, the VARIOGRAM procedure computes the sum of absolute
differences of semivariances for pairs of consecutively ranked models. If the sum is lower than the
EQUIVTOL= value for any such model pair, then these two models are deemed to be equivalent. As
a result, the EQUIVTOL= option can affect the number and size of classes of equivalence in the fit
summary table. Smaller values of the EQUIVTOL= parameter result in a more strict model comparison
and can lead to a higher number of classes of equivalence. For more details, see the section “Classes of
Equivalence” on page 8984.

The default value for the EQUIVTOL= parameter is 10�3. The EQUIVTOL= option applies when you
fit multiple models with the FORM=AUTO option of the MODEL statement; otherwise, it is ignored.

The EQUIVTOL= option is independent of the ranking results from the RANKEPS= option of the
MODEL statement. This means that you could possibly have models listed but not ranked in the fit
summary table, and still have equivalence classes assigned according to the order in which the models
appear in the table.

FIT=fit-type-options
specifies which type of empirical semivariogram to fit. You can choose between the following fit-type-
options:

CLASSICAL

CLA
fits a model for the classical empirical semivariance.

ROBUST

ROB
fits a model for the robust empirical semivariance. This option can be used only when the
ROBUST option is specified in the COMPUTE statement.

The default value is FIT=CLASSICAL.

FORM=form | (form1, . . . , formk ) | AUTO (auto-options)
specifies the functional form (type) of the semivariogram model. The supported structures are two-
parameter models that use the sill and range as parameters. The Matérn model is an exception that
makes use of a third smoothing parameter �.

The FORM= option is required when you specify the MODEL statement. You can perform fitting
of a theoretical semivariogram model either explicitly or in an automated manner. For the explicit
specification you specify suitable model forms in the FORM= option. For an automated fit you specify
the FORM=AUTO option which has the AUTO(MLIST=) and AUTO(NEST=) suboptions. You can
read more details in the following two subsections.
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Explicit Model Specification

You can explicitly specify a theoretical semivariogram model to fit by using any combination of one, two,
or three forms. Use the syntax with the single form to specify a non-nested model. Use the syntax with k
structures formi , i = 1, . . . , k, to specify up to three nested structures (k � 3) in a semivariogram model. Each
of the forms can be any of the following:

CUBIC | EXPONENTIAL | GAUSSIAN | MATERN |

PENTASPHERICAL | POWER | SINEHOLEEFFECT | SPHERICAL

CUB | EXP | GAU | MAT | PEN | POW | SHE | SPH
specify a form.

All of these forms are presented in more detail in the section “Theoretical Semivariogram Models” on
page 8958. In addition, you can optionally specify a nugget effect for your model with the NUGGET option
in the MODEL statement.

For example, the syntax

FORM=GAU

specifies a model with a single Gaussian structure. Also, the syntax

FORM=(EXP,SHE,MAT)

specifies a nested model with an exponential, a sine hole effect, and a Matérn structure. Finally

FORM=(EXP,EXP)

specifies a nested model with two structures both of which are exponential.

NOTE: In the documentation, models are named either by using their full names or by using the first three
letters of their structures. Also, the names of different structures in a nested model are separated by a hyphen
(-). According to this convention, the previous examples illustrate how to specify a GAU, an EXP-SHE-MAT,
and an EXP-EXP model, respectively, with the FORM= option.

When you explicitly specify the types of structures, you can fix parameter values or ask PROC VARIOGRAM
to select default initial values for the forms parameters by using the SCALE, RANGE, NUGGET, and
SMOOTH options. You can set your own, non-default initial parameter values by using the PARMS statement
in combination with an explicitly specified semivariogram model in the MODEL statement.

Automated Model Selection

Use the FORM=AUTO option to request the highest level of automation in the best fit selection of the
parameters. If you specify FORM=AUTO, any of the SCALE, RANGE, or SMOOTH options that are also
specified are ignored. When you specify the FORM=AUTO option, you cannot specify the PARMS statement
for the corresponding MODEL statement. As a result, when you use the FORM=AUTO option, you cannot
fix any of the model parameters and PROC VARIOGRAM sets initial values for them.

The AUTO option has the following auto-options:

MLIST=mform | (mform1, . . . , mformp)
specifies one or more different model forms to use in combinations during the model fitting process. If
you omit the MLIST= suboption, then combinations are made among all available model types. The
mform can be any of the following eight forms:
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CUBIC | EXPONENTIAL | GAUSSIAN | MATERN |

PENTASPHERICAL | POWER | SINEHOLEEFFECT | SPHERICAL

CUB | EXP | GAU | MAT | PEN | POW | SHE | SPH
specify a form.

If you use more than one mform, then each mformi, i = 1, . . . , p must be different from the others in the
group of p � 8 forms that you specify.

NEST=nest-list
specifies the number of nested structures to use for the fitting. You can choose between the following
to specify the nest-list:

n a single value

m TO n a sequence in which m equals the starting value and n equals the ending value

For example,

NEST=1

produces the best fit with one single model among all model types specified in the MLIST= suboption.
Also,

NEST=2 TO 3

produces the best fit among all combinations of the model types specified in the MLIST= suboption
that result in nested models with two or three structures. The combinations that are tested include
repetitions. Hence, if you specify, for example,

MODEL FORM=AUTO(MLIST=(EXP,SPH) NEST=1 TO 2)

then the different models that are tested are equivalent to the specifications FORM=EXP, FORM=SPH,
FORM=(EXP,EXP), FORM=(EXP,SPH), FORM=(SPH,SPH) and FORM=(SPH,EXP). NOTE: The
models EXP-SPH and SPH-EXP are taken as two separate models. Although they are mathematically
equivalent (see the section “Nested Models” on page 8963), PROC VARIOGRAM assigns different
initial values to the model structures in each case, which can lead to different fitting results. (See the
section “Example 109.1: Aspects of Semivariogram Model Fitting” on page 8997.)

If you omit the NEST suboption, then by default PROC VARIOGRAM searches for the best fit with
up to three nested structures in a model. The default behavior is equivalent to

NEST=1 TO 3
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In the VARIOGRAM procedure you can use a maximum of three nested structures to fit an empirical
semivariogram; that is, n � 3.

You can use the AUTO value for the form in the MDATA= data set, and also in the FORM= option. However,
in the former case the automation functionality is limited compared to the latter case and the auto-options of
the FORM=AUTO option. In particular, when you specify the form to be AUTO in the MDATA= data set,
then PROC VARIOGRAM follows only the default behavior and searches among all available forms for the
best fit with up to three nested structures in a model.

MDATA=SAS-data-set
specifies the input data set that contains parameter values for the covariance or semivariogram model.
The MDATA= data set must contain a variable named FORM, and it can optionally include any of the
variables SCALE, RANGE, NUGGET, and SMOOTH.

The FORM variable must be a character variable. It accepts only the AUTO value or the form values
that can be specified in the FORM= option in the MODEL statement. The RANGE, SCALE, NUGGET,
and SMOOTH variables must be numeric or missing.

The number of observations present in the MDATA= data set corresponds to the level of nesting of the
semivariogram model. Each observation line describes a structure of the model you submit for fitting.

If you specify the AUTO value for the FORM variable in an observation, then you cannot specify
additional nested structures in the same data set, and any parameters you specify in the same structure
are ignored. In that case, PROC VARIOGRAM performs a crude automated search among all available
forms to obtain the best fit with up to three nested structures in a model. You can refine this type of
search with additional suboptions when you perform it with the FORM=AUTO option instead of the
MDATA= option in the MODEL statement.

When you have a nested model, you might want to specify parameter values for only some of the
nested structures. In this case, you must specify the corresponding parameter values for the remaining
model structures as missing values.

For example, you can use the following DATA step to specify a non-nested model that uses a spherical
covariance within an MDATA= data set:

data md1;
input scale range form $;
datalines;

25 10 SPH
;

Then, you can use the md1 data in the MODEL statement of PROC VARIOGRAM as shown in the
following statements:

proc variogram data=...;
compute ...;
model mdata=md1;

run;

This is equivalent to the following explicit specification of the semivariance model parameters:
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proc variogram data=...;
compute ...;
model form=sph scale=25 range=10;

run;

The following data set md2 is an example of a nested model:

data md2;
input form $ scale range nugget smooth;
datalines;

SPH 20 8 5 .
MAT 12 3 5 0.7
GAU . 1 5 .
;

This specification is equivalent to the following explicit specification of the semivariance model
parameters:

proc variogram data=...;
compute ....;
model form=(sph,mat,gau)

scale=(20,12,.) range=(8,3,1) smooth=0.7 nugget=5;
run;

Use the SMOOTH variable column in the MDATA= data set to specify the smoothing parameter �
in the Matérn semivariogram models. The SMOOTH variable values must be positive and no greater
than 1,000,000. PROC VARIOGRAM sets this upper limit for numerical and performance reasons.
In any case, if the fitting process leads the smoothness value to exceed the default threshold value
10,000, then the VARIOGRAM procedure converts the Matérn form into a Gaussian form and repeats
the model fitting. To adjust the switching threshold value, you can use the MTOGTOL= option in the
MODEL statement.

If you specify a SMOOTH column in the MDATA= data set, then its elements are ignored except for
the rows in which the corresponding FORM is Matérn.

The NUGGET variable value is the same for all nested structures. This is the way to specify a nugget
effect in the MDATA= data set. If you specify more than one nugget value for different structures, then
the last nugget value specified is used.

METHOD=method-options
must be specified in the MODEL statement to fit a theoretical model to the empirical semivariance.
The METHOD option has the following suboptions:

OLS
specifies that ordinary least squares be used for the fitting.

WLS
specifies that weighted least squares be used for the fitting.

The default is METHOD=WLS.
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NEPSILON=min-nugget-factor

NEPS=min-nugget-factor
specifies that a minimal nugget effect be added to the theoretical semivariance in the unlikely occasion
that the theoretical semivariance becomes zero during fitting with weighted least squares. As explained
in the section “Theoretical and Computational Details of the Semivariogram” on page 8963, the
theoretical semivariance is always positive for any distance larger than zero. If a conflicting situation
emerges as a result of numerical fitting issues, then the NEPSILON= option can help you alleviate the
problem by adding a minimal variance at the distance lag where the issue is encountered. For more
details, see the section “Parameter Initialization” on page 8979.

If you omit the NEPSILON= option, then PROC VARIOGRAM sets a default value of 10�6. If
a minimal nugget effect is used, its value is case-specific and is based on the min-nugget-factor .
Specifically, its value is defined as min-nugget-factor times the sample variance of the input data set,
or as min-nugget-factor when the sample variance is equal to zero.

NUGGET=number
specifies the nugget effect for the model. The nugget effect is due to a discontinuity in the semivari-
ogram as determined by plotting the sample semivariogram; see “Theoretical Semivariogram Models”
on page 8958 for more details. The NUGGET= parameter is a nonnegative number. If you specify a
nonmissing value, then it is used as a fixed parameter in the fitting process.

PROC VARIOGRAM assigns a default initial value for the nugget effect in the following cases:

• if you specify a missing value.

• if you omit the NUGGET= option and you do not specify an associated PARMS statement with
initial values for the nugget.

The NUGGET= option is incompatible with the specification of the PARMS statement for the corre-
sponding MODEL statement.

RANGE=range | (range1, . . . , rangek )
specifies the range parameter in semivariogram models. The RANGE= option is optional. However,
if you specify the RANGE= option, then you must provide range values for all structures that you
have specified explicitly in the FORM= option. All nonmissing range values are considered as fixed
parameters. PROC VARIOGRAM assigns a default initial value to any of the model structures for
which you specify a missing range value. PROC VARIOGRAM assigns default initial values to all
model structures if you omit the RANGE= option, unless you specify an associated PARMS statement
and initial values for the range in it.

The range parameter is a positive number, has the units of distance, and is related to the correlation
scale of the underlying spatial process.

NOTE: If you specify this parameter for a power model, then it does not correspond to a range. For
power models, the parameter you specify in the RANGE option is a dimensionless power exponent
whose value must range within [0,2) so that the power model is a valid semivariance function.

The RANGE= option is ignored when you specify the FORM=AUTO option. The RANGE= option is
incompatible with the specification of the PARMS statement for the corresponding MODEL statement.



8950 F Chapter 109: The VARIOGRAM Procedure

RANGELAG=rlag-list

RLAG=rlag-list
specifies that you prefer to use the range of consecutive nonmissing empirical semivariance lags in the
rlag-list for the semivariogram fitting process, instead of using all MAXLAGS+1 lag classes by default.
You can specify rlag-list in either of the following forms:

k a single value that designates the width of the selected lag range by starting at
lag zero. You must use at least three lags to perform model fitting, so you can
specify k within [3, : : :, MAXLAGS+1].

m TO n a sequence in which m equals the starting lag and n equals the ending lag. The
parameters m and n must be nonnegative integer numbers to designate lag classes
between zero and MAXLAGS. Use at least three lags for model fitting; hence it
holds that n �m � 2.

The following two brief examples exhibit the use of the RANGELAG option. These examples assume
that you have set the MAXLAGS= option to 9 or higher to indicate nonmissing empirical semivariance
estimates at 10 lags or more.

In the first example,

RANGELAG=8

uses the empirical semivariance in the first eight lags to fit a theoretical model. Hence, RANGELAG=8
uses only the lag classes zero to seven. This approach enables you to account only for the correlation
behavior described by the first k empirical semivariogram lag classes.

In the second example,

RANGELAG=2 TO 9

specifies that the empirical semivariance values at lag classes zero, one, and after lag class nine are
excluded from the model fitting process.

RANKEPS=reps-value

REPS=reps-value
specifies the minimum threshold to compare fit quality of two models for a specific criterion. Beyond
this threshold the criterion values become insensitive to comparison. In particular, when you fit multiple
models, PROC VARIOGRAM computes for each one the value of the fitting criterion specified in
the CHOOSE= option of the MODEL statement. These values are examined in pairs at the sorting
stage. If the difference of a given pair exceeds the reps-value, then the sort order of the corresponding
models is reversed; otherwise, the two models retain their relative order in the rankings. Hence, the
RANKEPS= option can affect model ranking in the fit summary table.

The default value for the RANKEPS= parameter is 10�6 and accounts for the default optimization
convergence tolerance at the fitting stage prior to model ranking. The convergence tolerance itself
limits the accuracy that you can use to compare two models under a given criterion. As a result, smaller
values of the RANKEPS= parameter might not lead to a sensible and more strict model comparison
because for a smaller reps-value, ranking could depend on digits beyond the accuracy limit.
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In the opposite end, if the specified reps-value turns out to be large compared to the criterion value
differences, then it can make the sorting process insensitive to the specified sorting criterion. When this
happens, the fit summary table ranking reflects only the order in which different models are examined
in the procedure flow. You can tell whether the criterion is bypassed; if it is, then one or more values of
the specified criterion might not appear to be sorted in the fit summary table.

The RANKEPS= parameter must be a positive number. The RANKEPS= option applies when you fit
multiple models with the FORM=AUTO option of the MODEL statement; otherwise, it is ignored.

SCALE=scale | (scale1, . . . , scalek )
specifies the scale parameter in semivariogram models. The SCALE= option is optional. However,
if you specify the SCALE= option, then you must provide sill values for all structures that you
have specified explicitly in the FORM= option. All nonmissing scale values are considered as fixed
parameters. PROC VARIOGRAM assigns a default initial value to any of the model structures for
which you specify a missing scale value. PROC VARIOGRAM assigns default initial values to all
model structures if you omit the SCALE= option, unless you specify an associated PARMS statement
with initial values for scale.

The scale parameter is a positive number. It has the same units as the variance of the variable in
the VAR statement. The scale of each structure in a semivariogram model represents the variance
contribution of the structure to the total model variance.

In power models the SCALE= parameter does not correspond to a sill because the power model has no
sill. Instead, PROC VARIOGRAM uses the SCALE= option to designate the slope (or scaling factor)
in power model forms. The power model slope has the same variance units as the variable in the VAR
statement.

The SCALE= option is ignored when you specify the FORM=AUTO option. The SCALE= option is
incompatible with the specification of the PARMS statement for the corresponding MODEL statement.

SMOOTH=smooth | (smooth1, . . . , smoothm)
specifies the positive smoothness parameter � in the Matérn type of semivariance structures. The
special case � D 0:5 is equivalent to the exponential model, whereas the theoretical limit � ! 1
gives the Gaussian model.

The SMOOTH= option is optional. When you specify an explicit model in the FORM= option with m
Matérn structures, you can provide up to m smoothness values. You can specify a value for smoothi ,
i D 1; : : : ; m that is positive and no greater than 1,000,000. PROC VARIOGRAM sets this upper
limit for the SMOOTH= option values for numerical and performance reasons. In any case, if the
fitting process leads the smoothness value to exceed the default threshold value 10,000, then the
VARIOGRAM procedure converts the Matérn form into a Gaussian form and repeats the model fitting.
To adjust the switching threshold value, you can use the MTOGTOL= option in the MODEL statement.

If you specify fewer than m values, then the remaining Matérn structures have their smoothness
parameters initialized to missing values. If you specify more than m values, then values in excess are
ignored.

All nonmissing smoothness values are considered as fixed parameters of the corresponding Matérn
structures. PROC VARIOGRAM assigns a default initial value to any of the model Matérn structures,
if any, for which you specify a missing smoothness value. PROC VARIOGRAM assigns default
initial values to all model Matérn structures if you omit the SMOOTH= option, unless you specify an
associated PARMS statement and initial values for smoothness in it.
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The SMOOTH= option is ignored when you specify the FORM=AUTO option. The SMOOTH=
option is incompatible with the specification of the PARMS statement for the corresponding MODEL
statement.

In addition to the fitting-options, you can specify the following model-options after a slash (/) in the MODEL
statement.

COVB
requests the approximate covariance matrix for the parameter estimates of the model fitting. The
COVB option is ignored when you also specify the DETAILS=ALL option.

When you specify an explicit model with the FORM= option in the MODEL statement, the COVB
option produces the requested approximate covariance matrix. When you specify the FORM=AUTO
option in the MODEL statement, by default the COVB option produces output only for the selected
model, where the choice is based on the criteria that you specify in the CHOOSE= option of the
MODEL statement. If you specify the DETAILS option in addition to FORM=AUTO in the MODEL
statement, then the COVB option produces output for each one of the fitted models.

CORRB
requests the approximate correlation matrix for the parameter estimates of the model fitting. The
CORRB option is ignored when you also specify the DETAILS=ALL option.

When you specify an explicit model with the FORM= option in the MODEL statement, the CORRB
option produces the requested approximate correlation matrix. When you specify the FORM=AUTO
option in the MODEL statement, by default the CORRB option produces output only for the selected
model, where the choice is based on the criteria that you specify in the CHOOSE= option of the
MODEL statement. If you specify the DETAILS option in addition to FORM=AUTO in the MODEL
statement, then the CORRB option produces output for each one of the fitted models.

DETAILS < = detail-level >
requests different levels of output to be produced during the fitting process. You can specify any of the
following detail-level arguments:

MOD
specifies that the default output for all candidate models be produced when the FORM=AUTO
option is specified in the MODEL statement. If you fit only one explicit model, then the
DETAILS=MOD option has no effect and is ignored.

ITR
requests that a complete iteration history be produced in addition to the default output. The output
for DETAILS=ITR includes the current values of the parameter estimates, their gradients, and
additional optimization statistics.

ALL
requests the most detailed level of output when fitting a model. Specifically, except for the default
output, the DETAILS=ALL option produces optimization statistics in addition to the combined
output of the DETAILS=ITR, COVB, and CORRB options.

When you fit multiple models with the FORM=AUTO option in the MODEL statement, only the
selected model default output is produced. The model selection is based on the criteria that you specify
in the CHOOSE= option of the MODEL statement. With the DETAILS option you can produce ODS
tables with information about the fitting process of all the models that you fit. Moreover, you can
produce output at different levels of detail that you can specify with the detail-level argument.
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Omitting the DETAILS option or specifying the DETAILS option without any argument is equivalent
to specifying DETAILS=MOD.

GRADIENT
displays the gradient of the objective function with respect to the parameter estimates in the “Parameter
Estimates” table.

MTOGTOL=number
MTOL=number

specifies a threshold value for the smoothness parameter of the Matérn form. Above this threshold, a
Matérn form in a model switches to the Gaussian form. The number value must be positive and no
greater than 1,000,000, which is the smoothness upper bound set by the VARIOGRAM procedure.

By default, if the fitting process progressively increases the Matérn smoothness parameter � without
converging to a smoothness estimate, then PROC VARIOGRAM converts the Matérn form into a
Gaussian form when smoothness exceeds the default value 10,000. If you specify the number value to
be greater than the 1,000,000 boundary value, then it is ignored and reset to the default threshold value.
For more details about the Matérn-to-Gaussian form conversion, see the section “Fitting with Matérn
Forms” on page 8984.

NOFIT
suppresses the model fitting process.

NOITPRINT
suppresses the display of the iteration history table when you have also specified the DETAILS=ITR or
DETAILS=ALL option in the MODEL statement. Otherwise, the NOITPRINT option is ignored.

PARMS Statement
PARMS (value-list). . . < / options > ;

The PARMS statement specifies initial values for the semivariance parameters of a single specified model in
the MODEL statement. Alternatively, the PARMS statement can request a grid search over several values of
these parameters. You must specify the values by starting with the nugget effect parameter. You continue in
the order in which semivariogram forms are specified in the FORM= option of the MODEL statement by
specifying for each structure the values for its scale, range, and any other parameters as applicable.

The PARMS statement is optional and must follow the associated MODEL statement.

The value-list specification can take any of several forms:

m a single value

m1; m2; : : : ; mn several values

m to n a sequence in which m equals the starting value, n equals the ending value, and the
increment equals 1

m to n by i a sequence in which m equals the starting value, n equals the ending value, and the
increment equals i

m1; m2 to m3 mixed values and sequences
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You can use the PARMS statement to input fixed values for parameters and also initial values that you want
to optimize.

Suppose that you want to fit a semivariogram model with a Matérn component of scale 3, range 20, smoothing
parameter 4.5, and an exponential component of unspecified scale and range 15. Assume that you also want
to fix all the specified parameter values for the optimization. Including the nugget effect, you have a model
with six parameters.

In terms of the PARMS statement, your specifications mean that you have initial values for the second, third,
fourth, and sixth parameter in the parameter list. Also, the same specifications imply that you provide no
initial values for the first parameter (which corresponds to the nugget effect) and the fifth parameter (which
corresponds to the exponential model scale). For these parameters you prefer that PROC VARIOGRAM
selects initial values, instead. Since you must specify values for all model parameters in the PARMS
statement, you simply specify missing values for the first and fifth parameter. This is the way to request that
PROC VARIOGRAM assigns default initial values to parameters. The SAS statements to implement these
specifications are as follows:

proc variogram data=FirstData;
< other VARIOGRAM statements >
model form=(mat,exp);
parms (.) (3) (20) (4.5) (.) (15) / hold=(2 to 4,6);

run;

NOTE: The preceding statements are equivalent to the following ones in which the PARMS statement is
omitted:

proc variogram data=FirstData;
< other VARIOGRAM statements >
model form=(mat,exp) scale=(3,.) range(20,15) smooth=4.5;

run;

This example might suggest that you can always use either the PARMS or the MODEL statement to specify
the same fitting parameters in the VARIOGRAM procedure. However, the PARMS statement gives you more
flexibility in two ways:

• You can set non-default initial parameter values by using the PARMS statement, whereas in the
MODEL statement you can request default initial values only by setting parameters to missing values.
For this reason the PARMS statement cannot be specified when the FORM=AUTO option is specified in
the associated MODEL statement. As an example, the following statements do not have an equivalent
without using the PARMS statement, because the first parameter in the PARMS statement list (which
corresponds to the NUGGET parameter) is set to the specific initial value of 2.1 and the fifth parameter
(which corresponds to the exponential structure scale) is set to the specific initial value of 0.3.

proc variogram data=FirstData;
< other VARIOGRAM statements >
model form=(mat,exp);
parms (2.1) (3) (20) (4.5) (0.3) (15) / hold=(2 to 4,6);

run;

• In the MODEL statement all the nonmissing parameter values that you specify remain fixed. Instead,
the PARMS statement considers all values in the specified parameter sets to be subjected to optimization
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unless you force values to be fixed with the HOLD= option. In the previous example, you can specify
that you want to optimize all of your parameters by skipping the HOLD= option as shown in the
following modified statements:

proc variogram data=FirstData;
< other VARIOGRAM statements >
model form=(mat,exp);
parms (2.1) (3) (20) (4.5) (1) (15);

run;

When you omit the PARMS statement list and the PDATA= data set in a PARMS statement, the specification
is equivalent to a PARMS statement list where all the parameters have missing initial values. However, if you
specify no other option in the PARMS statement, then the PARMS statement is ignored.

In order to avoid ambiguity, you cannot specify the PARMS statement if any of the scale, range, nugget, or
smoothness parameters has been specified in the associated MODEL statement either explicitly or in the
MDATA= data set. This condition is in effect even when you specify an empty PARMS statement.

If you specify more than one set of initial values, a grid of initial values sets is created. PROC VARIOGRAM
seeks among the specified sets for the one that gives the lowest objective function value. Then, the procedure
uses the initial values in the selected set for the fitting optimization.

The results from the PARMS statement are the values of the parameters on the specified grid. The ODS name
of the “Parameter Search” table is ParmSearch.

You can specify the following options after a slash (/) in the PARMS statement:

HOLD=value-list

EQCONS=value-list
specifies which parameter values be constrained to equal the specified values. For example, the follow-
ing statement constrains the first and third semivariance parameters to equal 0.5 and 12, respectively.
The fourth parameter is fixed to the default initial value that is assigned to it by PROC VARIOGRAM.

parms (0.5) (3) (12) (.) / hold=1,3,4;

The HOLD= option accepts only nonmissing values in its list. If you specify more than the available
parameters in the HOLD= option list, then the ones in excess are ignored. If the HOLD= option list
has integer values that do not correspond to variables in the PARMS list, then they are also ignored.
Noninteger values are rounded to the closest integer and evaluated accordingly.

When you specify more than one set of parameter initial values, the HOLD= option list applies to the
set that gives the lowest objective function value before this set is sent to the optimizer for the fitting.

LOWERB=value-list
specifies lower boundary constraints on the semivariance parameters. The value-list specification is a
list of numbers or missing values (.) separated by commas. You must list the numbers in the order that
PROC VARIOGRAM uses for the semivariance parameters, and each number corresponds to the lower
boundary constraint. A missing value instructs PROC VARIOGRAM to use its default constraint.

If you do not specify lower bounds for all of the semivariance parameters, then PROC VARIOGRAM
assumes that the remaining parameters are not bounded. If you specify more lower bounds in the



8956 F Chapter 109: The VARIOGRAM Procedure

value-list than the available parameters, then the numbers in excess are ignored. If you specify lower
bounds for parameters with missing initial values, then the VARIOGRAM procedure enforces the
specified bounds in the fitting process. By default, the lower bound for all parameters is zero.

When you specify the HOLD= option together with the LOWERB= option, the lower bounds in the
LOWERB= option value-list that correspond to fixed parameters are ignored. When you specify the
NOBOUND option together with the LOWERB= option, the LOWERB= option is ignored.

MAXSCALE=maxscale
specifies a positive upper threshold for the fitted semivariogram sill. This option imposes a linear
constraint on the optimization of the nonfixed semivariogram scale and nugget parameters so that
the sum of all scale and nugget parameters does not exceed the specified MAXSCALE= value. The
MAXSCALE= constraint is ignored if all the semivariogram scale and nugget parameters are fixed.

NOBOUND
requests the removal of boundary constraints on semivariance parameters. For example, semivariance
parameters have a default zero lower boundary constraint since they have a physical meaning only for
positive values. The NOBOUND option enables the fitting process to derive negative estimates; hence,
you need to be cautious with the outcome when you specify this option.

The NOBOUND option has no effect on the power model exponent parameter. The exponent must
range within [0,2) so that the model is a valid semivariance function. Also, the NOBOUND option has
no effect on the Matérn smoothness parameter. The options LOWERB= and UPPERB= are ignored if
either of them is specified together with the NOBOUND option in the PARMS statement.

PARMSDATA=SAS-data-set

PDATA=SAS-data-set
specifies that semivariance parameters values be read from a SAS data set. The data set should contain
the values in the sequence required by the PARMS statement in either of the following two ways:

• Specify one single column under the variable Estimate (or Est) that contains all the parameter
values.

• Use one column for each parameter, and place the n columns under the Parm1–Parmn variables.

For example, the following two data sets are valid and equivalent ways to specify initial values for the
nugget effect and the parameters of the Matérn and exponential structures that have been used in the
previous examples in the PARMS statement section:

data parData1;
input Estimate @@;
datalines;

. 3 20 4.5 . 15
;

data parData2;
input Parm1 Parm2 Parm3 Parm4 Parm5 Parm6;
datalines;

. 3 20 4.5 . 15
;
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If you have the parData1 data set, then you can import this information into the PARMS statement as
follows:

proc variogram data=FirstData;
< other VARIOGRAM statements >
model form=(mat,exp);
parms / pdata=parData1 hold=(2 to 4,6);

run;

You can specify more than one set of initial values in the PDATA= data set by following the preceding
guidelines. PROC VARIOGRAM seeks among the specified sets for the one that gives the lowest
objective function value. Then, the procedure uses the initial values in the selected set for the fitting
optimization.

You can explicitly specify initial parameter values in the PARMS statement or use the PDATA= option,
but you cannot use both at the same time.

UPPERB=value-list
specifies upper boundary constraints on the semivariance parameters. The value-list specification is a
list of numbers or missing values (.) separated by commas. You must list the numbers in the order that
PROC VARIOGRAM uses for the semivariance parameters, and each number corresponds to the upper
boundary constraint. A missing value instructs PROC VARIOGRAM to use its default constraint.

If you do not specify upper bounds for all of the semivariance parameters, then PROC VARIOGRAM
assumes that the remaining parameters are not bounded. If you specify more upper bounds in the
value-list than the available parameters, then the numbers in excess are ignored. If you specify upper
bounds for parameters with missing initial values, then the VARIOGRAM procedure enforces the
specified bounds in the fitting process. By default, the scale, range, nugget, and Matérn smoothness
parameters have no upper bounds, whereas the power model exponent parameter is lower than two.

When you specify the HOLD= option together with the UPPERB= option, the upper bounds in the
UPPERB= option value-list that correspond to fixed parameters are ignored. When you specify the
NOBOUND option together with the UPPERB= option, the UPPERB= option is ignored.

NLOPTIONS Statement
NLOPTIONS < options > ;

By default, PROC VARIOGRAM uses the technique TECH=NRRIDG, which corresponds to Newton-
Raphson optimization with ridging. For more information about the NLOPTIONS, see the section “NLOP-
TIONS Statement” on page 488 in Chapter 19, “Shared Concepts and Topics.”

STORE Statement
STORE OUT=store-name < / option > ;

The STORE statement requests that the procedure save the context and results of the semivariogram model
fitting analysis in an item store. An item store is a binary file defined by the SAS System. You cannot modify
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the contents of an item store. The contents of item stores produced by PROC VARIOGRAM can be processed
only with the KRIGE2D or the SIM2D procedure. After you save results in an item store, you can use them
at a later time without having to fit the model again.

The store-name is a usual one- or two-level SAS name, as for SAS data sets. If you specify a one-level
name, then the item store resides in the Work library and is deleted at the end of the SAS session. Since
item stores are often used for postprocessing tasks, typical usage specifies a two-level name of the form
libname.membername. If an item store by the same name as specified in the STORE statement already exists,
the existing store is replaced.

You can specify the following option in the STORE statement after a slash (/):

LABEL=store-label
specifies a custom label for the item store that is produced by PROC VARIOGRAM. When another
procedure processes an item store, the label appears in the procedure’s output along with other
identifying information.

VAR Statement
VAR analysis-variables-list ;

Use the VAR statement to specify the analysis variables. You can specify only numeric variables. If you
omit the VAR statement, all numeric variables in the DATA= data set that are not in the COORDINATES
statement are used.

Details: VARIOGRAM Procedure

Theoretical Semivariogram Models
The VARIOGRAM procedure computes the empirical (also known as sample or experimental) semivariogram
from a set of point measurements. Semivariograms are used in the first steps of spatial prediction as tools that
provide insight into the spatial continuity and structure of a random process. Naturally occurring randomness
is accounted for by describing a process in terms of the spatial random field (SRF) concept (Christakos
1992). An SRF is a collection of random variables throughout your spatial domain of prediction. For some of
them you already have measurements, and your data set constitutes part of a single realization of this SRF.
Based on your sample, spatial prediction aims to provide you with values of the SRF at locations where no
measurements are available.

Prediction of the SRF values at unsampled locations by techniques such as ordinary kriging requires the use
of a theoretical semivariogram or covariance model. Due to the randomness involved in stochastic processes,
the theoretical semivariance cannot be computed. Instead, it is possible that the empirical semivariance can
provide an estimate of the theoretical semivariance, which then characterizes the spatial structure of the
process.

The VARIOGRAM procedure follows a general flow of investigation that leads you from a set of spatial
observations to an expression of theoretical semivariance to characterize the SRF continuity. Specifically,
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the empirical semivariogram is computed after a suitable choice is made for the LAGDISTANCE= and
MAXLAGS= options. For computations in more than one direction you can further use the NDIRECTIONS=
option or the DIRECTIONS statement. Potential theoretical models (which can also incorporate nesting,
anisotropy, and the nugget effect) can be fitted to the empirical semivariance by using the MODEL statement,
and then plotted against the empirical semivariogram. The flow of this analytical process is illustrated in
Figure 109.17. After a suitable theoretical model is determined, it is used in PROC KRIGE2D for the
prediction stage. The prediction analysis is presented in detail in the section “Details of Ordinary Kriging”
on page 4169 in Chapter 55, “The KRIGE2D Procedure.”

Figure 109.17 Flowchart for Semivariogram Selection

It is critical to note that the empirical semivariance provides an estimate of its theoretical counterpart only
when the SRF satisfies stationarity conditions. These conditions imply that the SRF has a constant (or zero)
expected value. Consequently, your data need to be sampled from a trend-free random field and need to have
a constant mean, as assumed in “Getting Started: VARIOGRAM Procedure” on page 8913. Equivalently,
your data could be residuals of an initial sample that has had a surface trend removed, as portrayed in
“Example 109.2: An Anisotropic Case Study with Surface Trend in the Data” on page 9007. For a closer
look at stationarity, see the section “Stationarity” on page 8965. For details about different stationarity types
and conditions see, for example, Chilès and Delfiner (1999, section 1.1.4).

Characteristics of Semivariogram Models

When you obtain a valid empirical estimate of the theoretical semivariance, it is then necessary to choose a
type of theoretical semivariogram model based on that estimate. Commonly used theoretical semivariogram
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shapes rise monotonically as a function of distance. The shape is typically characterized in terms of particular
parameters; these are the range a0, the sill (or scale) c0, and the nugget effect cn. Figure 109.18 displays a
theoretical semivariogram of a spherical semivariance model and points out the semivariogram characteristics.

Figure 109.18 A Theoretical Semivariogram of Spherical Type and Its Characteristics

Specifically, the sill is the semivariogram upper bound. The range a0 denotes the distance at which the
semivariogram reaches the sill. When the semivariogram increases asymptotically toward its sill value, as
occurs in the exponential and Gaussian semivariogram models, the term effective (or practical) range is also
used. The effective range r� is defined as the distance at which the semivariance value achieves 95% of
the sill. In particular, for these models the relationship between the range and effective range is r� D 3a0
(exponential model) and r� D

p
3a0 (Gaussian model).

The nugget effect cn represents a discontinuity of the semivariogram that can be present at the origin. It is
typically attributed to microscale effects or measurement errors. The semivariance is always 0 at distance
h D 0; hence, the nugget effect demonstrates itself as a jump in the semivariance as soon as h > 0 (note in
Figure 109.18 the discontinuity of the function at h D 0 in the presence of a nugget effect).

The sill c0 consists of the nugget effect, if present, and the partial sill �02; that is, c0 D cnC �02. If the SRF
Z.s/ is second-order stationary (see the section “Stationarity” on page 8965), the estimate of the sill is an
estimate of the constant variance VarŒZ.s/� of the field. Nonstationary processes have variances that depend
on the location s. Their semivariance increases with distance; hence their semivariograms have no sill.

Not every function is a suitable candidate for a theoretical semivariogram model. The semivariance function
z.h/, as defined in the following section, is a so-called conditionally negative-definite function that satisfies
(Cressie 1993, p. 60)

mX
iD1

mX
jDi

qiqj z.si � sj / � 0
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for any number m of locations si , sj in R2 with h D si�sj , and any real numbers qi such that
Pm
iD1 qi D 0.

PROC VARIOGRAM can use a variety of permissible theoretical semivariogram models. Specifically,
Table 109.4 shows a list of such models that you can use for fitting in the MODEL statement of the
VARIOGRAM procedure.

Table 109.4 Permissible Theoretical Semivariogram Models
(a0 > 0, unless noted otherwise)

Model Type Semivariance

Exponential z.h/ D

(
0 if j h jD 0

cn C �0
2
h
1 � exp

�
�
jhj
a0

�i
if 0 <j h j

Gaussian z.h/ D

8<: 0 if j h jD 0

cn C �0
2

�
1 � exp

�
�
jhj2

a20

��
if 0 <j h j

Power z.h/ D

�
0 if j h jD 0
cn C �0

2ha0 if 0 <j h j, 0 � a0 < 2

Spherical z.h/ D

8̂<̂
:
0 if j h jD 0

cn C �0
2
h
3
2
jhj
a0
�
1
2
. jhj
a0
/3
i

if 0 <j h j� a0
c0 if a0 <j h j

Cubic z.h/ D

8̂<̂
:
0 if j h jD 0

cn C �0
2
h
7. jhj
a0
/2 � 35

4
. jhj
a0
/3 C 7

2
. jhj
a0
/5 � 3

4
. jhj
a0
/7
i

if 0 <j h j� a0
c0 if a0 <j h j

Pentaspherical z.h/ D

8̂<̂
:
0 if j h jD 0

cn C �0
2
h
15
8
jhj
a0
�
5
4
. jhj
a0
/3 C 3

8
. jhj
a0
/5
i

if 0 <j h j� a0
c0 if a0 <j h j

Sine hole effect z.h/ D

(
0 if j h jD 0

cn C �0
2
h
1 � sin.�jhj=a0/

�jhj=a0

i
if 0 <j h j

Matérn class z.h/ D

(
0 if j h jD 0

cn C �0
2
h
1 � 2

�.�/

�
jhj
p
�

a0

��
K�

�
2
jhj
p
�

a0

�i
if 0 <j h j, � > 0

All of these models, except for the power model, are transitive. A transitive model characterizes a random
process whose variation reaches the sill value c0 within a specific range from any location in the field.

The power model is nontransitive and applies to processes whose variance increases with distance. It has
no scale and range; instead, it quantifies the process variation by using a positive slope parameter and a
dimensionless power exponent ˛ that indicate how fast the variance increases. The expression for the power
model is a valid semivariogram only when the exponent parameter ranges within 0 � ˛ < 2. For convenience,
PROC VARIOGRAM registers the power model slope parameter under the SCALE= option parameters in
the MODEL statement. For the same reason, the scale and power slope parameters are represented with the
common symbol �02 in Table 109.4. Also for convenience, PROC VARIOGRAM registers the power model
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exponent parameter under the RANGE= option parameters. The range and the power exponent parameters
are represented with the common symbol a0 in Table 109.4.

The power model is a generalized case of the linear model, which is not included explicitly in the model set
of PROC VARIOGRAM. The linear model is derived from the power model when you specify the exponent
˛ D 1.

Among the models displayed in Table 109.4, the Matérn (or K-Bessel) class is a class of semivariance models
that distinguish from each other by means of the positive smoothing parameter �. Different values of �
correspond to different correlation models. Most notably, for � D 0:5 the Matérn semivariance is equivalent
to the exponential model, whereas � ! 1 gives the Gaussian model. Also, Table 109.4 shows that the
Matérn semivariance computations use the gamma function �.�/ and the second kind Bessel function K� .

In PROC VARIOGRAM, you can input the model parameter values either explicitly as arguments of options,
or as lists of values. In the latter case, you are expected to provide the values in the order the models are
specified in the SAS statements, and furthermore in the sequential order of the scale, range, and smoothing
parameter for each model as appropriate, and always starting with the nugget effect. If the parameter values
are specified through an input file, then the total of n parameters should be provided either as one variable
named Estimate or as many variables with the respective names Parm1–Parmn.

You can review in further detail the models shown in Table 109.4 in the section “Theoretical Semivariogram
Models” on page 4153 in Chapter 55, “The KRIGE2D Procedure.”

The theoretical semivariogram models are used to describe the spatial structure of random processes. Based
on their shape and characteristics, the semivariograms of these models can provide a plethora of information
(Christakos 1992, section 7.3):

• Examination of the semivariogram variation in different directions provides information about the
isotropy of the random process. (See also the discussion about isotropy in the following section.)

• The semivariogram range determines the zone of influence that extends from any given location. Values
at surrounding locations within this zone are correlated with the value at the specific location by means
of the particular semivariogram.

• The semivariogram behavior at large distances indicates the degree of stationarity of the process. In
particular, an asymptotic behavior suggests a stationary process, whereas either a linear increase and
slow convergence to the sill or a fast increase is an indicator of nonstationarity.

• The semivariogram behavior close to the origin indicates the degree of regularity of the process
variation. Specifically, a parabolic behavior at the origin implies a very regular spatial variation,
whereas a linear behavior characterizes a nonsmooth process. The presence of a nugget effect is
additional evidence of irregularity in the process.

• The semivariogram behavior within the range provides description of potential periodicities or anoma-
lies in the spatial process.

A brief note on terminology: In some fields (for example, geostatistics) the term homogeneity is sometimes
used instead of stationarity in spatial analysis; however, in statistics homogeneity is defined differently
(Banerjee, Carlin, and Gelfand 2004, section 2.1.3). In particular, the alternative terminology characterizes
as homogeneous the stationary SRF in Rn; n > 1, whereas it retains the term stationary for such SRF
in R1 (SRF in R1 are also known as random processes). Often, studies in a single dimension refer to
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temporal processes; hence, you might see time-stationary random processes called “temporally stationary” or
simply stationary, and stationary SRF in Rn; n > 1, characterized as “spatially homogeneous” or simply
homogeneous. This distinction made by the alternative nomenclature is more evident in spatiotemporal
random fields (S/TRF), where the different terms clarify whether stationarity applies in the spatial or the
temporal part of the S/TRF.

Nested Models

When you try to represent an empirical semivariogram by fitting a theoretical model, you might find that
using a combination of theoretical models results in a more accurate fit onto the empirical semivariance than
using a single model. This is known as model nesting. The semivariance models that result as the sum of two
or more semivariance structures are called nested models.

In general, a linear combination of permissible semivariance models produces a new permissible semivariance
model. Nested models are based on this premise. You can include in a sum any combination of the models
presented in Table 109.4. For example, a nested semivariance z.h/ that contains two structures, one
exponential z;EXP.h/ and one spherical z;SPH.h/, can be expressed as

z.h/ D z;EXP.h/C z;SPH.h/

If you have a nested model and a nugget effect, then the nugget effect cn is a single parameter that is
considered jointly for all the nested structures.

Nested models, anisotropic models, and the nugget effect increase the scope of theoretical models available.
You can find additional discussion about these concepts in the section “Theoretical Semivariogram Models”
on page 4153 in Chapter 55, “The KRIGE2D Procedure.”

Theoretical and Computational Details of the Semivariogram
Let fZ.s/; s 2 D � R2g be a spatial random field (SRF) with n measured values zi D Z.si / at respective
locations si , i D 1; : : : ; n. You use the VARIOGRAM procedure because you want to gain insight into the
spatial continuity and structure of Z.s/. A good measure of the spatial continuity of Z.s/ is defined by
means of the variance of the difference Z.si / �Z.sj /, where si and sj are locations in D. Specifically, if
you consider si and sj to be spatial increments such that h D sj � si , then the variance function based on
the increments h is independent of the actual locations si , sj . Most commonly, the continuity measure used
in practice is one half of this variance, better known as the semivariance function,

z.h/ D
1

2
VarŒZ.sC h/ �Z.s/�

or, equivalently,

z.h/ D
1

2

�
EfŒZ.sC h/ �Z.s/�2g � fEŒZ.sC h/� � EŒZ.s/�g2

�
The plot of semivariance as a function of h is the semivariogram. You might also commonly see the term
semivariogram used instead of the term semivariance.
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Assume that the SRF Z.s/ is free of nonrandom (or systematic) surface trends. Then, the expected value
EŒZ.s/� of Z.s/ is a constant for all s 2 R2, and the semivariance expression is simplified to the following:

z.h/ D
1

2
EfŒZ.sC h/ �Z.s/�2g

Given the preceding assumption, you can compute an estimate Oz.h/ of the semivariance z.h/ from a finite
set of points in a practical way by using the formula

Oz.h/ D
1

2 j N.h/ j

X
N.h/

ŒZ.si / �Z.sj /�
2

where the sets N.h/ contain all the neighboring pairs at distance h,

N.h/ D fi; j W si � sj D hg

and j N.h/ j is the number of such pairs .i; j /.

The expression for Oz.h/ is called the empirical semivariance (Matheron 1963). This is the quantity that
PROC VARIOGRAM computes, and its corresponding plot is the empirical semivariogram.

The empirical semivariance Oz.h/ is also referred to as classical. This name is used so that it can be
distinguished from the robust semivariance estimate Nz.h/ and the corresponding robust semivariogram.
The robust semivariance was introduced by Cressie and Hawkins (1980) to weaken the effect that outliers in
the observations might have on the semivariance. It is described by Cressie (1993, p. 75) as

Nz.h/ D
‰4.h/

2Œ0:457C 0:494=N.h/�

In the preceding expression the parameter ‰.h/ is defined as

‰.h/ D
1

N.h/

X
PiPj2N.h/

ŒZ.si / �Z.sj /�
1
2

According to Cressie (1985), the estimate Oz.h/ has approximate variance

VarŒ Oz.h/� '
2Œz.h/�

2

N.h/

This approximation is possible by assuming Z.s/ to be a Gaussian SRF, and by further assuming the squared
differences in empirical semivariances to be uncorrelated for different distances h. Typically, semivariance
estimates are correlated because of the underlying spatial correlation among the observations, and also
because the same observation pairs might be used for the estimation of more than one semivariogram point,
as described in the following subsections. Despite these restrictive assumptions, the approximate variance
provides an idea about the semivariance estimate variance and enables fitting of a theoretical model to the
empirical semivariance; see the section “Theoretical Semivariogram Model Fitting” on page 8977 for more
details about the fitting process.

NOTE: If your data include a surface trend, then the empirical semivariance Oz.h/ is not an estimate of the
theoretical semivariance function z.h/. Instead, rather than the spatial increments variance, it represents a
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different quantity known as pseudo-semivariance, and its corresponding plot is a pseudo-semivariogram. In
principle, pseudo-semivariograms do not provide measures of the spatial continuity. They can thus lead to
misinterpretations of the Z.s/ spatial structure, and are consequently unsuitable for the purpose of spatial
prediction. For further information, see the detailed discussion in the section “Empirical Semivariograms and
Surface Trends” on page 8976. Under certain conditions you might be able to gain some insight about the
spatial continuity with a pseudo-semivariogram. This case is presented in “Example 109.3: Analysis without
Surface Trend Removal” on page 9021.

Stationarity

In the combined presence of the previous two assumptions—that is, when EŒZ.s/� is constant and spatial
increments define z.h/—the SRF Z.s/ is characterized as intrinsically stationary (Cressie 1993, p. 40).

The expected value EŒZ.s/� is the first statistical moment of the SRF Z.s/. The second statistical moment of
the SRF Z.s/ is the covariance function between two points si and sj in Z.s/, and it is defined as

Cz.si ; sj / D E
�
ŒZ.si / � EŒZ.si /��

�
Z.sj / � EŒZ.sj /�

��
When si D sj D s, the covariance expression provides the variance at s.

The assumption of a constant EŒZ.s/� D m means that the expected value is invariant with respect to
translations of the spatial location s. The covariance is considered invariant to such translations when it
depends only on the distance h D si � sj between any two points si and sj . If both of these conditions are
true, then the preceding expression becomes

Cz.si ; sj / D Cz.si � sj / D Cz.h/ D E .ŒZ.s/ �m�ŒZ.sC h/ �m�/

When both EŒZ.s/� and C.si ; sj / are invariant to spatial translations, the SRF Z.s/ is characterized as
second-order stationary (Cressie 1993, p. 53).

In a second-order stationary SRF the quantity C.h/ is the same for any two points that are separated by
distance h. Based on the preceding formula, for h D 0 you can see that the variance is constant throughout a
second-order stationary SRF. Hence, second-order stationarity is a stricter condition than intrinsic stationarity.

Under the assumption of second-order stationarity, the semivariance definition at the beginning of this section
leads to the conclusion that

z.h/ D C.0/ � C.h/

which relates the theoretical semivariance and covariance. Keep in mind that the empirical estimates of
these quantities are not related in exactly the same way, as indicated in Schabenberger and Gotway (2005,
section 4.2.1).

Ergodicity

In addition to the constant EŒZ.s/� and the assumption of intrinsic stationarity, ergodicity is a necessary third
hypothesis to estimate the empirical semivariance. Assume that for the SRF Z.s/ you have measurements zi
whose sample mean is estimated by NZ. The hypothesis of ergodicity dictates that NZ D EŒZ.s/�.

In general, an SRF Z.s/ is characterized as ergodic if the statistical moments of its realizations coincide
with the corresponding ones of the SRF. In spatial analysis you are often interested in the first two statistical
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moments, and consequently a more relaxed ergodicity assumption is made only for them. See Christakos
(1992, section 2.12) for the use of the ergodicity hypothesis in SRF, and Cressie (1993, p. 57) for a more
detailed discussion of ergodicity.

The semivariogram analysis makes implicit use of the ergodicity hypothesis. The VARIOGRAM procedure
works with the residual centered values V.si / D vi D zi � NZ, i D 1; : : : ; n, where it is assumed that the
sample mean NZ is the constant expected value EŒZ.s/� of Z.s/. This is equivalent to using the original
values, since V.si / � V.sj / D Z.si / � Z.sj /, which shows the property of the semivariance to filter out
the mean. See the section “Semivariance Computation” on page 8975 for the exact expressions PROC
VARIOGRAM uses to compute the empirical classical Oz.h/ and robust Nz.h/ semivariances.

Anisotropy

Semivariance is defined on the basis of the spatial increment vector h. If the variance characteristics of Z.s/
are independent of the spatial direction, then Z.s/ is called isotropic; if not, then Z.s/ is called anisotropic.
In the case of isotropy, the semivariogram depends only on the length h of h and z.h/ D z.h/. Anisotropy
is characterized as geometric, when the range a0 of the semivariogram varies in different directions, and
zonal, when the semivariogram sill c0 depends on the spatial direction. Either type or both types of anisotropy
can be present.

In the more general case, an SRF can be anisotropic. For an accurate characterization of the spatial structure
it is necessary to perform individual analyses in multiple directions. Goovaerts (1997, p. 98) suggests an
initial investigation in at least one direction more than the working spatial dimensions—for example, at least
three different directions in R2. Olea (2006) supports exploring as many directions as possible when the data
set allows.

You might not know in advance whether you have anisotropy or not. If the semivariogram characteristics
remain unchanged in different directions, then you assume the SRF is isotropic. If your directional analysis
reveals anisotropic behavior in particular directions, then you proceed to focus your analysis on these
directions. For example, in an anisotropic SRF in R2 you should expect to find two distinct directions where
you observe the major axis and the minor axis of anisotropy. Typically, these two directions are perpendicular,
although they might be at other than right angles when zonal anisotropy is present.

If you can distinguish a maximum and a minimum sill in different directions, then you have a case of zonal
anisotropy. The SRF exhibits strongest continuity in the direction of the lowest sill, which is the direction
of the major anisotropy axis. If the sill does not change across directions, then the major axis direction of
strongest continuity is the one in which the semivariogram has maximum range. See “Example 109.2: An
Anisotropic Case Study with Surface Trend in the Data” on page 9007 for a detailed demonstration of a case
with anisotropy when you use PROC VARIOGRAM.

You can find additional information about anisotropy analysis in the section “Anisotropic Models” on
page 4162 in Chapter 55, “The KRIGE2D Procedure.”

Pair Formation

The basic starting point in computing the empirical semivariance is the enumeration of pairs of points for the
spatial data. Figure 109.19 shows the spatial domain D and the set of n measurements zi , i D 1; : : : ; n, that
have been sampled at the indicated locations in D. Two data points P1 and P2, with coordinates s1 D .x1; y1/
and s2 D .x2; y2/, respectively, are selected for illustration.
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A vector, or directed line segment, is drawn between these points. If the length

j PiPj jDj s2 � s1 jD .x2 � x1/
2
C .y2 � y1/

2

of this vector is smaller than the specified DEPSILON= value, then the pair is excluded from the continuity
measure calculations because the two points P1 and P2 are considered to be at zero distance apart (or
collocated). Spatial collocation might appear due to different scales in sampling, observations made at the
same spatial location at different time instances, and errors in the data sets. PROC VARIOGRAM excludes
such pairs from the pairwise distance and semivariance computations because they can cause numeric
problems in spatial analysis.

If this pair is not discarded on the basis of collocation, it is then classified—first by orientation of the directed
line segment s2 � s1, and then by its length j PiPj j. For example, it is unlikely for actual data that the
distance j PiPj j between any pair of data points Pi and Pj located at si and sj , respectively, would exactly
satisfy j PiPj j D j h j D h in the preceding computation of Oz.h/. A similar argument can be made for the
orientation of the segment s2 � s1. Consequently, the pair P1P2 is placed into an angle and distance class.

The following subsections give more details about the nature of these classifications. You can also find
extensive discussions about the size and the number of classes to consider for the computation of the empirical
semivariogram.

Figure 109.19 Selection of Points P1 and P2 in Spatial Domain D
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Angle Classification

Suppose you specify NDIRECTIONS=3 in the COMPUTE statement in PROC VARIOGRAM. This results
in three angle classes defined by midpoint angles between 0ı and 180ı: 0ı ˙ ı� , 60ı ˙ ı� , and 120ı ˙ ı� ,
where ı� is the angle tolerance. If you do not specify an angle tolerance by using the ANGLETOLERANCE=
option in the COMPUTE statement, the following default value is used:

ı� D
180ı

2 �NDIR

For example, if NDIRECTIONS=3, the default angle tolerance is ı� D 30ı. When the directed line segment
P1P2 in Figure 109.19 is superimposed on the coordinate system that shows the angle classes, its angle is
approximately 45ı, measured clockwise from north. In particular, it falls within Œ60ı � ı�; 60ı C ı�/ D
Œ30ı; 90ı/, the second angle class (Figure 109.20).

NOTE: If the designated points P1 and P2 are labeled in the opposite order, the orientation is in the opposite
direction—that is, approximately 225ı instead of approximately 45ı. This does not affect angle class
selection; the angle classes Œ60ı � ı�; 60ı C ı�/ and Œ240ı � ı�; 240ı C ı�/ are the same.

Figure 109.20 Selected Pair P1P2 Falls within the Second Angle Class

If you specify an angle tolerance less than the default, such as ATOL=15ı, some point pairs might be excluded.
For example, the selected point pair P1P2 in Figure 109.20, while closest to the 60ı axis, might lie outside
Œ60� ı�; 60C ı�/ D Œ45ı; 75ı/. In this case, the point pair P1P2 would be excluded from the semivariance
computation. This setting can be desirable if you want to reduce interference between neighboring angles. An
angle tolerance that is too small might result in too few point pairs in some distance classes for the empirical
semivariance estimation (see also the discussion in the section “Choosing the Size of Classes” on page 8973).
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On the other hand, you can specify an angle tolerance greater than the default. This can result in a point pair
being counted in more than one angle classes. This has a smoothing effect on the variogram and is useful
when only a small amount of data is present or the available data are sparsely located. However, in cases of
anisotropy the smoothing effect might have the side effect of amplifying weaker anisotropy in some direction
and weakening stronger anisotropy in another (Deutsch and Journel 1992, p. 59).

Changes in the values of the BANDWIDTH= option have a similar effect. See the section “Bandwidth
Restriction” on page 8970 for an explanation of how BANDWIDTH= functions.

An alternative way to specify angle classes and angle tolerances is with the DIRECTIONS statement.
The DIRECTIONS statement is useful when angle classes are not equally spaced. When you use the
DIRECTIONS statement, consider specifying the angle tolerance too. The default value of the angle
tolerance is 45ı when a DIRECTIONS statement is used instead of the NDIRECTIONS= option in the
COMPUTE statement. This might not be appropriate for a particular set of angle classes. See the section
“DIRECTIONS Statement” on page 8941 for more details.

Distance Classification

The distance class for a point pair P1P2 is determined as follows. The directed line segment P1P2 is
superimposed on the coordinate system that shows the distance or lag classes. These classes are determined
by the LAGDISTANCE= option in the COMPUTE statement. Denoting the length of the line segment by
j P1P2 j and the LAGDISTANCE= value by �, the lag class L is determined by

L.P1P2/ D

�
j P1P2 j

�
C 0:5

�

where bxc denotes the largest integer � x.

When the directed line segment P1P2 is superimposed on the coordinate system that shows the distance
classes, it is seen to fall in the first lag class; see Figure 109.21 for an illustration for � D 1.

Figure 109.21 Selected Pair P1P2 Falls within the First Lag Class
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Pairwise distances are positive. Therefore, the line segment j P1P2 j might belong to one of the MAXLAG
lag classes or it could be shorter than half the length of the LAGDISTANCE= value. In the last case the
segment is said to belong to the lag class zero. Hence, lag class zero is smaller than lag classes 1; � � � ;
MAXLAGS. The definition of lag classes in this manner means that when you specify the MAXLAGS=
parameter, PROC VARIOGRAM produces a semivariogram with a total of MAXLAGS+1 lag classes
including the zero lag class. For example, if you specify LAGDISTANCE=1 and MAXLAGS=10 and you do
not specify a LAGTOLERANCE= value in the COMPUTE statement in PROC VARIOGRAM, the 11 lag
classes generated by the preceding equation are

Œ0; 0:5/; Œ0:5; 1:5/; Œ1:5; 2:5/; � � � ; Œ9:5; 10:5/

The preceding lag classes description is correct under the assumption of the default lag tolerance, which is
half the LAGDISTANCE= value. Using the default lag tolerance results in no gaps between the distance
class intervals, as shown in Figure 109.22.

Figure 109.22 Lag Distance Axis Showing Lag Classes

On the other hand, if you do specify a distance tolerance with the LAGTOLERANCE= option in the
COMPUTE statement, a further check is performed to see whether the point pair falls within this tolerance of
the nearest lag. In the preceding example, if you specify LAGDISTANCE=1 and MAXLAGS=10 (as before)
and also specify LAGTOLERANCE=0.25, the intervals become

Œ0; 0:25/; Œ0:75; 1:25/; Œ1:75; 2:25/; � � � ; Œ9:75; 10:25/

You might want to avoid this specification because it results in gaps in the lag classes. For example, if a point
pair P1P2 falls in an interval such as

j P1P2 j2 Œ1:25; 1:75/

then it is excluded from the semivariance calculation. The maximum LAGTOLERANCE= value allowed is
half the LAGDISTANCE= value; no overlap of the distance classes is allowed.

See the section “Computation of the Distribution Distance Classes” on page 8971 for a more extensive
discussion of practical aspects in the specification of the LAGDISTANCE= and MAXLAGS= options.

Bandwidth Restriction

Because the areal segments that are generated from the angle and distance classes increase in area as the lag
distance increases, it is sometimes desirable to restrict this area (Deutsch and Journel 1992, p. 45). If you
specify the BANDWIDTH= option in the COMPUTE statement, the lateral, or perpendicular, distance from
the axis that defines the angle classes is fixed.

For example, suppose two points P3, P4 are picked from the domain in Figure 109.19 and are superimposed
on the grid that defines distance and angle classes, as shown in Figure 109.23.
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The endpoint of vector P3P4 falls within the angle class around 60ı and the fifth lag class; however, it falls
outside the restricted area that is defined by the bandwidth. Hence, it is excluded from the semivariance
calculation.

Figure 109.23 Selected Pair P3P4 Falls outside Bandwidth Limit

Finally, a pair PiPj that falls in a lag class larger than the value of the MAXLAGS= option is excluded from
the semivariance calculation.

The BANDWIDTH= option complements the angle and lag tolerances in determining how point pairs are
included in distance classes. Clearly, the number of pairs within each angle/distance class is strongly affected
by the angle and lag tolerances and whether BANDWIDTH= has been specified. See also the section “Angle
Classification” on page 8968 for more details about the effects these rules can have, since BANDWIDTH=
operates in a manner similar to the ANGLETOLERANCE= option.

Computation of the Distribution Distance Classes

This section deals with theoretical considerations and practical aspects when you specify the
LAGDISTANCE= and MAXLAGS= options. In principle, these values depend on the amount and
spatial distribution of your experimental data.

The value of the LAGDISTANCE= option regulates how many pairs of data are contained within each
distance class. In effect, this information defines the pairwise distance distribution (see the following
subsection). Your choice of MAXLAGS= specifies how many of these lags you want to include in the
empirical semivariogram computation. Adjusting the values of these parameters is a crucial part of your
analysis. Based on your observations sample, they determine whether you have sufficient points for a
descriptive empirical semivariogram, and they can affect the accuracy of the estimated semivariance, too.

The simplest way of determining the distribution of pairwise distances is to determine the maximum distance
hmax between any pair of points in your data, and then to divide this distance by some number N of intervals
to produce distance classes of length ı D hmax=N . The distance j P1P2 j between each pair of points
P1; P2 is computed, and the pair P1P2 is counted in the kth distance class if j P1P2 j2 Œ.k � 1/ı; kı/ for
k D 1; � � � ; N .
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The actual computation is a slight variation of this. A bound, rather than the actual maximum distance, is
computed. This bound is the length of the diagonal of a bounding rectangle for the data points. This bounding
rectangle is found by using the maximum and minimum x and y coordinates, xmax ; xmin ; ymax ; ymin , and
forming the rectangle determined by the following points:

.xmin ; ymax / .xmax ; ymax /

.xmin ; ymin/ .xmax ; ymin/

See Figure 109.24 for an illustration of the bounding rectangle applied to the data of the domain D in
Figure 109.19. PROC VARIOGRAM provides you with the sizes of xmax � xmin , ymax � ymin , and hb . For
example, in Figure 109.4 in the preliminary analysis, the specified parameters named “Max Data Distance
in East,” “Max Data Distance in North,” and “Max Data Distance” correspond to the lengths xmax � xmin ,
ymax � ymin , and hb , respectively.

Figure 109.24 Bounding Rectangle to Determine Maximum Pairwise Distance in Domain D

The pairwise distance bound, denoted by hb , is given by

hb D

q
.xmax � xmin/2 C .ymax � ymin/2

Using hb , the interval .0; hb� is divided into N C 1 subintervals, where N is the value of the NHCLASSES=
option specified in the COMPUTE statement, or N = 10 (default) if the NHCLASSES= option is not specified.
The basic distance unit is h0 D hb

N
; the distance intervals are centered on h0; 2h0; � � � ; Nh0, with a distance

tolerance of ˙h0
2

. The extra subinterval is .0; h0=2/ and corresponds to lag class zero. It is half the length
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of the remaining subintervals, and it often contains the smallest number of pairs. Figure 109.22 shows an
example where the lag classes correspond to h0 D1. This method of partitioning the interval .0; hb� is used
in the empirical semivariogram computation.

Choosing the Size of Classes
When you start with a data sample, the VARIOGRAM procedure computes all the distinct point pairs in the
sample. The OUTPAIR= output data set, described in the section “OUTPAIR=SAS-data-set” on page 8992,
contains information about these pairs. The point pairs are then categorized in classes. The size of each
class depends on the common distance that separates consecutive classes. In PROC VARIOGRAM you need
to provide this distance value with the LAGDISTANCE= option. Practically, you can define the distance
between classes to be about the size of the average sampling distance (Olea 2006).

Under a more scrutinized approach, before you specify a value for the LAGDISTANCE= option, it is helpful
to be aware of two issues. First, estimate how many classes of data pairs you might need. Each class
contributes one point to the empirical semivariogram. Therefore, you need enough classes for an adequate
number of points, so that your empirical semivariogram can suggest a suitable theoretical model shape for
the description of the spatial continuity. Second, keep in mind that a larger number of data pairs in a class
can contribute to a more accurate estimate of the corresponding semivariogram point.

The first consideration is a more general issue, and both this and the following subsection address it in detail.
Based on the second consideration, the class size problem translates into having a sufficient number of data
pairs in each class to produce an accurate semivariance estimate. However, only empirical rules of thumb
exist to guide you with this choice. Examples of minimum-pairs empirical rules include the suggestion by
Journel and Huijbregts (1978, p. 194) to use at least 30 point pairs for each lag class. Also, in a different
approach, Chilès and Delfiner (1999, p. 38) increase this number to 50 point pairs.

Obviously, smaller data samples provide fewer data pairs in the sample. According to Olea (2006), it is
difficult to properly estimate a semivariogram with fewer than 50 measurements. The preceding minimum-
pairs practical rules are useful in cases where small samples are involved. When you work with a relatively
small sample, the key is to specify the value of LAGDISTANCE= such that you can strike a balance between
the number of the classes you can form and their pairs count. In the coal seam thickness example of the
section “Preliminary Spatial Data Analysis” on page 8914, it is not possible to create a desirable large number
of classes and maintain an adequate size for each one. On the other hand, there is no practical need to invoke
these rules in the case of the much larger sample of ozone concentrations in “Example 109.2: An Anisotropic
Case Study with Surface Trend in the Data” on page 9007.

The spatial distribution of the sample might also affect the grouping of pairs into classes. For example, data
that are sampled in clusters might prove difficult to classify according to the preceding practical rules. One
strategy to address this problem is to accept fewer than 30 pairs for the underpopulated distance classes.
Then, at the stage when you determine what theoretical semivariogram model to use, either disregard the
corresponding empirical semivariogram points or use them and accept the increased uncertainty.

The VARIOGRAM procedure can help you decide on a suitable class size before you proceed with the
empirical semivariogram computation. First, provide a number for the class count by specifying the
NHCLASSES= value. Run the procedure with the option NOVARIOGRAM in the COMPUTE statement and
examine the distribution data pairs. Use different values of NHCLASSES= to investigate how this parameter
affects the data pairs distribution in each distance class. The pairwise distance intervals table (for example,
Figure 109.3) shows the number of pairs in each distance class in the “Number of Pairs” column, and you
can use the preceding rule of thumb to adjust the NHCLASSES= value accordingly.
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PROC VARIOGRAM displays a rounded value of the distance between the lag bounds as the “Lag Distance”
parameter in the pairs information table (see Figure 109.5) or the pairwise distances histogram (see Fig-
ure 109.4), which you can use for the LAGDISTANCE= specification. However, this is only one tool. For the
semivariogram computation you can specify your own LAGDISTANCE= value based on your experience.
Smaller LAGDISTANCE= values result in fewer data pairs in the classes. In that sense, you might find
smaller values useful when you work with large samples so that you obtain more semivariogram points. Also,
if the LAGDISTANCE= value is too large, you might end up “wasting” too many point pairs in fewer classes
at the expense of computing fewer semivariogram points and no significant accuracy gains in the estimation.

As explained earlier, depending on the sample size and its spatial distribution you might have classes with
fewer points than what the practical rules advise. Most commonly, the deficient distance classes are the
limiting ones close to the origin h D 0 and the most remote ones at large h. The classes near the origin
correspond to lags 0 and 1. These lags are crucial because the empirical semivariogram in small distances h
characterizes the process smoothness and can help you detect the presence of a nugget effect. However, as
discussed in the section “Distance Classification” on page 8969, lag zero is half the size of the rest of the
classes by definition, so it can be expected to violate the rule of thumb for the number of pairs in a class.

The classes located at higher and extreme distances within a spatial domain are often not accounted for in the
empirical semivariogram. The fewer pairs that can be formed in these distances do not allow for an accurate
assessment of the spatial correlation, as is explained in the following section.

Spatial Extent of the Empirical Semivariogram
Given your choice for the LAGDISTANCE= value in your spatial domain, the following paragraphs provide
guidelines on how many classes to consider when you compute the empirical semivariogram.

Obviously, you want to include no more classes beyond the limit where the pairs count falls below the
minimum-pairs empirical rule threshold, as discussed in the preceding subsection. PROC VARIOGRAM
provides you with a visual way to inspect this upper limit, if you decide to make use of the minimum-pairs
empirical rule. In particular, specify your threshold choice for the minimum pairs per class by using the
THRESHOLD= parameter for the PLOTS=PAIRS option.

Then, the procedure produces in the pairwise distances histogram a reference line at the specified THRESH-
OLD= value, which leaves below the line all lags whose pairs count is lower than the threshold value; see,
for example, Figure 109.4. The last lag class whose pair population is above the THRESHOLD= value is
reported in the pairs information table as “Highest Lag With Pairs > Threshold.” This value is not a recom-
mendation for the MAXLAGS= option, but rather is an upper limit for your choice. Detailed information
about the pairs count in each class is displayed in the corresponding pairwise distance intervals table, as
Figure 109.3 demonstrates.

The preceding suggests that you have an upper limit indication, but you still need some criterion to decide
how many lags to include in the semivariogram estimation. The criterion is the extent of spatial dependence
in your domain.

Spatial dependence can exist beyond your domain limits. However, you have no data past your domain scale
to define a range for larger-scale spatial dependencies. As you look for pairs of data that are gradually farther
apart, the number of pairs naturally decreases with distance. The pairs at the more distant classes might be so
few that they are likely to be independent with respect to the spatial dependence scale that you can detect. If
you include the largest distances in your empirical semivariogram plot, then these pairs only contribute added
noise. In the same sense, you cannot explore in detail spatial dependencies in scales smaller than an average
minimum distance between your data. The nugget effect represents then microscale correlations whose effect
is evident in your working scale.
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You specify the spatial dependence extent with commonly used measures such as the correlation range (or
correlation length) � and the correlation radius hc . Both are defined in a similar manner. The correlation
range � is the distance at which the covariance is 5% of its value at h D 0, and shows that beyond � the
covariance is considered to be negligible. The correlation radius hc is the distance at which the covariance
is about half the variance at h D 0, and indicates the distance over which significant correlations prevail
(Christakos 1992, p. 76). The physical meanings of these measures are similar to that of the semivariogram
range. Also, the effective range r� used in asymptotically increasing semivariance models has essentially
the same definition as the correlation range � (see the section “Theoretical Semivariogram Models” on
page 8958).

A rough estimate of the correlation extent measures might be available from previous studies of a similar site,
or from prior information about related measurements. In such an event, you typically want to consider a
maximum pairwise distance that does not exceed the length of two or three correlation radii, or one and a
half correlation ranges. You can then specify the MAXLAGS= value on the basis of the lags that fit in that
distance.

When you have no estimates of correlation extent measures, you can use first use a crude measure to get
started with your analysis: you can typically expect MAXLAGS= to be about half of the lag classes shown in
the pairwise distances histogram.

Then, if necessary, you can refine your MAXLAGS= choice by using the following maximum lags rule of
thumb: Journel and Huijbregts (1978, p. 194) advise considering lags up to about half of the extreme distance
between data in the direction of interest. The VARIOGRAM procedure assists you in this task by providing
the overall extreme data distance hb , in addition to the extreme data distances in the vertical and horizontal
axes directions. For example, hb is reported in the pairs information table as “Maximum Data Distance” (see
Figure 109.5), and in the pairwise distances histogram as “Max Data Distance” (see Figure 109.4).

Overall, avoid significant deviations from the maximum lags rule of thumb. As was stated earlier, a
MAXLAGS= value that takes you well beyond the half-extreme distance between data in a given direction
might give you limited accuracy in the empirical semivariance estimates at higher distances. At the other
end, a value of MAXLAGS= that is too small might lead you to omit important information about the spatial
structure that potentially lies within the range of distances you skipped.

Semivariance Computation

With the classification of a point pair PiPj into an angle/distance class, as shown earlier in this section, the
semivariance computation proceeds as follows.

Denote all pairs that PiPj belong to angle class Œ�k � ı�k; �k C ı�k/ and distance class L D L.PiPj / as
N.�k; L/. For example, based on Figure 109.20 and Figure 109.21, P1P2 belongs to N.60ı; 1/.

Let j N.�k; L/ j denote the number of such pairs. The component of the standard (or method of moments)
semivariance that correspond to angle/distance class N.�k; L/ is given by

O.hk/ D
1

2 j N.�k; L/ j

X
PiPj2N.�k ;L/

ŒV .si / � V.sj /�
2

where hk is the average distance in class N.�k; L/; that is,

hk D
1

j N.�k; L/ j

X
PiPj2N.�k ;L/

j PiPj j
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The robust version of the semivariance is given by

N.hk/ D
‰4.hk/

2Œ0:457C 0:494=N.�k; L/�

where

‰.hk/ D
1

N.�k; L/

X
PiPj2N.�k ;L/

ŒV .si / � V.sj /�
1
2

This robust version of the semivariance is computed when you specify the ROBUST option in the COMPUTE
statement in PROC VARIOGRAM.

PROC VARIOGRAM computes and writes to the OUTVAR= data set the quantities hk; �k; L;N.�k; L/; O.h/,
and N.h/.

Empirical Semivariograms and Surface Trends

It was stressed in the beginning of the section “Theoretical and Computational Details of the Semivariogram”
on page 8963 that if your data are not free of nonrandom surface trends, then the empirical semivariance
Oz.h/ you obtain from PROC VARIOGRAM represents a pseudo-semivariance rather than an estimate of the
theoretical semivariance z.h/.

In practice, two major difficulties appear. First, you might have no knowledge of underlying surface trends
in your SRF Z.s/. It can be possible to have this information when you deal with a repetitive phenomenon
(Chilès and Delfiner 1999, p. 123), or if you work within a subdomain of a broader region with known
characteristics; often, though, this is not the case. Second, even if you suspect the existence of an underlying
nonrandom trend, its precise nature might be unknown (Cressie 1993, p. 114, 162).

Based on the last remark, the criteria to define the exact form of a surface trend can be subjective. However,
statistical methods can identify the presence and remove an estimate of such a trend. Different trend forms
can be estimated in your SRF depending on the trend estimation model that you choose. This choice can
lead to different degrees of smoothing in the residual random fluctuations. It might also have an effect on
the residuals spatial structure characterization, because trend removals with different models are essentially
different operations acting upon the values of your original observations. Following the comment by Chilès
and Delfiner (1999, section 2.7.3), there are as many semivariograms of residuals as there are ways of
estimating the trend. The same source also examines the introduction of bias in the semivariance of the
residuals as a side effect of trend removal processes. This bias is small when you examine distances close to
the origin h D 0, and it can increase with distance.

Keeping in mind the preceding remarks, an approach you can take is to use one of the many predictive
modeling tools in SAS/STAT software to estimate the unknown trend. Then you use PROC VARIOGRAM to
analyze the residuals after you remove the trend. If the resulting model does not require too many degrees of
freedom (such as if you use a low-order polynomial), then this approach might be sufficient. The section
“Analysis with Surface Trend Removal” on page 9011 demonstrates how to use PROC GLM (see Chapter 45,
“The GLM Procedure”) for that purpose.

Apart from the standard semivariogram analysis, you can attempt to fit a theoretical semivariogram model to
your empirical semivariogram if (a) either the analysis itself or your knowledge of the SRF does not clearly
suggest the presence of any surface trend, or (b) the analysis can indicate a potentially trend-free direction,
along which your data have a constant mean.
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For example, you might observe overall similar values in your data. This can be an indication that your data
are free of nonrandom trends, or that a very mild trend is present. The case falls under the preceding option
(a). A very mild trend still allows a good determination of the semivariance at short distances according to
Chilès and Delfiner (1999, p. 125), and this can be sufficient for your spatial prediction goal. An analysis of
this type is assumed in the section “Preliminary Spatial Data Analysis” on page 8914.

If you observe similar values locally across a particular direction, this an instance of option (b). Olea (2006)
suggests recognizing a trend-free direction as being perpendicular to the axis of the maximum dip in the values
of Z.s/. If you suspect that at least one such direction exists for your data, then run PROC VARIOGRAM for
a series of directions in the angular vicinity. The trend-free direction, if it exists, coincides with the one whose
pseudo-semivariogram exhibits minimal increase with distance; see “Example 109.3: Analysis without
Surface Trend Removal” on page 9021 for a demonstration of this approach. However, you cannot test
Z.s/ for anisotropy in this case, because you can investigate the semivariogram only in the single trend-free
direction (Olea 1999, p. 76). Chilès and Delfiner (1999, section 2.7.4) suggest fitting a theoretical model in a
trend-free direction only if the hypothesis of an isotropic semivariogram appears reasonable in your analysis.

As a result, you need to be very cautious when you choose to perform semivariogram analysis on data you
have not previously examined for surface trends. In this event, both of the options (a) and (b) that were
reviewed in the preceding paragraphs rely mostly on empirical and subjective criteria. As noted in this
section, a degree of subjectivity exists in the selection of the surface trend itself. This fact suggests that a
significant part of the semivariogram analysis is based on metastatistical decisions and on your understanding
of your data and the physical considerations that govern your study. In any case, as shown in the section
“Theoretical and Computational Details of the Semivariogram” on page 8963, your semivariogram analysis
relies fundamentally on the use of trend-free data.

Theoretical Semivariogram Model Fitting
You can choose between two approaches to select a theoretical semivariogram model and fit the empirical
semivariance. The first one is manual fitting, in which a theoretical semivariogram model is selected based
on visual inspection of the empirical semivariogram. For example, see Hohn (1988, p. 25) and comments
from defendants of this approach in Olea (1999, p. 82). The second approach is to perform model fitting in
an automated manner. For this task you can use methods such as least squares, maximum likelihood, and
robust methods (Cressie 1993, section 2.6).

The VARIOGRAM procedure features automated semivariogram model fitting that uses the weighted least
squares (WLS) or the ordinary least squares (OLS) method. Use the MODEL statement to request that specific
model forms or an array of candidate models be tested for optimal fitting to the empirical semivariance.

Assume that you compute first the empirical semivariance �z .h/ at MAXLAGS=k distance classes, where
�z .h/ can be either the classical estimate Oz.h/ or the robust estimate Nz.h/, as shown in the section
“Theoretical and Computational Details of the Semivariogram” on page 8963. In fitting based on least squares,
you want to estimate the parameters vector � of the theoretical semivariance z.h/ that minimizes the sum
of square differences R.�/ given by the expression

R.�/ D

kX
iD1

wi
2
�
�z .hi / � z.hi I�/

�2
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For i D 1; : : : ; k, the weights are wi 2 D 1=VarŒ�z .hi /� in the case of WLS and wi 2 D 1 in the case of
OLS. Therefore, the parameters � are estimated in OLS by minimizing

R.�/OLS D

kX
iD1

�
�z .hi / � z.hi I�/

�2
For WLS, Cressie (1985) investigated approximations for the variance of both the classical and robust
empirical semivariances. Then, under the assumptions of normally distributed observations and uncorrelated
squared differences in the empirical semivariance, the approximate weighted least squares estimate of the
parameters � can be obtained by minimizing

R.�/WLS D
1

2

kX
iD1

N.hi /

�
�z .hi /

z.hi I�/
� 1

�2

where N.hi / is the number of pairs of points in the ith distance lag.

PROC VARIOGRAM relies on nonlinear optimization to minimize the least squares objective function R.�/.
The outcome is the model that best fits the empirical semivariogram according to your criteria. The fitting
process flow is displayed in Figure 109.25. Goovaerts (1997, section 4.2.4) suggests that fitting a theoretical
model should aim to capture the major spatial features. An accurate fit is desirable, but overfitting does not
offer advantages, because you might find yourself trying to model possibly spurious details of the empirical
semivariogram. At the same time, it is important to describe the correlation behavior accurately near the
semivariogram origin. As pointed out by Chilès and Delfiner (1999, pp. 104–105), a poor description of
spatial continuity at small lags can lead to loss of optimality in kriging predictions and erroneous reproduction
of the variability in conditional simulations.

The significance of achieving better accuracy near the semivariogram origin is an advantage of the WLS
method compared to OLS. In particular, the semivariance variance decreases when you get closer the origin
h D 0, as suggested in the section “Theoretical and Computational Details of the Semivariogram” on
page 8963. The WLS weights are expressed as the inverse of this variance; as a result, WLS fitting is more
accurate for distances h near the semivariogram origin. In contrast, the OLS approach performs a least
squares overall best fit because it assumes constant variance at all distances h. Another advantage of WLS
over OLS is that OLS falsely assumes that the differences in the optimization process are normally distributed
and independent. However, WLS has the disadvantage that the weights depend on the fitting parameters.

Depending on your application, you can use WLS or OLS with PROC VARIOGRAM to fit classical semi-
variance. Other fitting methods include maximum likelihood approaches that rely crucially on the normality
assumption for the data distribution, and the generalized least squares method that offers better accuracy
but is computationally more demanding. You can find extensive discussions about these issues in Cressie
(1993, section 2.3), Jian, Olea, and Yu (1996), Stein (1988), and Schabenberger and Gotway (2005).

The sections “Parameter Initialization” on page 8979 and “Quality of Fit” on page 8981 provide details and
insight about semivariogram fitting, in addition to ways to cope with poor fits or no fit at all. These strategies
can help you reach a meaningful description of spatial correlation in your problem.
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Figure 109.25 Semivariogram Fitting Process Flowchart

Parameter Initialization

An important stage when you prepare for the model fitting process is initialization of the model parameters.
As stated earlier, nonlinear optimization techniques are used in the fitting process. These techniques assist in
the estimation of the model parameters, and being nonlinear means they can be very sensitive to selection of
the initial values.

You can specify initial values close to the expected estimates when you have a relatively simple problem,
such as in the example of the section “Getting Started: VARIOGRAM Procedure” on page 8913. In the case
of nested models the selection of initial values can be more challenging because you have to assess the level
of contribution for each one of the nested components.
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The VARIOGRAM procedure features automatic selection of initial values based on the recommendations in
Jian, Olea, and Yu (1996). Specifically, if you compute the estimated empirical semivariogram Oz.h/ at k
lags, then:

• The default initial nugget effect cn;0 is

cn;0 D Max
�
0; Oz.h1/ �

h1

h2 � h1
Œ Oz.h2/ � Oz.h1/�

�
• The default initial slope �0;02 and initial exponent a0;0 for the power model are

�0;0
2
D
Œ Oz.hk�2/C Oz.hk�1/C Oz.hk/� =3 � cn;0

hk � h1

a0;0 D 1

• The default initial scale �0;02 and initial range a0;0 for all other models are

�0;0
2
D
Œ Oz.hk�2/C Oz.hk�1/C Oz.hk/�

3
� cn;0

a0;0 D 0:5hk

When you use the Matérn form, PROC VARIOGRAM sets the default initial value for the Matérn smoothness
to �0 D 1.

These rules are observed in the case of single, non-nested model fitting, and they are slightly modified
to apply for nested model fitting as follows: Assume that you want to fit a nested model composed of m
structures. As stated in the section “Nested Models” on page 8963, the nugget effect is a single parameter and
is independent of the number of nested structures in a model. Also, the sum of the nested structure scales and
the nugget effect, if any, must be equal to the total variance. For this reason, PROC VARIOGRAM simply
divides the initial scale value it would assign to a non-nested model into m components �0;0;12; : : : ; �0;0;m2.
For the range parameter, the VARIOGRAM procedure sets the initial range a0;0;1 of the first nested structure
equal to the value it would assign to a non-nested model initial range. Then, the initial range a0;0;m of the
m-component is set recursively to half the value of the initial range a0;0;m�1 of the .m � 1/-component.

Your empirical semivariogram must have nonmissing estimates at least at three lags so that you can use the
automated fitting feature in PROC VARIOGRAM. Overall, if you specify a model form with q parameters to
fit to an empirical semivariogram with nonmissing estimates at k lags, then the fitting problem is well-defined
only when the degrees of freedom are DF D k � q � 0.

A potential numerical issue is that fitting could momentarily lead the fitting parameters to near-zero semivari-
ance values at lags away from zero distance. The theoretical semivariance is always positive for any distance
larger than zero, and this is also a requirement for the numerical computation of R.�/WLS in weighted least
squares fitting. Such numerical issues are unlikely but possible, depending on the data set you use and the
parameter initial values. If an event of nonpositive semivariance at a given lag occurs during an iteration,
then PROC VARIOGRAM transparently adds a minimal amount of variance at that lag for the specific
iteration. You can control this amount of variance with the NEPSILON= option of the MODEL statement. It
is recommended that you leave this parameter at its default value.

The section concludes with a reminder of the fitting process sensitivity to the initial parameter values
selection. The VARIOGRAM procedure facilitates this selection for you by using the simple rules shown
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earlier. However, the suggested initial values might not always be the best choice. In simple cases, such
as the introductory example in the section “Getting Started: VARIOGRAM Procedure” on page 8913, this
approach is very convenient and effective.

In principle, you are strongly encouraged to experiment with initial values. You want to make sure that the
fitting process leads the model parameters to converge to estimates that make sense for your problem. When
a parameter estimate seems unreasonable on the basis of your problem specification (for example, a model
scale might be estimated to be 10 times the size of your sample variance, or the estimate of a range might be
zero), PROC VARIOGRAM produces a note to let you know about a potentially ambiguous fit. These issues
are examined in more detail in the section “Quality of Fit” on page 8981.

Parameter Estimates

When the fit process is complete, the VARIOGRAM procedure produces the “Parameter Estimates” table
with information about the fitted model parameters. The table includes estimates of the parameters, their
approximate standard error, the statistical degrees of freedom DF, the corresponding t statistic, and its
approximate p-value. For a model with q parameters that fits an empirical semivariogram of k nonmissing
lags, DF D k � q.

NOTE: Parameter estimates might have nonzero standard errors even in the rather extreme case where
DF D 0. This can typically occur when there are active optimization constraints in the fitting process.

You can request the confidence intervals for the parameter estimates of a fitted model by specifying the CL
option of the MODEL statement. These confidence intervals are computed using the Wald-based formula

b̌
i ˙ stderri � t .k � q; 1 � ˛=2/

where b̌i is the ith parameter estimate, stderri is its estimated approximate standard error, t .k � q; 1� ˛=2/
is the t statistic with DF D k � q degrees of freedom. The confidence intervals are only asymptotically valid.
The significance level ˛ used in the construction of these confidence limits can be set with the ALPHA=
option of the MODEL statement; the default value is ˛ D 0:05.

Specify the COVB and the CORRB options in the MODEL statement to request the approximate covariance
and approximate correlation matrices of the fitted parameters, respectively. These matrices are based on the
optimization process results. In agreement with reporting similar optimization output in SAS/STAT software,
parameters with active restraints have zeros in the corresponding rows and columns in the covariance and
correlation matrices, and display 1 in the correlation matrix diagonal.

Quality of Fit

The VARIOGRAM procedure produces a fit summary table to report about the goodness of fit. When you
specify multiple models to fit with the FORM=AUTO option in the MODEL statement, the VARIOGRAM
procedure uses two processes to rank the fitted models: The first one depends on your choice among available
fitting criteria. The second one is based on an operational classification of equivalent models in classes. The
two processes are described in more detail in the following subsections.

Overall, no absolutely correct way exists to rank and classify multiple models. Your choice of ranking criteria
could depend on your study specifications, physical considerations, or even your personal assessment of
fitting performance. The VARIOGRAM procedure provides you with fitting and comparison features to
facilitate and help you better understand the fitting process.
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Fitting Criteria
The fit summary table ranks multiple models on the basis of one or more fitting criteria that you can specify
with the CHOOSE= option of the MODEL statement, as explained in the section “Syntax: VARIOGRAM
Procedure” on page 8927. Currently, the VARIOGRAM procedure offers two numerical criteria (for which a
smaller value indicates a better fit) and a qualitative criterion:

• The residual sum of squares error (SSE) is based on the objective function of the fitting process. When
the specified method is weighted least squares, the sum of squares of the weighted differences (WSSE)
is computed according to the expression

WSSE D
kX
iD1

wi
2
�
�z .hi / � z.hi I�/

�2
where �z .hi / can be either the classical or robust semivariance estimate of the theoretical semivariance
z.hi I�/ at the ith lag and the weights wi 2 are taken at lags i D 1; : : : ; k. When you specify the
METHOD=OLS option in the MODEL, the weights wi 2 D 1 for i D 1; : : : ; k, and the SSE is
expressed as

SSE D
kX
iD1

�
�z .hi / � z.hi I�/

�2
• Akaike’s information criterion (AIC) is included in the fit summary table when there is at least one

nonfixed parameter. In its strict definition, AIC assumes that the model errors are normally and
independently distributed. This assumption is not correct in the semivariance fitting analysis. However,
the AIC can be also defined in an operational manner on the basis of the weighted squared error sum
WSSE as

AIC D kln
�
WSSE
k

�
C 2q

for k lags and q model parameters; see, for example, Olea (1999, p. 84). The operational definition of the
AIC is provided as an additional criterion for the comparison of fitted models in PROC VARIOGRAM.

The AIC expression suggests that when you specify multiple models with the FORM=AUTO option in
the MODEL statement, all models with the same number of parameters are ranked in the same way by
the AIC and the WSSE criteria. Among models with the same WSSE value, AIC ranks higher the ones
with fewer parameters.

• The third qualitative criterion enables you to classify multiple models based on their convergence
status. A model is sent to the bottom of the ranking table if the parameter estimation optimization fails
to converge or fitting is unsuccessful due to any other issue. These two cases are distinguished by the
different notes they produce in the fit summary ODS table. If you specify the STORE statement to save
the fitting output in an item store, then models that have failed to fit are not passed to the item store.

With respect to convergence status, PROC VARIOGRAM ranks higher those models that have successfully
completed the fitting process. It might occur that the selection of parameter initial values, physical considera-
tions about the forms that are used for the fit, or numerical aspects of the nonlinear optimization could result
in ambiguous fits. For example, you might see that model parameters converge at or near their boundary
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values, or that parameters have unreasonably high estimates when compared to the empirical semivariogram
characteristics. Then, the fit summary table designates such fits as questionable.

You might not need to take any action if you are satisfied with the fitting results and the selected model. You
can investigate questionable fits in one or more of the following ways:

• If a form in a nested model makes no contribution to the model due to a parameter at or near its
boundary value, then you could have a case of a degenerate fit. When you fit multiple models, a model
with degenerate fit can collapse to the more simple model that does not include the noncontributing
form. The VARIOGRAM procedure includes in its fit summary all models that are successfully fit. In
such cases you can ignore degenerate fits. You can also try subsequent fits of individual models and
exclude noncontributing forms or use different initial values.

• Unreasonably low or high parameter estimates might be an indication that the current initial values are
not a good guess for the nonlinear optimizer. In most cases, fitting an empirical semivariogram gives
you the advantage of a fair understanding about the value range of your parameters. Then, you can use
the PARMS statement to specify a different set of initial values and try the fit again.

• Try replacing the problematic form with another one. A clear example is that you can expect a very
poor fit if you specify an exponential model to fit an empirical semivariogram that suggests linear
behavior.

Eventually, if none of the aforementioned issues exist, then a model is ranked in the highest positions of the
fit summary table. You can combine two or more of the fitting criteria to manage classification of multiple
fitted models in a more detailed manner.

In some cases you might still experience a poor quality of fit or no fit at all. If none of the earlier suggestions
results in a satisfactory fit, then you could decide to re-estimate the empirical semivariogram for your same
input data. The following actions can produce different empirical semivariograms to fit a theoretical model
to:

• If you compute the semivariogram for different angles and you experience optimization failures, try
specifying explicitly the same direction angles with different tolerance or bandwidth value in the
DIRECTIONS statement.

• Modify slightly the LAGDISTANCE= option in the COMPUTE statement to obtain a different
empirical semivariogram.

Finally, it is possible to have models in the fitting summary table ranked in a way that seemingly contradicts
the specification in the CHOOSE= option of the MODEL statement. Consider an example with the default
behavior CHOOSE=(SSE AIC), where you might observe that models have the same SSE values but are not
ranked further as expected by the AIC criterion. A closer examination of such cases typically reduces this
issue to a matter of the accuracy shown in the table. That is, the displayed accuracy of the SSE values might
hide additional decimal digits that justify the given ranking.

In such scenarios, discrimination of models at the limits of numerical accuracy might suggest that you choose
a model of questionable fit or a nested structure over a more simple one. You can then review the candidate
models and exercise your judgment to select the model that works best for you. If all values of a criterion are
equal, then the ranking order is simply the order in which models are examined unless more criteria follow
that can affect the ranking.
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Classes of Equivalence
The fit summary that is produced after fitting multiple models further categorizes the ranked models in
classes of equivalence. Equivalence classification is an additional investigation that is unrelated to the ranking
criteria presented in the previous subsection; it is an operational criterion that provides you with a qualitative
overview of multiple model fit performance under given fitting conditions.

To examine model equivalence, the VARIOGRAM procedure computes the semivariances for each one of
the fitted models at a set of distances. For any pair of consecutively ranked models, if the sum of their
semivariance absolute differences at all designated distances is smaller than the tolerance specified by the
EQUIVTOL= parameter, then the two models are deemed equivalent and placed in the same class; otherwise,
they are placed in different classes. Equivalence classification depends on the existing ranking; hence the
resulting classes can differ when you specify different ranking criteria in the CHOOSE= option of the
MODEL statement.

The equivalence class numbers start at 1 for the top-ranked model in the fit summary table. You can consider
the top model of each equivalence class to be a representative of the class behavior. When you specify that fit
plots be produced and there are equivalence classes, the plot displays the equivalence classes and the legend
designates each one by its representative model.

Consequently, if an equivalence class contains multiple members after a fit, then all of its members produce
in general the exact same semivariogram. A typical reason could be that the fitting process estimates of scale
parameters are at or close to their zero boundaries in one or more nested forms in a model. In such cases, the
behavior of this model reduces to the behavior of its nested components with nonzero parameters. When
one or more models share this situation or have the same contributing nested forms, they could end up as
members of the same equivalence class depending on the ranking criteria.

It is not necessary for all models in the same equivalence class to produce the exact same semivariogram. If a
fit of two obviously different forms involves semivariance values that are small enough for the equivalence
criterion to be satisfied by the default value of the EQUIVTOL= option, then you might need to specify an
even smaller value in the EQUIVTOL= option to rank these two models in separate equivalence classes.

Fitting with Matérn Forms

When you use a Matérn form in the fitting process, it is possible that the fitting optimizer might encounter
numerical difficulties if it tries to push the smoothing parameter � towards increasingly high values. The
VARIOGRAM procedure addresses this issue by imposing an amply elevated upper bound of 1,000,000 on
the smoothness values it processes. The section “Characteristics of Semivariogram Models” on page 8959
mentions that � ! 1 gives the Gaussian model. In the scenario of progressively increasing smoothness
values, PROC VARIOGRAM acknowledges that the Matérn form behavior tends asymptotically to become
Gaussian and replaces automatically the Matérn with a Gaussian form in the model. Subsequently, fitting
resumes with the resulting model.

If you explore fitting of multiple models, then any duplicate models that might occur due to Matérn-to-
Gaussian form conversions are fitted only once. Also, if a nested model has more than one Matérn form, then
the fitting process checks one of them at a time about whether they need to be replaced by a Gaussian form.
Consequently, following the switch of one Matérn form, the fitting process starts anew with the resulting
model before any decisions for additional form conversions are made.

Replacement of the Matérn form with the Gaussian form occurs by default when � > 10; 000. However, you
can control this threshold value with the MTOGTOL= parameter of the MODEL statement. Practically, the
Matérn form starts to resemble the Gaussian behavior for � values that are about � > 10. If you encounter
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such conversions of the Matérn form into Gaussian and you prefer to set a lower � threshold for the conversion
than the default, you might experience improved code performance because computation of the Matérn
semivariance can be numerically demanding.

Autocorrelation Statistics
Spatial autocorrelation measures offer you additional insight into the interdependence of spatial data. These
measures quantify the correlation of an SRFZ.s/ with itself at different locations, and they can be very useful
whether you have information at exact locations (point-referenced data) or measurements that characterize an
area type such as counties, census tracts, zip codes, and so on (areal data).

As in the semivariogram computation, a key issue for the autocorrelation statistics is that you work with a set
zi of measurements, i D 1; : : : ; n, that are free of nonrandom surface trends and have a constant mean.

Autocorrelation Weights

In general, the choice of a weighting scheme is subjective. You can obtain different results by using different
schemes, options, and parameters. PROC VARIOGRAM offers you considerable flexibility in choosing
weights that are appropriate for prior considerations such as different hypotheses about neighboring areas,
definition of the neighborhood structure, and accounting for natural barriers or other spatial characteristics;
see the discussion in Cliff and Ord (1981, p. 17). As stressed for all types of spatial analysis, it is important
to have good knowledge of your data. In the autocorrelation statistics, this knowledge can help you avoid
spurious correlations when you choose the weights.

The starting point is to assign individual weights to each one of the n data values zi , i D 1; : : : ; n, with
respect to the rest. An n � n matrix of weights is thus defined, such that for any two locations si and sj , the
weight wij denotes the effect of the value zi at location si on the value zj at location sj . Depending on the
nature of your study, the weights wij need not be symmetric; that is, it can be true that wij ¤ wj i .

Binary and Nonbinary Weights
The weights wij can be either binary or nonbinary values. Binary values of 1 or 0 are assigned if the SRF
Z.si / at one location si is deemed to be connected or not, respectively, to its value Z.sj / at another location
sj . Nonbinary values can be used in the presence of more refined measures of connectivity between any
two data points Pi and Pj . PROC VARIOGRAM offers a choice between a binary and a distance-based
nonbinary weighting scheme.

In the binary weighting scheme the weight wij D 1 if the data pair at si and sj is closer than the user-
defined distance that is defined by the LAGDISTANCE= option, and wij D 0 if i D j or in any other
case. For that reason, in the COMPUTE statement, if you specify the WEIGHTS=BINARY suboption of
the AUTOCORRELATION option when the NOVARIOGRAM option is also specified, then you must also
specify the LAGDISTANCE= option.

The nonbinary weighting scheme is based on the pair distances and is invoked with the
WEIGHTS=DISTANCE suboption of the AUTOCORRELATION option. PROC VARIOGRAM uses a
variation of the Pareto form functional to set the weights. Namely, the autocorrelation weight for every point
pair Pi and Pj located at si and sj , respectively, is defined as

wij D s
1

1C j h jp

where h D si � sj and p � 0 and s � 0 are user-defined parameters for the adjustment of the weights.
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In particular, the power parameter p is specified in the POWER= option of the DISTANCE suboption within
the AUTOCORRELATION option. The default value for this parameter is p = 1. Also, the scaling parameter
s is specified by the SCALE= option in the DISTANCE suboption of the AUTOCORRELATION option.
The default value for the scaling parameter is s = 1. You can use the p and s parameters to adjust the
actual values of the weights according to your needs. Variations in the scaling parameter s do not affect the
computed values of the Moran’s I and Geary’s c autocorrelation coefficients that are introduced in the section
“Autocorrelation Statistics Types” on page 8986.

Nonbinary Weights with Normalized Distances
PROC VARIOGRAM offers additional flexibility in the DISTANCE weighting scheme through an option
to use normalized pair distances. You can invoke this feature by specifying the NORMALIZE option in
the DISTANCE suboption of the AUTOCORRELATION option. In this case, the distances used in the
definition of the weights are normalized by the maximum pairwise distance hb (see the section “Computation
of the Distribution Distance Classes” on page 8971 and Figure 109.24); the weights are then defined as
wij D s=Œ1C .j h j =hb/

p�.

Most likely, hb has a different value for different data sets. Hence, it is suggested that you avoid using the
weights you obtain from the preceding equation and one data set for comparisons with the weights you derive
from different data sets.

Symmetric and Asymmetric Weights
The weighting schemes presented in the preceding paragraphs are symmetric; that is, wij D wj i for every
data pair at locations si and sj . However, you can also define asymmetric weights w0ij such thatX

j2J

w0ij D 1

for i D 1; 2; � � � ; n, where w0ij D wij =
P
j2J wij , i D 1; 2; � � � ; n. In the distance-based scheme, J is the

set of all locations that form point pairs with the point at si . In the binary scheme, J is the set of the locations
that are connected to si based on your selection of the LAGDISTANCE= option; see Cliff and Ord (1981,
p. 18). The weights w0ij are row-averaged (or standardized by the count of their connected neighbors). You
can apply row averaging in weights when you specify the ROWAVG option within either the BINARY or
DISTANCE suboptions in the AUTOCORRELATION option.

Autocorrelation Statistics Types

One measure of spatial autocorrelation provided by PROC VARIOGRAM is Moran’s I statistic, which was
introduced by Moran (1950) and is defined as

I D
n

.n � 1/S2W

X
i

X
j

wij vivj

where S2 D .n � 1/�1
P
i v
2
i , and W D

P
i

P
j¤i wij .

Another measure of spatial autocorrelation in PROC VARIOGRAM is Geary’s c statistic (Geary 1954),
defined as

c D
1

2S2W

X
i

X
j

wij .zi � zj /
2
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These expressions indicate that Moran’s I coefficient makes use of the centered variable, whereas the
Geary’s c expression uses the noncentered values in the summation.

Inference on these two statistic types comes from approximate tests based on the asymptotic distribution of I
and c, which both tend to a normal distribution as n increases. To this end, PROC VARIOGRAM calculates
the means and variances of I and c. The outcome depends on the assumption made regarding the distribution
Z.s/. In particular, you can choose to investigate any of the statistics under the normality (also known as
Gaussianity) or the randomization assumption. Cliff and Ord (1981) provided the equations for the means
and variances of the I and c distributions, as described in the following.

The normality assumption asserts that the random field Z.s/ follows a normal distribution of constant mean
( NZ) and variance, from which the zi values are drawn. In this case, the I statistics yield

Eg ŒI � D �
1

n � 1

and

Eg ŒI 2� D
1

.nC 1/.n � 1/W 2
.n2S1 � nS2 C 3W

2/

where S1 D 0:5
P
i

P
j¤i .wij C wj i /

2 and S2 D
P
i .
P
j wij C

P
j wj i /

2. The corresponding moments
for the c statistics are

Eg Œc� D 1

and

VargŒc� D
.2S1 C S2/.n � 1/ � 4W

2

2.nC 1/W 2

According to the randomization assumption, the I and c observations are considered in relation to all the
different values that I and c could take, respectively, if the n zi values were repeatedly randomly permuted
around the domain D. The moments for the I statistics are now

Er ŒI � D �
1

n � 1

and

Er ŒI 2� D
A1 C A2

.n � 1/.n � 2/.n � 3/W 2

where A1 D nŒ.n2 � 3n C 3/S1 � nS2 C 3W
2�, A2 D �b2Œn.n � 1/S1 � 2nS2 C 6W 2�. The factor

b2 D m4=.m2
2/ is the coefficient of kurtosis that uses the sample moments mk D 1

n

P
i v
k
i for k D 2; 4.

Finally, the c statistics under the randomization assumption are given by

Er Œc� D 1

and

VarrŒc� D
B1 C B2 C B3

n.n � 2/.n � 3/W 2
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with B1 D .n � 1/S1Œn2 � 3nC 3 � .n � 1/b2�, B2 D �14.n � 1/S2Œn
2 C 3n � 6 � .n2 � nC 2/b2�, and

B3 D W
2Œn2 � 3 � b2.n � 1/

2�.

If you specify LAGDISTANCE= to be larger than the maximum data distance in your domain, the binary
weighting scheme used by the VARIOGRAM procedure leads to all weights wij D 1, i ¤ j . In this extreme
case the preceding definitions can show that the variances of the I and c statistics become zero under either
the normality or the randomization assumption.

A similar effect might occur when you have collocated observations (see the section “Pair Formation” on
page 8966). The Moran’s I and Geary’s c statistics allow for the inclusion of such pairs in the computations.
Hence, contrary to the semivariance analysis, PROC VARIOGRAM does not exclude pairs of collocated data
from the autocorrelation statistics.

Interpretation

For Moran’s I coefficient, I > EŒI � indicates positive autocorrelation. Positive autocorrelation suggests that
neighboring values si and sj tend to have similar feature values zi and zj , respectively. When I < EŒI �,
this is a sign of negative autocorrelation, or dissimilar values at neighboring locations. A measure of strength
of the autocorrelation is the size of the absolute difference j I � EŒI � j.

Geary’s c coefficient interpretation is analogous to that of Moran’s I. The only difference is that c > EŒc�
indicates negative autocorrelation and dissimilarity, whereas c < EŒc� signifies positive autocorrelation and
similarity of values.

The VARIOGRAM procedure uses the mathematical definitions in the preceding section to provide the ob-
served and expected values, and the standard deviation of the autocorrelation coefficients in the autocorrelation
statistics table. The Z scores for each type of statistics are computed as

ZI D
I � EŒI �p
VarŒI �

for Moran’s I coefficient, and

Zc D
c � EŒc�p
VarŒc�

for Geary’s c coefficient. PROC VARIOGRAM also reports the two-sided p-value for each coefficient
under the null hypothesis that the sample values are not autocorrelated. Smaller p-values correspond to
stronger autocorrelation for both the I and c statistics. However, the p-value does not tell you whether the
autocorrelation is positive or negative. Based on the preceding remarks, you have positive autocorrelation
when ZI > 0 or Zc < 0, and you have negative autocorrelation when ZI < 0 or Zc > 0.

The Moran Scatter Plot

The Moran scatter plot (Anselin 1996) is a useful visual tool for exploratory analysis, because it enables you
to assess how similar an observed value is to its neighboring observations. Its horizontal axis is based on
the values of the observations and is also known as the response axis. The vertical Y axis is based on the
weighted average or spatial lag of the corresponding observation on the horizontal X axis. NOTE: The term
spatial lag in the current context is unrelated to the concept of the semivariogram lag presented in the section
“Distance Classification” on page 8969.
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The Moran scatter plot provides a visual representation of spatial associations in the neighborhood around each
observation. You specify a neighborhood size with the LAGDISTANCE= option in the COMPUTE statement.
The observations are represented by their standardized values; therefore only nonmissing observations are
shown in the plot. For each one of those, the VARIOGRAM procedure computes the weighted average,
which is the weighted mean value of its neighbors. Then, the centered weighted average is plotted against the
standardized observations. As a result, the scatter plot is centered on the coordinates (0; 0), and distances in
the plot are expressed in deviations from the origin (0; 0).

Depending on their position on the plot, the Moran plot data points express the level of spatial association of
each observation with its neighboring ones. Conceptually, these characteristics differentiate the Moran plot
from the semivariogram. The latter is typically used in geostatistics to depict spatial associations across the
whole domain as a continuous function of a distance metric.

You can find the data points on the Moran scatter plot in any of the four quadrants defined by the horizontal
line y = 0 and the vertical line x = 0. Points in the upper right (or high-high) and lower left (or low-low)
quadrants indicate positive spatial association of values that are higher and lower than the sample mean,
respectively. The lower right (or high-low) and upper left (or low-high) quadrants include observations that
exhibit negative spatial association; that is, these observed values carry little similarity to their neighboring
ones.

When you use binary, row-averaged weights for the creation of the Moran scatter plot and in autocorrelation
statistics, Moran’s I coefficient is equivalent to the regression slope of the Moran scatter plot. That is, when
you specify

PLOTS=MORAN(ROWAVG=ON)

in the PROC VARIOGRAM statement and

AUTOCORR(WEIGHTS=BINARY(ROWAVERAGING))

in the COMPUTE statement, then the regression line slope of the Moran scatter plot is the Moran’s I coef-
ficient shown in the section “Autocorrelation Statistics Types” on page 8986. In this sense, the Moran’s I
coefficient has a global character, whereas the Moran scatter plot provides you with a more detailed ex-
ploratory view of the autocorrelation behavior of the individual observations.

This detailed view can reveal outliers with respect to the regression line slope of the Moran scatter plot.
Outliers, if present, can function as leverage points that affect the value of Moran’s I coefficient. As noted by
Anselin (1996), such extremes indicate local instability in spatial association. This instability can be caused
either by problems with the autocorrelation weights matrix or by fine-scale characteristics of the spatial
structure, which are beneath the current observation structure.

Computational Resources
The fundamental computation of the VARIOGRAM procedure is binning: for each pair of observations in the
input data set, a distance class and an angle class are determined and recorded. Let Nd denote the number of
distance classes, Na denote the number of angle classes, and Nv denote the number of VAR variables. The
memory requirements for these operations are proportional to Nd �Na �Nv. This is typically small.

The CPU time required for the computations is proportional to the number of pairs of observations, or to
N 2 �Nv, where N is the number of observations in the input data set.
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Output Data Sets
The VARIOGRAM procedure produces four data sets: the OUTACWEIGHTS=SAS-data-set, the
OUTDIST=SAS-data-set, the OUTPAIR=SAS-data-set, and the OUTVAR=SAS-data-set. These data sets are
described in the following sections.

OUTACWEIGHTS=SAS-data-set

The OUTACWEIGHTS= data set contains one observation for each pair of points P1; P2 in the original data
set, where P1 is different from P2, with information about the data distance and autocorrelation weight of
each point pair.

The OUTACWEIGHTS= data set can be very large, even for a moderately sized DATA= data set. For
example, if the DATA= data set has NOBS=500, then the OUTACWEIGHTS= data set has NOBS.NOBS �
1/=2=124,750 observations.

When you perform autocorrelation computations, the OUTACWEIGHTS= data set is a practical way to save
the autocorrelation weights for further use.

The OUTACWEIGHTS= data set contains the following variables:

• ACWGHT12, the autocorrelation weight for the pair P1; P2

• ACWGHT21, the autocorrelation weight for the pair P2; P1

• DISTANCE, the distance between the data in the pair

• ID1, the ID variable value or observation number for the first point in the pair

• ID2, the ID variable value or observation number for the second point in the pair

• V1, the variable value for the first point in the pair

• V2, the variable value for the second point in the pair

• VARNAME, the variable name for the current VAR variable

• X1, the x coordinate of the first point in the pair

• X2, the x coordinate of the second point in the pair

• Y1, the y coordinate of the first point in the pair

• Y2, the y coordinate of the second point in the pair

When the autocorrelation weights are symmetric, the pair P1; P2 has the same weight as the pair P2; P1.
For this reason, in the case of symmetric weights the OUTACWEIGHTS= data set contains only the
autocorrelation weights ACWGHT12.

If no ID statement is specified, then the corresponding observation number is assigned to each one of the
variables ID1 and ID2, instead.
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OUTDIST=SAS-data-set

The OUTDIST= data set contains counts for a modified histogram that shows the distribution of pairwise
distances. This data set provides you with information related to the choice of values for the LAGDISTANCE=
option in the COMPUTE statement.

To request an OUTDIST= data set, specify the OUTDIST= data set in the PROC VARIOGRAM statement
and the NOVARIOGRAM option in the COMPUTE statement. The NOVARIOGRAM option prevents any
semivariogram or covariance computation from being performed.

The following variables are written to the OUTDIST= data set:

• COUNT, the number of pairs that fall into this lag class

• LAG, the lag class value

• LB, the lower bound of the lag class interval

• UB, the upper bound of the lag class interval

• PER, the percent of all pairs that fall in this lag class

• VARNAME, the name of the current VAR variable

OUTMORAN=SAS-data-set

The OUTMORAN= data set contains the standardized value (or response) of each observation and the
weighted average of its N neighbors, based on a neighborhood within a LAGDISTANCE= distance from
the observation. To request this data set, specify the OUTMORAN= data set in the PROC VARIOGRAM
statement, in addition to the AUTOCORRELATION and LAGDISTANCE= options in the COMPUTE
statement.

The following variables are written to the OUTMORAN= data set:

• DISTANCE, the value of the neighborhood radius, which is specified with the LAGDISTANCE= option

• ID, the ID variable value or observation number for the current observation

• N, the number of neighbors within the specified DISTANCE from the current observation

• RESPONSE, the standardized value of the current observation

• STDWAVG, the standardized weighted average of the neighbors for the current observation

• V, the variable value of the current observation

• VARNAME, the variable name for the current VAR variable

• X, the x coordinate of the current observation

• Y, the y coordinate of the current observation

• WAVG, the weighted average of the neighbors for the current observation
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For zero neighbors in the neighborhood of a nonmissing observation, the corresponding value of the variable
N=0 and the variables STDWAVG and WAVG are assigned missing values. Observations with missing values
are included in the OUTMORAN= data set if they have neighbors and only if nonmissing observations with
neighbors also exist in the same data set.

OUTPAIR=SAS-data-set

When you specify the NOVARIOGRAM option in the COMPUTE statement, the OUTPAIR= data set contains
one observation for each distinct pair of points P1; P2 in the original data set. Otherwise, the OUTPAIR=
data set might have fewer observations, depending on the values you specify in the LAGDISTANCE= and
MAXLAGS= options and whether you specify the OUTPDISTANCE= option in the COMPUTE statement.

If the NOVARIOGRAM option is not specified in the COMPUTE statement, then the OUTPAIR= data set
contains one observation for each distinct pair of points that are up to a distance within MAXLAGS= away
from each other. If you also specify the OUTPDISTANCE=Dmax option in the COMPUTE statement, then
all pairs P1; P2 in the original data set that satisfy the relation j P1P2 j� Dmax are written to the OUTPAIR=
data set.

Given the aforementioned specifications, note that the OUTPAIR= data set can be very large even for a
moderately sized DATA= data set. For example, if the DATA= data set has NOBS=500, then the OUTPAIR=
data could have up to NOBS.NOBS � 1/=2=124,750 observations if no OUTPDISTANCE= restriction is
given in the COMPUTE statement.

The OUTPAIR= data set contains information about the distance and orientation of each point pair, and you
can use it for specialized continuity measure calculations.

The OUTPAIR= data set contains the following variables:

• AC, the angle class value

• COS, the cosine of the angle between pairs

• DC, the distance (lag) class

• DISTANCE, the distance between the data in pairs

• ID1, the ID variable value or observation number for the first point in the pair

• ID2, the ID variable value or observation number for the second point in the pair

• V1, the variable value for the first point in the pair

• V2, the variable value for the second point in the pair

• VARNAME, the variable name for the current VAR variable

• X1, the x coordinate of the first point in the pair

• X2, the x coordinate of the second point in the pair

• Y1, the y coordinate of the first point in the pair

• Y2, the y coordinate of the second point in the pair

If no ID statement is specified, then the corresponding observation number is assigned to each one of the
variables ID1 and ID2, instead.
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OUTVAR=SAS-data-set

The OUTVAR= data set contains the standard and robust versions of the sample semivariance, the covariance,
and other information in each lag class.

The OUTVAR= data set contains the following variables:

• ANGLE, the angle class value (clockwise from N to S)

• ATOL, the angle tolerance for the lag or angle class

• AVERAGE, the average variable value for the lag or angle class

• BANDW, the bandwidth for the lag or angle class

• COUNT, the number of pairs in the lag or angle class

• COVAR, the covariance value for the lag or angle class

• DISTANCE, the average lag distance for the lag or angle class

• LAG, the lag class value (in LAGDISTANCE= units)

• RVARIO, the sample robust semivariance value for the lag or angle class

• STDERR, the approximate standard error of the sample semivariance estimate

• VARIOG, the sample semivariance value for the lag or angle class

• VARNAME, the name of the current VAR variable

The robust semivariance estimate, RVARIO, is not included in the data set if you omit the option ROBUST in
the COMPUTE statement.

The bandwidth variable, BANDW, is not included in the data set if no bandwidth specification is given in the
COMPUTE statement or in a DIRECTIONS statement.

The OUTVAR= data set contains a line where the LAG variable is –1. The AVERAGE variable in this line
displays the sample mean value NZ of the SRF Z.s/, and the COVAR variable shows the sample variance
VarŒZ.s/�.

Displayed Output
In addition to the output data sets, the VARIOGRAM procedure produces a variety of output objects. Most
of these are produced depending on whether you specify either NOVARIOGRAM or LAGDISTANCE= and
MAXLAGS= in the COMPUTE statement. The VARIOGRAM procedure output objects are the following:

• a default “Number of Observations” table that displays the number of observations read from the input
data set and the number of observations used in the analysis
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• a default map that shows the spatial distribution of the observations of the current variable in the VAR
statement. The observations are displayed by default with circled markers whose color indicates the
VAR value at the corresponding location.

• a table with basic information about the lags and the extreme distance between data pairs, when
NOVARIOGRAM is specified

• a table that describes the distribution of data pairs in distance intervals, when NOVARIOGRAM is
specified

• a histogram plot of the pairwise distance distribution, when NOVARIOGRAM is specified). The
plot also displays a reference line at a user-specified pairs frequency threshold when you specify the
THRESHOLD= parameter in the PLOTS=PAIRS option. The option PLOTS=PAIRS(NOINSET)
forces the informational inset that appears in the plot to hide.

• empirical semivariogram details, when NOVARIOGRAM is not specified and LAGDISTANCE= and
MAXLAGS= are specified. This table also includes the semivariance estimate variance and confidence
limits when CL is specified, and estimates of the robust semivariance when ROBUST is specified.

• plots of the appropriate empirical semivariograms, when NOVARIOGRAM is not specified and
LAGDISTANCE= and MAXLAGS= are specified. If you perform the analysis in more than one
direction simultaneously, the output is a panel that contains the empirical semivariogram plots for the
specified angles. If the semivariograms are nonpaneled, then each plot includes in the lower part a
needle plot of the contributing pairs distribution.

• a table that provides autocorrelation statistics, when the options AUTOCORRELATION and LAGDIS-
TANCE= are specified

• the Moran scatter plot of the standardized observation values against the weighted averages of their
neighbors, when the options PLOTS=MORAN, AUTOCORRELATION, and LAGDISTANCE= are
specified

When you specify the MODEL statement and request a fit of a theoretical model to the empirical semivari-
ogram, the VARIOGRAM procedure also produces the following default output:

• a table with some general fitting information, in addition to the output item store if you have specified
one with the STORE statement

• a table with more specific information about the selected model’s parameters and their initial values

• a table with general information about the optimization that provides the fitting parameters of the
selected model

• a table with the optimization process output and a table with the convergence status of the optimization
process, if you have specified a single model to fit

• a “Parameter Estimates” table with information about the fitted parameters estimates

• a “Fit Summary” table that reports the fit quality of all models you requested to fit
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• plots of fitted theoretical semivariogram models. If you perform model fitting in more than one
direction angle or for more than one variable in your DATA= data set, then the output is a panel that
contains all fitted models for the respective directions or variables.

Additional output can be produced in model fitting if you specify a higher level of output detail with the
DETAILS option in the MODEL statement. This output can be information tables for each separate model
when you specify multiple models to fit, tables with more details about the optimization process, and the
covariance and correlation matrices of the model parameter estimates. The complete listing of the PROC
VARIOGRAM output follows in the section “ODS Table Names” on page 8995 and the section “ODS Graph
Names” on page 8996.

ODS Table Names
Each table created by PROC VARIOGRAM has a name associated with it, and you must use this name to
refer to the table when using ODS Graphics. These names are listed in Table 109.6.

Table 109.6 ODS Tables Produced by PROC VARIOGRAM

ODS Table Name Description Required
Statement

Option

AutoCorrStats Autocorrelation statistics infor-
mation

COMPUTE AUTOCORRELATION

ConvergenceStatus Status of optimization at conclu-
sion

MODEL Default output

CorrB Approximate correlation matrix
of model parameter estimates

MODEL CORRB

CovB Approximate covariance matrix
of model parameter estimates

MODEL COVB

DistanceIntervals Pairwise distances matrix COMPUTE NOVARIOGRAM

FitGenInfo General fitting information MODEL Default output

FitSummary Fitting process summary MODEL Default output

InputOptions Optimization input options MODEL DETAILS=ALL

IterHist Iteration history MODEL DETAILS=ITR

IterStop Optimization-related results MODEL Default output

Lagrange Information about Lagrange mul-
tipliers

MODEL DETAILS=ALL

ModelInfo Model information MODEL Default output

NObs Number of observations read and
used

PROC Default output

OptInfo Optimization information MODEL Default output

PairsInformation General information about the
pairs distribution in classes and
data maximum distances in se-
lected directions

COMPUTE NOVARIOGRAM
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Table 109.6 continued

ODS Table Name Description Required
Statement

Option

ParameterEstimates Model fitting solution and statis-
tics

MODEL Default output

ParameterEstimatesResults Parameter estimates and gradient
information

MODEL DETAILS=ALL

ParameterEstimatesStart More detailed model information MODEL DETAILS=ITR

ParmSearch Parameter search values MODEL Default output

ProblemDescription Information at the optimization
start

MODEL DETAILS=ITR

ProjGrad Projected gradient information MODEL DETAILS=ALL

SemivariogramTable Empirical semivariance classes,
parameters, and estimates

COMPUTE LAGD=,
MAXLAGS=

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21,
“Statistical Graphics Using ODS.”

For additional control of the graphics that are displayed, see the PLOTS option in the section “PROC
VARIOGRAM Statement” on page 8927.

ODS Graph Names

PROC VARIOGRAM assigns a name to each graph it creates by using ODS Graphics. You can use this
name to refer to the graph when using ODS Graphics. You must also specify the PLOTS= option indicated in
Table 109.7.

Table 109.7 Graphs Produced by PROC VARIOGRAM

ODS Graph Name Plot Description Statement Option

FitPanel Panel of one or more classes of fitted semi-
variograms in different angles

PROC PLOTS=FIT

FitPlot Plot of one or more classes of fitted semi-
variograms

PROC PLOTS=FIT
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Table 109.7 continued

ODS Graph Name Plot Description Statement Option

MoranPlot Scatter plot of standardized observed val-
ues against weighted averages

PROC PLOTS=MORAN

ObservationsPlot Scatter plot of observed data and colored
markers that indicates observed values

PROC PLOTS=OBSERV

PairDistPlot Histogram of the pairwise distance distri-
bution

PROC PLOTS=PAIRS

Semivariogram Plots of empirical classical and robust (op-
tional) semivariograms

PROC PLOTS=SEMIVAR

SemivariogramPanel Panel of empirical classical and robust (op-
tional) semivariogram plots

PROC PLOTS=SEMIVAR

Examples: VARIOGRAM Procedure

Example 109.1: Aspects of Semivariogram Model Fitting
This example helps you explore aspects of automated semivariogram fitting with PROC VARIOGRAM. The
test case is a spatial study of arsenic (As) concentration in drinking water.

Arsenic is a toxic pollutant that can occur in drinking water because of human activity or, typically, due to
natural release from the sediments in water aquifers. The World Health Organization has a standard that
allows As concentration up to a maximum of 10 �g/lt (micrograms per liter) in drinking water.

In general, natural release of arsenic into groundwater is very slow. Arsenic concentration in water might
exhibit no significant temporal fluctuations over a period of a few months. For this reason, it is acceptable to
perform a spatial study of arsenic with input from time-aggregated pollutant concentrations. This example
makes use of this assumption for its data set logAsData. The data set consists of 138 simulated observations
from wells across a square area of 500 km � 500 km. The variable logAs in the logAsData data set is the
natural logarithm of arsenic concentration. Often, the natural logarithm of arsenic concentration (logAs) is
used as the random variable to facilitate the analysis because its distribution tends to resemble the normal
distribution.

The goal is to explore spatial continuity in the logAs observations. The following statements read the logAs
values from the logAsData data set:

title 'Semivariogram Model Fitting of Log-Arsenic Concentration';

data logAsData;
input East North logAs @@;
label logAs='log(As) Concentration';
datalines;

193.0 296.6 -0.68153 232.6 479.1 0.96279 268.7 312.5 -1.02908
43.6 4.9 0.65010 152.6 54.9 1.87076 449.1 395.8 0.95932

310.9 493.6 -1.66208 287.8 164.9 -0.01779 330.0 8.0 2.06837
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225.7 241.7 0.15899 452.3 83.4 -1.21217 156.5 462.5 -0.89031
11.5 84.4 -0.24496 144.4 335.7 0.11950 149.0 431.8 -0.57251

234.3 123.2 -1.33642 37.8 197.8 -0.27624 183.1 173.9 -2.14558
149.3 426.7 -1.06506 434.4 67.5 -1.04657 439.6 237.0 -0.09074
36.4 175.2 -1.21211 370.6 244.0 3.28091 452.0 96.5 -0.77081

247.0 86.8 0.04720 413.6 373.2 1.78235 253.5 291.7 0.56132
129.7 111.9 1.34000 352.7 42.1 0.23621 279.3 82.7 2.12350
382.6 290.7 0.86756 188.2 222.8 -1.23308 382.8 154.5 -0.94094
304.4 309.2 -1.95158 337.5 387.2 -1.31294 490.7 189.8 0.40206
159.0 100.1 -0.22272 245.5 329.2 -0.26082 372.1 379.5 -1.89078
417.8 84.1 -1.25176 173.9 407.6 -0.24240 121.5 107.7 1.54509
453.5 313.6 0.65895 143.5 346.7 -0.87196 157.4 125.5 -1.96165
371.8 353.2 -0.59464 358.9 338.2 -1.07133 8.6 437.8 1.44203
395.9 394.2 -0.24144 149.5 58.9 1.17459 453.5 420.6 -0.63951
182.3 85.0 1.00005 21.0 290.1 0.31016 11.1 352.2 -0.88418
131.2 238.4 -0.57184 104.9 6.3 1.12054 247.3 256.0 0.14019
428.4 383.7 0.92448 327.8 481.1 -2.72543 199.2 92.8 -0.05717
453.9 230.1 0.16571 205.0 250.6 0.07581 459.5 271.6 0.93700
229.5 262.8 1.83590 370.4 228.6 2.96611 330.2 281.9 1.79723
354.8 388.3 -3.18262 406.2 222.7 2.41594 254.4 393.1 2.03221
96.7 85.2 -0.47156 407.2 256.8 0.66747 498.5 273.8 1.03041

417.2 471.4 -1.42766 368.8 424.3 -0.70506 303.0 59.1 1.43070
403.1 264.1 1.64554 21.2 360.8 0.67094 148.2 78.1 2.15323
305.5 310.7 -1.47985 228.5 180.3 -0.68386 161.1 143.3 1.07901
70.5 155.1 0.54652 363.1 282.6 -0.43051 86.0 472.5 -1.18855

175.9 105.3 -2.08112 96.8 426.3 1.56592 475.1 453.1 -1.53776
125.7 485.4 1.40054 277.9 201.6 -0.54565 406.2 125.0 -1.38657
60.0 275.5 -0.59966 431.3 494.6 -0.36860 399.9 399.0 -0.77265
28.8 311.1 0.91693 166.1 348.2 -0.49056 266.6 83.5 0.67277
54.7 356.3 0.49596 433.5 460.3 -1.61309 201.7 167.6 -1.40678

158.1 203.6 -1.32499 67.6 230.4 1.14672 81.9 250.0 0.63378
372.0 50.7 0.72445 26.4 264.6 1.00862 300.1 91.7 -0.74089
303.0 447.4 1.74589 108.4 386.2 1.12847 55.6 191.7 0.95175
36.3 273.2 1.78880 94.5 298.3 -2.43320 366.1 187.3 -0.80526

130.7 389.2 -0.31513 37.2 324.2 0.24489 295.5 211.8 0.41899
58.6 206.2 0.18495 346.3 142.8 -0.92038 484.2 215.9 0.08012

451.4 415.7 0.02773 58.9 86.5 0.17652 212.6 363.9 0.17215
378.7 407.6 0.51516 265.9 305.0 -0.30718 123.2 314.8 -0.90591
26.9 471.7 1.70285 16.5 7.1 0.51736 255.1 472.6 2.02381

111.5 148.4 -0.09658 440.4 375.0 1.23285 406.4 19.5 1.01181
321.2 65.8 -0.02095 466.4 357.1 -0.49272 2.0 484.6 0.50994
200.9 205.1 0.43543 30.3 337.0 1.60882 297.0 12.7 1.79824
158.2 450.7 0.05295 122.8 105.3 1.53936 417.8 329.7 -2.08124
;

First you want to inspect the logAs data for surface trends and the pairwise distribution. You run the
VARIOGRAM procedure with the NOVARIOGRAM option in the COMPUTE statement. You also request
the PLOTS=PAIRS(MID) option, which prompts the pair distance plot to display the actual distance between
pairs, rather than the lag number itself, in the midpoint of the lags. You use the following statements:

ods graphics on;
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proc variogram data=logAsData plots=pairs(mid);
compute novariogram nhc=50;
coord xc=East yc=North;
var logAs;

run;

The observations scatter plot in Output 109.1.1 shows a rather uniform distribution of the locations in the
study domain. Reasonably, neighboring values of logAs seem to exhibit some correlation. There seems to be
no definite sign of an overall surface trend in the logAs values. You can consider that the observations are
trend-free, and proceed with estimation of the empirical semivariance.

Output 109.1.1 logAs Observation Data Scatter Plot

The observed logAs values go as high as 3.28091, which corresponds to a concentration of 26.6 �g/lt. In fact,
only three observations exceed the health standard of 10 �g/lt (or about 2.3 in the log scale), and they are
situated in relatively neighboring locations to the east of the domain center.

Based on the discussion in section “Preliminary Spatial Data Analysis” on page 8914, the pair distance plot
in Output 109.1.2 suggests that you could consider pairs that are anywhere around up to half the maximum
pairwise distance of about 700 km.
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Output 109.1.2 Distribution of Pairwise Distances for logAs Data

After some experimentation with values for the LAGDISTANCE= and MAXLAGS= options, you actually
find that a lag distance of 5 km over 40 lags can provide a clear representation of the logAs semivariance.
With respect to Output 109.1.2, this finding indicates that in the current example it is sufficient to consider
pairs separated by a distance of up to 200 km. You run the following statements to obtain the empirical
semivariogram:

proc variogram data=logAsData plots(only)=semivar;
compute lagd=5 maxlag=40;
coord xc=East yc=North;
var logAs;

run;

The first few lag classes of the logAs empirical semivariance table are shown in Output 109.1.3.
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Output 109.1.3 Partial Output of the Empirical Semivariogram Table for logAs Data

Semivariogram Model Fitting of Log-Arsenic Concentration

The VARIOGRAM Procedure
Dependent Variable: logAs

Empirical Semivariogram

Semivariogram Model Fitting of Log-Arsenic Concentration

The VARIOGRAM Procedure
Dependent Variable: logAs

Empirical Semivariogram

Lag
Class

Pair
Count

Average
Distance Semivariance

0 1 1.9 0.111

1 5 4.9 0.145

2 6 9.7 0.286

3 11 14.6 0.545

4 27 20.0 0.900

Output 109.1.3 and Output 109.1.4 indicate that the logarithm of arsenic spatial correlation starts with a small
nugget effect around 0.11 and rises to a sill value that is most likely between 1.4 and 1.8. The rise could
be of exponential type, although the smooth increase of semivariance close to the origin could also suggest
Gaussian behavior. You suspect that a Matérn form might also work, since its smoothness parameter � can
regulate the form to exhibit an intermediate behavior between the exponential and Gaussian forms.
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Output 109.1.4 Empirical Semivariogram for logAs Data

You can investigate all of the preceding clues with the model fitting features of PROC VARIOGRAM. The
simplest way to fit a model is to specify its form in the MODEL statement. In this case, you have the added
complexity of having more than one possible candidate. For this reason, you use the FORM=AUTO option
that picks the best fit out of a list of candidates. Within this option you specify the MLIST= suboption to use
the exponential, Gaussian, and Matérn forms. You also specify the NEST= suboption to request fitting of a
model with up to two nested structures. Eventually, you specify the PLOTS=FIT option to produce a plot of
the fitted models. The STORE statement saves the fitting output into an item store you name SemivAsStore
for future use. You apply these specifications with the following statements:

proc variogram data=logAsData plots(only)=fit;
store out=SemivAsStore / label='LogAs Concentration Models';
compute lagd=5 maxlag=40;
coord xc=East yc=North;
model form=auto(mlist=(exp,gau,mat) nest=1 to 2);
var logAs;

run;

ods graphics off;
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The table of general information about fitting is shown in Output 109.1.5. The table lets you know that 12
model combinations are to be tested for weighted least squares fitting, based on the three forms that you
specified.

Output 109.1.5 Semivariogram Model Fitting General Information

Semivariogram Model Fitting of Log-Arsenic Concentration

The VARIOGRAM Procedure

Dependent Variable: logAs
Angle: Omnidirectional

Semivariogram Model Fitting of Log-Arsenic Concentration

The VARIOGRAM Procedure

Dependent Variable: logAs
Angle: Omnidirectional

Semivariogram Model Fitting

Model Selection from 12 form combinations

Output Item Store WORK.SEMIVASSTORE

Item Store Label LogAs Concentration Models

The combinations include repetitions. For example, you specified the GAU form; hence the GAU-GAU form
is tested, too. The model combinations also include permutations. For example, you specified the GAU and
the EXP forms; hence the GAU-EXP and EXP-GAU models are fitted separately. According to the section
“Nested Models” on page 8963, it might seem that the same model is fitted twice. However, in each of
these two cases, each structure starts the fitting process with different parameter initial values. This can lead
GAU-EXP to a different fit than EXP-GAU leads to, as seen in the fitting summary table in Output 109.1.6.
The table shows all the model combinations that were tested and fitted. By default, the ordering is based on
the weighted sum of squares error criterion, and you can see that the lowest values in the Weighted SSE
column are in top slots of the list.

Output 109.1.6 Semivariogram Model Fitting Summary

Fit Summary

Class Model
Weighted

SSE AIC

1 Gau-Gau 25.42435 -9.59246

Gau-Mat 25.42482 -7.59169

2 Exp-Gau 25.97835 -8.70865

3 Exp-Mat 26.36846 -6.09754

4 Mat 26.37519 -10.08708

5 Gau 26.78629 -11.45296

6 Exp 28.01200 -9.61851

Exp-Exp 28.01200 -5.61850

Mat-Exp 28.01200 -3.61850

Gau-Exp 28.01200 -5.61850
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Note the leftmost Class column in Output 109.1.6. As explained in detail in section “Classes of Equivalence”
on page 8984, when you fit more than one model, all fitted models that compute the same semivariance are
placed in the same class of equivalence. For example, in this fitting example the top ranked GAU-GAU and
GAU-MAT nested models produce indistinguishable semivariograms; for that reason they are both placed in
the same class 1 of equivalence. The same occurs with the EXP, GAU-EXP, EXP-EXP, and MAT-EXP models
in the bottom of the table. By default, PROC VARIOGRAM uses the AIC as a secondary classification
criterion; hence models in each equivalence class are already ordered based on their AIC values.

Another remark in Output 109.1.6 is that despite submitting 12 model combinations for fitting, the table
shows only 10. You can easily see that the combinations MAT-GAU and MAT-MAT are not among the listed
models in the fit summary. This results from the behavior of the VARIOGRAM procedure in the following
situation: A parameter optimization takes place during the fitting process. In the present case the optimizer
keeps increasing the Matérn smoothness parameter � in the MAT-GAU model. At the limit of an infinite �
parameter, the Matérn form becomes the Gaussian form. For that reason, when the parameter � is driven
towards very high values, PROC VARIOGRAM automatically replaces the Matérn form with the Gaussian.
This switch converts the MAT-GAU model into a GAU-GAU model. However, a GAU-GAU model already
exists among the specified forms; consequently, the duplicate GAU-GAU model is skipped, and the fitted
model list is reduced by one model. A similar explanation justifies the omission of the MAT-MAT model
from the fit summary table.

In our example, the nested Gaussian-Gaussian model is the fitting selection of the procedure based on
the default ranking criteria. Output 109.1.7 displays additional information about the selected model. In
particular, you see the table with general information about the Gaussian-Gaussian model, the initial values
used for its parameters, and information about the optimization process for the fitting.

Output 109.1.7 Fitting and Optimization Information for Gaussian-Gaussian Model

Semivariogram Model
Fitting

Name Gaussian-Gaussian

Label Gau-Gau

Model Information

Parameter
Initial
Value

Nugget 0.0903

GauScale1 0.6709

GauRange1 100.0

GauScale2 0.6709

GauRange2 50.0230

Optimization Information

Optimization Technique Dual Quasi-Newton

Parameters in Optimization 5

Lower Boundaries 5

Upper Boundaries 0

Starting Values From PROC
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The estimated parameter values of the selected Gaussian-Gaussian model are shown in Output 109.1.8.

Output 109.1.8 Parameter Estimates of the Fitting Selected Model

Parameter Estimates

Parameter Estimate
Approx

Std Error DF t Value
Approx
Pr > |t|

Nugget 0.08308 0.05097 36 1.63 0.1118

GauScale1 0.3277 0.2077 36 1.58 0.1234

GauRange1 62.3127 19.8488 36 3.14 0.0034

GauScale2 1.2615 0.2070 36 6.10 <.0001

GauRange2 21.4596 3.2722 36 6.56 <.0001

By default, when you specify more than one model to fit, PROC VARIOGRAM produces a fit plot that
compares the first five classes of the successfully fit candidate models. The model that is selected according
to the specified fitting criteria is shown with a thicker line in the plot.

You can modify the number of displayed equivalence classes with the NCLASSES= suboption of the
PLOTS=FIT option. When you have such comparison plots, PROC VARIOGRAM displays the representative
model from each class of equivalence.

The default fit plot for the current model comparison is shown in Output 109.1.9. The legend informs you
there is one more model in the first class of equivalence, as the fitting summary table indicated earlier in
Output 109.1.6.
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Output 109.1.9 Fitted Theoretical and Empirical logAs Concentration Semivariograms for the Specified
Models

In the present example, all fitted models in the first five classes have very similar semivariograms. The
selected Gaussian-Gaussian model seems to have a relatively larger range than the rest of the displayed
models, but you can expect any of these models to exhibit a near-identical behavior in terms of spatial
correlation. As a result, all models in the displayed classes are likely to lead to very similar output, if you
proceed to use any of them for spatial prediction.

In that sense, semivariogram fitting is a partially subjective process, for which there might not exist only one
single correct answer to solve your problem. In the context of the example, on one hand you might conclude
that the selected Gaussian-Gaussian model is exactly sufficient to describe spatial correlation in the arsenic
study. On the other hand, the similar performance of all models might prompt you to choose instead a more
simple non-nested model for prediction like the Matérn or the Gaussian model.

Regardless of whether you might opt to sacrifice the statistically best fit (depending on your selected criteria)
to simplicity, eventually you are the one to decide which approach serves your study optimally. The model
fitting features of PROC VARIOGRAM offer you significant assistance so that you can assess your options
efficiently.
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Example 109.2: An Anisotropic Case Study with Surface Trend in the Data
This example shows how to examine data for nonrandom surface trends and anisotropy. You use simulated
data where the variable is atmospheric ozone (O3) concentrations measured in Dobson units (DU). The
coordinates are offsets from a point in the southwest corner of the measurement area, with the east and north
distances in units of kilometers (km). You work with the ozoneSet data set that contains 300 measurements
in a square area of 100 km � 100 km.

The following statements read the data set:

title 'Semivariogram Analysis in Anisotropic Case With Trend Removal';

data ozoneSet;
input East North Ozone @@;
datalines;

34.9 68.2 286 39.2 12.5 270 44.4 37.7 275 90.5 27.0 282
91.1 40.8 285 98.6 61.6 294 61.8 26.7 281 64.0 11.5 274
22.4 26.5 274 89.3 18.3 279 32.3 28.3 274 31.1 53.1 279
43.0 17.5 272 79.3 42.3 283 99.9 57.9 291 1.8 24.1 273
81.7 73.5 294 22.9 32.0 273 64.9 67.5 292 76.5 56.3 285
78.7 11.7 276 61.8 99.3 307 49.1 86.6 299 40.0 35.8 273
69.3 3.8 278 23.4 9.3 270 66.3 94.3 304 71.3 6.5 275
9.7 54.4 280 85.2 81.7 300 30.3 60.9 284 94.6 94.3 309

10.6 10.3 271 73.0 43.0 280 4.9 50.7 280 19.0 79.4 289
2.4 73.1 287 77.7 25.2 278 8.4 27.1 276 93.5 19.7 279
0.2 34.5 275 50.4 91.3 302 55.7 26.2 279 50.3 2.3 274

16.3 84.4 293 19.0 6.9 272 57.1 92.3 303 61.0 0.4 275
10.7 18.7 271 15.2 43.5 277 67.0 87.4 301 79.0 54.0 285
36.0 53.3 279 58.3 52.1 282 56.6 79.7 294 40.4 32.4 275
48.9 64.1 286 54.0 54.9 281 27.5 48.5 279 36.4 30.3 275
10.5 31.0 273 87.0 39.4 283 47.9 37.5 274 64.7 63.4 288
0.5 90.8 294 22.8 22.4 275 31.1 78.8 291 93.6 49.8 290
2.5 39.3 273 83.6 25.6 282 49.8 24.1 278 73.1 91.8 305

30.5 90.6 297 26.0 61.2 284 58.4 66.2 289 30.5 4.3 273
38.3 85.6 298 89.2 96.6 309 53.4 6.3 275 27.3 12.8 271
43.4 56.5 281 99.5 86.9 305 85.8 22.8 281 83.0 10.9 278
24.8 16.7 271 51.1 18.8 275 59.0 54.3 283 35.5 91.4 298
18.1 56.0 279 78.0 36.4 277 56.8 6.9 275 21.1 44.5 277
73.9 75.9 296 54.2 0.1 274 33.2 75.1 290 38.2 3.3 274
15.2 14.7 272 15.9 84.2 292 60.2 95.2 304 9.8 27.2 276
91.2 56.4 289 94.7 86.9 303 56.7 49.6 281 24.2 9.5 270
43.0 17.0 272 85.9 10.7 278 53.9 41.1 276 30.4 63.4 286
62.8 86.3 299 76.8 24.6 279 31.6 94.0 300 26.9 73.8 287
18.9 68.4 284 99.4 37.2 285 79.1 3.3 277 34.9 74.7 289
6.4 33.8 277 48.4 82.2 294 86.0 58.0 289 92.0 60.4 293

50.2 91.6 300 12.2 38.3 275 72.7 48.9 283 82.7 34.1 279
77.0 51.0 286 86.6 15.8 278 42.0 42.7 277 99.3 8.2 278
17.4 70.6 286 11.2 92.4 295 60.2 28.8 280 92.0 73.3 297
25.3 30.6 273 36.6 8.9 274 34.2 4.4 273 26.6 54.7 278
1.7 27.4 278 49.6 1.1 275 62.8 89.3 301 28.0 49.3 279

51.2 75.1 293 59.3 93.5 304 83.6 90.5 304 79.4 87.0 302
78.0 28.3 281 16.8 19.1 272 9.1 81.2 292 23.7 55.8 277
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75.5 21.3 279 64.4 43.3 279 38.9 98.9 303 22.5 87.9 293
96.7 37.9 285 92.3 93.9 308 16.9 25.4 273 15.2 61.5 283
73.8 94.0 306 57.4 97.2 305 73.2 4.9 276 39.2 82.3 294
95.7 99.4 315 66.0 98.4 306 95.3 26.9 283 45.4 75.3 291
64.8 15.4 276 69.8 55.4 284 36.3 74.9 290 9.9 22.2 276
65.8 13.9 276 13.0 82.0 293 95.6 77.2 301 32.5 55.6 279
45.8 35.5 275 62.2 6.6 274 25.2 51.2 279 92.4 8.1 277
40.5 35.3 273 9.9 3.9 271 43.5 44.0 278 68.6 61.3 287
64.2 77.5 296 57.6 81.6 294 69.5 64.7 291 64.3 95.1 304
2.8 62.4 283 33.2 83.3 294 10.7 71.0 285 24.3 88.2 294

94.5 32.2 283 21.0 67.6 286 20.1 71.6 286 85.2 71.3 296
94.8 30.7 283 53.4 92.0 301 81.0 50.0 287 54.6 29.9 277
71.1 90.1 303 15.2 2.9 271 83.6 17.8 278 76.0 21.8 279
55.6 37.4 275 86.7 83.7 303 43.6 83.6 295 44.2 31.7 274
90.0 83.3 300 6.2 0.5 270 42.2 87.7 298 31.7 4.3 273
91.4 41.2 285 78.0 50.6 286 27.1 56.1 278 72.6 63.9 291
29.3 49.9 281 49.0 36.9 275 13.9 53.5 280 93.1 83.2 300
73.0 61.6 289 63.1 27.5 280 38.3 72.5 287 72.7 34.2 277
6.9 32.3 274 17.1 58.6 280 19.6 94.6 297 2.7 36.5 276

34.5 5.5 275 98.6 95.9 313 9.1 71.1 285 88.6 55.8 287
26.8 78.5 289 64.8 66.6 292 59.7 25.7 280 47.3 70.2 288
6.1 94.4 296 50.5 82.7 296 9.1 41.6 276 86.0 71.0 296

75.2 69.8 293 73.3 84.8 300 42.5 15.9 274 56.1 76.1 292
87.9 41.2 285 65.1 9.8 274 79.0 41.2 282 44.6 65.1 287
54.7 68.3 289 57.0 26.8 279 8.7 12.3 270 33.7 61.9 286
25.0 55.8 278 69.3 94.9 306 49.2 64.6 287 78.2 93.7 307
47.9 26.6 277 96.9 51.4 292 39.6 73.4 287 37.9 66.1 285
94.5 71.4 296 51.6 18.3 276 37.6 73.2 287 68.5 10.7 274
46.7 9.6 273 87.4 38.9 282 45.6 43.9 277 70.7 76.9 296
82.8 53.6 287 82.5 55.4 286 37.8 5.1 275 89.8 96.1 309
63.9 4.9 276 2.0 11.7 270 31.3 59.2 282 93.9 65.3 296
47.9 93.0 301 29.9 36.0 274 14.6 28.3 274 17.5 70.1 286
2.6 68.5 282 23.1 12.0 268 36.8 20.4 273 80.9 9.0 276

39.2 0.0 274 26.2 44.3 276 81.9 12.9 277 3.2 21.4 272
76.9 76.7 297 88.6 7.7 277 9.7 8.4 273 26.7 91.5 296
73.8 6.1 276 33.7 39.3 276 64.0 58.4 286 5.7 91.2 295
85.8 93.8 307 85.8 39.1 281 93.9 63.4 295 53.1 46.3 278
51.9 42.9 277 16.8 75.7 288 29.2 66.9 285 37.4 72.5 287
;

The initial step is to explore the data set by inspecting the data spatial distribution. Run PROC VARIOGRAM,
specifying the NOVARIOGRAM option in the COMPUTE statement as follows:

ods graphics on;

proc variogram data=ozoneSet;
compute novariogram nhc=35;
coord xc=East yc=North;
var Ozone;

run;

The result is a scatter plot of the observed data shown in Output 109.2.1. The scatter plot suggests an almost
uniform spread of the measurements throughout the prediction area. No direct inference can be made about
the existence of a surface trend in the data. However, the apparent stratification of ozone values in the
northeast–southwest direction might indicate a nonrandom trend.
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Output 109.2.1 Ozone Observation Data Scatter Plot

You need to define the size and count of the data classes by specifying suitable values for the LAGDIS-
TANCE= and MAXLAGS= options, respectively. Compared to the smaller sample of thickness data used
in “Getting Started: VARIOGRAM Procedure” on page 8913, the larger size of the ozoneSet data results
in more densely populated distance classes for the same value of the NHCLASSES= option. After you
experiment with a variety of values for the NHCLASSES= option, you can adjust LAGDISTANCE= to
have a relatively small number. Then you can account for a large value of MAXLAGS= so that you obtain
many sample semivariogram points within your data correlation range. Specifying these values requires
some exploration, for which you might need to return to this point from a later stage in your semivariogram
analysis. For illustration purposes you now specify NHCLASSES=35.

Your choice of NHCLASSES=35 yields the pairwise distance intervals table in Output 109.2.2 and the
corresponding histogram in Output 109.2.3.



9010 F Chapter 109: The VARIOGRAM Procedure

Output 109.2.2 Pairwise Distance Intervals Table

Pairwise Distance Intervals

Lag
Class Bounds

Number
of Pairs

Percentage
of Pairs

0 0.00 2.01 52 0.12%

1 2.01 6.03 420 0.94%

2 6.03 10.06 815 1.82%

3 10.06 14.08 1143 2.55%

4 14.08 18.10 1518 3.38%

5 18.10 22.12 1680 3.75%

6 22.12 26.15 1931 4.31%

7 26.15 30.17 2135 4.76%

8 30.17 34.19 2285 5.09%

9 34.19 38.21 2408 5.37%

10 38.21 42.24 2551 5.69%

11 42.24 46.26 2444 5.45%

12 46.26 50.28 2535 5.65%

13 50.28 54.30 2487 5.55%

14 54.30 58.33 2460 5.48%

15 58.33 62.35 2391 5.33%

16 62.35 66.37 2302 5.13%

17 66.37 70.39 2285 5.09%

18 70.39 74.41 2079 4.64%

19 74.41 78.44 1786 3.98%

20 78.44 82.46 1640 3.66%

21 82.46 86.48 1493 3.33%

22 86.48 90.50 1243 2.77%

23 90.50 94.53 925 2.06%

24 94.53 98.55 710 1.58%

25 98.55 102.57 421 0.94%

26 102.57 106.59 274 0.61%

27 106.59 110.62 200 0.45%

28 110.62 114.64 120 0.27%

29 114.64 118.66 55 0.12%

30 118.66 122.68 35 0.08%

31 122.68 126.71 14 0.03%

32 126.71 130.73 11 0.02%

33 130.73 134.75 2 0.00%

34 134.75 138.77 0 0.00%

35 138.77 142.80 0 0.00%

Notice the overall high pair count in the majority of classes in Output 109.2.2. You can see that even for
higher values of NHCLASSES= the classes are still sufficiently populated for your semivariogram analysis
according to the rule of thumb stated in the section “Choosing the Size of Classes” on page 8973. Based on
the displayed information in Output 109.2.3, you specify LAGDISTANCE=4 km. You can further experiment
with smaller lag sizes to obtain more points in your sample semivariogram.
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You can focus on the MAXLAGS= specification at a later point. The important step now is to investigate
the presence of trends in the measurement. The following section makes a suggestion about how to remove
surface trends from your data and then continues the semivariogram analysis with the detrended data.

Output 109.2.3 Distribution of Pairwise Distances for Ozone Observation Data

Analysis with Surface Trend Removal

You can use a SAS/STAT predictive modeling procedure to extract surface trends from your original data. If
your goal is spatial prediction, you can continue processing the detrended data for the prediction tasks, and at
the end you can reinstate the trend at the prediction locations to report your analysis results.

In general, the exact form of the trend is unknown, as discussed in the section “Empirical Semivariograms
and Surface Trends” on page 8976. In this case, the spatial distribution of the measurements shown in
Figure 109.2.1 suggests that you can use a quadratic model to describe the surface trend like the one that
follows:

T .East;North/ D f0 C f1 ŒEast�C f2 ŒEast�2 C f3 ŒNorth�C f4 ŒNorth�2
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The following statements show how to invoke the GLM procedure for your ozone data and how to extract the
preceding trend from them:

proc glm data=ozoneSet plots=none;
model ozone = East East*East North North*North;
output out=gmout predicted=pred residual=ResidualOzone;

run;

Among other output, PROC GLM produces estimates for the parameters f0; : : : ; f4 in the preceding trend
model. Output 109.2.4 shows the table with the parameter estimates. In this table, the coefficient f0
corresponds to the intercept estimate, and the rest of the coefficients correspond to their matching variables;
for example, the estimate in the line of “East*East” refers to f2 in the preceding model. For more information
about the syntax and the PROC GLM output, see Chapter 45, “The GLM Procedure.”

Output 109.2.4 Parameter Estimates for the Surface Trend Model

Semivariogram Analysis in Anisotropic Case With Trend Removal

The GLM Procedure

Dependent Variable: Ozone

Semivariogram Analysis in Anisotropic Case With Trend Removal

The GLM Procedure

Dependent Variable: Ozone

Parameter Estimate
Standard

Error t Value Pr > |t|

Intercept 270.6798273 0.40595731 666.77 <.0001

East 0.0065148 0.01360281 0.48 0.6323

East*East 0.0010726 0.00012987 8.26 <.0001

North -0.0369159 0.01297491 -2.85 0.0047

North*North 0.0035587 0.00012659 28.11 <.0001

The detrending process leaves you with the GMOUT data set, which contains the ResidualOzone data
residuals. This time you run PROC VARIOGRAM again with the NOVARIOGRAM option to inspect the
detrended residuals, and with a request only for the observations plot, as follows:

proc variogram data=gmout plots(only)=observ;
compute novariogram nhc=35;
coord xc=East yc=North;
var ResidualOzone;

run;

The requested observations plot is shown in Output 109.2.5.
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Output 109.2.5 Ozone Residual Observation Data Scatter Plot

Before you proceed with the empirical semivariogram computation and model fitting, examine your data
for anisotropy. This investigation is necessary to portray the spatial structure of your SRF accurately. If
anisotropy exists, it manifests itself as different ranges or sills or both for the empirical semivariograms in
different directions.

You want detail in your analysis, so you ask for the empirical semivariance in 12 directions by specifying
NDIRECTIONS=12. Based on the NDIRECTIONS= option, empirical semivariograms are produced in
increments of the base angle � D 180ı=12 D 15ı.

You also choose ANGLETOLERANCE=22.5 and BANDWIDTH=20. A different choice of values produces
different empirical semivariograms, because these options can regulate the number of pairs that are included
in a class. Avoid assigning values that are too small to these parameters so that you can allow for an adequate
number of point pairs per class. At the same time, the higher the values of these parameters are, the more
data pairs that come from closely neighboring directions are included in each lag. Therefore, values for the
ANGLETOLERANCE= and BANDWIDTH= options that are too high pose a risk of losing information along
the particular direction. The side effect occurs because you incorporate data pairs from a broader spectrum
of angles; thus, you potentially amplify weaker anisotropy or weaken stronger anisotropy, as noted in the
section “Angle Classification” on page 8968. You can experiment with different ANGLETOLERANCE=
and BANDWIDTH= values to reach this balance with your data, if necessary.
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With the following statements you ask to display only the SEMIVAR plots in the specified number of
directions. Multiple empirical semivariograms are placed by default in panels, as Output 109.2.6 shows. If you
want an individual plot for each angle, then you need to further specify the plot option SEMIVAR(UNPACK).

proc variogram data=gmout plot(only)=semivar;
compute lagd=4 maxlag=16 ndir=12 atol=22.5 bandw=20;
coord xc=East yc=North;
var ResidualOzone;

run;

Output 109.2.6 Ozone Empirical Semivariograms with 0ı � � < 180ı and ı� D 15ı
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Output 109.2.6 continued
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Output 109.2.6 continued

The panels in Output 109.2.6 suggest that in some of the directions, such as for � D 0ı, the directional plots
tend to exhibit a somewhat noisy structure. This behavior can be due to the pairs distribution across the
particular direction. Specifically, based on the LAGDISTANCE= choice there might be insufficient pairs
present in a class. Also, depending on the ANGLETOLERANCE= and BANDWIDTH= values, too many
pairs might be considered from neighboring angles that potentially follow a modified structure. These are
factors that can increase the variability in the semivariance estimate. A different explanation might lie in the
existence of outliers in the data set; this aspect is further explored in “Example 109.5: A Box Plot of the
Square Root Difference Cloud” on page 9032.

This behavior is relatively mild here and should not obstruct your goal to study anisotropy in your data. You
can also perform individual computations in any direction. By doing so, you can fine-tune the computation
parameters and attempt to obtain smoother estimates of the sample semivariance.

Further in this study, the directional plots in Output 109.2.6 suggest that during shifting from � D 0ı

to � D 90ı, the empirical semivariogram range increases. Beyond the angle � D 90ı, the range starts
decreasing again until the whole circle is traversed at 180ı and small range values are encountered around
the N–S direction at � D 0ı. The sill seems to remain overall the same. This analysis suggests the presence
of anisotropy in the ozone concentrations, with the major axis oriented at about � D 90ı and the minor axis
situated perpendicular to the major axis at � D 0ı.
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The multidirectional analysis requires that for a given LAGDISTANCE= you also specify a MAXLAGS=
value. Since the ozone correlation range might be unknown (as assumed here), you can apply the rule of
thumb that suggests use of the half-extreme data distance in the direction of interest, as explained in the
section “Spatial Extent of the Empirical Semivariogram” on page 8974. Following the information displayed
in Output 109.2.3, for different directions this distance varies between 99:4=2 D 49:7 and 140:8=2 D 70:4
km. In turn, the pairwise distances table in Output 109.2.2 indicates that within this range of distances you
can specify MAXLAGS= to be between 12 and 17 lags. In this example you specify MAXLAGS=16.

At this point you are ready to continue with fitting theoretical semivariogram models to the empirical
semivariogram in the selected directions of � D 0ı and � D 90ı. By trying out different models, you see
that an exponential one is suitable for your empirical data:

z.h/ D c0

�
1 � exp

�
�
h

a0

��

For the purpose of the present example, it is reasonable to assume a constant nugget effect equal to zero,
based on the empirical semivariograms shown in Output 109.2.6. The same output suggests that the model
scale is likely to be above 2, and that the range might be relatively small in � D 0ı. You specify the PARMS
statement to set initial values for the exponential model parameters and account for these considerations.

In particular, you assign an initial value of zero to the nugget effect. Then you request a grid search for the
range and scale parameters, so that the optimal initial values set is selected for the parameter estimation in
each of the two angles � D 0ı and � D 90ı. By inspecting the empirical semivariograms in Output 109.2.6,
you specify the value list 2, 2.5, and 3 for the scale, and the values from 5 to 25 with a step of 10 for the
range. In addition, you specify the parameter 1 in the HOLD= option to designate the nugget effect parameter
as a constant. According to these specifications, you use the following statements:

proc variogram data=gmout plot(only)=fit;
compute lagd=4 maxlag=16;
directions 0(22.5,10) 90(22.5,10);
coord xc=East yc=North;
model form=exp;
parms (0.) (2 to 3 by 0.5) (5 to 25 by 10) / hold=(1);
var ResidualOzone;

run;

ods graphics off;

The VARIOGRAM procedure repeats the fitting process for each one of the selected directions. First, in
� D 0ı the parameter search table in Output 109.2.7 shows you which value combinations are tested initially
to choose the one that gives the lowest objective function value.
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Output 109.2.7 Parameter Search for the Selected Direction � D 0ı

Semivariogram Analysis in Anisotropic Case With Trend Removal

The VARIOGRAM Procedure

Dependent Variable: ResidualOzone
Angle: 0

Current Model: Exponential

Semivariogram Analysis in Anisotropic Case With Trend Removal

The VARIOGRAM Procedure

Dependent Variable: ResidualOzone
Angle: 0

Current Model: Exponential

Parameter Search

Set Nugget Scale Range
Objective
Function

1 0 2 5 391.06593

2 0 2 15 1740.0

3 0 2 25 5167.5

4 0 2.5 5 64.86565

5 0 2.5 15 664.03665

6 0 2.5 25 2480.5

7 0 3 5 72.86743

8 0 3 15 305.53306

9 0 3 25 1305.0

From this search, the combination of scale equal to 2.5 and a range of size 5 is passed as initial values to the
model fitting process. This result is reflected in the model information table shown in Output 109.2.8.

Output 109.2.8 Model Initial Values for the Selected Direction � D 0ı

Model Information

Parameter
Initial
Value Status

Nugget 0 Fixed

Scale 2.5000

Range 5.0000

Fitting is successful, and among the output objects you can see the estimated parameters and the fit summary
tables for the direction � D 0ı in Output 109.2.9.

Output 109.2.9 Weighted Least Squares Fitting Parameter Estimates and Summary for the Selected
Direction � D 0ı

Parameter Estimates

Parameter Estimate
Approx

Std Error DF t Value
Approx
Pr > |t|

Scale 2.6657 0.03830 15 69.60 <.0001

Range 3.7277 0.5609 15 6.65 <.0001

Fit Summary

Model
Weighted

SSE AIC

Exp 43.35103 19.91399



Example 109.2: An Anisotropic Case Study with Surface Trend in the Data F 9019

A corresponding parameter search takes place for the direction � D 90ı. The respective table and the choice
of initial values for fitting in the direction � D 90ı are shown in Output 109.2.10.

Output 109.2.10 Parameter Search and Model Initial Values for the Selected Direction � D 90ı

Parameter Search

Set Nugget Scale Range
Objective
Function

1 0 2 5 302.54551

2 0 2 15 635.93338

3 0 2 25 1996.0

4 0 2.5 5 95.09939

5 0 2.5 15 104.56776

6 0 2.5 25 662.06813

7 0 3 5 155.50670

8 0 3 15 20.48482

9 0 3 25 190.30599

Model Information

Parameter
Initial
Value Status

Nugget 0 Fixed

Scale 3.0000

Range 15.0000

Output 109.2.11 displays the estimated parameters and the fit summary for the direction � D 90ı.

Output 109.2.11 Weighted Least Squares Fitting Parameter Estimates and Summary for the Selected
Direction � D 90ı

Parameter Estimates

Parameter Estimate
Approx

Std Error DF t Value
Approx
Pr > |t|

Scale 2.9199 0.07007 15 41.67 <.0001

Range 14.7576 0.9530 15 15.49 <.0001

Fit Summary

Model
Weighted

SSE AIC

Exp 19.12246 6.00005

The fitted and empirical semivariograms for the selected directions are displayed in the panel of Out-
put 109.2.12.
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Output 109.2.12 Fitted Theoretical and Empirical Semivariogram for the Ozone Data in the � D 0ı and
� D 90ı Directions

Conclusively, your semivariogram analysis on the detrended ozone data suggests that the ozone SRF exhibits
anisotropy in the perpendicular directions of N–S (� D 0ı) and E–W (� D 90ı).

The sills in the two directions of anisotropy are similar in size. By inspecting again the empirical semivar-
iograms in Output 109.2.6, you could make the reasonable assumption that you have a case of geometric
anisotropy, where the range in the major axis is about 4.5 times larger than the minor axis range. If you
would like to use these PROC VARIOGRAM results for predictions, then you would need to specify a single
scale value for the geometric anisotropy sill. In this case you could choose an arbitrary value for the constant
scale from the narrow interval formed by the estimated scales in the previous results. For example, you can
specify the PARMS statement modified as shown in the following statement to approximate a common scale
for the semivariance in all directions:

parms (0.) (2.7) (5 to 25 by 10) / hold=(1,2);

As an alternative, you can use PROC VARIOGRAM to fit an exponential model to all different angles
examined in this example, and then select the constant scale value to be the mean of the scales across all
directions.
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Example 109.3: Analysis without Surface Trend Removal
This example uses PROC VARIOGRAM without removing potential surface trends in a data set in order
to investigate a distinguished spatial direction in the data. In doing so, this example also serves as a
guide to examine under which circumstances you might be able to bypass the effect of a trend on a
semivariogram. Typically though, for theoretical semivariogram estimations you follow the analysis presented
in “Example 109.2: An Anisotropic Case Study with Surface Trend in the Data” on page 9007.

As explained in the section “Details: VARIOGRAM Procedure” on page 8958, when you compute the empir-
ical semivariance for data that contain underlying surface trends, the outcome is the pseudo-semivariance.
Pseudo-semivariograms are not estimates of the theoretical semivariogram; hence, they provide no informa-
tion about the spatial continuity of your SRF.

However, in the section “Empirical Semivariograms and Surface Trends” on page 8976 it is mentioned that
you might still be able to perform a semivariogram analysis with potentially non-trend-free data, if you
suspect that your measurements might be trend-free across one or more specific directions. The example
demonstrates this approach.

Reconsider the ozone data presented at the beginning of “Example 109.2: An Anisotropic Case Study with
Surface Trend in the Data” on page 9007. The spatial distribution of the data is shown in Figure 109.2.1,
and the pairwise distance distribution for NHCLASSES=35 is illustrated in Figure 109.2.3. This exploratory
analysis suggested a LAGDISTANCE=4 km, and Figure 109.2.2 indicated that for this LAGDISTANCE=
you can consider a value of MAXLAGS=16.

Recall from the section “Empirical Semivariograms and Surface Trends” on page 8976 that you need to
investigate the empirical semivariogram of the data in a few different directions in order to identify a trend-free
direction. If such a direction exists, then you can proceed with this special type of analysis. The following
statements employ NDIRECTIONS=8 to examine eight directions:

ods graphics on;

proc variogram data=ozoneSet plot(only)=semivar;
compute lagd=4 maxlag=16 ndirections=8 robust;
coord xc=East yc=North;
var Ozone;

run;

By default, the range of 180ı is divided into eight equally distanced angles: � D 0ı, � D 22:5ı, � D 45ı,
� D 67:5ı, � D 90ı, � D 112:5ı, � D 135ı, and � D 157:5ı. The resulting empirical semivariograms for
these angles are shown in Output 109.3.1.
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Output 109.3.1 Ozone Empirical Semivariograms with 0ı � � < 180ı and ı� D 22:5ı
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Output 109.3.1 continued

The figures in Output 109.3.1 suggest an overall continuing increase with distance of the semivariance in all
directions. As explained in the section “Theoretical Semivariogram Models” on page 8958, this can be an
indication of systematic trends in the data. However, the direction of � D 112:5ı clearly indicates that the
increase rate, if any, is smaller than the corresponding rates across the rest of the directions. You then want to
search whether there exists a trend-free direction in the neighborhood of this angle.

Run PROC VARIOGRAM again, specifying several directions within an interval of angles where you
want to close in and you suspect the existence of a trend-free direction. In the following step you
specify ANGLETOL=15ı, which is smaller than the default value of 22.5ı, and you also specify
BANDWIDTH=10 km. The smaller values help with minimization of the interference with neighboring
directions, as discussed in the section “Angle Classification” on page 8968.
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The aforementioned considerations are addressed in the following statements:

proc variogram data=ozoneSet plot(only)=semivar(cla);
compute lagd=4 maxlag=16 robust;
directions 100(15,10) 103(15,10)

106(15,10) 108(15,10)
110(15,10) 112(15,10)
115(15,10) 118(15,10);

coord xc=East yc=North;
var Ozone;

run;

Your analysis has brought you to examine a narrow strip of angles within � D 100ı and � D 118ı. The
pseudo-semivariograms in Output 109.3.2 and Output 109.3.3 indicate that at the boundaries of this strip,
the angles display increasing semivariance with distance. On the other hand, within this interval there are
directions across which the semivariance is tentatively reaching a sill, and these are potential candidates to be
trend-free directions.

Output 109.3.2 Ozone Empirical Semivariograms in 100ı, 103ı, 106ı, and 108ı
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Output 109.3.3 Ozone Empirical Semivariograms in 110ı, 112ı, 115ı, and 118ı

You can further investigate this angle spectrum in more detail. For example, you can monitor additional
angles in between, or use a smaller LAGDISTANCE= and increased MAXLAGS= values to single out the
most qualified candidate. For the purpose of this example, you can consider the direction � D 108ı to very
likely be the trend-free one you are looking for.

From a physical standpoint, the trend-free direction, if it exists, is expected to be perpendicular to the direction
of the maximum dip in the values of the ozone field, as mentioned in the section “Empirical Semivariograms
and Surface Trends” on page 8976. If you cross-examine the ozone data distribution in Output 109.2.1,
the figure suggests that this direction exists and is slightly tilted clockwise with respect to the E–W axis.
This direction emerges from the mild stratification of the ozone values in your data distribution. The ozone
concentrations across it are similar when compared to surrounding directions, and as such, it has been
identified as a trend-free direction.

Your next step is to obtain the empirical semivariogram in the suspected trend-free direction of � D 108ı and
to perform a theoretical model fit.

The semivariance in Output 109.3.2 exhibits a slow, almost linear rise at short distances and seems to be
reaching the sill fast, rather than asymptotically. You can accommodate this behavior by using the spherical
model

z.h/ D

(
cn C �0

2
h
3
2
h
a0
�
1
2
. h
a0
/3
i
; for 0 < h � a0

c0; for a0 < h



9026 F Chapter 109: The VARIOGRAM Procedure

where z.0/ D 0 and a0 > 0. The empirical semivariograms also suggest that there does not seem to
be a nugget effect. Assume that in this example you are interested in what the fitting process concludes
about the nugget effect, so you skip the NUGGET= option in the MODEL statement. You also let PROC
VARIOGRAM provide initial values for the rest of the model parameters. Eventually, you use the PLOTS
option to inspect the classical and robust empirical semivariograms in the selected direction and to produce a
plot of the fitted model. The following statements implement these considerations:

proc variogram data=ozoneSet plot(only)=(semivar fit);
compute lagd=4 maxlag=16 robust cl;
directions 108(15,10);
coord xc=East yc=North;
model form=sph;
var ozone;

run;

ods graphics off;

The classical and robust empirical semivariograms in the selected direction � D 108ı are displayed in
Figure 109.3.4.

Output 109.3.4 Ozone Classical and Robust Empirical Semivariograms in � D 108ı
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The output continues with information about the fitting process, which terminates successfully and produces
the estimated parameters and the fit summary tables shown in Output 109.3.5. The near-zero nugget parameter
estimate indicates that you can consider the process to be practically free of nugget effect.

Output 109.3.5 Weighted Least Squares Fitting Parameter Estimates and Summary in � D 108ı

Parameter Estimates

Parameter Estimate
Approx

Std Error DF t Value
Approx
Pr > |t|

Nugget 0.006260 0.09449 14 0.07 0.9481

Scale 6.6791 0.1741 14 38.37 <.0001

Range 47.3012 2.0776 14 22.77 <.0001

Fit Summary

Model
Weighted

SSE AIC

Sph 13.13869 1.61991

The fitted and empirical semivariograms for the selected direction � D 108ı are displayed in Output 109.3.6.

Output 109.3.6 Fitted Theoretical and Empirical Semivariogram for the Ozone Data in � D 108ı
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A comparative look at the empirical and fitted semivariograms in Output 109.3.6 and Output 109.2.12
suggests that the analysis of the trend-free ResidualOzone produces a different outcome from that of the
original Ozone values. In fact, a more suitable comparison can be made between the semivariograms in the
assumed trend-free direction � D 108ı of the current scenario and the one shown in Output 109.2.6 in the
nearly identical direction � D 105ı. It might seem unreasonable that these two semivariograms are produced
both in the same ozone study and in a narrow band of directions free of apparent surface trends, yet they bear
no resemblance. However, the lack of similarity in these plots stems from operating on two different data sets
where the outcome depends on the actual data values.

More specifically, the semivariogram analysis treats the trend-free ozone set and the original ozone measure-
ments as different quantities. The process of detrending the original Ozone values is a transformation of
these values into the trend-free values of ResidualOzone. Any existing spatial correlation in the original
data is not necessarily retained within the transformed data. Depending on the transformation features, the
emerging data set has its own characteristics, as demonstrated in this example.

A final remark concerns the issue of isotropy. Based on the details presented in the section “Empirical
Semivariograms and Surface Trends” on page 8976, your knowledge of the spatial structure of the ozoneSet
data set is limited to the selected trend-free direction you indicated in the present example. You can generalize
this outcome for all spatial directions only if you consider the hypothesis of isotropy in the ozone field to be
reasonable. However, you cannot infer the assumption of anisotropy in the present example based on the
analysis in the section “Analysis with Surface Trend Removal” on page 9011. Again, the reason is that you
currently use the observed Ozone values, whereas the ResidualOzone data in the previous example emerged
from a transformation of the current data. Hence, you have essentially two data sets that do not necessarily
share the same properties.

Example 109.4: Covariogram and Semivariogram
The covariance that was reviewed in the section “Stationarity” on page 8965 is an alternative measure
of spatial continuity that can be used instead of the semivariance. In a similar manner to the empirical
semivariance that was presented in the section “Theoretical and Computational Details of the Semivariogram”
on page 8963, you can also compute the empirical covariance. The covariograms are plots of this quantity
and can be used to fit permissible theoretical covariance models, in correspondence to the semivariogram
analysis presented in the section “Theoretical Semivariogram Models” on page 8958. This example displays
a comparative view of the empirical covariogram and semivariogram, and examines some additional aspects
of these two measures.

You consider 500 simulations of an SRF Z.s/ in a square domain of 100 � 100 (106 km2). The following
DATA step defines the data locations:

title 'Covariogram and Semivariogram';

data dataCoord;
retain seed 837591;
do i=1 to 100;

East = round(100*ranuni(seed),0.1);
North = round(100*ranuni(seed),0.1);
output;

end;
run;
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For the simulations you use PROC SIM2D, which produces Gaussian simulations of SRFs with user-specified
covariance structure—see Chapter 91, “The SIM2D Procedure.” The Gaussian SRF implies full knowledge
of the SRF expected value EŒZ.s/� and variance VarŒZ.s/� at every location s. The following statements
simulate an isotropic, second-order stationary SRF with constant expected value and variance throughout the
simulation domain:

proc sim2d outsim=dataSims;
simulate numreal=500 seed=79750

nugget=2 scale=6 range=10 form=exp;
mean 30;
grid gdata=dataCoord xc=East yc=North;

run;

Here, the SIMULATE statement accommodates the simulation parameters. The NUMREAL= option specifies
that you want to perform 500 simulations, and the SEED= option specifies the seed for the simulation random
number generator. You use the MEAN statement to specify the expected value EŒZ.s/� D 30 units of Z. You
also specify two variance components. The first is the nugget effect, and you use the NUGGET= option
to set it to cn D 2. The second is the partial sill �02 D 6 that you specify with the SCALE= option. The
two variance components make up the total SRF variance VarŒZ.s/� D cn C �0

2 D 8. You assume an
exponential covariance structure to describe the field spatial continuity, where �02 is the sill value and its
range a0 D 10 km (effective range a� D 3a0 D 30 km) is specified by the RANGE= option. The option
FORM= specifies the covariance structure type.

The empirical semivariance and covariance are computed by the VARIOGRAM procedure, and are available
either in the ODS output semivariogram table (as variables Semivariance and Covariance, respectively) or in
the OUTVAR= data set. In the following statements you obtain these variables by using the OUTVAR= data
set of the VARIOGRAM procedure:

proc variogram data=dataSims outv=outv noprint;
compute lagd=3 maxlag=18;
coord xc=gxc yc=gyc;
by _ITER_;
var svalue;

run;

For each distance lag you take the average of the empirical measures over the number of simulations. PROC
SORT prepares the input data for PROC MEANS, which produces these averages and stores them in the
dataAvgs data set. This sequence is performed with the following statements:

proc sort data=outv;
by lag;

run;

proc means data=outv n mean noprint;
var Distance variog covar;
by lag;
output out=dataAvgs mean(variog)=Semivariance

mean(covar)=Covariance
mean(Distance)=Distance;

run;

The SGPLOT procedure creates the plot of the average empirical semivariogram and covariogram, as in the
following statements:
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proc sgplot data=dataAvgs;
title "Empirical Semivariogram and Covariogram";
xaxis label = "Distance" grid;
yaxis label = "Semivariance" min=-0.5 max=9 grid;
y2axis label = "Covariance" min=-0.5 max=9;
scatter y=Semivariance x=Distance /

markerattrs = GraphData1
name='Semivar'
legendlabel='Semivariance';

scatter y=Covariance x=Distance /
y2axis
markerattrs = GraphData2
name='Covar'
legendlabel='Covariance';

discretelegend 'Semivar' 'Covar';
run;

The plot of the average empirical semivariance and covariance of the preceding analysis is shown in
Output 109.4.1. The high number of simulations led to averages of empirical continuity measures that
accurately approximate the simulated SRF characteristics. Specifically, the empirical semivariogram and
covariogram both exhibit clearly exponential behavior. The semivariogram sill is approximately at the
specified variance VarŒZ.s/� D 8 of the SRF.

The simulated SRF is second-order stationary, so you expect at each lag the sum of the empirical semivariance
and covariance to approximate the field variance VarŒZ.s/�, as explained in the section “Stationarity” on
page 8965. This behavior is evident in Output 109.4.1.

This example concludes with a discussion of basic reasons why the empirical semivariogram analysis is
commonly preferred to the empirical covariance analysis. A first reason comes from the assumptions that are
necessary to compute each of these two measures. The condition of intrinsic stationarity that is required in
order to define the empirical semivariogram is less restrictive than the condition of second-order stationarity
that is required in order to consider the covariance function as a parameter of the process.

Also, an empirical semivariogram can indicate whether a nugget effect is present in your data sample, whereas
the empirical covariogram itself might not reveal this information. This point is illustrated in Output 109.4.1,
where you expect to see that C.0/ D VarŒZ.s/�, but the empirical covariogram cannot have a point at exactly
h D 0. A practical way to investigate for a nugget effect when you use empirical covariograms is as follows:
recall that the OUTVAR= data set provides you with the sample variance (shown in the COVAR column for
LAG=–1), as the following statement shows:

/* Obtain the sample variance from the data set ----------------*/

proc print data=dataAvgs (obs=1);
run;
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Output 109.4.1 Average Empirical Semivariogram and Covariogram from 500 Simulations

Output 109.4.2 is a partial output of the dataAvgs data set, which contains averages of the OUTVAR= data
set and shows the computed average C.0/ in the Covariance column. The combination of the empirical
covariogram and the C.0/ value can help you fit a theoretical covariance model that includes any nugget
effect, if present. See also the discussion in Schabenberger and Gotway (2005, section 4.2.2) about the
Matérn definition of the covariance function that is related to this issue. In particular, this definition provides
for an additional variance component in the covariance expression at h D 0 to account for the corresponding
nugget effect in the semivariogram.

Output 109.4.2 Partial Outcome of the dataAvgs Data Set

Empirical Semivariogram and CovariogramEmpirical Semivariogram and Covariogram

Obs LAG _TYPE_ _FREQ_ Semivariance Covariance Distance

1 -1 0 500 . 7.74832 .

In addition to the preceding points, if the SRF is nonstationary, the empirical semivariogram indicates that
the SRF variance increases with distance h, as Output 109.3.1 shows in “Example 109.3: Analysis without
Surface Trend Removal” on page 9021. In that case it makes no sense to compute the empirical covariogram.



9032 F Chapter 109: The VARIOGRAM Procedure

Specifically, the covariogram could provide you with an estimate of the sample variance, which is not
sufficient to indicate that the SRF might not be stationary (see also Chilès and Delfiner 1999, p. 31).

Finally, the definitions of the empirical semivariance and covariance in the section “Theoretical and Com-
putational Details of the Semivariogram” on page 8963 clearly show that the sample mean NZ and the SRF
expected value EŒZ.s/� are not important for the computation of the semivariance, but either one is necessary
for the covariance. Hence, the semivariance expression filters the mean, and this behavior is especially
useful when the mean is unknown. On the other hand, if EŒZ.s/� is unknown and the empirical covariance is
computed based on the sample mean NZ, this can induce additional bias in the covariance computation.

Example 109.5: A Box Plot of the Square Root Difference Cloud
The Gaussian form selected for the semivariogram in the section “Getting Started: VARIOGRAM Procedure”
on page 8913 is based on consideration of the plots of the sample semivariogram. For the coal thickness data,
the Gaussian form appears to be a reasonable choice.

However, it can often happen that a plot of the sample variogram shows so much scatter that no particular
form is evident. The cause of this scatter can be one or more outliers in the pairwise differences of the
measured quantities.

A method of identifying potential outliers is discussed in Cressie (1993, section 2.2.2). This example
illustrates how to use the OUTPAIR= data set from PROC VARIOGRAM to produce a square root difference
cloud, which is useful in detecting outliers.

For the SRF Z.s/; s 2 R2, the square root difference cloud for a particular direction e is given by

j Z.si C he/ �Z.si / j
1
2

for a given lag distance h. In the actual computation, all pairs P1P2 of points P1, P2 within a distance
tolerance around h and an angle tolerance around the direction e are used. This generates a number of point
pairs for each lag class h. The spread of these values gives an indication of outliers.

Following the example in the section “Getting Started: VARIOGRAM Procedure” on page 8913, this example
uses a basic LAGDISTANCE=7, with a distance tolerance of 3.5, and a direction of N–S, with an angle
tolerance ATOL=30ı.

First, use PROC VARIOGRAM to produce an OUTPAIR= data set. Then use a DATA step to subset this data
by choosing pairs within 30ı of N–S. In addition, compute lag class and square root difference variables, as
the following statements show:

title 'Square Root Difference Cloud Example';

proc variogram data=sashelp.thick outp=outp noprint;
compute novariogram;
coordinates xc=East yc=North;
var Thick;

run;
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data sqroot;
set outp;
/*- Include only points +/- 30 degrees of N-S -------*/
where abs(cos) < 0.5;
/*- Unit lag of 7, distance tolerance of 3.5 --------*/
lag_class=int(distance/7 + 0.5000001);
sqr_diff=sqrt(abs(v1-v2));

run;

proc sort data=sqroot;
by lag_class;

run;

Next, summarize the results by using the MEANS procedure:

proc means data=sqroot noprint n mean std;
var sqr_diff;
by lag_class;
output out=msqrt n=n mean=mean std=std;

run;
title2 'Summary of Results';

proc print data=msqrt;
id lag_class;
var n mean std;

run;

The preceding statements produce Output 109.5.1.

Output 109.5.1 Summary of Results

Square Root Difference Cloud Example
Summary of Results

Square Root Difference Cloud Example
Summary of Results

lag_class n mean std

0 5 0.47300 0.14263

1 31 0.77338 0.41467

2 51 1.17052 0.47800

3 58 1.52287 0.51454

4 65 1.68625 0.58465

5 65 1.66963 0.68582

6 80 1.79693 0.62929

7 88 1.73334 0.73191

8 83 1.75528 0.68767

9 108 1.72901 0.58274

10 80 1.48268 0.48695

11 84 1.19242 0.47037

12 68 0.89765 0.42510

13 38 0.84223 0.44249

14 7 1.05653 0.42548

15 3 1.35076 0.11472
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Finally, present the results in a box plot by using the SGPLOT procedure. The box plot facilitates the
detection of outliers. The statements are as follows:

proc sgplot data=sqroot;
xaxis label = "Lag Class";
yaxis label = "Square Root Difference";
title "Box Plot of the Square Root Difference Cloud";
vbox sqr_diff / category=lag_class;

run;

Output 109.5.2 suggests that outliers, if any, do not appear to be adversely affecting the empirical semi-
variogram in the N–S direction for the coal seam thickness data. The conclusion from Output 109.5.2 is
consistent with our previous semivariogram analysis of the same data set in the section “Getting Started:
VARIOGRAM Procedure” on page 8913. The effect of the isolated outliers in lag classes 6 and 10–12 in
Output 109.5.2 is demonstrated as the divergence between the classical and robust empirical semivariance
estimates in the higher distances in Output 109.7. The difference in these estimates comes from the definition
of the robust semivariance estimator Nz.h/ (see the section “Theoretical and Computational Details of the
Semivariogram” on page 8963), which imposes a smoothing effect on the outlier influence.

Output 109.5.2 Box Plot of the Square Root Difference Cloud
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Introduction to Special SAS Data Sets
All SAS/STAT procedures create SAS data sets. Any table generated by a procedure can be saved to a data
set by using the Output Delivery System (ODS), and many procedures also have syntax that enables you to
save other statistics to data sets. Some of these data sets are organized according to certain conventions so
that they can be read by a SAS/STAT procedure for further analysis. Such specially organized data sets are
recognized by the TYPE= data set attribute.

The CORR procedure (see the Base SAS Procedures Guide: Statistical Procedures), for example, can create
a data set with the attribute TYPE=CORR containing a correlation matrix. This TYPE=CORR data set can
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be read by the REG or FACTOR procedure, among others. If the original data set is large, using a special
SAS data set in this way can save computer time by avoiding the recomputation of the correlation matrix in
subsequent analyses.

PROC REG, for example, can create a TYPE=EST data set containing estimated regression coefficients.
If you need to make predictions for new observations, you can use the SCORE procedure to read both the
TYPE=EST data set and a data set containing the new observations. PROC SCORE can then compute
predicted values or residuals without repeating the entire regression analysis. See Chapter 88, “The SCORE
Procedure,” for an example.

A special SAS data set might contain different kinds of statistics. A special variable called _TYPE_ is
used to distinguish the various statistics. For example, in a TYPE=CORR data set, an observation in
which _TYPE_=’MEAN’ contains the means of the variables in the analysis, and an observation in which
_TYPE_=’STD’ contains the standard deviations. Correlations appear in observations with _TYPE_=’CORR’.
Another special variable, _NAME_, is needed to identify the row of the correlation matrix. Thus, the corre-
lation between variables X and Y is given by the value of the variable X in the observation for which
_TYPE_=’CORR’ and _NAME_=’Y’, or by the value of the variable Y in the observation for which
_TYPE_=’CORR’ and _NAME_=’X’.

The special data sets created by SAS/STAT procedures can generally be used directly by other procedures
without modification. However, if you create an output data set with PROC CORR and use the NOCORR
option to omit the correlation matrix from the OUT= data set, you need to set the TYPE= option either in
parentheses following the OUT= data set name in the PROC CORR statement or in parentheses following
the DATA= option in any other procedure that recognizes the special TYPE= attribute. In either case, the
TYPE= option should be set to COV, CSSCP, or SSCP according to what type of matrix is stored in the data
set and what data set types are accepted as input by the other procedures you plan to use. If you do not follow
these steps and you use the TYPE=CORR data set with no correlation matrix as input to another procedure,
the procedure might issue an error message indicating that the correlation matrix is missing from the data set.

You can create special SAS data sets directly in a DATA step by specifying the TYPE= option in parentheses
after the data set name in the DATA statement. See “Example A.2: Creating a TYPE=CORR Data Set in a
DATA Step” on page 9044 for an example. If you use a DATA step with a SET statement to modify a special
SAS data set, you must specify the TYPE= option in the DATA statement. The TYPE= attribute of the data
set in the SET statement is not automatically copied to the data set being created. You can determine the
TYPE= attribute of a data set by using the CONTENTS procedure (see “Example A.1: A TYPE=CORR
Data Set Produced by PROC CORR” on page 9043 and the Base SAS Procedures Guide for details).

Table A.1 summarizes the TYPE= data sets that can be used as input to SAS/STAT procedures. Table A.2
summarizes the TYPE= data sets that are created by SAS/STAT procedures and the statements each procedure
uses to create its special output data sets. Most procedures accept ordinary SAS data sets and create ordinary
output SAS data sets with no TYPE= specification in addition to the special data sets shown in the tables.
When you specify a data set with a type that the procedure does not recognize, the procedure prints an error
message and stops executing.
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Table A.1 SAS/STAT Procedures That Accept Special Input
Data Sets Types

Procedure Special TYPE= Data Sets Accepted

ACECLUS ACE, CORR, COV, SSCP, UCORR, UCOV
BOXPLOT BOXPLOT, CHARTSUM
CALIS CALISMDL, CORR, COV, FACTOR, SSCP, UCORR, UCOV, WEIGHT
CANDISC CORR, COV, SSCP, CSSCP
CATMOD EST
CLUSTER DISTANCE
DISCRIM CORR, COV, SSCP, CSSCP, LINEAR, QUAD, MIXED
FACTOR ACE, CORR, COV, FACTOR, SSCP, UCORR, UCOV
LIFEREG EST
LOGISTIC EST LOGISMOD
MI EST, COV, CORR
MIANALYZE EST, COV, CORR
MODECLUS DISTANCE
PHREG EST
PRINCOMP ACE, CORR, COV, EST, FACTOR, SSCP, UCORR, UCOV
PROBIT EST
QUANTREG EST
REG CORR, COV, SSCP, UCORR, UCOV
ROBUSTREG EST
SCORE SCORE= data set can be of any type
SIMNORM CORR, COV
SURVEYLOGISTIC EST
STEPDISC CORR, COV, SSCP, CSSCP
TREE TREE
VARCLUS CORR, COV, FACTOR, SSCP, UCORR, UCOV

Table A.2 SAS/STAT Procedures That Create Special Output
Data Set Types

Procedure TYPE= Statement and Option Required

ACECLUS ACE PROC ACECLUS OUTSTAT=

BOXPLOT BOXPLOT
CHARTSUM

PLOT / OUTBOX=
PLOT / OUTHISTORY=

CALIS CALISFIT
CALISMDL
CORR
COV
EST
WEIGHT

PROC CALIS OUTFIT=
PROC CALIS OUTMODEL=
PROC CALIS CORR OUTSTAT=
PROC CALIS OUTSTAT=
PROC CALIS OUTEST=
PROC CALIS OUTWGT=

CANCORR CORR
UCORR

PROC CANCORR OUTSTAT=
PROC CANCORR NOINT OUTSTAT=
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Table A.2 continued

Procedure TYPE= Statement and Option Required

CANDISC CORR PROC CANDISC OUTSTAT=

CATMOD EST RESPONSE / OUTEST=

CLUSTER TREE PROC CLUSTER OUTTREE=

DISCRIM LINEAR
QUAD
MIXED
CORR

PROC DISCRIM POOL=YES OUTSTAT=
PROC DISCRIM POOL=NO OUTSTAT=
PROC DISCRIM POOL=TEST OUTSTAT=
PROC DISCRIM METHOD=NPAR OUTSTAT=

DISTANCE DISTANCE
SIMILAR

PROC DISTANCE METHOD=distance-method OUT=
PROC DISTANCE METHOD=similarity-method OUT=

FACTOR FACTOR PROC FACTOR OUTSTAT=

LIFEREG EST PROC LIFEREG OUTEST=

LOGISTIC EST
LOGISMOD

PROC LOGISTIC OUTEST=
PROC LOGISTIC OUTMODEL=

MI COV
COV
COV
EST

EM OUTEM=
EM OUTITER=
MCMC OUTITER=
MCMC OUTEST=

NLIN EST PROC NLIN OUTEST=

ORTHOREG EST PROC ORTHOREG OUTEST=

PHREG EST PROC PHREG OUTEST=

PRINCOMP CORR
COV
UCORR
UCOV

PROC PRINCOMP OUTSTAT=
PROC PRINCOMP COV OUTSTAT=
PROC PRINCOMP NOINT OUTSTAT=
PROC PRINCOMP NOINT COV OUTSTAT=

PROBIT EST PROC PROBIT OUTEST=

QUANTREG EST PROC QUANTREG OUTEST=

REG EST
SSCP

PROC REG OUTEST=
PROC REG OUTSSCP=

ROBUSTREG EST PROC ROBUSTREG OUTEST=

VARCLUS CORR
UCORR
TREE

PROC VARCLUS OUTSTAT=
PROC VARCLUS NOINT OUTSTAT=
PROC VARCLUS OUTTREE=
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Special SAS Data Sets

TYPE=ACE Data Sets
A TYPE=ACE data set is created by the ACECLUS procedure, and it contains the approximate within-
cluster covariance estimate, as well as eigenvalues and eigenvectors from a canonical analysis, among other
statistics. It can be used as input to the ACECLUS procedure to initialize another execution of PROC
ACECLUS. It can also be used to compute canonical variable scores with PROC SCORE and as input to
PROC FACTOR, specifying METHOD=SCORE, to rotate the canonical variables. See Chapter 24, “The
ACECLUS Procedure,” for details.

TYPE=BOXPLOT Data Sets
A TYPE=BOXPLOT data set is created by and used by the BOXPLOT procedure. The data set contains the
group summary statistics and outlier values required for constructing a schematic box plot. Each observation
in a TYPE=BOXPLOT data set records the value of a single feature of one group’s box-and-whiskers plot,
such as its mean. Consequently, a TYPE=BOXPLOT data set contains multiple observations per group.
These must appear consecutively in the data set. The _TYPE_ variable identifies the feature whose value
is recorded in a given observation. _TYPE_ values of ’N’, ’MIN’, ’Q1’, ’MEDIAN’, ’MEAN’, ’Q3’, and
’MAX ’are required for each group. See Chapter 28, “The BOXPLOT Procedure,” for details.

TYPE=CALISFIT Data Sets
PROC CALIS creates a TYPE=CALISFIT data set. This data set contains the names of the model fit indices
and their values. A TYPE=CALISFIT data set is intended to save all the fit index values for future use,
especially when the customized fit summary table shows only a small number of fit indices. See Chapter 29,
“The CALIS Procedure,” for details.

TYPE=CALISMDL Data Sets
PROC CALIS creates and accepts as input a TYPE=CALISMDL data set. This data set contains the model
specification and the computed parameter estimates. A TYPE=CALISMDL data set is intended to be reused
as an input data set to specify good initial values in subsequent analyses by PROC CALIS. See Chapter 29,
“The CALIS Procedure,” for details.

TYPE=CHARTSUM Data Sets
A TYPE=CHARTSUM data set is created by and used by the BOXPLOT procedure. The data set con-
tains group summary statistics associated with box-and-whiskers plots. See Chapter 28, “The BOXPLOT
Procedure,” for details.



9042 F Appendix A: Special SAS Data Sets

TYPE=CORR Data Sets
A TYPE=CORR data set usually contains a correlation matrix and possibly other statistics including means,
standard deviations, and the number of observations in the original SAS data set from which the correlation
matrix was computed. Using PROC CORR with an output data set option (OUTP=, OUTS=, OUTK=,
OUTH=, or OUT=) produces a TYPE=CORR data set. (For a complete description of the CORR procedure,
see the Base SAS Procedures Guide: Statistical Procedures.) The CALIS, CANCORR, CANDISC, DISCRIM,
PRINCOMP, and VARCLUS procedures can also create a TYPE=CORR data set with additional statistics
(the CORR option is needed in PROC CALIS). A TYPE=CORR data set containing a correlation matrix can
be used as input for the ACECLUS, CALIS, CANCORR, CANDISC, DISCRIM, FACTOR, PRINCOMP,
REG, SCORE, STEPDISC, and VARCLUS procedures. The variables in a TYPE=CORR data set are as
follows:

• the BY variable or variables, if a BY statement is used with the procedure

• _TYPE_, a character variable of length eight with values identifying the type of statistic in each
observation, such as ’MEAN’, ’STD’, ’N’, and ’CORR’

• _NAME_, a character variable with values identifying the variable with which a given row of the
correlation matrix is associated

• other variables that were analyzed by the CORR procedure or other procedures

The usual values of the _TYPE_ variable are as follows:

_TYPE_ Contents
MEAN mean of each variable analyzed

STD standard deviation of each variable

N number of observations used in the analysis. PROC CORR records the number of nonmissing
values for each variable unless the NOMISS option is used. If the NOMISS option is specified,
or if the CALIS, CANCORR, CANDISC, PRINCOMP, or VARCLUS procedure is used to
create the data set, observations with one or more missing values are omitted from the analysis,
so this value is the same for each variable and provides the number of observations with no
missing values. If a FREQ statement is used with the procedure that creates the data set, the
number of observations is the sum of the relevant values of the variable in the FREQ statement.
Procedures that read a TYPE=CORR data set use the smallest value in the observation with
_TYPE_=’N’ as the number of observations in the analysis.

SUMWGT sum of the observation weights if a WEIGHT statement is used with the procedure that creates
the data set. The values are determined analogously to those of the _TYPE_=’N’ observation.

CORR correlations with the variable named by the _NAME_ variable

There might be additional observations in a TYPE=CORR data set depending on the particular procedure
and options used.

If you create a TYPE=CORR data set yourself, the data set need not contain the observations with
_TYPE_=’MEAN’, ’STD’, ’N’, or ’SUMWGT’, unless you intend to use one of the discriminant pro-
cedures. Procedures assume that all of the means are 0.0 and that the standard deviations are 1.0 if this
information is not in the TYPE=CORR data set. If _TYPE_=’N’ does not appear, most procedures assume
that the number of observations is 10,000; significance tests and other statistics that depend on the number of
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observations are, of course, meaningless. In the CALIS and CANCORR procedures, you can use the EDF=
option instead of including a _TYPE_=’N’ observation.

A correlation matrix is symmetric; that is, the correlation between X and Y is the same as the correlation
between Y and X. The CALIS, CANCORR, CANDISC, CORR, DISCRIM, PRINCOMP, and VARCLUS
procedures output the entire correlation matrix. If you create the data set yourself, you need to include only
one of the two occurrences of the correlation between two variables; the other can be given a missing value.

If you create a TYPE=CORR data set yourself, the _TYPE_ and _NAME_ variables are not necessary
except for use with the discriminant procedures and PROC SCORE. If there is no _TYPE_ variable, then all
observations are assumed to contain correlations. If there is no _NAME_ variable, the first observation is
assumed to correspond to the first variable in the analysis, the second observation to the second variable, and
so on. However, if you omit the _NAME_ variable, you will not be able to analyze arbitrary subsets of the
variables or list the variables in a VAR or MODEL statement in a different order.

Example A.1: A TYPE=CORR Data Set Produced by PROC CORR

See Figure A.1 for an example of a TYPE=CORR data set produced by the following SAS statements.
Figure A.2 displays partial output from PROC CONTENTS, which indicates that the “Data Set Type” is
’CORR’.

title 'Five Socioeconomic Variables';
title2 'Harman (1976), Modern Factor Analysis, Third Edition';

data SocEcon;
input Pop School Employ Services House;
datalines;

5700 12.8 2500 270 25000
1000 10.9 600 10 10000
3400 8.8 1000 10 9000
3800 13.6 1700 140 25000
4000 12.8 1600 140 25000
8200 8.3 2600 60 12000
1200 11.4 400 10 16000
9100 11.5 3300 60 14000
9900 12.5 3400 180 18000
9600 13.7 3600 390 25000
9600 9.6 3300 80 12000
9400 11.4 4000 100 13000
;

proc corr noprint out=corrcorr;
run;

proc print data=corrcorr;
run;

proc contents data=corrcorr;
run;
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Figure A.1 A TYPE=CORR Data Set Produced by PROC CORR

Five Socioeconomic Variables
Harman (1976), Modern Factor Analysis, Third Edition

Five Socioeconomic Variables
Harman (1976), Modern Factor Analysis, Third Edition

Obs _TYPE_ _NAME_ Pop School Employ Services House

1 MEAN 6241.67 11.4417 2333.33 120.833 17000.00

2 STD 3439.99 1.7865 1241.21 114.928 6367.53

3 N 12.00 12.0000 12.00 12.000 12.00

4 CORR Pop 1.00 0.0098 0.97 0.439 0.02

5 CORR School 0.01 1.0000 0.15 0.691 0.86

6 CORR Employ 0.97 0.1543 1.00 0.515 0.12

7 CORR Services 0.44 0.6914 0.51 1.000 0.78

8 CORR House 0.02 0.8631 0.12 0.778 1.00

Figure A.2 Contents of a TYPE=CORR Data Set

Five Socioeconomic Variables
Harman (1976), Modern Factor Analysis, Third Edition

The CONTENTS Procedure

Five Socioeconomic Variables
Harman (1976), Modern Factor Analysis, Third Edition

The CONTENTS Procedure

Data Set Name WORK.CORRCORR Observations 8

Member Type DATA Variables 7

Engine SASE7 Indexes 0

Created DDMMMYY:00:00:00 Observation Length 56

Last Modified DDMMMYY:00:00:00 Deleted Observations 0

Protection Compressed NO

Data Set Type CORR Sorted NO

Label Pearson Correlation Matrix

Data Representation Native

Encoding Session

Example A.2: Creating a TYPE=CORR Data Set in a DATA Step

This example creates a TYPE=CORR data set by reading a correlation matrix in a DATA step. Figure A.3
shows the resulting data set.

title 'Five Socioeconomic Variables';

data datacorr(type=corr);
infile cards missover;
_type_='corr';
input _Name_ $ Pop School Employ Services House;
datalines;

Pop 1.00000
School 0.00975 1.00000
Employ 0.97245 0.15428 1.00000
Services 0.43887 0.69141 0.51472 1.00000
House 0.02241 0.86307 0.12193 0.77765 1.00000
;
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proc print data=datacorr;
run;

Figure A.3 A TYPE=CORR Data Set Created by a DATA Step

Five Socioeconomic VariablesFive Socioeconomic Variables

OBS _type_ _Name_ Pop School Employ Services House

1 corr Pop 1.00000 . . . .

2 corr School 0.00975 1.00000 . . .

3 corr Employ 0.97245 0.15428 1.00000 . .

4 corr Services 0.43887 0.69141 0.51472 1.00000 .

5 corr House 0.02241 0.86307 0.12193 0.77765 1

TYPE=COV Data Sets
A TYPE=COV data set is similar to a TYPE=CORR data set except that it has _TYPE_=’COV’ observations
containing covariances instead of or in addition to _TYPE_=’CORR’ observations containing correlations.
The CALIS and PRINCOMP procedures create a TYPE=COV data set (the COV option is needed in
PROC PRINCOMP). You can also create a TYPE=COV data set by using PROC CORR with the COV and
NOCORR options and specifying the data set option TYPE=COV in parentheses following the name of the
output data set. You can use only the OUTP= or OUT= option to create a TYPE=COV data set with PROC
CORR. Another way to create a TYPE=COV data set is to read a covariance matrix in a data set, in the same
manner as shown in “Example A.2: Creating a TYPE=CORR Data Set in a DATA Step” on page 9044 for a
TYPE=CORR data set. TYPE=COV data sets are used by the same procedures that use TYPE=CORR data
sets.

TYPE=CSSCP Data Sets
A TYPE=CSSCP data set contains a corrected sum of squares and crossproducts (CSSCP) matrix.
TYPE=CSSCP data sets are created by using the CORR procedure with the CSSCP option and speci-
fying the data set option TYPE=CSSCP in parentheses following the name of the OUTP= or OUT= data
set. You can also create TYPE=CSSCP data sets in a DATA step; in this case, TYPE=CSSCP must be
specified as a data set option. The variables in a TYPE=CSSCP data set are the same as those found in a
TYPE=SSCP data set, except that there is not a variable called Intercept or a row with _NAME_=’Intercept’.
TYPE=CSSCP data sets are read by only the CANDISC, DISCRIM, and STEPDISC procedures. Formulas
useful for illustrating differences between corrected and uncorrected matrices in some special SAS data sets
are shown in the section “Definitional Formulas” on page 9050.

TYPE=DISTANCE Data Sets
PROC DISTANCE creates a TYPE=DISTANCE or TYPE=SIMILAR data set, depending on the METHOD=
option. TYPE=DISTANCE can be used as an input data set to PROC MODECLUS or PROC CLUSTER,
but TYPE=SIMILAR cannot be used as an input to any procedures. The proximity measures are stored as a
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lower triangular matrix or a square matrix in the OUT= data set (depending on the SHAPE= option). See
Chapter 36, “The DISTANCE Procedure,” for details. You can also create a TYPE=DISTANCE data set in a
DATA step by reading or computing a lower triangular or symmetric matrix of dissimilarity values, such as a
chart of mileage between cities. The number of observations must be equal to the number of variables used
in the analysis. This type of data set is used as input by the CLUSTER and MODECLUS procedures. PROC
CLUSTER ignores the upper triangular portion of a TYPE=DISTANCE data set and assumes that all main
diagonal values are zero, even if they are missing. PROC MODECLUS uses the entire distance matrix and
does not require the matrix to be symmetric. See Chapter 33, “The CLUSTER Procedure,” and Chapter 66,
“The MODECLUS Procedure,” for examples and details.

TYPE=EST Data Sets
A TYPE=EST data set contains parameter estimates. The CALIS, CATMOD, LIFEREG, LOGISTIC, NLIN,
ORTHOREG, PHREG, PROBIT, and REG procedures create TYPE=EST data sets when the OUTEST=
option is specified. A TYPE=EST data set produced by PROC LIFEREG, PROC ORTHOREG, or PROC
REG can be used with PROC SCORE to compute residuals or predicted values. The variables in a TYPE=EST
data set include the following:

• the BY variables, if a BY statement is used

• _TYPE_, a character variable of length eight, that indicates the type of estimate. The values depend on
which procedure created the data set. Usually a value of ’PARM’ or ’PARMS’ indicates estimated
regression coefficients, and a value of ’COV’ or ’COVB’ indicates estimated covariances of the
parameter estimates. Some procedures, such as PROC NLIN, have other values of _TYPE_ for special
purposes.

• _NAME_, a character variable that contains the values of the names of the rows of the covariance
matrix when the procedure outputs the covariance matrix of the parameter estimates

• variables that contain the parameter estimates, usually the same variables that appear in the VAR
statement or in any MODEL statement. See Chapter 29, “The CALIS Procedure,” Chapter 32, “The
CATMOD Procedure,” and Chapter 69, “The NLIN Procedure,” for details on the variable names used
in output data sets created by those procedures.

Other variables can be included depending on the particular procedure and options used.

Example A.3: A TYPE=EST Data Set Produced by PROC REG

Figure A.4 shows the TYPE=EST data set produced by the following statements:

proc reg data=SocEcon outest=regest covout;
full: model house=pop school employ services / noprint;
empser: model house=employ services / noprint;

run; quit;
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proc print data=regest;
run;

Figure A.4 A TYPE=EST Data Set Produced by PROC REG

Five Socioeconomic VariablesFive Socioeconomic Variables

OBS _MODEL_ _TYPE_ _NAME_ _DEPVAR_ _RMSE_ Intercept Pop School Employ Services House

1 full PARMS House 3122.03 -8074.21 0.65 2140.10 -2.92 27.81 -1

2 full COV Intercept House 3122.03 109408014.44 -9157.04 -9784744.54 20612.49 102764.89 .

3 full COV Pop House 3122.03 -9157.04 2.32 852.86 -6.20 -5.20 .

4 full COV School House 3122.03 -9784744.54 852.86 907886.36 -2042.24 -9608.59 .

5 full COV Employ House 3122.03 20612.49 -6.20 -2042.24 17.44 6.50 .

6 full COV Services House 3122.03 102764.89 -5.20 -9608.59 6.50 202.56 .

7 empser PARMS House 3789.96 15021.71 . . -1.94 53.88 -1

8 empser COV Intercept House 3789.96 5824096.19 . . -1915.99 -1294.94 .

9 empser COV Employ House 3789.96 -1915.99 . . 1.15 -6.41 .

10 empser COV Services House 3789.96 -1294.94 . . -6.41 134.49 .

TYPE=FACTOR Data Sets
A TYPE=FACTOR data set is created by PROC FACTOR when the OUTSTAT= option is specified. The
CALIS, CANCORR, FACTOR, PRINCOMP, SCORE, and VARCLUS procedures can use TYPE=FACTOR
data sets as input. The variables are the same as in a TYPE=CORR data set. The statistics include
means, standard deviations, sample size, correlations, eigenvalues, eigenvectors, factor patterns, residual
correlations, scoring coefficients, and others depending on the options specified. See Chapter 37, “The
FACTOR Procedure,” for details. When the NOINT option is used with the OUTSTAT= option in PROC
FACTOR, the value of the _TYPE_ variable is set to ’USCORE’ instead of ’SCORE’ to indicate that the
scoring coefficients have not been corrected for the mean. If this data set is used with PROC SCORE, the
value of the _TYPE_ variable tells PROC SCORE whether or not to subtract the mean from the scoring
coefficients.

TYPE=LINEAR Data Sets
A TYPE=LINEAR data set contains the coefficients of a linear function of the variables in observations with
_TYPE_=’LINEAR’. PROC DISCRIM stores linear discriminant function coefficients in a TYPE=LINEAR
data set when you specify METHOD=NORMAL (the default method), POOL=YES, and an OUTSTAT=
data set; the data set can be used in a subsequent invocation of PROC DISCRIM to classify additional
observations. Many other statistics can be included depending on the options used. See Chapter 35, “The
DISCRIM Procedure,” for details.
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TYPE=LOGISMOD Data Sets
A TYPE=LOGISMOD data set contains information about a logistic regression model fit by PROC LO-
GISTIC. PROC LOGISTIC both creates and reads TYPE=LOGISMOD data sets. See Chapter 60, “The
LOGISTIC Procedure,” for details.

TYPE=MIXED Data Sets
A TYPE=MIXED data set contains coefficients of either a linear or a quadratic function, or both if there are
BY groups. PROC DISCRIM produces a TYPE=MIXED data set when you specify METHOD=NORMAL
(the default method), POOL=TEST, and an OUTSTAT= data set. See Chapter 35, “The DISCRIM Procedure,”
for details.

TYPE=QUAD Data Sets
A TYPE=QUAD data set contains the coefficients of a quadratic function of the variables in observations with
_TYPE_=’QUAD’. PROC DISCRIM stores quadratic discriminant function coefficients in a TYPE=QUAD
data set when you specify METHOD=NORMAL (the default method), POOL=NO, and an OUTSTAT=
data set; the data set can be used in a subsequent invocation of PROC DISCRIM to classify additional
observations. Many other statistics can be included depending on the options used. See Chapter 35, “The
DISCRIM Procedure,” for details.

TYPE=SSCP Data Sets
A TYPE=SSCP data set contains an uncorrected sum of squares and crossproducts (SSCP) matrix.
TYPE=SSCP data sets are produced by PROC REG when the OUTSSCP= option is specified in the PROC
REG statement. You can also create a TYPE=SSCP data set by using PROC CORR with the SSCP option
and specifying the data set option TYPE=SSCP in parentheses following the name of the OUTP= or OUT=
data set. You can also create TYPE=SSCP data sets in a DATA step; in this case, TYPE=SSCP must be
specified as a data set option.

The variables in a TYPE=SSCP data set include those found in a TYPE=CORR data set. In addition, there is a
variable called Intercept that contains crossproducts for the intercept (sums of the variables). The SSCP matrix
is stored in observations with _TYPE_=’SSCP’, including a row with _NAME_=’Intercept’. PROC REG also
outputs an observation with _TYPE_=’N’. PROC CORR includes observations with _TYPE_=’MEAN’ and
_TYPE_=’STD’ as well. TYPE=SSCP data sets are used by the same procedures that use TYPE=CORR data
sets.

Example A.4: A TYPE=SSCP Data Set Produced by PROC REG

The following statements create a TYPE=SSCP data set from the SocEcon input data set created in “Example
A.1: A TYPE=CORR Data Set Produced by PROC CORR” on page 9043:
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proc reg data=SocEcon outsscp=regsscp;
model house=pop school employ services / noprint;

run; quit;

proc print data=regsscp;
run;

The data set is created by PROC REG and is displayed in Figure A.5.

Figure A.5 A TYPE=SSCP Data Set Produced by PROC REG

Five Socioeconomic VariablesFive Socioeconomic Variables

OBS _TYPE_ _NAME_ Intercept Pop School Employ Services House

1 SSCP Intercept 12.0 74900 137.30 28000 1450 204000

2 SSCP Pop 74900.0 597670000 857640.00 220440000 10959000 1278700000

3 SSCP School 137.3 857640 1606.05 324130 18152 2442100

4 SSCP Employ 28000.0 220440000 324130.00 82280000 4191000 486600000

5 SSCP Services 1450.0 10959000 18152.00 4191000 320500 30910000

6 SSCP House 204000.0 1278700000 2442100.00 486600000 30910000 3914000000

7 N 12.0 12 12.00 12 12 12

TYPE=TREE Data Sets
Some clustering procedures produce TYPE=TREE data sets. For example, in PROC CLUSTER, a
TYPE=TREE data set contains one observation for each observation in the input data set, plus one ob-
servation for each cluster of two or more observations (that is, one observation for each node of the cluster
tree). The total number of output observations is usually 2n – 1, where n is the number of input observations.
The density methods might produce fewer output observations when the number of clusters cannot be reduced
to one.

In PROC VARCLUS, the OUTTREE= data set contains one observation for each variable clustered plus one
observation for each cluster of two or more variables—that is, one observation for each node of the cluster
tree. The total number of output observations is between n and 2n – 1, where n is the number of variables
clustered. See Chapter 33, “The CLUSTER Procedure,” and Chapter 107, “The VARCLUS Procedure,” for
details.

TYPE=UCORR Data Sets
A TYPE=UCORR data set is almost identical to a TYPE=CORR data set, except that the correlations
are uncorrected for the mean. The corresponding value of the _TYPE_ variable is ’UCORR’ instead of
’CORR’. Uncorrected standard deviations are in observations with _TYPE_=’USTD’. A TYPE=UCORR
data set can be used as input for every SAS/STAT procedure that uses a TYPE=CORR data set, except for
the CANDISC, DISCRIM, and STEPDISC procedures. TYPE=UCORR data sets can be created by the
CANCORR, PRINCOMP, and VARCLUS procedures.
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TYPE=UCOV Data Sets
A TYPE=UCOV data set is similar to a TYPE=COV data set, except that the covariances are uncorrected
for the mean. Also, the corresponding value of the _TYPE_ variable is ’UCOV’ instead of ’COV’. A
TYPE=UCOV data set can be used as input for every SAS/STAT procedure that uses a TYPE=COV data set,
except for the CANDISC, DISCRIM, and STEPDISC procedures. TYPE=UCOV data sets can be created by
the PRINCOMP procedure.

TYPE=WEIGHT Data Sets
The CALIS procedure creates and accepts as input a TYPE=WEIGHT data set. This data set contains the
weight matrix used in generalized, weighted, or diagonally weighted least squares estimation. See Chapter 29,
“The CALIS Procedure,” for details.

Definitional Formulas
This section contrasts corrected and uncorrected SSCP, COV, and CORR matrices by showing how these
matrices can be computed. In the following formulas, assume that the data consist of two variables, X and Y,
with n observations.
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Overview of Sashelp Data Sets
SAS provides more than 200 data sets in the Sashelp library. These data sets are available for you to use for
examples and for testing code. For example, the following step uses the Sashelp.Class data set:

proc reg data=sashelp.Class;
model weight = height;

run; quit;

You do not need to provide a DATA step to use Sashelp data sets.
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The following steps list all the data sets that are available in Sashelp:

ods select none;
proc contents data=sashelp._all_;

ods output members=m;
run;
ods select all;

proc print;
where memtype = 'DATA';

run;

The results of these steps (more than 200 data set names) are not displayed.

The following steps provide detailed information about the Sashelp data sets:

proc contents data=sashelp._all_;
run;

The results of this step (hundreds of pages of PROC CONTENTS output) are not displayed.

Seventeen Sashelp data sets are used in SAS/STAT documentation, and the following sections describe these
data sets:

Sashelp.Baseball “Baseball Data” on page 9055

Sashelp.BEI “Tropical Rain Forest Tree Data” on page 9057

Sashelp.BMT “Bone Marrow Transplant Data” on page 9058

Sashelp.BWeight “Birth Weight Data” on page 9059

Sashelp.Class “Class Data” on page 9060

Sashelp.Comet “Comet Data” on page 9061

Sashelp.ENSO “El Niño–Southern Oscillation Data” on page 9062

Sashelp.Fish “Finland’s Lake Laengelmaevesi Fish Catch Data” on page 9063

Sashelp.Gas “Exhaust Emissions Data” on page 9065

Sashelp.Iris “Fisher (1936) Iris Data” on page 9066

Sashelp.JunkEMail “Junk E-mail Data” on page 9067

Sashelp.LeuTest “Leukemia Data Sets” on page 9070

Sashelp.LeuTrain “Leukemia Data Sets” on page 9070

Sashelp.Margarin “Margarine Data” on page 9072

Sashelp.Mileages “Flying Mileages between 10 US Cities Data” on page 9073

Sashelp.Thick “Coal Seam Thickness Data” on page 9074

Sashelp.Vote1980 “1980 US Presidential Election Data” on page 9075
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Baseball Data
The Sashelp.Baseball data set contains salary and performance information for Major League Baseball
players (excluding pitchers) who played at least one game in both the 1986 and 1987 seasons (Time Inc.
1987). The salaries are for the 1987 season, and the performance measures are from the 1986 season. The
following steps display information about the Sashelp.Baseball data set and create Figure B.1:

title 'Baseball Data';
proc contents data=sashelp.Baseball varnum;

ods select position;
run;

title 'The First Five Observations Out of 322';
proc print data=sashelp.Baseball(obs=5);
run;

Figure B.1 Baseball Data

Baseball DataBaseball Data

Variables in Creation Order

# Variable Type Len Label

1 Name Char 18 Player's Name

2 Team Char 14 Team at the End of 1986

3 nAtBat Num 8 Times at Bat in 1986

4 nHits Num 8 Hits in 1986

5 nHome Num 8 Home Runs in 1986

6 nRuns Num 8 Runs in 1986

7 nRBI Num 8 RBIs in 1986

8 nBB Num 8 Walks in 1986

9 YrMajor Num 8 Years in the Major Leagues

10 CrAtBat Num 8 Career Times at Bat

11 CrHits Num 8 Career Hits

12 CrHome Num 8 Career Home Runs

13 CrRuns Num 8 Career Runs

14 CrRbi Num 8 Career RBIs

15 CrBB Num 8 Career Walks

16 League Char 8 League at the End of 1986

17 Division Char 8 Division at the End of 1986

18 Position Char 8 Position(s) in 1986

19 nOuts Num 8 Put Outs in 1986

20 nAssts Num 8 Assists in 1986

21 nError Num 8 Errors in 1986

22 Salary Num 8 1987 Salary in $ Thousands

23 Div Char 16 League and Division

24 logSalary Num 8 Log Salary
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Figure B.1 continued

The First Five Observations Out of 322The First Five Observations Out of 322

Obs Name Team nAtBat nHits nHome nRuns nRBI nBB YrMajor CrAtBat CrHits CrHome

1 Allanson, Andy Cleveland 293 66 1 30 29 14 1 293 66 1

2 Ashby, Alan Houston 315 81 7 24 38 39 14 3449 835 69

3 Davis, Alan Seattle 479 130 18 66 72 76 3 1624 457 63

4 Dawson, Andre Montreal 496 141 20 65 78 37 11 5628 1575 225

5 Galarraga, Andres Montreal 321 87 10 39 42 30 2 396 101 12

Obs CrRuns CrRbi CrBB League Division Position nOuts nAssts nError Salary Div logSalary

1 30 29 14 American East C 446 33 20 . AE .

2 321 414 375 National West C 632 43 10 475.0 NW 6.16331

3 224 266 263 American West 1B 880 82 14 480.0 AW 6.17379

4 828 838 354 National East RF 200 11 3 500.0 NE 6.21461

5 48 46 33 National East 1B 805 40 4 91.5 NE 4.51634
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Tropical Rain Forest Tree Data
The Sashelp.BEI data set contains the locations of 3,604 trees in a number of tropical rain forests (Condit
1998; Hubbell and Foster 1983; Condit, Hubbell, and Foster 1996). A study window of 1,000 � 500 square
kilometers is used. The data set also contains covariates, represented by the variables Gradient and Elevation,
which were collected at over 20,301 locations on a regular grid across the study region. The variable Trees
distinguishes the event observations in the data set. The following steps display information about the data
set Sashelp.BEI and create Figure B.2:

title 'BEI Data';
proc contents data=sashelp.bei varnum;

ods select position;
run;

title 'The First Five Observations Out of 23,905';
proc print data=sashelp.bei(obs=5) heading=h noobs;
run;

title 'The Trees Variable';
proc freq data=sashelp.bei;

tables Trees;
run;

Figure B.2 Tropical Rain Forest Tree Data

BEI DataBEI Data

Variables in Creation
Order

# Variable Type Len

1 X Num 8

2 Y Num 8

3 Elevation Num 8

4 Gradient Num 8

5 Trees Num 8

The First Five Observations Out of 23,905The First Five Observations Out of 23,905

X Y Elevation Gradient Trees

11.7 151.1 . . 1

998.9 430.5 . . 1

980.1 433.5 . . 1

986.5 425.8 . . 1

944.1 415.1 . . 1

The Trees VariableThe Trees Variable

Trees Frequency Percent
Cumulative
Frequency

Cumulative
Percent

0 20301 84.92 20301 84.92

1 3604 15.08 23905 100.00
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Bone Marrow Transplant Data
The Sashelp.BMT (bone marrow transplant) data set is used to illustrate survival analysis methods (Klein and
Moeschberger 1997). At the time of transplant, each patient is classified into one of three risk categories:
ALL (acute lymphoblastic leukemia), AML-Low Risk (acute myelocytic leukemia, low risk), and AML-High
Risk. The endpoint of interest is the disease-free survival time, which is the time in days to death, relapse, or
the end of the study. In this data set, the variable Group represents the patient’s risk category, the variable T
represents the disease-free survival time, and the variable Status is the censoring indicator such that the value
1 indicates an event time and the value 0 indicates a censored time. The following steps display information
about the Sashelp.BMT data set and create Figure B.3:

title 'Bone Marrow Transplant Data';
proc contents data=sashelp.BMT varnum;

ods select position;
run;

title 'The First Five Observations Out of 137';
proc print data=sashelp.BMT(obs=5);
run;

title 'The Risk Group Variable';
proc freq data=sashelp.BMT;

tables group;
run;

Figure B.3 Bone Marrow Transplant Data

Bone Marrow Transplant DataBone Marrow Transplant Data

Variables in Creation Order

# Variable Type Len Label

1 Group Char 13 Disease Group

2 T Num 8 Disease-Free Survival Time

3 Status Num 8 Event Indictor: 1=Event 0=Censored

The First Five Observations Out of 137The First Five Observations Out of 137

Obs Group T Status

1 ALL 2081 0

2 ALL 1602 0

3 ALL 1496 0

4 ALL 1462 0

5 ALL 1433 0

The Risk Group VariableThe Risk Group Variable

Disease Group

Group Frequency Percent
Cumulative
Frequency

Cumulative
Percent

ALL 38 27.74 38 27.74

AML-High Risk 45 32.85 83 60.58

AML-Low Risk 54 39.42 137 100.00
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Birth Weight Data
The Sashelp.BWeight data set provides 1997 birth weight data from National Center for Health Statistics
(Koenker and Hallock 2001; Abreveya 2001). The data record live, singleton births to mothers between the
ages of 18 and 45 in the United States who were classified as black or white. The following steps display
information about the Sashelp.BWeight data set and create Figure B.4:

title 'Birth Weight Data';
proc contents data=sashelp.BWeight varnum;

ods select position;
run;

title 'The First Five Observations Out of 50,000';
proc print data=sashelp.BWeight(obs=5);
run;

Figure B.4 Birth Weight Data

Birth Weight DataBirth Weight Data

Variables in Creation Order

# Variable Type Len Label

1 Weight Num 8 Infant Birth Weight

2 Black Num 8 Black Mother

3 Married Num 8 Married Mother

4 Boy Num 8 Baby Boy

5 MomAge Num 8 Mother's Age

6 MomSmoke Num 8 Smoking Mother

7 CigsPerDay Num 8 Cigarettes Per Day

8 MomWtGain Num 8 Mother's Pregnancy Weight Gain

9 Visit Num 8 Prenatal Visit

10 MomEdLevel Num 8 Mother's Education Level

The First Five Observations Out of 50,000The First Five Observations Out of 50,000

Obs Weight Black Married Boy MomAge MomSmoke CigsPerDay MomWtGain Visit MomEdLevel

1 4111 0 1 1 -3 0 0 -16 1 0

2 3997 0 1 0 1 0 0 2 3 2

3 3572 0 1 1 0 0 0 -3 3 0

4 1956 0 1 1 -1 0 0 -5 3 2

5 3515 0 1 1 -6 0 0 -20 3 0
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Class Data
The Sashelp.Class data set provides information about a small fictitious class of students. Variables include
Sex, Age, Height, and Weight. This data set is frequently used in SAS documentation to illustrate basic SAS
coding. The following steps display information about the Sashelp.Class data set and create Figure B.5:

title 'Class Data';
proc contents data=sashelp.Class varnum;

ods select position;
run;

title 'The Full Data Set';
proc print data=sashelp.Class;
run;

Figure B.5 Class Data

Class DataClass Data

Variables in Creation
Order

# Variable Type Len

1 Name Char 8

2 Sex Char 1

3 Age Num 8

4 Height Num 8

5 Weight Num 8

The Full Data SetThe Full Data Set

Obs Name Sex Age Height Weight

1 Alfred M 14 69.0 112.5

2 Alice F 13 56.5 84.0

3 Barbara F 13 65.3 98.0

4 Carol F 14 62.8 102.5

5 Henry M 14 63.5 102.5

6 James M 12 57.3 83.0

7 Jane F 12 59.8 84.5

8 Janet F 15 62.5 112.5

9 Jeffrey M 13 62.5 84.0

10 John M 12 59.0 99.5

11 Joyce F 11 51.3 50.5

12 Judy F 14 64.3 90.0

13 Louise F 12 56.3 77.0

14 Mary F 15 66.5 112.0

15 Philip M 16 72.0 150.0

16 Robert M 12 64.8 128.0

17 Ronald M 15 67.0 133.0

18 Thomas M 11 57.5 85.0

19 William M 15 66.5 112.0
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Comet Data
The Sashelp.Comet data set provides information from the following experiment. Twenty-four male rats were
divided into four groups. Three groups received a daily oral dose of a 1,2-dimethylhydrazine dihydrochloride
in three dose levels (low, medium, and high, respectively); the fourth group was a control group. Three
additional animals received a positive control. Cell suspensions for each animal were scored for DNA
damage by using a comet assay (Ghebretinsae et al. 2013). The following steps display information about the
Sashelp.Comet data set and create Figure B.6:

title 'Comet Data';
proc contents data=sashelp.Comet varnum;

ods select position;
run;

title 'The First Five Observations Out of 4,050';
proc print data=sashelp.Comet(obs=5);
run;

Figure B.6 Comet Data

Comet DataComet Data

Variables in Creation Order

# Variable Type Len Label

1 Dose Num 8 1,2 Dimethylhydrazine dihydrochloride Dose Level

2 Rat Num 8 Rat Index

3 Sample Num 8 Slide Index of Grouped Cells from a Rat

4 Length Num 8 Tail Length of the Comet

The First Five Observations Out of 4,050The First Five Observations Out of 4,050

Obs Dose Rat Sample Length

1 0 1 1 15.3527

2 0 1 1 16.1826

3 0 1 1 14.9378

4 0 1 1 12.4481

5 0 1 1 12.8631
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El Niño–Southern Oscillation Data
The Sashelp.ENSO (El Niño–Southern Oscillation) data set contains measurements of monthly averaged
atmospheric pressure differences between Easter Island and Darwin, Australia, for a period of 168 months
(National Institute of Standards and Technology 1998). These pressure differences drive the southern trade
winds. This data set is used to illustrate fitting nonlinear functions to a scatter plot by using methods such as
loess and penalized B-splines. These data show both seasonal variations and variations due to El Niño. The
following steps display information about the Sashelp.ENSO data set and create Figure B.7:

title 'El Nino Southern Oscillation Data';
proc contents data=sashelp.ENSO varnum;

ods select position;
run;

title 'The First Five Observations Out of 168';
proc print data=sashelp.ENSO(obs=5);
run;

Figure B.7 El Niño–Southern Oscillation Data

El Nino Southern Oscillation DataEl Nino Southern Oscillation Data

Variables in Creation
Order

# Variable Type Len

1 Month Num 8

2 Year Num 8

3 Pressure Num 8

The First Five Observations Out of 168The First Five Observations Out of 168

Obs Month Year Pressure

1 1 0.08333 12.9

2 2 0.16667 11.3

3 3 0.25000 10.6

4 4 0.33333 11.2

5 5 0.41667 10.9
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Finland’s Lake Laengelmaevesi Fish Catch Data
The Sashelp.Fish catch data set contains measurements of 159 fish that were caught in Finland’s Lake
Laengelmaevesi (Puranen 1917); it is used to illustrate discriminant analysis. For each of the seven species
(bream, roach, whitefish, parkki, perch, pike, and smelt), the weight, length, height, and width of each fish
are tallied. Three different length measurements are recorded: from the nose of the fish to the beginning of
its tail, from the nose to the notch of its tail, and from the nose to the end of its tail. The height and width
are recorded as percentages of the third length variable. The following steps display information about the
Sashelp.Fish data set and create Figure B.8:

title 'Finland''s Lake Laengelmaevesi Fish Catch Data';
proc contents data=sashelp.Fish varnum;

ods select position;
run;

title 'The First Five Observations Out of 159';
proc print data=sashelp.Fish(obs=5);
run;

title 'The Fish Species Variable';
proc freq data=sashelp.Fish;

tables species;
run;

Figure B.8 Finland’s Lake Laengelmaevesi Fish Catch Data

Finland's Lake Laengelmaevesi Fish Catch DataFinland's Lake Laengelmaevesi Fish Catch Data

Variables in Creation
Order

# Variable Type Len

1 Species Char 9

2 Weight Num 8

3 Length1 Num 8

4 Length2 Num 8

5 Length3 Num 8

6 Height Num 8

7 Width Num 8

The First Five Observations Out of 159The First Five Observations Out of 159

Obs Species Weight Length1 Length2 Length3 Height Width

1 Bream 242 23.2 25.4 30.0 11.5200 4.0200

2 Bream 290 24.0 26.3 31.2 12.4800 4.3056

3 Bream 340 23.9 26.5 31.1 12.3778 4.6961

4 Bream 363 26.3 29.0 33.5 12.7300 4.4555

5 Bream 430 26.5 29.0 34.0 12.4440 5.1340
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Figure B.8 continued

The Fish Species VariableThe Fish Species Variable

Species Frequency Percent
Cumulative
Frequency

Cumulative
Percent

Bream 35 22.01 35 22.01

Parkki 11 6.92 46 28.93

Perch 56 35.22 102 64.15

Pike 17 10.69 119 74.84

Roach 20 12.58 139 87.42

Smelt 14 8.81 153 96.23

Whitefish 6 3.77 159 100.00
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Exhaust Emissions Data
The Sashelp.Gas data set contains data from an experiment about gasoline engine exhaust emissions
(Brinkman 1981). Nitrogen oxide emissions from a single-cylinder engine are measured for various combina-
tions of fuel, compression ratio, and equivalence ratio. This data set is used to illustrate how to fit models by
using nonlinearly transformed data. The following steps display information about the Sashelp.Gas data set
and create Figure B.9:

title 'Exhaust Emissions Data';
proc contents data=sashelp.Gas varnum;

ods select position;
run;

title 'The First Five Observations Out of 171';
proc print data=sashelp.Gas(obs=5);
run;

title 'The Fuel Type Variable';
proc freq data=sashelp.Gas;

tables fuel;
run;

Figure B.9 Exhaust Emissions Data

Exhaust Emissions DataExhaust Emissions Data

Variables in Creation Order

# Variable Type Len Label

1 Fuel Char 8

2 CpRatio Num 8 Compression Ratio

3 EqRatio Num 8 Equivalence Ratio

4 NOx Num 8 Nitrogen Oxide

The First Five Observations Out of 171The First Five Observations Out of 171

Obs Fuel CpRatio EqRatio NOx

1 Ethanol 12 0.907 3.741

2 Ethanol 12 0.761 2.295

3 Ethanol 12 1.108 1.498

4 Ethanol 12 1.016 2.881

5 Ethanol 12 1.189 0.760

The Fuel Type VariableThe Fuel Type Variable

Fuel Frequency Percent
Cumulative
Frequency

Cumulative
Percent

82rongas 9 5.26 9 5.26

94%Eth 25 14.62 34 19.88

Ethanol 90 52.63 124 72.51

Gasohol 13 7.60 137 80.12

Indolene 22 12.87 159 92.98

Methanol 12 7.02 171 100.00
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Fisher (1936) Iris Data
The Sashelp.Iris data set (Fisher 1936) is widely used for examples of discriminant analysis and cluster
analysis. The data are measurements in millimeters of the sepal length, sepal width, petal length, and petal
width of 50 iris specimens from each of three species: Iris setosa, I. versicolor, and I. virginica. The following
steps display information about the Sashelp.Iris data set and create Figure B.10:

title 'Fisher (1936) Iris Data';
proc contents data=sashelp.Iris varnum;

ods select position;
run;

title 'The First Five Observations Out of 150';
proc print data=sashelp.Iris(obs=5);
run;

title 'The Iris Species Variable';
proc freq data=sashelp.Iris;

tables species;
run;

Figure B.10 Fisher (1936) Iris Data

Fisher (1936) Iris DataFisher (1936) Iris Data

Variables in Creation Order

# Variable Type Len Label

1 Species Char 10 Iris Species

2 SepalLength Num 8 Sepal Length (mm)

3 SepalWidth Num 8 Sepal Width (mm)

4 PetalLength Num 8 Petal Length (mm)

5 PetalWidth Num 8 Petal Width (mm)

The First Five Observations Out of 150The First Five Observations Out of 150

Obs Species SepalLength SepalWidth PetalLength PetalWidth

1 Setosa 50 33 14 2

2 Setosa 46 34 14 3

3 Setosa 46 36 10 2

4 Setosa 51 33 17 5

5 Setosa 55 35 13 2

The Iris Species VariableThe Iris Species Variable

Iris Species

Species Frequency Percent
Cumulative
Frequency

Cumulative
Percent

Setosa 50 33.33 50 33.33

Versicolor 50 33.33 100 66.67

Virginica 50 33.33 150 100.00
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Junk E-mail Data
The Sashelp.JunkMail data set comes from a study that classifies whether an e-mail is junk e-mail (coded
as 1) or not (coded as 0). The data were collected in Hewlett-Packard labs and donated by George Forman.
The data set contains 4,601 observations with 59 variables. The response variable is a binary indicator of
whether an e-mail is considered spam or not. There are 57 predictor variables that record frequencies of
some common words and characters and lengths of uninterrupted sequences of capital letters in e-mails. The
following steps display information about the Sashelp.JunkMail data set and create Figure B.11:

title 'Junk E-mail Data';
proc contents data=sashelp.JunkMail varnum;

ods select position;
run;

title 'The First Five Observations Out of 4,601';
proc print data=sashelp.JunkMail(obs=5) heading=horizontal;
run;

Figure B.11 Junk E-mail Data

Junk E-mail DataJunk E-mail Data

Variables in Creation Order

# Variable Type Len Label

1 Test Num 8 0 - Training, 1 - Test

2 Make Num 8

3 Address Num 8

4 All Num 8

5 _3D Num 8 3D

6 Our Num 8

7 Over Num 8

8 Remove Num 8

9 Internet Num 8

10 Order Num 8

11 Mail Num 8

12 Receive Num 8

13 Will Num 8

14 People Num 8

15 Report Num 8

16 Addresses Num 8

17 Free Num 8

18 Business Num 8

19 Email Num 8

20 You Num 8

21 Credit Num 8

22 Your Num 8

23 Font Num 8

24 _000 Num 8 000

25 Money Num 8
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Figure B.11 continued

Junk E-mail DataJunk E-mail Data

Variables in Creation Order

# Variable Type Len Label

26 HP Num 8

27 HPL Num 8

28 George Num 8

29 _650 Num 8 650

30 Lab Num 8

31 Labs Num 8

32 Telnet Num 8

33 _857 Num 8 857

34 Data Num 8

35 _415 Num 8 415

36 _85 Num 8 85

37 Technology Num 8

38 _1999 Num 8 1999

39 Parts Num 8

40 PM Num 8

41 Direct Num 8

42 CS Num 8

43 Meeting Num 8

44 Original Num 8

45 Project Num 8

46 RE Num 8

47 Edu Num 8

48 Table Num 8

49 Conference Num 8

50 Semicolon Num 8

51 Paren Num 8

52 Bracket Num 8

53 Exclamation Num 8

54 Dollar Num 8

55 Pound Num 8

56 CapAvg Num 8 Capital Run Length Average

57 CapLong Num 8 Capital Run Length Longest

58 CapTotal Num 8 Capital Run Length Total

59 Class Num 8 0 - Not Junk, 1 - Junk
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Figure B.11 continued

The First Five Observations Out of 4,601The First Five Observations Out of 4,601

Obs Test Make Address All _3D Our Over Remove Internet Order Mail Receive Will People Report

1 1 0.00 0.64 0.64 0 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.64 0.00 0.00

2 0 0.21 0.28 0.50 0 0.14 0.28 0.21 0.07 0.00 0.94 0.21 0.79 0.65 0.21

3 1 0.06 0.00 0.71 0 1.23 0.19 0.19 0.12 0.64 0.25 0.38 0.45 0.12 0.00

4 0 0.00 0.00 0.00 0 0.63 0.00 0.31 0.63 0.31 0.63 0.31 0.31 0.31 0.00

5 0 0.00 0.00 0.00 0 0.63 0.00 0.31 0.63 0.31 0.63 0.31 0.31 0.31 0.00

Obs Addresses Free Business Email You Credit Your Font _000 Money HP HPL George _650 Lab Labs

1 0.00 0.32 0.00 1.29 1.93 0.00 0.96 0 0.00 0.00 0 0 0 0 0 0

2 0.14 0.14 0.07 0.28 3.47 0.00 1.59 0 0.43 0.43 0 0 0 0 0 0

3 1.75 0.06 0.06 1.03 1.36 0.32 0.51 0 1.16 0.06 0 0 0 0 0 0

4 0.00 0.31 0.00 0.00 3.18 0.00 0.31 0 0.00 0.00 0 0 0 0 0 0

5 0.00 0.31 0.00 0.00 3.18 0.00 0.31 0 0.00 0.00 0 0 0 0 0 0

Obs Telnet _857 Data _415 _85 Technology _1999 Parts PM Direct CS Meeting Original Project RE Edu

1 0 0 0 0 0 0 0.00 0 0 0.00 0 0 0.00 0 0.00 0.00

2 0 0 0 0 0 0 0.07 0 0 0.00 0 0 0.00 0 0.00 0.00

3 0 0 0 0 0 0 0.00 0 0 0.06 0 0 0.12 0 0.06 0.06

4 0 0 0 0 0 0 0.00 0 0 0.00 0 0 0.00 0 0.00 0.00

5 0 0 0 0 0 0 0.00 0 0 0.00 0 0 0.00 0 0.00 0.00

Obs Table Conference Semicolon Paren Bracket Exclamation Dollar Pound CapAvg CapLong CapTotal Class

1 0 0 0.00 0.000 0 0.778 0.000 0.000 3.756 61 278 1

2 0 0 0.00 0.132 0 0.372 0.180 0.048 5.114 101 1028 1

3 0 0 0.01 0.143 0 0.276 0.184 0.010 9.821 485 2259 1

4 0 0 0.00 0.137 0 0.137 0.000 0.000 3.537 40 191 1

5 0 0 0.00 0.135 0 0.135 0.000 0.000 3.537 40 191 1
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Leukemia Data Sets
The Sashelp.LeuTrain and Sashelp.LeuTest data sets provide microarray data from (Golub et al. 1999; Zou
and Hastie 2005). The Sashelp.LeuTrain data set consists of 7,129 genes and 38 training samples, and the
Sashelp.LeuTest data set consists of the same 7,129 genes and 34 testing samples. Among the 38 training
samples, 27 are type 1 leukemia (acute lymphoblastic leukemia, coded in the data as 1) and 11 are type 2
leukemia (acute myeloid leukemia, coded in the data as –1).

The following steps display information about Sashelp.LeuTrain data set and create Figure B.12:

title 'Leukemia Training Data';
proc contents data=sashelp.LeuTrain varnum;

ods select position;
run;

title 'The First Five Observations and 11 Variables';
proc print data=sashelp.LeuTrain(obs=5);

var y x1-x10;
run;

title 'Leukemia Type Variable';
proc freq data=sashelp.LeuTrain;

tables y;
run;

Figure B.12 Leukemia Training Data

The First Five Observations and 11 VariablesThe First Five Observations and 11 Variables

Obs y x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

1 1 -1.46240 -0.64514 -0.83593 -1.47040 -0.91997 -1.58430 0.71239 -0.54229 1.05090 0.23649

2 1 -0.66480 0.20615 -0.36857 0.25822 -0.47567 -0.35497 -1.11940 -0.29251 -0.37542 -0.38760

3 1 -0.20049 0.37994 -2.38280 0.43960 -1.22700 -1.76220 0.10464 -1.80750 0.49292 -1.67000

4 1 -0.25776 0.27994 1.83920 -1.62950 -1.28750 -1.26510 0.76334 -0.61645 -0.31578 -0.32193

5 1 -0.56457 -0.39588 -0.98372 -0.83741 -0.41477 0.14834 -0.03550 -0.10022 -0.75753 0.37068

Leukemia Type VariableLeukemia Type Variable

y Frequency Percent
Cumulative
Frequency

Cumulative
Percent

-1 11 28.95 11 28.95

1 27 71.05 38 100.00

The results of the PROC CONTENTS step are not displayed. The results show that there are 7,130 variables,
y and x1-x7129.
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The following steps display information about Sashelp.LeuTest data set and create Figure B.13:

title 'Leukemia Test Data';
proc contents data=sashelp.LeuTest varnum;

ods select position;
run;

title 'The First Five Observations and 11 Variables';
proc print data=sashelp.LeuTest(obs=5);

var y x1-x10;
run;

title 'Leukemia Type Variable';
proc freq data=sashelp.LeuTest;

tables y;
run;

Figure B.13 Leukemia Test Data

The First Five Observations and 11 VariablesThe First Five Observations and 11 Variables

Obs y x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

1 1 -1.38240 0.06288 0.62252 1.61210 0.52179 0.11516 -1.85270 -0.39956 0.88007 -0.86565

2 1 0.65192 -0.35476 2.29630 1.64980 0.50211 -0.37315 1.76820 -1.74270 1.63080 0.60171

3 1 0.65409 1.41340 0.22593 -0.06719 0.30015 0.76964 -0.26212 0.94481 -0.51884 -0.60999

4 1 1.07220 0.01959 0.16875 0.84779 0.24533 0.79682 0.41442 0.35122 -0.70177 1.85410

5 1 2.12480 1.66370 -0.35986 1.15850 0.89379 0.56310 -0.92476 0.56790 -0.56039 -2.12400

Leukemia Type VariableLeukemia Type Variable

y Frequency Percent
Cumulative
Frequency

Cumulative
Percent

-1 14 41.18 14 41.18

1 20 58.82 34 100.00

The results of the PROC CONTENTS step are not displayed. The results show that there are 7,130 variables,
y and x1-x7129.
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Margarine Data
The Sashelp.Margarin data set is a scanner panel data set that lists purchases of margarine (Rossi, Allenby,
and McCulloch 2005). There are 313 households and a total of 3,405 purchases. The variable HouseID
represents the household ID; each household made at least five purchases, which are defined by the choice
set variable Set. The variable Choice represents the choice that households made among the six margarine
brands for each purchase or choice set. The variable Brand has the value PPK for Parkay stick, PBB for Blue
Bonnet stick, PFL for Fleischmann’s stick, PHse for the house brand stick, PGen for the generic stick, and
PSS for Shedd’s Spread tub. The variable LogPrice is the logarithm of the product price. The variables LogInc
and FamSize provide information about household income and family size, respectively. The following steps
display information about the Sashelp.Margarin data set and create Figure B.14:

title 'Margarine Data';
proc contents data=sashelp.Margarin varnum;

ods select position;
run;

title 'The First Six Observations Out of 20,430';
proc print data=sashelp.Margarin(obs=6);
run;

Figure B.14 Margarine Data

Margarine DataMargarine Data

Variables in Creation
Order

# Variable Type Len

1 HouseID Num 8

2 Set Num 8

3 Choice Num 8

4 Brand Char 8

5 LogPrice Num 8

6 LogInc Num 8

7 FamSize Num 8

The First Six Observations Out of 20,430The First Six Observations Out of 20,430

Obs HouseID Set Choice Brand LogPrice LogInc FamSize

1 2100016 1 1 PPk -0.41552 3.48124 2

2 2100016 1 0 PBB -0.40048 3.48124 2

3 2100016 1 0 PFl 0.08618 3.48124 2

4 2100016 1 0 PHse -0.56212 3.48124 2

5 2100016 1 0 PGen -1.02165 3.48124 2

6 2100016 1 0 PSS -0.16252 3.48124 2
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Flying Mileages between 10 US Cities Data
The Sashelp.Mileages data set contains a table of flying mileages between 10 US cities. This data set is
frequently used to illustrate cluster analysis and multidimensional scaling. The following steps display
information about the Sashelp.Mileages data set and create Figure B.15:

title 'Flying Mileages between 10 US Cities Data';
proc contents data=sashelp.Mileages varnum;

ods select position;
run;

title 'The Full Data Set';
proc print data=sashelp.Mileages heading=horizontal;

id city;
run;

Figure B.15 Flying Mileages between 10 US Cities Data

Flying Mileages between 10 US Cities DataFlying Mileages between 10 US Cities Data

Variables in Creation Order

# Variable Type Len

1 Atlanta Num 8

2 Chicago Num 8

3 Denver Num 8

4 Houston Num 8

5 LosAngeles Num 8

6 Miami Num 8

7 NewYork Num 8

8 SanFrancisco Num 8

9 Seattle Num 8

10 WashingtonDC Num 8

11 City Char 15

The Full Data SetThe Full Data Set

City Atlanta Chicago Denver Houston LosAngeles Miami NewYork SanFrancisco Seattle WashingtonDC

Atlanta 0 . . . . . . . . .

Chicago 587 0 . . . . . . . .

Denver 1212 920 0 . . . . . . .

Houston 701 940 879 0 . . . . . .

Los Angeles 1936 1745 831 1374 0 . . . . .

Miami 604 1188 1726 968 2339 0 . . . .

New York 748 713 1631 1420 2451 1092 0 . . .

San Francisco 2139 1858 949 1645 347 2594 2571 0 . .

Seattle 2182 1737 1021 1891 959 2734 2408 678 0 .

Washington D.C. 543 597 1494 1220 2300 923 205 2442 2329 0
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Coal Seam Thickness Data
The Sashelp.Thick data set simulates measurements of coal seam thickness (in feet) taken over an approxi-
mately square area. The variable Thick contains the thickness values. The coordinates are offsets from a point
in the southwest corner of the measurement area, where the unit for the north and east distances is 1,000 feet.
The following steps display information about the Sashelp.Thick data set and create Figure B.16:

title 'Coal Seam Thickness Data';
proc contents data=sashelp.Thick varnum;

ods select position;
run;

title 'The First Five Observations Out of 75';
proc print data=sashelp.Thick(obs=5);
run;

Figure B.16 Coal Seam Thickness Data

Coal Seam Thickness DataCoal Seam Thickness Data

Variables in Creation Order

# Variable Type Len Label

1 East Num 8

2 North Num 8

3 Thick Num 8 Coal Seam Thickness

The First Five Observations Out of 75The First Five Observations Out of 75

Obs East North Thick

1 0.7 59.6 34.1

2 2.1 82.7 42.2

3 4.7 75.1 39.5

4 4.8 52.8 34.3

5 5.9 67.1 37.0
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1980 US Presidential Election Data
The Sashelp.Vote1980 data set contains US county votes-cast proportions and demographic and geographic
characteristics for 3,107 US counties in the 1980 presidential election (Pace and Barry 1997). The six
explanatory variables are as follows: the population 18 years of age or older (Pop), the population with
12th-grade or higher education (Edu), the number of owned housing units (Houses), the aggregate income
(Income), and scaled longitude and latitude of geographic centroids (Longitude, Latitude). The dependent
variable LogVoteRate is the logarithm of the proportion of votes cast divided by the variable Pop. The
following steps display information about the data set Sashelp.Vote1980 and create Figure B.17:

title 'US 1980 Presidential Election Data';
proc contents data=sashelp.vote1980 varnum;

ods select position;
run;

title 'The First Five Observations Out of 3,107';
proc print data=sashelp.vote1980(obs=5) heading=h noobs;
run;

Figure B.17 US 1980 Presidential Election Data

US 1980 Presidential Election DataUS 1980 Presidential Election Data

Variables in Creation Order

# Variable Type Len Label

1 LogVoteRate Num 8 Log Votes Cast per County

2 Pop Num 8 Population of 18 Years and Older

3 Edu Num 8 Population with 12th Grade and Higher

4 Houses Num 8 Number of Owned Housing Units

5 Income Num 8 Aggregate Income

6 Longitude Num 8 Scaled Longitude

7 Latitude Num 8 Scaled Latitude

The First Five Observations Out of 3,107The First Five Observations Out of 3,107

LogVoteRate Pop Edu Houses Income Longitude Latitude

-0.66156 9.9729 9.2463 9.00405 12.1349 -0.86641 0.32542

-0.65086 10.9033 10.2212 9.96576 13.0566 -0.87755 0.30655

-0.61711 9.7222 8.7535 8.70765 11.6306 -0.85389 0.31863

-0.63907 9.2737 8.1831 8.27741 11.2437 -0.87127 0.32997

-0.70027 10.1515 9.2077 9.24068 12.1551 -0.86566 0.33980
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K-sample test
ICLIFETEST procedure, 3913

p value
LIFETEST procedure, 817

2D geometric anisotropic structure
MIXED procedure, 5281
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output data sets, 875
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time requirements, 876
within-cluster SSCP matrix, 858
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LIFETEST procedure, 812

active constraints, 1270
active set methods

NLMIXED procedure, 5732

actual power
GLMPOWER procedure, 3627, 3629, 3644
POWER procedure, 6274, 6369, 6371

actuarial estimates, see life-table estimates
adaptive algorithms

adaptive rejection Metropolis sampling (ARMS),
134

adaptive rejection sampling (ARS), 134
Introduction to Bayesian Analysis, 134
Markov chain Monte Carlo, 134

adaptive FDR adjustment
MULTTEST procedure, 5494

adaptive Gaussian quadrature
GLIMMIX procedure, 3073
NLMIXED procedure, 5718

adaptive Hochberg adjustment
MULTTEST procedure, 5494

adaptive Holm adjustment
MULTTEST procedure, 5494

adaptive LASSO selection
GLMSELECT procedure, 3710

adaptive methods
MULTTEST procedure, 5522

ADAPTIVEREG procedure
Introduction to Regression, 81
ODS Graphics, 922
ODS table names, 921
response level ordering, 905
response variable options, 905

additive models
TRANSREG procedure, 8584

ADF method
CALIS procedure, 1466, 1468

adjacent-category logits, see also response functions
specifying in CATMOD procedure, 1919
using (CATMOD), 1932

adjacent-level contrasts, 971
ADJRSQ

SURVEYREG procedure, 8340
adjusted degrees of freedom

MI procedure, 5093
MIANALYZE procedure, 5175

adjusted means
See least squares means, 3419

adjusted odds ratio
FREQ procedure, 2699

adjusted p-value
MULTTEST procedure, 5488, 5517
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adjusted R-square
SURVEYREG procedure, 8351

adjusted R2 selection (REG), 7051
adjusted relative risks

FREQ procedure, 2700
adjusted residuals

GENMOD procedure, 2953
adjusted treatment means

LATTICE procedure, 4202
advantages and disadvantages of Bayesian analysis

Introduction to Bayesian Analysis, 130
AF

STDRATE procedure, 7894
affine step

QUANTREG procedure, 6861
agglomerative hierarchical clustering analysis, 2006
aggregates of residuals, 3017, 3024
AGK estimate

STDIZE procedure, 7848
agreement plots

FREQ procedure, 2575
agreement weights

kappa coefficient (SURVEYFREQ), 8027
agreement, measures of

FREQ procedure, 2690
Agresti-Caffo confidence limits

risk difference (FREQ), 2673
Agresti-Coull confidence limits

proportions (FREQ), 2664
AIC, see fit criteria (VARIOGRAM)
Akaike information criterion, see fit criteria

(VARIOGRAM)
Akaike’s information criterion

(GENMOD), 2944
example (MIXED), 5337, 5349, 5374
GLIMMIX procedure, 3069
HPMIXED procedure, 3828, 3863
LOGISTIC procedure, 4572
MIXED procedure, 5229, 5299, 5318
PHREG procedure, 5983
SPP procedure, 7805
SURVEYLOGISTIC procedure, 8107
SURVEYPHREG procedure, 8287
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GLIMMIX procedure, 3069
MIXED procedure, 5229, 5318

Akaike’s information criterion (finite sample corrected
version)

HPMIXED procedure, 3828, 3863
algorithms

ICLIFETEST procedure, 3905
aliasing

GENMOD procedure, 2862

aliasing structure
GLM procedure, 3439

aliasing structure (GLM), 3564
allocation, see sample allocation

of sample size (SURVEYSELECT), 8403, 8434,
8450

alpha, 6532
alpha factor analysis, 2296, 2313
alpha level, 367

ANOVA procedure, 964
contrast intervals (PHREG), 5923
FMM procedure, 2498, 2507
Gelman-Rubin diagnostics (PHREG), 5909
GLIMMIX procedure, 3100, 3106, 3115, 3126,

3134, 3149, 3156
GLM procedure, 3422, 3434, 3439, 3444
GLMPOWER procedure, 3617
halfwidth tests (PHREG), 5909
hazard ratio estimates (SURVEYPHREG), 8259
hazard ratio intervals (ICPHREG), 3954
hazard ratio intervals (PHREG), 5927, 5934
HPMIXED procedure, 3838, 3840, 3842, 3849
ICLIFETEST procedure, 3894
ICPHREG procedure, 3941, 3949
LIFETEST procedure, 4339
MIXED procedure, 5227, 5243, 5247, 5252, 5273
NLIN procedure, 5603
NPAR1WAY procedure, 5796, 5805
PHREG procedure, 5892, 5903
PLM procedure, 6173
posterior intervals (PHREG), 5917
POWER procedure, 6363
REG procedure, 6999
stationarity tests (PHREG), 5909
SURVEYFREQ procedure, 7981
SURVEYLOGISTIC procedure, 8065, 8076,

8085, 8092
SURVEYMEANS procedure, 8162
SURVEYREG procedure, 8322, 8342
TRANSREG procedure, 8584
TTEST procedure, 8796

ALR algorithm
GENMOD procedure, 3010

alternate forms, 6521
alternating least squares

MDS procedure, 4999
alternating logistic regressions (ALR)

GENMOD procedure, 3010
alternative hypothesis, 367, 6363
alternative reference

SEQDESIGN procedure, 7408
analyses, available, 6495
analysis of covariance

examples (GLM), 3530
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MODEL statements (GLM), 3454
power and sample size (GLMPOWER), 3647

analysis of covariation (NESTED), 5566
analysis of means

comparing LS-means (GLM), 3482
analysis of variance, see also ANOVA procedure, see

also TTEST procedure
categorical data, 1882
CATMOD procedure, 1884
corrected total sum of squares (Introduction to

Modeling), 53
geometry (Introduction to Modeling), 53
Introduction to ANOVA Procedures, 101
mixed models (GLM), 3551
model (Introduction to Modeling), 25
MODEL statements (GLM), 3454
multivariate (ANOVA), 959
multivariate (CANDISC), 1858
multivariate (GLM), 3428, 3492, 3540
multivariate (GLMPOWER), 3609, 3623
nested design, 5559
one-way layout, example, 946
one-way tests (NPAR1WAY), 5812
one-way, variance-weighted, 968, 3438
power and sample size (GLMPOWER), 3599,

3641, 3647
power and sample size (POWER), 6306, 6309,

6310, 6403, 6429
quadratic response surfaces, 7271
repeated measures (CATMOD), 1936
repeated measures (GLM), 3493, 3547, 3554
sum of squares (Introduction to Modeling), 25
SURVEYREG procedure, 8350
three-way design (GLM), 3536
unbalanced (GLM), 3395, 3474, 3524
uncorrected total sum of squares (Introduction to

Modeling), 53
within-subject factors, repeated measurements,

972
analysis statements

POWER procedure, 6274
ANALYSIS style

ODS styles, 608, 643, 652
analyst’s model

MI procedure, 5093
analyzing data in groups

ACECLUS procedure, 863
FACTOR procedure, 2325
MODECLUS procedure, 5409, 5425
SCORE procedure, 7301

Andersen-Gill model
PHREG procedure, 5882, 5957, 5979

angle

classes (VARIOGRAM), 8938, 8939, 8941, 8968,
8969

tolerance (VARIOGRAM), 8936, 8939, 8941,
8968, 8969

anisotropic
models (KRIGE2D), 4162–4165, 4169
nugget effect (KRIGE2D), 4169

anisotropic power covariance structure
GLIMMIX procedure, 3170
MIXED procedure, 5282

anisotropic spatial power structure
GLIMMIX procedure, 3170
MIXED procedure, 5282

anisotropy
factor (KRIGE2D), 4162
geometric (KRIGE2D), 4162
geometric (VARIOGRAM), 8966
major axis (VARIOGRAM), 8966, 9016
minor axis (VARIOGRAM), 8966, 9016
VARIOGRAM procedure, 8939, 8966, 8977,

9007
zonal (KRIGE2D), 4162
zonal (VARIOGRAM), 8966

annotate
global data set (REG), 7089
local data set (REG), 7097
traditional graphics (LIFETEST), 4382

annotating
CDF plots, 6701
IPP plots, 6716
LPRED plots, 6724
PPLOT plots, 4252
predicted probability plots, 6742

ANOM adjustment
GLIMMIX procedure, 3113

anom plot
GLIMMIX procedure, 3256

ANOVA
codings (TRANSREG), 8649
SURVEYREG procedure, 8340, 8350
TRANSREG procedure, 8703

ANOVA (row mean scores) statistic
Mantel-Haenszel (FREQ), 2697

ANOVA procedure
absorption of effects, 957
alpha level, 964
balanced data, 946
Bartlett’s test, 966
block diagonal matrices, 946
Brown and Forsythe’s test, 966
canonical analysis, 961
characteristic roots and vectors, 960
compared to other procedures, 3394
complete block design, 950
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computational methods, 978
confidence intervals, 965
contrasts, 971
dependent variable, 946
disk space, 955
effect specification, 974
factor name, 969, 970
homogeneity of variance tests, 966
hypothesis tests, 973
independent variable, 946
interactive use, 976
interactivity and missing values, 977
introductory example, 946
level values, 969, 970
Levene’s test for homogeneity of variance, 966
means, 963
memory requirements, 957, 978
missing values, 955, 977
model specification, 974
multiple comparison procedures, 963
multiple comparisons, 965–968
multivariate analysis of variance, 955, 959
O’Brien’s test, 966
ODS graph names, 982
ODS table names, 980
orthonormalizing transformation matrix, 961
output data sets, 956, 977
pooling, automatic, 976
repeated measures, 969
sphericity tests, 972
SSCP matrix for multivariate tests, 960
transformations, 969, 970
transformations for MANOVA, 960
unbalanced data, caution, 946
Welch’s ANOVA, 968
WHERE statement, 977

ANOVA table
GLMSELECT procedure, 3734
TRANSREG procedure, 8590, 8681

ANOVA procedure
ordering of effects, 955

Ansari-Bradley scores
NPAR1WAY procedure, 5815

ANTE(1) structure
GLIMMIX procedure, 3162
MIXED procedure, 5281

ante-dependence structure
GLIMMIX procedure, 3162

antedependence structure
MIXED procedure, 5281

apparent error rate, 2180
applicable tests

SEQTEST procedure, 7569
approximate

standard errors (CALIS), 1216, 1237, 1475, 1520
approximate Bayesian bootstrap

MI procedure, 5076
approximate covariance estimation

clustering, 858
AR(1) structure

GLIMMIX procedure, 3162
HPMIXED procedure, 3852
MIXED procedure, 5281

arbitrary missing pattern
MI procedure, 5067

arcsine-square root transformation
confidence intervals (ICLIFETEST), 3894, 3910
confidence intervals (LIFETEST), 4339, 4360,

4362
arrays

MCMC procedure, 4762
monitor values of (MCMC), 4928
NLMIXED procedure, 5708

ASN plot
SEQDESIGN procedure, 7416
SEQTEST procedure, 7574

assessing MCMC convergence
autocorrelation, 150
effective sample sizes (ESS), 150
Gelman and Rubin diagnostics, 143
Geweke diagnostics, 144
Heidelberger and Welch diagnostics, 146
Introduction to Bayesian Analysis, 137
Markov chain Monte Carlo, 137
Raftery and Lewis diagnostics, 147
visual inspection, 137

association tests
LIFETEST procedure, 4329, 4335, 4400

association, measures of
FREQ procedure, 2653

asterisk (*) operator
TRANSREG procedure, 8565

asymmetric
data (MDS), 5007

asymmetric binary variable
DISTANCE procedure, 2253

asymmetric two-sided design
SEQDESIGN procedure, 7414

asymptotic covariance
CALIS procedure, 1206, 1467
GLIMMIX procedure, 3066, 3069
MIXED procedure, 5227

asymptotically distribution free estimation
CALIS procedure, 1224, 1468

asymptotically distribution-free
CALIS procedure, 1466

at sign (@) operator
ANOVA procedure, 975
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CATMOD procedure, 1930
GLM procedure, 3455
MIXED procedure, 5305, 5371
TRANSREG procedure, 8565

at-risk
PHREG procedure, 5892, 5942, 6016
product-limit estimates (LIFETEST), 4339

at-risk table (inside)
LIFETEST procedure, 790

at-risk table (outside)
LIFETEST procedure, 792

at-risk value specification
LIFETEST procedure, 793–795

ATRISK survival-plot option
LIFETEST procedure, 790

ATRISK(MAXLEN=13) survival-plot option
LIFETEST procedure, 791

ATRISK(OUTSIDE) survival-plot option
LIFETEST procedure, 792

ATRISK= survival-plot option
LIFETEST procedure, 793

%AtRiskLatticeEnd macro
LIFETEST procedure, 834

%AtRiskLatticeStart macro
LIFETEST procedure, 834

ATRISKTICK survival-plot option
LIFETEST procedure, 794

ATRISKTICKONLY survival-plot option
LIFETEST procedure, 795

attributable fraction
STDRATE procedure, 7894

attributable fraction estimates
STDRATE procedure, 7899

ATTRPRIORITY=’Color’ style
LIFETEST procedure, 843

ATTRPRIORITY=NONE GTL option
LIFETEST procedure, 809

AUTOALIGN= GTL option
LIFETEST procedure, 812, 820

autocorrelation
Geary’s c coefficient (VARIOGRAM), 8912,

8936, 8986
Moran scatter plot (VARIOGRAM), 8921, 8928,

8988
Moran’s I coefficient (VARIOGRAM), 8912,

8936, 8986
REG procedure, 7083
VARIOGRAM procedure, 8912, 8985

autocorrelation function plot
MI procedure, 5088

autocorrelation weights
row-averaged (VARIOGRAM), 8921, 8986, 8989
standardized (VARIOGRAM), 8986
VARIOGRAM procedure, 8985

autocorrelations
Bayesian analysis (PHREG), 6022

automatic variables
GLIMMIX procedure, 3110, 3178

autoregressive moving-average structure
GLIMMIX procedure, 3163
MIXED procedure, 5281

Autoregressive Multivariate Normal Distribution
MCMC procedure, 4810

autoregressive multivariate normal distribution
definition of (MCMC), 4810

autoregressive structure
example (HPMIXED), 3882
example (MIXED), 5344
GLIMMIX procedure, 3162
HPMIXED procedure, 3852
MIXED procedure, 5281

average linkage
CLUSTER procedure, 2015, 2027

average relative increase in variance
MIANALYZE procedure, 5177

average sample number
SEQDESIGN procedure, 7409

average sample numbers plot
SEQDESIGN procedure, 7333

average variance of means
LATTICE procedure, 4202

axis customization
ODS Graphics, 759

axis label modification
LIFETEST procedure, 805

azimuth
KRIGE2D procedure, 4163

B-spline
spline basis (Shared Concepts), 413

B-spline basis
GLIMMIX procedure, 413
GLMSELECT procedure, 413
HPMIXED procedure, 413
LOGISTIC procedure, 413
ORTHOREG procedure, 413
PHREG procedure, 413
PLS procedure, 413
QUANTLIFE procedure, 413
QUANTREG procedure, 413
QUANTSELECT procedure, 413
ROBUSTREG procedure, 413
SURVEYLOGISTIC procedure, 413
SURVEYREG procedure, 413
TRANSREG procedure, 8568, 8680

backward elimination
GLMSELECT procedure, 3706
LOGISTIC procedure, 4544, 4571
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PHREG procedure, 5938, 5997
QUANTSELECT procedure, 6944
REG procedure, 6979, 7050

badness of fit
MDS procedure, 5002, 5004, 5005, 5011, 5012

balanced data
ANOVA procedure, 946
example, complete block, 3517

balanced design, 5560
balanced repeated replication

Introduction to Survey Procedures, 248
SURVEYLOGISTIC procedure, 8115
SURVEYMEANS procedure, 8209, 8210
SURVEYPHREG procedure, 8280
SURVEYREG procedure, 8353
variance estimation (SURVEYFREQ), 8011
variance estimation (SURVEYLOGISTIC), 8115
variance estimation (SURVEYMEANS), 8210
variance estimation (SURVEYPHREG), 8280
variance estimation (SURVEYREG), 8353

balanced square lattice
LATTICE procedure, 4198

banded Toeplitz structure
GLIMMIX procedure, 3171
MIXED procedure, 5281

bandwidth
optimal (DISCRIM), 2178
selection (KDE), 4097
VARIOGRAM procedure, 8938, 8941, 8970

bar (|) operator
Shared Concepts, 387

bar chart
ODS Graphics, 700

bar charts
FREQ procedure, 2630

bar (|) operator
ANOVA procedure, 975
CATMOD procedure, 1930
GENMOD procedure, 2946
GLM procedure, 3454
ICPHREG procedure, 3962
MIXED procedure, 5304, 5305, 5371
TRANSREG procedure, 8565

bar (|) operator
POWER procedure, 6367

Barnard’s test
FREQ procedure, 2680

Bartlett’s test
ANOVA procedure, 966
GLM procedure, 3436, 3488

Base SAS software, 16
baseline function

ICPHREG procedure, 3957, 3964
baseline model chi-square, 1269

baseline model chi-square degrees of freedom , 1269
baseline parameterization

ICPHREG procedure, 3961
BASELINE statistics

PHREG procedure, 5900, 5902, 5903
baseline statistics

ICPHREG procedure, 3947–3949
PHREG procedure, 5903

Bayes estimation
NLMIXED procedure, 5718

Bayes information
FMM procedure, 2528

Bayes’ theorem
DISCRIM procedure, 2174
Introduction to Bayesian Analysis, 124
LOGISTIC procedure, 4542, 4583
MI procedure, 5079

Bayesian analysis
FMM procedure, 2483
MIXED procedure, 5268

Bayesian analysis linear regression
GENMOD procedure, 2863

Bayesian confidence interval
TPSPLINE procedure, 8504, 8525

Bayesian credible intervals
definition of, 129
equal-tail intervals, 129, 152
highest posterior density (HPD) intervals, 129,

152
Introduction to Bayesian Analysis, 129

Bayesian fit statistics
FMM procedure, 2528

Bayesian hypothesis testing
Introduction to Bayesian Analysis, 129

Bayesian inference
MI procedure, 5079

Bayesian information criterion
(GENMOD), 2944
SPP procedure, 7805

Bayesian interval estimation
Introduction to Bayesian Analysis, 129

Bayesian models
Introduction to Modeling, 32

Bayesian probability
Introduction to Bayesian Analysis, 124

BCHOICE procedure, 1001
class levels, 1021
compared with other SAS procedures, 1003
continuous effects, 1034
examples, see also examples, BCHOICE, 1058
Gamerman Algorithm, 1047
MODEL statement options, 1029
ODS Graphics, 1022
output ODS Graphics table names, 1057
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output table names, 1056
posterior predictive distribution, 1032
posterior samples data set, 1022
PROC BCHOICE statement options, 1016
RANDOM statement options, 1033
random-effects parameters, 1033
SUBJECT= option in RANDOM statement, 1034
tuning, 1049

BCHOICE procedure, MODEL statement
initial values, 1030

Behrens-Fisher problem
MCMC procedure, 4738
TTEST procedure, 8812

Bernoulli distribution
definition of (MCMC), 4799
FMM procedure, 2498
GLIMMIX procedure, 3137
MCMC procedure, 4768, 4779, 4799
NLMIXED procedure, 5711

Bernoulli sampling
SURVEYSELECT procedure, 8444

best subset selection
LOGISTIC procedure, 4535, 4544, 4571
PHREG procedure, 5938, 5998, 6034

beta distribution
definition of (MCMC), 4799
deviation from theoretical distribution, 7803
FMM procedure, 2498
GLIMMIX procedure, 3137
MCMC procedure, 4767, 4779, 4799

beta-binomial distribution
FMM procedure, 2498

between-cluster SSCP matrix
ACECLUS procedure, 858

between-imputation covariance matrix
MIANALYZE procedure, 5176

between-imputation variance
MI procedure, 5092
MIANALYZE procedure, 5174

between-subject factors
repeated measures, 3446, 3496, 3598, 3605, 3608,

3633
Between-Within method

GLIMMIX procedure, 3210
Bhapkar’s test, 1987
bias

GLIMMIX procedure, 3199
NLIN procedure, 5585

bias-corrected confidence interval
NLIN procedure, 5594

bifactor model
CALIS procedure, 1741

bifactor models
CALIS procedure, 1736

bifactor models example (CALIS), 1736
bimodality coefficient

CLUSTER procedure, 2023, 2034
bin-sort algorithm, 2404
binary data

Introduction to Regression, 77
binary distribution

definition of (MCMC), 4799
FMM procedure, 2498
GLIMMIX procedure, 3137
MCMC procedure, 4768, 4779, 4799
NLMIXED procedure, 5711

Binary Lance and Williams nonmetric coefficient
DISTANCE procedure, 2279

binding acceptance boundary
SEQTEST procedure, 7545

binding beta boundary
SEQDESIGN procedure, 7339
SEQTEST procedure, 7545

binning
KDE procedure, 4094

binomial distribution
definition of (MCMC), 4800
FMM procedure, 2498
GENMOD procedure, 2937
GLIMMIX procedure, 3137
MCMC procedure, 4768, 4800
NLMIXED procedure, 5711

binomial proportion confidence interval
power and sample size (POWER), 6396–6399

binomial proportion confidence interval precision
power and sample size (POWER), 6299

binomial proportion test
power and sample size (POWER), 6292, 6297,

6381, 6382, 6384, 6434
binomial proportions

Clopper-Pearson test (FREQ), 2667
confidence limits (FREQ), 2663
equivalence tests (FREQ), 2669
exact test (FREQ), 2667
FREQ procedure, 2663
noninferiority tests (FREQ), 2667
superiority tests (FREQ), 2669
tests (FREQ), 2666
TOST (FREQ), 2669

bioequivalence, see equivalence tests, see equivalence
tests

biological assay data, 6686, 6754
biplot

PRINQUAL procedure, 6667
biquartimax method, 1260, 1261, 2296, 2321, 2322,

4020, 4021
biquartimin method, 1261, 2296, 2322
bivariate density estimation
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DISCRIM procedure, 2213
bivariate histogram

KDE procedure, 4101
biweight kernel (DISCRIM), 2177
Blaker confidence limits

proportions (FREQ), 2664
block diagonal matrices

ANOVA procedure, 946
blocking

MCMC procedure, 4789
BLUE

MIXED procedure, 5299
BLUP

GLIMMIX procedure, 3161, 3178, 3246
MIXED procedure, 5299

BLUP estimates
PHREG procedure, 6017

Bonferroni adjustment
GLIMMIX procedure, 3113
GLM procedure, 3420
ICLIFETEST procedure, 3902
LIFETEST procedure, 4350
MIXED procedure, 5246
MULTTEST procedure, 5495, 5519

Bonferroni t test, 965, 3434, 3479
bootstrap

MI procedure, 5052
bootstrap adjustment

MULTTEST procedure, 5491, 5495, 5519, 5534
bootstrap confidence interval

TPSPLINE procedure, 8525
bootstrap FDR adjustment

MULTTEST procedure, 5495
bootstrap standard errors

ICLIFETEST procedure, 3894
boundary adjustment method

SEQTEST procedure, 7547
boundary adjustments

SEQTEST procedure, 7560, 7562, 7563
boundary constraints, 5709

GLIMMIX procedure, 3151, 3154
HPMIXED procedure, 3847, 3849
MIXED procedure, 5267, 5268, 5331
VARIOGRAM procedure, 8955, 8957

boundary for Whitehead one-sided design
SEQDESIGN procedure, 7378

boundary information
SEQDESIGN procedure, 7412

boundary key
SEQDESIGN procedure, 7386
SEQTEST procedure, 7546

boundary plot
SEQDESIGN procedure, 7333, 7417

boundary scale

SEQTEST procedure, 7546
boundary scales

SEQDESIGN procedure, 7363
boundary variables

SEQDESIGN procedure, 7366
bounds

NLMIXED procedure, 5709
Bowker’s test of symmetry

FREQ procedure, 2690, 2691
box plot

ODS Graphics, 698, 707
reading group summary statistics, 1083
saving summary statistics with outliers, 1086

box plot, defined, 1080
box plots

GLIMMIX procedure, 3251
NPAR1WAY procedure, 5789, 5798, 5840
reading group summary statistics, 1126
saving group summary statistics, 1121, 1122
SURVEYMEANS procedure, 8163

box plots, clipping boxes, 1106, 1107
examples, 1137, 1138

box plots, labeling
angles for, 1112
points, 1102

Box’s epsilon, 3497
box-and-whiskers plots

schematic, 1146
side-by-side, 1080
skeletal, 1145
statistics represented, 1083, 1121
styles of, 1126

Box-Cox example
TRANSREG procedure, 8726

Box-Cox parameter
TRANSREG procedure, 8574

Box-Cox transformation
estimate � D 0, 4878
MCMC procedure, 4872

Box-Cox transformations
TRANSREG procedure, 8605

BOXPLOT procedure
continuous group variables, 1128
missing values, 1128
ODS graph names, 1141
percentile computation, 1127

branch-and-bound algorithm
LOGISTIC procedure, 4571
PHREG procedure, 5998, 6034

Bray and Curtis coefficient
DISTANCE procedure, 2279

Breslow estimate
survival function (PHREG), 5904

Breslow estimates
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LIFETEST procedure, 4328, 4355
Breslow method

likelihood (PHREG), 5940, 5954
likelihood (SURVEYPHREG), 8261
survival estimates (PHREG), 5943

Breslow test, see Wilcoxon test for homogeneity
Breslow-Day test

FREQ procedure, 2701
Tarone’s adjustment (FREQ), 2701

Brewer’s selection method
SURVEYSELECT procedure, 8449, 8468

Brown and Forsythe’s test
ANOVA procedure, 966
GLM procedure, 3436, 3488

Brown-Mood test
NPAR1WAY procedure, 5814

Broyden-Fletcher-Goldfarb-Shanno update, 5707
BRR

SURVEYLOGISTIC procedure, 8115
SURVEYMEANS procedure, 8209, 8210, 8234
SURVEYPHREG procedure, 8280
SURVEYREG procedure, 8353

BRR variance estimation
Introduction to Survey Procedures, 248
SURVEYFREQ procedure, 8011
SURVEYLOGISTIC procedure, 8115
SURVEYMEANS procedure, 8210
SURVEYPHREG procedure, 8280
SURVEYREG procedure, 8353

bubble plots
SURVEYREG procedure, 8324

building the SSCP Matrix
GLMSELECT procedure, 3722

burn-in for MCMC
Introduction to Bayesian Analysis, 136
Markov chain Monte Carlo, 136

Burt table
CORRESP procedure, 2101

calibration data set
DISCRIM procedure, 2158, 2183

CALIS procedure
ADF method, 1466, 1468
approximate standard errors, 1216, 1237, 1475,

1520
asymptotic covariance, 1206, 1467
asymptotically distribution free estimation, 1224,

1468
asymptotically distribution-free, 1466
bifactor model, 1741
bifactor models, 1736
case-level residuals, 1494
chi-square, adjusted, 1485
coefficient of determination, 1231

compared to MIXED procedure, 5217
comparing competing models, 1685, 1718
computational problems, 1515–1517
computational problems, identification, 1511,

1517, 1818
confidence interval, 1520
confirmatory factor analysis, 1190, 1597, 1608,

1668
constraints, 1241, 1274, 1316, 1436–1438
constraints, program statements, 1357
constraints, programming statements, 1434
COSAN, 1390
COSAN Model, 1390
COSAN model, 1242, 1390, 1392
degrees of freedom, 1215, 1225
determination coefficients, 1256
determination index, 1493
diagonally weighted least squares, 1469
direct covariance structures, 1665, 1680, 1685
direct effect, 1257
direct maximum likelihood, 1223
direct robust estimation, 1472
discrepancy function, 1464
DWLS method, 1469
effects, 1257
EQS Model, 1401
EQS program, 1184
estimating covariances, 1539
estimating covariances and means, 1544
estimation criteria, 1468
estimation methods, 1463, 1464, 1469, 1473
exploratory factor analysis, 1190
FACTOR, 1394
factor analysis model, 1258
factor analysis model, COSAN statement, 1391
factor loadings, 1382
FACTOR Model, 1394
FACTOR procedure, 1259, 1516
factor rotation, 1260
factor scores, 1381, 1384, 1521
FIML method, 1465
fit function, 1464
fitted covariance matrix, 1464
fitted mean vector, 1464
full information maximum likelihood, 1465, 1629,

1639
full information maximum likelihood and ML,

1639
Generalized COSAN Model, 1390
generalized least squares, 1464
GLS method, 1464
gradient, 1371, 1475, 1508
hessian, 1475
Hessian matrix, 1371, 1477, 1508
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hierarchical factor model, 1741
hierarchical factor models, 1736
higher-order factor model, 1737
higher-order factor models, 1736
indirect effect, 1257
information matrix, 1475
initial values, 1234, 1506
input data set, 1367
iteratively reweighted least squares, 1470
kappa, 1505
kurtosis, 1158, 1209, 1218, 1504, 1506
latent growth curve models, 1730
latent variables, 1158, 1366
leverage observations, 1494
likelihood ratio test, 1485, 1503
linear constraints, 1750, 1804
linear regression, 1553
LINEQS, 1401
LINEQS model, 1275
LISMOD, 1408
LISMOD model, 1282
LISREL, 1408
LM tests, 1286
longitudinal factor analysis, 1812
manifest variables, 1158
masking effects of outlier, 1497
matrix inversion, 1477
matrix transformation, COSAN model, 1244
matrix types, COSAN model, 1244
maximum likelihood, 1464
measurement errors, 1574, 1580, 1586, 1591
missing patterns, 1220, 1226, 1238, 1629
ML method, 1464
MODEL procedure, 1516
modeling languages, 1354
modification indices, 1216, 1224, 1226, 1476,

1501–1503, 1521
MSTRUCT, 1416
MSTRUCT Model, 1416
MSTRUCT model, 1313
multiple-group analysis, 1759
multivariate regression, 1557
naming parameters, 1433
naming variables, 1433
observation-level residuals, 1494
ODS graph names, 1538
optimization, 1160, 1217, 1218, 1227, 1228,

1238, 1507–1509, 1514
optimization history, 1510
optimization statements, 1198
optimization, initial values, 1506, 1509
optimization, memory problems, 1509
ordinal constraints, 1809
outlier detection, 1494

output data sets, 1371
output table names, 1523
p value, 1520
parallel test items, 1608
parameter names, 1433
PATH, 1419
path analysis, 1644, 1708, 1718
path diagram, 1332, 1440
PATH model, 1323
predicted covariance matrix, 1385, 1520
predicted covariance model matrix, 1517
predicted mean vector, 1520
prefix-name, 1277
RAM, 1425
RAM model, 1348, 1392
reciprocal causation, 1215, 1500
reciprocal paths, 1658
REG procedure, 1516
renaming parameters, 1356
residual diagnostics, 1232, 1616
residuals, 1482
robust, 1158
robust estimation, 1235, 1470, 1616
robust residual diagnostics, 1497
SCORE procedure, 1229, 1231, 1384
second-order factor model, 1737
significance level, 1205
simplicity functions, 1260
singularity criterion, 1237
singularity criterion, covariance matrix, 1206,

1225, 1239
skewness, 1504
squared multiple correlation, 1493, 1521
stability coefficient, 1215, 1500
step length, 1217
structural equation, 1231, 1358
subsidiary group specification statements, 1196
subsidiary model specification statements, 1197
SYSLIN procedure, 1516
SYSNLIN procedure, 1516
t value, 1476, 1520
tau-equivalent items, 1608
test indices, constraints, 1224
testing parametric functions, 1357, 1358
testing sphericity, 1547, 1550
testing uncorrelatedness, 1545, 1550
total effect, 1257
two-stage robust estimation, 1471
ULS method, 1464
unweighted least squares, 1464
variable names, 1433
variable selection, 1439
Wald test, probability limit, 1237
weight matrix input, 1217, 1218
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weighted least squares, 1466
WLS method, 1466

CANALS method
TRANSREG procedure, 8586

Canberra metric coefficient
DISTANCE procedure, 2275

CANCORR procedure
canonical coefficients, 1826
canonical redundancy analysis, 1826, 1835
computational resources, 1843
correction for means, 1835
correlation, 1834
eigenvalues, 1840
eigenvalues and eigenvectors, 1829, 1844
examples, 1827, 1848
formulas, 1839
input data set, 1834
missing values, 1839
OUT= data sets, 1840
output data sets, 1835, 1840
output table names, 1846
OUTSTAT= data sets, 1835, 1841
partial correlation, 1835, 1836, 1838
principal components, relation to, 1840
regression coefficients, 1834
semipartial correlation, 1836
singularity checking, 1836
squared multiple correlation, 1836
squared partial correlation, 1836
squared semipartial correlation, 1836
statistical methods used, 1826
statistics computed, 1826
suppressing output, 1835
weighted product-moment correlation

coefficients, 1839
candidates for addition or removal

GLMSELECT procedure, 3733
QUANTSELECT procedure, 6952

CANDISC procedure
computational details, 1866
computational resources, 1870
input data set, 1867
introductory example, 1857
Mahalanobis distance, 1874
MANOVA, 1858
memory requirements, 1870
missing values, 1865
multivariate analysis of variance, 1858
ODS table names, 1873
output data sets, 1863, 1867, 1868
time requirements, 1870

canonical analysis
ANOVA procedure, 961
GLM procedure, 3430

repeated measurements, 971
response surfaces, 7272
RSREG procedure, 7272

canonical coefficients, 1856
canonical component, 1856
canonical correlation

CANCORR procedure, 1825
definition, 1826
hypothesis tests, 1825
TRANSREG procedure, 8594, 8602

canonical discriminant analysis, 1855, 2158
canonical factor solution, 2301
canonical joint distribution

SEQDESIGN procedure, 7408
canonical redundancy analysis

CANCORR procedure, 1826, 1835
canonical variables, 1855

ANOVA procedure, 961
TRANSREG procedure, 8594

canonical weights, 1826, 1856
cascaded density estimates

MODECLUS procedure, 5424, 5425
case deletion diagnostics

GENMOD procedure, 2970
case weight

PHREG procedure, 5949
case-control studies

odds ratio (FREQ), 2683
PHREG procedure, 5882, 5940, 6044

case-level residuals
CALIS procedure, 1494

casewise deletion
PRINQUAL procedure, 6638

catalog
traditional graphics (LIFETEST), 4383

categorical data analysis, see CATMOD procedure
FREQ procedure, 2564

Categorical distribution
definition of (MCMC), 4808
MCMC procedure, 4808

categorical variable, 163
SURVEYMEANS procedure, 8185

categorical variables, see classification variables
CATMOD procedure

analysis of variance, 1884
at sign (@) operator, 1930
AVERAGED models, 1943
bar (|) operator, 1930
cautions, 1933, 1934, 1948
cell count data, 1926
classification variables, 1929
compared to other procedures, 1884, 1933, 1934,

3460
computational method, 1951–1954
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continuous variables, 1929
continuous variables, caution, 1933, 1934
contrast examples, 1977
contrasts, comparing with GLM, 1901
convergence criterion, 1909
design matrix, 1913, 1914
design matrix, REPEATED statement, 1944
effect specification, 1929
effective sample sizes, 1948
estimation methods, 1886
_F_ specification, 1907, 1927
hypothesis tests, 1949
input data sets, 1883, 1925
interactive use, 1887, 1896
introductory example, 1887
iterative proportional fitting, 1909
linear models, 1883
log-linear models, 1883, 1934, 1975, 1977, 2859
logistic analysis, 1885, 1932, 1987
logistic regression, 1884, 1933, 1970
maximum likelihood estimation, 1886
maximum likelihood estimation formulas, 1955
memory requirements, 1957
missing values, 1925
MODEL statement, examples, 1907
ordering of parameters, 1943
ordering of populations, 1928
ordering of responses, 1928
ordinal model, 1933
output data sets, 1920, 1931, 1932
parameterization, 1912
parameterization, comparing with GLM, 1901
positional requirements for statements, 1896
quasi-independence model, 1977
regression, 1884
repeated measures, 1884, 1916, 1936, 1982, 1985,

1987, 1991
repeated measures, MODEL statements, 1938
REPEATED statement, examples, 1937
response functions, 1903, 1907, 1918, 1920–1922,

1924, 1927, 1961, 1965, 1996
_RESPONSE_ keyword, 1903, 1906, 1907, 1909,

1917, 1929, 1934, 1936, 1943–1945, 1949,
1958

_RESPONSE_= option, 1904, 1917
restrictions on parameters, 1925
sample survey analysis, 1885
sampling zeros and log-linear analyses, 1935
sensitivity, 1994
singular covariance matrix, 1948
specificity, 1994
time requirements, 1957
types of analysis, 1883, 1929
underlying model, 1885

weighted least squares, 1886, 1913
zeros, structural and sampling, 1949, 1977, 1981

Cauchy distribution
definition of (MCMC), 4800
MCMC procedure, 4768, 4800

CB=ALL survival-plot option
LIFETEST procedure, 788

CB=EP survival-plot option
LIFETEST procedure, 788

CB=HW survival-plot option
LIFETEST procedure, 787

CCMV
MI procedure, 5056

CDF, see cumulative distribution function
CDF plots

annotating, 6701
axes, color, 6701
font, specifying, 6702
options summarized by function, 6698, 6722
reference lines, options, 6702–6705
threshold lines, options, 6704

CDFPLOT
PROBIT procedure, 6697

ceiling sample size
GLMPOWER procedure, 3629
POWER procedure, 6274, 6371

ceiling-adjusted design boundary information
SEQDESIGN procedure, 7412

cell count data
CATMOD procedure, 1926
example (FREQ), 2726
FREQ procedure, 2641

cell of a contingency table, 163
cell-means coding

TRANSREG procedure, 8579, 8604, 8650
censored

data (LIFEREG), 4208
data, example (NLMIXED), 5759
LIFETEST procedure, 4328, 4354
observations (PHREG), 6047
survival times (PHREG), 5881, 6044, 6046
survival times (SURVEYPHREG), 8269
values (PHREG), 5884, 6027

Censored macro variable
LIFETEST procedure, 814

censored summary
ICLIFETEST procedure, 3921

censored symbol
traditional graphics (LIFETEST), 4382

censored value legend
LIFETEST procedure, 799

censored values summary
PHREG procedure, 6016, 6020
SURVEYPHREG procedure, 8293
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censoring, 4208
LIFEREG procedure, 4242
MCMC procedure, 4817, 4955
variable (PHREG), 5884, 5932, 5943, 6046
variable (SURVEYPHREG), 8263

CensorStr macro variable
LIFETEST procedure, 814

center-point coding
TRANSREG procedure, 8578, 8653, 8660

centering
GLIMMIX procedure, 3142
TRANSREG procedure, 8581

centering step
QUANTREG procedure, 6862

centroid component, 8855
definition, 8853

centroid method
CLUSTER procedure, 2015, 2027

chaining, reducing when clustering, 2024
character OPSCORE variables

PRINQUAL procedure, 6662
TRANSREG procedure, 8671

character set
line printer plots (LIFETEST), 4383

characteristic roots and vectors
ANOVA procedure, 960
GLM procedure, 3429

Chebychev distance coefficient
DISTANCE procedure, 2275

chi-square
adjusted (CALIS), 1485

chi-square coefficient
DISTANCE procedure, 2275, 2276

chi-square corrections, 285, 1209
chi-square distribution

definition of (MCMC), 4800
MCMC procedure, 4768, 4800

chi-square goodness-of-fit test
FREQ procedure, 2648

chi-square mixture
GLIMMIX procedure, 3102

chi-square test
GLIMMIX procedure, 3095, 3127, 3134
HPMIXED procedure, 3834
MIXED procedure, 5241, 5252

chi-square tests
FREQ procedure, 2648
power and sample size (POWER), 6292, 6297,

6298, 6330, 6335, 6382, 6384, 6415, 6434
Rao-Scott (SURVEYFREQ), 8028
Wald (SURVEYFREQ), 8035
Wald log-linear (SURVEYFREQ), 8036

choice experiments
TRANSREG procedure, 8709

choice set, 1035
Cholesky

covariance structure (GLIMMIX), 3163
covariance structure (HPMIXED), 3852
method (GLIMMIX), 3066
parameterization (NLMIXED), 5748
root (GLIMMIX), 3163, 3165
root (HPMIXED), 3852

choosing optimization algorithm
Shared Concepts, 501

Chromy’s selection method
SURVEYSELECT procedure, 8443, 8447

Cicchetti-Allison weights
kappa coefficient (FREQ), 2693
kappa coefficient (SURVEYFREQ), 8027

CIF, see cumulative incidence function
PHREG procedure, 5901, 5942

Cityblock distance coefficient
DISTANCE procedure, 2275

class, see angle classes (VARIOGRAM), see fit
equivalence classes (VARIOGRAM), see lag
classification (VARIOGRAM)

class level
FMM procedure, 2477, 2525
GLIMMIX procedure, 3078, 3242
HPMIXED procedure, 3829
MIXED procedure, 5231, 5316
PHREG procedure, 5945

class level coding
GLMSELECT procedure, 3733
QUANTSELECT procedure, 6951

class level information
GLMSELECT procedure, 3733
PHREG procedure, 6015, 6016
QUANTSELECT procedure, 6951

class levels
BCHOICE procedure, 1021

CLASS statement
Shared Concepts, 384

CLASS variables
programming statements (SURVEYPHREG),

8263
classification criterion

DISCRIM procedure, 2158
error rate estimation (DISCRIM), 2179

classification effect
Introduction to Modeling, 25

classification table
LOGISTIC procedure, 4542, 4581, 4582, 4657

classification variable
SURVEYMEANS procedure, 8173, 8185, 8189

classification variables, 163
ANOVA procedure, 946, 974
CATMOD procedure, 1929
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GENMOD procedure, 2946
GLM procedure, 3453
GLMPOWER procedure, 3608, 3611
ICPHREG procedure, 3962
Shared Concepts, 384
sort order of levels (GENMOD), 2879
SURVEYREG procedure, 8331
TRANSREG procedure, 8568, 8579
VARCOMP procedure, 8891

clinical trial
SEQDESIGN procedure, 7316, 7349
SEQTEST procedure, 7526

Clopper-Pearson confidence limits
proportions (FREQ), 2663
proportions (SURVEYFREQ), 8018

cluster
centers, 2395, 2407
definition (MODECLUS), 5428
deletion, 2405
elliptical, 857
final, 2395
initial, 2394, 2395
mean, 2406
median, 2404, 2406
midrange, 2406
minimum distance separating, 2395
plotting (MODECLUS), 5429
seeds, 2394

cluster analysis
disjoint, 2393
large data sets, 2393
robust, 2394, 2406
tree diagrams, 8762

cluster analysis (STDIZE)
standardizing, 7852

CLUSTER procedure, see also TREE procedure
algorithms, 2035
average linkage, 2006
centroid method, 2006
clustering methods, 2006, 2026
complete linkage, 2006
computational resources, 2036
density linkage, 2006, 2015
Euclidean distances, 2006
F statistics, 2023, 2034
FASTCLUS procedure, compared, 2006
flexible-beta method, 2006, 2015, 2016, 2031
hierarchical clusters, 2006
input data sets, 2016
interval scale, 2037
kth-nearest-neighbor method, 2006
maximum likelihood, 2006, 2015
McQuitty’s similarity analysis , 2006
median method, 2006

memory requirements, 2036
missing values, 2036
non-Euclidean distances, 2006
ODS Graph names, 2044
output data sets, 2019, 2038
output table names, 2043
pseudo F and t statistics, 2023
ratio scale, 2037
single linkage, 2006
size, shape, and correlation, 2037
test statistics, 2016, 2023, 2024
ties, 2037
time requirements, 2036
two-stage density linkage, 2006
types of data sets, 2006
using macros for many analyses, 2065
Ward’s minimum-variance method, 2006
Wong’s hybrid method, 2006

cluster sampling
Introduction to Survey Procedures, 247
SURVEYREG procedure, 8369
SURVEYSELECT procedure, 8431, 8441

CLUSTER variables
programming statements (SURVEYPHREG),

8263
clustering, see cluster sampling, 2005, see also

CLUSTER procedure
approximate covariance estimation, 858
average linkage, 2015, 2027
centroid method, 2015, 2027
complete linkage method, 2015, 2028
density linkage methods, 2015–2018, 2023, 2028,

2030, 2032
disjoint clusters of variables, 8853
Gower’s method, 2016, 2031
hierarchical clusters of variables, 8853
maximum-likelihood method, 2019, 2030, 2031
McQuitty’s similarity analysis, 2015, 2031
median method, 2016, 2031
methods affected by frequencies, 2025
outliers in, 2006, 2024
penalty coefficient, 2019
single linkage, 2016, 2032
smoothing parameters, 2029
standardizing variables, 2023
SURVEYFREQ procedure, 7975, 7999
SURVEYLOGISTIC procedure, 8073
SURVEYMEANS procedure, 8174
SURVEYPHREG procedure, 8254, 8275
SURVEYREG procedure, 8332
transforming variables, 2006
two-stage density linkage, 2016
variables, 8853
Ward’s method, 2016, 2033
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weighted average linkage, 2015, 2031
clustering and computing distance matrix

Correlation coefficients, example, 2287
Jaccard coefficients, example, 2281

clustering and scaling
DISTANCE procedure, example, 2256
MODECLUS procedure, 5408, 5409, 5425
STDIZE procedure, example, 7852

clustering criterion
FASTCLUS procedure, 2394, 2406, 2407

clustering methods
ACECLUS procedure, 871
FASTCLUS procedure, 2394, 2395
MODECLUS procedure, 5409, 5425

clusters
SURVEYFREQ procedure, 7975, 7999
SURVEYSELECT procedure, 8402, 8431

CMF, see cumulative mean function
PHREG procedure, 5901

Cochran and Cox t approximation
TTEST procedure, 8797, 8812

Cochran’s Q test
FREQ procedure, 2690, 2694

Cochran-Armitage test for trend
continuity correction (MULTTEST), 5511
FREQ procedure, 2687
MULTTEST procedure, 5508, 5510, 5531
permutation distribution (MULTTEST), 5511
two-tailed test (MULTTEST), 5513

Cochran-Mantel-Haenszel statistics
FREQ procedure, 2695

CODE statement
syntax (Shared Concepts), 395

coefficient
alpha (FACTOR), 2344
of determination (CALIS), 1231
of relationship (INBREED), 3992

coefficient of determination
definition (Introduction to Modeling), 54
definition (Introduction to Regression), 86, 97

coefficient of variation, 6543
SURVEYMEANS procedure, 8189

coefficient prior
PHREG procedure, 6021

coefficients of variation
SURVEYFREQ procedure, 8020

coefficients, redundancy
TRANSREG procedure, 8600

cohort studies
relative risks (FREQ), 2685

collection effect
GLIMMIX procedure, 399
GLMSELECT procedure, 399
HPMIXED procedure, 399

LOGISTIC procedure, 399
ORTHOREG procedure, 399
PHREG procedure, 399
PLS procedure, 399
QUANTLIFE procedure, 399
QUANTREG procedure, 399
QUANTSELECT procedure, 399
ROBUSTREG procedure, 399
SURVEYLOGISTIC procedure, 399
SURVEYREG procedure, 399

collinearity
REG procedure, 7060

collocation
VARIOGRAM procedure, 8967, 8988

combinations
generating with PLAN procedure, 6142

combined boundary plot
SEQDESIGN procedure, 7333, 7417

combining inferences
MI procedure, 5092
MIANALYZE procedure, 5174

common factor
defined for factor analysis, 2297

common factor analysis
common factor rotation, 2298
communality, 2298
compared with principal component analysis,

2297
Harris component analysis, 2298
image component analysis, 2298
interpreting, 2298
salience of loadings, 2298
uniqueness, 2298

common odds ratio
exact confidence limits (FREQ), 2701
exact test (FREQ), 2701
logit (FREQ), 2699
Mantel-Haenszel (FREQ), 2699

common relative risks
logit (FREQ), 2700
Mantel-Haenszel (FREQ), 2700

compared with other SAS procedures
BCHOICE procedure, 1003

comparing
dependent samples (Introduction to

Nonparametric Analysis), 274, 275
distributions (Introduction to Nonparametric

Analysis), 272
groups (GLM), 3473
independent samples (Introduction to

Nonparametric Analysis), 273, 275
means (TTEST), 8788, 8825
variances (TTEST), 8813, 8825

comparing competing models
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CALIS Procedure, 1685, 1718
comparing competing models (CALIS), 1718
comparing modeling languages example (CALIS),

1708
comparing splines

GLIMMIX procedure, 3365
comparing trends

NLIN procedure, 5653
comparisonwise error rate (GLM), 3479
compatibility with the TCALIS Procedure (CALIS),

1169
competing-risks

PHREG procedure, 5901
%CompileSurvivalTemplates macro

LIFETEST procedure, 803, 833
complementarity

QUANTREG procedure, 6860
complementary log-log model

SURVEYLOGISTIC procedure, 8112
complete block design

example (ANOVA), 950
example (GLM), 3517

complete case missing value
MI procedure, 5056

complete linkage
CLUSTER procedure, 2015, 2028

complete separation
LOGISTIC procedure, 4570
SURVEYLOGISTIC procedure, 8106

complete spatial randomness
SPP procedure, 7769

completely randomized design
examples, 983

components
PLS procedure, 6210

compound symmetry structure
example (MIXED), 5293, 5344, 5349
GLIMMIX procedure, 3164
HPMIXED procedure, 3853
MIXED procedure, 5281

computational details
GRR method (VARCOMP), 8895
KDE procedure, 4092
LIFEREG procedure, 4261
maximum likelihood method (VARCOMP), 8894
MIVQUE0 method (VARCOMP), 8894
MIXED procedure, 5330
restricted maximum likelihood method

(VARCOMP), 8895
SIM2D procedure, 7727
SURVEYREG procedure, 8348
Type I method (VARCOMP), 8894
VARCOMP procedure, 8894, 8901

computational problems

CALIS procedure, 1515
convergence (CALIS), 1516
convergence (FASTCLUS), 2405
convergence (MIXED), 5332
identification (CALIS), 1511, 1517, 1818
negative eigenvalues (CALIS), 1517
negative R-square (CALIS), 1517
NLMIXED procedure, 5736
overflow (CALIS), 1515
singular predicted covariance model (CALIS),

1517
time (CALIS), 1517

computational resources
ACECLUS procedure, 876
CANCORR procedure, 1843
CLUSTER procedure, 2036
FACTOR procedure, 2342
FASTCLUS procedure, 2416
LIFEREG procedure, 4277
MODECLUS procedure, 5432
MULTTEST procedure, 5526
NLMIXED procedure, 5740
PRINCOMP procedure, 6601
QUANTREG procedure, 6873
ROBUSTREG procedure, 7215
SURVEYMEANS procedure, 8213
SURVEYREG procedure, 8358
VARCLUS procedure, 8871

computed variables
GLIMMIX procedure, 3110

concordant observations
FREQ procedure, 2653

conditional and unconditional simulation
SIM2D procedure, 7692

conditional data
MDS procedure, 5000

conditional distributions of multivariate normal
random variables

SIM2D procedure, 7725
conditional logistic regression

LOGISTIC procedure, 4598
LOGISTIC procedure, 4560
PHREG procedure, 5882, 6046

conditional power
SEQTEST procedure, 7551, 7553, 7564, 7570,

7575
conditional power plot

SEQTEST procedure, 7575
conditional residuals

MIXED procedure, 5308
confidence bands

LIFETEST procedure, 4339, 4361
confidence curves

NLIN procedure, 5606
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confidence interval
displaying (CALIS), 1520
NLIN procedure, 5594

confidence intervals, 368, 6495
confidence coefficient, 2824
confidence coefficient (GENMOD), 2915
fitted values of the mean (GENMOD), 2920, 2952
individual observation (RSREG), 7267, 7268
LIFEREG procedure, 4268
means (ANOVA), 965
means (RSREG), 7268
means, power and sample size (POWER), 6300,

6305, 6317, 6326, 6337, 6346, 6402, 6412,
6422, 6457

model confidence interval (NLIN), 5627
pairwise differences (ANOVA), 965
parameter confidence interval (NLIN), 5627
profile likelihood (GENMOD), 2919, 2950
profile likelihood (LOGISTIC), 4542, 4575
TTEST procedure, 8797
Wald (GENMOD), 2922, 2950
Wald (LOGISTIC), 4548, 4576
Wald (SURVEYLOGISTIC), 8122

confidence intervals, FACTOR procedure, 2336
confidence level

SEQTEST procedure, 7546
SURVEYMEANS procedure, 8162
SURVEYREG procedure, 8322
VARIOGRAM procedure, 8935, 8943

confidence limits
adjusted (GLIMMIX), 3105, 3113, 3126, 3320
adjusted (MIXED), 5398
adjusted, simulated (GLIMMIX), 3114
and isotronic contrasts (GLIMMIX), 3320
and isotronic contrasts (MIXED), 5397
and step-down (GLIMMIX), 3109, 3123, 3130
covariance parameters (GLIMMIX), 3100
estimate, lower (GLIMMIX), 3109
estimate, upper (GLIMMIX), 3110
estimated likelihood (GLIMMIX), 3100
estimates (GLIMMIX), 3106
exact (FREQ), 2578
exponentiated (GLIMMIX), 3128
fixed effects (GLIMMIX), 3134
HPMIXED procedure, 3838, 3840, 3842, 3845
ICLIFETEST procedure, 3909, 3919
in mean plot (GLIMMIX), 3084, 3120
inversely linked (GLIMMIX), 3117, 3246
least squares mean estimate (GLIMMIX), 3126
least squares mean estimate, lower (GLIMMIX),

3130
least squares mean estimate, upper (GLIMMIX),

3131

least squares means (GLIMMIX), 3062, 3113,
3116

least squares means (HPMIXED), 3840
least squares means estimates (GLIMMIX), 3127
LIFETEST procedure, 4360, 4373
likelihood-based, details (GLIMMIX), 3208
LOGISTIC procedure, 4580
measures of association (FREQ), 2654
MIXED procedure, 5227
model parameters (FMM), 2498, 2507
odds ratios (GLIMMIX), 3079, 3087, 3142, 3226
profile likelihood (GLIMMIX), 3100
proportions (FREQ), 2663
random-effects solution (GLIMMIX), 3156
SEQTEST procedure, 7546, 7567
solution for random effects (HPMIXED), 3850
STDRATE procedure, 7874
SURVEYLOGISTIC procedure, 8127
SURVEYMEANS procedure, 8188, 8191
SURVEYREG procedure, 8340
TRANSREG procedure, 8585, 8594, 8595, 8597
truncation (GLIMMIX), 3247
VARCOMP procedure, 8897
VARIOGRAM procedure, 8938, 8944
vs. prediction limits (GLIMMIX), 3246
Wald (GLIMMIX), 3101

confidence limits for proportions
Clopper-Pearson (SURVEYFREQ), 8018
logit (SURVEYFREQ), 8018
SURVEYFREQ procedure, 8016
Wald (SURVEYFREQ), 8017
Wilson (SURVEYFREQ), 8018

confidence limits for totals
SURVEYFREQ procedure, 8016

confidence limits, FACTOR procedure, 2336
configuration

MDS procedure, 4992
confirmatory factor analysis

CALIS Procedure, 1190, 1668
confirmatory factor analysis example (CALIS), 1190,

1597, 1608, 1668
confirmatory factor models, 306, 318
congeneric items, 311
conjoint analysis

TRANSREG procedure, 8591, 8603, 8735, 8739
conjugate

descent (GLIMMIX), 500
descent (NLMIXED), 5708
gradient (GLIMMIX), 498
gradient (NLMIXED), 5707
gradient algorithm (CALIS), 1217, 1218, 1227,

1238, 1508
conjugate gradient method

Shared Concepts, 504
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conjugate sampling
MCMC procedure, 4794

connectedness method, see single linkage
Conover scores

NPAR1WAY procedure, 5815
constant transformations

avoiding (PRINQUAL), 6662
constant transformations, avoiding

TRANSREG procedure, 8670
constant variables

PRINQUAL procedure, 6662
TRANSREG procedure, 8588, 8670

constants specification
MCMC procedure, 4763

constrained analysis
FMM procedure, 2508

constraints
boundary (CALIS), 1241, 1436
boundary (GLIMMIX), 3151, 3154
boundary (HPMIXED), 3847, 3849
boundary (MIXED), 5267, 5268
boundary (VARIOGRAM), 8955, 8957
linear (CALIS), 1274, 1438
modification indices (CALIS), 1224, 1226
nonlinear (CALIS), 1316
ordered (CALIS), 1437
program statements (CALIS), 1357
programming statements (CALIS), 1434
scale (VARIOGRAM), 8956
test indices (CALIS), 1224

constructed effects
GLIMMIX procedure, 3103, 3371
PLS procedure, 6228

Containment method
GLIMMIX procedure, 3211

containment method
MIXED procedure, 5253, 5254

contingency coefficient
FREQ procedure, 2653

contingency tables, 163
CATMOD procedure, 1885
FREQ procedure, 2564, 2598
SURVEYFREQ procedure, 7978

continuity-adjusted chi-square test
FREQ procedure, 2651

continuous effects
BCHOICE procedure, 1034

continuous variables, 974, 3453
GENMOD procedure, 2946
ICPHREG procedure, 3962

continuous-by-class effects
MIXED procedure, 5306
model parameterization (GLM), 3458
Shared Concepts, 390

specifying (GLM), 3454
continuous-nesting-class effects

MIXED procedure, 5306
model parameterization (GLM), 3458
Shared Concepts, 389
specifying (GLM), 3454

contrast, 6562
contrast specification

HPMIXED procedure, 3833
contrast-specification

GLIMMIX procedure, 3092, 3104
contrasts, 5710

comparing CATMOD and GLM, 1901
GENMOD procedure, 2903
GLIMMIX procedure, 3092
GLM procedure, 3415
HPMIXED procedure, 3833
MIXED procedure, 5239, 5242
power and sample size (GLMPOWER), 3603,

3608, 3631, 3633, 3641, 3647
power and sample size (POWER), 6306, 6307,

6309, 6403, 6429
repeated measurements (ANOVA), 970, 971
repeated measures (GLM), 3448
repeated measures (GLMPOWER), 3625
specifying (CATMOD), 1899
SURVEYREG procedure, 8332, 8357

control
comparing treatments to (GLM), 3477, 3481

control charts, 18
control plot

GLIMMIX procedure, 3256
control sorting

SURVEYSELECT procedure, 8410, 8430, 8439,
8465

control-based pattern imputation
MIANALYZE procedure, 5204

converge in EM algorithm
MI procedure, 5043

convergence
MCMC procedure, 4851

convergence criterion
ACECLUS procedure, 870
CATMOD procedure, 1909
FMM procedure, 2472, 2475
GEE procedure, 2826
GENMOD procedure, 2915, 2928
GLIMMIX procedure, 490, 491, 493, 500, 3065,

3074, 3081, 3238, 3243, 3244, 3269, 3313
MDS procedure, 5000, 5002, 5003
MIXED procedure, 3238, 5226, 5228, 5317, 5332
profile likelihood (LOGISTIC), 4542

convergence diagnostics, see assessing MCMC
convergence
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convergence in EM algorithm
MI procedure, 5052

convergence in FCS Methods
MI procedure, 5079

convergence in MCMC
MI procedure, 5086, 5103

convergence problems
MIXED procedure, 5332
NLMIXED procedure, 5737

convergence status
FMM procedure, 2526
GLIMMIX procedure, 3244
HPMIXED procedure, 3863
MIXED procedure, 5317
NLMIXED procedure, 5743

convolution
distribution (MULTTEST), 5512
KDE procedure, 4095

Cook’s D
MIXED procedure, 5312

Cook’s D for covariance parameters
MIXED procedure, 5312

Cook’s D influence statistic, 3442
RSREG procedure, 7267

corner-point constraint
MCMC procedure, 4781

CORR procedure, 17
Introduction to Nonparametric Analysis, 276

correct classification rate
LOGISTIC procedure, 4582

correction for means
CANCORR procedure, 1835

correlated data
GEE (GENMOD), 2853, 2958
GEE procedure, 2829

correlated proportions, see McNemar’s test
correlation, 6495

CANCORR procedure, 1834
estimates (HPMIXED), 3855
estimates (MIXED), 5274, 5276, 5281, 5346
GLMPOWER procedure, 3617, 3618, 3623
length (VARIOGRAM), 8975
matrix (GENMOD), 2916, 2942
matrix (REG), 6999
matrix, estimated (CATMOD), 1909
principal components, 6600, 6602
radius (VARIOGRAM), 8975
range (KRIGE2D), 4125
range (VARIOGRAM), 8975

correlation coefficients
power and sample size (POWER), 6288, 6379,

6380
correlation dissimilarity coefficient

DISTANCE procedure, 2274

correlation matrix
Bayesian analysis (PHREG), 6022
ICPHREG procedure, 3957, 3964
PHREG procedure, 6022

correlation similarity coefficient
DISTANCE procedure, 2274

correlation statistic
Mantel-Haenszel (FREQ), 2697

correlations of least squares means
HPMIXED procedure, 3841

CORRESP procedure, 2094
adjusted inertias, 2130
algorithm, 2125
analyse des correspondances, 2094
appropriate scoring, 2094
Best variables, 2132
binary design matrix, 2111
Burt table, 2101, 2112
coding, 2118
COLUMN= option, use, 2127
computational resources, 2125
correspondence analysis, 2094
doubling, 2118
dual scaling, 2094
fuzzy coding, 2118, 2120
geometry of distance between points, 2128, 2139,

2143
homogeneity analysis, 2094
inertia, definition, 2096
input tables and variables, 2097, 2109
matrix decompositions, 2105, 2128
matrix formulas for statistics, 2131
memory requirements, 2125
missing values, 2101, 2118, 2121
multiple correspondence analysis (MCA), 2101,

2129, 2148
optimal scaling, 2094
optimal scoring, 2094
OUTC= data set, 2123
OUTF= data set, 2124
output data sets, 2123
output table names, 2136
partial contributions to inertia table, 2131
PROFILE= option, use, 2127
quantification method, 2094
reciprocal averaging, 2094
ROW= option, use, 2127
scalogram analysis, 2094
supplementary rows and columns, 2107, 2130
syntax, abbreviations, 2097
TABLES statement, use, 2097, 2107, 2109
time requirements, 2125
VAR statement, use, 2097, 2108, 2117

correspondence analysis
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CORRESP procedure, 2094
COSAN model

CALIS procedure, 1242, 1390, 1392
comparing modeling languages example (CALIS),

1784
COSAN models example (CALIS), 1784
linear constraints example (CALIS), 1804
longitudinal factor analysis example (CALIS),

1812
ordinal constraints example (CALIS), 1809
second-order confirmatory factor models example

(CALIS), 1799
COSAN models example (CALIS), 1784
cosine coefficient

DISTANCE procedure, 2275
counting process

PHREG procedure, 5955
covariance

GLMPOWER procedure, 3618, 3623
LATTICE procedure, 4202
matrix, definition (Introduction to Modeling), 48
of random variables (Introduction to Modeling),

47
parameter estimates (MIXED), 5227, 5228
parameter estimates, ratio (MIXED), 5236
parameters (GLIMMIX), 3056, 3060, 3065
parameters (MIXED), 5214
parameters, confidence interval (GLIMMIX),

3096
parameters, testing (GLIMMIX), 3096
principal components, 6600, 6602
SURVEYFREQ procedure, 8008
VARIOGRAM procedure, 8912, 8965, 9028

covariance (KRIGE2D procedure), see prediction
correlation model (KRIGE2D)

covariance (SIM2D procedure), see simulation
correlation model (SIM2D)

covariance coefficients, see INBREED procedure
covariance matrix

Bayesian analysis (PHREG), 6022
for parameter estimates (CATMOD), 1909
for response functions (CATMOD), 1909
GENMOD procedure, 2916, 2942
ICPHREG procedure, 3957, 3964, 3965, 3969
NLMIXED procedure, 5739, 5743
PHREG procedure, 5894, 5934, 5967
REG procedure, 6999
singular (CATMOD), 1948
SURVEYPHREG procedure, 8259
symmetric and positive definite (SIM2D), 7724

covariance parameter estimates
GLIMMIX procedure, 3072, 3081, 3245
HPMIXED procedure, 3863
MIXED procedure, 5317

covariance similarity coefficient
DISTANCE procedure, 2274

covariance structure
anisotropic power (GLIMMIX), 3170
anisotropic power (MIXED), 5288
ante-dependence (GLIMMIX), 3162
antedependence (MIXED), 5285
autoregressive (GLIMMIX), 3055, 3162
autoregressive (HPMIXED), 3852
autoregressive (MIXED), 5285
autoregressive moving-average (GLIMMIX),

3163
autoregressive moving-average (MIXED), 5286
banded (GLIMMIX), 3171
banded (MIXED), 5288
Cholesky type (GLIMMIX), 3163
Cholesky type (HPMIXED), 3852
compound symmetry (GLIMMIX), 3164
compound symmetry (HPMIXED), 3853
compound symmetry (MIXED), 5286
equi-correlation (GLIMMIX), 3164
equi-correlation (HPMIXED), 3853
equi-correlation (MIXED), 5286
examples (GLIMMIX), 3172
examples (HPMIXED), 3851
examples (MIXED), 5283, 5339
exponential (GLIMMIX), 3169
exponential anisotropic (MIXED), 5287
factor-analytic (GLIMMIX), 3165
factor-analytic (MIXED), 5286
G-side (GLIMMIX), 3055, 3097, 3162
Gaussian (GLIMMIX), 3170
general (GLIMMIX), 3053
general linear (GLIMMIX), 3166
general linear (MIXED), 5287
heterogeneous autoregressive (GLIMMIX), 3163
heterogeneous autoregressive (MIXED), 5285
heterogeneous compound symmetry (GLIMMIX),

3165
heterogeneous compound symmetry (HPMIXED),

3853
heterogeneous compound symmetry (MIXED),

5286
heterogeneous Toeplitz (GLIMMIX), 3171
heterogeneous Toeplitz (MIXED), 5289
heterogeneous uniform correlation (HPMIXED),

3854
Huynh-Feldt (GLIMMIX), 3166
Huynh-Feldt (MIXED), 5286
Kronecker (MIXED), 5289
Matérn (GLIMMIX), 3170
Matérn (MIXED), 5288
misspecified (GLIMMIX), 3053
MIXED procedure, 5216, 5281
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parameter reordering (GLIMMIX), 3151
penalized B-spline (GLIMMIX), 3158, 3160,

3167
positive (semi-)definite, 3163, 3852
power (GLIMMIX), 3170
power (MIXED), 5288
R-side (GLIMMIX), 3055, 3097, 3151, 3155,

3161, 3162
R-side with profiled scale (GLIMMIX), 3151
radial smooth (GLIMMIX), 3158, 3168
simple (GLIMMIX), 3169
simple (MIXED), 5287
spatial (GLIMMIX), 3157, 3169
spatial geometric anisotropic (MIXED), 5287
spherical (GLIMMIX), 3171
Toeplitz (GLIMMIX), 3171
Toeplitz (MIXED), 5288
uniform correlation (HPMIXED), 3853
unstructured (GLIMMIX), 3171
unstructured (HPMIXED), 3854
unstructured (MIXED), 5289
unstructured, correlation (GLIMMIX), 3172
unstructured, correlation (MIXED), 5289
variance components (GLIMMIX), 3172
variance components (HPMIXED), 3854
variance components (MIXED), 5290
with second derivatives (GLIMMIX), 3213
working, independence (GLIMMIX), 3068

covariance structure analysis model, see COSAN
model

covariance structures
examples (HPMIXED), 3879

covariances of least squares means
HPMIXED procedure, 3841

covariates, 6568
GLMPOWER procedure, 3611, 3618, 3621–3623,

3632, 3647
MIXED procedure, 5304
model parameterization (GLM), 3456
multiple correlation, 6568
proportional reduction in variation, 6568

covarimin method, 1261, 2296, 2322
covariogram

VARIOGRAM procedure, 9028
coverage displays

FACTOR procedure, 2337
CovRatio

MIXED procedure, 5314
CovRatio for covariance parameters

MIXED procedure, 5314
COVRATIO statistic, 7064
CovTrace

MIXED procedure, 5314
CovTrace for covariance parameters

MIXED procedure, 5314
Cox models

MCMC procedure, 4936, 4942
Cox regression

Introduction to Survey Procedures, 245
Cox regression analysis

PHREG procedure, 5886
semiparametric model (PHREG), 5881
semiparametric model (SURVEYPHREG), 8240

Cramér’s V statistic
FREQ procedure, 2653

Cramér–von Mises test
NPAR1WAY procedure, 5821

Crawford-Ferguson family, 2296
Crawford-Ferguson method, 1260, 1261, 2321, 2322
crime rates data, example

PRINCOMP procedure, 6585
cross validated density estimates

MODECLUS procedure, 5424
cross validation

DISCRIM procedure, 2180
GLMSELECT procedure, 3726
PLS procedure, 6221, 6235

cross validation details
GLMSELECT procedure, 3735

crossed effects
design matrix (CATMOD), 1940
GENMOD procedure, 2946
GLIMMIX procedure, 3230
ICPHREG procedure, 3962
MIXED procedure, 5304
model parameterization (GLM), 3457
Shared Concepts, 388
specifying (ANOVA), 974, 975
specifying (CATMOD), 1929
specifying (GLM), 3453

crossover design
TTEST procedure, 8805, 8835

crossover designs
analyzing with GLIMMIX procedure, 6146
generating with PLAN procedure, 6146
power and sample size (POWER), 6443

crossproducts matrix
REG procedure, 7085

crosstabulation tables
FREQ procedure, 2564, 2598, 2714
Introduction to Survey Procedures, 244
SURVEYFREQ procedure, 7978, 8041

CSR, see complete spatial randomness (SPP)
cubic clustering criterion, 2018, 2024

CLUSTER procedure, 2016
cubic semivariance model

KRIGE2D procedure, 4144, 4156
SIM2D procedure, 7715
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VARIOGRAM procedure, 8945, 8961
cubic spline model

ICPHREG procedure, 3961
cumulative distribution function, 4267, 6686

LIFETEST procedure, 4328
cumulative incidence function, see mean function

PHREG procedure, 5901
cumulative logit model

MI procedure, 5060
SURVEYLOGISTIC procedure, 8111

cumulative logits, see also response functions
examples, (CATMOD), 1933
specifying in CATMOD procedure, 1919
using (CATMOD), 1932

cumulative martingale residuals
PHREG procedure, 5897, 5999, 6026

cumulative mean function, see mean function
cumulative residuals, 3017, 3024
custom scoring coefficients, example

SCORE procedure, 7312
customized odds ratio

SURVEYLOGISTIC procedure, 8096
customizing graphs, 6522
Czekanowski/Sorensen similarity coefficient

DISTANCE procedure, 2279

data and method info
ICLIFETEST procedure, 3919

data below a limit of detection
ICLIFETEST procedure, 3924

Data set option
TYPE=ACE, 9041
TYPE=BOXPLOT, 9041
TYPE=CALISFIT, 9041
TYPE=CALISMDL, 9041
TYPE=CHARTSUM, 9041
TYPE=CORR, 9042
TYPE=COV, 9045
TYPE=CSSCP, 9045
TYPE=DISTANCE, 9045
TYPE=EST, 9046
TYPE=LINEAR, 9047
TYPE=LOGISMOD, 9048
TYPE=MIXED, 9048
TYPE=QUAD, 9048
TYPE=SSCP, 9048
TYPE=TREE, 9049
TYPE=UCORR, 9049
TYPE=UCOV, 9050
TYPE=WEIGHT, 9050

DATA step, 17
DATACOLORS= GTL option

LIFETEST procedure, 808, 847
DATACONTRASTCOLORS= GTL option

LIFETEST procedure, 808, 847
DATALINEPATTERNS= GTL option

LIFETEST procedure, 809
date (displaying in a footnote)

LIFETEST procedure, 819
Davidon-Fletcher-Powell update, 499, 5708
decomposition of the SSCP matrix

ACECLUS procedure, 858
default destination

ODS, 518, 521
default estimation technique

GLIMMIX procedure, 3241
default output

FMM procedure, 2525
GLIMMIX procedure, 3241
MIXED procedure, 5316

DEFAULT style
ODS styles, 608, 643, 652

definition of
effective sample sizes (ESS), 150

degrees of freedom
between-within method (MIXED), 5228, 5254
CALIS procedure, 1215, 1225
chi-square mixture (GLIMMIX), 3102
containment method (MIXED), 5253, 5254
FACTOR procedure, 2324
GLIMMIX procedure, 3094, 3095, 3105, 3106,

3116, 3127, 3135, 3136, 3210
HPMIXED procedure, 3834, 3838, 3841, 3843
infinite (GLIMMIX), 3106, 3116, 3127
infinite (HPMIXED), 3840, 3843
Kenward-Roger method (GLIMMIX), 5255
method (GLIMMIX), 3136
method (MIXED), 5253
MI procedure, 5092
MIANALYZE procedure, 5175, 5177
MIXED procedure, 5241, 5243, 5248, 5253
models with classification variables (GLM), 3460
NLMIXED procedure, 5695
PLM procedure, 6173
residual method (HPMIXED), 3843
residual method (MIXED), 5254
Satterthwaite method (MIXED), 5254
SURVEYFREQ procedure, 8019
SURVEYLOGISTIC procedure, 8119
SURVEYMEANS procedure, 8187
SURVEYPHREG procedure, 8284
SURVEYREG procedure, 8356
TRANSREG procedure, 8681

degrees of freedom method
GLIMMIX procedure, 3210

delete variables (REG), 7013
deleting observations

REG procedure, 7072
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dendritic method, see single linkage
dendrogram, 8762
density estimation

DISCRIM procedure, 2197, 2213
MODECLUS procedure, 5422

density function, see probability density function
density linkage

CLUSTER procedure, 2015–2018, 2023, 2028,
2030, 2032

dependent effect, definition, 974
dependent FDR adjustment

MULTTEST procedure, 5495
derivatives

NLIN procedure, 5603
derived parameters

SEQDESIGN procedure, 7385
description

traditional graphics (LIFETEST), 4382
descriptive statistics, see also UNIVARIATE procedure

Introduction to Survey Procedures, 243
LOGISTIC procedure, 4507
mixed model (HPMIXED), 3862
PHREG procedure, 5896
survey sampling, 8154

design degrees of freedom
SURVEYLOGISTIC procedure, 8119

design effects
SURVEYFREQ procedure, 8020
SURVEYREG procedure, 8349

design information, 8347
SEQDESIGN procedure, 7412
SEQTEST procedure, 7571

design matrix
formulas (CATMOD), 1954
generation in CATMOD procedure, 1939
GENMOD procedure, 2947
GLMMOD procedure, 3575, 3583, 3585
ICPHREG procedure, 3963
TRANSREG procedure, 8596

design of experiments, see experimental design
design points

TPSPLINE procedure, 8482, 8508
design-adjusted chi-square tests

SURVEYFREQ procedure, 8028
DESIGNHEIGHT= GTL option

LIFETEST procedure, 825
DESIGNHEIGHT=500PX GTL option

LIFETEST procedure, 824
DESIGNHEIGHT=DEFAULTDESIGNWIDTH GTL

option
LIFETEST procedure, 822

destination, closing
ODS Graphics, 634

destinations

ODS, 523, 529, 549
ODS Graphics, 628

determination coefficients (CALIS)
dependent variables, 1256

determination index
CALIS procedure, 1493

deviance
definition (GENMOD), 2857
GENMOD procedure, 2915
LOGISTIC procedure, 4535, 4544, 4584
PROBIT procedure, 6737, 6753
scaled (GENMOD), 2942

deviance information criterion, 2977, 4280
Introduction to Bayesian Analysis, 153

deviance information criterion (DIC)
definition of, 153

deviance residuals
GENMOD procedure, 2953
LOGISTIC procedure, 4591
PHREG procedure, 5942, 5985, 6068
SURVEYPHREG procedure, 8263, 8290

deviations-from-means coding
TRANSREG procedure, 8578, 8604, 8653, 8660,

8706
DF=PARMADJ option

SURVEYLOGISTIC procedure, 8120
DFBETA statistics

PHREG procedure, 5942, 5988
DFBETAS statistic (REG), 7065
DFBETAS statistics

LOGISTIC procedure, 4592
DFFITS

MIXED procedure, 5313
DFFITS statistic

GLM procedure, 3443
REG procedure, 7065

dgeneral distribution
MCMC procedure, 4768, 4779, 4813

diagnostic plots
GLIMMIX procedure, 3251

diagnostic statistics
REG procedure, 7062, 7063

diagnostics
GENMOD procedure, 2916, 2970

diagnostics for model with a high intrinsic curvature
NLIN procedure, 5664

diagnostics panel
ODS Graphics, 754

diagonally weighted least squares
CALIS procedure, 1469

diameter method, see complete linkage
DIC, see deviance information criterion, 2977, 4280
Dice coefficient

DISTANCE procedure, 2279
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difference between means
confidence intervals, 965

difference test
TTEST procedure, 8802

diffogram
GLIMMIX procedure, 3256

dimension coefficients
MDS procedure, 4992, 4993, 4999, 5004, 5005,

5010, 5012
dimension information

GLIMMIX procedure, 3242
GLMSELECT procedure, 3733
MIXED procedure, 5316
QUANTSELECT procedure, 6951

dimensions
HPMIXED procedure, 3830
MIXED procedure, 5231

direct covariance structures
CALIS Procedure, 1665, 1680, 1685

direct covariance structures example (CALIS), 1192,
1545, 1547, 1550, 1665, 1680, 1685

direct covariance structures model example (CALIS),
281

direct effect
CALIS procedure, 1257

direct effects
design matrix (CATMOD), 1941
specifying (CATMOD), 1929

direct maximum likelihood
CALIS procedure, 1223

direct product structure
MIXED procedure, 5281

direct robust estimation
CALIS procedure, 1472

direct sampling
MCMC procedure, 4794

direct standardization
SURVEYMEANS procedure, 8203

directly standardized rate
STDRATE procedure, 7886

Dirichlet distribution
MCMC procedure, 4770, 4809

dirichlet distribution
definition of (MCMC), 4809

discordant observations
FREQ procedure, 2653

discrete choice models, 1035
discrete logistic model

likelihood (PHREG), 5955
PHREG procedure, 5882, 5940, 6046

discrete variables, see classification variables, see
classification variables

DISCRIM procedure
background, 2174

Bayes’ theorem, 2174
bivariate density estimation, 2213
calibration data set, 2158, 2183
classification criterion, 2158
computational resources, 2189
cross validation, 2180
density estimate, 2175, 2177, 2178, 2197, 2213
discriminant scores, 2168
error rate estimation, 2179, 2182
input data sets, 2184, 2185
introductory example, 2159
kernel density estimates, 2206, 2223
memory requirements, 2190
missing values, 2174
nonparametric methods, 2176
ODS table names, 2195
optimal bandwidth, selection, 2178
output data sets, 2186, 2187
parametric methods, 2175
%PLOTDEN macro, 2199
%PLOTPROB macro, 2199
posterior probability, 2175, 2177, 2197, 2213
posterior probability error rate, 2180, 2182
quasi inverse, 2180
resubstitution, 2180
squared distance, 2175
test set classification, 2180
time requirements, 2190
training data set, 2158
univariate density estimation, 2197

discriminant analysis, 2158
canonical, 1855, 2158
error rate estimation, 2159
misclassification probabilities, 2159
nonparametric methods, 2176
parametric methods, 2175
stepwise selection, 7933

discriminant function method
MI procedure, 5071

discriminant functions, 1856
discriminant scores

DISCRIM procedure, 2168
disjoint clustering, 2393, 2394, 2396
dispersion parameter

estimation (GENMOD), 2856, 2944, 2948
GENMOD procedure, 2944
GLIMMIX procedure, 3184
LOGISTIC procedure, 4584
PROBIT procedure, 6753
weights (GENMOD), 2934

dispersion parameter weights
GEE procedure, 2828

displayed output
GLMSELECT procedure, 3732
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PHREG procedure, 6015
QUANTSELECT procedure, 6951

dissimilarity data
MDS procedure, 4992, 5000, 5007

distance, see lag (VARIOGRAM)
between clusters (FASTCLUS), 2412
classification (VARIOGRAM), 8970
data (FASTCLUS), 2393
data (MDS), 4992
Euclidean (FASTCLUS), 2394

distance data
MDS procedure, 5000, 5007

DISTANCE data sets
CLUSTER procedure, 2016

distance measures available in DISTANCE procedure,
see proximity measures

distance methods
SPP procedure, 7769

DISTANCE procedure
absent-absent match, asymmetric binary variable,

2253
absent-absent match, example, 2281
absolute level of measurement, definition, 2253
affine transformation, 2252
asymmetric binary variable, 2253
available levels of measurement, 2267
available options for the option list, 2267
Binary Lance and Williams nonmetric coefficient,

2279
Bray and Curtis coefficient, 2279
Canberra metric coefficient, 2275
Chebychev distance coefficient, 2275
chi-square coefficient, 2275, 2276
Cityblock distance coefficient, 2275
computing distances with weights, 2270
correlation dissimilarity coefficient, 2274
correlation similarity coefficient, 2274
cosine coefficient, 2275
covariance similarity coefficient, 2274
Czekanowski/Sorensen similarity coefficient,

2279
Dice coefficient, 2279
dot Product coefficient, 2275
Euclidean distance coefficient, 2274
examples, 2254, 2281, 2287
extension of binary variable, 2253
formatted values, 2280
formulas for proximity measures, 2273
frequencies, 2271
functional summary, 2260
fuzz factor, 2261
generalized Euclidean distance coefficient, 2275
Gower’s dissimilarity coefficient, 2274
Gower’s similarity coefficient, 2273

Hamann coefficient, 2277
Hamming distance coefficient, 2277
identity transformation, 2253
initial estimates for A-estimates, 2261
interval level of measurement, 2252
Jaccard dissimilarity coefficient, 2279
Jaccard similarity coefficient, 2278
Kulcynski 1 coefficient, 2279
Lance-Williams nonmetric coefficient, 2275
levels of measurement, 2252
linear transformation, 2253
log-interval level of measurement, 2253
many-to-one transformation, 2252
Minkowski Lp distance coefficient, 2274
missing values, 2264–2266, 2269, 2279
monotone increasing transformation, 2252
nominal level of measurement, 2252
nominal variable, 2253
normalization, 2264, 2266
one-to-one transformation, 2252
ordinal level of measurement, 2252
output data sets, 2264, 2265, 2280
Overlap dissimilarity coefficient, 2275
Overlap similarity coefficient, 2275
phi-square coefficient, 2276
power distance coefficient, 2275
power transformation, 2253
ratio level of measurement, 2253
Roger and Tanimoto coefficient, 2277
Russell and Rao similarity coefficient, 2279
scaling variables, 2254
shape distance coefficient, 2274
similarity Ratio coefficient, 2275
similarity ratio coefficient, 2275
simple Matching coefficient, 2277
simple matching dissimilarity coefficient, 2277
size distance coefficient, 2274
Sokal and Sneath 1 coefficient, 2277
Sokal and Sneath 3 coefficient, 2277
squared correlation dissimilarity coefficient, 2274
squared correlation similarity coefficient, 2274
squared Euclidean distance coefficient, 2274
squared simple matching dissimilarity coefficient,

2277
standardization methods, 2268
standardization suppression, 2264
standardization with frequencies, 2271
standardization with weights, 2271
standardization, default methods, 2254, 2268
standardization, example, 2256
standardization, mandatory, 2254
strictly increasing transformation, 2252
summary of options, 2260
symmetric binary variable, 2253
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transforming ordinal variables to interval, 2253,
2265

weights, 2270, 2271
distribution plot

STDRATE procedure, 7904
distribution tests, 6495
distributions

Gompertz, 6686
logistic, 6686
normal, 6686

dlogden distribution
MCMC procedure, 4768, 4779

DOCUMENT destination
ODS Graphics, 703

document path
ODS Graphics, 705

DOCUMENT procedure
document path, 705
ODS Graphics, 703

Documents window
ODS Graphics, 704

dollar-unit sampling
SURVEYSELECT procedure, 8471

domain analysis
SURVEYFREQ procedure, 8001, 8050
SURVEYLOGISTIC procedure, 8119
SURVEYMEANS procedure, 8184
SURVEYPHREG procedure, 8286
SURVEYREG procedure, 8358, 8387, 8390

domain analysis under poststratification
SURVEYMEANS procedure, 8205

domain means comparison
SURVEYREG procedure, 8390

domain plots
SURVEYMEANS procedure, 8163

domain quantile
SURVEYMEANS procedure, 8198

domain quantile with poststratification
SURVEYMEANS procedure, 8200

domain ratio under poststratification
SURVEYMEANS procedure, 8208

domain statistics
SURVEYMEANS procedure, 8192

DOMAIN variables
programming statements (SURVEYPHREG),

8263
domains

SURVEYPHREG procedure, 8254
donor stratum

SURVEYLOGISTIC procedure, 8117
SURVEYMEANS procedure, 8211
SURVEYPHREG procedure, 8283
SURVEYREG procedure, 8354

dot plots

FREQ procedure, 2630, 2729
DOT product (SCORE), 7293
dot Product coefficient

DISTANCE procedure, 2275
double arcsine test

MULTTEST procedure, 5513
double dogleg

algorithm (CALIS), 1217, 1227, 1238, 1508
method (GLIMMIX), 498
method (NLMIXED), 5707

double exponential distribution
definition of (MCMC), 4805
MCMC procedure, 4769, 4779, 4805

double-dogleg method
Shared Concepts, 503

doubly iterative algorithm
GLIMMIX procedure, 3239

drift parameter
SEQDESIGN procedure, 7354, 7357, 7358, 7385,

7409
dual scaling

CORRESP procedure, 2094
dummy variable creation

TRANSREG procedure, 8553, 8567, 8568, 8579,
8596, 8598, 8649–8651, 8653, 8655,
8657–8666, 8706, 8707, 8709, 8710

Duncan’s multiple range test, 965, 3435, 3484
Duncan-Waller test, 968, 3437, 3485

error seriousness ratio, 966, 3436
multiple comparison (ANOVA), 986

Dunnett’s adjustment
GLIMMIX procedure, 3113
GLM procedure, 3420
ICLIFETEST procedure, 3902
LIFETEST procedure, 4350
MIXED procedure, 5246

Dunnett’s test, 3435, 3481, 3482
one-tailed lower, 965, 3435
one-tailed upper, 965
two-tailed, 965

Dwass, Steel, Critchlow-Fligner multiple comparisons
NPAR1WAY procedure, 5819

DWLS method
CALIS procedure, 1469

EBE
GLIMMIX procedure, 3161, 3246

EBLUP
GLIMMIX procedure, 3161
MIXED procedure, 5263

EDF, see empirical distribution function
EDF goodness-of-fit tests, 7803
EDF plots

NPAR1WAY procedure, 5798, 5844
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EDF tests
NPAR1WAY procedure, 5820

edge effects
SPP procedure, 7769

effect
definition, 974, 1929, 3453
GLMPOWER procedure, 3629
name length (FMM), 2477
name length (GLIMMIX), 3077
name length (MIXED), 5230
specification (ANOVA), 974
specification (CATMOD), 1929
specification (GENMOD), 2946
specification (GLM), 3453

effect coding
TRANSREG procedure, 8554, 8578, 8653, 8660,

8706
effect estimates

STDRATE procedure, 7899
effect measure plot

STDRATE procedure, 7904
EFFECT parameterization

SURVEYLOGISTIC procedure, 8100
effect parameterization

Shared Concepts, 391
effect plot

EFFECTPLOT statement, 416
effect selection

QUANTSELECT procedure, 6941, 6944
effect size, 369, 370

power and sample size (POWER), 6328
effect sizes

GLM procedure, 3465
MODEL statement (GLM), 3440

EFFECT statement
collection effect (Shared Concepts), 399
lag effect (Shared Concepts), 400
multimember effect (Shared Concepts), 402
polynomial effect (Shared Concepts), 404
spline effect (Shared Concepts), 407
syntax (Shared Concepts), 397

effect testing
SURVEYREG procedure, 8357

effective number of parameters, 2977, 4280
effective sample size

LIFETEST procedure, 4358
effective sample sizes

Bayesian analysis (PHREG) procedure, 6023
FMM procedure, 2529

effective sample sizes (ESS)
definition of, 150
Introduction to Bayesian Analysis, 150

EFFECTPLOT statement
ODS graph names, 427

syntax (Shared Concepts), 416
effects

CALIS procedure, 1257
ICPHREG procedure, 3962

effects (CALIS), 1257
Efron method

likelihood (PHREG), 5940, 5955
likelihood (SURVEYPHREG), 8261

eigenvalues and eigenvectors
ACECLUS procedure, 866, 872, 876–878
CANCORR procedure, 1829, 1844
PRINCOMP procedure, 6584, 6600, 6602
RSREG procedure, 7277

Einot and Gabriel’s multiple range test
ANOVA procedure, 967
examples (GLM), 3520
GLM procedure, 3437, 3485

Ekblom-Newton algorithm
FASTCLUS procedure, 2407

elasticnet selection
GLMSELECT procedure, 3711

elementary linkage analysis, see single linkage
EM algorithm

MI procedure, 5064, 5104
EM-REML

HPMIXED procedure, 3859
empirical Bayes estimate

NLMIXED procedure, 5682, 5689, 5696, 5713,
5714

empirical Bayes estimates
GLIMMIX procedure, 3074, 3161, 3246

empirical Bayes estimation
GLIMMIX procedure, 3074
NLMIXED procedure, 5718

empirical bayes options
NLMIXED procedure, 5705

empirical best linear unbiased prediction
MIXED procedure, 5263

empirical distribution function
definition of, 7801
EDF test statistics, 7802, 7803
plots (NPAR1WAY), 5798, 5844
tests (Introduction to Nonparametric Analysis),

272
tests (NPAR1WAY), 5820

empirical estimator
GLIMMIX procedure, 3066, 3213, 3216
MIXED procedure, 5228

empirical power, see simulation
enabling and disabling

ODS Graphics, 606
ENTRYFOOTNOTE GTL statement

LIFETEST procedure, 819
Epanechnikov kernel (DISCRIM), 2177
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EQS program
CALIS procedure, 1184

equal-precision bands
LIFETEST procedure, 788, 4339, 4363, 4407

equal-tail intervals
credible intervals (PHREG), 5917, 6022
definition of, 129
Introduction to Bayesian Analysis, 129, 152

equality
of means (TTEST), 8788, 8825
of variances (TTEST), 8813, 8825

equamax method, 1260, 1261, 2296, 2321, 2322, 4020,
4021

equivalence class, see fit equivalence classes
(VARIOGRAM)

equivalence test
TTEST procedure, 8802, 8844

equivalence tests, 367, 6495
binomial proportions, 2669
power and sample size (POWER), 6298, 6300,

6305, 6317, 6325, 6337, 6346, 6401, 6410,
6420, 6421, 6443

risk difference (FREQ), 2679
ergodicity

VARIOGRAM procedure, 8966
error rate estimation

DISCRIM procedure, 2179, 2182
discriminant analysis, 2159

error seriousness ratio
Waller-Duncan test, 966, 3436

error spending
SEQTEST procedure, 7554

error spending function method
SEQDESIGN procedure, 7411

error spending information
SEQDESIGN procedure, 7413
SEQTEST procedure, 7571

error spending method
SEQDESIGN procedure, 7323, 7360, 7379, 7380,

7411
error spending plot

SEQDESIGN procedure, 7334, 7417
SEQTEST procedure, 7575

error sum of squares clustering method, see Ward’s
method

estimability
definition (Introduction to Modeling), 55
definition (Introduction to Regression), 90
GLIMMIX procedure, 3094
GLM procedure, 3416
HPMIXED procedure, 3833, 3835, 3839, 3843
MIXED procedure, 5240

estimability checking
GENMOD procedure, 2901

LOGISTIC procedure, 4517
PHREG procedure, 5923
SURVEYLOGISTIC procedure, 8076

estimable function
definition (Introduction to Modeling), 55
definition (Introduction to Regression), 90
Introduction to ANOVA Procedures, 102, 105

estimable functions
checking (GLM), 3416
displaying (GLM), 3440
example (GLM), 3460
general form of, 3461
GLM procedure, 3417, 3418, 3427, 3442,

3460–3464, 3473
MIXED procedure, 5262
printing (GLM), 3440

ESTIMATE statement
chi-bar-square statistic, 458
estimate-specification (Shared Concepts), 444
joint hypothesis tests with complex alternatives,

457
multiple comparison adjustment (Shared

Concepts), 446
positional and nonpositional syntax, 455
syntax (Shared Concepts), 444

Estimate-specification
ESTIMATE statement, 444

estimated population marginal means, see least squares
means

estimates
GLIMMIX procedure, 3104
HPMIXED procedure, 3837
multiple comparison adjustment (GLIMMIX),

3105
estimating covariances and means example (CALIS),

1544
estimating covariances example (CALIS), 1539
estimating equations

Introduction to Modeling, 23
estimation

dispersion parameter (GENMOD), 2856
KRIGE2D procedure, 4125
maximum likelihood (GENMOD), 2941
maximum likelihood (ICPHREG), 3963
mixed model (MIXED), 5297
regression parameters (GENMOD), 2856
VARIOGRAM procedure, 8913

estimation criteria
CALIS procedure, 1468

estimation method
baseline estimation (PHREG), 5904

estimation methods
CALIS procedure, 1463, 1464, 1469, 1473
GLIMMIX procedure, 3072
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HPMIXED procedure, 3829
MIXED procedure, 5230
VARCOMP procedure, 8890

Euclidean distance coefficient
DISTANCE procedure, 2274

Euclidean distances, 2017, 2018, 2176, 2394
clustering, 2006
MDS procedure, 4993, 4999, 5010

Euclidean length
STDIZE procedure, 7847

event
SPP procedure, 7769

event of interest code
PHREG procedure, 5934

event summary table
LIFETEST procedure, 822, 824

event symbol
traditional graphics (LIFETEST), 4382

event times
PHREG procedure, 5881, 5884

event values summary
PHREG procedure, 6016, 6020
SURVEYPHREG procedure, 8293

events (number of inset table)
LIFETEST procedure, 820

events/trials format for response
GEE procedure, 2823
GENMOD procedure, 2913, 2938

exact conditional logistic regression, see exact logistic
regression, see exact logistic regression

exact conditional Poisson regression, see exact Poisson
regression

exact confidence limits
odds ratio (FREQ), 2684
proportion difference (FREQ), 2679
proportions (FREQ), 2663
ratio of proportions (FREQ), 2686
relative risks (FREQ), 2686
risk difference (FREQ), 2679

exact logistic regression
GENMOD procedure, 2978
GENMOD procedure, 2904
LOGISTIC procedure, 4601
LOGISTIC procedure, 4522

exact method
likelihood (PHREG), 5940, 5954

exact p-values
FREQ procedure, 2706
NPAR1WAY procedure, 5823

exact Poisson regression
GENMOD procedure, 2978, 3039
GENMOD procedure, 2904, 2932

exact tests
computational algorithms (FREQ), 2705

computational algorithms (NPAR1WAY), 5822
computational resources (FREQ), 2707
computational resources (NPAR1WAY), 5824
examples (NPAR1WAY), 5845, 5847
FREQ procedure, 2578, 2704, 2744
Monte Carlo estimation (FREQ), 2585
MONTE Carlo estimation (NPAR1WAY), 5824
network algorithm (FREQ), 2705
network algorithm (NPAR1WAY), 5822
NPAR1WAY procedure, 5822
permutation test (MULTTEST), 5511

examples, BCHOICE
a random-effects-only logit model, 1066
alternative-specific and individual-specific effects,

1058
getting started, 1004
heterogeneity affected by individual

characteristics, 1068
inference on quantities of interest, 1073
logit model with random effects, 1011
nested logit modeling, 1061
predict the choice probabilities, 1074
probit modeling, 1063
simple logit model, 1004

examples, FMM
binary data, sort order, 2478
binomial data, 2534
cattle feeding data, 2541
housing satisfaction survey, 2554
logistic model, binomial cluster, 2534
multinomial model, 2555
ossification data, 2533
PROBMODEL specification, 2534
salmonella assay, 2550
three-component mixture, 2543
Weibull distribution, 2543

examples, GLIMMIX
adding computed variables to output data set,

3110
analysis of means, ANOM, 3265
analysis of summary data, 3376
anom plot, 3119
anom plots, 3265
binary data, 3304
binary data, GLMM, 3279
binary data, pseudo-likelihood, 3279
binary data, sort order, 3080
binomial data, 3059
binomial data, GLM, 3268
binomial data, GLMM, 3272
binomial data, overdispersed, 3296
binomial data, spatial covariance, 3275
bivariate data; Poisson, binary, 3305
blotch incidence data, 3294
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box plots, 3254
bucket size in k-d tree, 3222
central t distribution, 3139
Cholesky covariance structure, 3322
collection effect, 3231
computed variables, 3287, 3311
constructed random effect, 3372
containment hierarchy, 3073, 3219
contrast, among covariance parameters, 3099,

3100, 3330
contrast, differences of splines, 3235
contrast, nonpositional syntax, 3093, 3233, 3368
contrast, positional syntax, 3093, 3233
contrast, with groups, 3095
contrast, with spline effects, 3234
control plot, 3119, 3263
covariance structure, 3172
covariates in LS-mean construction, 3115
COVTEST statement, 3102
COVTEST with keywords, 3099
COVTEST with no restrictions, 3206
COVTEST with specified values, 3099
cow weight data, 3309
diallel experiment, 3371
diffogram, 3120, 3259, 3261, 3283
diffplot, 3120
empirical Bayes estimates, 3340
epileptic seizure data, 3345
equivalent models, TYPE=VC, 3218
equivalent models, with and without subject, 3218
estimate, multi-row, 3107
estimate, with groups, 3107
estimate, with varied divisors, 3107
ferrite cores data, 3320
FIRSTORDER option for Kenward-Roger

method, 3324
foot shape data, 3339
FREQ statement, 3340
G-side spatial covariance, 3157
GEE-type model, 3068, 3203, 3348
generalized logit, 3095, 3106
generalized logit with random effects, 3236
generalized Poisson distribution, 3362
getting started, 3057
GLM mode, 3203
GLMM mode, 3203
graphics, anom plots, 3265
graphics, box plots, 3254
graphics, control plot, 3263
graphics, custom template, 3290
graphics, diffogram, 3259, 3261, 3283
graphics, mean plots, 3257
graphics, Pearson residual panel, 3298
graphics, predicted profiles, 3314

graphics, residual panel, 3251
graphics, studentized residual panel, 3289
group option in contrast, 3095
group option in estimate, 3107
group-specific smoothing, 3316
grouped analysis, 3340
groups in RANDOM statement, 3097, 3327
herniorrhaphy data, 3303
Hessian fly data, 3267
holding covariance parameters fixed, 3151
homogeneity of covariance parameters, 3097,

3099, 3327
identity model, 3376
infinite degrees of freedom, 3346
inverse linking, 3062, 3129
isotonic contrast, 3320
joint model (DIST=BYOBS), 3138
joint model, independent, 3305
joint model, marginal correlation, 3307
joint model, shared random effect, 3306
k-d tree information, 3222
Kenward-Roger method, 3322
knot construction, equal, 3159
knot construction, k-d tree, 3159, 3222, 3311
knot construction, optimization, 3159
Laplace approximation, 3194, 3198, 3354
LDATA= option, 3166
least squares mean estimate, 3125, 3320
least squares mean estimate, multi-row, 3127
least squares mean estimate, with varied divisors,

3127
least squares means, 3062
least squares means, AT option, 3115
least squares means, covariate, 3115
least squares means, differences against control,

3116
least squares means, slice, 3121
least squares means, slice differences, 3122
linear combination of LS-means, 3125
linear covariance structure, 3166, 3376
_LINP_, 3178–3180
logistic model with random effects, binomial data,

3272
logistic model, binomial data, 3268
logistic regression with random intercepts, 3057
logistic regression, binary data, 3226, 3304
logistic regression, binomial data, 3240
_LOGL_, 3362
marginal variance matrix, 3174
mean plot, sliced interaction, 3121
mean plot, three-way, 3121
mean plots, 3257
MIVQUE0 estimates, 3153
_MU_, 3179, 3180
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multicenter clinical trial, 3349
multimember effect, 403, 3231, 3372
multinomial data, 3095, 3106, 3236, 3340, 3354
multiple local minima, 3337
multiple plot requests, 3085
multiplicity adjustment, 3320, 3351, 3354, 3370
multivariate distributions, 3138
multivariate normal model, 3327
nesting v. crossing, 3219
NLIN procedure, 3375
NLOPTIONS statement, 3311
NOFIT option, 3222
NOITER option for covariance parameters, 3152
nonlinear regression, 3375
NOPROFILE option, 3334
odds ratio, 3142, 3227
odds ratio, all pairwise differences, 3143, 3228
odds ratio, with interactions, 3142, 3228
odds ratio, with reference value, 3143, 3228
odds ratio, with specified units, 3143, 3228
ordinal data, 3340, 3354
OUTDESIGN option, 3366, 3372
output statistics, 3146, 3178, 3287, 3311, 3366
overdispersion, 3056, 3068, 3155, 3203, 3296
parallel shifted smooths, 3317
Pearson residual panel, 3298
penalized B-spline, 3167
Poisson model with offset, 3287, 3346
Poisson model with random effects, 3359
Poisson regression, 3305
Pothoff-Roy repeated measures data, 3321
proportional odds model with random effect,

3340, 3354
quadrature approximation, 3196, 3340, 3359
quasi-likelihood, 3299
R-side covariance structure, 3322, 3348
R-side covariance, binomial data, 3275
radial smooth, with parallel shifts, 3317
radial smoothing, 3222, 3311, 3334
radial smoothing, group-specific, 3316
REPEATED in MIXED vs RANDOM in

GLIMMIX, 3237
residual panel, 3251
row-wise adjustment of LS-mean differences,

3113
salamander data, 3277
Satterthwaite method, 3113
saturated model, 3376
Scottish lip cancer data, 3285
SGPANEL procedure, 3314
SGPLOT procedure, 3336, 3337, 3344, 3365,

3367
SGRENDER procedure, 3290
simple differences, 3122, 3283

simple differences with control, 3123
simulated p-values, 3351, 3354, 3370
simulated survey data, 3379
slice differences, 3122, 3283
slice differences with control, 3123
slice F test, 3121
space-filling design, 3159
spatial covariance, binomial data, 3275
specifying lower bounds, 3151
specifying values for degrees of freedom, 3135
spline differences, 3370
spline effect, 398, 3232, 3366
splines in interactions, 3370
standardized mortality rate, 3287
starting values, 3337
starting values and BY groups, 3154
starting values from data set, 3153
step-down p-values, 3351, 3354, 3370
studentized maximum modulus, 3113
studentized residual panel, 3289
subject processing, 3073, 3218
subject processing, containment, 3219
subject processing, crossed effects, 3219
subject processing, nested effects, 3219
subject-processing, asymptotics, 3194
syntax, differences to MIXED, 3237, 3238
test for independence, 3343
test for Poisson distribution, 3362
testing covariance parameters, 3098, 3327, 3330,

3334
theophylline data, 3373
TYPE=CS and TYPE=VC equivalence, 3164
user-defined log-likelihood function, 3362
user-defined variance function, 3198
user-specified link function, 3179, 3180
user-specified variance function, 3180, 3299
_VARIANCE_, 3180, 3299
working independence, 3068, 3203

examples, GLMSELECT
multimember effect, 403

examples, HPMIXED
animal breeding data, 3822
autoregressive structure, R-side, 3882
getting started, 3822
least squares means, differences against control,

3841
least squares means, slice, 3842
many fixed and random effects, 3822
multimember effect, 403
NOITER option for covariance parameters, 3847
Pothoff and Roy growth measurements, 3879
slice F test, 3842
starting values and BY groups, 3848
starting values from data set, 3848
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subject-specific R matrices, 3855
examples, IRT

getting started, 4009
examples, LOGISTIC

multimember effect, 403
examples, MCMC

array subscripts, 4763
arrays, 4763
arrays, store data set variables, 4887
BEGINCNST/ENDCNST statements, 4887
Behrens-Fisher problem, 4738
blocking, 4790
Box-Cox transformation, 4872
Caterpillar Plot, 4831
censoring, 4818, 4955
change point models, 4919
cloglog transformation, 4821
constrained analysis, 4956
Cox models, 4936, 4942
Cox models, time dependent covariates, 4942
Cox models, time independent covariates, 4936
deviance information criterion, 4934
discrete priors, 4878
error finding using the PUT statement, 4853
estimate functionals, 4885, 4928
estimate posterior probabilities, 4741
exponential models, survival analysis, 4924
FCMP procedure, 4965, 4967
Gelman-Rubin diagnostics, 4980
generalized linear models, 4881, 4887, 4890
GENMOD procedure, BAYES statement, 4889,

4892
getting started, 4732
graphics, box plots, 4932
graphics, custom template, 4840
graphics, fit plots, 4923
graphics, kernel density comparisons, 4866, 4872
graphics, multiple chains, 4984
graphics, posterior predictive checks, 4841
graphics, PSRF plots, 4987
graphics, scatter plots, 4920, 4975, 4979, 4980
graphics, survival curves, 4934
hierarchical centering, 4902
IF-ELSE statement, 4740
implement a new sampling algorithm, 4962
improve mixing, 4893, 4971
improving mixing, 4902
initial values, 4797
interval censoring, 4955
Jeffreys’ prior, 4887
JOINTMODEL option, 4827, 4940, 4946
LAG functions, 4938
linear regression, 4732
log transformation, 4820

logistic regression, diffuse prior, 4881
logistic regression, Jeffreys’ prior, 4887
logistic regression, random-effects, 4901
logistic regression, sampling via Gibbs, 4962
logit transformation, 4820
matrix functions, 4887, 4960, 4968
missing at random (MAR), 4912
missing not at random (MNAR), 4915
MISSING= option, 4945
mixed-effects models, 4742, 4901
mixing, 4893, 4971
mixture of normal densities, 4869
model comparison, 4934
modelling dependent data, 4827
MONITOR= option, arrays, 4928
multilevel random-effects models, 4903
Multivariate Distribution, 4811
multivariate priors, 4960
nonignorably missing, 4915
nonlinear Poisson regression, 4893
PHREG procedure, BAYES statement, 4942,

4947
Piecewise Exponential Frailty Models, 4948
Poisson regression, 4890
Poisson regression, multilevel random-effects,

4903
Poisson regression, nonlinear, 4893, 4903
posterior predictive distribution, 4838
probit transformation, 4820
proportional hazard models, 4936, 4942
random-effects models, 4742, 4901, 4903
regenerate diagnostics plots, 4828
SGPLOT procedure, 4866, 4871, 4919, 4921,

4932, 4933, 4975, 4979, 4983, 4985
SGRENDER procedure, 4841
specifying a new distribution, 4813
store data set variables in arrays, 4887
survival analysis, 4923
survival analysis, exponential models, 4924
survival analysis, Weibull model, 4927
TEMPLATE procedure, 4840
truncated distributions, 4818, 4960
UDS statement, 4962
use macros to construct log-likelihood, 4943
user-defined samplers, 4962
Weibull model, survival analysis, 4927

examples, MIXED
ASYCOV matrix, 5342
asymptotic covariance of covariance parameters,

5342
autoregressive structure, R-side, 5344
box plots, 5391
box plots, paneling, 5235
broad inference space, 5240, 5242
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compound symmetry, G-side setup, 5294, 5347
compound symmetry, R-side setup, 5293, 5344
constrained anisotropic model, 5287
covariates in LS-mean construction, 5247
COVTEST option, 5340, 5350
deletion estimates, 5375
doubly repeated measure, 5289
estimate, with subject, 5244
fat absorption data, 5375
ferrite cores data, 5397
fixed-effect solutions, 5364
full-rank parameterization, 5343
GDATA= option in RANDOM statement, 5358
geometrically anisotropic model, 5288
getting started, 5218
GLM procedure, split-plot design, 5337
graphics, box plots, 5391
graphics, influence diagnostics, 5375, 5386
graphics, residual panel, 5326
graphics, studentized residual panel, 5326
GROUP= effect in RANDOM statement, 5347
height data, 5218
holding covariance parameters fixed, 5266, 5287,

5288
IML procedure, reading ASYCOV, 5342
inference space, broad, 5240, 5242
inference space, intermediate, 5242
inference space, narrow, 5240, 5242
inference spaces, 5338
influence analysis, iterative, 5375, 5386
influence analysis, non-iterative, 5384
influence analysis, set deletion, 5384, 5386
influence analysis, tuples, 5259
intermediate inference space, 5242
isotonic contrast, 5398
known covariance parameters, 5265
known G and R matrix, 5358
Kronecker covariance structure, 5289
L-components, 5262, 5393, 5396
least squares means estimate, 5398
least squares means, AT option, 5247
least squares means, covariate, 5247
least squares means, differences against control,

5248
least squares means, slice, 5250
line-source sprinkler data, 5370
local power-of-mean model, 5279
maximum likelihood estimation, 5340
mixed model equations, 5350, 5358
mixed model equations, solution, 5350, 5358
multiple plot requests, 5236
multiple traits data, 5357
multiplicity adjustment, 5398
multivariate analysis, 5289

narrow inference space, 5240, 5242
nested error structure, 5367
nested random effects, 5221
NOITER option, 5265, 5358
oven data (Hemmerle and Hartley, 1973), 5350
parameter grid search, 5350
pharmaceutical stability data, 5363
polynomial model, 5396
POM data set, 5279
POM fitting, iterated, 5279
Pothoff and Roy growth measurements, 5339,

5384
random coefficient model, 5344, 5364, 5389
random-effect solutions, 5364
residual panel, 5326
row-wise multiplicity adjustment, 5246
Satterthwaite method, 5246
set deletion, 5386
SGRENDER procedure, 5356
slice F test, 5250
spatial power structure, 5374
specifying lower bounds, 5267
specifying values for degrees of freedom, 5253
split-plot design, 5294, 5335
split-plot design, data, 5334, 5393
split-plot design, equivalent model, 5339
starting values, 5350
studentized maximum modulus, 5246
studentized residual panel, 5326
subject and no-subject formulation, 5294
subject contrasts, 5244
subject v. no-subject formulation, 5339
subject-specific R matrices, 5280
subject-specific V matrices, 5276
Toeplitxz structure, 5370
tuples, influence analysis, 5259
two-way analysis of variance, 5218
unstructured covariance, G-side, 5276
unstructured covariance, R-side, 5340, 5384
varying covariance parameters, 5347

examples, NLIN
array, constant, 5631
array, variable, 5631
biweight, 5641
boundary specifications, 5596
Box’s bias and Hougaard’s skewness measure,

5652
Box’s bias and Hougaard’s skewness measures,

5651
cancer remission data, 5644
conditional model expression, 5635, 5636
constant array, 5631
contrasts among parameters, 5660
convergence status, 5634
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derivative code, 5609
derivatives, output, 5603
derivatives, zero, 5620
discontinuity, 5621
divergence, 5620
dose-response data, 5647
enzyme data, 5578
expected value parameterization, 5652
GENMOD procedure, 5646
getting started, 5578
GLIMMIX procedure, 5646
Hougaard’s skewness measure, 5579, 5648
iteratively reweighted least squares, 5641
join point, 5635
join point, estimated, 5639
LD50 parameterization, 5651
local minimum, 5621
log-logistic model, 5648
LOGISTIC procedure, 5646
machine-level code, 5609
maximum likelihood estimation, 5644
model code, 5609
Newton-Raphson algorithm, 5644
non-identifiable parameter, 5620
ODS Graphics and diagnostics, 5664
one-compartment model, 5657
output, derivatives, 5603
output, predicted, 5652
output, predicted values, 5635
output, prediction limits, 5652
parameter differences, 5660
Parameter Profiling, 5669
pharmacokinetic model, 5657
plateau model, 5635
plot, observed and predicted, 5637
predicted values, 5635
probit model, 5644
programming statements, 5607
programming statements, efficiency, 5618
PUT statement, 5635
reparameterization, 5639, 5651, 5652, 5660
reparameterizing constraint, 5597
robust regression, 5641
ROBUSTREG procedure, 5643
segmented model, 5635
SGPLOT procedure, 5637, 5647, 5648, 5655,

5662
SIGSQ= option, 5644
simulated data, 5664
starting values, data set, 5605
starting values, grid, 5604
starting values, multiple, 5579
sum-of-squares reduction test, 5659, 5661
switching function, 5648

theophylline data, 5654
U.S. population growth data, 5641
variable array, 5631
varying parameters by groups, 5658
weight variable, 5641
weighted least squares, 5619

examples, NLMIXED
binomial data, 5749
binomial-normal model, 5688
boundary specification, 5709
censored data, 5759
Cholesky parameterization, 5748
ESTIMATE statement, 5749
failure time model, 5758
frailty, 5758
gamma distribution, 5722
general distribution, 5752, 5759, 5763
getting started, 5684
GLIMMIX procedure, 5721, 5722
graphics, predicted profiles, 5766
group-specific random effects, 5749
growth curve, 5684
intraclass correlation coefficient, 5752
logistic-normal model, 5688
logsig parameterization, 5756
mutli-center clinical trial, 5688
negative binomial distribution, 5722
one-compartment model, 5745
orange tree data, 5684
Overdispersion-nested example, 5771
pharmacokinetic model, 5745
Poisson-normal example, 5755
PREDICT statement, 5749
predicted profiles, graphics, 5766
probit-normal model, binomial, 5748
probit-normal model, ordinal, 5751
random frailty, 5763
SGPLOT procedure, 5766
Simulate-nested example, 5768
single random effect, 5684, 5688, 5713
starting values from data set, 5737
theophylline data, 5744
three random effects, 5713
two random effects, 5713, 5745
user-specified log likelihood, 5752, 5759, 5763

examples, ORTHOREG
multimember effect, 403

examples, PHREG
multimember effect, 403

examples, PLS
multimember effect, 403

examples, QUANTLIFE
multimember effect, 403

examples, QUANTREG
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multimember effect, 403
examples, QUANTSELECT

multimember effect, 403
examples, ROBUSTREG

multimember effect, 403
examples, SURVEYLOGISTIC

multimember effect, 403
examples, SURVEYREG

multimember effect, 403
excluded observations

PRINQUAL procedure, 6642, 6663
TRANSREG procedure, 8672

exclusion list
ODS, 529

exemplary data set
power and sample size (GLMPOWER), 3598,

3600, 3607, 3611, 3626, 3627, 3642
EXPAND option

TEMPLATE procedure, 850
expansion locus

theory (GLIMMIX), 3192
expected Fisher information

SEQDESIGN procedure, 7351, 7352
expected mean sample size

SEQTEST procedure, 7553
expected mean squares

computing, types (GLM), 3504
random effects, 3502

expected sample size
SEQDESIGN procedure, 7414
SEQTEST procedure, 7571

expected trend
MULTTEST procedure, 5513

expected value
definition (Introduction to Modeling), 47
of vector (Introduction to Modeling), 47

experimental design, 18, 3567, see also PLAN
procedure

aliasing structure (GLM), 3564
experimentwise error rate (GLM), 3479
explicit intercept

TRANSREG procedure, 8671
exploratory data analysis

VARIOGRAM procedure, 8914
exploratory factor analysis

CALIS Procedure, 1190
exploratory factor analysis example (CALIS), 1190
exponential chi-square distribution

definition of (MCMC), 4800
MCMC procedure, 4768, 4800

exponential covariance structure
GLIMMIX procedure, 3169
MIXED procedure, 5282

exponential distribution

definition of (MCMC), 4802
deviation from theoretical distribution, 7803
FMM procedure, 2498
GENMOD procedure, 3004
GLIMMIX procedure, 3137
MCMC procedure, 4769, 4802

exponential exponential distribution
definition of (MCMC), 4801
MCMC procedure, 4768, 4801

exponential family
Introduction to Modeling, 29
Introduction to Regression, 77

exponential gamma distribution
definition of (MCMC), 4801
MCMC procedure, 4768, 4801

exponential inverse chi-square distribution
definition of (MCMC), 4801
MCMC procedure, 4768, 4801

exponential inverse-gamma distribution
definition of (MCMC), 4802
MCMC procedure, 4768, 4802

exponential model
ICPHREG procedure, 3961

exponential scaled inverse chi-square distribution
definition of (MCMC), 4802
MCMC procedure, 4768, 4802

exponential semivariance model
KRIGE2D procedure, 4144, 4155
SIM2D procedure, 7715
VARIOGRAM procedure, 8945, 8961

external cross validation
GLMSELECT procedure, 3728

external studentization
MIXED procedure, 5308

external unfolding
MDS procedure, 4992

extreme value distribution
PROBIT procedure, 6751

F statistics
CLUSTER procedure, 2023, 2034
GENMOD procedure, 2951

factor
defined for factor analysis, 2297

factor analysis
compared to component analysis, 2296, 2297

factor analysis model
COSAN statement (CALIS), 1391
identification (CALIS), 1258

factor analytic structures
MIXED procedure, 5281

factor loadings
CALIS procedure, 1382

FACTOR model
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confirmatory factor analysis example (CALIS),
1190, 1597, 1608, 1668

exploratory factor analysis example (CALIS),
1190

full information maximum likelihood example
(CALIS), 1629, 1639

linear constraints example (CALIS), 1750
residual diagnostics example (CALIS), 1616
robust estimation example (CALIS), 1616
structural model example (CALIS), 318

factor parsimax method, 1260, 1261, 2296, 2321, 2322
FACTOR procedure

CALIS procedure, 1259
computational resources, 2342
coverage displays, 2337
degrees of freedom, 2324
Heywood cases, 2341
number of factors extracted, 2314
ODS graph names, 2349
OUT= data sets, 2320
output data sets, 2301, 2320
path diagram, 2326
simplicity functions, 2298, 2321, 2337
time requirements, 2338
variances, 2324

Factor rotation
with FACTOR procedure, 2302

factor rotation methods, 2296
factor scores

CALIS procedure, 1381, 1384, 1521
displaying (CALIS), 1521

factor scoring coefficients
FACTOR procedure, 7294
SCORE procedure, 7294, 7304

factor structure, 2302
factor-analytic structure

GLIMMIX procedure, 3165
factors

PLAN procedure, 6124, 6125, 6132
PLS procedure, 6210

FAILURE survival-plot option
LIFETEST procedure, 800

failure time
LIFEREG procedure, 4208

false discovery rate, 5518
adjustment (MULTTEST), 5522

false negative, false positive rate
LOGISTIC procedure, 4542, 4582, 4658

FAMILY=GRAPHUNICODETEXT GTL option
LIFETEST procedure, 814

familywise error rate, 5517
adjustment (MULTTEST), 5518

Farrington-Manning test

power and sample size (POWER), 6330, 6336,
6414

risk difference (FREQ), 2677
fast Fourier transform

KDE procedure, 4096
MULTTEST procedure, 5512

FASTCLUS procedure
algorithm for updating cluster seeds, 2407
bin-sort algorithm, 2404
cluster deletion, 2405
clustering criterion, 2394, 2406, 2407
clustering methods, 2394, 2395
compared to other procedures, 2417
computational problems, convergence, 2405
computational resources, 2416
controlling iterations, 2407
convergence criterion, 2404
distance, 2393, 2394, 2412
DRIFT option, 2395
Ekblom-Newton algorithm, 2407
homotopy parameter, 2405
imputation of missing values, 2406
incompatibilities, 2411
iteratively reweighted least squares, 2406
Lp clustering, 2394, 2406
MEAN= data sets, 2408
memory requirements, 2416
Merle-Spath algorithm, 2407
missing values, 2394, 2395, 2406, 2408, 2412
Newton algorithm, 2407
OUT= data sets, 2412
outliers, 2394
output data sets, 2408, 2412
output table names, 2421
OUTSTAT= data set, 2408, 2414
random number generator, 2408
scale estimates, 2404, 2407, 2411, 2413
seed replacement, 2395, 2408
weighted cluster means, 2409

Fay coefficient
SURVEYLOGISTIC procedure, 8068, 8116
SURVEYMEANS procedure, 8170, 8211
SURVEYPHREG procedure, 8282
SURVEYREG procedure, 8328, 8353

Fay’s BRR method
variance estimation (SURVEYFREQ), 8012
variance estimation (SURVEYLOGISTIC), 8116
variance estimation (SURVEYMEANS), 8211
variance estimation (SURVEYPHREG), 8282
variance estimation (SURVEYREG), 8353

FCS method
MI procedure, 5077

FDR, see false discovery rate
features, 6495
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fiducial limits, 6693, 6694, 6752
FIML method

CALIS procedure, 1465
finite differences

theory (GLIMMIX), 3197
finite differencing

NLMIXED procedure, 5698, 5730
finite mixture models

See FMM procedure, 2442
finite population correction

Introduction to Survey Procedures, 247
SURVEYFREQ procedure, 7970
SURVEYLOGISTIC procedure, 8067, 8109
SURVEYMEANS procedure, 8165, 8166, 8183
SURVEYPHREG procedure, 8246
SURVEYREG procedure, 8326, 8327, 8347

first canonical variable, 1856
first-order algorithm

Shared Concepts, 501
first-order method

NLMIXED procedure, 5720
first-stage sampling units

Introduction to Survey Procedures, 247
Firth’s penalized likelihood

LOGISTIC procedure, 4569
Fisher combination

adjustment (MULTTEST), 5521
Fisher exact test

MULTTEST procedure, 5506, 5508, 5515, 5541
Fisher information

SEQDESIGN procedure, 7350
Fisher information matrix

example (MIXED), 5350
MIXED procedure, 5318

Fisher scoring algorithm
LOGISTIC procedure, 4545, 4546, 4567

Fisher scoring method
SURVEYLOGISTIC procedure, 8089, 8105

Fisher’s exact test
FREQ procedure, 2651
Introduction to Nonparametric Analysis, 274
power and sample size (POWER), 6330, 6337,

6416
Fisher’s LSD test, 967, 3437
Fisher’s scoring method

GENMOD procedure, 2922, 2942
GLIMMIX procedure, 3066, 3088
MIXED procedure, 5227, 5236, 5332

Fisher’s z test for correlation
power and sample size (POWER), 6288, 6291,

6379, 6450
fit, see also semivariogram theoretical model fitting

(VARIOGRAM)
automated (VARIOGRAM), 8977

criteria (VARIOGRAM), 8982
equivalence classes (VARIOGRAM), 8984
quality (VARIOGRAM), 8981

fit diagnostics
examples (REG), 7112

fit plots
SURVEYREG procedure, 8324

fit statistics
FMM procedure, 2526
GLIMMIX procedure, 3244
GLMSELECT procedure, 3714, 3735
PHREG procedure, 6022
QUANTSELECT procedure, 6945, 6953

fitted covariance matrix
CALIS procedure, 1464

fitted mean vector
CALIS procedure, 1464

fitting information
GLIMMIX procedure, 3244

fixed effects
GLIMMIX procedure, 3054
HPMIXED procedure, 3842
MIXED procedure, 5216
sum-to-zero assumptions, 3503
VARCOMP procedure, 8886, 8892

fixed-effects model
VARCOMP procedure, 8893

fixed-effects parameters
MIXED procedure, 5214, 5292

fixed-radius kernels
MODECLUS procedure, 5422

Fleiss-Cohen weights
kappa coefficient (FREQ), 2693
kappa coefficient (SURVEYFREQ), 8027

Fleming-Harrington estimate
survival function (PHREG), 5905

Fleming-Harrington estimates
LIFETEST procedure, 4328, 4355

Fleming-Harrington G� test for homogeneity
ICLIFETEST procedure, 3904
LIFETEST procedure, 4328, 4353

flexible-beta method
CLUSTER procedure, 2006, 2015, 2016, 2031

Fligner-Policello test
NPAR1WAY procedure, 5818

floating point errors
MCMC procedure, 4850
NLMIXED procedure, 5736

FMM procedure, 2442
alpha level, 2498, 2507
Bayes information, 2528
Bayesian analysis, 2483
Bayesian fit statistics, 2528
Bernoulli distribution, 2498
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beta distribution, 2498
beta-binomial distribution, 2498
binary distribution, 2498
binomial distribution, 2498
centering and scaling, 2477
class level, 2477, 2525
compared to other procedures, 2445
confidence limits, 2498, 2507
constrained analysis, 2508
convergence criterion, 2472, 2475
convergence status, 2526
default output, 2525
effect name length, 2477
effective sample sizes, 2529
exponential distribution, 2498
fit statistics, 2526
folded normal distribution, 2498
function-based convergence criteria, 2472, 2474
gamma distribution, 2498
Gaussian distribution, 2498
generalized Poisson distribution, 2498
geometric distribution, 2498
gradient-based convergence criteria, 2472, 2475
heavy-tailed density, 2442, 2500, 2514
hurdle model, 2442, 2445, 2452
input data sets, 2473
introductory example, 2446
inverse Gaussian distribution, 2498
iteration details, 2476
iteration history, 2526
link function, 2502, 2507
lognormal distribution, 2498
mixing probabilities, 2528
model information, 2525
multi-modal density, 2442, 2460, 2461, 2514
multinomial cluster distribution, 2498
multinomial distribution, 2498
multithreading, 2506
negative binomial distribution, 2498
normal distribution, 2498
number of observations, 2525
ODS Graphics, 2480, 2531
ODS table names, 2529
offset variable, 2502
optimization information, 2526
ordering of CLASS variable levels, 2477
ordering of effects, 2477
overdispersion, 2442, 2444, 2446, 2452, 2454,

2511–2513, 2532, 2540, 2550, 2555
parameter estimates, 2527
parameterization, 2524
plots, 2444
Poisson distribution, 2498
posterior autocorrelations, 2529

posterior intervals, 2529
posterior summaries, 2528
prior distributions, 2528
random number seed, 2482
residual variance tolerance, 2483
response level ordering, 2496
response profile, 2526
response variable options, 2496
restricted analysis, 2508
statistical graphics, 2531
t distribution, 2498
Weibull distribution, 2498
weighting, 2510
zero-inflated model, 2442, 2443, 2445, 2452,

2453, 2500, 2516
folded form F statistic

TTEST procedure, 8813
folded normal distribution

FMM procedure, 2498
font changes

LIFETEST procedure, 810
fonts

LIFETEST procedure, 850–852
fonts, modifying

ODS Graphics, 681
footnote

LIFETEST procedure, 819
format

LIFETEST procedure, 796, 798, 825
formatted values

DISTANCE procedure, 2280
formulas

CANCORR procedure, 1839
forward selection

GLMSELECT procedure, 3704
LOGISTIC procedure, 4544, 4571
PHREG procedure, 5938, 5997
QUANTSELECT procedure, 6944
REG procedure, 6979, 7049

Forward-Dolittle transformation, 3462
fraction of missing information

MI procedure, 5092
MIANALYZE procedure, 5175

fractional frequencies
ICPHREG procedure, 3954
PHREG procedure, 5927
STDIZE procedure, 7843

fractional sample size
GLMPOWER procedure, 3629
POWER procedure, 6274, 6371

frailty
NLMIXED procedure, 5758
random, example (NLMIXED), 5758

Freeman-Halton test
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FREQ procedure, 2652
Freeman-Tukey test

MULTTEST procedure, 5508, 5513, 5534
FREQ procedure

adjusted odds ratio (Mantel-Haenszel), 2699
adjusted relative risks (Mantel-Haenszel), 2700
Agresti-Caffo confidence limits, 2673
Agresti-Coull confidence limits, 2664
ANOVA (row mean scores) statistic, 2697
bar charts, 2630
Barnard’s test, 2680
binomial proportions, 2663
Blaker confidence limits, 2664
Bowker’s test of symmetry, 2690, 2691
Breslow-Day test, 2701
cell count data, 2641
chi-square goodness-of-fit test, 2648
chi-square tests, 2648
Clopper-Pearson confidence limits, 2663
Cochran’s Q test, 2690, 2694
Cochran-Armitage test for trend, 2687
common odds ratio, 2701
computational resources, 2708
computational resources (exact tests), 2707
contingency coefficient, 2653
continuity-adjusted chi-square test, 2651
correlation statistic, 2697
Cramér’s V statistic, 2653
crosstabulation tables, 2714
default tables, 2598
displayed output, 2712
dot plots, 2630, 2729
equivalence tests, 2669
equivalence tests (risk difference), 2679
exact confidence limits, 2578
exact p-values, 2706
exact tests, 2578, 2704, 2744
exact unconditional confidence limits, 2679
Farrington-Manning test, 2677
Fisher’s exact test, 2651
Freeman-Halton test, 2652
Friedman’s chi-square test, 2748
Gail-Simon test, 2704
gamma statistic, 2653, 2655
general association statistic, 2698
grouping with formats, 2642
Hauck-Anderson confidence limits, 2673
in-database computation, 2645
input data sets, 2577, 2641
Introduction to Nonparametric Analysis, 273, 274,

276
introductory examples, 2566
Jeffreys confidence limits, 2665
Jonckheere-Terpstra test, 2689

kappa coefficient, 2690, 2691
Kendall’s tau-b statistic, 2653, 2655
lambda asymmetric, 2653, 2660
lambda symmetric, 2653, 2661
likelihood ratio chi-square test, 2650
Likelihood ratio confidence limits, 2665
Logit confidence limits, 2665
Mantel-Fleiss criterion, 2698
Mantel-Haenszel chi-square test, 2651
Mantel-Haenszel statistics, 2695
maximum time (exact tests), 2585
McNemar’s test, 2690, 2691
measures of agreement, 2690
measures of association, 2653
Mid-p confidence limits, 2665
Miettinen-Nurminen confidence limits, 2673
missing values, 2643
Monte Carlo estimation (exact tests), 2578, 2585,

2707
mosaic plots, 2622
multiway tables, 2714
network algorithm, 2705
Newcombe confidence limits, 2674, 2678
noninferiority tests, 2667
noninferiority tests (risk difference), 2676
odds ratio, 2683
ODS graph names, 2725
ODS table names, 2721
one-way frequency tables, 2713
ordering of levels, 2577
output data sets, 2586, 2709
overall kappa coefficient, 2694
Pearson chi-square test, 2649
Pearson correlation coefficient, 2653, 2657
phi coefficient, 2653
polychoric correlation coefficient, 2653, 2659
relative risks, 2685
risk difference, 2671
score confidence limits, 2673, 2684, 2686
scores, 2647
SCORES=RANK (Introduction to Nonparametric

Analysis), 273
simple kappa coefficient, 2691
Somers’ D statistics, 2653, 2656
Spearman rank correlation coefficient, 2653, 2658
standardized residuals, 2649
Stuart’s tau-c statistic, 2653, 2656
superiority tests, 2669
superiority tests (risk difference), 2678
tetrachoric correlation coefficient, 2659
uncertainty coefficients, 2653, 2662
Wald confidence limits (risk difference), 2675
weighted kappa coefficient, 2690, 2692
Wilson confidence limits, 2666
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Yule’s Q statistic, 2655
Zelen’s exact test, 2701

FREQ statement
and RMSSTD statement (CLUSTER), 2025

frequency plots
FREQ procedure, 2568

frequency tables
FREQ procedure, 2564, 2598
generating (CATMOD), 1909, 1912
input to CATMOD procedure, 1926
Introduction to Survey Procedures, 244
one-way (FREQ), 2713
SURVEYFREQ procedure, 7978

frequency variable
FMM procedure, 2494
GLIMMIX procedure, 3110
LOGISTIC procedure, 4528
PRINQUAL procedure, 6643
programming statements (PHREG), 5943
programming statements (SURVEYPHREG),

8263
SURVEYLOGISTIC procedure, 8079
TRANSREG procedure, 8564
value (PHREG), 5927
value (SURVEYPHREG), 8256

frequency variables
ICPHREG procedure, 3953

frequentist probability
Introduction to Bayesian Analysis, 124

Friedman’s chi-square test
FREQ procedure, 2748

Friedman’s test
Introduction to Nonparametric Analysis, 275

full information maximum likelihood
CALIS procedure, 1465

full information maximum likelihood and ML
FIML (CALIS), 1639

full information maximum likelihood example
(CALIS), 1629, 1639

full likelihood
ICPHREG procedure, 3960

full sibs mating
INBREED procedure, 3997

full-rank coding
TRANSREG procedure, 8578

function
estimable, definition (Introduction to Modeling),

55
estimable, definition (Introduction to Regression),

90
furthest neighbor clustering, see complete linkage
futility index

SEQTEST procedure, 7565
fuzzy coding

CORRESP procedure, 2120
FWE, see familywise error rate

G matrix
GLIMMIX procedure, 3155–3157
HPMIXED procedure, 3849, 3857
MIXED procedure, 5216, 5272, 5273, 5292,

5293, 5368
G-G epsilon, 3497
G-side random effect

GLIMMIX procedure, 3055
g2 inverse

NLIN procedure, 5623
g4 inverse

NLIN procedure, 5623
Gabriel’s multiple-comparison procedure

ANOVA procedure, 966
GLM procedure, 3435, 3481

Gail-Simon test
FREQ procedure, 2704

GAM procedure
comparing PROC GAM with PROC LOESS,

2801
estimates from PROC GAM, 2777
generalized additive model with binary data, 2789
graphics, 2765, 2766
ODS Graph Names, 2788
ODS graph names, 2788
ODS Graphics, 2788
ODS table names, 2788
Poisson regression analysis of component

reliability, 2795
response level ordering, 2770
response variable options, 2770

Gamerman Algorithm
BCHOICE procedure, 1047

Gamerman algorithm
Markov chain Monte Carlo, 136

gamma distribution, 4208, 4244, 4263
definition of (MCMC), 4803
deviation from theoretical distribution, 7803
FMM procedure, 2498
GENMOD procedure, 2936
GLIMMIX procedure, 3137
MCMC procedure, 4769, 4779, 4803, 4836
NLMIXED procedure, 5711

gamma error spending function
SEQDESIGN procedure, 7336

gamma error spending method
SEQDESIGN procedure, 7380

gamma statistic
FREQ procedure, 2653, 2655

gauge R&R
VARCOMP procedure, 8890, 8895
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Gaussian assumption
SIM2D procedure, 7692

Gaussian covariance structure
GLIMMIX procedure, 3170
MIXED procedure, 5282

Gaussian distribution
definition of (MCMC), 4806
FMM procedure, 2498
GLIMMIX procedure, 3137
MCMC procedure, 4770, 4779, 4806
NLMIXED procedure, 5711

Gaussian random field
SIM2D procedure, 7692

Gaussian semivariance model
KRIGE2D procedure, 4144, 4154
SIM2D procedure, 7715
VARIOGRAM procedure, 8945, 8961

Geary’s c coefficient, see autocorrelation
GEE, see generalized estimating equations, see also

generalized estimating equations
GEE procedure

convergence criterion, 2826
correlated data, 2829
dispersion parameter weights, 2828
events/trials format for response, 2823
GEE, 2825
generalized estimating equations (GEE), 2829
initial values, 2827
intercept, 2825
logistic regression, 2816
offset, 2825
orrelated data, 2832
output ODS Graphics table names, 2837
output table names, 2836
QIC, 2831
quasi-likelihood functions, 2831
quasi-likelihood information criterion (QIC),

2831
repeated measures, 2829, 2832
working correlation matrix, 2826, 2827, 2829

Gehan test, see Wilcoxon test for homogeneity
power and sample size (POWER), 6347, 6358,

6422
Gelman-Rubin diagnostics

Bayesian analysis (PHREG), 6022
MCMC procedure, 4980

general association statistic
Mantel-Haenszel (FREQ), 2698

general distribution
MCMC procedure, 4769, 4779, 4813
NLMIXED procedure, 5711

general effects
Shared Concepts, 390

general linear covariance structure

GLIMMIX procedure, 3166
MIXED procedure, 5281

general linear model
Introduction to Regression, 65

general linear models, 6495, 6553
contrast, 6562
covariates, 6568
defining factors, 6554
model selection, 6555, 6566

generalized Crawford-Ferguson family, 2296
generalized Crawford-Ferguson method, 1260, 1261,

2321, 2322
generalized cross validation (GCV)

TPSPLINE procedure, 8481, 8504, 8505, 8515
generalized cyclic incomplete block design

generating with PLAN procedure, 6141
generalized estimating equations

compound symmetry (GLIMMIX), 3348
working independence (GLIMMIX), 3068, 3203

Generalized Estimating Equations (GEE), 2875
generalized estimating equations (GEE), 2825, 2927,

2958, 3007, 3012
GEE procedure, 2829
Introduction to Regression, 65, 78

generalized Euclidean distance coefficient
DISTANCE procedure, 2275

generalized inverse, 5299
MIXED procedure, 5241
NLIN procedure, 5623
NLMIXED procedure, 5699

generalized least squares, see weighted least squares
estimation

CALIS procedure, 1464
generalized linear mixed model, see also GLIMMIX

procedure
Introduction to Regression, 65, 78

generalized linear mixed model (GLIMMIX)
least squares means, 3124
theory, 3186

generalized linear model, see also GLIMMIX
procedure

GENMOD procedure, 2854, 2855
Introduction to Modeling, 29, 57, 59, 60
Introduction to Regression, 64, 77, 78, 82
theory (GENMOD), 2935

generalized linear model (GLIMMIX)
theory, 3180

generalized linear models
MCMC procedure, 4881, 4887, 4890

generalized log-rank test
ICLIFETEST procedure, 3904

generalized logit
example (GLIMMIX), 3095, 3106

generalized logit model
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MI procedure, 5060
SURVEYLOGISTIC procedure, 8113

generalized logits, see also response functions
examples (CATMOD), 1933
formulas (CATMOD), 1953
specifying in CATMOD procedure, 1919
using (CATMOD), 1932

generalized Poisson distribution
FMM procedure, 2498
GLIMMIX procedure, 3357

generalized two-sided test
SEQDESIGN procedure, 7357

generation (INBREED)
nonoverlapping, 3981, 3984
number, 3989
overlapping, 3981, 3983
variable, 3989

GENMOD procedure
adjusted residuals, 2953
AIC, 2944
Akaike’s information criterion, 2944
aliasing, 2862
analysis of means, 467
Bayesian analysis linear regression, 2863
Bayesian information criterion, 2944
BIC, 2944
binomial distribution, 2937
built-in link function, 2856
built-in probability distribution, 2856
case deletion diagnostics, 2970
classification variables, 2946
confidence intervals, 2915
continuous variables, 2946
contrasts, 2903
convergence criterion, 2915, 2928
correlated data, 2853, 2958
correlation matrix, 2916, 2942
covariance matrix, 2916, 2942
crossed effects, 2946
design matrix, 2947
deviance, 2915
deviance definition, 2857
deviance residuals, 2953
diagnostics, 2916, 2970
diffogram, 470
dispersion parameter, 2944
dispersion parameter estimation, 2856, 2948
dispersion parameter weights, 2934
effect specification, 2946
estimability checking, 2901
events/trials format for response, 2913, 2938
exact logistic regression, 2978
exact Poisson regression, 2978, 3039
expected information matrix, 2942

exponential distribution, 3004
F statistics, 2951
Fisher’s scoring method, 2922, 2942
gamma distribution, 2936
GEE, 2853, 2875, 2927, 2958, 3007, 3010, 3012
generalized estimating equations (GEE), 2853
generalized linear model, 2854, 2855
geometric distribution, 2936
goodness of fit, 2942
gradient, 2941
Hessian matrix, 2941
information matrix, 2922
initial values, 2917, 2929
intercept, 2857, 2860, 2919
inverse Gaussian distribution, 2936
Lagrange multiplier statistics, 2951
life data, 3001
likelihood residuals, 2953
linear model, 2854
linear predictor, 2853, 2854, 2860, 2947, 2984
link function, 2853, 2855, 2939
log-likelihood functions, 2939
log-linear models, 2859
logistic regression, 2997
main effects, 2946
maximum likelihood estimation, 2941
_MEAN_ automatic variable, 2926
model checking, 3017, 3024
multinomial distribution, 2937
multinomial models, 2954
negative binomial distribution, 2937
nested effects, 2946
Newton-Raphson algorithm, 2941
normal distribution, 2936
observed information matrix, 2942
observed margins, 468
ODS graph names, 427
offset, 2921, 2984
offset variable, 2859
ordinal data, 3004
output data sets, 2978, 2979
output ODS Graphics table names, 2995
output table names, 2991
overdispersion, 2945
Pearson residuals, 2953
Pearson’s chi-square, 2915, 2942, 2943
Poisson distribution, 2937
Poisson regression, 2858
polynomial effects, 2946
profile likelihood confidence intervals, 2919, 2950
programming statements, 2926
QIC, 2965
quasi-likelihood, 2946
quasi-likelihood functions, 2965



Subject Index F 9119

quasi-likelihood information criterion, 2965
raw residuals, 2952
regression parameters estimation, 2856
regressor effects, 2946
repeated measures, 2853, 2958
residuals, 2921, 2952, 2953
_RESP_ automatic variable, 2926
scale parameter, 2938
scaled deviance, 2942
score statistics, 2951
singular contrast matrix, 2901
subpopulation, 2915
suppressing output, 2884
Tweedie distribution, 3042
tweedie distribution, 2938
tweedie GLM, 2956
Type 1 analysis, 2857, 2947
Type 3 analysis, 2857, 2948
user-defined link function, 2910
variance function, 2856
Wald confidence intervals, 2922, 2950
working correlation matrix, 2929, 2930, 2958
_XBETA_ automatic variable, 2926
zero-inflated models, 2954
zero-inflated negative binomial distribution, 2938
zero-inflated Poisson distribution, 2937

GENMOD procedure, LSMEANS statement
ODS graph names, 475
ODS table names, 474

GENMOD procedure
convergence criterion, 2907
exact logistic regression, 2904
exact Poisson regression, 2904, 2932
ordering of effects, 2879
stratified exact logistic regression, 2932
stratified exact Poisson regression, 2932

Gentleman-Givens computational method, 5852
geometric anisotropy

KRIGE2D procedure, 4163, 4164
geometric distribution

definition of (MCMC), 4803
FMM procedure, 2498
GENMOD procedure, 2936
GLIMMIX procedure, 3137
MCMC procedure, 4769, 4803

geometric mean
SURVEYMEANS procedure, 8201

Geweke diagnostics
Bayesian analysis (PHREG), 6022

Gibbs sampler
Introduction to Bayesian Analysis, 131, 133
Markov chain Monte Carlo, 131, 133

GLIMMIX procedure
adaptive Gaussian quadrature, 3073

Akaike’s information criterion, 3069
Akaike’s information criterion (finite sample

corrected version), 3069
alpha level, 3100, 3106, 3115, 3126, 3134, 3149,

3156
analysis of means, 467
anisotropic power covariance structure, 3170
anisotropic spatial power structure, 3170
ANOM adjustment, 3113
anom plot, 3256
ANTE(1) structure, 3162
ante-dependence structure, 3162
AR(1) structure, 3162
asymptotic covariance, 3066, 3069
automatic variables, 3110, 3178
autoregressive moving-average structure, 3163
autoregressive structure, 3162
B-spline basis, 413
banded Toeplitz structure, 3171
Bernoulli distribution, 3137
beta distribution, 3137
Between-Within method, 3210
bias of estimates, 3199
binary distribution, 3137
binomial distribution, 3137
BLUP, 3161, 3178, 3246
Bonferroni adjustment, 3113
boundary constraints, 3151, 3154
box plots, 3251
BYLEVEL processing of LSMEANS, 3115,

3118, 3127
centering, 3142
chi-square mixture, 3102
chi-square test, 3095, 3127, 3134
Cholesky covariance structure, 3163
Cholesky method, 3066
Cholesky root, 3163, 3165
class level, 3078, 3242
collection effect, 399
comparing splines, 3365
comparison with the MIXED procedure, 3236
compound symmetry structure, 3164
computed variables, 3110
confidence interval, 3108, 3130, 3156
confidence limits, 3106, 3116, 3127, 3134, 3156
confidence limits, covariance parameters, 3100
constrained covariance parameters, 3103
constructed effects, 3103, 3371
Containment method, 3211
continuous effects, 3162
contrast-specification, 3092, 3104
contrasts, 3092
control plot, 3256
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convergence criterion, 490, 491, 493, 500, 3065,
3074, 3081, 3238, 3243, 3244, 3269, 3313

convergence status, 3244
correlations of least squares means, 3116
correlations of least squares means contrasts,

3127
covariance parameter estimates, 3072, 3245
covariance parameters, 3056
covariance structure, 3162, 3172
covariances of least squares means, 3116
covariances of least squares means contrasts,

3127
covariate values for LSMEANS, 3115, 3127
crossed effects, 3230
crossover designs, 6146
default estimation technique, 3241
default output, 3241
default variance function, 3177
degrees of freedom, 3094, 3095, 3102,

3104–3106, 3111, 3112, 3116, 3126, 3127,
3135, 3136, 3144, 3210, 3230

degrees of freedom method, 3210
diagnostic plots, 3251
diffogram, 470, 3120, 3256, 3259, 3261, 3283
dimension information, 3242
dispersion parameter, 3184
doubly iterative algorithm, 3239
Dunnett’s adjustment, 3113
EBE, 3161, 3246
EBLUP, 3161
effect name length, 3077
empirical Bayes estimates, 3074, 3161, 3246
empirical Bayes estimation, 3074
empirical estimator, 3216
estimability, 3094, 3096, 3108, 3111, 3145, 3231
estimated-likelihood interval, 3100
estimates, 3104
estimation methods, 3072
estimation modes, 3203
examples, see also examples, GLIMMIX, 3266
expansion locus, 3192
exponential covariance structure, 3169
exponential distribution, 3137
factor-analytic structure, 3165
finite differences, 3197
Fisher’s scoring method, 3066, 3088
fit statistics, 3244
fitting information, 3244
fixed effects, 3054
fixed-effects parameters, 3144
functional convergence criteria, 491
G matrix, 3155–3157
G-side random effect, 3055
gamma distribution, 3137

Gaussian covariance structure, 3170
Gaussian distribution, 3137
general linear covariance structure, 3166
generalized linear mixed model theory, 3186
generalized linear model theory, 3180
generalized Poisson distribution, 3357
geometric distribution, 3137
GLM mode, 3068, 3184, 3203, 3204
GLMM mode, 3068, 3203, 3204
grid search, 3150
group effect, 3157
Hannan-Quinn information criterion, 3069
Hessian matrix, 3066, 3069
Hessian scaling, 493
heterogeneous AR(1) structure, 3163
heterogeneous autoregressive structure, 3163
heterogeneous compound symmetry structure,

3165
heterogeneous Toeplitz structure, 3171
Hsu’s adjustment, 3113
Huynh-Feldt covariance structure, 3166
infinite degrees of freedom, 3095, 3106, 3116,

3127
information criteria, 3069
initial values, 3150
input data sets, 3066
integral approximation, 3186
interaction effects, 3230
intercept, 3230
intercept random effect, 3155
introductory example, 3057
inverse Gaussian distribution, 3137
iteration details, 3071
iteration history, 3243
iterations, 3243
Kackar-Harville-Jeske adjusted estimator, 3216
Kenward-Roger method, 3212
knot selection, 3221
KR adjusted estimator, 3216
L matrices, 3092, 3111
lag effect, 400
lag functionality, 512, 3176
Laplace approximation, 3072, 3192
least squares means, 3111, 3116, 3122, 3839
likelihood ratio test, 3096, 3204
line-search methods, 495
line-search precision, 496
linear covariance structure, 3166
linearization, 3186, 3188
link function, 3054, 3140
log-normal distribution, 3137
marginal residuals, 3149
Matérn covariance structure, 3170
maximum likelihood, 3072, 3241
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missing level combinations, 3231
MIVQUE0 estimation, 3153, 3243
mixed model smoothing, 3157, 3158, 3160, 3167,

3168, 3220
model information, 3242
multimember effect, 402, 3371
multimember example, 3371
multinomial distribution, 3137
multiple comparisons of estimates, 3105
multiple comparisons of least squares means,

3112, 3113, 3116, 3122, 3126
multiplicity adjustment, 3105, 3108, 3112, 3113,

3123, 3126, 3130
Natural cubic spline basis, 415
negative binomial distribution, 3137
Nelson’s adjustment, 3113
nested effects, 3230
Newton-Raphson algorithm, 499
Newton-Raphson algorithm with ridging, 499
non-full-rank parameterization, 3230
non-positional syntax, 3094, 3232, 3365
normal distribution, 3137
notation, 3054
number of observations, 3242
numerical integration, 3195
observed margins, 468
odds estimation, 3225
odds ratio estimation, 3225
odds ratios, 3079
ODS graph names, 3250
ODS Graphics, 3081, 3249
ODS table names, 3247
offset, 3144, 3178, 3287, 3288, 3346
optimization, 3145
optimization information, 3243
optimization technique, 498
output statistics, 3246
overdispersion, 3357
P-spline, 3167
parameterization, 3229
penalized B-spline, 3167
Poisson distribution, 3137
Poisson mixture, 3357
polynomial effect, 404
population average, 3192
positive definiteness, 3163
power covariance structure, 3170
profile-likelihood interval, 3100
profiling residual variance, 3078, 3088
programming statements, 3175
pseudo-likelihood, 3072, 3241
quadrature approximation, 3072, 3195
quasi-likelihood, 3241
R-side random effect, 3055, 3161

radial smoother structure, 3168
radial smoothing, 3158, 3168, 3220
random effects, 3054, 3155
random-effects parameter, 3161
reference category, 3235
remote monitoring, 498
residual effect, 3155
residual likelihood, 3072
residual maximum likelihood, 3241
residual plots, 3251
response level ordering, 3133, 3235
response profile, 3235, 3242
response variable options, 3133
restricted maximum likelihood, 3241
sandwich estimator, 3216
Satterthwaite method, 3211
scale parameter, 3055, 3056, 3070, 3078, 3088,

3101, 3150, 3151, 3154, 3177, 3180,
3183–3185, 3189, 3190, 3192, 3195, 3208,
3239, 3243, 3245, 3279, 3296, 3299, 3312,
3315, 3341, 3358

Schwarz’s Bayesian information criterion, 3069
scoring, 3066
Sidak’s adjustment, 3113
simple covariance matrix, 3169
simple effects, 3121
simple effects differences, 3122
simulation-based adjustment, 3114
singly iterative algorithm, 3239
spatial covariance structure, 3169
spatial exponential structure, 3169
spatial Gaussian structure, 3170
spatial Matérn structure, 3170
spatial power structure, 3170
spatial spherical structure, 3171
spherical covariance structure, 3171
spline bases, 411
spline comparisons, 3365
spline effect, 407
spline smoothing, 3167, 3168
standard error adjustment, 3066
statistical graphics, 3249, 3250
subject effect, 3161
subject processing, 3218
subject-specific, 3192
t distribution, 3137
table names, 3247
test-specification for covariance parameters, 3097
testing covariance parameters, 3096, 3204
tests of fixed effects, 3245
thin plate spline (approx.), 3220
Toeplitz structure, 3171
TPF basis, 412
truncated power function basis, 412
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Tukey’s adjustment, 3113
Type I testing, 3140
Type II testing, 3140
Type III testing, 3140
unstructured covariance, 3171
unstructured covariance matrix, 3165
user-defined link function, 3177
V matrix, 3174
Wald test, 3245
Wald tests of covariance parameters, 3103
weight, 3144, 3174
weighted multilevel models, 3200
weighting, 3175

GLIMMIX procedure, SLICE statement
ODS graph names, 475

GLIMMIX procedure
ordering of effects, 3079

GLM, see also GLIMMIX procedure
GLM parameterization

Shared Concepts, 392
SURVEYLOGISTIC procedure, 8100

GLM procedure
absorption of effects, 3412, 3469
aliasing structure, 3439, 3564
alpha level, 3422, 3434, 3439, 3444
Bartlett’s test, 3436, 3488
Bonferroni adjustment, 3420
Brown and Forsythe’s test, 3436, 3488
canonical analysis, 3430
characteristic roots and vectors, 3429
compared to other procedures, 3394, 3445, 3501,

3553, 3567, 5217, 5560, 5852, 7256
comparing groups, 3473
computational method, 3508
computational resources, 3505
contrasts, 3415, 3448
covariate values for least squares means, 3422
diffogram, 3426
disk space, 3407
Dunnett’s adjustment, 3420
effect sizes, 3465
effect specification, 3453
error effect, 3429
estimability, 3416–3418, 3427, 3442, 3461, 3473
estimable functions, 3460
ESTIMATE specification, 3472
homogeneity of variance tests, 3436, 3488
Hsu’s adjustment, 3420
hypothesis tests, 3451, 3460
interactive use, 3455
interactivity and BY statement, 3413
interactivity and missing values, 3456, 3505
introductory example, 3395
least squares means (LS-means), 3419

Levene’s test for homogeneity of variance, 3436,
3488

means, 3432
means versus least squares means, 3474
memory requirements, reduction of, 3412
missing values, 3407, 3428, 3491, 3505
model specification, 3453
multiple comparisons, least squares means, 3420,

3424, 3475, 3478
multiple comparisons, means, 3434, 3435, 3437,

3475, 3478
multiple comparisons, procedures, 3432
multivariate analysis of variance, 3407, 3428,

3492
Nelson’s adjustment, 3420
nonstandard weights for least squares means,

3423
O’Brien’s test, 3436
observed margins for least squares means, 3423
ODS graph names, 3516
ODS table names, 3511
output data sets, 3442, 3508–3510
parameterization, 3456
positional requirements for statements, 3404
predicted population margins, 3420
Q effects, 3502
random effects, 3445, 3501, 3502
regression, quadratic, 3398
relation to GLMMOD procedure, 3575
repeated measures, 3446, 3493
Sidak’s adjustment, 3420
simple effects, 3427
simulation-based adjustment, 3420
singularity checking, 3416, 3418, 3427, 3441
sphericity tests, 3449, 3497
SSCP matrix for multivariate tests, 3429
statistical assumptions, 3452
summary of features, 3393
tests, hypothesis, 3415
transformations for MANOVA, 3429
transformations for repeated measures, 3448
Tukey’s adjustment, 3420
types of least squares means comparisons, 3424
unbalanced analysis of variance, 3395, 3474,

3524
unbalanced design, 3395, 3474, 3502, 3524, 3551
weighted analysis, 3452
weighted means, 3489
Welch’s ANOVA, 3438
WHERE statement, 3456

GLMM, see also GLIMMIX procedure
GLMMOD alternative

TRANSREG procedure, 8596, 8706
GLMMOD procedure
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design matrix, 3575, 3583, 3585
input data sets, 3580
introductory example, 3576
missing values, 3584, 3585
ODS table names, 3585
output data sets, 3581, 3584, 3585
relation to GLM procedure, 3575
screening experiments, 3592

GLMMOD procedure
ordering of effects, 3581

GLMPOWER procedure
actual alpha, 3629
actual power, 3627, 3629, 3644
alpha level, 3617
analysis of variance, 3599, 3641, 3647
ceiling sample size, 3629
compared to other power and sample size tools,

365, 366
compared to other procedures, 3599, 6268
computational methods, 3630
contrasts, 3603, 3608, 3625, 3631, 3633, 3641,

3647
correlation, 3617, 3618, 3623
covariance, 3618, 3623
covariates, class and continuous, 3611, 3618,

3621–3623, 3632, 3647
displayed output, 3629
effect, 3629
exemplary data set, 3598, 3600, 3607, 3611, 3626,

3627, 3642
fractional sample size, 3629
graphics, 3641
introductory example, 3599
keyword-lists, 3626
Kronecker product, 3619
linear exponent autoregressive (LEAR), 3619
multivariate analysis of variance, 3609, 3623,

3653
name-lists, 3626
nominal power, 3627, 3629, 3644
number-lists, 3626
ODS graph names, 3641
ODS Graphics, 3641
ODS table names, 3630
plots, 3599, 3605, 3607, 3611
positional requirements for statements, 3605
repeated measures, 3609, 3623, 3653
repeated measures examples, 3626
sample size adjustment, 3627
standard deviation, 3618, 3622, 3623
statistical graphics, 3641
summary of analyses, 366
summary of statements, 3606
transformations for MANOVA, 3610

transformations for repeated measures, 3625
value lists, 3626
variance, 3618, 3622

GLMPOWER procedure
ordering of effects, 3607

GLMSELECT procedure
adaptive LASSO selection, 3710
ANOVA table, 3734
B-spline basis, 413
backward elimination, 3706
building the SSCP Matrix, 3722
candidates for addition or removal, 3733
class level coding, 3733
class level information, 3733
collection effect, 399
cross validation, 3726
cross validation details, 3735
dimension information, 3733
displayed output, 3732
elasticnet selection, 3711
external cross validation, 3728
fit statistics, 3714, 3735
forward selection, 3704
hierarchy, 3687
lag effect, 400
LASSO selection, 3710
least angle regression, 3709
macro variables, 3718
model averaging, 3722
model hierarchy, 3687
model information, 3732
model selection, 3704
model selection issues, 3713
multimember effect, 402
Natural cubic spline basis, 415
number of observations, 3732
ODS graph names, 3738
ODS Graphics, 3737, 6924
output table names, 3736
parameter estimates, 3736
performance settings, 3732
polynomial effect, 404
score information, 3736
screening, 3731
selected effects, 3734
selection summary, 3733
spline bases, 411
spline effect, 407
stepwise selection, 3707
stop details, 3734
stop reason, 3733
test data, 3724
timing breakdown, 3736
TPF basis, 412
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truncated power function basis, 412
using the STORE Statement, 3721
validation data, 3724

GLMSelect procedure
introductory example, 3662

GLM procedure
ordering of effects, 3408

global influence
LD statistic (PHREG), 5942, 5988
LMAX statistic (PHREG), 5942, 5988

global kriging
KRIGE2D procedure, 4125

global null hypothesis
PHREG procedure, 5884, 5969, 6017
score test (PHREG), 5937, 6029
SURVEYPHREG procedure, 8294

GLS method
CALIS procedure, 1464

Gompertz distribution, 6686
goodness of fit

GENMOD procedure, 2942
TPSPLINE procedure, 8504

goodness-of-fit tests, see empirical distribution
function

EDF, 7803
Gower’s dissimilarity coefficient

DISTANCE procedure, 2274
Gower’s method, see also median method

CLUSTER procedure, 2016, 2031
Gower’s similarity coefficient

DISTANCE procedure, 2273
gradient

CALIS procedure, 1371, 1508
GENMOD procedure, 2941
ICPHREG procedure, 3963
LOGISTIC procedure, 4573
MIXED procedure, 5228, 5317
SURVEYLOGISTIC procedure, 8120

Graeco-Latin square
generating with PLAN procedure, 6129

graph
customizing, 6503, 6522, 6577

graph label
ODS Graphics, 624

graph modification
ODS Graphics, 612

graph name
ODS Graphics, 624, 704

graph resolution
ODS Graphics, 611, 634

graph size
ODS Graphics, 611, 634

graph template language
ODS Graphics, 712

graph templates
ODS Graphics, 712

graph templates, customizing
ODS Graphics, 721

graph templates, definition
ODS Graphics, 730

graph templates, displaying
ODS Graphics, 718

graph templates, editing
ODS Graphics, 719

graph templates, locating
ODS Graphics, 716

graph templates, reverting to default
ODS Graphics, 722

graph templates, saving
ODS Graphics, 721, 732

graph titles, modifying
ODS Graphics, 731

GraphDataN style element modification
LIFETEST procedure, 849

graphics, see plots
GLMPOWER procedure, 3641
keywords (REG), 7094
options (REG), 7095
POWER procedure, 6428
saving output (MI), 5051
traditional plots (REG), 7094
TTEST procedure, 8821

graphics catalog, specifying
LIFEREG procedure, 4223
PROBIT procedure, 6693

graphics image file
file type, 628
ODS Graphics, 628, 630, 631
PostScript, 633, 700

graphics image file, saving
ODS Graphics, 632

graphics image file, type
ODS Graphics, 628

GraphOpts macro variable
LIFETEST procedure, 808, 809, 822, 824, 825,

847
graphs, see plots
Greenhouse-Geisser epsilon, 3497
grid lines

ODS Graphics, 737
grid search

example (MIXED), 5350
HPMIXED procedure, 3846

group average clustering, see average linkage
group comparisons

NLIN procedure, 5653
group effect

GLIMMIX procedure, 3157
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group reordering
LIFETEST procedure, 796, 798

group sequential design, 7316
SEQDESIGN procedure, 7358

group sequential trial
SEQDESIGN procedure, 7316
SEQTEST procedure, 7526

grouped-name-lists
POWER procedure, 6366

grouped-number-lists
POWER procedure, 6366

growth curve analysis
example (CATMOD), 1987
example (MIXED), 5293

GSK models, 1886
GT2 multiple-comparison method, 967, 3437, 3481

H-F epsilon, 3498
Hadamard matrix

BRR variance estimation (SURVEYFREQ), 8013
BRR variance estimation (SURVEYPHREG),

8282
SURVEYLOGISTIC procedure, 8068, 8118
SURVEYMEANS procedure, 8170, 8213
SURVEYREG procedure, 8328, 8355

half-fraction design, analysis, 3563
half-width, confidence intervals, 368, 6364
Hall-Wellner bands

LIFETEST procedure, 4339, 4362, 4407
Hall-Wellner confidence bands

LIFETEST procedure, 787, 788
Hamann coefficient

DISTANCE procedure, 2277
Hamming distance coefficient

DISTANCE procedure, 2277
handling error messages

MCMC procedure, 4853
Hannan-Quinn information criterion

GLIMMIX procedure, 3069
HPMIXED procedure, 3828
MIXED procedure, 5229

Hanurav-Vijayan selection method
SURVEYSELECT procedure, 8445

Harris component analysis, 2296, 2298, 2313
Harris-Kaiser method, 2296, 2322
hat matrix, 7064

LOGISTIC procedure, 4591
Hauck-Anderson confidence limits

risk difference (FREQ), 2673
Haybittle-Peto method

SEQDESIGN procedure, 7323, 7337, 7360, 7375,
7411

hazard function
baseline (PHREG), 5881, 5882

baseline (SURVEYPHREG), 8269
definition (PHREG), 5950
discrete (PHREG), 5940, 5950
LIFETEST procedure, 4328, 4414
PHREG procedure, 5881
rate (PHREG), 6047
ratio (PHREG), 5884, 5886
SEQDESIGN procedure, 7403

hazard ratio
Bayesian analysis (PHREG), 6012
confidence intervals (PHREG), 5937, 5971, 6017
estimates (PHREG), 6017, 6047
PHREG procedure, 5884, 6023
profile-likelihood confidence limits (PHREG),

5937, 5972
Wald’s confidence limits (ICPHREG), 3969
Wald’s confidence limits (PHREG), 5937, 5972

hazard ratios
Wald’s confidence limits (SURVEYPHREG),

8260
heat map plots

SURVEYREG procedure, 8324
heavy-tailed density

finite mixture models (FMM), 2442, 2500, 2514
Heidelberger-Welch diagnostics

Bayesian analysis (PHREG), 6023
Hertzsprung-Russell Plot, example

MODECLUS procedure, 5477
Hessian matrix

CALIS procedure, 1371, 1477, 1508
GENMOD procedure, 2941
GLIMMIX procedure, 3066, 3069
ICPHREG procedure, 3963
LOGISTIC procedure, 4545, 4573
MIXED procedure, 5227, 5228, 5236, 5267,

5316, 5318, 5332, 5333, 5342, 5350
NLMIXED procedure, 5700
SURVEYLOGISTIC procedure, 8089
SURVEYPHREG procedure, 8260

Hessian scaling
GLIMMIX procedure, 493
NLMIXED procedure, 5732

heterogeneity
example (MIXED), 5347
HPMIXED procedure, 3850, 3855
MIXED procedure, 5274, 5278

heterogeneous
AR(1) structure (MIXED), 5281
compound-symmetry structure (MIXED), 5281
covariance structure (MIXED), 5290
Toeplitz structure (MIXED), 5281

heterogeneous AR(1) structure
GLIMMIX procedure, 3163

heterogeneous autoregressive structure
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GLIMMIX procedure, 3163
heterogeneous compound symmetry

HPMIXED procedure, 3853
heterogeneous compound symmetry structure

GLIMMIX procedure, 3165
heterogeneous Toeplitz structure

GLIMMIX procedure, 3171
heterogeneous uniform correlation structure

HPMIXED procedure, 3854
heteroscedasticity

Introduction to Modeling, 58
testing (REG), 7078

Heywood cases
FACTOR procedure, 2341

hierarchical centering
MCMC procedure, 4902

hierarchical clustering, 2015, 2030, 8855
hierarchical design

generating with PLAN procedure, 6136
hierarchical factor model

CALIS procedure, 1741
hierarchical factor models

CALIS procedure, 1736
hierarchical model

example (MIXED), 5363
hierarchical model specification

NLMIXED procedure, 5723
hierarchy

GLMSELECT procedure, 3687
LOGISTIC procedure, 4538
PHREG procedure, 5935
QUANTSELECT procedure, 6934

higher-order factor model
CALIS procedure, 1737

higher-order factor models
CALIS procedure, 1736

higher-order factor models example (CALIS), 1736
highest posterior density (HPD) intervals

definition of, 129
Introduction to Bayesian Analysis, 129, 152

histogram plots
SURVEYMEANS procedure, 8163

Hochberg
adjustment (MULTTEST), 5521

Hochberg’s GT2 multiple-comparison method, 967,
3437, 3481

Hodges-Lehmann estimation
NPAR1WAY procedure, 5816

Hommel
adjustment (MULTTEST), 5521

homogeneity analysis
CORRESP procedure, 2094

homogeneity of variance tests, 966, 3436, 3488
Bartlett’s test (ANOVA), 966

Bartlett’s test (GLM), 3436, 3488
Brown and Forsythe’s test (ANOVA), 966
Brown and Forsythe’s test (GLM), 3436, 3488
DISCRIM procedure, 2168
examples, 3560
Levene’s test (ANOVA), 966
Levene’s test (GLM), 3436, 3488
O’Brien’s test (ANOVA), 966
O’Brien’s test (GLM), 3436
Welch’s ANOVA, 3488

homogeneity tests
LIFETEST procedure, 4328, 4334, 4365, 4399

homogeneous Poisson process
SPP procedure, 7769

homoscedasticity
Introduction to Modeling, 51

homotopy parameter
FASTCLUS procedure, 2405

honestly significant difference test, 968, 3437, 3480,
3482

Hosmer-Lemeshow test
LOGISTIC procedure, 4540, 4585
test statistic (LOGISTIC), 4586

Hotelling-Lawley trace, 960, 3429, 3496
Hotelling-Lawley-McKeon statistic

MIXED procedure, 5278
Hotelling-Lawley-Pillai-Samson statistic

MIXED procedure, 5278
how to use

alternate forms, 6521
Preferences, 6515
Results page, 6523

Howe’s solution, 2301
HPD intervals

credible intervals (PHREG), 5917, 6022
HPMIXED procedure

Akaike’s information criterion, 3828, 3863
Akaike’s information criterion (finite sample

corrected version) , 3828, 3863
alpha level, 3838, 3840, 3842, 3849
AR(1) structure, 3852
autoregressive structure, 3852, 3882
average information, 3820, 3859
B-spline basis, 413
basic features, 3818
BLUE, 3827
BLUP, 3827
BLUPs, 3850
boundary constraints, 3847, 3849
chi-square test, 3834, 3843
Cholesky covariance structure, 3852
Cholesky root, 3852
class level, 3829
collection effect, 399
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comparing HPMIXED and MIXED, 3868
compound symmetry structure, 3853
confidence interval, 3849
confidence limits, 3838, 3840, 3842, 3845, 3850
conjugate gradient algorithm, 3820
continuous effects, 3850, 3855, 3856
contrast specification, 3833
contrasts, 3833
convergence status, 3863
correlation estimates, 3855
correlations of least squares means, 3841
covariance parameter estimates, 3863
covariance structure, 3851, 3879
covariances of least squares means, 3841
degrees of freedom, 3834, 3837, 3838, 3840,

3841, 3843
dimensions, 3830
effect name length, 3829
EM-REML, 3859
estimability, 3833, 3835, 3839, 3840, 3843
estimates, 3837
estimation methods, 3829
expected information, 3859
first and second derivatives, 3859
fitting information, 3863
fixed effects, 3842
fixed-effects parameters, 3843
G matrix, 3849, 3857
grid search, 3846
Hannan-Quinn information criterion, 3828
heterogeneity, 3850, 3855
heterogeneous compound symmetry, 3853
heterogeneous uniform correlation structure, 3854
hypothesis tests, 3861
infinite degrees of freedom, 3838, 3840, 3843
information criteria, 3828
initial values, 3846
input data sets, 3828
intercept effect, 3843, 3849
introductory example, 3822
iteration details, 3829
iterations, 3863
L matrices, 3833, 3840
lag effect, 400
least squares means, 3841
likelihood computation, 3858
microarray data, 3875
mixed model, 3842
mixed model equations, 3829
model assumptions, 3857
model information, 3830
multimember effect, 402
multiple comparisons of least squares means,

3841

Natural cubic spline basis, 415
number of observations, 3830
ODS table names, 3863
parameter constraints, 3847
polynomial effect, 404
positive definiteness, 3852
profiling residual variance, 3830
R matrix, 3855, 3857
random effects, 3849
random-effects parameter, 3850
repeated effects, 3854
repeated measures, 3879
residual likelihood, 3829
residual method, 3843
residual variance tolerance, 3831
restricted maximum likelihood, 3829
rounding error, 3861
Schwarz’s Bayesian information criterion, 3828,

3863
simple effects, 3842
singularity, 3831
sparse matrix storage, 3860
sparse matrix techniques, 3820, 3860
spline bases, 411
spline effect, 407
starting values, 3859
subject effect, 3850, 3856
summary of commands, 3825
table names, 3863
TPF basis, 412
truncated power function basis, 412
type III tests, 3856
uniform correlation structure, 3853
unstructure, 3854
variance ratios, 3847
weighting, 3857

HPMIXED procedure
ordering of effects, 3830

HSD test, 968, 3437, 3480, 3482
Hsu’s adjustment

GLIMMIX procedure, 3113
GLM procedure, 3420
MIXED procedure, 5246

HTML destination
ODS, 518, 522, 538
ODS Graphics, 628, 633
open by default, 518, 521

HTML links
ODS, 566, 571

HTMLBLUE style
ODS styles, 519, 520, 607, 643, 652

HTMLBLUECML style
ODS styles, 607, 643, 652

HTMLBlueCML style
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LIFETEST procedure, 842
HTMLBLUEFL style

ODS styles, 668
HTMLBLUEFM style

ODS styles, 668
HTMLBLUEL style

ODS styles, 668
HTMLBLUEM style

ODS styles, 668
hurdle model

finite mixture models (FMM), 2442, 2445, 2452
Huynh-Feldt

epsilon (GLM), 3498
structure (GLM), 3497
structure (MIXED), 5281
stucture (GLIMMIX), 3166

HYBRID option
and FREQ statement (CLUSTER), 2025
and other options (CLUSTER), 2023
PROC CLUSTER statement, 2029

hypergeometric
distribution (MULTTEST), 5516
variance (MULTTEST), 5510

hypothesis test
mixed model (HPMIXED), 3856

hypothesis testing
Introduction to Modeling, 55

hypothesis tests
comparing adjusted means (GLM), 3428
contrasts (CATMOD), 1899
contrasts (GLM), 3415
contrasts, examples (GLM), 3519, 3537, 3545
custom tests (ANOVA), 973
customized (GLM), 3451
exact (FREQ), 2578
for intercept (ANOVA), 968
for intercept (GLM), 3440
GLM procedure, 3460
incorrect hypothesis (CATMOD), 1949
lack of fit (RSREG), 7271
MANOVA (GLM), 3492
mixed model (MIXED), 5301, 5319
multivariate (REG), 7080
nested design (NESTED), 5566
parametric, comparing means (TTEST), 8788,

8825
parametric, comparing variances (TTEST), 8813,

8825
random effects (GLM), 3445, 3502
REG procedure, 7025, 7035
repeated measures (GLM), 3496
TRANSREG procedure, 8681
Type I sum of squares (GLM), 3462
Type II sum of squares (GLM), 3463

Type III sum of squares (GLM), 3464
Type IV sum of squares (GLM), 3464

ICLIFETEST procedure
K-sample test, 3913
algorithms, 3905
alpha level, 3894
Bonferroni adjustment, 3902
bootstrap seed, 3894
bootstrap standard errors, 3894
censored summary, 3921
confidence limits, 3909, 3919
data and method info, 3919
data below a limit of detection, 3924
Dunnett’s adjustment, 3902
EMICM algorithm, 3896
estimation method, 3895
Fleming-Harrington G� test for homogeneity,

3904
generalized log-rank test, 3904
ICM algorithm, 3896
imputation covariance matrix, 3895
imputation seed, 3895
imputation standard errors, 3895
input data set, 3895
iteration history, 3895, 3921
kernel-smoothed hazard, 3897, 3911
maximum time, 3895
MISSING option, 3896
missing values, 3918
multiple imputation, 3895
nonparametric estimation, 3905
number of bootstrap samples, 3894
ODS graph names, 3923
ODS Graphics, 3893
ODS table names, 3922
output data sets, 3918
plotting confidence limits, 3926
plotting kernel-smoothed hazard, 3929
quartile estimate, 3910
Scheffe’s adjustment, 3902
Sidak’s adjustment, 3902
simulated adjustment, 3902
statistical methods, 3905
stratified tests, 3922
studentized maximum modulus adjustment, 3902
survival estimates, 3920
transformations for confidence intervals, 3894
trend test, 3904, 3918, 3922
Tukey’s adjustment, 3902
turnbull intervals, 3920
Turnbull’S method, 3895
variance estimation, 3908

ICPHREG procedure
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alpha level, 3949, 3954
baseline function, 3957, 3964
baseline parameterization, 3961
baseline statistics, 3947–3949
break points, 3964
classification variables, 3962
computational details, 3963
continuous variables, 3962
correlation matrix, 3957, 3964
covariance matrix, 3957, 3964, 3965, 3969
crossed effects, 3962
cubic spline model, 3961
design matrix, 3963
effect specification, 3962
equally spaced quantile partition method, 3964
exponential model, 3961
fit statistics, 3964
fractional frequencies, 3954
full likelihood, 3960
gradient, 3963
hazard ratio, 3966, 3968
Hessian matrix, 3963
information matrix, 3934
initial values, 3963
input and output data sets, 3969
internal knots, 3961
linear hypotheses, 3934
linear predictor, 3949, 3963
log-hazard, 3966
main effects, 3962
maximum likelihood estimates, 3934
maximum likelihood estimation, 3963
missing values, 3969
nested effects, 3962
Newton-Raphson algorithm, 3963
ODS graph names, 3972
ODS table names, 3971
output data sets, 3969
parameter information, 3971
piecewise constant model, 3961
polynomial effects, 3962
predicted curves, 3944
predicted values, 3965
regressor effects, 3962
right-censored data, 3960, 3964
spline parameters, 3971
survival function, 3948
terminal knots, 3961
time intervals, 3971
Weibull model, 3961, 3974

ID variables
TRANSREG procedure, 8565

ideal point model
TRANSREG procedure, 8603

ideal point models
TRANSREG procedure, 8751

identification variables, 5711
identity transformation

PRINQUAL procedure, 6647
TRANSREG procedure, 8572

ill-conditioned data
ORTHOREG procedure, 5852

image component analysis, 2296, 2298, 2314
IMLPlus, 18
implicit intercept

TRANSREG procedure, 8671
imputation methods

MI procedure, 5067
imputation model

MI procedure, 5103
imputation of missing values

FASTCLUS procedure, 2406
imputer’s model

MI procedure, 5093
in-database computation

FREQ procedure, 2645
INBREED procedure

coancestry, computing, 3993
coefficient of relationship, computing, 3992
covariance coefficients, 3981, 3983, 3985, 3988,

3990, 3992
covariance coefficients matrix, output, 3988
first parent, 3990
full sibs mating, 3997
generation number, 3989
generation variable, 3989
generation, nonoverlapping, 3981, 3984
generation, overlapping, 3981, 3983
inbreeding coefficients, 3981, 3983, 3988, 3990,

3993
inbreeding coefficients matrix, output, 3988
individuals, outputting coefficients, 3988
individuals, specifying, 3985, 3989, 3990
initial covariance value, 3991
initial covariance value, assigning, 3988
initial covariance value, specifying, 3983
kinship coefficient, 3992
last generation’s coefficients, output, 3988
mating, offspring and parent, 3996, 3997
mating, self, 3996
matings, output, 3990
monoecious population analysis, example, 4001
offspring, 3988, 3995
ordering observations, 3982
OUTCOV= data set, 3988, 3998
output table names, 4000
panels, 3998, 4004
pedigree analysis, 3981, 3982
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pedigree analysis, example, 4003, 4004
population, monoecious, 4001
population, multiparous, 3988, 3992
population, nonoverlapping, 3989
population, overlapping, 3982, 3983, 3994
progeny, 3991, 3993, 3996, 4003
second parent, 3990
selective matings, output, 3990
specifying gender, 3985
theoretical correlation, 3992
unknown or missing parents, 3998
variables, unaddressed, 3990, 3991

incomplete block design
generating with PLAN procedure, 6137, 6141

incomplete principal components
REG procedure, 7000, 7022

incremental fit indices, 1269
indepdendent

random variables (Introduction to Modeling), 49
independence sampler

Introduction to Bayesian Analysis, 135
Markov chain Monte Carlo, 135

independent variable
defined (ANOVA), 946
Introduction to Regression, 68

index counter
ODS Graphics, 631

indirect effect
CALIS procedure, 1257

indirect standardization
STDRATE procedure, 7891

individual difference models
MDS procedure, 4992

INDSCAL model
MDS procedure, 4992, 4999

inertia, definition
CORRESP procedure, 2096

INEST= data sets
LIFEREG procedure, 4275
QUANTREG procedure, 6872
ROBUSTREG procedure, 7214

infeasibility
QUANTREG procedure, 6861

inference
design-based (Introduction to Modeling), 21
mixed model (MIXED), 5300
model-based (Introduction to Modeling), 21
space, mixed model (MIXED), 5239, 5240, 5242,

5337
infinite degrees of freedom

GLIMMIX procedure, 3095, 3106, 3116, 3127
HPMIXED procedure, 3838, 3840

infinite likelihood
MIXED procedure, 5277, 5331, 5332

infinite parameter estimates
LOGISTIC procedure, 4541, 4569
SURVEYLOGISTIC procedure, 8088, 8106

influence diagnostics
examples (REG), 7112
MIXED procedure, 5310

influence plots
MIXED procedure, 5328

influence statistics
REG procedure, 7064

informat
LIFETEST procedure, 796, 798, 825

Information criteria
QUANTSELECT procedure, 6941

information criteria
GLIMMIX procedure, 3069
HPMIXED procedure, 3828
MIXED procedure, 5229

information level adjustments
SEQTEST procedure, 7550, 7560

information matrix, 6750
expected (GENMOD), 2942
ICPHREG procedure, 3934
LIFEREG procedure, 4208, 4209, 4261
observed (GENMOD), 2942

initial covariance value
assigning (INBREED), 3988
INBREED procedure, 3991
specifying (INBREED), 3983

initial estimates
ACECLUS procedure, 871
LIFEREG procedure, 4261

initial seed
SURVEYSELECT procedure, 8428

initial seeds
FASTCLUS procedure, 2394, 2395, 2409

initial values
BCHOICE procedure, MODEL statement, 1030
CALIS procedure, 1214, 1234, 1506
GEE procedure, 2827
GENMOD procedure, 2917, 2929
GLIMMIX procedure, 3150
HPMIXED procedure, 3846
LOGISTIC procedure, 4607
MCMC procedure, 4732, 4751, 4773, 4793, 4796,

4797
MDS procedure, 5002–5006, 5014
MIXED procedure, 5265
NLIN procedure, 5603
PHREG procedure, 6014, 6022
SPP procedure, 7787
SURVEYLOGISTIC procedure, 8108
VARIOGRAM procedure, 8953, 8979

initialization
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random (PRINQUAL), 6662
TRANSREG procedure, 8669

input data set
MI procedure, 5040, 5051, 5058, 5088

input data sets
MIANALYZE procedure, 5170

input fixed-sample D
SEQDESIGN procedure, 7342

input fixed-sample N
SEQDESIGN procedure, 7341

input number of events for fixed-sample design
SEQDESIGN procedure, 7389

input sample size for fixed-sample design
SEQDESIGN procedure, 7389

INSET
PROBIT procedure, 6711

inset
LIFEREG procedure, 4238
LIFETEST procedure, 812

inset table
LIFETEST procedure, 820

InsetOpts macro variable
LIFETEST procedure, 812, 820, 825

insets
background color, 1093, 1095
background color of header, 1093, 1096
drop shadow color, 1093
frame color, 1093, 1096
header text color, 1093, 1096
header text, specifying, 1093, 1096
positioning, details, 1131–1133, 1135
positioning, options, 1093, 1094, 1096
suppressing frame, 1094, 1096
text color, 1093, 1096

instantaneous failure rate
PHREG procedure, 5950

integral approximation
theory (GLIMMIX), 3186

integral approximations
NLMIXED procedure, 5703, 5718

intensity
SPP procedure, 7769

intensity model, see Andersen-Gill model
interaction effects

GLIMMIX procedure, 3230
MIXED procedure, 5304
model parameterization (GLM), 3457
Shared Concepts, 388
specifying (ANOVA), 974, 975
specifying (CATMOD), 1929
specifying (GLM), 3453
TRANSREG procedure, 8565, 8603, 8604

interactions, quantitative
TRANSREG procedure, 8604

intercept
GEE procedure, 2825
GENMOD procedure, 2857, 2860, 2919
GLIMMIX procedure, 3230
hypothesis tests for (ANOVA), 968
hypothesis tests for (GLM), 3440
MIXED procedure, 5304
model parameterization (GLM), 3456
no intercept (TRANSREG), 8587
Shared Concepts, 387

internal knots
ICPHREG procedure, 3961

internal studentization
MIXED procedure, 5308

interpretation
factor rotation, 2298

interpreting factors, elements to consider, 2299
interpreting output

VARCLUS procedure, 8872
interval determination

LIFETEST procedure, 4359
interval estimates

PHREG procedure, 6022
interval level of measurement

DISTANCE procedure, 2252
interval variable, 163
interval width

life-table method (LIFETEST), 4347
intervals

life-table estimates (LIFETEST), 4340
intraclass correlation coefficient

MIXED procedure, 5346
NLMIXED procedure, 5752

Introduction to ANOVA
SAS/STAT procedures, 101

Introduction to ANOVA Procedures
analysis of covariance, 103
analysis of ranks, 102, 109
analysis of variance, 103
balanced design, 107
classification effect, 102–104
constructing designs, 109
controlled experiment, 104
covariance structure modeling, 103
definition, 101
design matrix, 102
empirical Bayes predictions, 103
estimable function, 102, 105
exact test, 106
expected mean squares, 106
experimental data, 102, 104
F-test based on sum of squares, 105
fixed effect, 106
general analysis of variance model, 102
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general ANOVA procedures, 103
group comparisons, 107
hat matrix, 104
hypothesis sum of squares, 105
lattice design, 103
least squares, 104
linear model, 102
mean squares, 105
mean squares, expected, 106
method of moments, 103
model sum of squares, 104
multiple comparisons, 107
multivariate analysis of variance, 103
nested model, 103
nonlinear transformation, 103
nonparametric analysis, 102, 109
observational data, 102, 104
p-value, 106
projection, 102
random effect, 106
repeated measures, 103
residual sum of squares, 105
Satterthwaite approximation, 106
spline transformation, 103
sum of squares decomposition, 101, 103
Type I sum of squares, 102
Type III sum of squares, 102
variance components, 103

Introduction to Bayesian Analysis, 123
adaptive algorithms, 134
advantages and disadvantages of Bayesian

analysis, 130
assessing MCMC convergence, 137
Bayes’ theorem, 124
Bayesian credible intervals, 129
Bayesian hypothesis testing, 129
Bayesian interval estimation, 129
Bayesian probability, 124
burn-in for MCMC, 136
deviance information criterion, 153
effective sample sizes (ESS), 150
equal-tail intervals, 129, 152
frequentist probability, 124
Gibbs sampler, 131, 133
highest posterior density (HPD) intervals, 129,

152
independence sampler, 135
Jeffreys’ prior, 127
likelihood function, 124
likelihood principle, 130
marginal distribution, 124
Markov chain Monte Carlo, 131, 135, 136
Metropolis algorithm, 131
Metropolis-Hastings algorithm, 131

Monte Carlo standard error (MCSE), 128, 151
normalizing constant, 124
posterior distribution, 124
posterior summary statistics, 151
prior distribution, 124, 125
spectral density estimate at zero frequency, 145
thinning of MCMC, 136

Introduction to Mixed Modeling
assumptions, 113, 114
clustered data, 116
compound symmetry, 114
conditional distribution, 113–115, 120
correlated error model, 111, 114
covariance matrix, 113
covariance parameters, 113
covariance structure, 116, 117
diagnostics, 112, 118
distribution, conditional, 113–115, 120
distribution, marginal, 115, 116
fixed effect, 111
G matrix, 113, 115, 118
G-side random effect, 113–115
gauge R & R, 118
GEE, 115
generalized estimating equations, 115
generalized linear mixed model, 112, 114, 120
GENMOD v. GLIMMIX, 121
GLIMMIX v. GENMOD, 121
GLM v. MIXED, 119
GLMM, 114
groups, 117
heterocatanomic data, 120
hierarchical data, 116
HPMIXED v. MIXED, 119
lattice design, 112, 118
level-1 units, 117
level-2 units, 117
likelihood, residual, 113, 118
likelihood, restricted, 112, 113, 118
linear mixed model, 112, 113, 116, 118
link function, 114, 120
logit link, 115
marginal distribution, 115, 116
marginal model, 115
mean structure, 116
method of moments, 113, 118
mixed model smoothing, 120
mixed model, definition, 111
MIXED v. GLM, 119
MIXED v. HPMIXED, 119
monographs, 112
multiplicity adjustment, 120
nested model, 112, 118
nonlinear mixed model, 112, 115
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parameter estimation, 113, 115
procedures, 112
R matrix, 113, 115, 116, 118
R-side random effect, 113, 116
random effect, 111
random effect, G-side, 113–115
random effect, R-side, 113, 116
residual likelihood, 113, 118
restricted likelihood, 112, 113, 118
smoothing, 120
sparse techniques, 112
splines, 120
subjects, 117
subjects, compared to groups, 117
variance components, 112

Introduction to Modeling
additive error, 23
analysis of variance, 25, 53
augmented crossproduct matrix, 61
Bayesian models, 32
Cholesky decomposition, 45, 60
Cholesky residual, 60
classification effect, 25
coefficient of determination, 54
column space, 55
covariance, 47
covariance matrix, 48
crossproduct matrix, 61
curvilinear models, 24
deletion residual, 60
dependent variable, 22
deviance residual, 60
diagonal matrix, 40, 58
effect genesis, 28
estimable, 55
estimating equations, 23
expectation operator, 23
expected value, 47
expected value of vector, 47
exponential family, 29
externally studentized residual, 59
fitted residual, 58
fixed effect, 27
fixed-effects model, 27
g1-inverse, 43
g2-inverse, 43, 57, 61
generalized inverse, 42, 55, 61
generalized least squares, 35, 58
generalized linear model, 29, 57, 59, 60
hat matrix, 53, 58
heterocatanomic data, 26
heterogeneous multivariate data, 26
heteroscedasticity, 58
homocatanomic data, 26

homogeneous multivariate data, 26
homoscedasticity, 51
hypothesis testing, 55
idempotent matrix, 53
independent random variables, 49
independent variable, 22
inner product of vectors, 41
internally studentized residual, 59
inverse of matrix, 41
inverse of partitioned matrix, 41
inverse of patterned sum of matrices, 41
inverse, generalized, 42, 55, 61
iteratively reweighted least squares, 35
latent variable models, 29
LDU decomposition, 45
least squares, 33
leave-one-out residual, 60
levelization, 25
leverage, 58, 60
likelihood, 35
likelihood ratio test, 56
linear hypothesis, 55
linear inference, 55, 57
linear model theory, 51
linear regression, 24
link function, 29
LU decomposition, 45
matrix addition, 40
matrix decomposition, Cholesky, 45, 60
matrix decomposition, LDU, 45
matrix decomposition, LU, 45
matrix decomposition, singular-value, 46
matrix decomposition, spectral, 45
matrix decompositions, 45
matrix differentiation, 43
matrix dot product, 40
matrix inverse, 41
matrix inverse, g1, 43
matrix inverse, g2, 43, 57, 61
matrix inverse, Moore-Penrose, 42, 46
matrix inverse, partitioned, 41
matrix inverse, patterned sum, 41
matrix inverse, reflexive, 43, 57, 61
matrix multiplication, 40
matrix order, 40
matrix partition, 61
matrix subtraction, 40
matrix transposition, 40
matrix, column space, 55
matrix, diagonal, 40, 58
matrix, idempotent, 53
matrix, projection, 53
matrix, rank deficient, 55
matrix, square, 40
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matrix, sweeping, 60
mean function, 23
mean squared error, 49
model fitting, 21
model-based v. design-based, 21
Moore-Penrose inverse, 42, 46
multivariate model, 26
nonlinear model, 23, 57
outcome variable, 22
parameter, 20
Pearson-type residual, 59
power, 39
PRESS statistic, 60
projected residual, 58
projection matrix, 53
pseudo-likelihood, 35
quadratic forms, 49
quasi-likelihood, 35
R-square, 54
random effect, 27
random-effects model, 27
rank deficient matrix, 55
raw residual, 58
reduction principle, testing, 55
reflexive inverse, 43, 57, 61
residual analysis, 58
residual, Cholesky, 60
residual, deletion, 60
residual, deviance, 60
residual, externally studentized, 59
residual, fitted, 58
residual, internally studentized, 59
residual, leave-one-out, 60
residual, Pearson-type, 59
residual, PRESS, 60
residual, projected, 58
residual, raw, 58
residual, scaled, 59
residual, standardized, 59
residual, studentized, 59
response variable, 22
sample size, 39
scaled residual, 59
singular-value decomposition, 46
spectral decomposition, 45
square matrix, 40
standardized residual, 59
statistical model, 20
stochastic model, 20
studentized residual, 59
sum of squares reduction test, 56, 57
sweep, elementary operations, 61
sweep, log determinant, 61
sweep, operator, 60

sweep, pivots, 60
testable hypothesis, 55, 57
testing hypotheses, 55
uncorrelated random variables, 49
univariate model, 26
variance, 47
variance matrix, 48
variance-covariance matrix, 48
weighted least squares, 34

Introduction to Regression
adaptive regression, 64, 81
ADAPTIVEREG procedure, 81
adj. R-square selection, 75
adjusted R square, 86
assumptions, 75, 84
backward elimination, 74
Bayesian analysis, 78
binary data, 77
Box-Cox transformation, 67, 83
breakdown value, 82
canonical correlation, 67, 83
coefficient of determination, 86, 97
collinearity, 96
collinearity diagnostics, 73
conditional logistic, 78
confidence interval, 89
conjoint analysis, 67, 82
contingency table, 64
controlled experiment, 95
correlation matrix, 85
covariance matrix, 85
Cox model, 66
Cp selection, 75
cross validation, 66
diagnostics, 65, 71
dichotomous response, 66, 77
errors-in-variable, 97
estimable, 90
estimate of precision, 85
exact conditional logistic, 78
exponential family, 77
extreme value regression, 78
failure-time data, 65
forecasting, 89
forward selection, 74
function approximation, 81
general linear model, 65
generalized additive model, 64, 81
generalized estimating equations (GEE), 65, 78
generalized least squares, 67
generalized linear mixed model, 65, 78
generalized linear model, 64, 77, 78, 82
generalized logit, 77, 78
Gentleman-Givens algorithm, 66, 79
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gompit regression, 78
heterogeneous conditional distribution, 79
homoscedasticity, 75
Hotelling-Lawley trace, 92
Huber M estimation, 66, 82
hypothesis testing, 90
ideal point preference mapping, 67, 82, 83
ill-conditioned data, 79
independent variable, 68
influence diagnostics, 73
interactive procedures, 76, 83
intercept, 87
inverse link function, 77
lack of fit, 73, 76
LAR selection, 74
LASSO selection, 74
least angle regression selection, 74
least trimmed squares, 82
levelization, 75
leverage, 71, 88
linear mixed model, 65
linear regression, 66
link function, 77
local regression, 65, 81
LOESS procedure, 65, 81
logistic regression, 64, 66, 77
LTS estimation, 82
M estimation, 66, 82
max R-square selection, 74
min R-square selection, 75
MM estimation, 82
model selection, 73
model selection, adj. R-square, 75
model selection, backward, 74
model selection, Cp, 75
model selection, forward, 74
model selection, LAR, 74
model selection, LASSO, 74
model selection, least angle regression, 74
model selection, max R-square, 74
model selection, min R-square, 75
model selection, R-square, 75
model selection, SCORE , 75
model selection, stepwise, 74
multivariate adaptive regression splines, 64
multivariate tests, 90, 92
nonlinear least squares, 65, 80
nonlinear mixed model, 66
nonlinear model, 65, 80
nonparametric, 64, 65, 80
normal equations, 84
observational study, 96
odds ratio, 77
orthogonal regressors, 96

outcome variable, 68
outlier detection, 66
partial least squares, 66, 76
penalized B-splines, 83
penalized least squares, 81
Pillai’s trace, 92
Poisson regression, 64
polychotomous response, 66, 77
polynomial model, 65
predicted value, 88
prediction interval, 89
predictor variable, 68
principal component regression, 66
probit regression, 66, 78
proportional hazard, 66
proportional hazards regression, 67
proportional odds model, 78
quantal response, 78
quantile regression, 66, 79
quantile regression with variable selection, 66
R square, 86, 97
R square, adjusted, 86
R-square selection, 75
raw residual, 71, 88
reduced rank regression, 66
redundancy analysis, 67, 82, 83
regressor variable, 68
residual, 88
residual plot, 70
residual variance, 85
residual, raw, 88
residual, studentized, 88, 89
response surface regression, 66, 67, 76
response variable, 68
ridge regression, 76
robust distance, 82
robust regression, 66, 82
Roy’s maximum root, 92
S estimation, 82
SCORE selection, 75
semiparametric model, 82
spline basis function, 81
spline transformation, 67, 82, 83
standard error of prediction, 88
standard error, estimated, 85
statistical graphics, 73
stepwise selection, 74
studentized residual, 71, 88, 89
success probability, 77
survey data, 66, 67
survival analysis, 65
survival data, 66
thin plate smoothing splines, 67
time series diagnostics, 73
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transformation, 67, 82, 83
Type I sum of squares, 86, 90
Type II sum of squares, 86, 90
variable selection, 65, 73
variance inflation, 86
Wilks’ lambda, 91

Introduction to Survey Procedures
BRR variance estimation, 248
cluster sampling, 247
Cox regression, 245
crosstabulation tables, 244
descriptive statistics, 243
frequency tables, 244
jackknife variance estimation, 248
logistic regression, 245
multistage sampling, 247
population totals, 247
populations, 246
poststratification, 243
primary sampling units (PSUs), 247
proportional hazards models, 245
regression analysis, 244
replicate weights, 248
sample allocation, 243
sample design, 245
sample selection, 242
samples, 246
sampling rates, 247
sampling units, 246
sampling weights, 247
stratified sampling, 246
survey data analysis, 239
survey sampling, 239, 242
SURVEYFREQ procedure, 239, 244
SURVEYLOGISTIC procedure, 239, 245
SURVEYMEANS procedure, 239, 243, 250
SURVEYPHREG procedure, 239, 245
SURVEYREG procedure, 239, 244, 250
SURVEYSELECT procedure, 239, 242, 249
Taylor series variance estimation, 248
variance estimation, 248

inverse chi-square distribution
definition of (MCMC), 4804
MCMC procedure, 4769, 4804

inverse confidence limits
PROBIT procedure, 6693, 6754

inverse Gaussian distribution
definition of (MCMC), 4808
FMM procedure, 2498
GENMOD procedure, 2936
GLIMMIX procedure, 3137
MCMC procedure, 4770, 4808

inverse Hessian matrix
SURVEYPHREG procedure, 8260

Inverse Wishart distribution
definition of (MCMC), 4809
MCMC procedure, 4809

inverse Wishart distribution
MCMC procedure, 4770

inverse-gamma distribution
definition of (MCMC), 4804
MCMC procedure, 4769, 4779, 4804, 4836

IPC analysis
REG procedure, 7000, 7022, 7084

IPP plots
annotating, 6716
axes, color, 6716
font, specifying, 6717
options summarized by function, 6714
reference lines, options, 6717–6721
threshold lines, options, 6720

IPPPLOT
PROBIT procedure, 6713

IRT procedure, 4007
ODS table names, 4046
simplicity functions, 4020

isotropy, see anisotropy (VARIOGRAM)
VARIOGRAM procedure, 8915, 8939, 8966

item response theory, 4008
iterated factor analysis, 2296
iteration details

FMM procedure, 2476
GLIMMIX procedure, 3071
HPMIXED procedure, 3829
NLMIXED procedure, 5701

iteration history
FMM procedure, 2526
GLIMMIX procedure, 3243
ICLIFETEST procedure, 3921
MIXED procedure, 5316
NLMIXED procedure, 5700, 5742

iterations
history (GLIMMIX), 3243
history (HPMIXED), 3863
history (MIXED), 5316
history (PHREG), 5936, 6016
PRINQUAL procedure, 6657
restarting (PRINQUAL), 6640, 6662

iterations, restarting
TRANSREG procedure, 8669

iterative proportional fitting
estimation (CATMOD), 1909
formulas (CATMOD), 1956

iteratively reweighted least squares
CALIS procedure, 1470

Jaccard dissimilarity coefficient
DISTANCE procedure, 2279
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Jaccard similarity coefficient
DISTANCE procedure, 2278

jackknife
SURVEYLOGISTIC procedure, 8117
SURVEYMEANS procedure, 8209, 8211, 8234
SURVEYPHREG procedure, 8283
SURVEYREG procedure, 8354

jackknife coefficients
SURVEYFREQ procedure, 8014
SURVEYLOGISTIC procedure, 8117, 8130
SURVEYMEANS procedure, 8211, 8215
SURVEYPHREG procedure, 8283
SURVEYREG procedure, 8354, 8360

jackknife variance estimation
Introduction to Survey Procedures, 248
SURVEYFREQ procedure, 8014
SURVEYLOGISTIC procedure, 8117
SURVEYMEANS procedure, 8211
SURVEYPHREG procedure, 8283
SURVEYREG procedure, 8354

Jacobian
NLIN procedure, 5586

Jeffreys confidence limits
proportions (FREQ), 2665

Jeffreys’ prior
definition of, 127
Introduction to Bayesian Analysis, 127

joint selection probabilities
SURVEYSELECT procedure, 8416

Jonckheere-Terpstra test
FREQ procedure, 2689

JOURNAL style
ODS styles, 608, 643, 652, 701

k-means clustering, 2394
k-sample tests, see homogeneity tests
k-th-nearest neighbor, see also density linkage, see

also single linkage
k-th-nearest neighbor

estimation (CLUSTER), 2017, 2023
k-th-nearest-neighbor

estimation (CLUSTER), 2028
K= option

and other options (CLUSTER), 2017, 2023
Kaplan-Meier estimates, see product-limit estimates
Kaplan-Meier plot

LIFETEST procedure, 782, 783, 803
kappa coefficient

FREQ procedure, 2690, 2691
weights (FREQ), 2693

Karush-Kuhn-Tucker (KKT) conditions
QUANTREG procedure, 6860

KDE procedure
bandwidth selection, 4097

binning, 4094
bivariate histogram, 4101
computational details, 4092
convolution, 4095
examples, 4102
fast Fourier transform, 4096
Introduction to Nonparametric Analysis, 276
ODS graph names, 4099
options, 4083
output table names, 4098

Kendall’s tau-b statistic
FREQ procedure, 2653, 2655

Kenward-Roger method
GLIMMIX procedure, 3212
MIXED procedure, 5255

kernel density estimates
DISCRIM procedure, 2176, 2206, 2223
KDE procedure, 4079

kernel-smoothed hazard
ICLIFETEST procedure, 3897, 3911
LIFETEST procedure, 4343, 4363

keyword-lists
GLMPOWER procedure, 3626
POWER procedure, 6366

Klotz scores
NPAR1WAY procedure, 5815

knot selection
GLIMMIX procedure, 3221

knots
PRINQUAL procedure, 6649, 6650
TRANSREG procedure, 8575, 8576, 8614, 8679

knots, exterior
TRANSREG procedure, 8629

Kolmogorov-Smirnov test
NPAR1WAY procedure, 5820

KRIGE2D procedure
anisotropic models, 4162–4165, 4169
azimuth, 4163
best linear unbiased prediction (BLUP), 4172
correlation range, 4125
cubic semivariance model, 4144, 4156
discontinuity, 4160
effective range, 4125, 4154, 4155
estimation, 4125
examples, 4176, 4186, 4191
exponential semivariance model, 4144, 4155
Gaussian semivariance model, 4144, 4154
geometric anisotropy, 4163, 4164
global kriging, 4125
input data set, 4132
kriging with trend, 4171
local kriging, 4124, 4125
Matérn semivariance model, 4144, 4155
modeling, 4124
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nested models, 4159, 4160
nugget effect, 4146, 4160, 4161
ODS graph names, 4176
ODS Graphics, 4132
ODS table names, 4175
ordinary kriging, 4125, 4169–4172
OUTEST= data sets, 4173
OUTNBHD= data set, 4174
output data sets, 4132, 4173, 4174
pentaspherical semivariance model, 4144, 4157
power semivariance model, 4144, 4147, 4158
practical range, 4125, 4154, 4155
prediction, 4125
sill, 4155–4157
sine hole effect semivariance model, 4144, 4157
spatial continuity, 4125
spatial covariance, 4125
spatial data, 4169
spatial prediction, 4124
spatial random fields, 4170
spherical semivariance model, 4144, 4156
standard errors, 4125
stochastic analysis, 4124
uncertainty, 4124
zonal anisotropy, 4165

KRIGE2D procedure, plots
Observations, 4176
Prediction, 4176
Semivariogram, 4176

KRIGE2D procedure, tables
Kriging Information, 4174, 4175
Model Information, 4175
Number of Observations, 4174
Store Information, 4152, 4175
Store Model Information, 4152, 4175
Store Variables Information, 4152, 4175

kriging
ordinary kriging (KRIGE2D), 4125, 4171
ordinary kriging (VARIOGRAM), 8913
with trend (KRIGE2D), 4171

Kronecker product
GLMPOWER procedure, 3619

Kronecker product structure
MIXED procedure, 5281

Kruskal-Wallis test
Introduction to Nonparametric Analysis, 275
NPAR1WAY procedure, 5814

Kuiper test
NPAR1WAY procedure, 5821

Kulcynski 1 coefficient
DISTANCE procedure, 2279

kurtosis
CALIS procedure, 1158, 1209, 1218, 1504, 1506
displayed in CLUSTER procedure, 2023

L matrices
GLIMMIX procedure, 3092, 3111
HPMIXED procedure, 3833, 3840
mixed model (GLIMMIX), 3092, 3111
mixed model (MIXED), 5239, 5244, 5301
MIXED procedure, 5239, 5244, 5301

label modification
LIFETEST procedure, 805

lack of fit
examples (REG), 7156

lack of fit tests, 6694, 6752
lack-of-fit

testing (REG), 7079
lack-of-fit tests

RSREG procedure, 7271
lag

classification (VARIOGRAM), 8916, 8969
count (VARIOGRAM), 8916, 8971
distance (VARIOGRAM), 8915, 8938, 8971,

8974
number of point pairs in (VARIOGRAM), 8973
pairwise distance (VARIOGRAM), 8915
tolerance (VARIOGRAM), 8938, 8970
VARIOGRAM procedure, 8915

lag effect
GLIMMIX procedure, 400
GLMSELECT procedure, 400
HPMIXED procedure, 400
LOGISTIC procedure, 400
ORTHOREG procedure, 400
PHREG procedure, 400
PLS procedure, 400
QUANTLIFE procedure, 400
QUANTREG procedure, 400
QUANTSELECT procedure, 400
ROBUSTREG procedure, 400
SURVEYLOGISTIC procedure, 400
SURVEYREG procedure, 400

lag functionality
GLIMMIX procedure, 512, 3176
NLMIXED procedure, 5716

Lagrange multiplier
covariance matrix, 5629
NLIN procedure, 5597
NLMIXED procedure, 5732
statistics (GENMOD), 2951
test statistics (LIFEREG), 4263
test, modification indices (CALIS), 1224, 1502,

1503
lambda asymmetric

FREQ procedure, 2653, 2660
lambda symmetric

FREQ procedure, 2653, 2661
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Lance-Williams flexible-beta method, see flexible-beta
method

Lance-Williams nonmetric coefficient
DISTANCE procedure, 2275

Laplace approximation
GLIMMIX procedure, 3072
theory (GLIMMIX), 3192

Laplace distribution
definition of (MCMC), 4805
MCMC procedure, 4769, 4779, 4805

LASSO selection
GLMSELECT procedure, 3710

latent growth curve models
CALIS Procedure, 1730

latent growth curve models example (CALIS), 1730
latent variable models

Introduction to Modeling, 29
latent variables

CALIS procedure, 1158, 1366
PLS procedure, 6210

latent vectors
PLS procedure, 6210

LaTeX destination
ODS Graphics, 633, 700

Latin square design
ANOVA procedure, 991
generating with PLAN procedure, 6139

lattice design
balanced square lattice (LATTICE), 4197, 4198
efficiency (LATTICE), 4199, 4202, 4205
partially balanced square lattice (LATTICE),

4197, 4203
rectangular lattice (LATTICE), 4197

LATTICE procedure
adjusted treatment means, 4202
ANOVA table, 4202
Block variable, 4198, 4200, 4201
compared to MIXED procedure, 5217
covariance, 4202
Group variable, 4198, 4200, 4201
lattice design efficiency, 4199, 4202
least significant differences, 4202
missing values, 4201
ODS table names, 4203
Rep variable, 4198, 4200, 4201
response variable, 4200
Treatment variable, 4198, 4200, 4201
variance of means, 4202

LD statistic
PHREG procedure, 5942, 5988

leader algorithm, 2394
LEAR, see linear exponent autoregressive
least angle regression

GLMSELECT procedure, 3709

least significant differences
LATTICE procedure, 4202

least squares
correlation matrix (Introduction to Regression),

85
covariance matrix (Introduction to Regression),

85
definition (Introduction to Modeling), 33
estimate (Introduction to Regression), 84
estimator (Introduction to Regression), 84
generalized (Introduction to Modeling), 35, 58
Introduction to ANOVA Procedures, 104
iteratively reweighted (Introduction to Modeling),

35
nonlinear (Introduction to Regression), 65, 80
normal equations (Introduction to Regression), 84
ordinary (Introduction to Regression), 76
partial (Introduction to Regression), 66, 76
penalized (Introduction to Regression), 81
weighted (Introduction to Modeling), 34

least squares estimation
LIFEREG procedure, 4261

least squares means
Bonferroni adjustment (GLIMMIX), 3113
Bonferroni adjustment (GLM), 3420
Bonferroni adjustment (MIXED), 5246
BYLEVEL processing (GLIMMIX), 3115, 3118,

3127
BYLEVEL processing (MIXED), 5248
coefficient adjustment, 3491
compared to means (GLM), 3474
comparison types (GLIMMIX), 3116, 3122
comparison types (GLM), 3424
comparison types (HPMIXED), 3841
comparison types (MIXED), 5248
construction of, 3489
covariate values (GLIMMIX), 3115, 3127
covariate values (GLM), 3422
covariate values (MIXED), 5247
Dunnett’s adjustment (GLIMMIX), 3113
Dunnett’s adjustment (GLM), 3420
Dunnett’s adjustment (MIXED), 5246
examples (GLM), 3526, 3538
examples (MIXED), 5350, 5371
generalized linear mixed model (GLIMMIX),

3111, 3124
GLIMMIX procedure, 3839
GLM procedure, 3419
Hsu’s adjustment (GLIMMIX), 3113
Hsu’s adjustment (GLM), 3420
Hsu’s adjustment (MIXED), 5246
mixed model (MIXED), 5244
multiple comparison adjustment (GLIMMIX),

3112, 3113, 3126
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multiple comparison adjustment (MIXED), 5245,
5246

multiple comparisons adjustment (GLM), 3420,
3424

Nelson’s adjustment (GLIMMIX), 3113
Nelson’s adjustment (GLM), 3420
nonstandard weights (GLM), 3423
nonstandard weights (MIXED), 5249
observed margins (GLIMMIX), 3118, 3130
observed margins (GLM), 3423
observed margins (MIXED), 5249
Scheffe’s adjustment (GLIMMIX), 3113
Sidak’s adjustment (GLIMMIX), 3113
Sidak’s adjustment (GLM), 3420
Sidak’s adjustment (MIXED), 5246
simple effects (GLIMMIX), 3121
simple effects (GLM), 3427, 3486
simple effects (HPMIXED), 3842
simple effects (MIXED), 5250
simple effects differences (GLIMMIX), 3122
simulation-based adjustment (GLIMMIX), 3114
simulation-based adjustment (GLM), 3420
simulation-based adjustment (MIXED), 5246
Tukey’s adjustment (GLIMMIX), 3113
Tukey’s adjustment (GLM), 3420
Tukey’s adjustment (MIXED), 5246

least-significant-difference test, 967, 3437
Lee-Wei-Amato model

PHREG procedure, 5978, 6080
SURVEYPHREG procedure, 8297

left-truncation time
PHREG procedure, 5934, 5957

legend
LIFETEST procedure, 812

legend suppression
LIFETEST procedure, 824

LegendOpts macro variable
LIFETEST procedure, 812, 820, 824

less-than-full-rank model
TRANSREG procedure, 8579, 8655

level of measurement
MDS procedure, 4993, 5003

levelization
Introduction to Regression, 75
Shared Concepts, 384

levels of measurement
DISTANCE procedure, 2252

levels, of classification variable, 3453
Levenberg-Marquardt algorithm

CALIS procedure, 1217, 1227, 1508
Levene’s test for homogeneity of variance

ANOVA procedure, 966
GLM procedure, 3436, 3488, 3560

leverage, 3443

LOGISTIC procedure, 4591
MIXED procedure, 5311
TRANSREG procedure, 8597

leverage observations
CALIS procedure, 1494

life data
GENMOD procedure, 3001

life-table estimates
LIFETEST procedure, 4328, 4377, 4411

LIFEREG analysis
insets, 4238

LIFEREG procedure, 4208
accelerated failure time models, 4208
analysis of means, 467
censoring, 4242
chi-bar-square statistic, 458
computational details, 4261
computational resources, 4277
confidence intervals, 4268
diffogram, 470
failure time, 4208
INEST= data sets, 4275
information matrix, 4208, 4209, 4261
initial estimates, 4261
inset, 4238
joint hypothesis tests with complex alternatives,

457
Lagrange multiplier test statistics, 4263
least squares estimation, 4261
log-likelihood function, 4209, 4261
log-likelihood ratio tests, 4209
main effects, 4261
maximum likelihood estimates, 4208
missing values, 4261
Newton-Raphson algorithm, 4208
observed margins, 468
ODS Graph names, 4286
OUTEST= data sets, 4276
output data sets, 4281
output ODS Graphics table names, 4286
output table names, 4284
positional and nonpositional syntax, 455
predicted values, 4267
supported distributions, 4263
survival function, 4209, 4263
Tobit model, 4210, 4292
XDATA= data sets, 4277

LIFEREG procedure, ESTIMATE statement
ODS table names, 458

LIFEREG procedure, LSMEANS statement
ODS graph names, 475
ODS table names, 474

LIFEREG procedure
ordering of effects, 4224
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LIFETEST procedure
p value, 817
_ByFootNote_ dynamic variable, 839
_ByLine_ dynamic variable, 839
_ByTitle_ dynamic variable, 839
ACROSS= GTL option, 812
alpha level, 4339
association tests, 4329, 4335, 4370, 4389, 4400
at-risk table (inside), 790
at-risk table (outside), 792
at-risk value specification, 793–795
ATRISK survival-plot option, 790
ATRISK(MAXLEN=13) survival-plot option, 791
ATRISK(OUTSIDE) survival-plot option, 792
ATRISK= survival-plot option, 793
%AtRiskLatticeEnd macro, 834
%AtRiskLatticeStart macro, 834
AtRiskOpts macro variable defined, 831
ATRISKTICK survival-plot option, 794
ATRISKTICKONLY survival-plot option, 795
ATTRPRIORITY= GTL option, 831
ATTRPRIORITY=’Color’ style, 843
ATTRPRIORITY=NONE GTL option, 809
AUTOALIGN= GTL option, 812, 820
axis label modification, 805
BandOpts macro variable defined, 831
Bonferroni adjustment, 4350
Breslow estimates, 4328, 4341, 4355
CB=ALL survival-plot option, 788
CB=EP survival-plot option, 788
CB=HW survival-plot option, 787
censored, 4328, 4354
Censored macro variable, 814
Censored macro variable defined, 831
censored value legend, 799
CensorStr macro variable, 814
CensorStr macro variable defined, 831
ClassAtRisk dynamic variable, 839
ClassOpts macro variable defined, 831
%CompileSurvivalTemplates macro, 803, 833
computational formulas, 4355
confidence bands, 4339, 4361
confidence limits, 4360, 4373
cumulative distribution function, 4328
DATACOLORS= GTL option, 808, 831, 847
DATACONTRASTCOLORS= GTL option, 808,

831, 847
DATALINEPATTERNS= GTL option, 809, 831
date (displaying in a footnote), 819
DESIGNHEIGHT= GTL option, 825, 832
DESIGNHEIGHT=500PX GTL option, 824
DESIGNHEIGHT=DEFAULTDESIGNWIDTH

GTL option, 822
DESIGNWIDTH= GTL option, 832

Dunnett’s adjustment, 4350
effective sample size, 4358
ENTRYFOOTNOTE GTL statement, 819
equal-precision bands, 788, 4363, 4407
estimation method, 4340
event summary table, 822, 824
events (number of inset table), 820
FAILURE survival-plot option, 800
FAMILY=GRAPHUNICODETEXT GTL option,

814
Fleming-Harrington estimates, 4328, 4341, 4355
Fleming-Harrington G� test for homogeneity,

4328, 4353
font changes, 810
fonts, 850–852
footnote, 819
format, 796, 798, 825
GraphDataN style element modification, 849
GraphOpts macro variable, 808, 809, 822, 824,

825, 847
GraphOpts macro variable defined, 831
group reordering, 796, 798
GroupName dynamic variable, 839
Groups macro variable defined, 831
Hall-Wellner bands, 4362, 4407
Hall-Wellner confidence bands, 787, 788
hazard function, 4328, 4414
homogeneity tests, 4328, 4334, 4365, 4399
HTMLBlueCML style, 842
informat, 796, 798, 825
input data set, 4340
inset, 812
inset table, 820
InsetOpts macro variable, 812, 820, 825
InsetOpts macro variable defined, 831
interval determination, 4359
Kaplan-Meier plot, 782, 783, 803
kernel-smoothed hazard, 4343, 4363
label modification, 805
LabelCL dynamic variable, 839
LabelEP dynamic variable, 839
LabelHW dynamic variable, 839
legend, 812
legend suppression, 824
LegendOpts macro variable, 812, 820, 824
LegendOpts macro variable defined, 831
life-table estimates, 4328, 4341, 4358, 4377,

4408, 4411
likelihood ratio test for homogeneity, 4328, 4365
line patterns, 809
line printer plots, 4381
LINEATTRS=(THICKNESS=2.5) GTL option,

807
LOCATION=INSIDE GTL option, 812, 820
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Log rank p value, 817
log-rank test for association, 4329, 4370
log-rank test for homogeneity, 4328, 4353, 4365
LowerMedian dynamic variable, 840
macro variables, 829–832
macros, 801
MARKERATTRS= GTL option, 814
maximum time, 4339, 4340
MAXLEN=13 survival-plot option, 791
MaxTime dynamic variable, 839
Median dynamic variable, 840
median residual time, 4377
Method dynamic variable, 839
minimum time, 4339
missing stratum values, 4341, 4348, 4352
missing values, 4354
modified Peto-Peto test for homogeneity, 4328,

4353
%MultipleStrata macro, 836
NAME= GTL option, 824, 825
Nelson-Aalen estimates, 4341
NEvent dynamic variable, 840
NObs dynamic variable, 840
NOCENSOR survival-plot option, 799
NStrata dynamic variable, 839
nTitles macro variable, 819, 825
nTitles macro variable defined, 830
ODS graph names, 4387
ODS Graphics, 4338
ODS table names, 4385
ORDER= option, 796, 798
output data sets, 4372
OUTSIDE survival-plot option, 792
partial listing, 4347
patients-at-risk table (inside), 790
patients-at-risk table (outside), 792
PctMedianConfid dynamic variable, 840
Peto-Peto test for homogeneity, 4328, 4353
PlotAtRisk dynamic variable, 839
PlotCensored dynamic variable, 839
PlotCL dynamic variable, 840
PlotEP dynamic variable, 840
PlotHW dynamic variable, 840
PLOTS=SURVIVAL, 784
PlotTest dynamic variable, 840
probability density function, 4328, 4415
product-limit estimates, 4328, 4330, 4341, 4355,

4375, 4376, 4389
product-limit survival plot, 783
%ProvideSurvivalMacros macro, 803
PValue dynamic variable, 839
%pValue macro, 832
reference line, 815
REFERENCELINE GTL statement, 815

%Reorder macro, 848
reordering groups, 796, 798
RowWeights dynamic variable, 840
sample library, 801
Scheffe’s adjustment, 4350
SecondTitle dynamic variable, 840
Sidak’s adjustment, 4350
simulated adjustment, 4350
%SingleStratum macro, 835
StepOpts macro variable, 807, 825
StepOpts macro variable defined, 830
%StmtsBeginGraph macro, 819, 832
%StmtsBottom macro, 832
%StmtsTop macro, 832
STRATA=INDIVIDUAL survival-plot option,

785
STRATA=PANEL survival-plot option, 785
stratified tests, 4328, 4329, 4335, 4337, 4352,

4367, 4379
StratumID dynamic variable, 840
StrVal dynamic variable, 840
studentized maximum modulus adjustment, 4350
style change, 842, 848
style cleanup, 849
style color list modification, 847, 848
style colors, 844, 845
summary of events table, 822, 824
survival distribution function, 4328, 4355
survival plot, 783
%SurvivalSummaryTable macro, 838
%SurvivalTable macro, 837
%SurvTabHeader macro, 837
Tarone-Ware test for homogeneity, 4328, 4353
template cleanup, 802, 818, 826, 853
TEST survival-plot option, 787
TestName dynamic variable, 840
TEXTATTRS= GTL option, 810, 814
tick value modification, 805
TICKVALUELIST= GTL option, 805
TipLabel macro variable defined, 830
Tips macro variable defined, 830
title change, 803
TitleText0 macro variable, 810
TitleText0 macro variable defined, 830
TitleText1 macro variable, 810
TitleText1 macro variable defined, 830
TitleText2 macro variable, 810, 820, 825
TitleText2 macro variable defined, 830
traditional graphics, 4381
transformations for confidence intervals, 4339
Transparency dynamic variable, 840
trend tests, 4328, 4352, 4353, 4369, 4379
Tukey’s adjustment, 4350
Unicode, 814



Subject Index F 9143

UpperMedian dynamic variable, 840
VIEWMIN= GTL option, 806
Wilcoxon test for association, 4329, 4370
Wilcoxon test for homogeneity, 4328, 4353, 4365
XName dynamic variable, 840
xOptions macro variable, 810
xOptions macro variable defined, 830
XtickValFitPol dynamic variable, 840
XtickVals dynamic variable, 840
yOptions macro variable, 805, 806, 810
yOptions macro variable defined, 830

likelihood
function (Introduction to Modeling), 36
Introduction to Modeling, 35

likelihood displacement
PHREG procedure, 5942, 5988

likelihood distance
MIXED procedure, 5314

likelihood function, 6750
Introduction to Bayesian Analysis, 124

likelihood function specification
MCMC procedure, 4766

likelihood functions
SURVEYLOGISTIC procedure, 8110

likelihood principle
Introduction to Bayesian Analysis, 130

likelihood ratio chi-square test, 6750, 6752
FREQ procedure, 2650

likelihood ratio chi-square tests
Rao-Scott (SURVEYFREQ), 8033

Likelihood ratio confidence limits
proportions (FREQ), 2665

likelihood ratio test, 5337
Bartlett’s modification, 2168
CALIS procedure, 1485, 1503
example (MIXED), 5349
GLIMMIX procedure, 3096, 3204
Introduction to Modeling, 56
mixed model (MIXED), 5300, 5301
MIXED procedure, 5318
PHREG procedure, 5970, 5971, 6016, 6017
SURVEYPHREG procedure, 8287, 8294

likelihood ratio test for homogeneity
LIFETEST procedure, 4328

likelihood residuals
GENMOD procedure, 2953
LOGISTIC procedure, 4591

likelihood-ratio chi-square test
power and sample size (POWER), 6330, 6337,

6415
line patterns

LIFETEST procedure, 809
line printer plots

LIFETEST procedure, 4381

REG procedure, 7101
line search

PHREG procedure, 5937
line-search methods

GLIMMIX procedure, 495
NLMIXED procedure, 5700, 5701, 5734

linear constraints
CALIS Procedure, 1750, 1804

linear constraints example (CALIS), 1750, 1804
linear covariance structure

GLIMMIX procedure, 3166
MIXED procedure, 5281

linear discriminant function, 2158
linear exponent autoregressive (LEAR)

GLMPOWER procedure, 3619
linear hypotheses

ICPHREG procedure, 3934
PHREG procedure, 5882, 5948, 5973

linear hypothesis
consistency (Introduction to Modeling), 55
definition (Introduction to Modeling), 55
Introduction to Modeling, 55
linear inference principle (Introduction to

Modeling), 55, 57
reduction principle (Introduction to Modeling), 55
testable (Introduction to Modeling), 55, 57
testing (Introduction to Modeling), 55
testing, linear inference (Introduction to

Modeling), 55, 57
testing, reduction principle (Introduction to

Modeling), 55
linear mixed model

Introduction to Regression, 65
linear model

GENMOD procedure, 2854, 2855
linear model theory

Introduction to Modeling, 51
linear models

CATMOD procedure, 1883
compared with log-linear models, 1886

linear predictor
GENMOD procedure, 2853, 2854, 2860, 2947,

2984
ICPHREG procedure, 3949, 3963
PHREG procedure, 5903, 5941, 5943, 6068
SURVEYPHREG procedure, 8262, 8263

linear rank tests, see association tests
linear regression

Introduction to Modeling, 24
TRANSREG procedure, 8602

linear regression example (CALIS), 1553
linear transformation

baseline confidence intervals (ICPHREG), 3949
baseline confidence intervals (PHREG), 5904
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confidence intervals (ICLIFETEST), 3894, 3910
confidence intervals (LIFETEST), 4340, 4360
confidence intervals (PHREG), 5994
PRINQUAL procedure, 6646
TRANSREG procedure, 8571, 8676

linearization
theory (GLIMMIX), 3186, 3188

linearization method
SURVEYLOGISTIC procedure, 8114
SURVEYPHREG procedure, 8279
SURVEYREG procedure, 8352

LINEATTRS=(THICKNESS=2.5) GTL option
LIFETEST procedure, 807

LINEQS model
bifactor models example (CALIS), 1736
CALIS procedure, 1275
comparing modeling languages example (CALIS),

1184, 1708, 1784
higher-order factor models example (CALIS),

1736
latent growth curve models example (CALIS),

1730
measurement errors example (CALIS), 1591
reciprocal paths example (CALIS), 1658
second-order confirmatory factor models example

(CALIS), 1799
structural model example (CALIS), 286, 288, 290,

294, 1188
link function

built-in (GENMOD), 2856, 2918
cumulative (Introduction to Regression), 77
FMM procedure, 2502, 2507
GENMOD procedure, 2853, 2855, 2939
GLIMMIX procedure, 3054, 3140
Introduction to Mixed Modeling, 114, 120
Introduction to Modeling, 29
Introduction to Regression, 77
inverse (Introduction to Mixed Modeling), 114
inverse (Introduction to Regression), 77
LOGISTIC procedure, 4489, 4540, 4565, 4574
logit (Introduction to Mixed Modeling), 115
user-defined (GENMOD), 2910
user-defined (GLIMMIX), 3177

link functions
SURVEYLOGISTIC procedure, 8058, 8087,

8102
links, HTML

ODS, 566, 571
Liptak combination

adjustment (MULTTEST), 5521
LISMOD

structural model example (CALIS), 341, 1189
LISMOD model

CALIS procedure, 1282

comparing modeling languages example (CALIS),
1184, 1708

LISTING destination
ODS, 518, 519, 522
ODS Graphics, 632
open by default, 518, 521

LISTING style
ODS styles, 608, 643, 652

LM tests
CALIS procedure, 1286

LMAX statistic
PHREG procedure, 5988

LMSELECT procedure
ODS Graphics, 5589, 7000

local and remote configurations, 6528
local annotate

traditional graphics (LIFETEST), 4383
local influence

DFBETA statistics (PHREG), 5942, 5988
score residuals (PHREG), 5942, 5986
score residuals (SURVEYPHREG), 8263, 8290
weighted score residuals (PHREG), 5988

local kriging
KRIGE2D procedure, 4125

LOCATION=INSIDE GTL option
LIFETEST procedure, 812, 820

LOESS procedure
approximate degrees of freedom, 4456
automatic smoothing parameter selection, 4453
data scaling, 4449
degrees of freedom, 4452
direct fitting method, 4450
Introduction to Regression, 65, 81
introductory example, 4421
iterative reweighting, 4451
k-d trees and blending, 4450
local polynomials, 4451
local weighting, 4451
lookup degrees of freedom, 4452
missing values, 4447
ODS graph names, 4458
ODS Graphics, 4434, 4458
output data sets, 4447
output table names, 4457
scoring data sets, 4457
smoothing matrix, 4452
statistical graphics, 4458
statistical inference, 4452

log likelihood
output data sets (LOGISTIC), 4502

log odds
LOGISTIC procedure, 4577
SURVEYLOGISTIC procedure, 8124

log odds-ratio statistic
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SEQDESIGN procedure, 7400
Log rank p value

LIFETEST procedure, 817
log relative risk statistic

SEQDESIGN procedure, 7401
log transformation

baseline confidence intervals (ICPHREG), 3949
baseline confidence intervals (PHREG), 5903
confidence intervals (ICLIFETEST), 3894, 3910
confidence intervals (LIFETEST), 4340, 4361,

4362
confidence intervals (PHREG), 5994

log-hazard
ICPHREG procedure, 3966
PHREG procedure, 5964

log-interval level of measurement
DISTANCE procedure, 2253

log-likelihood
functions (GENMOD), 2939

log-likelihood function
LIFEREG procedure, 4209, 4261
PROBIT procedure, 6750

log-likelihood ratio tests
LIFEREG procedure, 4209

log-linear models
CATMOD procedure, 1883, 1934, 2859
compared with linear models, 1886
design matrix (CATMOD), 1945
examples (CATMOD), 1975, 1977
GENMOD procedure, 2859
multiple populations (CATMOD), 1935
one population (CATMOD), 1935

log-linear variance model
MIXED procedure, 5279

log-log transformation
baseline confidence intervals (ICPHREG), 3949
baseline confidence intervals (PHREG), 5904
confidence intervals (ICLIFETEST), 3894, 3910
confidence intervals (LIFETEST), 4339, 4361,

4362
confidence intervals (PHREG), 5994

log-logistic distribution, 4208, 4244, 4263
log-logistic model

NLIN procedure, 5646
log-normal distribution

GLIMMIX procedure, 3137
log-rank test

PHREG procedure, 5886
SEQDESIGN procedure, 7403

log-rank test for association
LIFETEST procedure, 4329

log-rank test for homogeneity
LIFETEST procedure, 4328, 4353, 4365

power and sample size (POWER), 6347, 6356,
6422, 6454

log-rank test for two survival distributions
SEQDESIGN procedure, 7345

logden distribution
MCMC procedure, 4769, 4779

logistic
diagnostics (Introduction to Regression), 65
regression (Introduction to Regression), 64, 66, 77
regression, diagnostics (Introduction to

Regression), 65
regression, ordinal (Introduction to Regression),

66
regression, survey data (Introduction to

Regression), 66
logistic analysis

CATMOD procedure, 1885, 1932
caution (CATMOD), 1934
examples (CATMOD), 1987
ordinal data, 1885

logistic distribution, 4208, 4244, 4263, 6686
definition of (MCMC), 4805
MCMC procedure, 4769, 4805
PROBIT procedure, 6751

LOGISTIC procedure
Akaike’s information criterion, 4572
analysis of means, 467
B-spline basis, 413
Bayes’ theorem, 4542
best subset selection, 4535
branch-and-bound algorithm, 4571
chi-bar-square statistic, 458
classification table, 4542, 4581, 4582, 4657
collection effect, 399
conditional logistic regression, 4598
confidence intervals, 4542, 4548, 4575, 4576
confidence limits, 4580
convergence criterion, 4535
customized odds ratio, 4562
descriptive statistics, 4507
deviance, 4535, 4544, 4584
DFBETAS diagnostic, 4592
diffogram, 470
dispersion parameter, 4584
displayed output, 4613
estimability checking, 4517
exact logistic regression, 4601
existence of MLEs, 4569
Firth’s penalized likelihood, 4569
Fisher scoring algorithm, 4545, 4546, 4567
frequency variable, 4528
goodness of fit, 4535, 4544
gradient, 4573
hat matrix, 4591
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Hessian matrix, 4545, 4573
hierarchy, 4538
Hosmer-Lemeshow test, 4540, 4585, 4586
infinite parameter estimates, 4541
initial values, 4607
introductory example, 4492
joint hypothesis tests with complex alternatives,

457
lag effect, 400
leverage, 4591
link function, 4489, 4540, 4565, 4574
log odds, 4577
maximum likelihood algorithms, 4567
missing values, 4563
model fitting criteria, 4572
model hierarchy, 4491, 4538
model selection, 4533, 4544, 4571
multimember effect, 402
multiple classifications, 4543
Natural cubic spline basis, 415
Newton-Raphson algorithm, 4545, 4546, 4567,

4568
observed margins, 468
odds ratio confidence limits, 4535, 4536, 4543
odds ratio estimation, 4577
odds ratios with interactions, 4549
ODS graph names, 427, 4621
ODS table names, 4618
optimization, 4548
output data sets, 4502, 4605, 4607, 4608, 4610
overdispersion, 4543, 4583, 4584
parallel lines assumption, 4537, 4547, 4718
partial proportional odds model, 4537, 4547, 4718
Pearson’s chi-square, 4535, 4544, 4584
polynomial effect, 404
positional and nonpositional syntax, 455
predicted probabilities, 4580
prior event probability, 4542, 4583, 4657
profile-likelihood convergence criterion, 4542
rank correlation, 4579
regression diagnostics, 4590
residuals, 4591
response level ordering, 4500, 4531, 4564
ROC curve, 4542, 4555, 4586, 4610
ROC curve, comparing, 4556, 4587
Schwarz criterion, 4572
score statistics, 4573
scoring data sets, 4557, 4593
selection methods, 4533, 4544, 4571
singular contrast matrix, 4517
spline bases, 411
spline effect, 407
subpopulation, 4535, 4544, 4584
testing linear hypotheses, 4561, 4589

TPF basis, 412
truncated power function basis, 412
Williams’ method, 4584

LOGISTIC procedure, ESTIMATE statement
ODS table names, 458

LOGISTIC procedure, LSMEANS statement
ODS graph names, 475
ODS table names, 474

logistic regression, see also LOGISTIC procedure,
6495, 6686, see also SURVEYLOGISTIC
procedure

CATMOD procedure, 1884, 1933
examples (CATMOD), 1970
GEE procedure, 2816
GENMOD procedure, 2855, 2997
Introduction to Regression, 64, 77
Introduction to Survey Procedures, 245
power and sample size (POWER), 6276, 6374,

6484
survey sampling, 8058

logistic regression method
MI procedure, 5073

LOGISTIC procedure
conditional logistic regression, 4560
convergence criterion, 4525
exact logistic regression, 4522
stratified exact logistic regression, 4560

Logit confidence limits
proportions (FREQ), 2665

logit confidence limits
proportions (SURVEYFREQ), 8018

logit transformation
confidence intervals (ICLIFETEST), 3894, 3910
confidence intervals (LIFETEST), 4340, 4361,

4363
logits, see also cumulative logits, see also generalized

logits, see adjacent-category logits
lognormal data

power and sample size (POWER), 6301, 6305,
6320, 6324, 6325, 6340, 6345, 6346, 6400,
6401, 6408, 6410, 6419, 6421, 6446

lognormal distribution, 4208, 4244, 4263
definition of (MCMC), 4805
deviation from theoretical distribution, 7803
FMM procedure, 2498
MCMC procedure, 4769, 4805
TTEST procedure, 8797, 8844

long run times
MCMC procedure, 4851
NLMIXED procedure, 5736

longitudinal factor analysis
CALIS Procedure, 1812

longitudinal factor analysis example (CALIS), 1812
Longley data set, 5852
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losses to follow up
SEQDESIGN procedure, 7391

losses to follow-up
SEQDESIGN procedure, 7393

lower one-sided t test
TTEST procedure, 8802

Lp clustering
FASTCLUS procedure, 2394

Lp clustering
FASTCLUS procedure, 2406

LPRED plots
annotating, 6724
axes, color, 6724
font, specifying, 6725
reference lines, options, 6725–6729
threshold lines, options, 6728

LPREDPLOT
PROBIT procedure, 6721

LR ordering
SEQTEST procedure, 7569

LR statistics
MI procedure, 5086

LS-means, see least squares means
LSD test, 3437
LSDs (least significant differences)

LATTICE procedure, 4202
LSMEANS statement

analysis of means (Shared Concepts), 467
diffogram (Shared Concepts), 470
least squares means (Shared Concepts), 460
multiple comparison adjustment (Shared

Concepts), 462
observed margins (Shared Concepts), 468
syntax (Shared Concepts), 461

LSMESTIMATE statement
syntax (Shared Concepts), 477

MAC method
PRINQUAL procedure, 6652, 6658

macro variables
GLMSELECT procedure, 3718
LIFETEST procedure, 829–832
QUANTSELECT procedure, 6947

macros
LIFETEST procedure, 801
TRANSREG procedure, 8598

Mahalanobis distance, 1862, 2165, 2176
CANDISC procedure, 1874

main effects
design matrix (CATMOD), 1939
GENMOD procedure, 2946
ICPHREG procedure, 3962
LIFEREG procedure, 4261
MIXED procedure, 5304

model parameterization (GLM), 3456
Shared Concepts, 388
specifying (ANOVA), 974
specifying (CATMOD), 1929
specifying (GLM), 3453
TRANSREG procedure, 8565, 8603, 8604

Mallows’ Cp selection
REG procedure, 7051

manifest variables
CALIS procedure, 1158

Mann-Whitney-Wilcoxon test, see
Wilcoxon-Mann-Whitney (rank-sum) test

NPAR1WAY procedure, 5814
MANOVA, see multivariate analysis of variance, see

multivariate analysis of variance, see
multivariate analysis of variance

CANDISC procedure, 1858
Mantel-Fleiss criterion

FREQ procedure, 2698
Mantel-Haenszel chi-square test

FREQ procedure, 2651
Mantel-Haenszel effect estimation

STDRATE procedure, 7889
Mantel-Haenszel statistics

ANOVA (row mean scores) statistic (FREQ),
2697

correlation statistic (FREQ), 2697
FREQ procedure, 2695
general association statistic (FREQ), 2698
Mantel-Fleiss criterion (FREQ), 2698

Mantel-Haenszel test
log-rank test (PHREG), 5886

MAR
MI procedure, 5034, 5065, 5102

margin of error
SURVEYSELECT procedure, 8452

marginal distribution
definition of, 124
Introduction to Bayesian Analysis, 124
MCMC procedure, 4841

marginal probabilities, see also response functions
specifying in CATMOD procedure, 1919

marginal residuals
GLIMMIX procedure, 3149
MIXED procedure, 5308

mark
SPP procedure, 7769

MARKERATTRS= GTL option
LIFETEST procedure, 814

Markov chain Monte Carlo
adaptive algorithms, 134
assessing MCMC convergence, 137
burn-in for MCMC, 136
Gamerman algorithm, 136
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Gibbs sampler, 131, 133
independence sampler, 135
Introduction to Bayesian Analysis, 131, 135, 136
Metropolis algorithm, 131, 132
Metropolis-Hastings algorithm, 131, 132
posterior summary statistics, 151
Slice Sampler, 135
thinning of MCMC, 136

martingale residuals
PHREG procedure, 5942, 6068
SURVEYPHREG procedure, 8263

masking effects of outlier
CALIS procedure, 1497

Matérn, see also semivariogram theoretical models
(VARIOGRAM)

matched comparisons, see paired comparisons
Matérn

model fitting (VARIOGRAM), 8984
Matérn covariance structure

GLIMMIX procedure, 3170
MIXED procedure, 5281

Matérn semivariance model
KRIGE2D procedure, 4144, 4155
SIM2D procedure, 7715
VARIOGRAM procedure, 8945, 8961

mating
offspring and parent (INBREED), 3996, 3997
self (INBREED), 3996

matrix
addition (Introduction to Modeling), 40
Choleksy decomposition (Introduction to

Modeling), 45, 60
column space (Introduction to Modeling), 55
correlation (Introduction to Regression), 85
covariance (Introduction to Mixed Modeling), 113
covariance (Introduction to Regression), 85
crossproduct (Introduction to Modeling), 61
crossproduct, augmented (Introduction to

Modeling), 61
decomposition, Cholesky (Introduction to

Modeling), 45, 60
decomposition, LDU (Introduction to Modeling),

45
decomposition, LU (Introduction to Modeling),

45
decomposition, singular-value (Introduction to

Modeling), 46
decomposition, spectral (Introduction to

Modeling), 45
decompositions (CORRESP), 2105, 2128
decompositions (Introduction to Modeling), 45
design (Introduction to ANOVA Procedures), 102
determinant, by sweeping (Introduction to

Modeling), 61

diagonal (Introduction to Modeling), 40, 58
diagonal (Introduction to Regression), 84
differentiation (Introduction to Modeling), 43
dot product (Introduction to Modeling), 40
factor, defined for factor analysis (FACTOR),

2297
g1-inverse (Introduction to Modeling), 43
g2-inverse (Introduction to Modeling), 43, 57, 61
generalized inverse (Introduction to Modeling),

42, 55, 61
hat (Introduction to ANOVA Procedures), 104
hat (Introduction to Modeling), 53, 58
idempotent (Introduction to Modeling), 53
inner product (Introduction to Modeling), 41
inverse (Introduction to Modeling), 41
inverse, g1 (Introduction to Modeling), 43
inverse, g2 (Introduction to Modeling), 43, 57, 61
inverse, generalized (Introduction to Modeling),

42, 55, 61
inverse, Moore-Penrose (Introduction to

Modeling), 42, 46
inverse, partitioned (Introduction to Modeling),

41
inverse, patterned (Introduction to Modeling), 41
inverse, reflexive (Introduction to Modeling), 43,

57, 61
inversion (CALIS), 1477
LDU decomposition (Introduction to Modeling),

45
leverage (Introduction to Modeling), 58
LU decomposition (Introduction to Modeling), 45
Moore-Penrose inverse (Introduction to

Modeling), 42, 46
multiplication (Introduction to Modeling), 40
multiplication (SCORE), 7293
notation, theory (MIXED), 5291
order (Introduction to Modeling), 40
partition (Introduction to Modeling), 61
projection (Introduction to ANOVA Procedures),

102
projection (Introduction to Modeling), 53
rank deficient (Introduction to Modeling), 55
reflexive inverse (Introduction to Modeling), 43,

57, 61
singular-value decomposition (Introduction to

Modeling), 46
spectral decomposition (Introduction to

Modeling), 45
square (Introduction to Modeling), 40
subtraction (Introduction to Modeling), 40
sweep (Introduction to Modeling), 60
transposition (Introduction to Modeling), 40

matrix properties
COSAN model (CALIS), 1244
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matrix types
COSAN model (CALIS), 1244

Mauchly’s test of sphericity, 1210, 1212
Maximum a posteriori

MCMC procedure, 4793
maximum average correlation method

PRINQUAL procedure, 6652, 6658
maximum information

SEQDESIGN procedure, 7354, 7358, 7388, 7409
maximum likelihood

algorithms (LOGISTIC), 4567
algorithms (SURVEYLOGISTIC), 8104
CALIS procedure, 1464
estimates (LIFEREG), 4208
estimates (LOGISTIC), 4569
estimates (SURVEYLOGISTIC), 8106
estimation (CATMOD), 1886, 1909, 1955
estimation (GENMOD), 2941
GLIMMIX procedure, 3072, 3241
hierarchical clustering (CLUSTER), 2015, 2019,

2030, 2031
ICPHREG procedure, 3934, 3963
NLMIXED procedure, 5683
VARCOMP procedure, 8890

maximum likelihood estimate
SEQDESIGN procedure, 7350

maximum likelihood estimate scale
SEQDESIGN procedure, 7363

maximum likelihood estimates
PHREG procedure, 6021

maximum likelihood estimation
mixed model (MIXED), 5297

maximum likelihood factor analysis, 2296, 2314
with FACTOR procedure, 2301, 2302

maximum method, see complete linkage
maximum redundancy analysis

TRANSREG procedure, 8586
maximum time

confidence bands (LIFETEST), 4339
plots (ICLIFETEST), 3895
plots (LIFETEST), 4340

maximum total variance method
PRINQUAL procedure, 6651

MAXLEN=13 survival-plot option
LIFETEST procedure, 791

MBN adjusted sandwich estimators
GLIMMIX procedure, 3215

MCAR
MI procedure, 5065

MCF, see mean function
MCMC method

MI procedure, 5079
MCMC monotone-data imputation

MI procedure, 5103

MCMC procedure, 4730
arrays, 4762
Autoregressive Multivariate Normal Distribution,

4810
Behrens-Fisher problem, 4738
Bernoulli distribution, 4768, 4779, 4799
beta distribution, 4767, 4779, 4799
binary distribution, 4768, 4779, 4799
binomial distribution, 4768, 4800
blocking, 4789
Box-Cox transformation, 4872
Categorical distribution, 4808
Cauchy distribution, 4768, 4800
censoring, 4817, 4955
chi-square distribution, 4768, 4800
compared with other SAS procedures, 4731
computational resources, 4855
conjugate sampling, 4794
constants specification, 4763
convergence, 4851
corner-point constraint, 4781
Cox models, 4936, 4942
deviance information criterion, 4934
dgeneral distribution, 4768, 4779, 4813
direct sampling, 4794
Dirichlet distribution, 4770, 4809
dlogden distribution, 4768, 4779
double exponential distribution, 4769, 4779, 4805
examples, see also examples, MCMC, 4863
exponential chi-square distribution, 4768, 4800
exponential distribution, 4769, 4802
exponential exponential distribution, 4768, 4801
exponential gamma distribution, 4768, 4801
exponential inverse chi-square distribution, 4768,

4801
exponential inverse-gamma distribution, 4768,

4802
exponential scaled inverse chi-square distribution,

4768, 4802
floating point errors, 4850
gamma distribution, 4769, 4779, 4803, 4836
Gaussian distribution, 4770, 4779, 4806
Gelman-Rubin diagnostics, 4980
general distribution, 4769, 4779, 4813
generalized linear models, 4881, 4887, 4890
geometric distribution, 4769, 4803
handling error messages, 4853
hierarchical centering, 4902
hyperprior distribution, 4765, 4776
initial values, 4732, 4751, 4773, 4793, 4796, 4797
inverse chi-square distribution, 4769, 4804
inverse Gaussian distribution, 4770, 4808
Inverse Wishart distribution, 4809
inverse Wishart distribution, 4770
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inverse-gamma distribution, 4769, 4779, 4804,
4836

Laplace distribution, 4769, 4779, 4805
likelihood function specification, 4766
logden distribution, 4769, 4779
logistic distribution, 4769, 4805
lognormal distribution, 4769, 4805
long run times, 4851
marginal distribution, 4841
Maximum a posteriori, 4793
mixed-effects models, 4901
mixing, 4893, 4971
model missing response variables, 4766
model parameters, 4773
model specification, 4766
modeling dependent data, 4936
Multinomial Distribution, 4810
Multinomial distribution, 4771
Multivariate Normal Distribution, 4810
MVN distribution, 4770, 4780
MVNAR distribution, 4771, 4780
negative binomial distribution, 4769, 4806
nonlinear Poisson regression, 4893
normal distribution, 4770, 4779, 4806
options, 4748
options summary, 4747
output ODS Graphics table names, 4862
output table names, 4860
overflows, 4850
parameters specification, 4773
pareto distribution, 4770, 4807
Piecewise Exponential Frailty Models, 4948
Poisson distribution, 4770, 4779, 4807
posterior predictive distribution, 4775, 4838
posterior samples data set, 4755
precision of solution, 4853
prior distribution, 4765, 4776
prior predictive distribution, 4841
programming statements, 4777
proposal distribution, 4792
random effects, 4778
random-effects models, 4901
run times, 4851, 4855
scaled inverse chi-square distribution, 4770, 4807
specifying a new distribution, 4813
standard distributions, 4798
survival analysis, 4923
syntax summary, 4746
t distribution, 4770, 4807
table (categorical) distribution, 4770, 4779
Table distribution, 4808
truncated distributions, 4817
tuning, 4792
UDS statement, 4785

uniform distribution, 4770, 4779, 4808
user defined sampler statement, 4785
user-defined distribution, 4769, 4779
user-defined samplers, 4962
using the IF-ELSE logical control, 4872
Wald distribution, 4770, 4808
Weibull distribution, 4770, 4809
WinBUGS specification of the gamma

distribution, 4836
McNemar’s test

FREQ procedure, 2690, 2691
Introduction to Nonparametric Analysis, 274
power and sample size (POWER), 6310, 6315,

6317, 6406
McQuitty’s similarity analysis

CLUSTER procedure, 2015
MDFFITS

MIXED procedure, 5313
MDFFITS for covariance parameters

MIXED procedure, 5313
MDPREF analysis

PRINQUAL procedure, 6667
MDS procedure

alternating least squares, 4999
asymmetric data, 5007
badness of fit, 5002, 5004, 5005, 5011, 5012
conditional data, 5000
configuration, 4992, 5004, 5005, 5012
convergence criterion, 5000, 5002, 5003
coordinates, 5004, 5005, 5010, 5012
data weights, 5009, 5010
dimension coefficients, 4992, 4993, 4999, 5004,

5005, 5010, 5012
dissimilarity data, 4992, 5000, 5007
distance data, 4992, 5000, 5007
Euclidean distances, 4993, 4999, 5010
external unfolding, 4992
individual difference models, 4992
INDSCAL model, 4992, 4999
initial values, 5002–5006, 5014
measurement level, 4993, 5003
metric multidimensional scaling, 4992
missing values, 5014
multidimensional scaling, 4992
nonmetric multidimensional scaling, 4992
normalization of the estimates, 5015
ODS Graph names, 5017
optimal transformations, 4992, 4993, 5003
output table names, 5017
partitions, 5000, 5010
plot of configuration, 5028
plot of dimension coefficients, 5028
plot of linear fit, 5028
proximity data, 4992, 5000, 5007
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residuals, 5004, 5010, 5011, 5014, 5028
similarity data, 4992, 5000, 5007
stress formula, 5002, 5011
subject weights, 4992, 4999
three-way multidimensional scaling, 4992
ties, 5007
transformations, 4992, 4993, 5003, 5004, 5006,

5010–5012
transformed data, 5013
transformed distances, 5014
unfolding, 4992
weighted Euclidean distance, 4993, 4999, 5010
weighted Euclidean model, 4992, 4999
weighted least squares, 5009

mean function
linear (Introduction to Modeling), 23
nonlinear (Introduction to Modeling), 23
PHREG procedure, 5901, 5905, 5959, 5979, 5981

mean per element
SURVEYMEANS procedure, 8186

mean separation tests, see multiple-comparison
procedures

mean squared error
Introduction to Modeling, 49

mean survival time
time limit (LIFETEST), 4347

mean trend, see surface trend (VARIOGRAM)
MEAN= data sets

FASTCLUS procedure, 2408
means

ANOVA procedure, 963
compared to least squares means (GLM), 3474
displayed in CLUSTER procedure, 2023
GLM procedure, 3432
power and sample size (POWER), 6300, 6317,

6337, 6344, 6416
SURVEYMEANS procedure, 8186
weighted (GLM), 3489

MEANS procedure, 17
means, difference between

independent samples, 8788, 8825
paired observations, 8788

means, ratio of
independent samples, 8788
paired samples, 8788

measurement errors example (CALIS), 1574, 1580,
1586, 1591

measurement level
MDS procedure, 4993, 5003

measurement models, 306
measures of association

exact tests (FREQ), 2654
tests (FREQ), 2654

measures of spatial continuity

VARIOGRAM procedure, 8912, 8963, 9028
median

cluster, 2404, 2406
method (CLUSTER), 2016, 2031

median residual time
LIFETEST procedure, 4377

median scores
NPAR1WAY procedure, 5814

median unbiased estimate
SEQTEST procedure, 7567

Medical Expenditure Panel Survey (MEPS)
SURVEYLOGISTIC procedure, 8143

Mehta-Patel network algorithm
exact tests (FREQ), 2705
exact tests (NPAR1WAY), 5822

memory requirements
ACECLUS procedure, 876
CLUSTER procedure, 2036
FACTOR procedure, 2342
FASTCLUS procedure, 2416
MIXED procedure, 5333
reduction of (ANOVA), 957
reduction of (GLM), 3412
VARCLUS procedure, 8872

memory usage
SIM2D procedure, 7727

MEMSIZE= option
SURVEYMEANS procedure, 8214

Merle-Spath algorithm
FASTCLUS procedure, 2407

method information
SEQDESIGN procedure, 7413

method specifications
STDRATE procedure, 7897

methods of estimation
VARCOMP procedure, 8886, 8901

metric conjoint analysis
TRANSREG procedure, 8739

metric multidimensional scaling
MDS procedure, 4992

Metropolis algorithm
Introduction to Bayesian Analysis, 131
Markov chain Monte Carlo, 131, 132

Metropolis-Hastings algorithm
Introduction to Bayesian Analysis, 131
Markov chain Monte Carlo, 131, 132

MGV method
PRINQUAL procedure, 6651

MI procedure
adjusted degrees of freedom, 5093
analyst’s model, 5093
approximate Bayesian bootstrap, 5076
arbitrary missing pattern, 5067
autocorrelation function plot, 5088
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Bayes’ theorem, 5079
Bayesian inference, 5079
between-imputation variance, 5092
bootstrap, 5052
CCMV, 5056
combining inferences, 5092
complete case missing value, 5056
converge in EM algorithm, 5043
convergence in EM algorithm, 5052
convergence in FCS Methods, 5079
convergence in MCMC, 5086, 5103
cumulative logit model, 5060
degrees of freedom, 5092
discriminant function method, 5071
EM algorithm, 5064, 5104
FCS method, 5077
fraction of missing information, 5092
generalized logit model, 5060
imputation methods, 5067
imputation model, 5103
imputer’s model, 5093
input data set, 5040, 5051, 5058, 5088
introductory example, 5035
logistic regression method, 5073
LR statistics, 5086
MAR, 5034, 5065, 5102
MCAR, 5065
MCMC method, 5079
MCMC monotone-data imputation, 5103
missing at random, 5034, 5065, 5102
missing not at random, 5034
MNAR, 5034, 5039, 5056, 5097
monotone method, 5069
monotone missing pattern, 5033, 5066
multiple imputation efficiency, 5093
multivariate normality assumption, 5103
NCMV, 5057
neighboring case missing value, 5057
number of imputations, 5102
ODS graph names, 5105
ODS table names, 5104
output data sets, 5041, 5044, 5052, 5090
output parameter estimates, 5052
parameter simulation, 5094
pattern-mixture model, 5095
predictive mean matching method, 5070
producing monotone missingness, 5083
propensity score method, 5076, 5103
random number generators, 5041
regression method, 5070, 5103
relative efficiency, 5093
relative increase in variance, 5092
saving graphics output, 5051
selection model, 5096

sensitivity analyses, 5095
sensitivity analysis, 5056
singularity, 5042
Summary of Issues in Multiple Imputation, 5102
suppressing output, 5041
syntax, 5038
total variance, 5092
trace plot, 5087
transformation, 5062
within-imputation variance, 5092
worst linear function of parameters, 5087

MI procedure, EM statement
output data sets, 5043

MIANALYZE procedure
adjusted degrees of freedom, 5175
average relative increase in variance, 5177
between-imputation covariance matrix, 5176
between-imputation variance, 5174
combining inferences, 5174
control-based pattern imputation, 5204
degrees of freedom, 5175, 5177
fraction of missing information, 5175
input data sets, 5170
introductory example, 5161
multiple imputation efficiency, 5175
multivariate inferences, 5176
ODS table names, 5180
relative efficiency, 5175
relative increase in variance, 5175
sensitivity analysis, 5183, 5204, 5207
syntax, 5163
testing linear hypotheses, 5168, 5177
tipping-point approach, 5207
total covariance matrix, 5176, 5177
total variance, 5174
within-imputation covariance matrix, 5176
within-imputation variance, 5174

Mid-p confidence limits
proportions (FREQ), 2665

Miettinen-Nurminen confidence limits
risk difference (FREQ), 2673

minimum error spending
SEQTEST procedure, 7549, 7562

minimum generalized variance method
PRINQUAL procedure, 6651

minimum time
confidence bands (LIFETEST), 4339

Minkowski Lp distance coefficient
DISTANCE procedure, 2274

Minkowski metric
STDIZE procedure, 7847

misclassification probabilities
discriminant analysis, 2159

missing at random
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MI procedure, 5034, 5065, 5102
Missing data

Missing Not at Random (MNAR), 4843
MNAR, 4843

missing data
Ignorably Missing, 4842
MAR, 4842
MCAR, 4842
Missing at Random (MAR), 4842
Missing Completely at Random (MCAR), 4842
Nonignorably Missing, 4843
Pattern-Mixture Model, 4843
Selection Model, 4843

missing level combinations
GLIMMIX procedure, 3231
MIXED procedure, 5308

missing not at random
MI procedure, 5034

missing patterns
FIML (CALIS), 1220, 1226, 1238, 1629

missing stratum values
LIFETEST procedure, 4341, 4348, 4352

missing values
ACECLUS procedure, 875
and interactivity (GLM), 3456
CANCORR procedure, 1839
character (PRINQUAL), 6646
CLUSTER procedure, 2036
DISTANCE procedure, 2264–2266, 2269, 2279
FASTCLUS procedure, 2394, 2395, 2406, 2408,

2412
FREQ procedure, 2643
LIFEREG procedure, 4261
LIFETEST procedure, 4354
LOGISTIC procedure, 4563
MDS procedure, 5014
MODECLUS procedure, 5433
MULTTEST procedure, 5525
NPAR1WAY procedure, 5810
PHREG procedure, 5932, 5944, 6049
PRINCOMP procedure, 6598
PRINQUAL procedure, 6638, 6657, 6663
PROBIT procedure, 6748
SCORE procedure, 7302
STDIZE procedure, 7840, 7841
strata variables (PHREG), 5947
SURVEYFREQ procedure, 8001
SURVEYLOGISTIC procedure, 8066, 8098
SURVEYMEANS procedure, 8162, 8182, 8232
SURVEYPHREG procedure, 8264, 8277
SURVEYREG procedure, 8323, 8346
SURVEYSELECT procedure, 8438
TRANSREG procedure, 8588, 8666, 8667, 8672
TREE procedure, 8776

VARCOMP procedure, 8892
MIVQUE0 estimation

GLIMMIX procedure, 3153, 3243
mixed model

assumptions (Introduction to Mixed Modeling),
113, 114

clustered data (Introduction to Mixed Modeling),
116

compound symmetry (Introduction to Mixed
Modeling), 114

conditional distribution (Introduction to Mixed
Modeling), 113–115, 120

covariance matrix (Introduction to Mixed
Modeling), 113

covariance parameters (Introduction to Mixed
Modeling), 113

covariance structure (Introduction to Mixed
Modeling), 116, 117

definition (Introduction to Mixed Modeling), 111
diagnostics (Introduction to Mixed Modeling),

112, 118
distribution, conditional (Introduction to Mixed

Modeling), 113–115, 120
distribution, marginal (Introduction to Mixed

Modeling), 115, 116
fixed effect (Introduction to Mixed Modeling),

111
G matrix (Introduction to Mixed Modeling), 113,

115, 118
G-side random effect (Introduction to Mixed

Modeling), 113–115
gauge R & R study (Introduction to Mixed

Modeling), 118
GEE (Introduction to Mixed Modeling), 115
generalized estimating equations (Introduction to

Mixed Modeling), 115
generalized linear (Introduction to Mixed

Modeling), 112, 114, 120
GENMOD and GLIMMIX compared

(Introduction to Mixed Modeling), 121
GLIMMIX and GENMOD compared

(Introduction to Mixed Modeling), 121
GLM and MIXED compared (Introduction to

Mixed Modeling), 119
GLMM (Introduction to Mixed Modeling), 114
groups (Introduction to Mixed Modeling), 117
hierarchical data (Introduction to Mixed

Modeling), 116
HPMIXED and MIXED compared (Introduction

to Mixed Modeling), 119
HPMIXED procedure, 3842
lattice design (Introduction to Mixed Modeling),

112, 118
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level-1 units (Introduction to Mixed Modeling),
117

level-2 units (Introduction to Mixed Modeling),
117

likelihood, residual (Introduction to Mixed
Modeling), 113, 118

likelihood, restricted (Introduction to Mixed
Modeling), 112, 113, 118

linear (Introduction to ANOVA Procedures), 103
linear (Introduction to Mixed Modeling), 112,

113, 116, 118
link function (Introduction to Mixed Modeling),

114, 120
logit link (Introduction to Mixed Modeling), 115
marginal distribution (Introduction to Mixed

Modeling), 115, 116
marginal model (Introduction to Mixed

Modeling), 115
mean structure (Introduction to Mixed Modeling),

116
method of moments (Introduction to Mixed

Modeling), 113, 118
MIXED and GLM compared (Introduction to

Mixed Modeling), 119
MIXED and HPMIXED compared (Introduction

to Mixed Modeling), 119
monographs (Introduction to Mixed Modeling),

112
multiplicity adjustment (Introduction to Mixed

Modeling), 120
nested (Introduction to Mixed Modeling), 112,

118
nonlinear (Introduction to Mixed Modeling), 112,

115
parameter estimation (Introduction to Mixed

Modeling), 113, 115
procedures in SAS/STAT (Introduction to Mixed

Modeling), 112
R matrix (Introduction to Mixed Modeling), 113,

115, 116, 118
R-side random effect (Introduction to Mixed

Modeling), 113, 116
random effect (Introduction to Mixed Modeling),

111
random effect, G-side (Introduction to Mixed

Modeling), 113–115
random effect, R-side (Introduction to Mixed

Modeling), 113, 116
residual likelihood (Introduction to Mixed

Modeling), 113, 118
restricted likelihood (Introduction to Mixed

Modeling), 112, 113, 118
smoothing (Introduction to Mixed Modeling), 120

sparse techniques (Introduction to Mixed
Modeling), 112

splines (Introduction to Mixed Modeling), 120
subjects (Introduction to Mixed Modeling), 117
subjects, compared to groups (Introduction to

Mixed Modeling), 117
unbalanced (GLM), 3551
VARCOMP procedure, 8893
variance component (Introduction to Mixed

Modeling), 112
mixed model (GLIMMIX)

parameterization, 3229
mixed model (HPMIXED)

descriptive statistics, 3862
hypothesis test, 3856
objective function, 3863

mixed model (MIXED), see also MIXED procedure
estimation, 5297
formulation, 5292
hypothesis tests, 5301, 5319
inference, 5300
inference space, 5239, 5240, 5242, 5337
least squares means, 5244
likelihood ratio test, 5300, 5301
linear model, 5214
maximum likelihood estimation, 5297
notation, 5216
objective function, 5316
parameterization, 5303
predicted values, 5244
restricted maximum likelihood, 5336
theory, 5291
Wald test, 5300, 5342

mixed model equations
example (MIXED), 5350
HPMIXED procedure, 3829
MIXED procedure, 5298

mixed model smoothing
GLIMMIX procedure, 3157, 3158, 3160, 3167,

3168, 3220
Introduction to Mixed Modeling, 120

MIXED procedure, see also mixed model
2D geometric anisotropic structure, 5281
Akaike’s information criterion, 5229, 5299, 5318
Akaike’s information criterion (finite sample

corrected version), 5229, 5318
alpha level, 5227, 5243, 5247, 5252, 5273
analysis of means, 467
anisotropic power covariance structure, 5282
anisotropic spatial power structure, 5282
ANTE(1) structure, 5281
antedependence structure, 5281
AR(1) structure, 5281
ARIMA procedure, compared, 5217
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ARMA structure, 5281
assumptions, 5214
asymptotic covariance, 5227
AUTOREG procedure, compared, 5217
autoregressive moving-average structure, 5281
autoregressive structure, 5281, 5344
banded Toeplitz structure, 5281
basic features, 5215
Bayesian analysis, 5268
between-within method, 5228, 5254
BLUE, 5299
BLUP, 5299, 5362
Bonferroni adjustment, 5246
boundary constraints, 5267, 5268, 5331
BYLEVEL processing of LSMEANS, 5248
CALIS procedure, compared, 5217
chi-square test, 5241, 5252
Cholesky root, 5264, 5309, 5330
class level, 5231, 5316
comparison with the GLIMMIX procedure, 3236
compound symmetry structure, 5281, 5293, 5344,

5349
computational details, 5330
computational order, 5331
conditional residuals, 5308
confidence interval, 5243, 5273
confidence limits, 5227, 5243, 5248, 5253, 5273
containment method, 5253, 5254
continuous effects, 5274, 5275, 5278, 5281
continuous-by-class effects, 5306
continuous-nesting-class effects, 5306
contrasted SAS procedures, 3394, 3501, 3553,

5217, 5560
contrasts, 5239, 5242
convergence criterion, 3238, 5226, 5228, 5317,

5332
convergence problems, 5332
convergence status, 5317
Cook’s D, 5312
Cook’s D for covariance parameters, 5312
correlation estimates, 5274, 5276, 5281, 5346
correlations of least squares means, 5248
covariance parameter estimates, 5227, 5228, 5317
covariance parameter estimates, ratio, 5236
covariance parameters, 5214
covariance structure, 5216, 5281, 5283, 5339
covariances of least squares means, 5248
covariate values for LSMEANS, 5247
covariates, 5304
CovRatio, 5314
CovRatio for covariance parameters, 5314
CovTrace, 5314
CovTrace for covariance parameters, 5314
CPU requirements, 5333

crossed effects, 5304
default output, 5316
degrees of freedom, 5240–5243, 5245, 5248,

5253, 5264, 5301, 5307, 5319, 5331, 5362
DFFITS, 5313
diffogram, 470
dimension information, 5316
dimensions, 5229, 5231
direct product structure, 5281
Dunnett’s adjustment, 5246
EBLUPs, 5275, 5299, 5356, 5369
effect name length, 5230
empirical best linear unbiased prediction, 5263
empirical estimator, 5228
estimability, 5240, 5241, 5243, 5244, 5249, 5264,

5265, 5300, 5308
estimable functions, 5262
estimation methods, 5230
exponential covariance structure, 5282
factor analytic structures, 5281
Fisher information matrix, 5318, 5350
Fisher’s scoring method, 5227, 5236, 5332
fitting information, 5318
fixed effects, 5216
fixed-effects parameters, 5214, 5264, 5292
fixed-effects variance matrix, 5265
function evaluations, 5230
G matrix, 5216, 5272, 5273, 5292, 5293, 5368
Gaussian covariance structure, 5282
general linear covariance structure, 5281
generalized inverse, 5241, 5299
GLIMMIX procedure, compared, 5217
gradient, 5228, 5317
grid search, 5265, 5350
growth curve analysis, 5293
Hannan-Quinn information criterion, 5229
Hessian matrix, 5227, 5228, 5236, 5267, 5316,

5318, 5332, 5333, 5342, 5350
heterogeneity, 5274, 5278, 5347
heterogeneous AR(1) structure, 5281
heterogeneous compound-symmetry structure,

5281
heterogeneous covariance structures, 5290
heterogeneous Toeplitz structure, 5281
hierarchical model, 5363
Hotelling-Lawley-McKeon statistic, 5278
Hotelling-Lawley-Pillai-Sampson statistic, 5278
Hsu’s adjustment, 5246
Huynh-Feldt structure, 5281
infinite likelihood, 5277, 5331, 5332
influence diagnostics, 5260, 5310
influence plots, 5328
information criteria, 5229
initial values, 5265
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input data sets, 5228
interaction effects, 5304
intercept, 5304
intercept effect, 5262, 5272
intraclass correlation coefficient, 5346
introductory example, 5218
iteration history, 5316
iterations, 5230, 5316
Kenward-Roger method, 5255
Kronecker product structure, 5281
LATTICE procedure, compared, 5217
least squares means, 5248, 5350, 5371
leave-one-out-estimates, 5328
leverage, 5311
likelihood distance, 5314
likelihood ratio test, 5318
linear covariance structure, 5281
log-linear variance model, 5279
main effects, 5304
marginal residuals, 5308
Matérn covariance structure, 5281
matrix notation, 5291
MDFFITS, 5313
MDFFITS for covariance parameters, 5313
memory requirements, 5333
missing level combinations, 5308
mixed linear model, 5214
mixed model, 5292
mixed model equations, 5298, 5350
mixed model theory, 5291
model information, 5231, 5316
model selection, 5299
multilevel model, 5363
multiple comparisons of least squares means,

5245, 5246, 5248
multiple tables, 5321
multiplicity adjustment, 5245
multivariate tests, 5278
nested effects, 5305
nested error structure, 5367
NESTED procedure, compared, 5217
Newton-Raphson algorithm, 5297
non-full-rank parameterization, 5217, 5279, 5307
nonstandard weights for LSMEANS, 5249
nugget effect, 5279
number of observations, 5316
oblique projector, 5312
observed margins, 468
observed margins for LSMEANS, 5249
ODS graph names, 5325
ODS Graphics, 5231, 5324
ODS table names, 5319
ordering of effects, 5306
over-parameterization, 5304

parameter constraints, 5266, 5331
parameterization, 5303
Pearson residual, 5264
pharmaceutical stability, example, 5363
plotting the likelihood, 5356
polynomial effects, 5304
power-of-the-mean model, 5279
predicted means, 5263
predicted value confidence intervals, 5252
predicted values, 5263, 5350
PRESS residual, 5311
PRESS statistic, 5311
prior density, 5269
profiling residual variance, 5231, 5267, 5279,

5297, 5330
R matrix, 5216, 5276, 5280, 5292, 5293
random coefficients, 5344, 5363
random effects, 5216, 5272
random-effects parameters, 5215, 5275, 5292
regression effects, 5304
rejection sampling, 5271
repeated measures, 5215, 5276, 5339
residual diagnostics, details, 5308
residual method, 5254
residual plots, 5326
residual variance tolerance, 5264
restricted maximum likelihood (REML), 5215
ridging, 5236, 5297
sandwich estimator, 5228
Satterthwaite method, 5254
scaled residual, 5265, 5309
Schwarz’s Bayesian information criterion, 5229,

5299, 5318
scoring, 5227, 5236, 5332
Sidak’s adjustment, 5246
simple effects, 5250
simulation-based adjustment, 5246
singularities, 5333
spatial anisotropic exponential structure, 5281
spatial covariance structure, 5282, 5283, 5290,

5332
split-plot design, 5294, 5334
standard linear model, 5216
statement positions, 5224
studentized residual, 5264, 5312
subject effect, 5240, 5275, 5281, 5334, 5339
summary of commands, 5224
sweep operator, 5312, 5330
table names, 5319
test components, 5262
Toeplitz structure, 5281, 5371
TSCSREG procedure, compared, 5217
Tukey’s adjustment, 5246
Type 1 estimation, 5230
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Type 1 testing, 5256
Type 2 estimation, 5230
Type 2 testing, 5256
Type 3 estimation, 5230
Type 3 testing, 5256, 5319
unstructured correlations, 5281
unstructured covariance matrix, 5281
unstructured R matrix, 5281
V matrix, 5276
VARCOMP procedure, example, 5350
variance components, 5215, 5281
variance ratios, 5266, 5275
Wald test, 5318, 5319
weighted LSMEANS, 5249
weighting, 5291
zero design columns, 5256
zero variance component estimates, 5331

MIXED procedure, SLICE statement
ODS graph names, 475

mixed-effects models
MCMC procedure, 4901

MIXED procedure
ordering of effects, 5231

mixing
convergence (MCMC), 4971
improving (MCMC), 4852, 4893, 4971
MCMC procedure, 4893, 4971

mixing probabilities
FMM procedure, 2528

mixture
chi-square (GLIMMIX), 3096, 3102
chi-square, weights (GLIMMIX), 3103
Poisson (GLIMMIX), 3357

mixture model (FMM)
parameterization, 2524

ML factor analysis
and computer time, 2301
and confidence intervals, 2299, 2301, 2336
and multivariate normal distribution, 2301
and standard errors, 2301
and test of sphericity, 2301

ML method
CALIS procedure, 1464

MLE
SEQDESIGN procedure, 7350

MLE ordering
SEQTEST procedure, 7569

MNAR
MI procedure, 5034, 5039, 5056, 5097

modal clusters
density estimation (CLUSTER), 2018

modal region, definition, 5429
MODECLUS procedure

analyzing data in groups, 5409, 5425

cascaded density estimates, 5424, 5425
clustering methods, 5409, 5425
clusters, definition, 5428
clusters, plotting, 5429
compared with other procedures, 5409
cross validated density estimates, 5424
density estimation, 5422
example using GPLOT procedure, 5477
example using SGPLOT procedure, 5470
example using TRACE option, 5481
example using TRANSPOSE procedure, 5463
fixed-radius kernels, 5422
functional summary, 5414
Hertzsprung-Russell Plot, example, 5477
JOIN option, discussion, 5431
modal region, 5429
neighborhood distribution function (NDF),

definition, 5429
nonparametric clustering methods, 5408
output data sets, 5433
p-value computation, 5427
plotting samples from univariate distributions,

5439
population clusters, risks of estimating, 5428
saddle test, definition, 5429
scaling variables, 5408
significance tests, 5470
standardizing, 5408
summary of options, 5414
variable-radius kernels, 5422

model
fit criteria (PHREG), 5983
fit criteria (SURVEYPHREG), 8287
fit summary (REG), 7062
fitting criteria (LOGISTIC), 4572
fitting criteria (SPP), 7805
hierarchy (GLMSELECT), 3687
hierarchy (LOGISTIC), 4491, 4538
hierarchy (PHREG), 5935
hierarchy (QUANTSELECT), 6934
information (FMM), 2525
information (GLIMMIX), 3242
information (MIXED), 5231
parameterization (GLM), 3456
specification (ANOVA), 974
specification (GLM), 3453
specification (NLMIXED, 5711

model assessment, 3017, 3024
PHREG procedure, 5897, 5998, 6084

model averaging
GLMSELECT procedure, 3722

model building
examples (REG), 7112

model checking, 3017, 3024
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model degrees of freedom
TPSPLINE procedure, 8503

model fitting, see semivariogram theoretical model
fitting (VARIOGRAM)

VARIOGRAM procedure, 8997
model identification, 293
model information

GLMSELECT procedure, 3732
HPMIXED procedure, 3830
MIXED procedure, 5316
PHREG procedure, 6015, 6020, 6021
QUANTSELECT procedure, 6951
SURVEYPHREG procedure, 8292, 8293

model missing response variables
MCMC procedure, 4766

model parameters
MCMC procedure, 4773
SURVEYLOGISTIC procedure, 8110

model selection, 6555, 6566
entry (PHREG), 5939
examples (REG), 7126
GLMSELECT procedure, 3704
LOGISTIC procedure, 4533, 4544, 4571
MIXED procedure, 5299
PHREG procedure, 5882, 5933, 5938, 5997
REG procedure, 6979, 7049, 7051, 7052
removal (PHREG), 5939

model selection issues
GLMSELECT procedure, 3713

model specification
MCMC procedure, 4766

MODEL statement options
BCHOICE procedure, 1029

modeling, see semivariogram theoretical model fitting
(VARIOGRAM)

KRIGE2D procedure, 4124
modeling language (CALIS), 1194
modification indices

CALIS procedure, 1216, 1476, 1501
constraints (CALIS), 1224, 1226
displaying (CALIS), 1521
Lagrange multiplier test (CALIS), 1224, 1502,

1503
Wald test (CALIS), 1224, 1503

modified Peto-Peto test for homogeneity
LIFETEST procedure, 4328, 4353

modified ridit scores
FREQ procedure, 2647

monoecious population analysis
example (INBREED), 4001

monotone likelihood
PHREG procedure, 5935, 5967, 6042

monotone method
MI procedure, 5069

monotone missing pattern
MI procedure, 5033, 5066

monotone transformations
TRANSREG procedure, 8602

monotonic
transformation (PRINQUAL), 6646, 6647
transformation, B-spline (PRINQUAL), 6646
transformation, B-spline (TRANSREG), 8678

monotonic B-spline transformation
TRANSREG procedure, 8571

monotonic transformation, ties not preserved
TRANSREG procedure, 8572

monotonic transformation, ties preserved
TRANSREG procedure, 8571, 8676

Monte Carlo estimation
exact tests (FREQ), 2578, 2585, 2707
exact tests (NPAR1WAY), 5824

Monte Carlo standard error (MCSE)
Introduction to Bayesian Analysis, 128, 151

Mood scores
NPAR1WAY procedure, 5815

Moore-Penrose inverse
NLIN procedure, 5623

MORALS method
TRANSREG procedure, 8586

Moran scatter plot, see autocorrelation
Moran’s I coefficient, see autocorrelation
mortality test

MULTTEST procedure, 5514, 5538
mosaic plots

FREQ procedure, 2622
MSE

SURVEYREG procedure, 8351
MSTRUCT model

CALIS procedure, 1313
direct covariance structures example (CALIS),

1192, 1545, 1547, 1550, 1665, 1680, 1685
estimating covariances and means example

(CALIS), 1544
estimating covariances example (CALIS), 1539
structural model example (CALIS), 281

MTV method
PRINQUAL procedure, 6651

multi-modal density
finite mixture models (FMM), 2442, 2460, 2461,

2514
multicollinearity

REG procedure, 7060
multidimensional preference analysis

PRINQUAL procedure, 6667
multidimensional scaling

MDS procedure, 4992
metric (MDS), 4992
nonmetric (MDS), 4992



Subject Index F 9159

three-way (MDS), 4992
multilevel model

example (MIXED), 5363
multilevel response, 6752
multimember effect

GLIMMIX procedure, 402, 3371
GLMSELECT procedure, 402
HPMIXED procedure, 402
LOGISTIC procedure, 402
ORTHOREG procedure, 402
PHREG procedure, 402
PLS procedure, 402
QUANTLIFE procedure, 402
QUANTREG procedure, 402
QUANTSELECT procedure, 402
ROBUSTREG procedure, 402
SURVEYLOGISTIC procedure, 402
SURVEYREG procedure, 402

multimember example
GLIMMIX procedure, 3371

multinomial
distribution (GENMOD), 2937
models (GENMOD), 2954

multinomial cluster distribution
FMM procedure, 2498

Multinomial Distribution
MCMC procedure, 4810

Multinomial distribution
MCMC procedure, 4771

multinomial distribution
definition of (MCMC), 4810
FMM procedure, 2498
GLIMMIX procedure, 3137

multiple classifications
cutpoints (LOGISTIC), 4543

multiple comparison adjustment (GLIMMIX)
estimates, 3105
least squares means, 3112, 3113, 3126

multiple comparison adjustment (MIXED)
least squares means, 5245, 5246

multiple comparison procedures
GLM procedure, 3432
multiple-stage tests, 3483
pairwise (GLM), 3477
recommendations, 3486
with a control (GLM), 3481
with the average (GLM), 3482

multiple comparisons
NPAR1WAY procedure, 5819

multiple comparisons of estimates
GLIMMIX procedure, 3105

multiple comparisons of least squares means, see also
multiple-comparison procedures

GLIMMIX procedure, 3112, 3113, 3116, 3122,
3126

GLM procedure, 3420, 3424, 3478
HPMIXED procedure, 3841
interpretation, 3486
MIXED procedure, 5245, 5246, 5248

multiple comparisons of means, see also
multiple-comparison procedures

ANOVA procedure, 963
Bonferroni t test, 965, 3434
Duncan’s multiple range test, 965, 3435
Dunnett’s test, 965, 3435
error mean square, 966, 3435
examples, 3517
Fisher’s LSD test, 967, 3437
Gabriel’s procedure, 966, 3435
GLM procedure, 3475, 3478
GT2 method, 967, 3437
interpretation, 3486
Ryan-Einot-Gabriel-Welsch test, 967, 3437
Scheffé’s procedure, 967, 3437
Sidak’s adjustment, 967, 3437
SMM, 967, 3437
Student-Newman-Keuls test, 967, 3437
Tukey’s studentized range test, 968, 3437
Waller-Duncan method, 966
Waller-Duncan test, 968, 3437

multiple correspondence analysis (MCA)
CORRESP procedure, 2101, 2129, 2148

multiple imputation
ICLIFETEST procedure, 3895

multiple imputation efficiency
MI procedure, 5093
MIANALYZE procedure, 5175

multiple imputations analysis, 5032, 5160
multiple R-square

SURVEYREG procedure, 8351
multiple redundancy coefficients

TRANSREG procedure, 8600
multiple regression, 6495

TRANSREG procedure, 8602
multiple tables

MIXED procedure, 5321
multiple-comparison procedures, 3475, see also

multiple comparisons of least squares means,
see also multiple comparisons of means

pairwise (GLM), 3476
with a control (GLM), 3477

multiple-group analysis
CALIS Procedure, 1759

multiple-group analysis (CALIS), 1759
multiple-stage tests, see multiple comparison

procedures, 3483
%MultipleStrata macro
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LIFETEST procedure, 836
multiplicative hazards model, see Andersen-Gill model
multiplicity adjustment

Bonferroni (GLIMMIX), 3113, 3126
Bonferroni (ICLIFETEST), 3902
Bonferroni (LIFETEST), 4350
Dunnett (GLIMMIX), 3113
Dunnett (ICLIFETEST), 3902
Dunnett (LIFETEST), 4350
estimates (GLIMMIX), 3105
GLIMMIX procedure, 3105
Hsu (GLIMMIX), 3113
least squares means (GLIMMIX), 3113
least squares means estimates (GLIMMIX), 3126
MIXED procedure, 5245
Nelson (GLIMMIX), 3113
row-wise (GLIMMIX), 3105, 3112
row-wise (MIXED), 5245
Scheffe (GLIMMIX), 3113, 3126
Scheffe (ICLIFETEST), 3902
Scheffe (LIFETEST), 4350
Sidak (GLIMMIX), 3113, 3126
Sidak (ICLIFETEST), 3902
Sidak (LIFETEST), 4350
Simulate (GLIMMIX), 3126
simulated (ICLIFETEST), 3902
simulated (LIFETEST), 4350
simulation-based (GLIMMIX), 3114
step-down p-values (GLIMMIX), 3108, 3123,

3130
studentized maximum modulus (ICLIFETEST),

3902
studentized maximum modulus (LIFETEST),

4350
T (GLIMMIX), 3126
Tukey (GLIMMIX), 3113
Tukey (ICLIFETEST), 3902
Tukey (LIFETEST), 4350

multistage sampling
Introduction to Survey Procedures, 247
SURVEYSELECT procedure, 8402

multithreading
FMM procedure, 2506

multitype point pattern
SPP procedure, 7769

multivariate analysis of variance, 955, 959
CANDISC procedure, 1858
examples (GLM), 3540
GLM procedure, 3407, 3428, 3492
GLMPOWER procedure, 3609, 3623
hypothesis tests (GLM), 3492
partial correlations, 3492
power and sample size (GLMPOWER), 3653

multivariate data

heterocatanomic (Introduction to Mixed
Modeling), 120

heterocatanomic (Introduction to Modeling), 26
heterogeneous (Introduction to Modeling), 26
homocatanomic (Introduction to Modeling), 26
homogeneous (Introduction to Modeling), 26

multivariate general linear hypothesis, 3492
multivariate inferences

MIANALYZE procedure, 5176
multivariate multiple regression

TRANSREG procedure, 8602
Multivariate Normal Distribution

MCMC procedure, 4810
multivariate normal distribution

definition of (MCMC), 4810
multivariate normal distribution with a first-order

autoregressive covariance
definition of (MCMC), 4810

multivariate normality assumption
MI procedure, 5103

multivariate point pattern, see multitype point pattern
SPP procedure, 7769

multivariate regression example (CALIS), 1557
multivariate tests

MIXED procedure, 5278
REG procedure, 7080
repeated measures, 3496

multiway tables
FREQ procedure, 2564, 2598, 2714
SURVEYFREQ procedure, 7978, 8041

MULTTEST procedure
adaptive FDR adjustment, 5494
adaptive Hochberg adjustment, 5494
adaptive Holm adjustment, 5494
adaptive methods, 5522
adjusted p-value, 5488, 5517
Bonferroni adjustment, 5495, 5519
bootstrap adjustment, 5491, 5495, 5519
bootstrap FDR adjustment, 5495
Cochran-Armitage test, 5508, 5510, 5513, 5531
computational resources, 5526
convolution distribution, 5512
dependent FDR adjustment, 5495
displayed output, 5528
double arcsine test, 5513
expected trend, 5513
false discovery rate, 5518
false discovery rate adjustment, 5522
familywise error rate, 5517
familywise error rate adjustment, 5518
fast Fourier transform, 5512
Fisher combination adjustment, 5521
Fisher exact test, 5506, 5508, 5515
Freeman-Tukey test, 5508, 5513, 5534
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Hochberg adjustment, 5521
Hommel adjustment, 5521
introductory example, 5489
linear trend test, 5511
Liptak combination adjustment, 5521
missing values, 5525
ODS graph names, 5530
ODS table names, 5529
output data sets, 5526
p-value adjustments, 5488, 5517
permutation adjustment, 5500, 5520, 5541
permutation FDR adjustment, 5496
Peto test, 5508, 5514, 5538
positive false discovery rate, 5518
positive FDR adjustment, 5500, 5524
resampled data sets, 5527
Sidak’s adjustment, 5503, 5519
statistical tests, 5510
step-down methods, 5520
Stouffer combination adjustment, 5521
strata weights, 5513
t test, 5508, 5516, 5534

MULTTEST procedure
ordering of effects, 5499

Murthy’s selection method
SURVEYSELECT procedure, 8449

MVN distribution
MCMC procedure, 4770, 4780

MVNAR distribution
MCMC procedure, 4771, 4780

name-lists
GLMPOWER procedure, 3626
POWER procedure, 6366

NAME= GTL option
LIFETEST procedure, 824, 825

narratives, 6508
Power and Sample Size application, 377

Natural cubic spline
spline basis (Shared Concepts), 415

Natural cubic spline basis
GLIMMIX procedure, 415
GLMSELECT procedure, 415
HPMIXED procedure, 415
LOGISTIC procedure, 415
ORTHOREG procedure, 415
PHREG procedure, 415
PLS procedure, 415
QUANTLIFE procedure, 415
QUANTREG procedure, 415
QUANTSELECT procedure, 415
ROBUSTREG procedure, 415
SURVEYLOGISTIC procedure, 415
SURVEYREG procedure, 415

natural response rate, 6686, 6694
nbins= global plot option

SURVEYMEANS procedure, 8163, 8164
nbins= plot option

SURVEYMEANS procedure, 8163, 8165
NCMV

MI procedure, 5057
nearest centroid sorting, 2394
nearest neighbor method, see also single linkage

DISCRIM procedure, 2176, 2178
negative binomial distribution

definition of (MCMC), 4806
FMM procedure, 2498
GENMOD procedure, 2937
GLIMMIX procedure, 3137
MCMC procedure, 4769, 4806
NLMIXED procedure, 5711

negative variance components
VARCOMP procedure, 8893

neighborhood distribution function (NDF), definition
MODECLUS procedure, 5429

neighboring case missing value
MI procedure, 5057

Nelder-Mead simplex
method (GLIMMIX), 499
method (NLMIXED), 5707

Nelder-Mead simplex method
Shared Concepts, 505

Nelson’s adjustment
GLIMMIX procedure, 3113
GLM procedure, 3420

Nelson-Aalen estimates
LIFETEST procedure, 4341

nested design, 5559
error terms, 5566
generating with PLAN procedure, 6136
hypothesis tests (NESTED), 5566

nested effects
design matrix (CATMOD), 1940, 1941
GENMOD procedure, 2946
GLIMMIX procedure, 3230
ICPHREG procedure, 3962
MIXED procedure, 5305
model parameterization (GLM), 3457
Shared Concepts, 389
specifying (ANOVA), 974, 976
specifying (CATMOD), 1929
specifying (GLM), 3453

nested error structure
MIXED procedure, 5367

nested models
KRIGE2D procedure, 4159, 4160
VARIOGRAM procedure, 8963

nested multilevel nonlinear mixed models
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NLMIXED procedure, 5718
NESTED procedure

analysis of covariation, 5566
compared to other procedures, 3394, 5217, 5560
computational method, 5567
input data sets, 5563
introductory example, 5561
missing values, 5565
ODS table names, 5569
random effects, 5565
unbalanced design, 5565

nested versus crossed effects
Shared Concepts, 389

nested-by-value effects
specifying (CATMOD), 1929

network algorithm
exact tests (FREQ), 2705
exact tests (NPAR1WAY), 5822

Newcombe confidence limits
risk difference (FREQ), 2674, 2678

Newman-Keuls’ multiple range test, 967, 3437, 3484
Newton algorithm

FASTCLUS procedure, 2407
Newton-Raphson algorithm

CALIS procedure, 1217, 1218, 1227, 1508
GENMOD procedure, 2941
GLIMMIX procedure, 499
ICPHREG procedure, 3963
iteration (PHREG), 5894
LIFEREG procedure, 4208
LOGISTIC procedure, 4545, 4546, 4567, 4568
MIXED procedure, 5297
NLMIXED procedure, 5707
PHREG procedure, 5967
PROBIT procedure, 6750
SURVEYLOGISTIC procedure, 8089, 8105

Newton-Raphson algorithm with ridging
GLIMMIX procedure, 499
NLMIXED procedure, 5707

Newton-Raphson method
Shared Concepts, 502

Newton-Raphson with ridging
Shared Concepts, 502

Neyman allocation
SURVEYSELECT procedure, 8435, 8452

NLIN procedure
alpha level, 5603
analytic derivatives, 5598, 5609
automatic derivatives, 5609
bias, 5585
bias-corrected confidence interval, 5594
Box’s bias measure, 5585
close-to-linear, 5611
comparing trends, 5653

confidence curves, 5606
confidence interval, 5594, 5600–5602, 5627
convergence, 5620
convergence criterion, 5585
covariance matrix, 5628
cross-referencing variables, 5594
debugging execution, 5587
derivatives, 5598, 5603, 5609
diagnostics for model with a high intrinsic

curvature, 5664
g2 inverse, 5623
G4 inverse, 5587
g4 inverse, 5623
Gauss iterative method, 5588
Gauss-Newton iterative method, 5623, 5624
Gauss-Newton method, 5623
generalized inverse, 5623
gradient method, 5623, 5625
group comparisons, 5653
Hessian, 5629
Hougaard’s measure, 5587, 5611
incompatibilities, 5630, 5631
initial values, 5603
iteratively reweighted least squares example, 5640
Jacobian, 5586
Lagrange multiplier, 5597
Lagrange multipliers, covariance matrix, 5629
log-logistic model, 5646
Marquardt iterative method, 5588, 5623, 5625
maximum iterations, 5588
maximum subiterations, 5588
mean square error specification, 5593
missing values, 5618
model confidence interval, 5627
model.variable syntax, 5599
Moore-Penrose inverse, 5623
Newton iterative method, 5588, 5623, 5625
object convergence measure, 5581
observation influence on parameters, 5606
options summary (PROC NLIN statement), 5584
output table names, 5632
parameter confidence interval, 5627
parameter histograms, 5594
parameter profiling and bootstrap for nonlinear

models, 5669
PPC convergence measure, 5581
predicted values, output, 5601
prediction interval, 5600–5602
profile t plots, 5606
R convergence measure, 5581
residual values, output, 5602
retaining variables, 5598, 5607
RPC convergence measure, 5581
segmented model example, 5635
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singularity criterion, 5593
skewness, 5582, 5587, 5611
SMETHOD=GOLDEN step size search, 5626
special variables, 5618
specifying bounds, 5596
standard error, 5602
starting values, 5603
steepest descent method, 5623, 5625
step size search, 5626
switching model, 5646
trend comparisons, 5653
troubleshooting, 5620
tuning display of iteration computation, 5588
weighted regression, 5619

NLMIXED procedure
accelerated failure time model, 5758
active set methods, 5732
adaptive Gaussian quadrature, 5718
additional estimates, 5710, 5744
alpha level, 5694
arrays, 5708
assumptions, 5717
Bernoulli distribution, 5711
binary distribution, 5711
binomial distribution, 5711
bounds, 5709
Cholesky parameterization, 5748
compared with other SAS procedures and macros,

5683
computational problems, 5736
computational resources, 5740
contrasts, 5710
convergence criteria, 5693, 5699, 5726
convergence problems, 5737
convergence status, 5743
covariance matrix, 5695, 5739, 5743
cross-referencing variables, 5708
degrees of freedom, 5695
empirical Bayes estimate, 5682, 5689, 5696,

5713, 5714
empirical Bayes estimation, 5718
empirical Bayes options, 5696
empirical bayes options, 5705
examples, see also examples, NLMIXED, 5744
finite differencing, 5698, 5730
first-order method, 5720
fit statistics, 5743
floating point errors, 5736
frailty, 5758
frailty model example, 5758
functional convergence criteria, 5697
gamma distribution, 5711
Gaussian distribution, 5711
general distribution, 5711

generalized inverse, 5699
growth curve example, 5684
Hessian matrix, 5700
Hessian scaling, 5699, 5732
hierarchical model specification, 5723
integral approximations, 5703, 5718
intraclass correlation coefficient, 5752
iteration details, 5701
iteration history, 5700, 5742
lag functionality, 5716
Lagrange multiplier, 5732
line-search methods, 5700, 5701, 5734
log-likelihood function, 5720
logistic-normal example, 5687
long run times, 5736
maximum likelihood, 5683
negative binomial distribution, 5711
nested multilevel nonlinear mixed models, 5718
Newton-Raphson algorithm with ridging, 5707
normal distribution, 5711, 5713
notation, 5717
ODS table names, 5744
optimization techniques, 5706, 5725
options summary, 5691
Overdispersion-nested example, 5771
overflows, 5736
parameter estimates, 5743
parameter rescaling, 5736
parameter specification, 5712
pharmakokinetics example, 5744
Poisson distribution, 5711
Poisson-normal example, 5755
precision, 5738
prediction, 5713, 5740
probit-normal-binomial example, 5748
probit-normal-ordinal example, 5751
programming statements, 5715
projected gradient, 5732
projected Hessian, 5732
quadrature options, 5705
random effects, 5713
replicate subjects, 5714
sandwich estimator, 5697
Simulate-nested example, 5768
singularity tolerances, 5706
sorting of input data set, 5695, 5714
stationary point, 5738
step length options, 5735
syntax summary, 5691
termination criteria, 5693, 5726
update methods, 5707

NLOPTIONS statement
syntax (Shared Concepts), 488

NOCENSOR survival-plot option
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LIFETEST procedure, 799
nominal level of measurement

DISTANCE procedure, 2252
nominal power

GLMPOWER procedure, 3627, 3629, 3644
POWER procedure, 6274, 6369, 6371

nominal variable
DISTANCE procedure, 2253

nominal variables, 163, see also classification
variables, see also classification variables

non-full-rank models
REG procedure, 7059

non-full-rank parameterization
GLIMMIX procedure, 3230
MIXED procedure, 5217, 5279, 5307

non-positional syntax
GLIMMIX procedure, 3094, 3232, 3365

nonbinding acceptance boundary
SEQDESIGN procedure, 7384
SEQTEST procedure, 7545, 7674

nonbinding beta boundary
SEQDESIGN procedure, 7339, 7384
SEQTEST procedure, 7545, 7674

noncentral distributions, 368
noncentrality parameter, 368
nonhomogeneous variance

TPSPLINE procedure, 8505
noninferiority tests, 368

binomial proportions, 2667
power and sample size (POWER), 6298, 6446
risk difference (FREQ), 2676

noninferiority trial
SEQDESIGN procedure, 7355

nonlinear
mixed models (NLMIXED), 5682

nonlinear fit functions
TRANSREG procedure, 8629

nonlinear fit transformations
TRANSREG procedure, 8570

nonlinear model
Introduction to Modeling, 23
Introduction to Regression, 65, 80

nonlinear Poisson regression
MCMC procedure, 4893

nonlinear transformations
TRANSREG procedure, 8602

nonmetric conjoint analysis
TRANSREG procedure, 8735

nonmetric multidimensional scaling
MDS procedure, 4992

nonoptimal transformations
PRINQUAL procedure, 6645
TRANSREG procedure, 8569

nonparametric clustering methods

MODECLUS procedure, 5408
nonparametric discriminant analysis, 2176
nonparametric estimation

ICLIFETEST procedure, 3905
nonparametric measures of association

Introduction to Nonparametric Analysis, 276
nonparametric tests

Introduction to Nonparametric Analysis, 271
NPAR1WAY procedure, 5784
power and sample size (POWER), 6358, 6363

nonrandom trend, see surface trend
nonsuperiority tests, 368
NOPRINT option

ODS, 537
normal distribution, 4208, 4244, 4263, 6686

definition of (MCMC), 4806
deviation from theoretical distribution, 7803
FMM procedure, 2498
GENMOD procedure, 2936
GLIMMIX procedure, 3137
MCMC procedure, 4770, 4779, 4806
NLMIXED procedure, 5711, 5713
PROBIT procedure, 6751
TTEST procedure, 8797

normal kernel (DISCRIM), 2177
normal scores

NPAR1WAY procedure, 5814
normality

testing for (Introduction to Nonparametric
Analysis), 272

normality assumption
SEQDESIGN procedure, 7408
VARIOGRAM procedure, 8936, 8987

normalization of the estimates
MDS procedure, 5015

normalizing constant
definition of, 124
Introduction to Bayesian Analysis, 124

NOSQUARE option
algorithms used (CLUSTER), 2035

notation
GLIMMIX procedure, 3054

NPAR1WAY procedure
alpha level, 5796, 5805
Ansari-Bradley scores, 5815
box plots, 5789, 5798, 5840
Brown-Mood test, 5814
compared to other procedures, 3394
computational resources (exact tests), 5824
Conover scores, 5815
Cramér–von Mises test, 5821
displayed output, 5831
Dwass, Steel, Critchlow-Fligner multiple

comparisons, 5819
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EDF plots, 5798, 5844
EDF tests, 5820
exact p-values, 5823
exact tests, 5822
Fligner-Policello test, 5818
Hodges-Lehmann estimation, 5816
Introduction to Nonparametric Analysis, 271–273,

275
introductory example, 5785
Klotz scores, 5815
Kolmogorov-Smirnov test, 5820
Kruskal-Wallis test, 5814
Kuiper test, 5821
Mann-Whitney-Wilcoxon test, 5814
median plots, 5798, 5844
median scores, 5814
missing values, 5810
Monte Carlo estimation (exact tests), 5824
Mood scores, 5815
multiple comparisons, 5819
network algorithm, 5822
normal scores, 5814
ODS graph names, 5839
ODS Graphics, 5798
ODS table names, 5837
one-way ANOVA tests, 5812
output data sets, 5807, 5825
permutation tests, 5801, 5813
Pitman’s test, 5801, 5813
placement scores, 5818
rank tests, 5811
Savage scores, 5814
scores, 5813
Siegel-Tukey scores, 5815
tied values, 5810
Van der Waerden scores, 5814
Wilcoxon scores, 5814

nTitles macro variable
LIFETEST procedure, 819, 825

nugget effect
KRIGE2D procedure, 4146, 4160, 4161
MIXED procedure, 5279
SIM2D procedure, 7717
VARIOGRAM procedure, 8949, 8960, 8963

null hypothesis, 367, 6363
number of imputations

MI procedure, 5102
number of intervals

life-table estimates (LIFETEST), 4341
number of observations

FMM procedure, 2525
GLIMMIX procedure, 3242
GLMSELECT procedure, 3732
HPMIXED procedure, 3830

MIXED procedure, 5316
PHREG procedure, 6015, 6020
QUANTSELECT procedure, 6951
SURVEYPHREG procedure, 8293

number of replicates
SURVEYLOGISTIC procedure, 8070,

8115–8117
SURVEYMEANS procedure, 8171, 8210, 8211
SURVEYPHREG procedure, 8280, 8282, 8283
SURVEYREG procedure, 8329, 8353, 8354

number of stages
SEQDESIGN procedure, 7408
SEQTEST procedure, 7550

number of subjects at risk
SURVEYPHREG procedure, 8262

number-lists
GLMPOWER procedure, 3626
POWER procedure, 6366

numerical integration
theory (GLIMMIX), 3195

O’Brien’s test for homogeneity of variance
ANOVA procedure, 966
GLM procedure, 3436

O’Brien-Fleming method
SEQDESIGN procedure, 7337, 7359, 7374, 7410

O’Brien-Fleming-type error spending function
SEQDESIGN procedure, 7337

O’Brien-Fleming-type error spending method
SEQDESIGN procedure, 7380

object names
ODS, 525, 546

objective function
mixed model (HPMIXED), 3863
mixed model (MIXED), 5316

objects
ODS, 523

oblimin method, 1261, 2296, 2322
oblique component analysis, 8853
oblique projector

MIXED procedure, 5312
oblique transformation, 2299, 2302
observation influence on parameters

NLIN procedure, 5606
observation-level residuals

CALIS procedure, 1494
observations

SPP procedure, plots, 7813
observed Fisher information

SEQDESIGN procedure, 7351, 7352
odds estimation

GLIMMIX procedure, 3225
odds ratio

Breslow-Day test (FREQ), 2701
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case-control studies (FREQ), 2683
confidence limits (LOGISTIC), 4535, 4536, 4543
customized (LOGISTIC), 4562
estimation (LOGISTIC), 4577
exact confidence limits (FREQ), 2684
FREQ procedure, 2683
Introduction to Regression, 77
logit adjusted (FREQ), 2699
Mantel-Haenszel adjusted (FREQ), 2699
power and sample size (POWER), 6330, 6335,

6413, 6415
SURVEYLOGISTIC procedure, 8124
with interactions (LOGISTIC), 4549
Zelen’s exact test (FREQ), 2701

odds ratio estimation
GLIMMIX procedure, 3225
SURVEYLOGISTIC procedure, 8124

odds ratios
SURVEYFREQ procedure, 8023

ODS
correlation matrix, 576
covariance matrix, 576
data set concatenation, 550
default behavior, 518
default destination, 518, 521
destinations, 523, 529, 549
exclusion list, 529
HTML destination, 518, 522, 538
HTML links, 566, 571
interactive procedures, 529
links, HTML, 566, 571
LISTING destination, 518, 519, 522
NOPRINT option, 537
object names, 525, 546
objects, 523
ODS Graphics, 586, 711
output data set creation, 544, 545, 548
output exclusion, 543
output formats, 518
output objects, 523
output selection, 540
output, suppressing, 537
path names, 527
path, template search, 530
paths, 525, 530
Results window, 529
RUN-group processing, 529, 550
Sasuser.Templat, 535
selection list, 529, 542
Statistical Graphics Using ODS, 586, 711
style templates, 532
table templates, 532
TEMPLATE procedure, 532, 554, 569
template search path, 530

templates, 523, 532
templates, displaying contents, 532
templates, modifying, 535, 554, 562, 569
trace output, 527

ODS destination
ODS Graphics, 628

ODS destination FILE= option
ODS Graphics, 623

ODS destination statement
ODS Graphics, 609, 619, 622

ODS examples
GLMMOD procedure, 3592
ORTHOREG procedure, 5870
PLS procedure, 6255

ODS Graph names
CLUSTER procedure, 2044
LIFEREG procedure, 4286
MDS procedure, 5017
TRANSREG procedure, 8713
VARCLUS procedure, 8875

ODS graph names
ANOVA procedure, 982
CALIS procedure, 1538
EFFECTPLOT statement, 427
FACTOR procedure, 2349
FREQ procedure, 2725
GAM procedure, 2788
GENMOD procedure, 427
GLIMMIX procedure, 3250
GLM procedure, 3516
GLMPOWER procedure, 3641
GLMSELECT procedure, 3738
ICLIFETEST procedure, 3923
ICPHREG procedure, 3972
KDE procedure, 4099
KRIGE2D procedure, 4176
LIFETEST procedure, 4387
LOESS procedure, 4458
LOGISTIC procedure, 427, 4621
MI procedure, 5105
MIXED procedure, 5325
MULTTEST procedure, 5530
NPAR1WAY procedure, 5839
ORTHOREG procedure, 427
PHREG procedure, 6026
PLM procedure, 427
PLS procedure, 6239
POWER procedure, 6428
PRINCOMP procedure, 6603
PRINQUAL procedure, 6666
QUANTSELECT procedure, 6955
REG procedure, 7111
ROBUSTREG procedure, 7217
RSREG procedure, 7282
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SIM2D procedure, 7730
SLICE statement (GLIMMIX), 475
SLICE statement (MIXED), 475
SPP procedure, 7813
SURVEYFREQ procedure, 8046
SURVEYLOGISTIC procedure, 8136
SURVEYMEANS procedure, 8224
SURVEYREG procedure, 8366
TTEST procedure, 8821
VARIOGRAM procedure, 8996

ODS GRAPHICS
examples (REG), 7112

ODS Graphics, 586, 711
accessing individual graphs, 611
axis customization, 759
axis labels, modifying, 731
bar chart, 700
BCHOICE procedure, 1022
box plot, 698, 707
contour plot, 634
destination, closing, 634
destinations, 628
diagnostics panel, 754
disabling, 519, 520
DOCUMENT destination, 703
document path, 705
DOCUMENT procedure, 703
Documents window, 704
editing templates, 730
enabled by default, 518
enabling, 519, 520
enabling and disabling, 606
excluding graphs, 626
filename, base, 631
FMM procedure, 2480, 2531
fonts, modifying, 681
getting started, 588
GLIMMIX procedure, 3081, 3249
GLMPOWER procedure, 3641
GLMSELECT procedure, 3737, 6924
graph label, 624
graph modification, 612
graph name, 624, 704
graph resolution, 611, 634
graph size, 611, 634
graph template language, 712
graph templates, 712
graph templates, customizing, 721
graph templates, definition, 730
graph templates, displaying, 718
graph templates, editing, 719
graph templates, locating, 716
graph templates, reverting to default, 722
graph templates, saving, 721, 732

graph titles, modifying, 731
graphics image file, 628, 630, 631
graphics image file, saving, 632
graphics image file, type, 628
grid lines, 737
HTML destination, 628, 633
ICLIFETEST procedure, 3893
index counter, 631
KRIGE2D procedure, 4132
LaTeX destination, 633, 700
LIFETEST procedure, 4338
lines, 677
LISTING destination, 632
LMSELECT procedure, 5589, 7000
LOESS procedure, 4434, 4458
markers, 677
MIXED procedure, 5231, 5324
multiple destinations, 631, 633
NPAR1WAY procedure, 5798
ODS destination, 628
ODS destination FILE= option, 623
ODS destination statement, 609, 619, 622
ODS Graphics Editor, 636
ODS GRAPHICS statement, 616
PDF destination, 634
PostScript, 633
POWER procedure, 6428
presentations, 699
primer, 605
procedures, 615
reference lines, 759
referring to graphs, 625
replaying output, 704
Results Viewer, 624
RTF destination, 699
Sashelp.Tmplmst, 721
Sasuser.Templat, 721
scatter plot, 714
selecting graphs, 626, 704
SGPANEL procedure, 690
SGPLOT procedure, 688
SGRENDER procedure, 692
SGSCATTER procedure, 689
SIM2D procedure, 7703
SPP procedure, 7778
statistical graphics procedures, 688
style, 607, 641
style elements, 646
style modification, 737
style modification, %MODSTYLE macro, 675
style, box plot, 707
style, customizing, 684
style, default, 686
surface plot, 634
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SURVEYLOGISTIC procedure, 8136
SURVEYMEANS procedure, 8163
SURVEYREG procedure, 8324, 8366
survival plot, 591
template modification, 728
template primary statement, 774
template statement order, 774
template store, default, 640
text, adding to plots, 767
tooltips, 698
TPSPLINE procedure, 8492
trace output, 728
traditional graphics, 615
TTEST procedure, 8821
Unicode, 742, 746, 748, 751, 754
VARIOGRAM procedure, 8929
viewing graphs, 624

ODS Graphics and diagnostics
examples, NLIN, 5664

ODS Graphics Editor
ODS Graphics, 636

ODS Graphics names
PROBIT procedure, 6760
QUANTREG procedure, 6875

ODS GRAPHICS statement
ODS Graphics, 616

ODS path, 686
ODS Statistical Graphics, see ODS Graphics
ODS styles

ANALYSIS style, 608, 643, 652
DEFAULT style, 608, 643, 652
HTMLBLUE style, 519, 520, 607, 643, 652
HTMLBLUECML style, 607, 643, 652
HTMLBLUEFL style, 668
HTMLBLUEFM style, 668
HTMLBLUEL style, 668
HTMLBLUEM style, 668
JOURNAL style, 608, 643, 652, 701
LISTING style, 608, 643, 652
PEARL style, 608, 643, 652
RTF style, 608, 643, 652
SAPPHIRE style, 607, 643, 652
STATISTICAL style, 608, 643, 652

ODS table names
KRIGE2D procedure, 4175
PHREG procedure, 6023
SIM2D procedure, 7729
SPP procedure, 7811
SURVEYLOGISTIC procedure, 8135
SURVEYREG procedure, 8365
VARIOGRAM procedure, 8995

ODS template search path, 721
offset

GEE procedure, 2825

GENMOD procedure, 2921, 2984
GLIMMIX procedure, 3144, 3178, 3287, 3288,

3346
offset variable

FMM procedure, 2502
GENMOD procedure, 2859
PHREG procedure, 5937

offspring
INBREED procedure, 3988, 3995

one-sample t test, 6498
TTEST procedure, 8788

one-sample t-test
power and sample size (POWER), 6268, 6300,

6304, 6305, 6399–6401
one-sample test for binomial proportion

SEQDESIGN procedure, 7343
one-sample test for mean

SEQDESIGN procedure, 7343
one-sample tests

SEQDESIGN procedure, 7395
one-sided repeated confidence intervals

SEQTEST procedure, 7566
one-sided t test

TTEST procedure, 8802
one-sided test

SEQDESIGN procedure, 7354
one-way ANOVA, 6495, 6553

power and sample size (POWER), 6306, 6309,
6310, 6403, 6429

one-way ANOVA tests
NPAR1WAY procedure, 5812

online documentation, 15
operations research, 17
optimal

scoring (PRINQUAL), 6646
transformations (MDS), 4992, 4993, 5003
transformations (PRINQUAL), 6646

optimal allocation
SURVEYSELECT procedure, 8435, 8451

optimal scaling
TRANSREG procedure, 8676

optimal scoring
TRANSREG procedure, 8571, 8676

optimal transformations
TRANSREG procedure, 8571

optimization
CALIS procedure, 1160, 1507
conjugate gradient (CALIS), 1217, 1218, 1227,

1238, 1508
double dogleg (CALIS), 1217, 1227, 1238, 1508
GLIMMIX procedure, 3145
history (CALIS), 1510
initial values (CALIS), 1506, 1509
Levenberg-Marquardt (CALIS), 1217, 1227, 1508
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line search (CALIS), 1218, 1514
LOGISTIC procedure, 4548
memory problems (CALIS), 1509
Newton-Raphson (CALIS), 1217, 1218, 1227,

1508
nonlinear constraints (CALIS), 1509
quasi-Newton (CALIS), 1217, 1218, 1227, 1238,

1508, 1509
step length (CALIS), 1514
techniques (NLMIXED), 5706, 5725
trust region (CALIS), 1228, 1508
trust-region (CALIS), 1217
update method (CALIS), 1238

optimization information
FMM procedure, 2526
GLIMMIX procedure, 3243

optimization statements (CALIS), 1198
optimization technique

GLIMMIX procedure, 498
options summary

BAYES statement, 2484
CODE statement (GENMOD), 395
CODE statement (GLIMMIX), 395
CODE statement (GLM), 395
CODE statement (GLMSELECT), 395
CODE statement (LOGISTIC), 395
CODE statement (MIXED), 395
CODE statement (PLM), 395
CODE statement (REG), 395
EFFECT statement, 398, 3684, 3836, 4519, 5859,

5924, 6228, 6807, 6849, 6931, 7183, 8077,
8335

ESTIMATE statement, 445, 4237, 4521, 5861,
5926, 6167, 6710, 6850, 8078, 8255, 8336

ESTIMATE statement (LIFEREG), 445
ESTIMATE statement (LOGISTIC), 445
ESTIMATE statement (ORTHOREG), 445
ESTIMATE statement (PHREG), 445
ESTIMATE statement (PLM), 445
ESTIMATE statement (PROBIT), 445
ESTIMATE statement (QUANTREG), 445
ESTIMATE statement (SURVEYLOGISTIC),

445
ESTIMATE statement (SURVEYPHREG), 445
ESTIMATE statement (SURVEYREG), 445
LSMEANS statement (GENMOD), 461
LSMEANS statement (LIFEREG), 461
LSMEANS statement (LOGISTIC), 461
LSMEANS statement (ORTHOREG), 461
LSMEANS statement (PHREG), 461
LSMEANS statement (PLM), 461
LSMEANS statement (PROBIT), 461
LSMEANS statement (SURVEYLOGISTIC), 461
LSMEANS statement (SURVEYPHREG), 461

LSMEANS statement (SURVEYREG), 461
LSMEANS statement, (GLIMMIX), 3112
LSMEANS statement, (MIXED), 5245
LSMESTIMATE statement (GENMOD), 477
LSMESTIMATE statement (LIFEREG), 477
LSMESTIMATE statement (LOGISTIC), 477
LSMESTIMATE statement (MIXED), 477
LSMESTIMATE statement (ORTHOREG), 477
LSMESTIMATE statement (PHREG), 477
LSMESTIMATE statement (PLM), 477
LSMESTIMATE statement (PROBIT), 477
LSMESTIMATE statement

(SURVEYLOGISTIC), 477
LSMESTIMATE statement (SURVEYPHREG),

477
LSMESTIMATE statement (SURVEYREG), 477
MODEL statement (FMM), 2496
MODEL statement (GLIMMIX), 3132
MODEL statement (LOESS), 4439
MODEL statement (MIXED), 5251
NLOPTIONS statement (CALIS), 488
NLOPTIONS statement (GLIMMIX), 488
NLOPTIONS statement (HPMIXED), 488
NLOPTIONS statement (PHREG), 488
NLOPTIONS statement (SURVEYPHREG), 488
NLOPTIONS statement (VARIOGRAM), 488
PROC FMM statement, 2470
PROC GLIMMIX statement, 3064
PROC IRT statement, 4014
PROC MIXED statement, 5225
QUANTLIFE procedure, 6802
RANDOM statement (GLIMMIX), 3155
RANDOM statement (MIXED), 5273
REPEATED statement (HPMIXED), 3854
REPEATED statement (MIXED), 5277
SLICE statement (GENMOD), 461
SLICE statement (GLIMMIX), 461
SLICE statement (LIFEREG), 461
SLICE statement (LOGISTIC), 461
SLICE statement (MIXED), 461
SLICE statement (ORTHOREG), 461
SLICE statement (PHREG), 461
SLICE statement (PLM), 461
SLICE statement (PROBIT), 461
SLICE statement (SURVEYLOGISTIC), 461
SLICE statement (SURVEYPHREG), 461
SLICE statement (SURVEYREG), 461
TEST statement (ICPHREG), 509
TEST statement (LIFEREG), 509
TEST statement (ORTHOREG), 509
TEST statement (PLM), 509
TEST statement (PROBIT), 509
TEST statement (SURVEYPHREG), 509
TEST statement (SURVEYREG), 509
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options summary (PROC NLIN statement)
NLIN procedure, 5584

order statistics, see RANK procedure
ORDER= option

LIFETEST procedure, 796, 798
ordering

of class levels (Shared Concepts), 385
ordering observations

INBREED procedure, 3982
ordinal constraints

CALIS Procedure, 1809
ordinal constraints example (CALIS), 1809
ordinal level of measurement

DISTANCE procedure, 2252
ordinal model

CATMOD procedure, 1933
GENMOD procedure, 3004

ORDINAL parameterization
SURVEYLOGISTIC procedure, 8101

ordinal parameterization
Shared Concepts, 392

ordinal variable, 163
ordinal variables

transformed to interval (RANKSCORE= ), 2265
ordinary kriging

KRIGE2D procedure, 4169–4172
ordinary least squares

TPSPLINE procedure, 8481
orrelated data

GEE procedure, 2832
ORTHEFFECT parameterization

SURVEYLOGISTIC procedure, 8102
ortheffect parameterization

Shared Concepts, 393
orthoblique rotation, 8854
orthogonal coding

TRANSREG procedure, 8578, 8579
orthogonal polynomial contrasts, 971
orthogonal transformation, 2299, 2302
orthogonalizing transformation matrix

GLMPOWER procedure, 3611
orthomax method, 1260, 2296, 2321
orthonormalizing transformation matrix

ANOVA procedure, 961
GLM procedure, 3430

ORTHORDINAL parameterization
SURVEYLOGISTIC procedure, 8102

orthordinal parameterization
Shared Concepts, 394

ORTHOREG procedure
analysis of means, 467
B-spline basis, 413
chi-bar-square statistic, 458
collection effect, 399

compared to other procedures, 5852
diffogram, 470
input data sets, 5856
introductory example, 5852
joint hypothesis tests with complex alternatives,

457
lag effect, 400
missing values, 5866
multimember effect, 402
Natural cubic spline basis, 415
observed margins, 468
ODS graph names, 427
ODS graphics, 5868
ODS table names, 5867
output data sets, 5857, 5866
polynomial effect, 404
positional and nonpositional syntax, 455
spline bases, 411
spline effect, 407
TPF basis, 412
truncated power function basis, 412

ORTHOREG procedure, ESTIMATE statement
ODS table names, 458

ORTHOREG procedure, LSMEANS statement
ODS graph names, 475
ODS table names, 474

ORTHOREG procedure
ordering of effects, 5856

orthoterm parameterization
Shared Concepts, 394

ORTHOTHERM parameterization
SURVEYLOGISTIC procedure, 8102

ORTHPOLY parameterization
SURVEYLOGISTIC procedure, 8102

orthpoly parameterization
Shared Concepts, 394

ORTHREF parameterization
SURVEYLOGISTIC procedure, 8102

orthref parameterization
Shared Concepts, 394

OUT= data sets
ACECLUS procedure, 875
CANCORR procedure, 1840
FACTOR procedure, 2320, 2334
FASTCLUS procedure, 2412
PRINCOMP procedure, 6599
SCORE procedure, 7303
TREE procedure, 8776

OUTBOOTEST= data sets
QUANTLIFE procedure, 6814

OUTEST= data sets
KRIGE2D procedure, 4173
LIFEREG procedure, 4276
QUANTREG procedure, 6872
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ROBUSTREG procedure, 7214
outlier detection

CALIS procedure, 1494
outliers

FASTCLUS procedure, 2394
MODECLUS procedure, 5423

OUTNBHD= data set
KRIGE2D procedure, 4174

output data set
SCORE procedure, 7300, 7303

output data set creation
ODS, 544, 545, 548

output data sets
ACECLUS procedure, 875
CALIS procedure, 1371
CANCORR procedure, 1835, 1840
CLUSTER procedure, 2019
FACTOR procedure, 2301, 2320, 2334
FASTCLUS procedure, 2408, 2412
GENMOD procedure, 2978, 2979
ICLIFETEST procedure, 3918
ICPHREG procedure, 3969
KRIGE2D procedure, 4132, 4173, 4174
LIFEREG procedure, 4281
LIFETEST procedure, 4372
LOGISTIC procedure, 4605, 4607, 4608, 4610
MI procedure, 5041, 5044, 5052, 5090
MI procedure, EM statement, 5043
MODECLUS procedure, 5433
MULTTEST procedure, 5526, 5527
OUTCOV= data set (INBREED), 3988, 3998
PHREG procedure, 6013–6015
PRINQUAL procedure, 6659
QUANTLIFE procedure, 6814
SIM2D procedure, 7703, 7727, 7728
SPP procedure, 7808
SURVEYLOGISTIC procedure, 8128
SURVEYMEANS procedure, 8215
SURVEYREG procedure, 8359
TREE procedure, 8776
VARCLUS procedure, 8864, 8870
VARIOGRAM procedure, 8928, 8929, 8973,

8990–8992
output exclusion

ODS, 543
output jackknife coefficient

SURVEYLOGISTIC procedure, 8130
SURVEYMEANS procedure, 8215
SURVEYREG procedure, 8360

output objects
ODS, 523

output ODS Graphics table names
BCHOICE procedure, 1057
GEE procedure, 2837

GENMOD procedure, 2995
LIFEREG procedure, 4286
MCMC procedure, 4862

output parameter estimates
MI procedure, 5052

output poststratification weights
SURVEYMEANS procedure, 8216

output replicate weights
SURVEYLOGISTIC procedure, 8129
SURVEYMEANS procedure, 8215
SURVEYREG procedure, 8359

output selection
ODS, 540

output statistics
GLIMMIX procedure, 3246

output table names
ACECLUS procedure, 878
BCHOICE procedure, 1056
CALIS procedure, 1523
CANCORR procedure, 1846
CLUSTER procedure, 2043
FASTCLUS procedure, 2421
GEE procedure, 2836
GENMOD procedure, 2991
INBREED procedure, 4000
KDE procedure, 4098
LIFEREG procedure, 4284
MCMC procedure, 4860
MDS procedure, 5017
MODECLUS procedure, 5438
PRINCOMP procedure, 6602
PRINQUAL procedure, 6666
PROBIT procedure, 6759
QUANTLIFE procedure, 6815
QUANTREG procedure, 6873
ROBUSTREG procedure, 7216
SURVEYLOGISTIC procedure, 8135
SURVEYMEANS procedure, 8223
SURVEYREG procedure, 8365
TREE procedure, 8777
VARCLUS procedure, 8874

output, suppressing
ODS, 537

OUTQ= data set, 5705
OUTR= data set, 5705
OUTSIDE survival-plot option

LIFETEST procedure, 792
OUTSIM= data set

SIM2D procedure, 7727, 7728
OUTSTAT= data sets

CANCORR procedure, 1835, 1841
FACTOR procedure, 2334

over-parameterization
MIXED procedure, 5304
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overdispersion
finite mixture models (FMM), 2442, 2444, 2446,

2452, 2454, 2511–2513, 2532, 2540, 2550,
2555

GENMOD procedure, 2945
GLIMMIX procedure, 3357
LOGISTIC procedure, 4543, 4583, 4584
PROBIT procedure, 6737

Overdispersion-nested example
NLMIXED procedure, 5771

overflows
MCMC procedure, 4850
NLMIXED procedure, 5736

Overlap dissimilarity coefficient
DISTANCE procedure, 2275

overlap of data points
LOGISTIC procedure, 4570
SURVEYLOGISTIC procedure, 8106

Overlap similarity coefficient
DISTANCE procedure, 2275

overlapping ˇ boundaries
SEQDESIGN procedure, 7384

overlapping ˇ boundaries
SEQTEST procedure, 7563

p value
displaying (CALIS), 1520

P-P plots
REG procedure, 7085

P-spline
GLIMMIX procedure, 3167

p-value
SEQTEST procedure, 7567

p-value scale
SEQDESIGN procedure, 7363

p-value adjustments
adaptive FDR (MULTTEST), 5494
adaptive Hochberg (MULTTEST), 5494
adaptive Holm (MULTTEST), 5494
Bonferroni (MULTTEST), 5495, 5519
bootstrap (MULTTEST), 5491, 5495, 5519, 5534
bootstrap FDR (MULTTEST), 5495
dependent FDR (MULTTEST), 5495
false discovery rate (MULTTEST), 5522
familywise error rate (MULTTEST), 5518
Fisher combination (MULTTEST), 5521
Hochberg (MULTTEST), 5521
Hommel (MULTTEST), 5521
Liptak combination (MULTTEST), 5521
MULTTEST procedure, 5488, 5517
permutation (MULTTEST), 5500, 5520, 5541
permutation FDR (MULTTEST), 5496
positive FDR (MULTTEST), 5500, 5524
Sidak (MULTTEST), 5503, 5519, 5538

Stouffer combination (MULTTEST), 5521
p-value computation

MODECLUS procedure, 5427
paired comparisons, 8830

TTEST procedure, 8788
paired proportions, see McNemar’s test
paired t test, 8804

power and sample size (POWER), 6317, 6324,
6408

paired-difference t test, see paired t test
paired-difference t test

TTEST procedure, 8788
paired-ratio t test

TTEST procedure, 8788
pairwise comparisons

GLM procedure, 3476, 3477
pairwise distance, see also lag classification

(VARIOGRAM)
distribution (VARIOGRAM), 8971
VARIOGRAM procedure, 8916

panels
INBREED procedure, 3998, 4004

panels (VARIOGRAM procedure), see plots
(VARIOGRAM procedure)

parallel items, 311, 314, 316
parallel lines assumption

LOGISTIC procedure, 4537, 4547, 4718
parallel test items (CALIS), 1608
parameter

definition (Introduction to Modeling), 20
parameter constraints

HPMIXED procedure, 3847
MIXED procedure, 5266, 5331

parameter estimates
covariance matrix (CATMOD), 1909
example (REG), 7053
FMM procedure, 2527
GENMOD procedure, 2989
GLMSELECT procedure, 3736
LIFEREG procedure, 4282
NLMIXED procedure, 5743
PHREG procedure, 5887, 5894, 6014, 6016, 6017
QUANTSELECT procedure, 6953
REG procedure, 7087
SEQTEST procedure, 7571
SURVEYPHREG procedure, 8294

parameter histograms
NLIN procedure, 5594

parameter information
ICPHREG procedure, 3971
PHREG procedure, 6021

Parameter Profiling
examples, NLIN, 5669

parameter profiling and bootstrap for nonlinear models
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NLIN procedure, 5669
parameter rescaling

NLMIXED procedure, 5736
parameter simulation

MI procedure, 5094
parameter specification

NLMIXED procedure, 5712
parameterization

CATMOD procedure, 1912
effect (Shared Concepts), 391
FMM procedure, 2524
GLIMMIX procedure, 3229
GLM (Shared Concepts), 392
mixed model (GLIMMIX), 3229
mixed model (MIXED), 5303
MIXED procedure, 5303
mixture model (FMM), 2524
of models (GLM), 3456
ordinal (Shared Concepts), 392
ortheffect (Shared Concepts), 393
orthordinal (Shared Concepts), 394
orthoterm (Shared Concepts), 394
orthpoly (Shared Concepts), 394
orthref (Shared Concepts), 394
polynomial (Shared Concepts), 392
reference (Shared Concepts), 393
Shared Concepts, 387
SURVEYLOGISTIC procedure, 8100
thermometer (Shared Concepts), 392

parameters specification
MCMC procedure, 4773

parametric discriminant analysis, 2175
parametric functions (CALIS)

tests, 1357, 1358
Pareto charts, 18
pareto distribution

definition of (MCMC), 4807
MCMC procedure, 4770, 4807

parsimax method, 1261, 2296, 2322, 4020, 4021
parsimonious fit indices, 1269
part-worth utilities

TRANSREG procedure, 8735
partial canonical correlation, 1827
partial correlation

CANCORR procedure, 1835, 1836, 1838
principal components, 6602

partial correlations
multivariate analysis of variance, 3492
power and sample size (POWER), 6288, 6291,

6379, 6380, 6450
partial least squares, 6210, 6231
partial likelihood

PHREG procedure, 5881, 5954, 5955, 5958
SURVEYPHREG procedure, 8268, 8274

partial listing
product-limit estimate (LIFETEST), 4347

partial proportional odds model
LOGISTIC procedure, 4537, 4547, 4718

partial regression leverage plots
REG procedure, 7070

partial spline models
TPSPLINE procedure, 8507

partially balanced square lattice
LATTICE procedure, 4197

partitions
MDS procedure, 5000, 5010

passive observations
PRINQUAL procedure, 6663
TRANSREG procedure, 8672

path analysis, 299
CALIS Procedure, 1644, 1708, 1718

path analysis example (CALIS), 1184, 1644
path diagram

CALIS procedure, 1440
path diagram (CALIS), 1332
path diagram (FACTOR), 2326

path diagram (CALIS)
structural model example, 300, 301, 307, 311,

314, 316, 326, 328, 334, 337, 1185
path diagram example (CALIS), 1604, 1644
PATH model

CALIS procedure, 1323
comparing competing models example (CALIS),

1718
comparing modeling languages example (CALIS),

1184, 1708
linear regression example (CALIS), 1553
measurement errors example (CALIS), 1574,

1580, 1586
multiple-group analysis example (CALIS), 1759
multivariate regression example (CALIS), 1557
path analysis example (CALIS), 1644
residual diagnostics example (CALIS), 1616
robust estimation example (CALIS), 1616
structural model example (CALIS), 299, 306, 325,

1186
path names

ODS, 527
path, template search

ODS, 530
paths

ODS, 525, 530
patients-at-risk table (inside)

LIFETEST procedure, 790
patients-at-risk table (outside)

LIFETEST procedure, 792
pattern-mixture model

MI procedure, 5095
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patterned covariance matrices, 281, 284
PDF, see probability density function
PDF destination

ODS Graphics, 634
PEARL style

ODS styles, 608, 643, 652
Pearson chi-square test

FREQ procedure, 2649
power and sample size (POWER), 6330, 6335,

6415
Pearson correlation coefficient

FREQ procedure, 2653, 2657
Pearson correlation statistics

power and sample size (POWER), 6288, 6379,
6380, 6450

Pearson residual
MIXED procedure, 5264

Pearson residuals
GENMOD procedure, 2952, 2953
LOGISTIC procedure, 4591

Pearson’s chi-square
GENMOD procedure, 2915, 2942, 2943
LOGISTIC procedure, 4535, 4544, 4584
PROBIT procedure, 6734, 6737, 6753

Pearson’s chi-square test, 6693, 6752
pedigree analysis

example (INBREED), 4003, 4004
INBREED procedure, 3981, 3982

penalized B-spline
GLIMMIX procedure, 3167

penalized B-spline example
TRANSREG procedure, 8730

penalized B-spline lambda
TRANSREG procedure, 8577

penalized B-spline t-options
TRANSREG procedure, 8577

penalized B-splines
TRANSREG procedure, 8639

penalized least squares
TPSPLINE procedure, 8480, 8501, 8510

pentaspherical semivariance model
KRIGE2D procedure, 4144, 4157
SIM2D procedure, 7715
VARIOGRAM procedure, 8945, 8961

percentiles
SURVEYMEANS procedure, 8194
weighted, 7849

performance settings
GLMSELECT procedure, 3732

permutation
generating with PLAN procedure, 6142
p-value adjustments (MULTTEST), 5500, 5520,

5541
permutation FDR adjustment

MULTTEST procedure, 5496
permutation tests

NPAR1WAY procedure, 5801, 5813
Peto test

MULTTEST procedure, 5508, 5514, 5538
Peto-Peto test for homogeneity

LIFETEST procedure, 4328, 4353
Peto-Peto-Prentice, see Peto-Peto test for homogeneity
pFDR, see positive false discovery rate
pharmaceutical stability

example (MIXED), 5363
pharmakokinetics example

NLMIXED procedure, 5744
phenogram, 8762
phi coefficient

FREQ procedure, 2653
phi-square coefficient

DISTANCE procedure, 2276
phreg

regression, survey data (Introduction to
Regression), 67

PHREG procedure
Akaike’s information criterion, 5983
alpha level, 5903, 5909, 5917, 5927, 5934
analysis of means, 467
Andersen-Gill model, 5882, 5957, 5979
at-risk, 5942, 6016
autocorrelations, 6022
B-spline basis, 413
baseline hazard function, 5882
BASELINE statistics, 5900, 5902, 5903
baseline statistics, 5903
BLUP estimates, 6017
branch-and-bound algorithm, 5998, 6034
Breslow likelihood, 5940
case weight, 5949
case-control studies, 5882, 5940, 6044
censored values summary, 6016, 6020
chi-bar-square statistic, 458
CIF, 5942
class level, 5945
class level information, 6015, 6016
coefficient prior, 6021
collection effect, 399
competing-risks, 5901
conditional logistic regression, 5882, 6046
continuous time scale, 5882, 5940, 6048
correlation matrix, 6022
counting process, 5955
covariance matrix, 5894, 5934, 5967, 6022
Cox regression analysis, 5881, 5886
cumulative incidence function, 5901
cumulative martingale residuals, 5897, 5999,

6026
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DATA step statements, 5887, 5943, 6051
descriptive statistics, 5896
DFBETA statistics, 5942
diffogram, 470
discrete logistic model, 5882, 5940, 6046
disk space, 5894
displayed output, 6015
effective sample sizes, 6023
Efron likelihood, 5940
equal-tail intervals, 5917, 6022
estimability checking, 5923
event of interest code, 5934
event times, 5881, 5884
event values summary, 6016, 6020
exact likelihood, 5940
explained variation, 5984
fit statistics, 6022
fractional frequencies, 5927
Gelman-Rubin diagnostics, 6022
Geweke diagnostics, 6022
global influence, 5942, 5988
global null hypothesis, 5884, 5969, 6017
hazard function, 5881, 5950
hazard ratio, 5884, 5964, 5971, 6023
hazard ratio confidence interval, 5937
hazard ratio confidence intervals, 5934, 5937
Heidelberger-Welch Diagnostics, 6023
hierarchy, 5935
HPD intervals, 5917, 6022
initial values, 6014, 6022
interval estimates, 6022
iteration history, 5936, 6016
joint hypothesis tests with complex alternatives,

457
lag effect, 400
Lee-Wei-Amato model, 5978, 6080
left-truncation time, 5934, 5957
likelihood displacement, 5942, 5988
likelihood ratio test, 5970, 5971, 6016, 6017
line search, 5937
linear hypotheses, 5882, 5948, 5973
linear predictor, 5903, 5941, 5943, 6068
local influence, 5942, 5988
log-hazard, 5964
log-rank test, 5886
Mantel-Haenszel test, 5886
maximum likelihood estimates, 6021
mean function, 5901, 5905, 5959, 5979, 5981
missing values, 5932, 5944, 6049
missing values as strata, 5947
model assessment, 5897, 5998, 6084
model fit statistics, 5983
model hierarchy, 5935
model information, 6015, 6020, 6021

model selection, 5882, 5933, 5938, 5939, 5997
monotone likelihood, 5935, 5967, 6042
multimember effect, 402
Natural cubic spline basis, 415
Newton-Raphson algorithm, 5967
number of observations, 6015, 6020
observed margins, 468
ODS graph names, 6026
ODS table names, 6023
offset variable, 5937
output data sets, 6013–6015
OUTPUT statistics, 5941–5943
parameter estimates, 5887, 5894, 6014, 6016,

6017
parameter information, 6021
partial likelihood, 5881, 5954, 5955, 5958
piecewise constant baseline hazard model, 5911,

6003
polynomial effect, 404
positional and nonpositional syntax, 455
predictive measure, 5984
Prentice-Williams-Peterson model, 5981
programming statements, 5887, 5894, 5943, 5944,

6051
proportional hazards model, 5881, 5886, 5940
Raftery and Lewis diagnostics, 6022
rate function, 5958, 5979
rate/mean model, 5958, 5979
recurrent events, 5882, 5901, 5905, 5958
residual chi-square, 5939
residuals, 5942, 5943, 5985–5988, 6068
response variable, 5884, 6046
ridging, 5937
risk set, 5887, 5954, 5955, 6051
risk weights, 5937
robust score test, 5970
robust Wald test, 5970
Schwarz criterion, 5983
score test, 5937, 5939, 5970, 5971, 6016, 6017,

6029, 6031
selection methods, 5882, 5933, 5938, 5997
singular contrast matrix, 5923
singularity criterion, 5938
spline bases, 411
spline effect, 407
standard error, 5941, 5942, 6017
standard error ratio, 6017
standardized score process, 5999, 6026
step halving, 5967
strata variables, 5946
stratified analysis, 5882, 5946
summary statistics, 6022
survival distribution function, 5949
survival times, 5881, 6044, 6046
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survivor function, 5881, 5903, 5942, 5949, 5950,
5989, 6062, 6063

ties, 5882, 5886, 5940, 5955, 6015, 6020
time intervals, 6021
time-dependent covariates, 5881, 5887, 5894,

5898, 5941, 5943
TPF basis, 412
truncated power function basis, 412
Type 1 testing, 6017
Type 3 testing, 5970, 6017
variance estimate, 6017
Wald test, 5948, 5970, 5971, 5973, 6016, 6017,

6047
Wei-Lin-Weissfeld model, 5975

PHREG procedure, ESTIMATE statement
ODS graph names, 459
ODS table names, 458

PHREG procedure, LSMEANS statement
ODS graph names, 475
ODS table names, 474

piecewise constant baseline hazard model
PHREG procedure, 5911, 6003

piecewise constant model
ICPHREG procedure, 3961

Piecewise Exponential Frailty Models
MCMC procedure, 4948

piecewise polynomial splines
TRANSREG procedure, 8569, 8680

Pillai’s trace, 960, 3429, 3496
Pitman’s test

NPAR1WAY procedure, 5801, 5813
placement scores

NPAR1WAY procedure, 5818
PLAN procedure

combinations, 6142
compared to other procedures, 6120
crossover designs, 6146
factor, selecting levels for, 6124, 6125
generalized cyclic incomplete block design, 6141
hierarchical design, 6136
incomplete block design, 6137, 6141
input data sets, 6124, 6127
introductory example, 6120
Latin square design, 6139
nested design, 6136
ODS table names, 6134
output data sets, 6124, 6127, 6130, 6131
permutations, 6142
random number generators, 6124
randomizing designs, 6131, 6134
specifying factor structures, 6132
split-plot design, 6135
treatments, specifying, 6129
using interactively, 6130

PLM procedure
alpha level, 6173
analysis of means, 467
BY processing, 6179
chi-bar-square statistic, 458
common postprocessing statements, 6153
degrees of freedom, 6173
diffogram, 470
filter PLM results, 6168
item store, 6152
joint hypothesis tests with complex alternatives,

457
least squares means, 6175
observed margins, 468
ODS graph names, 427, 6183
ODS Graphics, 6164
ODS table names, 6182
positional and nonpositional syntax, 455
posterior inference, 6180
scoring statistics, 6174
Scoring Zero-Inflated Models, 6181
user-defined formats, 6181

PLM procedure, ESTIMATE statement
ODS graph names, 459
ODS table names, 458

PLM procedure, LSMEANS statement
ODS graph names, 475
ODS table names, 474

%PLOTDEN macro
DISCRIM procedure, 2199

%PLOTPROB macro
DISCRIM procedure, 2199

plots
finite mixture models (FMM), 2444
keywords (REG), 7094
likelihood (MIXED), 5356
line printer (REG), 7101
of configuration (MDS), 5028
of dimension coefficients (MDS), 5028
of linear fit (MDS), 5028
options (REG), 7095, 7097
power and sample size, 372, 374
power and sample size (GLMPOWER), 3599,

3605, 3607, 3611
power and sample size (POWER), 6267, 6274,

6276, 6326, 6459
traditional (REG), 7094

plots (KRIGE2D procedure)
Observations, 4176
Prediction, 4176
Semivariogram, 4176

plots (SIM2D procedure)
Observations, 7730
Semivariogram, 7730
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Simulation, 7730
plots (SPP procedure)

observations, 7813
panels, 7779

plots (VARIOGRAM procedure)
Fit, 8996
Fit panel, 8996
Moran scatter plot, 8996
Observations, 8996
Pairs, 8996
Pairwise distance distribution, 8996
panels, 8930, 9014, 9021, 9024
Semivariogram, 8996
Semivariogram panel, 8996

PLOTS=SURVIVAL
LIFETEST procedure, 784

plotting confidence limits
ICLIFETEST procedure, 3926

plotting kernel-smoothed hazard
ICLIFETEST procedure, 3929

plotting samples from univariate distributions
MODECLUS procedure, 5439

PLS procedure
algorithms, 6222
B-spline basis, 413
centering, 6236
collection effect, 399
compared to other procedures, 6210
components, 6210
computation method, 6222
constructed effects, 6228
cross validation, 6210, 6235
cross validation method, 6221
examples, 6241
factors, 6210
factors, selecting the number of, 6213
introductory example, 6211
lag effect, 400
latent variables, 6210
latent vectors, 6210
missing values, 6222
multimember effect, 402
Natural cubic spline basis, 415
ODS graph names, 6239
ODS table names, 6238
outlier detection, 6248
output data sets, 6230
output keywords, 6230
partial least squares regression, 6210, 6231
polynomial effect, 404
predicting new observations, 6216
principal components regression, 6210, 6232
reduced rank regression, 6210, 6232
scaling, 6236

SIMPLS method, 6231
spline bases, 411
spline effect, 407
spline smoothing, 6256
test set validation, 6235, 6250
TPF basis, 412
truncated power function basis, 412

Pocock method
SEQDESIGN procedure, 7337, 7359, 7373, 7410

Pocock-type error spending function
SEQDESIGN procedure, 7337

Pocock-type error spending method
SEQDESIGN procedure, 7380

point estimation
Introduction to Bayesian Analysis, 128

point models
TRANSREG procedure, 8672

point pairs
VARIOGRAM procedure, 8915, 8964, 8967

Poisson distribution
definition of (MCMC), 4807
FMM procedure, 2498
GENMOD procedure, 2937
GLIMMIX procedure, 3137
MCMC procedure, 4770, 4779, 4807
NLMIXED procedure, 5711

Poisson mixture
GLIMMIX procedure, 3357

Poisson regression
GENMOD procedure, 2856, 2858
Introduction to Regression, 64

Poisson sampling
SURVEYSELECT procedure, 8444

Poisson-normal example
NLMIXED procedure, 5755

POLY parameterization
SURVEYLOGISTIC procedure, 8101

polychoric correlation coefficient
FREQ procedure, 2653, 2659

polynomial effect
GLIMMIX procedure, 404
GLMSELECT procedure, 404
HPMIXED procedure, 404
LOGISTIC procedure, 404
ORTHOREG procedure, 404
PHREG procedure, 404
PLS procedure, 404
QUANTLIFE procedure, 404
QUANTREG procedure, 404
QUANTSELECT procedure, 404
ROBUSTREG procedure, 404
SURVEYLOGISTIC procedure, 404
SURVEYREG procedure, 404

polynomial effects
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GENMOD procedure, 2946
ICPHREG procedure, 3962
MIXED procedure, 5304
model parameterization (GLM), 3456
Shared Concepts, 387
specifying (GLM), 3453

polynomial model
GLMMOD procedure, 3575
Introduction to Regression, 65

POLYNOMIAL parameterization
SURVEYLOGISTIC procedure, 8101

polynomial parameterization
Shared Concepts, 392

polynomial regression
REG procedure, 6984

polynomial space
TPSPLINE procedure, 8502

polynomial-spline basis
TRANSREG procedure, 8569, 8680

pooled stratum
SURVEYREG procedure, 8350

pooled within-cluster covariance matrix
definition, 858

population
profile (CATMOD), 1889
SURVEYSELECT procedure, 8402

population (INBREED)
monoecious, 4001
multiparous, 3988, 3992
nonoverlapping, 3989
overlapping, 3982, 3983, 3994

population attributable fraction
STDRATE procedure, 7894

population clusters
risks of estimating (MODECLUS), 5428

population profile, 164
populations

Introduction to Survey Procedures, 246
positive definiteness

GLIMMIX procedure, 3163
HPMIXED procedure, 3852

positive false discovery rate, 5518
positive FDR adjustment

MULTTEST procedure, 5500, 5524
posterior autocorrelations

FMM procedure, 2529
posterior distribution

definition of, 124
improper, 126
Introduction to Bayesian Analysis, 124

posterior intervals
FMM procedure, 2529

posterior predictive distribution
BCHOICE procedure, 1032

MCMC procedure, 4775, 4838
posterior probability

DISCRIM procedure, 2213
error rate estimation (DISCRIM), 2182

posterior samples data set
BCHOICE procedure, 1022

posterior summaries
FMM procedure, 2528

posterior summary statistics
correlation, 152
Covariance, 152
equal-tail intervals, 152
highest posterior density (HPD) intervals, 152
Introduction to Bayesian Analysis, 151
mean, 151
Monte Carlo standard error (MCSE), 151
percentiles, 151
standard deviation, 151
standard error of the mean estimate, 151

PostScript
graphics image file, 633, 700
ODS Graphics, 633

poststrata
SURVEYMEANS procedure, 8203

poststratification
Introduction to Survey Procedures, 243
SURVEYMEANS procedure, 8175, 8196, 8200,

8203
poststratification percentages

SURVEYMEANS procedure, 8176
poststratification proportions

SURVEYMEANS procedure, 8176
poststratification totals

SURVEYMEANS procedure, 8176
poststratification weight

SURVEYMEANS procedure, 8203
power, 365

Introduction to Modeling, 39
overview of power concepts, 365
overview of power concepts (POWER), 6363
overview of SAS tools, 365
See GLMPOWER procedure, 3597
See POWER procedure, 6266
SEQDESIGN procedure, 7414
SEQTEST procedure, 7554, 7571
simulation, 369, 380
solving for, 6530

Power and Sample Size application
compared to other power and sample size tools,

365, 367
narratives, 377

power by sample size graph, 6507
customizing, 6503

power covariance structure
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GLIMMIX procedure, 3170
power curves, see plots
power curves plot

SEQDESIGN procedure, 7334
power distance coefficient

DISTANCE procedure, 2275
power error spending function

SEQDESIGN procedure, 7337
power error spending method

SEQDESIGN procedure, 7380
power family method

SEQDESIGN procedure, 7337, 7359, 7374, 7410
power plot

SEQDESIGN procedure, 7417
SEQTEST procedure, 7575

POWER procedure
AB/BA crossover designs, 6443
actual alpha, 6371
actual power, 6274, 6369, 6371
actual prob(width), 6371
analysis of variance, 6306, 6309, 6310, 6403,

6429
analysis statements, 6274
bar (|) operator, 6367
binomial proportion confidence interval,

6396–6399
binomial proportion confidence interval precision,

6299
binomial proportion tests, 6292, 6297, 6381,

6382, 6384, 6434
ceiling sample size, 6274, 6371
compared to other power and sample size tools,

365, 366
compared to other procedures, 3599, 6268
computational methods, 6373
computational resources, 6372
confidence intervals for means, 6300, 6305, 6317,

6326, 6337, 6346, 6402, 6412, 6422, 6457
contrasts, analysis of variance, 6306, 6307, 6309,

6403, 6429
correlated proportions, 6310, 6315, 6317, 6406
correlation, 6288, 6379, 6380, 6450
crossover designs, 6443
displayed output, 6371
effect size, 6328
equivalence tests, 6298, 6300, 6305, 6317, 6325,

6337, 6346, 6401, 6410, 6420, 6421, 6443
Farrington-Manning test, 6330, 6336, 6414
Fisher’s exact test, 6330, 6337, 6416
Fisher’s z test for correlation, 6288, 6291, 6379,

6450
fractional sample size, 6274, 6371
Gehan test, 6347, 6358, 6422
graphics, 6428

grouped-name-lists, 6366
grouped-number-lists, 6366
introductory example, 6268
keyword-lists, 6366
likelihood-ratio chi-square test, 6330, 6337, 6415
log-rank test for comparing survival curves, 6347,

6356, 6422, 6454
logistic regression, 6276, 6374, 6484
lognormal data, 6301, 6305, 6320, 6324, 6325,

6340, 6345, 6346, 6400, 6401, 6408, 6410,
6419, 6421, 6446

McNemar’s test, 6310, 6315, 6317, 6406
name-lists, 6366
nominal power, 6274, 6369, 6371
noninferiority tests, 6298, 6446
notation for formulas, 6373
number-lists, 6366
odds ratio, 6330, 6335, 6413, 6415
ODS graph names, 6428
ODS Graphics, 6428
ODS table names, 6372
one-sample t test, 6268, 6300, 6304, 6305, 6399,

6400
one-way ANOVA, 6306, 6309, 6310, 6403, 6429
overview of power concepts, 6363
paired proportions, 6310, 6315, 6317, 6406
paired t test, 6317, 6324, 6408
partial correlation, 6288, 6291, 6379, 6380, 6450
Pearson chi-square test, 6330, 6335, 6415
Pearson correlation, 6288, 6291, 6379, 6380,

6450
plots, 6267, 6274, 6276, 6326, 6459
regression, 6283, 6287, 6377, 6450
relative risk, 6330, 6335, 6413, 6415
risk difference, 6414
sample size adjustment, 6369
statistical graphics, 6428
summary of analyses, 366, 6364
summary of statements, 6275
superiority tests, 6299
survival analysis, 6347, 6356, 6422
t test for correlation, 6288, 6291, 6380
t tests, 6300, 6304, 6305, 6317, 6324, 6337, 6344,

6399, 6400, 6408, 6416, 6419, 6459
Tarone-Ware test, 6347, 6358, 6422
two-sample t test, 6271, 6337, 6344, 6345, 6416,

6418, 6419, 6459
value lists, 6366
Wilcoxon-Mann-Whitney (rank-sum) test, 6358,

6363, 6426
Wilcoxon-Mann-Whitney test, 6486
z test, 6292, 6297, 6298, 6382, 6384

power semivariance model
KRIGE2D procedure, 4144, 4147, 4158
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VARIOGRAM procedure, 8945, 8961
power-of-the-mean model

MIXED procedure, 5279
%POWTABLE macro, 375

compared to other power and sample size tools,
365

PPC convergence measure, 5629
PPLOT plots

annotating, 4252
axes, color, 4252
font, specifying, 4253
reference lines, options, 4252–4254, 4256–4259

PPS sampling
SURVEYSELECT procedure, 8402, 8433, 8441

PPS sampling, with replacement
SURVEYSELECT procedure, 8446

PPS sampling, without replacement
SURVEYSELECT procedure, 8445

PPS sequential sampling
SURVEYSELECT procedure, 8447

PPS systematic sampling
SURVEYSELECT procedure, 8447

precision
NLMIXED procedure, 5738

precision of solution
MCMC procedure, 4853

precision, confidence intervals, 368, 6364
predicted covariance matrix

CALIS procedure, 1385
displaying (CALIS), 1520

predicted covariance model matrix
singular (CALIS), 1517

predicted curves
ICPHREG procedure, 3944

predicted mean vector
displaying (CALIS), 1520

predicted means
MIXED procedure, 5263

predicted population margins
GLM procedure, 3420

predicted probabilities
LOGISTIC procedure, 4580
SURVEYLOGISTIC procedure, 8127

predicted probability plots
annotating, 6742
axes, color, 6742
font, specifying, 6743
options summarized by function, 6739
reference lines, options, 6742–6744, 6746
threshold lines, options, 6745

predicted residual sum of squares
RSREG procedure, 7268

predicted value confidence intervals
MIXED procedure, 5252

predicted values
example (MIXED), 5350
LIFEREG procedure, 4267
mixed model (MIXED), 5244
MIXED procedure, 5263
NLIN procedure, 5601
REG procedure, 7052, 7055
response functions (CATMOD), 1912

prediction
at individual locations (KRIGE2D), 4138
correlation model (KRIGE2D), 4125, 4127, 4143,

4153, 4178
example (REG), 7126
KRIGE2D procedure, 4125
NLMIXED procedure, 5713, 5740
on one-dimensional grid (KRIGE2D), 4138
VARIOGRAM procedure, 8913

predictive mean matching method
MI procedure, 5070

predictive power
SEQTEST procedure, 7551, 7565, 7572

PREDPPLOT
PROBIT procedure, 6738

preference mapping
TRANSREG procedure, 8603, 8751

preference models
TRANSREG procedure, 8595

Preferences window, 6515
preferences, setting, 6515
prefix name

LINEQS statement (CALIS), 1277
preliminary clusters

definition (CLUSTER), 2029
using in CLUSTER procedure, 2017

preliminary data analysis, see exploratory data analysis
Prentice-Williams-Peterson model

PHREG procedure, 5981
PRESS residual

MIXED procedure, 5311
PRESS statistic, 3443

MIXED procedure, 5311
RSREG procedure, 7268

prevalence test
MULTTEST procedure, 5514, 5538

primal-dual with predictor-corrector algorithm
QUANTREG procedure, 6861

primary sampling units (PSUs)
Introduction to Survey Procedures, 247
SURVEYFREQ procedure, 7975
SURVEYLOGISTIC procedure, 8109
SURVEYMEANS procedure, 8183
SURVEYPHREG procedure, 8254
SURVEYREG procedure, 8348

principal component analysis, 2296
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compared with common factor analysis, 2297
PRINQUAL procedure, 6658
with FACTOR procedure, 2299

principal components, see also PRINCOMP procedure
definition, 6583
interpreting eigenvalues, 6586
partialing out variables, 6598
properties of, 6584, 6585
regression (PLS), 6210, 6232
rotating, 6601
using weights, 6598

principal factor analysis
with FACTOR procedure, 2300

PRINCOMP procedure
computational resources, 6601
correction for means, 6592
crime rates data, example, 6585
DATA= data set, 6599
eigenvalues and eigenvectors, 6584, 6600, 6602
examples, 6604
input data set, 6592
ODS graph names, 6603
output data sets, 6592, 6599, 6600
output table names, 6602
OUTSTAT= data set, 6599
replace missing values, example, 6607
SCORE procedure, 6601
suppressing output, 6592
weights, 6598

PRINQUAL procedure
biplot, 6667
casewise deletion, 6638
character OPSCORE variables, 6662
constant transformations, avoiding, 6662
constant variables, 6662
excluded observations, 6642, 6663
frequency variable, 6643
identity transformation, 6647
iterations, 6640, 6657, 6662
knots, 6649, 6650
linear transformation, 6646
MAC method, 6652, 6658
maximum average correlation method, 6652,

6658
maximum total variance method, 6651
MDPREF analysis, 6667
MGV method, 6651
minimum generalized variance method, 6651
missing character values, 6646
missing values, 6638, 6657, 6663
monotonic B-spline transformation, 6646
monotonic transformation, 6646, 6647
MTV method, 6651
multidimensional preference analysis, 6667

nonoptimal transformations, 6645
ODS graph names, 6666
optimal scoring, 6646
optimal transformations, 6646
output data sets, 6659
output table names, 6666
passive observations, 6663
principal component analysis, 6658
random initializations, 6662
reflecting the transformation, 6650
renaming variables, 6650
reusing variables, 6650
smoothing spline transformation, 6647
spline t-options, 6649
spline transformation, 6646
standardization, 6661
transformation options, 6647
variable names, 6661
weight variable, 6650

printing, 6509
prior density

MIXED procedure, 5269
prior distribution

conjugate, 127
definition of, 124
diffuse, 126
distribution specification (MCMC), 4765, 4776
flat, 126
hyperprior specification (MCMC), 4765, 4776
improper, 126
informative, 127
Introduction to Bayesian Analysis, 124, 125
Jeffreys’ prior, 127
noninformative, 126, 127
objective, 126
predictive distribution (MCMC), 4841, 4842
subjective, 126
user-defined (MCMC), 4769, 4779, 4813
vague, 126

prior distributions
FMM procedure, 2528

prior event probability
LOGISTIC procedure, 4542, 4583, 4657

probability density function
LIFETEST procedure, 4328, 4415

probability distribution
built-in (GENMOD), 2856, 2916
exponential family (GENMOD), 2935
user-defined (GENMOD), 2902

probability distribution, built-in
GEE procedure, 2824

probability distributions
FMM procedure, 2498
GLIMMIX procedure, 3137
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probability sampling
Introduction to Survey Procedures, 239
SURVEYSELECT procedure, 8402

probit analysis
insets, 6712

probit equation, 6686, 6752
probit model

SURVEYLOGISTIC procedure, 8112
PROBIT procedure

Abbot’s formula, 6748
analysis of means, 467
binary response data, 6686, 6687, 6752
CDFPLOT, 6697
chi-bar-square statistic, 458
deviance, 6737, 6753
deviance statistic, 6753
diffogram, 470
dispersion parameter, 6753
extreme value distribution, 6751
goodness-of-fit, 6734, 6737
goodness-of-fit tests, 6693, 6694, 6734, 6752
INSET, 6711
inverse confidence limits, 6754
IPPPLOT, 6713
joint hypothesis tests with complex alternatives,

457
log-likelihood function, 6750
logistic distribution, 6751
LPREDPLOT, 6721
maximum likelihood estimates, 6686
missing values, 6748
models, 6752
multilevel response data, 6686, 6687, 6752
natural response rate, 6687
Newton-Raphson algorithm, 6750
normal distribution, 6751
observed margins, 468
ODS Graphics names, 6760
output table names, 6759
overdispersion, 6737
Pearson’s chi-square, 6734, 6737, 6753
positional and nonpositional syntax, 455
PREDPPLOT, 6738
response level ordering, 6733
subpopulation, 6734, 6737, 6754
threshold response rate, 6687
tolerance distribution, 6754

PROBIT procedure, ESTIMATE statement
ODS table names, 458

PROBIT procedure, LSMEANS statement
ODS graph names, 475
ODS table names, 474

probit-normal-binomial example
NLMIXED procedure, 5748

probit-normal-ordinal example
NLMIXED procedure, 5751

PROBIT procedure
ordering of effects, 6695

PROC GLIMMIX procedure
residual variance tolerance, 3089

Procrustes method, 2296
Procrustes rotation, 2323
producing monotone missingness

MI procedure, 5083
product-limit estimate

survival function (PHREG), 5905
product-limit estimates

LIFETEST procedure, 4328, 4330, 4355, 4375,
4376

product-limit survival plot
LIFETEST procedure, 783

profile likelihood confidence intervals
GENMOD procedure, 2950

profile t plots
NLIN procedure, 5606

profile, population and response, 163, 164
CATMOD procedure, 1889

profiling residual variance
HPMIXED procedure, 3830
MIXED procedure, 5330

progeny
INBREED procedure, 3991, 3993, 3996, 4003

programming statements
constraints (CALIS), 1357, 1434
GENMOD procedure, 2926
GLIMMIX procedure, 3175
MCMC procedure, 4777
NLMIXED procedure, 5715
PHREG procedure, 5887, 5894, 5943, 5944
Shared Concepts, 511
SURVEYPHREG procedure, 8263, 8265

projected gradient
NLMIXED procedure, 5732

projected Hessian
NLMIXED procedure, 5732

promax method, 2296, 2323
propensity score method

MI procedure, 5076, 5103
proportion difference

FREQ procedure, 2671
proportion estimation

SURVEYMEANS procedure, 8189
proportional allocation

SURVEYSELECT procedure, 8435, 8451, 8474
proportional hazard

Introduction to Regression, 66
proportional hazards model

assumption (PHREG), 5886



Subject Index F 9183

distribution (LIFEREG), 4263
PHREG procedure, 5881, 5940
SURVEYPHREG procedure, 8240

proportional hazards models
Introduction to Survey Procedures, 245

proportional odds model
SURVEYLOGISTIC procedure, 8111

proportional rates/means model, see rate/mean model
proportions, see binomial proportions, 6495
proposal distribution

MCMC procedure, 4792
prospective power, 366, 3598, 6267
%ProvideSurvivalMacros macro

LIFETEST procedure, 803
proximity data

MDS procedure, 4992, 5000, 5007
proximity measures

available methods for computing (DISTANCE),
2261

formulas(DISTANCE), 2273
pseudo F and t statistics

CLUSTER procedure, 2023
pseudo-likelihood

GLIMMIX procedure, 3072, 3241
pseudo-semivariance

VARIOGRAM procedure, 8965
pseudo-semivariogram

VARIOGRAM procedure, 8965, 9021
PSS, 6494

available analyses, 6495
available platforms, 6528
features, 6495
installation, 6528
local and remote configurations, 6528
Preferences window, 6515
Results page, 6523
software requirements, 6528

%pValue macro
LIFETEST procedure, 832

Q-Q plots
REG procedure, 7085

QIC
GEE procedure, 2831

QR decomposition
TPSPLINE procedure, 8503

quadratic discriminant function, 2158
quadratic forms

Introduction to Modeling, 49
quadratic forms for fixed effects

displaying (GLM), 3445
quadratic regression, 3398
quadrats

SPP procedure, 7769

quadrature approximation
GLIMMIX procedure, 3072
theory (GLIMMIX), 3195

quadrature options
NLMIXED procedure, 5705

qualitative variables, 163, see classification variables,
see classification variables

REG procedure, 7146
quantal response data, 6686
quantification method

CORRESP procedure, 2094
quantile computation

STDIZE procedure, 7830, 7848
quantile regression

QUANTSELECT procedure, 6941
quantile with poststratification

SURVEYMEANS procedure, 8196
quantiles

SURVEYMEANS procedure, 8194
QUANTLIFE procedure, 6795

B-spline basis, 413
collection effect, 399
lag effect, 400
multimember effect, 402
Natural cubic spline basis, 415
options summary, 6802
OUTBOOTEST= data sets, 6814
output data sets, 6814
output table names, 6815
polynomial effect, 404
random number generator, 6805
spline bases, 411
spline effect, 407
TPF basis, 412
truncated power function basis, 412

QUANTREG procedure, 6828
affine step, 6861
B-spline basis, 413
centering step, 6862
chi-bar-square statistic, 458
collection effect, 399
complementarity, 6860
computational resources, 6873
INEST= data sets, 6872
infeasibility, 6861
joint hypothesis tests with complex alternatives,

457
Karush-Kuhn-Tucker (KKT) conditions, 6860
lag effect, 400
multimember effect, 402
Natural cubic spline basis, 415
ODS Graphics names, 6875
OUTEST= data sets, 6872
output table names, 6873
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polynomial effect, 404
positional and nonpositional syntax, 455
primal-dual with predictor-corrector algorithm,

6861
spline bases, 411
spline effect, 407
TPF basis, 412
truncated power function basis, 412

QUANTREG procedure, ESTIMATE statement
ODS table names, 458

QUANTREG procedure
ordering of effects, 6845

QUANTSELECT procedure, 6945
B-spline basis, 413
backward elimination, 6944
candidates for addition or removal, 6952
class level coding, 6951
class level information, 6951
collection effect, 399
dimension information, 6951
displayed output, 6951
effect selection, 6941, 6944
fit statistics, 6945, 6953
forward selection, 6944
hierarchy, 6934
Information criteria, 6941
lag effect, 400
macro variables, 6947
model hierarchy, 6934
model information, 6951
multimember effect, 402
Natural cubic spline basis, 415
number of observations, 6951
ODS graph names, 6955
output table names, 6954
parameter estimates, 6953
polynomial effect, 404
quantile regression, 6941
Quasi-Likelihood Ratio Tests, 6942
selected effects, 6953
selection reason, 6952
selection summary, 6952
spline bases, 411
spline effect, 407
stepwise selection, 6944
stop reason, 6952
test data, 6949
TPF basis, 412
truncated power function basis, 412
validation data, 6949

QUANTTREG procedure
syntax, 6842

quartile estimate
ICLIFETEST procedure, 3910

quartimax method, 1261, 2296, 2322, 2323, 4020,
4021

quartimin method, 1262, 2296, 2323, 4021
quasi inverse, 2180
quasi-complete separation

LOGISTIC procedure, 4570
SURVEYLOGISTIC procedure, 8106

quasi-independence model, 1977
quasi-likelihood

functions (GENMOD), 2965
GENMOD procedure, 2946
GLIMMIX procedure, 3241

quasi-likelihood functions
GEE procedure, 2831

quasi-likelihood information criterion
(GENMOD), 2965

quasi-likelihood information criterion (QIC)
GEE procedure, 2831

Quasi-Likelihood Ratio Tests
QUANTSELECT procedure, 6942

quasi-Newton, 5707
quasi-Newton algorithm

CALIS procedure, 1217, 1218, 1227, 1238, 1508,
1509

quasi-Newton method
Shared Concepts, 503

R convergence measure, 5629
R matrix

HPMIXED procedure, 3855, 3857
MIXED procedure, 5216, 5276, 5280, 5292, 5293

R square
definition (Introduction to Regression), 86, 97

R-notation, 3462
R-side random effect

GLIMMIX procedure, 3055
R-square

definition (Introduction to Modeling), 54
R-square statistic

CLUSTER procedure, 2023
LOGISTIC procedure, 4543, 4573
SURVEYLOGISTIC procedure, 8089, 8108

R2 improvement
REG procedure, 7050, 7051

R2 selection
REG procedure, 7051

R= option
and other options (CLUSTER), 2017, 2023

radial smoother structure
GLIMMIX procedure, 3168

radial smoothing
GLIMMIX procedure, 3158, 3168, 3220

radius of sphere of support, 2023
Raftery and Lewis diagnostics
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Bayesian analysis (PHREG) procedure, 6022
RAM model

CALIS procedure, 1348, 1392
comparing modeling languages example (CALIS),

1184, 1708, 1784
structural model example (CALIS), 318, 1187

random coefficients
example (MIXED), 5344, 5363

random effects
expected mean squares, 3502
GLIMMIX procedure, 3054, 3155
GLM procedure, 3445, 3501
HPMIXED procedure, 3849
MCMC procedure, 4778
MIXED procedure, 5216, 5272
NESTED procedure, 5565
NLMIXED procedure, 5713
VARCOMP procedure, 8885, 8892

random effects model, see also nested design
VARCOMP procedure, 8893

random initializations
TRANSREG procedure, 8669

random number generator
QUANTLIFE procedure, 6805

random number generators
MI procedure, 5041
PLAN procedure, 6124

random number seed
FMM procedure, 2482

random sampling
SURVEYSELECT procedure, 8402

random-effects models
MCMC procedure, 4901

random-effects parameters
BCHOICE procedure, 1033
MIXED procedure, 5215, 5292

randomization assumption
VARIOGRAM procedure, 8936, 8987

randomization of designs
using PLAN procedure, 6134

randomized complete block design
example, 3517

range
correlation (KRIGE2D), 4125
effective (KRIGE2D), 4125, 4154, 4155
effective (VARIOGRAM), 8960
practical (KRIGE2D), 4125, 4154, 4155
practical (VARIOGRAM), 8960
VARIOGRAM procedure, 8960

range �
KRIGE2D procedure, 4154

rank correlation
LOGISTIC procedure, 4579
SURVEYLOGISTIC procedure, 8126

rank order typal analysis, see complete linkage
RANK procedure, 17

order statistics, 17
rank scores

FREQ procedure, 2647
Introduction to Nonparametric Analysis, 273, 276
NPAR1WAY procedure, 5813

rank tests
NPAR1WAY procedure, 5811

rank-sum test, see Wilcoxon-Mann-Whitney
(rank-sum) test

Rao-Scott chi -square tests
second-order (SURVEYFREQ), 8028

Rao-Scott chi-square tests
SURVEYFREQ procedure, 8028

Rao-Scott likelihood ratio tests
second-order (SURVEYFREQ), 8033
SURVEYFREQ procedure, 8033

rate
STDRATE procedure, 7882

rate function
PHREG procedure, 5958, 5979

rate/mean model
PHREG procedure, 5958, 5979

ratio analysis
SURVEYMEANS procedure, 8177, 8191

ratio level of measurement
DISTANCE procedure, 2253

ratio test
TTEST procedure, 8802

ratio under poststratification
SURVEYMEANS procedure, 8207

ratios
SURVEYMEANS procedure, 8177, 8191

raw residuals
GENMOD procedure, 2952

receiver operating characteristic, see ROC curve
reciprocal averaging

CORRESP procedure, 2094
reciprocal causation

CALIS procedure, 1215, 1500
reciprocal paths

CALIS Procedure, 1658
reciprocal paths example (CALIS), 1658
rectangular lattice

LATTICE procedure, 4197
rectangular table

SURVEYMEANS procedure, 8166, 8216
recurrent events

PHREG procedure, 5882, 5901, 5905, 5958
reduced rank regression, 6210

PLS procedure, 6232
reduction notation, 3462
redundancy analysis
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CANCORR procedure, 1827
TRANSREG procedure, 8586, 8600, 8603, 8673

REF parameterization
SURVEYLOGISTIC procedure, 8101

reference category
GLIMMIX procedure, 3235

reference improvement
SEQDESIGN procedure, 7357

reference level
TRANSREG procedure, 8580

reference line
LIFETEST procedure, 815

reference lines
ODS Graphics, 759

REFERENCE parameterization
SURVEYLOGISTIC procedure, 8101

reference parameterization
Shared Concepts, 393

reference structure, 2302
reference-cell coding

TRANSREG procedure, 8579, 8604, 8651, 8658
REFERENCELINE GTL statement

LIFETEST procedure, 815
refitting models

REG procedure, 7074
reflecting the transformation

PRINQUAL procedure, 6650
TRANSREG procedure, 8582

REG procedure
adding variables, 7012
adjusted R2 selection, 7051
alpha level, 6999
annotations, 7089, 7097
ANOVA table, 7086
autocorrelation, 7083
backward elimination, 6979, 7050
collinearity, 7060
compared to other procedures, 3394, 5852
computational methods, 7085
correlation matrix, 6999
covariance matrix, 6999
crossproducts matrix, 7085
delete variables, 7013
deleting observations, 7072
diagnostic statistics, 7062, 7063
dictionary of options, 7097
fit diagnostics, 7112
forward selection, 6979, 7049
graphics keywords and options, 7094, 7095
graphics plots, traditional, 7094
heteroscedasticity, testing, 7078
hypothesis tests, 7025, 7035
incomplete principal components, 7000, 7022
influence diagnostics, 7112

influence statistics, 7064
input data sets, 7037
interactive analysis, 6995, 7045
introductory example, 6980
IPC analysis, 7000, 7022, 7084
lack of fit, 7156
lack-of-fit, testing, 7079
line printer plots, 7101
Mallows’ Cp selection, 7051
missing values, 7036
model building, 7112
model fit summary statistics, 7062
model selection, 6979, 7049, 7051, 7052, 7126
multicollinearity, 7060
multivariate tests, 7080
new regressors, 7037
non-full-rank models, 7059
ODS graph names, 7111
ODS GRAPHICS, 7112
ODS table names, 7104
output data sets, 7040, 7045
P-P plots, 7085
parameter estimates, 7053, 7087
partial regression leverage plots, 7070
plot keywords and options, 7094, 7095, 7097
plots, traditional, 7094
polynomial regression, 6984
predicted values, 7052, 7055, 7126
Q-Q plots, 7085
qualitative variables, 7146
R2 improvement, 7050, 7051
R2 selection, 7051
refitting models, 7074
residual values, 7055
restoring weights, 7075
reweighting observations, 7072
ridge regression, 7011, 7022, 7084, 7101, 7152
singularities, 7085
stepwise selection, 6979, 7050
summary statistics, 7062
sweep algorithm, 7085
time series data, 7083
variance inflation factors (VIF), 7000

regression
adaptive (Introduction to Regression), 81
adaptive regression (Introduction to Regression),

64
adj. R-square selection (Introduction to

Regression), 75
adjusted R square (Introduction to Regression), 86
analysis (REG), 6978
assumptions (Introduction to Regression), 75, 84
backward elimination (Introduction to

Regression), 74
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Bayesian analysis (Introduction to Regression),
78

Box-Cox transformation (Introduction to
Regression), 67, 83

breakdown value (Introduction to Regression), 82
canonical correlation (Introduction to Regression),

67, 83
CATMOD procedure, 1884
collinearity (Introduction to Regression), 96
collinearity diagnostics (Introduction to

Regression), 73
conditional logistic (Introduction to Regression),

78
confidence interval (Introduction to Regression),

89
conjoint analysis (Introduction to Regression), 67,

82
contingency table (Introduction to Regression), 64
controlled experiment (Introduction to

Regression), 95
Cook’s D (Introduction to Regression), 71
correlation matrix (Introduction to Regression),

85
covariance matrix (Introduction to Regression),

85
Cox model (Introduction to Regression), 66
Cp selection (Introduction to Regression), 75
diagnostics (Introduction to Regression), 65, 71
diagnostics, collinearity (Introduction to

Regression), 73
diagnostics, influence (Introduction to

Regression), 73
diagnostics, logistic (Introduction to Regression),

65
errors-in-variable (Introduction to Regression), 97
estimate of precision (Introduction to Regression),

85
exact conditional logistic (Introduction to

Regression), 78
examples (GLM), 3521
failure-time data (Introduction to Regression), 65
forecasting (Introduction to Regression), 89
forward selection (Introduction to Regression), 74
function approximation (Introduction to

Regression), 81
general linear model (Introduction to Regression),

65
generalized additive model (Introduction to

Regression), 64, 81
generalized estimating equations (GEE)

(Introduction to Regression), 78
generalized estimating equations

(GEE)(Introduction to Regression), 65

generalized least squares (Introduction to
Regression), 67

generalized linear mixed model (Introduction to
Regression), 65, 78

generalized linear model (Introduction to
Regression), 64, 77, 78, 82

generalized logit (Introduction to Regression), 77,
78

Gentleman-Givens algorithm (Introduction to
Regression), 66, 79

gompit (Introduction to Regression), 78
heterogeneous conditional distribution

(Introduction to Regression), 79
homoscedasticity (Introduction to Regression), 75
Hotelling-Lawley trace (Introduction to

Regression), 92
ideal point preference mapping (Introduction to

Regression), 67, 83
ill-conditioned data, 5852
ill-conditioned data (Introduction to Regression),

79
influence diagnostics (Introduction to Regression),

73
intercept (Introduction to Regression), 87
lack-of-fit (Introduction to Regression), 73, 76
LAR selection (Introduction to Regression), 74
LASSO selection (Introduction to Regression), 74
least angle regression selection (Introduction to

Regression), 74
least trimmed squares (Introduction to

Regression), 82
leverage (Introduction to Regression), 71, 88
linear (Introduction to Regression), 66
linear mixed model (Introduction to Regression),

65
linear, survey data (Introduction to Regression),

67
local (Introduction to Regression), 65, 81
logistic (Introduction to Regression), 64, 66
logistic, conditional (Introduction to Regression),

78
logistic, exact conditional (Introduction to

Regression), 78
LTS estimation (Introduction to Regression), 82
M estimation (Introduction to Regression), 66, 82
max R-square selection (Introduction to

Regression), 74
min R-square selection (Introduction to

Regression), 75
MM estimation (Introduction to Regression), 82
model selection, adj. R-square (Introduction to

Regression), 75
model selection, backward (Introduction to

Regression), 74
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model selection, Cp (Introduction to Regression),
75

model selection, forward (Introduction to
Regression), 74

model selection, LAR (Introduction to
Regression), 74

model selection, LASSO (Introduction to
Regression), 74

model selection, least angle regression
(Introduction to Regression), 74

model selection, max R-square (Introduction to
Regression), 74

model selection, min R-square (Introduction to
Regression), 75

model selection, R-square (Introduction to
Regression), 75

model selection, SCORE (Introduction to
Regression), 75

model selection, stepwise (Introduction to
Regression), 74

MODEL statements (GLM), 3454
multivariate adaptive regression splines

(Introduction to Regression), 64
multivariate tests (Introduction to Regression), 90,

92
nonlinear (Introduction to Regression), 80
nonlinear least squares (Introduction to

Regression), 65, 80
nonlinear mixed model (Introduction to

Regression), 66
nonlinear model (Introduction to Regression), 65
nonparametric (Introduction to Regression), 64,

80
normal equations (Introduction to Regression), 84
observational study (Introduction to Regression),

96
orthogonal regressors (Introduction to

Regression), 96
ORTHOREG procedure, 5852
partial least squares (Introduction to Regression),

66
partial least squares (PROC PLS), 6210, 6231
penalized B-splines (Introduction to Regression),

83
Pillai’s trace (Introduction to Regression), 92
Poisson (Introduction to Regression), 64
polynomial (Introduction to Regression), 65
power and sample size (POWER), 6283, 6287,

6377, 6450
precision, estimate (Introduction to Regression),

85
predicted value (Introduction to Regression), 88
prediction interval (Introduction to Regression),

89

principal components (Introduction to
Regression), 66

principal components (PROC PLS), 6210, 6232
probit (Introduction to Regression), 66, 78
proportional hazard (Introduction to Regression),

66
proportional odds model (Introduction to

Regression), 78
quadratic (GLM), 3398
quantal (Introduction to Regression), 78
quantile (Introduction to Regression), 66, 79
quantile with variable selection (Introduction to

Regression), 66
R square (Introduction to Regression), 86, 97
R square, adjusted (Introduction to Regression),

86
R-square selection (Introduction to Regression),

75
raw residual (Introduction to Regression), 88
reduced rank (PROC PLS), 6210, 6232
redundancy analysis (Introduction to Regression),

67, 83
regressor variable (Introduction to Regression), 68
residual (Introduction to Regression), 88
residual plot (Introduction to Regression), 70
residual variance (Introduction to Regression), 85
residual, raw (Introduction to Regression), 88
residual, studentized (Introduction to Regression),

88
response surface (Introduction to Regression), 66,

76
ridge (Introduction to Regression), 76
robust (Introduction to Regression), 66, 82
robust distance (Introduction to Regression), 82
Roy’s maximum root (Introduction to

Regression), 92
S estimation (Introduction to Regression), 82
SCORE selection (Introduction to Regression), 75
semiparametric model (Introduction to

Regression), 82
spline (Introduction to Regression), 81
spline transformation (Introduction to

Regression), 67, 83
spline, basis function(Introduction to Regression),

81
standard error of prediction (Introduction to

Regression), 88
standard error, estimated (Introduction to

Regression), 85
stepwise selection (Introduction to Regression),

74
studentized residual (Introduction to Regression),

88
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sum of squares, Type I (Introduction to
Regression), 86, 90

sum of squares, Type II (Introduction to
Regression), 86, 90

surface (Introduction to Regression), 65
survey data (Introduction to Regression), 66, 67
survival data (Introduction to Regression), 65
testing hypotheses (Introduction to Regression),

90
thin plate smoothing splines (Introduction to

Regression), 67
transformation (Introduction to Regression), 67,

82, 83
Type I sum of squares (Introduction to

Regression), 86, 90
Type II sum of squares (Introduction to

Regression), 86, 90
variable selection (Introduction to Regression), 65
variance inflation (Introduction to Regression), 86
Wilks’ lambda (Introduction to Regression), 91

regression analysis
Introduction to Survey Procedures, 244
survey sampling, 8314

regression coefficients
CANCORR procedure, 1834
SURVEYREG procedure, 8349
using with SCORE procedure, 7294

regression diagnostics
LOGISTIC procedure, 4590

regression effects
MIXED procedure, 5304
model parameterization (GLM), 3456
Shared Concepts, 387
specifying (GLM), 3453

regression estimators
SURVEYREG procedure, 8372, 8379

regression functions, separate
TRANSREG procedure, 8633

regression method
MI procedure, 5070, 5103

regression parameter estimates, example
SCORE procedure, 7308

regression parameters
SURVEYLOGISTIC procedure, 8110

regression table
TRANSREG procedure, 8590

regression tests
SEQDESIGN procedure, 7405

regressor effects
GENMOD procedure, 2946
ICPHREG procedure, 3962

regressor variable
Introduction to Regression, 68

rejection repeated confidence intervals

SEQTEST procedure, 7566
rejection sampling

MIXED procedure, 5271
relative cumulative error spending

SEQDESIGN procedure, 7337
relative efficiency

MI procedure, 5093
MIANALYZE procedure, 5175

relative increase in variance
MI procedure, 5092
MIANALYZE procedure, 5175

relative risk
power and sample size (POWER), 6330, 6335,

6413, 6415
relative risks

cohort studies (FREQ), 2685
exact confidence limits (FREQ), 2686
FREQ procedure, 2685
logit adjusted (FREQ), 2700
Mantel-Haenszel adjusted (FREQ), 2700
SURVEYFREQ procedure, 8024

REML, see restricted maximum likelihood
remote monitoring

GLIMMIX procedure, 498
renaming and reusing variables

PRINQUAL procedure, 6650
renaming parameters

CALIS procedure, 1356
%Reorder macro

LIFETEST procedure, 848
reordering groups

LIFETEST procedure, 796, 798
repeated confidence intervals

SEQTEST procedure, 7552, 7554, 7566, 7572,
7576

repeated confidence intervals plot
SEQTEST procedure, 7576

repeated effects
HPMIXED procedure, 3854

repeated measures
ANOVA procedure, 969
CATMOD procedure, 1884, 1916, 1936
contrasts (GLM), 3448
contrasts (GLMPOWER), 3625
data organization (GLM), 3494
doubly multivariate design, 3554
examples (CATMOD), 1982, 1985, 1987, 1991
examples (GLM), 3450, 3547
examples (GLMPOWER), 3626
GEE (GENMOD), 2853, 2958
GEE procedure, 2829, 2832
GLM procedure, 3446, 3493
GLMPOWER procedure, 3609, 3623
HPMIXED procedure, 3879
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hypothesis tests (GLM), 3496, 3498
MIXED procedure, 5215, 5276, 5339
more than one factor (ANOVA), 969, 972
more than one factor (GLM), 3498
multiple populations (CATMOD, 1938
one population (CATMOD), 1937
power and sample size (GLMPOWER), 3653
RESPONSE statement (CATMOD), 1936
specifying factors (CATMOD), 1917
transformations, 3499–3501

repeated significance test
SEQDESIGN procedure, 7359

replicate subjects
NLMIXED procedure, 5714

replicate weights
Introduction to Survey Procedures, 248
SURVEYFREQ procedure, 7976
SURVEYLOGISTIC procedure, 8113
SURVEYPHREG procedure, 8265, 8279
SURVEYREG procedure, 8351

replicated sampling
SURVEYSELECT procedure, 8403, 8425, 8465

replication, see replicated sampling
replication methods

SURVEYLOGISTIC procedure, 8067, 8113
SURVEYMEANS procedure, 8169, 8209, 8234
SURVEYPHREG procedure, 8279
SURVEYREG procedure, 8327, 8351, 8395

replication-based variance estimation
SURVEYFREQ procedure, 8004

resampled data sets
MULTTEST procedure, 5527

residual
Cook’s D (Introduction to Regression), 71
raw (Introduction to Regression), 71
studentized (Introduction to Regression), 71

residual chi-square
PHREG procedure, 5939

residual diagnostics
CALIS procedure, 1232

residual diagnostics example (CALIS), 1616
residual likelihood

GLIMMIX procedure, 3072
HPMIXED procedure, 3829

residual maximum likelihood (REML), see also
restricted maximum likelihood (REML)

MIXED procedure, 5297, 5336
residual plots

GLIMMIX procedure, 3251
MIXED procedure, 5326

residual variance tolerance
HPMIXED procedure, 3831

residual-based sandwich estimators
GLIMMIX procedure, 3213

residuals
and partial correlation (PRINCOMP), 6599
CALIS procedure, 1482
Cholesky (Introduction to Modeling), 60
deletion (Introduction to Modeling), 60
deviance (Introduction to Modeling), 60
deviance (PHREG), 5942, 5985, 6068
deviance (SURVEYPHREG), 8263, 8290
externally studentized (Introduction to Modeling),

59
fitted (Introduction to Modeling), 58
GENMOD procedure, 2921, 2952, 2953
internally studentized (Introduction to Modeling),

59
leave-one-out (Introduction to Modeling), 60
LOGISTIC procedure, 4591
martingale (PHREG), 5942, 6068
martingale (SURVEYPHREG), 8263
MDS procedure, 5004, 5010, 5011, 5014, 5028
NLIN procedure, 5602
partial correlation (PRINCOMP), 6598
Pearson-type (Introduction to Modeling), 59
PRESS (Introduction to Modeling), 60
projected, (Introduction to Modeling), 58
raw (Introduction to Modeling), 58
raw (Introduction to Regression), 88
REG procedure, 7055
scaled (Introduction to Modeling), 59
Schoenfeld (PHREG), 5942, 5986, 5987
Schoenfeld (SURVEYPHREG), 8263, 8290, 8291
score (PHREG), 5942, 5986
score (SURVEYPHREG), 8263, 8290
standardized (Introduction to Modeling), 59
studentized (Introduction to Modeling), 59
studentized (Introduction to Regression), 88, 89
studentized, external (Introduction to Modeling),

59
studentized, internal (Introduction to Modeling),

59
weighted Schoenfeld (PHREG), 5943, 5987
weighted score (PHREG), 5988

residuals, details
MIXED procedure, 5308

response functions (CATMOD)
covariance matrix, 1909
formulas, 1952
identifying with FACTORS statement, 1903
predicted values, 1912
related to design matrix, 1939, 1942
variance formulas, 1953

response level ordering
ADAPTIVEREG procedure, 905
FMM procedure, 2496
GAM procedure, 2770
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GLIMMIX procedure, 3133, 3235
LOGISTIC procedure, 4500, 4531, 4564
PROBIT procedure, 6733
SURVEYLOGISTIC procedure, 8083, 8099

response profile, 164
CATMOD procedure, 1889
FMM procedure, 2526
GLIMMIX procedure, 3235, 3242

response surfaces, 7255
canonical analysis, interpreting, 7272
covariates, 7276
experiments, 7270
plotting, 7273
ridge analysis, 7272

response variable, 974, 3453
PHREG procedure, 5884, 5943, 6046
sort order of levels (GENMOD), 2883
SURVEYPHREG procedure, 8263

response variable options
ADAPTIVEREG procedure, 905
FMM procedure, 2496
GAM procedure, 2770
GLIMMIX procedure, 3133

restoring weights
REG procedure, 7075

restricted analysis
FMM procedure, 2508

restricted maximum likelihood
GLIMMIX procedure, 3241
HPMIXED procedure, 3829
MIXED procedure, 5215
VARCOMP procedure, 8890

restricted maximum likelihood (REML)
MIXED procedure, 5297, 5336

restrictions
of parameters (CATMOD), 1925

resubstitution
DISCRIM procedure, 2180

Results page, 6523
Results Viewer

ODS Graphics, 624
Results window

ODS, 529
reticular action model, see RAM model
retrospective power, 366, 3598, 6267
reverse response level ordering

ADAPTIVEREG procedure, 905
FMM procedure, 2496
GAM procedure, 2770
GLIMMIX procedure, 3133
LOGISTIC procedure, 4564
SURVEYLOGISTIC procedure, 8083, 8099

reweighting observations
REG procedure, 7072

ridge analysis
RSREG procedure, 7272

ridge regression
REG procedure, 7011, 7022, 7084, 7101, 7152

ridging
MIXED procedure, 5236, 5297
PHREG procedure, 5937

ridit scores
FREQ procedure, 2647

right-censored data
ICPHREG procedure, 3960, 3964

risk
STDRATE procedure, 7884

risk difference
confidence limits (FREQ), 2672
equivalence tests (FREQ), 2679
exact confidence limits (FREQ), 2679
FREQ procedure, 2671
noninferiority tests (FREQ), 2676
power and sample size (POWER), 6414
superiority tests (FREQ), 2678
tests (FREQ), 2675
TOST (FREQ), 2679

risk differences
SURVEYFREQ procedure, 8022

risk set
PHREG procedure, 5887, 5954, 5955, 6051
SURVEYPHREG procedure, 8274

risk weights
PHREG procedure, 5937

risks, see also binomial proportions
FREQ procedure, 2671
SURVEYFREQ procedure, 8022

RMSSTD statement
and FREQ statement (CLUSTER), 2025

robust
CALIS procedure, 1158
cluster analysis, 2394, 2406
estimators (STDIZE), 7847

robust estimation
CALIS procedure, 1235, 1470

robust estimation example (CALIS), 1616
robust residual diagnostics

CALIS procedure, 1497
robust score test

PHREG procedure, 5970
robust Wald test

PHREG procedure, 5970
ROBUSTREG procedure, 7162

B-spline basis, 413
collection effect, 399
computational resources, 7215
INEST= data sets, 7214
lag effect, 400
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multimember effect, 402
Natural cubic spline basis, 415
ODS graph names, 7217
OUTEST= data sets, 7214
output table names, 7216
polynomial effect, 404
spline bases, 411
spline effect, 407
TPF basis, 412
truncated power function basis, 412
WEIGHT statement, 7213

ROBUSTREG procedure
ordering of effects, 7175

ROC curve
comparing (LOGISTIC), 4556, 4587
LOGISTIC procedure, 4542, 4555, 4586, 4610

Roger and Tanimoto coefficient
DISTANCE procedure, 2277

root MSE
SURVEYREG procedure, 8351

rotating principal components, 6601
roughness penalty

TPSPLINE procedure, 8481, 8502, 8510
row mean scores statistic

Mantel-Haenszel (FREQ), 2697
Roy’s greatest root, 960, 3429, 3496
RPC convergence measure, 5629
RSREG procedure

canonical analysis, 7272
coding variables, 7273, 7279
compared to other procedures, 3394, 7256
computational methods, 7277
confidence intervals, 7267, 7268
Cook’s D influence statistic, 7267
covariates, 7257
eigenvalues, 7277
eigenvectors, 7277
factor variables, 7257
input data sets, 7262, 7267
introductory example, 7257
missing values, 7273
ODS graph names, 7282
ODS table names, 7281
output data sets, 7262, 7269, 7278
PRESS statistic, 7268
response variables, 7257
ridge analysis, 7272

RTF destination
ODS Graphics, 699

RTF style
ODS styles, 608, 643, 652

run times
MCMC procedure, 4851, 4855

Russell and Rao similarity coefficient

DISTANCE procedure, 2279
Ryan’s multiple range test, 967, 3437, 3485

examples, 3520

S convergence measure, 5629
saddle test, definition

MODECLUS procedure, 5429
salience of loadings, FACTOR procedure, 2298, 2336
Sampford’s selection method

SURVEYSELECT procedure, 8450
sample

SURVEYSELECT procedure, 8402
sample allocation

Introduction to Survey Procedures, 243
SURVEYSELECT procedure, 8403, 8434, 8450

sample design
Introduction to Survey Procedures, 245
SURVEYFREQ procedure, 7999
SURVEYPHREG procedure, 8275
SURVEYSELECT procedure, 8402

sample library
LIFETEST procedure, 801

sample selection
Introduction to Survey Procedures, 239, 242, 249
SURVEYSELECT procedure, 8402

sample selection methods
SURVEYSELECT procedure, 8417, 8440

sample size, 365
CATMOD procedure, 1948
Introduction to Modeling, 39
overview of power concepts, 365
overview of power concepts (POWER), 6363
overview of SAS tools, 365
per group, 6550, 6570
See GLMPOWER procedure, 3597
See POWER procedure, 6266
SEQDESIGN procedure, 7409, 7415
solving for, 6550, 6553, 6570
SURVEYSELECT procedure, 8427
total, 6550
weights, 6551, 6563

sample size adjustment
GLMPOWER procedure, 3627
POWER procedure, 6369

sample size allocation
SURVEYSELECT procedure, 8403, 8434, 8450

sample size computation
SEQDESIGN procedure, 7387, 7395, 7397, 7405
SEQTEST procedure, 7569

sample size summary
SEQDESIGN procedure, 7414

sample size weights, 6551, 6563
sample space ordering

SEQTEST procedure, 7550
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sample space orderings
SEQTEST procedure, 7567

sample survey analysis, ordinal data, 1885
samples

Introduction to Survey Procedures, 246
sampling, see also survey sampling

Introduction to Survey Procedures, 239
SURVEYSELECT procedure, 8402

sampling fractions
Introduction to Survey Procedures, 247

sampling frame
SURVEYSELECT procedure, 8402, 8415

sampling frames
Introduction to Survey Procedures, 246

sampling rate
SURVEYSELECT procedure, 8425

sampling rates
Introduction to Survey Procedures, 247
SURVEYFREQ procedure, 7970, 8000
SURVEYLOGISTIC procedure, 8067, 8109
SURVEYMEANS procedure, 8165, 8183
SURVEYPHREG procedure, 8246, 8276
SURVEYREG procedure, 8326, 8347

sampling units
Introduction to Survey Procedures, 246
SURVEYSELECT procedure, 8402, 8431, 8441

sampling weights
Introduction to Survey Procedures, 247
SURVEYFREQ procedure, 7998, 8000
SURVEYLOGISTIC procedure, 8093, 8097
SURVEYMEANS procedure, 8179, 8181
SURVEYPHREG procedure, 8268, 8276
SURVEYREG procedure, 8343, 8346
SURVEYSELECT procedure, 8405

sampling with replacement
SURVEYSELECT procedure, 8441

sampling without replacement
SURVEYSELECT procedure, 8441

sampling zeros
and log-linear analyses (CATMOD), 1935
and structural zeros (CATMOD), 1949

sandwich estimator, see also empirical estimator
GLIMMIX procedure, 3066, 3213, 3216
MIXED procedure, 5228
NLMIXED procedure, 5697

SAPPHIRE style
ODS styles, 607, 643, 652

SAS code, 6525
SAS connection

defining, 6513
selecting, 6512

SAS data set
DATA step, 17
summarizing, 17

SAS defaults
SAS windowing environment, 518

SAS log, 6525
SAS output

SAS defaults, 518
SAS Registry, 624

ODS, 521
SAS Registry Editor, 686
SAS Stat Studio, 18
SAS windowing environment

SAS defaults, 518
SAS/ETS software, 17
SAS/GRAPH software, 17
SAS/IML software, 16
SAS/IML Studio, 18
SAS/OR software, 17
SAS/QC software, 18
Sashelp.Tmplmst

template store, 721
Sasuser.Templat

template store, 535, 721
Satterthwaite method

GLIMMIX procedure, 3211
MIXED procedure, 5254

Satterthwaite t test
power and sample size (POWER), 6337, 6345,

6418
Satterthwaite’s approximation

testing random effects, 3503
TTEST procedure, 8812

Savage scores
NPAR1WAY procedure, 5814

sawtooth power function, 6434
scale constraints

VARIOGRAM procedure, 8956
scale estimates

FASTCLUS procedure, 2404, 2407, 2411, 2413
scale parameter

GENMOD procedure, 2938
GLIMMIX compared to GENMOD, 3184
GLIMMIX procedure, 3055, 3056, 3070, 3078,

3088, 3101, 3150, 3151, 3154, 3177, 3180,
3183, 3185, 3189, 3190, 3192, 3195, 3208,
3239, 3243, 3245, 3279, 3296, 3299, 3312,
3315, 3341, 3358

scaled inverse chi-square distribution
definition of (MCMC), 4807
MCMC procedure, 4770, 4807

scaled residual
MIXED procedure, 5265, 5309

scaling variables
DISTANCE procedure, 2254
MODECLUS procedure, 5408
STDIZE procedure, 7852
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scalogram analysis
CORRESP procedure, 2094

scatter plot
ODS Graphics, 714

scenarios, 6503
Scheffé’s multiple-comparison procedure, 967
Scheffe’s adjustment

ICLIFETEST procedure, 3902
LIFETEST procedure, 4350

Scheffé’s multiple-comparison procedure, 3480
p, 3437

Schoenfeld residuals
PHREG procedure, 5942, 5986, 5987
SURVEYPHREG procedure, 8263, 8290, 8291

Schwarz criterion, see Bayesian information criterion
LOGISTIC procedure, 4572
PHREG procedure, 5983
SURVEYLOGISTIC procedure, 8107

Schwarz’s Bayesian information criterion
example (MIXED), 5337, 5349, 5374
GLIMMIX procedure, 3069
HPMIXED procedure, 3828, 3863
MIXED procedure, 5229, 5299, 5318

score confidence limits
odds ratio (FREQ), 2684
relative risk (FREQ), 2686
risk difference (FREQ), 2673

score function
SEQDESIGN procedure, 7350, 7351

score information
GLMSELECT procedure, 3736

SCORE procedure
CALIS procedure, 1229, 1231, 1384
computational resources, 7303
examples, 7295, 7304
input data set, 7300
OUT= data sets, 7303
output data set, 7300, 7303
PRINCOMP procedure, 6601
regression parameter estimates from REG

procedure, 7303
scoring coefficients, 7294

score residuals
PHREG procedure, 5942, 5986
SURVEYPHREG procedure, 8263, 8290

score statistic
SEQDESIGN procedure, 7351

score statistic scale
SEQDESIGN procedure, 7363

score statistics
GENMOD procedure, 2951
LOGISTIC procedure, 4573
SURVEYLOGISTIC procedure, 8120, 8121

score test

PHREG procedure, 5937, 5939, 5970, 5971,
6016, 6017, 6029, 6031

score variables
interpretation (SCORE), 7303

scores
NPAR1WAY procedure, 5813

scoring
GLIMMIX procedure, 3066
MIXED procedure, 5227, 5236, 5332

scoring coefficients (SCORE), 7293
scoring statistics

PLM procedure, 6174
scree plot, 2343
screening

GLMSELECT procedure, 3731
screening design, analysis, 3563
screening experiments

GLMMOD procedure, 3592
SDF, see survival distribution function
second-order algorithm

Shared Concepts, 501
second-order confirmatory factor models example

(CALIS), 1799
second-order factor model

CALIS procedure, 1737
seed

initial (SURVEYSELECT), 8428
seed for random number

VARCOMP procedure, 8890
selected effects

GLMSELECT procedure, 3734
QUANTSELECT procedure, 6953

selection list
ODS, 529, 542

selection methods, see model selection, see model
selection

selection model
MI procedure, 5096

selection reason
QUANTSELECT procedure, 6952

selection summary
GLMSELECT procedure, 3733
QUANTSELECT procedure, 6952

semiparametric model
PHREG procedure, 5881
SURVEYPHREG procedure, 8240

semiparametric models
TPSPLINE procedure, 8482

semiparametric regression models
TPSPLINE procedure, 8480, 8507

semipartial correlation
CANCORR procedure, 1836
formula (CLUSTER), 2033

semivariance, see also semivariogram
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classical (VARIOGRAM), 8918, 8964
computation (VARIOGRAM), 8975
empirical (VARIOGRAM), 8964
robust (VARIOGRAM), 8918, 8940, 8964
theoretical models, 8961
variance (VARIOGRAM), 8964
VARIOGRAM procedure, 8912, 8963, 9028

semivariance (KRIGE2D procedure), see prediction
correlation model (KRIGE2D)

semivariance (SIM2D procedure), see simulation
correlation model (SIM2D)

semivariogram
analysis (VARIOGRAM), 8914
and covariogram (VARIOGRAM), 9028
computation (VARIOGRAM), 8914
empirical (VARIOGRAM), 8914, 8964
parameters (VARIOGRAM), 8960
robust (VARIOGRAM), 8964
theoretical model fitting, 7787, 8922, 8941, 8953,

8977, 9017
theoretical models (VARIOGRAM), 8914, 8915,

8958
VARIOGRAM procedure, 8912, 8963

sensitivity
CATMOD procedure, 1994

sensitivity analyses
MI procedure, 5095

sensitivity analysis
MI procedure, 5056
MIANALYZE procedure, 5183, 5204, 5207
power and sample size, 371

separate regression functions
TRANSREG procedure, 8633

SEQDESIGN procedure
acceptance (ˇ) Boundary, 7381
alternative reference, 7408
ASN plot, 7416
asymmetric two-sided design, 7414
average sample number, 7409
average sample numbers plot, 7333
binding beta boundary, 7339
boundary for Whitehead one-sided design, 7378
boundary information, 7412
boundary key, 7386
boundary plot, 7333, 7417
boundary scales, 7363
boundary variables, 7366
canonical joint distribution, 7408
ceiling-adjusted design boundary information,

7412
clinical trial, 7316, 7349
combined boundary plot, 7333, 7417
derived parameters, 7385
design information, 7412

drift parameter, 7354, 7357, 7358, 7385, 7409
error spending function method, 7411
error spending information, 7413
error spending method, 7323, 7360, 7379, 7380,

7411
error spending plot, 7334, 7417
expected Fisher information, 7351, 7352
expected sample size, 7414
Fisher information, 7350
gamma error spending function, 7336
gamma error spending method, 7380
generalized two-sided test, 7357
group sequential design, 7358
group sequential trial, 7316
Haybittle-Peto method, 7323, 7337, 7360, 7375,

7411
hazard function, 7403
input fixed-sample D, 7342
input fixed-sample N, 7341
input number of events for fixed-sample design,

7389
input sample size for fixed-sample design, 7389
introductory example, 7323
log odds-ratio statistic, 7400
log relative risk statistic, 7401
log-rank test, 7403
log-rank test for two survival distributions, 7345
losses to follow up, 7391
losses to follow-up, 7393
maximum information, 7354, 7358, 7388, 7409
maximum likelihood estimate, 7350
maximum likelihood estimate scale, 7363
method information, 7413
MLE, 7350
nonbinding acceptance boundary, 7384
nonbinding beta boundary, 7339, 7384
noninferiority trial, 7355
normality assumption, 7408
number of stages, 7408
O’Brien-Fleming method, 7337, 7359, 7374,

7410
O’Brien-Fleming-type error spending function,

7337
O’Brien-Fleming-type error spending method,

7380
observed Fisher information, 7351, 7352
ODS graphics names, 7418
ODS table names, 7416
one-sample test for binomial proportion, 7343
one-sample test for mean, 7343
one-sample tests, 7395
one-sided test, 7354
overlapping ˇ boundaries, 7384
p-value scale, 7363
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Pocock method, 7337, 7359, 7373, 7410
Pocock-type error spending function, 7337
Pocock-type error spending method, 7380
power, 7414
power curves plot, 7334
power error spending function, 7337
power error spending method, 7380
power family method, 7337, 7359, 7374, 7410
power plot, 7417
reference improvement, 7357
regression tests, 7405
relative cumulative error spending, 7337
repeated significance test, 7359
sample size, 7409, 7415
sample size computation, 7387, 7395, 7397, 7405
sample size summary, 7414
score function, 7350, 7351
score statistic, 7351
score statistic scale, 7363
specified parameters, 7385
standardized Z scale, 7363
statistical assumptions, 7361
stopping probabilities, 7415
superiority trial, 7355
survival function, 7403
symmetric two-sided test, 7356
syntax, 7330
test for a binomial proportion, 7396
test for a normal mean, 7395
test for a parameter, 7405–7407
test for difference between two normal means,

7397
test for logistic regression parameter, 7348
test for proportional hazards regression parameter,

7348
test for regression parameter, 7347
test for two binomial proportions, 7399–7401
test for two survival distributions, 7403
truncated exponential accrual for survival data,

7392
two-sample test for binomial proportions, 7344
two-sample test for mean difference, 7344
two-sample tests, 7397
two-sided asymmetric design, 7414
two-sided test, 7356
Type I error, 7335, 7368
Type I error probability, 7359, 7369, 7370
Type II error, 7335, 7368
Type II error probability, 7359, 7369, 7370
unified family method, 7323, 7338, 7359, 7360,

7371, 7411
unified family method shape parameters, 7371
unified family triangular method, 7338, 7375,

7410

uniform accrual for survival data, 7390
Whitehead method, 7323, 7360, 7376, 7411
Whitehead one-sided asymmetric design, 7377
Whitehead one-sided symmetric design, 7376
Whitehead two-sided design, 7377
Whitehead’s double-triangular design, 7336
Whitehead’s triangular design, 7336
Whitehead’s triangular method, 7359

SEQTEST procedure
acceptance repeated confidence intervals, 7566
applicable tests, 7569
ASN plot, 7574
binding acceptance boundary, 7545
binding beta boundary, 7545
boundary adjustment method, 7547
boundary adjustments, 7560, 7562, 7563
boundary key, 7546
boundary scale, 7546
clinical trial, 7526
conditional power, 7551, 7553, 7564, 7570, 7575
conditional power plot, 7575
confidence level, 7546
confidence limits, 7546, 7567
design information, 7571
error spending, 7554
error spending information, 7571
error spending plot, 7575
expected mean sample size, 7553
expected sample size, 7571
futility index, 7565
group sequential trial, 7526
information level adjustments, 7550, 7560
introductory example, 7530
LR ordering, 7569
median unbiased estimate, 7567
minimum error spending, 7549, 7562
MLE ordering, 7569
nonbinding acceptance boundary, 7545, 7674
nonbinding beta boundary, 7545, 7674
number of stages, 7550
ODS graphics names, 7576
ODS table names, 7574
one-sided repeated confidence intervals, 7566
overlapping ˇ boundaries, 7563
p-value, 7567
parameter estimates, 7571
power, 7554, 7571
power plot, 7575
predictive power, 7551, 7565, 7572
rejection repeated confidence intervals, 7566
repeated confidence intervals, 7552, 7554, 7566,

7572, 7576
repeated confidence intervals plot, 7576
sample size computation, 7569
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sample space ordering, 7550
sample space orderings, 7567
sequential test plot, 7576
stagewise ordering, 7568
stochastic curtailment, 7563
stopping probabilities, 7573
syntax, 7544
test information, 7573
two-sided repeated confidence intervals, 7566

sequential random sampling
SURVEYSELECT procedure, 8443, 8465

sequential test plot
SEQTEST procedure, 7576

serpentine sorting
SURVEYSELECT procedure, 8439

SGPANEL procedure
ODS Graphics, 690

SGPLOT procedure
ODS Graphics, 688

SGRENDER procedure
ODS Graphics, 692

SGSCATTER procedure
ODS Graphics, 689

shape distance coefficient
DISTANCE procedure, 2274

Shared Concepts
bar (|) operator, 387
choosing optimization algorithm, 501
CLASS statement, 384
classification variables, 384
CODE statement, 395
collection effect (EFFECT statement), 399
conjugate gradient method, 504
continuous-by-class effects, 390
continuous-nesting-class effects, 389
crossed effects, 388
double-dogleg method, 503
effect parameterization, 391
EFFECT statement, 397
EFFECTPLOT statement, 416
ESTIMATE statement, 444
first-order algorithm, 501
general effects, 390
GLM parameterization, 392
interaction effects, 388
intercept, 387
lag effect (EFFECT statement), 400
levelization, 384
LSMEANS statement, 461
LSMESTIMATE statement, 477
main effects, 388
missing values, CLASS variables, 386
multimember effect (EFFECT statement), 402
Nelder-Mead simplex method, 505

nested effects, 389
nested versus crossed effects, 389
Newton-Raphson method, 502
Newton-Raphson with ridging, 502
NLOPTIONS statement, 488
ORDER= option, 385
ordering of class levels, 385
ordinal parameterization, 392
ortheffect parameterization, 393
orthordinal parameterization, 394
orthoterm parameterization, 394
orthpoly parameterization, 394
orthref parameterization, 394
parameterization, 387
polynomial effect (EFFECT statement), 404
polynomial effects, 387
polynomial parameterization, 392
programming statements, 511
quasi-Newton method, 503
reference parameterization, 393
regression effects, 387
second-order algorithm, 501
simplex method, 505
singular parameterization, 388
SLICE statement, 506
sort order of class levels, 385
spline bases, 411
spline basis, B-spline, 413
spline basis, Natural cubic spline, 415
spline basis, truncated power function, 412
spline effect (EFFECT statement), 407
splines, 411
TEST statement, 509
thermometer parameterization, 392
trust region method, 502

Shewhart control charts, 18
Sidak’s adjustment

GLIMMIX procedure, 3113
GLM procedure, 3420
ICLIFETEST procedure, 3902
LIFETEST procedure, 4350
MIXED procedure, 5246
MULTTEST procedure, 5503, 5519, 5538

Sidak’s inequality, 967
Sidak’s t test, 3437, 3479
Siegel-Tukey scores

NPAR1WAY procedure, 5815
sign test

Introduction to Nonparametric Analysis, 274
significance level, see alpha level, 6532

CALIS procedure, 1205
entry (PHREG), 5939
removal (PHREG), 5939, 6033
STDRATE procedure, 7874
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significance tests
MODECLUS procedure, 5427, 5470

sill
KRIGE2D procedure, 4155–4157
VARIOGRAM procedure, 8960

SIM2D procedure
Cholesky root, 7724
computational details, 7727
conditional and unconditional simulation, 7692
conditional distributions of multivariate normal

random variables, 7725
conditional simulation, 7692, 7725
cubic semivariance model, 7715
examples, 7693, 7730, 7735, 7739
exponential semivariance model, 7715
Gaussian assumption, 7692
Gaussian random field, 7692
Gaussian semivariance model, 7715
LU decomposition, 7724
Matérn semivariance model, 7715
memory usage, 7727
nugget effect, 7717
ODS graph names, 7730
ODS Graphics, 7703
ODS table names, 7729
output data sets, 7703, 7727, 7728
OUTSIM= data set, 7727, 7728
pentaspherical semivariance model, 7715
quadratic form, 7725
simulation of spatial random fields, 7724–7727
sine hole effect semivariance model, 7715
spherical semivariance model, 7715
unconditional simulation, 7692, 7725

SIM2D procedure, plots
Observations, 7730
Semivariogram, 7730
Simulation, 7730

SIM2D procedure, tables
Model Information, 7729
Number of Observations, 7728
Simulation Information, 7729
Store Information, 4178, 7712, 7729, 7741
Store Model Information, 4179, 7712, 7729, 7742
Store Variables Information, 4179, 7712, 7729,

7742
similarity data

MDS procedure, 4992, 5000, 5007
similarity Ratio coefficient

DISTANCE procedure, 2275
similarity ratio coefficient

DISTANCE procedure, 2275
SIMNORMAL procedure

conditional simulation, 7757
Gaussian random variables, 7751

introductory example, 7751
LU decomposition method, 7756
normal random variables, 7751
simulation, 7751
unconditional simulation, 7756

simple cluster-seeking algorithm, 2395
simple covariance matrix

GLIMMIX procedure, 3169
simple effects

GLIMMIX procedure, 3121
GLM procedure, 3427, 3486
HPMIXED procedure, 3842
MIXED procedure, 5250

simple effects differences
GLIMMIX procedure, 3122

simple kappa coefficient
SURVEYFREQ procedure, 8025

simple Matching coefficient
DISTANCE procedure, 2277

simple matching dissimilarity coefficient
DISTANCE procedure, 2277

simple random sampling
SURVEYMEANS procedure, 8154
SURVEYREG procedure, 8315, 8367
SURVEYSELECT procedure, 8404, 8441

simplex method
Shared Concepts, 505

simplicity functions
CALIS procedure, 1260
FACTOR procedure, 2298, 2321, 2337
IRT procedure, 4020

SIMPLS method
PLS procedure, 6231

Simulate-nested example
NLMIXED procedure, 5768

simulated adjustment
ICLIFETEST procedure, 3902
LIFETEST procedure, 4350

simulated data
examples, NLIN, 5664

simulation
at individual locations (SIM2D), 7709
conditional (SIM2D), 7692, 7725
correlation model (SIM2D), 7693, 7696, 7714,

7741
on one-dimensional grid (SIM2D), 7709
power, 369, 380
unconditional (SIM2D), 7692, 7725

simulation of spatial random fields
SIM2D procedure, 7724–7727

simulation-based adjustment
GLIMMIX procedure, 3114
GLM procedure, 3420
MIXED procedure, 5246
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sine hole effect semivariance model
KRIGE2D procedure, 4144, 4157
SIM2D procedure, 7715
VARIOGRAM procedure, 8945, 8961

single linkage
CLUSTER procedure, 2016, 2032

%SingleStratum macro
LIFETEST procedure, 835

singly iterative algorithm
GLIMMIX procedure, 3239

singular parameterization
Shared Concepts, 388

singularities
MIXED procedure, 5333
REG procedure, 7085

singularity
HPMIXED procedure, 3831
MI procedure, 5042

singularity checking
CANCORR procedure, 1836
GLM procedure, 3416, 3418, 3427, 3441

singularity criterion
CALIS procedure, 1237
contrast matrix (GENMOD), 2901
contrast matrix (LOGISTIC), 4517
contrast matrix (PHREG), 5923
covariance matrix (CALIS), 1206, 1225, 1239
information matrix (GENMOD), 2922
NLIN procedure, 5593
PHREG procedure, 5938
SURVEYPHREG procedure, 8261
TRANSREG procedure, 8590

singularity level
SURVEYREG procedure, 8333, 8341

singularity tolerances
NLMIXED procedure, 5706

size distance coefficient
DISTANCE procedure, 2274

size measures
PPS sampling (SURVEYSELECT), 8433, 8468

skewness
CALIS procedure, 1504
displayed in CLUSTER procedure, 2023
NLIN procedure, 5587

Slice Sampler
Markov chain Monte Carlo, 135

SLICE statement
syntax (Shared Concepts), 506

SMM multiple-comparison method, 967, 3437, 3481
smoothing parameter

cluster analysis, 2029
MODECLUS procedure, 5415, 5423
optimal (DISCRIM), 2178
TPSPLINE procedure, 8504

smoothing parameter, default
MODECLUS procedure, 5423

smoothing spline transformation
PRINQUAL procedure, 6647
TRANSREG procedure, 8572, 8641

SMR
STDRATE procedure, 7891

SMR plot
STDRATE procedure, 7905

software requirements, 6528
Sokal and Sneath 1 coefficient

DISTANCE procedure, 2277
Sokal and Sneath 3 coefficient

DISTANCE procedure, 2277
Somers’ D statistics

FREQ procedure, 2653, 2656
sort order

of class levels (Shared Concepts), 385
sorting

SURVEYSELECT procedure, 8439
spacing

STDIZE procedure, 7848
sparse matrix techniques

HPMIXED procedure, 3860
sparse sampling methods

SPP procedure, 7769
spatial anisotropic exponential structure

MIXED procedure, 5281
spatial continuity

KRIGE2D procedure, 4125
VARIOGRAM procedure, 8912, 8913, 8963,

8965, 9021, 9028
spatial covariance structure

examples (MIXED), 5283
GLIMMIX procedure, 3169
MIXED procedure, 5282, 5290, 5332

spatial data
areal (SPP), 7768
point pattern (SPP), 7768
point-referenced (SPP), 7768

spatial dependence, see spatial continuity, see spatial
continuity

spatial exponential structure
GLIMMIX procedure, 3169

spatial Gaussian structure
GLIMMIX procedure, 3170

spatial lag, see also autocorrelation Moran scatter plot
(VARIOGRAM)

VARIOGRAM procedure, 8988
spatial Matérn structure

GLIMMIX procedure, 3170
spatial point pattern

complete spatial randomness (SPP), 7769
distance methods (SPP), 7769
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edge effects (SPP), 7769
event (SPP), 7769
homogeneous Poisson process (SPP), 7769
intensity (SPP), 7769
mark (SPP), 7769
multitype point pattern (SPP), 7769
multivariate point pattern (SPP), 7769
quadrats (SPP), 7769
sparse sampling methods (SPP), 7769
SPP procedure, 7768
study region (SPP), 7769
study window (SPP), 7769

spatial point process, see spatial point pattern
SPP procedure, 7768

spatial power structure
GLIMMIX procedure, 3170

spatial prediction
KRIGE2D procedure, 4124
VARIOGRAM procedure, 8913, 8965

spatial random field
autocorrelation (VARIOGRAM), 8985
ergodicity (VARIOGRAM), 8966
intrinsically stationary (VARIOGRAM), 8965
isotropic (VARIOGRAM), 8966, 8977
realization (VARIOGRAM), 8958
spatial continuity (VARIOGRAM), 8963, 9021
VARIOGRAM procedure, 8958

spatial spherical structure
GLIMMIX procedure, 3171

spatial structure, see spatial continuity, see spatial
continuity

Spearman rank correlation coefficient
FREQ procedure, 2653, 2658

specificity
CATMOD procedure, 1994

specified parameters
SEQDESIGN procedure, 7385

specifying a new distribution
MCMC procedure, 4813

spectral density estimate at zero frequency
Introduction to Bayesian Analysis, 145

spherical covariance structure
GLIMMIX procedure, 3171

spherical semivariance model
KRIGE2D procedure, 4144, 4156
SIM2D procedure, 7715
VARIOGRAM procedure, 8945, 8961

sphericity tests, 972, 3449, 3550
spline bases

GLIMMIX procedure, 411
GLMSELECT procedure, 411
HPMIXED procedure, 411
LOGISTIC procedure, 411
ORTHOREG procedure, 411

PHREG procedure, 411
PLS procedure, 411
QUANTLIFE procedure, 411
QUANTREG procedure, 411
QUANTSELECT procedure, 411
ROBUSTREG procedure, 411
Shared Concepts, 411
SURVEYLOGISTIC procedure, 411
SURVEYREG procedure, 411

spline comparisons
GLIMMIX procedure, 3365

spline effect
GLIMMIX procedure, 407
GLMSELECT procedure, 407
HPMIXED procedure, 407
LOGISTIC procedure, 407
ORTHOREG procedure, 407
PHREG procedure, 407
PLS procedure, 407
QUANTLIFE procedure, 407
QUANTREG procedure, 407
QUANTSELECT procedure, 407
ROBUSTREG procedure, 407
SURVEYLOGISTIC procedure, 407
SURVEYREG procedure, 407

spline parameters
ICPHREG procedure, 3971

spline smoothing
GLIMMIX procedure, 3167, 3168

spline t-options
PRINQUAL procedure, 6649
TRANSREG procedure, 8575

spline transformation
PRINQUAL procedure, 6646
TRANSREG procedure, 8572, 8678

splines
Shared Concepts, 411
TRANSREG procedure, 8568, 8569, 8614, 8680,

8694, 8719
split-plot design

ANOVA procedure, 973, 989, 991, 994
generating with PLAN procedure, 6135
MIXED procedure, 5294, 5334

SPP procedure
Akaike’s information criterion, 7805
Bayesian information criterion, 7805
complete spatial randomness, 7769
DATA= data set, 7777
distance methods, 7769
edge effects, 7769
event, 7769
examples, 7827
grid search, 7787
homogeneous Poisson process, 7769
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initial values, 7787
input data set, 7777
intensity, 7769
mark, 7769
model fitting, 7787
model fitting criteria, 7805
multitype point pattern, 7769
multivariate point pattern, 7769
ODS graph names, 7813
ODS Graphics, 7778
ODS table names, 7811
output data sets, 7808
panel plots, 7778
quadrats, 7769
sparse sampling methods, 7769
spatial point pattern, 7768
spatial point process, 7768
study region, 7769
study window, 7769

SPP procedure, plots
observations, 7813

square root difference cloud
VARIOGRAM procedure, 9032

squared correlation dissimilarity coefficient
DISTANCE procedure, 2274

squared correlation similarity coefficient
DISTANCE procedure, 2274

squared Euclidean distance coefficient
DISTANCE procedure, 2274

squared multiple correlation
CALIS procedure, 1493, 1521
CANCORR procedure, 1836

squared partial correlation
CANCORR procedure, 1836

squared semipartial correlation
CANCORR procedure, 1836
formula (CLUSTER), 2033

squared simple matching dissimilarity coefficient
DISTANCE procedure, 2277

SRF, see spatial random field
SSCP matrix

displaying, for multivariate tests, 962
for multivariate tests, 960
for multivariate tests (GLM), 3429, 3431

SSE, see fit criteria (VARIOGRAM)
stability coefficient

CALIS procedure, 1215, 1500
stacking table

SURVEYMEANS procedure, 8166, 8216
stagewise ordering

SEQTEST procedure, 7568
standard deviation

CLUSTER procedure, 2023
GLMPOWER procedure, 3618, 3622, 3623

standard deviations
SURVEYMEANS procedure, 8190

standard distributions
MCMC procedure, 4798

standard error
GENMOD procedure, 2989
ICPHREG procedure, 3948
LIFEREG procedure, 4282
PHREG procedure, 5902, 5941, 5942, 6017
SURVEYPHREG procedure, 8262, 8263, 8294

standard error ratio
PHREG procedure, 6017
SURVEYPHREG procedure, 8285

standard errors
KRIGE2D procedure, 4125
SURVEYMEANS procedure, 8186
VARIOGRAM procedure, 8913

standard linear model
MIXED procedure, 5216

STANDARD procedure, 17
standardized values, 17

standardization
comparisons between DISTANCE and STDIZE

procedures, 2254
SURVEYMEANS procedure, 8203

standardization information
STDRATE procedure, 7900

standardization suppression
DISTANCE procedure, 2264

standardized deviance residuals
LOGISTIC procedure, 4591

standardized morbidity ratio
STDRATE procedure, 7900

standardized mortality ratio
STDRATE procedure, 7900

standardized Pearson residuals
LOGISTIC procedure, 4591

standardized rate, 7863
standardized rate estimates

STDRATE procedure, 7900
standardized residuals

FREQ procedure, 2649
standardized risk estimates

STDRATE procedure, 7901
standardized score process

PHREG procedure, 5999, 6026
standardized Z scale

SEQDESIGN procedure, 7363
standardizing

cluster analysis (STDIZE), 7852
CLUSTER procedure, 2023
MODECLUS procedure, 5408
raw data (SCORE), 7294
TRANSREG procedure, 8583



9202 F Subject Index

values (STANDARD), 17
values (STDIZE), 7829

star (*) operator
TRANSREG procedure, 8565

starting values
NLIN procedure, 5603

stationarity
intrinsic (VARIOGRAM), 8965
second-order (VARIOGRAM), 8965, 9030
VARIOGRAM procedure, 8959

stationary point
NLMIXED procedure, 5738

statistic-keywords
SURVEYMEANS procedure, 8167

statistical
assumptions (GLM), 3452
quality control, 18
tests (MULTTEST), 5510

statistical assumptions
SEQDESIGN procedure, 7361

statistical computations
SURVEYMEANS procedure, 8184

statistical graphics
FMM procedure, 2531
GLIMMIX procedure, 3249, 3250
GLMPOWER procedure, 3641
LOESS procedure, 4458
POWER procedure, 6428
TTEST procedure, 8821

Statistical Graphics Using ODS, see ODS Graphics
statistical model

definition (Introduction to Modeling), 20
STATISTICAL style

ODS styles, 608, 643, 652
STD option (MODECLUS), 5408
STD= option (DISTANCE), 2268
STDIZE procedure

AGK estimate, 7848
Andrew’s wave estimate, 7848
breakdown point and efficiency, 7847
comparisons of quantile computation, PCTLMTD

option, 7848
computational methods, PCTLDEF option, 7848
Euclidean length, 7847
examples, 7830, 7852
final output value, 7830
formulas for statistics, 7847
fractional frequencies, 7843
fuzz factor, 7839
Huber’s estimate, 7847
initial estimates for A estimates, 7839
input data set (METHOD=IN()), 7846
methods resistant to clustering, 7847
methods resistant to outliers, 7833, 7847

Minkowski metric, 7847
missing values, 7840, 7841, 7850
normalization, 7840, 7841
one-pass quantile computations, 7848
OUT= data set, 7839, 7850
output data sets, 7840, 7841, 7850
output table names, 7851
OUTSTAT= data set, 7850
quantile computation, 7830, 7848
robust estimators, 7847
spacing, 7848
standardization methods, 7829, 7845
standardization with weights, 7844
Tukey’s biweight estimate, 7835, 7847
tuning constant, 7835, 7846
unstandardization, 7842
weights, 7844

STDRATE procedure
AF, 7894
attributable fraction, 7894
attributable fraction estimates, 7899
confidence limits, 7874
directly standardized rate, 7886
distribution plot, 7904
effect estimates, 7899
effect measure plot, 7904
indirect standardization, 7891
introductory example, 7865
Mantel-Haenszel effect estimation, 7889
method specifications, 7897
ODS Graphics names, 7905
ODS table names, 7904
population attributable fraction, 7894
rate, 7882
risk, 7884
significance level, 7874
SMR, 7891
SMR plot, 7905
standardization information, 7900
standardized morbidity ratio, 7900
standardized mortality ratio, 7900
standardized rate estimates, 7900
standardized risk estimates, 7901
strata effect estimates, 7901
strata information, 7902
strata rate plot, 7904
strata risk plot, 7905
strata SMR estimates, 7903
syntax, 7873
table output, 7899

step halving
PHREG procedure, 5967

step length
CALIS procedure, 1217
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step length options
NLMIXED procedure, 5735

step-down methods
MULTTEST procedure, 5520, 5538

STEPDISC procedure
average squared canonical correlation, 7947
computational resources, 7945
input data sets, 7944
introductory example, 7934
memory requirements, 7945
methods, 7933
missing values, 7944
ODS table names, 7948
Pillai’s trace, 7947
stepwise selection, 7935
time requirements, 7945
tolerance, 7947
Wilks’ lambda, 7947

stepdown methods
GLM procedure, 3483

StepOpts macro variable
LIFETEST procedure, 807, 825

stepwise discriminant analysis, 7933
stepwise selection

GLMSELECT procedure, 3707
LOGISTIC procedure, 4544, 4571, 4623
PHREG procedure, 5938, 5998, 6027
QUANTSELECT procedure, 6944
REG procedure, 6979, 7050
STEPDISC procedure, 7935

%StmtsBeginGraph macro
LIFETEST procedure, 819, 832

%StmtsBottom macro
LIFETEST procedure, 832

%StmtsTop macro
LIFETEST procedure, 832

stochastic analysis
KRIGE2D procedure, 4124
VARIOGRAM procedure, 8913

stochastic curtailment
SEQTEST procedure, 7563

stochastic model
definition (Introduction to Modeling), 20

stochastic modeling, see modeling, see semivariogram
theoretical model fitting (VARIOGRAM),
see spatial prediction (VARIOGRAM)

stochastic spatial prediction, see spatial prediction, see
spatial prediction (VARIOGRAM)

stop details
GLMSELECT procedure, 3734

stop reason
GLMSELECT procedure, 3733
QUANTSELECT procedure, 6952

stopping probabilities

SEQDESIGN procedure, 7415
SEQTEST procedure, 7573

stored data algorithm, 2035
stored distance algorithms, 2035
Stouffer combination

adjustment (MULTTEST), 5521
strata

SURVEYFREQ procedure, 7977, 7999
SURVEYSELECT procedure, 8403, 8406, 8433

strata effect estimates
STDRATE procedure, 7901

strata information
STDRATE procedure, 7902

strata rate plot
STDRATE procedure, 7904

strata risk plot
STDRATE procedure, 7905

strata SMR estimates
STDRATE procedure, 7903

STRATA variables
programming statements (SURVEYPHREG),

8263
strata variables

PHREG procedure, 5946
programming statements (PHREG), 5943

strata weights
MULTTEST procedure, 5513

STRATA=INDIVIDUAL survival-plot option
LIFETEST procedure, 785

STRATA=PANEL survival-plot option
LIFETEST procedure, 785

stratification, see stratified sampling, see stratified
sampling

SURVEYFREQ procedure, 7977, 7999
SURVEYLOGISTIC procedure, 8095
SURVEYMEANS procedure, 8180
SURVEYPHREG procedure, 8267, 8275
SURVEYREG procedure, 8344

stratified analysis
FREQ procedure, 2564, 2598
PHREG procedure, 5882, 5946

stratified cluster sample
SURVEYMEANS procedure, 8225

stratified exact logistic regression
GENMOD procedure, 2932
LOGISTIC procedure, 4560

stratified exact Poisson regression
GENMOD procedure, 2932

stratified sampling
Introduction to Survey Procedures, 246
SURVEYMEANS procedure, 8157
SURVEYREG procedure, 8317, 8373
SURVEYSELECT procedure, 8403, 8406, 8433

stratified tests
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ICLIFETEST procedure, 3922
LIFETEST procedure, 4328, 4329, 4335, 4337,

4352, 4367, 4379
stratum collapse

SURVEYREG procedure, 8350, 8383
stress formula

MDS procedure, 5002, 5011
strip-split-plot design

ANOVA procedure, 994
structural equation (CALIS)

definition, 1231
dependent variables, 1358

structural model example
path diagram (CALIS), 300, 301, 307, 311, 314,

316, 326, 328, 334, 337
structural model example (CALIS), 1184

FACTOR model, 318
LINEQS model, 286, 288, 290, 294, 1188
LISMOD, 341, 1189
MSTRUCT model, 281
path diagram, 1185
PATH model, 299, 306, 325, 1186
RAM model, 318, 1187

Stuart’s tau-c statistic
FREQ procedure, 2653, 2656

Student’s multiple range test, 967, 3437, 3484
Studentized maximum modulus

pairwise comparisons, 967, 3437, 3481
studentized maximum modulus adjustment

ICLIFETEST procedure, 3902
LIFETEST procedure, 4350

studentized residual, 3443, 7064
external, 5312
internal, 5312
MIXED procedure, 5264, 5312

study planning, 369
study region

SPP procedure, 7769
study window

SPP procedure, 7769
style

ODS Graphics, 607, 641
style change

LIFETEST procedure, 842, 848
style cleanup

LIFETEST procedure, 849
style color list modification

LIFETEST procedure, 847, 848
style colors

LIFETEST procedure, 844, 845
style elements

ODS Graphics, 646
style modification

ODS Graphics, 737

style modification, %MODSTYLE macro
ODS Graphics, 675

style templates
ODS, 532

style, box plot
ODS Graphics, 707

style, customizing
ODS Graphics, 684

style, default
ODS Graphics, 686

subdomain analysis, see domain analysis, see also
domain analysis, see also domain analysis,
see domain analysis, see also domain
analysis

subgroup analysis, see domain analysis, see also
domain analysis, see also domain analysis,
see domain analysis, see also domain
analysis

subject effect
GLIMMIX procedure, 3161
HPMIXED procedure, 3850, 3856
MIXED procedure, 5240, 5275, 5281, 5334, 5339

subject processing
GLIMMIX procedure, 3218

subject weights
MDS procedure, 4992, 4999

SUBJECT= option in RANDOM statement
BCHOICE procedure, 1034

subpopulation
GENMOD procedure, 2915
LOGISTIC procedure, 4544
PROBIT procedure, 6734, 6737, 6754

subpopulation analysis, see domain analysis, see also
domain analysis, see also domain analysis,
see domain analysis, see also domain
analysis

subsidiary group specification statements (CALIS),
1196

subsidiary model specification statements (CALIS),
1197

sum of squares
corrected total (Introduction to Modeling), 53
decomposition (Introduction to ANOVA

Procedures), 101, 103
F-test (Introduction to ANOVA Procedures), 105
for linear hypothesis (Introduction to ANOVA

Procedures), 105
model (Introduction to ANOVA Procedures), 104
residual (Introduction to ANOVA Procedures),

105
Type I (Introduction to ANOVA Procedures, 102
Type III (Introduction to ANOVA Procedures, 102
uncorrected total (Introduction to Modeling), 53

sum of squares reduction test
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Introduction to Modeling, 56, 57
sum-to-zero assumptions, 3503
summary of commands

HPMIXED procedure, 3825
MIXED procedure, 5224

summary of events table
LIFETEST procedure, 822, 824

summary panel plots
SURVEYMEANS procedure, 8163

summary plots
SURVEYMEANS procedure, 8163

summary statistics
PHREG procedure, 6022
REG procedure, 7062

summary table, 6506
sums of squares

GLM procedure, 3441
Type II (GLM), 3441
Type II (TRANSREG), 8590

SUMSIZE= option
SURVEYMEANS procedure, 8214

superiority tests
binomial proportions, 2669
power and sample size (POWER), 6299
risk difference (FREQ), 2678

superiority trial
SEQDESIGN procedure, 7355

suppressing output
CANCORR procedure, 1835
GENMOD procedure, 2884
MI procedure, 5041

surface trend
VARIOGRAM procedure, 8912, 8915, 8964,

8976, 9007, 9011
survey data analysis

Cox regression, 245
crosstabulation tables, 244
descriptive statistics, 243
frequency tables, 244
Introduction to Survey Procedures, 239, 250
logistic regression, 245
poststratification, 243
proportional hazards models, 245
regression analysis, 244
SURVEYFREQ procedure, 7958
SURVEYPHREG procedure, 8240

survey design
Introduction to Survey Procedures, 245

survey sampling, see also SURVEYLOGISTIC
procedure, see also SURVEYREG procedure

cluster sampling, 247
data analysis (SURVEYFREQ), 7958
data analysis (SURVEYPHREG), 8240
descriptive statistics, 8154

Introduction to Survey Procedures, 239, 242
logistic regression, 8058
multistage sampling, 247
populations, 246
primary sampling units (PSUs), 247
regression analysis, 8314
sample allocation, 243
sample design, 245
sample selection (SURVEYSELECT), 8402
sampling frames, 246
sampling units, 246
sampling weights, 247
selection methods, 242
stratified sampling, 246
SURVEYSELECT procedure, 8402
variance estimation, 248

survey weights, see sampling weights, see sampling
weights

SURVEYFREQ procedure, 7958
alpha level, 7981
BRR variance estimation, 8011
clustering, 7975, 7999
coefficients of variation, 8020
column proportions, 8010
confidence limits for proportions, 8016
confidence limits for proportions

(Clopper-Pearson), 8018
confidence limits for proportions (logit), 8018
confidence limits for proportions (Wald), 8017
confidence limits for proportions (Wilson), 8018
confidence limits for totals, 8016
covariance, 8008
crosstabulation tables, 7978, 8041
degrees of freedom, 8019
design effects, 8020
design-adjusted chi-square tests, 8028
displayed output, 8038
domain analysis, 8001, 8050
expected frequencies, 8021
Fay’s BRR variance estimation, 8012
finite population correction, 7970
frequency tables, 7978
Hadamard matrix (BRR variance estimation),

8013
Introduction to Survey Procedures, 239, 244
introductory example, 7958
jackknife coefficients, 8014
jackknife variance estimation, 8014
missing values, 8001
multiway tables, 8041
odds ratios, 8023
ODS graph names, 8046
ODS table names, 8045
one-way frequency tables, 8040
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ordering of levels, 7969
output data sets, 8037, 8052
population totals, 7970, 8000
primary sampling units (PSUs), 7975
proportions, 8008
Rao-Scott chi-square tests, 8028
Rao-Scott likelihood ratio tests, 8033
relative risks, 8024
replicate weights, 7976
risk differences, 8022
risks, 8022
row proportions, 8010
sample design, 7999
sampling rates, 7970, 8000
sampling weights, 7998, 8000
simple kappa coefficient, 8025
stratification, 7977, 7999
Taylor series variance estimation, 8004
totals, 8006
variance estimation, 8004
Wald chi-square tests, 8035
Wald log-linear chi-square tests, 8036
weighted kappa coefficient, 8026
weighting, 7998, 8000

SURVEYLOGISTIC procedure
analysis of means, 467
B-spline basis, 413
chi-bar-square statistic, 458
collection effect, 399
diffogram, 470
Introduction to Survey Procedures, 239, 245
joint hypothesis tests with complex alternatives,

457
lag effect, 400
multimember effect, 402
Natural cubic spline basis, 415
observed margins, 468
polynomial effect, 404
positional and nonpositional syntax, 455
spline bases, 411
spline effect, 407
TPF basis, 412
truncated power function basis, 412

SURVEYLOGISTIC procedure, ESTIMATE statement
ODS table names, 458

SURVEYLOGISTIC procedure, LSMEANS statement
ODS graph names, 475
ODS table names, 474

SURVEYLOGISTIC procedure, 8058
Akaike’s information criterion, 8107
alpha level, 8065, 8076, 8085, 8092
analysis of maximum likelihood estimates table,

8133

association of predicted probabilities and
observed responses table, 8134

balanced repeated replication, 8115
BRR, 8115
BRR variance estimation, 8115
class level information table, 8132
clustering, 8073
complementary log-log model, 8112
confidence intervals, 8122
confidence limits, 8127
convergence criterion, 8085, 8087
cumulative logit model, 8111
customized odds ratio, 8096
data summary table, 8131
degrees of freedom, 8086, 8119
design degrees of freedom, 8119
DF=PARMADJ option, 8120
displayed output, 8130
domain analysis, 8119
domain variable, 8076
donor stratum, 8117
EFFECT parameterization, 8100
estimability checking, 8076
estimated covariance matrix table, 8134
existence of MLEs, 8106
Fay coefficient, 8068, 8116
Fay’s BRR variance estimation, 8116
finite population correction, 8067, 8109
first-stage sampling rate, 8067
Fisher scoring method, 8089, 8105
GLM parameterization, 8100
gradient, 8120
Hadamard matrix, 8068, 8118, 8135
Hessian matrix, 8089
infinite parameter estimates, 8088
initial values, 8108
jackknife, 8117
jackknife coefficients, 8117, 8130
jackknife variance estimation, 8117
likelihood functions, 8110
linear hypothesis results table, 8135
linearization method, 8114
link functions, 8058, 8087, 8102
list of strata, 8096
log odds, 8124
maximum likelihood algorithms, 8104
maximum likelihood iteration history table, 8133
Medical Expenditure Panel Survey (MEPS), 8143
missing values, 8066, 8098
model fit statistics table, 8133
model fitting criteria, 8107
model information table, 8130
model parameters, 8110
Newton-Raphson algorithm, 8089, 8105
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number of replicates, 8070, 8115–8117
odds ratio, 8124
odds ratio confidence intervals, 8085
odds ratio estimates table, 8134
odds ratio estimation, 8124
ODS graph names, 8136
ODS Graphics, 8136
ordering of effects, 8072
ORDINAL parameterization, 8101
ORTHEFFECT parameterization, 8102
ORTHORDINAL parameterization, 8102
ORTHOTHERM parameterization, 8102
ORTHPOLY parameterization, 8102
ORTHREF parameterization, 8102
output data sets, 8128
output jackknife coefficient, 8130
output replicate weights, 8129
output table names, 8135
parameterization, 8100
POLY parameterization, 8101
POLYNOMIAL parameterization, 8101
population totals, 8067, 8109
predicted probabilities, 8127
primary sampling units (PSUs), 8109
probit model, 8112
proportional odds model, 8111
rank correlation, 8126
REF parameterization, 8101
REFERENCE parameterization, 8101
regression parameters, 8110
replicate weights, 8113
replication methods, 8067, 8113
response profile table, 8132
reverse response level ordering, 8083, 8099
sampling rates, 8067, 8109
sampling weights, 8093, 8097
Schwarz criterion, 8107
score statistics, 8120, 8121
stratification, 8095
stratum information table, 8132
Taylor series variance estimation, 8070, 8114
test equal slopes assumption, 8133
test global null hypothesis, 8121
test parallel lines assumption, 8133
test proportional odds assumption, 8133
testing linear hypotheses, 8096, 8122
type III analysis of effects table, 8133
variance estimation, 8113
variance estimation table, 8131
VARMETHOD=BRR option, 8115
VARMETHOD=JACKKNIFE option, 8117
VARMETHOD=JK option, 8117
weighting, 8093, 8097

SURVEYLOGISTIC procedure, type 3 tests, 8123

SURVEYMEANS procedure
Introduction to Survey Procedures, 239, 243, 250

SURVEYMEANS procedure, 8154
alpha level, 8162
balanced repeated replication, 8209, 8210
box plots, 8163
BRR, 8209, 8210, 8234
BRR variance estimation, 8210
categorical variable, 8173, 8185, 8189
class level information table, 8218
classification variable, 8185
clustering, 8174
coefficient of variation, 8189
computational resources, 8213
confidence level, 8162
confidence limits, 8188, 8191
data and sample design summary table, 8218
degrees of freedom, 8187
denominator variable, 8177
direct standardization, 8203
domain analysis, 8184
domain analysis table, 8221
domain analysis under poststratification, 8205
domain geometric means table, 8223
domain means, 8192
domain plots, 8163
domain quantile, 8198
domain quantile with poststratification, 8200
domain quantiles table, 8221
domain ratio, 8194
domain ratio analysis table, 8222
domain ratio under poststratification, 8208
domain statistics, 8192
domain totals, 8193
domain variable, 8174
donor stratum, 8211
estimated frequencies, 8190
estimated totals, 8190
Fay coefficient, 8170, 8211
Fay’s BRR variance estimation, 8211
finite population correction, 8165, 8166, 8183
first-stage sampling rate, 8166
geometric mean, 8201
geometric means table, 8223
Hadamard matrix, 8170, 8213, 8222
histogram plots, 8163
jackknife, 8209, 8211, 8234
jackknife coefficients, 8211, 8215
jackknife variance estimation, 8211
list of strata, 8181
mean per element, 8186
means, 8186
MEMSIZE= option, 8214
missing values, 8162, 8182, 8232
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nbins= global plot option, 8163, 8164
nbins= plot option, 8163, 8165
number of replicates, 8171, 8210, 8211
numerator variable, 8177
ODS graph names, 8224
ODS Graphics, 8163
ODS table names, 8223
output data sets, 8159, 8215
output jackknife coefficient, 8215
output poststratification weights, 8216
output replicate weights, 8215
output table names, 8223
percentiles, 8194
population totals, 8166, 8183
poststrata, 8203
poststratification, 8175, 8196, 8200, 8203
poststratification percentages, 8176
poststratification proportions, 8176
poststratification totals, 8176
poststratification weight, 8203
primary sampling units (PSUs), 8183
proportion estimation, 8189
quantile with poststratification, 8196
quantiles, 8194
quantiles table, 8221
ratio analysis, 8177, 8191
ratio analysis table, 8222
ratio under poststratification, 8207
ratios, 8177, 8191
rectangular table, 8166, 8216
replication methods, 8169, 8209, 8234
sampling rates, 8165, 8183
sampling weights, 8179, 8181
simple random sampling, 8154
stacking table, 8166, 8216
standard deviations of totals, 8190
standard errors, 8186
standard errors of means, 8186
standard errors of ratios, 8191
standardization, 8203
statistic-keywords, 8167
statistical computations, 8184
statistics table, 8219
stratification, 8180
stratified cluster sample, 8225
stratified sampling, 8157
stratum information table, 8218
summary panel plots, 8163
summary plots, 8163
SUMSIZE= option, 8214
t test, 8187
Taylor series variance estimation, 8173, 8186,

8188, 8190
valid observation, 8218

variance estimation, 8184
variance estimation table, 8219
variances of means, 8186
variances of totals, 8190
VARMETHOD=BRR option, 8210
VARMETHOD=JACKKNIFE option, 8211
VARMETHOD=JK option, 8211
weighting, 8179, 8181

SURVEYPHREG procedure, 8240
Akaike’s information criterion, 8287
alpha level, 8259
analysis of means, 467
balanced repeated replication, 8280
Breslow likelihood, 8261
BRR, 8280
BRR variance estimation, 8280
censored values summary, 8293
chi-bar-square statistic, 458
clustering, 8254, 8275
continuous time scale, 8261
covariance matrix, 8259
Cox regression analysis, 8240
DATA step statements, 8263
degrees of freedom, 8284
design summary table, 8293
diffogram, 470
displayed output, 8292
domain analysis, 8286
domain variable, 8254
domains, 8254
donor stratum, 8283
Efron likelihood, 8261
event values summary, 8293
Fay coefficient, 8282
Fay’s BRR variance estimation, 8282
finite population correction, 8246
global null hypothesis, 8294
Hadamard matrix (BRR variance estimation),

8282
hazard ratio confidence intervals, 8259, 8260
Hessian matrix, 8260
hypothesis tests and confidence intervals, 8287
Introduction to Survey Procedures, 239, 245
inverse Hessian matrix, 8260
jackknife, 8283
jackknife coefficients, 8283
jackknife variance estimation, 8283
joint hypothesis tests with complex alternatives,

457
Lee-Wei-Amato model, 8297
likelihood ratio test, 8287, 8294
linear predictor, 8262, 8263
linearization method, 8279
missing values, 8264, 8277
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model fit statistics, 8287
model information, 8293
number of observations, 8293
number of replicates, 8280, 8282, 8283
number of subjects at risk, 8262
observed margins, 468
ODS graph names, 8296
ODS graphics, 8296
ODS table names, 8295
output data sets, 8291
OUTPUT statistics, 8262, 8263
parameter estimates, 8294
parameter estimates confidence intervals, 8259
partial likelihood, 8268, 8274
population totals, 8247, 8276
positional and nonpositional syntax, 455
primary sampling units (PSUs), 8254
programming statements, 8263, 8265
proportional hazards model, 8240
replicate weights, 8265, 8279
replication methods, 8279
residuals, 8263, 8289–8291
risk set, 8274
sample design, 8275
sampling rates, 8246, 8276
sampling weights, 8268, 8276
singularity criterion, 8261
standard error, 8262, 8263, 8294
standard error ratio, 8285
stratification, 8267, 8275
survival distribution function, 8270
survival times, 8269
survivor function, 8269, 8270
Taylor series linearized variance estimation, 8251
Taylor series variance estimation, 8279
ties, 8261, 8292
time-dependent covariates, 8241, 8263
variance adjustment, 8285
variance estimation, 8279
variance ratio, 8285
Wald test, 8287, 8288, 8294
weighting, 8268, 8276

SURVEYPHREG procedure, ESTIMATE statement
ODS table names, 458

SURVEYPHREG procedure, LSMEANS statement
ODS graph names, 475
ODS table names, 474

SURVEYPHREG procedure
ordering of effects, 8246

SURVEYREG procedure
analysis of means, 467
B-spline basis, 413
chi-bar-square statistic, 458
collection effect, 399

diffogram, 470
Introduction to Survey Procedures, 239, 244, 250
joint hypothesis tests with complex alternatives,

457
lag effect, 400
multimember effect, 402
Natural cubic spline basis, 415
observed margins, 468
polynomial effect, 404
positional and nonpositional syntax, 455
spline bases, 411
spline effect, 407
TPF basis, 412
truncated power function basis, 412

SURVEYREG procedure, ESTIMATE statement
ODS table names, 458

SURVEYREG procedure, LSMEANS statement
ODS graph names, 475
ODS table names, 474

SURVEYREG procedure, 8314
ADJRSQ, 8340
adjusted R-square, 8351
alpha level, 8322, 8342
analysis of contrasts table, 8364
analysis of variance, 8350
ANOVA, 8340, 8350
ANOVA table, 8363
balanced repeated replication, 8353
BRR, 8353
BRR variance estimation, 8353
bubble plots, 8324
classification level table, 8363
classification variables, 8331
cluster sampling, 8369
clustering, 8332
coefficients of contrast table, 8364
computational details, 8348
computational resources, 8358
confidence level, 8322
confidence limits, 8340
contrasts, 8332, 8357
covariance of estimated regression coefficients

table, 8364
data summary table, 8360
degrees of freedom, 8356
design effects, 8349
design summary table, 8361
domain analysis, 8358, 8387, 8390
domain means comparison, 8390
domain summary table, 8361
domain variable, 8334
donor stratum, 8354
effect testing, 8357
Fay coefficient, 8328, 8353
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Fay’s BRR variance estimation, 8353
finite population correction, 8326, 8327, 8347
first-stage sampling rate, 8326
fit plots, 8324
fit statistics table, 8361
Hadamard matrix, 8328, 8355, 8364
heat map plots, 8324
inverse matrix of X’X, 8363
jackknife, 8354
jackknife coefficients, 8354, 8360
jackknife variance estimation, 8354
linearization method, 8352
list of strata, 8345
missing values, 8323, 8346
MSE, 8351
multiple R-square, 8351
number of replicates, 8329, 8353, 8354
ODS graph names, 8366
ODS Graphics, 8324, 8366
ordering of effects, 8323
output data sets, 8320, 8359
output jackknife coefficient, 8360
output replicate weights, 8359
output table names, 8365
pooled stratum, 8350
population totals, 8327, 8347
primary sampling units (PSUs), 8348
regression coefficients, 8349
regression coefficients table, 8364
regression estimators, 8372, 8379
replicate weights, 8351
replication methods, 8327, 8351, 8395
root MSE, 8351
sampling rates, 8326, 8347
sampling weights, 8343, 8346
simple random sampling, 8315, 8367
singularity level, 8333, 8341
stratification, 8344
stratified sampling, 8317, 8373
stratum collapse, 8350, 8383
stratum information table, 8362
subpopulation analysis, 8387, 8390
Taylor series variance estimation, 8330, 8352
testing effect, 8357
tests of model effects table, 8363
variance estimation, 8351
variance estimation table, 8362
VARMETHOD=BRR option, 8353
VARMETHOD=JACKKNIFE option, 8354
VARMETHOD=JK option, 8354
Wald test, 8357
weighting, 8343, 8346
X’X matrix, 8363

SURVEYSELECT procedure, 8402

allocation, 8434, 8450
allocation output data set, 8458
Bernoulli sampling, 8444
Brewer’s selection method, 8449, 8468
certainty size measure, 8413
certainty size proportion, 8414
Chromy’s selection method, 8443, 8447
cluster sampling, 8431
control sorting, 8410, 8430, 8439, 8465
displayed output, 8460
dollar-unit sampling, 8471
Hanurav-Vijayan selection method, 8445
initial seed, 8428
Introduction to Survey Procedures, 239, 242, 249
introductory example, 8403
joint selection probabilities, 8416
margin of error, 8452
maximum size measure, 8416
minimum size measure, 8421
missing values, 8438
Murthy’s selection method, 8449
nested sorting, 8439
Neyman allocation, 8435, 8452
ODS table names, 8464
optimal allocation, 8435, 8451
output data sets, 8454, 8458
Poisson sampling, 8444
PPS sampling, with replacement, 8446
PPS sampling, without replacement, 8445
PPS sequential sampling, 8447
PPS systematic sampling, 8447
proportional allocation, 8435, 8451, 8474
replicated sampling, 8403, 8425, 8465
Sampford’s selection method, 8450
sample output data set, 8454
sample selection methods, 8417, 8440
sample size, 8427
sample size allocation, 8403, 8434, 8450
sampling rate, 8425
sampling units, 8431
secondary input data set, 8454
sequential random sampling, 8443, 8465
serpentine sorting, 8439
simple random sampling, 8404, 8441
size measures, 8433, 8468
sorting, 8439
strata, 8406, 8433
stratified sampling, 8403, 8406, 8433
systematic random sampling, 8410, 8442
unrestricted random sampling, 8442
with-replacement sampling, 8441
without-replacement sampling, 8441

survival analysis, 6495, 6569
hazard ratio, 6573
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hazards, 6573
Introduction to Regression, 65
MCMC procedure, 4923
median survival times, 6573, 6582
power and sample size (POWER), 6347, 6356,

6422
rank tests, 6570
survival curves, 6573

survival data
Introduction to Regression, 66

survival distribution function
LIFETEST procedure, 4328, 4355, 4374
PHREG procedure, 5949
SURVEYPHREG procedure, 8270

survival estimates
ICLIFETEST procedure, 3920

survival function, see survival distribution function
estimates (ICPHREG), 3948
LIFEREG procedure, 4209, 4263
SEQDESIGN procedure, 7403

survival models, parametric, 4208
survival plot

LIFETEST procedure, 783
survival times

PHREG procedure, 5881, 6044, 6046
SURVEYPHREG procedure, 8269

%SurvivalSummaryTable macro
LIFETEST procedure, 838

%SurvivalTable macro
LIFETEST procedure, 837

survivor function, see survival distribution function
definition (PHREG), 5949
definition (SURVEYPHREG), 8270
estimate (PHREG), 6063
estimates (LOGISTIC), 4705
estimates (PHREG), 5903, 5942, 5989, 6062
PHREG procedure, 5881, 5942, 5950
SURVEYPHREG procedure, 8269

%SurvTabHeader macro
LIFETEST procedure, 837

sweep algorithm
REG procedure, 7085

Sweep operator
and generalized inverse (Introduction to

Modeling), 60
and log determinant (Introduction to Modeling),

61
elementary operations (Introduction to Modeling),

61
Gauss-Jordan elimination (Introduction to

Modeling), 60
pivots (Introduction to Modeling), 60
row operations (Introduction to Modeling), 60

switching model

NLIN procedure, 5646
symmetric and positive definite (SIM2D)

covariance matrix, 7724
symmetric binary variable

DISTANCE procedure, 2253
symmetric two-sided test

SEQDESIGN procedure, 7356
syntax

QUANTTREG procedure, 6842
systematic random sampling

SURVEYSELECT procedure, 8410, 8442
systematic trend, see surface trend

t distribution
definition of (MCMC), 4807
GLIMMIX procedure, 3137
MCMC procedure, 4770, 4807

t distribution
FMM procedure, 2498

t statistic
for equality of means, 8806

t test, 6495, 6529
equal variances, 6529
mean ratio, 6543
MULTTEST procedure, 5508, 5516, 5534
one-sample, 6498
power and sample size (POWER), 6300, 6304,

6317, 6324, 6337, 6344, 6399, 6400, 6408,
6416

Satterthwaite method, 6540
SURVEYMEANS procedure, 8187
two-sample , 6529
unequal variances, 6540

t test for correlation
power and sample size (POWER), 6288, 6291,

6380
t value

CALIS procedure, 1476
displaying (CALIS), 1520

t-square statistic
CLUSTER procedure, 2023, 2034

table (categorical) distribution
MCMC procedure, 4770, 4779

Table distribution
definition of (MCMC), 4808
MCMC procedure, 4808

table names
GLIMMIX procedure, 3247
HPMIXED procedure, 3863
MIXED procedure, 5319

table scores
FREQ procedure, 2647

table templates
ODS, 532
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tables
contingency (FREQ), 2564
contingency (SURVEYFREQ), 7978
crosstabulation (FREQ), 2564, 2714
crosstabulation (SURVEYFREQ), 7978, 8041
multiway (FREQ), 2564, 2714
multiway (SURVEYFREQ), 7978
one-way frequency (FREQ), 2564, 2713
one-way frequency (SURVEYFREQ), 7978, 8040

tables (KRIGE2D procedure)
Kriging Information, 4174, 4175
Model Information, 4175
Number of Observations, 4174
Store Information, 4152, 4175, 4178
Store Model Information, 4152, 4175, 4179
Store Variables Information, 4152, 4175, 4179

tables (SIM2D procedure)
Model Information, 7729
Number of Observations, 7728
Simulation Information, 7729
Store Information, 7712, 7729, 7741
Store Model Information, 7712, 7729, 7742
Store Variables Information, 7712, 7729, 7742

tables (VARIOGRAM procedure)
Approximate Correlation Matrix, 8995
Approximate Covariance Matrix, 8995
Autocorrelation Statistics, 8921, 8993, 8995
Convergence Status, 8995
Empirical Semivariogram, 8919, 8993, 8995
Fit Summary, 8995
Fitting General Information, 8995
Iteration History, 8995
Lagrange Multipliers, 8995
Model Information, 8995
Number of Observations, 8993
Optimization Information, 8995
Optimization Input Options, 8995
Optimization Results, 8995
Pairs Information, 8916, 8973–8975, 8993, 8995
Pairwise Distance Intervals, 8916, 8973–8975,

8993, 8995, 9009, 9016
Parameter Estimates, 8995
Parameter Estimates Results, 8995
Parameter Search, 8995
Problem Description, 8995
PROC VARIOGRAM statements, 8927
Projected Gradient, 8995
Starting Parameter Estimates, 8995

TABLES statement, use
CORRESP procedure, 2097

TABULATE procedure, 17
Tarone’s adjustment

Breslow-Day test (FREQ), 2701
Tarone-Ware test for homogeneity

LIFETEST procedure, 4328, 4353
power and sample size (POWER), 6347, 6358,

6422
tau-equivalent items (CALIS), 1608
Taylor series linearized variance estimation

SURVEYPHREG procedure, 8251
Taylor series variance estimation

Introduction to Survey Procedures, 248
SURVEYFREQ procedure, 8004
SURVEYLOGISTIC procedure, 8070, 8114
SURVEYMEANS procedure, 8173, 8186, 8188,

8190
SURVEYPHREG procedure, 8279
SURVEYREG procedure, 8330, 8352

TCALIS procedure(CALIS), 1169
Template Browser window, 730
template cleanup

LIFETEST procedure, 802, 818, 826, 853
template modification

ODS Graphics, 728
template primary statement

ODS Graphics, 774
TEMPLATE procedure

EXPAND option, 850
ODS, 532, 554, 569

template search path
ODS, 530

template statement order
ODS Graphics, 774

template store
Sashelp.Tmplmst, 721
Sasuser.Templat, 535, 721
user-defined, 721

template store, default
ODS Graphics, 640

templates
ODS, 523, 532

Templates window, 645, 718
templates, displaying contents

ODS, 532
templates, modifying

ODS, 535, 554, 562, 569
terminal knots

ICPHREG procedure, 3961
test components

MIXED procedure, 5262
test data

GLMSELECT procedure, 3724
QUANTSELECT procedure, 6949

test for a binomial proportion
SEQDESIGN procedure, 7396

test for a normal mean
SEQDESIGN procedure, 7395

test for a parameter
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SEQDESIGN procedure, 7405–7407
test for difference between two normal means

SEQDESIGN procedure, 7397
test for logistic regression parameter

SEQDESIGN procedure, 7348
test for proportional hazards regression parameter

SEQDESIGN procedure, 7348
test for regression parameter

SEQDESIGN procedure, 7347
test for two binomial proportions

SEQDESIGN procedure, 7399–7401
test for two survival distributions

SEQDESIGN procedure, 7403
test global null hypothesis

SURVEYLOGISTIC procedure, 8121
test indices

constraints (CALIS), 1224
test information

SEQTEST procedure, 7573
test of a covariance matrix against a diagonal pattern,

283, 1210, 1212
test of a covariance matrix against a fixed matrix, 1210
test of compound symmetry, 1209, 1211
test of equal variances and equal covariances, 282,

1209, 1211
test of equality of covariance matrices, 1209, 1212
test of equality of mean vectors, 1221
test of independence, 284
test of uncorrelatedness, 283, 284, 1210, 1212
test of uniform means, 1221
test of zero means, 1222
test set classification

DISCRIM procedure, 2180
test set validation

PLS procedure, 6235
TEST statement

syntax (Shared Concepts), 509
TEST survival-plot option

LIFETEST procedure, 787
test the H pattern of a covariance matrix, 1210
test-specification for covariance parameters

GLIMMIX procedure, 3097
testable hypothesis

Introduction to Modeling, 55, 57
testing covariance parameters

GLIMMIX procedure, 3096, 3204
testing effect

SURVEYREG procedure, 8357
testing hypotheses

Introduction to Modeling, 55
testing linear hypotheses

LOGISTIC procedure, 4561, 4589
MIANALYZE procedure, 5168, 5177
SURVEYLOGISTIC procedure, 8096, 8122

testing sphericity example (CALIS), 1547, 1550
testing uncorrelatedness example (CALIS), 1545, 1550
tests of fixed effects

GLIMMIX procedure, 3245
tests, hypothesis

examples (GLM), 3519
GLM procedure, 3415

tetrachoric correlation coefficient
FREQ procedure, 2659

text, adding to plots
ODS Graphics, 767

TEXTATTRS= GTL option
LIFETEST procedure, 810, 814

theophylline data
examples, GLIMMIX, 3373
examples, NLIN, 5654
examples, NLMIXED, 5744

theoretical correlation
INBREED procedure, 3992

theoretical foundation
TPSPLINE procedure, 8501

theoretical semivariogram models, see semivariogram
(VARIOGRAM)

thermometer parameterization
Shared Concepts, 392

thin plate spline (approx.)
GLIMMIX procedure, 3220

thinning of MCMC
Introduction to Bayesian Analysis, 136
Markov chain Monte Carlo, 136

three-way multidimensional scaling
MDS procedure, 4992

threshold response rate, 6686
tick value modification

LIFETEST procedure, 805
TICKVALUELIST= GTL option

LIFETEST procedure, 805
ties

checking for in CLUSTER procedure, 2019
MDS procedure, 5007
PHREG procedure, 5882, 5886, 5940, 5955,

6015, 6020
SURVEYPHREG procedure, 8261, 8292

time intervals
ICPHREG procedure, 3971
PHREG procedure, 6021

time requirements
ACECLUS procedure, 876
CLUSTER procedure, 2036
FACTOR procedure, 2338, 2342
VARCLUS procedure, 8869, 8872

time series data
REG procedure, 7083

time-dependent covariates
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PHREG procedure, 5881, 5887, 5894, 5898,
5941, 5943

SURVEYPHREG procedure, 8241, 8263
timing breakdown

GLMSELECT procedure, 3736
tipping-point approach

MIANALYZE procedure, 5207
title change

LIFETEST procedure, 803
TitleText0 macro variable

LIFETEST procedure, 810
TitleText1 macro variable

LIFETEST procedure, 810
TitleText2 macro variable

LIFETEST procedure, 810, 820, 825
Tobit model

LIFEREG procedure, 4210, 4292
Toeplitz structure

example (MIXED), 5371
GLIMMIX procedure, 3171
MIXED procedure, 5281

tolerance, see angle tolerance (VARIOGRAM), see lag
tolerance (VARIOGRAM)

tooltips
ODS Graphics, 698

TOST
equivalence tests (FREQ), 2669, 2679

TOST equivalence test
TTEST procedure, 8802, 8844

total covariance matrix
MIANALYZE procedure, 5176, 5177

total effect
CALIS procedure, 1257

total variance
MI procedure, 5092
MIANALYZE procedure, 5174

TPF basis
GLIMMIX procedure, 412
GLMSELECT procedure, 412
HPMIXED procedure, 412
LOGISTIC procedure, 412
ORTHOREG procedure, 412
PHREG procedure, 412
PLS procedure, 412
QUANTLIFE procedure, 412
QUANTREG procedure, 412
QUANTSELECT procedure, 412
ROBUSTREG procedure, 412
SURVEYLOGISTIC procedure, 412
SURVEYREG procedure, 412

TPSPLINE procedure
computational formulas, 8501
hat matrix, 8498
large data sets, 8521

main features, 8479
ODS graph names, 8506
ODS Graphics, 8492, 8506
ODS table names, 8505
order of the derivative, 8499
replicates, 8498
search range, 8499, 8516
significance level, 8498

trace output
ODS, 527
ODS Graphics, 728

trace plot
MI procedure, 5087

trace W method, see Ward’s method
traditional graphics

LIFETEST procedure, 4381
training data set

DISCRIM procedure, 2158
transformation

MI procedure, 5062
transformation matrix

orthogonalizing, 3611
orthonormalizing, 961, 3430

transformation options
PRINQUAL procedure, 6647
TRANSREG procedure, 8572

transformation standardization
TRANSREG procedure, 8582

transformations
affine(DISTANCE), 2252
ANOVA procedure, 970
cluster analysis, 2006
for multivariate ANOVA, 960, 3429, 3610
identity(DISTANCE), 2253
linear(DISTANCE), 2253
many-to-one(DISTANCE), 2252
MDS procedure, 4992, 4993, 5003, 5004, 5006,

5010–5012
monotone increasing(DISTANCE), 2252
oblique, 2299, 2302
one-to-one(DISTANCE), 2252
orthogonal, 2299, 2302
power(DISTANCE), 2253
repeated measures, 3499–3501
strictly increasing(DISTANCE), 2252

transformations for confidence intervals
ICLIFETEST procedure, 3894
LIFETEST procedure, 4339

transformations for repeated measures
GLM procedure, 3448
GLMPOWER procedure, 3625

transformed data
MDS procedure, 5013

transformed distances
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MDS procedure, 5014
transforming ordinal variables to interval

DISTANCE procedure, 2253
TRANSREG procedure

_TYPE_, 8688
additive models, 8584
algorithms, 8586
alpha level, 8584
ANOVA, 8703
ANOVA codings, 8649
ANOVA table, 8590, 8681
ANOVA table in OUTTEST= data set, 8691
asterisk (*) operator, 8565
at sign (@) operator, 8565
B-spline basis, 8568, 8680
bar (|) operator, 8565
Box-Cox alpha, 8580
Box-Cox convenient lambda, 8581
Box-Cox convenient lambda list, 8580
Box-Cox example, 8726
Box-Cox geometric mean, 8581
Box-Cox lambda, 8581
Box-Cox parameter, 8574
Box-Cox transformations, 8605
CANALS method, 8586
canonical correlation, 8594, 8602
canonical variables, 8594
casewise deletion, 8588
cell-means coding, 8579, 8604, 8650
center-point coding, 8578, 8653, 8660
centering, 8581, 8711
character OPSCORE variables, 8671
choice experiments, 8709
CLASS variables, prefix, 8585
classification variables, 8568, 8579
coefficients, redundancy, 8600
confidence limits, 8585, 8594, 8595, 8597
confidence limits, individual, 8595
confidence limits, mean, 8595
confidence limits, prefix, 8594, 8595, 8597
conjoint analysis, 8591, 8603, 8735, 8739
constant transformations, avoiding, 8670
constant variables, 8588, 8670
degrees of freedom, 8681
dependent variable list, 8598
dependent variable name, 8596
design matrix, 8596
details of model, 8585
deviations-from-means coding, 8578, 8604, 8653,

8660, 8706
dummy variable creation, 8553, 8567, 8568, 8579,

8596, 8598, 8649–8651, 8653, 8655,
8657–8666, 8706, 8707, 8709, 8710

duplicate variable names, 8691

effect coding, 8554, 8578, 8653, 8660, 8706
excluded observations, 8672
excluding nonscore observations, 8591
expansions, 8567
explicit intercept, 8671
frequency variable, 8564
full-rank coding, 8578
GLMMOD alternative, 8596, 8706
history, iteration, 8586
hypothesis tests, 8590, 8681
ID variables, 8565
ideal point model, 8603
ideal point models, 8751
identity transformation, 8572
implicit intercept, 8671
independent variable list, 8598
individual model fitting, 8586
initialization, 8585, 8669
interaction effects, 8565, 8603, 8604
interactions, quantitative, 8604
intercept, 8671
intercept, none, 8587
iteration histories, displaying, 8586
iterations, 8668
iterations, maximum number of, 8586
iterations, restarting, 8589, 8669
knots, 8575, 8576, 8614, 8679
knots, after expansion, 8581
knots, exterior, 8629
less-than-full-rank model, 8579, 8603, 8655
leverage, 8597
linear regression, 8602
linear transformation, 8571, 8676
macros, 8598
main effects, 8565, 8603, 8604
maximum redundancy analysis, 8586
METHOD=MORALS rolled output data set, 8688
METHOD=MORALS variable names, 8690
metric conjoint analysis, 8739
missing value restoration option, 8600
missing values, 8586, 8588, 8666, 8667, 8672
monotone transformations, 8602
monotonic B-spline transformation, 8571, 8678
monotonic transformation, ties not preserved,

8572, 8676
monotonic transformation, ties preserved, 8571,

8676
MORALS dependent variable name, 8596
MORALS method, 8586
multiple redundancy coefficients, 8600
multiple regression, 8602
multivariate multiple regression, 8602
names of variables, 8582
nonlinear fit functions, 8629
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nonlinear fit transformations, 8570
nonlinear regression functions, 8602
nonlinear transformations, 8602
nonmetric conjoint analysis, 8735
nonoptimal transformations, 8569
ODS Graph names, 8713
optimal scaling, 8676
optimal scoring, 8571, 8676
optimal transformations, 8571
order of CLASS levels, 8578, 8588
orthogonal coding, 8578, 8579
OUT= data set, 8592, 8688
output table names, 8712
output, limiting, 8590
OUTTEST= data set, 8560
part-worth utilities, 8735
passive observations, 8672
penalized B-spline example, 8730
penalized B-spline lambda, 8577
penalized B-spline t-options, 8577
penalized B-splines, 8639
piecewise polynomial splines, 8569, 8680
point models, 8672
polynomial-spline basis, 8569, 8680
predicted values, 8600
preference mapping, 8603, 8751
preference models, 8595
prefix, canonical variables, 8594
prefix, redundancy variables, 8601
prefix, residuals, 8600
random initializations, 8669
redundancy analysis, 8586, 8600, 8601, 8603,

8673
redundancy analysis, standardization, 8601
reference level, 8580, 8589, 8601
reference-cell coding, 8579, 8604, 8651, 8658
reflecting the transformation, 8582
regression functions, separate, 8633
regression table, 8590
regression table in OUTTEST= data set, 8691
reiteration, 8589, 8669
renaming and reusing variables, 8582
residuals, 8601
residuals, prefix, 8600
separate regression functions, 8633
short output, 8590
singularity criterion, 8590
smoothing spline transformation, 8572, 8641
spline t-options, 8575
spline transformation, 8572, 8678
splines, 8568, 8569, 8614, 8680, 8694, 8719
standardization, redundancy variables, 8601
standardization, transformation, 8582, 8590
standardizing, 8583

star (*) operator, 8565
transformation options, 8572
transformation standardization, 8582, 8590
Type II sums of squares, 8590
types of observations, 8591
utilities, 8591, 8735, 8739
utilities in OUTTEST= data set, 8691
variable list macros, 8598
variable names, 8690
vector preference models, 8595
weight variable, 8602
z scores, 8583

treatments in a design
specifying in PLAN procedure, 6129

tree diagram
binary tree, 8762
branch, 8762
children, 8762
definitions, 8762
leaves, 8762
node, 8762
parent, 8762
root, 8762

tree diagrams
cluster analysis, 8762

TREE procedure, 8762
missing values, 8776
OUT= data sets, 8776
output data sets, 8776
output table names, 8777

trend, see surface trend (VARIOGRAM)
trend comparisons

NLIN procedure, 5653
trend test

FREQ procedure, 2687
ICLIFETEST procedure, 3904, 3918, 3922

trend tests
LIFETEST procedure, 4328, 4352, 4353, 4369,

4379
TRIM= option

and other options (CLUSTER), 2017, 2023
triweight kernel (DISCRIM), 2177
truncated distributions

MCMC procedure, 4817
truncated exponential accrual for survival data

SEQDESIGN procedure, 7392
truncated power function

spline basis (Shared Concepts), 412
truncated power function basis

GLIMMIX procedure, 412
GLMSELECT procedure, 412
HPMIXED procedure, 412
LOGISTIC procedure, 412
ORTHOREG procedure, 412
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PHREG procedure, 412
PLS procedure, 412
QUANTLIFE procedure, 412
QUANTREG procedure, 412
QUANTSELECT procedure, 412
ROBUSTREG procedure, 412
SURVEYLOGISTIC procedure, 412
SURVEYREG procedure, 412

trust region (TR), 5707
trust region method

Shared Concepts, 502
trust-region algorithm

CALIS procedure, 1217, 1228, 1508
TTEST procedure

AB/BA crossover, 8805
AB/BA crossover design, 8835
alpha level, 8796
Behrens-Fisher problem, 8812
Cochran and Cox t approximation, 8797, 8812
compared to other procedures, 3395
computational methods, 8806
confidence intervals, 8797
crossover design, 8805, 8835
difference test, 8802
equivalence test, 8802, 8844
folded form F statistic, 8813
graphics, 8821
input data set, 8805
introductory example, 8789
lognormal distribution, 8797, 8844
lower one-sided t test, 8802
missing values, 8806
normal distribution, 8797
ODS graph names, 8821
ODS Graphics, 8821
ODS table names, 8821
one-sided t test, 8802
paired comparisons, 8788, 8830
paired t test, 8804
ratio test, 8802
Satterthwaite’s approximation, 8812
statistical graphics, 8821
TOST equivalence test, 8802, 8844
two-sided t test, 8802
uniformly most powerful unbiased test, 8809
upper one-sided t test, 8802

Tucker and Lewis’s Reliability Coefficient, 2344
Tukey’s adjustment

GLIMMIX procedure, 3113
GLM procedure, 3420
ICLIFETEST procedure, 3902
LIFETEST procedure, 4350
MIXED procedure, 5246

Tukey’s studentized range test, 968, 3437, 3480, 3482

Tukey-Kramer test, 968, 3437, 3480, 3482
tuning

BCHOICE procedure, 1049
MCMC procedure, 4792

turnbull intervals
ICLIFETEST procedure, 3920

tweedie
distribution (GENMOD), 2938

Tweedie distribution
GENMOD procedure, 3042

tweedie distribution for generalized linear models, see
tweedie GLM

tweedie GLM
GENMOD procedure, 2956

two-sample t test, 6529, 8825
TTEST procedure, 8788

two-sample t-test
power and sample size (POWER), 6271, 6337,

6344, 6345, 6416, 6418, 6419, 6459
two-sample test for binomial proportions

SEQDESIGN procedure, 7344
two-sample test for mean difference

SEQDESIGN procedure, 7344
two-sample tests

SEQDESIGN procedure, 7397
two-sided asymmetric design

SEQDESIGN procedure, 7414
two-sided repeated confidence intervals

SEQTEST procedure, 7566
two-sided t test

TTEST procedure, 8802
two-sided test

SEQDESIGN procedure, 7356
two-stage density linkage

CLUSTER procedure, 2016, 2032
two-stage robust estimation

CALIS procedure, 1471
Type 1 analysis

GENMOD procedure, 2857, 2947
Type 1 error rate

repeated multiple comparisons, 3478
Type 1 estimation

MIXED procedure, 5230
Type 1 testing

MIXED procedure, 5256
PHREG procedure, 6017

Type 2 estimation
MIXED procedure, 5230

Type 2 testing
MIXED procedure, 5256

Type 3 analysis
GENMOD procedure, 2857, 2948

Type 3 estimation
MIXED procedure, 5230
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Type 3 testing
MIXED procedure, 5256, 5319
PHREG procedure, 5970, 6017

Type H covariance structure, 3497
Type I error, 365, 367, 6363

SEQDESIGN procedure, 7335, 7368
Type I error probability

SEQDESIGN procedure, 7359, 7369, 7370
Type I sum of squares

computing in GLM, 3504
displaying (GLM), 3441
estimable functions for, 3440
estimable functions for (GLM), 3462
examples, 3526

Type I testing
GLIMMIX procedure, 3140

Type II error, 365, 367, 6363
SEQDESIGN procedure, 7335, 7368

Type II error probability
SEQDESIGN procedure, 7359, 7369, 7370

Type II sum of squares
computing in GLM, 3504
displaying (GLM), 3441
estimable functions for, 3440
estimable functions for (GLM), 3463
examples, 3526

Type II sums of squares
TRANSREG procedure, 8590

Type II testing
GLIMMIX procedure, 3140

Type III sum of squares
displaying (GLM), 3441
estimable functions for, 3440
estimable functions for (GLM), 3464
examples, 3526

Type III testing
GLIMMIX procedure, 3140

type III tests
HPMIXED procedure, 3856

Type IV sum of squares
computing in GLM, 3504
displaying (GLM), 3441
estimable functions for, 3440
estimable functions for (GLM), 3464
examples, 3526

TYPE= data sets
FACTOR procedure, 2334

TYPE=ACE
Data set option, 9041

TYPE=BOXPLOT
Data set option, 9041

TYPE=CALISFIT
Data set option, 9041

TYPE=CALISMDL

Data set option, 9041
TYPE=CHARTSUM

Data set option, 9041
TYPE=CORR

Data set option, 9042
TYPE=COV

Data set option, 9045
TYPE=CSSCP

Data set option, 9045
TYPE=DISTANCE

Data set option, 9045
TYPE=EST

Data set option, 9046
TYPE=LINEAR

Data set option, 9047
TYPE=LOGISMOD

Data set option, 9048
TYPE=MIXED

Data set option, 9048
TYPE=QUAD

Data set option, 9048
TYPE=SSCP

Data set option, 9048
TYPE=TREE

Data set option, 9049
TYPE=UCORR

Data set option, 9049
TYPE=UCOV

Data set option, 9050
TYPE=WEIGHT

Data set option, 9050

UDS statement
MCMC procedure, 4785

ULS method
CALIS procedure, 1464

ultra-Heywood cases, FACTOR procedure, 2341
ultrametric, definition, 2034
unbalanced data

caution (ANOVA), 946
unbalanced design

GLM procedure, 3395, 3474, 3502, 3524, 3551
NESTED procedure, 5565

uncertainty
KRIGE2D procedure, 4124
power and sample size, 371
VARIOGRAM procedure, 8913

uncertainty coefficients
FREQ procedure, 2653, 2662

uncorrelated
random variables (Introduction to Modeling), 49

unfolding
MDS procedure, 4992

Unicode
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LIFETEST procedure, 814
ODS Graphics, 742, 746, 748, 751, 754

unified family method
SEQDESIGN procedure, 7323, 7338, 7359, 7360,

7371, 7411
unified family method shape parameters

SEQDESIGN procedure, 7371
unified family triangular method

SEQDESIGN procedure, 7338, 7375, 7410
uniform accrual for survival data

SEQDESIGN procedure, 7390
uniform correlation structure

HPMIXED procedure, 3853
uniform distribution

definition of (MCMC), 4808
MCMC procedure, 4770, 4779, 4808

uniform kernel (DISCRIM), 2176
uniform-kernel estimation

CLUSTER procedure, 2023, 2029
uniformly most powerful unbiased test

TTEST procedure, 8809
unique factor

defined for factor analysis, 2297
univariate distributions, example

MODECLUS procedure, 5439
UNIVARIATE procedure, 17

Introduction to Nonparametric Analysis, 272, 274
univariate tests

repeated measures, 3496, 3497
unknown or missing parents

INBREED procedure, 3998
unrestricted random sampling

SURVEYSELECT procedure, 8442
unsquared Euclidean distances, 2017, 2018
unstructure

HPMIXED procedure, 3854
unstructured correlations

MIXED procedure, 5281
unstructured covariance

GLIMMIX procedure, 3171
unstructured covariance matrix

GLIMMIX procedure, 3165
MIXED procedure, 5281

unweighted least squares
CALIS procedure, 1464

unweighted least squares factor analysis, 2296
unweighted pair-group clustering, see average linkage,

see centroid method
update methods

NLMIXED procedure, 5707
UPGMA, see average linkage
UPGMC, see centroid method
upper one-sided t test

TTEST procedure, 8802

user defined sampler statement
MCMC procedure, 4785

user-defined distribution
MCMC procedure, 4769, 4779

user-defined samplers
MCMC procedure, 4962

using alternate forms, 6521
using the IF-ELSE logical control

MCMC procedure, 4872
using the STORE Statement

GLMSELECT procedure, 3721
utilities

TRANSREG procedure, 8735, 8739

V matrix
GLIMMIX procedure, 3174
MIXED procedure, 5276

validation data
GLMSELECT procedure, 3724
QUANTSELECT procedure, 6949

value lists
GLMPOWER procedure, 3626
POWER procedure, 6366

Van der Waerden scores
NPAR1WAY procedure, 5814

VAR statement, use
CORRESP procedure, 2097

VARCLUS procedure, see also TREE procedure
alternating least squares, 8855
centroid component, 8861
cluster components, 8853
cluster splitting, 8854, 8855, 8861, 8863, 8866
cluster, definition, 8853
computational resources, 8871
controlling number of clusters, 8863
eigenvalues, 8854, 8855, 8863
how to choose options, 8869
initializing clusters, 8862
interpreting output, 8872
iterative reassignment, 8854, 8855
MAXCLUSTERS= option, using, 8869
MAXEIGEN= option, using, 8869
memory requirements, 8872
missing values, 8869
multiple group component analysis, 8863
nearest component sorting phase, 8855
number of clusters, 8854, 8855, 8861, 8863, 8866
ODS Graph names, 8875
orthoblique rotation, 8854, 8862
output data sets, 8864, 8870
output table names, 8874
OUTSTAT= data set, 8864, 8870
OUTTREE= data set, 8871
PROPORTION= option, using, 8869
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search phase, 8855
splitting criteria, 8854, 8855, 8861, 8863, 8866
stopping criteria, 8861
time requirements, 8869, 8872
TYPE=CORR data set, 8870

VARCOMP procedure
classification variables, 8891
compared to MIXED procedure, 5217
compared to other procedures, 3395
computational details, 8894
confidence level, 8892
Confidence limits, 8897
confidence limits, 8892
dependent variables, 8886, 8891
estimation methods, 8890
example (MIXED), 5350
fixed effects, 8886, 8892
fixed-effects model, 8893
gauge R&R, 8890, 8895
input data sets, 8890
introductory example, 8886
maximum likelihood, 8890
methods of estimation, 8886, 8901
missing values, 8892
mixed model, 8893
negative variance components, 8893
ODS table names, 8900
random effects, 8885, 8892
random-effects model, 8893
relationship to PROC MIXED, 8900
repeatability and reproducibility, 8886
restricted maximum likelihood, 8890
seed for random number, 8890
variability, 8886
variance component, 8893

variability
VARCOMP procedure, 8886

variable (PHREG)
censoring, 5884

variable importance for projection, 6247
variable list macros

TRANSREG procedure, 8598
variable selection

CALIS procedure, 1439
discriminant analysis, 7933
Introduction to Regression, 65

variable-radius kernels
MODECLUS procedure, 5422

variable-reduction method, 8854
variables, see also classification variables

frequency (PRINQUAL), 6643
renaming (PRINQUAL), 6650
reusing (PRINQUAL), 6650
weight (PRINQUAL), 6650

variables, unaddressed
INBREED procedure, 3990, 3991

variance
GLMPOWER procedure, 3618, 3622
matrix, definition (Introduction to Modeling), 48
of random variable (Introduction to Modeling), 47

variance adjustment
SURVEYPHREG procedure, 8285

variance component
VARCOMP procedure, 8893

variance components, 5560
MIXED procedure, 5215, 5281

variance estimate
PHREG procedure, 6017

variance estimation
BRR, 248
BRR (SURVEYFREQ), 8011
BRR (SURVEYLOGISTIC), 8115
BRR (SURVEYMEANS), 8210
BRR (SURVEYPHREG), 8280
BRR (SURVEYREG), 8353
ICLIFETEST procedure, 3908
Introduction to Survey Procedures, 248
jackknife, 248
jackknife (SURVEYFREQ), 8014
jackknife (SURVEYLOGISTIC), 8117
jackknife (SURVEYMEANS), 8211
jackknife (SURVEYPHREG), 8283
jackknife (SURVEYREG), 8354
SURVEYFREQ procedure, 8004
SURVEYLOGISTIC procedure, 8113
SURVEYMEANS procedure, 8184
SURVEYPHREG procedure, 8279
SURVEYREG procedure, 8351
Taylor series, 248
Taylor series (SURVEYFREQ), 8004
Taylor series (SURVEYLOGISTIC), 8070, 8114
Taylor series (SURVEYMEANS), 8173, 8186,

8188, 8190
Taylor series (SURVEYPHREG), 8251, 8279
Taylor series (SURVEYREG), 8330, 8352

variance function
GENMOD procedure, 2856
GLIMMIX procedure, 3177
user-defined (GLIMMIX), 3177

variance inflation factors (VIF)
REG procedure, 7000

variance of means
LATTICE procedure, 4202

variance ratio
SURVEYPHREG procedure, 8285

variance ratios
HPMIXED procedure, 3847
MIXED procedure, 5266, 5275
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variance-covariance matrix
definition (Introduction to Modeling), 48

variances
FACTOR procedure, 2324
ratio of, 8825
ratio of (TTEST), 8813

variances of totals
SURVEYMEANS procedure, 8190

variances, test for equal, 2168
varimax method, 1261, 2296, 2322, 2323, 4020, 4021
VARIOGRAM procedure

angle classes, 8938, 8939, 8941, 8968, 8969
angle tolerance, 8936, 8939, 8941, 8968, 8969
anisotropy, 8939, 9007
autocorrelation, 8912, 8985
autocorrelation weights, 8985
bandwidth, 8938, 8941, 8970
boundary constraints, 8955, 8957
collocation, 8967, 8988
confidence level, 8935, 8943
confidence limits, 8938, 8944
correlation measures, 8975
covariance, 8912, 8965, 9028
covariance matrix, 8952
cubic semivariance model, 8945, 8961
cutoff distance, 8940
DATA= data set, 8927
distance classes, 8971, 8973, 8974
distance classification, 8969, 8970
distance interval, 8916
ergodicity, 8966
estimation, 8913
examples, 8914, 8997, 9007, 9021, 9028, 9032
exploratory data analysis, 8914
exponential semivariance model, 8945, 8961
Gaussian semivariance model, 8945, 8961
Geary’s c coefficient, 8912, 8936, 8986
grid search, 8953
initial values, 8953, 8979
input data set, 8927
isotropy, 8939
lag, 8915, 8971, 8973
lag distance, 8938, 8971
lag tolerance, 8938
Matérn semivariance model, 8945, 8961
measures of spatial continuity, 8912, 8963, 9028
model fitting, 8922, 8941, 8953, 8977, 8997, 9017
Moran scatter plot, 8921, 8928, 8988
Moran’s I coefficient, 8912, 8936, 8986
nested models, 8963
normality assumption, 8936, 8987
nugget effect, 8949, 8960, 8963
ODS graph names, 8996
ODS Graphics, 8929

ODS table names, 8995
ordinary kriging, 8913
OUTACWEIGHTS= data set, 8928
OUTDIST= data set, 8928, 8973
OUTMORAN= data set, 8928
OUTPAIR= data set, 8929
output data sets, 8928, 8929, 8990–8992
OUTVAR= data set, 8929
pairwise distance, 8916, 8938
panel plots, 8929
pentaspherical semivariance model, 8945, 8961
point pairs, 8915, 8964, 8967
power semivariance model, 8945, 8961
prediction, 8913
pseudo-semivariance, 8965
pseudo-semivariogram, 8965, 9021
randomization assumption, 8936, 8987
scale constraints, 8956
semivariance, 8912, 8963, 9028
semivariance computation, 8975
semivariance, classical, 8918, 8964
semivariance, empirical, 8964
semivariance, robust, 8918, 8940, 8964
semivariance, variance, 8964
semivariogram, 8912, 8963
semivariogram analysis, 8914
semivariogram and covariogram, 9028
semivariogram computation, 8914
semivariogram effective range, 8960
semivariogram parameters, 8960
semivariogram range, 8960
semivariogram sill, 8960
semivariogram, empirical, 8914, 8964
semivariogram, robust, 8964
sine hole effect semivariance model, 8945, 8961
spatial continuity, 8912, 8913, 8963, 8965, 9021,

9028
spatial lag, 8988
spatial prediction, 8913, 8965
spatial random field, 8958, 8963, 8965, 8966,

8977, 8985, 9021
spherical semivariance model, 8945, 8961
square root difference cloud, 9032
standard errors, 8913
stationarity, 8959, 8965, 9030
stochastic analysis, 8913
surface trend, 8912, 8915, 8964, 8976, 9007, 9011
theoretical semivariogram models, 8914, 8915,

8922, 8958, 8961, 9017
uncertainty, 8913
weighted average, 8921, 8988

VARIOGRAM procedure, plots
Fit, 8996
Fit panel, 8996
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Moran scatter plot, 8996
Observations, 8996
Pairs, 8996
Pairwise distance distribution, 8996
Semivariogram, 8996
Semivariogram panel, 8996

VARIOGRAM procedure, tables
Approximate Correlation Matrix, 8995
Approximate Covariance Matrix, 8995
Autocorrelation Statistics, 8921, 8993, 8995
Convergence Status, 8995
Empirical Semivariogram, 8919, 8993, 8995
Fit Summary, 8995
Fitting General Information, 8995
Iteration History, 8995
Lagrange Multipliers, 8995
Model Information, 8995
Number of Observations, 8993
Optimization Information, 8995
Optimization Input Options, 8995
Optimization Results, 8995
Pairs Information, 8916, 8973–8975, 8993, 8995
Pairwise Distance Intervals, 8916, 8973–8975,

8993, 8995, 9009, 9016
Parameter Estimates, 8995
Parameter Estimates Results, 8995
Parameter Search, 8995
Problem Description, 8995
PROC VARIOGRAM statements, 8927
Projected Gradient, 8995
Starting Parameter Estimates, 8995

VARMETHOD=BRR option
SURVEYLOGISTIC procedure, 8115
SURVEYMEANS procedure, 8210
SURVEYREG procedure, 8353

VARMETHOD=JACKKNIFE option
SURVEYLOGISTIC procedure, 8117
SURVEYMEANS procedure, 8211
SURVEYREG procedure, 8354

VARMETHOD=JK option
SURVEYLOGISTIC procedure, 8117
SURVEYMEANS procedure, 8211
SURVEYREG procedure, 8354

vector preference models
TRANSREG procedure, 8595

VIEWMIN= GTL option
LIFETEST procedure, 806

VIF, see variance inflation factors
VIP, 6247

Wald chi-square tests
SURVEYFREQ procedure, 8035

Wald confidence limits
proportions (SURVEYFREQ), 8017

risk difference (FREQ), 2675
Wald distribution

definition of (MCMC), 4808
MCMC procedure, 4770, 4808

Wald log-linear chi-square tests
SURVEYFREQ procedure, 8036

Wald test
GLIMMIX procedure, 3245
mixed model (MIXED), 5300, 5342
MIXED procedure, 5318, 5319
modification indices (CALIS), 1224, 1503
PHREG procedure, 5948, 5970, 5971, 5973,

6016, 6017, 6047
probability limit (CALIS), 1237
PROBIT procedure, 6750
SURVEYPHREG procedure, 8287, 8288, 8294
SURVEYREG procedure, 8357

Wald tests of covariance parameters
GLIMMIX procedure, 3103

Waller-Duncan test, 968, 3437, 3485
error seriousness ratio, 966, 3436
examples, 3520
multiple comparison (ANOVA), 986

Wampler data set, 5871
Ward’s minimum-variance method

CLUSTER procedure, 2016, 2033
Wei-Lin-Weissfeld model

PHREG procedure, 5975
Weibull distribution, 4208, 4244, 4263

definition of (MCMC), 4809
deviation from theoretical distribution, 7803
FMM procedure, 2498
MCMC procedure, 4770, 4809

Weibull model
ICPHREG procedure, 3961, 3974

weight
GLIMMIX procedure, 3144, 3174

weight matrix input
CALIS procedure, 1217, 1218

WEIGHT statement
ROBUSTREG procedure, 7213

WEIGHT variable
programming statements (SURVEYPHREG),

8263
weight variable

PRINQUAL procedure, 6650
weighted average

VARIOGRAM procedure, 8921, 8988
weighted average linkage

CLUSTER procedure, 2015, 2031
weighted Euclidean distance

MDS procedure, 4993, 4999, 5010
weighted Euclidean model

MDS procedure, 4992, 4999
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weighted generalized estimating equations (WGEE),
2832

weighted kappa coefficient
FREQ procedure, 2690, 2692
SURVEYFREQ procedure, 8026

weighted least squares, see fit criteria (VARIOGRAM)
CALIS procedure, 1466
CATMOD procedure, 1886, 1913
formulas (CATMOD), 1955
MDS procedure, 5009
normal equations (GLM), 3452

weighted means
GLM procedure, 3489

weighted pair-group methods, see McQuitty’s
similarity analysis, see median method

weighted percentiles, 7849
weighted product-moment correlation coefficients

CANCORR procedure, 1839
weighted Schoenfeld residuals

PHREG procedure, 5943, 5987
weighted score residuals

PHREG procedure, 5988
weighted-group method, see centroid method
weighting, see also sampling weights

FMM procedure, 2510
GLIMMIX procedure, 3175
HPMIXED procedure, 3857
Introduction to Survey Procedures, 247
MIXED procedure, 5291
SURVEYFREQ procedure, 7998, 8000
SURVEYLOGISTIC procedure, 8093, 8097
SURVEYMEANS procedure, 8179, 8181
SURVEYPHREG procedure, 8268, 8276
SURVEYREG procedure, 8343, 8346

weighting variables
FACTOR procedure, 2340

weights, see sampling weights
Welch t test

power and sample size (POWER), 6337, 6345,
6418

Welch’s ANOVA, 968, 3438
homogeneity of variance tests, 3488
using homogeneity of variance tests, 3560

Welsch’s multiple range test, 967, 3437, 3485
examples, 3520

WHERE statement
GLM procedure, 3456

Whitehead method
SEQDESIGN procedure, 7323, 7360, 7376, 7411

Whitehead one-sided asymmetric design
SEQDESIGN procedure, 7377

Whitehead one-sided symmetric design
SEQDESIGN procedure, 7376

Whitehead two-sided design

SEQDESIGN procedure, 7377
Whitehead’s double-triangular design

SEQDESIGN procedure, 7336
Whitehead’s triangular design

SEQDESIGN procedure, 7336
Whitehead’s triangular method

SEQDESIGN procedure, 7359
width, confidence intervals, 368, 6364
Wilcoxon rank-sum test, see Wilcoxon-Mann-Whitney

(rank-sum) test
Wilcoxon scores

NPAR1WAY procedure, 5814
Wilcoxon signed rank test

Introduction to Nonparametric Analysis, 274
Wilcoxon test for association

LIFETEST procedure, 4329
Wilcoxon test for homogeneity

LIFETEST procedure, 4328, 4353, 4365
Wilcoxon-Mann-Whitney (rank-sum) test

power and sample size (POWER), 6358, 6426
Wilcoxon-Mann-Whitney test

power and sample size (POWER), 6363, 6486
Wilks’ lambda, 960, 3429, 3496
Williams’ method

overdispersion (LOGISTIC), 4584
Wilson confidence limits

proportions (FREQ), 2666
proportions (SURVEYFREQ), 8018

WinBUGS specification of the gamma distribution
MCMC procedure, 4836

with-replacement sampling
SURVEYSELECT procedure, 8441

within-cluster SSCP matrix
ACECLUS procedure, 858

within-imputation covariance matrix
MIANALYZE procedure, 5176

within-imputation variance
MI procedure, 5092
MIANALYZE procedure, 5174

within-subject factors
repeated measures, 3446, 3496, 3599, 3606, 3624,

3633
without-replacement sampling

SURVEYSELECT procedure, 8441
WLS method

CALIS procedure, 1466
Wong’s hybrid method

CLUSTER procedure, 2017, 2029
working correlation matrix

GEE procedure, 2826, 2827, 2829
GENMOD procedure, 2929, 2930, 2958

worst linear function of parameters
MI procedure, 5087

WPGMA, see McQuitty’s similarity analysis
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WPGMC, see median method
WSSE, see fit criteria (VARIOGRAM)

XDATA= data sets
LIFEREG procedure, 4277

xOptions macro variable
LIFETEST procedure, 810

yOptions macro variable
LIFETEST procedure, 805, 806, 810

Yule’s Q statistic
FREQ procedure, 2655

z scores
TRANSREG procedure, 8583

z test
power and sample size (POWER), 6292, 6297,

6298, 6382, 6384
Zelen’s test

equal odds ratios (FREQ), 2701
zero variance component estimates

MIXED procedure, 5331
zero-inflated

models (GENMOD), 2954
zero-inflated model

finite mixture models (FMM), 2442, 2443, 2445,
2452, 2453, 2500, 2516

zero-inflated negative binomial
distribution (GENMOD), 2938

zero-inflated Poisson
distribution (GENMOD), 2937

zeros, structural and random
agreement statistics (FREQ), 2695

zeros, structural and sampling
CATMOD procedure, 1949
examples (CATMOD), 1977, 1981

zonal anisotropy
KRIGE2D procedure, 4165
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AB option
EXACT statement (NPAR1WAY), 5803
OUTPUT statement (NPAR1WAY), 5808
PROC NPAR1WAY statement, 5795

ABSCONV option
NLOPTIONS statement (CALIS), 490
NLOPTIONS statement (GLIMMIX), 490
NLOPTIONS statement (HPMIXED), 490
NLOPTIONS statement (PHREG), 490
NLOPTIONS statement (SURVEYPHREG), 490
NLOPTIONS statement (VARIOGRAM), 490
PROC ADAPTIVEREG statement, 896
PROC FMM statement, 2472
PROC ICPHREG statement, 3941

ABSCONV= option
PROC NLMIXED statement, 5694

ABSENT= option
PROC DISTANCE statement, 2261
VAR statement, 2269

ABSFCONV option
MODEL statement (GENMOD), 2907
MODEL statement (LOGISTIC), 4525, 4535
MODEL statement (SURVEYLOGISTIC), 8085
NLOPTIONS statement (CALIS), 490
NLOPTIONS statement (GLIMMIX), 490
NLOPTIONS statement (HPMIXED), 490
NLOPTIONS statement (PHREG), 490
NLOPTIONS statement (SURVEYPHREG), 490
NLOPTIONS statement (VARIOGRAM), 490
PROC ADAPTIVEREG statement, 896
PROC FMM statement, 2472
PROC ICPHREG statement, 3942
PROC IRT statement, 4015

ABSFCONV= option
MODEL statement (PHREG), 5934
PROC NLMIXED statement, 5694

ABSGCONV option
NLOPTIONS statement (CALIS), 490
NLOPTIONS statement (GLIMMIX), 490
NLOPTIONS statement (HPMIXED), 490
NLOPTIONS statement (PHREG), 490
NLOPTIONS statement (SURVEYPHREG), 490
NLOPTIONS statement (VARIOGRAM), 490
PROC ADAPTIVEREG statement, 896
PROC FMM statement, 2472
PROC ICPHREG statement, 3942
PROC IRT statement, 4015

ABSGCONV= option

PROC NLMIXED statement, 5694
ABSGTOL option

NLOPTIONS statement (CALIS), 490
NLOPTIONS statement (GLIMMIX), 490
NLOPTIONS statement (HPMIXED), 490
NLOPTIONS statement (PHREG), 490
NLOPTIONS statement (SURVEYPHREG), 490
NLOPTIONS statement (VARIOGRAM), 490
PROC FMM statement, 2472

ABSOLUTE option
PROC ACECLUS statement, 870
PROC MIXED statement, 5226, 5317

ABSORB statement
ANOVA procedure, 957
GLM procedure, 3412

ABSPCONV option
PROC GLIMMIX statement, 3065
PROC IRT statement, 4015

ABSPCONV= option
RANDOM statement, 5945

ABSTOL option
NLOPTIONS statement (CALIS), 490
NLOPTIONS statement (GLIMMIX), 490
NLOPTIONS statement (HPMIXED), 490
NLOPTIONS statement (PHREG), 490
NLOPTIONS statement (SURVEYPHREG), 490
NLOPTIONS statement (VARIOGRAM), 490
PROC FMM statement, 2472

ABSXCONV option
NLOPTIONS statement (CALIS), 491
NLOPTIONS statement (GLIMMIX), 491
NLOPTIONS statement (HPMIXED), 491
NLOPTIONS statement (PHREG), 491
NLOPTIONS statement (SURVEYPHREG), 491
NLOPTIONS statement (VARIOGRAM), 491

ABSXCONV= option
PROC NLMIXED statement, 5694

ABSXTOL option
NLOPTIONS statement (CALIS), 491
NLOPTIONS statement (GLIMMIX), 491
NLOPTIONS statement (HPMIXED), 491
NLOPTIONS statement (PHREG), 491
NLOPTIONS statement (SURVEYPHREG), 491
NLOPTIONS statement (VARIOGRAM), 491

ACCEPTTOL= option
PROC BCHOICE statement, 1017
PROC MCMC statement, 4748

ACCRUALRATEPERGROUP= option



9226 F Syntax Index

TWOSAMPLESURVIVAL statement (POWER),
6348

ACCRUALRATETOTAL= option
TWOSAMPLESURVIVAL statement (POWER),

6349
ACCRUALTIME= option

TWOSAMPLESURVIVAL statement (POWER),
6349

ACECLUS procedure
syntax, 869

ACECLUS procedure, BY statement, 873
ACECLUS procedure, FREQ statement, 874
ACECLUS procedure, PROC ACECLUS statement,

869
ABSOLUTE option, 870
CONVERGE= option, 870
DATA= option, 871
INITIAL= option, 871
MAXITER= option, 871
METHOD= option, 871
METRIC= option, 871
MPAIRS= option, 872
N= option, 872
NOPRINT option, 872
OUT= option, 872
OUTSTAT= option, 872
P= option, 872
PERCENT= option, 872
PP option, 872
PREFIX= option, 873
PROPORTION= option, 872
QQ option, 873
SHORT option, 873
SINGULAR= option, 873
T= option, 873
THRESHOLD= option, 873

ACECLUS procedure, VAR statement, 874
ACECLUS procedure, WEIGHT statement, 874
ACF option

MCMC statement (MI), 5053
ACFPLOT option

MCMC statement (MI), 5049
ACL

STATS= option (QUANTSELECT), 6938
ACOV option

MODEL statement (REG), 7017
ACOVMETHOD= option

MODEL statement (REG), 7017
ACTUAL option

MODEL statement (RSREG), 7267
ADAPTIVE option

MODEL statement (GLMSELECT), 3689
MODEL statement (QUANTSELECT), 6935

ADAPTIVEFDR option

PROC MULTTEST statement, 5494, 5524
ADAPTIVEHOCHBERG option

PROC MULTTEST statement, 5494
ADAPTIVEHOLM option

PROC MULTTEST statement, 5494
ADAPTIVEREG procedure, BY statement, 902
ADAPTIVEREG procedure, CLASS statement, 903

DESCENDING option, 903
ORDER= option, 903

ADAPTIVEREG procedure, FREQ statement, 904
ADAPTIVEREG procedure, MODEL statement, 904

ADDITIVE option, 907
ALPHA= option, 907
BETA option, 908
CVMETHOD option, 907
DESCENDING option, 905
DFPERBASIS= option, 907
DIST= option, 908
EVENT= option, 905
FAST option, 908
FORWARDONLY option, 909
H option, 908
K option, 908
KEEP= option, 909
LINEAR= option, 909
LINK= option, 909
MAXBASIS = option, 909
MAXORDER = option, 909
NOMISS option, 909
OFFSET= option, 909
ORDER= option, 906
REFERENCE= option, 906
VARPENALTY = option, 910

ADAPTIVEREG procedure, OUTPUT statement, 910
keyword option, 911
OUT= option, 911
PREDICTED keyword, 911
RESIDUAL keyword, 911

ADAPTIVEREG procedure, PARTITION statement,
911

FRACTION option, 912
ROLEVAR= option, 912

ADAPTIVEREG procedure, PROC ADAPTIVEREG
statement, 895

ABSCONV= option, 896
ABSFCONV= option, 896
ABSGCONV= option, 896
DATA= option, 895
DETAILS option, 896
FCONV= option, 897
GCONV= option, 897
HESSIAN= option, 897
MAXFUNC= option, 898
MAXITER= option, 898
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MAXTIME= option, 898
NAMELEN= option, 896
NLOPTIONS option, 896
NOTHREADS option, 899
NTHREADS= option, 902
OUTDESIGN=option, 899
plots(unpack) option, 900
PLOTS= option, 899
SEED= option, 901
SELFUZZ= option, 901
SINGULAR= option, 901
TECHNIQUE= option, 898
TESTDATA= option, 901
VALDATA= option, 902

ADAPTIVEREG procedure, SCORE statement, 912
keyword option, 913
OUT= option, 912, 913
PREDICTED keyword, 913
RESIDUAL keyword, 913

ADAPTIVEREG procedure, WEIGHT statement, 913
ADD statement, REG procedure, 7012
ADD= option

PROC DISTANCE statement, 2261
PROC STDIZE statement, 7839

ADDCELL option
EFFECTPLOT statement, 418

ADDCELL= option
MODEL statement (CATMOD), 1908

ADDITIVE option
MODEL statement (ADAPTIVEREG), 907
MODEL statement (TRANSREG), 8584
PROC GAM statement, 2765

ADJACENTPAIRS option
ROCCONTRAST statement (LOGISTIC), 4556

ADJBOUND= option
MODEL statement (SURVEYLOGISTIC), 8089

ADJDFE= option
ESTIMATE statement (GLIMMIX), 3105
ESTIMATE statement (ORTHOREG), 446
ESTIMATE statement (PLM), 446
ESTIMATE statement (SURVEYPHREG), 446
ESTIMATE statement (SURVEYREG), 446
LSMEANS statement (GLIMMIX), 3112
LSMEANS statement (MIXED), 5245
LSMEANS statement (ORTHOREG), 462
LSMEANS statement (PLM), 462
LSMEANS statement (SURVEYPHREG), 462
LSMEANS statement (SURVEYREG), 462
LSMESTIMATE statement (GLIMMIX), 3126
LSMESTIMATE statement (MIXED), 478
LSMESTIMATE statement (ORTHOREG), 478
LSMESTIMATE statement (PLM), 478
LSMESTIMATE statement (SURVEYPHREG),

478

LSMESTIMATE statement (SURVEYREG), 478
SLICE statement (GLIMMIX), 462
SLICE statement (MIXED), 462
SLICE statement (ORTHOREG), 462
SLICE statement (PLM), 462

ADJR1
STATS= option (QUANTSELECT), 6938

ADJRSQ
STATS= option (GLMSELECT), 3695

ADJRSQ option
MODEL statement (REG), 7017
MODEL statement (SURVEYREG), 8340

ADJUST option
MNAR statement (MI), 5057
PROC NPAR1WAY statement, 5795

ADJUST= option
ESTIMATE statement (GLIMMIX), 3105
ESTIMATE statement (LIFEREG), 447
ESTIMATE statement (LOGISTIC), 447
ESTIMATE statement (ORTHOREG), 447
ESTIMATE statement (PHREG), 447
ESTIMATE statement (PLM), 447
ESTIMATE statement (PROBIT), 447
ESTIMATE statement (QUANTREG), 447
ESTIMATE statement (SURVEYLOGISTIC),

447
ESTIMATE statement (SURVEYPHREG), 447
ESTIMATE statement (SURVEYREG), 447
LSMEANS statement (GENMOD), 463
LSMEANS statement (GLIMMIX), 3113
LSMEANS statement (GLM), 3420
LSMEANS statement (LIFEREG), 463
LSMEANS statement (LOGISTIC), 463
LSMEANS statement (MIXED), 5246
LSMEANS statement (ORTHOREG), 463
LSMEANS statement (PHREG), 463
LSMEANS statement (PLM), 463
LSMEANS statement (PROBIT), 463
LSMEANS statement (SURVEYLOGISTIC), 463
LSMEANS statement (SURVEYPHREG), 463
LSMEANS statement (SURVEYREG), 463
LSMESTIMATE statement (GENMOD), 479
LSMESTIMATE statement (GLIMMIX), 3126
LSMESTIMATE statement (LIFEREG), 479
LSMESTIMATE statement (LOGISTIC), 479
LSMESTIMATE statement (MIXED), 479
LSMESTIMATE statement (ORTHOREG), 479
LSMESTIMATE statement (PHREG), 479
LSMESTIMATE statement (PLM), 479
LSMESTIMATE statement (PROBIT), 479
LSMESTIMATE statement

(SURVEYLOGISTIC), 479
LSMESTIMATE statement (SURVEYPHREG),

479
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LSMESTIMATE statement (SURVEYREG), 479
SLICE statement (GENMOD), 463
SLICE statement (GLIMMIX), 463
SLICE statement (LIFEREG), 463
SLICE statement (LOGISTIC), 463
SLICE statement (MIXED), 463
SLICE statement (ORTHOREG), 463
SLICE statement (PHREG), 463
SLICE statement (PLM), 463
SLICE statement (PROBIT), 463
SLICE statement (SURVEYLOGISTIC), 463
SLICE statement (SURVEYPHREG), 463
SLICE statement (SURVEYREG), 463
STRATA statement (LIFETEST), 4350
TEST statement (ICLIFETEST), 3902

ADJUST= option (CL)
TABLES statement (SURVEYFREQ), 7983

ADJUSTOBS= option
MNAR statement, 5057

ADPREFIX= option
OUTPUT statement (TRANSREG), 8594

AFTER option
MODEL statement (TRANSREG), 8581

AGGREGATE= option
MODEL statement (GENMOD), 2915
MODEL statement (LOGISTIC), 4535
MODEL statement (PROBIT), 6734

AGREE option
EXACT statement (FREQ), 2580
OUTPUT statement (FREQ), 2590
TABLES statement (FREQ), 2601
TABLES statement (SURVEYFREQ), 7981
TEST statement (FREQ), 2638

AIC
STATS= option (GLMSELECT), 3695
STATS= option (QUANTSELECT), 6938

AIC option
MODEL statement (REG), 7017
MODEL statement (TRANSREG), 8577
PLOT statement (REG), 7097

AICC
STATS= option (GLMSELECT), 3695
STATS= option (QUANTSELECT), 6938

AICC option
MODEL statement (TRANSREG), 8577

AIPREFIX option
OUTPUT statement (TRANSREG), 8594

AJCHI option
OUTPUT statement (FREQ), 2590

ALG= option
PRIOR statement (MIXED), 5270

ALGORITHM option
PROC QUANTREG statement, 6843
PROC QUANTSELECT statement, 6920

ALGORITHM= option
PROC PLS statement, 6222
RANDOM statement (MCMC), 4781

ALIASING option
MODEL statement (GLM), 3439, 3564

ALL
DETAILS=STEPS option (GLMSELECT), 3686

_ALL_ effect
MANOVA statement (ANOVA), 960
MANOVA statement, H= option (GLM), 3429

ALL option
MODEL statement (LOESS), 4440
MODEL statement (REG), 7017
OUTPUT statement (FREQ), 2590
OUTPUT statement (LOESS), 4446
PROC CALIS statement, 1230
PROC CANCORR statement, 1833
PROC CANDISC statement, 1862
PROC CORRESP statement, 2098
PROC DISCRIM statement, 2164
PROC FACTOR statement, 2311
PROC GAM statement, 2765
PROC MODECLUS statement, 5416
PROC REG statement, 6999
PROC STEPDISC statement, 7939
PROFILE statement (NLIN), 5606
SHOW statement (PLM), 6175
TABLES statement (FREQ), 2601

ALLLABEL= option
BOXPLOT procedure, 1102

ALLNEWPARMS option
REFMODEL statement, 1355

ALLOBS option
PAINT statement (REG), 7091
REWEIGHT statement (REG), 7033

ALLOC= option
STRATA statement (SURVEYSELECT), 8434

ALLOC=NEYMAN option
STRATA statement (SURVEYSELECT), 8435

ALLOC=OPTIMAL option
STRATA statement (SURVEYSELECT), 8435

ALLOC=PROPORTIONAL option
STRATA statement (SURVEYSELECT), 8435

ALLOCMIN= option
STRATA statement (SURVEYSELECT), 8436

ALLSTATS option
OUTPUT statement (FMM), 2505
OUTPUT statement (GLIMMIX), 3149
OUTPUT statement (HPMIXED), 3845

ALOGIT function
RESPONSE statement (CATMOD), 1919

ALPHA = option
MODEL statement (ADAPTIVEREG), 907

ALPHA option
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MODELAVERAGE statement (GLMSELECT),
3696

ALPHA= option
BASELINE statement (ICPHREG), 3949
BASELINE statement (PHREG), 5903
COMPUTE statement (VARIOGRAM), 8935
CONTRAST statement (CATMOD), 1900
CONTRAST statement (LOGISTIC), 4516
CONTRAST statement (PHREG), 5923
CONTRAST statement (SURVEYLOGISTIC),

8076
DESIGN statement (SEQDESIGN), 7335
EFFECTPLOT statement, 418
ESTIMATE statement (GENMOD), 2904
ESTIMATE statement (GLIMMIX), 3106
ESTIMATE statement (HPMIXED), 3838
ESTIMATE statement (LIFEREG), 447
ESTIMATE statement (LOGISTIC), 447
ESTIMATE statement (MIXED), 5243
ESTIMATE statement (NLMIXED), 5711
ESTIMATE statement (ORTHOREG), 447
ESTIMATE statement (PHREG), 447
ESTIMATE statement (PLM), 447
ESTIMATE statement (PROBIT), 447
ESTIMATE statement (QUANTREG), 447
ESTIMATE statement (SURVEYLOGISTIC),

447
ESTIMATE statement (SURVEYPHREG), 447
ESTIMATE statement (SURVEYREG), 447
EXACT statement (FREQ), 2585
EXACT statement (GENMOD), 2905
EXACT statement (LOGISTIC), 4523
EXACT statement (NPAR1WAY), 5805
GEE procedure, MODEL statement, 2824
HAZARDRATIO statement (ICPHREG), 3954
HAZARDRATIO statement (PHREG), 5927
LOGISTIC statement (POWER), 6277
LSMEANS statement (GENMOD), 465
LSMEANS statement (GLIMMIX), 3115
LSMEANS statement (GLM), 3422
LSMEANS statement (HPMIXED), 3840
LSMEANS statement (LIFEREG), 465
LSMEANS statement (LOGISTIC), 465
LSMEANS statement (MIXED), 5247
LSMEANS statement (ORTHOREG), 465
LSMEANS statement (PHREG), 465
LSMEANS statement (PLM), 465
LSMEANS statement (PROBIT), 465
LSMEANS statement (SURVEYLOGISTIC), 465
LSMEANS statement (SURVEYPHREG), 465
LSMEANS statement (SURVEYREG), 465
LSMESTIMATE statement (GENMOD), 479
LSMESTIMATE statement (GLIMMIX), 3126
LSMESTIMATE statement (LIFEREG), 479

LSMESTIMATE statement (LOGISTIC), 479
LSMESTIMATE statement (MIXED), 479
LSMESTIMATE statement (ORTHOREG), 479
LSMESTIMATE statement (PHREG), 479
LSMESTIMATE statement (PLM), 479
LSMESTIMATE statement (PROBIT), 479
LSMESTIMATE statement

(SURVEYLOGISTIC), 479
LSMESTIMATE statement (SURVEYPHREG),

479
LSMESTIMATE statement (SURVEYREG), 479
MEANS statement (ANOVA), 964
MEANS statement (GLM), 3434
MODEL statement (CATMOD), 1909
MODEL statement (FMM), 2498
MODEL statement (GAM), 2771
MODEL statement (GENMOD), 2915
MODEL statement (GLIMMIX), 3134
MODEL statement (GLM), 3439
MODEL statement (HPMIXED), 3842
MODEL statement (ICPHREG), 3957
MODEL statement (LIFEREG), 4244
MODEL statement (LOESS), 4440
MODEL statement (LOGISTIC), 4535
MODEL statement (MIXED), 5252
MODEL statement (PHREG), 5934
MODEL statement (REG), 7017
MODEL statement (ROBUSTREG), 7185
MODEL statement (SURVEYLOGISTIC), 8085
MODEL statement (SURVEYPHREG), 8259
MODEL statement (TPSPLINE), 8498
MODEL statement (TRANSREG), 8580, 8584
MODEL statement (VARIOGRAM), 8943
MODEL statement(VARCOMP), 8892
MULTREG statement (POWER), 6284
ONECORR statement (POWER), 6289
ONESAMPLEFREQ statement (POWER), 6293
ONESAMPLEMEANS statement (POWER),

6301
ONEWAYANOVA statement (POWER), 6307
OUTPUT statement (GLIMMIX), 3149
OUTPUT statement (GLM), 3444
OUTPUT statement (HPMIXED), 3845
OUTPUT statement (LOGISTIC), 4551
OUTPUT statement (NLIN), 5603
OUTPUT statement (SURVEYLOGISTIC), 8092
OUTPUT statement (SURVEYREG), 8342
PAIREDFREQ statement (POWER), 6312
PAIREDMEANS statement (POWER), 6319
PATHDIAGRAM statement, 2327
POWER statement (GLMPOWER), 3617
PREDICT statement (NLMIXED), 5713
PROBMODEL statement (FMM, 2507
PROC CALIS statement, 1205
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PROC FACTOR statement, 2311
PROC GLM statement, 3407
PROC ICLIFETEST statement, 3894
PROC ICPHREG statement, 3941
PROC LIFETEST statement, 4339
PROC LOGISTIC statement, 4500
PROC MI statement, 5040
PROC MIANALYZE statement, 5164
PROC MIXED statement, 5227
PROC NLIN statement, 5585
PROC NLMIXED statement, 5695
PROC NPAR1WAY statement, 5796
PROC PHREG statement, 5892
PROC PLM statement (PLM), 6162
PROC QUANTLIFE (QUANTLIFE), 6803
PROC QUANTREG (QUANTREG), 6844
PROC REG statement, 6999
PROC STDRATE statement, 7874
PROC SURVEYLOGISTIC statement, 8065
PROC SURVEYMEANS statement, 8162
PROC SURVEYREG statement, 8322
PROC TTEST statement, 8796
RANDOM statement, 5945
RANDOM statement (GLIMMIX), 3156
RANDOM statement (HPMIXED), 3849
RANDOM statement (MIXED), 5273
RANDOM statement (NLMIXED), 5714
SCORE statement (LOGISTIC), 4557
SCORE statement (PLM), 6173
SLICE statement (GENMOD), 465
SLICE statement (GLIMMIX), 465
SLICE statement (LIFEREG), 465
SLICE statement (LOGISTIC), 465
SLICE statement (MIXED), 465
SLICE statement (ORTHOREG), 465
SLICE statement (PHREG), 465
SLICE statement (PLM), 465
SLICE statement (PROBIT), 465
SLICE statement (SURVEYLOGISTIC), 465
SLICE statement (SURVEYPHREG), 465
SLICE statement (SURVEYREG), 465
STRATA statement (SURVEYSELECT), 8436
TABLES statement (FREQ), 2602
TABLES statement (SURVEYFREQ), 7981
TWOSAMPLEFREQ statement (POWER), 6332
TWOSAMPLEMEANS statement (POWER),

6339
TWOSAMPLESURVIVAL statement (POWER),

6349
TWOSAMPLEWILCOXON statement

(POWER), 6360
ALPHAECV= option

FITINDEX statement, 1268
PROC CALIS statement, 1205

ALPHAINIT= option
REPEATED statement (GENMOD), 2928

ALPHALEV= option
PROC CALIS statement, 1205

ALPHAOUT= option
PROC CALIS statement, 1205

ALPHAP= option
MODEL statement (MIXED), 5252

ALPHAQT= option
PROC ICLIFETEST statement, 3894
PROC LIFETEST statement, 4339

ALPHARMS= option
PROC CALIS statement, 1205

ALPHARMSEA= option
FITINDEX statement, 1268

ALT= option
DESIGN statement (SEQDESIGN), 7335

ALTERNATE= option
PROC MDS statement, 4999

ALTREF= option
PROC SEQDESIGN statement, 7331

AM option
PROC MODECLUS statement, 5416

ANGLE= option
MODEL statement (KRIGE2D), 4144
SIMULATE statement (SIM2D), 7715

ANGLETOLERANCE= option
COMPUTE statement (VARIOGRAM), 8936

ANNOTATE= option
PLOT statement (BOXPLOT), 1102
PLOT statement (REG), 7097
PROC BOXPLOT statement, 1089
PROC LIFETEST statement, 4382
PROC REG statement, 7089

ANODEV= option
MODEL statement (GAM), 2771

ANOVA
DETAILS=STEPS option (GLMSELECT), 3686

ANOVA option
MODEL statement (SURVEYREG), 8340
OUTPUT statement (NPAR1WAY), 5808
PRINT statement (REG), 7029
PROC CANDISC statement, 1862
PROC DISCRIM statement, 2164
PROC NPAR1WAY statement, 5796

ANOVA procedure
syntax, 954

ANOVA procedure, ABSORB statement, 957
ANOVA procedure, BY statement, 957
ANOVA procedure, FREQ statement, 959
ANOVA procedure, MANOVA statement, 959

_ALL_ effect, 960
CANONICAL option, 961
E= option, 960
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H= option, 960
INTERCEPT effect, 960
M= option, 960
MNAMES= option, 961
MSTAT= option, 961
ORTH option, 961
PREFIX= option, 961
PRINTE option, 962
PRINTH option, 962
SUMMARY option, 962

ANOVA procedure, MEANS statement, 963
ALPHA= option, 964
BON option, 965
CLDIFF option, 965
CLM option, 965
DUNCAN option, 965
DUNNETT option, 965
DUNNETTL option, 965
DUNNETTU option, 965
E= option, 966
GABRIEL option, 966
HOVTEST option, 966
KRATIO= option, 966
LINES option, 967
LSD option, 967
NOSORT option, 967
REGWQ option, 967
SCHEFFE option, 967
SIDAK option, 967
SMM option, 967
SNK option, 967
TUKEY option, 968
WALLER option, 968
WELCH option, 968

ANOVA procedure, MODEL statement, 968
INTERCEPT option, 968
NOUNI option, 968

ANOVA procedure, PROC ANOVA statement, 954
DATA= option, 955
MANOVA option, 955
MULTIPASS option, 955
NAMELEN= option, 955
NOPRINT option, 955
OUTSTAT= option, 956
PLOTS= option, 956

ANOVA procedure, REPEATED statement, 969
CANONICAL option, 971
CONTRAST keyword, 971
factor specification, 970
HELMERT keyword, 971
IDENTITY keyword, 971
MEAN keyword, 971
MSTAT= option, 971
NOM option, 972

NOU option, 972
POLYNOMIAL keyword, 971
PRINTE option, 972
PRINTH option, 972
PRINTM option, 972
PRINTRV option, 972
PROFILE keyword, 971
SUMMARY option, 972
UEPSDEF option, 972

ANOVA procedure, TEST statement, 973
E= effects, 973
H= effects, 973

ANOVAF option
PROC MIXED statement, 5227

ANOVA procedure, CLASS statement, 958
REF= option, 958
REF= variable option, 958
TRUNCATE option, 959

ANOVA procedure, PROC ANOVA statement
ORDER= option, 955

ANTIALIAS= option
ODS GRAPHICS statement, 616

ANTIALIASMAX= option
ODS GRAPHICS statement, 617

AOV option
PROC NESTED statement, 5563

APPROXIMATIONS option
OUTPUT statement (TRANSREG), 8594
PROC PRINQUAL statement, 6635

APREFIX= option
PROC PRINQUAL statement, 6635

AREA option
PROCESS statement (SPP), 7789

ARRANGE= option
PATHDIAGRAM statement, 1334, 2328

ARRAY statement
MCMC procedure, 4762
NLMIXED procedure, 5709

ARSIN transformation
MODEL statement (TRANSREG), 8569
TRANSFORM statement (PRINQUAL), 6645

ASE
STATS= option (GLMSELECT), 3695

ASINGULAR= option
NLOPTIONS statement (CALIS), 491
NLOPTIONS statement (GLIMMIX), 491
NLOPTIONS statement (HPMIXED), 491
NLOPTIONS statement (PHREG), 491
NLOPTIONS statement (SURVEYPHREG), 491
NLOPTIONS statement (VARIOGRAM), 491
PROC CALIS statement, 1206
PROC NLMIXED statement, 5695

ASSESS statement
GENMOD procedure, 2884
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PHREG procedure, 5897
ASYCORR option

PROC GLIMMIX statement, 3066
PROC MIXED statement, 5227

ASYCOV option
PROC GLIMMIX statement, 3066
PROC MIXED statement, 5227, 5350

ASYCOV= option
PROC CALIS statement, 1206

ASYMPCOV= option
PROC ROBUSTREG statement, 7178, 7180,

7181
AT MEANS option

LSMEANS statement (GLIMMIX), 3115
LSMEANS statement (MIXED), 5247
LSMESTIMATE statement (GLIMMIX), 3127

AT option
EFFECTPLOT statement, 419
LSMEANS statement (GLIMMIX), 3115
LSMEANS statement (GLM), 3422, 3490
LSMEANS statement (MIXED), 5247, 5248
LSMESTIMATE statement (GLIMMIX), 3127
ODDSRATIO statement (LOGISTIC), 4549

AT= option
HAZARDRATIO statement (ICPHREG), 3954
HAZARDRATIO statement (PHREG), 5928
LSMEANS statement (GENMOD), 465
LSMEANS statement (LIFEREG), 465
LSMEANS statement (LOGISTIC), 465
LSMEANS statement (ORTHOREG), 465
LSMEANS statement (PHREG), 465
LSMEANS statement (PLM), 465
LSMEANS statement (PROBIT), 465
LSMEANS statement (SURVEYLOGISTIC), 465
LSMEANS statement (SURVEYPHREG), 465
LSMEANS statement (SURVEYREG), 465
LSMESTIMATE statement (GENMOD), 479
LSMESTIMATE statement (LIFEREG), 479
LSMESTIMATE statement (LOGISTIC), 479
LSMESTIMATE statement (MIXED), 479
LSMESTIMATE statement (ORTHOREG), 479
LSMESTIMATE statement (PHREG), 479
LSMESTIMATE statement (PLM), 479
LSMESTIMATE statement (PROBIT), 479
LSMESTIMATE statement

(SURVEYLOGISTIC), 479
LSMESTIMATE statement (SURVEYPHREG),

479
LSMESTIMATE statement (SURVEYREG), 479
SLICE statement (GENMOD), 465
SLICE statement (GLIMMIX), 465
SLICE statement (LIFEREG), 465
SLICE statement (LOGISTIC), 465
SLICE statement (MIXED), 465

SLICE statement (ORTHOREG), 465
SLICE statement (PHREG), 465
SLICE statement (PLM), 465
SLICE statement (PROBIT), 465
SLICE statement (SURVEYLOGISTIC), 465
SLICE statement (SURVEYPHREG), 465
SLICE statement (SURVEYREG), 465

ATLEN= option
EFFECTPLOT statement, 419

ATORDER= option
EFFECTPLOT statement, 420

ATRISK option
PROC LIFETEST statement, 4339
PROC PHREG statement, 5892

AUTOCORLAG= option
PROC MCMC statement, 4748

AUTOCORRELATION option
VARIOGRAM procedure, COMPUTE statement,

8936
AUTOCORRELATION STATISTICS= option

VARIOGRAM procedure, COMPUTE statement,
8936

AVERAGE option
PROC INBREED statement, 3988
TEST statement (PHREG), 5948

AVERAGED option
MODEL statement (CATMOD), 1909

B option
MODEL statement (REG), 7017
PROC CANCORR statement, 1834

BANDMAX= option, see BANDMAXTIME= option
BANDMAXTIME= option

PROC LIFETEST statement, 4339
BANDMIN= option, see BANDMINTIME= option
BANDMINTIME= option

PROC LIFETEST statement, 4339
BANDWIDTH= option

COMPUTE statement (VARIOGRAM), 8938
BARNARD option

EXACT statement (FREQ), 2581
BASEFIT= option

FITINDEX statement, 1268
PROC CALIS statement, 1206

BASEFUNC= option
FITINDEX statement, 1268
PROC CALIS statement, 1207

BASEHAZ= option
MODEL statement (ICPHREG), 3957

BASELINE statement
ICPHREG procedure, 3946
PHREG procedure, 5898
QUANTLIFE procedure, 6805

BASIS option
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EFFECT statement, spline (GLIMMIX), 408
EFFECT statement, spline (GLMSELECT), 408
EFFECT statement, spline (HPMIXED), 408
EFFECT statement, spline (LOGISTIC), 408
EFFECT statement, spline (ORTHOREG), 408
EFFECT statement, spline (PHREG), 408
EFFECT statement, spline (PLS), 408
EFFECT statement, spline (QUANTLIFE), 408
EFFECT statement, spline (QUANTREG), 408
EFFECT statement, spline (QUANTSELECT),

408
EFFECT statement, spline (ROBUSTREG), 408
EFFECT statement, spline (SURVEYLOGISTIC),

408
EFFECT statement, spline (SURVEYREG), 408

BAYES statement
FMM procedure, 2483
GENMOD procedure, 2885
LIFEREG procedure, 4225
PHREG procedure, 5905

BCHOICE procedure
CLASS statement, 1026
MODEL statement, 1029
PREDDIST statement, 1032
RANDOM statement, 1032
syntax, 1016

BCHOICE procedure, BY statement, 1026
BCHOICE procedure, MODEL statement, 1029

CHOICESET= option, 1029
COEFFPRIOR= option, 1029
COVPRIOR= option, 1030
COVTYPE= option, 1030
INIT= option, 1030
LAMBDAPRIOR= option, 1031
NEST= option, 1031
SAMELAMBDA option, 1031
TYPE= option, 1031

BCHOICE procedure, PREDDIST statement, 1032
COVARIATES= option, 1032
NALTER= option, 1032
NALTERNATIVE= option, 1032
OUTPRED= option, 1032

BCHOICE procedure, PROC BCHOICE statement
ACCEPTTOL= option, 1017
DATA= option, 1017
DIAG= option, 1018
DIAGNOSTICS= option, 1018
DIC option, 1020
HITPROB option, 1020
INF= option, 1020
LOGPOST option, 1020
MAXTUNE= option, 1020
MCHISTORY= option, 1020
MINTUNE= option, 1021

NBI= option, 1021
NMC= option, 1021
NOCLPRINT option, 1021
NTHREADS= option, 1021
NTU= option, 1021
OUTPOST=option, 1022
PLOTS= option, 1022
SCALE option, 1024
SEED= option, 1024
STATISTICS= option, 1025
STATS= option, 1025
TARGACCEPT= option, 1026
THIN= option, 1026
TUNEWT= option, 1026

BCHOICE procedure, RANDOM statement, 1032
COVPRIOR= option, 1033
MONITOR option, 1033
NOOUTPOST option, 1034
REMEAN option, 1034
SUBJECT= option, 1034
TYPE= option, 1035

BCHOICE procedure, CLASS statement, 1027
CPREFIX= option, 1027
DESCENDING option, 1027
LPREFIX= option, 1027
MISSING option, 1027
ORDER= option, 1027
PARAM= option, 1028
REF= option, 1028
TRUNCATE option, 1028

BCORR option
PROC CANDISC statement, 1862
PROC DISCRIM statement, 2164
PROC STEPDISC statement, 7939

BCOV option
PROC CANDISC statement, 1862
PROC DISCRIM statement, 2164
PROC MIANALYZE statement, 5164
PROC STEPDISC statement, 7939
TEST statement (MIANALYZE), 5169

BDATA= option
PRIOR statement (MIXED), 5270

BDCHI option
OUTPUT statement (FREQ), 2590

BDT option (CMH)
TABLES statement (FREQ), 2610

BEGINCNST statement
MCMC procedure, 4763

BEGINNODATA statement
MCMC procedure, 4765

BEGINPRIOR statement
MCMC procedure, 4765

BENZECRI option
PROC CORRESP statement, 2099
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BEST= option
MODEL statement (LOGISTIC), 4535
MODEL statement (PHREG), 5934
MODEL statement (REG), 7017
PARMS statement (NLMIXED), 5712
PROC NLIN statement, 5585

BETA option
MODEL statement (ADAPTIVEREG), 908

BETA= option
DESIGN statement (SEQDESIGN), 7335
PROC CLUSTER statement, 2016

BETABOUNDARY= option
PROC SEQTEST statement, 7545

BETAOVERLAP= option
DESIGN statement, 7335
PROC SEQTEST statement, 7545

BETAPRIORPARMS option
BAYES statement (FMM), 2485

BIAS option
PROC NLIN statement, 5585

BIASKUR option
PROC CALIS statement, 1209

BIASTEST option
PROC ROBUSTREG statement, 7181

BIC
STATS= option (GLMSELECT), 3695

BIC option
MODEL statement (REG), 7018
PLOT statement (REG), 7097

BIN option
EFFECTPLOT statement, 420

BINARY option
PROC CORRESP statement, 2099

BINOMIAL option
EXACT statement (FREQ), 2581
OUTPUT statement (FREQ), 2590
TABLES statement (FREQ), 2602
TEST statement (MULTTEST), 5509

BINS= option
PROC FASTCLUS statement, 2404

BINWIDTH= option
MODEL statement (LOGISTIC), 4535

BIVAR statement
KDE procedure, 4083

BIVSTATS option
BIVAR statement, 4084

BLOCKLABELPOS= option
PLOT statement (BOXPLOT), 1102

BLOCKLABTYPE= option
PLOT statement (BOXPLOT), 1102

BLOCKPOS= option
PLOT statement (BOXPLOT), 1102

BLOCKREP option
PLOT statement (BOXPLOT), 1102

BLOCKS option
PROCESS statement (SPP), 7794

BLOCKVAR= option
PLOT statement (BOXPLOT), 1102

BLUP= option
PROC HPMIXED statement, 3827

BODY= option
ODS HTML statement, 620

BON option
MEANS statement (ANOVA), 965
MEANS statement (GLM), 3434

BONFERRONI option
PROC MULTTEST statement, 5495, 5519

BOOTCI option
BOOTSTRAP statement (NLIN), 5595

BOOTCORR option
BOOTSTRAP statement (NLIN), 5595

BOOTCOV option
BOOTSTRAP statement (NLIN), 5595

BOOTDATA option
BOOTSTRAP statement (NLIN), 5595

BOOTPLOTS option
BOOTSTRAP statement (NLIN), 5595

BOOTSTRAP option
MCMC statement (MI), 5052
PROC ICLIFETEST statement, 3894
PROC MULTTEST statement, 5490, 5495, 5519,

5534
BOOTSTRAP statement

NLIN procedure, 5594
BORDER= option

ODS GRAPHICS statement, 617
BOUNDARY option

PROC MODECLUS statement, 5416
BOUNDARY= option

PROC SEQTEST statement, 7545
BOUNDARYADJ(ACCEPT)= option

PROC SEQTEST statement, 7548
BOUNDARYADJ(ALPHA)= option

PROC SEQTEST statement, 7548
BOUNDARYADJ(BETA)= option

PROC SEQTEST statement, 7548
BOUNDARYADJ(LOWERACCEPT)= option

PROC SEQTEST statement, 7549
BOUNDARYADJ(LOWERALPHA)= option

PROC SEQTEST statement, 7548
BOUNDARYADJ(LOWERBETA)= option

PROC SEQTEST statement, 7549
BOUNDARYADJ(LOWERREJECT)= option

PROC SEQTEST statement, 7548
BOUNDARYADJ(REJECT)= option

PROC SEQTEST statement, 7548
BOUNDARYADJ(UPPERACCEPT)= option

PROC SEQTEST statement, 7549
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BOUNDARYADJ(UPPERALPHA)= option
PROC SEQTEST statement, 7548

BOUNDARYADJ(UPPERBETA)= option
PROC SEQTEST statement, 7549

BOUNDARYADJ(UPPERREJECT)= option
PROC SEQTEST statement, 7548

BOUNDARYADJ= option
PROC SEQTEST statement, 7547

BOUNDARYKEY= option
DESIGN statement, 7336
PROC SEQTEST statement, 7546

BOUNDARYSCALE= option
PROC SEQDESIGN statement, 7331
PROC SEQTEST statement, 7546

BOUNDS statement
CALIS procedure, 1241
NLIN procedure, 5596
NLMIXED procedure, 5709

BOWKER option
OUTPUT statement (FREQ), 2597

BOX= option
PROC BOXPLOT statement, 1089

BOXCONNECT= option
PLOT statement (BOXPLOT), 1103

BOXCOX transformation
MODEL statement (TRANSREG), 8570
TRANSFORM statement (MI), 5062

BOXES= option
PLOT statement (BOXPLOT), 1103

BOXFILL= option
PLOT statement (BOXPLOT), 1103

BOXPLOT procedure
HISTORY= option, 1083
syntax, 1089

BOXPLOT procedure, BY statement, 1090
BOXPLOT procedure, ID statement, 1091
BOXPLOT procedure, INSET statement, 1091

CFILL= option, 1093
CFILLH= option, 1093
CFRAME= option, 1093
CHEADER= option, 1093
CSHADOW= option, 1093
CTEXT= option, 1093
DATA option, 1093
FONT= option, 1093
FORMAT= option, 1093
HEADER= option, 1093
HEIGHT= option, 1094
NOFRAME option, 1094
POSITION= option, 1094, 1131, 1132
REFPOINT= option, 1094

BOXPLOT procedure, INSETGROUP statement, 1094
CFILL= option, 1095
CFILLH= option, 1096

CFRAME= option, 1096
CHEADER= option, 1096
CTEXT= option, 1096
FONT= option, 1096
FORMAT= option, 1096
HEADER= option, 1096
HEIGHT= option, 1096
NOFRAME option, 1096
POSITION= option, 1096

BOXPLOT procedure, PLOT statement, 1097
ALLLABEL= option, 1102
ANNOTATE= option, 1102
BLOCKLABELPOS= option, 1102
BLOCKLABTYPE= option, 1102
BLOCKPOS= option, 1102
BLOCKREP option, 1102
BLOCKVAR= option, 1102
BOX= data set, 1124
BOXCONNECT= option, 1103
BOXES= option, 1103
BOXFILL= option, 1103
BOXSTYLE= option, 1103, 1145
BOXWIDTH= option, 1104
BOXWIDTHSCALE= option, 1104, 1150
BWSLEGEND option, 1104
CAXIS= option, 1105
CBLOCKLAB= option, 1105
CBLOCKVAR= option, 1105
CBOXES= option, 1105
CBOXFILL= option, 1105
CCLIP= option, 1106
CCONNECT= option, 1106
CCOVERLAY= option, 1106
CFRAME= option, 1106
CGRID= option, 1106
CHREF= option, 1106
CLABEL= option, 1106
CLIPFACTOR= option, 1106, 1138
CLIPLEGEND= option, 1106
CLIPLEGPOS= option, 1107
CLIPSUBCHAR= option, 1107
CLIPSYMBOL= option, 1107
CLIPSYMBOLHT= option, 1107
CONTINUOUS option, 1107
COVERLAY= option, 1107
COVERLAYCLIP= option, 1107
CTEXT= option, 1107
CVREF= option, 1108
DATA= data set, 1123
DESCRIPTION= option, 1108
ENDGRID option, 1108
FONT= option, 1108
FRONTREF option, 1108
GRID= option, 1108
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HAXIS= option, 1108
HEIGHT= option, 1109
HISTORY= data set, 1125, 1126
HMINOR= option, 1109
HOFFSET= option, 1109
HORIZONTAL option, 1109
HREF= option, 1109
HREFLABELS= option, 1110
HREFLABPOS= option, 1110
HTML= option, 1110
IDCOLOR= option, 1110
IDCTEXT= option, 1110
IDFONT= option, 1110
IDHEIGHT= option, 1111
IDSYMBOL= option, 1111
IDSYMBOLHEIGHT= option, 1111
INTERVAL= option, 1111
LABELANGLE= option, 1112
LBOXES= option, 1112
LENDGRID= option, 1112
LGRID= option, 1112
LHREF= option, 1112
LOVERLAY= option, 1112
LVREF= option, 1113
MAXPANELS= option, 1113
MISSBREAK option, 1113
NAME= option, 1113
NLEGEND option, 1113
NOBYREF option, 1113
NOCHART option, 1113
NOFRAME option, 1113
NOHLABEL option, 1113
NOOVERLAYLEGEND option, 1114
NOSERIFS option, 1114
NOTCHES option, 1114, 1149
NOTICKREP option, 1114
NOVANGLE option, 1114
NPANELPOS= option, 1115
ODS graphics, 1152
ODSFOOTNOTE2= option, 1115
ODSFOOTNOTE= option, 1115
ODSTITLE2= option, 1116
ODSTITLE= option, 1115
OUTBOX= data set, 1121
OUTBOX= option, 1086, 1116
OUTHISTORY= data set, 1122
OUTHISTORY= option, 1116
OVERLAY= option, 1116
OVERLAYCLIPSYM= option, 1117
OVERLAYCLIPSYMHT= option, 1117
OVERLAYHTML= option, 1117
OVERLAYID= option, 1117
OVERLAYLEGLAB= option, 1117
OVERLAYSYM= option, 1117

OVERLAYSYMHT= option, 1117
PAGENUM= option, 1117
PAGENUMPOS= option, 1118
PCTLDEF= option, 1118
REPEAT option, 1118
SKIPHLABELS= option, 1118
SYMBOLLEGEND= option, 1118
SYMBOLORDER= option, 1118
TOTPANELS= option, 1118
TURNHLABELS option, 1119
VAXIS= option, 1119
VFORMAT= option, 1119
VMINOR= option, 1119
VOFFSET= option, 1119
VREF= option, 1119
VREFLABELS= option, 1120
VREFLABPOS= option, 1120
VZERO option, 1120
WAXIS= option, 1120
WGRID= option, 1120
WHISKERPERCENTILE= option, 1120
WOVERLAY= option, 1120

BOXPLOT procedure, plot statement
OUTHIGHHTML= option, 1116
OUTLOWHTML= option, 1116

BOXPLOT procedure, plot statements
INTSTART= option, 1112

BOXPLOT procedure, PROC BOXPLOT statement,
1089

ANNOTATE= option, 1089
BOX= option, 1089
DATA= option, 1090
GOUT= option, 1090
HISTORY= option, 1090

BOXSTYLE= option
PLOT statement (BOXPLOT), 1103

BOXWIDTH= option
PLOT statement (BOXPLOT), 1104

BOXWIDTHSCALE= option
PLOT statement (BOXPLOT), 1104

BSCALE= option
PROC SEQDESIGN statement, 7331
PROC SEQTEST statement, 7546

BSPLINE transformation
MODEL statement (TRANSREG), 8568

BSSCP option
PROC CANDISC statement, 1862
PROC DISCRIM statement, 2164
PROC STEPDISC statement, 7940

BUCKET= option
MODEL statement (LOESS), 4440

BUCKET= suboption
RANDOM statement (GLIMMIX), 3158

BUILDSSCP= option
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PERFORMANCE statement (GLMSELECT),
3702

BWM= option
BIVAR statement, 4085
UNIVAR statement, 4088

BWSLEGEND option
PLOT statement (BOXPLOT), 1104

BY statement
ACECLUS procedure, 873
ADAPTIVEREG procedure, 902
ANOVA procedure, 957
BCHOICE procedure, 1026
BOXPLOT procedure, 1090
CALIS procedure, 1241
CANCORR procedure, 1838
CANDISC procedure, 1864
CATMOD procedure, 1898
CLUSTER procedure, 2024
CORRESP procedure, 2106
DISCRIM procedure, 2170
DISTANCE procedure, 2271
FACTOR procedure, 2325
FASTCLUS procedure, 2409
FMM procedure, 2493
FREQ procedure, 2578
GAM procedure, 2766
GEE procedure, 2820
GENMOD procedure, 2895
GLIMMIX procedure, 3090
GLM procedure, 3413
GLMMOD procedure, 3582
GLMPOWER procedure, 3607
GLMSELECT procedure, 3678
HPMIXED procedure, 3831
ICLIFETEST procedure, 3900
ICPHREG procedure, 3950
INBREED procedure, 3989
IRT procedure, 4022
KDE procedure, 4091
KRIGE2D procedure, 4137
LATTICE procedure, 4200
LIFEREG procedure, 4235
LIFETEST procedure, 4347
LOESS procedure, 4438
LOGISTIC procedure, 4511
MCMC procedure, 4765
MDS procedure, 5008
MI procedure, 5042
MIANALYZE procedure, 5167
MIXED procedure, 5237
MODECLUS procedure, 5421
MULTTEST procedure, 5504
NESTED procedure, 5563
NLIN procedure, 5597

NLMIXED procedure, 5710
NPAR1WAY procedure, 5802
ORTHOREG procedure, 5857
PHREG procedure, 5917
PLS procedure, 6227
PRINCOMP procedure, 6597
PRINQUAL procedure, 6642
PROBIT procedure, 6697
QUANTLIFE procedure, 6806
QUANTREG procedure, 6848
QUANTSELECT procedure, 6927
REG procedure, 7012
ROBUSTREG procedure, 7182
RSREG procedure, 7265
SCORE procedure, 7301
SIM2D procedure, 7707
SIMNORMAL procedure, 7755
SPP procedure, 7784
STDIZE procedure, 7842
STDRATE procedure, 7877
STEPDISC procedure, 7942
SURVEYFREQ procedure, 7975
SURVEYLOGISTIC procedure, 8071
SURVEYMEANS procedure, 8173
SURVEYPHREG procedure, 8251
SURVEYREG procedure, 8331
TPSPLINE procedure, 8496
TRANSREG procedure, 8564
TREE procedure, 8774
TTEST procedure, 8803
VARCLUS procedure, 8867
VARCOMP procedure, 8891
VARIOGRAM procedure, 8934

BYCAT option
CONTRAST statement (GLIMMIX), 3095
ESTIMATE statement (GLIMMIX), 3106

BYCATEGORY option
CONTRAST statement (GLIMMIX), 3095
ESTIMATE statement (GLIMMIX), 3106

BYDATA option
PARMS statement (NLMIXED), 5712

BYLEVEL option
LSMEANS statement (GENMOD), 465
LSMEANS statement (GLIMMIX), 3115
LSMEANS statement (GLM), 3422, 3491
LSMEANS statement (LIFEREG), 465
LSMEANS statement (LOGISTIC), 465
LSMEANS statement (MIXED), 5248, 5249
LSMEANS statement (ORTHOREG), 465
LSMEANS statement (PHREG), 465
LSMEANS statement (PLM), 465
LSMEANS statement (PROBIT), 465
LSMEANS statement (SURVEYLOGISTIC), 465
LSMEANS statement (SURVEYPHREG), 465
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LSMEANS statement (SURVEYREG), 465
LSMESTIMATE statement (GENMOD), 479
LSMESTIMATE statement (GLIMMIX), 3127
LSMESTIMATE statement (LIFEREG), 479
LSMESTIMATE statement (LOGISTIC), 479
LSMESTIMATE statement (MIXED), 479
LSMESTIMATE statement (ORTHOREG), 479
LSMESTIMATE statement (PHREG), 479
LSMESTIMATE statement (PLM), 479
LSMESTIMATE statement (PROBIT), 479
LSMESTIMATE statement

(SURVEYLOGISTIC), 479
LSMESTIMATE statement (SURVEYPHREG),

479
LSMESTIMATE statement (SURVEYREG), 479
SLICE statement (GENMOD), 465
SLICE statement (GLIMMIX), 465
SLICE statement (LIFEREG), 465
SLICE statement (LOGISTIC), 465
SLICE statement (MIXED), 465
SLICE statement (ORTHOREG), 465
SLICE statement (PHREG), 465
SLICE statement (PLM), 465
SLICE statement (PROBIT), 465
SLICE statement (SURVEYLOGISTIC), 465
SLICE statement (SURVEYPHREG), 465
SLICE statement (SURVEYREG), 465

BYLINE= option
ODS GRAPHICS statement, 617

BYOUT option
MODEL statement (RSREG), 7267

BYTYPE option
PROCESS statement (SPP), 7792

BYVAR option
PROC TTEST statement, 8796
SHOW statement (PLM), 6175

C option
PROC CANCORR statement, 1834

C= option
OUTPUT statement (LOGISTIC), 4551
TRANSFORM statement (MI), 5062

CA option
TEST statement (MULTTEST), 5508, 5510, 5531

CALIS procedure, 1195
syntax, 1195

CALIS procedure, BOUNDS statement, 1241
CALIS procedure, BY statement, 1241
CALIS procedure, COSAN statement, 1242
CALIS procedure, COV statement, 1252
CALIS procedure, DETERM statement, 1256
CALIS procedure, EFFPART statement, 1257
CALIS procedure, FACTOR statement, 1258

COMPONENT option, 1259

GAMMA= option, 1259
HEYWOOD option, 1259
N= option, 1259
NORM option, 1260
RCONVERGE= option, 1260
RITER= option, 1260
ROTATE= option, 1260

CALIS procedure, FITINDEX statement
ALPHAECV= option, 1268
ALPHARMSEA= option, 1268
BASEFIT= option, 1268
BASEFUNC= option, 1268
CHICORRECT= option, 1268
CLOSEFIT= option, 1268
DFREDUCE= option, 1268
INBASEFIT= option, 1268
NOADJDF option, 1269
NOINDEXTYPE option, 1269
OFFLIST= option, 1269
ONLIST= option, 1269
OUTFIT= option, 1271

CALIS procedure, FREQ statement, 1271
CALIS procedure, GROUP statement, 1272

LABEL= option, 1273
NAME= option, 1273

CALIS procedure, LINCON statement, 1274
CALIS procedure, LINEQS statement, 1275
CALIS procedure, LISMOD statement, 1282
CALIS procedure, LMTESTS statement, 1286

default option, 1286
lmmat option, 1286
maxrank option, 1286
nodefault option, 1286
norank option, 1286

CALIS procedure, main model specification
statements, 1197

CALIS procedure, MATRIX statement, 1295
CALIS procedure, MEAN statement, 1309
CALIS procedure, model analysis statements, 1198
CALIS procedure, MODEL statement, 1311

GROUP= option, 1312
GROUPS= option, 1312
LABEL= option, 1312
NAME= option, 1312

CALIS procedure, MSTRUCT statement, 1313
CALIS procedure, NLINCON statement, 1316
CALIS procedure, NLOPTIONS statement, 1316

ABSCONV option, 490
ABSFCONV option, 490
ABSGCONV option, 490
ABSGTOL option, 490
ABSTOL option, 490
ABSXCONV option, 491
ABSXTOL option, 491
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ASINGULAR= option, 491
FCONV option, 491
FCONV2 option, 492
FSIZE option, 493
FTOL option, 491
FTOL2 option, 492
GCONV option, 493
GCONV2 option, 493
GTOL option, 493
GTOL2 option, 493
HESCAL option, 493
HS option, 493
INHESSIAN option, 494
INSTEP option, 494
LCDEACT= option, 495
LCEPSILON= option, 495
LCSINGULAR= option, 495
LINESEARCH option, 495
LIS option, 495
LSPRECISION option, 496
MAXFU option, 496
MAXFUNC option, 496
MAXIT option, 497
MAXITER option, 497
MAXSTEP option, 497
MAXTIME option, 497
MINIT option, 497
MINITER option, 497
MSINGULAR= option, 497
REST option, 498
RESTART option, 498
SINGULAR= option, 498
SOCKET option, 498
TECH option, 498
TECHNIQUE option, 498
UPD option, 499
VSINGULAR= option, 500
XSIZE option, 500
XTOL option, 500

CALIS procedure, optimization statements, 1198
CALIS procedure, OUTFILE statement, 1317
CALIS procedure, OUTFILES statement, 1317
CALIS procedure, PARAMETERS statement, 1319
CALIS procedure, PARTIAL statement, 1322
CALIS procedure, PATH statement, 1323
CALIS procedure, PATHDIAGRAM statement, 1332

ARRANGE= option, 1334
DECP= option, 1335
DECPFIT= option, 1335
DESTROYER= option, 1335
DIAGRAM= option, 1336
DIAGRAMLABEL= option, 1336
EMPHSTRUCT option, 1337
ERRORSIZE= option, 1337

EXOGCOV option, 1337
FACTORSIZE= option, 1337
FITINDEX= option, 1338
LABEL= option, 1339
MEANPARM= option, 1339
MODEL= option, 1339
NOCOV option, 1340
NOERRCOV option, 1340
NOERRVAR option, 1340
NOESTIM option, 1340
NOEXOGCOV option, 1340
NOEXOGVAR option, 1340
NOFITTABLE option, 1340
NOFLAG option, 1340
NOINITPARM option, 1340
NOMEAN option, 1341
NOTITLE option, 1341
NOVARIANCE option, 1341
OMITPATH= option, 1341
PARMNAME option, 1341
STRUCTADD= option, 1342
STRUCTURAL option, 1342
TITLE= option, 1343
USEERROR option, 1343
VARPARM= option, 1343

CALIS procedure, PCOV statement, 1343
CALIS procedure, PROC CALIS statement, 1200

ALL option, 1230
ALPHA= option, 1205
ALPHAECV= option, 1205
ALPHALEV= option, 1205
ALPHAOUT= option, 1205
ALPHARMS= option, 1205
ASINGULAR= option, 1206
ASYCOV= option, 1206
BASEFIT= option, 1206
BASEFUNC= option, 1207
BIASKUR option, 1209
CHICORR= option, 1209
CHICORRECT= option, 1209
CI option, 1209
CLOSEFIT option, 1211
CORR option, 1230
CORRELATION option, 1211
COVARIANCE option, 1211
COVPATTERN= option, 1211
COVSING= option, 1214
DATA= option, 1214
DEMPHAS= option, 1214
DFE= option, 1215
DFR= option, 1234
DFREDUCE= option, 1215
EDF= option, 1215
ESTDATA= option, 1216
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EXTENDPATH option, 1215
FCONV= option, 1215
FTOL= option, 1215
G4= option, 1216
GCONV= option, 1216
GTOL= option, 1216
INBASEFIT= option, 1206
INEST= option, 1216
INMODEL= option, 1216
INRAM= option, 1216
INSTEP= option, 1217
INVAR= option, 1216
INWGT= option, 1217
INWGTINV option, 1218
KURTOSIS option, 1218
LINESEARCH= option, 1218
LSPRECISION= option, 1219
MAXFUNC= option, 1219
MAXITER= option, 1219
MAXLEVERAGE= option, 1220
MAXMISSPAT= option, 1220
MAXOUTLIER= option, 1220
MEANPATTERN= option, 1221
MEANSTR option, 1223
METHOD= option, 1223
MODIFICATION option, 1224
MSINGULAR= option, 1225
NOADJDF option, 1225
NOBS= option, 1225
NOINDEXTYPE option, 1225
NOMEANSTR option, 1225
NOMISSPAT option, 1226
NOMOD option, 1226
NOORDERSPEC option, 1226
NOPARMNAME option, 1226
NOPRINT option, 1226
NOSTDERR option, 1226
OM= option, 1227
OMETHOD= option, 1227
ORDERALL option, 1228
ORDERGROUPS option, 1228
ORDERMODELS option, 1228
ORDERSPEC option, 1229
OUTEST= option, 1229
OUTFIT option, 1229
OUTMODEL= option, 1229
OUTRAM= option, 1229
OUTSTAT= option, 1229
OUTVAR= option, 1229
OUTWGT= option, 1230
PALL option, 1230
PARMNAME option, 1230
PCORR option, 1230
PCOVES option, 1230

PDETERM option, 1231
PESTIM option, 1231
PINITIAL option, 1231
PLATCOV option, 1231
PLOTS= option, 1232
PRIMAT option, 1233
PRINT option, 1233
PSHORT option, 1233
PSUMMARY option, 1233
PWEIGHT option, 1233
RADIUS= option, 1234
RANDOM= option, 1234
RDF= option, 1234
READADDPARM= option, 1234
RESIDUAL= option, 1234
RIDGE= option, 1235
ROBITER= option, 1235
ROBPHI= option, 1235
ROBUST option, 1235
ROBUST= option, 1235
SALPHA= option, 1237
SHORT option, 1233
SIMPLE option, 1237
SINGULAR= option, 1237
SLMW= option, 1237
SMETHOD= option, 1218
SPRECISION= option, 1219, 1237
START= option, 1237
STDERR option, 1237
SUMMARY option, 1233
TECHNIQUE= option, 1227
TMISSPAT= option, 1238
TOTEFF option, 1215
UPDATE= option, 1238
VARDEF= option, 1239
VSINGULAR= option, 1239
WPENALTY= option, 1239
WRIDGE= option, 1240
XCONV= option, 1240
XTOL= option, 1240

CALIS procedure, PVAR statement, 1345
CALIS procedure, RAM statement, 1348
CALIS procedure, REFMODEL statement, 1354

ALLNEWPARMS option, 1355
PARM_PREFIX option, 1355
PARM_SUFFIX option, 1355

CALIS procedure, RENAMEPARM statement, 1356
CALIS procedure, SIMTESTS statement, 1357
CALIS procedure, STD statement, 1358
CALIS procedure, STRUCTEQ statement, 1358
CALIS procedure, subsidiary group specification

statements, 1196
CALIS procedure, subsidiary model specification

statements, 1197
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CALIS procedure, TESTFUNC statement, 1358
CALIS procedure, VAR statement, 1359
CALIS procedure, VARIANCE statement, 1362
CALIS procedure, VARNAMES statement, 1366
CALIS procedure, WEIGHT statement, 1367
CALIS procedure,FACTOR statement

TAU= option, 1262
CAN option

PROC DISCRIM statement, 2164
CANCORR procedure

syntax, 1832
CANCORR procedure, BY statement, 1838
CANCORR procedure, FREQ statement, 1838
CANCORR procedure, PARTIAL statement, 1838
CANCORR procedure, PROC CANCORR statement,

1832
ALL option, 1833
B option, 1834
C option, 1834
CLB option, 1834
CORR option, 1834
CORRB option, 1834
DATA= option, 1834
EDF= option, 1834
INT option, 1834
MSTAT= option, 1834
NCAN= option, 1834
NOINT option, 1835
NOPRINT option, 1835
OUT= option, 1835
OUTSTAT= option, 1835
PARPREFIX= option, 1836
PCORR option, 1835
PPREFIX= option, 1836
PROBT option, 1835
RDF= option, 1835
RED option, 1835
REDUNDANCY option, 1835
S option, 1836
SEB option, 1836
SHORT option, 1836
SIMPLE option, 1836
SING= option, 1836
SINGULAR= option, 1836
SMC option, 1836
SPCORR option, 1836
SQPCORR option, 1836
SQSPCORR option, 1836
STB option, 1836
T option, 1836
VDEP option, 1837
VN= option, 1837
VNAME= option, 1837
VP= option, 1837

VPREFIX= option, 1837
VREG option, 1837
WDEP option, 1837
WN= option, 1837
WNAME= option, 1837
WP= option, 1837
WPREFIX= option, 1837
WREG option, 1837

CANCORR procedure, VAR statement, 1839
CANCORR procedure, WEIGHT statement, 1839
CANCORR procedure, WITH statement, 1839
CANDISC procedure

syntax, 1861
CANDISC procedure, BY statement, 1864
CANDISC procedure, CLASS statement, 1864
CANDISC procedure, FREQ statement, 1865
CANDISC procedure, PROC CANDISC statement,

1861
ALL option, 1862
ANOVA option, 1862
BCORR option, 1862
BCOV option, 1862
BSSCP option, 1862
DATA= option, 1862
DISTANCE option, 1862
MAHALANOBIS option, 1862
NCAN= option, 1862
NOPRINT option, 1863
OUT= option, 1863
OUTSTAT= option, 1863
PCORR option, 1863
PCOV option, 1863
PREFIX= option, 1863
PSSCP option, 1863
SHORT option, 1863
SIMPLE option, 1863
SINGULAR= option, 1863
STDMEAN option, 1864
TCORR option, 1864
TCOV option, 1864
TSSCP option, 1864
WCORR option, 1864
WCOV option, 1864
WSSCP option, 1864

CANDISC procedure, VAR statement, 1865
CANDISC procedure, WEIGHT statement, 1865
CANONICAL option

MANOVA statement (ANOVA), 961
MANOVA statement (GLM), 3430
OUTPUT statement (TRANSREG), 8594
PROC DISCRIM statement, 2164
REPEATED statement (ANOVA), 971
REPEATED statement (GLM), 3448

CANPREFIX= option
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PROC DISCRIM statement, 2164
CANPRINT option

MTEST statement (REG), 7026
CASCADE= option

PROC MODECLUS statement, 5416
CATALOG= option

CODE statement (GENMOD), 396
CODE statement (GLIMMIX), 396
CODE statement (GLM), 396
CODE statement (GLMSELECT), 396
CODE statement (LOGISTIC), 396
CODE statement (MIXED), 396
CODE statement (PLM), 396
CODE statement (REG), 396

CATEGORY= option
ESTIMATE statement (LOGISTIC), 447
ESTIMATE statement (PLM), 447
ESTIMATE statement (PROBIT), 447
ESTIMATE statement (SURVEYLOGISTIC),

447
LSMESTIMATE statement (GENMOD), 480
LSMESTIMATE statement (LIFEREG), 480
LSMESTIMATE statement (LOGISTIC), 480
LSMESTIMATE statement (PLM), 480
LSMESTIMATE statement (PROBIT), 480
LSMESTIMATE statement

(SURVEYLOGISTIC), 480
CATMOD, 1882
CATMOD procedure

syntax, 1896
CATMOD procedure, BY statement, 1898
CATMOD procedure, CONTRAST statement, 1899

ALPHA= option, 1900
ESTIMATE= option, 1900

CATMOD procedure, DIRECT statement, 1902
CATMOD procedure, FACTORS statement, 1903

PROFILE= option, 1904
_RESPONSE_= option, 1904
TITLE= option, 1904

CATMOD procedure, LOGLIN statement, 1906
TITLE= option, 1906

CATMOD procedure, MODEL statement, 1907
ADDCELL= option, 1908
ALPHA= option, 1909
AVERAGED option, 1909
CLPARM option, 1909
CORRB option, 1909
COV option, 1909
COVB option, 1909
DESIGN option, 1909
EPSILON= option, 1909
FREQ option, 1909
GLS option, 1913
ITPRINT option, 1909

MAXITER= option, 1909
MISSING= option, 1911
ML option, 1909
NODESIGN option, 1911
NOINT option, 1911
NOPARM option, 1911
NOPREDVAR option, 1912
NOPRINT option, 1912
NOPROFILE option, 1912
NORESPONSE option, 1912
ONEWAY option, 1912
PARAM= option, 1912
PRED= option, 1912
PREDICT option, 1912
PROB option, 1912
PROFILE option, 1912
_RESPONSE_ keyword, 1903, 1906, 1907, 1909,

1917, 1929, 1934, 1936, 1943–1945, 1949,
1958

TITLE= option, 1913
WLS option, 1913
XPX option, 1913
ZERO= option, 1913

CATMOD procedure, POPULATION statement, 1914
CATMOD procedure, PROC CATMOD statement,

1897
DATA=option, 1897
NAMELEN= option, 1897
NOPRINT option, 1898
ORDER= option, 1898

CATMOD procedure, REPEATED statement, 1916
PROFILE= option, 1917
_RESPONSE_= option, 1917
TITLE= option, 1918

CATMOD procedure, RESPONSE statement, 1918
ALOGIT function, 1919
CLOGIT function, 1919
JOINT function, 1919
LOGIT function, 1919
MARGINAL function, 1919
MEAN function, 1919
OUT= option, 1920
OUTEST= option, 1920
READ function, 1920
TITLE= option, 1920

CATMOD procedure, RESTRICT statement, 1925
CATMOD procedure, WEIGHT statement, 1925
CAXIS= option

PLOT statement (BOXPLOT), 1105
PLOT statement (REG), 7097

CBAR= option
OUTPUT statement (LOGISTIC), 4551

CBLOCKLAB= option
PLOT statement (BOXPLOT), 1105



Syntax Index F 9243

CBLOCKVAR= option
PLOT statement (BOXPLOT), 1105

CBOXES= option
PLOT statement (BOXPLOT), 1105

CBOXFILL= option
PLOT statement (BOXPLOT), 1105

CCC option
OUTPUT statement (TRANSREG), 8594
PROC CLUSTER statement, 2016

CCLIP= option
PLOT statement (BOXPLOT), 1106

CCONF= option
MCMC statement (MI), 5050

CCONNECT= option
MCMC statement (MI), 5055
PLOT statement (BOXPLOT), 1106

CCONVERGE= option
MODEL statement (TRANSREG), 8584
PROC PRINQUAL statement, 6636

CCOVERLAY= option
PLOT statement (BOXPLOT), 1106

CDF keyword
OUTPUT statement (LIFEREG), 4247

CDFPLOT statement, see PROBIT procedure,
CDFPLOT statement, see PROBIT
procedure, CDFPLOT statement

options summarized by function, 6698
PROBIT procedure, 6697

CDPREFIX= option
OUTPUT statement (TRANSREG), 8594

CEC option
OUTPUT statement (TRANSREG), 8594

CELLCHI2 option
PROC CORRESP statement, 2099
TABLES statement (FREQ), 2607

CENSCALE option
MODEL statement (SPP), 7785
PROC PLS statement, 6221

CENSORED keyword
OUTPUT statement (LIFEREG), 4247

CENSOREDSYMBOL= option
PROC LIFETEST statement, 4382

CENTER option
MODEL statement (TRANSREG), 8581
PROC MULTTEST statement, 5495

CENTER= option
RIDGE statement (RSREG), 7269
VARMETHOD=BRR (PROC SURVEYPHREG

statement), 8248
VARMETHOD=JK (PROC SURVEYPHREG

statement), 8250
CENTROID option

PROC VARCLUS statement, 8861
CERTSIZE= option

PROC SURVEYSELECT statement, 8413
CERTSIZE=P= option

PROC SURVEYSELECT statement, 8414
CFACTOR= option

PROC NLMIXED statement, 5695
CFILL= option

INSET statement, 4239
CFILLH= option

INSET statement, 4239
CFRAME= option

INSET statement, 4239
MCMC statement (MI), 5050, 5055
PLOT statement (BOXPLOT), 1106
PLOT statement (REG), 7097
PROC TREE statement, 8769

CGRID= option
BOXPLOT procedure, 1106

CHAIN= option
MCMC statement (MI), 5051

CHANGE= option
PROC PRINQUAL statement, 6636

CHEADER= option
INSET statement, 4239

CHECKDEPENDENCY= option
STRATA statement (GENMOD), 2933
STRATA statement (LOGISTIC), 4560

CHI2P option
PROC CORRESP statement, 2099

CHICORR option
PROC CALIS statement, 1209

CHICORRECT option
PROC CALIS statement, 1209

CHICORRECT= option
FITINDEX statement, 1268

CHIF= option
PROC ROBUSTREG statement, 7180, 7181

CHISQ option
CONTRAST statement (GLIMMIX), 3095
CONTRAST statement (HPMIXED), 3834
CONTRAST statement (MIXED), 5241
ESTIMATE statement (ORTHOREG), 448
ESTIMATE statement (PLM), 448
ESTIMATE statement (SURVEYPHREG), 448
ESTIMATE statement (SURVEYREG), 448
EXACT statement (FREQ), 2581, 2738
LSMESTIMATE statement (GLIMMIX), 3127
LSMESTIMATE statement (MIXED), 480
LSMESTIMATE statement (ORTHOREG), 480
LSMESTIMATE statement (PLM), 480
LSMESTIMATE statement (SURVEYPHREG),

480
LSMESTIMATE statement (SURVEYREG), 480
MODEL statement (GLIMMIX), 3134
MODEL statement (MIXED), 5252
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OUTPUT statement (FREQ), 2590
TABLES statement (FREQ), 2607, 2738
TABLES statement (SURVEYFREQ), 7982
TEST statement (HPMIXED), 3857
TEST statement (ICPHREG), 509
TEST statement (LIFEREG), 509
TEST statement (ORTHOREG), 509
TEST statement (PLM), 509
TEST statement (PROBIT), 509
TEST statement (SURVEYPHREG), 509
TEST statement (SURVEYREG), 509

CHOCKING= option
PLOT statement (REG), 7098

CHOICESET= option
MODEL statement (BCHOICE), 1029

CHOL option
PROC GLIMMIX statement, 3066

CHOLESKY option
PROC GLIMMIX statement, 3066

CHOOSE= option
MODEL statement (GLMSELECT), 3689
MODEL statement (QUANTSELECT), 6936
MODEL statement (VARIOGRAM), 8943

CHREF= option
PLOT statement (BOXPLOT), 1106
PLOT statement (REG), 7098

CI option
PROC CALIS statement, 1209
PROC QUANTREG statement, 6844

CI= option
ONESAMPLEFREQ statement (POWER), 6293
ONESAMPLEMEANS statement (POWER),

6301
PAIREDMEANS statement (POWER), 6319
PROC QUANTLIFE statement, 6803
PROC TTEST statement, 8797
TWOSAMPLEMEANS statement (POWER),

6339
CIALPHA= option

PROC SEQTEST statement, 7546
CICONV= option

MODEL statement (GENMOD), 2915
CILPREFIX= option

OUTPUT statement (TRANSREG), 8594
CINFO option

PROC FMM statement, 2473
CIPREFIX= option

OUTPUT statement (TRANSREG), 8594
CITYPE= option

PROC SEQTEST statement, 7546
CIUPREFIX= option

OUTPUT statement (TRANSREG), 8595
CK= option

PROC MODECLUS statement, 5416

CL option
COMPUTE statement (VARIOGRAM), 8938
COVTEST statement (GLIMMIX), 3100
ESTIMATE statement (GLIMMIX), 3106
ESTIMATE statement (HPMIXED), 3838
ESTIMATE statement (LIFEREG), 448
ESTIMATE statement (LOGISTIC), 448
ESTIMATE statement (MIXED), 5243
ESTIMATE statement (ORTHOREG), 448
ESTIMATE statement (PHREG), 448
ESTIMATE statement (PLM), 448
ESTIMATE statement (PROBIT), 448
ESTIMATE statement (QUANTREG), 448
ESTIMATE statement (SURVEYLOGISTIC),

448
ESTIMATE statement (SURVEYPHREG), 448
ESTIMATE statement (SURVEYREG), 448
LSMEANS statement (GENMOD), 466
LSMEANS statement (GLIMMIX), 3116
LSMEANS statement (GLM), 3422
LSMEANS statement (HPMIXED), 3840
LSMEANS statement (LIFEREG), 466
LSMEANS statement (LOGISTIC), 466
LSMEANS statement (MIXED), 5248
LSMEANS statement (ORTHOREG), 466
LSMEANS statement (PHREG), 466
LSMEANS statement (PLM), 466
LSMEANS statement (PROBIT), 466
LSMEANS statement (SURVEYLOGISTIC), 466
LSMEANS statement (SURVEYPHREG), 466
LSMEANS statement (SURVEYREG), 466
LSMESTIMATE statement (GENMOD), 480
LSMESTIMATE statement (GLIMMIX), 3127
LSMESTIMATE statement (LIFEREG), 480
LSMESTIMATE statement (LOGISTIC), 480
LSMESTIMATE statement (MIXED), 480
LSMESTIMATE statement (ORTHOREG), 480
LSMESTIMATE statement (PHREG), 480
LSMESTIMATE statement (PLM), 480
LSMESTIMATE statement (PROBIT), 480
LSMESTIMATE statement

(SURVEYLOGISTIC), 480
LSMESTIMATE statement (SURVEYPHREG),

480
LSMESTIMATE statement (SURVEYREG), 480
MODEL statement (FMM), 2498
MODEL statement (GENMOD), 2915
MODEL statement (GLIMMIX), 3134
MODEL statement (HPMIXED), 3842
MODEL statement (LOGISTIC), 4548
MODEL statement (MIXED), 5253
MODEL statement (SPP), 7786
MODEL statement (TRANSREG), 8585
MODEL statement (VARIOGRAM), 8944
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MODEL statement(VARCOMP), 8892
PROBMODEL statement (FMM), 2507
RANDOM statement (GLIMMIX), 3156
RANDOM statement (HPMIXED), 3850
RANDOM statement (MIXED), 5273
SLICE statement (GENMOD), 466
SLICE statement (GLIMMIX), 466
SLICE statement (LIFEREG), 466
SLICE statement (LOGISTIC), 466
SLICE statement (MIXED), 466
SLICE statement (ORTHOREG), 466
SLICE statement (PHREG), 466
SLICE statement (PLM), 466
SLICE statement (PROBIT), 466
SLICE statement (SURVEYLOGISTIC), 466
SLICE statement (SURVEYPHREG), 466
SLICE statement (SURVEYREG), 466
TABLES statement (FREQ), 2609
TABLES statement (SURVEYFREQ), 7982

CL= option
HAZARDRATIO statement (PHREG), 5928
ODDSRATIO statement (LOGISTIC), 4549
PROC MIXED statement, 5227
PROC STDRATE statement, 7874

CL= option (BINOMIAL)
TABLES statement (FREQ), 2603

CL= option (RELRISK)
TABLES statement (FREQ), 2630

CL= option (RISKDIFF)
TABLES statement (FREQ), 2632

CL=AGRESTICAFFO option (RISKDIFF)
TABLES statement (FREQ), 2633

CL=AGRESTICOULL option (BINOMIAL)
TABLES statement (FREQ), 2604

CL=BLAKER option (BINOMIAL)
TABLES statement (FREQ), 2604

CL=CLOPPERPEARSON option (BINOMIAL)
TABLES statement (FREQ), 2604

CL=EXACT option (BINOMIAL)
TABLES statement (FREQ), 2604

CL=EXACT option (RISKDIFF)
TABLES statement (FREQ), 2633

CL=HA option (RISKDIFF)
TABLES statement (FREQ), 2633

CL=JEFFREYS option (BINOMIAL)
TABLES statement (FREQ), 2604

CL=LIKELIHOODRATIO option (BINOMIAL)
TABLES statement (FREQ), 2604

CL=LOGIT option (BINOMIAL)
TABLES statement (FREQ), 2604

CL=MIDP option (BINOMIAL)
TABLES statement (FREQ), 2604

CL=NEWCOMBE option (RISKDIFF)
TABLES statement (FREQ), 2633

CL=WALD option (BINOMIAL)
TABLES statement (FREQ), 2604

CL=WALD option (RISKDIFF)
TABLES statement (FREQ), 2634

CL=WILSON option (BINOMIAL)
TABLES statement (FREQ), 2605

CLABEL= option
BOXPLOT procedure, 1106

CLASS option
SHOW statement (PLM), 6175

CLASS statement
ADAPTIVEREG procedure, 903
ANOVA procedure, 958
BCHOICE procedure, 1027
CANDISC procedure, 1864
DISCRIM procedure, 2171
FMM procedure, 2494
GAM procedure, 2766
GEE procedure, 2821
GENMOD procedure, 2895
GLIMMIX procedure, 3091
GLMMOD procedure, 3582
GLMPOWER procedure, 3608
GLMSELECT procedure, 3679
GLM procedure, 3413
HPMIXED procedure, 3862
HPMIXED procedure, 3832
ICPHREG procedure, 3950
INBREED procedure, 3989
LIFEREG procedure, 4235
LOGISTIC procedure, 4512
MI procedure, 5042
MIANALYZE procedure, 5167
MIXED procedure, 5316
MIXED procedure, 5237
MULTTEST procedure, 5505
NESTED procedure, 5564
NPAR1WAY procedure, 5802
ORTHOREG procedure, 5857
PHREG procedure, 5918
PLS procedure, 6227
PROBIT procedure, 6706
QUANTLIFE procedure, 6806
QUANTREG procedure, 6848
QUANTSELECT procedure, 6928
ROBUSTREG procedure, 7182
STEPDISC procedure, 7943
SURVEYLOGISTIC procedure, 8071
SURVEYMEANS procedure, 8173
SURVEYPHREG procedure, 8251
SURVEYREG procedure, 8331
TTEST procedure, 8803
VARCOMP procedure, 8891

CLASS transformation
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MODEL statement (TRANSREG), 8568
CLASSEFFECTS= option

FCS statement (MI), 5046
MONOTONE statement (MI), 5059

CLASSICAL option
COVTEST statement (GLIMMIX), 3102

CLASSVAR= option
PROC MIANALYZE statement, 5166

CLB option
MODEL statement (REG), 7018
PROC CANCORR statement, 1834

CLDIFF option
MEANS statement (ANOVA), 965
MEANS statement (GLM), 3434

CLEAR option
PLOT statement (REG), 7102

CLI option
EFFECTPLOT statement, 420
MODEL statement (GLM), 3439
MODEL statement (REG), 7018
OUTPUT statement (TRANSREG), 8595

CLINE= option
PLOT statement (REG), 7098

CLIPFACTOR= option
BOXPLOT procedure, 1106, 1138

CLIPLEGEND= option
BOXPLOT procedure, 1106

CLIPLEGPOS= option
BOXPLOT procedure, 1107

CLIPSUBCHAR= option
BOXPLOT procedure, 1107

CLIPSYMBOL= option
BOXPLOT procedure, 1107

CLIPSYMBOLHT= option
BOXPLOT procedure, 1107

CLL= option
MODEL statement (TRANSREG), 8580

CLM option
EFFECTPLOT statement, 420
MEANS statement (ANOVA), 965
MEANS statement (GLM), 3434
MODEL statement (GLM), 3439
MODEL statement (LOESS), 4440
MODEL statement (REG), 7018
OUTPUT statement (TRANSREG), 8595
PROC GAM statement, 2766
SCORE statement (LOESS), 4446
SCORE statement (LOGISTIC), 4557

CLODDS option
MODEL statement (SURVEYLOGISTIC), 8085

CLODDS= option
MODEL statement (LOGISTIC), 4536

CLOGIT function
RESPONSE statement (CATMOD), 1919

CLOSEFIT option
PROC CALIS statement, 1211

CLOSEFIT= option
FITINDEX statement, 1268

CLPARM option
MODEL statement (CATMOD), 1909
MODEL statement (GLM), 3440
MODEL statement (SURVEYLOGISTIC), 8086
MODEL statement (SURVEYPHREG), 8259
MODEL statement (SURVEYREG), 8340

CLPARM= option
MODEL statement (LOGISTIC), 4536

CLTYPE= option
BASELINE statement (ICPHREG), 3949
BASELINE statement (PHREG), 5903
EXACT statement (GENMOD), 2905
EXACT statement (LOGISTIC), 4523

CLUSTER option
EFFECTPLOT statement, 420

CLUSTER procedure
syntax, 2014

CLUSTER procedure, BY statement, 2024
CLUSTER procedure, COPY statement, 2024
CLUSTER procedure, FREQ statement, 2025
CLUSTER procedure, ID statement, 2025
CLUSTER procedure, PROC CLUSTER statement,

2014
BETA= option, 2016
CCC option, 2016
DATA= option, 2016
DIM= option, 2017
HYBRID option, 2017
K= option, 2017
MODE= option, 2018
NOEIGEN option, 2018
NOID option, 2018
NONORM option, 2018
NOPRINT option, 2018
NOSQUARE option, 2018
NOTIE option, 2019
OUTTREE= option, 2019
PENALTY= option, 2019
PLOTS option, 2019
PRINT= option, 2023
PSEUDO= option, 2023
R= option, 2023
RMSSTD option, 2023
RSQUARE option, 2023
SIMPLE option, 2023
STANDARD option, 2023
TRIM= option, 2023

CLUSTER procedure, RMSSTD statement, 2025
CLUSTER procedure, VAR statement, 2026
CLUSTER statement
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SURVEYFREQ procedure, 7975
SURVEYLOGISTIC procedure, 8073
SURVEYMEANS procedure, 8174
SURVEYPHREG procedure, 8254
SURVEYREG procedure, 8332
SURVEYSELECT procedure, 8431

CLUSTER= option
PROC FASTCLUS statement, 2404
PROC MODECLUS statement, 5416

CLUSTERLABEL= option
PROC FASTCLUS statement, 2404

CLWT option
TABLES statement (SURVEYFREQ), 7984

CMALLOWS= option
PLOT statement (REG), 7098

CMH option
OUTPUT statement (FREQ), 2591
TABLES statement (FREQ), 2609

CMH1 option
OUTPUT statement (FREQ), 2591
TABLES statement (FREQ), 2610

CMH2 option
OUTPUT statement (FREQ), 2591
TABLES statement (FREQ), 2610

CMHCOR option
OUTPUT statement (FREQ), 2591

CMHGA option
OUTPUT statement (FREQ), 2591

CMHRMS option
OUTPUT statement (FREQ), 2591

CMLPREFIX= option
OUTPUT statement (TRANSREG), 8595

CMUPREFIX= option
OUTPUT statement (TRANSREG), 8595

CNEEDLES= option
MCMC statement (MI), 5050

COCHQ option
OUTPUT statement (FREQ), 2591

COCHRAN option
PROC TTEST statement, 8797

CODE statement
GENMOD procedure, 395
GENMOD procedure, 2898
GLIMMIX procedure, 395
GLIMMIX procedure, 3092
GLM procedure, 395
GLMSELECT procedure, 395
GLMSELECT procedure, 3683
GLM procedure, 3415
LOGISTIC procedure, 395
LOGISTIC procedure, 4515
MIXED procedure, 395
MIXED procedure, 5238
PLM procedure, 395

PLM procedure, 6166
REG procedure, 395
REG procedure, 7012

CODING= option
MODEL statement (GENMOD), 2915

COEF= option
PROC MDS statement, 4999

COEFFICIENTS option
OUTPUT statement (TRANSREG), 8595

COEFFPRIOR= option
BAYES statement, 2886, 4226
BAYES statement(PHREG), 5906
MODEL statement (BCHOICE), 1029

COLLECT option
PLOT statement (REG), 7102

COLLIN option
MODEL statement (REG), 7018

COLLINOINT option
MODEL statement (REG), 7018

COLUMN option
TABLES statement (SURVEYFREQ), 7984

COLUMN= option
PROC CORRESP statement, 2099

COLUMN= option (RELRISK)
EXACT statement (FREQ), 2583
TABLES statement (FREQ), 2631

COLUMN= option (RISKDIFF)
EXACT statement (FREQ), 2584
TABLES statement (FREQ), 2634

COMMON option (RISKDIFF)
TABLES statement (FREQ), 2634

COMMONAXES option
PROC GAM statement, 2766

COMOR option
EXACT statement (FREQ), 2581
OUTPUT statement (FREQ), 2594

COMPINFO option
PROC FMM statement, 2473

COMPONENT option
FACTOR statement (CALIS), 1259

COMPONENTINFO option
PROC FMM statement, 2473

COMPONENTS option
PROC GAM statement, 2765

COMPRESS option
PROC FREQ statement, 2576

COMPUTE statement
VARIOGRAM procedure, 8935

CONDITION statement
CONDITION statement (SIMNORMAL), 7755

CONDITION= option
PROC MDS statement, 5000

CONDPOWER option
PROC SEQTEST statement, 7551
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CONF option
PLOT statement (REG), 7098

CONFBAND= option
PROC LIFETEST statement, 4339

CONFCURV option
PROFILE statement (NLIN), 5606

CONFTYPE= option
PROC ICLIFETEST statement, 3894
PROC LIFETEST statement, 4339

CONNECT option
EFFECTPLOT statement, 420

CONOVER option
EXACT statement (NPAR1WAY), 5803
OUTPUT statement (NPAR1WAY), 5808
PROC NPAR1WAY statement, 5796

CONSTRAINT= option
RANDOM statement (MCMC), 4781

CONTAIN option
MODEL statement (MIXED), 5253, 5254

CONTENTS= option
ODS HTML statement, 620
TABLES statement (FREQ), 2611

CONTGY option
OUTPUT statement (FREQ), 2591

CONTINUITY= option
TEST statement (MULTTEST), 5509

CONTINUOUS option
PLOT statement (BOXPLOT), 1107

CONTRAST keyword
REPEATED statement (ANOVA), 971

CONTRAST option
COVTEST statement (GLIMMIX), 3099
REPEATED statement (GLM), 3448, 3499
REPEATED statement (GLMPOWER), 3625

CONTRAST statement
CATMOD procedure, 1899
GENMOD procedure, 2899
GLIMMIX procedure, 3092
GLM procedure, 3415
GLMPOWER procedure, 3608
HPMIXED procedure, 3833
LOGISTIC procedure, 4516
MIXED procedure, 5239
MULTTEST procedure, 5505
NLMIXED procedure, 5710
PHREG procedure, 5921
SURVEYLOGISTIC procedure, 8074
SURVEYREG procedure, 8332

CONTRAST= option
ONEWAYANOVA statement (POWER), 6307

CONTROL keyword
OUTPUT statement (LIFEREG), 4248

CONTROL statement
NLIN procedure, 5598

SURVEYSELECT procedure, 8430
CONVENIENT option

MODEL statement (TRANSREG), 8581
CONVERGE option

EM statement (MI), 5043
MODEL statement (TRANSREG), 8585

CONVERGE= option
MCMC statement (MI), 5052
MODEL statement (GENMOD), 2915
MODEL statement (LIFEREG), 4244
PROC ACECLUS statement, 870
PROC FACTOR statement, 2312
PROC FASTCLUS statement, 2404
PROC MDS statement, 5000
PROC NLIN statement, 5585
PROC PRINQUAL statement, 6636
REPEATED statement, 2826
REPEATED statement (GENMOD), 2928

CONVERGE= option (PLCORR)
TABLES statement (FREQ), 2617

CONVERGENCE= option
PROC ROBUSTREG statement, 7178, 7181

CONVERGEOBJ= option
PROC NLIN statement, 5586

CONVERGEPARM= option
PROC NLIN statement, 5586

CONVF option
PROC MIXED statement, 5227, 5317

CONVG option
PROC MIXED statement, 5228, 5317

CONVG= option
MODEL statement (LIFEREG), 4244

CONVH option
PROC MIXED statement, 5228, 5317

CONVH= option
MODEL statement (GENMOD), 2916

COOKD keyword
OUTPUT statement (GLM), 3442

COORDINATES statement
KRIGE2D procedure, 4138
SIM2D procedure, 7708
VARIOGRAM procedure, 8940

COORDINATES= option
OUTPUT statement (TRANSREG), 8595

COPY statement
DISTANCE procedure, 2271
TREE procedure, 8774

CORE option
PROC MODECLUS statement, 5416

CORR option
ESTIMATE statement (LIFEREG), 448
ESTIMATE statement (LOGISTIC), 448
ESTIMATE statement (ORTHOREG), 448
ESTIMATE statement (PHREG), 448
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ESTIMATE statement (PLM), 448
ESTIMATE statement (PROBIT), 448
ESTIMATE statement (QUANTREG), 448
ESTIMATE statement (SURVEYLOGISTIC),

448
ESTIMATE statement (SURVEYPHREG), 448
ESTIMATE statement (SURVEYREG), 448
LSMEANS statement (GENMOD), 466
LSMEANS statement (GLIMMIX), 3116
LSMEANS statement (HPMIXED), 3841
LSMEANS statement (LIFEREG), 466
LSMEANS statement (LOGISTIC), 466
LSMEANS statement (MIXED), 5248
LSMEANS statement (ORTHOREG), 466
LSMEANS statement (PHREG), 466
LSMEANS statement (PLM), 466
LSMEANS statement (PROBIT), 466
LSMEANS statement (SURVEYLOGISTIC), 466
LSMEANS statement (SURVEYPHREG), 466
LSMEANS statement (SURVEYREG), 466
LSMESTIMATE statement (GENMOD), 480
LSMESTIMATE statement (GLIMMIX), 3127
LSMESTIMATE statement (LIFEREG), 480
LSMESTIMATE statement (LOGISTIC), 480
LSMESTIMATE statement (MIXED), 480
LSMESTIMATE statement (ORTHOREG), 480
LSMESTIMATE statement (PHREG), 480
LSMESTIMATE statement (PLM), 480
LSMESTIMATE statement (PROBIT), 480
LSMESTIMATE statement

(SURVEYLOGISTIC), 480
LSMESTIMATE statement (SURVEYPHREG),

480
LSMESTIMATE statement (SURVEYREG), 480
PROC CALIS statement, 1230
PROC CANCORR statement, 1834
PROC FACTOR statement, 2312
PROC FMM statement, 2473
PROC NLMIXED statement, 5695
PROC REG statement, 6999
PROC VARCLUS statement, 8862
SLICE statement (GENMOD), 466
SLICE statement (GLIMMIX), 466
SLICE statement (LIFEREG), 466
SLICE statement (LOGISTIC), 466
SLICE statement (MIXED), 466
SLICE statement (ORTHOREG), 466
SLICE statement (PHREG), 466
SLICE statement (PLM), 466
SLICE statement (PROBIT), 466
SLICE statement (SURVEYLOGISTIC), 466
SLICE statement (SURVEYPHREG), 466
SLICE statement (SURVEYREG), 466

CORR= option

LOGISTIC statement (POWER), 6277
ONECORR statement (POWER), 6289
PAIREDFREQ statement (POWER), 6312
PAIREDMEANS statement (POWER), 6319
REPEATED statement , 2827
REPEATED statement (GENMOD), 2930

CORRB option
MODEL statement (CATMOD), 1909
MODEL statement (GENMOD), 2916
MODEL statement (GLIMMIX), 3135
MODEL statement (ICPHREG), 3957
MODEL statement (LIFEREG), 4244
MODEL statement (LOGISTIC), 4536
MODEL statement (MIXED), 5253
MODEL statement (PHREG), 5934
MODEL statement (QUANTREG), 6852
MODEL statement (REG), 7018
MODEL statement (ROBUSTREG), 7185
MODEL statement (SPP), 7786
MODEL statement (SURVEYLOGISTIC), 8086
MODEL statement (VARIOGRAM), 8952
PROC CANCORR statement, 1834
REPEATED statement, 2826
REPEATED statement (GENMOD), 2929

CORRECT option (BINOMIAL)
TABLES statement (FREQ), 2605

CORRECT option (RISKDIFF)
TABLES statement (FREQ), 2634

CORRECT=NO option
PROC NPAR1WAY statement, 5796

CORRELATION option
PROC CALIS statement, 1211
SHOW statement (PLM), 6175

CORRELATIONS option
PROC PRINQUAL statement, 6636

CORRESP procedure
syntax, 2097

CORRESP procedure, BY statement, 2106
CORRESP procedure, ID statement, 2106
CORRESP procedure, PROC CORRESP statement,

2097
ALL option, 2098
BENZECRI option, 2099
BINARY option, 2099
CELLCHI2 option, 2099
CHI2P option, 2099
COLUMN= option, 2099
CP option, 2099
CROSS= option, 2099
DATA= option, 2100
DEVIATION option, 2100
DIMENS= option, 2100
EXPECTED option, 2100
FREQOUT option, 2100
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GREENACRE option, 2101
MCA option, 2101
MCA= option, 2129
MININERTIA= option, 2101
MISSING option, 2101
NOCOLUMN= option, 2101
NOPRINT option, 2102
NOROW= option, 2102
NVARS= option, 2102
OBSERVED option, 2102
OUTC= option, 2102
OUTF= option, 2103
PLOTS= option, 2103
PRINT= option, 2104
PROFILE= option, 2105
ROW= option, 2105
RP option, 2105
SHORT option, 2105
SINGULAR= option, 2105
SOURCE option, 2105
UNADJUSTED option, 2106

CORRESP procedure, PROC statement
INERTIATABLE option, 2101

CORRESP procedure, SUPPLEMENTARY statement,
2107

CORRESP procedure, TABLES statement, 2107
CORRESP procedure, VAR statement, 2108
CORRESP procedure, WEIGHT statement, 2108
CORRMAT option

POWER statement (GLMPOWER), 3617
CORRS option

POWER statement (GLMPOWER), 3617
CORRW option

REPEATED statement, 2826
REPEATED statement (GENMOD), 2929

CORRXY= option
POWER statement (GLMPOWER), 3618

COSAN statement, CALIS procedure, 1242
COST= option

STRATA statement (SURVEYSELECT), 8436
COV option

ESTIMATE statement (LIFEREG), 448
ESTIMATE statement (LOGISTIC), 448
ESTIMATE statement (ORTHOREG), 448
ESTIMATE statement (PHREG), 448
ESTIMATE statement (PLM), 448
ESTIMATE statement (PROBIT), 448
ESTIMATE statement (QUANTREG), 448
ESTIMATE statement (SURVEYLOGISTIC),

448
ESTIMATE statement (SURVEYPHREG), 448
ESTIMATE statement (SURVEYREG), 448
LSMEANS statement (GENMOD), 466
LSMEANS statement (GLIMMIX), 3116

LSMEANS statement (GLM), 3422
LSMEANS statement (HPMIXED), 3841
LSMEANS statement (LIFEREG), 466
LSMEANS statement (LOGISTIC), 466
LSMEANS statement (MIXED), 5248
LSMEANS statement (ORTHOREG), 466
LSMEANS statement (PHREG), 466
LSMEANS statement (PLM), 466
LSMEANS statement (PROBIT), 466
LSMEANS statement (SURVEYLOGISTIC), 466
LSMEANS statement (SURVEYPHREG), 466
LSMEANS statement (SURVEYREG), 466
LSMESTIMATE statement (GENMOD), 480
LSMESTIMATE statement (GLIMMIX), 3127
LSMESTIMATE statement (LIFEREG), 480
LSMESTIMATE statement (LOGISTIC), 480
LSMESTIMATE statement (MIXED), 480
LSMESTIMATE statement (ORTHOREG), 480
LSMESTIMATE statement (PHREG), 480
LSMESTIMATE statement (PLM), 480
LSMESTIMATE statement (PROBIT), 480
LSMESTIMATE statement

(SURVEYLOGISTIC), 480
LSMESTIMATE statement (SURVEYPHREG),

480
LSMESTIMATE statement (SURVEYREG), 480
MCMC statement (MI), 5049, 5054
MODEL statement (CATMOD), 1909
PROC FMM statement, 2473
PROC LATTICE statement, 4200
PROC NLMIXED statement, 5695
PROC PRINCOMP statement, 6592
ROCCONTRAST statement (LOGISTIC), 4556
SLICE statement (GENMOD), 466
SLICE statement (GLIMMIX), 466
SLICE statement (LIFEREG), 466
SLICE statement (LOGISTIC), 466
SLICE statement (MIXED), 466
SLICE statement (ORTHOREG), 466
SLICE statement (PHREG), 466
SLICE statement (PLM), 466
SLICE statement (PROBIT), 466
SLICE statement (SURVEYLOGISTIC), 466
SLICE statement (SURVEYPHREG), 466
SLICE statement (SURVEYREG), 466
TABLES statement (SURVEYFREQ), 7985

COV statement, CALIS procedure, 1252
COV statement, IRT procedure, 4022
COVAR option

PROC INBREED statement, 3988
COVAR= option

MODEL statement (RSREG), 7267
COVARIANCE option

PROC CALIS statement, 1211
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PROC FACTOR statement, 2312
PROC LATTICE statement, 4200
PROC PRINCOMP statement, 6592
PROC PRINQUAL statement, 6636
PROC VARCLUS statement, 8862
SHOW statement (PLM), 6176

COVARIATES= option
BASELINE statement (ICPHREG), 3947
BASELINE statement (PHREG), 5900
BASELINE statement (QUANTLIFE), 6806
LOGISTIC statement (POWER), 6277
PREDDIST statement (BCHOICE), 1032
PREDDIST statement (MCMC), 4775

COVB option
MODEL statement (CATMOD), 1909
MODEL statement (GENMOD), 2916
MODEL statement (GLIMMIX), 3135
MODEL statement (ICPHREG), 3957
MODEL statement (LIFEREG), 4244
MODEL statement (LOGISTIC), 4536
MODEL statement (MIXED), 5253
MODEL statement (PHREG), 5934
MODEL statement (QUANTREG), 6852
MODEL statement (REG), 7018
MODEL statement (ROBUSTREG), 7185
MODEL statement (SPP), 7786
MODEL statement (SURVEYLOGISTIC), 8086
MODEL statement (SURVEYPHREG), 8259
MODEL statement (SURVEYREG), 8340
MODEL statement (VARIOGRAM), 8952
REPEATED statement , 2826
REPEATED statement (GENMOD), 2929

COVB= option
PROC MIANALYZE statement, 5165

COVBI option
MODEL statement (GLIMMIX), 3135
MODEL statement (MIXED), 5253

COVER= option
PATHDIAGRAM statement, 2328
PROC FACTOR statement, 2312

COVERLAY= option
PLOT statement (BOXPLOT), 1107

COVERLAYCLIP= option
PLOT statement (BOXPLOT), 1107

COVI option
PROC FMM statement, 2473

COVM option
PROC PHREG statement, 5893

COVMAT option
POWER statement (GLMPOWER), 3618

COVODDSRATIOS= option
LOGISTIC statement (POWER), 6277

COVOUT option
PROC LIFEREG statement, 4223

PROC LOGISTIC statement, 4500
PROC PHREG statement, 5893
PROC PROBIT statement, 6692
PROC REG statement, 6999
PROC ROBUSTREG statement, 7175

COVP option
TABLES statement (SURVEYFREQ), 7985

COVPATTERN= option
PROC CALIS statement, 1211

COVPRIOR= option
MODEL statement (BCHOICE), 1030
RANDOM statement (BCHOICE), 1033

COVRATIO keyword
OUTPUT statement (GLM), 3443

COVREGCOEFFS= option
LOGISTIC statement (POWER), 6278

COVS option, see COVSANDWICH option
COVSANDWICH option

PROC PHREG statement, 5893
COVSING= option

PROC CALIS statement, 1214
PROC NLMIXED statement, 5695

COVTEST option
PROC MIXED statement, 5228, 5318

COVTEST statement
GLIMMIX procedure, 3096

COVTYPE= option
MODEL statement (BCHOICE), 1030

CP
STATS= option (GLMSELECT), 3695

CP option
MODEL statement (REG), 7018
PLOT statement (REG), 7098
PROC CORRESP statement, 2099

CPC option
OUTPUT statement (TRANSREG), 8596

CPREFIX= option
CLASS statement (BCHOICE), 1027
CLASS statement (GENMOD), 2896
CLASS statement (GLMSELECT), 3680
CLASS statement (ICPHREG), 3951
CLASS statement (LOGISTIC), 4512
CLASS statement (PHREG), 5918
CLASS statement (PROBIT), 6706
CLASS statement (QUANTSELECT), 6928
CLASS statement (SURVEYLOGISTIC), 8071
MODEL statement (TRANSREG), 8578, 8585

CPSEUDO option
OUTPUT statement (GLIMMIX), 3149

CPUCOUNT option
PERFORMANCE statement (QUANTREG),

6856
CPUCOUNT= option

PERFORMANCE statement (FMM), 2506
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PERFORMANCE statement (ROBUSTREG),
7189

CQC option
OUTPUT statement (TRANSREG), 8596

CR= option
PROC MODECLUS statement, 5416

CRAMV option
OUTPUT statement (FREQ), 2592

CREF= option
MCMC statement (MI), 5050

CRESIDUAL keyword
OUTPUT statement (LIFEREG), 4248

CRIT= option
PROC FMM statement, 2473

CRITERION= option
PROC FMM statement, 2473

CRITMIN= option
PROC MDS statement, 5003

CROSS option
PROC MODECLUS statement, 5416
PROCESS statement (SPP), 7792

CROSS= option
PROC CORRESP statement, 2099

CROSSLIST option
PROC DISCRIM statement, 2165
PROC MODECLUS statement, 5416
TABLES statement (FREQ), 2611

CROSSLISTERR option
PROC DISCRIM statement, 2165

CROSSOVER= option
PROC TTEST statement, 8805

CROSSVALIDATE option
PROC DISCRIM statement, 2165

CRPANEL option
ASSESS statement (PHREG), 5898

CSTEP= option
PROC ROBUSTREG statement, 7179

CSYMBOL= option
MCMC statement (MI), 5050, 5055

CTABLE option
MODEL statement (LOGISTIC), 4536

CTEXT= option
INSET statement, 4239
PLOT statement (BOXPLOT), 1107
PLOT statement (REG), 7098

CUMCOL option
TABLES statement (FREQ), 2612

CUMULATIVE option
SCORE statement (LOGISTIC), 4558

CURVE= option
TWOSAMPLESURVIVAL statement (POWER),

6349
CUTOFF option

MODEL statement (QUANTREG), 6852

CUTOFF= option
MODEL statement (ROBUSTREG), 7185
PROC MDS statement, 5000

CV option
MODEL statement (TRANSREG), 8577
TABLES statement (SURVEYFREQ), 7985

CV= option
ONESAMPLEMEANS statement (POWER),

6301
PAIREDMEANS statement (POWER), 6320
PROC PLS statement, 6221
TWOSAMPLEMEANS statement (POWER),

6340
CVALS= option

OUTPUT statement (PLAN), 6128
CVDETAILS option

MODEL statement (GLMSELECT), 3685
CVMETHOD option

MODEL statement (ADAPTIVEREG), 907
MODEL statement (GLMSELECT), 3686

CVREF= option
PLOT statement (BOXPLOT), 1108
PLOT statement (REG), 7098

CVTEST= option
PROC PLS statement, 6221

CVWT option
TABLES statement (SURVEYFREQ), 7985

D option
MODEL statement (RSREG), 7267
PROC NPAR1WAY statement, 5796

DAMPSTEP option, 5735
NLOPTIONS statement (GLIMMIX), 491
PROC NLMIXED statement, 5695

DAPPROXIMATIONS option
OUTPUT statement (TRANSREG), 8596

DATA option
PROC STDRATE statement, 7875

Data set option
TYPE=ACE, 9041
TYPE=BOXPLOT, 9041
TYPE=CALISFIT, 9041
TYPE=CALISMDL, 9041
TYPE=CHARTSUM, 9041
TYPE=CORR, 9042
TYPE=COV, 9045
TYPE=CSSCP, 9045
TYPE=DISTANCE, 9045
TYPE=EST, 9046
TYPE=LINEAR, 9047
TYPE=LOGISMOD, 9048
TYPE=MIXED, 9048
TYPE=QUAD, 9048
TYPE=SSCP, 9048
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TYPE=TREE, 9049
TYPE=UCORR, 9049
TYPE=UCOV, 9050
TYPE=WEIGHT, 9050

DATA= option
PARMS statement (NLMIXED), 5712
PRIOR statement (MIXED), 5270
PROC ACECLUS statement, 871
PROC ADAPTIVEREG statement, 895
PROC ANOVA statement, 955
PROC BCHOICE statement, 1017
PROC BOXPLOT statement, 1090
PROC CALIS statement, 1214
PROC CANCORR statement, 1834
PROC CANDISC statement, 1862
PROC CATMOD statement, 1897
PROC CLUSTER statement, 2016
PROC CORRESP statement, 2100
PROC DISCRIM statement, 2165
PROC DISTANCE statement, 2261
PROC FACTOR statement, 2312
PROC FASTCLUS statement, 2405
PROC FMM statement, 2473
PROC FREQ statement, 2577
PROC GAM statement, 2764
PROC GEE statement, 2820
PROC GENMOD statement, 2879
PROC GLIMMIX statement, 3066
PROC GLM statement, 3407
PROC GLMMOD statement, 3580
PROC GLMPOWER statement, 3607
PROC GLMSELECT statement, 3671
PROC HPMIXED statement, 3828
PROC ICLIFETEST statement, 3895
PROC ICPHREG statement, 3941
PROC INBREED statement, 3988
PROC IRT statement, 4015
PROC KDE statement, 4083
PROC KRIGE2D statement, 4132
PROC LATTICE statement, 4200
PROC LIFEREG statement, 4223
PROC LIFETEST statement, 4340
PROC LOESS statement, 4434
PROC LOGISTIC statement, 4500
PROC MCMC statement, 4751
PROC MDS statement, 5000
PROC MI statement, 5040
PROC MIANALYZE statement, 5165
PROC MIXED statement, 5228
PROC MODECLUS statement, 5416
PROC MULTTEST statement, 5495
PROC NESTED statement, 5563
PROC NLIN statement, 5586
PROC NLMIXED statement, 5695

PROC NPAR1WAY statement, 5796
PROC ORTHOREG statement, 5856
PROC PHREG statement, 5893
PROC PLS statement, 6222
PROC PRINCOMP statement, 6592
PROC PRINQUAL statement, 6636
PROC PROBIT statement, 6693
PROC QUANTLIFE statement, 6803
PROC QUANTREG statement, 6845
PROC QUANTSELECT statement, 6920
PROC REG statement, 6999
PROC ROBUSTREG statement, 7175
PROC RSREG statement, 7262
PROC SCORE statement, 7300
PROC SEQTEST statement, 7547
PROC SIM2D statement, 7702
PROC SIMNORMAL statement, 7753
PROC SPP statement, 7777
PROC STDIZE statement, 7839
PROC STEPDISC statement, 7940
PROC SURVEYFREQ statement, 7968
PROC SURVEYLOGISTIC statement, 8066
PROC SURVEYMEANS statement, 8162
PROC SURVEYPHREG statement, 8245
PROC SURVEYREG statement, 8323
PROC SURVEYSELECT statement, 8415
PROC TPSPLINE statement, 8492
PROC TRANSREG statement, 8559
PROC TREE statement, 8769
PROC TTEST statement, 8797
PROC VARCLUS statement, 8862
PROC VARCOMP statement, 8890
PROC VARIOGRAM statement, 8927
SCORE statement (ADAPTIVEREG), 912
SCORE statement (GAM), 2774
SCORE statement (LOGISTIC), 4558
SCORE statement (PLM), 6172
SCORE statement (TPSPLINE), 8501

DATABOUNDARY option
EFFECT statement, spline (GLIMMIX), 408
EFFECT statement, spline (GLMSELECT), 408
EFFECT statement, spline (HPMIXED), 408
EFFECT statement, spline (LOGISTIC), 408
EFFECT statement, spline (ORTHOREG), 408
EFFECT statement, spline (PHREG), 408
EFFECT statement, spline (PLS), 408
EFFECT statement, spline (QUANTLIFE), 408
EFFECT statement, spline (QUANTREG), 408
EFFECT statement, spline (QUANTSELECT),

408
EFFECT statement, spline (ROBUSTREG), 408
EFFECT statement, spline (SURVEYLOGISTIC),

408
EFFECT statement, spline (SURVEYREG), 408
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DDF= option
MODEL statement (GLIMMIX), 3135
MODEL statement (HPMIXED), 3843
MODEL statement (MIXED), 5253
TEST statement (ICPHREG), 510
TEST statement (LIFEREG), 510
TEST statement (ORTHOREG), 510
TEST statement (PLM), 510
TEST statement (PROBIT), 510
TEST statement (SURVEYPHREG), 510
TEST statement (SURVEYREG), 510

DDFM= option
MODEL statement (GLIMMIX), 3136
MODEL statement (HPMIXED), 3843
MODEL statement (MIXED), 5253
TEST statement (MULTTEST), 5509

DDFMETHOD= option
PROC PLM statement (PLM), 6163

DECIMALS= option
PROC MDS statement, 5001

DECP= option
PATHDIAGRAM statement, 1335, 2328

DECPFIT= option
PATHDIAGRAM statement, 1335

default option
LMTESTS statement, 1286

DEFAULT= option
UNITS statement (LOGISTIC), 4562
UNITS statement (SURVEYLOGISTIC), 8097

DEFAULTNBINS= option
LOGISTIC statement (POWER), 6278

DEFAULTUNIT= option
LOGISTIC statement (POWER), 6278

DEFF option
MODEL statement (SURVEYREG), 8340
TABLES statement (SURVEYFREQ), 7985

DEFF option (COLUMN)
TABLES statement (SURVEYFREQ), 7984

DEFF option (ROW)
TABLES statement (SURVEYFREQ), 7996

DEFFBOUND= option
MODEL statement (SURVEYLOGISTIC), 8090

DEGREE option
EFFECT statement, polynomial (GLIMMIX),

404
EFFECT statement, polynomial (GLMSELECT),

404
EFFECT statement, polynomial (HPMIXED),

404
EFFECT statement, polynomial (LOGISTIC),

404
EFFECT statement, polynomial (ORTHOREG),

404
EFFECT statement, polynomial (PHREG), 404

EFFECT statement, polynomial (PLS), 404
EFFECT statement, polynomial (QUANTLIFE),

404
EFFECT statement, polynomial (QUANTREG),

404
EFFECT statement, polynomial

(QUANTSELECT), 404
EFFECT statement, polynomial (ROBUSTREG),

404
EFFECT statement, polynomial

(SURVEYLOGISTIC), 404
EFFECT statement, polynomial (SURVEYREG),

404
EFFECT statement, spline (GLIMMIX), 408
EFFECT statement, spline (GLMSELECT), 408
EFFECT statement, spline (HPMIXED), 408
EFFECT statement, spline (LOGISTIC), 408
EFFECT statement, spline (ORTHOREG), 408
EFFECT statement, spline (PHREG), 408
EFFECT statement, spline (PLS), 408
EFFECT statement, spline (QUANTLIFE), 408
EFFECT statement, spline (QUANTREG), 408
EFFECT statement, spline (QUANTSELECT),

408
EFFECT statement, spline (ROBUSTREG), 408
EFFECT statement, spline (SURVEYLOGISTIC),

408
EFFECT statement, spline (SURVEYREG), 408

DEGREE= option
MODEL statement (LOESS), 4440
MODEL statement (TRANSREG), 8575
TRANSFORM statement (PRINQUAL), 6649

DELETE statement, REG procedure, 7013
DELETE= option

PROC FASTCLUS statement, 2405
DELIMITER option

CLASS statement (GLMSELECT), 3679
CLASS statement (QUANTSELECT), 6928

DELTA= option
MNAR statement, 5057

DEMPHAS= option
PROC CALIS statement, 1214

DENSITY= option
PROC MODECLUS statement, 5417

DEPENDENT option
POWER statement (GLMPOWER), 3618

DEPENDENT= option
OUTPUT statement (TRANSREG), 8596

DEPENDENTFDR option
PROC MULTTEST statement, 5495, 5523

DEPONLY option
MEANS statement (GLM), 3434

DEPSILON= option
COMPUTE statement (VARIOGRAM), 8938
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DER option
OUTPUT statement (GLIMMIX), 3149
OUTPUT statement (NLIN), 5603
PREDICT statement (NLMIXED), 5713

DER statement
NLIN procedure, 5598

DERIVATIVES option
OUTPUT statement (GLIMMIX), 3149

DESCENDING option
CLASS statement, 2821
CLASS statement (ADAPTIVEREG), 903
CLASS statement (BCHOICE), 1027
CLASS statement (GAM), 2767
CLASS statement (GENMOD), 2896
CLASS statement (GLMSELECT), 3680
CLASS statement (ICPHREG), 3951
CLASS statement (LOGISTIC), 4512
CLASS statement (PHREG), 5918
CLASS statement (PROBIT), 6706
CLASS statement (QUANTSELECT), 6929
CLASS statement (SURVEYLOGISTIC), 8072
CLASS statement (SURVEYPHREG), 8252
FCS statement (MI), 5047
MODEL statement, 905, 2496, 2770, 3133, 4531,

6733, 8083
MONOTONE statement (MI), 5060
PROC GAM statement, 2764
PROC GEE statement, 2820
PROC GENMOD statement, 2879
PROC IRT statement, 4015
PROC LOGISTIC statement, 4500
PROC TREE statement, 8769

DESCRIPTION= option
PLOT statement (BOXPLOT), 1108
PLOT statement (GLMPOWER), 3615
PLOT statement (POWER), 6330
PLOT statement (REG), 7099
PROC LIFETEST statement, 4382
PROC TREE statement, 8769

DESIGN option
MODEL statement (CATMOD), 1909

DESIGN statement
SEQDESIGN procedure, 7334

DESIGN= option
OUTPUT statement (TRANSREG), 8596

DESIGNROLE option
EFFECT statement, lag (GLIMMIX), 402
EFFECT statement, lag (GLMSELECT), 402
EFFECT statement, lag (HPMIXED), 402
EFFECT statement, lag (LOGISTIC), 402
EFFECT statement, lag (ORTHOREG), 402
EFFECT statement, lag (PHREG), 402
EFFECT statement, lag (PLS), 402
EFFECT statement, lag (QUANTLIFE), 402

EFFECT statement, lag (QUANTREG), 402
EFFECT statement, lag (QUANTSELECT), 402
EFFECT statement, lag (ROBUSTREG), 402
EFFECT statement, lag (SURVEYLOGISTIC),

402
EFFECT statement, lag (SURVEYREG), 402

DESTROYER= option
PATHDIAGRAM statement, 1335

DETAIL option
MODEL statement (TRANSREG), 8585

DETAILS option
EFFECT statement, lag (GLIMMIX), 402
EFFECT statement, lag (GLMSELECT), 402
EFFECT statement, lag (HPMIXED), 402
EFFECT statement, lag (LOGISTIC), 402
EFFECT statement, lag (ORTHOREG), 402
EFFECT statement, lag (PHREG), 402
EFFECT statement, lag (PLS), 402
EFFECT statement, lag (QUANTLIFE), 402
EFFECT statement, lag (QUANTREG), 402
EFFECT statement, lag (QUANTSELECT), 402
EFFECT statement, lag (ROBUSTREG), 402
EFFECT statement, lag (SURVEYLOGISTIC),

402
EFFECT statement, lag (SURVEYREG), 402
EFFECT statement, multimember (GLIMMIX),

403
EFFECT statement, multimember

(GLMSELECT), 403
EFFECT statement, multimember (HPMIXED),

403
EFFECT statement, multimember (LOGISTIC),

403
EFFECT statement, multimember (ORTHOREG),

403
EFFECT statement, multimember (PHREG), 403
EFFECT statement, multimember (PLS), 403
EFFECT statement, multimember

(QUANTLIFE), 403
EFFECT statement, multimember (QUANTREG),

403
EFFECT statement, multimember

(QUANTSELECT), 403
EFFECT statement, multimember

(ROBUSTREG), 403
EFFECT statement, multimember

(SURVEYLOGISTIC), 403
EFFECT statement, multimember

(SURVEYREG), 403
EFFECT statement, polynomial (GLIMMIX),

404
EFFECT statement, polynomial (GLMSELECT),

404
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EFFECT statement, polynomial (HPMIXED),
404

EFFECT statement, polynomial (LOGISTIC),
404

EFFECT statement, polynomial (ORTHOREG),
404

EFFECT statement, polynomial (PHREG), 404
EFFECT statement, polynomial (PLS), 404
EFFECT statement, polynomial (QUANTLIFE),

404
EFFECT statement, polynomial (QUANTREG),

404
EFFECT statement, polynomial

(QUANTSELECT), 404
EFFECT statement, polynomial (ROBUSTREG),

404
EFFECT statement, polynomial

(SURVEYLOGISTIC), 404
EFFECT statement, polynomial (SURVEYREG),

404
EFFECT statement, spline (GLIMMIX), 408
EFFECT statement, spline (GLMSELECT), 408
EFFECT statement, spline (HPMIXED), 408
EFFECT statement, spline (LOGISTIC), 408
EFFECT statement, spline (ORTHOREG), 408
EFFECT statement, spline (PHREG), 408
EFFECT statement, spline (PLS), 408
EFFECT statement, spline (QUANTLIFE), 408
EFFECT statement, spline (QUANTREG), 408
EFFECT statement, spline (QUANTSELECT),

408
EFFECT statement, spline (ROBUSTREG), 408
EFFECT statement, spline (SURVEYLOGISTIC),

408
EFFECT statement, spline (SURVEYREG), 408
FCS statement (MI), 5046, 5047
MODEL statement (GLMSELECT), 3686
MODEL statement (LOESS), 4440
MODEL statement (LOGISTIC), 4536
MODEL statement (PHREG), 5934
MODEL statement (QUANTSELECT), 6933
MODEL statement (REG), 7019
MODEL statement (VARIOGRAM), 8952
MODELAVERAGE statement (GLMSELECT),

3696
MONOTONE statement (MI), 5059, 5060
MTEST statement (REG), 7026
PERFORMANCE statement (FMM), 2506
PERFORMANCE statement (GLMSELECT),

3702
PERFORMANCE statement (QUANTREG),

6856
PERFORMANCE statement (ROBUSTREG),

7189

PROC ADAPTIVEREG statement, 896
PROC PLS statement, 6222
VARMETHOD=BRR (PROC SURVEYPHREG

statement), 8248
VARMETHOD=JK (PROC SURVEYPHREG

statement), 8250
DETERM statement, CALIS procedure, 1256
DEVIANCE statement, GENMOD procedure, 2901,

2926
DEVIATION option

PROC CORRESP statement, 2100
TABLES statement (FREQ), 2612
TABLES statement (SURVEYFREQ), 7985

DEVIATIONS option
MODEL statement (TRANSREG), 8578

DF= option
CONTRAST statement (GLIMMIX), 3095
CONTRAST statement (HPMIXED), 3834
CONTRAST statement (MIXED), 5241
CONTRAST statement (NLMIXED), 5710
COVTEST statement (GLIMMIX), 3102
ESTIMATE statement (GLIMMIX), 3106
ESTIMATE statement (HPMIXED), 3838
ESTIMATE statement (MIXED), 5243
ESTIMATE statement (NLMIXED), 5711
ESTIMATE statement (ORTHOREG), 448
ESTIMATE statement (PLM), 448
ESTIMATE statement (SURVEYPHREG), 448
ESTIMATE statement (SURVEYREG), 448
LSMEANS statement (GLIMMIX), 3116
LSMEANS statement (HPMIXED), 3841
LSMEANS statement (MIXED), 5248
LSMEANS statement (ORTHOREG), 466
LSMEANS statement (PLM), 466
LSMEANS statement (SURVEYPHREG), 466
LSMEANS statement (SURVEYREG), 466
LSMESTIMATE statement (GLIMMIX), 3127
LSMESTIMATE statement (MIXED), 480
LSMESTIMATE statement (ORTHOREG), 480
LSMESTIMATE statement (PLM), 480
LSMESTIMATE statement (SURVEYPHREG),

480
LSMESTIMATE statement (SURVEYREG), 480
MODEL statement (GLIMMIX), 3135
MODEL statement (SURVEYLOGISTIC), 8086
MODEL statement (SURVEYPHREG), 8259
MODEL statement (SURVEYREG), 8340
MODEL statement (TPSPLINE), 8498
PREDICT statement (NLMIXED), 5713
PROC NLMIXED statement, 5695
RANDOM statement (NLMIXED), 5714
REPWEIGHTS statement (SURVEYFREQ),

7976
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REPWEIGHTS statement (SURVEYLOGISTIC),
8094

REPWEIGHTS statement (SURVEYMEANS),
8179

REPWEIGHTS statement (SURVEYPHREG),
8265

REPWEIGHTS statement (SURVEYREG), 8343
SCORE statement (PLM), 6173
SLICE statement (GLIMMIX), 466
SLICE statement (MIXED), 466
SLICE statement (ORTHOREG), 466
SLICE statement (PLM), 466
SLICE statement (SURVEYPHREG), 466
SLICE statement (SURVEYREG), 466
TABLES statement (SURVEYFREQ), 7985

DF= option (CHISQ)
TABLES statement (FREQ), 2607

DF=ALLREPS
DF= (SURVEYPHREG), 8260

DF=DESIGN
DF= (SURVEYLOGISTIC), 8086

DF=INFINITY
DF= (SURVEYLOGISTIC), 8086

DF=NONE
DF= (SURVEYLOGISTIC), 8086
DF= (SURVEYPHREG), 8260

DF=PARMADJ
DF= (SURVEYLOGISTIC), 8087
DF= (SURVEYPHREG), 8260

DFADJ option
DOMAIN statement (SURVEYMEANS), 8175
VARMETHOD=BRR (PROC SURVEYFREQ

statement), 7972
VARMETHOD=BRR (PROC SURVEYMEANS

statement), 8169
VARMETHOD=JACKKNIFE (PROC

SURVEYFREQ statement), 7974
VARMETHOD=JACKKNIFE (PROC

SURVEYMEANS statement), 8172
VARMETHOD=JK (PROC SURVEYMEANS

statement), 8172
DFBETAS= option

OUTPUT statement (LOGISTIC), 4552
DFBW option

PROC MIXED statement, 5228
DFE= option

PROC CALIS statement, 1215
DFFITS keyword

OUTPUT statement (GLM), 3443
DFMETHOD= option

MODEL statement (LOESS), 4441
DFMETHOD=APPROX(Cutoff= ) option

MODEL statement (LOESS), 4441
DFMETHOD=APPROX(Quantile= ) option

MODEL statement (LOESS), 4441
DFPERBASIS = option

MODEL statement (ADAPTIVEREG), 907
DFR= option

PROC CALIS statement, 1234
DFREDUCE= option

FITINDEX statement, 1268
PROC CALIS statement, 1215

DGP option
BOOTSTRAP statement (NLIN), 5596

DIAG= option
PROC BCHOICE statement, 1018
PROC MCMC statement, 4749

DIAGNOSTICS option
BAYES statement, 2887
BAYES statement (FMM), 2486
MODEL statement (GENMOD), 2916
MODEL statement (QUANTREG), 6852
MODEL statement (ROBUSTREG), 7185

DIAGNOSTICS= option
BAYES statement, 4227, 4228
BAYES statement(PHREG), 5908
PROC BCHOICE statement, 1018
PROC MCMC statement, 4749

DIAGRAM= option
PATHDIAGRAM statement, 1336

DIAGRAMLABEL= option
PATHDIAGRAM statement, 1336, 2328

DIAHES option
PROC NLMIXED statement, 5696

DIC option
PROC BCHOICE statement, 1020
PROC MCMC statement, 4751

DIFCHISQ= option
OUTPUT statement (LOGISTIC), 4552

DIFDEV= option
OUTPUT statement (LOGISTIC), 4552

DIFF option
LSMEANS statement (GENMOD), 466
LSMEANS statement (GLIMMIX), 3116
LSMEANS statement (HPMIXED), 3841
LSMEANS statement (LIFEREG), 466
LSMEANS statement (LOGISTIC), 466
LSMEANS statement (MIXED), 5248
LSMEANS statement (ORTHOREG), 466
LSMEANS statement (PHREG), 466
LSMEANS statement (PLM), 466
LSMEANS statement (PROBIT), 466
LSMEANS statement (SURVEYLOGISTIC), 466
LSMEANS statement (SURVEYPHREG), 466
LSMEANS statement (SURVEYREG), 466
SLICE statement (GENMOD), 466
SLICE statement (GLIMMIX), 466
SLICE statement (LIFEREG), 466
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SLICE statement (LOGISTIC), 466
SLICE statement (MIXED), 466
SLICE statement (ORTHOREG), 466
SLICE statement (PHREG), 466
SLICE statement (PLM), 466
SLICE statement (PROBIT), 466
SLICE statement (SURVEYLOGISTIC), 466
SLICE statement (SURVEYPHREG), 466
SLICE statement (SURVEYREG), 466

DIFF= option
HAZARDRATIO statement (ICPHREG), 3955
HAZARDRATIO statement (PHREG), 5928
ODDSRATIO statement (LOGISTIC), 4550
STRATA statement (LIFETEST), 4351
TEST statement (ICLIFETEST), 3903

DIM= option
PROC CLUSTER statement, 2017

DIMENS= option
PROC CORRESP statement, 2100

DIMENSION= option
PROC MDS statement, 5001
PROC MODECLUS statement, 5417

DIRADJ option
BASELINE statement (PHREG), 5904

DIRECT option
MODEL statement (LOESS), 4441

DIRECT statement, CATMOD procedure, 1902
DIRECTIONS statement

VARIOGRAM procedure, 8941
DISCPROPDIFF= option

PAIREDFREQ statement (POWER), 6312
DISCPROPORTIONS= option

PAIREDFREQ statement (POWER), 6312
DISCPROPRATIO= option

PAIREDFREQ statement (POWER), 6312
DISCRETE= option

PROC MCMC statement, 4749
DISCRIM option

FCS statement (MI), 5046
MONOTONE statement (MI), 5059

DISCRIM procedure
syntax, 2162

DISCRIM procedure, BY statement, 2170
DISCRIM procedure, CLASS statement, 2171
DISCRIM procedure, FREQ statement, 2171
DISCRIM procedure, ID statement, 2171
DISCRIM procedure, PRIORS statement, 2172
DISCRIM procedure, PROC DISCRIM statement,

2162
ALL option, 2164
ANOVA option, 2164
BCORR option, 2164
BCOV option, 2164
BSSCP option, 2164

CAN option, 2164
CANONICAL option, 2164
CANPREFIX= option, 2164
CROSSLIST option, 2165
CROSSLISTERR option, 2165
CROSSVALIDATE option, 2165
DATA= option, 2165
DISTANCE option, 2165
FORMULA option, 2165
K= option, 2165
KERNEL= option, 2166
KPROP= option, 2165
LIST option, 2166
LISTERR option, 2166
MAHALANOBIS option, 2165
MANOVA option, 2166
METHOD= option, 2166
METRIC= option, 2166
NCAN= option, 2166
NOCLASSIFY option, 2167
NOPRINT option, 2167
OUT= option, 2167
OUTCROSS= option, 2167
OUTD= option, 2167
OUTSTAT= option, 2167
PCORR option, 2167
PCOV option, 2167
POOL= option, 2167
POSTERR option, 2168
PSSCP option, 2168
R= option, 2168
SCORES= option, 2168
SHORT option, 2168
SIMPLE option, 2168
SINGULAR= option, 2169
SLPOOL= option, 2169
STDMEAN option, 2169
TCORR option, 2169
TCOV option, 2169
TESTDATA= option, 2169
TESTLIST option, 2169
TESTLISTERR option, 2169
TESTOUT= option, 2170
TESTOUTD= option, 2170
THRESHOLD= option, 2170
TSSCP option, 2170
WCORR option, 2170
WCOV option, 2170
WSSCP option, 2170

DISCRIM procedure, TESTCLASS statement, 2172
DISCRIM procedure, TESTFREQ statement, 2173
DISCRIM procedure, TESTID statement, 2173
DISCRIM procedure, VAR statement, 2173
DISCRIM procedure, WEIGHT statement, 2173
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DISPERSIONPRIOR option
BAYES statement, 2889

DISPLAYINIT option
MCMC statement (MI), 5051

DISSIMILAR option
PROC TREE statement, 8770

DIST = option
MODEL statement (ADAPTIVEREG), 908
MODEL statement (GAM), 2771

DIST= option
MODEL statement, 2824
MODEL statement (FMM), 2498
MODEL statement (GENMOD), 2916
MODEL statement (GLIMMIX), 3137
ONECORR statement (POWER), 6289
ONESAMPLEMEANS statement (POWER),

6301
PAIREDFREQ statement (POWER), 6312
PAIREDMEANS statement (POWER), 6320
PROC TTEST statement, 8797
RANDOM statement, 5945
TWOSAMPLEMEANS statement (POWER),

6340
DISTANCE option

PROC CANDISC statement, 1862
PROC DISCRIM statement, 2165
PROC FASTCLUS statement, 2405

DISTANCE procedure, BY statement, 2271
DISTANCE procedure, COPY statement, 2271
DISTANCE procedure, FREQ statement, 2271
DISTANCE procedure, ID statement, 2270
DISTANCE procedure, PROC DISTANCE statement,

2260
ABSENT= option, 2261
ADD= option, 2261
DATA= option, 2261
FUZZ= option, 2261
INITIAL= option, 2261
METHOD= option, 2261
MULT= option, 2264
NOMISS, 2264
NORM option, 2264
NOSTD, 2264
OUT= option, 2264
OUTSDZ= option, 2265
PREFIX= option, 2265
RANKSCORE= option, 2265
REPLACE, 2265
REPONLY, 2266
SHAPE= option, 2266
SNORM option, 2266
STDONLY option, 2266
UNDEF= option, 2266
VARDEF= option, 2266

DISTANCE procedure, VAR statement
ABSENT= option, 2269
MISSING= option, 2269
ORDER= option, 2270
WEIGHTS= option, 2270

DISTANCE procedure, WGT statement, 2271
DISTANCE= option

MODEL statement (TPSPLINE), 8498
DISTRIBUTION= option

MODEL statement (FMM), 2498
MODEL statement (GLIMMIX), 3137
MODEL statement (LIFEREG), 4244

DIVISOR= option
ESTIMATE statement (GENMOD), 2904
ESTIMATE statement (GLIMMIX), 3107
ESTIMATE statement (GLM), 3418
ESTIMATE statement (HPMIXED), 3838
ESTIMATE statement (LIFEREG), 449
ESTIMATE statement (LOGISTIC), 449
ESTIMATE statement (MIXED), 5243
ESTIMATE statement (ORTHOREG), 449
ESTIMATE statement (PHREG), 449
ESTIMATE statement (PLM), 449
ESTIMATE statement (PROBIT), 449
ESTIMATE statement (QUANTREG), 449
ESTIMATE statement (SURVEYLOGISTIC),

449
ESTIMATE statement (SURVEYPHREG), 449
ESTIMATE statement (SURVEYREG), 449
LSMESTIMATE statement (GENMOD), 481
LSMESTIMATE statement (GLIMMIX), 3127
LSMESTIMATE statement (LIFEREG), 481
LSMESTIMATE statement (LOGISTIC), 481
LSMESTIMATE statement (MIXED), 481
LSMESTIMATE statement (ORTHOREG), 481
LSMESTIMATE statement (PHREG), 481
LSMESTIMATE statement (PLM), 481
LSMESTIMATE statement (PROBIT), 481
LSMESTIMATE statement

(SURVEYLOGISTIC), 481
LSMESTIMATE statement (SURVEYPHREG),

481
LSMESTIMATE statement (SURVEYREG), 481
RESTRICT statement (FMM), 2510

DK= option
PROC MODECLUS statement, 5417

DOCK= option
PROC MODECLUS statement, 5417
PROC TREE statement, 8770

DOCUMENT procedure
LIST statement, 705
REPLAY statement, 704

DOMAIN statement
SURVEYLOGISTIC procedure, 8076
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SURVEYMEANS procedure, 8174
SURVEYPHREG procedure, 8254
SURVEYREG procedure, 8334

DR= option
PROC MODECLUS statement, 5417

DREPLACE option
OUTPUT statement (TRANSREG), 8597

DRIFT option
PROC FASTCLUS statement, 2405

DROP= option
MODEL statement (GLMSELECT), 3690

DROPSQUARE= option
MODEL statement (LOESS), 4441

DSCALE
MODEL statement, 2825
MODEL statement (GENMOD), 2921

DSCF option
PROC NPAR1WAY statement, 5796

DUMMIES option
CODE statement (GENMOD), 396
CODE statement (GLIMMIX), 396
CODE statement (GLM), 396
CODE statement (GLMSELECT), 396
CODE statement (LOGISTIC), 396
CODE statement (MIXED), 396
CODE statement (PLM), 396
CODE statement (REG), 396

DUMMY option
MODEL statement (TRANSREG), 8585
PROC PRINQUAL statement, 6636

DUNCAN option
MEANS statement (ANOVA), 965
MEANS statement (GLM), 3435

DUNNETT option
MEANS statement (ANOVA), 965
MEANS statement (GLM), 3435

DUNNETTL option
MEANS statement (ANOVA), 965
MEANS statement (GLM), 3435

DUNNETTU option
MEANS statement (ANOVA), 965
MEANS statement (GLM), 3435

DW option
MODEL statement (REG), 7019

DWPROB option
MODEL statement (REG), 7019

E option
CONTRAST statement (GENMOD), 2901
CONTRAST statement (GLIMMIX), 3095
CONTRAST statement (GLM), 3416
CONTRAST statement (HPMIXED), 3835
CONTRAST statement (LOGISTIC), 4517
CONTRAST statement (MIXED), 5241

CONTRAST statement (PHREG), 5923
CONTRAST statement (SURVEYLOGISTIC),

8076
CONTRAST statement (SURVEYREG), 8333
ESTIMATE statement (GENMOD), 2904
ESTIMATE statement (GLIMMIX), 3107
ESTIMATE statement (GLM), 3418
ESTIMATE statement (HPMIXED), 3839
ESTIMATE statement (LIREREG), 449
ESTIMATE statement (LOGISTIC), 449
ESTIMATE statement (MIXED), 5243
ESTIMATE statement (ORTHOREG), 449
ESTIMATE statement (PHREG), 449
ESTIMATE statement (PLM), 449
ESTIMATE statement (PROBIT), 449
ESTIMATE statement (QUANTREG), 449
ESTIMATE statement (SURVEYLOGISTIC),

449
ESTIMATE statement (SURVEYPHREG), 449
ESTIMATE statement (SURVEYREG), 449
HAZARDRATIO statement (ICPHREG), 3955
HAZARDRATIO statement (PHREG), 5929
LSMEANS statement (GENMOD), 467
LSMEANS statement (GLIMMIX), 3117
LSMEANS statement (GLM), 3423
LSMEANS statement (HPMIXED), 3842
LSMEANS statement (LIFEREG), 467
LSMEANS statement (LOGISTIC), 467
LSMEANS statement (MIXED), 5249
LSMEANS statement (ORTHOREG), 467
LSMEANS statement (PHREG), 467
LSMEANS statement (PLM), 467
LSMEANS statement (PROBIT), 467
LSMEANS statement (SURVEYLOGISTIC), 467
LSMEANS statement (SURVEYPHREG), 467
LSMEANS statement (SURVEYREG), 467
LSMESTIMATE statement (GENMOD), 481
LSMESTIMATE statement (GLIMMIX), 3128
LSMESTIMATE statement (LIFEREG), 481
LSMESTIMATE statement (LOGISTIC), 481
LSMESTIMATE statement (MIXED), 481
LSMESTIMATE statement (ORTHOREG), 481
LSMESTIMATE statement (PHREG), 481
LSMESTIMATE statement (PLM), 481
LSMESTIMATE statement (PROBIT), 481
LSMESTIMATE statement

(SURVEYLOGISTIC), 481
LSMESTIMATE statement (SURVEYPHREG),

481
LSMESTIMATE statement (SURVEYREG), 481
MODEL statement (GLIMMIX), 3140
MODEL statement (GLM), 3440
MODEL statement (MIXED), 5256
ROCCONTRAST statement (LOGISTIC), 4556
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SLICE statement (GENMOD), 467
SLICE statement (GLIMMIX), 467
SLICE statement (LIFEREG), 467
SLICE statement (LOGISTIC), 467
SLICE statement (MIXED), 467
SLICE statement (ORTHOREG), 467
SLICE statement (PHREG), 467
SLICE statement (PLM), 467
SLICE statement (PROBIT), 467
SLICE statement (SURVEYLOGISTIC), 467
SLICE statement (SURVEYPHREG), 467
SLICE statement (SURVEYREG), 467
TEST statement (HPMIXED), 3856
TEST statement (ICPHREG), 510
TEST statement (LIFEREG), 510
TEST statement (ORTHOREG), 510
TEST statement (PHREG), 5948
TEST statement (PLM), 510
TEST statement (PROBIT), 510
TEST statement (SURVEYPHREG), 510
TEST statement (SURVEYREG), 510

E1 option
MODEL statement (GLIMMIX), 3140
MODEL statement (GLM), 3440
MODEL statement (MIXED), 5256
TEST statement (ICPHREG), 510
TEST statement (LIFEREG), 510
TEST statement (ORTHOREG), 510
TEST statement (PLM), 510
TEST statement (PROBIT), 510
TEST statement (SURVEYPHREG), 510
TEST statement (SURVEYREG), 510

E2 option
MODEL statement (GLIMMIX), 3140
MODEL statement (GLM), 3440
MODEL statement (MIXED), 5256
TEST statement (ICPHREG), 510
TEST statement (LIFEREG), 510
TEST statement (ORTHOREG), 510
TEST statement (PLM), 510
TEST statement (PROBIT), 510
TEST statement (SURVEYPHREG), 510
TEST statement (SURVEYREG), 510

E3 option
MODEL statement (GLIMMIX), 3140
MODEL statement (GLM), 3440
MODEL statement (MIXED), 5256
TEST statement (HPMIXED), 3857
TEST statement (ICPHREG), 510
TEST statement (LIFEREG), 510
TEST statement (ORTHOREG), 510
TEST statement (PLM), 510
TEST statement (PROBIT), 510
TEST statement (SURVEYPHREG), 510

TEST statement (SURVEYREG), 510
E4 option

MODEL statement (GLM), 3440
E= effects

TEST statement (ANOVA), 973
E= option

CONTRAST statement (GLM), 3416
MANOVA statement (ANOVA), 960
MANOVA statement (GLM), 3429
MEANS statement (ANOVA), 966
MEANS statement (GLM), 3435
REPEATED statement (GLM), 3451

EARLY option
PROC MODECLUS statement, 5417

EBOPT option
PROC NLMIXED statement, 5696

EBSSFRAC option
PROC NLMIXED statement, 5696

EBSSTOL option
PROC NLMIXED statement, 5696

EBSTEPS option
PROC NLMIXED statement, 5696

EBSUBSTEPS option
PROC NLMIXED statement, 5696

EBTOL option
PROC NLMIXED statement, 5696

EBZSTART option
PROC NLMIXED statement, 5696

ECORR option
PROC NLMIXED statement, 5696

ECORRB option
REPEATED statement , 2827
REPEATED statement (GENMOD), 2929

ECOV option
PROC NLMIXED statement, 5696

ECOVB option
REPEATED statement , 2827
REPEATED statement (GENMOD), 2929

EDER option
PROC NLMIXED statement, 5697

EDF option
EXACT statement (NPAR1WAY), 5804
MODEL statement (REG), 7019
OUTPUT statement (NPAR1WAY), 5808
PLOT statement (REG), 7099
PROC NPAR1WAY statement, 5796
PROC REG statement, 6999

EDF= option
PROC CALIS statement, 1215
PROC CANCORR statement, 1834
PROC MIANALYZE statement, 5165

EDGECORR= option
PROC statement (SPP), 7777

EFF= option
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PROC ROBUSTREG statement, 7180, 7182
EFFECT option

PROC STDRATE statement, 7875
STRATA statement (STDRATE), 7880

EFFECT statement
collection effect, 399
GLIMMIX procedure, 397, 3103
GLMSELECT procedure, 397
GLMSELECT procedure, 3683
HPMIXED procedure, 397
HPMIXED procedure, 3835
lag effect, 400
LOGISTIC procedure, 397
LOGISTIC procedure, 4519
multimember effect, 402
ORTHOREG procedure, 397
ORTHOREG procedure, 5858
PHREG procedure, 397
PHREG procedure, 5924
PLS procedure, 397, 6228
polynomial effect, 404
QUANTLIFE procedure, 397
QUANTLIFE procedure, 6807
QUANTREG procedure, 397
QUANTREG procedure, 6849
QUANTSELECT procedure, 397
QUANTSELECT procedure, 6931
ROBUSTREG procedure, 397
ROBUSTREG procedure, 7183
spline effect, 407
SURVEYLOGISTIC procedure, 397
SURVEYLOGISTIC procedure, 8077
SURVEYREG procedure, 397
SURVEYREG procedure, 8335

EFFECT= modifier
INFLUENCE option, MODEL statement

(MIXED), 5258
EFFECTPLOT statement

GENMOD procedure, 416
GENMOD procedure, 2902
LIFEREG procedure, 4236
LOGISTIC procedure, 416
LOGISTIC procedure, 4520
ORTHOREG procedure, 416
ORTHOREG procedure, 5860
PLM procedure, 416
PLM procedure, 6166
PROBIT procedure, 6709

EFFECTS option
MODEL statement (TRANSREG), 8578
POWER statement (GLMPOWER), 3618
SHOW statement (PLM), 6176

EFFECTSIZE option
MODEL statement (GLM), 3440

EFFECTVAR= option
PROC MIANALYZE statement, 5165

EFFPART statement, CALIS procedure, 1257
EIGENVECTORS option

PROC FACTOR statement, 2312
ELSM option

LSMESTIMATE statement (GENMOD), 481
LSMESTIMATE statement (GLIMMIX), 3128
LSMESTIMATE statement (LIFEREG), 481
LSMESTIMATE statement (LOGISTIC), 481
LSMESTIMATE statement (MIXED), 481
LSMESTIMATE statement (ORTHOREG), 481
LSMESTIMATE statement (PHREG), 481
LSMESTIMATE statement (PLM), 481
LSMESTIMATE statement (PROBIT), 481
LSMESTIMATE statement

(SURVEYLOGISTIC), 481
LSMESTIMATE statement (SURVEYPHREG),

481
LSMESTIMATE statement (SURVEYREG), 481

EM statement
MI procedure, 5043

EMPHSTRUCT option
PATHDIAGRAM statement, 1337

EMPIRICAL option
MIXED, 5228
PROC NLMIXED statement, 5697

EMPIRICAL= option
PROC GLIMMIX statement, 3066

ENDCNST statement
MCMC procedure, 4763

ENDGRID option
PLOT statement (BOXPLOT), 1108

ENDNODATA statement
MCMC procedure, 4765

ENDPRIOR statement
MCMC procedure, 4765

ENTRYTIME= option
MODEL statement (PHREG), 5934

EPOINT transformation
MODEL statement (TRANSREG), 8568

EPSILON = option
MODEL statement (GAM), 2772

EPSILON= option
MODEL statement (CATMOD), 1909
PROC MDS statement, 5001
PROC MULTTEST statement, 5495
PROC PLS statement, METHOD=PLS option,

6222
PROC PLS statement, MISSING=EM option,

6223
PROC VARCOMP statement, 8890

EPSSCORE = option
MODEL statement (GAM), 2772
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EQCONS= option
PARMS statement (MIXED), 5266
PARMS statement (VARIOGRAM), 8955

EQKAP option
OUTPUT statement (FREQ), 2592

EQOR option
EXACT statement (FREQ), 2581
OUTPUT statement (FREQ), 2592

EQUAL option
EFFECTPLOT statement, 420

EQUAL option (RISKDIFF)
TABLES statement (FREQ), 2634

EQUALITY statement
IRT procedure, 4026

EQUALSLOPES option
MODEL statement (LOGISTIC), 4537

EQUATE= option
MODEL statement (FMM), 2500

EQUIVALENCE option (BINOMIAL)
TABLES statement (FREQ), 2605

EQUIVALENCE option (RISKDIFF)
TABLES statement (FREQ), 2634

EQUIVBOUNDS= option
ONESAMPLEFREQ statement (POWER), 6294

EQUIVTOL= option
MODEL statement (VARIOGRAM), 8944

EQWKP option
OUTPUT statement (FREQ), 2592

ERR= option
MODEL statement, 2824
MODEL statement (GENMOD), 2916

ERROR= option
MODEL statement (GLIMMIX), 3137

ERRORS option
CODE statement (GENMOD), 396
CODE statement (GLIMMIX), 396
CODE statement (GLM), 396
CODE statement (GLMSELECT), 396
CODE statement (LOGISTIC), 396
CODE statement (MIXED), 396
CODE statement (PLM), 396
CODE statement (REG), 396

ERRORSIZE= option
PATHDIAGRAM statement, 1337

ERRSPEND option
PROC SEQDESIGN statement, 7332
PROC SEQTEST statement, 7551

ERRSPENDADJ(ACCEPT)= option
PROC SEQTEST statement, 7548

ERRSPENDADJ(ALPHA)= option
PROC SEQTEST statement, 7548

ERRSPENDADJ(BETA)= option
PROC SEQTEST statement, 7548

ERRSPENDADJ(LOWERACCEPT)= option

PROC SEQTEST statement, 7549
ERRSPENDADJ(LOWERALPHA)= option

PROC SEQTEST statement, 7548
ERRSPENDADJ(LOWERBETA)= option

PROC SEQTEST statement, 7549
ERRSPENDADJ(LOWERREJECT)= option

PROC SEQTEST statement, 7548
ERRSPENDADJ(REJECT)= option

PROC SEQTEST statement, 7548
ERRSPENDADJ(UPPERACCEPT)= option

PROC SEQTEST statement, 7549
ERRSPENDADJ(UPPERALPHA)= option

PROC SEQTEST statement, 7548
ERRSPENDADJ(UPPERBETA)= option

PROC SEQTEST statement, 7549
ERRSPENDADJ(UPPERREJECT)= option

PROC SEQTEST statement, 7548
ERRSPENDADJ= option

PROC SEQTEST statement, 7547
ERRSPENDMIN= option

PROC SEQTEST statement, 7549
ESTDATA= option

PROC CALIS statement, 1216
ESTEPS= option

PROC PLM statement (PLM), 6163
ESTIMATE option

EXACT statement (GENMOD), 2905
EXACT statement (LOGISTIC), 4523
ROCCONTRAST statement (LOGISTIC), 4556

ESTIMATE statement
GENMOD procedure, 2903
GLIMMIX procedure, 3104
GLM procedure, 3417, 3472
HPMIXED procedure, 3837
LIFEREG procedure, 444
LIFEREG procedure, 4237
LOGISTIC procedure, 444
LOGISTIC procedure, 4521
MIXED procedure, 5242
NLMIXED procedure, 5710
ORTHOREG procedure, 444
ORTHOREG procedure, 5861
PHREG procedure, 444, 5925
PLM procedure, 444
PLM procedure, 6167
PROBIT procedure, 444
PROBIT procedure, 6710
QUANTREG procedure, 444
QUANTREG procedure, 6850
SURVEYLOGISTIC procedure, 444
SURVEYLOGISTIC procedure, 8078
SURVEYPHREG procedure, 444
SURVEYPHREG procedure, 8255
SURVEYREG procedure, 444
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SURVEYREG procedure, 8336
ESTIMATE= option

BAYES statement (FMM), 2488
CONTRAST statement (CATMOD), 1900
CONTRAST statement (LOGISTIC), 4517
CONTRAST statement (PHREG), 5923
CONTRAST statement (SURVEYLOGISTIC),

8076
ESTIMATES modifier

INFLUENCE option, MODEL statement
(MIXED), 5258

ESTIMATES option
COVTEST statement (GLIMMIX), 3103

ETYPE option
LSMEANS statement (GLM), 3423

ETYPE= option
CONTRAST statement (GLM), 3416
MANOVA statement (GLM), 3430
MEANS statement (GLM), 3435
TEST statement (GLM), 3451

EV option
PROC PHREG statement, 5893

EVENLY option
MODEL statement (TRANSREG), 8575
TRANSFORM statement (PRINQUAL), 6649

EVENT option
PROCESS statement (SPP), 7790

EVENT= option
MODEL statement, 905, 2497, 2770, 3133, 4531,

6733, 8083
POPULATION statement (STDRATE), 7878
REFERENCE statement (STDRATE), 7879

EVENTCODE= option
MODEL statement (PHREG), 5934

EVENTSTOTAL= option
TWOSAMPLESURVIVAL statement (POWER),

6350
EVENTSYMBOL= option

PROC LIFETEST statement, 4382
EXACT option

OUTPUT statement (FREQ), 2592
TABLES statement (FREQ), 2612

EXACT statement
FREQ procedure, 2578
GENMOD procedure, 2904
LOGISTIC procedure, 4522
NPAR1WAY procedure, 5802

EXACTMAX= option
MODEL statement (GENMOD), 2917

EXACTONLY option
PROC GENMOD statement, 2879
PROC LOGISTIC statement, 4500

EXACTOPTIONS option
PROC LOGISTIC statement, 4500

EXACTOPTIONS statement
GENMOD procedure, 2907
LOGISTIC procedure, 4525

EXCLUDE= option
PROC FMM statement, 2474

EXCLUSION= option
PROC FMM statement, 2474

EXKNOTS= option
MODEL statement (TRANSREG), 8576

EXOGCOV option
PATHDIAGRAM statement, 1337

EXP option
ESTIMATE statement (GENMOD), 2904
ESTIMATE statement (GLIMMIX), 3107
ESTIMATE statement (LIFEREG), 449
ESTIMATE statement (LOGISTIC), 449
ESTIMATE statement (PHREG), 449
ESTIMATE statement (PLM), 449
ESTIMATE statement (PROBIT), 449
ESTIMATE statement (SURVEYLOGISTIC),

449
LSMEANS statement (GENMOD), 467
LSMEANS statement (LIFEREG), 467
LSMEANS statement (LOGISTIC), 467
LSMEANS statement (PHREG), 467
LSMEANS statement (PLM), 467
LSMEANS statement (PROBIT), 467
LSMEANS statement (SURVEYLOGISTIC), 467
LSMESTIMATE statement (GENMOD), 481
LSMESTIMATE statement (GLIMMIX), 3128
LSMESTIMATE statement (LIFEREG), 481
LSMESTIMATE statement (LOGISTIC), 481
LSMESTIMATE statement (PHREG), 481
LSMESTIMATE statement (PLM), 481
LSMESTIMATE statement (PROBIT), 481
LSMESTIMATE statement

(SURVEYLOGISTIC), 481
SLICE statement (GENMOD), 467
SLICE statement (GLIMMIX), 467
SLICE statement (LIFEREG), 467
SLICE statement (LOGISTIC), 467
SLICE statement (PHREG), 467
SLICE statement (PLM), 467
SLICE statement (PROBIT), 467
SLICE statement (SURVEYLOGISTIC), 467

EXP transformation
MODEL statement (TRANSREG), 8569
TRANSFORM statement (MI), 5062
TRANSFORM statement (PRINQUAL), 6645

EXPECTED option
MODEL statement (GENMOD), 2917
PROC CORRESP statement, 2100
TABLES statement (FREQ), 2612
TABLES statement (SURVEYFREQ), 7985



Syntax Index F 9265

EXPEST option
MODEL statement (LOGISTIC), 4537
MODEL statement (SURVEYLOGISTIC), 8087

EXPHESSIAN option
PROC GLIMMIX statement, 3069

EXPOSED= option
POPULATION statement (STDRATE), 7878

EXPSCALEPRIOR= option
BAYES statement, 4229

EXTEND= option
EFFECTPLOT statement, 420

EXTENDPATH option
PROC CALIS statement, 1215

F function option
PROCESS statement (SPP), 7790

_F_ specification
MODEL statement (CATMOD), 1907, 1927

FACTOR procedure, 2309
syntax, 2309

FACTOR procedure, BY statement, 2325
FACTOR procedure, FREQ statement, 2325
FACTOR procedure, PARTIAL statement, 2326
FACTOR procedure, PATHDIAGRAM statement,

2326
ALPHA= option, 2327
ARRANGE= option, 2328
COVER= option, 2328
DECP= option, 2328
DIAGRAMLABEL= option, 2328
FACTORSIZE= option, 2329
FUZZ= option, 2329
LABEL= option, 2329
NODELABEL= option, 2330
NOERRVAR option, 2330
NOESTIM option, 2330
NOEXOGVAR option, 2330
NOTITLE option, 2330
NOVARIANCE option, 2330
SALIENCE= option, 2328
TITLE= option, 2330

FACTOR procedure, PRIORS statement, 2331
FACTOR procedure, PROC FACTOR statement, 2309

ALL option, 2311
ALPHA= option, 2311
CONVERGE= option, 2312
CORR option, 2312
COVARIANCE option, 2312
COVER= option, 2312
DATA= option, 2312
EIGENVECTORS option, 2312
FLAG= option, 2312
FUZZ= option, 2313
GAMMA= option, 2313

HEYWOOD option, 2313
HKPOWER= option, 2313
MAXITER= option, 2313
METHOD= option, 2313
MINEIGEN= option, 2314
MSA option, 2314
NFACTORS= option, 2315
NOBS= option, 2315
NOCORR option, 2315
NOINT option, 2315
NOPRINT option, 2315
NOPROMAXNORM option, 2315
NORM= option, 2315
NPLOTS= option, 2315
OUT= option, 2316
OUTSTAT= option, 2316
PARPREFIX= option, 2316
PLOT option, 2316
PLOTREF option, 2316
PLOTS= option, 2316
POWER= option, 2319
PREFIX= option, 2319
PREPLOT option, 2319
PREROTATE= option, 2319
PRINT option, 2319
PRIORS= option, 2319
PROPORTION= option, 2320
RANDOM= option, 2320
RCONVERGE= option, 2320
REORDER option, 2321
RESIDUALS option, 2321
RITER= option, 2321
ROTATE= option, 2321
ROUND option, 2323
SCORE option, 2323
SCREE option, 2323
SE option, 2323
SIMPLE option, 2323
SINGULAR= option, 2324
TARGET= option, 2324
TAU= option, 2324
ULTRAHEYWOOD option, 2324
VARDEF= option, 2324
WEIGHT option, 2324

FACTOR procedure, VAR statement, 2331
FACTOR procedure, WEIGHT statement, 2331
factor specification

REPEATED statement (GLM), 3447
REPEATED statement (GLMPOWER), 3624

FACTOR statement
IRT procedure, 4030

FACTOR statement, CALIS procedure, 1258
factor-value-settings option

OUTPUT statement (PLAN), 6127
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FACTORS statement
CATMOD procedure, 1903
PLAN procedure, 6124

FACTORSIZE= option
PATHDIAGRAM statement, 1337, 2329

FAILRATIO= option
MODEL statement (ROBUSTREG), 7186

FAST option
MODEL statement (ADAPTIVEREG), 908
MODEL statement (LOGISTIC), 4537

FASTCLUS procedure
MAXCLUSTERS= option, 2395
RADIUS= option, 2395
syntax, 2402

FASTCLUS procedure, BY statement, 2409
FASTCLUS procedure, FREQ statement, 2410
FASTCLUS procedure, ID statement, 2410
FASTCLUS procedure, PROC FASTCLUS statement,

2402
BINS= option, 2404
CLUSTER= option, 2404
CLUSTERLABEL= option, 2404
CONVERGE= option, 2404
DATA= option, 2405
DELETE= option, 2405
DISTANCE option, 2405
DRIFT option, 2405
HC= option, 2405
HP= option, 2405
IMPUTE option, 2406
INSTAT= option, 2406
IRLS option, 2406
L= option, 2406
LEAST= option, 2406
LIST option, 2407
MAXCLUSTERS= option, 2402
MAXITER= option, 2407
MEAN= option, 2408
NOMISS option, 2408
NOPRINT option, 2408
OUT= option, 2408
OUTITER option, 2408
OUTS= option, 2408
OUTSEED= option, 2408
OUTSTAT= option, 2408
RADIUS= option, 2402
RANDOM= option, 2408
REPLACE= option, 2408
SEED= option, 2409
SHORT option, 2409
STRICT= option, 2409
SUMMARY option, 2409
VARDEF= option, 2409

FASTCLUS procedure, VAR statement, 2411

FASTCLUS procedure, WEIGHT statement, 2411
FAY= option

VARMETHOD=BRR (PROC SURVEYFREQ
statement), 7972

VARMETHOD=BRR (PROC
SURVEYLOGISTIC statement), 8068

VARMETHOD=BRR (PROC SURVEYMEANS
statement), 8170

VARMETHOD=BRR (PROC SURVEYPHREG
statement), 8248

VARMETHOD=BRR (PROC SURVEYREG
statement), 8328

FCONV option
NLOPTIONS statement (CALIS), 491
NLOPTIONS statement (GLIMMIX), 491
NLOPTIONS statement (HPMIXED), 491
NLOPTIONS statement (PHREG), 491
NLOPTIONS statement (SURVEYPHREG), 491
NLOPTIONS statement (VARIOGRAM), 491
PROC ADAPTIVEREG statement, 897
PROC FMM statement, 2474
PROC ICPHREG statement, 3942
PROC IRT statement, 4016

FCONV2 option
NLOPTIONS statement (CALIS), 492
NLOPTIONS statement (GLIMMIX), 492
NLOPTIONS statement (HPMIXED), 492
NLOPTIONS statement (PHREG), 492
NLOPTIONS statement (SURVEYPHREG), 492
NLOPTIONS statement (VARIOGRAM), 492
PROC FMM statement, 2474

FCONV2= option
PROC NLMIXED statement, 5697

FCONV= option
MODEL statement (GENMOD), 2907
MODEL statement (LOGISTIC), 4525, 4537
MODEL statement (PHREG), 5935
MODEL statement (SURVEYLOGISTIC), 8087
PROC CALIS statement, 1215
PROC NLMIXED statement, 5697

FCS statement
MI procedure, 5044

FD= option
PROC NLMIXED statement, 5698

FDHESSIAN= option
PROC NLMIXED statement, 5698

FDIGITS= option, 5731
PROC GLIMMIX statement, 3069
PROC NLMIXED statement, 5699

FDR option
PROC MULTTEST statement, 5495, 5522

FDRBOOT option
PROC MULTTEST statement, 5495, 5523

FDRPERM option
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PROC MULTTEST statement, 5496, 5523
FIELD option

TREND statement (SPP), 7794
FILE= option

CODE statement (GENMOD), 396
CODE statement (GLIMMIX), 396
CODE statement (GLM), 396
CODE statement (GLMSELECT), 396
CODE statement (LOGISTIC), 396
CODE statement (MIXED), 396
CODE statement (PLM), 396
CODE statement (REG), 396
ODS destination statement, 623
ODS PDF statement, 634

FILLCHAR= option
PROC TREE statement, 8770

FILTER statement
PLM procedure, 6168

FIRTH option
MODEL statement (LOGISTIC), 4538
MODEL statement (PHREG), 5935

FISHER option
EXACT statement (FREQ), 2581
OUTPUT statement (FREQ), 2592
TABLES statement (FREQ), 2612
TEST statement (MULTTEST), 5506, 5508,

5515, 5541
FISHER_C option

PROC MULTTEST statement, 5496, 5521
FIT option

MODEL statement (VARIOGRAM), 8944
FIT= option

PROC MDS statement, 5001
FITDETAILS option

PROC FMM statement, 2475
FITINDEX= option

PATHDIAGRAM statement, 1338
FITSTAT option

SCORE statement (LOGISTIC), 4558
FITSTATISTICS

DETAILS=STEPS option (GLMSELECT), 3687
DETAILS=STEPS option (QUANTSELECT),

6933
FITSTATS option

SHOW statement (PLM), 6176
FIXED= option

MODEL statement (VARCOMP), 8892
FLAG= option

PROC FACTOR statement, 2312
FLAT option

PRIOR statement (MIXED), 5270
FLOW option

PROC NLIN statement, 5587
PROC NLMIXED statement, 5699

FMM procedure, 2470
BAYES statement, 2483
FREQ statement, 2494
ID statement, 2494
MODEL statement, 2495
OUTPUT statement, 2503
PERFORMANCE statement, 2506
PROBMODEL statement, 2507
PROC FMM statement, 2470
RESTRICT statement, 2508
syntax, 2470
WEIGHT statement, 2510

FMM procedure, BAYES statement, 2483
BETAPRIORPARMS option, 2485
DIAGNOSTICS option, 2486
ESTIMATE= option, 2488
INITIAL= option, 2488
METROPOLIS option, 2488
MIXPRIORPARMS option, 2488
MUPRIORPARMS option, 2488
NBI= option, 2489
NMC= option, 2489
OUTPOST= option, 2489
PHIPRIORPARMS option, 2490
PRIOROPTIONS option, 2490
PRIOROPTS option, 2490
STATISTICS option, 2492
SUMMARIES option, 2492
THIN= option, 2493
THINNING= option, 2493
TIMEINC= option, 2493

FMM procedure, BY statement, 2493
FMM procedure, FREQ statement, 2494
FMM procedure, ID statement, 2494
FMM procedure, MODEL statement, 2495

ALPHA= option, 2498
CL option, 2498
DESCENDING option, 2496
DIST= option, 2498
DISTRIBUTION= option, 2498
EQUATE= option, 2500
EVENT= option, 2497
K= option, 2501
KMAX= option, 2501
KMIN= option, 2501
KRESTART option, 2502
LABEL= option, 2502
LINK= option, 2502
NOINT option, 2502
NUMBER= option, 2501
OFFSET= option, 2502
ORDER= option, 2497
PARAMETERS option, 2502
PARMS option, 2502
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REFERENCE= option, 2498
FMM procedure, OUTPUT statement, 2503

ALLSTATS option, 2505
keyword= option, 2503
NOVAR option, 2505
OUT= option, 2503
PREDTYPE option, 2505

FMM procedure, PERFORMANCE statement, 2506
CPUCOUNT option, 2506
DETAILS option, 2506
NOTHREADS option, 2506
THREADS option, 2506

FMM procedure, PROBMODEL statement, 2507
ALPHA= option, 2507
CL option, 2507
LINK= option, 2507
NOINT option, 2508
PARAMETERS option, 2508
PARMS option, 2508

FMM procedure, PROC FMM statement, 2470
ABSCONV option, 2472
ABSFCONV option, 2472
ABSFTOL option, 2472
ABSGCONV option, 2472
ABSGTOL option, 2472
ABSTOL option, 2472
CINFO option, 2473
COMPINFO option, 2473
COMPONENTINFO option, 2473
CORR option, 2473
COV option, 2473
COVI option, 2473
CRIT= option, 2473
CRITERION= option, 2473
DATA= option, 2473
EXCLUDE= option, 2474
EXCLUSION= option, 2474
FCONV option, 2474
FCONV2 option, 2474
FITDETAILS option, 2475
FTOL option, 2474
FTOL2 option, 2474
GCONV option, 2475
GTOL option, 2475
HESSIAN option, 2476
INVALIDLOGL= option, 2476
ITDETAILS option, 2476
MAXFUNC= option, 2476
MAXITER= option, 2476, 2477
MAXTIME= option, 2476
MEMBERSHIP= option, 2479
NAMELEN= option, 2477
NOCENTER option, 2477
NOCLPRINT option, 2477

NOITPRINT option, 2477
NOPRINT option, 2477
ORDER= option, 2477
PARMSTYLE= option, 2479
PARTIAL= option, 2479
PLOTS option, 2480
SEED= option, 2482
SINGCHOL= option, 2483
SINGULAR= option, 2483
TECHNIQUE= option, 2483
ZEROPROB= option, 2483

FMM procedure, RESTRICT statement, 2508
DIVISOR= option, 2510

FMM procedure, WEIGHT statement, 2510
FMM procedure, CLASS statement, 2494

TRUNCATE option, 2494
FOLLOWUPTIME= option

TWOSAMPLESURVIVAL statement (POWER),
6350

FONT= option
INSET statement, 4239
PLOT statement (BOXPLOT), 1108

FORM= option
MODEL statement (KRIGE2D), 4144
MODEL statement (VARIOGRAM), 8944
SIMULATE statement (SIM2D), 7715

FORMAT= option
CODE statement (GENMOD), 396
CODE statement (GLIMMIX), 396
CODE statement (GLM), 396
CODE statement (GLMSELECT), 396
CODE statement (LOGISTIC), 396
CODE statement (MIXED), 396
CODE statement (PLM), 396
CODE statement (REG), 396
PROC PLM statement (PLM), 6163
TABLES statement (FREQ), 2613

FORMCHAR= option
PROC FREQ statement, 2577
PROC LIFETEST statement, 4383

FORMULA option
PROC DISCRIM statement, 2165

FORMULA= option
PROC MDS statement, 5002

FORWARDONLY option
MODEL statement (ADAPTIVEREG), 909

FP option
OUTPUT statement (NPAR1WAY), 5808
PROC NPAR1WAY statement, 5797

FRAME= option
ODS HTML statement, 620

FREQ option
MODEL statement (CATMOD), 1909

FREQ procedure
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syntax, 2575
FREQ procedure, BY statement, 2578
FREQ procedure, EXACT statement, 2578

AGREE option, 2580
ALPHA= option, 2585
BARNARD option, 2581
BINOMIAL option, 2581
CHISQ option, 2581, 2738
COLUMN= option (RELRISK), 2583
COLUMN= option (RISKDIFF), 2584
COMOR option, 2581
EQOR option, 2581
FISHER option, 2581
JT option, 2581
KAPPA option, 2581
KENTB option, 2582
LRCHI option, 2582
MAXTIME= option, 2585
MC option, 2585
MCNEM option, 2582
MEASURES option, 2582
METHOD= option (RELRISK), 2583
METHOD= option (RISKDIFF), 2584
MHCHI option, 2582
MIDP option, 2585
N= option, 2585
OR option, 2582, 2738
PCHI option, 2582
PCORR option, 2583
PFORMAT= option, 2586
POINT option, 2586
RELRISK option, 2583
RISKDIFF option, 2583
SCORR option, 2584
SEED= option, 2586
SMDCR option, 2584
SMDRC option, 2584
STUTC option, 2584
TREND option, 2584, 2744
WTKAP option, 2584
ZELEN option, 2581

FREQ procedure, OUTPUT statement, 2586
AGREE option, 2590
AJCHI option, 2590
ALL option, 2590
BDCHI option, 2590
BINOMIAL option, 2590
BOWKER option, 2597
CHISQ option, 2590
CMH option, 2591
CMH1 option, 2591
CMH2 option, 2591
CMHCOR option, 2591
CMHGA option, 2591

CMHRMS option, 2591
COCHQ option, 2591
COMOR option, 2594
CONTGY option, 2591
CRAMV option, 2592
EQKAP option, 2592
EQOR option, 2592
EQWKP option, 2592
EXACT option, 2592
FISHER option, 2592
GAILSIMON option, 2592
GAMMA option, 2592
JT option, 2592
KAPPA option, 2592
KENTB option, 2593
LAMCR option, 2593
LAMDAS option, 2593
LAMRC option, 2593
LGOR option, 2593
LGRRC1 option, 2593
LGRRC2 option, 2593
LRCHI option, 2593
MCNEM option, 2593
MEASURES option, 2593
MHCHI option, 2594
MHOR option, 2594
MHRRC1 option, 2594
MHRRC2 option, 2594
N option, 2594
NMISS option, 2594
OR option, 2594
OUT= option, 2587
output-options, 2587
PCHI option, 2594, 2595
PCORR option, 2595
PLCORR option, 2595
RDIF1 option, 2595
RDIF2 option, 2595
RELRISK option, 2595
RISK1 option, 2596
RISK11 option, 2596
RISK12 option, 2596
RISK2 option, 2596
RISK21 option, 2596
RISK22 option, 2596
RISKDIFF option, 2595
RISKDIFF1 option, 2595
RISKDIFF2 option, 2595
RRC1 option, 2596
RRC2 option, 2596
SCORR option, 2597
SMDCR option, 2597
SMDRC option, 2597
STUTC option, 2597
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TAUB option, 2593
TAUC option, 2597
TREND option, 2597
TSYMM option, 2597
U option, 2597
UCR option, 2597
URC option, 2597
WTKAP option, 2597
ZELEN option, 2592

FREQ procedure, PROC FREQ statement, 2576
COMPRESS option, 2576
DATA= option, 2577
FORMCHAR= option, 2577
NLEVELS option, 2577
NOPRINT option, 2577
ORDER= option, 2577
PAGE option, 2578

FREQ procedure, TABLES statement, 2598
AGREE option, 2601
ALL option, 2601
ALPHA= option, 2602
BDT option (CMH), 2610
BINOMIAL option, 2602
CELLCHI2 option, 2607
CHISQ option, 2607, 2738
CL option, 2609
CL= option (BINOMIAL), 2603
CL= option (RELRISK), 2630
CL= option (RISKDIFF), 2632
CL=AGRESTICAFFO option (RISKDIFF), 2633
CL=AGRESTICOULL option (BINOMIAL),

2604
CL=BLAKER option (BINOMIAL), 2604
CL=CLOPPERPEARSON option (BINOMIAL),

2604
CL=EXACT option (BINOMIAL), 2604
CL=EXACT option (RISKDIFF), 2633
CL=HA option (RISKDIFF), 2633
CL=JEFFREYS option (BINOMIAL), 2604
CL=LIKELIHOODRATIO option (BINOMIAL),

2604
CL=LOGIT option (BINOMIAL), 2604
CL=MIDP option (BINOMIAL), 2604
CL=NEWCOMBE option (RISKDIFF), 2633
CL=WALD option (BINOMIAL), 2604
CL=WALD option (RISKDIFF), 2634
CL=WILSON option (BINOMIAL), 2605
CMH option, 2609
CMH1 option, 2610
CMH2 option, 2610
COLUMN= option (RELRISK), 2631
COLUMN= option (RISKDIFF), 2634
COMMON option (RISKDIFF), 2634
CONTENTS= option, 2611

CONVERGE= option (PLCORR), 2617
CORRECT option (BINOMIAL), 2605
CORRECT option (RISKDIFF), 2634
CROSSLIST option, 2611
CUMCOL option, 2612
DEVIATION option, 2612
DF= option (CHISQ), 2607
EQUAL option (RISKDIFF), 2634
EQUIVALENCE option (BINOMIAL), 2605
EQUIVALENCE option (RISKDIFF), 2634
EXACT option, 2612
EXPECTED option, 2612
FISHER option, 2612
FORMAT= option, 2613
GAILSIMON option, 2613
JT option, 2613
LEVEL= option (BINOMIAL), 2605
LIST option, 2613
LRCHI option (CHISQ), 2608
MANTELFLEISS option (CMH), 2610
MARGIN= option (BINOMIAL), 2605
MARGIN= option (RISKDIFF), 2634
MAXITER= option (PLCORR), 2617
MAXLEVELS= option, 2613
MEASURES option, 2614
METHOD= option (RISKDIFF), 2635
METHOD=FM option (RISKDIFF), 2635
METHOD=HA option (RISKDIFF), 2635
METHOD=NEWCOMBE option (RISKDIFF),

2635
METHOD=WALD option (RISKDIFF), 2635
MISSING option, 2614
MISSPRINT option, 2614
NOCOL option, 2614
NOCUM option, 2615
NOFREQ option, 2615
NONINFERIORITY option (BINOMIAL), 2606
NONINFERIORITY option (RISKDIFF), 2635
NOPERCENT option, 2615
NOPRINT option, 2615
NORISKS option (RISKDIFF), 2636
NOROW option, 2615
NOSPARSE option, 2615
NOWARN option, 2615
OR option, 2616
OUT= option, 2616
OUTCUM option, 2616
OUTEXPECT option, 2617, 2727
OUTLEVEL option (BINOMIAL), 2606
OUTPCT option, 2617
P= option (BINOMIAL), 2606
PEARSONRES option (CROSSLIST), 2612
PLCORR option, 2617
PLOTS= option, 2618
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PLOTS=AGREEPLOT option, 2619
PLOTS=CUMFREQPLOT option, 2620
PLOTS=DEVIATIONPLOT option, 2620
PLOTS=FREQPLOT option, 2620
PLOTS=KAPPAPLOT option, 2621
PLOTS=MOSAICPLOT option, 2622
PLOTS=NONE option, 2623
PLOTS=ODDSRATIOPLOT option, 2623
PLOTS=RELRISKPLOT option, 2624
PLOTS=RISKDIFFPLOT option, 2624
PLOTS=WTKAPPAPLOT, 2624
PRINTALL option (RELRISK), 2631
PRINTKWTS option, 2601, 2630
RELRISK option, 2630, 2738
RISKDIFF option, 2631
SCORES= option, 2636, 2748
SCOROUT option, 2636
SPARSE option, 2637, 2727
STDRES option (CROSSLIST), 2612
SUPERIORITY option (BINOMIAL), 2606
SUPERIORITY option (RISKDIFF), 2636
TESTF= option, 2648
TESTF= option (CHISQ), 2608
TESTP= option, 2649, 2733
TESTP= option (CHISQ), 2608
TOTPCT option, 2637
TREND option, 2637, 2744
VAR= option (BINOMIAL), 2606
VAR= option (RISKDIFF), 2636
WARN= option (CHISQ), 2609

FREQ procedure, TEST statement, 2637
AGREE option, 2638
GAMMA option, 2638
KAPPA option, 2639
KENTB option, 2639
MEASURES option, 2639
PCORR option, 2639
PLCORR option, 2639
SCORR option, 2639
SMDCR option, 2640, 2744
SMDRC option, 2640
STUTC option, 2640
TAUB option, 2639
TAUC option, 2640
WTKAP option, 2640

FREQ procedure, WEIGHT statement, 2640
ZEROS option, 2641

FREQ statement
ADAPTIVEREG procedure, 904
ANOVA procedure, 959
CALIS procedure, 1271
CANDISC procedure, 1865
DISCRIM procedure, 2171
DISTANCE procedure, 2271

FACTOR procedure, 2325
FMM procedure, 2494
GAM procedure, 2768
GEE procedure, 2822
GENMOD procedure, 2910
GLIMMIX procedure, 3110
GLM procedure, 3418
GLMMOD procedure, 3583
GLMSELECT procedure, 3685
ICLIFETEST procedure, 3900
ICPHREG procedure, 3953
IRT procedure, 4034
KDE procedure, 4091
LIFETEST procedure, 4348
LOGISTIC procedure, 4528
MI procedure, 5048
MODECLUS procedure, 5421
MULTTEST procedure, 5506
NPAR1WAY procedure, 5807
PHREG procedure, 5926
PRINCOMP procedure, 6597
PRINQUAL procedure, 6643
REG procedure, 7013
STDIZE procedure, 7843
STEPDISC procedure, 7943
SURVEYLOGISTIC procedure, 8079
SURVEYPHREG procedure, 8256
SURVEYSELECT procedure, 8431
TPSPLINE procedure, 8497
TRANSREG procedure, 8564
TREE procedure, 8774
TTEST procedure, 8803
VARCLUS procedure, 8868

FREQOUT option
PROC CORRESP statement, 2100

FRONTREF option
PLOT statement (BOXPLOT), 1108

FSIZE option
NLOPTIONS statement (CALIS), 493
NLOPTIONS statement (GLIMMIX), 493
NLOPTIONS statement (HPMIXED), 493
NLOPTIONS statement (PHREG), 493
NLOPTIONS statement (SURVEYPHREG), 493
NLOPTIONS statement (VARIOGRAM), 493

FSIZE= option
PROC NLMIXED statement, 5699

FT option
TEST statement (MULTTEST), 5508, 5513, 5534

FTEST option
LSMESTIMATE statement (GLIMMIX), 3128

FTOL option
NLOPTIONS statement (CALIS), 491
NLOPTIONS statement (GLIMMIX), 491
NLOPTIONS statement (HPMIXED), 491
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NLOPTIONS statement (PHREG), 491
NLOPTIONS statement (SURVEYPHREG), 491
NLOPTIONS statement (VARIOGRAM), 491
PROC FMM statement, 2474

FTOL2 option
NLOPTIONS statement (CALIS), 492
NLOPTIONS statement (GLIMMIX), 492
NLOPTIONS statement (HPMIXED), 492
NLOPTIONS statement (PHREG), 492
NLOPTIONS statement (SURVEYPHREG), 492
NLOPTIONS statement (VARIOGRAM), 492
PROC FMM statement, 2474

FTOL= option
PROC CALIS statement, 1215

FULLX option
MODEL statement (MIXED), 5248, 5256

FUZZ= option
MODEL statement (GLMSELECT), 3687
PATHDIAGRAM statement, 2329
PROC DISTANCE statement, 2261
PROC FACTOR statement, 2313
PROC STDIZE statement, 7839

FVALUE
STATS= option (GLMSELECT), 3695

FWDLINK statement, GENMOD procedure, 2910,
2926

FWLS= option
PROC ROBUSTREG statement, 7175

G function option
PROCESS statement (SPP), 7790

G option
RANDOM statement (GLIMMIX), 3156
RANDOM statement (MIXED), 5273

G4 option
PROC NLIN statement, 5587

G4= option
PROC CALIS statement, 1216
PROC NLMIXED statement, 5699

GABRIEL option
MEANS statement (ANOVA), 966
MEANS statement (GLM), 3435

GAILSIMON option
OUTPUT statement (FREQ), 2592
TABLES statement (FREQ), 2613

GAM procedure, 2763
syntax, 2763

GAM procedure, BY statement, 2766
GAM procedure, CLASS statement, 2766

DESCENDING option, 2767
ORDER= option, 2767
REF= option, 2767
TRUNCATE option, 2767

GAM procedure, FREQ statement, 2768

GAM procedure, MODEL statement, 2768
ALPHA= option, 2771
ANODEV= option, 2771
DESCENDING option, 2770
DIST= option, 2771
EPSILON= option, 2772
EPSSCORE= option, 2772
EVENT= option, 2770
ITPRINT option, 2772
MAXITER= option, 2772
MAXITSCORE= option, 2772
METHOD= option, 2772
OFFSET= option, 2772
ORDER= option, 2770
REFERENCE= option, 2771

GAM procedure, OUTPUT statement, 2772
OUT= option, 2773

GAM procedure, PROC GAM statement, 2764
ADDITIVE option, 2765
ALL option, 2765
CLM option, 2766
COMMONAXES option, 2766
COMPONENTS option, 2765
DATA= option, 2764
DESCENDING option, 2764
NONE option, 2765
ORDER option, 2764
PLOTS= option, 2764
UNPACK option, 2765
UNPACKPANELS option, 2766

GAM procedure, SCORE statement, 2774
DATA= option, 2774
OUT= option, 2774

GAMMA option
OUTPUT statement (FREQ), 2592
TEST statement (FREQ), 2638

GAMMA= option
FACTOR statement, 1259
PROC FACTOR statement, 2313

GAMMASHAPEPRIOR= option
BAYES statement, 4230

GC option
RANDOM statement (GLIMMIX), 3157
RANDOM statement (MIXED), 5274

GCI option
RANDOM statement (GLIMMIX), 3157
RANDOM statement (MIXED), 5274

GCONV option
NLOPTIONS statement (CALIS), 493
NLOPTIONS statement (GLIMMIX), 493
NLOPTIONS statement (HPMIXED), 493
NLOPTIONS statement (PHREG), 493
NLOPTIONS statement (SURVEYPHREG), 493
NLOPTIONS statement (VARIOGRAM), 493
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PROC ADAPTIVEREG statement, 897
PROC FMM statement, 2475
PROC ICPHREG statement, 3942

GCONV2 option
NLOPTIONS statement (CALIS), 493
NLOPTIONS statement (GLIMMIX), 493
NLOPTIONS statement (HPMIXED), 493
NLOPTIONS statement (PHREG), 493
NLOPTIONS statement (SURVEYPHREG), 493
NLOPTIONS statement (VARIOGRAM), 493

GCONV= option
MODEL statement (LOGISTIC), 4538
MODEL statement (PHREG), 5935
MODEL statement (SURVEYLOGISTIC), 8087
PROC CALIS statement, 1216
PROC IRT statement, 4016
PROC NLMIXED statement, 5699

GCONVERGE= option
PROC MDS statement, 5002

GCOORD= option
RANDOM statement (GLIMMIX), 3157

GCORR option
RANDOM statement (GLIMMIX), 3157
RANDOM statement (MIXED), 5274

GCV option
MODEL statement (TRANSREG), 8577

GDATA= option
RANDOM statement (MIXED), 5274

GEE procedure
syntax, 2819

GEE procedure, BY statement, 2820
GEE procedure, CLASS statement, 2821

DESCENDING option, 2821
ORDER= option, 2821

GEE procedure, FREQ statement, 2822
GEE procedure, MISSMODEL statement, 2822

MAXWEIGHT option, 2822
TYPE= option, 2822

GEE procedure, MODEL statement, 2823
ALPHA= option, 2824
DIST= option, 2824
ERR= option, 2824
LINK= option, 2824
NOINT option, 2825
NOSCALE option, 2825
OFFSET= option, 2825
SCALE= option, 2825

GEE procedure, PROC GEE statement, 2819
DATA= option, 2820
DESCENDING option, 2820
NAMELEN= option, 2820
PLOTS option, 2820

GEE procedure, REPEATED statement, 2825
CONVERGE= option, 2826

CORR= option, 2827
CORRB option, 2826
CORRW option, 2826
COVB option, 2826
ECORRB option, 2827
ECOVB option, 2827
INITIAL= option, 2827
INTERCEPT= option, 2827
MAXITER= option, 2827
MCORRB option, 2827
MCOVB option, 2827
MODELSE option, 2827
SUBJECT= option, 2826
TYPE= option, 2827
WITHIN= option, 2828
WITHINSUBJECT= option, 2828

GEE procedure, WEIGHT statement, 2828
GENDER statement, INBREED procedure, 3989
GENERAL option

COVTEST statement (GLIMMIX), 3099
GENMOD procedure

syntax, 2878
GENMOD procedure, ASSESS statement, 2884
GENMOD PROCEDURE, BAYES statement, 2885
GENMOD procedure, BAYES statement

COEFFPRIOR= option, 2886
DIAGNOSTICS option, 2887
DISPERSIONPRIOR option, 2889
INITIAL= option, 2890
INITIALMLE option, 2890
MCSE option, 2888
METROPOLIS= option, 2890
NBI= option, 2890
NMC= option, 2890
OUTPOST= option, 2890
PLOTS option, 2891
PRECISIONPRIOR= option, 2891
RAFTERY option, 2888
SAMPLING= option, 2893
SCALEPRIOR= option, 2893
SEED= option, 2894
STATISTICS= option, 2894
THINNING= option, 2895

GENMOD procedure, BY statement, 2895
GENMOD procedure, CODE statement

CATALOG= option, 396
DUMMIES option, 396
ERRORS option, 396
FILE= option, 396
FORMAT= option, 396
GROUP= option, 396
IMPUTE option, 396
LINESIZE= option, 397
LOOKUP= option, 397
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NODUMMIES option, 396
NOERRORS option, 396
NORESIDUAL option, 397
RESIDUAL option, 397

GENMOD procedure, CONTRAST statement, 2899
E option, 2901
SINGULAR= option, 2901
WALD option, 2901

GENMOD procedure, DEVIANCE statement, 2901,
2926

GENMOD procedure, EFFECTPLOT statement
ADDCELL option, 418
ALPHA= option, 418
AT option, 419
ATLEN= option, 419
ATORDER= option, 420
BIN option, 420
CLI option, 420
CLM option, 420
CLUSTER option, 420
CONNECT option, 420
EQUAL option, 420
EXTEND= option, 420
GRIDSIZE= option, 420
ILINK option, 421
INDIVIDUAL option, 421
LIMITS option, 421
LINK option, 421
MOFF option, 421
NCOLS= option, 421
NOBORDER option, 421
NOCLI option, 421
NOCLM option, 422
NOCLUSTER option, 422
NOCONNECT option, 422
NOLIMITS option, 422
NOOBS option, 422
NROWS= option, 422
OBS option, 422
PLOTBY= option, 424
PLOTBYLEN= option, 425
POLYBAR option, 425
PREDLABEL= option, 426
SHOWCLEGEND option, 426
SLICEBY= option, 426
SMOOTH option, 426
TYPE= option, 426
UNPACK option, 427
X= option, 427
Y= option, 427
YRANGE= option, 427

GENMOD procedure, ESTIMATE statement
ALPHA= option, 2904
DIVISOR= option, 2904

E option, 2904
EXP option, 2904
SINGULAR= option, 2904

GENMOD procedure, FREQ statement, 2903, 2910
GENMOD procedure, FWDLINK statement, 2910,

2926
GENMOD procedure, INVLINK statement, 2910,

2926
GENMOD procedure, LSMEANS statement

ADJUST= option, 463
ALPHA= option, 465
AT= option, 465
BYLEVEL option, 465
CL option, 466
CORR option, 466
COV option, 466
DIFF option, 466
E option, 467
EXP option, 467
ILINK option, 467
LINES option, 468
MEANS or NOMEANS option, 468
OBSMARGINS= option, 468
ODDSRATIO option, 468
ODS graph names, 475
ODS table names, 474
PDIFF option, 469
PLOTS= option, 469
SEED= option, 473
SINGULAR= option, 473
STEPDOWN option, 473

GENMOD procedure, LSMESIIMATE statement
ADJUST= option, 479
ALPHA= option, 479
AT= option, 479
BYLEVEL option, 479
CATEGORY= option, 480
CL option, 480
CORR option, 480
COV option, 480
DIVISOR= option, 481
E option, 481
ELSM option, 481
EXP option, 481
ILINK option, 481
JOINT option, 482
LOWER option, 483
OBSMARGINS= option, 483
ODS graph names, 487
ODS table names, 487
PLOTS= option, 483
SEED= option, 485
SINGULAR= option, 485
STEPDOWN option, 485
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TESTVALUE= option, 486
UPPER option, 486

GENMOD procedure, MODEL statement, 2913
AGGREGATE= option, 2915
ALPHA= option, 2915
CICONV= option, 2915
CL option, 2915
CODING= option, 2915
CONVERGE= option, 2915
CONVH= option, 2916
CORRB option, 2916
COVB option, 2916
DIAGNOSTICS option, 2916
DIST= option, 2916
ERR= option, 2916
EXACTMAX= option, 2917
EXPECTED option, 2917
ID= option, 2917
INFLUENCE option, 2916
INITIAL= option, 2917
INTERCEPT= option, 2918
ITPRINT option, 2918
LINK= option, 2918
LRCI option, 2919
MAXIT= option, 2919
NOINT option, 2919
NOLOGNB option, 2919
NOSCALE option, 2919
OBSTATS option, 2919
OFFSET= option, 2921
PRED option, 2921
PREDICTED option, 2921
RESIDUALS option, 2921
SCALE= option, 2921
SCORING= option, 2922
SINGULAR= option, 2922
TYPE1 option, 2922
TYPE3 option, 2922
WALD option, 2922
WALDCI option, 2922
XVARS option, 2923

GENMOD procedure, OUTPUT statement, 2923
keyword= option, 2923
OUT= option, 2923

GENMOD procedure, PROC GENMOD statement,
2879

DATA= option, 2879
DESCENDING option, 2879
NAMELEN= option, 2879
PLOTS= option, 2880
RORDER= option, 2883

GENMOD procedure, REPEATED statement, 2875,
2927

ALPHAINIT= option, 2928

CONVERGE= option, 2928
CORR= option, 2930
CORRB option, 2929
CORRW option, 2929
COVB option, 2929
ECORRB option, 2929
ECOVB option, 2929
INITIAL= option, 2929
INTERCEPT= option, 2929
LOGOR= option, 2929
MAXITER= option, 2930
MCORRB option, 2930
MCOVB option, 2930
MODELSE option, 2930
PRINTMLE option, 2930
RUPDATE= option, 2930
SORTED option, 2930
SUBCLUSTER= option, 2930
SUBJECT= option, 2928
TYPE= option, 2930
V6CORR option, 2931
WITHIN= option, 2931
WITHINSUBJECT= option, 2931
YPAIR= option, 2931
ZDATA= option, 2931
ZROW= option, 2931

GENMOD procedure, SCWGT statement, 2934
GENMOD procedure, SLICE statement

ADJUST= option, 463
ALPHA= option, 465
AT= option, 465
BYLEVEL option, 465
CL option, 466
CORR option, 466
COV option, 466
DIFF option, 466
E option, 467
EXP option, 467
ILINK option, 467
LINES option, 468
MEANS or NOMEANS option, 468
NOF option, 507
OBSMARGINS= option, 468
ODDSRATIO option, 468
ODS table names, 507
PDIFF option, 469
PLOTS= option, 469
SEED= option, 473
SIMPLE= option, 507
SINGULAR= option, 473
SLICEBY= option, 507
STEPDOWN option, 473

GENMOD procedure, VARIANCE statement, 2933
GENMOD procedure, WEIGHT statement, 2934
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GENMOD procedure, ZEROMODEL statement, 2934
LINK= option, 2935

GENMOD procedure, CLASS statement, 2895
CPREFIX= option, 2896
DESCENDING option, 2896
LPREFIX= option, 2896
MISSING option, 2896
ORDER= option, 2896
PARAM= option, 2896
REF= option, 2897
TRUNCATE option, 2897

GENMOD procedure, CODE statement, 2898
GENMOD procedure, EFFECTPLOT statement, 2902
GENMOD procedure, EXACT statement, 2904

ALPHA= option, 2905
CLTYPE= option, 2905
ESTIMATE option, 2905
JOINT option, 2905
JOINTONLY option, 2906
MIDPFACTOR= option, 2906
ONESIDED option, 2906
OUTDIST= option, 2906

GENMOD procedure, EXACTOPTIONS statement,
2907

GENMOD procedure, LSMESTIMATE statement,
2912

GENMOD procedure, MODEL statement
ABSFCONV option, 2907
FCONV= option, 2907
NOLOGSCALE option, 2909
XCONV= option, 2909

GENMOD procedure, PROC GENMOD statement
EXACTONLY option, 2879
ORDER= option, 2879

GENMOD procedure, SLICE statement, 2932
GENMOD procedure, STORE statement, 2932
GENMOD procedure, STRATA statement, 2932

CHECKDEPENDENCY= option, 2933
INFO option, 2933
MISSING option, 2933
NOSUMMARY option, 2933

GEOMETRICMEAN option
MODEL statement (TRANSREG), 8581

GI option
RANDOM statement (GLIMMIX), 3157
RANDOM statement (MIXED), 5274

GLIMMIX procedure, 3063
CONTRAST statement, 3092
COVTEST statement, 3096
EFFECT statement, 3103
ESTIMATE statement, 3104
FREQ statement, 3110
ID statement, 3110
LSMEANS statement, 3111

LSMESTIMATE statement, 3124
MODEL statement, 3131
NLOPTIONS statement, 3145
OUTPUT statement, 3146
PARMS statement, 3150
PROC GLIMMIX statement, 3064
Programming statements, 3175
RANDOM statement, 3155
syntax, 3063
WEIGHT statement, 3175

GLIMMIX procedure, BY statement, 3090
GLIMMIX procedure, CODE statement

CATALOG= option, 396
DUMMIES option, 396
ERRORS option, 396
FILE= option, 396
FORMAT= option, 396
GROUP= option, 396
IMPUTE option, 396
LINESIZE= option, 397
LOOKUP= option, 397
NODUMMIES option, 396
NOERRORS option, 396
NORESIDUAL option, 397
RESIDUAL option, 397

GLIMMIX procedure, CONTRAST statement, 3092
BYCAT option, 3095
BYCATEGORY option, 3095
CHISQ option, 3095
DF= option, 3095
E option, 3095
GROUP option, 3095
SINGULAR= option, 3096
SUBJECT option, 3096

GLIMMIX procedure, COVTEST statement, 3096
CL option, 3100
CLASSICAL option, 3102
CONTRAST option, 3099
ESTIMATES option, 3103
GENERAL option, 3099
MAXITER= option, 3103
PARMS option, 3103
RESTART option, 3103
TESTDATA= option, 3098
TOLERANCE= option, 3103
WALD option, 3103
WGHT= option, 3103

GLIMMIX procedure, DF= statement
CLASSICAL option, 3102

GLIMMIX procedure, EFFECT statement, 3103
BASIS option (spline), 408
collection effect, 399
DATABOUNDARY option (spline), 408
DEGREE option (polynomial), 404
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DEGREE option (spline), 408
DESIGNROLE option (lag), 402
DETAILS option (lag), 402
DETAILS option (multimember), 403
DETAILS option (polynomial), 404
DETAILS option (spline), 408
KNOTMAX option (spline), 409
KNOTMETHOD option (spline), 409
KNOTMIN option (spline), 410
LABELSTYLE option (polynomial), 404
lag effect, 400
MDEGREE option (polynomial), 405
multimember effect, 402
NATURALCUBIC option (spline), 410
NLAG option (lag), 402
NOEFFECT option (multimember), 403
NOSEPARATE option (polynomial), 405
PERIOD option (lag), 401
polynomial effect, 404
SEPARATE option (spline), 410
spline effect, 407
STANDARDIZE option (polynomial), 406
WITHIN option (lag), 402

GLIMMIX procedure, ESTIMATE statement, 3104
ADJDFE= option, 3105
ADJUST= option, 3105
ALPHA= option, 3106
BYCAT option, 3106
BYCATEGORY option, 3106
CL option, 3106
DF= option, 3106
DIVISOR= option, 3107
E option, 3107
EXP option, 3107
GROUP option, 3107
ILINK option, 3108
LOWERTAILED option, 3108
SINGULAR= option, 3108
STEPDOWN option, 3108
SUBJECT option, 3109
UPPERTAILED option, 3110

GLIMMIX procedure, FREQ statement, 3110
GLIMMIX procedure, ID statement, 3110
GLIMMIX procedure, LSMEANS statement, 3111

ADJUST= option, 3113
ALPHA= option, 3115
AT MEANS option, 3115
AT option, 3115
BYLEVEL option, 3115
CL option, 3116
CORR option, 3116
COV option, 3116
DF= option, 3116
DIFF option, 3116

E option, 3117
ILINK option, 3117
LINES option, 3117
OBSMARGINS option, 3118
ODDS option, 3118
ODDSRATIO option, 3118
OM option, 3118
PDIFF option, 3116, 3118, 3841
PLOT option, 3118
PLOTS option, 3118
SIMPLEDIFF= option, 3122
SIMPLEDIFFTYPE option, 3122
SINGULAR= option, 3121
SLICE= option, 3121
SLICEDIFF= option, 3122
SLICEDIFFTYPE option, 3122
STEPDOWN option, 3123

GLIMMIX procedure, LSMESTIMATE statement,
3124

ADJUST= option, 3126
ALPHA= option, 3126
AT MEANS option, 3127
AT option, 3127
BYLEVEL option, 3127
CHISQ option, 3127
CL option, 3127
CORR option, 3127
COV option, 3127
DF= option, 3127
DIVISOR= option, 3127
E option, 3128
ELSM option, 3128
EXP option, 3128
FTEST option, 3128
ILINK option, 3129
JOINT option, 3128
LOWERTAILED option, 3130
OBSMARGINS option, 3130
OM option, 3130
SINGULAR= option, 3130
STEPDOWN option, 3130
UPPERTAILED option, 3131

GLIMMIX procedure, MODEL statement, 3131
ALPHA= option, 3134
CHISQ option, 3134
CL option, 3134
CORRB option, 3135
COVB option, 3135
COVBI option, 3135
DDF= option, 3135
DDFM= option, 3136
DESCENDING option, 3133
DF= option, 3135
DIST= option, 3137
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DISTRIBUTION= option, 3137
E option, 3140
E1 option, 3140
E2 option, 3140
E3 option, 3140
ERROR= option, 3137
EVENT= option, 3133
HTYPE= option, 3140
INTERCEPT option, 3140
LINK= option, 3140
LWEIGHT= option, 3141
NOCENTER option, 3142
NOINT option, 3142, 3230
OBSWEIGHT= option, 3144
ODDSRATIO option, 3142
OFFSET= option, 3144
ORDER= option, 3133
REFERENCE= option, 3134
REFLINP= option, 3144
SOLUTION option, 3144, 3230
STDCOEF option, 3144
ZETA= option, 3145

GLIMMIX procedure, NLOPTIONS statement
ABSCONV option, 490
ABSFCONV option, 490
ABSGCONV option, 490
ABSGTOL option, 490
ABSTOL option, 490
ABSXCONV option, 491
ABSXTOL option, 491
ASINGULAR= option, 491
DAMPSTEP option, 491
FCONV option, 491
FCONV2 option, 492
FSIZE option, 493
FTOL option, 491
FTOL2 option, 492
GCONV option, 493
GCONV2 option, 493
GTOL option, 493
GTOL2 option, 493
HESCAL option, 493
HS option, 493
INHESS option, 494
INHESSIAN option, 494
INSTEP option, 494
LCDEACT= option, 495
LCEPSILON= option, 495
LCSINGULAR= option, 495
LINESEARCH option, 495
LIS option, 495
LSP option, 496
LSPRECISION option, 496
MAXFU option, 496

MAXFUNC option, 496
MAXIT option, 497
MAXITER option, 497
MAXSTEP option, 497
MAXTIME option, 497
MINIT option, 497
MINITER option, 497
MSINGULAR= option, 497
REST option, 498
RESTART option, 498
SINGULAR= option, 498
SOCKET option, 498
TECH option, 498
TECHNIQUE option, 498
UPD option, 499
UPDATE option, 499
VSINGULAR= option, 500
XCONV option, 500
XSIZE option, 500
XTOL option, 500

GLIMMIX procedure, OUTPUT statement, 3146
ALLSTATS option, 3149
ALPHA= option, 3149
CPSEUDO option, 3149
DER option, 3149
DERIVATIVES option, 3149
keyword= option, 3146
NOMISS option, 3149
NOUNIQUE option, 3149
NOVAR option, 3150
OBSCAT option, 3150
OUT= option, 3146
SYMBOLS option, 3150

GLIMMIX procedure, PARMS statement, 3150
HOLD= option, 3151
LOWERB= option, 3151
NOBOUND option, 3152
NOITER option, 3152
PARMSDATA= option, 3153
PDATA= option, 3153
UPPERB= option, 3154

GLIMMIX procedure, PROC GLIMMIX statement,
3064

ABSPCONV option, 3065
ASYCORR option, 3066
ASYCOV option, 3066
CHOL option, 3066
CHOLESKY option, 3066
DATA= option, 3066
EMPIRICAL= option, 3066
EXPHESSIAN option, 3069
FDIGITS= option, 3069
GRADIENT option, 3069
HESSIAN option, 3069
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IC= option, 3069
INFOCRIT= option, 3069
INITGLM option, 3071
INITITER option, 3071
ITDETAILS option, 3071
LIST option, 3071
MAXLMMUPDATE option, 3071
MAXOPT option, 3071
METHOD= option, 3072
NAMELEN= option, 3077
NOBOUND option, 3077
NOBSDETAIL option, 3078
NOCLPRINT option, 3078
NOFIT option, 3078
NOINITGLM option, 3078
NOITPRINT option, 3078
NOPROFILE option, 3078
NOREML option, 3078
ODDSRATIO option, 3079
OUTDESIGN option, 3080
PCONV option, 3081
PLOT option, 3081
PLOTS option, 3081
PROFILE option, 3088
SCOREMOD option, 3088
SCORING= option, 3088
SINGCHOL= option, 3089
SINGULAR= option, 3089
STARTGLM option, 3089
SUBGRADIENT option, 3089

GLIMMIX procedure, programming statements, 3175
ABORT statement, 3175
CALL statement, 3175
DELETE statement, 3175
DO statement, 3175
GOTO statement, 3175
IF statement, 3175
LINK statement, 3175
PUT statement, 3175
RETURN statement, 3175
SELECT statement, 3175
STOP statement, 3175
SUBSTR statement, 3175
WHEN statement, 3175

GLIMMIX procedure, RANDOM statement, 3155
ALPHA= option, 3156
CL option, 3156
G option, 3156
GC option, 3157
GCI option, 3157
GCOORD= option, 3157
GCORR option, 3157
GI option, 3157
GROUP= option, 3157

KNOTINFO option, 3157
KNOTMAX= option, 3157
KNOTMETHOD= option, 3158
KNOTMIN= option, 3160
LDATA= option, 3160
NOFULLZ option, 3161
RESIDUAL option, 3161
RSIDE option, 3161
SOLUTION option, 3161
SUBJECT= option, 3161
TYPE= option, 3162
V option, 3174
VC option, 3174
VCI option, 3174
VCORR option, 3174
VI option, 3174
WEIGHT= option, 3174

GLIMMIX procedure, SLICE statement
ADJDFE= option, 462
ADJUST= option, 463
ALPHA= option, 465
AT= option, 465
BYLEVEL option, 465
CL option, 466
CORR option, 466
COV option, 466
DF= option, 466
DIFF option, 466
E option, 467
EXP option, 467
ILINK option, 467
LINES option, 468
MEANS or NOMEANS option, 468
NOF option, 507
OBSMARGINS= option, 468
ODDSRATIO option, 468
ODS graph names, 475
ODS table names, 507
PDIFF option, 469
PLOTS= option, 469
SEED= option, 473
SIMPLE= option, 507
SINGULAR= option, 473
SLICEBY= option, 507
STEPDOWN option, 473

GLIMMIX procedure, WEIGHT statement, 3175
GLIMMIX procedure, CLASS statement, 3091

REF= option, 3091
REF= variable option, 3091
TRUNCATE option, 3092

GLIMMIX procedure, CODE statement, 3092
GLIMMIX procedure, PROC GLIMMIX statement

ORDER= option, 3079
GLIMMIX procedure, STORE statement, 3175
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GLM procedure
syntax, 3404

GLM procedure, ABSORB statement, 3412
GLM procedure, BY statement, 3413
GLM procedure, CODE statement

CATALOG= option, 396
DUMMIES option, 396
ERRORS option, 396
FILE= option, 396
FORMAT= option, 396
GROUP= option, 396
IMPUTE option, 396
LINESIZE= option, 397
LOOKUP= option, 397
NODUMMIES option, 396
NOERRORS option, 396
NORESIDUAL option, 397
RESIDUAL option, 397

GLM procedure, CONTRAST statement, 3415
E option, 3416
E= option, 3416
ETYPE= option, 3416
INTERCEPT effect, 3416, 3418
SINGULAR= option, 3416

GLM procedure, ESTIMATE statement, 3417
DIVISOR= option, 3418
E option, 3418
SINGULAR= option, 3418

GLM procedure, FREQ statement, 3418
GLM procedure, ID statement, 3419
GLM procedure, LSMEANS statement, 3419

ADJUST= option, 3420
ALPHA= option, 3422
AT option, 3422, 3490
BYLEVEL option, 3491
BYLEVEL options, 3422
CL option, 3422
COV option, 3422
E option, 3423
ETYPE option, 3423
LINES option, 3423
NOPRINT option, 3423
OBSMARGINS option, 3423, 3491
OM option, 3423, 3491
OUT= option, 3424
PDIFF option, 3424
PLOTS= option, 3425
SINGULAR option, 3427
SLICE= option, 3427
STDERR option, 3428
TDIFF option, 3428

GLM procedure, MANOVA statement, 3428
_ALL_ effect (H= option), 3429
CANONICAL option, 3430

E= option, 3429
ETYPE= option, 3430
H= option, 3429
HTYPE= option, 3430
INTERCEPT effect (H= option), 3429
M= option, 3429
MNAMES= option, 3430
MSTAT= option, 3430
ORTH option, 3430
PREFIX= option, 3430
PRINTE option, 3431
PRINTH option, 3431
SUMMARY option, 3431

GLM procedure, MEANS statement, 3432, 3489
ALPHA= option, 3434
BON option, 3434
CLDIFF option, 3434
CLM option, 3434
DEPONLY option, 3434
DUNCAN option, 3435
DUNNETT option, 3435
DUNNETTL option, 3435
DUNNETTU option, 3435
E= option, 3435
ETYPE= option, 3435
GABRIEL option, 3435
GT2 option, 3435
HOVTEST option, 3436, 3488
HTYPE= option, 3436
KRATIO= option, 3436
LINES option, 3436
LSD option, 3437
NOSORT option, 3437
REGWQ option, 3437
SCHEFFE option, 3437
SIDAK option, 3437
SMM option, 3437
SNK option, 3437
T option, 3437
TUKEY option, 3437
WALLER option, 3437
WELCH option, 3438

GLM procedure, MODEL statement, 3438
ALIASING option, 3439, 3564
ALPHA= option, 3439
CLI option, 3439
CLM option, 3439
CLPARM option, 3440
E option, 3440
E1 option, 3440
E2 option, 3440
E3 option, 3440
E4 option, 3440
EFFECTSIZE option, 3440
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I option, 3440
INTERCEPT option, 3440
INVERSE option, 3440
NOINT option, 3441
NOUNI option, 3441
P option, 3441
SINGULAR= option, 3441
SOLUTION option, 3441
SS1 option, 3441
SS2 option, 3441
SS3 option, 3441
SS4 option, 3441
TOLERANCE option, 3441
XPX option, 3442
ZETA= option, 3442

GLM procedure, OUTPUT statement, 3442
ALPHA= option, 3444
COOKD keyword, 3442
COVRATIO keyword, 3443
DFFITS keyword, 3443
H keyword, 3443
keyword= option, 3442
LCL keyword, 3443
LCLM keyword, 3443
OUT= option, 3444
PREDICTED keyword, 3443
PRESS keyword, 3443
RESIDUAL keyword, 3443
RSTUDENT keyword, 3443
STDI keyword, 3443
STDP keyword, 3443
STDR keyword, 3443
STUDENT keyword, 3443
UCL keyword, 3444
UCLM keyword, 3444

GLM procedure, PROC GLM statement, 3406
ALPHA= option, 3407
DATA= option, 3407
MANOVA option, 3407
MULTIPASS option, 3407
NAMELEN= option, 3407
NOPRINT option, 3407
ORDER= option, 3473
OUTSTAT= option, 3408
PLOTS= option, 3408

GLM procedure, RANDOM statement, 3445
Q option, 3445, 3502
TEST option, 3445

GLM procedure, REPEATED statement, 3446
CANONICAL option, 3448
CONTRAST option, 3448, 3499
E= option, 3451
factor specification, 3447
H= option, 3451

HELMERT option, 3448, 3500
HTYPE= option, 3449
IDENTITY option, 3448, 3554
MEAN option, 3448, 3449, 3500
MSTAT= option, 3449
NOM option, 3449
NOU option, 3449
POLYNOMIAL option, 3448, 3500, 3548
PRINTE option, 3449, 3497
PRINTH option, 3449
PRINTM option, 3449
PRINTRV option, 3449
PROFILE option, 3448, 3501
SUMMARY option, 3449
UEPSDEF option, 3450

GLM procedure, TEST statement, 3451
ETYPE= option, 3451
HTYPE= option, 3451

GLM procedure, WEIGHT statement, 3452
GLMMOD procedure

syntax, 3580
GLMMOD procedure, BY statement, 3582
GLMMOD procedure, FREQ statement, 3583
GLMMOD procedure, MODEL statement, 3583

NOINT option, 3583
GLMMOD procedure, PROC GLMMOD statement,

3580
DATA= option, 3580
NAMELEN= option, 3580
NOPRINT option, 3581
OUTDESIGN= option, 3581, 3585
OUTPARM= option, 3581, 3584
PREFIX= option, 3581
ZEROBASED option, 3582

GLMMOD procedure, WEIGHT statement, 3583
GLMMOD procedure, CLASS statement, 3582

TRUNCATE option, 3583
GLMMOD procedure, PROC GLMMOD statement

ORDER= option, 3581
GLMPOWER procedure

syntax, 3605
GLMPOWER procedure, BY statement, 3607
GLMPOWER procedure, CLASS statement, 3608
GLMPOWER procedure, CONTRAST statement,

3608
SINGULAR= option, 3609

GLMPOWER procedure, MANOVA statement, 3609
M= option, 3610
ORTH option, 3611

GLMPOWER procedure, MODEL statement, 3611
GLMPOWER procedure, PLOT statement, 3611

DESCRIPTION= option, 3615
INTERPOL= option, 3613
KEY= option, 3613
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MARKERS= option, 3613
MAX= option, 3614
MIN= option, 3614
NAME= option, 3615
NPOINTS= option, 3614
STEP= option, 3614
VARY option, 3614
X= option, 3614
XOPTS= option, 3615
Y= option, 3615
YOPTS= option, 3615

GLMPOWER procedure, POWER statement, 3616
ALPHA= option, 3617
CORRMAT option, 3617
CORRS option, 3617
CORRXY= option, 3618
COVMAT option, 3618
DEPENDENT option, 3618
EFFECTS option, 3618
MATRIX option, 3618
METHOD= option, 3620
MTEST= option, 3620
NCOVARIATES= option, 3621
NFRACTIONAL option, 3621
NTOTAL= option, 3621
OUTPUTORDER= option, 3622
POWER= option, 3622
PROPVARREDUCTION= option, 3622
SQRTVAR option, 3622
STDDEV= option, 3623
UEPSDEF= option, 3623

GLMPOWER procedure, PROC GLMPOWER
statement, 3606

DATA= option, 3607
PLOTONLY= option, 3607

GLMPOWER procedure, REPEATED statement, 3623
CONTRAST option, 3625
factor specification, 3624
HELMERT option, 3625
IDENTITY option, 3625
MEAN option, 3625
POLYNOMIAL option, 3626
PROFILE option, 3626

GLMPOWER procedure, WEIGHT statement, 3626
GLMPOWER procedure, PROC GLMPOWER

statement
ORDER= option, 3607

GLMSELECT procedure, 3670
syntax, 3670

GLMSELECT procedure, BY statement, 3678
GLMSELECT procedure, CLASS statement, 3679

CPREFIX= option, 3680
DELIMITER option, 3679
DESCENDING option, 3680

LPREFIX= option, 3680
MISSING option, 3680
ORDER= option, 3680
PARAM= option, 3681
REF= option, 3681
SHOWCODING option, 3679
SPLIT option, 3682

GLMSELECT procedure, CODE statement
CATALOG= option, 396
DUMMIES option, 396
ERRORS option, 396
FILE= option, 396
FORMAT= option, 396
GROUP= option, 396
IMPUTE option, 396
LINESIZE= option, 397
LOOKUP= option, 397
NODUMMIES option, 396
NOERRORS option, 396
NORESIDUAL option, 397
RESIDUAL option, 397

GLMSELECT procedure, DETAILS=STEPS(ALL)
option

ALL, 3686
GLMSELECT procedure,

DETAILS=STEPS(ANOVA) option
ANOVA, 3686

GLMSELECT procedure,
DETAILS=STEPS(FITSTATISTICS) option

FITSTATISTICS, 3687
GLMSELECT procedure, DE-

TAILS=STEPS(PARAMETERESTIMATES)
option

PARAMETERESTIMATES, 3687
GLMSELECT procedure, EFFECT statement

BASIS option (spline), 408
collection effect, 399
DATABOUNDARY option (spline), 408
DEGREE option (polynomial), 404
DEGREE option (spline), 408
DESIGNROLE option (lag), 402
DETAILS option (lag), 402
DETAILS option (multimember), 403
DETAILS option (polynomial), 404
DETAILS option (spline), 408
KNOTMAX option (spline), 409
KNOTMETHOD option (spline), 409
KNOTMIN option (spline), 410
LABELSTYLE option (polynomial), 404
lag effect, 400
MDEGREE option (polynomial), 405
multimember effect, 402
NATURALCUBIC option (spline), 410
NLAG option (lag), 402
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NOEFFECT option (multimember), 403
NOSEPARATE option (polynomial), 405
PERIOD option (lag), 401
polynomial effect, 404
SEPARATE option (spline), 410
spline effect, 407
SPLIT option (spline), 411
STANDARDIZE option (polynomial), 406
WITHIN option (lag), 402

GLMSELECT procedure, FREQ statement, 3685
GLMSELECT procedure, MODEL statement, 3685

ADAPTIVE option, 3689
CHOOSE= option, 3689
CVDETAILS option, 3685
CVMETHOD option, 3686
DETAILS option, 3686
DROP= option, 3690
FUZZ= option, 3687
HIERARCHY= option, 3687
INCLUDE= option, 3691
LSCOEFFS option, 3692
MAXSTEP option, 3692, 3693
NOINT option, 3688
ORDERSELECT option, 3688
SELECT= option, 3692
SELECTION= option, 3688
SHOWPVALUES option, 3695
SLENTRY= option, 3693
SLSTAY= option, 3693
STATS option, 3695
STB option, 3695
STOP= option, 3694

GLMSELECT procedure, MODELAVERAGE
statement, 3696

ALPHA option, 3696
DETAILS option, 3696
NSAMPLES option, 3696
REFIT option, 3696
SAMPLING option, 3697
SUBSET option, 3697
TABLES option, 3697

GLMSELECT procedure, OUTPUT statement, 3699
keyword option, 3700
LOWER keyword, 3700
MEDIAN keyword, 3700
OUT= option, 3701
PREDICTED keyword, 3700
RESIDUAL keyword, 3700
SAMPLEFREQ keyword, 3700
SAMPLEPRED keyword, 3700
STANDARDDEVIATION keyword, 3700
STDDEV keyword, 3700
UPPER keyword, 3700

GLMSELECT procedure, PARTITION statement,
3701

FRACTION option, 3701
ROLEVAR= option, 3701

GLMSELECT procedure, PERFORMANCE
statement, 3701

BUILDSSCP= option, 3702
DETAILS option, 3702

GLMSELECT procedure, PROC GLMSELECT
statement, 3670

DATA= option, 3671
MAXMACRO= option, 3671
NAMELEN= option, 3672
NOPRINT option, 3672
OUTDESIGN= option, 3672
PLOT option, 3674
PLOTS option, 3674
SEED= option, 3678
TESTDATA= option, 3678
VALDATA= option, 3678

GLMSELECT procedure, SCORE statement, 3702
keyword option, 3703
OUT= option, 3702, 3703
PREDICTED keyword, 3703
RESIDUAL keyword, 3703

GLMSELECT procedure, STATS= option
ADJRSQ, 3695
AIC, 3695
AICC, 3695
ASE, 3695
BIC, 3695
CP, 3695
FVALUE, 3695
PRESS, 3695
RSQUARE, 3695
SBC, 3695
SL, 3695

GLMSELECT procedure, WEIGHT statement, 3703
GLMSELECT procedure, CODE statement, 3683
GLMSELECT procedure, EFFECT statement, 3683
GLMSELECT procedure, STORE statement, 3703
GLM procedure, CLASS statement, 3413

REF= option, 3414
REF= variable option, 3414
TRUNCATE option, 3414

GLM procedure, CODE statement, 3415
GLM procedure, PROC GLM statement

ORDER= option, 3408
GLM procedure, STORE statement, 3450
GLS option

MODEL statement (CATMOD), 1913
GMSEP option

MODEL statement (REG), 7019
PLOT statement (REG), 7099
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GOF option
MODEL statement (SPP), 7786

GOUT= option
MCMC statement (MI), 5051
PROC BOXPLOT statement, 1090
PROC LIFEREG statement, 4223
PROC LIFETEST statement, 4383
PROC PROBIT statement, 6693
PROC REG statement, 7089
PROC TREE statement, 8770

GPATH= option
ODS HTML statement, 633

GRADIENT option
MODEL statement (SURVEYLOGISTIC), 8087
MODEL statement (VARIOGRAM), 8953
PROC GLIMMIX statement, 3069

GREENACRE option
PROC CORRESP statement, 2101

GRID option
MODEL statement (SPP), 7786

GRID statement
KRIGE2D procedure, 4138
SIM2D procedure, 7709

GRID= option
PLOT statement (BOXPLOT), 1108
PRIOR statement (MIXED), 5271

GRIDDATA= option
GRID statement (KRIGE2D), 4140
GRID statement (SIM2D), 7710

GRIDL= option
BIVAR statement, 4085
UNIVAR statement, 4088

GRIDSIZE= option
EFFECTPLOT statement, 420
PROC QUANTLIFE statement, 6803

GRIDT= option
PRIOR statement (MIXED), 5271

GRIDU= option
BIVAR statement, 4085
UNIVAR statement, 4088

GROUP option
CONTRAST statement (GLIMMIX), 3095
CONTRAST statement (HPMIXED), 3835
CONTRAST statement (MIXED), 5241
ESTIMATE statement (GLIMMIX), 3107
ESTIMATE statement (HPMIXED), 3839
ESTIMATE statement (MIXED), 5243

GROUP statement
CALIS procedure, 1272
IRT procedure, 4034

GROUP= option
BASELINE statement (ICPHREG), 3949
BASELINE statement (PHREG), 5904
CODE statement (GENMOD), 396

CODE statement (GLIMMIX), 396
CODE statement (GLM), 396
CODE statement (GLMSELECT), 396
CODE statement (LOGISTIC), 396
CODE statement (MIXED), 396
CODE statement (PLM), 396
CODE statement (REG), 396
MODEL statement, 1312
POPULATION statement (STDRATE), 7878
RANDOM statement (GLIMMIX), 3157
RANDOM statement (HPMIXED), 3850
RANDOM statement (MIXED), 5274
REPEATED statement (HPMIXED), 3855
REPEATED statement (MIXED), 5278
STRATA statement (LIFETEST), 4352

GROUPACCRUALRATES= option
TWOSAMPLESURVIVAL statement (POWER),

6351
GROUPLOSS= option

TWOSAMPLESURVIVAL statement (POWER),
6351

GROUPLOSSEXPHAZARDS= option
TWOSAMPLESURVIVAL statement (POWER),

6351
GROUPMEANS= option

ONEWAYANOVA statement (POWER), 6307
TWOSAMPLEMEANS statement (POWER),

6340
GROUPMEDLOSSTIMES= option

TWOSAMPLESURVIVAL statement (POWER),
6351

GROUPMEDSURVTIMES= option
TWOSAMPLESURVIVAL statement (POWER),

6351
GROUPNAMES= option

MODEL statement (REG), 7019
GROUPNS= option

ONEWAYANOVA statement (POWER), 6307
TWOSAMPLEFREQ statement (POWER), 6332
TWOSAMPLEMEANS statement (POWER),

6340
TWOSAMPLESURVIVAL statement (POWER),

6352
TWOSAMPLEWILCOXON statement

(POWER), 6360
GROUPPROPORTIONS= option

TWOSAMPLEFREQ statement (POWER), 6332
GROUPS= option

MODEL statement, 1312
GROUPSTDDEVS= option

TWOSAMPLEMEANS statement (POWER),
6340

GROUPSURVEXPHAZARDS= option
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TWOSAMPLESURVIVAL statement (POWER),
6352

GROUPSURVIVAL= option
TWOSAMPLESURVIVAL statement (POWER),

6352
GROUPWEIGHTS= option

ONEWAYANOVA statement (POWER), 6307
TWOSAMPLEFREQ statement (POWER), 6332
TWOSAMPLEMEANS statement (POWER),

6340
TWOSAMPLESURVIVAL statement (POWER),

6352
TWOSAMPLEWILCOXON statement

(POWER), 6360
GT2 option

MEANS statement (GLM), 3435
GTOL option

NLOPTIONS statement (CALIS), 493
NLOPTIONS statement (GLIMMIX), 493
NLOPTIONS statement (HPMIXED), 493
NLOPTIONS statement (PHREG), 493
NLOPTIONS statement (SURVEYPHREG), 493
NLOPTIONS statement (VARIOGRAM), 493
PROC FMM statement, 2475

GTOL2 option
NLOPTIONS statement (CALIS), 493
NLOPTIONS statement (GLIMMIX), 493
NLOPTIONS statement (HPMIXED), 493
NLOPTIONS statement (PHREG), 493
NLOPTIONS statement (SURVEYPHREG), 493
NLOPTIONS statement (VARIOGRAM), 493

GTOL= option
PROC CALIS statement, 1216

H keyword
OUTPUT statement (GLM), 3443

H option
MODEL statement (ADAPTIVEREG), 908

H0= option
PROC TTEST statement, 8797

H= effects
TEST statement (ANOVA), 973

H= option
MANOVA statement (ANOVA), 960
MANOVA statement (GLM), 3429
OUTPUT statement (LOGISTIC), 4552
OUTPUT statement (NLIN), 5600
PROC ROBUSTREG statement, 7179
REPEATED statement (GLM), 3451
VARMETHOD=BRR (PROC

SURVEYLOGISTIC statement), 8068
VARMETHOD=BRR (PROC SURVEYMEANS

statement), 8170

VARMETHOD=BRR (PROC SURVEYREG
statement), 8328

HADAMARD= option
VARMETHOD=BRR (PROC SURVEYFREQ

statement), 7972
VARMETHOD=BRR (PROC

SURVEYLOGISTIC statement), 8068
VARMETHOD=BRR (PROC SURVEYMEANS

statement), 8170
VARMETHOD=BRR (PROC SURVEYPHREG

statement), 8249
VARMETHOD=BRR (PROC SURVEYREG

statement), 8328
HALFWIDTH= option

ONESAMPLEFREQ statement (POWER), 6294
ONESAMPLEMEANS statement (POWER),

6302
PAIREDMEANS statement (POWER), 6320
TWOSAMPLEMEANS statement (POWER),

6341
HAXIS= option

PLOT statement (BOXPLOT), 1108
PLOT statement (REG), 7099
PROC TREE statement, 8770

HAZARDRATIO statement
ICPHREG procedure, 3954
PHREG procedure, 5927

HAZARDRATIO= option
TWOSAMPLESURVIVAL statement (POWER),

6352
HAZSCALE= option

MODEL statement (ICPHREG), 3958
HC= option

PROC FASTCLUS statement, 2405
HCC option

MODEL statement (REG), 7020
HCCMETHOD= option

MODEL statement (REG), 7020
HEADER= option

INSET statement, 4239
HEIGHT statement

TREE procedure, 8775
HEIGHT= option

INSET statement, 4239
ODS GRAPHICS statement, 617
PLOT statement (BOXPLOT), 1109
PROC TREE statement, 8770

HELMERT keyword
REPEATED statement (ANOVA), 971

HELMERT option
REPEATED statement (GLM), 3448, 3500
REPEATED statement (GLMPOWER), 3625

HERMITE option
SHOW statement (PLM), 6176
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HESCAL option
NLOPTIONS statement (CALIS), 493
NLOPTIONS statement (GLIMMIX), 493
NLOPTIONS statement (HPMIXED), 493
NLOPTIONS statement (PHREG), 493
NLOPTIONS statement (SURVEYPHREG), 493
NLOPTIONS statement (VARIOGRAM), 493

HESCAL= option
PROC NLMIXED statement, 5699

HESS option
MODEL statement (SURVEYPHREG), 8260
PROC NLMIXED statement, 5700

HESSIAN option
PROC FMM statement, 2476
PROC GLIMMIX statement, 3069
SHOW statement (PLM), 6176

HESSIAN= option
PROC ADAPTIVEREG statement, 897

HEYWOOD option
FACTOR statement (CALIS), 1259
PROC FACTOR statement, 2313

HIERARCHY option
PROC VARCLUS statement, 8862

HIERARCHY= option
MODEL statement (GLMSELECT), 3687
MODEL statement (LOGISTIC), 4538
MODEL statement (PHREG), 5935
MODEL statement (QUANTSELECT), 6934

HISTORY option
MODEL statement (TRANSREG), 8586

HISTORY= option
PROC BOXPLOT statement, 1090

HITPROB option
PROC BCHOICE statement, 1020

HKPOWER= option
PROC FACTOR statement, 2313

HL option
EXACT statement (NPAR1WAY), 5804
OUTPUT statement (NPAR1WAY), 5809
PROC NPAR1WAY statement, 5797

HLM option
REPEATED statement (MIXED), 5278

HLPS option
REPEATED statement (MIXED), 5278

HM option
PROC MODECLUS statement, 5418

HMINOR= option
PLOT statement (BOXPLOT), 1109

HOC option
PROC MULTTEST statement, 5496, 5521

HOFFSET= option
PLOT statement (BOXPLOT), 1109

HOLD= option
PARMS statement (GLIMMIX), 3151

PARMS statement (HPMIXED), 3847
PARMS statement (MIXED), 5266
PARMS statement (VARIOGRAM), 8955

HOLM option
PROC MULTTEST statement, 5496, 5503

HOM option
PROC MULTTEST statement, 5496

HOMMEL option
PROC MULTTEST statement, 5521

HORDISPLAY= option
PROC TREE statement, 8770

HORIZONTAL option
PLOT statement (BOXPLOT), 1109
PROC TREE statement, 8771

HOUGAARD option
PROC NLIN statement, 5587

HOVTEST option
MEANS statement (ANOVA), 966
MEANS statement (GLM), 3436, 3488

HP= option
PROC FASTCLUS statement, 2405

HPAGES= option
PROC TREE statement, 8771

HPLOTS= option
PLOT statement (REG), 7102

HPMIXED procedure
CONTRAST statement, 3833
ESTIMATE statement, 3837
ID statement, 3839
LSMEANS statement, 3839
MODEL statement, 3842
NLOPTIONS statement, 3843
OUTPUT statement, 3844
PARMS statement, 3846
PROC HPMIXED statement, 3826
RANDOM statement, 3849
REPEATED statement, 3854
TEST statement, 3856
WEIGHT statement, 3857

HPMIXED procedure, BY statement, 3831
HPMIXED procedure, CLASS statement, 3862
HPMIXED procedure, CONTRAST statement, 3833

CHISQ option, 3834
DF= option, 3834
E option, 3835
GROUP option, 3835
SINGULAR= option, 3835
SUBJECT= option, 3835

HPMIXED procedure, EFFECT statement
BASIS option (spline), 408
collection effect, 399
DATABOUNDARY option (spline), 408
DEGREE option (polynomial), 404
DEGREE option (spline), 408
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DESIGNROLE option (lag), 402
DETAILS option (lag), 402
DETAILS option (multimember), 403
DETAILS option (polynomial), 404
DETAILS option (spline), 408
KNOTMAX option (spline), 409
KNOTMETHOD option (spline), 409
KNOTMIN option (spline), 410
LABELSTYLE option (polynomial), 404
lag effect, 400
MDEGREE option (polynomial), 405
multimember effect, 402
NATURALCUBIC option (spline), 410
NLAG option (lag), 402
NOEFFECT option (multimember), 403
NOSEPARATE option (polynomial), 405
PERIOD option (lag), 401
polynomial effect, 404
SEPARATE option (spline), 410
spline effect, 407
SPLIT option (spline), 411
STANDARDIZE option (polynomial), 406
WITHIN option (lag), 402

HPMIXED procedure, ESTIMATE statement, 3837
ALPHA= option, 3838
CL option, 3838
DF= option, 3838
DIVISOR= option, 3838
E option, 3839
GROUP option, 3839
SINGULAR= option, 3839
SUBJECT= option, 3839

HPMIXED procedure, ID statement, 3839
HPMIXED procedure, LSMEANS statement, 3839

ALPHA= option, 3840
CL option, 3840
CORR option, 3841
COV option, 3841
DF= option, 3841
DIFF option, 3841
E option, 3842
PDIFF option, 3842
SINGULAR= option, 3842
SLICE= option, 3842

HPMIXED procedure, MODEL statement, 3842
ALPHA= option, 3842
CL option, 3842
DDF= option, 3843
DDFM= option, 3843
NOINT option, 3843
SOLUTION option, 3843
ZETA= option, 3843

HPMIXED procedure, NLOPTIONS statement, 3843
ABSCONV option, 490

ABSFCONV option, 490
ABSGCONV option, 490
ABSGTOL option, 490
ABSTOL option, 490
ABSXCONV option, 491
ABSXTOL option, 491
ASINGULAR= option, 491
FCONV option, 491
FCONV2 option, 492
FSIZE option, 493
FTOL option, 491
FTOL2 option, 492
GCONV option, 493
GCONV2 option, 493
GTOL option, 493
GTOL2 option, 493
HESCAL option, 493
HS option, 493
INHESSIAN option, 494
INSTEP option, 494
LCDEACT= option, 495
LCEPSILON= option, 495
LCSINGULAR= option, 495
LINESEARCH option, 495
LIS option, 495
LSP option, 496
LSPRECISION option, 496
MAXFU option, 496
MAXFUNC option, 496
MAXIT option, 497
MAXITER option, 497
MAXSTEP option, 497
MAXTIME option, 497
MINIT option, 497
MINITER option, 497
MSINGULAR= option, 497
REST option, 498
RESTART option, 498
SINGULAR= option, 498
SOCKET option, 498
TECH option, 498
TECHNIQUE option, 498
UPD option, 499
XSIZE option, 500
XTOL option, 500

HPMIXED procedure, OUTPUT statement, 3844
ALLSTATS option, 3845
ALPHA= option, 3845
LCL= option, 3844
NOMISS option, 3846
NOUNIQUE option, 3846
NOVAR option, 3846
OUT= option, 3844
PEARSON= option, 3844
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PREDICTED= option, 3844
RESIDUAL= option, 3844
STDERR= option, 3844
STUDENT= option, 3844
UCL= option, 3844
VARIANCE= option, 3844

HPMIXED procedure, PARMS statement, 3846
HOLD= option, 3847
LOWERB= option, 3847
NOITER option, 3847
PARMSDATA= option, 3848
PDATA= option, 3848
UPPERB= option, 3849

HPMIXED procedure, PROC HPMIXED statement,
3826

BLUP= option, 3827
DATA= option, 3828
IC= option, 3828
INFOCRIT= option, 3828
ITDETAILS option, 3829
LOGNOTE option, 3829
MAXCLPRINT= option, 3829
METHOD= option, 3829
MMEQ option, 3829
NAMELEN= option, 3829
NLPRINT option, 3829
NOCLPRINT option, 3829
NOFIT option, 3830
NOINFO option, 3830
NOITPRINT option, 3830
NOPRINT option, 3830
NOPROFILE option, 3830
RANKS option, 3831
SIMPLE option, 3831
SINGCHOL= option, 3831
SINGRES= option, 3831
SINGULAR= option, 3831
UPDATE option, 3831

HPMIXED procedure, RANDOM statement, 3849
ALPHA= option, 3849
CL option, 3850
GROUP= option, 3850
NOFULLZ option, 3850
SOLUTION option, 3850
SUBJECT= option, 3850
TYPE= option, 3851

HPMIXED procedure, REPEATED statement, 3854,
3879

GROUP= option, 3855
R option, 3855
RC option, 3855
RCI option, 3855
RCORR option, 3855
RI option, 3856

SUBJECT= option, 3856
TYPE= option, 3856

HPMIXED procedure, TEST statement, 3856
CHISQ option, 3857
E option, 3856
E3 option, 3857
HTYPE= option, 3856

HPMIXED procedure, WEIGHT statement, 3857
HPMIXED procedure, CLASS statement, 3832

REF= option, 3832
REF= variable option, 3832
TRUNCATE option, 3833

HPMIXED procedure, EFFECT statement, 3835
HPMIXED procedure, PROC HPMIXED statement

ORDER= option, 3830
HPROB= option

PROC PROBIT statement, 6693
HREF= option

PLOT statement (BOXPLOT), 1109
PLOT statement (REG), 7099

HREFLABELS= option
PLOT statement (BOXPLOT), 1110

HREFLABPOS= option
PLOT statement (BOXPLOT), 1110

HS option
NLOPTIONS statement (CALIS), 493
NLOPTIONS statement (GLIMMIX), 493
NLOPTIONS statement (HPMIXED), 493
NLOPTIONS statement (PHREG), 493
NLOPTIONS statement (SURVEYPHREG), 493
NLOPTIONS statement (VARIOGRAM), 493

HSYMBOL= option
MCMC statement (MI), 5050, 5055

HTML= option
PLOT statement (BOXPLOT), 1110

HTYPE= option
MANOVA statement (GLM), 3430
MEANS statement (GLM), 3436
MODEL statement (GLIMMIX), 3140
MODEL statement (MIXED), 5256
REPEATED statement (GLM), 3449
TEST statement (GLM), 3451
TEST statement (HPMIXED), 3856
TEST statement (ICPHREG), 510
TEST statement (LIFEREG), 510
TEST statement (ORTHOREG), 510
TEST statement (PLM), 510
TEST statement (PROBIT), 510
TEST statement (SURVEYPHREG), 510
TEST statement (SURVEYREG), 510

HYBRID option
PROC CLUSTER statement, 2017

HYPERPRIOR statement
MCMC procedure, 4776
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I option
MODEL statement (GLM), 3440
MODEL statement (REG), 7020

IADJUST= option
PROC ROBUSTREG statement, 7179

IAPPROXIMATIONS option
OUTPUT statement (TRANSREG), 8597

IC option
PROC MIXED statement, 5229

IC= option
PROC GLIMMIX statement, 3069
PROC HPMIXED statement, 3828

ICLIFETEST procedure, 3885, 3892
syntax, 3892

ICLIFETEST procedure, BY statement, 3900
ICLIFETEST procedure, FREQ statement, 3900
ICLIFETEST procedure, PROC ICLIFETEST

statement, 3893
ALPHA= option, 3894
ALPHAQT= option, 3894
BOOTSTRAP option, 3894
CONFTYPE= option, 3894
DATA= option, 3895
IMPUTE option, 3895
ITHISTORY, 3895
MAXITER= option, 3895
MAXTIME= option, 3895
METHOD= option, 3895
MISSING option, 3896
NOPRINT option, 3896
NOSUMMARY option, 3896
OUTSURV= option, 3896
PLOTS= option, 3896
SHOWTI option, 3899
SINGULAR= option, 3899
TOLLIKE= option, 3899

ICLIFETEST procedure, STRATA statement, 3900
DIFF= option, 3903

ICLIFETEST procedure, TEST statement, 3901
ADJUST= option, 3902
NOTEST option, 3904
TREND option, 3904
WEIGHT= option, 3904

ICLIFETEST procedure, TIME statement, 3904
ICPHREG procedure, 3940

BASELINE statement, 3946
BY statement, 3950
FREQ statement, 3953
HAZARDRATIO statement, 3954
MODEL statement, 3956
PROC ICPHREG statement, 3940
syntax, 3940

ICPHREG procedure, BASELINE statement, 3946
ALPHA= option, 3949

CLTYPE= option, 3949
COVARIATES= option, 3947
GROUP= option, 3949
keyword= option, 3947
OUT= option, 3947
ROWID= option, 3950
TIMELIST= option, 3947

ICPHREG procedure, BY statement, 3950
ICPHREG procedure, FREQ statement, 3953

NOTRUNCATE option, 3954
ICPHREG procedure, HAZARDRATIO statement,

3954
ALPHA= option, 3954
AT= option, 3954
DIFF= option, 3955
E option, 3955
UNITS= option, 3956

ICPHREG procedure, MODEL statement, 3956
ALPHA= option, 3957
BASEHAZ= option, 3957
CORRB option, 3957
COVB option, 3957
HAZSCALE= option, 3958
NOPOLISH option, 3958
OFFSET= option, 3958

ICPHREG procedure, PROC ICPHREG statement,
3940

ABSCONV= option, 3941
ABSFCONV= option, 3942
ABSGCONV= option, 3942
ALPHA= option, 3941
DATA= option, 3941
FCONV= option, 3942
GCONV= option, 3942
ITHISTORY option, 3941
MAXFUNC= option, 3943
MAXITER= option, 3943
MAXTIME= option, 3943
NAMELEN= option, 3941
NLOPTIONS option, 3941
NOPRINT option, 3944
NOTHREADS option, 3944
PLOTS= option, 3944
SINGULAR= option, 3946
TECHNIQUE= option, 3943
THREADS= option, 3946

ICPHREG procedure, TEST statement, 3959
CHISQ option, 509
DDF= option, 510
E option, 510
E1 option, 510
E2 option, 510
E3 option, 510
HTYPE= option, 510
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INTERCEPT option, 510
ODS table names, 511

ICPHREG procedure, CLASS statement, 3950
CPREFIX= option, 3951
DESCENDING option, 3951
LPREFIX= option, 3951
MISSING option, 3951
ORDER= option, 3951
PARAM= option, 3951
REF= option, 3952
TRUNCATE option, 3952

ID statement
BOXPLOT procedure, 1091
CORRESP procedure, 2106
DISCRIM procedure, 2171
DISTANCE procedure, 2270
FMM procedure, 2494
GLIMMIX procedure, 3110
GLM procedure, 3419
HPMIXED procedure, 3839
KRIGE2D procedure, 4141
LIFETEST procedure, 4348
LOESS procedure, 4439
LOGISTIC procedure, 4528
MDS procedure, 5008
MIXED procedure, 5244
MODECLUS procedure, 5421
MULTTEST procedure, 5507
NLIN procedure, 5598
NLMIXED procedure, 5711
PHREG procedure, 5929
PLS procedure, 6229
PRINCOMP procedure, 6597
PRINQUAL procedure, 6643
QUANTREG procedure, 6851
REG procedure, 7014
ROBUSTREG procedure, 7184
RSREG procedure, 7266
SIM2D procedure, 7711
SURVEYSELECT procedure, 8431
TPSPLINE procedure, 8497
TRANSREG procedure, 8565
TREE procedure, 8775
VARIOGRAM procedure, 8941

ID= option
MODEL statement (GENMOD), 2917
ODS PDF statement, 634

IDCOLOR= option
PLOT statement (BOXPLOT), 1110

IDCTEXT= option
PLOT statement (BOXPLOT), 1110

IDENTITY keyword
REPEATED statement (ANOVA), 971

IDENTITY option

REPEATED statement (GLM), 3448, 3554
REPEATED statement (GLMPOWER), 3625

IDENTITY transformation
MODEL statement (TRANSREG), 8572
TRANSFORM statement (PRINQUAL), 6647

IDFONT= option
PLOT statement (BOXPLOT), 1110

IDGLOBAL option
PROC KRIGE2D statement, 4132
PROC SIM2D statement, 7702
PROC VARIOGRAM statement, 8928

IDHEIGHT= option
PLOT statement (BOXPLOT), 1111

IDNUM option
PROC KRIGE2D statement, 4132
PROC SIM2D statement, 7702
PROC VARIOGRAM statement, 8928

IDSYMBOL= option
PLOT statement (BOXPLOT), 1111

IDSYMBOLHEIGHT= option
PLOT statement (BOXPLOT), 1111

IFACTOR= option
PRIOR statement (MIXED), 5271

IGNOREPERIOD option
PROC TTEST statement, 8805

ILINK option
EFFECTPLOT statement, 421
ESTIMATE statement (GLIMMIX), 3108
ESTIMATE statement (LIFEREG), 449
ESTIMATE statement (LOGISTIC), 449
ESTIMATE statement (PLM), 449
ESTIMATE statement (PROBIT), 449
ESTIMATE statement (SURVEYLOGISTIC),

449
LSMEANS statement (GENMOD), 467
LSMEANS statement (GLIMMIX), 3117
LSMEANS statement (LIFEREG), 467
LSMEANS statement (LOGISTIC), 467
LSMEANS statement (PLM), 467
LSMEANS statement (PROBIT), 467
LSMEANS statement (SURVEYLOGISTIC), 467
LSMESTIMATE statement (GENMOD), 481
LSMESTIMATE statement (GLIMMIX), 3129
LSMESTIMATE statement (LIFEREG), 481
LSMESTIMATE statement (LOGISTIC), 481
LSMESTIMATE statement (PLM), 481
LSMESTIMATE statement (PROBIT), 481
LSMESTIMATE statement

(SURVEYLOGISTIC), 481
SCORE statement (PLM), 6173
SLICE statement (GENMOD), 467
SLICE statement (GLIMMIX), 467
SLICE statement (LIFEREG), 467
SLICE statement (LOGISTIC), 467



Syntax Index F 9291

SLICE statement (PLM), 467
SLICE statement (PROBIT), 467
SLICE statement (SURVEYLOGISTIC), 467

IMAGE_DPI= option
ODS destination statement, 620

IMAGEFMT= option
ODS GRAPHICS statement, 618

IMAGEMAP= option
ODS GRAPHICS statement, 617

IMAGENAME= option
ODS GRAPHICS statement, 617

IMPUTE option
CODE statement (GENMOD), 396
CODE statement (GLIMMIX), 396
CODE statement (GLM), 396
CODE statement (GLMSELECT), 396
CODE statement (LOGISTIC), 396
CODE statement (MIXED), 396
CODE statement (PLM), 396
CODE statement (REG), 396
PROC FASTCLUS statement, 2406
PROC ICLIFETEST statement, 3895

IMPUTE= option
MCMC statement (MI), 5051

IN option
PLOT statement (REG), 7099

INAV= option
PROC MDS statement, 5002

INBASEFIT= option
FITINDEX statement, 1268
PROC CALIS statement, 1206

INBREED procedure
syntax, 3987

INBREED procedure, BY statement, 3989
INBREED procedure, CLASS statement, 3989
INBREED procedure, GENDER statement, 3989
INBREED procedure, MATINGS statement, 3990
INBREED procedure, PROC INBREED statement,

3987
AVERAGE option, 3988
COVAR option, 3988
DATA= option, 3988
IND option, 3988
INDL option, 3988
INIT= option, 3988
MATRIX option, 3988
MATRIXL option, 3988
NOPRINT option, 3988
OUTCOV= option, 3988
SELFDIAG option, 3988

INBREED procedure, VAR statement, 3990
INC= option

PROC TREE statement, 8771
INCLUDE= option

MODEL statement (GLMSELECT), 3691
MODEL statement (LOGISTIC), 4539
MODEL statement (PHREG), 5936
MODEL statement (QUANTSELECT), 6936
MODEL statement (REG), 7020
PROC STEPDISC statement, 7940

IND option
PROC INBREED statement, 3988

INDIVIDUAL option
EFFECTPLOT statement, 421
MODEL statement (TRANSREG), 8586

INDL option
PROC INBREED statement, 3988

INE option
PROC statement (CORRESP), 2101

INEST= option
MCMC statement (MI), 5051
PROC CALIS statement, 1216
PROC LIFEREG statement, 4223
PROC LOGISTIC statement, 4501
PROC PHREG statement, 5894
PROC PROBIT statement, 6693
PROC QUANTREG statement, 6845
PROC ROBUSTREG statement, 7175
PROC SURVEYLOGISTIC statement, 8066

INF= option
PROC BCHOICE statement, 1020
PROC MCMC statement, 4751

INFLUENCE option
MODEL statement (GENMOD), 2916
MODEL statement (LOGISTIC), 4539
MODEL statement (MIXED), 5257
MODEL statement (REG), 7020

INFO DETAILS option
RESTORE statement (KRIGE2D), 4152
RESTORE statement (SIM2D), 7712

INFO ONLY option
RESTORE statement (KRIGE2D), 4152
RESTORE statement (SIM2D), 7712

INFO option
PROC MIXED statement, 5229
RESTORE statement (KRIGE2D), 4152
RESTORE statement (SIM2D), 7712
STRATA statement (GENMOD), 2933
STRATA statement (LOGISTIC), 4561

INFO= option
DESIGN statement (SEQDESIGN), 7336

INFOADJ= option
PROC SEQTEST statement, 7550

INFOCRIT= option
PROC GLIMMIX statement, 3069
PROC HPMIXED statement, 3828

INHESS option
NLOPTIONS statement (CALIS), 494
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NLOPTIONS statement (GLIMMIX), 494
NLOPTIONS statement (HPMIXED), 494
NLOPTIONS statement (PHREG), 494
NLOPTIONS statement (SURVEYPHREG), 494
NLOPTIONS statement (VARIOGRAM), 494

INHESSIAN option
NLOPTIONS statement (GLIMMIX), 494
NLOPTIONS statement (HPMIXED), 494
NLOPTIONS statement (PHREG), 494
NLOPTIONS statement (SURVEYPHREG), 494
NLOPTIONS statement (TCLAIS), 494
NLOPTIONS statement (VARIOGRAM), 494
PROC NLMIXED statement, 5700

INIT= option
MODEL statement (BCHOICE), 1030
PROC INBREED statement, 3988
PROC MCMC statement, 4751

INITEST= option
PROC ROBUSTREG statement, 7182

INITGLM option
PROC GLIMMIX statement, 3071

INITH= option
PROC ROBUSTREG statement, 7182

INITIAL option
EM statement (MI), 5043

INITIAL= option
BAYES statement, 2890, 4230
BAYES statement (FMM), 2488
BAYES statement(PHREG), 5910
MCMC statement (MI), 5051
MODEL statement (GENMOD), 2917
MODEL statement (LIFEREG), 4245
MODEL statement(MCMC), 4771
PROC ACECLUS statement, 871
PROC DISTANCE statement, 2261
PROC MDS statement, 5003
PROC STDIZE statement, 7839
PROC VARCLUS statement, 8862
RANDOM statement, 5946
RANDOM statement(MCMC), 4782
REPEATED statement , 2827
REPEATED statement (GENMOD), 2929

INITIALMLE option
BAYES statement, 2890, 4230

INITIALVARIANCE= option
RANDOM statement, 5946

INITITER option
PROC GLIMMIX statement, 3071

INITITER= option
PROC PRINQUAL statement, 6637

INITTAU= option
PROC QUANTLIFE statement, 6803

INMODEL= option
PROC CALIS statement, 1216

PROC LOGISTIC statement, 4501
INPVALUES= option

PROC MULTTEST statement, 5496
INRAM= option

PROC CALIS statement, 1216
INSET statement

BOXPLOT procedure, 1091
LIFEREG procedure, 4238
PROBIT procedure, 6711

INSETGROUP statement
BOXPLOT procedure, 1094

INSTAT= option
PROC FASTCLUS statement, 2406

INSTEP option
NLOPTIONS statement (CALIS), 494
NLOPTIONS statement (GLIMMIX), 494
NLOPTIONS statement (HPMIXED), 494
NLOPTIONS statement (PHREG), 494
NLOPTIONS statement (SURVEYPHREG), 494
NLOPTIONS statement (VARIOGRAM), 494

INSTEP= option, 5735, 5736
PROC CALIS statement, 1217
PROC NLMIXED statement, 5700

INT option
PROC CANCORR statement, 1834

INTERCEPT effect
CONTRAST statement (GLM), 3416, 3418
MANOVA statement (ANOVA), 960
MANOVA statement, H= option (GLM), 3429

INTERCEPT option
MODEL statement (ANOVA), 968
MODEL statement (GLIMMIX), 3140
MODEL statement (GLM), 3440
MODEL statement (MIXED), 5262
MODEL statement (PLS), 6230
TEST statement (ICPHREG), 510
TEST statement (LIFEREG), 510
TEST statement (ORTHOREG), 510
TEST statement (PLM), 510
TEST statement (PROBIT), 510
TEST statement (SURVEYPHREG), 510
TEST statement (SURVEYREG), 510

INTERCEPT= option
LOGISTIC statement (POWER), 6278
MODEL statement (GENMOD), 2918
MODEL statement (LIFEREG), 4246
REPEATED statement , 2827
REPEATED statement (GENMOD), 2929

INTERP= option
MODEL statement (LOESS), 4441

INTERPOL= option
PLOT statement (GLMPOWER), 3613
PLOT statement (POWER), 6327

INTERVAL= option



Syntax Index F 9293

PLOT statement (BOXPLOT), 1111
INTERVALS= option

PROC LIFETEST statement, 4340
INTSTART= option

BOXPLOT procedure, 1112
INVALIDLOGL= option

PROC FMM statement, 2476
INVAR statement, MDS procedure, 5008
INVAR= option

PROC CALIS statement, 1216
INVERSE option

MODEL statement (GLM), 3440
MODEL statement (SURVEYREG), 8340

INVERSECL option
PROC PROBIT statement, 6693

INVHESS option
MODEL statement (SURVEYPHREG), 8260

INVLINK statement, GENMOD procedure, 2910,
2926

INWGT= option
PROC CALIS statement, 1217

INWGTINV option
PROC CALIS statement, 1218

IPLOTS option
MODEL statement (LOGISTIC), 4540

IPPPLOT statement
options summarized by function, 6714
PROBIT procedure, 6713

IREPLACE option
OUTPUT statement (TRANSREG), 8597

IRLS option
PROC FASTCLUS statement, 2406

IRT procedure, 4013
syntax, 4013

IRT procedure, BY statement, 4022
IRT procedure, COV statement, 4022
IRT procedure, EQUALITY statement, 4026
IRT procedure, FACTOR statement, 4030
IRT procedure, FREQ statement, 4034
IRT procedure, GROUP statement, 4034
IRT procedure, MODEL statement, 4034
IRT procedure, PROC IRT statement, 4014

ABSFCONV= option, 4015
ABSGCONV= option, 4015
ABSPCONV= option, 4015
DATA= option, 4015
DESCENDING option, 4015
FCONV= option, 4016
GCONV= option, 4016
ITEMFIT option, 4016
LINK= option, 4016
MAXFUNC= option, 4016
MAXITER= option, 4017
MAXMITER= option, 4017

NFACTOR= option, 4017
NOAD option, 4017
NOITPRINT option, 4017
NOPRINT option, 4017
OUT= option, 4018
PINITIAL option, 4018
PLOTS(UNPACK) option, 4019
PLOTS= option, 4018
POLYCHORIC option, 4018
QPOINTS= option, 4019
RCONVERGE= option, 4020
RESFUNC= option, 4020
RITER= option, 4020
RORDER= option, 4021
ROTATE= option, 4020
SCOREMETHOD= option, 4021
TECHNIQUE= option, 4017

IRT procedure, VAR statement, 4035
IRT procedure, VARIANCE statement, 4035
IRT procedure, WEIGHT statement, 4037
ITDETAILS option

PROC FMM statement, 2476
PROC GLIMMIX statement, 3071
PROC HPMIXED statement, 3829
PROC MIXED statement, 5229
PROC NLMIXED statement, 5701

ITEMFIT option
PROC IRT statement, 4016

ITER= modifier
INFLUENCE option, MODEL statement

(MIXED), 5258
ITER= option

PROC MDS statement, 5003
ITERATIONS= option

MODEL statement (LOESS), 4441
ITHIST option

MODEL statement (SPP), 7786
ITHISTORY

PROC ICLIFETEST statement, 3895
ITHISTORY option

PROC ICPHREG statement, 3941
ITPRINT option

EM statement (MI), 5043
MCMC statement (MI), 5052
MODEL statement, 6853, 7186
MODEL statement (CATMOD), 1909
MODEL statement (GAM), 2772
MODEL statement (GENMOD), 2918
MODEL statement (LIFEREG), 4246
MODEL statement (LOGISTIC), 4540
MODEL statement (PHREG), 5936
MODEL statement (SURVEYLOGISTIC), 8087
PROC ROBUSTREG statement, 7175
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J function option
PROCESS statement (SPP), 7790

J= option
OUTPUT statement (NLIN), 5600

JACKKNIFE option
PROFILE statement (NLIN), 5606

JEFFREYS option
PRIOR statement (MIXED), 5270

JKCOEFS= option
REPWEIGHTS statement (SURVEYFREQ),

7977
REPWEIGHTS statement (SURVEYLOGISTIC),

8094
REPWEIGHTS statement (SURVEYMEANS),

8179
REPWEIGHTS statement (SURVEYPHREG),

8265
REPWEIGHTS statement (SURVEYREG), 8343

JOIN= option
PROC MODECLUS statement, 5418

JOINCHAR= option
PROC TREE statement, 8771

JOINT function
RESPONSE statement (CATMOD), 1919

JOINT option
ESTIMATE statement (LIFEREG), 450
ESTIMATE statement (LOGISTIC), 450
ESTIMATE statement (ORTHOREG), 450
ESTIMATE statement (PHREG), 450
ESTIMATE statement (PLM), 450
ESTIMATE statement (PROBIT), 450
ESTIMATE statement (QUANTREG), 450
ESTIMATE statement (SURVEYLOGISTIC),

450
ESTIMATE statement (SURVEYPHREG), 450
ESTIMATE statement (SURVEYREG), 450
EXACT statement (GENMOD), 2905
EXACT statement (LOGISTIC), 4523
LSMESTIMATE statement (GENMOD), 482
LSMESTIMATE statement (GLIMMIX), 3128
LSMESTIMATE statement (LIFEREG), 482
LSMESTIMATE statement (LOGISTIC), 482
LSMESTIMATE statement (MIXED), 482
LSMESTIMATE statement (ORTHOREG), 482
LSMESTIMATE statement (PHREG), 482
LSMESTIMATE statement (PLM), 482
LSMESTIMATE statement (PROBIT), 482
LSMESTIMATE statement

(SURVEYLOGISTIC), 482
LSMESTIMATE statement (SURVEYPHREG),

482
LSMESTIMATE statement (SURVEYREG), 482

JOINTMODEL option
PROC MCMC statement, 4752

JOINTONLY option
EXACT statement (GENMOD), 2906
EXACT statement (LOGISTIC), 4523

JP option
MODEL statement (REG), 7020
PLOT statement (REG), 7099

JT option
EXACT statement (FREQ), 2581
OUTPUT statement (FREQ), 2592
TABLES statement (FREQ), 2613

JTPROBS option
PROC SURVEYSELECT statement, 8416

K function option
PROCESS statement (SPP), 7791

K option
MODEL statement (ADAPTIVEREG), 908

K0= option
PROC ROBUSTREG statement, 7180, 7182

K= option
MODEL statement (FMM), 2501
PROC CLUSTER statement, 2017
PROC DISCRIM statement, 2165
PROC MODECLUS statement, 5418

KAPPA option
EXACT statement (FREQ), 2581
OUTPUT statement (FREQ), 2592
TEST statement (FREQ), 2639

KAPPA= option
PROC QUANTLIFE statement, 6803
PROC QUANTREG statement, 6843

KDE, 4079
KDE procedure, 4079

syntax, 4083
KDE procedure, BIVAR statement, 4083

BIVSTATS option, 4084
BWM= option, 4085
GRIDL= option, 4085
GRIDU= option, 4085
LEVELS= option, 4085
NGRID= option, 4085
NOPRINT option, 4085
OUT= option, 4085
PERCENTILES option, 4086
PLOTS= option, 4086, 4100
UNISTATS option, 4087

KDE procedure, BY statement, 4091
KDE procedure, FREQ statement, 4091
KDE procedure, PROC KDE statement, 4083

DATA= option, 4083
KDE procedure, UNIVAR statement, 4087

BWM= option, 4088
GRIDL= option, 4088
GRIDU= option, 4088
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METHOD= option, 4088
NGRID= option, 4089
NOPRINT option, 4089
OUT= option, 4089
PERCENTILES= option, 4089
PLOTS= option, 4089, 4100
SJPIMAX= option, 4090
SJPIMIN= option, 4090
SJPINUM= option, 4090
SJPITOL= option, 4090
UNISTATS option, 4090

KDE procedure, WEIGHT statement, 4091
KEEP = option

MODEL statement (ADAPTIVEREG), 909
KEEP= modifier

INFLUENCE option, MODEL statement
(MIXED), 5259

KEEPLEN option
PROC STDIZE statement, 7839

KENTB option
EXACT statement (FREQ), 2582
OUTPUT statement (FREQ), 2593
TEST statement (FREQ), 2639

KERNEL option
PROCESS statement (SPP), 7791

KERNEL= option
PROC DISCRIM statement, 2166

KEY= option
PLOT statement (GLMPOWER), 3613
PLOT statement (POWER), 6327

keyword option
OUTPUT statement (ADAPTIVEREG), 911
OUTPUT statement (GLMSELECT), 3700
OUTPUT statement (LOESS), 4445
OUTPUT statement (QUANTSELECT), 6940
SCORE statement (ADAPTIVEREG), 913
SCORE statement (GLMSELECT), 3703

keyword= option
BASELINE statement (ICPHREG), 3947
BASELINE statement (PHREG), 5900
OUTPUT statement (FMM), 2503
OUTPUT statement (GENMOD), 2923
OUTPUT statement (GLIMMIX), 3146
OUTPUT statement (GLM), 3442
OUTPUT statement (LIFEREG), 4247
OUTPUT statement (PHREG), 5941
OUTPUT statement (QUANTLIFE), 6809
OUTPUT statement (QUANTREG), 6855
OUTPUT statement (REG), 7027
OUTPUT statement (SURVEYPHREG), 8262
OUTPUT statement (SURVEYREG), 8342

KLOTZ option
EXACT statement (NPAR1WAY), 5804
OUTPUT statement (NPAR1WAY), 5809

PROC NPAR1WAY statement, 5797
KMAX= option

MODEL statement (FMM), 2501
KMIN= option

MODEL statement (FMM), 2501
KNOTINFO option

RANDOM statement (GLIMMIX), 3157
KNOTMAX option

EFFECT statement, spline (GLIMMIX), 409
EFFECT statement, spline (GLMSELECT), 409
EFFECT statement, spline (HPMIXED), 409
EFFECT statement, spline (LOGISTIC), 409
EFFECT statement, spline (ORTHOREG), 409
EFFECT statement, spline (PHREG), 409
EFFECT statement, spline (PLS), 409
EFFECT statement, spline (QUANTLIFE), 409
EFFECT statement, spline (QUANTREG), 409
EFFECT statement, spline (QUANTSELECT),

409
EFFECT statement, spline (ROBUSTREG), 409
EFFECT statement, spline (SURVEYLOGISTIC),

409
EFFECT statement, spline (SURVEYREG), 409

KNOTMAX= option
RANDOM statement (GLIMMIX), 3157

KNOTMETHOD option
EFFECT statement, spline (GLIMMIX), 409
EFFECT statement, spline (GLMSELECT), 409
EFFECT statement, spline (HPMIXED), 409
EFFECT statement, spline (LOGISTIC), 409
EFFECT statement, spline (ORTHOREG), 409
EFFECT statement, spline (PHREG), 409
EFFECT statement, spline (PLS), 409
EFFECT statement, spline (QUANTLIFE), 409
EFFECT statement, spline (QUANTREG), 409
EFFECT statement, spline (QUANTSELECT),

409
EFFECT statement, spline (ROBUSTREG), 409
EFFECT statement, spline (SURVEYLOGISTIC),

409
EFFECT statement, spline (SURVEYREG), 409

KNOTMETHOD= option
RANDOM statement (GLIMMIX), 3158

KNOTMIN option
EFFECT statement, spline (GLIMMIX), 410
EFFECT statement, spline (GLMSELECT), 410
EFFECT statement, spline (HPMIXED), 410
EFFECT statement, spline (LOGISTIC), 410
EFFECT statement, spline (ORTHOREG), 410
EFFECT statement, spline (PHREG), 410
EFFECT statement, spline (PLS), 410
EFFECT statement, spline (QUANTLIFE), 410
EFFECT statement, spline (QUANTREG), 410



9296 F Syntax Index

EFFECT statement, spline (QUANTSELECT),
410

EFFECT statement, spline (ROBUSTREG), 410
EFFECT statement, spline (SURVEYLOGISTIC),

410
EFFECT statement, spline (SURVEYREG), 410

KNOTMIN= option
RANDOM statement (GLIMMIX), 3160

KNOTS= option
MODEL statement (TRANSREG), 8576
TRANSFORM statement (PRINQUAL), 6649

KNOTTYPE= suboption
RANDOM statement (GLIMMIX), 3158

KPROP= option
PROC DISCRIM statement, 2165

KRATIO= option
MEANS statement (ANOVA), 966
MEANS statement (GLM), 3436

KRESTART option
MODEL statement (FMM), 2502

KRIGE2D procedure, 4124
syntax, 4130

KRIGE2D procedure, BY statement, 4137
KRIGE2D procedure, COORDINATES statement,

4138
XCCORD= option, 4138
YCCORD= option, 4138

KRIGE2D procedure, GRID statement, 4138
GRIDDATA= option, 4140
LABEL= option, 4140
NPTS= option, 4139
X= option, 4139
XCOORD= option, 4140
Y= option, 4139
YCOORD= option, 4140

KRIGE2D procedure, ID statement, 4141
KRIGE2D procedure, MODEL statement, 4143

ANGLE= option, 4144
FORM= option, 4144
MDATA= option, 4145
NUGGET= option, 4146
POWNOBOUND option, 4147
RANGE= option, 4147
RATIO= option, 4147
SCALE= option, 4147
SINGULAR= option, 4148
SMOOTH= option, 4148
STORESELECT ANGLEID= option, 4149
STORESELECT MODEL= option, 4150
STORESELECT option, 4148
STORESELECT TYPE= option, 4148

KRIGE2D procedure, PREDICT statement, 4142
MAXPOINTS= option, 4142
MINPOINTS= option, 4142

NODECREMENT option, 4142
NOINCREMENT option, 4142
NUMPOINTS= option, 4143
RADIUS= option, 4143
VAR= option, 4143

KRIGE2D procedure, PROC KRIGE2D statement,
4131

DATA= option, 4132
IDGLOBAL option, 4132
IDNUM option, 4132
NOPRINT option, 4132
OUTEST= option, 4132
OUTNBHD= option, 4132
PLOTS option, 4132
PLOTS(ONLY) option, 4133
PLOTS=ALL option, 4133
PLOTS=EQUATE option, 4133
PLOTS=NONE option, 4133
PLOTS=OBSERVATIONS option, 4133
PLOTS=PREDICTION option, 4134
PLOTS=SEMIVARIOGRAM option, 4137
SINGULARMSG= option, 4137

KRIGE2D procedure, RESTORE statement, 4151
INFO DETAILS option, 4152
INFO ONLY option, 4152
INFO options, 4152

KS option
EXACT statement (NPAR1WAY), 5804

KURTOSIS option
PROC CALIS statement, 1218

L function option
PROCESS statement (SPP), 7791

L95 option
MODEL statement (RSREG), 7267

L95= option
OUTPUT statement (NLIN), 5600

L95M option
MODEL statement (RSREG), 7268

L95M= option
OUTPUT statement (NLIN), 5600

L= option
PROC FASTCLUS statement, 2406

LABEL= option
GRID statement (KRIGE2D), 4140
GRID statement (SIM2D), 7711
GROUP statement, 1273
MODEL statement, 1312
MODEL statement (FMM), 2502
PATHDIAGRAM statement, 1339, 2329
STORE statement (VARIOGRAM), 8958

LABELANGLE= option
BOXPLOT procedure, 1112

LABELMAX= option
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ODS GRAPHICS statement, 618
LABELSTYLE option

EFFECT statement, polynomial (GLIMMIX),
404

EFFECT statement, polynomial (GLMSELECT),
404

EFFECT statement, polynomial (HPMIXED),
404

EFFECT statement, polynomial (LOGISTIC),
404

EFFECT statement, polynomial (ORTHOREG),
404

EFFECT statement, polynomial (PHREG), 404
EFFECT statement, polynomial (PLS), 404
EFFECT statement, polynomial (QUANTLIFE),

404
EFFECT statement, polynomial (QUANTREG),

404
EFFECT statement, polynomial

(QUANTSELECT), 404
EFFECT statement, polynomial (ROBUSTREG),

404
EFFECT statement, polynomial

(SURVEYLOGISTIC), 404
EFFECT statement, polynomial (SURVEYREG),

404
LACKFIT option

MODEL statement (LOGISTIC), 4540
MODEL statement (REG), 7020
MODEL statement (RSREG), 7267
PROC PROBIT statement, 6694

LAGDISTANCE= option
COMPUTE statement (VARIOGRAM), 8938

LAGTOLERANCE= option
COMPUTE statement (VARIOGRAM), 8939

LAMBDA0= option
MODEL statement (TPSPLINE), 8499

LAMBDA= option
MODEL statement (TPSPLINE), 8499
MODEL statement (TRANSREG), 8577, 8581
TRANSFORM statement (MI), 5062

LAMBDAPRIOR= option
MODEL statement (BCHOICE), 1031

LAMCR option
OUTPUT statement (FREQ), 2593

LAMDAS option
OUTPUT statement (FREQ), 2593

LAMRC option
OUTPUT statement (FREQ), 2593

LANNOTATE= option
PROC LIFETEST statement, 4383

LATTICE procedure, 4200
syntax, 4200

LATTICE procedure, BY statement, 4200

LATTICE procedure, PROC LATTICE statement,
4200

COV option, 4200
COVARIANCE option, 4200
DATA= option, 4200

LATTICE procedure, VAR statement, 4201
LBOXES= option

PLOT statement (BOXPLOT), 1112
LCDEACT= option

NLOPTIONS statement (CALIS), 495
NLOPTIONS statement (GLIMMIX), 495
NLOPTIONS statement (HPMIXED), 495
NLOPTIONS statement (PHREG), 495
NLOPTIONS statement (SURVEYPHREG), 495
NLOPTIONS statement (VARIOGRAM), 495
PROC NLMIXED statement, 5701

LCEPSILON= option
NLOPTIONS statement (CALIS), 495
NLOPTIONS statement (GLIMMIX), 495
NLOPTIONS statement (HPMIXED), 495
NLOPTIONS statement (PHREG), 495
NLOPTIONS statement (SURVEYPHREG), 495
NLOPTIONS statement (VARIOGRAM), 495
PROC NLMIXED statement, 5701

LCL keyword
OUTPUT statement (GLM), 3443

LCL= option
OUTPUT statement (HPMIXED), 3844
OUTPUT statement (NLIN), 5601

LCLM keyword
OUTPUT statement (GLM), 3443
OUTPUT statement (LOESS), 4445
OUTPUT statement (SURVEYREG), 8342

LCLM= option
OUTPUT statement (NLIN), 5601

LCOMPONENTS option
MODEL statement (MIXED), 5262

LCONF= option
MCMC statement (MI), 5050

LCONNECT= option
MCMC statement (MI), 5055

LCSINGULAR= option
NLOPTIONS statement (CALIS), 495
NLOPTIONS statement (GLIMMIX), 495
NLOPTIONS statement (HPMIXED), 495
NLOPTIONS statement (PHREG), 495
NLOPTIONS statement (SURVEYPHREG), 495
NLOPTIONS statement (VARIOGRAM), 495
PROC NLMIXED statement, 5701

LDATA= option
RANDOM statement (GLIMMIX), 3160
RANDOM statement (MIXED), 5275
REPEATED statement (MIXED), 5278

LEAFCHAR= option
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PROC TREE statement, 8771
LEAST= option

PROC FASTCLUS statement, 2406
LEGEND= option

PLOT statement (REG), 7099
LENDGRID= option

PLOT statement (BOXPLOT), 1112
LEVEL= option

PROC MDS statement, 5003
PROC TREE statement, 8771

LEVEL= option (BINOMIAL)
TABLES statement (FREQ), 2605

LEVELS= option
BIVAR statement, 4085

LEVERAGE keyword
OUTPUT statement (QUANTREG), 6855
OUTPUT statement (ROBUSTREG), 7188

LEVERAGE option
MODEL statement, 6853, 7186

LEVERAGE= option
OUTPUT statement (TRANSREG), 8597

LGOR option
OUTPUT statement (FREQ), 2593

LGRID= option
PLOT statement (BOXPLOT), 1112

LGRRC1 option
OUTPUT statement (FREQ), 2593

LGRRC2 option
OUTPUT statement (FREQ), 2593

LHREF= option
PLOT statement (BOXPLOT), 1112
PLOT statement (REG), 7099

LIFEREG procedure
syntax, 4222

LIFEREG PROCEDURE, BAYES statement, 4225
LIFEREG procedure, BAYES statement

COEFFPRIOR= option, 4226
DIAGNOSTICS= option, 4227, 4228
EXPSCALEPRIOR= option, 4229
GAMMASHAPEPRIOR= option, 4230
INITIAL= option, 4230
INITIALMLE option, 4230
MCSE option, 4228
METROPOLIS= option, 4230
NBI= option, 4230
NMC= option, 4230
OUTPOST= option, 4230
PLOTS option, 4231
RAFTERY option, 4228
SCALEPRIOR=GAMMA option, 4232
SEED= option, 4232
STATISTICS= option, 4233
THINNING= option, 4233

WEIBULLSCALEPRIOR=GAMMA option,
4234

WEIBULLSHAPEPRIOR=GAMMA option,
4234

WSCPRIOR=GAMMA option, 4234
WSHPRIOR=GAMMA option, 4234

LIFEREG procedure, BY statement, 4235
LIFEREG procedure, ESTIMATE statement

ADJUST= option, 447
ALPHA= option, 447
CL option, 448
CORR option, 448
COV option, 448
DIVISOR= option, 449
E option, 449
EXP option, 449
ILINK option, 449
JOINT option, 450
LOWER option, 451
NOFILL option, 451
ODS graph names, 459
ODS table names, 458
PLOTS= option, 451
SEED= option, 452
SINGULAR= option, 453
STEPDOWN option, 453
TESTVALUE option, 454
UPPER option, 454

LIFEREG procedure, INSET statement, 4238
CFILL= option, 4239
CFILLH= option, 4239
CFRAME= option, 4239
CHEADER= option, 4239
CTEXT= option, 4239
FONT= option, 4239
HEADER= option, 4239
HEIGHT= option, 4239
keywords, 4238
NOFRAME option, 4239
POS= option, 4239
REFPOINT= option, 4240

LIFEREG procedure, LSMEANS statement
ADJUST= option, 463
ALPHA= option, 465
AT= option, 465
BYLEVEL option, 465
CL option, 466
CORR option, 466
COV option, 466
DIFF option, 466
E option, 467
EXP option, 467
ILINK option, 467
LINES option, 468
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MEANS or NOMEANS option, 468
OBSMARGINS= option, 468
ODDSRATIO option, 468
ODS graph names, 475
ODS table names, 474
PDIFF option, 469
PLOTS= option, 469
SEED= option, 473
SINGULAR= option, 473
STEPDOWN option, 473

LIFEREG procedure, LSMESIIMATE statement
ADJUST= option, 479
ALPHA= option, 479
AT= option, 479
BYLEVEL option, 479
CATEGORY= option, 480
CL option, 480
COV option, 480
DIVISOR= option, 481
E option, 481
ELSM option, 481
ILINK option, 481
JOINT option, 482
LOWER option, 483
OBSMARGINS= option, 483
ODS graph names, 487
ODS table names, 487
PLOTS= option, 483
SEED= option, 485
SINGULAR= option, 485
STEPDOWN option, 485
TESTVALUE= option, 486
UPPER option, 486

LIFEREG procedure, MODEL statement, 4242
ALPHA= option, 4244
CONVERGE= option, 4244
CONVG= option, 4244
CORRB option, 4244
COVB option, 4244
DISTRIBUTION= option, 4244
INITIAL= option, 4245
INTERCEPT= option, 4246
ITPRINT option, 4246
MAXITER= option, 4246
NOINT option, 4246
NOLOG option, 4246
NOSCALE option, 4246
NOSHAPE1 option, 4246
OFFSET= option, 4246
SCALE= option, 4246
SHAPE1= option, 4246
SINGULAR= option, 4247

LIFEREG procedure, OUTPUT statement, 4247
CDF keyword, 4247

CENSORED keyword, 4247
CONTROL keyword, 4248
CRESIDUAL keyword, 4248
keyword= option, 4247
OUT= option, 4247
PREDICTED keyword, 4248
QUANTILES keyword, 4248
SRESIDUAL keyword, 4248
STD_ERR keyword, 4249
XBETA keyword, 4249

LIFEREG procedure, PPLOT statement
ANNOTATE= option, 4252
CAXIS= option, 4252
CCENSOR option, 4252
CENBIN, 4252
CENCOLOR option, 4252
CENSYMBOL option, 4252
CFIT= option, 4252
CFRAME= option, 4252
CGRID= option, 4252
CHREF= option, 4252
CTEXT= option, 4252
CVREF= option, 4253
DESCRIPTION= option, 4253
FONT= option, 4253
HCL, 4253, 4257
HEIGHT= option, 4253
HLOWER= option, 4253, 4257
HOFFSET= option, 4253
HREF= option, 4253, 4257
HREFLABELS= option, 4253, 4258
HREFLABPOS= option, 4254
HUPPER= option, 4253, 4257
INBORDER option, 4254
INTERTILE option, 4254
ITPRINTEM option, 4254, 4258
JITTER option, 4254
LFIT option, 4254
LGRID option, 4254
LHREF= option, 4254
LVREF= option, 4254
MAXITEM= option, 4254, 4258
NAME= option, 4254
NOCENPLOT option, 4255, 4258
NOCONF option, 4255, 4258
NODATA option, 4255, 4258
NOFIT option, 4255, 4258
NOFRAME option, 4255, 4258
NOGRID option, 4255, 4258
NOHLABEL option, 4255
NOHTICK option, 4255
NOPOLISH option, 4255, 4258
NOVLABEL option, 4255
NOVTICK option, 4255
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NPINTERVALS option, 4255, 4258
PCTLIST option, 4255, 4258
PLOWER= option, 4255, 4258
PPOS option, 4256, 4259
PPOUT option, 4256, 4259
PRINTPROBS option, 4255, 4259
PROBLIST option, 4256, 4259
PUPPER= option, 4256, 4259
ROTATE option, 4256, 4259
SQUARE option, 4256, 4259
TOLLIKE option, 4256, 4259
TOLPROB option, 4256, 4259
VAXISLABEL= option, 4256
VREF= option, 4256, 4259
VREFLABELS= option, 4257, 4259
VREFLABPOS= option, 4257
WAXIS= option, 4257
WFIT= option, 4257
WGRID= option, 4257
WREFL= option, 4257

LIFEREG procedure, PROBPLOT statement, 4249
LIFEREG procedure, PROC LIFEREG statement,

4223
COVOUT option, 4223
DATA= option, 4223
GOUT= option, 4223
INEST= option, 4223
NAMELEN= option, 4224
NOPRINT option, 4224
OUTEST= option, 4224
PLOTS= option, 4224
XDATA= option, 4225

LIFEREG procedure, SLICE statement
ADJUST= option, 463
ALPHA= option, 465
AT= option, 465
BYLEVEL option, 465
CL option, 466
CORR option, 466
COV option, 466
DIFF option, 466
E option, 467
EXP option, 467
ILINK option, 467
LINES option, 468
MEANS or NOMEANS option, 468
NOF option, 507
OBSMARGINS= option, 468
ODS table names, 507
PDIFF option, 469
PLOTS= option, 469
SEED= option, 473
SIMPLE= option, 507
SINGULAR= option, 473

SLICEBY= option, 507
STEPDOWN option, 473

LIFEREG procedure, TEST statement, 4260
CHISQ option, 509
DDF= option, 510
E option, 510
E1 option, 510
E2 option, 510
E3 option, 510
HTYPE= option, 510
INTERCEPT option, 510
ODS table names, 511

LIFEREG procedure, WEIGHT statement, 4260
LIFEREG procedure, CLASS statement, 4235

TRUNCATE option, 4236
LIFEREG procedure, EFFECTPLOT statement, 4236
LIFEREG procedure, ESTIMATE statement, 4237
LIFEREG procedure, LSMEANS statement, 4240
LIFEREG procedure, LSMESTIMATE statement,

4241
LIFEREG procedure, PROC LIFEREG statement

ORDER= option, 4224
LIFEREG procedure, SLICE statement, 4260
LIFEREG procedure, STORE statement, 4260
LIFETEST procedure, 4327

BY statement, 4347
FREQ statement, 4348
ID statement, 4348
PROC LIFETEST statement, 4337
STRATA statement, 4348
syntax, 4337
TEST statement, 4353
TIME statement, 4354

LIFETEST procedure, BY statement, 4347
LIFETEST procedure, FREQ statement, 4348

NOTRUNCATE option, 4348
LIFETEST procedure, ID statement, 4348
LIFETEST procedure, PROC LIFETEST statement,

4337
ALPHA= option, 4339
ALPHAQT= option, 4339
ANNOTATE= option, 4382
ATRISK option, 4339
BANDMAXTIME= option, 4339
BANDMINTIME= option, 4339
CENSOREDSYMBOL= option, 4382
CONFBAND= option, 4339
CONFTYPE= option, 4339
DATA= option, 4340
DESCRIPTION= option, 4382
EVENTSYMBOL= option, 4382
FORMCHAR= option, 4383
GOUT= option, 4383
INTERVALS= option, 4340
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LANNOTATE= option, 4383
LINEPRINTER option, 4383
MAXTIME= option, 4340, 4383
METHOD= option, 4340
MISSING option, 4341
NELSON option, 4341
NINTERVAL= option, 4341
NOCENSPLOT option, 4383
NOLEFT option, 4341
NOPRINT option, 4341
NOTABLE option, 4341
OUTSURV= option, 4342
OUTTEST= option, 4342
PLOTS= option, 4342, 4384
REDUCEOUT option, 4346
SINGULAR= option, 4346
STDERR option, 4346
TIMELIM= option, 4347
TIMELIST= option, 4347
WIDTH= option, 4347

LIFETEST procedure, STRATA statement, 4348
ADJUST= option, 4350
DIFF= option, 4351
GROUP= option, 4352
MISSING option, 4352
NODETAIL option, 4352
NOLABEL option, 4352
NOTEST option, 4352
ORDER= option, 4352
TEST= option, 4353
TREND option, 4352

LIFETEST procedure, TEST statement, 4353
LIFETEST procedure, TIME statement, 4354
LIFETEST procedure, WEIGHT statement, 4354
LILPREFIX= option

OUTPUT statement (TRANSREG), 8597
LIMITS option

EFFECTPLOT statement, 421
LINCON statement, CALIS procedure, 1274
LINEAR = option

MODEL statement (ADAPTIVEREG), 909
LINEAR transformation

MODEL statement (TRANSREG), 8571
TRANSFORM statement (PRINQUAL), 6646

LINEPRINTER option
PROC LIFETEST statement, 4383
PROC REG statement, 7089
PROC TREE statement, 8771

LINEQS statement, CALIS procedure, 1275
LINES option

LSMEANS statement (GENMOD), 468
LSMEANS statement (GLIMMIX), 3117
LSMEANS statement (GLM), 3423
LSMEANS statement (LIFEREG), 468

LSMEANS statement (LOGISTIC), 468
LSMEANS statement (ORTHOREG), 468
LSMEANS statement (PHREG), 468
LSMEANS statement (PLM), 468
LSMEANS statement (PROBIT), 468
LSMEANS statement (SURVEYLOGISTIC), 468
LSMEANS statement (SURVEYPHREG), 468
LSMEANS statement (SURVEYREG), 468
MEANS statement (ANOVA), 967
MEANS statement (GLM), 3436
SLICE statement (GENMOD), 468
SLICE statement (GLIMMIX), 468
SLICE statement (LIFEREG), 468
SLICE statement (LOGISTIC), 468
SLICE statement (MIXED), 468
SLICE statement (ORTHOREG), 468
SLICE statement (PHREG), 468
SLICE statement (PLM), 468
SLICE statement (PROBIT), 468
SLICE statement (SURVEYLOGISTIC), 468
SLICE statement (SURVEYPHREG), 468
SLICE statement (SURVEYREG), 468

LINES= option
PROC TREE statement, 8771

LINESEARCH option
NLOPTIONS statement (CALIS), 495
NLOPTIONS statement (GLIMMIX), 495
NLOPTIONS statement (HPMIXED), 495
NLOPTIONS statement (PHREG), 495
NLOPTIONS statement (SURVEYPHREG), 495
NLOPTIONS statement (VARIOGRAM), 495

LINESEARCH= option, 5734
PROC CALIS statement, 1218
PROC NLMIXED statement, 5701

LINESIZE= option
CODE statement (GENMOD), 397
CODE statement (GLIMMIX), 397
CODE statement (GLM), 397
CODE statement (GLMSELECT), 397
CODE statement (LOGISTIC), 397
CODE statement (MIXED), 397
CODE statement (PLM), 397
CODE statement (REG), 397

LINK = option
MODEL statement (ADAPTIVEREG), 909

LINK option
EFFECTPLOT statement, 421

LINK= option
FCS statement (MI), 5047
MODEL statement, 2824
MODEL statement (FMM), 2502
MODEL statement (GENMOD), 2918
MODEL statement (GLIMMIX), 3140
MODEL statement (LOGISTIC), 4540
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MODEL statement (SURVEYLOGISTIC), 8087
MONOTONE statement (MI), 5060
PROBMODEL statement (FMM), 2507
PROC IRT statement, 4016
PROC MIANALYZE statement, 5166
ROC statement (LOGISTIC), 4555
ZEROMODEL statement (GENMOD), 2935

LIPTAK option
PROC MULTTEST statement, 5496, 5521

LIS option
NLOPTIONS statement (CALIS), 495
NLOPTIONS statement (GLIMMIX), 495
NLOPTIONS statement (HPMIXED), 495
NLOPTIONS statement (PHREG), 495
NLOPTIONS statement (SURVEYPHREG), 495
NLOPTIONS statement (VARIOGRAM), 495

LISMOD statement, CALIS procedure, 1282
LIST option

PROC DISCRIM statement, 2166
PROC FASTCLUS statement, 2407
PROC GLIMMIX statement, 3071
PROC MCMC statement, 4752
PROC MODECLUS statement, 5418
PROC NLIN statement, 5587
PROC NLMIXED statement, 5702
PROC TREE statement, 8771
STRATA statement (SURVEYFREQ), 7978
STRATA statement (SURVEYLOGISTIC), 8096
STRATA statement (SURVEYMEANS), 8181
STRATA statement (SURVEYPHREG), 8267
STRATA statement (SURVEYREG), 8345
TABLES statement (FREQ), 2613

LISTALL option
PROC NLIN statement, 5587

LISTCODE option
PROC MCMC statement, 4752
PROC NLIN statement, 5587
PROC NLMIXED statement, 5702

LISTDEP option
PROC NLIN statement, 5587
PROC NLMIXED statement, 5702

LISTDER option
PROC NLIN statement, 5588
PROC NLMIXED statement, 5702

LISTERR option
PROC DISCRIM statement, 2166

LIUPREFIX= option
OUTPUT statement (TRANSREG), 8597

LLINE= option
PLOT statement (REG), 7099

LMAX= option
OUTPUT statement (NLIN), 5601

LMLPREFIX= option
OUTPUT statement (TRANSREG), 8597

lmmat option
LMTESTS statement, 1286

LMTESTS statement, CALIS procedure, 1286
LOCAL option

PROC MODECLUS statement, 5418
LOCAL= option

REPEATED statement (MIXED), 5279
LOCALW option

REPEATED statement (MIXED), 5280
LOESS procedure, BY statement, 4438
LOESS procedure, ID statement, 4439
LOESS procedure, MODEL statement, 4439

ALL option, 4440
ALPHA= option, 4440
BUCKET= option, 4440
CLM= option, 4440
DEGREE= option, 4440
DETAILS option, 4440
DFMETHOD= option, 4441
DFMETHOD=APPROX(Cutoff= ) option, 4441
DFMETHOD=APPROX(Quantile= ) option,

4441
DIRECT option, 4441
DROPSQUARE= option, 4441
INTERP= option, 4441
ITERATIONS= option, 4441
RESIDUAL option, 4442
SCALE= option, 4442
SCALEDINDEP option, 4442
SELECT= option, 4442
SMOOTH= option, 4444
STD option, 4444
T option, 4444
TRACEL option, 4444

LOESS procedure, OUTPUT statement, 4444
ALL option, 4446
keyword option, 4445
LCLM keyword, 4445
OUT= option, 4445
PREDICTED keyword, 4445
RESIDUAL keyword, 4445
ROWWISE option, 4446
STD keyword, 4445
T keyword, 4445
UCLM keyword, 4445

LOESS procedure, PROC LOESS statement, 4434
DATA= option, 4434
PLOT option, 4434
PLOTS option, 4434

LOESS procedure, SCORE statement, 4446
CLM option, 4446
PRINT option, 4446
RESIDUAL option, 4447
SCALEDINDEP option, 4447
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STEPS option, 4447
LOESS procedure, WEIGHT statement, 4447
LOG option

MCMC statement (MI), 5050, 5055
PROC PROBIT statement, 6694
PROC QUANTLIFE statement, 6804

LOG transformation
MODEL statement (TRANSREG), 8569
TRANSFORM statement (MI), 5062
TRANSFORM statement (PRINQUAL), 6645

LOG10 option
PROC PROBIT statement, 6694

LOGDETH option
PARMS statement (MIXED), 5267

LOGISTIC option
FCS statement (MI), 5047
MONOTONE statement (MI), 5060

LOGISTIC procedure, 4498
ID statement, 4528
NLOPTIONS statement, 4548
syntax, 4498

LOGISTIC procedure, BY statement, 4511
LOGISTIC procedure, CODE statement

CATALOG= option, 396
DUMMIES option, 396
ERRORS option, 396
FILE= option, 396
FORMAT= option, 396
GROUP= option, 396
IMPUTE option, 396
LINESIZE= option, 397
LOOKUP= option, 397
NODUMMIES option, 396
NOERRORS option, 396
NORESIDUAL option, 397
RESIDUAL option, 397

LOGISTIC procedure, CONTRAST statement, 4516
ALPHA= option, 4516
E option, 4517
ESTIMATE= option, 4517
SINGULAR= option, 4517

LOGISTIC procedure, EFFECT statement
BASIS option (spline), 408
collection effect, 399
DATABOUNDARY option (spline), 408
DEGREE option (polynomial), 404
DEGREE option (spline), 408
DESIGNROLE option (lag), 402
DETAILS option (lag), 402
DETAILS option (multimember), 403
DETAILS option (polynomial), 404
DETAILS option (spline), 408
KNOTMAX option (spline), 409
KNOTMETHOD option (spline), 409

KNOTMIN option (spline), 410
LABELSTYLE option (polynomial), 404
lag effect, 400
MDEGREE option (polynomial), 405
multimember effect, 402
NATURALCUBIC option (spline), 410
NLAG option (lag), 402
NOEFFECT option (multimember), 403
NOSEPARATE option (polynomial), 405
PERIOD option (lag), 401
polynomial effect, 404
SEPARATE option (spline), 410
spline effect, 407
SPLIT option (spline), 411
STANDARDIZE option (polynomial), 406
WITHIN option (lag), 402

LOGISTIC procedure, EFFECTPLOT statement
ADDCELL option, 418
ALPHA= option, 418
AT option, 419
ATLEN= option, 419
ATORDER= option, 420
BIN option, 420
CLI option, 420
CLM option, 420
CLUSTER option, 420
CONNECT option, 420
EQUAL option, 420
EXTEND= option, 420
GRIDSIZE= option, 420
ILINK option, 421
INDIVIDUAL option, 421
LIMITS option, 421
LINK option, 421
MOFF option, 421
NCOLS= option, 421
NOBORDER option, 421
NOCLI option, 421
NOCLM option, 422
NOCLUSTER option, 422
NOCONNECT option, 422
NOLIMITS option, 422
NOOBS option, 422
NROWS= option, 422
OBS option, 422
PLOTBY= option, 424
PLOTBYLEN= option, 425
POLYBAR option, 425
PREDLABEL= option, 426
SHOWCLEGEND option, 426
SLICEBY= option, 426
SMOOTH option, 426
TYPE= option, 426
UNPACK option, 427
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X= option, 427
Y= option, 427
YRANGE= option, 427

LOGISTIC procedure, ESTIMATE statement
ADJUST= option, 447
ALPHA= option, 447
CATEGORY= option, 447
CL option, 448
CORR option, 448
COV option, 448
DIVISOR= option, 449
E option, 449
EXP option, 449
ILINK option, 449
JOINT option, 450
LOWER option, 451
NOFILL option, 451
ODS table names, 458
SEED= option, 452
SINGULAR= option, 453
STEPDOWN option, 453
TESTVALUE option, 454
UPPER option, 454

LOGISTIC procedure, FREQ statement, 4528
LOGISTIC procedure, LSMEANS statement

ADJUST= option, 463
ALPHA= option, 465
AT= option, 465
BYLEVEL option, 465
CL option, 466
CORR option, 466
COV option, 466
DIFF option, 466
E option, 467
EXP option, 467
ILINK option, 467
LINES option, 468
MEANS or NOMEANS option, 468
OBSMARGINS= option, 468
ODDSRATIO option, 468
ODS graph names, 475
ODS table names, 474
PDIFF option, 469
PLOTS= option, 469
SEED= option, 473
SINGULAR= option, 473
STEPDOWN option, 473

LOGISTIC procedure, LSMESIIMATE statement
ADJUST= option, 479
ALPHA= option, 479
AT= option, 479
BYLEVEL option, 479
CATEGORY= option, 480
CL option, 480

CORR option, 480
COV option, 480
DIVISOR= option, 481
E option, 481
ELSM option, 481
EXP option, 481
ILINK option, 481
JOINT option, 482
LOWER option, 483
OBSMARGINS= option, 483
ODS table names, 487
PLOTS= option, 483
SEED= option, 485
SINGULAR= option, 485
STEPDOWN option, 485
TESTVALUE= option, 486
UPPER option, 486

LOGISTIC procedure, MODEL statement, 4531
ABSFCONV option, 4535
AGGREGATE= option, 4535
ALPHA= option, 4535
BEST= option, 4535
BINWIDTH= option, 4535
CL option, 4548
CLODDS= option, 4536
CLPARM= option, 4536
CORRB option, 4536
COVB option, 4536
CTABLE option, 4536
DESCENDING option, 4531
DETAILS option, 4536
EQUALSLOPES option, 4537
EVENT= option, 4531
EXPEST option, 4537
FAST option, 4537
FCONV= option, 4537
FIRTH option, 4538
GCONV= option, 4538
HIERARCHY= option, 4538
INCLUDE= option, 4539
INFLUENCE option, 4539
IPLOTS option, 4540
ITPRINT option, 4540
LACKFIT option, 4540
LINK= option, 4540
MAXFUNCTION= option, 4540
MAXITER= option, 4541
MAXSTEP= option, 4541
NOCHECK option, 4541
NODESIGNPRINT= option, 4541
NODUMMYPRINT= option, 4541
NOFIT option, 4541
NOINT option, 4541
NOLOGSCALE option, 4541
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NOODDSRATIO option, 4542
NOOR option, 4542
OFFSET= option, 4542
ORDER= option, 4532
OUTROC= option, 4542
PARMLABEL option, 4542
PCORR option, 4542
PEVENT= option, 4542
PLCL option, 4542
PLCONV= option, 4542
PLRL option, 4542
PPROB= option, 4543
REFERENCE= option, 4532
RIDGING= option, 4543
RISKLIMITS option, 4543
ROCEPS= option, 4543
RSQUARE option, 4543
SCALE= option, 4543
SELECTION= option, 4544
SEQUENTIAL option, 4545
SINGULAR= option, 4545
SLENTRY= option, 4545
SLSTAY= option, 4545
START= option, 4545
STB option, 4546
STOP= option, 4546
STOPRES option, 4546
TECHNIQUE= option, 4546
UNEQUALSLOPES option, 4547
WALDCL option, 4548
WALDRL option, 4543
XCONV= option, 4548

LOGISTIC procedure, ODDSRATIO statement, 4549
AT option, 4549
CL= option, 4549
DIFF= option, 4550
PLCONV= option, 4550
PLMAXITER= option, 4550
PLSINGULAR= option, 4550

LOGISTIC procedure, OUTPUT statement, 4550
ALPHA= option, 4551
C= option, 4551
CBAR= option, 4551
DFBETAS= option, 4552
DIFCHISQ= option, 4552
DIFDEV= option, 4552
H= option, 4552
LOWER= option, 4552
OUT= option, 4552
PREDICTED= option, 4552
PREDPROBS= option, 4553
RESCHI= option, 4553
RESDEV= option, 4553
RESLIK= option, 4553

STDRESCHI= option, 4553
STDRESDEV= option, 4553
STDXBETA = option, 4553
UPPER= option, 4553
XBETA= option, 4554

LOGISTIC procedure, PROC LOGISTIC statement,
4499

ALPHA= option, 4500
COVOUT option, 4500
DATA= option, 4500
DESCENDING option, 4500
EXACTOPTIONS option, 4500
INEST= option, 4501
INMODEL= option, 4501
MULTIPASS option, 4501
NAMELEN= option, 4501
NOCOV option, 4501
NOPRINT option, 4502
ORDER= option, 4502
OUTDESIGN= option, 4502
OUTDESIGNONLY option, 4502
OUTEST= option, 4502
OUTMODEL= option, 4502
PLOTS option, 4502
ROCOPTIONS option, 4506
SIMPLE option, 4507
TRUNCATE option, 4507

LOGISTIC procedure, ROC statement, 4555
LINK= option, 4555
NOOFFSET option, 4555

LOGISTIC procedure, ROCCONTRAST statement,
4556

ADJACENTPAIRS option, 4556
COV option, 4556
E option, 4556
ESTIMATE option, 4556
REFERENCE option, 4556

LOGISTIC procedure, SCORE statement, 4557
ALPHA= option, 4557
CLM option, 4557
CUMULATIVE option, 4558
DATA= option, 4558
FITSTAT option, 4558
OUT= option, 4558
OUTROC= option, 4558
PRIOR= option, 4559
PRIOREVENT= option, 4559
ROCEPS= option, 4559

LOGISTIC procedure, SLICE statement
ADJUST= option, 463
ALPHA= option, 465
AT= option, 465
BYLEVEL option, 465
CL option, 466
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CORR option, 466
COV option, 466
DIFF option, 466
E option, 467
EXP option, 467
ILINK option, 467
LINES option, 468
MEANS or NOMEANS option, 468
NOF option, 507
OBSMARGINS= option, 468
ODDSRATIO option, 468
ODS table names, 507
PDIFF option, 469
PLOTS= option, 469
SEED= option, 473
SIMPLE= option, 507
SINGULAR= option, 473
SLICEBY= option, 507
STEPDOWN option, 473

LOGISTIC procedure, TEST statement, 4561
PRINT option, 4562

LOGISTIC procedure, UNITS statement, 4562
DEFAULT= option, 4562

LOGISTIC procedure, WEIGHT statement, 4563
NORMALIZE option, 4563

LOGISTIC statement
POWER procedure, 6276

LOGISTIC procedure, CLASS statement, 4512
CPREFIX= option, 4512
DESCENDING option, 4512
LPREFIX= option, 4512
MISSING option, 4512
ORDER= option, 4513
PARAM= option, 4513
REF= option, 4514
TRUNCATE option, 4514

LOGISTIC procedure, CODE statement, 4515
LOGISTIC procedure, EFFECT statement, 4519
LOGISTIC procedure, EFFECTPLOT statement, 4520
LOGISTIC procedure, ESTIMATE statement, 4521
LOGISTIC procedure, EXACT statement, 4522

ALPHA= option, 4523
CLTYPE= option, 4523
ESTIMATE option, 4523
JOINT option, 4523
JOINTONLY option, 4523
MIDPFACTOR= option, 4524
ONESIDED option, 4524
OUTDIST= option, 4524

LOGISTIC procedure, EXACTOPTIONS statement,
4525

LOGISTIC procedure, LSMEANS statement, 4528
LOGISTIC procedure, LSMESTIMATE statement,

4530

LOGISTIC procedure, MODEL statement
ABSFCONV option, 4525
FCONV= option, 4525
NOLOGSCALE option, 4527
XCONV= option, 4527

LOGISTIC procedure, PROC LOGISTIC statement
EXACTONLY option, 4500

LOGISTIC procedure, SLICE statement, 4559
LOGISTIC procedure, STORE statement, 4559
LOGISTIC procedure, STRATA statement, 4560

CHECKDEPENDENCY= option, 4560
INFO option, 4561
MISSING option, 4560
NOSUMMARY option, 4561

LOGIT function
RESPONSE statement (CATMOD), 1919

LOGIT transformation
MODEL statement (TRANSREG), 8569
TRANSFORM statement (MI), 5062
TRANSFORM statement (PRINQUAL), 6645

LOGLIN statement
CATMOD procedure, 1906

LOGNB option
MODEL statement (GENMOD), 2919

LOGNLAMBDA0= option
MODEL statement (TPSPLINE), 8499

LOGNLAMBDA= option
MODEL statement (TPSPLINE), 8499

LOGNOTE option
PROC HPMIXED statement, 3829
PROC MIXED statement, 5229
PROC NLMIXED statement, 5702

LOGNOTE= option
PRIOR statement (MIXED), 5271

LOGOR= option
REPEATED statement (GENMOD), 2929

LOGPOST option
PROC BCHOICE statement, 1020

LOGRBOUND= option
PRIOR statement (MIXED), 5271

LOOKUP= option
CODE statement (GENMOD), 397
CODE statement (GLIMMIX), 397
CODE statement (GLM), 397
CODE statement (GLMSELECT), 397
CODE statement (LOGISTIC), 397
CODE statement (MIXED), 397
CODE statement (PLM), 397
CODE statement (REG), 397

LOWER keyword
OUTPUT statement (GLMSELECT), 3700

LOWER option
ESTIMATE statement (LIFEREG), 451
ESTIMATE statement (LOGISTIC), 451
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ESTIMATE statement (ORTHOREG), 451
ESTIMATE statement (PHREG), 451
ESTIMATE statement (PLM), 451
ESTIMATE statement (PROBIT), 451
ESTIMATE statement (QUANTREG), 451
ESTIMATE statement (SURVEYLOGISTIC),

451
ESTIMATE statement (SURVEYPHREG), 451
ESTIMATE statement (SURVEYREG), 451
LSMESTIMATE statement (GENMOD), 483
LSMESTIMATE statement (LIFEREG), 483
LSMESTIMATE statement (LOGISTIC), 483
LSMESTIMATE statement (MIXED), 483
LSMESTIMATE statement (ORTHOREG), 483
LSMESTIMATE statement (PHREG), 483
LSMESTIMATE statement (PLM), 483
LSMESTIMATE statement (PROBIT), 483
LSMESTIMATE statement

(SURVEYLOGISTIC), 483
LSMESTIMATE statement (SURVEYPHREG),

483
LSMESTIMATE statement (SURVEYREG), 483

LOWER= option
ONESAMPLEFREQ statement (POWER), 6294
ONESAMPLEMEANS statement (POWER),

6302
OUTPUT statement (LOGISTIC), 4552
OUTPUT statement (SURVEYLOGISTIC), 8091
PAIREDMEANS statement (POWER), 6320
TWOSAMPLEMEANS statement (POWER),

6341
LOWERB= option

PARMS statement (GLIMMIX), 3151
PARMS statement (HPMIXED), 3847
PARMS statement (MIXED), 5267
PARMS statement (VARIOGRAM), 8955

LOWERTAILED option
ESTIMATE statement (GLIMMIX), 3108
ESTIMATE statement (MIXED), 5243
LSMESTIMATE statement (GLIMMIX), 3130
TEST statement (MULTTEST), 5509

LPREDPLOT statement
options summarized by function, 6722
PROBIT procedure, 6721

LPREFIX= option
CLASS statement (BCHOICE), 1027
CLASS statement (GENMOD), 2896
CLASS statement (GLMSELECT), 3680
CLASS statement (ICPHREG), 3951
CLASS statement (LOGISTIC), 4512
CLASS statement (PHREG), 5918
CLASS statement (PROBIT), 6706
CLASS statement (QUANTSELECT), 6929
CLASS statement (SURVEYLOGISTIC), 8072

MODEL statement (TRANSREG), 8578, 8586
LR option

TEST statement (QUANTREG), 6857
LR1

TEST= option (QUANTSELECT), 6939
LR2

TEST= option (QUANTSELECT), 6939
LRCHI option

EXACT statement (FREQ), 2582
OUTPUT statement (FREQ), 2593

LRCHI option (CHISQ)
TABLES statement (FREQ), 2608

LRCHISQ option
TABLES statement (SURVEYFREQ), 7986

LRCI option
MODEL statement (GENMOD), 2919

LREF= option
MCMC statement (MI), 5050

LSCOEFFS option
MODEL statement (GLMSELECT), 3692

LSD option
MEANS statement (ANOVA), 967
MEANS statement (GLM), 3437

LSMEANS statement
GENMOD procedure, 460
GLIMMIX procedure, 3111
GLM procedure, 3419
HPMIXED procedure, 3839
LIFEREG procedure, 460
LIFEREG procedure, 4240
LOGISTIC procedure, 460
LOGISTIC procedure, 4528
MIXED procedure, 5244
ORTHOREG procedure, 460
ORTHOREG procedure, 5862
PHREG procedure, 460, 5930
PLM procedure, 460
PLM procedure, 6170
PROBIT procedure, 460
PROBIT procedure, 6729
SURVEYLOGISTIC procedure, 460
SURVEYPHREG procedure, 460
SURVEYPHREG procedure, 8256
SURVEYREG procedure, 460

LSMESTIMATE statement
GENMOD procedure, 476
GENMOD procedure, 2912
GLIMMIX procedure, 3124
LIFEREG procedure, 476
LIFEREG procedure, 4241
LOGISTIC procedure, 476
LOGISTIC procedure, 4530
MIXED procedure, 476
MIXED procedure, 5250
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ORTHOREG procedure, 476
ORTHOREG procedure, 5863
PHREG procedure, 476, 5931
PLM procedure, 476
PLM procedure, 6171
PROBIT procedure, 476
PROBIT procedure, 6730
SURVEYLOGISTIC procedure, 476
SURVEYLOGISTIC procedure, 8081
SURVEYPHREG procedure, 476
SURVEYPHREG procedure, 8257
SURVEYREG procedure, 476
SURVEYREG procedure, 8338

LSP option
NLOPTIONS statement (CALIS), 496
NLOPTIONS statement (GLIMMIX), 496
NLOPTIONS statement (HPMIXED), 496
NLOPTIONS statement (PHREG), 496
NLOPTIONS statement (SURVEYPHREG), 496
NLOPTIONS statement (VARIOGRAM), 496

LSPRECISION option
NLOPTIONS statement (CALIS), 496
NLOPTIONS statement (GLIMMIX), 496
NLOPTIONS statement (HPMIXED), 496
NLOPTIONS statement (PHREG), 496
NLOPTIONS statement (SURVEYPHREG), 496
NLOPTIONS statement (VARIOGRAM), 496

LSPRECISION= option
PROC CALIS statement, 1219
PROC NLMIXED statement, 5702

LVREF= option
PLOT statement (BOXPLOT), 1113
PLOT statement (REG), 7099

LWEIGHT= option
MODEL statement (GLIMMIX), 3141

M= option
MANOVA statement (ANOVA), 960
MANOVA statement (GLM), 3429
MANOVA statement (GLMPOWER), 3610
MODEL statement (TPSPLINE), 8499

MACRO option
OUTPUT statement (TRANSREG), 8598

MAHADIST keyword
OUTPUT statement (QUANTREG), 6855

MAHALANOBIS option
PROC CANDISC statement, 1862
PROC DISCRIM statement, 2165

main model specification statements, CALIS
procedure, 1197

MANOVA option
PROC ANOVA statement, 955
PROC DISCRIM statement, 2166
PROC GLM statement, 3407

MANOVA statement
ANOVA procedure, 959
GLM procedure, 3428
GLMPOWER procedure, 3609

MANTELFLEISS option (CMH)
TABLES statement (FREQ), 2610

MARGIN= option
ONESAMPLEFREQ statement (POWER), 6294
STRATA statement (SURVEYSELECT), 8437

MARGIN= option (BINOMIAL)
TABLES statement (FREQ), 2605

MARGIN= option (RISKDIFF)
TABLES statement (FREQ), 2634

MARGINAL function
RESPONSE statement (CATMOD), 1919

MARK option
PROCESS statement (SPP), 7790

MARKERS= option
PLOT statement (GLMPOWER), 3613
PLOT statement (POWER), 6327

MATINGS statement, INBREED procedure, 3990
MATRIX option

POWER statement (GLMPOWER), 3618
PROC INBREED statement, 3988

MATRIX statement
CALIS procedure, 1295
MDS procedure, 5009

MATRIXL option
PROC INBREED statement, 3988

MAX= option
PLOT statement (GLMPOWER), 3614
PLOT statement (POWER), 6328
PREDICT statement (KRIGE2D), 4142

MAXBASIS = option
MODEL statement (ADAPTIVEREG), 909

MAXCLPRINT= option
PROC HPMIXED statement, 3829

MAXCLUSTERS= option
PROC FASTCLUS statement, 2402
PROC MODECLUS statement, 5418
PROC VARCLUS statement, 8863

MAXDIST option
PROCESS statement (SPP), 7793

MAXEIGEN= option
PROC VARCLUS statement, 8863

MAXFU option
NLOPTIONS statement (CALIS), 496
NLOPTIONS statement (GLIMMIX), 496
NLOPTIONS statement (HPMIXED), 496
NLOPTIONS statement (PHREG), 496
NLOPTIONS statement (SURVEYPHREG), 496
NLOPTIONS statement (VARIOGRAM), 496

MAXFUNC option
NLOPTIONS statement (CALIS), 496
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NLOPTIONS statement (GLIMMIX), 496
NLOPTIONS statement (HPMIXED), 496
NLOPTIONS statement (PHREG), 496
NLOPTIONS statement (SURVEYPHREG), 496
NLOPTIONS statement (VARIOGRAM), 496

MAXFUNC= option
PROC ADAPTIVEREG statement, 898
PROC CALIS statement, 1219
PROC FMM statement, 2476
PROC ICPHREG statement, 3943
PROC IRT statement, 4016
PROC MIXED statement, 5230
PROC NLMIXED statement, 5703

MAXFUNCTION= option
MODEL statement (LOGISTIC), 4540

MAXHEIGHT= option
PROC TREE statement, 8772

MAXIMUM option
RIDGE statement (RSREG), 7269

MAXIMUM= option
PROC MI statement, 5040

MAXINDEXPRINT= option
PROC MCMC statement, 4753

MAXINFO= option
PROC SEQDESIGN statement, 7331

MAXIT option
NLOPTIONS statement (CALIS), 497
NLOPTIONS statement (GLIMMIX), 497
NLOPTIONS statement (HPMIXED), 497
NLOPTIONS statement (PHREG), 497
NLOPTIONS statement (SURVEYPHREG), 497
NLOPTIONS statement (VARIOGRAM), 497

MAXIT= option
MODEL statement (GENMOD), 2919
PROC QUANTREG statement, 6804, 6843

MAXITER = option
MODEL statement (GAM), 2772

MAXITER option
NLOPTIONS statement (CALIS), 497
NLOPTIONS statement (GLIMMIX), 497
NLOPTIONS statement (HPMIXED), 497
NLOPTIONS statement (PHREG), 497
NLOPTIONS statement (SURVEYPHREG), 497
NLOPTIONS statement (VARIOGRAM), 497

MAXITER= option
COVTEST statement (GLIMMIX), 3103
EM statement (MI), 5043
MCMC statement (MI), 5052
MODEL statement (CATMOD), 1909
MODEL statement (LIFEREG), 4246
MODEL statement (LOGISTIC), 4541
MODEL statement (PHREG), 5936
MODEL statement (SURVEYLOGISTIC), 8088
MODEL statement (TRANSREG), 8586

PROC ACECLUS statement, 871
PROC ADAPTIVEREG statement, 898
PROC CALIS statement, 1219
PROC FACTOR statement, 2313
PROC FASTCLUS statement, 2407
PROC FMM statement, 2476, 2477
PROC ICLIFETEST statement, 3895
PROC ICPHREG statement, 3943
PROC IRT statement, 4017
PROC MDS statement, 5003
PROC MIXED statement, 5230
PROC NLIN statement, 5588
PROC NLMIXED statement, 5703
PROC PLS statement, METHOD=PLS option,

6222
PROC PLS statement, MISSING=EM option,

6222
PROC PRINQUAL statement, 6637
PROC ROBUSTREG statement (ROBUSTREG),

7178, 7180, 7182
PROC VARCLUS statement, 8863
PROC VARCOMP statement, 8890
REPEATED statement , 2827
REPEATED statement (GENMOD), 2930

MAXITER= option (PLCORR)
TABLES statement (FREQ), 2617

MAXITSCORE = option
MODEL statement (GAM), 2772

MAXLAGS= option
COMPUTE statement (VARIOGRAM), 8939

MAXLEGENDAREA= option
ODS GRAPHICS statement, 618

MAXLEN= option
PROC PLM statement (PLM), 6163

MAXLEVELS= option
TABLES statement (FREQ), 2613

MAXLEVERAGE= option
PROC CALIS statement, 1220

MAXLMMUPDATE option
PROC GLIMMIX statement, 3071

MAXMACRO= option
PROC GLMSELECT statement, 3671
PROC QUANTSELECT statement, 6920
PROC STEPDISC statement, 7940

MAXMISSPAT= option
PROC CALIS statement, 1220

MAXMITER= option
PROC IRT statement, 4017

MAXOPT option
PROC GLIMMIX statement, 3071

MAXORDER = option
MODEL statement (ADAPTIVEREG), 909

MAXOUTLIER= option
PROC CALIS statement, 1220
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MAXPANELS= option
PLOT statement (BOXPLOT), 1113

maxrank option
LMTESTS statement, 1286

MAXSCALE= option
PARMS statement (VARIOGRAM), 8956

MAXSEARCH= option
PROC VARCLUS statement, 8863

MAXSIZE= option
PROC SURVEYSELECT statement, 8416

MAXSTATIONARY= option
PROC QUANTREG statement, 6843

MAXSTEP option
MODEL statement (GLMSELECT), 3692, 3693
MODEL statement (QUANTSELECT), 6936
MODEL statement (REG), 7021
NLOPTIONS statement (CALIS), 497
NLOPTIONS statement (GLIMMIX), 497
NLOPTIONS statement (HPMIXED), 497
NLOPTIONS statement (PHREG), 497
NLOPTIONS statement (SURVEYPHREG), 497
NLOPTIONS statement (VARIOGRAM), 497

MAXSTEP= option
MODEL statement (LOGISTIC), 4541
MODEL statement (PHREG), 5936
PROC NLMIXED statement, 5703
PROC STEPDISC statement, 7940

MAXSUBIT= option
PROC NLIN statement, 5588

MAXSUBVALUEPRINT= option
PROC MCMC statement, 4753

MAXTIME option
NLOPTIONS statement (CALIS), 497
NLOPTIONS statement (GLIMMIX), 497
NLOPTIONS statement (HPMIXED), 497
NLOPTIONS statement (PHREG), 497
NLOPTIONS statement (SURVEYPHREG), 497
NLOPTIONS statement (VARIOGRAM), 497

MAXTIME= option
EXACT statement (FREQ), 2585
EXACT statement (NPAR1WAY), 5805
PROC ADAPTIVEREG statement, 898
PROC FMM statement, 2476
PROC ICLIFETEST statement, 3895
PROC ICPHREG statement, 3943
PROC LIFETEST statement, 4340, 4383
PROC NLMIXED statement, 5703

MAXTUNE= option
PROC BCHOICE statement, 1020
PROC MCMC statement, 4753

MAXWEIGHT= option
MISSMODEL statement, 2822

MC option
EXACT statement (FREQ), 2585

EXACT statement (NPAR1WAY), 5805
MCA option

PROC CORRESP statement, 2101
MCA= option, PROC CORRESP statement, 2129
MCHISTORY= option

PROC BCHOICE statement, 1020
PROC MCMC statement, 4753

MCMC procedure, 4746
ARRAY statement, 4762
BEGINCNST statement, 4763
BEGINNODATA statement, 4765
BEGINPRIOR statement, 4765
ENDCNST statement, 4763
ENDNODATA statement, 4765
ENDPRIOR statement, 4765
HYPERPRIOR statement, 4776
MODEL statement, 4766
PARMS statement, 4773
PRED statement, 4775
PREDDIST statement, 4775
PRIOR statement, 4776
syntax, 4746

MCMC procedure, ARRAY statement, 4762
MCMC procedure, BEGINCNST statement, 4763
MCMC procedure, BEGINNODATA statement, 4765
MCMC procedure, BEGINPRIOR statement, 4765
MCMC procedure, BY statement, 4765
MCMC procedure, ENDCNST statement, 4763
MCMC procedure, ENDNODATA statement, 4765
MCMC procedure, ENDPRIOR statement, 4765
MCMC procedure, HYPERPRIOR statement, 4776
MCMC procedure, MODEL statement, 4766

INITIAL= option, 4771
MONITOR= option, 4772
NAMESUFFIX= option, 4773
NOOUTPOST option, 4773

MCMC procedure, PARMS statement, 4773
NORMAL option, 4774
SLICE option, 4774
T option, 4774
UDS option, 4774

MCMC procedure, PRED statement, 4775
MCMC procedure, PREDDIST statement, 4775

COVARIATES= option, 4775
NSIM= option, 4775
OUTPRED= option, 4775
STATISTICS= option, 4776
STATS= option, 4776

MCMC procedure, PRIOR statement, 4776
MCMC procedure, PROC MCMC statement

ACCEPTTOL= option, 4748
AUTOCORLAG= option, 4748
DATA= option, 4751
DIAG= option, 4749
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DIAGNOSTICS= option, 4749
DIC option, 4751
DISCRETE= option, 4749
INF= option, 4751
INIT= option, 4751
JOINTMODEL option, 4752
LIST option, 4752
LISTCODE option, 4752
MAXINDEXPRINT= option, 4753
MAXSUBVALUEPRINT= option, 4753
MAXTUNE= option, 4753
MCHISTORY= option, 4753
MINTUNE= option, 4753
MISSING= option, 4754
MONITOR= option, 4754
NBI= option, 4754
NMC= option, 4754
NOLOGDIST option, 4754
NTHREADS= option, 4754
NTU= option, 4755
OUTPOST=option, 4755
PLOTS= option, 4755
PROPCOV= option, 4758
PROPDIST= option, 4758
REOBSINFO option, 4758
SCALE option, 4760
SEED option, 4760
SIMREPORT= option, 4760
SINGDEN= option, 4761
STATISTICS= option, 4761
STATS= option, 4761
TARGACCEPT= option, 4762
TARGACCEPTI= option, 4762
THIN= option, 4762
TRACE option, 4762
TUNEWT= option, 4762

MCMC procedure, Programming statements
ABORT statement, 4777
CALL statement, 4777
DELETE statement, 4777
DO statement, 4777
GOTO statement, 4777
IF statement, 4777
LINK statement, 4777
PUT statement, 4777
RETURN statement, 4777
SELECT statement, 4777
STOP statement, 4777
SUBSTR statement, 4777
WHEN statement, 4777

MCMC procedure, RANDOM statement, 4778
ALGORITHM= option, 4781
CONSTRAINT= option, 4781
INITIAL= option, 4782

MONITOR= option, 4783
NAMESUFFIX= option, 4784
NOOUTPOST option, 4785
SUBJECT= option, 4778
ZERO= option, 4781

MCMC statement
MI procedure, 5048

MCNEM option
EXACT statement (FREQ), 2582
OUTPUT statement (FREQ), 2593

MCONVERGE= option
PROC MDS statement, 5003

MCORRB option
REPEATED statement , 2827
REPEATED statement (GENMOD), 2930

MCOVB option
REPEATED statement , 2827
REPEATED statement (GENMOD), 2930

MCSE option
BAYES statement, 2888, 4228

MD keyword
OUTPUT statement (ROBUSTREG), 7188

MDATA= option
MODEL statement (KRIGE2D), 4145
MODEL statement (VARIOGRAM), 8947
SIMULATE statement (SIM2D), 7716

MDEGREE option
EFFECT statement, polynomial (GLIMMIX),

405
EFFECT statement, polynomial (GLMSELECT),

405
EFFECT statement, polynomial (HPMIXED),

405
EFFECT statement, polynomial (LOGISTIC),

405
EFFECT statement, polynomial (ORTHOREG),

405
EFFECT statement, polynomial (PHREG), 405
EFFECT statement, polynomial (PLS), 405
EFFECT statement, polynomial (QUANTLIFE),

405
EFFECT statement, polynomial (QUANTREG),

405
EFFECT statement, polynomial

(QUANTSELECT), 405
EFFECT statement, polynomial (ROBUSTREG),

405
EFFECT statement, polynomial

(SURVEYLOGISTIC), 405
EFFECT statement, polynomial (SURVEYREG),

405
MDPREF= option

PROC PRINQUAL statement, 6637
MDS procedure
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syntax, 4996
MDS procedure, BY statement, 5008
MDS procedure, ID statement, 5008
MDS procedure, INVAR statement, 5008
MDS procedure, MATRIX statement, 5009
MDS procedure, PROC MDS statement, 4997

ALTERNATE= option, 4999
COEF= option, 4999
CONDITION= option, 5000
CONVERGE= option, 5000
CRITMIN= option, 5003
CUTOFF= option, 5000
DATA= option, 5000
DECIMALS= option, 5001
DIMENSION= option, 5001
EPSILON= option, 5001
FIT= option, 5001
FORMULA= option, 5002
GCONVERGE= option, 5002
INAV= option, 5002
INITIAL= option, 5003
ITER= option, 5003
LEVEL= option, 5003
MAXITER= option, 5003
MCONVERGE= option, 5003
MINCRIT= option, 5003
NEGATIVE option, 5004
NONORM option, 5004
NOPHIST option, 5004
NOPRINT option, 5004
NOULB option, 5004
OCOEF option, 5004
OCONFIG option, 5004
OCRIT option, 5004
OTRANS option, 5004
OUT= option, 5004
OUTFIT= option, 5004
OUTITER option, 5004
OUTRES= option, 5004
OVER= option, 5005
PCOEF option, 5005
PCONFIG option, 5005
PDATA option, 5005
PFINAL option, 5005
PFIT option, 5005
PFITROW option, 5005
PINAVDATA option, 5005
PINEIGVAL option, 5005
PINEIGVEC option, 5005
PININ option, 5005
PINIT option, 5005
PITER option, 5005
PTRANS option, 5006
RANDOM= option, 5006

RIDGE= option, 5007
SHAPE= option, 5007
SIMILAR= option, 5007
SINGULAR= option, 5007
UNTIE option, 5007

MDS procedure, VAR statement, 5009
MDS procedure, WEIGHT statement, 5009
MEAN function

RESPONSE statement (CATMOD), 1919
MEAN keyword

REPEATED statement (ANOVA), 971
MEAN option

MCMC statement (MI), 5049, 5054
REPEATED statement (GLM), 3448, 3449, 3500
REPEATED statement (GLMPOWER), 3625
TEST statement (MULTTEST), 5508, 5516, 5534

MEAN statement
SIM2D procedure, 7722

MEAN statement, CALIS procedure, 1309
MEAN= option

ONESAMPLEMEANS statement (POWER),
6302

PROC FASTCLUS statement, 2408
MEANDIFF= option

PAIREDMEANS statement (POWER), 6320
TWOSAMPLEMEANS statement (POWER),

6341
MEANPARM= option

PATHDIAGRAM statement, 1339
MEANPATTERN= option

PROC CALIS statement, 1221
MEANRATIO= option

PAIREDMEANS statement (POWER), 6320
TWOSAMPLEMEANS statement (POWER),

6341
MEANS option

OUTPUT statement (TRANSREG), 8599
MEANS or NOMEANS option

LSMEANS statement (GENMOD), 468
LSMEANS statement (LIFEREG), 468
LSMEANS statement (LOGISTIC), 468
LSMEANS statement (ORTHOREG), 468
LSMEANS statement (PHREG), 468
LSMEANS statement (PLM), 468
LSMEANS statement (PROBIT), 468
LSMEANS statement (SURVEYLOGISTIC), 468
LSMEANS statement (SURVEYPHREG), 468
LSMEANS statement (SURVEYREG), 468
SLICE statement (GENMOD), 468
SLICE statement (GLIMMIX), 468
SLICE statement (LIFEREG), 468
SLICE statement (LOGISTIC), 468
SLICE statement (MIXED), 468
SLICE statement (ORTHOREG), 468
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SLICE statement (PHREG), 468
SLICE statement (PLM), 468
SLICE statement (PROBIT), 468
SLICE statement (SURVEYLOGISTIC), 468
SLICE statement (SURVEYPHREG), 468
SLICE statement (SURVEYREG), 468

MEANS statement
ANOVA procedure, 963
GLM procedure, 3432

MEANSTR option
PROC CALIS statement, 1223

MEASURES option
EXACT statement (FREQ), 2582
OUTPUT statement (FREQ), 2593
TABLES statement (FREQ), 2614
TEST statement (FREQ), 2639

MEC option
OUTPUT statement (TRANSREG), 8599

MEDIAN keyword
OUTPUT statement (GLMSELECT), 3700

MEDIAN option
EXACT statement (NPAR1WAY), 5804
OUTPUT statement (NPAR1WAY), 5809
PROC NPAR1WAY statement, 5797

MEMBERSHIP= option
PROC FMM statement, 2479

METHOD(ACCEPT)= option
DESIGN statement (SEQDESIGN), 7339

METHOD(ALPHA)= option
DESIGN statement (SEQDESIGN), 7338

METHOD(BETA)= option
DESIGN statement (SEQDESIGN), 7339

METHOD(LOWERACCEPT)= option
DESIGN statement (SEQDESIGN), 7339

METHOD(LOWERALPHA)= option
DESIGN statement (SEQDESIGN), 7338

METHOD(LOWERBETA)= option
DESIGN statement (SEQDESIGN), 7339

METHOD(LOWERREJECT)= option
DESIGN statement (SEQDESIGN), 7338

METHOD(REJECT)= option
DESIGN statement (SEQDESIGN), 7338

METHOD(UPPERACCEPT)= option
DESIGN statement (SEQDESIGN), 7339

METHOD(UPPERALPHA)= option
DESIGN statement (SEQDESIGN), 7338

METHOD(UPPERBETA)= option
DESIGN statement (SEQDESIGN), 7339

METHOD(UPPERREJECT)= option
DESIGN statement (SEQDESIGN), 7338

METHOD= option
BASELINE statement (PHREG), 5904
DESIGN statement (SEQDESIGN), 7336
MODEL statement (GAM), 2772

MODEL statement (TRANSREG), 8586
ONESAMPLEFREQ statement (POWER), 6295
OUTPUT statement (PHREG), 5943
PAIREDFREQ statement (POWER), 6312
POWER statement (GLMPOWER), 3620
PROC ACECLUS statement, 871
PROC CALIS statement, 1223
PROC DISCRIM statement, 2166
PROC DISTANCE statement, 2261
PROC FACTOR statement, 2313
PROC GLIMMIX statement, 3072
PROC HPMIXED statement, 3829
PROC ICLIFETEST statement, 3895
PROC LIFETEST statement, 4340
PROC MIXED statement, 5230, 5340
PROC MODECLUS statement, 5418
PROC NLIN statement, 5588
PROC NLMIXED statement, 5704
PROC PLS statement, 6222
PROC PRINQUAL statement, 6637
PROC QUANTLIFE statement, 6804
PROC ROBUSTREG statement, 7175
PROC STDIZE statement, 7840
PROC STDRATE statement, 7875
PROC STEPDISC statement, 7941
PROC SURVEYSELECT statement, 8417
PROC VARCOMP statement, 8890
RANDOM statement, 5945
UNIVAR statement, 4088

METHOD= option (RELRISK)
EXACT statement (FREQ), 2583

METHOD= option (RISKDIFF)
EXACT statement (FREQ), 2584
TABLES statement (FREQ), 2635

METHOD= specification
PROC CLUSTER statement, 2015

METHOD=BERNOULLI option
PROC SURVEYSELECT statement, 8417

METHOD=CHROMY option
PROC SURVEYSELECT statement, 8419, 8420

METHOD=FM option (RISKDIFF)
TABLES statement (FREQ), 2635

METHOD=HA option (RISKDIFF)
TABLES statement (FREQ), 2635

METHOD=NEWCOMBE option (RISKDIFF)
TABLES statement (FREQ), 2635

METHOD=POISSON option
PROC SURVEYSELECT statement, 8418

METHOD=PPS option
PROC SURVEYSELECT statement, 8418

METHOD=PPS_BREWER option
PROC SURVEYSELECT statement, 8418

METHOD=PPS_MURTHY option
PROC SURVEYSELECT statement, 8418
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METHOD=PPS_SAMPFORD option
PROC SURVEYSELECT statement, 8418

METHOD=PPS_SEQ option
PROC SURVEYSELECT statement, 8419

METHOD=PPS_SYS option
PROC SURVEYSELECT statement, 8419

METHOD=PPS_WR option
PROC SURVEYSELECT statement, 8419

METHOD=SEQ option
PROC SURVEYSELECT statement, 8420

METHOD=SRS option
PROC SURVEYSELECT statement, 8420

METHOD=SYS option
PROC SURVEYSELECT statement, 8420

METHOD=URS option
PROC SURVEYSELECT statement, 8421

METHOD=WALD option (RISKDIFF)
TABLES statement (FREQ), 2635

METRIC= option
PROC ACECLUS statement, 871
PROC DISCRIM statement, 2166

METROPOLIS option
BAYES statement (FMM), 2488

METROPOLIS= option
BAYES statement, 2890, 4230

MHCHI option
EXACT statement (FREQ), 2582
OUTPUT statement (FREQ), 2594

MHOR option
OUTPUT statement (FREQ), 2594

MHRRC1 option
OUTPUT statement (FREQ), 2594

MHRRC2 option
OUTPUT statement (FREQ), 2594

MI procedure, BY statement, 5042
MI procedure, CLASS statement, 5042
MI procedure, EM statement, 5043

CONVERGE option, 5043
INITIAL= option, 5043
ITPRINT option, 5043
MAXITER= option, 5043
OUT= option, 5043
OUTEM= option, 5043
OUTITER= option, 5044
XCONV option, 5043

MI procedure, FCS statement, 5044
CLASSEFFECTS= option, 5046
DESCENDING option, 5047
DETAILS option, 5046, 5047
DISCRIM option, 5046
LINK= option, 5047
LOGISTIC option, 5047
NBITER= option, 5044
ORDER= option, 5047

OUTITER= option, 5044
PCOV= option, 5046
PRIOR= option, 5046
REG option, 5047
REGPMM option, 5047
REGPREDMEANMATCH option, 5047
REGRESSION option, 5047
TRACE option, 5045

MI procedure, FREQ statement, 5048
MI procedure, MCMC statement, 5048

ACF option, 5053
ACFPLOT option, 5049
BOOTSTRAP option, 5052
CCONF= option, 5050
CCONNECT= option, 5055
CFRAME= option, 5050, 5055
CHAIN= option, 5051
CNEEDLES= option, 5050
CONVERGE= option, 5052
COV option, 5049, 5054
CREF= option, 5050
CSYMBOL= option, 5050, 5055
DISPLAYINIT option, 5051
GOUT= option, 5051
HSYMBOL= option, 5050, 5055
IMPUTE= option, 5051
INEST= option, 5051
INITIAL= option, 5051
ITPRINT option, 5052
LCONF= option, 5050
LCONNECT= option, 5055
LOG option, 5050, 5055
LREF= option, 5050
MAXITER= option, 5052
MEAN option, 5049, 5054
NAME= option, 5050, 5055
NBITER= option, 5052
NITER= option, 5052
NLAG= option, 5050
OUTEST= option, 5052
OUTITER= option, 5052
PRIOR= option, 5054
START= option, 5054
SYMBOL= option, 5050, 5055
TIMEPLOT option, 5054
TITLE= option, 5050, 5055
TRACE option, 5053
WCONF= option, 5050
WCONNECT= option, 5055
WLF option, 5049, 5054, 5055
WNEEDLES= option, 5051
WREF= option, 5051
XCONV= option, 5052

MI procedure, MNAR statement, 5056
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ADJUST option, 5057
ADJUSTOBS= option, 5057
DELTA= option, 5057
MODEL option, 5056
MODELOBS= option, 5056
PARMS= option, 5058
SCALE= option, 5057
SHIFT= option, 5057
SIGMA= option, 5057

MI procedure, MONOTONE statement, 5058
CLASSEFFECTS= option, 5059
DESCENDING option, 5060
DETAILS option, 5059, 5060
DISCRIM option, 5059
LINK= option, 5060
LOGISTIC option, 5060
ORDER= option, 5060
PCOV= option, 5060
PRIOR= option, 5060
PROPENSITY option, 5060
REG option, 5061
REGPMM option, 5061
REGPREDMEANMATCH option, 5061
REGRESSION option, 5061

MI procedure, PROC MI statement, 5039
ALPHA= option, 5040
DATA= option, 5040
MAXIMUM= option, 5040
MINIMUM= option, 5040
MINMAXITER= option, 5040
MU0= option, 5041
NIMPUTE= option, 5041
NOPRINT option, 5041
OUT= option, 5041
ROUND= option, 5041
SEED option, 5041
SIMPLE, 5042
SINGULAR option, 5042
THETA0= option, 5041

MI procedure, TRANSFORM statement, 5061
BOXCOX transformation, 5062
C= option, 5062
EXP transformation, 5062
LAMBDA= option, 5062
LOG transformation, 5062
LOGIT transformation, 5062
POWER transformation, 5062

MI procedure, VAR statement, 5063
MIANALYZE procedure, BY statement, 5167
MIANALYZE procedure, CLASS statement, 5167
MIANALYZE procedure, MODELEFFECTS

statement, 5167
MIANALYZE procedure, PROC MIANALYZE

statement, 5164

ALPHA= option, 5164
BCOV option, 5164
CLASSVAR= option, 5166
COVB= option, 5165
DATA= option, 5165
EDF= option, 5165
EFFECTVAR= option, 5165
LINK= option, 5166
MU0= option, 5166
MULT option, 5165
PARMINFO= option, 5165
PARMS= option, 5166
TCOV option, 5166
THETA0= option, 5166
WCOV option, 5166
XPXI= option, 5166

MIANALYZE procedure, STDERR statement, 5168
MIANALYZE procedure, TEST statement, 5168

BCOV option, 5169
MULT option, 5169
TCOV option, 5169
WCOV option, 5169

MIDP option
EXACT statement (NPAR1WAY), 2585, 5805

MIDPFACTOR= option
EXACT statement (GENMOD), 2906
EXACT statement (LOGISTIC), 4524

MIN= option
PLOT statement (GLMPOWER), 3614
PLOT statement (POWER), 6328

MINC= option
PROC VARCLUS statement, 8863

MINCLUSTERS= option
PROC VARCLUS statement, 8863

MINCRIT= option
PROC MDS statement, 5003

MINDIST option
PROCESS statement (SPP), 7794

MINEIGEN= option
PROC FACTOR statement, 2314

MINHEIGHT= option
PROC TREE statement, 8772

MINIMUM option
RIDGE statement (RSREG), 7269

MINIMUM= option
PROC MI statement, 5040

MININERTIA= option
PROC CORRESP statement, 2101

MINIT option
NLOPTIONS statement (CALIS), 497
NLOPTIONS statement (GLIMMIX), 497
NLOPTIONS statement (HPMIXED), 497
NLOPTIONS statement (PHREG), 497
NLOPTIONS statement (SURVEYPHREG), 497
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NLOPTIONS statement (VARIOGRAM), 497
MINITER option

NLOPTIONS statement (CALIS), 497
NLOPTIONS statement (GLIMMIX), 497
NLOPTIONS statement (HPMIXED), 497
NLOPTIONS statement (PHREG), 497
NLOPTIONS statement (SURVEYPHREG), 497
NLOPTIONS statement (VARIOGRAM), 497

MINITER= option
PROC NLMIXED statement, 5704

MINMAXITER= option
PROC MI statement, 5040

MINPOINTS= option
PREDICT statement (KRIGE2D), 4142

MINSIZE= option
PROC SURVEYSELECT statement, 8421

MINTUNE= option
PROC BCHOICE statement, 1021
PROC MCMC statement, 4753

MISSBREAK option
PLOT statement (BOXPLOT), 1113

MISSING option
CLASS statement (BCHOICE), 1027
CLASS statement (GENMOD), 2896
CLASS statement (GLMSELECT), 3680
CLASS statement (ICPHREG), 3951
CLASS statement (LOGISTIC), 4512
CLASS statement (PHREG), 5918
CLASS statement (PROBIT), 6707
CLASS statement (QUANTSELECT), 6929
CLASS statement (SURVEYPHREG), 8252
PROC CORRESP statement, 2101
PROC ICLIFETEST statement, 3896
PROC LIFETEST statement, 4341
PROC NPAR1WAY statement, 5797
PROC SURVEYFREQ statement, 7968
PROC SURVEYLOGISTIC statement, 8066
PROC SURVEYMEANS statement, 8162
PROC SURVEYPHREG statement, 8245
PROC SURVEYREG statement, 8323
STRATA statement (GENMOD), 2933
STRATA statement (LIFETEST), 4352
STRATA statement (LOGISTIC), 4560
STRATA statement (PHREG), 5947
STRATA statement (STDRATE), 7880
TABLES statement (FREQ), 2614

MISSING= option
MODEL statement (CATMOD), 1911
PROC MCMC statement, 4754
PROC PLS statement, 6222
PROC STDIZE statement, 7840
VAR statement, 2269

MISSMODEL statement
GEE procedure, 2822

MISSPRINT option
TABLES statement (FREQ), 2614

MIXED procedure, 5223
INFLUENCE option, 5257
syntax, 5223

MIXED procedure, BY statement, 5237
MIXED procedure, CLASS statement, 5316
MIXED procedure, CODE statement

CATALOG= option, 396
DUMMIES option, 396
ERRORS option, 396
FILE= option, 396
FORMAT= option, 396
GROUP= option, 396
IMPUTE option, 396
LINESIZE= option, 397
LOOKUP= option, 397
NODUMMIES option, 396
NOERRORS option, 396
NORESIDUAL option, 397
RESIDUAL option, 397

MIXED procedure, CONTRAST statement, 5239
CHISQ option, 5241
DF= option, 5241
E option, 5241
GROUP option, 5241
SINGULAR= option, 5241
SUBJECT option, 5242

MIXED procedure, ESTIMATE statement, 5242
ALPHA= option, 5243
CL option, 5243
DF= option, 5243
DIVISOR= option, 5243
E option, 5243
GROUP option, 5243
LOWERTAILED option, 5243
SINGULAR= option, 5243
SUBJECT option, 5244
UPPERTAILED option, 5244

MIXED procedure, ID statement, 5244
MIXED procedure, LSMEANS statement, 5244, 5350

ADJUST= option, 5246
ALPHA= option, 5247
AT MEANS option, 5247
AT option, 5247, 5248
BYLEVEL option, 5248, 5249
CL option, 5248
CORR option, 5248
COV option, 5248
DF= option, 5248
DIFF option, 5248
E option, 5249
OBSMARGINS option, 5249
PDIFF option, 5248, 5250
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SINGULAR= option, 5250
SLICE= option, 5250

MIXED procedure, LSMESIIMATE statement
ADJDFE= option, 478
ADJUST= option, 479
ALPHA= option, 479
AT= option, 479
BYLEVEL option, 479
CHISQ option, 480
CL option, 480
CORR option, 480
COV option, 480
DF= option, 480
DIVISOR= option, 481
E option, 481
ELSM option, 481
JOINT option, 482
LOWER option, 483
OBSMARGINS= option, 483
ODS table names, 487
PLOTS= option, 483
SEED= option, 485
SINGULAR= option, 485
STEPDOWN option, 485
TESTVALUE= option, 486
UPPER option, 486

MIXED procedure, MODEL statement, 5251
ALPHA= option, 5252
ALPHAP= option, 5252
CHISQ option, 5252
CL option, 5253
CONTAIN option, 5253, 5254
CORRB option, 5253
COVB option, 5253
COVBI option, 5253
DDF= option, 5253
DDFM= option, 5253
E option, 5256
E1 option, 5256
E2 option, 5256
E3 option, 5256
FULLX option, 5248, 5256
HTYPE= option, 5256
INFLUENCE option, 5257
INTERCEPT option, 5262
LCOMPONENTS option, 5262
NOCONTAIN option, 5262
NOINT option, 5262, 5304
NOTEST option, 5263
ORDER= option, 5307
OUTP= option, 5350
OUTPRED= option, 5263
OUTPREDM= option, 5263
RESIDUAL option, 5264, 5309

SINGCHOL= option, 5264
SINGRES= option, 5264
SINGULAR= option, 5264
SOLUTION option, 5264, 5307
VCIRY option, 5265, 5309
XPVIX option, 5265
XPVIXI option, 5265
ZETA= option, 5265

MIXED procedure, MODEL statement, INFLUENCE
option

EFFECT=, 5258
ESTIMATES, 5258
ITER=, 5258
KEEP=, 5259
SELECT=, 5259
SIZE=, 5259

MIXED procedure, PARMS statement, 5265, 5350
EQCONS= option, 5266
HOLD= option, 5266
LOGDETH option, 5267
LOWERB= option, 5267
NOBOUND option, 5267
NOITER option, 5267
NOPRINT option, 5267
NOPROFILE option, 5267
OLS option, 5268
PARMSDATA= option, 5268
PDATA= option, 5268
RATIOS option, 5268
UPPERB= option, 5268

MIXED procedure, PRIOR statement, 5268
ALG= option, 5270
BDATA= option, 5270
DATA= option, 5270
FLAT option, 5270
GRID= option, 5271
GRIDT= option, 5271
IFACTOR= option, 5271
JEFFREYS option, 5270
LOGNOTE= option, 5271
LOGRBOUND= option, 5271
NSAMPLE= option, 5271
NSEARCH= option, 5271
OUT= option, 5271
OUTG= option, 5271
OUTGT= option, 5271
PSEARCH option, 5271
PTRANS option, 5272
SEED= option, 5272
SFACTOR= option, 5272
TDATA= option, 5272
TRANS= option, 5272
UPDATE= option, 5272

MIXED procedure, PROC MIXED statement, 5225
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ABSOLUTE option, 5226, 5317
ALPHA= option, 5227
ANOVAF option, 5227
ASYCORR option, 5227
ASYCOV option, 5227, 5350
CL= option, 5227
CONVF option, 5227, 5317
CONVG option, 5228, 5317
CONVH option, 5228, 5317
COVTEST option, 5228, 5318
DATA= option, 5228
DFBW option, 5228
IC option, 5229
INFO option, 5229
ITDETAILS option, 5229
LOGNOTE option, 5229
MAXFUNC= option, 5230
MAXITER= option, 5230
METHOD= option, 5230, 5340
MMEQ option, 5230, 5350
MMEQSOL option, 5230, 5350
NAMELEN= option, 5230
NOBOUND option, 5230
NOCLPRINT option, 5231
NOINFO option, 5231
NOITPRINT option, 5231
NOPROFILE option, 5231, 5297
ORD option, 5231
ORDER= option, 5304
PLOTS= option, 5231
RANKS option, 5236
RATIO option, 5236, 5317
RIDGE= option, 5236
SCORING= option, 5236
SIGITER option, 5237
UPDATE option, 5237

MIXED procedure, RANDOM statement, 5217, 5272,
5334

ALPHA= option, 5273
CL option, 5273
G option, 5273
GC option, 5274
GCI option, 5274
GCORR option, 5274
GDATA= option, 5274
GI option, 5274
GROUP= option, 5274
LDATA= option, 5275
NOFULLZ option, 5275
RATIOS option, 5275
SOLUTION option, 5275
SUBJECT= option, 5240, 5275
TYPE= option, 5275
V option, 5276

VC option, 5276
VCI option, 5276
VCORR option, 5276
VI option, 5276

MIXED procedure, REPEATED statement, 5217,
5276, 5339

GROUP= option, 5278
HLM option, 5278
HLPS option, 5278
LDATA= option, 5278
LOCAL= option, 5279
LOCALW option, 5280
NONLOCALW option, 5280
R option, 5280
RC option, 5280
RCI option, 5280
RCORR option, 5281
RI option, 5281
SSCP option, 5281
SUBJECT= option, 5281
TYPE= option, 5281

MIXED procedure, SLICE statement
ADJDFE= option, 462
ADJUST= option, 463
ALPHA= option, 465
AT= option, 465
BYLEVEL option, 465
CL option, 466
CORR option, 466
COV option, 466
DF= option, 466
DIFF option, 466
E option, 467
LINES option, 468
MEANS or NOMEANS option, 468
NOF option, 507
OBSMARGINS= option, 468
ODS graph names, 475
ODS table names, 507
PDIFF option, 469
PLOTS= option, 469
SEED= option, 473
SIMPLE= option, 507
SINGULAR= option, 473
SLICEBY= option, 507
STEPDOWN option, 473

MIXED procedure, WEIGHT statement, 5291
MIXED procedure, CLASS statement, 5237

REF= option, 5238
REF= variable option, 5238
TRUNCATE option, 5238

MIXED procedure, CODE statement, 5238
MIXED procedure, LSMESTIMATE statement, 5250
MIXED procedure, PROC MIXED statement



Syntax Index F 9319

ORDER= option, 5231
MIXED procedure, SLICE statement, 5290
MIXED procedure, STORE statement, 5290
MIXPRIORPARMS option

BAYES statement (FMM), 2488
ML option

MODEL statement (CATMOD), 1909
MMEQ option

PROC HPMIXED statement, 3829
PROC MIXED statement, 5230, 5350

MMEQSOL option
PROC MIXED statement, 5230, 5350

MNAMES= option
MANOVA statement (ANOVA), 961
MANOVA statement (GLM), 3430

MNAR statement
MI procedure, 5056

MODE= option
PROC CLUSTER statement, 2018
PROC MODECLUS statement, 5419

MODECLUS procedure
syntax, 5414

MODECLUS procedure, BY statement, 5421
MODECLUS procedure, FREQ statement, 5421
MODECLUS procedure, ID statement, 5421
MODECLUS procedure, PROC MODECLUS

statement, 5414
ALL option, 5416
AM option, 5416
BOUNDARY option, 5416
CASCADE= option, 5416
CK= option, 5416
CLUSTER= option, 5416
CORE option, 5416
CR= option, 5416
CROSS option, 5416
CROSSLIST option, 5416
DATA= option, 5416
DENSITY= option, 5417
DIMENSION= option, 5417
DK= option, 5417
DOCK= option, 5417
DR= option, 5417
EARLY option, 5417
HM option, 5418
JOIN= option, 5418
K= option, 5418
LIST option, 5418
LOCAL option, 5418
MAXCLUSTERS= option, 5418
METHOD= option, 5418
MODE= option, 5419
NEIGHBOR option, 5419
NOPRINT option, 5419

NOSUMMARY option, 5419
OUT= option, 5419
OUTCLUS= option, 5419
OUTLENGTH= option, 5420
OUTSUM= option, 5419
POWER= option, 5420
R= option, 5420
SHORT option, 5420
SIMPLE option, 5420
STANDARD option, 5420
SUM option, 5420
TEST option, 5420
THRESHOLD= option, 5420
TRACE option, 5420

MODECLUS procedure, VAR statement, 5422
model analysis statements, CALIS procedure, 1198
MODEL option

MNAR statement (MI), 5056
MODEL statement

ADAPTIVEREG procedure, 904
ANOVA procedure, 968
BCHOICE procedure, 1029
CALIS procedure, 1311
CATMOD procedure, 1907
FMM procedure, 2495
GAM procedure, 2768
GEE procedure, 2823
GENMOD procedure, 2913
GLIMMIX procedure, 3131
GLM procedure, 3438
GLMMOD procedure, 3583
GLMPOWER procedure, 3611
GLMSELECT procedure, 3685
HPMIXED procedure, 3842
ICPHREG procedure, 3956
IRT procedure, 4034
KRIGE2D procedure, 4143
LIFEREG procedure, 4242
LOESS procedure, 4439
LOGISTIC procedure, 4531
MCMC procedure, 4766
MIXED procedure, 5251
NLIN procedure, 5598
NLMIXED procedure, 5711
ORTHOREG procedure, 5864
PHREG procedure, 5932
PLS procedure, 6229
QUANTLIFE procedure, 6808
QUANTREG procedure, 6851
QUANTSELECT procedure, 6932
REG procedure, 7014
ROBUSTREG procedure, 7185
RSREG procedure, 7266
SURVEYLOGISTIC procedure, 8082
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SURVEYPHREG procedure, 8258
SURVEYREG procedure, 8339
TPSPLINE procedure, 8497
TRANSREG procedure, 8565
VARCOMP procedure, 8891
VARIOGRAM procedure, 8941

MODEL= option
MULTREG statement (POWER), 6285
ONECORR statement (POWER), 6289
PATHDIAGRAM statement, 1339
SAMPLESIZE statement (SEQDESIGN), 7340

MODELAVERAGE statement
GLMSELECT procedure, 3696

MODELDATA option
PRINT statement (REG), 7029

MODELEFFECTS statement
MIANALYZE procedure, 5167

MODELFONT option
PLOT statement (REG), 7099

MODELHT option
PLOT statement (REG), 7100

MODELLAB option
PLOT statement (REG), 7100

MODELOBS= option
MNAR statement (MI), 5056

MODELSE option
REPEATED statement , 2827
REPEATED statement (GENMOD), 2930

MODIFICATION option
PROC CALIS statement, 1224

MODIFIED option (CHISQ)
TABLES statement (SURVEYFREQ), 7982

MODIFIED option (LRCHISQ)
TABLES statement (SURVEYFREQ), 7986

Modifiers of INFLUENCE option
MODEL statement (MIXED), 5257

MOFF option
EFFECTPLOT statement, 421

MONITOR option
RANDOM statement (BCHOICE), 1033

MONITOR= option
MODEL statement, 4772
PROC MCMC statement, 4754
RANDOM statement, 4783

MONOTONE statement
MI procedure, 5058

MONOTONE transformation
MODEL statement (TRANSREG), 8571
TRANSFORM statement (PRINQUAL), 6646

MONOTONE= option
MODEL statement (TRANSREG), 8587
PROC PRINQUAL statement, 6637

MOOD option
EXACT statement (NPAR1WAY), 5804

OUTPUT statement (NPAR1WAY), 5809
PROC NPAR1WAY statement, 5797

MPAIRS= option
PROC ACECLUS statement, 872

MPC option
OUTPUT statement (TRANSREG), 8599

MQC option
OUTPUT statement (TRANSREG), 8599

MRC option
OUTPUT statement (TRANSREG), 8599

MREDUNDANCY option
OUTPUT statement (TRANSREG), 8600

MSA option
PROC FACTOR statement, 2314

MSE option
MODEL statement (REG), 7021
PLOT statement (REG), 7100

MSINGULAR= option
NLOPTIONS statement (CALIS), 497
NLOPTIONS statement (GLIMMIX), 497
NLOPTIONS statement (HPMIXED), 497
NLOPTIONS statement (PHREG), 497
NLOPTIONS statement (SURVEYPHREG), 497
NLOPTIONS statement (VARIOGRAM), 497
PROC CALIS statement, 1225
PROC NLMIXED statement, 5704

MSPLINE transformation
MODEL statement (TRANSREG), 8571
TRANSFORM statement (PRINQUAL), 6646

MSTAT= option
MANOVA statement (ANOVA), 961
MANOVA statement (GLM), 3430
MTEST statement (REG), 7026
REPEATED statement (ANOVA), 971
REPEATED statement (GLM), 3449

MSTRUCT statement, CALIS procedure, 1313
MTEST statement

REG procedure, 7025
MTEST= option

POWER statement (GLMPOWER), 3620
MTOGTOL= option

MODEL statement (VARIOGRAM), 8953
MU0= option

PROC MI statement, 5041
PROC MIANALYZE statement, 5166

MULT option
PROC MIANALYZE statement, 5165
TEST statement (MIANALYZE), 5169

MULT= option
POPULATION statement (STDRATE), 7878
PROC DISTANCE statement, 2264
PROC STDIZE statement, 7840
PROC STDRATE statement, 7877
REFERENCE statement (STDRATE), 7879
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MULTIPASS option
PROC ANOVA statement, 955
PROC GLM statement, 3407
PROC LOGISTIC statement, 4501
PROC PHREG statement, 5894

MULTIPLEGROUP option
PROC VARCLUS statement, 8863

MULTREG statement
POWER procedure, 6283

MULTTEST procedure, 5492
syntax, 5492

MULTTEST procedure, BY statement, 5504
MULTTEST procedure, CLASS statement, 5505
MULTTEST procedure, CONTRAST statement, 5505
MULTTEST procedure, FREQ statement, 5506
MULTTEST procedure, ID statement, 5507
MULTTEST procedure, PROC MULTTEST statement,

5493
ADAPTIVEFDR option, 5494, 5524
ADAPTIVEHOCHBERG option, 5494
ADAPTIVEHOLM option, 5494
BONFERRONI option, 5495, 5519
BOOTSTRAP option, 5490, 5495, 5519, 5534
CENTER option, 5495
DATA= option, 5495
DEPENDENTFDR option, 5495, 5523
EPSILON= option, 5495
FDR option, 5495, 5522
FDRBOOT option, 5495, 5523
FDRPERM option, 5496, 5523
FISHER_C option, 5496, 5521
HOC option, 5496, 5521
HOLM option, 5496, 5503
HOM option, 5496
HOMMEL option, 5521
INPVALUES= option, 5496
LIPTAK option, 5496, 5521
NOCENTER option, 5496
NOPRINT option, 5496
NOPVALUE option, 5497
NOTABLES option, 5497
NOZEROS option, 5497
NSAMPLE= option, 5497
NTRUENULL= option, 5497
ORDER= option, 5541
OUT= option, 5499, 5526
OUTPERM= option, 5500, 5527, 5531
OUTSAMP= option, 5500, 5527, 5534
PDATA= option, 5500
PERMUTATION option, 5500, 5520, 5531, 5541
PFDR option, 5500, 5524
PLOTS= option, 5501
PTRUENULL= option, 5503
RANUNI option, 5503

SEED= option, 5503
SIDAK option, 5503, 5519, 5538
STEPBON option, 5503
STEPBOOT option, 5504
STEPPERM option, 5504
STEPSID option, 5504, 5538
STOUFFER option, 5504, 5521

MULTTEST procedure, STRATA statement, 5507
WEIGHT= option, 5507, 5513

MULTTEST procedure, TEST statement, 5507
BINOMIAL option, 5509
CA option, 5508, 5510, 5531
CONTINUITY= option, 5509
DDFM= option, 5509
FISHER option, 5506, 5508, 5515, 5541
FT option, 5508, 5513, 5534
LOWERTAILED option, 5509
MEAN option, 5508, 5516, 5534
PERMUTATION= option, 5509, 5511, 5531
PETO option, 5508, 5514, 5538
TIME= option, 5509
UPPERTAILED option, 5509

MULTTEST procedure, CLASS statement
TRUNCATE option, 5505

MULTTEST procedure, PROC MULTTEST statement
ORDER= option, 5499

MUPRIORPARMS option
BAYES statement (FMM), 2488

N option
OUTPUT statement (FREQ), 2594

N= option
EXACT statement (FREQ), 2585
EXACT statement (NPAR1WAY), 5806
FACTOR statement (CALIS), 1259
PROC ACECLUS statement, 872
PROC PRINCOMP statement, 6592
PROC PRINQUAL statement, 6637
PROC SURVEYLOGISTIC statement, 8067
PROC SURVEYMEANS statement, 8166
PROC SURVEYREG statement, 8327

NALTER= option
PREDDIST statement (BCHOICE), 1032

NALTERNATIVE= option
PREDDIST statement (BCHOICE), 1032

NAME statement
TREE procedure, 8775

NAME= option
GROUP statement, 1273
MCMC statement (MI), 5050, 5055
MODEL statement, 1312
MODEL statement (TRANSREG), 8582
PLOT statement (BOXPLOT), 1113
PLOT statement (GLMPOWER), 3615
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PLOT statement (POWER), 6330
PLOT statement (REG), 7100
PROC TREE statement, 8772
TRANSFORM statement (PRINQUAL), 6650

NAMELEN= option
PROC ADAPTIVEREG statement, 896
PROC ANOVA statement, 955
PROC CATMOD statement, 1897
PROC FMM statement, 2477
PROC GEE statement, 2820
PROC GENMOD statement, 2879
PROC GLIMMIX statement, 3077
PROC GLM statement, 3407
PROC GLMMOD statement, 3580
PROC GLMSELECT statement, 3672
PROC HPMIXED statement, 3829
PROC ICPHREG statement, 3941
PROC LIFEREG statement, 4224
PROC LOGISTIC statement, 4501
PROC MIXED statement, 5230
PROC PHREG statement, 5894
PROC PROBIT statement, 6694
PROC QUANTLIFE statement, 6804
PROC QUANTREG statement, 6845
PROC QUANTSELECT statement, 6922
PROC ROBUSTREG statement, 7175
PROC SURVEYLOGISTIC statement, 8066
PROC SURVEYREG statement, 8323

NAMESUFFIX= option
MODEL statement, 4773
RANDOM statement (MCMC), 4784

NARROW option
PROC SIM2D statement, 7702

NATURALCUBIC option
EFFECT statement, spline (GLIMMIX), 410
EFFECT statement, spline (GLMSELECT), 410
EFFECT statement, spline (HPMIXED), 410
EFFECT statement, spline (LOGISTIC), 410
EFFECT statement, spline (ORTHOREG), 410
EFFECT statement, spline (PHREG), 410
EFFECT statement, spline (PLS), 410
EFFECT statement, spline (QUANTLIFE), 410
EFFECT statement, spline (QUANTREG), 410
EFFECT statement, spline (QUANTSELECT),

410
EFFECT statement, spline (ROBUSTREG), 410
EFFECT statement, spline (SURVEYLOGISTIC),

410
EFFECT statement, spline (SURVEYREG), 410

NBEST= option
PROC ROBUSTREG statement, 7179

NBI= option
BAYES statement, 2890, 4230
BAYES statement (FMM), 2489

BAYES statement(PHREG), 5910
PROC BCHOICE statement, 1021
PROC MCMC statement, 4754

NBINS= global plot option
PROC SURVEYREG statement, 8325

NBINS= option
LOGISTIC statement (POWER), 6279
PROC SURVEYREG statement, 8326
TWOSAMPLEWILCOXON statement

(POWER), 6360
NBITER= option

FCS statement (MI), 5044
MCMC statement (MI), 5052

NCAN= option
MODEL statement (TRANSREG), 8587
PROC CANCORR statement, 1834
PROC CANDISC statement, 1862
PROC DISCRIM statement, 2166

NCLUSTERS= option
PROC TREE statement, 8772

NCOLS= option
EFFECTPLOT statement, 421

NCOVARIATES= option
POWER statement (GLMPOWER), 3621

NDIRECTIONS= option
COMPUTE statement (VARIOGRAM), 8939

NDIST option
PROCESS statement (SPP), 7794

NEAREST suboption
RANDOM statement (GLIMMIX), 3159

NEGATIVE option
PROC MDS statement, 5004

NEIGHBOR option
PROC MODECLUS statement, 5419

NELSON option
PROC LIFETEST statement, 4341

NEPSILON= option
MODEL statement (VARIOGRAM), 8949

NEST= option
MODEL statement (BCHOICE), 1031

NESTED procedure
syntax, 5562

NESTED procedure, BY statement, 5563
NESTED procedure, CLASS statement, 5564
NESTED procedure, PROC NESTED statement, 5563

AOV option, 5563
DATA= option, 5563

NESTED procedure, VAR statement, 5564
NESTED procedure, CLASS statement

TRUNCATE option, 5564
NFAC= option

PROC PLS statement, 6223
NFACTOR= option

PROC IRT statement, 4017
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NFACTORS= option
PROC FACTOR statement, 2315

NFRACTIONAL option
LOGISTIC statement (POWER), 6279
MULTREG statement (POWER), 6285
ONECORR statement (POWER), 6290
ONESAMPLEMEANS statement (POWER),

6302
ONEWAYANOVA statement (POWER), 6308
PAIREDFREQ statement (POWER), 6313
PAIREDMEANS statement (POWER), 6320
POWER statement (GLMPOWER), 3621
TWOSAMPLEFREQ statement (POWER), 6332
TWOSAMPLEMEANS statement (POWER),

6341
TWOSAMPLESURVIVAL statement (POWER),

6352
NFRACTIONAL= option

ONESAMPLEFREQ statement (POWER), 6295
TWOSAMPLEWILCOXON statement

(POWER), 6360
NFULLPREDICTORS= option

MULTREG statement (POWER), 6285
NGRID= option

BIVAR statement, 4085
UNIVAR statement, 4089

NHCLASSES= option
COMPUTE statement (VARIOGRAM), 8940

NIMPUTE= option
PROC MI statement, 5041

NINTERVAL= option
PROC LIFETEST statement, 4341

NITER= option
MCMC statement (MI), 5052
PROC PLS statement, 6221

NKNOTS= option
MODEL statement (TRANSREG), 8576
TRANSFORM statement (PRINQUAL), 6650

NLAG option
EFFECT statement, lag (GLIMMIX), 402
EFFECT statement, lag (GLMSELECT), 402
EFFECT statement, lag (HPMIXED), 402
EFFECT statement, lag (LOGISTIC), 402
EFFECT statement, lag (ORTHOREG), 402
EFFECT statement, lag (PHREG), 402
EFFECT statement, lag (PLS), 402
EFFECT statement, lag (QUANTLIFE), 402
EFFECT statement, lag (QUANTREG), 402
EFFECT statement, lag (QUANTSELECT), 402
EFFECT statement, lag (ROBUSTREG), 402
EFFECT statement, lag (SURVEYLOGISTIC),

402
EFFECT statement, lag (SURVEYREG), 402

NLAG= option

MCMC statement (MI), 5050
NLEGEND option

PLOT statement (BOXPLOT), 1113
NLEVELS option

PROC FREQ statement, 2577
NLIN procedure

syntax, 5583
NLIN procedure, BOOTSTRAP statement, 5594

BOOTCI option, 5595
BOOTCORR option, 5595
BOOTCOV option, 5595
BOOTDATA option, 5595
BOOTPLOTS option, 5595
DGP option, 5596
NSAMPLES option, 5596
SEED option, 5596

NLIN procedure, BOUNDS statement, 5596
NLIN procedure, BY statement, 5597
NLIN procedure, CONTROL statement, 5598
NLIN procedure, DER statement, 5598
NLIN procedure, ID statement, 5598
NLIN procedure, MODEL statement, 5598
NLIN procedure, OUTPUT statement, 5599

ALPHA= option, 5603
DER option, 5603
H= option, 5600
J= option, 5600
L95= option, 5600
L95M= option, 5600
LCL= option, 5601
LCLM= option, 5601
LMAX= option, 5601
OUT= option, 5600
PARMS= option, 5601
PREDICTED= option, 5601
PROJRES= option, 5601
PROJSTUDENT= option, 5601
RESEXPEC= option, 5601
RESIDUAL= option, 5602
SSE= option, 5602
STDI= option, 5602
STDP= option, 5602
STDR= option, 5602
STUDENT= option, 5602
U95= option, 5602
U95M= option, 5602
UCL= option, 5602
UCLM= option, 5602
WEIGHT= option, 5603

NLIN procedure, PARAMETERS statement, 5603
NLIN procedure, PROC NLIN statement, 5584

ALPHA= option, 5585
BEST= option, 5585
BIAS option, 5585
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CONVERGE= option, 5585
CONVERGEOBJ= option, 5586
CONVERGEPARM= option, 5586
DATA= option, 5586
FLOW option, 5587
G4 option, 5587
HOUGAARD option, 5587
LIST option, 5587
LISTALL option, 5587
LISTCODE option, 5587
LISTDEP option, 5587
LISTDER option, 5588
MAXITER= option, 5588
MAXSUBIT= option, 5588
METHOD= option, 5588
NLINMEASURES option, 5588
NOHALVE option, 5588
NOITPRINT option, 5588
NOPRINT option, 5588
OUTEST= option, 5588
PLOT option, 5589
PLOTS option, 5589
PRINT option, 5593
RHO= option, 5593
SAVE option, 5593
SIGSQ= option, 5593
SINGULAR= option, 5593
SMETHOD= option, 5594
TAU= option, 5594
TOTALSS option, 5594
TRACE option, 5594
UNCORRECTEDDF option, 5594
XREF option, 5594

NLIN procedure, PROFILE statement, 5606
ALL option, 5606
CONFCURV option, 5606
JACKKNIFE option, 5606
PROFDATA= option, 5606
RANGE= option, 5607
TPLOT option, 5607

NLIN procedure, program statements, 5607
NLIN procedure, programming statements, 5607
NLIN procedure, RETAIN statement, 5607
NLINCON statement, CALIS procedure, 1316
NLINMEASURES option

PROC NLIN statement, 5588
NLMIXED procedure, 5691

syntax, 5691
NLMIXED procedure, ARRAY statement, 5709
NLMIXED procedure, BOUNDS statement, 5709
NLMIXED procedure, BY statement, 5710
NLMIXED procedure, CONTRAST statement, 5710

DF= option, 5710
NLMIXED procedure, ESTIMATE statement, 5710

ALPHA= option, 5711
DF= option, 5711

NLMIXED procedure, ID statement, 5711
NLMIXED procedure, MODEL statement, 5711
NLMIXED procedure, NLOPTIONS statement

VSINGULAR= option, 500
NLMIXED procedure, PARMS statement, 5712

BEST= option, 5712
BYDATA option, 5712
DATA= option, 5712

NLMIXED procedure, PREDICT statement, 5713
ALPHA= option, 5713
DER option, 5713
DF= option, 5713

NLMIXED procedure, PROC NLMIXED statement
ABSCONV= option, 5694
ABSFCONV= option, 5694
ABSGCONV= option, 5694
ABSXCONV= option, 5694
ALPHA= option, 5695
ASINGULAR= option, 5695
CFACTOR= option, 5695
CORR option, 5695
COV option, 5695
COVSING= option, 5695
DAMPSTEP option, 5695
DATA= option, 5695
DF= option, 5695
DIAHES option, 5696
EBOPT option, 5696
EBSSFRAC option, 5696
EBSSTOL option, 5696
EBSTEPS option, 5696
EBSUBSTEPS option, 5696
EBTOL option, 5696
EBZSTART option, 5696
ECORR option, 5696
ECOV option, 5696
EDER option, 5697
EMPIRICAL option, 5697
FCONV2= option, 5697
FCONV= option, 5697
FD= option, 5698
FDHESSIAN= option, 5698
FDIGITS= option, 5699
FLOW option, 5699
FSIZE= option, 5699
G4= option, 5699
GCONV= option, 5699
HESCAL= option, 5699
HESS option, 5700
INHESSIAN option, 5700
INSTEP= option, 5700
ITDETAILS option, 5701
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LCDEACT= option, 5701
LCEPSILON= option, 5701
LCSINGULAR= option, 5701
LINESEARCH= option, 5701
LIST option, 5702
LISTCODE option, 5702
LISTDEP option, 5702
LISTDER option, 5702
LOGNOTE option, 5702
LSPRECISION= option, 5702
MAXFUNC= option, 5703
MAXITER= option, 5703
MAXSTEP= option, 5703
MAXTIME= option, 5703
METHOD= option, 5704
MINITER= option, 5704
MSINGULAR= option, 5704
NOAD option, 5704
NOADSCALE option, 5704
NOSORTSUB option, 5705
OPTCHECK option, 5705
OUTQ= option, 5705
OUTR= option, 5705
QFAC option, 5705
QMAX option, 5705
QPOINTS option, 5705
QSCALEFAC option, 5705
QTOL option, 5705
RESTART option, 5706
SEED option, 5706
SINGCHOL= option, 5706
SINGHESS= option, 5706
SINGSWEEP= option, 5706
SINGVAR option, 5706
START option, 5706
SUBGRADIENT option, 5706
TECHNIQUE= option, 5707
TRACE option, 5707
UPDATE= option, 5707, 5708
VSINGULAR= option, 5708
XCONV= option, 5708
XREF option, 5708
XSIZE= option, 5708

NLMIXED procedure, RANDOM statement, 5713
ALPHA= option, 5714
DF= option, 5714
OUT= option, 5714

NLMIXED procedure, REPLICATE statement, 5714
NLOPTIONS option

PROC ADAPTIVEREG statement, 896
PROC ICPHREG statement, 3941

NLOPTIONS statement
CALIS procedure, 488
GLIMMIX procedure, 488, 3145

HPMIXED procedure, 488, 3843
LOGISTIC procedure, 4548
PHREG procedure, 488
SURVEYPHREG procedure, 488, 8262
VARIOGRAM procedure, 488, 8957

NLOPTIONS statement, CALIS procedure, 1316
NLPRINT option

PROC HPMIXED statement, 3829
NMARKERS= option

PROC STDIZE statement, 7840
NMAX= option

PROC SURVEYSELECT statement, 8422
NMC= option

BAYES statement, 2890, 4230
BAYES statement (FMM), 2489
BAYES statement(PHREG), 5910
PROC BCHOICE statement, 1021
PROC MCMC statement, 4754

NMIN= option
PROC SURVEYSELECT statement, 8422

NMISS option
OUTPUT statement (FREQ), 2594

NOAD option
PROC IRT statement, 4017
PROC NLMIXED statement, 5704

NOADJDF option
FITINDEX statement, 1269
PROC CALIS statement, 1225

NOADSCALE option
PROC NLMIXED statement, 5704

NOANOVA option
MODEL statement (RSREG), 7268

NOBORDER option
EFFECTPLOT statement, 421

NOBOUND option
PARMS statement (GLIMMIX), 3152
PARMS statement (MIXED), 5267
PARMS statement (VARIOGRAM), 8956
PROC GLIMMIX statement, 3077
PROC MIXED statement, 5230

NOBS= option
PROC CALIS statement, 1225
PROC FACTOR statement, 2315

NOBSDETAIL option
PROC GLIMMIX statement, 3078

NOBYREF option
PLOT statement (BOXPLOT), 1113

NOBYVAR option
PROC TTEST statement, 8797

NOCELLPERCENT option
TABLES statement (SURVEYFREQ), 7986

NOCENSPLOT option
PROC LIFETEST statement, 4383

NOCENTER option
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MODEL statement (GLIMMIX), 3142
PROC FMM statement, 2477
PROC MULTTEST statement, 5496
PROC PLS statement, 6223

NOCHART option
BOXPLOT procedure, 1113

NOCHECK option
MODEL statement (LOGISTIC), 4541
MODEL statement (SURVEYLOGISTIC), 8088
PROC PRINQUAL statement, 6638

NOCLASSIFY option
PROC DISCRIM statement, 2167

NOCLI option
EFFECTPLOT statement, 421

NOCLM option
EFFECTPLOT statement, 422

NOCLPRINT option
PROC BCHOICE statement, 1021
PROC FMM statement, 2477
PROC GLIMMIX statement, 3078
PROC HPMIXED statement, 3829
PROC MIXED statement, 5231
PROC PLM statement (PLM), 6163
RANDOM statement, 5945

NOCLUSTER option
EFFECTPLOT statement, 422

NOCODE option
MODEL statement (RSREG), 7268

NOCOL option
TABLES statement (FREQ), 2614

NOCOLLAPSE option
STRATA statement (SURVEYREG), 8345

NOCOLLECT option
PLOT statement (REG), 7102

NOCOLUMN= option
PROC CORRESP statement, 2101

NOCONNECT option
EFFECTPLOT statement, 422

NOCONTAIN option
MODEL statement (MIXED), 5262

NOCORR option
PROC FACTOR statement, 2315

NOCOV option
PATHDIAGRAM statement, 1340
PROC LOGISTIC statement, 4501

NOCUM option
TABLES statement (FREQ), 2615

NOCVSTDIZE option
PROC PLS statement, 6223

NODECREMENT option
PREDICT statement (KRIGE2D), 4142

nodefault option
LMTESTS statement, 1286

NODELABEL= option

PATHDIAGRAM statement, 2330
NODESIGN option

MODEL statement (CATMOD), 1911
NODESIGNPRINT= option, see NODUMMYPRINT

option)
MODEL statement (LOGISTIC), 4541
MODEL statement (SURVEYLOGISTIC), 8088

NODETAIL option
STRATA statement (LIFETEST), 4352

NODIAG option
MODEL statement (QUANTREG), 6853

NODUMMIES option
CODE statement (GENMOD), 396
CODE statement (GLIMMIX), 396
CODE statement (GLM), 396
CODE statement (GLMSELECT), 396
CODE statement (LOGISTIC), 396
CODE statement (MIXED), 396
CODE statement (PLM), 396
CODE statement (REG), 396

NODUMMYPRINT= option
MODEL statement (LOGISTIC), 4541
MODEL statement (PHREG), 5937
MODEL statement (SURVEYLOGISTIC), 8088

NODUP option
PROC SPP statement, 7777

NOEFFECT option
EFFECT statement, multimember (GLIMMIX),

403
EFFECT statement, multimember

(GLMSELECT), 403
EFFECT statement, multimember (HPMIXED),

403
EFFECT statement, multimember (LOGISTIC),

403
EFFECT statement, multimember (ORTHOREG),

403
EFFECT statement, multimember (PHREG), 403
EFFECT statement, multimember (PLS), 403
EFFECT statement, multimember

(QUANTLIFE), 403
EFFECT statement, multimember (QUANTREG),

403
EFFECT statement, multimember

(QUANTSELECT), 403
EFFECT statement, multimember

(ROBUSTREG), 403
EFFECT statement, multimember

(SURVEYLOGISTIC), 403
EFFECT statement, multimember

(SURVEYREG), 403
NOEIGEN option

PROC CLUSTER statement, 2018
NOERRCOV option
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PATHDIAGRAM statement, 1340
NOERRORS option

CODE statement (GENMOD), 396
CODE statement (GLIMMIX), 396
CODE statement (GLM), 396
CODE statement (GLMSELECT), 396
CODE statement (LOGISTIC), 396
CODE statement (MIXED), 396
CODE statement (PLM), 396
CODE statement (REG), 396

NOERRVAR option
PATHDIAGRAM statement, 1340, 2330

NOESTIM option
PATHDIAGRAM statement, 1340, 2330

NOEXOGCOV option
PATHDIAGRAM statement, 1340

NOEXOGVAR option
PATHDIAGRAM statement, 1340, 2330

NOF option
SLICE statement (GENMOD), 507
SLICE statement (GLIMMIX), 507
SLICE statement (LIFEREG), 507
SLICE statement (LOGISTIC), 507
SLICE statement (MIXED), 507
SLICE statement (ORTHOREG), 507
SLICE statement (PHREG), 507
SLICE statement (PLM), 507
SLICE statement (PROBIT), 507
SLICE statement (SURVEYLOGISTIC), 507
SLICE statement (SURVEYPHREG), 507
SLICE statement (SURVEYREG), 507

NOFILL option
CONTRAST statement (SURVEYREG), 8333
ESTIMATE statement (LIFEREG), 451
ESTIMATE statement (LOGISTIC), 451
ESTIMATE statement (ORTHOREG), 451
ESTIMATE statement (PHREG), 451
ESTIMATE statement (PLM), 451
ESTIMATE statement (PROBIT), 451
ESTIMATE statement (QUANTREG), 451
ESTIMATE statement (SURVEYLOGISTIC),

451
ESTIMATE statement (SURVEYPHREG), 451
ESTIMATE statement (SURVEYREG), 451

NOFIT option
MODEL statement (LOGISTIC), 4541
MODEL statement (PHREG), 5937
MODEL statement (VARIOGRAM), 8953
PROC GLIMMIX statement, 3078
PROC HPMIXED statement, 3830

NOFITTABLE option
PATHDIAGRAM statement, 1340

NOFLAG option
PATHDIAGRAM statement, 1340

NOFRAME option
INSET statement, 4239
PLOT statement (BOXPLOT), 1113

NOFREQ option
TABLES statement (FREQ), 2615
TABLES statement (SURVEYFREQ), 7986

NOFULLZ option
RANDOM statement (GLIMMIX), 3161
RANDOM statement (HPMIXED), 3850
RANDOM statement (MIXED), 5275

NOGOODFIT option
MODEL statement (ROBUSTREG), 7187

NOHALVE option
PROC NLIN statement, 5588

NOHLABEL option
PLOT statement (BOXPLOT), 1113

NOID option
PROC CLUSTER statement, 2018

NOINCREMENT option
PREDICT statement (KRIGE2D), 4142

NOINDEXTYPE option
FITINDEX statement, 1269
PROC CALIS statement, 1225

NOINFO option
PROC HPMIXED statement, 3830
PROC MIXED statement, 5231
PROC PLM statement (PLM), 6164

NOINITGLM option
PROC GLIMMIX statement, 3078

NOINITPARM option
PATHDIAGRAM statement, 1340

NOINT option
MODEL statement, 2825
MODEL statement (CATMOD), 1911
MODEL statement (FMM), 2502
MODEL statement (GENMOD), 2919
MODEL statement (GLIMMIX), 3142, 3230
MODEL statement (GLM), 3441
MODEL statement (GLMMOD), 3583
MODEL statement (GLMSELECT), 3688
MODEL statement (HPMIXED), 3843
MODEL statement (LIFEREG), 4246
MODEL statement (LOGISTIC), 4541
MODEL statement (MIXED), 5262, 5304
MODEL statement (ORTHOREG), 5864
MODEL statement (QUANTLIFE), 6809
MODEL statement (QUANTREG), 6853
MODEL statement (QUANTSELECT), 6934
MODEL statement (REG), 7021
MODEL statement (ROBUSTREG), 7187
MODEL statement (SURVEYLOGISTIC), 8088
MODEL statement (SURVEYREG), 8341
MODEL statement (TRANSREG), 8587
MULTREG statement (POWER), 6285
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PROBMODEL statement (FMM), 2508
PROC CANCORR statement, 1835
PROC FACTOR statement, 2315
PROC PRINCOMP statement, 6592
PROC VARCLUS statement, 8864

NOITER option
PARMS statement (GLIMMIX), 3152
PARMS statement (HPMIXED), 3847
PARMS statement (MIXED), 5267

NOITPRINT option
MODEL statement (VARIOGRAM), 8953
PROC FMM statement, 2477
PROC GLIMMIX statement, 3078
PROC HPMIXED statement, 3830
PROC IRT statement, 4017
PROC MIXED statement, 5231
PROC NLIN statement, 5588

NOLABEL option
STRATA statement (LIFETEST), 4352

NOLEFT option
PROC LIFETEST statement, 4341

NOLEGEND option
PLOT statement (REG), 7100

NOLIMITS option
EFFECTPLOT statement, 422

NOLINE option
PLOT statement (REG), 7100

NOLIST option
PAINT statement (REG), 7091
REWEIGHT statement (REG), 7033

NOLOG option
MODEL statement (LIFEREG), 4246

NOLOGDIST option
PROC MCMC statement, 4754

NOLOGNB option
MODEL statement (GENMOD), 2919

NOLOGSCALE option
MODEL statement (GENMOD), 2909
MODEL statement (LOGISTIC), 4527, 4541

NOM option
REPEATED statement (ANOVA), 972
REPEATED statement (GLM), 3449

NOMCAR option
PROC SURVEYFREQ statement, 7969
PROC SURVEYLOGISTIC statement, 8066
PROC SURVEYMEANS statement, 8162
PROC SURVEYPHREG statement, 8245
PROC SURVEYREG statement, 8323

NOMEAN option
PATHDIAGRAM statement, 1341

NOMEANSTR option
PROC CALIS statement, 1225

NOMISS option
MODEL statement (ADAPTIVEREG), 909

MODEL statement (TRANSREG), 8588
OUTPUT statement (GLIMMIX), 3149
OUTPUT statement (HPMIXED), 3846
PROC DISTANCE statement, 2264
PROC FASTCLUS statement, 2408
PROC PRINQUAL statement, 6638
PROC STDIZE statement, 7840

NOMISSPAT option
PROC CALIS statement, 1226

NOMOD option
PROC CALIS statement, 1226

NOMODEL option
PLOT statement (REG), 7100

NONE option
PROC GAM statement, 2765

NONINFERIORITY option (BINOMIAL)
TABLES statement (FREQ), 2606

NONINFERIORITY option (RISKDIFF)
TABLES statement (FREQ), 2635

NONLOCALW option
REPEATED statement (MIXED), 5280

NONORM option
PROC CLUSTER statement, 2018
PROC MDS statement, 5004

NONSYMCL option
PROC SURVEYMEANS statement, 8162

NOOBS option
EFFECTPLOT statement, 422

NOODDSRATIO option
MODEL statement (LOGISTIC), 4542

NOOFFSET option
ROC statement (LOGISTIC), 4555
SCORE statement (PLM), 6173

NOOPTIMAL option
MODEL statement (RSREG), 7268

NOOR option
MODEL statement (LOGISTIC), 4542

NOORDERSPEC option
PROC CALIS statement, 1226

NOOUTPOST option
MODEL statement, 4773
RANDOM statement (BCHOICE), 1034
RANDOM statement (MCMC), 4785

NOOVERLAYLEGEND option
PLOT statement (BOXPLOT), 1114

NOPARM option
MODEL statement (CATMOD), 1911

NOPARMNAME option
PROC CALIS statement, 1226

NOPERCENT option
TABLES statement (FREQ), 2615
TABLES statement (SURVEYFREQ), 7987

NOPHIST option
PROC MDS statement, 5004
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NOPOLISH option
MODEL statement (ICPHREG), 3958

NOPREDVAR option
MODEL statement (CATMOD), 1912

NOPRINT
BIVAR statement, 4085
UNIVAR statement, 4089

NOPRINT option
FACTOR statement (PLAN), 6125
LSMEANS statement (GLM), 3423
MODEL statement (CATMOD), 1912
MODEL statement (REG), 7021
MODEL statement (RSREG), 7268
MODEL statement (TRANSREG), 8588
PARMS statement (MIXED), 5267
PROC ACECLUS statement, 872
PROC ANOVA statement, 955
PROC CALIS statement, 1226
PROC CANCORR statement, 1835
PROC CANDISC statement, 1863
PROC CATMOD statement, 1898
PROC CLUSTER statement, 2018
PROC CORRESP statement, 2102
PROC DISCRIM statement, 2167
PROC FACTOR statement, 2315
PROC FASTCLUS statement, 2408
PROC FMM statement, 2477
PROC FREQ statement, 2577
PROC GLM statement, 3407
PROC GLMMOD statement, 3581
PROC GLMSELECT statement, 3672
PROC HPMIXED statement, 3830
PROC ICLIFETEST statement, 3896
PROC ICPHREG statement, 3944
PROC INBREED statement, 3988
PROC IRT statement, 4017
PROC KRIGE2D statement, 4132
PROC LIFEREG statement, 4224
PROC LIFETEST statement, 4341
PROC LOGISTIC statement, 4502
PROC MDS statement, 5004
PROC MI statement, 5041
PROC MODECLUS statement, 5419
PROC MULTTEST statement, 5496
PROC NLIN statement, 5588
PROC NPAR1WAY statement, 5798
PROC ORTHOREG statement, 5856
PROC PHREG statement, 5894
PROC PLM statement (PLM), 6164
PROC PLS statement, 6223
PROC PRINCOMP statement, 6592
PROC PRINQUAL statement, 6638
PROC PROBIT statement, 6694
PROC QUANTSELECT statement, 6922

PROC REG statement, 6999
PROC RSREG statement, 7262
PROC SIM2D statement, 7703
PROC SPP statement, 7778
PROC SURVEYPHREG statement, 8245
PROC SURVEYSELECT statement, 8422
PROC TREE statement, 8772
PROC VARCLUS statement, 8864
PROC VARIOGRAM statement, 8928
RIDGE statement (RSREG), 7269
TABLES statement (FREQ), 2615
TABLES statement (SURVEYFREQ), 7987

NOPROFILE option
MODEL statement (CATMOD), 1912
PARMS statement (MIXED), 5267
PROC GLIMMIX statement, 3078
PROC HPMIXED statement, 3830
PROC MIXED statement, 5231, 5297

NOPROMAXNORM option
PROC FACTOR statement, 2315

NOPVALUE option
PROC MULTTEST statement, 5497

norank option
LMTESTS statement, 1286

NOREFINE option
PROC ROBUSTREG statement, 7181

NOREML option
PROC GLIMMIX statement, 3078

NORESIDUAL option
CODE statement (GENMOD), 397
CODE statement (GLIMMIX), 397
CODE statement (GLM), 397
CODE statement (GLMSELECT), 397
CODE statement (LOGISTIC), 397
CODE statement (MIXED), 397
CODE statement (PLM), 397
CODE statement (REG), 397

NORESPONSE option
MODEL statement (CATMOD), 1912

NORESTOREMISSING option
OUTPUT statement (TRANSREG), 8600

NORISKS option (RISKDIFF)
TABLES statement (FREQ), 2636

NORM option
FACTOR statement (CALIS), 1260
PROC DISTANCE statement, 2264
PROC STDIZE statement, 7840

NORM= option
PROC FACTOR statement, 2315

NORMAL option
EXACT statement (NPAR1WAY), 5805
OUTPUT statement (NPAR1WAY), 5809
PARMS statement, 4774
PROC NPAR1WAY statement, 5801
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NORMALIZE option
WEIGHT statement (LOGISTIC), 4563
WEIGHT statement (PHREG), 5949

NORMALSAMPLE= option
BASELINE statement (PHREG), 5905

NOROW option
TABLES statement (FREQ), 2615

NOROW= option
PROC CORRESP statement, 2102

NOSAMPLE option
STRATA statement (SURVEYSELECT), 8437

NOSCALE option
MODEL statement, 2825
MODEL statement (GENMOD), 2919
MODEL statement (LIFEREG), 4246
PROC PLS statement, 6223, 6227

NOSCORES option
OUTPUT statement (TRANSREG), 8600

NOSEPARATE option
EFFECT statement, polynomial (GLIMMIX),

405
EFFECT statement, polynomial (GLMSELECT),

405
EFFECT statement, polynomial (HPMIXED),

405
EFFECT statement, polynomial (LOGISTIC),

405
EFFECT statement, polynomial (ORTHOREG),

405
EFFECT statement, polynomial (PHREG), 405
EFFECT statement, polynomial (PLS), 405
EFFECT statement, polynomial (QUANTLIFE),

405
EFFECT statement, polynomial (QUANTREG),

405
EFFECT statement, polynomial

(QUANTSELECT), 405
EFFECT statement, polynomial (ROBUSTREG),

405
EFFECT statement, polynomial

(SURVEYLOGISTIC), 405
EFFECT statement, polynomial (SURVEYREG),

405
NOSERIFS option

PLOT statement (BOXPLOT), 1114
NOSHAPE1 option

MODEL statement (LIFEREG), 4246
NOSORT option

MEANS statement (ANOVA), 967
MEANS statement (GLM), 3437
PROC SURVEYLOGISTIC statement, 8066

NOSORTSUB option
PROC NLMIXED statement, 5705

NOSPARSE option

PROC SURVEYMEANS statement, 8162
TABLES statement (FREQ), 2615
TABLES statement (SURVEYFREQ), 7987

NOSQUARE option
PROC CLUSTER statement, 2017, 2018

NOSTAND option
PROC CALIS statement, 1226

NOSTAT option
PLOT statement (REG), 7100

NOSTD option
PROC DISTANCE statement, 2264
PROC SCORE statement, 7300
TABLES statement (SURVEYFREQ), 7987

NOSTDERR option
PROC CALIS statement, 1226

NOSUMMARY option
MODEL statement (QUANTREG), 6853
PROC ICLIFETEST statement, 3896
PROC MODECLUS statement, 5419
PROC PHREG statement, 5894
PROC SURVEYFREQ statement, 7969
STRATA statement (GENMOD), 2933
STRATA statement (LOGISTIC), 4561

NOTABLE option
PROC LIFETEST statement, 4341

NOTABLES option
PROC MULTTEST statement, 5497

NOTCHES option
PLOT statement (BOXPLOT), 1114

NOTEST option
MODEL statement (MIXED), 5263
STRATA statement (ICLIFETEST), 3904
STRATA statement (LIFETEST), 4352

NOTHREADS option
PERFORMANCE statement (FMM), 2506
PERFORMANCE statement (QUANTREG),

6856
PERFORMANCE statement (ROBUSTREG),

7189
PROC ADAPTIVEREG statement, 899
PROC ICPHREG statement, 3944

NOTICKREP option
PLOT statement (BOXPLOT), 1114

NOTIE option
PROC CLUSTER statement, 2019

NOTITLE option
PATHDIAGRAM statement, 1341, 2330

NOTOTAL option
TABLES statement (SURVEYFREQ), 7987

NOTRUNCATE option
FREQ statement, 4348
FREQ statement (ICPHREG), 3954
FREQ statement (PHREG), 5927
FREQ statement (STDIZE), 7843
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NOU option
REPEATED statement (ANOVA), 972
REPEATED statement (GLM), 3449

NOULB option
PROC MDS statement, 5004

NOUNI option
MODEL statement (ANOVA), 968
MODEL statement (GLM), 3441

NOUNIQUE option
OUTPUT statement (GLIMMIX), 3149
OUTPUT statement (HPMIXED), 3846
SCORE statement (PLM), 6174

NOVANGLE option
PLOT statement (BOXPLOT), 1114

NOVAR option
OUTPUT statement (FMM), 2505
OUTPUT statement (GLIMMIX), 3150
OUTPUT statement (HPMIXED), 3846
SCORE statement (PLM), 6174

NOVARIANCE option
PATHDIAGRAM statement, 1341, 2330

NOVARIOGRAM option
COMPUTE statement (VARIOGRAM), 8940

NOWARN option
TABLES statement (FREQ), 2615

NOWT option
TABLES statement (SURVEYFREQ), 7987

NOZEROCONSTANT option
OUTPUT statement (TRANSREG), 8588

NOZEROS option
PROC MULTTEST statement, 5497

NP option
PLOT statement (REG), 7100

NPAIRS= option
PAIREDFREQ statement (POWER), 6313
PAIREDMEANS statement (POWER), 6320

NPANELPOS= option
PLOT statement (BOXPLOT), 1115

NPAR1WAY procedure
syntax, 5794

NPAR1WAY procedure, BY statement, 5802
NPAR1WAY procedure, CLASS statement, 5802
NPAR1WAY procedure, EXACT statement, 5802

AB option, 5803
ALPHA= option, 5805
CONOVER option, 5803
EDF option, 5804
HL option, 5804
KLOTZ option, 5804
KS option, 5804
MAXTIME= option, 5805
MC option, 5805
MEDIAN option, 5804
MIDP option, 5805

MOOD option, 5804
N= option, 5806
NORMAL option, 5805
PFORMAT= option, 5806
POINT option, 5806
SAVAGE option, 5804
SCORES=DATA option, 5804
SEED= option, 5806
ST option, 5804
VW option, 5805
WILCOXON option, 5805

NPAR1WAY procedure, FREQ statement, 5807
NPAR1WAY procedure, OUTPUT statement, 5807

AB option, 5808
ANOVA option, 5808
CONOVER option, 5808
EDF option, 5808
FP option, 5808
HL option, 5809
KLOTZ option, 5809
MEDIAN option, 5809
MOOD option, 5809
NORMAL option, 5809
OUT= option, 5807
SAVAGE option, 5809
SCORES=DATA option, 5809
ST option, 5809
VW option, 5809
WILCOXON option, 5809

NPAR1WAY procedure, PROC NPAR1WAY
statement, 5794

AB option, 5795
ADJUST option, 5795
ALPHA= option, 5796
ANOVA option, 5796
CONOVER option, 5796
CORRECT=NO option, 5796
D option, 5796
DATA= option, 5796
DSCF option, 5796
EDF option, 5796
FP option, 5797
HL option, 5797
KLOTZ option, 5797
MEDIAN option, 5797
MISSING option, 5797
MOOD option, 5797
NOPRINT option, 5798
NORMAL option, 5801
PLOTS= option, 5798
PLOTS=ABBOXPLOT option, 5799
PLOTS=ALL option, 5799
PLOTS=ANOVABOXPLOT option, 5799
PLOTS=CONOVERBOXPLOT option, 5799
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PLOTS=DATASCORESBOXPLOT option, 5799
PLOTS=EDFPLOT option, 5799
PLOTS=FPBOXPLOT option, 5800
PLOTS=KLOTZBOXPLOT option, 5800
PLOTS=MEDIANPLOT option, 5800
PLOTS=MOODBOXPLOT option, 5800
PLOTS=NONE option, 5800
PLOTS=NORMALBOXPLOT option, 5800
PLOTS=SAVAGEBOXPLOT option, 5800
PLOTS=STBOXPLOT option, 5800
PLOTS=VWBOXPLOT option, 5800
PLOTS=WILCOXONBOXPLOT option, 5800
SAVAGE option, 5801
SCORES=DATA option, 5801
ST option, 5801
VW option, 5801
WILCOXON option, 5801

NPAR1WAY procedure, VAR statement, 5810
NPARTIALVARS= option

ONECORR statement (POWER), 6290
NPATHS= option

ASSESS statement (PHREG), 5898
NPERGROUP= option

ONEWAYANOVA statement (POWER), 6308
TWOSAMPLEFREQ statement (POWER), 6333
TWOSAMPLEMEANS statement (POWER),

6341
TWOSAMPLESURVIVAL statement (POWER),

6353
TWOSAMPLEWILCOXON statement

(POWER), 6360
NPLOTS= option

PROC FACTOR statement, 2315
NPOINTS= option

PLOT statement (GLMPOWER), 3614
PLOT statement (POWER), 6328

NPTS= option
GRID statement (KRIGE2D), 4139
GRID statement (SIM2D), 7709

NREDUCEDPREDICTORS= option
MULTREG statement (POWER), 6285

NREP= option
PROC QUANTLIFE statement, 6804
PROC ROBUSTREG statement, 7179, 7180

NROWS= option
EFFECTPLOT statement, 422

NSAMPLE= option
PRIOR statement (MIXED), 5271
PROC MULTTEST statement, 5497
PROC VARCOMP statement, 8892

NSAMPLES option
BOOTSTRAP statement (NLIN), 5596
MODELAVERAGE statement (GLMSELECT),

3696

NSEARCH= option
PRIOR statement (MIXED), 5271

NSIM option
PROCESS statement (SPP), 7794

NSIM= option
PREDDIST statement (MCMC), 4775

NSR option
MODEL statement (TRANSREG), 8588

NSTAGES= option
DESIGN statement (SEQDESIGN), 7339
PROC SEQTEST statement, 7550

NSUBINTERVAL= option
TWOSAMPLESURVIVAL statement (POWER),

6353
NTEST= option

PROC PLS statement, 6221
NTESTPREDICTORS= option

MULTREG statement (POWER), 6285
NTHREADS= option

PROC ADAPTIVEREG statement, 902
PROC BCHOICE statement, 1021
PROC MCMC statement, 4754
PROC QUANTLIFE statement, 6804

NTICK= option
PROC TREE statement, 8772

NTOTAL= option
LOGISTIC statement (POWER), 6279
MULTREG statement (POWER), 6286
ONECORR statement (POWER), 6290
ONESAMPLEFREQ statement (POWER), 6295
ONESAMPLEMEANS statement (POWER),

6302
ONEWAYANOVA statement (POWER), 6308
POWER statement (GLMPOWER), 3621
TWOSAMPLEFREQ statement (POWER), 6333
TWOSAMPLEMEANS statement (POWER),

6341
TWOSAMPLESURVIVAL statement (POWER),

6353
TWOSAMPLEWILCOXON statement

(POWER), 6360
NTRUENULL= option

PROC MULTTEST statement, 5497
NTU= option

PROC BCHOICE statement, 1021
PROC MCMC statement, 4755

NUGGET= option
MODEL statement (KRIGE2D), 4146
MODEL statement (VARIOGRAM), 8949
SIMULATE statement (SIM2D), 7717

NULLCONTRAST= option
ONEWAYANOVA statement (POWER), 6308

NULLCORR= option
ONECORR statement (POWER), 6290
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NULLDIFF= option
PAIREDMEANS statement (POWER), 6321
TWOSAMPLEMEANS statement (POWER),

6341
NULLDISCPROPRATIO= option

PAIREDFREQ statement (POWER), 6313
NULLMEAN= option

ONESAMPLEMEANS statement (POWER),
6302

NULLODDSRATIO= option
TWOSAMPLEFREQ statement (POWER), 6333

NULLPROPORTION= option
ONESAMPLEFREQ statement (POWER), 6295

NULLPROPORTIONDIFF= option
TWOSAMPLEFREQ statement (POWER), 6333

NULLRATIO= option
PAIREDMEANS statement (POWER), 6321
TWOSAMPLEMEANS statement (POWER),

6342
NULLRELATIVERISK= option

TWOSAMPLEFREQ statement (POWER), 6333
NUMBER= option

MODEL statement (FMM), 2501
NUMPOINTS= option

PREDICT statement (KRIGE2D), 4143
NUMREAL= option

PROC SIMNORMAL statement, 7754
SIMULATE statement (SIM2D), 7714

NVALS= option
OUTPUT statement (PLAN), 6128

NVARS= option
PROC CORRESP statement, 2102

OBS option
EFFECTPLOT statement, 422

OBSCAT option
OUTPUT statement (GLIMMIX), 3150
SCORE statement (PLM), 6174

OBSERVED option
PROC CORRESP statement, 2102

OBSMARGINS option
LSMEANS statement (GLIMMIX), 3118
LSMEANS statement (GLM), 3423, 3491
LSMEANS statement (MIXED), 5249
LSMESTIMATE statement (GLIMMIX), 3130

OBSMARGINS= option
LSMEANS statement (GENMOD), 468
LSMEANS statement (LIFEREG), 468
LSMEANS statement (LOGISTIC), 468
LSMEANS statement (ORTHOREG), 468
LSMEANS statement (PHREG), 468
LSMEANS statement (PLM), 468
LSMEANS statement (PROBIT), 468
LSMEANS statement (SURVEYLOGISTIC), 468

LSMEANS statement (SURVEYPHREG), 468
LSMEANS statement (SURVEYREG), 468
LSMESTIMATE statement (GENMOD), 483
LSMESTIMATE statement (LIFEREG), 483
LSMESTIMATE statement (LOGISTIC), 483
LSMESTIMATE statement (MIXED), 483
LSMESTIMATE statement (ORTHOREG), 483
LSMESTIMATE statement (PHREG), 483
LSMESTIMATE statement (PLM), 483
LSMESTIMATE statement (PROBIT), 483
LSMESTIMATE statement

(SURVEYLOGISTIC), 483
LSMESTIMATE statement (SURVEYPHREG),

483
LSMESTIMATE statement (SURVEYREG), 483
SLICE statement (GENMOD), 468
SLICE statement (GLIMMIX), 468
SLICE statement (LIFEREG), 468
SLICE statement (LOGISTIC), 468
SLICE statement (MIXED), 468
SLICE statement (ORTHOREG), 468
SLICE statement (PHREG), 468
SLICE statement (PLM), 468
SLICE statement (PROBIT), 468
SLICE statement (SURVEYLOGISTIC), 468
SLICE statement (SURVEYPHREG), 468
SLICE statement (SURVEYREG), 468

OBSTATS option
MODEL statement (GENMOD), 2919

OBSWEIGHT= option
MODEL statement (GLIMMIX), 3144

OCOEF option
PROC MDS statement, 5004

OCONFIG option
PROC MDS statement, 5004

OCRIT option
PROC MDS statement, 5004

ODDS option
LSMEANS statement (GLIMMIX), 3118

ODDSRATIO option
LSMEANS statement (GENMOD), 468
LSMEANS statement (GLIMMIX), 3118
LSMEANS statement (LIFEREG), 468
LSMEANS statement (LOGISTIC), 468
LSMEANS statement (PLM), 468
LSMEANS statement (PROBIT), 468
LSMEANS statement (SURVEYLOGISTIC), 468
MODEL statement (GLIMMIX), 3142
PROC GLIMMIX statement, 3079
SLICE statement (GENMOD), 468
SLICE statement (GLIMMIX), 468
SLICE statement (LIFEREG), 468
SLICE statement (LOGISTIC), 468
SLICE statement (PLM), 468
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SLICE statement (PROBIT), 468
SLICE statement (SURVEYLOGISTIC), 468

ODDSRATIO statement
LOGISTIC procedure, 4549

ODDSRATIO= option
PAIREDFREQ statement (POWER), 6313
TWOSAMPLEFREQ statement (POWER), 6333

ODS destination statement
FILE= option, 623
IMAGE_DPI= option, 620
STYLE= option, 620

ODS DOCUMENT statement, 704
ODS EXCLUDE statement, 529, 626

PERSIST option, 544
ODS graph names

ESTIMATE statement (LIFEREG), 459
ESTIMATE statement (PHREG), 459
ESTIMATE statement (PLM), 459
LSMEANS statement (GENMOD), 475
LSMEANS statement (LIFEREG), 475
LSMEANS statement (LOGISTIC), 475
LSMEANS statement (ORTHOREG), 475
LSMEANS statement (PHREG), 475
LSMEANS statement (PLM), 475
LSMEANS statement (PROBIT), 475
LSMEANS statement (SURVEYLOGISTIC), 475
LSMEANS statement (SURVEYPHREG), 475
LSMEANS statement (SURVEYREG), 475
LSMESTIMATE statement (GENMOD), 487
LSMESTIMATE statement (LIFEREG), 487
LSMESTIMATE statement (PHREG), 487
LSMESTIMATE statement (PLM), 487
SLICE statement (GENMOD), 475
SLICE statement (GLIMMIX), 475
SLICE statement (LIFEREG), 475
SLICE statement (LOGISTIC), 475
SLICE statement (MIXED), 475
SLICE statement (ORTHOREG), 475
SLICE statement (PHREG), 475
SLICE statement (PLM), 475
SLICE statement (PROBIT), 475
SLICE statement (SURVEYLOGISTIC), 475
SLICE statement (SURVEYPHREG), 475
SLICE statement (SURVEYREG), 475

ODS Graphics
PLOTS= option, 620

ODS GRAPHICS statement
ANTIALIAS= option, 616
ANTIALIASMAX= option, 617
BORDER= option, 617
BYLINE= option, 617
HEIGHT= option, 617
IMAGEFMT= option, 618
IMAGEMAP= option, 617

IMAGENAME= option, 617
LABELMAX= option, 618
MAXLEGENDAREA= option, 618
OUTPUTFMT= option, 618
RESET= option, 618
SCALE= option, 619
SCALEMARKERS= option, 619
TIPMAX= option, 619
WIDTH= option, 619

ODS HTML statement, 539
BODY= option, 620
CONTENTS= option, 620
FRAME= option, 620
GPATH= option, 633
NEWFILE= option, 573
PATH= option, 633
URL= suboption, 633

ODS LATEX statement
STYLE= option, 700

ODS OUTPUT statement, 544
data set options, 547
PERSIST option, 550

ODS PATH statement, 536
RESET option, 537, 722
SHOW option, 721

ODS PDF statement
FILE= option, 634
ID= option, 634

ODS RTF statement, 699
ODS SELECT statement, 528, 626
ODS SHOW statement, 541
ODS table names

ESTIMATE statement (LIFEREG), 458
ESTIMATE statement (LOGISTIC), 458
ESTIMATE statement (ORTHOREG), 458
ESTIMATE statement (PHREG), 458
ESTIMATE statement (PLM), 458
ESTIMATE statement (PROBIT), 458
ESTIMATE statement (QUANTREG), 458
ESTIMATE statement (SURVEYLOGISTIC),

458
ESTIMATE statement (SURVEYPHREG), 458
ESTIMATE statement (SURVEYREG), 458
LSMEANS statement (GENMOD), 474
LSMEANS statement (LIFEREG), 474
LSMEANS statement (LOGISTIC), 474
LSMEANS statement (ORTHOREG), 474
LSMEANS statement (PHREG), 474
LSMEANS statement (PLM), 474
LSMEANS statement (PROBIT), 474
LSMEANS statement (SURVEYLOGISTIC), 474
LSMEANS statement (SURVEYPHREG), 474
LSMEANS statement (SURVEYREG), 474
LSMESTIMATE statement (GENMOD), 487
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LSMESTIMATE statement (LIFEREG), 487
LSMESTIMATE statement (LOGISTIC), 487
LSMESTIMATE statement (MIXED), 487
LSMESTIMATE statement (ORTHOREG), 487
LSMESTIMATE statement (PHREG), 487
LSMESTIMATE statement (PLM), 487
LSMESTIMATE statement (PROBIT), 487
LSMESTIMATE statement

(SURVEYLOGISTIC), 487
LSMESTIMATE statement (SURVEYPHREG),

487
LSMESTIMATE statement (SURVEYREG), 487
SLICE statement (GENMOD), 507
SLICE statement (GLIMMIX), 507
SLICE statement (LIFEREG), 507
SLICE statement (LOGISTIC), 507
SLICE statement (MIXED), 507
SLICE statement (ORTHOREG), 507
SLICE statement (PHREG), 507
SLICE statement (PLM), 507
SLICE statement (PROBIT), 507
SLICE statement (SURVEYLOGISTIC), 507
SLICE statement (SURVEYPHREG), 507
SLICE statement (SURVEYREG), 507
TEST statement (ICPHREG), 511
TEST statement (LIFEREG), 511
TEST statement (ORTHOREG), 511
TEST statement (PLM), 511
TEST statement (PROBIT), 511
TEST statement (SURVEYPHREG), 511
TEST statement (SURVEYREG), 511

ODS TRACE statement, 525, 624
LABEL option, 626
LISTING option, 527, 626

ODSFOOTNOTE2= option
BOXPLOT procedure, 1115

ODSFOOTNOTE= option
BOXPLOT procedure, 1115

ODSTITLE2= option
BOXPLOT procedure, 1116

ODSTITLE= option
BOXPLOT procedure, 1115

OFFLIST= option
FITINDEX statement, 1269

OFFSET= option
MODEL statement, 2825
MODEL statement (ADAPTIVEREG), 909
MODEL statement (FMM), 2502
MODEL statement (GAM), 2772
MODEL statement (GENMOD), 2921
MODEL statement (GLIMMIX), 3144
MODEL statement (ICPHREG), 3958
MODEL statement (LIFEREG), 4246
MODEL statement (LOGISTIC), 4542

MODEL statement (PHREG), 5937
MODEL statement (SURVEYLOGISTIC), 8088

OLS option
PARMS statement (MIXED), 5268

OM option
LSMEANS statement (GLIMMIX), 3118
LSMEANS statement (GLM), 3423, 3491
LSMESTIMATE statement (GLIMMIX), 3130

OM= option
PROC CALIS statement, 1227

OMETHOD= option
PROC CALIS statement, 1227

OMITPATH= option
PATHDIAGRAM statement, 1341

ONECORR statement
POWER procedure, 6288

ONESAMPLEFREQ statement
POWER procedure, 6292

ONESAMPLEMEANS statement
POWER procedure, 6300

ONESIDED option
EXACT statement (GENMOD), 2906
EXACT statement (LOGISTIC), 4524

ONEWAY option
MODEL statement (CATMOD), 1912

ONEWAYANOVA statement
POWER procedure, 6306

ONLIST= option
FITINDEX statement, 1269

OPREFIX option
PROC STDIZE statement, 7840

OPSCORE transformation
MODEL statement (TRANSREG), 8571
TRANSFORM statement (PRINQUAL), 6646

OPTC option
PROC PROBIT statement, 6692, 6694

OPTCHECK option
PROC NLMIXED statement, 5705

optimization statements, CALIS procedure, 1198
OPTION statement

QUANTREG procedure, 6852
options

CDFPLOT statement (PROBIT), 6698
IPPPLOT statement (PROBIT), 6714
LPREDPLOT statement (PROBIT), 6722
PREDPPLOT statement (PROBIT), 6739

options summary
PROC statement (QUANTLIFE), 6802

OR option
EXACT statement (FREQ), 2582, 2738
OUTPUT statement (FREQ), 2594
TABLES statement (FREQ), 2616
TABLES statement (SURVEYFREQ), 7987

ORD option
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PROC MIXED statement, 5231
ORDER= option

CLASS statement, 2821, 8072
CLASS statement (ADAPTIVEREG), 903
CLASS statement (BCHOICE), 1027
CLASS statement (GAM), 2767
CLASS statement (GENMOD), 2896
CLASS statement (GLMSELECT), 3680
CLASS statement (ICPHREG), 3951
CLASS statement (LOGISTIC), 4513
CLASS statement (PHREG), 5919
CLASS statement (PROBIT), 6707
CLASS statement (QUANTSELECT), 6929
CLASS statement (SURVEYPHREG), 8252
FCS statement (MI), 5047
MODEL statement, 906, 2497, 2770, 3133, 4532,

6733, 8083
MODEL statement (MIXED), 5307
MODEL statement (TRANSREG), 8578, 8588
MONOTONE statement (MI), 5060
OUTPUT statement (PHREG), 5943
POPULATION statement (STDRATE), 7878
PROC ANOVA statement, 955
PROC CATMOD statement, 1898
PROC FMM statement, 2477
PROC FREQ statement, 2577
PROC GAM statement, 2764
PROC GENMOD statement, 2879
PROC GLIMMIX statement, 3079
PROC GLM statement, 3473
PROC GLMMOD statement, 3581
PROC GLMPOWER statement, 3607
PROC GLM statement, 3408
PROC HPMIXED statement, 3830
PROC LIFEREG statement, 4224
PROC LOGISTIC statement, 4502
PROC MIXED statement, 5304
PROC MIXED statement, 5231
PROC MULTTEST statement, 5541
PROC MULTTEST statement, 5499
PROC ORTHOREG statement, 5856
PROC PROBIT statement, 6695
PROC QUANTREG statement, 6845
PROC ROBUSTREG statement, 7175
PROC SEQTEST statement, 7550
PROC SURVEYFREQ statement, 7969
PROC SURVEYLOGISTIC statement, 8066
PROC SURVEYMEANS statement, 8162
PROC SURVEYPHREG statement, 8246
PROC SURVEYREG statement, 8323
PROC TTEST statement, 8797
STRATA statement (LIFETEST), 4352
STRATA statement (STDRATE), 7880
VAR statement, 2270

ORDERALL option
PROC CALIS statement, 1228

ORDERED option
OUTPUT statement (PLAN), 6128
PROC PLAN statement, 6124

ORDERGROUPS option
PROC CALIS statement, 1228

ORDERMODELS option
PROC CALIS statement, 1228

ORDERSELECT option
MODEL statement (GLMSELECT), 3688

ORDERSPEC option
PROC CALIS statement, 1229

ORIGINAL option
MODEL statement (TRANSREG), 8574
TRANSFORM statement (PRINQUAL), 6648

ORTH option
MANOVA statement (ANOVA), 961
MANOVA statement (GLM), 3430
MANOVA statement (GLMPOWER), 3611

ORTHOGONAL option
MODEL statement (TRANSREG), 8578

ORTHOREG procedure
syntax, 5855

ORTHOREG procedure, BY statement, 5857
ORTHOREG procedure, EFFECT statement

BASIS option (spline), 408
collection effect, 399
DATABOUNDARY option (spline), 408
DEGREE option (polynomial), 404
DEGREE option (spline), 408
DESIGNROLE option (lag), 402
DETAILS option (lag), 402
DETAILS option (multimember), 403
DETAILS option (polynomial), 404
DETAILS option (spline), 408
KNOTMAX option (spline), 409
KNOTMETHOD option (spline), 409
KNOTMIN option (spline), 410
LABELSTYLE option (polynomial), 404
lag effect, 400
MDEGREE option (polynomial), 405
multimember effect, 402
NATURALCUBIC option (spline), 410
NLAG option (lag), 402
NOEFFECT option (multimember), 403
NOSEPARATE option (polynomial), 405
PERIOD option (lag), 401
polynomial effect, 404
SEPARATE option (spline), 410
spline effect, 407
SPLIT option (spline), 411
STANDARDIZE option (polynomial), 406
WITHIN option (lag), 402
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ORTHOREG procedure, EFFECTPLOT statement
ADDCELL option, 418
ALPHA= option, 418
AT option, 419
ATLEN= option, 419
ATORDER= option, 420
BIN option, 420
CLI option, 420
CLM option, 420
CLUSTER option, 420
CONNECT option, 420
EQUAL option, 420
EXTEND= option, 420
GRIDSIZE= option, 420
ILINK option, 421
INDIVIDUAL option, 421
LIMITS option, 421
LINK option, 421
MOFF option, 421
NCOLS= option, 421
NOBORDERE option, 421
NOCLI option, 421
NOCLM option, 422
NOCLUSTER option, 422
NOCONNECT option, 422
NOLIMITS option, 422
NOOBS option, 422
NROWS= option, 422
OBS option, 422
PLOTBY= option, 424
PLOTBYLEN= option, 425
POLYBAR option, 425
PREDLABEL= option, 426
SHOWCLEGEND option, 426
SLICEBY= option, 426
SMOOTH option, 426
TYPE= option, 426
UNPACK option, 427
X= option, 427
Y= option, 427
YRANGE= option, 427

ORTHOREG procedure, ESTIMATE statement
ADJDFE= option, 446
ADJUST= option, 447
ALPHA= option, 447
CHISQ option, 448
CL option, 448
CORR option, 448
COV option, 448
DF= option, 448
DIVISOR= option, 449
E option, 449
JOINT option, 450
LOWER option, 451

NOFILL option, 451
ODS table names, 458
SEED= option, 452
SINGULAR= option, 453
STEPDOWN option, 453
TESTVALUE option, 454
UPPER option, 454

ORTHOREG procedure, LSMEANS statement
ADJDFE= option, 462
ADJUST= option, 463
ALPHA= option, 465
AT= option, 465
BYLEVEL option, 465
CL option, 466
CORR option, 466
COV option, 466
DF= option, 466
DIFF option, 466
E option, 467
LINES option, 468
MEANS or NOMEANS option, 468
OBSMARGINS= option, 468
ODS graph names, 475
ODS table names, 474
PDIFF option, 469
PLOTS= option, 469
SEED= option, 473
SINGULAR= option, 473
STEPDOWN option, 473

ORTHOREG procedure, LSMESIIMATE statement
ADJDFE= option, 478
ADJUST= option, 479
ALPHA= option, 479
AT= option, 479
BYLEVEL option, 479
CHISQ option, 480
CL option, 480
CORR option, 480
COV option, 480
DF= option, 480
DIVISOR= option, 481
E option, 481
ELSM option, 481
JOINT option, 482
LOWER option, 483
OBSMARGINS= option, 483
ODS table names, 487
PLOTS= option, 483
SEED= option, 485
SINGULAR= option, 485
STEPDOWN option, 485
TESTVALUE= option, 486
UPPER option, 486

ORTHOREG procedure, MODEL statement, 5864
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NOINT option, 5864
ORTHOREG procedure, PROC ORTHOREG

statement, 5856
DATA= option, 5856
NOPRINT option, 5856
OUTEST= option, 5857
SINGULAR= option, 5857

ORTHOREG procedure, SLICE statement
ADJDFE= option, 462
ADJUST= option, 463
ALPHA= option, 465
AT= option, 465
BYLEVEL option, 465
CL option, 466
CORR option, 466
COV option, 466
DF= option, 466
DIFF option, 466
E option, 467
LINES option, 468
MEANS or NOMEANS option, 468
NOF option, 507
OBSMARGINS= option, 468
ODS table names, 507
PDIFF option, 469
PLOTS= option, 469
SEED= option, 473
SIMPLE= option, 507
SINGULAR= option, 473
SLICEBY= option, 507
STEPDOWN option, 473

ORTHOREG procedure, TEST statement
CHISQ option, 509
DDF= option, 510
E option, 510
E1 option, 510
E2 option, 510
E3 option, 510
HTYPE= option, 510
INTERCEPT option, 510
ODS table names, 511

ORTHOREG procedure, WEIGHT statement, 5866
ORTHOREG procedure, CLASS statement, 5857

REF= option, 5858
REF= variable option, 5858
TRUNCATE option, 5858

ORTHOREG procedure, EFFECT statement, 5858
ORTHOREG procedure, EFFECTPLOT statement,

5860
ORTHOREG procedure, ESTIMATE statement, 5861
ORTHOREG procedure, LSMEANS statement, 5862
ORTHOREG procedure, LSMESTIMATE statement,

5863

ORTHOREG procedure, PROC ORTHOREG
statement

ORDER= option, 5856
ORTHOREG procedure, SLICE statement, 5865
ORTHOREG procedure, STORE statement, 5865
ORTHOREG procedure, TEST statement, 5865
OTRANS option

PROC MDS statement, 5004
OUT= option

BASELINE statement (ICPHREG), 3947
BASELINE statement (PHREG), 5900
BASELINE statement (QUANTLIFE), 6806
BIVAR statement, 4085
EM statement (MI), 5043
LSMEANS statement (GLM), 3424
OUTPUT statement (ADAPTIVEREG), 911
OUTPUT statement (FMM), 2503
OUTPUT statement (FREQ), 2587
OUTPUT statement (GAM), 2773
OUTPUT statement (GENMOD), 2923
OUTPUT statement (GLIMMIX), 3146
OUTPUT statement (GLM), 3444
OUTPUT statement (GLMSELECT), 3701
OUTPUT statement (HPMIXED), 3844
OUTPUT statement (LIFEREG), 4247
OUTPUT statement (LOESS), 4445
OUTPUT statement (LOGISTIC), 4552
OUTPUT statement (NLIN), 5600
OUTPUT statement (NPAR1WAY), 5807
OUTPUT statement (PHREG), 5941
OUTPUT statement (PLAN), 6127
OUTPUT statement (QUANTLIFE), 6809
OUTPUT statement (QUANTREG), 6855
OUTPUT statement (QUANTSELECT), 6940
OUTPUT statement (REG), 7027
OUTPUT statement (ROBUSTREG), 7188
OUTPUT statement (SURVEYLOGISTIC), 8091
OUTPUT statement (SURVEYPHREG), 8262
OUTPUT statement (SURVEYREG), 8342
OUTPUT statement (TPSPLINE), 8500
OUTPUT statement (TRANSREG), 8592
POSTSTRATA statement (SURVEYMEANS),

8177
PRIOR statement (MIXED), 5271
PROC ACECLUS statement, 872
PROC CANCORR statement, 1835
PROC CANDISC statement, 1863
PROC DISCRIM statement, 2167
PROC DISTANCE statement, 2264
PROC FACTOR statement, 2316
PROC FASTCLUS statement, 2408
PROC IRT statement, 4018
PROC MDS statement, 5004
PROC MI statement, 5041
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PROC MODECLUS statement, 5419
PROC MULTTEST statement, 5499, 5526
PROC PRINCOMP statement, 6592
PROC PRINQUAL statement, 6638
PROC RSREG statement, 7262
PROC SCORE statement, 7300
PROC SIMNORMAL statement, 7754
PROC STDIZE statement, 7840
PROC SURVEYSELECT statement, 8422
PROC TREE statement, 8772
RANDOM statement (NLMIXED), 5714
RESPONSE statement (CATMOD), 1920
SCORE statement (ADAPTIVEREG), 913
SCORE statement (GAM), 2774
SCORE statement (GLMSELECT), 3702, 3703
SCORE statement (LOGISTIC), 4558
SCORE statement (PLM), 6173
SCORE statement (TPSPLINE), 8501
TABLES statement (FREQ), 2616
UNIVAR statement, 4089

OUTACWEIGHTS= option
PROC VARIOGRAM statement, 8928

OUTALL option
PROC SURVEYSELECT statement, 8423

OUTBOOTEST= option
PROC QUANTLIFE statement, 6804

OUTBOX= option
BOXPLOT procedure, 1116

OUTC= option
PROC CORRESP statement, 2102

OUTCLUS= option
PROC MODECLUS statement, 5419

OUTCOND option
PROC SIMNORMAL statement, 7754

OUTCOV= option
PROC INBREED statement, 3988

OUTCROSS= option
PROC DISCRIM statement, 2167

OUTCUM option
TABLES statement (FREQ), 2616

OUTD= option
PROC DISCRIM statement, 2167

OUTDESIGN option
PROC GLIMMIX statement, 3080

OUTDESIGN= option
PROC ADAPTIVEREG statement, 899
PROC GLMMOD statement, 3581, 3585
PROC GLMSELECT statement, 3672
PROC LOGISTIC statement, 4502
PROC QUANTSELECT statement, 6922

OUTDESIGNONLY option
PROC LOGISTIC statement, 4502

OUTDIFF= option
BASELINE statement (PHREG), 5900

OUTDIST= option
EXACT statement (GENMOD), 2906
EXACT statement (LOGISTIC), 4524

OUTDISTANCE= option
PROC VARIOGRAM statement, 8928

OUTEM= option
EM statement (MI), 5043

OUTEST= option
MCMC statement (MI), 5052
PROC CALIS statement, 1229
PROC KRIGE2D statement, 4132
PROC LIFEREG statement, 4224
PROC LOGISTIC statement, 4502
PROC NLIN statement, 5588
PROC ORTHOREG statement, 5857
PROC PHREG statement, 5894
PROC PROBIT statement, 6695
PROC QUANTREG statement, 6846
PROC REG statement, 7000
PROC ROBUSTREG statement, 7176
RESPONSE statement (CATMOD), 1920

OUTEXPECT option
TABLES statement (FREQ), 2617, 2727

OUTF= option
PROC CORRESP statement, 2103

OUTFILE statement
CALIS procedure, 1317

OUTFILES statement
CALIS procedure, 1317

OUTFIT option
PROC CALIS statement, 1229

OUTFIT= option
FITINDEX statement, 1271
PROC MDS statement, 5004

OUTG= option
PRIOR statement (MIXED), 5271

OUTGT= option
PRIOR statement (MIXED), 5271

OUTHIGHHTML= option
BOXPLOT procedure, 1116

OUTHISTORY= option
BOXPLOT procedure, 1116

OUTHITS option
PROC SURVEYSELECT statement, 8423

OUTINTENSITY option
MODEL statement (SPP), 7786

OUTITER option
PROC FASTCLUS statement, 2408
PROC MDS statement, 5004

OUTITER= option
EM statement (MI), 5044
FCS statement (MI), 5044
MCMC statement (MI), 5052

OUTJKCOEFS= option
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VARMETHOD=JACKKNIFE (PROC
SURVEYFREQ statement), 7974

VARMETHOD=JACKKNIFE (PROC
SURVEYLOGISTIC statement), 8070

VARMETHOD=JACKKNIFE (PROC
SURVEYMEANS statement), 8172

VARMETHOD=JACKKNIFE (PROC
SURVEYREG statement), 8330

VARMETHOD=JK (PROC SURVEYLOGISTIC
statement), 8070

VARMETHOD=JK (PROC SURVEYMEANS
statement), 8172

VARMETHOD=JK (PROC SURVEYPHREG
statement), 8251

VARMETHOD=JK (PROC SURVEYREG
statement), 8330

OUTLENGTH= option
PROC MODECLUS statement, 5420

OUTLEVEL option (BINOMIAL)
TABLES statement (FREQ), 2606

OUTLIER keyword
OUTPUT statement (QUANTREG), 6855
OUTPUT statement (ROBUSTREG), 7188

OUTLOWHTML= option
BOXPLOT procedure, 1116

OUTMODEL= option
PROC CALIS statement, 1229
PROC LOGISTIC statement, 4502

OUTMORAN= option
PROC VARIOGRAM statement, 8928

OUTNBHD= option
PROC KRIGE2D statement, 4132

OUTP= option
MODEL statement (MIXED), 5350

OUTPAIR= option
PROC VARIOGRAM statement, 8929

OUTPARM= option
PROC GLMMOD statement, 3581, 3584

OUTPCT option
TABLES statement (FREQ), 2617

OUTPDISTANCE= option
COMPUTE statement (VARIOGRAM), 8940

OUTPERM= option
PROC MULTTEST statement, 5500, 5527, 5531

OUTPOST= option
BAYES statement, 2890, 4230
BAYES statement (FMM), 2489
BAYES statement(PHREG), 5910
PROC BCHOICE statement, 1022
PROC MCMC statement, 4755

OUTPRED= option
MODEL statement (MIXED), 5263
PREDDIST statement (BCHOICE), 1032
PREDDIST statement (MCMC), 4775

OUTPREDM= option
MODEL statement (MIXED), 5263

OUTPSWGT= option
POSTSTRATA statement (SURVEYMEANS),

8177
output data sets

VARIOGRAM procedure, 8912
OUTPUT statement

ADAPTIVEREG procedure, 910
FMM procedure, 2503
FREQ procedure, 2586
GAM procedure, 2772
GENMOD procedure, 2923
GLIMMIX procedure, 3146
GLM procedure, 3442
GLMSELECT procedure, 3699
HPMIXED procedure, 3844
LIFEREG procedure, 4247
LOESS procedure, 4444
LOGISTIC procedure, 4550
NLIN procedure, 5599
NPAR1WAY procedure, 5807
PHREG procedure, 5941
PLAN procedure, 6127
PLS procedure, 6230
QUANTLIFE procedure, 6809
QUANTREG procedure, 6854
QUANTSELECT procedure, 6939
REG procedure, 7027
ROBUSTREG procedure, 7187
SURVEYLOGISTIC procedure, 8090
SURVEYPHREG procedure, 8262
SURVEYREG procedure, 8341
TPSPLINE procedure, 8500
TRANSREG procedure, 8592

OUTPUTFMT= option
ODS GRAPHICS statement, 618

OUTPUTORDER= option
LOGISTIC statement (POWER), 6279
MULTREG statement (POWER), 6286
ONECORR statement (POWER), 6290
ONESAMPLEFREQ statement (POWER), 6295
ONESAMPLEMEANS statement (POWER),

6302
ONEWAYANOVA statement (POWER), 6308
PAIREDFREQ statement (POWER), 6313
PAIREDMEANS statement (POWER), 6321
POWER statement (GLMPOWER), 3622
TWOSAMPLEFREQ statement (POWER), 6333
TWOSAMPLEMEANS statement (POWER),

6342
TWOSAMPLESURVIVAL statement (POWER),

6353
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TWOSAMPLEWILCOXON statement
(POWER), 6361

OUTQ= option
PROC NLMIXED statement, 5705

OUTR= option
PROC NLMIXED statement, 5705
RIDGE statement (RSREG), 7269

OUTRAM= option
PROC CALIS statement, 1229

OUTRES= option
PROC MDS statement, 5004

OUTROC= option
MODEL statement (LOGISTIC), 4542
SCORE statement (LOGISTIC), 4558

OUTS= option
PROC FASTCLUS statement, 2408

OUTSAMP= option
PROC MULTTEST statement, 5500, 5527, 5534

OUTSDZ= option
PROC DISTANCE statement, 2265

OUTSEB option
MODEL statement (REG), 7021
PROC REG statement, 7000

OUTSEED option
PROC SIMNORMAL statement, 7754
PROC SURVEYSELECT statement, 8424

OUTSEED= option
PROC FASTCLUS statement, 2408

OUTSIM option
MODEL statement (SPP), 7786
PROCESS statement (SPP), 7791

OUTSIM= option
PROC SIM2D statement, 7703

OUTSIZE option
PROC SURVEYSELECT statement, 8424

OUTSORT= option
PROC SURVEYSELECT statement, 8425

OUTSSCP= option
PROC REG statement, 7000

OUTSTAT= option
PROC ACECLUS statement, 872
PROC ANOVA statement, 956
PROC CALIS statement, 1229
PROC CANCORR statement, 1835
PROC CANDISC statement, 1863
PROC DISCRIM statement, 2167
PROC FACTOR statement, 2316
PROC FASTCLUS statement, 2408
PROC GLM statement, 3408
PROC PRINCOMP statement, 6592
PROC STDIZE statement, 7841
PROC VARCLUS statement, 8864

OUTSTB option
MODEL statement (REG), 7021

PROC REG statement, 7000
OUTSUM= option

PROC MODECLUS statement, 5419
OUTSURV= option

PROC ICLIFETEST statement, 3896
PROC LIFETEST statement, 4342

OUTTEST= option
PROC LIFETEST statement, 4342
PROC TRANSREG statement, 8560

OUTTREE= option
PROC CLUSTER statement, 2019
PROC VARCLUS statement, 8864

OUTVAR= option
PROC CALIS statement, 1229
PROC VARIOGRAM statement, 8929

OUTVIF option
MODEL statement (REG), 7021
PROC REG statement, 7000

OUTWEIGHTS= option
VARMETHOD=BRR (PROC SURVEYFREQ

statement), 7973
VARMETHOD=BRR (PROC

SURVEYLOGISTIC statement), 8069
VARMETHOD=BRR (PROC SURVEYMEANS

statement), 8171
VARMETHOD=BRR (PROC SURVEYPHREG

statement), 8249
VARMETHOD=BRR (PROC SURVEYREG

statement), 8329
VARMETHOD=JACKKNIFE (PROC

SURVEYFREQ statement), 7975
VARMETHOD=JACKKNIFE (PROC

SURVEYLOGISTIC statement), 8070
VARMETHOD=JACKKNIFE (PROC

SURVEYMEANS statement), 8172
VARMETHOD=JACKKNIFE (PROC

SURVEYREG statement), 8330
VARMETHOD=JK (PROC SURVEYLOGISTIC

statement), 8070
VARMETHOD=JK (PROC SURVEYMEANS

statement), 8172
VARMETHOD=JK (PROC SURVEYPHREG

statement), 8250
VARMETHOD=JK (PROC SURVEYREG

statement), 8330
OUTWGT= option

PROC CALIS statement, 1230
OVER= option

PROC MDS statement, 5005
OVERLAP= option

DESIGN statement, 7335
PROC SEQTEST statement, 7545

OVERLAY option
PLOT statement (REG), 7100, 7102
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OVERLAY= option
PLOT statement (BOXPLOT), 1116

OVERLAYCLIPSYM= option
BOXPLOT procedure, 1117

OVERLAYCLIPSYMHT= option
BOXPLOT procedure, 1117

OVERLAYHTML= option
PLOT statement (BOXPLOT), 1117

OVERLAYID= option
BOXPLOT procedure, 1117

OVERLAYLEGLAB= option
PLOT statement (BOXPLOT), 1117

OVERLAYSYM= option
PLOT statement (BOXPLOT), 1117

OVERLAYSYMHT= option
PLOT statement (BOXPLOT), 1117

P option
MODEL statement (GLM), 3441
MODEL statement (REG), 7021

P= option
PROC ACECLUS statement, 872

P= option (BINOMIAL)
TABLES statement (FREQ), 2606

PAGE option
PROC FREQ statement, 2578
PROC SURVEYFREQ statement, 7969

PAGENUM= option
PLOT statement (BOXPLOT), 1117

PAGENUMPOS= option
PLOT statement (BOXPLOT), 1118

PAGES= option
PROC TREE statement, 8772

PAINT statement
REG procedure, 7089

PAIRED statement
TTEST procedure, 8804

PAIREDCVS= option
PAIREDMEANS statement (POWER), 6321

PAIREDFREQ statement
POWER procedure, 6310

PAIREDMEANS statement
POWER procedure, 6317

PAIREDMEANS= option
PAIREDMEANS statement (POWER), 6322

PAIREDPROPORTIONS= option
PAIREDFREQ statement (POWER), 6314

PAIREDSTDDEVS= option
PAIREDMEANS statement (POWER), 6322

PALL option
PROC CALIS statement, 1230

PARAM= option
CLASS statement (BCHOICE), 1028
CLASS statement (GENMOD), 2896

CLASS statement (GLMSELECT), 3681
CLASS statement (ICPHREG), 3951
CLASS statement (LOGISTIC), 4513
CLASS statement (PHREG), 5919
CLASS statement (PROBIT), 6707
CLASS statement (QUANTSELECT), 6929
CLASS statement (SURVEYLOGISTIC), 8072
CLASS statement (SURVEYPHREG), 8252
MODEL statement (CATMOD), 1912

PARAMETER= option
MODEL statement (TRANSREG), 8574
TRANSFORM statement (PRINQUAL), 6648

PARAMETERESTIMATES
DETAILS=STEPS option (GLMSELECT), 3687
DETAILS=STEPS option (QUANTSELECT),

6933
PARAMETERS option

MODEL statement (FMM), 2502
PROBMODEL statement (FMM), 2508
SHOW statement (PLM), 6176

PARAMETERS statement
CALIS procedure, 1319
NLIN procedure, 5603

PARENT statement
TREE procedure, 8775

PARM_PREFIX option
REFMODEL statement, 1355

PARM_SUFFIX option
REFMODEL statement, 1355

PARMINFO= option
PROC MIANALYZE statement, 5165

PARMLABEL option
MODEL statement (LOGISTIC), 4542
MODEL statement (SURVEYLOGISTIC), 8088
MODEL statement (SURVEYREG), 8341

PARMNAME option
PATHDIAGRAM statement, 1341
PROC CALIS statement, 1230

PARMS option
COVTEST statement (GLIMMIX), 3103
MODEL statement (FMM), 2502
PROBMODEL statement (FMM), 2508

PARMS statement
GLIMMIX procedure, 3150
HPMIXED procedure, 3846
MCMC procedure, 4773
MIXED procedure, 5265, 5350
NLMIXED procedure, 5712
SPP procedure, 7787
VARIOGRAM procedure, 8953

PARMS= option
MNAR statement, 5058
OUTPUT statement (NLIN), 5601
PROC MIANALYZE statement, 5166
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PROC SEQTEST statement, 7550
PARMSDATA= option

PARMS statement (GLIMMIX), 3153
PARMS statement (HPMIXED), 3848
PARMS statement (MIXED), 5268
PARMS statement (SPP), 7788
PARMS statement (VARIOGRAM), 8956

PARMSTYLE= option
PROC FMM statement, 2479

PARPREFIX= option
PROC CANCORR statement, 1836
PROC FACTOR statement, 2316
PROC PRINCOMP statement, 6596

PARTIAL option
MODEL statement (REG), 7021

PARTIAL statement
CALIS procedure, 1322
FACTOR procedure, 2326
PRINCOMP procedure, 6598
VARCLUS procedure, 8868

PARTIAL= option
PROC FMM statement, 2479

PARTIALCORR= option
MULTREG statement (POWER), 6286

PARTIALDATA option
MODEL statement (REG), 7022

PARTIALR2 option
MODEL statement (REG), 7022

PARTITION statement
ADAPTIVEREG procedure, 911
GLMSELECT procedure, 3701
QUANTSELECT procedure, 6940

PATH statement, CALIS procedure, 1323
PATH= option

ODS HTML statement, 633
PATHDIAGRAM statement

CALIS procedure, 1332
FACTOR procedure, 2326

PBO option
MODEL statement (TRANSREG), 8589

PBSPLINE transformation
MODEL statement (TRANSREG), 8570

PC option
MODEL statement (REG), 7022
PLOT statement (REG), 7100

PCF option
PROCESS statement (SPP), 7791

PCHI option
EXACT statement (FREQ), 2582
OUTPUT statement (FREQ), 2594, 2595

PCOEF option
PROC MDS statement, 5005

PCOMIT= option
MODEL statement (REG), 7022

PROC REG statement, 7000
PCONFIG option

PROC MDS statement, 5005
PCONV option

PROC GLIMMIX statement, 3081
PCONV= option

RANDOM statement, 5946
PCORR option

EXACT statement (FREQ), 2583
MODEL statement (LOGISTIC), 4542
OUTPUT statement (FREQ), 2595
PROC CALIS statement, 1230
PROC CANCORR statement, 1835
PROC CANDISC statement, 1863
PROC DISCRIM statement, 2167
PROC STEPDISC statement, 7941
TEST statement (FREQ), 2639

PCORR1 option
MODEL statement (REG), 7022

PCORR2 option
MODEL statement (REG), 7022

PCOV option
PROC CANDISC statement, 1863
PROC DISCRIM statement, 2167
PROC STEPDISC statement, 7941

PCOV statement, CALIS procedure, 1343
PCOV= option

FCS statement (MI), 5046
MONOTONE statement (MI), 5060

PCOVES option
PROC CALIS statement, 1230

PCTLDEF= option
PLOT statement (BOXPLOT), 1118
PROC STDIZE statement, 7841

PCTLMTD option
PROC STDIZE statement, 7841

PCTLPTS option
PROC STDIZE statement, 7841

PDATA option
PROC MDS statement, 5005

PDATA= option
PARMS statement (GLIMMIX), 3153
PARMS statement (HPMIXED), 3848
PARMS statement (MIXED), 5268
PARMS statement (SPP), 7788
PARMS statement (VARIOGRAM), 8956
PROC MULTTEST statement, 5500

PDETERM option
PROC CALIS statement, 1231

PDIFF option
LSMEANS statement (GENMOD), 469
LSMEANS statement (GLIMMIX), 3116, 3118
LSMEANS statement (GLM), 3424
LSMEANS statement (HPMIXED), 3841, 3842
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LSMEANS statement (LOGISTIC), 469
LSMEANS statement (MIXED), 5248, 5250
LSMEANS statement (ORTHOREG), 469
LSMEANS statement (PHREG), 469
LSMEANS statement (PLM), 469
LSMEANS statement (SURVEYLOGISTIC), 469
LSMEANS statement (SURVEYPHREG), 469
LSMEANS statement (SURVEYREG), 469
SLICE statement (GENMOD), 469
SLICE statement (GLIMMIX), 469
SLICE statement (LOGISTIC), 469
SLICE statement (MIXED), 469
SLICE statement (ORTHOREG), 469
SLICE statement (PHREG), 469
SLICE statement (PLM), 469
SLICE statement (SURVEYLOGISTIC), 469
SLICE statement (SURVEYPHREG), 469
SLICE statement (SURVEYREG), 469

PEARSON= option
OUTPUT statement (HPMIXED), 3844

PEARSONRES option
TABLES statement (SURVEYFREQ), 7987

PEARSONRES option (CROSSLIST)
TABLES statement (FREQ), 2612

PENALTY= option
PROC CLUSTER statement, 2019

PERCENT= option
PROC ACECLUS statement, 872
PROC VARCLUS statement, 8866

PERCENTILE= option
PROC SURVEYMEANS statement, 8163

PERCENTILES option
BIVAR statement, 4086

PERCENTILES= option
PROC PLM statement (PLM), 6164
UNIVAR statement, 4089

PERFORMANCE statement
FMM procedure, 2506
GLMSELECT procedure, 3701
QUANTREG procedure, 6855
ROBUSTREG procedure, 7189

PERIOD option
EFFECT statement, lag (GLIMMIX), 401
EFFECT statement, lag (GLMSELECT), 401
EFFECT statement, lag (HPMIXED), 401
EFFECT statement, lag (LOGISTIC), 401
EFFECT statement, lag (ORTHOREG), 401
EFFECT statement, lag (PHREG), 401
EFFECT statement, lag (PLS), 401
EFFECT statement, lag (QUANTLIFE), 401
EFFECT statement, lag (QUANTREG), 401
EFFECT statement, lag (QUANTSELECT), 401
EFFECT statement, lag (ROBUSTREG), 401

EFFECT statement, lag (SURVEYLOGISTIC),
401

EFFECT statement, lag (SURVEYREG), 401
PERMUTATION option

PROC MULTTEST statement, 5500, 5520, 5531,
5541

PERMUTATION= option
TEST statement (MULTTEST), 5509, 5511, 5531

PESTIM option
PROC CALIS statement, 1231

PETO option
TEST statement (MULTTEST), 5508, 5514, 5538

PEVENT= option
MODEL statement (LOGISTIC), 4542

PFDR option
PROC MULTTEST statement, 5500, 5524

PFINAL option
PROC MDS statement, 5005

PFIT option
PROC MDS statement, 5005

PFITROW option
PROC MDS statement, 5005

PFORMAT= option
EXACT statement (FREQ), 2586
EXACT statement (NPAR1WAY), 5806

PH option, see PROPORTIONALHAZARDS option
PHIPRIORPARMS option

BAYES statement (FMM), 2490
PHREG procedure

ASSESS statement, 5897
BASELINE statement, 5898
BAYES statement, 5905
BY statement, 5917
CLASS statement, 5918
CONTRAST statement, 5921
EFFECT statement, 5924
ESTIMATE statement, 5925
FREQ statement, 5926
HAZARDRATIO statement, 5927
LSMEANS statement, 5930
LSMESTIMATE statement, 5931
MODEL statement, 5932
OUTPUT statement, 5941
PROC PHREG statement, 5892
programming statements, 5887
RANDOM statement, 5945
SLICE statement, 5947
STORE statement, 5947
syntax, 5891
TEST statement, 5948
WEIGHT statement, 5949

PHREG procedure, ASSESS statement, 5897
CRPANEL option, 5898
NPATHS= option, 5898
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PROPORTIONALHAZARDS option, 5898
RESAMPLE= option, 5898
SEED= option, 5898
VAR= option, 5897

PHREG procedure, BASELINE statement, 5898
ALPHA= option, 5903
CLTYPE= option, 5903
COVARIATES= option, 5900
DIRADJ option, 5904
GROUP= option, 5904
keyword= option, 5900
METHOD= option, 5904
NORMALSAMPLE= option, 5905
OUT= option, 5900
OUTDIFF= option, 5900
ROWID= option, 5905
SEED= option, 5905
TIMELIST= option, 5900

PHREG procedure, BAYES statement, 5905
COEFFPRIOR= option, 5906
DIAGNOSTIC= option, 5908
INITIAL= option, 5910
NBI= option, 5910
NMC= option, 5910
OUTPOST= option, 5910
PIECEWISE= option, 5911
PLOTS= option, 5913
SAMPLING= option, 5916
SEED= option, 5916
STATISTICS= option, 5916
THINNING= option, 5917

PHREG procedure, BY statement, 5917
PHREG procedure, CONTRAST statement, 5921

ALPHA= option, 5923
E option, 5923
ESTIMATE= option, 5923
SINGULAR= option, 5923
TEST option, 5924

PHREG procedure, EFFECT statement
BASIS option (spline), 408
collection effect, 399
DATABOUNDARY option (spline), 408
DEGREE option (polynomial), 404
DEGREE option (spline), 408
DESIGNROLE option (lag), 402
DETAILS option (lag), 402
DETAILS option (multimember), 403
DETAILS option (polynomial), 404
DETAILS option (spline), 408
KNOTMAX option (spline), 409
KNOTMETHOD option (spline), 409
KNOTMIN option (spline), 410
LABELSTYLE option (polynomial), 404
lag effect, 400

MDEGREE option (polynomial), 405
multimember effect, 402
NATURALCUBIC option (spline), 410
NLAG option (lag), 402
NOEFFECT option (multimember), 403
NOSEPARATE option (polynomial), 405
PERIOD option (lag), 401
polynomial effect, 404
SEPARATE option (spline), 410
spline effect, 407
SPLIT option (spline), 411
STANDARDIZE option (polynomial), 406
WITHIN option (lag), 402

PHREG procedure, ESTIMATE statement, 5925
ADJUST= option, 447
ALPHA= option, 447
CL option, 448
CORR option, 448
COV option, 448
DIVISOR= option, 449
E option, 449
EXP option, 449
JOINT option, 450
LOWER option, 451
NOFILL option, 451
ODS graph names, 459
ODS table names, 458
PLOTS= option, 451
SEED= option, 452
SINGULAR= option, 453
STEPDOWN option, 453
TESTVALUE option, 454
UPPER option, 454

PHREG procedure, FREQ statement, 5926
NOTRUNCATE option, 5927

PHREG procedure, HAZARDRATIO statement, 5927
ALPHA= option, 5927
AT= option, 5928
CL= option, 5928
DIFF= option, 5928
E option, 5929
PLCONV= option, 5929
PLMAXIT= option, 5929
PLSINGULAR= option, 5929
UNITS= option, 5929

PHREG procedure, ID statement, 5929
PHREG procedure, LSMEANS statement, 5930

ADJUST= option, 463
ALPHA= option, 465
AT= option, 465
BYLEVEL option, 465
CL option, 466
CORR option, 466
COV option, 466
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DIFF option, 466
E option, 467
EXP option, 467
LINES option, 468
MEANS or NOMEANS option, 468
OBSMARGINS= option, 468
ODS graph names, 475
ODS table names, 474
PDIFF option, 469
PLOTS= option, 469
SEED= option, 473
SINGULAR= option, 473
STEPDOWN option, 473

PHREG procedure, LSMESIIMATE statement
ADJUST= option, 479
ALPHA= option, 479
AT= option, 479
BYLEVEL option, 479
CL option, 480
CORR option, 480
COV option, 480
DIVISOR= option, 481
E option, 481
ELSM option, 481
EXP option, 481
JOINT option, 482
LOWER option, 483
OBSMARGINS= option, 483
ODS graph names, 487
ODS table names, 487
PLOTS= option, 483
SEED= option, 485
SINGULAR= option, 485
STEPDOWN option, 485
TESTVALUE= option, 486
UPPER option, 486

PHREG procedure, LSMESTIMATE statement, 5931
PHREG procedure, MODEL statement, 5932

ABSFCONV= option, 5934
ALPHA= option, 5934
BEST= option, 5934
CORRB option, 5934
COVB option, 5934
DETAILS option, 5934
ENTRYTIME= option, 5934
EVENTCODE= option, 5934
FCONV= option, 5935
FIRTH option, 5935
GCONV= option, 5935
HIERARCHY= option, 5935
INCLUDE= option, 5936
ITPRINT option, 5936
MAXITER= option, 5936
MAXSTEP= option, 5936

NODESIGNPRINT= option, 5937
NODUMMYPRINT= option, 5937
NOFIT option, 5937
OFFSET= option, 5937
PLCONV= option, 5937
RIDGEINIT= option, 5937
RIDGING= option, 5937
RISKLIMITS= option, 5937
SELECTION= option, 5938
SEQUENTIAL option, 5938
SINGULAR= option, 5938
SLENTRY= option, 5939
SLSTAY= option, 5939
START= option, 5939
STOP= option, 5939
STOPRES option, 5939
TIES= option, 5940
TYPE1 option, 5939
TYPE3 option, 5940
XCONV= option, 5941

PHREG procedure, NLOPTIONS statement
ABSCONV option, 490
ABSFCONV option, 490
ABSGCONV option, 490
ABSGTOL option, 490
ABSTOL option, 490
ABSXCONV option, 491
ABSXTOL option, 491
ASINGULAR= option, 491
FCONV option, 491
FCONV2 option, 492
FSIZE option, 493
FTOL option, 491
FTOL2 option, 492
GCONV option, 493
GCONV2 option, 493
GTOL option, 493
GTOL2 option, 493
HESCAL option, 493
HS option, 493
INHESSIAN option, 494
INSTEP option, 494
LCDEACT= option, 495
LCEPSILON= option, 495
LCSINGULAR= option, 495
LINESEARCH option, 495
LSP option, 496
LSPRECISION option, 496
MAXFU option, 496
MAXFUNC option, 496
MAXIT option, 497
MAXITER option, 497
MAXSTEP option, 497
MAXTIME option, 497
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MINIT option, 497
MINITER option, 497
MSINGULAR= option, 497
REST option, 498
RESTART option, 498
SINGULAR= option, 498
SOCKET option, 498
TECH option, 498
TECHNIQUE option, 498
UPD option, 499
VSINGULAR= option, 500
XSIZE option, 500
XTOL option, 500

PHREG procedure, OUTPUT statement, 5941
keyword= option, 5941
METHOD= option, 5943
ORDER= option, 5943
OUT= option, 5941

PHREG procedure, PROC PHREG statement, 5892
ALPHA= option, 5892
ATRISK option, 5892
COVM option, 5893
COVOUT option, 5893
COVSANDWICH option, 5893
DATA= option, 5893
EV option, 5893
INEST= option, 5894
MULTIPASS option, 5894
NAMELEN= option, 5894
NOPRINT option, 5894
NOSUMMARY option, 5894
OUTEST= option, 5894
PLOTS= option, 5894
SIMPLE option, 5896

PHREG procedure, RANDOM statement, 5945
ABSPCONV= option, 5945
ALPHA= option, 5945
DIST= option, 5945
INITIAL= option, 5946
INITIALVARIANCE= option, 5946
METHOD= option, 5945
NOCLPRINT option, 5945
PCONV= option, 5946
SOLUTION option, 5946

PHREG procedure, SLICE statement
ADJUST= option, 463
ALPHA= option, 465
AT= option, 465
BYLEVEL option, 465
CL option, 466
CORR option, 466
COV option, 466
DIFF option, 466
E option, 467

EXP option, 467
LINES option, 468
MEANS or NOMEANS option, 468
NOF option, 507
OBSMARGINS= option, 468
ODS table names, 507
PDIFF option, 469
PLOTS= option, 469
SEED= option, 473
SIMPLE= option, 507
SINGULAR= option, 473
SLICEBY= option, 507
STEPDOWN option, 473

PHREG procedure, STRATA statement, 5946
MISSING option, 5947

PHREG procedure, TEST statement, 5948
AVERAGE option, 5948
E option, 5948
PRINT option, 5949

PHREG procedure, WEIGHT statement, 5949
NORMALIZE option, 5949

PHREG procedure, CLASS statement, 5918
CPREFIX= option, 5918
DESCENDING option, 5918
LPREFIX= option, 5918
MISSING option, 5918
ORDER= option, 5919
PARAM= option, 5919
REF= option, 5920
TRUNCATE option, 5920

PHREG procedure, EFFECT statement, 5924
PHREG procedure, SLICE statement, 5947
PHREG procedure, STORE statement, 5947
PIECEWISE= option

BAYES statement(PHREG), 5911
PINAVDATA option

PROC MDS statement, 5005
PINEIGVAL option

PROC MDS statement, 5005
PINEIGVEC option

PROC MDS statement, 5005
PININ option

PROC MDS statement, 5005
PINIT option

PROC MDS statement, 5005
PINITIAL option

PROC CALIS statement, 1231
PROC IRT statement, 4018

PITER option
PROC MDS statement, 5005

PLAN procedure
factor-value-setting specification, 6127, 6128
syntax, 6123

PLAN procedure, FACTOR statement
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NOPRINT option, 6125
PLAN procedure, FACTORS statement, 6124
PLAN procedure, OUTPUT statement, 6127

CVALS= option, 6128
factor-value-settings option, 6127
NVALS= option, 6128
ORDERED option, 6128
OUT= option, 6127
RANDOM option, 6128

PLAN procedure, PROC PLAN statement, 6124
ORDERED option, 6124
SEED option, 6124

PLAN procedure, TREATMENTS statement, 6129
PLATCOV option

PROC CALIS statement, 1231
PLCL option

MODEL statement (LOGISTIC), 4542
PLCONV= option

HAZARDRATIO statement (PHREG), 5929
MODEL statement (LOGISTIC), 4542
MODEL statement (PHREG), 5937
ODDSRATIO statement (LOGISTIC), 4550

PLCORR option
OUTPUT statement (FREQ), 2595
TABLES statement (FREQ), 2617
TEST statement (FREQ), 2639

PLM procedure, 6161
FILTER statement, 6168
PROC PLM statement, 6162
SHOW statement, 6175
syntax, 6161
WHERE statement, 6177

PLM procedure, CODE statement
CATALOG= option, 396
DUMMIES option, 396
ERRORS option, 396
FILE= option, 396
FORMAT= option, 396
GROUP= option, 396
IMPUTE option, 396
LINESIZE= option, 397
LOOKUP= option, 397
NODUMMIES option, 396
NOERRORS option, 396
NORESIDUAL option, 397
RESIDUAL option, 397

PLM procedure, EFFECTPLOT statement
ADDCELL option, 418
ALPHA= option, 418
AT option, 419
ATLEN= option, 419
ATORDER= option, 420
BIN option, 420
CLI option, 420

CLM option, 420
CLUSTER option, 420
CONNECT option, 420
EQUAL option, 420
EXTEND= option, 420
GRIDSIZE= option, 420
ILINK option, 421
INDIVIDUAL option, 421
LIMITS option, 421
LINK option, 421
MOFF option, 421
NCOLS= option, 421
NOBORDER option, 421
NOCLI option, 421
NOCLM option, 422
NOCLUSTER option, 422
NOCONNECT option, 422
NOLIMITS option, 422
NOOBS option, 422
NROWS= option, 422
OBS option, 422
PLOTBY= option, 424
PLOTBYLEN= option, 425
POLYBAR option, 425
PREDLABEL= option, 426
SHOWCLEGEND option, 426
SLICEBY= option, 426
SMOOTH option, 426
TYPE= option, 426
UNPACK option, 427
X= option, 427
Y= option, 427
YRANGE= option, 427

PLM procedure, ESTIMATE statement
ADJDFE= option, 446
ADJUST= option, 447
ALPHA= option, 447
CATEGORY= option, 447
CHISQ option, 448
CL option, 448
CORR option, 448
COV option, 448
DF= option, 448
DIVISOR= option, 449
E option, 449
EXP option, 449
ILINK option, 449
JOINT option, 450
LOWER option, 451
NOFILL option, 451
ODS graph names, 459
ODS table names, 458
PLOTS= option, 451
SEED= option, 452
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SINGULAR= option, 453
STEPDOWN option, 453
TESTVALUE option, 454
UPPER option, 454

PLM procedure, FILTER statement, 6168
PLM procedure, LSMEANS statement

ADJDFE= option, 462
ADJUST= option, 463
ALPHA= option, 465
AT= option, 465
BYLEVEL option, 465
CL option, 466
CORR option, 466
COV option, 466
DF= option, 466
DIFF option, 466
E option, 467
EXP option, 467
ILINK option, 467
LINES option, 468
MEANS or NOMEANS option, 468
OBSMARGINS= option, 468
ODDSRATIO option, 468
ODS graph names, 475
ODS table names, 474
PDIFF option, 469
PLOTS= option, 469
SEED= option, 473
SINGULAR= option, 473
STEPDOWN option, 473

PLM procedure, LSMESIIMATE statement
ADJDFE= option, 478
ADJUST= option, 479
ALPHA= option, 479
AT= option, 479
BYLEVEL option, 479
CATEGORY= option, 480
CHISQ option, 480
CL option, 480
CORR option, 480
COV option, 480
DF= option, 480
DIVISOR= option, 481
E option, 481
ELSM option, 481
EXP option, 481
ILINK option, 481
JOINT option, 482
LOWER option, 483
OBSMARGINS= option, 483
ODS graph names, 487
ODS table names, 487
PLOTS= option, 483
SEED= option, 485

SINGULAR= option, 485
STEPDOWN option, 485
TESTVALUE= option, 486
UPPER option, 486

PLM procedure, PROC PLM statement, 6162
ALPHA= option, 6162
DDFMETHOD= option, 6163
ESTEPS= option, 6163
FORMAT= option, 6163
MAXLEN= option, 6163
NOCLPRINT option, 6163
NOINFO option, 6164
PERCENTILES= option, 6164
PLOT option, 6164
PLOTS option, 6164
RESTORE= option, 6165
SEED= option, 6165
SINGCHOL= option, 6165
SINGRES= option, 6165
SINGULAR= option, 6165
STMTORDER= option, 6165
WHEREFORMAT option, 6165
ZETA= option, 6166

PLM procedure, SCORE statement
ALPHA= option, 6173
DATA= option, 6172
DF= option, 6173
ILINK option, 6173
NOOFFSET option, 6173
NOUNIQUE option, 6174
NOVAR option, 6174
OBSCAT option, 6174
OUT= option, 6173
SAMPLE option, 6174

PLM procedure, SHOW statement, 6175
ALL option, 6175
BYVAR option, 6175
CLASS option, 6175
CORREATION option, 6175
COVARIANCE option, 6176
EFFECTS option, 6176
FITSTATS option, 6176
HERMITE option, 6176
HESSIAN option, 6176
PARAMETERS option, 6176
PROGRAM option, 6176
XPX option, 6176
XPXI option, 6176

PLM procedure, SLICE statement
ADJDFE= option, 462
ADJUST= option, 463
ALPHA= option, 465
AT= option, 465
BYLEVEL option, 465
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CL option, 466
CORR option, 466
COV option, 466
DF= option, 466
DIFF option, 466
E option, 467
EXP option, 467
ILINK option, 467
LINES option, 468
MEANS or NOMEANS option, 468
NOF option, 507
OBSMARGINS= option, 468
ODDSRATIO option, 468
ODS table names, 507
PDIFF option, 469
PLOTS= option, 469
SEED= option, 473
SIMPLE= option, 507
SINGULAR= option, 473
SLICEBY= option, 507
STEPDOWN option, 473

PLM procedure, TEST statement
CHISQ option, 509
DDF= option, 510
E option, 510
E1 option, 510
E2 option, 510
E3 option, 510
HTYPE= option, 510
INTERCEPT option, 510
ODS table names, 511

PLM procedure, WHERE statement, 6177
PLMAXIT= option

HAZARDRATIO statement (PHREG), 5929
PLMAXITER= option

ODDSRATIO statement (LOGISTIC), 4550
PLM procedure, CODE statement, 6166
PLM procedure, EFFECTPLOT statement, 6166
PLM procedure, ESTIMATE statement, 6167
PLM procedure, LSMEANS statement, 6170
PLM procedure, LSMESTIMATE statement, 6171
PLM procedure, SLICE statement, 6177
PLM procedure, TEST statement, 6177
PLOT option

LSMEANS statement (GLIMMIX), 3118
PROC FACTOR statement, 2316
PROC GLIMMIX statement, 3081
PROC GLMSELECT statement, 3674
PROC LOESS statement, 4434
PROC NLIN statement, 5589
PROC PLM statement, 6164
PROC QUANTSELECT statement, 6924
PROC REG statement, 7000

PLOT statement

BOXPLOT procedure, 1097
GLMPOWER procedure, 3611
POWER procedure, 6326
REG procedure, 7092

PLOT= option
PROC PROBIT statement, 6695
PROC QUANTLIFE statement, 6804
PROC ROBUSTREG statement, 7176

PLOTBY= option
EFFECTPLOT statement, 424

PLOTBYLEN= option
EFFECTPLOT statement, 425

PLOTONLY= option
PROC GLMPOWER statement, 3607
PROC POWER statement, 6276

PLOTREF option
PROC FACTOR statement, 2316

PLOTS option
BAYES statement, 2891, 4231
KRIGE2D procedure, PROC KRIGE2D

statement, 4132
LSMEANS statement (GLIMMIX), 3118
PROC CLUSTER statement, 2019
PROC FMM statement, 2480
PROC GEE statement, 2820
PROC GLIMMIX statement, 3081
PROC GLMSELECT statement, 3674
PROC LOESS statement, 4434
PROC LOGISTIC statement, 4502
PROC NLIN statement, 5589
PROC PLM statement, 6164
PROC QUANTSELECT statement, 6924
PROC REG statement, 7000
PROC SEQDESIGN statement, 7333
PROC SEQTEST statement, 7552
PROC STDRATE statement, 7876
PROC TPSPLINE statement, 8492
PROC TTEST statement, 8798
PROC VARCLUS statement, 8864
SIM2D procedure, PROC SIM2D statement, 7703
SPP procedure, PROC SPP statement, 7778
VARIOGRAM procedure, PROC VARIOGRAM

statement, 8929
PLOTS(ONLY) option

KRIGE2D procedure, PROC KRIGE2D
statement, 4133

SIM2D procedure, PROC SIM2D statement, 7703
SPP procedure, PROC SPP statement, 7779
VARIOGRAM procedure, PROC VARIOGRAM

statement, 8930
PLOTS(UNPACKPANEL) option

SPP procedure, PROC SPP statement, 7779
VARIOGRAM procedure, PROC VARIOGRAM

statement, 8930
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PLOTS= option
BAYES statement(PHREG), 5913
BIVAR statement, 4086, 4100
ESTIMATE statement (LIFEREG), 451
ESTIMATE statement (PHREG), 451
ESTIMATE statement (PLM), 451
LSMEANS statement (GENMOD), 469
LSMEANS statement (GLM), 3425
LSMEANS statement (LIFEREG), 469
LSMEANS statement (LOGISTIC), 469
LSMEANS statement (ORTHOREG), 469
LSMEANS statement (PHREG), 469
LSMEANS statement (PLM), 469
LSMEANS statement (PROBIT), 469
LSMEANS statement (SURVEYLOGISTIC), 469
LSMEANS statement (SURVEYPHREG), 469
LSMEANS statement (SURVEYREG), 469
LSMESTIMATE statement (GENMOD), 483
LSMESTIMATE statement (LIFEREG), 483
LSMESTIMATE statement (LOGISTIC), 483
LSMESTIMATE statement (MIXED), 483
LSMESTIMATE statement (ORTHOREG), 483
LSMESTIMATE statement (PHREG), 483
LSMESTIMATE statement (PLM), 483
LSMESTIMATE statement (PROBIT), 483
LSMESTIMATE statement

(SURVEYLOGISTIC), 483
LSMESTIMATE statement (SURVEYPHREG),

483
LSMESTIMATE statement (SURVEYREG), 483
ODS Graphics, 620
PROC ADAPTIVEREG statement, 899
PROC ANOVA statement, 956
PROC BCHOICE statement, 1022
PROC CALIS statement, 1232
PROC CORRESP statement, 2103
PROC FACTOR statement, 2316
PROC GAM statement, 2764
PROC GENMOD statement, 2880
PROC GLM statement, 3408
PROC ICLIFETEST statement, 3896
PROC ICPHREG statement, 3944
PROC IRT statement, 4018
PROC LIFEREG statement, 4224
PROC LIFETEST statement, 4342, 4384
PROC MCMC statement, 4755
PROC MIXED statement, 5231
PROC MULTTEST statement, 5501
PROC NPAR1WAY statement, 5798
PROC PHREG statement, 5894
PROC PLS statement, 6223
PROC PRINCOMP statement, 6593
PROC PRINQUAL statement, 6639
PROC RSREG statement, 7262

PROC SURVEYMEANS statement, 8163
PROC SURVEYREG statement, 8324
PROC TRANSREG statement, 8560
SLICE statement (GENMOD), 469
SLICE statement (GLIMMIX), 469
SLICE statement (LIFEREG), 469
SLICE statement (LOGISTIC), 469
SLICE statement (MIXED), 469
SLICE statement (ORTHOREG), 469
SLICE statement (PHREG), 469
SLICE statement (PLM), 469
SLICE statement (PROBIT), 469
SLICE statement (SURVEYLOGISTIC), 469
SLICE statement (SURVEYPHREG), 469
SLICE statement (SURVEYREG), 469
TABLES statement (FREQ), 2618
TABLES statement (SURVEYFREQ), 7988
UNIVAR statement, 4089, 4100

PLOTS=ABBOXPLOT option
PROC NPAR1WAY statement, 5799

PLOTS=AGREEPLOT option
TABLES statement (FREQ), 2619

PLOTS=ALL option
KRIGE2D procedure, PROC KRIGE2D

statement, 4133
PROC NPAR1WAY statement, 5799
SIM2D procedure, PROC SIM2D statement, 7703
SPP procedure, PROC SPP statement, 7779
TABLES statement (SURVEYFREQ), 7989
VARIOGRAM procedure, PROC VARIOGRAM

statement, 8930
PLOTS=ANOVABOXPLOT option

PROC NPAR1WAY statement, 5799
PLOTS=BOXPLOT option

PROC SURVEYMEANS statement, 8164
PLOTS=CONOVERBOXPLOT option

PROC NPAR1WAY statement, 5799
PLOTS=CSRKSTEST option

SPP procedure, PROC SPP statement, 7779
PLOTS=CUMFREQPLOT option

TABLES statement (FREQ), 2620
PLOTS=DATASCORESBOXPLOT option

PROC NPAR1WAY statement, 5799
PLOTS=DEVIATIONPLOT option

TABLES statement (FREQ), 2620
PLOTS=EDFPLOT option

PROC NPAR1WAY statement, 5799
PLOTS=EMPTYSPACE option

SPP procedure, PROC SPP statement, 7779
PLOTS=EQUATE option

KRIGE2D procedure, PROC KRIGE2D
statement, 4133

SIM2D procedure, PROC SIM2D statement, 7703
SPP procedure, PROC SPP statement, 7779
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VARIOGRAM procedure, PROC VARIOGRAM
statement, 8930

PLOTS=F option
SPP procedure, PROC SPP statement, 7779

PLOTS=FIT option
PROC SURVEYREG statement, 8325

PLOTS=FIT(NBINS=) option
PROC SURVEYREG statement, 8326

PLOTS=FITPLOT option
VARIOGRAM procedure, PROC VARIOGRAM

statement, 8930
PLOTS=FPBOXPLOT option

PROC NPAR1WAY statement, 5800
PLOTS=FREQPLOT option

TABLES statement (FREQ), 2620
PLOTS=G option

SPP procedure, PROC SPP statement, 7780
PLOTS=INTENSITY option

SPP procedure, PROC SPP statement, 7780
PLOTS=J option

SPP procedure, PROC SPP statement, 7781
PLOTS=K option

SPP procedure, PROC SPP statement, 7781
PLOTS=KAPPAPLOT option

TABLES statement (FREQ), 2621
PLOTS=KLOTZBOXPLOT option

PROC NPAR1WAY statement, 5800
PLOTS=L option

SPP procedure, PROC SPP statement, 7782
PLOTS=LURKING option

SPP procedure, PROC SPP statement, 7782
PLOTS=MEDIANPLOT option

PROC NPAR1WAY statement, 5800
PLOTS=MOODBOXPLOT option

PROC NPAR1WAY statement, 5800
PLOTS=MORAN option

VARIOGRAM procedure, PROC VARIOGRAM
statement, 8931

PLOTS=MOSAICPLOT option
TABLES statement (FREQ), 2622
TABLES statement (SURVEYFREQ), 7990

PLOTS=NONE option
KRIGE2D procedure, PROC KRIGE2D

statement, 4133
PROC NPAR1WAY statement, 5800
SIM2D procedure, PROC SIM2D statement, 7704
SPP procedure, PROC SPP statement, 7782
TABLES statement (FREQ), 2623
TABLES statement (SURVEYFREQ), 7990
VARIOGRAM procedure, PROC VARIOGRAM

statement, 8932
PLOTS=NORMALBOXPLOT option

PROC NPAR1WAY statement, 5800
PLOTS=OBSERVATIONS option

KRIGE2D procedure, PROC KRIGE2D
statement, 4133

SIM2D procedure, PROC SIM2D statement, 7704
SPP procedure, PROC SPP statement, 7783
VARIOGRAM procedure, PROC VARIOGRAM

statement, 8932
PLOTS=ODDSRATIOPLOT option

TABLES statement (FREQ), 2623
TABLES statement (SURVEYFREQ), 7990

PLOTS=PAIRS option
VARIOGRAM procedure, PROC VARIOGRAM

statement, 8933
PLOTS=PCF option

SPP procedure, PROC SPP statement, 7783
PLOTS=PREDICTION option

KRIGE2D procedure, PROC KRIGE2D
statement, 4134

PLOTS=RELRISKPLOT option
TABLES statement (FREQ), 2624
TABLES statement (SURVEYFREQ), 7991

PLOTS=RESIDUAL option
SPP procedure, PROC SPP statement, 7783

PLOTS=RISKDIFFPLOT option
TABLES statement (FREQ), 2624
TABLES statement (SURVEYFREQ), 7991

PLOTS=SAVAGEBOXPLOT option
PROC NPAR1WAY statement, 5800

PLOTS=SEMIVARIOGRAM option
KRIGE2D procedure, PROC KRIGE2D

statement, 4137
SIM2D procedure, PROC SIM2D statement, 7707
VARIOGRAM procedure, PROC VARIOGRAM

statement, 8934
PLOTS=SIM option

SIM2D procedure, PROC SIM2D statement, 7705
PLOTS=STBOXPLOT option

PROC NPAR1WAY statement, 5800
PLOTS=TRENDS option

SPP procedure, PROC SPP statement, 7784
PLOTS=VWBOXPLOT option

PROC NPAR1WAY statement, 5800
PLOTS=WILCOXONBOXPLOT option

PROC NPAR1WAY statement, 5800
PLOTS=WTFREQPLOT option

TABLES statement (SURVEYFREQ), 7991
PLOTS=WTKAPPAPLOT option

TABLES statement (FREQ), 2624
PLRL option

MODEL statement (LOGISTIC), 4542
PLS procedure

syntax, 6220
PLS procedure, BY statement, 6227
PLS procedure, EFFECT statement, 6228

BASIS option (spline), 408
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collection effect, 399
DATABOUNDARY option (spline), 408
DEGREE option (polynomial), 404
DEGREE option (spline), 408
DESIGNROLE option (lag), 402
DETAILS option (lag), 402
DETAILS option (multimember), 403
DETAILS option (polynomial), 404
DETAILS option (spline), 408
KNOTMAX option (spline), 409
KNOTMETHOD option (spline), 409
KNOTMIN option (spline), 410
LABELSTYLE option (polynomial), 404
lag effect, 400
MDEGREE option (polynomial), 405
multimember effect, 402
NATURALCUBIC option (spline), 410
NLAG option (lag), 402
NOEFFECT option (multimember), 403
NOSEPARATE option (polynomial), 405
PERIOD option (lag), 401
polynomial effect, 404
SEPARATE option (spline), 410
spline effect, 407
SPLIT option (spline), 411
STANDARDIZE option (polynomial), 406
WITHIN option (lag), 402

PLS procedure, ID statement, 6229
PLS procedure, MODEL statement, 6229

INTERCEPT option, 6230
SOLUTION option, 6230

PLS procedure, OUTPUT statement, 6230
PLS procedure, PROC PLS statement, 6220

ALGORITHM= option, 6222
CENSCALE option, 6221
CV= option, 6221
CVTEST= option, 6221
DATA= option, 6222
DETAILS option, 6222
METHOD= option, 6222
MISSING= option, 6222
NFAC= option, 6223
NITER= option, 6221
NOCENTER option, 6223
NOCVSTDIZE option, 6223
NOPRINT option, 6223
NOSCALE option, 6223, 6227
NTEST= option, 6221
PLOTS= option, 6223
PVAL= option, 6221
SEED= option, 6221, 6222
STAT= option, 6221
VARSCALE option, 6226

PLS procedure, PROC PLS statement, METHOD=PLS
option

EPSILON= option, 6222
MAXITER= option, 6222

PLS procedure, PROC PLS statement, MISSING=EM
option

EPSILON= option, 6223
MAXITER= option, 6222

PLSINGULAR= option
HAZARDRATIO statement (PHREG), 5929
ODDSRATIO statement (LOGISTIC), 4550

PLS procedure, CLASS statement, 6227
TRUNCATE option, 6228

PMD keyword
OUTPUT statement (ROBUSTREG), 7188

POD keyword
OUTPUT statement (ROBUSTREG), 7188

POINT option
EXACT statement (FREQ), 2586
EXACT statement (NPAR1WAY), 5806

POINT transformation
MODEL statement (TRANSREG), 8568

POLYBAR option
EFFECTPLOT statement, 425

POLYCHORIC option
PROC IRT statement, 4018

POLYNOMIAL keyword
REPEATED statement (ANOVA), 971

POLYNOMIAL option
MODEL statement (SPP), 7786
REPEATED statement (GLM), 3448, 3500, 3548
REPEATED statement (GLMPOWER), 3626

POOL= option
PROC DISCRIM statement, 2167

POPEVENT= option
POPULATION statement (STDRATE), 7878

POPULATION statement
STDRATE procedure, 7878

POPULATION statement, CATMOD procedure, 1914
POS= option

INSET statement, 4239
PROC TREE statement, 8772

POSTERR option
PROC DISCRIM statement, 2168

POSTPCT= option
POSTSTRATA statement, 8176

POSTSTRATA statement
SURVEYMEANS procedure, 8175

POSTTOTAL= option
POSTSTRATA statement, 8176

POWER procedure
syntax, 6274

POWER procedure, LOGISTIC statement, 6276
ALPHA= option, 6277
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CORR= option, 6277
COVARIATES= option, 6277
COVODDSRATIOS= option, 6277
COVREGCOEFFS= option, 6278
DEFAULTNBINS= option, 6278
DEFAULTUNIT= option, 6278
INTERCEPT= option, 6278
NBINS= option, 6279
NFRACTIONAL option, 6279
NTOTAL= option, 6279
OUTPUTORDER= option, 6279
POWER= option, 6280
RESPONSEPROB= option, 6280
TEST= option, 6280
TESTODDSRATIO= option, 6280
TESTPREDICTOR= option, 6280
TESTREGCOEFF= option, 6280
UNITS= option, 6280
VARDIST= option, 6281

POWER procedure, MULTREG statement, 6283
ALPHA= option, 6284
MODEL= option, 6285
NFRACTIONAL option, 6285
NFULLPREDICTORS= option, 6285
NOINT option, 6285
NREDUCEDPREDICTORS= option, 6285
NTESTPREDICTORS= option, 6285
NTOTAL= option, 6286
OUTPUTORDER= option, 6286
PARTIALCORR= option, 6286
POWER= option, 6286
RSQUAREDIFF= option, 6286
RSQUAREFULL= option, 6287
RSQUAREREDUCED= option, 6287
TEST= option, 6287

POWER procedure, ONECORR statement, 6288
ALPHA= option, 6289
CORR= option, 6289
DIST= option, 6289
MODEL= option, 6289
NFRACTIONAL option, 6290
NPARTIALVARS= option, 6290
NTOTAL= option, 6290
NULLCORR= option, 6290
OUTPUTORDER= option, 6290
POWER= option, 6291
SIDES= option, 6291
TEST= option, 6291

POWER procedure, ONESAMPLEFREQ statement,
6292

ALPHA= option, 6293
CI= option, 6293
EQUIVBOUNDS= option, 6294
HALFWIDTH= option, 6294

LOWER= option, 6294
MARGIN= option, 6294
METHOD= option, 6295
NFRACTIONAL= option, 6295
NTOTAL= option, 6295
NULLPROPORTION= option, 6295
OUTPUTORDER= option, 6295
POWER= option, 6296
PROBWIDTH= option, 6296
PROPORTION= option, 6296
SIDES= option, 6296
TEST= option, 6296
UPPER= option, 6296
VAREST= option, 6297

POWER procedure, ONESAMPLEMEANS statement,
6300

ALPHA= option, 6301
CI= option, 6301
CV= option, 6301
DIST= option, 6301
HALFWIDTH= option, 6302
LOWER= option, 6302
MEAN= option, 6302
NFRACTIONAL option, 6302
NTOTAL= option, 6302
NULLMEAN= option, 6302
OUTPUTORDER= option, 6302
POWER= option, 6303
PROBTYPE= option, 6303
PROBWIDTH= option, 6303
SIDES= option, 6303
STDDEV= option, 6304
TEST= option, 6304
UPPER= option, 6304

POWER procedure, ONEWAYANOVA statement,
6306

ALPHA= option, 6307
CONTRAST= option, 6307
GROUPMEANS= option, 6307
GROUPNS= option, 6307
GROUPWEIGHTS= option, 6307
NFRACTIONAL option, 6308
NPERGROUP= option, 6308
NTOTAL= option, 6308
NULLCONTRAST= option, 6308
OUTPUTORDER= option, 6308
POWER= option, 6309
SIDES= option, 6309
STDDEV= option, 6309
TEST= option, 6309

POWER procedure, PAIREDFREQ statement, 6310
ALPHA= option, 6312
CORR= option, 6312
DISCPROPDIFF= option, 6312
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DISCPROPORTIONS= option, 6312
DISCPROPRATIO= option, 6312
DIST= option, 6312
METHOD= option, 6312
NFRACTIONAL option, 6313
NPAIRS= option, 6313
NULLDISCPROPRATIO= option, 6313
ODDSRATIO= option, 6313
OUTPUTORDER= option, 6313
PAIREDPROPORTIONS= option, 6314
POWER= option, 6314
PROPORTIONDIFF= option, 6314
REFPROPORTION= option, 6314
RELATIVERISK= option, 6314
SIDES= option, 6314
TEST= option, 6314
TOTALPROPDISC= option, 6315

POWER procedure, PAIREDMEANS statement, 6317
ALPHA= option, 6319
CI= option, 6319
CORR= option, 6319
CV= option, 6320
DIST= option, 6320
HALFWIDTH= option, 6320
LOWER= option, 6320
MEANDIFF= option, 6320
MEANRATIO= option, 6320
NFRACTIONAL option, 6320
NPAIRS= option, 6320
NULLDIFF= option, 6321
NULLRATIO= option, 6321
OUTPUTORDER= option, 6321
PAIREDCVS= option, 6321
PAIREDMEANS= option, 6322
PAIREDSTDDEVS= option, 6322
POWER= option, 6322
PROBTYPE= option, 6322
PROBWIDTH= option, 6322
SIDES= option, 6322
STDDEV= option, 6323
TEST= option, 6323
UPPER= option, 6323

POWER procedure, PLOT statement, 6326
DESCRIPTION= option, 6330
INTERPOL= option, 6327
KEY= option, 6327
MARKERS= option, 6327
MAX= option, 6328
MIN= option, 6328
NAME= option, 6330
NPOINTS= option, 6328
STEP= option, 6328
VARY option, 6328
X= option, 6328

XOPTS= option, 6329
Y= option, 6330
YOPTS= option, 6330

POWER procedure, PROC POWER statement, 6276
PLOTONLY= option, 6276

POWER procedure, TWOSAMPLEFREQ statement,
6330

ALPHA= option, 6332
GROUPNS= option, 6332
GROUPPROPORTIONS= option, 6332
GROUPWEIGHTS= option, 6332
NFRACTIONAL option, 6332
NPERGROUP= option, 6333
NTOTAL= option, 6333
NULLODDSRATIO= option, 6333
NULLPROPORTIONDIFF= option, 6333
NULLRELATIVERISK= option, 6333
ODDSRATIO= option, 6333
OUTPUTORDER= option, 6333
POWER= option, 6334
PROPORTIONDIFF= option, 6334
REFPROPORTION= option, 6334
RELATIVERISK= option, 6334
SIDES= option, 6334
TEST= option, 6335

POWER procedure, TWOSAMPLEMEANS statement,
6337

ALPHA= option, 6339
CI= option, 6339
CV= option, 6340
DIST= option, 6340
GROUPMEANS= option, 6340
GROUPNS= option, 6340
GROUPSTDDEVS= option, 6340
GROUPWEIGHTS= option, 6340
HALFWIDTH= option, 6341
LOWER= option, 6341
MEANDIFF= option, 6341
MEANRATIO= option, 6341
NFRACTIONAL option, 6341
NPERGROUP= option, 6341
NTOTAL= option, 6341
NULLDIFF= option, 6341
NULLRATIO= option, 6342
OUTPUTORDER= option, 6342
POWER= option, 6342
PROBTYPE= option, 6342
PROBWIDTH= option, 6343
SIDES= option, 6343
STDDEV= option, 6343
TEST= option, 6343
UPPER= option, 6344

POWER procedure, TWOSAMPLESURVIVAL
statement, 6347
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ACCRUALRATEPERGROUP= option, 6348
ACCRUALRATETOTAL= option, 6349
ACCRUALTIME= option, 6349
ALPHA= option, 6349
CURVE= option, 6349
EVENTSTOTAL= option, 6350
FOLLOWUPTIME= option, 6350
GROUPACCRUALRATES= option, 6351
GROUPLOSS= option, 6351
GROUPLOSSEXPHAZARDS= option, 6351
GROUPMEDLOSSTIMES= option, 6351
GROUPMEDSURVTIMES= option, 6351
GROUPNS= option, 6352
GROUPSURVEXPHAZARDS= option, 6352
GROUPSURVIVAL= option, 6352
GROUPWEIGHTS= option, 6352
HAZARDRATIO= option, 6352
NFRACTIONAL option, 6352
NPERGROUP= option, 6353
NSUBINTERVAL= option, 6353
NTOTAL= option, 6353
OUTPUTORDER= option, 6353
POWER= option, 6354
REFSURVEXPHAZARD= option, 6354
REFSURVIVAL= option, 6354
SIDES= option, 6354
TEST= option, 6354
TOTALTIME= option, 6354

POWER procedure, TWOSAMPLEWILCOXON
statement, 6358

ALPHA= option, 6360
GROUPNS= option, 6360
GROUPWEIGHTS= option, 6360
NBINS= option, 6360
NFRACTIONAL= option, 6360
NPERGROUP= option, 6360
NTOTAL= option, 6360
OUTPUTORDER= option, 6361
POWER= option, 6361
SIDES= option, 6361
TEST= option, 6361
VARDIST= option, 6361
VARIABLES= option, 6362

POWER statement
GLMPOWER procedure, 3616

POWER transformation
MODEL statement (TRANSREG), 8570
TRANSFORM statement (MI), 5062
TRANSFORM statement (PRINQUAL), 6645

POWER= option
LOGISTIC statement (POWER), 6280
MULTREG statement (POWER), 6286
ONECORR statement (POWER), 6291
ONESAMPLEFREQ statement (POWER), 6296

ONESAMPLEMEANS statement (POWER),
6303

ONEWAYANOVA statement (POWER), 6309
PAIREDFREQ statement (POWER), 6314
PAIREDMEANS statement (POWER), 6322
POWER statement (GLMPOWER), 3622
PROC FACTOR statement, 2319
PROC MODECLUS statement, 5420
TWOSAMPLEFREQ statement (POWER), 6334
TWOSAMPLEMEANS statement (POWER),

6342
TWOSAMPLESURVIVAL statement (POWER),

6354
TWOSAMPLEWILCOXON statement

(POWER), 6361
POWNOBOUND option

MODEL statement (KRIGE2D), 4147
PP option

PROC ACECLUS statement, 872
PP= option

PROC QUANTREG statement, 6848
PPREFIX option

OUTPUT statement (TRANSREG), 8600
PPREFIX= option

PROC PRINCOMP statement, 6596
PPROB= option

MODEL statement (LOGISTIC), 4543
PPS option

SAMPLINGUNIT statement
(SURVEYSELECT), 8432

PR2ENTRY= option
PROC STEPDISC statement, 7941

PR2STAY= option
PROC STEPDISC statement, 7941

PRD keyword
OUTPUT statement (ROBUSTREG), 7188

PRECISIONPRIOR= option
BAYES statement, 2891

PRED option
MODEL statement (GENMOD), 2921
PLOT statement (REG), 7100

PRED statement
MCMC procedure, 4775

PRED= option
MODEL statement (CATMOD), 1912

PREDDIST statement
BCHOICE procedure, 1032
MCMC procedure, 4775

PREDICT option
MODEL statement (CATMOD), 1912
MODEL statement (RSREG), 7268
PROC SCORE statement, 7300

PREDICT statement
NLMIXED procedure, 5713
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PREDICT statement (KRIGE2D), 4142
PREDICTED keyword

OUTPUT statement (ADAPTIVEREG), 911
OUTPUT statement (GLM), 3443
OUTPUT statement (GLMSELECT), 3700
OUTPUT statement (LIFEREG), 4248
OUTPUT statement (LOESS), 4445
OUTPUT statement (QUANTLIFE), 6809
OUTPUT statement (QUANTREG), 6855
OUTPUT statement (QUANTSELECT), 6940
OUTPUT statement (ROBUSTREG), 7188
OUTPUT statement (SURVEYREG), 8342
SCORE statement (ADAPTIVEREG), 913
SCORE statement (GLMSELECT), 3703

PREDICTED option
MODEL statement (GENMOD), 2921
OUTPUT statement (TRANSREG), 8600

PREDICTED= option
OUTPUT statement (HPMIXED), 3844
OUTPUT statement (LOGISTIC), 4552
OUTPUT statement (NLIN), 5601
OUTPUT statement (SURVEYLOGISTIC), 8091

PREDLABEL= option
EFFECTPLOT statement, 426

PREDPOWER option
PROC SEQTEST statement, 7551

PREDPPLOT statement
options summarized by function, 6739
PROBIT procedure, 6738

PREDPROBS= option
OUTPUT statement (LOGISTIC), 4553
OUTPUT statement (SURVEYLOGISTIC), 8091

PREDTYPE option
OUTPUT statement (FMM), 2505

PREFIX= option
MANOVA statement (ANOVA), 961
MANOVA statement (GLM), 3430
PROC ACECLUS statement, 873
PROC CANDISC statement, 1863
PROC DISTANCE statement, 2265
PROC FACTOR statement, 2319
PROC GLMMOD statement, 3581
PROC PRINCOMP statement, 6596
PROC PRINQUAL statement, 6640

PREPLOT option
PROC FACTOR statement, 2319

PREROTATE= option
PROC FACTOR statement, 2319

PRESORTED option
SAMPLINGUNIT statement

(SURVEYSELECT), 8432
PRESS

STATS= option (GLMSELECT), 3695
PRESS keyword

OUTPUT statement (GLM), 3443
PRESS option

MODEL statement (REG), 7022
MODEL statement (RSREG), 7268
PROC REG statement, 7011

PRIMAT option
PROC CALIS statement, 1233

PRINCOMP procedure
syntax, 6591

PRINCOMP procedure, BY statement, 6597
PRINCOMP procedure, FREQ statement, 6597
PRINCOMP procedure, ID statement, 6597
PRINCOMP procedure, PARTIAL statement, 6598
PRINCOMP procedure, PROC PRINCOMP statement,

6591
COV option, 6592
COVARIANCE option, 6592
DATA= option, 6592
N= option, 6592
NOINT option, 6592
NOPRINT option, 6592
OUT= option, 6592
OUTSTAT= option, 6592
PARPREFIX= option, 6596
PLOTS= option, 6593
PPREFIX= option, 6596
PREFIX= option, 6596
RPREFIX= option, 6596
SING= option, 6596
SINGULAR= option, 6596
STANDARD option, 6596
STD option, 6596
VARDEF= option, 6596

PRINCOMP procedure, VAR statement, 6598
PRINCOMP procedure, WEIGHT statement, 6598
PRINQUAL procedure

syntax, 6634
PRINQUAL procedure, BY statement, 6642
PRINQUAL procedure, FREQ statement, 6643
PRINQUAL procedure, ID statement, 6643
PRINQUAL procedure, PROC PRINQUAL statement,

6634
APPROXIMATIONS option, 6635
APREFIX= option, 6635
CCONVERGE= option, 6636
CHANGE= option, 6636
CONVERGE= option, 6636
CORRELATIONS option, 6636
COVARIANCE option, 6636
DATA= option, 6636
DUMMY option, 6636
INITITER= option, 6637
MAXITER= option, 6637
MDPREF= option, 6637
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METHOD= option, 6637
MONOTONE= option, 6637
N= option, 6637
NOCHECK option, 6638
NOMISS option, 6638
NOPRINT option, 6638
OUT= option, 6638
PLOTS= option, 6639
PREFIX= option, 6640
REFRESH= option, 6640
REITERATE option, 6640
REPLACE option, 6641
SCORES option, 6641
SINGULAR= option, 6641
STANDARD option, 6641
TPREFIX= option, 6641
TSTANDARD= option, 6641
TYPE= option, 6642
UNTIE= option, 6642

PRINQUAL procedure, TRANSFORM statement
ARSIN transformation, 6645
DEGREE= option, 6649
EVENLY option, 6649
EXP transformation, 6645
IDENTITY transformation, 6647
KNOTS= option, 6649
LINEAR transformation, 6646
LOG transformation, 6645
LOGIT transformation, 6645
MONOTONE transformation, 6646
MSPLINE transformation, 6646
NAME= option, 6650
NKNOTS= option, 6650
OPSCORE transformation, 6646
ORIGINAL option, 6648
PARAMETER= option, 6648
POWER transformation, 6645
RANK transformation, 6646
REFLECT option, 6650
SM= option, 6648
SPLINE transformation, 6646
SSPLINE transformation, 6647
TSTANDARD= option, 6650
UNTIE transformation, 6647

PRINQUAL procedure, WEIGHT statement, 6650
PRINT option

MTEST statement (REG), 7027
PROC CALIS statement, 1233
PROC FACTOR statement, 2319
PROC NLIN statement, 5593
SCORE statement (LOESS), 4446
TEST statement (LOGISTIC), 4562
TEST statement (PHREG), 5949
TEST statement (REG), 7036

TEST statement (SURVEYLOGISTIC), 8096
PRINT statement, REG procedure, 7028
PRINT= option

PROC CLUSTER statement, 2023
PROC CORRESP statement, 2104

PRINTALL option (RELRISK)
TABLES statement (FREQ), 2631

PRINTE option
MANOVA statement (ANOVA), 962
MANOVA statement (GLM), 3431
REPEATED statement (ANOVA), 972
REPEATED statement (GLM), 3449, 3497

PRINTH option
MANOVA statement (ANOVA), 962
MANOVA statement (GLM), 3431
REPEATED statement (ANOVA), 972
REPEATED statement (GLM), 3449
VARMETHOD=BRR (PROC SURVEYFREQ

statement), 7973
VARMETHOD=BRR (PROC

SURVEYLOGISTIC statement), 8069
VARMETHOD=BRR (PROC SURVEYMEANS

statement), 8171
VARMETHOD=BRR (PROC SURVEYPHREG

statement), 8249
VARMETHOD=BRR (PROC SURVEYREG

statement), 8329
PRINTKWTS option

TABLES statement (FREQ), 2601, 2630
TABLES statement (SURVEYFREQ), 7981, 7998

PRINTM option
REPEATED statement (ANOVA), 972
REPEATED statement (GLM), 3449

PRINTMLE option
REPEATED statement (GENMOD), 2930

PRINTRV option
REPEATED statement (ANOVA), 972
REPEATED statement (GLM), 3449

PRIOR statement
MCMC procedure, 4776
MIXED procedure, 5268

PRIOR= option
FCS statement (MI), 5046
MCMC statement (MI), 5054
MONOTONE statement (MI), 5060
SCORE statement (LOGISTIC), 4559

PRIOREVENT= option
SCORE statement (LOGISTIC), 4559

PRIOROPTIONS option
BAYES statement (FMM), 2490

PRIOROPTS option
BAYES statement (FMM), 2490

PRIORS statement
DISCRIM procedure, 2172
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FACTOR procedure, 2331
PRIORS= option

PROC FACTOR statement, 2319
PROB option

MODEL statement (CATMOD), 1912
PROBIT, 6686
PROBIT procedure, 6686

syntax, 6691
PROBIT procedure, BY statement, 6697
PROBIT procedure, CDFPLOT statement, 6697

ANNOTATE= option, 6701
CAXIS= option, 6701
CFIT= option, 6701
CFRAME= option, 6701
CGRID= option, 6701
CHREF= option, 6702
CLABBOX= option, 6701
CTEXT= option, 6702
CVREF= option, 6702
DESCRIPTION= option, 6702
FONT= option, 6702
HAXIS= option, 6702
HEIGHT= option, 6702
HLOWER= option, 6702
HOFFSET= option, 6702
HREF= option, 6703
HREFLABELS= option, 6703
HREFLABPOS= option, 6703
HUPPER= option, 6703
INBORDER option, 6703
INHEIGHT= option, 6703
LEVEL option, 6703
LFIT option, 6703
LGRID option, 6703
LHREF= option, 6704
LVREF= option, 6704
NAME= option, 6704
NHTICK= option, 6704, 6719
NOFIT option, 6704
NOFRAME option, 6704
NOGRID option, 6704
NOHLABEL option, 6704
NOHTICK option, 6704
NOTHRESH option, 6704
NOVLABEL option, 6704
NOVTICK option, 6704
NVTICK= option, 6704, 6719
options, 6698
THRESHLABPOS= option, 6704
TURNVLABELS option, 6704
VAR= option, 6697
VAXIS= option, 6705
VAXISLABEL= option, 6705
VLOWER= option, 6705

VREF= option, 6705
VREFLABELS= option, 6705
VREFLABPOS= option, 6705
VUPPER= option, 6706
WAXIS= option, 6706
WFIT= option, 6706
WGRID= option, 6706
WREFL= option, 6706

PROBIT procedure, CDFPPLOT statement
VOFFSET= option, 6705

PROBIT procedure, ESTIMATE statement
ADJUST= option, 447
ALPHA= option, 447
CATEGORY= option, 447
CL option, 448
CORR option, 448
COV option, 448
DIVISOR= option, 449
E option, 449
EXP option, 449
ILINK option, 449
JOINT option, 450
LOWER option, 451
NOFILL option, 451
ODS table names, 458
SEED= option, 452
SINGULAR= option, 453
STEPDOWN option, 453
TESTVALUE option, 454
UPPER option, 454

PROBIT procedure, INSET statement, 6711, 6712
keywords, 6712

PROBIT procedure, IPPLOT statement
INHEIGHT= option, 6718

PROBIT procedure, IPPPLOT statement, 6713
ANNOTATE= option, 6716
CAXIS= option, 6716
CFIT= option, 6717
CFRAME= option, 6717
CGRID= option, 6717
CHREF= option, 6717
CTEXT= option, 6717
CVREF= option, 6717
DESCRIPTION= option, 6717
FONT= option, 6717
HAXIS= option, 6717
HEIGHT= option, 6717
HLOWER= option, 6718
HOFFSET= option, 6718
HREF= option, 6718
HREFLABELS= option, 6718
HREFLABPOS= option, 6718
HUPPER= option, 6718
INBORDER option, 6718
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LFIT option, 6718
LGRID option, 6719
LHREF= option, 6719
LVREF= option, 6719
NAME= option, 6719
NOCONF option, 6719
NODATA option, 6719
NOFIT option, 6719
NOFRAME option, 6719
NOGRID option, 6719
NOHLABEL option, 6719
NOHTICK option, 6719
NOTHRESH option, 6719
NOVLABEL option, 6719
NOVTICK option, 6720
options, 6714
THRESHLABPOS= option, 6720
TURNVLABELS option, 6720
VAR= option, 6713
VAXIS= option, 6720
VAXISLABEL= option, 6720
VLOWER= option, 6720
VREF= option, 6720
VREFLABELS= option, 6720
VREFLABPOS= option, 6721
VUPPER= option, 6721
WAXIS= option, 6721
WFIT= option, 6721
WGRID= option, 6721
WREFL= option, 6721

PROBIT procedure, IPPPPLOT statement
VOFFSET= option, 6720

PROBIT procedure, LPPLOT statement
INHEIGHT= option, 6726
NHTICK= option, 6727
NVTICK= option, 6727

PROBIT procedure, LPREDPLOT statement, 6721
ANNOTATE= option, 6724
CAXIS= option, 6724
CFIT= option, 6724
CFRAME= option, 6724
CGRID= option, 6725
CHREF= option, 6725
CTEXT= option, 6725
CVREF= option, 6725
DESCRIPTION= option, 6725
FONT= option, 6725
HAXIS= option, 6725
HEIGHT= option, 6725
HLOWER= option, 6725
HOFFSET= option, 6726
HREF= option, 6726
HREFLABELS= option, 6726
HREFLABPOS= option, 6726

HUPPER= option, 6726
INBORDER option, 6726
LEVEL option, 6726
LFIT option, 6726
LGRID option, 6727
LHREF= option, 6727
LVREF= option, 6727
NAME= option, 6727
NOCONF option, 6727
NODATA option, 6727
NOFIT option, 6727
NOFRAME option, 6727
NOGRID option, 6727
NOHLABEL option, 6727
NOHTICK option, 6727
NOTHRESH option, 6727
NOVLABEL option, 6728
NOVTICK option, 6728
options, 6722
THRESHLABPOS= option, 6728
TURNVLABELS option, 6728
VAR= option, 6721
VAXIS= option, 6728
VAXISLABEL= option, 6728
VLOWER= option, 6728
VOFFSET= option, 6728
VREF= option, 6728
VREFLABELS= option, 6729
VREFLABPOS= option, 6729
VUPPER= option, 6729
WAXIS= option, 6729
WFIT= option, 6729
WGRID= option, 6729
WREFL= option, 6729

PROBIT procedure, LSMEANS statement
ADJUST= option, 463
ALPHA= option, 465
AT= option, 465
BYLEVEL option, 465
CL option, 466
CORR option, 466
COV option, 466
DIFF option, 466
E option, 467
EXP option, 467
ILINK option, 467
LINES option, 468
MEANS or NOMEANS option, 468
OBSMARGINS= option, 468
ODDSRATIO option, 468
ODS graph names, 475
ODS table names, 474
PDIFF option, 469
PLOTS= option, 469
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SEED= option, 473
SINGULAR= option, 473
STEPDOWN option, 473

PROBIT procedure, LSMESIIMATE statement
ADJUST= option, 479
ALPHA= option, 479
AT= option, 479
BYLEVEL option, 479
CATEGORY= option, 480
CL option, 480
COV option, 480
DIVISOR= option, 481
E option, 481
ELSM option, 481
ILINK option, 481
JOINT option, 482
LOWER option, 483
OBSMARGINS= option, 483
ODS table names, 487
PLOTS= option, 483
SEED= option, 485
SINGULAR= option, 485
STEPDOWN option, 485
TESTVALUE= option, 486
UPPER option, 486

PROBIT procedure, MODEL statement, 6731
AGGREGATE= option, 6734
ALPHA= option, 6734
CONVERGE option, 6735
CORRB option, 6735
COVB option, 6735
DESCENDING option, 6733
DISTRIBUTION= option, 6735
EVENT= option, 6733
HPROB= option, 6735
INITIAL option, 6735
INTERCEPT= option, 6736
INVERSECL option, 6736
ITPRINT option, 6736
LACKFIT option, 6736
MAXITER= option, 6736
NOINT option, 6737
ORDER= option, 6733
REFERENCE= option, 6734
SCALE= option, 6737
SINGULAR= option, 6737

PROBIT procedure, OUTPUT statement, 6737
PROBIT procedure, PREDPLOT statement

INHEIGHT= option, 6744
LEVEL option, 6744
NHTICK= option, 6745
NVTICK= option, 6745

PROBIT procedure, PREDPPLOT statement, 6738
ANNOTATE= option, 6742

CAXIS= option, 6742
CFIT= option, 6742
CFRAME= option, 6742
CGRID= option, 6742
CHREF= option, 6742
CTEXT= option, 6743
CVREF= option, 6743
DESCRIPTION= option, 6743
FONT= option, 6743
HAXIS= option, 6743
HEIGHT= option, 6743
HLOWER= option, 6743
HOFFSET= option, 6743
HREF= option, 6743
HREFLABELS= option, 6744
HREFLABPOS= option, 6744
HUPPER= option, 6743
INBORDER option, 6744
LFIT option, 6744
LGRID option, 6744
LHREF= option, 6744
LVREF= option, 6744
NAME= option, 6745
NOCONF option, 6745
NODATA option, 6745
NOFIT option, 6745
NOFRAME option, 6745
NOGRID option, 6745
NOHLABEL option, 6745
NOHTICK option, 6745
NOTHRESH option, 6745
NOVLABEL option, 6745
NOVTICK option, 6745
options, 6739
THRESHLABPOS= option, 6745
TURNVLABELS option, 6745
VAR= option, 6738
VAXIS= option, 6746
VAXISLABEL= option, 6746
VLOWER= option, 6746
VOFFSET= option, 6746
VREF= option, 6746
VREFLABELS= option, 6746
VREFLABPOS= option, 6746
VUPPER= option, 6747
WAXIS= option, 6747
WFIT= option, 6747
WGRID= option, 6747
WREFL= option, 6747

PROBIT procedure, PROC PROBIT statement, 6691
COVOUT option, 6692
DATA= option, 6693
GOUT= option, 6693
HPROB= option, 6693
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INEST= option, 6693
INVERSECL option, 6693
LACKFIT option, 6694
LOG option, 6694
LOG10 option, 6694
NAMELEN= option, 6694
NOPRINT option, 6694
OPTC option, 6692, 6694
OUTEST= option, 6695
PLOT= option, 6695
XDATA= option, 6696

PROBIT procedure, SLICE statement
ADJUST= option, 463
ALPHA= option, 465
AT= option, 465
BYLEVEL option, 465
CL option, 466
CORR option, 466
COV option, 466
DIFF option, 466
E option, 467
EXP option, 467
ILINK option, 467
LINES option, 468
MEANS or NOMEANS option, 468
NOF option, 507
OBSMARGINS= option, 468
ODS table names, 507
PDIFF option, 469
PLOTS= option, 469
SEED= option, 473
SIMPLE= option, 507
SINGULAR= option, 473
SLICEBY= option, 507
STEPDOWN option, 473

PROBIT procedure, TEST statement, 6748
CHISQ option, 509
DDF= option, 510
E option, 510
E1 option, 510
E2 option, 510
E3 option, 510
HTYPE= option, 510
INTERCEPT option, 510
ODS table names, 511

PROBIT procedure, WEIGHT statement, 6748
PROBIT procedure, CLASS statement, 6706

CPREFIX= option, 6706
DESCENDING option, 6706
LPREFIX= option, 6706
MISSING option, 6707
ORDER= option, 6707
PARAM= option, 6707
REF= option, 6708

TRUNCATE option, 6708
PROBIT procedure, EFFECTPLOT statement, 6709
PROBIT procedure, ESTIMATE statement, 6710
PROBIT procedure, LSMEANS statement, 6729
PROBIT procedure, LSMESTIMATE statement, 6730
PROBIT procedure, PROC PROBIT statement

ORDER= option, 6695
PROBIT procedure, SLICE statement, 6747
PROBIT procedure, STORE statement, 6747
PROBMODEL statement

FMM procedure, 2507
PROBPLOT statement

LIFEREG procedure, 4249
PROBT option

PROC CANCORR statement, 1835
PROBTYPE= option

ONESAMPLEMEANS statement (POWER),
6303

PAIREDMEANS statement (POWER), 6322
TWOSAMPLEMEANS statement (POWER),

6342
PROBWIDTH= option

ONESAMPLEFREQ statement (POWER), 6296
ONESAMPLEMEANS statement (POWER),

6303
PAIREDMEANS statement (POWER), 6322
TWOSAMPLEMEANS statement (POWER),

6343
PROC ACECLUS statement, see ACECLUS procedure
PROC ADAPTIVEREG statement, see

ADAPTIVEREG procedure
PROC ANOVA statement, see ANOVA procedure
PROC BOXPLOT statement, see BOXPLOT

procedure
PROC CALIS statement, see CALIS procedure
PROC CANCORR statement, see CANCORR

procedure
PROC CANDISC statement, see CANDISC procedure
PROC CATMOD statement, see CATMOD procedure
PROC CLUSTER statement, see CLUSTER procedure
PROC CORRESP statement, see CORRESP procedure
PROC DISCRIM statement, see DISCRIM procedure
PROC DISTANCE statement, see DISTANCE

procedure
PROC FACTOR statement, see FACTOR procedure
PROC FASTCLUS statement, see FASTCLUS

procedure
PROC FMM procedure, PROC FMM statement

SINGRES= option, 2483
PROC FMM statement

FMM procedure, 2470
PROC FREQ statement, see FREQ procedure
PROC GAM statement, see GAM procedure
PROC GEE statement, see GEE procedure



Syntax Index F 9363

PROC GENMOD statement, see GENMOD procedure
PROC GLIMMIX procedure, PROC GLIMMIX

statement
SINGRES= option, 3089

PROC GLIMMIX statement, see GLIMMIX procedure
GLIMMIX procedure, 3064

PROC GLM statement, see GLM procedure
PROC GLMMOD statement, see GLMMOD

procedure
PROC GLMPOWER statement, see GLMPOWER

procedure
PROC GLMSELECT statement, see GLMSELECT

procedure
PROC HPMIXED statement, see HPMIXED

procedure
HPMIXED procedure, 3826

PROC ICLIFETEST statement, see ICLIFETEST
procedure

PROC ICPHREG statement
ICPHREG procedure, 3940

PROC INBREED statement, see INBREED procedure
PROC IRT statement, see IRT procedure
PROC KDE statement, see KDE procedure
PROC KRIGE2D statement, see KRIGE2D procedure
PROC LATTICE statement, see LATTICE procedure
PROC LIFEREG statement, see LIFEREG procedure
PROC LIFETEST statement

LIFETEST procedure, 4337
PROC LOESS statement, see LOESS procedure
PROC LOGISTIC statement, see LOGISTIC

procedure
PROC MDS statement, see MDS procedure
PROC MI statement, see MI procedure
PROC MIANALYZE statement, see MIANALYZE

procedure
PROC MIXED statement, see MIXED procedure
PROC MODECLUS statement, see MODECLUS

procedure
PROC MULTTEST statement, see MULTTEST

procedure
PROC NESTED statement, see NESTED procedure
PROC NLIN statement, see NLIN procedure
PROC NPAR1WAY statement, see NPAR1WAY

procedure
PROC ORTHOREG statement, see ORTHOREG

procedure
PROC PHREG statement

PHREG procedure, 5892
PROC PLAN statement, see PLAN procedure
PROC PLM statement, see PLM procedure

PLM procedure, 6162
PROC PLS statement, see PLS procedure
PROC POWER statement, see POWER procedure

PROC PRINCOMP statement, see PRINCOMP
procedure

PROC PRINQUAL statement, see PRINQUAL
procedure

PROC PROBIT statement, see PROBIT procedure
PROC QUANTLIFE statement, see QUANTLIFE

procedure
PROC QUANTREG statement, see QUANTREG

procedure
PROC QUANTSELECT statement, see

QUANTSELECT procedure
PROC REG statement, see REG procedure
PROC ROBUSTREG statement, see ROBUSTREG

procedure
PROC RSREG statement, see RSREG procedure
PROC SCORE statement, see SCORE procedure
PROC SEQDESIGN statement, see SEQDESIGN

procedure
PROC SEQTEST statement, see SEQTEST procedure
PROC SIM2D statement, see SIM2D procedure
PROC SIMNORM statement

SIMNORMAL procedure, 7753
PROC SPP statement, see SPP procedure
PROC STDIZE statement, see STDIZE procedure
PROC STDRATE statement, see STDRATE procedure
PROC STEPDISC statement, see STEPDISC

procedure
PROC SURVEYFREQ statement, 7968, see

SURVEYFREQ procedure
PROC SURVEYLOGISTIC statement, see

SURVEYLOGISTIC procedure
PROC SURVEYMEANS statement, see

SURVEYMEANS procedure
PROC SURVEYPHREG statement, see

SURVEYPHREG procedure
PROC SURVEYREG statement, see SURVEYREG

procedure
PROC SURVEYSELECT statement, 8411, see

SURVEYSELECT procedure
PROC TPSPLINE statement, see TPSPLINE

procedure
PROC TRANSREG statement, see TRANSREG

procedure
PROC TREE statement, see TREE procedure
PROC TTEST

See TTEST procedure, 8796
PROC VARCLUS statement, see VARCLUS

procedure
PROC VARCOMP statement, see VARCOMP

procedure
VARCOMP procedure, 8889

PROC VARIOGRAM statement, see VARIOGRAM
procedure

PROFDATA= option
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PROFILE statement, 5606
PROFILE keyword

REPEATED statement (ANOVA), 971
PROFILE option

MODEL statement (CATMOD), 1912
PROC GLIMMIX statement, 3088
REPEATED statement (GLM), 3448, 3501
REPEATED statement (GLMPOWER), 3626

PROFILE statement
NLIN procedure, 5606

PROFILE= option
FACTORS statement (CATMOD), 1904
PROC CORRESP statement, 2105
REPEATED statement (CATMOD), 1917

PROGRAM option
SHOW statement (PLM), 6176

Programming statements
GLIMMIX procedure, 3175

PROJRES= option
OUTPUT statement (NLIN), 5601

PROJSTUDENT= option
OUTPUT statement (NLIN), 5601

PROPCOV=method
PROC MCMC statement, 4758

PROPDIST= option
PROC MCMC statement, 4758

PROPENSITY option
MONOTONE statement (MI), 5060

PROPORTION= option
ONESAMPLEFREQ statement (POWER), 6296
PROC ACECLUS statement, 872
PROC FACTOR statement, 2320
PROC VARCLUS statement, 8866

PROPORTIONALHAZARDS option
ASSESS statement (PHREG), 5898

PROPORTIONDIFF= option
PAIREDFREQ statement (POWER), 6314
TWOSAMPLEFREQ statement (POWER), 6334

PROPVARREDUCTION= option
POWER statement (GLMPOWER), 3622

PSCALE
MODEL statement, 2825
MODEL statement (GENMOD), 2921

PSCONTROL= option
POSTSTRATA statement, 8176

PSEARCH option
PRIOR statement (MIXED), 5271

PSEUDO= option
PROC CLUSTER statement, 2023

PSHORT option
PROC CALIS statement, 1233

PSMALL option (CL)
TABLES statement (SURVEYFREQ), 7983

PSPCT= option

POSTSTRATA statement, 8176
PSPLINE transformation

MODEL statement (TRANSREG), 8569
PSS option

PROC SEQDESIGN statement, 7332
PROC SEQTEST statement, 7552

PSSCP option
PROC CANDISC statement, 1863
PROC DISCRIM statement, 2168
PROC STEPDISC statement, 7941

PSTAT option
PROC STDIZE statement, 7841

PSTOTAL= option
POSTSTRATA statement, 8176

PSUMMARY option
PROC CALIS statement, 1233

PTRANS option
PRIOR statement (MIXED), 5272
PROC MDS statement, 5006

PTRUENULL= option
PROC MULTTEST statement, 5503

PVAL= option
PROC PLS statement, 6221

PVAR statement, CALIS procedure, 1345
PWEIGHT option

PROC CALIS statement, 1233

Q option
RANDOM statement (GLM), 3445, 3502

QFAC option
PROC NLMIXED statement, 5705

QMAX option
PROC NLMIXED statement, 5705

QPOINT transformation
MODEL statement (TRANSREG), 8569

QPOINTS option
PROC NLMIXED statement, 5705

QPOINTS= option
PROC IRT statement, 4019

QQ option
PROC ACECLUS statement, 873

QSCALEFAC option
PROC NLMIXED statement, 5705

QTOL option
PROC NLMIXED statement, 5705

QUADRAT option
PROCESS statement (SPP), 7792

QUANTILE= option
MODEL statement (QUANTLIFE), 6809
PROC SURVEYMEANS statement, 8165

QUANTILES keyword
OUTPUT statement (LIFEREG), 4248
OUTPUT statement (QUANTREG), 6855

QUANTILES option
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MODEL statement (QUANTREG), 6854
MODEL statement (QUANTSELECT), 6934

QUANTLIFE procedure
BASELINE statement, 6805
syntax, 6802

QUANTLIFE procedure, BASELINE statement, 6805
COVARIATES= option, 6806
OUT= option, 6806

QUANTLIFE procedure, BY statement, 6806
QUANTLIFE procedure, CLASS statement, 6806

TRUNCATE option, 6807
QUANTLIFE procedure, EFFECT statement

BASIS option (spline), 408
collection effect, 399
DATABOUNDARY option (spline), 408
DEGREE option (polynomial), 404
DEGREE option (spline), 408
DESIGNROLE option (lag), 402
DETAILS option (lag), 402
DETAILS option (multimember), 403
DETAILS option (polynomial), 404
DETAILS option (spline), 408
KNOTMAX option (spline), 409
KNOTMETHOD option (spline), 409
KNOTMIN option (spline), 410
LABELSTYLE option (polynomial), 404
lag effect, 400
MDEGREE option (polynomial), 405
multimember effect, 402
NLAG option (lag), 402
NOEFFECT option (multimember), 403
NOSEPARATE option (polynomial), 405
PERIOD option (lag), 401
polynomial effect, 404
SEPARATE option (spline), 410
spline effect, 407
SPLIT option (spline), 411
STANDARDIZE option (polynomial), 406
WITHIN option (lag), 402

QUANTLIFE procedure, MODEL statement, 6808
NOINT option, 6809
QUANTILE= option, 6809

QUANTLIFE procedure, OUTPUT statement, 6809
keyword= option, 6809
OUT= option, 6809
PREDICTED keyword, 6809
RESIDUAL keyword, 6809
SAMPLEWEIGHT keyword, 6809

QUANTLIFE procedure, PROC QUANTLIFE
statement, 6802

ALPHA= option, 6803
CI= option, 6803
DATA= option, 6803
GRIDSIZE= option, 6803

INITTAU= option, 6803
KAPPA= option, 6803
LOG option, 6804
MAXIT= option, 6804
METHOD= option, 6804
NAMELEN= option, 6804
NREP= option, 6804
NTHREADS= option, 6804
OUTBOOTEST= option, 6804
PLOT= option, 6804
SEED= option, 6805
TOLERANCE= option, 6805

QUANTLIFE procedure, TEST statement, 6810
QUANTLIFE procedure, WEIGHT statement, 6810
QUANTLIFE procedure, EFFECT statement, 6807
QUANTREG procedure

EFFECT statement, 6849
QUANTREG procedure, BY statement, 6848
QUANTREG procedure, EFFECT statement

BASIS option (spline), 408
collection effect, 399
DATABOUNDARY option (spline), 408
DEGREE option (polynomial), 404
DEGREE option (spline), 408
DESIGNROLE option (lag), 402
DETAILS option (lag), 402
DETAILS option (multimember), 403
DETAILS option (polynomial), 404
DETAILS option (spline), 408
KNOTMAX option (spline), 409
KNOTMETHOD option (spline), 409
KNOTMIN option (spline), 410
LABELSTYLE option (polynomial), 404
lag effect, 400
MDEGREE option (polynomial), 405
multimember effect, 402
NATURALCUBIC option (spline), 410
NLAG option (lag), 402
NOEFFECT option (multimember), 403
NOSEPARATE option (polynomial), 405
PERIOD option (lag), 401
polynomial effect, 404
SEPARATE option (spline), 410
spline effect, 407
SPLIT option (spline), 411
STANDARDIZE option (polynomial), 406
WITHIN option (lag), 402

QUANTREG procedure, ESTIMATE statement
ADJUST= option, 447
ALPHA= option, 447
CL option, 448
CORR option, 448
COV option, 448
DIVISOR= option, 449
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E option, 449
JOINT option, 450
LOWER option, 451
NOFILL option, 451
ODS table names, 458
SEED= option, 452
SINGULAR= option, 453
STEPDOWN option, 453
TESTVALUE option, 454
UPPER option, 454

QUANTREG procedure, ID statement, 6851
QUANTREG procedure, MODEL statement, 6851

CORRB option, 6852
COVB option, 6852
CUTOFF option, 6852
DIAGNOSTICS option, 6852
ITPRINT option, 6853
LEVERAGE option, 6853
NODIAG option, 6853
NOINT option, 6853
NOSUMMARY option, 6853
PLOT= plot option, 6853
QUANTILES option, 6854
SCALE option, 6854
SINGULAR= option, 6854

QUANTREG procedure, OPTION2 statement, 6852
QUANTREG procedure, OUTPUT statement, 6854

keyword= option, 6855
LEVERAGE keyword, 6855
MAHADIST keyword, 6855
OUT= option, 6855
OUTLIER keyword, 6855
PREDICTED keyword, 6855
QUANTILES keyword, 6855
RESIDUAL keyword, 6855
ROBDIST keyword, 6855
SPLINE keyword, 6855
SRESIDUAL keyword, 6855
STD_ERR keyword, 6855

QUANTREG procedure, PERFORMANCE statement,
6855

CPUCOUNT option, 6856
DETAILS option, 6856
NOTHREADS option, 6856
THREADS option, 6856

QUANTREG procedure, PROC QUANTREG
statement, 6842

ALGORITHM option, 6843
ALPHA= option, 6844
CI option, 6844
DATA= option, 6845
INEST= option, 6845
KAPPA= option, 6843
MAXIT= option, 6843

MAXSTATIONARY= option, 6843
NAMELEN= option, 6845
OUTEST= option, 6846
PLOT= plot option, 6846
PP option, 6848
RRATIO= option, 6844
TOLERANCE= option, 6844

QUANTREG procedure, TEST statement, 6856
LR option, 6857
RANKSCORE option, 6857
WALD option, 6856

QUANTREG procedure, WEIGHT statement, 6857
QUANTREG procedure,MODEL statement

SEED option, 6854
QUANTREG procedure, CLASS statement, 6848

TRUNCATE option, 6849
QUANTREG procedure, EFFECT statement, 6849
QUANTREG procedure, ESTIMATE statement, 6850
QUANTREG procedure, PROC QUANTREG

statement
ORDER= option, 6845

QUANTSELECT procedure, 6919
syntax, 6919

QUANTSELECT procedure, BY statement, 6927
QUANTSELECT procedure, CLASS statement, 6928

CPREFIX= option, 6928
DELIMITER option, 6928
DESCENDING option, 6929
LPREFIX= option, 6929
MISSING option, 6929
ORDER= option, 6929
PARAM= option, 6929
REF= v-option, 6930
SHOWCODING option, 6928
SPLIT option, 6930

QUANTSELECT procedure,
DETAILS=STEPS(FITSTATISTICS) option

FITSTATISTICS, 6933
QUANTSELECT procedure, DE-

TAILS=STEPS(PARAMETERESTIMATES)
option

PARAMETERESTIMATES, 6933
QUANTSELECT procedure, EFFECT statement

BASIS option (spline), 408
collection effect, 399
DATABOUNDARY option (spline), 408
DEGREE option (polynomial), 404
DEGREE option (spline), 408
DESIGNROLE option (lag), 402
DETAILS option (lag), 402
DETAILS option (multimember), 403
DETAILS option (polynomial), 404
DETAILS option (spline), 408
KNOTMAX option (spline), 409
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KNOTMETHOD option (spline), 409
KNOTMIN option (spline), 410
LABELSTYLE option (polynomial), 404
lag effect, 400
MDEGREE option (polynomial), 405
multimember effect, 402
NLAG option (lag), 402
NOEFFECT option (multimember), 403
NOSEPARATE option (polynomial), 405
PERIOD option (lag), 401
polynomial effect, 404
SEPARATE option (spline), 410
spline effect, 407
SPLIT option (spline), 411
STANDARDIZE option (polynomial), 406
WITHIN option (lag), 402

QUANTSELECT procedure, MODEL statement, 6932
ADAPTIVE option, 6935
CHOOSE= option, 6936
DETAILS option, 6933
HIERARCHY= option, 6934
INCLUDE= option, 6936
MAXSTEP option, 6936
NOINT option, 6934
NTAU= option, 6934
QUANTILES= option, 6934
SELECT= option, 6936
SELECTION= option, 6935
SLENTRY= option, 6937
SLSTAY= option, 6937
STATS option, 6938
STOP= option, 6937
STOPHORIZON= option, 6938
TEST option, 6939

QUANTSELECT procedure, OUTPUT statement,
6939

keyword option, 6940
OUT= option, 6940
PREDICTED keyword, 6940
RESIDUAL keyword, 6940

QUANTSELECT procedure, PARTITION statement,
6940

FRACTION option, 6940
ROLEVAR= option, 6940

QUANTSELECT procedure, PROC QUANTSELECT
statement, 6919

ALGORITHM option, 6920
DATA= option, 6920
MAXMACRO= option, 6920
NAMELEN= option, 6922
NOPRINT option, 6922
OUTDESIGN= option, 6922
PLOT option, 6924
PLOTS option, 6924

SEED= option, 6926
TESTDATA= option, 6927
VALDATA= option, 6927

QUANTSELECT procedure, STATS= option
ACL, 6938
ADJR1, 6938
AIC, 6938
AICC, 6938
R1, 6938
SBC, 6938

QUANTSELECT procedure, TEST= option
LR1, 6939
LR2, 6939

QUANTSELECT procedure, WEIGHT statement,
6941

QUANTSELECT procedure, EFFECT statement, 6931

R option
MODEL statement (REG), 7022
REPEATED statement (HPMIXED), 3855
REPEATED statement (MIXED), 5280

R1
STATS= option (QUANTSELECT), 6938

R= option
PROC CLUSTER statement, 2023
PROC DISCRIM statement, 2168
PROC MODECLUS statement, 5420
PROC SURVEYLOGISTIC statement, 8067
PROC SURVEYMEANS statement, 8165
PROC SURVEYREG statement, 8326

RADIUS= option
PREDICT statement (KRIGE2D), 4143
PROC CALIS statement, 1234
PROC FASTCLUS statement, 2402
RIDGE statement (RSREG), 7269

RAFTERY option
BAYES statement, 2888, 4228

RAM statement, CALIS procedure, 1348
RANDOM option

ADAPTIVEREG procedure, PARTITION
statement, 912

GLMSELECT procedure, PARTITION statement,
3701

OUTPUT statement (PLAN), 6128
QUANTSELECT procedure, PARTITION

statement, 6940
RANDOM statement

BCHOICE procedure, 1032
GLIMMIX procedure, 3155
GLM procedure, 3445
HPMIXED procedure, 3849
MCMC procedure, 4778
MIXED procedure, 5272
NLMIXED procedure, 5713
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PHREG procedure, 5945
RANDOM statement (GLIMMIX)

BUCKET= suboption, 3158
KNOTTYPE= suboption, 3158
NEAREST suboption, 3159
TREEINFO suboption, 3159

RANDOM= option
PROC CALIS statement, 1234
PROC FACTOR statement, 2320
PROC FASTCLUS statement, 2408
PROC MDS statement, 5006
PROC VARCLUS statement, 8866

RANGE option
MODEL statement (TRANSREG), 8577

RANGE= option
MODEL statement (KRIGE2D), 4147
MODEL statement (TPSPLINE), 8499
MODEL statement (VARIOGRAM), 8949
PROFILE statement (NLIN), 5607
SIMULATE statement (SIM2D), 7717

RANGELAG= option
MODEL statement (VARIOGRAM), 8950

RANK transformation
MODEL statement (TRANSREG), 8570
TRANSFORM statement (PRINQUAL), 6646

RANKEPS= option
MODEL statement (VARIOGRAM), 8950

RANKS option
PROC HPMIXED statement, 3831
PROC MIXED statement, 5236

RANKSCORE option
TEST statement (QUANTREG), 6857

RANKSCORE= option
PROC DISTANCE statement, 2265

RANUNI option
PROC MULTTEST statement, 5503
PROC SURVEYSELECT statement, 8425

RATE= option
POPULATION statement (STDRATE), 7878
PROC SURVEYFREQ statement, 7970
PROC SURVEYLOGISTIC statement, 8067
PROC SURVEYMEANS statement, 8165
PROC SURVEYPHREG statement, 8246
PROC SURVEYREG statement, 8326
REFERENCE statement (STDRATE), 7879

RATIO option
PROC MIXED statement, 5236, 5317
PROC VARCOMP statement, 8890

RATIO statement
SURVEYMEANS procedure, 8177

RATIO= option
MODEL statement (KRIGE2D), 4147
SIMULATE statement (SIM2D), 7718

RATIOS option

PARMS statement (MIXED), 5268
RANDOM statement (MIXED), 5275

RC option
REPEATED statement (HPMIXED), 3855
REPEATED statement (MIXED), 5280

RCI option
PROC SEQTEST statement, 7552
REPEATED statement (HPMIXED), 3855
REPEATED statement (MIXED), 5280

RCONVERGE= option
FACTOR statement (CALIS), 1260
PROC FACTOR statement, 2320
PROC IRT statement, 4020

RCORR option
REPEATED statement (HPMIXED), 3855
REPEATED statement (MIXED), 5281

RD keyword
OUTPUT statement (ROBUSTREG), 7188

RDF= option
PROC CALIS statement, 1234
PROC CANCORR statement, 1835

RDIF1 option
OUTPUT statement (FREQ), 2595

RDIF2 option
OUTPUT statement (FREQ), 2595

RDPREFIX= option
OUTPUT statement (TRANSREG), 8600

READ function
RESPONSE statement (CATMOD), 1920

READADDPARM= option
PROC CALIS statement, 1234

RED option
PROC CANCORR statement, 1835

REDUCEOUT option
PROC LIFETEST statement, 4346

REDUNDANCY option
PROC CANCORR statement, 1835

REDUNDANCY= option
OUTPUT statement (TRANSREG), 8601

REF= option
CLASS statement (ANOVA), 958
CLASS statement (BCHOICE), 1028
CLASS statement (GAM), 2767
CLASS statement (GENMOD), 2897
CLASS statement (GLIMMIX), 3091
CLASS statement (GLM), 3414
CLASS statement (GLMSELECT), 3681
CLASS statement (HPMIXED), 3832
CLASS statement (ICPHREG), 3952
CLASS statement (LOGISTIC), 4514
CLASS statement (MIXED), 5238
CLASS statement (ORTHOREG), 5858
CLASS statement (PHREG), 5920
CLASS statement (PROBIT), 6708
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CLASS statement (SURVEYLOGISTIC), 8073
CLASS statement (SURVEYPHREG), 8253

REF= v-option
CLASS statement (QUANTSELECT), 6930

REFDATA option
PROC STDRATE statement, 7877

REFERENCE option
ROCCONTRAST statement (LOGISTIC), 4556

REFERENCE statement
STDRATE procedure, 7879

REFERENCE= option
CLASS statement (SURVEYLOGISTIC), 8073
MODEL statement, 906, 3134, 4532, 6734, 8084
MODEL statement (FMM), 2498
MODEL statement (GAM), 2771
MODEL statement (TRANSREG), 8589
OUTPUT statement (TRANSREG), 8601

REFEVENT= option
REFERENCE statement (STDRATE), 7879

REFIT option
MODELAVERAGE statement (GLMSELECT),

3696
REFIT statement, REG procedure, 7029
REFLECT option

MODEL statement (TRANSREG), 8582
TRANSFORM statement, 6650

REFLINP= option
MODEL statement (GLIMMIX), 3144

REFMODEL statement
CALIS procedure, 1354

REFMODEL statement, CALIS procedure, 1354
REFPOINT= option

INSET statement, 4240
REFPROPORTION= option

PAIREDFREQ statement (POWER), 6314
TWOSAMPLEFREQ statement (POWER), 6334

REFRATE= option
REFERENCE statement (STDRATE), 7879

REFRESH= option
PROC PRINQUAL statement, 6640

REFSURVEXPHAZARD= option
TWOSAMPLESURVIVAL statement (POWER),

6354
REFSURVIVAL= option

TWOSAMPLESURVIVAL statement (POWER),
6354

REG option
FCS statement (MI), 5047
MONOTONE statement (MI), 5061

REG procedure
syntax, 6996

REG procedure, ADD statement, 7012
REG procedure, BY statement, 7012
REG procedure, CODE statement

CATALOG= option, 396
DUMMIES option, 396
ERRORS option, 396
FILE= option, 396
FORMAT= option, 396
GROUP= option, 396
IMPUTE option, 396
LINESIZE= option, 397
LOOKUP= option, 397
NODUMMIES option, 396
NOERRORS option, 396
NORESIDUAL option, 397
RESIDUAL option, 397

REG procedure, DELETE statement, 7013
REG procedure, FREQ statement, 7013
REG procedure, ID statement, 7014
REG procedure, MODEL statement, 7014

ACOV option, 7017
ACOVMETHOD= option, 7017
ADJRSQ option, 7017
AIC option, 7017
ALL option, 7017
ALPHA= option, 7017
B option, 7017
BEST= option, 7017
BIC option, 7018
CLB option, 7018
CLI option, 7018
CLM option, 7018
COLLIN option, 7018
COLLINOINT option, 7018
CORRB option, 7018
COVB option, 7018
CP option, 7018
DETAILS option, 7019
DW option, 7019
DWPROB option, 7019
EDF option, 7019
GMSEP option, 7019
GROUPNAMES= option, 7019
HCC option, 7020
HCCMETHOD= option, 7020
I option, 7020
INCLUDE= option, 7020
INFLUENCE option, 7020
JP option, 7020
LACKFIT option, 7020
MAXSTEP option, 7021
MSE option, 7021
NOINT option, 7021
NOPRINT option, 7021
OUTSEB option, 7021
OUTSTB option, 7021
OUTVIF option, 7021
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P option, 7021
PARTIAL option, 7021
PARTIALDATA option, 7022
PARTIALR2 option, 7022
PC option, 7022
PCOMIT= option, 7022
PCORR1 option, 7022
PCORR2 option, 7022
PRESS option, 7022
R option, 7022
RIDGE= option, 7022
RMSE option, 7023
RSQUARE option, 7023
SBC option, 7023
SCORR1 option, 7023
SCORR2 option, 7023
SELECTION= option, 6979, 7023
SEQB option, 7023
SIGMA= option, 7023
SINGULAR= option, 7024
SLENTRY= option, 7024
SLSTAY= option, 7024
SP option, 7024
SPEC option, 7024
SRT option, 7024
SS1 option, 7024
SS2 option, 7024
SSE option, 7024
START= option, 7024
STB option, 7025
STOP= option, 7025
TOL option, 7025
VIF option, 7025
WHITE option, 7025
XPX option, 7025

REG procedure, MTEST statement, 7025
CANPRINT option, 7026
DETAILS option, 7026
MSTAT= option, 7026
PRINT option, 7027

REG procedure, OUTPUT statement, 7027
keyword= option, 7027
OUT= option, 7027

REG procedure, PAINT statement, 7089
ALLOBS option, 7091
NOLIST option, 7091
RESET option, 7091
STATUS option, 7092
SYMBOL= option, 7091
UNDO option, 7092

REG procedure, PLOT statement, 7092
AIC option, 7097
ANNOTATE= option, 7097
BIC option, 7097

CAXIS= option, 7097
CFRAME= option, 7097
CHOCKING= option, 7098
CHREF= option, 7098
CLEAR option, 7102
CLINE= option, 7098
CMALLOWS= option, 7098
COLLECT option, 7102
CONF option, 7098
CP option, 7098
CTEXT= option, 7098
CVREF= option, 7098
DESCRIPTION= option, 7099
EDF option, 7099
GMSEP option, 7099
HAXIS= option, 7099
HPLOTS= option, 7102
HREF= option, 7099
IN option, 7099
JP option, 7099
LEGEND= option, 7099
LHREF= option, 7099
LLINE= option, 7099
LVREF= option, 7099
MODELFONT option, 7099
MODELHT option, 7100
MODELLAB option, 7100
MSE option, 7100
NAME= option, 7100
NOCOLLECT option, 7102
NOLENGEN option, 7100
NOLINE option, 7100
NOMODEL option, 7100
NOSTAT option, 7100
NP option, 7100
OVERLAY option, 7100, 7102
PC option, 7100
PRED option, 7100
RIDGEPLOT option, 7101
SBC option, 7101
SP option, 7101
SSE option, 7101
STATFONT option, 7101
STATHT option, 7101
summary of options, 7094, 7095
SYMBOL= option, 7103
USEALL option, 7101
VAXIS= option, 7101
VPLOTS= option, 7103
VREF= option, 7101

REG procedure, PRINT statement, 7028
ANOVA option, 7029
MODELDATA option, 7029

REG procedure, PROC REG statement, 6998
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ALL option, 6999
ALPHA= option, 6999
ANNOTATE= option, 7089
CORR option, 6999
COVOUT option, 6999
DATA= option, 6999
EDF option, 6999
GOUT= option, 7089
LINEPRINTER option, 7089
NOPRINT option, 6999
OUTEST= option, 7000
OUTSEB option, 7000
OUTSSCP= option, 7000
OUTSTB option, 7000
OUTVIF option, 7000
PCOMIT= option, 7000
PLOT option, 7000
PLOTS option, 7000
PRESS option, 7011
RIDGE= option, 7011
RSQUARE option, 7011
SIMPLE option, 7011
SINGULAR= option, 7011
TABLEOUT option, 7011
USSCP option, 7011

REG procedure, REFIT statement, 7029
REG procedure, RESTRICT statement, 7030
REG procedure, REWEIGHT statement, 7031

ALLOBS option, 7033
NOLIST option, 7033
RESET option, 7033
STATUS option, 7034
UNDO option, 7034
WEIGHT= option, 7034

REG procedure, TEST statement, 7035
PRINT option, 7036

REG procedure, VAR statement, 7036
REG procedure, WEIGHT statement, 7036
REGPMM option

FCS statement (MI), 5047
MONOTONE statement (MI), 5061

REGPREDMEANMATCH option
FCS statement (MI), 5047
MONOTONE statement (MI), 5061

REGRESSION option
FCS statement (MI), 5047
MONOTONE statement (MI), 5061

REGWQ option
MEANS statement (ANOVA), 967
MEANS statement (GLM), 3437

REG procedure, CODE statement, 7012
REG procedure, STORE statement, 7034
REITERATE option

MODEL statement (TRANSREG), 8589

PROC PRINQUAL statement, 6640
RELATIVERISK= option

PAIREDFREQ statement (POWER), 6314
TWOSAMPLEFREQ statement (POWER), 6334

RELRISK option
EXACT statement (FREQ), 2583
OUTPUT statement (FREQ), 2595
TABLES statement (FREQ), 2630, 2738
TABLES statement (SURVEYFREQ), 7987

REMEAN option
RANDOM statement (BCHOICE), 1034

RENAMEPARM statement, CALIS procedure, 1356
REOBSINFO option

PROC MCMC statement, 4758
REORDER option

PROC FACTOR statement, 2321
REPEAT option

PLOT statement (BOXPLOT), 1118
REPEATED statement

ANOVA procedure, 969
CATMOD procedure, 1916
GEE procedure, 2825
GENMOD procedure, 2875, 2927
GLM procedure, 3446
GLMPOWER procedure, 3623
HPMIXED procedure, 3854, 3879
MIXED procedure, 5276, 5339

REPLACE option
OUTPUT statement (TRANSREG), 8601
PROC DISTANCE statement, 2265
PROC PRINQUAL statement, 6641
PROC STDIZE statement, 7841

REPLACE= option
PROC FASTCLUS statement, 2408

REPLICATE statement
NLMIXED procedure, 5714

REPONLY option
PROC DISTANCE statement, 2266
PROC STDIZE statement, 7841

REPS= option
PROC SURVEYSELECT statement, 8425
VARMETHOD=BRR (PROC SURVEYFREQ

statement), 7973
VARMETHOD=BRR (PROC

SURVEYLOGISTIC statement), 8070
VARMETHOD=BRR (PROC SURVEYMEANS

statement), 8171
VARMETHOD=BRR (PROC SURVEYPHREG

statement), 8250
VARMETHOD=BRR (PROC SURVEYREG

statement), 8329
REPWEIGHTS statement

SURVEYFREQ procedure, 7976
SURVEYLOGISTIC procedure, 8093
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SURVEYMEANS procedure, 8179
SURVEYPHREG procedure, 8265
SURVEYREG procedure, 8343

RESAMPLE= option
ASSESS statement (PHREG), 5898

RESCHI= option
OUTPUT statement (LOGISTIC), 4553

RESDEV= option
OUTPUT statement (LOGISTIC), 4553

RESET option
ODS PATH statement, 537, 722
PAINT statement (REG), 7091
REWEIGHT statement (REG), 7033

RESET= option
ODS GRAPHICS statement, 618

RESEXPEC= option
OUTPUT statement (NLIN), 5601

RESFUNC= option
PROC IRT statement, 4020

RESIDUAL keyword
OUTPUT statement (ADAPTIVEREG), 911
OUTPUT statement (GLM), 3443
OUTPUT statement (GLMSELECT), 3700
OUTPUT statement (LOESS), 4445
OUTPUT statement (QUANTLIFE), 6809
OUTPUT statement (QUANTREG), 6855
OUTPUT statement (QUANTSELECT), 6940
OUTPUT statement (ROBUSTREG), 7188
OUTPUT statement (SURVEYREG), 8342
SCORE statement (ADAPTIVEREG), 913
SCORE statement (GLMSELECT), 3703

RESIDUAL option
CODE statement (GENMOD), 397
CODE statement (GLIMMIX), 397
CODE statement (GLM), 397
CODE statement (GLMSELECT), 397
CODE statement (LOGISTIC), 397
CODE statement (PLM), 397
CODE statement (REG), 397
MIXED procedure, MODEL statement, 5309
MODEL statement (LOESS), 4442
MODEL statement (MIXED), 5264
MODEL statement (RSREG), 7268
MODEL statement (SPP), 7786
PROC SCORE statement, 7300
RANDOM statement (GLIMMIX), 3161
SCORE statement (LOESS), 4447

RESIDUAL= option
OUTPUT statement (HPMIXED), 3844
OUTPUT statement (NLIN), 5602
PROC CALIS statement, 1234

RESIDUALS option
MODEL statement (GENMOD), 2921
OUTPUT statement (TRANSREG), 8601

PROC FACTOR statement, 2321
RESLIK= option

OUTPUT statement (LOGISTIC), 4553
response functions (CATMOD), 1918, 1920–1922,

1924, 1927, 1961, 1965, 1996
_RESPONSE_ keyword

MODEL statement (CATMOD), 1903, 1906,
1907, 1909, 1917, 1929, 1934, 1936,
1943–1945, 1949, 1958

RESPONSE statement
CATMOD procedure, 1918

_RESPONSE_= option
FACTORS statement (CATMOD), 1904

_RESPONSE_= option
REPEATED statement (CATMOD), 1917

RESPONSEPROB= option
LOGISTIC statement (POWER), 6280

REST option
NLOPTIONS statement (CALIS), 498
NLOPTIONS statement (GLIMMIX), 498
NLOPTIONS statement (HPMIXED), 498
NLOPTIONS statement (PHREG), 498
NLOPTIONS statement (SURVEYPHREG), 498
NLOPTIONS statement (VARIOGRAM), 498

RESTART option
COVTEST statement (GLIMMIX), 3103
NLOPTIONS statement (CALIS), 498
NLOPTIONS statement (GLIMMIX), 498
NLOPTIONS statement (HPMIXED), 498
NLOPTIONS statement (PHREG), 498
NLOPTIONS statement (SURVEYPHREG), 498
NLOPTIONS statement (VARIOGRAM), 498
PROC NLMIXED statement, 5706

RESTORE statement (KRIGE2D), 4151
RESTORE statement (SIM2D), 7712
RESTORE= option

PROC PLM statement (PLM), 6165
RESTRICT statement

CATMOD procedure, 1925
FMM procedure, 2508
REG procedure, 7030

RETAIN statement
NLIN procedure, 5607

REWEIGHT statement, REG procedure, 7031
RHO= option

PROC NLIN statement, 5593
RI option

REPEATED statement (HPMIXED), 3856
REPEATED statement (MIXED), 5281

RIDGE statement
RSREG procedure, 7269

RIDGE= option
MODEL statement (REG), 7022
PROC CALIS statement, 1235
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PROC MDS statement, 5007
PROC MIXED statement, 5236
PROC REG statement, 7011

RIDGEINIT= option
MODEL statement (PHREG), 5937

RIDGEPLOT option
PLOT statement (REG), 7101

RIDGING= option
MODEL statement (LOGISTIC), 4543
MODEL statement (PHREG), 5937
MODEL statement (SURVEYLOGISTIC), 8088

RISK option
TABLES statement (SURVEYFREQ), 7996

RISK1 option
OUTPUT statement (FREQ), 2596

RISK11 option
OUTPUT statement (FREQ), 2596

RISK12 option
OUTPUT statement (FREQ), 2596

RISK2 option
OUTPUT statement (FREQ), 2596

RISK21 option
OUTPUT statement (FREQ), 2596

RISK22 option
OUTPUT statement (FREQ), 2596

RISK= option
POPULATION statement (STDRATE), 7878
REFERENCE statement (STDRATE), 7879

RISKDIFF option
EXACT statement (FREQ), 2583
OUTPUT statement (FREQ), 2595
TABLES statement (FREQ), 2631
TABLES statement (SURVEYFREQ), 7996

RISKDIFF1 option
OUTPUT statement (FREQ), 2595

RISKDIFF2 option
OUTPUT statement (FREQ), 2595

RISKLIMITS option
MODEL statement (LOGISTIC), 4543

RISKLIMITS= option
MODEL statement (PHREG), 5937
MODEL statement (SURVEYPHREG), 8260

RITER= option
FACTOR statement (CALIS), 1260
PROC FACTOR statement, 2321
PROC IRT statement, 4020

RMSE option
MODEL statement (REG), 7023

RMSSTD option
PROC CLUSTER statement, 2023

ROBDIST keyword
OUTPUT statement (QUANTREG), 6855

ROBITER= option
PROC CALIS statement, 1235

ROBPHI= option
PROC CALIS statement, 1235

ROBUST option
COMPUTE statement (VARIOGRAM), 8940
PROC CALIS statement, 1235

ROBUST= option
PROC CALIS statement, 1235

ROBUSTREG procedure
syntax, 7174

ROBUSTREG procedure, BY statement, 7182
ROBUSTREG procedure, EFFECT statement

BASIS option (spline), 408
collection effect, 399
DATABOUNDARY option (spline), 408
DEGREE option (polynomial), 404
DEGREE option (spline), 408
DESIGNROLE option (lag), 402
DETAILS option (lag), 402
DETAILS option (multimember), 403
DETAILS option (polynomial), 404
DETAILS option (spline), 408
KNOTMAX option (spline), 409
KNOTMETHOD option (spline), 409
KNOTMIN option (spline), 410
LABELSTYLE option (polynomial), 404
lag effect, 400
MDEGREE option (polynomial), 405
multimember effect, 402
NATURALCUBIC option (spline), 410
NLAG option (lag), 402
NOEFFECT option (multimember), 403
NOSEPARATE option (polynomial), 405
PERIOD option (lag), 401
polynomial effect, 404
SEPARATE option (spline), 410
spline effect, 407
SPLIT option (spline), 411
STANDARDIZE option (polynomial), 406
WITHIN option (lag), 402

ROBUSTREG procedure, ID statement, 7184
ROBUSTREG procedure, MODEL statement, 7185

ALPHA= option, 7185
CORRB option, 7185
COVB option, 7185
CUTOFF= option, 7185
DIAGNOSTICS option, 7185
FAILRATIO= option, 7186
ITPRINT option, 7186
LEVERAGE option, 7186
NOGOODFIT option, 7187
NOINT option, 7187
SINGULAR= option, 7187

ROBUSTREG procedure, OUTPUT statement, 7187
LEVERAGE keyword, 7188
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MD keyword, 7188
OUT= option, 7188
OUTLIER keyword, 7188
PMD keyword, 7188
POD keyword, 7188
PRD keyword, 7188
PREDICTED keyword, 7188
RD keyword, 7188
RESIDUAL keyword, 7188
SRESIDUAL keyword, 7188
STD_ERR keyword, 7188
STDI keyword, 7189
XBETA keyword, 7189

ROBUSTREG procedure, PERFORMANCE
statement, 7189

CPUCOUNT= option, 7189
DETAILS option, 7189
NOTHREADS option, 7189
THREADS option, 7189

ROBUSTREG procedure, PROC ROBUSTREG
statement, 7174

ASYMPCOV= option, 7178, 7180, 7181
BIASTEST option, 7181
CHIF= option, 7180, 7181
CONVERGENCE= option, 7178, 7181
COVOUT option, 7175
CSTEP= option, 7179
DATA= option, 7175
EFF= option, 7180, 7182
FWLS= option, 7175
H= option, 7179
IADJUST= option, 7179
INEST= option, 7175
INITEST= option, 7182
INITH= option, 7182
ITPRINT option, 7175
K0= option, 7180, 7182
MAXITER= option, 7178, 7180, 7182
NAMELEN= option, 7175
NBEST= option, 7179
NOREFINE option, 7181
NREP= option, 7179, 7180
OUTEST= option, 7176
PLOT= option, 7176
SCALE= option, 7178
SUBANALYSIS option, 7179
SUBGROUPSIZE= option, 7180
SUBSETSIZE= option, 7181
TOLERANCE= option, 7181
WEIGHTFUNCTION= option, 7178

ROBUSTREG procedure, TEST statement, 7189
ROBUSTREG procedure, WEIGHT statement, 7190
ROBUSTREG procedure,PROC ROBUSTREG

statement

SEED= option, 7177
ROBUSTREG procedure, CLASS statement, 7182

TRUNCATE option, 7183
ROBUSTREG procedure, EFFECT statement, 7183
ROBUSTREG procedure, PROC ROBUSTREG

statement
ORDER= option, 7175

ROC statement
LOGISTIC procedure, 4555

ROCCONTRAST statement
LOGISTIC procedure, 4556

ROCEPS= option
MODEL statement (LOGISTIC), 4543
SCORE statement (LOGISTIC), 4559

ROCOPTIONS option
PROC LOGISTIC statement, 4506

ROLEVAR= option
ADAPTIVEREG procedure, PARTITION

statement, 912
GLMSELECT procedure, PARTITION statement,

3701
QUANTSELECT procedure, PARTITION

statement, 6940
ROOT= option

PROC TREE statement, 8773
RORDER= option

PROC GENMOD statement, 2883
PROC IRT statement, 4021

ROTATE= option
FACTOR statement (CALIS), 1260
PROC FACTOR statement, 2321
PROC IRT statement, 4020

ROUND option
PROC FACTOR statement, 2323

ROUND= option
PROC MI statement, 5041

ROW option
TABLES statement (SURVEYFREQ), 7996

ROW= option
PROC CORRESP statement, 2105

ROWID= option
BASELINE statement (ICPHREG), 3950
BASELINE statement (PHREG), 5905

ROWWISE option
OUTPUT statement (LOESS), 4446

RP option
PROC CORRESP statement, 2105

RPREFIX= option
OUTPUT statement (TRANSREG), 8601
PROC CANCORR statement, 1836
PROC PRINCOMP statement, 6596

RRATIO= option
PROC QUANTREG statement, 6844

RRC1 option
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OUTPUT statement (FREQ), 2596
RRC2 option

OUTPUT statement (FREQ), 2596
RSIDE option

RANDOM statement (GLIMMIX), 3161
RSQUARE

STATS= option (GLMSELECT), 3695
RSQUARE option

MODEL statement (LOGISTIC), 4543
MODEL statement (REG), 7023
MODEL statement (SURVEYLOGISTIC), 8089
MODEL statement (TRANSREG), 8589
PROC CLUSTER statement, 2023
PROC REG statement, 7011

RSQUAREDIFF= option
MULTREG statement (POWER), 6286

RSQUAREFULL= option
MULTREG statement (POWER), 6287

RSQUAREREDUCED= option
MULTREG statement (POWER), 6287

RSREG procedure
syntax, 7261

RSREG procedure, BY statement, 7265
RSREG procedure, ID statement, 7266
RSREG procedure, MODEL statement, 7266

ACTUAL option, 7267
BYOUT option, 7267
COVAR= option, 7267
D option, 7267
L95 option, 7267
L95M option, 7268
LACKFIT option, 7267
NOANOVA option, 7268
NOCODE option, 7268
NOOPTIMAL option, 7268
NOPRINT option, 7268
PREDICT option, 7268
PRESS option, 7268
RESIDUAL option, 7268
U95 option, 7268
U95M option, 7268

RSREG procedure, PROC RSREG statement, 7262
DATA= option, 7262
NOPRINT option, 7262
OUT= option, 7262
PLOTS= option, 7262

RSREG procedure, RIDGE statement, 7269
CENTER= option, 7269
MAXIMUM option, 7269
MINIMUM option, 7269
NOPRINT option, 7269
OUTR= option, 7269
RADIUS= option, 7269

RSREG procedure, WEIGHT statement, 7270

RSTUDENT keyword
OUTPUT statement (GLM), 3443

RUPDATE= option
REPEATED statement (GENMOD), 2930

S option
PROC CANCORR statement, 1836

SALIENCE= option
PATHDIAGRAM statement, 2328

SALPHA= option
PROC CALIS statement, 1237

SAMELAMBDA option
MODEL statement (BCHOICE), 1031

SAMPLE option
SCORE statement (PLM), 6174

SAMPLEFREQ keyword
OUTPUT statement (GLMSELECT), 3700

SAMPLEPRED keyword
OUTPUT statement (GLMSELECT), 3700

SAMPLESIZE statement
SEQDESIGN procedure, 7339

SAMPLEWEIGHT keyword
OUTPUT statement (QUANTLIFE), 6809

SAMPLING option
MODELAVERAGE statement (GLMSELECT),

3697
SAMPLING= option

BAYES statement, 2893
BAYES statement(PHREG), 5916

SAMPLINGUNIT statement
SURVEYSELECT procedure, 8431

SAMPRATE= option
PROC SURVEYSELECT statement, 8425

SAMPSIZE= option
PROC SURVEYSELECT statement, 8427

SAVAGE option
EXACT statement (NPAR1WAY), 5804
OUTPUT statement (NPAR1WAY), 5809
PROC NPAR1WAY statement, 5801

SAVE option
PROC NLIN statement, 5593

SBC
STATS= option (GLMSELECT), 3695
STATS= option (QUANTSELECT), 6938

SBC option
MODEL statement (REG), 7023
MODEL statement (TRANSREG), 8577
PLOT statement (REG), 7101

SCALE option
MODEL statement (QUANTREG), 6854
PROC BCHOICE statement, 1024
PROC MCMC statement, 4760

SCALE= option
PROC ROBUSTREG statement, 7178
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MNAR statement, 5057
MODEL statement, 2825
MODEL statement (GENMOD), 2921
MODEL statement (KRIGE2D), 4147
MODEL statement (LIFEREG), 4246
MODEL statement (LOESS), 4442
MODEL statement (LOGISTIC), 4543
MODEL statement (PROBIT), 6737
MODEL statement (VARIOGRAM), 8951
ODS GRAPHICS statement, 619
SIMULATE statement (SIM2D), 7718

SCALEDINDEP option
MODEL statement (LOESS), 4442
SCORE statement (LOESS), 4447

SCALEMARKERS= option
ODS GRAPHICS statement, 619

SCALEPRIOR= option
BAYES statement, 2893

SCALEPRIOR=GAMMA option
BAYES statement, 4232

SCHEFFE option
MEANS statement (ANOVA), 967
MEANS statement (GLM), 3437

SCORE option
PROC FACTOR statement, 2323

SCORE procedure
syntax, 7299

SCORE procedure, BY statement, 7301
SCORE procedure, ID statement, 7302
SCORE procedure, PROC SCORE statement, 7299

DATA= option, 7300
NOSTD option, 7300
OUT= option, 7300
PREDICT option, 7300
RESIDUAL option, 7300
SCORE= option, 7300
TYPE= option, 7301

SCORE procedure, VAR statement, 7302
SCORE statement

GLMSELECT procedure, 3702
LOESS procedure, 4446
LOGISTIC procedure, 4557

SCORE statement, ADAPTIVEREG procedure, 912
SCORE statement, GAM procedure, 2774
SCORE statement, TPSPLINE procedure, 8501
SCORE= option

PROC SCORE statement, 7300
SCOREMETHOD= option

PROC IRT statement, 4021
SCOREMOD option

PROC GLIMMIX statement, 3088
SCORES option

PROC PRINQUAL statement, 6641
SCORES= option

PROC DISCRIM statement, 2168
TABLES statement (FREQ), 2636, 2748

SCORES=DATA option
EXACT statement (NPAR1WAY), 5804
OUTPUT statement (NPAR1WAY), 5809
PROC NPAR1WAY statement, 5801

SCORING= option
MODEL statement (GENMOD), 2922
PROC GLIMMIX statement, 3088
PROC MIXED statement, 5236

SCOROUT option
TABLES statement (FREQ), 2636

SCORR option
EXACT statement (FREQ), 2584
OUTPUT statement (FREQ), 2597
TEST statement (FREQ), 2639

SCORR1 option
MODEL statement (REG), 7023

SCORR2 option
MODEL statement (REG), 7023

SCREE option
PROC FACTOR statement, 2323

SCWGT statement
GENMOD procedure, 2934

SE option
PROC FACTOR statement, 2323

SEB option
PROC CANCORR statement, 1836

SECONDORDER option (CHISQ)
TABLES statement (SURVEYFREQ), 7982

SECONDORDER option (LRCHISQ)
TABLES statement (SURVEYFREQ), 7986

SEED option
BOOTSTRAP statement (NLIN), 5596
MODEL statement (QUANTREG), 6854
PROC MCMC statement, 4760
PROC MI statement, 5041
PROC NLMIXED statement, 5706
PROC PLAN statement, 6124

SEED statement
VARCLUS procedure, 8868

SEED= option
ASSESS statement (PHREG), 5898
BASELINE statement (PHREG), 5905
BAYES statement, 2894, 4232
BAYES statement(PHREG), 5916
ESTIMATE statement (LIFEREG), 452
ESTIMATE statement (LOGISTIC), 452
ESTIMATE statement (ORTHOREG), 452
ESTIMATE statement (PHREG), 452
ESTIMATE statement (PLM), 452
ESTIMATE statement (PROBIT), 452
ESTIMATE statement (QUANTREG), 452
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ESTIMATE statement (SURVEYLOGISTIC),
452

ESTIMATE statement (SURVEYPHREG), 452
ESTIMATE statement (SURVEYREG), 452
EXACT statement (FREQ), 2586
EXACT statement (NPAR1WAY), 5806
LSMEANS statement (GENMOD), 473
LSMEANS statement (LIFEREG), 473
LSMEANS statement (LOGISTIC), 473
LSMEANS statement (ORTHOREG), 473
LSMEANS statement (PHREG), 473
LSMEANS statement (PLM), 473
LSMEANS statement (PROBIT), 473
LSMEANS statement (SURVEYLOGISTIC), 473
LSMEANS statement (SURVEYPHREG), 473
LSMEANS statement (SURVEYREG), 473
LSMESTIMATE statement (GENMOD), 485
LSMESTIMATE statement (LIFEREG), 485
LSMESTIMATE statement (LOGISTIC), 485
LSMESTIMATE statement (MIXED), 485
LSMESTIMATE statement (ORTHOREG), 485
LSMESTIMATE statement (PHREG), 485
LSMESTIMATE statement (PLM), 485
LSMESTIMATE statement (PROBIT), 485
LSMESTIMATE statement

(SURVEYLOGISTIC), 485
LSMESTIMATE statement (SURVEYPHREG),

485
LSMESTIMATE statement (SURVEYREG), 485
PRIOR statement (MIXED), 5272
PROC ADAPTIVEREG statement, 901
PROC BCHOICE statement, 1024
PROC FASTCLUS statement, 2409
PROC FMM statement, 2482
PROC GLMSELECT statement, 3678
PROC MULTTEST statement, 5503
PROC PLM statement (PLM), 6165
PROC PLS statement, 6221, 6222
PROC QUANTLIFE statement, 6805
PROC QUANTSELECT statement, 6926
PROC ROBUSTREG statement (ROBUSTREG),

7177
PROC SIMNORMAL statement, 7754
PROC SURVEYSELECT statement, 8428
PROC VARCOMP statement, 8890
SIMULATE statement (SIM2D), 7718
SLICE statement (GENMOD), 473
SLICE statement (GLIMMIX), 473
SLICE statement (LIFEREG), 473
SLICE statement (LOGISTIC), 473
SLICE statement (MIXED), 473
SLICE statement (ORTHOREG), 473
SLICE statement (PHREG), 473
SLICE statement (PLM), 473

SLICE statement (PROBIT), 473
SLICE statement (SURVEYLOGISTIC), 473
SLICE statement (SURVEYPHREG), 473
SLICE statement (SURVEYREG), 473
SPP procedure, PROC SPP statement, 7784

SEEDBY option
PROC SIMNORMAL statement, 7754

SELECT= modifier
INFLUENCE option, MODEL statement

(MIXED), 5259
SELECT= option

MODEL statement (GLMSELECT), 3692
MODEL statement (LOESS), 4442
MODEL statement (QUANTSELECT), 6936

SELECTALL option
PROC SURVEYSELECT statement, 8429

SELECTION= option
MODEL statement (GLMSELECT), 3688
MODEL statement (LOGISTIC), 4544
MODEL statement (PHREG), 5938
MODEL statement (QUANTSELECT), 6935
MODEL statement (REG), 7023
REG procedure, MODEL statement, 6979

SELFDIAG option
PROC INBREED statement, 3988

SELFUZZ= option
PROC ADAPTIVEREG statement, 901

SEPARATE option
EFFECT statement, spline (GLIMMIX), 410
EFFECT statement, spline (GLMSELECT), 410
EFFECT statement, spline (HPMIXED), 410
EFFECT statement, spline (LOGISTIC), 410
EFFECT statement, spline (ORTHOREG), 410
EFFECT statement, spline (PHREG), 410
EFFECT statement, spline (PLS), 410
EFFECT statement, spline (QUANTLIFE), 410
EFFECT statement, spline (QUANTREG), 410
EFFECT statement, spline (QUANTSELECT),

410
EFFECT statement, spline (ROBUSTREG), 410
EFFECT statement, spline (SURVEYLOGISTIC),

410
EFFECT statement, spline (SURVEYREG), 410

SEPARATORS= option
MODEL statement (TRANSREG), 8579, 8589

SEQB option
MODEL statement (REG), 7023

SEQDESIGN procedure, DESIGN statement, 7334
ALPHA= option, 7335
ALT= option, 7335
BETA= option, 7335
BETAOVERLAP= option, 7335
BOUNDARYKEY= option, 7336
INFO= option, 7336
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METHOD(ACCEPT)= option, 7339
METHOD(ALPHA)= option, 7338
METHOD(BETA)= option, 7339
METHOD(LOWERACCEPT)= option, 7339
METHOD(LOWERALPHA)= option, 7338
METHOD(LOWERBETA)= option, 7339
METHOD(LOWERREJECT)= option, 7338
METHOD(REJECT)= option, 7338
METHOD(UPPERACCEPT)= option, 7339
METHOD(UPPERALPHA)= option, 7338
METHOD(UPPERBETA)= option, 7339
METHOD(UPPERREJECT)= option, 7338
METHOD= option, 7336
NSTAGES= option, 7339
OVERLAP= option, 7335
STOP= option, 7339

SEQDESIGN procedure, PROC SEQDESIGN
statement, 7330

ALTREF= option, 7331
BOUNDARYSCALE= option, 7331
BSCALE= option, 7331
ERRSPEND option, 7332
MAXINFO= option, 7331
PLOTS option, 7333
PSS option, 7332
STOPPROB option, 7332

SEQDESIGN procedure, SAMPLESIZE statement,
7339

MODEL= option, 7340
SEQTEST procedure, PROC SEQTEST statement,

7544
BETABOUNDARY= option, 7545
BETAOVERLAP= option, 7545
BOUNDARY= option, 7545
BOUNDARYADJ(ACCEPT)= option, 7548
BOUNDARYADJ(ALPHA)= option, 7548
BOUNDARYADJ(BETA)= option, 7548
BOUNDARYADJ(LOWERACCEPT)= option,

7549
BOUNDARYADJ(LOWERALPHA)= option,

7548
BOUNDARYADJ(LOWERBETA)= option, 7549
BOUNDARYADJ(LOWERREJECT)= option,

7548
BOUNDARYADJ(REJECT)= option, 7548
BOUNDARYADJ(UPPERACCEPT)= option,

7549
BOUNDARYADJ(UPPERALPHA)= option,

7548
BOUNDARYADJ(UPPERBETA)= option, 7549
BOUNDARYADJ(UPPERREJECT)= option,

7548
BOUNDARYADJ= option, 7547
BOUNDARYKEY= option, 7546

BOUNDARYSCALE= option, 7546
CIALPHA= option, 7546
CITYPE= option, 7546
CONDPOWER option, 7551
DATA= option, 7547
ERRSPEND option, 7551
ERRSPENDADJ(ACCEPT)= option, 7548
ERRSPENDADJ(ALPHA)= option, 7548
ERRSPENDADJ(BETA)= option, 7548
ERRSPENDADJ(LOWERACCEPT)= option,

7549
ERRSPENDADJ(LOWERALPHA)= option,

7548
ERRSPENDADJ(LOWERBETA)= option, 7549
ERRSPENDADJ(LOWERREJECT)= option,

7548
ERRSPENDADJ(REJECT)= option, 7548
ERRSPENDADJ(UPPERACCEPT)= option,

7549
ERRSPENDADJ(UPPERALPHA)= option, 7548
ERRSPENDADJ(UPPERBETA)= option, 7549
ERRSPENDADJ(UPPERREJECT)= option, 7548
ERRSPENDADJ= option, 7547
ERRSPENDMIN= option, 7549
INFOADJ= option, 7550
NSTAGES= option, 7550
ORDER= option, 7550
OVERLAP= option, 7545
PARMS= option, 7550
PLOTS option, 7552
PREDPOWER option, 7551
PSS option, 7552
RCI option, 7552
STOPPROB option, 7552

SEQUENTIAL option
MODEL statement (LOGISTIC), 4545
MODEL statement (PHREG), 5938

SERATIO= option
MODEL statement (SURVEYPHREG), 8260

SFACTOR= option
PRIOR statement (MIXED), 5272

SHAPE1= option
MODEL statement (LIFEREG), 4246

SHAPE= option
PROC DISTANCE statement, 2266
PROC MDS statement, 5007

SHAPE= plot option
PROC SURVEYREG statement, 8326

SHAPE=HEXAGONAL option
PROC SURVEYREG statement, 8326

SHAPE=RECTANGULAR option
PROC SURVEYREG statement, 8326

SHIFT= option
MNAR statement, 5057
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SHORT option
MODEL statement (TRANSREG), 8590
PROC ACECLUS statement, 873
PROC CALIS statement, 1233
PROC CANCORR statement, 1836
PROC CANDISC statement, 1863
PROC CORRESP statement, 2105
PROC DISCRIM statement, 2168
PROC FASTCLUS statement, 2409
PROC MODECLUS statement, 5420
PROC STEPDISC statement, 7941
PROC VARCLUS statement, 8867

SHOW statement
PLM procedure, 6175

SHOWCLEGEND option
EFFECTPLOT statement, 426

SHOWCODING option
CLASS statement (GLMSELECT), 3679
CLASS statement (QUANTSELECT), 6928

SHOWPVALUES option
MODEL statement (GLMSELECT), 3695

SHOWTI option
PROC ICLIFETEST statement, 3899

SIDAK option
MEANS statement (ANOVA), 967
MEANS statement (GLM), 3437
PROC MULTTEST statement, 5503, 5519, 5538

SIDES= option
ONECORR statement (POWER), 6291
ONESAMPLEFREQ statement (POWER), 6296
ONESAMPLEMEANS statement (POWER),

6303
ONEWAYANOVA statement (POWER), 6309
PAIREDFREQ statement (POWER), 6314
PAIREDMEANS statement (POWER), 6322
PROC TTEST statement, 8802
TWOSAMPLEFREQ statement (POWER), 6334
TWOSAMPLEMEANS statement (POWER),

6343
TWOSAMPLESURVIVAL statement (POWER),

6354
TWOSAMPLEWILCOXON statement

(POWER), 6361
SIGITER option

PROC MIXED statement, 5237
SIGMA= option

MNAR statement, 5057
MODEL statement (REG), 7023

SIGSQ= option
PROC NLIN statement, 5593

SIM2D procedure, 7692
syntax, 7700

SIM2D procedure, BY statement, 7707
SIM2D procedure, COORDINATES statement, 7708

XCOORD= option, 7708
YCOORD= option, 7708

SIM2D procedure, GRID statement, 7709
GRIDDATA= option, 7710
LABEL= option, 7711
NPTS= option, 7709
X= option, 7709
XCCORD= option, 7710
Y= option, 7709
YCOORD= option, 7710

SIM2D procedure, ID statement, 7711
SIM2D procedure, MEAN statement, 7722
SIM2D procedure, PROC SIM2D statement, 7702

DATA= option, 7702
IDGLOBAL option, 7702
IDNUM option, 7702
NARROW option, 7702
NOPRINT option, 7703
OUTSIM= option, 7703
PLOTS option, 7703
PLOTS(ONLY) option, 7703
PLOTS=ALL option, 7703
PLOTS=EQUATE option, 7703
PLOTS=NONE option, 7704
PLOTS=OBSERVATIONS option, 7704
PLOTS=SEMIVARIOGRAM option, 7707
PLOTS=SIM option, 7705

SIM2D procedure, RESTORE statement, 7712
INFO DETAILS option, 7712
INFO ONLY option, 7712
INFO options, 7712

SIM2D procedure, SIMULATE statement, 7713
ANGLE= option, 7715
FORM= option, 7715
MDATA= option, 7716
NUGGET= option, 7717
NUMREAL= option, 7714
RANGE= option, 7717
RATIO= option, 7718
SCALE= option, 7718
SEED= option, 7718
SINGULAR= option, 7718
SMOOTH= option, 7718
STORESELECT ANGLEID= option, 7720
STORESELECT MODEL= option, 7720
STORESELECT option, 7718
STORESELECT SVAR= option, 7721
STORESELECT TYPE= option, 7718
VAR= option, 7714

SIMILAR option
PROC TREE statement, 8773

SIMILAR= option
PROC MDS statement, 5007

SIMNORMAL procedure
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syntax, 7752
SIMNORMAL procedure, BY statement, 7755
SIMPLE option

PROC CALIS statement, 1237
PROC CANCORR statement, 1836
PROC CANDISC statement, 1863
PROC CLUSTER statement, 2023
PROC DISCRIM statement, 2168
PROC FACTOR statement, 2323
PROC HPMIXED statement, 3831
PROC LOGISTIC statement, 4507
PROC MI statement, 5042
PROC MODECLUS statement, 5420
PROC PHREG statement, 5896
PROC REG statement, 7011
PROC STEPDISC statement, 7941
PROC VARCLUS statement, 8867

SIMPLE= option
SLICE statement (GENMOD), 507
SLICE statement (GLIMMIX), 507
SLICE statement (LIFEREG), 507
SLICE statement (LOGISTIC), 507
SLICE statement (MIXED), 507
SLICE statement (ORTHOREG), 507
SLICE statement (PHREG), 507
SLICE statement (PLM), 507
SLICE statement (PROBIT), 507
SLICE statement (SURVEYLOGISTIC), 507
SLICE statement (SURVEYPHREG), 507
SLICE statement (SURVEYREG), 507

SIMPLEDIFFTYPE option
LSMEANS statement (GLIMMIX), 3122

SIMPLEEDIFF= option
LSMEANS statement (GLIMMIX), 3122

SIMREPORT= option
PROC MCMC statement, 4760

SIMTESTS statement, CALIS procedure, 1357
SIMULATE statement (SIM2D), 7713
SING= option

PROC CANCORR statement, 1836
PROC PRINCOMP statement, 6596

SINGCHOL= option
MODEL statement (MIXED), 5264
PROC FMM statement, 2483
PROC GLIMMIX statement, 3089
PROC HPMIXED statement, 3831
PROC NLMIXED statement, 5706
PROC PLM statement (PLM), 6165

SINGDEN= option
PROC MCMC statement, 4761

SINGHESS= option
PROC NLMIXED statement, 5706

SINGRES= option
MODEL statement (MIXED), 5264

PROC FMM statement, 2483
PROC GLIMMIX statement (GLIMMIX), 3089
PROC HPMIXED statement, 3831
PROC PLM statement (PLM), 6165

SINGSWEEP= option
PROC NLMIXED statement, 5706

SINGULAR option
CONTRAST statement (GLM), 3416
LSMEANS statement (GLM), 3427
PROC MI statement, 5042

SINGULAR1= option
PROC SIMNORMAL statement, 7754

SINGULAR2= option
PROC SIMNORMAL statement, 7754

SINGULAR= option
CONTRAST statement (GENMOD), 2901
CONTRAST statement (GLIMMIX), 3096
CONTRAST statement (GLMPOWER), 3609
CONTRAST statement (HPMIXED), 3835
CONTRAST statement (LOGISTIC), 4517
CONTRAST statement (MIXED), 5241
CONTRAST statement (PHREG), 5923
CONTRAST statement (SURVEYLOGISTIC),

8076
CONTRAST statement (SURVEYREG), 8333
ESTIMATE statement (GENMOD), 2904
ESTIMATE statement (GLIMMIX), 3108
ESTIMATE statement (GLM), 3418
ESTIMATE statement (HPMIXED), 3839
ESTIMATE statement (LIFEREG), 453
ESTIMATE statement (LOGISTIC), 453
ESTIMATE statement (MIXED), 5243
ESTIMATE statement (ORTHOREG), 453
ESTIMATE statement (PHREG), 453
ESTIMATE statement (PLM), 453
ESTIMATE statement (PROBIT), 453
ESTIMATE statement (QUANTREG), 453
ESTIMATE statement (SURVEYLOGISTIC),

453
ESTIMATE statement (SURVEYPHREG), 453
ESTIMATE statement (SURVEYREG), 453
LSMEANS statement (GENMOD), 473
LSMEANS statement (GLIMMIX), 3121
LSMEANS statement (HPMIXED), 3842
LSMEANS statement (LIFEREG), 473
LSMEANS statement (LOGISTIC), 473
LSMEANS statement (MIXED), 5250
LSMEANS statement (ORTHOREG), 473
LSMEANS statement (PHREG), 473
LSMEANS statement (PLM), 473
LSMEANS statement (PROBIT), 473
LSMEANS statement (SURVEYLOGISTIC), 473
LSMEANS statement (SURVEYPHREG), 473
LSMEANS statement (SURVEYREG), 473
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LSMESTIMATE statement (GENMOD), 485
LSMESTIMATE statement (GLIMMIX), 3130
LSMESTIMATE statement (LIFEREG), 485
LSMESTIMATE statement (LOGISTIC), 485
LSMESTIMATE statement (MIXED), 485
LSMESTIMATE statement (ORTHOREG), 485
LSMESTIMATE statement (PHREG), 485
LSMESTIMATE statement (PLM), 485
LSMESTIMATE statement (PROBIT), 485
LSMESTIMATE statement

(SURVEYLOGISTIC), 485
LSMESTIMATE statement (SURVEYPHREG),

485
LSMESTIMATE statement (SURVEYREG), 485
MODEL statement (GENMOD), 2922
MODEL statement (GLM), 3441
MODEL statement (KRIGE2D), 4148
MODEL statement (LIFEREG), 4247
MODEL statement (LOGISTIC), 4545
MODEL statement (MIXED), 5264
MODEL statement (PHREG), 5938
MODEL statement (QUANTREG), 6854
MODEL statement (REG), 7024
MODEL statement (ROBUSTREG), 7187
MODEL statement (SURVEYLOGISTIC), 8089
MODEL statement (SURVEYPHREG), 8261
MODEL statement (SURVEYREG), 8341
MODEL statement (TRANSREG), 8590
NLOPTIONS statement (CALIS), 498
NLOPTIONS statement (GLIMMIX), 498
NLOPTIONS statement (HPMIXED), 498
NLOPTIONS statement (PHREG), 498
NLOPTIONS statement (SURVEYPHREG), 498
NLOPTIONS statement (VARIOGRAM), 498
PROC ACECLUS statement, 873
PROC ADAPTIVEREG statement, 901
PROC CALIS statement, 1237
PROC CANCORR statement, 1836
PROC CANDISC statement, 1863
PROC CORRESP statement, 2105
PROC DISCRIM statement, 2169
PROC FACTOR statement, 2324
PROC FMM statement, 2483
PROC GLIMMIX statement, 3089
PROC ICLIFETEST statement, 3899
PROC ICPHREG statement, 3946
PROC LIFETEST statement, 4346
PROC MDS statement, 5007
PROC NLIN statement, 5593
PROC ORTHOREG statement, 5857
PROC PLM statement (PLM), 6165
PROC PRINCOMP statement, 6596
PROC PRINQUAL statement, 6641
PROC REG statement, 7011

PROC SINGCHOL statement, 3831
PROC STEPDISC statement, 7941
SIMULATE statement (SIM2D), 7718
SLICE statement (GENMOD), 473
SLICE statement (GLIMMIX), 473
SLICE statement (LIFEREG), 473
SLICE statement (LOGISTIC), 473
SLICE statement (MIXED), 473
SLICE statement (ORTHOREG), 473
SLICE statement (PHREG), 473
SLICE statement (PLM), 473
SLICE statement (PROBIT), 473
SLICE statement (SURVEYLOGISTIC), 473
SLICE statement (SURVEYPHREG), 473
SLICE statement (SURVEYREG), 473

SINGULARMSG= option
PROC KRIGE2D statement, 4137

SINGVAR option
PROC NLMIXED statement, 5706

SIZE statement
SURVEYSELECT procedure, 8433

SIZE= modifier
INFLUENCE option, MODEL statement

(MIXED), 5259
SJPIMAX= option

UNIVAR statement, 4090
SJPIMIN= option

UNIVAR statement, 4090
SJPINUM= option

UNIVAR statement, 4090
SJPITOL= option

UNIVAR statement, 4090
SKIPHLABELS= option

PLOT statement (BOXPLOT), 1118
SL

STATS= option (GLMSELECT), 3695
SLENTRY= option

MODEL statement (GLMSELECT), 3693
MODEL statement (LOGISTIC), 4545
MODEL statement (PHREG), 5939
MODEL statement (QUANTSELECT), 6937
MODEL statement (REG), 7024
PROC STEPDISC statement, 7941

SLICE option
PARMS statement, 4774

SLICE statement
GENMOD procedure, 505
GENMOD procedure, 2932
GLIMMIX procedure, 505
LIFEREG procedure, 505
LIFEREG procedure, 4260
LOGISTIC procedure, 505
LOGISTIC procedure, 4559
MIXED procedure, 505
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MIXED procedure, 5290
ORTHOREG procedure, 505
ORTHOREG procedure, 5865
PHREG procedure, 505
PHREG procedure, 5947
PLM procedure, 505
PLM procedure, 6177
PROBIT procedure, 505
PROBIT procedure, 6747
SURVEYLOGISTIC procedure, 505
SURVEYLOGISTIC procedure, 8095
SURVEYPHREG procedure, 505
SURVEYPHREG procedure, 8266
SURVEYREG procedure, 505
SURVEYREG procedure, 8344

SLICE= option
LSMEANS statement (GLIMMIX), 3121
LSMEANS statement (GLM), 3427
LSMEANS statement (HPMIXED), 3842
LSMEANS statement (MIXED), 5250

SLICEBY= option
EFFECTPLOT statement, 426
SLICE statement (GENMOD), 507
SLICE statement (GLIMMIX), 507
SLICE statement (LIFEREG), 507
SLICE statement (LOGISTIC), 507
SLICE statement (MIXED), 507
SLICE statement (ORTHOREG), 507
SLICE statement (PHREG), 507
SLICE statement (PLM), 507
SLICE statement (PROBIT), 507
SLICE statement (SURVEYLOGISTIC), 507
SLICE statement (SURVEYPHREG), 507
SLICE statement (SURVEYREG), 507

SLICEDIFF= option
LSMEANS statement (GLIMMIX), 3122

SLICEDIFFTYPE option
LSMEANS statement (GLIMMIX), 3122

SLMW= option
PROC CALIS statement, 1237

SLPOOL= option
PROC DISCRIM statement, 2169

SLSTAY= option
MODEL statement (GLMSELECT), 3693
MODEL statement (LOGISTIC), 4545
MODEL statement (PHREG), 5939
MODEL statement (QUANTSELECT), 6937
MODEL statement (REG), 7024
PROC STEPDISC statement, 7941

SM= option
MODEL statement (TRANSREG), 8575
TRANSFORM statement, 6648

SMC option
PROC CANCORR statement, 1836

SMDCR option
EXACT statement (FREQ), 2584
OUTPUT statement (FREQ), 2597
TEST statement (FREQ), 2640, 2744

SMDRC option
EXACT statement (FREQ), 2584
OUTPUT statement (FREQ), 2597
TEST statement (FREQ), 2640

SMETHOD= option
PROC CALIS statement, 1218
PROC NLIN statement, 5594

SMM option
MEANS statement (ANOVA), 967
MEANS statement (GLM), 3437

SMOOTH option
EFFECTPLOT statement, 426

SMOOTH transformation
MODEL statement (TRANSREG), 8571

SMOOTH= option
MODEL statement (KRIGE2D), 4148
MODEL statement (LOESS), 4444
MODEL statement (VARIOGRAM), 8951
SIMULATE statement (SIM2D), 7718

SMR option
STRATA statement (STDRATE), 7881

SNK option
MEANS statement (ANOVA), 967
MEANS statement (GLM), 3437

SNORM option
PROC DISTANCE statement, 2266
PROC STDIZE statement, 7841

SOCKET option
NLOPTIONS statement (CALIS), 498
NLOPTIONS statement (GLIMMIX), 498
NLOPTIONS statement (HPMIXED), 498
NLOPTIONS statement (PHREG), 498
NLOPTIONS statement (SURVEYPHREG), 498
NLOPTIONS statement (VARIOGRAM), 498

SOLUTION option
MODEL statement (GLIMMIX), 3144, 3230
MODEL statement (GLM), 3441
MODEL statement (HPMIXED), 3843
MODEL statement (MIXED), 5264, 5307
MODEL statement (PLS), 6230
MODEL statement (SPP), 7787
MODEL statement (SURVEYREG), 8341
RANDOM statement, 5946
RANDOM statement (GLIMMIX), 3161
RANDOM statement (HPMIXED), 3850
RANDOM statement (MIXED), 5275

SOLVE option
MODEL statement (TRANSREG), 8585

SORT option
PROC TREE statement, 8773
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SORT= option
PROC SURVEYSELECT statement, 8429

SORTED option
REPEATED statement (GENMOD), 2930

SOURCE option
PROC CORRESP statement, 2105

SOURCE statement
TEMPLATE procedure, 645

SP option
MODEL statement (REG), 7024
PLOT statement (REG), 7101

SPACES= option
PROC TREE statement, 8773

SPARSE option
TABLES statement (FREQ), 2637, 2727

SPCORR option
PROC CANCORR statement, 1836

SPEC option
MODEL statement (REG), 7024

SPECLIMITS= option
PROC VARCOMP statement, 8890

SPLINE keyword
OUTPUT statement (QUANTREG), 6855

SPLINE transformation
MODEL statement (TRANSREG), 8572
TRANSFORM statement (PRINQUAL), 6646

SPLIT option
CLASS statement (GLMSELECT), 3682
CLASS statement (QUANTSELECT), 6930
EFFECT statement, spline (GLMSELECT), 411
EFFECT statement, spline (HPMIXED), 411
EFFECT statement, spline (LOGISTIC), 411
EFFECT statement, spline (ORTHOREG), 411
EFFECT statement, spline (PHREG), 411
EFFECT statement, spline (PLS), 411
EFFECT statement, spline (QUANTLIFE), 411
EFFECT statement, spline (QUANTREG), 411
EFFECT statement, spline (QUANTSELECT),

411
EFFECT statement, spline (ROBUSTREG), 411
EFFECT statement, spline (SURVEYLOGISTIC),

411
EFFECT statement, spline (SURVEYREG), 411

SPP procedure, 7768
syntax, 7776

SPP procedure, BY statement, 7784
SPP procedure, MODEL statement

CENSCALE option, 7785
CL option, 7786
CORRB option, 7786
COVB option, 7786
GOF option, 7786
GRID option, 7786
ITHIST option, 7786

OUTINTENSITY option, 7786
OUTSIM option, 7786
POLYNOMIAL option, 7786
RESIDUAL option, 7786
SOLUTION option, 7787

SPP procedure, PARMS statement, 7787
PARMSDATA= option, 7788
PDATA= option, 7788

SPP procedure, PROC SPP statement, 7777
DATA= option, 7777
EDGECORR= option, 7777
NODUP option, 7777
NOPRINT option, 7778
PLOTS option, 7778
PLOTS(EQUATE) option, 7779
PLOTS(ONLY) option, 7779
PLOTS(UNPACKPANEL) option, 7779
PLOTS=ALL option, 7779
PLOTS=CSRKSTEST option, 7779
PLOTS=EMPTYSPACE option, 7779
PLOTS=F option, 7779
PLOTS=G option, 7780
PLOTS=INTENSITY option, 7780
PLOTS=J option, 7781
PLOTS=K option, 7781
PLOTS=L option, 7782
PLOTS=LURKING option, 7782
PLOTS=NONE option, 7782
PLOTS=OBSERVATIONS option, 7783
PLOTS=PCF option, 7783
PLOTS=RESIDUAL option, 7783
PLOTS=TRENDS option, 7784
SEED= option, 7784

SPP procedure, PROCESS statement
AREA option, 7789
BLOCKS option, 7794
BYTYPE option, 7792
CROSS option, 7792
EVENT option, 7790
F option, 7790
G option, 7790
J option, 7790
K option, 7791
KERNEL option, 7791
L option, 7791
MARK option, 7790
MAXDIST option, 7793
MINDIST option, 7794
NDIST option, 7794
NSIM option, 7794
OUTSIM option, 7791
PCF option, 7791
QUADRAT option, 7792

SPP procedure, TREND statement
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FIELD option, 7794
SPRECISION= option

PROC CALIS statement, 1219, 1237
SPREFIX option

PROC STDIZE statement, 7842
SQPCORR option

PROC CANCORR statement, 1836
SQRTVAR option

POWER statement (GLMPOWER), 3622
SQSPCORR option

PROC CANCORR statement, 1836
SRESIDUAL keyword

OUTPUT statement (LIFEREG), 4248
OUTPUT statement (QUANTREG), 6855
OUTPUT statement (ROBUSTREG), 7188

SRT option
MODEL statement (REG), 7024

SRUVEYPHREG procedure, NLOPTIONS statement
ABSCONV option, 490

SRVEYPHREG procedure, PROC SURVEYPHREG
statement

DATA= option, 8245
MISSING option, 8245

SS1 option
MODEL statement (GLM), 3441
MODEL statement (REG), 7024

SS2 option
MODEL statement (GLM), 3441
MODEL statement (REG), 7024
MODEL statement (TRANSREG), 8590

SS3 option
MODEL statement (GLM), 3441

SS4 option
MODEL statement (GLM), 3441

SSCP option
REPEATED statement (MIXED), 5281

SSE option
MODEL statement (REG), 7024
PLOT statement (REG), 7101

SSE= option
OUTPUT statement (NLIN), 5602

SSPLINE transformation
MODEL statement (TRANSREG), 8572
TRANSFORM statement (PRINQUAL), 6647

ST option
EXACT statement (NPAR1WAY), 5804
OUTPUT statement (NPAR1WAY), 5809
PROC NPAR1WAY statement, 5801

STACKING option
PROC SURVEYMEANS statement, 8166

STANDARD option
PROC CLUSTER statement, 2023
PROC MODECLUS statement, 5420
PROC PRINCOMP statement, 6596

PROC PRINQUAL statement, 6641
STANDARDDEVIATION keyword

OUTPUT statement (GLMSELECT), 3700
STANDARDIZE option

EFFECT statement, polynomial (GLIMMIX),
406

EFFECT statement, polynomial (GLMSELECT),
406

EFFECT statement, polynomial (HPMIXED),
406

EFFECT statement, polynomial (LOGISTIC),
406

EFFECT statement, polynomial (ORTHOREG),
406

EFFECT statement, polynomial (PHREG), 406
EFFECT statement, polynomial (PLS), 406
EFFECT statement, polynomial (QUANTLIFE),

406
EFFECT statement, polynomial (QUANTREG),

406
EFFECT statement, polynomial

(QUANTSELECT), 406
EFFECT statement, polynomial (ROBUSTREG),

406
EFFECT statement, polynomial

(SURVEYLOGISTIC), 406
EFFECT statement, polynomial (SURVEYREG),

406
STANDORTH option

MODEL statement (TRANSREG), 8579
START option

PROC NLMIXED statement, 5706
START= option

MCMC statement (MI), 5054
MODEL statement (LOGISTIC), 4545
MODEL statement (PHREG), 5939
MODEL statement (REG), 7024
PROC CALIS statement, 1237
PROC STEPDISC statement, 7942

STARTGLM option
PROC GLIMMIX statement, 3089

STAT= option
PROC PLS statement, 6221
PROC STDRATE statement, 7877

STATFONT option
PLOT statement (REG), 7101

STATHT option
PLOT statement (REG), 7101

STATISTICS option
BAYES statement (FMM), 2492

STATISTICS= option
BAYES statement(GENMOD), 2894
BAYES statement(PHREG), 4233, 5916
PREDDIST statement (MCMC), 4776
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PROC BCHOICE statement, 1025
PROC MCMC statement, 4761

STATS option
MODEL statement (GLMSELECT), 3695
MODEL statement (QUANTSELECT), 6938
PROC SURVEYSELECT statement, 8430
STRATA statement (STDRATE), 7881
STRATA statement (SURVEYSELECT), 8437

STATS= option
PREDDIST statement (MCMC), 4776
PROC BCHOICE statement, 1025
PROC MCMC statement, 4761

STATUS option
PAINT statement (REG), 7092
REWEIGHT statement (REG), 7034

STB option
MODEL statement (GLMSELECT), 3695
MODEL statement (LOGISTIC), 4546
MODEL statement (REG), 7025
MODEL statement (SURVEYLOGISTIC), 8089
MODEL statement (SURVEYREG), 8341
PROC CANCORR statement, 1836

STD keyword
OUTPUT statement (LOESS), 4445
OUTPUT statement (SURVEYREG), 8342

STD option
MODEL statement (LOESS), 4444
PROC PRINCOMP statement, 6596

STD statement, CALIS procedure, 1358
STD_ERR keyword

OUTPUT statement (LIFEREG), 4249
OUTPUT statement (QUANTREG), 6855
OUTPUT statement (ROBUSTREG), 7188

STDCOEF option
MODEL statement (GLIMMIX), 3144

STDDEV keyword
OUTPUT statement (GLMSELECT), 3700

STDDEV= option
ONESAMPLEMEANS statement (POWER),

6304
ONEWAYANOVA statement (POWER), 6309
PAIREDMEANS statement (POWER), 6323
POWER statement (GLMPOWER), 3623
TWOSAMPLEMEANS statement (POWER),

6343
STDERR option

LSMEANS statement (GLM), 3428
PROC CALIS statement, 1237
PROC LIFETEST statement, 4346

STDERR statement
MIANALYZE procedure, 5168

STDERR= option
OUTPUT statement (HPMIXED), 3844

STDI keyword

OUTPUT statement (GLM), 3443
OUTPUT statement (ROBUSTREG), 7189

STDI= option
OUTPUT statement (NLIN), 5602

STDIZE procedure
syntax, 7837

STDIZE procedure, BY statement, 7842
STDIZE procedure, FREQ statement, 7843

NOTRUNCATE option, 7843
STDIZE procedure, LOCATION statement, 7844
STDIZE procedure, PROC STDIZE statement, 7837

ADD= option, 7839
DATA= option, 7839
FUZZ= option, 7839
INITIAL= option, 7839
KEEPLEN, 7839
METHOD= option, 7840
MISSING= option, 7840
MULT= option, 7840
NMARKERS= option, 7840
NOMISS option, 7840
NORM option, 7840
OPREFIX option, 7840
OUT= option, 7840
OUTSTAT= option, 7841
PCTLDEF= option, 7841
PCTLMTD option, 7841
PCTLPTS option, 7841
PSTAT option, 7841
REPLACE option, 7841
REPONLY option, 7841
SNORM option, 7841
SPREFIX option, 7842
UNSTD option, 7842
VARDEF option, 7842

STDIZE procedure, SCALE statement, 7844
STDIZE procedure, VAR statement, 7844
STDIZE procedure, WGT statement, 7844
STDMEAN option

PROC CANDISC statement, 1864
PROC DISCRIM statement, 2169
PROC STEPDISC statement, 7942

STDONLY option
PROC DISTANCE statement, 2266

STDP keyword
OUTPUT statement (GLM), 3443
OUTPUT statement (QUANTLIFE), 6809
OUTPUT statement (SURVEYREG), 8342

STDP= option
OUTPUT statement (NLIN), 5602

STDR keyword
OUTPUT statement (GLM), 3443

STDR= option
OUTPUT statement (NLIN), 5602
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STDRATE procedure, BY statement, 7877
STDRATE procedure, POPULATION statement, 7878

EVENT= option, 7878
EXPOSED= option, 7878
GROUP= option, 7878
MULT= option, 7878
ORDER= option, 7878
POPEVENT= option, 7878
RATE= option, 7878
RISK= option, 7878
TOTAL= option, 7879

STDRATE procedure, PROC STDRATE statement,
7874

ALPHA= option, 7874
CL option, 7874
DATA= option, 7875
EFFECT option, 7875
METHOD= option, 7875
MULT= option, 7877
PLOTS option, 7876
REFDATA= option, 7877
STAT= option, 7877

STDRATE procedure, REFERENCE statement, 7879
EVENT= option, 7879
MULT= option, 7879
RATE= option, 7879
REFEVENT= option, 7879
REFRATE= option, 7879
REFRISK= option, 7879
REFTOTAL= option, 7880
RISK= option, 7879
TOTAL= option, 7879

STDRATE procedure, STRATA statement, 7880
EFFECT option, 7880
INFO option, 7881
MISSING option, 7880
ORDER= option, 7880
SMR option, 7881

STDRES option (CROSSLIST)
TABLES statement (FREQ), 2612

STDRESCHI= option
OUTPUT statement (LOGISTIC), 4553

STDRESDEV= option
OUTPUT statement (LOGISTIC), 4553

STDXBETA= option
OUTPUT statement (LOGISTIC), 4553
OUTPUT statement (SURVEYLOGISTIC), 8092

STEP= option
PLOT statement (GLMPOWER), 3614
PLOT statement (POWER), 6328

STEPBON option
PROC MULTTEST statement, 5503

STEPBOOT option
PROC MULTTEST statement, 5504

STEPDISC procedure
syntax, 7938

STEPDISC procedure, BY statement, 7942
STEPDISC procedure, CLASS statement, 7943
STEPDISC procedure, FREQ statement, 7943
STEPDISC procedure, PROC STEPDISC statement,

7938
ALL option, 7939
BCORR option, 7939
BCOV option, 7939
BSSCP option, 7940
DATA= option, 7940
INCLUDE= option, 7940
MAXMACRO= option, 7940
MAXSTEP= option, 7940
METHOD= option, 7941
PCORR option, 7941
PCOV option, 7941
PR2ENTRY= option, 7941
PR2STAY= option, 7941
PSSCP option, 7941
SHORT option, 7941
SIMPLE option, 7941
SINGULAR= option, 7941
SLENTRY= option, 7941
SLSTAY= option, 7941
START= option, 7942
STDMEAN option, 7942
STOP= option, 7942
TCORR option, 7942
TCOV option, 7942
TSSCP option, 7942
WCORR option, 7942
WCOV option, 7942
WSSCP option, 7942

STEPDISC procedure, VAR statement, 7943
STEPDISC procedure, WEIGHT statement, 7943
STEPDOWN option

ESTIMATE statement (GLIMMIX), 3108
ESTIMATE statement (LIFEREG), 453
ESTIMATE statement (LOGISTIC), 453
ESTIMATE statement (ORTHOREG), 453
ESTIMATE statement (PHREG), 453
ESTIMATE statement (PLM), 453
ESTIMATE statement (PROBIT), 453
ESTIMATE statement (QUANTREG), 453
ESTIMATE statement (SURVEYLOGISTIC),

453
ESTIMATE statement (SURVEYPHREG), 453
ESTIMATE statement (SURVEYREG), 453
LSMEANS statement (GENMOD), 473
LSMEANS statement (GLIMMIX), 3123
LSMEANS statement (LIFEREG), 473
LSMEANS statement (LOGISTIC), 473
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LSMEANS statement (ORTHOREG), 473
LSMEANS statement (PHREG), 473
LSMEANS statement (PLM), 473
LSMEANS statement (PROBIT), 473
LSMEANS statement (SURVEYLOGISTIC), 473
LSMEANS statement (SURVEYPHREG), 473
LSMEANS statement (SURVEYREG), 473
LSMESTIMATE statement (GENMOD), 485
LSMESTIMATE statement (GLIMMIX), 3130
LSMESTIMATE statement (LIFEREG), 485
LSMESTIMATE statement (LOGISTIC), 485
LSMESTIMATE statement (MIXED), 485
LSMESTIMATE statement (ORTHOREG), 485
LSMESTIMATE statement (PHREG), 485
LSMESTIMATE statement (PLM), 485
LSMESTIMATE statement (PROBIT), 485
LSMESTIMATE statement

(SURVEYLOGISTIC), 485
LSMESTIMATE statement (SURVEYPHREG),

485
LSMESTIMATE statement (SURVEYREG), 485
SLICE statement (GENMOD), 473
SLICE statement (GLIMMIX), 473
SLICE statement (LIFEREG), 473
SLICE statement (LOGISTIC), 473
SLICE statement (MIXED), 473
SLICE statement (ORTHOREG), 473
SLICE statement (PHREG), 473
SLICE statement (PLM), 473
SLICE statement (PROBIT), 473
SLICE statement (SURVEYLOGISTIC), 473
SLICE statement (SURVEYPHREG), 473
SLICE statement (SURVEYREG), 473

STEPPERM option
PROC MULTTEST statement, 5504

STEPS option
SCORE statement (LOESS), 4447

STEPSID option
PROC MULTTEST statement, 5504, 5538

STMTORDER= option
PROC PLM statement (PLM), 6165

STOP= option
DESIGN statement (SEQDESIGN), 7339
MODEL statement (GLMSELECT), 3694
MODEL statement (LOGISTIC), 4546
MODEL statement (PHREG), 5939
MODEL statement (QUANTSELECT), 6937
MODEL statement (REG), 7025
PROC STEPDISC statement, 7942

STOPHORIZON= option
MODEL statement (QUANTSELECT), 6938

STOPPROB option
PROC SEQDESIGN statement, 7332
PROC SEQTEST statement, 7552

STOPRES option
MODEL statement (LOGISTIC), 4546
MODEL statement (PHREG), 5939

STORE statement
GENMOD procedure, 508
GENMOD procedure, 2932
GLIMMIX procedure, 508
GLIMMIX procedure, 3175
GLM procedure, 508
GLMSELECT procedure, 508
GLMSELECT procedure, 3703
GLM procedure, 3450
LIFEREG procedure, 508
LIFEREG procedure, 4260
LOGISTIC procedure, 508
LOGISTIC procedure, 4559
MIXED procedure, 508
MIXED procedure, 5290
ORTHOREG procedure, 508
ORTHOREG procedure, 5865
PHREG procedure, 508
PHREG procedure, 5947
PROBIT procedure, 508
PROBIT procedure, 6747
REG procedure, 7034
SURVEYLOGISTIC procedure, 508
SURVEYLOGISTIC procedure, 8095
SURVEYPHREG procedure, 508
SURVEYPHREG procedure, 8266
SURVEYREG procedure, 508
SURVEYREG procedure, 8344
VARIOGRAM procedure, 8957

STORESELECT ANGLEID= option
MODEL statement (KRIGE2D), 4149
SIMULATE statement (SIM2D), 7720

STORESELECT MODEL= option
MODEL statement (KRIGE2D), 4150
SIMULATE statement (SIM2D), 7720

STORESELECT option
MODEL statement (KRIGE2D), 4148
SIMULATE statement (SIM2D), 7718

STORESELECT SVAR= option
SIMULATE statement (SIM2D), 7721

STORESELECT TYPE= option
MODEL statement (KRIGE2D), 4148
SIMULATE statement (SIM2D), 7718

STOUFFER option
PROC MULTTEST statement, 5504, 5521

STRATA statement
GENMOD procedure, 2932
ICLIFETEST procedure, 3900
LIFETEST procedure, 4348
LOGISTIC procedure, 4560
MULTTEST procedure, 5507
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PHREG procedure, 5946
STDRATE procedure, 7880
SURVEYFREQ procedure, 7977
SURVEYLOGISTIC procedure, 8095
SURVEYMEANS procedure, 8180
SURVEYPHREG procedure, 8267
SURVEYREG procedure, 8344
SURVEYSELECT procedure, 8433

STRICT= option
PROC FASTCLUS statement, 2409

STRUCTADD= option
PATHDIAGRAM statement, 1342

STRUCTEQ statement, CALIS procedure, 1358
STRUCTURAL option

PATHDIAGRAM statement, 1342
STUDENT keyword

OUTPUT statement (GLM), 3443
STUDENT= option

OUTPUT statement (HPMIXED), 3844
OUTPUT statement (NLIN), 5602

STUTC option
EXACT statement (FREQ), 2584
OUTPUT statement (FREQ), 2597
TEST statement (FREQ), 2640

STYLE= option
ODS destination statement, 620
ODS LATEX statement, 700

SUBANALYSIS option
PROC ROBUSTREG statement, 7179

SUBCLUSTER= option
REPEATED statement (GENMOD), 2930

SUBGRADIENT option
PROC GLIMMIX statement, 3089
PROC NLMIXED statement, 5706

SUBGROUP statement
SURVEYLOGISTIC procedure, 8076
SURVEYMEANS procedure, 8174
SURVEYREG procedure, 8334

SUBGROUPSIZE= option
PROC ROBUSTREG statement, 7180

SUBJECT option
CONTRAST statement (GLIMMIX), 3096
CONTRAST statement (MIXED), 5242
ESTIMATE statement (GLIMMIX), 3109
ESTIMATE statement (MIXED), 5244

SUBJECT= option
CONTRAST statement (HPMIXED), 3835
ESTIMATE statement (HPMIXED), 3839
RANDOM statement (BCHOICE), 1034
RANDOM statement (GLIMMIX), 3161
RANDOM statement (HPMIXED), 3850
RANDOM statement (MIXED), 5240, 5275
RANDOM statement(MCMC), 4778
REPEATED statement, 2826

REPEATED statement (GENMOD), 2928
REPEATED statement (HPMIXED), 3856
REPEATED statement (MIXED), 5281

SUBSET option
MODELAVERAGE statement (GLMSELECT),

3697
SUBSETSIZE= option

PROC ROBUSTREG statement, 7181
subsidiary group specification statements, CALIS

procedure, 1196
subsidiary model specification statements, CALIS

procedure, 1197
SUM option

PROC MODECLUS statement, 5420
SUMMARIES option

BAYES statement (FMM), 2492
SUMMARY option

MANOVA statement (ANOVA), 962
MANOVA statement (GLM), 3431
PROC CALIS statement, 1233
PROC FASTCLUS statement, 2409
PROC VARCLUS statement, 8867
REPEATED statement (ANOVA), 972
REPEATED statement (GLM), 3449

SUPERIORITY option (BINOMIAL)
TABLES statement (FREQ), 2606

SUPERIORITY option (RISKDIFF)
TABLES statement (FREQ), 2636

SUPPLEMENTARY statement
CORRESP procedure, 2107

SUREYREG procedure, EFFECT statement
DESIGNROLE option (lag), 402

SURVEYFREQ procedure
syntax, 7967

SURVEYFREQ procedure, BY statement, 7975
SURVEYFREQ procedure, CLUSTER statement,

7975
SURVEYFREQ procedure, PROC SURVEYFREQ

statement, 7968
DATA= option, 7968
DFADJ option (VARMETHOD=BRR), 7972
DFADJ option (VARMETHOD=JACKKNIFE),

7974
FAY= option (VARMETHOD=BRR), 7972
HADAMARD= option (VARMETHOD=BRR),

7972
MISSING option, 7968
NOMCAR option, 7969
NOSUMMARY option, 7969
ORDER= option, 7969
OUTJKCOEFS= option

(VARMETHOD=JACKKNIFE), 7974
OUTWEIGHTS= option (VARMETHOD=BRR),

7973
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OUTWEIGHTS= option
(VARMETHOD=JACKKNIFE), 7975

PAGE option, 7969
PRINTH option (VARMETHOD=BRR), 7973
RATE= option, 7970
REPS= option (VARMETHOD=BRR), 7973
TOTAL= option, 7970
VARHEADER= option, 7971
VARMETHOD= option, 7971
VARMETHOD=BRR option, 7972
VARMETHOD=JACKKNIFE option, 7974
VARMETHOD=TAYLOR option, 7975

SURVEYFREQ procedure, REPWEIGHTS statement,
7976

DF= option, 7976
JKCOEFS= option, 7977

SURVEYFREQ procedure, STRATA statement, 7977
LIST option, 7978

SURVEYFREQ procedure, TABLES statement, 7978
ADJUST= option (CL), 7983
AGREE option, 7981
ALPHA= option, 7981
CHISQ option, 7982
CL option, 7982
CLWT option, 7984
COLUMN option, 7984
COV option, 7985
COVP option, 7985
CV option, 7985
CVWT option, 7985
DEFF option, 7985
DEFF option (COLUMN), 7984
DEFF option (ROW), 7996
DEVIATION option, 7985
DF= option, 7985
EXPECTED option, 7985
LRCHISQ option, 7986
MODIFIED option (CHISQ), 7982
MODIFIED option (LRCHISQ), 7986
NOCELLPERCENT option, 7986
NOFREQ option, 7986
NOPERCENT option, 7987
NOPRINT option, 7987
NOSPARSE option, 7987
NOSTD option, 7987
NOTOTAL option, 7987
NOWT option, 7987
OR option, 7987
PEARSONRES option, 7987
PLOTS= option, 7988
PLOTS=ALL option, 7989
PLOTS=MOSAICPLOT option, 7990
PLOTS=NONE option, 7990
PLOTS=ODDSRATIOPLOT option, 7990

PLOTS=RELRISKPLOT option, 7991
PLOTS=RISKDIFF option, 7991
PLOTS=WTFREQPLOT option, 7991
PRINTKWTS option, 7981, 7998
PSMALL option (CL), 7983
RELRISK option, 7987
RISK option, 7996
RISKDIFF option, 7996
ROW option, 7996
SECONDORDER option (CHISQ), 7982
SECONDORDER option (LRCHISQ), 7986
TESTP= option, 7997
TRUNCATE= option (CL), 7983
TYPE= option (CL), 7984
TYPE=CLOPPERPEARSON option (CL), 7984
TYPE=LOGIT option (CL), 7984
TYPE=WALD option (CL), 7984
TYPE=WILSON option (CL), 7984
VAR option, 7997
VARWT option, 7997
WCHISQ option, 7997
WLLCHISQ option, 7997
WTFREQ option, 7997
WTKAPPA option, 7997

SURVEYFREQ procedure, WEIGHT statement, 7998
SURVEYLOGISTIC procedure, EFFECT statement

BASIS option (spline), 408
collection effect, 399
DATABOUNDARY option (spline), 408
DEGREE option (polynomial), 404
DEGREE option (spline), 408
DESIGNROLE option (lag), 402
DETAILS option (lag), 402
DETAILS option (multimember), 403
DETAILS option (polynomial), 404
DETAILS option (spline), 408
KNOTMAX option (spline), 409
KNOTMETHOD option (spline), 409
KNOTMIN option (spline), 410
LABELSTYLE option (polynomial), 404
lag effect, 400
MDEGREE option (polynomial), 405
multimember effect, 402
NATURALCUBIC option (spline), 410
NLAG option (lag), 402
NOEFFECT option (multimember), 403
NOSEPARATE option (polynomial), 405
PERIOD option (lag), 401
polynomial effect, 404
SEPARATE option (spline), 410
spline effect, 407
SPLIT option (spline), 411
STANDARDIZE option (polynomial), 406
WITHIN option (lag), 402
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SURVEYLOGISTIC procedure, ESTIMATE statement
ADJUST= option, 447
ALPHA= option, 447
CATEGORY= option, 447
CL option, 448
CORR option, 448
COV option, 448
DIVISOR= option, 449
E option, 449
EXP option, 449
ILINK option, 449
JOINT option, 450
LOWER option, 451
NOFILL option, 451
ODS table names, 458
SEED= option, 452
SINGULAR= option, 453
STEPDOWN option, 453
TESTVALUE option, 454
UPPER option, 454

SURVEYLOGISTIC procedure, LSMEANS statement
ADJUST= option, 463
ALPHA= option, 465
AT= option, 465
BYLEVEL option, 465
CL option, 466
CORR option, 466
COV option, 466
DIFF option, 466
E option, 467
EXP option, 467
ILINK option, 467
LINES option, 468
MEANS or NOMEANS option, 468
OBSMARGINS= option, 468
ODDSRATIO option, 468
ODS graph names, 475
ODS table names, 474
PDIFF option, 469
PLOTS= option, 469
SEED= option, 473
SINGULAR= option, 473
STEPDOWN option, 473

SURVEYLOGISTIC procedure, LSMESIIMATE
statement

ADJUST= option, 479
ALPHA= option, 479
AT= option, 479
BYLEVEL option, 479
CATEGORY= option, 480
CL option, 480
CORR option, 480
COV option, 480
DIVISOR= option, 481

E option, 481
ELSM option, 481
EXP option, 481
ILINK option, 481
JOINT option, 482
LOWER option, 483
OBSMARGINS= option, 483
ODS table names, 487
PLOTS= option, 483
SEED= option, 485
SINGULAR= option, 485
STEPDOWN option, 485
TESTVALUE= option, 486
UPPER option, 486

SURVEYLOGISTIC procedure, SLICE statement
ADJUST= option, 463
ALPHA= option, 465
AT= option, 465
BYLEVEL option, 465
CL option, 466
CORR option, 466
COV option, 466
DIFF option, 466
E option, 467
EXP option, 467
ILINK option, 467
LINES option, 468
MEANS or NOMEANS option, 468
NOF option, 507
OBSMARGINS= option, 468
ODDSRATIO option, 468
ODS table names, 507
PDIFF option, 469
PLOTS= option, 469
SEED= option, 473
SIMPLE= option, 507
SINGULAR= option, 473
SLICEBY= option, 507
STEPDOWN option, 473

SURVEYLOGISTIC procedure, 8064
DF=DESIGN, 8086
DF=INFINITY, 8086
DF=NONE, 8086
DF=PARMADJ, 8087
syntax, 8064

SURVEYLOGISTIC procedure, BY statement, 8071
SURVEYLOGISTIC procedure, CLASS statement,

8071
CPREFIX= option, 8071
DESCENDING option, 8072
LPREFIX= option, 8072
ORDER= option, 8072
PARAM= option, 8072, 8100
REF= option, 8073
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REFERENCE= option, 8073
SURVEYLOGISTIC procedure, CLUSTER statement,

8073
SURVEYLOGISTIC procedure, CONTRAST

statement, 8074
ALPHA= option, 8076
E option, 8076
ESTIMATE= option, 8076
SINGULAR= option, 8076

SURVEYLOGISTIC procedure, DOMAIN statement,
8076

SURVEYLOGISTIC procedure, EFFECT statement,
8077

SURVEYLOGISTIC procedure, ESTIMATE
statement, 8078

SURVEYLOGISTIC procedure, FREQ statement,
8079

SURVEYLOGISTIC procedure, LSMESTIMATE
statement, 8081

SURVEYLOGISTIC procedure, MODEL statement,
8082

ABSFCONV option, 8085
ADJBOUND= option, 8089
ALPHA= option, 8085
CLODDS option, 8085
CLPARM option, 8086
CORRB option, 8086
COVB option, 8086
DEFFBOUND= option, 8090
DESCENDING option, 8083
DF= option, 8086
EVENT= option, 8083
EXPEST option, 8087
FCONV= option, 8087
GCONV= option, 8087
GRADIENT option, 8087
ITPRINT option, 8087
LINK= option, 8087
MAXITER= option, 8088
NOCHECK option, 8088
NODESIGNPRINT= option, 8088
NODUMMYPRINT= option, 8088
NOINT option, 8088
OFFSET= option, 8088
ORDER= option, 8083
PARMLABEL option, 8088
REFERENCE= option, 8084
RIDGING= option, 8088
RSQUARE option, 8089
SINGULAR= option, 8089
STB option, 8089
TECHNIQUE= option, 8089
VADJUST= option, 8089
XCONV= option, 8090

SURVEYLOGISTIC procedure, OUTPUT statement,
8090

ALPHA= option, 8092
LOWER= option, 8091
OUT= option, 8091
PREDICTED= option, 8091
PREDPROBS= option, 8091
STDXBETA = option, 8092
UPPER= option, 8092
XBETA= option, 8092

SURVEYLOGISTIC procedure, PROC
SURVEYLOGISTIC statement, 8065

ALPHA= option, 8065
DATA= option, 8066
FAY= option (VARMETHOD=BRR), 8068
H= option (VARMETHOD=BRR), 8068
HADAMARD= option (VARMETHOD=BRR),

8068
INEST= option, 8066
MISSING option, 8066
N= option, 8067
NAMELEN= option, 8066
NOMCAR option, 8066
NOSORT option, 8066
ORDER= option, 8066
OUTJKCOEFS= option

(VARMETHOD=JACKKNIFE), 8070
OUTJKCOEFS= option (VARMETHOD=JK),

8070
OUTWEIGHTS= option (VARMETHOD=BRR),

8069
OUTWEIGHTS= option

(VARMETHOD=JACKKNIFE), 8070
OUTWEIGHTS= option (VARMETHOD=JK),

8070
PRINTH option (VARMETHOD=BRR), 8069
R= option, 8067
RATE= option, 8067
REPS= option (VARMETHOD=BRR), 8070
TOTAL= option, 8067
VARMETHOD= option, 8067

SURVEYLOGISTIC procedure, REPWEIGHTS
statement, 8093

DF= option, 8094
JKCOEFS= option, 8094

SURVEYLOGISTIC procedure, SLICE statement,
8095

SURVEYLOGISTIC procedure, STORE statement,
8095

SURVEYLOGISTIC procedure, STRATA statement,
8095

LIST option, 8096
SURVEYLOGISTIC procedure, TEST statement, 8096

PRINT option, 8096
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SURVEYLOGISTIC procedure, UNITS statement,
8096

DEFAULT= option, 8097
SURVEYLOGISTIC procedure, WEIGHT statement,

8097
SURVEYMEANS procedure, BY statement, 8173
SURVEYMEANS procedure

syntax, 8160
SURVEYMEANS procedure, CLASS statement, 8173
SURVEYMEANS procedure, CLUSTER statement,

8174
SURVEYMEANS procedure, DOMAIN statement,

8174
DFADJ option, 8175

SURVEYMEANS procedure, POSTSTRATA
statement, 8175

OUT= option, 8177
OUTPSWGT= option, 8177
POSTPCT= option, 8176
POSTTOTAL= option, 8176

SURVEYMEANS procedure, PROC
SURVEYMEANS statement, 8161

ALPHA= option, 8162
DATA= option, 8162
DFADJ option (VARMETHOD=BRR), 8169
DFADJ option (VARMETHOD=JACKKNIFE),

8172
DFADJ option (VARMETHOD=JK), 8172
FAY= option (VARMETHOD=BRR), 8170
H= option (VARMETHOD=BRR), 8170
HADAMARD= option (VARMETHOD=BRR),

8170
MISSING option, 8162
N= option, 8166
NOMCAR option, 8162
NONSYMCL option, 8162
NOSPARSE option, 8162
ORDER= option, 8162
OUTJKCOEFS= option

(VARMETHOD=JACKKNIFE), 8172
OUTJKCOEFS= option (VARMETHOD=JK),

8172
OUTWEIGHTS= option (VARMETHOD=BRR),

8171
OUTWEIGHTS= option

(VARMETHOD=JACKKNIFE), 8172
OUTWEIGHTS= option (VARMETHOD=JK),

8172
PERCENTILE= option, 8163
PLOTS= option, 8163
PLOTS=BOXPLOT option, 8164
PRINTH option (VARMETHOD=BRR), 8171
QUANTILE= option, 8165
R= option, 8165

RATE= option, 8165
REPS= option (VARMETHOD=BRR), 8171
STACKING option, 8166
TOTAL= option, 8166
VARMETHOD= option, 8169

SURVEYMEANS procedure, RATIO statement, 8177
SURVEYMEANS procedure, REPWEIGHTS

statement, 8179
DF= option, 8179
JKCOEFS= option, 8179

SURVEYMEANS procedure, STRATA statement,
8180

LIST option, 8181
SURVEYMEANS procedure, VAR statement, 8181
SURVEYMEANS procedure, WEIGHT statement,

8181
SURVEYPHREG procedure

DF=ALLREPS, 8260
DF=NONE, 8260
DF=PARMADJ, 8260
NLOPTIONS statement, 8262

SURVEYPHREG procedure, BY statement, 8251
SURVEYPHREG procedure, CLASS statement, 8251

MISSING option, 8252
ORDER= option, 8252
PARAM= option, 8252

SURVEYPHREG procedure, CLUSTER statement,
8254

SURVEYPHREG procedure, DOMAIN statement,
8254

SURVEYPHREG procedure, ESTIMATE statement
ADJDFE= option, 446
ADJUST= option, 447
ALPHA= option, 447
CHISQ option, 448
CL option, 448
CORR option, 448
COV option, 448
DF= option, 448
DIVISOR= option, 449
E option, 449
JOINT option, 450
LOWER option, 451
NOFILL option, 451
ODS table names, 458
SEED= option, 452
SINGULAR= option, 453
STEPDOWN option, 453
TESTVALUE option, 454
UPPER option, 454

SURVEYPHREG procedure, FREQ statement, 8256
SURVEYPHREG procedure, LSMEANS statement

ADJDFE= option, 462
ADJUST= option, 463
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ALPHA= option, 465
AT= option, 465
BYLEVEL option, 465
CL option, 466
CORR option, 466
COV option, 466
DF= option, 466
DIFF option, 466
E option, 467
LINES option, 468
MEANS or NOMEANS option, 468
OBSMARGINS= option, 468
ODS graph names, 475
ODS table names, 474
PDIFF option, 469
PLOTS= option, 469
SEED= option, 473
SINGULAR= option, 473
STEPDOWN option, 473

SURVEYPHREG procedure, LSMESIIMATE
statement

ADJDFE= option, 478
ADJUST= option, 479
ALPHA= option, 479
AT= option, 479
BYLEVEL option, 479
CHISQ option, 480
CL option, 480
CORR option, 480
COV option, 480
DF= option, 480
DIVISOR= option, 481
E option, 481
ELSM option, 481
JOINT option, 482
LOWER option, 483
OBSMARGINS= option, 483
ODS table names, 487
PLOTS= option, 483
SEED= option, 485
SINGULAR= option, 485
STEPDOWN option, 485
TESTVALUE= option, 486
UPPER option, 486

SURVEYPHREG procedure, MODEL statement, 8258
ALPHA= option, 8259
CLPARM option, 8259
COVB option, 8259
DF= option, 8259
HESS option, 8260
INVHESS option, 8260
RISKLIMITS= option, 8260
SERATIO= option, 8260
SINGULAR= option, 8261

TIES= option, 8261
VADJUST= option, 8261
VARRATIO= option, 8261

SURVEYPHREG procedure, NLOPTIONS statement,
8262

ABSFCONV option, 490
ABSGCONV option, 490
ABSGTOL option, 490
ABSTOL option, 490
ABSXCONV option, 491
ABSXTOL option, 491
ASINGULAR= option, 491
FCONV option, 491
FCONV2 option, 492
FSIZE option, 493
FTOL option, 491
FTOL2 option, 492
GCONV option, 493
GCONV2 option, 493
GTOL option, 493
GTOL2 option, 493
HESCAL option, 493
HS option, 493
INHESSIAN option, 494
INSTEP option, 494
LCDEACT= option, 495
LCEPSILON= option, 495
LCSINGULAR= option, 495
LINESEARCH option, 495
LSP option, 496
LSPRECISION option, 496
MAXFU option, 496
MAXFUNC option, 496
MAXIT option, 497
MAXITER option, 497
MAXSTEP option, 497
MAXTIME option, 497
MINIT option, 497
MINITER option, 497
MSINGULAR= option, 497
REST option, 498
RESTART option, 498
SINGULAR= option, 498
SOCKET option, 498
TECH option, 498
TECHNIQUE option, 498
UPD option, 499
VSINGULAR= option, 500
XSIZE option, 500
XTOL option, 500

SURVEYPHREG procedure, OUTPUT statement,
8262

keyword= option, 8262
OUT= option, 8262
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SURVEYPHREG procedure, PROC SURVEYPHREG
statement, 8245

CENTER= option (VARMETHOD=BRR), 8248
CENTER= option (VARMETHOD=JK), 8250
DETAILS option (VARMETHOD=BRR), 8248
DETAILS option (VARMETHOD=JK), 8250
FAY= option (VARMETHOD=BRR), 8248
HADAMARD= option (VARMETHOD=BRR),

8249
NOMCAR option, 8245
NOPRINT option, 8245
OUTJKCOEFS= option (VARMETHOD=JK),

8251
OUTWEIGHTS= option (VARMETHOD=BRR),

8249
OUTWEIGHTS= option (VARMETHOD=JK),

8250
PRINTH option (VARMETHOD=BRR), 8249
RATE= option, 8246
REPS= option (VARMETHOD=BRR), 8250
TOTAL= option, 8247
VARMETHOD= option, 8247

SURVEYPHREG procedure, REPWEIGHTS
statement, 8265

DF= option, 8265
JKCOEFS= option, 8265

SURVEYPHREG procedure, SLICE statement
ADJUST= option, 463
ALPHA= option, 465
AT= option, 465
BYLEVEL option, 465
CL option, 466
CORR option, 466
COV option, 466
DF= option, 466
DIFF option, 466
E option, 467
LINES option, 468
MEANS or NOMEANS option, 468
NOF option, 507
OBSMARGINS= option, 468
ODS table names, 507
PDIFF option, 469
PLOTS= option, 469
SEED= option, 473
SIMPLE= option, 507
SINGULAR= option, 473
SLICEBY= option, 507
STEPDOWN option, 473

SURVEYPHREG procedure, STRATA statement,
8267

LIST option, 8267
SURVEYPHREG procedure, TEST statement

CHISQ option, 509

DDF= option, 510
E option, 510
E1 option, 510
E2 option, 510
E3 option, 510
HTYPE= option, 510
INTERCEPT option, 510
ODS table names, 511

SURVEYPHREG procedure, WEIGHT statement,
8268

SURVEYPHREG procedure, CLASS statement
DESCENDING option, 8252
REF= option, 8253
TRUNCATE option, 8253

SURVEYPHREG procedure, ESTIMATE statement,
8255

SURVEYPHREG procedure, LSMEANS statement,
8256

SURVEYPHREG procedure, LSMESTIMATE
statement, 8257

SURVEYPHREG procedure, PROC SURVEYPHREG
statement

ORDER= option, 8246
SURVEYPHREG procedure, SLICE statement, 8266
SURVEYPHREG procedure, STORE statement, 8266
SURVEYPHREG procedure, TEST statement, 8267
SURVEYREG procedure, BY statement, 8331
SURVEYREG procedure, EFFECT statement

BASIS option (spline), 408
collection effect, 399
DATABOUNDARY option (spline), 408
DEGREE option (polynomial), 404
DEGREE option (spline), 408
DETAILS option (lag), 402
DETAILS option (multimember), 403
DETAILS option (polynomial), 404
DETAILS option (spline), 408
KNOTMAX option (spline), 409
KNOTMETHOD option (spline), 409
KNOTMIN option (spline), 410
LABELSTYLE option (polynomial), 404
lag effect, 400
MDEGREE option (polynomial), 405
multimember effect, 402
NATURALCUBIC option (spline), 410
NLAG option (lag), 402
NOEFFECT option (multimember), 403
NOSEPARATE option (polynomial), 405
PERIOD option (lag), 401
polynomial effect, 404
SEPARATE option (spline), 410
spline effect, 407
SPLIT option (spline), 411
STANDARDIZE option (polynomial), 406
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WITHIN option (lag), 402
SURVEYREG procedure, ESTIMATE statement

ADJDFE= option, 446
ADJUST= option, 447
ALPHA= option, 447
CHISQ option, 448
CL option, 448
CORR option, 448
COV option, 448
DF= option, 448
DIVISOR= option, 449
E option, 449
JOINT option, 450
LOWER option, 451
NOFILL option, 451
ODS table names, 458
SEED= option, 452
SINGULAR= option, 453
STEPDOWN option, 453
TESTVALUE option, 454
UPPER option, 454

SURVEYREG procedure, LSMEANS statement
ADJDFE= option, 462
ADJUST= option, 463
ALPHA= option, 465
AT= option, 465
BYLEVEL option, 465
CL option, 466
CORR option, 466
COV option, 466
DF= option, 466
DIFF option, 466
E option, 467
LINES option, 468
MEANS or NOMEANS option, 468
OBSMARGINS= option, 468
ODS graph names, 475
ODS table names, 474
PDIFF option, 469
PLOTS= option, 469
SEED= option, 473
SINGULAR= option, 473
STEPDOWN option, 473

SURVEYREG procedure, LSMESIIMATE statement
ADJDFE= option, 478
ADJUST= option, 479
ALPHA= option, 479
AT= option, 479
BYLEVEL option, 479
CHISQ option, 480
CL option, 480
CORR option, 480
COV option, 480
DF= option, 480

DIVISOR= option, 481
E option, 481
ELSM option, 481
JOINT option, 482
LOWER option, 483
OBSMARGINS= option, 483
ODS table names, 487
PLOTS= option, 483
SEED= option, 485
SINGULAR= option, 485
STEPDOWN option, 485
TESTVALUE= option, 486
UPPER option, 486

SURVEYREG procedure, SLICE statement
ADJUST= option, 463
ALPHA= option, 465
AT= option, 465
BYLEVEL option, 465
CL option, 466
CORR option, 466
COV option, 466
DF= option, 466
DIFF option, 466
E option, 467
LINES option, 468
MEANS or NOMEANS option, 468
NOF option, 507
OBSMARGINS= option, 468
ODS table names, 507
PDIFF option, 469
PLOTS= option, 469
SEED= option, 473
SIMPLE= option, 507
SINGULAR= option, 473
SLICEBY= option, 507
STEPDOWN option, 473

SURVEYREG procedure, TEST statement
CHISQ option, 509
DDF= option, 510
E option, 510
E1 option, 510
E2 option, 510
E3 option, 510
HTYPE= option, 510
INTERCEPT option, 510
ODS table names, 511

SURVEYREG procedure
syntax, 8321

SURVEYREG procedure, CLASS statement, 8331
SURVEYREG procedure, CLUSTER statement, 8332
SURVEYREG procedure, CONTRAST statement,

8332
E option, 8333
NOFILL option, 8333
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SINGULAR= option, 8333
SURVEYREG procedure, DOMAIN statement, 8334
SURVEYREG procedure, EFFECT statement, 8335
SURVEYREG procedure, ESTIMATE statement, 8336
SURVEYREG procedure, LSMESTIMATE statement,

8338
SURVEYREG procedure, MODEL statement, 8339

ADJRSQ option, 8340
ANOVA option, 8340
CLPARM option, 8340
COVB option, 8340
DEFF option, 8340
INVERSE option, 8340
NOINT option, 8341
PARMLABEL option, 8341
SINGULAR= option, 8341
SOLUTION option, 8341
STB option, 8341
VADJUST= option, 8341
XPX option, 8341

SURVEYREG procedure, MODEL statement
(SURVEYREG)

DF= option, 8340
SURVEYREG procedure, OUTPUT statement, 8341

ALPHA= option, 8342
keyword= option, 8342
LCLM keyword, 8342
OUT= option, 8342
PREDICTED keyword, 8342
RESIDUAL keyword, 8342
STD keyword, 8342
STDP keyword, 8342
UCLM keyword, 8342

SURVEYREG procedure, PROC SURVEYREG
statement, 8322

ALPHA= option, 8322
DATA= option, 8323
FAY= option (VARMETHOD=BRR), 8328
H= option (VARMETHOD=BRR), 8328
HADAMARD= option (VARMETHOD=BRR),

8328
MISSING option, 8323
N= option, 8327
NAMELEN= option, 8323
NOMCAR option, 8323
ORDER= option, 8323
OUTJKCOEFS= option

(VARMETHOD=JACKKNIFE), 8330
OUTJKCOEFS= option (VARMETHOD=JK),

8330
OUTWEIGHTS= option (VARMETHOD=BRR),

8329
OUTWEIGHTS= option

(VARMETHOD=JACKKNIFE), 8330

OUTWEIGHTS= option (VARMETHOD=JK),
8330

PLOTS= option, 8324
PLOTS=FIT option, 8325
PRINTH option (VARMETHOD=BRR), 8329
R= option, 8326
RATE= option, 8326
REPS= option (VARMETHOD=BRR), 8329
TOTAL= option, 8327
TRUNCATE option, 8327
VARMETHOD= option, 8327

SURVEYREG procedure, REPWEIGHTS statement,
8343

DF= option, 8343
JKCOEFS= option, 8343

SURVEYREG procedure, SLICE statement, 8344
SURVEYREG procedure, STORE statement, 8344
SURVEYREG procedure, STRATA statement, 8344

LIST option, 8345
NOCOLLAPSE option, 8345

SURVEYREG procedure, TEST statement, 8345
SURVEYREG procedure, WEIGHT statement, 8346
SURVEYSELECT procedure

syntax, 8411
SURVEYSELECT procedure, CLUSTER statement,

8431
SURVEYSELECT procedure, CONTROL statement,

8430
SURVEYSELECT procedure, FREQ statement, 8431
SURVEYSELECT procedure, ID statement, 8431
SURVEYSELECT procedure, PROC

SURVEYSELECT statement, 8411
CERTSIZE= option, 8413
CERTSIZE=P= option, 8414
DATA= option, 8415
JTPROBS option, 8416
MAXSIZE= option, 8416
METHOD= option, 8417
METHOD=BERNOULLI option, 8417
METHOD=CHROMY option, 8419, 8420
METHOD=POISSON option, 8418
METHOD=PPS option, 8418
METHOD=PPS_BREWER option, 8418
METHOD=PPS_MURTHY option, 8418
METHOD=PPS_SAMPFORD option, 8418
METHOD=PPS_SEQ option, 8419
METHOD=PPS_SYS option, 8419
METHOD=PPS_WR option, 8419
METHOD=SEQ option, 8420
METHOD=SRS option, 8420
METHOD=SYS option, 8420
METHOD=URS option, 8421
MINSIZE= option, 8421
NMAX= option, 8422
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NMIN= option, 8422
NOPRINT option, 8422
OUT= option, 8422
OUTALL option, 8423
OUTHITS option, 8423
OUTSEED option, 8424
OUTSIZE option, 8424
OUTSORT= option, 8425
RANUNI option, 8425
REPS= option, 8425
SAMPRATE= option, 8425
SAMPSIZE= option, 8427
SEED= option, 8428
SELECTALL option, 8429
SORT= option, 8429
STATS option, 8430

SURVEYSELECT procedure, SAMPLINGUNIT
statement, 8431

PPS option, 8432
PRESORTED option, 8432

SURVEYSELECT procedure, SIZE statement, 8433
SURVEYSELECT procedure, STRATA statement,

8433
ALLOC= option, 8434
ALLOC=NEYMAN option, 8435
ALLOC=OPTIMAL option, 8435
ALLOC=PROPORTIONAL option, 8435
ALLOCMIN= option, 8436
ALPHA= option, 8436
COST= option, 8436
MARGIN= option, 8437
NOSAMPLE option, 8437
STATS option, 8437
VAR= option, 8438

SYMBOL= option
MCMC statement (MI), 5050, 5055
PAINT statement (REG), 7091
PLOT statement (REG), 7103

SYMBOLLEGEND= option
PLOT statement (BOXPLOT), 1118

SYMBOLORDER= option
PLOT statement (BOXPLOT), 1118

SYMBOLS option
OUTPUT statement (GLIMMIX), 3150

syntax
FMM procedure, 2470

T keyword
OUTPUT statement (LOESS), 4445

T option
MEANS statement (GLM), 3437
MODEL statement (LOESS), 4444
PARMS statement, 4774
PROC CANCORR statement, 1836

T= option
PROC ACECLUS statement, 873

TABLEOUT option
PROC REG statement, 7011

TABLES option
MODELAVERAGE statement (GLMSELECT),

3697
TABLES statement

CORRESP procedure, 2107
FREQ procedure, 2598
SURVEYFREQ procedure, 7978

TARGACCEPT= option
PROC BCHOICE statement, 1026
PROC MCMC statement, 4762

TARGACCEPTI= option
PROC MCMC statement, 4762

TARGET= option
PROC FACTOR statement, 2324

TAU= option
FACTOR statement, 1262
PROC FACTOR statement, 2324
PROC NLIN statement, 5594

TAUB option
OUTPUT statement (FREQ), 2593
TEST statement (FREQ), 2639

TAUC option
OUTPUT statement (FREQ), 2597
TEST statement (FREQ), 2640

TCORR option
PROC CANDISC statement, 1864
PROC DISCRIM statement, 2169
PROC STEPDISC statement, 7942

TCOV option
PROC CANDISC statement, 1864
PROC DISCRIM statement, 2169
PROC MIANALYZE statement, 5166
PROC STEPDISC statement, 7942
TEST statement (MIANALYZE), 5169

TDATA= option
PRIOR statement (MIXED), 5272

TDIFF option
LSMEANS statement (GLM), 3428

TDPREFIX= option
OUTPUT statement (TRANSREG), 8601

TECH option
NLOPTIONS statement (CALIS), 498
NLOPTIONS statement (GLIMMIX), 498
NLOPTIONS statement (HPMIXED), 498
NLOPTIONS statement (PHREG), 498
NLOPTIONS statement (SURVEYPHREG), 498
NLOPTIONS statement (VARIOGRAM), 498

TECHNIQUE option
NLOPTIONS statement (CALIS), 498
NLOPTIONS statement (GLIMMIX), 498
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NLOPTIONS statement (HPMIXED), 498
NLOPTIONS statement (PHREG), 498
NLOPTIONS statement (SURVEYPHREG), 498
NLOPTIONS statement (VARIOGRAM), 498

TECHNIQUE= option
MODEL statement (LOGISTIC), 4546
MODEL statement (SURVEYLOGISTIC), 8089
PROC ADAPTIVEREG statement, 898
PROC CALIS statement, 1227
PROC FMM statement, 2483
PROC ICPHREG statement, 3943
PROC IRT statement, 4017
PROC NLMIXED statement, 5707

TEMPLATE procedure
SOURCE statement, 645

TEST option
CONTRAST statement (PHREG), 5924
MODEL statement (QUANTSELECT), 6939
MODEL statement (TRANSREG), 8590
PROC MODECLUS statement, 5420
RANDOM statement (GLM), 3445

TEST statement
ANOVA procedure, 973
FREQ procedure, 2637
GLM procedure, 3451
HPMIXED procedure, 3856
ICLIFETEST procedure, 3901
ICPHREG procedure, 509, 3959
LIFEREG procedure, 509, 4260, 6748
LIFETEST procedure, 4353
LOGISTIC procedure, 4561
MIANALYZE procedure, 5168
MULTTEST procedure, 5507
ORTHOREG procedure, 509
ORTHOREG procedure, 5865
PHREG procedure, 5948
PLM procedure, 509
PLM procedure, 6177
PROBIT procedure, 509
QUANTLIFE procedure, 6810
QUANTREG procedure, 6856
REG procedure, 7035
ROBUSTREG procedure, 7189
SURVEYLOGISTIC procedure, 8096
SURVEYPHREG procedure, 509
SURVEYPHREG procedure, 8267
SURVEYREG procedure, 509
SURVEYREG procedure, 8345

TEST= option
LOGISTIC statement (POWER), 6280
MULTREG statement (POWER), 6287
ONECORR statement (POWER), 6291
ONESAMPLEFREQ statement (POWER), 6296

ONESAMPLEMEANS statement (POWER),
6304

ONEWAYANOVA statement (POWER), 6309
PAIREDFREQ statement (POWER), 6314
PAIREDMEANS statement (POWER), 6323
PROC TTEST statement, 8802
STRATA statement (LIFETEST), 4353
TWOSAMPLEFREQ statement (POWER), 6335
TWOSAMPLEMEANS statement (POWER),

6343
TWOSAMPLESURVIVAL statement (POWER),

6354
TWOSAMPLEWILCOXON statement

(POWER), 6361
TESTCLASS statement, DISCRIM procedure, 2172
TESTDATA= option

COVTEST statement (GLIMMIX), 3098
PROC ADAPTIVEREG statement, 901
PROC DISCRIM statement, 2169
PROC GLMSELECT statement, 3678
PROC QUANTSELECT statement, 6927

TESTF= option
TABLES statement (FREQ), 2648

TESTF= option (CHISQ)
TABLES statement (FREQ), 2608

TESTFREQ statement, DISCRIM procedure, 2173
TESTFUNC statement, CALIS procedure, 1358
TESTID statement, DISCRIM procedure, 2173
TESTLIST option

PROC DISCRIM statement, 2169
TESTLISTERR option

PROC DISCRIM statement, 2169
TESTODDSRATIO= option

LOGISTIC statement (POWER), 6280
TESTOUT= option

PROC DISCRIM statement, 2170
TESTOUTD= option

PROC DISCRIM statement, 2170
TESTP= option

TABLES statement (FREQ), 2649, 2733
TABLES statement (SURVEYFREQ), 7997

TESTP= option (CHISQ)
TABLES statement (FREQ), 2608

TESTPREDICTOR= option
LOGISTIC statement (POWER), 6280

TESTREGCOEFF= option
LOGISTIC statement (POWER), 6280

TESTVALUE= option
ESTIMATE statement (LIFEREG), 454
ESTIMATE statement (LOGISTIC), 454
ESTIMATE statement (ORTHOREG), 454
ESTIMATE statement (PHREG), 454
ESTIMATE statement (PLM), 454
ESTIMATE statement (PROBIT), 454
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ESTIMATE statement (QUANTREG), 454
ESTIMATE statement (SURVEYLOGISTIC),

454
ESTIMATE statement (SURVEYPHREG), 454
ESTIMATE statement (SURVEYREG), 454
LSMESTIMATE statement (GENMOD), 486
LSMESTIMATE statement (LIFEREG), 486
LSMESTIMATE statement (LOGISTIC), 486
LSMESTIMATE statement (MIXED), 486
LSMESTIMATE statement (ORTHOREG), 486
LSMESTIMATE statement (PHREG), 486
LSMESTIMATE statement (PLM), 486
LSMESTIMATE statement (PROBIT), 486
LSMESTIMATE statement

(SURVEYLOGISTIC), 486
LSMESTIMATE statement (SURVEYPHREG),

486
LSMESTIMATE statement (SURVEYREG), 486

THETA0= option
PROC MI statement, 5041
PROC MIANALYZE statement, 5166

THIN= option
BAYES statement (FMM), 2493
PROC BCHOICE statement, 1026
PROC MCMC statement, 4762

THINNING= option
BAYES statement (FMM), 2493
BAYES statement(GENMOD), 2895
BAYES statement(LIFEREG), 4233
BAYES statement(PHREG), 5917

THREADS option
PERFORMANCE statement (QUANTREG),

6856
PERFORMANCE statement (ROBUSTREG),

7189
THREADS= option

PERFORMANCE statement (FMM), 2506
PROC ICPHREG statement, 3946

THRESHOLD= option
PROC ACECLUS statement, 873
PROC DISCRIM statement, 2170
PROC MODECLUS statement, 5420

TICKPOS= option
PROC TREE statement, 8773

TIES= option
MODEL statement (PHREG), 5940
MODEL statement (SURVEYPHREG), 8261

TIME statement
ICLIFETEST procedure, 3904
LIFETEST procedure, 4354

TIME= option
TEST statement (MULTTEST), 5509

TIMEINC= option
BAYES statement (FMM), 2493

TIMELIM= option
PROC LIFETEST statement, 4347

TIMELIST= option
BASELINE statement (ICPHREG), 3947
BASELINE statement (PHREG), 5900
PROC LIFETEST statement, 4347

TIMEPLOT option
MCMC statement (MI), 5054

TIPMAX= option
ODS GRAPHICS statement, 619

TIPREFIX option
OUTPUT statement (TRANSREG), 8601

TITLE= option
FACTORS statement (CATMOD), 1904
LOGLIN statement (CATMOD), 1906
MCMC statement (MI), 5050, 5055
MODEL statement (CATMOD), 1913
PATHDIAGRAM statement, 1343, 2330
REPEATED statement (CATMOD), 1918
RESPONSE statement (CATMOD), 1920

TMISSPAT= option
PROC CALIS statement, 1238

TOL option
MODEL statement (REG), 7025

TOLERANCE option
MODEL statement (GLM), 3441

TOLERANCE= option
COVTEST statement (GLIMMIX), 3103
PROC QUANTLIFE statement, 6805
PROC QUANTREG statement, 6844
PROC ROBUSTREG statement, 7181

TOLLIKE= option
PROC ICLIFETEST statement, 3899

TOST option
PROC TTEST statement, 8802

TOTAL= option
POPULATION statement (STDRATE), 7879
PROC SURVEYFREQ statement, 7970
PROC SURVEYLOGISTIC statement, 8067
PROC SURVEYMEANS statement, 8166
PROC SURVEYPHREG statement, 8247
PROC SURVEYREG statement, 8327
REFERENCE statement (STDRATE), 7879, 7880

TOTALPROPDISC= option
PAIREDFREQ statement (POWER), 6315

TOTALTIME= option
TWOSAMPLESURVIVAL statement (POWER),

6354
TOTEFF option

PROC CALIS statement, 1215
TOTPANELS= option

PLOT statement (BOXPLOT), 1118
TOTPCT option

TABLES statement (FREQ), 2637
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TPLOT option
PROFILE statement (NLIN), 5607

TPREFIX= option
PROC PRINQUAL statement, 6641

TPSPLINE procedure
syntax, 8491

TPSPLINE procedure, BY statement, 8496
TPSPLINE procedure, FREQ statement, 8497
TPSPLINE procedure, ID statement, 8497
TPSPLINE procedure, MODEL statement, 8497

ALPHA= option, 8498
DF= option, 8498
DISTANCE= option, 8498
LAMBDA0= option, 8499
LAMBDA= option, 8499
LOGNLAMBDA0= option, 8499
LOGNLAMBDA= option, 8499
M= option, 8499
RANGE= option, 8499

TPSPLINE procedure, OUTPUT statement, 8500
OUT= option, 8500

TPSPLINE procedure, PROC TPSPLINE statement,
8492

DATA= option, 8492
PLOTS option, 8492

TPSPLINE procedure, SCORE statement, 8501
DATA= option, 8501
OUT= option, 8501

TRACE option
FCS statement (MI), 5045
MCMC statement (MI), 5053
PROC MCMC statement, 4762
PROC MODECLUS statement, 5420
PROC NLIN statement, 5594
PROC NLMIXED statement, 5707
PROC VARCLUS statement, 8867

TRACEL option
MODEL statement (LOESS), 4444

TRANS= option
PRIOR statement (MIXED), 5272

TRANSFORM statement
MI procedure, 5061

TRANSFORM statement (PRINQUAL)
ARSIN transformation, 6645
DEGREE= option, 6649
EVENLY option, 6649
EXP transformation, 6645
IDENTITY transformation, 6647
KNOTS= option, 6649
LINEAR transformation, 6646
LOG transformation, 6645
LOGIT transformation, 6645
MONOTONE transformation, 6646
MSPLINE transformation, 6646

NAME= option, 6650
NKNOTS= option, 6650
OPSCORE transformation, 6646
ORIGINAL option, 6648
PARAMETER= option, 6648
POWER transformation, 6645
RANK transformation, 6646
SPLINE transformation, 6646
SSPLINE transformation, 6647
TSTANDARD= option, 6650
UNTIE transformation, 6647

TRANSREG, 8536
TRANSREG procedure

syntax, 8556
TRANSREG procedure, BY statement, 8564
TRANSREG procedure, FREQ statement, 8564
TRANSREG procedure, ID statement, 8565
TRANSREG procedure, MODEL statement, 8565

ADDITIVE option, 8584
AFTER option, 8581
AIC option, 8577
AICC option, 8577
ALPHA= option, 8580, 8584
ARSIN transformation, 8569
Box-Cox transformation, 8570
BSPLINE transformation, 8568
CCONVERGE= option, 8584
CENTER option, 8581
CL option, 8585
CLASS transformation, 8568
CLL= option, 8580
CONVENIENT option, 8581
CONVERGE option, 8585
CPREFIX= option, 8578, 8585
CV option, 8577
DEGREE= option, 8575
DETAIL option, 8585
DEVIATIONS option, 8578
DUMMY option, 8585
EFFECTS option, 8578
EPOINT transformation, 8568
EVENLY option, 8575
EXKNOTS= option, 8576
EXP transformation, 8569
GCV option, 8577
GEOMETRICMEAN option, 8581
HISTORY option, 8586
IDENTITY transformation, 8572
INDIVIDUAL option, 8586
KNOTS= option, 8576
LAMBDA= option, 8577, 8581
LINEAR transformation, 8571
LOG transformation, 8569
LOGIT transformation, 8569
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LPREFIX= option, 8578, 8586
MAXITER= option, 8586
METHOD= option, 8586
MONOTONE transformation, 8571
MONOTONE= option, 8587
MSPLINE transformation, 8571
NAME= option, 8582
NCAN= option, 8587
NKNOTS= option, 8576
NOINT option, 8587
NOMISS option, 8588
NOPRINT option, 8588
NSR option, 8588
OPSCORE transformation, 8571
ORDER= option, 8578, 8588
ORIGINAL option, 8574
ORTHOGONAL option, 8578
PARAMETER= option, 8574
PBOXCOXTABLE option, 8589
PBSPLINE transformation, 8570
POINT transformation, 8568
POWER transformation, 8570
PSPLINE transformation, 8569
QPOINT transformation, 8569
RANGE option, 8577
RANK transformation, 8570
REFERENCE= option, 8589
REFLECT option, 8582
REITERATE option, 8589
RSQUARE option, 8589
SBC option, 8577
SEPARATORS= option, 8579, 8589
SHORT option, 8590
SINGULAR= option, 8590
SM= option, 8575
SMOOTH transformation, 8571
SOLVE option, 8585
SPLINE transformation, 8572
SS2 option, 8590
SSPLINE transformation, 8572
STANDORTH option, 8579
TEST option, 8590
TSTANDARD= option, 8582, 8590
TSUFFIX= option, 8590
TYPE= option, 8591
UNTIE transformation, 8572
UNTIE= option, 8591
UTILITIES option, 8591
Z option, 8583
ZERO= option, 8579

TRANSREG procedure, OUTPUT statement, 8592
ADPREFIX= option, 8594
AIPREFIX option, 8594
APPROXIMATIONS option, 8594

CANONICAL option, 8594
CCC option, 8594
CDPREFIX= option, 8594
CEC option, 8594
CILPREFIX= option, 8594
CIPREFIX= option, 8594
CIUPREFIX= option, 8595
CLI option, 8595
CLM option, 8595
CMLPREFIX= option, 8595
CMUPREFIX= option, 8595
COEFFICIENTS option, 8595
COORDINATES= option, 8595
CPC option, 8596
CQC option, 8596
DAPPROXIMATIONS option, 8596
DEPENDENT= option, 8596
DESIGN= option, 8596
DREPLACE option, 8597
IAPPROXIMATIONS option, 8597
IREPLACE option, 8597
LEVERAGE= option, 8597
LILPREFIX= option, 8597
LIUPREFIX= option, 8597
LMLPREFIX= option, 8597
LMUPREFIX= option, 8597
MACRO option, 8598
MEANS option, 8599
MEC option, 8599
MPC option, 8599
MQC option, 8599
MRC option, 8599
MREDUNDANCY option, 8600
NORESTOREMISSING option, 8600
NOSCORES option, 8600
NOZEROCONSTANT option, 8588
OUT= option, 8592
PPREFIX option, 8600
PREDICTED option, 8600
RDPREFIX= option, 8600
REDUNDANCY= option, 8601
REFERENCE= option, 8601
REPLACE option, 8601
RESIDUALS option, 8601
RPREFIX= option, 8601
TDPREFIX= option, 8601
TIPREFIX option, 8601

TRANSREG procedure, PROC TRANSREG
statement, 8557

DATA= option, 8559
OUTTEST= option, 8560
PLOTS= option, 8560

TRANSREG procedure, WEIGHT statement, 8602
TREATMENTS statement
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PLAN procedure, 6129
TREE procedure

syntax, 8768
TREE procedure, BY statement, 8774
TREE procedure, COPY statement, 8774
TREE procedure, FREQ statement, 8774
TREE procedure, HEIGHT statement, 8775
TREE procedure, ID statement, 8775
TREE procedure, NAME statement, 8775
TREE procedure, PARENT statement, 8775
TREE procedure, PROC TREE statement, 8768

CFRAME= option, 8769
DATA= option, 8769
DESCENDING option, 8769
DESCRIPTION= option, 8769
DISSIMILAR option, 8770
DOCK= option, 8770
FILLCHAR= option, 8770
GOUT= option, 8770
HAXIS= option, 8770
HEIGHT= option, 8770
HORDISPLAY= option, 8770
HORIZONTAL option, 8771
HPAGES= option, 8771
INC= option, 8771
JOINCHAR= option, 8771
LEAFCHAR= option, 8771
LEVEL= option, 8771
LINEPRINTER option, 8771
LINES= option, 8771
LIST option, 8771
MAXHEIGHT= option, 8772
MINHEIGHT= option, 8772
NAME= option, 8772
NCLUSTERS= option, 8772
NOPRINT option, 8772
NTICK= option, 8772
OUT= option, 8772
PAGES= option, 8772
POS= option, 8772
ROOT= option, 8773
SIMILAR option, 8773
SORT option, 8773
SPACES= option, 8773
TICKPOS= option, 8773
TREECHAR= option, 8773
VAXIS= option, 8773
VPAGES= option, 8773

TREECHAR= option
PROC TREE statement, 8773

TREEINFO suboption
RANDOM statement (GLIMMIX), 3159

TREND option
EXACT statement (FREQ), 2584, 2744

OUTPUT statement (FREQ), 2597
STRATA statement (ICLIFETEST), 3904
STRATA statement (LIFETEST), 4352
TABLES statement (FREQ), 2637, 2744

TRIM= option
and other options, 2017
PROC CLUSTER statement, 2017, 2023

TRUNCATE option
CLASS statement (ANOVA), 959
CLASS statement (BCHOICE), 1028
CLASS statement (FMM), 2494
CLASS statement (GAM), 2767
CLASS statement (GENMOD), 2897
CLASS statement (GLIMMIX), 3092
CLASS statement (GLM), 3414
CLASS statement (GLMMOD), 3583
CLASS statement (HPMIXED), 3833
CLASS statement (ICPHREG), 3952
CLASS statement (LIFEREG), 4236
CLASS statement (LOGISTIC), 4514
CLASS statement (MIXED), 5238
CLASS statement (MULTTEST), 5505
CLASS statement (NESTED), 5564
CLASS statement (ORTHOREG), 5858
CLASS statement (PHREG), 5920
CLASS statement (PLS), 6228
CLASS statement (PROBIT), 6708
CLASS statement (QUANTLIFE), 6807
CLASS statement (QUANTREG), 6849
CLASS statement (ROBUSTREG), 7183
CLASS statement (SURVEYPHREG), 8253
PROC LOGISTIC statement, 4507
PROC SURVEYREG statement, 8327

TRUNCATE= option (CL)
TABLES statement (SURVEYFREQ), 7983

TSSCP option
PROC CANDISC statement, 1864
PROC DISCRIM statement, 2170
PROC STEPDISC statement, 7942

TSTANDARD= option
MODEL statement (TRANSREG), 8582, 8590
PROC PRINQUAL statement, 6641
TRANSFORM statement (PRINQUAL), 6650

TSUFFIX= option
MODEL statement (TRANSREG), 8590

TSYMM option
OUTPUT statement (FREQ), 2597

TTEST procedure
syntax, 8795

TTEST procedure, BY statement, 8803
TTEST procedure, CLASS statement, 8803
TTEST procedure, FREQ statement, 8803
TTEST procedure, PAIRED statement, 8804
TTEST procedure, PROC TTEST statement, 8796
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ALPHA= option, 8796
BYVAR option, 8796
CI= option, 8797
COCHRAN option, 8797
CROSSOVER= option, 8805
DATA= option, 8797
DIST= option, 8797
H0= option, 8797
IGNOREPERIOD option, 8805
NOBYVAR option, 8797
ORDER= option, 8797
PLOTS option, 8798
SIDES= option, 8802
TEST= option, 8802
TOST option, 8802

TTEST procedure, VAR statement, 8804
TTEST procedure, WEIGHT statement, 8805
TTOTALSS option

PROC NLIN statement, 5594
TUKEY option

MEANS statement (ANOVA), 968
MEANS statement (GLM), 3437

TUNEWT= option
PROC BCHOICE statement, 1026
PROC MCMC statement, 4762

TURNHLABELS option
PLOT statement (BOXPLOT), 1119

TWOSAMPLEFREQ statement
POWER procedure, 6330

TWOSAMPLEMEANS statement
POWER procedure, 6337

TWOSAMPLESURVIVAL statement
POWER procedure, 6347

TWOSAMPLEWILCOXON statement
POWER procedure, 6358

TYPE1 option
MODEL statement (GENMOD), 2922
MODEL statement (PHREG), 5939

TYPE3 option
MODEL statement (GENMOD), 2922
MODEL statement (PHREG), 5940

TYPE= option
EFFECTPLOT statement, 426
MISSMODEL statement (WGEE), 2822
MODEL statement (BCHOICE), 1031
MODEL statement (TRANSREG), 8591
PROC PRINQUAL statement, 6642
PROC SCORE statement, 7301
RANDOM statement (BCHOICE), 1035
RANDOM statement (GLIMMIX), 3162
RANDOM statement (HPMIXED), 3851
RANDOM statement (MIXED), 5275
REPEATED statement , 2827
REPEATED statement (GENMOD), 2930

REPEATED statement (HPMIXED), 3856
REPEATED statement (MIXED), 5281

TYPE= option (CL)
TABLES statement (SURVEYFREQ), 7984

TYPE=ACE
Data set option, 9041

TYPE=BOXPLOT
Data set option, 9041

TYPE=CALISFIT
Data set option, 9041

TYPE=CALISMDL
Data set option, 9041

TYPE=CHARTSUM
Data set option, 9041

TYPE=CLOPPERPEARSON option (CL)
TABLES statement (SURVEYFREQ), 7984

TYPE=CORR
Data set option, 9042

TYPE=COV
Data set option, 9045

TYPE=CSSCP
Data set option, 9045

TYPE=DISTANCE
Data set option, 9045

TYPE=EST
Data set option, 9046

TYPE=LINEAR
Data set option, 9047

TYPE=LOGISMOD
Data set option, 9048

TYPE=LOGIT option (CL)
TABLES statement (SURVEYFREQ), 7984

TYPE=MIXED
Data set option, 9048

TYPE=QUAD
Data set option, 9048

TYPE=SSCP
Data set option, 9048

TYPE=TREE
Data set option, 9049

TYPE=UCORR
Data set option, 9049

TYPE=UCOV
Data set option, 9050

TYPE=WALD option (CL)
TABLES statement (SURVEYFREQ), 7984

TYPE=WEIGHT
Data set option, 9050

TYPE=WILSON option (CL)
TABLES statement (SURVEYFREQ), 7984

U option
OUTPUT statement (FREQ), 2597

U95 option
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MODEL statement (RSREG), 7268
U95= option

OUTPUT statement (NLIN), 5602
U95M option

MODEL statement (RSREG), 7268
U95M= option

OUTPUT statement (NLIN), 5602
UCL keyword

OUTPUT statement (GLM), 3444
UCL= option

OUTPUT statement (HPMIXED), 3844
OUTPUT statement (NLIN), 5602

UCLM keyword
OUTPUT statement (GLM), 3444
OUTPUT statement (LOESS), 4445
OUTPUT statement (SURVEYREG), 8342

UCLM= option
OUTPUT statement (NLIN), 5602

UCR option
OUTPUT statement (FREQ), 2597

UDS option
PARMS statement, 4774

UEPSDEF option
REPEATED statement (ANOVA), 972
REPEATED statement (GLM), 3450

UEPSDEF= option
POWER statement (GLMPOWER), 3623

ULTRAHEYWOOD option
PROC FACTOR statement, 2324

UNADJUSTED option
PROC CORRESP statement, 2106

UNCORRECTEDDF option
PROC NLIN statement, 5594

UNDEF= option
PROC DISTANCE statement, 2266

UNDO option
PAINT statement (REG), 7092
REWEIGHT statement (REG), 7034

UNEQUALSLOPES option
MODEL statement (LOGISTIC), 4547

UNISTATS option
BIVAR statement, 4087
UNIVAR statement, 4090

UNITS statement, LOGISTIC procedure, 4562
UNITS statement, SURVEYLOGISTIC procedure,

8096
UNITS= option

HAZARDRATIO statement (ICPHREG), 3956
HAZARDRATIO statement (PHREG), 5929
LOGISTIC statement (POWER), 6280

UNIVAR statement
KDE procedure, 4087

UNPACK option
EFFECTPLOT statement, 427

PROC GAM statement, 2765
PROC IRT statement, 4019

unpack option
PROC ADAPTIVEREG statement, 900

UNPACKPANELS option
PROC GAM statement, 2766

UNSTD option
PROC STDIZE statement, 7842

UNTIE option
PROC MDS statement, 5007

UNTIE transformation
MODEL statement (TRANSREG), 8572
TRANSFORM statement (PRINQUAL), 6647

UNTIE= option
MODEL statement (TRANSREG), 8591
PROC PRINQUAL statement, 6642

UPD option
NLOPTIONS statement (CALIS), 499
NLOPTIONS statement (GLIMMIX), 499
NLOPTIONS statement (HPMIXED), 499
NLOPTIONS statement (PHREG), 499
NLOPTIONS statement (SURVEYPHREG), 499
NLOPTIONS statement (VARIOGRAM), 499

UPDATE option
NLOPTIONS statement (CALIS), 499
NLOPTIONS statement (GLIMMIX), 499
NLOPTIONS statement (HPMIXED), 499
NLOPTIONS statement (PHREG), 499
NLOPTIONS statement (SURVEYPHREG), 499
NLOPTIONS statement (VARIOGRAM), 499
PROC HPMIXED statement, 3831
PROC MIXED statement, 5237

UPDATE= option
PRIOR statement (MIXED), 5272
PROC CALIS statement, 1238
PROC NLMIXED statement, 5707

UPPER keyword
OUTPUT statement (GLMSELECT), 3700

UPPER option
ESTIMATE statement (LIFEREG), 454
ESTIMATE statement (LOGISTIC), 454
ESTIMATE statement (ORTHOREG), 454
ESTIMATE statement (PHREG), 454
ESTIMATE statement (PLM), 454
ESTIMATE statement (PROBIT), 454
ESTIMATE statement (QUANTREG), 454
ESTIMATE statement (SURVEYLOGISTIC),

454
ESTIMATE statement (SURVEYPHREG), 454
ESTIMATE statement (SURVEYREG), 454
LSMESTIMATE statement (GENMOD), 486
LSMESTIMATE statement (LIFEREG), 486
LSMESTIMATE statement (LOGISTIC), 486
LSMESTIMATE statement (MIXED), 486
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LSMESTIMATE statement (ORTHOREG), 486
LSMESTIMATE statement (PHREG), 486
LSMESTIMATE statement (PLM), 486
LSMESTIMATE statement (PROBIT), 486
LSMESTIMATE statement

(SURVEYLOGISTIC), 486
LSMESTIMATE statement (SURVEYPHREG),

486
LSMESTIMATE statement (SURVEYREG), 486

UPPER= option
ONESAMPLEFREQ statement (POWER), 6296
ONESAMPLEMEANS statement (POWER),

6304
OUTPUT statement (LOGISTIC), 4553
OUTPUT statement (SURVEYLOGISTIC), 8092
PAIREDMEANS statement (POWER), 6323
TWOSAMPLEMEANS statement (POWER),

6344
UPPERB= option

PARMS statement (GLIMMIX), 3154
PARMS statement (HPMIXED), 3849
PARMS statement (MIXED), 5268
PARMS statement (VARIOGRAM), 8957

UPPERTAILED option
ESTIMATE statement (GLIMMIX), 3110
ESTIMATE statement (MIXED), 5244
LSMESTIMATE statement (GLIMMIX), 3131
TEST statement (MULTTEST), 5509

URC option
OUTPUT statement (FREQ), 2597

URL= suboption
ODS HTML statement, 633

USEALL option
PLOT statement (REG), 7101

USEERROR option
PATHDIAGRAM statement, 1343

USSCP option
PROC REG statement, 7011

UTILITIES option
MODEL statement (TRANSREG), 8591

V option
RANDOM statement (GLIMMIX), 3174
RANDOM statement (MIXED), 5276

V6CORR option
REPEATED statement (GENMOD), 2931

VADJUST= option
MODEL statement (SURVEYLOGISTIC), 8089
MODEL statement (SURVEYPHREG), 8261
MODEL statement (SURVEYREG), 8341

VALDATA= option
PROC ADAPTIVEREG statement, 902
PROC GLMSELECT statement, 3678
PROC QUANTSELECT statement, 6927

VAR option
TABLES statement (SURVEYFREQ), 7997

VAR statement
CALIS procedure, 1359
CANDISC procedure, 1865
CORRESP procedure, 2108
DISCRIM procedure, 2173
FACTOR procedure, 2331
INBREED procedure, 3990
IRT procedure, 4035
LATTICE procedure, 4201
MDS procedure, 5009
MI procedure, 5063
NESTED procedure, 5564
NPAR1WAY procedure, 5810
PRINCOMP procedure, 6598
REG procedure, 7036
STDIZE procedure, 7844
STEPDISC procedure, 7943
SURVEYMEANS procedure, 8181
TTEST procedure, 8804
VAR statement (SIMNORMAL), 7755
VARCLUS procedure, 8868
VARIOGRAM procedure, 8958

VAR= option
ASSESS statement (PHREG), 5897
CDFPLOT statement (PROBIT), 6697
IPPPLOT statement (PROBIT), 6713
LPREDPLOT statement (PROBIT), 6721
PREDICT statement (KRIGE2D), 4143
PREDPPLOT statement (PROBIT), 6738
SIMULATE statement (SIM2D), 7714
STRATA statement (SURVEYSELECT), 8438

VAR= option (BINOMIAL)
TABLES statement (FREQ), 2606

VAR= option (RISKDIFF)
TABLES statement (FREQ), 2636

VARCLUS procedure
syntax, 8859

VARCLUS procedure, BY statement, 8867
VARCLUS procedure, FREQ statement, 8868
VARCLUS procedure, PARTIAL statement, 8868
VARCLUS procedure, PROC VARCLUS statement,

8860
CENTROID option, 8861
CORR option, 8862
COVARIANCE option, 8862
DATA= option, 8862
HIERARCHY option, 8862
INITIAL= option, 8862
MAXCLUSTERS= option, 8863
MAXEIGEN= option, 8863
MAXITER= option, 8863
MAXSEARCH= option, 8863
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MINC= option, 8863
MINCLUSTERS= option, 8863
MULTIPLEGROUP option, 8863
NOINT option, 8864
NOPRINT option, 8864
OUTSTAT= option, 8864
OUTTREE= option, 8864
PERCENT= option, 8866
PLOTS option, 8864
PROPORTION= option, 8866
RANDOM= option, 8866
SHORT option, 8867
SIMPLE option, 8867
SUMMARY option, 8867
TRACE option, 8867
VARDEF= option, 8867

VARCLUS procedure, SEED statement, 8868
VARCLUS procedure, VAR statement, 8868
VARCLUS procedure, WEIGHT statement, 8868
VARCOMP procedure, 8889

CLASS statement, 8891
MODEL statement, 8891
PROC VARCOMP statement, 8889
SYNTAX, 8889

VARCOMP procedure, BY statement, 8891
VARCOMP procedure, CLASS statement, 8891
VARCOMP procedure, MODEL statement, 8891

ALPHA= option, 8892
CL option, 8892
FIXED= option, 8892

VARCOMP procedure, PROC VARCOMP statement,
8889

DATA= option, 8890
EPSILON= option, 8890
MAXITER= option, 8890
METHOD= option, 8890
NSAMPLE= option, 8892
RATIO option, 8890
SEED= option, 8890
SPECLIMITS= option, 8890

VARDEF option
PROC STDIZE statement, 7842

VARDEF= option
PROC CALIS statement, 1239
PROC DISTANCE statement, 2266
PROC FACTOR statement, 2324
PROC FASTCLUS statement, 2409
PROC PRINCOMP statement, 6596
PROC VARCLUS statement, 8867

VARDIST= option
LOGISTIC statement (POWER), 6281
TWOSAMPLEWILCOXON statement

(POWER), 6361
VAREST= option

ONESAMPLEFREQ statement (POWER), 6297
VARHEADER= option

PROC SURVEYFREQ statement, 7971
VARIABLES= option

TWOSAMPLEWILCOXON statement
(POWER), 6362

VARIABLESAREUNCORRELATED option
PROC FASTCLUS statement, 2409

VARIANCE statement, CALIS procedure, 1362
VARIANCE statement, GENMOD procedure, 2933
VARIANCE statement, IRT procedure, 4035
VARIANCE= option

OUTPUT statement (HPMIXED), 3844
VARIOGRAM procedure, 8912

output data sets, 8912
syntax, 8927

VARIOGRAM procedure, BY statement, 8934
VARIOGRAM procedure, COMPUTE statement, 8935

ALPHA= option, 8935
ANGLETOLERANCE= option, 8936
AUTOCORRELATION option, 8936
AUTOCORRELATION STATISTICS= option,

8936
BANDWIDTH= option, 8938
CL option, 8938
DEPSILON= option, 8938
LAGDISTANCE= option, 8938
LAGTOLERANCE= option, 8939
MAXLAGS= option, 8939
NDIRECTIONS= option, 8939
NHCLASSES= option, 8940
NOVARIOGRAM option, 8940
OUTPDISTANCE= option, 8940
ROBUST option, 8940

VARIOGRAM procedure, COORDINATES statement,
8940

XCOORD= option, 8940
YCOORD= option, 8940

VARIOGRAM procedure, DIRECTIONS statement,
8941

VARIOGRAM procedure, ID statement, 8941
VARIOGRAM procedure, MODEL statement, 8941

ALPHA= option, 8943
CHOOSE= option, 8943
CL option, 8944
CORRB option, 8952
COVB option, 8952
DETAILS option, 8952
EQUIVTOL= option, 8944
FIT option, 8944
FORM= option, 8944
GRADIENT option, 8953
MDATA= option, 8947
MTOGTOL= option, 8953
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NEPSILON= option, 8949
NOFIT option, 8953
NOITPRINT option, 8953
NUGGET= option, 8949
RANGE= option, 8949
RANGELAG= option, 8950
RANKEPS= option, 8950
SCALE= option, 8951
SMOOTH= option, 8951

VARIOGRAM procedure, NLOPTIONS statement,
8957

ABSCONV option, 490
ABSFCONV option, 490
ABSGCONV option, 490
ABSGTOL option, 490
ABSTOL option, 490
ABSXCONV option, 491
ABSXTOL option, 491
ASINGULAR= option, 491
FCONV option, 491
FCONV2 option, 492
FSIZE option, 493
FTOL option, 491
FTOL2 option, 492
GCONV option, 493
GCONV2 option, 493
GTOL option, 493
GTOL2 option, 493
HESCAL option, 493
HS option, 493
INHESSIAN option, 494
INSTEP option, 494
LCDEACT= option, 495
LCEPSILON= option, 495
LCSINGULAR= option, 495
LINESEARCH option, 495
LSPRECISION option, 496
MAXFU option, 496
MAXFUNC option, 496
MAXIT option, 497
MAXITER option, 497
MAXSTEP option, 497
MAXTIME option, 497
MINIT option, 497
MINITER option, 497
MSINGULAR= option, 497
REST option, 498
RESTART option, 498
SINGULAR= option, 498
SOCKET option, 498
TECH option, 498
TECHNIQUE option, 498
UPD option, 499
VSINGULAR= option, 500

XSIZE option, 500
XTOL option, 500

VARIOGRAM procedure, PARMS statement, 8953
EQCONS= option, 8955
HOLD= option, 8955
LOWERB= option, 8955
MAXSCALE= option, 8956
NOBOUND option, 8956
PARMSDATA= option, 8956
PDATA= option, 8956
UPPERB= option, 8957

VARIOGRAM procedure, PROC VARIOGRAM
statement, 8927

DATA= option, 8927
IDGLOBAL option, 8928
IDNUM option, 8928
NOPRINT option, 8928
OUTACWEIGHTS= option, 8928
OUTDISTANCE= option, 8928
OUTMORAN= option, 8928
OUTPAIR= option, 8929
OUTVAR= option, 8929
PLOTS option, 8929
PLOTS(ONLY) option, 8930
PLOTS(UNPACKPANEL) option, 8930
PLOTS=ALL option, 8930
PLOTS=EQUATE option, 8930
PLOTS=FITPLOT option, 8930
PLOTS=MORAN options, 8931
PLOTS=NONE option, 8932
PLOTS=OBSERVATIONS option, 8932
PLOTS=PAIRS option, 8933
PLOTS=SEMIVARIOGRAM option, 8934

VARIOGRAM procedure, STORE statement, 8957
LABEL= options, 8958

VARIOGRAM procedure, VAR statement, 8958
VARIOGRAMprocedure, NLOPTIONS statement

LSP option, 496
VARMETHOD= option

PROC SURVEYFREQ statement, 7971
PROC SURVEYLOGISTIC statement, 8067
PROC SURVEYMEANS statement, 8169
PROC SURVEYPHREG statement, 8247
PROC SURVEYREG statement, 8327

VARMETHOD=BRR option
PROC SURVEYFREQ statement, 7972

VARMETHOD=JACKKNIFE option
PROC SURVEYFREQ statement, 7974

VARMETHOD=TAYLOR option
PROC SURVEYFREQ statement, 7975

VARNAMES statement, CALIS procedure, 1366
VARPARM= option

PATHDIAGRAM statement, 1343
VARPENALTY = option
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MODEL statement (ADAPTIVEREG), 910
VARRATIO= option

MODEL statement (SURVEYPHREG), 8261
VARSCALE option

PROC PLS statement, 6226
VARWT option

TABLES statement (SURVEYFREQ), 7997
VARY option

PLOT statement (GLMPOWER), 3614
PLOT statement (POWER), 6328

VAXIS= option
PLOT statement (BOXPLOT), 1119
PLOT statement (REG), 7101
PROC TREE statement, 8773

VC option
RANDOM statement (GLIMMIX), 3174
RANDOM statement (MIXED), 5276

VCI option
RANDOM statement (GLIMMIX), 3174
RANDOM statement (MIXED), 5276

VCIRY option
MIXED procedure, MODEL statement, 5309
MODEL statement (MIXED), 5265

VCORR option
RANDOM statement (GLIMMIX), 3174
RANDOM statement (MIXED), 5276

VDEP option
PROC CANCORR statement, 1837

VFORMAT= option
BOXPLOT procedure, 1119

VI option
RANDOM statement (GLIMMIX), 3174
RANDOM statement (MIXED), 5276

VIF option
MODEL statement (REG), 7025

VMINOR= option
PLOT statement (BOXPLOT), 1119

VN= option
PROC CANCORR statement, 1837

VNAME= option
PROC CANCORR statement, 1837

VOFFSET= option
PLOT statement (BOXPLOT), 1119

VP= option
PROC CANCORR statement, 1837

VPAGES= option
PROC TREE statement, 8773

VPLOTS= option
PLOT statement (REG), 7103

VPREFIX= option
PROC CANCORR statement, 1837

VREF= option
PLOT statement (BOXPLOT), 1119
PLOT statement (REG), 7101

VREFLABELS= option
PLOT statement (BOXPLOT), 1120

VREFLABPOS= option
PLOT statement (BOXPLOT), 1120

VREG option
PROC CANCORR statement, 1837

VSINGULAR= option
NLOPTIONS statement (CALIS), 500
NLOPTIONS statement (GLIMMIX), 500
NLOPTIONS statement (HPMIXED), 500
NLOPTIONS statement (PHREG), 500
NLOPTIONS statement (SURVEYPHREG), 500
NLOPTIONS statement (VARIOGRAM), 500
PROC CALIS statement, 1239
PROC NLMIXED statement, 5708

VW option
EXACT statement (NPAR1WAY), 5805
OUTPUT statement (NPAR1WAY), 5809
PROC NPAR1WAY statement, 5801

VZERO option
PLOT statement (BOXPLOT), 1120

WALD option
CONTRAST statement (GENMOD), 2901
COVTEST statement (GLIMMIX), 3103
MODEL statement (GENMOD), 2922
TEST statement (QUANTREG), 6856

WALDCI option
MODEL statement (GENMOD), 2922

WALDCL option
MODEL statement (LOGISTIC), 4548

WALDRL option
MODEL statement (LOGISTIC), 4543

WALLER option
MEANS statement (ANOVA), 968
MEANS statement (GLM), 3437

WARN= option (CHISQ)
TABLES statement (FREQ), 2609

WAXIS= option
PLOT statement (BOXPLOT), 1120

WCHISQ option
TABLES statement (SURVEYFREQ), 7997

WCONF= option
MCMC statement (MI), 5050

WCONNECT= option
MCMC statement (MI), 5055

WCORR option
PROC CANDISC statement, 1864
PROC DISCRIM statement, 2170
PROC STEPDISC statement, 7942

WCOV option
PROC CANDISC statement, 1864
PROC DISCRIM statement, 2170
PROC MIANALYZE statement, 5166
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PROC STEPDISC statement, 7942
TEST statement (MIANALYZE), 5169

WDEP option
PROC CANCORR statement, 1837

WEIBULLSCALEPRIOR=GAMMA option
BAYES statement, 4234

WEIBULLSHAPEPRIOR=GAMMA option
BAYES statement, 4234

WEIGHT option
PROC FACTOR statement, 2324

WEIGHT statement
ADAPTIVEREG procedure, 913
CALIS procedure, 1367
CANDISC procedure, 1865
CATMOD procedure, 1925
CORRESP procedure, 2108
DISCRIM procedure, 2173
FACTOR procedure, 2331
FMM procedure, 2510
FREQ procedure, 2640
GEE procedure, 2828
GENMOD procedure, 2934
GLIMMIX procedure, 3175
GLM procedure, 3452
GLMMOD procedure, 3583
GLMPOWER procedure, 3626
GLMSELECT procedure, 3703
HPMIXED procedure, 3857
IRT procedure, 4037
KDE procedure, 4091
LIFEREG procedure, 4260
LOESS procedure, 4447
LOGISTIC procedure, 4563
MDS procedure, 5009
MIXED procedure, 5291
ORTHOREG procedure, 5866
PHREG procedure, 5949
PRINCOMP procedure, 6598
PRINQUAL procedure, 6650
QUANTLIFE procedure, 6810
QUANTREG procedure, 6857
QUANTSELECT procedure, 6941
REG procedure, 7036
ROBUSTREG procedure, 7190
RSREG procedure, 7270
STEPDISC procedure, 7943
SURVEYFREQ procedure, 7998
SURVEYLOGISTIC procedure, 8097
SURVEYMEANS procedure, 8181
SURVEYPHREG procedure, 8268
SURVEYREG procedure, 8346
TRANSREG procedure, 8602
TTEST procedure, 8805
VARCLUS procedure, 8868

WEIGHT= global plot option
PROC SURVEYREG statement, 8325

WEIGHT= option
OUTPUT statement (NLIN), 5603
RANDOM statement (GLIMMIX), 3174
REWEIGHT statement (REG), 7034
STRATA statement (MULTTEST), 5507, 5513
TEST statement (ICLIFETEST), 3904

WEIGHT= plot option
PROC SURVEYREG statement, 8326

WEIGHT=BUBBLE option
PROC SURVEYREG statement, 8325, 8326

WEIGHT=HEATMAP option
PROC SURVEYREG statement, 8325, 8326

WEIGHTFUNCTION= option
PROC ROBUSTREG statement, 7178

WEIGHTS= option
VAR statement, 2270

WELCH option
MEANS statement (ANOVA), 968
MEANS statement (GLM), 3438

WGHT= option
COVTEST statement (GLIMMIX), 3103

WGRID= option
PLOT statement (BOXPLOT), 1120

WGT statement
DISTANCE procedure, 2271
STDIZE procedure, 7844

WHERE statement
ANOVA procedure, 977
GLM procedure, 3456
PLM procedure, 6177

WHEREFORMAT option
PROC PLM statement (PLM), 6165

WHISKERPERCENTILE= option
PLOT statement (BOXPLOT), 1120

WHITE option
MODEL statement (REG), 7025

WIDTH= option
ODS GRAPHICS statement, 619
PROC LIFETEST statement, 4347

WILCOXON option
EXACT statement (NPAR1WAY), 5805
OUTPUT statement (NPAR1WAY), 5809
PROC NPAR1WAY statement, 5801

WITHIN option
EFFECT statement, lag (GLIMMIX), 402
EFFECT statement, lag (GLMSELECT), 402
EFFECT statement, lag (HPMIXED), 402
EFFECT statement, lag (LOGISTIC), 402
EFFECT statement, lag (ORTHOREG), 402
EFFECT statement, lag (PHREG), 402
EFFECT statement, lag (PLS), 402
EFFECT statement, lag (QUANTLIFE), 402
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EFFECT statement, lag (QUANTREG), 402
EFFECT statement, lag (QUANTSELECT), 402
EFFECT statement, lag (ROBUSTREG), 402
EFFECT statement, lag (SURVEYLOGISTIC),

402
EFFECT statement, lag (SURVEYREG), 402

WITHIN= option
REPEATED statement, 2828
REPEATED statement (GENMOD), 2931

WITHINSUBJECT= option
REPEATED statement, 2828
REPEATED statement (GENMOD), 2931

WLF option
MCMC statement (MI), 5049, 5054, 5055

WLLCHISQ option
TABLES statement (SURVEYFREQ), 7997

WLS option
MODEL statement (CATMOD), 1913

WN= option
PROC CANCORR statement, 1837

WNAME= option
PROC CANCORR statement, 1837

WNEEDLES= option
MCMC statement (MI), 5051

WOVERLAY= option
PLOT statement (BOXPLOT), 1120

WP= option
PROC CANCORR statement, 1837

WPENALTY= option
PROC CALIS statement, 1239

WPREFIX= option
PROC CANCORR statement, 1837

WREF= option
MCMC statement (MI), 5051

WREG option
PROC CANCORR statement, 1837

WRIDGE= option
PROC CALIS statement, 1240

WSCPRIOR=GAMMA option
BAYES statement, 4234

WSHPRIOR=GAMMA option
BAYES statement, 4234

WSSCP option
PROC CANDISC statement, 1864
PROC DISCRIM statement, 2170
PROC STEPDISC statement, 7942

WTFREQ option
TABLES statement (SURVEYFREQ), 7997

WTKAP option
EXACT statement (FREQ), 2584
OUTPUT statement (FREQ), 2597
TEST statement (FREQ), 2640

WTKAPPA option
TABLES statement (SURVEYFREQ), 7997

X= option
EFFECTPLOT statement, 427
GRID statement (KRIGE2D), 4139
GRID statement (SIM2D), 7709
PLOT statement (GLMPOWER), 3614
PLOT statement (POWER), 6328

XBETA keyword
OUTPUT statement (LIFEREG), 4249
OUTPUT statement (ROBUSTREG), 7189

XBETA= option
OUTPUT statement (LOGISTIC), 4554
OUTPUT statement (SURVEYLOGISTIC), 8092

XCONV option
EM statement (MI), 5043
NLOPTIONS statement (CALIS), 500
NLOPTIONS statement (GLIMMIX), 500
NLOPTIONS statement (HPMIXED), 500
NLOPTIONS statement (PHREG), 500
NLOPTIONS statement (SURVEYPHREG), 500
NLOPTIONS statement (VARIOGRAM), 500

XCONV= option
MCMC statement (MI), 5052
MODEL statement (GENMOD), 2909
MODEL statement (LOGISTIC), 4527, 4548
MODEL statement (PHREG), 5941
MODEL statement (SURVEYLOGISTIC), 8090
PROC CALIS statement, 1240
PROC NLMIXED statement, 5708

XCOORD= option
COORDINATES statement (KRIGE2D), 4138
COORDINATES statement (SIM2D), 7708
GRID statement (KRIGE2D), 4140
GRID statement (SIM2D), 7710

XCOORD=option
COORDINATES statement (VARIOGRAM),

8940
XDATA= option

PROC LIFEREG statement, 4225
PROC PROBIT statement, 6696

XOPTS= option
PLOT statement (GLMPOWER), 3615
PLOT statement (POWER), 6329

XPVIX option
MODEL statement (MIXED), 5265

XPVIXI option
MODEL statement (MIXED), 5265

XPX option
MODEL statement (CATMOD), 1913
MODEL statement (GLM), 3442
MODEL statement (REG), 7025
MODEL statement (SURVEYREG), 8341
SHOW statement (PLM), 6176

XPXI= option
PROC MIANALYZE statement, 5166
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XPXPI option
SHOW statement (PLM), 6176

XREF option
PROC NLIN statement, 5594
PROC NLMIXED statement, 5708

XSIZE option
NLOPTIONS statement (CALIS), 500
NLOPTIONS statement (GLIMMIX), 500
NLOPTIONS statement (HPMIXED), 500
NLOPTIONS statement (PHREG), 500
NLOPTIONS statement (SURVEYPHREG), 500
NLOPTIONS statement (VARIOGRAM), 500

XSIZE= option
PROC NLMIXED statement, 5708

XTOL option
NLOPTIONS statement (CALIS), 500
NLOPTIONS statement (GLIMMIX), 500
NLOPTIONS statement (HPMIXED), 500
NLOPTIONS statement (PHREG), 500
NLOPTIONS statement (SURVEYPHREG), 500
NLOPTIONS statement (VARIOGRAM), 500

XTOL= option
PROC CALIS statement, 1240

XVARS option
MODEL statement (GENMOD), 2923

Y= option
EFFECTPLOT statement, 427
GRID statement (KRIGE2D), 4139
GRID statement (SIM2D), 7709
PLOT statement (GLMPOWER), 3615
PLOT statement (POWER), 6330

YCOORD= option
COORDINATES statement (KRIGE2D), 4138
COORDINATES statement (SIM2D), 7708
GRID statement (KRIGE2D), 4140
GRID statement (SIM2D), 7710

YCOORD=option
COORDINATES statement (VARIOGRAM),

8940
YOPTS= option

PLOT statement (GLMPOWER), 3615
PLOT statement (POWER), 6330

YPAIR= option
REPEATED statement (GENMOD), 2931

YRANGE= option
EFFECTPLOT statement, 427

Z option
MODEL statement (TRANSREG), 8583

ZDATA= option
REPEATED statement (GENMOD), 2931

ZELEN option
EXACT statement (FREQ), 2581

OUTPUT statement (FREQ), 2592
ZERO= option

MODEL statement (CATMOD), 1913
MODEL statement (TRANSREG), 8579
RANDOM statement (MCMC), 4781

ZEROBASED option
PROC GLMMOD statement, 3582

ZEROMODEL statement
GENMOD procedure, 2934

ZEROPROB= option
PROC FMM statement, 2483

ZEROS option
WEIGHT statement (FREQ), 2641

ZETA= option
MODEL statement (GLIMMIX), 3145
MODEL statement (GLM), 3442
MODEL statement (HPMIXED), 3843
MODEL statement (MIXED), 5265
PROC PLM statement (PLM), 6166

ZROW= option
REPEATED statement (GENMOD), 2931










	Contents
	Credits
	Documentation
	Software
	Testing
	Technical Support

	Acknowledgments

	What's New in SAS/STAT 13.2
	Overview
	New Procedures
	Highlights of Enhancements
	Highlights of Enhancements in SAS/STAT 13.1

	Enhancements
	BCHOICE Procedure
	CALIS Procedure
	FACTOR Procedure
	FMM Procedure
	FREQ Procedure
	GLMPOWER Procedure
	GLMSELECT Procedure
	IRT Procedure
	LOGISTIC Procedure
	MCMC Procedure
	NLMIXED Procedure
	PHREG Procedure
	PLS Procedure
	POWER Procedure
	REG Procedure
	SEQDESIGN Procedure
	SEQTEST Procedure
	SURVEYFREQ Procedure
	SURVEYLOGISTIC Procedure

	Enhancements to the High-Performance Procedures
	New Procedures
	Procedure Enhancements

	What's Changed
	References

	Introduction
	Overview of SAS/STAT Software
	Experimental Software
	About This Book
	Chapter Organization
	Typographical Conventions
	Options Used in Examples

	Where to Turn for More Information
	Accessing the SAS/STAT Sample Library
	Sashelp Data Sets
	Online Documentation
	SAS Technical Support Services

	Related SAS Software
	SAS/IML Software
	Base SAS Software
	ODS Graphics
	SAS/ETS Software
	SAS/GRAPH Software
	SAS/OR Software
	SAS/QC Software
	SAS/IML Studio


	Introduction to Statistical Modeling with SAS/STAT Software
	Overview: Statistical Modeling
	Statistical Models
	Deterministic and Stochastic Models
	Model-Based and Design-Based Randomness
	Model Specification

	Classes of Statistical Models
	Linear and Nonlinear Models
	Regression Models and Models with Classification Effects
	Univariate and Multivariate Models
	Fixed, Random, and Mixed Models
	Generalized Linear Models
	Latent Variable Models
	Bayesian Models

	Classical Estimation Principles
	Least Squares
	Likelihood
	Inference Principles for Survey Data


	Statistical Background
	Hypothesis Testing and Power
	Important Linear Algebra Concepts
	Matrix Inversion
	Matrix Differentiation
	Matrix Decompositions

	Expectations of Random Variables and Vectors
	Mean Squared Error
	Linear Model Theory
	Finding the Least Squares Estimators
	Analysis of Variance
	Estimating the Error Variance
	Maximum Likelihood Estimation
	Estimable Functions
	Test of Hypotheses
	Residual Analysis
	Sweep Operator


	References

	Introduction to Regression Procedures
	Overview: Regression Procedures
	Introduction
	Introductory Example: Linear Regression
	Model Selection Methods
	Linear Regression: The REG Procedure
	Model Selection: The GLMSELECT Procedure
	Response Surface Regression: The RSREG Procedure
	Partial Least Squares Regression: The PLS Procedure
	Generalized Linear Regression
	Ill-Conditioned Data: The ORTHOREG Procedure
	Quantile Regression: The QUANTREG and QUANTSELECT Procedures
	Nonlinear Regression: The NLIN and NLMIXED Procedures
	Nonparametric Regression
	Robust Regression: The ROBUSTREG Procedure
	Regression with Transformations: The TRANSREG Procedure
	Interactive Features in the CATMOD, GLM, and REG Procedures

	Statistical Background in Linear Regression
	Linear Regression Models
	Parameter Estimates and Associated Statistics
	Predicted and Residual Values
	Testing Linear Hypotheses
	Multivariate Tests
	Comments on Interpreting Regression Statistics

	References

	Introduction to Analysis of Variance Procedures
	Overview: Analysis of Variance Procedures
	Procedures That Perform Sum of Squares Analysis of Variance
	Procedures That Perform General Analysis of Variance

	Statistical Details for Analysis of Variance
	From Sums of Squares to Linear Hypotheses
	Tests of Effects Based on Expected Mean Squares

	Analysis of Variance for Fixed-Effect Models
	PROC GLM for General Linear Models
	PROC ANOVA for Balanced Designs
	Comparing Group Means
	PROC TTEST for Comparing Two Groups

	Analysis of Variance for Categorical Data and Generalized Linear Models
	Nonparametric Analysis of Variance
	Constructing Analysis of Variance Designs
	For More Information
	References

	Introduction to Mixed Modeling Procedures
	Overview: Mixed Modeling Procedures
	Types of Mixed Models
	Linear, Generalized Linear, and Nonlinear Mixed Models
	Linear Mixed Model
	Generalized Linear Mixed Model
	Nonlinear Mixed Model

	Models for Clustered and Hierarchical Data
	Models with Subjects and Groups

	Linear Mixed Models
	Comparing the MIXED and GLM Procedures
	Comparing the MIXED and HPMIXED Procedures

	Generalized Linear Mixed Models
	Comparing the GENMOD and GLIMMIX Procedures

	Nonlinear Mixed Models: The NLMIXED Procedure
	References

	Introduction to Bayesian Analysis Procedures
	Overview
	Introduction
	Background in Bayesian Statistics
	Prior Distributions
	Bayesian Inference
	Bayesian Analysis: Advantages and Disadvantages
	Markov Chain Monte Carlo Method
	Assessing Markov Chain Convergence
	Summary Statistics

	A Bayesian Reading List
	Textbooks
	Tutorial and Review Papers on MCMC

	References

	Introduction to Categorical Data Analysis Procedures
	Overview: Categorical Data Analysis Procedures
	Introduction
	Sampling Frameworks and Distribution Assumptions
	Simple Random Sampling: One Population
	Stratified Simple Random Sampling: Multiple Populations
	Observational Data: Analyzing the Entire Population
	Randomized Experiments
	Relaxation of Sampling Assumptions

	Comparison of PROC FREQ and the Modeling Procedures
	Comparison of Modeling Procedures
	Logistic Regression

	References

	Introduction to Multivariate Procedures
	Overview: Multivariate Procedures
	Comparison of the PRINCOMP and FACTOR Procedures
	Comparison of the PRINCOMP and PRINQUAL Procedures
	Comparison of the PRINCOMP and CORRESP Procedures
	Comparison of the PRINQUAL and CORRESP Procedures
	Comparison of the TRANSREG and PRINQUAL Procedures
	References

	Introduction to Discriminant Procedures
	Overview: Discriminant Procedures
	Background: Discriminant Procedures
	Example: Contrasting Univariate and Multivariate Analyses
	References

	Introduction to Clustering Procedures
	Overview: Clustering Procedures
	Clustering Variables
	Clustering Observations
	Characteristics of Methods for Clustering Observations
	Well-Separated Clusters
	Poorly Separated Clusters
	Multinormal Clusters of Unequal Size and Dispersion
	Elongated Multinormal Clusters
	Nonconvex Clusters

	The Number of Clusters
	References

	Introduction to Scoring, Standardization, and Ranking Procedures
	Overview: Scoring, Standardization, and Ranking Procedures

	Introduction to Survival Analysis Procedures
	Overview
	Survival Analysis Procedures
	Parametric Accelerated Failure Time Models: The LIFEREG Procedure
	Nonparametric Methods for Right-Censored Data: The LIFETEST Procedure
	Nonparametric Methods for Interval-Censored Data: The ICLIFETEST Procedure
	Proportional Hazards Regression for Interval-Censored Data: The ICPHREG Procedure
	Quantile Regression: The QUANTLIFE Procedure
	Cox Regression and Extensions: The PHREG Procedure
	Cox Regression for Survey Data: The SURVEYPHREG Procedure

	Survival Analysis with SAS/STAT Procedures
	Bayesian Survival Analysis with SAS/STAT Procedures
	References

	Introduction to Survey Sampling and Analysis Procedures
	Overview: Survey Sampling and Analysis Procedures
	The Survey Procedures
	PROC SURVEYSELECT
	PROC SURVEYMEANS
	PROC SURVEYFREQ
	PROC SURVEYREG
	PROC SURVEYLOGISTIC
	PROC SURVEYPHREG

	Survey Design Specification
	Population
	Stratification
	Clustering
	Multistage Sampling
	Sampling Weights
	Population Totals and Sampling Rates

	Variance Estimation
	Example: Survey Sampling and Analysis Procedures
	Sample Selection
	Survey Data Analysis

	References

	The Four Types of Estimable Functions
	Overview
	Estimability
	General Form of an Estimable Function
	Introduction to Reduction Notation
	Examples

	Estimable Functions
	Type I SS and Estimable Functions
	Type II SS and Estimable Functions
	Type III and IV SS and Estimable Functions

	References

	Introduction to Nonparametric Analysis
	Overview: Nonparametric Analysis
	Testing for Normality
	Comparing Distributions

	One-Sample Tests
	Two-Sample Tests
	Comparing Two Independent Samples
	Comparing Two Related Samples

	Tests for k Samples
	Comparing k Independent Samples
	Comparing k Dependent Samples

	Measures of Correlation and Associated Tests
	Obtaining Ranks
	Kernel Density Estimation
	References

	Introduction to Structural Equation Modeling with Latent Variables
	Overview of Structural Equation Modeling with Latent Variables
	Testing Covariance Patterns
	Testing Built-In Covariance Patterns in PROC CALIS
	Direct and Implied Covariance Patterns

	Regression with Measurement Errors
	Simple Linear Regression
	Errors-in-Variables Regression
	Regression with Measurement Errors in X and Y

	Model Identification
	Illustration of Model Identification: Spleen Data

	Path Diagrams and Path Analysis
	A Simplified Path Diagram for the Spleen Data
	Producing Path Diagrams from the CALIS Procedure

	Some Measurement Models
	H4: Full Measurement Model for Lord Data
	H3: Congeneric (One-Factor) Model for Lord Data
	H2: Two-Factor Model with Parallel Tests for Lord Data
	H1: One-Factor Model with Parallel Tests for Lord Data

	The FACTOR and RAM Modeling Languages
	Specifying the Full Measurement Model (H4) by the FACTOR Modeling Language: Lord Data
	Specifying the Parallel Tests Model (H2) by the FACTOR Modeling Language: Lord Data
	Specifying the Parallel Tests Model (H2) by the RAM Modeling Language: Lord Data

	A Combined Measurement-Structural Model
	Career Aspiration: Analysis 1
	Career Aspiration: Analysis 2
	Career Aspiration: Analysis 3

	Fitting LISREL Models by the LISMOD Modeling Language
	The Measurement Model for y
	The Measurement Model for x
	The Structural Model
	Fit Summary of the LISMOD Model for Career Aspiration Analysis 3

	Some Important PROC CALIS Features
	Modeling Languages for Specifying Models
	Estimation Methods
	Statistical Inference
	Multiple-Group Analysis
	Goodness-of-Fit Statistics
	Customizable Fit Summary Table
	Standardized Solution
	Statistical Graphics
	Testing Parametric Functions
	Effect Analysis
	Model Modifications
	Optimization Methods
	Other Commonly Used Options

	Comparison of the CALIS and FACTOR Procedures for Exploratory Factor Analysis
	Comparison of the CALIS and SYSLIN Procedures
	References

	Introduction to Power and Sample Size Analysis
	Overview
	Coverage of Statistical Analyses

	Statistical Background
	Hypothesis Testing, Power, and Confidence Interval Precision
	Standard Hypothesis Tests
	Equivalence and Noninferiority
	Confidence Interval Precision

	Computing Power and Sample Size

	Power and Study Planning
	Components of Study Planning
	Effect Size
	Uncertainty and Sensitivity Analysis

	SAS/STAT Tools for Power and Sample Size Analysis
	Basic Graphs (POWER, GLMPOWER, Power and Sample Size Application)
	Highly Customized Graphs (POWER, GLMPOWER)
	Formatted Tables (%POWTABLE Macro)
	Narratives and Graphical User Interface (Power and Sample Size Application)
	Customized Power Formulas (DATA Step)
	Empirical Power Simulation (DATA Step, SAS/STAT Software)

	References

	Shared Concepts and Topics
	Levelization of Classification Variables
	Parameterization of Model Effects
	GLM Parameterization of Classification Variables and Effects
	Intercept
	Regression Effects
	Main Effects
	Interaction Effects
	Nested Effects
	Continuous-Nesting-Class Effects
	Continuous-by-Class Effects
	General Effects

	Other Parameterizations

	CODE Statement
	Syntax: CODE Statement

	EFFECT Statement
	Collection Effects
	Lag Effects
	Multimember Effects
	Polynomial Effects
	Spline Effects
	Splines and Spline Bases
	Truncated Power Function Basis
	B-Spline Basis
	Natural Cubic Spline Basis


	EFFECTPLOT Statement
	Syntax: EFFECTPLOT Statement
	Dictionary of Options

	ODS Graphics: EFFECTPLOT Statement
	Examples: EFFECTPLOT Statement
	Example 19.1:  A Saddle Surface
	Example 19.2:  Unbalanced Two-Way ANOVA
	Example 19.3:  Logistic Regression

	ESTIMATE Statement
	Syntax: ESTIMATE Statement
	Positional and Nonpositional Syntax for Coefficients in Linear Functions
	Joint Hypothesis Tests with Complex Alternatives, the Chi-Bar-Square Statistic
	ODS Table Names: ESTIMATE Statement
	ODS Graphics: ESTIMATE Statement

	LSMEANS Statement
	Syntax: LSMEANS Statement
	ODS Table Names: LSMEANS Statement
	ODS Graphics: LSMEANS Statement

	LSMESTIMATE Statement
	Syntax: LSMESTIMATE Statement
	ODS Table Names: LSMESTIMATE Statement
	ODS Graphics: LSMESTIMATE Statement

	NLOPTIONS Statement
	Syntax: NLOPTIONS Statement
	Choosing an Optimization Algorithm
	First- or Second-Order Algorithms
	Algorithm Descriptions


	SLICE Statement
	Syntax: SLICE Statement
	ODS Table Names: SLICE Statement

	STORE Statement
	Syntax: STORE Statement

	TEST Statement
	Syntax: TEST Statement
	ODS Table Names: TEST Statement

	Programming Statements
	References

	Using the Output Delivery System
	Overview: Using the Output Delivery System
	Output Defaults
	Default Open Destination
	Output Objects and ODS Destinations
	The ODS Statement
	Paths and Selection
	RUN-Group Processing
	The SAS Results Window
	The ODS PATH Statement
	The Master Template Store
	Controlling Output Appearance with Templates
	ODS and the NOPRINT Option

	Examples: Using the Output Delivery System
	Example 20.1:  Creating HTML Output with ODS
	Example 20.2:  Selecting ODS Tables for Display
	Example 20.3:  Excluding ODS Tables from Display
	Example 20.4:  Creating an Output Data Set from an ODS Table
	Example 20.5:  Creating an Output Data Set: Subsetting the Data
	Example 20.6:  RUN-Group Processing
	Example 20.7:  ODS Output Data Sets and Using PROC TEMPLATE to Customize Output
	Example 20.8:  HTML Output with Hyperlinks between Tables
	Example 20.9:  HTML Output with Graphics and Hyperlinks
	Example 20.10:  Correlation and Covariance Matrices

	References

	Statistical Graphics Using ODS
	Introduction
	Chapter Reading Guide
	Assumptions about ODS Defaults in This Chapter

	Getting Started with ODS Statistical Graphics
	Default Plots for Simple Linear Regression with PROC REG
	Survival Estimate Plot with PROC LIFETEST
	Contour and Surface Plots with PROC KDE
	Contour Plots with PROC KRIGE2D
	Partial Least Squares Plots with PROC PLS
	Box-Cox Transformation Plot with PROC TRANSREG
	LS-Means Diffogram with PROC GLIMMIX
	Principal Component Analysis Plots with PROC PRINCOMP
	Grouped Scatter Plot with PROC SGPLOT

	A Primer on ODS Statistical Graphics
	Enabling and Disabling ODS Graphics
	Graph Styles
	ODS Destinations
	Accessing Individual Graphs
	Specifying the Size and Resolution of Graphs
	Modifying Your Graphs
	Procedures That Support ODS Graphics
	Procedures That Support ODS Graphics and Traditional Graphics

	Syntax
	ODS GRAPHICS Statement
	ODS Destination Statements
	PLOTS= Option

	Selecting and Viewing Graphs
	Specifying an ODS Destination for Graphics
	Specifying a File for ODS Output

	Viewing Your Graphs in the SAS Windowing Environment
	Determining Graph Names and Labels
	Selecting and Excluding Graphs

	Graphics Image Files
	Image File Types
	Scalable Vector Graphics
	Naming Graphics Image Files
	Resetting the Index Counter
	Specifying Base Filenames
	Specifying Image File Types
	Naming Graphics Image Files with Multiple Destinations

	Saving Graphics Image Files
	LISTING Destination
	HTML Destination
	LATEX Destination

	Creating Graphs in Multiple Destinations

	Graph Size and Resolution
	ODS Graphics Editor
	Enabling the Creation of Editable Graphs
	Temporarily Enable Creation of Editable Graphs by Using an ODS Statement
	Permanently Enable Creation of Editable Graphs across SAS Sessions

	Editing a Graph with the ODS Graphics Editor

	The Default Template Stores and the Template Search Path
	Styles
	An Overview of Styles
	Style Elements and Attributes
	Style Templates and Colors
	Some Common Style Elements
	Style Comparisons
	Modifying the HTMLBLUE Style
	Style Template Modification Macro
	Creating an All-Color Style
	Changing the Default Markers and Lines
	Modifying Graph Fonts in Styles
	Modifying Other Graph Elements in Styles

	Changing the Default Style

	Statistical Graphics Procedures
	The SGPLOT Procedure
	The SGSCATTER Procedure
	The SGPANEL Procedure
	The SGRENDER Procedure

	Examples of ODS Statistical Graphics
	Example 21.1:  Creating Graphs with Tool Tips in HTML
	Example 21.2:  Creating Graphs for a Presentation
	Example 21.3:  Creating Graphs in PostScript Files
	Example 21.4:  Displaying Graphs Using the DOCUMENT Procedure
	Example 21.5:  Customizing the Style for Box Plots

	References

	ODS Graphics Template Modification
	Graph Templates
	The Graph Template Language
	Locating Templates
	Displaying Templates
	Editing Templates
	Saving Customized Templates
	Using Customized Templates
	Reverting to the Default Templates
	Graph Template Modification Macro

	Examples of ODS Graphics Template Modification
	Example 22.1:  Customizing Graphs Through Template Changes
	Modifying Graph Titles and Axis Labels
	Modifying Colors, Line Styles, and Markers
	Modifying Tick Marks and Grid Lines
	Modifying the Style to Show Grid Lines

	Example 22.2:  Adding Equations and Special Characters to Fit Plots
	Simple Linear Regression
	Cubic Fit Function
	Unicode and Special Characters

	Example 22.3:  Customizing Panels
	Example 22.4:  Customizing Axes and Reference Lines
	Example 22.5:  Adding Text to Every Graph
	Adding a Date and Project Stamp to a Few Graphs
	Adding Data Set Information to a Graph
	Adding a Date and Project Stamp to All Graphs

	Example 22.6:  PROC TEMPLATE Statement Order and Primary Plots

	References

	Customizing the Kaplan-Meier Survival Plot
	Overview
	Controlling the Survival Plot by Specifying Procedure Options
	Enabling ODS Graphics and the Default Kaplan-Meier Plot
	Individual Survival Plots
	Hall-Wellner Confidence Bands and Homogeneity Test
	Equal-Precision Bands
	Displaying the Patients-at-Risk Table inside the Plot
	Displaying the Patients-at-Risk Table outside the Plot
	Modifying At-Risk Table Times
	Reordering the Groups
	Suppressing the Censored Observations
	Failure Plots

	Controlling the Survival Plot by Modifying Graph Templates
	The Modularized Templates
	Changing the Plot Title
	Modifying the Axis
	Changing the Line Thickness
	Changing the Group Color
	Changing the Line Pattern
	Changing the Font
	Changing the Legend and Inset Position
	Changing How the Censored Points Are Displayed
	Adding a Y-Axis Reference Line
	Changing the Homogeneity Test Inset
	Suppressing the Second Title and Adding a Footnote
	Adding a Small Inset Table with Event Information
	Adding an External Table with Event Information
	Suppressing the Legend
	Kaplan-Meier Plot with Event Table and Other Customizations
	Compiled Template Cleanup

	Graph Templates, Macros, and Macro Variables
	The Macro Variables
	The Smaller Macros
	The Larger Macros
	Event Table Macros

	Dynamic Variables
	Dynamic Variables That Are Automatically Declared
	Additional Dynamic Variables

	Style Templates
	Changing the Style
	Color Priority Styles
	Displaying a Style and Extracting Color Lists
	Modifying Color Lists
	Swapping Colors among Style Elements
	Displaying a Style and Extracting Font Information
	Displaying Other Style Elements

	SAS Item Stores
	References

	The ACECLUS Procedure
	Overview: ACECLUS Procedure
	Background

	Getting Started: ACECLUS Procedure
	Syntax: ACECLUS Procedure
	PROC ACECLUS Statement
	BY Statement
	FREQ Statement
	VAR Statement
	WEIGHT Statement

	Details: ACECLUS Procedure
	Missing Values
	Output Data Sets
	Computational Resources
	Displayed Output
	ODS Table Names

	Example: ACECLUS Procedure
	Example 24.1:  Transformation and Cluster Analysis of Fisher Iris Data

	References

	The ADAPTIVEREG Procedure
	Overview: ADAPTIVEREG Procedure
	Getting Started: ADAPTIVEREG Procedure
	Syntax: ADAPTIVEREG Procedure
	PROC ADAPTIVEREG Statement
	BY Statement
	CLASS Statement
	FREQ Statement
	MODEL Statement
	OUTPUT Statement
	PARTITION Statement
	SCORE Statement
	WEIGHT Statement

	Details: ADAPTIVEREG Procedure
	Fitting Algorithms
	Missing Values
	ANOVA Decomposition
	Computational Resources
	ODS Table Names
	ODS Graphics

	Examples: ADAPTIVEREG Procedure
	Example 25.1:  Surface Fitting with Many Noisy Variables
	Example 25.2:  Fitting Data with Mixture Structures
	Example 25.3:  Predicting E-Mail Spam
	Example 25.4:  Nonparametric Poisson Model for Mackerel Egg Density

	References

	The ANOVA Procedure
	Overview: ANOVA Procedure
	Getting Started: ANOVA Procedure
	One-Way Layout with Means Comparisons
	Randomized Complete Block with One Factor

	Syntax: ANOVA Procedure
	PROC ANOVA Statement
	ABSORB Statement
	BY Statement
	CLASS Statement
	FREQ Statement
	MANOVA Statement
	MEANS Statement
	MODEL Statement
	REPEATED Statement
	TEST Statement

	Details: ANOVA Procedure
	Specification of Effects
	Using PROC ANOVA Interactively
	Missing Values
	Output Data Set
	Computational Method
	Displayed Output
	ODS Table Names
	ODS Graphics

	Examples: ANOVA Procedure
	Example 26.1:  Randomized Complete Block With Factorial Treatment Structure
	Example 26.2:  Alternative Multiple Comparison Procedures
	Example 26.3:  Split Plot
	Example 26.4:  Latin Square Split Plot
	Example 26.5:  Strip-Split Plot

	References

	The BCHOICE Procedure
	Overview: BCHOICE Procedure
	PROC BCHOICE Compared with Other SAS Procedures

	Getting Started: BCHOICE Procedure
	A Simple Logit Model
	A Logit Model with Random Effects

	Syntax: BCHOICE Procedure
	PROC BCHOICE Statement
	BY Statement
	CLASS Statement
	MODEL Statement
	PREDDIST Statement
	RANDOM Statement

	Details: BCHOICE Procedure
	Discrete Choice Models
	Types of Choice Models
	Random Effects
	Identification and Specification
	Gamerman Algorithm
	Tuning the Random Walk Metropolis in Logit Models
	Autocall Macros for Postprocessing
	Regenerating Diagnostics Plots
	Displayed Output
	ODS Table Names
	ODS Graphics

	Examples: BCHOICE Procedure
	Example 27.1:  Alternative-Specific and Individual-Specific Effects
	Example 27.2:  Nested Logit Modeling
	Example 27.3:  Probit Modeling
	Example 27.4:  A Random-Effects-Only Logit Model
	Example 27.5:  Heterogeneity Affected by Individual Characteristics
	Example 27.6:  Inference on Quantities of Interest
	Example 27.7:  Predict the Choice Probabilities

	References

	The BOXPLOT Procedure
	Overview: BOXPLOT Procedure
	Traditional Graphics and ODS Graphics

	Getting Started: BOXPLOT Procedure
	Creating Box Plots from Raw Data
	Creating Box Plots from Summary Data
	Saving Summary Data with Outliers

	Syntax: BOXPLOT Procedure
	PROC BOXPLOT Statement
	BY Statement
	ID Statement
	INSET Statement
	INSETGROUP Statement
	PLOT Statement

	Details: BOXPLOT Procedure
	Summary Statistics Represented by Box Plots
	Output Data Sets
	Input Data Sets
	Styles of Box Plots
	Percentile Definitions
	Missing Values
	Continuous Group Variables
	Positioning Insets
	Displaying Blocks of Data
	Clipping Extreme Values
	ODS Graphics

	Examples: BOXPLOT Procedure
	Example 28.1:  Displaying Summary Statistics in a Box Plot
	Example 28.2:  Using Box Plots to Compare Groups
	Example 28.3:  Creating Various Styles of Box-and-Whiskers Plots
	Example 28.4:  Creating Notched Box-and-Whiskers Plots
	Example 28.5:  Creating Box-and-Whiskers Plots with Varying Widths
	Example 28.6:  Creating Horizontal Box-and-Whiskers Plots

	References

	The CALIS Procedure
	Overview: CALIS Procedure
	Compatibility with the CALIS Procedure in SAS/STAT 9.2 or Earlier
	Compatibility with the TCALIS Procedure in SAS/STAT 9.2
	A Guide to the PROC CALIS Documentation

	Getting Started: CALIS Procedure
	A Structural Equation Example
	A Factor Model Example
	Direct Covariance Structures Analysis
	Which Modeling Language?

	Syntax: CALIS Procedure
	Classes of Statements in PROC CALIS
	Single-Group Analysis Syntax
	Multiple-Group Multiple-Model Analysis Syntax
	PROC CALIS Statement
	BOUNDS Statement
	BY Statement
	COSAN Statement
	COV Statement
	DETERM Statement
	EFFPART Statement
	FACTOR Statement
	FITINDEX Statement
	FREQ Statement
	GROUP Statement
	LINCON Statement
	LINEQS Statement
	LISMOD Statement
	LMTESTS Statement
	MATRIX Statement
	MEAN Statement
	MODEL Statement
	MSTRUCT Statement
	NLINCON Statement
	NLOPTIONS Statement
	OUTFILES Statement
	PARAMETERS Statement
	PARTIAL Statement
	PATH Statement
	PATHDIAGRAM Statement
	PCOV Statement
	PVAR Statement
	RAM Statement
	REFMODEL Statement
	RENAMEPARM Statement
	SAS Programming Statements
	SIMTESTS Statement
	STD Statement
	STRUCTEQ Statement
	TESTFUNC Statement
	VAR Statement
	VARIANCE Statement
	VARNAMES Statement
	WEIGHT Statement

	Details: CALIS Procedure
	Input Data Sets
	Output Data Sets
	Default Analysis Type and Default Parameterization
	The COSAN Model
	The FACTOR Model
	The LINEQS Model
	The LISMOD Model and Submodels
	The MSTRUCT Model
	The PATH Model
	The RAM Model
	Naming Variables and Parameters
	Setting Constraints on Parameters
	Automatic Variable Selection
	Path Diagrams: Layout Algorithms, Default Settings, and Customization
	Estimation Criteria
	Relationships among Estimation Criteria
	Gradient, Hessian, Information Matrix, and Approximate Standard Errors
	Counting the Degrees of Freedom
	Assessment of Fit
	Case-Level Residuals, Outliers, Leverage Observations, and Residual Diagnostics
	Total, Direct, and Indirect Effects
	Standardized Solutions
	Modification Indices
	Missing Values and the Analysis of Missing Patterns
	Measures of Multivariate Kurtosis
	Initial Estimates
	Use of Optimization Techniques
	Computational Problems
	Displayed Output
	ODS Table Names
	ODS Graphics

	Examples: CALIS Procedure
	Example 29.1:  Estimating Covariances and Correlations
	Example 29.2:  Estimating Covariances and Means Simultaneously
	Example 29.3:  Testing Uncorrelatedness of Variables
	Example 29.4:  Testing Covariance Patterns
	Example 29.5:  Testing Some Standard Covariance Pattern Hypotheses
	Example 29.6:  Linear Regression Model
	Example 29.7:  Multivariate Regression Models
	Example 29.8:  Measurement Error Models
	Example 29.9:  Testing Specific Measurement Error Models
	Example 29.10:  Measurement Error Models with Multiple Predictors
	Example 29.11:  Measurement Error Models Specified As Linear Equations
	Example 29.12:  Confirmatory Factor Models
	Example 29.13:  Confirmatory Factor Models: Some Variations
	Example 29.14:  Residual Diagnostics and Robust Estimation
	Example 29.15:  The Full Information Maximum Likelihood Method
	Example 29.16:  Comparing the ML and FIML Estimation
	Example 29.17:  Path Analysis: Stability of Alienation
	Example 29.18:  Simultaneous Equations with Mean Structures and Reciprocal Paths
	Example 29.19:  Fitting Direct Covariance Structures
	Example 29.20:  Confirmatory Factor Analysis: Cognitive Abilities
	Example 29.21:  Testing Equality of Two Covariance Matrices Using a Multiple-Group Analysis
	Example 29.22:  Testing Equality of Covariance and Mean Matrices between Independent Groups
	Example 29.23:  Illustrating Various General Modeling Languages
	Example 29.24:  Testing Competing Path Models for the Career Aspiration Data
	Example 29.25:  Fitting a Latent Growth Curve Model
	Example 29.26:  Higher-Order and Hierarchical Factor Models
	Example 29.27:  Linear Relations among Factor Loadings
	Example 29.28:  Multiple-Group Model for Purchasing Behavior
	Example 29.29:  Fitting the RAM and EQS Models by the COSAN Modeling Language
	Example 29.30:  Second-Order Confirmatory Factor Analysis
	Example 29.31:  Linear Relations among Factor Loadings: COSAN Model Specification
	Example 29.32:  Ordinal Relations among Factor Loadings
	Example 29.33:  Longitudinal Factor Analysis

	References

	The CANCORR Procedure
	Overview: CANCORR Procedure
	Background

	Getting Started: CANCORR Procedure
	Syntax: CANCORR Procedure
	PROC CANCORR Statement
	BY Statement
	FREQ Statement
	PARTIAL Statement
	VAR Statement
	WEIGHT Statement
	WITH Statement

	Details: CANCORR Procedure
	Missing Values
	Formulas
	Output Data Sets
	Computational Resources
	Displayed Output
	ODS Table Names

	Example: CANCORR Procedure
	Example 30.1:  Canonical Correlation Analysis of Fitness Club Data

	References

	The CANDISC Procedure
	Overview: CANDISC Procedure
	Getting Started: CANDISC Procedure
	Syntax: CANDISC Procedure
	PROC CANDISC Statement
	BY Statement
	CLASS Statement
	FREQ Statement
	VAR Statement
	WEIGHT Statement

	Details: CANDISC Procedure
	Missing Values
	Computational Details
	Input Data Set
	Output Data Sets
	Computational Resources
	Displayed Output
	ODS Table Names

	Example: CANDISC Procedure
	Example 31.1:  Analyzing Iris Data by Using PROC CANDISC

	References

	The CATMOD Procedure
	Overview: CATMOD Procedure
	Types of Input Data
	Types of Statistical Analyses
	Background: The Underlying Model
	Linear Models Contrasted with Log-Linear Models
	Using PROC CATMOD Interactively

	Getting Started: CATMOD Procedure
	Weighted Least Squares Analysis of Mean Response
	Generalized Logits Model

	Syntax: CATMOD Procedure
	PROC CATMOD Statement
	BY Statement
	CONTRAST Statement
	DIRECT Statement
	FACTORS Statement
	LOGLIN Statement
	MODEL Statement
	POPULATION Statement
	REPEATED Statement
	RESPONSE Statement
	RESTRICT Statement
	WEIGHT Statement

	Details: CATMOD Procedure
	Missing Values
	Input Data Sets
	Ordering of Populations and Responses
	Specification of Effects
	Output Data Sets
	Logistic Analysis
	Log-Linear Model Analysis
	Repeated Measures Analysis
	Generation of the Design Matrix
	Cautions
	Computational Method
	Computational Formulas
	Memory and Time Requirements
	Displayed Output
	ODS Table Names

	Examples: CATMOD Procedure
	Example 32.1:  Linear Response Function, r=2 Responses
	Example 32.2:  Mean Score Response Function, r=3 Responses
	Example 32.3:  Logistic Regression, Standard Response Function
	Example 32.4:  Log-Linear Model, Three Dependent Variables
	Example 32.5:  Log-Linear Model, Structural and Sampling Zeros
	Example 32.6:  Repeated Measures, 2 Response Levels, 3 Populations
	Example 32.7:  Repeated Measures, 4 Response Levels, 1 Population
	Example 32.8:  Repeated Measures, Logistic Analysis of Growth Curve
	Example 32.9:  Repeated Measures, Two Repeated Measurement Factors
	Example 32.10:  Direct Input of Response Functions and Covariance Matrix
	Example 32.11:  Predicted Probabilities

	References

	The CLUSTER Procedure
	Overview: CLUSTER Procedure
	Getting Started: CLUSTER Procedure
	Syntax: CLUSTER Procedure
	PROC CLUSTER Statement
	BY Statement
	COPY Statement
	FREQ Statement
	ID Statement
	RMSSTD Statement
	VAR Statement

	Details: CLUSTER Procedure
	Clustering Methods
	Miscellaneous Formulas
	Ultrametrics
	Algorithms
	Computational Resources
	Missing Values
	Ties
	Size, Shape, and Correlation
	Output Data Set
	Displayed Output
	ODS Table Names
	ODS Graphics

	Examples: CLUSTER Procedure
	Example 33.1:  Cluster Analysis of Flying Mileages between 10 American Cities
	Example 33.2:  Crude Birth and Death Rates
	Example 33.3:  Cluster Analysis of Fisher's Iris Data
	Example 33.4:  Evaluating the Effects of Ties

	References

	The CORRESP Procedure
	Overview: CORRESP Procedure
	Background

	Getting Started: CORRESP Procedure
	Syntax: CORRESP Procedure
	PROC CORRESP Statement
	BY Statement
	ID Statement
	SUPPLEMENTARY Statement
	TABLES Statement
	VAR Statement
	WEIGHT Statement

	Details: CORRESP Procedure
	Input Data Set
	Using the TABLES Statement
	Using the VAR Statement
	Missing and Invalid Data
	Coding, Fuzzy Coding, and Doubling
	Creating a Data Set Containing the Crosstabulation
	Output Data Sets
	Computational Resources
	Algorithm and Notation
	Displayed Output
	ODS Table Names
	ODS Graphics

	Examples: CORRESP Procedure
	Example 34.1:  Simple and Multiple Correspondence Analysis of Automobiles and Their Owners
	Example 34.2:  Simple Correspondence Analysis of U.S. Population

	References

	The DISCRIM Procedure
	Overview: DISCRIM Procedure
	Getting Started: DISCRIM Procedure
	Syntax: DISCRIM Procedure
	PROC DISCRIM Statement
	BY Statement
	CLASS Statement
	FREQ Statement
	ID Statement
	PRIORS Statement
	TESTCLASS Statement
	TESTFREQ Statement
	TESTID Statement
	VAR Statement
	WEIGHT Statement

	Details: DISCRIM Procedure
	Missing Values
	Background
	Posterior Probability Error-Rate Estimates
	Saving and Using Calibration Information
	Input Data Sets
	Output Data Sets
	Computational Resources
	Displayed Output
	ODS Table Names

	Examples: DISCRIM Procedure
	Example 35.1:  Univariate Density Estimates and Posterior Probabilities
	Example 35.2:  Bivariate Density Estimates and Posterior Probabilities
	Example 35.3:  Normal-Theory Discriminant Analysis of Iris Data
	Example 35.4:  Linear Discriminant Analysis of Remote-Sensing Data on Crops

	References

	The DISTANCE Procedure
	Overview: DISTANCE Procedure
	Levels of Measurement
	Symmetric versus Asymmetric Nominal Variables
	Standardization

	Getting Started: DISTANCE Procedure
	Creating a Distance Matrix as Input for a Subsequent Cluster Analysis

	Syntax: DISTANCE Procedure
	PROC DISTANCE Statement
	VAR Statement
	ID Statement
	COPY Statement
	BY Statement
	FREQ Statement
	WEIGHT Statement

	Details: DISTANCE Procedure
	Proximity Measures
	Missing Values
	Formatted versus Unformatted Values
	Output Data Sets

	Examples: DISTANCE Procedure
	Example 36.1:  Divorce Grounds – the Jaccard Coefficient
	Example 36.2:  Financial Data – Stock Dividends

	References

	The FACTOR Procedure
	Overview: FACTOR Procedure
	Background
	Outline of Use

	Getting Started: FACTOR Procedure
	Syntax: FACTOR Procedure
	PROC FACTOR Statement
	BY Statement
	FREQ Statement
	PARTIAL Statement
	PATHDIAGRAM Statement
	PRIORS Statement
	VAR Statement
	WEIGHT Statement

	Details: FACTOR Procedure
	Input Data Set
	Output Data Sets
	Confidence Intervals and the Salience of Factor Loadings
	Simplicity Functions for Rotations
	Missing Values
	Cautions
	Factor Scores
	Variable Weights and Variance Explained
	Heywood Cases and Other Anomalies about Communality Estimates
	Time Requirements
	Displayed Output
	ODS Table Names
	ODS Graphics

	Examples: FACTOR Procedure
	Example 37.1:  Principal Component Analysis
	Example 37.2:  Principal Factor Analysis
	Example 37.3:  Maximum Likelihood Factor Analysis
	Example 37.4:  Using Confidence Intervals to Locate Salient Factor Loadings
	Example 37.5:  Creating Path Diagrams for Factor Solutions

	References

	The FASTCLUS Procedure
	Overview: FASTCLUS Procedure
	Background

	Getting Started: FASTCLUS Procedure
	Syntax: FASTCLUS Procedure
	PROC FASTCLUS Statement
	BY Statement
	FREQ Statement
	ID Statement
	VAR Statement
	WEIGHT Statement

	Details: FASTCLUS Procedure
	Updates in the FASTCLUS Procedure
	Missing Values
	Output Data Sets
	Computational Resources
	Using PROC FASTCLUS
	Displayed Output
	ODS Table Names

	Examples: FASTCLUS Procedure
	Example 38.1:  Fisher's Iris Data
	Example 38.2:  Outliers

	References

	The FMM Procedure
	Overview: FMM Procedure
	Basic Features
	Assumptions
	Notation for the Finite Mixture Model
	Homogeneous Mixtures
	Special Mixtures

	PROC FMM Contrasted with Other SAS Procedures

	Getting Started: FMM Procedure
	Mixture Modeling for Binomial Overdispersion: ``Student,'' Pearson, Beer, and Yeast
	Modeling Zero-Inflation: Is it Better to Fish Poorly or Not to Have Fished at All?
	Looking for Multiple Modes: Are Galaxies Clustered?
	Comparison with Roeder's Method


	Syntax: FMM Procedure
	PROC FMM Statement
	BAYES Statement
	BY Statement
	CLASS Statement
	FREQ Statement
	ID Statement
	MODEL Statement
	OUTPUT Statement
	PERFORMANCE Statement
	PROBMODEL Statement
	RESTRICT Statement
	WEIGHT Statement

	Details: FMM Procedure
	A Gentle Introduction to Finite Mixture Models
	The Form of the Finite Mixture Model
	Mixture Models Contrasted with Mixing and Mixed Models: Untangling the Terminology Web
	Overdispersion

	Log-Likelihood Functions for Response Distributions
	Bayesian Analysis
	Conjugate Sampling
	Metropolis-Hastings Algorithm
	Latent Variables via Data Augmentation
	Prior Distributions

	Parameterization of Model Effects
	Default Output
	Model Information
	Class Level Information
	Number of Observations
	Response Profile
	Default Output for Maximum Likelihood
	Default Output for Bayesian Estimation

	ODS Table Names
	ODS Graphics

	Examples: FMM Procedure
	Example 39.1:  Modeling Mixing Probabilities: All Mice Are Created Equal, but Some Are More Equal
	Example 39.2:  The Usefulness of Custom Starting Values: When Do Cows Eat?
	Example 39.3:  Enforcing Homogeneity Constraints: Count and Dispersion—It Is All Over!
	Example 39.4:  Modeling Multinomial Overdispersion: Town and Country

	References

	The FREQ Procedure
	Overview: FREQ Procedure
	Getting Started: FREQ Procedure
	Frequency Tables and Statistics
	Agreement Study

	Syntax: FREQ Procedure
	PROC FREQ Statement
	BY Statement
	EXACT Statement
	OUTPUT Statement
	TABLES Statement
	TEST Statement
	WEIGHT Statement

	Details: FREQ Procedure
	Inputting Frequency Counts
	Grouping with Formats
	Missing Values
	In-Database Computation
	Statistical Computations
	Computational Resources
	Output Data Sets
	Displayed Output
	ODS Table Names
	ODS Graphics

	Examples: FREQ Procedure
	Example 40.1:  Output Data Set of Frequencies
	Example 40.2:  Frequency Dot Plots
	Example 40.3:  Chi-Square Goodness-of-Fit Tests
	Example 40.4:  Binomial Proportions
	Example 40.5:  Analysis of a 2x2 Contingency Table
	Example 40.6:  Output Data Set of Chi-Square Statistics
	Example 40.7:  Cochran-Mantel-Haenszel Statistics
	Example 40.8:  Cochran-Armitage Trend Test
	Example 40.9:  Friedman's Chi-Square Test
	Example 40.10:  Cochran's Q Test

	References

	The GAM Procedure
	Overview: GAM Procedure
	Getting Started: GAM Procedure
	Syntax: GAM Procedure
	PROC GAM Statement
	BY Statement
	CLASS Statement
	FREQ Statement
	MODEL Statement
	OUTPUT Statement
	SCORE Statement

	Details: GAM Procedure
	Missing Values
	Nonparametric Regression
	Additive Models and Generalized Additive Models
	Forms of Additive Models
	Estimates from PROC GAM
	Backfitting and Local Scoring Algorithms
	Smoothers
	Selection of Smoothing Parameters
	Confidence Intervals for Smoothers
	Distribution Family and Canonical Link
	Dispersion Parameter
	Computational Resources
	ODS Table Names
	ODS Graphics

	Examples: GAM Procedure
	Example 41.1:  Generalized Additive Model with Binary Data
	Example 41.2:  Poisson Regression Analysis of Component Reliability
	Example 41.3:  Comparing PROC GAM with PROC LOESS

	References

	The GEE Procedure
	Overview: GEE Procedure
	Getting Started: GEE Procedure
	Syntax: GEE Procedure
	PROC GEE Statement
	BY Statement
	CLASS Statement
	FREQ Statement
	MISSMODEL Statement
	MODEL Statement
	REPEATED Statement
	WEIGHT Statement

	Details: GEE Procedure
	Generalized Estimating Equations
	Weighted Generalized Estimating Equations under the MAR Assumption
	ODS Table Names
	ODS Graphics

	Examples: GEE Procedure
	Example 42.1:  Comparison of the Marginal and Random Effect Models for Binary Data
	Example 42.2:  Log-Linear Model for Count Data
	Example 42.3:  Weighted GEE for Longitudinal Data That Have Missing Values

	References

	The GENMOD Procedure
	Overview: GENMOD Procedure
	What Is a Generalized Linear Model?
	Examples of Generalized Linear Models
	The GENMOD Procedure

	Getting Started: GENMOD Procedure
	Poisson Regression 
	Bayesian Analysis of a Linear Regression Model
	Generalized Estimating Equations

	Syntax: GENMOD Procedure
	PROC GENMOD Statement
	ASSESS Statement
	BAYES Statement
	BY Statement
	CLASS Statement
	CODE Statement
	CONTRAST Statement
	DEVIANCE Statement
	EFFECTPLOT Statement
	ESTIMATE Statement
	EXACT Statement
	EXACTOPTIONS Statement
	FREQ Statement
	FWDLINK Statement
	INVLINK Statement
	LSMEANS Statement
	LSMESTIMATE Statement
	MODEL Statement
	OUTPUT Statement
	Programming Statements
	REPEATED Statement
	SLICE Statement
	STORE Statement
	STRATA Statement
	VARIANCE Statement
	WEIGHT Statement
	ZEROMODEL Statement

	Details: GENMOD Procedure
	Generalized Linear Models Theory
	Specification of Effects
	Parameterization Used in PROC GENMOD
	Type 1 Analysis
	Type 3 Analysis
	Confidence Intervals for Parameters
	F Statistics
	Lagrange Multiplier Statistics
	Predicted Values of the Mean
	Residuals
	Multinomial Models
	Zero-Inflated Models
	Tweedie Distribution For Generalized Linear Models
	Generalized Estimating Equations
	Assessment of Models Based on Aggregates of Residuals
	Case Deletion Diagnostic Statistics
	Bayesian Analysis
	Exact Logistic and Exact Poisson Regression
	Missing Values
	Displayed Output for Classical Analysis
	Displayed Output for Bayesian Analysis
	Displayed Output for Exact Analysis
	ODS Table Names
	ODS Graphics

	Examples: GENMOD Procedure
	Example 43.1:  Logistic Regression
	Example 43.2:  Normal Regression, Log Link 
	Example 43.3:  Gamma Distribution Applied to Life Data
	Example 43.4:  Ordinal Model for Multinomial Data
	Example 43.5:  GEE for Binary Data with Logit Link Function
	Example 43.6:  Log Odds Ratios and the ALR Algorithm
	Example 43.7:  Log-Linear Model for Count Data
	Example 43.8:  Model Assessment of Multiple Regression Using Aggregates of Residuals
	Example 43.9:  Assessment of a Marginal Model for Dependent Data
	Example 43.10:  Bayesian Analysis of a Poisson Regression Model
	Example 43.11:  Exact Poisson Regression
	Example 43.12:  Tweedie Regression

	References

	The GLIMMIX Procedure
	Overview: GLIMMIX Procedure
	Basic Features
	Assumptions
	Notation for the Generalized Linear Mixed Model
	PROC GLIMMIX Contrasted with Other SAS Procedures

	Getting Started: GLIMMIX Procedure
	Logistic Regressions with Random Intercepts

	Syntax: GLIMMIX Procedure
	PROC GLIMMIX Statement
	BY Statement
	CLASS Statement
	CODE Statement
	CONTRAST Statement
	COVTEST Statement
	EFFECT Statement
	ESTIMATE Statement
	FREQ Statement
	ID Statement
	LSMEANS Statement
	LSMESTIMATE Statement
	MODEL Statement
	NLOPTIONS Statement
	OUTPUT Statement
	PARMS Statement
	RANDOM Statement
	SLICE Statement
	STORE Statement
	WEIGHT Statement
	Programming Statements
	User-Defined Link or Variance Function

	Details: GLIMMIX Procedure
	Generalized Linear Models Theory
	Generalized Linear Mixed Models Theory
	GLM Mode or GLMM Mode
	Statistical Inference for Covariance Parameters
	Degrees of Freedom Methods
	Empirical Covariance (``Sandwich'') Estimators
	Exploring and Comparing Covariance Matrices
	Processing by Subjects
	Radial Smoothing Based on Mixed Models
	Odds and Odds Ratio Estimation
	Parameterization of Generalized Linear Mixed Models
	Response-Level Ordering and Referencing
	Comparing the GLIMMIX and MIXED Procedures
	Singly or Doubly Iterative Fitting
	Default Estimation Techniques
	Default Output
	Notes on Output Statistics
	ODS Table Names
	ODS Graphics

	Examples: GLIMMIX Procedure
	Example 44.1:  Binomial Counts in Randomized Blocks
	Example 44.2:  Mating Experiment with Crossed Random Effects
	Example 44.3:  Smoothing Disease Rates; Standardized Mortality Ratios
	Example 44.4:  Quasi-likelihood Estimation for Proportions with Unknown Distribution
	Example 44.5:  Joint Modeling of Binary and Count Data
	Example 44.6:  Radial Smoothing of Repeated Measures Data
	Example 44.7:  Isotonic Contrasts for Ordered Alternatives
	Example 44.8:  Adjusted Covariance Matrices of Fixed Effects
	Example 44.9:  Testing Equality of Covariance and Correlation Matrices
	Example 44.10:  Multiple Trends Correspond to Multiple Extrema in Profile Likelihoods
	Example 44.11:  Maximum Likelihood in Proportional Odds Model with Random Effects
	Example 44.12:  Fitting a Marginal (GEE-Type) Model
	Example 44.13:  Response Surface Comparisons with Multiplicity Adjustments
	Example 44.14:  Generalized Poisson Mixed Model for Overdispersed Count Data
	Example 44.15:  Comparing Multiple B-Splines
	Example 44.16:  Diallel Experiment with Multimember Random Effects
	Example 44.17:  Linear Inference Based on Summary Data
	Example 44.18:  Weighted Multilevel Model for Survey Data

	References

	The GLM Procedure
	Overview: GLM Procedure
	PROC GLM Features
	PROC GLM Contrasted with Other SAS Procedures

	Getting Started: GLM Procedure
	PROC GLM for Unbalanced ANOVA
	PROC GLM for Quadratic Least Squares Regression

	Syntax: GLM Procedure
	PROC GLM Statement
	ABSORB Statement
	BY Statement
	CLASS Statement
	CODE Statement
	CONTRAST Statement
	ESTIMATE Statement
	FREQ Statement
	ID Statement
	LSMEANS Statement
	MANOVA Statement
	MEANS Statement
	MODEL Statement
	OUTPUT Statement
	RANDOM Statement
	REPEATED Statement
	STORE Statement
	TEST Statement
	WEIGHT Statement

	Details: GLM Procedure
	Statistical Assumptions for Using PROC GLM
	Specification of Effects
	Using PROC GLM Interactively
	Parameterization of PROC GLM Models
	Hypothesis Testing in PROC GLM
	Effect Size Measures for F Tests in GLM
	Absorption
	Specification of ESTIMATE Expressions
	Comparing Groups
	Multivariate Analysis of Variance
	Repeated Measures Analysis of Variance
	Random-Effects Analysis
	Missing Values
	Computational Resources
	Computational Method
	Output Data Sets
	Displayed Output
	ODS Table Names
	ODS Graphics

	Examples: GLM Procedure
	Example 45.1:  Randomized Complete Blocks with Means Comparisons and Contrasts
	Example 45.2:  Regression with Mileage Data
	Example 45.3:  Unbalanced ANOVA for Two-Way Design with Interaction
	Example 45.4:  Analysis of Covariance
	Example 45.5:  Three-Way Analysis of Variance with Contrasts
	Example 45.6:  Multivariate Analysis of Variance
	Example 45.7:  Repeated Measures Analysis of Variance
	Example 45.8:  Mixed Model Analysis of Variance with the RANDOM Statement
	Example 45.9:  Analyzing a Doubly Multivariate Repeated Measures Design
	Example 45.10:  Testing for Equal Group Variances
	Example 45.11:  Analysis of a Screening Design

	References

	The GLMMOD Procedure
	Overview: GLMMOD Procedure
	Getting Started: GLMMOD Procedure
	A One-Way Design

	Syntax: GLMMOD Procedure
	PROC GLMMOD Statement
	BY Statement
	CLASS Statement
	FREQ and WEIGHT Statements
	MODEL Statement

	Details: GLMMOD Procedure
	Displayed Output
	Missing Values
	OUTPARM= Data Set
	OUTDESIGN= Data Set
	ODS Table Names

	Examples: GLMMOD Procedure
	Example 46.1:  A Two-Way Design
	Example 46.2:  Factorial Screening

	References

	The GLMPOWER Procedure
	Overview: GLMPOWER Procedure
	Getting Started: GLMPOWER Procedure
	Simple Two-Way ANOVA
	Incorporating Contrasts, Unbalanced Designs, and Multiple Means Scenarios

	Syntax: GLMPOWER Procedure
	PROC GLMPOWER Statement
	BY Statement
	CLASS Statement
	CONTRAST Statement
	MANOVA Statement
	Test Options
	Detail Options

	MODEL Statement
	PLOT Statement
	Options

	POWER Statement
	Summary of Options
	Dictionary of Options
	Restrictions on Option Combinations

	REPEATED Statement
	Examples

	WEIGHT Statement

	Details: GLMPOWER Procedure
	Specifying Value Lists in the POWER Statement
	Number-Lists
	Name-Lists
	Keyword-Lists

	Sample Size Adjustment Options
	Error and Information Output
	Displayed Output
	ODS Table Names
	Computational Methods and Formulas
	Contrasts in Fixed-Effect Univariate Models
	Adjustments for Covariates in Univariate Models
	Contrasts in Fixed-Effect Multivariate Models

	ODS Graphics

	Examples: GLMPOWER Procedure
	Example 47.1:  One-Way ANOVA
	Example 47.2:  Two-Way ANOVA with Covariate
	Example 47.3:  Repeated Measures ANOVA

	References

	The GLMSELECT Procedure
	Overview: GLMSELECT Procedure
	Features

	Getting Started: GLMSELECT Procedure
	Syntax: GLMSELECT Procedure
	PROC GLMSELECT Statement
	BY Statement
	CLASS Statement
	CODE Statement
	EFFECT Statement
	FREQ Statement
	MODEL Statement
	MODELAVERAGE Statement
	OUTPUT Statement
	PARTITION Statement
	PERFORMANCE Statement
	SCORE Statement
	STORE Statement
	WEIGHT Statement

	Details: GLMSELECT Procedure
	Model-Selection Methods
	Model Selection Issues
	Criteria Used in Model Selection Methods
	CLASS Variable Parameterization and the SPLIT Option
	Macro Variables Containing Selected Models
	Using the STORE Statement
	Building the SSCP Matrix
	Model Averaging
	Using Validation and Test Data
	Cross Validation
	External Cross Validation
	Screening
	Displayed Output
	ODS Table Names
	ODS Graphics

	Examples: GLMSELECT Procedure
	Example 48.1:  Modeling Baseball Salaries Using Performance Statistics
	Example 48.2:  Using Validation and Cross Validation
	Example 48.3:  Scatter Plot Smoothing by Selecting Spline Functions
	Example 48.4:  Multimember Effects and the Design Matrix
	Example 48.5:  Model Averaging
	Example 48.6:  Elastic Net and External Cross Validation
	Example 48.7:  LASSO with Screening

	References

	The HPMIXED Procedure
	Overview: HPMIXED Procedure
	Basic Features
	Assumptions and Notation
	Computational Approach
	The HPMIXED Procedure Contrasted with the MIXED Procedure

	Getting Started: HPMIXED Procedure
	Mixed Model with Large Number of Fixed and Random Effects

	Syntax: HPMIXED Procedure
	PROC HPMIXED Statement
	BY Statement
	CLASS Statement
	CONTRAST Statement
	EFFECT Statement
	ESTIMATE Statement
	ID Statement
	LSMEANS Statement
	MODEL Statement
	NLOPTIONS Statement
	OUTPUT Statement
	PARMS Statement
	RANDOM Statement
	REPEATED Statement
	TEST Statement
	WEIGHT Statement

	Details: HPMIXED Procedure
	Model Assumptions
	Computing and Maximizing the Likelihood
	Computing Starting Values by EM-REML
	Sparse Matrix Techniques
	Hypothesis Tests for Fixed Effects
	Default Output
	ODS Table Names

	Examples: HPMIXED Procedure
	Example 49.1:  Ranking Many Random-Effect Coefficients
	Example 49.2:  Comparing Results from PROC HPMIXED and PROC MIXED
	Example 49.3:  Using PROC GLIMMIX for Further Analysis of PROC HPMIXED Fit
	Example 49.4:  Mixed Model Analysis of Microarray Data
	Example 49.5:  Repeated Measures

	References

	The ICLIFETEST Procedure
	Overview: ICLIFETEST Procedure
	Features

	Getting Started: ICLIFETEST Procedure
	Syntax: ICLIFETEST Procedure
	PROC ICLIFETEST Statement
	BY Statement
	FREQ Statement
	STRATA Statement
	TEST Statement
	TIME Statement

	Details: ICLIFETEST Procedure
	Statistical Methods
	Missing Values
	Output Data Sets
	Displayed Output
	ODS Table Names
	ODS Graphics

	Examples: ICLIFETEST Procedure
	Example 50.1:  Analyzing Data with Observations below a Limit of Detection
	Example 50.2:  Controlling the Plotting of Survival Estimates
	Example 50.3:  Plotting Kernel-Smoothed Hazard Functions

	References

	The ICPHREG Procedure
	Overview: ICPHREG Procedure
	Comparison with the PHREG Procedure

	Getting Started: ICPHREG Procedure
	Syntax: ICPHREG Procedure
	PROC ICPHREG Statement
	BASELINE Statement
	BY Statement
	CLASS Statement
	FREQ Statement
	HAZARDRATIO Statement
	MODEL Statement
	TEST Statement

	Details: ICPHREG Procedure
	Model and Likelihood
	Baseline Parameterization
	Specification of Effects
	Computational Details
	Predicted Values
	Hazard Ratios
	Input and Output Data Sets
	Missing Values
	Displayed Output
	ODS Table Names
	ODS Graphics

	Examples: ICPHREG Procedure
	Example 51.1:  Fitting Cubic Spline Models
	Example 51.2:  Plotting Predicted Survival and Cumulative Hazard Functions

	References

	The INBREED Procedure
	Overview: INBREED Procedure
	Getting Started: INBREED Procedure
	The Format of the Input Data Set
	Performing the Analysis

	Syntax: INBREED Procedure
	PROC INBREED Statement
	BY Statement
	CLASS Statement
	GENDER Statement
	MATINGS Statement
	VAR Statement

	Details: INBREED Procedure
	Missing Values
	DATA= Data Set
	Computational Details
	OUTCOV= Data Set
	Displayed Output
	ODS Table Names

	Examples: INBREED Procedure
	Example 52.1:  Monoecious Population Analysis
	Example 52.2:  Pedigree Analysis
	Example 52.3:  Pedigree Analysis with BY Groups

	References

	The IRT Procedure
	Overview: IRT Procedure
	Basic Features

	Getting Started: IRT Procedure
	Syntax: IRT Procedure
	PROC IRT Statement
	BY Statement
	COV Statement
	EQUALITY Statement
	FACTOR Statement
	FREQ Statement
	GROUP Statement
	MODEL Statement
	VAR Statement
	VARIANCE Statement
	WEIGHT Statement

	Details: IRT Procedure
	Notation for the Item Response Theory Model
	Assumptions
	PROC IRT Contrasted with Other SAS Procedures
	Response Models
	Marginal Likelihood
	Approximating the Marginal Likelihood
	Maximizing the Marginal Likelihood
	Factor Score Estimation
	Model and Item Fit
	Item and Test information
	ODS Table Names
	ODS Graphics

	Examples: IRT Procedure
	Example 53.1:  Unidimensional IRT Models
	Example 53.2:  Multidimensional Exploratory and Confirmatory IRT Models
	Example 53.3:  Multiple-Group Analysis
	Example 53.4:  Quality of Life Survey

	References

	The KDE Procedure
	Overview: KDE Procedure
	Getting Started: KDE Procedure
	Syntax: KDE Procedure
	PROC KDE Statement
	BIVAR Statement
	UNIVAR Statement
	BY Statement
	FREQ Statement
	WEIGHT Statement

	Details: KDE Procedure
	Computational Overview
	Kernel Density Estimates
	Binning
	Convolutions
	Fast Fourier Transform
	Bandwidth Selection
	ODS Table Names
	ODS Graphics

	Examples: KDE Procedure
	Example 54.1:  Computing a Basic Kernel Density Estimate
	Example 54.2:  Changing the Bandwidth
	Example 54.3:  Changing the Bandwidth (Bivariate)
	Example 54.4:  Requesting Additional Output Tables
	Example 54.5:  Univariate KDE Graphics
	Example 54.6:  Bivariate KDE Graphics

	References

	The KRIGE2D Procedure
	Overview: KRIGE2D Procedure
	Introduction to Spatial Prediction

	Getting Started: KRIGE2D Procedure
	Spatial Prediction Using Kriging, Contour Plots

	Syntax: KRIGE2D Procedure
	PROC KRIGE2D Statement
	BY Statement
	COORDINATES Statement
	GRID Statement
	ID Statement
	PREDICT Statement
	MODEL Statement
	RESTORE Statement

	Details: KRIGE2D Procedure
	Theoretical Semivariogram Models
	The Gaussian Semivariogram Model
	The Exponential Semivariogram Model
	The Matérn Semivariogram Model
	The Spherical Semivariogram Model
	The Cubic Semivariogram Model
	The Pentaspherical Semivariogram Model
	The Sine Hole Effect Semivariogram Model
	The Power Semivariogram Model
	Nested Models

	The Nugget Effect
	Anisotropic Models
	Geometric Anisotropy
	Zonal Anisotropy
	Anisotropic Nugget Effect

	Details of Ordinary Kriging
	Introduction
	Spatial Random Fields
	Ordinary Kriging

	Computational Resources
	Output Data Sets
	Displayed Output
	ODS Table Names
	ODS Graphics

	Examples: KRIGE2D Procedure
	Example 55.1:  Spatial Prediction of Pollutant Concentration
	Example 55.2:  Investigating the Effect of Model Specification on Spatial Prediction
	Example 55.3:  Data Quality and Prediction with Missing Values

	References

	The LATTICE Procedure
	Overview: LATTICE Procedure
	Getting Started: LATTICE Procedure
	Syntax: LATTICE Procedure
	PROC LATTICE Statement
	BY Statement
	VAR Statement

	Details: LATTICE Procedure
	Input Data Set
	Missing Values
	Displayed Output
	ODS Table Names

	Example: LATTICE Procedure
	Example 56.1:  Analysis of Variance through PROC LATTICE

	References

	The LIFEREG Procedure
	Overview: LIFEREG Procedure
	Getting Started: LIFEREG Procedure
	Modeling Right-Censored Failure Time Data
	Bayesian Analysis of Right-Censored Data

	Syntax: LIFEREG Procedure
	PROC LIFEREG Statement
	BAYES Statement
	BY Statement
	CLASS Statement
	EFFECTPLOT Statement
	ESTIMATE Statement
	INSET Statement
	LSMEANS Statement
	LSMESTIMATE Statement
	MODEL Statement
	OUTPUT Statement
	PROBPLOT Statement
	SLICE Statement
	STORE Statement
	TEST Statement
	WEIGHT Statement

	Details: LIFEREG Procedure
	Missing Values
	Model Specification
	Computational Method
	Supported Distributions
	Predicted Values
	Confidence Intervals
	Fit Statistics
	Probability Plotting
	INEST= Data Set
	OUTEST= Data Set
	XDATA= Data Set
	Computational Resources
	Bayesian Analysis
	Displayed Output for Classical Analysis
	Displayed Output for Bayesian Analysis
	ODS Table Names
	ODS Graphics

	Examples: LIFEREG Procedure
	Example 57.1:  Motorette Failure
	Example 57.2:  Computing Predicted Values for a Tobit Model
	Example 57.3:  Overcoming Convergence Problems by Specifying Initial Values
	Example 57.4:  Analysis of Arbitrarily Censored Data with Interaction Effects
	Example 57.5:  Probability Plotting—Right Censoring
	Example 57.6:  Probability Plotting—Arbitrary Censoring
	Example 57.7:  Bayesian Analysis of Clinical Trial Data
	Example 57.8:  Model Postfitting Analysis

	References

	The LIFETEST Procedure
	Overview: LIFETEST Procedure
	Getting Started: LIFETEST Procedure
	Syntax: LIFETEST Procedure
	PROC LIFETEST Statement
	BY Statement
	FREQ Statement
	ID Statement
	STRATA Statement
	TEST Statement
	TIME Statement
	WEIGHT Statement

	Details: LIFETEST Procedure
	Missing Values
	Computational Formulas
	Computer Resources
	Output Data Sets
	Displayed Output
	Plot Options Superseded by ODS Graphics
	ODS Table Names
	ODS Graphics
	Modifying the Survival Plots

	Examples: LIFETEST Procedure
	Example 58.1:  Product-Limit Estimates and Tests of Association
	Example 58.2:  Enhanced Survival Plot and Multiple-Comparison Adjustments
	Example 58.3:  Life-Table Estimates for Males with Angina Pectoris

	References

	The LOESS Procedure
	Overview: LOESS Procedure
	Local Regression and the Loess Method

	Getting Started: LOESS Procedure
	Scatter Plot Smoothing

	Syntax: LOESS Procedure
	PROC LOESS Statement
	BY Statement
	ID Statement
	MODEL Statement
	OUTPUT Statement
	SCORE Statement
	WEIGHT Statement

	Details: LOESS Procedure
	Missing Values
	Output Data Sets
	Data Scaling
	Direct versus Interpolated Fitting
	k-d Trees and Blending
	Local Weighting
	Iterative Reweighting
	Specifying the Local Polynomials
	Smoothing Matrix
	Model Degrees of Freedom
	Statistical Inference and Lookup Degrees of Freedom
	Automatic Smoothing Parameter Selection
	Sparse and Approximate Degrees of Freedom Computation
	Scoring Data Sets
	ODS Table Names
	ODS Graphics

	Examples: LOESS Procedure
	Example 59.1:  Engine Exhaust Emissions
	Example 59.2:  Sulfate Deposits in the U.S. for 1990
	Example 59.3:  Catalyst Experiment
	Example 59.4:  El Niño Southern Oscillation

	References

	The LOGISTIC Procedure
	Overview: LOGISTIC Procedure
	Getting Started: LOGISTIC Procedure
	Syntax: LOGISTIC Procedure
	PROC LOGISTIC Statement
	BY Statement
	CLASS Statement
	CODE Statement
	CONTRAST Statement
	EFFECT Statement
	EFFECTPLOT Statement
	ESTIMATE Statement
	EXACT Statement
	EXACTOPTIONS Statement
	FREQ Statement
	ID Statement
	LSMEANS Statement
	LSMESTIMATE Statement
	MODEL Statement
	NLOPTIONS Statement
	ODDSRATIO Statement
	OUTPUT Statement
	ROC Statement
	ROCCONTRAST Statement
	SCORE Statement
	SLICE Statement
	STORE Statement
	STRATA Statement
	TEST Statement
	UNITS Statement
	WEIGHT Statement

	Details: LOGISTIC Procedure
	Missing Values
	Response Level Ordering
	Link Functions and the Corresponding Distributions
	Determining Observations for Likelihood Contributions
	Iterative Algorithms for Model Fitting
	Convergence Criteria
	Existence of Maximum Likelihood Estimates
	Effect-Selection Methods
	Model Fitting Information
	Generalized Coefficient of Determination
	Score Statistics and Tests
	Confidence Intervals for Parameters
	Odds Ratio Estimation
	Rank Correlation of Observed Responses and Predicted Probabilities
	Linear Predictor, Predicted Probability, and Confidence Limits
	Classification Table
	Overdispersion
	The Hosmer-Lemeshow Goodness-of-Fit Test
	Receiver Operating Characteristic Curves
	Testing Linear Hypotheses about the Regression Coefficients
	Joint Tests and Type 3 Tests
	Regression Diagnostics
	Scoring Data Sets
	Conditional Logistic Regression
	Exact Conditional Logistic Regression
	Input and Output Data Sets
	Computational Resources
	Displayed Output
	ODS Table Names
	ODS Graphics

	Examples: LOGISTIC Procedure
	Example 60.1:  Stepwise Logistic Regression and Predicted Values
	Example 60.2:  Logistic Modeling with Categorical Predictors
	Example 60.3:  Ordinal Logistic Regression
	Example 60.4:  Nominal Response Data: Generalized Logits Model
	Example 60.5:  Stratified Sampling
	Example 60.6:  Logistic Regression Diagnostics
	Example 60.7:  ROC Curve, Customized Odds Ratios, Goodness-of-Fit Statistics, R-Square, and Confidence Limits
	Example 60.8:  Comparing Receiver Operating Characteristic Curves
	Example 60.9:  Goodness-of-Fit Tests and Subpopulations
	Example 60.10:  Overdispersion
	Example 60.11:  Conditional Logistic Regression for Matched Pairs Data
	Example 60.12:  Exact Conditional Logistic Regression
	Example 60.13:  Firth's Penalized Likelihood Compared with Other Approaches
	Example 60.14:  Complementary Log-Log Model for Infection Rates
	Example 60.15:  Complementary Log-Log Model for Interval-Censored Survival Times
	Example 60.16:  Scoring Data Sets
	Example 60.17:  Using the LSMEANS Statement
	Example 60.18:  Partial Proportional Odds Model

	References

	The MCMC Procedure
	Overview: MCMC Procedure
	PROC MCMC Compared with Other SAS Procedures

	Getting Started: MCMC Procedure
	Simple Linear Regression
	The Behrens-Fisher Problem
	Random-Effects Model

	Syntax: MCMC Procedure
	PROC MCMC Statement
	ARRAY Statement
	BEGINCNST/ENDCNST Statement
	BEGINNODATA/ENDNODATA Statements
	BY Statement
	MODEL Statement
	PARMS Statement
	PREDDIST Statement
	PRIOR/HYPERPRIOR Statement
	Programming Statements
	RANDOM Statement
	UDS Statement

	Details: MCMC Procedure
	How PROC MCMC Works
	Blocking of Parameters
	Sampling Methods
	Tuning the Proposal Distribution
	Direct Sampling
	Conjugate Sampling
	Initial Values of the Markov Chains
	Assignments of Parameters
	Standard Distributions
	Usage of Multivariate Distributions
	Specifying a New Distribution
	Using Density Functions in the Programming Statements
	Truncation and Censoring
	Some Useful SAS Functions
	Matrix Functions in PROC MCMC
	Create Design Matrix
	Modeling Joint Likelihood
	Regenerating Diagnostics Plots
	Caterpillar Plot
	Autocall Macros for Postprocessing
	Gamma and Inverse-Gamma Distributions
	Posterior Predictive Distribution
	Handling of Missing Data
	Functions of Random-Effects Parameters
	Floating Point Errors and Overflows
	Handling Error Messages
	Computational Resources
	Displayed Output
	ODS Table Names
	ODS Graphics

	Examples: MCMC Procedure
	Example 61.1:  Simulating Samples From a Known Density
	Example 61.2:  Box-Cox Transformation
	Example 61.3:  Logistic Regression Model with a Diffuse Prior
	Example 61.4:  Logistic Regression Model with Jeffreys' Prior
	Example 61.5:  Poisson Regression
	Example 61.6:  Nonlinear Poisson Regression Models
	Example 61.7:  Logistic Regression Random-Effects Model
	Example 61.8:  Nonlinear Poisson Regression Multilevel Random-Effects Model
	Example 61.9:  Multivariate Normal Random-Effects Model
	Example 61.10:  Missing at Random Analysis
	Example 61.11:  Nonignorably Missing Data (MNAR) Analysis
	Example 61.12:  Change Point Models
	Example 61.13:  Exponential and Weibull Survival Analysis
	Example 61.14:  Time Independent Cox Model
	Example 61.15:  Time Dependent Cox Model
	Example 61.16:  Piecewise Exponential Frailty Model
	Example 61.17:  Normal Regression with Interval Censoring
	Example 61.18:  Constrained Analysis
	Example 61.19:  Implement a New Sampling Algorithm
	Example 61.20:  Using a Transformation to Improve Mixing
	Example 61.21:  Gelman-Rubin Diagnostics

	References

	The MDS Procedure
	Overview: MDS Procedure
	Getting Started: MDS Procedure
	Syntax: MDS Procedure
	PROC MDS Statement
	BY Statement
	ID Statement
	INVAR Statement
	MATRIX Statement
	VAR Statement
	WEIGHT Statement

	Details: MDS Procedure
	Formulas
	OUT= Data Set
	OUTFIT= Data Set
	OUTRES= Data Set
	INITIAL= Data Set
	Missing Values
	Normalization of the Estimates
	Comparison with Earlier Procedures
	Displayed Output
	ODS Table Names
	ODS Graphics

	Example: MDS Procedure
	Example 62.1:  Jacobowitz Body Parts Data from Children and Adults

	References

	The MI Procedure
	Overview: MI Procedure
	Getting Started: MI Procedure
	Syntax: MI Procedure
	PROC MI Statement
	BY Statement
	CLASS Statement
	EM Statement
	FCS Statement
	FREQ Statement
	MCMC Statement
	MNAR Statement
	MONOTONE Statement
	TRANSFORM Statement
	VAR Statement

	Details: MI Procedure
	Descriptive Statistics
	EM Algorithm for Data with Missing Values
	Statistical Assumptions for Multiple Imputation
	Missing Data Patterns
	Imputation Methods
	Monotone Methods for Data Sets with Monotone Missing Patterns
	Monotone and FCS Regression Methods
	Monotone and FCS Predictive Mean Matching Methods
	Monotone and FCS Discriminant Function Methods
	Monotone and FCS Logistic Regression Methods
	Monotone Propensity Score Method
	FCS Methods for Data Sets with Arbitrary Missing Patterns
	Checking Convergence in FCS Methods
	MCMC Method for Arbitrary Missing Multivariate Normal Data
	Producing Monotone Missingness with the MCMC Method
	MCMC Method Specifications
	Checking Convergence in MCMC
	Input Data Sets
	Output Data Sets
	Combining Inferences from Multiply Imputed Data Sets
	Multiple Imputation Efficiency
	Imputer's Model Versus Analyst's Model
	Parameter Simulation versus Multiple Imputation
	Sensitivity Analysis for the MAR Assumption
	Multiple Imputation with Pattern-Mixture Models
	Specifying Sets of Observations for Imputation in Pattern-Mixture Models
	Adjusting Imputed Values in Pattern-Mixture Models
	Summary of Issues in Multiple Imputation
	ODS Table Names
	ODS Graphics

	Examples: MI Procedure
	Example 63.1:  EM Algorithm for MLE
	Example 63.2:  Monotone Propensity Score Method
	Example 63.3:  Monotone Regression Method
	Example 63.4:  Monotone Logistic Regression Method for CLASS Variables
	Example 63.5:  Monotone Discriminant Function Method for CLASS Variables
	Example 63.6:  FCS Method for Continuous Variables
	Example 63.7:  FCS Method for CLASS Variables
	Example 63.8:  FCS Method with Trace Plot
	Example 63.9:  MCMC Method
	Example 63.10:  Producing Monotone Missingness with MCMC
	Example 63.11:  Checking Convergence in MCMC
	Example 63.12:  Saving and Using Parameters for MCMC
	Example 63.13:  Transforming to Normality
	Example 63.14:  Multistage Imputation
	Example 63.15:  Creating Control-Based Pattern Imputation in Sensitivity Analysis
	Example 63.16:  Adjusting Imputed Continuous Values in Sensitivity Analysis
	Example 63.17:  Adjusting Imputed Classification Levels in Sensitivity Analysis
	Example 63.18:  Adjusting Imputed Values with Parameters in a Data Set

	References

	The MIANALYZE Procedure
	Overview: MIANALYZE Procedure
	Getting Started: MIANALYZE Procedure
	Syntax: MIANALYZE Procedure
	PROC MIANALYZE Statement
	BY Statement
	CLASS Statement
	MODELEFFECTS Statement
	STDERR Statement
	TEST Statement

	Details: MIANALYZE Procedure
	Input Data Sets
	Combining Inferences from Imputed Data Sets
	Multiple Imputation Efficiency
	Multivariate Inferences
	Testing Linear Hypotheses about the Parameters
	Examples of the Complete-Data Inferences
	ODS Table Names

	Examples: MIANALYZE Procedure
	Example 64.1:  Reading Means and Standard Errors from a DATA= Data Set
	Example 64.2:  Reading Means and Covariance Matrices from a DATA= COV Data Set
	Example 64.3:  Reading Regression Results from a DATA= EST Data Set
	Example 64.4:  Reading Mixed Model Results from PARMS= and COVB= Data Sets
	Example 64.5:  Reading Generalized Linear Model Results
	Example 64.6:  Reading GLM Results from PARMS= and XPXI= Data Sets
	Example 64.7:  Reading Logistic Model Results from a PARMS= Data Set
	Example 64.8:  Reading Mixed Model Results with Classification Covariates
	Example 64.9:  Reading Nominal Logistic Model Results
	Example 64.10:  Using a TEST statement
	Example 64.11:  Combining Correlation Coefficients
	Example 64.12:  Sensitivity Analysis with Control-Based Pattern Imputation
	Example 64.13:  Sensitivity Analysis with Tipping-Point Approach

	References

	The MIXED Procedure
	Overview: MIXED Procedure
	Basic Features
	Notation for the Mixed Model
	PROC MIXED Contrasted with Other SAS Procedures

	Getting Started: MIXED Procedure
	Clustered Data Example

	Syntax: MIXED Procedure
	PROC MIXED Statement
	BY Statement
	CLASS Statement
	CODE Statement
	CONTRAST Statement
	ESTIMATE Statement
	ID Statement
	LSMEANS Statement
	LSMESTIMATE Statement
	MODEL Statement
	PARMS Statement
	PRIOR Statement
	RANDOM Statement
	REPEATED Statement
	SLICE Statement
	STORE Statement
	WEIGHT Statement

	Details: MIXED Procedure
	Mixed Models Theory
	Parameterization of Mixed Models
	Residuals and Influence Diagnostics
	Default Output
	ODS Table Names
	ODS Graphics
	Computational Issues

	Examples: MIXED Procedure
	Example 65.1:  Split-Plot Design
	Example 65.2:  Repeated Measures
	Example 65.3:  Plotting the Likelihood
	Example 65.4:  Known G and R
	Example 65.5:  Random Coefficients
	Example 65.6:  Line-Source Sprinkler Irrigation
	Example 65.7:  Influence in Heterogeneous Variance Model
	Example 65.8:  Influence Analysis for Repeated Measures Data
	Example 65.9:  Examining Individual Test Components
	Example 65.10:  Isotonic Contrasts for Ordered Mean Values

	References

	The MODECLUS Procedure
	Overview: MODECLUS Procedure
	Getting Started: MODECLUS Procedure
	Syntax: MODECLUS Procedure
	PROC MODECLUS Statement
	BY Statement
	FREQ Statement
	ID Statement
	VAR Statement

	Details: MODECLUS Procedure
	Density Estimation
	Clustering Methods
	Significance Tests
	Computational Resources
	Missing Values
	Output Data Sets
	Displayed Output
	ODS Table Names

	Examples: MODECLUS Procedure
	Example 66.1:  Cluster Analysis of Samples from Univariate Distributions
	Example 66.2:  Cluster Analysis of Flying Mileages between Ten American Cities
	Example 66.3:  Cluster Analysis with Significance Tests
	Example 66.4:  Cluster Analysis: Hertzsprung-Russell Plot
	Example 66.5:  Using the TRACE Option When METHOD=6

	References

	The MULTTEST Procedure
	Overview: MULTTEST Procedure
	Getting Started: MULTTEST Procedure
	Drug Example

	Syntax: MULTTEST Procedure
	PROC MULTTEST Statement
	BY Statement
	CLASS Statement
	CONTRAST Statement
	FREQ Statement
	ID Statement
	STRATA Statement
	TEST Statement

	Details: MULTTEST Procedure
	Statistical Tests
	p-Value Adjustments
	Missing Values
	Computational Resources
	Output Data Sets
	Displayed Output
	ODS Table Names
	ODS Graphics

	Examples: MULTTEST Procedure
	Example 67.1:  Cochran-Armitage Test with Permutation Resampling
	Example 67.2:  Freeman-Tukey and t Tests with Bootstrap Resampling
	Example 67.3:  Peto Mortality-Prevalence Test
	Example 67.4:  Fisher Test with Permutation Resampling
	Example 67.5:  Inputting Raw p-Values
	Example 67.6:  Adaptive Adjustments and ODS Graphics

	References

	The NESTED Procedure
	Overview: NESTED Procedure
	Contrasted with Other SAS Procedures

	Getting Started: NESTED Procedure
	Reliability of Automobile Models

	Syntax: NESTED Procedure
	PROC NESTED Statement
	BY Statement
	CLASS Statement
	VAR Statement

	Details: NESTED Procedure
	Missing Values
	Unbalanced Data
	General Random-Effects Model
	Analysis of Covariation
	Error Terms in F Tests
	Computational Method
	Displayed Output
	ODS Table Names

	Example: NESTED Procedure
	Example 68.1:  Variability of Calcium Concentration in Turnip Greens

	References

	The NLIN Procedure
	Overview: NLIN Procedure
	Getting Started: NLIN Procedure
	Nonlinear or Linear Model
	Notation for Nonlinear Regression Models
	Estimating the Parameters in the Nonlinear Model

	Syntax: NLIN Procedure
	PROC NLIN Statement
	BOOTSTRAP Statement
	BOUNDS Statement
	BY Statement
	CONTROL Statement
	DER Statement
	ID Statement
	MODEL Statement
	OUTPUT Statement
	PARAMETERS Statement
	PROFILE Statement
	RETAIN Statement
	Other Programming Statements

	Details: NLIN Procedure
	Automatic Derivatives
	Measures of Nonlinearity, Diagnostics and Inference
	Missing Values
	Special Variables
	Troubleshooting
	Computational Methods
	Output Data Sets
	Confidence Intervals
	Covariance Matrix of Parameter Estimates
	Convergence Measures
	Displayed Output
	Incompatibilities with SAS 6.11 and Earlier Versions of PROC NLIN
	ODS Table Names
	ODS Graphics

	Examples: NLIN Procedure
	Example 69.1:  Segmented Model
	Example 69.2:  Iteratively Reweighted Least Squares
	Example 69.3:  Probit Model with Likelihood Function
	Example 69.4:  Affecting Curvature through Parameterization
	Example 69.5:  Comparing Nonlinear Trends among Groups
	Example 69.6:  ODS Graphics and Diagnostics
	Example 69.7:  Parameter Profiling and Bootstrapping

	References

	The NLMIXED Procedure
	Overview: NLMIXED Procedure
	Introduction
	Literature on Nonlinear Mixed Models
	PROC NLMIXED Compared with Other SAS Procedures and Macros

	Getting Started: NLMIXED Procedure
	Nonlinear Growth Curves with Gaussian Data
	Logistic-Normal Model with Binomial Data

	Syntax: NLMIXED Procedure
	PROC NLMIXED Statement
	ARRAY Statement
	BOUNDS Statement
	BY Statement
	CONTRAST Statement
	ESTIMATE Statement
	ID Statement
	MODEL Statement
	PARMS Statement
	PREDICT Statement
	RANDOM Statement
	REPLICATE Statement
	Programming Statements

	Details: NLMIXED Procedure
	Modeling Assumptions and Notation
	Integral Approximations
	Built-in Log-Likelihood Functions
	Hierarchical Model Specification
	Optimization Algorithms
	Finite-Difference Approximations of Derivatives
	Hessian Scaling
	Active Set Methods
	Line-Search Methods
	Restricting the Step Length
	Computational Problems
	Covariance Matrix
	Prediction
	Computational Resources
	Displayed Output
	ODS Table Names

	Examples: NLMIXED Procedure
	Example 70.1:  One-Compartment Model with Pharmacokinetic Data
	Example 70.2:  Probit-Normal Model with Binomial Data
	Example 70.3:  Probit-Normal Model with Ordinal Data
	Example 70.4:  Poisson-Normal Model with Count Data
	Example 70.5:  Failure Time and Frailty Model
	Example 70.6:  Simulated Nested Linear Random-Effects Model
	Example 70.7:  Overdispersion Hierarchical Nonlinear Mixed Model

	References

	The NPAR1WAY Procedure
	Overview: NPAR1WAY Procedure
	Getting Started: NPAR1WAY Procedure
	Syntax: NPAR1WAY Procedure
	PROC NPAR1WAY Statement
	BY Statement
	CLASS Statement
	EXACT Statement
	FREQ Statement
	OUTPUT Statement
	VAR Statement

	Details: NPAR1WAY Procedure
	Missing Values
	Tied Values
	Statistical Computations
	Contents of the Output Data Set
	Displayed Output
	ODS Table Names
	ODS Graphics

	Examples: NPAR1WAY Procedure
	Example 71.1:  Two-Sample Location Tests and Plots
	Example 71.2:  EDF Statistics and EDF Plot
	Example 71.3:  Exact Wilcoxon Two-Sample Test
	Example 71.4:  Hodges-Lehmann Estimation
	Example 71.5:  Exact Savage Multisample Test

	References

	The ORTHOREG Procedure
	Overview: ORTHOREG Procedure
	Getting Started: ORTHOREG Procedure
	Longley Data

	Syntax: ORTHOREG Procedure
	PROC ORTHOREG Statement
	BY Statement
	CLASS Statement
	EFFECT Statement
	EFFECTPLOT Statement
	ESTIMATE Statement
	LSMEANS Statement
	LSMESTIMATE Statement
	MODEL Statement
	SLICE Statement
	STORE Statement
	TEST Statement
	WEIGHT Statement

	Details: ORTHOREG Procedure
	Missing Values
	Output Data Set
	Displayed Output
	ODS Table Names
	ODS Graphics

	Examples: ORTHOREG Procedure
	Example 72.1:  Precise Analysis of Variance
	Example 72.2:  Wampler Data
	Example 72.3:  Fitting Polynomials

	References

	The PHREG Procedure
	Overview: PHREG Procedure
	Getting Started: PHREG Procedure
	Classical Method of Maximum Likelihood
	Bayesian Analysis

	Syntax: PHREG Procedure
	PROC PHREG Statement
	ASSESS Statement
	BASELINE Statement
	BAYES Statement
	BY Statement
	CLASS Statement
	CONTRAST Statement
	EFFECT Statement
	ESTIMATE Statement
	FREQ Statement
	HAZARDRATIO Statement
	ID Statement
	LSMEANS Statement
	LSMESTIMATE Statement
	MODEL Statement
	OUTPUT Statement
	Programming Statements
	RANDOM Statement
	STRATA Statement
	SLICE Statement
	STORE Statement
	TEST Statement
	WEIGHT Statement

	Details: PHREG Procedure
	Failure Time Distribution
	Time and CLASS Variables Usage
	Partial Likelihood Function for the Cox Model
	Counting Process Style of Input
	Left-Truncation of Failure Times
	The Multiplicative Hazards Model
	Proportional Rates/Means Models for Recurrent Events
	The Frailty Model
	Proportional Subdistribution Hazards Model for Competing-Risks Data
	Hazard Ratios
	Newton-Raphson Method
	Firth's Modification for Maximum Likelihood Estimation
	Robust Sandwich Variance Estimate
	Testing the Global Null Hypothesis
	Type 3 Tests and Joint Tests
	Confidence Limits for a Hazard Ratio
	Using the TEST Statement to Test Linear Hypotheses
	Analysis of Multivariate Failure Time Data
	Model Fit Statistics
	Schemper-Henderson Predictive Measure
	Residuals
	Diagnostics Based on Weighted Residuals
	Influence of Observations on Overall Fit of the Model
	Survivor Function Estimators
	Caution about Using Survival Data with Left Truncation
	Effect Selection Methods
	Assessment of the Proportional Hazards Model
	The Penalized Partial Likelihood Approach for Fitting Frailty Models
	Specifics for Bayesian Analysis
	Computational Resources
	Input and Output Data Sets
	Displayed Output
	ODS Table Names
	ODS Graphics

	Examples: PHREG Procedure
	Example 73.1:  Stepwise Regression
	Example 73.2:  Best Subset Selection
	Example 73.3:  Modeling with Categorical Predictors
	Example 73.4:  Firth's Correction for Monotone Likelihood
	Example 73.5:  Conditional Logistic Regression for m:n Matching
	Example 73.6:  Model Using Time-Dependent Explanatory Variables
	Example 73.7:  Time-Dependent Repeated Measurements of a Covariate
	Example 73.8:  Survival Curves
	Example 73.9:  Analysis of Residuals
	Example 73.10:  Analysis of Recurrent Events Data
	Example 73.11:  Analysis of Clustered Data
	Example 73.12:  Model Assessment Using Cumulative Sums of Martingale Residuals
	Example 73.13:  Bayesian Analysis of the Cox Model
	Example 73.14:  Bayesian Analysis of Piecewise Exponential Model
	Example 73.15:  Analysis of Competing-Risks Data

	References

	The PLAN Procedure
	Overview: PLAN Procedure
	Getting Started: PLAN Procedure
	Three Replications with Four Factors
	Randomly Assigning Subjects to Treatments

	Syntax: PLAN Procedure
	PROC PLAN Statement
	FACTORS Statement
	OUTPUT Statement
	TREATMENTS Statement

	Details: PLAN Procedure
	Using PROC PLAN Interactively
	Output Data Sets
	Specifying Factor Structures
	Randomizing Designs
	Displayed Output
	ODS Table Names

	Examples: PLAN Procedure
	Example 74.1:  A Split-Plot Design
	Example 74.2:  A Hierarchical Design
	Example 74.3:  An Incomplete Block Design
	Example 74.4:  A Latin Square Design
	Example 74.5:  A Generalized Cyclic Incomplete Block Design
	Example 74.6:  Permutations and Combinations
	Example 74.7:  Crossover Designs

	References

	The PLM Procedure
	Overview: PLM Procedure
	Basic Features
	PROC PLM Contrasted with Other SAS Procedures

	Getting Started: PLM Procedure
	Syntax: PLM Procedure
	PROC PLM Statement
	CODE Statement
	EFFECTPLOT Statement
	ESTIMATE Statement
	FILTER Statement
	LSMEANS Statement
	LSMESTIMATE Statement
	SCORE Statement
	SHOW Statement
	SLICE Statement
	TEST Statement
	WHERE Statement

	Details: PLM Procedure
	BY Processing and the PLM Procedure
	Analysis Based on Posterior Estimates
	Scoring Data Sets for Zero-Inflated Models
	User-Defined Formats and the PLM Procedure
	ODS Table Names
	ODS Graphics

	Examples: PLM Procedure
	Example 75.1:  Scoring with PROC PLM
	Example 75.2:  Working with Item Stores
	Example 75.3:  Group Comparisons in an Ordinal Model
	Example 75.4:  Posterior Inference for Binomial Data
	Example 75.5:  BY-Group Processing
	Example 75.6:  Comparing Multiple B-Splines
	Example 75.7:  Linear Inference with Arbitrary Estimates

	References

	The PLS Procedure
	Overview: PLS Procedure
	Basic Features

	Getting Started: PLS Procedure
	Spectrometric Calibration

	Syntax: PLS Procedure
	PROC PLS Statement
	BY Statement
	CLASS Statement
	EFFECT Statement
	ID Statement
	MODEL Statement
	OUTPUT Statement

	Details: PLS Procedure
	Regression Methods
	Cross Validation
	Centering and Scaling
	Missing Values
	Displayed Output
	ODS Table Names
	ODS Graphics

	Examples: PLS Procedure
	Example 76.1:  Examining Model Details
	Example 76.2:  Examining Outliers
	Example 76.3:  Choosing a PLS Model by Test Set Validation
	Example 76.4:  Partial Least Squares Spline Smoothing

	References

	The POWER Procedure
	Overview: POWER Procedure
	Getting Started: POWER Procedure
	Computing Power for a One-Sample t Test
	Determining Required Sample Size for a Two-Sample t Test

	Syntax: POWER Procedure
	PROC POWER Statement
	LOGISTIC Statement
	Summary of Options
	Dictionary of Options
	Restrictions on Option Combinations
	Option Groups for Common Analyses

	MULTREG Statement
	Summary of Options
	Dictionary of Options
	Restrictions on Option Combinations
	Option Groups for Common Analyses

	ONECORR Statement
	Summary of Options
	Dictionary of Options
	Option Groups for Common Analyses

	ONESAMPLEFREQ Statement
	Summary of Options
	Dictionary of Options
	Option Groups for Common Analyses
	Restrictions on Option Combinations

	ONESAMPLEMEANS Statement
	Summary of Options
	Dictionary of Options
	Restrictions on Option Combinations
	Option Groups for Common Analyses

	ONEWAYANOVA Statement
	Summary of Options
	Dictionary of Options
	Restrictions on Option Combinations
	Option Groups for Common Analyses

	PAIREDFREQ Statement
	Summary of Options
	Dictionary of Options
	Restrictions on Option Combinations
	Option Groups for Common Analyses

	PAIREDMEANS Statement
	Summary of Options
	Dictionary of Options
	Restrictions on Option Combinations
	Option Groups for Common Analyses

	PLOT Statement
	Options

	TWOSAMPLEFREQ Statement
	Summary of Options
	Dictionary of Options
	Restrictions on Option Combinations
	Option Groups for Common Analyses

	TWOSAMPLEMEANS Statement
	Summary of Options
	Dictionary of Options
	Restrictions on Option Combinations
	Option Groups for Common Analyses

	TWOSAMPLESURVIVAL Statement
	Summary of Options
	Dictionary of Options
	Restrictions on Option Combinations
	Option Groups for Common Analyses

	TWOSAMPLEWILCOXON Statement
	Summary of Options
	Dictionary of Options
	Restrictions on Option Combinations
	Option Groups for Common Analyses


	Details: POWER Procedure
	Overview of Power Concepts
	Summary of Analyses
	Specifying Value Lists in Analysis Statements
	Keyword-Lists
	Number-Lists
	Grouped-Number-Lists
	Name-Lists
	Grouped-Name-Lists

	Sample Size Adjustment Options
	Error and Information Output
	Displayed Output
	ODS Table Names
	Computational Resources
	Memory
	CPU Time

	Computational Methods and Formulas
	Common Notation
	Analyses in the LOGISTIC Statement
	Analyses in the MULTREG Statement
	Analyses in the ONECORR Statement
	Analyses in the ONESAMPLEFREQ Statement
	Analyses in the ONESAMPLEMEANS Statement
	Analyses in the ONEWAYANOVA Statement
	Analyses in the PAIREDFREQ Statement
	Analyses in the PAIREDMEANS Statement
	Analyses in the TWOSAMPLEFREQ Statement
	Analyses in the TWOSAMPLEMEANS Statement
	Analyses in the TWOSAMPLESURVIVAL Statement
	Analyses in the TWOSAMPLEWILCOXON Statement

	ODS Graphics

	Examples: POWER Procedure
	Example 77.1:  One-Way ANOVA
	Example 77.2:  The Sawtooth Power Function in Proportion Analyses
	Example 77.3:  Simple AB/BA Crossover Designs
	Example 77.4:  Noninferiority Test with Lognormal Data
	Example 77.5:  Multiple Regression and Correlation
	Example 77.6:  Comparing Two Survival Curves
	Example 77.7:  Confidence Interval Precision
	Example 77.8:  Customizing Plots
	Assigning Analysis Parameters to Axes
	Fine-Tuning a Sample Size Axis
	Adding Reference Lines
	Linking Plot Features to Analysis Parameters
	Choosing Key (Legend) Styles
	Modifying Symbol Locations

	Example 77.9:  Binary Logistic Regression with Independent Predictors
	Example 77.10:  Wilcoxon-Mann-Whitney Test

	References

	The Power and Sample Size Application
	Overview: PSS Application
	SAS Power and Sample Size

	Getting Started: PSS Application
	Overview
	The Basic Steps
	A Simple Example

	How to Use: PSS Application
	Overview
	SAS Connections
	Setting Preferences
	Creating and Editing PSS Projects
	Importing and Exporting Projects

	Details: PSS Application
	Software Requirements
	Installation
	Configuration

	Example: Two-Sample t Test
	Overview
	Test of Two Independent Means for Equal Variances
	Test of Two Independent Means for Unequal Variances
	Test of Mean Ratios
	Additional Topics

	Example: Analysis of Variance
	Overview
	The Example
	Additional Topics

	Example: Two-Sample Survival Rank Tests
	Overview
	The Example
	Additional Topics


	The PRINCOMP Procedure
	Overview: PRINCOMP Procedure
	Getting Started: PRINCOMP Procedure
	Syntax: PRINCOMP Procedure
	PROC PRINCOMP Statement
	BY Statement
	FREQ Statement
	ID Statement
	PARTIAL Statement
	VAR Statement
	WEIGHT Statement

	Details: PRINCOMP Procedure
	Missing Values
	Output Data Sets
	Computational Resources
	Displayed Output
	ODS Table Names
	ODS Graphics

	Examples: PRINCOMP Procedure
	Example 79.1:  Analyzing Mean Temperatures of US Cities
	Example 79.2:  Analyzing Rankings of US College Basketball Teams
	Example 79.3:  Analyzing Job Ratings of Police Officers

	References

	The PRINQUAL Procedure
	Overview: PRINQUAL Procedure
	Getting Started: PRINQUAL Procedure
	Syntax: PRINQUAL Procedure
	PROC PRINQUAL Statement
	BY Statement
	FREQ Statement
	ID Statement
	TRANSFORM Statement
	WEIGHT Statement

	Details: PRINQUAL Procedure
	The Three Methods of Variable Transformation
	Understanding How PROC PRINQUAL Works
	Splines
	Missing Values
	Controlling the Number of Iterations
	Performing a Principal Component Analysis of Transformed Data
	Using the MAC Method
	Output Data Set
	Avoiding Constant Transformations
	Constant Variables
	Character OPSCORE Variables
	REITERATE Option Usage
	Passive Observations
	Computational Resources
	Displayed Output
	ODS Table Names
	ODS Graphics

	Examples: PRINQUAL Procedure
	Example 80.1:  Multidimensional Preference Analysis of Automobile Data
	Example 80.2:  Principal Components of Basketball Rankings

	References

	The PROBIT Procedure
	Overview: PROBIT Procedure
	Getting Started: PROBIT Procedure
	Estimating the Natural Response Threshold Parameter

	Syntax: PROBIT Procedure
	PROC PROBIT Statement
	BY Statement
	CDFPLOT Statement
	CLASS Statement
	EFFECTPLOT Statement
	ESTIMATE Statement
	INSET Statement
	IPPPLOT Statement
	LPREDPLOT Statement
	LSMEANS Statement
	LSMESTIMATE Statement
	MODEL Statement
	OUTPUT Statement
	PREDPPLOT Statement
	SLICE Statement
	STORE Statement
	TEST Statement
	WEIGHT Statement

	Details: PROBIT Procedure
	Missing Values
	Response Level Ordering
	Computational Method
	Distributions
	INEST= SAS-data-set
	Model Specification
	Lack-of-Fit Tests
	Rescaling the Covariance Matrix
	Tolerance Distribution
	Inverse Confidence Limits
	OUTEST= SAS-data-set
	XDATA= SAS-data-set
	Traditional High-Resolution Graphics
	Displayed Output
	ODS Table Names
	ODS Graphics

	Examples: PROBIT Procedure
	Example 81.1:  Dosage Levels
	Example 81.2:  Multilevel Response
	Example 81.3:  Logistic Regression
	Example 81.4:  An Epidemiology Study
	Example 81.5:  Model Postfitting Analysis

	References

	The QUANTLIFE Procedure
	Overview: QUANTLIFE Procedure
	Features
	Quantile Regression

	Getting Started: QUANTLIFE Procedure
	Syntax: QUANTLIFE Procedure
	PROC QUANTLIFE Statement
	BASELINE Statement
	BY Statement
	CLASS Statement
	EFFECT Statement
	MODEL Statement
	OUTPUT Statement
	TEST Statement
	WEIGHT Statement

	Details: QUANTLIFE Procedure
	Notation for Censored Quantile Regression
	Kaplan-Meier-Type Estimator for Censored Quantile Regression
	Nelson-Aalen-Type Estimator for Censored Quantile Regression
	Relationship of Quantile Function and Survival Function
	Confidence Interval
	Output Data Sets
	ODS Table Names
	ODS Graphics

	Examples: QUANTLIFE Procedure
	Example 82.1:  Primary Biliary Cirrhosis Study
	Example 82.2:  Drug Abuse Study

	References

	The QUANTREG Procedure
	Overview: QUANTREG Procedure
	Features
	Quantile Regression

	Getting Started: QUANTREG Procedure
	Analysis of Fish-Habitat Relationships
	Growth Charts for Body Mass Index

	Syntax: QUANTREG Procedure
	PROC QUANTREG Statement
	BY Statement
	CLASS Statement
	EFFECT Statement
	ESTIMATE Statement
	ID Statement
	MODEL Statement
	OUTPUT Statement
	PERFORMANCE Statement
	TEST Statement
	WEIGHT Statement

	Details: QUANTREG Procedure
	Quantile Regression as an Optimization Problem
	Optimization Algorithms
	Confidence Interval
	Covariance-Correlation
	Linear Test
	Leverage Point and Outlier Detection
	INEST= Data Set
	OUTEST= Data Set
	Computational Resources
	ODS Table Names
	ODS Graphics

	Examples: QUANTREG Procedure
	Example 83.1:  Comparison of Algorithms
	Example 83.2:  Quantile Regression for Econometric Growth Data
	Example 83.3:  Quantile Regression Analysis of Birth-Weight Data
	Example 83.4:  Nonparametric Quantile Regression for Ozone Levels
	Example 83.5:  Quantile Polynomial Regression for Salary Data

	References

	The QUANTSELECT Procedure
	Overview: QUANTSELECT Procedure
	Features

	Getting Started: QUANTSELECT Procedure
	Syntax: QUANTSELECT Procedure
	PROC QUANTSELECT Statement
	BY Statement
	CLASS Statement
	EFFECT Statement
	MODEL Statement
	OUTPUT Statement
	PARTITION Statement
	WEIGHT Statement

	Details: QUANTSELECT Procedure
	Quantile Regression
	Effect Selection Methods
	Criteria Used in Model Selection Methods
	Macro Variables That Contain Selected Models
	Using Validation and Test Data
	Displayed Output
	ODS Table Names
	ODS Graphics

	Example: QUANTSELECT Procedure
	Example 84.1:  Simulation Study
	Example 84.2:  Econometric Growth Data
	Example 84.3:  Pollution and Mortality
	Example 84.4:  Surface Fitting with Many Noisy Variables

	References

	The REG Procedure
	Overview: REG Procedure
	Getting Started: REG Procedure
	Simple Linear Regression
	Polynomial Regression
	Using PROC REG Interactively

	Syntax: REG Procedure
	PROC REG Statement
	ADD Statement
	BY Statement
	CODE Statement
	DELETE Statement
	FREQ Statement
	ID Statement
	MODEL Statement
	MTEST Statement
	OUTPUT Statement
	PRINT Statement
	REFIT Statement
	RESTRICT Statement
	REWEIGHT Statement
	STORE Statement
	TEST Statement
	VAR Statement
	WEIGHT Statement

	Details: REG Procedure
	Missing Values
	Input Data Sets
	Output Data Sets
	Interactive Analysis
	Model-Selection Methods
	Criteria Used in Model-Selection Methods
	Limitations in Model-Selection Methods
	Parameter Estimates and Associated Statistics
	Predicted and Residual Values
	Models of Less Than Full Rank
	Collinearity Diagnostics
	Model Fit and Diagnostic Statistics
	Influence Statistics
	Reweighting Observations in an Analysis
	Testing for Heteroscedasticity
	Testing for Lack of Fit
	Multivariate Tests
	Autocorrelation in Time Series Data
	Computations for Ridge Regression and IPC Analysis
	Construction of Q-Q and P-P Plots
	Computational Methods
	Computer Resources in Regression Analysis
	Displayed Output
	Plot Options Superseded by ODS Graphics
	ODS Table Names
	ODS Graphics

	Examples: REG Procedure
	Example 85.1:  Modeling Salaries of Major League Baseball Players
	Example 85.2:  Aerobic Fitness Prediction
	Example 85.3:  Predicting Weight by Height and Age
	Example 85.4:  Regression with Quantitative and Qualitative Variables
	Example 85.5:  Ridge Regression for Acetylene Data
	Example 85.6:  Chemical Reaction Response

	References

	The ROBUSTREG Procedure
	Overview: ROBUSTREG Procedure
	Features

	Getting Started: ROBUSTREG Procedure
	M Estimation
	LTS Estimation

	Syntax: ROBUSTREG Procedure
	PROC ROBUSTREG Statement
	BY Statement
	CLASS Statement
	EFFECT Statement
	ID Statement
	MODEL Statement
	OUTPUT Statement
	PERFORMANCE Statement
	TEST Statement
	WEIGHT Statement

	Details: ROBUSTREG Procedure
	M Estimation
	High Breakdown Value Estimation
	MM Estimation
	Robust Distance
	Leverage-Point and Outlier Detection
	Implementation of the WEIGHT Statement
	INEST= Data Set
	OUTEST= Data Set
	Computational Resources
	ODS Table Names
	ODS Graphics

	Examples: ROBUSTREG Procedure
	Example 86.1:  Comparison of Robust Estimates
	Example 86.2:  Robust ANOVA
	Example 86.3:  Growth Study of De Long and Summers
	Example 86.4:  Constructed Effects
	Example 86.5:  Robust Diagnostics

	References

	The RSREG Procedure
	Overview: RSREG Procedure
	Comparison to Other SAS Software
	Terminology

	Getting Started: RSREG Procedure
	A Response Surface with a Simple Optimum

	Syntax: RSREG Procedure
	PROC RSREG Statement
	BY Statement
	ID Statement
	MODEL Statement
	RIDGE Statement
	WEIGHT Statement

	Details: RSREG Procedure
	Introduction to Response Surface Experiments
	Coding the Factor Variables
	Missing Values
	Plotting the Surface
	Searching for Multiple Response Conditions
	Handling Covariates
	Computational Method
	Output Data Sets
	Displayed Output
	ODS Table Names
	ODS Graphics

	Examples: RSREG Procedure
	Example 87.1:  A Saddle Surface Response Using Ridge Analysis
	Example 87.2:  Response Surface Analysis with Covariates

	References

	The SCORE Procedure
	Overview: SCORE Procedure
	Raw Data Set
	Scoring Coefficients Data Set
	Standardization of Raw Data

	Getting Started: SCORE Procedure
	Syntax: SCORE Procedure
	PROC SCORE Statement
	BY Statement
	ID Statement
	VAR Statement

	Details: SCORE Procedure
	Missing Values
	Regression Parameter Estimates from PROC REG
	Output Data Set
	Computational Resources

	Examples: SCORE Procedure
	Example 88.1:  Factor Scoring Coefficients
	Example 88.2:  Regression Parameter Estimates
	Example 88.3:  Custom Scoring Coefficients

	References

	The SEQDESIGN Procedure
	Overview: SEQDESIGN Procedure
	Features of the SEQDESIGN Procedure
	Output from the SEQDESIGN Procedure
	Boundaries for Group Sequential Designs
	Group Sequential Methods

	Getting Started: SEQDESIGN Procedure
	Syntax: SEQDESIGN Procedure
	PROC SEQDESIGN Statement
	DESIGN Statement
	SAMPLESIZE Statement

	Details: SEQDESIGN Procedure
	Fixed-Sample Clinical Trials
	One-Sided Fixed-Sample Tests in Clinical Trials
	Two-Sided Fixed-Sample Tests in Clinical Trials
	Group Sequential Methods
	Statistical Assumptions for Group Sequential Designs
	Boundary Scales
	Boundary Variables
	Type I and Type II Errors
	Unified Family Methods
	Haybittle-Peto Method
	Whitehead Methods
	Error Spending Methods
	Acceptance (beta) Boundary
	Boundary Adjustments for Overlapping Lower and Upper beta Boundaries
	Specified and Derived Parameters
	Applicable Boundary Keys
	Sample Size Computation
	Applicable One-Sample Tests and Sample Size Computation
	Applicable Two-Sample Tests and Sample Size Computation
	Applicable Regression Parameter Tests and Sample Size Computation
	Aspects of Group Sequential Designs
	Summary of Methods in Group Sequential Designs
	Table Output
	ODS Table Names
	Graphics Output
	ODS Graphics

	Examples: SEQDESIGN Procedure
	Example 89.1:  Creating Fixed-Sample Designs
	Example 89.2:  Creating a One-Sided O'Brien-Fleming Design
	Example 89.3:  Creating Two-Sided Pocock and O'Brien-Fleming Designs
	Example 89.4:  Generating Graphics Display for Sequential Designs
	Example 89.5:  Creating Designs Using Haybittle-Peto Methods
	Example 89.6:  Creating Designs with Various Stopping Criteria
	Example 89.7:  Creating Whitehead's Triangular Designs
	Example 89.8:  Creating a One-Sided Error Spending Design
	Example 89.9:  Creating Designs with Various Number of Stages
	Example 89.10:  Creating Two-Sided Error Spending Designs with and without Overlapping Lower and Upper beta Boundaries
	Example 89.11:  Creating a Two-Sided Asymmetric Error Spending Design with Early Stopping to Reject H0
	Example 89.12:  Creating a Two-Sided Asymmetric Error Spending Design with Early Stopping to Reject or Accept H0
	Example 89.13:  Creating a Design with a Nonbinding Beta Boundary
	Example 89.14:  Computing Sample Size for Survival Data That Have Uniform Accrual
	Example 89.15:  Computing Sample Size for Survival Data with Truncated Exponential Accrual

	References

	The SEQTEST Procedure
	Overview: SEQTEST Procedure
	Features of the SEQTEST Procedure
	Output from the SEQTEST Procedure

	Getting Started: SEQTEST Procedure
	Syntax: SEQTEST Procedure
	PROC SEQTEST Statement

	Details: SEQTEST Procedure
	Input Data Sets
	Boundary Variables
	Information Level Adjustments at Future Stages
	Boundary Adjustments for Information Levels
	Boundary Adjustments for Minimum Error Spending
	Boundary Adjustments for Overlapping Lower and Upper beta Boundaries
	Stochastic Curtailment
	Repeated Confidence Intervals
	Analysis after a Sequential Test
	Available Sample Space Orderings in a Sequential Test
	Applicable Tests and Sample Size Computation
	Table Output
	ODS Table Names
	Graphics Output
	ODS Graphics

	Examples: SEQTEST Procedure
	Example 90.1:  Testing the Difference between Two Proportions
	Example 90.2:  Testing an Effect in a Regression Model
	Example 90.3:  Testing an Effect with Early Stopping to Accept H0
	Example 90.4:  Testing a Binomial Proportion
	Example 90.5:  Comparing Two Proportions with a Log Odds Ratio Test
	Example 90.6:  Comparing Two Survival Distributions with a Log-Rank Test
	Example 90.7:  Testing an Effect in a Proportional Hazards Regression Model
	Example 90.8:  Testing an Effect in a Logistic Regression Model
	Example 90.9:  Conducting a Trial with a Nonbinding Acceptance Boundary

	References

	The SIM2D Procedure
	Overview: SIM2D Procedure
	Introduction to Spatial Simulation

	Getting Started: SIM2D Procedure
	Preliminary Spatial Data Analysis
	Investigating Variability by Simulation

	Syntax: SIM2D Procedure
	PROC SIM2D Statement
	BY Statement
	COORDINATES Statement
	GRID Statement
	ID Statement
	RESTORE Statement
	SIMULATE Statement
	Covariance Model Specification

	MEAN Statement

	Details: SIM2D Procedure
	Computational and Theoretical Details of Spatial Simulation
	Introduction
	Theoretical Development
	Computational Details

	Output Data Set
	Displayed Output
	ODS Table Names
	ODS Graphics
	ODS Graph Names


	Examples: SIM2D Procedure
	Example 91.1:  Simulation and Economic Feasibility
	Simulating a Subregion for Economic Feasibility
	Implementation Using PROC SIM2D

	Example 91.2:  Variability at Selected Locations
	Example 91.3:  Risk Analysis with Simulation

	References

	The SIMNORMAL Procedure
	Overview: SIMNORMAL Procedure
	Getting Started: SIMNORMAL Procedure
	Syntax: SIMNORMAL Procedure
	PROC SIMNORMAL Statement
	BY Statement
	CONDITION Statement
	VAR Statement
	OUT= Output Data Set

	Details: SIMNORMAL Procedure
	Introduction
	Unconditional Simulation
	Conditional Simulation

	Example: SIMNORM Procedure
	References

	The SPP Procedure
	Overview: SPP Procedure
	Classes of Spatial Data
	Introduction to Point Pattern Analysis

	Getting Started: SPP Procedure
	Syntax: SPP Procedure
	PROC SPP Statement
	BY Statement
	COVTEST Statement
	MODEL Statement
	NLOPTIONS Statement
	PARMS Statement
	PROCESS Statement
	TREND Statement

	Details: SPP Procedure
	Testing for Complete Spatial Randomness
	Quadrat Count Test for CSR

	Exploring Interpoint Interaction
	Nearest-Neighbor Distance Functions
	Statistics Based on Second-Order Characteristics

	Distance Functions for Multitype Point Patterns
	Border Edge Correction for Distance Functions
	Confidence Intervals for Summary Statistics
	Ripley-Rasson Window Estimator
	Covariate Dependence Tests
	EDF Goodness-of-Fit Tests
	Testing Covariate Dependency with EDF Tests

	Nonparametric Intensity Estimation
	Inhomogeneous Poisson Process Model Fitting
	Likelihood Methods for Model Fitting
	Fit Statistics
	Fitted Model Validation That Uses Goodness-of-Fit Tests
	Fitted Model Validation That Uses Residuals

	Output Data Sets
	OUT= Suboption in the KERNEL Option in the PROCESS Statement
	OUTSIM= Option in the PROCESS Statement
	OUTINTENSITY= Option in the MODEL Statement
	OUTSIM= Option in the MODEL Statement

	Displayed Output
	ODS Table Names
	ODS Graphics
	ODS Graph Names


	Examples: SPP Procedure
	Example 93.1:  Exploration of a Multitype Point Pattern
	Example 93.2:  Testing Covariate Dependence of a Point Pattern
	Example 93.3:  Intensity Model Validation Diagnostics

	References

	The STDIZE Procedure
	Overview: STDIZE Procedure
	Getting Started: STDIZE Procedure
	Syntax: STDIZE Procedure
	PROC STDIZE Statement
	BY Statement
	FREQ Statement
	LOCATION Statement
	SCALE Statement
	VAR Statement
	WEIGHT Statement

	Details: STDIZE Procedure
	Standardization Methods
	Computation of the Statistics
	Computing Quantiles
	Constant Data
	Missing Values
	Output Data Sets
	Displayed Output
	ODS Table Names

	Example: STDIZE Procedure
	Example 94.1:  Standardization of Variables in Cluster Analysis

	References

	The STDRATE Procedure
	Overview: STDRATE Procedure
	Getting Started: STDRATE Procedure
	Syntax: STDRATE Procedure
	PROC STDRATE Statement
	BY Statement
	POPULATION Statement
	REFERENCE Statement
	STRATA Statement

	Details: STDRATE Procedure
	Rate
	Risk
	Direct Standardization
	Mantel-Haenszel Effect Estimation
	Indirect Standardization and Standardized Morbidity/Mortality Ratio
	Attributable Fraction and Population Attributable Fraction
	Applicable Data Sets and Required Variables for Method Specifications
	Applicable Confidence Limits for Rate and Risk Statistics
	Table Output
	ODS Table Names
	Graphics Output
	ODS Graphics

	Examples: STDRATE Procedure
	Example 95.1:  Comparing Directly Standardized Rates
	Example 95.2:  Computing Mantel-Haenszel Risk Estimation
	Example 95.3:  Computing Attributable Fraction Estimates
	Example 95.4:  Displaying SMR Results from BY Groups

	References

	The STEPDISC Procedure
	Overview: STEPDISC Procedure
	Getting Started: STEPDISC Procedure
	Syntax: STEPDISC Procedure
	PROC STEPDISC Statement
	BY Statement
	CLASS Statement
	FREQ Statement
	VAR Statement
	WEIGHT Statement

	Details: STEPDISC Procedure
	Missing Values
	Input Data Sets
	Computational Resources
	Displayed Output
	ODS Table Names

	Example: STEPDISC Procedure
	Example 96.1:  Performing a Stepwise Discriminant Analysis

	References

	The SURVEYFREQ Procedure
	Overview: SURVEYFREQ Procedure
	Getting Started: SURVEYFREQ Procedure
	Syntax: SURVEYFREQ Procedure
	PROC SURVEYFREQ Statement
	BY Statement
	CLUSTER Statement
	REPWEIGHTS Statement
	STRATA Statement
	TABLES Statement
	WEIGHT Statement

	Details: SURVEYFREQ Procedure
	Specifying the Sample Design
	Domain Analysis
	Missing Values
	Statistical Computations
	Output Data Sets
	Displayed Output
	ODS Table Names
	ODS Graphics

	Examples: SURVEYFREQ Procedure
	Example 97.1:  Two-Way Tables
	Example 97.2:  Multiway Tables (Domain Analysis)
	Example 97.3:  Output Data Sets

	References

	The SURVEYLOGISTIC Procedure
	Overview: SURVEYLOGISTIC Procedure
	Getting Started: SURVEYLOGISTIC Procedure
	Syntax: SURVEYLOGISTIC Procedure
	PROC SURVEYLOGISTIC Statement
	BY Statement
	CLASS Statement
	CLUSTER Statement
	CONTRAST Statement
	DOMAIN Statement
	EFFECT Statement
	ESTIMATE Statement
	FREQ Statement
	LSMEANS Statement
	LSMESTIMATE Statement
	MODEL Statement
	Response Variable Options
	Model Options

	OUTPUT Statement
	Details of the PREDPROBS= Option

	REPWEIGHTS Statement
	SLICE Statement
	STORE Statement
	STRATA Statement
	TEST Statement
	UNITS Statement
	WEIGHT Statement

	Details: SURVEYLOGISTIC Procedure
	Missing Values
	Model Specification
	Response Level Ordering
	CLASS Variable Parameterization
	Link Functions and the Corresponding Distributions

	Model Fitting
	Determining Observations for Likelihood Contributions
	Iterative Algorithms for Model Fitting
	Convergence Criteria
	Existence of Maximum Likelihood Estimates
	Model Fitting Statistics
	Generalized Coefficient of Determination
	INEST= Data Set

	Survey Design Information
	Specification of Population Totals and Sampling Rates
	Primary Sampling Units (PSUs)

	Logistic Regression Models and Parameters
	Notation
	Logistic Regression Models
	Likelihood Function

	Variance Estimation
	Taylor Series (Linearization)
	Balanced Repeated Replication (BRR) Method
	Fay's BRR Method
	Jackknife Method
	Hadamard Matrix

	Domain Analysis
	Hypothesis Testing and Estimation
	Degrees of Freedom
	Score Statistics and Tests
	Testing Global Null Hypothesis: BETA=0
	Testing the Parallel Lines Assumption
	Wald Confidence Intervals for Parameters
	Testing Linear Hypotheses about the Regression Coefficients
	Odds Ratio Estimation
	Rank Correlation of Observed Responses and Predicted Probabilities

	Linear Predictor, Predicted Probability, and Confidence Limits
	Cumulative Response Models
	Generalized Logit Model

	Output Data Sets
	OUT= Data Set in the OUTPUT Statement
	Replicate Weights Output Data Set
	Jackknife Coefficients Output Data Set

	Displayed Output
	Model Information
	Variance Estimation
	Data Summary
	Response Profile
	Class Level Information
	Stratum Information
	Maximum Likelihood Iteration History
	Score Test for the Parallel Lines Assumption
	Model Fit Statistics
	Type III Analysis of Effects
	Analysis of Maximum Likelihood Estimates
	Odds Ratio Estimates
	Association of Predicted Probabilities and Observed Responses
	Estimated Covariance Matrix
	Linear Hypotheses Testing Results
	Hadamard Matrix

	ODS Table Names
	ODS Graphics

	Examples: SURVEYLOGISTIC Procedure
	Example 98.1:  Stratified Cluster Sampling
	Example 98.2:  The Medical Expenditure Panel Survey (MEPS)

	References

	The SURVEYMEANS Procedure
	Overview: SURVEYMEANS Procedure
	Getting Started: SURVEYMEANS Procedure
	Simple Random Sampling
	Stratified Sampling
	Output Data Sets

	Syntax: SURVEYMEANS Procedure
	PROC SURVEYMEANS Statement
	BY Statement
	CLASS Statement
	CLUSTER Statement
	DOMAIN Statement
	POSTSTRATA Statement
	RATIO Statement
	REPWEIGHTS Statement
	STRATA Statement
	VAR Statement
	WEIGHT Statement

	Details: SURVEYMEANS Procedure
	Missing Values
	Survey Data Analysis
	Specification of Population Totals and Sampling Rates
	Primary Sampling Units (PSUs)
	Domain Analysis

	Statistical Computations
	Definitions and Notation
	Mean
	Variance and Standard Error of the Mean
	t Test for the Mean
	Degrees of Freedom
	Confidence Limits for the Mean
	Coefficient of Variation
	Proportions
	Total
	Variance and Standard Deviation of the Total
	Confidence Limits for the Total
	Ratio
	Domain Statistics
	Quantiles
	Geometric Mean
	Poststratification

	Replication Methods for Variance Estimation
	Balanced Repeated Replication (BRR) Method
	Fay's BRR Method
	Jackknife Method
	Hadamard Matrix

	Computational Resources
	Output Data Sets
	Replicate Weights Output Data Set
	Jackknife Coefficients Output Data Set
	Poststratification Weights Output Data Set
	Rectangular and Stacking Structures in an Output Data Set

	Displayed Output
	Data and Sample Design Summary
	Class Level Information
	Stratum Information
	Variance Estimation
	Statistics
	Quantiles
	Domain Analysis
	Domain Quantiles
	Ratio Analysis
	Domain Ratio Analysis
	Hadamard Matrix
	Geometric Means
	Domain Geometric Means

	ODS Table Names
	ODS Graphics

	Examples: SURVEYMEANS Procedure
	Example 99.1:  Stratified Cluster Sample Design
	Example 99.2:  Domain Analysis
	Example 99.3:  Ratio Analysis
	Example 99.4:  Analyzing Survey Data with Missing Values
	Example 99.5:  Variance Estimation Using Replication Methods

	References

	The SURVEYPHREG Procedure
	Overview: SURVEYPHREG Procedure
	Getting Started: SURVEYPHREG Procedure
	Syntax: SURVEYPHREG Procedure
	PROC SURVEYPHREG Statement
	BY Statement
	CLASS Statement
	CLUSTER Statement
	DOMAIN Statement
	ESTIMATE Statement
	FREQ Statement
	LSMEANS Statement
	LSMESTIMATE Statement
	MODEL Statement
	NLOPTIONS Statement
	OUTPUT Statement
	Programming Statements
	REPWEIGHTS Statement
	SLICE Statement
	STORE Statement
	STRATA Statement
	TEST Statement
	WEIGHT Statement

	Details: SURVEYPHREG Procedure
	Notation and Estimation
	Failure Time Distribution
	Time and CLASS Variables Usage
	Partial Likelihood Function for the Cox Model
	Specifying the Sample Design
	Missing Values
	Variance Estimation
	Domain Analysis
	Hypothesis Tests, Confidence Intervals, and Residuals
	Output Data Sets
	Displayed Output
	ODS Table Names
	ODS Graphics

	Examples: SURVEYPHREG Procedure
	Example 100.1:  Analysis of Clustered Data
	Example 100.2:  Stratification, Clustering, and Unequal Weights
	Example 100.3:  Domain Analysis
	Example 100.4:  Variance Estimation by Using Replicate Weights
	Example 100.5:  A Test of the Proportional Hazards Assumption by Using the Programming Statements

	References

	The SURVEYREG Procedure
	Overview: SURVEYREG Procedure
	Getting Started: SURVEYREG Procedure
	Simple Random Sampling
	Stratified Sampling
	Output Data Sets

	Syntax: SURVEYREG Procedure
	PROC SURVEYREG Statement
	BY Statement
	CLASS Statement
	CLUSTER Statement
	CONTRAST Statement
	DOMAIN Statement
	EFFECT Statement
	ESTIMATE Statement
	LSMEANS Statement
	LSMESTIMATE Statement
	MODEL Statement
	OUTPUT Statement
	REPWEIGHTS Statement
	SLICE Statement
	STORE Statement
	STRATA Statement
	TEST Statement
	WEIGHT Statement

	Details: SURVEYREG Procedure
	Missing Values
	Survey Design Information
	Specification of Population Totals and Sampling Rates
	Primary Sampling Units (PSUs)

	Computational Details
	Notation
	Regression Coefficients
	Design Effect
	Stratum Collapse
	Sampling Rate of the Pooled Stratum from Collapse
	Analysis of Variance (ANOVA)
	Multiple R-Square
	Adjusted R-Square
	Root Mean Square Errors

	Variance Estimation
	Taylor Series (Linearization)
	Balanced Repeated Replication (BRR) Method
	Fay's BRR Method
	Jackknife Method
	Hadamard Matrix
	Degrees of Freedom

	Testing
	Testing Effects
	Contrasts

	Domain Analysis
	Computational Resources
	Output Data Sets
	OUT= Data Set Created by the OUTPUT Statement
	Replicate Weights Output Data Set
	Jackknife Coefficients Output Data Set

	Displayed Output
	Data Summary
	Design Summary
	Domain Summary
	Fit Statistics
	Variance Estimation
	Stratum Information
	Class Level Information
	X'X Matrix
	Inverse Matrix of X'X
	ANOVA for Dependent Variable
	Tests of Model Effects
	Estimated Regression Coefficients
	Covariance of Estimated Regression Coefficients
	Coefficients of Contrast
	Analysis of Contrasts
	Hadamard Matrix

	ODS Table Names
	ODS Graphics

	Examples: SURVEYREG Procedure
	Example 101.1:  Simple Random Sampling
	Example 101.2:  Cluster Sampling
	Example 101.3:  Regression Estimator for Simple Random Sample
	Example 101.4:  Stratified Sampling
	Example 101.5:  Regression Estimator for Stratified Sample
	Example 101.6:  Stratum Collapse
	Example 101.7:  Domain Analysis
	Example 101.8:  Compare Domain Statistics
	Example 101.9:  Variance Estimate Using the Jackknife Method

	References

	The SURVEYSELECT Procedure
	Overview: SURVEYSELECT Procedure
	Getting Started: SURVEYSELECT Procedure
	Simple Random Sampling
	Stratified Sampling
	Stratified Sampling with Control Sorting

	Syntax: SURVEYSELECT Procedure
	PROC SURVEYSELECT Statement
	CONTROL Statement
	FREQ Statement
	ID Statement
	SAMPLINGUNIT | CLUSTER Statement
	SIZE Statement
	STRATA Statement

	Details: SURVEYSELECT Procedure
	Missing Values
	Sorting by CONTROL Variables
	Random Number Generation
	Sample Selection Methods
	Sample Size Allocation
	Secondary Input Data Set
	Sample Output Data Set
	Allocation Output Data Set
	Random Assignment Output Data Set
	Displayed Output
	ODS Table Names

	Examples: SURVEYSELECT Procedure
	Example 102.1:  Replicated Sampling
	Example 102.2:  PPS Selection of Two Units per Stratum
	Example 102.3:  PPS (Dollar-Unit) Sampling
	Example 102.4:  Proportional Allocation

	References

	The TPSPLINE Procedure
	Overview: TPSPLINE Procedure
	Penalized Least Squares Estimation
	PROC TPSPLINE with Large Data Sets

	Getting Started: TPSPLINE Procedure
	Syntax: TPSPLINE Procedure
	PROC TPSPLINE Statement
	BY Statement
	FREQ Statement
	ID Statement
	MODEL Statement
	OUTPUT Statement
	SCORE Statement

	Details: TPSPLINE Procedure
	Computational Formulas
	ODS Table Names
	ODS Graphics

	Examples: TPSPLINE Procedure
	Example 103.1:  Partial Spline Model Fit
	Example 103.2:  Spline Model with Higher-Order Penalty
	Example 103.3:  Multiple Minima of the GCV Function
	Example 103.4:  Large Data Set Application
	Example 103.5:  Computing a Bootstrap Confidence Interval

	References

	The TRANSREG Procedure
	Overview: TRANSREG Procedure
	Getting Started: TRANSREG Procedure
	Fitting a Curve through a Scatter Plot
	Main-Effects ANOVA

	Syntax: TRANSREG Procedure
	PROC TRANSREG Statement
	BY Statement
	FREQ Statement
	ID Statement
	MODEL Statement
	OUTPUT Statement
	WEIGHT Statement

	Details: TRANSREG Procedure
	Model Statement Usage
	Box-Cox Transformations
	Using Splines and Knots
	Scoring Spline Variables
	Linear and Nonlinear Regression Functions
	Simultaneously Fitting Two Regression Functions
	Penalized B-Splines
	Smoothing Splines
	Smoothing Splines Changes and Enhancements
	Iteration History Changes and Enhancements
	ANOVA Codings
	Missing Values
	Missing Values, UNTIE, and Hypothesis Tests
	Controlling the Number of Iterations
	Using the REITERATE Algorithm Option
	Avoiding Constant Transformations
	Constant Variables
	Character OPSCORE Variables
	Convergence and Degeneracies
	Implicit and Explicit Intercepts
	Passive Observations
	Point Models
	Redundancy Analysis
	Optimal Scaling
	OPSCORE, MONOTONE, UNTIE, and LINEAR Transformations
	SPLINE and MSPLINE Transformations
	Specifying the Number of Knots
	SPLINE, BSPLINE, and PSPLINE Comparisons
	Hypothesis Tests
	Output Data Set
	OUTTEST= Output Data Set
	Computational Resources
	Unbalanced ANOVA without CLASS Variables
	Hypothesis Tests for Simple Univariate Models
	Hypothesis Tests with Monotonicity Constraints
	Hypothesis Tests with Dependent Variable Transformations
	Hypothesis Tests with One-Way ANOVA
	Using the DESIGN Output Option
	Discrete Choice Experiments: DESIGN, NORESTORE, NOZERO
	Centering
	Displayed Output
	ODS Table Names
	ODS Graphics

	Examples: TRANSREG Procedure
	Example 104.1:  Transformation Regression of Exhaust Emissions Data
	Example 104.2:  Box-Cox Transformations
	Example 104.3:  Penalized B-Spline
	Example 104.4:  Nonmetric Conjoint Analysis of Tire Data
	Example 104.5:  Metric Conjoint Analysis of Tire Data
	Example 104.6:  Preference Mapping of Automobile Data

	References

	The TREE Procedure
	Overview: TREE Procedure
	Getting Started: TREE Procedure
	Syntax: TREE Procedure
	PROC TREE Statement
	BY Statement
	COPY Statement
	FREQ Statement
	HEIGHT Statement
	ID Statement
	NAME Statement
	PARENT Statement

	Details: TREE Procedure
	Missing Values
	Output Data Set
	Displayed Output
	ODS Table Names

	Examples: TREE Procedure
	Example 105.1:  Mammals' Teeth
	Example 105.2:  Iris Data

	References

	The TTEST Procedure
	Overview: TTEST Procedure
	Getting Started: TTEST Procedure
	One-Sample t Test
	Comparing Group Means

	Syntax: TTEST Procedure
	PROC TTEST Statement
	BY Statement
	CLASS Statement
	FREQ Statement
	PAIRED Statement
	VAR Statement
	WEIGHT Statement

	Details: TTEST Procedure
	Input Data Set of Statistics
	Missing Values
	Computational Methods
	Common Notation
	Arithmetic and Geometric Means
	Coefficient of Variation
	One-Sample Design
	Paired Design
	Two-Independent-Sample Design
	AB/BA Crossover Design
	TOST Equivalence Test

	Displayed Output
	ODS Table Names
	ODS Graphics
	ODS Graph Names
	Interpreting Graphs


	Examples: TTEST Procedure
	Example 106.1:  Using Summary Statistics to Compare Group Means
	Example 106.2:  One-Sample Comparison with the FREQ Statement
	Example 106.3:  Paired Comparisons
	Example 106.4:  AB/BA Crossover Design
	Example 106.5:  Equivalence Testing with Lognormal Data

	References

	The VARCLUS Procedure
	Overview: VARCLUS Procedure
	Getting Started: VARCLUS Procedure
	Syntax: VARCLUS Procedure
	PROC VARCLUS Statement
	BY Statement
	FREQ Statement
	PARTIAL Statement
	SEED Statement
	VAR Statement
	WEIGHT Statement

	Details: VARCLUS Procedure
	Missing Values
	Using the VARCLUS procedure
	Output Data Sets
	Computational Resources
	Interpreting VARCLUS Procedure Output
	Displayed Output
	ODS Table Names
	ODS Graphics

	Example: VARCLUS Procedure
	Example 107.1:  Correlations among Physical Variables

	References

	The VARCOMP Procedure
	Overview: VARCOMP Procedure
	Getting Started: VARCOMP Procedure
	Analyzing the Cure Rate of Rubber

	Syntax: VARCOMP Procedure
	PROC VARCOMP Statement
	BY Statement
	CLASS Statement
	MODEL Statement

	Details: VARCOMP Procedure
	Missing Values
	Fixed and Random Effects
	Negative Variance Component Estimates
	Computational Methods
	Gauge Repeatability and Reproducibility Analysis
	Confidence Limits
	Displayed Output
	ODS Table Names
	Relationship to PROC MIXED

	Examples: VARCOMP Procedure
	Example 108.1:  Using the Four General Estimation Methods
	Example 108.2:  Using the GRR Method

	References

	The VARIOGRAM Procedure
	Overview: VARIOGRAM Procedure
	Introduction to Spatial Prediction

	Getting Started: VARIOGRAM Procedure
	Preliminary Spatial Data Analysis
	Empirical Semivariogram Computation
	Autocorrelation Analysis
	Theoretical Semivariogram Model Fitting

	Syntax: VARIOGRAM Procedure
	PROC VARIOGRAM Statement
	BY Statement
	COMPUTE Statement
	COORDINATES Statement
	DIRECTIONS Statement
	ID Statement
	MODEL Statement
	Explicit Model Specification
	Automated Model Selection

	PARMS Statement
	NLOPTIONS Statement
	STORE Statement
	VAR Statement

	Details: VARIOGRAM Procedure
	Theoretical Semivariogram Models
	Characteristics of Semivariogram Models
	Nested Models

	Theoretical and Computational Details of the Semivariogram
	Stationarity
	Ergodicity
	Anisotropy
	Pair Formation
	Angle Classification
	Distance Classification
	Bandwidth Restriction
	Computation of the Distribution Distance Classes
	Semivariance Computation
	Empirical Semivariograms and Surface Trends

	Theoretical Semivariogram Model Fitting
	Parameter Initialization
	Parameter Estimates
	Quality of Fit
	Fitting with Matérn Forms

	Autocorrelation Statistics
	Autocorrelation Weights
	Autocorrelation Statistics Types
	Interpretation
	The Moran Scatter Plot

	Computational Resources
	Output Data Sets
	OUTACWEIGHTS=SAS-data-set
	OUTDIST=SAS-data-set
	OUTMORAN=SAS-data-set
	OUTPAIR=SAS-data-set
	OUTVAR=SAS-data-set

	Displayed Output
	ODS Table Names
	ODS Graphics
	ODS Graph Names


	Examples: VARIOGRAM Procedure
	Example 109.1:  Aspects of Semivariogram Model Fitting
	Example 109.2:  An Anisotropic Case Study with Surface Trend in the Data
	Analysis with Surface Trend Removal

	Example 109.3:  Analysis without Surface Trend Removal
	Example 109.4:  Covariogram and Semivariogram
	Example 109.5:  A Box Plot of the Square Root Difference Cloud

	References

	Special SAS Data Sets
	Introduction to Special SAS Data Sets
	Special SAS Data Sets
	TYPE=ACE Data Sets
	TYPE=BOXPLOT Data Sets
	TYPE=CALISFIT Data Sets
	TYPE=CALISMDL Data Sets
	TYPE=CHARTSUM Data Sets
	TYPE=CORR Data Sets
	TYPE=COV Data Sets
	TYPE=CSSCP Data Sets
	TYPE=DISTANCE Data Sets
	TYPE=EST Data Sets
	TYPE=FACTOR Data Sets
	TYPE=LINEAR Data Sets
	TYPE=LOGISMOD Data Sets
	TYPE=MIXED Data Sets
	TYPE=QUAD Data Sets
	TYPE=SSCP Data Sets
	TYPE=TREE Data Sets
	TYPE=UCORR Data Sets
	TYPE=UCOV Data Sets
	TYPE=WEIGHT Data Sets

	Definitional Formulas

	Sashelp Data Sets
	Overview of Sashelp Data Sets
	Baseball Data
	Tropical Rain Forest Tree Data
	Bone Marrow Transplant Data
	Birth Weight Data
	Class Data
	Comet Data
	El Nino–Southern Oscillation Data
	Finland's Lake Laengelmaevesi Fish Catch Data
	Exhaust Emissions Data
	Fisher (1936) Iris Data
	Junk E-mail Data
	Leukemia Data Sets
	Margarine Data
	Flying Mileages between 10 US Cities Data
	Coal Seam Thickness Data
	1980 US Presidential Election Data
	References

	Subject Index
	Syntax Index

